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ABSTRACT  

The work described herein is primarily concerned with the 

distortion and shape of a gas bubble, of prescribed volume, rising 

steadily in an inviscid incompressible irrotational flow, under the 

action of surface tension forces. This is a well-posed non-linear 

free boundary value problem. However, the fact that the bubble 

shape is rnkrown, makes it an extremely difficult problem. The 

exact shape has not yet been found by any worker in this field except 

when the distortion is small, then the bubble is an oblate spheroid, 

Moore (1959). 

In Chapter I, a general survey of previous theoretical and 

experimental results is given. Some approximations and idealized 

models which might, be amenable to theoretical treatment are considered. 

A perturbation series solution, for the bubble shape, is derived 

in Chapter II. A method of accelerating convergence is used to 

improve the results. Although the range of validity of this theory 

is small, within this range, the bubble shape is exact. The drag 

coefficient corresponding to this surface is also found. 

The aim of Chapter III is to find an appropriate extenSion to 

the tensor virial theorem of the second order, relevant to the gas 

bubble problem. In consistency with experimental evidence and 

previous theoretical models, Siemes (1954), Saffman (1956), Hartunian 

and Sears (1957), Moore (1965), a trial shape for the bubble in the 

form of an oblate spheroid is used. It is shown that for small 



deformations from the spherical shape, the results are exact. 

Comparison of the results with those of Moore's (1965) approximate 

theory revealed similar features and reasonable agreement. Direct 

assessment of the virial method showed considerable improvement on 

previous theories, particularly for highly distorted bubbles. 

In Chapter N an approximate method is developed for the study 

of slightly distorted spheroidal bubbles. The boundary value 

problem is solved, numerically, using an initial value technique. 

The shapes of the bubbles are then traced in comparison with the 

unperturbed spheroids. The theory is then extended to include gravity, 

as well as retaining surface tension forces. The dual effect of 

gravitational as well as surface tension forces on bubble shape has 

not appeared in earlier theories. These bubbles are then traced and 

it is observed that they are characterized by a dent at the rear 

stagnation point. 

Finally comparisons for the velocity of rise, and other physical 

parameters, are made between the present predictions and experimental 

results. In particular the results are compared with some experimental 

data for the motion of gas bubbles in liquid metals, something which 

has not received much attention in earlier theories. 
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CHAPTER I  

INTRODUCTION  

Interest in the motion of gas bubbles in a fluid medium has 

existed for many years and has resulted in a number of experimental 

and theoretical investigations. Some of the features of the mechanics 

of bubbles are discussed in Batchelor and Davies (1956), and Levich 

(1962). The problem of the motion of gas bubbles in liquids is of 

considerable importance in several engineering processes. In parti-

cular, the shape of a bubble is found to play a leading role in these 

processes. This is because of the influence it exerts on the 

dynamics of a bubble. 

It is well known, partly as a matter of observation and partly 

from mathematical analysis, that small gas bubbles are always spherical. 

However, it has been observed experiments-11y, Peebles and Garber (1953) 

and Haberman and Morton (1953), that as a bubble size increases it 

undergoes changes in its shape from spherical to ellipsoidal to a 

spherical cap. This is also accompanied by corresponding effects in 

other physical properties such as its velocity of rise and the drag. 

It is therefore necessary to examine the factors that govern the 

deformation of bubbles and the resulting influence of deformation on 

the flow parameters. 

The motion of a bubble, of prescribed volume, rising steadily in 

an infinite incompressible pure liquid under the action of gravity, 

is determined by the viscosity, uo, of the liquid, and the interfacial 



tension 4'. In this study it is assumed that the liquid contains 

no surfactants. In addition the thermally induced surface tension 

gradients are negligible, (see Harper, Moore and Pearson, 1967). 

It is further assumed that the volume of the bubble is invariant, 

and that the motion of the enclosed gas has a negligible effect on 

the flow. 

It is customary to use, as a length scale, the "equivalent 

spherical radius" re  defined by 

4 5- Irre3  .= v, 

where V is the volume of the bubble. 

The dimensionless parameters which are of direct dynamical 

significance are the Rynolds number R, and the Weber number W, defined by 

R = 
2repU 

P
o 

2 

2r pU2  

W = 	 
a 

(1.2) 

(1.3) 

respectively. Here U is the steady upward velocity of the bubble and 

p is the density of the surrounding liquid. The Weber number, in 

particular, measures the ratio of inertia forces to surface tension 

forces which are maintaining the bubble shape. Finally we give the 

M number, defined by 

gp 
 

-(1.4) 
pa
3 

where g is the acceleration due to gravity. Thus the parameter M is 



a sole property of the liquid. 

The work described herein concerns the distortion and shape of 

a gas bubble rising steadily, at Reynolds number large enough such 

that boundary-layer ideas are applicable. It is clear that the surface 

of the bubble must be stress-free so that the tangential viscous stress 

component must be continuous across its surface. As this condition is 

not satisfied by the ideal flow, a thin boundary-layer forms at the 

bubble surface. Moore (1963) discussed the structure of the boundary 
t.14t 

layer on a spherical gas bubble. It was shownithe boundary-layer 

separated at the rear stagnation point to form a wake of breadth 

1/4 0(11 	), and that the perturbation of the irrotational flow was 

0(R 1/2) in the wake and viscous forces produced no significant modifi- 

cation to the velocity profile. In his (1965) paper he extended this 

theory to the case of ellipsoidal bubbles. Winnikow and Chao (1966) demon- 

strated the thinness of the wake in the case of droplet motion. In 

the present work we shall assume that the boundary-layer does not 

separate from the bubble surface. 

Consider now Laplace's equation, for the pressure drop across the 

liquid-gas interface, which is to be applied to the solution of the 

profile of a bubble; 

1 1 
'"'Pnn + a (— + 	p 

R1 R2 g' (1.5) 

where Pnn 
 is the normal 

curvature and P is the 
g 

assumed to be constant.  

stress, R1  and R2  are the principal radii of 

gas pressure inside the bubble and which is 

Equation (1.5) which is to be satisfied at 
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every point of the bubble surface, expresses the constancy of the 

internal gas pressure. -Pnn  is eaual to the pressure P in the 

irrotational flow plus the viscous normal stress which is smaller by 

a factor of 0(R 1) and its contribution is therefore neglected and 

the shape of the bubble calculated as if the flow were inviscid. 

Equation (1.5) then reduces to 

p 	el '4.  1 1 = p 

‘R1 R2' g 
(1.6) 

Viscosity still plays a role in the problem, since the velocity U 

depends on it. However, the shape of the bubble is now independent 

of viscous mechanics. Even then the resulting inviscid free-boundary 

problem is still exceedingly difficult, in view of the fact that the 

shape of the bubble is unknown. This emphasizes the need for some 

simplifying assumptions in order to render it tractable. 

The problem posed here is to predict the shape of a bubble, of 

prescribed volume V, placed in a uniform stream, U, of an infinite 

incompressible fluid which is moving irrotationally The work will 

be confined to axisymmetric bubbles so that the shape of the bubble 

may be represented, in spherical polar coordinates, by the surface 

r = f(p,W), 	 (1.7) 
where 

p = cos 0, 	 (1.8) 
and() is the angle between the radial distance and the direction of 

translation of the bubble. 

Several authors have investigated this problem in the experimental 



and theoretical fields. 

Saffman (1956) investigated the motion of air bubbles in water, 

in a regime prior to that of the spherical cap formation. He gave 

a theoretical and experimental account of the spiralling and zig-zag 

motion of the bubble. Faced with the complication that the bubble 

shape is unknown, he made a simplifying assumption that the bubble 

is an oblate spheroid. This assumption has been justified in view 

of its consistency with experimental observation, where these bubbles 

are found to be approximately oblate spheroids. In his analysis, 

Saffman adopted assumptions about the pressure which are basically the 

same as those made by Davies and Taylor (1950) in their study of 

spherical cap bubbles. He assumed that the flow near the front of the 

bubble is inviscid and considered the distribution of the pressure in 

the vicinity of the front stagnation point. This led him to an 

equation relating the geometrical parameters of the spiral, the bubble 

shape, and the velocity of rise. In a similar way, he treated the zig-

zag motion of the bubble and arrived at an equation which determines 

the stability of its rectilinear motion. Although Davies and Taylor 

(1950) by assuming inviscid flow only near the front of the spherical 

cap bubble, obtained excellent agreement between theory and experiment, 

one should bear in mind that, in this case, the drag coefficient is 

of 0(1) and there is flow separation at the rear of the bubble. In 

view of this, Saffman theory is likely to be inconsistent with non-

separated flows. Also, since he used water in his experiments, his 

results are likely to be valid for impure liquids since water is often 
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characterized by the presence of small impurities. 

Hartunian and Sears (1957) analysis was concerned with the 

instability of bubbles due to hydrodynamical pressure and surface 

tension effects. In particular, they have shown that what decides 

the stability, or otherwise, for bubbles moving in pure relatively 

inviscid liquids is the Weber number. Thus for stability to occur, 

W must exceed a certain critical value W. They assumed a bubble 

shape in the form of a deformable sphere and obtained a critical Weber 

number of 3.18 for the onset of instability. They further approximated 

the bubble shape by an oblate spheroid of revolution for all W. It 

was not then possible for them to satisfy the surface pressure 

condition (1.6) properly. They only satisfied it at the equator and 

the pole but their analysis was in error. This technique was also 

adopted by Siemes (1954), who studied gas bubbles, and their growth, 

in liquids. 

Mbor&apers (1959) and (1965) deal with both linear and non-

linear theories for the distortion of spherical bubbles at large 

Reynolds number. He first examined the case of the nearly spherical 

bubble and proved that for small Weber numbers (W < 0.1), the bubble 

is oblate spheroidal. However for Weber numbers of 0(1), the shape of 

the bubble is unknown. Following Hartunian and Sears (1957), he 

assumed that bubbles whose Weber number is of order unity are still 

oblate spheroidal. In view of an algebraic error'in their work, he 

found it necessary to reinvestigate this problem. We shall refer to 

this method as the "Two-point Theory". Moore satisfied the dynamic 
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boundary condition (1.6) at the pole and the equator, being the 

points of minimum and maximum curvature respectively. It is 

instructive to mention that G.I. Taylor (1964), using the same 

approach for a problem in electrostatics, obtained good results on 

satisfying the respective condition at the same pair of points. 

Moore's analysis led him to the expression 

If= 14(x3  + x 2)(x2sec-lx -  
(x2 1)1/232 

x 4/3(x - 1)32  
(1.9) 

which gives the Weber number in terms of the axis-ratio x which is 

a measure of the ratio of the transverse and longitudinal axes of 

the bubble. It is a very convenient parameter for characterizing the 

shape of the bubble. Moore has shown that the maximum error in the 

"Two-point Theory" should not exceed 10%, from the exact one, up to 

x = 2. 

The experimental paper by Haberman and Morton (1953) includes 

a vast literature search on the problem. Their results regarding the 

velocity of rise, the bubble shape and the bubble trajectory for each 

liquid, depend on the parameter M which is solely a property of the 

liquid. In particular, for low M liquids (M < 10-8), which are the 

subject of study in this thesis, they observed that as re  increases, 

the bubble changes shape from spherical to oblate spheroidal while U 

increases rapidly to a maximum, with the bubble rising steadily in a 

vertical straight line. Beyond this maximum, with further increase in 

re, the bubble motion is no longer rectilinear but may rise along a 



zig-zag path or in a uniform spiral. Also the bubble fluctuates and 

U decreases steadily to a minimum before rising again. For very 

large re, the bubble ultimately attains the shape of a spherical cap 

with fluctuations at the rear. 

Jones (1965) studied bubble behaviour in/fluidized beds. Although 

the results given in his thesis are primarily concerned with bubbles 

in liquids of high viscosity (p0  > 1 poise), the range of viscosities 

used covers some liquids of small viscosity. Of particular interest, 

he examined the shape of air bubbles rising through water. Photographs 

of these shapes are also to be found in Batchelor (1967) Plate 14. 

More recently Schwerdtfeger (1968) investigated the rise of argon 

bubbles in mercury. As liquid metals are characterized by very high 

surface tension, compared to ordinary liquids, they are likely to differ 

from them in their hydrodynamic behaviour. In particular the M number 

(1.4) is relatively smaller for liquid metals. Schwerdtfeger doubted 

that the correlations for the velocity of rise of gas bubbles in 

ordinary liquids may not be applicable to those in liquid metals. 

However, he compared his experimental results with those of Haberman 

and Morton (1953) for the rise of air bubbles in water. In the case 

of argon bubbles in distilled water, the results compared favourably. 

On the other hand the velocity of rise of argon bubbles in mercury 

seemed to be lower than that of a gas bubble in distilled water, having 

the same volume. 

Having now surveyed some of the experimental and theoretical 

background to the problem, we proceed to give a brief account of the 
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work in the remaining chapters of this thesis. 

The aim of Chapter II is to extend Moore's theory (1959), for 

small W, which gives the shape of the bubble in the form 

r = a[1 - 3W  P
2 
 (p)] + 0(w2), 32  

(1.10) 

where a is a length scale specified by the volume of the bubble and 

P2
(p) is Legendre function of order 2. It is therefore plausible to 

proceed by expanding the departure of the shape, from the spherical, 

in powers of W. The analysis is confined to the calculation of second 

and third order surface deformation in powers of W, since the algebraic 

manipulations quickly become unwieldly. The surface (1.7) for the 

shape is assumed to have fore and aft symmetry, so that an expansion 

in Legendre functions of even order is used. The results are compared 

with those of the "Two-point Theory" which, as pointed out earlier, 

is reliable up to x = 2. It is found that the convergence is poor 

unless x < 1.4. Thus one cannot claim that the perturbation method 

is a suitable one for solving the problem. The range of validity is 

too small for that. In spite of this, we believe, the results are 

not without interest. First, to within the range of convergence the 

theory and consequently the shape are exact. Secondly, the features 

of the theory are interesting enough to record on their own merit. 

Thirdly, by appealing to Shank's method for accelerating convergence 

Van Dyke (1964), the results are considerably improved and they are 

found to be reliable up to W = 3. 

In the remainder of this chapter, the drag for the perturbed 
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surface, to 0(0), is calculated from the dissipation in the potential 

flow using the expression given by Lamb (1959). An expression for 

the drag coefficient has been obtained after tedious calculations. 

These computations could have been considerably reduced if one uses 

the brief elegant version of this expression developed by Harper (1970) 

in which velocity derivatives are not required. One needs to know only 

a coordinate system appropriate to the body and the value of the velocity 

potential over its surface. Unfortunately this paper appeared after 

the present calculations were made. 

To the first order in W, the drag coefficient is found to agree 

exactly with Moore (1965) expression for the drag coefficient of a 

spheroid with flow parallel to its axis of symmetry. However, for 

higher orders in W, the theory gives higher values for the drag than 

those predicted by Moore's theory. These results are of small 

theoretical range of validity in view of the fact that corrections 

resulting from the boundary-layer are not computed. 

Chapter III is devoted to the solution of the present problem 

using the virial method. An appropriate extension to the tensor virial 

theorem of the second order is established. A trial shape in the ford 

of an oblate spheroid is used and the resulting tensors calculated. 

An expression for the Weber number in terms of the axis-ratio is 

finally obtained. To the first order in W, this expression reduces to 

Moore's (1959) result for linear theory. On comparing the theory with 

the "Two-point Theory" excellent agreement has been found up to x = 2.. 

