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ABSTRACT 

This thesis is concerned with a general algebraic 

construction, applications of this construction, and related 

topics in the theory of functions of a real variable. 

Chapter one is mainly concerned with an extension 

process related to that of the extension of a ring without 

zero divisors to its field of quotients, but which is 

applicable to systems of a more general character. The 

construction proves fruitful when applied to certain 

function spaces, and in chapter two, isomorphisms are est-

ablished between extensions of a particular space T. (the 

slowly increasing functions), and certain classes of distri-

butions. Chapter three is mainly devoted to various 

topological considerations, pertaining both to the general 

situation and to the particular case considered in chapter 

two. It is shown that the isomorphisms established in the 

second chapter provide homeomorphisms, when 	is endowed 

with the topology of pointwise convergence (amongst others) 

and when the distribution spaces in question have the weak 

dual topologies. Realisations of the algebraic theory in 

the realm of function spaces pose some questions in the 

theory of functions of a real variable, and in answer to 

these questions, a generalisation of a certain theorem of 

N. Wiener's is proven in chapter four. Besides being of 

some intrinsic interest, this enables further examples to 



3 -- 

be constructed, some of which are related to the spaces of 

types; which have been considered by Gel'fand and Shilov 

(10). 
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INTRODUCTION 

In chapter one of this thesis, we show that a universal 

algebra .ta which possesses an Abelian semigroup of inject- 

ive endomorphisms, 	, may be embedded in another universal 

algebra, XX (Z  , .;13 ), of the same type as 11 . There is a 
sub-algebra of ;3a (-1,1.45 ) which is isomorphic with °,4X, 
and in a number of cases this is a proper sub-algebra, and 

(22, , 	) then represents a genuine extension of 	. 

The construction of 	(f2A. ,J ,e)  ) has an affinity with 

the familiar construction of the rationals from the integers, 

and an appropriate choice of ;b and .A5 will yield the 

rationals, (though with a reduced algebraic structure). 

However the sort of embedding used here seems inappropriate 

for a simple algebraic system such as this. The construction 

tends to be fruitful when there are interesting self-

mappings of 1. which can be used to form the endomorphisms 

which constitute 	In the particular cases which are 

considered in this thesis, al is usually a space of func-

tions, and the endomorphisms which constitute fo will 

generally be provided by convolution with the members of 

another class of functions. However the extension process 

is, in principle, of a very general character, and in 

chapter one and parts of chapter three, the theory of the 



embedding is developed in a general form.}  

The particular case most extensively studied is that 

in which :V. is taken to be the class q- of slowly increas- 

ing functions, with certain operations, and g5 	, 

g the space of rapidly decreasing functions and '9.51 the 

Wiener class, i.e. the subclass of L1 consisting of functions 

with nowhere vanishing Fourier transforms. It turns out 

that j:),_(`Z 	t1 0,k ) is isomorphic with rt.)2 t , the class 

of Fourier transforms of distributions of finite order. 

In order to establish this isomorphism between 

n 	) and -,c6:31 it is necessary to establish 

a number of lemmas concerning distributions, and so a 

resume of the apposite parts of distribution theory is 

included in chapter two. 

In the development of the general theory of 	, 

spaces, it is shown that there is a non-empty collection of 

sub-algebras of 3C1(21 	), the Wiener sub-algebras, 

which may be topologised in a fairly natural fashion using 

any given topology on 	. Theorems are proven which show 

that in certain situations some of the topological properties 

of a Wiener sub-algebra, CP1  , mimic those of 	. 

The character of the construction of 7,..a(U,x) ) 

1.  There appears to be no reason why the theory could not 
be developed in a still more general form, by using 
the concept of a first order relational structure (see 
(5) Pg.189 and (16) Pg.7) in place of that of a univer-
sal algebra. 



leads to a natural classification of an element of 

	

( 	) by means of its base class (see D.3.1.5.), 

and this in turn leads to consideration of certain sub- 

algebras of p_(9.„1-,, P  ), the spaces n(r2,11 	) 

(n = 0,1,2,...). Some properties of the 	n(It , 	) are 

established, in particular that they are Wiener sub- 

algebras and that 6. n(9-1-, 	) s K;41.1.4_1(0,,6 ); the 

question of their distinctness is also discussed. 

Thus 	 0(71,Qq; P ) is a sub-algebra of 

, g 	), and it is shown that O (51_, 	) 0 
is isomorphic with the space G i  of tempered distributions. 

It is also shown that 3:X( 	, 62) cl sA:c) is a Wiener sub-

algebra of itself. For appropriate topologies on 7-t, it 

is proved that the isomorphisms established between 

, 	n 	) and 	, and between X.  ( 	G 	) 
and g  , are in fact homeomorphisms when the distribution 

spaces carry the weak dual topologies. It is shown by some 

examples that differing topologies on 	can lead to the 

same topology on 7.:2ICZ, cG (I V> ), and similarly for 

	

co 	T53  ) 

The class gn, of functions with nowhere vanishing 

Fourier transforms, intervenes naturally when seeking 

restrictions on a function g which will ensure that con-

volution with it will generate an injective endomorphism 

on some space of functions. Attention was first drawn to 
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this class by Wiener, who showed, 	as the crucial step in 

the proof of his Tauberian theorem, that if f E ":63 then, 

given any finite interval [a,b], there exists g e L1 such 

that 2(0 = 1/?(t) for all t e [a,b]. It was a (very 

easily proved) result of this type which was used in prov-

ing that (lar]t , G; n  Z2,0 is a Wiener sub-algebra of 
itself. The central result of chapter four is a general-

isation of this theorem of Wiener's, in which assumptions 

stronger than Wiener's are made and stronger conclusions 

are drawn. The formulation and proof of this result depend 

on a very interesting theorem of Ingham's: a particular 

class, A , of functions emerges in connection with Ingham's 

theorem, and it is classes of functions dominated by 

exp[-X(x)], for some X(x) E n , which replace the class 

L1 of Wiener's theorem. Ingham's result is also used to 

establish the existence of a non-null function in the inter-

section of certain of the spaces of type G considered by 

Gel'fand and Shilov 

There are heuristic reasons to expect that any 

-41 (2,,X ,315 ) in which /I is a class of functions and 

a semigroup of endomorphisms generated by convolution, will 

possess at least a subclass corresponding to some family 

I  See (24) Pg. 25. The result is not actually stated 
explicitly in the above form, but a corresponding 
result for Fourier series is given. (loc.cit. Pg.1) .) 

t  See (10) Pg.166 et seq. 



of distributions: something corresponding to a '5-function', 

for example, arises automatically. On the other hand, in 

view of a result of Delsarte's (6) in which it is shown 

that for any compactly supported function, k, there exists 

a non-null function f such that f c k = 0, it appears 

unlikely that the exact class Z ' of Schwartz distributions 

can be represented as a 3o(ax,3 ) of this function space-
convolution type. However, using the extension made of 

Wiener's theorem,we obtain a general result of the form 

'if f E A and g E B and f x g a 0, then fa 0'. This 

latter result enables construction of a large class of 

convolution-based quotient spaces 7-,) (aX, ,;t5 ). In 

particular, quotient spaces related to spaces of type g 

are constructed and discussed briefly. The thesis ends 

with an appendix and some conjectures. 
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NOTATION 

The following terms and symbols will be taken as under-

stood throughout the text. 

The terms 'injection', 'surjection', and 'bijection' 

are used for 'one-to-one mapping', 'onto mapping', and 

one-to-one onto mapping' respectively. 

We use the symbols IR and 	to denote the real and 

complex number fields (with their usual topologies when 

this is relevant). The class of functions Lebesgue- 

integrable over R1 is denoted by L1. Whenever we write 1 
,+co 

without stating the limits, we mean 	. We use H to 
-co 

denote the convolution operation, of a function with 

another function or of a functional with a function.t 

If f E L1, then f denotes the Fourier transform of f, 

defined by 

f(x) 	Ff(t)eixtdt Yx E fl . 

If z = x + iy, where x,y are both real, then we define 
c- 

z, 	cS,,t,z, and z to be x, y, and x-iy respectively. 

The symbol - is used in other contexts, but not when any 

confusion is likely to arise. 

The < , 5 notation is used for linear functionals, so 

The symbol * is occasionally used instead of H as 
an aid to clarity. Its usage is defined in D.2.4.15. 
We also use x in other contexts: see especially 
section 1.3. 



that <F,f denotes the number obtained by applying the 

functional F to the element f. 

The binomial coefficient n:/(n-r)!r: is denoted by 

(111,), and for each x e 	, we use [x] to denote the unique 

integer such that fx] < x < [x] + 1. 

The symbol = is used in some situations as a substi-

tute for 'implies that'. 
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INTRODUCTION TO CHAPTER 1.  

In section 1.1. familiar material relating to semi-

groups and. groups is brought together, in particular that 

any cancelling Abelian semigroup S may be isomorphically 

embedded in an Abelian group 7a(S), and it is shown 

that the group Z)(S) is defined up to an isomorphism by 

its mapping properties. Section 1.2. introduces the basic 

concepts of a universal algebra. In section 1.3. the 

material of the preceeding sections is used to define the 

notions 'pseudoring', 'quotient pair' and 'pseudofield'. 

There then follows the main result of chapter one (T.1.3.1.), 

namely that any quotient pair (aft , 2 ) may be isomorphic- 

ally embedded in a pseudofield ( 	), 	b )). 

The pseud.ofield (1a(ia,5 ), 10,(Z )) is shown to be 

determined up to an isomorphism by its mapping properties. 

The results of this section are believed to be new. 

Finally in section 1.4. various applications are 

presented. These include the embedding of a ring without 

zero divisors in a field: this latter embedding embraces 

the Mikusinski Operational Calculus. Also a ?C1(9,1, 	) 

space is constructed which, in effect, contains the 

Mikusinski system. The spaces z, Lj  ,;.n are intro-

duced, and under the assumption (to be proved. in chapter 

two) that ,Gt , g ri m form a quotient pair, the pseudo- 

field (a( a..... ,(5 (Ole )37.-a(Q 	M)) is briefly discussed. 
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CHAPTER 1  

1.1. Semigroups and groupst 

D.1.1.1. 	A semigroup S is a set M together with an 

associative binary operation a on M; that is an operation 

which assigns to any ordered pair of elements 

(mm2) c M >c M a further unique element of M denoted by 

m1  m2, and is such that for any triple 

(mi,m2,m3) e M > M X M, 

ml ' (m2 • m3) = (mi* m2 )  o m3. 

We shall denote the set M simply by S: no confusion 

is likely to arise from this convenient ambiguity. We 

shall also use different symbols e.g. x, +, to denote 

the binary operation of the semigroup when these are 

more appropriate than o  . 

D.1.1.2.  A semigroup S with binary operation - is said 

  

to be Abelian if for any pair (si,s2) e S X S, 

si  e s2  = s2  e Si, 

D.1.1.3. 	An Abelian semigroup S with binary operation - 

is said to be cancelling if for any triple 

(s,si,s2) c S < S X S the relation sl  * s= s2 0 s implies 

tFor the material of this section see (8) and (14). 
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that s1  = s2. 

D.1.1.4. 	A semigroup S with binary operation 0 is said 

to be a group if there exists e e S such that 

i) sc e = s, Vs e S 

ii) Vs e S, 	3s-1  e S. s-1  such that s 0 	= e. 

We call e the identity elemept of the group; it is unique. 

D.1.1.5. 	Two semigroups S, T with binary operations 

0 , x respectively are said to be isomorphic if there 

exists a bijection 0 , of S onto T such that, for any pair 

(s1,s2) E S X S, 0  (s1 0  S2) = 	(Si) x 4  (s2). A 

bijection 0 with this property is called an isomorphism. 

Clearly if 0 is an isomorphism, so is 0-1, and so the 

isomorphism relationship is symmetric: it is also 

transitive and reflexive. If S = T, 4 is called an 

automorphism of S. 

L.1.1.1. 	If S is a semigroup and T a group with binary 

operations 0 , x respectively such that S and T are 

isomorphic, then S is a group. 

Proof: If • : S -4 T is an isomorphism and. I c T is the 

identity then there exists e e S such that 0(e) = I. 

If a e S, put a-1  = 0-1([ (a)]-1), then 

0(a a  e) = Ca) x I = 4. (a), and so a . e = a, and.  

Ca 0 a-1) = cl)(a) x [4) (a)]-1  = I, and so a 0 a-1  = e. 
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The result follows. 

D.1.1.6. 	If S, T are two semigroups and 4 is an 

injection of S into T, such that 0 (S) is a sub-semigroup 

of T and 0 is an isomorphism of S onto 0(S), then we say 

that 	is an isomorphic embedding of S in T. 

Every cancelling Abelian semigroup can be 

isomorphically embedded in an Abelian group. 

Proof: If S is a cancelling Abelian semigroup, we consider 

the set of all ordered pairs s1//s2, ss2 S. We say 

that si//s2  = t1//t2  if and only if si  o t2  = t1  p  s2. 

The binary relation =, so defined„is an equivalence 

relation since it is obviously reflexive and symmetric, 

and also transitive, for if ri//r2  = sl//s2, and s1//s2 = 

t1//t2, then 

rl 	s2 = si 	r2, and s
1 
 a t2  = ti  o s2, 

and so 	(r1 	t2) s2  = si. (r2 	t2) = (t1 	r2) s2' 

hence 	ri 	t2  = ti  o  r2. 

The set of equivalence classes so formed we shall denote 

by 72X(S). If a = (s1//t1), P = (P1//q1) are elements of 

17)(S), we define a d  p 	((si c pi)//(ti o q1)) E 3a(S). 

If a,P E "1—) (S), then a . p is well defined, for if 

silitl = s2//t2, pi//q1  = p2//q2, then 

tSee (14) Pgs.51-54. 
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s1 	p1)//(t1 	q1) = (s2 	p2)//(t2 	q2). 

If a = (s//t) c Ia(s), we shall permit ourselves the 

useful ambiguity of writing a = s//t, so that we represent 

an equivalence class by any one of its members: no 

confusion will arise from this practice. Clearly -,1a(S) 

is an Abelian semigroup under the binary operation - , also 

if s,t E S, then s//s = tilt and if a = p//q e n(S), then 

a 0 (s//s) = a, and putting a-1  = q//p E :ra(S), we have 

that a - a-1  = (p e  q)//(q 6  p) = s//s. It follows that 

"3""),(S) is an Abelian group. We define j:S 	-za(s) by 

j(s) = s p  s//s. Then j(s 	= j(s) a  j(t), and j is 

an injection, consequently j is an isomorphic embedding of 

S in Z (S ) . 
D.1.1.7.  We shall call the map j, defined above, the 

natural embedding of S in T(S). 

D.1.1.8. 	If S, T are semigroups with binary operations 

0, H respectively and 4 : S 	T is a map such that, for 

any pair (s1,s2) e S 	S, 4 (si o s2) = 0(si) H Cs2), 

then we say that 0 is an homomorphism of S into T. If 

S = T, 43 is called an endomorphism of S. 

L.1.1.2.  If c, : S 	T is an injective homomorphism of 

the cancelling Abelian semigrOUp S into the Abelian group 

T, then there exists precisely one homomorphism 

3a(S) 	T such that 4 = 4'j, where j is the 

natural embedding of S in 'Cl(S). This 	is an injection. 
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T 

/ 
• 

Proof: If S, T have binary operations e x respectively, 

and a = si//s2  E 	(s), define 4'(a) 	4'(s1) 	4)(s2)]-1. 

Then C is a well defined homomorphism of p(S) into T, 

for if a = sl//s2  = t1//t2, then 4) (si)K 4'(t2) 	4(161)R0(52), 

and if p = r1//r2, then 

c'(a °O) = 40(s, 	ri)le [ t(s2  6 r2)]-1  

= (4 (si)H [+ (s2 )]-1)3€1 	(r1)3€ 	(r2)1-1) 

= 	4' (a) 	()) (0) 

Suppose s E S is any element, then (V A5) 	(s 4  s) € 

[CO (S))-1  = 4 (s) and so there exists an homomorphism 

satisfying 0 = 4'j. Suppose $ is any such homomorphism, 

e the identity in 30.(S), and I the identity in T, then 

	

(e) = I. Thus if a E 	(s ), 	(a-1) (a-1) = 	(a)]-1, and so 

(Si//S2) = 4 ((S1  6  Si)//S1) H 43  (S2//(S2  6  s2)) 

= T) (j(S1)) H [ 43  (j(S2))1-1  

= 	(Si) H [4 (S2)]-1  

= t t (S1//S2), 

so that if) 
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Finally we note that if 4f(s1//s2) = cV(ri//r2), 

then it (s, o r2) = 	(ri 	s2), and since 4 is an injection, 

sl  d r2  = r1  0 s2; hence s1//s2  = r1//r2, and it follows 

that 4' is also an injection. 

We have shown that any Abelian group T which includes 

an isomorphic image of the cancelling Abelian semigroup S, 

includes a consistent isomorphic image of 77.M). The next 

lemma shows that we may use this situation to determine 

n(S) up to an isomorphism. 

L.1.1.3.4 	Suppose S is a cancelling Abelian semigroup, 

Qi, Q2  Abelian groups and j1, j2  are injective homomorphisms 

of S into Qi, Q2  respectively. Suppose further that Qi, 

Q2  have the property that for every Abelian group T for 

which there is an injective homomorphism 	of S into T, 

there exist unique homomorphisms 4,, 42 of Qi, Q2  respect- 

ively into T, such that $ = (01j1  = 472j2' Then Q 	Q2 
are isomorphic. 

Proof: The assumptions may be summed up in the following 

diagrams: 

(1) 
	

( 2. ) 

tSee also L.1.3.7. 
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In the first place, we take T to be Q2  and 4 to be J2  in 

diagram (1). Then there exists an homomorphism Il  of Q1  

into Q2  such that j2  = I1j1. Similarly from diagram (2), 

taking T to be Q, and 	to be j1, we obtain an homo- 

morphism 12  of Q2  into 	such that ji  = I2j2. It follows 

that 

ji  = (I2I1)ji  

and 

j2 = (1112)J2. 

Taking T to be Q, and 0 to be ji  in diagram (1), (1), 

will be the identity map, idi, of Ql  onto itself, and so 

from the uniqueness, it follows that 

Similarly 

I1
I
2 

where id2  is the identity map of CLI  onto itself. Now 

id1 surjective implies 12 surjective, 

id2 surjective implies I1 surjective, 

id1 injective implies I1 injective, 

id2 injective implies 12 injective. 

Thus Il' 12 are each bijective, and mutually inverse, and 
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it follows that Q Q2 are isomorphic. 

1.2. Universal Algebras t  

D.1.2.1. 	A Universal algebra U, is a set M together with 

a system T.) of n-ary operations on M. Here n > 0, and may 

be different for different 4's in 'P. (An n-ar7 operation 

0 on M assigns to any ordered n-tple (ml,m2,...,mn) e 

M u  M >c 	>04 a further unique element of M denoted by 

4 (rni,1712,...,mn).) We shall denote the universal algebra 

U by (M,), and when no confusion is likely we shall write 

U, for M. If N M, and V = (N,p) is a universal algebra 

we.shall say that V is a sub-algebra of U. If (L,129, 

(M,1D2) are universal algebras in which a one-to-one 

correspondence between 101 and 2 can be set up in such a 

way that every 01  e7D1  and the corresponding 4 2  E TD2  
are n-ary with the same n, then we shall say that (L, 1), 

(M,702) are of the same type. If (L, 31), (M, '"r) are 

universal algebras of the same type we shall sometimes 

write (L,732) for (L,TD1) or (M,01) for (M 7-D2), if it is 

convenient: no confusion is likely to arise from this. 

D.1.2.2. 	If (L,7D), (M,TD) are universal algebras of 

the same type and X : L 	M is a map such that for every 

tSee (l1.) Pg.93 et seq. 
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n-ary operation 13  e D, and every n-tple 

L x L 	• • • x L, 

eP (21,22, •••,,en)) = 	(% CY, x (22 ), 	X(in )), 

then we shall say that X is an homomorphism of (L,70) 

into (M,7 .D). If in addition X. is a bijection, then we 

shall say that X is an isomorphism of (L,7D) onto (M:0), 

and that (L,7D) is isomorphic to (MD); in this case 

- X1 is readily seen to be an isomorphism so that the 

isomorphism relationship is symmetric; it is also reflexive 

and transitive. An isomorphism of (L,TO) onto itself is 

called an automorphism of (L,7D). An homomorphism of (L1-1.0) 

into itself is called an endomorphism of (L,'). An 

injective homomorphism is called an isomorphic embedding. 

1.3. Pseudorings, pseudofields, quotient pairs;  

the embedding theorem 

N.1.3.1. 	If A is a universal algebra and 13 a set of 

endomorphisms of N. , then for 4,  c 	, f e 	, we shall 

denote 4,  (f) by f x 	. If 4:13 , 4/2  e 	we define the 

composition ci)i 	(I) 2, of e", with cl) 2  to be the endo- 

morphism of `JIA given by 

f 3€  (4)1 0 4. 2 )  = 	4) 1 ) 	cPI 2' 
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If B  is closed under composition, it forms a semigroup. 

L.1.3.1. 	If 9. is a universal algebra and 15 an Abelian 

semigroup of injective endomorphisms of fa , then 15 is a 

cancelling Abelian semigroup. 

Proof: If 	, 01,02  E 	and *id 	, then  + 

f € 	 ) = f H (CP2 9 4) ), 	Tdf E 

and so 
	

( f 	(I) 	= ( f 	47,  2) 	(I) 

hence 	fx4> 1 = 
	

62' 
	Vf c Jx 

i.e. cb 1 = ,t; 2s • the result follows. 

D.1.3.1.1 	If 11 (/ 0 ) is a universal algebra and '')5 is 

an Abelian semigroup of endomorphisms of 	, then we shall 

say that .!Ax 	form a pseudoring; if in addition all 

the elements of 15 are injections, then we shall say that 

Ax ,' 	form a quotient pair; and finally, if in addition 

to this 13 forms an Abelian group, then we shall say that 

, 'P form a pseudofield. 

D.1.3.2. 	If (lx, ,(P ), ((y , 	) are two pseudorings with 

dx and C5 of the same type, and µ,v homomorphisms of It 

into Cs:, and 13 into 	respectively, such that if 

f E 1X and 0 e '15 then µ(f x 4, ) = ii(f) H V( 4 ), then 

we shall say that (µ,v) is an homomorphism of (14 	) 

into (C , 	If µ and v are bijective, we shall say 

1 See N.I.3.2. and section 1.4. for examples. 
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that (µ,v) is an isomorphism of ( It , 	) onto ( 	), 

and that ( 11  AD ) is isomorphic to ( C5; 	) ; in this 
f 1 -1% . case kµ ,v ) is readily seen to be an isomorphism, so 

that the isomorphism relationship is symmetric, it is 

also reflexive and transitive. An isomorphism of ( /A 	) 

onto itself is called an automorphism of (it ,51) ). An 

homomorphism of (At ,' ) into itself is called an endo-

morphism of (U ,'"§ ). If µ and v are both injective, 

both surjective, or both bijective, then correspondingly 

we say that (µ,v) is injective, surjective, or bijective. 

An injective homomorphism (µ,v) is called an isomorphic 

embedding. 

T O1034110  The embedding theorem 

Any quotient pair can be isomorphically embedded in 

a pseudofield. 

Proof: If Lt , 16 form a quotient pair, we consider the 

set of all ordered pairs f//41 f E IX 4 egt . We say 

that f// = g//1/ if and only if f x * = g x rp . The 

binary relation =, so defined is an equivalence relation, 

since it is obviously reflexive and symmetric, and also 

transitive, for if f//+ = g/A, and g//i = h//X., then 

fx*.gx(0,andgx% =hx*, 

and so 	(fH7C ) 	=gle(439X.).(hx4))3€*: 

and hence f 	= h 	. 

tSee also (14) Pgs.5k-56. 
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The set of equivalence classes so formed we shall denote by 

(/.1. 	). 

If a = (f// cl) ) c 	, 	), we shall permit ourselves 

the useful ambiguity of writing a = 	, so that we 

represent an equivalence class by any one of its members: 

no confusion will arise from this practice. 

Now Ix = 	) is a universal algebra and if 

e 	is an n-ary operation on M, and if 

(f l//  1' f2H.  2' " "fri/  n) 	(14  '13  ) 	( 	, 	) 
(at , 	) is any n-tple, we define 

1.-7,(f i/i 4,  1, f2// 4) 2, ..., f rp n) to be 

(rn-: (f ix( ' 2 e +3 	• • • `' 	rd'f2x(  4)1* 4 3 0 • • . 	(1) n ), • • • , 

f nx 4)  1 °  t2 e  ••* e  +n-1)))//(4.1e 	2* • • • e) On). 	(If 

n = 0, the nullary operation .2 on M is a fixed element 

e E M, and we define the operation 	on `n (It 	) to 

be e x c // 4 , this element is easily shown to be independ- 

ent of the choice of 4'  e 	.) If (al, a2, ...,an ) e 

) 	VX- 	) X • . 	 , then 

...,an) is well defined, for if f ip 43  1  

= 1,2,...,n, then 



f 	mi,k=g3E4:. , and so 

(r  1)  ° *2 )  

Now if P1 = 

then 

f  

't 1//*1 and 

(+1 * *2 )  

132 = 

f  (4)  2 6 
*1) 
	Vf 	;U.  3 

= (g x b 2) )1( 4 ° Ifr i )  • 

42fi11x2 and' X. 	= X., 
131 	P23 
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'72 (f1 €(41 2 * 43 3 *  • •• 	+ n )'f23€(41 °  +3 *  ••• ° + n ) ' •• • 

finH( 4  1 ° + 2 ° • • •° 	n-1 ))3E(*1* *2 *  • • • 4. *n )  

(813(*2 * *3 • • • ° 	) g? (It  1 *3C • • • e  *ri ) • • 

gn3E(*1%*2 • . • • *n-1) ))i(  + 1° 4 2 	• 	
4n )' 

since 

(f  i i )2E(+  1* *1 C  
 + 2 ° *2 	4' 4)  1-1° 	4 i+3. 

+ n ° lfrn 

(1)1)x( 4) 1*  *10 4  2 ° *2 0  • • • v  + 1-1 	1.--1 
+ 1+1, 	0 n. 	1,2, 

It follows that 	(1.t. ,''A ) is a universal algebra with 

the same system of operations 'D  , as 	. 

If P = 431//*1  e 	( ) and a= WO e A( , 	) , 

then we define X S(a) to be Um 1)//( 4 • *1) e 	( 	).  

X 13(a) is well defined since if tis 3//*1 =//*2' and 

f//4 = grn, we have that 4 i o 	= 452  .3 *1  and 
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and so pi  = 02. Furthermore if pi, p2  E 	( 	) then 

X
'-1 	1- 

A 
 2 

= 	
(f3l 02)' and 

 in view of this and the 

preceeding observation we see that ( 	p)pc.gc.15  ) is 

isomorphic to 	( 	) . Thus 	) is (isomorphic to) 

an Abelian group of maps of "n, ( 	,4c0 ) into itself. We 

will now show that for each 0 E 	( 	) , the map 

: 7-21 (7.0  , 	) -4 731. (J[ , 	) is an endomorphism. 

We will permit ourselves the ambiguity of writing a H p 

for 	X p (a), identifying the element p with the map of 

) which it provides. If p 	/AG e 	( ;16 ) , 

c TD is an n-ary operation of the universal algebra 

lz = (M, 	) and (al,a2, ...,an) e la (tX  , 	) 
( a , 15 ) x . . . x 	(a , 	) , a . = f.fict i,  then 

p 

3* •• • 	d' 	 (4 1°  +3 ° • • • o 

• "fnx( 1 •   42t1 	tn -1) )31 11))//  

(4 1 °4) 2 1' •••"1) n )  

= 	((f1x 4)x( ti) 2 	4 3 " • • • ° 	d, (f 2N )3€ 

( 	1 ° +3° • • • °) d?r., ),  • • 	(fn' 

(0 1 0  42' •••- 4) n-1))//(4)1° (1)2 1) ••• eckn°11)  

P..:I3.(a1mf3, a2)r3  , 	anxp). 
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(If n = 0 the nullary operation E on T.:t (JA , ;f3 ) is a 
fixed element e e 	, 	), and the above reduces to 
observing that e H = x 0.) 

