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2. 

ABSTRACT 

The covarient formalism of Scadron et. al. is extended 

to cover processes involving virtual photons, and is used to 

discuss the 0(3,1)(110SU(2) decomposition into kinematic singu-

larity free form-factors of hadron-virtual photon three and 

four-point functions. An S-matrix theory of inelastic hadron-

lep ton electromagnetic scattering is employed to develop 

techniques whereby superconvergent sum-rules on such four-point 

functions may be derived. 

Attention is focused on the virtual photoproduction off 

nucleons of non-strange pseudoscalar and vector mesons with 

isospin zero or unity. Charge-conjugation invarience of hadron-

virtual photon interactions is assumed and eighty new sum-rules 

obtained. An alternative set of new sum-rules is derived on 

the assumption that such interactions are not in fact charge-

conjugation invarient. 

A finite, width resonance approximation is used in an attempt 

to saturate the sum-rules for pion and,/ production. This 

yields a large number of predictions concerning the structure 

of the form-factors parameterising the electromagnetic excita-

tion of the nucleon into theAl(1236), N(1525), N(1550), N(1§80), 

and N(1688). 

The sum-rules and predictions are valid for all non time-

like values of the squared four-momentum of the virtual photon. 

The predictions are in good agreement with the experimental 

data in cases where a comparison has proved possible. 
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CHAPTER I 

INTRODUCTION 

1.1 INTRODUCTORY REMARKS AND A SKETCH OF TIM MATERIAL 
PRESENTED IN THIS  

We are concerned in this thesis with the application 

of superconvergent sum-rules to the study of the form-

factors parameterising the dynamics of certain electro-

magnetic interactions involving hadrons. 
More specifically we are interested in the form-

factors into which one decomposes matrix elements of the 

electromagnetic current taken between an initial nucleon 

and a final nucleon(1  ) or isobar.(2)  In section 1.2 we 

remind the reader of the definition and importance of 

electromatic form-factors taking those of the nucleon as 

examples. 

The derivation of superconvergent sum-rules for elements 

of the T-matrix taken between two initial and two final 

hadrons is now a wellknown technique for obtaining relations 
between hadronic coupling constants, (3)-(7) and is 

reviewed in section 1 .3. By replacing one of the hadrons 

by a real photon, several authors have successfully extended 

the range of application of this technique.(8) They deduce 

relations between hadronic electromagnetic form-factors 

evaluated at zero squared photon four-momentum. 
It is attractive to try to generalise the formalism 

further by taking the photon off the mass-shell. The rela-

tions obtained will then hold for some range of non-zero 

values of the argument of the form-factors involved. In 
• 

section 1.4 we discuss this motivation further and pose the 
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obvious question : Is such a generalisation possible, and if 

so, is it valid? On the basis of a few plausible assumptions 

this question is answered in the affirmative in Chapter 3. 
Chapter 2 falls naturally into two distinct parts. 

Part I reviews the covarient "spinology" formalism advocated 

by Scadron,(9),(10) employing Dirac-Rarita-Schwinger wave-

functions(11) and contracted propogators, and the covarient 

Reggeisation technique of Scadron and Jones.(12)  Although 
this formalism was originally developed in Lorentz-space, 

it is a trivial matter to extend it to LorentzODSU(2) 
space. We give details of this extension. Our discussion 

of kinematical singularities is a little more detailed than 

that appearing in the various papers of the authors cited. 

In Chapter 2 Part II we generalise the covarient form-

alism to enable it to be used for the analysis of three and 

four-point vertices involving virtual photons. We derive 

0(3,1) 0 SU(2) covarient form-factor decompositions for a 

wide range of virtual photonic three-point functions involv-

ing pairs of baryons or mesons, and again indicate clearly 

how one ensures that the form-factors are free from kinemati-

cal singularities. The contracted propogation formalism 

allows one to obtain generalised Rosenbiuth formulae(1)Y (2)  

for unpolarised lowest order electron-hadron scattering cross-

sections in a particularly simple and fully covarient manner. 

We give an example of such a calculation. 

Our virtual photon formalism is designed to reduce to one 

valid for real photons on taking the appropriate limit. This 

latter is parallel in spirit to the real photon approach of 

Scadron and Jones.(13)  Consequently the work of these 

authors in this direction is not reviewed. 

As mentioned above, Chapter 3 is concerned with the 
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validity of our generalised superconvergence programme. 

Section 3.1 discusses our assumptions concerning Regge 

behaviour in virtual photonic four-point functions. Section 

3.2 investigates the extent to Which one can deduce the 

analytic structure of such functions from general S-matrix 

theoretical postulates about non-perturbative two lepton-

three hadron scattering processes. It uses a generalisation 

of Dresden and Chou's S-matrix theory of quantum electro-

dynamics. (14) 

The formalism thus developed is used in Chapter 4 to 

derive superconvergent sum-rules for all possible interactions 

of the form: real or virtual photon + nucleon.---4.-nucleon + 

meson, in which the meson is pseudoscalar or vector, has 

zero strangeness, isospin zero or one, and C-parity plus or 

minus one. Half of the combinations of these quantum 

numbers are hypothetical to date,(15)  but the corresponding 

sum-rules are included for completeness since their derivation 

involves little or no extra work. We also indicate the modi-

fications necessary to these sum-rules if virtual photon-

hadron interactions are not in fact charge-conjugation 

invarient. 

Finally, in Chapter 5, we attempt to saturate our sum-

rules for the virtual photoproduction of the 71-meson and +he 

pion, using the resonance approximation discussed in section 

1.3. We do not find it necessary to treat the resonances as 

stable particles, and are able to make a crude correction for 

their finite decay widths. 

An important feature of our technique is that the number 

of sum-rules for a given four-point function is generally 

greater in the virtual photonic case than in the real photon 

limit. However, our formalism is so designed that provided 
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the form-factors are analytic at zero argument, the predic-

tions of these additional sum-rules remain valid and non-trivial 

in this limit. That is, by treating the real photon as the 

on-shell limit of a virtual particle we are able to derive 

real photonic predictions which cannot be obtained by methods(8)  

which treat the photon as real from the outset. Thus for 

example, our investigations double the number of available 

sum-rules for pion photoproduction. 

With the increased number of sum-rules at our disposal 

we are able to attempt more ambitious saturations than hitherto 

possible. In the case of the/ sum-rules only one clearly 

established resonance is likely to contribute,(45)  but we 

have a wide range of possibilities in the pion case.(15) We 

accordingly attempt several different approaches to the 

saturation of these latter sum-rules. The most complicated 

of these involves the nucleon Born-term and four pion-nucleon 

resonances. 

We make some attempt to compare our predictions with 

phenomenological fits to the experimental data. The agreement 

is generally good, sometimes excellent, and in a few cases 

spectacular. 

Kinematical definitions and relations, useful equivalence 

theorems, computations of coupling constants for strong decays 

of baryonic resonances, and some fits to photoproduction data 

are relegated to a series of nine appendices. 

Finally, we ask the reader to bear in mind the following 

notation. We do not distinguish between equalities and 

identities; the symbols is always to be read: "is defined 

to .1De". _The symbol 5.1 means: "is equivalent to, in virtue 
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of the subsf.diary conditions on the wave-functions with 

which it is contracted". The symbols (nt—n) or (A7,4-7.1) 

following an equation denote the fl !1  equation of section 

?n or appendix in respectively. Sections are numbered 

decimally, the most significant digit being the chapter 

number. 
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1 .2 THE  MEANING AND IMPORTANCE OF TT-IE ELECTROMAGNETIC 
FORM-FACTORS OF THE HADRONS. 

In the study of the electromagnetic interactions of 

hadrons, a central role is played by matrix elements of 

hadron electromagnetic current operators. The formalism 

allowing one to parameterise the dynamic behaviour of such 

quantities in terms of sets of Lorentz scalar functions of 

scalar arguments is fully described in the s econd part of 

Chapter 2. But as an introduction we review here one of the 

simplest and best known examples, the electromagnetic form-

factors of the nucleon.(1) 

One is concerned with the matrix element 001j0c0011A> 

of the proton (neutron) electromagnetic current operator, 

/,(6x.), taken between an initial proton (neutron) state 

with momentum' , helicityit and a final proton (neutron) 

state with momentum K and helicity A . This will be con-
tracted with an external electromagnetic field source, or, 

via a virtual photon propogator, with another electromagnetic 

current. The interaction is assumed to be translationally 

invarient and consequently one is only interested in the 

evaluation of the matrix element at the origin of the space-

time coordinates. 

If the nucleon behaved as a point spin one-half Dirac 

particle carrying bare charge ec, , one could write by analogy 

with the unrenormalised auantum electrodynamics of electrons: 

<KA l'Lc co) I -13X> = e. 17_40,c)L ItA.(t). 	0-z—  9 
Unfortunately this simple realisation fails completely 

the test of comparison with experiment, even if one tries 

to take proper account of radiative corrections. It 113 

certainly not true that the neutron is unable to take part in 
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the electromagnetic interaction, indeed its magnetic moment 

is one of the most accurately established constants in elemen-

tary particle physics. The representation fails equally 

miserably when applied to protons. It cannot account for the 

anomalous magnetic moment of this particle, and leads to 

incorrect predictions for elastic electron-proton scattering 

and for proton Compton scattering. 

The reason for this failure is not hard to see. The 

realisation 1.2-1 ignores the fact that the nucleon is a 

strongly interacting particle, and neglects the possibility 

of its possessing a finite spatial structure. The bare 

nucleon will be surrounded by a cloud of virtual pions, (and 

possibly other virtual particles). The virtual photon may 

interact with these as well as with the bare nucleon, thus 

modifying the electromagnetic interaction. Whether or not 

the bare nucleon is endowed with a spatial structure further 

modifying this interaction is an open question, but the virtual 

pion cloud will certainly cause the physical nucleon to behave 

as a structured particle. 

There exist an infinity of Feynman graphs corresponding 

to strong interaction corrections to "equation 1.2-1, and no 

method of summing these is known. So instead one adopts a' 

different approach which at once takes account of all possible 

corrections to this equation. 

In analogy with the previous equation one first factors 

out the helicity dependence of the matrix element, defining 

a "vertex function" , 14i by. • 
K A I i<  0)11'A> --- 	ev,;(  ( 9'60. 

This a completely general Lorentz-group theoretic operation, 

the nucleon spinors corresponding to matrix elements of 

relativistic boosts. 



15. 

The vertex function will be a 4 x 4 matrix in the 

space of four-component spinors. In addition it is required 

to satisfy certain constraints imposed by the assumed Lorentz, 

P, C, and T-invariences of the electromagnetic interaction 

and the fact that la is an hermitian operator. A particular 

consequence of these is the requirement that Ma should have 

the same Lorentz transformation properties as Ja, that is, 

it should be a Lorentz proper vector. Furthermore, the 

interaction is reauired to be gauge-invarient (current 

conserving) when the photon involved is real (virtual). 

The vertex function must therefore vanish on contraction 

with leix, the momentum of the photon. 

The next step is to expand Via in terms of a set of 

linearly independent basis functions, (called "kinematic 

covarients"), satisfying these same constraints. They must 

remain linearly independent when sandwiched between the 

nucleon spinors, and those that do will be said to be 

"linearly inequivalent". The fact that the nucleon spinors 

satisfy the Dirac equation turns out to imply that no more 

than two kinematic covarienta satisfying the required con-

straints can be linearly inequivalent. This result can be 

shown to be related to the spins and intrinsic parities of 

the particles involved. The expansion coefficients are 

called "electromagnetic form-factors". Being Lorentz scalars 

they can only depend on scalar variables. Since the nucleons 

are on-shell, only one linearly independent scalar variable 

can be constructed from the available momenta: it is con-

venient and conventional to choose to work with 1!", the 

squared four-momentum of the photon. 

Our erpansion of the vertex function will be the most 

general compatible with the various kinematical constraints 
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and. the electrodynamical one of current-conservation. 

The remaining dynamics is contained entirely in the func-

tional dependence on q2 of the two form-factors, and a 

study of the dynanics is reduced to a study of this depen-

dence. It is clearly desirable that the form-factors 

should not be subject to any spurious kinematical dependence, 

that is, they should be "kinematic singularity free". 

As the reader will no doubt be aware, the two conven-

tional decompositions of the nucleon electromagnetic vertex 

function are: 
-tr„ = IF, (7"Yra 	4-„ (1--) 0-;40  1-(3) , 	 (1 .2_3)  

ev-0, = PEG-em-Pole 	(4:9 	o'c (P/1- MS] 	(1.2-4) 

The momentum P i  is defined by: 

+ K, 	 (1 .2-5) 

and in is the nucleon mass. At this point we better mention 

that our conventions regarding the metric tensor, scalar 

products Dirac matrices , spin one-half wave-functions, and 

contracted Levi-Cevita tensors are to be found in Appendices 
iv 2a 3• 

The form-factors are related as fb nous : 

G-e  = F, + -cpa  F214-7n?' 

= F + F GM  f a. 

(1 .2-6) 

(1 .2-7) 

and are assumed to carry superscripts p or 71 according as 

we are dealing with the proton or the neutron. As a conse- 

quence of the henniticity of the current operator, they 

can be shown to be purely real. 

As mentioned above, we are now treating-  the nucleons 

as structured particles. The values of the form-factors at 

vanishing q2 may be related to this structure in the following 

manner. 
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One compares the predictions of equations 1.2-1 and 3 

for nucleon scattering by an external field. Working in a 

special frame, the Breit frame, in which: 

(1.2-8) 
and taking the static limit (vanishing q) at the conclusion 

of the two calculations, one is able to makethe identifica-

tions: 

6-e (3) = e 
	 (1.2-9) 

6-,„ 0) 	a.'n iv` 
	

(1'4,2-10) 

where eand/X are respectively the physically observed 

charge and magnetic moment of the appropriate nucleon. 

Defining the anomalous moment/A-4, in an obvious way by: 

(1.2-11, 12) 

one then deduces: 

 

F, 	e 	Fa  (0) = 	. 	(1.2-13, 14) 

(1:9 Fz (40) 6e; (€1,1) and Gh. (.1,2) are accordingly called 
the charge,moment, electric, and magnetic form-factors of 

the nucleon. 

The various derivatives of Fe  (Pa) evaluated at zero 

1, may be similarly related to the Fourier transforms of the 

various moments of the spatial charge (magnetisation) distri 

butions of the physical nucleon. In particular, the first 

derivatives are related to the mean-square radii of the 
corresponding distributions. It should be stressed, however, 

that the form factors are not to be interpreted as Fourier 

transforms of the spatial charge and moment distributions, 

rather, the former quantities at zero argument are related to 

the latter in one special frame. 

The above discussion appliesforkinematical reasons only 
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to non time-like photons. In the time-like case, that is, 

virtual photoproduction of nucleon-antinucleon pairs, one 

defines the vertex function in an analogous fashion: 

<KA f fAH.(6)1o> -4.^(K)va(  V2H9, 	(1.2-15) 
One may again adopt equations 1.2-3 and 4 as suitable 
decompositions of this vertex function, and one then assumes 

that the form-factors for time-like c/.2' may be obtained from 

those for non-time-like cp
a 

by analytic continuation. In 

other words, corresponding form-factors for the time-like 

and non-time-like interactions are assumed to be different 

sectors of the same analytic function. 

It can be shown that the charge and moment form-factors 

are kinematic singularity free for all e. Hence equations 

i.2-6 and 7 imply either that the electric and magnetic form-

factors are non-independent at the pair-production threshold: 

&e 	IK2-) = 	(4 
	

(1 .2-16) 

or that F1  and F2.  have a dynamical pole at this point. 

This questio4 has been discussed in detail by Bergia and 

06) 	 •  Brown, 	and also by Barger an Carhart.(17)  The conclu- 

sion is that 1.216 should indeed be taken as operative; (it 

is then a purely kinematical constraint). 

The disadvantage of working with form-factors subject 

to such a constraint is generally considered outweighed by 

the fact that the lowest order unpolarised cross-section 

for elastic electron-nucleon scattering involves only the 

squares of Ge  and Gbl , not the cross-term Ge G.,„ . Although 

the dharge and moment form-factors are free of kinematical 

singularies and constraints, the abOve cross-section involves 
the three combinations: Fa 	, and F F2- . 

In their assessment of the experimental data on nucleon 
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_08) 

form-factors, Chan et.al. conclude that for non-positive 

definite 	this data is best fitted by ignoring the threshold 

constraint 1.2-16. For values of 	a up to about 5(C512A/d/c 

is then very well fitted by the "scaling laws": 
-a 

+ tot 	" 
6-Z60  6-4 63) 

0-71 . 
cp.2. ) 

In these equations: 

-IC't 	le,h1 	= /.792.76 

am 	= _4,1515 

(1 .2-17) 

and the quantity 0.71 has units (GreVc )t. There is no 

objection to a pole in the form-factors at this latter value 

of 1, since it lies outside the physical regions. However, 

the fact that the first equality of 1.2-1 7 violates 1.2-16 

indicates that this scaling law fails when continued un-

modified to time-like cz  . Data on the neutron electric 

form-factor is relatively sparse,(18)  but is available for 

space-like 9, down to about -- 4-6;0/Nt It is roughly 

Consistent with the scaling law: 

(1.2-20) 

but the percentage experimental errors are very large. Note 

that 1'.2-20 satisfies 1.2-16 when continued to time-like 1.2  

To date the experimental data on electromagnetic pair-

production and annihilation is insufficient to allow anything 

useful to be said about the behaviour of the form-factors 

in the time-like region.(18)  

We have so far dealt only with the 0(3./ 1) decomposition 

of matrix elements of the proton and neutron current operators, 

treating these as unrelated problems. They are connected by 

invoking Si4(2) invarience and the assumption that the 
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photon, (whether real or virtual), behaves like the 

superposition of an isoscalar and the third component of 
an isovector. Matrix elements of a single nucleon current 

operator may then be decomposed in 0(3,1) 0 SU(2) space. 

Conventionally this decomposition is simply obtained from 

the previous ones by writing: 

F 6 6 e " 0 	iF5M FNIM/r"} 6.) 	 (1.2-21) 
where t(t t  ) is the isospin projection of the initial (final) 

ni t  0' nucleon, and A, ( A 	) is its two-component spinor wave-

function in isospace, as discussed in section 2.12. F stands 
for any one of F 52  ; Ge;In  ) and F s  (Fy  ) is the corresponding 

isoscalar (isovector) form-factor of the nucleon. F t  (1a) 

vanishes unless c and & are equal, in which case: 

F 	F  
(1.2-22) 

F 	r 
	

(1.2-23) 

and it follows (from the explicit structure of the isospace 
wave-functi. ons ) that:  

F 5 = ±(FP-4-F") 	 (1,2-24) 

Fv 	(Ft - 	 (1.2-25) 

In the case of the nucleon form-factors the extension 

from 0(3,1 )  to 0(3,1) se:A SU( 2 ) is neither a simplification 

nor a complication from the point of view of pheonomenology, 

but it is an essential ingredient in any theoretical investi- 

gation of the dynamics. 

To summarise, the nucleon form-factors are scalar functions 

which parameterise all corrections to the basic electromagnetic 

interaction of this particle whether they be radiative, 

strong, or due to a spatial structure of the bare nucleon. 
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At zero argument they are related to the effective structure 

of the physical nucleon. 

More generally, any arbitary vertex may be expanded in 

terms of a set of linearly inequivalent kinematic basis 

covarients. The symmetries operative only constrain the 

expansion coefficients to be (coupling) constants for three-

point vertices connecting three on-shell particles. In all 

other cases they are allowed to be scalar functions, (form-

factors). For three-point vertices connecting one or more off-

shell particles their arguments are the squared off-shell 

momenta. It is not true, as is sometimes stated, that form-

factors are phenomenological variables put into fit the 

empirical data in a simple manner. In cases where they are 

kinematically allowed to be variable, they may only be taken 

as constant if one makes an extremely restrictive assumption 

about the dynamics of the interaction. 

Vie had better point out that the form-factors correspond-

ing to matrix elements of electromagnetic currents are only 

related to the static electric and magnetic multipole moments 

of the particles involved for matrix elements taken between 

identical initial and final single particles. This is simply 

due to the fact that in any other situation the static limit 

lies outside the physical region for scattering. 

Thus in section 2.71 we shall see that a matrix element 

of the current taken between a pair of unequal mass spin one-

half hadrons may be decomposed into a pair of form-factors 

which are closely analogous to the charge and moment form-

factors of the nucleon. The difference is that the charge" 

form-factor now disappears in the r eal-photon limit. In view 

of the previous paragraph this is perfectly consistent with 

the possibility that the hadrons carry non-zero static 

charges. 
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Finally we wish to mention mother important difference 

between arbitrary three-point vertices and the special case 

reviewed in this section. We said earlier that the decom-

position of the nucleon electromagnetic vertex-function had 

to be consistent with a constraint imposed by the assumed T-

invarience of the interaction. In fact this is not strictly 

true. 

For general three-point vertices, (matrix elements of 

some interaction Lagrangian taken between three particles), 

the combined constraints of hermiticity of the Lagrangian 

and T-invarience (or PT-invarience, if this is applicable 

whilst P and T are separately violated) imply that the kine-

matic covarients may be chosen in such a way that the Coupling-

constants or form-factors are purely real. The same is true 

in the electromagnetic case, where one is usually concerned 

with matrix elements of the current operator, provided that 

the initial and final on-shell particles are not identical. 

In the identical particle situation, (as for example the 

nucleon case reviewed here), the reality condition fpllows 

directly from the hermiticity of the current operator and 

the T or PT constraints become redundant. 

(1 9) It has recently been suggested 	that the electromagnetic 

interactions of the hadrons may violate T, (and therefore PT 

since P is conserved), for non-vanishing q
2. This fact cannot 

be tested in the identical particle case, but will lead to 

complex form-factors if it obtains in the inelastic situation. 

In this thesis we allow for both possibilities when 

deriving superconvergent sumrules but in order to obtain any 

useful predictions we find it necessary to assume T-invarience 

when attempting to saturate these. 
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1.3 ON-SHELL SUPERCONVERGENCE 

Having obtained a set of form-factors for a vertex 

it remains to investigate their functional form. To date 

the methods at one's disposal fall broadly into three classes 

viz: 

1) Dispersion relations on the form-factors, 

2) Higher unitary syuuuetries, 

3) Current algebra sum-rules. 

Lack of space prevents us reviewing these here, instead we 

refer the reader to the literature. 

On the basis of this thesis we propose adding a fourth 

candidate to the list, namely off-shell superconvergence. 

To obtain insight into how such a programme would give us the 

required information we first review on-shell superconverge 	(4)  

For simplicity we defer the generalisation to processes 

involving non-zero spins andisospins to the next, chapter, and 

assume here that all the particles involved have both these 

quantum numbers zero. We do not wish to imply however that 

any superconvergent sum-rules would actually be found in such 

a case, indeed it is well known that they would not.(3)Y(4)  

All the particles involved are hadrons, and the reaction is of 

the type 1 + 2 	3 + L1, with momenta and masses i  and 7)1i 

where i 1,2,3,4. 
We define Mandeistam variables: 

5 5  (t1±  f') 
	

E  (pt -p)2 	tt 	roa . 	(1 .3-1 ) 
So the channels are defined to be: 

s: 1 + 2 + 4 (1.3-2) 

t + 3 
mom. 

+ 4 (1 .3-3) 

u: 1 + +2, (1 .3-4) 
and with: 

IC = i 7 
iv, 

(1 .3-5) 
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we have: 

s + t + u = 	 (1.3-6) 

Since all the particles are spinless and isospinless the 

T-matrix elements are given by a single scalar "invarient 

amplitude", A: 

T . 	<4.3 J  T I 21> s A (s,t,u 	. A (s,t). 	(1.3-7) 

In the homogeneous stu-plane the s,t, and u branches 

of the physical region are given by the inequality:(2o) 

&frt. (ts Pg. i's) E- 03/1-1?-3) 
which is a homogeneous cubic in s, t, and u. The notation 

of this equation is explained in Appendix 3. If one of the 

particles has a mass greater than the sum of the masses of 

the other three, then in addition to the above three physical 

regions, equation 1.3-8 will lead to a fourth physical region 

bounded by a closed loop lying inside the reference triangle. 

This corresponds to decay of the heaviest particle into the 

lighter three. Its boundary is just the boundary of the 

Dalitz decay plot. 

As for the analytic properties of A(s,t,u), one assumes 
that it has no singularities other than Born-term poles and 

those cuts specifically required by unitarity and crossing.(21)  

Thus A(s,t,u) has a pole in s whenever this variable is 

equal to the squared mass of a stable particle or bound 

state having the same conserved quantum numbers as the initial 

and final s-channel states. 

The amplitude has a superposition of cuts in the s-plane 

running along the positive real axis from So  to infinity, 

and given by the s-channel unitarity relation together with 

hermitian analyticity: 



?isc5  c T. (s Eilin 
+ I 
[Tf i  (s+ii., L) -T. (s -icy &)] 

J 	e -Po  
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=110n(S-v  iS)  -T*(s-Fis)  
e.40+ J 	

if 

  

  

  

it o+..110,4---tzrfN(S-Fit/O-rit(S4-iEJO 

=-- 1i7 	44,4--1,07:5, (S+ iE2  9Toi(s+ iti  
E-W;0+ N  

In this equation N runs over all possible states 

(1 .3-9 ) 

containing 

more than one free stable particle and having the same 

conserved quantum numbers as the initial and final states; 

12N  is the total momentum of the Nth such state, and ti 

is the total initial momentum. The infinite set of multi- 

particle states may be divided into subsets containing the 
4 same particles. Then. e   such subset then gives rise to a 

cut running along the positive real axis from 50")  to infinity, 

where S 4)  is the squared sum of the masses of the particles 

comprising that subset. Since all such cuts are superimposed, 

the effective branch-point (s-channel threshold) is given by: 

So 	Min 5()  n  0 

Note that the line s = so  may lie entirely outside the 

s-channel physical region. 

Unitarity has actually given us an expression for 

lift [1-  (54-i&O—T.L*(S+ig5E).1 	and assuming that 
&--*o+ 	j 	 r  
the process is CTP-invarient we have related this toLdiscs  

Tfi(sttl The hermitian analyticity theorem of Olive(22)  

states that for a CTP-invarient reaction: 

,117st T.*  (S 	= t i1.1 -1-4;  
L 	

(s 	& 

The poles and cuts of A(s0t,u) in t and u are given by 

identical considerations in the respective channels. 

Suppose then, that the amplitude has poles in s and u 

at some si  and uk  respectively, and s and u channel thresholds 

(1.3-10) 

('t .3-11) 
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at so  and u0, (all 	, so, and LA0  positive). Then 

treated as a function of s and t, the amplitude will have 

in the s-plane: poles at sj  and sk, a right-hand cut from 

50  to infinity and a left-hand cut from SL to minus 

infinity, where: 

and: 

S k 	- 

5 0 

k 
(1. 

(1 . 

3 -1 

3 -1 

2 ) 

3 ) 

Similarly in t and u the amplitude has not only those 

singularities coming from Born terms and unitarity in the 

channel under consideration, but also, (due to crossing), 

the singularities coming fram that channel for which the 

total energy Mandelstam variable is being treated as the 

dependent variable. 

Returning to the analytic structure of A(s,t), one notes 

that the left and right hand cuts in s do not overlap 

provided: 

1> & ll -z ic-so-tt 	 (1.3-14) 
In most practical cases t" is a negative quantity. 

Now suppose we know, for example from considerations of 

t-channel Regge behaviour, (3)  Froissart bounds in s,(4)  or  
the kinematical singularities of non-reduced helicity 

amplitudes (') that for: 

tin t > t", 	(1.3-15) 

the amplitude has the asymptotic behaviour: 

IANOI /5/ 40,, 1 S1 -n-C' 
	

(1.3-16) 
where n is a positive definite integer, and E is a real 

number such that: 

o<&.4. < 	 (1.3-17 



sf as pk, 9 
Sk- 	 (1 .3-19) 
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Then the amplitude is said to be superconvergent, and 

513/4(sl t) will satisfy a fixed-t unsubtracted dispersion 
relation for: 

p = 1 ,2,....,n, 	 (1 .3-18) 
and t lying in the range indicated by 1.3-15. The lower 
bound to this range is needed to ensure that the left-and 
right-hand cuts do not overlap. 

We may therefore write: 
Co 
d-s i  SIP )iscs  (51,0 sPA(sit) 	s'— s 

so  

cIsi  s /(.3  discs  A (s,' 
s' — s 

3(s.5,0 
5.-  5 

where B(s j ,t) and B(sk,t) denote the residues of A(s,t) at 
the indicated poles. With the further proviso that t be 
chosen in such a -way that the amplitude remains finite at 
vanishing s, we may set s equal to zero and obtain: co 	 So 

fds 1S /7n  "scs A (51,0 + ci.si 51' discs  A (51)0 

rcz-Z, 	23(Sfc, 	= 0 I 	 (1 .3-20) 

for: m = 0,1 12,..., (n-1). 	 (1.3-20A) 
For given m this equation is called an mth  .-moment super-
convergent sum-rule. Zeroth moment sum-rules are often simply 
called ordinary sum-rules. 

The Born-term residues are given by perturbation theory, 
and continuing to neglect spin and isospin one has 

131(Si )0= 9f 	7 	 (1.3-21 ) 

15(s0)=-9frelki. 	 (1.3-22) 
Here 5fj  and s5i are the respective coupling constants 
representing the interaction of the jth. s-channel stable 

7ci1gl  3 (s;, 
Se 



e(s-5T)rviR 1;1 (s) spt(s)s-gi (s)  

-R 
	Cs — 	T(s) 	

(1 .3-23) 
aiscs  (5,6) 

where: 
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single-particle intermediate state with the s-channel 

final and initial states. The .0 fk  and gkt  are the 
corresponding quantities for the vertices of the 0 u-

channel pole graph. The minus sign in equation 1.3-22 arises 

when one expresses the denominators of the u-channel pole 

graphs in terms of s and t. 

Evaluation of the right- and left-hand discontinuity 

functions is of course much less straightforward, and a 

number of approximation procedures are possible. We shall 

only discuss the resonance approximation as used in this 

thesis. 

Here one makes use of the empirical fact that T5,4(s,t) 

and T i  (s,t) are only simultaneously relatively large when 

the value of s is such that the particles comprising the 

state N may resonate, that is, when s is close to the squared 

mass of a resonance having the same conserved quantum numbers 

as this state. In this approximation the s-channel unitarity 

relation, (1.3-9), reads: 

e(s- s(eR)) :=-._ 1' 5  ' 5' { o, s < s(:). 
(1.3-24) 

Here R denotes an allowed resonating state with mass distri-

bution centered on MR  and total width ret.(5) , Whilst got  (s.) 

and SRi(s) are the scalar form-factors representing the 

interaction of this resonance with the final and initial 

s-channel states. The quantity 49  is the branch point of 

A(s,t) in s due to those particles Whose effect one is trying 

to approximate with the resonance R. 
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The above equation assumes that all form-factors are 

real and satisfy: 

5fg (s)  = 5"R)" (s  ) 	gLR CS) = SRL CS) . 	(1.3-25) 

This will be the case if all interactions involved are time-

reversal invariant and describable in terms of (hermitian) 

interaction-Lagrangians. Similar considerations apply to the 

coupling-constants arising in the Born-term residues. 

Form-factors rather than coupling-constants are required 

in equation 1.3-23 to take account of the mass distribution of 

each resonance. In the limit as the width of each resonance 

tends to zero, these form-factors become coupling-constants: 

95.1 (s) 	 
nig 	

55_,‘  040 7 	(1.3-26) 
31c, (s) r 	o 	"1111) . 	(1.3-27) 

Equation 1.3-23 may also be derived from an isobaric model 

of the scattering amplitude. Again assuming hermitian 

analyticity and time-reversal invarience one has: 

(s E)- (5 	, 
SO: 

-ai 5 c 5  11(51  E) (1  .3-29) 
E-,04  

The isobaric model asserts that above the s -channel threshold: 

19(s-.5(:)) sfit (s) 9 izi (s)  
s — 	rvi,R  ri(s) (1.3-30) 

which in view of the previous equation again reproduces 1.3-23. 

At relatively low' energies, where the resonant peaks in 

the cross-section are known empirically to be large compared 

with the non-resonant background, equation 1.323 should be 

a reasonable approximation to the truth. As the energy is 

increased one knows that it becomes progressively more diffi-

cult to distinguish between resonances and background, whilst 

for very large values of s the discontinuity function should 

(1.3-28) 
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be computable from considerations of. t -channel Regge 

behaviour. Indeed, this Regge behaviour is normally used 

to derive equation 1.3-16, and any approximation to the 

discontinuity function should certainly satisfy: 

Ince A(5 	E)J — 	n• I Fi(s*Lt) )1 	A Cs) 01 

I A (5+ 1E,01 + A (s- EL) 	 (1.3-31 ) 
for all s,t. 

In practice one normally makes a further approximation 

before using 1.3-23 to evaluate the first term on the left-

hand side of 1.3-20. In order that this integral may be 

computed in closed form oneneglects the s-dependence of the 

flu(s) 2  Spt(s) and gRL(s), replacing these by 111 9fR, 91m, 

defined to be 1101,20 , Zf011i.) and 9 RL (MI) , respectively. 

Unfortunately the approximation is now certainly inconsistent 

with equations 1.3-16 and 31 except in cases where it. is 

equal to unity. This is reflected in the fact that the inte-

gral one is trying to evaluate diverges at its upper limit 

for non-vanishing m. 

In order to properly improve the approximation so as to 

achieve consistency with equations 1.3-16 and 31, and the 

elimination of divergence difficulties, one ought to keep the 

s-dependence of the widths and coupling constants whilst adding 

background and possibly Regge terms to the right-hand side 

of 1.3-23. If the duality hypothesis is to be believed, then 

Regge terms will notbe required. The resonances and background 

terms will conspire to reproduce exactly the required high 

energy Regge behaviour. This in itself will yield constraint 

equations on the unknowns involved. Alternativelyl one might 

use the resonance-plus-background approximation only for s 

less than some value corresponding to the upper bound of the 



2.1ri+1 r, 	cis' 	ilk S'Ri  
"R 	I 	 + 

12 	+ tan- 	S ik))  
1`4.07R 	

S.Rt 
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"resonance region". For larger values of s the discontinuity 

function would then be computed from Regge behaviour. Again, 
the requirementthat the transition from resonance to Regge 

behaviour be smooth would yield constraint equations. The 

validity of this latter approximation procedure would not 

depend on the truth or otherwise of the duality hypothesis. 

On the other hand, such sophisticated approximation 

procedures would certainly introduce large numbers of 

additional unknowns into the sum-rules greatly reducing their 

potential predictive power. Accordingly, it is customary 

to circumvent the divergence difficulties by somewhat cruder 

means, which do not involve the introduction of background 

or Regge terms. 

One uses equation 1.3-23 to evaluate the required inte-

gral, but neglects all s' dependence except that occuring in 

the resonant denominators. Elsewhere s' is replaced by the 
RA2.ik  relevant M . That is, one writes: 

ds' 51' aisc A ( 
so 

0 

I
3cl '5 "'IN rg(s)95R(s, SRL (5)  

(5'—fr,a101-i- Kt r., (5) 
R5(a) 

(1.3-32) 

If one lets all r; tend. to zero, 1.3-32 yields: 
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Co 

f 
Gt-ap 0 , f iz 9 Ri . 

So 	 'R 

2.171 ds' s' 7" disc s A 61, 0 -->-` 2 zt 	R
(1 .3-33) 

This corresponds to the much more drastic (and. unnecessary) 

approximation in which the cut is replaced by a superposition 

of Born-like poles, or equivalently, is simulated by a super-

superposition of 8-functions. 

Thus the approximation of equation 1.3-32 is at worst 

an improvement on the pole approximation. In as far as it 

removes from the sum-rules divergences which would be incom-

patible with their known existence, it is perhaps an improve-

ment on the resonance approximation as well. The point here 

is that one is now attempting to approximate the integrals 

which actually appear in the sum-rules, rather than the 

discontinuity functions themselves. 

The integral over theleft-hand cut may be similarly 

approximated, and. labelling the u-channel resonances by R' one 

has: 
-s: 

/Sits' discs  A ' b f 	oc_ e - ir .9isc,,, A (W )  t) 
— 00 

j

du! (lc-  L- --.  kir Mim rie 0,4-')  34- R (A-9 8 •R i (w) 
(IV- rit,)' -I- M lii r v , (AI) 

a go 

(ti 	IAC:9  - 
an 	 S 	f• 

rt m 	, 	te 

uo 

(1.3-34) 

again denote rsi(MV 2  31-Rr (WO 
th respectively. The m, moment sum-rule 

where rie , efle 
and. s let (1-4) 

and 3 i, 

(equation 1.3-?0) thus reads in this approximation: 
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_1(11: _ s  cog) 
R 

)1i  
R 	&g,11. 

MR 

m flytt{ 	E 	A 	CRS) 
cot 	 a 	M N / -RI 

	

y  (lc- iviZ)m  05k 	• 

(1 .3-35 ) 
One is often concerned with sum-rules for processes 

known to exhibit s. -u crossing symmetry, that is, one 

has: 

	

A (s, 6)  tA) 	A () E s) 	
(1.3-36) 

where: 	= ± 1 • 	(1.3-37) 
In such cases it proves convenient to treat the amplitude as 

a function of 2) and t, with 1) defined by: 

7,) 	(S—tA-) 	
(1.3-38) 

The amplitude then satisfies: 

	

A (), t) 	A (-1 	 (1 .3-39) 
In thel) -plane it has a right-hand cut due to s -channel 

unitarity running along the real axis from Vo  to infinity, and 

poles due to the s -channel Bron -terms at some 1).'  These • 

points are given by: 

IC 	 ( .3-140) 
y. 	(V-Sr IC+ 	

(1 	) 
In view of equation 1.3-39, the left-hand cut due to u-channel 

unitarity runs from minus 1)0  to minus infinity, and the u-

channel Born-term poles occur at the points: minus  

Moreover, in our previous notation one has: 

gisc„ A(v) = 	s c2) A (y, 6) , 	(1.3-42) 
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Bj(vo 	= 	Bi EVij 9 	. 	(1 .3-143) 
Since $ and u.eare now necessarily equal, equation 1.3-14 

is again the condition to be satisfied if the two cuts are not 

to overlap. 

The high 12,( behaviour of A(2,,t) may again be 

derived from (e.g.) considerations of t-channel Regge behaviour, 

and superconvergent sum-rules thereby deduced. In view of the 

previous discussion, an m.th  moment such sum-rule will be 

trivially satisfied due to crossing symmetry for: 

whilst for: 

(1 .3-44) 
(1 .3-45 ) 

it will reduce to: 
Co 

4112)11PVaiSciA(y;6)---27rT7)V (VO 7  = 

vo 	 (1.3-46) 
This only involves the s-channel cut and poles, and in the 

approximation discussed above reads: 

(2 	— + br.{211 	-I 	—  Sol) 
)1" 	r,R 	gjS9R ti  

+ (a 
(1 .3-147) 

    

The approximation procedure described above is often 

called attempted saturation. *A sum-rule is said to be 

saturated if one has used sufficient resonances in its 

approximate evaluation that the predictions yielded are 

expected to be as accurate as is required. It is clearly 

impractical to attempt saturation with an infinite super-

position of resonances, but unfortunately there exists no 

well defined prescription for determining how well a given 

finite superposition will saturate a particular sum-rule. 
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One simply has to make some sensible, but nevertheless largely 

arbitary choice of resonances. We return to this point again 

in a moment. 

The complications introduced by the presence of non, 

vanishing spins and/or isospins are fully discussed in the 

next chapter. Each vertex may then involve several linearly 

independent couplings, so the 540ji, 7  6fk,3ke, ) 33-R 44i 
and O.FR/3/ei  appearing in equations 1.3-35 and 47 are each 
replaced by a quantity which is linear in products of pairs 

of "final" and "initial" coupling-constants or form-factors. 

In addition, these quantities are homogeneous polynomials 

in Mandelstam variables. The degree of each such polynomial 

depends on the spins and isospins both of the external particles 

and of the relevant intermediate state. The variables s and u 

appearing in these polynomials are again replaced as appro-

priate by the squared mass of an intermediate state. 

In most practical cases the left- and right-hand cuts in 

s(or1)) do not overlap at zero t. In such cases one usually 

looks for sum-rules which are valid for vanishing t since one 

can then separately equate to zero the coefficient of each 

power of t appearing after attempted saturation. One may 

thereby obtain several relations from each sum-rule. Assuming 

that one is deducing the high energy asymptotic behaviour 

of the amplitudes from a consideration of t-channel Regge 

behaviour, working at zero t has a further advantage. At 

this t-value there should be no manifestation of multi-Reggeon 

exchange with its attendant complication of non-linear effec-

tive trajectories.(23)  

We see, then, that in this approximation superconvergent 

sum-rules lead to homogeneous linear equations relating products 

of pairs of "initial" and "final" Born-term coupling-constants 

to products of pairs of "coupling-constants" 
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corresponding to the interaction with the initial and 

final particles of the resonances utilised in the attempted 

saturation. The predictions of a sum-rule are therefore 

sensitive to this choice of resonances. 

In deciding which resonances should be employed in an 

attempt to saturate a sum-rule one must be guided by experi-

mental information (when available) regarding Which resonances 

are actually observed in the process under consideration. In 

the absence of anything better, one normally assumes on the 

basis of general empirical experience that lighter resonances 

will dominate the sum-rule compared with heavier ones. 

Finally, one has to bear in mind the number of final equations 

resulting from a given saturation attempt, and the number of 

unknowns that these will involve. Too few equations for the 

number of unknowns, and the final predictions may not be very 

useful; too many equations, and these are likely to prove 

inconsistent. 

In cases where such an inconsistent set of final equations 

is obtained it is often found that these reduce to a consis-

tent set in some equal-mass limit. This is frequently the 

u(6,6) mass limit, and the consistent set of equations then 

sometimes reproduces u(6,6) symmetry predictions. (6) This . 

has been suggested as indicative of some close connection 

between superconvergence and higher unitary symmetries. To 

date, however, such a connection remains completely obscure. ) 
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1.4 INTRODUCTION TO OFF-SHELL SUPERCONVERGENCE AND  ITS 
MOTIVATION.  
In the previous section we reviewed the derivation and 

usefulness of superconvergent sum-rules for purely hadronic 

scattering processes involving two initial and two final 

particles. 

The arguments may be extended without modification 

to processes in which only three of the particles are hadrons, 

the remaining particle being a (real) photon. Suppose for 

the sake of definiteness that particle 1 is the photon. 

Then the coupling-constants: 4, 7  3 	(5 = m,2) and 

oivi. (R.= M,,) of the previous section will now become 
electromagnetic form-factors evaluated at zero argument: 

foi0,2;  0) 

0) 

;,,(s-tvi)---->-fx.i.(s-rvi",,,t;k ----.  0) 
0,1,(kr-r1v)-->--Lii,(iii=m,Zt,-p,'-- 

We have assumed that the three channels are again defined 

by equations 1 .3-2 3,4, so that the photon is never "crossed". 
When particle '1 is replaced by a photon, the number of 

conserved quantum numbers is reduced at the initial vertices, 

but remains unchanged at the final vertices, so the number of 

Born and resonance graphs to be considered is still usefully 

restricted. 

The above programme is expected to yield useful relations 

between products of purely strong interaction coupling-

constants and hadronic electromagnetic form-factors evaluated 

at zero argument. In particular, several authors, (8) 

including the present one, have considered with some success 
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the derivation and approximate saturation of sum-rules for 

the wellknown pion photo-production process: photon + nucleon 

-.nucleon + pion. 

It would be exceedingly useful if one could generalise 

the above theory in such away as to obtain similar relations 

involving hadronic electromagnetic form-factors evaluated at 

non-zero values of their arguments. To do this one would 

have to be able to derive and approximately saturate super-

convergent sum-rules, not for T-matrix elements, but rather for 

perturbation theoretic four-point vertex functions representing 

the coupling of a virtual photon to (for example) one initial 

and two final on-shell hadrons. If the computation was 

performed in a way which assumed that the other end of the 

photon propogator was coupled to an initial and a final on-

shell electron, for example, then the relations obtained would 

hold for all space-like arguments of the electromagnetic 

form-factors involved. 

If particles 2 and 4 are nucleons, whilst particle 3 is 

a non-strange meson, then the form-factors involved are just 

those in which we are interested, corresponding to the inter-

actions: virtual photon + nucleon--nucleon, and: virtual 

photon + 	In addition, as we shall see • 

later, the "amplitudes" involved are all either even or odd 

under "s4c4-u crossing", which as discussed previously greatly 

simplifies the sum-rules. If the meson has zero spin, each 

final purely strong vertex involves only a single coupling-

constant. In particular, if this particle is a pion the 

coupling-constants involved are symbolically: 	rq7r) 

which is known with fair accuracy, and some 0(resonance---)-N3T), 

which are readily calculable in terms of the observed partial 

widths for decay of the resonances into NTT. 
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In the case of other mesons, the strong-interaction 

coupling-constants involved are far less readily accessible 

experimentally, and it would be useful to look at these 

vertices as well to see if any predictions can be made. 

Before proceeding blindly with such a programne however, 

one has to ask whether it is valid or even possible. As 

mentioned earlier, we return to this question in Chapter 3, 
where we conclude that with certain assumptions it appears 

to be both possible and valid. 

In view of the nature of the photon involved, we call the 

technique "off-shell superconvergence". 
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whilst for an outgoing anti-particle of spin J 

a A 	()=> 	 Or; Cr 17+ Y2)  A> [El(t)] Lc"602  
(1.4v  

I 0. 

CHAPTER 2, PART I.  

REVIEW OF THE COVARIENT FORMALISM OF SCADRON et. al. 

• 2.1 RARITA-SCHWINGER WAVE-FUNCTIONS  

2.11 0(3,1) WAVE -FUNCTIONS.(9)  

Our basic spin one-half four component spinor wave- 

functions and spin one four-vector wave functions are 

defined in Appendix 2. Rarita-Schwinger wave-functions(")  

for particles with momentum p and helicity A may be generated 

from these as follows, where J is an integer. 

For an incoming particle or anti-particle with spin J 

the wave-function is: 

E A 	(t) y-  <(1)-4-1.TA> [& (-or , 
0,).7 

and an outgoing particle or anti-particle of spin J has the 

wave-function: en  s(40) • 	 (2.11-2) (to. 

The wave-function for an incoming particle of spin 

J +2: 

(2.11-3) 

1 the 

wave-functions is: 

it.A.."644:1PT(13) 
(r) (2.11-4 (a) 7 °- 
For an outgoing particle and an incoming antiparticle, 

both with spin J + 1, the wave-functions are respectively: 

--A A t 
a (t4)  -4- Cp) 	u ( ) 7(7s) To 

and. 
(2.11-6) 

(2.11-5) 



In these equations we use the shorthand notations: 

and.: 

PT-14-7- 

(A-)7 	/a 7-74-, 

(117-a  C/A/ 1169&1ft%(1') 	t E  (1)). f4 	 2 	I? 

