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ABSTRACT

The covarient formalism of Scadron et. al. is extended
to cover processes involving virtual photons, and is used to
discuss the 0(3,1 )®SU(2) decomposition into kinematic singu-
larity free form-factors of hadrbn—virtual photon three and
four-point functions. An S-matrix theory of inelastic hadron-
lepton electromagnetic scattering is employed to develop
technigues whereby superconvergent sum~rules on such four-point
functions may be derived.

- Attention is focused on the virtual photoproduction off
nucleons of non-strange pSeudoscalar and vector mesons with
isospin zero or unity. Charge-conjugation invarience of hadron-
virtual'photon interactions is assumed and eighty new sum-rules
obtained., An alternative set of new sum~rules is derived on
the aséumption that such interactions are not in fact charge-
conjugation invarient;

A finite width resonance approximation is used in an attempt
to saturate the sum-rules for pian and.q-prdduction. This
- yields a large number of predictions concerning the structure
of the fqrm;factors parameterisihg fhe eléctromagnetié excita~
~tion of the nucleon into the A(1236), N(1525), N(4550), N(1680),
and N(1688). | | o

The sun-rules and predictions are valid for all non time-
like values of the squared four-momentum ofbthe virtual photon..

The predictions are in good agreement with the experimental

data in cases where a comparison has proved possible,
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CHAPTER I
INTRODUCTION

1.1 INTRODUCTORY REMARKS AND A SKETCH OF THE MATERIAL
PRESENTED IN THIS THESIS.

We are concerned in this thesis with the application
of superconvergent sum-rules to the study of“the form-
factors pafameterising the dynamics of certafﬁ'electro-
magnetic interactions involving hadrons,

| More specifically we are interested in the form-
factors into which one decomposes ﬁgtrix élemgnts of the
electromagnetic current taken between an initial nucleon
ahd a final nucleon(1) or isobar.(z) In section 4,2 we
remind the reader.of the definition and importance of
electromatic form-factors, taking those of the nucleon as
examples. |

The derivation of supérConvergent sum~rules for elements
of the T-matrix taken between two initial and:two final
hadrons is now a wellknown technigue for obtaining relations
between hadronic coupling constants,(3)“(7) and is
reviewed in section 1.3. By replacing one of the hadrons‘_,
by a real photon, several authors have successfuliy extended
the range of applicétion of this technique.(a) | They deduce
relations between hadronic eleciromagnetic formffactOrs
evaluated at zero squared photonvfour—momentum;

It is attractive to try to generalise the formallsm
further by teking the photon off the mass-shell. The rela-
tions obtained will then hold for some range of non-zero
values of the‘argument of the form-factors invol#ed. In

section 1.4 we discuss this motivation further and pose the
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obvious question : Is such a generaliéation possible, and if
80, is it valid? On the basis of a few plausible assumptions
this question is answered in the affirmative in Chapter 3.

Chapter 2 falls naturally into two distinct parts.

Part I reviews the covarient "spinology" formalism advocated
by'Scadron,(9)’(1o) employing Dirac-Rarita-Schwinger wave-
functions(11) and contracted propogators, and the covarient
Reggeisation technique of Scadron and'Jones.(12) Although
this formalism was originally developed in Lorentz-space,

it is a trivial matter to extend it to Lorentz®sU(2)

space. We give details of this extension. Our discussion
of kinematical singularities is a little more detailed than
that appearing in the various papers of the authors cited.

In Chapter 2 Part II we generslise the covarient form-
alism to enable it to be used for the analysis of three and
four-point‘vertices involving virtuél photons. We derive
0(3,1) @ sU(2) covarient form-factor decompbsitions for a
wide range of virtual photonic three-point functions involv-
.ing‘pairs of baryons or mesons, and again indicate clearly
how one ensures that the form-factors are free from kinemati-
cal singularities. The contracted propogation formalism
allows onevto obtain generalised Rosenbluth formﬁlae(1)’ (2)
for unpolarised 1owést order electron-hadron scattering‘cross-
sections in a particularly simple and fully covarient manner,
We give an example of such a calculation., | |

Our virtual photon formalism is desigﬁed to reduce to one
valid for real ﬁhotons on taking the sppropriate 1imit, This
' iatter is parallel in.8pirit to the real photon approach of';
Scadron and Jones.(ﬁs)v Consequently the work of these
authors in this direction is not reviewed. Y

As mentioned above, Chapter 3 is concerned with the
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velidity of our generalised aqperconVergence_programme.
Section 3.4 discusses our assumptions concerning Regge
behaviour in virtuéi photonic four-point functions., Section
3.2 investigates the extent to vhich one can deduce the
eanalytic structure of such functions from general S-matrix
theoretical postulates about non-perturbative two lepton-
three hadron scattering processes. It uses a generalisation
of Dresden and Chou's S-matrix theory of quantum electro-
dynemies, (14) |

The formalism thus deveioped is used in Chapter L to
- derive sqperconvérgent sum—rulés for all possible interactions
of the form: real or virtusl photon + nuclqonf-f~a—nncleon +
meson, in which the meson is pseudpécalar or veétor, has -
zero strangeness, isospin zero or one, and C-parity plus or
minus one. Half of the combinations of these quantum
numbers are hypothetical to date,(15) but the corresponding
sumprules are included for completeness since thelr derivation
involves 1itt1e or no extra work, We also indicate the modi-
fications necessary to these sum-rules if virtual photon- |
hadron interactions are not in fact charge-conjugation
in#arient. |

Fihally,_in Chapter 5, we attempt to saturate our sum-
rules for the virtual pho£0production of.the‘q—meson and the
pion, using the resonance approximation discussed in section
1.3, We do not find it necessary to treat the resonances as
stable particles, and are able to meke a crude correction for
their finite decay widths. |

An important feature of our technique 1s that the number
of sum-rules for a given four-point function is generally
greater in the virtual photonic case than in the real'bhoton

limit. However, our formalism is sd designed that provided
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the form-factors are analytic at zerbnargument,.the predic-
tions of these additional sum-rules remain valid and non-trivisl
in this limit, That is, by treating the real photon as the
on-shell limit of a'virtual particle we are able totderive
real photonic predictions which cannot be obtained by methoas(8)
which treat the photon as real from the outset. Thus for
example, our investigations double the number of available
sum-rules for pion photoproduction.

With the increased number of sum-rules at our disposal
we are able to attenpt more ambitious saturations than hitherto
| possible. In the case of the7Z sum-rules only one clearly
established resonance 1is 1ike1y to contribute,(15) but we
have a wide range of possibilitieS“in the pionvcase;(15) We
acecordingly attempt several different'approaches to'the
saturation of these latter sum-rules, The most complicated
of‘these involves the nucleon Born-term and four pionenucleonr
'resonances, | | | o

We make s ame attempt to compare our'predictions with
phenomenologlcal fits to the experimental data. The agreement
-1s generally good, sometimes excellent, and in a few caees
spectacular.' | | |

K1nematica1 definitions and relations, useful equivalence
theorems, computations of coupling constants for strong decays
of baryonic resonances, and some fits to photoproduction data
are relegated to a series of nine appendices,
_ 'Finally, we ask the r eader to bear in mind the following
notation, We do not distinguish between equalities and |
identities; the synlbol = 1is always to be read: '"is defined

to be", .The symbol &£ means: "is equivalent to, in virtue
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of the subslidiary conditiéns on'the:ﬁave—functions with
which it is contracted". The symbols (m~7n) or (Am-n)
following an equation denote the " éh equation of section
m or sppendix m vrespectively. Sections are numbered

decimally, the most significant digit being the chapter

number,
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1.2 THE MBANING AND IMPORTANCE OF THE ELECTROMAGNETIC
FORM~FACTORS OF T:iE HADRONS.

In the study of the electromagnetic interactions of
hadrons, a central role is played by matrix elements of
hadron electromagnetic current operators. The formalism
allowing one to parameterise the dynamic behaviour of such
quantities in terms of sets of Lorentz scalar functions of
scalar arguments is fully described in the s econd part of
Chapter 2. But as an introduction we review here'one of the
simplest and best known_exénples, the electromagnetic form;
factors of the’nucleon.(ﬂ) _ :

One is concerned with the matrix element <KAI *j,‘(c’)l?ﬂ)
of the'proton (neutron) electromagnetic current operator,

j«@?}: taken between an initial proton (neutron) state
with.momentum +, helicity A , and a final proton (neutron)
state with momentum XK and helicity A . This will be con-
tracted with an external electromagnetic field source, or,
via a virtual photon propogator, with another electromagnetic
1¢urrent. The interaction is assumed to be translationally
invarient and consequently one is only interested in the |
evaluation of the matrix eléme_nt at the origin of the space-
time coordinates. | |

© If the nucleon behaved as a point spin one-half Dirac
particle éarr&ing‘bare charge &, ,'one'could write by anaiogy

with the unrenormalised quantum electrodynamics of electrons:

KA $A) = 0 DA T b (D). (ra-)
Unfortunately this simple realisation fails completely
the test of compafison with experiment, even if one tries
to take prOpervacéount of radiative corrections. It iB

certainly not true that the neutron is unable to take part in
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'the electiromagnetic intéraction, indeed its magnetic moment

is one of the most accurately established constants in elemen-
tary particle physics. The representation fails eQually
miserably when applied to protons. It cannot account for the
anomalous magnetic moment of this particle, and leads to
incorrect predictions for elastic electron-proton scattering
and for proton Compton scattering.

The reason for this failure is not hard to see. The
realisation 1.2-1 ignores the fact that the nucleon is a
strdngly interacting particle, and neglects the‘poésibilify
of its possessing a finite spatial structure. The bare
nucleon will be surrounded by a cloud of virtual pions, (and
possibly other virtual particles). The virtuél photon may
interact with these as well as with the bare nucleon, thus
modifying the eleqtromagnetic interaction. Whether or not
the bare nucleon is endowed with a}spatial structure further
modifying this interaction is en open question, but the virtual
plon cloud will cértainly cause the physical nucleon to behave
as a structured particle.
| There exist}an infinity of Féynman grephs corresponding
tolstrong interaction corrections to equation 1.2-1, and no
method of summing these is known. So instead one adopts a°’
different spproach which at once takes account of all possible
corrections to this equation., B

In analogy with the previous equation one first factors.
out the helicity dependence of the métrix element, defining
a "vertex function",’vﬁ, by:

KA pAY= 1) v ur(3). (12-3)
This a completely genersl Lorentz-group theoretic operation,
.the nucleon spinors corresponding to matrix elements of .

relativistic boests., , !
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The vertex funcfion'will be a L 'x L4 matrix in the
space of four-component spinors, In addition it is required
ﬁo satisfy certain constraints imposed by the assumed Lorentz,
P, C, and T-invariences of the electromagnetic interaction
and the fact that ja is an hermitian operator. A particular
consequence of these is the requirement that qfa should have
the same Lorentz transfonmafion properties as ja, that is,
it should be a Lorentz proper vector., Furthermore, the
interaction is required to be gauge-invarient (current
consefving) when the photon involved is real (#irtual).

The vertex function must therefore vanish on contraction
with Y-, the momentum of the photon.

The next step is to expand V& in terms of a set of
linearly independent basis functiohs, (called "kinematic
covarients"), satisfying these ssme constraints. They must
remain linearly independent when sandwiched between the
nucleon spinors, and those that dorwill be sald to be
"linearly»ineQuivalent". The fact that the nucleon spinors
satisfy the Dirac equation turns out to imply that no more
 than two kinematic covarients satisfying the required con-
straints can be;linearly inequivalent, This result can dbe
shown to be related to the spins and intrinsic paritieé of”’
'the particles involved. 'The expansion coefficients are
called "eiectromagnetic'fbrm—factors". Being Lofentz scalars
they can only depend on scalar variables. Since_the-nucleoné
are on-shell, only one linearly independent scalar variable
can be constructed from the available momenta: 1t is con-
venient and conventionsl to choose to work with q’a” the
squared four-momentum of the photon, | |

Our expansion of the vertex,fuﬁction will be the most

general compatible with the various kinematical constraints
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'apd the electrodynsmical one of current-conservation.
The remainingrdynamics is contained entirely in the funec-
tional dependence on q? of the two form-factors, and a
study of the dynamics 1s reduced to a study of this dépen—
dence., It is clearly desirable that the form-factors
should not bé subject to any spurious kinematical dependence,
that is, they should be "kinematic singularity free".

As the reader will no doubt be aware, the two conven-

tional decompositions of the nucleon electromagnetic vertex

function are:

= [F (2% + 35 (%) 026 4] e
Vg = ?P/?. [G" (“f)?,( + G (q})'é;;f:,‘(? 1'[)75.] {1.2-4)
The momentum P/ is defined by: | .
v"—P/g-:-f;"'. K, . | (1.2-5)

and m is the nucleon mass., At this point we better mention
that our conventions regarding the metric tensof, scalar
products, Dirac matrices, spin one-half wave~-functions, and
contracted Levi-Cevita tensors are to be found in Appendices
4, 2and 3. ‘- |

The form-factors are relatedvas follows:
Ge = Fo+ PFfhm* ,  (1.2-6)
G—M'v= F,+Fa_, » ‘ | (1.2-7)

and are assumed to carry superscripts.b orn accordiﬁg as
we are dealing with the proion or the heutron. As a conse-
quence of the hermiticity of the current operator, they
can be shown to be purely resl.

As mentioned above, Wevare now treating the nucleonsv
as structufed particles. The values of the form—factors‘at
vanishing q? mey be related to this structure in the following

manner,
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One compares the predictions of equations 4,2-1 and 3
for nucleon scattering by an external field. Working in a

special frame, the Breit frame, in which:

'# = --}—(v ’ (1 .2-8)
and taking the static 1limit (vanishing q) at the conclusion
of the two calculations, one is able to makethe identifica-

tions:

Ge (ol)= e,  (1.2-9)
G, ()= am/“- (1.2-10)

where € and/M are respectively the physically observed

charge and magnetic moment of the appropriate nucleon.,

Defining the anomalous moment /U«., in an obvious way by:

M= -a%-!-'/‘_-o. ) (1.2-11, 12)
one then deduces: | )
- R@)=e R()=Ampme. (10213, 14)
F.@Y) J F;.(‘b‘")) Ge (4) ana G.. (%) are accordingly called

' 'rthe charge, moment, electric, end magnetic form-factors of
the nucléon.'- , o

The various derivatives of F, (F,) evaluated at zero
?f' may be similarly related to the Fourier ti-ansforms of the
various moménts of the spatial charge (magnetisation) distri-
- butions of the physical nucleon. In particular, the first
derivatives are related to the mean-square radii of the
corresponding distributions, It should be stressed, however,
that the form factors are not to be interpreted as Fourier
transforms of the spatial charge and momeht distributions,
rather, the former quantities at zero argument are felated to
the latter in one special frame.

The above discussion applies for kinematical reasons only
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to non time-like photons, In the tiﬁe—like case, that is,
virtual photoproduction of nucleon-antinucleon pairs, one
defines the vertex function in an analogous fashion:

KA, F | 5a@]0) =T () Va V(7). (1.215)
One may again adopt equations 1.,2-3 and 4 as suitable
decompositions of this vertex function, eand bne then assumes
that the form-factors for time-like cﬁz may be obtained from'
those for non-time-like ‘;z by analytic continuation. In
other words, corresponding form-factors for the time-like
~and non-time-like interactions are assumed to be different
sectors of the same analytie function,

It can be shown that fhe charge-and moment form-factors

are kinematic singulafity free for all qf'. Hence equations
1.2-6 and 7 imply either that the electric and magnetic form-

factors are non-independent at the pair-production threshold:

Ge (41»\") = G, (‘l—%"), (1.2-46)

or that F; end F, have a dynamical pole at this point,
This questioh has been discussed in detail by Bergia and
:Brown,(16) and also by Barger and Carhart.(17) The conclu-
sion is that 1.2-16 should indeed be taken as operative; (it
is then a purely kinematical constraint). |

The disadvantage of working with form-factors subject
to such a constraint is generally eonsidered_outweighed by
the fact>that the lowest order unpolarised cross-section
for elastic electron-nucleon scattering involves only the
squares of Ge'and G,, s not the cross-term G, G, . Although
the charge and moment form-factors are free of kinematical
singularies and constraints, the above eross-section involves
the three combinations: F. , Fa , and F, F, .

In their assessment of the experimental data on nucleon
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, (48 ) .
form-factors, Chan et.al. conclude that for non-positive

definite cif this data is best fitted by ignoring the threshold
constraint 1.2-16. For values of -‘La up to sbout 5(GeV/c )2'

the data is then very well fitted by the "scaling laws":

: Pra LAY 2 Y-
+ 2y _ 6&65)_ Ghéb)__' - Ji_. -
Ge,(‘l')—- N T efl- o7/ . | (1.2 17).
In these equations: ~
2 .
k=32 ul - 17927¢ (1.2-48)
n R
K" = a—»;" Ma =—1-913]5 | (1.2-19)

and the quantity 0,74 has units (GeV/c ). There is no
objection to a poie in the fomi—-factors at this latter value
of fsince it 1lies outside th_e physical regions. However,
the fact that the first equality of 1,2-17 violates 1.2-16
indicates that this scaling law fails when continued un-
modified to time-like 'cf' . Data on the neutron electric
form-factor is relatively sparse,“a) but is available for
space-like af' down to sbout —4.(66\’/0)’: It is roughly
consistent with the scaling law: |
IR Sy - |
Ge () = T O (4, | © (1.2-20)

'buf the percentage experimental errors are very large, Note
that 1.2-20 satisfies 1.2-16 when continued to .time-like 12 .

To date the experimental data on electromagnetic pair-
production and annihiiation is insufficient to allow anything
~useful to be said about the behaviour of the form—factors
in the time-like region,‘'8)

We have so far dealt only with the 0 (3/ l) decomposition
of matrix elements of the proton eand neutron current operators,

treating these as unrelated problems. They are connected by

invoking SU(2) invarience and the assumption that the
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photon, (whether real of virtual), behaves like the
ysuperposition of an isoscalar and the third component of
an isovector. Matrix elementé of é single nucleon current
operator may then be decomposed in 0(3,1) ® sU(2) space.
Conventionally this decomposition is simply obtained from

the previous ones by writing:

/ t " 3 |
CFE @)= Y Fa) + Fa)vs] X ) (1.2-21)
where t(t') is the isospin projection of the initial (final)

pt!

t .
nucleon, and Y (,f ) is its two-component spinor wave-

function in isospace, as discussed in section 2.12, F stends
for any one of F-,a 5 Ge;.m 5 end F° (}3‘v ) is the corresponding
isoscalar (isovector) form-factor of the nucleon. ° Ft/t(ﬂf)

vanishes unless f’ and & are equal, in which case: “

Y2, Ya .
F 7™ = FT ’ R -~ (1.2-22)

~Ya, = o ”
Y F, S (1.2-23)

and it follows (from the explicit structure of the isospace
wave-functi ons) that: o .
p (e, e ‘ _ v
FP= g (FreF") | (1.2-24)
v N o
"In the case of the nucleon form-factors the extension
from 0(3,4/ to 0(3,4) ® SU(2) is neither a simplification
nor a complication from the point of view of pheonomenology,
but it is an essential ingredient in any theoretical investi-
gation of the’dynamics. |
To summarise, the nucleon form-factors are scalar functions
which parameterisé all corrections to the basic electromagnetic

interaction of this particle whether they be radiative,

strong, or due to a spatial structure of the bare nucleon,
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At zero argument they are related to'ihe effective structure
of the physical nucleon.

More generally; any arbitary vertex may be expanded in
terms of a set of linearly ineguivalent kinematic basis |
covarients, The symmetries operative only constrain the
expansion coefficients to be (coupling) constants for three-
point vertices connecting three on-shell particles. In all
other cases they are allowed to be scalar functions, (form-
factors)., For three-point vertices connecting one or more off-
shell particles their arguments sre the squared off-shell
momenté. It is not true, as is sometimes stated, that form-
factors are phenomenologicai variables put into fit the
empirical data in a simple manner, In cases where they are
kinematicel 1y allowed fo be variable, they may only be taken
as constant if one makes an extremely restrictive assumption;

about the dynamics of the interaction. '

We had better point out that the form-factors correspond-
ing to matrii elements of electromsgnetic currents are only
related to the static electric and magnetic multipole moments
of the particles'involved for matrix elements taken between
identical inifial and final singlé'particles. This is simply
" due to the fact that in any other situation the static limit
lies outside the physical region for scattering.

