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 ABSTRACT

The work descriﬁed herein is primarily concerned with the
distortion and shape of a gas bubble, of prescribed volume, rising
steadily in an inviscid incompressible irrotational flow, under the
action of surface tension forces. This is a well-posed non-linear
free boundary value problem. However, the fact that the bubble
shape is unknown, makes it an extremely difficult problem. The
exact shape has not yet been found by any worker in this field except
vhen the distortion is small, then the bubble is an oblate spheroid,
Moore (1959).

In Chapter I, a general survey of previous theoretical and
experimental results is given. Some approximations and idealized
models which might be amenable to theoretical tregtment are considered.

A perturbation series solution, for the bubble shape, is derived
 in Chapter II. A method of accelerating convergence is used to
impfove'the results. Although the range of validity of this theory
is small, within this range, the bubble shape is exact. The drag
coefficient corresponding to this surface is also found.

The aim of Chapter III is to find an eppropriate extenSion to
the tensor virial theorem of the second order, relevant to the gas
bubble problem. In consistency with experimental evidence and
previous theoretical models, Siemes (1954), Saffman (1956), Hartunien
and Sears (1957), Moore (1965), a trial Shape for the bubble in the

form of an oblate spheroid is used. It is shown that for small



defbrmations from the spherical shape, the results are exact,
Comparison of the results with those of Moore's (1965) approximate
theory revealed similar features and reasonable agreement. Direct
aésessment of the virial method showed considerable improvement on
previous theories, particularly for highly distorted bubbles.

In Chapter IV an approximate method is developed for the study
of slightly distorted spheroidal bubbles. The boundary value
problem is solved, numerically, using an initial value technique.

The shapes of the bubbles are then traced in comparison with the
unperturbed spheroids. The theory is then extended to include gravity,
as well as retaining surface tension forces. The dual effect of
gravitational eas well as‘surface tension foreces on bubble shape has
not appeared in earlier theories. These bubbles are then traced and
it is observed that they are characterized by a dent at the rear
stagnation point. ,

Finally comparisons for the velocity of rise, énd other physical
parameters, are made between the present predictions and experimental
results. In particular the results are compared with some experimental
data for the motion of gas bubbles in liquid metals, something which

has not received much attention in earlier theories.
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CHAPTER I

INTRODUCTION

Interest in the motion of gas bubbles in a fluid medium has
existed for many years and has resulted in a number of experimental
and theoretical investigations. Some of the features of the mechanics
of bubbles are discussed in Batchelor and Davies (1956), and Levich
(1962). The problem of the motion of gas bubbles in liquids is of
considerable importance in several engineering processes. In parti-
culgr, the shape of a bubble is found to play a leading role in these
processes. This is because of the influence it exerts on the
dynamics of a bubble.

It is well known, partly as a matter of observation and partly
from mathemafical analysis, that small gas bubbles are always sphericel.
However, it has been observed experimentally, Peebles and Garber (1953)
end Haberman and Morton (1953), that as a bubble size increases it
undergoes changes in its shape from spherical to ellipsoidal to a
spherical cap. This is also accompanied by corresponding effects in
other physical properties such as its velocity of rise and the drag.
It is therefore necessary to examine the factors that govern the
deformation of bubbles and the resulting influence of deformation on
the flow parameters,

The motion of a bubble, of prescribed volume, rising steadily in
an infinite incompressible pure liquid under the action of gravity,

is determined by the viscosity, Hoo of the liquid, and the interfacial

v
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tensiond ., In this study it is assumed that the liquid contains
no surfactants. In addition the thermally induced surface tension
gradients are negligible, (seée Harper, Moore and Peerson, 1967).
It is further assumed that the volume of the bubble is invariant,
and that the motion of the enclosed gas has a negligible effect on

the flow.

It is customary to use, as a length scale, the "equivalent
spherical radius" r, defined by
y 3 _
3 mé_.‘ =V, . (1.1)

where V is the volume of the bubble.
The dimensionless parameters which are of direct dynamicel

significance are the Rynolds number R, and the Weber number W, defined by

2repU
R = o (1.2)
o .
and
2repU2
W= e o (1.3)

respectively. Here U is the steady upward velocity of the bubble and
p 1is the density of the surrounding liquid. The Weber number, in
particular, measures the ratio of inertia foreces to surface tension
forces which are maintaining the bubble shape. Finally we give the

"~ M number, defined by

gu
°3 y (1.1)
po

vhere g is the acceleration due to gravity. Thus the parameter M is

M=
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a sole property of the liquid.
The work described heréin concerns the distortion and shape of

a gas bubble rising steadily, at Reynolds number large enough such
thatiboundary-layer ideas are applicable. It is clear that the surface
of the bubble must be stress-free so that the tangential viscous stress
. component must be continuous across its surface. As this condition is
not.satisfied by the ideal flow, a thin boundary-layer forms at the
bubble surface. >Mbore (1963) discussed the structure of the boundary
layer on a spherical gas bubble. It was shown}iﬁt boundary~layer
separated at the rear stagnatién point to form a wake of breadth

O(R-llh

), and that the perturbation of the irrotational flow was
O(R-llg) in the wake and viscous forces produced no significant modifi-
ca£ion to the velocity profile. In his (1965) paper he extended this
theory to the case of ellipsoidal bubblés. Winnikow and Chao (1966) demon-
strated thé‘thinness of the wake_in the case of droplet motion. 1In
the present work we shall assume that the boundary-lsyer does not
separate from the bubble surface.

Consider now Laplace's equation, for the‘préssure drop across the

liquid-gas interface, which is to be applied to the solution of the

profile of a bubble;

~P_+ ofE-+2) =P (1.5)

?
Rl R2 g

where Pnn is the normal stress, R1 and R2 are the principel radii of
curvature and Pg is the gas pressure inside the bubble and which is

assumed to be constant. Eguation (1.5) which is to be satisfied at

¥
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every point of the bubble surface, expresses the constancy of the
internal gas pressure.-P is equal to the pressure P in the
irrotational flow plus the viscous normel stress which is smaller by
a factor of O(R-l) and its contribution is therefore neglected and
the shape of the bubble calculated as if the flow were inviscid.

Equation (1.5) then reduces to

1-,1 _ ’
Pe o b=, g (1.6)

Viscosity still plsys a role in the problem, since the velocity U
depends on it. However, the shape of the bubble is now independent
of viscous mechanics. Even then the resulting inviscid free-boundary
problem is still exceedingly difficult, in view of the fact that the
shape of the bubble is unknown. This emphasizes the need for some
simplifying assumptions in order to render it tractﬁble.

The problem posed here is to prediet the shape of a bubble, of
preseribed volume V, placed in a uniform stream, U, of an infinite
indompreésible fluid which is moving irrotationally. The work will
be confined to axisymmetric bubbles so th#t the shape of the bubble
may be represented, in sphericsl polar coordinates, by the surface

£(u,W), : (1.7)

r

where

u=cos 6, | (1.8)

and 6 is the angle between the radial distance and the direction of
translation of the bubble.

Severasl suthors have investigeted this problem in the experimental

5
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and theoretical fields;

Saffman (1956) investigated the motion of air bubbles in water,
in a regime prior to that of the spherical cap formation. He gave
a theoretical and experimental account of the spiralling and zig-zag
motion of the bubble. Faced with the complication that the bubble
shape is unknown, he made a simplifying assumption that the bubble
is an oblate spheroid. This assumption has been justified in view
of its consistency with experimental observation, where these bubbles
are found to be approximately oblate spheroids. In his analysis,
Saffman adopted assumptions about the pressure which are basiecally the
same as those made by Davies end Taylor (1950) in their study of
spherical cap bubbles. He assumed.thgt the flow near the front of the
bubble is inviscid and considered the distriﬁution of the pressure in
the vicinity'of the front stagnation point. This led him to an
equation relating the geometrical parameters of the spiral, the bubble
shape, and the velocity of rise. in a similar way, he treated the zig-
zag motion of the bubble and arrived at an equation which determines
the stability of its rectilinear motion. Although Davies and Taylor
(1950) by assuming inviscid flow only near the front of the sphérical
cap bubble, obtained excellent agreement between theory and experiment,
one should bear in mind that, in this case, the drag coefficient is
of 0(1) and there is flow separatioﬁ at the rear of the bubble. In
view of this, Saffman theory is likely to be inconsistent with non-
separated flows. Also, sinée he ‘used water in his experiments, his

results are likely to be valid for impure liquids since water is often
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characterized by the presence of small impurities.

Hartunian and Sears (1957) analysis was concerned with the
instability of bubbles due to hydrodynamical pressure and surface
tension effects. In particular, they have shown that what decides
the stability, or otherwise, for bubbles moving in pure relatively
inviscid liquids is the Weber number. Thus forrstability to ocecur,

W must exceed a certain critical value WE. They assumed a bubble
shepe in the form oé a deformable sphere and obtained a critical Veber
number of 3.18 for the onset of instability. They further approximated
the bubble shape by an oblate spheroid of revolution for all W. It .
was not then possible for then fo satisfy the surface pressure
condition (1.6) properly. They only satisfied it at the equator and
the pole but their analysis was in error. This technique was also
adopted by Siemes (1954), who studied gas bubbles, and their growth,
in liquids.

Moorespapers (1959) and {1965) deai with both linear and non-
linear theories for the distortion of spherical bubbles at large
Reynolds number. He first examined the case of the nearly spherical
. bubble and proved that for small Weber numbers (W < 0.1), the bubble
is oblate spheroidal. However for Weber numbers of 0(1), the shape of
" the bubble is unknown. Following Hartunian and Sears (1957), he
aésumed that bubbles whose Weber number is of order unity are still

oblate spheroidal. In view of an algebraic error’'in their work; he
found it necessary to reinvestigate this problem. We shall refer to

 this method as the "Two-point Theory'". Moore satisfied the dynamic
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boundary condition (1.6) at the pole and the equator, being the
points of minimum and meximum curvature respectively. It is
instructive to mention that G.I. Taylor (1964), using the same
approach for a problem in electrostatics, obtéined good results on
satisfying the respective‘condition at the same pair of points.

Moore's analysis led him to the expression

_ B> + x - 2)[x25ec~1x -5 -1

y1/2,2 |
= 832 . 1)3
x 7(x° - 1)

(1.9)

which gives the Weber number in terms of the exis-ratio x which is

a measure of the ratio of the transverse and longitudinal axes of

the bubble. It is & very convenient parameter for characterizing the

shape of the bubble. Moore has shown that the maximum error in the

"Tyo-point Theory" should not exceed.loz, from the exact one, up to

x =2, |
Theieéperimentai paper‘by Heberman and Morton (1953) includes

a vast literature search oh thé problem. Their resultsrregarding the

velocity of rise, the bubble shape and the bubble trejectory for each

liquid, depend on the parameter M which is solely a property of the

_8)’

liquid. In particular, for low M liquids (MV< 10 vhich are the

subject of study in fhis thgsis, théy observed that as T, incresases,
the bubble changes shape from spherical to oblate spheroidal while U
inqreases rapidly to & maximum, with the bubble rising steadily in a

vertical straight line. Beyond this maximum, with further increase in

T.s the bubble motion is no longer rectilinear but may rise along a
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2ig-zag path or in a uniform spiral. Also the bubble fluctuates and
U decreases steadily to a minimum before rising again. For very

large L the bubble ultimately attains the shape of & spherical cap
with fluctuations at the rear. lfiuab and

Jones (1965) studied bubble behaviour in(?luidized beds. Although
the results given in his thesis are primarily concerned with bubbles
in liquids of high viscosity (uo > 1 poise), the range of viscosities
used covers some liquids of small viscosity. Of particular interest,
he examined the shape of air bubbles rising through water. Photographs
of these shapes are also to be found in Batchelor (1967) Plate 1h.

More recently Schwerdtfeger (1968) investigated the rise of argon
bubbles in mercury. As liquid metals are characterized by very high
surface tension, compared to ordinary liquids, they are likely to differ
from them in their hydrodynsmic behaviour. In particular the M number
(1.L4) is relatively smaller for liquid metals. Schwerdtfeger doubted
that the correlations for the velocity of rise of gas bubbles in
ordinary liquids may not be applicable to those>in liéuid metals.
However, he compared his experimental results with those of Haberman
and Morton (1953) for the rise of air bubbles in water. In the case
of argon bubbles in distilled water, the results compared favourably.

On the other hand the velocity of rise ?f argon bubbles in mercury
seemed to be lower than that of a gas bubbie in distilled water, having
the same volume.

Having now surveyed some of the experimental and theoretical

background to the problem, we proceed to give a brief account of the
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" work in thé remaining chapters of this thesis.
The aim of Chapter II is to extend Moore's theory (1959), for

small W, which gives the shape of the bubble in the form

r=afl - %g-Pz(u)] + o(w2), (1.10)

where 8 is a length scale specified by the volume of the bubble and
Pa(u) is Legendre function of order 2. It is therefore plausible to
proceed by expandiné the departure of the shape, from the spherical,
in powers of W. The analysis is confined to the calculation of second
and third order surface deformation in powers of W, since the algebraic-
manipulations quickly become unwieldly. The surface (1.7) for the
shape is assumed to have fore and aft symmetry, so that an expansion
in Legendre functions of even ordéf is used. The results are compared
with those of the "Two-point Theory"Awhich, as pointed out earlier,

is reliable up to x = 2, It is found that the convergence iﬁ poor
unless x < 1.4. Thus one camnot claim that the perturbation metﬁod

is a suitable one for solving the problem. The range of validity is
too small for that. In spite of this, we believe, the results are

not without interest. First, to within the range of convergence the
theory and consequently the shape are exact. Secondly, the festures
of the theory are interesting enough to record on their own merit.
Thirdly, by appealing to Shank's method for aCcelefating convergence
Van Dyke (196L), the results are considerably improved and they are
found to be reliable up to W= 3.

In the remainder of this chapter, the drag for the perturbed
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surface, to 0(W3), is calculated from the dissipation in the potential
flow using the expression given by Lamb (1959). An expression for -

the firag coefficient has been obtained after tedious calculations.

These computations could have been considerably reduced if one uses

the brief elegant version of this expression developed by Harper (1970)
in which velocity derivatives are not required. One needs to know only

a coordinate system appropriate to the body and the value of the veloecity
potential over its surface., Unfortunately this faper appeared after
the present calculations were made. | »

To the first order in VI, the drag coefficient is found to agree
exactly with Moore (1965) expression for the drag coefficient of a
spheroid with flow parallel to its axis of symmetry; .However, for
higher orders in W, the theory gives higher'values for the drag than
those predicted by Moore's theory. These results are of small
theoretiéal range of validity in view of the fact that corrections
resulting from the boundary-leyer are not computed.

