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ABSTRACT 

A review of the literature on the electron theory of metals and 

alloys reveals that the problem of the relative stability of 'crystal 

structures cannot, in general, be treated in terms of fermi surface-

Brillouin zone interactions. It is observed that the only basis 

for a true theory of alloy phases, is one in which the total energy, 

of the possible crystal structures, may be calculated. The theory 

of the pseudopotential is the most promising approach in this direc-

tion, and is accordingly examined in detail. 

A critical examination of the fullyfocusing geometry applied 

to X-ray diffractometry, indicates that higher intensities in the 

back reflection region, maybe attained without loss of resolution. 

Some 'errors, including axial divergence, which have not previously 

been considered for this geometry, have been analysed. A versatile 

fully-focusing diffractometer has been constructed and used, in con-

junction with a liquid nitrogen cryostat, for the examination of 

'various indium alloys. The apparatus has a variable specimen posi-

tion and the upper angular limit of measurement is extended from 

164°20 to 172°20. A factor which makes alignment possible is that 

the apparatus may readily be converted from fully-focusing to con-

ventional geometry. Consideration of the errors has resulted in 

the tabulation of an appropriate extrapolation function. 

In order to measure the superconducting transition temperatures, 

Tc
, of a large numbtr of specimens it was necessary to build a multi-

specimen probe for a helium cryostat. To facilitate the measure-

ments a system has been devised to simultaneously record the coil 

signal and the' temperature. 

Diffraction and superconducting measurements are used to fix the 

positions of phase boundaries in the indium alloys. The crystal 



structures are established and for -tetragonal phases, the axial 

ratio, c/a, is determined as a function of composition. 

Energy calculations for the indium based solid solutions con-

taining Pb, Sn, Bi, Hg and Cd, using the pseudopotential method, 

make good sense of most of the observed structures. Kinks, in 

plots of c/a and Tc against composition, in various systems are 

explained in terms of fermi surface-Brillouin zone interactions 

in the light of recent band-structure calculations. The general 

trends in Tc are also shown to be consistent with the density of 

states resulting from these band-structure calculations. 



ACKNOWLEDGEMENTS 

Acknowledgements are due to Professor J.G. Ball for the provision 

of research facilities in the Department and to the R.R.E., Malvern 

for financial support. 

I take great pleasure in thanking my supervisor, Dr. H.W. King, 

for much useful discussion and encouragement in the course of this 

project. I also feel fortunate to have belonged to a research 

group in which such a general spirit of amity has existed. I should 

also like to express my thanks to individual members of this group 

for particular services. Mr. D.W. Penfold, Mr. B.J. Gunnell and, 

particularly, Miss Karen Gott have acted for me on many occasions, 

as a telephone link with the computer and Mr. P.L. Ormiston (when 

he was not reading the Azerbaijani Journal of Physics) acted as a, 

much needed, second pair of hands on•the X-ray cryostat. I am 

also grateful' to Dr. D.C. Larbalestier whose competent experimental. 

advice was very helpful in my salad days as a postgraduate. 

I have had more than my fair share of workshop time and would 

like to thank Mr. G. Green especially, for excellent workmanship. 

I would also like to thank Mr. F.G. Huggins for making up my silver-

zinc alloys and I am sensible of the numerous other services he hag 

performed for me in the past. For very kind treatment from the ' 

photographic department, I am indebted to Miss P. Martins. I 

would like to thank my father for, amongst other things, translating 

some German papers, and Mr. M.J. Losty for valuable advice on computer 

programming. 

Finally, I cannot adequately express my gratitude to Theresa. 

Discovering that 'though this be madness, yet there is method in it' 

she has deciphered my confused and much corrected scribblings and 

made a most excellent job of typing this thesis. She has also 

assisted with a number of other tasks associated with the production 

of a thesis but I am most thankful for her forbearance and the cheer-

ful encouragement given to me during the writing of it. 



TABLE OF CONTENTS  

ABSTRACT.  

ACKNOWLEDGEMENTS 

INTRODUCTION 	 1 

CHAPTER .1 REVIEW OF THE LITERATURE  

1.1 	The Electron Theory of Metals 	3 

1.2 	The Theory of the PseudoPotential 	6 

Application of the pseudopotential 	8 

The band-structure energy 	12 

Application to alloys 	15 

1.3 	Superconducting Transition.Temperature 	18 

1.4' Fermi Surface-Brillouin Zone Interactions 	24 

Deviations from ideal axial ratio in HCP 	25 

1.5 	Indium and its Alloys 	 27 

Theoretical considerations, 	27 

The system indium-lead 	36 

The system indium-mercury 	38 

The system indium-cadmium 	40 

The system indium-tin 	40 

The system indium-bismuth 	44 

The system indium-lithium: 	44 

References 	 45 



CHAPTER 2 PRECISION LATTICE PARAMETER MEASUREMENTS IN  

HIGH ABSORPTION MATERIALS  

2.1 	Introduction 	 49 

2.2 	The Diffractometer 	 54 

2.3 	Sources of Error in the SB Method 	60 

Errors due to physical effects 	62 

Errors arising from SB geometry 	71 

Axial terms 	 83 

Axial divergence with Soller slits 	85 

Geometrical errors associated with 
focus and receiving slit 	99 

Errors inherent in the instrument 	104 

Remaining errors 	 106. 

Discussion of errors 	106 

2.4 	The Alignment Procedure 	107 

2.5 	Selection of Instrumental Settings 	113 

2.6 	Selection of Optimum Geometry and specimen 
setting 	 115 

References 	 119 

CHAPTER 3 APPARATUS AND EXPERIMENTAL PROCEDURES  

3.1' 	The Prepafation of Specimens 

Pieparation of alloys 	120 

Specimens for Tc  measurements 	121 

Specimens for X-ray measurements 	121 

3.2 	Low Temperature Diffractometry 	129 

Expetimental procedure. 	134 

- 3.3 	The Elimination of Errors in,the 
Diffraction Measurements 

;Profile positions 	 136 

Random errors 	 137 

3.4. 	The Measurement of T 	 141 

The Tc probe 	
141 

Measuring circuits 	 146 

Modes of operation 	 151 

Referendes 	 155 



CHAPTER 4 RESULTS  

The Seemann-Bohlin Diffractometer 	156 

X-Ray Examination of the Indium Alloys 	156 

Measurement of Superconducting Transition 
Temperatures 	 164 

The IndiuM-Lead Alloys 	 172 

The Indium-Tin Alloys 	 175 

The InditimrMercury Alloys 	 178 

The Indium-Cadmium Alloys. 	182 

The Indium-Bismuth Alloys 	 185 

The Indium-Lithium Alloys' 	 188 

References 
	 192 

CHAPTER 5 DISCUSSION  

	

5.1 	The Seemann-Bohlin Diffractometer 	193 

	

5.2 	Axial Ratio Trends in the Indium Alloys 	194 

Pseudopotential calculations 	196 

Electrostatic energy in the alloy 	204 

Computation of the energy 	207 

Results of pseudopotential calculations 	208 

Results of pseudopotential calculations 
on alloys 	 217 

The indium-lead system 	217 

The indium-tin system 	226 

'The indium-cadmium system , 	232 

The indium-bismuth system , 	232 

Wiggles 	 238 

	

5.3 	The Transition Temperature, T 	242. 

References 

CHAPTER 6 CONCLUSION  

6.1 	Summary 	. 	 247 

6.2 	Suggestions for Further Work 
	

252 

References • 
	 254 

.APPENDICES' 255 • 

    



INTRODUCTION 

1. 

The theory of metals and alloys is principally concerned with 

the relative stability of competing crystal structures. 'The prob-

lem set by Nature is exceedingly difficult, since it appears that 

the energy differences between structures are very small and the 

theory has to be correspondingly detailed. Of particular interest 

are the structures that are somewhat distorted from the close-

packed arrangements, notably the tetragonal distortions of FCC 

observed in indium and its alloys. The interest in indium arises,  

because a considerable amount of quantitative information on this 

metal is available, in particular in relation to its band structure. 

It is of theoretical importance since it is characterised as a 

simple metal surrounded, in the periodic table, by other simple 

metals which in most cases have moderate or large solubility in it. 

The crystal structure (in particular, the axial ratio in the tet-

ragonal phases) and the superconducting transition temperature are 

both dependent on the electronic structure and one can look for 

relationships between them. 

An unfortunate aspect of the low melting point indium alloys 

is their relative softness as a result of which each grain in a 

powder is a single crystal. This results in a considerable loss 

of intensity which, together with the fact that diffraction profiles 

of indium suffer very much from thermal broadening at room tempera-

ture means that the evaluation of, lattice parameters is subject to 

'large error. The thetmal problem may be circumvented by means of 

cryogenic diffraCtoMetry but in order to get over the large grain 

size problem it is necessary to illuminate a larger volume of 

specimen. This may be achieved, on a conventional diffractometer, 

merely by increasing the width of the divergence slit, except that 

considerable loss of resolution is then entailed. The fully-focusing 

(Seemann-Bohlin) geometry overcomes this difficulty, but the only 

equipment of this type recorded, is limited in'the range of Bragg 
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angles available. 	It has, therefore, been necessary to construct 

a special diffractometer. To investigate the feasibility of the 

method and to take full advantage of it, it is necessary to be fully 

aware of all the possible sources of error and in consequence a 

general survey has been made of the errors and also the experimental 

conditions. 

Because of the volume'of arithmetic the calculation of the 

energy of a crystal structure would not have been possible a few 

years ago, even had the theory been sufficiently advanced. The 

advent of the high speed computer, however, now makes it possible 

to test the modern theories without much difficulty. ' The computer 

has not been neglected in the present project and, in particular, 

has been used to make a .,number of pseudopotential calculations 

on the indium alloys. These have achieved a measure of success 

except in the alloys with high concentrations of Pb or Tl. This 

success in distinguishing between competing structures cannot be 

emulated by fermi surface-Brillouin zone arguments. Discussion' 

of the latter sort do, however, appear to be useful in the quali-

tative analysis of small anomalies in the observed properties of 

the alloys. These would seem to be.determined by the fine details 

of the energy pattern which the pseudopotential method is unable. 

to resolve. 
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CHAPTER 1 

REVIEW OF THE LITERATURE  

1.1 . THE ELECTRON THEORY OF METALS  

• This review is primarily concerned with those aspects of electron 

theory which have led to the present theories of the crystal structure 

of metals and alloys. 

The beginnings of an electron theory of metals are to be found 

in a suggestion of Drude (1900), that the electrical and thermal 

properties of metals might be explained 	the presence of field-

free electrons. Early calculations of bulk properties, using 

Maxwell-Boltzmann statistics, by Lorentz (1904) were revised by 

Sommerfeld (1928) when the Pauli principle had shown Fermi-Dirac 

statistics to be more realistic. The success of the free electron; 

model, in calculating electrical and thermal conductivities and 

electrothermal effects, was remarkable. 

-1. 

If an electron theory is to be used in the calculation of 

atomic properties, such as the stability of crystal structures, it 

must generate'the total energy of a system. The new quantum mechanics 

allowed the exact solution of the energy equation for the hydrogen 

atom (Schriidinger (1926), Dirac (1928) whilst variational solutions, 

using sets of one-electron functions, were made for the many-electron 

single atoms by Hartree (1928) and Fock (1930). 

The extension to multiatomic systems began with the treatment 

of the hydrogen molecule by Heider and London (1927), in which two 

single atom wave functions were linearly combined. Another approach 

to the same problem, by Hund (1928) and Mulliken (1928), involved 

using a single wave function for the molecule rather than a combina-

tion of single atom orbitals. 
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Quantum mechanics was applied to the bulk crystalline solid 

in the elegant group theoretical proof of the famous theorem of 

Bloch (1928). Bloch assumed the atoms to be far enough apart to 

have no overlap of the free atom wave functions. The crystal was 

then represented by a linear combination of atomic orbitals (LCAO 

or the tight-binding approximation). 

Another approximation which goes to the opposite extreme is 

the nearly-free-electron model introduced by Peierls (1930), in 

which the ionic potential acts as a small perturbation on an other-. 

wise free electron system. The process was developed generally, 

in two and three dimensions by Brillouin (1930), who found it neces- 

sary to divide wavenumber space up, according to the Bragg reflection 

conditions, into 'zones'. 

In order'to calculate the total energy of a particular crystal 

structure Wigner and Seitz (1933) made the approximation that each 

electron moves in the field of a singly charged ion. The approxima-

tion is valid for monovalent metals because it is unlikely that two 

electrons will be found at the same lattice site. The method 

involves approximating the ion-electron interaction in the Hartree 

equations, in crystals with a high rotational symmetry, by a 

spherically symmetric potential. Crystal space is divided up into 

unit cells, analogous to the Briltouin zones in reciprocal space, 

each cell centred on an ion and the Hartree equations are solved 

within each unit cell. 

In order to obtain the correct potential for calculations of 

the Wigner-Seitz type, Kuhn and Van Vleck (1950) suggested the use • 

of spectroscopic information. The potential outside the core is 

treated as coulombic and two independent solutions of SchrOdinger's 

equation are determined. The two solutions are coupled together in' 

a linear combination, the coupling constant being determined at 

specific energies using the term values obtained from spectroscopic 

data on the free atom. The energies in the'solid state are deter-

mined by interpolation or extrapolation. This approach is known 

as the 'quantum defect' method. 
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The limiting factor with any cellular model is the complexity 

of the boundary conditions and resultant doubts concerning convergence 

(Callaway (1963). An approach which seeks to circumvent the boundary 

condition difficulty is the variational procedure of Kohn and Rostoker 

(1954) who used a Green's function solution to an integral form of 

SchrEdinger's equation, adapted to the cellular model. The approach 

is only feasible as a result of modern machine computation and has 

been applied to the alkali metals by Ham (1960). 

Alternative approaches to the band-structure problem involve 

the expansion of the wave function in suitably chosen basis functions. 

The only functions that satisfy the Bloch condition with any facility 

are plane wave combinations, whilst close to the nucleus only 

spherical wave combinations are sensible. These considerations 

led Slater (1937) to propose a hybrid expansion of plane waves and 

spherical harmonics which led to the so-called 'augmented plane wave' 

method (APW). This has been further pursued by such authors as 

Howarth (1955) and Leigh (1956) but again the complexity, of the 

mathematics restricted its development until the advent of the 

electronic computer. 

In the meantime alternative expansions of plane waves were 

being used. The ordinary Fourier expansion of plane waves, in all 

but the very simplest models, showed great reluctance to converge 

and the convergence was always directed to the state of lowest 

energy. Herring (1940) pointed out that the wave functions of 

the conduction electrons must be orthogonal to those of the core 

electrons and suggested an expansion of plane waves orthogonalised 

to known core functions (the so-called OPW'method). 

Although the various energy band calculations described have 

had considerable success in understanding and predicting many of 

the electronic properties of materials (transport properties, 

optical properties, etc.), they have, nevertheless, had little 

success with the problem of the stability of crystal structure. 

The most promising approach in this direction is that of the 
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pseudopotential theory. Since much of the discussion of the present 

work will be couched in terms of the pseudopotential it is thought 

advisable to give a more thorough review of the basic theory. 

• 1.2 THE THEORY OF THE PSEUDOPOTENTIAL 

The remarkable applicability of the free-electron model to 

metals has already been mentioned. The success of the model is 

remarkable because the potential inside a metal is very far from. 

constant, changing violently in the regions close to the ions. 

Clearly the conduction electron-ion interaction is somehow replaced • 

by an effective weak potential - the pseudopotential. It can be 

seen how this arises using the OPW method (Harrison (1966). 

The conduction band states may be given by an expansion of 

orthogonalised plane waves OPWk given by 

OPW. 
	

1k> - Z 1 a >< a k > 	... (1.1) 
a 

where Ik> is the plane wave to be orthogonaliied to the set of core 

states la>. Now if P is the operator, E a >< a I, that projects 
a 

any function on to the core states, then the wave function may be 

given as the expansion 

E
q 	

a 
q

(k) (1 - P)•I k + q > 	(1.2) 

and Schrodinger's equation7becomes (in the usual notation), 

q
a q (k) H (1 - 13  

Ik+q>.= E Za(k)(1.-P)Ik+q> 
— • 	k q q 



which maybe arranged in the form 

... (1.3) 

where the 'pseudopotential W is given by 

V(r) + 

, and the pseudo-wave-function cp by 

Ea (k) 1 k -+ q q  

or 	.., 	(1 - P) (1)1c  

The second term in (1.4) is repulsive, opposing the attractive 

potential V and leaving the weak pseudopotential, a fact first pointed 

out by Phillips and Kleinman (1959). Equation (1.3) does not uniquely 

define the wave function (I) and as a result, the, pseudopotential can be 

more generally defined (Austin, Heine and Sham (1962), by its operation 

on plane waves, as,  

k 

I.. 

	P 
	

(1.4) 

• • • 1.5) 

W I k > = + Efk a 
a 

k > a > 	(1.6) 

where f(k, a) is an arbitrary function. 

In order to produce a first-principles pseudopotential which ., 

could be used in low order perturbation theory with the best con-

vergence, Harrison (1966) uses the smoothness criterion of Cohen 

and Heine (1961) in which the quantity 
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J.  I 	4,  12  dT if I 4) 1 2  

is minimised for optimum smoothness of the wave function. The 

resulting pseudopotential is 

W = V+Ela><al - 1142  + <kIWI 	- Ea) ... (1.7) 

It is readily seen that W is an operator and its appearance 

on both sides of the equation implies a self-consistent calculation. 

If W is replaced by a i7ple (algebraic) potential it is termed 

'local'. 

One very important property of.the pseudopotential is that it 

can be represented as a sum of individual ionic potentials 

= 	E w(r - rj) 	• ....(1.8) 

Furthermore these ionic pseudopotentials, being the sum of 

the coulomb potential and a sum.over all core states, are spherically 

symmetric.: 

Application of the Pseudopotential  

In order to calculate the total energy of a crystal the sums 

of contributions due to the interactions of ions will be needed. 

These may be divided into the direct interaction of ions which gives 

rise to the electrostatic energy and the indirect (ion-electron-ion) 

interaction which is responsible for the 'band-structure energy'. 

The latter can be represented by an effective two-body central field 

potential which is readily built into the pseudopotential formalism,, 

suggesting the suitability of the pseudopotential method for calculat-

ing atomic properties.. Furthermore, calculations of the effective , 

ion interactions reveal 'Friedel' oscillations of quite long range 

2m• 
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in the crystal. The APW and Kohn-Rostoker methods are implicitly 

short range and hence of little value in computation of atomic 

properties. 

The relative simplicity of the pseudopotential method arises 

out of the ability to reduce all the interactions in a body (or a 

liquid) to an effective interaction between a pair of ions. This 

results in a set of 'form-factors' v(q) being ascribable to each 

element. These form-factors are the matrix elements of the ionic 

pseudopotential which scatters an electron from 1k> to lk + q>. 

They may also be thought of as the Fourier transform of the ionic 

pseudopotential. The complexity of any:pseudopotential calculation,  

liei in the determination of these form-factors. 

The presently accepted form-factors have been derived by 

Animalu and Heine (1965) using a model potential (which although 

not a potential of the general kind (1.6), can still be thought of 

as a pseudopotential) proposed by Heine and Abarenkov (1964). 

The Heine-Abarenkov (HA) model is essentially a quantum-defect 

method in which the region near the ion_is treated as a black box, 

the details of the potential inside being unimportant. A simple 

model potential can replace the black box if it can reproduce the 

observed properties outside the box. 

In the HA procedure an electron is added to a free ion of 

charge Z, the eigenstate of the electron being specified by quantum 

numbers 2, and m. If a sphere of radius RH  is inscribed around the 

ion the eigenstate 'outside will be comphte4rdescribed by X, m, the 

energy E and the logarithmic derivative of the wave function 'at R,. 

If the potential inside the sphere is replaced by a constant 

-Ap  (E) (the potential outside being coulombic i.e. - r) such 

In the bulk crystalline solid the HA method is to choose a sphere 

Zm that the eigenstate j2.  (Kr) (K = (t- (E + Aft.
(E))) has the same log- 

arithmic derivative at Rm, then the energy eigen values for states 

outside this sphere will be the same as in the free ion. 
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radius RM  greater than the core and smaller than the unit cell. 

The potential -Az  is adjusted until the lowest energy eigenstate 

belonging to 2. has an energy equal. to the observed term value 

(from spectroscopic data) for the bare ion plus one electron. 

The process is repeated for term values of higher energy and the 

value of Az(E) determined for energies other than the term values, 

by interpolation or extrapolation. 

The HA method has one great advantage in that the core electron-

valence electron exchange and all correlation effects within the 

core are accounted for automatically. All that is required is to 

allow for exchange and screening amongst the conduction electrons., 

If the HA pseudopotential, for the bare ion, is represented by a 

Fourier transform vb(g), then the conduction electron charge density 

is directly 	related 	to it by Poisson's equation. ,•.A self- 

consistent calculation reduces vb(g) to 

v(g). 	vb(g)  / e(g) 	 (1.9) 

c(g) being the screening factor, in the Hartree approximation, and 

usually called the dielectric constant. The Hartree function is 

(Harrison 0.966) 

c(g) = me
2 

1 - n
2 

1 4. n (1.10) 
2.ffkrh

2
n
2 

 2n 1 - n 

where kr  is the Fei=mi wavenumber and n = g/2kr. 

For a non-local pseudopotential, however, more complex treatments.  

are necessary. Heine and Abarenkov employed the Hubbard (1957) • 

approximation to obtain-the dielectric function a2(g) 
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Figure 1.1 A plot of the Animalu and Heine form factors for indium. 



flog 	g + kF2 + 

	

2 	r 2 g  
2 

s2(g) == 1 + 	'87re
2 

ks 

where 

x (g) 

 

 

... (1.11) 

_1 

X(g). = : 	Efcl 	- n2 	

1 In 
4n 	1 

n 

n 11 

and ks2 
is half the square of the Thomas-Fermi screening length or 

k 2 	21cl, 
= 	atomic units. The charge distribution in the core is 

Tr not uniform because of oscillations of .the wave function in the core 

which leads to a reduced density there called the 'orthogonalisation 

hole'. A corresponding heaping-up of charge to Z(1 + a) (a-0.1) 

occurs outside the core which explains, the appearance of this factor 

in (1.11). 

The form-factors v(q) have been calculated for twenty-nine 

simple elements by Animalu and Heine (1965) 'and Animalu (1966) using. 

the Heine-Abarenkov model. The function for indium, whidh:is 

rather typical,:is shown in Fig.- (1.1). • . 

The Band-Structure Energy  

The 'band-structure' energy arises from the indirect (ion-

electron-ion) interaction and since it involves two ion-electron 

interactions is clearly proportional to v(q)2. In second order 

perturbation theory the energy is given by 

... (1.12) 

The first two terms are the structure independent. free-electron, 

E(k) = 1L2.- +(kIWIk > + E l <k+g IWIk ><kIWIk+ ~>  
2m 	- 	q 	

hzi 
2m
(k2 I k a 1 2) 



for N ions. The third term in the HA formalism becomes 

S(s) V(012  

k2  - 	+ .02  
E(k) 

IS (a) 17(01) 1 2  x (q) e2(q) 
	... (1.15) 

The direct electron-electron interaction energy is included 

13. 

terms and since the only concern is with structurally dependent 

energies, they will be ignored. Furthermore, the pseudopotential 

may be broken dawn into ionic pseudopotentials 

+ a l (r)lk>= S(s)<k+siwik> 	(1.13) 

where S(g) is the crystallographic structure factor 

(1.14) 

(the prime on the sum indicating that the term with q = 0 is to be 

omitted) 

If this is integrated over all k within the Fermi sphere (no 

error occurs to second order in the sphere approximation - see Heine 

(1969) for example) then the band structure energy is 

Ebs. = 	
E 	Is(s) v(q)1 2x(q) a 

where )(q) is give in (1.11) and if exchange, correlation and 

screening are introduced, the final form of the band structure 

energy per ion (Heine. (1969) is 



Figure 1.2 The energy—wavenumber characteristic of indium (from Heine, 1969). 
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• 
in this expression. The direct ion-ion interaction (electrostatic) 

energy requires quite separate treatment and will be developed, for 

the particular structures under consideration, in a later section 

(Chapter 5). 

The quantity v(q)2  x(q) 62(q) in (1.15) is known as the 'energy-

wavenumber characteristic' (1)(q) and this is shown for indium in Fig. 

(1.2). Heine and Weaire (1966) were able to qualitatively compare 

the stabilities of different structures for divalent and trivalent 

metals, by superimposing a spectrum of the structure factor or1 the 

characteristic 4)(q). The structure which appeared to have the 

greatest structural weight (P(q) I S(E)I where P(q) is the multiplicity 

factor) avoiding the maximum at qo  (Fig. 1.2) or lying close to the 

energy minimum, was considered to be the most stable. 

Application to Alloys  

From Harrison (1966) the pseudopotential may be written as pie 

sum of the ionic potentials of type A at positions r.A  and type ,B at 

positions r. 

W(r) E w 	r.) 	E  w Cr 	r.) 
iA A 	-s 	iB B — -s 

The matrix elements of W are now given by 

1 .E 
<k+1 N iA k > = — 	e 	< k+.1  

or 

+ 	iEB 	< kta I WB  I Ic >  

... (1.16) 

< ktg. 	k >= 
	k+,s.  I WA  k> 	iEB  e 	<k+s.  I wA-TATB  I k> 

... (1.17) 

5)5 	{)I  



... (1.21) 
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The first sum in (1.17) is over the average lattice generated ,  

by, all the r., ignoring the difference between atoms. The second 

sum is only over the B atoms. ,If a  is a wavenumber, 30, of the 

average lattice then e 	is unity at each ion position so that 

from (1.16) 

<k + 	w ik > 	c) <k + s.0  I wk  I k > + c.<k + 	I wB  I k > 

... (1.18) 

where c is. the fractional composition of B atoms in the alloy. If 

_q is not 'on the wavenumber lattice then S(a) is zero and (.1.17) gives 

<k + 	1 W 1 k > = 
	

Be 	 1<k+.11wA - 	
I k > 	... (1.19) 

Effectively (1.18) is an 'average' term whilst (1.19) is a 

,'difference' term. When the equivalent of (1.15) for the band 

structure energy comes to be formulated these average and difference 

terms will appear again. 

average band structure energy is 

2 

'Ebs = 	
E 	SW v(q) I x(q) 62(0, 
So 

... (1.20).  

where v(q) is obtained by averaging as in (1.18) whilst X(q) and 

e2
(q) are found using average values of the valence.. The 'difference' 

band structure energy is given by 

E
bsa 	q. 

E
I SB(a)

.. va
(q) I 2'X(q) c2(q) 

where'the summation is over all a not on the wavenumber lattice and— 



• • • 1.22) 
2 

0a  (q) dq 

1.23) 
(l'a(q) 	= f va(q) 	c2(q)  x(q)  • • • 

17. 

- v (q) is the difference or 'alloying' pseudopotential. Harrison 

-(1966) shows the structure factor SB  to be given by 

c (1 	c) 

N 

for a disordered alloy (N being the number of ions). Since the 

summation in (1.21) is over all g  it can be taken, over into the 

integral (Inglesfield (1969): 

E bsa  (disordered) = c (1 - c) 120

2r2 

where a(q) is the alloying energy-wairenumber. characteristic 

Recent developments in the theory of the pseudopotential include 

the calculations by Shaw and Harrison (1967) of the orthogonality 

correction a for a number of elements. Shaw (1968) has evaluated 

new form factors, for a limited number of elements, using an optimised 

HA model. The alloy.problem has been investigated further by 

Inglesfield (1969, 1970) in a study of ordering processes and inter-

mediate compounds in various divalent metal.  alloy sybtems. 

4* 4 
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1.3 SUPERCONDUCTING TRANSITION TEMPERATURE  

The complete disappearance of electrical resistance, in a 

number of metals, at a particular temperature, was first observed 

by Onnes (1911). The second manifestation of the phenomenon 

known as superconductivity, was noticed by Meissner and Ochsenfeld 

(1933). Prior to their experiments it had been observed that, 

below its transition temperature, a superconductor excluded (virtually) 

all magnetic field from its interior. The explanation of this had, 

naturally, been ascribed to eddy currents on the infinitely conducting 

surface of the specimen, but Meissner and Ochsenfeld, however, 

demonstrated that the field was actually expelled from the specimen 

when the transition to superconductivity occurred: 
C 

London (1935, 1937), recognising that the two phenomena (super- -

conductivity and flux expulsion) were quite distinct.manifestations 

of the same transition, and further noting that the usual relation-

ship between flux density B, and magnetisation M (usual, that is for 

all but ferromagnets) was not applicable, proposed a phenomenological 

formalism. 	In this B was related to a•density of 'supercurrent' 

which led to a new relationship between M and B, the solution of 

which, for a slab of material in a uniform field, showed a rapid 

exponential fall-off quite untypical of ordinary diamagnets and 

characterised by a penetration depth A. 

A superconductor equivalent of Ohm's Law relating electric 

field to the rate of change of the density of supercurrent was also 

formulated by London to allow .for the phenomenon of persistent ring 

currents. 

In an attempt to find some theoretical basis for the successful 

- London equations, Ginzburg (1945) and later Ginzburg and Landau (1950 

proposed a two-fluid model consisting of normal and 'super' electrons. 

Assigning the density of superelectrons to the square Modulus of a 

'wave function' for superelectrons and finding the expectation value 
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of the kinetic energy (including a term due to the vector potential 

A) these authors developed a free energy equation. Minimisation 

of the free energy gave rise to a set of self-consistent equations 

of the Hartree-Fock kind. The general equations required numerical 

solUtion but the weak field solution was analytic and resolved to 

an equation, for the.supercurrent density, identical with that sug-

gested by London. The theory also predicted a modification to the 

London penetration depth which fitted later measurements. A better 

fit was obtained using an effective charge, of the superelectrons, 

equal to twice the electronic charge. The success of the Ginzburg-

Landau model was surprising and very interesting because the main 

assumption of the theory was that all the superelectrons were given 

by the same wave function. This could only mean that the 'super-

electrons' were not fermions! 

The theorists, who were looking for a 'microscopic' (fundamental 

quantum mechanical) theory for the superconductor, also noted three 

other features of interest. From surface energy considerations and 

observations on the sharpness of the transition, Pippard (1953) had 

proposed another characteristic length, several orders of magnitude 

greater than the London depth, and. which he called 'coherence length'.. 

Further, in order to make sense of the London equations the diamagnetic 

current rings must be considered to be of the same order of size as the 

bulk of the superconductor. The third property, demonstrated amongst 

other things by the frequency threshold of infra-red absorption, was 

the suggestion of a very small energy gap 	
3 10 eV). 

Preliminary considerations of the properties prompted theorists 

to look for correlations between electrons, the obvious correlation 

being the electron-electron coulomb interaction. Various attempts 

at developing a theory on the basis of this interaction were made 

(see Blatt (1964), p. 39 for references) but none were successful. 

Frohlich (1950) paved the way to the present microscopic theory, 

by reminding physicists of the cause of electrical resistance, in 

particular that a perfect lattice has no resistance. The principal 
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imperfection involved is the thermal vibration - i.e. electrical 

resistivity is due to electron-phonon scattering. Frohlich sug-

gested that an indirect electron-electron interaction (electron-

phonon-electron) might be of importance in superconductors. Analogous 

theories exist in nuclear physics for the interaction of nucleons 

(by emission and absorption of • a'virtual meson). 	In the light of 

this suggestion sense could be made•of the fact that only bad con-

ductors become superconductors, since the good conductors have only 

a weak electron-phonon drag. Furthermore, since lattice dynamics 

is involved, the mass of the ions should be important. It .was thus 

of great interest that, independently of Frohlich's•theory, Reynolds 

et al (1950) and Maxwell (1950) discovered the isotope effect, where 

the superconducting transition temperature is found to be inversely 

proportional to the square root of the isotopic mass. 

The next milestone in the development of a microscopic theory 

came when Ginzburg (1952, 1953) and Feynman (1953) independently 

'demonstrated that the ideal Bose-Einstein gas in the condensed state 

exhibits a Meissner effect. Such a gas, however, shows a permanent 

magnetic moment'above its condensation paint, quite unlike the magnetisa-

tion.behaviour of superconductors in the normal state. If a quasi- 

. boson system exists then the particles must vanish in the normal state. 

It was clear then that the number of bosons had to become an additional 

variable to be dealt with by the methods of second quantisation. 

This factor was more obviously important when it was realised that 

the condensation temperature was considerably greater than the 

superconducting transition temperatures (- 104 °K). 

Phonons and excitons are obvious candidates for the required 

quasi-boson, but for their electrical neutrality. The first real 

suggestion of an electron pair was made by Schafroth (1954) and Cooper 

(1956) showed that an electron pair can form a stable bound state 

Provided there is at least a weak electron-electron attraction. The 

now famous theory of Bardeen, Cooper and Schrieffer (BCS) (1957). did 

not, however, use a state of an electron pair but, rather, introduced 

the concept of paired single electron states. The creation of pairs 
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was not performed by a single operator but by a whole set of operators 

characterised by a given momentum k. Furthermore the only pair 

creations considered were those which led to zero momentum singlet •  

states, that is correlations of equal and opposite momenta and 

opposite spin. BCS used a reduced Hamiltonian in which only the 

matrix elements connecting these pairs were considered and the energy 

was minimised by a variational procedure. 

The BCS theory was able to demonstrate the right order of 

magnitude for the critical field, He  (0), and also showed that the 

Pippard coherence length can be interpreted as the average distance 

between members of an electron pair. Furthermore, the theory readily ,  

produced an energy gap in good agreement with experiment for the type 

of excitation used. 

A more detailed approach was made by Bogoliubov, Tolmachov and 

Shirkov (1958) in which the specific (virtual phonon) nature of the 

coupling was incorporated and perturbation calculations were made 

from the proper ground state, the condensed pair state, rather than 

from the Fermi-sea state. Both theories produced the same expression 

for the transition temperature Tc,,i.e. 
• 

Tc , = 0.344 0D exp (- 1/p) ... (1.24) 

where 0D is the Debye temperature and p is the 'coupling constant' 

which BCS gave as proportional to the density of states at the Fermi 

surface (at 00K), N(0), and the interaction potential V. The BCS 

theory also showed that the isotope effect is implicit in equation 

(1.24) since 0D is directly related to a cut-off frequency wc 
which 

is proportional to MI, M being the isotopic mass. 

The Bogoliubov theory demonstrates an upper limit to the coupling 

constant (0.5) which was later shown by Zubarev (1960) to be equivalent 

to an upper limit to the transition temperature, precluding the pos-

sibility of room temperature superconductors. 

,J 1 



exp A -u* (1 + 0.62 A) [- 1.04 (1 + A) = O
D  

1.45•  

. . (1.25) 
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The microscopic theory of superconductivity is sufficiently 

well developed to allow, at least in principle, the calculation 

of Tc  from properties of the normal metal. In practice, however, 

these normal state properties (the electronic band structure near 

the Fermi surface, the phonon dispersion curves, the screened 

electron-phonon interaction and the screened electron-electron 

coulomb interaction) are not sufficiently well known. An important,  

paper on the theory of the transition temperature has been written 

by,McMillan (1967), who takes the opposite view that the Tc  is an 

accurately known quantity and may thus be used for the determination 

of normal state properties. He devised the following equation for 

T in terms of an electron-phonon coupling constant (or mass enhance-

ment) A and the screened pseudopotential p* of Morel and Anderson 

(1962):.  

The pseudopotential term arises out of a treatment of the coulomb 

interaction between electrons and numerical values of p* are obtained 

from measurements of the isotope shift. Hence from a knowledge of Tc  

and 0D' A can be extracted and since this quantity is directly pro-

portional to the density of states at the Fermi surface, some insight 

into the band structure can be obtained. 

Carbotte and Dynes (1968) set out to make a realistic assess-

ment of A. To do this they fitted phonon dispersion curves, obtained 

from inelastic neutron scattering experiments, to a Born-von Kgrmgn 

model. The treatment of the electron-phonon interaction requires 

matrix elements of the electron-ion interaction potential which 

Carbotte and Dynes replaced with the Animalu-Heine pseudopotential 

form factors. With these calculations they were able to predict 

T for Al and Pb to within 10% of the experimental result. 

1:, 

41 	I 	t 	 • 
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Allen and Cohen (1969) developed a model to obtain A, in which 

an undistorted Fermi surface was used and a Debye sphere replaced 

the phonon Brillouin zone (i.e. completely spherical symmetry• was 

assumed). Phonon dispersion curves were taken from the neutron 

scattering data of Iyengar et al (1965). Recognising the non-

uniqueness of the pseudopotential they tried fitting Various empirical 

pseudopotentials as well as the Heine-Animalu form factors. These 

show reasonable agreement with experiment (especially for the divalent 

hexagonal metals) and introduce the interesting possibility of super-

conductivity in lithium and magnesium. 

• The corresponding theory for the prediction of Tc  in alloys is 

much less advanced. Matthias (1957, 1960) has observed interesting 

regularities when Tc  is related to such quantities as the total 

number of electrons outside the inert gas shell, the volume per atom 

and the mass of the average atom, but no theory has so far been 

developed to explain these correlations. 

Chanin, Lynton and Serin (1958) observed a uniform depression 

of Tc for dilute (less than 1 at.%) solujions of impurity elements 

in indium (except in the case of gallium) and aluminium, while Lynton, 

Serin and Zucker (1957) have reported a similar effect in tin alloys. 

To explain these results Anderson (1959) has proposed a theory for 

'dirty' superconductors based on the energy gap anisotropy. The 

electron interaction, being via phonons, must be dependent on the 

direction of the electronic momenta relative to the lattice. The 

addition of impurities rapidly smears the electron states over the 

Fermi surface and smooths out the anisotropy. Markowitz and Kadanoff 

(1963) have based' calculations on the Anderson model, attributing the 

behaviour of Tc 
to two effects. One is a gradual change of the gross 

parameters of the system (e.g. top  and p) the other is an abrupt reduction,  

in anisotropy; The first effect, the 'valence effect', causes a linear 

change in Tc  of either sign whilst the• second effect, called the 'mean-

free-path effect', causes a sudden decrease of Tc. The anisotropy 

reduction is evaluated by a rather complex calculation and'the two con-

tributing (or competing) effects are combined. Adjusting parameters 
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representing the relative strengths of the two effects, Markowitz. 

and Kadanoff were able to fit curves quite closely to the experimental 

results. 

1.4 FERMI SURFACE-BRILLOUIN ZONE INTERACTIONS  

Alloy theory will have reached one of its main goals when it 

is capable of justifying and even predicting the stable crystal 

structures in an alloy phase diagram. It has long been evident 

that the cohesion of metals is an electronic effect and that con-

sequently the detailed nature of the electronic structure is very 

important. A vast amount of effort has been put into the investiga-

tion of the band structure of metals.and, but for one or two exceptions, 

the prediction of the most stable crystal structure (of a number of 

possibilities) has remained elusive. The reason for this is that 

the difference'in energy between any two of the three common metallic 

structures (FCC, BCC and HCP) is very small. 

Most alloy theory has been only semi-quantitative and has made 

use of such parameters as the difference in atomic size (Hume-

Rothery, Mabbott and Channel-Eirans, 1937), electronegativity (Hume-

Rothery et al, 1940) and the density of electron states at the fermi 

surface (Jones, 1934). The main consideration will be with the 

variation of structure across a single system in which case the first 

two factors are less important and,the dominant factor is then the 

density of states.. 

. - r 
Jones (1937) demonstrated the importance of the density..of staeet 

by showing that primary solid solutions based on copper and silver • 

suffer a breakdown in structure at the electron-to-atom ratio for 

which the FCC and BCC structures have the same density of states. 

A basic assumption of the Jon'es model, however, was that of 
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the rigid band structure. Furthermore, the fermi surface was 

effectively assumed to be nearly spherical, not quite touching 

the zone boundaries in FCC copper when later measurements of the 

surface by Pippard (1957) showed that in reality it was already 

well in contact with the zone in pure copper. 

Cohen and Heine (1958) salvaged the Jones model by rejecting 

the rigid band (no change in shape of the density of states curve 

on alloying) and making a rough estimate of the energy difference 

between the s and p states at the centre of the nearest zone faces. 

Es and E were calculated, using the s-p excitation energy and the 

quantum defect method. Two effects of alloying were visualised, 

a change in E or a filling-up of the band structure. The former 

would have the effect of pulling the fermi surface away from the 

zone faces, whilst the latter would do the reverse. Cohen and 

Heine were unable to say which effect should predominate. 

Deviations from Ideal Axial Ratio in HCP  

One of the interesting factors requiring explanation by an 

alloy theory is the occurrence of the non-ideal axial ratio in 

HCP structures and the small tetragonal distortion from FCC such 

as those observed in indium alloys. 

1 
The electrostatic energy for HCP was shown by Harrison (1966) 

to be minimum at the ideal axial ratio (1.633) as had always been 

intuitively assumed. An explanation of the distorted HCP was 

attempted by Joned (1934) who proposed that electrons overlapped 

certain faces of a modified Brillouin zone for the structure,.exerting 

a back pressure on those faces resulting in distortion. This model 

was successful in explaining the observed axial ratio trends in the 

=_- e and n phases in the Cu-Zn system.' 

GOodenough (1953).noted that the low temperature lithium structure 

was:distorted HCP,(Barrett- and Trautz,'1,948) yet a.one-electron sphere 
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would imply no overlap of electrons into the second zone. Considera-

tion of this and of the complex hexagonal c-phase in Ag-Zn led 

Goodenough to propose that, if the Fermi surface is close to an 

energy discontinuity, then the total electron energy will be decreased 

by moving the discontinuity (zone face) towards the origin of k-space. 

The volume is kept constant by a compensating movement of other planes, 

with only small increases in electronic energy, resulting in a change 

of axial ratio. The movement of the planes was thought of as an 

effective interaction between the fermi surface and the Brillouin zone. 

Although Goodenough describes detailed mechanisms for the effect 

of contact McClure (1955) has pointed out a detailed knowledge of the 

band structure would be necessary to decide whether the total energy 

is thereby increased or decreased. McClure derives an 'effective 

stress' operating on the zone faces using the Hartree-Fock approxima-

tion. This stress is divided up into a small electrostatic term, 

a roughly estimated exchange term and a term called 'kinetic' stress 

which is the stress of Jones and Goodenough. McClure's semi-quanti-

tative discussion of the effects of alloying on axial ratios, although 

differing in spirit from the Jones argument, differs very little in 

its conclusions. The McClure prodedure is to expand the energy of 

the structure in terms of an effective stress and a single elastic 

constant, the latter being obtained experimentally. In treating 

the alloy a similar process was adopted. The value of such cal-

culations is somewhat doubtful since it seems to have replaced one 

problem by an equally intractable one. The elastic constant is 

a function of the band structure just as much as is the axial ratio. 

: • 

• 
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INDIUM AND ITS ALLOYS. 

Theoretical Considerations  

In the last 

experimental and 

metals (e.g. Pb,  

decade or two, more and more attention, both 

theoretical, has been Paid to the polyvalent simple.  

Sn, In, Cd). This has been due in part to the 

availability of high purity specimens (with long mean free paths) 

whilst the applicability of low order perturbation theory has also 

attracted the theoretician to these metals. 

The metal indium has thus been investigated extensively. 

An unusual feature of this metal is its crystal structure, which 

is, strictly, body centred tetragonal but is more conveniently 

(and fundamentally) recognised as tetragonally distorted FCC with 

an axial ratio about 1.08, i.e. quite close to unity. Just why 

this distortion should occur has been the subject of much discussion, 

'mostly in terms of the behaviour of the fermi surface at the bound-

aries of the Brillouin zone, using the model of Jones (1934) des-

cribed earlier (section 1.4). The rigid band model used by Jones 

has' achieved a measure of success in alloys based on Cu, Ag and Au 

but is less applicable to the polyvalent simple metals and consequently,  

less success is to be expected in justifying the distortion in indium. 

It has already been seen (section 1.2), that the structurally important 

terms in the energy expansions for the simple metals (equation 1.12) 

are the second order terms in the perturbing potential. These are 

exactly the terms ignored in a rigid band approximation. Furthermore, 

the rigid band approximation becomes less valid the closer the fermi 

surface is to the zone boundaries (Raimes, 1962) and is, therefore, 

less valid for the polyvalent metals. 

In the various models for indium, the density of states at the 

fermi surface, N(EF), is assumed to playa dominant role in determining 

the relative energy changes on alloying. Many electronic properties, 

notably the thermoelectric power and the superconducting transition' 

temperature ire, depend upon N(EF). and the models have been used to 
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Figure 1.3 *The Brillouin-zone for the indium structure 
(after Hughes and Shepherd, 1969). 
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explain the various experimental correlations of these properties 

with composition and axial ratio. The superconductivity measure-

ments in particular indium alloy systems will.be reviewed at the 

end of this section. 