It follows that fl e T-1,1( 	) is an endomorphism of 

(U , 	); it is also injective, for if al  = f1//01? 1, 

a2 = f2// 45 2 are elements of XX ( 1L , 	) , and 

4)/)* e 	( 3 ) , and if al  x p = a2  mp, then 

3E 	) X ( 4)  2  * *) = (f2  3E 4,) 3E ( 	9 
	and so 

f1 H 1 2 = f2  x I) '  i.e. al = a2. It follows now that 

( 	, 	), 	( 	) form a pseudofield. 
We observe that if f e 	, 	,i e 	, then 

f x 	// 4 = f x */A. Define i : /L -4 .17) (11 , lb ) by 

i(f) = f x 4,  //4, 	fea, 4 E ,03 

then i is independent of the choice of t E 3  , and more- 
over if f

1, f2  e 	and i(f1  ) 
= i(f2) then f1 = f2' and 

so i is injective. If 2E c D is an n-ary operation and 

f2' • - • fn ) 
	x 	. . . 	, then 

it 	 = 2 (i(f1),W2),...,i(f n )), and so 
i is an homomorphism of 2 into 	(2 , 	) • We now 

recall the definition of j given in D.1.1.7., and that 

is an injective homomorphism of 	into ;(03 ); we 

also note that if f e ax , 	e 13 then 
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i(fx 4 ) = 	) 	( 4) 	) )//( 	) 

=((f 	tt)  )// ) 	° 	)1/4>)  

i(r) 	j(4)  ). 

Hence (i,j) is an isomorphic embedding of (1X J 'A ) into 

M(11 „up ), ".:D.(41\ )) and the result follows. We shall 

call i the natural embedding of Ja into Z (It ,5 ), and 

(i,j) the natural embedding of (21,16 ) into 

(1-t , 1+1,  ), 	( 	) ) 
N.1.3.2. 	There are cases of a universal algebra ix with 

an Abelian group,'B,  of endomorphisms of A in which the 

endomorphisms are not injective. For example, take 

al = (M, X)) where M=(f13g, continuous on IR such that 

f = g a.e. on IR ), 	= 0 • Then if e is the map 

which takes f E M to the continuous function to which it 

is equal a.e., then putting )23 	(e), in view of the 

relation 

(fHe)me.fme, 	Vfe M, 

we have e 0 e = e, and so 3 is an Abelian group. It is 

obvious however, that e is not injective. 

L.1.3.2. 	If 2L ,',cp form a pseudoring and 'A is an 

Abelian group with identity e, then the elements of 15 

are injections if and only if f 	e = f, off e IX . 

Proof: If all elements of 15 were injections, then since 

e c  e = e, we should have 
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(f- lx e)xe=fxe, 	Vf e 

and so 	f x e = f, Vf e u . 

Conversely if 0 e 	, f l,f2  E lk 	f l  x ct) = f2 
m 	and. 

f € e = f, Vf e lx , then we have that 

(r1  M 4 ) 
4, -1 

= (f2 

and so 	fl ame = f2 x e, 

hence fl  = f2, and the result follows. 

L.1.3.3. 	If Ix 	form a pseudofield and ep e 

then 0. is surjective. 

Proof: Take f e 	, put g= f x 0 -1  e A , then 

gx0 =fxe 

f, 

and so t is surjective. 

L.1.3.4. 	If t , 15 form a quotient pair and (i,j) is 

the natural embedding of (A ,1kb ) into (P. 	), 

?a( 13 )) then 

(1) 1,j are injections. 

(2) p3 is a group if and only if j is surjective. 

(3) 15  is a group implies that i is surjective. 

(4) It is possible to have i surjective and 15 not 

a group. 

Proof: 	(1) This we have already shown in T.1.3.1. 

(2) If (/5 is a group, take p 	40/A E 'nub ), 
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and put X = 4 -1 	1• 
11/ 	; 	then j( 	) 	(( 4, 0 *-1) 

b  *)/A = 0, and so j is surjective. Conversely if j is 

surjective, then it follows from L.1.1.1. that ":15 is a 

group. 

(3) If 15 is a group and a = ifi 4 e 1t (ix ft  ), 

put g = f x 4) -1; then we have that 

i (g) 

	

( Cr 	.‘1) 
	

)//4) 

= (f x e)//4) 

= 	, 

and so i(g) = a; it follows that i is surjective. 

(4) Take IX to be (M,73 ), where M = (fif e L1  and 
A 
f has compact support.), 73 = 0 	(with f1 = f2 

in M 

taken to mean that f1 	f2 a.e.). Then if g e L1  is such 

that 12(01 	0 everywhere on IR , define X g(f), for 

f e M, to be jrf(x-t)g(t)dt. Take $ = ( X gig e L1  and 

16(01 > 0, vt e 	). Then $ is an Abelian semigroup 

of injective endomorphisms of IX , and so 21 1 -A forms a 

quotient pair. Since 15 has no unit element, it is not 

a group. However, if a = f// g  e Ni (/x ,23 ), then by 

Wiener's theorem , 3h e 21 such that 

f h(x-t)g(t)dt = f(x) 

1See (11) section 9J, and also chapter four of this 
thesis. 
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and so 

(h 	= (h X 	 g  )// g  

11/ g 

= a, 

and it follows that i is surjective. 

L.1.3.5. 	If 	, 'A form a quotient pair, then It , 

form a pseudofield if and only if (zLi. , 	) is isomorphic 

to (n (L , 	) 	) ) • 
Proof: If ax , 	form a pseudofield, then 115 is a 

group, and so from the previous lemma, i,j are bijective; 

consequently (1.1 , B ) is isomorphic to CP (J b  ),  
( Ice ) ) . Conversely if Ix , 745 is isomorphic to 

(1 ( 	, 	) , 	( ;15 ) ) , then 	and 7:2t ( 	) are 
isomorphic, and it follows from L.1.1.1. that 25 is a 

group, so that lx , wX form a pseudofield. 

Corollary  If it , 13 form a quotient pair, then 

	

(11 , 1 ), 	(B )) is isomorphic to (t 	( 	, 

	

) ) 	 ) ) • 

L.1.3.6. 	If (4,0 is an injective homomorphism of the 

quotient pair ( /A 03 ) into the pseudofield ( 	,,cjD ), 

then there exists precisely one homomorphism (µ',v') of 

(72 (0.t. A), 724, ( 	)) into ( 	) with the property 

that µ = µ t i, v = v 'j, where (i,j) is the natural embedding 

of OA 	) into (.,1:1.1 (P,  ,16 ), Z& ( 	) ) . This (µ',v ) 

is an injection. 
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- . ----- - - 	„ 
VI  

/
1)  

\\2‘‘  

Proof: By L.1.1.2. there exists precisely one homomorphism 

v' of 	(t ) into (41 such that v = v' j, and this v' is 

injective. If a = f//0 E 7D (11 	), we define µ' (a) 

to be µ(f) 	[v(41 )]-1; P.' is well defined on la(./1 , 	) 

since if fl//   1 = f 2//4 2, we have that ct> 	) 

fl 	2 = f2 

and so 	/1(fl 	CI'  2)  = 1-1.(f2 	CI)  1)1  

hence 	11(f].) 	V(1) 2) 	11(f2) X v(44)  1)•  

Also because (4,v) is an homomorphism, it is easy to 

verify that 	is one as well. If f e 	, then 

i(f) 	(f x 0 )/70 for any 0 e 

and so 	1-1:i(f) =11(f x  (I) ) 	[V( 	)]-1  

= 11(0, 
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hence 	µ = 

If a  = fl" 1 

then 

) and 	= 	//* c 7-7.1  ( 	) 

111(a K  P) = R(11 	) K  [V( 4 1 e 1P))-1  

= [11(f l ) K  V(43  )] x [V(01) 0  V(101-1  

µ'(a) x 11'(3), 

and so there exists an homomorphism (µ 1 ,v t ) satisfying 

µ = µ t i, V = v t j. 

Suppose that (µ, 	is any homomorphism satisfying 

µ = µi, v = vj. Then since v l  is unique, v = li t, and if 

a = IWO € 	(11 	), we have that 

K V(4) = 11((f/R) H j(4 )) 

11(i(f)) 

= µ(f ) 

and it follows that µ(a) = µ t(a). This holds for every 

a c 	) , and so the uniqueness of (µ 1 ,v i) follows. 

Finally, we have already that v t  is injective and if 

a1  = f1//4 1, a2  = f2//4' 2  are elements of 	(L , 	) ,  

and µ t(a1) = µ t(a2), then 

µ(fl) 3E V(°P  2 )  = p,(f 2 ) 	v ( ct) 1 ), 

so that 

11(f i N 	2 )  = µ(f2 	41). 
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Hence 

f 	2 = f2 	6 ' 

i.e. a1  = a2, and so µ' is injective. 

We have shown that any pseudofield (a (.1) ) which 
contains an isomorphic image of the quotient pair (.t ,16 ) 
contains a consistent isomorphic image of (t 	), 

)). The next lemma shows that Orl(JX 	) 

17..1 ( 1.13 )) is derineri up tc an isomorphism by this mapping 

property. 

L.1.3.7.  t 	Suppose (0,1. 	) is a quotient pair, (P1,Q1), 

(P2,Q2) pseudofields and (il,j1), (12,j2) are injective 

homomorphisms of (U ,;p ) into (P1,Q1), (P2,Q2) respect-

ively. Suppose further that (P1,Q1), (P2,Q2) have the 

property that for every pseudofield 	„13) for which 
there is an injective homomorphism (µ,v) of (II. 	) 

into (e, 	), there exist unique homomorphisms (111,y, 

(µ2,v2) of (P1,Q1), (P2,Q2) respectively into 	jrcb) 

such that µ = µ1
i1 = µ2i2' v 	vljl = v2j2

. Then (P1,Q1), 

(P2,Q2) are isomorphic. 

Proof: The assumptions may be summed up in the following 

diagrams. 

t
See also L.1.1.3. 
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tit 

Pa  

 

  

( 1) 
	

( 2 1 

In the first place, we take ((I 	) to be (P2 ,Q2), and 

(µ,v) to be (12,j2) in diagram (1). Then there exists an 

homomorphism (I1,J1) of (P1,Q1) into (P2,Q2 ) such that 

i2  = I1i1  and j2  = Jljl. Similarly from diagram (2) 

taking (a „.(D ) to be (131,Q,1) and (µ,v) to be (il,j1), 
we obtain an homomorphism (I2,J2 ) of (P2,Q2 ) into (P1,Q1) 

such that i1 = I2i2 and j1 	J2j2.  It follows that 

i1  = (12I1)11, 
	

jl = ( j2j1)j1' 
and 

i2  = (1112)12, 	
j2 = (J1J2)j2. 

Taking (( ,5D ) to be (PIA].) and (µ,v) to be 

(11,j1) in diagram (1), (µ10v1) will be the identity map, 

(idn 
1'4  
,1dn 1), of (P1,Q1) onto itself, and so from uniqueness 
'  

it follows that 
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I2  

	

I1  = idP
1' 	

J2J1 = id Q1 
.  

Similarly 

	

I12 = idP2' 	J1J2 = idQ2
, 

where (idp2,idg2) is the identity map of (P2,Q2) onto 

itself. 

Now.1 1  id 1010 1 injective implies 	injective, and id P
2 ' 

surjective implies Il  surjective, thus Il  is bijective, 

and it follows by similar reasoning that 12,J1,J2  are all 

bijections. It is now clear that (I1,J1), (I2,J2) are 

mutually inverse bijections and that (P1,Q1) and (P2,Q2) 

are isomorphic. 

1.4. Examples  

We now list some examples of the use of the preceeding 

theory; these examples vary widely in their content. 

Example E.1.4.5. is the one we have most extensively 

studied, and our results on this particular case will form 

chapter 2. 

E.1.4.1.  t Suppose that R is a commutative-associative 

ring with no zero divisors, regarded as a universal 

algebra with binary operation (a,b) -4 a + b, unary 

operations of the form a 	ac, c E R, and a -4 -a, and 

t Sete (1) Pg.43. 
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nullary operation 0. If d 0 and if a e R, we define 

4d(a) = ad, and s,t 	4) d id F R/(0)t). Then 13 is an 

Abelian semigroup of endomorphisms of R, and in addition 

ct)d(a) = (1)d(b), d 	0, implies that a = b, so that R,p 

form a quotient pair. It is clear that ('a (R, 13 ), 

)) corresponds to the field of quotients of R. 

E.1.4.2. 	Suppose that el +  is the set of all positive 

rational numbers and that 2t. is the set of all integers. 

If r e &/(0), 	and if q E ml +, we define +(q) = qr  

and 13 = 	rl r E 7L /(0)). Thus if a+  is regarded as 

a universal algebra with binary operation (p,q) 	pq, 

unary operation q -3. q-1, and nullary operation 1, it is 

clear that 	is an Abelian semigroup of endomorphisms 

of G. +. Additionally if qr = pr,  r 	0, then p = q, so 

that C1 +,3 form a quotient pair. It is clear that 

17.q( a+, 13 ) is isomorphic with the multiplicative group 

of all rational non-zero powers of the positive rationals. 

E.1.4.3. 	Suppose that (F, is the set of all continuous 

functions on the real line, regarded as a universal algebra 

with binary operation (f,g) 	f + g, unary operations of 

the form f 	NI, N any scalar, and f 	Kf(t)g(x-t)dt 

for any locally integrable g, and nullary operation 0. 
x -1 

For n = 1,2,3,..., define 	n ( f ) = (f)dxn_i  10 	dxn-2 

• • • 
i

-Lf(x o  )dxo  , and 4430(f) 	C. Put 

15 = (4n, n = 0,1,2,...). Then 15 is an Abelian 

t  i.e. r is any element except zero. 
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semigroup of endomorphisms of S and in addition 

fl(f) = 0 implies that f = 0, so that a ,A form a  

quotient pair. 

E.1.4.4. 	Take S as in E.1.4.3. and consider the class 

' (gig C 	and 3u1> 0, u2 < 0 such that 

g(u1) / 0 and g(u2) 	0). 

For f FCF, and g e ax, define +g(f) = Rf(t)g(x-t)dt. 
Then it follows from a result of Titchmarshl that 

0 g(f) EE 0 implies that f = 0, and that 	= (4)g  ig  e G 3') 
is an Abelian semigroup of endomorphisms of e . Hence 

5 form a quotient pair. The resulting pseudofield 
is related to Mikusinski's Operational Calculus; for a 

discussion of this latter system, see 'Concluding Remarks'. 

D.1.4.1.; 	We denote by e5 the space of functions k, 

of a real variable t, such that k(t) has derivatives of 

all orders and 

3 lim ItImIk(P)(01 = 0 for each m,p = 0,1,2,... . 

D.1.4.2." 	We denote by 	the space of functions f, of 

a real variable t, such that f(t) has derivatives of all 

orders and for each p = 0,1,2,..., there exists an m > 0 

such that 

See (21) and also (13). 

he space g was first introduced by L. Schwartz. 
See (20) Pg.89. 

11 The space 	was also introduced by L. Schwartz. 
See (20) Pg.99, where,  is referred to under the 
name 0 M. 



lim Itl-m lf(p)(01 = 0. 
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D.1.4.3./  We denote by IS the class consisting of those 

functions, integrable over the real line, which have 

nowhere-vanishing Fourier transforms. 

E.1.4.5. 	Consider the space 7.1 as a universal algebra 

with binary operation (f,g) -4 f + g, unary operations of 

the form f -4 Xf, X any scalar; f -4 f(P), p any non- 

negative integer; and f 	f(t)g(x-t)dt, g any element 

of g ; and nullary operation 0. For k g '7S± 

f 	, define 4 k(1) = ff(t)k(x-t)dt; then 
.<13 = (4)kik E 	(.1 
	is an Abelian semigroup of 

endomorphisms of 	. We shall show in the following 

chapter that if fl i.c(f) = 0 then f = 0, so that 74: , A5 

form a quotient pair. We shall later establish an 

isomorphism between 	, J_rk, ) and the class of Fourier 

transforms of distributions of finite order, and show how 

a topology may be introduced into .-a("r , 	) in a simple 
fashion, which will extend the algebraic isomorphism to an 

homeomorphism . 

A word on notation is perhaps in order at this point; 

the class S n -2g is easily shown to be an Abelian semi-

group under convolution, and is isomorphic to 13 under 

the correspondence k 

I- The space 	occurs in 
Tauberian theorem. See 

Consequently we identify 

the context of Wiener's 
(24) Pg.25. 

tO:X--Y is said to be an homomorphism if it is a 
bijection and both 9 and 9--L  are continuous. 
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n 	and A , writing 	5":„ , rg n 	) for 

	

(cr 	) etc., and using the convolution notation we 

write clIk  4 4 h  as h x k, and 4 k(f) as f € k. No confusion 

is likely to arise from these conventions. 

Further examples 

1) Take G as in E.1.4.3., and. take 4,a.::1 to be the set 

consisting of all the fractional order integration operators 

(tc, (a > 0), given by 

4).(f) = f 

et)a(f ) _ .7
;11.-c7 

	x 
(x-t)a-lf(t)dt (a > 0), 

for f e 	Then it is not hard to verify that a,"5(1.3 

form a quotient pair. If f e 	and 4a E A , then 

f//(, a  corresponds in a loose sense to the a
th fractional 

derivative of C. 

2) Consider the class B consisting of all bounded measur-

able functions. Then B and 13it form a quotient pair under 

the convolution operation. 
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INTRODUCTION TO CHAPTER 2  

In section 2.1., some results concerning the spaces 

cY, C5 , and Z1 are proven. It is shown that 	, with 

a certain set of operations, is a universal algebra, and 

that r, n  )2a provides an Abelian semigroup of endomorphisms 

of 3 	In section 2.2. it is shown that 	, gng...2; form 

a quotient pair (T.2.2.1.); and in section 2.3. we review 

those properties of (X(:t., 	n 231.), Q.((ii-; n 	)) 
deducible from the general theory of chapter one. In 

sections 2.5. and 2.6. some interesting connections are 

established between X:L( ,  , (6031 ) and certain classes 

of distributions: in this connection it is necessary to 

present a summary of those results of distribution theory 

which will be of use in sections 2.5. and 2.6., and this is 

done in section 2.4. This section (1  2.4.) is concerned 

only with distributions in one dimension, some of the 

lengthier proofs involved are given in the appendix. 

Section 2.5. is devoted to showing (T.2.5.1.) that 

there exists an isomorphism between x_1(z ,;(‘'•* ) and 
the class of Fourier transforms of distributions of finite 

order. Lemmas L.2.5.4. and L.2.5.5. contain the substance 

of this reult, these lemmas being brought together to 

establish the isomorphism. In section 2.6. we identify a 

sub-algebra of .:1(`X,, g rl a ) which is isomorphic with 

the class of tempered distributions. Theorem T.2.6.1. is 
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the key result which enables us to establish this iso-

morphism, in T.2.6.2. The main results of these last two 

sections are entirely fresh. 

t Theorem T.2.6.1. would appear to have some intrinsic 
interest, and. I have been able to prove a variant (not 
given in the thesis) for continuous bounded functions 

and L1-functions, rather than tempered and G n Z1 -
functions. 
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CHAPTER 2  

2.1. Review of example E.1.4.5.  

L.2.1.1. -t 	If k EG, then k E6. 

L.2.1.2. 	If k eE5, then k(x) = 2nk(-x). 

	 "If k1,k2 eg, then (k1  c k2)A 	= k1(t) 2(t). 

L.2.1.4. 	If f e Z.. and k E @, then (f x k) 	 (x) 

(f(P)H k)(x) = (f 	k(P))(x) for p 	. 

Proof: The result follows easily from an application of 

the mean value theorem and Lebesgue's convergence theorem. 

L.2.1.5. 	IffED.: andke6, thenfHkE 

Proof: The result follows from the previous lemma together 

with the fact that for each non-negative integer p, 

(P), f 	kx, is dominated by some polynomial. 

L.2.1.6. If f 	and k1, k2 E 6then (f kl) H k2 = 

f H (ki 	k2) = (f x k2) € kl . 

Proof: We observe that f is dominated by a polynomial, 

and we then apply Fubini's theorem. The result follows 

immediately. 

We consider the space a; to be a universal algebra 

with the following set of operations; 

(i) the binary operation (f,g) -4 f + g, 

(ii) the )2finary operations f -4 Xf, where X is any complex 

number, 

t See (20) Pg.105. 	"See(22) Pg.kl. 

See (22) Pg.42. 
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(iii) the unary operations f -4 f(p), p = 

(iv) the unary operations f -4 ff(t)2(x-t)dt, where 2 is 

any element of C5, 

(v) the nullary operation 0. 

The only one of these requiring any comment is (iv), and 

it follows from L.2.1.5. that (iv) does describe a class 

of unary operations on n5 . It follows from L.2.1.1., 

L.2.1.2., and L.2.1.3., that grt ta is closed under con-

volution, and from L.2.1.4. and L.2.1.6. that :15= grl  231 
is an Abelian semigroup of endomorphisms of 1C . 

We now proceed to the proof that if f e 	and 

k e 	(.1 3,13-3 then f m k is null only if f is null. 

2.2. 	gn 
	form a quotient pair 

L.2.2.1.t 	If k is integrable over the real line and 

act, = 0 Vt, then k = 0. 

D.2.2.1. 	We denote by 2) those functions k, of a real 

variable t, such that k(t) has derivatives of all orders 

and has compact support. 

It is not entirely obvious that 	contains any 

functions apart from the identically zero function. An 

example of a non-null function in X is given by the 

(This follows from a result given in (22) Pg.45. 

tThe space .!e) was first considered by L. Schwartz. See 
(19) Pg.21. 



function equal to exp[1/(t2-1)] for It= < 1 and zero for 

Itl > 1. 

We note that 	is a subset of €. 

L.2.2.2. 	If g e,:b and k eg n 0.1 	, then there 

exists an A e 	such that 2 e 5) and k m 	g. 

Proof: Since g ef0 , it follows that gA e 	. Define 

2 to be the function whose Fourier transform is aA. Then 
A A 	A 

2 C 	, and so 2 e Cz! . Moreover kA = g, which implies 

that k m 	g. 

T.2.2.1. 	If f e 	, k c 	0  rcri 	and f ii k= 0, then 

f = 0. 

Proof: If g is any function such that g e ;1) , then there 

exists an A e G such that k H = g. Since f m k = 0, 

we have that 

(f x k) m A= 0 and so f m g= 0. 	(1) 

Now if fg(t)eixtdt e ;1) , then jr(g(-0e-itnei xtdt e 

for every real v. Hence, since (1) holds for every g such 

that a c 	, we have that 

jf(t)g(t-x)ei (t-x)vdt 0, for all real x, v, 

and it follows from L.2.2.1. that f(t)g(t-x) = 0 for every 

x and t; since g is subject only to the restriction that 

g el , it follows that f(t) =0 Vt. 

Corollary  cl form a quotient pair. 
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2.3. Review of the properties of  

g n 2 ), 	21a )) • 

, 	0  3 ) is a universal algebra with the 

same set of operations as 	which are defined. on 

0 	) as follows; 

(i) if a = f//g, 0 = h//k e 	m ,g n 	), then 

a+0= (fHk+hRg)//(glsk), 

(ii) if a = f//g e 7-7,1( tx, ,g n  /33 ) and. p is any non- 

negative integer, then a(p) 	f(p)//g, 

(iii) if a= f//g e 	 1( 	, Ci; n  Zt ) and A. is any 

scalar, then Na = (Xf)//g, 

(iv) if a = f//g e 	, Gg 0 	) and 2 is any 

element of q;", , then a € 2 = (f 	2)//g, 

(v) 30 e 3:A ( 	n 	) given by 0//g for any 

g E  (74 n 

It is easily seen that 	(c.t , C5 n t ) is an Abelian 

group under addition, the inverse of a being (-1)a, which 

we shall write as -a. We shall call a(p), the p-th 

derivative of a, and a 2, where 2 E C5 , the convolution 

of a and. 2. It is clear that multiplication by a scalar, 

differentiation, and. convolution by an element of Cg are 

each distributive with respect to addition in 1.. 	,(? 

We also have the following relations; (Na)(P)  = Na(P), 

a(P)H 2 = (a x 2)(P)  = a 	2(e), (a(P))(q)= a(P+q), 
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(Xa) m 2 = X(a x 2), (a x 21) m 22  = a m (21  m 22
) 

(a m 22) m 21, X0 	o, 0(p) =  0, 0 m 2 = 0, Oct 	0, 

a m 0 = 0; where a e 	), p,q are non- 

negative integers, 3-  2 i
1,- 
2
2  e g and X is any complex -  

number. 

It follows easily from an argument given in Chapter 1 

that 	C; n 133 ) gives an Abelian group of automorphisms 

of 'PI( 	, C5 n 	) ; if a = f/ig e 	( 	, Q? n 	) 

and 	= 4 //* e 7:t ( 	n 	) , then a c e 	A 	)//(gx ) 
The identity automorphism I is (1) //4) , where 4 is any 

member of g r, 	. The natural embeddings of 	in 

X.71 (15„, 	n 	) and C5 n  133 in 	n  133 ) will be 

denoted by i and j respectively as in Chapter 1. 

The next section gives a summary of the familiar 

theory of distributions as developed by L. Schwartz and 

others. We include it here for the sake of completeness. 

2.4. Digression on distributions  

D.2.4.1.t 	If E is any set and if 	is a family of 

subsets of E such that 

(i) 

(ii) FF2 e 	F 	F e 2F 
2 

t See also (2) Pg.57 and (23) Pg.6. 
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(iii) If F' _C. F CIE and F' c -;:f then F e 

then we say that 	is a filter on E. 

D.2.4.2.1 	If E is any set, 	a filter on E and if 

is such that, F E 	3 F' e '3 such that 

F, then we shall say that 15 is a basis of the filter 

Any set 151 of subsets of E is a basis of some filter, 

on E provided 

(i) Sn A3 

(ii) B1,B2  E 	a B e 'IA such that BSBl n B2. 

The filter Y corresponding to such a set P3 consists of 

all sets having a subset belonging to c . 

D.2.4.3.; 	We say that a set E is a topological space if 

for each x e E, a filter t  is given such that 

(i) F E 	X E F, 

(ii) F 	[SF' c 	such that, y e F' 

F E W ). 

In such a situation we call 	the filter, or family, of 

neighbourhoods at x, and if 13 is a basis of ` x, then 

we say that p3 is a basis of neighbourhoods of x. 

D.2.4.4.° 	If E is a linear space over 4:E in which a 

topology T is defined so that the maps 

E <E (x, y) 	x + y e E, 

1See also (2) Pg.59 and (23) Pg.7. 

tSee (23) Pg.8. 

°See(23) Pg.20 and (10) Pgs.1-11. 
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E a (X, x) —> Xx e E, 

are continuous, then we say that E is a linear topological 

space over 4: , and that T is compatible with the linear 

structure of E. 

L.2.4.1.1- 	If E is a linear topological space over cr 

and if x E E, then N is a neighbourhood of x if and only 

if N-x is a neighbourhood of 0. 

In view of this lemma, if E is a linear topological 

space, to specify its topology it is clearly sufficient to 

give a basis of the family of neighbourhoods of zero for 

the topology of E. 

D.2.4.5.I 	If E is a linear space and A is a subset of E 

such that for every x E E there exists Cx  > 0 such that for 

all A e 4: satisfying I'd < Cx, Xx e A, then we shall say 

that A is absorbing. 

D.2.4.6.1 	If E is a linear space and A is a subset of E 

such that for every A e cC satisfying (XI < 1 and every 

x e A, Xx e A, then we shall say that A is balanced. 