Chapter III is devoted to the solution of the present proﬁlem
using the vifial method. An appropriate extension to the tensor virial
theorem df the second order is established. A trial shape in the fornt
of an oblate spheroid is used and thé resulting tensors calculated.

An expression for the Veber number in terms of the axis-ratio is
-finally obtained. To the first order in W, this expression reduces to
Moore's (1959) result for linear theory. On comparing the theory with
the "Two-point Theory" excellent agreement has been found up to x = 2. .

Again, on comparing it with the method of accelerating convergence,

P
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good agreement has been obtained up to x = 3. An important feature

of the theory.is the existence of a maximum Weber number of 3.271

at x = 3.72, and thus exhibiting the same sort of behaviour predicted
by Moore's "Two-point Theory", though at a smaller axis-ratio. This
supports Moore's (1965) conjecture that there is a maximum Weber number
above which the symmetric shape is impossible. Finally direct assess-
ment of the virial result using Moore's (1965) technigue for calcula-
ting the percentage error in the curvature in eqﬁation (1.6), so that
it may be satisfied exactly at a general point on the bubble surface,
shows considerable improvement on the "Two-point Theory".

In Chapter IV an approximate method is developed for the study of
slightly distorted spheroidal bubbles. .The convenient system of oblate
spheroidal coordinates is used. The fact that the bubble is an oblate
spheroid for small W, suggest§ that the.bubble might not be too differ-
ent in shape from an oblate spheroid of the same axis~ratio even for W
of 0(1). 1In view of this we shall take an oblate spheroid as our
starting point.> Unfortunately, it is not possible to adopt the method
of Chapter II in this section, since the perturbed first curvature for
an éllipéoidal surface is an irrational function of one of the coordinates.
Two main problems are investigated in this chapter. Also reasons are
given for the failure of the perturbation scheme of Chaptér.II. It is
illuminating to find that similar features exist in solving the problem
of two dimensional motion of an ellipse. In particular it is shown that
both theories bresk down at an axis-ratio x = V2, due to an improper

representation of the velocity field at this value.

2
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Now in the first problem an approximéte method is developed,.
based on the hypothesis that the true shape of the bubble will differ
little from an ellipsoid having the same volume. In view of this
assumption, it is plausible to use the flow field about this ellipsoid
to determine the dynamic pressure on the surface of the true'shape.

The shape is determined using the expression for the Weber number in
terms bf the axis-ratio, first for the "Two-point Theory" and then for
the virial theory. The shapes are traced for different values of W and
compared wifh those of the unperturbed ellipsoids. This method also
provides an alternative way'of'cbmpafing the "Two—point Theory" with
the virial theory.

The second problem is the same as the first, apart from the
inclusion of gravity. As far as I know, the problem of studying the
simultaneoﬁs‘effect of surface tension and gravitational forces on the
shape of the bubble, has not appeargd before in the theoretical litera—
ture. Gravitational force is introduced through tye known expression of
the drag on the ellipsoid in terms of the Froude number. The resulting
differential equation is solved usiﬁg_the seme numerical method for the
symﬁetrié shapes. Resulis are obtained for different values of the M
number, using the Weber number given by the virial theory, since
it is mo?e trustworthy. The predicted drag coefficient is plotted
against the Reynolds number'for a range of values of M. The

shapes of the bubbles are traced in comperison with the unperturbed
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ellipsoids. They are found to be characterized by a dént at.the

rear stagnation point. Walters and Davidson (1962, 3) obtained
similar shapes in their experimental and theoretical studies of
accelerating bubbles under the action of gravitational forces alone.
They observed a tongue of liquid forming at the backlof an accelera-
ting three-dimensional bubble. The bubble distorts into the form

of a mushroom and ultimately into a spherical cap. Although this is
mere coincidence wi;h the present theory, it may indicate the natural
development of a bubble shape from spherical to spheroidal to a
spherical cap.

It has also been observed that as a bubble is deformed from the
spherical shape, the appearance of a dent ét its rear is delayed, in
liquids of smaller M numbers, until larger axis-ratios are attained.
This seems to be consistent with experiment in the sense that the
effect of gravity is more profound, as M increases, so_that a bubble
may change from spherical into a spherical cap shape without having to
go through the intermediate spheroidal shape.

Finally, the predicted velocity of rise of gas bubbles is tested
with some experimental data. Three diverse cases are examined. The
rise of air bubbles in water (M = 2.1 x 10°11) has often produced
discrepancies in‘experimenial results. This is attributed to the fact
~that water, however pure, is known to contain a small quantity of an
unknown surface-active contaminant. The present data is taken from
the classical results of Haberman and Morton (1953). Another data

taken from this reference is that for the rise of air bubbles in
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11y mmis provides a chance for

methyl alcohol (M = 8.9 x 10~
comparing the present theor& with Moore's (1965) earlier theoretical
predictions, as well as with experiment. Finelly, the theory is

compared with the experimental results for the rise of argon bubﬁles.
in mercury (M = 3.7 x 10'1h), Schwerdtfegef (1968). These results
have not been compared with any relevant theoretical results. This
provides a good opp?rtunity for comparison with the present theory.

The outcome of the above comparisons showed good agreement between

theory and experiment.
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" 'CHAPTER II

‘NON-LINEAR PERTURBATIONS OF A SPHERICAL

BUBBLE

1. Introduction

The aim of this chapter is to predict the shape of & bubble,
of prescribed volume V, placed in a uniforﬁ stream U, The bubble
is surfoundéd.by an infinitezg;ﬂzipressible fluid.which is moving
irrotationally. In the absence of gravity, thus, the shape of the
_ bubble ié meintained by the interaction of hydrodynamic pressure
'forces-and'surface tension forces. The physical parameter which
héasures the ratio of these forces is the Weber nmurber W given by

2reDU2
W= —, (2.1)
0‘»
where p is‘the fluid density, o is the intérfacial stress and r, is

the "equivalent spherical radius", (e.s.r.), defined by
b3 - |
wl =V, - (2.2)

If W is zero, the dynamic pressure has n§ effect and the bubble is
spherical, This suggests we might proceed by expanding the departure
of the shape from the spherical in powers of W and the first term of
such an expansion has been found by Moore (1959). However, in
practice, the algebraic manipulations quickly become unwieldy. We
therefore limit ourselves to calculating only the second and third-

order corrections to the surface deformation. We start by assembling
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some expressions needed in the solution.

2. 'Eguations of axisymmetric irrotsational filow

For flow with axial symmetry using the Stokes stream function ¢
as the dependent variable, the velocity components in the directions

of increase of the spherical polar coordinates r and 8 are given by

L =1 ¥ (2.3)

= a0, qy = .
% r2 sin 6 96 _ 5 r sin 6 r

The condition that the flow be irrotational is

g, _ a(rqe)

=5 —_— O (2.4)

This leads to the differential equation for ¥ by substitution from

(2.3)
2 oy 2 |
% (3 -v%) 3%y _
2 * 2 2 =0 (2.5)
or r ou
vhere
'ﬁ = cos 6. (2.6)

Two fundamental solutions of this equation are

ap dp
-1 ntl.. 2 n _i.mm 2 n

vwhere P , vhich is understood to mean Pn(u), is Legendre function

vhich satisfies Legendre's differential equation of integral order n,
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g p. OB
E;-[(l - ¥%) 5;—4 + n(n + 1)pn = 0. (2.8)

Thus a general solution for the stream function in spherical

‘coordinates is of the form
- @P
= n+l -n _ .2y _n 2.9
¥ ) (cnr +Dr (1 - u) o | (2.9)

where C,o Dn are constants to be determined by the boundary conditions.
This will ultimately lead to the particular streamline generating the

bubble's surface, on imposiﬁg the appropriate conditions of the problem.

3. 8lip velocity

The pressure P is determined from Bernoulli's equation
1,2 2y _
P+ §°(qn + qt) =P, (2.10)

where PS is the stegnation pressure, q, and q, are the normal and
tangential components of velocity at a point P(r,8) on a meridian

" section AB of the surface
r = r(y). _ (2.11)

Now with this surface being a streamline, there is no flow normal to
it so that

Equation (2.10) therefore reduces to

\v

qi =P. (2.13)

l\)_cll-'

P+
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Now with the help of Figure 2.1 and the geometric relation

tan B = —r/(#/a), . (2.1h)

vhere dots designate differentiation with respect to u, it will be
a straightforward matter to show that
T2, 2 e, T 2 .

r“ + ar

This gives the square of slip velocity at a point P, on the surface r,

where

a = 1- u2. (2.16)

4k, First curvature

The first curvature J of a surface is defined by
=31 .1
J=g-+5> (2.17)

with Rl and R2 the principal radii of curvature. The derivation of J
for & surface with axial symmetry, using orthogonal curvilinear
coordinates, is desecribed in appendix (2A). In this section, the
expression is derived using the spherical polar coordiﬁates (r,6).

Thé surface of revolution is taken to be

G=r -a-agle) =o0, (2.18)
vhere a is a length parameter to be specified later. It is more
convenient to work in the coordinates (r,n), where p is given by

(2.6), so that (2.18) becomes
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¢ = r-8-ag(y) = 0. | (2.19)

Now by straightforward calculations and substitution into equation (5)
in appendix (2A), the expression for J, for a surface of revolution,

in spherical coordinates is found to be

a(2r3 + 3arg® + 2urSg + api> — arg), (2.20)
r(x + ag)?/? |

Jd =

This expression may also be written in the form
al2e°r3 - uzfz%(cé) + 3ar(eg)? + u(ag)?)

2 ? + (ag)?13/2

This is more suitable when g is given as & series expansion in terms

of Legendfe polynomials.

5. Formulation of the problem

We are now ready to state the problem formally. We seek a

Stokes stream function ¥, a bubble shape r = r(p) and a bubble gas

pressure Pg such (Figure 2.2)

. W2 2
(i) M.}.g.._ §_.‘P_"=o
2 2 2 .
ar r
(i1) w& - lUrqu s r > o

N

(iii) vy =0onr = r(uj

M

(iv) P - qi +oJ = P onr = r(u).

g

A (v) Volume (r = r(u)) = V.
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' By assuming the bubble to depart very little from a sphere,
Moore (1959) has shown that to a first order in e(]|e|<<1) the bubble -
is deformed into an oblate spheroid. He represented its shapé by

the equation

r=all+ ePQ) + 0(82) ' (2.22)

wvhere a is a length scale determined by the prescribed volume and

e = - %‘2“-' + 0(w?). (2.23)

To the crdér of this approximation, it can easily be shown that a is
equal to the e.s.r., r,, so that it does not matter whether W is
based on a or re.- |

~ Our purpose here is to calculate second and third order deforma-

tions as the Weber number increases. Consider now the surface

= = R I4 /A ’
r=r a(l + €P, +€P) + eP6), (2.24)
vhere, again, a is fixed by the condition (V).

We know that

o(w) .

[\ ]
n

and that

¢ = o(W)

so suppose, subject to a posteriori justification

¢ = o(W) = 0(c?)

and similarly

3)’

& = o(W) = ole

so that equation (2.24) becomes
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r=r, = a{l + eP, +.(X;52 + Aae3)Ph + A3E3P6}+ o(eh) (2.25)
where € has the form
_ Y
e = oW+ c2W2 + c3w3 +o(wW'). (2.26)

The A's and c's are constants of 0(1) and are to be determined later.
It should be pointed here that the use of € as a small parameter is
only dictated by algebraic convenience. The choice of Pn's with
even order in (2.24) takes care of the assumption that the bubble
has fore and aft symmetry.

Now bearing in mind that in the limit W—>0 the bubble is a

sphere and since a > r, as W > 0, we try an expansion

B

. ‘ 3 o
v rels 2 athe m_ 2m+32
P = —Ua{-2-(r - ;-—)P + Z _——E'l'l a 3P2 +l}’ (2.27)

m=0 r
for the stream function. The coefficients B in (2.27) are dimension-
less constants and Bm + 0 as W~ O, In the present case, only four

terms of the above series are taken. Further we shall assume that

B, = o(e) ;
B, = 0(e) ; - (2.28)
B, =0(?) )
)
By =0(c?), )

so that
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BO = ebi0)+ 92 béo) + 53 bgo) ;
B, = ebJ(_l) + € bél). e bgl) . ;
B, = 2 béa) + &3 'b§2) ; (2.29)
B, = e3 'b§3), ;

where the b's are constants of 0(1) and are subject to later deter-
mination. This assumption will be justified a posteriori. It is
not strictly necessary to make any assumption at this stage, but a

commitment to this ordering greatly reduces the algebra.

Dimensionless form

It is convenient to non-dimensionalize the above equations. To
do so, we divide all distances by a, all velocities by U, all pressures
by pU2 and stream functions by Ua2. Then, on using the same notation

one gets

r=r =1+g + o)

vwhere (2.30)

Tt Y Nags Nt Saeget® it

= ¢P, +,(11€2 + 1283)Ph + 1353P6 + O(Eh)s

m .
I

as the surface of the bubble. This notation will help to suppress
some of the algebraic calculations. The dimensionless stream function

obtained from (2.27) is

_ 1y T _m -
= —af{zlr -r)P1+ Z 5T Fome1 } ° (2.31)‘
m=0 r

The boundary conditions are rearranged to give



—29—

$=0onr, (2.32)
and
20 8P + LWy = qui on ri, - (2.33)
wheré
AP = P_ - Pg, ‘ (2.3k4)
and
2 U2
wa = —aﬂ-—-o_ - (2.35)

is the Veber number based on the length scale &a. One remark that

can be made at this stage, in anticipation of the analysis, is that
the velocity perturbation "lags" behind that of the surface. This

is revealed by equation (2.33) and considerations of earlier assump-
tions regarding the order of perturbations and that ¢ is 0(W). There-
fore in order to attain the order balance in (2.33) one only requires

terms of 0(52) in qi while in the first curvature needs terms of 0(33).

6. Method of Solution

Having obtained the necessary equationsvwith the appropriate
boundary conditions, we now proceed to solve the problem. The kine-
matic boundary condition (2.32) is used for the determination of the
b's in equation (2.29). On substituting for r, from (2.30) into (2.31)
and applying condition (2.32), one gets an expression in terms of
products and derivatives of Legendre polynomials. This has to be
transformed into an expression which is linear in P2, Py and P6 and

having no derivatives, The limitation to Pg is, of course, dictated

by the order of the B's. To achieve this form, one has to go through
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lengthy algebraic manipulations. Besides using Legendre identities,

given in appendix (MA), one requires repeated use of the identity

3(nt1) (n+2)

‘ )
PP = )
20 Hona)(2n+3) BY2 ;
9 (2.36)
n(n+1) + 3n(n-1) )
(2n-1)(20+43) ®  2(kn21) 72 3

vhich may be derived by straightforward manipulafions with Legendré
identitiés.