Besides being invoked to explain general axial ratio trends, 

the models have also been used to account for abrupt kinks or changes 

of slope in the Tc  and axial ratio plots with composition. The first 

instance of a fermi surface model for indium being used for discussion 

of this kind, appears in a paper by Tomasch and Reitz (1958), who 

attempted to explain a series of deviations from a smooth curve for 

their thermoelectric-power- plot against Composition in In-Pb. 

In the absence of direct measurements of the topography of the 

fermi surface in indium, Tomasch and Reitz suggested that this surface 

overlaps both the {111} and the {402} faces of the Brillouin zone 

(illustrated in Figure 1.3). The effect of alloying with lead was 

considered to complete the filling of the first zone points C' whilst 

further kinks were related to overlap at N and filling of the corners 

W successively. Later de Haas-van Alphen measurements by Brandt and 

Rayne (1964), however, demonstrated that indium was nearly-free-

electron like in nature and hence approximates closely to the first 

four band zone picture (for free electrons) shown in Figure (1.4.) 

which is clearly inconsistent with the proposals of Tomasch and 

Reitz. Whatever the fine details of the fermi surface, it is 

unlikely that the second zone hola surface will be very different 

from the nearly 	closed surface of the free electron model. 

Merriam (1963), in attempting to explain small kinks in Tc  

and lattice parameter plots in In-Sn, suggested that the fermi 

surface was not as free-electron like as Rayne's (1963) measurements 

indicated. In particular he suggested that certain extremal 

dimensions could be interpreted as first zone holes rather than 

third zOne electrons. His interpretation involved the filling-up 

of these first' zone holes and overlap into the third zone at the 

corners C' and W (four zones are coincident at these points); 



hole .surface) 

'Third zone electron surface 
(centred on X) 	- 

Fourth zone electron pockets 
(centred on L) 

Figure 1.4 The free electron zones for the first four bands of indium. 
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.Illustrating the Svechkarev model for indium alloys. 
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The later band structure calculations of Hughes and Shepherd .(1969) 

have invalidated this proposal by showing the first zone to be full. 

Svechkarev (1965) proposed a model, based on the fermi surface 

measurements of Rayne (1963), which approximated the free electron 

picture very closely (see Figure 1.4). Proposing that the critical 

regions of the surface were at the zone corners, Svechkarev drew a 

pair of graphs (Figure 1.5) representing the axial ratios at which 

a free electron sphere would remain in contact with the corners 

(C and W) of the zone. Experimental 'N.mlues of axial ratio for 

various solutes are included in the Figure and the valence shifts 

required to bring these points on to the graphs were interpreted 

in terms of the energy gap at the corners. Furthermore, the 

assumption of free electrons implies that the corners C and, depend-

ing on the degree of tetragonality, the corners W, should be just 

occupied in the fourth zone. 

A detailed criticism of the Svechkarev paper will not be 

attempted but a number of points may be made. The behaviour of 

the indium alloys in the region Z = 2.95 to 2.98 was interpreted 

in terms of the fermi surface sticking to the corner W in the first 

zone with a consequent adjustment of the axial ratio. Because the 

experimental curve in this region is roughly parallel to the model 

curve, Svechkarev concludes that the energy gap must remain the 

same but does hot state whether he is considering the gap between 

the first and second zone or between the first and third. In 

other words the band structure remains rigid, which presumably 

could happen by coincidence even though the rigid band is not a 

general feature of.the polyvalent simple metals. 

A second point is that Svechkarev virtually ignores the third 

zone in his discussion whereas the most recently available band 

structure calculations indicate this zone to be most important. 

Ashcroft and Lawrence (1968) fitted a phenomenological pseudo' 

potential form-factor to the de'Haas-van Alphen data of Brandt and 
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Rayne (1964). Two functions were found to fit the data, one of 

which indicated that the so-called a arms (Figure 1.4) do not exist 

in pure indium, whilst the other indicated the existence of very 

small a arms. The lowest energy level of the fourth band, in 

either case, is significantly above the fermi level (» 1.5 eV). 

The Svechkarev proposal of fourth band pockets of electrons, is, 

therefore, unrealistic. Some multiple connectivity was apparent 

.at the corners of the zone and consequently the second zone hole 

surface was not considered to be closed. Hughes and Shepherd 

(1969), however, clarified the picture by making fresh de Haas-

van Alphen measurements. They, too, fitted a pseudopotential 

to the data, but included a spin-orbit interaction correction in 

the manner of Anderson and Gold (1965). They concluded that the 

a arms did not exist and that previous experimental evidence for 

them was due to polycrystallinity of samples (Shepherd,(1969).•  

Furthermore, the spin-orbit interaction,correction closed the second 

zone hole surface which Gaidukov (1966) had already concluded from 

• his failure to find any open orbits in his magnetoresistance work. 

The band structure resulting from the pseudopotential of 

Hughes and Shepherd is shown in Figure (1.6). It can be seen 

that the 0 arms come near to C and'in fact they appear to form 

closed rings. 

It can now be seen that all the models used to explain alloying 

behaviour are invalidated by the experimental facts. The Svechkarev 

picture is the most interesting but.the discussion appears to be 

too detailed for the amount of information available at the time. 

Even the band structure calculations of Ashcroft and Lawrence (1968) 

• and Hughes and Shepherd (1969) differ in the sort of fine detail 

that is required to explain the singularities in axial ratio and Te  

plots. This• writer considers, however, that the Svechkarev approach 

still has some value in a qualitative discussion of these singularities. 

It may justifiably be asked: "Why, if fermi surfaces can be 

measured accurately, there is any need for the models attempting 
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to describe the effect of alloying on the fermi surface?" The 

reason is the great difficulty in making de Haas-van Alphen measure-

ments in the presence of impurity scattering. In order to cir-

cumvent this difficulty it is necessary to increase the magnitude 

of the magnetic field used in these measurements. The existence 

of high field superconducting magnets should enable the fermi surface 

in alloys to be measured. 

The System Indium-Lead  

The phase diagram for indium-lead alloys is taken from Hansen 

(1958) and shown in Figure (1.7). 	There are three solid phases: 

the indium solid solution (a), extending to about 12 at.% Pb, has 

the face centred tetragonal (FCT) structure with axial ratio, c/a, 

greater than unity (- 1.08); an intermediate phase (a), extending 
from 12 at.% to 33 at.% Pb, is also FCT but with c/a less than one 

0.92); beyond 33 at.% Pb the structure merges into the FCC lead 

solid solution. 

The structure of the a phase has been examined at 18°K, at 

seven compositions up to 11 at.% Pb, by Russell (1966) using a 

precision X-ray 'diffractometer technique. The a-0 phase boundary 

was examined, in the temperature range 200 - 145°C, by Moore et al 

,(1955) and found to be a two phase region, the a-$ transition being 

thought to be diffusionless second order. 

The only lattice parameter data available for the 0 phase are 

five Debye-Scherrep results, at different compositions, given by 

Tyzack and'Ilaynor (1954). No diffractometer or low temperature 

work has been reported on this phase.. 

Apart from two values, at about 14 % Pb near the a-0 phase 

boundary, given by Merriam (1963), no. Te  data are available for . 

:the a phaSe. These two points'were found to lie on d .smooth''extrd 

polation"of the T 
c
/compoSition curve for the a phase.. 

: 	-  
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The System Indium Mercury 

The phase diagram of this system, shown in Figure.  (1.8) and 

taken from Shunk (1969), was established using thermal analysis, 

X-ray measurements and Tc  measurements. 

The solubility limit of indium in mercury was estimated at 

about 0.3 at.% while the crystal structure of the $ substitutional 

solid solution and the HgIn compound have not yet been identified. 

At the indium rich end, the ac  phase is FCC and the indium solid 

solution at is FCT. The ac and at phases are separated by a narrow 

two-phase region. The only available X-ray data for these two 

phases are the room temperature Debye-Scherrer results of Tyzack 

and Raynor (1954). A steady fall of axial ratio, from 1.0757 to 

1.0429, was observed with increasing Hg concentration up to 6 at.%, 

when the structure transformed abruptly to FCC, no two-phase region 

being observed. 

The superconducting transition temperatures for dilute indium 

mercury alloys were measured by Reeber (1960) and showed the initial 

decrease with alloying observed by.Chanin et al (1959) except that 

the drop was not sharp from the pure,indium value. The initial 

decreasing trend is reversed at about 2% Hg, an effect which usually 

occurs only for impurities of higher valence than the solvent 

(Lynton, 1969). The system was studied by Merriam, Jensen and 

Coles (1963) who measured Tc across the entire phase diagram and 

confirmed the results of Reeber (1960) for the indium rich alloys. 

Merriam et al Also pointed out the reproducible discontinuity 

in Tc and 
3T  cf/ ax in the mercury rich a phase at a composition 

x = 11% indium. They interpreted this as a fermi surface-Brillouin 

zone effect of-some kind, but were unable to check if lattice 

parameters showed a similar kink• because the structure was unknown. 
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Figure 1.9 The phase diagram of the system indium—cadmium (from Shunk, 1969). 
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-The Indium-Cadmium System 

The phase diagram for the system, taken from Shunk (1969), , 

is shown in Figure (1.9). The indium solubility in cadmium is 

less than 3%. Apart'from the compound InCd3, which is unstable 

below 126°C, there is a two-phase region. up to 80% indium when  

the face-centred cubic a
c 
phase appears: The phase diagram 

shows (Figure 1.10) a narrow two-phase region between the indium 

FCT solid solution at and ac. 

Merriam (1966) investigated Tc  for these alloys from 0% to 

602 Cd and noticed a kink in the region Of 2% Cd which he inter-

preted in terms of the Svechkarev model. Lattice parameters were 

measured and, although the accuracy was 'rather poor', a corresponding 

kink was observed at 2% Cd. Verkin and Svechkarev (1965) also 

detected an anomaly in their diamagnetic susceptibility measure-

ments at this composition. Ridley (1967), using a Debye-Scherrer 

camera, measured lattice'parameters across the region of the Tc # • 

kink and was able to show a corresponding kink in c, a and C/a 

but not in the volume of the unit cell. 

The Indium-Tin, System 

The phase diagram taken from Shunk (1969) is shown in Figure 

(1.10). The structures of the 0 and'y phases have not been 

identified with certainty. 

Merriam and von Herzen (1963) investigated the system for 

transition temperatures Tc  and noticed a change in slope of the 

1.c/ composition plot at about 8% Sn. In a later paper Merriam 

(1963) published a lattice parameter plot showing a pronounced 

'wiggle' in the same region. A similar plot was given later, 

Merriam (1964) for an anomaly in indium lead at about 7% Pb but 

this was criticised by Russell (1966) because the lattice parameter 

plots implied an abrupt change in a plot of unit cell volume 

against composition which was thought to be inconsistent with the 
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kind of energy change likely to occur due to small 

density of states. The same criticism would seem 

In-Sn plots and perhaps with even more validity as 

and a parameters, rise and fall together. 
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changes in the 

to apply to his 

in these the c 

The Indium-Bismuth System 

The phase diagram for indium-bismuth is taken from Hansen (1958) 

and shown in Figure (1.11). There are two intermediate compounds 

InBi with . a tetragonal Pb0 (B10) structure and In2Bi which is complex 

hexagonal. 

The only lattice parameter determinations in the indium phase 

are due to Peretti and Carapella (1949) who used a Debye-Scherrer 

method for four compositions. The only Tc  measurements that appear 

to, have been made are those of Chanin, Lynton and Serin (1959), up 

to 0.3 at.% Bi. These appear to conforM to the general pattern 

for 'dirty' superconductors (Lynton, 1967). 

The Indium-Lithium System 

. 	The phase diagram, from Hansen (1958), is'shown in Figure (1.12). 

Very little is known about the system, the only work on it, reported 

since Hansen, is that of Graham and Raynor (1957). They measured 

axial ratios for lithium concentrations tip to 15% and found very 

little change from pure indium. The extent of the lithium solubility 

appears to be in conflict with the phase diagram as Graham and 

Raynor detected no phase change in the alloys they examined.' Very 

little change in axial ratio was observed. 

There appear to haVe been no Tc 
 measurements on this system 

.whatsoever. 
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PRECISION LATTICE PARAMETER MEASUREMENTS  

IN HIGH ABSORPTION MATERIALS  

2.1 INTRODUCTION 

Indium alloys are not the, most suitable materials for X-ray 

analysis due principally to the thermal broadening of the peaks at 

room temperature and some additional broadening due to Compton scatter-

ing. As a result both Debye-Scherrer (D-S) films and diffractometer 

traces show reflections, whose positions, for 28 < 90°, are very 

difficult to measure, and are, in most cases, undetectable at higher 

angles. 

i• 

The problem of thermal broadening may be circumvented by using 

a low temperature technique (Russell, 1966). A diffractometer was 

used by Russell, instead of a camera, because of the better resolution 

and because the transparency error decreases with increasing absorption 

coefficient for the diffractometer, in contrast to the camera, which 

makes the former more suitable for the highly absorbing indium alloys. 

There may still be some debate as to•whether the diffractometer 

is the superior instrument or not. There is no doubt whatsoever. 

that,if a great. deal of time and care is put into a lattice parameter 

determination, the diffractometer is limited only by uncertainties in 

the X-ray emission, profile. Provided sufficient care is taken the 

camera is reported to have accuracies of the same order as the dif- 

fractometer (Straumanis, 1959). 	This is surprising because, in order 

to obtain these accuracies, the mid-point of a (curved) line on a photo-

graph has to be fixed,. with a cursor and vernier scale, to within a 

twentieth part, or better, of the maximum resolution of the human eye. 

Least-square error minimisations certainly indicate a small variance 

of these measurements, but that does not preclude a systematic 
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physiological error. The subjectivity of D-S film measurements was 

noted by Ekstein and Siegel (1949) who used four different observers 

to measure the same line and found considerable differences in the. 

interpretation of the line 'centre'. 

Initial experiments on the indium alloys were performed on a 

Siemens' diffractometer using the double-scanning technique (King and 

Russell, 1965),•and a helium cryostat (King and Preece, 1967). 	While 

the peak-to-background ratio was markedly increased for the low angle 

reflections, the higher angle profiles were still poor. The main 

problem was the level of the intensity which was usually on the lowest 
3 

scale (1 x 10 c.p.m. full scale deflection) the signal-to-noise ratio 

being correspondingly small. The intensity may be increased by 

illuminating a larger specimen area using a wider divergent beam 

aperture, but this results in asymmetrical broadening of the peaks 

in conventional, parafocusing, (BragBrentano) geometry (Fig. 2.1). 

An obvious solution is to change the geometry from Bragg-Brentano (BB) 

to fully-focusing (Seemann-Bohlin, SB) also shown in Fig. (2.1). 

The focusing principle of the SB geometry is the equality of 

angles subtended by a chord of a circle at the perimeter. Advantages 

of SB geometry in diffractometry have been discussed by Parrish and 

Mack (1967) who envisaged a multiple-counter system for reduction of 

recording time or simultaneous observation of different peaks whilst 

a specimen undergoes some transformation. No such system has been 

reported as yet. Another advantage pointed out by Parrish and Mack 

is that the stationary specimen makes subsidiary instrumentation much 

simpler, which is desirable, for example, when cooling or heating 

,•apparatus is to be'attached. A rather esoteric proposal for the 

method was that of Das Gupta, Schnopper, Metzer and Shields (1964) 

- for the on-the-spot analysis of moon dust! 

One of the principal weaknesses' of most of the SB instruments 

reported, has been the limited angular ranges available, •due to having 

only single fixed specimen positions. The instruments of Parrish and 

Mack (1967) and Das Gupta et al (1964) both have low angle(2 siecimen-

positions but the dimensions of the apparatuses preclude the"back-' 
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Figure 2.1 Diffractometer geometries — (a) parafocusing 	(b) fully—focusing 
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• reflection region from about 110°20 upwards. The Baun and Renton 

-(1963) instrument has.the specimen positioned opposite the source which 

limits measurements to the back-reflection region. Furthermore, when 

a similar device, made by the Hilger and Watts Company, was tested by 

this writer, the available range of angles was found to be even more 

limited. Apart from the dimensions of the instrument a restriction 

on the lowest angle available was imposed by the type of mechanical 

linkage used to direct the counter tube towards the specimen and, as 

a result, the available range was only from 130°  to 170°29. The link-

age was of a rod and yoke type which was found to frictionally seize 

if the angle between the driving force on the rod and the axis of the 

rod exceeded about 450. All the diffractometers mentioned so far 

make use of this type of linkage. 

The only Seeman-Bohlin diffractometer that showed any versatility' 

of range was that of Wassermann and*Wiewiorowski (1953) where the focus-

ing condition was satisfied with a complex mechanism which involved 

bodily rotation of the diffractometer, rod and yoke sliding of the 

specimen and a lazy-tongs linkage between counter and specimen. 

All these diffractometers suffer from the very serious defect 

that they cannot be aligned except by calibration against standard 

substances. Parrish and Mack assert that since the zero angle 

.position is located at the source it must be impossible to align a 

SB diffractometer. A fully focusing diffractometer which overcomes 

all these difficulties is described below. This instrument is a 

modification of a conventional BB diffractometer and, the two geometries 

are interchangeable. The zero-point.of the BB system can thus be 

established by standard procedure and since this point is, identically, 

the 9o°2e point of the SB system the angular scale of the SB system 

can, be determined without reference to a standard substance. 

1 ‘. 



Figure 2.2 Schematic plan of the modified Wooster-Martin 

diffractometer. 
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The instrument, which is a modification of a Wooster-Martin dif-

fractometer, is ahown schematically in Fig. (2.2) and photographically 

in Fig. (2.3). 

A line was inscribed on the base plate to define a 00-180020 (BB) 

diameter to a first approximation. A pair of horizontal slides A 

(Fig. 2.2), parallel to this line, are used as a base for the adjustable 

legs of the Wooster-Martin diffractometer. These slides can be clamped 

and a linear scale indicates (nominally) the separation of the axis of 

rotation of the X-ray tube and the goniometer axis. The X-ray source 

which is a sealed-off Philips 2 kW type tube, is mounted horizontally 

on a bracket which is free to rotate about .a pivot point in the base 

plate. This rotation (from -10°  to 4.90°  from the BB position) enables 

the tube to be directed towards various points on the diffractometer 

circle. An angular scale engraved on the base plate indicates the 

direction in which the tube is pointing. 

The vertical line focus F may be brought into colinearity with 

the axis of tube rotation by means of a•screw-thread adjustment, AF, 

perpendicular to the target. A horizontal adjustment, Ally  parallel 

to the target is achieved by simply enlarging the bolt holes securing 

the tube to the bracket. 

An annular dovetailed track, B, is accurately fixed concentric 

with the goniometer axis. The specimen table, S, slides along this 

track and may be clamped at any angular position, 2y, between 34°  and 

200° from the X-ray, source. The specimen holder is seated in a 

Siemens' cone mount (e.g. see Russell, 1966) and has a micrometer 

rotational adjustment AT with respect to the axis of the cone. A 

further adjustment to the specimen position ARs, is provided by a 

micrometer translation-Of the specimen table along a goniometer radius. 

- The specimen holder was originally provided (as has been customary'  

with all other SB diffractometers) with a flat reference surface, the 
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Figure 2.3 Top - the diffractometer in the Seemann-Bohlin mode 

Bottom - the Renold chain linkage 
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curved specimen frame being machined with a flat face to match. The 

orientation of the curved surface (that is the tangent at its mid-point) 

to the flat surface was found to vary significantly from specimen frame 

to specimen frame, however: Parrish and Mack (1967) assert that a 

speCimen rotation error only causes symmetrical broadening of the peak. 

In practice, of course, this is only true if the X-ray beam illuminates 

symmetrically about the axis of specimen rotation, a condition slightly 

difficult to satisfy. Another error that may arise from machining 

a flat surface on a specimen frame is a slight specimen displacement. 

These two errors would mean that each specimen would need to be 

separately aligned. The obvious solution was to machine a 17.5 cm 

radius convex reference surface to match the curvature of the specimen 

frames. Besides making the construction of the frames much easier, 

this means that once this reference surface has been aligned, changing 

the specimen does not alter the alignment. 

The focusing circle is here defindd as the locus of the receiving 

'slit. A rigid counter arm is bolted to the 20-drive of the BB dif-

fractometer and a dovetailed sliding assembly supports, a vertical 

shaft, with a ball race, accurately se't such that the counter bracket 

can rotate freely about an axis through the centre of the receiving 

slit. Below the bracket is attached a sprocket wheel which allows 

a Renold chain linkage to a similar sprocket wheel attached to the 

6-drive of the BB diffractometer thus providing a 1:1 linkage between 

the counter rotation (about its receiving slit) and the e rotation of 
the goniometer. 

The angle between the goniometer radius through the receiving 

slit and the line joining the receiving slit to the centre of the 

specimen is (Fig. 2.1) 	=y- 20 + n/2. 	Since 48 = 	26BB' 
where 26BB 

is the angle indicated, in BB geometry, for the counter 

position, c = Y - OBB  and in order that the counter should always 

point at the specimen (once it has been set that way) 	= - (5 10.  
When the 0-drive

' 
0BB' is transmitted to the counter it is opposed 

by the 28BB  rotation of the counter arm i.e. - B B = - BB 	6BB =  
the counter will remain directed at the specimen. 
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A small sprocket wheel, 

assembly, is used to tension 

be fixed in two,well-defined  

on a hinged arm attached to the counter 

the chain. The counter bracket may also 

orientations (i.e- at '4 = 0
o or 45o) by 

suitably positioned dowel pins. The first position is primarily for 

running in the BB mode whilst either position may be utilized for the 

initial directing of the counter at the specimen, by racking the 

counter to a suitable 20SB position (i.e. 20 = 90 + "y -O. 
	The 

receiving slit assembly (including solier slits) and the counter 

bracket are standard Siemens' parts. A.Mullard geiger counter is 

used because the bulky proportional counter restricted the angular 

range. 

'In order to make the change-over from BB to SB very simple, the 

central sprocket was,set in a cone of identical taper to that of the 

specimen mount. When the counter is pointed in the correct direction 

the sprocket is locked in this cone and is thus linked to the 8-drive. 

When using the BB arrangement, the standard specimen holder is placed 

in the central cone. The 28:0 setting ,of the specimen at 0
o20(BB) 

for scanning both sides of the beam, is made with two micrometer!  

rotation adjustments provided on the Siemens' cone mount. 

In order to set the take-off angle at 5°, a Philips divergence 

slit and soller slit holder is attached directly to the tube and 

provided with a translational adjustment. 

The Wooster-Martin machine has two built-in angular scales, 

one from the 8-drive and one from the 28-drive. Each scale has 

a cyclometer reading to 0.1°  and a calibrated drum, at the end of 

the drive shaft, reading to 0.01°, interpolation in the third decimal ,  

place being achieved on a synchronised chart record. It is readily 

shown that the scattering angle 20 in the SB geometry is given by 

20-sB  = 1T/2  BB 

where 8BB is the apparent 
e recorded on the BB scales. Thus, if the 

zero point of the BB geometry is identified with 900  on the 8BB scale 

• 
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(merely by disconnecting the 0 scale cyclometer and running it on) 

then this scale can be taken as reading the scattering angle 20 in 

the SB geometry. The scale on the drum may also be adjusted relative 

to the position of the worm-drive shaft so that the 90°20SB position 

may be accurately defined. 

Both the main gears of the diffractometer were checked for 

eccentricity by compring points 30°  apart using an optical polygon 

and an autocollimator (Evans and Taylerson, 1961). They were found 

to be accurate to better than 0.01°. 

The driving motor and subsidiary gearing of the Wooster-Martin, 

however, were found to be unreliable and Were, therefore, replaced 

by a Siemens step-scanning motor in its (1°/min) continuous driving 

mode. The linkage was arranged so that the scanning speed could be 

changed by, using different pairs of 'matched gears. 

The ranges of measurable Bragg angles are determined primarily 

by the specimen position and secondarily by the dimensions of the 

X-ray tube, counter and,.specimen assemblies. The ranges achieved 

in practice are shown in Fig. (2.•4) as a function of specimen 
position. The lowest possible Bragg angle obtainable is 28°20 

and the highest possible angle is just over 172.5°20. The largest 

.range available is from 33°20'+ 162°20 at abdut 25°y and the two 

ranges used most are for 45°y (53°  —171.5°28) and 60°y (68°  - 172.5°28). 
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2.3 SOURCES OF ERROR IN THE SB METHOD 

If the Seemann-Bohlin principle is to be used to advantage in 

diffractometry, it is necessary to be aware of all the sources of error, 

their significance and minimisation. The mathematical theory of errors 

involved in para-focusing powder diffractometry, has been thoroughly 

elucidated by Wilson (1963) and the same general principles can be 

applied to SB geometry. The lack of symmetry in the latter arrange-

ment merely makes the calculations lengthier. 

The problem is conceptually the same as that of the electrical 

engineer's 'Black box'. An input signal will in general be changed 

at the output by two essentially different mechanisms. In one, the 

total content (integrated intensity) of the signal remains unchanged 

and the signal profile itself distorted according to the convolution 

principle. In this each 6-function element of the input signal g(z) 

is smeared out into a function of the form of f(y) which is a character-

istic of the black box. The resulting signal h(x) is given by the 

convolution 

h(x) 	f(y) g(x - y) dy 

All the purely geometrical aberrations in diffractometry are of 

this type. 

The second mechanism of distortion is that of the differential 

response of the black box to the input signal, whereby the gain or 

attenuation of a signal may vary across the signal profile. Aberra- 

tions of this type,  occur, for'example, with filters and counters. 
• 

A systematic evaluation of all the errors associated with SB 

geometry (where these are different from the corresponding expressions 

in BB geometry) will be given here. Some ofthe results have been 

derived previously bueothers are analysed here for, the first time. 

It is necessary, first of all, to define the position of a Bragg 
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profile g(20) and the aberration functions f(e) (e being a variable in 

the scale of 0. The most convenient definition, from the point of 

view of error analysis, is the centroid of the profile, <28> or <e> , where, 

<.w >. = 	fw q(w) dw 

f q(w) dw 

q(w) being the profile function. ' The advantage of this definition is 

that the centroid shift of a profile due toanumber of aberrations is 

merely the sum of the centroid shifts of each aberration (Wilson, 1963). 

In order to calculate the shift in the peak of the profile due, for 

example, to a number of geometrical aberrations, it is necessary to com-

pute the aberration functions and then fold these sequentially with the 

spectral function. The two common functional forms attributed to this 

spectral function (a Gaussian or a Cauchy 'witch') are both awkward for 

solving convolution integrals analytically. As a result of this the 

following analyses will be in terms of the centroid. The centroid of 

the profile under exact Bragg reflection with no errors will be termed 

<20B> while• the centroid of the profile subjected to response errors 

is given by <20Eq.  The centroid shift for these errors is <20>-< 20B> 

whilst the shift for geometrical errors (convolution) will be,given 

directly by the centroid of the aberration profile <2e>. 

Only if there, is no broadening of the profile will the peak shift 

be the same as the centroid shift. The most convenient measure of the 

breadth of a profile; q(w), is that of the variance W (see for example 

Wilson, 1963) defined as 

<c42> 	<w>2 	... (2.1) 

The aberrations and errors associated with SB geometry and the 

particular instrument described in section 2.2, are'listed in a con- 1. 

venient order, as follows." (Note: 	Ez'rors for which previous analyses 

were unavailable or incomplete are indicated by an asterisk, *, while 

those common to the,BB geometry are indicated thus, t) 



62. 

I. Errors due to Physical Effects  

t. (1) Errors in the definitionof wavelength 

t (2) Refraction 

t (3) Dispersion 

• (4) Lorentz-factor and polarisation 

• (5) Chord length of diffraction cone 

• (6) Absorption as a differential response 

t (7) Differential response of filters, counters and monochromators 

II. Errors Arising from the SB Geometry 

• (1). Errors due to wrong specimen curvature . 

(2) Transparency errors 

(3) Specimen displacement 

(4) Specimen rotation error 

(5) Specimen tilt error 

* (6) Axial divergence with and without Soller slits 

• (7) Finite breadth of focal line and receiving slit 

• (8) Nis-setting of focus and receiving slit 

• (9) X-ray beam not in diffractometer plane 

• (10) Rotational following of counter tube 

(11) Specimen condition 

III. Errors Inherent in the Instrument  

t 	(1) Eccentricity in the main gear .  

t -(2) Backlash in the gears 

* (3) Eccentricity of specimen track 

* Diffractometer slides not parallel to 0 180°  (BB) line 

I. Errors due to Physical Effects  

Refraction (apart from a small geometrical term) and dispersion are 

not aberrations at all bait become sources of error if they are ignored. 

The refraction term merely implies that the Bragg condition should be 

written with the wavelength the crystal sees inside it. The refractive 
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index is dependent on wavelength, but since the total correction itself 

is very small 	1 part in 105 in the lattice parameter) any differential 

response to the spectral profile is completely negligible. 

Dispersion only arises if there is a non-equivalence of scale 

for input and output so that if the output'were in the scale of sin 0 

there would be no error. It is usually simpler, however, to make 

the requisite correction than to plot the profile on a sin e scale. 

To account for the effects of dispersion, Lorentz factor, polarisa-

tion and chord length, it is necessary to compute the total angle 

factor arising from diffraction. Perhaps the most easily understood 

approach is that of Ladell (1961) but a slightly different term arises 

with the change to SB geometry. Following Ladell 

f(c) 	= h* (j * k(e)) 

is to be construed as a convolution of the intrinsic diffraction profile 

of the powder with the instrumental aberration j(e) (itself a series of 

convolutions) followed by the convolution with the spectral profile on 

the same angular, scale. The instrumental functions can be unfolded 

away (the order of folding is immaterial) so that 

1(e). = h k(e) 

For a monochromatic incident beam (A) the intrinsic profile, k, 

is given by 

,k(e) 	= 	E(2e) U(p) Io SR,  (e) 	... (2.2) 

1 
Where U(p) = 2p and p is the linear absorption coefficient correspond= _ l 

ing to A. 	To Is the incident intensity of the beam, S is its cross 

section and RI(e) is the single crystal interference function for =-

polarised radiation given by James (1950). E(20) is the powder method 

factor and the chord length factor combined. The first of these is 

given by the probability of a crystallite being at the correct glancing 
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Figure'2.5 Illustrating the chord-length factor. 
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angle of incidence to the beam within d20 i.e.,- 

p  (26) d26 	 = 	cosh d20 

The chord length factor is illustrated in Fig. (2:5) which shows the 

scattering cone from the specimen, in the Seemann-Bohlin geometry, . 

intercepted by the receiving slit. The circumference of the cone 

at this point is 2wS2  sin 26 where S2  is the specimen-counter distance 

which is equal to 2R sin (26 y). The intensity received by a 

receiving slit of fixed height is clearly in inverse proportion to 

this circumference.-  The total factor E is thus given .by 

E(20)
cos  0 

 sin 20 sin (20 --y) 

This appears to be the only term in.equation 2.2 which is depend- ' 

ent on the geometry. Following Ladell it is possible, assuming R,(t). 

.to be very sharp, to show that 

• • • 
	2.3) 

f(c) 	E U T h(e) 

where T(20) tc (1 + cos2  20)71 3  

, sin 26 

or that 

• • • 2.4) 

f(20) 	h(20) / j(20) 
	

(2.5) 

where E(26) U(2 8) T (2 8) 	• 1/j (28) 	 ... (2.6) 

Ladell's. considerapion of absorption by K and L electrons leads to 

a term* 

U(20) cc cosec 	 (2.7) 

Using (2.3), (2.4) and (2.7) in (2.6) it follows that 

j(28) 
	

K 	sin20 cos 6 sin (20 - y) 	... (2.8) 
(1 + cos2 20) 

This is misprinted as cos30 in Ladell's paper. 
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In order to find the -shift of the centroid of the profile due to this 

factor, the procedure of Pike (1959) is followed, replacing his factor 

B(e) with 1/j (20 

B(0) (1 	cos2  20) 

 

... (2.9) 

 

2 s•in 0 cos 0 sin(20 - y) 

 

In the absence of all other aberrations the observed profile Q(20) is 

given by 

Q(2e) d20 
	

2B(0) F(A) dA 	... (2.10) 

where F(X) is the spectral profile and 

1  
sin 	I  A 

`2d/  

in the usual notation. 

Now let 
	

B(0) 	= B, (A) 

then the centroid <20> of the observed profile is given by 

<20> 	!2e (a) B, (a) F(A) dA  

f B,  (a) F(X) da 

The true centroid of the spectral profile is given by.  

2.11) 

ar 	= <A> 	A P(X)dX 	• • • •(2.12) 
fF(A)dx 

•• 

By expanding B, (A). and 20(x) B, (a) about A = 

theorem, to second order, it follows that 

A using Taylor's 

  

1: 
	

<203- — -<2ei> - 2V { 
	

) + e'( A B) By (xB)), 	243) 

(X B) 	. 

sin-1  A , V is the variance of the spectral profile 

(2d) 



3-4 cot28B 	16 cos 20„cos
2 

(1 + -cos` 28B) 

.10 
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for given limits, and the primes refer to differentiation with respect 

to X. The calculation of (2.13) using (2.9) is not very difficult 

and gives 

4 cot 0B cot (20B - y) 	... (2.14) 

The first three terms in the brackets are identical with those of Pike 

and Ladell (1961) while the fourth arises from the SB geometry. The 
3 

asymptotic function (as 28 ÷ T) still varies as tan eB  and the new SB 

term reduces to zero when the counter is diametrically opposite the 

specimen. 

Since the error (2.14) increases rapidly as 6 tends to 90°  it is 

.to be expected that an extrapolation plot would reveal a depression in 

the apparent lattice parameter at higher angles. The error would 

barely be detectable even for a well aligned BB diffractometer, because 

Bragg angles cannot be measured above 162
o20. The SB geometry adds 

about 10o2e to the measurable range' and hence lends itself to the 

detection of the Lorentz factor and dispersion error. 
• 

An experiment was devised to demonstrate the existence of the 
3. 

tan 0 error. Silver has a number of sharp, intense profiles up to 

the moderately high angle (157°20) 511,333 reflection for CuKa  radiation. 

Considerable solid solubility of zinc in silver and an associated lattice 

parameter change made it possible.to 'move' the 511,333 reflection, 

on alloying, through higher Bragg angles up to the angle limit of the 

diffractometer. 

The diffractometer was set with a specimen at y = 60°  to enable 

the five reflections, 222, 331, 420, 422 and 511,333 to be scanned 

continuously. Point readings were taken from the chart record and 

fed into a machine programme for the calculatioroof the centroid and ,  

the corresponding lattice parameter. An explanation and a listing of 

this programme are given in Appendix 1. 
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The lattice parameter values were plotted against the error 

function for low transparency specimens (see section 2.5) and the 

results are shown in Fig. (2.6). The deviation from linearity is 

clearly seen in 'the higher zinc composition specimens where 28511,333  

is greater than about 160°. Also shown on the plots are the positions 

of the 511,333 points corrected for Lorentz factor and dispersion using 
3 

the tan 0 term in (2.14). For this correction the variance of the 

spectral profile V was taken as one third the square of the doublet 

separation (Wilson, 1963). 	Inspection of Fig. (2.6) reveals that 

this correction is sufficient to return the points to the linear 

extrapolation plot. 

According to Wilson (1963) the peak displacements due to the 

Lorentz factor and dispersion should cancel exactly and so there should 

be no major divergent term in the high angle region. 	(Axial divergence 

in the presence of Soller slits is about an order of magnitude smaller 

.than these errors in the region 160o - 170o28.) When the lattice 

parameters calculated from the peak positions are plotted against 

the extrapolation function, as in Fig. (2.7), no systematic displace-

ment of the high angle points is apparent. 

The remaining errors listed in categoryl are differential response 

errors comprising distortions to the profile due to counter, filter and 

monochromator response. These are independent of geometry and have 

been dealt with before (see for example Wilson, 1963). Should the 

effect of air-path absorption ever be considered important as an 

aberration, it is calculated here. 	The response is given by (2.10) 

with B(e) replaced by 

B(e) = 	e
-2).1  R sin(20 - y) 

where P is the. absorption coefficient of the air and R is the radius 

of the diffractometer. The centroid shift will be given by (2.13) 

without the dispersion term. Recalling that p a sin3e the calculation 



Ag  
0=1 
	

0:2 	0=3 	0=4 
	

0:5 	0:6 	0.7 
	

0;8 	0;9 	1 +cos(2e)  
Figure 2.7 Extrapolation plots of silver-zinc alloys using the peaks of the 	sin(Y)+sin(20-11 

Bragg profiles. 

4.088 

4.086 

4.084 

 

%Zn 

29.0 

2 6-5 

19.0 

4.032 

.4.031 

4.030 

4.033 

4.032 

cc . 4.031 

uJ 

cc 4.048 
CL. 4.047 
DJ 
V 4.046 



cos y - y) l  + (f 

from that corresponding to exact Bragg reflection, by 6 

i.e. 	APB 	la 	- (20 - 28) 

to first order then 

A , 
- cos 20 - cos APB 

2 sin 20 

. 
Now. cos APB 	PA.PB 

sin(ara- y)- i + 	.sin(20 - y)-y)1  + (r-z)k 
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II. Errors Arising from the SB Geometry ' 

The principal geometrical errors, associated with the specimen, 

in the SB method, have been analysed by Segmuller (1957). These are 

the flat-specimen error, the specimen displacement error and the specimen 

transparency errors. Kunze (1964) has, rather unnecessarily, taken 

these calculations to several higher orders of approximation in both SB 

and BB geometries. Since the broadening effects and the centroid shifts 

of several other aberrations remain to be analysed, it is thought desir-

able to treat all the geometrical errors in one scheme. The method 

used is analogous to that used by Pike (1957) for the conventional dif-

fractometer. The SB geometry is illustrated in Fig. (2.8), the curve 

AQB being a section of the focusing circle and (x, y, z) are normal 

coordinates of a point P, such that the y-z plane is tangent to AQB at Q. 

The focus at A and the receiving slit at B are (for the moment) both 

assumed to be sharp lines and f and r are any points along them. The 

diffractometer is set to receive an X-ray reflection at 40
m 

where 

.0 ..0 - e, e being the Bragg angle and s  is a small deviation in the 

scale of 0. Let the crystal grain at P have an orientation mis-set, 

(2.10 



Figure 2.8 Seeman-Bohlin geometry. 
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and Si.  = sin y, 82  m sin(2em- in units where 2R = 1 (R being the 
:.radius of the focusing circle). 

Using 2.18 and 2.17, cos APB can be evaluated to first order 
ins where cos 20 = cos 20 + 2e sin 20. Apart from the term in x, 
the first significant terms in other parameters are second order. 
Using 2.16 it is found; after tedious calculation, that 

• 

(Ax, + 2  + Erz + Ffz + Gr2  + 

+ Jxy + Kfr) 	(2.19) 

2 	2 	2 -"5s) (s1  + s 	+.8s.(s - , c) 



• 2 
2s sin 20 
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2 	2 
(si 	+ , s2 )] Q1  c2  — s2c1)— 2s(s2c2— '81  c1) 
,  

1  

2s sin 20 

and 	1 =  cos y, 	• ga  cos (20 - y), 	=c1 c2, § = si  s2  

The expressions A, C, D and K correspond exactly to those of Pike (1957),  

for BB geometry, which is the limiting case where s l  = s2  = sin 0. 

The expressions B and J correspond to second order terms neglected by 

Pike and E, F, G, H are in direct correspondence with his expressions 

except for the sign. This change in sign makes no difference in any 

of the following calculations. 

The efficiency of reflection of a grain with mis-setting 6 is 

-some even function f(6) i.e. 

co 

6 f(6) (16 = 0 and f f(6) dd = 1 

The intensity diffracted by an element of volume dx6y6z, from an 

element of source 6f, through an element of receiving slit dr, whilst 

the counter moves through de at constant velocity, (the angular 

velocity of the receiving slit about the specimen is constant in 

the SB system too) is: 

1(e) de = f(d) exp(- pp) dxdydz dfdrde 	... (2.20 

where p is the path length in the specimen and u is the absorption 

coefficient of the powdered specimen. The shift of the centroid 

from eB (i.e. from the centroid of the spectral profile under exact 

Bragg reflection from Q with r = f = 0) is then given by 

f(6) exp (-pp) dxdydz dfdrde  

Ifffif f(6) exp (-pp) dxdydz dfdrde 

(2.21) 



• • b 
2 ' 

'a 2.23) sin 20  
<c> 	2 

flat -1=1. 	CR - 
3 

where 2a is the divergence angle. 

The variance of the aberration, i:e. the mean square broadening, 

defined in equation 2.1, is given by 

'2 	 2 
= 	 <t> and hence 

2 4 
Wflat = C 

6 	sin? sin (26 - 
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The principal specimen errors are associated with the equatorial 

terms, that is terms in x and y only, and these terms are separable 

because all the integrations in 2.21 are independent. 

Flat Specimen Error  

If a flat specinen is used the error, which arises out of the y 

.`'term in (2.19) is given by 

s 2,  2 
y dy 

flat 

S , dy 

... (2.22) 

where the specimen is of length 22.. Hence 

4 	2 
or 	W

flat 	
a sin 2e 	... (2.24) 

45 sin y sin (26 - y 

The flat specimen error arises as a special case of a wrong curvature 

for the specimen surface. A more general error in curvature can arise 

from inaccurate machining of the specimen frame or if a specimen is 

taken from one SB diffractometer to another of slightly different radius 

(commercial diffractometers on which SB attachments have been fitted 
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c 

4 
••"2 

R 

13 ... 	(2.26) 
180 RRc 

4 	2 	 2 
asin 20  
2 	2 	 • 

sin y sin (20 y) 

—Mx 
xe..dx/r  _mx  

. e dx 
o 

<c> ' 
11'4' ° • 

0 
6.. (2:27) 
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tend to have similar but not identical radii - Vassamillet and King 

1963). Without repeating the calculation, the error arising from 

the wrong radius of curvature, Re, is 

2 
a sin 2 0 

[ 

 

6 sin y sin (20 - 4.. (2.25) 

and the broadening is given by 

An estimate of the size of the flat-specimen error calculated for 

20 = 90o y = 45°, a = 2°  when (2.22) gives 

<e> 
flat 

• 	o .o 2°  0 

If .a small error occurs o say 5 mm in the radius of curvatdre then 

the centroid shift is 

<c>  It 	.0.0005°0 

Since machine shop errors, in the manufacture of specimen mounts, 

and specimen preparation errors are not likely to exceed 5mm in the 

radius of curvature, their effects can thus be safely ignored. 

Transparency Errors  

a.' High absorption '  

The transparency error arises from the x term in equation 2.19 i.e. 



sin 20 

4p R (sin y + sin (20 - y)) 

The broadening is given by 2.1 with 

CO 

x2 e -  dx 

Go r  -e-Mx 
Jo 

x 

2 
'whence W 	<C> 

'2 
-4c 
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(2.28) 

... (2.29) 

... (2.30) 

The magnitude of the centroid shift, due to this transparency error, 

may be estimated by taking y = '45°, 20 .  = 90°, R = 175 mm and p (for 

permaquartz)'= 212cml (for CUKa  radiation). The centroid shift is 

<2e> 
11 	c°  

0.003°26 

. Low absorption 

When the specimen is highly transparent it can no longer be 

assumed that all,X-rays are scattered inside it. 	The geometrically '  

effective region is governed by slit dimensions and specimen size. 

For the highest precision the errors should be evaluated for the 

particular experimental situation.' The usual limiting case, of an 

infinitesimally thick specimen, can be evaluated, however. Again 

it is only the first order term in x that is important 

• 

x e-Mx dx 

e -Mx.dx 

is the thickness of the specimen. .  

t this becomes 
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2 	•8R sin y sin(20 - 

and the associated broadening is given by 

f 4 o' 	A
2 

t
2 
[1 	1] 

3 

t
2 
sin 20 

- whence W 	• 
• t o  192 R

Z 
sin

2 
y sine (20 - y) 

= 4 	20 = 90°  

<2E> o 

Specimen Displacement  

175 mm,andt.= 0.1. mm the centroid shift 

If the specimen is displaced a distance AB's , from.the focusing 

circle and there is no transparency error, then 

therefore 

<c> 	 AR sin 20 
s. 