(2.11-7) 

(2.11-8) 

(2.11-9) 

The Clebsh-Gordan coefficients, ("parallel coupling 

coefficients" in this case), are given by: 

<a)71 V; A> z: {2,
7 
7(7+A)1(T-A)V(27)1 	(2.1 1-10 ) 

cal 
and: 

4/1)/7-Cr  1) 	cA,°"47E21,5„ 2 
c=1 	(2.11-11) 

where: 	

x-=E !kid 
i=1 
	 ( 2.1 1 -12 ) 

With the realisations of equations 2.1T-1 to 6 these 
wave-functions satisfy the Rarita-Schwinger subsidiary con-

ditions, as required. We remind the reader that these are 
as follows. The wave-functions are traceless, symmetric tensors, 
and vanish on contraction with p: 

I A 
(Pr 	pc ... 	(t) 	2 	 (2.11-1.3) 

A  A 	A)  A 

t4  I Pi, 	frti • 	(1") =* nal •• •t •••vti,-• • iv( T (V (2.11-14) 

tr (PtAi-14—frt7 (lb)  ° • 
	 (2.11 -15) 

In addition, the half-integer spin wave-functions vanish on 

contraction with y: 

nr ,hA 
Ott.4itti...1.4...fri.y(-10) =0= q)A  

and satisfy the Dirac equation: 

77-t)tt eAr)7-(() (3Y—F hi) 

(2.11-16) 

(2.1 1 -1 7) 
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We should perhaps also mention that the wave-functions 

have been chosen in accordance with the phase conventions 

of Jacob and Wick. (24)  In detail one has the following useful 
relations: 

u--(ArrIX-P) = (-07-A74312'0'-(fA,) 	 ( 2.11 -1 8) 

	

= 	97cto 'c'it,t)z&s) 	( 2.11 —1 9 ) 

cAt4;r7 t)= 9 zZtAir 14  (4  q7(±*) 	 (2.11 —20) 

E 	*)= 	(ItA) /c AP . 	1") 	 (2.11-21) 

(1,,,p- (p) C17(1,411  )7- (t) = — 2:  Ts  1) 47:
%1
4 itvA  (P) 	(2.11-22) 

`IP A  (1) = C .an a (t) =Z v5 (HT 	lAT A 
7  (t) 	(2.11-23) 

(14 	 A 	( iti9 

(A fA'X'yz, 	0. 	AZ.  E 	(p)  
( 2 .11 -24) 

In these equations we have used the following notations 

and definitions: 

 

4,(± )7":" (1)00  

= 
A 	7 

8'(r)s---. (IA )) 0 (ititt) 	147) 7 

( 2.1 1 -25 ) 

( 2 .11-26 ) 

( 2 .11 -27) 

( 2 .1 1-28) 
where: 

 

the superscript T denotes the transposition operation in 
four-component spinor space, and C and T are four-by-four 
matrices acting in this space. 

Specifidally, with our choice of Dirac matrix realisation 
(Appendix 1), C is the matrix such that: 

(2.11-29) 
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and therefore: 
1/7.-  

C 1r6 C 	Os - 

It has the properties: 
C17  C 	C 	—C = ct =  

(2.11-30) 

(2.11-31 ) 

and incases where all three-momenta involved lie in the 13-

plane, may be realised by: 

0'2, 0 . 	(2.11-32) 
T is the matrix defined by: 

1,- c , 	(2.11-33) 

c I, 	-LC) (9 

andhas the properties: 
T = T'.  -TT  -Tt  = -T 
TI/T-'= 50A-) 7/A7 , 

T 1116T-= — ?";r  . 

2 
	

(2.11-34) 
(2.11-35) 

(2.11-36) 

2.12 SU(2) WAVE-FUNCTIONS 

These are closely, but not exactly, analogous to the 
Lorentz-space wave-functions of the previous section. 

We take as our basic two-component spinor wave-functions 

for an incoming particle of isospin one-half, isospin projection: 

T= 1/2. 
(2.12-1) 

the quantities Ve realised by: 

X I/2=  ((I') 7 	X-1/2 =  (°) 

so that our isospin one-half normalisation is: 

X.ritr= • 
Our basic three-vector wave-functions for incoming 

particles or anti-particles of isospin one, isospin projection: 

T= opt 	 (2.12-4) 

are the quantities OT, , i = 1 ,2,31realised by: 

(1 i,o) 2  95  - 	 2.12-5) 



so the normalisation is in this case: 

ATI 4e ,k-rt• 
= lr 1, 2. • (2.12-6) 

In direct analogy with the previous section we then 

construct arbitrary isospin wave-functions as follows, where 

I is a positive integer. 

An incoming particle or antiparticle with isospin I and 

isospin projection (third component of isospin) T, has the 

wave-function: 

9, 	Of I 	{cbtr,  
whits t if the same particle or antiparticle is outgoing, the 

wave-function is: 
0-r* 
(j)I  

2, and isospin For an incoming particle with isospin I + 

projection T, the wave-function is: 

	

X-frli=>  <C6)17*+Yzrr>{0i,hli 
	

(2.1 2-8) 

In view of the local isomorphism between su(2) and 

0(3), the parallel coupling coefficients of equations 2.12-7 

and 8 are again given by equations 2.11-10 and 11. 

The wave functions for an outgoing particle, outgoing 

antiparticle, and incoming antiparticle, each with isospin 

I + 1 and isospin projection T, are ti 	4-)T,r , and 

wo:)r , respectively, where we again choose to define C4roT -rf 

	 2(  t  

via the Jacob and Wick(24)  phase convention: 
ry 
TT 	I 	-T 

(2.12-9) (i) 	CO 	7 	WI 
Here 0 is the two-by-two matrix acting in two-component spinor 

space and having the properties: 

(2.1 2-7) 

(2.1 2-1 0) 

(2.12-11 ) 
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In these latter three sets of equations the tilde 

denotes the t ransposition operation in two-component spinor 

space, and the -coi 	,2,3, are the Pauli matrices acting 

in this space. A realisation of C is: 

C = -1 	. 	 (2.12-12) 

0 is the isospace analogue of the matrix C in 

Lorentz-space. In isospace, however, we do not have an 

analogue of the matrix T of the previous section and the 

analogue of the remaining phase-convention relations are: 

where: 

4-...,rf  
XCoi = 5'6') XT (2.12-13) NI  , 
951-*=  0 1(0  95r 	 (2.1 2-1 4 ) 

(02 	COI  

.1(-r -a (jrj-r f = - (._ 01 
T 
l'-*- 	T 

P 

Yu ty  — 
(2.1 2-1 5) 

WI 	 it'  COI   

IChT(171  = EI)1 1-.r 173;i  I 	
(2.12""i 6 ) 

3r0')=  3 (i1) 0 (4) ' '' Ci  I) ) 	 (2.12-17) 

3 (ti) 7—zz — (— I)i 	 (2.1 2-1 8) 

These wave-functions satisfy the following Rarita-

Schwinger subsidiary conditions: they are symmetric, trace-

less, tensors (or tensor-spinors): 
T = th  

	

‘br v • • • 7,1i  • a • tk••• r 	
. 

••• - ••• 3." r i,• 	i 

T 	= ° 

	

., ... 	ii  
and for half-integer isospin vanish on contraction with tneTi 

(k, 	— 0 —  (PT+  • • °-te• t • 

These three equations are the analogues of 2.11-13, 1 4, and 

16, respectively. There exist no analogues in isospace of 

equations 2.11-1 5 and 1 7. 

(2.1 2-1 9) 

(2.1 2-20) 

(2.1 2-21 ) 



2.2 PROPOGATOR NUMERATORS 

2.21 013 L1) PROPOGATOR NUMERATORS.  ( 

The Lorentz space propogator for a particle of spin s, 

mass m, and momentum K, is the quantity: 
A05 

9.47 (vr- (K)  

	

El.', 0+ 	le 	 (2.21-1) 
where: 

S 	( I A 
fiCrA)7(v)7  (K) 	`f' c yT(K) (Pc o-7- (K) • (2.21-2) 

4)(40q- 0.0 is the wave-function of the particle, J is 

as usual the largest integer less than or equal to s, and 

c1(K) to be understood to stand for 0*(K) if s is integral. 

S  Computation of r)  (I- - ( 2/F 
(K) is naturally very tedious 

for general J, but it turns out to be relatively simple to 

calculate instead the "fully contracted propogator" defined 

by: 

ps(p',) (D)T4;;;-(„)z- (K) (751)T 
	

( 2. 21 -3) 

where P I  and p are respectively any momenta independent of 

K arising at the vertices with which the Ott andVlabels of the 

propogator are contracted. 

Scadron derives the expressions: 

p(K)) 	(2.21-4) 

	

an  : P7+ v
Z  
 (1'1  )1) 1'9= 	 [(i'Y 	(Po.  PCK)) 

—43/(K)(15( /n),P(K) i'1E-fri(K)• p(K))] 	 (2.21-5 

In these two equations the symbols are defined as follows: 

(V1)2./(2 7)1 

and for any pair of four-vectors a, b we define: 

at,(b)E at,- b frtA,2. 
so that: 

0.(b)•C(b)=- a- c (b) = (b)- c =a..c — a.• b C.  b/b 

( 2 . 21 -6 ) 

( 2 . 21 -7) 

(2.21-8) 

46. 

) 

Here 
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The solid harmonic P.C-, and its various derivatives with 

respect to its argument are then given by: 

p (?2)(1(K).  25(K)) 7=- 17-11  [151k 132A +.
(7-t-) X 

x  -p 	(K)/{1,120-0/A14511 
	

(2.21-9) 

We shall see in section 2.31 that in practice, having 

computed a suitably fully contracted propogator, only a few 

of the initial and final labels need to be freed in order 

that one may obtain the propogator needed for a particular 

graph calculation. The required labels may be freed by 

employing an 0(3,1) generalisation of Zemach's 0(3) 

differential technique, and we refer the reader to the 

above cited paper of Scadron(9)  for details. This same 

paper lists all the partially contracted propogator numera-

tors needed for this thesis. 

Finally, we should perhaps mention that a considerable 

simplification occurs in the special case: 

(2.21-10) 
The argument of the derivative of the Legendre polynomial 

appearing in equation 2.21-9 reduces to unity, and we 

therefore have: ep0i)/..),..... (T+  n)!  
(7- n)i 	271  

where: 

This greatly simplifies the structure of partially or fully 

contracted "forward propogators",„„ that is, propogators whose 

initial and final non-free Lorentz indices are all contracted 

with this same momentum. 

An extensive list of contracted forward propogators 

is also to be found in the paper of Scadron.(9) 
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2.22 SU(2) PROPOGATOR NUMERATORS 

In SU(2) space there exists no analogue of the four-

momentum contraction property in Lorentz-space, but since 

we shall only be concerned with propogators for particles 

with isospin not greater than three-halves, the porpogator 

numerators are easily computed directly from the defining 

equation: 

P
r or r+ vz 	 -r 

L 1) (1)  (WW 	(i)r  T  (2.22-1) 

which is just the isospace analogue of equation 2.21-2. We 

find: 

V3°7-:  1 	P1/2-  . 2 

and: 

S i,j 7 (2.22-2 to 4) 

(2.22-5) 



(s ; 	s,) 
Cv71(p)72 (007; 

(2.31-3) 
3.2Z (s1;s4.,$)) 
3  (v7(?- 647. 
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2.3 COUPLING-FUNCTIONS CONNECTING THREE MASSIVE PARTICLES. 

2.31 0(3.11 COUPLING FUNCTIONS  

For the sake of argument we assume the interaction is 

of the type: i + 	and let particles 1,2,3 have 

momenta q, p, K; spins: S,;  Sz;  S$;helicities: 	A ; 
normalities: ni  ) n, rt.s  respectively. As usual we define: 

s.particle i is a boson 

t 	Si-16 particle i is a fermion. 	(2.31-1) 

The normality, n, of a particle is then defined to be (4T77 LT 
where 'Ir is its intrinsic parity. 

In order to derive a useful covarient momentum-space 

representation for the matrix elements of the interaction 

Lagrangian it is useful to invoke the Wigner-Eckart theorem 

and factor out the helicity dependence by writing: 
/ I t 	, <KA It ItK (111 A c c) 

	 \ A./ 	`r 71 (CO • 
(P/-  0 -2  (°471 	 (H72.- 	Ve 	2 ) 

Here the (1)15 are the Rarita-Schwinger wave-functions, 

(matrix elements of Lorentz boosts), of the three particles. 

(I) is to be understood as standing for 0*if particle 3 is a 

boson. The quantity is called a "coupling function". It 

is independent of the helicities of the three particles, and 

has simple transformation properties, being a Lorentz 

(J1  + J2 + J3)th.rank tensor. For FFB vertices it is at the 

same time a 4 x 4 matrix in four-component spinor space. 

The matrix elements may be further decomposed by expanding 

the coupling function with respect to a set of linearly 

inequivalent basis tensors, (tensor-matrices in the FFB case), 

called "kinematic covarients". The expansion coefficients 

are called "coupling-constants". Specifically, one writes: 
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where the 93 are the coupling constants, and the.:;ej are 

the kinematic covarients. N is just· th.e number of linearly 

independent ways 'in vmich the thr'ee particles may couple. 

It is given by elementary consideratlons or quantum number 

conservation, and 1s, o~ course, representation independent. 

The kinematic covarients have the same general structure 

and Lorentz transformation properties as the coupling-function. 

The maximum constructable number of linearly inequivalent 

covarients for a given vertex is reduced as required from 

4(J
1 

+ J 2 + J
3

) to N by "equivalence relations tt
• That is, 

X j 
which are linearly independent when s tanding alone may 

give rise to quantities which are no longer independent when 

they are contracted with, placed adjacent to, or sandwiched 

between the wave-functions of the three particles. This 

arises out o~ the Dirac-Rarita-Schwinger subsidiary conditions 

on these wave-functions. 

The gj are Lorentz scalars. In view of momentum conser

vation and the fact that all particles are on-shell, all 

scalar products constructable from the momenta involved are 

constants. Hence there exist no scalar variables on which the 

~~ can depend, and these too must be constants. 

The number, N, of linearly independent couplings at a 

general 3-point vertex with all particles on-shell may be 

sho~n to be given as follo~E. 

Let 51 and Sm be respectively the lowest and highest spin 

involved, and let Sn be the remaining spin. Then one has 

either: 

or: 

S.r + SIt> 5 lIt , (2.31-5 ) 

In the latter case define: . 
S:: Sr + Sn: - Sm . (2.31-6 ) 

Finally define: 
( 2.31-7) 



C C C =1 

51 . 

(This quantity is called the normality of the vertex, which 
is said to be normal or abnormal according as n equals plus 

or minus one.) 

Conservation of angular momentum then implies that for 

both FFB and BBB vertices: 

+ 	(2.52r  + 1) 	SI+ Sz Six 

s -1- 0(2 s..÷ 9— sCs+ , sr+ sz six • (2.31-8) 

 

If the interaction is in addition space-reflection invarient, 

then conservation of parity further subdivides the vertices 

into normal and abnormal parity classes, and one has for 

FFB vertices: 

N = 
{ i.-(25/  I)(25 a+ 0 

±[(2Sr+ 1)(2511+  0—S5+ 	sx  sir> 5 ffc . 	(2.31-9) 
5.CF SE 1-C SEE 7  

whilst for BBB vertices: 

ii(2SI+ 1)(2 sir + 1)-1- 71] 	7  Sx+ Sr = SRL 7  

-11(25I+1)(2Sa+0-5(S+1)±72] Ss + Sia.> Sxt. . (2.31-10) 
Time-reversal invarience does not modify the number of 

couplings, but taken in conjunction with the postulated hermiti-

city of the interaction Lagrangian it does imply that in any 

particular representation of covarients may be chosen in a 

way which makes the coupling constants real. 

Except in the special cases listed below, charge-conjuga-

tion invarience also leaves the number of couplings unchanged, 

merely relating the matrix elements of the interaction Legrangian 

for different processes. The special cases in which this in-

varience does modify the number of couplings are as follows. 

Firstly, if particles 1,2,3 are self-conjugate bosons 

with C-parities: CI  C2, Cs, then one has a selection rule. 

The interaction is allowed, i.e. N is non-zero if and only 

if 

(2.31 -11 ) 



52. 

which is just a special case of Furry's theorem. In cases 

where this equation is satisfied, the number of couplings is 

unchanged. 

Next, if particles 1 and 2 are pair-conjugate bosons, 

whilst 3 is again a self-conjugate boson, then for: 

Si 	sz)= 0 
	

(2. 31 -12) 
one finds the selection rule: 

nc = c (- 	= 	 ( 2. 31 -1 3 ) 
irrespective of whether or not the vertex is space-reflection 

invarient. But if parity is conserved one finds the additional 

selection rule: 

For: 

- 1 . 

S, 	52> 0 
either value of rics(called the C-normality of particle 3) and 

aiB allowed, but irrespective of parity considerations, 

charge-conjugation invarience further subdivides the couplings 

into two classes, one for each value of 03. 

Finally, if particle 1 is a fermion, 2 is the correspond-

ing anti-fermion, and 3 is once more a self-conjugate boson 

one finds no selection rule on ;except in the special case 

where: the fermions have spin one-half, parity is conserved, 

and the neutral boson is (P) normal. In such a case it then 

has to be C-normal as well. For all other cases the couplings 

are again further divided into two classes corresponding to 

the two possible ;values. 

The quantities at one's disposal for the construction of 

the kinematic covarients comprise the momenta: p, q, and K; 

the metric tensor: dmc ; the fourth. rank Levi-Cevita tensor: 

Enloc,r , as defined and discussed in Appendix 3; and in the 

case of FFB vertices, the sixteen Dirac matrices of Appendix 1'. 
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As mentioned previously, momentum conservation coupled with 

the existence of the Dirac-Rarita-Schwinger subsidiary 

conditions on the wave-functions of the particles severely 

restricts the range of possible linearly inequivalent co-

varients constructable for a given vertex. 

As expected from the above discussion, invarience under 

the discrete transformations of space-reflection, time-

reversal, and charge-conjugation, further restricts this 

range, and we now briefly indicate how- thiscomes about. 

The effect on one particle states of the unitary 

operators 1.4,1,‘ 	and 

Iti 	7IRVA. 	 (2.31-16) 

ttr 	?SP-  ?-e E 1)2- 5<-4  ) 	(2.31-1 7) 

Uc 	7c I T- )A.> 	 .(2.31-1 
where 77r, 77.r and_77are the intrinsic P,T, and C4haSI3-  

P,T, and 0-invariences of the Lagrangian: 

u x 	 (2.31-19) 
where X denotes P, T, or C as appropriate, then 'have the 

following implications. 

P-invarience implies: 

<KAlt F
IA/)1,07.z 277.4  s

s4  
+ sz+<1

7 AlkI k  
A . V+ X  

T-invarience implies: 

> 2 	• 
2.31 -20) 

<KAltit'Al>=7-r<--*,W; --.:_i-,11 ,t1-.1i.f A> 
andC -invarience implies: 

<KAILItV,9,1)=7,<T:(71,17p,T,VP, 

where: 
	

7x l 27t 27)(2. 77x1 

(2.31 -21 ) 

(2.31 -22) 
(2.31-23) 

By means of the known phase relations satisfied by 

the wave-functions involved, (equations 2.11-18 to 2)4), one 

may readily convert the above equations into relations between 
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coupling functions. Specifically, one obtains for FFB 

vertices: for a P-invariant Lagrangian: 

p0( 1f) = 71  e a3 (a)  Zo 0( CP57 PIA 	(2.31-24) 
for a T-invarient Legrangian: 

	

tp (i)  = 11-r *) g  6X) T eo<  (1-1- 	T 
P 	 (2.31-25) 

and for a C-invarient Lagrangian: 

0( (57 = 	 (701-04  (C 5)C C . 	 (2.31-26) 

In these three equations p denotes 0)57732  a denotes (t4)-1.(0)711  

and we have defined: 

s(p) = oz3 	 (2.31-27) 

5'1.() O's 64) • 	(2.31-28) 

The "arguments" of the coupling-functions indicate the final 

and initial states involved, and the letters P,T, or C in 

front of f or i denote the corresponding space-reflected, 

time-reversed, or charge-conjugate states. In particular, 

remembering that the coupling-functions are helicity indepen-

dent one has: 

6p0( ( -rf,--ri) = Coo( (l'f)-P0 -= 	, (2.31-29) 
where C'pa(f,i) is defined to be the quantity obtained from 

e, (f,i) by reversing the signs of all 3-momenta appearing pa 
whilst leaving unchanged all other quantities, (including the 

coupling-constants). 

The corresponding equations for BBB vertices are obtained 

from those above, (and in all that follows), by omitting the 

matrices 0 T and C. In addition, the superscript indicating 

transposition becomes redundant and the term (-C) in equation 

2.31-26 is meant to indicate that in the corresponding BBB 

equation an additional minus sign is introduced. 

Equation 2.31-24 thus leads to a constraint on the 

covarients for P-invarient vertices: 
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Xdt,t (f) = n8(06(00'0 404 (17 	(2.31-30) 
where the circumflex again indicates the reversal of all 

3-momenta appearing. In agreement with our previous discus-

sion, this equation divides the covarients into "normal" and 

"abnormal" classes. 

The equation for T-invarient Lagrangians, (2.31-35), 

relates the "forward" (i-if) and "reverse" (f-÷ i) interactions. 

But these are already related by hermiticity of the Lagrangian, 

which converted to an equation on the coupling function reads: 

6pc4  0.2 = c.C(b (t);) lort 	(2.31-31) 

The coupling-constants for a time-reversal invarient inter-

action are therefore purely real if the covarients are chosen 

to satisfy: 
A 

c<  )= 	-0T e3(e)o( -  L 	0C(5-, (To(ToT. -r 	 (3 (2.31-32) 
Combining this equation with 2.31-30, one has a corresponding 

reality condition for interactions invarient under P T, (and 

therefore under C, assuming CPT-invarience), but not necessarily 

under P and T separately: 

G 	11.77 T 	 (2.31-32A) 
Note that in view of Luder's theorem, (2.41-1 8), 77,71.7. is 
equal to 72,c  the overall C-normality of the vertex. 

Except in the three special cases mentioned-earlier, 

equation 2.31-26 merely relates the coupling-constants for 

charge-conjugat vertices. If all three particles are 

self-conjugate bosons, one has: 

, 0=4 
	

/ 	(2.31-33) 

whilst in both the. other special cases the coupling functions 

satisfy: 

(cf) = ) 	 Z.3 O 
VI 	(I-) 

)Z-  (t0 C (00 	 (V itt) 	p  

 

(2.31-34) 
7,- • 
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Together, equations 2.51-26 and 33 or 34 as appropriate 

lead to constraints on the covarients which agree with our 

previous discussion. 

In constructing a set of covarients for a given vertex 

it is necessary to invoke momentum conservation, the fact 

that all three particles are on-shell, the Dirac-Rarita-

Schwinger subsidiary conditions on the wave-functions, and 

the implications on the covarients of any discrete symmetries 

of the Lagrangian. In addition one often has to make use of 

the three basic relations of Appendix 3, (equations A3-203, and 

4), and the various relations derivable from these by contrac-

tion with momenta and/or Dirac matrices. Finally, the Dirac 

algebra itself must always be borne in mind. 

Using the above principles, it is easy to set up a 

collection of basic rules which if followed will lead one a 

considerable way towards a linearly inequivalent set of co-

varients for any given vertex. One simply constructs all 

possible covarients according to these rules. In very 

simple cases this .yields just the required number; but in 

more complicated (i.e. higher spin) cases, the number of 

covarients thus constructed is too large and one then has to 

search for equivalence relations amongst them reducing their 

number to the correct value. These rules now follow. We 

define: 

1 (p 	q), 	 (2.31-35) 

and let at/4 and)) denote any one of the Lorentz indices 

of the wave-functions of particles 1,2, and 3 respectively.. 

In addition, aI  ,/k , and V each denote any second index of 

these same respective wave-functions. 

General rules for any vertex. 

(i) Any pair of covarients are equivalent if they differ 

only by the interchange of a pair of indices referring to the 
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same wave-function. 

(ii) If one of the spins is greater than the BUM of 

the other two, then the covarients are given symbolically 

( 

A 0( 

A53,S3+si)si), s2>s3÷ St 

(A1.3 -71 --7-2-.RkS14. Sz )S2.) s 53> St+ S  . 

by: 

..Z1 )5 2-) 

(2.31-36) 
The covarients on the right hand side of this equation are 

those for a vertex which differs from the one under considera-

tion only in that the highest spin is equal to the sum of the 

lower two spins of this original vertex. 

(iii) The rules which follow deal separately with the 

covarients for parity-conserving normal and abnormal vertices. 

If parity is not conserved one is to use the covarients which 

would have been obtained had parity been conserved, together 

with those which would have arisen under the same circumstances 

had the vertex been of opposite normality. If the vertex is 

time-reversal invarient then each of these "opposite normality" 

covarients must be multiplied by an additional factor of i. 

For PT-invarient (and therefore T-violating) vertices, no such 

additional factors are required. All coupling-constants will 

then be real. 

(iv) Covarients constructed according to the rules 

which follow lead to real coupling-constants for all T-invarient 

vertices except those involving an odd number of C-abnormal 

particles with observable C-parity, (for example the A; ). 

In these exceptional cases an additional factor of i must be 

included in each covarient if the coupling-constants are to 

be real. 
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This rule arises in the following way. One can prove 

that the covarients referred to satisfy equations 2.31-32 

and. 32A provided: 
n 77.r. = 1 . 	 (2.31-37) 

This equation is satisfied, or one can consistently choose 

to satisfy it, for all individual particles except the 
special ones mentioned. For these latter oneknows from 

Luder's theorem that: 

7Zqr = 	• 	 (2.31-38) 

and. the covarients therefore require an additional i factor. 

Equation 2.31 -37 still holds for all covarients in the 
case of P-violating PT-invarient vertices, but for P-violating 

T-invarient interactions it only holds for those covarients 

which satisfy 2.31-30. For the opposite normality covarients 

of rule iii, it has to be replaced in this latter case by 

2.31-38, again leading to an additional factor of 1. 
Special rules for parity-conserving BBB vertices. 

(v) The covarients for normal vertices are to be 

constructed from the momenta: Ali  At,. ,A ; and the metric 

tensors: jvp, 	 , (but not 3vy i 	Opp! , or jooxi )• 
(vi) For abnormal vertices the covarients are to be 

constructed as in rule v, but in addition each covarient is 

to include a single overall factor chosen from: Evi.,,(KA), 

Etta (Kn),Eow (KA) , eytt, e4  (f), and E1,, 	(1) ; (but not for 

example : & vtt. (1"‹ K.), Ea (n KK), 	(K A) , or EvNtfrt (A) ). One 

is to bear in mind the following five equivalence 

2 At, S,,„ (K/O+ 	£„1,6t 	K. EK Cyfrtrt (A) —A E v /A0( 0.01 

2 A y 	(i< 	4A— 1.0 • 1K & ))frtoc (A) A ))itoc (1'<)] 

vitA(K /1)0 2,1c4 — E vec (PC A)g /IA 	— E21.404 (K)/1).), 

6 frtp (4)9/xtrx—  8/Afx (KA) 9frev w [Evp,oc (K— 2,A)] A th,  

relations: 

(2.31-39) 

(2.31-40) 

(2.31-41) 

(2.31-42) 
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Eav(KA) 0 ,./ it,— Ea 1,(i/1)9,,ev==.4 Evp,„(2,A-K)A„,  . 	(2.31-43) 
• 

Special rules for parity conserving FFB vertices. 

(vii) One is to construct the covarients for normal 

vertices following rule v, but in addition each is to include 

either an overall 4 X 4 unit matrix, or an overall factor Tr 

where r is a single fixed index referring to the wave-function 

of the boson. No other Dirae matrices are to be used. 

(viii) The covarients for abnormal vertices are to be 

constructed as though the vertex were normal, (i.e. rule vii 

is to be used). At the end of the calculation all covarients 

are to be either pre- or post-multiplied by 75  . 

The above eight rules assume that the number of indepen-

dent couplings is not modified by C-invarience. If this is not 

the case, one simply uses the same rules and then drops those 

covarients which violate the appropriate constraint equations. 

We have chosen for sakeof argument to work in terms of 

components of the momentum A , and contractions of the Levi-

Cevita tensor with the momenta A and K. The covarients may 

be written in terms of other momenta by means of the relations: 

	

nv:"11--  PP 	 (2.31-44) 

a  A, El-z Ki = --`17 ., 	 (2.31-45) 
2, Ac(:4-_- 	'Pa 	 (2.31-46) 
Kv  7s/A 

	

(2.31-47) 

	

50-14A)= 	) etc. 	.( 2 . 31 -48) 

An extensive list of coupling fmctions has been given 

by Scadron. (9)  
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2.32 0(3,1) tg) SU(2) COUPLING FUNCTIONS. 

In this section T and t denote respectively the total 

isospin and third component of isospin of a particle. As 

usual we define an integer I by: 

T, T integral, 
1.=71 

 T-1, T half-integral. 	(2.32-1) 

According as T is integral or half-integral we call the 

particle an isoboson (b) or isofermion (f). 

Given a set of SU(2) invarient three-point functions, 

each involving a different t configuration of the same SU(2) 

multiplets, one has that the coupling constants:er;k3)- .V,E,) 
corresponding to the different configurations, are related by 

the Wigner-Eckart theorem to a set of t-independent coupling 

constants: 3/(13;117s) 
	

Specifically: 

04071 &s T2. E.2.2 	= Cr(3 t--,TrzE27rt Ei) 	;II) )  
where the C's are SU(2) Clebsh-Gordan coefficients, and are 

independent of j. This latter superscript has the same 

meaning as in the previous section, labelling the linearly 

independent couplings in Lorentz space. 

For the puiposes of this thesis, it will prove convenient 

to determine the. C's up to an overall normalisation factor by 

means of an isospin-decompositior in SU(2)-space analogous to 

the Lorentz-space spin-decomposition of the previous section. 

We therefore define a t-independent isospace covarient, 

	

(k)•Is (j)h 	(.7; jirri ) 2 by 

t 
C(VITIZ 	t's)E."-• (1)-k 1 	(77sTri Tr,)(V2.  d) 	(2.32-3) 

	

are   	(011  (k?'" )12(011 	(V% (Oh  
The 4Vs/Rarita-Schwinger wave-functions in isospace, as 

discussed in section 2.12. The number of linearly inequivalent 

covarients resulting from the isospin decomposition of an 

(2.32-2) 
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SU(2)-symmetric n-point function is just equal to the 

number of allowed values of total initial (equals total final) 

isospin. Thus an SU(2)-symmetric three-point function always 

involves a single isospace covarient. 

We shall abbreviate equation 2.32-3 to: 

C17-5&„--r2.E2, Tr,(I)6  .z  
6)42.q-1 (; ;117.)1 /4Et:  (2.32-4) 

and the full spin 0 isospin decomposition in Lorentz 0 SU(2) 
space then reads: 

<KAT3 E3  V, 11)A.ITi.E'l,c1_kil b>= (.6±(1.);(11P245:440(7.,(t) i)x 
Xoia)d) Ei  (I)  a.(a ) thb, 

T c<2.,r. Tax  7 „civi-/ I a, ) 
where: 

"sal (f(S,0(10(2. 7.1 = 14,,o‘puz(f70Cbia )tti..(-1-$72.;T.) . 

(2.32-5) 

(2.32-6) 

The implications of discrete symmetries of the Lagrangian on 

this coupling-function in Lorentz® SU(2) space are as follows. 

We again give them for ffb-FFB vertice. The corresponding 

equations for the other possible configurations are given by 

leaving out the appropriate matrices. 

Space-reflection leaves 	10,a,ict2uncha.nged, and so for 

a P-invarient Lagrangian 2.51-24 just generalises to: 

(2.32-7) 

splitting the spin part of the coupling function into normal 

and abnormal parity classes as previously. 

Since time-reversal involves an interchange of initial 

and final states, the isospace covarient is affected by 

this operation, and 2.31-25 now becomes: 

t,a , °%-t-ria)b 
cyoct,t)777 	(b) 5 (an-   (2.32-8) 

In this equation the tilde denotes transposition of the 

isospace part, and we have defined: 

8 0)) Si$(k) 7 
	 (2.32-9) 

(a) rz 
	

(2.52-10) 
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Hermiticity of the Lagrangian now implies 

ba 	— 6 ;(i)J-). 
Combining equations 2.32-8 and 11, we see that the condition 

for real coupling-constants is still provided by equation 

2.31-32 on the Lorentz-space covarients, provided that the 

isospace covarient is chosen to satisfy: 

‘7ebet(f)0= 5 (09 CcOX L(1, ii) , 	(2.32-12) 
As far as charge-conjugation is concerned; the calcuThtions 

are most closely analogous to the treatment in Lorentz-space 

alone if one considers the implications of invarience of the 

Lagrangian under the combined operation, ("G-parity operation"), 

of charge-conjugation followed by a rotation through ?'t about 

the 2-axis in isospace. This operation transforms a member of 

an SU(2) multiplet into that member of the corresponding anti-

multiplet having the same third component of isospin. Denot-

ing the intrinsic G-phases of the three particles by 7,147r,j2./5  

one finds that 2.31-26 generalises to: 

(2.32-11) 

(2.32-13) 

Of course, since the coupling-function is t -independent, 

	

el' 	GO • • 	„bc'" 	C 

	

poc 	) 	ls Jus t ec‹ 	) 	, 

Once again, this equation only constrains the covarients 

in special cases. These are obvious generalisations of those 

of the previous section. Further subdivision of the covarients 

into classes of opposite G-parity, and/or G-parity selection 

rules, arise if either all three multiplets are self-conjugate, 

or if multiplet 3 is self-conjugate whilst multiplets and 

2 are mutually pair-conjugate. A particular realisation of 

this latter case is needed later in this thesis and we give 

the required results at the end of this section. 

Bearing in mind the Rarita-Schwinger subsidiary conditions 
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on the isospace wave-functions, and the quantities available, 

one has the following rules for the construction of isospace 

covari ents. 

(i) General rule 

Any two covarients are eauivalent if they differ only 

by the interchange of a pair of indices to be contracted with 

the same wave-function. 

(ii) Rule for bbb vertices. 

The covarient is to be constructed from SU(2) metric 

tensors of the types: oli ,. ojcz  , and (Ski,  , and SU(2) Levi-

Cevita tensors of the type:&ij . 

(iii) Rule for ffb vertices. 

The covarient is to be constructed in the same manner 

as for bbb vertices, but in addition each covarient is to 

involve an overall 2 X 2 unit matrix, or a single overall 

Pauli matrix Tiwhere 	is an isoboson label. In addition, 

one is to bear in mind the relations of Appendix 4. 
Using these rules it is easy to deduce expressions for 

the isospin covarient of an arbitrary vertex. Irrespective 

of which particles are initial or final, denote their isospins 

by T, T', and T", such that these satisfy: 

T 45 Tt  414  T" 	(2.32-14) 

Then if T and T' are half-integral and: 

T" =T+T', 	 (2.32-15) 

one finds that the covarient may be realised in an obvious 

notation by: 

(T. ) Til)."-:(S •1  •1  0
1.
(8 ift) To. 6,)z0'10:4)1 	 (2.32-16) 

In all other cases the covarient is realised by: 

XNT(0I/a9I1/  (7.1-Tc T rz • • p 
1, 2, 

a/) 
(r+141")

(Ely/ 
w=1) 11 for bbb vertices, 

X (EVA 	X 

for ffb vertices. 	(2.32-17) 

X 
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The notation of these equations is just a generalisation 

of that used previously. To make it absolutely clear we 

give an example: 

, erz)  6  j6:02 	
4. . 	S‘- 
	-L
; in S;iillS;/ in --.C; 	(2.32-18) 0:9 4-  

Covarients given by equations 2.32-16 and 17 automati- 

cally satisfy 2.32-12, and it was with this end in view that 

	

( 	Ifi) we included a factor / in the right-hand side of 

2.32-17. 

We have not previously seen these two equations in 

print, but they are so obvious that we feel sure they must be 

well known to most authors. 

To conclude this section we consider an example in 

which equation 2.32-13 does lead to selection rules and 

constraints on the covarients. The vertex is purely strong 

	

and conserves P, C, and T. 	Multiplet 1 has spin one-half and 

half-integer isospin multiplet 2 is the corresponding anti-

multiplet, and multiplet 3 has integer spin and isospin. From 

elementary considerations of conservation of observable 

quantum numbers, one deduces the selection rule: 

G-3 	(71) 	3 if  nz = +1 . 	(2.32-19) 

If multiplet 3 is abnormal, either value of G3  is allowed. 

The coupling function must satisfy: 

C 6Ga2a  (C7-f)G-i)' rtteLl  (t) l 	(2.32-20) ( 	 p   

which on combination with 2.32-13 yields: 

660-
G3  --s (G2, 

7.7  (*_ cy_ t)E rb 'az 	t,-ic-1 
• (2.32-21 ) G,  

In all possible cases, isospin covarients given by equations 

2.32-16 and 17 satisfy: 

(--c)` 6,1 „ (6f•f) .-1  = 	1)15.74„4, (6f f 
	

(2.32-22) 

and the spin part of the coupling function is therefore subject 

to the constraint: 
C. p(f J O= 

(2.32-23) 
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Denoting normal and abnormal coupling functions by )0+ 

and 	respectively, we have from Scadron's(9)  paper that: 

Tz.)1/2..)- 	Col Ay, 4- .5.2.1y) 	(71"3.1= 	( 2. 32-24  ) 

	

(T-%.,/) = (Apr (os A vi +g4 11,,) USA  (n-N= 	( 2.32_25  ) 

Compatibility of equations 2.32-19, 23, and 24 implies that 

the intrinsic G-phases must in this case always satisfy: 

YG-1 76'2. = I (2.32-26) 

and we note that normal bosons with allowed G-parity 

couple to the fermion-antifermion system via both g1  and g2. 

Equations 2.32-23, 25, and 26 further imply that abnormal 

bosons with: 

G = 	17'3+I3 	 (2.32-27) 

couple only via g3, whilst those with : 
G.3  = 	 (2.32-28) 

couple only via g4. The spin covarients in the abnormal 

boson case are thus divided into two further classes depending 

on the G-parity of the boson multiplet. 

2.4 T-MATRIX ELEMENTS CONNECTING FOUR MASSIVE PARTICLES  

2.41 S2LI,L1A-ZUl\TCTIONS.(1°)  

As is wellknown, one may decompose such 

T-matrix elements into sets of scalar variables, (invarient 

amplitudes), embodying all the dynamics of the processes. 

The techniques involved are very similar to those employed in 

section 2.31 for the decomposition of on-shell three-point 

vertices into sets of coupling-constants. Consequently, we 

shall mainly concern ourselves in this section with emphasising 

the differences between these two techniques. 

We shall restrict ourselves to a review of scattering 

processes involving two initial and two final hadrons with 
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channels defined by: 
s: Icco+ 2  (fr) —› 3  (cif) + 4(5) 

•• 1 (q-) 	3(0 + -2: (-79 • 

(2.41-1) 
(2.41-2 ) 
(2.4i-3) 

Particles 1 and 3 will be bosons, whilst 2 aryl 4 are fermions. 

The equations we give are readily extended to the fbur boson 

case by substituting the relevant wave-functions, and dropping 

all 4 X 4 spinor-space matrices. Four fermion scattering 

has been treated in considerable detail by Kellet,(26) and 
will not be reviewed here. The only additional complication 
in that case is the need to define an ordering convention 

for the spinors involved, different conventions being related 
by Fiertz transformations. 

As in section 2.31 one first factors out the helicity 

dependence of the T-matrix elements, defining "M-functions": 

I
5)  t ) 
tiv i itAv having simple Lorentz transformation properties, 

by: 

s-channel: 
Ste 	El.41-1(c)/A;N(),( 2.41 -4) 

t-channel: 
<-1;Lf2ki 11 TT' 	("cria-i 09 MPVAa) Evt1.1(1)-leY1)( 2 . 41 —5 ) 
u-channel: 
< 

— 	it 	, 
1.1,11,-  PaiTi°111,7P 	 v

11, 
(-119M IV, V

1 
 0 

1 2,(. )1r 	e.( 	— ) v 
In these equations particles: 1,2,3, 4 respectively have-spins: 

J1' J2 	2 + • 	2 	2  J t  JI  + 
, 

and helicities: 	
; 	 I  11  Xi • we 1 	1 2"  

have introduced the shorthand notation: 

1/LE (f441  7  V (11)-2- 	IA  (tV 	V 49 	(2.41-7,8,90 0) 
These three M-functions transform as Lcrentz tensor-multi-

spinors, and are related by crossing. Although it has not 

been proved for arbitrary spin processes, one normally 
postulates the crossing rule: 

4/  
<Of ;  75%2 1 T101 tA,  2>E e 11(07,c; (1)9 



(1(1,i) ±2,(p) 
MP-144$ PlIA I 

= -28 n4q v2./A1(1(1)+2  EP4-4-33)-,-2.(10) 	(2.41-11) 

where 	= 

Thus by explicitly introducing an additional factor of minus 

one into the right-hand side of equation 2.41-6, (but leaving 

it unchanged in the four boson case), we may use the same 

M-function in all three channels. As usual one expands 

this in terms of a set of linearly inequivalent basis tensors 

(kinematic covarients): 

M A (s) E).Z J  i f 1 	 (2.41-1 3) 
I
A V ‘V 	 p. 1.A.V • 

The Xjare these kinematic covarients, and the Aj are called 

"invarient amplitudes". In contrast to the vertex case, there 

are now two linearly independent scalar variables constructable 

from the momenta, and the Aj are complex scalar functions of 

these. As we have indicated, one may conveniently choose to 

use any two of the three Mandelstam variables s, t, and u, 

as defined in section 1.3. 

The crossing rule thus states that after the introduction 

of relative minus signs between M-functions which differ by 

the crossing of a pair of fermions, the invarient amplitudes 

Ai in the three channels are, (for fixed 	), different physi— 

cal seeors of the same function of the scalar variables. As 

in the spinless case, one then postulates that this function 

is analytic apart from Born-term poles and unitarity cuts. 

Apart from certain exceptional cases in which their number 

is further reduced, the number, N, of linearly inequivalent 

covarients for processes involving particles with spins, 

S1 ,2,3,4  is easily deduced to be given as follows. 

If parity isnot conserved: 4. 
N 	Tr (z si,+ i) , for all processes. 	2.41 -1 

1=1 

5 	 (2.41-12) 
{

+ 1 for BB and FB crossing, 

- i for FF crossing. 
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If parity is conserved: 
f 0 	F13 -*FIB and FF 	, 

N = 	 BB-BBB. (2.41-1 5) 
i=1 	2. 2 

where n is the normality of the process, that is, the 

product of the normalities of the four particles involved. 

For a given process one can construct an infinity of 

covarients which will satisfy all constraints imposed by the 

various symmetries of the T-matrix, but only certain sets of 

N of these will be linearly inequivalent. In performing the 

reduction to a linearly inequivalent set, it is possible to 

introduce into the final finite set of amplitudes poles which 

were not present in the original infinite set. One strictly 

makes the above analyticity postulate for this latter 

infinite set of amplitudes. Any additional poles then intro-

duced are assumed to be spurious "kinematic singularities". 

If the amplitudes are to have only those singularities required 

by dynamics, one must be careful to perform the reduction to 

a linearly independent set in a way which leaves them 

"kinematic singularity free", (henceforth abbreviated to 

K.S.F.). We return to this point at the end of this section. 

The statements that the T-matrix is P,T, or C-invarient 

may be readily converted into constraints on the M-function. 

For BF-)-BF scattering one just obtains equations 2.31 - 24?  25, 

or 26, as appropriate, with replaced by M, a now standing 

forix1), and p foriti V i  . In the BB->BB case the same equations 

apply, but with the 4 X 4 matrices removed. 

The parity-conservation equation again tells one that 

the M-function is to be expanded in terms of a set of proper-

tensors if the process is normal, and a set of pseudo-tensors, 

each containing one overall y5  or Levi-Cevita tensor, if it 

is abnormal. 

In general, the T and C-invarience equations just relate 
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the M-functions for different processes. The amplitudes are 
not required to be real for T-invarient processes, since the 

T-matrix is not hermitian. However, for processes which are 

elastic in the s-channel: PT-invarience in the s-channel and 

C-invarience in the t-channel both impose the following 

constraint on the covarients: 
T 

Xic< CP)12C0-47.-  X0{ (Z (117115'fri 	. 	 (2.41 —I 6) 

This reduces the number of covarients to: 
13F-13.F5  

(2.41-17) N= -R2s,+1)(2s2.± 1)[i(zsri- 1)(2st+ 	' 
if $55 

In combination with the crossing.rtile, the above invarience 
principles reduce the number of covarients in certain further 

cases involving identical particles, and in other such cases 

relate the invarient amplitudes at different values of their 

arguments. We do not insist on the details here, as all cases 

are listed by Scadron and Jones. (1 o) 

Even if the T-matrix violates P,C, and T individually, 

one may still relate different processes by CTP-invarience 

or by considering •the corssing of all four particles. Both 

principles relate the same pair of processes, and consistency 

of the two results requires that the three overall discrete 

transformation phases satisfy: 

71c 11-r ??? 	1 
	 (2;41 

The result is then: 

m isc4f7 	(071÷7'--F.J-%-'4  moe(s 	ci)r5- . 	(2.41 -1 9) 

Since 2.41-18 must hold irrespective of thich four particles 

are considered, we have a proof of Ludert s theorem. 

The covarient formalism also provides one with a simple 

proof of Olive's hermitian analyticity theorem(22)  for general.  

CTP-invarient processes which are also invarient under T 

(and therefore CP) and/or C (and therefore PT). One then has 
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equation 1.3-11, together with: 
,L 

ion 	
' 	

A-7.1 
ID+ 1 	o- f- 

so that: 

iSCs  Aj(5))=-,p2,77,2,.., 2i Ern A (s-i-iE,)  9. 

(2.41 -20) 

(2.41 -21 ) 

But the essential point which comes out of the proof is that 

these equations only hold provided the covarients are chosen 

to satisfy: /1 • 

4040)o=  yT 5 (e) (0) T 
1 	

oi () t•) LT 
- 

for T-invarient processes, and: 
a 	•  "ef3,„ Or: neT 	pa(f, i)T , 

if the process is C (i.e. PT)-invarient, fl (equal tonqr) 

being its overall C-normality. These equations are called 

discontinuity conditions. In view of the close similarity 

between equations 2.31-32 and 2.41-22, and between equations 

2.31-32A and 2.41-23, one:may adopt the same rules for the 

inclusion of overall factors of i in the covarients as one did 

in section 2.31. The covarients whither' satisfy either one 

or both of the discontinuity conditions as appropriate, and 

the various implied choices of charge-conjugation phase will 

be the same as those made in order to obtain real coupling-

constants for three-particle vertices. 

Provided the appropriate discontinuity conditions are. 

satisfied, the unitarity relation 1.3-9 may be written in 

a form in which all terms involve the same external wave-

functions and the same set of kinematic covarients. Factoring 

out the former, and equating coefficients of the latter, one 

obtains: 

?1sc skj(s )0=— 	Ai(s)040'N —ti) 	(2.41-24) 

• are defined symbolically by: 

Mize,  aNygr,( N)Froc 	)..1.1`! X 	 (2.41-25) 
/ 	(3°'  

(2.41-22) 

(2.41-23) 

where the amplitudes 
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In this equation: Mpl a N) and ill wr(iN)denote the M-functions 

corresponding to the T -matrix elemen:;s: T5N(s,t) and Ti N(s,t), 

cr-c'(N) denotes the set of on-shell propogator numerators 

forthe particles comprising state N, and as usual: 

itcy(Z N) 	M 	N)To 	(2.41-26) o 
Dhen one is using the above equations in the resonance 

approximation of section 1.3,  the M-functions of 2.44-25 are 

replaced by coupling-functions which are assumed to satisfy 

2.34-34. That is, one assumes that the couplings of the reson-

ances to the initial and final states may be approximately 

represented in terms of hermitian interaction Lagrangians. 

Equation 1.5-52, for example, then reads for arbitrary spin 

processes: 

SCISISPildiscs A • (5/ E) r-t.' —2,i 	m2.117.1.+ 6-ai1.-10‘11:1-izsr:il  21.(14.L1)227)  
2, 

(2.41-28) 
and 4gr(R) now denotes: epsx 	(-b-1-01), the 

(0-7R (-r) zk 	'- 
propogator o  numerator for a spin $R particle with mass Mnand 

momentum (1-1-q) 

The covarients for a given process may again be constructed 

by bllowing the rules of section 2.51, provided that these 

rules are modified to take into account the fact that one is 

now dealing with four external particles. Let /..t)  

denote any one of the Lorentz indices of the wave-functions 

of particles 4,2 5, and 4 respectively. Also, let 71:denote 

any one of these four indices, to and one of the remaining 

three, and 'l either of the final pair. Then for .four-boson 

and for two-boson/two-fermion processes, the required modifi- 

cations are as follows. 

Rules i, iii, iv, and viii remain unchanged, except that 

whgfleis givenb  . 

epa (5R) c  (Ri)i 	r,5  CE)K 'c< , 
sweip 

on-shell 
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they now refer to M-funct ions, and viii is now the rule for 

abnormal two-boson/two-fermion processes. Rule ii is not 

applicable to M-functions. 