Again, on comparing it with the method of accelerating convergence, 
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good agreement has been obtained up to x = 3. An important feature 

of the theory is the existence of a maximum Weber number of 3.271 

at x = 3.72, and thus exhibiting the swim sort of behaviour predicted 

by Moore's "Two-point Theory", though at a smaller axis-ratio. This 

supports Moore's (1965) conjecture that there is a maximum Veber number 

above which the symmetric shape is impossible. Finally direct assess- 

ment of the virial result using Moore's (1965) technioue for calcula- 

ting the percentage error in the curvature in equation (1.6), so that 

it may be satisfied exactly at a general point on the bubble surface, 

shows considerable improvement on the "Two-point Theory". 

In Chapter IV an approximate method is developed for the study of 

slightly distorted spheroidal bubbles. The convenient system of oblate 

spheroidal coordinates is used. The fact that the bubble is an oblate 

spheroid for small W, suggests that the bubble might not be too differ- 

ent in shape from an oblate spheroid of the same axis-ratio even for W 

of 0(1). In view of this we shall take an oblate spheroid as our 

starting point. Unfortunately, it is not possible to adopt the method 

of Chapter II in this section, since the perturbed first curvature for 

an ellipsoidal surface is an irrational function of one of the coordinates. 

Two main problems are investigated in this chapter. Also reasons are 

given for the failure of the perturbation scheme of Chapter II. It is 

illuminating to find that similar features exist in solving the problem 

of two dimensional motion of an ellipse. In particular it is shown that 

both theories break down at an axis-ratio x = )/E, due to an improper 

representation of the velocity field at this value. 



Now in the first problem an approximate method is developed, 

based on the hypothesis that the true shape of the bubble will differ 

little from an ellipsoid having the same volume. In view of this 

assumption, it is plausible to use the flow field about this ellipsoid 

to determine the dynamic pressure on the surface of the true shape. 

The shape is determined using the expression for the Weber number in 

terms of the axis-ratio, first for the "Two-point Theory" and then for 

the virial theory. The shapes are traced for different values of Wand 

compared with those of the unperturbed ellipsoids. This method also 

provides an alternative way of comparing the "Two-point Theory" with 

the virial theory. 

The second problem is the same as the first, apart from the 

inclusion of gravity. As far as I know, the problem of studying the 

simultaneous effect of surface tension and gravitational forces on the 

shape of the bubble, has not appeared before in the theoretical litera-

ture. Gravitational force is introduced through the known expression of 

the drag on the ellipsoid in terms of the Froude number. The resulting 

differential equation is solved using the same numerical method for the 

symmetric shapes. Results are obtained for different values of the /I 

number, using the Weber number given by the virial theory, since 

it is more trustworthy. The predicted drag coefficient is plotted 

against the Reynolds number for a range of values of M. The 

shapes of the bubbles are traced in comparison with the unperturbed 
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ellipsoids. They are found to be characterized by a dent at the 

rear stagnation point. Walters and Davidson (1962, 3) obtained 

similar shapes in their experimental and theoretical studies of 

accelerating bubbles under the action of gravitational forces alone. 

They observed a tongue of liquid forming at the back of an accelera-

ting three-dimensional bubble. The bubble distorts into the form 

of a mushroom and ultimately into a spherical cap. Although this is 

mere coincidence with the present theory, it may indicate the natural 

development of a bubble shape from spherical to spheroidal to a 

spherical cap. 

It has also been observed that as a bubble is deformed from the 

spherical shape, the appearance of a dent at its rear is delayed, in 

liquids of smaller M numbers, until larger axis-ratios are attained. 

This seems to be consistent with experiment in the sense that the 

effect of gravity is more profound, as M increases, so that a bubble 

may change from spherical into a spherical cap shape without having to 

go through the intermediate spheroidal shape. 

Finally, the predicted velocity of rise of gas bubbles is tested 

with some experimental data. Three diverse cases are examined. The 

rise of air bubbles in water (M = 2.4 x 10-11) has often produced 

discrepancies in experimental results. This is attributed to the fact 

that water, however pure, is known to contain a small quantity of an 

unknown surface-active contaminant. The present data is taken from 

the classical results of Haberman and Morton (1953). Another data 

taken from this reference is that for the rise of air bubbles in 



- 20 - 

methyl alcohol (M = 8.9 x 10 	This provides a chance for 

comparing the present theory with Moore's (1965) earlier theoretical 

predictions, as well as with experiment: Finally, the theory is 

compared with the experimental results for the rise of argon bubbles 

in mercury (M = 3.7 x 10-14), Schwerdtfeger (1968). These results 

have not been compared with any relevant theoretical results. This 

provides a good opportunity for comparison with the present theory. 

The outcome of the above comparisons showed good agreement between 

theory and experiment. 
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--CHAPTER II  

-NO&.LINEAR'PERTURBATIONS OF A'SPHERICAL  

BUBBLE  

1. Introduction  

The aim of this chapter is to predict the shape of a bubble, 

of prescribed volume V, placed in a uniform stream U. The bubble 

is surrounded by an infiniteLincompressible fluid which is moving 

irrotationally. In the absence of gravity, thus, the shape of the 

bubble is maintained by the interaction of hydrodynamic pressure 

forces and surface tension forces. The physical parameter which 

measures the ratio of these forces is the Weber number W given by 

2r PU 2 
 W = 

	

	 (2.1) 

a 

where p is the fluid density, a is the interfacial stress and r
e 
is 

the "equivalent spherical radius", (e.s.r.), defined by 

3 
4 
-gr

3 
 = V. e (2.2) 

If W is zero, the dynamic pressure has no effect and the bubble is 

spherical. This suggests we might proceed by expanding the departure 

of the shape from the spherical in powers of W and the first term of 

such an expansion has been found by Moore (1959). However, in 

practice, the algebraic manipulations quickly become unwieldy. We 

therefore limit ourselves to calculating only the second and third-

order corrections to the surface deformation. We start by assembling 
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some expressions needed in the solution. 

2. Equations of axisymmetric irrotational flow  

For flow with axial symmetry using the Stokes stream function * 

as the dependent variable the velocity components in the directions 

of increase of the spherical polar coordinates r and 0 are given by 

	

1  a. 	a 
qr -  2 	q0 	• 

	

r sin e ae 	r sin 0 ar 

The condition that the flow be irrotational is 

aqr 	a(rq0)  

	

ae 	ar `- 

(2.3) 

(2.1 ) 

This leads to the differential equation for b  by substitution from 

(2.3) 

2 — 	2 ) a2,  
ar
2 

r
2 

ap
2 
 

where 

cos 8. 

Two fundamental solutions of this equation are 

1 2 dP 	dPdP n+1, 	1 	 n r 	- p ) 	- — r 	- p ) n + 1 	dp 

(2.5) 

(2.6) 

(2.7) 

whei.e P
n, which is understood to mean P (p), is Legendre function 

which satisfies Legendre's differential equation of integral order.n, 
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dP d -d7j [(1 - ) 	3+ n(n 1)Pn  = 0. (2.8) 

Thus a general solution for the stream function in spherical 

coordinates is of the form 

= c r 	+ Dnr 
n+1 	- An., l - u 

n=1 

dPn 
du (2.9) 

where on, Dn 
are constants to be determined by the boundary conditions. 

This will ultimately lead to the particular streamline generating the 

bubble's surface, on imposing the appropriate conditions of the problem. 

3. 	Slip velocity  

The pressure P is determined from Bernoulli's equation 

-g (qn P -g(qn
2 q

t)  = Ps' 
	 (2.10) 

where Ps  is the stagnation pressure, qn  and qt  are the normal and 

tangential components of velocity at a point P(r,e) on a meridian 

section AB of the surface 

r = r(p). 	 (2.11) 

Now with this surface being a streamline, there is no flow normal to 

it so that 

qn  = O. 	 (2.12) 

Equation (2.10) therefore reduces to 

1 2 
P  TPqt =Ps.  (2.13) 
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Now with the help of Figure 2.1 and the geometric relation 

tan $ = -r/(146), 	 (2.14) 

where dots designate differentiation with respect to u, it will be 

a straightforward matter to show that 

2- 	
a .{ 1  a L.22.1

2 

qt  r 	art2  	• a ar r  2 auJ  • (2.15) 

• 

This gives the square of slip velocity at a point P, on the surface r, 

where 

a = 1 - 2. 

4. 	First curvature  

The first curvature J of a surface is defined by 

J = 1  
R1  R2  ' 

(2.16) 

(2.17) 

Irithil1 	R2 and 	the principal radii of curvature. The derivation of J 

for a surface with axial symmetry, using orthogonal curvilinear 

coordinates, is described in appendix (2A). In this section, the 

expression is derived using the spherical polar coordinates (r,e). 

The surface of revolution is taken to be 

G = r - a - ag(e) = 0, 	(2.18)  

where a is a length parameter to be specified later. It is more 

convenient to work in the coordinates (r,p), where p is given by 

(2.6), so that (2.18) becomes 



J 
r(r2  + ag2)3/2  

a(2r3  + 3arg2  + 2pr2g + apg3  - arg), 
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G = r - a - ag(p) = 0. 	(2.19) 

Now by straightforward calculations and substitution into equation (5) 

in appendix (2A), the expression for J, for a surface of revolution, 

in spherical coordinates is found to be 

(2.20) 

This expression may also be written in the form 

2 3 	2 d a[2a r - a r2du 	+ 3ar(ag)2 + p(ag)3] 
J = 

1/2 	2 	2 3/2 a r[ar + (ag) ] 

(2.21) 

This is more suitable when g is given as a series expansion in terms 

of Legendre polynomial • 

Formulation of the problem  

We are now ready to state the problem formally. We seek a 

Stokes stream function *, a bubble shape r = r(p) and a bubble gas 

pressure Pg  such (Figure 2.2) 

2 (2.1  11+  Et_ 32 
' 	- ar2  r2  au 2  

0 

(ii) *iv - lUr2  2 4  

 

as r÷Ce 

(iii) * = 0 on r = (u) 

 

1 2 (iv) aJ = P g 	on r = r(p) 

(v) Volume (r = r(p)) = V. 
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By assuming the bubble to depart very little from a sphere, 

Moore (1959) has shown that to a first order in c(Ick<l) the bubble 

is deformed into an oblate spheroid. He -represented its shape by 

the equation 

r = a(1 + cP2) + 0(c2) 	 (2.22) 

where a is a length scale determined by the prescribed volume and 

c  _ - 32 • 
3W , 0(w). 	 (2.23) 

To the order of this approximation, it can easily be shown that a is 

equal to the e.s.r., re, so that it does not matter whether W is 

based on a or re. 

Our purpose here is to calculate second and third order deforma-

tions as the Weber number increases. Consider now the surface 

r= r1 = a(1 + 02 + 1p4 + (p6 ) 

where, again, a is fixed by the condition (V). 

We know that 

= o(w) 

and that 

c = o(W) 
so suppose, subject to a posteriori justification 

and similarly 

ci  

10,  
c 

= 

= 

0(W2) 

0(W3 ) 

= 

= 

0(c2) 

0(c3 ), 
so that equation (2.24) becomes 

(2.24) 
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r = ri  = aft + cF2  + (X1c2  + A2c3)Pb  + A3c3P61+ 0(E4) 	(2.25) 

where c has the form 

c = c1W + c2W2  + c3W3  + 0(W ). 
	(2.26) 

The A's and c's are constants of 0(1) and are to be determined later. 

It should be pointed here that the use of c as a small parameter is 

only dictated by algebraic convenience. The choice of Pn's with 

even order in (2.24) takes care of the assumption that the bubble 

has fore and aft symmetry. 

Now bearing in mind that in the limit 14-4,a0 the bubble is a 

sphere and since a + re  as W + 0, we try an expansion 

m= -U4 r2  1131-  ) l + m=0 r2m+1 a
27314-31; 	1 2m+1 (2.27) 

for the stream function. The coefficients min (2.27) are dimension- 

less constants and Bm  i 0 as W+ 0. 

terms of the above series are taken. 

In the present case, only four 

Further we shall assume that 

B0  = 0(c) ) 
) 

B
1 = ) 

) . (2.28) 

B2 = 0(c
2) ) 

) 
B
3  = 0(e3), ) 

so that 



r= r1 = 
	g(p) + g) 

g  = cP2 (X1c2 A2c3)P4 A3 

where 

% 
+ 0(c 19 
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B = cb(°)+ c2 b(0) + c3 b(0) 	) 
0 	1 	2 	3 	) 

B = cb(1) + c2 b(1) + c3 b(1) ) 1 	1 	2 	3 . . 
/ 

2 (2) 3 (2) 	) B2 = c b2 + c b 
3 	) 

c3 b(3) B = 3   
3 ' 

(2.29) 

where the b's are constants of 0(1) and are subject to later deter-

mination. This assumption will be justified a posteriori. It is 

not strictly necessary to make any assumption at this stage, but a 

commitment to this ordering greatly reduces the algebra. 

Dimensionless form  

It is convenient to non-dimensionalize the above equations. To 

do so, we divide all distances by a, all velocities by U, all pressures 

by pU2  and stream functions by Ua2. Then, on using the same notation 

one gets 

as the surface of the bubble. This notation will help to suppress 

some of the algebraic calculations. The dimensionless stream function 

obtained from (2.27) is 

lf 	1 • 	co 
-a f -Ar r P1 + 	

Bm • 
2 	P 	• m  r2m+1 2m+1 

(2.31) 

The boundary conditions are rearranged to give 



29 

* = 0 on r 
	

(2.32) 

and 

2WaAP + la = Waqt  on rl, 	(2.33) 

where 

AP = Ps - Pg' 

2 = 
a 	cr 

(2.34) 

(2.35) 

is the Weber number based on the length scale a. One rernerk that 

can be made at this stage, in anticipation of the analysis, is that 

the velocity perturbation "lags" behind that of the surface. This 

is revealed by equation (2.33) and considerations of earlier assump-

tions regarding the order of perturbations and that c is 0(W). There-

fore in order to attain the order balance in (2.33) one only requires 

terms of 0(c2) in ) 	qt2  while in the first curvature needs terms of 0(c3). 

6. 	Method of Solution  

Having obtained the necessary equations with the appropriate 

boundary conditions, we now proceed to solve the problem. The kine-

matic boundary condition (2.32) is used for the determination of the 

b's in equation (2.29). On substituting for r1  from (2.30) into (2.31) 

and applying condition (2.32), one gets an expression in terms of 

products and derivatives of Legendre polynomials. This has to be 

transformed into an expression which is linear in P2, Pit  and P6  and 

having no derivatives. The limitation to P6  is, of course, dictated 

by the order of the B's. To achieve this form, one has to go through 
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lengthy algebraic manipulations. Besides using Legendre identities, 

given in appendix (4A), one requires repeated use of the identity 

p p = 

2k 
3(11+1)(n+2)  p

n+2 	
) 

2 n 	.2n+1A ..2n+3) . 	) 
) 
) 

n(n+1)P  + 	Pn 
3n(n-1) 	) 

(2n-1)(2n+3) n  2(4'14-1) -2 	) 
) 

(2.36) 

which may be derived by straightforward manipulations with Legendre 

identities. 