- Thus in section 2.71 we shall see that a matrix element
of the current tsken between a pair of unequal mass spin dne-
haif hadrons may be deéomposed into a pair of form-factors
which are ciosély analogous to the charge and moment form-
factors of the nucleon. The difference is that the "eharge"
form-factor now disappears‘ih the real-photon limit. In view
of the previous paragraph this is perfectly consistent with
the possibility that the‘hadfons carry non—zero static

charges.
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Finally we wish tormeniion en other important difference
between arbitrary three-point vertices and the special case
reviewed in this section., We sazid earlier that the decom-
position of the nucleon electromagnetic vertex~function had
to be consistent with a constraint imposed by the assumed T-

invarience of the interaction, In fact this is not strictly

true,

For general three;point verfices, (matrix elements of
some interaction Lagrangian taken between three particles),
the combined constraints of hermiticit& of the Lagrangian
and T-invarience (or PT-invarience, if this is gpplicable
whilst P and T are separately violated) imply that the kine-
matic covarients may be chosen in such a way’fﬁat the ébupling-
constants or form~factors are purely real. ' The same is true
in the electromagnetic case,'where‘one'is usually concerhed
with matrix elements of the current operator, provided that
the initial and final on-shell particles are not identicel.
In the identical particle situation, (as for éxample the
nucleon case reviewed here), the reality condition follows
directly from the hermiticity of the current 6perator‘and
the T or PT constraints become redundant. - |

It has recently been'suggestéd(19) that the eiectromagnetic
»interactions of the hadrons may violate T, (and therefore PT |
since P is/conServed), for non-vanishing q2. This fact cannot
be tested in the identicel particle case, but will lead to “
complex form-factors if it obtains in the inelastic situation.

In this fhesis we allow for both possibilities wheﬁ
deriving superconvergent sﬁm—rﬁles, but in order to obtain any
usefui predictions we find it necessary to assume T-invarience

when attempting to saturate'these.
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1.3 ON-SHELL SUPERCONVERGENCE

Having obtained a set of form-factors for a vertex
it remains to investigate their functional form. To date
. the methods at one's disposal fall broadly into three classes
viz:

1) Dispersion relations on the fomm-factors,

2) Higher unitary symmetries,

3) Current algebra sum-rules.
Lack of space prevents us reviewing these here, instead we
refer the reader to the literature.

On the basis of this thesis we propose adding a fourth
candidate to the list, namely off-shell superconvergence,
To obtain insight into how such a programme would give us the
reguired information we first review on-shell superconvergegégi(u)

For simplicity we defer the generalisation fo processes
involving non-zero spins andisospins to the next chapter, and
assume here that all the particles involved have both these
gquantum numbers zero. We 4o not wish to imply however that
any supercon#ergent sum—rules would actually be found in such
a case, indeed it is well known that they would not.(3)’(u)
All the particles involved are hadrons, and the reaction is of
the type 1 + 2—=3 + 4, with moménta and masses fz’ and M;
where 1 = 1,2,3,4.

We define Mandelstam variables:

SEGepT, b= Gl asgiep. )

So the channels are defined to be:

51 1 +2—3 4+ BN (4.3-2)
t: 4 +‘33¥ﬁ>§ +4 - (1.3-3)
u: 4 + L—>3 4+ 2, (1.3-1;)
and with: ZF . _ :
}C EZM? ?  (1.3-5)

1=
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we have:
.s+t+u’=}c. (4.3-6)
Since all the particles are spinless and isospinless the
T-matrix elements are given by a single scalar "invarient

amplitude', A:

T, = <u3j T, 21> = A (s,t,u) = A (s,t). (1.3—7)

In the homogeneoué stu-plane the s,t, and u branches

of the physical region are given by the inequality:(zo)

E (P t213) Ep(pipata) < O (1.3-8)
which is a homogeneous cubic in s,t, and u, The notation
of.this equation is explained in Appendix 3., If one of the
particles has a mass greater than the sum of the masses of |
the other three, then.in addition to the sbove three physical
. regions, equation 1.3-8 will lead to a fourth physical region
bounded by a closed loop 1yiﬁg inside the reference triangle.
This corresponds to decay of the heaviest particle into the
lighter three., Its bourdary is just the boundary of the
Dalitz decay plot. '

As for the analytic properties of A(s,t,u), one assumes
that it has no singularities other than Born-term poles and
those cuts specifically required by unitarity and crossing;(21)

Thus A(s,t,u) has a pole in s whenever this»variable is
equal to‘the squared mass of a stable particle or bound
state having the same conserved quantum numbers as the initial
and final s-channel ststes.,

The amplitﬁde has a superposition of cuts in the s-plane

running along the positive real sxis from S, to infinity,

and given by the s-channel uniterity relation together with

hermitian analyticity:
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ac'scs"]'i (s,0) Eéi’@ [7;‘1(5+i51 t) -‘;L(S ) ig, b)]

=fim [T)Zi (s+iz,t) '“T,;;:('S'*'u) £)]

g0t

== ,ZZZ‘Z Z.S'q.(’f’yq 7{’: )—I}N (S'l'i g, (Z).EZ:-(S'*'Z'Z) E)

E>o*
- -ifin S T I, (s
E=>ot :
In this equation N runs over 2ll possible states containing
more than one free stable particle and having the same
conserved quantum numbers as the initial end final states;
f?,.,, is the total momentum of the N*® guch state, and fi
is the total initial momentum. The infinite set of multi-
particle states may be divided into subsets containing the
same particles. The n“ such subset then gives rise to =
cut running along the positive real axis from Sg”) fo infinity,
where Sgn) is the squared sum of the masses of the particles
comprising that subset. 8ince all such cuts are superimposed,

the effective branch-point (s-channel threshold) is given by:
= min s
Se vn’l 5_9 (1.3-10)

Note that the line s = So may lie entirely outside the
s-channel physical region, | »

Unitarity has actually given us an expression for

- Lin [T’( (s+ig,b) T)L (s+1&,E)] . ana assuming that
E—rot

the process is CTP-invarient we have related this to [discs
Tﬁ(s,t)]. I'he hermitian analyticity theorem of Olive(22)

states that for a CTP-invarient reaction:

ff:i Tf(Sizz: £) = ,sz. _l; (S=Fzs: (:) (123-11)

The poles and cuts of A(s,‘t,u) in t and u are given by
identical consicderations in the respective channels,
Suppose then, that the amplitude has poles in s and u

at some 83' and u, respectively, and s and u channel thresholds
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at s, and u_, (all §;,U4g, So, and Uo positive). Then

treated as a function of s and t, the amplitude will have

in the s-plane: poles at sj

S, to infinity and a left-hand cut from S:, to minus

and By @ right-hand cut fronm

infinity, where:

Sp=K~t-4, (1.3-12)
end:
s/ =r-t-u.. (1.3-13)
Similarly in t and u the amplitude has not only those
singularities coming from Born terms and unitarity in the
channel under consideration, but also, (due to crossing),
the singularities coming from that chamnel for which the
total energy Mandelstam variable is being treated as the
dependent variable.,
Returning to the analybic structufce of A(s,t), one notes
that }the left and right hand cuts in s do not overlap

provided:
Ext'= o=Se-uo . ' (443-14)

In most practical cases t" is a negative quantity.

Now sﬁppose we know, for example from consivderati ons of
t-channel Regge behaviour,(B) Froissart bounds in s,(u) or'
the kinematical singularities of non-reduced helicity
amplitudes,®) that for: | |

"yt > th, (143-15)

the amplitude has the asymptotic behaviour:
| -n-¢
[A6H)] 5. 18l

where n is a positive definite integer, and £ is a real

’ |  (443-16)

number such that:

o<g<] . o (1e317)
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.Then the amplitude is said to be superconvergent, and
spA(s,t) will satisfy a fized-t unsubtracted dispersion
relation for:

B = 1,2,000u,m, | (1.3-18)
and t lying in the range indicated by 1.3-15. The lower
bound to this range is needed to ensure that the left-and
right-hand cuts do not overlap.

We may therefore write:

oo A
[ ds's'P Qz'sc,A(Sﬁé)_f/sa‘s/s/ﬁagscsA(s,jé)

R = =1
sPA(s¢) s'~-s s/~s

Sg -od

R
__Z S; B(i,¢) Z Sk B(se,t)
— 5~ S-S, (1.3-19)
J
where B(s‘j,t) and B(sk,t) denote the residues of A(s,t) at
the indicated poles. With the further proviso that t be

chosen in such a way that the amplitude remains finite at

vanishing 8, we may set s equal to zero and obtain:

o . so, ‘
f ds’s'™ disc; A(sht) + j ds's™disc; A (sht) ~27i) S B(S;,E)
50 - 00 j

| ,-2m:2;5}c":5(5,,, =0, (1.3-20)
for: m = 0,1,2,0e0s (n=1). | ' (443-204)
For given m this equation is called an m*2, —moment super- ‘
convergent sum-rule. Zeroth inoment sum-rules are of‘ben simply
called ordinary sumfrules. | | »

The Born-term residues are given by perturbation 'theory,

and continuing to neglect Spin and isospin one has:

3(55,k)= 8}5351‘. , o (1.3-21)

B (Skst) =~ I Ini. | (143-22)
Here 35_5 and 3ji are the respective coupling constants

representing the interaction of the jth.s-channel stable
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single-particle intermediate state with the s-channel

final and initial states. The gy and Jg; are the
corresponding quantities for the vertices of the fe".“ u-
channel pble graph. The minus sign in equation 1.3-22 arises
when one expresses the denominatoré of the u-channel pole
graphs in terms of s and t,. ’

Evaluation of the right- and left-hand discontinuity
functions is of course‘much less straightforward, and a
number of approximation procedures are possible, We shall
only discuss the resonance gpproximation as used in this
thesis;

Here one makes use of the empirical fact that T;N(s,t) .
and Tn.i (s,t) are only simultaneously relatively large when
the value of s is such that the particles comprising the
state N may resonate, that is, when s is close to the squared
mass of a resonance having the same conserved guantum numbers
as this state, In this approximation the s-chammel unitarity
relation, (1.3-9), reads:

3isc A(s, t) = *ZiZ 6(-5T)Mx [3(5) 34() wi (s)
s} 7 L (5__ M:)’;_*_ M% I';':(s) ?
| (1.3-23)

where: ‘
(R)
1) S>5 °©

s—s®)=
ple-s)<f 2775

(1.3-24)
Here R denotes an gllowed resonating state with mass distri-
bution centered on Mp and total width [ (s), whilst Gyo(s)
and ggi(s) are the scalar form-factors representing the
interaction of this resonance with the final and initial
s-channel states. The quantity s? is the branch point of
A(s,t) in s due to those particles vhose effect one is trying

to approximate with the resonance R,
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The above equation'assumes that all form-factors are
real and satisfy: o

, 3% (s)= Irs () P gir(s) = SR'L(_S) . (1.3-25)
This will be the case if all interactions involved are time-
reversal invarient and describable in terms of (hermitian)
interaction-Lagrangians. Similar considerations apply to the
coupling-constants arising in the Born-term residues,

Form-factors rather than coupling-constants are reguired
in equation 41,.,3-23 to take account of the mass distribution of
each resonance. In the limit as the width of each resonance

tends to zero, these form-factors become coupling-constants:

95 (8) 5> 94a (MR) (1.3-25)
8x:(3) ‘"r:,;*_:;*c‘;a’ Iai(MR) . (1.3-27)

Equation 1.3-23 may also be derived from an isobaric model
of the scattering amplitude. Again assuming hermitian

analyticity and time-reversal invarience one has:

Alsxie, t) =A(sFig,t) | (1.3-28)
803 . : S
3isc5A(5, E)=Lim 2 Im A(s+ig, £). 4 (1.3-29)
s»ot : -

The isobaric model asserts that above the s-chamnel threshoid:,

8(s-55) Gr () Gxi ()
A=) (S—M)"" -{Ri'vl Tr{’(sD , |
- R TIRIRL P (1.3-30)

which in view of the previoqs eguation againvreproduces 1.3=-23,
At relatively low energies; where the resonant peaks in

the cross-section are known empirically to be large compared

- with the non-resbnant background, equation 1.3-23 should be

a reasonab1e approximation to the truth. As the energy is

increased one knows that it becomes progressively more 4diffi-

cult to distinguish between resonances and background, whilst

Tor very large values of s the discontinuity function should
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be computable from considerations of . t-channel Regge.
behaviour, Indeed, this Regge behaviour is normally used
to derive equation 1.,3-416, and any approximation to the
discontinuity function should certainly satisfy:

7na.7cf A(Sﬂ;is)(;)' -min‘A(siéz,&)! < lBiSCSA(S; E),

< [A(s+iznt)|+ }A(S"’v &) | (1e3-31)
for all Sy,te .

In practice one normally makes a further approximation
before using 1.3-23 to evaluate the first term on the left-
hand side of 4.3-20. In order that this integral may be
computed in closed form onenegleéts the sédependence of the

[ (s) , 3:;3(5) and Yg; (S), replacing these by.ﬁz‘, 4z, Iri
defined to be [% (M%) , S{_R (M%) and Jri(MR) , respectively.
Unfortuna tely the approy1matlon is now certalnly inconsistent
with equations 1. 3-16 and 31 except in cases where 7T is
equal to unity. This is reflected in the fact that the inte-
gral one is trying to evaluate diverges at its upper limit
for non-vanishing m, |

In order to properly improve the,approiimation so as to
achiéve consistency with equations 1,3-416 and 31, amd the
eliminatiﬁn of divergence difficulties, one ought to keep ?he
s-dependence of the widths and coupling constants whilst-adding
background and possibly Reggé‘terms to the right-hand side
of 1,3-23, If the duality hypothesis is to be believed, then
Regge terms will notbe required. The resonances and background
terms will conspire to reproduce exactly the required high
energy Regge behaviour, This‘in'itself will yield constrain#
equations on the unkmowns involved. Alternatively, one might
use the resonance-plus-background approiimation only for s

'1ess than some value corresponding to the upper bound of the
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"resonance region", For larger values of s the discontinuity
function would then be computed from Regge behaviour, Agéin,
the requirementthat the transition from resonsnce to Regge
behaviour be smooth would yield constraint equations, The
validity of this latter approximation procedure would not
depend on the truth or otherwise of the dquality hypothesis.
On the other hand, such sophisticated approximation
procedures would certainly introduce 1érge numbers of
additional unknowns into the sum-rules greatly reducing their
potential predictive power. Accordingly, it is customary
to circumvent the divergence difficulties by somewhat cruder
means, which do not involve the introduction of background
or Regge terms,
One uses equation 4,.,3-23 to evaluate the required inte-
gral, but neglects all s' depéndence except that occuring in
the resonént denominators, Elsewhere‘s' is replsced by the

relevant P4%. That is, one writes:

as'sl’"Mﬁ Mk (D) 94r(s) Iri (s)

jazs i, AGY) 2 =28 | TRy v rE (9

5 (R)

m : .
ds! 94r Iri
--""21, MQM-I“
SR .
®)

| ) am ) T -1 M:"' Sf,") .
::--21-2 Mg = + tan Me % 6:;3. Ari
R

"(1.3-32).

If one lets all [z tend to zero, 1.3-32 yields:
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ds s/ 3Lsc A(S’ ‘5)"——3' —27i MR 9-}1& IRri .
® (1.3-33)

This corresponds to the much more drastic (and unnecessary)
approximation in which the cut is replaced by a superposition
of Born-like poles, or equivalently, is simulated by a super-
superposition of &6-functions.

Thus the approximation of equation 41.3-32 is at worst .
an improvement on the pole approximation. In as far as it
removes from the sum-rules divergences which would be incom-
patible with their known existence, it is perhaps an improve-
ment on the resonance approximation as well. The point here
is that one is now attempting to approximate the integrals
which actually appear in the sum-rules, rather than the
discontinuity functions themselves,

The integral over theleft-hand cut may be similarly
approximated, end labelling the u-channel resonances'by R' one

has'

st s’ azsc Asht) =- du (-t~ u’) 3Lsc Alu,t)
o :
205 [4 (1e-t=u "M r’ﬂr(w) Igr (W) i (W)
et =7 (u«’ MZ )a ,P%,(w’)
ult?
| aym )T Fart! M “(:')
:”..21.2:(’0"'.6" M.Rl "2""""" an W Sfrﬁ'ﬁRli ;

, (1.3-34)
: 3
where !;, 5 Q}R: and Jg/; again denote FR,(M%_,) , 35_R: (MR;)
and Ygh (M%O respectively. The m.th moment sum-rule

(eQuation 4+3-20) thus reads in this spproximation:
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-1 M»;z E)R) - m |
ZM +b (T) ﬂ_j_gﬁg -f-:ﬂ:Z[\/]:l 353331,

‘R

(r")

-1 Mﬂ Uo
.__Z(K t"’ Mq) ——+(: MR,FI 5:}’!{"313’7:

"RZ(*C“:’MZ)MSI}WM =0 .
k | (1.3-35)
One is often concerned with sdm-rulés for processes
known to exhibit s<»u crossing symmetry, that is, one
has: | '
Alst,w) =5 A(wEs) |
(1.3-36)
where: . gE=x1. (1.3-37)
In such cases it.proves convenient to treat ths amplitude as

a function of ¥ and t, with 27 defined by:

- wEE(smw), (1.3-38)
The amplitude then satisfies:
AP,6)= EA(,¢), (1.3-39)

In thed?—plane it has a right-hand'cut due to s-channel
unltarity running along the real axis from 2), to infinity, and
poles due to the s-channel Bron-terms at some 2) These °
points are given by:
1 ; :

= - (QSe~-lCc+ E

2, = RS ) (4.3-40)
- | |
. —— 2S:~c+t

In view of equation 4 43-39, the left-hand cut due to u-channel
unitarity runs from minus %), to minus infinity, and the u-
channel Born-term poles occur at the points: minus Q)j .

Moreover, in our previous notation one has:

?isc,;, A, t)=— ?7 ’aiscy/q (-»,¢) ) (1e3-42)
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B; (%, 8)=~§3;(%;, ) . C (1.3-43)
Since S, and uj,are now necessarily equal, equation 1.3-14
is again'the condition to be satisfied if the two cuts are not
to overlap.

The high |2°| behaviour of A(2,t) may agsin be
derived from (e.g.) considerations of t-chamnnel Regge behaviour,
and superconvergent sum-rules thereby deduced. In view of the
previous discussion, an m.th moment such sum-rule will be

trivially satisfied due to crossing symmetry for: ,
n ' )
= (~1
- |>m ' “
('- .7 (1 -3"’45)

i

whilst for: Z;

it will reduce to:

(143-16)

This only involves the s-channel cut and poles, and in the

o0
Jd”'v”"’aisc,,, ABLE) -2 winﬂ’.”’ B. (v V=0 .
Vs g |

approximation discussed & ove readé:

m | IC - Mi—sgﬂ)
E AME~ i+ b) =+ Lar! [—F2 .
. — ( R 2 Mg Q}RQR‘L

4 aavﬁ‘-—rc+tm3 -3-;==O,
g( ! ) it (1.3-47)

The approximation procedure described gbove is often
called attempted séturatidn. "A sum~rule is said to be
saturated if one has used sufficient resonances in its
approximate evaluation thaf the predictions yielded are
éxpected to be as accurate g; is required. It is clearly
impractical to attempt saturation with én infinite Super-
position of resonances, but unfortunately there exists no
well defined prescription for determining how well a given

finite superposition will saturate a particular sum-rule.



35

Ono simply has to make s ome sensible, but nevertheless_largoly
~arbitary choice of resonances. We feturn to this point again
in a moment. | |

The complications introduced by the‘presence of non-
vaniéhing spins and/or isospins are fully discussed in the
next chapter. Each vertex may then involve several linearly
independent couplings, so the 3)(9 39-5 , 6}&3&& 5 Sj—RﬂRi
and 651# 3RLi appearing in equations 1.3-35 and L7 are each
replaced by a quantity which is linear in products of pairs
of "final" and "initial" coupling-constants or form-factors.
In addition, these quantities are homogeneous polynomials
in Mandelstam variables. The degree of eéch such polynomial
depends on the spins and isospins both of the external particles
and of the relevant intermediate state. The varisbles s and u
appearing in these polynomials are again replaced as appro-
priate by the squéred maés of an intermediate state,

In most practicalbcases the left- and right-hand cuts in
s(orQJ) do not overlap at zero t, In such cases one usually
looks for sum-rules which are valid for vanishing t since one
can then separately equate to zero the coefficient of each
power of 1t appearing after attempted saturation. One may
thereby obtain sevefal relétions from eéchfsum—rule. Assuming
that one'is deducing the high energy asymptotic behaviour
of the amplitudes from a consideration of t-channel Regge
behaviour, working at zero t has a further advantage. At
this t;value there}should be no manifestation of multi-Reggeon
exchange with its attendant complication of non-linear effec-
tive trajectories.(zs)

We see, then,.that in this spproximation superconvergent
sum~-rules lead to homogeneous linear equations relating products
of pairs of "initial" and "final" Born-term coupling-constants

to products of pairs of "coupling-constants"
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corresponding to the interaction with the initial and

fingl particles of the resonances utilised in the attempted
saturation. The predictions of a sum-rule are therefore
sensitive to this dhoiée of resonances.'