Rule v applies to normal four-boson processes. There 

are now six possible types of metric tensor to choose from, 

namely the various 37T  . It is now possible to construct 

three linearly independent momentum combinations from p, q, 

p', and q'; denote these by a,b, ani c. Any two of these 

will remain linearly inequivalent when contracted with the 

wave-functions, and we denote these by a and b. Thus as far 

as momenta are concerned, one now has the eight possible types: 

a x  and b . 

Rule vi now refers to abnormal four-boson processes. It 

is unchanged except that one now has up to thirty-five possible 

types of overall Levi-Cevita tensor. These are: et4/y/frtv; 

four each of the types: 4r100-(a), Ex() 0.. (b), &2c(00-(c), 
and g 7t(abc); and six each of the types: E,(ab), E. p (be), 7-c 
and g2tp(ca). The equivalence relations between the possible 

covarients constructable in this fashion are much more involved 

and numerous than those for the corresponding three-point 

vertices, but are readily obtained in any specific case by 

the application of the basic equations of Appendix 3. 

Rule vii is applicable to two-boson/two-fermion processes. 

It is unchanged except that the overall Dirac matrix factors 

to be included in the covarients are now to be chosen from the 

eight: 1 h. _ 41 	r 	/ 	 / 	/1 	d 	6 1  
7 	14 	14  I 	ri 	, 	) 	pi fl,an 	ft! 	, • 

The momentum d is to be any fixed linear combination of the 

two boson momenta: q and q'. 

Finally, a note about kinematic singularities. As 

mentioned above we adopt the viewpoint of Hearn(27)  that if 

an M-function is expanded in terms of all possible covarients 

allowed by the symmetries of the T-matrix: 
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M 	Ai.Z3 	 (2.41-29 ) 
where m is very large, (indeed presumably infinite), then the 
corresponding A will all be K.S.F.. This was phrased in more 

rigorous terms earlier. We argued that it is for this 

(hypothetical) set of amplitudes that one should postulate 

"dynamical analyticity", and kinematical singularities are 

then defined as any additional singularities introduced by 

the reduction to a linearly ineauivalent set of N covarients. 

Suppose for the sake of argument that there exists an 

equivalence relation, (hereafter abbreviated to "E.R."), which 
reads: 

a • '70 	 (2.41-3o) 
for for some finite 	 Each a may be either a scalar 

constant, (i.e. a pure number or a function of the masses), 

or a scalar variable, (i.e. a function of the Mandelstam 

variables) Suppose for the further sake of argument that 

2.41-30 is used to eliminate ;t from 2.44-29. Then this 

latter equation becomes: • 	911, 	• 

M 	,4,5 7el-f -7  Ai X1 2 	 (2.41-31 ) j2. 
where: 	= 	(a1/41)A1 	 (2.41-32) 
The M-function now involves one less amplitude, but the /411j 

will only be K.S.F. if a l  is a constant. Otherwise, each 

will have a kinematic pole at vanishing a1  ; (except, of 

course, that it may happen for some particular j that al also 

vanishes at that point). 

Let us define a "tYPe 1 E.R." to be one in which all the 

a' are constants, and a "type 2 E.R." to be one in which at 

least one of the a- is a variable. We further define a pair 

of type 2 E.R.'s to be "eauivalent" or "inequivalent" according 

as one can or cannot be transformed into the other by means 

only of type E.R.'s. 
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Thus in the reduction from an infinite linearly 

equivalent to a finite linearly inequivalent set of covarients, 

the final set of amplitudes will all be K.S.F. provided that 

type 2 E.R.'s are used only to eliminate covarients which 

appear in them with constant coefficients. The use of type 

4 E.R.'s is not subject to restriction, since these can Never 

introduce kinematic singularities. 

It might seem that to obtain a set of K.S.F. amplitudes 

for a given process, one must eliminate an infinity of 

covarients by means of an infinity of E.R.'s., - a time 

consuming series of manipulations to say the least! Fortunately 

this is not the case. The crucial point is that the number of 

ineauivalent type 2 E.R.'s constructable for any given process 

is finite, and in all practical cases rather small. Indeed, 

one needs quite a lot of spin before this number ceases to be 

zero. 

The prescription for obtaining a K.S.F. set of amplitudes 

is therefore as follows. First construct a maximal set of 

inequivalent type'2 E.R.'s for the process. (In practice 

this comes with experience, and is not as difficult as it 

sounds). Let r be the number of E.R.'s in this set, whilst 

as usual N is the required number of final covarients. If the 

set of E.R.'s contains more than (N + 	covarients, operate 

with type j E.R.'s until only (N + r) appear. Otherwise, 

obtain (N + r) covarients by constructing additional ones 

which are linearly inequivalent both to one another and to 

those appearing in the E.R.'s. Since all the inequivalent 

type 2 E.R.'s for the process relate only some or all of 

these (N + r) covarients, these latter must be related to all 

other possible covarients only through type E.R.'s. Thus 

the corresponding (N + r) non-linearly-independent amplitudes 
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must all be K.S.F.. Finally, select r of these covarients 

in such a way that each appears with a constant coefficient in 

a different E.R., and use each E.R. in turn to eliminate the 

respective covarient. Each of the final N amplitudes must 

then also be K.S.F., as required. 

Note that the existence, for a given process, of a type 

2 E.R. in Which all coefficients were variables, would be 

sufficient to guarantee that no K.S.F. spin-decomposition 

was possible. This would in turn violate the usual assumption 

that the so-called "reduced helicity amplitudes"( 28)  for any 

process are K.S.F.. Happily, no examples of this pathological 

situation have yet been discovered. 

2.42 Latt)  0 SU(2) M-FUNCTIONS.  
As in the case of three particle vertices, it is con-

venient to build SU(2) invarience into the spin-decomposition 

of the previous section by a further isospin-decomposition, 

writing (in shorthand notation): 

ft( 	k 
A j 05 tl  ;el L'2-)=  CP.  (P./ 	Al Li  kei 	 (2.42-1) 

r 	u  Here the 4)'s are isospace wave-functions, the:earekinematic 

covarients in isospace, the Ai  are invarient amplituies in 
A k 

Lorentz-space alone, (now t-dependent), and the Ai are 

t-independent invarient amplitudes in Lorentz 0 SU(2) space. 
The number,W, of linearly inequivalent isospace covarients 

is just equal to the total initial (equals total final) isospin. 

The full spin 0 isospin decomposition in the s-channel, 
for, example then reads 	Ef 1-/Al /I 

T 2  LATI$11E 	 t  .2>= 4'9(1),Ej/   1,1 
,(1-e-(v)(pt i  / ,zmq,Vciri V e

i
o(p.1111't(t) 	, 	 (2.42-2) it   	IA 	/1  V 	12. 

where: 	N  
4(S) 0Z:  'll'ivvi; tZi, i (2.42-3) 
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The M-functions in the three channels are again related 

by the crossing rule, and equation 2.41-11 generalises in 

Lorentz 0 SU(2) space to: vitt433jel_ziluf i(i(er,)+2,(pz).4.30)z)-i-+10:-.- 

=;.re 01'+4  Mit::rtx,ilt,,,(11(h)+2T-(-14)-->3(P3)÷fi(l'2)) 	
( 2. 42-4 ) + I for bb crossing, 

where 
' 	- 1 for bf and ff crossing. = 	 (2.42-5) 

This result follows on using 2.41-11 to generalise the standard 

crossing relation for spinless invarient amplitudes in SU(2) 

space alone:(29) 

E,+rii.bil--->71-sh's+tb2), (2.42-6) A (Tit.+T.t.-Fr,41-74ti,)=-- ,,„A(T. 
where: 

b4, ) for bb and fb crossing, 

(-172-74.  7 for ff crossing. 	(2.42-7) 

One may choose to use the same SU(2) covarients in each 

channel, in which case isospin crossing matrices do not arise, 

or one may choose to use different covarients in each channel. 

This latter choice requires the use of crossing matrices(29) 

to pd.ss from onechannel to another, but enables one to decompose 

in terms of eigenamplitudes of total isospin (T) in each channel. 

In a giv en channel one then wri tes : 
Wt— r r ti 	(2.142.:8) A•  (EY t 	z2__ 
2, 	 .1 - ,1  2 	1,g 	• 

Each YCr is then the projection operator for total isospin 

T in that channel and must be normalised so that: 

(.7e1T=X-r 	...7e-r  1 	(2.42-9, 10) 
The structure of such projection operators may be 

determined to within a normalisation constant by considering 

the isospace part of the pole graph corresponding to the 

reaction: 1  + 

is , one has: 

	

2 -}(particle with isospin 	3 + 4. That 

• 
/ 2 
•/ • • (71Tilrri Tz) OC 	( 	KT!, -1-) X 
1 1,7,z 

• 
( 42-11) 
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T A 
The 	for a given channel may be used as channel 

independent amplitudes, but will not in general be eigen-

amplitudes of total isospin in the other two channels, nor will 

they necessarily represent the simplest or most usefil choice 

least one channel provides the 

struction of any set of (.4-Vii 
I 2- 

point of view. Nevertheless, 

unnormalised 4A-i(11 i iz  in at 

best initial step in the con- 

e Since theZwill 

avoids in this 

from the channel-independence 

the determination of a set of 

automatically be lineraly inequivalent, one 

way any need to manipulate equivalence relations. 

	

K A b,a. 	./. 

	

Writing I' pp( 	for 
r 1141  1117 P" 	

, the implications on 

the M-function of P, T, and G-invarience are given by 

	

KA ba 	ba 
substituting ripoc for L.,poc in equations 2.32-7, 8, and 139 
respectively. 

As usual, the P-invarience constraint on the Lorentz 

covarients is not affected by the extension of this equation 

to Lorentz 0 SU(2) space. 

Similarly, equations 2.41-22 and 23 remain the respective 

discontinuity conditions for T and PT-invarient processes, 

provided that the SU(2) covarients satisfy equation 2.32-12. 

Equations 2.41-24 and 25 then generalise to: 

9iSCs)**=4 Arnsg(Krti) ) 

k 
where the A 	are defined by: 

N eV' 
M6c 

	

	a4 	x rc, 
N () 	) ifa  64) 	ET E. A 

k?-1 	Pc< b  
One readily proves that the right-hand side of equation 

2.42-41 satisfies equation 2.32-12 for arbitrary TI , T2,  T.;, 

T2/ and T. Hence, provided the isospin covarients are 

constructed by taking linear combinations with real coefficients 

f-VT 
of sets of ak, 1  these former will also satisfy 2.32-12. 

In certain special cases, particularly those involving 

identical multiplets, G-invarience and crossing together 

(2.42-1 2 ) 

• (2.42.-1 
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further constrain the covarients or relate the amplitudes 

at different values of their arguments. 

One such special case will be needed later in this thesis. 

Multiplets 4 and 3 have integer spin and isospin, whilst 2 and 

4 are identical multiplets having half-integer spin and isospin. 
The result is that if the covarients are chosen 

(cl!Vcri) 	• C X 	(1,! -I" 9,  -1)9C - 

and .
LI 12 141-2 	7h. L' v•- 	1.2.7..41.2 , 

with 

then the amolitudes will satisfy: 

A 	) fr  ) 1+-.  C7163 	 (u, b, s) • 

to satisfy: 

(2.42-14) 

(2.42-15) 

(2.42-16) 

(2.42-1 7 ) 

2.5 TIE COVARIENT REGGEISATION TECHNIQUE.(12)  

It is well known that the high energy asymptotic behaviours 

of the amplitudes for a strong interaction scattering process 

are determined in a given channel by the contributions each 

receives from "intermediate" Regge poles in the appropriate 

crossed channel. Until recently one knew of no easy means 

by which covarient partial-wave expansions might be obtained. 

It was therefore customary to Reggeise the crossed channel 

centre of mass frame helicity amplitudes.(
28)(30) These had 

then to be related to the direct channel amplitudes whose • 

asymptotic behaviours were required. 

In the formalism under review in Part I of this chapter 

a covarient partial-wave expansion presents no difficulties 

and one is therefore able to Reggeise invarient amplitudes 

directly. The essential point is simply that in a givea 

channel the Jth partial-wave of a given amplitude is propor-

tional to the contribution that amplitude receives from a 

spin J (or J 1) on-shell one-particle intermediate state 
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in that channel. From the point of view of Reggeisation the 

constant of proportionality is not explicitly required since 

it may be absorbed into the Regge couplings. 

For the sake of argument, suppose one has a strong 

interaction two particle to two particle scattering process 

with kinematics and channels as defined in section 2.41, and 

one wishes to determine the high-s asymptotic behaviours 

of a set of K.S.F. invarient amplitudes for this process by 
covarient Reggeisation in the t-channel. We shall assume 

that this latter is a "boson channel". If this is not the 

case one simply replaces the spin J propogators in the argu-

ment following by the corresponding ones for spin J + 1, and 

the 	become invarient eigenamplitudes for t-channel 

initial total angular momentum J + 1. 

Working for the moment in Lorentz space alone one has, 

then, an M-function fri/h/V ip,),  with K.S.F. spin decomposition: 

1V1 v  = 	A .(s QX•1„y, oi 	 (2.5-1 ) 

	

v-c 	 it fr  
Since the process is assumed to be P-invarient, one wishes to 

make a (covarient) "partial-wave" decomposition in the t-

channel: 

	

A. (s' E)= 	>  (2,7i-1)A?:"(s) (2.5-2) 

ATn 3 is then given by: 

ATII(S)b),X/, 	C(" )79 M 77-1' 	(2.5-4) v 	/Ai v 
3=1 

where C(T,rt.) is a proportionality constant which will remain 
KA v 72 

undetermined. rl / / 	is the numerator of the pole graph 

for a t-channel on-shell single particle intermediate state 

with spin J and normality n, and is given by: 

T=0 71.=±1 AT 
where the "invarient eigenamplitude" N is that part of 	

ri . 
 

which corresponds to a t-channel initial state with total 

angular momentum J and normality: 

n = (total parity)(-1)j= * 1. 	(2.5-3) 



80. 

(2.5-5) 

(2.5-6) 

NA  7n 
iv 	

),,rt  
Itt itw L. 

a 
 ;1/2)(.07-  Lo ti- 	V r.)7*(cr)TCeryg-tilitA, (T̀) 	1) (A) et. 	 T s 

with: 

The coupling functions depend on n, since this affects their 

normality. In view of the construction rules of section 2.31, 

the structure of these functions may be 
M in (7, 753  ÷ ,) N'(r')  

and 111(r0) and 

of independent 

The covarients 

exhibited in the form: 

rT n n 

ri= 0 	fr..-1,41(r.f_ 	u 
	05.)r 	 2 (2.5-7) 

	

T),1( 	.S*-131) 	N" (1-11) 

1 Y'veY-  "t" • ?v  -171te. 

	 I/ 

(2.5-8) 

(2.5-9,10) 

(2.5-11 ) 
NII(r11 ) are defined to be the respective number 

couplings at the vertices: 514-s3---,  r' and 

when the spin r' and la" particles have normality n. 
71' 	" 

	

v‘.., 	and 	are J-independent, and contain 

>6 	) 971,(114-( 13;  

r" =O eti‘1"(r14+1 
In these equations: 

17)  i-65+139 7 	Q 	(CP+  eg) 

WEI)Z-OESN"(-0 

no factors of the type Qc,.. and Rrrespectively. 

Equation 2.5-5 may thus be written: , 
	 N'(r')  Min(, 	Nili(Y11).z_n  

M I 1 --z>  t< iu.),  	>  	 .il 

dX 

r 	0 	N16-1-0-1 ril =o 	NTril-1)+ I 
dun 	A.„q• 
v 	(rya, (,/,corh,  (co r  

Provided one specifies: 

Tn= 0 for all j1  >1\11(J), 

and 	" ==L) for all j"> N"(j), 

the upper r' and r" summation limits, Min (J, S3  +Si  ) and 

llin ( J,S14. -F S2  ), in equation 2.5-12 may be replaced by (13  + SI) 

and,(S4  + S2) respective 1y. The specifications 2.5-13 and 14 

just remove from this modified equation those terms which in-

volve covarients and propogators contracted via more indices 

than the available intermediate spin allowes. After performing 

x 

(2.5-12) 

(2.5-13) 

(2.5-14) 
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all indicated contractions, one may obtain terms which 

superficially appear to have poles at certain low integer 

values of J. However, on closer inspection one notices that 

such poles always have their origin in these same "nonsensical" 

contractions, and the terms in which they appear are eliminated 

by specifications 2.5-13 and 14. 

The "tensorial structure" of 2.5-12 is now J-independent. 

This modified equation depends on J only through the coupling-

constants and scalar functions of J involving solid harmonics 

(or derivatives thereof) with argument 1*:).Q('). Comparison 

of equations 2.5-4 and 42 (modified) thus yields expressions 

T  for the A jn  valid, (in combination with 2.5-13 and 14), 

for arbitrary non-negative definite integer J. Substitution 

of these expressions into equation 2.5-2 yields a covarient 

partial-wave expansion for each A. 

The "angular factors" appearing in each such expansion 

are just Legendre polynomials and their derivatives. Using 

the orthogonality properties of such functions, these expansions 

may be inverted to give Froissart-Gribov expressions for the 

partial-wave amplitudes. After converting the summation in 

2.5-2 to a contour integral one can therefore perform a 

Sommerfeld-Watson transform, picking up t-channel Regge pole 

contributions to Ali(SA) given by: 
N 

A ji (5) E) 	y  => 	*. 0- -1- irer'7L ('))(2,0(N+ x 
12.±1 

	

is+s, 	Ni(r/) T2-1- S4 	Nil(r9 
X

rah  \ 
	 (nit., x 

sin 1rocT,, (b)/r/ 	= 6 W(6-/ 0÷ rll= 0 I= 110-11+1 

.../A 

	

X 53 (721r; Leyner)ri, /;17);(7107:1y5r$31-Q; 	ccorliAliA  (2.5-15) 
Aft L. 0 

In this equation: /lIt'iL) is the total t -channel Regge 

contribution (neglecting isospin), to the amplitude Aj(s,t); 
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the Regge trajectory with signature 2' and 
oa(t) m - 

lri,r y-"(cr ) -i is to be obtained from vor"arys  by 

reversing the sign of the arguments of all Legendre poly-

nomials (or derivatives) appearing, and. after performing all 

contractions with the initial and final covarients one is to 

make the continuation: J 	( t) . The "Regge coupling-

constants" fj/(VC; 6) and 9jil(ni'Z'j t) are to be obtained from 
a ,  the corresponding f 7.' n  and jjTlln  by making this same continua- 

l /  	,r 
tion, after first absorbing a factor 4/CKn) into each. They 

have "nonsense zeros" at those values of t for which cL Trz, ( t ) 

is equal to an (integer) J value satisfying 2.5-13 or 114. as 
appropriate. Notice from equation 2.5-15: firstly, the 

extremely simple way that parity is incorporated into the 

formalism; and secondly, that all Regge couplings involved 

are automatically factorised, that is, one only deals with 

products of pairs of "initial" and "final" Regge coupling-

constants. 

From 2.5-15 one obtains, then, an expression for each Aj 

in terms of a linear combination of solid harmonic derivatives 
A (n) 

of the general form: Poc(t.)-2rMA).Q(A)) 	Each combination 

coefficient is the product of an "initial" Regge coupling-

constant, a "final" Regge coupling-constant, and a polynomial 

in the masses and Mandelstam variables. The solid harmonic 

derivatives have detailed structure: 
„ 	ifrca)-772-7z) 

itc7t.)).. m  (P(eN)* Q(A)) = {P2--(A)Q,YA)1 

X P:(1:?_7nEP(A)*Q(6)/(PiNG/Y12] 
where : 

•Ke).Q(4)=241-2[S—tii-i-1771-t-22;XM24.—in'2,2")] 

'F7.(4)[E" -(M4.÷2722.)-2-1[ --  (M4--7/1-z.)-L] 

Q2N= /t EL .-(77.1$4-7n17][b --(m3... ,fl 

2.5-16) 

(2.5-17) 

(2.5-18) 

(2.5-19) 

and a 1.1,(t) is 

normality n. 
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The high s leading asymptotic behaviour of the A. can thus 

be picked out for any fixed t. Notice that the correct 
po  a /40 4;)] (040-771.-n) 

"threshold factors", 1.1 	, appear quite 

automatically. 

The I/1 terms in equations 2.5-17 to 19 arise out of the 
t-channel boost prescription: 

6-7 —Cr. (A> b(&)=-41..b+e A4.6.:A  = b+ GUAZD'A 
7 

(2.5-20) 
and lead to poles at zero t in the expressions for the Al if: 

/ m
3 

and/or m2  / m4. 	(2.5-21) 

This is the so-called "unequal mass problem". (31  ) For 

processes with sufficiently high external spin the above 

mentioned polynomial coefficients may also have poles at 

vanishing t. These again have their origin in the boost 

prescription, and arise out of factors such as: 5-ro'N , 

1:1*), Qtr( 11) , 	(A) , al• (') , etc. in the partially 

contracted propagators. Here one has the "high spin problem".(31  ) 

Note the common origin of both types of problem in this 

formalism. 

Both types of unwanted pole in t can be simultaineously 

removed in any of three ways, viz: 

i) 	The "fixed pole" scihtion. (1 2)(32) Instead of con- 

tinuing directly to zero t by means of equation 2.5-15, one 

uses this equation only down to +he t-channel threshold. The 

continuation to zero t is then performed by means of an un- 

subtracted fixed-s dispersion relation in which the contour 

remains at a safe distance from all singularities. The 

Altlcontinueddefined in this way remain finite below 

threshold, especially at vanishing t. However, this prescrip- 

tion introduces into the amplitudes additional fixed (i.e. 

t-independent) poles in the J-plane, and its validity therefore 
(33) relies on these being consistent with Mandelstam analyticity. 
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Whether this is in fact the case would still seem to be an 

open question.(12) 

ii) The "evasive" solution.(34) At zero t the Reggeon 

simulates a massless particle, and the initial and final 

vertices ought therefore to be internally gauge-invarient at 

this point. That is, at zero t the initial and final Regge 

couplings should vanish on contraction with 210,andAT 

respectively. The Regge coupling-constants corresponding to 

vertex covarients which fail to behave in this way should 

therefore be proportional to t. These t-factors then cancel 

the unwanted poles. 

iii) The "conspiratorial" solution.(34) One associates 

with each trajectory leading to unwanted poles an additional 

"conspirator trajectory" having the same conserved quantum 

numbers. The corresponding couplings of this latter trajectory 

are related to those of the former, and in addition have just 

those singularities at zero t which cause the total contribu-

tion to a given A, due to the two trajectories together to 

remain finite at that point. 

Details of the fixed pole solution have been given by 

Scadron and Jones,(12) and of evasive and conspiratorial 

solutions by Gault.(35)  The essential result of these 

detailed treatments is that whichever solution is adopted, the 

leading high-s asymptotic behaviour of each invarient ampli-

tude remains the same after pole elimination as it was before 

this operation. Throughout the remainder of this thesis we 

shall therefore ignore all poles at integer. J and at zero t 

arising during covarient Reggeisation. 

So far we have neglected isospin and G-parity working in 

Lorentz-space alone and characterising the Regge trajectories 

by their normality and signature. If one is only concerned 
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with the Reggeisation of boson channels of zero strangeness 

processes, one may make the argument fully general by 

working in Lorentz 0 SU(2) space and characterising the 

Regge trajectories in addition by their isospin (T), and G-

parity (G). The total Regge contribution, Ar(s,t), to the 

	

Lorentz® SU(2) invarient amplitude, 	(s,t), is then 

given by modifying equation 2.5-15 as follows: 

Z ANS 6)X > 	(S EXit 7  till,  1AV 	 /41o1 	(2.5-22) 

> 	 >   >  it=1 T=±1 	rt,•=zi er=±1 	T allowed 

(2.5-24) 
±i/Nrc;6)-4j/(2,,-e,T, 6.; 	 (2.5-25) 

di/(127"e;0--->. jjll(nX7T, &; &) (2.5-26) 

and finally each term on the right-hand side is multiplied 

by the appropriate isospace pole graph factor: 
"1" 

ity 0.21.7-211A/ 2,, 	• if (T,T-5T) 	(2.5-27) 

Some reduction in the range of the four-fold summation. 2.5-23 

will result if G.-Parity selection rules are operative at the 

initial and/or final vertices, and in addition the spin 

covarients will depend on T and G if the vertices are subject 

to G-parity constraints, 

j=1  
(2.5-23) 

oq(0-÷. (xT2-V6) 
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.Q!ID.I:T,ER 2.:1 P~T I1.. 
THE GENERALISA~rION TO REAL AND VJRf.QAL ~H,QtONIC PROCESSES. 

The £ormalism reviewed in Part I of this chapter was set 

up with purely hadronic processes in mind. With an eye towards 

important classes of reaction such as hadron photo-production 

and Compton scattering, and vertices involving hadron electro-

magnetic form-factors at zero argument, it is useful to generalis 

this formalism to include the possibility of one or more of the 

particles being real photons. The essential additional ingred-

ient is gauge-invarience, and a suitable generalisation has 

been given by Seadron and Jones.(13) 

If one 'wishes to study the electromagnetic form-factors 

at non-zero argument, and the electroproduction of hadrons, 

it is necessary to go a stage further and include the possib

ility that the photons are virtual. In tr..is second part of 

Chapter 2 Vie give a generalisation to three-and four-point 

tlvertex-functionstt involving a virtual photon, the remaining 

particles being on-shell hadrons. These are current-conser'ving 

generalisations of our previous coupling- and M-functions. 

They correspond to matrix-elements of the electromagnetic 

current operator taken betwen on-shell states containing a 

total of tv/a and three hadrons respectively. We remind the 

reader that as a conse.quence o:f space-time translational 

invarience, it is only necessary m work with matrix elements 

of the current evaluated at the origin of the space-time 

coordinates. 

Our treatment is equally applicable to real photons. 

That is, it is designed to reduce to a valid real photon 

f'ormalism in the limit as the squared f'our-momentum of' the 

virtual photon tends to zero. In this limit it parallels 
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the real photon approach of Scardon and Jones, which 

consequently will not be reviewed here. 

In this present section we formulate sets of rules for 

the Lorentz 0 SU(2) space decomposition into kinematic 

singularity free form-factors of three- and four-point hadron/ 

virtual photon vertices. In section 2.7 such decompositions 

are derived in Lorentz-space alone, (the extension to Lorentz® 

SU(2) space being relatively trivial), for all three-point 

vertices encountered later in this thesis. We relate those 

in which we are primarily interested to unpolarised cross- 

sections. Decompositions of a number of four-point vertices 

are deduced in Chapter 4. 
We are concerned, then, with matrix elements:qILW> 

in which Ii>  and ii> are respectively initial and final on-shell 

hadron states. For the sake of argument we shall assume that 

N> contains a single hadron. The statejf> will then contain 

either one or two hadrons. 

In practice such a matrix element will always be contracted 

via a virtual photon propogator with a second matrix element 

of the current operator; so if q is the virtual photon four- 

momentum: 
cl,F-- tf — Pi.-ti/ — Py 2  

we are dealing with a quantity which looks like: 

e 04  <y1J 	(1 . p 	cr. + 6 

It happens in this thesis that the statesWand )0 will 

contain respectively one initial and one final on-shell 

electron, but they can, of course be quite general states. 

Current conservation implies that: 

1-ocTI (°)111?=0::  1-04<fljeAl>. 	(2.6-3) 

It will prove a useful shorthand notation to define a 

(2.6-2) 



"virtual photon wave-function" by: 

Eoc (ct,) 	<511 NI*  00  0‘  
E--to* cf..- ÷16 

and in virtue of 2.6-3 this satisfies: 
1. 	 )=o = 

88. 

(2.6-4) 

(2.6-5) 
In the absence of 2.6-5, t.:.(4.) behaves like the wave-function 

for a superposition of a normal spin-one (7=1-) particle 

and a normal spin-zero (T.P.0-1-) particle. In polarisation 

language and with A, denoting helicity (dependent on the 
helicities of the particles comprising states K> and If> ): 

Equation 2.6-5 then tells us that not all types of polarised 

virtual photon can have independent physical effects. 

Specifically, the.  observable effects of longitudinally and 

"scalarly" polarised virtual photons are linearly related. 

In a manner exactly analogous to that adopted in sections 

2.34 and 2.41, we factor the helicity dependence out of the 

matrix element, defining a "vertex function" 

by(symbolically): 

<fija(e91i> P 7() lVA (f1)e.C)   . 	(2.6-9) 
/A  

These three- and four-point vertex functions are off-shell 

generalisations of our previous coupling and M-functions, and 

maybe similarly expanded in terms of a set of linearly.  

inequivalent Lorentz basis tensors or tensor-spinors (kine-

matic covarients): 

14r( 	= 	 ( C11:7  ...)4R121/k04 (f) 	 (2.6-10) 

correspond to transversely 'polarised 
virtual photons, 	

(2.6-6) 
corresponds to a longitudinally 
polarised virtual photon, 	

(2.6-7) 

corresponds to a virtual photon 
with scalar polarisatiaa. 	

(2.6-8) 

IfvA.ck 	) 
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But in view of 2.6-3 the vertex function and covarients now 

are required to satisfy: 

if;r4(fo i)gra r-C)=,:e1 ° vidco< a • 	(2.6-1i) 

The expansion coefficients,
j 
 are now electromagnetic form-

factors. They are scalar functions, (in general complex), 

of the scalar variables constructable from the momenta involved 

at the vertex. Since the photon is off-shell we now have a 

single such variable, 1=1,12̀  for three-point vertices. In the 

case of four-point functions three linearly independent 

variables are now available, and we may conveniently choose 

to use ,, and any two of the Mandelstam variables defined 
as though the photon were a real initial particle. If W1,2t3,4  

are the masses of the hadrons, these variables satisfy: 

S÷ ÷ U.- 	7721-1-24+NET.  

Since the observable effects of the scalar and longitudinal 

polarisations of the virtual photon are linearly related, the 

number, N, of linearly independent form-factors is given by: 

N -NCI`) (2.6-13) 

where N(1) is defined to be the number of linearly inequiva-

lent
r  

covarients for an on-shell interaction: 24-1 —”-  subject 

to the same conservation laws. 

From the SU(2) point of view the virtual photon behaves 

like a superposition of an isoscalar and the third component 

of an isovector, these two components behaving in such a way 

that they individually conserve total isospin in hadronic 

electromagnetic interactions. Thus although we have so far 

worked only in Lorentz space, we may again usefully exploit 

SU(2) invarience by extending the argument to Lorentz 0 SU(2) 

space. We thus write symbolically: 
44/7  

'1-4.4 	= (Pi 	Ce..:Tf 
k=1  

(2.6-12) 

i, 62(2.6-1 ) 
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We have (in general) two isospin covarients for three-point 
vertices. One corresponds to the couplings to the isoscalar 

part of the photon, and the other to the couplings to the 

isovector part. In the four-point case,Wis equal to the 

number of is ospin covarients for the .reaction: 
(isoscalar form-factors), plus the number for the reaction: 

, (isovector form-factors). Here i,f,o and 

refer of course to the isospins involved. 

Our original virtual photon wave-function can of course 

be decomposed in this same fashion. The fact that the spin 
wave-functions corresponding to the states 11/> and 10 
satisfy the Jacob and lack phase conventions, then ensures 

that the virtual photon wave-function satisfies these same 

phase conventions. For example, if J i'> andi f'> are both 

on-shell single-electron states with momenta ck 	, and 
helicities 2,1 , A z  respectively, we may define: 

E oC (9-) E 1/(1-)-/2 (c0= 	
/z)  /z. 

7 	 (2.6.-.15) 

c 	
1(o 

E oc± 1/2. 1/2  

oC 

where: 

	

F7511,  0'0 	 (2.6-17) 
and: 

9-2. 	 (2.6-18) 

Working in the Breit frame, with the z-axis parallel to 9,-

so that: 
2.6-1 9 ) 

we then easily deduce that: 

60c (9,)=E:10,0  cf-)= eJ 	 ±i ) 	(2.6-21) v 	 • 
Thus in the Breit frame these wave-functions do indeed 

satisfy the phase conventions 2.11-1 9, 21, and 24 as required. 

(2.6-16) 

41,= (o) 0:, 0, 1_1) 
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Since the phase conventions are frame-independent for wave-

functions having the correct Lorentz transformation properties, 

they will automatically be satisfied in any general frame. 

Note that in the special frame above, the non-transverse 

polarisation of the virtual photon is purely scalar. This is 

a necessary consequence of equations 2.6-5 and -(9, which 

together imply: 	
fi3 = 0 . 	 (2.6-22) 

The analytic structure of hadronic electromagnetic 

form-factors as functions of a2 is not fully understood to date. 

To see what happens in the important real photon limit, (van-

ishing q2), we now consider for a moment coupling and M-

functions corresponding to the same final states if) as 

previously, but with initial states which in addition to the 

particles comprising the states lE> now contain a real photon 

with momentum q. These functions are then defined in Lorentz 

space by: 

\  N I1 	u (pf vPA T • M hA(f 01 /4  
N (9.) 	( 2.6-23) 

and have the spin decompositions: 

f

fry/4040 	N Oj1'o 
=IliAiNb) mv oc(-w or-7 (2.6-24) 

The g are now photon-hadron coupling-constants, and the • 

A (s, t)are invarient amplitudes for hadron photo-production 
p71 prOcesses. SA,A
1 1is now a real photon wave-function, and is 

required to satisfy the Rarita-Schwinger subsidiary condition: 

61,-c< E2(‘'(9-)::  0 • 
	(2.6-25) 

We require the theory to be invarient under the gauge-

transformation: 

E,c 11(c0 &!(c1,-)+Z() 9-t,‹ 	(2.6-26) 

where Z' is any scalar function of q2  such that: 

1m (3-)9'=O. 	 (2.6-27) 
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This requirement is necessary because since the real photon 

is an on-shell massless particle, C.- 04(0\1,-/ is a perfectly 

valid real photon wave-function provided that the same is 
afn) 

true of 	Di(4.) 	That is, c, ocyll has the same Lorentz 

a./ transformation properties as c'co.,cLi , and also satisfies 

2.6-47. As a consequence of this gauge-invarience requirement, 

the coupling functions, M-functions, and kinematic covarients 

are required to satisfy: 

—oxA,Dca-,L)= 	 . (2.6-28) 
As a further consequence of the masslessness of the real 

photon, equation 2.6-17 reduces to a transversality condition. 

It says that the realThoton can only be transversally polarised, 

or more precisely, that the observable effects of the longi-

tudinal and scalar polarisations must exactly cancel one 

another. It is thus clear that in the real photon case the 

number, N, of linearly inequivalent spin covarients is given 

in our previous notation by: 

N= N(11- N(0+) . 	 (2.6-29) 

Note that for space-reflection invarient interactions N(0÷) 

is by no means always equal to 1N(1-); indeed, N(1) is often 

not even a multiple of three. 

Since real and virtual photons have identical isospin. 

structure, we may again extend to Lorentz® SU(2) space by 

making the isospin decompositions: 

9i frf b01-tbE) -. J•fti v--Ǹ7  10-f Ti) { 
Ai(,;TiEf;Ttt-c) 11  k,1 Ai(„ IT ) .4.1-1')  I 

. N. .=--- (p•-ia),  Ft ' 

For given states ii> and if) , the isospin covarients may be 

chosen to be the same as those employed in the corresponding 

virtual photonic case, (equation 2.6-14). 

Returning to the virtual photon case, we thus see that 

in the real photon limit just (N(1) - N(0+)) of our original 

2.6-30) 
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N(1-) spin covarients will reamin linearly inequivalent. 

In order to preserve linear independence of the couplings 

we must therefore arrange that just N(04-) of our N(1) 

covarients are proportional to q , aid we must do this in a 

way that does not endow the corresponding form-factors with 

poles at vanishing 

Now in corresponding real and virtual photon cases, (same 

states 	and 	): the spin covarients have the same Lorentz 

transformation properties, vanish on contraction with ci, c,c  

and in view of our previous discussion concerning the pihase-

conventions satisfied by the virtual photon wave-functions, are 

subject to the same constraints due to P, C, and T-invarience. 

In addition, they are contracted with the same hadron wave-

functions, and the real and virtual photon wave-functions 

both vanish on contraction with qa. Thus those virtual photonic 

spin covarients which remain finite at zero q2  will constitute 

a valid set of covarients for the corresponding real photonic 

coupling- or M-function. One therefore assumes that the form-

factors and coupling-constants or invarient-amplitudes corres- 

ponding to these covarients satisfy: 

fin fj0"):--o 7 V 1.0 JJ 

ian- (9,,S) 	A (s)E) 4/11.-po 
or: 

as appropriate. 

(2.6-31 ) 
(2.6-32) 

Having discussed the basic underlying theory, it remains 

to set up rules forthe construction of spin and isospin 

covarients for a given vertex. We quickly deal first with 

the relatively simple problem of isospin covarient construction. 

As discussed above, the isospin covarients corresponding 

to isoscalar form-factors will be any set suitable for the 

isospin decomposition of the coupling/M-function corresponding 

to the reaction: Ti,4"0"Tf.  . That is: 

k= I 2, ce(T0-0-PV 2.6-33) z't 7  t,  7 
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The isovector covarients will be given by constructing a 

suitable set of covarients for the ioospin decomposition of the 

reaction:T:1+1-3-7f, and projecting out the couplings to the 

third component of the isospin one wave-function. Thus: 
/ 

Av. (7-5. 'TO = 	
/ 	

I1) S. n 7  Fe=1,27'')cilq1:0-1-1P-ri) ' (2.6-34) 

As a simple (and wellknown) example, we consider matrix 

elements of the current taken between initial and final single 

hadrons with isospin one-half. From equations 2.32-17 and 

16 respectively, we have: 
+ 0 —> Y2) 42.  

and: 
Xili(Vi+1-+1/2)=---Clin• 	 (2.6-35B) 

Hence if the spin decomposition of the vertex leads to form- 

factors f-j (v.) , we have: 

	

tEr S 	 4 h(1-1-; 	:7-- X 7  [f J (1%)+ f1
v  
. cco er-bi X 	 (2.6-36) 

As mentioned previously, it is unnecessary to modify 

the isospin decomposition when passing to the real photon 

limit. 

We now turn to the more complicated problem of photonic 

spin decomposition, assuming parity conservation but neglecting 

for the moment complications due to C and. T invarience. Let 

j run over the range: 1,2,..., 00 , and let 	4y bethe 

infinity of valid (but not linearly inequivalent) covarients 

for the parity conserving purely on-shell hadronic reaction: 

i+101-)-3Pf . Let tA-21/4,be the infinity of covarients for the 

similar reaction: 2+0+00-45 . As usual l it and 2) are the sets 

of Lorentz indices for the wave-functions of the particles 

comprising statesli) and 15>  respectively, and a is the index 

of the 1  wave-function. Of the Xittc< just N(1) will be 

linearly inequivalent, and in virtue of the subsidiary condi-

tion on the 1-  wave-function, none can have the structure: 
xj = ci,o(  

	

viktx 	vt. 	• 	 (2.6-37) 

7 
	 (2.6-35A) 
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tvi 
Just N(04.) of the k.A.,  will be linearly inequivalent, and 

thus we shall have N(04 ) linearly inequivalent covarients 

with structure: 

=,7e 6 vt04 	vivt 0( 	 (2.6-38)  
where 6 is any momentum other thwick constructable from those 
available at the vertex. 

"-A 
The 	m< will satisfy all constraints required on Pp 

covarients valid for spin decomposition of </lja6, except 

that not all of them will vanish on contraction withal and 
ra 

neither will the correct number vanish at zero e . Let us 
therefore partially follow Scadron and Jones, (13) and define 

a "gauge projection operator" i'04104(by: 

(2.6-39) 

where 6 is now any momentum constructable from those available 
at the vertex. In contrast to Scadron and Jones, we do not 

exclude the possibility: 

6 (2.6-Lo) 1- • 
For any Lorentz tensor or tensor-spinor, Ta, earring a 

four-vector index a, we define: 

(2.6-41 ) 1-0/4(b) F-- -roc/ tpicx (b) =7.0( — 	IA. 	7 

SO: 	 To<  (b) 	= 	 (2.6-42) 
(2.6-43) h:‹  (b) = 0 

Tolz(17)=Toc if Totes O  = 	 (2.6-44) 

(b) = - 	Deg — (9-Ki 60(/6. ck) , 

and: 
• (2.6-45) 

Thus the infinity of covarients (/q1 (b) satisfy all the 

constraintssatisfiedbythe 	and in addition vanish 

on contraction with 7-a  forall 	From 2.6-44- we note that 

those 	which already vanish on contraction with ct.o<  

are left unchanged by the gauge projection operation. Provided 

6.1,is non-vanishing, the number of linearly inequivalent 



1\10) for 6=9, 7  
{N09 N(01 for b*ci-, 

eVid /L) t/1 /4,2iickt(vP) will be: 

and: 

(2.6-46) 

(2.8-47) 
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in consequence of equation 2.6-43 and the discussion preceed-
ing equations 2.6-37 and 38. For any 6  other than q, a 

further infinity of suitable current conserving covarients 

is furnished by the set of 	(b) vitk 	. N(0+ ) of these will 
be linearly ineauivalent for non-vanishing b.q, and from 

2.6-45 we have: 

cl 	 Pt.& cp-1,0 	 (2.6-48) 
If we can construct a momentum b such that b.q is a func- 

tion only of the hadron masses, the problem is therefore solved. 
Ao/ 	 '14 / The VL, y,ut.cx (b) and v•-v/t,t, f roobi will be non-singular and will 

satisfy the same respective equivalence relations as the corres- 
ponding

,-fj 
 c/ 2)/A,c,‘ and 	vf rt . This latter statement follows on 

contracting the equivalence relations on the Xviple with ir{ (1)) 

and multiplying those on the ( X Eby qat (b). One postulates 

that the two-fold' infinity of rya (b) and Mt  ct-ci.c(b) 
correspond to K.S.F. form-factors, this now being necessary 

even for three-point vertices where the form-factors now 
-PO depend on q2. If one then takes a set of N(1- ) Lik-1, 	and tt°4  

N(0+ ) 	 corresponding to K.S.F. spin decompositions of the 

appropriate hadronic reactions, the corresponding vt..), c0.7 and 
ce tij (1) v- 	will furnish a K.S.F. spin decomposition of the 
matrix element 	 . Since b will necessarily be 

unequal to q, we shall have N .).-  N(01)] 	(1,) (which 
remain finite at zero q2), and N(0+) cftie (X  (b) (which 214  
are eauivalent to zero at vanishing q2 ). Thus the necessary 
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number of covarients will automatically vanish when one 

passes to tne real photon limit. 

No suitable momentum b can be constructed for four-point 

vertices. In the case of three-point vertices, however, there 

exists just one momentum whose scalar product with q is 

independent of a2, namely: 

ty 	 (2.6-49) 

This satisfies: P
I' = 	M-21 	 (2.6-50) 

so provided the initial and final masses are unequal, the 

problem is solved for three-point vertices by the choice: 

6=T" 
	

(2.6-51 ) 

Even in this special case, the above choice will not lead to 

such a simple solution to the problem if one subsequently 

wishes to Reggeise or take off shell the initial and/or final 

hadron. 

In all situations where b.q is a function of the scalar 

variables for all b which are linear combinations of the 

q / available momenta1 	tA, Vfr  the 	(b) and v 1, 	1,-,;‹  (b) are and 

singular at vanishing b.q. It is therefore necessary to 

construct non-singular linear combinations of these covarients. 

Since we are starting with an infinity of singular covarients, 

there exist an infinity of different ways in which the 

singula-nities may be removed. It is thus possible to construct 

out of theX(j 04  CO and Xlytti4c0))  an infinite-fold infinity Y  

of non-singular covarients suitable for the spin decomposition 

of our matrix element. To this set of covarients will corres-

pond an infinite-fold infinity of form-factors, and it is on 

these that we ought, if possible to make our requisite 

postulate concerning freedom from kinematic singularities. 

The particular elimination procedure we choose will lead 

to a one-fold infinity of non-singular covarients and form- 
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factors, and is thus equivalent to the elimination of all 

but these from the above infinite-fold infinity. We hope 

to be able to make a choice for which the equivalent reduction 

in numbers of form-factors does not endow those remaining 

with any additional singularities. Our infinity of singular 

covarients are subject to equivalence relations, and these 

will impose corresponding relations amongst the non-singular 

covarients. A simple criterion for achieving our aim is that 

irrespective of the values of the scalar variables, the non-

singular covarients we obtain should not be subject to any 

equivalence relations in addition to those specifically required 

A'. by the relations amongst the --v 14  iac< , and LT.q/i4A1/0'). That is 

for all values of the scalar variables just N(1-) of our non-

singular covarients should be linearly inequivalent, and just 

N(0+) of these should be proportional to q2. 

If such a singularity elimination procedure proves 

possible, we can postulate that the infinite-fold infinity 

of form-factors was free of kinematic singularities. Should 

a suitable elimination prove non-existent, we shall have to 

choose one which introduces the least number of additional 

singularities, and then postulate free dom of kinematic 

singularities for the corresponding one  fold infinity of 

form-factors. We shall then have to assume that the additional 

singularities introduced are electrodynamical in origin, 

being a necessary consequence of gauge-invarience and/or 

current-conservation. 

Finally, it will he necessary to reduce our infinity of 

non-singular covarients to a linearly inequivalent set in a 

way which does not endow the final form-factors with any 

additional singularities. Whether or not it will be possible 

in practice to bypass this step by starting with a set of N(I) 
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l0( and N(0+) oljr, corresponding to K.S.F. spin ecom- -  

positions of the purely hadronic reactions: i-F1--/ 	and: 

, will depend on the extent to which the equivalence 

relations between the infinity ofZ/  21,4a _b, and 0C17.414:(0 are 

modified by the singularity removal operation. 

In order to investigate these problems further, we first 

notice that since the infinity of Xt/uoc and Xlitt. are 
"VI cf, necessarily finite, the 	meter' and Xx.4. have no poles for 

any finite values of the scalar variables, although they may 

possess zeros. We also note that each of the 40Ai must 

be a linear combination of the vt‘ 	Just N(e) of these 
•-fiij AN 

are linearly inequivalent, hence the c/C 	 and 'y/.` C") 
involve just N(04-) linearly inequivalent terms with simple 

poles at vanishing b.q, and these latter terms possess no 

further singularities other than zeros. It will therefore 

always be possible to pick out from amongst the primed covarients 

N(e) covarients, which we now redenote simply by:Xy. (b/) 

j = 4,21...,N(e), having the structure: 

(.) = X 	L- a • Sj (b) 04 	214-0( 	7 ( 2 . 6-52 ) 

where 	
S1/, ( 6) = Tv bbeAl. 	 (2.6-53) 

In these equations the 	are scalar functions of the scalar 

variables, possibly possessing zeros, but having no poles, 

whilst theTi  are a set of linearly inequivalent tensors ly4A- 

(or tensor-spinors) which are free of both poles and zeros in 

the scalar variables. We call the 40(b)  "singular-tails". 

(Scadron and Jones have a similar definition, but do not 

explicitly exhibit any overall scalar factor.) The remaining 

primed covarients must then have the structure: 

✓plvi 	
• 	N (o+) 

(2.6-54) 
vittA  (1)) Xy'ljtht —  > 	a- • 5" 	(b) 

/ 	j=1 	
iiikt4 	7  

N(0+)] =1,2,..., °O 7 
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where again,theaijare pole-free scalar variables, and some 

g" 	 l: 0/ (L) of the 	ppc4 A will be of the form: 4A, vitk c4 vi-Y • 

We see immediately that it will be of no use simply to 

eliminate the singular tails by multiplying all primed 

covarients by b.q, since: 

ck.  xia (6) 	 ?Tx< 	b. ----> o 	ai -1-460( 	(2.6-55) 

and: 

6. X(),,toc(b) 	
NOM 

(2.6-56) 
O1  

so that only N(0+) of the resulting covarients will remain 

linearly inequivalent at vanishing b.q. 