A 	A AR s 
4R sin y sin (20 y) 

The variance of this aberration appears to be zero when calculated to 

the same order of approximation as the centroid shifts. Since there 

is no broadening of tfie profile the expression, 2.33, for the centroid 

shift will also apply to the peak shift as was found in the case of BB 

geometry (Wilson, 1963). To demonsirate the validity of the expression 

for peak shifts and to provide an estimate, of the effects of specimen 

'displacement a'shift'AR of 1.25 mm (1/20"), from the as-aligned position,. 
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TABLE 2.1  

THEORETICAL - AND OBSERVED PEAK SHIFTS FOR DRS  = 1.25 nat, 

FOR VARIOUS SPECIMEN SETTINGS, y. • 

A2e°  

Theor.• 

A2B°  

Obs. 



[ 	

..,. 	,..... 
p 	cosec y + 	cosec(28-y).  

cony +'cotx 	cot - cot(28-y) 

	

. 	] 

The centroid shift is 

A II (x + y2) e.'m(Ic' 	'dx dy  
t. 

\if e-M (x cots - y) \ 	dx dy 

The ranges of integration are 

•<z> 

(y taut + y2 
1  

Micott 
<0. 

T • dY 

for x 

and for y 

A 

22. 

The first term in the integrand integrates to zero while the second is 

• 
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was given to the specimen. Table (2.1) shOws the peak shift, as a 

function of y, for the 132 profile of permaquartz (.90020 for CuKa), 

compared with the theoretical shift (2.33). 

Specimen Rotation Error  

A rotation of the specimen through an angle T about the z axis 

poses a similar problem to that of 20:'0 mis-set in the BB geometry. 

To simplify the calculation a flat specimen, of length 22., is considerea 

and the flat specimen error is removed later in the derivation. 

The absorption factor is 

- Mt  (x, cot -r-y) 
e 



flat specimen error. 

• is given by 

Hence, the variance arising out of the rotation 

:p 

the flat specimen error which is removed. Hence using just the.third .  

term the centroid shift due to. hpecimen,rotation_is' 

A 	 (2.35) 
M' co tt 

To first order in small T this is identical with the (high absorption) 

transparency error (2.28) and consequently no additional shift results. 

In order for a centroid shift due solely to specimen rotation to appear, 

T has to be of the same order as y or (20 	and, since in practice, 

the specimen rotation can easily be set to + 2°  the error (2.35) is 

negligible. 

Broadening of the profile due to specimen rotation is of far more 

importance. In order to derive the variance, equation 2.1 requires 

2 cotT A1  (..x! 	y) dx dy <c >. 	
fi (x2  + 2xy2-+ y4)e- 

T 

II - -141(x,cpti - y) dx dy. 

which becomes .  

tan:T:t 2 	tan2;T 	2k2  .tan T 	St A 

mt2 	3M' 
	

5 

Thee variance is then 

<c2> 	2. A? tan2T  T 	T • 
- 	• M 2' 

2,2tan2T  + 4 L4 

3 	45 

• • • 2..36) 

    

Again, except where T is large, M' is negligibly different froM M. 

, The first term in (2.36) is, therefore, just the broadening resulting 

from the low transparency error and the third term is that due to the 

• • 



<C> = l r 
2h 

+ ‘ Az tana) dz 

[bc + (p + E +F +  K)z2  
. 	. 	

(x-x, a) dxdz 

Specimen Tilt Error  

If the specimen surface is tilted through an angle a, about the 

y axis then the equation of the front surface of the specimen may 

be given by xa  = z tana. For a particular z, and no vertical diver-

gence  of the rays, the coordinates f and r are each equal to z. The 

centroid shift is given by 

co 

z tana 
co 

e-M(x-xa)  dxdz 
Sz tana 

:~.where the focus, specimen and receiving slit are of height 2h. The 

coefficient of z2 is identically zero and the expression simplifies to 

The first term is the small transparency error (2.28) and the second 

co 

f 
X a 

A2x
2e-M(x-xa) dxdz 

term integrates to zero. There is no centroid shift arising out of 

The second moment of the aberration is 

Neglecting the broadening due to transparency gives 

o4,<e2> = A2 h2 tan2  a 

3 

1 3 k sin2e. tan a 

Rsiny sin(28- y 
h  . (2.38) 

82.* 

... 	(2.37) 

• 

sin2e tan T  

2 sing sin(20-y) 

• 
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Machine shop accuracy is probably such that the tilt error is less 

than 1°  which means an additional breadth 	Wa) of less than 0.015°28 

which is quite tolerable. It is probably not necessary, therefore, 

to provide a tilting adjustment to the.  specimen. 

Axial terms  

In order to ,  deal with the axial divergence of rays, (i.e. diver-

gence from the plane of diffraction x-y) the axial terms (f, r, z) 

must be considered. If any two of the vertical extensions of the 

specimen, focus and receiving slit are symmetrical about the same 

equatorial plane, all the cross terms in (2.19) cancel under integra-

tion. Assuming all three are symmetrical about the same plane with 

_extensions of 2F(f) 2T(r) and 2Z(z) the centroid shift is 

T 

 

<s AD' • <e> 	. e T. Z. + <> <s>F 	. (2.39) 

• • • 2.40) sin28 cos 2(0 - y)  
2 	2 48 sin y sin (20 r 

... (2.41) 

... (2.42) cot 26  

48 sin
2  y 

The last two terms, far from going to zero in an extrapolation to 

20 - 180o, go.to infinity. In'the usual case of equal heights (2h) 
• 

foi specimen, receiving slit and focus the broadening simplifies, to 

4h4 (D
2 
+.G

2 
+'H 

h4 2 2 2 — (E + + K ) • ! (2.43) 
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.Figure 2.9 Axial divergence in SB geometry. 



Axial Divergence with Soller Slits  

• where D, E, F, G, H, K are given in (2.19) 

The formidable task of calculating 'axial divergence, with one 

or two sets of Soller slits in the beam, has been completed here. 

The method is essentially that of Pike (1957), but the asymmetry 

considerably complicates the arithmetic. 

Following Pike and from Fig. (2.9): 

- f)2 
s 2, 
l 

+ s2
2 

• • • 2.44)  

+ F2 

where the path of the ray is traced from a point f through p to rt 

Using the same convention as before and, using the cosine rule: 

+ 2AB cos 20m  

If a and B are the angles that the incident and reflected rays res- 
. 

pectively make with the plane of diffraction, then 

s2 

+ a
2  : cot 20 	aa cosec 28 

4 

(2.46) 

If a set, of Soller slits ,  is placed in the incident beam, it can be 
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Figure 2.10 Transmission through Soller slits. 
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seen from Fig. (2.10) that the amount of X-rays allowed through for 

one foil is proportional to X - La and the amount stopped is pro-

portional to La. The fractional transmission is then (1 - 2) where 

A is the foil spacing per unit length of slit. The transmission 

through the second set of slits depends on the relative positions of 

the foils in the two slits and is an intractably complicated function 

of a and $. Pike adequately justified replacing this transmission 
0 - 	 A 

function.by an average transmission (1 - 	Integrals can be 

taken:over positive a'only, but must be taken over both signs of 0. 

The displacement of the centroid is then given by 

<e> III 

2 	2 a 4.13 

cosec 2 .0.](1 - e')' ) (1- (1- - Ydadadp 
a$ 

4 	cot 20 - 	2 
1 2 

'For convenience two, q' values similar , to that of Pike are introduced: 

s1 dl 1 1  q2 	= 	
... (2.48) 

h 
	

h 

All the combinations of ranges of integration, as a function of the 

q variables, are given in Tables (2.2, 2.3, 2.4). The integrations 

were performed over all possible combinations. The centroid shift • 

can be represented as in Pike's paper by expressions of the kind 

<c> = h2 (<c> x (1) cot 20 + <c>x (2) cosec 26 ) 
	... (2.49) 

The two <e>x each have, seven distinct functional forms depending on 

the particular combination of ql  and q2. There are thirteen dis-

tinguishable types of combinatiOn of the q's and these are given in 

Table (2.5) along with_a letter designating the particular function 

that. applies. Of' the seven pairs of functions four are basic. and ' 

three may be derived via the operator T which interchanges the suf-

fices on the q and the s i.e. 



q2 4 1  h(q2-1) 4 p 4 h(1-c12) , 	-A 413.< 	a22  
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TABLE 2.2  

RANGES OF INTEGRATION - ql  ) 2 
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< 	< p*h - 
S2 

 

TABLE 2.3 RANGES OF INTEGRATION 1. 4 q1  < 2 

q
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h< p<h(q11) 2211 
s2 	 52 
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KEY TO THE FUNCTION <E>x  TO BE USED IN EQUATION (2.49) 

Range of q2  

q2 2 

B 

A 

1 qv-4 2 

C = B 

q2 	2 D TB 

1  4 (12 4  

q2 q1 2. 

(12 4  ql 

E 

F = TE 

G = F = TE 
q2 

qi+q2 4 2  
H 

(12 2  

q1+q2 

1 4 (12 4 2  q1+q2 4 2  

q2 ql 

I = 'TB 

= E 

K = TH 

L = H 

q2 4 1  
(12 1 
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<c> T 4c>(q181, q2s2) 	= 
(q2s2' ci1s1)  

The four basic pairs of functions are 

'c>A(1). .,..105q02(8/
2
+
s
2
2
)+96(si

2
+82

2
)-81

2
(126q1+77q2)-s2

2 
 (126q2+77q1) 

2181
2
8,2
2
[30q02  -20q1-26q +14] 

<c>A(2),,11!:  105q02 	126q1  - 126q2  + 152 

218182  [30102-20q1-20q2  + 141 

2 q
- 	k 
2.[ 	. 	• 

- 140 + 63q
2 
 - 21q

2  2
'+ 

• 
q 
3
) + q1(210 63q2) 

C3(-672 + 280q2  - 140422  + 42q23 - 7q24  + q 

+ 2q1 	280q2  + 105q2
2 
 - 2182

3 
 

q (6 -q2) (-80 + 20q2  5q22  + q2
3
).] 

B(2). 	q
2
2 
 21q

A 
 (1 q,) (-280 +'12682  - 28822  + 5q23)] 

42s
1
s
2 [

20q
1 
 (6 - q2) + (-80 + 20q2  - 

q 	
q23)] 

s
2
2 

V
2 

... (2.50) 



where 

6g1(224 - 224q2  + 70q2
4 
- 42

q25 + 

5. 	6 	'7 2q2. (126- 42q1) + 7q 	(76, 	
+ 312 

,+ 672q/q2  + 140q1
3
q2

3.
7 35q/

3
q2
4 



2 2 [ 5 s2 	q2 - 5(11(124 - 1.0q12q23 + 120q,2q22 - 20q13q22. 
• 

1  (-32 + 80q - 80q1
2  + 40q1

3  - 10q1
4  + 2g15) 

+ (80q2,- 80122. + 40q2
3 
- 10824 + q25) 

+ g1(120g22.-  40q2
3  + 5q2

4
) + q2(120(11

2 
- 40(113) 

2 2 - 160(1352  + 60q1  q2  - 10q,
2
q2,3  

2(-63q12q25 - 42(11(126 + 10q27 + 420q12q24 - 70(113q24) 

4 2. 	5 2 	4 3. 	7 - 	.6, 
A. 

+8,2, <420q, J.  q2  - 126(11  (12,,  - 35q, q2  + 3q2 /1152  

-28(11526  + 10q27  + 70(113q24 

84812s22
r 5"  q2 	5q, c1„4 ....'10q12q23 + 120q.1  2q22  - 20q1

3
q L 

The coefficients of cot 20 and cosec 28 besides being functions of A
1 

and Al  are clearly rather complicated functions of y and 8 itself. 

To check for arithmetic errors the functions were worked out at all 

the boundaries of the q ranges and shown to match in every case. 

The numerical.  evaluation of the coefficients in general was completed 

by computer. The centroid shifts in o20 are shown for various y, 

for the three cases of no Soller slits, one pair of Soller slits 

and two pairs in Figs. (2.11) to (2.14). 	Two values of A (0.05 

and 0.1) have been used in the calculations. For completeness 

the, tabulated values are shown direct from the computer, output in 

Appendix• 2..  
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• 
Geometrical Errors Associated with Focus and Receiving Slit  

In order to evaluate these errors. three coordinate systems, 

in the equatorial plane, are defined with origins F, Q and R, as 

shown in Fig. (2.15). The transparency error is ignored so that 

a point P in the specimen has coordinates (o,y) and a ray is traced 

from the point A(x,,y,4.) through P to B(x2,y2). 	It is readily 

shown that 

.+. y c, + s
1 
 )1 + Yisi sici —  

. (-x
2  s2 

 + y2c2  -s2
2 
 )1 	(x2  c2 	2 Y's -  

where i, 4 are unit vectors of the system 

directly that  

PA . PB 
= 1 A + Dy + Ev

2 
 + Fx1  y + Gx2y -  

IPAI IPBI 

c) 	= -s cos 29 

2c1+s1c2) 	'= 2 s sin 20 

c +s c2  ) 	-s1  sin 
20 

cos 28 4-c1) 

+ s2  c2  + y)4 '  

It follows 

(2.51) 

c1 cos 20 + c2 

The terds.in x alone cancel as would be expected and the term 

in y
2 has been neglected as it is just the flat specimen error. The 

last two terms vanish under integration, when computing the centroid 

of any of the folloWing aberrations. They are important, however 

for determining broadening. By argument similar to before 



Figure 2.15 SB geometry with coordinate systems at the focus and at the receiving slit. 



2.55) 
2 2 d2 F' a  

9 

G 

2s sin 20 

, Finite breadth of focal line and receiving slit  

Assuming the coordinates (x1,y1) have their origin in the centre 

of the spot, and that the intensity distribution across the spot is 

uniform (which is an assumption which has been made throughout these 

error calculations), then the centroid shift due to the finite width,  

of the focus is clearly zero. 

If .wf is the projected width of the focus the resultant broaden 

48R2 sin2y 

By similar argument it may readily be demonstrated that the broadening 

due to the finite width of the receiving slit, wrs, is 

14rs 	
w rs 2. 

 

Broadening due to a finite extension of the focus d in, the xl  direction 

is given by 

101. 

2s sin 20 

48R2  sing  (2A siv. t2P - Y) 



A similar term will arise due to a finite depth of focusing at 

the receiving slit• when the resultant broadening is 

... (2.56) 
9 

Mis-setting of focus and receiving slit  

There are four cases of focus misLsetting as illustrated in 

Fig. (2.16). For each case there is a corresponding case for the 

-• mis-setting of the receiving slit and analogous expressions may be 

derived. For each of the following expressions the analogy is drawn 

by changing the sign (of any centroid shift) and interchanging y and 

(20 	y) • 

The focus is colinear with the axis of rotation of the tube 

but shifted, tangential to the focusing circle, away from the zero 

of the 26 scale.•  If this shift is AX then the focus has coordinates '  
(x1 	= AX cos y, yl  = AX siny). As there is noi term, in x 

alone, in 2.52 this variable only appears at a higher order than the 

'term in yl. It seems justifiable, therefore, to neglect it and then 

AX AX • 21  
4R 

(2.57) 

There is no broadening and so 2.57 is, identically, the peak shift. 

The error is rather trivial being merely an incorrect definition of 

the zero point of the 20 scale. 

The focus is colinear with.the. axis of rotation but shifted ARx  

away from the focusing circle. For low y this is little different 

from the AX case in that the 2nd order x1 terms are negligible in 

2 	2 W
df. 

= , 
rs 



Figure 2.16 Four cases of mis—setting of focus.. 
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comparison with the yl  term. For higher y the term predominating 

would be the x y term. As it is a term in y there can be no centroid 

shift but there will be a broadening 

2.58) 

The axis of the tube runs through the 0029 position but the focus 

'is shifted AF x 1ongitudinally with respect to the tube. There is ' 

clearly just a bodily shift of the profile 

with no broadening except at low y. 

eRF  

The axis of rotation of the tube is correct but the focus is 

shifted transversely with respect to the length of the tube. There 

will be no centroidshift but a broadening 

FI2a
2
ARF

2 

3 

Errors inherent in the Instrument  

If the main gear is inaccurately machined, this can be observed 

using a calibrated optical polygon with an autocollimator (Evans and 

Taylerson, 1961). This compares points say 30 apart (with a 12 sided 

polygon) with perhaps several cycles starting with an orientation a few 

degrees advanced each time. Alternatively the autocollimator may be 
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used with sets of calibrated wedges. 	It is even possible to do this 

with a wedge of unknown angle. If necessary, the complete gear can 

be calibrated by processes of this sort and a correction curve drawn 

up for all angle readings. 

Any error from backlash in the gears is minimised by running the 

gears up to the starting point in the direction in which the motor is 

to run-for scanning the profile. 

If the counter fails to stay pointed at the specimen the effective 

width of the receiving slit is diminished which reduces the intensity 

and the breadth of the profile with no shift of the centroid. 	'This 

was confirmed experimentally for rotational mis-settings, of the 

counter tube, up to 10o (the slit cannot 'see' the specimen with a 

:.greater rotation). 	The fact that no centroid.shift was observed in 

this experiment also confirmed that no detectable eccentricity of the 

receiving slit occurs•during rotation of the counter tube. No instru-

mental adjustment is provided for such a.mis-setting since accurate 

setting should be well within the machining capabilities of a good 
 

workshop. 

A serious source of error (and where the operator is completely 

dependent on machine-shop accuracy) is in the setting and curvature 

of the dovetail track. Id practice any 'eccentricity will become 

apparent with a failure to align the instrument after several attempts. 

No error was detected on the present instrument for specimen positions 

between 2001 and 75°y and all experiments carried out in the present ,  

project employed specimen positions in this range. It has since 

been demonstrated, however, (Gunnell, 1970) that the specimen track, 

above 75oy, is somewhat distorted. A distortion of this kind can 

only be eliminated by re-machining the track, although' a correction 

chart, for the distorted region, may be drawn. 	If the curvature 

of the track is correct but not set concentric with the goniometer 

axis, the only cure is to have the track re-set in a machine shop. 

If the diffractometer support slides are not parallel to the 

, • 	• 



sin 26  

sing + sin(26 - y) 

sin 26  

sing sin(26 - y) 

180° (BB) line there is no error because the 0 point of the angular 

scale is adjustable and in the alignment sequence for the instrument 

this adjustment is made after any bodily shift of the diffractometer. 

IV . Remaining Errors  

If the diffractometer plane is tilted with respect to the X-ray 

tube then for a small'tilt (of say 1 or 2°) any additional axial terms 

.are negligibly small and the only effect would be equivalent to a 

combination of extensions of the focus in the x1 and y1 direction 

resulting only in a slight broadening. 

Parrish and Mack (1967) have pointed out the possibility of 

errors due to poor specimen condition at the surface. This' would 

become apparent as either if or (20 - 	liecame small when the surface 

roughness could be 'seen' by the focus or the receiving slit. 

Discussion of errors  

,Inspectionof equations (2.24 2.25; 2.28,. 2.31, 2.33) reveals 

.that all the principal specimen errors have a functional form given 

'bTone or other of the expressions 

Both these expressions go to zero as 26.4-7 and, furthermore, 

'the variance of the aberritions are proportional to the squares of _ 

these functions and thus will, also go to zero. In addition the error 

in the lattice parameter will go more rapidly to zero as 26 -* 

because of the relationship 

106. 
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Using 2.62 and 2.61 the systematic error in the lattice parameter is 

given by functions of the form 

(2.63). 

1 + cos 26 

sing + sin(20 — y) 

which suggest themselves as suitable extrapolation functions. For 

a well-aligned instrument the systematic error function will be a 

mixture of the two functions. If one is chosen as the extrapolation 

function the presence of the other is not likely to impress a large 

deviation from a straight line. The choice of function must depend 

on the particular experiment. Both functions have been tabulated by 

computer for a number of specimen poditions and are given in Appendix 

3. 

As a test of the extrapolation method samples of I.U.Cr. silicon 

and tungsten were measured and plotted against each of the two functions 

as shown in Fig. (2.17). For both cases the low transparency error'  

is seen to be dominant by the better fit of the data to 2.63B than 

2.63A 

2.4 THE ALIGNMENT PROCEDURE 

Parrish and Mack (1967) record,, as a major criticism of the SB 

method, the impossibility of locating the zero-point. The present 

diffractometet is essentially of convertible geometry, so that the 

0°20BB point can be found by standard procedure and this can be identified 

with the 90°20 point on the SB scale. The full alignment procedure,,)'  

which follows is basically an iterative procedure which will converge 
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. 
provided that there are no significant errors arising from the manu- 

facture of the instrument, (see section 2.3 III). . 

There are two references which are 	altered throughout the 

alignment. One is the axis of the X-ray tube rotation and the other 

is the radius of the focusing circle. The latter is fixed by sliding 

the counter along its bracket until the receiving slit is 175 mm (or 

any, other pieferred value) from the axis of the diffractometer, and 

locking it in place with a dowel pin. The various adjustments on the 

instrument must now be made such that the focusing circle so defined 

shall pass through the focus of the X-ray tube (which itself must be 

colinear with the axis of X-ray tube rotation) and through the concave 

surface of the specimen. 

For'convenience the alignment may be divided up into a set.of 

istinct operations: 

The diffractometer axis is brought to -175 mm from the axis of 

rotation of the X-ray, tube, using the scale provided on the ! . 

--slide (Fig. 2.2). 

In order to establish the 0o20BB  position, to a first approxima 

tion, two needles are established in colinearity with the axes 

of rotation of the X-ray tube and the goniometer by a simple 

optical alingment process. Removing the counter tube and viewing 

through the receiving slit, the two needles are brought into line 

with the slit by rotation of the counter bracket. 

is In order to set the take-off angle, the divergence slit holder 

must be centralised in the window of the X-ray tube which is 

:set for a take-off angle * = 5o. With the tube pointing towards 

the centre of the goniometer the main beam is scanned (with a 

suitably protected counter) first with no slits at all and then 

with a 4°'(2a) slit. 	The sli&-hblder is translated across the 

window until the second image is central Within the first. All 

the divergence slits should be checked in case they are not all • 

.properly centred. 
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To bring the focus into colinearity with the axis of X-ray 

tube rotation, to a first approximation, the direct beam is 

scanned while a needle (as supplied by Siemens) is set in the 

central cone of, the diffractometer. The'X-ray tube is trans-

lated, by means of the longitudinal adjustment screw (NF), 

until the shadow of the needle is symmetrical about the 0°2ABB 
position. 

The surface of a sample of G.E. permaquartz was ground to a 

concave cylindrical section of 175 mm radius. Using this 

specimen, in the SB configuration, the 132 quartz profile 

(*10020) is scanned-for the specimen in positions y = 20°  and 

70°.-These two positions are selected because all the systematic 

specimen errors have a kind of exchange symmetry i.e. , 

<C> (y, 20 - y) 
	

<c> (20 - y,y) 	... (2.64) 

For a given 20 there is an infinite choice of pairs of y that 

give rise to the same specimen errors. All other errors are 

assumed to be non-existent or second order, except for the 

positioning of the focus. The error due to a longitudinal dis-

placement of the focus, AFx, (eqn. 2.59) decreases with increas-

ing y and the sensitivity to this error is thus increased by 

choosing ' values far apart. From, the form of the error function 

(2.59) the angular displacement of the profile for y - 70o is 

known to be less than that for y = 20°  and hence the direction 

of the corrective adjustment to the X-ray tube may be deduced. 

This adjustment is applied until the profiles for both y settings 

are superimposed when recorded on the same piece of chart paper. 

On the second iteration through this alignment stage the peak 

intensity is maximised by making the transverse adjustment of 

the X-ray tube, tap. This translation was found to be rather ,  

coarse so that several adjustments were necessary before 

achieving maximum intensity. 



The specimen surface is aligned with the focusing circle (except 

for a rotation error) by making the micrometer adjustment AR.
s 

- until the quartz 132 profiles for y = 20°  and 45°  superimpose. 

The direction of adjustment can be deduced from the relative 

positions of the two profiles, the profile for y = 45°  being the 

• nearest (for 26 = 90°) to the correct position at any one time. 

'The rotational adjustment of the specimen is checked by irradiat-

ing the two extremes of the specimen in turn using a narrow (0.25°2a) 

divergence slit and recording the scans on the same chart paper. 

Failure to superimpose the profiles implies a rotation of, the 

specimen surface with respect to the focusing circle and the 

necessary adjustment is made accordingly. 

The focusing of the instrument is achieved by moving the goniometer 

bodily on its support-slides until the intensity of the 132 

quartz reflection is maximised, for y = 20°. Since no mechan- 

ism is provided, this operation must be performed by loosening 

two locking bolts and gently tapping the goniometer. 

. As all the adjustments described above refer to profile dis-

placement errors which are not wholly separable, steps (5) to 

(8) must be repeated once or twice until consistency is 

achieved. At this stage, provided the specimen track is 

properly set, the goniometer is aligned to + 0.005°20 which is 

about the limit of measurement for normal scans using a chart 

recorder. It was found to be possible to superimpose peaks to 

this accuracy for all specimen positions, every 5
o 
from 20°y to 

75°y. To this order of accuracy. the residual error due to 

permaquartz is virtually negligible and in any case is amenable' 

to elimination by extrapolation procedures. If a higher 

precision SB instrument were ever built or if a shorter wavelength 

radiation were used the residual absorption error could be 	" 

reduced by aligning with a fine grained high absorption material 

such as tantalum. 



If the alignment is successfully completed to this stage the 

specimen track is a true annulus over the range of y used.*  

10. The final test of the alignment is to select any sharp high angle 

of reflection and to scan the profile for all the y used in 

(9). If the profiles fail to match up then the specimen track 

is mis-set. 

11. If the diffractometer is aligned it may be calibrated by chang-

ing it into its BB mode without disturbance of the SB specimen 

The centre sprocket is replaced by a specimen holder with a 

flat reference surface and a Siemens' glass slit (which is 

etched symmetrically about the reference surface) is mounted. 

A narrow divergence slit is used and the glass slit rotated 

using one of the micrometer adjustments until the beam passes 

through the slit and is received with maximum intensity. The 

0:20 relationship is also established for scanning on the other 

sideofthee. 2eBB position by a similar process. The glass 

slit is then replaced by a Siemens gold standard sample, the 

111 peak.of which is scanned, towards higher values of 20, on 

both sides of the beam. The angular scales on the drum and the 

cyclometer are adjusted so that the peaks match up. The zero 

of the BB scale is thus calibrated and hence the 90
o
20 point 

on the SB scale is calibrated also. 

The diffractometer is returned to the SB mode and the state of 

alignment checked to make sure the focus has not moved during 

the change-over of,geometries.,  

The direct beam is scanned as in (3) and the angle of X-ray tube 

rotation, for which the beam is symmetrical about the 90°20SB 
position, is noted. This angle, which should be the take-off 

am grateful to Mr. B.J. Gunnell for pointing out that this does 
not mean that the specimen track is concentric with. the goniometer.  
rotation. 	See also sectinn 2.3.111. 
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angle 11) 5°, was found to be nearer 41°. 	The angular scale 

of the tube rotation is thus effectively calibrated. In theory 

the new take-off angle should be used in stage (10) again, in 

case of a slight 820 mis-setting but this did not appear to be 

necessary, 

2.5 SELECTION OF INSTRUMENTAL SETTINGS  

The resolution of a line is governed ultimately by the effective 

width of the source. It is general practice to match the angular 

aperture of the source, seen by the specimen, with that of the 

receiving slit. For the SB method'the selection of a receiving slit 

width is dependent both on 20 and y. Table (2.6) gives the angular 

aperture of the source, ESB(°20), for standard 2KW, 1KW and fine-focus 

tubes, for different specimen positions. Also Table (2.7) gives the 

angular apertures, E
SB  (

o
20, of a standard 0.1 mm receiving slit as a 

function of y and 20. For comparison the equivalent values of / 

EBB(°20) are also given in Table (2.6) for the BB system, and lines 

',are. drawn in table (2.7) to indicate the equivalent value ofF10(o28). 
'The angular apertures of other standard slits can be found by multi-

'plying by a suitable value (e.g. for 0.2 mm multiply by 2).. 

The proper receiving slit width is picked by examination of 

Table (2.7) to match the source aperture in Table (2.6). 	This is 

also necessary for the picking of the electronic time constant. This 

is usually set (see, for example, Vassamillet and King, 1967) at one-

half the time width of traverse of the receiving slit. The time con-

stant is then 

eSB(°20).30 
	

secs 

• where w is the scanning speed in 
o20/min. 
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• Angular Aperture of X-ray source Es_B(°20), as a function 
of Source Width W , Take-off angle g,, and specimen .o Setting y, for R = 175 mm 

' (°20) at various values of VES-B 

(mm) 
	

15° 	'30°  • 	45° 	60° 
	75o 	90°  

0.066 0.034 0.024 0.020 0.018 0.017 
0.132 0.068 0.048 0.040 0.036 0.034 

0.033 0.017 0.012 0.010 0.009 0.009 
0.066 0.034 0.024 0.020 0.018 0.017 

2.0 
	

3°  

6°  

1.0 , 30 

6° 

E
B-B 
(°20) 

0.034 
0.068 

0.017 
0.034 

0.013 0.007 0.005 0.004 0.004 0.003 
0.026 0.014, 0.010 0.008 0.007 0.007 

0.4 30 

6°  

TABLE 2.7 

Angular Aperture of 0.1 mm Receiving Slit es.43(0.1 mm,o20) 
as a.Function of Bragg Angle 20, and specimen setting y, 

for R = 175 mm. 

50 	30° 	' '45° 	60° 	75o 

	

20° 	. 0.188 

	

30° 	0.063 

	

40° 	0.039 	0.094. 

50° :0.029 0.048 0.188 

60°. 0.023 0.033 '0.063 

70°  0.020 0.025.  0.039 0.094 

80°  .0.018 0.021 0.029 0.048 0.188 

	

90° 	0.017 ' 0.019-' 0.023 	0.033 	0.063 

	

100° 0.016 - 0.017\0x0200.0250.639 	0.094 • 

	

110° 	0.016 - 0.017 	0.018 	0.021 . 0.029 • 0.048 

	

120° 	 0.017 	0.016 	0.017 - 0.019 	0.023 	6.033 

	

1310P. 	0.018 	-0.017 	0.016. 	0.017 - 0.020 	0.025 

140°  0.020 0.017 0.016. 0.017 0.018 0.021 

150°' 6.023 0.019 0.017 0.016 0.017 0.019 

	

-1600 	0.029 	0.021 	0.018 	0.017 	0.016 	0.017 

	

170° 	0.039 	0.025 	0.020 	0.017 	0.016 	0.017 

Notes: 	The'horizontal lines indicate the position of the 
equivalent value of cB-B(0.1mm, 20) = 0.033°. 

2. To obtain c_B(°20) for other slit sizes multiply 
by 10 x WRstmm) . 

the proper time constant is given by 

- Time constant.(S-B) = es_B(°20). 30/w(°20/min) 	(14) 

.1 	lo 
-;1Thus forw= 13-- 28/min, the proper time constant for all• the receiv- 
ling slits in the example quoted above is 4.8 sec. 

v. ' 

• 

0.007 
0.014 

Li;s4viloa.r.s4 
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2.6 : SELECTION OF OPTIMUM GEOMETRY AND SPECIMEN SETTING  

The availability of an interchangeable Bragg-Brentano/Seeman- 
. 

Bohlin diffractometer poses the practical problem of selecting the 

appropriate geometry and specimen setting to obtain maximum resolu-

tion and intensity, with minimum angular displacement, when'recording 

a specified diffraction profile. 

It is evident from the data listed in Table (2.6) that the basic 

angular resolution of the SB diffractomgter falls below that of the 

BB instrument at specimen settings below y = 30°. 'Since the minimum 

measurable Bragg angle (o20) at any specimen position is equal to 

(y + 10°) (Figure 2.4), it follows that all measurements of 2013  less,  

than 40°  are subject to a loss of resolution, due to the increased 

angular aperture of the X-ray source. Thus at low Bragg angles the 

"doubled" 20B scale associated with the SB geometry is really empty 

magnification, since the profiles are broader than those recorded 

'with the BB diffractometer. Further, as demonstrated by Parrish and 

Mack (1967) at low Bragg angles the SB geometry is more susceptible 

than the BB method to systematic errors due to wrong curvature, 

absorption and specimen displacement. At y = 15° the systematic 

errors are greater than the equivalent BB errors over the entire 

range of 20B. The cross-over point between the two methods occurs 

at y = 30°;20B  =.60°. 

The relatively short source-specimen and specimen-receiving slit 

distances, required by the SB method'at low 20B  values, also cause 

intensity losses due to micro-absorption arising from surface irregu-

larities and particle size roughness (Parrish and Mack, 1967). Thus 

on all three accounts, of resolution, angular error and diffracted 

intensity, the Bragg-Brentano diffractometer is definitely to be pre-

ferred for prddision work at 20B  value's below 60°. This conclusion 

is much the same as that reached by Parrish and Mack, on the basis of 

their experience with a SB diffractometer with y fixed at 15°. It 

does not, of course, rule out the use of the SB diffractometer for 
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qualitative studies at low angles, e.g. when indexing a known pattern 

prior to making precision measurements in the back-reflection region. 

To compare the relative advantages of the two geometries at 

intermediate y values, i.e. between 300  and 45°, the overlapping 122, 

203 and 301 profiles of permaquartz, which occur near 68°,20, were 

studied using a flat specimen in the BB position and a specimen ground 

to a radius of 175 mm set at y= 1(2013).  = 34°. 	This particular setting 

approximates to the special condition,y = 30°,2013  = 60°, at which both 

the source-specimen and specimen-receiving slit distances are equal to 

the diffractometer radius R, so that the angular aperture of the source 

and the receiving slit are the same for both geometries (Tables 2.6 and 

2.7). 	The length of specimen irradiated, and hence the diffracted' 

intensities, should also be approximately the same for the two methods. 

When using a divergent aperture of 2a = 2°, the fine structure of the 

three overlapping profiles is clearly revealed by both geometries as 

shown in Figure (2.18a). On increase 2a•to 4o the diffracted intensity 

is doubled in both cases, but while the profiles recorded with SB geometry 

remain equally well resolved, the BB profiles show considerable broadening 

and loss of resolution. The SB geometry is thus undoubtedly superior to 

the BB even in the intermediate region just beyond the theoretical cross-

over point. The advantage of being able, to increase the area of 

specimen irradiated without loss of resolution, is of particular 

importance when it is required to make precision back reflection 

measurements on coarse grained powders. 

Although the present SB method has the advantages of high resolu- 

tion and intensity, it is not convenient for quantitative measurements 

of relative intensities of widely spaced diffraction profiles because 

of the corrections required as a result of the variable angular aperture 

of the receiving slit. This limitation is best overcome by usini the 

variant of the geometry suggested by Pike (1962) in which the counter- 

tube is directed towards'the axis of the diffractometer instead of at 

the specimen. This geometry results in a constant angular aperture 

for the receiving slit (Parrith and Mack, 1967) but is not easy to 

achieve because it involves the efficient detection of oblique irradiation. ,  



Figure 2.18 Overlapping 122, 203 and 301 profiles from Permaquartz, 
recorded with SB and BB geometries. 

'a.,  2a = 2°, 	:b. 2a = 4°. 
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The selection of the optimum y setting for precision measurements 

•using SB geometry depends on a number of slightly contradictory factors. 

From the aspect of the angular resolution of the X-ray source, and of 

the systematic errors contributing to a shift in angular position, y 

should be set at 90°. This position is also convenient because it 

demands no rotation of the X-ray source from the BB position, as 

pointed out by Pike (1962) and Baun and Renton (1964), and it is 

certainly to be recommended for precision measurements of individual 

profiles in the far back reflection region. When determining pre-

cision lattice parameters, however, it is usually necessary to use 

Bragg angles down to 90°20, in order to obtain sufficient points to 

make an accurate extrapolation plot. At y = 90°  this is prevented 

by the lower limit of (y + 30°) set for 26B, below which the angular 

aperture of the receiving slit.falls below the equivalent BB resolu-

tion (Table 2.7). The use of y = 90°  also means that the finest 

resolution of, the receiving slit liei in the inaccessible region of 

aB above 172°  (Table 2.7). 

A careful examination of the data listed in Tables (2.6) and (2.7) 

• indicates that the optimum specimen setting for precision lattice 

parameter determination lies between y = 45°  and 60°. At y = 60°, 

the angular aperture of the X-ray source is less than two thirds that 

of the BB method, and this degree of resolution can be maintained 

over the important range of Bragg angles from 115
o - 172o 20, without 

requiring a change in receiving slit. Maximum resolution is achieved 

from 100° - 170°  20, at y = 45°, but this is partly off-set by the 

cut-off of 26 max at 170°, (Figure 2.4) and by the slightly larger 

source aperture (0.7 EBB) at this setting. 
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• 

• APPARATUS AND EXPERIMENTAL PROCEDURES  

3.1 THE PREPARATION OF SPECIMENS  

Preparation of Alloys  

The metals, used for preparing the alloys were supplied by the 

Johnson-Matthey Company to spectrographic standards as follows 

(in the usual notation): indium (5N5), cadmium (5N), lead (6N), 

bismuth (5N), tin (5N), mercury (6N), lithium (3N), silver (5N) 

and zinc (5N5). 

In the production of the indium alloys the desired quantities 

of metals to give a 20 g ingot were weighed out to + 0.0001 g in' 

-- cleaned, dried Pyrex test-tubes which were then necked down. For 

convenience a multiple seal-off unit was made to enable four specimen 

tubes to be evacuated simultaneously. After the initial evacuation 

the tubes were. flushed four times With argon, finally evacuated and 

sealed off. The metals. were melted by heating the capsules in a 

bunsen flame, the resulting molten alloy shaken vigorously for five 

minutes to ensure complete mixing, before quenching into iced water. 

The cast alloys were homogenised, in their original capsules, in 

.an oil bath operational between room temperatUre and 165°C (Russell, 

1966), or in a platinum-wound vertical tube furnace. 

Since the alloys were not chemically analysed,, their com- 

positions were calculated from the initial weighings. As the 

ingots were bright and clean and as there was no evidence of get- 

tering of the glass, it was assumed that no material was lost. 

This was checked, in a few cases only, by weighing the ingot, when the 

losses were found to be less than 0.001 g which is equivalent to a maximum 



A perspex former was made with reverse curvature to that of the 

specimen, holders (see section 242), on to which was placed a thin sheet 
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error of about 0.01 at.%. Indium-lithium alloys were slightly dis-

coloured since it was difficult to remove all the protective oil, 

beneath which it has, to be stored, but this was not thought to sig-

nificantly affect the composition. The compositions and homogenising 

temperatures of the alloys studied in the project are given in Tables 

(3.1) to (3.6). 

The silver-zinc alloys, being of higher melting points, were 

sealed under reduced pressure of argon in silica capsules, made by inter- 

diffusion, and later homogenised in a Pt-wound tube furnace. .The 

compositions and homogenising temperatures for these alloys are given 

in Table (3.7). 

Specimens for Tc  Measurements  

Rod-shaped specimens, 4 mm in diameter, to fit inside the coils of 

'the Tc probe, were obtained by extruding the cast ingots in a simple press 

constructed for use on a hand-operated hydraulic jack. During this opera-

tion the piston was prevented from becoming barrel-shaped (and hence 

seizing up) by the simple expedient of placing the press on a block of 

wood, the compression of which compensated for any lack of parallelism 

in the plates of the jack. Lubrication of the piston with glycol also 

helped to extend , the life of a piston and die. 

Specimens for X-ray Measurements  

To obtain powder specimens of the mechanically soft indium alloys, 

which tend to clog any file used, it was found necessary to frequently 

dip the alloys in liquid nitrogen in order to harden them. With' this 

process it was possible to produce a sufficient quantity of powder, fine 

enough to go through 250 mesh, in a reasonably short time. 



TABLE 3.1  

THE 	ALLOYS IN THE SYSTEM In Pb  

.Composition 

at.% Pb 

Homogenising 
Temperature 

oC  

11.003 

1.504 

2.002. 

2.501 

'13.000_ 

13.061,  

13.501 , 

13.994' 

14.500 

15.000. 

15.322 , 

17.251. 

18.905 

21.209 

23.009' 

24.821 

27.043 

' 28.924 

30.870:  

32.997.  

ti 
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TABLE 3.2  

THE. ALLOYS IN THE SYSTEM In -Hg 

Composition 	Homogenising 
Temperature 

at.% Hg 	oc  

	

0.467 	120' 

	

0.753 	n 

1.008 

1.052 

	

1.187 	 rr 

1.756 

1.763 

	

1.921' 	n.. 

2.000 

3.000 

3..393 

	

3.477 ;- 	" 

4.000 

5.000: 

	

6.000 	106. 

6.156 

6.500 

7.000 

	

7,500 	n 

	

8.000 	70,  

9.000 

	

:11.162 	 .60 

12.008 



TABLE 3.3 

THE ALLOYS IN THE SYSTEM In-Cd  

Composition 	Homogenising 
Temperature 

at.% Cd 

0.943 

0.976 

1.517 

1.527 

1.682 -

.1.814 

1.907 

1.934 

1.991 

1.998 

2.115 

2.196 

2.281 

2.399 

2.482 

2.983 

3.927 

5.007 

6.073 

6.480 

7.009 



TABLE 3.4  

THE 	ALLOYS IN THE SYSTEM In —Sn 

Composition 	Homogenising 
Temperature 

.at.Z Sn 

0.997 

2.002 

2.524 

3.002 

4.001 

6.000 

8.000 

10.000 

- 11.002 

12.010 

12.997 

13.983 '  
15.996 

11.988 



TABLE 3.5  

'125 
II , 

THE 	ALLOYS IN THE SYSTEM In -Bi  

Composition Homogenising 
Temperature 

oC 

1.000 

2.001 

2.996 

3.996 

5.006 

6.002' 

7.002 

8.002 

9.001 

10.004 

• ..... 	.... 



TABLE 3.6  

•c• 

— 1.011 .• 

2.170 

2.997:: 

3.519 



Homogenising Temperature  

Homogenising time = 5 hrs. 

Filings strain—relieved under reduced pressure of argon 

at 450 C for. 
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of Mylar. A drop of acetone helped the specimen holder to stick to 

this sheet. 	The sieved powder was packed into the cavity of the 

specimen frame and two or three drops of dilute acetone-collodion 

added which was set by warming with an air blower. A thermometer 

bulb was held on the specimen while it was dried, and the air blower 

. was kept at such a distance that the temperature was close to the 

homogenising. temperature. The Mylar sheet could be peeled off after 

drying without damaging the specimen. 

As room temperature is greater than half the melting point of 

the alloys (on the absolute scale) it was not considered necessary to 

strain-relieve the powders after filing. One powder specimen was 

furnace annealed under the appropriate conditions (Table 3.5), while 

in its frame and no change in X-ray profile shapes was observed on re-

examination. 

The silver-zinc alloys were filed at room temperature and the 

powders annealed, at the homogenising temperature, in silica capsuled. 

The specimens were mounted in a similar way to the indium alloys. ; 

In the large (212, = 25 mm) specimen holders, used for room temperature 

measurements, the powders were still found to hold together perfectly 

well.'  

3.2 LOW TEMPERATURE DIFFRACTOMETRY 

Preliminary measurements were made on a Siemens' diffractometer 

using a cryostat designed by King and Preece (1967). Liquid helium 

was used as a coolant and a temperature of 13°K was obtained using a 

modified copper block. Even at this temperature, however, poor dif-

fraction profiles were obtained when indium-lead and indium-cadmium 

alloys were examined in the back-reflection region, as was experienced 

previously by Russell (1966). These poor profiles were attributed to 

coarse grain size and as a result the SB diffractometer project was 
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KEY TO FIGURE 3.1  

Main can.  

2. Liquid nitrogen reservoir 

3. Liquid helium reservoir 

4. Valve for pumping inner specimen space. 

5. Rack and pinion for raising specimen 

6. Valve for pumping outer specimen space 

7. Connects helium boil-off to outer specimen space for pre-cooling 

8. ,Helium boil-off line 

9. Valve for evacuation of main can 

10. Nitrogen radiation shield 

11. Helium radiation shield 

12._ Cone joint for changing specimen base when using the magnet 

13. -  Reference pin 

14. Spring plunger for keeping reference surface on reference pin 

15. Indium 0-ring seals 

-16. Heater 

17. Rotational adjustment 

18. Lead-through for helium'transfer siphon 

Lead-through for electrical connections 

20. Double 0-ring seal 

21. Lead-through'for helium transfer siphon 

22. Needle valve 

23. Magnet 

24. a Specimen 

Alignment slit for use on BB diffractometer 

Translational ,adjustment-superZhices on Wooster-Martin 

NOTE: The cryostat base shown on the left of the diagram is the • 
one used in all experiments here.,. Liquid nitrogen is used 

instead ofliquid 
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Figure 3.1 The X-ray cryostat after Cabelka (1970). 
The base on the, left of the diagram was 
used in the pres'ent work. 
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started. At this time other work in the laboratory demanded low 

temperature measurements within a magnetic field involving considerable 

modification to the cryostat (Cabelka, 1970), as a result of which 

helium consumption would have been prohibitive, if the specimens were 

run at liquid helium temperatures. 	Since, in any case, Russell (1966) 

has demonstrated that virtually no improvement of the profiles of 

indium alloys occurs by going below 78°K, it was decided that all 

specimens would be measured at this temperature using liquid nitrogen 

as a coolant and relying on the SB geometry to give a well-resolved 

profile for a wide divergent beam. 

