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ABSTRACT

This thesis is concerned with a general algebraic
construction, applications of this construction, and related
topics in the theory of functions of a real variable.

Chapter one is mainly concerned with an extension
process related to that of the extension of a ring without
zero divisors tc its field of quotients, but which is
applicable to systems of a more general character. The
construction proves fruitful when applied to certain
funetion spaces, and in chapter two, isomorphisms are est-
ablished between extensions of a particular space < (the
slowly increasing functions), and certain classes of distri-
butions. Chapter three is mainly devoted to various
topological considerations, pertaining both to the general
situation and to the particular case considered in chapter
two. It is shown that the isomorphisms established in the
second chapter provide homeomorphisms, when T is endowed
with the topology of pointwise convergence (amongst others)
and when the distribution spaces in question have the weak
dual topologies., Realisations of the algebraic theory in
the realm of function spaces pose some questions in the
theory of functions of a real variable, and in answer to
these questions, a generalisation of a certain theorem of
N. Wiener's is proven in chapter four. Besides being of

some inftrinsic interest, this enables further examples to
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be constructed, some of which are related to the spaces of

type E; which have been considered by Gel'fand and Shilov

(10).
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INTRODUCTION

In chapter one of this thesis, we show thet a universal
algebra X which possesses an Ahelian semigroup of inject-
ive endcmorphisms, 9 , may be embedded in another universal
algebra, XX (W , B ), of the same type as L . There is a
sub-algebra of 3 (AL , D ) which is isomorphic with ZX ,
and 1n a number of cases this is a proper sub-algebra, and
) (2L, ™ ) then represents a genuine extension of X .

The construction of 3) (A1 ,*® ) has an affinity with
the familiar construction of the rationals from the integers,
and an appropriate choice of JZ. and B will yield the
rationals, (though with a reduced algebraic structure).
However the sort of embedding used here seems inappropriate
for a simple algebraic system such as this. The construction
tends to be fruitful when there are interesting self-
mappings of ZX which can be used to form the end omorphisms
which constitute ®» . 1In the particular cases which are
considered in this thesis, 2X is usually a space of func-
tions, and the endomorphisms which constitute © will
generally be provided by convolution with the members of
another class of functions. However the extension process
is, in principle, of a very general character, and in

chapter one and parts of chapter three, the theory of the
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embedding is developed in a general form.*

The particular case most extensively studied is that
in which 5. is taken to be the class < of slowly increas-
ing functions, with certain operations, and D '=' @~7% ,

(& the space of rapidly decreasing functions and éﬁi the
Wiener class, i.e. the subclass of Ll consisting of functions
with nowhere vanishing Fourier transforms. It turns out
that W (T , &S T ) is isomorphic with X R ', the class
of Fourier transforms of distributions of finite order.

In order to establish this isomorphism between
DT, @ L) and X' it is necessary to establish
a number of lemmas concerning distributions, and so a
resumé of the apposite parts of distribution theory is
included in chapter two.

In the development of the general theory of E}_(Ql_,ﬁ3 )
spaces, it is shown that there is a non-empty collection of
sub-algebras of (2L, ), the Wiener sub-algebras,
which may be topologised in a fairly natural fashion using
any given topology on %X . Theorems are proven which show
that in certain situations some of the topological properties
of a Wiener sub-algebra, (& s mimic those of 5.

The character of the construction of EQ(%I,,ﬁb )

T There appears to be no reason why the theory could not
be developed in a still more general form, by using
the concept of a first order relational structure (see
(5) Pz.189 and (16) Pg.7) in place of that of a univer-
sal algebra.
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leads to a natural classification of an element of

TI(A ,B ) by means of its base class (see D.3.1.5.),
and this in turn leads to consideration of certain sub-
algebras of 32 (L ,® ), the spaces _}Qn(ﬁi , B )

(n = 0,1,2,...). Some properties of the ) n(ﬂﬁl,j} ) are
established, in particular that they are Wiener sub-
algebras and that @n(m yR) e ?:;anrl(fU., B ); the
question of their distinctness is also discussed.

Thus }"Qo T, AT ) is a sub-algebra of
T, ANy ), and it is shown that 3‘20(5’?"’@ AT )
is isomorphic with the space (g ' of tempered distributions.
It is also shown that (X , & ) is a Wiener sub-
algebra of itself. For appropriate topologies on X , it
is proved that the isomorphisms established between
YL, E 20 ) ana  3R', and between RAT ,enTs)
and & ', are in fact homeomorphisms when the distribution
spaces carry the weak dual topologies. It is shown by some
examples that differing topologies on X can lead to the
same topology on (T, & o T%), and similarly for

2T, B o).

The class 255, of functions with nowhere vanishing
Fourier transforms, intervenes naturally when seeking
restrictions on a function g which will ensure that con-
volution with it will generate an injective endomorphism

on some space of functions. Attention was first drawn to



-7 -

this class by Wiener, who showed,fl as The crucial step in
the proof of his Tauberian theorem, that if f € ¢} then,

1 such

given any finite interval [a,b], there exists g ¢ L
that £(t) = 1/f(t) for all t ¢ [a,b]. It was a (very
easily proved) result of this type which was used in prov-
ing that (T, & o T%) 1s a Wiener sub-algebra of
itself. The central result of chapter four is a general-
isation of this theorem of Wiener's, in which assumptions
stronger than Wiener's are made and stronger conclusions

are drawn. The formulation and proof of this result depend
on a very interesting theorem of Ingham's: a particular
class, A , of functions emerges in connection with Ingham's
theorem, and it is classes of functions dominated by
exp[-A(x)], for some A(x) € A , which replace the class

1 of Wiener's theorem. Ingham's result is also used to

L
establish the existence of a non-null functiocn in the infter-
section of certain of the spaces of type 65. considered by
Gel'fand and Shilov.?

There are heuristic reasons to expect that any
(20, B ) in which QX is a class of functions and B

a semigroup of endomorphisms generated by convolution; will

possess at least a subclass corresponding ©o some family

T See (24) Pg. 25. The result is not actually stated
explicitly in the above form, but a corresponding
result for Fourier series is given. (loc.cit%. Pg. 14 .)

* see (10) Pg.166 et seq.
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of distributions: something corresponding to a '6-function',
for example, arises automatically. On the other hand, in
view of a result of Delsarte's (6) in which it is shown

that for any compactly supported function, k, there exists

a non-null function f such that f ®* k = 0, it appears
unlikely that the exact class &) ' of Schwartz distributions
can be represented as a (X ,25 ) of this function sSpace-
convolution type. However, using the extension made of
Wiener's theorem,we obtain a general result of the form

'if f e Aand g e Band f x g= 0, then £ = 0'. This
latter result enables construction of a large class of
convolution-based quotient spaces 3 (2, H» ). 1In
particular,quotient spaces related tTo spaces of type &

are constructed and discussed hriefly. The thesis ends

with an appendix and some conjectures.
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NOTATION

The following terms and symbols will be taken as under-
stood throughout the text.

The terms 'injection', 'surjection', and 'bijection'
are used for 'one-to-one mapping', 'onto mapping', and
'one-to-one onto mapping' respectively.

We use the symbols R and & to denote the real and
complex number fields (with their usual topologies when
this is relevant). The class of functions Lebesgue-

"~

integrable over [R is denoted by Ll. Whenever we write
_‘+m it
without stating the limits, we mean . We use x to

L. .
denote the convolution operation, of a function with
another function or of a functional with a function.T
If £ ¢ Ll, then f denotes the Fourier transform of T,

defined by

Fad

f(x) = ff(t)eiXtdt ¥x ¢ IR

If z = x + iy, where X,y are both real, then we define
B 2, ?&hz, and z to be x, y, and x-iy respectively.
The symbol  is used in other contexts, but not when any
confusion is likely to arise.

The < , > notation is used for linear functionals, so

' The symbol % 1is occasionally used instead of x as
an aid to clarity. Its usage is defined in D.2.4.15.
We also use x® in other contexts: see especilally
section 1.3.
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that <F,f> denotes the number obtained by applying the
functional F to the element f.

The binomial coefficient n!/(n-r)!r! is denoted by
(2), and for each x ¢ R , we use [x} to denote the unique
integer such that fx] < x < [x] + 1.

The symbol => is used in some situations as a substi-

tute for 'implies that'.
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INTRODUCTION TO CHAPTER 1.

In section 1.1. familiar material relating to semi-
groups and groups is brought together, in particular that
any cancelling Abelian semigroup S may be isomorphically
embedded in an Abelian group 32(S), and it is shown
that the group 2XJ(S) is defined up to an isomorphism by
its mapping properties. Section 1.2. introduces the basic
concepts of a universal algebra. In section 1.3. the
material of the preceeding sections is used to define fthe
notions 'pseudoring', 'quotient pair' and 'pseudofield’.
There then follows the main result of chapter one (T.1.3.1.),
namely that any quotient pair (A1 ,B ) may be isomorphic-
ally embedded in a pseudofield (I (AX,H ), (B )).
The psevdofield (W (24 ,B ), 2D( B )) is shown to be
determined up to an isomorphism by its mapping properties.
The results of this section are believed to be new.

Finally in section 1.4. various applications are
presented. These include the embedding of a ring without
zero divisors in a field: this latter embedding embraces
the Mikusinski Operational Calculus. Also a TQ(A ,B )
space is constructed which, in effect, contains the
Mikusinski system. The spaces %, (Z , &% are intro-
duced, and under the assumption (to be proved in chapter
two) that % ,& B3 form a quotient pair, the pseudo-

field (Q(T ,E 1 ), V(@ ~IL3)) is briefly discussed.
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CHAPTER 1

1.1. Semigroups and groupsT

D,1l.1.1. A semigroup S is a set M together with an
associative binary operation e on M; that is an operation
which assigns to any ordered pair of elements

(ml,me) € M > M a further unique element of M denoted by
my e My, and is such that for any triple

(ml,me,mj) EM »x M X M,
my © (m2 . mj) = Oﬁlo m2) ° ms.

We shall denote the set M simply by S: no confusion
is likely to arise from this convenient ambiguity. We
shall also use different symbols e.g. %, +, to denote
the binary operation of the semigroup when these are
more appropriate than o .

D.1.1.2. A semigroup S with binary operation -~ is said

to be Abelian if for any pair (51’52) €S % 8,

D.1.1.3. An Abelian semigroup S with binary operation -
is sald to be cancelling if for any triple

(s,sl,se) €3 x S XS the relation Sy ° 8 =8¢ 8 implies

TFor the material of this section see (8) ana (14).
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that Sy = Spe
D.1.1.4. A semigroup S with binary operation e is said
to be a group if there exists e € S such that

i) s~ e=s, ¥s €S

1 ¢S such that s o s™% = e.

ii) ¥s e S, 13s”
We call e the identity element of the group; 1t is unique.
D.1.1.5. Two semigroups S, T with binary operations
o , ¥ respectively are said to be lsomorphic if there
exists a bijection ¢ , of S onto T such that, for any pair
(81’82) €S x S, ¢ (sl ° 82) = ¢ (Sl) * 4>(s2). A
bijection ® with this property is called an isomorphism.
Clearly if & is an isomorphism, so is ¢'l, and so the
isomorphism relationship is symmetric: it is also
transitive and reflexive. If S = T, ¢ is called an
automorphism of S.
L.1l.1.1. If S is a semigroup and T a group with binary
operations s , ¥ respectively such that S and T are
isomorphic, then S is a group.
Proof: If ¢ : S — T is an isomorphism and I € T is the
identity then there exists e € S such that &(e) = I. |
If a € S, put a1 ¢_1([<b(a)]“l), then
d(a e e) = d(a) x I = ¢(a), and so a » e = a, and

$(a - a"l) = ¢(a) = [ (a)]“l = I, and so a « a™l - e,
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The result follows.

D.1.1.6. If S, T are two semigroups and ¢ is an
injection of S into T, such that ¢ (S) is a sub-semigrcup
of T and ¢ is an isomorphism of S onto ¢(S), then we say
that ¢ is an isomorphic embedding of S in T.

T.1.1.1.7 Every cancelling Abelian semigroup can be
isomorphically embedded in an Abelian group.

Proof: If S is a cancelling Abelian semigroup, we consider
€ S. We say

the set of all ordered pairs 51//52’ S.,S

1’72
that sl//52 = tl//t2 if and only if s; ¢ t, = t; = s,.
The binary relation =, so defined,is an equivalence
relation since it is obviously reflexive and symmetric,
and also transitive, for if rl//r2 = 51//52’ and sl//s2 =

tl//tg, then

hence r. = t. = t, o r..

The set of equivalence classes so formed we shall denote
by R2(S). If a = [s;//t;}, B = {p;//a;) are elements of
((sy = p)//(t;0 q;)) € XAS).
If a,B € 20 (S), then a « B is well defined, for if

Sl//tl = 52//t2, pl//ql = p2//q2, then

¥ (S), we define a « B

I

"See (14) Pgs.51-54.
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(sy e py)//(t) ° ay) = (s5 = p,)// (65 © a,).

If o = (s//t)} € X2(8), we shall permit ourselves the
useful ambiguity of writing a = s//t, so that we represent
an equivalence class by any one of its members: no
confusion will arise from this practice. Clearly ~2(S)
is an Abelian semigrcup under the binary operation -, also
if s,t € 8, then s//s = t//t and if o = p//q € . (S), then
a o (s//s) = a, and putting ol = a//p € TA(8), we have
that a » o+ = (p e q)//(q ¢ p) = s//s. It follows that
32(S) is an Abelian group. We define j:8 = X2 (S) by
j(s) = s e s//s. Then j(s ¢ t) = j(s) = j(t), and j is
an injection, consequently j is an isomorphic embedding of
S in Zx (8).

D.1.1.7. We shall call the map j, defined above, the
natural embedding of S in T (S),.

D.1.1.8. If S, T are semigroups with binary operations
°, ¥ respectively and % : S —- T is a map such that, for
any pair (51’52) € S~ 8, ¢(s1 o 52) = ¢(sl) * ¢(sg),
then we say that ¢ is an homomorphism of S into T. If

S =T, ¢ is called an endomorphism of S.

L.1.1.2, If ¢ ¢+ S - T is an injective homomorphism of
the cancelling Abeiian semigroup S into the Abelian group
T, then there exists precisely one homomorphism

¢' ¢+ XD(S) = T such that ¢ = ¢&'j, where j is the

natural embedding of S in 3¥3(S). This &' is an injection.



Proof: If S, T have binary operations = , % respectively,

and a = Sl//SE € X)(8), define &'(a) = ¢(sl) ® [4)(32)]_1.
Then ' is a well defined homomorphism of X2 (S) into T,

for if a = sl//s2 = t]_//tg’ then & (sl)x ¢’(t2) =.4>(t1)x¢(52),

and if B = rl//rg, then

¢'(aoB) = é(s; o r)x[¢(sye ry)170

(& (s)) = [$ ()1 el & (r )= [ (r,)]7H)

$'(a) x $'(B).

]

Suppose s € S is any element, then ¢'j(s) = (s » s) =%
[ (s)]"l = ¢ (s) and so there exists an homomorphism ¢ '
satisfying ¢ = &¢'j. Suppose @ is any such homomorphism,
e the identity in ¥X(S), and I the identity in T, then

$(e) = I. Thus if a € XA (), & (a—l) =[% (a)]—l, and so
? (51//5,) = &((sy o 5)//5,) ® & (s5,// (55 = 5,))

= #(3(s))) = [ ¥ (3(s))17H

i

¢ (sy) x [¢ (32)]‘1
¢'(s//5,),

I

so that & = &',
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Finally we note that if ¢'(Sl//S2) = ¢'(T1//T2),
then & (sl ° rg) = ¢(rj.o Sg)’ and since ¢ is an injection,
s, e T, =r; ° 5,; hence sl//s2 = rl//rg, and it follows
that &' is also an injection.

We have shown that any Abelian group T which includes
an isomorphic image of the cancelling Abelian semigroup S,
includes a consistent isomorphic image of ZA(S). The next
lemma shows that we may use this situation to determine
2A(8) up to an isomorphism.
L.l.l.é.* Suppose S is a cancelling Abelian semigroup,
Ql’ Q2 Abelian groups and jl, 32 are injective homomorphilsms
of S into Ql’ Q2 respectively. Suppose further that Ql,
Q2 have the property that for every Abelian group T for
which there is an injective homomorphism ¢ of S into T,
there exist vnique homomorphisms él’ ¢2 of Ql,-QQ respect-
ively into T, such that ¢ = ¢ljl = ¢232. Then Q., Q,
are isomorphic.

Proof: The assumptions may be summed up in the following

diagrams:

Q1;.“""?5'*-->T Qz_~_-.i¢3..__.;._fr
AN 2 Ei A
Jz\\\ ! ¢ Jz\\ E ¢
\S \S!
(1) (2)

TSee also L.1.3.7.
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In the first place, we take T to be Q2 and & to be j2 in
diagram (1). Then there exists an homomorphism I, of @
into Q, such that j, = Iljl. Similarly from diagram (2),
taking T to be Ql and ¢ to be j;» we obtain an homo-
morphism 12 of Q2 into Ql such that Jl = 1232. It follows
that

J1 = (1,105,
and

Jp = (I;T)Jp.

Taking T to be @, and ¢ to be j; in diagram (1), ¢1
will be the identity map, idl, of Ql onto itself, and so

from the uniqueness, it follows that

Similarly

I.I, = id

172 2’

where id2 is the identity map of Q2 onto itself. Now

idl surjective implies 12 surjective,

id2 surjective implies I, surjective,
idl injective implies I1 injective,

id, injective implies I injective;

2 2

Thus I 12 are each bijective, and mutually inverse, and

l,
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it follows that Ql’ Q2 are isomorphic.

1l.2. Universal Alggabx"as‘r

D.l.2.1. A Universal algebra U, is a set M together with
a system'ED'of n-ary operations on M. Here n > Q, and may
be different for different ¢'s in ZJ), (An n-ary operation
¢ on M assigns to any ordered n-tple (ml,mg,...,mn) €

M= Mx ,,, XM a further unique element of M denoted by
#(ml,mg,...,mn).) We shall denote the universal algebra

U by (M,D), and when no confusion is likely we shall write
U, for M. If N& M, and V = (N,¥) is a universal algebra
we-shall say that V is a sub-algebra of U. If (L,?:ﬁ),
(M,232) are universal algebras in which a one-to-one
correspondence between 331 and.ZJ2 can be set up in such a
way that every &, € ?31 and the corresponding & , € ?32
are n-ary with the same n, then we shall say that (L’Zji)’
(M,?De) are of the same type. If (L,?Dl), (M,}Eb) are
universal algebras of the same type we shall sometimes
write (L,0,) for (L,70;) or M,D,) for (M,20,), if it is
convenient: no confusion is likely to arise from this,
D.1.2.2. Ir (L,D), (M,) are universal algebras of

the same type and X : L — M is a map such that for every

TSee (14) Pg.93 et seq.
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n-ary operation ® €, and every n-tple (21,22,...,2n

LxL> ... xIL,
X( ¢~(Je:l_:Jee.v---.Hen)) = 4’(7((21),7( (22):°'°: x’(zn)):

fhen we shall say that X is an homomorphism of (L,3)
into (M, D). If in addition X is a bijection, then we
shall say that X 1is an isomorphism of (L,%) onto (M,DD),
and that (L,) is isomorphic to (M,); in this case

-1

X is readily seen to be an isomorphism so that the

isomorphism relationship is symmetric; it is also reflexive
and transitive. An isomorphism of (L,¥) onto itsélf is
called an automorphism of (L,T). An homomorphism of (L,X)
into itself is called an endomorphism of (IL,TD). An

injective homomorphism is called an isomorphic embedding.
4

1.3. Pseudorings, pseudofields, quotient pairs;

the embedding theorem

N.1l.3.1. If 4 is a universal algebra and B a set of
endomorphisms of A , then for ¢ ¢ B , £ ¢ M , we shall
denote ¢ (f) by r ¢ . If ¢,,¢, €B we define the
composition &, = &, of f#l with ¢ , to be the endo-

morphism of 2% given by

fx (9, ¢,) =(fx ¢,)x ¢, ¥Loe .
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If B is closed under composition, it forms a semigroup.
L.1.3.1. If % is a universal algebra and B an Abelian
semigroup of injective endomorphisms of 0 , then ® is a
cancelling Abelian semigroup.

Proof: If ¢, ¢l,¢2 € B ang ¢1° ¢ =-<§>2° 4> s, then

fx (b 9)=1x (9,04 ), Vreh

and so (f = l‘l’l)x¢>

(f % &,) x4,
hence fx¢l=fx¢-2, ¥f e M

i.e. rbl = ¢2; the result follows.

D,1.3.1.1 It 22 (£ 6 ) is a universal algebra and B is

an Abelian semigroup of endomorphisms of 2 , then we shall
say that 21 , B form a pseudoring; if in addition all

the elements of B are injections, then we shall say that
= ,B form a quotient pair; and finally, if in addition
to this ® forms an Abelian group, then we shall say that
U, B form a pseudofield.

D.1.3.2, If (& ,B ), (C ,%) are two pseudorings with
M and & of the same type, and W,v homomorphisms of &
into & and B into © respectively, such that if

fed and & € ® then u(f x ¢ ) = u(f) = v(sd ), then

we shall say that (u,v) is an homomorphism of (¥ ,p )

into (C ,®D ). If u and v are bijective, we shall say

1 see N.1.3%.2. and section 1.4, for examples.



that (w,v) is an isomorphism of (M ,®» ) onto (&, D),
and that (¥ ,® ) is isomorphic to (€ ,dD ); in this
case (u-l,v_l) is readily seen to be an isomorphism, so
that the isomorphism relationship is symmetric, it is

also reflexive and transitive. An isomorphism of ( 21 ,Pp )
onto itself is called an automorphism of (2L ,® ). An
homomorphism of (2% ,® ) into itself is called an endo-
morphism of (& ,{B ). If pu and v are both injective,

both surjective, or both bijective, then correspondingly
we say that (L,v) is injective, surjective, or bijective.
An injective homomorphism (,v) is called an isomorphic
embedding.

T.1.3.1. The embedding theorem !

Any quotient pair can be isomorphically embedded in
a pseudofield,.
Proof: If M ,® form a quotient pair, we consider the
set of all ordered pairs f//¢, f e X , b e® . We say
that £//¢é = g//¥ if and only if f x ¥ = g x¢ ., The
binary relation =, so defined is an equivalence relation,
since it is obviously reflexive and symmetric, and also

transitive, feor if f//¢ = g//M, and g//¥ = h//%x , then

fx¢y =gx¢, and gxX =hzx1v,
and so (fxX )xv=gx (beX)=(h=xdo)x7V:

and hence f * X =h x & ,

TSee also (14) Pgs.54-56,
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The set of equivalence classes so formed we shall denote by
n(u,B ).

If o ={f//¢) ¢ (1 , B ), we shall permit ourselves
the useful ambiguity of writing a = £f//&, so that we
represent an equivalence class by any one of its members:
no confusion will arise from this practice.

Now # = (M, ) is a universal algebra and if

= e T is an n-ary operation on M, and if

(£,// % 150/ 8 goevn /76 ) e T2 (2,3 ) T (4,8 )
¥ ... xT) (1 ,B» ) is any n-tple, we define

UL/ % T/ b s st/ 8 ) b0 be

(Z (ryx(by = by oeeo b )ipm(bye b0 e b ),
£ (@ 0 doo e & NN//(h e b e aie ). (If

n = 0, the nullary operation = on M is a fixed element
e € M, and we define the operation & on X (M ,8 ) to

be e ¥ & //¢, this element is easily shown to be independ-

) €

D (x,p )= 2 (& ,B Ix...x A (% ,8 ), then
- (al,ae,...,an) is well defined, for if fi//4'i = gi//wi,

ent of the choice of ¢ ¢ B ,) If (al’GQ""’an

i=1,2,...,n, then
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- (flx(¢2° ¢3= ceeo rbn),fex(drlo ¢3= cee® c&n),...,

RGN SARTEL SO AR PEIPPPER

= E(grlye V5o ooV )igxW e Vg eV ),

g EW sV cenev Nx(@ 0 b0l o ),

n
since
SHL PP R I PR PRETTRS FISEASINRA FFSRS FIT)

°o,.,.,o “’n””n)

= (g ¢ )r(@ o Ve doeVpe vvve by q0V;

"®up1t Vit b oY) 1= L2 0n

It follows that X (M ,"® ) is a universal algebra with
the same system of operations © , as M ,

Ifrp=¢,/MH e (B)anda=1//¢ e A (N,3),
then we define 7(-6((1) to be (fx¢l)//(¢ ° 11/1) e (M ,8).
X g(a) is well defined since if /A = b5/, and
£//% = g//¥, we have that ¢,° ¥, = ¢, ¥, and

fx¥% =g x¢ , and so
(f= ¢ )x(¥- V) = (gx b, )x( ¢y ).

Now if B, = ¢1//~.t/l and B, = ¢2//1!/2 and X By = Xﬁe

3

then

=

fx(¢1°1!/2)= x(?e*”ﬂl) ¥ e &,
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and so B, = B,. Furthermore if Bl’BQ e (B ) then

x’le B, = X(Blc’ B,)» @nd in view of this and the
preceeding observation we see that { xalaen(fb) is

isomorphic to A (B ), Thus A (P ) is (isomorphic to)
an Abelian group of maps of QA (M , B ) into itself. We
will now show that for each B € “l( % ), the map )
Xp * N(u ,8 ) > (M, 8 ) is an endomorphism.
We will permit ocurselves the ambiguity of writing a x B
for X B(a), identifying the element B with the map of
D (X , ® ) which it provides., If B = ¢/H ¢ 22 (H ),
= € T) is an n-ary operation of the universal algebra
& =M D) and (al,ag,...,an) e (M, d ) x
V(A ,d)x...xXT(x ,8 ), a, = fi//‘?i, then

1

E(al,ag, cees) X B

(E (flx(¢2° 4’3’ see® ¢n): f2*(# 1° 4’3""' e ‘bn),
et x(f s b e b )X @)/
(¢'1"¢2°...o ¢n)° W

E((flx ¢)}€(¢2“ ¢3" .-;“’#n), (fgxda)x
($,° %o...oq,n),...,(fnxmx
(610 o veee b ())//(& 0 bpeniie b o)

= E(alxa, ang, L A | CLn}Ea).
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(If n = O the nullary operation = on d (U , B ) is a
fixed element € € 22 (M ,D ), and the above reduces to
observing that € * B = € x B.)