In deciding which resonances should be employed in an
attempt to saturaste a sum-rule one must be guided by experi-
mentel information (when available) regarding vwhich resonances
are actually observed in the process under consideration. In
the gbsence of anything better, one nonnally assumes on the
basis of general empirical experience that lighter resonances
will dominate the sum—-rule compared with heavier ones.
Finally, one has to bear in mind the number of final equations
resulting ffom a given saturation gttempt, and the number of
unknowns that these will involve. Too few equations for the
 number of unknowns, and the final predictions may not be very
useful;  too many equations, and.these are likely to prove
inconsistent,

In cases where such an inconsistent set of final equations
is obtained, it is often found that these reducé to a'consis-
tent set in some equal-maess limit. This is frequently the
u(6,6) mass limit, and the consistent set of equations then
sometimes reprodudes u(6,6) symmetry predictions.(6) This .
has béen suggested as indicative of some close connection
between superconvergence and highervunitary symmetrieé. To

(7)

date, however, such a connection remains completely obscure.
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1.4 INTRODUCTION TO OFF-SHELL. SUPERCONVERGENCE AND 178
-~ "MOTIVATION.

In the previous section we reviewed the derivation and
usefulness of superconvergent sum-rules for purely hadronic'
scattering processes involving two initial and two finsal
particles,

The afguments may be extended without modification
to processes in which only three of the particles are hédrons,
the remaining particle being a (real) photon. Suppose for
the seke of definiteness that particle 4 is the photon.

Then the coupling-constants: 33,’, R 3&11 . 3,},‘%‘(5=M§) and
NP (I&= Mi,) of the previous section will now become

eléctromagnetic form-factors evaluated at zero argument:

95— 5, (% =o) (4.41)
I —> fki(T?é 0) (1.4-2)
9 6=M3) =L, (5=MR ,#7=0)  (1.n-3)
8@:1-,u=M21)-*§R«:(M=”§§#= O). (14-k)

We have assumed that the three chamnels are again defined
by equations 1.3;2;3,u, 50 that‘the photon 1is never "“crossed',
When particle 1 is replaced by a photon, the number of
conserved quéntum.numbers is reduced at the initial vertices,
but remains unchanged’at thé final vertices, so the numbey of
Born end resonance graphs to be considered is still usefully
restricted.
The above‘programme is expected to yield useful relations
between products of purely strong interaction couyling— |

constants and hadronic electromagnetic form-factors evaluated

(8)

at zero argument. In particular, several authors,

including the present one, have considered with some success
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the derivation and approximate saturation of éum—rules for
the wellknown pion photo—productionvprocess: photon + nucleon
—>»nucleon + pion, |

It would be exceedingly useful if 6ne could generalise
the above theory in such a way as to obtain similar relations
involving hadronic electromagnetic form-factors evaluated at
non-zero values of their argumepts. To do this one would
have to be gble to derive and approximately saturate super-
convergent sum-rules, not for T-matrix elements, but rather for
perturbatién theoretic four-point vertex functions representing
the coupling of a virtual photon to (for example) one initial
and two final on-shell hadrons., If the computation was
perfonmed in a way which assumed that the other end of the
photon propogator was coupled to an initial and a final on-
shell eléctron, for example, then the relations obtained would
hold for all space-like arguments of the electromagnetic
form—factors involved.

If particles 2 and 4 are nucleons, whilst particle 3 is
8 non-strange meson, then the form-factors involved are just
those in which we are interested, corre5ponding'to the inter-
actions: virtual photon + nucleon—s nucleon, and: viftual
photon + nucleon—s=isobar., In addition, as we shall see
later, the "amplitudes" involved are all either even or odd
under "s<»>u crossing", which as discussed previously greatly
simplifies the sum-rules. If the meson has zero spin, each
final purely strong vertex involves only a single coupling-
constant. In partiéular, if this particle is a pion the
coupling-constants involved are symbolically: 3(““" NTC) o
which is known with fair accuracy, and some ﬂ(resonance~—>—Nar'),
which are readily cslculable in terms of the observed partial

widths for decsy of the resonances into NTT,
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In the case of other mesons, the strong-interaction
coupling-constants involved are far less readily accessible
experimenfally, and it would be useful to look at these
vertices as well to see if any predictidns can be made.

Before proceeding blindly with such a programme however,
one has to ask whether it is valid or even possible, As
mentioned earlier, we return to this question in Chapter 3,
where-we.conclude that with certain assumptions it appears
to be both possible and valid.

In view of the nature of the photon involved, we call the

techniqgue "off-shell superconvergence'",
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CHAPTER 2, PART I,

REVIEW OF THE COVARIENT FORMALISM OF SCADRON et. al.

2,1 RARITA-SCHWINGER WAVE-FUNCTIONS

2,44 0(3,1) WAV‘E-FUNCTIONS.(g)

Our basic spin one-half four component spinor wave-
functions and spin one four-vector wave functions are
defined in Appendix 2. Rarita-Schwinger wave-functions (1)
for particles with momentum p and helicity A may be generated
from these as follows, where J is an integer.

For an incoming particle or anti-particle with spin J

the wave-function is:

REOD IO RV CHO) N RS

(CORN |
and an outgoing particle or anti-particle of spin J has the

X A X ' .
wave-function: 6(’4)3{13) . ; ) (2.11-2)
The wave-function for an incoming particle of spin

J + & is:
=Y O e|Ta ek us
Uoye ) %;<(> ek, ), i

”whilst for an outgoing anti-particle of spin J + % the
wave-functions is:
A A
Vor (=) (e E G v,

M 1-t)

For an outgoing particle and an incomlng antiparticle,

both with spin J + %, the wave-functions are respectively:

[L(P)T(f’) L((r):r(f’) (2.11-5)

e )'zr (’f’) V( I‘*)T (P) T | (2.'1 1-6)
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In these equations we use the ehorthand notations:

(7= o poopiz (ooree)
(M7=, Ay peer Ao, (2.11-8)

and:
3
[ehe] = elel)... e (). (2.11-9)

The Clebsh~Gordan coefficients, ("parallel coupling

coefficients" in this case), are given by:

«UT 1 Q‘, A> = [ZT—K(U‘-':-/\).’ (U'-A).'/(Z'@ ’ ]Vz'SA’ ;" 4 j, (2.11-10)

and: _( /\)'(T y /\)’ Yo
- T T T+s4+ ) (TH T
| <<ﬂ),o'{2f+yz,/\>=[2. } SA,O'-f-_E__'_K; ’

(27+1)] & (2.44-11)
where: — T _
| A E; Mil . ~' (2.41-12)

With the realisations of equations 2.,11-1 to 6 these
wave-functions satisfy the Rarita-Schwinger subéidiary con-
ditions, as required. We remind the reader that these are

as follows. The wave—fuhctions are tréceless, symmetric tenéors,

and vanish on contraction with p:

A .
d)f‘lf"’f"f"ﬂ' (?)“O) . (2.11_13)

A A | |
. (bf&,... Mz ’.Lj ’Aq—(‘f’> = (P/,(,l ,.43 ./u,br/,v.(t> (2.11_1)4)
ﬁ., LP;::'--,V«'"/“‘I (f)'= O . | | (2.14-15)

In addition, the half-integer spin wave-functions vanish on

contraction with vy:

, 3}&¢;&,ﬂﬂv(f)=0=zpﬂ,ﬂ%v(ﬂ% 5 »'(2'”'16)

and satisfy the Dirac equation: _
(rf’,’ m)[/((/l;)v(f) = (a%—l- m) Vc?a)T(‘P) =
= B m) = Ve @Ap+m)= O

(2.44-17)
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We should perhaps also mention that the wave-functions
have been chosen in accordance with the phase conventions

of Jacob and Wick.(zu) In detaill one has the following useful

relations:
U e (F2) = =) N YA Uy (=) (2.41-18)
& (F2) = (), 37 f"r*?‘(i’é) (2.11-19)
—A)Tf(=F¢ =2 3w T u?’,,)r(d:-}k) ~ (2.11-20)
c,m(:’:'f) Fme, Lo (%) (2.11-21)
Uy (P =CTe () ==L ETET Ve (3) (2arn-22)
Ve ;v@? C“cm”(?b)"'z?’s(’“) T/z ()7(70 (2.11-23)
Eqov ()= - DESEEIO N (2.11-24)

In these equations we have used the following notations

end definitions:

G(E2)= dhr=2),

(2,11-25)
S_/ \S—A
Fa=( ?) A (2.11-26)
(W= 9¢)9 (Mz)--.ﬁ (ma),
| (2.141-27)
where . » 3(}“) {17 _/2 3, (_2.11-é8)

the superscript VT denotes the _transpos:Ltlon operation in
four-component Spinof space, and C and T are four-by-four
matrices acting in this space. |

Specifically, with our choice of Dirac matrix realisation
(Appendix 1), C is the matrix such that: ’

CT,AC"-’-?; - @1)"7{/4’ , (2.41-29)
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and therefore:

- T ” |
C'B';,-C ' = 3’5 = /J.’J' . . (2’11'30)
It has the properties: |
_C._.C’X;,._C"z..cT:—c ) (2.44-31)

and in cases where all three-momenta involved lie in the 13-

plane, may be realised by:

O
Czlj’a‘@o-?-: l<o’2, ) (2.44-32)

T is the matrix defined by:

T=il%7.Cc", (2.11-33)
andhas the properties:
T= T*' “T'= —Tf =—T (2.11-34)
T’J T = 30*) 7/4 R | (2.11-35)
T 'Ifs == . | | (2.41-35)

2.12 SU(2) WAVE-FUNCTIONS

These are closely, but not exactly, analogous to the
Lorentz-space wave-functions of the previous section.
We take as our basic two-component spinor wave-functions

for an incoming particle of isospin one-half, isospin projection:

T=*%, (2.142-1)

T . ‘
the quantities % realised by: . = .
V:z__ } ) "'/2._ o) _
X ~(O) ? X - ( ‘) ? ' (2.4 2-2)
so that our isospin one-half normalisation is:

lf 2 - ' |
XT X-r =ﬂz S-r,,'r,. . : (2.12-3)

Our basic three-vector wave-functions for incoming

particles or anti-particles of isospin one, isospin pro;jection:

T=0,%1(, O (2442-4)

, T .
are the quantities ¢;, , 1 =1,2 3» realised by:

$°=(00,1) , BHeT(E1,4,0), (arzs)



so the nommalisation is in this case:

¥ T
¢i' ¢i’ = 8-r,,'r,_ . (2.12-6)

In direct analogy with the previous section we then
construct arbitrary isospin wave-~functions as follows, where
I is a positive integer.

An incoming particle or antiparticle with isospin I and

isospin projection (third component of isospin) T, has the

S TGIDEE e

(O

whils ¥ if the same particle or antiparticle is outgoing, the
T ¥

wave-function is: GJI .

wave~-Tunction:

For an incoming particle with isospin I + %, and isospin
projection T, the wave-function is:
Aep=2 KT DIBTE. oz
In view of Sge local isomorphism between su(2) and
0(3), the parallel coupling coefficients of equations 2,12-7
"and 8 are again given by'equations 2.11-10 and 11,
The wave functions for an outgoing particle, outgoing
antipariicle, and incoming antiparticle, each with isospin
I + 1 and isospin projection T, are )( )1 s 50?5: , and

" e,
G)GJI , respectively, where we again choose to define &1

via the Jacob and Wick(ZH) phase convention:
N

T I+ %
w(if_c C)’ | \‘é X()I- (2.12-9)

Here € is the two-by-two matrix ascting in two-component spinor

space and having the properties:
,C"L‘-C =—-7T:= -I) i, (2.12-10)

C = C —-—~CT=-C. (2.,12-11)
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In these latter three sets of equations the tilde
denotes the t ransposition operationAin two-component spinor
space, and the Tfi, i=14,2,3, are the Pauli matrices acting
in this space. A realisation of € is:

C=-17, . - (2.12-12)
€ is the isospace analogue of the matrix C in
Lorentz-space. In isospace, however, we do not have an
analogue of the matrix T of the previous section and the

analogue of the remaining phase-convention relations are:

Ah=g TONn, (21213

(),"3() Wt (2.1211)

XZ)I =C COT;L ==(-1) Zm"%( g (2.12-15)

¢w,— i)' Z ¢‘,: , (2.12-16)

wheres 8= 3()9()...8Gy), (2.4217)
and J)=-¢ ')i B | (2.12-48)

These wave—functions satisfy the following Rarita-
Schwinger subsidiary conditions: = they are symmetric, trace-

less, tensors (or tensor-spinors):

T LT
(I)il"‘ijn-iko-air - Lpi'...iku.ilj-n.iI > . (201 2"'1 9)
q’T dentni,mOs (2.12-20)

and for half-integer 1sospin vanish on contraction with tne'f

- .
fténg.ui. ; =0= q&,n L.u1x . (2.42-21)

These three eQuations are the analogues of 2,141-413, 14, and

46, respectiveiy. There exist no analogues in isospace of

equations 2.11-15 and 17,
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2,2 PROPOGATOR NUMERATORS

2.24 0(%,4) PROPOGATOR NUMERATORS.(g)

The Lorentz space propogator for a particle of spin s,
mass m, and momentum K, is the quantity:

s
,[ ﬁm"(v)T(KL
fFootr K*—m*+it (2.21-1)

where:

S —

ﬁg(p)f(v)‘f(m =Z ‘P(A)-,—(K) (P(?,)&(K) : (2.21-2)
Here (A W (K) is the wave-function of the partlcle, J is
as usual the largest integer less than or equal to s, and

-q-)-(}() is to be understood té stand for ¢*(K) if s is.integral.«

" Computation of ﬂo W ()T (K) is naturally very tedious
for general J, but it turns out to be relatively simple to
¢alculate instead the "fully contracted propogator'" defined
by: : . ' _ |
fS(?’)? s K)= (75;)7@;0):_(14) (’f’v) , (2.21-3)
where p' and p are respectively any momenfa independent of
X arising at the veftices with which the/A and) labels of the
propogator are contracted.

Scadron derives the expressions:

P35 PiK)=Cy po("i‘"(“>'7’(’<>> (2.21-1)
s PT (445 K)= S [ (Wrm)B, (700 PiK)
~#B (=) () R P60 p0)] (2.21-5)

In these two equations the symbols are defined as follows:

T 2
Co=27 (7)) /(23')!, »  (2.21-6)
and for any pair of four-vectors a, b we define: |
_a)u(b)s A= arbby/i o (2.21-7)

o that;
) a(b)- c(b) ac(b) a(b)c a-C- ot-bc'b/b2
- (2.21-8)
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The solid harmonic 52}, and its various derivatives with

respect to its argument are then given by:

PE60p00)= ()T [Fh0 6] x
X P(:.){’PIG‘()'P(K)/[,ﬁ/z(m}g-m)}‘/z} . | (5.2129)

We shall see in section 2.3' that in practice, having
computed a suitably fully contracted propogator, only a few
of the initial and final labels need to be f reed in order
that one may obtain the propogator needed for a particular
graph calculation. The required labels may be freed by
employing an 0(3,1) generalisation of Zemach's 0(3)
differential technique, and we refer the reader to the
above cited paper of Scadron(g) for details. This same
paper lists all the partially contracted propogator numera-
tors needed for this thesis,

Finally; we should perhaps mention that'a considerable

simplification occurs in the special case:

;b/=]—"- (2.21-10)

The argument of the derivative of the Legendre polynomlal

appearing in equation 2.241-9 reduces to unity, end we

therefore have: V= (T+n)ET ™
Tm)nl2

(2.21-41)

} — 2
};_—' Pk - (2.2112)

This greatly simplifies the structure of partially or fully

where:

contracted "forward propogators", that is, propogators whose

initial and final non-free Lorentz indices are all contracted

with the same momentum. .

"An extensive 1ist of contracted forward propogators

(9)

is also to be found in the paper of Scadron.



L8.

2.22 SU(2) PROPOGATOR NUMERATORS

In SU(2) space there exists no snalogue of the four-
momentum contraction property in Lorentz-space, but since
we shall only be concerned with propogators for particles
with isospin not greater than three-halves, the porpogator

numerators are easily computed directly from the defining

[orlta
(t)’(a)I - Z 4)( it 4)('J)’ ? (2.22-1)

which is just the isospace analogue of equation 2,24-2, We

equation:

find:

=1 , ~P*=1, , P=8.
4] 1 (2.22-2 to L)
and:

@;/2:%{4'81,31’1- [TLJ’ZB]} . | (2.22-5)
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2.3 COUPLING-FUNCTIONS CONNECTING THREE MASSIVE PARTICLES.

2.3t 0(3,1) COUPLING FUNCTIONS

For the sgke of argument we assume the interaction is

of the type: 4 + 2—3, and let particles 4,2,3 have
/
momenta q, p, K; spins: §,,S,, Syjhelicities: ﬂ, , }L) /\;

normalities: ., ,n, , N, respectively. As usual we define:

si’particle i is a boson ,

J.

t 15,—/2, particle i is a fermion. (2.31-1)

|

The normality, n, of a particle is then defined to be ("‘)772?
where 72? is its intrinsic parity.

In order to derive a useful covarient momentum-space
"representation for the matrix elements of the interaction
Lagrahgian i'lj. is useful to invoke the Wigner-Eckart theorem
_and factor out the helicity dependence by writing’:

A L [priady=0 ) = (55525 )cP ) * @,

(2.31-2)
- Here the (‘)’s are the Rarita-Schwinger wave-functions,

() IR O

(matrlx elements of Lorentz boosts), of the three particles.
CP is to be understood as standing for ¢ if particle 3 is a
boson. The quantity& is called a "coupling function", It
is independent of the helicities of the three particles, and
has simple transformation properties, being a Lorentz '

(J1 + J, 4+ J3)th. rank tensor. For FFB vertices it is at che

2
same time a 4 x 4 matrix in four-component spinor space.

The matrix elements may bé further decomposed by expanding
the tmupling function with respect to a set of linearly
:_lnequivalent basis tensors, (tensor-matrices in the FFB case),
called "kinematic covarients". The expansion coefficients
are called "couplipg-constants" Speclflcally, one writes:

2 (833%,s) :-.Z:g _%g (5‘-"’5«’5) | (2.'31%3)

@ (W) ()T G RG> T 2
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| *?
where the 33 are the coupling constants, and the are
the kinematic covarients. N is just'the number of linearly

independent ways in vhich the three particles may couple.,

It is given by elementary considerations of guantum nunber

conservation, and is, of course, representation independent.
The kinematic covarients have the same general structure

and Lorentz transformation properties as the cpupling-function.

The maximum constructable number of linearly inequivalent

covarients for a given vertex is reduced as required from
h(J1 + J, 4 J3) to N by "equivalence relations"., That is,
j@j which are linearly independent when s tanding alone may
'give rise to quantities which are no longer independent when
i they are contracted with, placed adjacent to, or sandwiched
| between the wave~-functions of the three particles. This
arises out of the Dirac-Rarita-Schwinger subsidiary conditions
on these wave-functions.

The 95 are Lorentz scalars. In view of momentum conser-
vation and the fact tnat all particles are on-shell, all
scalar products constructable from the momenta involved are

constants. Hence there exist no scalar variables on which the

3jcan depend, and these too must be constants.

The number, N, of linearly independent couplings at a

general 3-point vertex with all particles on-shell may be
shown to be given as follovs.

Let §; and Snrbe respectively the lowest and highest spin
involved, and let S, be the remaining spin. Then one has
either:

S;+ 5z € Sy (2.31-L)

or:

In the latter case define: . |

Finally define: nNEnN, My
- O (o 3a 7))

(2.31-6)
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(This quentity is called the normality of the vertex, which
is said to be normal or sbnomrmal according as n eguals plus
or minus one, )
Conservation of angular momentum then implies that for
both FFB and BBB vertices:
(2ss+1)(25g+1) , S1+Sp <Sqr,

-
~—

(2s.+i)zsg+ I)-s(s+l)7 S;+Sp > S . (2.31-8)
If the interaction is in addition space-reflection invarient,
then conservation of parity further subdivides the vertices
into normal and sbnormal parity classes, and one has for
FFB vertices:

"5 28, + I)(Q.S]I+‘l) ,SI"'SIEéS.DI,

N =
| L[S+ Nsg+)-56+ 1), sp+Sz>Sm. (23 -9)

whilst for BBB vertices: .
[z[@S+ N@Sp+)+n] ,S+Sr < S

[

L[S+ )@sg+)- sE+)+n] S+5p>Sm . (231 0)
Time-reversal invarience does not modify the number of

ecouplings, but taken in conjunction with the postulated hermiti-
city of the interaction Lagrangisn it does imply that in any
particular representation of<covarientg may be chosen inva

way which makes-the.coupling cbnstants real,

Except in the speciesl cases listed below, charge—conjﬁga-
tion invarience also leaves the number of couplings unchanged,
merely reléting the matrix elements of the interacfion Legrangian
for different procesées. The special cases in which this in-
varience does modify the number of cduplings aré aS'fdllows.'