L.2.4.2.I  A family of subsets II of the linear space E 

(over e ) is the family of neighbourhoods of the origin in 
a topology compatible with the linear structure of E if 

and only if it has the following properties; 

(i) if N e 	, then 0 e N; 

(ii) VN e IL , 3M e IL such that M+ MG N, 

t
See (23) Pg.2l. 
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(iii) VN E t , Vet E C , X / 0, XN E;1- , 

(iv) every N e 11. is absorbing, 

(v) every N c 1/ includes a balanced V e 

D.2.4.7.  1 	We have already defined the spaces 	and 

G6:2  in definitions D.2.2.1. and. D.1.4.1. These spaces may 

be regarded as linear spaces over 	, and we now intro-

duce topologies on each by specifying a basis of neighbour-

hoods of the origin in each. 

(1) 
	

The collection of all sets of the form 

(4E5D1 1$(13)(x)1 < ek whenever p < mk 
and Ix' > k, k = 0,1, 

where (ck) is any sequence of positive numbers monotonically 

decreasing to zero, and (mk) is any sequence of positive 

numbers monotonically increasing to infinity, provides a 

basis of neighbourhoods of 0 in rte~ . 

(ii) The collection of all sets of the form 

((tee 1Xk  ( P  ) (x )1 < E for k < K and p < P), 

where c, K, P are positive, provides a basis of neighbour-

hoods of 0 in (j 
L.2.4.3. 	The topologies introduced in the previous 

defintion are compatible with the linear structures of gD 

and 5 respectively, so that .'„ID , u are linear topolog-

ical spaces. 

t These topologies were introduced by L. Schwartz. 
See (19) Pg.67 and (20) Pg.90. 
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Proof: This result follows from L.2.4.2. when we observe 

that the sets forming our bases are balanced in each case. 

L.2.4.4.i  If k e c5N , then k(x) is the restriction to 

real values of the argument of an entire function of a 

complex variable. 

Proof: Put Z(z) = fk(t)eiztdt for z e e , then for real 

x, k(x) = k(x), and it is clear that k(z) is an entire 

function. We will denote the analytic continuation, 

of k simply by k. 

D.2.4.8.  We denote by 3 the space of entire functions 

k, of a complex variable z, which are the analytic contin- 

uations of the Fourier transforms of functions in 	. 

is a linear space over C. We introduce a topology 

into a by taking neighbourhoods of the origin to be sets 

of the form 

N = (k(z)I jk(x)eixtdx e M), 

where M is some neighbourhood of the origin in 5D 
L.2.4.5. 	The topology on 	given by the previous 

definition is compatible with its linear structure and so 

C3  is a linear topological space. 

Proof: This result follows easily from L.2.4.2. and 

L.2.4.3. 

D.2.4.9.°  We denote by PD 1, (4', 3' the spaces of 
continuous linear functionals on 4D, EV, 2 respectively. 

tSee (9) Pg.153. 	*The space 4.3 was introduced. by 
I.M. Gel'fand. and G.E. Shilov. 	See (9) Pg.155. 

See (19) Pgs.24 and 69, (20) Pg.93, (9) Pg.159. 
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Elements of 	1 t  and 3 ' will be called distributions. 

L.2.4.6.* 	The following three maps are continuous. 

(1) 	3 f -4 f e 	, 

(ii) 33f. , 

(iii) E5Df 	e Eg . 
Proof: (i) If N is a neighbourhood of 0 in 3 , then there 
exists M, a neighbourhood of 0 in a) such that 

N = (k(z)i 	e M), 

and so if 

= (f(0 21:f(-0 e M), 

and if f e MX, then P' e N. Since Mx  is a neighbourhood of 

0, this proves (i). 

(ii) If M is a neighbourhood of 0 in 5 and 

N = (k(z)la(t) e M), 

then if k e N, a e M. The result follows. 

(iii) If M is a neighbourhood of 0 in g , then M has a 

subset N of the form 

N = (k(x)) Ixclk (13)001 < e for p < P, q < k), 

for some e > 0 and some positive integers P and K. Put 

A = dt, and choose e t  such that 0 < e' < 	 I+ t 	 p!2K+1A  

See (10) Pg.125 et seq. 
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put N 	rko / c) % I ix-10k(a  t 	-)(x)i < e' for p < P+2, q < 

= 
Then if f E N-, q < K and p < P, we have, integrating by 

parts, that 

(p)„ 
ix

ci 
 f 	(x)i < f1Dcl[tPf(t)]1dt, 

Z
r 	

Dcl-rtP  II Drf (t)1 dt, 
r=0  

q 
(2 )13! 

r.max(0;q-p 

(2)p: 
r.max(0,q-p) 

I 	r r 	(t)idt, 

Jr  it 1 P-q+r+ it t  P+2-q+r  
14.1t1 2  

1 f (r)(01 dt, 

q 
(')p'2Ae l  • , 

r.0 r  

< p:2K+1Aet, 

< e, 

A 
and so f e M. 

A 
D.2.4.10.t  If F e 	' we define F to be the linear 

functional on ;3 given by <F,10 	<F,k>, k E 	. In view 

of the preceeding lemma P e 	. Likewise if' F e 2 ' we 

define F to be the linear functional on 	given by 
A 

4,k) = <F,k>, k e r9.) , and in this case F e fbi; if 

F e g ' we define P to be the linear functional on 

given by <F,k> 	<F,k>, k e g , and here PE G t  
A 

In each of the above cases F will be referred to as 

the Fourier transform of F. 

tSee (10) Pg.128. 
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L.2.4.7.t 	The following maps are all continuous: 

(i) f(x) 	k(x)f(x) e,5E) , where k is any function 

with derivatives of all orders everywhere, 

(ii) G5 ) f(x) 	k(x)f(x) E C , where k 

(iii) S a f(z) 	k(z)f(z) e 	, where k e 2 

(iv) f(x) 	af(Xx+µ) e 	where X,µ e 	, 

/ 0, a 	, and similarly for 3 and G 

though µ may be complex in the case of 2 . 

(v) f(x) a f(P)(x) e 	, where p = 0,1,2,..., 

and similarly for r3 and Qg 

D.2.4.11. 	(i) If k(x) has derivatives of all orders 

everywhere, a E (7 	p a non-negative integer and. F E ,c4D 

we define kF, aF and F(p) by 

<kF,f> 	<F,kf>, f e 13 , 

<aF,f> = <F,af>, f E gD 

<F(P),f) = (-1)P  <F,f(P)>, f e ;;D 

respectively. It follows from the previous lemma that kF, 

aF, F(P)  are all continuous linear functiareds on 2. 

(ii) In like manner if k e 	, ace , pa non- 

negative integer, we define kF, aF, F(P), for F e 	' and 

it is clear that kF, aF, F(P)  are all continuous. 

(iii) Again as before kF, aF, F(p) are defined in 2' if 
ke3 ,acC,pisanon-negative integer and if 

F E 3 

tSee (10) Pgs.101,102,108,109. Also (19) Pg.35. 

;See (10) Pgs.65-66. 
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In each of the above cases F(p) will be called the 

p-th derivative of F. 

If F1,F2 c D' then we define F1+F2 by 

<F1 +F2'  k> = <F1, k> + <F2,k>, Yk e 	, 

and it is clear that F1+F2 e :D i. Thus AD is a linear 

space. Likewise we may consider G ' and (3 as linear 

spaces. 

N.2.4.1. 	We shall denote the null functionals in 

; 	' respectively by 0; we then have that if k e 	, 

g , 2 respectively, then <0,k> = 0. 

D.2.4.12.t 	A function f of a real variable is said to 

be tempered if it is continuous and dominated by some 

polynomial. 

D.2.4.13. 	a) If f is a continuous function and if p is 

a non-negative integer, then we define DPf to be the linear 

functional on Ab given by 

<DPf,k> = (-1)P if(t)k(P)(t)dt, Yk e 5 . 

b) 	If f is a tempered function and if p is a non-negative 

integer, then we may extend the functionalDPf, defined above, 

to be a linear functional on g given by 

<DPf,k> = (-1)P 3f(t)k(P)(t)dt, Vk e g 

tUsing the terminology of Bremmerman, see (3) Pg.83. 
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We note that in both the above cases DPf is continuous; 

so that in part a) DPf e 	while for part b) DPf e g' 

We will, in either situation, refer to DPf as the p-th 

generalised derivative of f. A distribution of the form 

DPf is said to be of finite order.t  

L.2.4.8.1 	If F e ;', then there exists a tempered 

function f and a non-negative integer p such that F = DPf. 

D.2.4.14.  H 	If F E 	and k E g, or if F e i3' and 

k e 3 , then we denote by (F € k)(x) the function of a 

real variable x, given by <Ft, k(x-t)>. [The suffix t on 

the functional F is used to distinguish the variables x 

and t: it indicates that F operates on a function of t.] 

This function will be called the convolution of F and k. 

L.2.4,9.91  If F E G;' and k e 	, or if F e 2' and 

k E .3 , then (F x k)(x) E i . 

L.2.4.10.  9 	If F e .' and k e 	or if F e 2' and 

k e 	; and if p is a non-negative integer then 

(F x k)(P)(x) = (F(P)  x k)(x) 	(F x k(P))(X). 

L.2.4.11.91  If F e (4 ' and kl'k2  eg, or if F E 2 ' 

and k1,k2 	, then (F i kl) € k2 = F x (k1Hk2) 

(F H k2) 	ki. 

L.2.4.12. 	If F e G 	k E (;) and 0 E Cgs , or if 

F e 	k e =3 and (4) e 	, then 

TSee (23) chapter 24. 
tSee (23) Pg.272, and (20) Pg.95. 
"See (3) Pg.105. 

441See the appendix. 
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[(F x k)(t) (3,  (t)dt = <0‹ h, 	>. 

Proof: If F e G; 	k E g and 4 e G; , put &'(t) =$(-t), 

and then we have that 

AA 
<(kF), > = <P, 14> 

0 0) = <Ft, 	(k 	A  (  

= <Fz, (k x *)(-z)> 

= (F 	(k 	*))(0) 

= ((F A k) x *)(0) by L.2.4.11.0  

f
(F A k)(t) ( (t)dt. 

The proof of the other case follows in similar fashion. 

L.2.4.13.I  If fl, f2  e X and for every k E 	j 

ff1 	.) (ok(o 	r dt = If2  (t)k(t)dt, 

then fl  = f2. 

Proof: It is sufficient to show that, if f e 

for every k e 3 we have 

jrf(t)k(t)dt = 0, 

then f = 0. 

If k e 3 , u e IR, then eillzk(z) e 3 , and so 

ff(t)k(t)eiutdt . 0, 

tSee (10) Pg.235-236. 
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for every u e 	. Hence by L.2.2.1., for every ke 

f(t)k(t) = 0 	for all real t, 

and it follows that f = 0, which proves the lemma. 

L.2.4.14. 	If k e G then the map 

4(z) -4 jrk(t)*(z+t)dt 

is continuous. 

Proof: The maps 

(x) -4 	e D , 

	

A) .D 2(x) 	k(-x)2(x) e 	, where k E Eg 

	

h(x) 	1  h(-z) e 3 , 2n 

are all continuous by L.2.4.6. and L.2.4.7. Hence if 

k e 	, applying these maps consecutively and using 

L.2.1.3., we obtain that 

	

(z) 	fk(t)(1>(z+t)dt e 

is also continuous. 

D.2.4.15.  If F e ,3 f , k e g then we define F* k t 

  

to be the linear functional on :8 given by 

<F 	k, 	> = <Fz, $k(t) & (z+t)dt›, 	e 3 . 

Notation not in general use. This particular type of 
convolution yielding a functional is familiar. For 
the sake of clarity, we here use the symbol * , to 
make a distinction from the other convolution (see 
D.2.4.14.), which yields a function. 
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In view of the previous lemma, F * k E 3 '.  

L.2.4.15. 	If F e :3 	k e Q? and 0 e 3 , then 

(F * k) m 	(F m 	) H k. 

Proof: Take F 	k e 	, 0 E 3 , then if 	e 

((F * k) x c) 	2 = (F 	(k 	0)) x 2 by D.2.4.15., 

= F c (k 	x 2) 	by L.2.4.11., 

	

(F 	) 	(k 	aby L.2.4.11., 

((F 3E4) )3E k) 3 t by L.2.1.6., 

and since this relation holds for every A E 3  , the result 
follows by L.2.4.13., using lemmas L.2.4.9. and. L.2.1.5. 

N.2.4.2. 	With the following set of operations, 3' is 

a universal algebra: 

(i) the binary operation (F,G) 	F + G, 

(ii) the unary operations F 	AF, where X is any complex 

number, 

(iii) the unary operations F -4 F(P) P 

(iv) the unary operations F —4 F * 2, where i is any 

element of G? , 

(v) the nullary operation 0. 

D.2.4.16. t 	Topologies may be introduced to the linear 

spaces 5)', C;', j', by taking as a basis for neighbour- 

See (23) Pg.197 and (10) Pg.46. 
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hoods of the origin in 5 all sets of the form 

(F e g), 1 k F, 4i51 <e , i = 1,2,...,n.) 

where e > 0, n is any positive integer and +1, +2,..., 

are any elements of 3 ; and similarly for GV and 3' • 
These topologies are compatible with the linear 

structures of AD' 	c', 	3' respectively, as may be 

verified by use of L.2.4.2. We shall call them the weak 

dual topologies. 

L.2.4.16. t With the above topologies each of the spaces 

`.) 	0', 3' is sequentially complete. 

2.5. The isomorphism theorem 

L.2.5.1. 	If a e 3:1( 	CZ r, 	) and. 2 e 2 , then 

ax2 E 	) 	, Cg 0 	).  
Proof: If a = f//g and 2 E 	, then pg e (j) , and so 
3k E 3 such that g 	k= 2 (this follows from L.2.2.2. ) • 

Henceam2=am (gx k) = (f x k) x g//g and so 

a m 2 = i(f m k), and the result follows 

L.2.5.2. 	If g(t) is a continuous function, then 

32(t) E g such that 2(t) '> 0 Vt and g(t)t(P)(t) is 

tempered for each non-negative integer p. 

tSee the appendix. 

;For a definition of this term see (23) Pg.38. 
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Proof: Put An = 1 + SupIg(x)I for n = 0,1,2,..., and. 

An = A-n for n= 

If 

tx1<n+1 

k(x) 

and B = Sup 
txt <1 
0<r<Ipt  

exp[ -1/(1-x2  )3 
o 

if Ix1 < 1 

if !xi > 1, 

(Ik(r)(x)l), for each integer p, and if 

kn(x) = k(x-n)/Bn' for each integer n, then we have that 

(i) kn(x) = 0 
	

if Ix-n1 > 1 

(ii) kn(x) > 0 
	

if lx-n1 < 1 

(iii) Ik (P)(x)I < 1 if 0 < p < frit. 

Put 2(x) 	4-c°  n„...kn(x)/((l+InI)Inl An). The sum converges 

for each real x, since at most two terms are non-zero; 

furthermore 2(x) has derivatives of all orders everywhere; 

and 2(x) > 0 Yx. If m,p are non-negative integers and if 

tx1 > p+2, it follows that Ifx]l > p+l, and so 

lkrxi(P)(x)I < 1 

and Ik u (P) x14.1)(x)1 < 1. 

Furthermore we have that An 1 for each n, and so 

ixmi(p)(x)i < ixtm(1/(Ifx11+1) 

+ 1/(1[x]+11+1) qx3+11) 

0 as x -4 co. 
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Hence 2 E 	. It follows similarly since (1+inl)int  > 1 

for n = 1,2,3,..., that for any non-negative integer p, 

if oct > p+2, 

g(x)2(P)(x)I < Ig(x)1(1/Arx)  + 1/A(x1+1)14 

however if x > 0, Ig(x)i < A(x)  and if x < 0, 

Ig(x), < A(Ex1+1), and so in either case if tx1 > p+2, 

Ig(x)2(P)(x)1 < 2, 

and the result follows. 

L.2.5.3. 	If g(t) is a continuous function, 2(t) has 

derivatives of all orders everywhere and N is a non-

negative integer, then there exists a continuous function 

% h such that DN  h 	2kDN  g) in :fiD '. If in addition 

g(t)2(P)(t) is tempered for p = 0,1,2,...,N, then h may be 

taken to be tempered. 

Proof: If 	E cc-.D , we have that 

(DNg) , 	<DNg, 2 4,  > 

(_1)N
A
. 

tt)(k(t))dt 

= (_1)N 	r
g(t)2 	(t) • (N-n) 	4  (n) k n) i (u)dt. 

n=o 

tFor the definition of DN, see D.2.4.13. Note that DN  
operates on a continuous function to give a distribu-
tion. 
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For n = 0,1,2,...,N, put 

Ircl)(x) = g(x)2(N—n) (x) 

Ir+1 
 (x) 	I 	In(t)dt 

4 o 

so that if g(x)/(p)(x) is tempered for 
n. then Irkx) is tempered for n = 0,1,2,...,N, and r = 0,1,2,—. 

We have that 

is(t)2(N-n)(t) 4 (n) (t)dt 	(-1)(N -n)j- 
	

I(
nN-n)(t) 

(N) (t)dt, 

and it follows that 

</(DNg), 6) 

(-1)N  ( E (N)(-1)(N-n)In 
	

.(0)
(N) ()Oat, 

n=o n 

N 
(N-n) j  

and so if 

h(t) = z (11.41
m 
 )(-1)(N-n) I( N_n)(t), 

n=0 

then 

2(DNg) = DNh in 41)t, 

and if g(t)2(P)(t) is tempered for p = 0,1,2,...,N, then 

h(t) is a finite sum of tempered functions, and so is 

itself tempered. 
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D.2.5.1. 	We shall denote by T.a31  the subclass of 2 

consisting of those functionals which are the Fourier 

) transforms of functionals of finite order in 	7.t  

L.2.5.4. 	If F Ela3' then there exists an 
In  

a E 	( n 	) such that 

i-1 (al€0)=F30) 	v4)E 13 

Proof:  Since F E 	,, there exists a continuous 

function g and a non-negative integer N such that 

F = (DNg)I\  in 	It follows from L.2.5.2. that there 

i exists k E ( such that k(t) > 0 Vt, and g(t)k(P)  Cc, is 

tempered for each non-negative integer p. By L.2.5.3. 

there exists a tempered function h, such that 

DNh = k(DNg) (in 	'). 

Put 

2(t) = 1 k(t), 

L = (DNh)̂  	(in 
	

' ), 

a = (L x 2)//(2 H 2) E 	:FL g n 	) • 

Then if 4  e 3 , using lemma L.2.2.2., there exists' 

such that 0 = 2 x *, and so, using L.2.4.11., we obtain 

that 

i-1(a H (I) ) = L H *. 

Now if X. e 	, we have that 

tSee D.2.4.13. 
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( 
J (L H 110(t)(t)dt = 	X> 	by L.2.4.12., 

= <DN  h,(*%) > 

= <DNg,k(lVt)//`  

<fr',214frx 

A A 
= <4 F, X > 

= f(F x 41, )(t)(t)dt by L.2.4.12., 

and so it follows from L.2.4.13. that L x * = F x 

Hence i-1(ax4 ) =FH(1) 	V4)E 2 , which is the 

required result. 

L.2.5.5. 	If a E 	(;", G n  2 ) then there exists 
an F 	such that 

1-1(a x 	) = F 	(I) 	V4 	. 

Proof: If a = f//g, then the linear functional H defined 

on Ci; by 

<H,cP> = jf(t)4)(t)dt 	V cl) 	, 

is continuous and so H E g 
	

is well defined and, by 

L.2.4.8., there exists a tempered function h, and a non- 
A N 

negative integer N, such that H = D h in 

By L.2.5.3., since lig has derivatives of all orders 
everywhere, there exists a continuous function k such that 
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DNk = (1/g)(DNh) in ...D 	It follows that DNh = g(DNk) 

in 2J'. 

If .2(t) 	 2n = 	(-1)Nk(-0, and F = (DI/2)A  in 2' 

then F E 43' and it is easily verified that F = DNk. 

For every 	E .3 and X e 5) we have that 

(H H 4) ) (t) - <.(t)dt = < ci) H, X.> 	by L.2.4.12., 

= <DN.k,/gS.X. > 

A 
g 

	

= <F, 	t > 

<sP =, A x 

ruF H 40H g)(t).(t)dt, 
J 

by L.2.4.12. and L.2.1.6., 

and so it follows from L.2.4.13. that H x 	= (F x 4:)H g. 

Hence 

a H 	= (f x h)//g 

= (il H 4 )//g 

= i (F x 4  ) , 

and the result follows. 

T.2.5.1. 	The isomorphism theorem.  

A) 	The spaces 	and 34.-a(cX. , Cys n 	), with the 

following system of operations, are universal algebras of 

the same type. The operations are 
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(1) 	the binary operation (f,g) —> f + g, 

(ii) the unary operations f 	Xf, where X is any 

complex number, 

(iii) the unary operations f 	f(p), p = 0,1,2,...,  

(iv) t the unary operations f 	f x 2, where 	is any 

element of g , 
(v) the nullary operation 0. 

B) 	The spaces ;r43 I  and l.( mss._. 	Cc? 0 	) are iso- 

morphic. 

Proof: We show first that there is a bijection of 

, 	r,7S ) onto 7:-.13 . 

It follows from L.2.5.5. that to each 

a E 	, (7f n 2  ) there corresponds at least one 
F E 7a3' such that, v 	i-1(a 	F € 4) . If 

for a given a there were two such F, F1  and F2, say, then 

F1  € (1) = F2  € 4 for every 4 E 	and so F1 = F2. We 

will denote the unique F, corresponding to a in the above 

manner, by 0(a). 

If 0(a1) = 0(a2), then we have that 

(al  - a2) H 	= 0 	V+ E ,3 , 

and by use of L.2.4.13. it is clear this implies that 

al  = a2, and so 0 is injective. It follows from L.2.5.4. 

1.  We map the unary operation H2 in 	(rY , G' 	) 
onto the unary operation * 2 in 



- 70 - 

that Q is surjective (on n„3'). 
We have already shown that, with the given system of 

operations, P. ( 	, cs r\ 	) and 3 are universal 

algebras of the same type. We now show Q to be an homo- 

morphism of a( 	 ttrt ) into 	. 

(i ) 	If 4  e 2 , we have that for al , a2  e 	( 42: , 	g2a) 

g(al+a2) x 
	• i-1((ai+a2 ) € 	) 

€ 	) 	i-1(a2  H 	) 

• Q(a1) H 4  + 0(a2 ) H CI) 

• [Q(a1) 	Q(a2 )] 

and so Q(a1+a2 ) = Q(a1) + Q(a2 ). 

(ii) 	If 4' e 	, we have that for X. c 	and. 

a E 	 ) 

Q(Xa) H 	= i-1  ((Xa) 
	

) 

= i-1(X(a x 4> )) 

= Xi-1  (a x 	) 

= N(Q(a) x 4  ) 

= (XQ(a)) ; 

and so Q(Xa) = XQ(a). 
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(iii) If 43  E 2 , we have that for each non-negative 
integer p and a E :!:)1,(72: 	n 	), 

Q(a(P)) x 	= 
.-1(a(p)x ct  ) 

= i-1((a H 	)(P)) 

(i-1(a H 	))(P)  

• (Q(a) x (i) )(P)  

• (Q(a))(P)  H 4) $ 

and so Q(a(P)) 	(Q(a))(P). 

(iv) 	If (1) E 2 , we have that for every 2 E C; and 

a€3..('1,   

Q(a € 2) 
	

=
-1
(ta 
	

2) x 4b ) 

(i  -1(a  

• (Q(a) € 4 ) x 

• (Q(a) * 2) € 	, by L.2.4.15. 

and so Q(a € 2) = Q(a) * 2. 

(v) 	It follows from (ii) with X equal to zero that 

Q(0) = 0. 

Finally we observe that the image of a universal 

algebra Q1  , under an injective homomorphism Q, in a 
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universal algebra C: of the same type, is a subalgebra of 

. It follows from this that 	is a universal alge- 

bra of the same type as, and. isomorphic to, 7-7.1 ( 	Gg (') .  

2.6. An identification of €1 ' in 	, g r, 	)  

If f(z) e 3 then f(x) e .14 , and so we may write, 

somewhat loosely, 	s 	. Moreover it is not hard to 

verify that every neighbourhood of 0 in C4 has a subset 

which is a neighbourhood of 0 in 	. Consequently every 

continuous linear functional on 	is also a continuous 

linear functional on 3 , and is in fact, by D.2.4.10. and 

L.2.4.8., an element of 	Now if we make the 

observation that g- is a subalgebra of 3 n3 ' with the 

usual system of operations, then it is clear that by the 

mapping 9-1  defined in T.2.5.1., 	may be isomorphically 

embedded. in .a(72:- C:f7 n 2n ) 

We give in this section a precise identification of 

its image. We show that this image consists of those 

elements a, of 3.,1,1( 	<-4 r, 	) which are such that for 

every g E 	0:53-  there exists f[g] E 4,1_, such that 

a = f[g]//g. 
fem 

D.2.6.1.  t If a e 1( 	, N (-N 	), then we shall put 

[g 6 	fl i)31 	3f c  such that f//g = a). 

tSee also D.3.1.5. et seq. 
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Pa will be referred to as the base class of a. 
L.2.6.1. 	If 4e g , then there exists k €4-63  n 	such 

that k(t) > 1$ (t)1, Vt e 1R . 
Proof: Put 

Mn = 	Sup (4 (x)1), n = 1,2,3,..., 
lx1>n-1 

Mo = M 

Mn  = M-n'  n = -1,-2,-3,... . 

Put 

exp[1/(x2-1)] 

1 0 for ixi > 1, 

for ixi < 1, 

X . Inf 	(17(x)), so that X > 0, 
ix10/2 

B 	= 	Sup ilk(P)  ( x) i) for each non-negative 
lx1<1 	integer p, 

kn(x) = 17(x-n)/X for each integer n. 

If m is a non-negative integer, then since $ e 

xm4(x)1 -4 0 as x -4 co, and so (n-1)mMn -> 0 as 

n.-4 m. Put An = Mn + 1/(1+InI)In/  for each integer n, so 

that An 	An+1  for n = 0,1,2,..., An  > Mn  for every 

integer n, and for each non-negative integer m, 

xrfl (n+1) An 	0 as n 



Put 

+ co 
i(x) = E A_K(x). 

n=-00 " " 

The sum converges for each real x, since at most two 

terms are non-zero. Furthermore ,e (x) > 0 Vx, and /(x) 

has derivatives of all orders everywhere. If m and p are 

non-negative integers, then we have that 

11CMI(P)(1 )1 < 1X1M(AEX.) 
	[x] 
1k(P)( 101 + A

Ik 	f [ x ] +l I  IX1+1 kx )1  ) 

< (B/X)Ixim[A
[x] 

 + A
[x]+1

) 

< (Bp/70( gx], +1)m[A fx]  + A[x]+1) 

-> 0 as ix 1 -4 co. 

It follows that 2 E 	. Furthermore for each real x, 

either kfxi(x) > 1 or kix11_1(x) > 1, and so if x > 0, 

2(x) - 1`$' (x)1 = A[x]krxi(x) + A
[x]-4-1

krx1+1(x) - 	(x)i 

A 	M 
[x]+1 	[x]+1 

> 0, 

while if x < 0, 
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2(x) - 4(x)1 = A
[H]

k[x](x) + Aixi+lk[x]-4-1(x) 	l$ (x)I 

A[x] - M[x] 

> 0. 

Taking k E 	n  7 to be such that k = 2, the result now 

follows. 

Corollary 	If ct i  e g for i = 1,2,...,n, then there 

exists k e 	o r; such that (k- 43i) e 	-2B 	for 

= 1,2,...,n. 

Proof: We have that for each i = 1,2,...,n, there exists 

Ic-c 	ti(4-ititsuchthatL(t) > 1(1)' 1 	Vt c 

Put k(x) = ZiLiki(x), so that k(x) 	(ig and 

A  f k(t)t) = Zin  =lki(t) > 0, i.e. k e 5n ',433 . We have that 

Icc(t) - $i(t)1 > k(t) - 1;i(t)I 

> kj(t) - 

> 0, 

and so (k-4,  i) E  k45 n  	for each i = 1,2,...,n. 