Tt follows that B € L ( ® ) is an endomorphism of
3(Mm , B ); it is also injective, for if a = fl//tb 17
o, = fg// 4’2 are elements of XL (M ,H ), and
B= &/ e X (B ), and if @, ¥ B =a, % B, then
(flx¢)x(¢2°‘(l/)=(f2x ¢)x(¢l°w), and so
£, ® ¢ o =Ty X P 1» il.e. ap = a,. It follows now that
AW, D), XA (2R ) form a pseudofield.

We observe that if f € XX , &, € ® , then

fx ¢//¢%& = xV¥//A. Define i ¢+ ™% > T3 (M ,P ) by
1(f)=f3€¢//¢, fem: ¢€£5,

then i is independent of the choice of ¢ € & , and more-

over if f,,f, € X and i(fl) = i(fg) then f, = f,, and

1’ 1
so 1 is injective. If = € X is an n-ary operation and

(£, 3Fnseeas,f ) € 2L X N x L..>x 22X, then
1 n

2,

L0 (20 0ps e, ) = 2 (208)),1(05),...,1(5)), and so

n
i is an homomorphism of & into 2R (¥ , B ). We now
recall the definition of j given in D,1.1.7., and that j
is an injective homomorphism of ® into TX(®D ); we

also note that 1If f € #& , & € B then
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It %= ¢)=((cxd)x (b $))//(¢ « &)
((txd )//d) = ((& ¢ )//d)
1(f) = j(& ).

It

Hence (i, J) is an isomorphic embedding of (¥ ,B ) into
(T2 (2 ,p ), XA (B )) and the result follows. We shall
call 1 the natural embedding of M into X2 (It , ®» ), and
(i,3) the natural embedding of (1t ,%® ) into

(2,2 ), (D)),

N.1.3.2. There are cases of a universal algebra M with
an Abelian group, ® , of endomorphisms of & in which the
endomorphisms are not injective. For example, take

A = (M, D) where M={f}3g, continuous on R such that
f=ga.e, on R}, ®» = & . Then if e is the map

which takes f € M to the continuous function to which it
is equal a.,e., then putting 2 = {e}, in view of the

relation
(fxe)xe="Fxe, VI£el,

we have e = e = e, and so ® is an Abelian group. It is
obvious however, that e is not injective.

L.1.3.2. If X ,8 form a pseudoring and ® is an
Abelian group with identity e, then the elements of ®

are injections if and only if f x e = f, V¥f € & |

Proof: If all elements of ® were injections, then since

e ® e = e, we should have
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(Fxe)xe=Ffxe, ¥feol,
and so fxe=1*F, ¥f e A ,
Conversely if ¢ ¢ B , fl,f2 e I, fl X ¢ = f, ® ¢ and
f xe=7F, ¥f ¢ &+ , then we have that
(r; % 6)x &1 = (£, % &) x 078,
and so fl ¥ e = f2 X e,
hence fl = f2, and the result follows,
L.1.3.3, If &% ,® form a pseudofield and ¢ € ® ,

then & is surjective.

Proof: Take f ¢ & ,putg:fx¢"led-k,’chen

g x & f % e

= f,

and so ¢ is surjective.

L,1.3.4, If 1 ,® form a quotient pair and (i,Jj) is
the natural embedding of (& ,® ) into (T (M , 8 ),
22 (% )) then

(1) i,j are injections.

(2) B is a group if and only if j is surjective.

(3) ¥ is a group implies that i is surjective.

(4) It is possible to have i surjective and @ not
a group.

Proof: (1) This we have already shown in T.1.3.1.
(2) Ir B 4is a group, take B = &/ ¢ (B ),
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and put X = ¢°1p"le B ; then (X ) = ((& o 1{/"1)
o ¥)//¥ = B, and so J is surjective. Conversely if j is
surjective, then it follows from L.1.1.1. that B is a
group.
(3) Ir ® isagroupand a=*7f//¢ e A (X , D),
put g = £ x _l; then we have that

i(g) = ((£x oY) x &)/
=(fxe)//d
=f//¢ 3

and so i(g) = a; it follows that i is surjective.

(4) Take 2& to be (M, ), where M = [£}f ¢ L' and
* has compact support.}, ® =@ , (with f, = f, in M
taken to mean that f. = f£. a.e.). Then if g € L! is such

1 2
that 18(t)l > O everywhere on R , define X (£), for
f €M, to be jf‘(x-t)g(t)dt. Take B = ( Xglg e L} and
ig(t)l > 0, ¥¢ e R }. Then B 1is an Abelian semigroup
of injective endomorphisms of 2 , and soc L ,B forms a
quotient pair. Since B has no unit element, it is not

a group. However, if a = f// Xg e X2 (& ,B ), then by
Wiener's theorem ' , 3h € & such that

fh(x-t)g(t)dt = f(x)

TSee (11) section 9J, and also chapter four of this
thesis.
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and so
i(h) = (h x X ,)// X
= f// %X 2
= Cf,,

and it follows that i is surjective.

L.1.3.5. If X , B form a quotient pair, then & , B
form a pseudofield if and only if (& , B ) is isomorphic
to (W (&, ), 2™(» )).

Proof: If & ,® form a pseudofield, then ® is a

group, and so from the previous lemma, i,j are bijective;
consequently (21 ,® ) is isomorphic to (ZQ (& ,B ),
(B )). Conversely if & ,® is isomorphic to

(A (m,8 ), 2(P»)), then B and TI(H ) are
isomorphic, and it follows from L.1.1.1. that ® is a
group, so that M ,% form a pseudofield.

Corollary If &x , 3 form a quotient pair, then

(W (M, B ), XA (B )) is isomorphic to (W (X (&x , 2 ),
(B ), 2(2(H ).

L.1.3.6. If (u,v) is an injective homomorphism of the
quotient pair (4% ,8 ) into the pseudofield (3 ,D ),
then there exists precisely one homomorphism (u',v') of

(R ,p), (2 )) into (€ , D ) with the property

that p = p'i, v = v'Jj, where (i,j) is the natural embedding
of (& ,B ) into (A (22 ,B ), (B )). This (p',v")

is an injection.
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Proof': By L.l1.1.2. there exists precisely one homomorphism
v' of 22 (2 ) into D such that v = v'j, and this v' is
injective, If a =f//® ¢ D (M, B ), we define u'(a)

to be u(f) = [v(ds)]"l; w' is well defined on A (L , B )
since if fl//¢ ;= f2//432, we have that

and so u,(f1 ¥ ¢ 2) = u(f2 ¥ ¢ l)’

hence u(fl) X v(¢)2) = u(fg) ® v(® l).

Also because (u,v) is an homomorphism, it is easy to

verify that pu' is one as well., If f € M , then
i(f) = (fx & )//d& for any & ¢ B ,

and so w'i(f) = u(r = &) = [v(4>)]"1

= I-L(f):
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hence po=pti.
Ifa=10//9; ¢ (N ,B8)and B= ¢//4 ¢ X (B),
then
w'(a x B)

u(r, =2 ¢) = [v(g - ¥)1°t

[u(fl) xv(d )] x [v(¢1) o v(¥)I™L

'(a) x v'(B),

and so there exists an homomorphism (p',v') satisfying
wo=w'i, v =v'j.

Suppose that (i, v) is any homomorphism satisfying
L =i, v = vJ. Then since v' is unique, v = v', and if

a=f//¢& € (N ,B ), we have that

w(e//¢) xv(e) =n((£//¢) % 5(&))

= p(i(f))

= U-(f),

and it follows that p{a) = p'(a). This holds for every
ae (& ,D ), and so the uniqueness of (n',v') follows.
Finally, we have already that v' is injective and if

o, = i‘l//4> 17 % = _f2//¢2 are elements of W (M1 , D ),

1
and u'(al) = u'(az), then

w(ry) = v(d,) = n(f,) = v(e,),
so that
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Hence
d, =
fl LN f2 * é’l’
i.e. a) = a,, and so k' is injective.

We have shown that any pseudofield (& , D ) which
contains an isomorphic image of the quotient pair (&1 , B )
contains a consistent isomorphic image of (R (M , B ),
T3(® )). The next lemma shows that (XL (2 ,B ),

T23(%® )) is defined up tu an isomorphism by this mapping
property.

L.1.3.7. ' Suppose (M , P ) is a quotient pair, (Pl,Ql),
(PE,QQ) pseudofields and (il,jl), (12,32) are injective
homomorphisms of (2L , ® ) into (Pl,Ql), (PE’QQ) respect-
ively. Suppose further that (Pl’Ql)’ (PE’QE) have the
property that for every pseudofield (G ,§) ) for which
there is an injective homomorphism (u,v) of (&1 ,H )

into (C ,® ), there exist unique homomorphisms (p.l,vl),
(hysvy) of (Pl,Ql), (P,,Q,) respectively into (G , D)
such that p = ulil =iy, Vo= vljl = V5Jse Then (Pl,Ql),
(PQ,QE) are isomorphic.

Proof: The assumptions may be summed up in the following

diagrams,

TSee also L.1.1.3.
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(1) (21

In the first place, we take ((C ,3 ) to be (P2,Q2): and

(L,v) to be (i ) in diagram (1). Then there exists an

22 J2
homomorphism (I 2 J ) of (Pl,Ql) into (P2,Q2) such that

i, = I,i, and j, = J Similarly from diagram (2)

2 1t 191-
taking (C ,D ) to be (Pl,Ql) and (u,v) to be (11,j1),

we obtain an homomorphism (I2,J2) of (P2,Q2) into (Pl’Ql)

such that 1l = I212 and Jl = J232. It follows that
and
1y = (I;T5)4,, Jp = (3195)3,-

Taking (S , % ) to be (Pl,Ql) and (1,v) to be
(11,3 ) in diagram (1), (ul,vl) will be the identity map,
(1dP ,1dQ ), of (Pl,Ql) onto itself, and so from uniqueness

it follows that



I2I1 = id

Similarly

oy
(N
]

[N
o,

I
L P’ 192 Qy’

il
[
0,

where (1dP2,1dQ2) is the identity map of (Pz,Qz) onto
itself.

Now, id injective implies I, injective, and id

surjective implies Il surjective, fthus Il is bijective,
and it follows by similar reasoning that IE,Jl,J2 are all
bijections. It is now clear that (Il,Jl), (IQ,JQ) apre
mutually inverse bijections and that (Pl,Ql) and (P2,Q2)

are isomorphic.

1.4, Examples

We now list some examples of the use of the preceeding
theory; these examples vary widely in their content.
Example E,1.4,5, is the one we have most extensively
studied, and our results on this particular case will form
chapter 2.

E.1.4,1, T Suppose that R is a commutative-associative
ring with no zero divisors, regarded as a universal
algebra with binary operation (a,b) = a + b, unary

operations of the form a —» ac, ¢ € R, and a - -a, and

Tsee (1) Pg.43.
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nullary operation 0. If d # O and if a € R, we define
'?d(a) =ad, and B = [¢’dld e R/(0}Y). Then B 1is an
Abelian semigroup of endomorphisms of R, and in addition
¢d(a) = cpd(b), d # 0, implies that a = b, so that R, ®
form a quotient pair. It is clear that (X (R, B ),
22 (B )) corresponds to the field of quotients of R.
E.1.4.2. Suppose that 0. is the set of all positive
rational numbers and that Z is the set of all integers.
If r e Z/(0}, and if q € Gl'+, we define ¢r(q) = qr
and B = [¢r|r e Z /{0}}. Thus if Q" is regarded as
a universal algebra with binary operation (p,q) - pad,
unary operation q - q_l, and nullary operation 1, it is
clear that B is an Abelian semigroup of endomorphisms
of @ F. Additionally if q¥ =p’, r £ 0, then p = q, SO
that ¢l+} B form a quotient pair. It is clear that
T2( QF, B ) is isomorphic with the multiplicative group
of all rational non-zero powers of the positive rationals.,
E.1.4.3. Suppose that (& is the set of all continuous
functions on the real line, regarded as a universal algebra
with binary operation (f,g) — f + g, unary operations of
the form f = Af, A any scalar, and f —=> jif(t)g(x-t)dt
for any locally integrable g, and nullary operation O.

: X jxn—l
FOT‘ n = 1,2,3,..., deflne ‘pn(f) = den-l o an__e

fi

X .
o jolf(xo)dxo, and ¢O(f) f. Put

B = [¢n’ n=0,1,2,...}. Then B 1is an Abelian

ti.e. r is any element except zero.
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semigroup of endomorphisms of C§ , and in addition
¢rxf) = 0 implies that f = 0, so that GS ,ﬁﬁ form a
quotient pair.

E.1.4.4, Take Cgr as in E.1.4.3. and consider the class

@x = (glg € & and 3u1> 0, u, < 0 such that

g(u;) # 0 and g(u,) # 0}.

For £ ¢ & andge BF, define (1) = [ﬁf(t)g(x-t)dt.
Then it follows from a result of Titchmaprsh! that

¢>g(f‘) = 0 implies that £ = O, and that B0 = [rpglg e €%
is an Abelian semigroup of endomorphisms of C§ . Hence
@, B form a quotient pair. The resulting pseudofield

is related to Mikusinski's Operational Calculus; for a
discussion of this latter system, see 'Concluding Remarks'.
D.1.4.1.¥ We denote by (S the space of functions k,

of a real variable t, such that k(t) has derivatives of

all orders and

3 1lim lttmlk(p)(t)l = 0 for each myp = 0,1,2,... .
gl >

D.1.4.2. We denote by <i the space of functions f, of

a real variable t, such that f(t) has derivatives of all
orders and for each p = 0,1,2,..., there exists anm > 0O

such that

TSee (21) and aiso (13).

¥The space (& was first introduced by L. Schwartz.
See (20) Pg.89.

Whe space 7 was also introduced by L. Schwartz.
See (20) Pg.99, where 5. is referred to under the
name @ .
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I 1im e e (Pl ey 2 o,
AT
D.1.4.3.% We denote by X8 the class consisting of those
functions, integrable over the real line, which have
nowhere-vanishing Fourier transforms.
E,1.4.5. Consider the space - as a universal algebra
with binary operation (f,g) — f + g, unary operations of
the form f = Af, A any scalar; f - f(p),_p any non-
negative integer; and f — J.f(t)g(x—t)dt, g any element
of § ; and nullary operation 0, For k e G210 ,
f ¢ X, define ¢, (f) = jf(t)k(x—t)dt; then
B = [‘Pk“{ e E,2¢ } is an Abelian semigroup of

endomorphisms of ¥. . We shall show in the following
chapter that if t#k(f) =0 then f = 0, so that X , »
form a quotient pair. We shall later establish an
isomorphism between 22 (¥ , ’» ) and the class of Fourier
transforms of distributions of finite order, and show how
a topology may be introduced into ¥Q (., B ) in a simple
fashion, which will extend the algebraic isomorphism to an
homeomorphism1 .

A word on notation is perhaps in order at this point;
the class & & is easily shown to be an Abelian semi-
group under convolution, and is isomorphic to B under

the correspondence k = ¢ 1 Consequently we identify

T The space I occurs in the context of Wiener's
Tauberian theorem. See (24) Pg.25.

¥0:X>Y is said to be an homfomorphism if it is a
bijection and both © and 6™~ are continuous.




- o -

E n I and 3 , writing (X, S &) for

TN(2 ,MB ) ete., and using the convolution notation we
write :#k,a $ p @ h % k, and 4>k(f) as f ®¥ k. No confusion
is likely to arise from these conventions,

Further examples

1) Take (3 as in E.1.4.3., and take I to be the set
consisting of all the fractional order integration operators

¢a (o > 0), given by

f

$(£)

I

¢ () '1*‘(137 Jz (x-£)%1r(t)at (o > 0),

for £ € & . Then it is not hard to verifry that C , B
form a quotient pair. If f ¢ & and ¢a e ® | then
f//cba corresponds in a loose sense to the ath fractional
derivative of f.

2) Consider the class B consisting of all bounded measur-

able functions. Then B and ﬂSB form a quotient pair under

the convolution operation.
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INTRODUCTION TO CHAPTER 2

In section 2.1., some results concerning the spaces
%, &, and ¥ are proven. It is shown that L , with
a certain set of operations, is a universal algebra, and
that @55\23 provides an Abelian semigroup of endomorphisms
of L . In section 2.2. it is shown that & ,8,Z2¢ form
a quotient pair (T.2.2.1.); and in section 2.3, we review
those properties of (A(T, S ), N Q;ZS} ))
deducible from the general theory of chapter one. In
sections 2.5. and 2.6. some interesting connections are
established between ZA(TL , &8 ) and certain classes
of distributions: in this connection it is necessary to
present a summary of those results of distribution theory
which will be of use in sections 2.5. and 2.6., and this is
done in section 2.4, This section (§ 2.4.) is concerned
only with distributions in one dimension, some of the
lengthier proofs involved are given in the appendix.

Section 2.5. is devoted to showing (T.2.5.1.) that
there exists an isomorphism between ZX(7Z ,@0% ) and
the class of Fourier transforms of distributions of finite
order. Lemmas L;2.5.4. and L.2.5.5. contain the substance
of this result, these lemmas being brought together to
establish the isomorphism. In section 2.6. we identify a
sub-algebra of (XL, & ﬁm ) which is isomorphic with

the class of tempered distributions. Theorem T.2.6.1. is
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the key result T which enables us to establish this iso-

morphism, in T.2.6.2. The main results of these last two

sections are entirely fresh.

¥ Theorem T.2.6.1. would appear to have some intrinsic
interest, and I have been able to prove a variant (not
given in the thesis) for continuous bounded functions

and Ll—functions, rather than tempered and ) rxﬁnﬁ -
functions.
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CHAPTER 2

2.1. Review of example E,1.4.5,

L.2.1.1.7  If k €@, then k e@.

L.2.1.2. %+ If k €@, then L(x) = 2nk(-x).

L.2.2,3. " If ksok, €@, then (k; x k2)A (t) = ﬁl(t)ﬁz(t).
L.2.1.4, Iffe™ and k €@, then (f x k)(p)(x) =
(f(p)x k)(x) = (f = k(p))(x) for p = 0,1,2,... .

 Proof: The result follows easily from an application of
the mean value theorém and Lebesque's convergence theorem.
L.2.1.5. If f eX and k €6, then f ®* k € L .

Proof: The result follows from the previous lemma together
with the fact that for each non-negative integer p,

f(p)(x) is dominated by some polynomial.

L.2.1.6. If f e and k ¢ Gthen (f % kl) % k

1°%2
f * (kl * k2) = (f = k2) % k.

2

Proof: We observe that f is dominated by a polynomial,
and we then apply Fubini's theorem. The result follows
immediately.

We consider the space I to be a universal algebra
with the following set of operations;
(1) the binary operation (f,g) -> f + g,
(11) the.ﬁ&nary operations f -> Af, where A is any complex

number,

t See (20) Pg.105. "see(22) Pg.l1.
¥see (22) Pg.l2.
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(iii) the unary operations f - f(p), p =0,1,2,...,
(iv) the unary operations f — \ff(t)z(x-t)dt, where £ is
any element ofG;,

(v) the nullary operation 0.
The only one of these requiring any comment is (iv), and
it follows from L.2.1.5. that (iv) does describe a class
of unary operations on L ., It follows from L.2.1l.1.,
L.2.1.2., and L.2.1.3., that &, ™ 1is closed under con-
volution, and from L.2.1.4. and L.2.1.6. that B =~ I
is an Abelian semigroup of endomorphisms of & .

We now proceed to the proof that if f € X and
k € @nfm then f #® k is null only if f is null.

2.2. T ,6a% form a quotient pair

L.2.2.1.°" If k is integrable over the real line and
k(t) = 0 ¥t, then k = O.
D.2.2.1.% We denote by 3 those functions k, of a real
variable t, such that k(t) has derivatives of all orders
and has compact support.

It is not entirely obvious that @ confains any
functions apart from the identically zero function. An

example of a non-null function in & 4is given by the

'Mis follows from a result given in (22) Pg.45.

*The space D was first considered by L. Schwartz. See
(19) Pg.21.
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function equal to exp[1l/(t®-1)] for It! < 1 and zero for
et > 1.

We note that © 1s a subset of &.
L.2,2.2. IfgedD and k eZ ~ 0 » then there

o~ A <

exists an £ € ‘¥ such that £ € D and k x £ = g.
Proof: Since £ € D , 1t follows that /K € © . Define
2 to be the function whose Fourier transform is @/ﬁ. Then
N A A A
€ , and so 4 € & . Moreover kf = g, which implies
that k ¥ 4 = g.
T.2.2.1. IffeZ ,ke Eai and f x k = 0, then
f = 0.
Proof: If g is any function such that g € & , then there

exists an 4 € & such that k x £ = g. Since f x k = O,

we have that
(fxk)x £=0and sof xg =0, (1)

: f' - i <
Now it [g(t)el*tat ¢ D , then | (g(-t)e 1Wiel*tqr e D
for every real v. Hence, since (1) holds for every g such

that & € 2 , we have that
jf(t)g(t-x)ei(t—x)vdt = 0, for all real x, v,

and it follows from L.2.2.1. that f(t)g(t-x) = O for every
x and t; since g is subject only to the restriction that
& €D , it follows that £(t) = 0 ¥t.

v~

Corollary <L , & , It form a quotient pair.
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2.3. Review of the properties of
(Q(Z, @ N 7-:@ )Ja(@nm ))-

WW(ZE , @ o 73 ) is a universal algebra with the
same set of operations as % , which are defined on
(EZ, & A & ) as follows;

(1) if a=¢//g, B=h//k e 32 (% ,&8 . IR ), then
a+ B=(fxk+hxg)lsxk),
(i1) ifa=1//g € 22(% ,8 o L ) and p is any non-
negative integer, then a(p) = f(p)//g,
(i1i1) ifa=¢//g e A(T, & o I8 ) and A is any
scalar, then Aa = (Af)//s,
(1v) ifaj_-f//geﬂ(‘}:,@ﬂm)andﬂ,isany
element of & , then a x ¢ = (f % 2)//&,
(v) 30eA(Z, @, 18 ) given by 0//g for any
g € @; fal PAL
It is easily seen that I (£ , @ 4 5! ) is an Abelian
group under addition, the inverse of o being (-1)a, which
we shall write as -a. We shall call a(p), the p-th
derivative of a, and a ¥ £, where £ € & , the convolution
of a and £. It is clear that multiplication by a scalar,
differentiation, and convolution by an element of & are
each distributive with respect to addition in R (T , & A1),

We also have the following relations; (Aa)(p) = Aa(p),
Pl g2 (ax )P 2 ax 2(B), (o)) | ((p+a)
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(Aa) # 0 =2ANa=x ), (¢ % zl) % Ly = 0% (21 % 82) =
(a x 2,) % 4, A0 =0, olP) 0, 0% 4=0, 0a =0,
¢cx0=0; whereae 22(E, & o I ), p,q are non-
negative integers, E,El,ﬂe € @ and A is any complex
number.

It follows easily from an argument given in Chapter 1
that 32 (@G n I8 ) gives an Abelian group of automorphisms
of (T, B a8l ); ifa=1//ee R(T,E 8 )
and € = ¢/ € (G A28 ), thenax € = (£ % ¢)//(gxv).
The identity automorphism I is ¢ //& , where ¢ is any
member of & A I3 . The natural embeddings of =X in
R(E, CaB)and Ea®8 in TL(E IV ) will be
denoted by i and j respectively as in Chapter 1.

The next section gives a summary of the familiar
theory of distributions as developed by L. Schwartz and

others. We include 1t here for the sake of completeness.

2.4, Digression on distributions

D.2.4.1.7 If E is any set and if % is a family of
subsets of E such that
(1) & € F,

(i1) Fl,FQe{F = FlnFQe{F,

YSee also (2) Pg.57 and (23) Pg.6.
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(i1i) IP F's FESE and F' ¢ ¥ then F ¢ 5§ ,
then we say that {* is a filter on E,
D.2.4.2.1 If E is any set, {%* a filter on E and if
D = K is such that, Fe{x = 3IF' € B such that
F'S F, then we shall say that ® is a basis of the filter
F .

Any set Y8 of subsets of E is a basis of some filter,
3+, on E provided
(i) & ¢ B
(i1) B;,B, e » == 3AB e ® such that B€ By n B,.
The filter A¥ corresponding to such a set B consists of
all sets having a subset belonging to B .
D.2.4.3.F We say that a set E is a topological space if
for each x € E, a filter ¥ , is given such that
(i) F € '{S-'x = x € F,
(i1) F e & <= {ar' ¢ ‘,}‘x such that, y € F' =>

F € ?F'y).

In such a situation we call :§ax the filter, or family, of
neighbourhoods at x, and if %x is a basis of ’@x’ then
we say that B x is a basis of neighbourhoods of Xx.
D.2.4. 4, " If E is a linear space over & in which a

topology T is defined so that the maps

EXE 3(x, y) >x+y¢€¢E,

TSee also (2) Pg.59 and (23) Pg.7.
*See (23) Pg.8.
"See(23) Pg.20 and (10) Pgs.1-11.
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€ X E >(\, Xx) > Ax € E,

are continuous, then we say that E is a linear topological
space over € , and that T is compatible with the linear
structure of E,

L.2.4.1.T If E is a linear topological space over €
and if x € E, then N is a neighbourhood of x if and only
if N-x is a neighbourhood of 0.

In view of this lemma, if E is a linear topological
space, to specify its topology it is clearly sufficient to
give a basis of the family of neighbourhoods of zero for
the topology of E.

D.2.4.5,1 If E is a linear space and A is a subset of E
such that for every x € E there exists Cx > 0 such that for
all A € € satisfying IAl < Cx’ Ax € A, then we shall say
that A is absorbing,

D.2.4.6.1 If E is a linear space and A is a subset of E
such that for every A € & satisfying (Al < 1 and every

X € A, Ax € A, then we shall say that A is balanced.
L.2.4.2.1 7 family of subsets At of the linear space E
(over € ) is the family of neighbourhoods of the origin in
a topology compatible with the linear structure of E if

and only if it has the fdllowing properties;

(i) 1f N e , then 0 € Nj

(ii) VN e dt , 3IM e ¥ such that M + M N,

TSee (23) Pg.21.
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(i11) W e , v e € , A £ 0, AN et

(iv) every N € Yt is absorbing,

(v) every N € ¥t 1includes a balanced V e Jt ,

D.2,4.7. 1 We have already defined the spaces ~ and

& in definitions D.2.2.1. and D.1.4.1. These spaces may
be regarded as linear spaces over & , and we now ihtro—
duce topologies on each by specifying a basis of neighbour-
hoods of the origin in each.