Pirstly, if particles 1,2,3 are self-conjugate bosons .
with C-parities: C,, Ci, 03, then one has a seleétion rule.

The intergction is allowed, i.e. N is non-zero if and only
if:

?

C,C,_C,b=1
8 (2.31-11)
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which is just a special case of Furry’é theorem. In cases
where this e¢quation is satisfied, thé number of couplings is
unchanged. »

Next, if particles 4 and 2 are pair-conjugate bosons,

whilst 3 is again a self-conjugate boson, then for:

S, (=52)=0 (2.34-12)
one finds the selection rule:
= )V 2
nc%" C%( ;') [ (2.31-43)

irrespective of whether or not the vertex is space-reflection
invarient. But if périty is conserved one finds the additional

selection rule:

ny=1. _ (2.31-14)
For: :
s(=52)>0 | (2.31-15)
éither value of 77C3(called the C-normality of parficle»S) and
%Qgs a1lowed, but irrespective of parity considerations,

charge-conjugation invarience further subdivides the couplings
into two classes, one for each value of C..

Finally, if particle 41 is a fermion, 2 is the correspond-
ing anti-fermion, and 3 is once more a self-conjugate boson
one finds no selection rule on Clsexcept in the special case

where: the fermions have spin one-half, parity is conserved,
vand the neutral boson is (P)‘normal. In such a case it then
has to be C-normal as well. For all other cases the couplings
are again further divided into two classes corresponding to
the two possible C3 values,

The quantities at one's disposal for the construction of
 the kinematic covarients éomprise the momenta: p, g, and K;
the metric tensor: :}WF ; the fourth rank Lévi-Cevita tensor:
6,,{(,‘W , a8 defined end discussed in Appendix 3; eand in the

case of FFB vertices, the sixteen Dirac matrices of Appendix 1.
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As mentioned previously, momentum conservation coupled with
the existence of the Dirac-Rarita-Schwinger subsidiary
conditions on the wave-functions of the particles severely
restricts the range of possible linearly inequivalent co-
varients constructable for a given vertex.

As expected from the above discussion, invarience under
the discrete transformétions of space-reflection, time-
reversal, and chargé~conjugation, further restricts this
range, and we now briefly indicate how this comes about,

" The effect on one particle states of the unitary

operators Ur, u-r, and élc is:

U f’l> 77?\9:7”"'7;7 -4 (2.31-16)
Ur | PR =71 G072, 2] (2.31-17)

Ue f’a>=7c”g;7> , (2.31-18)

where 771,, )y and /. are the intrinsic P,T, and C-phases, . ...

P,T, and C-invariences of the'Lagrangian:

Us L Ug=L (2.31-19)
where X denotes P, T, or C as appropriate, then have the
following implications.

P-invarience inxplies:
o / _ S+ S+ S, .
<KA|i!’FK) ‘Lﬂ>-—’71, /\:‘ %/+7~<ﬂ Al(‘ ) "5:]'%2.’31_20)
T-invarience implies:
] /.,
<KA|('H’9‘)1A’> 7Z‘l‘< :IE ﬁ ‘L ﬁ'}z‘l K /\> (2 31_21)

andC-invarience implies:

(K/\V[,(|»;77L’,c.1,’k>=7ZC<K7\'f;Cf¥Z’,?f,7>, (2.31-22)
- where: . | | 77)(5 77)3;77)(‘277)(' . (2.31-23)

By means of the known phase relations satisfied by

the wave-functions involved, (equations 2,44-18 to 24), one

may readily convert the above equations into relations between
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coupling functions., Specifically, one obtains for FFB

vertices: for a P-invarient Lagrangian:
Cpulhr2)=718(E) 360 Lo (5, PIT,
for a T-invarient Legrangian:

Eou($1)= T I@ICOT "o (THTHT, (2.31-25)

and for aVC—invarient Lggrangian:

CealH1)=1 N (SeC (2.51-29

-
In these three egquations B denotes (») 3, o denotes (/‘A)Tl(o():n,

(2.34-24)

and we have defined:

@)= g™0) , - (2.31-27)
g(=)= 37w (&) . (2.31-28)

The "arguments" of the coupling-functions indicate the final
and initial states involved, and the letters P,T, or C in
front of £ or 1 denote the corresponaing space—reflegted,
time—reversed, or charge-conjugate states., In particular,
remembering that the coupling-functions are helicity indepen-
dent one has: ) A _ '

A (V;ﬁ“ (Tj:)—ri) = C,G“ (’P})’PL) = Zj(bd (5'7 1‘) » (2.3-29)
where Z-‘:’ﬁoc(:f‘,i) is defined to be the.quantity obtained from
Z:ﬁa(f’i) by reversing the signs of all‘3—momenta appearing
whilst leaving unchanged all other quantities, (including the
'coupling-éonstants). |

- The corresponding equations for BBB vertices are obtained
from those gbove, (and in all that follows), by omitting the
matrices 3;,T, and C, In addition, the superscript indicating
transposition becomes redundant, and the term (<¢) in equation
2.3 -26 is meant to indicate thaﬁ in the correSpcnding BBB
equation an additional minus sign is introduced.

Equation 2.31-24 thus leads to a constraint on the

covarients for P-invarient vertices:
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. , A :
KFD=ng@960G Kalfi) , (223130

where the circumflex again indicates the reverssl of all
3-momenta appearing. In agreement with our previous discus-
sion, this equation divides the covarients into “normal" and
"abnormal" classes. |

The equation for T-invarient Lagrangians, (2.31-35),
relates the "forward" (i-+f) and "reverse" (f - i) interactions,
But these are already related by hermiticity of the Lagrangian,

which converted to an equation on the coupling function reads:

Fo(("‘;b) 5’) ,J (1'/'_(5),50 . (2.31-3)

The coupling-constants for a tlme-reversal invarient inter-
action are therefore purely real if the covarients are chosen

to satlsfy.
Jgﬂoz()‘:‘) 7-,—‘3((573("‘7T 77 Z (J(;L)WT .‘(2.31-32)

Combining this eguation with 2,31-30, one has a corresponding
reality condition for interactions invarient under P T, (and
therefore under C, assuming CPT-invarience), but not necessarily

-

under P and T separately:

%7 /¢ | |
_ 6')7’) h72 z(eo((j('; L)T (2.31-324)
Note that 1n view of Luder's theorem, (2 44 =18), 71721.18

equal to 22 the overall C-normality of the vertex.

c?
EXcept in the three special cases mentioned earlier,

equation 2,31 -26 merely relates the coupling-constants for

"charge-conjugate" vertices. If all three particles are

self-conjugate bosons, one has: ‘ _
F.o( (ng' CL) Zf‘@:('f ‘*) (2.31-33)
Whllot in both the other special cases the coupling functlons
satisfy: ’ ,
((‘j() ) K 73(00“7'( )V',_(f , (2.31-34)

Z%@oquuj%é{fﬂ F<&>i’



56.

Together, equations 2,3 -26 and 33 or 34 as appropriate
lead to constraints on the covarienté which agree with our
previous discussion. |

In constructing a set of covarients for a given vertex
it is necessary to invoke momentum conservation, the fact
that»all three particles are on-shell, the Dirac-Rarita-
Schwinger subsidiary conditions on the wave-functions, and
the implications on the covarients of any discrete symmetries
of the Lagrangian. In addition one often has to make use of
the three basic relations of Appendix 3, (equations A3-2,3, and
4), and the various relations derivaeble from these by contrac-
tion with momenta and/or Dirac matrices. Finally, the Dirac
algebra itself must always be borne in mind.

Using the above principles, it is easy to set up a
collection of basic rules which if followed will lead one a
considerable way towards a linearly inequivalent set of co-
varients for any given vertex. One simply constructs all
possible covarients according to these rules. In very
simple c ases this .yields just the required number; but in
ﬁore'complicated (i.,e. higher spin) cases, the number of
covarients thus constructed is too large and‘one then has to
search for equivalence relations amongst them reducing theilr

number to the correct value, These rules now follow. We

A=t - ), : | (2.31-35)

and let a,f&, and )V denote any one of the Lorentz indices

define:

il

of the wave-functions of particles 1,2, and 3 respectively.
In additibn, a{,/d_, and V' each denote any secohd‘index of
these same réspective wave-functions.
General rules for any vertex,
, (i) Any pair of covarients are equivalent if they differ

only by the interchange of a pair of indices referring to the



57.

same wave-function.

(1i) If one of the spins is greater than the sum of
the other two, then the covarients are given symbolically

by:

~

S N
Ny A s5)5:,5.45)) S5,

' T-To=T; 5
.%1(33)52-)5'): 4 (Af‘) ’ 760(53) S:':+5’)S'>) 52_>S3+S,)

V=T~V nr /g
( (S +52452,S) S>S,+S, .
! Av) 7 (' > ), 3771 T2 (2.5 -36)

The covarients on the right hand side of this equation are

those for a vertex which differs from the one under consldera-
tion only in that the highest spin is equal to the sum of the
lower two spins of this original vertex,

(iii) The rules which follow deal separately with the
‘ covarients for parity-conserving normal and abﬁormal vertices.
Ir parity is not conserved one is to use the covarients which
wduld have been obtained had parity been conserved, together
with those which would have arisen under the same circumstances
had the vertex beeﬁ of opposite normality. If the vertex is
fimefreversal invarient then each of these "opposite normality"
covarients must be multiplied by an additional factor of i.
For PT-invarient (and therefore T-violating) vertices, no such
additional factors are required. -All coupling-constants will
then be real, _

(iv) Covarients constructed according to the rules
which follow lead to real coupling-constants for all T-invarient
vertices except those involving an odd number of C-abnormal
particles with observable C-parity, (for example the A: e
In these exceptional cases an édditional factor of 1 must be

included in each covarient if the coupling-constants are to

be real.
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This rule arises in the following way. One can prove
that the covarients referred to satiéfj equations 2.,31-32
and 32A provided:

nn.=1. (2.31-37)
This equation is satisfied, or one can consistently choose
ﬁ%,to satisfy it, for all individual particles except the
special ones mentioned. For these latter oneknows from
Luder's theorem that: 4 |
| nn,.= -1. (2.31-38)
and the covarients therefore reguire an additional i factor.

Equation 2.31-37 still holds for all covarients in the
case of P-violating PT-invarient vertices, but for P-violating
T-invarient interactions it only holds for those covarients
which satisfy 2.31-30. For the opposite normality covarients
of rule iii,}it has to be replaced in this latier case by
2,31-38, again leading to an additional factor of 1i.-

Special rules for parity-conserving BBB vertices,

(v) The covarients for normal vertices are to be
constructed from the momenta: /\y, /\Fy,/\x ;s and the metric
tensbrs:jv/u/ ’8/"“ s Jqy » (but not Sw' , 3/,%,’ , o Joex? )e

(vi) TFor abnormal vertices the covarients are %o be
constructed as in rule v, but in addition each.covarient is
to include a single overall factor chosen from: ank(ﬁﬁo,'

2/.4.0( (K/D,so(l_l G’(A) ’ Eulu.o( (”(), and Zy/,m (/\> 3 (but not for
example: CV#(KK), Cw (AKK), Eoii! (K/O , or E,MIM(/\) ). One

is to bear in mind the following five equivalence relations:

2 Ao (KA 2N E 612 K [KEua A E (O], oo
20 B2 @A K) [KEppa A (], 5 L)
EvpUMBy 1= Evu(KA)Tyipn 22 — Evpu ()N 1 (2.31-11)

&y (K1) Fpdecm ) Syl = [Eypuce (K= 2M)]A |
(2.34-42)
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€., (K /\)3,-’/;' 5«,«("/\) Jury = ‘SV/A« (Q'A;}O/\ L (2.31-43)

Special rules for parity conserving FFB vertices,

(vii) One is to construct the covarients for normal
vertices following rule v, but in addition each is to include
either an overall L4 X 4 unit matrix, or an overall factor 7(’0
where (o is a single fixed index referring to the wave-function
of the boson. No other Dirac metrices are to be used.

(viii) The covarients for abnormal vertices are to be
constructed as though the vertex were normal, (i.e. rule vii
is to be used). At the end of the calculation all covarients
are to be either pre- or post-multiplied by 7 .

The above eight rules assume that the number of indepen-
dent couplings is not modified by C-invarience, If this is not
the case, one simply uses the same rules and then drops those
covarients which violate the appropriate constraint equations,

We have chosen for sakeof argument to work in terms of
components of the momentum A , and contractions of the Levi-
Cevita tensor with the momenta A and K, The covarienis may

be written in terms of other momenta by means of the relations:

Mty 2 =T, © (2.31-b)
2 N2 K%~y (2.31-15)
2 AaZ Hy% P, | (2.31-46)
K2 puzg, 20 | O (2.31-47)
Eoc(A)= 20’*1:(‘1'7‘))) ete, (2.31-48)
An extensive‘ list of coupling functions has been given

by Scadron. (9).
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2.32 0(3,1) ® su(2) COUPLING FUNCTIONS.

In this section T and t denote respectively the total
isospin and third éomponent of isospin of a particle, As
usual we define an integer I bYy:

_ T, T integral,

Iz{T—%, T half-integral, (2.32-1)
According as T is integral or half-integral we call the
parti‘clevan isoboson (b) or isofermion (f).-

Given a set of SU(2) invarient three-point functions,
each involving a different t configuration of the same SU(2)
multiplets, one has that the coupling constants:ﬁﬂ(‘r,,t” ztz;T: l:,)
corresponding to the different configurations, are relsted by
the Wigner-Eckart theorem to a set of t-independent coupling
constants: 35(—1‘3, L;T;) . Specifically:

30(_r3t3)—rzﬁl;rzh>=cmes; ztz)'Ttk')sd(TS;T% '): (2.32-2)
;fhere the C's are SU(2) Clebsh-Gordan coefficients, and are
independent of j. This latter superscript has the same
meaning as in the previous section, la’belling the linearly
indépendent couplings in Lorentz space. |

For the pum oses of this thesis, it will prove convenient
to determine _ths, C's up to an overall normalisation factor'by
means of an isospin-decompositior in SU(2)-space analogous to
the Lorentz-space spin-decorhposition of the previous section.

We therefore define a t-independent isospace covarient,

\%(E)I;l,(a)zz (i)In (_r'*" ;EJ.T:) s Dby:

C(Mby T ke T b)= by x ("r‘:.,m_;n) 2 ' )
| (3 38.1"8 ) 4?(07’5 (k}z“l’('j)rz(i)rl 4)(0')11 (’I‘,)I' . (2. 32 3)

The Ll)’ s/Rarita-Schwinger wave-functions in isospace, as
discussed in section 2.12. The number of linearly inequivalent

covarients resulting from the isospin decompo'sition of an



61.

SU(2)-symmetric n-point function is just equal to the

number of allowed values of total initial (equals totsl final)
isospin. vThus an SU(2)-symmetric three-point function always
involves a single isospace covarient,

We shall abbreviate equation 2.32-3 to:

C(T'}:tsy lt’-;rt> (I)b xbd—z“-l ‘S;T;-;T)q) ‘T)a., ) (2.32,_“_)

“and the full spin ® isospin decomposition in Lorentz @ SU(2)
space then reads:

(RN, tﬂi[?ﬂ’na,%ﬁ.t} P; *q) WL G
"4’3:(1’) 4’1(&)%, ; (2.32-5)

where:
b a‘az (

F)dnl"z >t ) 5{6 o O‘z(f L).l/-eb a,aa.(—r ) 12 T) v (2.32-6)
The implications of discrete symmetries of the Lagrangian on
this coupling-function in Lorentz ® SU(2) space are as follows.
We again give them for f£fb-FFB veftice. The cbrresponding
equations fof the other possible configurations are given by
leaving out the appropriate matrices.
Space-reflection leaves :kfhﬁhqzunchanged,'and so for

a P-invarient Lagrangian 2.31-24 just generalises to:

(\j?’,:( G) ) 7’18({3)3(00,0, Ei’:)/f:f(){;i)vo 5 | : (2.32-7)

splitting the spin part of the coupling function into nommal
-and abnormal parity classes as previously.

Since time-reversal involves an interchange of initial
and final states, the isospace covarient is affected by

this operation, and 2,3 -25 now becomes-

P}“(jgl) T:3E)363EIET 'z H)T. (2.52-8)

In this equation the tilde denotes transposition of - the

1sospace part, and we have defined:

S(b) gts(r) , (2.32-9)
g(@)= 9% (5)9™ (1) | | (2.32-10)
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Hermiticity of the Lagrangisn now implies
ba /. . T ¥ab . _=ab,. o ,

Eelfi)= 1T < (:Hl=TE09). (2.32-11)
Combining equations 2,32-8 and 41, we see that the condition
for real coupling-constants is still provided by equation
2.31~-32 on the Lorentz-space covarients, provided that the

isospace covarient is chosen to satisfy:

ﬁba(f,ik g(e)g X ZZ()C, L), (2.32-12)

As far as charge-conjugation is concerned, the calculations
are most closely analogous to the treatment in Lorentz-space
alone if one considers the implications of inﬁarience of the
- Lagrangian under the combined operation, (G-parity operation"),

- of charge-conjugation foilowed by a rotation through J7 about

the 2-axis in isospace. This operation transforms a member of
an SU(2) multiplet into that member of the corresponding anti-
multiplet having the same third component of iSOSpin. Denot-
ing the intrinsic G-phases of the three particles by ZZ

6-51213
one finds that 2,31-26 generalises to:

~T - ] .
CELD=TE e CODE GuesSITCT ooz
Of course, since the coupling-function is t-independent,
Kgﬁ(c’f;c’i)is justz;%a;((cls')CL) .

Once again, this equation only constrains the covariepts
in special cases, These are obvious generalisations of those
of the previous section. Further subdivision of the covarients
into classes of opposite G-parity, and/or G-parity selection
| rules, arise if either all three multiplets are self-conjugate,
or if multiplet 3 is self-conjugate whilst multiplets 1 and
2 are mutually pair-conjugate. A particular realisation of
this latter case is needed later in this theéis, and we give
the required results at the end of this section.

Bearing in mind the Rarita-Schwinger subsidiary conditions
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on the isospace wave-functions, and fché guantities available,
one has the following rules for the construction of isospace
covarients,

(i) General .r"ule

Any two covarients are equivalent if they differ only
by the interchange of a pair of indices to be contracted with
the same wave-function,

(i1) Rule for bbb vertices.

The covarient is to bé constructed from SU(2) metric
tensors of the types: 6;‘3 "aj/z , and &, , and SU(2) Levi-
Cevita tensors of the type: £ijf .

(1i1i) Rule for ffb vertices.

The covarient is to be constructed in the same manner
as for bbb vertices, but in addition each covarient is to
" involve an overall 2 X 2 unit matrix, or a single overall
Pauli matrix ’l}'where AL is an isoboson label. In addition,
one is to bear in mind the relations of Appendix U4,

Using these rules .it is easy to deduce expressions for
" the isos'pin covarient of an arbitrary vertex. Irrespec‘tive
of which par;icles are initial or final, denote their isospins
by T, T', and T", such that these satisfy:

TET < T, (2.32-14)
Then if T and T' are half-integral and: '
™ =T 4+ T', (2.32-15)
one finds that the covarient may be realised in an obvious
notation by: , . 1/
yg(i)r(a/)r’(i/f)f"("”ﬁ;/ T)=(85) (83n) Yer. (2.5246)
In 811 other cases the covarient is resglised by:
, I u_ ol
%(i)z(i,’)ﬂ( 'L")I” ('T)_TI, .Tll) :__r (i Sii/ill)(I-i-I +I") ( gii/’)(l I ) %

V(171 for bbb vertices
X (S-z-bf/)( )x 1o , 7 ,
| ﬂz for ffb vertices. o (2.32-17)
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The notation of these equations is just a generalisation
off that used previously. To make itiabsolutely clear we.

give an example:

%z( /)2( //)‘*

Covarients given by equations 2,32-16 and 417 automati-

(%,%,4)=5, ,,S,,,S/ T . (2.32-18)

/iy Uil i

cally satisfy 2.32-12, and it was with this end in view that
we included a factor Z(I+I,'1”) in the right-hand side of
2,.32-17.

We have not préviously seen these two eguations in
print, but they are so obvious that we feel sure they must be
well known to most authors.