T.2.6.1. 	Suppose that for each k E (i; n 	, there 

exists a tempered function of x, f[k](x), with the property 

that for any two functions k1,k2  e 	n 7.33 

f[k1] 	k2 = f[k1  x k2]. 
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Then there exists a functional F c C4' such that 

(F € k)(x) = f[k](x) Vk E 	.1:2 	. 

Proof : If 45 c C , then there exists k e 	such 

that (k- 	e 	nan . Put f[$ = f[k] - f[k- 

then ?[ 4  ] is tempered. If k ,k2 E g  n 	are such 

that (k1- 4) ), (k2- )e Grl2St and if le 	(173:t we 

have that 

(f[k 	- f[k l- 4']) € 2 = f[2] 3f k - fr.81 	(k l- 4)) 
1 

= f[2)3€ 4) 

= [f[k2 ] 	f[k2- (]] H 

by symmetry, 

and so 

f [ki ] 	ffici-4' 	= f[k2] - f[k2- ci)]. 

It follows that f[ef,  is a well defined tempered function 

for each 45 c (.; . 

If ki  e G r,232, then there exists k2  

such that (k2-k1) c 	n 	and if 2 E q r, 	, we 

have that 

?[C]. ] 	2= f[k2 ] c 2- f[k2-ki ] x 

= fry H 2, 

so that 7[k1] = Mi l for each ki  E Can fin 

t 
	

Tit;f 	 1 .tif 	Q ,,ts," 	 Tn. 2. f_td 
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If 1'2 e u, then there exists k e 

such that (k- 	(k-( lx  (fp 2 )) e 	; and if 

e l r. ;CU then we have that 

[ 1] 
	

t2)  H 	= (f[k] - frk-01}) 3f ( 2  K 

f[i]  X 41 X 4) 2 

= Mk] - f[k-( 4)1  H 42 ]) H 2 

Ti t tt i K 4) 2 1 3E 

and so 	4) 1] X 4>  2 = 	4 1 3' 4) 2] v4'1, 4) 2 6 	. 

Take 5(x) e 	such that f 5(x)dx = 1, and put 

5n(x) = n5(nx) for each positive integer n. Then if 

e C 	, lif(x ) = (t) ( -x ) and y e fF , 

f [IP 1 (y-x) n(x)dx = j iTkitl(y- ..-1')5(x)dx 

i"Tip (y) as n 

by Lebesgues convergence theorem. It follows that 

(f[5n] K *)(y) 	i[Vd(y) as n 

and in particular that 

jf[5n](t) 4.)(t)cit 	1N1(0) as n -4 Co .  

If Fn e(-7? is the functional given by 

r<Fn, 	> = jiqsni 	4 (t)dt, 	€ 6 , 
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then from the above, lim <F n, > exists for each * Eg 
n-41:0 n  

and so, from L.2.4.16.1  it follows that there exists an 

F c 	such that 

(F R 	= 

for each * e (4 and every y E iR 
Hence if k e 	n fin , we have that 

(F m k)(x) = f[k](x) 

= f[k](x), 

and the theorem is proven. 

T.2.6.2.  If a 	) and gSa  =q n 2Sk 

then Q(a) e G:;/ t, and conversely if F e 	and 

a = Q-1(F),-%  , then A5a = 	n  7S2i 

[Reminder: Q is the isomorphism of ?a ' and 
n 	) given in T.2.5.1.] 

Proof: If a € 	( 	, 	n 	) is such that 23a =G,, 
then for each k e C4 131 , there exists a function 

f[k](x) e 	, such that f[k]//k = a. If ki,k2  E 	231 , 

then f[ky/ki  = f[kiRk2]//(kiHk2), and it follows that 

f[ki] x k2  = f[kiNk2]. It follows from T.2.6.1. that there 

exists an F e 	' such that F R k = f[k] for each 

k e g n  M . Hence a = (Fxk)//k, and we have that for 

't In the sense that Q(a) may be extended to a continuous 
linear functional on 	. 
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every 4  c 	, 

i-1(a x 4 ) = F x 44) 

Hence the restriction of F to 3 ' is equal to Q(a), and 

it follows that Q(a) c g', in the sense previously 

explained. 

Conversely if F c and k EGnZ , then 

((F x k)//k) K 	= i(F K 
	

) V p E 

and so if we put a = 0-1(F), we have that 

a = (F k)//k, 

for any k E C n 	. It follows that a = (5 11 1...g 
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INTRODUCTION TO CHAPTER 3 

The first four sections of this chapter are largely 

concerned with topological aspects of an arbitrary quotient 

pair ax 	. In section 3.1., some new concepts are intro- 

duced. These allow us in section 3.2. (T.3.2.1.) to use 

any topology given on az to derive topologies on certain 

subalgebras of g(9,1,, 	). Section 3.3. contains a 

number of theorems which relate properties of 2Z and 15 

to topological properties of certain subalgebras of 

); theorem T.3.3.5. being of particular import-

ance for establishing, in sections 3.5. and 3.6., the 

continuity of certain operations. In section 3.4. we 

consider an interesting sub-algebra of 	); the 

space 	0(V- , j  ). (The space 	°(Z , Csj  /3:1 ) was 

that sub-algebra of ;QUI , ("(1 'pQ ) which was shown in 

chapter two to be isomorphic with the class of tempered 

distributions.) We show, firstly, that if 	is a complete 

Hausdorff linear topological space, and if each 4  e .5,13 

is a continuous endomorphism of at, then 2-3:2201P,, 15 ) is 
also a complete Hausdorff linear topological space. 	After 

this, other aspects of J(, ,-(13 ) are considered, in 

particular a family of sub-algebras of xmat 	) is 
constructed: the spaces 	), n = 1,2,3,... 

Various aspects are looked at, including the question of 
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distinctness of the n(2X, 	).  The section concludes 

with some examples to illustrate different situations which 

may arise. 

The final two sections of this chapter are concerned 

with topological properties of 	of` ,lam on ) and 

p.(c,25 , 	n PSs ). The principal result of section 3.5 is 

T.3.5.3., where it is shown that, equipped with a suitable 

topology a'o 	, C; n 233) is homeomorphic to gt 1 

the class of tempered distributions, 	' carrying the weak 

dual topology. We also show in T.3.5.4. that more than one 

topology on 4r can lead to the co topology on 

G; ri p). In section 3.6., the main results are 

T.3.6.2. and. T.3.6.3. The former shows that there are 

several topologies on ""3" leading to the same topology, 

(a, (3 ), on  ZWZ , E; 0 	while the latter shows that 

with the (a, 3 )-topology ZAU7r n  "rx) is homeomorphic 
with the class of Fourier transforms of distributions of 

finite order (when this class has the weak dual topology). 

All the results of this chapter are believed to be new. 
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CHAPTER 3 

Throughout this chapter, A will denote a Universal 

Algebra (M, 70), and 13 will be an Abelian semigroup of 

infective endomorphisms of lx , i.e. at , 	will form a 

quotient pair. 

3.1. Preliminaries 

D.3.1.1. 	We will denote by IL (V., ;!5 ) the class of 

unary operations 	on z1-t such that for every 4€ 	and 

for every f E ak , 

(r) H 	= e(f x 	)* 

We have in all cases that 

D.3.1.2. t If X e II (1 , 	), then for each a E XI (2x, ;15 ), 

put 

(a) = "x:(f)// 

where f, 4) are such that f// c. = a . Note that if 

fiN 4> 1  = f2// 42, then X(f1)// 	= X (f2)// 2, so that 

X is well defined on -,1a. ( 	, 	). 

1This definition is consistent with that given in 
T.1.3.1. for the case X En. 
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D.3.1.3. 	Suppose that CF:' is a sub-algebraf of Ta(i,4.B ). 

Suppose also that there exists a subset O. of i.1( 	), 

with the property that for every a E 	, and for every 

E CS , we have e(a) E 1(22 ). Then we shall say that 

gp and t 	are Wiener-like. 

N.3.1.1. 	It is reasonable to demand some explanation of 

the term 'Wiener-like'. Suppose that the situation referred 

to in D.3.1.3. arises, and that a . 	:2•X , 	) . Then 

if (0 e 2) and e E g , we have that for every f E 	y 

WYPP ) E i(2 ). 

For each f e 1L2 define 

(f) = 	 ). 

It is easily verified that the map x , is an element of 

LT. (t , *b ), and that for every f E 	, 

e(f) = )(-(f) H (17  

We may write this relationship as 

We have therefore shown that under the given conditions, 

if ep e ,15 and if 	ca.  , then there exists 

tFor the purposes of this chapter, we will regard 
t. (.L ,115 ) as a sub-algebra of itself, but re will 
assume that if e = (N,n ), then N / 0 . See 
section 1.2. 

That this can happen, see L.3.6.1. 
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e 	(14 	) such that e . cox . This resembles 

the following theorem of Wiener. 

tWiener's Theorem Denote by B the class of functions 

integrable over the real line whose Fourier Transforms 

vanish nowhere. Denote by C the class of functions 

integrable over the real line whose Fourier Transforms 

have compact support. Then if 	E B and if e E C, there 

exists X E C such that e 	H X . 

D.3.1.4. 	Suppose that (2-, is a sub-algebra of 

?„:1 ( 	, 15 ) and that 0 	LI ( 	, 	) and is such that 

Cit and L are Wiener-like. 

1) If, give any two distinct points al, a2  E 	, there 

exists e E L. such that (al) 	e(a2), then we shall 

say that (11.  separates C.5.' . 

2) If every e E 	is an endomorphism of al , then we 

shall say that CS is endomorphic on 

D.3.1 t5.* If a E 	), then we shall put 

a  = 	 c 2.A. such that f//14) = a) . 

za  will be referred to as the base class of a 

D.3.1.6. 	We define n, 0( 	, 	) to be 

  

(a € ;LI( i, 	) I 	a  = 	) • 

See (11) section 9J, from which this result is easily 
deducible. 

D.2.6.1. may now be seen to be a special case of 
this definition 
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L.3.1.1. 	Ta 0(2A, 	) is a sub-algebra of 	). 

Proof: Suppose that FE is an n-ary operation of the 

Universal Algebra t , and. that al,a2,...,an  E 
	'13  )• 

Choose 4  E 1,13 and take fi  E9.1 such that 

a.a. = f.a.//4 	i = 1,2,...,n. 

Then if p (al'a2'...,an)' we have, denoteing 

4) 6 4) • • • I, 4) 
	

(r terms) by ci)[r], that 

P = 	
[n-i] (f ly 	f2x 

[n-1]
n21 41 

[n-2.]
)//4)

[n]
. 

And so, 

0 	(f1,f2, ...,fn) 	cl?  [n-1.]// [n] 

f  2 ' • • ' fn)// 4 • 

Hence 4 e 	0. Consequently 5 3 	: the result 

follows. 

L.3.1.2. 	7:1 0(11 	) and ,13 are Wiener-like, 3,5 

separates :!.:a 0(U ,;b ) and 	is endomorphic on 

Proof: We have thatA1). c  U ( 	, z!t5' 	Furthermore if 

E 15 and a E xa 0( o.A. 	), then there exists f E a 

such that a = f/A, i.e. ,(a) = i(f). It follows that 

0  ( X , 	) and 	are Wiener-like. If a1, a2, e 

o  (fix , YZ ) and al  / a2, then for any e E 	, we have 

that e(a1) / e(a2). Hence 3 separates 71 0 (f/A 	). 

Finally, since al , 	form a quotient pair, A3 is end o- 
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morphic on 0-1,  , and so, on 	) and 	0(9.A. , 3  ). 

3.2. The topology in the general caset  

T.3.2.1. 	Suppose that 3.1.,) form a quotient pair and 

that ;14- is a topological space-t with topology T. Suppose 

also that a is a sub-algebra of (la (IA ,f(N ), and that 

(Xt,,,13 ) is such that a and 	are Weiner-

like. 

For each a e C! define the family CV a  of subsets of 

a to consist of all sets of the form 

(1;o E 12 and i-1  0.0) E Nc.c
' 
 j= 1,2,...,n.), 

J 

where n is a positive integer; 4,j, j = 1,2,...,n is an 

element of a and 1\1 is a T-neighbourhood of 	.(a). 

Then for each a e al  , ( a  is a basis of a filter 

,a a, on cy . The family of filters, (,;y ala e e 

provides a topology on a . If every element of a is 

infective on C!' , then= 	a, Va E CF: a 
Proof: 	1) Proof that if G E 	a, then a E G. 

Suppose that G E c a, then G is of the form 

G = (PIDeeandi-14).0) E Nc.6  j = 1,2,...,n.), 

and so a e G. 

tFor a treatment of general topology, see (2). 

tSee D.2.4.3. 
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2) Proof that if G1,G2  e CS3 a, then G1 n  G2  E a' 

Choose G1, G2  e C.53 a' then 

Gi  = 	E 	and -1 (• i(P) E 	= 1,2,...,n.) 

	

2 = (DIP C 	and 
-L
4-1.b .(Q) e Mc! j = 1,2,...,m.), say. 

= 1,2,...,n 

= n+1,n+2,...,n+m, 

j = 1,2,...,n 

j = n+1,n+2,...,n+m, 

and 	2 = n + m. 

Then we have that 

Gl  n G2  = (01P e 	and i-lX.(P) e Lc.t,  

j = 1,2,...,2.) e laf a. 

We have shown by 1) and 2) that (1';'a 
is a basis of a 

filter a on 	
. We next show that the family of 

filters, 4:13:t a  k c 	) , provides a topology, which we shall 

call the (T, 	) topology, on 	. 

3) If F e 7:7 a, then a E F; this follows 

directly from 1). 

4) Proof that if F e a  then there exists 

F' e Z1a such that if y e F' then F 
E 	. 

Put 

j = 14 4, 
)C.  
j j 

a N., 
La  = 

iMa -n, j 
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Suppose that F e 	c:c, then F has a subset G, of the form 

• 
G = (PiP e 0' and i

-1  
 t.(p) E Na, j = 1,2,...,n.). 

Since ..9.1  is a topological space, for each j = 1,2,...,n, 

thereexistsMc 
 
,a T-neighbourhood of i-1 

1 
 J ru‘,  such that 

if f. E Ma then Na is a T-neighbourhood of f 
j 	j 	 J *  

Put 

F' = (PIP e e and 	.(mkp) 	ma 

a 
then F' e '-' 

a
1  . Suppose that y c F', then i-1  +.(y) E M . , 

J 
j = 1,2,...,n. Hence 113 is a T-neighbourhood of 

i-1 	(y) j = 1,2,...,n. Consequently G E e , i 	' 	 . 
Y and so 

F e 	•‘..) '''' y. The result follows. 

We have now shown that the family of filters 

e C5 ) provides a topology on e . To complete the 

we prove: 

5) If every element of Cf is injective on e 

then (3ia 	a 
= 	. To prove this, we have only to show -  

that any superset of a set which is an element of 	 a,ri- 	is 
also an element of Ga. Suppose that G = F s a and 
G E Gja. Then G is of the form 

G=Wf36 @ancli--1(1)-( 3) e Na, j 

Put 

Ma
j 
 = Na 	i-1  j(F), j = 1,25...,n, 

'g al ac"--

theorem 
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p L thenleis a 'r-neighbourhood of i-1  .(a). Hence, if 

N=043eGandi-1 03.Welej. 1,2,...,n.), 

then N e G! a
. 

If p E F, then 1-1 j(A) E 	CP j(F) 1". AI   

j = 1,2,...,n, and so p E N. Hence F G. N. 

Suppose that p EN but p X F. Then we have that 

0 X G. Therefore there exists p such that 

1-16 p(f3) 	Na. I 

Also since p X F and all elements of 

, we have that 

p(P) F 4-11 t 	p‘ (F). l  

Hence 

rs- are injective on 

j--1(1)  (P) X NaP 	i-1 	(F), 

and so p X N. But this is a contradiction. Consequently 

if p e N, then we must have that p E F, that is we must 

have that N 	F. 

It follows that N = F, and so F E afa. 

This completes the proof of the theorem. 

ma,  



- 90- 

3.3. Some general results 

Throughout this section (5 3.3) we shall assume that 

91  is a topological space, with topology ¶, and that e 

is a sub-algebra of 	 .(f41.1,l 	). We shall further assume 

that 	I„1L(&I , 	) is such that (P and CE are 

Weiner-like, and that e has the (T, CS: ) topology. 

Additional assumptions will be stated explicitly whenever 

they are made. 

T.3.3.1. 	Suppose that i(al ) 	e . Then the map 

CI' 

is continuous at f e 9A , if and. only if for every 4,  ea, 

the map 

is continuous at f E 

Proof: Suppose that i s continuous at f E IA 	Choose 

. Take any T-neighbourhood N, of +(f), and put 

and 1-14)(3) e N . 

Then G is a (T,(S )-neighbourhood of i(f), and so there 

exists a 'r-neighbourhood F, of f, such that i(F) 	G 

Hence if g E F then i(g) c G, and so 4(g) c N. Thus 

cl)(F) 	N, and it follows that cl) is continuous at f. 

Suppose conversely, that every 4 E a is continuous 
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at f e 2 . Take any ('r, 	)-neighbourhood of i(f); this 

will have a subset F of the form 

F = (0j12,  e 	and 1-1  (1)j(p) e NJ, j = 1,2,...,n.), 

where, for each j, NJ  is a T-neighbourhood of 10,1(f). 

Since dp.J  is continuous at f, there exists, for each j, a 

T-neighbourhood MJ, of f, such that SJ(MJ) 	NJ. Put 

n 
M = fl 

j=1 

then M is a T-neighbourhood of f. If g e M, then 

+J(g) E Ni, j = 1,2,...,n, and so i(g) e F. It follows 

that i(M) SI F. 

This completes the proof of the theorem. 

T.3.3.2. 	Suppose that CI is endomorphic on (P, 	Suppose 

also that 2: E tp and 

a 

is a continuous m-ary operation on lq . Then 

is a continuous m-ary operation on (1' • 

Proof: Choose al,a2,...,am  E 	, and put a = rn ( 
 

...,am). If F is any (T, 	)-neighbourhood of a, then F 

will have a subset G of the form 

G= (pip E a and i-1 ity(3) E 1\13, j= 1,2,...,n.). 
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For each j = 1,2,...,n, there exists a set of T-neighbourhoods, 

Cmj,1'mj,2,—,Mj,m) such that each M 

of i-1 	
j,k 

4: j(ak), k = 1,2,...,m, and 

(M m 
j,l, 	) '= a  

J.011 	N j* 
Put 

is a T-neighbourhood 

Gk 	{pp E 	and i-1 
	

.(0) c mj,k,  j = 1,2,...,n.), 

then Gk is a (T,G )-neighbourhood of ak. Moreover if 

pk  e Gk, k = 1,2,...,m, then i-14 .(p ) e k 	Mj,k' 
j = 1,2,...,n. Hence 

r"..1 1.4 (i-1  c0j(01),i-1 4' (P2),.../1-1(13 (0
m  )) 

That is 

(01,02,...,0m)) a j e N., 	1,2,...,n; 

and so c_(pl,p2,...,pm) e G 	F. Therefore 

g- F, and the result follows. 

T.3.3.3. 	Suppose that CI is endomorphic on 	. Then if 

al , with topology T, is a linear topological space; 	5 

with topology (T, a ), is also a linear topological space. 

Proof: It follows from the discussions in chapter 1 that 

al  is a linear space, and from the previous theorem that 

the map 

0 	(a, p) 	a+ (3 E CT: 

is continuous. It remains to prove that the map 

tSee D.2.4.4. 
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(C. x 	3(2.,a) -4 Xa 6 ,," 

is also continuous. Choose X e C and a e (1. . Suppose 

that F is any (T, 	)-neighbourhood of Xa. Then F has a 

subset G of the form 

G= (pip e CS andi-loWeli
J
,j . 1,2,...,n.), 

i  

where 	
i 

N.
J 
 is a T-neighbourhood of 1-1  14).

J
(Xa) = Xi-14, (a). 

For each j = 1,2,...,n, there exists eo  > 0 and M
i' 

a 

T-neighbourhood of 1-14) 
i 	' (a) suchthatif!µ40<, ea  and 

if f e M.
J
, then µf e N.. Put 

e = min(eeen)' 
and 

U = (PIP € (12 
 
andi

-1
4).(3)eM.,j = 1,2,...,n.). 

Then e > 0 and U is a (To..7; )-neighbourhood of a. Moreover 

if iµ-20 < e and if p e U, then for each j, 

µi-1  1,  .(P) e N j  . 

Hence µP e F. 

The result follows. 

T.3.3.4.  t 	Suppose that a separates C.F. . Then: 

1) if a2 is a To space, so is 	, 

2) if 	is a T1 space, so - is 	, 

tFor definitions of To, T1  and T2  spaces see (18) 
Pgs.52 and 53. 
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3) if (IX is a T2 space (i.e. a Hausdorff space), so 

is C!' 

Proof: 	1) Choose a,0 e C3 such that a / p . We must 

show that at least one of a.P has a (1-,(1, )-neighbourhocd, 

not containing the other point. Choose 4) e C5 such that 

4)(a) / 4 (0). Put f = i-l4 (a), g = i-1 4) (p). Then 

f /g, and so there exists a T-neighbourhood N, of g, say, 

such that f N. Put 

V 	(-fly c a and i-14(y) e N). 

Then V is a (T, (I )-neighbourhood of p, and a V. 

2) Choose a,P e 	such that a / p . We must 

show that there exists a (T,G )-neighbourhood of a, not 

containing p, and a (T, 	)-neighbourhood of p, not con-

taining a. Take 41,f,g as before and choose T-neighbour-

hoods M,N of f,g respectively, such that f N and g / M. 

Put 

U = (yly e 	and 1-1  (Y) e M) 

/ V= cyly E 	and -1  ky) e N). 

Then U is a (T,(3 )-neighbourhood of a, and V is a 

neighbourhood of p. Moreover a V and p X U. 

3) Choose a,P e C  such that a / p . We 

must show that a and p possess disjoint (T,(I )- 

tIf C5 has only one element, then there is nothing to 
prove: we therefore assume that a has at least two 
distinct elements. 
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neighbourhoods. Take 4 ,f,g as before and choose T- 

neighbourhoods M,N of f,g respectively, such that M 	N .0 

Put 

U = Cyiy e 	and i-1+ (y) e M) 

V= (y1 y e e and 	(y) e N) . 

Then U is a (T, 	) -neighbourhood of a, and V is a (T,(.1. )-

neighbourhood of 0. Moreover if 5 e U, then 1-141 (5) e M, 

and so i-1 4) (6) X N. Hence 5 X V. Similarly if 6 e V, 

then 6 X U. It follows that U r)  V = 0 . 

T.3.3.5. 	Suppose that X E Ii. Ca 	) and that X is 

such that for every 4 ea , 	40Le 	. Then if X 

maps q: into 	, X. is continuous on C? • 

Proof: Choose a E C5 , and suppose that F is a (1*, G )-

neighbourhood of X. (a). Then F has a subset G, of the 

form 

G = (0;0 ,e ( 	and i-1 1 .(p) e N
J, j 

= 1,2,...,n.), 

where Nj  is a T.-neighbourhood of i-1  co.(X (a)). Put 

U = (pip e 	and i-1 y((3) E N j, j = 1,2,...,n.). 

Then U is a (1-,(1 )-neighbourhood of a, and if 	e U, then 

x(p) e G s; F. Hence X(U) 	F, and the result follows. 
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3.4. Consideration of no(tit,13 ). 

T.3.4.1. The Completeness theorem 

Suppose that 1A is a completetHausdorff linear 

topological space, and that every CO e P3 is a continuous 

endomorphism of 21 	Then with the (T, A5 )-topology, 

o( 	is also a complete Hausdorff linear topolog- 

ical"tt 

	) 

space. 

Proof: It follows directly from T.3.3.3. and T.3.3.4. 

that Z;0(.2,A,  ,;51 ) is a Hausdorff linear topological space. 

Suppose that Fe is a Cauchy filter t  on rJ10011-$16 ); 

i.e. given any (T,P )-neighbourhood, V, of 0 c ra o(IC 46), 

611> there exists U e 	such that 

U - U 	V. 

.0% 
Choose 4,  c 3 . Consider i

-14  kn.); we claim that this 

is a filter base on ::41:1 

1) Proof that 95 X i-14WEl. 

If F e i-1 (§t), then there exists C e 	such that 

F = i-1  4)(C). Since C must be non-empty, F is non-empty. 

2) Proof that if F1,F2  e i-14(R.) then there exists 

tFor explanation of terms see (23) chapter 5. 

;To see that this is not an 'empty' theorem, consider 
II to be the space of bounded measurable functions, 
provided with the norm: 	Of I l = Sup If(t)i. Take ,i3 

tenR 
to be the class of maps provided by 	-functions 
under convolution. 
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F e 	(E) such that F 	F1 n F2. 

If FF2 e i 14 ( ) then there exist C1,C2 e 	such that 

F1 	i-14 (C1) and F2  = i-14, (C2). And so if 

F= i-140 (C1  (--) C2), then F e ±-1dp (ft) and F 5; Fl  (I F2. 

Hence 1.-1CHR-)  is a filter base on al . 

We claim further that if .5,4)  is the filter generated 

by this filter base, then t4 is a Cauchy filter on (2-1. 

Choose any T-neighbourhood M, of 0 e 	. Put 

and i cFp (3) e M). 

Then since 4) is an endomorphism of /1 , 0(0) = 0, and so 

V is a (T, 	)-neighbourhood of 0 e 	o(OA 	). Hence 

there exists U e .9 such that 

U - U g- V. 

Put 

N = i
-1 (u), 

then N e 554, and N - N c; M. It follows that t et, is a 

Cauchy filter on al . 

Since :fa is complete, it follows that 5 4)  converges; 
and since 4/..L is Hausdorff, there is a unique ft E Zr. to 

which ti converges. Every T-neighbourhood of f belongs 

to 	,4. w 	We will denote the filter of T-neighbourhocds 

of a point f E 	, by Z4 f. Thus for each 

1.5f A  '.7.= -3c) 4, 	• 
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Consider any pair *, X of elements of 	. Choose 

any T-neighbourhood F, of fx  x *. Since i is continuous 

on A , there exists a T-neighbourhood E of fx such that 

*(E) c  F. Moreover, since Zfx. 	, E has a subset 

of the form i-lX(C), where C c n. . Hence F has a subset 

* of the form x(c)  = i-1(  *i-1 	 )(C), where C c 

Hence 

(f 	) — 
	

) • 

But we already have that 

And so we have both that 	(9C a *) converges to f x 	11/ 

and that "5(%011/)  converges to f 	0  *). Consequently 

	

f xf f 	 e  

Put a = f// 4, (I) 	1 	 Then a is a well defined 

element of 	o(fi1 	). Suppose that V is any ('r, 	)- 

neighbourhood of a. Then V is of the form 

V= (PIP e 	0( 1_,23 ) and 1-1 44).03) e N., 

j = 1,2,...,n.), 

where ct) i e 	and Ni  is a T-neighbourhood of 1-1+ .(a). 

Put f 	= 1-1CP (a), then N is a T-neighbourhood of 

f 	. Hence Ni 	 J contains a set of the form i-14) . (u ) , 
-1"  
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wherelLER. , j = 1,2,...,n. Put 

U = (ow E 	of 	) and i-14) j(P)E i-14 j(Ui), 

j = 1,2,...,n.) 

= 	u.. 
j=1 

Clearly U 	V and U e St ▪ Hence V E 9 • It follows 

that A converges to a E 	(t1„,3 ). o 
L.3.4.1.  Suppose that (3is a sub-algebra of ?um ,15 ) 

and that every element of ;13 maps 	into 	so that 

(5, 	form a quotient pair. Then every element of 13  

maps(,1 ) into itself, and there is a sub-algebra 
of - 0(al.,',13 ) isomorphic with ? 0 ( 	, 	). There is 

one and only one such sub-algebra with the properties that 

if 

I : (zaa(e, 	) ---) 

is the isomorphic embedding, then 

1) Ufa e xao(e,z), 	E 

	

I(a) H 	= I(a H (I)), 

2) VP e e 

Vi(0) = 

where i denotes the natural embedding of 	in 

, 1) ). Denoting this unique sub-algebra of 

00(a1, )) ) by 	we have in addition that every 

element of 3  maps &E  into itself. 
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Proof: We have immediately that . 0(e ,g) ) is a sub- 

algebra of 	 , "g) ), set ), and that every element of 

5 maps 	, 	) into itself. Moreover under the 

natural embedding 10, say, P.(ta 	) is isomorphic with 

-A(P(OX 	), 	Furthermore if a e ` c)( 	), 

and if 4) e 	, then 

cl(a ) x 	
= Iola 

x  ), 

while if 13  E 	, then 

cl(i(p)) p. 