(i) The collection of all sets of the form

GeD16P) ()1 < e

I whenever p < m, and Ix! » k, k = g,l,
’ *

1,
where {ek] is any sequence of positive numbers monotonically
decreasing to zero, and [mk} is any sequence of positive
numbers monotonically increasing to infinity, provides a
basis of neighbourhoods of O in =,

(1i1) The collection of all sets of the form
{'be@l]xk(b(p)(x)l < € for k < XK and p £ P},

where €, K, P are positive, provides a basis of neighbour-
hoods of 0 in &

L.2.4.3. The topologies introduced in the previous
defintion are compatible with the linear structures of &
and (& respectively, so that D , & are linear topolog-

ical spaces.

TThese topologies were introduced by L. Schwartz.
See (19) Pg.67 and (20) Pg.90.
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Proof: This result follows from L.2.4.2. when we observe
that the sets forming our bases are balanced in each case,
L.2.4.4.1 Irk e D , then k(x) 1s the restriction to
real values of the argument of an entire function of a
complex varilable.
Proof: Put k(z) = Jrk(t)eitht for z € € , then for real
x, ®(x) = k(x), and 1t is; clear that k(z) is an entire
function. We will denote the analytic continuation, 'fE,
of ﬁ simply by f:
D.2.1+.8.t We denote by 3 the space of entire functions
k, of a complex variable z, which are the analytic contin-~.
uations of the Fourier transforms of functions in ® .
B is a linear space over €, We introduce a topology
into & by taking neighbourhoods of the origin to be sets
of the form

N = (k(z)l ‘fk(x)eiXtdx e M),

where M is some neighbourhood of the origin in D .
L.2.4.5. The topology on 3 given by the previous
definition is compatible with its linear structure and so
3 1s a linear topological space.

Proof: This result follows easily from L.2.4.2. and
L.2.4.3,

D.2.4.9." We denote by ', &', 3' the spaces of

continuous linear functionals on D, &, 3 respectively.

Tsee (9) Pg.153. e space & was introduced by
I.M. Gel'fand and G.E. Shilov.. See (9) Pg.155.
¥See (19) Pgs.24% and 69, (20) Pg.93, (9) Pg.159.
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Elements of ', & ' and B3 ' will be called distributions.
L.2.4.6.* The following three maps are continuous.
(1) Dar>7ed,
fed,

(111) Cr>Ffe@ .

(11) 3 3f -

Proof: (i) If N is a neighbourhood of O in‘S s then there
exists M, a neighbourhood of 0 in D such that

N = (k(z)ik(t) e M},
and so if

ME = (r(e)l 2ne(-t) e M},

and if f € Mx, then ? € N, Since M® is a neighbourhood of
0, this proves (i).
(i1) If M is a neighbourhood of O in & and

N = (k(z)Ik(t) e M},

A
then if k € N, k € M. The result follows.
(111) If M is a neighbourhood of 0 in € , then M has a
subset N of the form

N = {k(x)] quk(p)(X)l < € forp <P, q<k},

for some € > O and some positive integers P and K. Put

£
ptoK+l,

A = I 1+1E‘2 dt, and choose €' such that 0 < e' ¢

Tsee (10) Pg.125 et seq.
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Put N = {k(x)llxpk(Q)(x)a < €' for p < P+2, q < K}.
Then if f € NK, a < K and p < P, we have, integrating by

parts, that

1x38(P) (5 f:Dq[tpf(t)]th,

<
S (a qQ-7, Py T
< 2 ()JIDPTeRuDTr(e)as,
r=0
q , o ,
< = (p! j 161 P+ 2 (2) (4§ g,
r=max(0,q-p)
q p-g+r  pH2-q+r
< 2 (Dp! J"t‘ * 1E! 120 (e a,
r=max(0,q-p 1+1tl2
a @}
< =z (*)pleae’,
r=0 T
< praftlper,
< e,

A
and so f € M,
A
D.2.4.10." IfF e D ' we define F to be the linear
functional on 3 given by <ﬁ,k> = <F,ﬁ>, k € 3 . In view
of the preceeding lemma f € 3' . TLikewise if F e 3' we
A
define F to be the linear functional on D given by
A A
¢F,k> = <F,k>, k € © , and in this case F e D'; if
5 A o~
F € &' we define F to be the linear functional on &
. A A s A '
given by <F,k> = <F,k>, k € & , and here F € G .
A
In each of the above cases F will be referred to as

the Fourier transform of F.

YSee (10) Pg.128.
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L.2.4,7.1 The following maps are all continuous:

(1) 2 3 p(x) = k(x)f(x) ¢ D , where k is any function
with derivatives of all orders everywhere,

(ii) G 5 r(x) > x(x)f(x) ¢ & , where k ¢ T

(1ii) B 2 £(z) = k(z)f(z) € , where k € &3

(iv) D s f(x) = af(Ax+L) € @ where A,p € R,
AZO0, a eC , and similarly for 3 and G ,
though 1 may be complex in the'case of 3

(v) D s £(x) = f(p)(x) € 2 , where p = 0,1,2,...,
and similarly for 3 and G .

D.E.M.AALF (i) If k(x) has derivatives of all orders

everywhere, a € € , p a non-negative integer and F ¢ D!

we define kF, oF and F(p) by

<KF,f> = <F,kf>, f ¢ D

2

<aF,f» = <F,af>, f ¢ D

3

<F(p),f> = (-1)P <F,f(p)>, fed ,

respectively. It follows from the previous lemma that kF,
af, F(p) are all continuous linear functicmals on  £).

(11) In like manner if k € = , o €e C , p a non-
negative integer, we define kF, aF, F(p), for F é & ' and
it is clear that k¥, oF, F®) are all continuous.

(iii) Again as before kF, aF, F(p) are defined in A ' if

ked ,aeC , pis a non-negative integer and if
Fe 31,

TSee (10) Pgs.101,102,108,109. Also (19) Pg.35.
*See (10) Pgs.65-66.
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In each of the above cases F(p) will be called the

p-th derivative of F.

- ] .
If Fl,Fg € ' then we define F1+F2 by

<F_+4F

k> + <F,,k>, Yk e D

1, 2)

and it is clear that F,+F, ¢ D', Thus D ' is a linear
space., Likewise we may consider & ' and B ' as linear
spaces.

N.2.4.1. We shall dencte the null functionals in @',

@ ', 3 ' respectively by O; we then have that if k € @ ,
G s 3 respectively, then <0,k> = 0.

D.2.4.12.7 A function f of a real variable is said to

be tempered if it is continuous and dominated by some
polynomial.

D.2.4.13. a) If f is a continuous function and if p is

a non-negative integer, then we define DPf to be the linear

functional on @ given by
<DPr k> = (-1)P Jf(t)k(p)(t)dt, ¥k e D,

b) If f is a tempered function and if p is a non-negative
integer, then we may extend the functﬂxnlef, defined above,

to be a linear functional on (& given by

<DPf 1> = (—1)p‘§f(t)k(p)(t)dt, Yk e & .

TUsing the terminology of Bremmerman, see (3) Pg.83.

[l
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‘We note that in both the above cases DPr is continuous;
so that in part a) DPf ¢ ', while for part b) DPr ¢ &'.
We will, in either situation, refer to DPf as the p-th
generalised derivative of f. A distribution of the form
DPr is said to be of finite order.'
L.2.4.8,% IfrFe &', then there exists a tempered
function f and a non-negative integer p such that F = pPr,
D.2.4, 14, ! IfFe &'andk e &, or if Fe 3 ' and
k € 3 , then we denote by (F % k)(x) the function of a
real variable x, given by <F,, k(x-t)>. [The suffix t on
the funectional F is used to distinguish the variables x
and t: it indicates that F operates on a function of t.]
This function will be called the convolution of F and k.
L.2.4.9." IrFe @' andk e @ , or if Fe ' and
ke B, then (Fx k)(x) ¢ T .
L.2.4.10. % IfFe @'anik e @, or if Fe &' and
k € s and if p is a non-negative integer then
P x1) P ) - @FP x0)x) = @ =P,
L.2.4.11.7 Ir F e & ' ana ky,k, € @ ,orif Fe 3'

Q

and k.,k, € & , then (F % k.,) % k

1’72
(F x k

=F = (klaeke) =

l) 2

2) *® kl.
L.2.4.12. IfrFe ', ke @ anda ¢ @ , or if

Fe ©',ke3 and & € D, then

TSee (23) chapter 24.

Ysee (23) Pg.272, and (20) Pg.9s.
lsee (3) Pg.105.

qSee the appendix.
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{(F x k)(t) $ (t)at = <k F), &>.

\‘
Proof: IfFe G ',ke & and $e & , put ¥v(t) - &(-t),
and then we have that

A

<F, B>

It

<(KF), &>

- <ﬁt, %E(k xv)" (t)>
= <F_, (k % ¥)(-z)>
= (Fx (x x v))(0)

((F % k) ® ¥)(0) by L.2.4.11.,

i

f(F ® k)(t) $ (t)at.

The proof of the other case follows in similar fashion.

L.2.4,13.7 1 1,y @ L and for every k ¢ 3,

Jfl(t)k(t)dt = ‘(fe(t)k(t)dt,

then fl = f2‘

Proof: It is sufficient to show that, if £ € = , and if

for every k € B we have
\ff(t)k(t)dt = 0,

then £ = O,

Ifked ,u e IR, then e "%k(z) € 3 , and so

Jf(t)k(t)eiutdt - 0,

TSee (10) Pg.235-236.



- 50 -

for every u € IR . Hence by L.2.2.1., for every K e B,
f(t)k(t) = 0 for all real t,

and it follows that f = O, which proves the lemma.
L.2.4.14. Ifk € G then the map

3 » b (z) = j‘k(t)¢(z+t)dt e 3

is continuous.

Proof: The maps

3 24(x) > dx)eD,
D 3> ix) = ﬁ(-x)z(x) € O , where k ¢ &

D) Bh(x)ég—];tﬁ(-z)e 3,

are all continuous by L.2.4.6. and L.2.4.7. Hence if
k € & , applying these maps consecutively and using

L.2.1.3., we obtain that

3 34 (z) = f}c(t)cb(zu:)dt e 3

is also continuous.
D.2.4.15. IfFFe 3', ke @ then we define F x k T

to be the linear functional on 3 given by

<F X k, &> =<F_, [r(t) ¢ (z+t)at>, e 3

T Notation not in general use. This particular type of
convclution yielding a functional is familiar. For
the sake of clarity, we here use the symbol ¥ , to
make a distinetion from the other convolution (see
D.2.4.14.), which yields a function.
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In view of the previous lemma, F * ke J°'.

L.2.4.15. IfFe 3',ke@ and ¢ € J , then
(FX x)xd =(F=x ) x k.
Proof: Take Fe 3 ', ke & , ‘beB,thenifzeS,

(F* k) ®x¢) x4 =(Fx (k x$)) ¥ £ by D.2.4.15.,

Fx (kx¢x 2) byL.2.4.11.,

(Fxdé¢ )= (k x £)by L.2.4.11.,

((Fxé¢)xk) ®* 2 by L.2.1.6.,

and since this relation holds for every 2 e‘B » Tthe result
follows by L.2.4.13., using lemmas L.2.4.9. and L.2.1.5.
N.2.4.2. With the following set of operations, ' is

a universal algebra:

(1) the binary operation (F,G) = F + G,

(1i)  the unary operations F — AF, where A is any complex
number,

(iii) the unary operations F = F(p), p=0,1,2,... ,

(iv)  the unary operations F = F % £, where £ is any
element of & s

(v) the nullary operation O,

D.2.4.16. 1 Topologies may be introduced to the linear

spaces ', &', 3', by taking as a basis for neighbour-

TSee (23) Pg.197 and (10) Pg.u46.
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hoods of the origin in & ' all sets of the form
(FPe D'} KK P, ¢i>v <e , i=1,2,...,n.}

where € > O, n is any positive integer and #1, ¢2,..., $p

are any elements of & ; and similarly for &' and 3'.
These topologies are compatible with the linear

structures of ', &', 3' respectively, as may be

verified by use of L.2.4,2. We shall call them the weak

dual topologies.

L.2.4.16. 7 With the above topologies each of the spaces

D', ', ' is sequentially complete.’

2.5. The isomorphism theorem

L.2,5.1. Ifae (T, G~ )and 2 e 3 , then
ax 4ei(f) ST, € 1 ).
Proof: If a =f//g and £ € 3 , then 2/8 € 9, and so

3k € 3 such that g x k = £ (this follows from L.2.2.2.).
Hence a x £ =a x (g % k) = (f ® k) % g//g and so

ax 4 =3i(f ¥ k), and the result follows

L.2.5.2. If g(t) is a continuous function, then

32(t) € & such that £(t) > O ¥t and g(t)ﬁ(p)(t) is

tempered for each non-negative integer p.

TSee the appendix.

YFor a definition of this term see (23) pg.38.
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Proof: Put A =1+ Suplg(x)t for n=0,1,2,..., and

1Xi<n+l
An':'-A_n fOl"n= -1,-2’-3,-0n
If (
 exp[-1/(1-x%)] if 1x1 < 1
k(x) = 3
Lo if x4 > 1,
and B_ = Sup [lk(r)(x)l}, for each integer p, and if
p 1Ixi<1
0<r<ip!
kn(x) = k(x—n)/Bn, for each integer n, then we have that
(1) kn(x) =0 if Ix-nl > 1
(i1) kn(x) >0 if lx-nl < 1

(111) \kn(p)(x)l <1 if 0 < p £ Inf.

Put £(x) = Znifwkn(x)/((l+ln\)ln‘An]. The sum converges
for each real x, since at most two terms are non-zero;
furthermore £(x) has derivatives of all orders everywhere;
and £(x) > O ¥x. If m,p are non-negative integers and if

fxi > p+2, it follows that ![x}} > p+l, and so

and !kgfi]

Furthermore we have that A > 1 for each n, and so

\Xmﬂ(p)(x)t _<_ lem[l/(lExﬂl«!-l) ’EX]‘
+ /(1 Ixde1 1) IXIELY

> 0 as x —» o,
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Hence £ ¢ & . It follows similarly since (l~l—inl)‘nl >1

for n=1,2,3,..., that for any non-negative integer p,

if 1xt > p+2,

eGP (x)1 < 180 (/AL + 1/A(p40))s

however if x > 0, |g(x)l < A[y] and if x < O,

lg(x)r < A(Ex]+1)’ and so in either case if (x| > p+2,
2() 2P (x) < 2,

and the result follows.

L.2.5.3. If g(t) is a continuous function, £(t) has
derivatives of all orders everywhere and N is a non-
negative integer, then there exists a continuous function

Nn = 4(0¥) in D '. Ir in addition

h such that | D
g(t)ﬁ(p)(t) is tempered for p = 0,1,2,...,N, then h may be
taken to be tempered.

Proof: If ¢ € & , we have that

<DNg, £d>

<2(DVg), &>

I

(-1)N J.g(t)DN{z(t)cb(t)}dt

N ﬁ
(1" = () [ate)12™ ™) (5) ¢ @ o)as.
n=o0

It

TFor the definition of DV, see D.2.4.13. Note that DV
operates on a continuous function to give a distribu-
tiecn.



For n = 0,1,2,...,N, put

T (x) = g(x) 41 ()

>4
n n
I]."+l(x) = Jfo Ir(t)dt r = 031:233""':

so that if g(x)z(p)(x) is tempered for p = 0,1,2,...,N,
then I?(x) is tempered for n = 0,1,2,...,N, and r = 0,1,2,....

We have that

a1 ™) (0) $ ) (03as = ()[R

M) (e)at,
and it follows that

<s(dVg), &>

N
= (-1 j[nfo @y W2 )y 8 (e)as,
and so if
N
h(t) = 3 Ey - E)m ),
then
2(DNg) = DNh in ',

and if g(t)ﬂ(p)(t) is tempered for p = 0,1,2,...,N, then
h(t) is a finite sum of tempered functions, and so is

itself tempered.
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D.2.5.1. We shall denote by 3IQ3' the subclass of 3
consisting of those functionals which are the Fourier
transforms of functionals of finite order in %'.T
L.2.5.4. If F e £AJ' then there exists an

ae (L, B n L3 ) such that

i Maxd)=Fxe voe I

Proof: Since F € ?Qg ', there exists a continuous
function g and a non-negative integer N such that

F = (DNg)" in 2 '. It follows from L.2.5.2. that there
exists k € (& such that k(t) > O ¥t, and g(t)k(p)(t) is
tempered for each non-negative integer p. By L.2.5.3.

there exists a tempered function h, such that

h = k(DNg) (in @ ").
Put
8(8) = 35 k(t),
L= (Oh)" (in & '),
a=(Lx £)//(Lx14)e R(ZT, G085 ).

Then if ¢ e & , using lemma L.2.2.2., there exists v € 3
such that ¢ = £ % ¥, and so, using L.2.4.11., we obtain
that

il ax ¢)=Lxy.

Now if X e O , we have that

YSee D.2.4.1%.
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s A A
J (@ = ¥)(8) X(t)dt = <IL, X> by L.2.4.12.,

i

A A
= <d'h, (¥ X) >

il
A
v
=
3
~
<~
=
>
v

b
= f (F % & )(t)?’i(t)dt by L.2.4.12.,

and so it follows from L,2.4.1%3., that L ® ¥ = F % ¢
Hence i~1(a ¥ b ) =Fx0 ¥¢ ¢ 3 , which is the
required result.

L.2.5.5, If ae (T, En I ) then there exists

an F ¢ 23 "' such that
iMax ¢)=Fxd Vb e 3 .

Proof: If o = f//g, then the linear functional H defined

3

on (& by

~

CH, &> = Jf(t)cb(t)dt vo e & ,

A

is continuous and so H ¢ & !

is well defined and, by
L.2.4.8., there exists a tempered function h, and a non-
negative integer N, such thag ﬁ = D'h in @ .

By L.2.5.3., since 1/8 has derivatives of all orders

everywhere, there exists a continuous function k such that
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D% = (1/8)(D"n) in D '. Tt follows that D'h = &(DVk)
in "',
1 N N ,\A 1
If £(t) = % (-1)'k(-t), and F = (D"4)" in 3,
then F € A3 ' and it is easily verified that F = DYk.

For every & € 3 and X € D we have that

Pal
H,X> by L.2.4.12.,

i
A
>

[(H x ) (t) X (t)dt

<

A
DVk,Edx >

i

A "\
=<F, §&% >

<hF, x>

[t )1 ) () R (v)as,
by L.2.4.12. and L.2.1.6.,

and so it follows from L.2.4.13. that Hx & = (F x b)x g.

Hence

(f = ¢ )//g
(Hx & )//g
i(F = ),

a x ¢

It

and the result follows.
T.2.5.1. The isomorphism theorem,
A) The spaces XQ3' and (T, € o M@ ), with the

following system of operations, are universal algebras of

the same type. The operations are
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(1) the binary operation (f,g) = f + g,

(ii)  the unary operations f —> Af, where A is any
complex number,

(1ii) the unary operations f — f(p), p=0,1,2,...,

(iv) T the unary operations f = f x £, where £ is any
element of G; s

(v) the nullary operation O.

B) The spaces a3' and ZA(ET, @ I3 ) are iso-
morphic.
Proof: We show first that there is a bijection of
V(ZT, E A& ) onto ]R3,

It follows from L.2.5.5. that to each
ae (X, & o L& ) there corresponds at least one
Fe XA3' such that, vée 3, i *(ax &) =Fxd . If
for a given o there were two such F, Fl and F2, say, then
let’b =F2x¢ for every & e .3 , and so F, = F,. We
will denote the unique F, corresponding to o in the above
manner, by ©0(a).

If Q(al) = Q(ae), then we have that
(al - a2) xd =0 Vb e 3,

and by use of L.,2.4.13. it is clear this implies that

a; = Qy, and so © is injective. It follows from L.2.5.4.

Y We map the unary operation xf in DT, @ A T)
onto the unary operation % £ in ¥ 3°'.
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that © is surjective (on A.3').

We have already shown that, with the given system of
operations, XA (¥, @ A T ) and J' are universal
algebras of the same type. We now show © to be an homo-

b ]

morphism of A (& , B o & ) into 3'.

(1) Ifr ¢ € 3 , we have that for a0, € WN(E,E A1),

O(a1+a2) ®x & i-l((a1+a2) x ¢ )

= J'."l(onl # ¢ ) + :'L"'l(on2 ®# ¢ )

O(al) ®x ¢ + O(O‘e) x &
= [0(ay) + 0(ay)] ® ¢,
and so 9(al+a2) = O(al) + O(ae).

(11) If & € 3 , we have that for A ¢ € and
aeg(z,@:,\m)

o(Aa) % & 1" ((Aa) x &)

NCE R D)

N CEED,

1l

r(e(a) x ¢ )

il

(}\O(a)) ® 4’ s

and so 9(Aa) Ao(a).
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(i11) If ¢ € 3 , we have that for each non-negative

integer pand a € A (X , & 5 23 ),
Q(a(p)) ¥ ¢ = i_l(a(p)x ¢ )

17 ((a % ¢ )(P))

(17 (e x 3 )) (@)

(o(a) % & )(P)

= (o)) (P) 4 ¢ ,
and so O(a(p)) = (O(a))(p).

(iv) If ¢ € 3 , we have that for every £ € G and
ae (XL, G,88 ),

Olax2)xd =1 ((ax ) x¢)

(i_l(a ¥ ¢ ) 4

= (6(a) ®* ¢ ) % £

(6(a) % 2) % ¢ , by L.2.4.15.,

and so 9(a ® £) o(a) x 2.

(v) It follows from (ii) with A equal to zero that
0(0) = 0.

Finally we observe that the image of a universal

algebra M , under an injective homomorphism 9, in a
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universal algebra &  of the same type, is a subalgebra of
S . It follows from this that 223' is a universal alge-

bra of the same type as, and isomorphic to, :2:1( I,@ nm).

2.6. An identification of &' in (X , &, Z8 )

Ir £(z) € B then f(x) € (3 , and so we may write,
somewhat 1oose1y,‘3 = . Moreover it 1s not hard to
verify that every neighbourhood of O in & has.a subset
which is a neighbourhood of O in 3 . Consequently every
continuous linear functional on (€ is also a continuous
linear functional on &3 , and is in fact, by D.2.4.10. and
L.2.4.8., an element of ZAJ'. Now if we make the
observation that (& ' is a subalgebra of XX ' with the
usual system of operations, then it is clear that by the
mapping 0! gefined in T.2.5.1., &' may be isomorphically
embedded in A(X , G » 20 ).

We give in this section a precise identification of
its image. We show that this lmage consists of those
elements a, of 3J(3F, & » 78 ) which are such that for
every g € & o I3 there exists flg] € = such that
a = f{gl//s.

D.2.6.1.7 Ifae (L, G ), then we shall put

%a ={g e @@ 3r e T such that £//g = a}.

TSee also D.3.1.5. et seq.
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ﬂba will be referred to as the base class of a.

L.2.6.1. If & € & , then there exists k e & n 28 such
N
that k(&) > 1&(£)1, ¥t e R

Proof: Put
A
Mn= Sup {“b(X)‘], n=l:2’3,'--,
1IXi>n-1
Mo = Ml’
M =M _, n=-1,-2,-3,... .
Put
- j expl1/(x®-1)] for ix1 < 1,
k(X) =

L O for ix! > 1,

A= Inf (¥k(x)}, so that A > O,
1x1<LAo

B_ = Sup [lﬁ(p)(x)(] for each non-negative

Ixi<1 integer p,

kn(x) = k(x-n)/A for each integer n.

If m is a non-negative integer, then since @ e & R
N
IxTd (x)1 = 0as x - %, and so (n-l)mMn - 0 as
n.—> ®@. Put A = Mn + 1/(1+1n|)ln' for each integer n, so

that An > An forn=0,1,2,..., An > Mn for every

+1
integer n, and for each non-negative integer m,

(n+1)mAn — 0O as n = =,
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+00
£(x) = = Ankn(x).

n=-

The sum converges for each real x, since at most two
terms are non-zero. Furthermore £(x) > O ¥x, and £(x)
has derivatives of all orders everywhere. If m and p are

non-negative integers, then we have that

12 (P) (%)) < 'x'm(AEX]’kéig(X)* + A[x!+1’k§£g+1(x)']

i

(Bp/K)lxtm[AEX] + Aryan)

IA

(BP/K)([EX]l+l)m{A[x] + AEX]+1]

- 0 as i1x{ = o=,

It follows that 4 € G; . PFurthermore for each real x,

either kEX](x) > 1 or k[ (x) > 1, and so if x > O,

x]+1

2(x) - & (x)

A[x]k[x](x) + A[x]+lk[x]+1(x) - P (x)N

2 A[x]+1 - M[x]+1

> 0,

while 1f x < O,
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8(x) = 1§ (N = Apyqkyy(®) + Apqaikyge () - 18 ()1
2 Apxd 7 Mix]
> 0.

Taking k € @& A T to be such that k = 2, the result now
follows.

Corollary If ¢, € & for i =1,2,...,n, then there
exists k € & o T such that (k—4>i) e@®q T for
i=121,2,...,n,

Proof: We have that for each i = 1,2,...,n, there exists
k, € & ~ 4% such that Qi(t) > b (e ¥t e R,

1 R
Put k(x) = 2;_jk,(x), so that k(x) ¢ & and

A .
k(t) = 5 .k, (t) >0, i.e. k € G4 . We have that

[
>
—~
o+
o —
l
£
P
o+
g

and so (k—¢>i) e @ 4/ for each i =1,2,...,n,
T.2.6.1. Suppose that for each k € (& 5 IR} , there
exists a tempered function of x, f[kl(x), with the property

that for any two functions k,,k, € G,

f[kl] ¥ k. = f[kl * k2].