Copper specimen frames were machined, with the correct SB curvature 

(175 mm) to fit in place of the flat frames in the Cabelka arrangement 

and giving a specimen length 2t = 10 mm. The specimen frame is attached 

to the base of a probe which feeds through an 0-ring seal, at the top of 

the cryostat, thus allowing the operator to change specimens while the 

cryostat remains cold (see Figure 3.1). 

In order to set the cryostat on the SB diffractometer, the cone mount 

is removed from the sliding specimen stage. As a matter of policy in 

this laboratory there is a certain amount of interchangeability of machine 

parts, so that the cryostat mounts readily on the specimen stage, with 

the specimen at the right height for the X-ray beam. The adjustments 

to the specimen comprise the micrometer translation tas  of the specimen 

stage and a rotation mechanism built into the, base of the cryostat 

(Cabelka, 1970). A general view of the cryostat, mounted on the Wooster-

Martin diffractometer, is shown in Fig. (3.2). 

Specimens were aligned at 78°K.using an I.U.Cr. tungsten powder 

specimen (Parrish, 1960). A given surface on the probe (rather than 

on the specimen surface itself) is brought up against a reference point•  

(Fig. 3.1). Hence once the cryostat is aligned the specimen can be 

interchanged without disturbing the alignment, except for a small ,6.11 

error (- 0.025 mm) representing the limit of reproducibility in the 

'machining of specimen frames and which, in any case, is effectively 

eliminated by extrapolation. 
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Figure 3.2 The cryostat mounted on the Wooster-Martin 

diffractometer. 
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The measurement of temperature in the liquid nitrogen range was 

achieved with a copper resistance thermometer. To facilitate the 

rapid reading of resistance a Wheatstone bridge arrangement was made, 

using a Beckman (calibrated) 'helipot' potentiometer and 'scalamp' 

galvanometer. 

Experimental procedure 

The main cryostat spaces were evacuated to 2 x 10-5 torr and 

closed off with a safety valve in the seal. The exchange gas space 

was evacuated (to -.1 x 10-4 torr) and flushed with helium gas and 

sealed off (under a small over-pressure of helium). Liquid nitrogen 

was poured into a funnel on one of the three inlets of the nitrogen 

reservoir. One of the other inlets was capped and the third was 

connected by tube to (what is normally) the helium reservoir, so 

that the evaporating nitrogen from the nitrogen reservoir was used to 

'pre-cool the inner reservoir which was.then filled with nitrogen to a 

level below the 0-ring seals (Fig. 3.1).. The total time of filling 

with nitrogen was about 4 hours and the specimen stayed cold (i.e. 78°K) 

for up to 15 hours. 

In the SB mode a specimen setting of y = 45°  was chosen since 

.there is little truncation of the high angle end of the 20 range 
o 

= 170.5 (20max 	) whilst some lower angle peaks could be reached. 

By 'lower angle' here is meant from about 62
o2e, the bulk of the 

cryostat base prohibiting closer approach to'the specimen. This 

range just brings in the strong 222 line 	64o20) of all the alloys, 

which is useful particularly for those alloys where poorer high angle 

profiles reduce the number of reliable readings (and in some cases 

even make indexing difficult). For most alloys, however, reflections 

were only measured at angles above 90°20. After preliminary, uns, 

some ten or eleven of the best profiles were selected (amounting to., 

about twenty points when both a, and a2  peaks were used) as the pattern 

for a run. Profiles were scanned ,at 1°26/min, in every case,towards 

higher angles. Scanning. conditions and instrumental settings,uped Are 

shown.in TablU E(3.8). 

.1 	 1 

b./ 
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TABLE 3.8  

SCANNING CONDITIONS  

4 	% 5 Statistical error 

Divergence slit aperture 20  or 40 
 

Receiving slit 0.1 mm 

Scanping speed 1°20 per minute. 

Time constant =4.8 secs 

Ratemeter full scale deflection 2.10
3  and 4.10

3 
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Despite the use of flexible couplings it was found, necessary to 

disconnect the vacuum line during the actual scans since a slight 

peak displacement could be observed on connection. This is only a 

serious limitation if the cryostat develops a minor leak (e.g. through 

the electrical feed-throughs). 

Specimens were exchanged by drawing the probe up through a cloth 

wad while passing helium through the exchange gas space. This space 

was then sealed with a.rubber bung, while a new specimen was fitted to 

,the probe. After the probe had been reinserted, the exchange gas 

space was re-evacuated and filled with helium. With these precautions 

few icing-up problems occurred. 

3.3 •THE ELIMINATION OF ERRORS IN THE DIFFRACTION MEASUREMENTS  

Profile positions  

All the routine lattice parameter determinations were derived 

from the positions of the peaks rather than the centroids of the dif-

fraction profiles. To the order of accuracy required (- 1:40,000) 

this is a quite adequate definition of profile position. Furthermore, 

although the diffraction profiles were, relatively, well-defined for 

the soft, coarse-grained specimens used here, they were, nevertheless, 

poor enough (i.e. of low intensity with considerable random fluctuation) 

to make the determination of the centroid quite difficult. A more.  

practical reason for using peaks, however, was one of time. As it 

was, the process of computing the lattice parameters of over 80 indium 

alloys required the punching of some 30,000 digits of data. 

•• 

In order to justify using the extrapolation procedure (section 2.3) 

it is necessary to know whether the error function is valid for peak 

shifts. Wilson (1963) has demonstrated that for the geometrical 
.1. 

4.1u- 



137. 

errors, the peak shift, to a first order of approximation, is the 

same as the centroid shift and to second order is lessened by a 

quantity proportional to the variance of the aberration. For peak 

measurements the Lorentz factor and dispersion errors tend to cancel 

out (Wilson, 1963). The errors arising out of axial divergence are 

small, especially with two sets'of Boller slits, and in this case 

can safely be ignored. 

Random Errors 

All the non-systematic human errors are assumed to obey the 

normal law of errors,. the random error being in the variable 6. The 

minimisation of errors is thus the least7squares procedure. Analyses 

of this kind are clearly tasks for the computer and as such might just ' 

as well be expanded to contain the extrapolation procedure in analytic 

form. Analyses of this type are commonplace now and hence the pro-

cedure will only be briefly reviewed. The standard paper on the 

subject is that of Vogel and Kempter (1961) in which credit is given 

to Deming (1943) for an iterative procedure. In fact a far more 

understandable and thorough analysis of processes of this kind is given 

in an excellent book by Whittaker and Robson (1924). 

The quadratic Bragg equation for tetragonal crystals for the 

observation is'  

2  A(;(hi  + ki) 	+ C01? 	+ D 
0
f(e.) sing  e. 

2.  
• • • 3..1) 

    

where 

 

4a o2 

A
2• 

 

4c
o
2 

and co,   ao 
 are the lattice parameters and f(6) is the error function of, 

knoWn functiOnal form. :The'aim of'the calcuIation'iaan eXpresiiion 

for the Ibese'values of A,C and D which gives a 'best,', function to 



:::a:procedure.cannot be worse than taking all-the variances as unity. 

• 
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describe the left-hand side of 3.1, say Yi  (best). 	A.  function is also 

deicribed  by the values of A,C and D taking the particular approximation 

of the moment, say yi  (approx).; 

If A
approx 

= • 	- A. 	
a 

 

- 
Capprox 	Cbest c  

• 
. 
D
approx = Dbest -d  

' then 

y.(approx) = y.(best) - a 	- — c ay 	ay- —d  ay- 1. ' 

	

ati
o 	

aco 	ap
o 

The failure of the best function to.fit the ith observation is then 

* Fi  = yi(obs) - yi(approx) - a aYi 	c aYi 

aA
o 	DCo o 

where .(obs) is sin28.. The observation is 8i  which is assumed to 

have an error probability derived from the normal law. Let the dis- 

	

tribution
2a 	There 0.. 

is no fixed empirical or theoretical functional form to this quantity 

and it is usually assigned the value 1. In the poorer quality specimens, 

such as the indium alloys under discussion, there are clearly peaks of 

quite different quality and hence the reliability of measurement of peaks 

(in degrees) differs from peak to peak. It was, therefore, decided to 

assignavalueofa20.to each peak as it was measured. Thus if the 

observer judges that one peak can only be read to, say, 2mm of•  chart 

paper, whereas the best peaks in that run can be read to lmm, then 

relative values of 4 and 1 are assigned to the variance of the measure-

ment.This is clearly somewhat subjective, but it is argued that such 

d ayi 
• • • 
	3.2) 



... (3.5) 
.2 	EW.n.2  
a 	= 1 1 
n. 

(N-3)W. 

• • • 3.6) ' 

'and furthermore that the errors in the quantities.a c and d. are given. 

-by equations of the kind 
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:The standard  '11"iation of the  distribution of the  failures  Fi  is 

	

2 ' 	(-Fi2c72 

	

a F. 	T° 	4 ei 1- 	
ae. 

... (3.3) 

Standard error theory'demonstrates-that the - greatest probability 

of the-set of measurements F. occurring is when. 

E Fit 

1  -2 o F. 
1 

is, least 

It is easily demonstrated that minimisation of this sum with 

respect to a, c and d, is given by 

yi(obs) -yi(approx) 	+ caYi + daYi ])WiaYi 	0 	3.4) 
aAo 	DCo 	

ap 	SAb 

and similar expressions in Co  and Do  where Wi  is the weight of the 

observation given by the inverse of the variance of Fi. These are 

the 'normal' equations for the solution of a, c and d, all the other 

quantities being known. 

Now if 3. 	
pprox) it can be elegantly shown 

• 
yi 

• 
(see Whittaker'and Robson) that the variance of . this quantity is 



ayi  
f(0i) 

ap 
0 

Where A syst 
is given by (2.61) whence 

2 sin 204  

sin(26i  - yYsiny 

sing  26;  

sin(26i  y) siny. 

r1 P1 

P3.  q3 	
r3 
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where DM  is the determinant 

P2 	q2 

where DT(ij) are the coefficients of a, c and d in the simultaneous 

equations 3.4. Quantities required' for these coefficients are 

8y, 	2 	2 

8A o.  
k1) 

is the systematic error in sin
2  0 

i.e. A sing  0 = sin 2 OA 	6 syst 
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depending on which error predominates. The weight Wi  is obtained by 

differentiation.  of 3.2 using 3.7. 

Once the values a, c and d are determined, a new approximation 

to A, C and D is found. A computer programme has been written to 

- do this and to iterate to consistency. A listing of the programme is 

given in Appendix 4. Three alternative sets of indices are fed in 

for each peak and the best selectiop is made each iteration. a2  peaks 

are converted to equivalent al  peaks within the programme. Error limits 

'are closed in until one peak is rejected in each run. 

Values of ao and co were read in and the programme was found to 

converge whatever values were used (these were always reasonable). 

Occasional specimens resulted in the (crude) convergence of the process 

to quite a different set of parameters from the real ones. Strangely' 

enough, the alteration of one of thealternative.sets of indices for 

just one peak would often correct this. 

-3.4 THE MEASUREMENT OF Tc 

The onset of zero resistance in a superconductor occurs at a tem-

perature dependent on the current being used to detect it. This 

uncertainty, and the fact that electrical'connection must be made to 

the specimen in the resistive technique, suggests that a better approach 

to measurement would be the inductive method based on .the Meissner 

effect (see section 1.3). 	For reasonably small fields (<< H c(0)) there 

is no implicit uncertainty in this method. • Furthermore the inductive 

method may be used for scraps of material or even powders. 

The Tc Probe  

A multi-specimen probe has been designed to be used in an Oxford 

Instruments helium dewar and is shown, schematically, in situ, in Fig. 

(3.3). 	The limiting factor in the design is'the width of 'the tail of 

the helium dewar 	55 mm) into which the specimen chamber must fit. 

:.11i C.. 
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The cavity between the double walls of the brass specimen chamber, 

shown in Fig. (3.4), evacuates by condensation (of the air at low tem-

perature) to provide insulation from the liquid helium when working at 

temperatures above 4.2°K. Access to the specimens is made via a•  brass 

cone joint, greased with silicone,vacuum grease, which effectively seals 

the chamber even when immersed in liquid helium. 

As shown diagrammatically in Fig. (3.5), the specimen arrangement 

consists of a framework of perspex discs and brass studding. The two 

discs A are drilled with 6.4mm.(1") holes to hold the secondary coil and 

heater formers. The twelve coils'are wound on rigid plastic tubes, 

about 50 mm long, with about 5,000 turns of 49 S.W.G. enamelled copper 

wire. The heater coil consisted of about 100 turns of 44S.W.G. eureka 

insulated wire wound on a solid perspex former. 

A piece of copper foil wrapped, nearly but not quite around (a 

good conductor will shield by eddy currents if there is a closed path) 

the specimen framework,, acts as a former for the primary coil and also 

as a radiation shield. The primary coil consists of about 300 turns 

of 42 S.W.G.enamelled copper wire. • 

A Texas Instruments doped germanium thermometer, previously 

calibrated (to + 0.02°K at 4.2°K) against a standard thermometer in 

another probe, was screwed into a small copper block which was itself 

screwed into one of the perspex discs. A thick electrically insulated 

copper wire was wound round the terminals of the thermometer and con-

nected as a thermal sink to the brass cone joint. 

The specimen 'chamber is suspended by 12.8 mm (i") stainless steel 

tube (which also acts as• a conduit for the electrical connections) 

from an upper chamber (Fig. 3.3) which shares the same vacuum or exchange 

gas space. Evacuation and flushing of this space is achieved by means 

of a 1" Edwards vacuum fitment whilst electrical connections to the' 

exterior are made with three Ether ten-pin'vacuum connectors'sealed 

into in  Edwards vacuum unions. ' 
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The probe slides vertically, through an 0-ring seal (Fig. 3.3), 

so that the specimen chamber may be raised above the liquid helium 

level when necessary. The helium dewar is filled via a transfer 

siphon which slides through a 1" 0-ring seal and 12.8 mm (I") stainless 

tube passing through the upper can. The outlet for the helium gas is 

via a 1" Edwards vacuum union connected to a manostat (Larbalestier, 1970) 

and from thence to a heavy duty (450 dmin) Edwards pump, via a.1" pipe 

line. Vacuum tap connections on this pipe line provide possible out-

lets to a helium gas collection bag or to the atmosphere. 

The level of the liquid helium in the dewar is determined by  

three 'Silec' diodes attached to the central tube of the probe, the 

electrical connections to these diodes being via•a five-pin Ether , 

connector sealed into a 	'Edwards union. 

Measuring Circuits  

The resistances of the Silec diodes, which were previously cali-

brated in a helium transfer dewar, are measured by an Avometer. / All 

other electrical connections are made 1TDM the three ten-pin seals, 

via earthed-sheath twelve-bore cable, to a control panel with snap 

connectors. 

A simple heater circuit consists of an input to the panel from 

a power pack, a current regulator (coarse and fine control potentiometers) 

and a milliammeter. 

An A.C. signal, between 500 and 1,000 Hz,. from aloscillator is 

fed to the primary coil via the control panel. It was found necessary 

to earth one side of the primary coil.' The secondary coils have one 

side in common and a single pole, 12-way switch is used to select the 

appropriate doll. The return signal is full wave rectified by a simple 

bridge circuit and fed directly to one channel of a two-pen Strip chart 

recorder. No amplification or smoothing of the signal was' found, to' be 
) 

1,ka 
:necessary: 
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It was thought desirable to record the transition to superconductivity 

on a strip chart showing simultaneously the temperature and the coil 

signal. The temperature measurement presented a problem because the 

calibration of the thermometer ceases to apply if the power dissipation. 

within it exceeds a microwatt. In consideration of this and of the 

logarithmic form of the temperature-resistance curve (Fig. 3.6) a 

special bridge circuit was developed. The out-of-balance current on 

a Wheatstone bridge is a function of the resistances and, as a con-

sequence, by selecting two of the resistances a given range of current 

corresponds to a particular range of the measured resistance. Thus, 

by a simultaneous switching of pairs of standard resistances, any 

•range of resistance may be chosen at will. The circuit used is 

shown in Fig. (3.7) and can be seen to include the common modification 

designed to cancel the contribution, to the measured resistance,of the 

leads to it. This is achieved by having two leads. to one of the 

thermometer terminals. If all three'leads have equal resistance Rt, 

it is easily shown that they effectively cancel when the bridge is 

balanced. The solution of Kirchoff's equations for the system shows 
• 

that some sort of rough cancellation occurs at off-balance and so the 

method was employed. It issomewhat pedantic, however, as the lead 

resistances are insignificantfor'all temperatures measured here. 

In the Figure (3.7) RG  is the germanium resistance and each R is 

a 1K0 (which is the order of magnitude of most of the likely RG  values) 

metal oxide high-stability resistor. Rx  and RL  are the variables 

that determine the ranges, whilst Rs  is. a' resistance to reduce the 

power dissipation in RG. The Kirchoff's equations are solved exactly 

and the power dissipation in RG  maximised with respect to Rx, RL  and RG. 

The resultant expi.ession is made less than a microwatt if R is greater 

than 2 x 104 ohms. A resistance of 10
55 was used to make sure. COn-

sideration of the temperature-resistance chart for the germanium ther-

mometer, and the Kirchoff calculations led to the choice of twelve ,  

suitable ranges of resistances and the corresponding pairs of resist-

ances, Rx  and RL. The simultaneous, switching of these resistors is 

achieved with a two-wafer, single pole, twelve-way switch and the '  
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Figure' 3.7 The measuring bridge for the germanium 
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values of RL  and 	are shown in Table:(3.9).. Unfortunately the 

voltage. across RL  cannot be made large'enough to display on the'chart. 

recorder directly and amplification is required. 

An Analog Devices amplifier was built into the circuit, as shown 

in Fig. (3.8) and was usually used with a gain of 100 and an input 

impedance of loKa , which was the value taken into account in the cal-

-culations of RL. One side of the amplifier is'earthed and the output 

is zeroed by means of a fine control potentiometer (Bourn's 'trimpot') 

with the -input short circuited. 

The E.M.F. across the bridge was provided by a 2-volt accumulator 

which remained stable within the accuracy required, but in order to be 

- sure, ranges were calibrated against a resistance box before and after 

every experiment. 

The off-balance current as a function of temperature is shown, 

"for .a typical range, in Fig. (3.9) and can be seen to be nearly linear 

over most of the range. 

Modes of Operation  

There are two distinct problems, in transition temperature measure- 

ment according to whether that temperature is above or below 4.2°K, 

the boiling point of helium. 

The first specimens measured were those of the indium-lead' system, 

all of which have Tc above-4.2°
K. The probe was evacuated and flushed 

with helium gas a Couple of times and then sealed with an overpressure 

of helium. The helium dewar was pumped out to a hard vacuum and the. 

outer reservoir filled with liquid nitrogen. The specimen chamber of 

the probe and the helium reservoir were both pre-cooled with liquid 

nitrogen. After the probe was placed in the dewar an evacuated double-

walled siphon was used to transfer liquid helium from the transport 

• 
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TABLE 3.9  

BRIDGE CIRCUIT - RESISTANCE VALUES  

Rx 

'ohms ohms 

Range of RG  

ohms 

200.K 

50 K 

22 K 

9.1 K 

3.3 K 

1 . 2 K 

560 

330 

180 

110 

47 

	

560 	 200 K 40K 

	

36 	 50 K 15K 

	

120 	 p 22 K 	7K 

	

56 	 9.1 K + 2.5K 

	

37 	 3.3 K 	1K .  

	

43 	 2 K -4- 450 

	

75 	 560 + 270 

4 150 

22 

330 

180 4.. 95 

110 	38 

• 47 

96 

200 

220 

27 •  0 



•3 	3.4 	3.5 . 	 3.6 	3.7 	3.8 	3.9 	4.0 	4.1 - TEMPERA TURF 
Figure 3.9 Signal amplitude from amplifier as a function of specimen temperature. °K 
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When the transfer, was complete, the exchange gas in the specimen 

chamber was heated gradually, until the superconducting transition of 

a pure lead specimen was observed on the chart recorder. Unfortunately, 

it was not always possible to obtain a uniform temperature distribution, 

and hence two lead specimens did not always transform at the same 

thermometer reading; A difference of temperature greater than 0.5°K 

was often observed but it was never discovered why this was so. The 

discrepancy appeared to change with exchange gas pressure which makes 

• the method itself seem somewhat dubious. 

Most of the high Tc  results were obtained, however, when the transition 

temperatures of both lead specimens were within 0.03°K of the usually 

accepted value of 7.18°K. In an attempt to circumvent the problem of 

the lack of temperature uniformity some indium-tin and indium-bismuth 

alloys were measured by removing the double walled jacket and suspending 

the probe in the gas above the liquid helium. These specimens were cut 

to short lengths, to limit the effect of the temperature gradient, and 

placed at the same level as the germanium thermometer. Since the lead 

transition gives a very small change in signal (an eddy current effect 

in pure metals) the reduction of specimen length reduced this change to 

below the noise level of the signal. An indium-lead specimen which had 

a signal change much greater than the noise level and had been calibrated 

-previously against the lead specimen (when the latter gave an accurate 

T result using the double-walled jacket) was, therefore, used as an 

internal standard for these experiments. Since the observed Tc  of 

this specimen was exactly the same as that obtained during the previous 

runs the confidence of the remaining indium-tin and indium-bismuth results • 
 is set at + 0.03°K. 

The measurement of'Tc 
below 4.2°K is straightforward and entirely 

- satisfactory. The double-walled can is removed, the specimen arrangement 

immersed in the liquid helium and the temperature controlled by pumping • 

on the liquii and using the manostat referred to above. By changing  

.the reference pressure in the manostat and adjusting the main line tap 

it was possible to produce a very slow even drift of temperatUre.right 

":through the transition. For these experiments, pure indium was used-

. as the internal, standard and its Tc  was 
found to be, on.all occasions, 

,.'within 0.004°K of the usually accepted value of.3.4006K. 
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THE SEEMANN-BOHLIN DIFFRACTOMETER 

The report of most of the preliminary X-ray diffraction measure-

ments, associated with the SB geometry, fell more naturally into the 

description of apparatus in Chapter 2 and will not be repeated here. 

The difference in practice, between the SB and BB methods at 

low temperature, is illustrated in Fig. (4.1) by the chart record 

of scans through the 402 and 511 profiles of an In-1.682 at.% Cd 

alloy. Chart A refers to liquid helium temperatures ( 13°K) using 

tfie original cryostat (Russell, 1966) mounted on the SieMens' dif-

fractometer. Chart B was obtained with the present SB arrangement 

at 78°K and can be seen to compare very favourably in resolution 

with chart A. : The chart speed was the same for each trace but the 

scanning speed (e28 per min.) for B was ,  half that for A. 

X-RAY EXAMINATION OF THE INDIUM ALLOYS  

The quality of peaks scanned varied markedly across each alloy 

system and from one system to another. In some cases the solute 

(Hg for example) sharpened the peaks whilst in other cases (in In-Pb 

in particular) the indium peaks. were broadened considerably with 

alloying. 	In most cases, however, the highest angle peaks (which '  

cannot be detected at room temperature) were easily measurable. 

,The lattice parameters, axial-ratios and, volumes of the FCT 

cell are given, for all the indium alloys measured, in,Tables'4.L 

to 4.6. 
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Figure 4.1 Low temperature diffraction profiles of the indium-1.682 at.% Cd alloy. 



11.003 	5.01336 

± 0.00171 

11.504 	5.01867 

± 0.00176 

12.002 	5.01963 

± 0.00635 

12.501 	5.02289 

± 0.00640 

13.061 	5.03296 

± 0.00286 

13.994 	4.54017 

± 0.01224 

15.322, 	4.50413 

± 0.00680 

17.251 	4.43993 

± 0.02018 

18.905 	,4.49722 

± 0.00388 

21.209 	4.49806 

± 0.00309 

23.009 	4.49058 

± 0.00372 

24.821 	4.49210 

± 0.Q0394 

27.043 	4.48845 

± 0.00205 

28.924 	4.48567 

± 0.00188 

30.869 	4.50489.  

0.00772.  

32.997 	4.88543 

± 0.01651 

TABLE 4.1  158. 

   

LATTICE PARAMETERS FOR THE . SYSTEM " In-Pb  

Composition 	a 	c/a 	ca
2 

at.% Pb A 	 X3  

4.56702 1.09773 104.567 

± 0.00129 ', ± 0.00049 ± 0.069 

4.56880 1.09846 104.759  

'± 0.00112 ± 0,00047 ± 0.063 

4.56499 1.09959 104.604 

± 0.00424 ± 0.00173 ± 0.263 

4.56766 1.09966 104.795 

± 0.00133 ± 0.00144 ± 0.147 

4.56601 1.10227 104.929 

± 0.00354 ± 0.00106 ± 0.173 

4.81667 0.94260 105.334 

± 0.01259 ± 0.00354 ±'-0.619 

4.85311 0.92809 106.084'  

± 0.00418 ± 0.00161 ± 0.243 

4.88889 0.90817 106.120 

± 0.00857 ± 0.00442 ± 0.609 

4.86067 0.92523 '106.252 

± 0.00182 ± 0.00087 ± 0.121 

4.87290 0.92308 106.807 

± 0.00229 ± 0%00077 ± 0.124 

4.87913 0.92036 106.902 

± 0.00271 ± 0.00092 ± 0.148 

4.87879 0.92074 106.924 

± 0.00311'  ± 0.00099 ± 0.166 

4.88505 0.91881 107.111 

± 0.00267 ± 0.00066 ± 0.127 

4.88578 0.91811 107.077 

±'0.00280 , ± 0.00065 ± 0.130 

4.87894 0.92333 107.234 

0.00367 ± 0.00173 ± 0.245  

4.69082'  1.04149 107.498 

± 0.02503 ±0.00658 ± 1.204 



TABLE 4.2 

LATTICE PARAMETERS FOR THE SYSTEM n-Sn 

4.94729 

± 0.00111 

4.95999 

± 0.00118 

4.96651 

± 0.00080 

4.97187 

± 0.00058 

4.98265 

± 0.00074 

5.00120 

± 0.00088 

5.01805,  

± 0.00065 

5.03017 

± 0.00097 

5.04197 

± 0.00093 

5:04397 

± 0.00172 

4.55521 1.08607 102.656 

± 0.00096 ± 0.00033 ± 0.049 

4.55056 1.08997 102.710 

± 0.00081 ± 0.00032 ± 0.044 

4.54732 1.09218 102.698 

± 0.00050 ± 0.00021 ± 0.028 

4.54571 1.09375 102.736 

± 0.00037 ± 0.00016 ± 0.020 

4.54294.  1.09679 102.834 

± 0.00042 ± 0.00019 ± 0.024 

4.53650 1.10244 102.924 

± 0.00046 ± 0.00022 ± 0.028 .  

4.53105 1.10748 103.023 

± 0.00039 ± 0.00017 ± 0.022 

4.52698 1.11115 103.086 

± 0.00051 ± 0.00025 ± 0.033 

4.52460 1.11435 103.219 

± 0.00061 ± 0.00026 ± 0.034 

4.51911 L11614 103.010 

± 0.00119 ± 0.00048 ± 0.064 

8.000 

10.000 

12.010 

12.997 



c/a  

TABLE 4.3 	 160: 

LATTICE PARAMETERS FOR' THE SYSTEM In-Hg  

,A 
0 

a 

0 

ca
2
. 

03 

4.92845 	4.56104 

6.000 

8.000 :-

9.000 

11A.62 _ 

12.008 

± 0.00038 

, 4.92465 

± 0.00052 

4.92111 

± 0.00052 

4.91046 

±,0.00065 ,  

4.90892 

t 0.00079 

4.89194  

± 0.00034 

4.56194 

± 0.00034 

4.56158 

± 0.00031 

4.56525 

± 0.00055 .  

4.56502 

± 0.00063 

4.56996  

1.08055 

± 0.00012 

1.07951 

± 0.00014 

1.07882 

±.0.00013 

1.07562 

± 0.00019 

1.07533 

± 0.00023 

1.07046.  

± 0.00028 

1.06859 

± 0.00017 

1.06606 

± 0.00026 

1.05929 

± 0.00024 

1.05136 

.± 0'.00020 

1.03402 

.±. 0.00076 

1.00213 

± 0.00098 

1.00117 

. ± 0.00016. 

• 

 

1.00041 

,± 0.00003 

1.00388' 

±. 0.00091:' 

1.00758' 

± 0.00129  

102.527 

± 0.017 

102.488 

± 0.019 

102.398 

± 0.017 

102.341.  

± 0.028 

102.299 

± 0.033 

102.166•  

± 0.036 

102.108 

± 0.023 

102.021 

± 0.032 

101.868 

± 0.031 

101.730 

± 0.027' 

101.420 

± 0.083 

101.135 

± 0.194 

101.428 

± 0.022 

101.266 

± 0.005 

101.095 

± 0.100 

101.023 

± 0.147 

± 0.00109 ± 0.00062 

	

4.88534 	4.57174 

± 0.00064 ± 0.00041 

	

4.87622 	4.57408 .  

± 0.00108 ± 0.00050 

5.000 	4.85313 i 	4.58150 

± 0.00094 ± 0.00053' 

	

4.82669 	4.59092 

± 0.00080 . ± 0.00046 

7.000 	4.76863 	4.61173 

± 0.00339 	± 0.00093 

4.66571 	4.65578 

± 0.00103 ± 0.00443 

4.66722 	4.66176 

± 0.00061 ± 0.00039 

4.66236 , 4.66047 

± 0.00010 = ± 0.00011 

4.67051 	4.65246 

± 0.00410 ± 0.00108 

4.68085 	4.64566 

± 0.00571 '± 0.00185 

ti 



at.% Cd 
0 
A 

0 
A 

TABLE 4.4  

LATTICE PARAMETERS FOR THE SYSTEM In-Cd 

Composition 	c. 	a c/ a ca2 

03 
A .  

•7.009 

0.976 

1.517.  

1.682 

1.814 

.907 

.934 

.991 

2.115 

2.196 

2.281 

2.399 

3.927 

2.482. 

4.91840 

, 4.90348 

0.00067 

4.90182 

0.00251 

4.90115 

± 0.00276 

4.89601 

± 0.00190 .  

4.89246 

0.00068 

4.89282 

- ± 0.00103 

4.89750 

± 0.00112 

4.89268 

± 0.00126 

4.89020 

• 0.00077 

4.88788 

• 0:00103 

4.87703 

±'0.00047 

4.85552  

4.56543 

4.56815 

± 0.00030 

4.57245 

± 0.00116 

4.56926 

± 0.00077 

4.56920 

± 0.00044 

4.57191 

± 0.00035 

4.57064 

± 0.00052 

4.57126 

± 0.00058 

4.57139 

± 0.00024 

4.57269 

• 0.00040 

4.57317 

± 0.00033 

4.57645 

• 0.00034 

4.58397 

-- 0.00043 

4.59129 

± 0.00030 

4.61252 

± 0.00459  

1.07152 

± 0.00043 

1.07011 

±0.00017 

1.07049 

• 0.00026 

1.07137 

± 0.00028 

1.07028 

± 0.00028 

1.06944 

±.0.00019 

1.06882 

± 0.00024 

1.06568 

± 0.00013 

1.05924 

± 0.00028 

1.05244 

± :0.00015 

1.02195 

± 0.00114  

102.515 

• 0.024 

102.363 

• 0.032 

'102.326 

• 0.019 

102.484 

± 0.074 

102.217.  

± 0.044 

102.263 

± 0.022 

102.215 

± 0.032 

102.340 

± 0.035 

102.245 

± 0.028 

102.251., 

• 0.024 

102.224 

± 0.026 

102.144.  

± 0.018 

102.028 

± 0.032• 

'101.859 

± 0.018 

100.287 

± 0.206 

± 0.00121. 

.007 	4.83204 

.± 0.00061 

4.71377 

± 0.00238 

± 0.00082 .± 0.00038 

4.90452' 	4.56850 

± 0.00131 -± 0.00039 

1.07731 

• 0.00020 

'1.07355 

• 0.00030 

1.07341 

• 0.00016 

1.07203 

± 0.00061 

1.07264 	102.264 

± 0.00063 	± 0.021 



TABLE 4.5  

162. 

LATTICE PARAMETERS FOR THE SYSTEM In-Bi  

a ca
2 

o3 

4.95629 

± 0.00062 

4.97563 

± 0.00119 

4.99220 

± 0.00143 

4.99692 

± 0.00891 

5.03665 

± 0.00551 

5.03585 

±'0.00366 

5.02687 

± 0.00821 

5.02529 

± 0.00205 

5.02947 

± 0.00451 

5.00550 

±.0.00572 
• 

4.55547 1.08799 102.855 

± 0.00044 ± 0.00017'  ± 0.024 

4.55299 1.09283 103.143 

0.00070 ± 0.00031 0.040 

4.55325 .1.09641 103.499 

0.00116 ± 0.00042 ± 0.060 

4.5.4096 • 1.10041 103.038 

± 0.00594 ± 0.00243 ± 0.326 

4.55123 1.10666 104.328 

0.00246 ± 0:00135 ± 0.160 

4.54976 1.10684 104.244 

± 0.00286 ± 0.00107 ± 0.152 

4.54455 1.10613 103.820 

0.00528 ± 0.00222 0.295 

4.54398 1.10592 103.761•  

0.00219 ± 0.00070 ± 0.108 

4.53848 1.10818 103.596 

± 0.01269 ± 0.00325 ± 0.586 

4.55122 1.09982 103.682 

± 0.00220 - 0.00137 ± 0.155 

.•. 

0 0 
A A 

c/ a - 

A 
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TABLE 4.6 

LATTICE PARAMETERS FOR THE SYSTEM In-Li . 

1.011 	4.93029 

± 0.00098. 

4.93060 

± 0.00072 

2.997 	4.93134 

-1.1 0.00150 

3.519 	4.93259 

± 0.00090 

4.810 	4.93072 

± 0.00068 

6.161 	4.93136 

± 0.00094 

6.904 	4.93027 

-± 0.00088 

2.170.  

4.55933 

± 0.00079 

4.56037 

1.08136 

;- 0.00029 

1.08118 

102.488 

± 0.041 

102.541 

± 0.00050• ± 0.00020 ± 0.027 

4.56116 1.08116 102.592 

± 0.00079 ± 0.00038 ± 0.047 

4.56018 1.08167 102.574 

± 0.00061 ± 0.00025 ± 0.033 

4.56139 1.08097 102.590 

± 0.00034 ± 0.00017 ± 0.021 

4.55998 1.08144 102.540 

± 0.00083 ± 0.00028 ± 0.042 

4.56101 1.08096 102.563 

± 0.00047 ± 0.00022• ± 0.028 



MEASUREMENT OF SUPERCONDUCTING TRANSITION TEMPERATURES  

The automatic, simultaneous registering of the secondary coil 

signal and the temperature in the Tc  probe, using a twin-pen chart 

recorder, proved very satisfactory, as illustrated by the typical 

chart record shown in Figure (4.2). The beginning and end of the 

transition are not clearly defined in all cases, as there is often 

an asymptotic approach to the normal or superconducting states. 

The bulk of the transition in almost all cases, however, is very' 

sharp, providing a well-defined mid-point, which was, therefore, 

taken as the transition temperature. 

The values of Tc obtained for the indium alloys are listed in 

Tables 4.7 to 4.12 with the breadth of transition. These results 

are compared graphically, with those published by various authors 

and also with the X-ray results, in the following sections. 

Since the alloys were not chemically analysed there may on occas-

ions be some doubt as to the composition. It is necessary, therefore, 

to check carefully that unusual or anomalous behaviour in the experi-

mental plots, is not due to the wrong composition assigned to one or 

two specimens. The procedure adopted is one of checking on internal 

consistency. The suspect point is taken and shifted parallel to the 

composition axis until it fits smoothly with the other data. This 

could for example be done with a plot of T.  An identical composition 

shift is then given to the same specimen in the plots of the other 

variables (a, c, c/a, ca2). 	If any one of these shifted points does 

not then fit smoothly with the remaining data then the measurements 

are not consistent' with the same composition shift. Internal con-

sistency does not necessarily mean the stated composition is in error. 

If, however, the measurements are accurate, lack of consistency must 

imply that the anomalous behaviour.is real. 
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TABLE 4.7,  

`TRANSITION TEMPERATURE Tc FOR In-Pb ALLOYS  

11.504 4.670 0.04 

12.002 4.825 0.06 

12.501 4.915 0.07 

13.000 5.105 0.05 

13.061 5.010 0.10 

13.501 4.955 0.07 
13.994 5.045 0.10 

14.500 5.080 0.02 

15.000 5.170 0.03 

15.322 5.035.  0.02 

17.251 5.154 0.04 

18.905 5.210 0.03 

21.209 5.355 0.10 .  

24.821: 	, 5.550 0.04 

27.043 5.640 0.03 .  

28.924 5.160 0.05 

30.870 5.225 0.03 

32.997 5.182 0.01 

• 
Composition at.% Pb Tc 
	Breadth of transition 

oK 	oK 

  



TRANSITION TEMPERATURE T  FOR In-Sn ALLOYS  c 

Composition at.% Sn Breadth of transition Tc 

oK oK 

0.997 

2.002 

2.524 

3.002 

4.000 

6.000 

8.000 

10.000 

11.002 

12,010 

3.440 	.006 

3.518 • 	.025 

3.590 	.015 

3.647 	.012 

3.738 	.013 

3.955 	.015 

4.265 	.005 

4.744 	.021 

4.883 	.024 

5.365 	.025 

5.835 	.060 

5.420 	.077 

5.685 	.030 

5.855 	.020 

12.997..  

13.983 

15.996 

17.988...  



168. 

• 

TABLE 4.9 

TRANSITION TEMPERATURE Tc  FOR In-Hg ALLOYS  

Composition at.% Hg Tc 

K 	 oK 

Breadth of transition 
• 

0.753 
1.008 
1.052  
1.187 
1.756 
1.763 
1.921 
2.000 
2.489 
3.000 

- 3.477 
4.000 
5.000 
6.000 - 

3.370 

3.345 
3.334 

3.337 

3.327 
3.319 

3.336 

3.330 
3.342 
3.364 

3.360 
3.376 
3.382 

3.376 
3.430 

3.415 
3.445 
3.427 
3.611 

3.530 

3.284 
3.294 

3.436 

.011 

.012 

.011 

..012 
.010 
.015 

.009 

.007 

.016 

.012 

.011 

.011 

.004 

035 
.020 

.022 

.030 

.032 

.021 

.029 

.087 

.017 

.027 
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TABLE 4.10 

TRANSITION TEMPERATURE Tc' FOR In-Cd ALLOYS  

omposition at.% Cd breadth of transition 

oK 	oK 

0.943 

0.976 

1.517 

1.682 

1.814 

1.907 

1.934 

1.991 

2.115 

2.196 

2.281 

2.399 

2.482 

2.983 

3.927 

5.007 

6.073 

6.480 

7.009 

	

3.344 	.019 

	

3.338 	.026 

	

3.296 	.016 

	

3.280 	.013 

	

3.280 	.012 

	

3.280 	.018 

	

3.274 	.006 

	

- 3.271 	.022 

	

3.267 	.019 

	

3.259 	.021 

	

3.273 	.013 

	

3.275 	.018 

	

3.268 	.009 

	

3.252 	.008 

	

3.236 	.009 

	

,3.225 	.014 

	

3.216 	.036 

	

3.214 	.018 

	

3.206 	.014 



TABLE 4.11  

TRANSITION TEMPERATURE To  FOR In-Bi ALLOYS  

Composition at.Z Bi Breadth of transition 

oK 

	

1.000 	 3.430 

	

2.001 	 3.879 

	

2.996 	 4.157 

	

5.006 	 4.557 

	

6.002 	 4.595 

	

7.002 	 4.755 

	

8.002 	 4.785 

	

9.001 t 	 4.890 

	

10.004 	 5.895 

.015 

.058 

.038, 

.043 

.120 

.100 

.080' 

.120 

.125 



TRANSITION -  TEMPERATURE . Tc "  FOR In—Li ALLOYS  

.016. 

.012. 

.016 

.017 
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THE INDIUM-LEAD ALLOYS  

The parameters and volume of the FCT cell, as a function of Pb 

composition are shown in Fig. (4.4). Since there are no published 

lattice parameters at 78°K, direct comparison is not possible, but 

the room temperature Debye-Scherrer results of Moore et al (1955) 

and Tyzack and Raynor (1954) are included in the figure. The present 

results can be seen to follow much the same pattern as the room 

temperature results. 

The axial ratio values for the In-Pb alloys are plotted in 

Fig. (4.4) along with the transition temperatures Tc. On the latter 

plot some points due to Merriam (1963) and Russell (1966), in the• 

region below 14.5 at.% Pb are superimposed. The reasonably close 

agreement between these results indicates that the present measure-

ments of Tc above 4.2°
K are reliable. despite the experimental dif-

ficulties discussed in section 3.4. The 14 and 14.25 at.X Pb 

results of Merriam lie on a linear extrapolation of his results for 

more dilute alloys, whereas the present results show a distinct fall 

• in Tc 
at 13 at.% Pb which is indicative of a phase boundary at this 

composition. This is also just the composition at which the axial ' 

ratio discontinuously drops. The diffraction profiles in this 

region, however, become very distorted and the behaviour of Tc  is 

'also somewhat erratic. This suggests that between 13 and 15 at.% Pb 

there is a region of, uncertainty, possibly due to the strain field 

resulting from a mis-match of phases. No diffraction peaks from a 

second phase were observed, however. 

The Tc 
values show a marked discontinuity between 27 and 29 at.% 

Pb suggesting that the boundary, between the tetragonal 0 phase and 

the lead-based primary solid solution, lies at about 28 at.% Pb. 

The lattice parameter results, however, indicate a phase change 

between 31 and 32 at.% Pb. The difference between'the two may be 

due to cold working the X-ray specimens at 78°K to make the powders. 

The deterioration in the quality of the.peaks. suggests a strain field 

possibly associated with a martensite.- e 
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It is surprising to note that the rather diffuse diffraction 

pattern of the only specimen in, what should be the Pb solid solution, 

can be indexed as tetragonal, with an axial ratio of 1.04, rather 

than cubic. 

The axial ratios in the indium solid solution at 78°K are 

greater than the published room temperature values, as was found 

for pure indium by Barrett (1962) and Graham; Moore and Raynor (1955). 

Furthermore the axial ratios in the S  phase alloys are lower than 

the room temperature values, that is they also deviate more from 

cubic symmetry at lower temperatures.. It appears that the tendency 

to: distortion (for axial. ratios both greater and less than unity) 

.increases with decreasing temperature* 

.THE INDIUM-TIN ALLOYS  

The lattice parameters and FCT cell volume are plotted; for In-Sn 

alloys, in Fig. (4.5) along with the room temperature Debye-Scherrer 

results of Fink et al (1945). Only specimens in the indium solid 

solution were measured, the profiles in the 16 and 18 at.% Sn speci-

mens being too distorted for measurement. 

The axial ratios are plotted along with the Tc  values in Fig. 

(4.6) and superimposed on the latter plOt are the published results 

of Wernick and Matthias (1961) and Merriam and Von Herzen (1963). 

The values of Wernick and Matthias differ significantly from both 

the present values and those of Merriam and Von Herzen. This is 

probably due to Wernick and Matthias failing to anneal their alloys 

(see Merriam and Von Herzen). 

In the low Sn composition region most of the data points of. 

Merriam and Von Herzen are in exact coincidence with the present 

results and, hence, have been left off the.plot. There is very 

good agreement in general, but the two sets of results diverge -

above 11 at•% Sn. Whilst the boundary between the In solid 
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-:Figure 4.5 The lattice parameters of the indiumtin,alloys 

as a function of Sn composition. 	. 
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Figure 4.6 The axial ratio of the indium-tin alloys, as a function of Sn 
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solution and the 8  phase appears to lie at•15.5 at.% Sn in the Merriam 

and Von Herzen paper, the present results indicate a boundary between 

13 and 14 at.% Sn. 