Hence there is at least one sub-algebra of 	, 3 ) 

which is isomorphic with 	o( 	) and for which the 

isomorphism has the desired properties. Suppose that 

I 	0( 	, 	-4 	(0-1 , Q?) 

is any isomorphic embedding having the properties 1) and 

2) given above. Choose a c "P a(e , '23 ) . Then if 

a = 3//43, where 11) c P3 and p E 	, and if p = g//*, 

where g E It and * E 	, we have that 

1(a) = 1(W/4)). 
And so, 

1(a) 	= I( 	4// (1) ) 

= i(i(P)) 

= 
= g/A. 
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Hence 	I(a) = g//(4:- o *), 

and clearly therefore, I is unique. It follows that 

is unique. Finally choose a e 	, then for some 

a € 	o 	), 

aH = I(a). 

Thus if it, e 

a H 	= I(a H q)) 

Hence each element of T5 maps 	into itself. 

L.3.4.2. 	If G is a sub-algebra of ?a.(9.x. , 	) such that 

every element of X  maps Q.,(  into itself, and if 

= 	, 	), then 	= 	(at,) • 

Proof: Choose a e '10.X.,13) and suppose that a = f//4), 

where f e OX and (17  c 	. Put p = fp(43 a  43) Ex(ax,13). 

Since 	= $-)0A.,), there exists y E L such that 

=PIE.4) . That is, y= a. It follows that .7)(U45). 

D.3.4.1. 	For n = 0,1,2,..., we will denote by )n+1(1143) 

the sub-algebra, 	(Ol.A3)H, of 	 (VA,T)). For complete- 

ness we will define x 1(ax,A5) to be i(at); clearly i(%4) 

is a sub-algebra of;WRX4). 

N.5.4.1. 	For n = -1,0,1,2,..., we always have that 

(0-1,45) 	If l( -) 	ga(ax,p), then it 

follows from L.5.4.2. that 'Pri(a)C,T30) xp(a4,13), n = -1, 

0,1,2,... . 

L.5.4.3. 	Suppose that n > -1 and m > n+1, and that 



- 102 - 

m 	= 	(VA, ) 
	

Then for every r > n, :;S,(AX,A ) 

-. 73n (9/1/(6 )• 
Proof: We have that 

n (.11.43 )c=•-• 	n+1(lt  ,5 ).g 	 ). 

It follows that 	) 	n+i at,Z ). Suppose that 

for some r > n, 	 = r+1 
	5). Then 

r ( 	' 	)' jc5  ) 	 r+1 N"ZA-  ' 	) 	) 
and so 

r+1(X‘ '16  ) = 	 ). 
The result follows by induction. t  

N.3.4.2. 	If n L  -1, it is clear that •pn(X,3 ) consists 

precisely of those elements a c p(712,T,15 ) whose base class 

is 	0 	4c1-3 (n+1 terms). That is, those a e p(x, 
) for which, given any n+l elements of 	, (1)1, dig,  . .. 

dt'n+13 there exists f e v.. such that a 	
f 	 41)  1 4" 4:1)  2 °  • • • ° 

n+1 )  • 
For the remainder of this section ( 	we will 

assume that 0,Z is a topological space, with topology T. We 
will also assume that A)02.45 ) has the (T, 	topology, 
that ' 1(-11,,'A ) has the ((r, '8),`$ ) topology, and so on. 
That is, P ri+102_411), which is isomorphic to g20(Nn(a, 
').43), carries the (Tn, ) topology, where Tn  denotes 
the topology on ' n (o.a.,‘',.8) . 	(n > -1). 
N.3.4.3. 	For n > 0, we will denote by Tn  the topology on 

T-1 for the topology on It. 
t.i (i9a-,'") described above; we will write T instead of 

tSee also E.3.4.1. 	/ Clearly 	) and. 
y21 0 	 (n+l terms) are Wiener-ike. 



- 103 - 

We will denote by I the natural embedding of 

, 	) into 	n+rn( OA 45 ) (n 	-1 and m> 0). 

T.3.4.2. 	The embedding 

I 	( 	, ice) ) 	( aA- , )2:( ) 

is continuous. 

Proof: Choose ep E A5 . By T.3.3.5. 0 is continuous on 

,,,( .2;(- 	) • Hence by T.3.3.1., the map 

I : 	, Jelz) 	•stq 	, 	) 

is continuous. 

Corollary  t If n > 0, then the embedding 

I 	) 	:3J)  n+1( 	) 

• is continuous. 

T.3.4.3. 	Suppose that n > 0 and that the map 

-1 	•  I 	1( ri n-1(41  ' (13  )) 	gn-i(°-"I 43  ) 

is continuous. Then the map 

-1 
I 	IGka n(.1. 	) ) 	-nra  (A 	) 

is also continuous. (Where we take for m > -1, 

I (.Q m(tl.. ,.;16 )) to have the topology induced on it by 

64-1(1-10 , 	) • ) 

tit can happen that i 	V.4--./X1(AX ;73) is discontinuous. 

To see this recall T.3.3.1. and consider the a-topology 
on 2".. given in D.3.5.1. 
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Proof: Choose a e n 	,13 ) and take any in-

neighbourhood V, of a. Then V is of the form 

V = (0113  e 	) and. (I) .(p) E 

j = 1,2,...,J.), 

where each M. 

the map 

is a tin-1-neighbourhood of Since 

I(rQ n-1(421 , 	)) 	n-1(ZL 	) 

is continuous, for each j, there exists N., a n 
neighbourhood of 0.

J
(a) such that 

11j 	sl 1(c)- ri 	n-1 

Put 

U = (P10 e 	n+1( Y'•;" 	) and 46(P) E Nj, 

j = 1,2,...,J.), 

then U is a Tn+1-neighbourhood of a. Moreover if 

k E U 	n(Z. , 	), then Cb,j0)
gt 
 e My 

and so 13 E V. Hence 

	

I-1(u n 	_n(*4/1., c  ) ) s v, 

11 For consistency of notation, we will, when convenient, 
ignore the precise distinction between 	and i(U ). 
This will allow us to always write V as we have done, 
rather than make an exception and have to write, when 
n = 0, i-1  4.1.(p) instead of (4) .0). 

0 i-l c2i .(a) if n = 0. 

Pi 	) if n = 0. 
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and it follows that the map 

I-1  : 	, 1) )) -4 n(Z , 13 ) 

is continuous. 

Corollary Suppose that n ) 0, and that the map 

I 	n--1( 
	

13 ) 	I( 	( :2•1- ,'try ) 

is an homeomorphism. Then the map 

I : 1„:_a n(VC,•cb ) 	I(Lin(1-1, ,Z)) 

is also an homeomorphism. 

T.3.4./1-. 	An alternative representation of the Tn 
topology on‘n.n(3.)i , 	). 

For each n > 0 and each a 
	

'111(4•A• 	), define  

a to be the class consisting of all sets G of the form 

G = (113 
	 13€ n 	 ) and i-1  4, n.( 	e M

a
., 

j = 

where J is a positive integer, el n 
' 4)

n
2  ... 

rn are elements 1J 
of Z0 13 0 • • • e• 	(n+1 terms), and N. is a T- 

neighbourhood of 1-1  6n(a). 

For each n 0 rect  is precisely the filter of tin- 

neighbourhoods of a E Q11 (Vjt -,113 ) • 

Proof: By induction on n. Certainly 	is, for each 

f3 e XI 0( 	, 	) , the filter of To-neighbourhoods of p. 
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Suppose that for each P E 	n  ( 	, 	) , 
enf3 is 

 the filter 

of T
n
-neighbourhoods of 0. 

Choose a E 
3  n+1 	

, 	) . Suppose that N is any 

T
n+1

-neighbourhood of a, then N is the form 

N = ( 0 10 4) . 03) 	N., 

	

n+1(1X , 	) and  

j = 

where NH is a tin-neighbourhood of (.(a). By hypothesis, 

for each j, Ni  is of the form 

N j  = 	E 	n( 2,'C., 	) and i-1 3,k(y) E Mj,k, 

k = 1,2,...,K1), 

where 4)11 k E 	13* 13  61 - • 0  13 (n+1 terms) and 	k Mj j, , 

is a T-neighbourhood of i 71,k 4 j(a). Put 

n+1 ci?  n 
j,lc j,k M' j. 

Then 

N 	 and i-lerl(P) Mj,k' = (e3113 C 	-n+1(;t"' 	) 

1,2,...,J.). 

Define Ko 0, and put 

n+1  n+1 
k 	j, (k-K1 -K2' . - .-K3-1  ), 

for k(K1+K2+...+Kj-1+1),(K1
+K2+...+Kj- 

.3 

	

	

1
+2), 

(K1
+K2+_.+K +K.); j-1 j 

and j = 1,2,...,J. 
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Similarly put 

Mk 	Mj,(k-K1  -K2 ... 	--K. 1), 

for k(K1+K2+...+Kj-1  +1),(K1  +K2 ... 	++K 	+2), j-1 

...,(K1+K2+...+Kj-1 +K.); 

and j = 1,2,...,J. 

Finally put K = K1+K2+...+K . Then we have that 

N 	E( 	, 	) and i-1,kn+1(R) e  l'k 	Mk, 
k = 1,2,...,K.). 

Hence N e n+1 
a 

Conversely suppose that G e n+1, then G is of the 

form 

G 	(OP e 	. 11+1(--,X ) and i-1 4:o rik+1(P) e M 

k = 1,2,...,K.). 

Choose (1) r1 	° • 

E 'J such that 

° ,jb 	(n+l terms), and 

Put 

ri,n+1 _ 
k ePkn 4k' k = 1,2,...,K. 

Nk  = (yly e 	n  ( 	, 	), and i-11 11-1.c( y ) e Mk) . 

Then Nk is a 
tin-neighbourhood of 4)k(a)' and we have that 

G 	(MP c n+l 	 ) and 4)k(P) e Nk' 
k = 1,2,...,K.). 
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Hence G is a Tn+1-neighbourhood of a. It follows that for 

each a E c n+ 	5 	) 5 Vs21:1- 1  is the filter of Tri+i- 

neighbourhoods of a. The Theorem follows by induction. 

E 3 . 4 .1. 	Take OA to be the set of all integers. Take 

15 1 to be the set of all positive integers and 4 2 ,15 	to be 

the set of all positive even integers. If 0 e :5 1 
 or if 

€ 	2, and if f E 1. , we take 4(f) = f x+ = f 	. 

(Here 'x ' denotes ordinary multiplication.) Then 

1  form a quotient pair and so do 2 ' 1.1 	(We 

may take the system of operations on IA in each case to 

be 0 , though the precise choice of a system will be seen 

to be irrelevant.) 

We have the following properties. 

1. 	The case of fit.. , f5 . 

a) 2,21- om,  131)  = i(Zx ). 
Proof: We have that i(11 ) g; X)0(11, ' 3.)• Choose 

a e 	oUA , 	1) then for each ci) E 	there exists 

f e 4i. such that a = f// ct) . Hence there exists f1 e 

such that a = f1
//1. But we have that f1 

= f1 
H 1, and so 

a = f1 H 1//1 = i(f1) . t 

b) As a corollary, using L.3.4.3. we have that for each 

n 	-1, za. n( 1j. , ict5 1) = 	n ' .:61)* 

I Clearly this result generalises; whenever 1.1,7$ 
form a quotient pair and 'A has an identity element, 
i( 	) = ?-..-j0(gX 45 ). 
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2. 	The case of IA, ' )3  2° 
a) 	If n > -1 then "g n(1,1 , 	2 ) n+1('• -413  2)° 
Proof: We claim 1//2n+2 n+l 1̀2  ' c 2 ) ' but  
1//2n+2  / 	' (lb 2) . Choose On+2 1'5 2 
Then 41  0 42 	... ° 411+2  has a factor 211+2; suppose 

the other factor is *, so that * is an integer. Clearly 

we have that 

1//2n+2 	cu( 	412 c. 
• • • CI 	n+2 ) • 

Hence 1/12n+2  e `K) 	(./.2 13 2)' 
Suppose 	

' 	2 • 

Suppose on the other hand that there exists f 

such that 

1//2n+2 = f//2n+1.  

Then we should have that 2f = 1. But this is a contra-

diction. Hence there is no f e ax such that 1//2n+2  

f//2n+1, i.e. 1//211+2 	n(4' 

	

""' ' 	 2) 	The result 

follows. 
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3.5. Consideration of n o(
r•-• 	

°Ta ) 

We have already discussed some aspects of the class 

n 	), see for example T.2.6.2. In this 

section ( 6 3.5), we will consider some results concerning 

this class, which arise from the content of the previous 

sections of this chapter. We will take (g' to have the 

topology given in D.2.4.16. 

L.3.5.1. 	2)0(4,:t ,c5 n  22 ) and c; are Wiener-like. 
Proof: Certainly 	(:)(4'- 

	G 1.-)Zg) is a sub-algebra of 

	

) , and (, g:fl (C , 	(-1 cis  )• Choose 

a c 	, G .91k ) and 4  c G 	Then by the corollary 

to L.2.6.1., there exists 	1, dp 2  e 	n  22a such that 

0 . (I) l+ (11,
2 
 . Take fl, f2 c 5: such that 

a = 	]// 	= f2// 4) 2°  

Then we have that 

aR0 	2 

fl 	4) 	(1"1 	f2 1E 4)  2"4  2 

l ( fi+r2 ) • 

The result follows. 

T.3.5.1. 	Suppose that T is any topology on 	, compatible 

with its linear structure. Then the resulting (t, 	n 	) 

and (T,(5 ) topologies on Uo 	, 	(-N  123 ) are identical. 



Proof: It follows from T.3.3.3. that with either of the 

above two topologies, ?tao 	, Gg Z3 ) is a linear 
topological space. Since Qg n 	s; g , it follows at 
once that any (T, g n 	)-neighbourhood of 

0 e o 	n  931) is also a (T, (5 )-neighbourhood of 

0. 

Choose any (T,(5 )-neighbourhood of 0 e 	0(Z, 	rvXM, 

F, say. Then F has a subset G of the form 

G= 	f3 c po(r. , G n  231 ) and i-1(00 j) e Nj, 

j = 1,2,...,n.), 

where n is a positive integer; ep j, j = 1,2,...,n,is an 

element of g , and N is a T-neighbourhood of 0. For 

each j = 1,2,...,n, choose 433:, 4  E 	r1921  such that 

• 

Choose,foreaohj,aT-neighbourhoodof0,M.,such that 

M. + 	. 	N j 
Put 

H 3,." o 	G c.-1 	) and i-l(PHAD.) e M., 

k = 1,2, 	j = 1,2,...,n.). 

Then H is a (T, GOSA )-neighbourhood df 0, and if 

PeH, then clearlyPeG c  F. Hence H S F. 

The result now follows. 
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T.3.5.2. 	Suppose that T is any topology on 1: , compatible 

with its linear structure. Then for each 4) e Q3.; , and 

each positive integer p, the maps 

0 (  g (12"SH 

) 

'3 a 	a x 	e 	 g31 ) 

3 a 	a(P)  c 	,c) (rNs- ,G 0131 ) 

are continuous in the (T, 	,Q3g) topology. 
Proof: By the previous theorem, the (T, Gnns  ) and. 
(T, 	) topologies on lao(Z. ,g rip ) are identical. 

Considering the (T, ( ) topology on "X o(cX 	), and 

applying T.3.3.5., the result follows. 

D.3.5.1, 	We will denote by a the topology of pointwise 
convergence, on X . That is, a is the topology generated 

by taking as a basis of neighbourhoods of the origin, the 

class consisting of all sets of the form 

(Cif c X- and (f(xk)1 < E, k = 1,2,...,K.), 

where E ) 0, K is a positive integer, and x
1
,x
2
,.,.,xK  are 

real numbers. 

It is familiar that with this topology, `3 is an 
Hausdorff linear topological space. 

It follows immediately that with the (a, G rl ig31) 

topology, 20.0(Z G n s231 ) is an Hausdorff linear 

topological space, and that for each 4) E g , and each 

positive integer p, the maps 
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9 a — H (1)  e 	 ) 

) n  9:n ) 	a —> a(P ) 	 er. 2Ta 0 ( 	 C"IC  

are continuous. 

Note that which does not provide 

a continuous map of 	into itself with respect to the 

a-topology. Hence i : 	-4 o(a: , g 12a ) is not 

continuous with respect to the a and (a, q r,.2z1, ) topologies. 

T.3.5.3. 	The map Q, which was discussed in sections 

2.5. and 2.6., provides an homeomorphism of 3Q 0(`?, g n 	) 

(with the (a, 	) topology) and E;-' 

Proof: We have shown in T.2.6.2., that G is a linear 
bijection of 0(2: 	C;(% spa ) onto s''. From T.3.5.1., 

it follows that the (a, Gn i,M ) topology is identical with 

the (a, 	) topology on 	, 	). 

Suppose that V is any neighbourhood of 0 in the 

topology of c  T. Then V has a subset of the form 

(FIF e 	and I<F, (kr>l<e, r = 1,2,...,R.), 

where e > 0 and 4)1, +2,—, (OR  are elements of e; . Put 

M = (f(f E 	and If(0)1 < e), 

r(t) 	r r = 1,2,...,R, 

N = (alael10(7.t , C  n223 ) and 1-1(ax*r) E M, 

r = 1,2,...,R.). 
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Then N is a (a, G )-neighbourhood. of 0 e 1Q 0(5t , 	(-1 /53 ). 
If a E N, then we have that 

(1-1(a x Itr))(0)1 < E, r = 1,2,...,R, 

that is 

169(a), 	r r = 1,2,...,R. 

Hence if a E N, then Q(a) e V, i.e. Q(N) S V. It follows 

that with respect to the (a, C4 ) topology on 

moo ( 
	

G n 	), the map 

9 	o( r, y 	) 	g '  

is continuous. 

We next show that Q-1 is continuous. Suppose that N 

is a (a, € )-neighbourhood of 0 e 	, Eg n Zit ). 

Then N is of the form 

N = [ala E 	of 	, 	) and • -1  (a .3€ *r ) E Mr, 

r = 1,2,...,R.), 

where for each r, I/r e g and. Mr is a a-neighbourhood of 

O. Put 
R 

M  = fl Mr,  r=l 

then M is a a-neighbourhood. of 0. Hence M has a subset M', 

of the form 

Yi'="E7-arld".fl < e, j = 1,2,...,J), 
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where E > 0 and 12 are  real numbers. And so if 

N' = ( ai a c no( 5: G h 	) and i-1(a H *r) e 

r = 1,2,...,R.), 

then N' is a (a, c )-neighbourhood of 0 e 0( ..et ,; n 2  ) 

and clearly N' = N. Put 

41c(x) 	*k-kj-liR j-x) 	k = R(j-1) + 1, R(j-1)+2,...,R., 

and j = 1,2,...,J. 

Then for each k, 4k(x) E g . Put 

V = (FF e 	' and l<F, clok>t<e, k = 1,2,...,JR.). 

Then V is a neighbourhood of 0 in the topology of C4 '. 

If F e V and. a e n.0( 	g r  m) is such that Q(a) = F, 

then 

l<Q(a), 	k>1<e, k = 1,2,...,JR, 

and so 

1(i-1(a H *r))(y1<c, r = 1,2,...,R, j = 1,2,.. 

, Hence i-1  (a H *r) E M', r = 1,2,..,,R, and so a e N'. It 

follows that Q (V) 	N, and. so  with respect to the 

(a, E5 ) topology on :10.0(X 	n 	), the map 

Q-1  

is continuous. 

• ,J• 
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The result now follows. 

D.3.5.2. 	We will denote by aa  the topology, on 7:1 , of 

pointwise convergence at a E 	. That is, as is the 

topology generated by taking as a basis of neighbourhoods 

of the origin, the class consisting of all sets of the 

form 

(flf E T. and If(a)1 < e), 

where e > 0. 

It may be easily verified by use of L.2.4.2. that 

this gives a topology compatible with the linear structure 

of X. . It is clear that for each a E 	, the resulting 

a
a 

topology does not make Z. a To-space. 

T.3.5.4. 	For each a e IR , the (aa, g n 22) and 
(a, s' rM) topologies on 7.110(7X ,(""! o  23) are identical. 

Proof: It follows from T.3.3.3. that with either of the 

above topologies, 	0(ex , c n933 ) is a linear topological 

space. It is clear that any (aa, 	13.1 )-neighbourhood 
of 0 e po(cz ,(g n 93) is also a (c, 	n 933 )- neighbour- 

hood of 0. 

Choose any (a, grA TIr )-neighbourhood of 

0 E 	of 	, 	(-1 5elal), F, say. Then F has a subset G of 

the form 

G = (PIP c 	0( 	, 	923 ) and i-1(13 	* 

j = 
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where J is a postive integer, lk1,*2,...,1/0- are elements of 

, and each N is a a-neighbourhood of 0. Put 

N = fli N., then N is a a-neighbourhood of 0 and so has a 
j=1 3  

subset M of the form 

M = (fir e ',15. and If(xk)l< e, k = 1,2,...,K). 

Moreover if 

H = (13IPE andi-1(03.Elk.)E M, 

j = 1,2,...,J1, 

then H GG and H is a (a, goM)-neighbourhood of 0. Put 

4r(x))j(x+xk-a), r = J(k-1)+1,J(k-1)+2,...,Jk, 
and k = 1,2,...,K. 

Then for each r, 4r  (x)g n 	. Put 

M I  = (f(f E ̀.-4: 	and If(a)1 < E), 

and 

H' = (PIP c r4 0( 	g (12:Z ) and i-1(p H epr) E m', 

r = 1,2,...,KJ.). 

Then H' is a (aa, Q;(1 903 )-neighbourhood of 0 E cr.410(X,(5'  011). 

Moreover if p E H', we have that 

1(i-1( H 	r)) (a)1 < E, r = 1,2,...,KJ, 

and so 

1(i-10 € 11/
j
))(X

k 
 )1 < E, j = 1,2,...,J, k = 1,2,...,K. 
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. Hencei-1kPHIP.)e M, j = 1,2,...,J, and so p e H. It 

follows that any (a, G:r) )/U1  )-neighbourhood of 

0 e 	o  ( 4:t , Cg n 933 ) is also a (aa, g n 	)-neighbourhood 

of 0. Hence result. 

Remarks on 5 3.5.  

It was shown in section 3.4. that for some quotient 

pairs 	, A5 , the spaces Pn(2-1,  ,)3 ) (n = 

are all distinct, and in other cases the spaces n(Z.1.,15 

are all the same. It is an intruiging question as to 

whether or not all the spaces 	n(`: , (1; 010a) are 

distinct. I have not been able to answer this question. 

A sufficient condition for the algebraic and topological 

identity of all the 1..-:11,a(r.t ,(g 0 Ira ) (n 5 0), would be 

that any element of gnica 	should be expressible as the 

convolution of two elements of 	(-) Zi 	. For, if this 

condition were satisfied, then we could use L.3.4.3., 

T.3.4.4. and the corollary to T.3.4.3. to prove what we 

require. I do not believe the above condition to be a 

necessary condition, but I am unable to establish this 

either. 

Theorem T.3.5.4. suggests the question of what range 

of topologies on Slir: will lead to a particular topology on 

o 	
, 	). I suspect that a wide selection of 

topologies on C will lead to the (a, 	) topology 
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on 	o 	, 	). This problem raises the still 

more general question of what range of topologies on /A. , 

for a given quotient pair X 	, will lead to a partic- 

ular topology on a Wiener sub-algebra 1. of t (11- A3 ).  

In the next section it is shown that n 	) is 
a Wiener sub-algebra of itself, and in T.3.6.2. that a 

number of different topologies on 	all lead to the same 

topology on P..(=Z 	n f123 ). 

3.6. Consideration of ',....a(ft 	g 092 ) 

Throughout this section (~q 3.6.) we shall take 	' 
to have its usual topology, that is, the topology given in 

D.2.4.16. We defined 7.a.:3' in D.2.5.1., and we will take 

it to have the topology induced on it as a subspace of 

L.3.6.1. 	n 	) and 2 are Wiener-like, 2 

separates 	, 	n Z3 ) and. 	is endomorphic on 

Proof: Certainly 7:1(7: 	n 31 ) is a subalgebra of 
itself, and 3 	11 (:r_ ,E;(013 ).: 	Choose 

t We say that 	, a sub-algebra of la (AI ,15 ), is a 
Wiener sub-algebra, if there exists CI: f_ 11. (IX 	) 
such that 	and (11- are Wiener-like. 

In the sense that each element of (3 provides by 
convolution,a map of T into itself. 
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a E ;4:1(Z, cg n  Z) and dpE 	. Then by L.2.5.1., we 

have that a x 4)  Ei(X ). Hence ?q_(57: 	) and 

are Wiener-like. It follows from L.2.4.13. that 3 

separates 	( 	, g n 	) , and since a 5; g 	, 3  is 

endomorphic on f.1!: and so also on 	(`z 	) • 

T.3.6.1. 	Suppose that i is any topology on SC . Then 

for each 0 E g , and each positive integer p, the maps 

	

X( 
	

n 	) 3 a 	a H 	E ;Q. (X ,gn933 ) 

	

( 	, 	) a 
	a(p) € ( z, COX) 

are continuous in the (T, e3 ) topology. 

Proof: The result follows immediately by T.3.3.5. 

D.3.6.1. 	We will denote by s the topology on 9E generated 

by taking as a basis of neighbourhoods of the origin, the 

class consisting of all sets of the form 

Ulf E T and Iff(t) Oi(t)dti < E, j = 1,2,...,J.), 

where E > 0, J is a positive integer and 431, 	Oj  are 

elements of G5 

It may be easily verified that with this topology, 

is a linear topological space. 

D.3.6.2. 	We will denote by z the topology on 	gen- 

erated by taking as a basis of neighbourhoods of the origin, 

the class consisting of all sets of the form 
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(Of E ca:: and 	1ff(t)i)j(t)dt1 < e,j = 1,2,...,J.), 

where E > 0, J is a positive integer and 01, 	ci,j. are 

elements of (3 

It may be easily verified that with this topology, 

9r 
1. • • is a linear topological space. 

N.3.6.1. 	Apart from s and z, it is clear that (for each 

a E 1R ) no two of the a, aa, s, z topologies, on cr. , are 

identical. To prove that s and z are distinct, take N to 

be a set of the form 

N = (fif E 	and. Iff(t)0(t)dti < 0, 

where Then N is an s-neighbourhood. of 0. 

Suppose that N has a subset N' of the form 

=(fifea:,andaf(t)111 .(t)dt < 5, j = 1,2,...,J), 

where 5 > 0 and *1,*2,...,11/J  are elements of gj . Choose 

A > 0 such that [-A,A) includes the support of each 
A 
lyt), j = 1,2,...,J. Take g(t) E E5 , not identically 

zero, such that act, = 0 on (-A,A). Then for each x 

and each j = 1,2,...,J, we have that 

ig(x-t)*i(t)d.t = 0. 

And so, VX E cL , Vx E IR. , we have that Xg(x-t) E N'. 

Hence VX e C , Vx e 	, Xg(x-t) E N. Therefore 
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I Xf g(x-t)43,  (t)dtI < e 	VN E C 	Yx c IR . 

It follows that for every x c IR , 

g(x-t)4)(t)dt = 0. 

Hence, by T.2.2.1., we have that g(x) = 0 Yx e fR , which 

is a contradiction. It follows that N is not a z-

neighbourhood of 0 E 

T.3.6.2. 	The following topologies on 	( X , 	r, '231 ) 
are compatible with its linear structure, and are identical 

1) 	(a, 3 ), 	3) 	(s, 	), 

2) 1- 	(aa, 3 ), 	4) 	(z, 	). 