Instead we must choose N(0+) primed covarients, each 

involving a different linearly inequivalent singular tail, and 

by taking linear combinations use these to remove the singular 

tails from the remaining primed covarients. Each of the former 

covarients may then be safely multiplied by b.q to remove its 

own tail. The reason for our above change in notation now 

becomes clear; we can always choose for this purpose the N(0+) 

(6)
214° 	

since any other choice just reduces to an alterna-

tive choice of linearly inequivalent singular tails. We 

therefore define tail-free covarients by: 
r
tP = 13.9e Xid  (b)= • et- 	ct; Tj 1, p.< 	Xj —  2404 	3 2A, 0( 2 6- 57) 

ctett,livi (61 
jebli 	 3  i" 

.41 	I 	[ / 	"izixj 
LjE/jh 3.1 	14‘°'  jeje 	v4'c']  

where 	is the set of j values for which Ctij is non-zero 

at least for one set of values of the scalar variables. 

eV The 	v%., / vp. trt and ppx appearing in the "tildered" 

2.6-58) 
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covarients cannot involve br„ as a factor, since we have 

already seen that b'a(b) is zero. Sc if all a are non-

vanishing, just N(f) of the tildered covarients will be 

linearly ineauivalent for non-vanishing q2, irrespective of 

whether b.q or any of the aij  (j4g0 happen to be zero. 
Furthermore, in view of the structure of the primed covarients, 

just [N(4-) - N(0+)] of these tildered covarients will remain 

linearly inequivalent at zero q2. However, if one of the. aj  

vanishes, we have: 

j 	b ot_X j  yfrcK 	))/./LtX 
0 (2.6-59) 

i 
= 	a. 3j 61 j}i o 	je.&li, 	v/thix 	 (2.6-6o)  

allother7ereminingunaffected.Thusatzeroa.
0 
 we have 

an additional proportionality between all those tildered 

covarients whose definition involves the elimination of the 

singular tail S,4  from a primed covarient. Note that the 

problem is purely one of an additional unwanted proportionality; 

although it is not obvious at a first glance, the right-hand 

sides of equations 2.6-59 and 60 do in fact vanish on contrac-

tion with 1,04  at zero aj. To see this one only has to notice 

that: 

XiliccOkx 	(2.6-61) 

implies: yo(4q-c4= 	or 	01,...= 

(2.6-62) 

cl-X jv4,-0( 9-0( Q ,  ---for  so that: 	b•  

Co = o  

{ implies: i 	lad ai.i 
J d a  

1-. = j col: 	aj 	vfr.mt ez 

={1 .1.a-3 [XI  cft — >  7L7k, Xvp.c(c6( 
iEfni 	vr' °' Refi, 	

et:, -----,0 
.-4 c.-1_ 1 E.  t. i 

and: 

(2.6-63) 

(2.6-64) 
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Our criterion for choosing a suitable singularity eleimination 

procedure is therefore that all the ai  for the choice we make 

should be functions only of the masses. In certain cases, 

(which would appear to be restricted to four-point vertices), 

such a choice proves impossible. That is, there exists no b 

for which we can pick out N(0+) V(b) having linearly 

inequivalent residues at vanishing b.q which are free of 

kinematic zeros. In such cases we clearly have to choose an 

elimination for which the minimum possible number of a. 
3 

are functions of the scalar variables. 

We now turn to a dlcussion of the structure of equi-

valence relations (E.R.' S) on the tildered covarients. The 

E.R.'s on the unprimed covarients have the general structure: 

Cie vfrtx< 	 (2.6-66) 

Eck7k/v/,.k„ ())-..- 0  
k 

and subtraction of 2.6-66 from 2.6-67 then gives 

on the singular parts of the primed covarients: 

Ecre{7e/kok (6)-7epki,ale:"(). 	 2 . 6- 6 8 ) 

In our previous discussion of singularity elimination pro-

cedures we chose N(0+) primed covarients with linearly 

inequivalent singular tails, and then expressed the singular 

parts of all other primed covarients in terms of these tails. 

For a proper discussion of E.R.'s, the way in which these 

Fz 
and, as mentioned in section 2.41, we call these type 4 or 

type 2 according as none or at least one of the ck  are func-

tions of the scalar variables. Operating on this E.R. with 

40(0) yields: 
(2.6-67) 

us an E.R. 
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latter expressions are arrived at is rather crucial, and 

leads to a further subdivision in the classification of 

E.R.'s. Vie can always choose the E.R.'s as typified by 

2.6-66 so that, irrespective of whether they are of type 4 
or 2, they fall into one of two further classes. For a given 

E.R., it may be that all the IC appearing in the corresponding 

equation 2.6-67 have singularities which are already determined 

in terms of the N(0+) 'pet6)by other equations. Such E.R.'s 

are in fact comparatively rare, and we call them type 4B or 2B 

as appropriate. A much more common situation is that all 

but one the 	in 2.6-67 have singularities already determined 

in terms of the 8?)iptot(6), whilst the singularity of the remain-

ingld is similarly determined by ho equation other than the 

corresponding 2.6-68. In this case we say that the equivalence 

relation is of type 4A or 2A..  

We first consider type 4A and 2A E.R.'s. These have the 

general structure: 

czac4+7--c•xl-y a 	c.xJ 
t6f21 	j 6  f'31 

where 	denotes a set of i-values, and the ;ot are 

such that the singularities of the :/el  (6) are already vitta 

known from eauations of the form 2.6-54. The :.e‘ox are 
/* 

such that the corresponding X4L00 are known to be given 

by equations 2.5-52, and 	is the set of j-values for whibh 

Cj is non-zero. The singularities of t,C;/,0J0 are supposed 

to be given by no equation other than 2.6-68 which in conjunc-

tion with 2.6-57 and 58 yields: 

G 	>  >  ciicqj S +> C1c̀• 

where we have suppressed the Lorentz indices and the argument 

(2.6-69) 

(2.6-70) 
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b of the gauge projection operator. The important point is 

that this is the only equation which tells us how to eliminate 

the singularity from Xi  andhence define. Following our 

previous elimination procedure, we therefore define: 

c freB, 	laj{c7e/±)  ciaij %/J 

jetil 	
.' 

J j6j1 	iefq jef% 	 9(2.6-71)  

where [i] is the set of all j-values included in at least 

	

one of ffli for i6 i 	. In view of 2.6-67, this reduces to: 

C,Z=-'1'. 

j 6{1 J 	L 	jeiA, sai  

so from 2.6-58, we have finally: 

	Cill lai i--.C)  ie 	 j6 D1i 
where for given 1, 	t is the set of 

in Eil but not in mi  
We see that 2.6-73 involves only 

(2.6-72) 

(2.6-73) 
all j-values contained 

and the • 

Provided a is a function only of the masses for all jeD] 

the structure of this E.R. as far asX and the Ye are concerned 

is essentially the same as that of 2.6-69. That is, if Xor 

a given 'canbe eliminated by means 

then 2.6-73 may be used to eliminate 

rv*fdi 
	

However, if a is a function 

for at least one element of 

eliminated without the introduction  

of the scalar variables 

then
7.12 
 can no longer be 

of kinematic singularities, 

of this latter equation, 

X or the corresponding 

even if Ciis a constant. But the crucial point is that it 

will always be possible to eliminate 	for constant c, 

irrespective of whether any of the a are variables. 

To summarise, then, the important point about a typeiA 

E.R. on unprimed covarients is that it leads to an E.R. on 

tildered covarients which itself defines one of these. The 

new E.R. may always be used to eliminate this latter covarient 



ciaii  54>  ce-j 	0 
'1E111 jc1ili 	j6  [j.} (2.6-76) 
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without the introduction of kinematic singularities, provided 

that the original E.R. can be used to similarly eliminate the 

corresponding unprimed covarient. 

Let us now turn to type B E.R.'s which in our previous 

notation have the general structure: 

>  

je 
	 (2.6-74) 

Operating with 
	

(b) yields an e cluation, which we will denote 

by 2.6-7L1' , in which the 	and al) of 2.6-74 are replaced 

by 	(b) and .20(b). The structure of these latter covarients 

is already determined by other eauations to be of the form 

2.6-54 and 52, so the corresponding X and 	are defined 

independently of 2.6-74' by eauations 2.6-58 and 57. Inverting 

these latter equations and substituting Xfor ,  in 2.6-74' 

therefore yields: 

> 	 ci  	+> 	> 	 ca. 
-LJ 

i 6 	ii,3.11 	191. iefil epli, ,69 b•cp. 
j6  131i. 

r...• • 

jew 
(2.6-75) 

This unfortunately involves the a4j,which will frequently 

be variable even though all the 	may be constants. All is 

not lost however, since 2.6-68 now reads: 

In order to separately equate to zero the coefficients of 

each 	we need to recast this relation in the form of an 

exact eauality rather than an equivalence. The Slyi,,j9cannot 

vanish on contraction with the hadron wave-functions, but 

zs ypj / t40,7 does vanish on contraction with the wave-function 

of the photon. Hence we may replace the eauivalence by an 

eauality if we replace the right-hand side by: & 	 
P9- j e<) 

in which dj is a function of the scalar variables and/or 
masses, and <> is defined to be the set of all j-values 
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contained in Ed3 and/or {j) . Equation 2.6-75 then reduces 

to: 

>  ci  1 1 	o 
6{2*-1  

619- 
(2.6-77) 

Ict,J
Nti 11-> 	lays 0, 

) (2.6_78) i6P4 de<4 	je<i>a j LjE.> 
where <i>i, is the set of all j-values contained in ‹P but not 

Thus as in the case of type A1 E.R. s, the structure of 

type B E.R.'s is considerably modified when these latter are 

converted into E.R.'s on tildered covarients. For b different 
NI 

from q, the 0e - in 2.6-77 can only be eliminated for constant 

Ci if aj is a constant for all jeD-1-i, . If b is eaual to 
1.-•• 

q, the same is true of the XZ in 2.6-78, except that we now 

require GT..j to be a constant for all 	Irrespective 

of whether 	vanishes, the (X in 2.6-78 can also be eliminated 

provided d, and a i 	a.; are constants. We stress again 

that the differing properties of type A and B equivalence 

relations results from the fact that each of the former define 

one of the tildered covarients appearing in them, whereas in 

the case of the latter all such covarients appearing are 

defined independently. 

We are now in a position to state the rules for the 

reduction of the tildered covarients to a linearly inequivalent 

set corresponding to kinematic singularity free form-factors. 

We define a pair of type B E.R.'s to be inequivalent if one 

cannot be transformed into the other by means of type A E.R.'s 

only. One starts with a set of N(1) f;0..44 and N(0+) X214 

corresponding to K.S.F. decompositions of the purely hadronic 

• A- f 
reactions: 7,4-1-*, and 	. If one can find a 

Momentum b different from q and choose a singularity 
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elimination procedure for which all ai  are constants, then the 

NO) tildered covarients obtained will correspond to a K.S.F. 

set of form-factors. Just [NO-) - N(01 of these covarients 

will remain linearly inequivalent at vanishing q , so by 

taking linear combinations of the covarients in such a way 

that no additional singularities are introduced, one can 

arrive at a final set of covarients, just N(0+) of which 

vanish at zero dif- . In deducing K.S.F. spin decompositions 

for the purely hadronic reactions, one must remember that the 

squared masses of the 1 and 0+  particles are now variables 

(equal to 9:2-  ). This means that even in the case of three-

point vertices, these decompositions will now involve the use 

of type 2 equivalence theorems. 

If the above procedure proves impossible, one follows - 

the reduction rules of section 2.4i but the inequivalent type 

A and B E.R.'s (whether of type I or 2) now assume the res-

pective roles of the type 4 and 2 E.R.'s of that section. 

That is, if there existr(I-) and r(04-) inequivalent type B 

E.R.'s for the respective reactions i-1-1-1* f and ii-dt÷f 

then one starts with [N(1) + r(11] covarients for the 

former reaction together with (I-Si
1- 
)[N(01+r(e)]covarients 

for the latter. The 86,
le 
 symbol arises because equation 2.6-57 

implies that all covarients for this latter reaction vanish on 

1- contraction with c640-) . The choice 6=01 
.
has another advan- 

V ,...-.1 

tage. With this choice, just the N(0+) X will be equivalent Y/443 

to zero at vanishing 9e  , and it will therefore be unnecessary 

to take further linear combinations of the tildered covarients 

after performing the reduction to a linearly inequivalent set. 

Of course, if this choice is made, care must be taken that 
n:j 

the reduction does not eliminate any of the Xpiuot. 

To conclude this section, we devote a few words to the 
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implications for the vertex functions of P, T, and C-

invariences hermiticity, and crossing of the interaction 

Lagrangian. 

Since the real and virtual photon wave-functions satisfy 

the Jacob and Wick phase conventions, these various implica-

tions are again given by the appropriate equations of sections 

2.31, 32, 141, and 42, with the coupling and M-functions 

replaced by the corresponding three and four-point vertices. 

For a given four-point vertex one may define s, t, and u 

channels in the same way as for M-functions. One has a direct 

channel as discussed above, and two further channels obtained 

from this by crossing the initial hadron with each of the final 

hadrons. In Chapter 3 we show that the vertex-function 

continues to satisfy the crossing rules 2.41-11 and 2.42-4. 

Thus the various implications for the M-function of the cross-

ing rules again apply equ=ally to four-point vertex functions. 

In particular, the P-invarience constraint on our tildered 

covarients reads: 
A 

gy 	(H ng (V)5(ti- 	0 V % 	0 )9(°() 	(f 	 (2.6-79) it 	 /A-  

whilst the condition for real form-factors in the case of 

a T-invarient three-point interaction is: 
ra 	 N 

(f7  t) 	g (v)5(03 (00T 21 	(f 	T . VIAA 	LT 	 0 1.40( o 	(2.6-80) 

As usual, the circumflex accent aenotes the sign reversal of 

all 3-momenta appearing. Since this operation leaves invarient 

the scalar products of pairs of 4-momenta, these same equations 

must be satisfied by the primed covarients. Now: 
A 

g (c4)  X i'+.1-$10( 2y4,0( 
A 	 A 

= 5 ccx) 	(f 	1)--  (w)Xvtitv(/ 1'„/ 1,04 	• dip 

9 (D) 	09 41-al  (0 	y t(f 	0) 9-0,t (D) 

(2.6-81 ) 

(2.6-82) 
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and the photon has both normality and time-reversal phase 

equal to plus one. Hence 2.6-79 implies: 
A 

{, 	
) 	(0  9(140  

(f i+ 0+) 

SHX 1)÷1) ViU,C{ 7 

(2.6-83) 

whilst 2.6-80 requires: 

   

A if 
(f,2+ 

Vitit• 7  

 

{ ;404(i,i+1-) 

.7evp, (i,i+ 0+) 

 

(v)9 HT-  To  T. 
(2.6-84) 

 

 

 

   

The 1 and 0+  particles are both normal, so eauation 2.6-83 

is identical to 2.31 -24. Equation 2.5-8)4 is identical to 

2.31-32 provided we specify that the 1 and 0+  particles are 

to be treated as though they both have time-reversal phase 

equal to plus one. This requires that they both be treated as 

C-normal particles, hence the 0+  particle is to be considered 

as having opposite C-parity to that of the photon. The 

unprimed covarients are then to be constructed following the 

rules of sections 2.31 and 2.41 as appropriate. 

The tildered covarients resulting from these unprimed 

covarients will then automatically satisfy the P-invarience 

constraint, 2.6-79. They will, in addition, carry 

just those overall i-factors needed to ensure 

purely real form-factors and satisfaction of the 

discontinuity condition in the respective cases of 

T-invarient three-point and four-point interactions. (ogle 

show in Chapter 3 that the discontinuity condition on four-

point vertex functions is the same as that on M-functions, 

and we pointed out previously that this latter is formally 

the same as the reality condition for coupling functions.) 

It is well known that the form-factors for matrix elements 

of the current taken between identical initial and final 

itA 

•xv/40((fl i +11 

Xv 	0÷ 
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single particles may be chosen to be purely real even for 

T-violating interactions. This arises out of the hermiticity 

of the current operator, and the reality condition reads: 

(2.6-85) 
where the bar has its usual significance. 

We shall need the generalisation to four-point vertex 

functions of equations 2.42-14 to 17. This is trivial; the 

isoscalar and isovector parts of the photon both have 

C-parity equal to minus one, and this corresponds to G-parity 

minus one (plus one) for the isoscalar (isovector) parts. 

Hence, assuming particle a  is the photon, one simply replaces 

G
1 

in equation 2.42-17 by minus one (plus one) for isoscalar 

(isovector) form-factors. 

Finally, we wish to stress that although we have called 

quantities of the form ,Zilkx/V singular tails, they are 

not really singular at all. In fact since as  vanishes on - 

contraction with the photonic wave-function for all $2  , such 
terms are themselves equivalent to zero even at vanishing 	. 

The purpose of eliminating such terms as though they are 

singular is simply to ensure that the correct number of 

covarients are proportional to 1, 

2.7 THE SPIN DECOMPOSITION OF SOME PROTONIC  THREE-POINT  
VERTICES. 

In the following sections we derive Lorentz-space (spin) 

decompositions for the real and virtual photonic three-point 

vertices: (1 ±i)±, (1,± 774-i) 	OP, 0,T) , and (r., 1,T) 
rt 

The symbol (f 1,  S2  idenotes a vertex with overall normality 
coupling a real or virtual photon to an initial hadron with 

spin si  and a final hadron with spin S2  . The various 

kinematic auantities involved will be denoted by the symbols 



which are used when these vertices are encountered later 

in this thesis. The yFF vertices appear in Chapter 5, and 

the yBB vertices in Chapter 4. A differing set of kinematic 

symbols will be used for these two types of vertex since they 

appear in one-particle intermediate state graphs corresponding 

respectively to the s and t channels of the same four-point 

function. 

For yFF vertices we define the momentum (mass) of the 

initial and final hadrons to bep0M) and lig respectively. 

The momentum of the photon is then: 

K-y) 9 	 (2.7-1) 

and as usual we further define: 

F = K+P • 	 (2.7-2) 
Further useful kinematic relations are then listed in 

Appendix 6. 

The kinematic notation for yBB vertices is defined in 

terms of that above by the substitutions: 

• , 	M-± M 	pi...3,p il 
(2.7-3) 

So: 	?II= 	 (2.7-4) 
and in view of the kinematic relations of Appendix 5, which 

are still applicable here, the momentum of the photon, (Ai-cc), 
is still equal to q. 

The decompositions we derive are only strictly valid 

when both of the hadrons are on the mass-shell. If one or 

both of these particles are taken off-shell, it is necessary 

to include additional "off-shell" couplings to take account 

of the relaxation of the appropriate Dirac-Rarita-Schwinger 

subsidiary conditions. Neglect of these terms in the off-

shell hadron case is equivalent to making the dynamical 

assumption that the "off-shell" form-factors vanish. On the 

other hand, when such vertices appear in the Born-terms for 
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four-point functions, only the "on-shell" couplings will actually 

contribute to the pole-like behaviour, the "off-shell" 

couplings in the numerator each including as a factor the 

denominator of the Born-telm. 

To a certain extent, then, it is useful to perform the 

spin decompositions in a way which whilst treating the hadrons 

as on-shell, does not rely for freedom of kinematical singu-

larities on their masses being constant. This also renders 

the decompositions suitable for use in covarient Reggeisation 

calculations, where the Reggeon simulates a superposition of 

on-shell particles with variable mass. 

2.71_ Cy, 7, -fl* YERTICES 

The y-nucleon-nucleon vertex is well known and has been 

studied in great detail.(4) As mentioned in section 4.2, it 

decomposes in Lorentz-space into a pair of linearly independent 

couplings which may be chosen, for example, to be the "charge" 

and "moment" or "electric" and "magnetic" couplings as given by 

equations 4.2-3 and 4. These couplings remain independent in 

the real photon limit. 

What is less generally known is the fact that this structure 

is a direct consequence of the fact that one is dealing with 

identical initial and final hadrons. The structure of the 

general (y, 2, W vertex involving non-identical hadrons is 

necessarily quite different. Indeed, although one still has two 

linearly ineauivalent couplings in the virtual photonic case, the 

covarients become proportional to one another in the real photon 

limit. This behaviour is in agreement with the "counting rules" 

of section 2.6 for numbers of Lorentz-space couplings, and the 

y-nucleon-nucleon vertex must be considered as exceptional case. 

We therefore consider first the uneaual mass (y, 

vertex, and then Show why and how the spin decomposition has 
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to be modified in the equal mass case. The (1,M)-  
vertex, (where the masses are necessarily unequal) is 

treated at the same time. 

From equation 2.31-9 we have: 

11(1;+.1si.")=-2_ 7 	 ( 2, 71 -1 ) 

N 	1 	 (2.71-2) 
so we expect in view of equations 2.6-1 3 and 29 that: 

(2. 71 -3) 

N ±(11 +:1 2)=- 1 • 	 (2.71-4) 
Here N4-(N) is the number of couplings at the normal (abnormal) 

vertex indicated by the parentheses, and y'  (y11 ) denotes a 

virtual (real) photon. 

From Scadron's paper(9)  we take the spin decompositions 

for on-shell hadronic vertices: 

,,c(11k9±)=(31 Tc( 02.-F):()I7 	( 2. 71 -5) 

C±(6P7i-V0= 	 (2.71-6) 

where as usual: • (2.71-7) Vs  . 
When the 1 and. 0+  particles are given variable squared mass, 
9, , the A 	become form-factors depending on this quantity Q11 2,73 
but are K.S.F. This is because the only E.R.'s which can 

become type 2 in the variable mass case are those which relate 

covarients involving the contrac'ion of Levi-Cevita. tensors 

with momenta, y-matrices, and possibly one another, to the 

covarients: (iTix  ?c,(1 	From dimensional considerations, 

the coefficient of the former covarients in such E.R.'s is 

always unity and hence their elimination in favour of the 

latter covarients leads to K.S.F. form-factors. Similar 

arguments indicate that no type B E.R.'s are involved. Hence, 
••r1/ 	-r* we can go ahead and operate on the Rc r I rcecfre<t)i with a gauge 

projection operator: t 	(6). In this section alone we shall 
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make the most general choice: 

b=a,V-i-c (2.71-8) 

where a and care functions of the hadron masses. This is to 

illustrate that the final result is really independent of the 

choice of b. We therefore have: 

Remembering that in virtue of the Dirac equation: 

ti± = (NIT: 	, 
and: 

(2.71-9) 

(2.71-10) 

(2.71-11 ) 

(2.71-12) 

2. 71 -1  3) 
two possible K.S.F. tail elimination procedures are possible. 

We may choose to define either: 

Yeell E 	711)74 	(Ph 1 (b)] I I 24- (91,70(— Ch()I*  = Cliot 41P±'  5 (. 7 2 1 -1 (5 	4) 

and: 

or: 

I 	[61$21:< (6) (11 271) lid (bar ± 	?lc( 91--cka)I 

61,,/,(17)1:-= (P1•61,:i“- 	a:11:±  , 
(2.7-1 -15) 

(2.71-16) 

T 
c< 	as defined by 2.71-14 

[1:1. 	1(0 .1 CV1/41  (6)] I (Vie( 	`1-a 

and: 	(F4)1(6)I*---z. c 	I ±. 

1± (2.7 —1 7 ) 

(2-7 -18) 

Now it is easy to derive from 2.71-1 2 and 13 the E.R.: 

$1.0(--  To( 
"..$1 

m)X,I 
(2.71-19) 



. Had we chosen instead: 

= 
then we should have again had two primed covarients: 

and: 

(2.7l-22A)  

(2.7f-23) 

(2.71-24) 

1:4  (POI = (ie,t  — 	ck) I*  

9-/  MI*  = (cfre„ — 9-1 	/-p'• cOI 

11 5. 

so both elimination procedures lead to a pair of linearly 

ineauivalent covarients, one of which is equivalent to zero 

at vanishing q2 , as required. Furthermore, we can similarly 

prove that: 
,./4. 
X Ix 

* 
I 24[01±772.)7c 

ti t 	s  "i 1 
- c - Xc]I 	, (2.71 -20) 

,4, 
from which v may be eliminated in favour of X. . Thus 

both procedures lead to the same K.S.F.. spin decomposition: 

'VN:11,*. ji) Z- [Fi  ($1)(4i:4  Toc- 	F-2.0'7) "I- crap cl-p]i±. (2.71 -21) 
Note that had we chosen: 

b q 	 (2.71-22) 

then we should have had just two primed covarients: 704  OP) 
and (d)14). Only one elimination procedure would then 

± 
have 

been possible, again leading to the covarients 	and 

tit 

These are already non-singular, and the second is equivalent 
2 to zero at vanishing tri,  . They furnish a suitable set of ' 

covarients for the decomposition of the vertex, and in view 

of 2.74 -19 and 20 are equivalent to theizair appearing in 
± 

2. 71 -24 . Finally we consi der the covarient 4(T icio:T) Os_ I which 

also vanishes on contraction with oirc4  . We have: 

(F/61,1) "k I ± e2- (K 	 ( . 71 -25 ) 
and on expanding the right-hand side of this by means of 

equation A3-29, we final: 
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factors we may .choose to use any two of the 

116. 

s,(47)115.1*-f-t- [3Z- -(m±771):t]i±. 	(2.71 -26) 

Thus without introducing kinematical singularities into 

the form-factors, we may choose, if we so desire, to 
,1. 

either cA/c< or 	oc  in favour of &,,,e(riet:/)T5. 

eliminate 

We have so far assumed that the hadrons are non-i denti cal. 

In the identical hadron case F.,..(9,) remains K.S.F., but Fi  (61,-2) 

as defined by 2.74-21 has a kinematic pole at zero 01„2  

This arises because we have tried to eliminate non-existent 

terms. Taking the eaual mass limit of eauations 2.71-9, 40, 

and 44 we have: 

lim T,(6) 7,„ 
m--nt li.  Cpiy(6) --=?' . 	0( 
11+777, 

1 im 94 OD) =  a. Tie  fc  
tvp. kft 

5 (2.71-27) 

(2.71-28) 

(2.71 -29) 

corresponding to the fact that in the identical hadron case, 

(where the vertex is necessarily normal), v4 and l c< both 

vanish on contraction with / c<  . Thus in this special case 

we still have two linearly inequivalent covarients, but these 

now remain ineauivalent in the real photon limit. 

Our equivalence relations read in the identical hadron 

case: 
• cc p  or  274 — 041  

(T fej,7)15v. 2?)-CP!(  —1/2 ot  

appearing in these equations 

iCroz(s9,-) and( a(1)1cliTA.,Tez1  

into the form--

four covarients 

except the pairs (Et#61/1) 75' 7  

These latter correspond to 

pairs of form-factors with kinematic poles at vanishing q2 
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and vanishing 
/2. , s  

(=-14-PC-40 respectively. 

It often proves convenient, particularly in connection 

with =polarised cross-sections for lowest order elastic 

electron-nucleon scattering, to decompose the y-nucleon- 

nucleon vertex in terms of the covarients &c.c(P/Ois- and 'Pal . 

One may avoid poles in the form-factors by explicitly factoring 

out the singular term VIII. . This then forces the form-factors 

to satisfy the "threshold constraint" that they be proportional 
2" to one another at vanishing 10/ 	(the nucleon-antinucleon 

pair-production threshold). 

In this way one arrives at equations 4 .2-3 and 4. 

,± 2.72 (y. 	J 	''-,) VERTICES. 

Assuming that J is non-zero, we have in our previous 

notation: 

N*(1,i.:7T-1--k..) ---  3 	 - 1 
so our general rules yield: 

2.72-1 ) 

We know experimentally that the hadron masses will be 

necessarily uneaual, so we expect to find no exceptions to 

equations 2.72-2. 

In this case we shall choose to operate with c<ict(cl')' 
on a suitable set of covarients for the coupling function 

a, (1 2  -I- 	. Our final set of covarients will then 

remain free of kinematic singularities even when the hadrons 

are allowed to have variable squared mass. 

We may conveniently choose: (9)  

frt odfl  + 	 L  7-- 	 (2.72-3) cp41 	7T 
where: 

pvi 
1504 	X.3  IA  c(.(2.72-4) 
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Then: 	

X/Ite4 (
60 = 	M.-  ckodci") 7 	(2.72-5) 

ih 	/ 1  

X/ W =Ck 	• vt-eVek2-) 	 ( 2 .72-6 )  ittio4 

4/304 (cir) 0/A 	92AI  cl'o< / I-1-  • 	(2.72-7) 

(Again, the 9i are K.S.F. when we set the squared mass of the 

4-  hadron equal to C1,2 and no type B E.R.'s are involved.) 

Bearing in mind once again equation 2.74-42, we have 

just a single linearly inequivalent singular tail in agree-

ment with the second of equations 2.72-1, and we see that a 

suitable tail elimination is achieved by defining: 

Ailt(1„ 	Ve;liotcco—(mirt)x//41',( 0):}i±:,%--/- (911A 	'Otit oe) I ±, ( 2 . 72-8 ) 

/4.11  otE  LA/e/V.2:P; (c0 	• le/;1  ot (CO = f 	 (2.72-9 
/..t 0‹ 

j  (2.72-9) 

1/5410(17-L ci-2.43/K (c0 Cf;2-dti- 	174i cfro4 • 	(2.72-10) 

Thus the decomposition: 

± 	± T-1-12.7)= r (v-) :t" (1,070( 7 	 frt 	1 	 4. 

±G-z(C1;9 8t4,40
;&3 

(1;926‘tticd (2.72-11) 

satisfies the counting rules 2.72-2, and involves only K.S.F. 

form-factors. Without introducing kinematic singularities' 

one could equally well replace p by P' throughout. 

The plus/minus signs in front of G2  and G3  have been 

introduced in order to simplify certain Feynman graphs 

involving this vertex and appearing in Chapter 5. "Tliby allow 

such graphs to be written in a form which is invarient under 

a change of normality of the spin-(J fl particle, to the 

extent that no plus/minus signs are involved. 

A decomposition alternative to that of 2.72-14 is derived 
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÷ 68  (22) 9r, it<1 + 619 W-)Ci?.4 iCtra II 0(  toz (1)  9 I . 
This is only of use if the hadron masses are kept fixed and 

unequal, but it does have the advantage of remaining valid at 

zero J where just .it ( Ti) j disappears. The covarient 
t,e4 1/4  

multiplying 6-9  is equivalent to zero for vanishing 9,2: 

Spin decompositions equivalent to ours have been 

obtained for special cases by Gourdin and Salin,(36) and 

Mathews(37). Bjorken and Walecka(2)  treat the general case, 

but are mainly concerned with the non-covarient approach 

based on helicity "amplitudes". They relate these to the 

covarient form-factors of the previous three authors and these 

latter are related to ours in Appendix 9. 

2.73 TEE NORMAL ( yi  0, J) VERTEX. 

Assuming that J is non-zero we have: 

t\I +(i o ) = z 	N+(o+,0,7)=- 1 7  (2.73-1 ) 
so: 

NI+Ov, olT)= 2. 	Ni-eiR7 0,7)= 1 • (2.73-2) 

2 
t:( ), 7  (1-07N-clef-1  tx 0(  7 

	

c< 	
(2.73-3) 

where: 	 1-1 
 

(2.73-4) --17 	c( 
• 

Xitic,(4141A 	
/1416( 	/4/  

Once again, no problem due to kinematic singularities of the 

1.i arise, and no type B E.R.'s are involved. To save repeat-

ing ourselves, we will state here and now that these same 

observations apply in the following two sections. 

We therefore have: 

in section 2.8. 

A further alternative is provided by the decomposition: 

11± 	Cr 	)
T 1r 

	
E

a  (tAl r ;( 	.7 	" 	7 	/Al 

(2.72-12) 

We may conveniently choose:(9)  
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(q,) = 	— 414,01,2) , /tic' 	fat 
and: 

	

X/41  fee (q) ="- 5/A., 	cfrit  

(2.73-5) 

(2.73-6) 

and on eliminating the singular tail in the only suitable 

manner we obtain the K.S.F. decomposition: 

itr-c (70-T)E--cf-1  ri[togcf-ix Ac4-4.1- Cit,9 ot 	9 	 1" 	 1  

(c1")(cio 	—1.- 9-0j. z 	r, 	 (2.73-7) 
We have denoted the form-factors by the symbols which will 

be used when this vertex appears in Chapter 4. Again, 41 

could equally well be replaced throughout by P". 

jel  For zero J we only have the single primed covarient: 

so eliminating its tail in the only way possible, that is, 

by multiplication by q2, we obtain: 

(fl°9C))=S4(914  (1'6' oc- 	 (2.73-8) 
Alternatively, we can operate with 	a 

-TM on the  
covarients:(-411,0 kckt‘i Gx , vir,„‘ 7  Cfritt Cka l) , 	the final 

covarient arising from C :? " (0 7  .09 I  V)c C  fri Provided the hadron (/.4. c 

masses are kept fixed and. different, this yields the K.S.F. 

decomposition: 

(I 	= (Irpri  [ (c0 CP 	 Ipcill/Plis  (IA)  ot 	 cA 
+ 	9-4/73". et-A 

which automatically reduces in the zero-J case to: 

Ve+0.10 ) = f6(1) (Cka 1.11:Dc<71711' I) • 

2.73-9) 

(2.73-1 0) 
Equations 2.73-8 and 10 agree with the counting rules: 

14(l'Io o)= o / N tT, v  o, o) 
obtained from: 

N1(1 ,0,0)=1= N(0+, o,o)  (2.73-12 ) 

We thus have, apparently, the rather surprising situation that 
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the real photon cannot couple to a pair of spin-zero hadrons 

having different masses but the same normality. This is not 

indicative of a failure of the theory; rather, it should 

be interpreted as a statement that such a coupling cannot 

be described in gauge-invarient fashion with a K.S.P. form-

factor. (Remember that it is only this requirement which 

leads to the second of equations 2.73-10, and only by trying 

to impose it have we forced the coupling to vanish.) The 

coupling can be restored in a gauge-invarient manner provided 

we are willing to postulate that the form-factor has a pole at 

zero CV 2. 
• 

In the equal mass case we apparently have further problems 

due to the vanishing of P". q. But for this very reason it 

will now prove sufficient to use the covarient nt  (c.f. the 

y-nucleon-nucleon vertex). Of course, if one of the hadrons 

is subsequently taken off-shell we lose both gauge-invarience 

and current-conservation. (This applies equally to the 

y-nucleon vertex). However, it is wellknown that such 

problems can generally be overcome, at least for Born-terms 
involving a real photon, by requiring only that the sum of the 

Born-terms in all three channels be gauge-invarient. 

2.74 THE ABNORMAL (y. Ot  J) VERTEX. 

So:  

In this case we have: 

N-(1-.)0 ,Q17-111- T!1  

Ni(e.,0 9  T) 0 , all T . 

fV.,07  OR i NI 	, OA= 0 ,7 =0 

(2.74-1) 

(2.74-2) 

(2. 74-3 ) 
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The decomposition:(9) 

(2.74-4) 

already vanishes on contraction with 94;4  and so a suitable 

K.S.F. decomposition of the corresponding photonic vertex is 

just: 

(tx) .0( o 	r'S 09E (Ack). 	(2.74-5) 
For zero J, no coupling is possible since no frq index is 

available, so equation 2.74-3 is satisfied for all J. 

2.75 THE NORMAL (y, 	J) VERTEX. 

Here we have: 

N+0";11T)= 

and: 	
N+(°4; 1)7)=  

from which it follows that: 

NI.M11T)= 	
7-  =1 1: 

and: 
N+ri  f3, 

7 	2, = 
The counting-rules and spin decomposition for zero J have 
already been given in section 2.73. 

We are going to let 0(4A and (of be the Lorentz indices 

of the respective wave-functions of the photon, spin-I hadron, 

and spin-J hadron, so we may choose:(9)  

(1 o *(-11)T  10a (act) — 

(ft) 	 tAlt4 

( 2 . 75-1 ) 

(2.75-2) 

(2.75-3) 

(2.75-4) 

5  
TMZ 

43-)u" i A,c<0;1,7)= 	>  

and: 	 7  

te?(Cr)7itx (°÷1 - 

 
T):-z: 	r 

where: 1 

=9 	IA 9 0-2,m 

f:: 	al o< 9' c-2  9-tt. 

alcrztto,  (2.75-5) 

(2.75-6) 

(2.75-7,8) 

(2.75-9,10) 
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Cir"Cri 	 (2.75-11 2) 

Yr= cf-cricte,35-1, 
Thus: 

	

(cie) = 	X 6.  gra /Ci,2- 

	

12.k) = 	A.  X  ciPPVel-z  

	

= 	741SCA, 

R /4(9)= 7e4-  X-Ick AC- 

	

g /50-) = 	7c1A, . 

For J equal to unity, 	andiA,  lcj-/ no longer appear. 

and: 

(2.75-1 3) 

(2.75-14) 

(2.75-1 5) 

(2.75-16) 

(2.75-1 7) 

(2.75-18) 

Eliminating the two singular tails, .we deduce the K.S.F. 

spin decompositions: 

v+ 	1 T) 	(9:9X tr) itko< 	. 	 a 	Cr2.14'  
=1 

Vs; 	(r61 1) =)  (2.75-20) 
=112)43  

(1„ 

	

a.z ,=yei5cao —4* i•Ielifel-) Vi-o-Sirtt Aci 	‘5.  a) , ( 2.75-22) 

(2.75-1 9) 

where: 

(2.75-21 ) 

r#50-1 0.ir(=X/20^)-A.1-70(c0=.  5ri t,(%-2,A0c- A.  1- 50-200 

:V1-01 cr2p,t( ci-1.X/ 40-) cl-crs 	0,2  Sic 

4,214,c4=9.27o(c0=45.1140,?-0,04-1-0:ko 
ity,1,2,40  
sA'ciiitt( le'oa IA/  cri °V." 

and: r(96  KCI"a- c-1-X120') th 	2 

(2.75-23) 

(2.75-24) 

(2.75-25) 

(2.75-26) 

(2.75-27) 

(2.75-28) 



in terms of the five covarients: 

X69! (P9 , and X7C1,c (P/1). 

x" (F9 , "P9 , x'F'OD) 
These final two covarients then 

124. 

No special problems arise for identical hadrons, 

equations 2.75-20, 24, 22, 24, 26, and 28 still providing a 

perfectly valid decomposition in this case. 

As usual, Am  may be replaced throughout by Pa , and 

having made this substitution in 2.75-8 and 41, one may 
choose for fixed unequal hadron masses to decompose instead 

vanish at zero q2, :yel(9does not appear to J equal to 

unity or zero, and gi3fr19 and X6019dis appear as well for 

zero J. 

2.76 THE ABNORMAL (y,i,J) VERTEX. 

 

In this case we have: 

 

and: 

SO: 

 

(2.76-4) 

(2.76-2) 

(2.76-3) 

(2.76-4) 

The zero J case has already been treated in section 2.74. 
We have some type B equivalence theorems here. With 

Lorentz indices defined as in section 2.75, and writing:(9)  

(1117v-m—ciportc: 	0,1,4 r)Tlit 0( 	 oy, (2.76-5) 
f 

we have seven "obvious" covarients in terms of whichecccsittral,y) 

can be decompoSed, namely: 

(2.76-6,7) 

t2-2-  iidte4c71Ncpir,. 	 cowl  (9-6) 	
(2.76-8,9) 
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1". Cri cle Ci' 6') crag  7 (2.76-10,11 ) 

(2.76-12) 

The tildes denote those covarients which vanish on contrac- 

tion with 5,04 . Only certain sets of four of these seven co- 

varients are linearly inequivalent, three type B E.R. t s 

being operative. Equation A3-11 yields: 
6 X -114  X (2.76-7) 

whilst from A3-12 we deduce: 

(2.76-8) 

and: 
NJ 2.  hi e. 

X 7+A.  Cie, X5  '24 E X tV (2.76-9) 

The gauge projection operation yields: 

	

AI. 	
(2.76-10) 

gm(c0 =X6 	9944A, 	 (2.76-11) 

girr(c0 7=  Le —Ai cleJecked1-2. 	 (2. 76-1 2 ) 

where 
=&/4.0049-0.-2. 

The single singular tail may be eliminated in two possible 
ways. The most useful elimination is provided by: 

gtr-5 cl-ltkh(91) 7:" L. fit, &fro;ol (A)  (2.76-1 4) 

SC 5:-  (X/C(cfP)X/30-) = 6; Of A) Joie< E , (A) ck 	(2.76-15) 

tri2 X17  (q,) 	01,Xl (ci-)--:{E (1- 	cr°1-fro-;0((6.11-6..,4 2.76-1 6 ) 

and 

Iv 	(N.) 12_ x$ x+o. c1r ± 



and the three equivalence relations then read: 

=‘/C (2.76-17) 

(2.76-18) 

5 

2, 	5 
A•CI,_X + 
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and: 

We may 

NZ tr 
+ X • 

.., g ,-...6 	nJ7  
eliminate X 5 IR and Zwithout 

riej-C="-A 
(2.76-19) 

the introduction 

of kinematic singularities, yielding the spin decomposition: 
4-  

(f, I U-) = 0-) > 	 P.(coxi, cfr)' 	 1A.c4 	c-0-) 01 04  - 
g=1 

(2.76-20) 

This is a particularly useful expression in that it holds for 

all J (including zero), and remains valid both for variable 

and for equal masses. In agreement with our counting rules: 
••••..f 
X vanishes for zero q2  and disappears for zero J, X also 

eV* 
disappears for zero J, and X disappears for J less than two. 

n.• 1 

For zero J, ye is the same covarient as was derived in 
section 2.74. 

2.8. COVARIENT DERIVATION, IN"--TERMS OF FORM-FACTORS,. OF AN  
UNPOLARISED CROSS-SECTION INVOLVING THE (y, 	J + *y 
VERTEX. 

We consider here the unpolarised cross-section for the 

process: electron + 	hadron --->. electron + spin-(J + 

hadron, treated to loihest (i.e. second) quantum electro- 

dynamical order, and in the approximation that the hadrons 

are treated as stable particles. 

This problem has already been considered by a number. of 

authors,(2)(38)(39)  but their methods tend to be somewhat 

awkward involving various non-covarient operations and a 

certain amount of trial and error in order to arrive at an 

initial vertex decomposition which will lead to a final 

expression free of cross-terms between different form-factors. 

We shall repeat the calculation making use of the contracted 

N 
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forward propogators of section 2.2 together with equations 

A3-22 to 26. These allow us to compute the cross-section 

very simply and in a fully covarient manner. Moreover, we 

are able to deduce the required initial vertex decomposition. 

The momenta (masses) of the initial electron, final 

electron, initial hadron, and final hadron are defined to be: 

Ch(nle),  1+(271e) ,t(771) and K(M) respectively. The momentum 
of the virtual photon is defined by: 

clez  • 	 (2.8-1) 
It is assumed that the reader knows how to calculate to 

c-R7= 
second order the unpolarised cross-section(38) given 

5- 
the squared modulus of the second-order T-matrix element 

averaged over initial helicities and summed over final 

helicities. Thus we shall only compute this latter quantity. 

If 704(x) and i,g(X) denote respectively the hadronic 
and electronic electromagnetic current operators, we have in 

view of the hermiticity of these quantities: 

where: 

HI1̀1><cfrilje(01`Q 5  
and: 	

--z . --r<KITo((")I-PX'id"Tp(°)1 K> . 

We have: 
	jot gi'4> 	i:(cK)itx *1'1 

(2.8-2) 

(2.8-3) 

(2.8-4) 

(2.8-5) 
and we define, (factoring out the electronic charge); 

<K 17c,, C0)1 	e (07. (K )1/(fithr-c<  "U (9 . 	(2.8-6) 

The lower (upper) case u's are the electron (hadron) wave-

functions, and the plus/minus sign on Tv-c<  indicates the 

overall normality of that vertex. 
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Hence: 
b tr 	M,1  r,2 s)  T (91,. ±,4 op 2   (2.8-7) 

and: 

Tos =1z 	( 
e br br± Qc  (g + 77)7 M± 

 
11-) 	I 	cvf ()7  VV.] 	( 2. 8-8) 

where as usual: 
ty ir ,,- F.:11 11± -4.-  v 	 (2.8-9) CO - 	0 	 ) . 0 a • 

So: 

boce= e,{2  (911 c cir.2 p + c6, AP + cl" 0  p] (2.8-10) , 

and since this tensor turns out to be symmetric, only the 

symmetric part of T need be calculated. We note as a check up 
that: 

(2.8-11) 

as required by current conservation. 

Instead of calculating Tap directly from 2.8-8, it is 

convenient as an intermediate step to use a computational 

trick due to von Gehlen. (39) One performs a decomposition, 

into kinematic covarients and form-factors, of that part of 

Tap which is symmetric and, (in view of 2.8-11),contains no 

overall factors of qa  or qp. In this case two form-factors 

will be involved, and these can depend only on q2. The simplest 

pair of kinematic covarients are gal3 
 and pa pP5 but we wish 

to satisfy the current-conservation eauation: 

ChATcxp= 0 = -Te,r9T 	 (2.8-12) 

so in the spirit of our previous discussions we write: 

0,-)[T,1  (.2)9,4/(6,  T2(9,)ti 	14(1(50-) 

r- T10-") 	+1; (cr) 	 cr  
cf-a 	 ci;h4  )(p 	 

2 . 8 3) 

This is only an intermediate step in the calculation, and we 

shall not need to make any postulates about the analytic 
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structure of the Ti,2(q
2); it will not therefore be necessary 

to eliminate the singular tails from 2.8-13. The gauge-

projection operators in the first equality of 2.8-13 only 

become important when we relate the form-factors of the 
, 

hadronic vertex to the T1,2  (q
2  ). As far as relating these 

latter to the cross-section is concerned, we have from 2.8-11 

that: 

tir (ca t(ct) (sp 	t(1 pi 

so we deduce immediately that: 

(2.8-14) 

E 	ITN!' = 4 (e4/9,9 	9-1.41-7-Yr; i 

÷ 0°' 9-11) 9-z± ft- In11-2.)-T-2-(9-').] 	(2.8-15) 

Note this well know (2)n' • result that the dynamics of the lowest 

order unpolarised cross-section is parameterised entirely by 

two scalar functions of q2. These will be linear combinations 

of the three (in general complex) form-factors parameterising 

the dynamics of the hadronic vertex. Thus only a limited 

amount of information about these latter form-factors is avail-

able from a study of this particular class of cross-sections. 

The power of the von Gehlen trick now becomes clear: 

we only have to calculate any two independent components of 
sYm 

the tensor T p 	. We shall choose to keep the calc13ation 
S)1.1 	S" covarient by computing pc47 and &isT  c<(3 • Relating 

these quantities to Ti  and T2  by means of the second eauality 

of 2.8-13 we have: 

and: 

"r 	1  (io — sym) 
' 	oc 04p (4 	we,13 cx(3 

- 	(3 -NT :Tit: 'PrL 4'5' 0((s-rosy3vm  

( 2. 8-16) 

(2.8—i7) 
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(2.8-18) 

(2.8-19) 

where: 

From 2.8-8 it follows that: 
L  -r- SYM 

Tc< 	c((z 	
= 

z " Urec v (p)70<ff ÷271) re,  vort-s v -(3 ); crF LK )i 

and: syr.4  
OtTToc = J-2  pr( ,z_r<  

' 

in terms of the G1 ,2,3 ( 0,2 )  of section 2.72, then yields the 

unpolarised cross-section in terms of these form-factors. One 

soon sees, however, that the expression is going to invove 

cross terms of the form G. G.j  between the various pairs of 

different form-factors. In order to obtain an expression 

involving only the squared moduli of form-factors, we must 

look for a more suitable decomposition of the hadronic vertex. 
Consider the covarients: /10,7-1& r(ct..)E-ahl 	ll41 	1,711-5 I 

and Orrri  Ela te< (11,-)15.1 	. These are linearly ine qu iv alent , 

vanish on contraction with qa , and have the correct parity 

behaviour. In addition they all vanish on contraction with 
pa , and will not therefore contribute to 1:),,(7a tys . They 

sy'm will give rise to cross-terms in 30c(s-roep  between their 

own respective form-factors, but not between these and a _ 

form-factor corresponding to any additional covarient involv-

ing a factor of the form: (ape  + cqa ). This latter covarient 

should be linearly eauivalent to a combination of the fonner 

three; should vanish on contraction with qa; should have the 

required parity behaviour; and to satisfy the counting-rules, 

should be eauivalent to zero at vanishing q2. A suitable co- 

varient is furnished in: (cirt,70,• 41crpor 121:0 I 	We can thus 

usefully choose to use this covarient and any two of the pre-

vious three. Since we shall ultimately wish to relate the 

covarients we pick to those appearing in eauation 2.72-11, we 

( 
(v)7, Q07-(1411 . (2. 8-20) 

sm Using these equations to compute 104-r a3 12(z  and 0,,e07 „ey  r  
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ty 
shall choose to leave out: KerlEtkit4(11,.)05.1 

T± 
. Of the 

above four covarients, this one has the most complicated 

expansion, (equation A3-27), in terms of those of 2.72-11. 