The axial ratio steadily increases to a maximum of 1.116 at 

13 at.% Sn which is the greatest tetragonal distortion of all the 

indium alloys measured. 	The 13 at.%.Sn appears, thus, to be still 

in the indium solid solution according to lattice parameter measure-

ments. The very marked deterioration in the peak quality in•  the 

13 at.% Sn and higher Sn composition alloys again suggests the pos-

sibility of a martensitic transformation. The axial ratios at 78°K 

are, again; consistently greater than the published room temperature 

values.•  

':THE INDIUM-MERCURY ALLOYS  

The lattice parameters and cell volume for the In-Hg alloys are 

plotted in Fig. (4.7) whilst the axial ratios are compared with Tc  

in Fig. (4.8). Room temperature lattice parameters due to Tyzack 

and Raynor (1954) and the Tc  measurements of Reeber (1960) and 

Merriam, Jensen and Coles (1963) are included on the plots. 

The downward trend in axial ratio with increasing Hg composition 

is confirmed by the present results. .The tetragonal phase extends 

about 1 at.% Hg further than in the'case of Tyzack and Raynor and 

the tetragonal-cubic discontinuity is somewhat less pronounced. 

Apart from slight differences in the region of 8 at.% Hg• the present.  

Tc results are in good agreement with those of Merriam et al (1963) 

and act as a more detailed complement to them. The only marked 

deviation from the low Hg composition values of Reeber (1960) occurs 

at 5 at.% Hg, the difference being of the order of 50 millidegrees. 

Coles et al (1962) showed that at 7 at.% Hg a'specithen which. was 

two-phase at room temperature, was wholly tetragonal at 195°K and 

proposed that a, martensitic'trinsformation must have occurred. - The ,  
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Another feature of interest is that the peaks start to broaden ,  

again at 11 at.% Hg and may be indexed as slightly tetragonal. 
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Tc data of Coles et al also indicated (or was interpreted as indicat- 

ing) that at 8 at.%'Hg alloys were still tetragonal. 	If the present 

lattice parameter results are used in conjunction with the room tem-

perature results of Tyzack and Raynor then the 7 at.% Hg specimen 

appears to have suffered a martensitic transformation on cooling to 

78°K. There were, however, only slight signs of broadening (at 7 at.% 

Hg) of the diffraction profiles. Furthermore, more specimens are 

used in the region of the phase boundary than were measured by Coles 

et al and the fixing of the phase boundary is not quite so clear-cut. 

Coles et al show a continuous rise in T from about 2 to about 8 at.% Hg . 	c 
followed by a drop of about 0.4°K by the next alloy at about 9.5 at.% Hg. 

This apparent discontinuity was taken as the phase boundary. The 

present results show the same rise in Tc  from about 2 at.% Hg but a 

small drop occurs at 7 at'.% Hg followed by a discontinuous rise at 

7.5 at.% Hg. 	The three points, at 7.5, 8 and 9 at.% Hg, indicate. 

a rapid change of Tc  but not necessarily a discontinuous one. If 

all experimental points are reliable, the more obvious phase boundary 

lies in the region 7 - 7.5 at.% Hg. The difference in interpretation 

rests principally on the correctness of the 7% Hg point, but this does 

not seem to be in error. The lattice parameter results set the com- 

position at the calculated value without ambiguity and the Tc  was.  

- re-measured on a quite separate run with only a six millidegree dif- 

ference of reading. 

An interesting feature of the lattice parameter plots is the 

marked dip in the atomic volume between 6 and 8 at.% Hg. On both 

sides of this dip the data lie on the same (almost) straight line. 

Atomic volume calculations, from the data of Tyzack and Raynor, also 

show a sharp dip (only the one point, at 6.5 at.% Hg, is available). 



182.,  

THE INDIUM-CADMIUM ALLOYS  

The lattice parameters and FCT cell volume are plotted in Fig. 

(4.9) and the axial ratio and Tc showri as functions of composition 

in Fig. (4.10). 	The general trends in the lattice constants, axial 

ratio and cell volume are rather similar to those of the In solid 

-solution in In-Hg. The highest composition alloy measured (7 at.% Cd) 

appears to be still in the In solid solution. 

The T
c values of Merriam are plotted along with the present 

results, which are consistently lower than the former except for the 

first 1 at.% Cd. The difference probably lie's in the thermometry, 

since Merriam measured the temperature of the liquid helium using 

a manometer calibrated at the pure indium point (Tc  taken as 3.406) 

	 whilst the germanium thermometer used here was calibrated, over all 

'the required temperature range (2.1oK 4- 180  K) against a standard 

(Texas Instruments) thermometer. Apart from this difference (which 

is small -30 millidegrees) the.Tc  trends are in good agreement with 

those of Merriam, especially near 2 at.% Cd. Merriam's results) 

indicate a discontinuity. somewhere between 6% and 7.5% Cd whilst 

the present results show continuity up to 7 at.% Cd. Since the 

agreement between the two sets of values is good, it seems reasonable 

to combine them in order to set the ac  at  phase boundary between 

.7 and 7.5 at.% Cd. 

The most interesting feature of the graphs is the wiggle in 

the region of 2 at.% Cd. This was first observed by Merriam in 

his Tc results. The region has been ,examined in more detail here 

and, although somewhat sharper in this case, the form of the wiggle 

in Tc is reproduced more-or-less exactly. The kink is shown in 

magnification in the insert to Fig. (4.10). The room temperature 

Debye-ScherreY'results of Ridley (1967) ,show an inflexion in the 

slope of the lattice parameter and axial ratio plots rather than 

a wiggle and, furthermore show no detectable change, at all, in 

the slope of the atomic volume plot. The present results show a 

distinct wiggle in every single plot. As was pointed out in Chapter 1 
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the X-ray data of Merriam (1966) was criticised precisely because 

the wiggles in the lattice parameter plot implied a wiggle in the,  

atomic volume plot. It seems necessary, therefore, to justify 

the reality of the presently observed wiggle. 

First of all the standard deviations of the least 

A culations are of the order of 0.02 A in the FCT cell 
o3 

the amplitude of the wiggle is of the order of 0.3 A . 

measurement the reproducibility was generally of the order of 4,or 5 

millidegrees while the amplitude of the wiggle in ire  is about 18 

millidegrees. It is reasonable, therefore, to suppose that the 

readings are the correct values for the specimens. The only other 

possible source of error is in the estimate of the composition. In 

order to check on this it is necessary to employ the internal con-

sistency test discussed at the beginning of this chapter. As an 

example take the 1.814 at.% Cd point and find a composition where 

square cal-

volume whereas 

In the Tc 

it fits smoothly with the rest of the atomic volume data. The , 

necessary shift is to the left to about 1.1 at.% Cd. If the same 

procedure is followed using the plot of the a parameter then the 

necessary shift is to the right, to 2.4 at.% Cd. Similarly on 

the c plot the shift would be to the left, to 1.6 at.% Cd and on 

the Tc 
plot to the right, to about 2.0 at.% Cd.. These are all 

inconsistent and similar inconsistencies arise when using other 

points in the wiggle so that the wiggle cannot be annihilated by a 

simple displacement along the composition axis. 

THE INDIUM-BISMUTH ALLOYS  

The lattice parameters for the In-Bi alloys are plotted as. 
. 	. 

functions of composition in Fig. (4.11) along with the room temperature 

results of Petetti and Carapella (1949). Beyond 3 at.% Bi, Peretti 

and Carapella report the presence of a two phase region. The present 

investigation was unable to show this, but the condition of the pro-

files, after 3 at.% Bi, rapidly deteriorated as is evinced by the 

large increase in the standard deviations, shown as error limits in 
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• Fig. (4.11) and also in Fig. (4.12) which shows the axial ratios and Tc. 

Since no Tc results on this system have been reported hitherto, 

no comparison can be afforded. The sudden rise in Tc  at 10 at.% Bi 

might indicate a phase boundary but this does not appear to be borne 

out by the lattice parameter results. The axial ratio increases 

steadily up to 5 at.% Bi followed by a levelling off and slight decline 

up to 8 at.% Bi, after which another increase is observed. The atomic 

volume shows a general rise to about 5 at.% Bi followed by a steady 

decline to the limit of measurement at 10 at.% Bi. The 4 at.% Bi 

specimen appears to be somewhat anomalous on the atomic volume plot, 

although it fits smoothly into the axial ratio plot so that it does 

not appear likely that the composition is incorrect. One of the 

points of Peretti and Carapella.is at 4% Bi and does not show a dip 

in atomic volume. 

THE INDIUM-LITHIUM ALLOYS  

1 

Lattice parameters and cell volume for the In-Li alloys are 

shown in Fig. (4.13) whilst the axial ratios and Tc  values are plotted 

in Fig. (4.14). 	The lattice parameter, axial ratio and T plots ,  

are qualitatively identical - a small initial drop is followed by 

no further change in any of the properties. This apparent inertness 

most likely means that only a very small amount of lithium (< 1 at.%) 

dissolves in indium. The alloys would then have to be two phase in 

which case lines from the Li-In phase (see Fig. 1.12) should be present 

whereas in fact no other reflections were observed. Now Li has a 

very small atomic scattering factOr; for example, at 

o -1 
sine 0.5 A' fLi  = 1.0 whilst fIn 

= 25.0. 

A 

When this factor is scaled down by the proportion of lithium in the 

alloys then the ratio of peak intensities for indium and lithium is 

at the very least 500:1 so that lithium reflections would almost 

certainly not be detected. Furthermore, since lithium is not super- 

conducting, no second transition would be detected in the Tc measurements; 
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To be set against this conclusion are the results of Farrar 

and King (1968) for the system Cd-Li. The lattice parameter and 

axial ratio plots for this system are qualitatively the same as 

for In-Li (at the solvent-rich end).  In the Cd-Li system, however, 

Farrar and King found that microhardness measurements showed a uniform 

increase of hardness up, to 22 at.% Li (the limit of measurement) 

which they interpret as meaning that the Li must, be going into 

solution. 
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CHAPTER 5 



DISCUSSION - 

5.1: THE SEEMANN-BOHLIN DIFFRACTOMETER 

The present modification of the Wooster-Martin diffractometer 

has removed the two major criticisms of the earlier SB instruments. 

Firstly it does not lack versatility: a wide variety of useful 

angular ranges are available, including the region between 162°  and 

172°26 (hitherto unobtainable on standard diffractometers) and, of 

course, the instrument is readily convertible to BB geometry. 

Secondly, with the dual geometry it is'possible to align the instru-

ment without reference to a standard substance. For low temperature 

studies the apparatus has the advantage that service connections to a 

cryostat can be maintained during an experiment since the cryostat 

remains stationary. The SB diffractometer is not seen as a competitor 

of the BB diffractometer but rather as a complement to it. As such, 

' there seems to be no reason why commercial BB diffractometer manu-

facturers should not be able to supply. SB attachments to their 

instruments.. 

The principal improvements that could be made to the present 

instrument are in the adjustments 'to the X-ray tube. In particular 

a micrometer control is desirable for the longitudinal adjustment.(AF) 

while a fine screw'thread transverse adjustment (ARF) would simplify 

stage 5 of the alignment procedure. 

The uppei limit of 172.5°26 may be extended by the use of a 

smaller proportional counter. For example, side-window proportional 

counters, less than 1.5 cm in diameter, are now available (20th 

Century Electronics) which should enable the present instrument to be 

used, up to •x175°29 with a corresponding increase in the precision 

of lattice parameter determination. 



194. 

One valuable application of the SB geometry, as pointed out by 

,Segmuller (1959), is in the measurement of lattice parameters in 

preferred directions in the material. Since the angle of 'incidence, 

_:of the X-rays on the specimen surface, varies with the specimen 

- position, it is clear that a particular, measured'Bragg reflection 

arises from differently oriented sets of planes for different speci-

men positions (2y). This principle is now being adopted for use on 

:the present SB diffractometer to determine the distribution of 

residual -stresses in cold-rolled sheets of alloys of copper, aluminium 

and _iron (Gunnell, 1970). - 

AXIAL RATIO TRENDS IN THE INDIUM ALLOYS  

The general pattetn of axial ratios, in the set of indium alloy 

systems investigated, is shown in Fig. 5.1 and includes the 18°K data 

of Russell (1966) for the indium solid solution in the In-Pb system. 

The curves of Hg, Cd, Sn, Bi and Pb, in the region e/a = 2.9 to,3.1, 

conform to a single pattern strongly suggesting. that the axial ratio 

is determined principally by the electron/atom ratio. The curve 'for 

lithium, however, does not fit into the' pattern but, as suggested in 

-section 4.2, the lithium alloys may be in a two-phase region. 

The axial ratio of alloys in the In solid solution of the con-

stant valence system In-T1, shows a marked variation as. a function 

of T1 composition. Thus, although there are clear trends in the 

axial ratio as a function.  of the electron/atom ratio, the latter 

quantity cannot be 'the sole factor governing the behaviour of c/a. 

In fact, while theulmay be a general effect of. alloying which could 

be called the valence effect (dependent only on e/a), there are almost''  

certainly effects depending on particular characteristics of the 

alloying elements. These effects cannot be taken into account in 

semi-quantitative explanations (such, as Fermi-surface-Brillouin zone 

interactions) and the only meaningful approach-is to attempt an exact 

calculation of the total energies cxf different crystal structures for 
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each alloy system. As discussed in Chapter 1, the most hopeful 

approach to such a calculation is that of the pseudopotential method 

which will, therefore, be applied to the present indium alloys. The 

ideal goals of this exercise are: 

To demonstrate that FCT (c/a.> 1) is a sensible structure. 

for pure indium. 

Account for the general rise in axial ratio with electron/atom 

,ratio in the range e/a = 2.9 to 3.1. 

3. 'To justify the existence of the FCT (c/a < 1)-and FCC .structures 
' and predict the phase changes in the present alloy systems. 

Pseudopotential Calculations  

In order to reduce the problem to tractable proportions the 

only structures investigated will be those that are uniaxial distor- 

tions of FCC. 	(These include the FCT and BCC structures.) 	There 

are two structurally dependent energies to be calculated, the first 

of which, the band-structure energy, was discussed in Chapter 1. 

The other term is the energy arising from the direct interaction of 

positive ions embedded in a uniform compensating sea of negative 

charge. 	This 'electrostatic' energy Ees 
is rather difficult to 

calculate in general since the long range of the Coulomb force causes 

convergence problems. Harrison (1966) has demonstrated how the 

electrostatic energy of HCP structures, which are distorted from 

the ideal axial ratio, can be calculated and his method has been 

used here as a basis for the calculation of Ees  for' those structures 

which can be 'represented as tetragonal distortions of the FCC struct-

ure. The 'salient point is that the energy can always be represented, 

(Harrison, 1966) by an expression 

Ees 
Z*2 e2 

• • • 5.1) 

 

2ro  
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where Z
* 

is the effective valence (that is the valence corrected 

for the orthogonalisation or depletion hole - see Chapter 1) and 

( 

1 
1/3. The dimensionless . 

4w 

is the radius of the atomic sphere 3n 

quantity a (the Madelung constant or Ewald constant, to be distinguished 

from the depletion hole a) is known for some simple structures. In 

the present case the value for the FCC structure is required and this 

:is given by Fuchs (1935) as a = -1.79172. Following Harrison the 

...coulomb interaction between two ions is replaced by 

Z
*2 
 e

2 	2 	r -x2 
v ( 	•a 	dx 	... (5.2) 

where n is a dummy variable introduced for convergence purposes:  This:  

potential is coulombic at large r but Gaussian at small r, approaching" 

the the real potential for'a point ion, only in the limit of infinite n 

The potential energy of an ion at ri  due to all other ions at r. is 

)/(r. 
, -.-1  

E .v(r. 	r. .  
3 

7-because (5.2) tends to the second term as r tends to zero i.e. the'  

ion self energy has been subtracted. 

Fourier expansion of V(ri) gives 

• 

V(ri) = E  S(q) va  e iq-.r.  - 2Z* 

q 

4712
*2 

- 2 
/4n 



The reciprocal lattice of FCT in plan. 

- points in basal plane, o -- points 

- lattice spacing from basal plane. 
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The electrostatic energy is half.  rhe sum of V(r.s) over all ions in 

thelimit as n goes to infinity i.e. 

.*2 e  2 .Z 	
2 _q2/4n 

Ees = 	- [lim 	E ( 	S(q)1 	e 	-2 

	

2 	n4co 	
q o 	q2 
. 	. 

The body centred tetragonal representation of the FCT lattice 

in reciprocal space is shown in plan in Fig. (5.2). The C axis 

is perpendicular to the plane of the figure with unit vector 

A vector qt  in the basal plane is defined by 

	

—qt 	 + m2 s2 

• • 5.3) 

/4n 
2 .  

q3 /4n IS(q) 

•••• 

-2r0 	111 

Gig) 
2_ 

qt 
2 	2 

m3 	(13 	. lr t. 
... (5.4) 

The structure factor can be resolved into separate structure factors, 

sums over linear chains of atoms perpendicular to the basal plane.and 

two-dimensional sums over the basal plane.. The structure factor can 

then be written as S(qt)  and taken out of the sum over m3. In this 

- particular case the structure factor for each reciprocal lattice point 

s unity anyway. 

e sum over m3  is replaced by 
2. 2 	' 2 2/  

e-m3 (13 /4n 	-m 
q3 
 '4n 

2 4. m  2 2 qt 
	3 

q 
 3, 

2 	2 
-03 qt 	m  q3 

which is a generalisation -of Harrison's calculation since a parameter • 

K has been introduced, to be fixed later. The subtracted term is 

added back.and coupled with the last term of (5.4) to-make it 
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qt2 m2  c13
2  
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... (5.6) 

It will be demonstrated that (5.5) will converge for a particular 

value of K and it is known that (5.4) must be convergent so that 

(5.6) must also be convergent. By making the substitution x s  mq /2A, 

the integral in 5.6 becomes • 

The, function f is not known in algebraic form but its explicit 

argument is known. 

Expression 5.6 becomes 

since qt  can be represented as mtql. If the unknown function g is 

expanded as a polynomial in q1/24 there must be a term to cancel 
n  . the 2 	i — 	n order to have convergence. This must be a term in (—I-- 

Furthermore, it.is,easily seen that terms of lower order in ql goon  
'Tr 

2,/n 
to infinity in the limit, whereas terms of higher order go to zero. 

except the term in (q1/2)0-1. The surviving term in 5.7 wouid then 

be proportiongl to 1/(q0300) which in turn is proportional to ql  

..and may thus be written Aq... 

Returning to -(5.4);there.is now an absolutely convergent quantity, 

'.within:the'summationti 	Mathematically this ,means that 'the' sum and:the., 

-2 
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limit may be transposed in which case (5.4) reduces, to 

E 47rro  

qt 

E 1 
m
3 2 2 no qt m3 q3 -c°  qt 	m  q3 

dm  2 	2 	2 2] 
- K ir 

CO 

+ r
o
Aq

1 ... (5.8) 

of the first kind.are simply generated from 5.9 with 6 = 0, 

2q3, i.e. 

The integral reduces directly to -Kw/ 	leaving only the sums over 
qtc13 

linear chains of atoms to be evaluated. Harrison has solved this 

'problem very neatly and demonstrates that 

1 

 

w [ 	1 	1  
2wa/ -2wi8/ 

27ra 	, 	 b e b 
ab 	D-1) ke 	-1) 

(e 
(bn +02  

 

  

... (5.9) 

where n runs over all the atoms in an infinite chain of atom separation 

b, and a and 6 are the constants shown in Fig. 5.3. 

Two types of summation are required for the FCT structure, as 

shown in Fig. (5.2). 	The closed circles, o, (except for the origin) 

denote reciprocal lattice points at m3  = 0, + 2, + 4, + 6, etc. 

Whilst the open circles, o, represent. points at.m3  = + 1, + 3, + 5, etc. 

Summations 

a.= q.., 

2 

eIrcit/q3  _ 1  
(5.10) 

' Summations:of the second kind can be generated by summing over a chain 

AAE atoms atm3  -=  0, + 1, + 2, + 3, ...,andsubtracting the sum over 

points 	 -= m3- - 	0, + 2, 	4, .. • . 	Whence 

• • • 5.11) 

ions, the result 
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A, linear chain of atoms - after Harrison (1966). 



. 	 . 
diverges and hence K is determined by the. necessity to cancel the diver- 

..,gentfactor. 	Inspection of (5.10) and (5.11) immediately suggests K = I. 

The remaining term in (5.8) is the summation over the line of ions 

' through the origin excluding the ion at q = 0. Harrison provides the 

answer to this:• 

The.ions in this chain are at + 2, + 4, + 6, ... and hence this 

• 'aummation goes to 7/12, , The final expression for a is then 

... (5.12) FCT 	
4wro (ao ) + w3ro - 

3g2
o 

q3
2 

and cr.(q ) = 
q3 

1 
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(e'qt/q3 - 1) 

Equation (5.12) is a function of ,c/a only and the unknown constant A is 

obtained by solving it for the FCC structure using the anc  of Fuchs. 

The summation is to be made over enough reciprocal lattice points for 

the accuracy required in a. A machine programme for this has been 

written and may be found in Appendix 5. Normally ten sets (multiplicity 

must, of course, be accounted for) of points were found to be sufficient-

to produce•accufacy in the sixth decimal place. The constant A was 

found to be -0.877857. 	The value of a at an axial ratio of 0.71, 

corresponding to the BCC structure,.was found to be the,same as.that' 

given by Fuchs (1935) for that structure'thus giving a confirmation of 

_the* 	ty - of- the ,present method:  
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Electrostatic Energy in the Alloy  

If the valencies of the two constituents of an alloy are the 

same, then the electrostatic energy is the same as in the pure metal. 

Harrison (1966) and Inglesfield (1969) have suggested that the problem 

can be resolved into an average and a difference energy in much the 

same way as the band structure energy, (see section 1.2). No attempt -

to apply this suggestion in practice, has yet been reported. To 

investigate it further it is necessary to formulate the equivalent of 

(5.2) in the alloy. This interaction is given by 

irir 	2  

vij  (I)= 	Z. Z . 

	

j 	jr e
-x 
 dx * *  

0 

The potential energy of an ion at ri  is now 

v(r. - r.) 	2Z.*  e2 -I. -.I  

The first term on the right-hand side is expanded in a Fourier series. 

▪ (5.13). 

• • • 

I 	iq . r. 
E •  K(q) e - 
q 

• (5.15) 

or 

K(q) =  
N 

-iq . ri  
v(r. 	r.) 	dr. 

1 -3 	 1 

-1 . r. 
K(q) = 	v.. (q) e • 

	1 

where v. (q) is the Fotirier transform of (5.13). 

Substituting (5.16) and (5.15) into (5.14), summing over all ions .  

and dividing by:the total number of ions the average energy per ion is' .[ • 
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ILE z  *2 

.7. (5.17) 

viB  e 

ions. 

X. = Nv. SA  + Nv. SB 1A, 	1B 

in the notation of section (1.2). The sum over i then becoms 

iq.ri  
+ vI.B  SB  )e = N E(vAA  SA  + vAB  SB) e 

A 

+ NE (vAB  SA  + vBB.S 

v 	S 4 v S ) * AAA., 	AB B• S  A SA + vBB 
2 EX. = 

1 • 
(5.18) 

Alternatively 

EX. 	= N2 EAA s + (vAB vAA ) SB SA + ' 

which, by a similar process, itself reduces to 

vB -vAB  ) SB SB 

N2  [,AA IS1
2   + 	- AB vAA )SB  S + 	 AB  -v AA 

1  

• • • 



(1 c) ZA + cZB ... (5.22).  

the term energy and ignoring, temporarily, 

tr.  
E 

all q 

or q = qt.5-  on .thewavenumber lattice, 

Structure - Of.Jnterest here) 	Then S =- ,--.BA  , 	- - 
nd2ilence(519)2becomes , 	..., 	-   

. r. 
is , unity (for the 

(1 - c) and S = c 

206: 

+ v
BB

c2: + 2v
AB 

 c(1 2 

--..whilst for q not on-the'wavenumberjattice S 7.0 and then 

c) E  
qfqo 

Nc 

5.20 

+ v 	'-.2v ) 
,AAAB- 

....(5.21) 

ow' the term in.square,bradkets - in '(5.20) ..clearly 	from the'square 

:an, average'valence Z* given by . 

This .term may,' therefore, be dllowed for merely by calculating ,  

.the energy as in the, pure metal according to equation (5.1) only 

_=, replacing Z* by Z*. 

In (5.21) the term vBB + AA v 	2v AB  clearly corresponds to a  
'difference' valence,AZ* = ZA - Z . 	Substituting (5.21) into the 

equation, (5.17), for the 

in Z* results in 

2 .c(1  - c) 27re
2 

N 	S20  ... (5.23) 

in the limit as n -. Now, as for the alloying energy in the band 

structure energy calculation, (see section 1.2) the sum is taken over 

to an.integral over all wavenumber space and this integral is of. the 

'type: 
2. 

-q /4n dq 
CO 



In other words the difference valence is associated with a 

divergent term which must cancel with part of the second term'in 

(5.23). 	Indeed Inglesfield*  (1970) points out that the second 

term, a mean square valence term, Can be resolved into , terms in IT 

and AZ. 	In fact.  

= Z* 	+ c(1 - c) (AZ*)2  

and Inglesfield shows the terms'in (AZ*)2  cancel exactly. 

In summary there and three terms left in the energy; the average 

band structure energy (1.20), the 'alloying' energy (1.22) and the 

average electrostatic energy using (5.22) in (5.1). 

Computation of the energy  

A computer programme has been generated to evaluate the structural 

dependent energy at a number of different compositions of different 

solutes at a number of axial ratios. The programme is shown in 

Appendix 6 but a short explanation is probably necessary. 

The subroutine FFN (an apology is offered for the nomenclature 

which does not always fit that used in the final formulation of the 

problem above) generates the energy-wavenumber characteristic 

(FQ(I) in the programme). 

010(q) 	= 	v(4) 	X(04) c2(q) 

To obtain v(q), the v(q) for the two elements are read in as a'  

function of q, The HA tables of values in Harrison (1966) are 

functions of n = c1/2kF  and have to be converted to functions of q before 
- 	- being read in. 

.00 Private communication. 

-I am very grateful to Dr. Inglesfield for demonstrating this tome. 
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The Fermi wavenumber (KF) is generated for each composition and 

c2(q) and x(q) worked. out from (1.11) using this kF: 	In the calcula- 

tion of kp  the unit cell volume was, taken as a linear interpolation 

between the volumes for the puie Metals. . Also for want of anything 

.better, the depletion hole a(ALPHA) was obtained by linear interpola- • . 
between the pure metal values from Shaw and. Harrison (1967).. 

The subroutine FFN generates 4(q) for q at discrete values 

every 0.125 atomic units) the energy being in ryabergs. 

The master programme is fed with the first thirty-six sets of 

reciprocal lattice points with their; multiplicities (U(I)) and the 

--.volumes of the unit cells of the pure metals. The programme scales 

between the pure metals for the volume of the unit cell, calculates 

-the lattice parameters corresponding to this volume and the particular 

axial ratio and then generates the q Values appertaining to the (hkl) 

values. To perform the summation in (1.20) the value of 4.(q) has,tO 

be interpolated between the appropriate values of FQ(I). Newton's 

method of differences to third order was used originally but the 

function was such that differences diverged at some points. This 

was found to occur even when the logarithm of the function was used. 

A polynomial fit of order 19 was made but the error involved in 

using this was greater than that arising from linear interpolation, 

quite apart from the prohibitive use of computer time. The linear 

interpolation procedure was finally adopted. 

The subroutine UES takes the average- effective valence, reads in 

..the'a(ALPH(J)) and calculates the electrostatid energy from (5.1).. 

Results of pseudopotential calculations  

It has already been indicated that the relative stabilities of 

crystal structures, in metals and alloys, is determined by a balance 

of the contributions to the energy, of the electrostatic part and the 

band-structure part._ In the application of the theory to indium and 
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its alloys, it is, therefore, of interest to consider these contribu- 

tions separately. Accordingly the electrostatic energy for indium, 

which is effectively a plot of the variable a in equation (5.1), is 

plotted as a function of the axial ratio of the FCT unit cell in 

Figure (5.4). This graph reveals two minima, one at an axial ratio 

corresponding, exactly, to the FCC structure whilst the absolute 

minimum occurs at an axial ratio which is exactly that of the BCC 

structure. Although the electrostatic energy might intuitively be 

expected to minimise in the region of a high symmetry structure, it 

is difficult to explain just why it does. Harrison (1966) was able 

to demonstrate that the electrostatic energy for the HCP structure is 

minimised at the ideal axial ratio and, since the electrostatic energy 

for this.structure is greater (i.e. a is less) than that of the BCC 

structure, the latteris clearly favoured as the most stable structure 

„ for the elements, when the band structure energy is ignored. The 

_simple cubic structure has an even smaller electrostatic energy (Carr, 

1961) which probably accounts for its very rare occurrence. The BCC 

structure is found in all the alkali metals which, perhaps, approximate 

most closely to the free electron model. In other metals the proximity 

_,of the fermi-surface to the Brillouin-zone results in rather rapid 

changes in the matrix elements of the pseudopotential (Harrison, 1966) 

which would probably result in more violent variation of the liand 

structure energy with changes of crystal structure. 

The second important contribution to the total energy is the 

band-structure energy which, for indium, is plotted as a function 

of axial ratio in Figure (5.5). A small extension in the c direction 

is seen to result in a very sharp decrease in energy (for c/a greater 

than 1.05) whilst a similar drop occurs for axial ratios below 0.5. ' 

'.Between c/a = 0.5 and c/a = 1.05, however, there are three minima and 

one maximum. In fine detail, the maximum is resolvable into a 

maximum at c/a = 0.73 and a stationary inflexion at c/a = 0.71 which 

corresponds.exactly to the BCC structure. There is also a minimum 

at the axial ratio corresponding to the FCC structure.• These are 

both confirmations of a group theoretical argument that requires the 

band, structure energy to be stationary for the cubic structure (see 

,Heine and Weaire, 1966). 
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When the band structure energy and the electrostatic energy , 

are added, a total of seven minima occur, as shown in Fig. (5.6)..  

The minimum corresponding to the BCC structure, at c/a = 0.71 has 

virtually been annihilated by the maximum in the band structure energy. 

The lowest energy now occurs at an axial ratio of 0.58 which is close 

to that of the a-mercury tetragonal structure (Atoji; Schirber and 

Swenson, 1959). In the region of.small distortions from FCC however, 

-the most stable structure corresponds to an energy minimum at c/a = 

-1.12, which thus makes rather good sense of the A6, FCT structure of 

indium, with cia -.1.09 at low temperatures. For convenience this 

structure will be designated FCTa. 

Two other energetically possible structure;are indicated in 

Fig. (5.6). The first, which occurs as a rather flat-bottomed 

minimum around c/a = 0.85, corresponds with the a-phase of the indium-

lead system and may thus be conveniently referred to as FCTa. The 

:other structure should have an axialratio of 1.25 but no A6 structures 

With this value of c/a have been reported in the literature (Pearson, 

'1967). For the present purposes, this hypothetical structure will 

be referred to as FCTy. 

' An important question is whether or not the energy minimum, 

at c/a = 0.58, (and hereafter designated FCT6) has any physical 

significance. Since large distortions of the FCC cell, at constant 

volume, must squash the atoms, the effective radius (along the direc-

tion of closest approach) must in the limit reach that of the ionic 

radius defining the surface of the black box used in the evaluation 

of the pseudopotential. At an axial ratio of 0.4 the atomic black 

boxes, used by Animalu and Heine (1965), touch (i.e. the atoms, in ,  

the direction of the c-axis, are 4.8 atomic units apart; equal to 

twice the Animalu-Heine radius R.). It thus seems rather unlikely 

that the structure indicated at an axial ratio of 0.46, (which may 

..be called FCTc) has any physical significance. No metallic structure 

with this axial ratio is recorded in Pearson (1967). At slightly 

higher axial ratios the proximity of the core electrons of neigh-

bouring atoms may result in a distortion from the ionic sphere, in 

which case the pseudopotentials would become less, valid. A spurious 
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exaggeration of the.  FCTS minimum might result from such a breakdown. 

The very marked nature of the FCTS energy dip suggests, however, 

-that this structure is a real alternative to the FCTa structure 

observed in indium. 	If it is, physically, the most stable structure 

' at 0oK, then the reason for its not being observed must lie iri the 

thermodynamics of the problem. If, first of all, the pattern of 

Fig. (5.6) is considered to exist, qualitatively, on.  warming the 

-;metal or alloy to a temperature just below its melting point, it is 

-reasonable to consider the problem in relation to the structure in 

,.the liquid state.. It is well established (see, for example, 

Ubbelohde, 1965) that some sort of short range order exists in 

'metals and alloys just above their freezing point, the general 

pattern being that of a random close-packed lattice with about 10 

per cent vacancies with respect to the equivalent crystal lattice. 

The average number of nearest neighbours in the melt is about 10.85. 

Furukawa (1959). analysed the shape of the radial distribution curve 

'for liquid indium, obtained from X-ray diffraction patterns by 

Gamertsfelder (1941), and obtained a coordination number, 11.3, i.e. 

quite close to FCC. Just why this should be s9 is a question that 

would require energy calculations using the pseudopotential in 

liquids and such an analysis will not be considered here. The fact ,  

is accepted, however, that atoms in the liquid are arranged in a 

manner approximating more nearly to FCC than to the FCTS structure. 

In the process of nucleation, it seems highly probable that the fine 

'differences in energy in Fig. (5.6) will be unimportant and that the 

atoms will cluster'in the close packed arrangement similar to their 

arrangement in the liquid. In the initial process of solidification, 

the solid structure, could thus be FCC and once in this region of 

axial ratio, the atoms would be unable to surmount the large energy 

barrier at the axial ratio corresponding to the BCC structure. 

This energy barrier corresponds to a thermal energy. of about 4kB  T_ 

= melting temperature) per ion, above the FCC level. Once in 

the region between c/a = 0.8 and 1.3 then the energy barriers between 

structures there are much smaller, being.all less than 0.25 kB  Tja  and 

present no obstacle to the metal settling into the Fftm structure. If 
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Eth • = -3k T ln
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the nuclei of the solid are formed with the FCTS structure then the 

crystal would tend to grow, epitaxially, in the same structure. 	It,  

is emphasised, however, that the large energy barrier between FCC 

and FCTS is only known to exist in the direction of tetragonal dis-

tortion. Although distortion along the c-axis is the simplest way 

to arrive at the FCT6 structure it'is not the only conceivable way. 

A combination of three orthorhombic distortions, for example, may 

provide a route to FCTS without crossing a high barrier. 

A further possible explanation of why the FCT structure is not 

observed, lies in the fact that Fig. (5.6) may not be the energy 

pattern at higher temperatures. According to Zener (1947), the 

thermal energy, Eth, at a temperature T is given by 

where w is an average frequency of vibration. While Harrison (1966) 

has shown how it is possible, in principle to calculate the phonon 

spectrum from the pseudopotential,in practice the problem is only 

;tractable when particular symmetry' directions are considered. The 

calculation of thermal energy, however, requires integrals over all 

-of wavenumber space to obtain w. 

The problem of obtaining; for hypothetical structures would 

thus appear to be enormously difficult. It was thought worthwhile 

to make some attempts at producing a simple model to obtain a mean 

frequency as a function of the axial ratio. A modification'of the 

Debye approximation was considered, 'whereby the Debye sphere is 

replaced by an ellipsoid. This is not likely to be a meaningful 

approximation, however,' since at one point in the tetragonal dis-

tortion of FCC cubic symmetry arises again (BCC) for which a Debye 

sphere would be the proper approximation. 

Another approach attempted here was to assume Coulombic fdrces 
• 

acting on.::the'latoms 	case- the'.}looke1.s-  constant : is inversely - 
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proportional to the separation of the atoms. The mean frequency was 

then taken from the mean value of the square-root of the Hooke's 

constant for nearest neighbours and next nearest neighbours. This 

approximation produced a maximum energy variation, with axial dis- . 

tortion, of only 0.3 millirydbergs per ion, which is insignificant. 

third approach utilised the fact that each point on the wavenumber 

-lattice correspnnded to an oscillator frequency. For each distortion 

large number of such points were taken and the wavenumbers, lq I 
,evaluated and the points arranged in order of increasing 	When 

a particular number of points (say, 300) were taken,the maximum 13.l 

value was assumed to be proportional to a Debye cut-off wavenumber. 

The phonon dispersinn curve was assumed to be linear (the Debye 

approximation)and,a *characteristic. frequency for each distortion was 

h-found. :Again this resulted in only about 0.3 millirydbergs Of energy 

..variation, over the whole range of c/a. 

If the thermal energy differences between structures were, in 

reality, as small as these calculations indicated, the number of 

- thermal transformations occurring in nature, would be very small. 

It would seem that much more sophisticated treatments of thermal 

energy are needed. The only information on the thermal energy as a'  

function of tetragonal distortion comes from the plot of axial ratio 

as a function of temperature (Russell, 1966; Barrett, 1962). As 

pointed out in Chaptet 4 the axial ratio of indium increases as the 

temperature decreases, and a comparison of the present results with 

published room temperature results, indicates that the axial ratio 

of alloys with the FCTa structure (in the In-Pb system), decreases 

-with the temperature. The tendency is, therefore, for the structure 

to become closer to FCC as the temperature is raised. In order to 

move the FCTa and FCTO minima in Fig. (5.6), closer to the FCC, it 

is necessary to propose an energy-well centred on FCC and increasing 

depth with' increasing temperature. For lack of any other informa- 

.:tion, this well is assumed to be parabolic in shape: 	In order to 

move the energy minimum at FCT' from c/a = 1.12 to C/a,=1.11 (roughly 

corresponding to the observed axial ratio change 1.084 to 1.075) an,  

energy rise from FCC of_about 0.4 millirydbergs at c/a = 1.12.is 

.required. An extension of the parabola, that fits this information, 
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would raise the FCT5 structure 5 or 6 	rydbergs but such an extrap- 

• 
	olation would be excessively rash. The model may, however, have some 

sort of meaning when applied to the region closer to FCC and will at 

times be used in the discussion of the indium alloys. 

When everything is taken into mccount, the FCTS structure appears 

to be a possible structure for indium and the question arises as 

whether it can be obtained experimentally. It is instructive to 

examine the case of pure mercury whose a phase has an A6 structure of 

axial ratio close to that of FCTS. This phase does not occur on 

simple cooling, but only after energy is introduced into the metal by 

high pressure. By analogy, one may speculate that the FCT6 structure 

may be induced in pure indium by the application of high pressure or, 

perhaps, as a result of cold-working at low temperatures. Facilities 

are not available, in this laboratory, to perform such experiments but 

it is hoped that these may be attempted elsewhere. 

Results of Pseudopotential Calculations on Alloys  

A glance at Fig. (5.6) reveals that the three disordered structures 

(FCTo, FCC and FCTS) observed in the solid sqlution alloys based on 

indium 'all have similar energies, and, furthermore, are not separated 

from each other by very formidable energy barriers. While this makes 

qualitative sense of the phase changes to FCC (when alloying with Hg, 

• Cd, Ti) or to FCT8 (in In-Pb) the energy balance is so delicate that 

the correct structure is unlikely to be predicted with 100% certainty 

in every instance.. One conclusion that May be drawn instantly, 

:.- however, is that the BCC structure is clearly not favoured, a con-

-clusion which is confirmed by the phase diagrams of the indium alloy,  

systems (see,-for example, Hansen 1958). 
. 	. 

The indium-lead system 

5.10) show the results of energy. calculations 
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Figure 5.10 Total structural energy in the system In-Pb. 
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for indium alloys containing 8, 12, 16, 24, 36, 56, 80 and 100 at.% Pb. 

By a composition of 8 at.% Pb;' the energy in the region of the FCTa 

structure has degenerated into a double minimum, which has dropped 

below the FCC minimum, as also has the energy of the hypothetical 

FCTy structure, whereas FCTa remains the most stable of the competing 

structures. 

By 16 at.,% Pb, however, the•  energy of the FCT$ structure falls 

below that of the FCTa structure and hence the energy calculations 

make sense of the structure change observed in In-Pb at 14 at.% Pb. 

These 0°K calculations, however, indicate that the FCTy structure 

should in fact be slightly more stable than FCT$. If the crude 

parabolic model of the thermal energy is invoked, however, it can• 

be proposed that the more distorted structure becomes the less 

favoured when the temperature is increased above 0°K. Nevertheless 

the possible •  occurrence of the FCTy structure (on cold working at 

law temperatures, for example)• cannot be ruled out. Further 

additions of lead, up to about 40 at.% Pb, serve to strengthen the 

case for the FCT$ structure. 

For alloys• containing more than 60 at.l Pb the BCC structure 

appears to become a stronger possibility and at 80 at.% Pb it is 

apparently the most favoured structure as the energy minima associa-

ted with the FCTS and the FCC structures tend to disappear. The 

last finding is rather disappointing, since alloys.in the In-Pb system 

become FCC beyond about 32 at.%, this phase being the primary solid 

solution of indium in lead. Indeed the BCC structure appears to 

be far the most favoured in pure lead as can be seen from Fig. (5.10) 

The failure of the pseudopotential method to predict the correct ,  

structure for lead may be because an essential assumption of the 

method, that of the small-core approximation, is invalid for the 

heavy metals. 
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Figure 5.11 Total structural energy in.  the system In-Sn. 
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Figure 5.12 Total structural energy in the system tn—Sn. 



Figure 5.13 Total structural energy in the systein'In-Sn.' 



.-The indium-tin system' 

The total energy, calculated for various alloys in this system, 

is plotted as a function of axial ratio in Figs. (5.11) to (5.13). 

The picture is somewhat similar to that of In-Pb except that the 

hypothetical FCTy structure doet not play an important part. Further-

more, the FCTa'structure remains dominant (apart from the FCT6 structure) 

"to higher electron/atom ratio than in In-Pb. The FCTO minimum comes 

.down below FCTa at about 40 at.% Sn. The phase change in In-Sn occurs, 

.in practice, at, about 13 at.% Sn although there has been some argument 

(Pearson, 1967) as to the precise structure of the phase labelled a in 

the phase diagram (Fig. 1.10). Although it has been indexed as an 

FCTO type structure, Anomalies have been pointed out in the relative 

intensities of lines' in the X-ray diffraction pattern (see Chapter 1). 

The indium-mercury system 

r. 

The total energy computed for this system is shown, as a function 

of c/a, in Figs. (5.14) to-(5.16). 	It is interesting to note that 

the FCTO structure vanishes very quickly and, furthermore, the FCTy 

also ceases to be significant after only small additions of Hg (<4 at.%) 

Thus, apart from the FCTd structure, the position is very much sim- 

plified, the, only real choice of structure being between FCC and FCTa. 

This situation is sensible in view of the phase change (see Chapters 

1 and 4) at about 7 at.% Hg. In fact the, calculations do not show 

this phase change until about 36at.% Hg. Using the thermal energy 

parabola this change would take place somewhat earlier (at about 

16 at.% Hg). An interesting development, in this system, is a slight 

degeneracy of the FCC minimum which by 40 at.% Hg has split into two 

minima corresponding to slight tetragonal distortion. As pointed 

out in Chapter- 4 the present experimental results show a broadening 

of some of the Bragg profiles in the ac  phase which meant a diffrac- 

tion pattern could be indexed as slightly tetragonal. 



Figure 5.14 Total structural energy in the system In-Hg. ,  



-5.39 

FCC 

20 at'/. Hg 

-5.40 

AXIAL  

0.5 	0.6 	0.7 	0.8 	0.9 	1.0 	11 	1.2 	1.3 
c - 
0 

RATIO 
BCC 

-5.03 

32 at'/.Hg 

• -5.04 

228; . 

Figure 5.1 Total structural energy in the system. In-Hg. 



0 

V 
• 

1.2 	1:3 1.1 0-5 	0;6 , 0;7 	0:8 	0:9 

W 

• in 
; 

-4.57 

-4.58 

Figure 5.16 Total structural energy in the system In-Hg. 



230. 

Figure 5.17 Total structural energy in the system In-Cd. 
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The indium-cadmium system .. 

The calculations for In-Cd alloys are illustrated in Figs. (5.17) 

and (5.18) and the energy plots are seen to resemble the In-Hg picture. 

The FCTO structure does not vanish quite so dramatically but the two •  

dominant structures are again .FCC and FCTa. The difference in energy.  

Jevels between the -two - structures hardly alters, however, and there 

is no real'indiCation of the observed_FCTa 	FCC structure change at 

about 8 at.% Cd. 

'The indium-bismuth system.  