2
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Then there exists a functional F € & ' such that
(F = k)(x) = flkl(x) Wk e G, 1B .
Proof: If & € & , then there exists k ¢ @, & such
that (k-&) ¢ G n I8 . Put Ffld ] = £[k] - flk~ ¢1,
then [ ¢ ] is tempered. If kysk, € ©n &  are such

that (kl-¢),(k2-¢>) e Gall andif fe Bl we

have that

(el ] - £l - 1) = 2

i

fl2] = ky - £l2] = (kl— )

]

L] ® ¢

[f[ke] - f[k2-¢]} ® £,

by symmetry,

and so

£l ] - f[kl-4>] = flk,] - flk,- ¢ 1. '
It follows that f[4 ] is a well defined tempered function
for each & € (3 .
If ky € G n X3, then there exists ky € RN
such that (kg'kl) € CBAT8 ,andif £ e Gn IV , we
have that

f[kl] ¥ ) = f[kg] ¥ § - f[ke-kl] ¥ b

f[kl] x 8,

so that 'f'[kll = f[kl] for each k. €¢ €A )0 .

1

t . ‘ L 2T o
TA'e depends en o s/ spTenglen 1T TR0,
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If ¢, ¢, € & , then there exists k € & /B
such that (k- ¢1),(k-(¢13£ 4>2)) € Qn ¥ ; ang if
4 € Qgrq A then we have that

(f[cbl] ¥ &) x4 = (k] - f[k—¢l]] x b, x4

L] = s’Pl ® ¢2

(elk] - £le-(P ) ®¢p1) = 4

flé, x ¢,1 %8,

R

and so f[ $,] % (‘,‘»2 =flp, = 4)2] V<}>l,¢2 €& .
Take 6(x) € <) such that f&(x)dx = 1, and put
5 _(x) = n6(nx) for each positive integer n. Then if

n
beE ,¥(x) = &(-x) and y e R ,

Qomrmy

FI¥ ) (yx)5, (x)ax = [ 20¥](y- Z)s(x)ax

= fl¥1(y) as n > =,
by Lebesgues convergence theorem. It follows that

(flo,] = ¥)(y) = fWil(y) as n > =,
and in particular that

1 %06 1(t) $(t)at = F[v1(0) as n > =,
If F € Z ' is the functional given by

<F,» t > = f’f[an](t) ¢ (t)de, deE,
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then from the above, 1im <F_, $> exists for each 4 € @ ,
n->wo o

and so, from L.2.4.16., it follows that there exists an

F € &' such that

(Fxv)(y) = flvlly),

for each ¥ € & and every y € R .
Hence if k € @, % , we have that

(F % k)(x) = flk](x)

= f[k] (X),

and the theorem is proven.

T.2.6.2. Ifae (T, Gall )and B =€, 10 ,

then 6(a) ¢ &' T, and conversely if F ¢ & ' and

a=0"Y(F), then B_= &, .

[Reminder: © is the isomorphism of IQAJ3' and

(T, @ AT ) given in T.2.5.1.]

Proof: If ae (X ,E L ) is such that B, =G, 1%,
then for each k € G 5 T¥ , there exists a function
flkl(x) e X, such that £{k]//k = a. If k,k, € &,20 ,
then f[kl]//kl = f[klxkg]//(klxkz), and it follows that

f[kl] ® k. = f[klxkg]. It follows from T.2.6.1. that there

2
exists an F € &' such that F % k = £[k] for each

k € 2% . Hence a = (Fxk)//k, and we have that for

TIn the sense that O©(a) may be extended to a continuous
linear functional on & .
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every ¢ € .3 ,
-1
1" (axd)=F=xd.

Hence the restriction of F to 3 ' is equal to ©(a), and
it follows that ©(a) € &', in the sense previously

explained.

Conversely if Fe @G 'and k € Go 1% , then
(FPxk)//k)xé =1Fx¢) Voe 3,
and so if we put a = O-l(F), we have that
a=(F x k)//k,

for any k € G p BY . It follows that iﬁa =@n 5 .
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INTRODUCTION TO CHAPTER 3

The first four sections of this chapter are largely
concerned with topological aspects of an arbitrary quotient
pair X ,?5 . In section 3.1., some new concepts are intro-
duced. These allow us in section 3.2. (T.3.2.1.) to use
any topology given on A to derive topologies on certain
subalgebras of 3QX(2AL,M ). Section 3.3. contains a
number of theorems which relate properties of ¥4 and ‘B
to topological properties of certain subalgebras of
T, B ); theorem T.3.3.5. being of particular import-
ance for establishing, in sections 3.5. and 3.6., the
continuity of certain operations. In section 3.4. we
consider an interesting sub-algebra of ZJ(RU .M ); the
space X (X, B ). (The space ﬁo(z ’@ﬂm ) was
that sub-algebra of X3 (3 , @nm } which was shown in
chapter two to be isomorphic with fthe class of tempered
distributions.) We show, firstly, that if X is a complete
Hausdorff linear topological space, and if each & ¢ pis}
is a continuocus endomorphism of L , then 230(ix,,15 ) is
also a complete Hausdorff linear topological space. After
this, other aspects of :Xlo(ax ,B ) are considered, in
particular a family of sub-algebras of & (ML , B ) is
constructed: the spaces ?:ln(dl ,2 B ), n=1,2,3,... .

Various aspects are looked at, including the question of
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distinctness of the ?311CZC,ﬂ5 ). The section concludes
with some examples to0 illustrate different situations which
may arise.

The final two sections of this chapter are concerned
with topological properties of 22 o L,8 a8 ) and
(T, &S & ). The principal result of section 3.5 is
T.3.5.3., where i1t is shown that, equipped with a suitable
Z)O( T, E nZL8) is homeomorphic to &',

the class of tempered distributions, (&' carrying the weak

topology 05
dual topology. We also show in T.3.5.4. that more than one
topology on iZ can lead to the 00 topology on

;ﬁlo(ii.,Q% aZ3). 1In section 3.6., the main results are
T.3.6.2. and T.3.6.3. The former shows that there are
several topologies on SZ leading to the same topology,

(6, 3), on JNT, & nm), while the latter shows that
with the (o, 3 )-topology N, n(\ﬁ ) is homeomorphic
with the class of Fourier transforms of distributions of

finite order (when this class has the weak dual topology).

All the results of this chapter are believed to be new.
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CHAPTER

Throughout this chapter, M will denote a Universal
Algebra (M, 22 ), and ® will be an Abelian semigroup of
injective endomorphisms of U, i.e. U, B will form a

quotient pair.

3.1. Preliminaries

D.3.1.1. We will denote by LL (2L, 5 ) the class of

unary operations £, on ¥ such that for every dpe}‘% and

for every f € AL ,

E(f) = ¢ = E(f % ¢).

We have in all cases that © € (L, B).
D.3.1.2. 7V If X ¢ W (2, M ), then for each o ¢ XL (2, B ),

put
A(a) = X(r)// ¢,

where f, & are such that f//¢ = a . Note that if
fl//cpl = fg//¢2; then x(fl)//‘?l = X(fQ)//(b 29 so that
X is well defined on 2 (24, B ),

TThis definition is consistent with that given in
T.1.3.1. for the case X €¢X).
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D.%.1.3. Suppose that &' is a sub-algebral of A (U, ).
Suppose also that there exists a subset & of LI ( &, 8 ),
with the property that for every a € @ , and for every

£ ¢S , we have £(a) € i(21 ). Then we shall say that

(» and 3 are Wiener-like.

N.3.1.1. It is reasonable to demand some explanation of

the term 'Wiener-like'. Suppose that the situation referred
to in D.3.1.3. arises, and that & = ZA(24, B ) ¥, Then

if & € ®» and &€ € (X , we have that for every f e L,
e(e//¢) e 1(20 ).

For each f € i1 define
X (£) = 17ve(e//4 ).

It is easily verified that the map X , 1s an element of

AL (4L, B ), and that for every f e 2,
E(f) = X(f) = & .

We may write this relationship as
£ = $x

We have therefore shown that under the given conditions,

if & € ® and if € €& , then there exists

TFor the purposes of this chapter, we will regard
(2, B as a sub-algebra of itself, but ve will

assume that if @ = (N,3D ), then N £ & . Sece
section 1.2.

¥ That this can happen, see L.3.6.1.
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X edX (24, ) such that £ = éX . This resembles
the following theorem of Wiener.

TWiener's Theorem Denote by B the class of functions

integrable over the real line whose Fourier Transforms

vanish nowhere. Denote by C the class of functions

integrable over the real line whose Fourier Transforms
have compact support. Then if ¢ € B and if € € C, there

exists X € C such that € = & % X

D.3.1.4. Suppose that & is a sub-algebra of

Ty (W, ™) and that C <€ U (2, D ) and is such that

@ anda C are Wiener-like.

1) If, give any two distinct points ®,0, € @& , there
exists € € (I such that &(al) £ E(ae), then we shall
say that (3 separates (%

2) If every £ € (£ is an endomorphism of (¥ , then we
shall say that 3 is endomorphic on G .

D.3.1.5.} If o e X} (&1, ), then we shall put
B,=0%e M| 3f e W such that £//¢ = a}.

Q}a will be referred to as the base class of a .

D.3.1.6. We define XL (21 ,® ) to be

(ae (WU, BB, =51

TSee (11) section 9J, from which this result is easily
deducible.

D.2.6.1. may now be seen to be a special case of
this definition
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L.3.1.1. %) J(ax, B ) is a sub-algebra of 32 (AL ,® ).
Proof: Suppose that = is an n-ary operation of the
Universal Algebra 21 , and that Gy sOpseees@ € ,1’.10({11 , R ).

Choose ¢ € ¥ and take £, € 2L such that

a; = fi//4> , i=1,2,...,0.

Then if B = = (al’GE’“"an)’ we have, denoteing

bodo.r.od (r terms) by ¢[r]) that

B - = (eyx ¢ M pmalnot] e x g0y gln),

And so,

B = B(fl’fQ"“’fn) x® ¢ [n-l]//¢[n])

IRV

()1

Hence & € B g- Consequently _{T}B =P : the result
follows.

L.3.1.2. 3 (& , B ) and B are Wiener-like, ™
separates %) O(.‘,") , B ) and B is endomorphic on
N, D).

Proof: We have that © € W (AL ,2 ). Furthermore if
£ e D and ae X O(QA,EB ), then there exists f € It

such that a = £//¢€, i.e. £€(a) = i(f). It follows that

3;:.10(,’1/1 ,B ) and ® are Wiecner-like. If a €

l’ae.’
E:_Qo(ﬁl ,’B ) and ay £ a,, then for any € € ¥ , we have
that &(al) # €(a2). Hence ¥ separates IAO(fIA I

Finally, since A1 ,“35 form a quotient pair, (’5 is endo-
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morphic on X' , and so, on A (21 ,MB ) ang ZQ_O(TZ/T , B ).

%.2. The topology in the general case1

T.3.2,1. Suppose that #1 , D form a quotient pair and
that 2L is a topological spacetwith topology T. Suppose
also that & 1is a sub-algebra of 52 (2% ,® ), and that
G = V(U ,B ) is such that & and & are Weiner-
like.

For each a ¢ @ define the family (& o Of subsets of

@ to consist of all sets of the form

a

(ele e & ang i“lq»j(a) €Ny, §=1,2,....n.),

where n is a positive integer; ¢j’ j=1,2,...,n is an
element of @ and NS.L is a T-neighbourhood of i'l¢j(a).
Then for each a € & s & a is a basis of a filter

X on (¥ . The family of filters, [ & a]a e G 3,

provides a topology on @ . If every element of C is
injective on & , then &4 0 = e g Vo € G
Proof: 1) Proof that if G e & 4> then a e G.

Suppose that G € (& o’ then G is of the form
¢ = (Blp e & and i']'(bj(ﬁ) e N%, j=1,2,...,n.),

and so a € G.

"For a treatment of general topology, see (2).
ISee D.2.4.3,
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e &

2) Proof that if G;,G, € & , then G n G, o

Choose G,G, € @a, then

2

z -1
G, = (BB € G ana 1 ¢‘J(B) € N?, j=1,2,...,n.)
G, = (Bip € & ang i-le(ﬁ) € M?, j=1,2,...,m.}, say.
Put
J [\”j_n, .j= I’l+l,n+2,...,n+m,
1’ a
- Lc.lz J'NJ-, j= 1,2,...,1’1
J {M?_n, j = n+l,n+2,...,n+m,
and £ = n + m.

Then we have that

-1 .
G;n G, = (BiB € G and i xj(a) e Lo,

We have shown by 1) and 2) that @?a is a basis of a
filter ¥ on (2 . We next show that the family of
filters, {:E a\a € CE }, provides a topology, which we shall
call the (T, 8 ) topology, on (&

3) IfF e Zia, then o € F; this follows
directly from 1).
4) Proof that if F e ‘X% 4 then there exists

F' € %Ta such that if y € F' then F € &Y.
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Suppose that F € :}a, then F has a subset G, of the form
! -l H Y
¢ =(piBe@ and i q:j(ﬁ) eN(;, j=1,2,...,n.}.
Since X 1is a topological space, for each j = 1,2,...,n,
there exists M?, a T-neighbourhcod of i~1 8pj(a), such that

ir £, e M? then N(; is a T-neighbourhood of f.
Put

F' = (glB e & and i‘lq)j(fs) € M(;, j=1,2,...,n.}),

a
s 3

then F' € & Suppose that y € F', then 171 ¢j(y) € MJ

~S a‘
J=11L,2,...,n. Hence N? is a T-neighbourhocd of
i—l({a j(Y)’ j=1,2,...,n. Consequently G € @’Y, and so
F € :JQ'Y. The result follows.

We have now shown that the family of filters

{%aia € G’ } provides a topology on G . To complete the

theorem we prove:
5) If every element of (& 1is injective on &,

then (% = :Ga. To prove this, we have only to show

that any superset of a set which is an element of @'a, is

also an element of @a' Suppose that G € F = & and

G e (., Then G is of the form
¢ ={B'Be & ang i'lq)j(ﬁ) € N(;, j=1,2,...,n.}.
Put

a =1 .
J=NJ. 1 q;J(F), j=1,2,...,n,
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then M? is a t-neighbourhood of i'ltbj(a). Hence, if

N ={giged ang 173 ¢J.(B) € M?,

j=1,2,uoo’n-},
then N € @a‘
-1 -1 o}
If B € F, then 1 ¢»J.(r3) € i gbj(F) = MJ.,
j=1,2,...,n, and so B € N. Hence F € N,
Suppose that B € N but B £ F. Then we have that

B £ G. Therefore there exists p such that
171&  (B) £ NC.
"D p

Also since B £ F and all elements of {3 are injective on

-

Qf » we have that

17T (8) £ 17V 4 (F).
Hence

e .~1
17" ¢ (B) ;éNg w17 ¢ (),

and so B £ N. But this is a contradiction. Ccnsequently
if B € N, then we must have that B € F, that is we must
have that N « F.

It follows that N = F, and so F ¢ Gﬁa.

This completes the proof of the theorem.



3.35. Some general results

Throughout this section (& 3.3) we shall assume that
A is a topological space, with topology T, and that G
is a sub-algebra of X (21, B ). We shall further assume
that C € 11(2X , B ) is such that & ana & are
Weiner-like, and that & has the (1, C ) topology.
Additional assumptions will be stated explicitly whenever
they are made.

T.3.3.1. Suppose that 1(24) & & . Then the map
i 2 > C?

is continuous at f € X , if and only if for every ¢ € C§,

the map
¢V > W

is continuous at f € 2 .

Proof: Suppose that i s continucus at f € %I . Choose

¢ ¢{3 . Take any T-neighbourhood N, of ¢ (), and put
G =(Blpe@ ana 171d(B) e N}.

Then G is a (1, § )-neighbourhood of i(f), and so there
exists a T-neighbourhocd F, of f, such that i(F) = G .
Hence if g € F then i(g) € G, and so ¢ (g) € N. Thus
d(F) = N, and it follows that ¢ is continuous at f.

Suppose conversely, that every <p e (3 is continuous
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at f € ¥4 ., Take any (1, & )-neighbourhcod of i(f); this

will have a subset F of the form

F=(B8e® and 371 ¢j(6) € N.,, j =1,2,...,n.},

j’
where, for each j, NJ is a T-neighbourhood of ¢j(f).
Since ¢j is continuous at f, there exists, for each j, a

T-neighbourhood My, of f, such that <pj(MJ) S Ny. Put

n
M = ﬂ M._,
j=1 Y
then M is a T-neighbourhood of f. If g € M, then
Qj(g) € Nj, j=1,2,...,n, and so i(g) € F. It follows
that i(M) £ F.

This completes the proof of the theorem.

T.3.3.2. Suppose that (§ is endomorphic on (& . Suppose

also that = € XD and

. Iy

= I QUK - - XY > A
is a continuous m-ary operation on ¥ . Then

— - > % ™

T ExBx - oxE > C

is a continuous m-ary operation on CE
Proof: Chqose QsQnsen-50Q, € C% , and put a = E:(al,ag,
...,am). If F is any (7, @ )-neighbourhood of a, then F

will have a subset G of the form

G=(plpe® ang it 4,(8) €N}, § = 1,2,...,n.).
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For each j = 1,2,...,n, there exists a set of T-neighbourhoods,

(M M. ...,Mj ) such that each Mj . 1s a T-neighbourhood
k)

J,1°75,2°
=1
of i ¢>j(ak), k =1,2,...,m, and

B

)y = n%.

= (M .
( j,m hj

j’1,1~/IJ’2,.,.,1V1
Put

G, = BpeC and 1"1<§j(3) e M,

J,k’ J = 1,2,...,1'1.},

then G, is a (7,8 )-neighbourhood of o . Moreover if
=1

B, € G, k=1,2,...,m, then i ~¢ j(Bk) € Mj,k’

j =1,2,...,n. Hence

=~

= -1 -1 -1
= (177 ¢4(B),1 ‘bj(ﬁz),.-.,n. ¢ j(Bm)) € N?,
j=1,2,...,0.
That is
174 (E (By,Bys .. ns8,)) € 1

and so 53(61,82,...,Bm) € G & F. Therefore

ES(Gl,G G ) € F, and the result follows.

pree G
T.3.3.%. Suppose that @G is endomorphic on & . Then if
A1 , with topology T, is a linear topological spaces G,
with topology (7, € ), is also a linear topological space.
Proof: It follows from the discussions in chapter 1 that
(& 1is a linear space, and from the previous theorem that

the map
3 <G 3(e,B) > a+Be &

-

is continuous. It remains to prove that the map

YSee D.2.4 .4,
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C =< & 3(r,a) = ra e &

is also continuous. Choose A € € and o € (I . Suppose
that F is any (7, & )-neighbourhood of Aa. Then F has a

subset G of the form

G =(pIg e & and 1"1-¢j(5) €N, j=1,2,...,n.},

j,
where Nj is a T-neighbourhood of i~ % ¢j(Aa) = Ai~14>j(a).
For each j = 1,2,...,n, there exists ej > 0 and Mj’ a

T-neighbourhood of i-l<bj(a), such that if !'p-Ai < ej and

if f € Mj’ then uf € Nj‘ Put

€ = min(el,ee,---:en}x
and

U=1I(Blpe & ang 171 $5(B) e My, 3 =1,2,...,n.],

JJ
Then € > 0 and U is a (7, & )-neighbourhood of a. Moreover

if ju-Al < € and if B € U, then for each jJ,
wi td L (B) e N,.
J J

Hence up € F.
The result follows.

T.3.3.4. 7  Suppose that C separates (5 . Then:
1) if 2% is a T, space, so is G,

2) if Jx is a T, space, so'1s &

t For definitions of T,» T, and T, spaces see (18)
Pgs.52 and 53.



- o4 -

3) if A is a T, space (i.e. a Hausdorff space)}, so
is & .
Proof: ° 1) Choose a,B ¢ & such that a Z B . We must
show that at least one of a.p has a (7,3 )-neighbourhocd,
not containing the other point. Choose & € (8 such that
bla) £ $(B). Put =i (a), g = i""d (B). Then
f #g, and so there exists a T-neighbourhood N, of g, say,

such that f £ N. Put
V={ylye® anda i"té (y) e N).

Then V is a (7, ¢ )-neighbourhocd of B, and a £ V.

2) Choose a,B8 € 3 such that a # B . We must
show that there exists a (v, 3 )-neighbourhood of a, not
containing B, and a (7,Q& )-neighbourhood of B, not con-
taining a. Take ¢ ,f,g as before and choose T-neighbour-
hoods M,N of f,g respectively, such that f € N and g £ M.
Put

U={yly e & and i“1¢ (y) e M)

v

{yly € (% and i-lab(y) e N}.

Then U is a (7,{3 )-neighbourhood of a, and V is a (7,3 )-
neighbourhood of B. Moreover a £ V and B £ U.
3) Choose a,B € (3 such that o #B . We

must show that o and B pcssess disjoint (7,8 )-

YIr & nas only one element, then there 1is nothing to
prove: we therefore assume that & has at least two
distinct elements.



_95-

neighbourhoods. Take ¢ ,f,g as before and choose T-
neighbourhoods M,N of f,g respectively, such that M N =g
Put

U={ylye ® ana i“lcb (y) e M)

Ve=1{yly e & and i—lc{:(y) € N}.

i

Then U is a (7,8 )-neighbourhood of a, and V is a (7,8 )-
neighbourhood of B, Moreover if & € U, then i_lcb (8) e M,
and so i 1 (5) £ N. Hence 5 £ V. Similarly if & € V,
then 6 £ U. It follows that U ~ V = &

T.3.3.5. Suppose that X € 41 (2 ,B ) and that X is
such that for every $ ¢ & , $X e & . Then ir X
maps & into & , X is continuous on (& .

Proof: Choose o € {¥ , and suppose that F is a (v, )-
neighbourhood of X (a). Then F has a subset G, of the

form

¢ ={Blpe and 1_1433.(6) € NJ, j=1,2,...,n.},
where NJ. is a T-neighbourhocd of i"ld;j(X(a)). Put

U={(glpe® and 1"1¢jx(5) eN,, j=1,2,...,n.}.

J'J
Then U is a (1,3 )-neighbourhood of a, and if B € U, then

X(B) e G = F. Hence X (U) S F, and the result follows.
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3.4, Consideration of Qo(ﬂ,’}b ).

T.3.4.1. The Completeness ftheorem

Suppose that ¥ is a completefHausdorf‘f linear
topological space, and that every ¢ € B is a continuous
endomorphism of 2L . Then with the (1, B )-topology,
}Qo(ﬂi , M ) 1s also a complete Hausdorff linear topolog-
ical space. ¥
Proof: It follows directly from T.3.3.3. and T.3.3.4,
that X} (21,3 ) is a Hausdorff linear topological space.

Suppose that £ 1is a Cauchy filter | on ,'{10(.’21 B );
i.e. given any (7, ®» )-neighbourhood, V, of O € ?QO(QI B,

there exists U € @ such that
U - U g V-

Choose & € A . Consider i"l¢v (); we claim that this
is a filter base on X .
-1 =y
1) Proof that @ £ i ~¢ (§T).
If F € 1_139 (), then there exists C ¢ £ such that
F = i_1¢ (C). Since C must be non-empty, F is non-empty.

2) Proof that if F F, € i_lép(.@) then there exists

1’

Tror explanation of terms see (23) chapter 5.

¥To see that this is not an 'empty' theorem, consider
AX to be the space of bounded measurable functions,
provided with the norm: I'ffi = Sup I£(t)l. Take B
te M
to be the class of maps provided by & -functions
under convolution.
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Feild(R) such that F < F, A Fy.
If Fy,F, € i_l¢ (@) then there exist C,,C, € Q such that
F, = 1714 (C,) and F, = 1714 (C,). And so ir
F=17¢(C; 4 Cy), thenPei'¢p(R) ana F = F, n F,.
Hence i-l¢(@,) is a filter base on &L .
We claim further that if &) o 1s the filter generated
by this filter base, then 5¢ is a Cauchy filter on 2 .

Choose any T-neighbourhood M, of O € AU . put
: -1
V=I(pige (21,1 ) and 17" (B) € M}.

Then since & is an endomorphism of LL , &(0) = O, and so
V is a (7, D )-neighbourhood of O € Q,O(iu , 0 ). Hence

there exists U ¢ Q such that

U-U¢S V.
Put
-1
N=1 d’(U):

0

then N ¢ ¢ and N - N = M. It follows that g is a
Cauchy filter on 11 .

Since 2L is ccmplete, it follows that 64, converges;
and since AL is Hausdorff, there is a unique fg € 2L to
which 54, converges. Every T-neighbourhood of fcb belongs
to 5 d - We will denote the filter of tT-neighbourhocds

of a point f € 2L , by Ff. Thus for each & € O ,
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Consider any pair ¥, X of elements of B . Choose
any T-neighbourhood F, of f, x ¥. Since ¥ is continuous
on 2 , there exists a T-neighbourhood E of f+ such that
¥Y(E) € F. Moreover, since ﬁfx < 3, , E has a subset
of the form i—lX,(C), where C ¢ & . Hence F has a subset
of the form ¥1 1% (C) = i"1(X o ¥)(C), where C e & .

Hence
(\l
E;(fx x V) = ‘Q(XC V)

But we already have that

If(x e 1S Dixe)

And so we have both that SQ (x o y) converges to £ =¥,

and that 6(% o) converges to f(xc V) Consequently
fog 8V =Ty y)y ¥%¥ €D

Put o = f¢//¢, ¢ XD . Then a is a well defined
element of I:lo(b ,™ ). Suppose that V is any (1, B )-

neighbourhood of a. Then V is of the form

v=1(plpe X (2,B) and i’lq>j(a) €N,

j = 1,2,--.,n0},

where 4)3. € B» and N, is a T-neighbourhood of i"lcbj(a).

J
Put f g = 1“1433(@), then N, is a T-neighbourhood of

. . -1
f‘¢j. Hence Nj contains a set of the form i ¢j(Uj)’



- 90 -

where UJ. c & s J=1,2,...,n., Put

U

it

(Bl1e e X (2, B ) and 171 (B) € 174 ,(v,),

j=l,2,--.,n.}
n
= {1 U..
j=1 Y

Clearly U & V and U ¢ .Q . Hence V ¢ é: . It follows
that converges to a € Z)O(fll B ).