Now equating the coefficients of P 2, Ph and P6 to zero, by
virtue of the linear independencg of Legendre polynomials, one gets
a s&stem of four equations in the B's and ¢. The expressions (2.29)
for the B's‘aré then substituted into these equations, neglecting
- terms of O(eh) or higher; Rearrenging the terms, groupiné coefficients
of each powér of ¢ together and equating them to zero by the property
of their lineﬁr independence one gets & set of ten equations in terms
of the unknown b's and A's. Finally solving these simultaneous
~ equations for the b's in terms of the \'s and substifuting their

values into (2.29) gives

=3, 183 2 1 3 )

By = 30 ~ 350 € '3_( -18)) ¢ )
31,3 2 2862 . 56 _ 55 y3 1

B, = 1ot 5(5 = 3*1)‘: '5'5(175 Th T e ; (2.37)
-1 _2_7_ 2 1 1377 121 13, 9. 4.3)

B, = =5 ( Ay + )e (175 35 S5 Ay * 5, 213)8 ;

ll l
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Having found the B's in terms of € and the unknown X's, the
stréam function (2.31) is easily obtained by direct substitution.
Our final task is to obtain an expression for the square of the slip
velocity from equations (2.15), (2.31) and (2.37). Again one has
to go through lengthy calculatiops'in order té express 45 as a linear
'.combination of P2, Ph and P6. Furfhermore recalling that qi is only

required to 0(82), one finally gets

2_ 3. 162 2
2~ I75°

( 108 32h 2 12 2)P +

B, *+

t35 e It - T ME
108 . 918 2 552, 2
(557 + 3935% + 7 M Byt
108 2 60 2
(g e - T M)t
O(e ). = Ei, say. - S (2.38)

Consider next the expression (2.21) for the first curvature.

Expanding this to the third order in g and non-dimensionalizing w.r.t. a,
~ one gets

2(1 -g + 32

&
]

—e) - -2+ 3g2)‘—§;(aé)
+ 35653 + o(gh)

s SaY. : (2.39)

!
&

Upon substituting for g from (2.30) and carrying menipulations similar

to the above in order to represent J as a linear expression in the P's,

one gets
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= (2 - 2¢ 35 )P +

202 12 3 96 3
(ke - T + 7. € - l )P + ‘

36 2 3 _ 960 3, 108 3
( Te + 181 e + 187\ - o Al )Ph

3 24, 3. 723

+ (h913e - —ﬁ)\le 4+ 7"6 )P6 |
+ o(eh). | (2.%0)

Now upon neglecting terms of O(eh), equation (2.33) becomes

2W_AP + h3'= W;ﬁi + O(Eh), onr=ry. (2.41)

Substituting for J from (2.k40) and'as from (2.38), equation (2.h41)
. gives a linear expression in the Pn's. Equating the coefficients of
P to zero, one éets a system of simultaneous equations leading to

the evaluation of the A's in the form

_26 _ 18k2 _ 197
A =35 X = Tesy  ed Ag = 3E (2.42)
Oné also obtains
_ xd 451 3 L _
e - 35(rw)° - 325(r)% + o(w) (2.43)
 and , _
= 2, 33 3 4 :
W AP = hi-1 + orv, + (rwa) + 175(rwa) + o(wa)] . (2.k))
where
r =3/32, (2.k5)

From (2.43) one recovers Moore's (1959) first order term

e = - §§Wa + o(wz) . (e.hs)

The surface of the bubble (2.30) becomes



r=r, =1~ (0.09375W_+ 0.01180W° + 0.00211W°)P
1 _ e a * a2

3
+ (0.00653W- + 0.0009TW2)P, .

3 ] :
- o.ooohawa Pg + o(wa). : (2.47)

Axis-ratio x

This is the ratio of the transverse and longitudinal axes of

the bubble so that from Figure 2.2 one gets

[r.1,._
- 1 6=nf2 : (2.148)

x = -
- Il

e
b

Upon substituting from (2.47) for r, one gets

x= 1+ 30w + Shry )2+ B8y )34 o) (2.9)

The volume of the bubble in dimensionless form is found to be

V= %l'-(l + %2 + % ;3)_ + 0(eh). (2.50)
- _ 12, .2 3 4 ’ _ '
r, = re/a =1+ 58+ 7ose ¥ o(e ), (2.51)
or in termé of Wa
— Ly 22 . 272, 13 A
e = 1+ g(PWa) + szs(ma) + o(wa). _(2.52)
Noy since »
WM =1/, (2.53)
- 9 h '
W, =W - w2 W+ o(w ). (2.5h)

Hence in ter@s'of W, which is based on s the above equations become
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e = - 0.09375W + 0.01180W + 0002943 + o(W"), (2.55)
r=r =1 - (0.09375¥ + 0.01180W% + 0.00194%°)E,,
+ (o.ooés3w2 + 0.0009TW )P,
- o.oooh2w3p6 + o(wy) (2.56)
‘end
x = 1 + 0.15062W + 0.0261W° + 0.0061W° + o(wh). (2.57)

Similarly the stream function coefficients (2.37) expressed to the

third order in W are

B, = - 0.02813W - 0.00814W° - 0.00196W> )
B. = 0.02813W + 0.0035TW2 + O 00093‘«?3 ;
1 * * .. ‘ : ) (2-58)
B, = - 0.00335W" - 0.00056W> E ;
By = 0.00051w3. )

The function x(W) givenrby equation (2.57) is now plotted in
Figure 2.3 for the different order perturbations in W. On the séme
figure the curve W(x) for the "Two-poiﬁt Theory" is also plotted.

‘ Comparison of the two theories shows that the perturbation solution
converges towards that of the "Two-point Theory". However, detailed
examination shows that the third order theory departure from the "Two-
poiﬁt Theory" is ﬁ.l% at x = 1.k, 7.12 at x = 1.6, and 11.2 % at

"x = 1.7. Moore (1965) has shown that the maximm deviation of his
theory from the exact one should not exceed 10% at x = 2, It is

thus élear that althoughAthe perturbation theory is exact for small

Weber numbers, its convergence is'slow. One can try the methods of
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accéleréfing ébnvergence described in Van Dyke (196h) p.202.

Among these is Shank's method for 1mprOV1ng slowly converglng series,
or even divergent. Applylng this method to the series (2.57) for
the expansion of (x ~ 1), the corresponding expression is found to

be

L 3% - |
*-1%%0% - 6w (2.59)

Again we plot this curve, Figure 2.4, in comparison with that of the
"Pwo~Point Theory". One finds that they differ b& 6.8% at x = 2

vhich is well within the estimated range for the exact theory. Thus
it seems likely that thié result is fairly close to the exact theory

up to x = 2. .

T. The drag on the bubble

As discuséed in the introduction, at largé Reynolds humbers
viscosity does not affect the shaée of the bubble. Moreover, as
Levich (1962) has shown, the drag force D on the bubble cén to leading
order be calculated from the dissipation in the‘ﬁotential flow, and
from the expression given by Lamb (1959), p.581, for the dissipation

in a potential flow
=-yuf8 v(g?)as; . (2.60)

the integral being taken over the body surface, and n is normel into
the fluid. 4dS is element of surface area and H is the viscosity. In
- dealing with axisymmetric flows it is convenient to express (2.60) in

terms of the spherical coordinates r and p and the stream function ¥.
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Now from Figure 2.1 one gets

B =sinB £ - cos B E s _ (2.61)

and
A 9 Al 9 :
V= (Z-ar’ 6 86)' (2.62)

dS is given by
as = -2nroau (2.63)
and .

€ =q qe-[(a-a;% + I d 22, (2.64)

Upon substituting for these expressions in (2.60) one gets, after

some manipulations,

_rawaf, of 2v 2% an, (2.65)
a

vhere

.. D |
= Fon (2.66)
o

o

is the dimensionless drag.

The actual dré.g D is given by

1 .2 2
D = 5 pUTT, Cp, (2.67)
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vhere Cp is the drag coefficient. Combining equations (2.51),

(2.65) ~ (2.67) and meking use of the expression

R =-.-_2r&¢>U’
%o

(2.68)

for the Reynolds number, one gets

Ll ow) 8% 2( AR

or op’orau

.|. .

- 2
' E._i._ik ar 8y 3 ¢
~-E 2*33 }1 dyu. | (2.69)

This integral is evaluated after tedious but straightforward
calculations, using the expressions for the B's in equation (2.58).
The final result is

c, = “8 [1 + 0.1875W + 0.02950W> + 0.00476W3 + o(W')].  (2.70)

It must be emphasized that this formula is correct only to O(R-l).
The calculation of the term of O(R-Bzz) requires the boundary-layer
 structure to be determined and this has not been attempted.

| Moore (1965) pursuing his analysis for an ellipsoidal bubble,
obtained an expression for the drag coefficient in terms of the axis-
ratio. Invoking the details of the potential flow about an oblate
ellipsoid of revolution, he calculated thé dissipation in the flow.

He then found the expression for CD corresponding to an ellipsoid,
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vhose axis~ratio is x, in the form

- Eg;xh/B(xa - 1)3/2[(32 -1)1/2 - (2 - Jc2)'sec-l x)
- (2 - 1)1/212

C
b R 3[x2 sec-'l x -

+ 08732, (2.71)

In order to compare the results (2.70) and (2.71), it is convenient

to adopt Moore's notation

¢y = 22 6(x) + o(&™/?), (2.72)

so thet the quantity in square brackets in equation (2.70) is also
referred to as G.

Now expanding the function G(x), obtained from (2.71) and (2.72),
to O(x - 1) (i.e. to 0(e2), where e is the eccentricity of én ellipse

in the meridian plane) and using the relation

W= gé-(x -1), as x + 1, (2.73)

(wvhich may be obtained from either (2.49) or (2.57) since to this
ordeerA = W), one finds that it is jdentical with the linear term in
equation (2.70). For further comparison, the graph of the functions
G(x) derived from equations (2.70) and (2.71) are shown in Figure 2.5.
Both curves demonstrate an increase in the drag with increasing
oblateness. However, the present theory, which is not likely to be

reliable beyond x = 1.4, seems to over-estimate the value of G(x).
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" 'CHAPTER IIX

" THE VIRTAL METHOD AND ITS APPLICATION TO THE MOTION

~ OF GAS BUBBLES

1. Introduction

The virizal equatlons of the various orders are the moments of
the relevant hydrodynamical equations. These moment equatlons are
exact integral relations that must be satisfied by the solution of
equation of motion and the boundary conditions. The moments them-
selves have simple physical interpretations.

Although the tensor virial equation has been known since Lord
Rayleigh (1900), its usefulness in hydrodynemic problems has énly
recently been exploited. It has been révived by Chandrasekhar
(1961, 1965, 1969) and Lebovitz (1961) in problems of astrophysical
interest. More recently Rosenkilde (1969) extended the method to
investigate the equilibrium and stability'of an incomfressible |
dielectric fluid drop situated in a uniform electric field. A general
survey of the virial method and its recent applications are given in
Chandrasekhar's book (1969). | |

| It is the purpose of this Ehaptér to find an appropriate extension
to the,tensor virial equation, for the study of the equilibrium of a
.gas bubble moving uniformly in an inviseid ihcompressible fluid which
~extends to infinity. Difficulties arise because the fiow region is

unbounded and a careful treatment of the integrals is needed.
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2. ~The appropriate form of the tensor virial theorem

Consider the uniform translational motion of a bubble wifh
velocity U, through an incompressible inviscid fluid under thé action
of surface tension forces. As shown in Figure 3.1, & and ﬁ_are unit
vectors normal to the surface elements §S and §F and are both drawn
in the outward directions relative to the closed surfaces S and %.
Here, S is the surface of the bubble and § denotes the surface of a
fixed sphere with a centre C and large radius R.” The region enclosed
between S and ¢ is of volume V and is wholly occupied by a fluid of
uniform density p. Pg is the ges pressure inside the bubble and is an
‘unknown constant.

In the present problem it is convenient to employ a system of
rectangular cartesian coordinates which is moving with thel£ubble. Its
origin* O coincides with the centre of the bubble and has velocity Ui‘

Also, as illustrated in Figure 3.1, the axis Ox3 is taken parallel to

the velocity of the bubble so that
U, =U,=0, U,=U. (3.1)

Let ni(xl, X5 X33 t) be the fluid velocity relative to . The
combination of a moving frame Oxlx2x3 and a velocity field

ui(xl, X5s X35 t) relative to & fixed frame is slightly unusuel, but
has advantage for the present problem. One remarks that since I is
at 1argevdis£ance and since u, falls off rapidly with distance from

the bubble,ui’does not depend on t - it would, of course, if I were

*
at time t = O, O and C are taken coincident.
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at a finite distance. Thus we can drop the time dependence of u.

end obtain the momentum equation in the form

Ju, 3ui 3P

P 5 " PV e T T B B

The advantage of this formulation is that certasin integrals over &

will vanish on account of the smallness of u,. The equation of

continuity is

.ou.

5 v
-53(_._— 0. (3.3)

Unless otherwise stated, the summation convention applies to repeated

indices in the above equations only.

Now to obtain the second-order virial equation, we have simply

to multiply equation (3.2) by X, and integrate over the entire volume V

occupied by the fluid. Thus the first moment of the equation of motion

.

is
ou. -
prjuk 7, f pr e s;i-dv = - % x, %5: av, (3.4)
i
where'

av = dx, dx, ax (3.5)

17273
is the volume element. Applying the divergence theorem to the right-

hand side of (3.k4) gives
f Xy a x; —av = f x, Pas; {xJ'szi + 85, % Pav, (3.6)

where 6., is the Kronecker delta and

i3



- 42 -
ds; = n; ds; dI, = N.dI. (3.7)
A _
Here n; and W, denote the components of % and N respectively.
At this stage one defines the tensor

=31 _
Riy =~ 3 £ x; P ax;, (3.8)

and the guantity

n = [ Ppav. (3.9)
v

The tensor Ri represents the effect of the disturbance on the

J
pressure at the surface I. In general this tensor is non-zero, even
vhen T recedes to infinity. The scalar quantity NI accounts for the
microscopic motion of the fluid particles.

Now the external pressure on S, adjacent to S, is given by

Laplace's formula

P-P,=-odiv 1, (3.10)

vhere the constant ¢ denotes the surface tension. (The divergence of
the unit outward normal to 2 point on S is equal to the first curvature
at that poiﬁt, see appendix (24)).