To conclude this section we consider an example in
which equation 2;32~13 does lead to selection rules and
constraints on the covarients. The vertex is purely strong
and conserves P,C, and T. Multiplet 1 has spin one-half and
half—iﬁteger isospin, multiplet 2 is the corresponding anti-
multiplet, and multiplet'B has integer spin and isospin., From

elementary considerations of conservation of observable

quantum numbers, one deduces the selection rule:

‘ Va+1I .
Go=(-1)"""2 if pa=41.  (2.32419)
If multiplet 3 is abnormal, either value of G3 is allowed.,

The coupling function must satisfy: v )
basa, N\_vebaa. /¢ .
5{62 (&f,é—z)—ZﬁF ' 1(},1,),#‘_7% , (2.32-20)
which on combination with 2.32-13 yields:

o™ (il & ORIE ()

In all possible cases, isospin covarients given by equations

. (2.32-21)

c'c
perq.

2.32-46 and 17 satisfy:

() Ko, (BFFIT = =02 K0 (0FF), (2e32-22)
and the spin part of the coupling function is therefore subject
to the constraint: -

Co,0=( )137@7e6cﬁ (&%

N (2.32-23)
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' +
Denoting normal and abnormal coupling functions by Zju.
(9)

and c... respectively, we have fron Scadron's paper that:
, ]

M CYAL (/\u)v @A+, @, (2.32-21)

C”)-‘T (U' /L) /L (Ay\v- (93 /\)7, +3l{- IKM) ’Js') (Tl.3='7)_(2.32_25)
Compatibility of equations 2.32-19, 23, and 24 impliés that
the intrinsic G-phases must in this case always satisfy:

76.76.= 1, (2,32-26)
and we note that normal bosons with allowed G-parity
couple to the fermion-antifermion system via both g, and 8o e
Equations 2.32-23, 25, and 26 further imply that abnormal

bosons with:

- Vo +1
G = (-7 (2.32-27)
couple only via gs', whilst those with:
G =~ (N | (2.32-28)

couple only via gy, * The spin covarients in the abnormsal
boson case are thus divided into two further classes depending

on the G-parity of the boson multiplet.

2.4 T-MATRIX ELEMEETS CONNECTING FOUR MASSIVE PARTICLES

2,41 0(3,1) M-FUNCTIONS.“O)

As is wellknown, ore may decémpose such
T-matrix elements intc sets of scalar variables, (invarient
emplitudes), embodying all the dynamiecs of the processes,

The techniques involved are very similar to those employed in
section 2,31 for the decomposition of on-shell three-point
vertices into sets of coupling-constants. - Consequently, we
shall mainly concern ourselves in this section with emphasising -
the differences between these two techniques. |
We shall restrict ourselves to a review of scattering

brocesses involving two initial and two final hadrons with
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channels defined by:

St 1) +26p) —>3(4)+ A(#) (2.h41-1)
L 1@)+3EY)—> 2R 44 (2.111-2)
w: 1@)+4(p)—>3(4) +2(-1) . (2.41-3)

Particles 1 and 3 will be bosons, whilst 2 ard L are fermions,

The equations we give are readily extended to the four boson
case by substituting the relevant wave-functions, and dropping
all 4L X 4 Spinor-space matrices., Four fermion'scattering

has been.treated in considerable detail by Kellet,(26) and

will not be reviewed here. The only additional complication
in that case is the need to define an ordering convention

for the spinors invdlved,‘different conventions being related

by Fiertz transformations,

As in section 2,31 one first factors out the helicity -
dependence of the T-matrix elementis, defining "M-functions":
M;:f:;:v , having simple Lorentz transformation properties,
by:
s-channel:

AL P A Tl A= *”'(w‘“‘(f')m v EL G B2 001
t-channel:

FARITIAT TR =68 R I SO 2.1 25)
u-channel:
P T 4 T AD=E *“'(%) ,(~7>)M I ,WE*' @V (A2 —6)
In these equations particles: 1,2,3, 4 respectively have-spins:
Jyr Ty + 1. J:, J; 4+ %, and helicities:ﬁq)ﬁq)ﬂxk A . Ve
have introduced thebshorthand notation:

! !

/""5(/‘”77' , v )7, /‘*'E(l‘“'):77 ) =), (2.44-7,8,910)
These three M-functions transform as Larentz tensor-multi-
spinors, and are related by crossing. Although it has not
beén proved for arbitrary spin processes, one€ normally

postulates the crossing rule:
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Mo oo (1650 F2:02) —»6@3)%(@): -
5 MMP-’/M/”'('I(M-HT(—?Q%36’9_}_2(—?2)) > (2.44-11)

+ 1 for BB and FB crossing,
where \és =

Thus by explicitly introducing an additional factor of minus

- 41 for FF crossing. (2.41-12)

one into the right-hand side of equation 2.41-6, (but leaving
it unchanged in the four boson case), we may use the same
M-function in all three channels., As usual one expands

" this in terms of a set of linearly inequivalent basis tensors

(kinematic covarlents)

)“V/M) Z_:A (S)t)ﬁﬂ/ylluv, (2.41-43)
The.zgjare these klnemgklc covarients, and the Aj are called
"invarient amplitudes". In contrast to the vertex case, there
are now two linearly independent scalar variables constiructable
from the momenta, and the A

J
these., As we have indicated, one may conveniently choose to

are complex scalar functions of

use any two of the three Mandelstam variables s, t, and u,

as defined in section 1.3. |
The crossing rule thus states that after the introduction

of relative minus signs between M-functions which differ by -

'fhe crossing of a pair of fermions, the invarient amplitudes

~A5 in the three channels are, (for fixed J ), different physi-

cal sec#ors of the same function of the scalar variables. As

in the spinless case, one then postulates that this function

is analytic apart from Born-term poles and unitarity cuts.
Apart from certain exceptional cases in which their number

is further reddced, the number, N, of linearly inequivalent

covarients for processes involving particles with spins,

31 2,3,L is easily deduced to be given as follows.

If parity 1s not conserved: _
N= H(ZSL'*‘ 1) for all processes, (2 41-4Lh)

r =1
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If parity is conserved-
IT@S+O+

where n is the normality of the process, that is, the

¥B—>FB and FF—>FF,.

{ n,BB->BB. (2,411 5)
product of the normalities of the four particles involved.

For a given process one can construet an infinity of
covarients which will satisfy all constraints imposed by the
various symmetries of the T-matrix, but only certain sets of
N of these will be linearly inequivalent. In performing the
reduction to a linsarly ineguivalent set, it is possible to
introduce into the final finite set of amplitudes poles which
were not present in the original infinite set. One striectly
makes the above analyticity postulate for this latter
infipite set of amplitudes. Any additl onal poles then intro-
duced are assumed to be spurious "kinematic singularities",

If the amplitudes are to have only those singularities required
by dynamics, one must be careful to perform the reduction to
b\a linearly independent set in a way which leaves them
"inematic singularity free", (henceforth abbreviated to
K.S.F.). We return to this point at the end of this section,

The statements that the T—matrix'is P,T, or C-invarient
may be readily converted into constraints on the M-function.
~ For BF-»BF scattering one just obtains equations 2,31 - 24, 25,
‘or 26, as appropriate, with C replaced by M; o now standing
forfAV, and B for/us’ . In the BB->BB case the same eguations
vapply, but with the 4 X L matrices removed.

The e rity-conservation equation again tells ope that
thé M-function is to be expanded in terms of a set of proper-
tensors if the process is normal, and a set of pseudo-tensors,
eéch containing one overall yg or LevifCevita tensor, if it
_is abnormal.

In general, the T and C-invarience equations just relate
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the M-functions for different processés. The amplitudes are
not required to be real for T-invarient processes, since the
T-matrix is not hermitian. However, for processes which are
elastic in the s-channel: PT-invarience in the s-channel and
C-invarience in the t-channel both impose the following
constr?int on the covarignts:A _
80U o TT, (2.11-46)

This reduces the number of covarients to:
N:.é.(zs..f. N(2s.+ &)[%(25'.*. Das.+ )+1]+ '07 BFBF, FFE->FF
<, BB7BB. (2.44-17)

In combination with the crossing. rule, the above invarience
principles redice the number of covarients in certain further
cases inVOlvinglidentical particles, and in other such cases
relate the invarient amplitudes at different values of_their
arguments, We do not insist on the details here, as all cases

(10)

Even if the T-matrix violates P,C, and T individually,

are listed by Scadron and Jones.

one may still relate‘different'prOCesses,by CT'P-invarience
or by considering -the corssing of g1l four partic;es. -Both
principles relate the same pair of processes, and consistency
of’thé'two results requires that the three overall discrete
transformation phases satisfy:
’?c}ZT}Z'pz ’}. (2..11-1-:\8) :

The result is then: , |

Mex($1)= ¢! EAaaEaaly§ Mup (€15 C5)Ts. (2.4 -19)
Since 2.41-18 must hold irrespective of which four particles
. are considered, we have a pfoof of Luder's theorem,
The 06varient formalism also provides one with a simple
(22)

proof of Olive's hermitian analyticity theorem for general

CTP-invarient processes which are glso invarient under T

(and therefore CP) and/or C (and therefore PT). One then has
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equation 1,3-11, together with:
Lim A, j(s=1g, )= fwn A (s:ze,t) (2.14-20)

g->ot
so that: - :
aiSCSAj(5;6>=,£ihg+2;iIMAj(S+i€) L') . (2.44-21)
But the essential point which comes out of the proof is that
these equations on;y hold provided the covarients are chosen
to satlsfy.
.7\5‘@((7(,0 7 3@I0T 7 75(5“(5,1,)3“1” (2,11 -22)
for T-invarient processes, and: :
75?3«65% ”cT~'7<§3<(f,i)T, (2.41-23)
if the process is C (i.e. PT)-invarient, 77, (equal to 72?2.,_)
being its overall C-normality. These eguations are called
discontinuity conditions. In view of the close similarity
between equations 2.31-32 and 2.,41-22, and between equations
2.31-32A and 2.1 -23, onemsy adopt the same rules for the
inclusion of overall factors of i in the covarients as one did
in section 2.31. The covarients wiilthen,satisfy either one
or both of the discontinuity conditions as appropriate, and
the various impliéd choices of charge-conjugation phase will
be the same as those made in order to obtain real coupling-
constants for three-particle vertices,
Provided the appropriate discontinuity conditions aré,
satisfied, the unitarity relation, 4.3-9, may be written in
a form in which all terms involve the same external wave-
functions and the same set of kinematic covarients., Factoring
out the former, amd equating coefficients of the latter, one
obtains: |
 Disc A; (s,l:)- ~i2_ A58 S (pn- 45), (eean)

where the amplitudes ,4 are deflned symbollcally by'

Mﬁg()(N)@\c(N>Mo(\‘(LN> ZA (G“ _ (2.41-25)



.

In this equation: MPGGT\O and Mm:(i'N) denote the M-functions
corresponding to the T-matrix elemen s T;N(s,t) and T, (s,t),
47:;_2,(1\1) denotes the set of on-shell propogator numerators
forthe particles comprising state N, and as usual:
M (N2 T M GNT, (2.41-26)
¥hen one is using the above equations in the resonance
approximation of section 1.3, the M-functicns of 2,44-25 are
replaced by coupling-functions which are assumed to satisfy
2.%-34. That -is, one assumes that the couplings of the reson-
ances to the initial and final states may be approximately
represented in terms of hermitian interaction Lagrangians.
Equation 4.3-32, for example, then reads for arbitrary spin

processes

(
IAS’S aLSCSA (S’E>N~ZZZM { +Ean (P:: T"")}/(-\; {9-27)
where A (b 1s given by:
5'60'(&’[{)@?(«)?@“(@)’ ZAR(‘:)XW ,  (2.11-28)
and pO z(R) now denotes: &DSR 6—’773 (}b i«) the on-shell

CAk
propogator numerator for a spin SR particle with mass MR and

momentum (f)'ﬂl_) .

' The covarients for a given process may again be constructed
by B llowing the rules of section 2.31, provided that these
rules are modified to take into account the fact that one is
now déaling with four external particles., Let /u) Y, /u/ and y/

denote any one of the Lorentz indices of the wave -functions
of particles 4,2,3, and L reSpectively.' Also, let 7t denote
any one of these four indices, (O and one of the remaining
three, and ¥ either of the final pair., Then for four-boson
and for two-boson/two-fermion processes, the required modifi-
cations are as follows. |

Rules i, iii, iv, and viii remain unchanged, except that
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-they now refer to M-functions, and viii is now the rule for
abnormal two-boson/two-fermion processes. Rule ii is not
applicable to M-functions., |

Rule v applieé to normal four-boson processes. There
are now six possible types of metric tensor to choose from,
namely the various 377€ . It is now possible to construct
three linearly independent momentum combinations from p, gq,
p', and q'; denote these by a,b, ard c. Any two of these
will remain linearly inequivalent when contracted with the
wave-functions, snd we denote these by a and b, Thus as far
as momenta are concerned,’one now has the eight possible types:
& g and b .
Rule vi now reférs to abnormmal four-boson processes, It
is unchanged except that one now has up to thirty;five pos sible
tyﬁes of overall Levi-Cevita tensor, These are: éaﬂlu'/av;

four each of the types: ‘Src‘ocr(a)’ 53”0 G (b), 5;,{ PU(C):

and £ 4 (abe); and six each of the types: & f;ab) & (bc),
and b fo(ca) -~ The equivalence relations between the possible

covarients constructable in this fashion are much more 1nvolved
and numerous-than those for the corresponding three-point
vertices, but are readily obtained in any specific case by
" the applicatlon of the basic eguations of Appendix 3.

Rule vii is applicable to two- boson/two-fermion processes.
It is wuchanged except that the overall Dirac matrlx factors
to be included in the covarients are now to be chosen from the
eight: '“q., (ﬂ j W/u,, Tlu.{ P W/u, d ) D}x.,’ﬂ; ’J/A.'Z,u,and Wlu,'a’/u,qg .
The momentum d is to be any fixed lirear combination of the
two boson momenta. Q and a'. |

Finally, a note about klnematic singularities. As
ment ioned above we adopt the viewpoint of Hearn(27) that if
an M-function is expanded in terms of all pos;ible'covarients

allowed by the symmetries of the T-matrix:
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™ . '
M=2_ARY ‘
51 _3 ? (2.44-29)
where m is very large, (indeed presumably infinite), then the
corresponding Aj'will all be K.,S5.F., This was phrased in more
rigorous terms earlier. We argued that it is for this
(hypothetical) set of amplitudes that one should postulate
"dynamical analyticity", and kinematical singularities are
then defined as any additional singularities introduced by
the reduction to a linearly inequivalent set of N covarients.
Suppose for the sake of argument that there exists an

equivalence relation, (hereafter abbreviated to "E.R."), which

7n .
ZE: 0
a =0
= 97% ? (2.44-30)

for some finite 77 (< m) Each a; may be either a scalar

constant, (i.e. a pure number or a function of the masses),

reads:

or a scalaf variable, (i.e. a function of the Mandelstam

variables). Suppose for the further sake of argument that
1 _

2.44-30 is used to eliminate ]V from 2.44-29. Then this

latter equation becomes:

Mg%Agkj > MK, (2.11-31)

ﬁ:n—H

where: / . :
Ag = Aﬁ"" (a3/4,1>A1 . v (2-’-” '-/32)

The M-function now involves one less amplitude, but the/4j
will only be K.S.F, if 8y is a constant. Otherwise, each
will have a kinematic pole at vanishing 44 ; (except, of
course, that it may happen for some particular j that a1 also
vanishes at that point).

Let us define a "type 4 E.,R." to be one in which all the
a; are constants, and a “"type 2 E.R." to be one in which at
least one of the &j is a variable, We further define a pair
of type 2 E.R.'s to be "equivalent" or "ineguivalent" according

as one can or cannot be transformed into the other by means

only of type 4 E.R.'s.
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Thus in the reduction from an infinite lirearly
equivalent to a finite linearly ineqﬁivalent set of covarients,
the final set of amplitudes will all be X.S.F. provided that

type 2 E.R.'s are used only to eliminate covarients which
appear in them with constant coefficients. The use of type
4 E.R.'s is not subject to restriction, since these can hever
introduce kinematic singularities.

It might seen that to obtain a set of K.S .F. amplitudes

for a given process, one must eliminate an infinity of |
covarients by means of an infinity of E.R.'s., - a time
consuming series of manipulations to say the least. Fortunately
this is not the case., The crucial point is that‘the number of
inequivalent type 2 E.R.'s constructable for any given process
is finite, and in all practical cases rather small. Indeed,

one needs guite a lot of spin before this number ceases to be
ZEYO0, |

The prescription for dbtaining a K.S.F, set of amplitudes
is therefore as follows, First construct a maximal set of
inequivalent type'z BE.,R,'s for the process. (In practice
this comes with experience, and is not as difficult as it
sounds); Let r be the number of E.R.,'s in this set, whilst
as usual N is the required number of final covarients., If.the
set of E.R.'s COntaihs more than (N + r) covarients, operate
with type 4 BE.R.'s until only (N + r) appear. Otherwise,
obtain (N + r) covarients by constructing additional ones
which are linearly inequivalent both to one another and to
those appearing in the E.R.'s., Since all the inequivalent
type'2 E.R.fs for the process relate only some or all of
these (N + r) covarients, these latter must be related to all
other possible co#arients only through type 4 E.R.'s. Thus

the corresponding (N + r) non—lineérlyéindependent amplitudes
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must all be X.S.F.. Finally, select r of these covarients

in such a way thaﬁ each appears with a constant coefficient in

a different E.R., and use each E.R, in turn to eliminate the

respective covarient. Each of thevfinal N amplitudes must

then also be K.S.F., as required. |
Note that the existence, for a given process, of a type

2 E.R, in which all coefficients were variables, would be

sufficient to guarantee that no K.S.,F. spin-decomposition

was possible. This would in turn violate the usual assumption

that the so-called "reduced helicity amplitudes"(za) for any

process are K.S.F.. Happily, no examples of this pathological

situation have yet been discovered.

2.42 0(3.4)Q su(2) M-FUNCTIONS.

As in the case of three particle vertices, it is con-
venient to build SU(2) invarience into the spin-decomposition
of the previous section by a further isospin-decomposition,

writing (in shorthand notation)

| e HH |
(HE b O ,
Ai( )= 4) ('D ZA x“tﬂzq) b (2.42-1)

Here the 4) s are Jsospace wave-functions, thex are klnematic’.
covarients in isospace, the A:j are invarient amplifudes in
Lorentz-space alone, (now t-dependent), ahd the A: are
t-independent invarienf amplitudes in Lorentz ® su(2) sp:zce.
The nmnber-,M of linearly inequivalent isospace covarients

is just equal to the total initial (equals total final) isospin.

The full 5p1n ® 1sosp1n decomposition in the s-channel,

for,example, then reads.<q’lﬁlllt ,,F%lt |T,$ﬁ, b,,'P}L t> a*%( )LP-HX

—vz(?,)q)’r& M 1311,3}5 @ 4’ i "(’}’34’ (2.142-2)

wheres

l... 1 |
M;: l::;; ZkZA (S’ )Xl v/uv L/L 7, z,_ . (2.42-3)
151 k= -
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The M-functions in the three channels are again related

by the erossing rule, and equation 2.44-14 generalises in

Lorentz @ SU(2) space to: M,iﬁ;i;h@(?')ﬂ“z(?z)»3(’}’3)4-1»(?4)):

I.4T, \abelalat - =, .
R R G e A I
{+ 4 for bb crossing, e
where %; =
T |- 1 for bf end ff crossing. (2.42-5)

This result follows on using 2.41-11 to generalise the standard
crossing relation for spinless invarient amplitudes in SU(2)
space alone:(29)

AMEAT ST Tub)=5,, A(T: LTS BETRE), (5 0506)

where: Gdj:ﬁfT# .
2; =6_Dbr—b4x y for bb and fb crossing,
24 )12 T (2.42-7)

One may choose to use the same SU(2) covarients in each

y for ff crossing.

channel, in which case isospin érpssing matrices do not arise,
or one may choose to use different covarients in each channel,
This latter choice requires the use of crdssing matrices(zg)
to pass from onechannel to another, but enables one to decompose
in terms of eigehamplitudes of total isospin (T) in each channel.
- In a given channel onethen wrltes: |

AjEft)= q)ﬂ(PﬁZA Rititi O o (2.42-8)
Each .76 is then the progectlon operator for total isospin
T in that channel and must be normalised so that:

(H)=X" 2-K'=1. (2.42-9, 10)
The structure of such projection operators may be

determined to within a normalisation constant by considering
the isospace part of the pole graph corresponding to the

reaction: 4 + 2 —>(particle with isospin T)—> 3 + 4. ‘Thaf
is, one has: ’%z.z z L(T’Tyf,'ﬁ.Tz)OCzi‘l , /(Tx E,T}x
xﬁ x. .. (MTT) | (2.L2- H)

2 14,7'7_
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The /qg-:for a given channel may.be used as channel-
independent amplitudes, but will notjin general be eigen-
amplitudes of total isospin in the other two channels, nor will
they necessarily represent the simplest or most useful choice
from the channel-independence point of view. Nevertheless,
the determination of & set of unnormalised‘Jt;?qilizin at
least one channel provides the best initial step in the con-
struction of any set of Jt&/quzz . Since theizz will
automatically be lineraly inequivalent, one avoids in this
way any need to manipulate equlva}ence relations.