L.3.4.1. Suppose that (P is a sub-algebra of T (AL ,"B )
and that every element of 2 maps @& into &, so that
Gr:-,, B form a quotient pair. Then every element of B
maps @O(@,jﬁ ) into itself, and there is a sub-algebra
of ‘T)(A1, M ) isomorphic with ?:,)O(@ , R ). There is

one and only one such sub-algebra with the properties that
ir

I: :3:).0(@:;6 ) = ?Q("QX’;Q))

is the isomorphic embedding, then
1) Vae R (E,B), vde B,
o) x =I(ax ),
2) vwpe( &,
1(i(B)) = B,

where i denotes the natural embedding of Gt in
;5:,)0(@5 s ). Denoting this unique sub-algebra of
Z)(ﬂl, D) by @K, we have in addition that every
element of EB maps @X into itself.
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Proof: We have immediately that :{lo(@‘ , B ) is a sub-

algebra of () (AL, D ), B»), and that every element of
% maps ?;)O( &, B ) into itself. Moreover under the

natural embedding I_, say, AL , B ) is isomorphic with
NI (2 , P ), B). Furthermore if a € (@O(@,Jﬁ) )

and if & e B , then

Igl(a) x ¢ = I;l(a ¢ ),
while if B € @ , then

-1/,

I -(1(B)) = B.

Hence there is at least one sub-algebra of 22 (X, B )
which is isomorphic with ?QO( (&, ) and for which the

isomorphism has the desired properties. Suppose that
1: D (E,B) > D(A,D)

is any isomorphic embedding having the properties 1) and
2) given above. Choose @ € QO(@ ,®»™ ). Then if
a=B//d, where de D and B G , and if B = g//¥,
where g € At and ¥ € ?3) s we have that

I(a) = I(B//d).

And so,

il

I{(a) x ¢ = I(B xd// D)
I(1(p))
= B

s//v.
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Hence I(a) = g//(‘t o V),

and clearly therefore, I is unique. It follows that & ®

is unique. Finally choose odC e @K, then for some

a € zlo(@gﬁ):

Hence each element of B maps (&* into itself.

L.3.4.2. If & is a sub-algebra of 3 (A, B ) such that
every element of ff) maps @‘ into itself, and if

GF = @, B ), then &= D(x,B).

Proof: Choose a ¢ 3Q(2X,») and suppose that a = f£//%,
where f e X and ¢ eB . Put B =1//(b ) e 1A (M!W,B).
Since (3% = S, B ), there exists y e & such that
Yy=8x% ¢ . That is, y = a. It follows that &= U, B).
D.3.4,1. Forn=0,1,2,..., we will denote by }:le(ﬂl,i{})
the sub-algebra, mn(ﬂl,ﬂ’i)}{, of 2(A,MB). For complete-
ness we will define :@:l(.ﬂl,fb ) to be 1(A1); clearly i(dx)
is a sub-algebra of Q(AX,B ).

N.3.4.1. Forn=-1,0,1,2,..., we always have that E;)n .
A, ®) &L @B ), Ir 1 (@) £ 2(2%, D), then it
follows from L.3.4.2. that ::’Qn(fl)l,’gz)) £x,B), n = -1,
0,1,2,...

L.3.4.3. Suppose that n > -1 and m > n+l, and that
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?Qm(b'?,t,ﬁ) =§:,)n(f)x, D). Then for every r > n, ?QP(M,‘;B)
-2, (2, B).
Proof: We have that
@n(ﬂl,%)gﬁ (Zx,B)e Qm(ﬂ,%).
It follows that @n(ﬂl,ﬁ) =:§Qn+l(ﬂ/t,;'6 ). Suppose that

for some r > n, Z]r(&l,‘g)) =§:lr+l(¥7\1,’<‘35). Then
go(ﬂ.r(&:% ):ﬁ ) = go(glr_!_l(‘&zl:?& ),%)

and so

n+1

;Qr%l(m’% ) = §3r+2(52,1 :?3 ).

The result follows by induction.T

N.3.%.2. Ifn# -1, it is clear that }Qn(&r,ﬁs) consists
precisely of those elements a € 3} (21, ) whose base class
is WoBo,, oW (n+1 terms). That is, those o € (A,
B ) for which, given any n+l elements of B, 4)1, 4)2, cens
¢n+1’ thére exists f € X such that a = 1‘.’//((}3:L o 4>2° ces®

ds) n+1)' ¥

For the remainder of this section (é}.h.), we will

assume that AU is a topological space, with topology T. We
will also assume that ',3\_’30(&1,’5(‘)) has the (7, ®) topology,
that };11(&1,‘}3) has the ((7,®),B) topology, and so on.
That is, '}Qn_!_l(ﬂl,‘(&), which is isomorphic to ﬂo(gn(m,
n),%B), carries the (Tn,;l’)) topology, where T denotes
the topology on ?Qn(ﬂl,'iﬁ). (n > ~1).

N.3.4.3., For n > 0, we will denote by T, the topology on

?i)n(:u,il’)) described above; we will write T instead of

©_, for the topology on %K.

TSee also E.3.4.1. FCileariy 1 (2X,B ) and
fﬁ" PDo,..oB (n+l terms) are Wiener—ilike.
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We will denote by I the natural embedding of

(24,8 ) into T, (A, B ) (n> -1 and m > 0).
T.3.4.2. The embedding

I: Elo(u,éﬁ)—?* E:ll(‘i"':zb)

is continuous.
Proof: Choose & € »» . By T.3.3.5. ¢ is continuous on
Zlo(ﬂl , 8 ). Hence by T.3.3.1., the map

I:Q (.8 ) > 0, (U,3)

is continuous.

Corollary ' If n > 0, then the embedding

T - }:Dn(;zj- ::B ) - \:i)n_*_l(u:(ﬁ )

is continuous.

T.3.%.3. Suppose that n > O and that the map

-1 _— . v

I (xR Ja,8)) > X @ ,8 )
is continuous. Then the map

I I (L, B ) S (L, D)

is also continuous. (Where we take for m > -1,

T (ﬁQ!n(ZL ,% )) to have the topology induced on it by

TIt can happen that i @ YI» QM ,B) is discontinuous.
To see this recall T.3.3.1. and consider the o-topology

(o~

on & given in D.3.5.1.
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Proof: Choose o € 3111021 ,® ) and take any T,

neighbourhood V, of a. Then V is of the form +

<2

v={(plpe 3 (21,B ) and $4(B) e My
i=1,2,...,0.),

4

where each Mj is a T ,-neighbourhood of ¢>j(a).i Since

n-1
the map

I (@, (LB ) S (LB )

is continuous, for each j, there exists Nj’ a T, -

neighbourhood of (Pj(a) such that

Put
U=(plpeX) (21,B) and 47j(B) € N,
j=1,2,...,J.1,

then U is a Tn+l-neighbourhood of a. Mcreover if

- €N .
BeUmn A (A ,B ), then $,(B) e My, § =1,2,...,7,
and so B € V., Hence

TN A 3 (2,8 ) e v,

o

*For consistency of notation, we will, when convenient,
ignore the precise distinction between 2 and i(RX )
This will allow us to always write V as we have done,
rather than make an exception and have to write, when
n =0, i*1<¢j(B) instead of & J.(5)-

"i“lcpj(a) if n = 0.
"“i‘lchj(a) if n=o.
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and it follows that the map

(R (2, B ) - R, B )

is continuous.

Corollary Suppose that n > O, and that the map

I (m,8) e 1(RQ, ,(&,D)
is an homeomorphism. Then the map

I:X (#,8) «— 1(Q (&, B))

is also an homeomorphism.

T.3.4.4, An alternative representation of the 7

topology on Eln(ix B ).

For each n > O and each a € gj_n(dl ,B® ), define

Qgg to be the class consisting of all sets G of the form

G={B‘5€:§:‘l ’

L2, B ) and 1716 (B) € M,

J
o= 1,2,...,J.3,

i o . n ,n n
where J is a positive integer, 4:1,.¢2,.,., ¢J.are elements
of BoBe ... =D (n+l1 terms), and Mj is a T-
neighbourhood of i_lzp?(a).
n . . .

For each n > 0 s  is precisely the filter of T -
neighbourhoods of a € ;{ln(ﬂi.,ﬂS ).
Proof: By induction on n. Certainly Q;g is, for each

pe X1 (,B ), the filter of T _-neighbourhoods of B.
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Suppose that for each B € EQ_n(ﬁI D), GBg is the filter
of 7, -neighbourhoods of B.

Choose o € 2 (21 ,“B ). Suppose that N is any

n+l
Tn+l-neighbourhood of a, then N is the form
N = {Blp € ﬁn+l(ﬂl , R ) and qu.(B) € NJ.,

j=1,2,...,J.3,

where Nj is a 7 -neighbourhood of dJJ(a). By hypothesis,

for each j, Nj is of the form

[3

.~1,n
Ny ={y[y e Q (A, D) and 177 ¢y  (y) e My,
k = 1,2,..o3K.j]J

where d)? . € B aBe --- oB (ni1 terms) and Mj I
2~ 3

is a T-neighbourhood of 371 g k:¢:§>j(0L). Put
J
n+l n
&J',k h q)j,k d:'J'
Then

= (Blp e X, (21, B ) and 17ETL(B) e my

k = 1,2,...,Kj, J=1,2,...,d.7.

Define KO = 0, and put

n+l n+l
£

k j,(k-Kl-Kg—.,.—Kj_l),

for k = (K1+K2+"'+Kj-l+l)’(K1+K2+"'+Kj—l+2)’

"’(K1+K2+'°‘+Kju1+Kj);

and j 1,2,...,d.
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Similarly put

M = Mj,(k-K -X

1 2".--"K

so1)s
for k = (K1+K2+...+Kj_l+l),(K1+K2+...+Kj~l+2),

""(K1+K2+"°+Kj—1+Kj)5

and j = 1,2,...,d.

Finally put K = K. +K_ +...+K

1HK5 I* Then we have that

N=(gBe X .. (IA,B) and i'lxb§+1(6) €M,

k
k =1,2,...,K.}.

n+1

Hence N ¢ @§2+1,

Conversely suppose that G € @Bg+l, then G is of the

f'orm
G = (Bipe M (M,B)and i o) e,
k =1,2,...,K.}.
Choose 4)? e BeDo... N (n+1 terms), and

¢k € B such that

+
0 1 _ Y &y, k= 1,2,...,K.

Put

N, = {yly e 23 (L ,B ), and i"lcbﬁ(Y) €M ],

Then N, is a 7 _-neighbourhood of ¢)k(a), and we have that

G=(Blpe A (W ,B)ana $ (B) e N,
k =1,2,...,K.}.
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Hence G is a 7 -neighbourhood of a. It follows that for

n+l
each a € 3,:.2n+1(7v1,'b ), @.2+1 is the filter of T .-
neighbourhoods of a. The Theorem follows by induction.
E.3.4.1. Take XX to be the set of all integers. Take
ﬁbl to be the set of all positive integers and ﬁb 5 to be
the set of all positive even integers. If ¢ e B , or if
beB ,, and if £ el , we take ¢(f) = £ ¢ = fx

"< ' denotes ordinary multiplication.) Then

(Here
L, B , form a quotient pair and so do 2,8 5- (We
may take the system of operations on X in each case to
be & , though the precise choice of a system will be seen
to be irrelevant.)

We have the following properties.
1. The case of Zx ,B 1
a) 2 (A, By) =i(L).
Proof: We have that i(IL ) = X (L, j?)l). Choose
a € Eﬁwa(il ) l) then for each ¢ € §51, there exists

f € AL such that a = £f//¢ . Hence there exists f; € ZU

such that a = fl//l. But we have that f; = f, ® 1, and so
_ i _ 3 t

a=1f x 1//1 = i(f;).

b) As a corollary, using L.3.4.3. we have that for each

n> -1, @n(ju-’ 3 1) = :Qn+l(;u" g "61)'

TClearly this result generalises; whenever #U1,%
form a quotient pair and ® has an identity element,

i) = [ (2x,8
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2. The case of R, B ,.

a) Ifn>-1then Q (,B,) 4 1 ,@,8,).
Proof: We claim 1//2“*2 € ,"le(,u , ;52), but
1//27% 4 0 (A, B ). Choose b1, bp.ens b€ B

n+2
Then 4)1 o by ..o d’n+2 has a factor 2 °; suppose

the other factor is ¥, so that ¥ is an integer. Clearly

we have that

V/2™2 /(b0 by i b ).

n+2 s
Hence 1//2 € f“)n+1(2’t’ j}z).
Suppose on the other hand that there exists f e X
such that

1//2n+2 _ f//2n+1 .

Then we should have that 2f = 1. But this is a contra-

diction. Hence there is no f € 21 such that 1//2n+2 =
£//2% Y 1le. 17727 £ D) L@, ). The result

follows.
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%.5, Consideration of :’Qo( T, A1)

We have already discussed some aspects of the class
}Qo(:’: , & o), see for example T.2.6.2. 1In this
section (é 3.5), we will consider some results concerning
this class, which arise from the content of the previous
sections of this chapter. We will take (&' to have the
topology given in D.2.4.16.

L.3.5.1. 330('}: , G A 22 ) and & are Wiener-like.
Proof: Certainly 230(5§ , & ATB) is a sub-algebra of
(T, @ Aa), anda € € M (X ,E AL ). Choose
a € ﬁo( T, S adt) and ¢ € (5 . Then by the corollary
to L.2.6.1., there exists &, ¢, € G 5 L such that

¢ = ¢+, Take £ ,f, € T such that

o= £.//4, = /],

Then we have that

o ¥ ¢

Il

onx<\>l+ax¢,2
%6 ,//6) + 1 x & ,//6,
).

1(f‘l+f2

~The result follows.
T.5.5.1. Suppose that T is any topology on & , compatible
with its linear structure. Then the resulting (T, @'0'23} )

and (7,(& ) topologies on }:}O(Tf: , &A1& ) are identical.
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Proof: It follows from T.3.3.3. that with either of the
above two topologies, 2Qo(it » & q M) is a linear
topological space. Since & 5 T8 €&, it follows at
once that any (1, & n B )-neighbourhood of
0 € }QO(I , & 4 BB) is also a (7, & )-neighbourhood of
0.
Choose any (T,{% )-neighbourhood of O € :QO(I, & A1),

F, say. Then F has a subset G of the form

Ny

G=1(BlBe R (T,EnT) and 17 (Brd,) €N,
J = 112:='°:n-]s

where n is a positive integer; ¢ 37 j=1,2,...,n,is an
element of & , and N‘j is a T-neighbourhood of O, For
each j = 1,2,...,n, choose ¢§, ¢§ € G§¢\§53 such that

1 2
LI S I

Choose, for each j, a T-neighbourhood of O, Mj’ such that

M., + M. = N,.
J 3 J
Put

H=(Blpe Q(T, EnlB) and i (Bry) e My,
k =1,2, Jj=1,2,...,n.}.

Then H is a (7, & L3 )-neighbourhood of O, and if
B € H, then clearly Be G « F. Hence Hs F,

The result now follows.



- 112 -

T.3.5,2. Suppose that T is any topology on & , compatible

~

with its linear structure. Then for each b€ & , and

each positive integer p, the maps
(T, Ead8)2a—>axd ¢ Ezlo(fi.,654ﬁ )
(L. 6all) 20— P e D (T,8 1)

are continuous in the (7, & A Z3) topology.

Proof: By the previous theorem, the (7, @5(\213 ) and

(t,& ) topologies on N (L ,@aZY ) are identical.
Considering the (7,(& ) topology on X)O(,‘Z," , G2 ), and
applying T.3.3.5., the result follows.

D.3.5.1. We Qill denote by o the topology of pointwise
convergence, on X . That is, 0 is the topology generated
by taking as a basis of neighbourhoods of the origin, the

class consisting of all sets of the form
(£l e T and [£(x )l < €, k =1,2,...,K.],

where € > O, X is a positive integer, and x,,X are

l’ 2" "JX‘

K
real numbers.

It 1s familiar that with this topology, I is an
Hausdorff linear topological space.

It follows immediately that with the (o, & ~ 28)
topology, 'CSQO(‘;{, » & ATE ) is an Hausdorff linear

topological space, and that for each ¢ € & , and each

positive integer p, the maps
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‘?‘\O(‘Z, GATE) 30 —> ax b € no(tt,@’né’%)

Qo(z,@n{ZE)aaQa(p) ¢« QAT , 6TV

are continuous.

Note that 3¢ ¢ @, 22 which does not provide
a continuous map of T into itself with respect to the
o-topology. Hence i : Z — ?Q_O(‘Z ;@ A3 ) is not
continuous with respect to the o and (6, © Ao X3 ) topologies.
T.3.5.3. The map 9, which was discussed in sections
2.5. and 2.6., provides an homeomorphism of }:}O(?’C NCIPWALS
(with the (0,@ 2 ) topology) and & '.
Proof: We have shown in T.2.6.2., that © is a linear
bijection of T (X , @~ W ) onte @'. From T.3.5.1.,
it follows that the (0, S an 23 ) topology is identical with
the (0, & ) topology on @O("Z , B a3 ).

Suppose that V is any neighbourhood of O in the

topology of & '. Then V has a subset of the form
(FiF € &' and | <F, q>r>l<e, r=1,2,...,R.},

where € > 0 and cbl, $ose s $p are elements of & . Put
M={f{f e T and 1£(0)} < €},
Wr(t) = 4>r,(—t), r=1,2,...,R,

N=f(alae R (L, @alB) and 1™ (axv,) €M,

o
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Then N is a (o, (g )-neighbourhcod of O € 3—30(2 , AR ).

If o € N, then we have that

| (17 a = ¥, ))(0) <€, v =1,2,...,R,

that is

{<o(a), ¢r)(<€, r=1,2,...,R.

Hence if a € N, then ©(a) € V, i.e. O(N) & V. It follows
that with respect to the (o, & ) topology on
R (T, Gn23 ), the map

Q:no(z,@ﬂm )"4 @'

is continuous.
We next show that O-l is continuous. Suppose that N
is a (0, € )-neighbourhood of O ¢ QO(T , B AT ).

Then N is of the form

N=tfaloe A (T,EAT) and 17 (ax¥,) e M,

r=1,2,...,R.},

where for each r, w1=€ & and Mr is a o-neighbourhood of

0. Put

R
M = Ql M

then M is a o-neighbourhood of O. Hence M has a subset M',

of the form

M' = {f|{f ¢ © and lf(ﬁj)l <& j=1,2,...,33,



where € > 0 and El,ﬁg,...,EJ are real numbers. And so if

N' = {aja € Qo(z,(; a &) and i-l(axwr) e M',

r=l,2’°..’R'},

then N' is a (o, & )-neighbourhood of 0 &€ EQ_O(Z RN )

and clearly N' & N. Put
= 3 - s k =R{(j-1) + 1, R(j-1)+2,...,R
® ) = vy (5o1)rlEyx) (3-1) + 1, R(3-1) IE
and j = 1,2,...,J.
Then for each k, ¢, (x) € G . Put

v

{(FiFPe @' and IKF, ¢, >1<e, k = 1,2,...,JR.}.

o~

Then V is a neighbourhood of O in the topology of &

If FeVand ace¢ Z)..O(CZ, & ~ I3 ) is such that ©(a) = F,

then
1<0(a), ¢k>|<e, k =1,2,...,JR,
and so
!(i_l(a ® wr))(ej)\<€i r o= 1’21""RJ j = 132""JJ‘
Hence i-l(a % wr) eM, r=1,2,...,R, and so a € N', It

follows that @-l(V) % N, and so with respect to the
(0, & ) topology on ZQO(Z , @ A I8), the map

ol @ > QT ,EnlS)

is continuous.
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The result now follows.
D.3.5.2. We will denote by ¢° the topology, on X , of
pointwise convergence at a € R . That is, ¢° is the
topology generated by taking as a basis of neighbourhoods
of the origin, the class consisting of all sets of the
form

(f[f e T and if(a)l < €},

where € > O,

It may be easily verified by use of L.2.4.2, that
this gives a topology compatible with the linear structure
of L . It is clear that for each a € R , the resulting
o° topology does not make T a T -space.
T.3.5.4., For each a € R , the (c®, @ ~ %) and
(0, @ A2%) topologies on QO(Z » & o IB) are identical.
Proof: It follows from T.3.3.3. that with either of the
above topologies, XJ (& , & AW) is a linear topological
space. It is clear that any (o, & n B3 )-neighbourhood
of O € ?QO(GE , & AYB) is also a (0, @ X3 )- neighbour-
hood of O.

Choose any (0, & I3 )-neighbourhood of
0e (T, E AX), P, say. Then F has a subset G of

the form

¢ = (plp e ) o(;: ,65,1133) and i-l(ﬁ % WJ) € Nj,

J = 1:2:--':J},
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where J is a postive integer, wl,wz,...,wJ are elements of

& n I8 , and each Nj is a o-neighbourhood of 0, Put

J

N = f}Nj, then N is a o-neighbourhood of O and so has a
J=1

subset M of the form

M={f|{f e and if(xk)|< €, k = 1,2,...,K}.
Moreover if

H=(BlBe R (T ,BaLl5) and 175 (Bx¥,) eN,

J = 152:---:J},
then HE G and H is a (o, @(\,Z[é‘)-neighbour-hood of 0. Put

$.(x) = Voo (ko1 ) g (FHma), v o= T(e-1)+1,3(k-1)42, .0, Tk,
and k = 1,2,...,K.

Then for each r, ¢ (x) € Cnl® . Pus

M' = {fif ¢ £ and \f(a)l < €},
and
H' = (BlB € _?Jlo(i , & AI8) and i'l(a *® dpr) e M',
r=1,2,...,KJ.}.

Then H' is a (0%, @, IR )-neighbourhood of 0 € mo(‘;:,gﬂm).

Moreover if B € H', we have that
(17HE = ¢ ))(a)) <&, r=1,2,... K],

and so

j(i—l(B x wj))(xk)l < &, j = 1:23---:J, k = 132,-'°:K°
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Hence i~1(6 * wj) eM, j=1,2,...,J, and so B € H. It
follows that any (o, @ A T )-neighbourhood of
0 € ?:10(‘1 ,B8AT3 ) is also a (6%, @ n T )-neighbourhood

of 0. Hence result.

Remarks on4§ 3.5.

It was shown in section 3.4. that for some quotient
pairs 2L , B , the spaces gan(ax , B ) (n = -1,0,1,2,...)
are all distinct, and in other cases the spaces ?lln(ﬂ;t , B )
are all the same. It is an infruiging question as to
whether or not all the spaces }Qn( T, EAM) are
distinct. I have not been able to answer this question.

A sufficient condition for the algebraic and topological
identity of all the X (X ,E n W ) (n > 0), would be
that any element of GSr,ﬂik should be expressible as the
convolution of two elements of 420 . For, if this
condition were satisfied, then we could use L.3.4.3.,
T.3.4.4, and the corollary to T.3.4.3. to prove what we
require. I do not believe the above condition to be a
necessary condition, but I am unable to establish this
either.

Theorem T.3.5.4. suggests the question of what range
of topologies on ¥ will lead to a particular topology on
EQO(I , G M3 ). I suspect that a wide selection of

topologies on & will lead to the (0, & By ) topology
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on 3Q O(E s @ ALY ). This problem raises the still
more general question of what range of ftopologies on 2L ,
for a given quotient pair X R I’) s Will lead to a partic-
ular topology on a Wiener sub-algebra ! of (2,8 ).
In the next section it is shown that A (X , & a8 ) is
a Wiener sub-algebra of itself, and in T.3.6.2. that a

number of different topologies on & all lead to the same

topology on LA (T ,E o I3 ).

3.6. Consideration of M (X , @, 1¥ )

Throughout this section (§ 3.6.) we shall take 3’
to have its usual topology, that is, the topology given in
D.2.4.16. We defined X\ R ' in D.2.5.1., and we will take
it to have the topology induced on it as a subspace of 3§ '.
L.3.6.1. A (X ,EaX ) and J are Wiener-like, 3
separates (T , 3 ~I% ) and 3 is endomorphic on
(T, lly).
Proof: Certainly 2Q(Z ,&E A 18 ) is a subalgebra of
itself, and 3¢ W (X ,E~AT8).¥ Choose

TWe say that & , a sub-algebra of IR (L B ), a
Wiener sub-algebra, if there exists (¢ = 14 (U ,B )
such that & and € are Wiener-like.

1:In the sense that each element of & provides by
convolution,a map of X into itself.
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ce V(T,EaL3)and & ¢ 3 . Then by L.2.5.1., we
have that o x ¢ € i(ZE ). Hence EA(ZL ,E A X% ) and
& are Wiener-like. Tt follows from L.2.4,13, that 3
separates ZA (X , @4 X% ), and since 3 =& , B is
endomorphic on X and so also on 2N (XL ,E A% ).
T.3.6.1. Suppose that T is any topology on € . Then

for each <b e & , and each positive integer p, the maps
(T, 6 W )20 —axé¢ € DT, )
DUE,EaW) 20— alP e (T, @01

are continuous in the (7, 3 ) topology.

Proof: The result follows immediately by T.3.3.5.

D.3.6.1. We will denote by s the topology on L generated
by taking as a basis of neighbourhoods of the origin, the

class consisting of all sets of the form
{(fi1f € © and |Jf(t) cpj(t)dt! <€ j=1,2,...,3.3,

where € > 0, J is a positive integer and ¢1, ¢2,..., ¢J are
elements of & .
It may be easily verified that with this topology,
% is a linear topological space.
D.3.6.2. We will denote by z the topology on & gen-

erated by taking as a basis of neighbourhoods of the origin,

the class consisting of all sets of the form
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{rir € £ and ijf(t)d>j(t)dt\ < € J=1,2,00.,d.3,

where € > 0, J is a positive integer and (bl, 4)2,..., ¢J are
elements of éa .

It may be easily verified that with this topology,
% is a linear topological space.
N.3.6.1. Apart from s and z, it is clear that (for each
ae R ) no two of the 0, 0, s, z topologies, on L , are
identical. To prove that s and z are distinct, take N to

be a set of the form
N =({flf ¢ X and lff(t)¢>(t)dtl < €},

where & € @A L3 . Then N is an s-neighbourhood of O.

Suppose that N has a subset N' of the form
N' = (£ff e T oand [[£(e)v (e)ae) < 5, 5= 1,2,...,7),

where 5 > O and wl’wQ""’wJ are elements of £3 . Choose
A > 0 such that [-A,A] includes the support of each

A . .

wj(t), j=1,2,...,J. Take g(t) € & , not identically
zero, such that g(t) = 0 on [-A,A]. Then for each x € R ,

and each j = 1,2,...,J, we have that
[etx-t)¥ (t)ae = o.