Now equating the coefficients of P0, P2, P4  and P6  to zero, by 

virtue of the linear independence of Legendre polynomials, one gets 

a system of four equations in the B's and e. The expressions (2.29) 

for the B's are then substituted into these equations, neglecting 

terms of 0(e4) or higher. Rearranging the terms, grouping coefficients 

of each power of e together and equating them to zero by the property 

of their linear independence one gets a set of ten equations in terms 

of the unknown b's and A's. Finally solving these simultaneous 

equations for the b's in terms of the A's and substituting their 

values into (2.29) gives 

3 	183 	2 	2_( 191 
3 e 

,f, 56A 
- 55 
	3 

g-A2'g  

_ 
2 	2 	2 3 

) 
) 
) 
) 
) 
) 
) 
) 
) 

(2.37) 

B0 = Ioc  - 350 

B = - 
1 	_14 a 

1 	10c 	5'5 
B 	- 	1 (la 	4.  
2 	2 1 

1 	36 B 	= - 	.1. 
3 	13 11 

g 	35 	50 
- 18A1) 

5), 	)e2 
- 	

- 
11 	55 175 

27)e2 	2 (1377 .4. 
3 	1 

121A  
35 	- 39 175 
60 	3 	3 A 	4. -A )e 11 1 	2 3 	' 

35 	1 



918 2 
19256  

say. (2.38) 

—x c2)P 11 1 	6 

qt' 

(-sr
108

+ 

,- 	c 
108 2 

k Fr   

0(c3). = 

552X1 4  c2)PL  + 77  

- 31 - 

Having found the B's in terms of c and the unknown A's, the 

stream function (2.31) is easily obtained by direct substitution. 

Our final task is to obtain an expression for the square of the slip 

velocity from equations (2.15), (2.31) and (2.37). Again one has 

to go through lengthy calculations in order to express qt  as a linear 

combination of P2, P4 and P6.  Furthermore recalling that qt is only 

required to 0(62), one finally gets 

qt
=2,ge2)p 
(2 175 0 

3 .„ 108 
1  2 • 35 

324 2 
1756  

2 - -- 12  A c )P 1 2 

Consider next the expression (2.21) for the first curvature. 

Expanding this to the third order in g and non-dimensionalizing w.r.t. a, 

one gets 

J = 2(1 - g g2 - g3) - (1 - 2g + 

1 d 1 _213) 4. 0(g4)  
‘u  

2 )—dp 
d g 	( g ) 

Y, say. 	 (2.39) 

Upon substituting for g from (2.30) and carrying manipulations similar 

to the above in order to represent J as a linear expression in the P's, 

one gets 
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.7= ( - 2c 2 + --s )  32 3A 
0 + 35  

(4c _ 22e2 412 c - T 3 -96 7 	A c )P2  + 7 

(- 36c2  + 18Xic2  + 1.8X2c
3  - *960  i7Xl 	

35 	4
c3 4:108E3)p h  

7 

+ (4oX3c3  - 

+ 0(c4). 

240 	3 7?
e 
 3)p  

11 le 
4. 
 7 	6 

(2.40) 

Now upon neglecting terms of 0(c), equation (2.33) becomes 

_2 2WaAP + 45= Waqt + 0(c4), on r = r1. 	(2.41) 

Substituting for 5from (2.40) and qt from (2.38), equation (2.41) 

gives a linear expression in the Pa's. Equating the coefficients of 

Pn to zero, one gets a system of simultaneous equations leading to 

the evaluation of the X's in the form 

26 , 11842 	197 
= 35 ' 	= 17555,  and  • 

1 
-3 - 385' 

One also obtains 

47 c = -rWa  - -5.-(rWa)2 451  - ITOrwa  + 0(Wa4  ) 

. 	33, 	, WaAP = 4I-1 + 2rWa  + (rWa)2  + 51.731rWa)3  + OkWa)], 

where 

(2.42) 

(2.43) 

(2.44) 

= 3/32 . 	 (2.45) 

From (2.43) one recovers Moore' (1959) first order term 

°- - = 	3  W + 0(W2). 32 a 	a 

The surface of the bubble (2.30) becomes 

(2.46) 
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• 

• • 
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r = r1 = 1 - (0.093/5W 	0.01180w2  0.00211Wa
3  )P2 

+ (0.00653W: + 0.00097W:)P4 

- 0.00042Wa3  P6  + 0(Wa4  ). 	 (2.47) 

Axis-ratio x  

This is the ratio of the transverse and longitudinal axes of 

the bubble so that from Figure 2.2 one gets 

fr1]0=112 x=— b 	(r1 0=0 

Upon substituting from (2.47) for r1  one gets 

3 	% 	§..11rw 12  	11.5.12121firm 13  + nft741 X = 1 + pwal  2onal + 	 "a'  `'‘ na' 

(2.48) 

(2.49) 

The volume of the bubble in dimensionless form is found to be 

v  = .141.41 	.1E2 4.  2 E3) 4. of 1  
3 	5 	35 	‘E i• 

1 2 	2 re  = re/a = 1 + 7 + 105E 3 + 0(e4), 

or in terms of Wa 

1, 	272, 	3 re  = 1 + 	+ 	) + o h) Wa'.  5 a 525 a 

Now since 

• 

(2.50) 

(2.51) 

(2.52) 

Wa = W -  5120  W
3  + ). 	(2.54) 

Hence in terms of W, which is based on re, the above equations become 
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e = - 0.09375w + 0.01180W2  + 0.00194w3  + 0(.14), 	(2.55) 

r = r1  = 1 - (0.09375w + 0.01160w2  + 0.00194m3)132 

+ (0.00653w2  + 0.00097w3)P4  

- 0.00042w3p6  + 0(w4) 
	

(2.56) 

and 

x = 1 + 0.14062W + 0.0261142  + 0.0061W3  + 0(w4). 	(2.57) 

Similarly the stream function coefficients (2.37) expressed to the 

third order in W are 

Bo = - 0.02813w - 0.00814w2  - 0.00196W3 

B 1 = 0.02813W + 0.00357W2  + 0.000930 

B
2 

= - 0.00335W2  - 0.00056W3  

B
3 
= 0.000510. 

(2.58) 

The function x(W) given by equation (2.57) is now plotted in 

Figure 2.3 for the different order perturbations in W. On the same 

figure the curve W(x) for the "Two-point Theory" is also plotted. 

Comparison of the two theories shows that the perturbation solution 

converges towards that of the "Two-point Theory". However, detailed 

examination shows that the third order theory departure from the "Two-

point Theory" is 4.1% at x = 1.4, 7.1% at x = 1.6, and 11.2 % at 

x = 1.7. Moore (1965) has shown that the maximum deviation of his 

theory from the exact one should not exceed 10% at x = 2. It is 

thus clear that although the perturbation theory is exact for small 

Weber numbers, its convergence is slow. One can try the methods of 
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accelerating convergence described in Van Dyke (1964), p.202. 

Among these is Shank's method for improving slowly converging series, 

or even divergent. Applying this method to the series (2.57) for 

the expansion of (x - 1), the corresponding expression is found to 

be 

x - 1 = 	367W  
2610 - 610W (2.59) 

Again we plot this curve, Figure 2.4, in comparison with that of the 

"Two-Point Theory". One finds that they differ by 6.8% at x = 2 

which is well within the estimated range for the exact theory. Thus 

it seems likely that this result is fairly close to the exact theory 

up to x = 2. 

7. 	The drag on the bubble  

As discussed in the introduction, at large Reynolds numbers 

viscosity does not affect the shape of the bubble. Moreover, as 

Levich (1962) has shown, the drag force D on the bubble can to leading 

order be calculated from the dissipation in the potential flow, and 

from the expression given by Lamb (1959), p.581, for the dissipation 

in a potential flow 

DU = - pof PI.V(2)dS; 
	 (2.60) 

the integral being taken over the body surface, and n is normal into 

the fluid. dS is element of surface area and uo is the viscosity. In 

dealing with axisymmetric flows it is convenient to express (2.60) in 

terms of the spherical coordinates r and p and the stream function *. 
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Now from Figure 2.1 one gets 

A 	A A n = sin a r - cos a e 2 (2.61) 

and 

a Al a, v = (r 	0i-; 30 ). (2.62) 

dS is given by 

dS = -2ur2dp 

and . 

2 	2 	2 	.31.2 1,1 it. 
)
23  

r q = qr qe = [( 2 ap) 	;r Br •  

(2.63) 

(2.64) 

Upon substituting for these expressions in (2.60) one gets, after 

some manipulations, 

1 	1 	pi. It 2 = N 	
1  

{-4 1 	) a r ar 
p=-1 r2  V7 ---7: ar 

	

, 11.4 4, 824, 	2 (4)2 

	

3p" 3rap 	r2 ap 

2 r aka2tp 	213 	dp, 
a ar 2 	3 3p 2.0 3r r 3p 

where 

D  
Uapo  

is the dimensionless drag. 

The actual drag D is given by 

D = 1 — pU2  lire
2  CD,  2 

r  r= l  

(2.65) 

(2.66) 

(2.67) 
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where CD 
	the drag coefficient. Combining equations (2.51), 

(2.65) - (2.67) and making use of the expression 

R - 
2repU (2.68) 
po 

for the Reynolds number, one gets 

	

1 	• 
CD 	 r ID = 16 f 

[ 	
1

{a  l 
	/911).)2 

Rre  p=-1 )62 ai.2 

a2tp  + 2 fag, 
r 	ar a p arap r2 ‘ap 

2 

Ka* D2* ar 	D2*13 d  
a Dr 2 	3 ap 2 	P.  Dr r 	Dp rr1 

(2.69) 

This integral is evaluated after tedious but straightforward 

calculations, using the expressions for the B's in equation (2.58). 

The final result is 

4 CD 
	R

8 = 	[1 + 0.1875w + 0.02959W2  + o.004760 + o(w4 )]. 	(2.70) 

It must be emphasized that this formula is correct only to 0(R 1). 

The calculation of the term of 0(R_3'2) requires the boundary-layer 

structure to be determined and this has not been attempted. 

Moore (1965) pursuing his analysis for an ellipsoidal bubble, 

obtained an expression for the drag coefficient in terms of the axis-

ratio. Invoking the details of the potential flow about an oblate 

ellipsoid of revolution, he calculated the dissipation in the flow. 

He then found the expression for CD  corresponding to an ellipsoid, 
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vhose axis-ratio is x, in the form 

/3 	3/2 	1/2 48 x (x2  - 1) 	((x2  -1) 	- (2 - x2) sec-1  x] C = D R 
3[x2 sec

-1 x - (x2 - 1)1/27
2 

+ 0(R-3/2). (2.71) 

In order to compare the results (2.70) and (2.71), it is convenient 

to adopt Moore's notation 

4 CD 	R = 	G(x) + 0(R-3/2), (2.72) 

so that the quantity in square brackets in equation (2.70) is also 

referred to as G. 

Now expanding the function G(x), obtained from (2.71) and (2.72), 

to 0(x - 1) (i.e. to 0(e2), where e is the eccentricity of an ellipse 

in the meridian plane) and using the relation 

64 W = -§-- (x - 1), as x 	 (2.73) 

(which may be obtained from either (2.49) or (2.57) since to this 

order Wa = W), one finds that it is identical with the linear term in 

equation (2.70). For further comparison, the graph of the functions 

G(x) derived from equations (2.70) and (2.71) are shown in Figure 2.5. 

Both curves demonstrate an increase in the drag with increasing 

oblateness. However, the present theory, which is not likely to be 

reliable beyond x = 1.4, seems to over-estimate the value of G(x). 
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--CHAPTER -III  

THE VIRIAL METHOD AND ITS APPLICATION TO THt'MOTION  

OF"GAS'BUBBLF19  

1. Introduction  

The virial equations of the various orders are the moments of 

the relevant hydrodynamical equations. These moment equations are 

exact integral relations that must be satisfied by the solution of 

equation of motion and the boundary conditions. The moments them-

selves have simple physical interpretations. 

Although the tensor virial equation has been known since Lord 

Rayleigh (1900), its usefulness in hydrodynamic problems has only 

recently been exploited. It has been revived by Chandrasekhar 

(1961, 1965, 1969) and Lebovitz (1961) in problems of astrophysical 

interest. More recently Rosenkilde (1969) extended the method to 

investigate the equilibrium and stability of an incompressible 

dielectric fluid drop situated in a uniform electric field. A general 

survey of the virial method and its recent applications are given in 

Chandrasekhar's book (1969). 

It is the purpose of this chapter to find an appropriate extension 

to the tensor virial equation, for the study of the equilibrium of a 

gas bubble moving uniformly in an inviscid incompressible fluid which 

extends to infinity. Difficulties arise because the flow region is 

unbounded and a careful treatment of the integrals is needed. 



2. The appropriate form of the tensor virial theorem  

Consider the uniform translational motion of a bubble with 

velocity U, through an incompressible inviscid fluid under the action 

A 	A 
of surface tension forces. As shown in Figure 3.1, n and N are unit 

vectors normal to the surface elements SS and 6E and are both drawn 

in the outward directions relative to the closed surfaces S and E. 

Here, S is the surface of the bubble and E denotes the surface of a 

fixed sphere with a centre C and large radius R. The region enclosed 

between S and E is of volume V and is wholly occupied by a fluid of 

uniform density p. Pg  is the gas pressure inside the bubble and is an 

unknown constant. 

In the present problem it is convenient to employ a system of 

rectangular cartesian coordinates which is moving with the bubble. Its 

origin 0 coincides with the centre of the bubble and has velocity U
1.. 

Also, as illustrated in Figure 3.1, the axis Ox3  is taken parallel to 

the velocity of the bubble so that 

U, = U2  = 0, U3  = U. 	 (3.1) 

Let ui(xl, x2, x3, t) be the fluid velocity relative to E. The 

combination of a moving frame 0x1x2x3  and .a velocity field 

u.(xl'  x2, x3, t) relative to a fixed frame is slightly unusual, but 

has advantage for the present problem. One remarks that since E is 

at large distance and since ui  falls off rapidly with distance from 

the bubblepui  does not depend on t - it would, of course, if E were 

at time t = 0, 0 and C are taken coincident. 



at a finite distance. Thus we can drop the time dependence of ui  

and obtain the momentum equation in the form 

Dui 	aui 	„ 

Puk Dxk  Pijk Dxk= _ Dxi  • (3.2) 

The advantage of this formulation is that certain integrals over E 

willvanishonaccountofthesmallnessofu..The equation of 

continuity is 

au. 
axl = o. (3.3) 

Unless otherwise stated, the summation convention applies to repeated 

indices in the above equations only. 

Now to obtain the second-order virial equation, we have simply 

to multiply equation (3.2) by xj  and integrate over the entire volume V 

occupied by the fluid. Thus the first moment of the equation of motion 

is 

  

Dui 	au. 
axk 	x U 	dV aP   x 	dV k 8xk  

dV - 
V axi 

(3.4 ) 

  

where 

dV = dx dx dx 1 	2 • 3 

  

(3.5) 

is the volume element. Applying the divergence theorem to the right-

hand side of (3.4) gives 

- f x a 
a

p

i 	S 
dV = x PdS. - fx

i 	V 
PdE. + d. f Pd, 

V 	x  	E  

where 6i3  is the Kronecker delta and 

(3.6) 
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(3.7) dS. = n. dS-'  dE.1  = N.dE. 11 3. 

A 
Here n..

1  and N. 
denote the components of A and N respectively. 

At this stage one defines the tensor 

Rij = - 1 
f x. P dE. 2 

and the quantity 

II = f PdV. 
V 

(3.8) 

(3.9) 

The tensor R. represents the effect of the disturbance on the 

pressure at the surface E. In general this tensor is non-zero, even 

when E recedes to infinity. The scalar quantity H accounts for the 

microscopic motion of the fluid particles. 

Now the external pressure on S, adjacent to S, is given by 

Laplace's formula 

P - P = - a div n 
	

(3.10) 

where the constant a denotes the surface tension. (The divergence of 

the unit outward normal to a point on S is equal to the first curvature 

at that point, see appendix (2A)). 

By use of the boundary condition (3.10), the first integral on 

the right-hand side of (3.6) may be rewritten in the form 

s 
	PdS. = - afx divndS. +p

g s 
fx 	• 

or 

f x PdS. = 2C. + K. 
S 	1  

(3.11) 
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where 

C14 = 
= —a f x div dS. 	 (3.12) 2 s  j 

is the Surface-Energy Tensor. This terminology has been adopted by 

Rosenkilde (1967a) where he modified Chandrasekhar's version for C. . 