Writing Mf,o( for M‘hlz";'?;' , the implications on
the M~-function of P, T, and G-invarience are given by
substituting M'eol for B@x in equations 2.32-7, 8, and 13,
respectively.

As usual, the P-invarience constraint on the Lorentz
covarients is not affected by the extension of this equation

to Lorentz @ SU(2) space. |

Similarly, equations 2.&4-22 and 23 remain the respective
discontinuity conditions for T and PT-invarient processes,
providedvthat the SU(2) covariénts satisfy equation 2,32-12,

Equations 2. u{ 24 and 25 then generalise to:
kR~ IS
ﬁzscsA (S; )""ZZA (5:“)8 (hPs)  (2.42-12)

, /\k>
where the ﬁ are deflned by.
RN, g '
c ~—
()‘N)@r(N)ﬂ(N)Mm ZZA X “fﬁ,a : (2.42-13)
Cne readlly Proves that the rlght -hand side of equation
2.42-44 satisfies equation 2,32-12 for arbitrary 31, T2, T;,
T2', and T. Hence, provided the isospin covarients are
constructed by taking linesr combinations with real coefficients
T v

of sets of Jﬁ , these former will also satisfy 2.32-12.

In certain special cases, particularly those involving

identicsl multiplets, G-invarience and crossing together
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further constrain the covarients of pelate the amplitudes
at differen’ values of their arguments.

One éuch.special case will be needed later in this thesis.
Multiplets 4 and 3 have integer spin and isospin, vwhilst 2 and
L4 are identical multiplets having half-integer spin and iSospin.

The result is that if the covarients are chosen to satisfy:

@D =55C KL wor @),
and: fl}iz’i:iz =5 Ry 7 (2.42-15)
with 55,&': 71, (2.42-16)
then the amplitudes will satisfy:

| A?(S,L-)u): (},G—s};j\t;kAz?(w,t, s) . (2.42-17)

2.5 THE COVARIENT REGGEISATION TECHNTQUE. (12)

It is well known that the high energy asymptotic behaviours
of the amplitudes for a strong interaction scattering process
are determined in a given channel by the contributions each
receives from "intermediate" Regge poles in the appropriate
crossed channel, Until recently one knew of no easy means
by which covarient partial-wave expansions‘might be obtained,

It was therefore customary to Reggeise the crossed channel
centre of mass frame helicity amplitudes.(za)(Bo) These had
then to be related to the direct'channel'amplitudés whose
asymptotic behaviours were regquired.

In the formalism under review in Part I of this chapter
a covarient partial-wave expansion presents no difficulties
and one is therefore able to Reggeise invarient amplitudes
directiy. The essential point is simply that in a given
éhaﬁnel the Jth partial-wave of a given amplitude is propor-
‘tional to the contribution that amplitude receives from a

spin J (or J + %) on-shell one-particle intermediate state
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in that channel, From the point of view of Reggeisation the
constant of proportionality is not e{plicitly required since
it may be absorbed into the Regge couplihgs.

For the sake df argument, suppose one has & strong
interaction two particle to two particle scattering process
with kinematics and channels as defined in section 2.4, and

one wishes to determine the high-s asymptotic behaviours
of aset of K,S.F, invarient amplitudes for this process by
covarient Reggeisation in the t-channel, Ve shall assume
that this latter is a "boson channel", If this is not the
case one simply replaces the spin J propogators in the argu-
ment follOW1ng by the correspondlng ones for spin J + %, and
the /A become invarient eigenamplitudes for t-channel
'1nit1al total angular momentum J + 3.

Working for the moment in Lorentz space alone one has,

then, an M-function P@uwyib' with X,5.F. spin decomposition:
N .

- ' J
M{A"V‘f""/ ~;Aﬂ(sit>‘%ft’)/’/u)/ . (2.5-1)

Since the process is assumed to be P-invarient, one wishes to

meke a (covarient) "partial-wave" decomposition in the t-

chamel (S 5 ZZ(Q‘W- (s, £, (2.5-2)

J=0 n==%1 — }
where the "invarient eigenamplitude A:} ~is that part of AJ

which corresponds to a t-channel initial state with total

angular momentum J and normality:
= (total parity)(—1)J= + 1. v (2.5-3)

Tn
x| is then given by:

In j
Z‘A (S t)% V’,U-v C(-J')TLDM yf,gv (205-)4)
=
where C(T,n) is a proportlonallty constant which will remain
undetermined. M, /‘/y//,w is the numerator of the pole graph

for a t-channel on-shell single particle intermediate state

with spin J and normality n, and is given by:
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M;:f‘v- y’u('a)’-r(sq 517T)W )"'(cr)"'( >§(0’)°' /‘(T’SBS) ’ (2.5-5)
with: Asp-p=9-1". (2.5-6)

The coupling functions depend on n, since this affects their
‘normality. In view of the construction rules of section 2,3,

the s tructure of these functions may be exhibited in the form:
Min{, S,+5,) N'(r)

T5s)=2__ “'"J((,)W(Q)’, |

.
("’f‘f" F=0  J=N(rLNF (2.5-7)
Min(3; S, +5;) N (i)

d T-r |

Cﬂ’l’(ﬁ(s‘*szﬁ) 2 2 ‘ZJ vy ’(E‘) * (2.5-8)
r=0 2?”' Il(rll l)+7 _

In these equations:

=) , Q=%(+%) , (2.5-9,10)
N'(-N=0=N"(D) , (2.5-11)

and N'(r') and N"(r") are defined to be the respective number

of independent couplings at the vertices: S+5:—> F’ and

r'— S;+S,. , When the spin r' and r" particles have normality n.
N

The covarients \% and - are J-independent, and contain

no factors of the types Q. and P.respectively.

Equation 2.5-5 may thus be written: ;
- Min(3;5.+8,) N(r!) Mm(:T,S:,_—i-S;) NGt

Jn In _In
M iyt > 5"/ 8 %
/,(‘_'V v rl..o '/_ /(,-'__,)+1 ri=0 ?’ﬂ/——)ﬁmﬂ- d J
in 2.5=
x /V(,ty,." ﬂ())rll(o,)yl(P Q’ }xc) /X M . ( 5 12)
Provided one specifies: S
327, = for all j' > N'(J), (2.5-13)
* 1 1
and 33, = for all j" > N"(J), (2.5-11)

the upper r' and r" summation limits, Min (J, §3 +8, ) and

Min ( J,éu+-§2 ), in equation 2.5-42 may be replaced by (—S“3 + _81)
.ancll(S,_L +_S—2) respectively. The s‘necificati»ons 2,5-13 a.hd 1l
~just remove from this modified eguation those ‘bérms which in-
volve covarients and propogators contracted via more indices

than the available intermediate spin allowes. After performing
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all indicated contractions, one may oﬁtain terms which
superficially appear to have poles af certain low integer
values of J. However, on closer inspection one notices that
‘such poles always have their origin in these same "nonsensical
contractions, and the terms in which they appear are eliminated
by specifications 2,5-13 and 14,

The “tensorial s tructure" of 2,5-12 is now J-independent.
This modified equation depends on J only through the coupling-
constants and scalar functions of J involving solid harmonics
(or derivatives thereof) with argument -P(A)' Q(A). Comparison
of equations 2.5-4 and 42 (modified) thus yields expressions
for the /Av;1 valid, (in combination with 2.5-13 and 1L4),
for arbitrary non—negati?e definite integer J. Suhstitﬁtion
of these expressions into equation 2.5-2 yields a covarient
partial-wave expansion for each Aj.

The "angular factors" appearing in each such expansion
are just Legendre polynomials and their derivatives. Using
the orthogonality properties of such functions, these expansions
may be inverted 1o give Froissart-Gribov expressions for the
partial-wave amplitudes. After converting the summation in
2.5~-2 to a contour integral one can therefore perform a
Sommerfeld-Watson transform,vpicking up t-channel Regge po;e

contributions to Aj(s)t> given by:

N . T
S AR =Y 2@ ™) ReEm+1)x
o

V v
/u M=l T==*1
5a+S, N(r)  S+s,  Nrh)

LG S S S St Y AS

SZ?’ZTCO(T(E) YT=0 JeN(r=n+1 ri=o §"=N"{r"- I)'H

) /Tl ‘ 3. O(n(f)

33/[( ’V(‘C)"" et )r” )"’ (P Q A)XCGOV’M/A (2.5-15)

In this equation: /qjC%ED is the total t-channel Regge

contribution (neglecting isospin), to the amplitude Aj(s,t);
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and an(t) is the Regge trajectory w:.th 31gnature T and
AT <EE)
normality n. p:)('r)""(o' ¥/ is to be obtained from /3@)»'”(0—)?' by
revérsing the sign of the arguments of all Legendre poly-
nomials (or derivatives) appearing, and after performing all
contractions with the initial and final covarients one is to
make the continuation: J—> « : (t). The "Regge coupling-
constants™ fjr(nfc;t) and ﬁj//(ﬂ,’t’j 6) are to be obtained from
the corresponding Jc:r' and j;’r;/n by making this same continua-
tion, after first absorbing a factor,\/c(n}") into each, They
have "nonsense zeros' at those values of t for which o E:_(t)
is equal to an (integer) J value satisfying 2.5-13 or 44 as
appropriate. Notice from equation 2.5-15: firstly, the
extremely simple way that parity is incorporated into the
formalism; and secondly, that all Regge couplings involved
are automatically factorised, that is, one only deals with
products of pairs of "initial" and "final" Regge coupling-
constants,

From 2,5-15 one obtains, then, an expression for each AJ
in terms of a linear combination of solid harmonic derivatives
of the general form: “ZL)) mCP(A) Q(A)> Each combination
coefficient is the product of an "initial' Regge coupling-
constant, a '*final" Regge coupling-constant, and a polynomial
in the masses and Mandelstam variabies. The solid harmonié

derivatives have detailed structure:

. L (x(t)~m n)
((6) m(P(A) Q(AD [P ®Q (A)]
P PO rmae)] | (2e518)
where: ~__,_zz 2 . :
PE)- Q)= [s-u+g(mi-m mi—mZ)] | (2.5-17)
P@=gg[t-(rutmaf It~ (na=mf] i (2.5-18)

(A)—li-t[t '5“”") J[t (’m?’“m") ] (2.5_19)
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The high‘s leading asymptotic behaviqur of the Aj can thus
be picked out for any fixed t. Notice that the correct
"threshold factors", [PQ@QG?@%qééﬂv—mrn) , appear quite
automatically.

- The y@ terms in equations 2.5-17 to 19 arise out of the

‘t-channel boost prescription:

a:b—>—a@)yba)=—abtEADA_ s, adbA
gb—-a@E)rbe) = « =4, (o520}

and lead to poles at zero t in the expressions for the /\? it

m, # m34 and/or m, # m . (2.5-21)

This is the so-called "unegual mass problem".(31) For
processes with sufficiently high external spin the sbove
mentioned polynomial coefficients may also have poles at
vanishing t, These again have their origin in the boost
prescription, and arise out of factors such as: 8’50’(A) s

R, Qe(2) , R(» , Ay (5), ete. in the partially
contracted propogators. Here one has the "high spin prdblem"ﬂ31)
Note the common origin of both types of problem in this
formalism. '

Both types of unwanted pole in t can be simultaineously
removed in any of three ways, viz:

i) The “fixed pole" sdhtion.<12)(32) Instead of con-
tinuing directly to zero t by means of e quation 2.5-15, one
uses this equation only down to +he t-channel threshold. The
continuation to zero t is then performed by means of an un-
subtracted fixed-s diépérsion relation in which the contour
remains at a safe distance from all singularities. The
continued A? defined in this way remain Tinite below
vfhreshold, especislly at #anishing t. However, this prescrip-
tion introduces into the amplitudes additional fixed (i.e.
t-independent) poles in the J-plene, and its validity therefore
(33)

relies on these being consistent with Mandelstam analyticity.
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Whether this is in fact the case would still seem to be an
open question.(12)

(34) At zero t the Reggeon

ii) The "evasive" solution.
simulates a massless particle, and the initial and final
vertices ought therefore to be internally gauge—invarient at
this point., That is, at zero t the initial and finsl Regge
couplings should vanish on contraction with Ao.aan'd Afv
respectively, The Regge coupling-Constants corresponding to
vertex covarientsAwhich fail to behave in this way should
therefore be proportional to t, These t-factors then»cancel

the unwanted poles,

(3k)

iii) The "conspiratorial" solution. One associates
with each trajectory leading to unwanted poles an additional
"conspirator trajectory" having the same éonserved quantum
numbers., The corresponding couplings ofrthis latter trajectory
are related to those of the former, and in addition have just
those singularities at zero t which cause the total contribu~
tion to a given A,

J
remain finite at that point,

due to the two trajectories together to

Details of the fixed pole solution have been given by

2)

solutions by Gault.(js) The essentisl result of these

Scadron and Jdnes,(ﬂ and of evasive and conSpiratorial
detailed treatments is that whichever solution is addpted, the
leading high-s asymptotic behaviour of each invarient ampli-
tude remains the same after pole elimination as it was Dbefore
this operation. Throughout the remainder of this thesis we
.shall therefore ignore all poles at integer J and at zero t
arising during covarient Reggeisation.

So far we have neglected isospin and G-parity working in
Lorentz-space alone and characterising the Regge trajectories

by their normality and signature. If one is only concerned
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with the Reggeisation of boson channels of zero strangeness
processes, one may make the argument fully general by
working in Lorentz @ SU(2) space and characterising the
Regge trajectories in addition by their isospin (T), and G-
parity (G). The total Regge contributian,/q% (s,t), to the
Lorentz ® SU(2) invarient amplitude, AFz (s,t), is then

given by modlfylng'equation 2.5-15 as follows:

N R j k 3 k
P M o LY IR

j =1
2D _—>
n=%k] T=xl >“='=l Z~il Z-=il '>T' allowed (2.5-23)
XE(B) A 7S(E) |  (2.5-21)
:f:i/(??,,’b’,’[:)—%;)%/(n,’b’,'r, G, t) > (2.5-25)
33'//(72775@"*33'”(”77’7-’ Git) (2.5-26)

and finaglly each term on the right-hand side is multiplied
by the appropriate‘isospace pole graph factor:
%i;i,_i'('@_":zﬁ)ﬁj;«%uﬁ. f" fﬁ'ﬁ) . (2.5-27)
Some reduction in the range of the four-fold summatipn:2.5—23
will result ifAG-ﬁarity selection rules are operative at the
initial and/or final vertices, and in addition the spin
covarients will depend on T and G if the vertices are subject

to G-parity constragints,
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CHAPTER 2, PART TII.

THE GENERALISATION TO REAL AND VIRTUAL PHOTONIC PROCESSES.

2.6 0(3,4)® Su(2) DECOMPOSITION OF VIRTUAL PHOTONIC THREER
AND FOUR-POINT FUNGTIONS,

The formalism reviewed in Part I of this chapter was set
up with purely hadronic processes in mind. With an eye towards
important classes of reaction such ss hadron photo-production
and Compton scattering, and vertices involving hadron electro-
magnetic form-factors at zero argument, it is useful to generalis
this formalism to include the possibility of one or more of the
particles being reel photons. The essential additional ingred-
ient is gauge-invarience, and a suitable generalisation has
been given by Scadron and Jones.(43)

If one wishes to study the electromagnetic form-factors
at non-zero argument, and the electroproduction of hadrons,
it is necessary to go a stage further and include the possib-
ility that the photons are virtual. In this second part of
Chapter 2 we give a generslisation to three-and four-point
"vertex-functions" involving a virtual photon, the remaining
particles being on-shell hadrons. These are current-conserving
generalisations of our previous coupling- and M-functions.
They correspond to matrix-elements of the electromagnetic
current operator taken betwen on-shell states containing a
total of two and three hadrons respectively. We remind the
reader that as a consequence of space-time translational
invarience, it is only necessary to work with matrix elements
of the current evaluated at the origin of the space-time
coordinates,

Our treatment is equally applicable to real photons.,
That is, it is designed to reduce to a valid real photon
formalism in the limit as the squared four-momentum of the

virtual photon tends to zero. In this limit it parallels
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the real photon approach of Scardon aﬁd.Jones, which
consequently will not be reviewed hefe.

In this present section we formulate sets of rules for
the Lorentz & SU(2) space decomposition into kinematic
singularity free form-factors of three- and four-point hadron/
virtual photon vertices. In section 2.7 such decompositions
are dérived in Lorentz-space alone, (the extension to Lorentz®
SU(2) space being relatively trivial), for all three-point
vertices encountered later in this thesis, We relate those
in which we are primarily interested to unpolarised cross-
sections. Decompositions of a number of four-point vertices
are deduced in Chapter L.

We are concerned, then, with matrix elemenfs:<f]ﬂ¢@ﬂi>
in which |2) and |§)> are respectively initial and final on-shell
hadron states. For the sake of argument we shall assume that

|1 contains a single hadron. The state]f> will then contain
either one or two hadrons,

In practice such a matrix element will always be contracted
via a virtual photon propogatof with a second matrix eiement

of the current operator; so if g is the virtual photon four-

Vefs-ti= PPy
we are deasling with a quantity'which looks like:

Lim <§ N0l 7.%6 e ti OIS (2.6-2)

€ —-~>0F
It happens in this thesis that the states }L’> and H') will

momentums:

contain respectively one 1n1t1al and one final on-shell
electron, but they can, of course, be quite general states.

Current conservation implies that:

4 oF PN =0% LGOI, (o6

Tt will prove a useful shorthand notation to define a
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"yirtual photon wave-function" by:

Ex(d)E ﬁ”’v <5"1?(°)"'>—@——~ | (2.6-L)

°|,.+l€ >

and in virtue of 2.6-—3 this satisfies:

9 xE€x()=0 . (2.6-5)
In the absence of 2,6-5, ;50((‘1,) behaves like the wave-function
for a superposition of a normal spin-one (TF=1") particlle
and a normsl spin-zero (T?=O+) particle. In polarisation
language and with ;\, denoting helicity (dependent on the
helicities of the particles comprising states |-3.’> and l-f'> ):

P 1~ correspond to transversely polarised
('\T' ? A,)-—(l 7i l) virtual photons,

(2.6-6)
P " corresponds to a longitudinally
(T ’ ﬂ/)z ) polarised virtual photon,
: (20 6"7)
T 2\ /~t+ - corresponds to a virtual photon
(T A')"'(O ? O) with scalar polarisation.
(2.6-8)

Equation 2.6-5 then tells us that not all types of polarised
virtual photon can have independent physical effecfs.
Specifically, the'observable effects of longitudinally‘and
Ysealarly" polarised virtual photons are linearly related,

In a manner exactly analogous to that adopted in sections
2.34 and 2.44, we factor the helicity dependence out of the
matrix element, defining a "vertex function", 1f%ﬂm4(§3i)
by (symbolically):

FHo1D= B, 50 (2.6:9)
These three- and four-point vertex functions are off-shell
generalisations of our previous coupling and M-functions, and
may be similarly expanded in terms of a set of linearly

: inequivalent Lorentz basis tensors or tensor-spinors (kine-

matic covarients):

- g_m, T ZAE) N
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But in view of 2.6-3 the vertex function and covarients now
are required to satisfy:
ylwx(fﬂf)q’c( =0= ~7¢V/M-o( . (2.6-11)
The expansion coefficients, fj are now electromagnetlc form-
factors., They sre scalar functions, (in general complex),
of the scalar variables constructable from the momenta invdlved
at the vertex, ©OSince the photon is off-shell we now have a
single such variable, ﬂ} , for three-point vertices. In the
case of four-point functions three linearly independent
variables are now avalilable, and we may conveniently choosé
to use qf and any two 6f the Mandelstam variables defined
as though the photon were a real initial particle. If nl2,3,h
are the masses of the hadrons, these variables satisfy:
S+b+u-qt =mitmitmg . | (2.6-12)
Since the observable effects of the scalar and longitudinal
polarisations of the virtual photon are linearly related, the
" number, N, of iinearly independent form~factors is given by:
N=N(@") | (2.6-13)
where N(417) is defined to be the number of linearly inequiva-
lent covarients for an on-shell interactidn: i+4147j: subject
to thé same conservation laws.