In order to eliminate the remaining cross-terms, we shall 

	

multiply (-1)744 (H:1)1g 	and Op/hr.-1;u, ry )E0-04 (1) 
by an as yet undetermined pair of linear combinations of the 

same pair of form-factors. Thus we write: 

111(±1,O7 X .S-: (611-1Ar-1 [G-4(57)✓14:- 1 K + (Ct• (9P2-) + 6 6-6 (939) (4, 

6-5 (60-) d (6):'Yzeik6i odi 

‘‘21-  rio‘ 
r*16- 	(-11-) piCr 
(`-/ 6 

1A1a. 	c< 
and a,b,c,d are scalar constants, (which may be complex), to 

be determined so that cross-terms between G5 and G6 vanish. 

We then have: 

	

;1'— 0,„1- 1 I* {6-* 	+ (oY" 6-* + 6*6-:  (07(6 	4 v, is  
2.8-25) 

T oscF I' 13 = 4. 12.16.4-12. {("/± in) P°74- va($-Ict-; l'CY1 (2.8-26) 

-r-c7P4 	bi-- 	16-24-12 	irt) F7+ rz (9'194 K) 

+la, G-6.-)- 6G.6 Efr, 	c-) 	(11,-)Evrr (te0E-ra (11-) 06±7r1)43:7; 4-11:619-; 
4. (a G-s-+ b 6-c ) (c* G-, d6-6 )Epir 	41,)('d: 771 )15 E„( 9,2) x 
X FT+1 /2- (6/, 	K) -4- (C, G-s-÷ d G'‘)(Ck-/C. 6P± V& .29 Ea (t`,7) 215 (*± 270x 

x8v ,c 	~ec (tar)63;,7; (chc1,-; K.) + `c + 	12 E ck (top) x 

x 	Pt) (11,'0 a' 7+ 'A (95 cle;  
(2.8-27) 

where: 

(2.8-21) 

(2.8-22) 

(2.8-23) 

(2.8-24) 

SO: 

and: 



Pfrt i  9 etrtA. Kr, 7  "t)  V ) 151,- y i 	and I'S v, . 
( 9 ) have from Scadron's paper: 

For our purposes we then 
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where: 

= 
(2.8-28) 

Now all freed indices in the partially contracted forward 

propogators are contracted with quantities of the fonms: E/A .(t1,) 

and Ely (11-) . Thus we can immediately drop from these 

propogators all terms involving at least one of the factors: 

r 7-1-1/10',$;1'02:-  Cq--PriZ(I +M) 
	

(2.8-29) 

P ;t4+11:0,,q,;1 2-- )--1.c7+1 7-1  54- (K)O'-M)//, 	(2.8-30) 

vi ; 
	 (2.8-31 ) 

and: noZ-2. 	,A,v  :1_ e- 	•2.0,  -4-- r 
v  tit (9'9 	/ 	1 ‘2 	L(4-+ ) 	( 11M-  M) 

-1- Li (w-m)T I J 
	

(2.8-32) 

where 
= 5.1/fri2  . 	(2.8-33) 

Next, we deduce from equations A3-22, 24, 25, and 26 that: 

	

04 E 	C-)$.7) = 22 5 I  .) 

	

r 	q-) E0411-7) E (11,7) 2 %S# 1V71--  9- 

Etta- ef E croc(VI-) wdfrct,-F-ctk (-1) 60 = 2:54 7-
and: 

aC 	(t Ea o-(1'40 ET  (t 61,-7)Er01,-7) 

(2.8-34) 

(2.8-35) 

(2.8-36) 

(2.8-37) 

Finally we notice that &.frcri)anti-commutes with and,  

and therefore with 

Computation of the traces in 2.8-26 and 27 is now trivial, 

and we find: 

15,4  -,
I
-c4Sm • = 	-/ Z+2, r 

(L T(6 	 1.04+ 4 -- 91 1 G-41 
(2.8-38) 
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sv-r4 whilst the condition that ot  1- 	be free of cross-terns t cgp 

between G5 and G6 turns out to be: 

Ma= - 2c, b = o, d arbitrary. 	(2.8-39) 

In 2.8-38 we have replaced M by a new variable, N, defined by: 

	

N 	nM, (2.8-40) =  

where n is the normality of the hadronic vertex. This removes 

a plus/minus sign from this equation, and also from 2.8-43, 
SY 

44, 45, 49, 50, and 51. The simplest expression for 9 w(6 1--r-  (3M  

results from the choice: 

a = S+Z 	6-0 	c4 = 	(2.8-41) . 9 
We choose to introduce an overall plus/minus sign into the 

definition of the vertex, again in order to remove similar 

signs from subsequent eouations. We then have: 

ftlgx)v-r4 = ± (9,-p  r1  {6-4(v-y-xi,1 „ 

	

-1,-juTz cr, (9:)(m 	 4- m (v):*/,11± 	(2.8-42) 

and: 
qv(  r5- S46,4=  —NC1r;i-i 	[0,44, 	oil [cp. 1 G,412 

	

+z r\ 4(0 6-A2.4- 1G-6  12)1 . 	(2.8-43) 

Equations 2.8-16, 17, 38, and 43 together yield: 

      

 

I  N244---1)  

  

2.8-44) 

and: 

  

5/Tcl,[o\i-1-7nr--1-1[111(74.1I-- Nz(r G-sr- 	12)] 
(2.8-45) 

which in conjunction with 2.8-15 express 	I-T(1z  in terns 
5" 4,  

of the linearly independent combinations of form-factors: 

CI,  16-Al 	and (1&512+  16'611 . 

It remains to determine Gh  
'1-, 5 1 6 in terms of the G12, 3 
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From A3-18: 

(ir‘85-= +.(11.1-171:2-±c1-7)X2+÷e±in-7--60gI. 

(2.8-46) 

(2.8-47) 
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of section 2.72. We immediately have: 

Equation A3-29 and the. Dirac equation together yield: 

(2.8-L.8) 

Thus: 

2 	/G-4, 	N 	(te+ 	61,..")(7, - (Nz 	c-2)63 , 	(2.8-49) 

4 	r G5=--2(N-7n)G~ --(NZ 7727-- el,$)62 21,63 	(2.8-50) 

.4.N516-6=2{9,..2-+in.(N-7n)jG-i+N(N-1-7)1,-ei.:96,2., -2 Nict.s.G.s 	(2.8-51) 

and irrespective of the normality of the hadronic vertex, the 

G4 5,6 each have kinematic poles at: 

(mom nir 	 (2.8-52) 

and at: 
(2.8-53) 

As usual one may substitute threshold constraints for 

these poles by explicitly exhibiting a double-pole factor 01 

on the right-hand side of the definition 2.8-42. 
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CHAPTER 3  

OFF-SHELL SUPERCONVERGENT SUE-RULES AND THEIR SATURATION. 

3.1 INTRODUCTION AND BASIC ASSUMPTIONS;- DERIVATION  OF 
SUE-RUTES.  

The superconvergence programme reviewed in section 1.3 

was only applicable to scattering processes involving two 

initial and two final on-shell hadrons and/or real photons. 

We saw in section 1.4 that it would be useful to try to extend 

such a programme to four-point functions, (as discussed in 

section 2.6), involving three on-shell hadrons and a virtual 

photon. In this chapter we discuss the additional assumptions 

needed to make such an extension possible. 

Although our arguments will be obviously much more 

general, we restrict for the- sake of definiteness to the four-

point function corresponding to the "interaction": virtual 

photon + baryon baryon 4- meson. Such a four-point function 

will arise when we treat to lowest quantum electrOdynamical 

order the process: lepton + baryon-÷identical lepton 

baryon + meson. 

Following section 2.6 we define the s, t, and u channels 

of the four-point function, and then perfoim a decomposition 

into invarient amplitude's or, more strictly, three-variable 

form-factors. Let us assume for the moment that these continue 

to satisfy the crossing rules 2.41-44 and 2.42-4. We then 

postulate that the high sub-energy, (i.e. s), asymptotic 

behaviour of these amplitudes is determined by exchanged, 

(i.e. t-channel intermediate), Regge trajectories. We further 

postulate that the only trajectories which appear are those 

which wouldhavebeen involved had the photon been real. 

Let us be a little more specific. The process: lepton + 

"anti"-meson--lepton + baryon + antibaryon is treated to 
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second quantum eletrodynamical order, and we perform a 

partial-wave expansion in terms of the relative total angular 

momentum between the baryon and the anti-baryon. We keep 

fixed the difference between this quantity and the total 

angular momentum of the three final particles. A Sommerfeld-

Watson transformation is performed, and the contour is expanded 

in the usual way. Our assumption is then that the only additional 

singularities picked up are those which would have been encoun-

tered had the photon been on-shell. In the language of the 

covaricnt formalism this corresponds to the calculation of 

t-channel graphs of the form: virtual photon "anti"-meson--* 

strong interaction Reggeon--4,-baryon anti-baryon. The 

process as a whole may well involve additional Regge trajec-

tories of purely electrodynamical origin, but it is assumed 

that these will only manifest themselves in a partial-wave 

decomposition in terms of that angular momentum which we have 

held constant. 

To justify this we argue that the invarient amplitudes 

for the four-point function are each the product of an overall 

"scale factor" and a function of the three "Mandelstam" 

variables. The former represents the coupling of the electro- 

magnetic lepton current to the bare hadrons, whilst the latter 

describes the strong and radiative corrections to this coupling. 

The strong interaction corrections presumably dominate over 

the radiative ones so it is not unreasonable to assume that 

the highsub-energy asymptotic behaviour of these functions, 

and therefore of the invarient amplitudes themselves, is 

determined by some characteristic behaviour of the strong 

interaction, namely the existence of the strong interaction 

Regge poles. It is hard to see how any purely electrodynamical 

Regge trajectories can be involved without these continuing to 
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manifest themselves when we extrapolate to the real photon 

limit. 

Having postulated a method whereby we can determine the 

high sub-energy asymptotic behaviour of the amplitudes, we 

have to see whether the statement that an amplitude super-

converges can be converted into a useful sum-rule. This 

requires that we know the analytic structure of the amplitude 

as a function of the sub-energy, and have a prescription for 

computing, at least approximately, the discontinuity across its 

cuts. If our previous postulate is to be meaningful we must 

also be sure that the amplitudes indeed satisfy the same 

sl t,u crossing relations as would be operative were the photon 

on-shell. 

(40 There are two ways of proceeding. Following Chew et. al; 

we may say that since s,t, and q2 are independent variables, 

the s,t,u crossing rules and analytic structure should remain 

unchanged when we take the zero q2 limit. They are therefore 

the same whether the photon is real or virtual, apart from 

slight kinematic modifications in the latter case due to the 

sum of s,t, and u being linearly dependent on the variable q2. 

In particular, the cuts are to be calculated by extrapolation 

to non-vanishing q2 of those unitarity relations which hold 

when the photon is on-shell. Essentially, this is just a 

statement that the strong-interaction does not distinguish 

between real and virtual photons. Our off-shell superconver-

-gence programme is then to be carried out in direct analogy 

with the corresponding on-shell programme for a real photon. 

Alternatively, we may try to apply general S-matrix 

theory arguments to the overall five-particle scattering 

process treated non-perturbatively. We first postulate that 



138. 

there exists for this process a unitary S-operator and a 

corresponding T-operator defined in the usual way. Matrix 

elements of this latter operator may certainly be decomposed 

into invarient amplitudes and kinematic covarients since 

this is a purely kinematic and group-theoretic operation. 

These invarient amplitudes are then postulated 

1) to satisfy the obvious generalisations of the crossing 

rules fOr four-particle T-matrix elements and 

2) to be analytic functions of the renormalised electronic 

charge at the point where that quantity vanishes. The 

assumptions of the previous paragraph may then be deduced as 

a consequence of these three postulates and a comparison with 

the field-theoretic perturbation expansion. This is demon-

strated in the following section. 

3.2 THE ANALYTIC STRUCTURE OF VIRTUAL,.-PROTONIC FOUR-POINT  
FUNCTIONSL  SATURATION OF SUM-RULES. 

In this section we are motivated by some ideas of Dresden 

and Chou(1) concerning an S-matrix theory of quantum 

electrodynamics, but we shall apply them to reactions between 

arbitrary numbers of initial and final particles which involve 

both electromagnetic and strong interactions. We shall be 

concerned with electromagnetic interactions between leptons 

and hadrons which are modified by the strong interactions of 

these latter particles. We postulate that even though such 

reactions are primarily electromagnetic, they may be described 

by the relevant matrix elements, Sfi, of a unitary operator S, 

in the same way that one describes purely strong interactions. 

A T-matrix may then be defined in the usual way by: 

(3.2-1) 
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where pi; and pi  are respectively the total final and total 
initial momenta, and we further postulate that Tfi may be 

expanded in a power series in e, the magnitude of the 

renormalised electronic charge: 

TN)  (3.2-2) 
92_o 

and is therefore analytic in e in a region surrounding the 

point where e vanishes. As usual we factor out the helicity 

dependence of Tfi  by defining an M-function (Lorentz tensor-

spinor) by: 

T -s TO-Y.11:4) W , 	 (3.2-3) 

and decompose M into invarient amplitudes, Ai, depending on 

suitably defined generalised Mandelstam variables, according 

to: 
, 

In these equations (1-?( and (1)(1) stand symbolically for 

the Rarita-Schwinger wave-functions of the initial and final 

particles, colons denote contraction over (suppressed) 

Lorentz indices, .and the (A. are kinematic basis covarients 
having the same Lorentz transformation properties as M. 

Since Tfi 	i . 	f and T(11)  involve the same external particles 

we then have: 

and: 

where: 

and: 

-ran)  = TV: M(14) : (J)(i) 
M(14)=EAVZ i/  

03 
M z E M (11) 

n=0 ,0  
Ai enA 

(3.2-5) 

(3.2-6) 

(3.2-7) 

(3.2-8) 

Equations 3.2-2, 7, and 8 differ from the corresponding.ones 

in Dresden and Chou's theory in that due to the presence of 

ea 
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strong as well as electromagnetic interactions, we no longer 

havethatTinW0),and0°)  necessarily vanish. This 

turns out to be crucial to our argument. 

In view of the postulated unitarity of S we have: 

2. Im Ts  = 

= - 	-TN) T4TN z )  
where-N denotes the total momentum of the "intermediate 

state" labelled by N. After expanding both sides of this 

equation by means of 3.2-2, our postulate of analyticity in 

e at zero e enables us to eauate coefficients of en  obtaining: 

CM) Tcn- 770-X- 
1/ t4  f LN 

N ra=0 

(3.2-9) 

N PV --0 
By further postulating that T om;  is hermitian analytic: 

1(l r 
••••• 

(3.2-10) 

where: 

	

TfI!(v) = 	(v) 

T± T e 

	

f e 	" 

( 3 . 2-1 ) 

(3.2-12) 

V denotes the total energy Mandelstam variable, and W denotes 

the remaining linearly independent Mandelstam variables, we 

similarly obtain: 

T (11) *(v)= 	(v) 	 (3.2-13) 
Defining: 

cl 	cv 	(v) "1-4" (v) Tiv-(v) , 	( 3 . 2 -1 
equations 3.2-9 and 10 respectively may then be written: 

disc -Ti4v)==- 	4ftz; 10-4M-T:176/.) 	(3.2-1 

and: 

d s cv-rf (i,n)  = 7.1 	' 	Cvi „,(7" (v) . 
N 	 fN 	

(3.2-16) 
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Next, if f 	denote the momenta of the 

initial particles, and 	are the momenta of 

the final particles, we postulate the crossing relation: 

M (96c4)-95-S;TIP-).1)k,•••3tr)::  

where: 

(3.2-17) = Z " (6tri , * * *1—:Fh, 7 " '9 9/.5' ; ti 7 - *5":61-1, •, ,* * 1"r) 

T
L 4. 1 for BB and FB crossing, 

- 1 for FF crossing. (3.2-1 8) 

We then obtain from 3.2-7: 

A› (11')(61cker**7%;1'17-'71)rel-,11-/ - 

4 	 NT "'IPS ;1)1 	7* 	r) • ( 3 	9  ) 

Thus if our initial postulates are correct, we now have 

unitarity, hermitian analyticity, and crossing relations on 

our -1-(91')  and these are exact to all orders in e. 
Finally we connect with field theoretic perturbation 

thedry of the electromagnetic interaction, by assuming that 

nT"  e 	may be partially computed, using our arbitrary spin 

Feynman rules by taking the sum of all topologically different 

graphs involving En-j) virtual-photon propogators, where j is 

the number of external (real) photons. These graphs are to 

be such that they connect the external particle lines by means 

only of: virtual-photon propogators, virtual-lepton propogators, 

lepton-photon-lepton vertices, many hadron vertices, and many 

hadron-many photon vertices. Each vertex is to carry one 

Power of e for each real or virtual photon coupled to it. This 

is a fairly natural assumption since we have made a series 

expansion of Tfi in powers of e, but are continuing to treat 

its strong interaction structure non-perturbatively. 

We further assume that en  1 7z.)  has a (Born-term) pole at --( 
V = m2 if any of the hadronic or hadronic-photonic vertices 



142. 

involved in its computation can be subdivided into a pair of 

vertices connected only by an on-shell, stable, single- 

particle intermediate state with mass m and squared four- 

momentum V. Here, V is again any one of the Mandelstam 

variables involved. 

We now specialise to the process in which we are interested, 

namely: -electron (o m ) + nucleon (p,m)--->electron 
e 	 (q2, me)  

nucleon (pe ,m) + meson (kqk), where the first and second 

quantities in the parentheses following each particle are 

respectively the momentum and mass of that particle. Let 

the set 	p2, P3/  p,  P5/  be any permutation of the set 

f
ql , p, - q2, - p', - 	. Then since the external particles 

are on shell we can construct ten variable scalar products, 

namely: 

i 	= 1, 2.)z,11-)5. (3.2-20) 

Thus we have ten Mandelstam variables: 

sl 	ti 	PJ)2 
	

(3.2-2I ) 

and therefore expect that the crossing relation (3.2-1 7) 
should relate the M-function for our basic process to nine 

other processes. This indeed turns out to be the case, since 

we may define the following ten channels and corresponding' 

total energy Mandelstam variables. 

Channel 	Mandelstam variable  

I) 	eN -4. eliM 	 S 	= 	(p 	II )2 

2) e e --3,1711M 	a 2 
	

E 	(q1 - q2) 2 

3) eN  

	

--* eITM 	U 	= 

4) 0 --> eN7 	T 

5) eN -4,,  UM 	u' 	. 

6) fir, .---› Cal 	 t 	E 	(p - p')2 

(q, 

(Q, 

(P 

- 	P1 )2.  

- k. 	 )2-  

- Q2) 2 
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7) 171.1\1—> eNU 	.0 	(P - k)2 

8) "6.1q—>- e TM 	 t' 	(p' 	q2 )2  

9) --- e Z.17 	 s 	E.-: 	(p' 	k)2  

1 0) 	Elq 	*GN:77, 	 a 	(q2 	k)2  

(3.2-22) 

Channel 0) is our basic reaction, (2) to (7) are obtained 

by crossing a single pair of particles, and (8) to (40) by 

crossing two pairs of particles. 

Only correctly chosen sets of five Mandelstam variables 

are linearly independent, since momentum conservation states: 

	

P1 	P2 4. P3 4. P4 = - P5 	 (3.2-23) 

	

This allows us to express each of the S 	S 	S35,and S45 15' 25'  
in terms of the S1 2'  S1 3' 8  and S34. But these 14' S23, 624'  
latter six variables are related according to: 

Saa 	S13 S124-+ Sz$+ s2.4-+ 4-= 2-04-174-m:12:1- 2i  +74120+ ms , 	(3.2-24) 
so only any five of them are linearly independent. Equation 

3.2-24 is obtained by taking the scalar product of each side 

of 3,2-23 with itself. On subtracting p4  from both sides of 

3.2-23 and again squaring the result we obtain a second useful 

constraint equation: 

sis+ S2,5+ 	= 	÷ (MN- 74,1 ÷ 7q- ) 	(3.2-25) 

In particular, from 3.2-2/4  we may derive: 

,g+11+ rt S +14 = 4-7e+21,4-2.+711.e 	(3.2-26) 

	

--1  1F7n: 	(3.2-27) 

and: 

Sit 11;4' u! 	u. 	3772,1-1-2.e+brmez 	 (3.2-28) 



whilst 3.2-25 yields amongst other things: 

S-Ft-i-u,r-cf,2"-1-27722-1-/A.7" 	
(3.2-29) 

and: 

(3.2-30) 

Thus for instance we may choose as our five linearly 

independent Mandeistam variables any one of the sets: 14E,CA;70,U19  

fiC,Y1'21 -'} 	and  {iSC f7 T, IAI3 
	

The discontinuity 

of a given amplitude in s when any two of t,u, a
2 are held 

constant'is then related to the corresponding discontinuity in 

S by: 

discs  A(s,E,/,‘,21, U) = 	1,5  T, TX) , 	(3.2-31 ) 

discs  A (s, 	coA (0, t',(1.7  Dr, 	(3.2-32) 

discs  A (S2 IA,cf,-; 	=i SCAS', Vv79?rr9 	. 	(3.2-33) 

The discontinuities in t and u are similarly determined once 

one knows the corresponding ones in T and U 

The S, T, and U -channels of our overall process are 
shown graphically in figures 3.2-1a, b, and c. In figures 

3.2-2a, b, and c we show the only possible graphs contributing 

to the corresponding 
e2T(2) for each of these three channels. 

Suppressing the Lorentz indices of the hadronic wave-

functions, we have: 

eMN(41/2.71';k;c1417t) 

et ivi'2kcfrz,1K--F;q46-1;)- 

e2 

,14,(ch,ek;cti%)  tvio, (ip. 1, k; 	cle.) cr 

ci) 

(3.2-34) 

(3.2-35) 

(3.2-36) 
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S-channel of T 	 S-channel of e2T(2)  

Fip,ure .3.21b 
T-channel of T 

Figure 3.2-2b 
T-channel of e2T(2) 

 

I 

Figure 3.2-1c 
U-channel of T 

 

FiEure 3.2-2c 
2 (2) U-channel of e T 

  

   



146. 

where ev" and the Ma are the respective vertex functions for 

the leptonic and hadronic vertices. These equations are 

subject to the spinor ordering convention that in each channel 

'Oa  is to be sandwiched between the lepton spinors and Ma  

between the baryon spinors. 

The vertex functions At%
a 
 and Ma 

can only depend respectively 

on q2 and on any three of s,t,u, and q
2 so we note that the 

M(2) depend on only three linearly independent Mandelstam 

variables. The dependence of the Overall M-function on a 

further pair of variables only arises from terms of higher 

order in e. 

Equations 3.2-18, 19, 34, 35, and 36 together imply that: 

1\104(tliz;1Y1)r-  Mc4(fC--173 —T179-)=—' 	 (3.2-37) 
Thus the Ma  satisfy the same crossing rule as would obtain 

were the virtual photon propogator replaced by a real photon 

wave-function. We may therefore perform a channel independent 

spin decomposition: 

fvl.= EA (6, yc.-4) (3.2-38) 
as detailed in section 2.6, and conclude that the S,T,U 

channels of e2M(2)  are given by taking the s,t,u physical.  

sectors of the A 
i e  

Let us now specialise to the case in which we are 

interested where both the baryons are nucleons. 
2m  (2) The Born-term poles of the three e 	are shown in 

figures 3.2-3a,b, and c. These endow the A with poles at: 

S =le 	&=frt 	ix= 7-41- 	
(3.2-39) 
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Figure_3.2=3a 
Born-term pole at 

s=m
2  in  e2T(2) 

Figurt3.2-_To 

Born-term pole at. 
2 in e T 2 (7) 

Figure-3.2c 

Born-term pole  .at 
2 	2 (2') u=m in e T 

Fi7uro_3.2-4 
A disallowed contribution 

to e2T(-6-)±(S)-17M:(S). fN 	Ni 

Figure  3.2-51 Graphical realisation of equation 	 



as would have been the case had the photon been real. 

Turning finally to the unitarity relations, we have on 

applying 3.2-16 in the S-channel: 

CitSC0112:2(,5)= —Tli-(1)i-IN)[-Irtr(g)T 2):(51) 

+T 6)N  th(15) TNT's') T (c„,)±()T (;,):(1s9] 
In partially computing the right-hand side of 

vN--  e have to observe the following constraints. 

(3.2-40) 

this equation 

Firstly, T(2)  fi 
vanishes-by definition unless q1  and 02  are unequal. Secondly, 

the "intermediate states" cannot involve any virtual particles. 

Thirdly, since we are assuming the absence of weak interactions, 

hadrons and leptons can only be coupled via virtual photon 

propogators. Finally, we must everywhere satisfy the momentum-

mass inequality: 

(1/3) 

These 

3.2-40 to graphs with the structure shown in figure 3.2-5, 

all of which arise from the term 1F(c9V-1=9) 
514  

figure the symbol—t— denotes a multiparticle "intermediate 

state" with baryon number one and lepton number zero. 

Denoting by:  	a similar intermediate state with 

baryon number zero, we show in figure 3.2-4 another graph 

apparently having the general structure: ir($1)70. 

If our final meson is a pion 3.2-hi implies that the s tate 

is also a pion in which case I c  Winvolves no interaction 

and vanishes. In cases where the final meson is a resonance, 

47=4= could certainly be any multiparticle state into which 

it is observed to decay and 3.2-44 would then be satisfied. 

However, if the resonance decays electromagnetically into 

this state the right-hand vertex must implicitly involve a 

(2:7701  3 	all pj  equal, 

›(>77-Vii)g otherwise. 	(3.2-41 ) 
1 

constraints serve to limit the right-hand side of 

In this 
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virtual photon propogator. The graph then contirbutes to 

Trt4±MT(1,42-)i76), not to 71)*(g17(270). If the resonance N 

is observed to possess any strong decay modes it is doubtful 

if we are justified in treating it as an external particle. 

We can only do so if we neglect the existence of its strong 

decay products. The state A-kcan then only be the final 

resonance treated as a stable particle and the graph is 

eliminated asin the pion case. 

After. factoring out the external wave-functions, the 

leptonic - vertex function, and the virtual photon propogator, 

the equation represented graphically by figure 3.2-5 reads: 

discis' NI (t+01,-->ti+Ii;,s,E,G12-)=-iiinT-84.(ti,--Qx 
rx 	 6 -)  

) 
X  M Cr ON 14; g 16  ,61-2Y;cgfriTck+1,-+UISI:Fi'e 9E9'1!

-"-4
2  ^ ) 

Where (/;411) denotes the set of propogator numerators for the 

particles comprising the Nth. state =*=.74. Adopting the spin 

decomposition: 
6ai 

Mc.(0)+9,7 i4it;01&19-2") 	l'`($/b,1-2)7eDe 	(3.2-43) 

we may similarly write: 

‘j:zo'4- N  O'NI-3' 	k;5±i'6) L-711-?)f0-1  6\014  ^cot +6/..4P  /7,4  ; 

'1,!)-7-zA ;1  651 E,c1,2A! 	 (3.2-44) 
In view of 3.2-32, equations 3.2-42, 43, and 44 together yield: 

discs  Ai(s)b 1,) 	 tN)A (s*, 	. 	(3.2-45) 

This is precisely the unitarity relation which would have been 

Obtained had the photon been real, except that it now applies 

in addition to those A. whose corresponding 0-0( vanish at 

2 zero q.   Similar considerations apply to the discontinuities 
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of the A. in t and u determined by application of 3.2-16 

to T(2fii  in the T and U channels. 
The discontinuity condition, guaranteeing the hermitian 

(2 for T- 

invarient 

than anti-hermitian) analyticity of Tfi
)  	T- 

invarient processes, continues to be given by 2.44-23 which 

reads in this context: 
esdi 	-1 A "Ji*j 

= q(lit)OPT SOT 0( ito< T 	0 - fru( (3.2-46) 

where UGC denotes the Lorentz indices of the meson wave-function. 

For the obvious choices: 

Ira = 'c 	 (3.2_47) 
and: 	

tv.04 [iyvt Fi (co + 	0--Tciy5  F2_01 9 	(3.2-48) 
this reduces to: 

A 
N  

AVX =21-T-0(11)0T
-1  

0 fkit o 	(3.2-49) 

where ?? is now the product of the time-reversal phases of 

the virtual photon and the three hadrons. Again this is the 

same equation as that obtaining in the corresponding real 

photon case. 

To summarise, the results of this section coupled with 

the Reggeisation assumption of the previous one indicate 

that we may derive and saturate superconvergent sum-rules ' 

for our virtual photonic four-point functions by utilising 

exactly the same techniques as would be employed were the 

photon real. 
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CHAPTER 4 

DERIVATION OF SUPERCONVERGENT SUM RULES FOR THE 
PHOTO-AND EL3;CTROPODUCTION OF NON-STRAITGE 
MESONS  OFF NUCLEOLS. 

In this chapter we utilise the formalism and results 

of Chapters 2 and 3 to derive superconvergent sum-rules 

for the four-point function corresponding to the process: 

real or virtual photon nucleon-÷non-strange meson + nucleon. 

We consider the eight cases in which the meson has all possible 

combinations of the quantum numbers: (JP; I; 	= (0-  or 1-; 0 

or 1; +4 or -1). (t-4) 

The kinematical definitions and relations we shall use 

throughout this and the final chapter are listed in Appendix 5. 

Throughout the remainder of this thesis we shall often be 

dealing simultaneously with both three-point and four-point 

vertex functions. For the sake of clarity we shall henceforth 

use the term "M-function" when referring to these latter, and 

will speak of decomposing them into "invarient amplitudes". 

The use of the teIlis "vertex-function" and "form-factor" 

will be restricted to three-point functions. 

4.1 •SPIE_DFXLIELMOSIZIOS. 

4.11 SPIN DECOMPOSITION FOR THE PRODUCTION OF PSEUDOSCALAR 
MESONS'. 

The vertex is abnormal overall, and we write the M-fanction 

as Ma where a is the Lorentz index of the real or virtual photon 

wave-function. 

We have: 

N(171-1-4. 	 N-  (0++ 42.--'? -127. 7'1- 0) Z • ) ( 4 	-1 ) 

SO: 

N-04+-"} 4.: ± 	6 4 	• ( 	- 2 ) 
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.Vire therefore require a K.S.F. spin decomposition: 
6 	 i„ 

M p( =>  A (v, 9) 0‘ n 

t=1  ,A,04  vanish on contraction with qa, and 
proportional to q2. The vertex is s<7->u crossing 

and the 	are therefore required to satisfy 

This will ensure that each A. is an even or odd 

function of 1.). 

Since we are going to work with the gauge projection 

operator. 	(cir) 1  we require as a starting point a suitable 

set of covarients corresponding to the coupling function: 
r (4- 	

0). No type B equivalence theorems are 

involved, and a suitable choice of initial covarients is fur-

nished(1°)  in the set: ([110441,3,-P,‘,A,,,,,ic4j47AAng. 

Several other possible choices are available, and the 

reasons for prefering this particular one are as follows. 

To exploit s4-q.0 crossing symmetry we require that the initial 

covarients be even or odd under the substitutions: 

--1)‹-*Pt, 	k<r-k. 	(4.11-4) 

This dictates that we choose as our linearly inequivalent 

"indexed" momenta: Pa  and either 4 or Q.
a'  (these latter two 

being respectively equivalent to -k
a and + -}ka). 1Ve choose 

Pa andAa since will be the momentum of the t-channel 

Reggeons. We choose 9.#1to be oursingle "slashed" momentum 

in order to exploit the useful equivalence relation: 

in which the 

and 	c<  are 

(4.11-3) 

just 6.. 
symmetric 

2.42-14. 

(4.11-5) 
The covariant: Dialers- already vanishes on contraction 

With a , and from the remaining five covarients we obtain: 

`rof<0-)=Toc—v `k.cArs 	Zsroc(40 4.0('-',61,9-0e/V 
(ci-)= 	A-9Pc</cf, , 	Pcie 0-Ylr'="1)c,c07. vitAz/41-2  

and: 	
A(4(60 = A 	cf-k`frtiel,2  . 	(4.11-6 to 10) 
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Twosingulardls: qa/ci
2 and plqa/ci

2 are involved in agreement 

with the second of equations L1.44-1. Elimination of the 

second of these need not introduce any singularities, but 

elimination of the first will necessarily introduce electro-

dynamical poles into two of the amplitudes at the vanishing 

of either VorL1,1,. . We shall choose the following 
elimination: 

ELA,D's.  
[61-1'1(r) --VA/ceOrTs- (A' ci;Pof —VA0t)fis- 

[Aig 	0,)] W5' (AD( O.—  ct-V75- 
gj,1:-< Ei) ( (cOf 	70')D(5 (To: 	70r' 

cl,A0( (6015-= (9-.6.t,t—A*1-9-0()Z5- 
I-- 6 	

11(e17( 	7ls (93- 	0,9,a)715 . 	(4.11-11 to 16) 
The coVarients(%5  and 526  are equivalent to zero at vanish-
ing q2 as required, and the amplitudes A2  and A5  have electro-
dynamical poles at vanishing A.9. 

Equivalent sets of covarients for this vertex have already 

been given by a variety of authors(4°)  using slightly different 

techniques. 

The spin decomposition for scalar meson production is 

given simply by dropping the 151 5 but this we shall not 
require. 

4.12 SPIN DECOMPOSITION FOR THE  PRODUCTION OF VECTOR MESONS. 

This vertex is normal overall and we denote the M-

function by MpLwhere a again refers to the photon and 1. 
 is 

the Lorentz index of the vector meson wave-function. 

In this case we have: 

N+0--11--p -1-1) - g 9 	N-1-(0-1:+1_4+-0:: 6 	
(4.1 2-1 ) 
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SO: 

N+( `'-+ -1->I-1-1)= 1g 	 Wir+-1--4-1-1)=12 (14.12-2) 

and we write: 
S 

M 	>  	(2) E 
Ni 	

tog 	 I, 	 D( 
i=1 

The pp are again to vanish on contraction with qa. a(14-nd.12-3)  
1,01$ 	tv 1? 

just ..P-
)

Ittoc to c i.,4.0( 	are to be proportional to q 	In order 

to exploit s<—>u. crossing symmetry we again require that the 

um( satisfy equation 2.42-14. 
Ny 

We are going to determine the t7C/A.c( by operation with 

40( 6g61-) on a suitable set of covarients for the coupling 

function: 	/4,0; si 6 + 	+ 	+ ) . Two inequivalent type B 

E.R.'s are involved. To see this we notice that the infinity 

of possible CiCitc< fall into three classes. Firstly we have the 

infinity of "factorised" covarients: Xia X0(1  where 	and (2ec, 

are any of the infinity of covarients suitable for the spin 

decomposition of the functions r,„ (0 + 	+ 1) and 
, - t) a 	+ 2 > z + 0) respectively. Using only type A E.R.'s 

these can all be expressed in terms of eighteen "obvious" 
1--1- covarients suitable for decomposition of ' A v (y 	2 	 + 1), 

1... 6 for example the (P,o,y) 	2 	where thefg 	arethe final 

covarients of the previous section. Secondly we have the 

infinity of (litt 	X•ct.  Otho<  ) where Xt< is any covarient 

suitable for the decomposition of e-1- (1- 	+ 0). 

These are related by type A E.R. I s so that only any six are 

linearly independent. For example one has the six covarients 

obtained by choosing for the X< the set: (P14."-y)a (-01+ ,4.). 
As in the previous section there are then just two linearly 

independent 	one involving an overall unit matrix and the 

other an overall 	. Thus by taking linear combinations of these 

six covarients we may eliminate the metric tensor from all but 
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two of them. The four which are free of metric tensors may 
:/17.„7 6, 

then be expressed in terms of the (P,q,y)frt' 
	

using only 

type A E.R.'s. We then have twenty covarients, the previous 

eighteen and for example: (91-1.4A-  A-1,01.4a ) 	and (ciri,A  704 4it1,-Sitta) . 
Thirdly we have an infinity of covarients involving terms of 

the type: ep.,(. .)i,_ . These are related to the previous 

twenty covarients by means of equivalence relations derived 

from the equations of Appendix 3. All such E.R. T s are of 

type A, and the "Levi-Cevitan covarients may always be 

eliminated in favour of the former twenty without the intro-

duction of kinematic singularities. Finally, the two covarients 

involving 5/40( 14 and eiA.N 	can only be related to the 

0'7 $7?1 /A, 	 c4 
1).16 through a pair of in.equivalent type B E.R.'s 

derived from equations A7-6 and 7. 

We are required, then, to take as our starting point 

twenty covarients suitable for the decomposition of 

r 	+ 2 2 + 1) and related only through the above 

pair of equations. An obvious choice is the set: [(79 6.11)A(i9  

4,100( 9bt4] (#4 but -we shall choose: 

yel0=ro-91.] 

(4.12-4 to 25) 



(L]..12-26 to 45) 
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where we have adopted the shorthand notation of appendix 7 

with in addition: 

0 a  dtu 

We have chosen to use m  and NA rather than yy 

and yy4, since only the former two covarients satisfy the 

s.<-9.0 crossing relation 2.42-14. The choices oi 	and D'70 
t4  

rather than Atc and 74 are then dictated by the require-

ment that for simplicity the gauge projection operation should 

lead to just six linearly inecuivalent singular tails. As 

in the previous section we choose 	rather than /?1 

since the former already vanishes on contraction with. q,  

The gauge projection operation yields: 

. (4.12-24,25) 

where the singular tails are given by: 

= 

(4.1 2-46 to 51 ) 
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Eliminating these in the usual manner so as to introduce 
the least number of electrodynamical poles, we obtain: 

"7s 1 	 = Za.01,1DT— .2)74 

 /18_A'7 	7d"  =1 0- }A-A. cl- [f77] 9 

	

x 10 
	/15 

X E. 
 j/i7 

x/20 

xh 

E 	
/ 9 

ciy, ie 

s.  yek 

	

17 	9_2. x/19 

	

Y18 
	9 2 % /10  

	

r*"19 	/12 _ x/19 

R/14-,A.9,x/i9 = 	A* 9.3 ft. 

(4.12-52 to  71) 
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In terms of the covarients of equations 4.12-4 to 23 

equation A7-6 reads: 	
5*- A,  • 	- X 7  + 2) 8  

10 x12. 7e13 ± pi)) 	_ 	xx15 721x16 	 ^ 
= L 	

• 
v" 	;( 14.12-72) 

whilst A7-7 states: 
(cr--6.00X1--01,1e3+2)X 4-1-271,0-c1,-q_7)X7-1-nci'X'3  

	

4-1-[4)).1-0"1-t±`1,t11° —77z )14-  y X 	16 

+:17(b-A.c0X174-iii-.A°1- 18'.+2n.V 2O 
	

(4.1 2-73) 

Operating on these two eauations with 	ett/ci 	yields 

a pair of equations which we will denote by 4.4 2-72' and 

4.12-73' in which each 	 /,  is replaced by 	 . As a 

check we verify that equations 
	

[(4.4 2-72' )-(4.12-72)] 

and [(4.4 2-73' )-(4.4 2-73)] are indeed satisfied in the sense 

that they each r educe to the trivial result: zero equivalent 

to zero. Inverting equations /4.4 2-52 to 71 and substituting 

the results into 4.4 2-721  and 4.42-73' , we obtain from 4.4 2-72 : 
s-'10.+ (*.._.2,n7)t-'12 

(4.1 2-74) 
whilst 4.12-73' yields: (41--  V) cr— 2) ,V+ 

'je‘110+11..,..(es ,17. 	7711)  

r'113.-9) 	11 	15 	17 	E f/18-1- 7n 	 2° 	. 	(L1..1 2-75) 

Thus without introducing kinematic singularities into the 

amplitudes we can eliminate any one of 4-,6,8,1 019 , using 

4.42-74, and anyone of 7Z1  3/154 7,20  by means of 4.12-75. 
We do not wish to eliminate any of the six covarients 

proportional to q2, nor any of those which by virtue of 

the tail elimination procedure correspond to amplitudes 

necessarily endowed with electrodynamical poles. Such a 
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latter step would introduce these poles into more final 

amplitudes than the minimum number required to have them. The 
,t -/} 13 i ll-  15 i( 	15 

covarients 0- 	7  vanish at zero q2  , and %%1,25,13,16 

correspond to amplitudes having electrodynamical poles at 

vanishing i•q. 
,Z20 

We therefore choose to eliminate ,V9  and J 	Our 

final spin decomposition is then given by equation 4.12-3 with 

the eighteen AIAD4 	defined by eouations 4.42-52 to 69. 

The amplitudes A l) 1,1,05 
are subject to the above mentioned 

poles. 

Scadron and Jones(13) have also obtained twelve covarients 

for the process: real photon + nucleon -->nucleon + vector meson. 

They use a similar technique but apply their gauge projection 

operator to twelve covarients for the elastic (!) reaction: 

vector meson + nucleon--ip.nucleon + vector meson. This method 

seems to us to be rather hard to justify, and we prefer our 

own approach. 

4.13 S).ti CROSSING SYMMETRY OF THE SPIN DECOMPOSITIONS. 

For the covarients of the previous two sections, equation 

2.42-44 reduces to: 

CP, c , b 	'5) 

/1/ c41-1:' .& 
)- 
0
r 	

I( 01" 	S qrev) (4.13-1) k  

where DI denotes any product of " ly's el , and -7/6v  

denotes the same product with each Iv  multiplied by minus 

unity, and the order of LI S reversed. For the covarients 
of section 4.44 we then have: 

+1 

12  

 

  

  

 

(4.1 3-2) 
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whilst for the covarients of section 14.1 2: 

8,10, 129 124-,16, 

—1 7  = 2., 5, 7, 99 11,15, 15; 17,10. 

 

(14.13-3) 

 

14.2 ISOSPIN DECOMPOSITIONS  AND ALLIED TOPICS 

Following the methods outlined in sections 2.i2 and 

2.6 we first use the isospin M-functions corresponding to 

t-channel pole diagrams to construct to within normalisation 

constants the covarients (projection operators) corresponding 

to eigenvalues of t-channel total isospin. We then invoke 

equation 2./42-15 to pick out those linear combinations of 

these projection operators which when adopted as channel 

independent isospin covarients will lead to 0(3,1)© SU(2) 

amplitudes which are even or odd under s‹->u crossing. 

We could equally well start by constructing the s or u 

channel isospin projection operators, but we work in the 

t-channel because our covarient Reggeisation calculations 

will require us to know which combinations of invarient 

amplitudes correspond to eigenvalues of t-channel total 

isospin and third component' of total isospin. 

4.21 PRODUCTION OF ISOSCAIAR MESONS. 

We have in the t-channel: 

X 	I- T) oc X. 	P ° X 5(0, (n) 

x
1''( 	 57) 00 Xgji: 4,1) frt it k.)),i(1)010 	(4.21-2) 

From section 2.22: 

	

r= 	 a;ii.L 	 (4.21-3,4) 

and from sections 2.32 and 2.6: 

	

(-2". 	= 	 - Ft  2- 2. / "tre  (A-1 	 (4.21-5,6) 
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x s(o, a 7) = X( o, o ) = 1 	 (4.21 -7) 

X,t 	= 	(1,0-) Sns  S,e,5 	(4.21-8) 
So: 	x 	e) co 112. 

	 (4.21-9) 
and: 	10/(4_:4:77 -6 r),1-%6 	

(4.21-10) 
Note that in equations 4.24-4 to 40, superscripts 0 and 1 

denote the values of t-channel total isospin, whilst s and v 

denote respectively isoscalar and isovector transitions. 

The covarients 1l  and rs  both satisfy 2.42-45, so it is 
unnecessary to take linear-combinations and we adopt as our 

channel independent decompositions in Lorentz 0 SU(2) space: 

6 
	 i, z  A2 ) 	 (4.21-11) 
ii==1 18 

or: 

1. 
as appropriate. The isospace 11 	-factors" of 2.42-15 

are then given by: 

( A Si,v, rt-$1X7A,r‘ (4. 	-1 2) 

(4.21-1 3,14) 
It is important to realise that isospin crossing matrices do 

not "mix" isoscalar and isovector amplitudes. That is, 

amplitudes which are isoscalar (isovector) in a given channel 

are also isoscalar (isovector) in all other channels. Hence 

our notation for the amplitudes. For the same reason, 
4.21-132  14 may be usefully written: 

7G- 	s 	v 	1 	 (4. 21 -1 5,1 6) 
Finally, we note from 4.21-9 and isC) that when we Reggeise, 

the A?win only get contributions from trajectories with: I = 0, 
Av 

whilst the tAi  will only get contributions from trajectories 

with: I = 1, 13  = 0. 	 (Rule 4.21 -1 7 ) 
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4.22 PRODUCTION OF ISOVECTOR MESONS. 

With the notation of the previous section, we now have 

in the t-channel: 

XTIR 715:771 cG 16 a -10)F (7,7‘ v(0,1 	, ( 4.22- J ) 

X s T)c07%(2.'2:71)q,c  4(i,1,), (4.22-2) 
and: x(cat,,o0z ziev 	7). (4.  ,. 	, 

22-3) 

In addition to equations 4.21-3 to 8 we now need: 

So: 

and: 

(4.22-4) 

(4.22-5) 

(4.22-6) 

(4.22-7) 

(4.22-8) 

Again it is unnecessary to take linear combinations of these 

three covarients since each one already satisfies 2.42-15, 

so we write in Lorentz® SU(2) space: 
6 	 Nti 

M041 	 .1.-Crt'j9;]):;ea 	(4.22-9) L=1 
for production of pseudoscalar mesons, and: 

48 

poc 	T ± A E. A  ree - :3; 73])X 
4('(  Lai 

for vector meson production. 	(4.22-10) 

The c..; factors of equation 2.42-15 are then given by: 

27G, 	,c,=1 77c,„ "4 	7  
c 	c 	+ 7v (4.22-11, 12, 13) . 

From equations 4.22-6 7,8 we see that when we Reggeise, 

trajectories with I . Oki) win only contribute to A+, 

(A°  and A-). Furthermore, on inserting the appropriate 

isospace wave functions we find: 
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At(m°1--?t) = 	(AZ+ An 
	

(4.22-14) 

(4.22-15) 

Ai (M -> 	= 	 (4.22-1 6) 

A i(m+  -› -}) TO= 	- Ai) 	 (4.22-17) 

where IA denotes the meson. Equations 4.22-14 and 15 each 

correspond to linear combinations of states with It= 0 and 

states with It = 1, 1
3 

= 0; whilst equations 4.22-16 and 

17 have It  = 1, and 1
3 

= -1 and 1 respectively. In more 

detail, 4.22-14 and 15 

A i(m° 71-) 11') = 

A (M°z-->n•T) = 
(4.22-1 9) 

So the above rule is more precisely stated:.  A+  gets contri-

butions only from trajectories with I = 0; A gets contributions 

only from trajectories with I 4 and 13  / 0; and A°  gets 

contributions only from trajectories with I = 1, but any value 

of
3 
 is allowed. However, if conservation of C-parity at the 

photonic vertex disallowes a particular isovector trajectory 

contribute to A°  even for 13 
	

0, contributing in this case 

from coupling when 1
3 

= 0, then this trajectory does not 

only to A. 	 (Rule 4.22-20) 

The detailed mechanism by which the latter part of this rule 

comes about is easily seen if one ignores spin and denotes by 

As(p), (4) and A;(4) the contributions to A°  and A-  respectively 

of a given isovector trajectory. One then has in isospace: 

A°s(i) 	+ 	0)-a- 	Cr, (I- 	(1'1 	) 
where: 	 k (4:44--J 	

(4.22-22) 

read: 

, lb=O 7 
Az ,I 1, 

	

-At , 	0 

	

Ar, , 	1 • 

(4.22- 8) 
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;j 09119= 3-R  (1,17)4,( ,17)-i-ovfA 17)4(1,17) ) (4.22-23) 

and 8/27(4)9; denote (factorised) Regge couplings. Now 

%1.(1'01" 04)0  (RI) is non-vanishing for all SU(2)-allowed 

configurations of isospin-projection, but eMET'Sg.(M),T3] 
t 

is non-vanishing only for allowed configurations with. 13 	0, 

SO: 

Al  (1) = 	0,1 	any It 

AR  (') = 9 R 	40,1 z) 	it o. 3 

(4.22-24) 

(4.22-25) 

Hence the statement that C-parity conservation at the photonic 

vertex forbids the trajectory from coupling when 13  = 0 is 

eauivalent to saying: 

4,0,110:: 0 	for 1
3 

= 0. 	(4.22-26) 

But eil(1,Mis independent of isospin-projection as is 

equation 4.22-24, so 4.22-26 forces AV1) to vanish even for 

I, / O. However, conservation of C-parity does not reouire: 

9,l(1171)=  0 , and so for I3 4  0 the trajectory is still able 

to contribute to A. 