TojustifYthis,heprovedthatthetraceofCij  is 

C = a f dS = aA, 	 (3.13) 
S 

 
S. 

A being the total surface area of the surface S, and thus agreeing 

with the usual thermodynamic definition of the surface energy. The 

tensor Kij in (3.11) is given by 

K. = P f xj  ds., 1.1 	g S 

and. will be identified as "the gas tensor". 

Now combining equations (3.6)-(3.14) one gets 

(3.14) 

- f 
 

aP x ax. dV = -2C. + 2R. + K. +ffc (3.15) 

The next task is to transform the left-hand side of eauation (3.4) 

into simpler integrals. 

Consider first the relation 

au. 	auk axk  (aiukxj) = uiukdkj  + ukxj '7;  + xjui axk  

au. 	auk = uiuj + xjit  u, 	+ xjui axk 	iaxk  • 

The last term on the right-hand side of this equation vanishes on 

applying equation (3.3). Thus (3.16) becomes 

aui 	a 
xjui= axk  (uiukxj) — uiuj. 

(3.16) 

(3.17) 
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Multiplying this equation by p and integrating over the volume V 

one gets, after an application of the divergence theorem, 

au. 

Pxuk 1 dV = - f puolkxidSk  + 
S 

f pujukxidEk  - 	pujuidV. 	 (3.18) 
V 

We can perform some further useful transformations once we have 

introduced the assumption of irrotational flow. Then 

 

§ 

 

(3.19) U. ax. ' 

where § is the velocity potential. On substituting for ui  from (3.19) 

one gets 

- f pu.0 dV = -p f u 2L-dV 
V 	V 

Now on using the relation 

au 
a(D. 	

a 
 

	

uj axi  axi 	i 	axi  

and applying the divergence theorem, equation (3.20) becomes 

- 	pU.0 dV = f pcbu4dSi  - 

	

V 	S 	
f p§ uj  dEi  

au4  
+ f ax.  dV 

	

V' 	1 

Now we write 

1 L. = - 7,1 px,,uiukdSk  
S 

j 

= rpxiuiukdEk  

	

lj 	2 JE 	au  

Nib 2 = 1  I P ax--J-dV V 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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and 

2 
1 r 

j p§u,dS4, 
S 

(3.26) 

J Tip = —p§u 	, 	 (3.2T) 
1 
2 z 	ji 

where Tip 	 i 
is the kinetic-energy tensor. The contraction of T.

j  gives 

T  = 	P4221113 = 2 fP4dB' 	 (3.28) 
S v 

which is the kinetic energy associated with the macroscopic motion 

of the liquid. The set of equations (3.18)-(3.28) now gives 

au. 
pxj 	dV = 2L 	2 	- 

alr.k 	ij 	
Lij  2T

i3 

-2T. -2N. . 	 (3.29) 

Consider next the second integral on the left-hand side of equation 

(3.4). As Uk  is a constant, it is possible to write 

au. 
U — dV = - U px — dV 
j k axk 	k V  j axk  

— Uk as (u.x ))dV+ pUk  I u,.1dV xk  j V (52 
" 

= fpuixj  Uk  dSk 	i - 	puxj  Uk  dEk 	V 
pU f 

1  
u.dV, 	(3.30) 

after an application of the divergence theorem. In a similar manner 

one gets 

pUj 
V 
f 
 1  
u.dV = pUj a  f 2  dV  x. V 

= 	pU 	pU f 4) dEi. 
i s  1 z 

(3.31) 

To make further simplifications it is useful to define the tensors 

- v 



Qi3 
_1 
- 2 
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i M 	= 	1 	
i J pux Uk  dSk  j 	2 s 	j  

Mi 1 i J pux U dE j 2 	jkk 

J p§U dS. S 1  

J Q.
/ 	1 = - - .1 pEU dE., ij 	2 E 	j 1 

so that combining equations (3.30)-(3.35) gives 

au. 
- 	

'-' 
px4Uk axk 	= - 2Mij  - 2Mij  - 2Qi3  - 2011. 

V  

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

Finally, on substituting from equations (3.15), (3.29) and (3.36) 

into (3.4) one gets 

= 2T. + 2T + 2N. + 2R. lj 	ii 	. 	ii 
• 

+2M.+2M.+2Q.+2Q: ij  ij 

- 2Cij  + Kij  + nair  (3.37) 

which is the tensor virial equation of the second order. It provides 

a set of nine moment equations since 

i,j = 1,2,3. 	 (3.38) 

3. 	Method of Solution  

The application of the virial method requires the selection of a 

trial shape. This will be taken to be 

2 2 2 xl  x2  x 

2 
+ +  2-1, a1 a2 a3 

with 

al = a2' 

(3.39) 
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so that it is an ellipsoid of revolttion whose axis of symmetry Ox
3 

is parallel to the velocity of the bubble. Moreover, we will assume 

that a, > a3, so that the ellipsoid is oblate. This trial shape 

has the advantage that relatively simple expressions for the velocity 

field are available e.g. in Lamb (1959). 

In order to evaluate the various tensorial quantities appearing 

in the virial equation, one requires two other coordinate systems. 

The system of oblate spheroidal coordinates and a related system, 

adopted by Rosenkilde (1967b) in order to suppress some of the 

manipulations. 

Consider first the system of coordinates employed in connection 

with oblate spheroids of revolution. This is related to rettangulai-

cartesian coordinates by the equations 

x1 = w cos y; x2  = w sin y; x3  = kaa, 	(3.41) 

where 

w = k[(1 + a
2
)(1 - a

2
)]
1/2
. 
	 (3.42) 

The domain of the variables a, a, y is given by: 

0 < a < co; - 1 S S 1; 0 y S 2r. 	(3.43) 

As shown in Figure 3.2, which is copied from Happel and Brenner (1965) 

with slight modifications, the surfaces a = ao (const.) are oblate 

spheroids of revolution about the z-axis and are given by 

...,2 z2 w  + 	= 1. 2, 	2% 	2 2 
k a + ao) k ao 

(3.44) 



Comparing this with equations (3.39) and (3.40) we see that 

al  = a2  = k(1 a:)1/2; a3  =.kao. 	(3.45) 

On denoting the eccentricity of the meridian section by e one gets 

)2 = 1  x-2 = (1 4. 	) a2 -1 e2  = 1 - (a3/a11 	o' ' 	(3.46) 

where x is the axis-ratio. The line elements ha' hB and h defined by 

2 2 2 2 2 2 2 dS = ha d al  + h dB + h dy 

are 

ha = k(D/L
)1/2, h0  = k(D/E

)1/2, h 	it(LE)1/2, 	(3.47) 

where 

) D = a2 + $2, D = a
2  02 Do o 	) 

	

2 	) 

	

.11 = 1 + a2 , Lo  = 1 + ao 	) 

E. = 1 - 02. ) 
) 

(3.48) 

The motion due to an oblate ellipsoid (a = ao) relative to a 

fixed frame moving with velocity U parallel to its axis of revolution 

in an infinite mass of liquid, as given in Lamb (1959) p.144, is 

4i= coO(a cot-la -1), 	(3.49) 

where 
a 	 - 

co = -kU/(-2-- cot lao) = - Ua1  /[(1 - e
2 )1/2 - - 1  -sin e]. (3.50) Lo  

It is now a straightforward matter to obtain the velocity 

components along the cartesian axes in the form 

= 

caOxi 	coBx2 = 	2 

111  1NT 2 

u2  k2LD 

u3 
 = c

o 
 ED cot-1a - a]/kD. 

(3:51) 
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Also their derivatives are found to be 

aul 	coa 	con 
	 ( 4 	2 	2 

a a
2 	2 — 	) 

axi k2LD k2LD3 

au2 co 	c SE 	4  
2-  (5a + 3a2  + a282  - 62) 

ax2  k2LD k2LD3  

au3 = coa  (3a2 	0 82 5a2_2 
- 4

). ax 3 k2D3  

cos2  y))  

) 
) 

sin2yi 

) 
) 
) 

(3.52) 

Ilerimproceecitoevaluatetheterisorlliiin (3.25). This is 
clearly a symmetric tensor since 

,2 
	 dv. 	 (3.53) 

	

1/* = 	f°41 a;.ax j 

FurthermorethetraceaLij  vanishes by applying the equation of 

continuity. Now on substituting from equations (3.49) and (3.52) 

into (3.25) one gets 

27mkp 	 ) 
N33   = 	3° 	f (-4 - 15a2 + 13a cot-1a + 	) 

a= 

	

	 ) ao 
) 	

(3.5) 

30a3  cot la3(3a2  + 5a4)(cot-la)2]da. ) 

Evaluation of this integral gives 

) 	[(6 + e2)He2 - (12 - lle2  )eS 
3e2(eH - S)

2 
) 

+ 6(1 - e2) HS 
	) 

Similarly one finds 

N11 = N22 = 	r 	2[(12 - 11e2)eS - (6 + e2)He2  
6e
2 
 (eH-S) 

- 6(1 - e2)HS2], 

(3.55) 

) 
) 	(3.56) 
) 
) 



2 	2 	2 	2 	2 2 	1 - 2  
R = xl  + x2  + x3  = k a (1 4- 

) a
2 

) 

R 	ka 	as a+ co 	) 
) 

- 50 - 

where 

= 2 al3; H = 47 7 ; S = sin le. 1 - 7.7 (3.57) 

Consider next the tensors represented by integrals over the 

surface E. These tensors are evaluated by integrating over the 

surface E as its radius R 03. The appropriate system of coordinates 

is that of spherical polars (R,O,y), where e is the angle between 

Ox3 
and the radius vector R. 

For large values of a, the above potential takes the form 

Now 

ti - coR (1 - a 	
3a
1 
3 + - 	...)J, 	) 

) 
) 

.1"  

co° 	cox3 	as 	a-.°°) 

3a2  = 3ka3 	) 

(3.58) 

(3.59) 

Hence 

c 2x o 	3 	as R 

3R3 
+ co. (3.60) 

It follows that at large distances from the ellipsoidal bubble, the 

velocity potential assumes the same form as that of a double source 

whose axis coincides with the axis of translation (Ox3'  ) so that the 

expression for (1 is 
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- 
U4 
	- ----- 

	

e3Hx3 	UX3 	) 
= 1 laY, $ 	 ) 

3R3(S .. eH) 	R3  ) 
) 

where 	 ) 
Ua3e3H 	 ) I_  1 	. 
3(5 - elf) 	) 

(3.61) 

From the definition of oblate spheroidal coordinates (3.41), it is 

a simple matter to show that 

04/COS e 
	as R 	co. 	(3.62) 

Consequently, on the surface E the coordinates of a point, the 
A 

components of the unit outward normal N, and the element of surface 

area dE are, 

xl  = R sine cos y, x2  = R sine sin y, x3 = Rcose) 
) 

Ni  = sine cos y, N2  = sine sin y, N3 = cost) 	) 
) 

dE. = R2  sin 0 dedy, 	) 
) 

as R 	co. 	 ) 

(3.63) 

The resultant velocity q and its radial and transverse components are 

.given'by 

q2 = 2 +n2 
-JR 	

(3.64) 

ac5 _ a, = 
7 	R ao 

Now from (3.61) and (3.64) one gets 
-2 2 U 	2 

q = 	a + 3 cos 0)2 
R 

so that 

Velocity) N 2-- as R 
R3 

(3.65) 

(3.66) 
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An immediate result of this is that the tensors in (3.2h) and 

(3.27) 

ij = Tip  = 0 for all i,j; 	 (3.67) 

bearing in mind that 

- .1, —2 1  , as R 	co. 

Onevaluatingthetensorstlij in (3.33) and Qiii  in (3.35) (3.68) 

R 

one gets 

2re3 ) 
IL11 = v122 = 15(S - eH) ' 	) 

) (3.69) 
M = 8re3 )  
33 	45(S - eH) ' 	) 

) 
= 0, i 	j; 	) 

Q11 = Q22 = °' 	) 
) 

2re3 	) 
'33 = 9(S - eH) ' 	) 

) 
= 0, i t.  j. 	) ij 

(3.70) 

Considernexttheemblationofthetensorli.in (3.8). Because 

the body is moving and E is fixed the motion near E is. not strictly 

steady and we must use the unsteady form of - Bernoulli's equation 

a'cli 1 2 P 
at + 2 q 	-p = °• 

Now as B ., 45 +I and the q2  term in (3.71) will not contribute to 
the integral in (3.8), so that we may take (3.71) to be 

a4 P = - pvc  • 

(3.71) 

(3.72) 
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The evaluation of Dtgoffers no special difficulties. It only requires 

a simple geometrical consideration. We realize that the origin 0 

is in motion along the axis of the bubble, so that only the x3  

coordinate of a point P (fixed in space) will be time dependent. 

This leads to the relations 

R sin e = const. 	) 
) 

R cos 6 = - Ut + const. 	) 

Using the expression 

aTaR a;fae 
at 	aR at ae at 

one finally gets 

a— 	(1 — 3 cos20), _ uU 
R3 

and from (3.72) 

(3.73) 

(3.74) 

P = 
PW  (3 cos20 - 1). 
	 (3.75) 

R' 

On stibstituting from (3.75) and (3.61) into (3.8), the components of 

the tensor R. are found to be 

4Ve3 	) R 	= R = 11 	22 - 45(eH-S) 	) 

R - 8re3 	) (3.76) 
33 45(eH-S) 

) 

Rij =0 	iO j, 	)  

sothatRii is also a symmetric tensor. 

The remaining tensors in equation (3.37) are all integrals which 

are to be evaluated on the surface S of the spheroid. However the 

tensor Kij  in (3.14) may easily be evaluated with the help of the 

divergence theorem, in the following manner 
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K. =P fx dS
1  
. 

g  S  

where 

= P a 
g 	ax. V 

= P V 6. g b ij 

h 	2 Vb  = 3a3a1  

(x3) dV 

(3.77) 

(3.78) 

is the volume of the bubble. 

By using the method developed by Rosenkilde (1967,b) we can 

evaluate the tensors Cii, Tij  and Q
i3 

in (3.12), (3.26) and (3.34) 

respectively. Some length algebra, (see appendix (3A)), leads to 
2 

) C 	= C22 = noel [e(' e  ) 
2 4  tanh 1  e ],  11 2e 

) wcaH2 1-1 	) C33 - 	
e) tanhe -e 1, 	) 	(3.79) 

e3 

Cj 	 ) 
= , iO j; 	 ) 

i  

 

r(e - HS)[(3e - e3)11- 3H2S] 	) T11 = T22 -  2 	) 3e (eH S)
2 

) 
) 

2r(e - HS)[3eH - (3 - 2e2)S] 	) T - 
33 	2, 	 ) 3e teH s)2 

) 
) i#3; 
) 

(3.80) 

and 

Q11 = Q22 = °' 

2r(e - SH)  
Q33 	3(S - eH) ' 

) 
Qij  =0, i 0 j. 

(3.81) 



— 55 — 

Now using the summation over repeated indices, the tensor Lii  

in (3.23) may be written in the form 

L. = - 1 
S 

p/ u.u.A dS. 
4 	 - 

Similarly the tensor Mi., in (3.32) becomes 

S 
M. = - 7 1  s j 	

j
u.Ual dS. 4  

But 

u.n = U.n on a = ao
; 

— — — — 

it follows that 

L. = Mid. 

(3.84) 

(3.85) 

It is therefore not necessary to evaluate these tensors since they 

cancel each other in the tensor virial equation (3.37). This completes 

the evaluation of the tensor quantities appearing in this equation. 