By use of the boundary condition (3.10), the first integral on

the right-hand side of (3.6) may be rewritten in the form

Pas, = - 1 . .
.!.,XJ as; oéxjdlvgdsl-l»?géxjdsl
or
é X PdS; = - 2ci.j + Ky (3.11)



- 43 -

where

S . A
Cij"a"é":j div 3 ds; (3.12)

is the Surface-Energy Tensor. This terminology has been adopted by
Rosenkilde (1967a) where he modified Chandrasekhar's version for Cid'

To Justify this, he proved that the trace of C’.“j is

C=0c[ds= oA, (3.13)
, %

A being the total surface area of the surface S, and thus agreeing

with the usual thermodynamic definition of the surface energy. The

tensor Kij in (3.11) is given by
Ky =Py éxj as; , (3.14)

and will be identified as "the gaé tensor".
Now combining equations (3.6)-(3.14) one gets

[ x, 5-av=-2c +2R,

Ty *y 7%, ij

+ K, +I1s. .. (3.15)
1 i

J J i)

The next task is to transform the left-hand side of equation (3.k)
into simpler integrals.

Consider first the relation
g aui ou
E e U SR S e S v
aui 3
= l.l.iu‘1 + x‘juk '51;' + x;jui -B.-XI_{ . (3.16)

The last term on the right-hand side of this equation vanishes on

applying equation (3.3). Thus (3.16) becomes
,aui 3
%y 3;;-= 5;;-(uiukxd) - . _ (3.17)
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Multiplying this equation by p and integrating over the volume V
one gets, after an application of the divergence theorem,
[ oy, 5o av = |
. pX — av = pu.u, X dS +
v juk axk uk
1)

We can perform some further useful transformations once we have

f pu;w X, A%, - [ ou.u.av. ' (3.18)
v

introduced the assuﬁption of irrotational flow. Then
u. = - L] . V (3019)

vhere § is the velocity potential. On substituting for u; from (3.19)

one gets
- = 3% .
é pulquV -p é uJ Bxi av., (3.20)
Now on using the relation
N " au =
28 _ b 5 2% |
" ax a (§“ ) axi | (3.21)

and applying the divergence theorem, equation (3.20) becomes

- { pu;u,aV = é pau,ds; - £ pE u, Az,

+ [od 3§é~av. | (3.22)
v i
Now we write
=_ 1 :
Ii - %-fpxjuiukdzk A (3.24)
1 T su '

pd —d av | ~ (3.25)

=
Ce
1l
'\)5 =
<t
@



=_1
Ty =3 é pJu,ds; (3.26)
and
!, =% [ ogu,arx (3.27)
iJ 2 z J ? :
where TiJ is the kinetic-energy tensor. The contraction of TiJ gives
_ 1 Ao . X ﬁ’
-5£@M¢-7§%M& (3.28)

which is the kinetic energy associated with the macroscopic motion
of the liquid. The set of equations (3.18)-(3.28) now gives

u

- /o :
f %% %, v ELJ' 2Ly, - 2T,
/
- 205, - 2. (3.29)

Consider next the second integral on the left-hand side of equation

(3.4). As U, is a constant, it is possible to write

f aui ! 8ui
- f-x,U —mdv=-0U px, —— 4v
v Jdkan ky Iy

= N
= - Uk‘j; . (uix'j)dv + pUk f u; 8; 4@V

fpu xJU dS { pu, ijkdE + pUJ % uidV, ~ (3.30)

after an application of the divergence theorem. 1In & similar manner

one gets
3d
pU fu.dV= pU f-—-—dV
dy ? J ¥
= - oU, éédsi + oU, {: $ az.. (3.31)

To make further simplifications it is useful to define the tensors
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M;, = - %a é pu;x,U, a5, ‘ o (3.32)
M J =2 £ pu;x,U, A%, ) (3.33)
%, = %— é p3U,aS; (3.34)
Q= - %—,g p8U,az; , (3.35)

so that combining.eguations (3.30)-(3.35) gives

ou.

-] o0y 5§i-av =- 2, - amgj - 2054 - 2q; (3.36)
v ,

5
Finally, on substituting from equations (3.15), (3.29) and (3.36)

into (3.k4) one gets

- /
2Li;j+2LiJ-2TiJ+2TiJ +2,Nij+2Ri;j '
. - ;
PRy By T Ay 2y

-20,, + K., + I (3.37)

iy i ij?
which is the tensor virial equation of the second order. It provides

a set of nine moment equations since

i, =1,2,3. (3.38)

3. " Method of Solution

The application of the virial method requires the selection of a

trial shape., This will be taken to be

= l’ (3039)

p?nﬂpfﬂu
+

n?nﬂmrm
+

u?nﬂurm

 with

al = 8,5 : . - (3.L0)
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so that it is an ellipsoid of revolution whose axis of symmetry 0x3
is parallel to the velocity of the buﬁb;e. Moreover, we will assume
that &y > a3s S0 thét the ellipsoid is oblate. This trial shépe
has the advantage fhat relatively simple expressions for the velocity
field are availasble e.g. in Lamb (1959). |

In order to evaluate the various tensorial quantities appearing
in the virial equafion, one'requires two other coordinate systems.
The system of oblate spheroidal coordinates and a related system,
adopted by Rosenkilde (1967b) in order to suppress some of the
manipulations.

Consider first thé system of coordinates employed in connection
with oblate spherpids of revolutioh. This is related to rettangular

cartesian coordinates by the equations .

x = w cos Y3 x, = w sin v Xy = k&B, (3.41)
where - |
o= k(1 + o2 - 62012, (3.42)

The domain of the variables a, B, vy is given by:
0<a<ew; ~15821; 02y5or - (3.43)
As shown in Figure 3.2, which is copied from Happel and Brenner (1965)
vith slight modifications, the surfaces o = a (const.) are oblate
sphefoids of revolution about the z-axis and are given by
-2 2

T o2 | (3.4%)
(1 + e?) k% '
(o} (o}
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Comparing this with equations (3.39) and (3.10) we see that

i 1/2; a

a]_ = 32 = k(]_ + a =_ka°. (3'h5)

3
On denoting the eccentricity of the meridian section by e one gets

=1 (ayfa)P=1-52= @+, (3.16)

where x is the axis-ratio. The line elements ha’ hB and hY defined by

as® = 2 da? + hg ag® + h$ ay>
are
| n, = k(0/0)2, by = kO/EM2, w = xae)?E, (3
vhere
= a2 + 32, D° = ai + 82 %
L=1+a°, L,=1+ o2 ; (3.48)
=1 - 6% )

The motion due to an oblate ellipsoid (o = ao) relative to a
. fixed frame moving with velocity U parallel to its axis of revolution

in an infinite mass of liquid, as given in Lamb (1959) p.1bk, is

&= cOB(a cot Lo -1), | (3.49)

where

-1

2)1/2- %-sin e]. (3.50)

a
c = 2 -1 = - -

c, = -kU/(Lo cot ao) Ual/[(l e
It is now a straightforward matter to obtain the velocity

components along the cartesian axes in the form
- conl con2

T e

2 %

- o
u, = co[D cot ~a - al/kD.

(3:51)

s s St st a®



..1;9_

Also their derivatives are found to be

] c B ¢ BE
aul =2 Z 3 (Sah + 3a2 + a282 - 82) eosay;
% %% XD )
Ju c B c BE
ax: =00 0 (5ot 4 302 4 o262 - 2) sindy) (3.52)
x°ID  k2ID3 ;
su, ¢ B
== 2 (3% - 8% - 5% - gY). )
) )

We now proceed to evaluate the tensor Ni in (3.25). This is

J

clearly a symmetriec tensor since

H., = - —fpé-a—%s;- dav. (3.53)

Furthermore the trace of Ni vanishes by applying the equation of

J
continuity. Now on substituting from equations (3.L49) and (3.52)

into (3.25)~one gets

2wc2kp © )
Nyg = ,3° [ b - 150¢% + 130 cot™ 1o + )
| oo, ) (3.54)
)
3003 cot ta - 3(3a° + Suh)(cot-la)alda. )
Evaluation of this integral gives
My =—p L (6 + e2)He? - (12 - 11e®)es g '
3e“(eH - 8) ) (3.55)
+ 6(1 - €2) HS?], )
Similarly one finds
' T 2 2 2
N.,=N.,= ((12 - 11e“)es - (6 + e“)He
B 22 geP(en-s)? (3.56)

- 601 - 2)ms?y,
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where
-1

r = 'rerzai; q = m; S = sin “e. (3.57)

Consider next the tensors represented by integrals over the
surface L. These tensors are evaluated by integrating over the
surface I as its radius R + =, The appropriate systém of vcoordina.tes
is that of spherical polars (R,0,y), where & is the angle between

Ox., and the radius ;rector R. ' -

3 .
For large values of o, the above potential takes the form

(o] o 3(13 4 )
e B cx ) (3058)
. -' (o] = _ (o] 3 as Q> o )
2 3 *
3 3ka )
Now
2_ .2 2 _.22 1-8° )
R=x1+x2+x3=ka[1+ 51 y .
R";: ka as o > » _ ;
Hence’
» c k2x
Hr--2 3 @R > | (3.60)
3R3

It follows that at large distances from the ellipsoidal bubble, the
velocity potential assumes the same form as that of a double source
whose axis coincides with the axis of translation (Ox3), so that the

-

expression for § is
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- UaieBHx3 Ek3 )
= -—3 = - —3» say, )
3R>(S - eH) R ) .
; (3.61)
wh
ere__ Uaie3H . 7 )
U=3s- e )

From the definition of oblate spheroidal coordinates (3.41), it is

" a simple matter to show that

grvcos © as R + o, B (3.62)
Cohsequentxy, on the surface I the coordinates of & point, the
. A :
components of the unit outward normal N, and the element of surface

area dI are,

x = R sin® cos v, X, = R sin® sin vy, X3 = Rcoseg
N, = sind cos y, N, = sin6 sin y, Ny = coso ; (3.63)
ar. = R° sin o dody, )

)
")

es R + .

The resultant velocity q and its radial and transverse components are

.given by
2_ 2 2 )
qa =g, + a.,. -
RO g (3.6%)
_ - 1238 )
% * 3R > 9 T R 30 )
Now from (3.61) and (3.64) one gets
2 ﬁe 2
q” = =g (1 + 3 cos®e), ‘ . (3.65)
: R
so that
(Velocity) v 35 as R + =, _ (3.66)

R
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An immediate result of this is that the tensors in (3.24) and

(3.27)
’ (4 . .
Lyy = Tjy = O for all 1,53 (3.67)
bearing in mind that
@&1—2, as R + «. ' (3.68)
R
On evaluating the tensors M;J in (3.33) and ng in (3.35) one gets
3
¢ _ 5 2le ) —
M1 Y% = SE-em )
) .
W 8re3 - ) (3.69)
33~ 45(s - eH) °* g
My =014 )
and
‘ s
Q1 = 9 =0, ;
3
r _  2fe )
Q33 = 575 - en) ° 3 (3.70)
Qf, =0, 1i#3J. )

i

Consider next the evaluation of the tensor Ri in (3.8). Because

J

the body is moving and I is fixed the motion near I is not strictly
steady and we must use the unéteady form of Bernoulli's equation

3% +_.]2._q2+P

3 = 0. (3.71)

NowasR>w, $ > & and the q° term in (3.71) will not contribute to

the integral in (3.8), so that we may take (3.71) to be

P=—per . (3.72)
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The evaluation of %? offers no special difficulties. It only requires
a simple geometrical consideration. We realize that the origin O

is in motion along the axis of the bubble, so that only the Xq
coordinate of a point P (fixed in space) will be time dependent,

This leads to the relations

R sin 6 = const. )
) (3.73)
R cos 6 = - Ut + const. )
Using the expression
28 _2Fom , 2320
3t = 9R 9t 8 9t °?
one finally gets
3%= m3 (1-3 cosae): : - ’ (3.71)
R
and from (3.72) -
P E%g'(3 cos2e - 1). . (3.75)
R -

On suﬁstituting from (3.75) and (3.61) into (3.8), the components of

the»tensor»Rij are found to be
N )
11 22 5(eH-S) % ~
’ 3
8T . (3.76)
R33 = T5(en5) ;
)

RiJ =0 i#3,

so that Ri is also a symmetric tensor.

J

' The remaining tensors in equation (3.37) are all integrals which
-are to be evaluated on the surface S of the spheroid. However the

tensor K, in (3.14) may easily be evaluated with the help of the’

J

divergence theorem, in the following manner
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Ky =P £ x, s,
= P I ———-(x ) av
: V
= Pg Vﬁ 613 (3.77)
where
Y = %“asai ' (3.78)

is the volume of the bubble.

By using the method developed by Rosenkilde (1967,b) we can

evaluate the tensors Cij’ Tij and Q,, in (3.12), (3.26) and (3.3k4)

1
respectively. Some length algebra, (see appendix (3A)), leads to
To
Cjq = Cpp = al le(1 + €°) - B tanh e 1{ g
‘RO’& H2 2 -1 g
Cyy = e3 [(1 + e°) tenhe = 1, g (3.79)
C., = 0, i J; ) -
ij ’ ] )
o =g = Ile- HS)[(Be - - 3’8 )
e, 2(el - s) ;
: . )
o 2(e - HS)[3eH - (3 - 2¢%)s] ) (3.80)
33 3e2(eH - 8)2 ;
= . . )
TiJ =0 i# J? )
and
Q17 9% =0 ;
_ 2r(e - SH) )
Q3% - 35 = e) ° ; (3.81)
Q.. =0, i#]. )

i
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Now using the summation over repeated indices, the tensor L.

1)

in (3.23) may be written in the form

=1
Liy=-3 é xjuiy_.ﬁ_ as. (3.82)

Similarly the tensor M., in (3.32) becomes

ij
=31 A
M = 2£ u.U.3 ds. | (3.83)
But
uf=U.non o= a3 - (3.84)

it follows that
L., =M.,. ~ (3.85)

It is therefore not necessary to evaluste these tensors since they
cancel each other in the temsor virial equation (3.37). This completes
the evaluation of the tensor quantities appearing in this equation.
In particular since it has been found that all the tensors are
diagonal , and L;J, T;j are‘identically zero,-equation (3.37) reduces to

0=2T3; * 2Nivi + 2Ry, U, + 20

+ 2 {i - 2C,, + (ng.D + H)EM’ ’ (3.86)

vhere use has been made of equations (3.77) and (3.85). Equation (3.86)
provides a set of three equations (i = 1,2,3). Writing these explieitly

one gets

+ 2R + 2M

.
11 11 * 29y

+ (?gvb + 1), (3.87)

0= 2T11 + 2N11

+ 2Q'11 - 20,
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_ 7
0= 2T33 + 2N33 + 2R33 + 2M33 + 2Q33

+ 2Q;3 - 2055 ¢+ (ngb + 1), ) ' (3.88)
vhere the equation for i = 2 has been eliminated since it is identical
with the first one. Now eliminating the unknown constant (ngb + 1)
from (3.87) and (3.88) and substituting for each element its corres-

ponding value from the above equations, one gets

4 = 20 3(5-em21(3e-€7) - (1-¢?)(3+e?) tann? ] (3.89)
(38 - 256? - 3te)

or in terms of the axis-ratio x,

2x 13 (P )P1ex(35%—62) - (3x24¢°) tenhig/fe) 1

W=
g (3hx® - 2ng” - 3g)
where ' . .
g= /'xa _,3 b= sec-lx, (3.91)
and 2 o
- 2r pU (3.92)

is the Weber number based on r é, the equivalent spherical radius for
the bubble.