4.3 Psi-FUNCTIONS FOR COVARIENT REGGEISATION  AND FURTHER 
REGGON S:7,LECTION  RULES. 

Vie write the matrix element of the e.m. current-operator 

corresponding to the t-channel process: (real or virtual • 

photon, momentum: a) 	(meson, JP  = (JP )T,, momentum: - k)--+ 

(on-shell particle, spin: J, 	± 	momentum:A)--> 

(nucleon, momentum: p') + (anti-nucleon, momentum: - p), as: 

q;-T)17-D,Te:)I-T,) 
0-7),= 0- 

u. (tf) ivi7 v(1)Ep.(4) (T7)1,1= 1 

I  \ 
ill(e)Z" 	

° 

fkr 

where: 

in
frtt<  

(4.3-1 ,2) 

(4.3-3,4) 
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Note that we are decomposing the matrix-element in spin-space 

only, and that we shall hereafter refer to the intermediate 

particle as a Reggeon, even though we have yet to continue to 

complex J. 

The coupling function 6 ± (2,r-( 2 2 J ) was given in section 

2.32, (equations 2.32-24 and 25), but in terms of a different 

set of momenta coupling at the vertex. In terms of the momenta 

involved here, these two eauations read: 

+ 	(1)2))7-1  (017v +5 Tv) 	(4.3-5) 

1(03F2,1  + 54211) Ts.  4 	(4.3-6) 

In section 2.32 we saw that normal trajectories only couple 

to the nucleon-antinucleon system if they have: 

= (-1)j÷i 	(4.3-7) 

Either sign of G is al  loured for abnormal trajectories, but 

they only couple via g3  or g4  according as they have: 

G =(-1)3.  + 
	

orG=-   (-4 )3. 4. I 
	

(4.3-8) 

For non-vanishing 1 no C or G parity selection rules 

are operative at the photonic vertex, but for zero I we 

have the selection rule: 

Cn Reggeon = C C  
T 71' Meson = 	Cn Meson. 	(4.3-9) 

No "splitting" of the couplings takes place at this vertex 

for any 13 

The combined implications of equations 4.3-7, 8, 9 and rules 

4.24-17, 20 of the previous section are summarised in table 

4.3-II. 

In table 4.3-I we list the quantum numbers and zero-t 

values of the well established trajectories. All trajectories 

having sets of quantum numbers other than those appearing in 

table 4.3-I are indicated in table 4.3-II as "not known". They 
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are assumed to have negative definite a(o) since if this were 

not so they would by now be well established. 

Having deduced table 4.3-II we are in a position to 
complete the covarient Reggeisation calculations by working 

in Lorentz-space alone. 

Table 4.3-III combines the results of tables 4.3-I and II. 
It lists, for trajectories coupling via g4,2;  g3,  and g4 , the 

least rapid asymptotic fall-off that trajectory can contribute 

to a given amplitude if the latter is to satisfy an ordinary 

(i.e. zeroth moment) sum-rule at vanishing t. At the present 
time there exists some doubt as to whether C-parity is ever 

(0) conserved in virtual photonic interactions involving hadrons. 
For completeness we therefore list these minimum fall-off 

requirements for both of the cases: C-parity conserved and 

C-parity violated at the photonic vertex. 

In table 4.3-IV we combine the results of equations: 

2.42-14 to 47, 4.43-21 3:. 4.24-15,46; 4.22-11 to 13; and 
-1.3-44 to 46, and list those Lorentz.0 SU(2)-space amplitudes 

which will give rise to non-trivial sum-rules if sufficiently 

superconvergent. This table is only applicable if the four-

point functions are charge-conjugation invarient. If this 

is not the case, all superconvergent amplitudes result in non-

trivial sum-rules. 
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TABLE 4.3-I THE KNOWN REGGE-TRAJECTORIES.  

nR  TRAJ. PR  IR  CR  GR  o< 3(0) 
p9pt + + 0 + + 1.00 

e - - 1 - + 0.57 
4. 

090 - - 0 - - 0.52 

A2 
+ 1 + - 0.40 

- Al  - 1  + - 0<c(R(0)<1 

V + — 1 + — c4R (0)<0 

TABLE 	 REGGE-TRAJECTURIES CONTRIBUTING TO EACH 
ISOSPIN AT:PLITUDE VIATHE VARIOUS RG-G20N-EUCLEON-
-AKTINUCLEON COUPLTNGS. 

RE
GG

E O
N

- N
-N

 
1 

[\
)  C

O
U

P
L

IN
G

- C
ONS

T AN
T 

I  
	 , 	

 

IR  .....÷ 0 1 
O n x 
H 

0  RI 
. F-T-1 

-1.- r4  0 

Y rd 
f 

0  rd 
PrA 

4- t:'' 0 

4 

c AMPLITUDEz S A & & A°  

M 	---- + - ‘,-  - 

C 34  ' 	--ib. R — + — -1- 
III" 

nR 1 GlRr 	—+ — +  

.1. 
P P ( .1. 

_ 0 
Ote _ 
07 44 

• FoPy 

UT T r 

_ 

4. 

+ 

_ 

_ 

+ - ,....--,, 5; N 

- - N 	N 	N 009°, - 

+ - NZATITI ,goa N - 

- + 

+

N 10t2 	A9 	Al 4.  - 

R tl   
P 	-,-) 'R KNOZ TRAJECTORIES 

*Allowed by C-parity selection rule at yn vertex. 
tAlloed by G-,parity selection rule at RNN vertex. 

indicates disallowed, 

N indicates "none known". 
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TABI1E 40,7  III: if: IND= REQUIREMENTS FOR THE REGGE 
CONTRIBUTIONS DUE  TO  THE FOUR TYPES  OF COUPLING TO 
GIVE RISE  TO A SUPERCONVERGENT AMPLITUDE AT t = 

ISOSPIN 
INDEX OF 

AMPLITUDE 

n m 

RLii'GGEON-N-17 COUPLING CONSTANT 

C CONSERVED AT 
PHOTONIC VERTEX 

C VIOLATED AT 
PHOTONIC VERTEX 

2,:10 IE=1 1 g34 ., g4 

S + 
2 1 1 

3 i .1 
_ 3 i 1 

V 4. 2 1 1 2 1 2 

- 2 

NONE - .A.. 2 1 

Entry N indicates that contribution must fall off as 
least as fast asV0:(0)-N  when 1:01—*-00. 

T.ABLE407..I 	AMPLITUDES_gIV IN2 RISE TO NON-TRIVIAL 
SUM-RULES YFSUFFICIENTLY SUPE7, RaONVERGENT.  

TYPE OF 	
f SUM-RULE 

EVEN 
MOMENT 

ODD 
MOMENT 

SET OF 0(3,1) 
AMPLITUDES 

L4 

fAl 
+ 
[Al 

- [A j + 
[A 1 

0 + SIV NONE NONE S IV 

- NONE S ,V S ,V NONE 

+ 0 , + - - o ,., 

- .-- o,+ o,+ 

4 
11n) n M IS °SPIN INDEX 

f
A} indicates the set of Al  for which 

the 4i  factor of equations 4,13-2 and 
3 is eoual to 	. 
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4.4 	LORENTZ .SPADE COVARIENT R EGGEISATION CALCULATION FOR 
PRODUCTION  OF PSEUDOS CALAR MESONS. 

The relevant M-function, Mj  a  is defined by equation 

"r ±  4.3-3, with the coupling-functions L,(2))7(-f 	J) given by 

equations 4.3-5 and 6, and involving twocoupling constants 

each: 8:1,2  forrd +  and g3,4  for. The vertex function 

(04 (J 0 y) is given by equation 2.74-5 and involves a 

single. form-factor f1 
	)v-c4 
(q2). 	(J 0 y ) is given by 

equation 2.73-7 and involves two form-factors f2,3(q2), the 

covarient corresponding to f
3
(q2) being proportional to q2. 

Thus. in agreement with our counting rules for this process: 

J+ 	J- 
Ma and Ma together involve six factorised couplings: 

gifi,  g2f4,  g312, g4f2, g3f3, and g4f3, of which just the 

final two correspond to covarients which are proportional 

toq2. Each of these coupling constants and form-factors 

should strictly carry an index J, so that on Reggeisation, 

(J-Ja(t)), it will gain a dependence on t. It is convenient 

to define: 

(0 
tvi7+ ct  m 7+ s 

11 0( 	X12 Si ) 

1,11:::-Cosm;10‘zity1142_0():,, (cc-2-) 
(evi.3$--;(1--521y1741.--5") s(c0. 

We then have: 

" 
AZ+ 

'Ho< 	0-  (3'a (6̀ cie) 7 

"2104 UV Y• C'O"' AAcW 5 

= 	+ At  PC)7  . t4 / v6 5 32. 	k 

117- 330( (ci,  c>: f7+  r7ciP )?' 	9 	04 2  PZ  1S 7 p( • 	5-  — 	•  

(4.4-2) 

(4.4-3) 

(4.4-4) 

(4.4-5) 

(4.4-6) 
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YIP 	 v• 

1 70. 

foT A -I-A a 0( rD7  V11- 	
(4.4-7) 

where the argument of each partially contracted propogator 

numerator is: (P,-q;A). 
C9) We take these propogators from Scadron's paper, but in 

view of the following facts, their structure is in each case 

equivalent to a considerably simplified form. 

In view of equations A5-54, 55, and 47: 

and 	'e(4)'Z' T2 = 2122--  )14--ty 	(4.14-9,10,11) 
in all propogators. 
xp" 	ny v c . and vp;  0, 

CPC1^" 

are both contracted with 	4:3., c  (4  ct.) 	so: 

and 	3v0'(6) 	VO" •  

As usual we have: 	cp-a  f4f- 0 . 	 (4.4-1 6) 

Finally, in view• of the Dirac equation on the nucleon and 

anti-nucleon spinors and the fact that theVindex is always 
/07 contracted vvith Tv in the case of v -2„).0, and r,r5  in 

the case of PcY7  and 	we have: v•   

7 

and: 

972 
Pv (4) = 	7 0 in 	 n v; ad v;o< 

8 	(49 fzi-va 	vt,t 27n. 

(4.4-17) 

(4.4-18) 

(4.4-19) 

(4.4-20) 

(4.4-21) 

and 

in fio T 

V V;e< 
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Thus the propogator numerators are given by: 

cz- 

Pv• ad Z4 	1 3  -r  cit-P — raci-Pra-v'vti 

;c4 	 A4c1P'APA:f  1) 

P770-6.24.(//,- -rn 	Fzi  

( 4.4-22, 23) 

9 	(4.4-24) 

(4.4-25) 

(4.4-26) 

IL) 604. -1-Tpv< (. -E271-Acci--  AY" 

	

OAt4 eiDs. 	
(4.4-27) 

The argument of all solid harmonic derivatives in the above 

equations iS P(41).q(d). When we make the continuation 

fo(n) J- a(t) a term v will therefore have leading asymptotic 
rt. behaviour 2) 040- 	As we mentioned in section 2.5, this 

leading asymptOtic behaviour is not affected as far as the 

dominant contributions to the amplitudes are concerned by 

any mechanism invoked to remove the poles at zero t. 

After substitution of the above expressions into eauations 

4.4-3 to 8, it remains to relate the nine covarients:(M04., 

9016- 	044(T6'9-) and  &c,<  (' ck) 
	

to our six g 4  and 

two singular tails. This is achieved for the first six 

covarients by inversion of equations 4.11-44 to 16. We 

expand the final three covarients in terms of the initial 

six by means of equations 	and 30, and the Dirac equation. 

On converting these expansions into expansions in terms of the 

Xot  and singular tails We obtain: 

ec,(ir Ai ) 	2 	 (4.4-28) 
2  

(PACO 2.2n .; 	 (4.4-29) 31  

	

5 	6 2))4X, -1-  7n 2 	. 
(4.4-30) 
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obtain: 
m 

11 = c( (4.4-35) 
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We note as a check that these three eauations involve no 

singular-tails or terms in ,X26/cif. , in agreement with the 

fact that E ms( q) and &oetP.61,) vanish on contraction with a . a 
This same check is available then we similarly expand the 

and as a further check we have that the only allowed 'jkat 
singularities will be 	poles due to Reggeisation and 1/4•ct.  

electrodynamic poles. The former may occur in the coefficients 

of all covarients, the latter only in the coefficients of X 

and Ze  . To effect the necessary cancellation of all unwanted 

singularities it is necessary to invoke the recurrence rela-

tions on the solid harmonic derivatives. 

The two linearly independent recurrence relations on the 

Legendre polynomials read: 

(4.4-31 ) 
and: 	 (4.4-32) 
so: 	P 	9.(A) .(;+1) [r C • ct-Ki 	PQNET (A) ° ()] 

152N 9,2(6) PPr)EF(&) • 9, 	( 4 . 4- ) 
and: 

PT(17:1)  EF (a) 6 (66)] —r-(a) cl-z(4)4(7—T)E-P(A)41-(61'..- 
(2.T1-1)O°47')[?N•ci-Czs)] . 	(4 .4-34 ) 

After some use of these recurrence relations we finally 

1172.11-t: 
G 

Em 	24i+ Ti9-2-(A)4_.."1 ) tet'v41  

wozil-1- mse(z9erfi) k" -4/(4 "1  --71 

61:1(6)4-1 c4 

b e".4  n 

°4 7 al-I P(4.4-36 ) 
pAT 	

7  1 
1 

4 z2e4 -  T 71-  Lv 

"3-6c1 	zv Lcj- rz- 04 + C.1-4 +T ag, (121.  

(4.4-37) 

(4.4-33) 
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KAV- 	C 
fen 	 0 1 	 -2-Appll 

" 	-27T-V  PI  CT 	 r 	 7_1 

t p A zA.q. b 1." 
_.

v
-

0( 	) (4.4-39) 
CV" pa,f0•12.7721 j2- ci;24-) 	fpg z 

,A,ar 

112.7yz 	
v.4)] 
	

(4.4-40) 

In table 4.4-I we pick out the dominant asymptotic 

contribution each invarient amplitude receives from trajectories 

couplingviaeachof.thesixg.fK,AnentryNintheA.th. 

row and g.fk  th. column indicates that after the continuation 

J-->,-(X(t) the coefficient ofV9 rjci.,2'7(A has leading high 17)1 

046h(0 -14  asymptotic behaviour: 	q  where 

leading trajectory which is allowed by the selection rules to 

contribute via that coupling. A dot indicates that the 

amplitude receives no contribution via the particular coupling. 

If several amplitudes receive the same. leading asymptotic 

behaviour via a given coupling, it is often possible by taking 

linear combinations of these to construct a new amplitude 

with improved behaviour. We find in view of table 4.3-111 that 

only one such combination is supercenvergent and we list this 

in table 4.4-I as well. It is denoted by A7 
 and defined by: 

A7 	2(2 Ai  +771 A /÷)-1- Az 	 (4.24-24) 
It has an electrodynamical pole at vanishing Al, . 

Picking out the dominant contribution each amplitude 

receives via the three pairs of couplings (g4,2)fi,  g3(f2,.3), 

and g4(f I3), we deduce from tables 4.3-111 and IV that we 

have no first or higher moment sum-rules. But provided 

C-parity is conserved at the photonio vertex for vanishing 

we have the following non-trivial ordinary (i.e. zeroth 

o(;1gb) 	is the 
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moment) sum-rules. They are valid for all 	and all non-

positive definite t, and (JP, 1, Cn  )m  denotes the quantum 

numbers of the final meson. 

(JP,I,cn )m  ( ,0,+) [71(549)1711(958), E(142o5] 

  

Ordinary sum-rules on the four amplitudes: 

AS ,V AS 'V 
3 ' 6 (List 4.4-42) 

(No known examples) 

Ordinary sum-rules on the two amplitudes: 

(List 4.4-43) 

(J I) n M (0-,1 14) (TC) 

Ordinary sum-rules on the five amplitudes: 

6 
	

(List 4.4-44) 

(JP C)M (No known examples) 

  

Ordinary sum rules on the two anvlitudes: 

A°'4..7   List 4.4.745) 

    

If interactions between virtual photons and hadrons are 

not in fact charge-conjugate invarient then only A
7 

is super-

convergent for non-zero 02. But s—u crossing symmetry will 

no longer force the amplitudes to be even or odd functions 

of 7) so we then have 	following sum-rules valid for 

non-vanishing q2 and non-positive definite t. 

(JP ,I,cn )y  = (o-,o,-) 
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(JP 	(o ,O) 	(1, 7c E) 

Ordinary sum-rules on the two amplitudes: 

A7 
SIV 7 	 (List 4.4-46) 

() 

Ordinary sum-rules on the three amplitudes: 

A°74I- 7 (List 4.4-47) 

    

The sum-rules for pion photoproduction have already been 

obtained via rather different methods by a variety of authors.(8) 

Pande has obtained the sum-rule on A3'  Cho.udhury and Nussinov, 

andAltarelliandColocci,those 	)' Halpern, the 

one on 	 ' A-7. and Musto and Nicodemi, all three. 

Subject to .charge-conjugation invarience at the virtual 

photonic vertex we have shown that these sum-rules remain valid 

for non-vanishing q2. We stress that this does not follow 

merely from the asuumption that electro-production Reggeises 

in the same manner as photo-production. The amplitudes 

could easily have been given poorer asymptotic behaviour in 

the electroproduction case due to additional contributions 

proportional to q2. In particular, such contributions might 

have come via the couplings (g3,g )f3' since all terms of the 

form (g3,g4)f3 	mustappear with coefficients propor-

tional to q2. 

We have also deduced two further sum-rules on the 

amplitudes A6  and A. These appear only in electroproduction. 

Since cx  is proportional to q2 it is not necessary, (as is 

sometimes erroneously supposed), for these two amplitudes to 

Vanish at zeroq2. So on saturating these two sum-rules and 
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then continuing to zero q2 , we shall obtain additional 

relations between form-factors evaluated at zero argument. 

These relations cannot be obtained by the purely on-shell 

methods of the above cited authors. (8) 

TABTP, 4„/-17" 
CONTRIBUTIONS TOTs AffiThIrITUDES FOR PRODUCTION OF PSEUDO- 
TO.717:6:ff7, iET6-1.-fs---ELTE,' -76-T (NI , TA. =1:71iff 5TO-.3.ffN 615-fffifffici -TiT 
(g1 2  )f AND ABI,TOP.I.•:AL TRAJECTORIES COUPLING VIA -LI  

Trf  

m 

H 

CR
CS

 S 
IN

G 
FA

CT
O R

 

e TRIBUTION 
COUPLITM INDEX jk, i.e. , CON- 

DUE 	k TO: g.(t)f - (02,t). •   
aF-1 

-̀:Q 11 I 	21 	I 32 35 )42 43 

Al  1 1 • • . 
A2 1 3 1 1 2 2 
A
3  • 2 • 1 3 

ALI. . . 2 2 

1 
A
5  3  

A6  .2 3 1 

A7 - . 1 1 2 .2 
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4.5 	LORENTZ-SPACE COVARIENT REGGEISAT  ION  CALCULATION FOR 
PRODUCTION OF VECTOR  MESONS. 

This calculation is carried out in direct analogy with 

that of the previous section. The M 	M-function 	is 
/tmg  

defined by equation 4.3-4, and we use the decompositbn of 

equations 2.75-19, 21,221  23, 24, and 25 for the vertex 

function
(V

017). 
g/IAN  

For the vertex function ̀ V'-1?)) we shall use the (a7T/44 
decomposition: 

nf 	(71 = 61-1)E (9,4(Lbcciets.—fr 	) (o-r-frsc( 	6 	/ROI 	 cr2. 

z11 0-2. 

+ 9  (12.) EdR MO"-  5,4 01— 	aror 
This differs from the decomposition 2.76-20 derived in 

section 2.76, but has the advantage that: 

SIO 	'Z-1  0 
	

0'froi W.4() 	and 9°011(1:3  0;(4.5-2 to 5) 

in all propogator numerators contracted with the vertex. 

The form-factors of 4.5-4 are related to those of 2.76-20 

by: 

- "6 ( F2.  — 41_ 

f7= (zY--1)F1 

fs= 	(AfilFi+-A
2 - P2 -3`9:2.F5 "̀  

(4.5-6) 

(4.5-7) 

(4.5-8) 

(4.5-9) 

Thus the f6,7,8  are subject to kinematic poles at zero t. 

But since the f6,7,8,9 
are free of kinematic singularities in 

V, our results for the dominant asymptotic contribution to 

each amplitude from a given abnormal trajectorywill be un- 

affected by our working with 	n  rather than Fi  

(4.5-1) 
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Again, with a suffix J implied on each of the g1  to 4 
and f4 to 9, we define : 

2 5  
m 	 1\1  

 

.T-1-  

4t4  =1 fe.,--1 
4- 9 

Then : 
V+ 7 

M 	
,-N

Oa, 11 ktc< 

MT;LIAti $9)711"./A4(-4.  

MT+ 	((e A el 	0?7  
IS 	 /AN 

14z1+ 	407 	„ 

itioTO,1 	f -z.• a  
2.1 frAsi 	1/3 	v 	fr.-AA / 

t1171-  = 	0:7  p Arc"  A•cl,. 0fr to() 2:21Atc V v; 

(00T.  o< A•cl,P.),),frttv "2.zitc(- 	villt 

M.T+ =(0 	(3:2-  3 24-IAA P V; 	tc.t> 	 ) 

74 Tv  (9,acilict4+(p),),,t9,-,4) 

P71- 	)g 
$611.4t< 	;0'; c< 	5010( 

(?7-  E 	A) z7tA,c4 	/A )01 (xot 

• 

( 4 .5-1 o) 

) 

(4.5-1 2) 

(4.5-13) 

(4.5-14) 

(4.5-15) 

(4.5-16) 

(4.5-17) 

(4.5-18) 

(4.5-19) 

(4.5-2o) 

(4.5-21 ) 

rff 	 (4.5-22) 

(4.5-23) 
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11;8tkv4=0°,0,; E0(cri cct-A)4 , 	 (4.5-24) 

iviv— .... 02.0T ±epT i, \ c 	I 	ist  
39/40("l 1- tri co< 	5  011-,4  / cy,,,cri  VI, A/05-  , 	(4.5-25)• 

M 	--T2)(PvTolAcg-i-m.64:0.(4)Efrk.010,A)16,- , 	( i÷by.f.A -  	 .4.5-26) 

M4 ,t-7 	-61'.  T P 	0- )'-a's- 4,t-7AA 	I- li  V361 
P '"°1 	, 	(4•5-27) 

(4.5-28) 

111.9, a= r4)(61-:F27;  (>t 	27T7-; 9-0E/L010- A7 5- . 	(4.5-29) 

The propogators are again equivalent in view of simplify- 

ing relations to considerably less complicated forms than those 

listed by Scadron
0) 
 for the general case. 

We have already noted the simplifying relations of 

equations 4.5-2 to 5, and in addition equations 4.4-9, 10, 
and 16 are again operative. As the analogues of equations 

4.4-i7 to 21 we now have: 
pv (4).2.,17n 	and 97•2) (A) 

in 	 ; and &i37 	 (4.5-30 9 31) 7 
c4 	 31 ;14 

2.771-6."1- 
Kr?"- 0  y  and 96 W Ysi/ 

arid: 	in  R; 	Pv; er; oc and_ I?) ; c5 frt 	 (4.5-32,33) 

VI4 r 1)  E 6)76 1)jaitt NCI 

    

(4.5-34) 

  

in 
8 	27n. 

U — 
(3 	L.  

in (4.5-35) 
for e a orik . 

Thus the propogators are given by: 

72) 
(4.5-36) 
	

(4.5-37) 
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(4.5-38) 

	Dap bc,L --(-1-v+1)7ncil0P-...1-4-(inci,l(ni)+Pr A-)4' 

citft, (6')7 .)&!--1 	WI-cc NPv-, 1-1z] 9 	 (14.5-140) 

(A)(2 , —[-vp,-1-p -1.--m0 (Aooll "- 7,-z(7-1) 	ifttc 	itt . 	CA 	otttl 

+1(2-V+1)711(P/A5-0N `1200-'PTO/pck (6)+1-r. gve„1"0",c4 (4) cli_w I 

i-Pif(A)Pihi),-1--P9-(Pifil.„()11;17Cf7A(Ag4+74°7)-(11)3144 q-1:11 

(4.5-39) 

-P11.617A (A) %Nil-4//4 9 

 

(4.5-41 ) 

?•,r") 	
( 

1_,r 
. 5 -143 ) 

V ; 01 	 v 	v up, 	z 
(4._5-42) 

CIP°1-PC 41-12.°01 (4-1 --P7.1)01 9-(0 (Ag--"i) 
(4.5-144) 

A 
?iv gDZo'l 	.1) [- (Toi-Pc ilA(0111)0:

11
+1°2•("6.019-r (A) + az c 91-)4.1 

(14.5-145) 

In these relations: 	again stands for IX or cc, and we have. 

defined: 

2ntLI,.% 	 = 	m 21(0/4 . (4.5-46,47 ) 

The reader is also reminded that: 

cf7A46)'...Y.: 617,0- ~GC(d) - ct. v< (4.5-48,49) 

g/A.N(A)=11 Op,,,(- 017,A04/t: y ) 
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The expressions 4.5-36 to 45 for the propogators are 

substituted into equations 4.5-12 to 49, and it is then 

necessary to express the thirty-six covarients:[(P74015 14  

9ttaci(114.1 C and: fE(1,9-)itkE
c4(?1,6)1Z/ANAC1A<7E/t4N(cipi1)J ( 4.,09 

/tt 	4) 9 Eix(1>010( (P960/.4 Ea OCip A), Eau. (qqr. 	A)x J fts- 
in terms of the eighteen XiLand six singular tails. 

Inversion of equations 4.12-52 to 74 yields the required 

relations for eighteen of the first twenty covarients, and 

since the remaining two of them are related to the others 

through equations 4.42-72 and 73 they too can be similarly 

expanded. Expansion of the final sixteen covarients is 

achieved by relating them to the initial twenty through 

eauations A3-27, 29, and 30. As a check on the calculation 

one uses the fact that covarients involving 4(eFciA, 

and efr“40A vanish on contraction with qa. Their expansions 

cannot therefore involve any singular tails. 

Finally, one obtains expansions for each of the eighteen 

h4T+  
and M 	 in terms of the eighteen a74) kt.; • .0)/A C4 

Xl!it4 . Again, the fact that all unwanted singularities must 

cancel serves as a check on the calculations. To effect such 

a cancellation of singularities it is necessary to make exten-

sive use of the recurrence relations 4.4-33 and 34. 

We do not propose to give here the vector meson analogues 

of eauations 4.4-28 to 30 and 35 to 40. Not only do we have 

fifty-four such equations, but many of these are extremely 

lengthy and complicated. Instead we merely give the analogue 

of table 4.4-I. 

In tables 4.5-1 and II respectively we list the leading 

asymptotic contributions to the amplitudes from normal and 

abnondal trajectories. The notation is the same as that 

employed in table 4.4-1. We again list those linear 
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combinations of amplitudes - which have better asymptotic behaviour 

than the individual amplitudes involved, and thich rill, in 

view of table 4.3-111, give rise to superconvergent sum-rules. 

These linear combinations are defined as follows: 

A 9 	A4+ A10  7 

A20 	 A 6 

A ..;-* A li —A 6 kB 

A„=:- &(1,0‘,"-As)-1,-A1‘ 

LA 7  —4v (IA is  

A9+Aii — Atz . 

(4.5-52) 

(4.5-53) 

(4.5-54) 

(4.5-55) 

(4.5-56) 

(4.5-57) 

Remembering that A4,8,43,  and 45,  have electrodynamical poles 

at vanishing Q•5,, we see that A24  is subject to a similar pole. 

Picking out the dominant contribution to each amplitude 

due to each of the three sets of couplings: (g4 92 )(f .4  
ye••,./ 

g-7,M,...,, ,)' and g40  (f, 	0 ), we find in view of tables -  
4.3-111 and IV the following non-trivial sum-rules. They are 

valid for non-positive definite t, all a_2 and are subject to 

C-parity being conserved at the photonic vertex for vanishing 

3' 

(JP,I,Cn)m  = (4 1 0 	 (No known examples) 

Ordinary sum rules on the twelve amplitudes: 
ASV S,V .S,V AS IV A 

'-1S,V 
 ASI Al  , A6  , A 10 ' 49 ' 20 ' 24 V,  

and first moment sum rules on the two arcplitudes: 

A S5  V 
5 (List 4.5-58) 
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(1,0,-) 	(&  

Ordinary sum-rules on the six amplitudes: 

,S,V AS,V AS,V 
1-'23 ' 	 24 

and first moment sum-rules on the two amplitudes: 

A 
19 V 
	

(Idst )4.5-59) 

(JP,I,Cdm  = (4- 14,-0 	(No known examples) 

Ordinary sum-rules on the fifteen amplitudes: 

Aol+ A-  Ao' A 	A 	A 	A o r ' A A- 
4 ' 5' 6 ' 10 ' 19 ' 20 ' 21 ' 23' 24' 
and first moment sum-rules on the three amplitudes: 

AO' A- 5 	19* (List 4.5-60) 

(JP 212%)„ = 	,1,-) 	 ) 

Ordinary sum rules on the nine amplitudes: 

Al  A°,4' A 	A22'
Ao,

1' 5 ' 19' 	23 ' 24 ' 

and first moment. sum-rules on the two amplitudes: 

A°'+  
19 • 

(List 4.5-61 ) 

If interactions between virtual photons and hadrons 

are not in fact charge-conjugate invarient, the number of 

superconvergent amplitudes is again somewhat reduced. But 

the amplitudes are no longer forced to be even or odd under 

s<S--,:.0 crossing, so the sum-rules for electroproduction are 

then as follows. They are again valid for all non-positive 

definite t. 
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(JP I I)m = (1,0) 	 (a) ,C6) 

Ordinary sum-rules on the ten anplitudes: 
Ay AS 'V  AS 'V  AS 'V  AS

I
V, AS,V 

1' 5 ' 19 ' 22 	23 	24 

and first moment sum-rules on the two amplitudes: 

AS'V. 	 (List 4.5-62) 
19 

( P )  

 

Ordinary sum-rules on the sixteen amplitudes: 

A°'-  A°"+"-A°+'- A°'  AO'+- , 5 	' 11'19 	' 22 ' '23 	' 24 

and first moment sum-rules on the three amplituies: 

19 	• 

 

(List 4.5-63) 

   



185. 

CONTRIBUTIONS TO THE AMPLITUDES FOR PRODUCTION OF 

VECTOR EESONS DUE TO NORMAL TRAJECTORIES COUPLING 

VIA: (g42)(f/.20.).4 5). 
!AM

P L
IT

U
DE

 

'-4 P4 H 0 
CI) P cio0 

, off 
rr-i  

COUPLING INDEX jk, i.e., CONTRIBUTION 

DUE TO: g
i  ( -Of (p ,t). 

11 12 13 [ 	14 15 21 22 23 24 25 

A1  
A2 
A3  
A4 
A

5  
A6  
A
7  

A8 
A

9  
A10 

A11 

A12 

+ 

— 

.-t,' 

+ 

— 

— 

+ 

- 

+ 

— 

4. 

+. 

. 

2 

. 

. 

. 

. 

. 

. 

. 

. 

13 

0 

. 

• 

• 
. 

. 

• 

. 

. 

. 

2 

2 

. 

. 

. 

. 

. 

. 

. 

' 

• 

. 

. 

. 

. 

. 

. 

. 

2 

3 

2 

. 

. 

. 

. 

. 

. 

. 

3 

2 

2 

• 

2 

1 

2 

3 

2 

3 

2 

. 

1 

o 

0 

• 

. 

1 

. 

1 

0 

1 

0 

4 

3 

2 

2 

3 

2 

3 

2 

3 

2 

3 

2 

. 

. 

. 

. 

• 
. 

. 

. 

• 

. 

. 

. 

4 

3 

2 

2 

3 

4 

3 

2 

3 

2 

3 

2 

A13  

A14 
A15 

A16 

A17 
A18 

— 

+ 

— 

+ 

— 

- 

. 

. 

. 

• 

• 

2.3 

. 

• 

. 

• 

• 

3 

. 

• 

. 

. 

. 

0 

. 

• 

1 

2 

. 

• 

• 

• 3 

3 

2 

3 

• 

1 

0 

1 

• 

1 

3 

2 

3 

4 

3 

3 

2 

• 

1 

• 

3 

2 

1.  

2 

3 

3 

A'19 
A20 

A 21 

A22 

A23 

A24 

+ 

+ 

— 

— 

. 

. 

. 

. 

• 

• 

. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

. 

• 

. 

• 

• 

L..,................. 	 

• 

. 

. 

• 

.2 

• 

• 

• 

2 

3 

• 

. 

. 

• 

• 

c 

2 

2 

2 

3 

3 
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CONTRIBUTIONS TO THE Ai::PLITUDES FOR PRODUCTION OF 

VECTOR EESONS DUE TO  AB1TORMAL TPAJECTORITPS 

COUPLING VIA: (g 	)(f 
• 6:7.8„22: 

AM
PL

IT
UD

E 

"-
- CR

 O S
 S

 IN
G

 
1-
7

  
FA

CT
 O

R COUPLING INDEX jk, i.e., CONTRIBUTION 

DUE TO: 	g j(t)f (e
l t). 	• 

36 37 38 39 46 47 48 49 

Al  + 2 . 2 2 3 • 3 3 

A
2 

- 1 1 3 1 2 2 2 2 

A
3  

+ . . . . 1 1 1 1 

A
4 

+ 0 0 2 2 1 1 1 1 

A
5 

 — aa . 2 . 2 2 

A
6 

+ 2 2 2 1 1 3 3 

A
7 

- 1 1 2 1 0 2 2 2 

A8 • . • . 1 1 3 1 

A9  - 1 1 3 3 2 2 2 

A10 + 0 0 2 2 1 1 1 1 

A11 
- 1 1 3 3 2 2 2  2 

A
12 

+ 0 0 2 2 1 1 1 1 

A
13 

1 1 3 1 2 2 2 2 

A
14 

+ 0 0 2 0 1 1 1 1 

A15 - 1 1 3 1 2 2 2 0 

A16 
. . . 3 . 3 1 

A17 - 1 1 3 2 2 2 2 

A
18 - 

1 1 3 1 2 2 2 

A
19 

+ 2 . 2 2 . 

A
20 

2 2 2 1 3 

A
21 

2 2 2 3 3 1 

A
22 

2 . 2 2 3 . 3 3 

A23- 
1 . . . • . 3 . 

A
24 

- 1 1 3 1 . . 3 
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CHAPTER_5 

APPROXIII4TE SATURATION  OF  THE SUM-RULES FOR REAL  AND  
VIRTUAL PFOTONIC PRODUCTION  OF  PSEUDO3CAL4R nEsms. 

5.1 INTRODUCTORY REMARKS 

5.11 THE BASIC SATURATION FORilULA. 

Let di stand for either of the superscripts s and v 
if the meson is isoscalar, and for any one of the superscripts 

oti-, and -, if the meson is isovector. Then in the approxi-

mation of equation 4.3-47 as modified by the spin considerations 

of equations 2.L14-27 and 28, a non-trivial mth. moment sum- 

rule on the amplitude Ai  (',,t,q2) reads: 
Sip ISVR 

Mil -2n-2--1-A-2--1114"0"  [2}±  (Iri-\ 	A (LM mg  if, 
Alfr nj.lj .113( /1 7, 	p1k/ 	 (5.1i 

where R denotes an s-channel resonance, and B indicates the 

s-channel (nucleon) Born-term residue. With N and M denoting 
aR 	st, 

respectively • a nucleon and the meson, the A 	and A B are i  

defined for isoscalar mesons by: 

(5.11-2 ) 

' ) Ai, 	, iti" 	N--> N —)N Iv)! 
S 7n. 

5.11-3) 
and for isovector mesons by: 

rrAti  ' S • -1- -1- AT-N ET 1• 	 + 	 Iv) 1„ os 	, s 
(5.11-4) 

 

S=MR" 

(4% A.1473 
g ETJ ;c3]) 	EM!(o.  N +1\111

5 fl 1. , (5.11-5 ) 

The Ma and LIa are the numerators of the pole graphs for - the 

processes indicated in parentheses, and the intermediate states 

are to be treated as single stable particles. 
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5.15 IL 3LICATIONS OF THE ISOSPITT STRUCTURE OF THE S-OHANEEL 
POLE GRAPH DISTERATORS. 

The s-channel pOle graph numerator for a single stable 

intermediate particle of spin (J 	1) and normality :13.1, 

has the general Lorentz-space structure: 

ri c,( 	Azi_±  (17)9.-1) XcL4 
0(s,i) 

:12  
(01,z+.1):e 	(K\•) 'r 	

I re) 
•   

where the right-hand side of the second equality is to be 

evaluated at s equal to the squared mass of the intermediate 

particle. 

The full Lorentz OSU(2) structure of this pole graph 

numerator is then given by: 
,4"T±  t+ i f -4 = 

0 le e#: 	 AnT e;  re'r 

	

'11.-1-Or''S.,l'e h • 	L rrs_f I 	7, 	4 	 • 	I, 

S(I÷X; 1/24 
9j2:: .2 	ji) 1117 	

Ir 

yz; vz  '01 for I
5a l  

m { 	. 
In this equation (I 	72-) is the isospin of the intermediate 

rS*,-. V,  particle,. and 'V 
	f"v c,‘  j is to be obtained from Ai 	by • c4 

substituting the corresponding isoscalar (isovector) 0(3,4)0SU(2) 

form-factor for each 0(3,1) form-factor appearing. 

If the final meson is isoscalar -we can only have inter- 

mediate particles with isospin oi'Le half, and from sections 

2;22, 2.32, and 2.6: 

t/14°-12:,4--)=X•SeM1-  Oz2f 4/2* 

2 7- 	 (5.12-6) 

Thus: 

(5.12-1 ) 

(5.12-3 , 4, 5 ) 

(5.12-7) 
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Comparing with equations 5.12-1 and 2 we see that if F denotes 

any form-factor resulting from the spin decomposition of A„.‘  
A 11-14  17± 

then the fi t 	may be obtained from by the substitu- 

tions: 

As' AT±(F)I 
F 
	

(5.12-8) 

for all F. 
	Alr.:(F)1 

I 	FV 7 	
(5.12-9) 

Intermediate particles with isospins one-half or three-

halves are allowed if the final meson is isovector. So in 

addition 'to equations 5.12-4,5,6 we need: 

(5.1 2-1 0 511 ) 

/ 
k,(J 	h 	-1) (5.12-12,13) 

yielding: 

KY:ri- 4/2 , N.f 
• v." 	0)..:vioc: 'r j:+1r:444'.(a.,rcl-4.:N4I (5.12-14) 

and: 

MITd:C.E=.1)=e*O);T.4. 1/4(K): Irv,  ± (2.°  i:iyeljs_y 

The isospace covarient 	se;. .1.70 
'9 	corresponds to a 

disallowed coupling and hence NO' =1) receives no-

contribution from roc' . Comparison with 5.12-1 and 2 yields 

the following isovector meson analogues of equations 5.12-8 

and 9: 
0 W:4 A i: 	a --4If

)-
....

t _ 
.Ay

s
„  .). 

I 

	

F __, Fs  , 	(5.12-16) 

:i., 	- (5.12-17)  - 	0  

Al
2 
.4.±(1. --1177.) = AT,±(F) I 	v , 

	

F-P ' 	(5.12-18) 

Ajrt(I4) :.- i- Al (F)  

	

-"`Pv 	(5.12-19) 3  
- -r± 	1  • 
i' 	(1=  ):: h • (F)I 

 F1-7,,, 

	 (5.12-20) 

Icil-I (1:)=  3A1,.±(r) 
.f  .'? tr (5;1 2-21 ) 

for all F. 

(5.12-15) 



ID1-232 11'11-55= 	7 

BA-+ 1) 1:135+1). (1-56 = 97 g 
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Having obtained equations 5.12-8,9, and 16 to 21 we may 

drop the isospin dependence from our saturation graphs and 

work in spin-space alone. 

5.13 A NOTE ON TI 0(3,_1) STRUCTURE OF THE S-CHANNEL POLE 
GRAPH NUMERATORS. 

In the following section we compute in spin-space alone 

the s-channel pole graph numerators needed for saturation of 

our sum-rules. These come out naturally in terms of the 

structure: 
6 

Ni :->_:13jmasses, coupling constants, form-factors, 
("4 L=1 

sE---.squared intermediate masS],M” = NE141 

-1-152.to+133'ra+BilL+Bsti4C1-+136-ii,‹ cii,±137%+13189s<4175- , 	.1 3 _1 ) 
wheretheB.do not involve any poles in s,t, or q

2. 

If Ma vanishes on contraction ti~ith qa , the Bi must satisfy: 

and from equations 4.14-44 to 46 we then have: 

Ma 13, Xs( (132.+Bsi%.44.i- B5--Bb) 3 
-1-(Bs -1-23‘)X2041.+ 

034-ttil:Bis -111-303:•0V9, 	 (5.13-4) 
This satisfies our counting rules for all q2, since in view 

	

NS 	ev6, 
of 5.13-2 and 3 the coefficients of wand 104 are free of 

poles in 14'. 

	

In practice we shall drop terms in 	whenever they 

appear in the calculation, but since our initial expression 

will always contain a photonic vertex functionlicg which 

vanishes on contraction with aa' (p:aB2 + D.qB3 ) and -    
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p%qB_5  p.qB6) will still be proportional to q
2
. 

Even if V.a does not vanish, we can still write Ma  in 

the form 5.43-4 by using the fact that cla  /q
2 and 	0/q2 are - 

both equivalent to zero for all 02. That is, the equality 

in this equation is then replaced by an equivalence. However, 

5.43-2 and/or 5.43-3 will no longer be satisfied and our 

final expression for Ea  will violate the counting rules in the 

real photon limit. 

Note that at zero q2 5.13-2 reads: 

c.0 	t z 	0  s 	
"'""°

(s- 7e.)-1-(E-1,0) 	• (5.1  3-4) 
.  

Thus if M.q vanishes, the coefficient of g:c remains finite 

.in the real photon limit for all t provided s is not equal to 

2 m . This is the situation for our resonance pole graph 

numerators where s is equal to M. The fact that M.0_, is zero 

then forces B, to be proportional to (t+1,1R-m
2),  

In the case of the s-channel Born -term residue B2 pv 
fortunately vanishes and the coefficient of A(  just has the 

, 	• pole at zero (t-µ2) in the real photon limit. 
%.2" For non-vanishing q2 the coefficient of ,A.;a  has a 

pole even in the case of the resonance graphs, and the 

coefficient of (Wa has a similar pole for all q2. 

Except in the case of. the photoproduction Born terms 

these poles have no obvious dynamical origin, and would seem 

to be kinematical. They are essential', however, if the,  

. 
correct number of covarients are to be proportional to 2. 

„N 1 
The dynamical interpretation of the (E.-1,C) pole in the. 

amplitude of. the photoproduction Born-terms is well known. 

The photon-nucleon-nucleon vertex relies .for its gauge 

.invarience on the Dirac equation, and the s and u channel 

Born-terms are therefore only gauge-invarient at their 

(132-+  
• cl,. 

2037:1-33) -2137_ 	2Bs  	• = 
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respective poles. The same applies to the pion Born term since 

the photon-picn-pion vertex is proportional to Ao4  . The (b• /Z) I  

pole in the Xit,,4  amplitudes ensures that the sum of the 

three Born terms remains gauge invarient for arbitrary s,t,u. 

Failure of gauge invarience is accompanied, if one is treating 

photoproduction as a limit of electroproduction, by a viola-

tion of the counting rules. Away from their respective poles 

the three Born-graphs gain terms in Xcg/Cr. The (b-z} l  

poles in the coefficients of these terms ensures that they 

cancel from the sum of the three Born-graphs. 

Our graphs for intermediate resonances with spin greater 

than one half turn out to have rather complicated structures. 

I.*. ‘' :Are shall therefore compute them in terms of the 04, 	and 

will pick out only those combinations of the corresponding 

53 	needed for sum rule saturation. 04  

5.2 	COMPUTATION OF TEE 0(3,1) S- CHI 	POLE GRAPH 
NUMERATORS NEEDED FOR SATURATION. 

5.21 THE BORN-TERM. 

This is well known. One has: 

(5.21-1) 
where: 

C.0-14 o  f5- 
	

(5.21-2) 

r0/0 11(± M 
	

(5.21_3) 

WC:TY 
	

(5.21-4) 

After using the Dirac equation to express 	in terms of m and 

one easily obtains: 

MI,4  1 	L.-- 
.6. 771 
4-4 (Fi+ 	+ 4.7n 	+ 2. F2_ t6a] 

is=le  
and it then follows. from 5.13-L. that: 

(5.21-5) 
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e 5 r 	51 4m 7i (F1± 	 Fi  

 

 

-1-2F-2.  62c1,1<-  2-.7n  Fi 	2. 	j • (5.21-6) 

5.22 INTERMEDIATE RESONANCES WITH  SPIN . 

In this case we have: 

p -Z7-27)1 71") v 	zv 	 (5.22-1) 

where: no+.,-1.2:).-= 517 , 	 (5.22-2) 

(5.22-3) 

eir:(1,17)=e[FiCvXcf-1,--Ovcira)± F; 03) iGy-(3.1 I • (5.22-14) 
In these equations the plus/minus superscript on the I.-function 

indicates the normality, n, of the intermediate resonance, and 

M is the mass of this resonance. The decomposition of the 

photonic vertex is taken from 2.74-24, except that for later 

convenience we have introduced a plus/minus sign into the 

definition of F2, and have explicitly exhibited a factor e. 

As in section 2.8 we define: 

N 	7t, tv) ) 
and 5.22-1 may then be written: 

M!"= e 5 (1-1\)[Fi 	-1-ch4) + 

(5.22-5) 

(5.22-6) 

After a little Dirac algebra we obtain: 

swN e l---119- 1 -1- (1\1+9nYzlt•cl,< +  cl,Fi a7f: 
(N- m)[9, Fi 7-qta 	R.] 	+ 2 F; tc.4 	(5.22-7) 

from which we have. finally: 

ors  
!=1  e3f4 [cl!.F+(f\H"-ilL)F]. Iv( 	 

$:=N 

+2 Fz 52.4; +24(N17--liz,-  `1-1.) kt6--[(14-721-)Fi÷Fzi c<j. (5.22-8) 
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We note as a check that this reduces to equation 5.21-6 

under the substitutions: 

F1  /9" 	F2. Fz'Pt 	N 	 . 	(5. 22-9 ,1 0,11 ) 

5.23 INTERTEDIATE RESONANCES  WITH SPIN (3- 

We define n, Id, and N as in the previous section and now 

have: 
T4.14  A7± 	>44.... 

9.: (0 1.7).4".4. ) 09r; (3.)T(K) Cr) 
I Vi  C( 	-1(2j)T 	

Vei  (7 ', (5.23-1 )  
where: 	

7.Q.-(°2,T1--z)r••5 (1)-1,)*Tri: 	 (5.23-2) 

and the decomposition of 'V'(J 	2,y) is given by Car-c4  
equations 2.72-8 to 44. We shall modify 2.72-41 by again 

explicitly exhibiting a factor of e on the right-hand side. 