In particular since it has been found that all the tensors are 

diagonal and Lid, T. are identically zero, equation (3.37) reduces to 

0 = 2Tii  + 2Nii  + 2Rii  + 2Mii  + 2Qii  

+ 20111  - 2Cii  + (PgVb  + 11)314: 	(3.86) 

where use has been made of equations (3.77) and (3.85). Equation (3.86) 

provides a set of three equations (i = 1,2,3). Writing these explicitly 

one gets 

0 = 2T11  + 2N11 
 + 2R11 + 2M11 + 2Q11  

+ 2Q11 - 2C11  + (PgVb 
+ 
	

(3.87) 

(3.82) 

(3.83) 
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0 = 2T
33 

+ 2N
33 

+ 2R
33 

+ 2M
33 

+ 2Q
33 

+ 2Q33  - 2033  + (PgVb + H), 	 (3.88) 

where the equation for i = 2 has been eliminated since it is identical 

with the first one. Now eliminating the unknown constant (PgVb + n) 

from (3.87) and (3.88) and substituting for each element its corres-

ponding value from the above equations, one gets 

W = 2H1/3(S-e11)2[(3e-e3) - (1-e
2)( 3+e2) tanh;?" ] 

 

(3.89) 

 

e (3s - 2Se2 - 311e) 

  

or in terms of the axis-ratio x, 

  

W = 	
-7/3. 2 .2 	2 2. 2x 	thx -g) fgxt3x -g ).- (3x2+g2)  tanh/so 

(3.90) 

 

g
4(3hx2 - 2hg2  - 3g) 

 

where 

   

g = 1/3cETTI7 ; h = sec-ix, 	(3.91) 

and 	
2r pU2 
	

(3.92) 
W= 	a 

is the Weber number based on re, the equivalent spherical radius for 

the bubble. 

The above expression for W in terms of the axis-ratio constitutes 

the main result of this chapter. Another useful result is the expression 

for the gas pressure Pg, which may be obtained from the contracted form 

of the virial equation (3.86). The trace of this equation is 
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0 = 2(T + N + R + 	+ Q + 	C) 3(Pg7i, 	(3.93) 

Considering the value of each quantity, from the preceding results, 

one finds 

N = R = 0, 	 (3.94) 

and, 

+ Q + Q = 1 -py, b„,2 u . 2  (3.95) 

Therefore equation (3.93) reduces to 

3. 0 = T + -12pVb 	2 U2 	-A - C + P g  Vb  + 11). 
	(3.96) 

This represents the scalar form of the virial theorem appropriate 

for a gaseous bubble rising in an infinite liquid. Here, we recall 

that T is the kinetic energy of the liquid, II is the microscopic 

energy of the liquid particles, C is the surface energy and Vb  is the 

volume of the bubble. The expressions for T, C, and Vb  are found from 

equations (3.80), (3.79) and (3.78),respectively. The integral (3.9) 

for II is evaluated in appendix (3B). Substituting for these quantities 

in equation (3.96) one obtains the expression 

f 1 Na 

P - 	g 	%,g/ 2[ x + tanh 	(g/x)) 

- 	elx1/3 

[3hx3  + 2g3(1 - x)-3gx3] 

6(hx3  - gx) 
(3.97) 

for the dimensionless gas pressure, P , in terms of the axis-ratio x 

and the Weber number W, and where g and h are giVen by equation (3.91). 
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4. Conclusions  

On expanding the expression (3.90) as x 1 (i.e. neglecting W2), 

one finds 

x =1 + 	W, 	 (3.98) 

which agrees with the analytic theory. Thus the exact solution is an 

oblate ellipsoid if W2  is neglected. 

The series solution, using the method of accelerating convergence, 

is compared with the virial theory in Figure 3.3. The maximum differ-

ence between the two curves is only 5% up to axis-ratio 3. This is 

very gratifying in view of the fact that the method of accelerating 

convergence is known to bring about a considerable improvement in the 

accuracy. 

Let us now compare the virial theory with the "Two-point Theory". 

It has already been shown that the leading terms in both theories are 

identical and the exact solution is an oblate ellipsoid if W2  is 

neglected. Consider now Figure 3.4 in which the theory of acceler-

ating convergence, the virial theory, and the "Two-point Theory" 

are represented. One finds that for x = 2 the difference in the latter 

two theories is 1.4%, for x = 3, 6.2%, and for x = 4, 11.6%. One may 

be tempted to assume that the difference between them is an indication 

of the error involved in the spheroidal approximation. This may not 

be the case in view of the simplifying assumptions made in both 

theories. However, Moore (1965) has shown that his "Two-point Theory" 

is reliable up to x = 2. This at least ensures that either of these 
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theories is not far from the exact one, up to x = 2. 

One fact that emerges from Figure 3.4 is that, up to x = 2.5, 

the theory of accelerating convergence is closer to the virial than 

the "Two-point Theory". It seems therefore that, up to x = 2.5, the 

virial theory is closer to the exact one than the "Two-point Theory" 

is. This is likely to be the case since the theory of accelerating 

convergence may be expected to be more accurate than the other theories 

up to this value of x. 

Further examination of Figure 3.3 shows that there is a maximum 

Weber number of 3.271 at x = 3.72 in the virial theory, as compared to 

3.745 at x = 6.0 in the "Two-point Theory". Although the latter result 

is well outside the range of validity of the "Two-point Theory" 

approximation, it is striking that the virial theory exhibits the 

same sort of behaviour, though at a smaller axis-ratio of 3.72. This 

seems to support Moore's conjecture that "there is a maximum Weber 

number of ... above which the symmetric shape is impossible". 

Finally we use the method of direct assessment adopted by 

Moore (1965). Basically, one has to find an expression for the error 

arising from the fact that the boundary condition, that the sum of 

the dynamic pressure and the surface tension pressure is constant on 

the bubble surface, cannot be satisfied exactly, at every point, on 

the surface of the bubble. A convenient measure of this error is the 

fractional change in the first curvature necessary to make the above 

condition satisfied at every point on the surface. Moore gave an 

estimate of the maximum percentage error for the "Two-point Theory". 
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In Figure 3.5 these calculations are extended by giving the percentage 

error for different axis-ratios and at different points on the surface 

of the bubble. In Figure 3.6 the curves corresponding to the virial 

theory, using the same technique as before , are traced. This set of 

curves indicates that the virial theory is more accurate than the 

"Two-point Theory", whose corresponding curves are traced in Figure 

3.5. It also shows that in the virial method, the boundary condition 

is, in essence, satisfied on a mean surface, thus using an averaging 

process. 

The virial theory being so good, suggests that a perturbation 

to the shape, using the results offered by the virial theory, might 

give a very accurate solution. 
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CHAPTER IV  

SLIGHTLY DISTORTED ELLIPSOIDAL BUBBLES  

1. Introduction  

It has been seen that for smAll values of the Weber number 

1 (W < 	the bubble will deform into an oblate spheroid. This 
10

% 
 

suggests that when we examine larger distortions we should take as 

our starting point the oblate spheroid. Even for Weber numbers of 

0(1) the bubble might be expected not to be too different in shape 

from an oblate spheroid of the same axis-ratio. 

The system of coordinates suitable for the present formulation is 

that of oblate spheroidal coordinates (a,a,y) which has been discussed 

in the preceding chapter. 

Unfortunately it is not possible to adopt the method of Chapter II 

in this section. The difficulty arises from the fact that the perturbed 

first curvature for an ellipsoidal surface is an irrational function 

of B. This means that Legendre polynomials of all orders enter at the 

first stage of the iteration. 

Precisely as in Chapter II, it is assumed that a bubble having a 

prescribed volume V is placed in a uniform stream U. The bubble is 

surrounded by an infinite incompressible fluid which is moving -irrotat-

ionally. Further assumptions regarding viscosity vio  the gas pressure 

P
g, and motion of the gas, also carry throughout. The notation of 

Chapter III, unless otherwise stated is applicable here. Also the 

expressions representing the physical parameters e.g. W, R,...etc., 

remain unaltered. 
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The first part of this chapter explains, briefly, the reason 

for the divergence of the perturbation method of Chapter II. Failure 

of the theory is predicted at an axis-ratio x = IT, due to an improper 

representation of the velocity field at this value. There is a 

remarkable analogy between this problem and that of a two-dimensional 

motion of an ellipse. This is because in the latter problem, the 

velocity field diverges at precisely the same axis-ratio, x = 

The main part of this chapter deals with two problems having a 

common principle underlying their methods of approach. This is 

basically the selection of an ellipsoid a = ao  which is closest to the 

true shape of the bubble. 

In the first problem, an approximate method based on the hypothesis 

that the true shape of the bubble will differ little from an ellipsoid 

a having the same value, is devised. In view of this assumption, it 

is plausible to use the flow field abou
t ao in order to determine the 

dynamic pressure on the surface of the true shape. Two cases are 

considered: 

(a) in which the Weber number, and consequently ao, are given by the 
• 

"Two-point Theory". 

(b) W and a are given by the virial theory. 

The second problem examines the effect of gravity, as well as 

surface tension, on the shape of the bubble. The formulation of the 

problem resembles the case of surface tension alone. The shape of the 

bubble is obtained by perturbing an ellipsoid a
o assuming that the flow 

field about the true shape is the same as that about ao. This leads to 
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a differential equation in terms of the Froude number, which is 

unknown. This difficulty is resolved by expressing the Froude 

number in terms of the drag on the ellipsoid ao, and this is a known 

quantity. The numerical solution of the differential equation is then 

accomplished using a similar procedure to that of the "symmetric case", 

of surface tension. The problem is solved for different values of the 

M number. The shapes of bubbles for both the "symmetric case" and the 

case of gravity are traced in comparison with the ellipsoids ao. 

Theoretical curves for the drag coefficient are plotted. Also compari-.  

sons are given with some experimental results. 

Before considering these problems in detail, let us first intro-

duce the velocity field in oblate spheroidal coordinates and compare it 

with its counterpart in spherical polar coordinates. 

2. The velocity field  

In oblate spheroidal coordinates Laplace's equation 

2:c V ty = 0, 

where (I is the velocity potential, takes the form 

al 	;215 

	

2—f). 	Da 	Da + E L - ----= 0 

	

3a 8a 	' ay 

(4.1) 

(4.2) 

where L and E are as defined in Chapter III. Using the method of 

separation of variables, a fundamental solution of (4.2) which is 

gymmetrical about the axis of revolution and is appropriate to the 

region outside a spheroid of the family a = ao  (const.) is given by 
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CO 

X bnPn(8)gn(ia).  
n=o 

(4.3) 

Here bn are complex constants, Pn(8) are Legendre functions of the 

first kind while qn(ia) are those of the second kind. For the 

properties of these functions see appendix (4A). 

The expressions for the normal and tangential components of the 

velocity are 

	

1 a4S 	1 ail u; 	u = — 

	

n ha  as 	t h
0 
 DO (4 .4) 

respectively. 

For an ellipsoid ao  in a uniform stream U, parallel to its axis 

of revolution, the expression for the slip velocity u(
0
0) 

is.readily 

calculated in the form 

(0) 	Uc
o
E1/2 

us  = 
LD

1/2 
 o 

 

where 

ao c
o = 1/(cot-1 a - 	. o Lo 

(4.6) 

-We now hope to throw some light on the cause of divergence in the 

systematic perturbation method of Chapter II. To proceed, we assume 

( that a
so is large and consider the expansion of u0

o) 
 in powers of a

o
-1  . 

There is no difficulty in obtaining the formal expansion, however, 

it is only valid for a
o > 1. At ao = 1, the main source of trouble is 

going to be the series expansion for cot lao which occurs in (4.6). 

This is best illustrated by the following quotation from Van Dyke (1964) 



- 65 - 

p.202 "... the numerical series 

= 4(1 - 	35-  - Si+ ...) 

which converges, but with painful slowness..., and hoo,000 terms would 

be required for six-figure accuracy." It is rather dismaying to find 

from the relation 

x 	= 	,1 + a2  ) . / a o, o  (14.7) 

that at this value of ao the corresponding axis-ratio is only /T. 

This explains why the series method, of Chapter II, breaks down at an 

early stage in the perturbation. The origin of the term cot-1ao is 

the gn(ia)'s in the velocity potential (4.3), see appendix-(4A). Thus 

the dependence of the velocity term on the expansion of cot lao 
shows 

that the velocity field is improperly represented, due to the requirement 

of an infinitely large number of terms before one gets a reasonable 

degree of accuracy. 

It is interesting to note that the same sort of behaviour occurs 

in the two-dimensional motion of an ellipse. This treatment is given in 

Van Dyke (1964) pp. 50-52. He shows that the formal expansion of-the 

velocity is only justified for x < 12-. This confirms the above result 

and makes evident the source of trouble in both the two and three-

dimensional theories. 
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3. Mathematical formulation  

A bubble of prescribed volume V is.placed in a uniform stream U 

parallel to its axis of revolution, see Figure 4.1. The bubble is 

surrounded by an infinite incompressible fluid which is moving irro-

tationally. The motion of the gas, inside the bubble, whose constant 

pressure is P is assumed to be negligible. The system of oblate 

spheroidal coordinates (a,a,y) is used. The shape of the bubble is 

represented by the surface of revolution 

G = a - a - g(a) = 0, 	 (4.8) 

where a = ao is the ellipsoid which has the same volume as. the exact 

shape and is closest to it in some sense. We will call this the 'basic 

ellipsoid". In the subsequent approximate theory, ao  is given by 

either the "Two-point Theory" or the virial theory. 

Thus we seek a gas pressure P , a constant a
o and a continuous 

function g() such that 

(a) Ps 
1 
 ut
2 	

= Pg 

(b) Volume of G = V, 

where in (a), J is the first curvature in oblate spheroidal coordinates, 

for the surface (4.8), and ut is the slip velocity. The derivation of J 

proceeds on the same lines as the corresponding one in spherical polar 

coordinates, in Chapter II. Following the same steps in appendix (2A) 

one obtains 
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kH 

  

. J 	[D(L + Eg2  )]3/2  

 

(4.9) 

where 

   

H = {L(2L - E)a + L(2L - 3E)a 

  

- EON (3L - 2E)aEa2  + E(L 2E)g3). (4.10) 
The size of the bubble enters the above equations through k and 

it will be convenient to remove this dependence by introducing the 

equivalent spherical radius re. Since the basic ellipsoid is chosen 

to have the same volume as the true shape 

re = k(a L )1/3 o o 

Then if 

W = 2repU
2/a  , 

the above boundary condition (a) can be written in the form 

4(a L )1/3  
2AP + 	°O  	J = ut, 

where 

AP = PS - Pg. 

The expression (4.9) for the first curvature is now 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

J H 

 

(4.15) 
[D (L + Ei2)0/2 ' 

where H is given by (4.10). 