- From the SU(2) point of view the virtual photon behaves
like a superposition of an isoscalar and the third component
of an isovector, thése two components behaving in such a way
that they individually conserve total isospin in hadronic
electromagnetic interactions. 'Thus although we have so far
worked only in Lorentz space, we may again usefully exploit
SU(2) invarience by extending the argument to Lorentsz & su(2)

space. We thus write symbollcally'

JC(% ,T}E}ﬁ'b ) (Ib f(f)Zf @'; >T)'(;r) (T}Ib)q):i@-(éﬁ—wi
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We have (in general) two isospin coyafients for three-point
vertices. One corresponds to the co;iplings to the isoscalar
part of the photon, and the other to the couplings to the
isovector part, In the four-point case,t/VJis equal to the
number of isospin covarients for the .reaction: i+ O->)C s
(isoscalar form-factors), plus the numbber for the reaction:
z—t-'l-—’?f , (isovector form-factors). Here i,f,0 and A
refer of course to the isospins involved.

Qur original virtual photon wave-~-function can of course
be decomposed in this same fashion, The fact that the spin
wave-functions corresponding to the states li’> and H-'}
satisfy the Jacob and Wick phase conventions, then ensures
that the virtual photon wave-function satisfies these same
phase conventions, For example, 1fl i' and| £'> are both
on-shell single-electron states with momenta q,, s 9. and

helicities ﬂ,l , ﬂ,z respectively, we may define:

(o] Yo y=Ya ~2,ra ' .

EX(R)ELT @)= 7)), | (2.6-15)

*1, «_ k)

R ONS (2.6-16)
where :

v k.x; "_"alz 2/,
5« ($>E%(/(’ (q”)%( U (q"') 3 (2.6-—‘17)
=% - (2.6-18)

- Working in the Breit frame, with the z-axis parallel to 3:: P

and:

so that: . '
A q.=(0,0,0,%]) , | (2.6-19)
we then easily deduce that: 5 em
800((‘1’):5:( (q’o )_i>= q} g_('ao7o)o> ? | (2.6-20)
+ .
5“’(%):531($0,,~i)= -elcé:l (o,i1,z,o) . (2.6-21)

- Thus in the Breit frame these wave-functions do indeed

satisfy the phase conventions 2.14-19, 21, and 24 as required.
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Since the phase conventions are frame-independent for wave-
functions having the correct Lorentz-transformation properties,
they will auvtomatically be satisfied in any general frame,

Note that in the special frame above, the non-transverse
polarisation of the virtual photon is purely scalar. This is
a necessary consequence of equations 2.6-5 and 419, which
together imply: |

A _
3 =0, : (2.6-22)

&

The analytic structure of hadronic electromagnetic
form-factors as functions of q2 is not fully understoecd to date,
To see what happens in the impértant real photon limit, (van-
ishing q2), we now consider for a moment coupling and M-
_functions corresponding to the same final states kf> as
previously, but with initial states which in addition to the
particles comprising the statasli> now contain a real photon

with momentum g. These functions are then defined in Lorentz

space by

. ‘——2’ 2 v
Sifiean=glo{mdidtose,

and have the spin decompooltlpns.
: N
O(GQ'L) - aﬂ .
0] 2o o] o) :
ypuae(1) 5= A " (2.6-24)

The gj are now photon—hadron coupling-constants, and the
A, (s t) are- 1nvarlent amplitudes for Hadron photo~production
processes, E: @918 now a real photon wave-function, and is
required to satisfy the Rarita-Schwinger subsidiary condition:

4w EX@)= O : (2.6-25)

We require the theory to be invarient under the gauge-

transformation:
EL@) =&l @)= EL@VEE) Y (2.6-26)
where 2; is any scalar function of q2 such that:
Lim ‘é(ﬁ})‘if-*o‘- | - (2.6-27)

Ct_-?O
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This requirement is necessary becsuse since the real photon

is an on-shell massless particle, °<G% is a perfectly
valid real photon wave-function provided that the same is

/

true of 5“(‘#) That is, & 2’(‘?') has the same Lorentz
transformation propertles as Z§<G%> and also satisfies
2.6-47. As a consequence of this gauge-invarience requirement,
the coupling functions, M-functions, and kinematic covarients

are required to satisfy'

q'dzuf&v((f’ﬂ—) o \%v/x.o((f{f') G[/o(Mv/moc(f ”c) O. (2.6-28)
As a further consequence of the masslessness of the real
photon, equation 2.6-17 reduces to a transversality condition.
It says that the realthoton can only be transversally polarised,
or more precisely, that the observable effects of the longi-
tudinal and scalar polarisations must exactly cancel one
another. It is thus clear that in the real photon case the
number, N, of linearly ineguivalent spin covarients is given
in our previods notation by:
N=N(1")= N{o™) . (2.6-29)
Note that for-Spaoe-reflection invarient interactions N(ot)
is by no means always equal to IN({~); indeed, N({ ) is often
not even a multiple of three,
Since real and virtual photons have identical isospin
structure, we may again extend to LorentzQQEHKZ) space by

msking the isospin decompositions.

%GepTt) |t L% ) b
PRGNS A T

For given states |L> euml]f> , the isospin covarients may be
choSen to be the same as those employed in the corresponding
virtual photonic case, (eguation 2.6~14).

Returning to the virtual photon case, we thus see that

in the real photon limit just (N(4~) - N(0%)) of our original
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N(4~) spin covarients will reamin linearly inequivalent.
In order to preserve lineér independénce of the couplings
we must therefore arrange that just N(0%) of our N(47)
covarients are proportional to %f , eand we must do this in a
way that does not endow the correspondiné form-factors with
poles at vanishing qf.v

Now in corresponding real and virtual photon cases, (seme
states|i> and‘§> ): the spin covarients have the same Lorentz
transformation properties, vaniéh on contraction with.q,“,
and in view of our previous discussion'concerning the phase-
conventions satisfied by the virtual photon wave-functions, are
subject to the same constraints due to P, C, and T-invarience.
In addition, they are contractedAwith the same hadron waﬁe—
functions, and the real and virtual photon wave-functions
both vanish on contraction with 9y - Thus those virtual photonic
spin covarients wvhich remain finite at zero q2 will constitute
a valid set of covarients for the corresponding real photonic
coupling- or M-function. One therefore assumes that the form-
factors and.coupling-constants or invarienteamplitudes.corres—

ponding to these covarients satisfy:

- qf% Fi®)=9; , o (2.6-31)
or: | 4:772 fj(cﬁysjt):Aj (s,l:) , (2.6—3_2)

as appropriate.

Having discussed the basic underlying theory, it remains
to set up rules forthe construction of-spin and isospin
covarients for a given vertex. We quickly deal firsf with
the relétively“simple problem of isospin covarient construction.

As discussed above, the isospin covarients corresponding
" to isoscalar form~factors will be any set suitable for the
"isospin decomposition of the coupling/M-function corresponding

to the r eaction: 1,+0O—>T¢ . That is:
k k (. - .
xu(is)(_,}s—ﬁ)a%i,i(ﬁ;n?o) , k= 1,22y, N (TH0>TE) (2.6-33)
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The isovector covarients will be given by constructing a
suitable set of covarients for the i: ,ospln decomposition of the
reaction:—ﬁﬂ’i-’j@., and projecting out the couplings to the

third component of the isospin one wave-function, . Thus:

fé(v
z/z, (-TS')T) xtlm,”(-rj-, 71)8i”6 2 k:'l,'l)...)c/v,(’ﬁ—l-"l-?—l}) ' (2-6-3L&)
As a simple (and wellknown) example, we consider matrix
elements of the current taken between initial and final single

hadrons with isospin one-half. From equations 2,32-17 and

16 respectively, we have:

KO —=>15)="1, | 7 (é.6-35A)

Xi”(VZH_’ V2>=’ri" . | (2.6-35B)

Hence if the spin decamposition of the vertex leads to form-

and:

factors :‘:',) (42) , We have: :
fis bt =X [+ R,  (2.6-36)
As mentioned previously, it is unnecessary to modify
the isospin decomposition when passing fo the real photon
limit, |
We now turn to the more complicated pfoblem of photonic
spin decomposiﬁion, assuming parity conservation but neglecting
for the moment complications due to C and T invarience. Let
j‘run over the range: 4 2,..., 00 , and let Je be the
blnflnlty of valid (but not linearly inequivalent) covarlents
for the parity conserjing purely on-shell Hadronic reaction:
iﬁF12%)”’j:. Let gubé the infinity of covarients for the
similar reaction: i+0+(‘1,)->_-f . As usual,/u and M are the sets
of Lorentz indices for the‘wave-fuhctions of the particles
comprising statesft> and’-‘f> respectlvely, and o is the 1ndex
of the 417 wave-function. Of the E>*“, just N(17) will be
linearly inequivalent, and in virtue of the subsidiary condi-

tion on the 4~ wave-function, none can have the structure:

Zﬂ,,,pg‘-‘%g/ﬂm . (2.6-37)
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Just N(0F) of the %jﬁwill be linearly inequivalent, and
thus we shall have N(0¥) 1linearly insequiValent covarients
with structure: |

.% bx ~ (2.6-38)
vhere b is any momentum o‘bher thanq, constructable from those
available at the vertex.

The ‘X{yf.&u will satisfy all constraints required on
covarients valid for spin decomposition of <5’Mo((°)l1'> except
that not all of them will vanish on contraction with (h‘and
neither will the correct number vanish at zero C(f' . Let us

therefore partially follow Scadron and Jones,('1 3) and defilne

a "gauge projection operator" ’%«lo{(b)by:
lﬁfd’d("kﬁu’d*@m’ bo(/b-q;) ’ (2.6-39)

v}here b is now any momentum constructagble from those available

at the vertex. 1In contrast to Scadron and Jones, we do not

exclude the possibility:

| | b=a. B (2.6-140)

For any Lorentz tensor or tensor-spinor, Ta, carring a

four-vector index a, we define:

L= T G T (Yoo, o

s0: Té(b)ﬂfo(zo > (2.6—[',2)
b:<(57=o > (2.6-43)

TeB)=Tx if TyuG=0 , | (2.6-4L)

and; ‘Lg((b) b= (q’/b 1,)}:704 . (2.6-45)

Thus the infinl‘by of covarients %v/u.o(( ) satisfy g1 the
constraints satisfied by the ,%3/&0( , and in addition vanish
on contraction with T« for all Y . From 2.6-LL we note that
those %y ol which already vanish on contraction with C{,“
are left unchanged by the gauge projection operation, Provided

bq, is non-vanishing, the number of linearly ineguivalent
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c%/uo((b) will be: :
N(I) for b=9., (2.,6-46)

and: [N(‘~>"N(O+>] for b#q"p (2.6-47)
in consequence of equation 2.6-43 and the discussion preceed-
ing equations 2.6-37 and 38. For any p other than g, a
further infinity of suitable current conservingvcovarients

is furnished by the set of W q'o((b) N(0") of these will
be linearly 1nequ1valent for non-vanishing b.g, and from

2.6-1',5 we have:

f/e q«a’yv (% ﬂr)%v/w < $—+o’ o . (2.6-48)

If we can construct a momentum b such that b.q is a func-
tion only of the. hadron masses, the problem is therefore solved.
The ‘%ylwx(b) and ﬂ /%‘{:.o((b) will be non-singular and will
satisfy the same respective equivalence relations as the corres-
ponding ‘/6,,/“( and J@,,/u This latter statemenif. follows on
contracting the e quivalence relations on the \%,;ﬂxlwith ?,(/,( (5)
and multiplying those on the (%p/,cby qoc(b) One postulates
that the two- fold infinity of «;(//y/“,o( (b) and x,,/kc{,d(b)
correspond to K S.F, form-factors, this now being necessary
even for three-point vertices where the form-factors now
depend on q2. If one then takes a set of N(4 ) t]ep/u,o( -an
N(o%) I

appropriate hadronic reactions, the corresponding (7/,,/“((1’) and

corresponding to K.S.F. spin decompositions of the

c%ﬂ 74%(5) will furnish avK.S.F. spin decomposition of the
matrix element <ﬂjo<(°)li> . Since b will necessarily be
unequal 0 g, we shall have [N(I9=N({*J] Jeéz'w( (b) (which
remain finite ét zero g2), and N(o%) %ﬁﬂﬂ,g(b) (which

are equivalent to zero at vanishing q2). Thus the necessary
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number of covarients will automatically vanish when one
passes to the real photon limit. |

No suitable momentum b can be constructed for four-point
vertices., In the case of three-point vertices, however, there
exists Jjust one momentum whose scalar product with g is

independent of q2, namely:

Pl=p+pi (2.6-19)
'P’-<1,= 772:('—7?17;; ) (2.6-50)

so0 provided the initial and final masses are unequal, the

This satisfies:

problem is solved for three-point vertices by the choice:
b=P’. - (2.6-51)
Even in this special case, the above choice will not lead to
such a simple solution to the problem if one subsequently
wishes to Reggeise or take off shell the initial and/or final
hadron.

In all situations where b.qg is a function df the scalar
varlables for all b which are linear comblnatwons of* the
available momenta, the ‘%'/)///uo((b) and &(5 ¥ pr ‘frd (b) are
singular at vanishing b.q. It is therefore necessary to
coustruet non-singular linear combinations df these covérients.
‘Since we are'starting with an infinity of singular covarients,
there exist an infinity of different ways in which the
singularities may be Iémoved. It is thus poésible to construct
out of the &Q/j (k) end 7(1#‘1/,4(1:) an infinite-fold infinity
of non-singular covarients suitable for the spin decomposition
of our matrix element. To this set of covarients will'corres—v
pond an infinite-fold infinity of form;factofs, and it is on
Athese that we ought, if poséible to make our requisite |
postulate concerning freédom from kinematic singularities.

The particular elimination procedure we choose will lead

to a one-fold infinity of non-singular covarients and form-
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factors, and is thus equivalent to the elimination of all

but these from the above infinite—foid infinity. We hope

to be able to make & choice for vwhich the equivalent reduction
in numbers of form-factors does not endow those remaining

with any additional singulerities. Our infinity of singular
covarients are subject to equivalence relations, and these
will impose corresponding relations amongst the non-singular
covarients. A simple criterion for achieving our aim is that
irrespective of the values of the scalar variables, the nbn—
singular covarients we obtain shculd not be subject‘to any
equlvalence relatlons in addltlon to those sp801flcally required
by the relations amongst the &fv,m(b) and &f /uﬂfo{() That is,
for all values of the scalar varigbles just N(4~) of our non-
singular covarients should be linearly ineguivalent, and just
N(0%) of these should be proportional to qz.

If such a singularity elimination pfocedure proves
possible, we can postulate that the infinite-fold infinity
of form-factors was free of kinematic singularities. Should
a sultable eliminétion prove non-existent, we shall have to
choose one which introduces the least number of additional
singularities, and then postulate free dom of kinematic
singularities for the corresponding one-fold infinity of
form-factors. We shall then have to assume that the additional
singularities introduced are electrodynamical in origin,
being a necessary consequence of gaﬁge—invarience and/or
current-conservation.

Finally, it will bhe necessary to reduce our infinity of
non-~-singular covarients to a linearly inequivalent set in =
way which does not eﬁdow the final form-factors with any
additional singularities., Whether or not it will be possible

in practice to bypass this step by starting with a set of N(17)
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JZ%#“ and N(0") J(Z, corresponding to K.S.F, spin decom- -
positions of the purcly hadronic reaétions: i’*?i”f and :
id—Cﬁﬁ+:f , Will depend on the extent to which the equivalence
relations between the infinity of 27““(€) and ngpfix(ﬁ are
modified by the singularity removal operation,

In order to investigate these problems further, we first
notice that since the infinity of 7627“* and Jezfc are
necessarily finite, the ngaud7k’ and Jegu. have no poles for
any finite values of the scalar variables, although they may
possess zeros. We also note that each of the jeémwﬂ& must
be a linear combination of the ;%/J/,c . Just N(0t) of these
are linearly inequivalent, hence the ‘%/V/""‘(b) and ‘7{;/#7'0((9
involve just N(O ) linearly inequivalent terms with simple
poles at vanishing b.q, and these latter terms possess no
further siﬁgularitieé other than zeros. It will therefore
always be possible to pick out from amongst the primed covarients
N(O ) covarients, which we now redenote simply by ‘76,,/“_« (’-’)

j=A1 2,...,N(O ), having the structure:

/j - — j =
\73,,/1“(5) 75;,/4« ajS?W(b), §=1,25 N(©T), (2.6-52)

where ,,/wx(b) b«/b.a,’ , ' (2.6-53)
In these equations the:ﬂﬁ are scalar funétions of the scalar
variables, possibly possessing zeros, but having no poles,
whilst the fT;L  are a set of linearly ineguivalent tensors
(or tensor-spinors) which are free of both poles and zeros in
the scalar variables. We call the S‘?M(b) "singular-tails",
(Scadron and Jones have a similar definition, but do not
explicitly exhibit any overall scalar factor) The remaining
prlmed covarlents must then have the SbPUCtUPe'

%”/‘*"‘(b): T ;a‘ﬂ S?’/‘“‘(b) . (2.6-54)

[i~ NEH] =1,2,..
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where again,the Qijare pole-free scalar variables, and some
of the %yﬂua’) will be of the form: .;(,V/,ﬁzo((b)

We see immediately that it will be of no use .-ﬁ.mply to
eliminate the singular tails by multiplying all primed

covarients by b.qg, since:

b- Cl,.%pfm((b) bg—0 — 4] —Eﬂ,&b« ) (2.6-55)
and: N(?)

b- C{,.va/uo((b) b-q—0 Za‘J yp °<: (2.6-56)

so that only N(O+) of the resultlng COVarlents Wlll remain
linearly inequivalent at vanishing b.q.

Instead we must choose N(O+) primed covarients, each
involving a different linearly inequivalent singular tail, and
by taking linear combinations use these to remove the singular
tails from the femaining priﬁed covarients., Each of the former
covarients may then be safely multiplied by b.qg to remove its
own tail. The reason for our above change in notation now
becomes clear; we can always choose for this purp ose the N(O*)
‘%3 GJ since any other choice'just reduces to an alterna-
tlve choice of linearly inequivalent singular tails., We

ther'efor'e def‘ine tail-free covarients by:

ny‘“—-bﬂ, J//u.o(a’) bq"jCU/AO‘—.a’jTSIM,EO( 5 (2.6-57)

7?,3" AL Laq -2 2]
- defil;
F(2.6-58)
1 ‘7%3
Ay rc

whe re {j} is the set of j values for which 4jj is non-zero

at least for one set of values of the scalar variables.

The &{{V/.ux and .%pfux appearing in the "tildered"
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covarients cannot involve bo‘ as é factor, since we have
already seen that b&(b) is zero. Sc if all a5 are non-
vanishing, just N(*[_) of the tildered covarients will be
linearly inecguivalent for non-vanishing qz, irrespective of
whether b.q or any of the Rij (jé{j}i) happen to be zero.
Furthermore, in view of the structure of the primed covarients,
just [W¥(47) - N(0¥")] of these tildered covarients will remain
linearly inequivalent at gzero q2. However, if one of the aj

vanishes, we have:

Lim B3 =b.q K

aJ“?O 2’}*0"\

lm&@ == ]-_-I‘LJ 4 %V/m , deilly

ajro M liegy | %

(oA
all other X remaining unaffected. Thus at zero aj we have

Yp s (2.6-59)

p) (2.6-560)

an additional proportionality between all those tildered
covarients Whose definition involves the elimination of the
singular tail S /“‘“ from a primed covarient., Note that the
problem is purely one of an additional unwanted proportionality;
although it is noﬁ obvious at a first glance, the right-hand
sides of equations 2,6-59 and 60 do in fact vanish on contrac-

tion with q,o‘ at zero a.. To see this one only has to notice

J

that: o A ,

\%yluoﬁfuzo (2.6-61)
implies: a: T, b.ga=0 .

ngvLK | J'vm or q’ > (2;6—62)

so that: | b- q,jdyﬁuq’d-—ag—:_;gro > (2.6-63)

NfL ‘
and: -%)J/.Ao(%( (2.6-64)

1mp11es- I“Ia 44%
Jelik ypux T

a'zfe
-L;J_; [ff“"% kegin f ] 3 =3 " e
Rk jefdy
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Our criterion for choosing a suitable‘singularity'eleimination
procedure is therefore that all the Qj for the choice we make
should be functions only of the masses. In certain cases,
(which would appear to be restricted to four-point vertices),
such a choice proves impbssible. That is, there exists no b
for which we can pieck out N(0%) jgfb) having linearly
inegquivalent residues at vanishing b.q which are free of
kinematic zeros. In such cases we clearly have to choose an
elimination for which the minimum possible number of aj
are functions of the scalar variables.

We now turn to a discussion of the s tructure of equi-
valence relations (E.,R.'S) on the tildered covarients., The

E.R.'s on the unprimed covarients have the general structure:

ch *fzz/utf'v‘o - (2.6-66)

and, as mentioned in section 2.4, we call these type 41 or
type 2 according as none or at least onevof the ¢, are func-

tions of the scalar variables.  Operating on this E,R with

'9’0(4((9 yields:
2 %% #lk 20, (2.6-67)

and subtraction of 2 6-66 from 2,6-67 then gives us an E.R.
‘on the singular parts of the primed covarients:

E;C [%fﬁ“(b)—j(pm]go . | (2.6-68)

In our previous’diséussion of singularity elimination pro-
cedures we chqse N(O+) primed covarients with linearly
inequivalent singular tails, and then expressed the singular
parts of all other primed covarients in terms of these tails.