The energies calculated for some alloys in the indium-bismuth 

system, are plotted as functions of axial ratio in Figs. (5.19) and 

(5.20). Addition of Bi rapidly changes the energy picture of pure 

indium. 	By 8 at.% Bi the FCC structure has vanished as a possibility 

and the FCTy structure appears to be the most stable (even the FCTS 

minimum has risen above it). Furthermore the FCTa'ndnimum.is below 

the FCTa. By 20 at.% Bi-the only two oompetitors for the structure 

are.FCTO and FCTy and consequently a change of structure ought to 

be expected in this system whereas none is reported in the literature, 

or observed in the present experimental investigation. The limit of 

solid solubility of Bi in In may come before the structural change 

occurs, but since this limit has 'not been established with certainty 

(Hansen, 1958) it is probably worth investigating the In-Bi•system .  

at higher Bi compositions than those used here (i.e. higher than 

10 at.% Bi). 

The indium-lithium system has not been investigated theoretically 

but the indium-thallium system has been studied, however, since it 

shows a change of structure from FCTa to FCC which is sensitive to 

temperature but not related to the electron/atom ratio since In and 

Tl have the same valence, 3. These pseudopotential calculations were 

disappointing since, as can be seen from Figs. (5.21) aid (5.22), they 

predict that the FCC structure should,become progressively less likely 
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with increasing Tl concentration which is precisely the opposite of 

the experimental observations. This failure of the pseudopotential 

method is again, perhaps, due to the invalidity of the small core 

approximation when applied to the heavy metals' such as Pb and Ti. 

On the whole, the present application of the pseudopotential 

method, has been very satisfactory. The theoreticians have reduced 

) the problem of computing band-structure energy to one of arithmetic 

and accountancy and the problem of electrostatic energy, though in 

general very complicated, appears to be tractable for simple structures. 

As a result, with an initial outlay of time spent on developing the 

programme for the computer, the pseudopotential method could well 

become a valuible tool for the physical metallurgist interested in 

the theory of alloy phases.'  

It is rather intriguing to see what would happen if the energy 

balance is artificially tipped by scaling down band-structure energy 

relative to the electrostatic energy. If, for example, it was 

scaled down by a factor of 11, then in pure indium, the FCT5 and FCTY 

structures would vanish as possibilities and the axial ratio of the 

FCTa would be reduced to a value nearer the observed value (to c/a = 

1.095 compared to the observed 1.085). The structural change from 

FCTa to FCTO in In-Pb would occur at 12 at.% Pb, in agreement with 

experiment and, furthermore, the In-Hg structural change from FCTu 

to FCC would occur at about 8 at.% Hg (compared with the observed 

7 at.% Hg) and the In-Cd structural change would occur at about 6 at.% 

Cd (compared with the observed 7.5 at.% Cd). This simple alteration 

in the relative magnitudes of the band-structure and the electrostatic 

energies will*not,,however, acoount for the FCC structure observed in 

.In-T1 and In-Pb. Nevertheless in view of the effectiveness of 

this adjustment for the other systems, there would appear to be good 

ground for questioning whether the band-structure energy is over-

estimated in the pseudopotential theory. An alternative possibility 

is that the thermal energy (which has not been amenable to estimation) 

as a function of tetragonal distortion, resembles in functional form 
1 

...the electrostatic energy and hence alters the balance in the total 
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Neither the pseudopotential method nor the theory of the super-

conducting transition temperature is sufficiently developed at present 

to explain the fine details in the lattice parameter or Tc  plots. 

The wiggles in the Tc  and lattice parameter plots of the In-Cd alloys 

and the similar wiggles observed by Merriam in the In-Sn alloy system 

and the In-Pb system must be explained by qualitative examination of 

band structure calculations. 

As mentioned in Chapter 1 the most reliable evaluation of the 

band structure of indium, is probably that of Hughes and Shepherd 

(1969) and this band structure was shown in Fig. (1.6). 	Since the 

observed kinks occur at only a few at.% solute it can probably be 

assumed that the band structure remains roughly rigid, at least for 

qualitative argument. If 2 at.% Cd'is dissolved into indium, the 

fermi level will drop about 0.05 eV. The electrons will no longer 

overlap into the third zone at the corners C and the third zone ring 

of B-arms will break up into four 'sausages'. If the process of 

joining of the 'sausages' can be likened to the coalescence of liquid 

droplets then a discontinuous jump in area of the fermi surface is 

likely to occur. The corresponding discontinuity in energy would 

result in a discontinuity in the crystal lattice parameters. There 

is no reason why this should not apply to the cell volume. This 

interpretation of the kink at 2 at.% Cd is consistent with the findings 

in a recent paper by Higgins and Kaehn (1969) who analysed the results 

of Tc 
measurements under pressure p. The quantity 

3T  ciap may be 

related to the derivative of the density of states, with respect to 

energy. This latter quantity alters in a manner characteristic of 

changes in the fermi surface topology and, in particular, alters 

rapidly in the region of a 'van Hove' singularity. These singularities 

correspond to.the creation or annihilation of electron or hole spheroids 

and the creation or annihilation of saddle points in the electron or 

hole surfaces. The Higgins and Kaehn calculations suggest that an 

electron saddle point disappears at 0.9 at.% Cd (the observed kink 
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is at 2 at.% Cd) i.e. the $ring breaks up. The'same calculations, 

however reveal the possibility of an electron-pocket annihilation at 

1.6 at.% Cd suggesting that small globules of fermi surface might be 

_left at the corners of the s-ring when it dissociates. It is inter-

esting to note that Hughes and Shepherd (1969) detected a slight swel-

.A.ing in the arms of the Oring at the corners. 

When about 8 at.% Sn or Pb is dissolved in indium, the fermi 

level rises about 0.2 eV. 	It can be seen from Fig. (1.6) that 

this is just sufficient to cause overlap into the third zone at the 

points W i.e. the initiation of the a-arms. The energy discontinuity 

associated with the nucleation of these electron pockets would mani-

fest itself in.discontinuous changes of lattice parameter. It seems 

clear, therefore, that the explanation of the wiggles in the indium-: 

solid solutions lies in consideration of the third-zone electron 

surface and not with the fourth zone as was previously thought 

-.:(Sveahkarev4.-.1,964J'::Russell,. 1966) 
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5.3 THE TRANSITION TEMPERATURES, Tc  

The transition temperature and the lattice parameter data have 

been collected together and plotted against each other. Figs. (5.23) 

and (5.24) are plots of Tc  against axial ratio and atomic volume res-

pectively. In neither case is a .clear-cut functional form observed 

and it is concluded that no simple correlations can be inferred. This 

is hardly surprising when it has been seen how delicate is the energy* 

balance that determines the structure, let alone the axial ratio. 

The transition temperature is no less sensitive to small changes in 

the pseudopotential or phonon spectrum. 

There is, nevertheless, a pattern in the Tc  plots as functions 

of the electron/atom ratio. Addition of higher valence atoms increases 

Tc whilst addition of lower valence atoms decreases Tc
, though less 

dramatically. It is an intriguing exercise to see if this makes sense 

in the light of the observed band-structure. The density of states 

for indium evaluated by Hughes and Shepherd (1969) is shown in Fig. 

(5.25). Their pseudopotential was used to obtain energy eigen-, 

values at 8000 points in the Brillouin zone and the density of states 

histogram appears to consist of about 200 intervals. There are, thus, 

some 40 points per interval which may just make the fine detail of the 

density of states, statistically significant. The band structure is 

-assumed to be rigid for small additions of solute and the Debye tem-

perature is taken to be fixed at 109°K. The Bq equation (1.24) 

has been used here and fitted to the observed Tc of pure indium (3.4°K 

by suitable choice of the coupling constant V. The resulting Tc's 

are plotted as a function of electron/atom ratio in Fig. (5.26). The 

actual Tcis observed in -the present experiments (plus the In-Pb 

values of Russell, 1966) are plotted for comparison. The theoretical 

- values rise with increasing e/a but drop suddenly between 3.07 and 3.12 

- e/a and rise -again. The observed Tots also rise, though rather more 

steeply, and those of In-Pb and In-Sn also drop at the phase boundary. 

The Hughes-Shepherd-pseudopotential may, therefore, be predicting the 
- 	- 

base boundary. -.:1-Towards Lower a the theoretical T values 4LP. - 
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Figure 5.26 Tc as a function of e/

a for the indium alloys,. compared with the values calculated from 
the density of states ,for indium. 
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through a pronounced dip. The Tc's observed for In-Cd alloys do 

indeed descend but insufficient alloys have been studied to detect 

any dip in the region of 10 at.% Cd. The results of Merriam do 

not cover this region either; The In-Hg values do not follow the 

theoretical curve very closely at first but do show a dip at precisely 
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CHAPTER 6 



CONCLUSION  

6.1 SUMMARY 

1. A modification of a Bragg-Brentano diffractometer enables the 

rapid change from BB geometry to the fully-focusing Seeman-

Bohlin geometry. A unique feature is the dovetail specimen 

track which gives the operator a considerable choice of angular 

ranges. In particular, the region (unobtainable on conventional 

diffractometers) between 162°28 and 172°28, is made available. 

2. The instrument, by virtue of the interchangeable geometries, 

may readily be aligned without reference to a standard substance. 

This has not been possible with any other SB diffractometer 

reported. 

The ability to increase the intensity, without loss of resolution, 

of a Bragg reflection, by increasing'the divergent slit aperture, 

was demonstrated. The stationary nature of the specimen in the 

SB mode simplified the use of a cryostat on the instrument. 

Considerable profile improvement was occasioned when the indium 

alloys were cooled to 78°K. 

A complete review was made of all the errors associated with the 

SB geometry. Many of the SB errors Were analysed here for the 

first time, in particular those due to axial divergence. The 

availability of the high angle region allowed an experiment to 

.be perfofmed to check the existence of the tan
38 centroid shift 

ue to the Lorentz factor and dispersion. 

247. 
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. 	Examination of the error functions suggested the use of two 

extrapolation functions for elimination of systematic errors. 

These are presented in tabular forth. A least squares programme 

was also devised which incorporated this elimination in 

analytic form. 

6. A probe was constructed, for the measurement of superconducting 

transition temperatures by the AC inductance method, the 

magnetisation and temperature of the specimens being displayed 

simultaneously on a twin pen chart recorder. The equipment 

yielded Tc  values to + 0.01°K and + 0.03°K at temperatures ,  

below and above 4.2°K respectively. 

The results of the X-ray diffraction experiments and the 're  

measurements, are summarized in Table (6.1). The wiggle, 

in the axial ratio and the Tc plots in In-Cd, at 2 at.% Cd, 

which was reported by Merriam (1966), has been confirmed by 

careful experiment. The kink was also found in the atomic 

volume plot. The possibility of composition errors has been 

eliminated by applying internal consistency tests to the results. 

Taking into consideration the most recently available band-

structure data, the wiggle is attributed to the dissociation 

of the third-zone 8-ring s into separate arms. Similar kinks -

observed by Merriam in In-Sn and In-Pb, at about 8 at.% solute 

are attributed to the initiation of the third-zone a-arms. 

. The Madelung (or Ewald-Fuchs) constant a is evaluated for 

tetragonal distortions of the FCC structure and the electro-

' static energy calculated therefrom. The band-structure 

energy is calculated using the Heine-Animalu form factors. 

The total structurally dependent energy is computed for pure 

indium and a number of its solid solution alloys. The most 

stable structure for indium, indicated by these pseudopotential 

calculations, is FCTS (c/a = 0.58) And reasons for this 

structure not being observed are considered. In particular 

the observed structure in the liquid state is taken into 

account in the solidification process. For the region of 
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System ' Structure Phase 
width 

at.% 
solute 

T 	Variation 
with solute 
composition 

. 

c/a Variation 
with solute 
composition 

. 

Remarks 

_ 
In-Pb .FCTa.- 

. 

. 
, 	• 

0-13.5 

. 	. 

.. 
steep rise 

, 
_ 

_ 	' 

gradual rise 

• 

• 

both T 	and 
c/a drgp di; 
continuous 1,  
at 13.5 at.: 
Pb. 

FCTO 

. 	: 

13.5-28 

. 

steep, rise 

whilst c/a  

remains con- 
stant 

- 	. . 

T 	drops di: 
co
c 
 ntinuousl: 

at 28 at 7 

changes at 
,32 at.% Pb. 

FCC - .28-100 slight rise ' 	- 

. 

33 at.% Pb 
may be inde] 
ed as slight 
tetragonal. 

In-Sn FCTa 0-13.5 steep rise steep rise 

FCT8 135->18 gradual rise not measured 

In Hg FCTa 

•., 

0-7.5 

. 

. slight dip 	- 
followed by 
steady rise 

gradual,dec-
line becoming 
steep 

FCC 	. 7.5->12 

. 

goes through 
a minimum at 
10 at.% Hg 	• 

• 

• 

- 	• 

i 	.. 

' 

11 and 12 
at.% Hg sam-
pies may be 
indexed as 
slightly tet 
ragonal. 	IT 

 atomic volun 
has a dip be 
ween 6 & 8 
at.% Hg. 

In-Cd FCTa 0-7.5 gradual dec- 
line 

gradual dec- 
line becoming' 
steep 

kink observe 
in Tc, c/a 8 
ca2  at 2at.2 

In-Bi FCTa 0->10 

.. 

steep rise 
becoming pt- 

. eeper .at 9 
at.% Bi 

rises to 5%, 
declines & 
rises again.... 
at 8% Bi 

very poor 
quality peal 

 _above 3at.%I 
1 

In-Li FCTa • 
. 

0 - ? 
. 

no change for 
1-7 at.% Li 

, . 

similar to T 
  C  

,—....- 

, 	likely Li sc 
bility <1% 

. 

ly,  

e 

t- 

d 

Cd 

lu- 
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- SUMMARY OF PSEUDOPOTENTIAL* CALCULATIONS  

System-. Structure 

• 

Phase width • 
at.% solute 

• Comments .  

I n-Pb • FCTa 0 - 16 
,
• • FCTy is a strong competitor 

FCT8 • 
.. 
. .-. 

16— 
.S 

• 

The FCC structure fails to 
manifest itself. 	The dom- 
inant structure at high Pb 
composition is BCC.• 

-In-Sn 

. 

- 
- 
.' 	FCTa. - 40 

• . 
" 

. 
- FCT 8 

• • 

. 
40 - 

- 	. 
• 

,• 

The observed structures 
beyond FaTB cannot be 
represented by an FCT 
structure 

. 

In-Cd 
, 

: FCT a • 
\ 

. 
0 - 

. 

, 

FCC remains a strong pos- 	• • 
sibility but never becomes 
dominant. 

In-Hg' : , 	. FCTa - 0 - .36 
. 

FCC-: 

. 

 • 36 - 

• 

• 

The.FCC.becomes slightly 	. 
degenerate being strictly 
resolvable into two slightly 
tetragonal structures 	' ' 

, 

In-Bi - ,FCTa 

FCT 8 • 

. 0 - 8 

8 - 
. 

No FCT i3 structure is, in 
fact, observed up to 
10 at.% Bi. 

In-T3. 
• 

FCT a . 0 - 

• 

The FCC structure fails to 
manifest itself. 

.... 	........ 



within + 0.25 of unity, 

and FCT (c/a "'0.9) are 

being FCT, which makes 

pure indium. A fouith 

the three structures FCC, FCTa (c/a-1.1) 

indicated, the most stable of these . 

good sense of the observed structure of 

possible structure is FCTy (c/a "'1.25) 

whilst the BCC structure (FCT, c/a = 0.71), which is predominant 

when only electrostatic energy is concerned, vanishes when the 

band structure term for indium is added. The BCC structure is 

not, in fact, observed in any of the lower composition alloys. 

Simple models are considered to obtain an average phonon frequency 

but these lead to insignificant variations in thermal energy 

with tetragonal distortion. The tendency towards increasing 

distortion with decreasing temperature is used to propose a 

model thermal energy well centred on FCC. This is used qual-

itatively, in particular to explain why the FCTy structure might , 

not be observed in the In-Pb system. It is considered that the 

FCTS structure might be a possibility for indium and that 

.-experiments might be devised to find it. 

In order to apply the pseudopotential method to various indium 

based alloys the theory of the electrostatic energy is extended 

to deal with systems of constituents with different valene. 

This appears to be the first time calculations on such systems 

have been performed and the results are summarized in Table (6.2). 

The success in making sense of the sequences of phases observed 

in the indium alloys is most encouraging. The failure of the 

model at higher concentrations in In-Pb and In-T1 is considered 

'to result from the non-applicability of the small-core approxima-

tion to these metals. 

10. It is observed, with interest, that a scaling down of the band, 

structure energy gives results very close to' experiment. 

11. No correlation between Tc and axial ratio or atomic volume,
'  

is obvious. No attempt is made to justify the trends in T 

from basic theory. In an attempt, however, to correlate these 



trends with the available band-structure data, the individual 

,points on the density-of-states histogram of Hughes and Shepherd 

(1969) are assumed to have statistical significance. 	Taking 

a rigid band-structure and the BCS equation for the transition 

temperature, values of Tc as a function of electron/atom ratio 

-are calculated. Comparison with observed values is favourable 

and, furthermore, the Hughes-Shepherd results appear to imply 

iscontinuities in the density of states in the regions of the 
- 	- 

observed phase boundaries. 

1- SUGGESTIONS FOR FURTHER WORK 

The $ phase in In-Sn requires further examination in order to:: 

;establish whether it has:the FOT$ structure. 

T measurements in the region of 10 at.% Cd in the In-Cd 

system, may reveal a dip as in the In-Hg system. . This would,  

make an interesting comparison with the Tc  values calculated 

from the Hughes-Shepherd density Of states. 

• The deteimination of Tc across the, In-Bi system may prove 

interesting and help to analyse the phase diagram. 

. Further experiments are needed to establish the limit of 

solubility of Bi and of Li'in In. 

• The pseudopotential calculations may be extended to other 

systems based on indium e.g. In-Ga, In-Mg. Calculations 

might also be performed on systems based on other simple 

metals in particular on Tl. 



253. 

. Indium should be subjected to high pressure or to low temperature 

cold-working in an attempt to obtain the possible FGT.& structure 

- predicted by the pseudopotential theory. 

The Allen-Cohen'theory for prediction of Tc -might be applied 

is:would require-rather a lot of programming. 
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. APPENDIX 1  

 

    

Centroid Programme  

         

Reads in 

  

+ k2  + 2,
2
)A 	for 	= 

centroid 

   

2 
	

and A = Apeakoi 

Reads in the intensity H(I) across the profile from low 26 

at intervals of step size SS (in 020) from a base angle TH2 (in 
o
26). 

Also reads in LJ as a1  /a2  doublet separation (in 
o20). 	Chooses 

one of two multiples of LJ and assigns LJ to the result. 

Draws a straight line from the first intensity readings to the 

last by computing its slope X. Then subtracts trapezium below 

this line. Looks for peak valuesTEX of the remaining intensity data 

• T(I) and computes the corresponding lattice parameter.AP. 

Computes the sum R = E i Ti  and the sum S = ETi  across the 

profile and produces a first centroid G = R/S. 	Selects a. point 

LJ to the left of G and a point LJ to the right of G and a new 

range of integration (summation) defined by these points. ' The process 

iterates until G is in the centre of the range of Integration. Repeats 

process for larger range using the second value of LJ. 
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Appendix 2 	Axial Divergence <2e> in °20 towards 1ow.26 for two sets of Soller slits A =0.05 



   

   

• 

  

EPS= 

TH=
TH: 

1.0,,EPS=„7.,..004649---TH=„1.15__EpS= 
TH=7,771-30-- EPS=: 	016929=11-4=1135 -- EPS=-'.-.'023590 

EP S 	 • _OS7326, 
TH=-1707-EFS='-''-.180645'-TH=71-75-EPS= 

GAMA 

TH= - 

77w-024423' 

- .0021b2 

•{107010 
	•02300-1.  

i 
1TH= 165. EPS= -.,)16555- TH= ;1.7.0 _EPS= __.r.. 0261 74 TH= 175- EPS= --.0549tH__ TH= _180....EPS= *,,34343E3 

1TH= 125,, EPS= __-.
'
._001

-
27

-
0_ TH -- _00 

- EPS= ._-,..,002093 _TH:. _135_ ,EPS=___r_8002985__TH=__140_ EPS= -.003995 ' 
i-T}-1= 105' EPS='-'--.-002152 :-TH=:-'110'EPS=---0-01193 --TH=---115-'EPS=-1---4000334---TH=.:--120'EPS=----000473., 
JI-S:r.:- 85 _EPS= .:. 009233 ___Tti_F:,,--90,:_0-S=.,--.•006;. 8G_TH_=_ __95__EPS= __,,004700 ._TH= 100,EPS= _8.003265H 
l'T H= 65 EPS= --i'46634 . t1-1=-,"-::7 	.--i 

,SAMA 

H= 	145 EPS= - - -.005199-:TH1-50. Ep s= -i.-006713 -TH=1.55--EPS=---.008745-TH=-160'EPS=---.011706 

- 60 . __ _____.: 	
------ 

- 7-,,- 	 . 	--- 	- 	 - -
__
- 	----  

______ ________ 	_. ___„_____,____- 	 
0T -EPs --,-;-0227-1-2ETH:-...----7-S --EP=- s ------,-,=0-}13.20021-i -- -77-130-EPs=-=-7-,- 01:3133 

'04'MA zi 

TN 4 
I TI-j=_,60 
,TH= 80 
IH=,100 

1--TH -- =. 120 
TH=-,140 
TH= 160 
111=180 

15 
EPS= .225058 __TM= 	 5 EPS= 

	

- 	- - 	- 
-EPS= .078475- TH=---- 45." EPS- 

	

_ EPS= 	033161_TH=_, 65. EPS=._ 
EPS= .014386 TH="--- 85 EPS= 
EPS= -__ • 0014.56 	,_105 EP_S= 

- EPS= -.011207 TH= 125 EPS= 
-.029120r _Tti=___145_ EPS: 

EPS= -.076333 TH= -1- 65 EPS= 
_EPS= *8665874  

•-0614137 
tu 27364_ 
010 95- 

. '4_ 8 035 963- 
.109449 

, .3S-_.EPS=  
P 	i'049343 -'TH=- '-'557-EPSz e040261- 

__0_EP,S= 
90 -EPS= 	0.07626---- TH=-95-EPS= - .004503 

irTH= -55 

TH= 95 
15 

i---T1-1= -135 

f- T11= 175 

TH=-7-'' 50 
TH= 70 

TH= '130 
_150 

. I-TWA" 176 

:30 
.- EPS=. 089751 ,Thr.;___40=___EPS=._ 

EPS= - 4 -034125 7H= --- 6-0 -EP5=-
1-.EPSF :•,013236 
- EPS= .004882- TH= 100 -EPS= 
EPS= 	• 00.1(.17- 	 EPSF_ 
EPS= -007810 T1t=-- '1.40-EPS= 

-- EPS.= -w*•021376 -TH= 160 _EPS= 

-EPS=„f_017743_-_,T0:7,---,157-EPS,FL 
EP5=-- -4005973.- -TH= 	EPS= 
EPS= -4001133 	 EPS.-- 

- EPS= 	002855 -TH= '135 EPS=- 
„EPS= '7ii3O_0_9_090_____TIit_7_155,,EPSF:_ 

EPSL-- -•.036927 ,--TH=1:,-175 EPS= 

EPS= --. 1471814:-TH= 	EPS=- 
45 
EPS= -.047936---- TH=,_.:-6TAP. 

075.942_ 
C~ 26-155 

7 ;003315 
'7.-002565* 
i.-8-010084 

004505 
4- 0 0 0 1 5 9.- 

-.- 079237 

145 	-..012R66 TH= 150 EPS= 
TH= 	 TH= 

--- 	 - - - 
--- 

TH= :7 60 -EPS- • 033161 -TN=-.= -1 65--EPS= 
Tt-i=-_---_89--EPS:-_-1010069-TI-1=,85_EPS 
TH= 100 	 =.003258

0306_ TH=__ ias__EPS= 
TH=-1.40-EPS=---•005377 TH= - 145 -EPS= 
TH= _160 _EPS=_- • 016062_H=_165 
TH= 	160 -EPS= = *.392731 TH= 

IH=,=_45.; 
TN= -765 ---ES=r-----:-=•'020964.:"TH=7-7,70----EPS=7-7---8-016-435 

105-EPs= 	-- 0013213'171H=:7110 EPS='--- -000379 
EPS=-,,!.8 0_041.4_5_:-TH.==-130,_,EP:S= _8005867- 

-;016449 

2 Soller slits 

A=0-05 

2 Sotler slits 

A =0.1- 



0 'EP-5=- 
_0 	 .00a.935. 

150-EPSi. 

	

_5,-,EPS_=_r•.Q..14239=T±ir.:_,-.17_0__-__ERSF- 	••no96_,1H= 
'180 -EPS= *• 473634'TH- 

Q 
H= 	 (foil 	 .4-0.o-15747' 	oT=EPs=4-7;-,;-0-61;397=i 	 =0.1 

,„. 	 

	

.:TH=.7_,i_f5_ __EPS  
 00_3_455_, 

.,_:tH=_1.55__EPS= .7.008255 	 TH=_._/65_EPS= 	 Tri=,_170_ EpS= TH= 17S EPS= -.043439 - TH= 180 EPS= *.535244 TH= 

_ 	 
GAMA = 15 - 

EPS=„._•1957.79_,:p.i._,_ 5 EPS=.__„__, 1-540.78,TH=_30___EPS=._.•131039_ TH=  35 _EPS= .112_15,  EPS= --.097266-111= 	5 EPS=-77-.-034-540-,Iti= 	EPS= 	 --EPS= :T-7;062372  EpS=,.052867_ TH= _65..gPS= '0444_50_7= 	0,_PS= h 	E 	 75_,EPS=_•0301:71, ‘ 	1 S011er slit'tH=- BoEp 	023926 TH=_ 65 -  EPS= *01808411i 	EPS= -01257 TH  
EPS=::-=-F.- 00:7-153 in  1_.T1.1=__100. „ _.EpS=_,,.0018b9__TH_=,,,105 EPS= .,_7.003416___TH=...110__EPS:7- 	 ..0143(ii 	reflected - beam  ;-TH= • 	EpS=' -.020241- 7TH= -1125 -EPS= -:=026S8 026S83:-TH:--130:EPS= -.033565   TH=-135'--EPS=.041,524!S= ,050818_jj=„1  =005 160.. EPS=  **4,1'25285 :TH=:I65 EPS7-1:---;-;1741'43'Z-TH=-,In170 EP5:=7'-ii:273469  -TH= 175 EPS -$576800' _ 	 

ift= 	5 -EpS=""-:-.,,:)25398-- 	 31 	 EPS='' ;016270' TH.= 	5 EpS=„._0135,43 _TH=. 	 _TH=__. 85 EPS-7_,.008945_._ ;=TFIL: 	5 ERS= 	005142 - TH=r 100' EPS=--z-z,-..003411 ,-TH= 7 105---EPS=-----,-001739 
:TH=:,115.- EPS= .7.001582___,„TH7-7120-.EPS=111_=7.003309-411.= 
TH= -135 = EpS=- -.009394-7H= 140- 	 •145 - EPS= ,015264-'---TH=T:15C-EPS= 1 TH=_— EpS= -.Q247.99 __T.H=______160__EP_S=---.7_.032'159 TH=,165 .  

	

tif= 3.75-EPS= 	 =TH="1:80 --  EPS= -41-.99.3370'71-1 ---------  	
ANA 	= . 45 	--- 

TH= 5 o_-_-EPS:.: =„. 01,7691_.i_TH= 	 _EPS= 
7 o EPS= 	,-011446 	- -7S EPS= 	.-009967 Ts1= i3 = Et 	----T,1108-44.1 ,L-TH=,:T--:85,-E,PS=:72----  .006909; 

=. 0.0 422,4__TF.i=„10.0.,EPS=____:_003a68„T.H=_,L05__EPS=__ .0.01_99.S: TH= -1.1,o-• FPS= -7.00-0973- TH= IS - -EPS= .-000026-ETH=7-4-20:=EPS= 	 .002060 • I.TH= _130 EPS= -•003202_II:1= 135,-EPS= ,7•0044.48___TH= 	 ,TH= 145 _EP 	..007618 TH.= 150- EPS= ---.009814 . Th= ---155 EPS= - 	012776 - -TH=. =ltd-EPS= H---.t.)17-11Z. -,TH=- -165=-EPS= -.0242471  
TH= 	17.0 • FPS= -._038469 Til= 175 EPS= -.081p67 _ TH= ..160_ EPS= *4,352169  TH= • • t 

2 Salter, slits 



Soller 

reflected beam 

A= 0.05 

_ 

	

85__EpS=__ ...0.05510 _TH=__90___EP_S,=_ .0_04621 ___TH=___95 _EPS= .0_0_3687_,_THF_ 100_ EP-S=_ 	0027_34 _ 	 _ - -------  , If1= 105 EPS= '0061-832±T 	 EPS=- -.000592.  'riTH= -125 EPS=_r_.0.01386 TH= .130 EPS= -.002220 TH= 135 EPS= -.003131- 
rITH= 145 EPS= -.005408 TH= 150 EPS= -.006(463 TH= 155 EPS= -,039f)43 TH= 160 EPS= -.012061. TH=1.70 __EPS=-7_,A 026_693„1.,H=_175______E_P_S__=___-•_0_5_566_2,_TH:=1„ 180 _.EPS= _#.221466  _ _ 	 __ in 

000467 	 EPS= • 

	

TH= :-120 - EPS= -- 6.000-850- TH= -125-.EPS=-7-.00.1520 ''TH= 130 EPS= :--g- 002220 TH= 1:35 EPS= 	002931 .  
TH=s-  160--EPS=-  -; 41.010353'1H=-165-:- EPS=--';-;-014•76-LTH=--j170- EPS=----.0'2227f3 - TH=  
TH=. ":95:EPS= -.000327-  TH= -1010-E

- -
S=  •-o 0 o e.)4):- TTH= 	 H=:Enif----FEPs= - • oa3u6' 

jTH 	135 EPS= .-.003754-TH= -  140EPS=---i'.-•004491 JH=T-1•45-•,--.EPS= 1-,.0051987-TH= --I5VEPS= -  -.006501 
!THF.„-155 .EPS=- -. 008136 TH= 60 --EP-_S=_=-7r4010=k.36, TH=, ,,165=_-_Ee S'.•=_ L-7.-• 0,14109 -TH=.-_-110„EPS= 702157.4 'TH=175 - EPS= -7.043496 TH= 180 --EP5='*-.2704,13Jil= 

GAMA = 15 - 
1•415569-7 TH=--25 "EPS= 

045912,7H= 	EPs=_ 
• 014384 'TH= 65 'EPS= 

,I00,5545: TH= ..85_.EPS= 

- 	_ 	__.  TH=.  20--EPS= 	 .313395-- TH= 30 EPS= -- ---.131-r.!39 TH= 	-EPS= TH=._ _40.. EPS= 	 .032094=TH=---50_-EPS=___,P2779 Pi= 	5 EPS=_ :"Iti= 66 EPS= 	 oi1444 -- TH=-7'70:- EPs= --:- .009i16 TH=' 	EPS.= • 

	

_ ._ 	„_„, . , _ . „__., 	_ 

-1'ff-1  - BO--EPS= 	 ..9_0_4082,__TH=____90_ EPS=„._002743___TH= _95_ El.).S=„., i -TH= - 100 - EPS= -.•000258-TH= 105-  EPS= --.000962 !- TH7--  110-  EPS= - --.002R12 : TH= -1-15 -'EPS=. .1 TH=-A2n .EPS= -.004965_TH=_„125__EPS= 7.0 06573,__TH=._130__EPS=___7_!:,„908442_ TH7=,._135 EPS=_ 
IITH= ,-140-EPS= --, .01-3545T-TH=-145.-E:PS=--4-01732R-L-TH==f1.50 -- EPS=-.-0?2675--: TH=-1:55-  -155--- EPS= 
TH= _160 EP.S=.---•044604=TH=---165.-_-_EPSF_„7-10_71327--THF-1-7-0--EPS=---r•1359.$2-TH=-.,.17_5_,EPSF, 

_35_ EpS= 
TH= • 55 EPS= 

LIN= =75 EPS= 
TH= 95 EPS= 
TH= 115-EPS= - 	- 

HIM= 135 EPS=-
TH= ,155 EPS= .- 
TH= 175 EPS= 

OA MA 	-30 	 • 	 _ 
-TH= 45_ 

031522 - r•Ttizt -- 	 022321--  TH= 
.009967_1' 	 o07617, 
4 • 003343 -  TH=-100 - EPS= 	002182-1'H= - 105 

(),02114 25 - - 	
-= 	007 
	 - :.-41- 006-070 TH-=;---140"EP 

7.0177308 „TH:F,,16_0_ EPS= r.023R61_1:0,=_ 65 
.13i36-54 - TH= q 8 r1=-- EPS= *-• 9682:87'----TH---- - 

_ 	006082___T_H=„90, EPS= 
EPS= -- ;001093- --TH= -11-0- --:EPS=F 
EPS= __-.0032.84___T_Iii=_130.,„EpS=_ 

Ef_1_574 _ 	 ERs.  

Sol ler slit 

in incident beam 

,A=0.05 

• 

_ 

071961 

-.010690 
:;:_ sfi3(1371:5098136 

-=•_01+ 8260! 
:.]:0003426;26., 

000037 
rik_0045301 

013078; 
.059803! 



EPS=.1"-:-:,;011543:7-TH=7"; -=-7780-  - EPS=- J.009861 -  

.:-TH.,7.:„.-.4.3.0,EPSFF---t_, 00269_3 	 PS .7, __17,0064.971.: 

-EPS=  

is 	:6 EPS 	 -.-27852CCETH= 770.37--EPS=1=7-Tir0-685447-111=--=----,--,==-75-=',EPS=--:-7--1.-6367171 	H- 	10-" EPS= 
_TH.= 85- EPS= -010406 ..TH= 	 .EF):Sr5 	0 4,141_1.1-1-7_,_LOD 	 a 03100 TH= 105 EPS= •001995 -  TH= 110 EPS= .001026 TH= 115 EPS= .000186 TH= 120 EPS= -.000592 
1H,T=._125 	s;-• 	, 0_0_1 	11=_13.07ERS.7-1_2! 

	

--EPS=" 	 4=011440.1 ,T 	165. 	 025.792._T _115_ 	,05.458 __T_Ha_180_...EPS 2k._220194., 
-75 

1H= 	 --- 001033-'--TH= :=125 --EPS= -1°710-01720 TH=-43-6:=4,PS-7=-"-----;;-00-240-47THr. 35.1--Ep szt 
TH= 	 TH=_.145__EPS= 
TH=-'16n" EPS= -N4.010232 1'H=--A -65-"EPS= -'•.-.014109=7TH=-- 170- :EPS= 	 - 175- EPS= 
6 A MA 

95EPS= •"•007-7670---'TH''71.-00 	 7-.- 0034-1- 6-=---TH=1-10.rirEps= 
TH= 115_ EPS=

:  0
. 003151 	 EPS= 	0 0 330 5 ..__TH=:,1 2 E PS 	0 0 35 	1_3 0 : 4 H=---139.EP5=...004448 TH= 140-EPS=-74005074 TH=A45-E0S=•-,005185TH.-1150ERS=-----.00-6953 

EPS_= .L0.21698: TH= 175 EPS= - '..043557 - TH= 18x -PEPS=- - #.270413 .-TH- 

Axial Divergence Err o r<2E> in °29 towards low 29 
	

Soifer slits 

Soller slit 

in incident beam 

A =0.05 

Gicr 	1 
	

• 

2"11! = 	65 •ZI:DS • 0.0511.,̀ 21 2T4' a 	7.0" 2EPS c: 0.042856 2T H r. 	75 

004396  2TH a 105 Zrpti 
14.0, . ?liPS 
1 (Jo) 21;1} S-` 	0476(z t. -frit; 

4!;_.21-in 
2UPZ 

2EPS 

'" 214,S n 2.0(48i:) 2TV n Z5 aEPS 	0.607186 2TH = 30 2EPS = 0. 317931 2TH = 35 
u.11 0371 2TH = 50 2EPS q 0.093039 2TH 'm 55 

145 i',CPS 
;!EpS 

= 0.021564 2TH. r. .. 90 .2EPS tu 0.015591. 2TH r. 95 
▪ ^-.001044 2TH z.• 110" 2E1-'5 = ...-006.520 2TH a 115 
• .....,C2 4268_2TH...=130_2, PS,mt .. 031114.2.TH = 135 
= -.058:;09 2TH .1-150 2EPS = ..07168? 2TH = 155 
.74 - •156"64 2TH =- 1 70 2 ;:,5 	„2435” 2TH =175, 

• 

2EPS F.- 0,207449 
2EPS a 0. 075948 
2EPS a 0.0349'36 
2EPS 0„:09908 
2E P S 	-.)12134 	-
2EPS F 
ZEDS a -.;89572: 
2rPs - -.540693 

2TH =29 
	

2EPS=<-2E> 



J.GAMA 

= 4,91 1.( 1  
12TH m 	UPS = 0.0401› 

IRTH 	2EPS = 0.0068:):j 
IR.TIL-z.L11 4_2EP.2 m .7-00.06( 
2TH m 1:):$ 2EPS = 
irrH_F 	;=E_PS = -.0433r5  
IRTH z 17 2EPS F -.1n6Y(  

2TH m:.._40 REP5_ 	.242466_2TA_m_45_2EPS,..z_0.1165.71 
2Th m 60 REPS = 0.036005 2TH m. 65 2EPS z 0,027790 

2Th = 100 REPS z 0,.004896 2TH m 105 2EPS 	0.003058 
?Th. = 120_1REP.s.rm_r.,002250.12TH_A•125 2EPS....A,.;..004114 
2Th m 140 REPS m -.010935 2TH m 145 2EPS m- ,.014047 
2Th = 160 REps.g.r,0153t 2TH _q 1_65_2Eps_m__,..„044683 
2Th P 180 2EPS 	*.r•:;875.289104 2TH m. 

2T11 = 70 2EPS m 0.e220.14 
214._=_,90 2EPS._=,..0.A9001. 
2TH m 110 2EPS m 0.001286 . 

2EPS_m_r,S04121 7 
2TH m 150 2EPS m -.018003 
2T11.. 

I.GAMA-m-4. _ 

1 

	 • 	.... 	 . 

1 
1 

2tft_m___AcI_ZEPs m 0J196 0 _211_!_m___55_1EP.fi_g_.P,13.4719_2TH_A___(5.0_2EpS 

RTH = 7V ?EPS m 0.04460-2T11  m 75 REPS m 0..017680 2TH m 80 2EPS 
REP5._= ki.:00560_2TH_m_100 2EPS_ F_ 

eTH m 11 1: 2EPS ,^ 0.0019(;0  2T11 n 115 4EPS a 0.000779 2TH a 120 2EPS m 
RT.1-4, 
iRTH'm 	?EN; g .-.0093e4 2TI1= 155 	= -.012,303.  2TH = 160 2EPS = 

RTh_p_.1 -0;.2EPt;_p_r,0,5L42Tft_m_175....2EPS. m. rr.082457 .2TH m 180..2EPS,m 

4 - 

0.962686_2TH_m.....65_2ERW.03.09.55. 

0.013222 2TH = 85 2EPS g 0.010115'. 
.0.004434.2TH.= 105_2EPS_a_M03108 
”.000323 2TH m 125 2FPS m -.001439. 
?...005363..279 m 145 2EPS_m_r...007114 
..,016672 2TH m 165 2EPS = -.?123896 
1k-2937.649656 2TH m 

WA m 

2EPS = -0,2,/r1 2Th z. 70 2EPS m 0,076520 2TH m 75 2EPS z 0.034986 2TH m 80 2EPS m 0,020154 

2EPS...z..0..01304.21h. m.  __90 2EPS...=,.0,009001.. 	2EPS 	0,006385.2T1( 	_0„-0)4530 

2TH p 102Cps m 	m 110 ?CPS 4 0.,001943 2TH m 115 2EPS z 0.00030 2TH m 120 2rps' .T.0000.00 

.?TH. 	2EPS 	 21'H _m._135 2EPS.m_r.002785_274,= 14n UPS.: -..003873. 	- 

-21•H = 10 ?EPS m -.005'06  2Th m 150 ;EP r:4,-.006751 2TH m 135 2EPS A ”.003877 2TH m 160 2EPS 	-.'-)11958 

(45-2EPS 	.0169 	.2TH m.-170- 	2Eps_ m,„o56659 2114 . = . 18x,1  .2Eps_.= 

Ziff = 
2711_F__211P.s 

	

2111 = 	REps 
R1H_z_1,4 ?EP:: 

	

m 	2EPG 

(iAtIA g 90. 

r.-01.5C20,  2Th m 35 ilEPS. = 0,05001 219 a 90 2EPS a 0.015591-2TH = 95 2EPS p 0. 08563' 

'"A.
.
01):3111  rill a. 11 )5_EPS',,p_.9,0_03.058 2•14_m_ 	_ 	_ _0. 1102PSm0.01654_21H,.= 115 2EPS_p.O.N)0580 

m -.0(n:W.5 2T11 m 125 2EPS m -',.001145 2TH m 130 2EPS m .m4.001949 2TH m 135 2EPS m ”.002735 
z:rp004783 	150_2EPS z..m.006116.2TH. = .155 2EPS_m_r_.f.)07842 

m 	, Th-m 165 ZEPS m --04546 2TH m  170 2EPS a ...022639 2TH m 175 2EPS  -m  ".“06671  

    

     

n V t.) 2EPS 
.2TH 	2E1'.; 
2TH = 1 a 	2t--P'S 

21M = 10 i!Fn 

-.00040  ?Th =100 Rrps g -.000637-2TH = 105 2EPS 
2T1'. ..=_120'AlEPt; 1 "..002250.:27H_=.125_2EPS 

".0'.;')AV" 21h n 140 ;;Eps m ...004645 2TH = 145 2EPS 
- 
	

=_-.,010709.2TH m_145_2EpS 
F1( _45,.0 	m 	;:Eps 	*-1468.826777 219 m 

No. Solter slits 

a ...001044-  2TH = 110 2EPS 
m...002729 .2TH = 13o 2EPS. 
• ...005566 2TH.m 150 2FPS 
▪ .,014546 .2TH = 170 .2Eps 

.001419 

7.022104i 

A 



FUNCTION FOR GAMMA=90 

S-B 	Extrapolation Function for Absorption when pt-} co 

1 + -cos 20 

sin y +(sin 28 	- y) 
.-. . 	. 	. 

• 
--- 	• •:-.. 	, 

op 	FUNCTION FOR 	oAMmA=90 ,,,"6..... 
,.- 

9 0.0.• 0.1 	0.2 	- 0.3 ' 0.4 	--'0.5 	-0.6 0.7- - -0.8 	--- 0.9' 

,50 .704 .699 	.694 	.689 - .684 	.680 	.675 .670 	.665 	.660 
51 .656 .651 	.646 	;642 .637 	.633 	.628 .624 	.619 	.615 

-".., '52 .610 -.606 	602 	.597 .593 	.584 	.585 .580 	•576 	- .572 
53 • .56A .564 	.560 	.556 .55? 	.548 	.544 .540 	.536 	.53? 