As we are only interested in evaluating 1:1J± at the point s 

equals Li2 we may, in view of the structure of the propagator, 

make the substitution: 

61.±.--)- (m:F7n)i ±  

in it± 
(c)-o( 

(5.23-3) 

Dropping terms in qa , eauation 5.23-4 then reads: 

MTDc±.1 	
I 
egIa37+  1/40)1, ci- 	(6"ei To(  ± G-2,Pc4) 

S=M 

— P.0(  (1)7 9:7 11(fri:on)6:1 :1---p•ae&z.19, 

From Scadron's paperNie have at s= 2 : 
607+1/1-/ / 	

m
C :7+1  

)1 r _Nri ( Fg+MP-'4-4-1 

-0\4;r4-1,•KXF7-v0014.,1- 9,:K)P-zi-1 
	

(5.23-5) 
and: 

	

tr'ig (1)3(1-510 
	4 
MI.Z(11)1(Me 	t 	K){1),!((g)),-" • , 

-plz(K)9,40,<)p:_i j- 	 (K) &l. + l' /:((k)q-egrz:// j 

— (M; I+  )01 )Ce--1  (vizc(4.- KOo°:i 

(5.23-4) 

(5.23-6) 
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where each of the solid harmonic derivatives has argument: 

-ti(K)'/,(K). 

After some tedious algebra, we therefore obtain in view of 

the Rarita-Schwinger subsidiary conditions and the Dirac 

equation: 

117:s.: le\4Cr;i1-1)E14T671{{(N)÷7n)tc34-44]6-z —R*24+ 04--ingoti 
-1-N2zeNK- 2)){ E-10;1,(-1\11•+ N771)4:4  -21;  Keoe  + (NI t • 

2nei; 	- Nei - 	1,1_1- 	(0-1- N -1; 	fe  } 6-2.} 

"illitf l'i<fz-1+11+1312.(i)el,r K 	 NIFz.'4.11  [(N 

-1-7n),4,,42--t5:4  11+ (i• K- Nin)it\17411: N ti  - (\14-7n),(.43  N 0\1 -1-7rOityc  

-Fie4C] + NY/ [(1\(t • 1,-F cp K)Z,:c  (n12-1- N - R)/,,„5",] 

f/2(K)q; (11--1-11[ (1\11)* VI' 1-*F()c43,4 4-  (NI.  + 

—1-.K)6421)16\1—w-0611--1).9,6-z—cr.6.3]:] 
	

( 5 . 2 3 - 7 ) 

The solid harmonic derivatives are given by: 

(x) 	 To? itT I((1,cK)41; c(KK))]  15.  23_8)  KO= (-1) [-?-2001,(K)j -p 	2 	y 

KA714
15=N so tá evaluate ri 	2. we need the following relations - c< 

obtained from Appendix 5: 

KI
IQ  

S=N1  
'P'11 z 	,(5.23 -9,1o) 

i K I 	.7-1.-(Nt—PC"-1-9") , 	1201 = 407. ( 21-N7n'—'0 	) ,1 2 
IS=N2 	 SzNz 

ci2(K )I s 	( N 7727-- ce-p 7nr— 1,2] 

jAK. 

	

	(t\z+ rii2"/") - N'zin1+2 N/- ] 
s,Nit 

where we have defined: 

(5.23-13) 

(5.23-14) 

(5.23-15) 
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NA 7r4 
Since Fiv,depends on only through its dependence on 

Sr:N2  

R, our expressions for specific WI 	are considerably 
S=NI  

simplified if we work with R rather than /A. . When saturating 

sum-rules, however, we must not lose sight of the fact that 

R also depends on 1'12  and m2. 

The computation of N1714 	for a given value of J is 
°4  1 5= NP 

achieved by expanding out the solid harmonic-  derivatives and 

then invoking eauations 5.23-9 to 14. Before doing this it 

is. useful to deduce in a general way the basic structure of 

w 1S=N2 
rAi as a polynomial in t and q

2. This is straightforward, 

and from the standard eauation for the expansion of the nth. 

derivative of a Legendre polynomial we find: 

11,1 	eo{(a.+ 6cc:±cE)'r(6. ‘17
7,

/ )1.-+  & 5, \ 
1 	 / 

S= t-42.  
Eyr{67.1 ;(..2.0.415:16.4_ 	koe.,.)G.2t2,,,.,6_ 

yz,sp47576 .-p 
41 ,G-  5 c‘ 	 1 (5.23-16) 

where a,b,c,d,f,h,j,k denote functions only of the masses. 

The notation of this equation is manifestly loose and inexact, 

but its meaning should be clear to• the reader. It is meant 

to indicate the values of the integers r and s for all terms 

of the type (q2)rs appearing in the coefficient of each 

.11  of the eighteen egGil..13ka,...,6.  A. knowledge of the powers 

of t appearing in each such coefficient is particularly useful, 

since we are eventually going to separately equate to zero 

the coefficient of each power of t appearing in the sum-rules. 

We are now able in advance to deduce, towithinpOlynomials in the 

masses, the structure of these eauations for any attempted 

saturation of a particular sum-.rule. 
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5.24 CONTRIBUTIONS TO THE SUM-RUIES ON A-, FROM RESONANCES 

WITH SPIN THREE-HALVES. 

From equation 5.23--16 we may usefully define in the case 

of intermediate resonances with spin three-halves: 

KA1N1 	6  
L 

s= 	 r=o 
 

(5.24-1 ) 

where the etik are functions only of q2 and the masses. From 
eauation 2.21-6 we have: 

C:7+1 	4 
(5.24-2) T(T+1 	3 

and we have chosen for convenience to further factor out the 

quantity: eg/4N2. 

In this case we reauire the expansions: 

( 5. 24 	) 

ec,"= 0 	 = 	• 
	

(5.24-5 	7 ) 
Substitution of these into eauation 5.23-7, followed by the use 

of equations 5.23-9 to 14 and 5.13-4 enables us to determine 

all thirty-six ail. 

Some of these are quite complicated and we certainly 

don't propose to bore the reader by listing them all here. 

Instead we merely give those which will be needed later, 

namely the a31. and aa. These are as follows: 

=0= 0:33 g 	Q3z-"r-P-' 

= 	DA-  N N --- 7e)] 

.51 
:,...[2,R+N(3r4-1-2.771)361,1*-NE2 -2n, 

a =',E+N(st-4-1-7y0:11,2 
	

(5.24-13) 

(5.24-8,9,10) 

(5.24-11) 

Ni(s re:+2 Nb=1--  7-41 	( . 24-1 2) 
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62. 	 al s= f\12"= -2 	(5.24-14 to 17) 

-401- 77z ) (R:4- NP'1) 7 
	 (5.24-18) 

a6 	2. R`R-1- Nr4)cr:- (NP:-)n-.1-) (2:R + 1\124.)] 	 (5.24-19) 

a 63 	[(*i- 1\17n) c f:L+ (142:- 14 'Pi+ 7117 )-R N ( 1 \ " 	±7e):1 . (5.24-20) 

5.25 CONTRIBUTIONS TO TI SUM-RULES ON A3,6 FROM RESONANCES 

WITH SPIN FIVE-HALVES. 
••••••Pg••••••••••1. 

Here we may usefully define: 
6 3 2 

ivi 2_ 14 1 _ ...S. 0 7- \'"-- V" 	 iNi 4, 
10 r t F-6- X 

" 	 I°C 	— 80 14- Z—L..... / - i(f-' 	Pe a , S. 112- 	irz1 (it i 	
(5.25-1 ) 

wheretheb.r 	
r=o 

are again functions only of q2 ,P,N, and m. We ik 
have used the fact that: 

c p---v1 	4 
zr(v+i) 	- = lb- , 	 (5.25-2) 

z---2. • 
and have also chosen to explicitly exhibit a factor: es3/161\114 '. 

	

In addition to the expansions of 	 9 	' 6,'2 PI' and T" given 

in the previous .section vie now need: 

=2 G~(1) (K)° CI- ('0)2' 	2(K) ak7-( 4 )1 5 	 (5.25-3) 

09:~ -15 ti(K). 9,.(K) . 	 (5.25-4) 
The fifty-four bfk may then be obtained in the same manner. as 

were the aik of the previous section. 

Again we list only those b3k and b61( which we shall need 

later. They are as follows: 

631-1 = 	1,2z 	 =10 N ik- 	( 5. 25-5 6 , 7 ) 

611/ 	[N (5' N7-- 	-2 7r1R] 	 ( 5 . 25- 8 ) 
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141  = 21z 	N (2. N Nnt ne)R Nzin 0\1-;nr 

- in(31\12-1-721.2 )`2  + 2 N L0\14.7.4)(2._ 0-2. rein + Nml -- m3) R 

+ N in (1\111--10Nin -;-2 Nfridb-  t,10] 	 (5.25-9) 

6.611 = 0= 6:2. 	665  = --2 0 N if"= - 2 ID232.  5 	( 5. 25-1 0 to 1 3 ) 

149  = Nt [4. (NI 	N -in (3N- 7 n)] 	 (5.25-14) 

6°61 r. 	\ 24) {(3Ns-- 2. 14 2n + 72-i2- )1S' + 4.14 	\f-- 3 N 74  7712 R 

—2N212.2(\1-2n)] (TR+2.1-N0n)1,1 
	

(5.25-15) 

5.3 PRELInINARY CONSIDERATIONS REGARDING POSSIBLE SATURATIONS. 

Before plunging into an attempted saturation of a 

particular sum-rule with the Born-term plus a given super-

position of-  resonances, one would like to know whether such a 

saturation is likely to prove fruitful. We now investigate 

the extent to which such pre-cognition is furnished in the 

general results of sections 5.1 and 2. 
Firstly we show that sum-rules on A7  as defined by 

equation •4.4-41 are not saturable with the Born-term plus a 
superposition of resonances of finite spin. 

Equation 5.21-6 indicates that in the real photon limit 

receives a contribution: 

4e 5 Fi (0)b 	4-e q El  (0) 	(44 	 (5.3-1 ) 
from the Born-teria numerator. On the other hand., we saw in 

section 5.13 that the contribution to t disc v A2 
 from any 

resonance graph was non-infinite for all t at vanishing q2. 
We have also seen that t disc PICi-n4)does not receive / 

poles from the Born-term or the resonance graphs. Thus if 

t disc A D 2 
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(J 	is the spin of the highest spin resonance(s) used in 

the saturation, we see from equations 5.13-4 and 5.23-16 that 

the highest power of t appearing in the contribution to disc , A7  
of the superposition of resonances will be tJ+1. After 

differentiating the sum-rule (J-1-2) times with respect to t, we 

shall therefore obtain on setting t and q2 equal to zero: 

83  F, (0) =o , 	 (5.3-2) 
where F(o) will carry the superscript s or v according as 

o our sum-rule is on A 
-7 
" 	7or AV3+,- 

factors are normalised to: 

F45'11(0)= 

But our nucleon form- 

(5.3-3) 

so for finite J the sum-rule is not saturable at vanishing 

q2  unless g vanishes. This would certainly not appear to be 

the case for the pion or for the pionic resonances. 

For non-vanishing a2  the above argument does not 
immediately apply since the resonance graphs then contribute 

kinematical 1/4.1, poles to t discA2. . However, the form-factors 
are supposed to be analytic in q2  at zero q

2 so any attempt to 

saturate the sum-rule for non-vanishing q2 will yield predic-

tions which will tend smoothly to nonsense as q
2 tends to 

zero. 

We therefore scrap our sum-rules on A7  and turn our 

attention to those on A3  and A6. The above considerations do 

not apply to these latter since no t61poles are involved. 

..47 
r 1 r4 

On. defining: 

E---  3e 
S=442  

-6 
(NJ 

Q-IA._ _1.1 P A 	
i 

tA t 	,leb;L'0( p for J (5.3-4) 
2,7=71 

We note from eauations 5A3-4 and 5.23-46 that 
'Q=.1 	 -4-  

A TN 	 Th 1,  \ k 
. Pi ,5 - 	E r(r4) r& VA' '1  &- 	trA''''' I/'6- • 1 	33 .S -I- 	.67_ 	z 

r=0 	 r=o (5.3-5) 
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(coeffs, of t 
< 	

5.3-8) 

(coffs. of b Si-V2). 

obtains in the case of a 

(5.3-9) 
set Of 
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A T 	 „ 	t; e' r6.--' 0 1 	br071 )!"6 r6atAnr60 P 	(5.3-6) 

	

r.T.o 	r-o 
JF r where the A3:;4,2,3  are polynomials in q2 and the masses 

but are independent of t. In particular, only G2 contributes 

J 
to the coefficient of tJ  in A3

N 
 whilst the same coefficient in 

JN 
A6 receives contributions only from G2  and G3. Also, G3  

gives no contribution to A,
N  at vanishing q2 but continues to 

contribute to A6
JN  at that point. 

Except in as far as resonances with isospin three-halves 
_ 

9 
contribute only to sum-rules on A3-1 '6  , 	let us assume that we 

utilise the same set of particles (i.e. resonances plus the 

nucleon) in attempting to saturate all sum-rules on A3,6  

corresponding to the production of a given pseudoscalar 

meson. Let s' and s" denote the highest and next highest 

spins of all those isospin one-half particles utilised, and 

let s"' and s"" be the corresponding respective quantities for 

the isospin three7halves resonances used in the case of sum-

rules on A+°-  . 3,6 
Suppose that for a s et of sum-rules on AS9V  • 3,6 • 

s' 3/2 	 (5.3-7) 

and only one of the isospin one-half particles utilised has 

this spin. Then on separtely eauating to zero each power Of t 

appearing in the sum-rules we shall obtain: 

GS'V  (S/  (V-)= 0 
2.) 	7 	9 

e'V(s;a2)=0,if s'-2 	511  
1 

If a similar situation 

sum-rules on A
o  ''' these will yield: 3,6 

G2) 	(Sc 9-.1) 211  ° 9 

1,1)=0 c  if si-.2.›,,s" 
(coeffs, of C in tAZG); 

is-/z  A 

1751-'4 	° (co effs. of_ in  
(5.3-10,11) 
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ey 
'7243k '1'1 

0 if 
 

,S1- 4/1- 
(coeffs. of C i.n 	). 

 

„„ 	_ 
t.71 ‘ , "fr _ VIC7X(b 	j k coeffs. of & in ). 

(5.3-12,13) 

Similarly, if for a set of sum-rules on• 36 • 
sllI.517 	

(5.3-14) 

and only one of the isospin three-halves resonances has this 

spin we shall obtain: 

"72,S k 7  kJ, 

(seo 	n  if 5111-151 	(coeffs. of C in /13  (f ; 
LS"/-4/z. 

G 	( SU') 9;9 =0 
,/// if 	 si") 5 5/1142- A+7-  (coeffs. of t in 

(5.3-15 

The spin in the argument of each form-factor indicates the 

resonance involved. 

Equations 543-8 to 13 and 15,16 are identities in q2  

and are useful in two ways. Firstly they tell .us whether a 

given superposition of resonances is likely to saturate the 

sum-rules. Clearly the sum-rules are not well-saturated if 

they are forced to predict the vanishing of all form-factors 

corresponding to a given resonance. Secondly, if we know in 

advance that a given saturation is going to predict that all 

we only need to compute the coefficient of Gi  in the A-7J  'cN  
G213 form-factors corresponding to a given resonance vanish, 

corresponding to that resonance. 

Since resonances with ,isopsin three-halves contribute 

only to sum-rules on A+/-3,6 	we may finally enquire whether it 

is reasonable to try and saturate sun-rules on A3' 	with 

the Born--term plus a superposition Of isospin three-halves 

resonances only. 

From 5.24-6 and 5.42-46 we see that the contributions of 

16) 
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the Born-term numerator to disc v 3 A° 	and disco 

given by: 

e'z-g/f)  -Es  0-'9/ 1- 	27n • 

are 

(5.3-17) 
So with this saturation the sum-rules onA 	and A

6 
both 

imply the identity: 

F1_( ,2- )t.-- 0 9 	 (5.3-1 8) 

- that is: 

FN)=-F:0;2). 	(5.3-19) 

These equations appear to be satisfied experimentally to within 

about 5% at all values of q
2 for which they have been tested. 

At vanishing q
2 5.3-19 relates the anomalous magnetic moments 

of the proton and neutron according t 

Ict=-Ion 	
(5.3-20) 

The presence of the isospin three-halves resonances in the 

saturation prevent the sum-rules on A.3,0±  far 

contradictory result: 

(9.)r. 0 

F19(°)= 0 = Fs2209 . 

from implying the 

(5.3-21) 

(5.3-22) 

so we are not forced to the erroneous conclusion: 

In the following sections, Whilst bearing. in mind the 

results of this one, we shall try to saturate the sum-rules 

on A
3/6 

 for the production of given mesons with the Born-term 

together with those resonances which are clearly seen 

experimentally in the process under consideration. 

The squared coupling constants for the decays into the 

final state of the various resonances utilised are related 

to the observed partial widths in Appendix 8. Such computa-

tions leave undetermined the sign of these coupling constants, 

and we have taken them to be positive in all cases. 
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Each coupling constant appears in the various sum-rules 

multiplied by a form-factor. If improved experimental 

evidence determines a given coupling constant to be negative, 

the corresponding fora-factor in our predictions must be 

multiplied by an additional factor of minus unity. 

Similar remarks apply to the pion-nucleon coupling con-

stant which we have taken to be positive, but the relative 

signs of this and the I/ -nucleon coupling constant are 

determined by SU(6) symmetry. 

5.4 APPROXIMATE SATURATION OF THE SIMI-RULES FOR 17-PRODUCTION. 
L. 

For production of pseudoscalar mesons with zero isospin 

we have ordinary sum-rules on A,S,V  for those with positive 
J16 

C-parity, (thel l ie and E); and on 49V  for those with 

negative C-parity. This latter case is hypothetical to date, 

but in any case we have already seen that - Sum-rules on A7 
cannot be saturated using the resonance approxiMation. In the 

fovmer case, only the photo-production of the / has been 

studied in any detail, and we shall accordingly restrict -

ourselves to a saturation of the sum-rules for production of 

this particle. 

The only resonance which has been clearly seen in 
05.) 

/-photoproduction is the N(1550) with: 

(I1TP) C4-11: >;: 
	

) 

a situation in qualitative agreement with the fact that this 

is the only known resonance with an appreciable width for 

decay into 	Indeed withf15  
) 

 

r'0560-P 1\110-A-' 4.70 FLat  5'50) (5.4-2) 

and: 

 

1-1601-cl i (15 5.0) := 1P60 11W 	(5.4-3)• 
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this partial width is quite large. We shall try to saturate 

the sum-rules for photo- and electroroduction of the 

with just the nucleon and the N(1550). With M and P 

denoting the mass and total width of this resonance, and /4 

denoting the pion mass, we then have in view of equations 

5.11-1, 5.12-8 and 9, 5.24-6, and 5.22-8 that the predictions 
S of the sum-rules are as follows. From the sum-rules on A
3
V  : 

(5.4-4,5) 
V S and from the sum-rules on A6' : 

s 5091?) a) g (15-so-, 14 `,7) [1:1!"(514--', 15 5 0) —(1\11-7n)Fr(5[1 --,---15.50)] 

= *0(1\1  NrI)F1s!v(7N1-- Ni) (5.4-6,7) 

In these four equations we have introduced the shorthand 

notation: 

Y 
(vi  r)  

zt 	 • 	 (5.4-8) 

The pion mass appears because although the final meson is an 

77 the s-channel cut still starts at (ern +/1.42. 

The solution of equations 5.4-4 to 7.is a trivial matter 

and they yield: 

F,1 0"1)---Ii1550+) = 0 =-• Fi (rn---,1 550°) , 

F2.(.12-15500) 	7z) 

F,Crp-*155-(59 	 5 

Fl ((/1 ."1.155-0+) 	8 (N.-,  Nig?) P7._((11)-)-0  
2.7nY(15-60,1'.2,0)50550->N0 

(5.4-9,10) 

(5.4-11) 

(5.4-12) 

Vie stress that these equations holdfp;7 all non-positive 

definite a2. 

The first two equations predict the vanishing for all 

non-positive q2 of the pair of yNH>4550 form-factors which 

appear only in the virtual photonic case. These two equations 

W155°,140 5.50 -N71) FcJ e  
 VW? 1550) 	(Ni- 

22a 
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cannot be obtained from pure photoproduction sum-males. 

Equation 5.4-14 predicts that the moment //
f orm- f ac t or s for 

the yl,T-;-1 550 vertex are in the same ratio as the corresponding 

nucleon ones. In as far as the empirical scaling relations: 

(5.4-13,14,15) 
are valid the right-hand side of 5.4-11 may be replaced for 

all q2 by: 

IGnAct -1.067 . 	 (5.4-16) 
Taking the respective mean masses of the nucleon and the 

pion to be 939 	and 38 MeV we obtain: 

y055-0, V30) O' 949 , 	 (5.4-17) 
and from Appendix 8, Table A 8-1: 

(1650-1 Ny)= 2:11 . 	 (5.4-1 8) 

Thus 5.4-1 2 predicts: 

	

F;ftr 155°1.2 --(6  '260 to 6q-, 	(Tr) f)):1 6tV 1  • 	(5 . L! --1 9 ) 

If we decide to relate g(N —> 	) to g(N->.N) by 

unitary symmetry we must go at least to SU(6), the F/D coupling 

ratio and y-yl mixing angle being involved at the SU(3) level. 

With the SU(6) predictions of negligible mixing and an F/D 

coupling ratio of +2/3, we have: 

0\1')'N70::+6,17 0N-3.1\170 

	

5 	 (5.4-20) 

In case the reader is mystified.-by the dimensions of 

F •2(,(1->i( 530), we remind him that although vie are using the. 

conventional dimensionless nucleon form-factors, our F2(y11->1 550) 
-1 - . as defined by 2.74-24 has dimensions of mass 	These dimensions 

6,,,(v) 	. 4 , 	 "2)  G-(00-= 	6
"  - 	1 4.1,c'' 

so with g(I\T->N7r ) given by eauation 5.51-6, 5.4-19 reads 

finally: 	.(x.26) 
F-20t-',•15561) =ler 	(zr  9  (?) 6'E,)\/ 	 (5.4-21 ) 
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are then carried by the coefficient 
	

F2(yNH).N) in equations 

5.l -1 2, 13, and 21. 

5.5 SOLE  APFOX1rATE SATURATIONS OF THE SUM-RULES FOR 
PION PRODUCTION. 

5.51 INTRODUCTORY REI,TARKS AND DEFINITIONS 

In the case of the production of pseudoscalar mesons 

with isospin unity we have ordinary sum-rules on: A°
3
'+  ' 

A°,4" 0 -I- 
6 	, and A7  for the pion, and on: A7  ' for the hypothetical 

case where the meson has negative C-parity. Having already 

seen that sum-rules on A7 
cannot be saturated in the resonance 

approximation we now restrict ourselves to the A, c  sum-rules 

for pion production. 

The situation here is a little less certain than that of 

the previous section. A large number of baryonic resonances 

with appreciable partial widths for decay into N ;ft are now 
(15) 

known and might be expected to contribute to this production 

process. Whilst theA(4236) with 

(I'jP'7)41(4236) 
(3/2, 3/2+, 120) 	(5.51-1) 

= 
is very clearly seen in photoproduction, the higher resonances 

would not appear as yet to be fully disentangled. The experi-

mental evidence favours the view that this process is dominated 

at-low energies by, (apart from the A(4236)), the N(4525).with 

p 

(I1J ,r)N(152W (1/2, 3/2 , 11.5), (5.51-2) 

and the N(688) with 4  

(I'jP/P)N(1688)=(1/2,5/2+9 130). 	(5.51-3) 

On the other hand, the possibility of an appreciable contri-

bution from the N(-1680) with 

(IIJP1r)N(1680)= (1 /2 5/2-  ,1 	) 
	

(5.51-14-) 
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is not completely ruled out. Low energy pion photoproduction 

does not appear to receive any appreciable contributions from 

resonances with spin-one-half. In particular, the presence 

of the Roper resonance, N(4470), with 

(19'Pr)N(1470)-- (1/2, 1/2k , 21 0) 
	

(5.51-5) 
has not been detected experimentally. 

In the following section we accordingly attempt to 

saturate the sum-rules with the nucleon together with the 

A(1236), N(4525), 11(4680), and N(4688). The predictions 

obtained are not very illuminating at present and in the 

subseglient sections we attempt to gain more useful (and 

approximate) predictions by progressively leaving out the 

higher mass resonances. 

But first, let us define some further symbols to simplify 

the notation of the following sections. 

We keep the symbols m and/,{.for the nucleon and pion masses, 

and define M M2' M3' and M4 
to be the respective masses of 

the A.(t236), N(4525), N(4680), and N('1688). The standard 

notation is used for the nucleon form-factors and g(N) will 

sta:ad for the pion-nucleon coupling constant. We Shall-  adopt 

the value: 

02.(N)Azc = 14' 8 

corresponding in standard notation to 	

5 51-6) .  

2/1-1-,76 = 0  • 0  SO • 	 (5.51-6A) 
The symbol g(1236) will denote the coupling constant for the 

2,3 interaction': A(1236) ---'7- 11.;M, and G 	(4236) will be the 
1  

SU(2) form-factors for: yN -+A(1236). Similar 

notation will be used for the remaining coupling constants 

0(3 91 ) 
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and form-factors. The relevant coupling constants are 

computed in Appendix 8 using equations 5.51-1 to 4, (taken from 

the January 1968 Rosenfeld tables), as input data. 

The finite width correction f actors, Y(L, r 	are 

defined as in the previous section, the s-channel cut again 

starting at the point (92z 102. With the above input data 

we find: 
Y(12.'56;12-0) 0.878= 	, 	Y(15'25 115)=0.95-  , 

y(i6so)170)::: 0 .9244, 	Y(.16`3 8 2 1'30)= 0.  959 9 (5.51 -7 to 1 o) 
so as in the previous section, the predictions of the sum-rules 

will differ but slightly from those which would have been 

obtained had we neglected the widths of the resonances. 

It will prove convenient to define: 

Vi0(12>SG)  
(1.?',S 6/ 	9 mi.2- (NO r (111°61124 G.1:2.,$(12 -SG) 

	

S,v m65N(1-1j:(05))  yo6-2,5„ 115) Gis;,5( 5,-5) 	(5.51-12) 

SpV 	'in 80600  ,/ 	\ 	, 	, 

	

00,170) Cr - 	 68o) 	(5.51-13) 1/ITS 	
4°110(14) 	 1,27?) 

	

L 5'V  ((,2').7.-7/1- Viess)  Y06'3801,0) G.5'v  06.8g) 	(5.51 -1)-4) 40 	ci(t4) 	 2 -, 

in which the various coupling constants, masses, and numerical 

factors are suggested by the structure of equations 5.11-1, 

5.1 2-16 to 19, 5.21-6 5.24-1 5.25-1, and 5.4-8. 

Finally, in view of equations 5.24.-1 and 5.25-1 we shall 

define quantities (7i,X,Y,Z)1:k  which are functions only of a 
q2 and the relevant masses, by: 

'I 
MI  0 9.166) F.--  a 	 Ijr 	 -q/1.,  p,  c,. 

c( 	 vv iftt• vcia 'c'e ft u-r6 
1 r- 1 fv:--1 y-:-.70 

Mi 	(152 5) :-..--... e 
rrzo 

6 5 

s 
iifz 	.7 t4 
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(5.51-20,21 ) 

(5.51-22,23) 

we have: 

wriz  

   

N = )r.  N1= 

    

    

4_k 
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rvi(160 e  Y irk bl'.:  c4,i (t/qz.-r j -I- K \r/-0. Sj3)  (5.51-17) 
r= 0 

3 	v.. 
tib 6(387 b e 	 Z 	04' 

s  

Lk snej  L vit Sjs) 
1 = 1 r0 

where the quantities on the left-hand sides are the 0(3,1)0SU(2) 

space IJ-functions corresponding to the pole-graph numerators 

for the intermediate states indicated. The (•N,X9Y,Z)fk  that 

we shall need may then be computed from equations 5.24-8 to 20 

or 5.25-5 to 15 as appropriate by inserting the relevant mass x 
normality product for N. 

Specifically, with: 

(5.51-18) 

5.52 ATlibMPTED SATURATION USING THE N(,919),  4s(1236) . N(152q1.  
iv  1680).  and 2.(230.1. 

In terms of the quantities defined in - the previous section, 

we obtain the following equations on separately eauating to 

zero the coefficient of each power of t appearing in each of the 

four sum-rules after attempted saturation. Repeated k 

indices area meant to imply sucmation over k = 1 92,3. In 

deriving these relations we have made use of eauations: 

5.24-8,9, and 14 to 17, and: 5.25-5,6, and 10 to 13. 
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Sum-rule on  A 

Coefficient of t2: 

YL 	+ 	 ( 5.52-1 ) 

coefficient of t: 

X32 	Y:ft 1<k'" Zigt 	° j 	 (5.52,2) 
coefficient of t°: 

X; rt 	K rs,„ 	s 	z 	 (5.52-3) 

Sum-rule on A6  

  

Coefficient of t2 

Yz  K z' Ls = o 32 	'6 2- S (5.52-Li) 

coefficient of t: 

—2 X1  Hs-FY I  Ks -i- zz 	61q, 

coefficient of t°: 

(5.52-5) 

Krz, rs,;.+Y °‘ K r. + Z.  ft Z, (5.52-5) 

Sum-rule on A±  

   

    

Coefficient of t2: 

Yz  K v +Z2  = 0 32 2 	32 2 	3 

coefficient of t: 

\A/$12:er. 2+ Xsiz  H2.V  YL:t  KrtV  +Z rc  1_,Vk 

coefficient of t°: 
t.fo 

Y°  KV  7   
VvZ17- rz +-'2)ft 	5rt k+ -43k 1  = -F  2 

(5.52-7) 

(5.52-8) 

(5.52-9) 
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Sum-rule on A6  
Coefficient of t2: 

Y
2 I/  V 	2. V 
02  r\•B- ;2.L.3  

coefficient of t: 

0 (5.52-1 0) 

2X 	H Y rz  Kik  (5.52-11) 
V ‘f. Lh=.0 5  

coefficient of t°: 
J O 	v 0 LI N I 

k 
j_v

6 

 0 Le  V .,-7 
6 
0 

1
I  V 	,\/ 

e 1̀(ft A f e n  ' 	re 	"1" 	fc - = 
From equations 5.52-1 4,7, and 10 we have immediately 

the predictions: 

[(I K2,K1 KY5  z 
2 	

frit!.
4- 

---- . 
-z  - 	z 1"1,1-: • 37. (5.52-13) 

This set of relations holds independently of the other 

resonances used in the saturation provided none of these has 

spin exceeding three-halves. In view of equations 5.51-1 3 and 

14, 5.52-13 reduces to: 

6-2.S (18 0) 	6-062.0) 6-2,(1600) G-3(165.0) 	866s8)Y(1‘g8,1-30) 
6.:(1608) G-3(1653)&(162,g) G-;'(1620 N'ISOY(1()sV5r(y2_114.) 

One may equally well replace the superscripts s and v in these 

equations by superscripts o and + referring to the charge of the 

resonance. 

In conjunction with 5.52-13 we may use equations 5.522, 

3,5, and 6 to express 0(1680) and GS 	(1 688) in terms of 1 	 1 2:3 
Gs ,2,3(4525) and F52. Similarly, from 5.52-8,9,1 2, and 13 

we may obtain 0, (1680) and G.  
,2,3 	 1 (4688) in 	 ,2,3 

	

terms of ot 	(1525), 1  
G 	 V 
1 y 2 3 ( 236) and F2°  The present scarcity of experimental 

5 7 V 
2,3 data on the G1 	(1 525) does not render such information very 

useful at the present time, and we shall not pursue this parti-

cular attempt at saturation any further. 

(5.52-12) 
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5.53 INCLUSION_ OF TI-E1 NL9..35.1, Zs (1 2.36), NC1_525  ) and 
TC-E6871. 

If the contributions from the N(4680) are left out 

of the equations of the previous section, 5.52-4, 4, 7, and 

40 become: 

LS= LS = LV =L V = 2. 	2 	`b 	 (5.53-1 ) 
that is, we have the prediction that G2  and G3  vanish 

identically for both charge states of the N(1688). 

Equations 5.52-2 and 5.52-5 may therefore be written: 

HS . 	$1 I Zi  L/X 4  12 5 	 (5.53-2) 

Z461 LS1 #124. 	 (5.53-3) 

and on defining: 

V1 	
° v° 	v° 1 

v 1 	/‘ 2
7 

 31 -A7,2- " 
.4 

 

1 	0v ° ,7  1 .4 	y 0  .7  1 
V2 :":" A  32. i" 	i‘61- 4-431 	z 1'63 "6fri 

eauations 5.52-3 and 6 become: 
v o 	 S 

A 52. A 31 11 	"1 - A32 F 

x ;2. x:i  Fri+ vl_LI x31,F: 
These eauations may be solved for L1  and 	2,3 

in terms of F2  yielding: 

(5.53-4) 

(5.53-5) 

(5.53-6) 

(5.53--7) 

: (° 	 1L X61 	X52(4  

H", = (X6, V,— X;i 	V,)Fts  , 
0 	No y0 „ H2 	(X:1141 -- 	Vz/ 2,,vq1— n.aiii 2 

R55  r-1 (X 	— 	IQ Z6-1(41—  X.:1)F: 

(5.53-8) 

(5.53-9) 

(5.53-10) 

(5.53-11 ) 

Now A 	Z1 	Z1 . X,- 	and Xo • depend only on the 
32 , 	, , 01, 

masses, but .  (V1-V2 ) and (X6,( Vi -X3,1V2 ) are linear functions 

of 02. It turns out that: 
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vt)= — (5. o-5) 0')(4.4- 8 9") 	(5.53-12) 

(x6°1 	\12. ) (3.24) o9 (6.48 — 	( 5 . 5 3 -1 3 ) 
where in these, and in all subsequent equations, the 

evaluated functions of the masses are expressed in units of 

GeV/c raised to the appropriate power. In connection with 

these equations we remind the reader that our choice of 

metric corresponds to positive q
2 
for time-like photons. 

There is certainly nothing very startling about the prediction 

that G'"(1688) includes a factor (4.48-0!),  and since the 1 

:g1688) - 7(939) pair production threshold is situated at 

the time-like point: 

01:2-= (Mk + 771r 6 • 91 0-e,V 2  

there is no objection to a pole in this form-factor at 

1=1  G. 	6-,V
s 

. 
(5.53-15) 

Hoviever, since this point lies above the 	1525)-7(939) 

production threshold: 

(5.53-16) 

we require that the G1,2,3 (1525) should be finite at the 

point given by 5.53-15. Hence we have the additional predic-

tion: 

(5.53-17) 

There is really no. experimental evidence to confirm or 

contradict this prediction. *Although it does not satisfy the 

combined empirical scaling laws 1.2-17 and 20, we have already 
seen that the former of these violates the threshold constraint 

42-16 if continued unmodified to time-like q-
2  . It becor:les 

a plausible prediction if one bears in mind that the equation: 

F 	= 	Ff (0) 
	

(5.53-18) 

if satisfied to within about 

(5.53-14) 
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Let us now turn to the remaining iscivector" eauations. 

On leaving out the N(4680) contributions, equations 5.52-8 

and 11 now read in view of 5.53-1 : 
H  V 	iz Lv 

	

2-p 32 	3/ 1 	'..;1  ( 2)  
11V-7 	

ul.2. rt 	(4-61 1--1 	rvs Ts) . X-3, 
On defining.: 

	

=1 .̂/1  x 	tie )(1  V3 ( - sz  sz 

V4 777:  (42 42- w6°2- XSZ
)  

(k/32.  X:r 'AC 

V6 E"- (14s12. X (6's Wif's X-12.) 

eauations 5.52-9 and 12 therefore reduce to: 

Xsi 
)(312.  + L  „ x31

2 
w30141).t.y3p.+  

( 5. 53-1 9 ) 

(5.53-20) 

( 5.53-21 ) 

(5.53-22) 

(5. 53723 ) 

( 5.53-24) 

(5053-25) 

;i  xs,2.Hi  + 	x 3 .2_ F2 _ w604.1) + yi+tr.2.  + v6  

We may use 5.53-49, 20, 25 and 26 to obtain I and 
H 	-3 	2 in tovAls of FV 	0,2,3. and -6 	The solutions are: 4
V
2,  

= 	\c) [42.(4-41)P2i+xl2(w61  x  - x:,61 

+(x:iv--4-1v0Ep.1-(nivs-nivG) 
{x;1 2.(x:ivi-nval  [x;2(v,1 42)F2.-x;2046A-wsiv4,1  
+(v1v4.--vzvs) + (v1  v6, -v2yts) .;] 

(5. 3-26) 

(5.53-27) 

( 5. 53-28) 

Fl =-z1  [Y1  (Y ° V-X° 	(X°-/')Fv  X1  ° Y 	° X° )1   D:7\4, 1 	 32. '61 1 	31 S 	‘32 	2, 	32 61 31 	31 ‘1 

K/z)(x61  v1-o 	° v )1e, +(x, yr,-x 	It, 	c 	cs )  
cr 

' 	'y31  

-121:ZIAXL(X°61 X°31V2)11{X:1(4.1r5.1)F2+X ( X 1/'N/ Xci) 
V 4 o o oo 

32 1 )1 31 

V5 -4V4*..+ 	 ) 4 (4  V4 
`"X 

'11/2)11p1 6/  
( 5.53-30 ) 
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There are no consistency problems here; we merely 

require that the numerator of the right-hand side of each 

equation should vanish when c-J 2  is equal to 6 	GeV2. In 

particular, due to the contributions of the ZN(1 236) to the 

isovector sum-rules we are not lead to predict the vanishing 

of V( 6 	) 
On evaluating the various mass polynomials appearing in 

eauations 5.53-8 to 11 and 27 to 30, we obtain finally in 

view of 5.51 -11 to 14: 

G;si  0520::  -6.810(01-B-1;.9-1(4.11-s-coq ( 5 . 53- 31 ) 

G1(1525) '0'79)(6' 48'0-1  F2,5  &eV-2  , 	
(5.53-32) 

G:(1525).= (1.04-$)(6.4-0127/ 	 (5.53-33) 

Gis 	688).7. (0.085o)(6.4-8-1,)"1F2s, &c,V -2 	 (5.53-34) 

Ga.5 (1G(32).4  0 6-V-$ 	G-z5  (1688) 0 C--a 	 (5.53-35,36) 

G•i  0 2 5) (6: 	) [(2+ 	elf') q-0.72.10(7.76-9.1)&iv(1236)÷ (2.21.5)(0.2.20 

12.X7.65- GI,?)&2.(12?))-1-(7.°L1-5)(0.20:-11,1)(4.  57-9,1) 62;9  (12.s 
(5.53-37) 

.5 52) 6....r(12.1)() (0•221-6)(4-°5 	(12:2A) 

+(0.24-5)(1.2.12.+61,1- )q(r2ebq GsV -1 	 ( 5 . 5 	) 
0.0"))  p-0525):: 	

[Fv + 5132) G-iv  (12$6) -(0 .2.4.5) 	ci,z) 	2.z0 (6.48-  9") 

(1'0 8)(21.°74- ci-?-)C7:,;(12:-V0)] Ge 	 (5.53-39) 
V 	 0850 • ) 	/ 

& OG8 8 	 •1-2. + (0' 552)G;1V  (12  0-(b°2-11'5)(?4 41+'-`1:9G-7-v0z1)0 
(5.53-40) 

( 5. 53 -)4?, 142 

G1(152.5)::: ( 6.(1 9) er.  [f.- 

+(0.245) (1.2i 2 + a.: 2:3 Oil G-2.V-Z  

G2(18 8):: 0 GeV -5  , 	G"sv(1668)= 0 	. 



His  

His  

X: M- (12.67) GeV 

-(10,96)6172N 5 

Since: 

and: 

(5.54-3) 

(5. 54-14 ) 

(5.54-5) 

(5.54-6) 
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The isoscalar solutions speak for themselves. 

[3,1622,3(1521 and 14(4681 whilst non-vanishing 

predicted to be relatively small compared with the 

ing isovector form. factors, since each is equal to 

of F2  (which is very small compared with F2) and a 

are 

correspond-

the product 

term whose 

modulus is less than unity for all non-time-like q2. In 

particular,K(1688) is predicted to be relatively small 

even in comparison with. 
I  G1 2 3 (1525)1 . 

Not very much can be said about the isovector solutions, 

since of the G
1 ,2,3 (1236) only G,k

V,  
1236, 

any accuracy empirically. However the factor (0.0850) in 

equation 5.53-40 does suggest that 1G (10881 is relatively V , \ 

I 1  

small in comparison with 
i  G
1 1:2,3  (1525)1 . 

5.54 INCLUSION OF THE N(lai, ti(4 2 -6).  PiND N(1 .251. 

On omitting from the previous section the contributions 

from the N(1688), the equations and results are modified as 

follows. 

Dealing first withthe isoscalar equations, 5.53-2 and 3 

now predict: 

HZ= -H3 	 (5.54-1,2) 

whilst 5.53-6 and 7 read: 

a2 = o) is known with 
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these latter two equations are inconsistent, but their pre-

dictions only differ by about 14%. It is interesting to note 
that X3

1 
 and X61 both vanish in the limit: 

M,z,--->& 7 	C) • 	 (5.54-7) 

So in this "equal mass" limit equations 5.54-5 and 4 are 
consistent. 	Both predict the identical vanishing of F23, 

which as discussed in section 5.3 is a prediction which holds 
experimentally to within about 5%. Nothing can then be said 

about E[1 
which does not contribute to the sum-rules, but 

equations 5.54-1 and 2 remain valid in this limit. 
With the N(4688) contributions absent from the previous 

isovector equations, these can be solved for III , 
V 
2,3 

and -6,- 03 
in terms of F2

V 
 and di ev 

9 
 2. We obtain: 

----- -(x;y5-4v6)--1 {X /312(41-X:1)F2v.-{-4zNin-1-14X°61)1p 
+ (01- X31V2i.)Lz 	 (5.54-8) 

(X61 	X (31 e)-1  [015— V6) F;- (41\15-141V6)L1 

(X.11,0-1(Vii.Vs- --  Vs Vc)fizi 	(5.54-9) 

He w--(w32/X 4  
v / 

2. 

H-v 'z -( 42-/X f  

(5.54-10 

) 

Again, no particular consistency problems arise; we 

simply require that the numerators of the right-hand sides of 

5.54-8 and 9 vanish when (X°6-1 V53 -X°1. V6) vanishes. This turns 
out to occur at the spaceiike point: 

9 	 — 0.2_12) &ey 	 (5.54-12) 

In view of the detailed structure of the mass polynomials 

appearing, these two constraints turn out to be the same. On 
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approximate evaluation they both yield: 

{F2v  + (0. 550 6-:,(1236) — (2:5 	(1251 
	

= 0 
( 5 . 5 14-1 3 ) 

This prediction becomes plausible if we suppose, as is 

not unreasonable, that the G11 
V 
2 (1236) are proportional to 

Fv for all space-like q2. We then require: 2 

[F2V.  -I-  (0'5.50)4(i n6)- (9--5Gr:5) (1V-06) 	= 0 . 

12=° 	
(5.54-14) 

In view of the results of Appendix 9, we find that this 

equation agrees with the empirical data on pionphotoproduction 

in the 33-resonance region if one assumes an e/M+4  ratio of 1 
about -2-5% . As mentioned in the said appendix, the data 

on 14741 is subject to very large percentage experimental errors, 

and the value of -2•3% certainly lies inside this error range. 

On evaluating equations 5.54-1 to 4 and 8 to 11 we obtain 
the predictions: 

0 • F10)}72.S  G-ev 	(sum-rule on A°) ' 
(1525)= 	

3 
 

c2(1525)=0 	(15" 2- = 0 GeV z  
r G-„v  (12:b 6) 	--- 	(o.552)6-.vi  (1z-6(,) 

(1-2_12.-1-1") - 
— -2.45)(3 	—61_2) 	(121)(,))] Ge-V 

. 88  r v  
&iv  (1525) 

-- 1 
0.212+9") LEI"- 	(1.218)(0°7C2+1,9 GYI  (12$ 

- 	56)(0.506-12)G-, (lnq Gsv -1  

<0524 (0.872) G-2v(12:.z.-3() GeN-2  

&,,v  (15'25)- (;2;  .81.1,)  [1: 2.v  + (O. 5 52)G-iv  (12.(0) 

-(o.221.5)(8. 2A- - 1:1) G-:(12.3)] G•eV 

(11  • 56) F2S., 6-eV 19-  ( S urn- rul e on A°,-) 0-  (5. 54-1 5) 

(5. 54-1 ,1 7) 

(5.54--18) 

( 5 . 54-1 9 ) 

(5.54-2o) 

(5.54-21 ) 
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The isoscalar solutions again speak for themselves. 

They are in qualitative agreement with the corresponding 

results of the previous section, and this is not surprising 

since we have neglected the form-factor G1 
 (1688) which was 

predicted as being relatively small compared with G112,3(1525). 

However, the results 5.53-31 to 36 are to be preferred to 

5,514-15 to 17 due to their increased predictive power and the 

fact that they (presumably) correspond to a better saturation 

of the isoscalar sum-rules. On the other hand, 5.53-34 at 

least will have to be scrapped should it be discovered that 

F2(6.48) is non-vanishing. 

The isovector solutions again suffer from the lack of 

reliable data on ,the G1 V2,3  (1236), and the reader is referred ,  

to Appendix 9 for a discussion of the• empirical data on 

G1  2(1236, q
2 = 	Although a reasonably accurate estimate , 

of 0.02361  q2  = o) 	available, the predictions 5.54-18 to 
'1 

21 depend rather violently on the (relatively unreliable) 

value of the parameter e of that appendix. 

lie tabulate below the values predicted by 5.5i4-8 to 21 

V (1525 q2  o) for 67(1236, q2  = o) and -Gusing input data 
3 	4,2,3  

based on three different values of e  . The value 

P= 0 
	

(5.54-22) 

corresponds to pure magnetic dipole excitation at the 

r'N(939) --7 A(1236) vertex; the value 

r-0,0614- 
(5.54-.23) 

corresponds to the vanishing of G2(4236, q2 o),= 	and therefore 

V of G2(1525, 0
2 = o) in this case; and the value:• 

• oi 8,, 	 (5.54-24) 
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(which is well within the error range of the empirical data), 

is that for which the sum-rules predict the vanishing of G3 

(1236, o2 = o) and Gv(1 5255 q2 = o). It is obtained by setting 

Gv 3-  an (1236, q2=0 )  equal to zero in 5.54-1 8 	d then solving the 

resulting equation simultaneously with A9-3,1 6 and 21 of 

Appendix 9. The corresponding empirical solutions for G,  2 
(1236, q2  = o) are: 

(5.5L-25) 

6.2v0236,9?:70)::1•92-1- Ge-V 
	

(5.54-26) 

Vie have not bothered to compute the value of e  for which 
V G1 (A 3235 q2 = o) will be predicted as vanishing since such 

a value will lie outside the error range of the empirical data. 

Vie remind the reader that in practical applications 
• G3

V  (1 236) and G7V  (1 525) will be darnped by kinematical factors 

proportional to q2 , thus the relatively high values of 
I G3(1236, q2 = 0)1 and 	IG3(1 525, a2 = o)) corresponding to 

a ) value of - .0.064 are not superficially unreasonable. 

TABLE 5.54-i 

71:1,1+  ) ( yl\T-n‘ ) 

FORLI- FA CT OR ,p, 0 -0.018 -0.064 

G3(1 236,o2  .0) 
v 

G (1525,02=0) 1 
/ 	. GV

2 yi, 525' o_2  =0) 
V G7(1525,q2  =0) 

3.88 

2.58 

-1.90 

-3.40 

0 

2.35 

-1.70 
0 

-1 0. 87 

0.705 

0 

9.54 

Predicted values of G_V  (1 236 a2 = o) and G 	(1525, a2  = o) • - 	 1_2,3 	 

corres_-oonding to in-oat data based on various assumed  values 

for (EAd1  ) ( 	
A ) 

1  



('sum-rule on A-10 

-v 
% 	(sum-rule on At). 

W° er•("2)Ge,\13  1 _" 

and: 
(10.70) Ere,y'h  

(5.55-5) 

(5.55-6) 

(5.55-7) 

(5.55-8) 

Fzv  
equations read: 

/41$1 

Since: 
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5.55 INCLUSION OF TEE N(9391  ..A2fl) ZA(12 76) ONLY. 

In this case we have only two la scalar equations. They 

are consistent, and both imply: 

o . 	 (5.55-1 ) 

As discussed in section 5.3, this is a remarkably sound 

prediction in view of the crudity of the approximation. It 

holds more generally for any attempted saturation in which 

all the resonances utilised have isospin three-halves. 