Proof! It follows at once that with each of the above 

topologies, 	( 	, 	) is a linear topological 

space. Denote by 11, the class of 'r-neighbourhoods of 

0 c 	, C.4 	). We have at once that 

U c 	
( 	

U e 
cra, ) 	 ( a 3) 

and 

U E 	(z, 3) 	U E n (s, 	). 

To complete the proof we will show 

a) U g 

	

_ ne(cy, 3) 	11(z, 

b) u E 	(s, 3) 	u E 	(,a, 3  ) • 

'for any a e I. 
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a) 	Choose U E 1/ (a 	), then U has a subset V of the 

form 

V = (PIPE 7:),(Z, g0.13 ) and i-1(PH  4j)EM., 

j= 1,2,...,J.), 

where! each M. is a a-neighbourhood of 0 E a. and each (Pi 
J 	J 	j 

is an element of 3 . Put M = (.1 M., then M is a a-neigh- 
j=1 3  

bourhood of 0 E A, . Hence M has a subset N of the form 

N = (fif E Z, and If(xk)I < E, k = 1,2,...,K.). 

Put 

U. = (13ip E 	n '131 ) and 1-1(3 X 4j) E N) 

	

= (PIP E 	n 231.  ) and i (i-1(3 x 4j))(xk)1 <€, 

k = 1,2,...,K.). 

J 
Then c) u. c: U. Put 	= ti(xk+z), for each j and k. 

j=1 
Take 4 e f3 such that $ (t) = 1 on the support of 

1> j(-0, j = 1,2,...,J.1  We have that for each j and k, 

(I-1(P H 	j))(Xk) = f 

	

4) 	(i-1(0 	k)) (t) Ct)dt. 

Put 

L = 	and iff(t)4(t)dt1 < e.), 

then L is a z-neighbourhood. of 0 c 	. 

Put 

t
That this is possible is proved in chapter four. 
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W. = (PIP e 	(11-• 

J 
W 	n w., 

j=1 

) and i-103 m 	L, 

k = 1,2,...,K.), 

thenW.is a (z, 3 )-neighbourhood of 0, and so is W. If 
W, then i-1(0 m IGIj{) E L, k = 1,2,...,K, j = 1,2,...,J, 

and so 

k 

Hence p E U, and it follows that Wgi U and so U is a 

(z, 3 )-neighbourhood of 0 E 	,( n 2S1 ). 

b) 	Choose U E 	then U has a subset V of the (s, 
form 

V4(3)13 E 3a(et , 	n 	 ) and i-1(P  m 	) e M. 
J 1  

j= 1,2,...,J.1, 

where each 	
J 
 is an element o.f an 

J 	J 
s-neighbourhood of 0 e 'X . Put M = n M., then M is an 

j=1 3  
s-neighbourhood of 0 E cAt and so it has a subset N of the 

form 

N = (flf E T and 	Iff(01//k(t)dt; < E, k = 1,2,...,K.1, 

where each ikk  e 	. Put 
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Uj 	(PIP e 12(`, C4 n m) and i-1(3 € 	3) E N) 

= (P1D E 	( 	, C5 n 7) and 

	

1 ,1(i-1(P H 	j))(t)11,k(t)dt1 < E, k = 1,2,...,K.). 

Then Fl
1
Ui 	U, and each U. is an (s, 2 )-neighbourhood of 

j. 
O. Put 

C 
Xj,k(z) = 	1(1)j(z-u)*k(a-u)du, 

then 7(j,k e 	, j = 1,2,...,J and k = 1,2,...,K. Further-

more we have that for each .j,k, 

j (i-10 H J j))(t)Ikk(t)dt = (i-1(p H Xj,k))(a). 

Put 

L = (fir e r.r, and If(a)1 < e), 

then L is a aa-neighbourhood of 0 E "3" 

Put 

Wi  = 	E X;),(7.: , C5 n 	) and i-1(13 H Xj,k) C L, 

k = 1,2,...,K) 

J 
W 	W. , 

j=1 J 

then W is a (aa, 3 )-neighbourhood of 0. If p e W, then 

ij(i-1oia,_ 	j))(t)ikk(t)dti < e, j = 1,2,...,J, 

k = 1,2,...,K. 

Hence p E U, and it follows that W 5 U and so U is a 
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(aa, 3  )-neighbourhood of 0 e 

This completes the proof of the theorem. 

With the (a, 3 ) topology, it follows immediately 
that ?a(r._ , v 	) is an Hausdorff linear topological 

space. (See L.3.6.1., T.3.3.3. and T.3.3.4.) In addition, 
from T.3.6.1., we have that for each 	e 	and each 

positive integer p, the maps 

-3ra ( 	, 	) Da--->aRlp e erg-( 

.(?) 	) 	a —4 a (P)  E 	( 	(4 n231  ) 

are continuous. 

T.3.6.3. 	The map 

( 	, 	) 

provide an homeomorphism of ,11c1( 

(a, 	) topology, and 	(1 ,  . 

, 	n/31), with the 

Proof: We have shown in T.2.5.1., that Q is a linear 

bijection of 7 	, (-1 	) onto 2,Q3'. Suppose that 

V is any neighbourhood of 0 in the topology of  • 
2 I 

Then V has a subset of the form 

(FIF e ".!.A 	' and l<F, 	r r = 1,2,...,R.), 

where e > 0 and 4> 1, 	ckR  are elements of 3 . Put 

M = (Of E c-r- and If(0)1 < E ) 
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*r(z) = r(-z), r = 1,2,...,R, 

N = (PIP e 	( -1 (...4 (A 	) and i (a 1E
r

) E M,  

r = 1,2,...,R.). 

Then N is a (a, 	) neighbourhood. of 0 e 	(5: 

If p E N, we have that 

1(1-1(3 H *r))(0)1 < e, 	r = 1,2,...,R. 

that is, 

1<e(p), (kr>1 <E, 	r = 1,2,...,R. 

Hence if p E N, then e(p) e V, i.e. Q(N) 	V. It follows 

that with respect to the (a, 2  ) topology on 77)(X- ,e; n Z3), 

the map 

is continuous. 

We next show that 9-1 is continuous. Suppose that N 

is a (a, 3 )-neighbourhood of 0 e 	, 5 n 232). Then 

by the previous theorem, N has a subset N' of the form 

N' = (pip E 	(a: 	) and i-1(3 	*r) e Mr, 

r = 1,2,...,R.), 

where for each r, *r 	and. M
r 

is a z-neighbourhood of 
R 

0. 	Put M = n Mr, then M is a z-neighbourhood of 0. Hence 
r=1 
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M has a subset M' of the form 

M' = r ,f,f e 	and 	Iff(t)X j(t)dtt < c, j = 1,2,...,J), 

where e > 0 and X1, X2" 	J X are elements of 3 . And 

so if 

Nr = DIP e 3a_( X , 	) and i-1(13 	ikr ) e M t ), 

then for each r, Nr is a (z, 	)-neighbourhood of 0 and 

therefore a (a, 3 ) neighbourhood of 0 c 	(`Z , 	n 	 ). R 
Put N" = n Nr, then N" is a (a, 3 ) neighbourhood of 

r=1 
0 E 	 /33 ) and N" S N. For r = 1,2,...,R and 

j = 1,2,...,J, put 

then 

4r,j(z)  = 

cir,j(z) E  .3  • 

r r  fr (u_z)x 

Put 

Vr 	(FIF e 	andl<F, 	j) <c, j = 1,2,...,J.). 

Then V = 	V, is a neighbourhood of 0 in the topology of 
r=1 

3 . Moreover if F c V and a e 	, g ;IV) is such 

that 0(a) = F, then for each r,j, 

and so 

<8(a), 	r, j> <e, 

11(i-1(a 3E Ifrr ))(t)X j(t)dt < E. 

Hence i-1  (a H *r ) E M I , r = 1,2,...,R, and so a e N". It 

follows that 8-1(V) 	N. and so with respect to the 
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(a, 3  ) topology,the map 

9-1  : 	--> p(T., Z 0 -22a 

is continuous. 

The result now follows. 
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INTRODUCTION TO  CHAPTER 4 

This chapter is concerned with a generalisation 

(T.4.2.1.) of a theorem of Wiener's, and with connections 

between this result and the material of the preceeding 

chapters. 

The proof of theorem T.4.2.1. depends on a theorem of 

Ingham's concerning functions with compactly supported 

Fourier transforms, and in section 4.1. a proof of Ingham's 

theorem is given. Also in this section we prove a variant 

(T.4.1.3.) of Ingham's theorem, and a theorem (T.4.1.2.) 

concerning spaces of type G3  . The proof given of T.4.1.1. 

is essentially Ingham's original proof. Theorems T.4.1.2. 

and T.4.1.3. are believed to be new. 

The conditions involved in Ingham's theorem lead 

rather naturally to a function class A , defined in 

section 4.2. It turns out that, for every X(t) e 

X(a + b) < X(a) + X(b) 

for every real a and b, and because of this inequality it 

follows that the class, 	 ' Z°X  of functions f(x) such that 

f(x)exp(X(x)) E L1, is closed under convolution. Further-

more Ingham's theorem guarantees the existence of functions 

f(x) E 	whose Fourier transforms are compactly supported. 
ex_ 

It is particularly on these two properties of L.,
0 
 that the 
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proof of theorem T.4.2.1. depends. We prove, in addition 

to theorem T.4.2.1., a number of results of a similar type: 

theorems T.4.2.2., T.4.2.4. and. T.4.2.5. Theorem T.4.2.3. 

is a partial converse of T.4.2.1. Section 4.2. concludes 

with L.4.2.8. and T.4.2.6., which provide the basic link 

with the material of the previous chapters. All the main 

results of this section are believed to be new. 

In section 4.3. connections with the first three 

chapters are developed by means of a number of examples of 

quotient pairs and Wiener-style theorems. One of these 

examples concerns the spaces cg 	1) considered by 

Gel'fand and. Shilov in (10). To conclude, the existence 

is demonstrated of an extensive family of quotient pairs 

Co based on the function spaces 	introduced in section 

4.2. All the results of section 4.3. are believed to be 

new. 
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CHAPTER 4 

4.1. Existence theorems 

T.4.1.1. 	Ingham's Theorem I  

Suppose that X is a well-defined, non-negative even 

function of a real variable t, and is such that X(t)/t 

decreases monotonically to zero as t 	co. Suppose also 

that 2 > 0. Then there exists an integrable function f, 

not identically zero, such that f is supported by [-2,2] 

and for which there exists a positive constant A such that 

lf(x)1 < A exp[-X(x)] Yx c 	, 

if and only if the integral 

r-  x)  , 	dx 
v  1 

converges. 

co X(x Proof: 1) Suppose that 	1  -
)--7-dx converges. Put 

fop µ(
x
x)  µ(x) 	X(x) + 1x11/2 	Jl 	2  , so that 	dx converges, and 

µ is an even non-negative function such that µ(t)/t decreases 

monotonically to zero as t 	00. 
CO 

We have that the sum E µ(n)/n2  converges, and so 
n=1 

there exists a positive integer no, such that 
CO 

eµ(n) 
	2 

n.no+1 n
2 	2 

/ See (12) . 
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2 
for n 1.92.9e.o,no, 

no 
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and 
eµ(no) 

n  
< 2 . 

Define 

eµ(n) 
for n = no+1no+2'no+3' n2 

Then we have that 
CO 

p < 2 . 
n=1 n  

For N = 1,2,3,..., put 

N Sinpny TT 	 if y / 0 
Pny 

fN(Y) = 
1 	if y= 0. 

00 

Since (Sinx)/x = 1 + 0(1x1) as x 	0, and since E pn  is 
n=1 

convergent, we have that in any finite interval the 

sequence (fN(y)) converges uniformly to a function f, which 

is even, not identically zero, and continuous. Moreover 

if N > 2, then 

1 	if 	ix, < 1 

pn 
	lir 

if , x! > 1. 1 

P1P2x2  
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Hence f(x) is integrable and 

A 
fN(t) 	f(t) as N co, 

uniformly in t c IP, . 
N 	N 

by [- 2  Pn, 2  Pn]; 
n=1 n=1 co 	co 

A 
Now for each N > 2, fN  is supported.  

A 
hence we have that f is supported by 

p , E pj, and so also by [-4,2]. 
n=1 n  n=1 " 

Since µ(x) 	co as x 	co and µ(x)/x -4 0 as x 	m, 

there exists X such that for every x > X, 

[µ(x)] > no  , 
and 

[µ(x)] < x . 

Take x > X, and put m = [µ(x)]. Then we have that 

If(x)1 < TI 1  
A.1 Pnx  

< 	( 
p 
 1 
x
)m  

`  

m2 m 

eµ(m)x)  

(ILNX)  

m 

< e-m 

< e-µ(x)+1 
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Since f(x) is even, the result follows. 

2) Suppose that ST XlVdx does not converge. Put µ(x) 
µ(x) X(x) + 2ix11/2, so that 	103  ----dx does not converge. Jl x2  

Suppose that there exists an integrable function f(x), not 

identically zero, and a positive constant A such that s' is 

supported by [-2,2], and 

tf(x)t < A exp[-µ(x)] Vx E 	. 

Then we have that 

If(x)) < A exp[-2ixii/2] Vx E iR . 

Hence for each positive integer n, and each real t, 

A(n) 3 f 	(t) f(ix)nf(x)eixtdx. 

It follows that 

(n) if 	(t)i < I lx!n lf(x)Idx 

< 2A 
J x

n exp[-µ(x)]dx. 
o 

For each positive integer n, put 

An 	fw xn exp[-µ(x)]dx. 
o 

We have that 
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fn 
An 	

r _µ 	)ju (n4 1 _, 

	

xn expi-x--T--x 	
j 

x exp[-2(x)1/2]dx 

n4 n 

4 	4 	co, 
< n4 n _ xn lexp[_xµ(n )]dx + i 2y2n+1exp[-2y]dy 

,i o 	n  
J n2 

4 n Poo 
i 	2 e°  

< 
n4( n 4   ) 	J Yn-1 exp[-y]dy + 2e-n  j y2n+1 expl-y]dy 

µ(n ) 	
o 

4 n n 	n2 
n ( 7T-) (n-1): + 2e--  (2n+1): 

µ(n ) 

4 n 
< 2n4( n4)) (n-1): 	for all suitably large n, 

µ(n  

< 2n3( 	
n5 

)
n 

µ(n4) 
 

( 	) 
2n5   n  

L. for all suitably large n. 

4 
Now since rw  µX2) dx is divergent, 

J 1 	x2 	
so also is f 7 PE. (); )  dx, 

00 	n ) and therefore the sum zµ( 	diverges. It follows that 
1 	n=1 n5  

Z (A
n) n  is divergent. Hence, using the theory of n=1 

quasi-analytic functions1  , since f(x) is zero outside 

[-2,L], it is also zero throughout [-2,2], which implies 

tSee (4) and (7). 

03 
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that f is identically zero. But this is a contradiction. 

Hence there is no integrable function f, not identically 

zero, whose transform is compactly supported, and for which 

there exists a positive constant A such that 

f(x)I < A exp[-µ(x)] VX E 	. 

Suppose however that there exists an integrable 
A 

function g, and a positive constant B such that g is s 

supported by [-2,2], and 

(g(x)I < B exp[-N(x)] Vx e fR 

From part 1) of this proof, we may choose an integrable 

function h, not identically zero, whose transform is 

supported by [-2,2], and for which there exists a positive 

constant C such that 

!h(x)I < C exp(-21x11/21. 

Put 

F(t) 	fg(u)h(t-u)du. 

Then F(t) is supported by [-22,22]. Moreover 

F(-x) 4n2g(x)h(x), 

and so if we put 

f(x) = 2n  F(-x), 
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we have that f(x) is integrable and that f(t) is compactly 

supported. For each real x, 

If(x)1 < 2n B C exp[-X(x) - 2(x11/2] 

= 27t B C exp[-µ(x)]. 

Consequently f(x) is identically zero. Hence (g(x)h(x)) 

is also null, and since h(x) has only a countable number 

of zeros, it follows that g(x) is null. Hence the result. 

Note on spaces of type 	 '  

I.M. Gel'fand and G.E. Shilov have in (10) 

considered at some length spaces of type 	. Using 

their notation t  , we have that 

(71 r" - r 	e D , and Va < 1, Vp = 0,1,2,..., 

C 
a,P 

 such that for all real x, 

if(P)(x)i < C
a,p

exp[-ixia].). 

They show in (10) that, for each p 	1, 	contains a 

non-null function. However, using Ingham's theorem, we 

can easily obtain the following stronger result: 

T.4.1.2. 	The intersection 

S>1 

See the appendix for details, and also (10) Pg.166 et seq. 

This is shown in the appendix. 
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contains a non-null function. 

Proof Put 

r.(t) = 

It 
, -(TOTIM2  if it! > e2  

't1/4 	if !ti < e2. 

Then, using Ingham's theorem, we have that there exists a 

non-null function, f, such that f 
A 

is compactly supported, 

and such that 

f(t) = 0(exp[- k(t)]) as t -4 + m. 

Choose any non-null :„jD -function, X . Then f x x is 

non-null and for each non-negative integer p, 

3 (f x X )(P)(x) = (f H X (p)) (x) by L.2.1.4., 

= 0(exp[- ( (x)]) as x 	+m t. 

Hence f H X C 11 
(3)1 P  

T.4.1.3. 	Suppose that X is a well defined non-negative 

even function of a real variable t, and is such that 

X(t)/t decreases monotonically to zero as t -4 00. Suppose 

also that £ > 0. Then there exists an integrable function 

g, not identically zero such that g is supported by 

[-2,2) and such that 

g(x)exP[X(x)] e Li, 

For justification see the proof of L.4.2.3. 



if and only if the integral 

rw  X(x) 

'11 	
dx 

converges. 

Proof: 1) Suppose that the integral IT 	dx exists. 

Then by Ingham's theorem, there exists an integrable 

function g, not identically zero, and a positive constant 
A 

A such that g is supported by [-2,2] and 

Ig(x)i < A exp[-X(x) - ix)1/2]. 

But then (g(x)exp[N(x)] e L1, and the result follows. 

2) Assume conversely that the integral does not 

converge. Suppose in addition that there exists a non-null 

function h, such that 

h(x)exp[N(x)] e Ll, 

and h is supported by [-2,2]. Put 4-“x) = h(x)exp[X(x)]. 
A 

Select any 7( e 	, not identically zero. Then X. has 

only a countable number of zeros. Take B > 0 such that 

[-B,B] includes the support of X . 

Put 

g(x) 	(h # X )(x), 

then g e 131, and g 	, so that g is supported by 

[-2,2], and g is not identically zero. 
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Define 

gx)  xX(x+B)  

	

I2(X+ B) 	Or x ) 0, 

and put µ(x) = µ(-x) for x < 0. Then µ is an even, non-

negative function, and clearly µ(x)/x is monotonic 

leo 
i µ(2)decreasing to zero as x —4 co. Moreover 	 dx does 

not exist, for if it did then rm X(x+B) pould also exist, J 1 xTRTE7 r. x(x )   and so therefore would 	1 

	

J 	 2 
dx. 

Suppose 1x1 > 2B and Itl < B. Then we have that 

Ix-tI < ix I + B, 

and so 

X(x-t) 	X(ixi+B) 
lx 	— ix' + B 

2µ(x)  
Ixi 

Hence 

X(x-t) > 2µ(x) 1 - -;I , 

and since 

11 - —x I = 1 - I —t 1 

' 

we have that for Ixi 	2B and Itl < B, 

X(x-t) > µ(x). 

It follows that if tx ► > 2B, then 
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rB 

1g(x)1 < 	-B 1 X(t) 1 1 di (x-t)1 exp[-X(x-t) 3dt 
J  

^B 
< exp[-µ(x)] j 	I X.(01 	(x-t)1dt 

-B 

exp[-p.(x)](Sup I 'A- (t)! }J I 	(u)Idu. 

But, by Ingham's theorem, g can satisfy no such inequality. 

The result follows. 

4.2. A generalisation of Wiener's theorem t  

The main result of this section is T.4L2.1. 

D.4.2.1. 	We will denote by A the class of functions N, 

of a real variable x, such that 

a) X(x) 	X(-x) Vx e 	, 

b) X(X) 7 0 Vx E 

c) for x > 0, X(x) is monotonic increasing, 

d) for x > 0, X(x)/x is monotonic decreasing and 

tends to zero as x tends to infinity, 

e) the integral f7 	dx exists. x 
N.4.2.1. 	Conditions c) and d.) are sufficient to ensure 

that A contains only functions which are, excepting 

tSee (24) for the original version which relates to 
Fourier series. The generalisation given here deals 
with Fourier transforms, see (11) section 9J. For 
other types of generalisation see (17) chapters 6 and 7. 
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possibly x = 0, everywhere continuous. 

L.4.2.1. 	If X E A , and alb E tZ , then 

N(a+b) < N(a) + X(b), 

Proof: Suppose firstly that a,b > 0, then we have that 

aX(a+b) < ma),  
a+b 	— 

and 

IDX(a+b) < x(b). 
a+b 

Hence in this case X(a+b) < X(a) + N(b). Since X is even, 

if a,b < 0, we have again that X(a+b) < X(a) + X(b). 

SinceX(x) is monotonic increasing for x > 0, we have 

that if a > 0 and b < 0, then 

X(a+b) < X(a-b) 

< X(a) + X(-b) 

X(a) + X(b). 

Finally if b = 0, then for any a, we have that 

X(a+b) = X(a) 

< X(a) + X(0) 

N(a) + X(b). 

The result follows. 

Extensive use will be made of this lemma throughout 
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the reeinder of chapter 4.t  

D.4.2.2. 	For each X E A , we define the function classes 

(t).) x, x,
X' 	

as follows 
'X 

a) = [0f(x) is measurable and (f(x)exp[X(x)]) is 

bounded on IR .) 

b) . (fir has continuous derivatives of all orders, 
and for each non-negative integer p, f(p) 

e 	) 

c) i-1?° = (11(f(x)exp[X(x)]) E Li.) 

d) 51x  = (flf has continuous derivatives of all orders, 

and for each non-negative integer p, f(P) 
 
E 	

X 
° ) 

L.4.2.2. 	If X(t) E A and a E 	, then Mat) E 	. 

Proof: This is easily verified. 

L.4.2.3. 	If X E A , then there exists f E 	Ll, 

not identically zero, and such that P E 	, f is supported 

by [-1,1], and P(t) > 0 Vt e rs-Z . 

Proof: Put µ(t) = X(t) + It11/2, so that µ E A and 

o 	Ll . By Ingham's theorem, there exists a function 0.) 0, -- 

g E "4, not identically zero such that g is supported 

by [-1,1]. Select X. E 5) , not identically zero, and 

put 

h(x) = (g H X )(x). 

Then h(t) possesses continuous derivatives of all orders, 

It is interesting to note that if µ is a locally 
bounded function such that µ(x+y) < µ(x) + µ(y) for 
every x,y > 0, then 3 lim µ(x)/x = Inf µ(x)/x. 

x>o 
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and for each p = 0,1,2,..., 

h(P)(x) 	(g x X(P))(x). 

Moreover, for each positive integer p, 

!h(P)(x)lexp[µ(x)] < exP[4(4 Ig(x-0 I X (P)(t)Idt 

< j Ig(x-Olexp[p.(x-t)] 1 X (13)(0 

exp(µ(t)]dt 

(Sup I g(u)exp[µ(u)]!) f I x (P)(t) 
LIEF: 

exp[11(t)]1dt. 

Hence h(x) e 	Since 	has only a countable number 

of zeros, it follows that h is not identically zero. Also, 
A 
h is supported by [-1,1]. 

Put 

f(x) 	ih(x-t)171(-t)dt. 

Then for each positive integer p, there exists a constant 

K such that 

If(P)(x)1 < K jexp[-µ(x-t)]exp[-µ(t)]dt 

exp[-X(x-t) 	lx-t11/2- X(t) Kp 	 t11/2icit 

< K exp[-X(x)]irexp[-Ix-ti 1/2-1t11/2]dt. 

Hence f e SX' Moreover we have that 

P(t) = 111(012, 
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so that f is not identically zero, but P is supported by 
A 

[-1,1] and is nowhere negative. In addition since g and 

i)(.. have continuous derivatives of all orders, so also does 
A 	 A 
f; hence f E 	. 

L.4.2.4. 	Suppose that X e 	, and that al, a2, pi, p2  

are such that -co < al 
< pl < a2 < p2 < +co. Then there 

exists C E LI) x n  L1, such that P E "T) and in addition 

P(t) = 1 on [fi1,a2], l'\(t) > 0;  f(t) is supported by 

[a1'132]  
Proof: For j = 1,2, put Aj  = 2/(Pj-a1), Bj  = _.(cti.4.0j)/ 

(P.J-(1.J),sothatili. )0
. Define XA.(x) 	X(Ajx) e A , 

Jr. 
j 	1,2. For j 	1,2, choose f e n)1 n  Li  such that 

"Ai  

P. E ,LD 	f\'.(t) ) 0 Vt E 	, f is supported by [-1,1], 

and jr(t)dt = A.. It follows from L.4.2.3, that such 

functions exist. 

Consider 

w.(x) = A exp((ixB.)/Alf.(x/A ), j 	1,2, j  

We have that w.(x) E .6x  n  L1, and moreover 

W. (t) = 1\
J
1,(A.t + B.), 

so that for j = 1,2, W. e (t) > 0 Vt E '(Rj   

supported by [ai,Pi] and IW (t)dt = 1. 

Put 
rt 

F(t)
J 	

C1,7,(u) - 1%(1.1))du. 
_Do 

A 
111  is 



Then F E AD . Define f(x) = l/27tF(-x), so that P(t) = F(t). 

Then 1' E j) and, as may easily be verified, 11(t) = i on 

(P1'a2] , P(t) > 0, and f(t) is supported by ta1,P21. 

Moreover if x 0, 

(141(x) - w2(x)) ,  

and so f e 	L1.  

D.4.2.3. 	For each X e A , choose a function of x, 

XQ(x), with the following properties: 

L1, a) X 
E 	x ( 

b) l'c) E 
A 

c) for ItI < 1, X 9(t) = 1, while for Itl > 2, 
A 
X 	= 0, 
A 

d.) 
	X 

( t ) > 0 Vt E IR 

By the previous lemma, such a function does exist. For 

each positive integer n, define X(;)n(x) = 	 X(D(?1,i) 	Note 

that for Itl < n' 
N

n
(t) 	1, while for ;t1 > ?, 

— 	 — n 

X'N  
Qn(t)  = 0.  

L.4.2.5. 	Suppose that X e n. , µ(t) = X(t) + ItI1/2, and 

that g e j-,.* Then, given e > 0, there exists a positive 

integer M, such that if m > M, then for every real u, 

J
exp(A.CIT'i nNm (x)g\(u) ip, 	iut 

Q
M  (x-t)g(t)e 	dtldx < E. 
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Proof: Put 

Im  = Sup r exp,xci.,„:»,11„),,x)(u) - 	49,,x-t)g(t) 
usr,":" 

e
iut

dti dx. 

Then for each positive integer m, we have that 

r u. 
1m 	Sup 	exp[X(fi)]1 	(--gm(x) - -'.C)ni(x-t))g(t)elutdtidx 

uelk 

jexp[X(3Tic,)](f 1 I-LGm(x) 	11Qm(x-t)11 g(t)Idt)dx 

j g( t)N ( J I Qm(x) - 119m(x-t)1 exp[ X (2-11(1)1dx)dt 

= Jm, say. 

(The inversion of the above double integral being justified 

without difficulty by the use of Fubini's theorem.) 

Put 

Km(t) 	J 1 4em(x) 	4Qm(x-t)lexP[X(f)ldx 

= 	(Y) - µe(Y - .--1)(exP[X(Y)]dy. 