The above expression for W in terms of tI}e axis-ratio constitutes
the main result of this chapter. Another useful result is the expression
fqr the gas pressure Pg, which may be obtined from the contracted férm

of the virial equation (3.86). The trace of this equation is
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o=20T+N+R+M +Q+q -C)+3(BY, +1) (3.93)

Considering the value of each quantity, from the preceding results,

one finds
N=R=0, (3.9&}
and,
M +q +;q{ = %pVbUa. , - (3.95)

Therefore equation (3.93) reduces to

_ 1. .2 3 .
0="T+ -épVbU -C + E(ngb + 1. (3.96)

This represents the scalar form of the virial theorem appropriate
for a gaseous bubble rising in an infinite liquid. Here, we recall
that T is the kinetic energy of the liquid, @ is the microsbopic
energy of the liquid particles, C is the surface energy and Vb is the
volume of the bubble., The expressions for T, C, and Vb are found from
equations (3.80), (3.79) and (3.78), respectively. The integral (3.9)
for I is evaluated in appendix (3B). Substituting for these quantities
in equation (3.96) one obtains the expression
-1
p = 2[gx + tanh (g/x)3
-l +
& /3

]

[3hx> + 2g3(1 = x)-3gx (3.97)

6(nx> - gx)

for the dimensionless gas pressure, Pg, in terms of the axis-ratio x

and the Weber number W, and where g'apd h are given by equation (3.91).
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"4, Conclusions |
On expanding the expression (3.90) as x + 1 (i.e. neglecting W2),
one finds
x=1+2-W, (3.98)

which agrees with the analytic theory. Thus the exact solution is an
oblate ellipsoid if W2 is neglected.

The series solution, using the method of accelerating convergence,
is compared with the virial theory in Figure 3.3. The maximum differ-
ence between the two curves is only 5% up to axis-ratio 3. .This is
very gratifying in view of the fact that the method of accelerating
convergence is known to bring about a considerable improvement in the
accuracy.

| Lét_us now compare the virial theory with the "Two-point Theory".
It has already been shown that the leading terms in both {heories are
identical and the exact solution is an oblate ellipsoid if W is
neglected. Consider now Figure 3.hbin vhich the theory of acceler-
ating convergence, the virial theory, and the "Two-point Theory"
are represented. One finds that for x = 2 the difference in the latter
two theories is 1.4%, for x = 3, 6.2%, and for x = 4, 11.6%. One may
be tempted to assume that fhe difference betﬁeen them is an indication
of the error involved in the spheroidal approximation.‘ This may not
be-thé case in view of the simplifying assumptions made in both
theories. However, Moore (1965) has shown that his "Two-point Theory"

is reliable up to x = 2. This at least ensures that either of these



theories is not far from the exact one, up to x = 2,

Oné facf'that emerges from Figure 3.4 is that, up to x = 2.5, °
the theory of accelerating convergeﬁce is closer to the virial than
the "Two-point Theory". It seems therefore that, up to x = 2.5, the
virial theory is closer to the exact one than the "Two-point Theory"
is. This is likely to be the case since the theory of accelerating
convergence may be expected to be more accurate than the other theories

.up to this value of x. N

Further éxamination of Figure 3.3 shows that there is a maximum
Weber number of 3.271 at x = 3.72 in the virial theory, as compared to
3.7T45 at x = 6.0 in the "Two-point Theory". Although the latter result
is well outside the range of validity of the "Two-point Theory"
approximation, it is striking that the virial theory exhibits the
same sort of behaviour, though at & smaller axis-ratio of 3.72. This
seéms to support Moore's cohjecture that "there-is & maximum Weber
number of ... sbove which the symmetric shape is impossible'.

Finally we usé the method of direct assessment adopted by
Moore (1965). Basically, one has to find an expression for the error
arising froﬁ the fact that the boundary condition, that the sum of
the dynamic pressure and the surface tension pressure is constant on
the bubble surface, cannot be satisfied exactly, at every point, on
the surface of the bubble. A convenient measure of this error is the
fractional change in the first curvature necessary to make the above
condition satisfied at every point on the surface. Moore gave an

estimate of the maximum percentage error for the "Two-point Theory".
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In Figure 3.5 these calculations are extended by giving the percentage
error for different axis-ratios and at different points on the surface
of fhe bubble. In Figure 3.6 the curves corresponding to the virial
theory, using the same technique as bef§re , are traced. This set of
curves indicates that the virial theory is more accurate than the
"Pyo-point Theory", whose corresponding curves are traced in Figure
3.5. It also shows that in the virial method, the boundary condition
is, in essence, satisfied on a mean surface, thué using an averaging
process.

- The virial theory being so good, suggests that a perturbation
to the shape, using the reéults offered by the virial theofy, might

give a very accurate solution. ) .
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CHAPTER TV

SLIGHTLY DISTORTED ELLIPSOIDAL BUBBLES

1. Introduction

Tt has been seen that for small values of the Weber number
(w< %—6) the bubble will deform into an oblate spheroid. This
suggests that when we examine larger distortions we should take as
our starting point the oblate spheroid. Even for Veber numbers of
0(1) the bubble might be expected not to be too different in shape
from an obléte spheroid of thé same axis-ratio.

' The system of coordinates suitable for the ﬁresent formulation is
that of oblate spheroidal coordinates (a,B8,y) Which has been discussed
in the preceding chapter.

Unfortunately it is not possible to adopf the method of Chapter II
in this section. The difficulty arises from the fact that the perturbed
first curvature for an ellipsoidal surface is an irrational function
of B. This means that Legendre polynomials of all orders enter at the
first stage of the iteration.

Precisely as in Chapter IT, it is assumed that a bubble having a
prescribed volume V is placed in a uniform stream U. The bubble is
surrounded by an infinite incompressible fluid which is moving irrotat-
ionally. Further assumptions regarding viscosity u, the gas pressure
Pg, and motion of the gas, also carry throughout. The notation of
Chepter III, unless otherwise stated is applicable here. Also the
expressions reﬁrgsenting the physical parameters e.g. W, R,...etc;,

remain unsaltered.
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The first part of this chapter explains, briefly, the reason
for the divergence of the perturbétion method of Chapter II, Failure
of the theory is predicted at an axis-ratio x = /2 , due to an improper
representation of the velocity field at this value. There is a
remarkable analogy between this problem and that of a two-dimensional
motion of #n ellipse.. This is beeauée in the latter problem, the
velocity field diverges at precisely the same axis-ratio, x = 2.,

The main part-of this chapter deais with tﬁ§ problems having a

- common principle underlying their methods of approach. This is
basically the selection of an ellipsoid a = ao,which is c}oéest to the
true shape of the bubble. » ,

In the first problem, an approximate method based on the hypothesis
that the true shape of tﬁe bubble will differ little from an ellipsoid
o having the same value, is devised., ‘In view of this as?umption, it
is plausible_to‘use the flow fiéld about o in order to determine the
dynamic pressure on the surface of the true shape. Two cases are
considered:

(2) in which the Weber'numbér, and conseQuently @, are given by the
"Two~point Theory". '
(b) W and o are given by the virial theqry.v .
| The second problem examines the effect}of gravity, as well es
surface tension, on the shape'of the bubble. The formulation of the
problem resembles the case of sufface tension al&ne. The shape of the
| bubble is Obtaingd by perturbing an ellipsoid e, assuming that the flow

field about the true shape is the same as that about a . This leads to
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a differential equation in terms of the Froude number, which is
unknoﬁn. This difficulty is resolved by expressing the Froude
number in terms of the drag on the ellipsoid a s and this is a known
quantity. The numerical solution of the differential equation is then
accomplished using a similar procedure to that of the "symmetric cese",
of surface tension. The problem is solved for different values of the
M number. The shapes of bubbles for both the "symmetric case" and the
case of gravity are traced in comparison with the ellipsoids o
Theoretical curves for the drag coefficient are plotted. Also compari-~
sons are given with some experimental results,

Before considering these problems in detail, let us first intro-
duce the velocity field in oblate spheroidal coordinates and compare it
with its counterpart in spheriéal polar coordinstes.

2. The velocity field

In oblate spheroidal coordinates Laplace's equation

©E=o, (5.1)

where @ is the velocity potential, tekes the form

2
3 ,. 93 3, 2% 1 1,09 -
alse) *opBs t G- =0, (+.2)

where L and E are as defined in Chapter III. Using the method of
separation of variables, a fundamental solution of (4.2) which is
symmetrical about the axis of revolution and is appropriate to the

region outside & spheroid of the family a = @ (cohst.) is given by



- 64 -

&= ]vpr (8l (ia). (4.3)
n=o

Here b are complex constants, Pn(B) are Legendre functions of the
first kind while qn(ia) are those of the second kind. For the
properties of these functions see appendix (kA).

The expressions for the normal and tangential components of the

velocity are

a = (4.4)

%,
n oa

w =L
s =
o hB

D"ll—-’

respectively.
For an ellipsoid-ao in a uniform stream U, parallel to its axis
of revolution, the expression for.the slip velocity uéo) is.readily

calculated in the form

1/2
(O) UCOE
u = —— (k.5)
B 1/2 °
- LOD
where
~1 % :
e, = 1/(cot o - E;) . | : (4.6)

- We now hope to throw some light on the cause of divergence in the
systematic perturbation method of Chapter II. To proceed, we assume

(o) . -1
8 in powers of ao .

that o is large and consider the expansion of u
There is no difficulty in obtaining the formal expansion, however,
it is only valid for @ > 1. At a = 1, the main source of trouble is

going to be the series expansion for cot—lao which ocecurs in (L.6).

This is best illustrated b& the following quotation from Van Dyke (196k)
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p.202 ",.. the numerical series
oy l.1l_ 1,
mEblogegogr )

which converges, but with painful slowness..., and 400,000 terms would
be required for six-figure accuracy.” It is rather dismaying to find

" from the relation
x = A1+ad) fa, - (1.7)

that at this value of LR the corresponding axis-ratio is only /2 .
This explains why the series method, of Chapter II, bresks aown at an
early stage in the perturbation. The origin of the term cot—lao is
the qn(ia)'s in the velocity potential (h.3), see appendix- (lA). Thus
the dependence of the velocity term on the expansion of cot_luo shows
that tﬁe velocity field is improperly represented, due to the requirement
of an infinitely large number of terms before one gets a reasonabie
degree of accuracy.

It is interesting to note that the same sort of behaviour ocecurs
in the two-dimensional motion of an ellipse. This treatment is given in
Van Dyke (1964) pp. 50-52. He shows that the formal expansion of-the
velocity is only Jﬁstified for x < Y2, This confirms the above result
and makes evident the source of trouble in both the two and three-

dimensional theories.
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3. Mathematical formulation

A bubble of prescribed volume V is.placed in a uniform stream U
parallel to its axis of revolution, see Figure 4.1. The bubble is
surrounded by an infinite incompressible fluid which:is moving irro-~
tationally. The motioh of the gas, inside the bubble, whose constant
pressure is Pg; is assumed to be negligible. The system of oblate

spheroidal coordinates (a,B,y) is used. The shape of the bubble is

represented by the surface of revolution

¢ = a-a - g(g) = 0, | : (L.8)

where a = a, is the ellipsoid which has the same volume as. the exact
shape and is closest to it in some sense. Wé will call this:the«"basic
ellipsoid". In the subsequent approxiﬁate theory, a is given by
either the "Two-point Theory" or the virial theory.

Thus we seek a gas pressure Pg, a constant o, and a continuous
function g(B) such that
(a) Py - %-uiv+ Jo = Pg
(b) Volume of G = V,
where in (a), J is the first curvature in oblate spheroidal coordinates,
for the surface (4.8), and u, is the slip velocity. The derivation of J
proceeds on the same lines as the corresponding one in spherical polar

coordinates, in Chapter II. Following the same steps in appendix (2A)

one obtains
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kH
(L + Eé2)]3/2 (k.9)

where

H={L{2L - E)a + L(2L - 3E)B &

- EIDE + (3L - 2E)aEé2 + E(L - 2E)Bé3}. (k.10)

The size of the bubble enters the gbove equations through k and
it will be convenient to remove this dependence by introducing the
equivglent sphericél radius To- Since the basicrellipsoid is chosen

to have the same volume as the true shape

.re = 'k(aoLo)1/3. : (k.11)
Then if .

W o= 2repU2/6 , (k.12)

the above boundary condition (a) can be written in the form

h(mox’o)l/3 2
2AP + J =, (k.13)
W ,
where
AP = Py - Pg. (hllh)

The expression (4.9) for the first curveture is now

o B |

where H is given by (L4.10).

Consider now the surface (4.8), for small g, such that
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o= o +g® +0@d. (1.16)

Substituting for this in (4.15) leads to

J=J + T+ 0(g2), (k.17)
where
(2. - E)a
3, = o 2 (.18)
(M2 p3/2 _
o ) .

' is the first curvature for the ellipsoid o

and
T = 1 LD (2 - 3E)BE - L D2EE
I 72D'5/2 oo © oo
(o] (o]
3 2 2 2 2
»+ (-21.o + hLo - LE - 2LE + E g1 + 0(g%). (h.19)

Similarly the slip velocity u, corresponding to the surface (L.16)
~may be written in the form

u =vué°) + uél) + vue - (k.20)

where u

éo) is the slip velocity on the ellipsoidal surface @, and is

(1)
B

_given by (k.5). The second term u represents the velocity perturbation

Upon substituting from (4.17) and (4.20) into the equilibrium

condition (4.13) one finds

_ (a°L°)1/3(Jo +J) - §(uéo)2 +A)

= - ¥ o - (4.21)



where

L2, ) Q)

8 N 8 cee s (k.22)

A =

is the velocity perturbation term. Now from Chapter II one recalls
that the velocity corrections "lag" one step in the perturbation
scheme behind the shape corrections. To apply this in the present

case, one requires the condition that

AW ~ 0(g?) (%.23)

If this is satisfied, then equation (L4.21) reduces to

1/3 = W _(0)2 WAP 2
- - - '—‘—+ . L]
(aoLo) @, +3) -¢ ug 5 o(g”) _ (4.2k)
This is the basis of the approximate method which we shall introduce in

the next section.

k., lineerized Two-point Theory

We now realize that even if it were practical to obtain all the
terms in a perturbation scheme based on a;l, this would necessarily
fail at o = 1, (x = /2). To avoid this difficulty, we have devised an
approximate method based on the hypothesis that the true shape of the
bubble will differ little from the "basic ellipsoid”. If this is so,
we can use the flow field about this ellipsoid to determine the dynamic
pressure on the éurface of the true shape. Then the equilibrium
condition (k.2h) becomes & differential equation for g which is solved

numerically.
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Upon substituting from (4.19) into (4.2L) one gets
A(g,x)g + B(B,x)g + C(B,x)g = F(B,x)

+ a(x) + 0(g?), (4.25)

which is & linear second-order non-homogeneous differential equation

in g. The function F(B,x) is given by
_W (6)2 1/3 W
F(B,x) = T Yg - (aoLo) JO(B) - 5P, (4.26)

stressing the dependence of J_ on B.