Equations 5.54-40 and 11 reduce to: 

	

(i2/.66) 	
(5.55-2) 

o 	 (5.55-3) 
As we demonstrate in Appendix 9, a very wide range of values 

for the ratio 1 2 GV(1236 a2 = oVG,V  (1236, a2 = o) are in 

qualitative agreement with the experimental. data on the Ei+Ac

ratio for pion photoprod.uction in the A (1236 ) resonance 

region. For finite GV  (236, q2  = o) the vanishing ratio 

predicted by eouation 5.55-2 corresponds to a value: 

E+1411; - 0 • 0e11- 	 (5.55-4) 
In view of the widespread uncertainty concerning the correct 

empirical value for this quantity, it is in good agreement 

with Gourdin and Salin's value of -0.045. 

If we accept 5.55-2 and 3, the remaining pair of isovector 
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these two eauations are inconsistent, although their 

respective predictions will only differ by about 23%, In the 

equal mass" limit: 

in ) 	0) 
	 (5.55-9) 

W°  and Ti°  become equal and non-vanishing, rendering the 

equations consistent and non-trivial. (C.f. the equal mass limit of 

X? and X°  X3 	. These differing behaviours arise out of the 

opposite normalities of the resonances concerned.) 

On evaluation of equations 5.55-5 and 6 we obtain: 

6-v4 (1236 
(I • 070 F Ger 9 

(I 710)F2  (Terl  

(suM-rule on A4-
3
) 
' 

(sum-rule on A6). 

( 5. 55-1 0) 

(5.55-11 ) 
At vanishing q2 this becomes: 

2.00 6.0/ -1 , (At , 	(5.55-12) 

6-erl (AI) 	 (5.55-13) 

A number of authors nave obtained results eauiValent to 

equation 5.55-12 by means of the sum-rules for pure photo-

production. On comparison with our four fits lo the photo- 

production data given in Appendix 9, we see that Whichever fit 

is adopted this prediction is between about 20% and 30% too 

low. In view of the drastic nature of the approximation this 

is nevertheless a reasonable result. 

However, equation 5.55-43 is in spectacular agreement 

with the three lower fits and in good agreement even with the 

highest one. It differs from the fits corresponding to 

4/q ratios of 4.6.4%, zero, -4.5%., and -6.4% by about 11%, 

5, 0.)_6, and 2 70 respectively. Since the prediction is based 

on the vanishing of 4(1236), the final fit possibly provides 
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the most justified comparison. 

This prediction c annot of course be obtained by the 

methods of the authors cited above. Its accuracy may simply 

arise out of the happy coincidence that all the errors 

introduced by the approximation procedure exactly compensate 

one another as far as this eouation is concerned. On the 

other hand, it could indicate an almost exact cancellation, 

in the vanishing q2 continuation, of all contributions to 

the coefficient of t in the e sum-rule other than those due ' 6 

to GI  (4236) - and F. . This could well include the contributions 

from G2,3(1236)9  thus eliminating the reliance of the result 

on equations 5.55-2 and 3. We are unable to offer any 

explanation for the mechanism responsible for such a cancellation. 

Finally, we wish to indicate a possible alternative 

approach to the sum- 	
3° 

rule on A+  At vanishing q2  this 

receive no contribution from G
3
(1236), and as 

can 

a check on the 

calculations we note that W3 3 is indeed proportional to q2. 

Thus in this limit the vanishing of the coefficient of t°  in the 

A+
3 
 sum-rule implies: 

° (0) +  W32 (0):: feM 	(5.55-14) 

   

1=o 
We may argue that a great deal of faith cannot be placed in 

equation 5.55-2 since as it involves only a single form-factor 

it is unlikely to correspond to a well-saturated coefficient 

t in the sum-rule. If we then scrap this equation as 

unreliable we may keep the -662  (o) term in 5.55-14. By 

substituting into this equation an empirical value for the 

v 0 ve.1  (o) ratio we may try. to improve the A..; prediction for 0 
G
1(0), or vice versa. 



225. 

On substituting for 
	

(o) the value: 

(0) -51(0)/mi 	 (5.55-15) 
corresponding to a pure magnetic dipole transition, we find: 

G'iv(12$,61;1":0)=2.611-6-eri 	 (5.55-16) 
which is within 11% of the empirical fit obtained by assuming,  

such a vanishing ele 
1 	I 

tune the value: 

ratio. If on the other hand we substi- 

=-6. (0) (0. 2) 0 8)12 (0)/11 	
(5.55-17) 

which corresponds to Gourdin and Salin's value of e/M+  we 1 
find: 

(123 9  01,7-= 	16 6cArl 	 (5.55-1 8) 
This is in much poorer agreement with the corresponding 

empirical fit form which it differs by about lla. 
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SUMMARY OF RESULTS AND CONCLUSIONS 

Using the (original) 0(3,1)(D SU(2) invarient off-shell 

techniques developed in Chapter 2 Part II and in Chapter 3, 

and assuming charge-conjugation invarience of hadron-virtual 

photon interactions, we have obtained. the following super-

convergent sum-rules. They are valid for non-positive definite 

t and for all non time-like q2; y denotes a real or virtual 

Photon, 

i) Four sum-rules, (list 4.4-42), for each of the 

processes: 

ii) Five sum-rules, (list 4.4-44), for the process: 
-----> NQ't 	 (4 ) 

iii) Two sum-rules, (list 4.4-43), for the production 

of hypothetical mesons with: 

0-T, 	n) (a, o - ) . 	 ( 5) 
iv) Two sum-rules, (list 4.4,45), for the production 

of hypothetical mesons with: 

(z-1, Cn):--- 	„ -) . 	(6) 

v) Eight sum-rules, (list 4.5-59), for each of the 

processeE,: (7)  

(8)  

vi) Eleven sum-rules, (list 4.5-61), for the process: 

( 9 ) 

vii) Fourteen sum-rules, (list 4,5-58), for the 

production of hypothetical mesons with: 

(1-10,+) 

viii) Eighteen sum-rules, (list 4.5-60), for the 
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production of hypothetical mesons with: 

• (V4  ,C71).-: -)i,(11 ) 
Of the above eighty sum-rules, fourteen refer to amplitudes 

having electrodynamical poles as a necessary consequence of 

gauge-invarience and/or current-conservation. We conclude 

that these cannot be saturated in the resonance approximation. 

All eighty sun-rules remain non-trivial in the vanishing 

q2 limit, but only fifty-three of these can be obtained if one 

treats the photon as an on-shell particle from the outset. 

Thus we conclude that even if one is only interested in obtain-

ing sum-rules for a real photoproduction process , the correct 

way to proceed is to treat the photon as a virtual particle 

and only take the vanishing q
2 
 limit at the conclusion of the 

calculation. 

All the above sum-rules are original, but in the real 

photon limit three of the sum-rules for pion production have 

been obtained independently of our own investigations by a 

variety of authors. They all employ a rather different non-

covarient approach. 

On assuming instead that hadron-virtual photon interactions 

are not charge-conjugation invarient we have obtained the 

following sum-rules for space-like virtual photoproduction 

processes. All are original. 

ix) Two sum-rules for each. of the processes 4,2,3 and 5, 

and three sum-rules on each .of the processes 4 and 6, of which 

none can be saturated in the resonance approximation, (lists 

4.4-46 and 47).. 

x) Twelve sum-rules, of which eleven can - be saturated in 

the resonance approximation, for each of the processes 7,8, 

and 40, (list 4.5-62). 

xi) Nineteen sum-rules, of which seventeen can be saturated 
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in the resonance approximation, for each of the processes 

9 and 44, (list 4.5-63). 

The amount and complexity of the algebra involved in a 

proper saturation of the sum-rules for the production of vector 

mesons is so great that we have postponed these calculations 

until list programming techniques have been developed to 

enable this algebra to be carried out by computer. 

We have instead restricted our saturation attempts to the 

sum-rules for the processes 1 and 4. Here we have a reasonable 

idea of which resonances should dominate the sum-rules, and 

since none of these has spin exceeding five-halves the algebra 

is just about manageable when carried out by hand. It has been 

necessary to assume charge--conjugation invarience of the hadron-

virtual photon interactions since otherwise we obtain sum-rules 

for the two virtual photoproduction processes which cannot be 

saturated in the resonance approximation. Whilst alternative 

approximation procedures are available, only this particular 

approach will yield predictions about the form-factors for 

electromagnetic nucleon 	 isobar excitation. 

Saturation of the sum7rules for 71 -production is a rela-

tively trivial matter since only the TI(1550) is expected to 

contribute strongly, (in addition to the nucleon Born-term 

of course). We have predicted the values for all non time-like 

q2 of all four form-factors parameterising the yK(939) 

11(4550) excitation, (equations 5.4-9,40 1 ,• and 21 ) . We have 

yet to compare these. predictions with the experimental data on 

V_  photo- and electro-production in the N(1550) resonance 

region.. 

On saturating the sum-rules for pion production with the- 
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N(1688), N(4680), N(1525), A(1236), and nucleon Born-term, 

we-have obtained relations between the nucleon moment form-

factors and those parameterising the excitation of the nucleon 

into these various isobars, (equations 5.52-2,3,5,6,8,9,12, 

and 13). These may be solved for the G1,2,3 	2,3 (4688) and G 8 (1680) 1,  
V • . 

in terms of the G1,2,3(1525) and F2, and for the G1,2,3(1688) 

•1,2,3(1236) V and G1 	(1680) in terms of the G1,2V  ,3(1525), G, V2,3 

and F2. Thus all twelve form-factors for I.c,(1688) and N(1680) 

production may be obtained in terms of the eleven remaining form-

factors. 'In particular, the G2,3(1688) and G 5 (1680) are 2,3 

related to one another through the four equations 5.52-14. The 

rather large dimensionless constant, -39.)4, appearing on the 

right-hand side of these equations becomes plausible once 

one bears in 	the fact that with our choice of coupling 

constants for the isobar-nucleon-pion vertices, we have: 

[N(16S0)--  Nzt] 

[NO653 Fi41zt] 	3S. 9 . 	 (12) 

.The empirical data on the above inelastic form-factors 

was very sparse at the time when the research reported in this 

thesis was initiated. The author was in fact only well 

acquainted with the data on G1,2(1236,
2
= 0). A detailed 

comparison of the above predictions and the present experi-

mental information will be carried out in the near future. 

On omitting the N(1680) contributions from the sum-rules 

SI  V 3 Ire can how longer discuss the G1 	(1.680), but are now able 2 , 

to predict the GS/V  (1525). That 	can still predict 1,2,3 

twelve form-factors but the input data required is reduced 

from eleven to five form-factors. 

In this saturation attemptwe have predicted the vanishing 

5 
	 0 	

0, 	-1 of the four G' 7(1088) and have obtained G°(1688) and 2,j 	 1 	,2,3
( 525) 
 



230. 

in terms only of F2, (eonations 5.533d to 31 . If the 

expressions for the G 	7(1525) are required to remain finite 1,2, 

when continued unmodified into the physical time-like region, 

we reauire in addition that F2 should vanish when q
2 has the 

time-like value 6.48 GeV2. We have concluded that this 

constraint is plausible. The isovector equations have been 

solved for G'
1
(1688) and G1 , 2 3(1525) in 

terms of 
,  " V 

0-1 ,2$30236) 

V 
and F2'  (equations 5.53-37 to 40). Finiteness of the 

G
1 1 

7(1525) in the time-like physical region again requires V 
2,J 

the GV 
3(1236) and FV 

 to satisfy a constraint eauation for 2 

q
2 

equal to 6.48 GeV2, Lack of data in the time-like region 

has prevented our discussing the plausibility of this latter 

constraint. 

Qualitatively, this saturation attempt has led to the 

predictions that the isoscalar form-factors are small in 

comparison with - the isovector ones, and that the yN--iN(4688) 

form-factors are small in comparison with the corresponding 

ones for theTE--7-4P, N(1525). transition. These are not unreason- 

-able results. Again, a detailed comparison with the latest 

experimental data will be attempted in a subsequent article. 

On leaving out the N(1683) contributions as well, the 

predictive power of the isovector eauations is reduced but 

G
3
(1236) can now be predicted rather than beirc,  needed as 

input. In this way we have obtaired expressions for G V _(1525) 1,21  
• v 

and G
3
16 in ter 	o 	V  (1 	and 

	
,23 = 1,2 	2 (equations 

2  5.54-18 to 21). Finiteness of these solutions at q •eaual 

to the space-like value -1.212 GeV
2 
requires the latter three 

form-factors to satisfy a constraint equation at this point. 

We have demonstrated the plausibility of this constraint. 

Using experimental data with which we were well acquainted, 

we have evaluated these solutions at vanishing a
2, (Table 
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5.54-I), and found them to be particularly sensitive to the 

value adopted for the ratio G2(1236, a
2  = 0)/G

V(1236, q2 = 0). 

Unfortunately this ratio is not well determined by the present 

data and these particular predictions may possibly prove more 

useful as a means of prediCting it in terms of empirical 

information on, say, G1  (1525). 

There is not really much point in omitting the K(4688) 

contributions from the isoscalar sum-rules since all form-

factors appearing are already expressible in terms of F2 

only. On doing this for the sake of completeness, however, 

we have predicted the vanishing of the 2,3(1525)  and have 

obtained two inconsistent equations, 0.54-15), relating 

G (1525) to F2* One may insist that these together predict 

the vanishing of both GS(1525) and F2/ this latter prediction 1 
at least being in agreement to within about 5% with all 

available experimental data. Alternatively one may note that 

the predictions of the tuo equations treated separately only 

differ by about 1.4%,  and are Quite close at vanishing a
2 
 to 

corresponding result of the previous saturation attempt. In 

the equal mass limit the two equations become consistent; 

( G i 525) no longer contributes to the sum-rules and both then 

predict the vanishing of F2. 

Finally we have investigated the possibility of attempting 

to saturate these sum-rules with the Born-term and the L“1236) 

alone. In this case we have predicted. the vanishing of F2, 

4' (1236) and G3(4236). The first of these predictions is in 
good agreement with the data, as discussed previously. - The 

second corresponds at vanishing q2  to an 	ratio of about 

-6,43/4, in qualitative agreement with the experimental result 
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that this ratio is of the oider of a few percent and probably 

negative. We have also obtained two 1.1consistent equations, 

(5.5-10 and 11), relatin(7,  G
V
(1236) to F . We cannot use them 

to predict the vanishing of these two form-factors since we 
• 

know that F2(0) is non-vanishing and also require GV  (1236) 1 

to be non-zero if G2 V3  (236) both vanish. In the equal mass 9  

limit the two equations become consistent and remain non-

trivial. With physical masses their respective predictions 

differ by about twenty-three percent. Evaluating these 

equations 'in the vanishing a2  limit we have obtained two 
(- inconsistent predictions for G(1230, q2  = 0). 

One of these can be obtained by superconvergence of real 

photoproduction, It differs from the empirical data by 

between about twenty and thirty percent, depending on the value 

adopted for the 74/I& ratio. On the other hand, the particular 

sum-rule from which this equation is obtained receives no 

V contribution from G
3

(1236) at vanishing q2 
so one can try to 

fit it to the empirical data by adopting a non-zero value for 

G(1236, 02  = 0). (The eauation predicting the vanishing of 2 
this latter form-factor is expected to be rather poorly 

saturated.) In this way we have found that the sum-rule 

satisfies the experimental data to within about IN, 

(equation 5.5-16)9  if one adopts the value EVIq equal to 

zero, as predicted for example by 3U(6) sytmetry. On 

adopting Gourdin and Salin's value of -4.5%, hOwever, the 

equation (5.5-18) differs from the data by about 14%, 

The second eauation can only be obtained by means of our 

off-shell approach. It agrees excellently with experiment 

as it stands, differing by 2% from the fit corresponding to the 

vanishing of G2 (1236, a2  = 0), and -by 0.4% from the fit 

corresponding to Gourdin and' Salin's value for E;/q. 
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Thus the predictions of this final saturation attempt 

are in surprisingly good agreement with experiment, especially 

when the crudity of the approximation is-borne in mind. This 

gives us confidence that the predictions of the more realistic 

saturation attempts will prove to be substantially correct 

- when more detailed comparisons with experiment are available. 

We conclude that the derivation and saturation of off-

shell superconvergent sum-rules for hadron-virtual photon 

scattering processes provides a useful and powerful means of 

investigating the hadron electromagnetic form-factors. 
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APPTINDICT]s 

APPENDIX  1 DEFINITIONS7_OUR 1ETRIC_AND_DIRAC EATRTCES. 

We use the Lorentz-space metric defined by: 

000 	011 	053  ---- 1  . 	 (Al-1) 

Rather than distinguish between covarient and contra-

varient four-vectors, we simply write all such vectors in • 

the form: 

a= 	= D,ai 	a-6) (ao 	z: (a-0, 0-0 	 (Al -2 ) 

with the summation convention for repeated Lorentz (Greek) 

indices defined by: 

cz:ID a 	a 	GL • 'D .= o 60-  al 	2.. 	?) 	(Al -3) 

SO: 	 IvV1) 	all. • 
	 (A1 -L1) 

Our Dirac matrices are then recuired to satisfy: 

and we define: 

7r,5 70`x11,47,, 
j 

aitA, 	 ((Si 

It follows from A1-5 and 6 that: 

"R). (A1 -9 ) 

In cases where our work is simplified by using an explicit 

realisation of these matrices, we shall always choose: 

(11, 0 
v  0 - 0  

with the usual Pauli Matrices: 

o Oji, 
01 0 (Al -1 0 ) 

1 
...1) 	(A' 	) 



are 

Vie then have: 

(A, = 
v 

The eight matrices:14. 

this realisation, whilst 

and: 

anti-hermitian. 

o 
v s 

and 01,5  are herrnitian in 

the eight : 0-10 i,, and cros- 

In this same realisation, if r denotes 

'r -‘15 2- p=1 • 

1  	(1+ cos sine, 5inc6sine"cose):zw2 (1.F.cos 0(co 
(A2-3) 

any one of these sixteen matrices, then all sixteen satisfy: 

r 0 P 0 .31 11  0 (A-', -1)4) 

that is, the sixteen qo rl  are all hermitian, 

APPENDIX 2. EXPLICIT ;REALISATION OF TEL, BASIC SPIN ON7,3-HALF  
AND  SPIN  ONE,  iLAVE 

. Our basic Spin one-half four-component spinor wave- 

function is realised by: 
••••  

4 	• 1 	(fr°+ 	111'' 	/ 41) 

/ 	 
g✓1)0 + 771, 	04 'PA: ('../ 

where the two-component spinor 	•ttr 4/7-6.1?./1:11,.1) is 

parallel to the 3-axis by: 

/W/(0,o 

and for general orientation of by: 

(A2-1) 

given for?  

(A2-2) 

The wave-f_unctions
1/ 	

) 	 (1)) 

	

-4/2-if 	fic 77 :17: IA 	'‘ 	P 114 '2. 
5 

1 
'1r 	(1)) are then generated from .04(p) by means of the 

appropriate equations of section 2.11.- The normalisation of 

these wave-functions is: 

"Ct 9v1(t) 	2711 89q • 

We realise the four-vector wave-functions for a massive 

spin-one particle by: 

(A2-5) 

(A2,4) 



Vie def -ine: 

even permutation of (0,-4, ,2,3), 

V-1.,104 	) 
	odd permutation of (0,1 

0, any two indices.eaual. 

2  3 ) 
(A3-1 ) 

241 v  

(A2-6) 

1 
E,±lero, iticoscA 	fti sin 51) srz I:N6ose — 

r7-7  fq 4--  
cosScos 	sn93 4.--sin0cos6+icos.S :F sine) 

so the normalisation in this case is: 

6  la Ct 

9 	(A2-7) 

(A2-8) 

APPENDIX .3 USEFUL RELATIOI,T,S ITNOLVING THE FOURTH-RMTK 
LEVI- GLTTTJA TEi-TS01-/ 

This numerical tensor then satisfies the useful basic 

rela tions E 11.,tv E coqe Op,p 	(e7,,,t,eac pp 

+E ,vets , p+Edp,14“0 (op (A3-2) 

AI 	3 /)41,  

@v ia,/ ;.1) v p' 

p/ 8 

and: 

Et,,c;,4,c S itti ).)T tof 

(A3-3) .  
A third basic relation follows from eauations M-5, 

M-6, and A3-4 which together imply: 
-I 

T.3 = 	clivvAi pi 1AT 	T p 9 

from which after some tedious algebra one obtains: 

&f(-7)2,p T5":.  9,1,cptr,Tto 	0,14k(n) 	ol,..t c rvinl+ A. 11/ rc  
—00, 	p - 9vr(f/A1.2, —  9fro) A, r  

	

la :9 	1°9 	ATI)U 	. 
,5,6,7,8, and A3-. 1 ,2,3,5 are together sufficient 

A3—.14-) 

Equations 
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for the derivation of all possible relations involving the 

Dirac matrices, the metric tensor, and the Levi-Cevita tensor. 

We shall generally use the shorthand notation made clear 

by the following examples: 

602.1, c 	ap, 	c 2„ci, 

E p,„ (a. 6) 	a2,, bp 	 (A3-6) 

E(COV CI) gi).1A p c4-1)-6 ),Op 
and in particular for non-commutative four-vectors: 

Ogii,V2f)rfA 
E pa)  (7.  n 	Ti/1 tA 	(A3-7) 

Note, however, that if b is just a four-momentum, it follows 

from the antisymmetry property: 

frtliA/P - &P-11P1 	(A3-8) 

that: E v (bb) 	o = &1
" 
(b) (b) 	etc. 	(A3-9) 

11- -  
Similarly if >Ais a symmetric tensor, 

&r(Ar 	= r":  Eitt.0,10 Sp.to = etc° . 	(A3-i0) 

	

We now list some useful relations; 	will 

always stand for. four-momenta and not for Dirac matrices 

unless this is explicitly stated. 

From A3-2 we have: 	
E1.kv(ab)0A,(0-1-E2AW511 

	

EA, r, b)0 e = Tgiu,A(b)•-• ID( 	 (A3-11 ) 
so in particular: 

EA (a, b) Cp.  

4. E,44.(0,10)C --1(PC)EttvA(6)7(6.0 41,A(a). (A3-12) 

Eouations A3711 and 12 continue to hold if any of the 

a,b,c are Dirac .y,matrices, provided one writes the eouations 

with these factors appearing in the same order throughput, 

that is, provided. one 77rites: 

(A2-11 ) = 	& IAA. (b) Ef)0, (0,Th r.h.s. 	 , 
and: 

r.h.s. (A2-12) 	a 0-E,,,4. (b)c 	Ep..o. (a) (1* C) 

• f 

(A3-i 3) 



using: 	

{zp,2,(7),v-c},7- E-)coND 

and, (in our realisation): y.y = 

2L1.3 

In particular, if a,b,c are all y-matrices, vie have, 

that: Ep.),(17)0 (0 --1- E));),(Tr6)01)e -1- Elp_(rifT)3f 

:=2{Tf  Epo//i. (V) 	A, e1 (A3-16) 
and: 

Env( 	vA,N1A.,± 2,1ittr011; 	6 1).--)2,(q) • 	( A3-1 7) . 
Further relations are easily derived by saturating free 

indices in A3-11 and 42 with additional four-momenta or 

y-matrices. 

From equation A3-3 one may derive the following relations: 

9»PI 	Svei 

9o1 34' 
0e 2)" 	see" 

'(A3-18) 

 

  

Epo.4p 	vVe' 	21 
Oe Al  'k)e,  

3A,il 4 el  

e frt.oT er Ac ,  = -3) (c) 
and: 

Contracting free indices in A3-3 and A3-18 to 21 with 

four-momenta and/or y-matrices then yields additional useful 

relations. If two or more y7matrices are involved they are 

best distinguished by superscripts, since it is ithportant that 

when the determinants are expanded the y-matrices occur in 

each term in the order in which they appeared in the original 

"double-epsilon" Product. - At least, one must not re-order 

the matrices in a particular term without taking proper 

account of the anti-commutation relations. 

(A3—, 9) 

(A3-20) 

(A3-21 ) 



We have derived from the above equations the following 

interesting relations which greatly s:m-olify the calculation 

of lowest order unpolurised cross-sections for processes 4  

such as: electron d- nucleonelectron + isobar: 

E, 	1)Er.(o-1) 	-2 	(a.• 13)21 5 
	

(A3-22) 

(Ta 	1')E 	[CO 	b) _1 , 	 (A3-23) 

Epv  (al)) Efk (4297.6- 	Ea) 	[ce-  b2  - (ay 1))1 (6/... 6- AV) , 
(A3-24) 

Ep..)) (a,  b)Ev2i, b) E c(a[3) Efv4(o, b) 	[a,' - (a. VI , 
(A3-25 ) 

Ey. ((kb V)E v  (at 16) E pA b) )) L.,) --21"a21`'_(,.  brj z  
(A3-26) 

A large number of relations can be derived from equation 

A3-5 by contraction with y-matrices and/or four-momenta and 

Possibly invoking equations M-7 and 8. The only ones needed 

for this thesis are• as follows. 

Contracting A3-5 with ct and b p  , vie obtain after some 

ant 	c omm ut t ion : EiAl)  (a_ by/i5  ci,t, Zfrfly - 	Tv V.) 

• %kit) 	0-e614 by — o frt-d0-11? 

+ 	a, • b 	ED 	+ 	 (A3-27) 

The reason for anti-commuting the right-hand--side into 

the form above, is that it is then particularly simple to 

Ewp 61_ 6)75, is sandwiched between 
r  / 

half-integer spin Dirac spinorsz dilcij and (1)(6) 

Contraction of A3-5 with 	yields: 

(A3-28) 

which on contraction with Cip and b A.  gives: • 

invoke the Dirac equation if 



. 	-1 , (i, j,k) = odd. permutation of 
Eljk 

0, any two indices eaual. 

We then have the useful relations: 

21_15. 

Ev(aVb)T5- = 0, + a, - 0:0; - 	. 
Finally, contractinr,: A3-27 with C v we obtain: 

C 	T(5  cft TM)(t7 a;46 b • rp, Gt4 eft 

-b.ca ±a•cb 

(A3- 29 ) 

(A3.-30 ) 

P.E.ND IX Lip USEFUL RELATIONS INA! OLVING THE THIRD RANK 
LEV I- CELT I TA T-.1.!;IN:3 OR 

We similarly define : 
r' 2, (i , 	= even .oe rmu tat ion of (}, 	9  3 ) 

(A14-1 ) 

(A14-2 ) 

(A4-3) 

Ski/ Safi 

E  jc Slin= 	virt+ Eifrz. jra + 

Stiff S 
k 	= 	8  iSAi 

e..r  S. ii S 111 9 
(A4-4) 

    

Eii kg 	= 

Ea rt (ft") ' 7/12:{1.titi 

(()'iv  L-.: Er j  Cet:)ri, Ea-t(t)-C 

e • (^C"C)=2.irr • 

	

. 	. 

E ft 

(A4-5) 

(A14-6) 

(A4-7) 

(A4-8) 
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APPENDa5 NTNTATT,cAT, DUINIT-4 I Al7) RATTONS 
FOR ajAFTEREL4_anft 

With N denoting a nucleon, M a meson, and y a real or virtual 

photon, we define the s, t, and u channels of the processes 

,considered in Chapters 4 and 5 by: 

s channel: 1\1(T)) 7(0r) 'N(151) + MN) 	 (A5-1) 

t channel: 	(-- ft) . 	(ck) 	1\1  (1'1 ) + r\-1 ( ) 	 (A5-2) 

u channel: F\1 	+ (9-) . 	 05-3) 

The parentheses in these channel definitions define the 

momenta of the particle involved, and we define: m, m' l  and /4 

to be the masses of the initial nucleon, final nucleon, and 

meson respectively. We have distinguished between m and m' 

in: order to keep the relations of this appendix as general as 

possible, but throughout the remainder of this thesis we always 

take m and m' to be equal. 

We define: 
a 

K 	where 	'V+ re 

where 

RE r\ , where K - )1-61,. 	rz 

(A5-11,5) 

(A5-6,7) 

(A5-8,9) 

q.7---A:(1.0- 9-) 	AllE":eri+Pk) (A5-10,11,12) 

111 Al_ 2 (PI-  IZ) 	?Ea '12-:(1-11)  

2)5.-.  47(s-  (A) g  and EC r=-- (A_5-1C,1 7) 

The sets: (K1  A , A/  ), 	, -Q,P), and (-K' ,  -A", A" ) 
are sets of "natural" momenta for the s, t, and u channels 

respectively. Under s.,,t÷u crossing at fixed u: 

K------ A 	A - A <--->1)  (A5-;8) 
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whilst under s-<-1 crossing at fixed t: 

v‹.÷ - • 
(A5-1 9 ) 

Equations 2.42-44 to 47 are applicable to the processes 

under consideration here, and the "natural" pair of Yiandelstam 

variables is therefore 2) and t. 

With the above definitions we have the following relations 

between the landelstam variables: 

s-t-L+-R= 	, 	S a(IC"&+Lry), 	 (A5-20 2 21) 

and: 	 U.=i2:0C—H1--))) . 	(A5-22). 

Note that R3 is a function of a2 and not a constant in 

the virtual photon case, -and-q2 is then itself a 1,'Jandelstam 

variable as discussed in Chapter 3. So we strictly have three 

independent 1,,andelstam variables in the off-shell case, the 

natural set being :2),t, and q2. 

Equations A5-5,7,9, and 10 to 15 yield on inversion: 

5 
	 (A5-23,245 25) 

29, = K -2A 2Q-1-A= zir 	 (A526,27,28) 

2-13/= 	2A/= 2:p +A = A" 	
(A5-29,30,31) 

2_AH- 	V 
	

(A5-32,33,3/4) 

The scalar products between the six pairs of different 

momenta choosable from p,a 116', 

2 1). 	= s 	 'in/ 7=1- 

and k, are given by: 

- 9 (A5-35,36) 

(A5-37,38) 

(A5-39,140) 

rqz. 	S mi'-/A.2"= 77C--1-61,1"- - lti (A5-4' 542) 
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21/-1,:z7rtP--Ir7 - h.  LI s-HA.--/A7--c,7-  

2 	`1, 	 . 
Similarly, in terms of for example the 

momenta vie have: 

"natural" 

1,41D1.= 2.0711' -1- ;1i9- 	, = 

21'.d = (77/1'-- 74: 2 C2;4 /A) 9 

and: 242 2(po 	e)...t  

(A5-43,44) 

(A5-45v46) 

t-channel 

(A5-47,48) 

(A5-49,50) 

(A5-51 ) 

Having taken the ,particle with momentum q off-shell, we 

shall in fact find it more convenient to work in the t-channel 

with momenta: 	-q, and P, and we then need the relations: 

 

) 9 (A5-52) 

and: 

 

(A5-53) 

(A5-54,55) 

(A5-56) 

(A5-57) 

(A5-58) 

 

Note that for ml  = m: 

P • ,A = 0, 	P. q = 

t I = s x • 

fiv-Tx 	ris-% 
Tak 	r = 

C) 

1,  • k I 	'r S x • 	 (A5-59) 

APPETTDIX 6. K. MATICS OF THE THE 	VERTEX. 

We assume that the vertex. couples an initial on-shell 

particle with mass m, momentum p, to a final on--shell particle 

with mass M, momentum K. The third particle is assumed to be 

• initial with momentum a, but its squared four momentum will 
2 always •Simply be written es c to allow for the possibility of 

its being a virtual photon. 
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Then: 

q = K-py 	 (A6-1) 

and we define: 

pt  E K ± p 	 (A6-2) 

The following useful relations then hold: 

K 	-If  (Pt  

(AA6 6 :54) p 	2 (P'-  -q) 

2 _ 2p.o = m -m2  -q2 	 (A6-5) 

2p.K = M2 .4. m2 - q2 	(A6-6) 
_ 

2K.g 	2 - m2 	q2 	(A6-7) 
2 

	

M2  m 	 .(A6-8) 
pf2 = 2(M2 	m2)-a2. 	

(A6-9) 

Note in particular that since any momentum, Q, involved at the 

vertex may be written in the form: 

(A6-10) = 	bo, 

where a and b are constant coefficients, then if q refers 

to the only off-shell particle, Q. C1 is a constant onl. y(Zi r il)  

Q 	y 

the general relation being: 

a(M -m 22) 	ba 2. 

Note also the useful relations: 

(A6-12) 

—4 mtcr-(4) 	— 2  Ovil-"ni ) + 

+ 7nr] 1192-- (M- 7n)1 

vrt i )z  

(AG-1 3) • 

APPENDIX_LL  S0`:1E T-:J0 INDEX TYPE 2 alUIVALE= RELATIONS FOR 
FD --- FD PROCSSES. 

Consider covarients of the general form: 

E-(ayb)E., A I (c',d) where ab,c, and d are four-momenta. Such 
/4-   

covarients arise for example in the study of normal reactions 
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with the spin configuration: 4 + :±/1 + 
	We may expand 

5„(ayb)E-1 (c.;d) in two ways: firstly by means of equation 

A3-3, and secondly by using equation A3-29 and the fact that: 

(of 6) (0 'd )' = [Ei(a.76)Zs][E c(c7id) 5 ] 	(A7-1 ) 
Equating the right hand sides of the two expansions leads to 

the trivial result (o = o). only in the special case: 

a = c, b = d, 	 (A7-2) 

and in other cases one obtains type 2 eouivalence theorems 

between normal FB-4,-FB two-index covarients. 

In particular, one may derive in this way type 2 E.R's. 

relating the non-gauge-invarient covarients of section 4.12. 

Choosing p', p, and g to be the three independent four-momenta 

one may apply the above treatment to the covarients: 

_ 	• 	• 
7̀6/. 	 p,(tv6,50004(vrt) 

. 
?xis=  Cip,(t 7f) 'c.; (9P7t) 

and:  

( A7- 3 ) 

(A7-14) 

(A7-5 ) 
where as usual we have chosen and ordered the momenta in 

each case in that way which reduces to-  a.minimum the number of 

anti-commutation operations required prior to invokation of 
the Dirac equation on the nucleon spinors. We find that in 

view of the subsidiary conditions, the above operation performed 

on 	it4t< and Ci)  /I-co( 	leads to the same E.R. in both cases, 

whilst (:Vii° leads to a second independent E.R. . No further 
/4D(  

'independent E.R.'s are generated by considering the three 

covarients which maybe obtained from the previous three by 

interchange of the indices. In. the special case m' = m , the 

e E. coming from.  2/20( or ” reads: 



2.51 

Inv [T,11+ 	 - A`c1,[7, -!.] 

EP9  EV,ir.1] c  0  5  
(M) 

whilst LA-p-o: 

[2114- 	9n [T, i] -I- 27v) 	A• {?f, ± 

(A7-6 ) 

721 	= 	 7;-/ 	c/_- A° 	L.V., A] 

—27n 1.. 4 L. 	2,}ETEliY1,11 
	

711: E {A 5 EPIC, 

(A7--7) 
Here we have adopted the shorthand notation that: 

 

A B 	A 413,,E 15] s A/5, PV4 (A7-8 ,9) 

(A7-1 0) 

(A7-1i) and: 

 

where A,13 are momenta or y-matrices, and b is a momentum. 

One might try to deduce further type 2 E.R. I  s by 

considering' for example the forms: &p.(a b c) 	,c  (a b c), 

Er.(ayy)0„(byc), t:ijay-o)E,.(yyc), Vary.) Z (ryb ) 	t A „G. ( AB) X 

X Ecar (CD) and E./.40-r(A) 	(B). 

Howeverwe, have succeeded in. showing that irrespective of 

whether or not m' = m, none of these fon-as leads to a type 

2 E.R. inequivalent to those already obtained for the process 

under consideration. 

APPENDIX 8RELATION 	 Ti)-O  ) On(  2)  COITPLING 
ODNSTANT6AiT PART IA-I; 7/ ± DT HS OR :DE CAY5 
TraTiTiTfro1767ii 	dif5 	" 5 TT 7-fLUS 
Eff:31111DITIPATzT-,- 1;;tlzigz. • 

In this appendix we compute the coupling constant. for the 
N:4  decay:(J + 7z. 	 -}••• 0 	in terms of the partial width. 
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After deducing the general relation we use it to calculate 

the coupling constants encountered in sections 5.4 and 5.5. 

We adopt the notation that the (momentum, mass, helicity, isospin, 

isospin projection) of the resonance, final baryon, and meson 

are defined to be: (K, Y,A, IR, tR), (p' ,In, af , 13, tB)' and 

(k,p, 	respectively. 

The 0(3;4)0 SU(2) invarient coupling constant, g, 
defined in our usual notation by: 

<j="),I,bzikJ.mi-TIK,A1L.R7'.=0 170( 9()71±14/c‘ii.).3.0')0('://;1,3,' 
r 1. coot,i(y)S p, el  "R 	B 	()ra y  (A3-1 ) 

where as usual: 

(A8-2) 

and the plus (minus) signs-are-to be adopted for decays 

which are normal (abnormal) overall. The partial width for 

decay in a particular configuration of isospin projection is 

then: 

Nk-- E, 17m)-  --r3AL-2 	rz. ioul tz 	IT1 KA t: >±121 
T 	 fi404/4 A8-3 ) 

where the final-state phase-space factor is given by: 

K=(r'll 9  0 ) - 
":rt 

K -----  045 0 ) 
 

The partial width, F' , conventionally tabulated by 

experimentalists is then defined by: 
) 	• —3: 

all allowed 	 (A8-5) 

and has the same value for all members of the initial multi-

Pieta Hence: 

= X(IrCqz5  •Ir 	111  
TIT 

where: 

(A8-6) 
xr:(tAlsz) 9 - 

(A8-7) 
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arlyfiX04bg 	
(A3-8) 

this latter quantity being the same for all tR. The factor X 

arises because we have not bothered to normalise our isospin 

covarients; that is, they yield un-normalised Clebsh-Gordan 

coefficients when contracted with the external SU(2) wave-

functions. They may be normalised by multiplication by X X . 

K=Ov17°)'(8-9)  
where the forward contracted propogator is given by:C9) 

cz.1[4f1'0,0j0x-i- vi) 
• (A8-1 0) 

In view of the kinematical relations: 

r- -1)/20i) -{(m+2y01--KTOA-
VI' 

and: 

2 01. K 2k: i\i'fit) 	M n) 1,A1 

we easily obtain finally: 
"21;:r+  1111 	7 ,4'1....  . 	C z+1  UM+ in) IA 	 01-11-1 

se X 	 47172(T+1) 112-'7+' 	 (A8-13) 

Note that our coupling constants have the dimensions of 
-J mass . 

Using equation A8-13 we compute the coupling constants 

for the decays tabulated below. The X-factors are obtained 

from equation A8-8, and the input data is taken from the 

January 1 968 Rosenfeld tablj
I.!5) 

For the masses of the 

nucleon, the pion, and they vie take the respective values: 

939 EeV, 1381:1eV,• and 549 YeV. Note that the partial decay 

and: 

X (I 
1:1'p 

tia),423 	(i/9„m (0(0.1.1t 	 0,)Tiz  

all allowed 
dry  1:1,4  +co- 

Thus: 

s X 	
Icari.47-(z-+,0 br[(r,c7nyov+vz(pf,t1;1,0j1::ell = 
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TABLE A8 -T 

COI.IPUTATION OT-1,  Tip 7; COUPLING COITc;TLTJTS FORaVPITO?cr DECAY
APPTist7 ING 	3-1T;r7r.  . 	h and 5 • 

RESONANCE ..° 
..,11 tp 

A2 
.  

D
EC

AY
 

l isTO
a riA

LT
T

y  

! 
A

-F A
CT

O
R  

p.,
 

 

1B
RA

N
CH

IN
G1

  
RA

TI
O

 I-, ,, 
1-1 	0  E-5 4i RI., 

DECAY 
COUPLING 
CONSTANT 

iv.(
ASS ri,

leV - - P 

!,( -1 236 ,1 20) 

N(1 525 91 1 5 ) 

"T(1 550,1 30) 

N(1 680 91 70) 

N(1 688,1 30) 

3/2 

1/2 

1 /2 

1/2  

/2 

3/2.1.  

3/2 

'1 /2-  

5/2-  

5/2 

Ng 

Eze 

i\T )z 

NFL 

N7C 

,-t- 

- 

+ 

+ 

- 

1 

3 

1 

3 

3 

1.00 

0.55 

0.70 

00 40 

0.65 

120 

63.3 

91 .0 

68.0 

84.5  

1 5.5 GeV 1  

10.8 00V-1  

2.11 	GeV°  

5.48 GeV- 
_ 21 3 	GeV 

width only determines the relevant coupling constant to 

within an overall sign factor. We have assumed that all the 

coupling constants listed are positive, - and the reader is 

referred to section 5.3 for a discussion of the implications 

of this assumption. 

APPENDIYia. THENOMENOLOGICA.L FITS  TO  PION pHOTOPRODUCTI ON 
T 	3_3;z:13E6 °NAN CE -RE GI a-N 

The empirical values of the coupling-constants G1 V 2 236, .,  
q•2  = 0), hereafter abbreviated to G1 , V-  (o ), may be obtained 

from a phenomenological fit to the data on the resonant 

scattering process: 

VN+ 	A+02.S-(0)—).  ÷ 7-c ° • • 
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The centre-of-mass frame angular distribution for this 

process is proportional to: 

sth'-o coo_ 0 	 (A9-2) 

where 0 is the scattering angle and 0 is the angle subtended 

by the production plane and the plane of polarisation of the 

incident (real) photon. The constants A,C, and a are poly-

nomial in the masses and homogeneous auadratic in GV 2(°).° 

Assuming the reality of these coupling constants, the ratio 

miG/(0)/G-.;'(0) 
	

(A9-3) 

may be determined from either of the ratios C/A or a/C. Tn 

practice the data is usually analysed in terms of the ratio: 

e() Es Ei7m„ 	 (A9-4) 

where e
1
(0) is the non-covarient multipole amplitude 

corresponding to a purely electric quadrupole (magnetic 

dipole) induced transition. 

Once 	and therefore f is known, the value of G1V  (0) may 

be obtained from the empirical value of the product qa. 01-6$  

where 1-20& is the total width of the A(1236) and 07" sis the 

total unpolarised corss-section for the process A9-1. 

All empirical fits axe theoretical calculations indicate • 

that 1ff is very small, probably not more than a few percent. 

Thus, for exa:.zple, SU(6) symmetry predicts e 0, whilst 

U(6,6) implieS a 10 value of a few per-cent. The dispersion 
(0) - 

theoretic treatment of CGLN indicates that 1(01 is probably 

not more than 	and the empirical data of McDonald'et. a1.. (43) 

is consistent with a value:. 

e -' 0'0 0--='-0•06, 	 (A9-5) 
(h2) 

The combined investigations of Drickey and Yozley 

Berkelman and Waggoner(44), and Vasilikov et. al. (45)  yield 
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Values of a/C at three energies near to resonance. Gourdin 
6A) 

and Salin fit these to a best value: 

e 	 (A9-6) 

but do not give an error estimate. 

The error range in the empirical values of both C/A and 

a/C is about 0=10%, and this unfortunately leads to a much 

larger fractional error in p 	shall show in a moment 

that f is itself a rather violently varying function of p for 

l
el of the order of a few per-cent Consequently, analysis of 

the present data does not lead to a very precise estimate for f. 
V The phenomenological value of G1 (o) has been computed by 

6177 
Gourdin and Salin, and by Mathew se Their methods are essentially 

identical, but they obtain widely differing results. Dalitz 

and Sutherland '011)  have pointed out that this is due to an 

error in the fit of Gourdin and Salin arising mainly out of 

neglect of an SU(2) Clebsh-Gordan coefficient. This error 

affects their estimates of El+  and Mi+  by identical overall 

factors, so their value for would appear to be substantially 

correct. 

Mathews' estimate is free from computational errors, but 

his value for qtneeds to be updated from 110 to 120 MeV. In 

"addition, he takes for 0*, sthe value: 

-M)TC 	° 	( 	"I' 7C°) 	2=',== 	9 rJ) 
S=N14  

A more up to date value is now available,(41)  namely: 

(A3-7) 

©re s" Ut-,ob . 	. — 
Sr-Mi  

:ba c113 round s 1,4;1. E(2-("7±  r5) 	4:'5)]  
= (260:1--C))/A) . (A9-8) 

It is therefore- necessary to update I.:aft-laws' estimate of GV(o) 

by a factor of 1.025. 

(We show in a moment that GV(0) is Proportional to 	rc..s • 
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This estimate is based on the assumption that p vanishes, and 

it will be useful to see how the u:odated fit is affected by 

assuming instead: a) Gourdin and Salim's value for e  

b) the value 

(A9-9) 
corresponding to the vanishing of G2 (o) and c) the value 

e 	0- 0 6 J- 	 (A9--lo) 

which should give some idea of the upper bound on the values 

of ,2 GV  (o). 4 
For the benefit of the reader we first mention that our 

G4,2,3  (o) are related to the 0
3,4,5 

 (o) of Gourdin and Salin • 
(denoted

" 
CG • (o) of M 	,orsathe 	(denoted 
3,4,5

(0)) and the C
3 -495 

by
3,4,5

(o)) as follows. •  

12/s ' GYi  (0) = 	(o) = c: (0)4A 3 	 (A9-11) 

,/2/3 6.2(o) —c;(0) 	194:(°) + C f65:A /tA. 
	 (A9-12) 

,/ 2/s 4  & (o) = (0) 	; (o) = cvoyte. 	
(A9-13) 

Note that Mathews does not define his•) 
	

in the some way 
4, 

as do Gourdin and Saline  Also, these authors worJ: in terms of 

0(3,1) decompositions of the matrix element <4+1 dc. (°)1 t> 
whereas we define our Gj 2 3 by means of an 0(3,1 ) 0 511(2) 

decomposition of <A I la,(0)1r4 	This is responsible for the 

4/13 factors .appearing in eauations A9-41 ,12 and 13. They 

arise because: 

1'.(A) S., X
2 
 (rs!)= /12 5 L . (A9-14) 

From expressions given in Gourdin and Sa3in'S paper, 

coupled with cow-rtions A9-41 and 1.2 we have: 

FL; 	— i  74) (g, (0)— M4&'(4)) 

[(31v11+'in-)6.41(°)—  M1 (M1— 7-11-)Q../(e)] 
	

(A9-15) 



(A9-1 6 ) 

($1\11  "in) 
( 	e 

(i 	• 

= -0.0)45, (Gourdin and Salin t  s estimate), implies 
f 	0.308, 

/31) 
0 3 (G

v  
•2(0)- 0), 	p - 0- 061i- +-7n) 
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Hence: 

and in particular: 

I 	
0 (pure Li transition) 9  impl.a.es  f =1 ,  (A9-17) 

( A9-I 8 ) 

( A9-1 9 ) 

P , implies 	1 • S 8 . 	(A9-20) 

So f varies over the range zero to (1 . 88 ) when p varies over 

the ranee (-0.06)4) to (-I- 0.06)4), and conseouently f is not 

well determined by the present empiriCal data. 

In view of equations A9-41_ and 12 we have from Mathews' 

paper; 
51/ 'IA 4/1. 

C:(0) 	3M1 rbolz Ore:,  
e (114-71/2 (M1-4-Ta1/4- 

+  
+ s -)14  • (A9-21) 

SO: 

G (°) C7:11(o) 	[1+  r 	el  4* 0  (('''')] 
ez: 0 	 (A9-22) 

and as expected, the empirical error in p only affects the 
v determination of G1 (o) by a few per-cent. 

Multiplying Mathews' estimate of 0'“ ) by 3/2 (I .025) 

to obtain GV  (0)1 	and then invoking equation A9-22, pv-o 
obtain the fLts tabulated below. If p is assumed known 

with perfect accuracy the error range for -G ,(o) is about 
9 

we 
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TABLap271 
VALUES OF 67 2 

 /0) OBTAINED BY FITT= THE EXPERIMIOTAL 

DATA ON 	ot U-d  resFOP, VARIOUS VALUES OF E 

E-I-  ivi, . 	V 

V 	4 	J 	02(0) 	(GeV-1) 	(GeV2)  

G(0) 	1GY(0) 	2(0) 

+0.054 	1 .88 	2.84 	5.34 

0 	 1 	, 	2,68 	2.17 

-0.045 	0,308 	2.55 	0.635 

-0.064 	 0 	2.49 	0 
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