Consider now the surface (4.8), for small g, such that 
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= a + g(8) + 0(g2). 
	 (4.16) 

Substituting for this in (4.15) leads to 

J = Jo 
+ Ti- 0(g2), 	 (4.17) 

where 

 

(2L0  - E)a0  
(4.18) 

0 
L1/2 D3/2 o o 

is the first curvature for the ellipsoid ao  

and 

	

Y = L 
	 2 

3/
210'5/2 

LoDo
(2Lo - 3E)$g - Lo 

Eg 
o 

0 0 

+ (-2L3  + 4L2  - L2E - 2LE + E2)g ] 	+ 0(g2). 	(4.19) 
O o o o  

Similarly the slip velocity ut  corresponding to the surface (4.16) 

may be written in the form 

U = U(0) 
 + U(1)  + t 	$ 	0 	

... 	 (4.20) 

where u(0) is the slip velocity on the ellipsoidal surface ao and is 0 

given by (4.5). The second term u(1) represents the velocity perturbation 

Upon substituting from (4.17) and (4.20) into the equilibrium 

condition (4.13) one finds 

1/3 	02 
(aoLo) (jo j) W (  +A) 

— wep + 0(g2)  2 	. (4.21) 
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where 

(1)2 	(o) (1) A = u 	+ 2u u +  
a 	a 

(4.22) 

is the velocity perturbation term. Now from Chapter II one recalls 

that the velocity corrections "lag" one step in the perturbation 

scheme behind the shape corrections. To apply this in the present 

case, one requires the condition that 

AW ti 0(g2) 	 (4.23) 

If this is satisfied, then equation (4.21) reduces to 

(a01,0)1/3(i0  a) _ liut(30)2 	_ 	4. 0(i2). 	(4.24) 

This is the basis of the approximate method which we shall introduce in 

the next section. 

it. 	Linearized Two-point Theory  

We now realize that even if it were practical to obtain all the 

terms in a perturbation scheme based on ao
-1  , this would necessarily 

fail at ao = 1, (x = )). To avoid this difficulty, we have devised an 

approximate method based on the hypothesis that the true shape of the 

bubble will differ little from the mbasic ellipsoid". If this is so, 

we can use the flow field about this ellipsoid to determine the dynamic 

pressure on the surface of the true shape. Then the equilibrium 

condition (4.211) becomes a differential equation for g which is solved 

numerica11y. 
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Upon substituting from (4.19) into (4.24) one gets 

A(0,x)E + B(B,x)k + C(B,x)g = F(B,x) 

+ a(x) + 0(g2), 	 (4.25) 

which is a linear second-order non-homogeneous differential equation 

in g. The function F(8,x) is given by 

w F(13,x) = -Eu.(0)2  13 	- (a.L0)1/3  J0(6) - (4.26) 

stressingthedeperviericeaJon O. 

The "Two-point Theory" described above is equivalent to choosing 

W so that 

F(0, 0) = F(1,x0) = 0. 	 (4.27) 

Thus if we pick our closest ellipsoidal approximation in this way, 

equation (4.26) can be rewritten in the form 

W F(B,x) = 	(0)2 + [J0(1) - J0(f3)) (a 0  L 0)
1/3 (4.28) 

The constant a(x) in equation (4.25) is a correction term for 

AP in (4.26), due to the surface perturbation, and it varies with the 

axis-ratio x. The coefficients A, B and C in (4.40) are given by 
E(a L )1/3 ) 

A(0,x) = 	
o o 	

) 
(Doo)1/

2 ' 
) 

8(2L0  - 3E)(a0L0)1/3 	 ) 
) 

B(13,x 
D 3/2L  1/2 	 )) (4.29) 
0 0 

) 
( 2L3  + 4L2  - LoE 2LE + E2)(a0Lo)1/3  )1  o 	0 	o 

1 	2 C(0,x) = 	 - 
I 

D512 3/2 
0 Lo 	 ) 
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In particular, 

A(±1 x) = B(o,x) = 0. (4.30) 

Thus for any given value x = xo, the functions A,B,C and F in 

equation (4.25) are all known, where the corresponding value for W 

in (4.28) is obtained on substituting for xo  into (1.9). However, 

the unknown constant a(x) has still to be determined. It is also 

clear from (4.30) that equation (4.25) has a regular singularity at 

0 = - 1. 

It is evident now that equation (4.25) requires three conditions 

to determine the general solution. To accomplish this, let us utilize 

the assumption that the bubble has fore and aft symmetry. .This implies 

that the coordinate axes in a meridian section of the bubble Figure 4.1, 

are normals to the trace of the bubble. In other words, 

and 

Di I = 0 
dz  0=o 

(4.31) 

= 0, 	 (4.32) 

13=1 

where 

., w = k[(1 a2 A 

z = ka0, 

a = ao g(B). 

(4.33) 

dz 

d61 
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Performing the differentiation in (4.31), with the understanding 

that a > 0, for all B, the condition is found to be equivalent to 

a(0) =0 	at 0 = O. 
	 (4.34) 

The latter condition (4.32), for the slope to be zero at the pole, is 

satisfied by any regular solution of the differential equation (4.25). 

Therefore we shall impose regularity of the solution at the pole. 

This leads to, from (4.25) and (4.27), 

B(1,x)a(1) + C(1,x)g(1) = a(x). 	(4.35) 

A third condition is necessary in order to determine the unknown 

constant a(x) in (4.25). Now as the volume of the bubble is to be 

prescribed, we normalize its value to that of the ellipsoid ao. This 

is equivalent to the relation 

1 
f g(B)DodO = 0, 0 

The conditions on (4.25) can now be summarized as follows: 

(1a) 	g(B) = 0, 	at la = 0, 

(2a) 	B(1,x)g(1) + C(l,x)g(l) = 

1 , 
(3a) 	f gO)D0d8 = O. 

0 

(x), (4.36) 

Let us now embark on solving the problem numerically. This is 

accomplished here by using the method described by Fox (1957), Chapter 8. 

The basic process is to solve the boundary-value problem using an 

initial-value technique. One starts by solving the problem with some 
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arbitrary initial conditions, combining the solutions to satisfy 

all the given boundary conditions. 

Consider now the non-homogeneous equation (4.25) together with 

the corresponding homogeneous equation 

A(8,x)F + B(0,x)i + C(0,x)g = 0. 	(4.37) 

Denote these equations by I and II respectively Equation I can now 

be integrated completely with the two point boundary conditions (la) 

and (2a). The numerical procedure is as follows: 

(1) Guess a value for a(x). 

(2) Define gI(3) to satisfy I and such that at 8 = 1, 

B(1,x)i1(1) + C(1,x)g,(1) = a(x), 	) 
) 

gI(1)  = 1. 	) 

(3) Define gII($) to satisfy II and such that at,8 = 1, 

B(1,x)41) + C(1 'x)gII(1)  = 0, 

gII(1)  = 1.  

Clearly 

g(8) = g1(°)  

(4.38) 

(4.39) 

(4.4o) 

satisfies I and boundary condition (2a). Now choose t such that g(B) 

satisfies boundary condition (la). This yields 

t 	= 	4,(0 )/iII(°). 
	 (4.41) 
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(4) Choose a(x) such that (3a) is satisfied. This can be achieved 

using the following iterative procedure-. The integral in (3a) is 

denoted by y, where y is now a function of a, and so one has to find 

a value for a such that y vanishes. Suppose that (a + Sa) is the exact 

value for which y is zero. Then we have 

y(a .+ 6a) = 0. 

Expanding this by Taylor's theorem one gets 

y(a + 6a) = Y(a) +.6a 	= 0. 
da 

dv da = - y(a)/(ifti). 

 

• (4.42) 

Now to calculate dy/da let the initial Sa be Sao. Then 

 

y(a 	Sao) - y(a) 

  

da 	Sao  

Hence by (4.42) one finds 

  

6a1 
y(a) 	9 

y(a + Sao) - y(a) 

Sa  o 

where 6a.1 is the new value for Sa. Thus the general equation used to 

correct a is 

= - Y(an) San+1 

y(an  + dan)  
6a n 

- y(an ) 
(4.43) 
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where 

n+11 = an 	n' + da 	 (4.44) 

and an is the nth approximation to a. 

The numerical integration of equation I is carried out using the 

fourth-order Runge-Kutta method with step width 

dO = 0.002. 	 (4.45) 

Upon reducing (S8 to 0.0002, no significant change has been detected 

in the results. It seems therefore there is no appreciable build up 

of error resulting from reducing the step width to this value. 

The solution is started with a prescribed value of x = xo, say, 

This fixes the values of a and W. Also the coefficients A, B and C 

together with Jo and u
to)are computed at the specified number of points 

on the surface of the bubble, using the value of xo. 

In order to start the integration of I, the value of a(x) is 

required. However, this is not known a priori, in consequence it has 

to be determined by a trial-and-error solution. A value is guessed 

for it and the integration is then started from the pole and towards 

the equator (i.e. along the direction of the flow). In order to force 

the regularity of the solution at 0 = 1, the integration is started 

a few steps away from 8 = 1, precisely at S = 0.996. This is accom-

plished by finding the series solution of I in the neighbourhood of 

0= 1 and selecting a few terms of the power series of the regular 

solution. This, however, has been found to have no merits, in this 
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problem, over the case when the integration is started exactly at 

B = 1. Both results are found to be identical, to the required degree 

of accuracy. This result is, otherwise, expected from the fact that 

the singularity, in equation I, is regular at /3 = 1. 

An iteration program, using a digital computer, is then started. 

In each case for a given value of the axis-ratio, xo, the constant 

a(x) is incremented successively and at each stage the program 

iterated until convergence has been obtained for the number of decimal 

places retained for a. 

In the iteration process it has been found that to avoid running 

into a loop of oscillating convergence, it is necessary to add a 

fraction of San at a time instead of the whole increment as in (4.44). 

The relation that has been employed instead is 

2 an+1 = an + 5  (S an (4.46) 

This has given rise to an average of about ten iterations necessary to 

obtain an accuracy of a(x) to three decimal places. 

The program required about ten minutes of computer time. It should 

be noted here that the iterative procedure was set to stabilize three 

decimal places. By reducing the tolerances in the iteration process 

and reducing d$, greater accuracy could have been obtained but of course 

more machine time would have been involved. 

The results are tabulated below, Table (1). The shapes of the 

bubbles are traced in "continuous" line, while those of the corres-

ponding ellipsoids, ao, are in "broken" lines, Figures 4.2-4.3. The 
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curve of W against the corrected axis-ratio, xc, is plotted in 

Figure 4.6 together with that of the "Two-point Theory". 

5. Linearized Virial Theory  

We have seen that the virial theory is less in error than the 

"Two-point Theory", and this suggests we use it as the basis of our 

approximation. 

Now replacing the expression for the Weber number (1.9) by that 

obtained from the Virial Theory, (3.90), the problem is solved again. 

The AP in equation (4.25) is absorbed into a(x) so that equation 

(4.28) is dropped. There are no other modifications required in the 

numerical scheme. 

The results obtained are tabulated below, Table (2). The bubble 

shapes are traced in Figures 4.4-4.5, in similar manner to that of the 

previous case. Figure 4.6 gives a comparison between the "Two-point 

Theory", the virial theory and their linearized versions. 

Having studied six different methods for obtaining a relation 

between the Weber number and the axis-ratio, let us compare these 

results at some specified axis-ratio. This comparison is shown in 

Table (3) for x = 1.1. The comparison is restricted to three decimal 

places since the linearized theories are accurate to this order. It 

is apparent that the Weber numbers for the linearized theories are 

closer to that of the "accelerated convergence" method, than their 

initial values are. This tendency is in agreement with the view that 

the "accelerated convergence" result is supposed to be closer to the 
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exact theory for this range of W, and thus justifying this sort of 

behaviour. Also the series solution indicates its tendency to diverge 

even at such a relatively small value of W, bearing in mind that terms 

, 	% 
of OkW

4 
 J are neglected. 

6. The effect of gravity  

Hitherto, our investigations were confined to motions which take 

no account of gravity effect. This section is devoted to examining 

the effect of gravitational forces, in the presence of surface tension,. 

on a rising bubble. 

Gravity forces become significant when the hydrostatic pressure is 

comparable with the hydrodynamic pressure, i.e. 

pg
* 
 re

ti  pU
2  

where g*  is the acceleration due to gravity. Now in steady state the 

drag force = buoyancy force, i.e. 

1 PU 2 Irr 	4  3 * 
e D 	3 re  Pg 

or 

8g*r 
CD 

= 3U2 
	 (4.47) 

where CD is the drag coefficient. It is now apparent that gravity 

becomes important when CD is of 0(1). 

We now proceed to extend the above numerical method by intro-

ducing gravity as well as retaining the surface tension forces. Apart 

from minor modifications, the method is practically the same as that for 
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surface tension alone. In the present case Bernoulli's equation is 

1 , 2 	(o)2. P + -pku + uB ) + pg*h = const., 2 a (4.48) 

where h is the length indicated in Figure 4.7. Substituting for h 

from the figure and absorbing the constant L in the right-hand side, 

(4.48) becomes, on the surface of the bubble, 

2, 
PuB  
(0)2 P + 	Pg  z = const. 	(4.49) 2  

Now taking the surface of the bubble as in (4.16) and assuming that it 

has the same velocity field as that of the unperturbed ellipsoid a
o' 

one gets in the dimensionless form, the equation 

A(0,x)g + B(B,x)a + C(0,x)g = 	) 

WZ 
F(0,x) - 	+ const., r F e r 

where the Froude number Fr  is defined by 

(4.50) 

 

U2 • (4.51) 

 

2r g* 

 

Equation (4.50) is similar to (4.25), with the terms having the same 

meaning. Now for a point on the surface of the bubble 

z = aB = a00 	Bg(8) + 0(g2), 	(4.52) 

in dimensionless form. Combining equations (4.50) and (4.52) one gets 

on the surface of the bubble 

A(0,x)g + B(0,x)g + C(B,x)g = F(0,x) 	(4.53) 
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where 

= C(f3,x) + Fir 
r e 

and 
	 (4.54) 

a oOW 
F(0,x) = F(0,x) - 

Frr e 

with 87(x) playing the same role as a(x) in equation (4.25). 

The Froude number, which appears in equation (4.50), remains 

to be determined. This is obtained from the unperturbed theory. From 

equations (4.47) and (4.51) one obtains the relation 

so that we may also assert that for Fr  of 0(1), gravity forces come 

into play. 

Consider now the physical parameters 

and 

*14  
M = EL__ ) ' 

	

poi 
	) 

) 2r
e
pU 

) R - 

	

Pe 	) 
) 2repU

2 
) W - 

	

a 	) 

(4.56) 

where M is the M-number, responsible for the physical properties of the 

fluid. From equations (4.47) and (4.56) one finds the relation 

C =-FIR4W 3 
D 	3 (4.57) 



Now availing ourselves with the expression (2.71), for CD, 

obtained by Moore (1965), it will be possible to find Fr  and R for 

any ellipsoid whose axis-ratio is known. This is accomplished by 

prescribing values for M and x. Then W may be found from (1.9), or 

(3.90), in case of the virial theory. The corresponding value for 

G(x) in (2.72) is also determined. Combining equations (2.72) and 

(4.57) one finds 

t36W3G(x)1/5 
= % m  / (4.58) 

which determines the value of the Reynolds number. It is then a simple 

matter to determine CD  and Fr. 

Having found the necessary parameters, we now proceed to the 

numerical solution of equation (4.53). This resembles that of equation 

(4.25). One starts by a given ellipsoid a
o whose axis-ratio is xo. 

The M -number is selected to run through the values 10-10, 1011,...,10-16  , 

the problem being solved for each of these numbers. Knowing xo  and M, 

one determines re, W,G(x), R,CD'Fr and U, where the expression used for W 

may be obtained from either the "Two-point Theory" (1.9) or the virial 

theory (3.90). It is important to notice that in our procedure the 

Weber number is the key parameter and once it is specified, the rest of 

the parameters including the shape of the bubble are determined. How-

ever, as we have seen that the virial theory is less in error than the 

"Two-point Theory", we shall only trace the shapes arising from the 

virial theory. 
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Apart from the fact that the numerical integration now runs 

from the forward stagnation point to the rear stagnation point, the 

other steps and assumptions are all applied as in the symmetric case. 