The "Two-point Theory" described above is equivalent to choosing

W so that
F(O,xo)_ = F(l,xo) = 0, | , (k.27)

Thus if we pick our closest ellipsoidal approximstion in this way,

equation (4.26) can be rewritten in the form

F(8,x) = %luéo)g + 13,(1) - 3_(8)) (u5L0)1/3 (4.28)

The constant a(x) in equation (4.25) is a correction term for
AP in (L4.26), due to the surface perturbation, and it varies with the

‘axis-ratio x. The coefficients A, B and C in (4.40) are given by
E(°oLo)l/3
(DoLo)1/2

(2L, - 3E)(a L)

D 3/2L 1/2
(o} 0

A(B’X)'= -

1/3

B(8x) = (4.29)

c(8,x) = —t—(-213+ hLi - 1°E - 21E + E2)(a°L°)l/3

5/2 _3/2 ° °
Do L°

Nt Nt Nt Nat® sl S sl s S gl st
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In particular,
a(¥1,x) = Blo,x) =o0. © (%.30)

Thus for any given value x = Xy the functions A,B,C and F in

equation (4.,25) are all known, where the corresponding value for W

in (4.28) is obtained on substituting for X into (1.9). However,

the unknown constant a(x) has still to be determined. It is also

clear from (4.30) that equation (L4.25) has a reéﬁlar singularity at
B=21.

| It is evident now that equation (4.25) requires three conditionms
to determine the geﬁeral solution. To accomplish this, lét us ufilize
the assumption that the bubble has fore and aft symmetry. . This implies
that the coordinate axes in a meridian section of the bubble Figure 4.1,

are normels to the trace of the bubble. In other words,

dw _ '
& | =0 C o (k.31)
B=o0
and
'd_f_ l = 0, | (4.32)
© dw
B=
where
s =kl +ad)Q - 82022, ;
)
g = kaB, ) (h-33)
)
@ =a + g(B). )
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Performing the differentiation in (14.31), with the understanding

that a > 0O, for all B, the condition is found to be equivalent to

g(g) =0 at B = 0. (4.34)

The latter condition (4.32), for the slope to be zero at the pole, is
satisfied by any regular solution of the differential equation (%.25).
Therefore we shall -impose regularity of the solution at the pole.

This leads to, from (%.25) and (%.27),

B(1,x)g(1) + c(1,x)g(1) = a(x). , o (b.35)

A third condition is necessary in order to determine the unknown
constant a(x) in (h.QS). ‘Now as the volume of the bubble is to be
prescribed, we norﬁalize its value to that of the ellipsoih a e This

is equivalent to the relation

1 |
[ e(8)p as =o,
0.

The conditions on (4.25) can now be summarized as followsf

(ia) , é(B) =0, at A =0, ;
(22) B(1,x)g(1) + C(1,x)g(1) = a(x), g (4.36)
(3a) } g(g)p as = o. )

0 ’ .

Let us now embark on solving the problem numerically. This is
accomplished here by using the method described by Fox (1957), Chapter 8,
The basic process is to solve the boundary-value problem using an

initial-value technique. One starts by solving the problem with some
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erbitrary initial conditions, combining the solutions to satisfy

all the given boundary conditioms.
Consider now the non-homogeneous equation (4.25) together with

the corresponding homogeneous equation
A(B,x)E + B(B,x)g + C(B,x)g = O, (4.37)

Denote these equations by I and II respectively Equation I can now
be integrated completely with the two point boundary conditions (la)

and (2a). The numerical procedure is as follows:

(1) Guess a value for a(x).

(2) Define gI(B) +to satisfy I and such that at B8 = 1,

B(1,x)g; (1) + C(1,x)g; (1) = alx), )
) (4.38)
gI(l) = 1, )
(3) Define gII(B) to satisfy II and such that at 8 = 1,
B(1,x)g{}) + C(1,x)g (1) = 0, )
) (%.39)
) L]
gII(l) = 1. )
Clearly
g(8) = g(8) + ta  (8), | (k.%0)

satisfies I and boundary condition (2a). Now choose t such that g(B)
satisfies boundary condition (la). This yields

t = -g (o) (o). | (4.%1)
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(4) Choose é(i)‘such that (3a) is satisfied. This can be achieved
using the following iterati&e.procedure; The integral in (3a) is
denoted by y, where y is now a funetion of a, and so one has to find .

a value for a such that y vanishes. Suppose that (a + 8a) is the exact

value for which y is zero. Then we have
y(a 4+ 6a) = oO.

Expanding this by Taylor's theorem one gets

y(a + 8a) = y(a) + 6a % *ow =0,

- _ dy : .
Now to calculate dy/da let the initial Sa be 6ao. Then

a y(a + sa ) - y(a)

da da
: (]

Hence by (4.42) one finds

= y(a) >
T CER TR I O

Gao

where 581 is the new value for da. Thus the general equation used to

correct a is

y(a +3a)—y(a) '
sa_, = -ylg) —F Ga: -, (4.43)
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where

an+l = »an + Gan;, ‘ . . (k. hY)

and &, is the nth spproximation to a.

The numerical integration of equation I is carried out using the

fourth-order RungeéKntté method with step width

§8 = 0.002. . (b.b5)
Upon reducing &8 to 0.0002, no significaht cﬁange has been defected.
in the results. It seems therefore there is no appreciable build up
of error resulting from reducing the step width to this value.

The so1ution is started with a prescribed value of x = X s S8y«
This fixes the values of LR and W; Also the coefficients A,.B and C
together-with Jo and ug”are computed at the 5pecifigd number of points
on the surfacé of the bubble, using the value of xo.

In order to start the integration of I, the value of a(x) is
required. However, this is not known a priori, in consequence it has
to be determined by a trial-and-error solution. A value is guessed‘
for it and the integration is then started from the pole and towards
the equator (i.e. along the direction of the flow).. In order to force
the regularity of the solution at B = 1, the integration is stértéd
s few steps away from B = 1, precisely at B.=v0.996. This is accom-
plished by finding the series solution of I in the neighbourhood of

B= 1 and selecting a few terms of the power series of the regular

solution. This, however, has been found to have no merits, in this
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problem, over the case when the integration is started exactly at
8 = 1. Both results are found to be identical, to the required degree
of accuracy. This result is, otherwise, expected from the fact that
the singularity; in equation I, is regular at f = 1,
An itergtion program, uéing a digifal computer, is then started.

In each case for a given value of the axis-ratio, xo,_the constant
a(x) is incremented successively and at each stage the program
iterated until convergence has been obtained for the number of decimal
places retained for a.

" In the iteration process it has been found that to avoid running
into a loop of oscillating convergence, it is necessary to add a
fraction of Gan.at a time instead of the whole increment as in (b.uk),

The relation that has been émployed instead is

Bpey = 8 * 5 08, ‘ (4.46)

This has given rise to an average of about ten iterations necessary to
obtain an accurécj of a{x) to three decimal places.

The program required about ten minutes of computer time. It should
be noted here that the iterative procedure was set to stabilize three
decimal places. By reducing the tolerances in the iteration process
and reducing 8B, greater accuracy could have been obtained but of course
more machine time would have been involved.

The results are tabulated below, Table (1). The shapes of the
bubbles are traced in "continuous" line, ﬁhile those of the corres-

ponding ellipsoids, @ , are in "broken" lines, Figures 4.2-4,3. The
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curve of W against the corrected axis-ratio, X, is plotted in

- Figure 4.6 together with that of the "Two-point Theory".

5. Linearized Virial Theory

We have seen that the virial theory is less in error than the
"Two-point Theory"”, and this suggests we use it as the basis of our
gpproximation.

Now replacing the expression for the Weber nunber (1.9) by that
obtained from the Virial Theory, (3.90), the problem is solved again.
The AP in equation (4.25) is absorbed into a(x) so that equation
(4.28) is dropped. There are no other modifications required in the
numerical scheme.

The results obtained are tabulated below, Table (2).° The bubble
shapes are traced in Figures 4.4-L4.5, in similar manner to that of the
previous case. Figure 4.6 gives a comparison between the "Two-point
Theory", the virial theory and their linearized versions.

Having studied six different methods for.bbtaining a relation
.between the Wéber number and the axis—ratio; let us compare these
results at some specified axis-ratio. ‘This comparison is shown in
Table (3) for x = 1.1. The comparison is restricted to three decimal
placeé since the linearized theories are accurate to this order. It
is apparent that the Weber numbers for the linearized theories are
closer to that of the "accelerated convergence' method, than their
initial values.are; This tendenéy is in agreement with.the view that

the "accelerated convergence" result is supposed to be closer to the
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exact theory for this range of W, and thus Justifying this sort of
behaviour. Also the series solution indicates its tendency to diverge
even at such a relatively small value of W, bearing in mind that terms

of O(Wh) are neglected.

6. The effect of gravity

Hitherto, our investigations were confined to motions which take
no account of gravity effect. This section is dé#oted to e#amining
the effect of gravitational forces, in the presence of surface tension,
on & rising bubble.

Gravity forces become significant when the hydrostatic pressure is

comparable with the hydrodynamic pressure, i.e.
x 2
pg T, v oU
where g* is the acceleration due to gravity. Now in steady state the

drag force = buoyancy force, i.e.

1 .2 L
é-pU nreCD = §ﬂre3pg*
or
Bg*re '
% = 7 BURYS
. 3U ‘

D
becomes important when C is of o(1).

where C_ is the drag coefficient. It is now apparent that gravity

We now proceed to extend the above numerical method by intro-
ducing gravity as well as retaining the surface tension forces. Apert

from minor modifications, the methodAis practically the same as that for
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surface tension alone. In the present case Bernoulli's equation is

(0)2

s —p(u + u®’%) + og *1 = const., (L.148)

where h is the length indicated in Figure L4.7. Substituting fér h
from the figure and absorbing the constant L in the right-hand side,

(4.48) becomes, on the surface of the bubble,

P + pu(o)e 'pé*'z = const, =~ (k.h9)

2
Now taking the surface of the bubble as in (4.16) and assuming that it
has the same velocity field as that of the unperturbed ellipsoid as

one gets in the dimensionless form, the equation

M&ﬂé+ﬂ&ﬂé+ﬁ&ﬂg= )
,; (k.50)
)

F(8,x) - rW% + const.,
er

vhere the Froude number F is defined by
- . - 2 . v R
Foo= -2 o (4.51)

-r *
2reg

‘Equation (4.50) is similar to (%.25), with the terms having the same

meaning. Now for a point on the surface of the bubble
. ” ‘
z = B =aB +g(s) +0(g"), (%.52)

in dimensionless form. Combining equations (4.50) and (%.52) one gets

on the surface of the bubble

A(B,x)E + B(B,x)g + C(B,x)g = F(B,x) + a(x), | (k.53)
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where
C = C(B,x) + BY | )
* Fre )
and ) (k.54
_ aoew )
F(B,x) = F(B,x) - Fr ® )
r e

with a(x) playing the same role as a(x) in equation (4.25).
The Froude number, which appears in equation (4.50), remains
to be determined., This is obtained from the unperturbed theory. From

equations (4.47) and (4.51) one obtains the relation
F = 3 s 7 . . (h-SS)

so that we may also assert that for Fr of 0(1), gravity forces come
into play.

Consider now the physical parameters

u o= Bl )
00> )
2repU ;
Ry ) (4.56)
and v = 2repU2 ;
= - )

vhere M is the M-number, responsible for the physical properties of the

fluid. From equations (4.47) end (4.56) one finds the relation

o b yph3 -
cD = 3MRW . (L.57)
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Now availing ourselves with tﬁe expréssion (2.71), for Cpo

obtained by Moore (1965), it will be possible to find F_ and R for
any ellipsoid whose axis-ratio is known. This is accomplished by
prescribing values for M and x. Then W may be found from (1.9), or
(3.90), in case of the virial theory. The corresponding value for
G(x) in (2.72) is also determined.> Combining equations (2.72) and

(4.57) one finds -

. 3 . -
(36WMG(x))l/5 , | (4.58)

vhich determines the velue of the Reynolds number. It is then a simple
matter to determine CD énd Fr'

Having found the necessary pérameters, we now proceed to the
numerical solution of equation (4.53). This resembles that of equation
(4.25). One starts by a given ellipsoid «  whose axis-ratio is X -

The M-number is selected to run through the values 10_10, 10_11,...,10_16,
»the problem being solved for each of these numbers. Knowing X, and M,
one determines Tos W,G(x), R,CD,Fr and U, where the expression used for W
mey be obtained from either the "Two-point Theory" (1.9) or the virial
theory (3.90). It is important to notice that in our procedure the

Weber number is the key parameter and once it is specified, the rest of
the parameters including the éhape of the bubble are determined. How-
ever, as we have seen that the virial theory is less in error than the

"Fwo-point Theory", we shall only trace the shapes arising from the

virial theory.
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Apart from the fact that the numerical integratioﬁ nOwW rums
from the forward stagnation point to the rear stagnation point, the
other steps and assumptions.are all applied as in the symmetrie case.
The shapes of the bubbles are traced in "continuous" lines while those
of the ellipsoids, o, are in "broken" lines, Figures L4.8-L.1k, The
results are tabulated below, Table (L4). In Figure 4.15 a family of -
curves are drawn, showing the variation of the Weber number with the
axis-ratio, for different M-numbers. These are compared with the
curve W(x) representing the virial theory (symmetric case). It is
apparent that for bubbles having the same axis-ratio, the effect of
gravity is less pronounced as thé M-number decreases. In other words
departures from symmetric shapes are smaller. It may be remarked
that the correctgd axis—iatio, X,» for cases of large dents at the
rear of the bubble is considerably exaggerated. It is only meaningful
when the rear of the bubble is nearly flat.