We have that for some constant A, 

1 11Q(Y)lexPEX(Y)1 < A exp[-ly11/2], 

and 

1 11Q(Y - 11-11)lexp[X(y)] < A exp[-ly 	;-.-1 1 3/2]exp[X(.-inc-i )], 

the latter since X(y) < X(y - 11.71) + N(itii). Since It134 € n , 

we have that 
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t 1/2 	
t11/2 9  < 	IY - M I 	1 M ,   

and so 

,„ !P'Q(y - )1 	[x(Y )1 < A exp[ _
Iy11/2]exp[x*+ 1 10/2

] 
 

< A exp[-Iy11/2]exp[X(t)+ tt V2]. 

Moreover since µ8 is Q 	continuous, we have that, for each 

real t and y, 

1 11Q(y) - 1.8(y - 11.1)1exp[N(y)] 	0 as m 	co. 

Hence using Lebesgue's convergence theorem, we can deduce 

that for each t, 

Km(t) 	0 as m 00. 

Now, we have that 

Km(t) < il4Q(Y)lexPEX(Y)1dY+ 1) 	exp[x(y) ]dy 

< A I exp[-I y1I/2]dy + 	1 4Q(y)1exp[N(y+ r )]dy 

< Ai exp[-IyI 3/2 )dy+ exp[X(--)] I 11Q(Y)1 exP[X(Y) ]dy 

< A(1 + exp[X()])1exp[-ty11/2]dy. m 

Hence there exists a constant B, such that 

Km(t) < B exp[X()]. 
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Consequently, 

Ig(t)1Km(t) < Blg(t)lexp[X(Ttli)]. 

o 
' Since g e 	putting X 

1) 	!g(t)lexp[X(01, 

we have that (1). e L
1
, and moreover, 

Ig(01Km(t) < B4(t)exp[X(17) - Mt)] 

B4(t). 

Therefore, using once again Lebesgue's convergence theorem, 

we have that 

jg(t)1Km(t)cit -4 0 as m 	co. 

That is, 

Jm —> 0 as m 	co. 

Since, for each m, Im  < J m
, the result follows. 

L.4.2.6. 	Suppose that X 	, p(t) 	x(t) + It;2'42, 

g e ?°, and. u is a real number for which g(u) / C. Then 

if Im  is, for m = 1,2,3,..., defined as in the previous 

lemma, we have that for each positive integer r, 

(y-t)g(t)eiutdt 

	

lexP[ X(111) ( (r)(4gm(y) 	WIdx 
a(u) 

I r 
<1  m — g(u) 
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where -A(r)  denotes (r-1)-th self convolution; 	with 

respect to y in this case. 

Proof: By the definition of Im, the result is true for 

r = 1. Denote 

(47(r)N) 	
ilem(y-t)g(t)eiutdt 

m   
a(u) 	

))(x) 

by f 	(x). Assuming that the inequality holds for r = R, 
r,m.„u 

we have that 

rexp( (!) 11 fR+1,m,u (x )1 dx 	rexp[ X (lc) ] I I fR,m,u(x-t) m 

f1,m,u(t)dtidx 

exp[ 	fR,m,u(Y)1 dY) 

fi exp[X(75,i)D ri,m,u(t)idt) 

I R I 
mi 	Ig(u 

al)l 

I R+1 
_ 	m  / 

(u) 

The result now follows by induction. 

T.4.2.1. 	A generalisation 1  of Wiener's Theorem  

Suppose that X E A , and, for n = 1,2,3,..., 

For example, (7)(2)f(y))(x) 	(f m f)(x). 

INote that if we take X to be identically zero, then 
the result reduces to Wiener's theorem. 
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Xn(t) = X(jii). Suppose further that g E 	and 

1g(01 > 0 Vt e 1P, (i.e. g E 	n 	), and that a,b 

are such that -co < a < b < +co. Then there exists a positive 

integer m and a function h E 2 	such that A is compactly Xm  
supported and such that for each t E [a,b], h(t) = la(t). 

Proof: Put 

= 	Inf 	lEu)) 
ue[a-1,b+1] 

so that y > 0. For n = 1,2,3,..., define In  as in L.4.2.5. 

Choose a positive integer m, such that 

I 
; < L 

For each real x and each u e [a-1,b+1], put 

G(u,x) - e-iux  ['LQm(x) + 
E  (*(r)Nm(Y) 

.g(u) 	r=1 

pigm(y...0sweitltdt 1)(x)) 

g(u ) 

where 11(0 = X(t) + 1/2 . 

Note that the summation converges absolutely a.e .,  

and furthermore, that for each u e [a-1,b+1], 

j  IG(u,x)1expfx(:;;)idx 

0. I r 
< —[1 l /lOm(x)lexp[X(findx + 	1_21 

Y 	 r=1 I 
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Hence there exists a constant A such that for each 

u e [a-1,b+1], 

fIG(u,x)lexP[Xcindx < A. 

Furthermore, taking Fourier transforms with respect to x, 

we have that for each u e [a-1,b+1], 

A 	 A 	 Aµ8 (t)g(u+t) r 

g(u) m  r.1 m 	g(u) 

1  
1 g(u+t) 

if 	Iti < 1  — m 

if 	1t1 > 2 . — m 

(Note that for Vt E a; , and Vu e [a-1,b+1], we have that 

A 
A 	P-Q__(02(U-Ft) 

IN)m(t) - 	 1 < 1-11  1 
k(u) 	— y 

1. ) 

Now µ(t) = X(t) + 1t114, and so for n = 1,2,3,..., 

o  
4 r.; 	

Consequently using the result of L.4.2.4., 

we may choose % esuch that 5G E 	, 	is Nm  
1 , supported by (-- m, 1  and 1 	(t)dt 	1. Put 71  .1  

rb+1 C 
f(x) 	1 	I X,(y)G(u,y+x)eiYudy)du. 

a-1 J 

G(U,U-Ft) - A 1 	( P'Q (t) 	( 4G (t) 	M 	  



- 154 - 

Then we have that 

f (x ) I exp [ (In') ]dx 

rb+1 r 
< 	(J I X (Y)4i G(u,Y+x)lexP[X(Ili))dx)dy)du 

J a-1 

-b+1 r  
( 	x (y)lexp[X()]{jil G(u,y+x)i 

a-1 J 

exp[ (ITV) ]dx1dy)du 

< (b-a+2)A1x (Y)lexP[Xqindy,  by use of (1), 

the change of order of integration being justified by 

Fubini's theorem. Hence f E 2° xm . Furthermore, and 

again justifying changes in the order of integration by 

Fubini's theorem, we have that 

A 	c t  rb-1-1 r 
f(t) = le x  (7 	(! X(y)G(u,y+x)e ivu  dy)duldx 

J a-1 a 

b+1 r 
ly OA- t 	„ fu 	 i(y+x)t y  )e 	 , uk ,y+x)e 	axidy)du 

a-1 

= 

I 	
X, 

(
u-t)(11,0dU 

J a-1 

F „\ 1  	if t e [a-1+ 1, b+1- IT] 
g(t) 

I 0 	if t< a-1- 1  or if t> b+1+ 1. 
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A 

Hence f is compactly supported, and f(t) = 1/A(t) for each 

t E [a,b]. 

Finally choose 0 E Q such that c) '''`7' E 	and Xm 

$(t) = 1 Vt E [a,b]. Put 

h(x) = (f x 4 )(x), 
so that 

h(P)(x) = (f x (IP(P))(X),I  

Then we have that 

I1h(P)(x)lexp[X(fi) ]dx 

exp[X(i-ri )](fl f(x-t)! i cp( P ) (t)Idt)dx 

< (in i  (1) (p)(t):exp[x(nat)( rif(y)lexp[x()]dy). m  

Hence h 	 m, and moreover since g(t) = P(t) 	3(0, we 
A 

have that h is compactly supported, and h(t) = IMO 

Vt E [a,b]. 

The following theorem gives a version of T.4.2.1. for 

functions g(x) which are 'exponentially bounded' rather 

than 'exponentially integrable'. 

T.4.2.2. 	Suppose that X, µ E A are such that 

exp[µ(x) - N(x)] E Li 
 

• 

For n = 1,2,3,..., put µn(t) = µ(Ttl.). If g e srt3 	n  

*This is easily verified by use of Lebesgue's convergence 
theorem, and the first mean value theorem. 
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and a,b are such that -m < a < b < +m, then there exists 

a positive integer m and a function f 	him  (1 L
1 such 

A 
that f has compact support and f(t) = 1/g(t) Vt e [a,b]. 

Proof: We have that 

g(x)exp[4(x)] = g(x)exp(X(x)]exp[µ(x)-X(x)] 

L1. 

Hence g 	and so by the previous theorem, there 

exists a positive integer m, and a function h e 	. 11m  such 

that 11 has compact support and h(t) = 1/k(t) Vt E [a,b]. 

Choose X, e 13 
Pqn • 

n  L1  such that )(:,(t) = 1 Vt E [a,b]. 
Put 

f(x) 	(h 	X ) (x), 

A 
then f E L1, f is compactly supported, and P(t)/. 1/g(t) 

Vt E [a,b]. Mcreover 

if(P)(x)lexpft4)] 

< 	r, 	_t), expvc,±-t), h(t), exalt idt 

(Sup i 	(P) 
	

exP[1-1(11)13,1 	h(t)lex1D{P4indt, 
gl. ue 

and so f E wct 	. 
111/1  

The following theorem is in the nature of being a 

partial.converse of T.4.2.1. 
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T.4.2.5. 	Suppose that X is an even, non-negative function 

of a real variable t, with the properties that X(t) is 

monotonic increasing for t > 0, and that X(t)/t (t > 0) 

decreases monotonically to zero as t -4 03. Suppose also 

that g is a function such that 

g(x)exp[X(x)] e Li, 

and that -co < a < b < +co. 

In this situation, if there exists a positive integer 

m and a function h with the properties 

1) h(x)exp[WrTc1)] e Li  

2) h(t) = 1/g(t) Vt e [a,10], 

then the integral 

fm X(x)  dx 
J1 x2  

converges. 

Proof: We shall assume that the integral 

f
m X(x)  dx 
1 X2 

does not converge, and derive a contradiction. Under this 

assumption, if µ(t) = 24) + 21t1i/2 , the integral 

,m  

j

P"(x)  dx 
1 x2 
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does not converge. Put 

f(x) 	(h i€ g)(x). 

It is not difficult to show that 

f(x)exp[X(f3)] e Ll, 

A„ 
and that f(t) = 1 Vt E [a,b]. Select 5 > 0 such that 

A 	A 

b-5 > a+5, and take X. such that X e 	, A. is 

supported. by [-5,5], 	(t)dt = 1, and 

):1(x) = 0(exp[-2tx1/4]) as x 	+co. 

Put 

k(x) = 2nf(x) X. (x), Vx e IR , 

A„ 
/ so that k(t) = 1 Vt e [a-5,b+5], and 1,c possesses deriv- 

atives of all orders. We have that 

11(n)  (t) 	r(ix)nk(x)eixtdx Vt e 

It follows that for each positive integer n, and each real 

t, 
A(n). 1k 	kt)i < fixin tk(x)Idx 

= An, say. 

Define 4(0 	!k(t)lexp[µ(t)], so that 4  e L1, and. put 

(t) + 4(-0. Then, remembering that µ(x)/x is 

tUsing L.4.2.4. 



((  n5  ) n 
mn4 )  

< A( n51, )n  
etl(n') 

2 	2n -2n + e-n  (2n) e 	) 
0 

, for some positive constant A. 

An  < e-n 

is divergent, 

E µ(n4 )  
n=1 n5  

so also is 

diverges. 

fc°  11(x4  )  dx, 1 x5 

It follows sum 
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decreasing, 

An 	
n 44) (x)exlci -P, (x)1dx 

CO 

f
xn* (x)exp[ -11(x) lax 
0 

rn  n  \ 	
lc° < I 	If(x)exp[-x /1(  x ) ]dx + 	) a 	xn*(x)exp[-2( 

Jo n J n4 

f 
) 

wx11* 	q (x)exp( x 	 dx + e-n2  rw)e*Wecp[..-x3/2]dx 
• n 	 , 0  

Now it is easily shown by differentiation that for each 

positive integer r, and each a > 0, 

3Sup (yrexp[-ay] ) = (ror e-r .  
y>o 

Hence 

Since f1  1/(x)  dx 
0 x2 

and therefore the 
00 

that E (An) 11-  is divergent. Hence, using the results 
n=1 - 

of Carleman and Denjoy ((k) and (7)) concerning quasi-

analytic functions, since 

k(t) = 1 Vt E [a+5,b-5], 

1 
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we have that 

k(t) = 1 Vt E 	. 

But since k e L1, this last result contradicts the Riemann- 

Lebesgue lemma . It follows that the integral 

^co 
X(x) dx, 
x2  

must converge. 

The next lemma shows, amongst other things that the 

condition l exp[v(x)-µ(x)] is integrable', as imposed in 

T.4.2.2. is, for A -functions µ and v, stronger than the 

statement exp[v(x)-µ(x)] is bounded'. 

L.4.2.7. 	Suppose RO) E A , and 

exp[v(x)-µ(x)] E 

Then VA e 4 , 3X such that if x > X, then 

v(x) - µ(x) < A. 

Proof: Suppose that there exists a real number B with the 

property that for every X, there exists x > X such that 

v(x) - µ(x) > B. 

Take Xo so that whenever x > Xo, µ(x)/x < 1. Choose 

x1 > Xo+ 1, such that 

See (11) Pg.7. 
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v(xl) - µ(xl) > B. 

Choose, inductively, xn+1  > xn + 1 such that 

v(xn.4.1) - µ(xn4.1) > B. 	(n > 1). 

For y E [0,1], and each positive integer n, we have that 

µ(xn+ y)/(xn+ y) < µ(xn)/xn, 

and so 

µ(xn+ y) < µ(xn) + yµ(xn)/xn  

< 11(xn) 	y 

< v(xn) - B + y. 

Hence 

v(xn+ y) - µ(xn+y) > B - y 

> B - 1. 

Consequently 

 

exp[v(x)-4(x)]dx > exp[B - 1], 

and so 

1+xn 

J o  
exp[v(x)-µ(x)]dx > n exp[B - 1] 

• °3  as n 	co. 
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But this is a contradiction. The result follows. 

The following two theorems are variants of T.4.2.1., 

relating to certain intersection classes of functions. 

T.4.2.4. 	Suppose that M is a non-empty subset of A , 

with the properties that 

1) Vµ E M, -.;‘V E M such that for each n = 1,2,3,.. • .• 

= An 
0 with the property that 

exp[µ(x)-v(n)] < A Vx e 

2) -x's E A such that Vµ e M, 3 B> 0 with the 

property that 

exp[µ(x)- k(x)) < B Vx e fR . 

Suppose also that -co < a < b < +co, that g e µ(1 	° and eM µ' 

that g E 	. Then there exists f E gm( 	n  13 4 ) such 

that f is compactly supported and P(t) = vg(t) Vt E [a,b]. 

Proof: Choose µ e M. Then there exists v e M such that 

for n = 1,2,3,..., exp[µ(x)-v(i1)] is bounded. It follows 

from T.4.2.1. that there exists a positive integer m and a 

function h 	v (vm 	v(1)) such that Pi
4 
 is compactly 

4  
supported and for each t E [a-1,b+1], h(t) = vg(t). Since 

(.= vn -
JA 4  for n = 1,2,3,..., we have that h E 

11.  

such that X 	e AD Choose X E 7-. A  n  "(1374  
and 

T This may be done, for exanle, by taking 'X e 'A3x, 
where X(t) = 	(t) + 



- 163 - 

(t) = 
	1 for t E [a,b) 

0 if t< a-1 or if t> b+1. 

Now if µ1,µ2  E M, we have that 

A 
(h H 	= h "AL 
41 	41 

= 

(hp,  H X )A  . 
2 

 

Hence h 3 x =h € x . We may therefore define a 
41 	42 

function f, by the relation 

f(x) 	(hp,  H x. )(x), Vµ e M 

A 
Note that f is compactly supported and that for every 

t E [a,b], we have f1/ 4'(t) = imo. Moreover for each µ e M, 

and each non-negative integer p, we have that 

If
(p)(x)i < )C (13)(Oldt 

4 

< B exp[-4(x)][1hp,(x-t)texp[µ(x-t)] 

I X (P)(t)lexp[ 	(t)]dt. 

Hence f e V e M; That is f e fl 	r 	). 4 n 	
11. 

T.4.2.5. 	Suppose that M is a non-empty subset of A with 

the following properties. 

1) 	Vµ E M, 21,  E M such that for each n = 1,2,3,..., 
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2 A > 0 with the property that 

exp[11(x) - 4,31i)] < A Yx e fiR . 

2) a 9Q c A such that Vp, e M, 3 B > 0 with the 

property that 

exp[µ(x) - 	(x)] < B Yx e IR . 

3) e NI, 3 v e VI such that 

exp[µ(x) - v(x)] e L1. 

Suppose also that -m < a < b < +co, that g 	 J, a 15  °, and 
that g e 	. Then there exists f e r) P, 	) such 

0 P. 
that 11  is compactly supported and f(t) = 1/g(t) Vt e [a,b]. 

Proof: This may be shown in a similar fashion to the 

preceeding proof. It may also be established by direct use 

of the previous result. The following proof represents the 

second alternative. 

Choose µ e M. Then there exists v E M such that 

exp[µ(x) - v(x)] e L1.  

If h e a 	(x), then there exists K > 0 such that 

1h(x)1 < K exp[-v(x)) Yx e 

and so 

Ih(x)lexp[p(x)] < K exp[µ(x) 	v(x)] 

1 E L. 
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Hence h E 	°, for each p. e M. It follows that 

0 	z 0 
xEm 	x 	NEM 	X • 

Hence from the previous result, we have that there exists a 

function f E 	( p,  n  s3 p.), such that f is compactly 

supported and P(t) = 14(t) Vt e [a,b]. 

L.4.2.8. 	Suppose that X e A 	Then we have the following. 

1) 	If g E X'  and if 

f(x)exp[-X(x)] e L1, 

then 3 III x i gi , and 

(ifi 	Igi)(x)exp[-X(x)] e L1. 

2 If g E 	 ' X°  and. if 

f(x)exp[-X(x)] E L1, 

then 3 I fl x Igi, and 3 A > 0, such that 

(I f I 	gi )(x)exp[-X(x)] < A. 

3) 	If g E 	 ' X°  and if 3 B > 0 such that 

If(x)i exp[-X(x)] < B, 

then 3 Ifi x igt , and 3C> 0 such that 

(gi)(x)exp[-X(x)] < C. 
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Proof: In all three cases we have that 

f
if(x-t)tig(t)Idt 

f
exp[X(x-t)-X(t))1f(x-t)lexp[-X(x-t)] 

Ig(t)lexp[X(t)]dt 

< exp[X(x)]pf(x-t)lexp[-X(x-t) ]lg(t)lexp[X(t)]dt, 

and the results now follow. 

The following theorem will allow us to construct a 

whole family of quotient pairsl using classes of functions 

considered in this chapter. 

T.4.2.6. 	Suppose that X e A and that g e 

Suppose also that f(x) is a function such that f g = 0, 

and in addition either 

t, Vm, f(t)exp[-X(7)] e 

or 

Vm, 3 Am  such that 

1f(t)lexP[-N()] < Am. 

Then f = 0 (a.e.). 
270 	o Proof: Choose k E 	x (43 	n 	not identically zero, such 

that k e 	. This may be done, for example, by taking 

k e 	µ where µ(t) 	X(t)+ItIll2 . We have, using T.4.2.1., 

that there exists a positive integer m, and a function 

2 E 	Am  (Nm(t) = X(r-1 )) such that for each t lying within 

1See page 168 et seq. 
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A 
k 

A 	 xo
m the support of , 2(t ) 	1/a(t). We have that g e 	and 

that k e gS ° xm  ' 0. k,Am, and so using the previous lemma, 

the multiple integral 

12(z-y)1 J Ik(y-x)1 	If(x-t)1 jg(t)I dtdxdy 

exists. Hence 

3((f x g) x k) H i=fH (g H k m 2). 

But we have that 

(g H k m 2)A 	a a 2 

a= , 

and so 

((fmg)mk)mi.fm k. 

Hence f x k = 0. It follows that for each k which obeys 

the conditions; 

(i) k E 
0 

X' 

(iii) k is not identically zero, 

we have that (1 x k)(x) = 0 Yx e 	. 

Choose a function h obeying conditions (i) - (iii) 

above, and for each real y, put h (t) = eiYth(t). Then for 

each real y, by  obeys conditions (i) - (iii). Consequently 



-168- 
(f H hy  )(x) = 0 Vx,y c fR . 

That is, 

ff(t)h(x-t)eiYtdt = 0 Vx,y 	. 

But for each x E IR , f(t)h(X-t) E L1, and so it follows 

using L.2.2.1., that for each real x, 

f(t)h(x-t) = 0 a.e. 

Hence f(t) -= 0 a.e. 

4.3. Examples  

In this section we give some applications of the 

preceeding theorems, and bring out some connections with 

the material of the first three chapters. 

Consider T.4.3.3. with X(t) = A its a, where A > 0 and 

0 < a < 1. Suppose 0 < B < A, and put µ(t) = BItl a, so that 

exp[µ(x)-X(x)] e L1. Suppose that -co < a < b < +00 and that 

g(x) is such that g e 	r\  151 . Then by T.4.2.2., there 
exists a constant C, 0 < C < B, and a function f, such that 

1) P(t) = vg(t) Vt e fa,b1 

2) f has continuous derivatives of all orders, and 

for each non-negative integer p, 3Ap > 0 for which 

(P), If 	< Ap exp[-Ctxta], Vx e iR . 

In view of this result, if we follow Gel'fand and Shilov 

(10) and, for p > 1, put 
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13 	(g1 -3a > 0 such that Vq, 3 Cq with the property 

that lg(q)(x): < Cq exp[-aIx11431), t 

then we have the following parallel of Wiener's theorem: 

T.4.3.1. 	If g e (,gip  n 	(p > 1), and if -co <a< b< +co, 

then there exists f E (t-;-: such that P(t) = 14(t) 

Vt e [a,b). 

We will assume throughout the remainder of this section 

that p 5 1. Put 

= (f I Va > 0, Vq, 3 Cq,a such that 

If (q) (x)I < Cq,a exp[a,x11/P1). 

The following results are not difficult to establish. 

1) If f E Zo  and p is a non-negative integer, then 

f(P) E 

2) If k E g o  and p is a non-negative integer, then 

k(P) 

3) If f c and if k c cJ 0, then 3 f x k e cX, 0, and 

for each non-negative integer p, (f x k) (P)  (X) = 

(f(P)  x k)(x) = (f H k(P))(X). (This is proved fairly 

easily using L.4.2.8., the mean value theorem and 

Lebesgue's convergence theorem.) 

4) If k1'  k2 	E; 0"  then kl x k2 	P e 	. (This may be -  

proved by use of L.4.2.1.) 

5) If f e eZ 0  and if k1, k2  e (.1; 0, then (f x ki) K k2  = 

tSee the appendix. 
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f 	(ki  H k2) = (f H k2) € ki. (This has a straight- 

forward proof, using L.4.2.8. and Fubini's theorem.) 

Using the above results, it follows that 	may be taken 

to be a universal algebra with the following set of 

operations: 

(i) the binary operation (f,g) -4 f 	g, 

(ii) the unary operations f -4 Xf, where N is any complex 

number, 

(iii) the unary operations f 	f(P), where p is any non- 

negative integer, 

(iv) the unary operations f -4 rf(t)2(x-t)dt, where i 

is any element of g. 
(v) the nullary operation 0. 

It follows from 4) above, and L.2.1.3., that ',5(3  Z..1 

is closed under convolution. Moreover it is clear '6hat 

n  :2:2 provides (by convolution) an Abelian semigroup 

of endomorphisms of 1C 0. 

We can now establish the existence of a new class of 

quotient pairs: 

T.4.3.2. 	If 	> 1, then 55 p, 	p 433 	form a quotient 

pair. Furthermore 	
0 

3a( 	13, (2.; 	) is a genuine 

extension of 4"3- 
Ps 
• 	p i.e. i( 	) / 	f3  Zps 	n 72 ). -  

Proof: After the results of the section above, to prove 

that 	
Ps 
	(3, n lAW 	form a quotient pair, it suffices 

to show that if f e T and if k E q;' p  n V 	then 
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f € k is null if and only if f is null. Now k E e; o  

implies that there exists a > 0 and C 0 such that 

k(x)1 < C exp[-alx! 	] . 

Put X( t) = a Iti 1/13/2  . Then k 
	

o Moreover since 

f e 	3 03 we have that for each n, 3 cn  such that 

if(x)1 < Cn  exp[X(Lrcl)]. 

Hence, by T.4.2.6., we have the required result. 

To show that i( 2. 0) / 	p 8 0  n  ( ), choose 

cto E 	n  )73 . Then 4  e 	0, and so there exists an 

element 4) /14) E 	('felt 0  g p n  2.753  ). Suppose that this 

element were of the form i(f) for some f e Z. p , so that 

f x 4:1  = 	. 	In this case f m * = * V* E 	n 
and so we have that 

and 
l'sf(t)*(t)dt .*(0) V* e 

ir

f(t)*(t)eixtdt .*(0) Y* e go  0 231 and. Yx e 51 . 

Hence for each * e 	0 	(f1P) A  (x) = CO) 	x e „ . 
But f* E L1, and so this last result contradicts the 

Riemann-Lebesgue lemma whenever *(0) 0. The result 

follows. 

T.4.3.3. 	If 8 o. (g p  n 	(i.e. 8 consists of 

tSee (11) Pg.7. 
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those functions in g0  whose transforms are compactly 

supported), then 	cr0, 	n  S) and 30  are Wiener- 

like. Moreover 	is is endomorphic on 

and 	0  separates -,Q( ,;13, 	n  n). 

Proof: It follows from T.4.3.1. that 

k p fl 

C54  r-N f3' 	P 
and 	0  are Wiener-like, and it is easily established. that 

is endomorphic on 	— 	g33-)• To see that `r-  

0  separates (la( :;Ed  ol go n 	) , suppose that f e 

and 

f(t)X(t)dt = 0 V7G e 

Now choose Xe tt, 0, such that 	is not identically 

zero. Then we also have that X(t)eixt  e cam' for each 

real x, and so 

ff(t)X(t)eixtdt = 0, Yx e 1B . 
Since f)C e L1, from this we obtain that f(t) x(t)5.-- 0 and 

so f = 0. 

We now use T.4.2.5. to obtain another result of the 

Wiener type. Take M to be set consisting of all the 

functions p.(x) = txta  (0 < a < 1). Then Mc:A , and 

conditions 1), 2), 3) of T.4.2.5. are all satisfied by the 

class M. (We may take 

( t ) 

tti 
if 

if 

Itt > _ 

< 

e 2  

e2.) 

log2Iti 

1t1/4 
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Moreover it is easily established that 

n 
,em 	11. 

 

and so if we put 

we obtain the following theorem: 

T.4.3.4. 	If g e SOn and if -co < a < b < +0, then 

there exists f e S such that P(t) = 1/g(t) Vt e (a,b]. 

Following on from the above, we can now construct 

another quotient pair related to the quotient pairs 

G 0 n 7n • Put 

T 
i3)1 

= (f 1 313 > 1 such that Vq, 	cq,  with the property 

r that If 	kx,1 < Ccl,f3 expLixl
1/0 

J
11 
lo 

From the results on page 169 it is easily established that 

T is a universal algebra with the following set of 

operations 

(i) The binary operation (f,g) 	f + g. 

(ii) The unary operations f 	Xf, where X is any complex 

number. 

(iii) The unary operations f 	f(p), where p is any non-

negative integer. 
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(iv) The unary operations f 	ff(t)2(x-t)dt, where 2 

is any element of S. 

(v) The nullary operation 0. 

Again, it is easily established that S n  Pal is closed under 

convolution, and that Sr\  gq provides an Abelian semi-

group of endomorphisms of T. 

T.4.3.5. 	The function spaces T, Sn 2n form a quotient 

pair, and i(T) 	S o  ?:51 ). 