The shapes of the bubbles are traced in "continuous" lines while those 

of the ellipsoids, ao, are in "broken" lines, Figures 4.8-4.14. The 

results are tabulated below, Table (4). In Figure 4.15 a family of 

curves are drawn, showing the variation of the Weber number with the 

axis-ratio, for different M-numbers. These are compared with the 

curve W(x) representing the virial theory (symmetric case). It is 

apparent that for bubbles having the same axis-ratio, the effect of 

gravity is less pronounced as the M-number decreases. In other words 

departures from symmetric shapes are smaller. It may be remarked 

that the corrected axis-ratio, x
c, for cases of large dents at the 

rear of the bubble is considerably exaggerated. It is only meaningful 

when the rear of the bubble is nearly flat. 

It is a simple matter to calculate the values of R, C
D 

or F
r
, 

corresponding to xo  in Table (3), using their relevant expressions. 

The variation of CD with R, for different M-numbers, is shown in 

Figure 4.16. The results indicate a minimum of C
D at W A 1.91, 

corresponding to xo  = 1.44. Similar computations using the "Two-

point Theory", gave a minimum value of C
D at the same value for xo 

but at a Weber number of 1.92. Moore (1965 ),included the effect of 
a.4,,te& afiut astriattd a re 	sh44.4; (4, la 

boundary-layer in computing CD, 	an empirical result of 

Peeblesand Garber (1953),te-ealeuiate-R. He found that the minimum 
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of CD occurs at W = 1.8. Other features predicted by his theory 

are also observed in the present one. It seems to support his 

speculations that "... the drag coefficient is not very sensitive 

to the shape of the bubble once the axis-ratio is fixed,...". Again 

the theory predicts the rise of CD, with R, after reaching its minimum 

value but not so sharply pronounced as in Moore's theory. This is 

probably because boUndary-layer effects have not been included in the 

present work. 

7. Comparison with experiment  

The most extensive experimental results with which we can compare 

the theoretical predictions are those of Haberman and Morton (1953). 

Comparisons are also made with recent experimental results of Jones (1965) 

and Schwerdtfeger (1968). The theory is tested by comparing its pre-

dictions of the velocity of rise as a function of re. An attempt is also 

made to compare the shapes of bubbles. The results are tabulated below, 

Tables (5) - (8). The shapes of bubbles are also traced, in the previous 

manner, in Figures 4.20-4.22. Plots of U as a function of re  for air 

bubbles in methyl alcohol and in water, and for argon bubbles in mercury 

are shown in Figures 4.17-4.19. Reasonable agreement is found between 

theory and experiment. Comparison of the theory for water shows a 

slightly higher value for U.than the corresponding experimental values of 

Haberman and Morton (1953). Also the maximum value of U occurs at a larger 

r
e 
than that givenbyexperiment. Moore (1965) noticed such discrepancy 

in comparing his theory for methyl alcohol with Haberman and Morton's 
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experimental curve. The present theory for methyl alcohol reveals 

similar features. In particular it is also observed that for x > 2 

reasonable agreement between theory and experiment still exists. 

It is interesting to note that the virial theory gives, for all three 

liquids, a maximum value of U at an axis-ratio xo  = 1.9 with a 

corresponding value of W = 2.70. Similar calculations using the 

"Two-point Theory" give x
o = 1.9 and W = 2.73, correspondingly. It 

seems therefore that, for low M liquids, the axis-ratio x is a crucial 

parameter in the sense that, once it is fixed, it is possible to deter-

mine the drag coefficient and the velocity of rise irrespective of the 

bubble shape. It is necessary to make further investigations on this 

point, in view of the fact that the present theory does not account f' 

the presence of boundary-layer on the bubble. 

Comparison of the theory with the experimental results of 

Schwerdtfeger (1968) for the rise of argon bubbles in mercury, shows 

fair agreement. It seems that consistent experimental investigations 

are necessary in the region where U is increasing to its maximum value, 

as re increases. This is a regime dominated by laminar flow and 

information about it is of considerable value for comparison with 

experimental and theoretical results. 

The size of bubbles dealt with in this work are of the order of a 

few millimetres. It is therefore not surprising that experimenters 

find it rather difficult to obtain clear photographs of such bubbles. 

Haberman and Morton (1953)give photographs of air bubbles in water and 
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in methyl alcohol. Also Jones (1965) gives a photograph of air 

bubbles in water. The present theoretical shapes, Figures 4.20 - 

4.21 are several hundreds times larger than the experimental shapes, 

which do not exceed the size of a dot in some cases. It seems desir-

able, therefore, to do more experiments with a view to obtaining 

enlarged photographs. Figure 4.22 shows the shapes of argon bubbles 

in mercury. The problem of vision is another handicap facing the 

experimenter who wants to photograph three-dimensional bubbles in liquid 

metals. It is thereforenot easy to make comparison between theoretical 

and experimental shapes, in such cases. 

The bubble shapes in Figures 4.20-4.22 are characterized by a 

dent at the rear stagnation point. The size of the dent increases with 

increase in the Weber number. This effect is noted to be more pronounced 

in water and methyl alcohol than in mercury. In other words, for high 14 

liquids, the rate of dent growth, as the Weber number increases, is 

faster than in low M liquids. It is therefore likely that, in low 14 

liquids, gravitational forces are more dominant than surface tension 

forces. 

In view of the simplifying assumptions used, it is possible that 

the above shapes may not be correct beyond the stage when the rear of 

the bubble is flat. Walters and Davidson (1962,3) in their theoretical 

and experimental work on accelerating bubbles, under the action of 

gravitational forces alone, observed a tongue of liquid forming at the 

back of the bubble. The bubble distorts into the form of a mushroom 
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and ultimately into an umbrella shape: Although a comparison of 

these shapes with those of the present theory may be irrelevant, 

it might well be the case that, the natural development of a bubble 

shape from spherical to spheroidal to a spherical cap, follows similar 

lines. 
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APPENDIX (2A)  

First curvature of a surface  

In this appendix we give a summary of the method discussed by 

Weatherburn (1930) pp. 86-87, for the derivation of the first 

curvature of a surface. In order to avoid any ambiguities in the 

sign of the normal, we shall define 11 to be the unit normal, to 

the surface, directbd away from the centre of curvature. Thus for an 

ellipsoidal surface, 11 denotes the unit outward normal. The first 

curvature, J, of a surface is then given by 

J = div n 
A 
. 	 (1) 

Consider now a family of surfaces 

G(x,y,z) = const., 	(2) 

where x,y,z are taken to be orthogonal curvilinear coordinates. This 

is a special case of the more general one, for oblique coordinates, 

treated by Weatherburn. The unit normal II at any point on the 

surface G may then be expressed by 

A 
n = Fs*, 

where 

F = 1/1VGI. 	(4) 

Substituting from (3) into (1), the expression for the first curvature 

of the surface (2) becomes 

J ='FV
2G + VF.VG, 	 (5) 

or 

J = FV2 
	A 
G + n. Vlog G. 
	 (6) 

(3) 



- 93 - 

For our purpose, we shall take G to be a surface of 

revolution of the form 

G = x - k - kg(y) = 0, 	 (7) 

where k and 2, are constants and g is a single-valued continuous 

function of y. 
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APPENDIX (3A)  

EVALUATION OF SOME INTEGRALS  

By definition 

coaaa dt 
A. (i = 1,2,3), . = 	1 	223 	 (1) J o A1  (a. + t) 

where 

2 	2 	2 
A1 = ka1  tma2

2  + t)(a3 
+ t). (2) 

These integrals can be expressed in terms of the incomplete elliptic 

integrals 

0 
E(0,0) = f (1 - sin

20 sing  g)1/2  dg 
0 

and 
0 

F(8,0) = f (1 - singe sing  g)-1/2  dg 
0 

of the two kinds with the definitions 

4)1/2 

sin 8 =  	and cos 0 = 

	

2 2 	a1 al  - a3  

whenaca2 >a3 theintegralsdefiningthel1  give 

Al  f,  = A = 	- 1 

2 
H 

e3 
kD  

A3  = — (e - HS), 2 

e3 

where e, H and S are as defined in Chapter III. The Bi's are defined by 

CO 

B. = f 	dt  
1 	 . ' 

o A2  ka.
2  + t2  ) 

(3)  

(4)  

(5)  

(6)  

(7).  
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where 

2 	2 	2.. 2 	2.. 	2. A = ta1 + t )ta + t )ta3 + t ). 
(8) 

Again we use the incomplete elliptic integrals (3) and (4), where now 

2 al 	a22   - a3  1/2 	. a3  
sin e 	, = 	cos (I) 	(9) a2 2 2 	al 

al - a3 

-1/22  g) and 	t = a3(sin2  0 - sin 	sin g. 	(10) 

For the oblate spheroid (al  = a2  > a3), these integrals give 

4 
B1 = B2 = (2a1e2 )

-1  [(1 + e2)(tanh 1 e)/e - 1], ) 

B3 = (a1e
2)-1[(1 - e2)-1 - (tanh 1 e)/e]. 

The integrals I. are defined by 

dt 

+ t2)5/2  

t2dt 

(a2 
 + t) 2.5/2 

dt  13 = f tt=o a1 2 + t)k 
2.5/2,

a3 
2 + t2)  • 	

(14) 

These integrals may. then be evaluated, using the substitution (10), 

so that one finally gets 

2 	1 	) Il  = —4- S 	I - 2 	2 , ) 3 .  3a1 	al 	
) 
) 

Il  =----6-713S - e(3 + 2e2)H]. 
'''' 	3Ha1  ed 

 

co 

t=0 

co 

2 = 
t=0 

(u) 

(13) 

(15) 
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The 	 Qii  given by equations 

(3.12), (3.26) and (3.34) respectively, is facilitated by using the 

transformation of coordinates given in Rosenkilde (1967, b) p.90. 

The case of revolutional symmetry, al  = a2, will suffice for this work. 

Therefore after correcting a misprint in the expression for x3 in the 

text and putting al  = a2  one gets 

alb -1/2 	) xi  = li 	cos Y 

) 2_ 1/2 x2  = aib, 	sin Y ) 

-1/2 x _ 3  - bi 	, 
) 

where 

b.3. = a.2  + t2  i = 1,2,3. 3. 

The components of the unit outward normal n are 

ni = a3b3-1/2 	) cos y 	% 
i 

) 
n2 = a3b3-1/2 sin y 	) 

) 

n3 = b3-1/2 t. 	) 
) 

The element of surface area is 

dS 	it4b 1 2b31/2 dt dy. 
1 

(16) • 

(17) • 

(18)  

(19)  

The variables t and y have the ranges 0 t <Do and o 
	

5  2r. This 

transformation has the advantage that the above tensors may be 

expressed in terms of standard incomplete elliptic integrals given 

here. 

The surface-energy tensor Ci  defined by (3.12) is evaluated by 



Cot(ao  

Cot 
ul  - -- obi 

Cot =  
Lob3 

cot 1 ao 1)b
1 
-1/2 
	

(22) 

cos y, 	 (23) 

sin y, 	 (24) 
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Rosenkilde (1967 b) for the ellipsoidal surface (3.39) in terms of 

the elliptic integrals Bi. The resulting expressions are 

so 	(i 0 J) 

0.. = (ale.2a3)2cr (BB  + Bk) (i 0 j 0 k). 11 
(20) 

The case corresponding to an oblate spheroid (a
1 = a2) is easily 

obtained on substituting for the Bits from equation (11). 

The expressions for the velocity potential and the velocity 

components in equations (3.49) - (3.51) are now transformed in terms 

of the parameter t, using the relation 

= t b1
-1/2 (on a = ao), 	(21) 

which is obtained from comparison of the above coordinate system with 

that of oblate spheroidal coordinates. The resulting expressions, on 

the surface a = ao, are 

Ut2 Ca3 
u3 	17— 	bo (a0 cot

1
ao - 1), 	(25) 

3 	3  

Ut 
un o b

3
1/2' 

where u
n 

is the velocity component normal to the surface a = a0. 

On substituting from equations (18), (19) (22) - (25) into (3.26), 

one can express the integrals in the form 

(26) 
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2 4 	 ) irpcoala.d. 2 	) Til  = T22 = 	J  (Ii  - a3  13), 
) 

	

Lo 	 ) 
) 

4 	1 	2. 	2 	4 . T33 = 2upcoa1A[-kcoa3X + Ua a + UI2  + (c a_X + Ua3)I-]  3 1 	o 3 	6 'I 
) 

= o 	i#3; 

where 

A = 1 - ao cot
1ao 

and I1,  I2' I3 are given by equation (15). 

In a similar manner, on substituting from equations (18), (19) and (22) 

into(3.310thecompmentsethetensor Qii  are found to be 

= Q22 = 0' 

211024.(e - SH) 
	

(29) 
= 

3(S - eH) 

Qij  := fo, 	i 

(27) 

(28) 
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APPENDIX (3B)  

EVALUATION OF THE MICROSCOPIC ENERGY (II)  

To evaluate the integral (3.9) for II, one requires the value of 

the pressure at a field point. This may be obtained from the 

convenient form of Bernoulli's equation, 

- U. grad 40 + --(grad1
2 	qp)2  = 0, 	 (1) 

relative to the moving frame. Then substituting for P from this 

equation into (3.9), making use of the divergence theorem, Laplace's 

equation, and the equation of continuity, one finds 

H = - 2  fOU.dS + pfp.dE . 	(2) 
S 	E 

Upon substituting for the expressions in this equation and performing 

the integrations one finally gets ) CI-%  47& 5  W-i7ao eivtz 
) 

2r(3e .- 3HS - 2e3H)  H = 

	

	 (3) 9(S - eH) 
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APPENDIX (4A)  

Legendre Functions. 

The Pn($) in equation (4.3) satisfy Legendre's differential 

equation of integral order n, 

2 	n dP 
[(1 - 	) 	n(n + 1)Pn  = 0. (1) 

They are polynomials in a and offer no difficulty. They satisfy the 

following recurrence relations, see MacRobert (1967) p.91, 

(2n + 1)Pn  = Pn+1  - Pn  _1, 	 (2) 

(1 - 0)Pn  = nPn-1  - n0Pn, 	 ( 3 ) 

(n 	1)Pn4.1 - (2n + 1)t3Pn nPn-1 = 0, 	(4) 

nPn = af.n - n-1' 	 (5) 

2 	
2
n(nn + 1) ( (1 — 	)Pn 	+ 1 	Pn -1 - Pn+1). 	(6)  

The functions qn(ia), however, have imaginary argument. They 

satisfy the same equation (1) with a replaced by (ia), viz. 

2 dqn  
da "(1 

 + a ) -1 n(n 
da 

+ 1)qn  = 0. (7) 

Their only singularities are at - 1 on the reali\axis. Hence they always 

remain finite on the imaginary axis. In particular 

cln(i=)  = 	 (8) 
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They are alternately odd and even. Furthermore qn(ia) is either 

real or purely imaginary, so that by a proper choice of the constants 

bn in equation (4.3), it is always possible to make a 11(ia) real. - 
+1 In fact .n  qn(ia) is always real, see MacRoberts p.196. Therefore, 

retaining the same notation, one may write 

cin(ia) 	i-n-1 qn(o), 	(9) 

where qn  are real and have real arguments. The qn(ia) satisfy the 

same recurrence relations (2)-(6). On replacing Pn(a) by qn(ia) 

from equation (9) into equations (2)-(6) and replacing B by ia, one 

gets the following recurrence formulae for qn(a). 

(2n 	1)qn = 	(an+1 an-1)' 	 (10) 

(1 + a2)in  = naqn  - nqn_i, 	 (11) 

(n 	1)qn+1 (2n + 1)aqn  - nqn_i  = 0, 	(12) 

(13)  

(14)  

The expressions for go, ql  and q2  as given in Lamb (1959) p.143 are, 

qo = cot
-1a 

1 1 - a cot-1  a 

(12 = 23°2 1)cot-la - 

• 0 nqn  = aqn  - qn_l, 

(1 o2)in 	11  (11++11) 
 (cin+1 qn-1).  