And so, VA e ¢ , Vx € R, we have that Ag(x-t) € N'.

Hence VA e € , ¥x ¢ R , Ag(x~-t) € N. Therefore
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H\Jrg(x-t)zb (t)at] < e WAell , ¥xelR .
It follows that for every x € R ,
[ex-t) b (t)at = o.

Hence, by T.2.2.1., we have that g(x) = 0 V¥x € IR , which
is a contradiction. It follows that N is not a z-
neighbourhood of 0 € X .

T.3.6.2. The following topologies on XA(X , @ ~ T%)

are compatible with its linear structure, and are identical

1) (0, 3), 3) (s, 3),
2)" (*, 3, 8 (z, 3).

Proof: It follows at ance that with each of the above
topologies, (X ,E X% ) is a linear topological
space., Denote by TLT the class of t-neighbourhoods of
0e XA(X ,E 4T ). We have at once that
)
Ue ¢ =>Ue Tt
(02, &) "o, 3V

and

Ue It UeM .
(z, 3) = (s, 3)
To complete the proof we will show

a) U € TL(O',S):)UETL(Z ,8)

2

o) Uefﬂ_(s,s)_—.}Ueﬂ’t(oa’B)

Yeor any a € R
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a) Choose U ¢ Tt (g, &) then U has a subset V of the
2

form

V=(BlBe W(T, BnM ) and i1 x ;) €My,

j=1,2,...,J3.3,
where each M‘j is a g-neighbourhood of 0 € X and each Qaj
J
is an element of 3 . Put M = () Mj, then M is a d-neigh-
J=1

bourhood of O € x . Hence M has a subset N of the form

N={rf|f eX and ir(x )l < e, k =1,2,...,K.}.

Put
U.=(BlBe V(X ,EBaT3 ) and i_l(Bx q:-j) e N}

I

(Blp e (T, BalE ) and 1(17H(B = & ,))(x ) <,

k =1,2,...,K.}.

J .

Then (} U, = U. Put ¥J(z) = & _(x +z), for each j and k.
j=1 J k Yik

Take ¢ € 3 such that & (t) = 1 on the support of

A . t .
cbj(-t), ji=1,2,...,J.' We have that for each j and k,

m

LB = & ,))0) = [(7HB ® ¥ D))(e) b(t)at.

Put
L={flf e T and lff(t)<b(t)dt| < €.},

then L is a z-neighbourhood of 0 € L

Put

f'Iha’t: this is possible is proved in chapter four.
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W= (BlBe W(T, S8alD) ang i'l(sxwg) €I,

kK =1,2,...,K.},

then W'j is a (z, 3 )-neighbourhood of 0, and so is W. If
Bew, then 1™ (Bx¥)) €L, k=1,2,...,k j = 1,2,...,J,

and so
Ve x ¢>j))(xk): <€ k=1,2,...,K, 3 =1,2,...,J.

Hence B € U, and it follows that W= U and so U is a

(z, 3 )-neighbourhood of 0 ¢ (T ,E A W),

b) Choose U € %}‘(s 5 ) then U has a subset V of the
LN

form

v={elp ¢ (T, 8T ) and 177(B % $,) €My,

i=1,2,...,J.3,

where each.cbj is an element of ;3 and each Mj is an
J

s-neighbourhood of 0 ¢ X . Put M = (A!Mj, then M is an
=1

s-nelghbourhood of 0O € X and so it has a subset N of the

form
N ={f]f e ¥ and \ff(t)wk(t)dt% <€ k=1,2,...,K.},

where each ¥, e & . Put
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Uy = (BB e T, G &) and 17 (Bx ¢,) e
=Blpe R(ZLT, S n2B) and
l,f(i_l(ﬁ ® q‘>j))(t)wk(t)dtl < e, k=1,2,...,K.}.
Then j{i}luj S U, and each U, is an (s, B )-neighbourhood of
0. Put

| r
Yyxla) = [ @ylamud (au)a,

P2
L}

then :&j,k ed , 3=1,2,...,7 and k = 1,2,...,K. Further-

more we have that for each j,k,

-

(17HB ® (el (elas = @M = X, ))(a).
Put

L=1(flfe X and tr(a)! < €},

then L is a o--neighbourhood of 0 ¢ X .,

Put
-1
Wy = Bipe V(X ,EA2) and i (Bxxj,k) €L
k:l,g’uoo,K}
J
W= {1 W, ,
j=1 Y

then W is a (0%, 3 )-neighbourhood of 0. If B € W, then

iJ(i'l(a * <pj))(t)1l/k(t)dt’; < e j=1,2,...,7,
k = l,e’loc_’Kv

Hence B € U, and it follows that W€ U and so U is a
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(o2, R )-neighbourhood of 0 ¢ (T , G A IV ).

This completes the proof of the theorem.

With the (o, 3 ) topology, it follows immediately
that (T ,S 4 ) is an Hausdorff linear topological
space. (See L.3.6.1., T.3.3.3. and T.3.3.4.) 1In addition,

o

from T.3.6.1., we have that for each ¢ € { and each

positive integer p, fthe maps
AT ,EaT )20 — axd ¢ W(E ,Gg(\iIE )
WE ,BaB )va—aP e W (T,E8n20)
are continuous.
T.3.6.3. The map

0: (T ,E€aMW ) = 1P

2

provide an homeomorphism of Zl(ii ,G;f\QX}), with the

(0, 3 ) topology, and 3.

Proof: We have shown in T.2.5.1., that @ is a linear
bijection of (X , S I ) onte TIJR'. Suppose that
V is any neighbourhood of O in the topology of 21 3'.

Then V has a subset of the form
(FIF € 31 3 ' and I<F, ¢ >i<e, r = 1,2,...,R.},
where € > O and «bl, ¢2,..., ¢R are elements of 3 . Put

M= {fif € £ and {£(0)| <€},
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"Ifr,(z) = (Pr,('z): r =1,2,...,R,

N=(8lpe V(T ,EnM) and 1™ axv ) e,
r=1,2,...,R.}.

Then N is a (o0, 3 ) neighbourhood of 0 € D (X , & I ).
If B € N, we have that
!(i.‘l(s X wr))(o)‘ < e, r = 1,2,-10’R0
that is,
i<o(B), ¢P>I<e, r =1,2,...,R.
Hence if B € N, then 9(B) € V, i.e. O(N) € V, It follows

that with respect to the (0, = ) topology on 3Q(FE , G n TR),

the map

is continuous.
We next show that 9_1 is continuous. Suppose that N
is a (0, 3 )-neighbourhood of 0 € 3} (X, & ~ I¥). Then

by the previous theorem, N has a subset N' of the form

N' = (BlBe QA (T ,EA23 ) and i_l(ﬁxwr) e M,

r = 1,2,000’R0},

where for each r, wr € 58 and Mr is a z-neighbourhood of

R
0. Put M = fﬁ}Mr, then M is a z-neighbourhood of 0. Hence
r=1
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M has a subset M' of the form

=
i

{flf € T ang lff(t)xj(t)dt! <€, j=1,2,...,7),

where € > 0 and 'X,l, Xg,...,XJ are elements of 3 . And

so if

Nr

(Blpe (X, Enl0) and 1™ M (B v ) en),

then for each r, N is a (z, 3 )-neighbourhood of O and
therefore a (o, B ) neighbourhood of 0 ¢ X (X, CINALER N
Put N" = ‘%Nr’ then N" is a (0, B ) neighbourhood of

0 ¢ f‘—,:].(£=} @,’n‘m ) and N < N, For r = 1,2,...,R and

J = 1:2:-0-JJ: put

r,J

¢ .(z) = err(u—Z)'Xj(u)du,
then (br,j(z) e 3 . Put

v, = (FIFP ¢ 23 ' and|«<F, ¢r’j>i<e, j=1,2,...,J.}.

R
Then V = |} V.. is a neighbourhood of O in the topology of
=1

. r=
TA3'. Moreover if F e Vand a e (T, & +18) is such

that 0(a) = F, then for each 1, j,

1<o(a), ¢ r',3'> | <e,

and so

ig(i'l(a *® wr))(t)'xj(t)dtl < €.

Hence i_l(a *® wr) eM, r=1,2,...,R, and so a € N", It

follows that 0 1(V) £ N. and so with respect to the
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(0, 3 ) topology,the map
ol MB35 (T, EaTD)

is continuous.

The result now follows.
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INTRODUCTION TO CHAPTER 4

This chapter is concerned with a generalisation
(T.4.2.1.) of a theorem of Wiener's, and with connections
between this result and the material of the preceeding
chapters.

The proof of theorem T.4.2.1. depends on a theorem of
Ingham's concerning functions with compactly supported
Fourier transforms, and in section 4.1. a proof of Ingham's
theorem is given. Also in this section we prove a variant
(T.4.1.3.) of Ingham's theorem, and a theorem (T.4.1.2.)
concerning spaces of type (& . The proof given of T.4.1.1.
is essentially Ingham's original proof. Theorems T.L4.1.2.
and T.4.1.3. are believed to be new.

The conditions involved in Ingham's theorem lead
rather naturally to a function class A , defined in

section 4.2. It turns out that, for every A(t) ¢ A ,
Ala + b) < A(a) + (D)

for every real a and b, and because of this inequality it
follows that the class, S:g, of functions f(x) such that
f(x)exp[A(x)] € Ll, is closed under convolution. Further-
more Ingham's theorem guarantees the existence of functions
f(x) € §Z§ whose Fourier transforms are compactly supported.

4"
It is particularly on these two properties of LJE that the
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proof of theorem T.4.2.1. depends. We prove, in addition
to theorem T.4.2.1., a number of results of a similar type:
theorems T.4.2.2., T.4.2,4, and T.4.2.5. Theorem T.4.2.3.
is a partial converse of T.4.,2.1. Section 4.2. concludes
with L.4.,2.8. and T.4.2.6., which provide the basic link
with the material of the previous chapters. All the main
results of this section are believed to be new.

In section 4.3, connections with the first three
chapters are developed by means of a number of examples of
quotient pairs and Wiener-style theorems. One of these
examples concerns the spaces 65‘3 (B > 1) considered by
Gel'fand and Shilov in (10). To conclude, the existence
is demonstrated of an extensive family of quotient pairs
based on the function spaces [:i introduced in section
4.2. All the results of section 4.3, are believed to be

new.
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CHAPTER 4

4.1, Existence theorems

T.4.1.1. Ingham's Theorem |

Suppose that A is a well-defined, non-negative even
function of a real variable %, and is such that A(t)/t
decreases monotonically to zero as ¢ = «, Suppose also

that £ > O. Then there exists an integrable function f,
/\
not identically zero, such that f is supported by [-£, 4]

and for which there exists a positive constant A such that
Pf(x)t < A exp[-A(x)] ¥x e R ,
if and only if the integral

| dx

r® Ax)
\.‘l X

converges.

o A(x)
Proof: 1) Suppose that ] 32 dx converges. Put

wix) = A(x) + lx\l/e, so that ; Eééldx converges, and

i is an even non-negative function such that w(t)/t decreases

monotonically to zeroc as &t — o,
o]
We have that the sum = p(n)/n® converges, and so
n=1
there exists a positive integer n,, such that

o
by e““z(n) < 42@’
n=n_ +1 n
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ang
ei(n,) 4
n 2 °
o)
Define
ep(n,)
> for n=1,2,.. sD s
Do
Pp =
el (n)
—;2 for n = no+l,no+2,no+3,... .
Then we have that
0
Z p. < 4.
n=1 =
For N = 1,2,3,..., put
r N Sinp vy
Tl —5—— ity #0
n=1 ny
<
[0 o]
Since (Sinx)/x = 1 + 0(ix!) as x — O, and since 2 p,  1is
n=1

convergent, we have that in any finite interval the
sequence {fN(y)} converges uniformly to a function f, which
is evemn, not identically zero, and continuous. Moreover

if N > 2, then

if 1xi <1

if 'xt > 1.

| 1
togx)r < ] 1
P1P2¥
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Hence f(x) is integrable and
A A
ty(t) = f(t) as N - o,

uniformly in t € W . Now for each N > 2, fﬁ is supported
N N -

by [~ = Pp> 2 pn]} hence we have that f is supported by
o D=1 " n=1
[-2p, = pn], and so also by [-4,4].
n=1 n=1

Since p(x) = = as x = » and p(x)/x = 0 as x = o,
there exists X such that for every x > X,
[n(x)1 > n  ,
and

[n(x)] < x .

Take x > X, and put m = {p(x)]. Then we have that

If(x)) <

[ A

—
|H

o —

I~
0}
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Since f(x) is even, the result follows,

2) Suppose that f? Aﬁg)dx does not converge. Put pu(x) =
Alx) + 2txll/2, so that f; H£§ldx does not converge.

Suppose that there exists an integrable function f(x), not
identically zero, and a positive constant A such that ? is

supported by [-£,£], and
if(x)t < A exp[-u(x)] ¥x e R
Then we have that
if(x)) < A exp[-?lx‘l/z] ¥x € R
Hence for each positive integer n, and each real ¢,

3 ?(n)(t) f(ix)nf(x)eiXtdx.

It follows that

!f(n)(t)l

|~

J[txe e (x ) ax

con [ P exp[-u(x)Jax.
AS J o

For each positive infteger n, put
e

1 xn_exp[-u(x)]dx.
Jo

We have that
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n 4 00
A < *[ xnexp[-xEL%—l]dx + [ xneXp[-E(x)l/g]dx
n o n v L
n
I
n 4 00
< n4 [ xn'lexp[—xgi%Ll]dx + 2y2n+lexp[—2y]dy
J o n J 2
n
4 n4 nr® pay -n? % 2on+1
<n( ) | v Texpl-ylay + 2e ‘f y exp[-ylay
p(n™) Yo o
b, nt B -n?
= n (-~E—) (n-1)! + 2e (2n+1)!
w(n")

n
2n4(-—EE—) (n-1)! , for all suitably large n,

4
w(n')
5 n
< 2n? (o)
win’)
2n5 n
< (-~ ) , for all suitably large n.
w(n’)
ooy (x) o u(xt)
Now since J 22354 dx is divergent, so also is J =e——tdx,
1 x® ¥ 1 45
and therefore the sum 3 Ei%—l diverges. It follows that

oo -

2 (An) D'ys divergent. Hence, using the theory of
n=1

Fa
quasi-analytic functions1 , since f(x) is zero outside

{-2,8], it is also zero throughout [-£,£], which implies

YSee (4) and (7).
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that f is identically zero. But this is a contradiction.
Hence there is no integrable function f, not identically
zero, whose transform is compactly supported, and for which

there exists a positive constant A such that
Fr(x)] < A exp[-n(x)] ¥x e R .

Suppose however that there exists an integrable
A
function g, and a positive constant B such that g is s

supported by [-£,£2], and
(g(x)! < B exp[-A(x)] ¥x ¢ R

From part 1) of this proof, we may choose an integrable
function h, not identically zero, whose transform 1is
supported by [-£,£], and for which there exists a positive

constant C such that
th(x)l < C exp[—2{xll/2].

Put

fal

F(t) = j é(u)ﬁ(t-u)du.

Then F(t) is supported by [-2£,24]. Moreover
A 2
F(-x) = 4n®g(x)h(x),

and so if we put

£ (x) =
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A
we have that f(x) is integrable and that f(t) is compactly

supported. For each real X,

I£(x)1 < 2n B C exp[-A(x) - 2ixl1/2]

il

27 B C exp[-p(x)].

Consequently f(x) is identically zero. Hence (g(x)h(x))
is alsc null, and since h(x) has only a countable number

of zeros, it follows that g{(x) is null. Hence the result.

Note on spaces of type .

I.M. Gel'fand and G.E. Shilov have in (10)
considered at some length spaces of type & . Using

t ¥

their notation ', we have that

ﬁ,‘ng= {f}f‘ GS y and ¥a < 1, Vp‘=o,l:2:n-~1

EICa o such that for all real x,

(P %)) < o, pexPL-1%1].].

2

They show in (10 ) that, for each B > 1, G;g contains a
non-null function. However, using Ingham's theorem, we
can easily cbtain the following stronger result:
T.4.1.2. The intersection

Moo
\ i g
B>1 P

TSee the appendix for details, and also (10) Pg.166 et seq.
*This is shown in the appendix.
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contains a non-null function.

Proof: Put

-~

'—(—16—01,%";67-)‘2 if \tl _>_ e
®(t) = -

Poig) /b if 1t} < e?®.

-~

Then, using Ingham's theorem, we have that there exists a
non-null function, f, such that ? is compactly supported,

and such that
£(t) = O(exp[- # (t)]) as t = + =.

Choose any non-null X -function, X . Then f % X is

non-null and for each non-negative integer p,

(X )(p)(x) = (f =% :K,(p))(x); by L.2.1.4.,

= O(exp[- # (x)]) as x = +=» t,
Hence f ¥ X € {Ml @;g
B>1
T.4.1.3., Suppose that A is a well defined non-negative

even function of a real variable t, and is such that
A(t)/t decreases monotonically to zero as t - ®, Suppose
also that £ > O. Then there exists an integrable function
g, not identically zero such that é is supported by

[-£,2] and such that

g(x)exp[A(x)] ¢ LY,

T For justification see the proof of L.4.2.3.
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if and only if the integral

[s.¢]
f Aiél dx
i l x

converges.

. . o A(x) .
Proof: 1) Suppose that the integral ] 2 dx exists.
Then by Ingham's theorem, there exists an integrable
function g, not identically zero, and a positive constant

A such that g is supported by [-4,£] and
le(x)l < A exp[-A(x) - !x!l/e],

But then (g(x)exp[A(x)] € Ll, and the result follows.
2) Assume conversely that the integral does not
converge. Suppose in addition that there exists a non-null

function h, such that

h(x)exp[Ar(x)] € Ll,

A

and h is supported by [-£,£]. Put ¢ (x) = h(x)exp[r(x)].
Select any X € D , not identically zero. Then 22- has
only a countable number of zeros. Take B > O such that
[-B,B] includes the support of X .

Put

g(x) = (h = X )(x),

then g € Ll, and 8 = X , so that £ is supported by

[-£,2], and g is not identically zero.
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Define
+B
nix) = gkiﬁ-B) for x > O,

and put pw(x) = p(-x) for x < 0. Then u is an even, non-

negative function, and clearly w(x)/x is monotonic

decreasing to zero as x — «, Moreover f? “iﬁ) dx does
o Co s . © A(x+B) .
not exist, for if it did then -fl ET:))] }ould also exist,

and so therefore would ‘IT Aﬁ§l ax

Suppose tx| > 2B and |t} < B. Then we have that

Ix~-t) < ixl + B,

and so
A(x-t) N A(1x1+B)
Ix-¢tt = jxtv + B
_ 2u(x)
T oxd
Hence

Mx-t) > 2u(x) 11 - 2,

and since

t t
ll-§!=l—@§1
1
235

we have that for |xi > 2B and 1t} < B,

Ax-t) > u(x).

It follows that if jxV > 2B, then
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1 (x)i

In

rB
J P X ()1 1d (x-t) exp[-A(x-t)]dt
B

~B
expl-n(x)] } X (et b (x-t)ldt

fA

o~

expl[-w(x)1{Sup I'K,(t)!}J { & (u)ldu.
TR

i A

But, by Ingham's theorem, g can satisfy no such inequality.

The result follows.

4,2, A generalisation of Wiener's theorem |

The main result of this section is T.4.2.1.
D.4.2.1, We will denote by A the class of functions A,
of a real variable x, such that

a) A(x) = A(-x) Vx e R ,

b) Mx) >0 ¥ e R,

c) for x > 0, A(x) is monotonlc increasing,

d) for x > 0, A(x)/x is monotonic decrcasing and

tends to zerc¢ as X tends to infinity,

@ Ax)

1 T2 dx exists.

e) the integral J

N.4.2.1. Conditions c¢) and d) are sufficient to ensure

that A contains only functions which are, excepting

fsee (24) for the original version which relates to
Fourier series. The generalisation given here deals
with Fourier transforms, see (11) section 9J. For

other types of generalisation see (17) chapters & and 7.
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everywhere ccntinuous.

L.4.2 1. If A e A , and a,b € M , then
Ala+b) < A(a) + A(b).
Proof: Suppose firstly that a,b > 0, then we have that

ah(a+b)

a+b < Ma),
and
bA(a+b)
a+b < AD).

Since A is even,

Hence in this case A(a+b) < A(a) + A(b).
if a,b < 0, we have again that A(a+b) < A(a) + A(b).
Sinceh(x) is monotonic increasing for x 2> 0, we have

that if a2 > 0 and b < O, then

Ala+b)

In

Finally if b = O,

A(a+b)

PN 1]

A{a-b)
Aa) + A(-b)

A(a) + A(b).
then for any a, we have that

A(a)
A(a) + A(0)

Aa) + A(b).

The result follows.

Extensive use

will be made of this lemma throughout
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the reéniinder of chapter y ¥

D.4.2.2. For each A € A\ , we define the function classes

,‘Bi, ?3)\, Qgi, Q)\ as follows

a) §3: = {fIf(x) is measurable and (f(x)exp[A(x)]) is
bounded on R .}

b) ﬂ3h = {f1f has continuous derivatives of all orders,
and for each non-negative integer p, f(p) e D :.}

) 5= (r1(e()explA(x)]) e L)

{f1f has continuous derivatives of all orders,
) e & g.]

i

.
d) LY

and for each non-negative integer p, f(p
L.4.2.2. If A(t) e A and a e R , then A(at) € A .

Proof: This is easily verified.

L.4.2.3. Tf A € A , then there exists f € B, A L,

A

A
not identically zero, and such that f € ® , f is supported

by [-1,1], and £(t) > O ¥t e W

1/2

Proof: Put pu(t) = A(t) + 161~ <, so that L. € A and

7O = t,
7

g € ﬁ}&, not identically zero such that g is supportcd

by [-1,1]. Select X e & , not identically zero, and

By Ingham's theorem, there exists a function

put
hix) = (g 2 X )(x).

Then h(t) possesses continuous derivatives of all orders,

1 It is interesting to note that if @ is a locally
bounded functicn such that p(x+y) < m(x) + pu(y) for
every x,y > O, then 3 1im p(x)/x = Inf p(x)/x.

K-> 00 X>0
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and for each p = 0,1,2,...,
nP)(x) = (g = x P))(x).
Moreover, for each positive integer p,

fh(p)(x)lexp[u(X)] < exp[u(xﬁi lg(x-tNh | X:(p)(t)ldt

i

‘Jlg(x—t)leXp[u(x—t)]! Xi(p)(tﬂ
explu(t)ldat

(Sup jg(u)exp[p(u)]t} [.llc(p)(t)
uelk N
explu(t) ]l dt.

I~

f

A

Hence h(x) ¢ ﬁ} we Since X, has only a countable number

of zeros, it follows that h is not identically zeroc. Also,
A
h is supported by [-1,1].

Put

f(x) = fh(x—t)ﬁ(-t)dth

Then for cach positive integer p, there exists a constant

Kp such that

!f(p)(x)l < Kquexp[—u(X~t)]eXp[—u(t)]dt
- Kpjhexp[-h(x~t) - |X-tll/2— Ae) - rt‘l/g]dt
< erxp[—A(x)]\(exp[—lx-tl1/2~\t!l/2]dt.

Hence f ¢ ﬂS A Moreover we have that

F(t) = 1h(e) 2,
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so that f is not identically zero, but ? is suppeorted by
[-1,1]) and is nowhere negative. In addition since @ and

o,

X. have continuous derivatives of all orders, so also does

A
s hence f ¢ )]

o

L.4.2.4, Suppose that A € A , and that a5 %y, By By

are such that -« < a, < Bl < a. € 52 < +o, Then there

1 P
exists £ € B , q L1, such that f ¢ & and in addition
g(t) = 1 on [Bl,ag], ?(t) > 0, f(t) is supported by
[a,85].

Proof: TFor j = 1,2, put Aj = 2/(Bj—aj), Bj = -(aj+53)/
(Bj-aj), sc that Aj > 0. Define AA_(X) = A(ij) e N,

1,2, chcose fJ € ijkA 0 Ll such that
A N s 'j
f.e®D , r.(t) >0 ¥t eR | £ is supported by [-1,1],

j =1,2. For j

It

J ~ J -
and fj(t)dt = A,. It follows from L.4.2.3. that such
functions exist.

Consider

>P4

w.(x) =

5 exp[(ixBj)/Aj]fj(x/Aj), j=1,2.

J
ot 1
We have that wj(x) € @)A n L7, and morecver

A A
(t) = f(A .t + B,
wJ( ) 5 3 J),

so that for j = 1,2, w. € 2 , %j(t) >0 Vte R ,w, is

J
supported by [aj,Bj] and 'rﬁ (t)dt = 1.

Put

~t
P(t) = | (B () - fy(u))au.
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A
Then F € O . Define f(x) = l/En%(-x), so that f(t) = F(t).
Then f € D and, as may easily be verified, f(t) = 1 on
A A
[Bl,ag], £(t) > 0, and £(t) is supported by [al,BE],

Moreover if x £ O,

£(x) = 3% (wy(x) - wy(x)3,

and so f € ﬁ5x e Ll.
D.4,2.3, For each A € A , choose a functicn of x,
AO(x), with the following properties:
A 1
a) 0 € ﬂ37\ n L7,
AA
b) e D,
Fa

c) for |t| < 1, AQ(t) = 1, while for !ti1 > 2,

Ag(t) -0,
}\/\
a) o(t)

fv

O ¥t eR

By the previcus lemma, such a function dces exist. For
each positive integer n, define AQn(x) = % AQ(%) Note

1 A% : , 2
that for it} < %, @n(t) = 1, while for 1t} > =,

I
A@n(t) - 0,

L.4.2.5, Suppcse that A € A, w(t) = A(t) + !til/g, and
that g € {f;. Then, given € > 0, there exists a positive

integer M, such that if m > M, then for every real u,

ral

J‘exp[A(%)]!uQm(x)g(u) - }~u9m(x-t)g(t)eiutdtldx < €.
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Proof: Put

[ A .
Im=igajwﬂkﬁﬂﬁﬁﬂxm®)-fu%&bwg“)
e %t ax.