Proof: The first part follows from the corresponding 

section of T.4.3.2., while the proof of the second part is 

along the same lines as the proof of the second part of 

that theorem. 

T.4.3.6. 	If Z = S (1 ,3 	, then 	S n  2,11 ) and Z are 

Wiener-like. Moreover Z is endomorphic on 3(T, S r‘ nt.  ) 
and Z separates Z.,)(T, S n  731 ) . 

Proof: The proof of this theorem is along the same lines 

as the proof which was given for T.4.3.3. 

In the preceeding cases, we have concentrated on 

'large' A -functions; the next result involves 'small' 

A-functions. 

T.4.3.7. 	If (1+ItIc)g(t) e L1  (c > 0), if g e mg -and if 
-03 < a < b < +03, then there exists a function h such that 

1) (1+Itl e)h(t) e Li  

2) h(t) = 14(0 Vt e (a,b). 
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Proof: In T.4.2.1. take 

( t ) 
c logiti 	if 	It! > e 

1 c It, /e 	if 	Itl < e. 

The result follows immediately. 

This chapter has been concerned, among other things, 

with the construction of quotient pairs. To conclude it 

is worth remarking that with any X e A we may associate 

a quotient pair :2A, AS, the spaces 2., 15 being given by 

at = (fl Vp = 0,1,2,..., Yn = 1,2,3,..., 3 Cp, n such 

that if(P)  (x)I < Cp,nexp[X(g))), 

= CN  r, 	; 

and the universal algebra '21 having the usual system of 

operations. 
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APPENDIX 

A.1.  Notes concerning section 2.4.  

In this section an outline is given of the proofs of 

lemmas L.2.4.9., L.2.4.10., L.2.4.11. and L.2.4.16. These 

proofs are quite straightforward, but rather lengthy, and 

so to avoid losing the theme of the text, they have been 

gathered together here. I can find no previous explicit 

statements of L.2.4.11., the 	-case of L.2.4.9., and 

the G4 -case of L.2,4.16! However L.2.4.16. may be proved 

as an elementary deduction from certain general arguments 

such as those in (10) , and. I suspect that lemmas L.2.4.9. 

and L.2.4.11. are also known. Alternative proofs of the 

C5 -cases of L.2.4.9., L.2.4.10. and L.2.4.11. may be 
obtained by use of L.2.4.8., but here we give proofs which 

do not rely on this result. 

A.1.1. 	To prove the (..cZ -cases of L.2.4.9. and. L.2.4.10., 

it is sufficient to show that if F E g l  and k E 	, then 

F H k is tempered and 

1(F 	01 (X) = (F € k l)(X). 

Likewise for the 3 -cases. 
(a) Suppose that F E G ' and k eCZ ,, • We want to show 

that F H k is tempered. We suppose this is not the case 

IF or the g -case of L.2.4.9., see (25) Pg.141. For 
L.2.4.10., see (3) Pg.105. For L.2.4.16., see (9) 
Pgs.368-369 and (10) Pg.49. 
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and go on to derive a contradiction. 

If F k is not tempered, then VA > 0, VN > 0, VT > 0, 

3 t such that It! > T and. 

I(F x k)(01 > AftiN. 

Choose a sequence (tr) such that (ItrI ) is increasing and 

diverges, and such that Itri > 1 and 

I(F H k)(tr  )1 > It r1 r  r = 1,2,3,... . 	(1) 

For r = 1,2,3,..., put 

k(t -t) 
k (t) - 	r 	. r (tr)r  

Choose any g -neighbourhood, U, of 0. Then U has a subset 

V of the form 

V = 	(0 1 (t)  E Cc and. rtI m ict(P)(t)1 ‹E for m < M 

and p < P), 

for some E > 0, and some positive integers M,P. Put 

A = Max Sup ( 1 ul m  lk (P)  (u )1 . 
m<M UE 
p<P 

Then if m < M, p < P, we have that 
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m (P)t It! lk 	‘t -t)! 
iti mlkr   (P)(01 = 	 

tr  1 r  

2m(1t
r
-tl m  + ItrI m)lk(P)(tr

-Of 

r1 r  

2M 	2MA 

Itri r 	ItrI r-M  

Hence there exists R such that if r > R, then kr  E U. 

Consequently, since F is continuous, 

<F,kr> -4 0 as r -4 00. 

But from (1) we have that for r = 1,2,3,..., 

1<F,kr>I > 1. 

The result now follows. 

(b) If F E C;' and k e c, then 

3(F A k)1 (X) = (F A k')(x) Yx 	. 

Proof: Choose x E 1R , and suppose that h / 0. Then we 

have that 

E  PFt,k(x+h-O> - <Ft'k(x-t)>1 = <Ft' 
k(x+h-t)-k  

Choose any g -neighbourhood, U of 0. Then U has a subset 

V of the form 
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v={1)i 4). e 	and Itt m  I th(P)(t)I < E for m < M 

and p < P], 

for some E 	0, and some positive integers M,P. Put 

A = Max Sup ((lx-tI+1)m  lk(P) k( ti1), 
m<M teiR 
PZP+2 

= Min(e/A,1). 

Then if 0 < 110 < 5 and m < M, p < P, we have, using the 

second mean value theorem on the real and imaginary parts 

of k, that for each real t, 

Mi n/  I 
k(P)(x+h-t) - k (P)(x  -t) 	k(P+1)(x-t)( 

h 

Iti 
m

1 	
hk(p+2)(x_t_0;11 ) =  

orf. h (p+2). + 	i 	(,)ro 2 k 	(x-t+G2h)i, t  

for some Q1'82 e [0,1]. Hence 

Itlm I k(P)(x+h-t) - k(P)(x-t)  - k(p+1)(x-01 

< 2h( Iti m 
2 	Sup (Ik(P+2)(x-t+Qh)11 

Qe[0,1] 

< h Sup ((4x-us+l)rnIk(P4-2)(u)l) 
lie P. 

< Alhl < AS < c. 
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It follows that if 0 < Ihl < 5, then 

(k(x+h-t) - k(x-t) 	k' (x-t)) E U. 

Since F is continuous, letting h 	0, we have that, for 

each real x, 

3(F x k)1(X) = (F H k')(x). 

(c) Suppose that F E 21, k e 23 , but F € k is not 

tempered. Choose a sequence (tr) obeying the conditions 

set out in (a), and put 

kr(z) 
k(tr-z) 

(tr )r  
Vz c 	. 

Choose any ) -neighbourhood, U, of 0. Then U has a subset 

V of the form 

	

V 	e 	and. ;(t) E N), 

for some 	-neighbourhood., N, of 0, of the form 

	

N = (4, 	and 4(P)(t)1 < E
i  

if p < m. and Ott > j, j = 0,1,2,...), 

where (c.)wo  is a sequence of positive numbers decreasing 

monotonically to zero, and fm.)c°o  is another sequence of 

positive numbers diverging monotonically to +co. 
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Choose an integer K such that [-K,K] includes the 

support of f.L Put 

, A(n  
A = Max Sup t k `x"

) 
 (u ) I ) . 

p<mk  u€ ER 

Then if iul < K, and if p < mK, we have that 

A 
kr(u) - 	 jk(tr-t)eiutdt 

(tr)r  

Hence 

iutr e  

(tr)r  
k(-u). 

P 
lk 
r  (P)(01 < 	1 	r  Z (P.))1a(P-J)(-u)Iltr  0 - . 	j It r1 	j=o  

< 	A(1+ ItrI )P/Itr1 r  

< 	A(1+1tr1)mk/ It r  Ir • 

On the other hand if WI > K, then for any non-negative 
A (nl 

integer p, kr'1"'(u) . 0. Consequently there exists R such 

that if r > R, then kr  e U. Since F is continuous we have 

that 

<F,kr> -> 0 as r —> °. 

But this is a contradiction. It follows that (F m k)(x) is 

tempered. 

(d) 	If F E 	' and k E 	, then 3 (F x k)' (X) = (F M 	)(x). 
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Proof: Note that if lal < 1 and if 1b1 < c, then for any 

non-negative integer m and any integer n such that m > n, 

we have that 

	

00 	
ai-nbi 	ec. 	 ( 2 ) 

j=m 

Choose x E IR and suppose that h X 0 (h real). Then we 

have that 

1 [<Ft'  k(x+h-O> - <Ft,k(x-t)>) 
h  

<Ft' 
k(x+h-t)-k(x-t)  

	

Choose any 	-neighbourhood, U, of 0. Then U has a subset 

V of the form 

A 

	

V = 	E 	and CO E N) 

where 

(P) N 	( 	4, 	and 16 	()Gil < c
j 
if p < m. and 

1t1 > j, j = 0,1,2,...), 

for some (cjo  )m, a sequence of positive numbers converging 

monotonically to zero, and some (m.) , a divergent monotonic 

increasing sequence of positive numbers. Put kx(t) = k(x-t), 

and choose an integer K such that [-K,K] includes the 
A„ 

support of kx(w). Put 
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) A = Max Sup (Ik 

	

m 	
x (P 

p<mK  we 

= Min(EK/(AeK2 K ), 13. 

Then if 0 < I h < 6, and if p < mK  and WI < K, we have that 

dP 	( ( k (x+k- t ) - k(x-t) {l(x-t)}eiwtdt]l 
dwP  

AP 	iwh 
= 

dwP ` 
1'12
x‘ 	h

-+  

,r iwh = 	(p) 	(p-r)(..w)(...1 )p-r o 	re 	-1 	iwil 
r=o 

	

r x 	dwr4  h 

r iwh 
< A E (p I d 	re h -1 	iwi l  

r=o 	dwr   

n  
< AlhieK 	(;,) , 	by (2), 

r=o 

Eic 

On the other hand if Iwi > K, then for any p 

dP  f (k(,x+h-t) - k(x-t) 	D kT(x-t)leiwtdt 	= 0. 
dwP  

Hence if 0 < Ihi < 5, we have that 

(k(x+h-t) - k(x-t) 	k'(x-t)) E U. 

The result now follows as for case (b) above. 
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A.1.2. 	To prove the '.a)  -case of L.2.4.11., it is suffic-

ient to show that if F E (', kk2 E C , then 

(F x k1) x k2  = F x (ki  X k2). Likewise for the c/3 -case. 

The proofs are quite direct. 

(a) Suppose that F e 	k1,k2 e g. Choose any CF5 - 

neighbourhood, U, of 0. Then U has a subset V of the form 

V = (d)I (1) E C; andim  I (P)"ti - k l < e for m < M, 

P < 

for some e > 0 and some positive integers M,P. 

Denote by Ar  the subdivision of [-r,r] into 2r3 equal 

parts, and let xr,i  j = 001,...,2r3, denote the subdivision 

points. Put 

2r3  
gr(w) =(R-X 	

)k (X 	)(X 	) 1 	r,j 2 r,j 	r,j+1 xr,j jo k  

, 
kikw_x,k2(x)dx. 

Put 

A. = Max Sup ((1+1111)mik,(P)(u)1), j = 1,2. 
m<M uem 
p?P+1 

For each p < P, we have that 
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( 
lgr P) (w)1  

(P)t lk1 	kw-x 	)k2  (x 	) 
r,j 	r,j 

	

- ki(P)(w-x)k2(x)1 dx + 	tkl(P)(w-x)IN(x)Idx. 

Ix' >r 

Applying the mean value theorem to the real and imaginary 

parts of the following expression, we have that for each 

x > xr, j 	e1  ,e2  e [xr,  x ] such that 

ik1 
 (p)(w-xr, j  )k2 (xr, j ) - k1 

 (p)(w-x)k2(x) t 

t)c-x11 r, j l (P)(14-0k2(t))i t=e1  

[ 41 oc  (p)(w_ok2(0)1t=2 I t 1 

Sup (1k1(P+1)(w-k2(Of 
r2  eE[xri,x 	

O 
3 

+ lk1 2  (P)(w-e)k t( )1). 

Noting that for each e,w we have the inequality 

twin  < 2n( iw-el n+ 	n = 1,2,3, • •• 

it follows that if x e [xr, j.,xr, j+1
] then 

< 
2r3  
Z 
j=o 

r, j+1 fx  

x 	. r,j 
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Iwimik(P)(w-x ro.)k2  (x  r,j) - k(P)(w-x)k2(x)1 j   

or2 

m+1 
< L--- [4A1

A
2
]. 

Hence, for p < P and m < M, we have that 

1w im tgr(P ) (w) 

2m+4 < ---- A1A2 + 	f 1141 m  1k (p)  (w-x) 11 k2(x)1 dx lxl>r 	1  

2M+4 A
1
A
2 + 2MA1 J 

	(14-ix1) lk2ocildx. ixi>r 

It follows that there exists R 0 such that if r > R, 

then gr  E U. Since F is continuous it follows that for 

each real w, 

(F H gr)(W) -4 0 as r 	00 

Hence 
2r3 

<Fu,j 	
k1(w-u-x  r,j  .)k2  (x r,j  .)(x  r,j .+1 -xr,j )'> o 

-4 (F x (k1  H k2))(w) as r 	co. 

i.e. 

2r3  

j=0 
	(F x ki)(W-Xr,j)k2(Xr,j)(X r,j+1 -X  r,j) 

(F H (k1  x k2))(w) as r -4 co. 
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But for each fixed w, (F x ki)(W-X)k2(X) E 	, and so the 

left hand side converges to f(F A ki)(w-x)k2(x)dx as 

r 	co. Hence (F kl) x k2  = F A (k1  x k2). 

b) 	Suppose that F 1 kk2 e 	. Choose any 

4S-neighbourhood, U of 0. Then U has a subset V of the 

form 

V = (11,1* e 	and ;(t) E N), 

where 

N = 	(I) 1 	e e.ctl) and 114)(13)(t)I < Ej  if p < mj  

and Itl 	j, J = 0,1,2,...), 

for some (E
J
r, a monotonic sequence of positive numbers 
0  

converging to zero, and some (m.)wo, a divergent monotonic 

sequence of positive numbers. Using the same definitions 

of 	,0 r, xr,j, gr  as before, we have that 

A 	2r3 	ixu 	A 

= Y10( 2  k2(xr,i)e r,J (xr,j+i-xr,j)- k2(u)) 
j 0  

A 
= k1(u)2r(u), say. 

Take K, a positive integer, such that [-K,K] includes the 
A 

support of kl(u). Put 

A( 
M, = Max Sup (lki

p) 
 (u)I), 

p<mK  ueilk 

M2 = Max Sup (IxIPIk cl)(x)1). 
p<mK  X€ 11-Z 
q=1,2 
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Then if p < mK  and if Iul < K, we have that 

p) 

igr (11)1  = 
lE (g)11;.(P-m ) (u)2 (m)(01 
M=0 

M1 	(g)121(,m)(u)1. 
m=o  

(3) 

Note also that if lui > K, then &)(u) = 0, p = 0,1,2,... • 

Now we have that if m < mK' then 

(m) 	
r,j+1 

(u) 	
2r3 

 (i.). 	f(x imk (x 	)e ix 

r,j 	

r'iu 
r r,j 	k2 (x j j=o 	x  

- xmk2(x)eixu)dx - (i)m 1 xmk2(x)eixudx. txt>r 

Applying the mean value theorem, we have that there exists 

E (xr,i,x) such *that 

ix
r 
 .0 

i(xr,j)mk2(xr,j)e 	- xmk2(x)eixu l 

Ix-xr 	(tmk2(t)eiut)it=e 
1 

+ i 4 
j
h(t

mk2(t)eiut)] t. 2 

< Sup (mielm-1(k2(e), + 1 0111 11c(e)i 

r 	eErxr,i'xr yi+13  

+ lul1W1k2(01), 
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for x e [xr,j,xr,j+1]. Hence if m < mK  and if lui < K, 

then 

2r3 

	

4 	 , , 
< 	2(mM2+ M2  + luIM2] + 	txIm lk2(x)(dx 

	

j=o r 	Ixl >r 

m < 	[mK  + K + 1]M2 + 	
Klk2(x)idx. — r  lx1 >r 

It follows from this and (3) that there exists R such that 

if r > R, then gr  E U. The required result now follows 

as in the case a) given above. 

A.1.3. 	In this sub-section a proof is given for the 

case of lemma L.2.4.16. The cc.:b and 	-cases may either 

be proved similarly, or, once the eZ -case is shown, the 

(,) -case may be proved by taking Fourier transforms. For 

a proof of the ,Z -case see ( 9 ) Pg.368. 
Lemma Suppose that F is a discontinuous linear functional 

cn g . Then for each g -neighbourhood, U, of 0, and for 
each X 5 0, there exists k e U such that i<F,k>15 X. 

Proof: If U is an G -neighbourhood of 0, then U has a 

subset V of the form 

V = (cto H4€' and Ixl m i (13)(x)1 < e if m < M 

and p < P), 

for some e '> 0, and some positive integers M,P. Since F 

is discontinuous, 3h > 0 such that if W is any G 
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neighbourhood of 0, then 3/ E W such that i<F,P1) h. Put 

\TN  = (4) 1 4)  E G5 and lx1 1111 1 40(P)(x)1 < eh/X if 

m < M and p < P). 

Then 7.ig E Vx  such that t<F,t>1> h. Put 

k(x) 	x2(x)/h.  

Then 

N i<F,k>1 	E  I<F,2>i 

> X. 

Moreover if m < M and p < P, then 

lxi m Ik (P ) (x)t < (Eh/X)(X/h) 

= 

and so k E V. This completes proof of the lemma. 

Suppose that (Fr) is a sequence of G'-functionals 

	

and that :31im <Fr, (I)), VCOE 	Define the linear 
r--->00 

functional F by the relation 

<F,0 = lim <F 	E 
r-40* r  

Then F is continuous. 

Proof: Suppose that F were discontinuous. For n = 1,2, 

3,..., put 

Un =((0 iCke and ixi m  (1) (P )  (x) I < 1 
2n 

if m,p < n), 
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so that each Un is an G -neighbourhood of 0. Suppose 
that for each n, in  c Un. Put 

*n(x) = Z 2r(x). r=n 

Then for each m,p we have that 

m 
Ixi mi*,(1.1))

(x)1 < max( Z,p)-1 
 Ixlmli(P)(x)1 

00 
+ 	Z 	Ixim1 1413)(x)1. 
r.max(m,p) 

It follows that *n  E C5 n = 1,2,3,..., and that if m,p < n, 

then 
m 

Ixl m141P)(x)1 < E txlm ii(P)(x)1 
r=n 

.1  2n1.-1 • 

Hence *n c Un-1, n = 2,3,4,... . Clearly the sequence 

(*n) converges to zero in the topology of g . 
	(4) 

Take V
1 
 = U

l' Choose k1 e V1 such that 

1<F,k1,1> 2. 

Choose m1 such that 

1<F 	k1 > - <F,k1>I<1. m '1  

Assume that for r = 1,2,...,n-1, neighbourhoods of 0, Vr, 

r=n 
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Functions kr, and integers mr, have been chosen. Choose a 

	

neighbourhood of 0, Vn, 	Un, such that if 2 e Vn  then 

l<Fm ,2>i 
r 

 2n 

Choose kn e Vn such that 

n-1 
i<F,kn>1 > 2n + E 1<F,kr>I . r=1 

Choose mn > mn-1 
such that 

i<F ,k > 	<F,kr>1 < 1 mn 
CO 

Put k(x) = E k (x). Then k E 	and by (4), the 
r=1 r  

sum converges to k in the topology of Q'; . Moreover, for 

each n, 

n-1 
l<F,„ ,k>t > t<F,kn>t - 	1<F ,k >t 	k l<F , >1 

"In 	mn 	r=1 mn r 	r=n+1 	r  

n-1 

	

> t<F,kn 	r >I - 1 - 	i<F,k>I - (n-1)- 	174 
r=1 	r=n+12' 

> n - 1 
2 

But, by assumption 3 lim <F ,k> . It follows that F must 
n- co n  

be continuous. 
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A.2. 	Spaces of type  

We shall be concerned, throughout this section, only 

with functions possessing derivatives of all orders. The 

relevant definitions of Gel'fand and. Shilov are, for 0 > 1, 

as follows: 

1) = (c4 3A,B,C, > 0, such that for each m,p= 

Ixm 	 (P)(x ) 1 < CAmmniNP ) , 

2) gp  = (4)13A > 0 such that for each p = 0,1,2,..., 

3C > 0 such that for each m = 0,1,2,..., 

ocm (p )(x)i < cp  Am mm0.1.  

These definitions may be found in (10) Pg.167-8. Note  

that mr1113  is taken to be unity for m = 0. 

Put 

S = (fIVa < 1, Vp = 0,1,2,..., 3Ca,p  such that 

If(P)(x)I < Ca,p exp[-Ix1a1), 

and 

So  =S (1 (1 

Then S°  contains precisely those functions in S With 

compactly supported transforms. We will now show that 

a) S = n g 
p>1 
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bl s n Go. D>1 

Choose p > 1, and choose Suppose that A,B,C are 

as in definition 1). Then by observing that for each real 

x, 

c1D(P)(x)1 < C BP, 	p = 0,1,2,..., 

it is clear that 4. possesses a Taylor series which converges 
everywhere to (i). Moreover 4may be extended to an entire 

function of a complex variable, and we have the inequality 

lxm((P)(x+iy)1 = Ixl m  I E (iy)r 	
(p+r)(x) 

 
r=o 

< C BP Am mm13  eBIYI . 

Taking m = m(x) = f(lxl/Ae)1/13 g, we have that 

4(P)(x+iy)1 < C BP 12L 
e

1 m  01y1 
' 

and so 

hi,(P)t kx+iyji < C BP PeBlyl 

< C BP (3Pexp[ 	VP 100] eB lyi 

Hence, for some a > 0, and for C' = C pP, we have that 

110(P)(x+iy)1 < C'BPexp[-alx1 //13  + Blyi]. 	(1) 

(Similarly, if 0 E g 3  (p > 1), then (1) satisfies an 

inequality of the form 

I m  x 
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11 (P)(x)i < C I
P 
 exp(-alxi 

If 4  e EgoP' then it follows from (1) by contour 

integration (see (3) Pg.97) that 0$ is supported by 

(-B,131, and so 	e 	. It follows that II ks 
0 
 s 

p>1 
In the other case, it follows directly from (2) that 

S. - p>1 
Conversely, suppose that 4'  e S. Then for each p > 1, 

and each p = 0,1,2,..., there exists 
C(3,P 

 such that 

(P) 	1/13  1c1) 	(x)I < Co,p  exp(-1x1 	1. 

Hence, for each m > 0, 

M,h(P)f IX w 	kX)1 < C
P,P 

 exp[m logIxt-lx1 1/P] 

< C
P,P 

 exp[mP log mte,-1/1131, 

by considering Sup(m log u-u1/13 ). It follows that 
u>o 

txm(3(P)(x)1 < cP,10 (pPe-P)m  mmf3  

and so cl) e vo > 1. Hence S 5; I-) P. p)]. 

Suppose now that 44) e S°. Then, for each (3 > 1, 

gC > 0 such that 

10) (x)I < Co  expj-ixi VP  . 

Hence, for q = 0,1,2,..., we have that 

S° . 
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(q) 
I CO 	(t) I < Co  fix I qexp[ - lxt 1/13  ]dx 

< C Sup[uclexg- i(u)1/13 pl 	.11 exP(- ,01M]dx 
u>o 

Co(2000q13e-ciP  j'exP[-  ilxI VP]dx 

Cf; qqr3(Bo)q , say. 	(3). 

In relation (3), we may assume that for each 0 > 1, Bo  > 1. 

Suppose that A > 1, and that [-A,A] includes the support 

of 	. 

The inequality 

dq 	n (4)(t)t )1 < c' q(113 (BP  )q(2A)n  (4) 

certainly holds for n = 0 and q = 0,1,2,... . Suppose, 

inductively, that (4) holds for n = 0,1,...,N, and 

q = 0,1,2,... . Then we have that, for each non-zero q, 

12 [$(t)tN+1) 
dtq 

< I t11) 
dtq  

totN)1+04 0c1  ($(0tN)t 
dtq-1 

di;(2A)N(AqqP(B0c1+ q(q-1) (c1-1)(3(30)q-1) 

Cf;(2A)N[Aqqf3(B0'  lq+ qq13-(34.1 (B0 )q-1) 

cM2A)N(Aqq13 (B0)q+ elt3(B0)q) 

< c , (2A)144-1q0(B 0 
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since p > 1, A > 1, and B, > 1. While for q = 0, clearly 

dq  
Ei 
(Ci“t)tN  111 < C I

P
(2A)N+1  • 

;; 

Hence, by induction, (4) holds for each n,q = 0,1,2,... . 

Therefore we have that 

ixq ci)(n)(x)1  = 2.7""A  e-ixt dq  [----( cl)A  (t)tn  )1dt I 
-A 	dtq  

< 4nAC'
P
(2A)n  qqP(BP 

 fl ' 

and so it) c G°
' 
 vp ) 1. It follows that S°  S.- (-I g c;. 

p>1 

For further details concerning spaces of type g , 

see (10) Pg.166-256. 
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CONJECTURES AND CONCLUDING REMARKS  

As mentioned in the footnote on page 5, there seems to 

bec no reason why the construction of (-4..(al,,;t ) should 

not be possible with It a first order relational structure 

instead of a universal algebra. Less clear is the question 

of whether any embedding theory is possible with 	a non- 

Abelian semigroup; this would appear to be a rather 

difficult problem. It would, anyway, be interesting if 

some applications of the theory could be found in fields 

other than elementary algebra or functional analysis. 

However a number of conjectures are suggested by the applic-

ations in functional analysis already made in the thesis: 

in particular in the case of the:IA( 	p, 	n 	) spaces 

of section !I.3., it appears not unlikely that P(4.4630 (P) 

is isomorphic, and (with the topology of pointwise con-

vergence on 2:0 homeomorphic, with (5, the class of 

continuous linear functionals on (60  (when carries 

the weak dual topology). 

It would appear that the sole precursor of the tech-

nique of applying an extension process to a space of 

functions, at all resembling that used in the thesis for 

the space 	is the Operational Calculus of J. Mikusinski 
In brief, Mikusinski's technique is based on the result of 

Titchmarsh that if f(x) and g(x) are supported by the 

t
See (15). 
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positive real line and are locally integrable, then if 

f x g is null, at least one of f and g is null. It follows 

that the class of functions, continuous on [0,00) and zero 

for x < 0, forms a ring under convolution, and that this 

ring has no zero divisors. Consequently this ring may be 

extended to a field of quotients. Mikusinski goes on to 

define differentiation and integration within this system 

and shows how the system may be used in solving various 

types of differential equations. A notion of convergence 

is introduced, applicable to sequences all of whose members 

can be expressed with a common denominator. It is clear 

that in certain ways Mikusinski's system overlaps with the 

class 	' of Schwartz distributions, while on the other 

hand it is the case that neither system contains the other. 

Mikusinski's system was constructed with some practical 

applications in view, and he himself drew r  attention to 

some technical drawbacks of it, deriving mainly from the 

restriction to functions supported by a half line. He 

appears to have considered it impossible 	to construct a 

system such as his for functions not necessarily supported 

by a half line. This last view is essentially correct if 

the extension technique is restricted to the embedding of 

a ring in a field, but not correct for the more general 

tSee (15) Pgs.124 et seq. 

Loc. cit. Pg.126. Note that this is a translation of 
the second Polish edition, volume 30 of Monografie 
Matematyczne, 1957. 
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embedding process developed in this thesis, as the example 

of X1(5135, go* ) shows. 

It should not be difficult to extend some of the 

results for function spaces given in the body of this thesis 

to corresponding results for functions of n real variables 

and possibly to other sorts of functions, and there are 

various topological questions which might be considered. 

It is clear from the concluding pages of chapter four that 

there exists an extensive collection of xl(ax.,p ) 
spaces based on function spaces and the convolution opera-

tion, and the possible identification of these, perhaps 

by some general method, as spaces of functionals would be 

one line for future investigation. It appears likely that 

there should be some summability applications of Theorem 

T.4.2.1., as was the case with Wiener's original theorem, 

and some modification of the class A might be possible. 

It is conjectured that theorem T.4.2.1. remains true with 

2,x  replaced by E. 
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