(15) 
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TABLES 
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,_ 	-n int Theory (symmetric.) 

No. x c. xc W 

(a)  1.04 1.040 0.2695 

(b)  1.10 1.100 0.6237 

(c)  1.30 1.300 1.4919 

(d)  1.50 1.504 2.0563 

(e)  1.70 1.718 2.4455 

(f)  1.90 1.949 2.7265 

(g)  2.00 2.076 2.8388 

(h)  2.20 2.376 3.0223 

(i). 2.40 2.848 5.1648 

0) 2.50 3.338 3.2244 

(k) 2.60 4.970 3.2775 
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TA BL E. (2),,Virial theory (symmetric') 
. 

No. 

. 

X
0 0 X 

. 
W 

(a)  
. 

1.04 1.040 0.2698 
. 

(b)  1.10 1.100 0.6255 

(c)  1.30 1.301 1.4989 

(d)  1.50 1.507 2.0608 

' 	(e) 1.70 
. 

1.714 2.4376 
. 

(f)  1.90 1.929 2.6975 

(g)  2.00 2.041 2.7965 

(h)  
. 

2.20 2.276 2.9499 

(i)  2.40 2.552 3.0587 

(j)  2.50 2.739 3.1006 

(k)  2.60 3.074 3.1357 

(1) 2.64 3.396 3.1481 

(m)  2.66 3.729 3.1540 

(n)  
. 

2.69 5.446 3.1624 
. 



- 105 - 

TABLE  Comparison of the different theories __ 

THEORY. 	X 	W 

Analytical Perturbation 	1.1 	0.627 

Virial 	 1.1 	0.626 

Two-point 	 1:1 	0.624 

Linearized virial 	1.1 	0.616 

Linearized Two-point 	1.1 	0.614. 

Exact theory (convergence 	_1.1 	0.610 

accelerated.)  
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TABLE. 00.Viria1 (with gravity.) 

No. 
, 

x0 W 

(a)  1.02 0.1385 

(b)  
, 

1.06 0.3945 

(c)  
, 

1.10 0.6255 
- 

(a) 1.16 0.9317 

(e)  1.20 1.1128 

(f)  1.30 1-.4989 
. 

(g)  1.40 1.8090 

(h)  1.50 2.0608 

(i)  1.60 2.2672 

(i) 1.70 2.4376 

(k) 1.90 2.6975 ... 

(1) 2.10 2.8798 

(m) 	_ 2.20 - 2.9499 



T A B L E. (5). Summary of liquid properties. 
,• 

Liquid Temperature 

deg C 

Viscosity 

g
o 
poises 

Density 

p gmsb 

Surface 
tensionc 

o'dynes/Cm 

M 

number 

Methyl alcohol. 30 0.0052 0.782 21.8 8.9x10-11  

Distilled .(or 
filtered) Water. 

21 0.0098 0.998 72.6 - 2.4x10 11 

Mercury. 

(room temp.) 

20 

(estimated.) 

0.0155 13.546 44.0 3.7x10 -14  
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T A B L E. (6). Air bubbles in methyl alcohol (M=8.9x1011.) 

No. X 0 

, 

W R CD Fr re 
Cm. 

'r 
LT 

cm./sec. 
I . 

1.02 .1385 64.34 .766 1.741 .024  9.022  
a. b 1.06 .3945 121.84 .426 3.129 .030 13.573 

cll 
1.10 
1.16 

.6255 

.9317 
162.29 
209.17 

.336 

.291 
3.963 
4.748 

.033 

.037 
16.157 
18.674 

(e)  1.20 ' 	1.1128 234.90 .262 5.085 .039 19.860 
(f)  1.30 1.4989 287.31 .240 5.553 .044 21.871 

1.40 1.8090 328.61 .234 5.704 .047 23.078 
1.44 3.9159 342.95 .P33 5.712 .049 23.420 
1.50 2.0609 362.65 .235 5.685 .051 23.923 
1.60. 2.2672 391.56 .239 5.571 .054 24.274 
1.70 2.4376 416.62 .247 5.402 .056 24.929 
1.90 2.6975 458.40 .267 4.995 .062 24.670 
2.00 2.7965 476.17 .279 4.780 .064 24.622 
2.20 2.9499 507.16 .306 4.360 .069 24.385 
2.50 3.1006 545.36 .352 3.786 .076 23.835 
2.70 3.1651 566.89 .387 3.450 .081 23.407 
3.00 3.2261 594.93 .443 3.012 .097 22.734 
3.50 3.2677 633.64 .548 2.432 .097 21.620 
4.00 1.2667 665.55 .66P 1.996 .108 20.977 
4.50 3.2432 692.83 .802 1.663 .117 19.624 
5.00 3.2079 716.78 .949 1.405 .127 18.762 
5.50 3.1663 738.20 '1.110 1.201 .136 17.982 
6.00 3.1219 757.65 1.285 1.039 .146 17.274 
6.50 3.0766 775.51 1.474 .905 .155 16.632 
7.00 3.0315 792.07 1.677 .795 .164 16.045 
7.50 2.9872 807.55 1.893 .704 .173 15.508 
8.nn 2.9441 	. 822.09 , 2.124 .628 _.182 15.014 
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TABLE (7). Air bubbles in distilled water (M=2.4x10-11.) 

No. x 0 W 

, 

R 

. 

CD   Fr re 
cm. 

• 
U 

cm./sec. 

, 
(a) , 	1.0? .1385 83.63 .589' 2.262 .033 12.267 

M 
1.06 
1.10 

.3945 

.6255 
158.35 
210.92 

.328 

.259 
4.067 
5.151 

.042 

.047 
18.454 
21.96e 

(d)  1.16 .9317 271.86 ..216 6.170 .053 25.390 
(e)  3.20 1.3128 305.29 .202 6.609 .056 27.002 
(f)  1.3n 1,4989 373.41 .185 7.216 .062 29.736 
(g)  1.40 1.8090 427.08 .180 7.414 .067 31.378 

-1.44 1.9199 449.73 .1.80 7.424 .069 31.843 
1.50 2.0608 471.33 .18n 7.389 .071 . 32.391 

- 	1.60 2.2672 508.90 .184 7.240 .076 33.004 
1.70 2.4376. 541.47 .190 7.021 .080 33.351 
1.90 2.6975 995.77 .205 6.49? .087 33.942 
2.00 2.7965 618.86 .215 6.213 .091 33.476 
2.20 2,9499 - 659.14 .235 5.666 .098 33.15.5 
2.50 3.1006 708.80 .271 4.921 .107 32.407 
2.70 3.1651 736.77 .797 4.483 .114 31.825 
3.00 3.2261 773.21 .341 3.914 .123 30.909 
3.50 3.2677 923.93. .422 1.161 .138 29.395 
4.00 3.2667 865.00 .514 2.594 .152 27.977 
4.50 . 3.2432 900.46 .617 2.162 .166 26.682 
5.00 3.7078 931.58 .730 1.826 .179 25.509 
5.50 3.1663 959.4? .854 1.561 .193 24.448 
6.00 3.1219 984.70 .989 1.348 .206 23.487 
6.50 3.0766  1007.92 1.134 1.176 .219 22.613 
7.00 3.0315 1029.44 1.290 1.034 .232 21.815 
7.50 2.9872 	' 1049.55 1.457 .915 .244 21.085 
8.00 2.9441 1068.45 1.634 .816 .297 20.413 
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T A B L E. (8). 	Argon bubbles in mercury (M=3.7x10 114.. ) 

No. x 0 W R CD 
Fr 

, 

re 
cm. 

U 

cm./sec. 
. 

(a)  
(b)  
(c)  

1.02 
1.06 
1.10 

.1385 . 

.3945 

.6255 

305.31 
578.13 
770.06 

.161 

.090 

.071 

2.259 
14.949 
19.806 

.012 

.015 

.017 

14.368 
21.614 
25.729 

(d) 1.16 .9317 992.53 
e 

.059 22.528 .019 29.737 
1.20 1.1129 1114.60. .055 24.129 .020 31.626 

(f) 1.30 1.4989 1363.30 .051 26.347 .022 34.1922 
(0 1.40 1.9090 1559.24 .4,049 27.067 .024 36.791_ 

1.44 1.9159 1627.31 ..049 27.103 .025 37.295 
(h)  
(i)  
(j)  

1.50 
1.60 
1.70 

2.0608 
2.2672 
2.4376 

1720.79 
1857.94 
1976.84 

.049 

.052 

.050.26.433 
26.977 

29.634 

.026 

.027 

.029 

37.936 
38.655 
39.061 

1.90 2.6975 2179.10 .09.6 23.700 .032 39.285 

E 
2.00 
2.20 

2.7965 
2.9499 

2259.41 
2406.46 

.059 

.064 
22.682 
20.688 

.033 

.035 
39.202 
38.931. 

2.50 3.1006 2987.76 .074 17.965 .039 37.955 
2.70 3.1651 2689.90 .091 16.369 .041 37.274 
3.00 3.2261 2822.94 .093 14.290 .045 36.202 
3.50 3.2677 3006.62 .11611.540 .050 34.422 
4.00 3.2667 3158.04 .141 9.472 .055 32.767 
4.50 3.2432 3287.50 ..169 7.893 .060 31.250 
-5.00 3.2078 3401.11 .200 6.667 .065 29.877 
5.50 3.1663 3902.79 .234 5.699 .070 28.614 
6.00 3.1219 3595.04 .271 4.923 .075 27.508 
6.50 3.0766 3679.82 .311 4.292 .079 26.484 
7.00 3.0315 3758.41 .353 3.773 .084 29.950 
7.50 2.9872 3831.82 .399 3.342 .089 24.695 
8.00 2.9441 3900.82 .448 2.979 -.093 23.908 
9.00 2.9624 4027.90 .554 2.408 .102 22.512 
10.00 2.7869 4143.20 .672 1.985 .111 21.307 
11.00 2.7173. 4249.13 .802 1.663 .120 20.297 
12.00 2.6932 4347.40 .944 1.413 .129 19.332 
13.00 2.9940 4439.25. 1.098 1.215 .137 18.510 
14.00 2.5393 4525.65 1.264 1.055 - .146 17.774 
15.00 2.4896 4607.39 1.442 .924. .154 17.110 
16.00 2.4414 4684.92 1.633 .916 .162 16.508 
17.00 2.1974 4758.85 1.836 .726 .171 15.998 
18.00 2.1562 	' 4929.54. 2.052 .650 .179 15.455 
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Fig. 2.1. A diagram representing the velocity components at a 

point P(r10) .Directions are specified by the unit vectors 
A  1:43.pt and. n. 
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Fig.2.2. A sketch in an axial plane of a stationary bubble 

in a stream with uniform velocity at infinity. SF 1  SF.  

are the front and rear stagnation points respectively. 



(A) 1st order Theory. 

(B) 2nd order Theory. 

(C) 3rd order Theory. 

(D) Two-point Theory. 
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Pig. 2.3. The Weber number as a function 
of the axis-ratio. 
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(A) Exact Theory 

(Convergence accelerated.) 

(B) Two-point Theory. 
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Fig. 2.4.. Variation of the Weber number with the axis-ratio. 
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(A) Two-point Theory. 

(B) Non-linear Theory (3rd. order ). 
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ag..2.5 The drag curves as a function of the - 
axis-ratio. 
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Fig. 3.1. Illustrating a body (s) translating 

uniformly through a fluid bounded externally 

by a large sphere (g ). 
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/3=1 
/3=0.87 	 /3=0.87 

Fig. 3.2. Oblate spheroidal coordinates in a meridian 

plane. The two foci are E(k,O) and F(-1c10).The 

segment Ey is represented by a=00The unit vectors 
iaand i/3  represent the directions of increasing ctand 

)6' 
respectively. 
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Fig. 3.3 Variation of the Weber number with the axis-ratio. 
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(A) Two-point Theory. 
(B) Virial Theory. 
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Fig.3.4. Variation of the Weber number with the axis-ratio. 
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(Convergence accelerated.) 
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Fig.3.5. Variation of the Weber number with the axis-ratio. 
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Fig.3.6. Percentage error in.the first curvature, 

for the Two-point Theoryoat various points (9) on 

the bubble's surface.The figures on the curves 

indicate the axis-ratio. 
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Fig. 3.7. Percentage error in the first curvature,for the 
virial theory, at various points (Q) on the bubble 
surface. The figures on the curves indicate the axis-ratio. 
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Fig. 4.1. A sketch of a bubble trace in an axial plane. 

m
1 

and m2 are the slopes at the pole and the equator. 

P=CO3 0 and 02=p2(14a2)/(a2-412). 



- 125 - 

(a) (b) 	• (c) 

'(d) 
	

(e) 
	

(f) 

(g) 	 (h) 

Fig. 4.2. symmetric case. 
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4.2- contd. 
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0 	1 	2 	3 	4 	5 
Axis-ratio 

Fig.4.3. Variation of the Weber number with the axis-ratio 
for a family of symmetric bubbles obtained by linear 
perturbation of an oblate spheroid. The horizontal scale 
represents the same axis-ratio for both diagrams. 

The relation between the Weber number and the axis-ratio is 

that given by the Linearized Two-point Theory. 
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Fig. 4.4. symmetric Virial case. 
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4.4.. contd. 
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5 
Axis-ratio 

Fig.4.5. Variation of the Weber number with the axis-ratio for 

for a family of symmetric bubbles obtained by linear 

perturbation of an oblate spheroid. The horizontal scale 

represents the same axis-ratio for both diagrams.The relation 

between the Weber number and. the axis-ratio is that given 

by the "Linearized Virial Theory". 
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(A) Two-point Theory. 
(B) Linearized Two-point Theory. 
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(D) Linearized Virial Theory. 
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Fig..4..6. Variation of the Weber number with the axis-ratio. 
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h=0 

V ( h vi.ve) 

leig.4.7. A sketch to determine the elevation 
for the hydrostatic pressure. 
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Fig. 4..8. Virial case M=10-10. 
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Fig. 4.9. Virial case M=10 11. 
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Fig. 4.10. Virial case M=10 12. 
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4-.10. contd. 
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Fig. 1.11. Virial case M=10 13. 
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4.11. contd. 
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Fig. 1.12. Virial case M=10 14. 
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4.12. contd. 
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Fig. 4.13. Virial case m=10 15. 
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4-.13. contd. 
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Fig. 4.14. Virial case M=1016. 
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4..14. contd. 
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Rio 4.15. Variation of the Weber number with 

the axis-ratio for different M-numbers. 
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Fig. /1-.16. The theoretical drag coefficient as a function 

of the Reynolds number. 	theory.-- •-,..,-Two-point 
Theory. The right-hand end. of the curves corresponds to an 

axis-ratio x equal to 6. 
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Fig. 4.17. Comparison of theory and experiment for air bubbles 
in methyl alcohol. 	Virial theory; 	 Smoothed 

experimental curve (Haberman and Morton). 
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Fig. 4.18. Comparison of theory and experiment for air bubbles 

	

in distilled (or filtered) Water.- 	 Virial theory; 

,Smoothed experimental curve (Haberman and Morton). 
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Fig. 4.19. Comparison of theory and experiment 
for argon bubbles in mercury. - - - -Virial theory. 
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Fig.4-.20. Shapes predicted by the virial theory 
(m=8. 944 0.11 ). for air bubbles in methyl alcohol 
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Fig. 1..21. Shapes predicted by the virial theory 
,711N for air bubbles in distilled water (4=2.04:10 ). 
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Fig.4.22. Shapes predicted by the virial theory 

for argon bubbles in mercury (M=3:140-14). 
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4-.22 . contd. 
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CORRIGENDA 
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