-. .54 .528 .524 	.520 	.516 .513' 	.509 	.505 .561 . .498 '.494 

55. 4490 '.487 	.483' 	.479 .476 	.472 	.469 .465 	.462- -.458 - 
i 56 .455 .452 	-.448 	.445 .441 	.438 	.435 ,431 	.428 	.425 
..,,,,,' 57 -.422 .419 	'.415 	.412 A .409: 	.406 - .403 .400 -.397-  .394 

58 .390 .387 	.384 	.381 .378 	.376 	.373 .370 	.367 	.364 
:':“ '59 c3,61. .358 	4355, 	.353 .350' 	.347 	.344 -.341 	.339 - .336 - 
1 

60 .333 .331 	.328 	.325 .323 	.320 	.318 .315 	-.312 	- 310 
61 .307 ,305 	.302 	.300 .297 	.295 	.292 .290 	.288 	,285 

.-...:., .62 41.0_,280 .278 	.276 .273 	.271 	.269 R266 	•264 	4262 - - 
63 .260 .257 	.255 	.253 .251 	.249 	.246 .244 	.242 	.240 
64 .238 120.234 .232 .230 	.228 	.225 .223 	.221 	.219 

65 A217 .215 	.214 	.212 .210 	.209 	.206 .204 	.202 	.200 
66 .198 .196 	.195 	.193 .191 	.189 	.187 .195 	.184 	.182, 

---7,  6/ ..1_8_0_ . .178 	.137 	.175 .173 	.172 	.170 .168 	.167 	.165 
i 69 .163 ,162 	.160 	.158 ,157 	.155 	.154 152 	.150 	.149 

69 .147 .146 	.144 	.143 .141 	.140 	- .138 .137 	.135 	.134 

--. 70 .132 -TIM 	.130 	.128 .127 	.125 	.124 .123 	.121 	- .120 
71 .119 .117 	.116 	.115 .113 	.112 	.111 .109 	.108 	.107 

- -72_, .106 .104 	.103__410? .101 	.095 	.098 .097 	.096 	.095 
1 73 .093 .092 	.091 	.090 .089 	.088 	._107 .096 	.084 	.083 - 
_-__4_4_ --.182-.181 :090 	.079 .078 	.077 '076 .075 	.074 	.073 

1 
' -_..z. 75 - - 	.072 .071 	.070 	.069 .068 	.067 	.066 .065 - -.064 	.063 

- 76 .062 4_060 	.059 _4_061 .059 	.058 	.057 .056 	.055 	.054 ' 
77-747 .051 _.453,_4052..952  .050 	.049 	.048 .048 	.047 	.046 
1 78 .045 	0044 	.044 	.043 .042 	.041 	.041 .040 	.039 	.038 
- _75 .036 	.016 __-D311._,113'7 1 	I 	. 	1 I 	3 	e 	' _1 

0.0 0.1 0.2 0.1 n.4 0.5 -  A.A 0.7 0.8 0.9 

.-...- 80 .031 .030 .030 .029 .029 .028 .027 021 .026 .026 • 

1 81 .025 .025 .024 .023 .023 .022 .022 .021 .021 .020 
.-.• 82 :020 ,019 .n19 .018 .018 .017 .017 .016 .016 - .GI& 
1 83 .015 .015 .014 .014 .013 .013 .013 .0j2 012 .011 
:-84 011 .011 ".oto .oin .010 .009 .099 .0n9 .008 .008 

• 85 .008 -.007 .007 .007 .006 .006 .006 .006 .005 .005 
86 .005 .005 .004 .004 .004 .004 .094 .003 .n03 .001 
117 On3 .003 .nn2 .002,.002 .00, .002 .0n2 .001 .001 
88 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 
09 .000 .000 .000 .000 .000' .000 .000 .000 .000 .000 

„446,-..60 	FUNCTION FOR GAMm4s75  
- 	, 

0.0. -0.. 	- Ga2 	0.1 0.4 	0.5 	0.6 02.7 	0.8 	0.9 

40 1.114 1.108 	1.1.01 	1.094 1.087 1.080 	1.074 1.067 	1,060 	1.054 
41 1,047 1.041 	1.034 	1.n2n 1.622 1.615 	1.009 1.003_ 	.996 	.99n 
42 ''.984 .946 .978 	.972 .954 	.948 ,960 .942 	.936 	931 
43 .025 .919 	.913 	.908 .902 	.894 	$891 .885 	.880 	,074 
44 .869 .864 	-.858. 	.851 .R49 	.842 	.837 .832 	.927 - .822 

,45 .816 .811 	,;806 	.801 .796 	.791 	.786 .782 	.777 =.772 
46 .767 .762 	.757 	..753 .748 	.743 	.739 .714 	.729 	.725, 
-47 '.720 .716 	.711 	.107 .698 	.694 e_702 .689 	:685 	.68n 
48 .676 .672 	.668 	.663 .659 	.655 	.651 .647 	.643 	.619 

:49 -.618 '.630 -.626 	.622_ .619 	.615 	-.611 .607- 	.603 	.599 
1 

-S0 .6-595 .591- 	.588 	.584 .580 	.576 	.573 .569 	.565 	.561 
51 .558 .554 	.551 	.547 .543 	A540 	-.536 .533 	.529 	.526 
.5? .523 -.519 	.516 	.512 .509 	.506- 	.502 .499 	.496' 	.492 
53 .489 .483 	.479 _4486 .476 	.473 	.470 .467 	.464 	.461 
54 -.487 .454 	.451 	.448 .445 	.442 	.439 .416 	.433 	.410 

55 .427 .424 	.422 	.419 .416 	.413 	.410 .407 	.4-04 	- .402 
56 .399 .396 	.393 	.391 .388 	.395 	.383 .390 	.377 	.375 
57 $372 .169 • '367 	.164 -361 	.159 	156 154 	.351 	.349 
58 .3 

.320 	.317 	.315 
3--4A---.-341:*339-.a36----&33A--.-3-32-.329---1.-327----.22.4------: 

.310 	108 .111 .30_6 	.703 	.301 59 -322 

-- 60 .299 .297 	.294 	.292 .290 	.288 	.286 .253 	.251 	.279 
61 .277 .275 	.273 	.971 .269 	.266 	.264 .262 	.2611, 	.258 

-62 .256 .254 	'.252 	.250_ .248 	.746 	.244 .242 	".240. 	.218 
63 _236.--_,235 .213 	.211 .229 	.227 	.225 .223 	.221 	.22n 
-64 - &PIA .216 	.214 	.212 R211 	.209 	.207 .205 	-.204 -:202. ' 

i 



,at-, eo 	FUNCTION FOR otiMm81360' 

8 0.0 0.1 	0.2 	0.3 4.4 	0115 	0.6 0.7 	0'.8 '̀0.9"   

45 .732 028 	.724"-".720 .716 	.711 '•707 .703' 	.699 	*695 
46 .91 .687 	.683 	.680 .676 	.672 	.668 .664 	.660 	.656 

- 47 651 .649 	645 	641 .638 	.634"".630 .627 	.621 	.620 - 
48 _616 .612 	.609 	.605 .598 	-585 .60.2 .581 	5" 	-594  
49 RAt 578 	574 	571 .567 	..564 	:561 . 50- 	.554 	.451 

.50 .548 .544 	.541 	, .538 .535 	.532 	.528 .525 	.522 	.519 
51 516  .51 3 	• 	In 	507 514 	501 	.498 .494 	.497 	.409 
52 406 .483 ,  ".450 	.477 .474 	.471 	468 .465 	.463 	460 
51 457 .454 	.451 	.449 446 	.443 	.440 *410 	.435 	.412 
.54 429 .427 	.424 	.421 419 	4 6 	414 411 	.408 	.406  

.55 .403 .401 	.398 	.396 .393 	.390 	.388 .385 	.383 	..301 
56 17.9 .376 	.173 	.171 .168 	.366 	.164 .361 	.159 	157 
-57 154 .357 	.350 	.147 .345 	.343 	...340 ,330 	.316 	.334 
58 111  .329 	.127 	325 122 	.320 	.118 .316 	.114 	012 
59 110 .1n7 	.105 	.101 1.101 	.299 	.797 785 	291 	Pql - 

.`60 .289 .287 	.285 	.283 .281 	.278 	.277 .275 	.273 	.271 
6 .269  067 	.265 	063 05.4 	,257 .261 .255 	.254' 	.257 
62 .750 .248 	2_46 	.744 .241 	.719 .242 037 	.235 	.213 
61 232 .210 	.228 	.228 .725 	,273 	.721 .219 	.2" 	016 
64 014 213 	.211 	.209  -206 	.204 .208 .33 	.2--,.194   

65 .198 .196 	.195 	.193 .191 	.190 	.188 .187 	.185 	184 
66 .182 .178 .181 	.179 .175 	.173 .176 .177 	.170 	.169 

'67 167  166 	-164 	161 16-0 	15A .161 157 	4156 	154  
6P 153 -1.51 	.150 	._1 49  _147 	.146 	.145 .141 	.142 	.141 
0 .139  1-35 •138 	•237  134 	113 	-131 •130 	.1?9 	-128 

70 126 .125 	.124 	.12 .121 	.170 	.119 .118 	.117 	.115 
i 	i: 	1 I. 	IR 	-104 

-101  -100 .112 	e004 ..097 .098 	.096 405 	094 	.093 
111 ,. 1191 	.090. 	069 .087 	0085 .056 .084 	.083 	.0R2 

081 .000 	.079 	.878 76 	07 	076 075 	.074 	.073 

072 .071 	.070 	.069 .068 ..067 	.066 .065 	.065 	.064 
.063 .062 	.06/ 	.060 .059 	.058 	.058 .057 - .056 	055 
_054 .00 	.452 .053 ORO 	.050  .051 .06.9 	.840 	.047  

Q46 	.045, 	.044 .043 	.041 	.042 ■041 	.041 	'.040 
I 	, 	8___4437  - -36 	.015 .036 A15 	.014- .033 

.033 .032 	.031 	.031 .030 	*029 	.029 .028 	.028 	.027 
021 .02.6 	.025 	.025 .024 	.024 	.023 .093 	.022 	.022 
_071 821 	020 .020 01Q 	.018 	.010 .o1:8 	-017 	.017  
01- -.815 ...01.6_015 .014 	.014 	.014  .033 	.013 	012 

-- 1112 -812 - 	.811 	-011 .810 	.olo .011 .004 	=069 - .009 
I 

FUNCTION FOR 0AmmA=75 

'0 11.0,  0.1 	, 	0.2 :"0.3 n.4 	0.5 -  A.6 0.7.-; 	0.8' 	.0.9 

- "65--  sa-0 .198 	.197 	.195 .193 	.192 	.190 .188 	.187 	.185 
66 .183 .182 	.180 	.178 .177 	.175 ' .174 .172 	.171 	.169 

-67 .167 - .166 	.164 	.163 -.161 	.160 '4158 .157 - 	1155 	.154 
68 .152 .151 	.150 	.148 .147 	.145 	.144 .142. 	.141 	.140 
69 -.138 .137- 	.136"'.134 .133- 	.13? 	.130 .129'• .128' 	.126 

-10 4125 -.124 	.122 	.121 .120- 	,119 •.117 .116 -.115 '.214 
71 .112 .111 	.110 	.109 .108 	.106 	.105 .1n4 	.103 	.102 
72 .101 .099 ',098 	.097 .096 	.095 	.094 ".093 	.092' .091 
73 .089 .088 	.097 	.086 .085 	.084 	.083 .082 	.081 	'.080 

'44 -.079 .078 	.077 	.076 .075 	.074 	.073 .072' 	.071 	-.070 

• 75  4059  .068 	.067 	.067 .066 	.065 	.064 ,063 	.062 	.061 
76 .060 .059 	.059 	.058 .057 	.056 	.055 .054 	.054 	.053 

..- 77 4052 .051 	.050 	‘.050 .049 	.048 	.047 -.047 	.046 	.045 
78 .044 .044 	.043 	.042 .041 	.041 	.040 .019 	.039 	.038 
79 -4037 j037 	'.036 	.035 .035, 	.034".033 .033 	- .032 	.011 . 

80 .031' .030 	,030 	.029 .028 	.028 	.027 .027- 	.026 	.025 
81 .025 .024 	.024 	.023 .023' 	.022 	.022 '.021 	.021 	.020 
82 .020 .019 	-.019 	.018 .018 -.017 '.017 .016 	.016 	-.016 
83 .015 .015 	.014 	.014 .013 	.013 _013 .012 	.012 	.011 
-84 .011 .011 	.010 	.010 .010 	-.009 	.009 -.009 	-.008 	.008 

„--, 415 .008 .007 - .007 	.007 .007 	.006 .006 .006 	.005 	.005 
86 .005 .005 	.004 	.004 .004 	.084 	.004 .003 	.003 	.003 
0 - .003 .003 - 	.002 	.0n2 .002 	'.002 - 4_002 ..0112 	.002 	.001 
88-  .001 .001 	.001 	.001 .001 	.041 	.001 .001 	.000 	.00n 
89 .000 .000 	-000 	-.ono .00o 	.ono 	'.000 -.000. 	.000 	.Ono 

..„.t-,, -a. 	FUNCTION FOR 	olammA=50 ... 	, 	. 	...., 	r .... 	. 

' 	8 0.0 0.1 	0,2 	0.3 0.4 	0.5 	'0.6 0.7 	0.8 	'0.9 

,35 1.291 1,283 1.276 	1.269 1.261 	1.254 1.247 1.240 	1.233 	1.226 
36 1.219 1.212 	1.205 	1,198 1.191 	1.185 	1.178 1.171 	1.165 	1.158 
37 1.151 1.145 	1.138 	1.132 1.125 	1.119 	1.113 1.146 	1.100 	1.094 
38 1.988 1,082 1.076 	1.069 1.063 	1.057 	1.051 1,046 	1.040 	1.034 
19 1.028 1.022 1.016 	1.011 1.005 	.999 	.994 .988 	.983 	.977 
40 .977 .966 	.961 	.955 .950 	.944 	.939 .934 	.929 	•923 
41 .918 .913 	.908 	003 .898 	.893 	.888 .883 	.878 	.873 
42 .868 .863 	.858853 .848 	.844 	.839 .834 	.829 	.8_25_ 
43 .820 .815 	.811 	:606 .802 	.797 	.793 .788 	.784 	.779 

-- 44 --:-775 -.771 . .766 -.162 - 758 - .751 -.749 .745' 	.740 	.716 



-40 on 	FUNCTION FOR GAMmA=60 
• _., _ 	• 	• , 

1 • 
=8 .0.0 0.1 - 0.2 0.3 -0.4 0.5 0.6' 0.7 	- 0.8 - - 0.9 

6b .008 .008 .008 .00' .007. .007 .001 .006_ .006 .006 
I 86 .005 .005 .005. .005 .004 .004 .004 .004 .003 .003 

87 .003 .003 .003 .003 .002 .002 .002 .002 .002 -.002 
88 .,001 .001 .001 .001 .001 .001 .001 .001 .001 .000 

-89 .000 .000 .000 .000 .000 -.000 .000 .000 - .000 .000 
I 

- 	' 	- 

_ .,,4,6: -FuNCTION FOR GAMMA=45 

- . 
- -Al 0.0 0.1 - -` 0.2 	0.3 00 	0.5 	0.6 '097 - 0.8 	'''0•9 

25 2.068 2.056 2.044 2.032 2.019 2.007 	1.996 1.984 1.972 1.960 
26 1.949 1.938 1.926 	1.915 1.904 	1.893 	1.882 1.871 1.860 1,849 

I--,--- 27 _1.839 
1.736 

1.828 1.818 	1.8n7 1.797 1.787 1076 1.766 1.756 1.746 
28 1.727 1.717 	1.7n7 1.698 	1.688 	1.679 1.669 1.660 1.651 

•-:-,--- -29 1.641 1.632 1.623.1,614 1.605.1.546 	1.588 1,579 1.570 1.561 
' 

10 1.553 1.544 1.536 	1.528 1.519 	1.511'1.503 1.494 1.486 1.478 
' 31 1.470 1.462 1.454 	1.446 1,439 	1.431 	1.423 1.416 1.408 1.400 
-32 1.393 1.385 1,378 	1.371 1.363 1.356 1.349 1.342 1.334 1.327 
33 1.320 1.313 1.306 	1.299 1.293 	1.286 	1.279 1.272 1.265 1.259 

-,. 14 1.252 1.246 1,239 1.232 1.226 1.221 1.213 1.207 1.200 1.194 
1 

1-:-- • . 35 1.188  1.182 1.176 	1.169 1-.163 	1.157 	1.151 1.145 1.139 1.133 
36 1.127 1.122 1.116 	1.110 1.104 	1.098 	1.093 1.087 1.081 1.076 
'17 1.070 1.065 1.059 	1.054 1.048 	1.043 	1.037 1.012 1.027 1.021 
38 1.016 1.011 1.006 	1.001 .995 	,940 	.985 .980 .975 .970 
39 .965 .960 .955 	.950 .945 	.940' 	.936 .931 .926 .921 

-40 ..916 .912 .907 	.902 .898 	.893 	.888 .884 .879 .875 
41 .870 .866 .861 	.857 .853 	.848 	.844 .639 .835 .831 
42 .826 .822 .818 	.014 .810 	.805 	.801 .797 .793 .789 
43 .785 081 .777 	-.773 .769 	.765 	.761 .757 .753 .749 

-' 44 .745 .741- .73/ 	.733 .730 	.726 	.722 .718' .715.  .711 

.-- 45 .707 .703 .700 	.696 .692 	.689 	.685 .682 .678 ,674 
46 .671 .667 .664 	.660 .657 	.653 	.650 ,647 .643 .640 
47 .636 .633 .630 	.626 .623 	.620 	.616 .613 .610 .607 
48 .603 .600 .597 	.594 .591 	.587 	.584 .581 .578 .575 
-44 .572 .569 .566 	.562 .559 	.556 	.553 .550 .547 .544 

i  
1 

,b0 .541 .538 .536 	.533 .530 	.527 	.524 .521 .518 .515 
51 .512 .510 .517 	.504 .501 	.498 	.496 .493 .490 .487 
,52 485 .482 .479 	.477 .474 	.471 	.468 .466 .463 .461 
'53 .458 .455 .453 	.450 .448 	.445 	.442 .440 ,437 .435 

- 54 .432 .430 .427 	.425 .422 	•.420 	.418 .415 .413 .410 ' 

	,44,6-=c0 	FUNCTION FOR GAMMA=45 

: 8 '-'4.0 0.1 	'-0.2 	0.3 6.4' 0.5 	-11.6 0.7- 	0.8 0.9 

55 '008 .405 	:403 	.401 .398 .396 	.394 .3q1 	.389 - .387 
56 .384 .382 	.380 	.377 .375 .373 	.371 .368 	.366 .364 
-57 .362 .359 	.357 	.355 .353 .351 	.348 .346 	..344 .342 
58 .140 .338 	.116 	.313 .331 .329 	.327 .325 	.323 .321 

'-59 .119 .317 	:114 	:111 •.111 .309 	.107 .105 	.301 101 

-; .60 .299 .297':.245 	.293 .291 .289' .287 .285 	.283 .281 ' 
61 .280 .278 	.276 	.774 072 .270 .768 .267' 	.265 .761 
'67 :'241 .759 	.767 	4256 .754 .252 	.25n .26A 	-.247 '.265 
63 043 .241 	.240 	.218 .736 .235 	.233 .231 	.229 .028 
64 -.226 .274 	-.773 	4.271 .218 .218 	.716  .20 	.213 .211 

. 	- 
-65 .210 -.208 	.207 	.205 .203 .202 	.200 .199 	.197 .196 
66 .144 .192 	.191 	.189 .188 .186 	.185 .183 	.182 .1 80 
67 -079 .177 	.176 	.174 073 . -170 .172 .1 69 	-167 .166 
68 .164 ,163 	.167 	.160 .159  -157  .186  .155 	.153 .1S7 

- 64 051 .149 	.148 	.147 .145 -.1A4 	.141 .141 	.140 .134 

- 70 -.137 .136 	.135 	.134 .132 .131` -:130 .128 	.127 :126 
71 .125 .123 	.122 	.121 PO -119 	.117 .11_6 	.115 014 
72  '.:113  10 	- 	116 	-104 _108 107 .116 .10 	- 1 01  .102 
73 101 .100 	.099 	.098 .097 086 	.095 .084 	.n92 001_ 

. .74 . .090 .084 	'088 	.087 .086 .085 .084 .083 	.082 -.081 

75' '080 .079 	:078 	.077 .076 '0075 	.074 .073 	.072 - .071 
76 .070 .069 	.068 	.848 067 .066 	.065 .044 	.063 .062 

' 77 .061 -.059 	.059 .0.64 .058 ' .057 	.056 - 054 .055 .054  
L 18 .053 .052 	.051 	.050 .049 -049 .048  047 	.046 .0.46 

79 .:065 .044 	.-041 - -042 .042 .041 	-040 .A40 	089 ' .034 

80 .037 :037 	.036 - .035 .035 .034 	.033 .033 	.032 .031 
81 „o31 .030 	.079 	.029 .028 077 	.027 .026 	.026 en25 
82 .074 ,824 	.023 	:023 .022 .022 	.021 021 	-00 0 .0 
83 .019  018-018 	-017 .017 .016  .016  016 	.015 .015 
84 '4(114 .014' 	-.n13 - 	.011 .n12 .012 .017 .011 	-011 .010 

85 .010 .010 	.009 	.009 '.008 .008 	.008 .007 	.007 .007 
86 ,086 .006 	.006 	.006 ,005 .0 5 	.005 .0n4 	.004 .004 
87  .004 .003 	-003 	-003 003 -001 -.002 .002 	.002 .002 
88 .002 .00 	.001 	.001 .001 .001 .001 .001.01 .001 
89 .000 .000 	.800 	.A00 000 .000_ - .000 .000' 	.000 .000 



FUNCTION FOR GAMMAn30.  

- 0.0 0.1 	- 	0.2 -0.3 064 	0.5 	0.6 0.7 . 	0.8 0.9 

.20 2.622 2.605 2.589 2.572 2.556 2.540 2.524 2.509 2.493 2.478 
21 2.462 2.447 2.432 2.417 2.403 2.388 2,374 2.360 2.345 2.331 

=-: .'22 '2117 2.304 2,290 2.276 2.263 2.250 2.236 2.223 2.210 2.198 
23 2.185 2.172 2.160 2.147 2,135 2.123 	2.111 2.099 2.087 2.075 

.'24 2.063 2,052 2,1040 2,029 2.017 2,006 	1.995 1,984 1,973 1.962 

_,:25 1.951 1.940 1,930 1.919 1.909 1.898 1.-888 1.878 1,867 1.857 
26 1.847 1.837 	1.827 1.818 1.808 	1.798 	1.789 1.779 1.770 1.760 

'27 1.751 1.742 1.733 1.724 1.715 1.706 1.697 1.688 1.679 1.670 
28 1,662 14653 1.644 1.616 1.6281.619 	1.611 1.6n3 1.594 1.586 

'-'29 :1..578 1.570 1.562 1.554 1.546 1.538 	1.531 1.523 1.515 1.508 

'40' 1.500 1•492 1.485 1.478 1.470 1,4631.456 1.448 1.441 1.434 
31 1.427 1.420 	1.413 1.4061.399 1.392 1.385 1.378 1.371 1.3(.:5 
.32 1.358 1051-1,345 1,338 1.332 	1.325 1.319 1.312 1.306 1.300 
33 1.293 1.287 	1.281 1.275 1.268 1.262 1.256 1.250 1.244 1.238 
14 1.232 1.226 1,220 1214 1.209.1,203 	1.197 1.191 1.186 1.180 

1.1-. -  ,'55  _1,174  1.169 	1.163 1.158 1.152 	1.147 	1.•141 1.136 1.130 1,125 
36 1,120 1.114 	1.109 1.104 1.099 	1.093 	1.088 1.083 1.078 1,073 

.-.-:-.- ,37 1.068 1.063 1.058 1,053 1.048 	1.043 	1.038 1.033 1.028 1.023 
' 38 -1.019 1.014 	1,009 1.004 .999 	.995 	.990 085 .981 .976 
,,,..., 3g ,972 .967 	.963 -.958 .954 	.949 	045 040 -.936 8931 . 	. 

40 .927 023 	.918 .914 -.910 	.905- 	.901 047 .893 .889 
41 .884 .880 	.876 .872 .868 	.864 	.860 .856 .852 .848 

5;'--% 42 -.844 .840 	.836 .832 .828 	.824 - .820 .816 .813 .809 
4  43 _.805 .801 	.797 .794 .790 	.786 	.782 .779 .775 .771 

A4 .768 .764 	.760 .757 .753 	.750 - .746 e743 .739 '.736 
i 

- -45 ,732 .729 	.725 .722 ,718 	.715 	.711 .708 .705 .701 
46 .698 .695 	.691 .658 .685 	.681 	.678 .675 .671 .668 

" 47 .665 .662 	.659. .655 .652 	.649. 	.646 .043 .640 .617 
48 633A6_30 .627 .624 .621 	.618 	.615 .612 009 .606 
49 ..603 .600 	.597 594 .591 	.588 	.586 .583 .580 .577 

.50  .574 .571 ..568 .565 .563 	.560 	.557 .554 '.551 .549 
51 .546 .543 	.540 .538 .535 	.512 	.530 .527 .524 .521 
5a_ -. 	.819 .516 	.513 .511 .508 	.506 • .503 :500 .498 .495 
53 .493 .490 	.488 ,485 .482 	.480 	.477 .475 .472 .470 

',54 '\. 	.467 .465 	,463 .460 .458 	.455 	.453 *450 *448 .446 

755 -,443 .441 	.438 .436 .434 	.431 	.429 .427 .424 .422 
56  .420 .417 	.415 .4,13 .410 	.408 	.406 .404 .401 ,399 
•57 .197 .395 ___093 .390 .388 	..306 	.384 .382 .379 .377 
58 .375 073 	.371 .369 .366 	.364 	.362 .360 .358 .356 
.59 , 	.354 .352 	.350 .348 .346 	.343 	.341 .339 .337 .335 - 

-- 	9 0.0 001 	0.2 0.3 0.4 0.5 .0.6 0.7 0.8 0.9 
60 .333 .331 	.329 .327 .325 .323 .321 ,.319 .317 .315 
61 .314 .312 	.310 .308 .306 .304 .302 .300 .298 .296 
62 ' 	.294 .292 	.291 .289 .287 .285 .283 .281 .279 .278 
63 .276 .274 	.272 .270 •.269 .267 .265 --.263 .261 .260 
64 .258 .256 	.254- .253 .251 .249 .247 .246 .244 .242 
:65 .241 .239 	.237 .235 .234 .232 .230 .229 .227 .225 
66 .224 .222 	.221 .219 .217 .216 .214 .212 .211 .209 
67 .208 .206 	.205 .203 .201 .200 .198 .197 .195 .194 
68 .192 .191 	.189 .187 .186 .184 .183 .181 .180 .178 
69 .177 .176 	.174 .173 .171 .170 .168 .167 .165 .164 

1 
,-, (0 .163 .161 	.160 .158 .157 .155 .154 .153 .151 .150 

71 .149 .147 	.146 .144 .143 .142 .140 .139 .138 .136 
72 .115 .134. 	.132 .131 .130 .129 .127 .126 .125 .123 
73 .122 .121 	.120 .118 .117 .116 .115 .114 .112- .111 
74 .110 .109 	.107 .106 .105 .104- .103 .102 .100 .099 

-75 .098 .097 	.096 .095 .094 .092 ,091 .090 .089 . 4088 
7,8  .087  .086 	.085 .084 .082 .084 .080 .079 .078 .077 
77 - 	e.076 .075 	.074 .073 .072 .071 .070 .069 .068- .067 
78 .066 .065 	.064 .063 .062 .061 .060 .059 .058 .057 

.. '79 .057 .056 	.085 .454 .053 .052 .051 .050 .049 ••048 • 

80 .048 .047-,.046 .045 .044 .043 .043 .0-42 .041 .040 
81 .039 .039 	.038 .037 .036 .015 .035 .034 .033 .012 
82 .032 .031 	.030 .030 .029 .028 .028 :021 .026 .026 
83 .025 .024 	.024 .073 .022 .077 .021 .070 .020 .019_ 
84 '.019 .018 	.018 .017 .016' .016 ..015 '.015 .014 .014 

as .013 .013 	.012. .0012 .011 on .010 .010 .010 .009 
86 .009 .008 	.008 .008 007 .007 .006 .006 .006 .005 
87 .0-05 .005 	.004 .004 .004 .004 .003 .003 .003 .003 
88 .002 .002 	.002 .002 .001 .001 -.001 .001 .001 .001 
.89 .001 .000 	.000 .000 .000 .000 .000 .000 -  .000 .000 



. _ . 
0 0.0. Oil 	0.2 :00-  0.4 	:0.5 	0.6 0.7 	0.8 	0.9 

"--lo '.5„606 5.b4(.5.489 5.432 5.376 5.322 5,468 5.415 b.163 5.112 -- 
11 5.062 5.013 4.965 4.918 4.871 4.825 4.781 4.736 4.693 4.650 

;Ii,11. .12 4.608 4.567 4.526 4.486 4.447 4.408 •4.370 4.332 4.295 4.259 
t 13 4.223 4.188 4.153 4.119 4.085 4.052 4.019 3.986 3,955 3.923 

14 3.892 3.862 3,832 3,802 3.7731,744 3.715 3.6871.659 3.632 

-15 1.605 3,578 ,3,552 3,526 3.500 3.475 3.450 3.425 3.401-3.377 
16 3.353 3.329 3.306 3.283 3.260 3.239 3.216 3.194 3.172 3.151 

;%-- -"17 3.1.30 3.109 3.088 3.068 3:048 3.028 3.008 2.988 2.969'2.950 
18 2.931 2.912 2.894 2,876 2.857 2.840 2.822 2.8n4 2.787 2.770 

1,-Ark -19 2.753 2.736 2.719 2.703 2.686 2.670 2:654 2.638 2.623 2.607 
1 

! 20 2,592 2.576 2,561 2.546 2.532 2.517 2.502 2.488 2•474 2.459 
21 2.445 2.432 2.418 2,484 2.391 2.377 2.364 2.381 	2.338 2.325 
:22 2.312 9.299 2.287 2_.274 2.262 2.250 2.238 2.225 2.214 2.202 
23 2,190 2.118 2.167 2.155 2.144 2.133 2.121 2.110 2,099 2.088 
'24 2.077 2.061 2.056 2.045 2.035 2.024 2.014 2.004 1.994 1.984 

• 1 
,1.5 1.974 1.964 1.954 1.944 1.934 1.925 1.915 1.905- 1.896 	1.887 

26 1.877 1.868 	1.859 1.850 1.841 1.832 	1.823 1.814 	1.805 -1.796 
27 1.788 1:779 1.171 1.7621.764 1.745- 1.731 1,729 	1.721 	1.712 

1 28 1.704 1.696 	1.688 1.680 1.672 1.665 1.657 1,649 	1.641 	1.634 
1,1.: _29 1.626 1,619 	1,611 1.604 1.596 1.589 1.582 1.574 1.567 1.560 

.10 1.553 1.546 	1.539 1,532 1.525 	1,518. 1.511 1.504 1.497 1,491 
1 31 1.484 1,47/ 1.471 1.464 1.458 	1.451 	1.445 1.438 	1.432.1.425 

42 1.419.  1.413 	1.407 1.400 1.394 	1,388 	1.382 1.376 	1.370 	1.364 
33 _1.358 1,352 1,346 1,340 1.334 	1.329 	1.323 1,317 	1.311 	1.306 

. 44 1.300 1.294. 	1.289 1.283 1.278 	1.272 	1.267 1.41 1.256 1.250 

• 15 4245 1.240 1.234 1.229 1.224 	1.219 	1.213 1.208 1.203 	1.198 
36 La93 1,188 	1.183 1.178 1.173 	1.169 	1.163 1.158 	1.153 	1.148 

:"-• 47 1.143 1.138 	1,133 1.129 1.124 	1.119 	1.114 1.110-1,105 	1.100 
38 1.096 1.091 	1,087 1.082 1.077 	1.073 	1.068 1.064 	1,059 	1.055 
39 1.051 1.046 1.042 1.037 1.033 1.029 	1.024 1.020 	1.016 	1.012 

40 1.007 1.003 	.999 .995 .991 	.986 	.982 .978 	.974 	.970 1 
41 .966 .962 	.958 .954 .950 	.946 	.942 .938 	.934 	.930 
42 .926 .922 	.919 .915 .911 	.907 	.903 .900 	..896 	.892 ' 
43 .888 .885 	.881 .877 .873 	.870 	.866 .863 	.859 	.855 
A4 .052 .848 	.845 .841 .837 	.834 	.830 .827 	.823 	:820 

WS ip0T.6-  •.813 	.810 .806 .803 	'.799 	.796 .793 	ogg 	.786 
46 .783 ,779 	.776 .773 .769 	.766 	,763 .760 	.756 	.753 
'47 .750 .747 	.744 .740 4737 	.714' 	.731 .728 	.125 	.721 
48 .718 .715 	.712 .709 .706 	.703 	.700 .697 	.694 	.691 

--• -49 .608 ---.685 	-.682 .679 .676 	.673 	.670 .667 • 	.664 	.661 

. 0.0 ' 0.1 '--0.2 	0.3 8 0.4 0.5 0.6 0.7 0.8 6.9 

50 -.658 .656 .653 .650 .647 .644 .641 .638 .636 .633 
61 .627 .624 .622 .630 .619 .616 .613 .610 .608 .608 

.600' .597 .594 .52 .6n2 ..591 .889 .586 .583 .581 .578 
53 .573 ,570 .868 .576 .968 .562 .56n .557 .885 .552 

.512 .529 .527 54- .547 .544 .542 '.550 .539 .517 .534 

-55 .522-  4519 .517 .524 .507 - '.505 .502 .514 .51? .509 
56 .497 .495 .493 .5,10 .490 .488 .485 .493 .481 .478 

.474 '.471 .469 57 - .460-  .457 454 .476 .467 .464 .462 
.444 .441 .439 58 .453 .450 .448 .446 .437 .434 .432 

.418 .411 .410 .428 .426 .424 59 .430 .421 .415 417 

0_0 - .406 .404 - .402 - .408 .400 .397 .395 .393 .391 .389 
61 .187 .385 .383 .391 378 .376 .174 .372 .170 .168 

'62 .366 .364 .162 .14n .159 56 .184 . SP .350 -344 
.132 -330 .324  
w312  =310 .30A 

63 .344 .342 .340 .346 .318 .136 .134 
64 _326 .324 .322 -120 .118 -116 .314 

.299 .297 l_295  65 .305 :383 .3n1 .307  .293 .291 290 
66 298 .246  .284 .282 

.248  -  -266-  .18,4  
.240 .279 .277 
.262 60 .259 

.275 -273 .271  

.257 -255*P53
1  .239  217  26 _ 

.229  .PPO .719 

• 
67 .269 
69 .PAO -248  .246 .251 244 .243 .241 • 

.2'7  .225 .89 .212 - -231 .229  .234  224 

70 .217 .215 .214 .212 - 210 .2n9 :207 .205 .204 .2n? 
71 .194 .192 .191 .200 4199 197 .196' 

103 -.101  020 
.199 .188  -186 
.i,3 .172 170 -72 078 .176 .175  .184 

-16/ .166 -164  -154  -156 .155 
-.143 .142 .140 

73 .169  .163 -161 .159  
74 .192 .156 .149 .148 4 -146 -148 ii" 

'75 .137: .136 .134 .139 .129 .127 .126 .133 .131 .130 
e 123  .122  -120 76 .124 .115 .113 .112 .119 -117 .116 
.109 .108 .107 '77 11 .101 .188 .099 -105 .104 -103 

78 .096 .095 .093 .088 .n87 .086 
.076 0075 .074 

-1192. .09? .091 ,090 
79 .893 '.0A2 091 .0A8 .000 .078  •077 

430 .072 .071 .070 '.069 .068 .067 .065 .064 .063 .062 
81 .061 .060 .059 .058 .00 .852 .nRL .n56 .059 .054 

,849 ' .048 .047 .4143 '.042 .041 .046 .045 .044 
036 e rt 5 ;034 

.054 
83 .033 .037 .032 

.424  -024 .023 
.039 .018_ .037 
n10 029 029  

.040 
"414 .011 .027 .026 .026 

.019 .018 .018 85 .022 .021 .020 .022 .017 .016 .016 
-86 .015 .014 .014 .013 .012' .012 .011 .011 .010 .009 
137 .00§ .n0R .  -na7 .4 09  .0(1 .n05 .nnc -047 .006 .086 
88 .004 .003 .003 en04 .001 .002 ,002 .082 .002 ' .001 

-bob -001 -.000 -ooi .001 :Ali -.001 .000' .800 Onn 



; 	 • 

S-B Extrapolation Function for Specimen Curvature and 
Displacement for Thin Transparent Specimens with ut.+0 

i+ cos 28  
sin y. sin(20 - y) 

FUNCTION FOR .GAMMA490 

.0.0-  0.1 	'0.2 	• 0:1- -  0.4 - 	(1.-5 ' ' 0.6 - :0467 ' -'0•8-'''•0.9 • 

''•!' 

 

50 4.759 4:647 4.540 4.436 4.337 4.241 4.148 4.059 3.973 3-090 • 
' 51 3.810 1,1_32 3.657 3.504 1.514 1.445 3.379 3.315 3.253 1.192 

52- 3.114 1.0/7 3.'021 2.967 :,- 
 

2.915 2.864 2 814 2.766 2.719 2.671 
- 53 , 2.678 2.584 2.542 2,50n 7.460 2.470 2,382 2.344 2.307 2.271 

54 2_216 2-202 7,168 2_ 195 2.1032._072 2.941 2.911 	1.981 	1.'57 

,--- .55 1.924 1.896 1.869 1.842 1.816 J.790 	1.765 1.741 	1.716 1.693 ' 
6 1-662 1.647 1.624 1.602 1,581 	1.559 	1...528 1.518 1.498 1.478 .: .57 1.459 1.419 1.421'1-402 1.'1A4'.3. 166 	1.149  1.331-  1-114- 1,298 
58 1.281.1,265_1,24.9_4_011 1.219 	1 203 	1.180 1.173 	L.158 	1-144 

" C9 1.130 i.1.16 -1- 101 	1.089 1.076 	1_063 	1.050 14037-'1025 	1.012 -, 
60 1.000 .988 	.976 	.964 .953 	.942 	,930 .919 	.908 • 098 , 
61 .807 .877 	.866 	.856 .826 .1146 	.026 017 	.m07 .798 

-- 4,2 ', ,..228 .779 	.77n 	.761 ..143 .752 	.735 41-.9 	.710 .72A' 
. 61 .70.1 .693 	.685 	677 .662 	.654 .669 .646 	.639 .612 1  
---- '64  624  .-617' 	-61A ,6C1  Reg 	:45q2 .596 ---560 	- v .7 	_562 - 

-"- 65 .556 - :549" 	.543 	.517 .53n 	.574 - -.518 .512 	.506 	.500 
66 .494 .489 	.403 .477 466 .472 	_461- .4 .459 	_O 	.445 
67 .440 .414 	.479 	.424 .419 	.41_4' 	.409 ".4n0 	.195 ..4n4 ' 
68.  .390 agik 	.381 	.176 167 .372 	.161 059 	.354 	.150 

- 69 -146 .341 	.117 '.131 .329 	175 	121 .317 	.111 	-.209 

7'. TO .305 .302 	.298 _A294 .290 	.287 	•.283 .280 	.276 	.272 
1  71 .269 ..266 	.767 	.259 .755 	.25? 	249 .246 	.24?  
' 	- 77 :216 .233 	.71n 	.227 .224 	.221 	.218 .215 	".,217 	.20.9 

33  -20-6 4.203 	.701 	098 -192 .195 	.190 187 	.104 .182 ' 
'.74 -179 -177 	.174 	.172 -167 .169 	.164 '.1.59 .142 	.157 

--, 75 '.155 .152 	.150 	.148 .146 	.143 - 	.141 .139 	.137 	.115. 
76 _112 .110 	.128 	.126 '024 	.122 .120 .118 	.116 	.115 

- 	- 77 .112 .111 	. 1OR 	.107 105 .1 03 	.102 .100 	.098 .096_ ' 
1  7P __.0195 .093 	.091 	.090 .006 .009 	'WIC .083 	.082' 	.090 
" .079  .077 	.076 	.974 071 _073 	.070  -00,7 ,0.R 	.066 ' ; 

FUNCTION FOR GARMA=90 

- :•8 0.0 0.1 	' 0.2. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
I c80 ,064 ,06J •062 .060 •059 .058 .056 .055 .054 .053 

81 .051 .050 .049 .048 .047 .046 .045 .043 .042 .041 
.040 , .039 .038 .037 .036 .035 .034 .033 .032 .032 

1 83 .031 .030 .029 .028 .027 .026 .025 .025 .024 .023 
'-, -84 -.022 -.022 ,021 .020 .019 .019 .018 .017 -.017 :016 
I 

.015 .015 • .014 .014 .013- .012 .012 .011 .011 .010 
1 66 .010 .009 .009 .008 .008 .008 .007 .007 .006 ,006 

'67 ,006 .005 '.005 .004 .004 .004 .004 .003 .003 .003 
88 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001 

)--"' 89 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 
i 

• dota:-* 0 FUNCTION FOR OAMMA=75 

- 	: 8 0.0 0.1 0.2 0.3 0.4 _ 0.5 0.6 0.7 0,8 - 	0.9 

13.94 13.37 12.84 12.34 11.88 11.45 11.05 10.68 10.32 9.99 
41 9.677 9.381 9.101 8.836 8.584- 8.345 8.118 7.901 7695 7.498 

' 42 7.310 .130 6.957 6.792 6.634 6.482.6.335 6.195 6.060 5.930 
43 5.804 5,683 5.567 5.454 5.345 5.240 5.138 5.040 4.945 4.552 

- 	' 44 4.763 4,676 4.592 4.510 4.431 4.354 4.279 4.207 4.136 4.067 

45 4.000 2.935 3.871-3,81j9 3,749 3.690 3.633 3.577 3.523 3.469 
46 3.417 3.367 3.317 3.269 3.221 3.175 3.130 3,085 3.042 3.000 

-. 47 2.958 2.917 2.878 2.839 2.801 2.763 2.726 2.691 2.655 2.621 
40 2.587 2.554 2,521 2.489 2.458 2.427 2.397 2.367 2.338 2.309 

, 	- 49 2.281 2.253 2.226 2.199 2,173 2.147 2.122 2.097 2,072 2.048 
, . . 
L '50 2.024 2.001 1.978 1.955 1.933 1.911 1.889 1.868 1.847 1.827 

51 1.806 1.786 1.767 1.747 1.728 1.7n9 1.691 1.672 1.654 1.636 
. 52 1.619  1.602 1.584 1.568 1.551 1.535 1.519 1.503 1.487 1.471 

53 1.456 1.441 1.426 1.411 1.397 1.382 1.368 1,354 1.341 1.327 
54 1.313 1.300 1.287 1.274 1.261 1.249 1.236 1.224 1.212 1.200 

55 1.188 1.176  1.164 1.153 1.141 1.130 1.119 1.108 1.097 1.086 
56 1.076 1.065 1.055 1.045 1.035 1.025 1.015 1.005 .995 .985 

- 57 .976 .967 .957 .948 .939 .930 .921 .912 .903 .895 
56 .886 .878 .869 .861 ,853 .845 .837 .829 .821 .813 
'59 .805 .798 .790 .783 .775 .768 .761 .753 .746 .739 

60 .732 .725 .718 .711 .705 .698 .691 .685 .678 .672 
61 .665 .659 .653 .647 ,640 .634 .628 .622 .616 -.611 ' 

/ 62 -.605 .599 .593 .587 .582 .576 .571 .565 .560 .554 , 
61 .549 .544 .539 .533 .528 .523 .518 .513 .508 .503 ,_. -64 .498 .493 .489 .484 .479 .474 .470 .465 .461 ' .456 

" . 