It is a simple matter to calculate the values of R, CD or Fr,
-corresponding to X in Table (3), using their relevant expressions.
The variation of CD with R, for different M-numbers, is shown in
Figure 4.16. The results indicate a mipnimum of Cp at W’f 1.91,
corresponding to X = 1.k, similar computations using the "Two-

D

but at a Weber number of 1.92. Moore (1965) .included the effect of
and R and stantd o bhOull Sin (arfo

boundary-layer in computing C_, whtie%?eing-an empirical result of

point Theory", gave a minimum value of C. at the same value for X,

Peeblesand Garber (1953), to—eedcutateR. He found that the minimum
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of Cj occurs at W % 1.8. Other features predicted by his theory
are also observed in the present one. ;t seems to support his
speculations that "... the drag coefficient is not very sensitiye

to the shape of the bubble once the axis-ratio is fixed,...". Again
the theory predicts the rise of C_, with R, after reéching its minimum
value but not so sharply pronounced as in Moore's theory. This is

probably because boundary-layer effects have not been included in the

present work.

T. Comparison with experiment

The most exten51ve experimental results with which we can compare
the theoretical predictions are those of Haberman and Morton (1953).
Comparisons are also made with recent experimental results of Jones (1965)
and Schwerdtfeger'(1968). The theory is tested by comparing its pre-
dictions of the velocit& of rise as a function of r.. An attempt is also
made to compéfe the shapes of bubbles. Tﬁe results are tabulated below,
Tables (5) - (8). The shapes of bubbles are also traced, in the previous
manner, in Flgures L, 20—h 22. Plots of U as‘a function of r, for air
.bubbles in methyl alcohol and in water, and for argon bﬁbbles in-mercﬁry
aré shown in Figures 4.17-4.19. ReasonableAagreement is found between
theory and experiment. Comparison of the theory for water shows a
slightly higher value for U.than the corresponding experimental values of -
" Heberman and Morton (1953). Also the maximum value of U occurs at a larger
T, than that glvenlarexperlment ﬁbore (1965) noticed such discrepancy

in comparing his theory for methyl alcohol with Haberman and Morton's



ekperimental curve. The present theory for methyl alcohol reveals
similar features. In particular it is also observed that for x > 2
reasonable agfeeﬁent between theory and exﬁeriment still exists.

It is interesting to note that the virial theory gives, for all three
liquids, a maximum value of U at an axis-ratio x, = 1.9 with a
corresponding value of W % 2.70. Similar calculations using the

"Two-point Theory" give x, = 1.9 and W = 2.73, correspondingly. It
seems therefore that, for low M liquids, the axis-ratio x is a crucial’
parameter in the sense tha#, once it is fixed, it is possible to deter-
mine the drag coefficient and the velocity of rise irrespective of the
bubble shape. It is necessaryto make furtﬁer investigations on this
pdint, in view of the fact that the present theory does not account for
the presence of boundary;layer on the bubble.

Comparison of the theory with the experimental results of
Schwerdtfeger (1968) for the rise.of ergon bubbles in mercury, shows
fair agreement. It seems that consistent experimental investigations
are necessary in the region where U is increasing to its maximum value,
as r, increases. Tpis is.a regime dominated by laminar flow and
information about it is of considerable value for comparisoh with
éxperimental and theoretical results.

The size of bubbles dealt with in this work are of the order of a
few millimetres. It is therefore not surprising that experimenters

find it rather difficult to obtain clear photographs of such bubbles.

Haberman and Morton (1953) give photographs of air bubbles in water and
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in methyl'alcohoi;- Also Jones (1965) gives a photogfaph of air
bubbles in water. The present theoretical shapes, Figures %.20 -
4,21 are several hﬁndreds times larger than the experimental shapes,
which do not exceed the size of a dot in some caseé. It seems desir-
eble, therefore, to do more experiments with a view to obtaining
enlarged photographs. Figure 4,22 shows the shapes of argon bubbles
in mercury. The pfbblem of vision is another handicap facing the |
experimenter who wants to photograph three-dimensional bubbles in liquid
netals. It is thereforznot easy to make comparison between theoretical-
and experimental shapes, in such cases.

‘The bubble shapes in Figures 4.20-4.22 are characterized by a
dent at the rear stagnation point; The size of the dent increases with
increase in the Weber number. This effect is noted to be more pronounced
in water and methyl alcohol than in mercury. In other words, for high M
liquids, the rate.of dent growth, as the Weber number increases, is
fester than in low M liquids. It is therefore likely that, in low M
liquids, graviﬁational forceé are more dominant than surface tension
forces.

In view of the simplifying assumptions used, it is poséible that
~ the above shapes may not be correct beyond the stage when the rear of
the bubble is flat. Walters and Davidson (1962,3) in their theoretical
and experimental work on accelerating bubbles; under the action of
gravitational forces alone, observed a tongue of liquid forming at the

back of the bubble. The bubble distorts into the form of a mushroom
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and ultimately into an umbrella shape. Although a comparison of
these shapes with those of the present theory may be irrelevant,
it might well be the case that, the natural development of a bubble

shape from spherical to spheroidal to a spherical cap, follows similar

lines.
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~ APPENDIX (2A)

" 'First curvature of a surface
In this appendix we give & summary‘of the method discussed by
Weatherburn (1930) pp. 86-87, for fhe derivation of the first
curveture of a surface. In order to avoid any ambiguities in the
sign of the normal, we shall define ﬁ.to be the unit normal, to
the surface, directed away from the centre of curvature. Thus for an
ellipsoidal surface, ﬁ_denotes the unit outward normal. The first

curvature, J, of a surface is then given by
J = aiv f. : (1)
Consider now a family of surfaces

G(x,y,2) = const., (2)
where x,y,z are faken to be orthogonal‘curvilinear coordinates. This
is a special case of the more general one, for oblique coordinates,
treated by Weatherburn. The unit normal ﬁ.at any point on the
surface G may then be expressed by V |

f = rya, i (3)
vhere
F = 1/{vGl. (%)
 Substituting from (3) into (1), the expression for the firét curvature
of the surface (2) becomes |
5 = W6 + yF.ve, | o (5)
or | :

J = FG + 4. vieg G. (6)
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For our purpose, we shall take G to be a surface of
revolution of the form
G=x-k~ 2(y) =0, | (7)
where k and £ are \constants and g is a single-valued contipuous

function of y.



APPENDIX (3A)

"EVALUATION OF SOME INTEGRALS

By definition

« g_a.a.dt

A, = I ___,']___@_3__ R (i= 1,2,3), (1)
1 oa.(a° + 1)
1'%
where ‘ R
2 _,2 2 2 , _
By = (a.l + 1;)(&2 + t)(a3 +1t). (2)

These integrals can be expressed in terms of the incomplete elliptic

integrals
E(0,4) = f (1 - sino sin g)ll (3)
)
and
¢ .
F(o,6) = [ (1 - §in%0 sin® g)-lla dg ()
o -

of the two kinds with the definitions

2 2\ 1/2
. % :
sin 6 = and cos ¢ =

17 %3

PP

vwhen a, = a, >»a3 the integrals defining the Ai give

1 2 e3

A =4 =5 (s - en), ;
) (6)
)

As

2
&3

vhere e, H and S are as defined in Chapter III. The Bi's are defined by

) g, (1)

B. =
2 2
A2(ai+t)

i

O“—38
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where

2 _ (2

4, 1

+ 2) (a5 + t7)(ag + £°). (8)
Again we use the incomplete elliptic integrals (3) and (4), where now

2 2

a a, - a_,\1/2 a
sin © =2 [2_3 , cOs ¢ =3 (9)
"2 \,2_,2/ 1 :
s R
and t = a3(sin2 ¢ - sin® g)-l/g sin g. - - (10)
For the oblate spheroid (al = a, > a3), these integrals give
B, = B, = (2ae2)"1[(1 + €2)(tamn L e)/e - 11, ) (11)
17 P2 1 . y
B3 = a;ea)_l[(l - e2)-l - (tanh—l e)/el. )
The integrals Ii are defined by
(-]
dt
L= | , (12)
1 ¢ (ai + t2)5/2' '
tdt
I, = I Y (13)
2 t=o0 (ai + t2)5/2
and ‘
[ -]
I, = at (1b)

tio (ai + t2)5/2(a§ + tz) |

These integrals may then be evaluated, using the substitution (10),

so that one finally gets
2 1l

)
I, = , I, = =
1 ;;;E 2 3a1? i (15)
I3 = %—5'[33 -e(3 + 2e2)H]. ;

3Ha1e
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The evaluation of the tensors Cij’ Tij and Qij given by equations
(3.12), (3.26) and (3.34) respectively, is facilitated by using the
transformation of coordinates given in Rosenkilde (1967, b) p.90.

The case of revolutional symmetry, a; = éz, will suffice for this work.
Therefore after correcting a misprint in the expression for X3 in the

text and putting &, = &, one gets

xl = a§b1—1/2'c°s Y ;
X, = aibl_ll2 sin y g (16)
xy = 5772 %
where
b, = a.? + 42,1 =1,2,3. (17)
The components of the unit outward normal g_are
n, = a3b3_1/2 cos Yy ;
92'= a3b3_1/2v§in Y § . (18)
n, = b3'1/ 2¢. ;
The element of surface area is
as = é.ll‘bl'zb;/ 2 at ay. | (19)

The variables t and y have the ranges 0 £ t £°° and 0 £ y £ 21, This
transformation has the advantage that the above tensors may be
expressed in terms of standard incomplete elliptic integrals given
here.‘

*

The surface-energy tensor cij defined by (3.12) is evaluated by
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Rosenkilde (1967 b) for the ellipsoidal surface (3.39) in terms of

the elliptic integrals Bi' The resulting expressions are

cij =0 (i#3) )
o ) ; (20)
C;y = (81a2a3) o (BJ + Bk) (i#3+#Kk). )

The case corresponding to an oblate spheroid (a1 = aa) is easily
obtained on substituting for the Bi's from equat?on (11).

The expressions for the velocity potential and the velocity
components in equations (3.49) - (3.51) are now transformed in terms
of the parameter t, using the relation

(on a = ao), (21)

vhich is obtained from comparison of the above coordinate system with °

that of oblate spheroidal coordinates. The resulting expressions, on

the surface a = G, > are
* _ -1 -1/2
D= cot(c.o cot a_ - 1)b1 (22)
Cot
U = 7p COS Y - (23)
o3
Cot )
w, = 75 sin vy, . (24)
- o3 ‘
2 Ca
=2 L 23 (4 cotle -1), o (25)
b b o (o]
3 3
_ Ut
un .= 1/2 ’ (26)
o b
3 .
where un is the velocity component normal to the surface a = o

[} .
On substituting from equations (18), (19) (22) - (25) into (3.26),

»

one can express the integrals in the form



"°°§a§a3l 2 ;
T1 = T2 L (1) - 23 I3, )
° ; (27)
T33 = 2npc°a§A[-(coa3A + Uag)Il + 612 + (coagl + Uag)I3],;
Tij =0 i#ds ;
vhere
A=1-a_ cot T - (28)

12 Ios I3 are given by equation (15).

In o similar manner, on substituting from equations (18), (19) and (22)

and I

into (3.34) the components of the tensor Qij are found to be

iy = %p =0 ;
- )
' 2npU2ai(e - SH) ) (29)
Qanq = = )
33
3(S - eH) ;
Q. =0, i#3. )
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APPENDIX (3B)

EVALUATION OF THE MICROSCOPIC ENERGY ()

To evaluate the integral (3.9) for I, one requires the value of
the pressure at a field point. This may be obtained from the
convenient form of Bernoulli's equation,

1 —\2
%-g.gm@ + Hgrad §)° = 0, (1)

relative to the moving frame. Then substituting for P from this
equation into (3.9), making use of the divergence theorem, Laplace's

equation, and the equation of continuity, one finds

n=-5[@u.as+ ofPU.ar . (2)

: S z
Upon substituting for the expressions in this equation and performing
the integrations one finally gets ) on éﬁlmj (‘7“ om Z B)

_ 2r(3e - 3Hs - 2 31)
I = St 13
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APPENDIX (LA)

Legendre Functions .

The Pn(e) in equation (%.3) satisfy Legendre's differential
equation of integral order n,

dap

2y 5391 +n(n + 1)P_ = 0. (1)

d
ap ((x - ?
They are polynomials in B and offer no difficulty. They satisfy the

following recurrence relations, see MacRobert (1967) p.o1,

(en +1)p =P . -P ., (2}
(1 - 6%)2 =np_ - ngp_, | (3)
(n+1)p . - (2n+1)8P +nP , =0, (%)
nP = gP -P ., (5)
(- 8%, = gﬁgiiill'(Pn-l = Ppia): (6)

The functions qn(ia), however, have imaginary argument. They
satisfy the same equation (1) with B replaced by (ia), viz.
a .
d 2, %y _
= [(1+a) — -~n(n+ 1)q = 0. (7)
da
Their only singularities are at ¥ 1 on the realAgxis. Hence they always

remain finite on the imaginary axis. In particular

g (i=) = 0. (8)
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They are alternately odd and even. Furthermore qn(ia) is either
real or purely imaginary, so that by a proper choice of the constants
b in equation (4.3), it is aiways possible to make qn(ia) real.

In fact in+1qn(ia) is always real, see MacRoberts p.196. Therefore,

retaining the same notation, one may write
q (ie) =1 q (a), (9)

where q, are real and have real arguments. The qn(iu) satisfy the
same recurrence relations (2)-(6). On replacing Pn(s) by qn(ia)
from equation (9) into equations (2)-(6) and replacing B by ia, one

gets the following recurrence formulae for qn(a).