Then for each positive integer m, we have that

~

¢ { . )
I = Sup | exp[K(%)]]; {Ugm(x) _ Pgm(x-t)}g(t)elutdttdx

uek -

< \feXp[K(%)][J} Mo (x) - Mo (x-t)}] g(t)|dtlax
= ‘flg(t)l{t[lugm(X) - Mo (x-t)lexp[r(3)]ax}dt
= J_, say.

m)
(The inversion of the above double integral being justified

without difficulty by the use of Fubini's theorem, )
Put

—~

J 1“©m(x) - LLQm(x-t)yexp[h(%)]dx

K (t)

[ 1He () - ¥ (v - Biexnln(y)lay,

We have that for some constant A,

(Mo (y)iexplr(y)] < A exp[-!y!l/gl,

and

VHo(y - %)leXp[k(y)] < A expl-ly - %lb@]axp[h(ﬁ)],

the latter since A(y) < A(y - %) + K(%). Since Qt{yge N,

we have that
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LVe,  £1e
m m

iyl Y2 ¢y -

and so

1/2] 1/2]

\Holy - %)iexp[h(y)] < A exp[-1yi eXp[M%)H%I
<A eXp[~}y!1/2]eXp[7\(t)+ 61 %2,

Moreover since u@ is continuous, we have that, for each

real t and vy,
¥u9(y) - uQ(y - %)Eexp[k(y)] = 0 as m = o,

Hence using Lebesgue's convergence theorem, we can deduce

that for each ¢,
Km(t) = 0 as m = o,
Now, we have that

K,(6) < [\Fey)iexpirty)lay + [ 1%0(y- E) expla(y) oy

< AJﬁexp[-ly!L&ﬁdy + [ !uQ(y)!exp[A(y4-%)]dY
< Af expl-1y172lay + eXp[M;%)]j.l “o(y)1explr(y)lay
< A1 + exp[?x(%)]](eXp[-iyll/z]dya

v

Hence there exists a constant B, such that

K_(t) < B exp[A(D)].
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Consequently,
1g(e)1K_(£) < Bla(t)l exp[A(E)].
Since g € iy, putting
¢ (t) = 1g(t)iexp[r(t)],

we have that @ € Ll, and moresver,

lg(t) k() < Bt?(t)exp[h(%) - A(t)]

Bp(t).

I A

Therefore, using once again Lebesgue's convergence theorem,

we have that
{

jlg(t)le(t)dt —> 0 as m = o,

That is,

Jm—>0 as m ~-» o,

Since, for each m, I < J the result follows.

2
L.4.2.6. Suppose that A e A , u(t) = A(t) + ltil/,

g € QT:, and u is a real number for which Z(u) # 0. Then
if Im is, form = 1,2,3,..., defined as in the previous
lemma, we have that for each positive integer r,

i .
! uQm(y—t)g(t)elu‘tdt

\ A (2 ;g.&(r) W oo
[expin@)11 (3P, (y) o

H&)lax

-
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where %%(P) denotes (r-1)-th self convolution; 1 with
respect to y in this case.
Proof: By the definition of Im’ the result is true for

r = 1. Denote

f Yo (y-t)g(t)e Htat

g(u)

(%) He (y) - }) (x)

by mw}x). Assuming that the inequality holds fcr r
3

we have that

R+l,m,u(X)ldX = ‘féxp[A(%)]l! fR,m,u(

]
fl’m,u(t)dt.dx

fexp[K(%)]!f

I

{j\exp[x(x) R m, u( yldy}
{J exp[K(%)]\fl,m’u(t)ld

I R I
) e {0
2(u) Z(u)

I R+1
= j-—

@(u

I

The result now follows by induction.

T.4.2.1. A generalisation ' of Wiener's Theorem

Suppose that A e A , and, forn = 1,2,3,...,

= R,

x-t)

t}

T por example, (aﬁ(e)f(y))(x) = (f % £)(x).

¥ Note that if we take A to be identically zero, then

the result reduces to Wiener's theorem.
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A, (t) = A(Z). Suppose further that g e 3 ana
1B(E) >0 ¥t e R (i.e.ge 5 4 Tt ), and that a,b
are such that - < a < b < +o, Then there exists a positive
3? A
integer m and a function h € L’A such that h is compactly
m A R
supported and such that for each t ¢ [a,b], h(t) = 1/5(t).
Proof: Put
Y = Inf lg(u)t ,
uefa-1,b+1]
so that vy > 0. Forn = 1,2,3,..., define In as in L.4.2.5.

Choose a positive integer m, such that

T
| -Be .,
Y

For each real x and each u e [a-1,b+1], put

Glux) = S (Mo (x) + = (kPP ()

il

A

g(u) r=1

g (y-t)g(t)eiUlat
ol ALY
g(u)

where pn(t) = A(t) + it:ll/2 .
Note that the summation converges absolutely a.e.,

and furthermore, that for each u € [a-1,b+1],

le(u,x)lexp[A(%)]dx

[ A ©
< %[J }uQm(x)!exp[K(ﬁ)]dx + 3 lﬁgl ].

r=1
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Hence there exists a constant A such that for each

u e [a-1,b+1],
\!!G(u,x)lexp[A(%)]dx < A. - — (1)

Furthermore, taking Fourier transforms with respect to x,

we have that for each u € [a-1,b+1],

, e r A
A A o A © (t)g(u+t) r
Glu,u+t) = —— Mo (t) + = (Mo _(t) - —I—
g(u) r=1 g(u)
Pt ar e cd
g(u+t)
3 0 if ottt > 2
i - m

(Note that for ¥t ¢ R , and Vu € [a-1,b+l], we have that

AN
A Ho (£)g(u+t) I
iYo (t) - — f< 18
g(u) ¥
< 1. )

Now w(t) = A(t) + ltlbé, and so for n = 1,2,3,...,

s QO ~ © .
ﬂ3u = &an. Consequently using the result of L.4.2.4,,
\ A A
we may choose X € Q;; such that X e & , X 1is
mo
~
supported by - %, %] and ‘ X (t)dt = 1. Put

(o+1 .
£x) = | (] X (y)6 (u, y+x)e Maylau.
va-1



- 154 -

Then we have that

J;f(X)! exp[M(Z)]dx

b+l 3
£ JF l{ [l X () [} } G(u,y+X)texp[?\(fﬁ()]dx}dy]du
a-1 -

(PN

~b+1l .
J {f \’X(y)lexp[?\(%)]{[l G (u, y+x)i

r

a-1

exp[A(ng)]dx}dy}du

< (b—a+2)A§“l X (y)lexp[x(lmf)}dy, by use of (1),

the change of order of integration belng justified by
Fubini's theorem. Hence f € in . Furthermore, and

m
again justifying changes in the order of integration by

Fubini's theorem, we have that

A { Mo+l | .
£(t) = !eiXt[} [! X (y)6(u, y+x)et¥daylduldx
v Ja-1 -
~b+l . N .
- T e o, ye)et ) Saxdayan
va-1 v
b+l . A
= X (u-£)G(u, t)du
Ja-1
c 1 . 1 1
if t e [a-1+ =, b+l- =]
L E) " i

3 . 1. 1
{ 0 if t < a-l- - or if € > b+l+ .
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Hence f is compactly supported, and ?(t) = 1/é(t) for each
t € [a,b].
Finally choose & ¢ ﬁihm such that & e ©® and
3>(t) =1 Vt e [a,b]. Put

hix) = (f ® $ )(x)
so that
) = (e x $P))).!

Then we have that

Ijlh(p)(x)iexp[k(ﬁ)]dx

-

j exp[}\( ) I( J{ P P(x-t) 1 q:(p)(t);dt]dx

(Jf

I

I

| ¢ (p)(t)fexp[?‘»(;%)]dt}[ [lf(y)lexp[?\(%)]dy}-

PR

Hence h ¢ Lﬁk , and moreover since h(t) = f(t)fk(t), we
have that h is compactly supported, and h(t) = 1/E8(%t)
¥t ¢ [a,b].

The following theorem gives a version of T.4.2.1. for
functions g(x) which are 'exponentially bounded' rather
than 'exponentially integrable’

T.4.2.,2. Suppose that A, p ¢ /A are such that
explun(x) - A(x)] e L™,

£ 0
For n = 1,2,3,..., put u (t) =u(f). Ifge B, W,

tThis is easily verified by use of Lebesgue's convergence
theorem, and the first mean value theorem.
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and a,b are such that -» < a < b < +=w, then there exists

a positive integer m and a function f € §3li A 1} such
m

A ’
that f has compact support and £(t) = 1/8(t) ¥t e [a,b].

Proof: We have that

g(x)explu(x)] = g(x)exp{A(x)Iexplu(x)-A(x)]

€ Ll.

Hence g € gf&, and so by the previous theorem, there
exists a positive integer m, and a function h € i}um such
that h has compact support and ﬁ(t) = 1/g(t) ¥t ¢ [a,b].
Choose X e 1% w0 I} such that ’)Ié(t) =1 ¥Vt ¢ [a,b].

Put

f(x) = (h = X )(x),

N

A
then f ¢ Ll, f is compactly supported, and f(t)/= 1/&(%)

¥t € [a,b]. Mcreover

lf(p)(x)Iexpﬁu%)]

< ]rs 3P (x-8) ) expleE) 1in(e)) expll®) lat

v

fal

{Sup | X (p)(u)\ expln (@)1} 1 n(e)jexpln(E)lat,
ue R m J m

[

and so f € B
Nu:m

The following theorem is in the nature of being a

partial .converse of T.4.2.1.
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T.4.2.3. Suppose that A is an even, non-negative function
of a real variable t, with the properties that A(t) is
monotonic increasing for t > 0, and that A(t)/t (t > 0)
decreases monotonically to zero as ¢ -» «, Suppose also

that g is a function such that

g(x)exp[A(x)] e LI,

and that -= < a < b < +,
In this situation, if there exists a positive integer

m and a function h with the properties

1) h(x)exp[h(%)] e 1.t

2)  h(t) = 1/8(s) ¥t e [a,b],

then the inftegral

converges.

Proof: We shall assume that the integral

does not converge, and derive a contradiction. Under this

assumption, if w(t) = A(%) + Eitll/e, the integral
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does not converge. Put

£f(x) = (h % g)(x).

It is not difficult to show that

f(x)exp[A(%)] € Ll,

A
and that £f(t) =1 ¥t e [a,b]. Select & > O such that
. A ¢ A
b-6 > a+6, and take® X such that X e &) , X is
-

! A,
supported by [-8,51, ] X (t)dt = 1, and

!

Y(x) = O(exp[-zxxsbé]) as X = +o,

k(x) = 2nf(x) X (x), ¥x e R ,

A A
so that k(t) =1 ¥t e [a-6,b+5], and k possesses deriv-

atives of all orders. We have that
A .
() gy 2 J((ix)nk(x)el}{tdx ¥t e R .

It follows that for each positive integer n, and each real
t,

A

\k(n)(th < f\xan\k(x)idx

= An, say.

Define & (t) = tk(t)texplu(t)], so that ¢ € Ll, and put

¥(t) = ¢ (t) + d(-t). Then, remembering that w(x)/x is

TUsing L.4.2.4,
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decreasing,
A= J}xlncp(x)exp[-u(x)]dx
- {:xnw(X)eXp[-u(X)]dx
< Jrzuxnﬂ/(x)exp[—x &gl]dx . Jf :uxn\ﬁ(x)exp[—E(x)l/B]dx
< J:Xn\!l(x)exp[—xg-fl—?ru—l]dx 4 et K;J‘w(:c)le;p[-xl/eldx .

Now it is easily shown by differentiation that for each

positive integer r, and each a > O,

Asup [y'expl-ay]) = (£)7 7.

y>o
Hence
5 n 2 ('w
A < [(“E—E—) e 4 e (En)gne-gn} | ¥(x)ax
n ———
w(n™) Jo
5 n
< A(_—ELﬂF) , for some positive constant A.
et.(n

- L
Since [m Eiﬁl dx is divergent, so also is f; Ei%—l dx,
X

J1 2
- 2 ()
and therefore the sum X —5 diverges. It follows
n=1 n
% -1
that 2 (An) N is divergent. Hence, using the results
n=1

of Carleman and Denjoy ((4) and (7))} concerning quasi-

analytic functions, since

R(t) = 1 ¥t e [a+B,b-5],
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we have that
A
k(t) =1 ¥t e R

But since k € LY, this last result contradicts the Riemann-

Lebesgue lemma'f. It follows that the integral

ax,

must converge.

The next lemma shows, amongst other things that the
condition 'exp[v(x)-u(x)] is integrable', as imposed in
T.4,2.2. is, for A -functions p and v, stronger than the
statement 'exp[v(x)-u(x)] is bounded'.

L.4,2.7. Suppose w,v € A, and
1
explv(x)-pn(x)] e L™,
Then VA ¢ R, 3X such that if x > X, then
v(x) - p(x) < A.

Proof: Suppose that there exists a real number B with the

property that for every X, there exists x > X such that
v(x) - n(x) > B.

Take X, so that whenever x > X, u(x)/x < 1. Choose

Xq > XO+ 1, such that

Tsee (11) Pg.7.
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v(xl) - u(xl) > B.

Choose, inductively, S > X, * 1 such that

vix_..) - u(xn+l) > B, (n > 1).

n+1

For y € [0,1], and each positive integer n, we have that

wix + y)/(x + y) < ulx )/x,

and so
wix+ y) < wlx ) + yulx )/x
<ulx ) + v
< v(xn) - B + y.
Hence
vz g+ y) - ulx+y) 2B -y
>B - 1.
Consequently
"1+
I exp[v(x)-n(x)]dx > exp[B - 11,
J x
and so
~1+x
l exp[v(x)-n(x)]dx > n exp[B - 1]
o

—» ® as n —» ®,
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But this is a contradiction. The result follows.

The following two theorems are variants of T.4.2.1.,
relating to certain intersection classes of functions.
T.4.2.4, Suppose that M is a non-empty subset of A ,
with the properties that

1) VYu € M, 3v € M such that for each n = 1,2,3,...,
3A = An > 0 with the property that

exp[u(x)-v(%)] <A ¥xeR ,

2) I#% e A such that ¥u e M, 3IB > O with the

property that
exp[u(x)- % (x)] < B ¥x e R

Suppose also that - < a < b < +», that g € (w S} 3, and
9 ; NG y

that g € 8 . Then there exists f ¢ uéM( i:u A 33‘1) such

A A A
that f is compactly supported and f(t) = 1/£(t) ¥t € [a,b].
Proof: Choose p € M., Then there exists v € M such that
for n = 1,2,3,..., exp[u(x)—v(g)] is bounded. It follows
from T.4.2.1. that there exists a positive integer m and a

A
function h € i} (v_(t) = v(E)) such that h 1is compactly
1 m m m 1

v

'A A
supported and for each t € {a-1,b+1], h(t) = 1/8(t). Since
¢ - N A
l}vn < &“u for ? =1,2,3,..., we have that h, € L“u'
Choose X € ljﬁ A §3% 1 such that X (t) € O

and

TThis may be done, for example, by taking X € ﬁﬁk,
where A(t) = B (t) + 1tV
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1 for t e [a,b]

N,
e
<t
-
I
I"—-\—"\

O if ¢t £ a-1 or if t > b+l.

Now if “1’“2 € M, we have that

A A
h x X) =h %
(v, .

2 a
= X/8

Hence hu =X = hu ¥ X . We may therefore define a
1 2
function f, by the relation

f(x) = (hu x X )(x), Yo e M

N
Note that f is compactly supported and that for every
A A
t € [a,b], we have f£(t) = 1/g(t). Moreover for each L € M,

and each non-negative integer p, we have that
(P () < flhu(x-t)lix.(p)(t)!dt

<B eXp[-u(X)]{}hu(X—t)leXP[u(x-t)]

i
By

{ X (p)(’c)l expl & (t)last.

S
o O

T.4.2.5. Suppose that M is a non-empty subset of A with

Hence £ e | B, ¥ e€M; That is f e || ({E

~
VR B! " el ).

the following properties.

1) ¥Yu e M, Zv € M such that for each n = 1,2,3,...,



- 164 -

JA > O with the property that
exp[p(x) - v(%)] <A Vxe R

2) A% € A such that ¥u ¢ M, 3B > O with the

property that
explp(x) - ® (x)]1 <B ¥x e R

3) Vu €M, 3v e M such that

explu(x) - v(x)] € i,

(@)

Suppose also that -» < a ¢ b < +®», that g ¢ rw o) w? and

LeM
that g € 28§ . Then there exists f ueM(illx A ja ) such
A A A .
that f is compactly supported and f(t) = 1/£(t) ¥t ¢ [a,b].
Proof: This may be shown in a similar fashion to the
preceeding proof. It may also be established by direct use
of the previous result. The following proof represents the

second alternative.

Choose §t € M. Then there exists v € M such that

exp[u(x) - v(x)] € Lt.

If h e {:& B ;, then there exists K > O such that

th{x)! < K éxp[-v(x)] ¥x ¢ R,
and so
th(x)rexplu(x)] < K exp[p(x) - v(x)]

€ Ll.
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Hence h € Q S, for each . € M. It follows that
o < o
J;% D A {;& L AT

Hence from the previous result, we have that there exists a

. M AL
function f € el ( L\,u a % U»)’ such that f is compactly

A
supported and f£(t) = 1/8(t) ¥t € [a,b].
L.4.2.8. Suppose that A ¢ A . Then we have the following.
1) Ifge t:, and if

1

f(x)exp[-Mx)] € L7,

then 3If1 % tgl, and

(if1 ®1g1)(x)expl-A(x)] € .

2) Ifge B, and if

f(x)exp[-A(x)] € Ll,

then 3 If! % 1g1, and 3A > 0, such that
Of1 x1gl)(x)exp[-A(x)] < A.
o :
3) Ifge i:x’ and if 3B > O such that
if(xNWexp[-A(x)] < B,
then 3 I f} % 1gt, and 3C > O such that

(1fv % (g ) (x)exp[-A{x)] < C.
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Proof: In all three cases we have that

J‘lf(x—t)tlg(t)ldt

= J;xp[A(x—t)-A(t)]lf(x—t)lexp[—h(x—t)]
ig(t)iexp[A(t)]dt

r
< exp[h(x)]Jlf(x—t)lexp[—%(x—t)]lg(t)lexp[%(t)]dt,

and the results now follow.

The following theorem will allow us to construct a
whole family of quotient pairs*using classes of functions
considered in this chapter.

T.4.2.6. Suppose that A ¢ A and that g ¢ c:i F)QXk .
Suppose also that f(x) is a function such that f x g = O,

and in addition either

¥m, f(t)eXp[—k(%)] ¢ 1,

or

¥m, 3 A such that

!f(t)lexp[-?\(-r%)] <A

Then £ = 0 (a.e.).

Proof: Choose k € §3§ N E:;, not identically zero, such
that Q ¢ X . This may be done, for example, by taking

k € ﬂ3s where p(t) = A(t)+|t|V@. We have, using T.4.2.1.,

that there exists a positive integer m, and a function

£ e Etxm (A, (t) = h(%)) such that for each t lying within

Tsee page 168 et seq.
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AA ; :
the support of k, £(t) = 1/8(t). We have that g e EZ: and
m
that k € ﬂBC) {:CJ, and so using the previous lemma,
Am D m
the multiple integral
" r
JIE(Z-y)!J lk(y-x)lJ‘Xf(x-t)l1g(t)!dtdxdy
exists. Hence

I((fxg) k)= £=rFx(g=k=xip).

But we have that

I
m>

P
>

(g = k ® £)°

i
>
.

and so
((f xg) k) ® £ =1 % k.

Hence £ ®* k = 0. It follows that for each k which obeys

the conditions;

(1) ke BY 4 L5
(i1) ke D ,

(1ii) k is not identically zero,
we have that (f % k)(x) =0 ¥x e R

Choose a function h obeying conditions (i) - (iii)
above, and for each real y, put hy(t) - e (). Thnen for

each real y, h, obeys conditions (i) - (iii). Consequently
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(f = hy)(x) =0 ¥x,ye R .
That is,
\ff(t)h(x-t)elytdt =0 V¥x,ye R.
But for each x ¢ IR, f£(t)h(x-t) ¢ Ll, and so it follows

using L.2.2.1., that for each real x,
f{t)h(x-t) = 0 a.e.

Hence f(t) = 0 a.e.

4,3, Examples

In this section we give some applications of the
preceeding theorems, and bring out some connections with
fhe material of the first three chapters.

Consider T.4.3.3. with A(t) = A1t! %, where A > O and
O < a<1l. Suppose O < B < A, and put pu(t) = B1t1 %, so that
explp(x)-A(x)] e L'. Suppose that - < a < b < +» and that
g(x) is such that g € ﬁb;.n T . Then by T.4.2.2., there
exists a constant C, 0 < C < B, and a function f, such that

1) ft) = 1/8(t) ¥t e [a,b]

2) f has continuous derivatives of all orders, and

for each non-negative integer p, 3 Ap > O for which
lf(p)(x)l < Ap exp[-Ctx1%], ¥x ¢ R ,

In view of this result, if we follow Gel'fand and Shilov

(10) and, for B > 1, put
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1

@;B = {g! 3a > 0 such that ¥q, 3 Cq with the property
that )g(Q)(x)z < Cq exp[—alxtl/B]}, i

then we have the following parallel of Wiener's thcorem:
T.4.3.1, Ifge C’B A Ry (B> 1), and if - <a< b< +eo,
then there exists f ¢ (&, such that f(t) = 1/8(%)
¥t € [a,b].

We will assume throughout the remainder of this section

that B » 1. Put

‘;3:5 = {fl ¥a > 0, ¥q, ch,a such that

\f(Q)(x)! < Cq a exp[a!xll/a]}.

3

The following results are not difficult to establish.

1) Ir fr e and p is a non-negative integer, then

3
~B
2) If ke (E;B and p is a non-negative integer, then
k(p) € G; 8
3 If T e ':‘iBand if k € @;B, then 3f % k € ‘Z?JB, and

for each non-negative integer p, (f =x k)(p)(x) =
(f(p) ® k)(x) = (f % k(p))(x). (This is proved fairly
easily using L.4.2.8., the mean value theorem and
Lebesgue's convergence theorem.)

4) If ki,k, € G;B, then k, x k, € e 5" (This may be
proved by use of L.4.2.1.)

® k

5) Ifr f e ¥, and if k.,k

g 1Ko € & gs then (f % k

1)

TSee the appendix.
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f x (kl ¥ k) = (f % kz) ¥ k (This has a straight-

2) 1’
forward proof, using L.%4.2.8. and Fubini's theorem.)
Using the above results, it follows that ‘2:5 may be taken
to be a universal algebra with the following set of
operations:
(i) the binary operation (f,g) = f + g,
(1i) the unary operations f —> Af, where A is any complex
number,
(iii) the unary operations f - f(p), where p is any non-
negative integer,
(iv) the unary operations f -> [f(t)z(x—t)dt, where £
is any element of @B, )
(v) the nullary operation O.

It follows from 4) above, and L.2.1.3., that @‘:5 A 253
is closed under convolution. Moreover it is clear that
G;ﬁ r\ﬁEB provides (by convolution) an Abelian semigroup
of endomorphisms of ‘% B

We can now establish the existence of a new class of
qQuotient pairs:

T.4.3.2, If B> 1, then ‘EB, @"B nZ8  form a quotient
pair. Furthermore 33 ( ?L'ﬁ, (55 n’ZSl ) is a genuine
extension of ‘3;[3; i.e. i(‘za) £ (L B’ @Bnm ).
Proof: After the results of the section above, to prove
that T g, Egn{® form a quotient pair, it suffices

to show that if f ¢ ﬁEB and if k ¢ Q;fBr‘ka , then
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f % k is null if and only if f is null. Now k € @:'B

implies that there exists a > O and € > O such that

tk(x) < C exp[—alxll/e’].

Put A(t) = altll/B/Q. Then k € ,C; Moreover since

f e ZB’ we have that for each n, BCn such that
P x
1 (x) < C, exp[A(n)].

Hence, by T.4.2.6., we have the required result.

To show that i(fﬁ:B) £ (X B @aﬂm ), choose
b € @B AXL3 . Then ¢ ¢ ZB’ and so there exists an
element & //¢& e (X B’ @;B A &5 ). Suppose that this
element were of the form i(f) for some f ¢ EE-B’ so that
fxd =¢. In this case f x V¥ =¥ W’G@Bnm,

and s0 we have that

ff(t)w(t)dt =v(0) WelEgnL ,
and

rf(t)W(t)eiXtdt =v(0) W e @B A3 and ¥x e R

J
Hence for each ¥ € (c}’B N 22, ()" (x) =v¥(0) ¥x e R .
But ¥ € Ll, and so this last result contradicts the
Riemann-Lebesgue 1emmaf whenever ¥(0) £ O. The result
follows.

T.4.3.3. It Bg= &g a3 (e BBconsists of

TSee (11) Pg.7.
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those funections in @;B whose transforms are compactly
supported), then F( c};"ﬁ, @B n &) and ‘35 are Wiener-
like. Moreover ‘85 is endomorphic on T(F B @'B n &%),
and 3 p Separates S C,E:B, @B a ).

Proof: It follows from T.4.3.1. that (X B’ @;B ~ 25)
and fﬁﬁ are Wiener-like, and it is easily established that
3 g is endomorphic on IJ(Z 4, (gﬁ A &S). To see that

'36 separates 2 (% B’ @;B n 2% ), suppose that f e g

and

ff(t)'X.(t)dt=O ¥ X e 35.

Now choose X e 3 B’ such that X 1s not identically
zero. Then we also have that ?L';(t)eiXt € ‘35 for each

real x, and so

J‘f(t)'X(t)eiXtdt =0, ¥xe R ,

Since fX € Ll, from this we obtain that £(t)X (t) = O and

so f = 0,

We now use T.4.2.5. to obtain another result of the
Wiener type. Take M to be set consisting of all the
functions w(x) = ix1¢ (0 < a < 1), Then M= A , and
conditions 1), 2), 3) of T.4.2.5. are all satisfied by the
class M. (We may take

Lt
if 1t > e?

.ﬂ‘(t) - 4 1og2!tl
1t i/l if 1t < e?.)
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Moreover it is easily established that
pLeM B B>1 '
and so 1f we put

S = m @BJ
B>1

we obtain the following theorem:

T.A4.3.4, IfgeSH2E and if -» < a < b < +», then

there exists £ € S such that £(t) = 1/8(t) Vt e [a,bl.
Following on from the above, we can now construct

another quotient pair related to the quotient pairs Tiia,

(= B n ¢ . Put

T= ) X
B>1 p

{f138 > 1 such that ¥q, EﬁCq g With the property
3

that If(Q)(x)l < Cq Bexp[ixll/B]}.