F NcTtoN FS/4 0AMMA=60  • . 1 

Aut-s.0 FUNCTION FOR 	OAMMA=75 

,0 0.1 0.2-'0.3-'n.4 0.5 n:6 0.7 n'.9 

65 ..451 .447 .443- .438 434 410 .425 .421 .417 .413 66 408 .404 .400 .396 .392 .388 .384 .380 .376 .373 
67 i.169 '-'.165 .161 • .158 154 350 .346 .141 .114 36 • 
66 .332. .329 .375 .322 .31A .319 ,312 .3n6 .305 .3112 60 .74$ 095 .042 .249 '779 .276 '273 .270 
70 :,267 .264 .261 .258 .255 .253 .250 .247-.244 :241 
31__ .738 .236 .233 .730 -.728 .275 .222 .2P0 	.217 .214 
72 012 .269 -207 .204 .202 .149 .197 .104 1.97 .160 72 .187 .185 .183 ,180_ .178 176 .173 .171 .169 •1A7 
14 .165 .167 .160 .158 .154 .152 .10- :148 .146 

.144 .142 .140 -.138 .136 .134 .132 .130 128 .126 
h

75 
76  ____.,12,4_ 123 .121 .119 ,117 .115 114 .112 .110 .105 __7_7____Lata .105 •.1113 .102 Inn .n4A 097 •665 "'.n94 092 
7P .091- .089  088 .086 .00.5 .083 .082 .080 .079 .077 _29. 076 075 n73 072 .070 .069 .060 .667 -065 .064 
8n ,'.4113 .061 .060 059 058.".057 .055 .054 .053 .052 

_AUL .15.1 .050 ,049 .01.z„0464145_,044__.." 44,44z___ 
__62..___,440 .039 03A .017 036 	.015' 	034 .033 	.033 .032 83 .0.31„

'
030 .029 .028 027_ .027 .076 .024 .Q24  .023 84 .023 .022 .n21 .npn 020 019 nIA ' 	'018 .017 .016  
015 .015 .014 .013 .013 012 '.012 .A11 011 

.01.0 010 009 009 008 ._0.00 .001 .007 .007 006 Ri. 1I. II I I 	• I 	' I I 
88- .003 .002  .002 .002 002 .0 .001 .001 01 001 139 004 001 .000 .000 .000 .000 .000 .000 000 .000 

8 0.0 0•1 0.2 - 	0.3 n.4 0.5 0.6 0.7 0.8 0.9 
35 8.924 8.729 8.542 8.302_ 8.189 8.022 7.861 7.705 7.555 7.410 3_5 7.270 7.134 7.003_6.876 6.753 6.634 6.518 6.406 6.297 6.191 
37 6.084 5.489' 5,847 5.747 4,706 S 614 4 579 5 444 5 367' 5 PA1 

-.32- 3.2.03-5*12.4-5.091 4.979 4.907 4.81A 4.77n 4.104 4.639 4.576 34 4_ 14 4.453 4.344 4.136 4,979 4 223 4 169 4 116 4 064 4 PIP 
40 3.962 3.913 3,865 3.818 3.772 3,726 3v682 3.638 3.595 3.553 
41 3.511 3.471 3.431 3.392 3.353 3.315 3.278 3.242 3.206 3.170 47 3,116 1.1112 3.n68 3.015 3.007 7.970 7.439 7.908 2.877 7.147 
43_ _2_21s 2.789 2.760 2.732_2.704 7.677 2.650 2.623 2.597 2.571 

- 44 7,5_45 _2 520 2 4q6 7.471,-447 7.421 7_.400 2.377 2.354 2.33,  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9. 
5 1.309 2.488 4.266 2.445 2.244 2.e03 4.182 2.16e e.142 2.122 

46 2.103 2.084 2.065 2.046 2.027 2.009 1.991 1.973 1.956 1.938 
.47 1.921 1.984 1.887 1.870 1.854 1.838 1.822 1.806 1.790 1.775 48 1.759,1,744 1.729 1.714 1,699 1.685 1.670 1.656 1.642 1.628 
49 1.615 1,601 1.587 1.574 1.561 1.548 1.535 1.522 1.509 1.497 
-5o 1.484 1.472 1.460 1.448 1.436 1.424 1.414 1.401 1.389 1.376 
51 1.367 1.356 1.345 1.334 1.323 1.312 1.302 1.291 1.281 1.270 

- -52 4260 1.250 1.240 1.230 1.220 1.210 1,201 1.191 1.182 1.172 
53 1.163 1.154 1.144 1.135 1.126 1,117 1.108 1.100 1.091 1.082 
14 1.074 1.065 1.057 1.048 1.040 1'032 1.024 1.016 1.008 1.000 
55 .992 .984 .976 .969 .961 .953 .946 .938 .931 .924 
56 .916 .909 .902 .895 .888 .881  .874 .867 .860 .853 
57 .847 .840 .833 .827 .820 .814 .807 .801 4795 .788 
58 .782 .776 .770 .764 .758 .752 .746 .740 .734 .728 
59 722..717 .711 .705 .700 .694 .688 .683 .677 .672 - 
60 .667 .661 .656 .651 .645 .640 .635 .630 .625 .620 
61 .615 .610 .605 .600 .595 .590 .585 v581 .576 ,571 
62 .566 .562 .557 .552 .548 .543 .539 .534 .530 .525 
63 .521 .517 .512 .508 .504 .499 ,495 .491 .487 .483 

.- - -64 - -.479 .475 .471 .466 -.462 .458 .455 .451 •.447 .443 
65 .439 .435 -.431 :428 ,424 -.420 .416 .413 -.409 .405 
66 .402 .398 .395 .391 .387 .384 .380 .377 .374 .370 

-._,.67 '.367 .363 .360 .357 353 .350 .347 .344 .340 .337 
68 .334 .331 .328 .325 .321 .31A .315 .312 .309 - .306 19 .303 .300 .297 .294 .291 .289 .286 .263 .280 .277 
70 .274 .272 .269 .266 .263 .261 .258 .255 .252 .250 
71 .247 .245 .242 .239 .237 .234 .232 .229 .227 .224 

• 72 222 .219 .217 .214 .212 .210 .207 .2n5 1203 .200 
73 .198 .196 - .193 .191 ,189 .187 .184 .182 .180 ,178 

:-  74_ .176 .173 ,171 169 ,167 ..165• 063 .161 .159 .157 

75,,,,,.155 .153 .151 .149 147 .145 .143 .141 .139 3 
76 on .133 .13? 010_ .120 .126 .124 .122 .121 .119  • -- 77 .1J7 .115 .114 .112 .110 .109 107 •105 .04 .102 
/8 .10.0 099 .007 096 .094 092 .091 .089 -.0801 .006 
19 nac .083 .082 .081 .079 .078 .076 .075 .073 .077 
80 .071 .069 .068 .067 .065 .064 .063 .062 .060 .059 
81 -.058 .057 .055 .054 .053 .052 .051 .049 .048 .047 
82 .046 .045 .044 041 ,042 041 040 .039 .n38 .017 
83 .036 .035 .034 .033 .032 .011 .030 .029 .028 .027 
84 00127 .026 -025 -.024 .0?1 .020 022 .021 -  •020 *01% 1 

'FUNCTION FOR 6AMM4=60 



-+O "4.t FUNCTION FOR 	0AMMAA60 

DO 0.1 n a n 1 0.4 ... 0:5'0.6 0.7' I:CO -' 0:9 
85 .019 .018 .017 .017 .016 .015 .015 .014 .013 -.013 
86 .012 .012 .011 .010 .010 .009 .009 .008 .008 .087 
-87 &007 -.006'-  .006- be, .005 -605' .004 .004 -004 .003 
88 .003  .003  .003 002 .002 0102 .007 .0ai .001 .001 

:89 .001,- .001 -.001 .000 -00Z .000 .000 .000 .000 

,Ase -4'0 FUNCTION FOR OW01.45 

i,- -,,  ---11 0.0 '0.1`" 0.2' n.n -  6.4 	-0..4 ,Yr1.6 6.7° 0'.13-0:9 

;25 26.66 25.59 24.61 23.69 22.84 22.04 21.30 20.60 19.95 19.33 
26 16.75 18.20 17.68 17.19 16.72 16.28 15.85 10.45 1507 14-70 

.27 14.35  14.02  11.70 13.39 11 10 12-82 12.44 12-28 12.03 11.79 
28 11.56-11.33  11.11 10.90 10.70 	10'--51 10.12 10.13  9.96 9.78 
29 9.41R-9 451  9-100  9.148 9.000' 8.RS7  0,717  8-561 8.449  8.321_ 

30 8196 0.074 7.956 7.840 7 726 7.61R 7.511 7.407 7.305 .7.285 
31 7.108 7.013  6.920 6.830 6.741 6.654 6.569  6.486 6.405 6.126 
,52 4.248 6.172 6.097' 6.024 5 9 3- 5*882 5.81'4 5.746 5.600 R.615 
31 5.551 5.469 5.428  5.367 5. 	0 	5. 	0 5.19.3 5.131 .5-.082 5.028 

l'''" '34 4.975 4.921 4.072 4.021 4.772'44723 4.675 4.2H -l!.5111 42,536 

: 35 4.491 4.447 4.483 4'.368 4.310 4.276 4.235 4.195 4.155 4.116 
, • 6--4-.0.76--4.04L4.002 3.9.65_3.9P9 3093 3.858 302-3  1.7R8 3.755 
''17 _3,_2 

18 3.410 3.381 3,351  3.1  A 3,297 3.269 3.242 3.215  3.109 3.162 
-14.  3.136 3.11-1  3.086 3.081 3.016 3.012 2.987 2.96_4  2.940 2.917 - 	- , 

j= - -4p 2.894 p.871 2.048 2.826 2.004 2.7022.761 2.740 2.718.2.690 
41 2,611_2,697 20.36 2.616.2.597 2.577 2. 50. 2+•53R 2-510  2.501 '-,; 42 2,A82 2..464 2.445 2.427 2,410 2.392 2.174  2.157 2.340 2.323 
43 -2.306 2.2149 2.273 2.256 2 240 2.224 2.200  2J9' 2-117 2.161 

' 2.146 2.131 2.116 2.101 2.086 2,071 2.057 2.04? 2.028 2.014 
45 2.000 1.986 1.972 1.999 1.945 1.917 1.918 1.905 1.092 1,879 
46 1.8.6:6_.1.853 1.8.41-1.82R 1./116 1.803 1-791 1.779 1.767 1.755 
47-  1:7a1_ 1 	!. . 1-- 
4a ,_,L.634_44.6.19  1.600  1-.597 1.587 	1.576 1.565 1-R55 1.54-5 1,35 

---.J.14-- 1-.1524.4.514-4-.5 1.494 1.484 1.475 1-.465-1.455 1.446 1.436- 
- 50 1.427 1.417 1.408 1.399 1.389 1.300 1.371 1.362 1.353 1.344 
51 -4136- 1.327  1.310  1-310 1.101 1.292 1.284  1.276 1.267 L -'59  
A2 1.251 1.2A1  1.234  1-226 1.218 	1.210 1.202 109R 1.107 1.179  
53 1.171 4.41.64 1.156 1.1 40  1.141 	1.113 1.176  1.119 1.111 1-104 

'A4  1.091-1.090  1.082 1.075 1_068 1.061 1.054  1.047 1.044-1-.-034____ 1 

0.9 0.0 0411. 	'0.2-  0.3 0.4' 0.5 0.6 0.7 0.8 0.9 
1.-,- -?b 1.027 1.010 1.013 1.007 1.000 .993 .987 .980 ..974 .967 

-56 .961 .954 .948 .942 .936 .929 .923 .917 .911 .905 
.57 , 	.899 .893 .087 .881 .875 .869 .863 .857 .852 .846 
58 .84,0 .834 .829 .823 .817 .812 .806 .801 .795 .790 
,59 .785 .779 .774 .769 .763 .7511 .753 .748 .742 :717 

so .732 :727 .022 .717 .712 .707 *702 .697 .692 .687 
61 .682 .677 ,,,673 .668 .663 .658 .654 .649 .644 .640 

-62 .635 .636 .626 .621 .617 .612 .608 .6n3 .599 .595_ 
63 .590 .586 .582 .577 .573 .569 .564 .560 .556 .552 
64 .548 .543 .539 .535 531 .577 .523 .519 .515 .511 
65 ,.so7 .503 .499 .495 .491 .488. .484 .480 .476 .472 
66 .469 .465 .461 .457 .454 .450 .446. .443 .439 .415 
67 .432 .428 .425 .421 .418 .414 .411 .407 .404 .400 
68 097 .394 .390 .387 .383 .3An .377 .374 .170 .367 
69 .364 .361 .357 .354 .351. .348 ,345  .341 ..338' .315 

'70 -.332 .329 .326 .323 .320 .317 .314 .311 .308 .305 
11 .302 .299 .296 .293 .290- .200 .285 .202 :279 .276 

'-':- .72 .273 .271 .268 .265 .262 .260 .257 .254 .252 .249 
73 .246 .244 .241 .238 .236 .211 .231 .228 .226 .221 

1-1  74 .221 .218 .216 .213 .211 .2nA .206 .243 .201 .199 
'75 .196 .194. .191 .109 .187 .184 .182 .180 .178 .175 
76 .173 .171 .169 .166 .164 .162 .160 .108 .156 .153 
-17 .151 .149 .147 .145 .141 .141 .139 .117 .135 .113 

.131 
g  

.129 .127 
0 o T:  123 

 
.114 

 7  
.119 .117 

. 141,,i 
.116 

- 80 .094 .092 .091 .069 .087 .086 .084 .082 .081 .079 
81 .078 .076 .075 .073 .071 -.070-  .068 .067 .066 .064 
-82 063 .661 .060 .058 .057 .056 - 054 .053 .052 .050 
83 .049 .048 .046 .045 044 .041 .042 .040 .039 .018 
84 .037 -.036- .035 .013 .032 .011 .030_ .029 .028 .027 
85 .026 .025 .024 .023 .022 .022 .021 .020 .019 .018 
86 .017 .016 .016 .015 .014 .013 .013 .012 .011 .011 
87 • '.010 .009 .009 .008 .008 .087 .008 .006 .005 .005 
88 .005 .004 .004 .003 .003 .081 .002 .002 .002 .001 

' 	' 89 ..onl .00i .oni .oni non .Onn .000 .ono .000 .000 t1 



"t-•O FUNCTION FOR GAMm4=30 

, 0 '0.0 0.1 	0.2 	0.3 n.4 	0.5 	0.6 0.7 '0.8 	0.9 1 
'20 20414 1.9.92 19.52 19.13 18.75 18.39 18.04 17.71' 17.38 17.07 
21 46.77 16.48 16.19 	15.42 15.65 15.19 	15.14 14.90 14.66 14.44 

% : ,? 14.21 14.1011.70 11,55 11.19 13.19 13.0n 12.82 12.64 12.47 
23 IP 10 1P-13_11.07 	11'-211 11 	66 	11.51 	11.36 11.22 11.07 	10.94 
24 In AO 10.69 	10,154 1n.42 10.29 10-17 10,AA 9;04 9.83 	0-72 

'25_ 9.606 9.500 9.395 9.292 9.192 9.093 8.996 8.901 8.808 8.716 
26 8.62.6 8.5388.4 1 8.365 8,281 8.199 A.118 14,0.38 7.96n 7.883 
27 7.807 7 733 7.660 7.58R 7.517 7.447 7.37A 7.310 7.244 7,178 

- 28 7.114_7.050 6.987 6.926 6.865 6.805 6.746 6.687 6.630 6 573 
29 _6.516 6.463 4.408 6.354 6.1'12 6.250 6.199 6,168 6.048 4,8e9 , 

,30 6.000 5.452 5,905 5.858 5.811 5.766 5.721 5.676 5,632 5.589 
31 5.546 5.504 5.467 5.420_5_080 5.319 5;244 5.260 5.221 5,181 
32___5+144_ , 	, 	, 	i ... 	, 	.. 	• :.I •- 	4,R21 
5a_ 4.78/_„4.75 4.720 4.687 4 ,654 4.622 4.590 4.558 4.527 4,496 
34, 4 1-17---  

' :: 

35 4.17_6 4.148 4.121 4.094 4 067 4.041 4.015 3.989 3.963 3.938 
34 3.9.13 3.888 3..661 3.838 3,614 3.700 1.766 1.742 '..11 7 1 9 	1.696 

`,.§7 3.62-3--3;b5-15-3-.627--34-645-3-5-a3--3_.5 . 	• 
4 -1.453 3...412 1.411 	3.391"3.170 1.354 3.33n 1.316 3-290 3.270 

'...Z:-_,44. 3.251 3.231 3.212 1.101 1,1,4 1.154 1.117 1.119 3.100 1.082 
ro, 40 3.064 3.046 3.029 3.011 2.993 2.976 2.959 2.942 2.925 2.908 

41 2,891 248/5 2.858 2.842 2,826 2.8(19 7.793 2.778 2.762 2.746 
''' 42  2.731  2.715  2.1(1' 	.- .. 	. 	. 	- • , 	. 

41 2,581_2 566 2,552 2-51.8 2.524 2,51-0 2.496 2.457 2.44A 2,454 
l......___vi._ 2, ,.. --2-4-136---24-122---: 

45 2,309 2.297 2,284 2.272 2.259 2.247 2.235 2.222 2.210 	2.148 
.______46:.__24.18.6 
2.2--t---ii- 
-49- 

2.01-0 
2.174 2.162 2.151_2.134 
2.054 2.04R 2.036 

2.127 	2.114 2.104 2.n93 2.081 
2.025 2.014'2.004 
1.918 1.908 1048 

1.991-1-.-982-1.971.---J 
1.881 1.877 1.A67 48___1060 

1.857  
1050_1.439 L.924 
1. = : 	's 	. :: . 	. 

_ 54 AL/591 04_2...675 
51 __1,666 1..657 	1.641._14634 1.63n 	1.621 	1.612 1.6n3 1.595 1 6R6___ 

' 
52__ -1.577 -• 	.t - # 	0.1_ 

-____-53-1,493 
54_ 444.1.1 

14485._14477 1.464  1.461 1.452 1.444 1.437 1.4P9 1.421 
1.405_1.„1517_4-1119_1-3a2-1.-174 1.366 1.qq4 1.351 	1_144 

, 
55 1.336_1.329 1,321 	1.314 1,307 	1.299 1.292 1.285 1,277 1:270 ' 

l561_ 1.263.1..256_1.24.9 1-242 1.215 L.228_14221 1.214 1.207 	1.200 ' 

1  r--.--  

-_.1--5.7.___.1.143 
1-,----5P---4.126 

1.18; 	1.179 	1.171 1.166 	1.159 	1.1A2 1.146. 1.119 	1.113 

-59_14062 
1.119  1._1434.10,  1400 1.044 1.087 108.1 1.074--1„.0.05-___ 

1.012_1.404_ 1.055 1.049 1.041-1.017 1.031 1.024-1.:0_113 

GAMMA=30 

: .- .A 0.0- 7  Oil' 	'.0.2'-' 	0.3' 11.4 	:7,. 0.5 ,- :4.6' 047 -  '10.8 '0.9' 
:60 1'000 .944 	.988 	, .482 :976. .970 	.964 .958- .952 .947 61 .941 .935 	.929 	923 918 9 	906 901 895 ,889 ,i--,'."-612 ',IAA -.878 	'.873 	.867 :862 .856 	.851 .845 .840 - .834 

' 63 .829 .824 	.818' 	,813 808 .80? 	.797 .792 .787 .781 '-' '6 .-:776 .771.':766 	:741 '.756 '.751''.746'' .1 ' I 
.. 65- ‘-'.725 ..720- .716%011 -.706 - .701 	.696 .691 .686 .681 

' 66 ,,677 672 	.667 	.662 .657 .653 	.648 .6a3 .639 .614 
' 'A/ , -'.629 -.625 ' -.620 	11616 ' 	611 ''.604 ' 	.602 .547 .593 .5441 

' 68 .584 .579. 	.575 	.571 .566 .562 	.557 ,55 4549 .544 69 ' .540_  ',Sat., 	- .512 	'.577 - 	521 -- 519 	- 	515 - 510 ,,506 '5n7 
'70 -.448 .494: 	.490 	- .486 .481 ..477- 	.473 .469 .465 .461 
7_1 .457 .453 	.449 	.445 .441 .438 	.434 ,430 .426 .422 

-.72_-',418 .414-:.410 	.407 .403 .394 	.395 .302 .388 .384 73 .380 .377 	.373 	:36* 66 .35' _.362 355 .351 .348 ._... '74 '.- 344 .341 -:.337 	'.314 - .330 1.377 	.323 .320 .316 .313 
'76 ''.304 ..306' -.303 	,299 .296 ..293 - ..289 .286 .283 .279 . 

' 76 .276 .273 	1270 - 	.266 263 .260 	.257 .254 .250 247 
__...71, -- .244 

78 
4241' .238 	4235 .232 , .224 	.226 .223 .220 .217 

__.214  .211 	.208 	.205 .202 .199 	.146 .193 .190 .188 
.,,,''..2.1 :.14a._ : 	9 , 	. .8 65 .163 .160 
, -80 , ;157 -.155 - ..152-. - .150 .147 .144 	.142 .139 '-.137' .134 - 

81 .132__...1_29 .127 	.124 .122 .119 	.117 .115 • 112 .110 ' 82 - 	.108 4105- - -.103 	'.101 .044 .096 :.094 .092 .090 .088 83 .086 .083 	.081 	.019 .077 .075 	.073 071 .069 067 '84 ,, ..0.6.5. .063' 	.062 	.060 .058 .0.54 	.054 .052 .051 .044 
86 ,047 „046 	..044 	.042 .041 .039 	.038 .036 .035 .033 86 .032 .030 	,029 	.077 .026 .025 	.023 .022 .021 .020 --; 87 .019 .018 	.016 	.015 .014 .013 	'.012 .011 .010 .010 8e .009 .008 	.007 	.006 .006 .005 	.004 .004 .003 .003 -., .69 .0302 .002 	4001 	.001 .001 .001, 	000 .ono .000' .00n • 

• 



,4.4-PO FUNCTION FOR GAMMA=15 

' 
- 0 OA 0.1 	0.2 - 	0•3 n.4 	o.s 	0.6 0.7 o.e 	- 	n.g 

.10 85.99 82.64 79,54"76.66 73.97 71.47 69.13 66.93 64,87 6?.93 
11 61,10 59,37 57,73 56,18 54.71 53,32 51,99 50.72 49.52 48.36 
12 47.7646.21 45.20 44.21 41.31 	42.42 41.56 40.74 39.95 19.18 
13 38.45 37.74 37.06 36.40 15.76 15.14 14.54 11.57 31.41 12.57 

.14 3?-14 11.53 31114 14.46 10.19 79.94 25.50 .29.47 22.66 28.25 

15 27_06 27.4727.10 26.73 26.38 26.03 25.69 25.36 25.04 24.73 , 
16 24.42,54.12 23.83 23.54 23.26 22.99 27.72 22.46 22.20 71.95 
17 7101 21.47 21.73 21.00 70.77 24.56 20-11 74.12 19.91 	19.71 18 19.50 19.31 	19.11 	18.9? 18.73 	18.55 	18.37 16.19 18.02 	17.85_ 
19 17.68 11.57 17-35 17 -19  17.04 16.88 16.71 16.58 16-43 16.29 
20 16 4 15 160 01 	15,07 45.73 15,60 	15.47 15.34 15.21 15.08 14,96 
21, 14,84 14.71 	14.60 	14.48 14.36 	14.25 	14.14 14.03 
22_ 13•71143._60 13-49 	13-39 13.P9 	11-10  13.09 -13.00 

11.92 	13.811  
12.g0 12.81 __23___ 12.71 12.112 12.53 12.44 12.15 17.76 17.15 1,2.09 12.01 11.92 24__11,84 11.76 	11.68 	11.60414.52 1.1444 	11417 11.29 11.21 	11•14  

25 11 4 07 10.99 	10,92 	10.85 10.78 	10.71 	10.64 10.57 10,51 	10.44 
__---26 10_07 10.31 	10.24 	14.18 10.12 	14.06 	9.99 9.93 9.87 	9.81 27 _9,..748_9.6/39 9 .634 9-573 9.515 9,456 .9=02 9.347 9,291 9.237 

28 9 163 9fl129 9.076  9.023 8.971 8-9 19 8.568 8.81 7  8 .767  8,717 29_ 8.86/_11,61(1 8.870 6.52 8.476 8.427 8.380 -333 R-287.-8,241 
- 1 

30 8,196 5.151 	8.107 8.062 8.019 7.975 7.932 7.869 7.847 -7.805 
31- 2.763 7.722 7.681 7.640 7.64n 7-659 7 620 7.480 7.441 7.402 
.32- 1.34 7.129  7.987 7-250 7-712 7 .175 7.138 7,102 7.066 7,030 53 6.944 6.9511_6_8,921 6.888 6.'53 6-4819 6.785 6-751 6-717 64_681_ 
,5k___6+650 4.617 6-584 6.5.52 6.519  6.487 6.4-5 6.424  6.392 6 .361 
35 6.330 6.299 6.268 6.238 6.208 6.178 6:148 6.118 6.089 6.060 
36 _6,031_64002_54911 54945 5,916-5_.888 5.860 5,832 5.805 5-777 -37_ 5.15D 54/235.46965.669 5.643 5.616 4.590 5,664 6.514 6.512 ,, 8  _5_,4_86_5.46L5,.435 5.410 5.385 5.360 5,136 5.311 5  286 6.262 39 6.218 5.214 8.194 5.166 5 143 5.119 5.066 5.672 5-049 5_026 
40 5.003 4.981 4.958 4.936 4.913 4.891 4.869 4.847 4.825 4.801 
41 4.4282 .4.160_442394a717_4.696 4.675 4.654 4.613 4.612 4.597 

...42... 4 571 4.551 4.824 4.510 4.490 4.470 4.454_4.430 4.411 4.191• 43: 4.17_1_ 4.352 44133-4.313 4.294 4 -275 4.256 4.737  4 .219 4,204 
_4.4._ 4-.181.4,163 4.144 4.126 4 - 100 4490 4.071_4.653 4.016 4 .018 

45 4.000 3.982 3.965 3.947 3.912 3.895 .1230 3.878 3.861 3.844 
5 3.227 3.810 1.791 3.777 EMP60 3.743 1.727 1.710 3.694_ 3.678L 

47 1,661 3..645 1 629 1.613 3,597  3.541 	1 556_,3.550 1.514 3 519 
-----.112. 
---49- 

.1.503_2.4871.472 1.457 1.441 1.426 1.411 1.396 3.181_ 3.166 
51 ,3.. 3.2.a6 3.321 2..107 3.292 3- 277  3.262 1.2.4A  3.234 3.219 

0 FUNCTION FOR 545M4415 

.6  0.0 0.1 ''0.2 00 0,4 0.5 0,6 0.7 0.8 0.9 

50 3,205 3.191 3.176 3.162 3.148 3.134 3.120 3.106 3.092 3.078 
51 3,065 3,051 3.037 3.024 3.010 2.996 2.983 2.969 2.956 2.943 
52 2.929 2.916 2.903 2.890 2.877 2.864 2.851 2.838 2.825 2.812 
53 2.799 2.786 2.774 2.761 2.748 2.736 2.723 2.711 2.698 2.686 

-.- 	• .54 2.673 7,661"2.649 2.637 2.624 2.612 2.600 2.588 2.576 2.504 
65 2.552 2.540 2,528 2.516 2.505 2.493 2.481 2.469 2.458 - 2.446 
56 2,434 2.423 2.411 2.400 2.389 2.377 2.366 2.355 2.343 2.332 
57 2.321 2.310 2.298 2.287 2.276 7.265 2.254 2.243 2.732 7.221 
58 2.211 7.200 2.189 2.178 2.167 2.157 2.146 2.135 2,125 2.114 
69 2.104 2.093  2.083 2.072 2.062 2.051 2.041 2.011 2.021 2.010 
60 2,000 1.990 1.980 1,969 1.959 1.949 1.939 1.929 1.919 1.909 
61 1.899 1.889 1,879 1.870 1.860 1.850 1._840 1.830 1.821 1.811 
62 1.6,01 1.792 1.782 1,712 1.763 1.753 1.744 1.714 1.725 1.715 
63 1.706 1,697 1.687 1.678 1.669 1.659 1,650 1.641 1,632 1.622 
64 1.613 1.604  1.595 1.586 1.577 1.568 1.559 1.550 1.541 1.512 

65 1,523 1.514 1,505 1,496 1.487 1.479 1.470 1.461 1,452 1.'443 
66 1.435 1.426 1,417 1,4n9 1.400 1.392 1.383 1.374 1.366 1.357 
67 1.349 1,340 1.332 1.324 1.315 183=7 1 4298 1.290 1.282 1.273 
66 1.265 1.257 1.249 1,240 1.232 1,224 1.216 1.2n8 1.200 1.191 
69 1.183 1.175 1.167 1.159 1.151 1.143 1.135 1.177 1.119 1.111 

70 1.104 1.096 1.088 1.080'1.072 1.064 1.057 1.049 1.041 1.033 
71 1.026 1.018 1,010 1,003 .995 .987 .980 .972 *965 .957 
72 .950 .942 .935 .927 .920 .91? .905 .697 .890 .883 
73 .875 .868 .861 4853 .846 .819 .532 .874 .817 .810 
74 .803 .796 .788 .781 .774 .767 .760 .753 .746 .739 

75 * 732 .725 .718 .711 ,704 .697 .690 .684 .677 .670 
76 .663 46516 .650 .643 .636 .629 .623 .616 .609 .603 

- 77 .596 .589 .583 .576 .570 .563 .557 .550 .544 .537 
78 .531 .524 .518 .512 -.505 .499 .493 .456 .480 .474 
79 .467 .461 .455 .449 .443 .417 .430 .424 .418 .412 

80 .406 .400 .394 .388 .382 .376 .371 .365 4359 .353 
81 .347 .341 .336 .330 .324 ,319 .313 .307 .302 .296 
82 .241 .285 .280 .274 .269 .263 .258 .253 .247 .242 
83 .237 .232 .226 .221 .216 .211 .206 .241 .196 .191 
84 .186 .181 .176 .171 .167 .162 .157 .153 *148 .143 

85 .139 .134 .130 .126 .121 .117 .113 .109 .104 .100 
86 .096 .092 .088 .064 .081 .077 .073 .070 .066 8062 
87 .059 .056 .052 .049 .046 .043 .040 .037 .034 .032 
88 .029 .026 .024 .072 .019 .017 .015 .013 _011 .010 
89 .008 .007 - .005 .004 .003 .002 .001 .001 .000 .000 



Appendix 4 
	 27'4. 

Programme for the calculation of lattice parameters 

TH2(1) 'Ka (.I) 91-2 ( N.:NM (I) I=111NOP)  
NOP=i\it.)* 	PEAKS 
SGTH=ASiGNED VARI ANCe-, OF.- MEASUREMENTS 

-1\K-4192 '17-(jR -- ALPHA- =1  
REA1)(59102)C1; Al 

--7"6M=45.03.-14i591-3.80.0 
_GM=GAIIMA IN RADS 

DO 10 l'=":1 , 	----
..,TTH(1)=iTTH(/).+1,1M(I)*0.0125-L-: 

(6;112)-1 TH(I) 	— 
-Til 	)=TTH (I )_*3.14159/360.0. 
tTa(1);TH ( I  
Rit=NfriC 
YO ( I ).= s't->IN( TH( -1) )**2*R (NI )" 

0 CONTINUE,:  
10=0BSEIR 	 (TH) ** 

..AU=ILAH11 ) 	0*A1),) * 41.2. 
- CU=(LAM(1)-A(2.0*C1))**2---1.  
bu=o  

CU AO ; DU .=L--,:UP-RER: 	C-; 

• - 	 • •-•, 	 . 
-REAL-71- TH(40),TH-(40);SGTH:(40);Ya(40),YA140),H(40) ,K(40)9L( 40) ,  
1H1(40)-iK.1(40".91.1..(40).,H2.(40);X(40),L2(40) ,LAM(3);DIFF,(40)1W(40.) ,  
omfl (-40) ;H0-(40)-4K0-(4.04ILO•(40)-9YA9(40)-EyAl•(40)-,-YA2(40),R  (40) ;UA(40 
UUC (40 ) OD (40_ 	1., 
- 111 -Tk.:(.4ER' t- 1 Prn) 	• 
LAfV(1)i--1 5401 

---=—LAM(R)=-1-.54433 -  
.LA11(3)=1.54178 
F4(1)=I.o7  

(2) =.(C.Ati 	/LAM (2) ) :1.1'117-27  
( 3 i=-(LAti 

DO 	 i=1.,30 - • - 
READ100 

 
SCHF:u 
NO=NOP.-, 

:,WRITE (6,116)J 
- ..NP=6 

REAL) (5991)--(TTH ( I) OM r );SGTH(I) 	tK(I-)! !-(;I) 

TTH=26 

; • , 

CIF 
4 WRITE (0.1.04)_NF.: 

PA = 0 
i_PC=0 

QC=0 
QD=0 
RC=0 

S
r_RD=0- 

tk=*0 

.Surir,i2=0 

00 20.1.71,Nop 



DI FF(I)=. 	Fi  

80. 
--- 

  

      

      

YA (1)=4/1.04-if-HT )*-g:24.K(1)**p)-+CU*L (1)**2+ (DU*SIN ( TT1-1 ( I) )**2 ) / (SIN (GM) 
( ) -Gm) )  

-,-);A1.(1);-/W*-( 1,41--(I)**2+K).•( I ) 41' 41'2) +CU*LI (I) 40-2+, (()U*SINI_I,TTH ( I ))**2)/-(SIN• 
T.(G11)*SI;4(TTH(L)-1'i-i) ) 
--YA2 ( i ) riA0*(41-?,-(1)-*-*2+K2 ( I ) **?) +CUilt2 ( I.)-4.t•-•11 2+ (OU*S IN.( IT-11 	) **2)1( 
T.( Gm)*SIII1 (TTri( )_-GM) ). 

r)=APijiiox----vALUE -OF-  SI NTH-) **2 
(1 )=2. a*sp.1( TTti ( I )_) *(2..0*COS.CTTH ( I ) ) 	I)_)*COS.(ITH ( I ).7GM _ 	. 	_ 

- 
„  

.:DIEF.tl-L(.1)-G-DIFF(I)*Du!7s1N(T.TH( I ) ) 

(.1)=1.0./..(SGTHM*DIFFA 1)**2) 

(11};!-.1) n, 	)9 
19 	Z= ( Y 0 	-y A ( ) )-** 2 - • 

__,.Z1=1Y0 (I) -YA) (I) ) 41'31'2 
- -L2= ( YO 	y-Y4e-( I )1-042 

! 	:,IF(î 'Ll.)11291.7- 
IF (Z."-Z215 '95,7 

.2.„IF(i.-z2).(10,18 

(Z1-Z2) 13,16,7_:._..- 
= (Z1-SGF'-*SCR)-16,-16,9 

( I ) =fr-11 	• 
KO ( I ) 

L.0 CO 	( ), 
( I )=Y,A1-(-- 

.H1 ( I ) =1-1(i )_ 

i=t7.  
=,YA11-) 

H(I)=H0.( I) 

.Y A-(1.)=YAO(I  
_.d0_ .TO 8 
IF-(Z2-SGF*ScRT-18-4-1,81 

3_110 ( i) =F-la (I) 
KO ( 	=.12 ( 	- 

.L.0(I).=12 (1 ) 
-1,YAO(I) =YA2-(I )  
._H2(I) =H ( 1) 
-t(2-(I) 
_L2 	=L ( I 
-tYA2(1)_riY-ATI 

(1) =,H0( ) 

L(i)-=LOCI) 

GO To - 

1 	Ni\jzziJN-1 

GO TU 20 
1.1FAP.L(A..6)51RITE(69105.)h(I).,K(IY,L(1)-__,- 

1.1r1Ne=Ufit.12+ (YO ( I ) 	( I) )**2*W ( I) 
( I ).=1--ifI )i102_71._K ( I)**2 - 

UC ( 	( I) **2  
UD(I)=ISIN(TTH(I) )**2)/(sIN(TTH(I) -‘61,4)*SIN'(GM)•) - 
PA=PA+ (Y0 (I) -1/4.(I) )*Y1 (I)*UA (I) 

:,-Pc=r;,(;+-(YO-(-I) -YA 	) *v1 ( I )*UC ( I )- 
_,___PD=1:3U+ CYO ( I ) -YA (I) ) 	( ) *1.10, ( 	- 

RUA:( I ) "*2 	—.4—Evaluation of :D(ij 
(i.) - - - 	• 	 .T_ 

4, 	Cfl it-UA 	) *UD ( 
..F2C=1-C+ ( )3WC ( I 3*.*2. 
RD=FD+1.1 	/*1./C- ( ) *ON I ) - 

7 ) 	( 	) brit 

YA(I).= 

• 

y.(approx.):.  

4—Choosing best 0.1 k 



276. 

• 20 CONT1NUE 
RA=C1C _ 	• 
SC=ith 
SA=00 	 . 
IPIETA=f4 A*RC*SD+0C:*RD*Pn+ONWC*SC'''PA*RWPSC'"UC*PC*SDD4RC*Po 
DO' C=CtAliPC*SUtPAitRSA_+CM*RA*PD."(WiRD*PD"'PA*RA*SD"'QD*PC#SA • 

--a:DEtt.1=0A*RC-iiF4 D+OC*PC*SA+PA*R-A*SC"CM*P-C*SC."6C*RA*PD""PA*RC*SA - 
-:DEtT,FgA40C*SU+OC.RDSA+PD*RA*SC."QA#RD*SC^6o*A*SD"OD*RC*SA.: • 

F=DE1 C'DFT-7 Evaluation- of determinants 
G=DETD/DETT 

T- CU=eU+P - 

	

( L'Al4(z_14412r(-4•.0*CUY) 	COVA=•.% 
• At.._=b0R.T 	(..45)**2/.(4.0*AU) ) 
ALL9CL 	 C-ASE' -A*C---1-L---

,COVA=CL/AL 
-.- VOL=CL*AL**;,r-- • 	_ 

VARAU=4R,Cil'511-.RD**2141'SUMN2 	UTT*.FLOAT.( NN)). 
VARCUA*S0-gD**2)=0SUMN2:--- 	(DETT*FLOAT- (NO) 

„vAROy.7.(04*Rc7)c**2)*sumN?„ i(DEITFLoAl(_Na4)) results 
--VAAAL*((t..-Am,( I.) /4.-0) **2/AU**3) *WARAO:=" 

:::yARCL=((LAM.(1_)/4.0)-2/CU3YiiVARa 
( 	211'9214- 22:- 

/ (FLOAT (NV)) 

- VARCI 
V-AROU 

V RCUA=9 ARCL/ ( At...17*2) +,(CL.Y*2:ARAL/4":4;.4.), 
SGCOA=St.IRT ( V R CO  
VRVOL=47(CL 41',AW4.!2*VARAL+AL**4,VARCL. 

- 
.WRITE(69110)49.CL9COVA9DU9SGAL95GCL,SGCOA,SGDUyVOL,SPVA. 

071(4.4,6E•NOP---11-SdR=SCR/290--:-----.,--- ; . — 
23 GO TO. 3.. 

----,L50-CONTINUts  

102 FORMAT.  (2r5.4) 
i,---103-='FORMA:f.(16-_,SCRAP_LINE I 	9I2)==

104_FORMAT (20H ITERATIVE RUN MO. 	912) 
10_51- FORAT-(5HIA-L..=--9F241 0'951+44: -.29:09.5H..„1.:, - 
106 FORMAT (10.1-1 	Z=Z1 . 

_L107 _FORMA r(1oi-L 
10E; OkmATtioH 

--109•_ FORMAT (10FLL,Z=Z2 	- 	- . 
9F8.69 6H CL = 9F8.697H C/A = 9F8.696H DU  = 9F8.6/BH  ! 110 F ORMAT(6H AL =  

SGALE-==7 9P-73-:6-01-1--- SGCL-=.-,FB.699HSGCOA-F8'.698H-3GDUF8.6/7H- 
voL .= ,F12.6,9H .sGvoL . ,-F9  	• 

111 -,iFORMA'T 	 F B• 6 9-61-i:"-Z-tr-:,==- .-1F8•6•061-4 122-=- :9F8 -..6) 
:112- FORMAT_ (80 T.TH ,=- 9F41.4)_ 

	

13--;FORMATW- 	 -- (5EfF8.6951-1- , 9F8.6954-  1 	 --- G 
_ 114 'FORMAt 	=--9FF3.6,6hL- 	=,.9F8*-6).  

-.116  FORI,kAJ(SH 	03) 
-117 -FORMAI' (A77)"-4-- 

atlo; 



Appendix 5 

Evaluation of Madelung constant 

REALK(40).!i(20) p(20),COPA(30),.MUI2(20),L M 	. 
P1=3.14159  
/4=-0,877857 
READ(5,101 )(H(1) (1),P(1),Z(/),I 1,20) 

	

C' __MULTIPLICITY 	P 	 
Du 60 la4U,1'6u 
C0VA=FLOAT(I)*0.01 
wRITE(6005)C0VA • 
LAn=c1 

C  
_PO 50  

Z°when Z=1 BP"'  ISLT. 	ISLTO 

BmZ(4) 	' 	 wheri Z=0 
muusWIT(H(J)**2+K(J)**0 
IF(01,1,4 

_I_On=1,Am+P(Wcmp,“Exp(R./mp*cpv0.!.117. 0 ))_ 
GO TO 50 

4 LAn=LAM-P(J.)/ (111"(W(PJ*1190!.ORYA)P1....0 )_Y______ 
5u cuNTINUE 
o AL.Plia(1.5*PI**2*;OyAl*•(1,0/A.11_,(A+COVA/6.01,LAM*2.001.1__ 
• WRITE(6,103)ALPH 

6u ._CONTINUE 
10u PopmAT(10F6.5) 
• 101 FoRNATUF.0,f2.0.F1•.9 
10e FuRMATC7H `.LAM a ,F8.6) 

	

'1.0 0RMAT(Oi:AL 	F,F8.6) 
104 FoRmAT(5H A • ,F8,6) 

FoRmAT(7H.c/V0_,F7.5) 	 

• 1' 	STOP 

277. 



9F5.3// 

Append ix 6 
	

278: 

Evaluation of the total energy of the indium alloys 

-REAC----H(02),X(1'32) ,L(132) ,U(02I.,KF1161F1(50).4:4F2(50) 9 
T ( 50) 9COVA 	 ---
''' COMMON--COMPiFQJ5Ori-VqiT6'(WiVQ216044CiA4ALi2H(70) 

I =3 • 1 4159,1-:" 
EL=4.802 -' 

V1=104.49 
----7V1=V140 .52915)z-4.1$_ 

V2=107.51' 
V2=V2/ 0).52915) **3 - - 
READ (59105) (COVA ( I ) I=1.1CA) 
READ(541A1)JHCIY-0(tI),L4IVIIUTtY0=43.601 	 
READ (5 9111) (ALPH(1) • I=1,MC#\ ) 

-READ (591-10), 
RE/1) ( 59110 ) VO2 

Evo M=3200  “1;:r_ 
WRITE(69108)M 

-COMP=FLOATIMY0.0'.0 
V= (1 .0-PCOMP ) *V1+CO,MP*V2 

• 
I-0=1 
DO --60:7J=1.,8 ;MCA:7 
WRITE (69107) COVA (J) 

CALL DES==  
V/CO VA( J 	( 4-.0 -3 

--C.7:A*COVA (J) 

CS=C*C 

Q= 	(r) **2+K ( 1)**2) /AS+L V**2/CS 
10=2 9,1-.P, 1* R (Q)^ 	 
X.:Q/0.125 
NE=X•H: 

14~IF 	1.21 
WRITE ( 6.103 aiEBS . 	_ 	_ 
GO TO 59 

0 1 X-FLOAT (NV: 
FOQ=FQ (t)) +El* FO (NE+1)..F(1 (NE) ) 

„-EFIS=E8S:+FIQQ*U 
15 V(1725)1691916 
16--:71 	-.39 ) 42:9192 
1 WRITE(69103) 19E8S 
2tCONTINUE, 

J EES,y2,!I4ELiV 

50 CONTINUE 

. 	WRITE (6.112)ETOT 

80 CONTINQE 
01 '..FORMAT (36F2..-.0_)7; 

-102 FORMAT (2F7.6) 
1:03;7_F ORM AT OW; ER S 

71Ci5 .7FURMAT (24F3,2 ). 
7107"F_OROA _  
108 FORMAT (///25H 	 

7-.7y7---pERCENT) 
110 FORMA7()OF6,5) 
111 . TORMAT(Fti.6): 

..112 FOR!IAT:(410 TOTAL 
:;TOP 

F8.5 



279. 

REAL 
COMMON=.--.,.--OQMP.,1_FQP.50/0/Q1 (601,012 (6,0).,C9AEALP,H (70/0 tEESt V20fI 
Ms=9-.1066- 

7:--HB=6.624/ (2,i- O!*P/ 

ALF1=0. 1186 

ALPHA= (1.0-comP)*ALF1.0,coH*ALF2:T,  
F=t12.0*ZAv*PI**2/v)**(i.)/3.o) 
S=SOR 	 - 

- 14FUTE (6i 105) Kro- KS 
(.Msii-EL-**2*0-•00*529151:112.0*P 

Dr.9.52915 4F1-,-601-8-670-13•-60353*V/ (32.-.0*PI*EL4*2) 
5(1,-1=1'50 7 	 - 

	

_ 	_ 
(11= (1.0.st 011PY*VQ1-1 I ) COMP*VQ2(I)   

	

----, 	* 
(4=Q*0 ;125 

= Qi, 
IF (ETA-1.0)192,1 

. 	.• 

EP S1 
. 00 10 3,  

-T1,01/ETA**2 	-  
 	0 JA Ti-NO 
'EPS2=1.0+(1.0.PALPHA)*(i.0-(0**2/2.4)/ 	 

FQ 	) •=0C) 

-105 FORMAT 	 oF7 ,5,611 KS = vrt•S) 

:END 

OtETW11,0-EIA)-) 

- 	- 

- - 
C.OHMON c0i1P tr-Q(sOT 0,/(41 	(6-0-)-iCit-A-0--ALPH-170 t-J 	F'. I 9L 

=3,3 55Brt 

FOR SECOND ELEMENT 
OMETA=V14.0..".-- - - _ •- 	- - 
R=0.0*OME(A/(4.0*PI))4Off0/3.0):*6.5291S 
Z V 
2AV5=ZA1/ 4**2- 
ZVS 	MEAN VALENCE SQUARED 
EES= ZAVS*EL 41'*2*ALPH (J) (e•O*R) 

WRITE ( 6 11,02) ALPil (..1) yEES• 
R I-I A T:iR--,TALP 	F7_9;31747 E ES 

RETURN .. czi: - =- 
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