(en + 1)q =~ (g, *+d ;) , (10)
(2 +a®), = nog - nq_,, | (11)
(0 +1)g ., + (2n +1)aq -nq _, =0, | (12)
m, = ol - &, 3, | @3)
(1+a®g =-2ard) g .q ). )

The expressions for 95> 91 and q, as given in Lamb (1959) p.143 are,

qo~= cot o ;
-1 )

g, =l-acot a g (15)
)

1.2 .y -1 3
q, = 5(3& + 1l)cot "o - 30-
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TABLES
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T ABLE. (1).Two-point Theory (symmetric. )

No. Xo X, W

(a) 1.04 1.040 0.2695
(v) 1.10 1.100 0.6237
(¢) | 1.30 1.300 1.4919
(a) 1,50 1.504 2.0563
(e) 1.70 1,718 2,4455
(£) 1.90 1.949 .7265
(g) 2,00 | 2.076 2.8388
(h) 2.20 2,376 3.0223
(i) 2.40 2.848 23,1648
(3) 2.50 3.338 3,0044
(x) 2.60 4,970 3.2775
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T A BLE. (2).Virial theory (symmetric,)

No. X, X, W
(a) 1.04 1.040 0.2698
(v) 1,10 1.100 0.6255
(c) 1:30 1.301 1.4989
(d) 1.50 1.507 2,0608
" (e) 1.70 1.714 2,4376
(£) 1.90 1.929 2.6975
(g) ; 2.00 2,041 2.?965
(h) 2.20 2.276 2.9499
(i) 2,40 2.552 3.0587
(j) 2,50 2,739 3.1006
(k) 2,60 3.074 3.1357
(1) 2,64 3.396 3.1481
| (m) 2.66 3,729 3.1540
(n) 2.69 5.446 3.1624
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TABLE. (3). Comparison of the different theories,

THEORY, X w
Analytical Perturbation 1.1 0.627
Virial_ 1.1 0.626
Two~point 11 0.624
Linearized virial 1.1 0.616

Linearized Two-point - 11 0.614
Exact theory (convergence 1.4 0.610

accelerated.)
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gravity. )

TABLE, (4).Virisl (with
No. x W
[e ]

(a) 1.02 0.1385
(®) 1.06 0.33945
(c) 1.10 0.6255
(a) 1.16 0.9317
(e) 1.20 1.1128
®) 1430 {12989
(g) 1,40 1.8090
(n) 1.50 2,0608
(1) " 1.60 2.2672
() 1.70 2.1,376
(k) 1.90 02,6975
(1) 2,10 2.8798
(m) 2,20 2.9499




TABLE. (5)« Summary of liquid properties.

Liquid Temperature Viscosity Density Surface M
. tension
deg C 4 _ poises p gms/cc number
o
o dynes/cm :
Methyl alochol. 30 ° 0.0052 0.782 21.8 8.x10 "
Distilled {or 21 0.0098 0.998 72.6 2.x10™ 1
filtered) Water.
_ (room temp.)

Mercury. 20 0.0155 13.546 usg.o 3.7x10 4

| (estimated. )

- Lot -
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T ABLE. (6). Air bubbles in methyl alcohol (M=8.9x10™11,)

No. Xq W R CD _ Fr re U
Cm. cm. /sec,
ga; 1.02 .1385 64034 e766 ] 1.741 | 024 | 9.022
b 1.06 | .3945 12184 | <426 ]| 3,129 | 4030 | 13.573
§c§- 1.10 | .6255 162.29 | «336 | 2.963 | .033] 16,157
d 1.16 «9317 209,17 ePR1 | 4,748 | 4037 | 18.674
(e 1.20 | 1.1128 234.90 | <262 | 5.085|.039 | 19.8¢0
) 1.30 | 1.49R9 287.31 | .240 ] 5.553 | 044 | 21.871
1.40 | 148090 328.61 | 234 | 5.704 | 047 | 23.078
le44 | 1.0159 342,95 | «233 | 5.712 | <049 | 23.4720
1.50 | 2.0608 36265 | 235 ]| 5.685 | .051 | 23.823
1e60 | 2.2672 391.56 | +.7239 | 5.571 | .054 | 24.274

1.70 | 2.4376 416.62 247 | 54402 | « 056 | 244526
1.90 | 2.6975 4584490 e26T | 44995 | 4062 | 24470
2.00 | 27965 47617 «279 | 4,780 | « 064 | 24,622
220 | 29499 507.16 «306 | 4,360 | « 069 | 24,385
250 | 3.1006 545.36 e3S2 | 3786 | 4076 | 23.R3C
2.70 | 3.1651 566.86 «387 | 3.450 | <081 | 23,407
3.00 | 3.2261 594,93 e443 | 34012 | 4087 | 22.734
3.50 | 3.2677 633.64 «S48 | 24432 | 097 | 21.£620
4400 | 3.76R7 F65.55 «f68 | 1.996 | o108 | 20,577
4.50 | 3.2432 692.83 eR02 | 14663 | ¢117 | 19.624
S.00 | 3.2078 71678 e949 | 1.405 | 4127 | 18.7¢€2
5.50 | 3.1663 738420 [ 1110 § 1,201 | 413 | 17.5R2
6400 | 3.1219 TSTe65 ] 1285 | 14038 | 146 | 17274

6.50 | 3.0766 77551 | 1.474 «G0S | 4155 | 16.£32
7.00 | 3.0315 79207 | 1677 e795 | <164 | 164045
7«50 | 2.9872 R07.55 | 1.R893 «704 | 4173 | 15.508

R.0N | 2.9441 R27.N9 | 2.174 28 1,182 1 15.014
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~11
TABLE. (7). Air bubbles in distilled water (M=2.4x10 o)

No. xo W R CD Fr re U
cm. cm./sec.
(a) } 1.02 | .1385 83.63 | .589 1 2.262 |.0233 | 12.2€7
?g 1.06 | .3945 152,35 | 328 | 4,067 | 042 | 18,454
c 1.10 | .s255 210.92 | 259 | €.,151 | .047 | ?1,968
(a) 1.16 | .9317 271.86 |. .216 | f.170 | .053 | 25.360
(e) 1.20 | 1.1128 305.29 | 202 | 6.609 | .05€ | 27,002
(£) 1.30 | 1,4989 373,41 | 185 | 7.216 | . 062 | 29,736
(g) 1.40 | 1.,8090 427,02 | ,180 | 7.414 | .,067 | 31,378

1.44 {1.9159 445,73 180 | 7.424 | ,069 | 31,842
1.50 | 2.0608 471,33 «180 | 7,380 | ,071 | 32.361
1.60 | 2.2672 508,90 184 | 7,240 | 076 | 33,004
1.70 | 2.4376, 54147 «190 | 7.021 | .080 | 33,235])
1.90 | 2,6975 595,77 205 | 6,492 | ,087 | 33,5472
2.00 | 2,7965 A18,86 «?15 | 6.213 | ,091 | 33,47¢
2.20 | 2.9499 659.14 .?35 | 5,666 | .,098 | 33,158
2.50 | 3,1006 708.R0 e?7)1 | 44921 | 107 | 32,407
2.70 | 3,165 736.77 e?97 | 4,483 | ,114 | 31,825
3,00 | 3.2261 773.21 341 | 3.914 | ,122 | 30.909
3,50 | 3,2677 R23.,52 | <422 | 3.16) | .13R | 29,365
4,00 | 3,267 R65.00 «eS14 | 7.594 | ,152 { 27.977

4.50 | 3.2432 900.4€ ehl7 | 24162 | 4166 | 26.A82
S.00 }3.72078 931.58 «730 | 1826 | 2179 | 25.506
5.50 | 3.1663 950,47 «854 1 1.56) | +.193 | 24.448
6.00 |3.1219 984470 «G8G9 | 1,348 | «206 | 234487

6«50 | 3.0766 | 100792 | 1134 [1e176 | «71G | 224613
7.00 | 3.0315 1029444 { 16790 | 14034 | 4232 | 21815
7.50 | 2.9872 ] 1049455 | 1.457 915 | 244 | 21.085
R.00 J2.94410 1068.45 | 1.A34 +816 | 4257 | 20.413
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-1
Argon bubbles in mercury (M=3.7x10 )y

4829 ,54

X Lij R Cp E, r, U
' co, cm./sec.
(a) 102 | «1385 | 305.31| +161] R.259 | 012 | 14,268
gb; 1.06 | <3945 S7R.13| +090{14.849 | .015 | 21.6A14
c 1.10 | .6255 770.06 | +07111R.806 | .017 | 25.72¢%
Ed; 1.16 | .9317 992453 | +N59|22.528 | 019 | 29.737
e 1.20 | 141128 | 1114460 ] +055|24,129 | 020 | 31,626
gf) 1630 | 144989 | 1363.30| +051]76.347 | 022 | 34,928
g) 1.40 [ 1.2000 | 1559.24 | ..049|27.067 | 024 | 36.751 |
‘ lo44 | 149159 | 162721 | ..049[27.103 | .025 | 37,265
() 1.50 | 2.0608 172079 | «N4G|2A.977 | « 026 | 37.53¢
(i% 1.60 | 22672 | 1857.94 | .050)76.433 | .027 | 38.65¢
(J 1.70 | 2.4376 1976484 e N52 |25.634 | «029 | 39,061
g%) 1.90 | 2.6975 | 2175.10 | +05¢|22,700 | .032 | 39,285
_; 2.00 | 2.79A5 | 2259.41 «059|22.682 | 033 | 35,208
250 [ 3.1006 | 2587.76 | +074{17.965 | «03% | 37.555
2.70 | 3.1651 | 2689.90 | .0R1[16.269 | .041 | 37.274
3.00 | 3.2261 | 2R22.94 | +093{14.290 | «04S | 36,202
3.50 | 3.2677 | 300562 | «116{11.540 | «050 | 34,428
4,00 | 3.2667 | 3158.04 | 141 9,472 | 4055 | 32,767
4,50 | 3.2432 | 3287.50| +169) 7.893 | .060 | 31.2%0
5.00 | 3.2078 | 3401.11 «200 | 6,667 | 4065 | 29,877
S5¢50 | 3.1663 | 350275 | .234| 5.699 | .070 | 28,624
600 | 3.1219 | 3595.04 | 271 | 4.923 |.075 | 27.508"
6450 | 3.07A6 | 3679482 | 311 | 44292 | 4076 | 26.484
7.00 | 3.0315 | 2758.41 «353 | 3,773 | . 084 | 25,550
7«50 | 72,9872 | 3831482 | 4399 | 3.342 | .089 | 24,665
9.00 | 2.9624 | 4027.90 | 554 | 2.408 | .102 | 22.512
10600 | 27869 | 4143.20 | «672 ] 1.985 | .111 | 21.3207
11.00 | 2.7173 | 4249.13 | +802 | 1.663 |.120 | 20.257
12,00 | 246532 | 434760 | 4944 | 1,413 | <129 | 19.232
13,00 ] 2.5940 | 4439.25 | 1098 | 1,215 | «137 | 18.510
14,00 | 2.5393 | 4525465 | 1.264 | 1.055 | 146 | 17.774
15.00 | 2.4886 | 460735 | 1,442 | +924 | 154 | 17.110
1600 | 2e4414 | 4684462 } 14633 | .816 | 4162 | 16,508
17.0N0 23974 | 4758,85 1.R3A e 726 «171 15,858
18.00 | 2.3562 2052 | 4650 | 4179 | 15.455
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FIGURES
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‘éq A
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P(r,8)
.
naq,
6 %
0 72

Fig. 2,1, A diagram representing the velocity components at a

‘point P(r,0) .Directions are specified by the unit vectors

28,8 ana 3.
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Fig.2,2, A sketch in an axial plane of a stationary bubble

in a stream with uniform velocity at infinity. Sp » SR

are the front and rear stagnation points respectively.




- 114 -

A B C

2%) -
20 |~

. (A) 1st order Theory.

146 . (B) 2nd order Theory.

. ' (C) 3rd order Theory,

_ ~ (D) Two-point Theory.
12
0-8 |-
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00 D i 1 i ] 1 !

140 12 104 196 18
X —

Fig. 2.3, The Weber number as a function

of the axis=-ratio.
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Pig, 2,4, Variation of tfie Weber number with the axis-ratio.
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200—
— : (A) Two-point Theory.
(B) Non-linear Theory (31?&. order ).
108—' : ; ‘
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1.0 A ! I \ | ! ! !
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. X >

Fig. 2,5 The drag curves as a function of the -
axiswratio.



Fig.3.1, TIllustrating a body (S) translating

uniformly through a fluid bounded externally

by a large sphere (% ).
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P=
£=0.87 £=0.87

B=

B=-0,87

B=0,87
B=1

Fig. 3,2, Oblate spheroidal coordinates in a meridian
plane, The two foci are E(k,0) and F(-k,0),The
segment EF "is represented by a=0.The unit vectors
iaand. iﬂrepresent the directions of increasing aand £
respectively.
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Fige 3.% Variation of the Weber number with the axis-ratio.
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(A) Two-point Theory.
(B) Virial Theory.
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rig.3,,, Variation of the Weber number with the axis-ratio.
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Fig. 3.6. Percentage error in.the first curvature,

for the Two-point Theory,at various points (8) on
the bubble’s surface.The figures on the curves

indicate the axis-ratio.
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Fig. 3.7. Percentage error in the first curvature,for the
viriael theory, at various points (B) on the bubble
"surface « The figures on the curves indicate the axis-ratio,
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P(xr,8)
m1 _ p m2
J////”’ﬂ'—’ﬁ .18
0 -
P
B

€l

Fige 4.1. A sketch of a bubble trace in an axial plane.

m, and B, are the slopes at the pole and the equator,

p=cos 6 and ﬁ2=p2(1+a2)/(a2+p2).
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(g)

" Pigehe2. . symmetric case.
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L.2. contd.
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Weber Number
W
]

Axis-ratio

Fig.),3, Variation of the Weber number with the axis-ratio
for a family of symmetric bubbles obtained by linear
"perturbation of an oblate spheroid. The horizontal scale
represents the same axis-ratio for both diagrams.

The relation between the Weber number and the axis-ratio is
#

that given by the Ianearlzed Two-point Theoryu
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; (a) (b)
(c) . (a)
(e) (£)

Fig.h«h. symmétric Virial case,
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4.4, COntd.



L., contd,
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Fig. 4,5, Variation of the Weber number with the axis-ratio for
for a family of symmetric bubbles obtained by linear
perturbation of an oblate spheroid. The horizontal scale
represents the same axis~ratio fér both diagrams.The relation

between the Weber number and the axis-ratio is that given

by the "Linearized Virial Theory".
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(A) Two-point Theoxry.

(B) Iinearized Two-point Theory.
(C) Virial Theory.

(D) Linearized Virial Theory.
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Figshe7. A sketch to determine the elevation
for the hydrostatic pres;sure° A
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Fige 4.8. Virial case u=10"19,
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Fige 4.9, Virial case M=10—“.
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Virial case M=10
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4,10, contd.
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(a) @

(£) A (g)

Fig. h.11. Virial case =10,
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Fig. 4.12. Virial case M=10"
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L.12. contd.
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(v)
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Figo 4e15. Variation of the Weber number with

the axis-ratio for different M-numbers.
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Fig. 4.16. The theoretical drag coefficient as a function
of the Reynolds number. ~——Virial theory.—-=~Two-point
Theory. The right-hand end of the curves corresponds to an

axis-ratio x equal to 6.
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experimental curve (Haberman and Morton).
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Figdre20. Shapes predicted by the virial theory
for air bubbles in methyl alcohol (M=8.9}<IO~11).
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Fige 4e21¢ Shapes predicted by the virial theory
for air bubbles in distilled water (M=2.l+><10°11).
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Fig.L.22, Shapes predicted by the virial theory

for argon bubbles in mercury (M:B.'ino_““).
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