From the results on page 169 it is easily established that
T is a universal algebra with the following set of
operations
(i) The binary operation (f,g) = f + g.
(ii) The unary operations f ~> Af, where A is any complex
number,

(p)

(i1i) The unary operations f -> f'*’, where p is any non-

negative integer.
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(iv) The unary operations f —» Jaf(t)Z(x-t)dt, where £
is any element of S.
(v) The nullary operation O.
Again, it is easily established that S &% is closed under
convolution, and that S &% provides an Abelian semi-
group of endomorphisms of T,
T.4.3.5, The function spaces T, S &3 form a quotient
pair, and i(T) # 2(T, S, 5% ).
Proof: The first part follows from the corresponding
section of T.4.3.2., while the proof of the second part is
along the same lines as the proof of the second part of
that theorem. |
T.4.3.6. IfZ=8S-3 , then X(T, SA2¢ ) and Z are
Wiener-like. Moreover Z is endomorphic on ZQ(T, S, 22 )
and Z separates Z2Q(T, ST ).
Proof': The proof of this theorem is along the same lines
as the proof which was given for T.4.3.3.
In the preceeding cases, we have concentrated on
'large' A -functions; the next result involves 'small'
A -functions.
T.4.3.7. If (1+161%)g(s) € L' (e > 0), if g ¢ 20 “and if
-© < a < b < +o, then there exists a function h such that
1) (1+161%n(t) e ot
2)  h(t) = 1/8(t) ¥t € [a,b].
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Proof: In T.4.2.1. take

¢ logtti if 1tl > e
At) =
c il /e if  1tl < e.

e et oy

The result follows immediately.

This chapter has been concerned, among other things,
with the construction of quotient pairs. To conclude it
is worth remarking that with any A ¢ A we may associate

a quotient pair 2%, I, the spaces U, B being given by

U

it

{f} ¥p = 0,1,2,..., V¥n =1,2,3,..., 3C such
p,n

that 1P (x)) < ¢ exp[A(5)]],

b,n

pe

Linll

and the universal algebra 2% having the usual system of

operations.
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APPENDIX

A.1. Notes concerning section 2.4,

In this section an outline is given of the proofs of
lemmas L.2.4.9., L.2.4,10., L.2.4.11. and L.2.4.16. These
proofs are quite straightforward, but rather lengthy, and
so to avoid losing the theme of the text, they have been
gathered tcgether here. I can find no previous explicit
statements of L.2.4.11., the 3 -case of L.2.4.9., and
the @ -case of L.2.4.16Y However L.2.4.16. may be proved
as an elementary deduction from certain general arguments
such as those in (10 ) , and I suspect that lemmas L.2.4.9.
and L.2.4.11. are also known. Alternative proofs of the
(5 -cases of L.2.4.9., L.2.4.10. and L.2.4,.11. may be
obtained by use of L.2.4.8., but here we give proofs which
do not rely on this result.

A.1.1. To prove the & -cases of L.2.4.9. and L.2.4.10.,
it is sufficient to show that if F ¢ &' and k € & , then

F ® k is tempered and
I(Fxk)'(x)=(Fxk")(x).

Likewise for the é3 -cases.
(a) Suppose that Fe & ' and k € & . We want to show

that F % k 1s tempered. We suppose this is not the case

T for the © ~case of L.2.4.9,, see (25) Pg.141. For
L.2.4.10., see (3) Pg.105. For L.2.L.15., see (9)
Pgs.368-369 and (10) Pg.ko9.
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and go on to derive a contradiction.
If F ¥ k is not tempered, then VA > O, ¥N > O, ¥T > O,

3t such that 1t > T and

WE % k)(E) > argi,

Choose a sequence {[tr]} such that [ltr!} is increasing and
diverges, and such that itrl > 1 and

r

Fx ) (e )l 2tV r=1,2,3,... . (1)

For r = 1,2,3,..., put

Choose any & -neighbourhood, U, of O, Then U has a subset

V of the form

V=I[({¢l ¢ & and 1ti™ ¢(p)(t)| <e form <M
and p £ P},

for some € > O, and some positive integers M,P. Put

A = Max Sup [lulmbk(p)(u)l].
m<M ueR
p<P

Then if m < M, p < P, we have that
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1t:mzk(p)(tr-tﬂ
r

ltlmlkr(p)(t)l -
)trl

2M(ye -t + ntr;m)!k(p)(tr—t)!

tA

g 1 ¥
r
P N
et It 1T
Tr T

Hence there exists R such that if r > R, then kr ¢ U,

Consequently, since F is continuous,
<F’kr> — 0 as r - «,

But from (1) we have that for r = 1,2,3,...,
I<F,k >t > 1.

The result now follows.

(b) IfFe (&' and k € €, then
I(Fxk)'(x)=((Fxk')x) ¥x e R

Proof: Choose x € R , and suppose that h # O. Then we

have that

1 . B k(x+h-t)-k({x-t)
£ [<Ft,k(x+h—t)> - <Ft,k(x—t)>] = <F,, T >,

Choose any (& -neighbourhood, U of O. Then U has a subset

V of the form
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V=(d]dbeE anda it1™ 1¢(p)(t)| < eform<M
and p £ P},

for some € > O, and some positive integers M,P. Put

A = Max Sup [(Ix-tl+l)mlk(p)(t)l},
mgM telR
p<P+2

5 = Min{e/A,1}.

Then if 0 < lhl < 8 and m < M, p < P, we have, using the
second mean value theorem on the real and imaginary parts
of k, that for each real t,

ey k(p)(x+h-tg - k() (xt) _ k(p+1)(x_t)t

= g™ %%p Bk(p+2)(x-t+91h)

N
+ i Qingk(p+2)(x-t+92h)!,

for some ©,,0, € [0,1]. Hence

1l

m, k(p)(x+h-t% - k(P (x-t) - k(p+l)(x—t)l

< E%Ei 1t1™  Sup (Sk(p+2)(x-t+9h)l}
0e[0,1]

h Sup [(ix-ul+1)mlk(p+2)(u)l]
ue m

(WA

< Athl < A6 < e.
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It follows that if O < 1h! < &, then

(k(x+h—tlh- k(x-t) _ ' (x-%)) € U.

Since F is continuous, letting h —» 0, we have that, for

each real x,
I(FxEk)'(x)=(Fxkx")(x).

(c) Suppose that Fe B', ke 3 , but F x k is not
tempered. Choose a sequence (tr} obeying the conditions

set out in (a), and put
k(tr—z)

()"

kr(z) = vz ¢ {
Choose any EB—neighbourhood, U, of O, Then U has a subset

V of the form

V={Wved and $(t) e N},

Lol

for some <) -neighbourhood, N, of O, of the form

Ne(dl de D and 16P)(6)1 < e

if p < m, and 1ttt > j, j =0,1,2,...1,

where (ej}z is a sequence of positive numbers decreasing
monotonically to zero, and {mj]: is another sequence of

positive numbers diverging monotonically to +w,
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Choose an integer K such that [-K,K] includes the

A
support of k. Put

Max Sup (lﬁ(p)(u)l].
p<mk ue R

A

Then if juy < K, and if p < Mys We have that

o

A
kpw) = L [ acle,-t)et e
(t.)
r
iut
r A
= £ T k(—U.).
(t,.)
Hence
D . .
1k (p)(u)l < I b (P)Iﬁ(p'J)(-u)llt {d
r =~ T r
it 17 j=o J
r
< AQHIE )P 1 T
m
< AQitL) K/ T

On the other hand if Iyl > K, then for any non-negative
A
integer p, kr(p)(u) = 0. Consequently there exists R such

that if r > R, then kr ¢ U, Since P is continuous we have

that
<F,kr> - 0 as r - =,

But this is a contradiction. It follows that (F = k)(x) is

tempered.

(d) IfFe B'andke B, then 3(F x k)'(x) = (F x k') (x).
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Proof: Note that if rar < 1 and if I1bl £ ¢, then for any
non-negative integer m and any integer n such that m > n,

we have that

< e“. (2)
Choose x € IR and suppose that h £Z O (h real). Then we
have that

1 -
= [<Ft,k(x+h-t)> - <Ft,k(x-t)>] =

k(x+h-t)-k(x-t) N

= <Ft’ h .

Choose any :8 -neighbourhood, U, of 0. Then U has a subset

V of the form

V={vly e and ﬁ(t) € N},
where

N={({dlde D and !d)(p)(t)l < € if p < m and

tel > 3, 4 =0,1,2,...1,

for some [ej}:’ a sequence of positive numbers converging
monotonically to zero, and some [mj}:’ a divergent monotonic
increasing sequence of positive numbers. Put kx(t) = k(x~t),
and choose an integer K such that [-K,K] includes the

N
support of kx(w). Put
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Max Sup (1K, P) ()1},
p<mK we R X

o]
1l

5 = Min[eK/(AeK2mK), 1}.

Then if 0 < Th! < &, and if p < mp and {wi < K, we have that

P { ey L _ .
1Q~5 [3 (ke (xtke t)h k(x-t) _ K (x-1))e1¥tat ]|
dw v
b iwh
- :-3——5 [ie, (-w) (&= - 1w} ]y
W
p A r iwh
- Py 2 (p-r)(_ y(_q)P-r d__re =1 _ s 1y
- lrio(r) k. (-w)(-1) dwr[ % iw]!
< A = (P),d [eiWh-l - iw]t
r=o ¥ dwr h

On the other hand if twl > X, then for any p

‘dpp[\f[k(x+h—t)h— (x-8) 1 (xot))eMPae]l = o.
dw

Hence if 0 < thi < 8, we have that

(k(x+h—t)h— k(x-t) _ k'(x-t)) e U,

The result now follows as for case (b) above.
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A.1.2, To prove the (& -case of L.2.4.11., it is suffic-

ient to show that if F e &', kysk, € @ , then

(F = kl) ¥ ko, = F % (kl *® k2). Likewise for the & -case.

2
The proofs are quite direct.
(a) Suppcse that F e &', kysky € (& . Choose any & -

neighbourhocd, U, of 0. Then U has a subset V of the form

V={dl dbe {5} and 6™ ¢(p)(t)| < € form<{ M,

pS_P}:

for some € > O and some positive integers M,P.

3

Denote by Llr the subdivision of [-r,r] into 2r” equal

parts, and let x, . J = O,l,...,2r3, denote the subdivision

r,J
points. Put
2r3
gr(w) = jio kl(w'xr,j)k2(xr,j)(Xr,j+1"xr,j)

- {‘kl(w—x)kz(x)dx.
Put

A. = Max Sup {(1+lul)mlk.(p)(u)l], j = 1,2,
m<M ue IR J
p<P+1

For each p P, we have that
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3 b S
2r r, j+1
j ‘kl(p)(w-xr,j)kQ(xr,j)

- kl(p)(w—x)ke(x)ldx + Jﬁ lkl(p)(w—x)l\kgbdldx.

Ix}>r

Applying the mean value theorem to the real and imaginary

parts of the following expression, we have that for each
x > X, 3 :i&l,ﬁe € [xr,j,x] such that

lkl(p)(w—xr,.)kg(x ) - kl(p)(w-x)ke(x)l

J r,J

= xR, [a%[kl(p)(w-t)kg(t)]]t=€l

. O 14 (P &
v 1 Tl P et (6)) 1 g |
2 sup [y P g |
-ﬁfgegfyﬂla (w-£ )icy (€)

+ ey P (-6 ieh ()11,

Noting that for each £,w we have the inequalitly
\win < En(iw—€|n+l£\n), n=1,2,3,.00,

it follows that if x € [xr,j,xr,j+l] then
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\wcmlkip)(w-xr,j)kg(xr’j) - k§p)(w—x)k2(x)l

2m+1
< S DAl

Hence, for p < P and m < M, we have that

m+4
<2 __pAA.+ \ftwlmlk(p)(w-x)ltke(x)ldx

T p 12 Ixi>r 1
M+4 A

< 2 AA, + gMAl J (1+|xt)M|k2(x)!dx.
r X! >r

It follows that there exists R > O such that if r > R,
then B, € U. Since F is continuous it follows fthat for

each real w,

(F = gr)(w) > 0 as r > =

Hence 3
2r
Fyr 2w lemuexg NG ) 0, ga1 5,40
- (F = (kl * kg))(w) as r > o,
i.e.
21"3
jio (F % kl)(w—xr,j)kE(xr,j)(Xr,j+1_xr,j)

= (F = (k1 *® ke))(w) as r —> o,
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But for each fixed w, (F = kl)(w—x)kE(x) ¢ @ , and so the
left hand side converges to ‘r(F 3 kl)(w—x)kg(x)dx as
r = o, Hence (F % k

# k. =F % (kl ® k

1) 2 2)‘
b) Suppose that F e 3', ky,ky € é% . Choose any
;3 -neighbourhood, U of 0. Then U has a subset V of the

form

= (¥l¥v e B and $(t) e N},
where

={¢!l be D and \¢(p)(t)l<e if p<m

J J
and 1t > 3, j =0,1,2,...},

for some [ej]:, a monotonic sequence of positive numbers

converging to zero, and some (mj]:, a divergent monotonic

sequence of positive numbers. Using the same definitions

of z&r, Xp, 40 By as before, we have that
2r3

Ba) = B )C 2 1y, e 28
J=

kl(U)Zr(u), say.

A 4
r,j+1—xr,j)"k2(u)]

Take K, a positive integer, such that [-K,K] includes the

A
support of kl(u). Put

"

i

Max Sup [1k(p)(u)l],
p<my ue Mk

M, = Max Sup (lxiplk(Q)(x)
p<my xe iR

q=1,2
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Then if p < m, and if tul £ K, we have that

K

12 ()R, P (g () ()

ESOIENE

I~

p
My 2 ®y1ei™ )y

(3)

A
Note also that if fut > K, then g&p)(u) =0, p=20,1,2,...

Now we have that if m £ Myes then

2r3

r . Ty d
=0 .
J XP,J

- xmkz(x)eixu]dx - (i)m,f xMe (x)eixudx.

IX\i>r

(m) m xr,j+1 m
8" (W) = = (1) [(xy, )Mo (x, e

ix

r,J

u

Applying the mean value theorem, we have that there exists

51,32 € [Xr J.,x] such "that

2

ix_ .u
e Tsd - xmkz(x)eixul

| Gy )y (x

r,J

o 3 WRIEE(E e (8)e™ M e

41 %ﬁ[%{t%e(t)eiut]]tzggt

2

I~

R R

+ a6 Kk, (B,

25 sup (mig1™ L, (61 + 161™ L (EN
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for x e [x ]. Hence if m < me and if ful < K,

r, 37 r, §+1

then
(m)
12 (u)t
< 2§3 4 [mM.+ M.+ juiM.] + f 1xt Wik, (x) 1dx
T =0 ;E 2 2 2 %] >r 2

5% [me+ K + 1IM, + f (1+1x1 )mK\ke(x)ldx.
1Xyor

It follows from this and (3) that there exists R such that
if r» > R, then g, € U. The required result now follows
as in the case a) given above.
A.1.3. In this sub-section a proof is given for the & -
case of lemma L.2.4.16. The & and 43 -cases may either
be proved similarly, or, once the X) -case is shown, the
53 -case may be proved by taking Fourier transforms. For
a proof of the &) -case see (9 ) Pg.368.
Lemma Suppose that F is a discontinuous linear functional
cn (& . Then for each (G ~-neighbourhood, U, of O, and for
each A > O, there exists k € U such that {KF,k>t> A.
Proof: If U is an (S -neighbourhood of 0, then U has a

subset V of the form

V=1{9|de & and txlmtcb(p)(x)l < eifmgM
and p £ P},

for some € > 0, and some positive integers M,P. Since F

is discontinuous, 3h > O such that if W is any (& -
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neighbourhood of O, then 3£ € W such that {<F,£>1> h. Put

Vo (bl de® and 1™ 6P (x)) < en/n ir

m < M and p £ P}.
Then 3£ € V¥ such that I<F,£>|> h., Put

K(x) = M(X)/h.

Then

<P, k> = = 1<F, 2> |

> Tl

Moreover if m < M and p < P, then

1k ™Mk P ()1 < (en/n)(A/n)

=€’

and so k € V. This completes proof of the lemma.
Suppose that [Fr] is a sequence of (& '-functionals
and that 3J1lim <Fr" ¢>, V¥de (& . Define the linear

r—>
functional F by the relation

F,®> = 1im <F_, d> V¢ ¢ & .
r>eo T

Then F is continuous.
Proof: Suppose that F were discontinuous. For n = 1,2,

5,.--, put

U, = (¢‘¢€@ and iximl¢(p)(x)l < L

2n

if m,p ,_<_ n]:
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so that each Un is an & -neighbourhood of 0, Suppose

that for each n, £_ € Un‘ Put

n

v, (x) = Pin £.(x).

Then for each m,p we have that

max(m,p)-1
p

lxim|Wép)(x)l < lemlzip)(x)\

r=n
+ 5 \xlmlzgp)(x)l.
r=max(m,p

It follows that ¥ e & n=1,2,3,..., and that if m,p < n,
then

sy {Pl )¢ 3 P )
r=n

2n—l *

Hence wn € Un-l’ n=2,34,... . Clearly the sequence
[wn} converges to zero in the topology of & . (4)

Take Vl = Ul‘ Choose kl € Vl such that

\(F,kl>\> 2.

Choose m1 such that

\(le,kl> - <F,kl>|<l.

Assume that for r = 1,2,...,n-1, neighbourhoods of O, Vr’



._]_92_
Functions kr’ and integers m.s have been chosen. Choose a

neighbourhood of O, Vn’ = I&l, such that if £ € Vn then

‘<Fm ’E>‘ <l-—n r = 1,2’|n¢,n-1c

r 2
Choose kn € Vn such that

n-1
I<F,k. > > 2n + I I<F,k_>|
n ) r

Choose m_ > m such that
n n-1 i

I<an,kr> - <F,kr>} <1 r=1,2,...,n.

o0
Put k(x) = Zk_(x). Thenk e © , and by (4), the

sum converges torzlin the topology of G; . Moreover, for
each n,
n-1 oo
|<an,k>l > \(an,kn>\ - r§1l<an’kf>l - r=§+i<F ,k%>l
n-1 o 1
> \<F,kn>i -1 - rfl\<F,kr>l - (n-1)- r=§+1§;
>n - ;H .
2

But, by assumption 3 1lim <Fn,k> . It follows that F must
n-—>®
be continuous.



_193-

A.2. Spaces of type G;

We shall be concerned, throughout this section, only
with functions possessing derivatives of all orders. The
relevant definitions of Gel'fand and Shilov are, for B > 1,

as follows:
o
1) G;B = {& |34,B,C, > O, such that for each m,p= 0,1,...,
:xmcp(p)(x)l < cA"n™PRP 3,

2) (&g =1{%134> 0 such that for each p = 0,1,2,...,
BCp > 0 such that for each m = 0,1,2,...,

\xm4>(p)(x)| < Cp Am mmB.}.

These definitions may be found in (10) Pg.167-8. Note
that mmB is taken to be unity for m = 0.

Put

S = {f{¥a < 1, Vp = 0,1,2,..., 3c, D such that

3

12 P () < Cq, p expl-1x171),

P
and

o)
s°=54,73

Then S° contains precisely those functions in S with

compactly supported transforms. We will now show that

a) S = (W <E; B

p>1
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p) s°=1{) @g

p>1
o
Choose B > 1, and choose ¢ € Qg B Suppose that A,B,C are
as in definition 1). Then by observing that for each real
x’

|d>(p)(x)| <cBP, p=o0,1,2,...,

it is clear that <b possesses a Taylor series which converges
everywhere to q). Moreover <P may be extended to an entire

function of a complex variable, and we have the inequality

1z ¢ (P (xa1y)) = 1™ s (1y)* ¢(p+r)(x)’

r=0 r!

¢ ¢ BP aMm B Blyl

Taking m = m(x) = [(ixl/ABB)l/SH, we have that

lqu)(p)(}wiy)! <cBP e eBly!’

55
and so
< ¢ BP pPexpl- X VP 10g81e2 W
Hence, for some a > O, and for C' = C Ba, we have that

|¢(p)(x+iy)| < ¢'BPexp[-aix VB, Biytl. (1)

(Similarly, if ¢ e @B (B> 1), then ¢ satisfies an

inequality of the form
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16 )1 < o) exol-atx1VP . (2).)

o

B,
VAN

integration (see (3 ) Pg.97) that ¢ is supported by

[-B,Bl, and so & ¢ © . It follows that ﬁ @g <= s°,
B>1
In the other case, it follows directly from (2) that

If & ¢ then it follows from (1) by contour

Conversely, suppose that ¢ € S. Then for each B > 1,

and each p = 0,1,2,..., there exists CB p such that
l¢(p)(X)l £ C,p exp[—|XIL43].

Hence, for each m > O,

ixmcb(p)(x)l <cC exp[m loglxl-lx11/a]

B,p

I

CB,p exp[mB log mB -mBl,
by considering Sup{m log u..ulAB]. It follows that
u>o

Ixm¢(p)(x)] < CB p(ﬁBe—B)m mmBJ

and so ¢ € @;B’ V8 > 1. Hence S & (—\ @B'
B>1
Suppose now that ¢ e 8°. Then, for each g > 1,

BCB > 0 such that
1 (xh < Cﬁ exp[-lxibe ].

Hence, for q = 0,1,2,..., we have that
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lg(Q)(t)l CB j}xlqexp[~|xll/5]dx

{A

C, Sup{uZexpl- %(u)l/B]}‘[éxp[- %lxrbﬁldx

in

B u>o

=C (EBq)qB -ab fexp[ |1/B]dx

- ¢! q%PE. )2 say (3)
g 4 g’ 7’ : *

In relation (3), we may assume that for each B > 1, BB > 1.

Suppose that A > 1, and that [~A,A] includes the support
N

of ¢ .
The inequality

B
'Eﬁ (& (6)e™) < C a¥ (Bg)%(2n)" (4)

certainly holds for n = 0 and q = 0,1,2,... . Suppose,
inductively, that (4) holds for n = 0,1,...,N, and

qQ =0,1,2,... . Then we have that, for each non-zero q,

\933[&\)(1:)‘61\]“] < 't——-—[¢(t N}l+ql [¢(t)tN]l
dt at? atd

-1
< e4(2n)1aa%P (35)% qlg-1) (1P, )

A

c)(20)"1aq?P (B) % q?P P (mg)9)

I

ch(28)" (AP (By) %+ 9% (34)%)

In

' N+1_gB o]
CB(2A) a (BB) ]
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since B > 1, A > 1, and BB > 1. While for q = 0, clearly

195 (4 (e)e™ ) ¢ open)L,
g4

Hence, by induction, (4) holds for each n,q = 0,1,2,

Therefore we have that

A
1x $(0) ()1 - en!jiA -ixty th(q)(t £ ]]dtl

I

4mac (24)" a%P(sg)?
and so ® € g, ¥B > 1. It follows that S° & m @.O
B>1
For further details concerning spaces of type 65 ’

see (10) Pg.166-256.
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CONJECTURES AND CONCLUDING REMARKS

As mentioned in the footnote on page 5, there seems to
be, no reason why the construction of 3J (ZX , ) should
not be possible with I a first order relational structure
instead of a universal algebra. Less clear is the question
of whether any embedding theory is possible with‘ﬂb a non-
Abelian semigroup; this would appear to be a rather
difficult problem. It would, anyway, be interesting if
some applications of the theory could be found in fields
other than elementary algebra or functional analysis.
However a number of conjectures are suggested by the applic-
ations in functional analysis already made in the thesis:
in particular in the case of the I ( 3’:5, @;ﬁ nZZS?s ) spaces
of section 4.3., it appears not unlikely that }:%(?{é,é;é(éﬂk)
is isomorphic, and (with the topology of pointwise con-
vergence on ?Z:B) homeomorphic, with (E;é, the class of
continuous linear functionals on (§;B (when @%é carries
the weak dual topology).

It would appear that the sole precursor of the tech-
nique of applying an extension process to a space of
functions, at all resembling that used in the thesis for
the space £ , is the Operational Calculus of J. Mikusinski J
In brief, Mikusinski's technique is based on the result of

Titchmarsh that if f(x) and g(x) are supported by the

1’See (15).
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positive real line and are locally integrable, then if
f % g is null, at least one of f and g is null., It follows
that the class of functions, continuous on [0,®) and zero
for x < 0, forms a ring under convolution, and that this
ring has no zero divisors. Consequently this ring may be
extended to a fileld of gquotients. Mikusinski goes on to
define differentiation and integration within this system
and shows how the system may be used in solving various
types of differential equations. A notion of convergence
is introduced, applicable to sequences all of whose members
can be expressed with a common denominator. It is clear
that in certain ways Mikusinski's system overlaps with the
class 23 ' of Schwartz distributions, while on the other
hand it is the case that neither system contains the other.
Mikusinski's system was constructed with some practical

T

applications in view, and he himself drew attention to
some technical drawbacks of it, deriving mainly from the
restriction to funections supported by a half line. He

¥ to construct a

appears to have considered it impossible
system such as his for functions not necessarily supported
by a half line. This last view is essentially correct if
the extension technique is restricted to the embedding of

a ring in a field, but not correct for the more general

Tsee (15) Pgs.124 et seq.

* Loc. eit. Pg.126. Note that this is a translation of
the second Polish edition, volume 30 of Monografie
Matematyczne, 1957.
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embedding process developed in this thesis, as the example
of ZQ (¥, @aX% ) shows.

It should not be difficult to extend some of the
results for function spaces given in the body of this thesis
to corresponding results for functions of n real variables
and possibly to other sorts of functions, and there are
various topological questions which might be considered.
It is clear from the concluding pages of chapter four that
there exists an extensive collection of 2 (Ax ,B )
spaces based on function spaces and the convolution opera-
tion, and the possible identification of these, perhaps
by some general method, as spaces of functionals would be
one line for future investigation. It appears likely that
there should be some summability applications of Theorem
T.4.,2.1., as was the case with Wiener's original theorem,
and some modification of the class /A might be possible.
It is conjectured that theorem T.4#.2.1. remains ftrue with

I;Am replaced by £:A.
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