For a proper discussion of E.R.'s, the way in which these
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latter expressions are arrived at iS-v rather crucial, and
leads to a further subdivision in the classificafion of’
E.R.'s., We can always choose the E.R.'s as typified by
2,6-66 so that, irrespective of whether they are of type 4
or 2, they fall into one of two further classes. For a given
E.R., it may be that all the X' appearing in the corresponding
equation 2.6-67 have singularities which are already determined
in terms of the N(0F) Sgﬁte‘(b)by other equations., Such E.R,'s
are in fact comparatively rare, and we call them type 4B or 2B
as appropriate. A much more common situastion is that all
but one the R! in.2.6-67 have singuiarities already determined
in terms of the S?,/J.eg(b) , Whilst the singularity of the remain-
ing(ky is similariy determined by ho equation other than the
corresponding 2.6~68, In this case we say that the equivealence
reletion is of type 1A or 24,
We first consider type 4A and 2A E.R.'s. These have the
general structure:
cHyut) i +Z:cﬂ9€,,/m o,
iefiy j€f3 (2.6-69)
where { } denotes a set of i-values, and the 5€%7ud are
such that the singularities of the ‘%V#"‘ (b) are slready
knovn from equations of the form 2,6-54. The :%fpyLd are
such that the corresponding ng/,wz(b) are known to be given
by equations 2.5-52, and {{j} is the set of J-values for which
Gj is non-zero., The singularitiesv of J{}éﬂo{(‘b) are supposed
to be given by no equation other than 2,6-68 which in conjunc-
tion with 2.6-57 and 58 yields:
c-r)x Z > G 41359""2:61“ s
1€5i} 'Jeig} - j€si} . (2.6-70)

where we have suppressed the Lorentz indices and the argument
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b of the gauge projection operator. . The important point is
that this is the only equation which tells us how to eliminate
the singularity from ﬂf/ and hence define% . Following our
previous elimination procedure, we therefore define:

ool Ta ey cyiey 5 ctti i

feli] 7ef33 i€{i} jeiiy; %i ?(2.6-71)
where [ﬂ] is the sel of all j-velues included in at least
one of {0}1 for 1€ {1} . In view of 2,6-67, this reduces to:
&~ a], c. T/l Aij ~p /i
- Tad—efx/i-5— s wh]
| e[l Jiesiy jefiy, 9
so from 2.6-58, we have finally:

Cf/é‘*‘zci{ﬂ“j x'=0 , (2.6-73)

Zefy I

(2.6-72)

jelil; |
where for given i, [/j]i is the set of all j-values contained

in J4] but not in §{43; .
o o

Ve see that 2.6-73 involves only% and the X .
Provided a; is a function only of the masses for a1l j€[4] ,
the structure of this E.R. as far as.% and the %i are concerned
is essentially the same as that of 2.6-69. That is, if K or
a given %tcan '5e eliminated by means of this latter equation,
the‘n 2.6-73 may be used to eliminate .% or the corresponding
% . However, ‘if aj is a function of the scalar varigbles
for at least one element of [9]1, , then %l can no 1onger- be
eliminstied without thé introduction of kinematic sin'gularities,
even if Cjis a constant. But the crucial point is that it
will always be possibl.e to eliminate % .for constant c,
irrespective of whether any of the aj are variables.

To summarise, ‘then, the important point about a typeA _
B.R. on unprimed cdvarients is that it leads to an Z.R. on

tildered covarients which itself defines one of these, The

new E,R, may always be used to eliminste this latter covarient
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without the introduction of kinemgtic singularities, provided
that the original E.R. can be used to similarly eliminate the
corresponding unprimed covarient,
Let us now turn to type B E.R.'s which in our previous
notation have the general structure:
E c-7d1+§ C: Iz 0o
. 4 ¢ b M ﬂ ) (2.6""7&)
i€ fi} Jetis
Operating with ,%/(b) yields an e quation,which we will denote
by 2.6-74', in which the &fz’ and Zf':’ of 2,6-74 are replaced
by X/ (p) and %/‘1 (b). The structure of these latter covarients
is already determined by other equations to be of the form
2.6-54 and 52, so the corresponding KA~ and ZJ are defined
independently of 2.6-74' by equations 2.6-58 and 57. Inverting
>t /
these latter equations and substituting f/‘eforx in 2,6-74'
therefore yields:
C; A C; A4 5’{3 C; xﬂ
) i) ) ST ) O
1€ §i} l kl} iefi} g€ aqb q jefiy b q,
Jeilt;

This unfortunately involves the C(./Lj ,which will frequently

(2.6-75)

be variable even though all the aj may be constants. All is
not lost however, since 2,6-68 now reads:

YT sy _cgmysao.

1efi} je{il; jeis (2.6-76)
‘In order to separatelyrequate to zero the coefficients of
each Sd , we need to recast this relstion in the fom of an
exact equality rather than an equivalence. The Syluu()cannot
vanish on contraction with the hadron wave-functions, but
ff‘ y/m(%/) does vanish on contraction with the wave-function

of the photon. Hence we may replace the eguivalence by an

Q;;f'd st

in which d is a function of the scalar variables and/or

equality if we replace the right-hand side by: 8

masses, and <d> is defined to be the set of all j-values
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contained in [4] and/or {3} . Equat_idn 2,6-75 then reduces

I—Ta P20 L,b#g,

ie§i}  |je[al; | (2.6-77)

Z.—.Ci ﬂ% Z:d:’ J._—.[“ o,b=ci, Y (2.6-78)

it [5eiy | de<iy?d | jedy

where <'j>i is the set of all j-values contained in <37 but not

in {ﬂ}z

Thus as in the case of type A E.,R.'s, the structure of

to:

type B E,R.,'s is considerably modified when these latter are
converted intg .E.R.A's on tildered covarients. For b different
from g, the 5€‘L in 2,6-77 can only be eliminated for constant
C; ir aj is a constant for all j€ [’3—_(-1 . If b is equal to

a, the/ same is true of the %7' in 2,6~78, except that we now
require a.j to be a constant Nfc?r all j€<d>'i, . Irrespective
of whether Cd vanishes, the xain 2,6-78 can also be eliminated
provided CI:} and -a-"iI——_[ aj are constants. We stress again
that the differing Sgégertles of type A and B eguivalence
relations result's from the fact that each of the former define
one of the tildered covarients appearing in them, whereas in
the case of the latter all such covarients appearing are
defined independently.

We are now in a position to state the rules for the
reduction of the tildered covarients to a linearly inequivalent
set corresponding to kinematic singularity'free form-Tactors.
We define a pair of type B E.R.'s to be ineguivalent if one
cannot be transformed into the other by means of type A E,R.'s
only. One starts with a set of N({ ) 7(;; %« and N(O+) ‘7(”/"
corresponding to XK.S.,F. decompositions of the -purely hadronic

y = ;' o+ - .
reactions: 2+1"5- and 2+0 “”9"} . If one can find a

momentum b different from g and choose a singularity
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elimination procedure for which 811?5 are constants, then the
N(47) tildered covarients obtained will correspond to a K.S.F.
set of form-factors., dJust |N(1~) - N(O+)] of these covarients
will remain linearly inequivalent at vanishing CL" s S0 by
taking linear combinations of the covarients in such a way
that no additionsl singularities are introduced, one can
arrive at a-final set of covarients, just §(0¥) of which
vanish at zero cif' . In deducing K,S.F. spin decompositions
for the purely hadronic reactions, one must remember that the
squared masses of the 1~ and ot particles are now variables
(equal to c‘f‘ ). This means that even in the case of three-
point vertices, these decompositions will now involve the use
of type 72 equivalence theorems.

- Ir the above procedure proves impossible, one follows -
the reduction rules of section 2.4 but the inequivalent type
A and B E.R.'s (whether of type 4 or 2) now assume the res-
pective roles of the type 4 and 2 E.R.'s of that section.
That is, if there exist (1~ ) and r (0™) inequivalent type B
E.,R.'s for the respective reactions Z"H:'*)C and i“"o-t"’)c ,
then one starts with [N(17) + 1 (’\_)] covarients for the
former reaction together with (l-qu’)[N(o'b)"’r(O*)]covarients
for the latter. The qur symbol arises because equation 2.6-57
implies that all covarients for this latter reaction vanish on
contraction with -%’o(ld (ﬁ,) . The choice !:~=¢1,‘has another advan-
tage. With this choice, just the N.(O'F) %jfmwill be equivalent
to zero at vanishing cf , and it will therefore be unnecessary
to take further linear combinations of the tildered covarients
after performing the feduction to a linearly inequivalent set.
Of course, if this choice is made, care must ‘Ee. taken that

‘ 1
the reduction does not eliminate any of the ‘%p}m .

To conclude this section, we devote a few words to the
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m

implications for the vertex functions.of P, T, and C~‘
invariences, hermiticity, and crossiﬁg of the interaction
Lagrangian, |
Since the real and virtual photon wave-functions satisfy
the Jacob and Wick phase conventions, these various implica—
tions are agsin given by the appropriate equations of sections
2.5, 32, U1, and 42, with the coupling and M-functions
replaced by the corresponding three and four-point vertices,
For a given four-point vertex one may define s, t, and u
channels in the same way as for M;functions. One has a direct
" channel as discussed above, and two further channels obtained
from this by crossing the initial hadron with each of the final
hadrons, In Chapter 3 we show that the vertex-function
continues to satisfy the crossing rules 2.44-11 and 2.42-l.
Thus the various implications for the lM-function of the cross-
ing rules again apply equally to four-point vertex functions.
In particular, the P-invarience constraint on our tildered

covarients reads:

Rl 50-7900309900% R, (1T, (2.6-75)

whilst the condition for resl form-factors in the case of

a T-invarient three—p01nt 1nteract10n is:

R 1IOMOTLE LT . ooy
As usual, the circumflex accent denotes the sign reversal of
all 3-momenta sppearing. Since this operation leaves invarient
the scalar products of pairs of u-momenta, these same equations

must be SatlSLled by the pr1m°d covarients, Now:

9("‘)%1;/“,04’ G 1t 1 ?//o((b):
=4@)X /40(3£7'+1) g ’)K /m:‘lfa:'b /b G 7 (2.6-81)

GEOK, (5,14 0) 2= Jd i )% ()

,(2.6;82)



109.

and the photon has both normality and time-reversal phase

egual to plus one. Hence 2.6~79 implies'

e 3( )Jf,, (i1 )?f
f zﬁ E’fo (} ) o ?

(2.6-83)

‘%ufm()cvi‘”-
(5407

whilst 2.56-80 reguires:

%u/x.o((f,i'*'r) =| 3( )XV/AO(<§ )
) I Gt ) [Fle.ca

The 1~ and 0" particles are both normal, so equation 2,6-83
is identical to 2.31-2l., Equation 2.6-8l is identical to
2,31-32 provided we specify that the 4~ and ot particles are
to be treated as though they both have time-reversal phase
equal to plus one., This requires that they both be t reated as
C-normal particles, hence the o* particle is to be considered
as having opposite C-parity to that of the photon.  The
unprimed covarients are then to be constructed following the
rules of sections 2,31 and 2.441 as appropriate.

The tildered covarients resulting from these unprimed
covarients Will then automatically satisfy the P-invarience
constraint, 2.6-79. They will, in addition, carry
just those overall i~factors needed to ensure
‘purely real form-factors and satisfaction of the
discontinuity condition in the respective cases of
T-invarient three-point and four-point interactions. (We
show in Chapter 3 that the discontinuity condition on four-
point vertex functions is the same as that on M-functions,
and we pointed out previously that this latter is formally
the same as the rality condition for coupling functions, )

it is well known that the form-factors for matrix elements

of the current taken between identical initisl and final
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single particles may be chosen to be purely real even for
T-violating interactions. This arises out of the hermiticity

of the current operator, and the reality condition reads:

‘%u/uo((f}? 711«) = %ﬁavm(?&iaff) s (2.6-85)

where the bar has its usual significance,

We shall need the generalisation to four-point vertex
functions of equations 2,42-14 to 17. This is trivial; the
isoscalar and isovector parts of the photon both have
C-parity equal to minus one, and this corresponds to G-parity
minus one (plus one) for the isoscalar (isovector) parts.
Hence, assuming particle 1 is the photon, one simply replaces
G1 in equation 2,u2-17 by minus one (plus one) for isoscalar
(isovector) form-factors.

Finally, we wish to stress that although we have called
quantities of the form ‘,"{/.q’qm/q’i singular tails, they are
not really singular at all. In faect since qa vanishes on
contraction with"the photoniec wave-function for all ﬁ? s such
terms are themselves eguivalent to zero even at vanishing 1? .
The purypose of.eliminating such terms as though they are

singular is simply to ensure that the correct number of

covarients are proportional to qf .

2.7 THE SPIN DECOMPOSITION OF SOME PHOTONIC THREE-POINT
VERTICES. :

In the following sections we derive Lorentz-space (spin)
decompositions for the real andgyirtual phogfnic three-poigt
vertices: (T.,':'Z,"i )i, (1,';:,—\]-'*'-‘2'-') ’ (W,O,T) , and (7,1,3-) .
The symbol (g,51,32)ndenotes a vertex with overall normality
coupling a real or virtual photon to an initial hadron with
spin 54 and a final hadron with spin S, . The various

kinematic quantitiss involved will be denoted by the symbols
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which are used when these vertices are encountered later

in this thesis. The YFF vertices appear in Chapter 5, and
the yBB vertices in Chapter L. A differing set of kinematic
symbols will be used for these two types of vertex since they
appear in one-particle intermediate state graphs corresponding
respectively to the s and t channels of the same four-point
function.

For yFF vertices we define the momentum (mass) of the
initial and final hadrons to be F(ﬂ@ and.K04)respectively;
The momentum of the photon is then:

' CLEK—? 9 ' (2.7-1)
and as usual we further define:
PEK+p (2.7-2)
Further useful kinematic relations are then listed in
Appendix 6,

The kinematic notation for YBB vertices is defined in

terms'of that above by the substitutions:

pr-k y K74 m=>py MM, PP, (2.7-3)
So: 'P”: NA-k 5 (2.7-4)
and in view of the kinematic relations of Appendix 5, which
are still applicable here, the momentum of the photan,@A*%k),
is still egual to q. .

The decompositions we derive are only strictly valid
when both of the hadronszaré on the mass-shell, If one or
both of these particles are taken off-shell, it is necessary
to include additional "off-shell" couplings to take account
- of the relaxation of the appropriate Dirac-Rarita-Schwinger
subsidiary conditions. Neglect of these terms in the off-
shell hadrbn case is equivalent to making the dynamical
assumption that the "off-shell" form-factors vanish., On the

other hand, when such vertices appear in the Born-terms for
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four-point functions, only the "on-shell" couplings will actually
contribute to the pole-like behaviour, the "off-shell"
couplings in the numerator each including as a factor the

denominator of the Born-term.

To a certain extent, then, it is useful to perform the
spin decompositions in a way which whilst treating the hadrons
as on-shell, does not rely for freedom of kinematical singu-
larities on their masses being constant., This also renders
the decompositions suitable for use in covarient Reggeisation
calculations, where the Reggeon simulates a superposition of

on-shell particles with wvarigble mass.,

2.71 (v. +. £)* VERTICES

The y-nucleon-nucleon vertex is well known and has been

studied in great detail.(4) As mentioned in section 4.2, it
decomposes in Lorentz-space into a pair of linearly independent
couplings which may be chosen, for example, to be the "charge"
and "moment" or "electric" and "magnetic'" couplings as given by
equations 4.2-3 and 4. These couplings remain independent in
the resal photon limit,

What is less éenerally known is the fact that this structure
- is a direct conseguence of the fact that one is dealing with
identical initial and final hadrons. The structure of the
general (y, %, %)t vertex involving non-identical hadrons is
necessarily quite different. Indeed,‘although one still has two
linearly inequivalent couplings in the virtual photonic case, the
covarients become pronortional to one asnother in the real photon
limit. This behaviour is in agreement with the “counting rules"
of section 2.6 for numbers of Lorentz-space couplings, and the
y-nuecleon-nucleon vertex must be considered as exceptional case,

o . . : +
Je therefore consider first the unecual mass (Y, =, =)

vertex, and then show why and how the spin decomposition has
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to be modified in the equal mass case. The (y,%,7)
vertex, (where the masses are necessarily unequal) is
treated at the same time,

From equation 2.3 -9 we have:

Ni(']',—;:,‘s':)'-'.?_ ? (2.71-1)
N ( 7:7.97-) 1, (2.71-2)
so we expect in view of equations 2.6-%3 and 29 that:
Niwvé’%):Z ? (2.71-3)
NE I £, 7)1 (2.71-L)

Here N*(N”) is the number of couplings at the normal (abnormal)
vertex indicated by the parentheses, and y' (y® ) denotes a

virtual (real) photon.

From Scadron's paper(9) we take the spin decompositions

for on-shell hadronic vertices:

Fo- 0 N *
Z‘:u( 7-5-72’-)"(:71,{0(4‘81?9:)1 9 (2.71-5)
po o oLy + .
: (05, Z)“Ssl ) (2.71-6)
+_ [y
where as usual: -1 = ,0’5 ' (2.71-7)

When the 4~ and ot particles are given variable squared mass,
qfq' , the 61’273 become form-factors depending on this quantity
but are K.S.F, This is because the only E.R.'s which can |
become type 2 in the variable mass case are those which reiate
coverients involving the contrac*ion of Levi-Cevita tensors
with momenta, y-matrices, and possibly one another, to the
covarients: (’UN7'P°I( )ﬂlb)]::h. From dimensional considerations,
the coefficient of the former covarients in such E.R,.'s is
~always unity, and hence their elimination in favour of the
latter covarients leads to K.S.F. form-factors., Similar
arguments indicate that no type B E.R.'s are involved. Hence,

+
we can go ahead and operate on the (’Jd 9?(:(’:61’0( )I with a gauge
projection operator: ’%/“/u(b). In this section &lone vwe shall
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make the most genersl choice: -
- /
bFaP'+ecq . (2.71-8)
where a and c are functions of the hadron masses., This is to
illustrate that the final result is really independent of the

choice of b, Ve therefore have:

I [ gf{,(aﬂf-*c‘{ru)‘ * |
T ()1 = _’(L* af g, + cq* ~I > (2.7-9)
VAN Y Pla(aPhtCax) |4
(E‘)(bn B f‘*— aThg+cq* JI ? (2.71-10)
[ 2(0.1’ +C%y) |.x
x o
q,;(b)l f‘& aPlq.+ cq* .AI y (2.71-11)
Remembering that in virtue of the Dirac equation:
4I% = (MFm)I™ (2.71-12)
and: " / "
9”9‘1 %’[(Mim)%“?«*‘ﬂm]l R (2.71-43)

two possible X.85.F. tail elimination procedures are possible,

We may choose to define either:
~ 4

BT e[ Memh (- (PO I 2@ )T =10%36 1%, (5. i)
:’e&I =[9" 7«(“’)'“:’:7”)%4(1’] g(ﬂf?«“ﬂ’q’dﬂ , (2.71-15)
and : %:Iis b'Zfi (W= [a.(?"‘ﬂ; ?,:%)—C%i]li , (2.74=16)

;I as defined by 2.71-14,
ISR L (A UOS (ERTAE | C s ER I e RS
and x“I Eb(ﬂ{()l(@:{ =C‘K/°‘I . ‘ (2-71-18)

Now it is easy to derive from 2,71-12 and 13 the E.R.:

(P YT 2 Tl

(2.71-19)
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so both elimination procedures lead to a pair of linearly
inequivalent covarients, one of which is eguivalent to zero
at vanishing q2, as required. Furthermore, we can similarly

prove that: )

~ ~ ~
ﬁilis[(m:m)y(:-qf%d]l*, (2.71-20)

~ Iy 2z

from which \7({,4 may be eliminated in favour of \76“ .  Thus
both procedures lead to the same K.S.F. spin decomposition:

Vz(qv'%,%) = [F-‘ (q’a.)(‘(? 'ﬂ'u“ ﬁrqr'oc)"i' F—;_(‘L.L)'L 0";‘(‘,: clf(!n]l:t o (2.71-24 )
Note that had we chosen:

b=q. (2.71-22)

then we should have had just two primed covarients: ?,/( (‘i,)
and ('?!,()/(‘L) Only one elimination procedure would then have
been possibl_e, again leading to the covarients %: Id: and

.760‘1 . Had we chosen instead:

b= , (2.71-22A)
then we should have again had two primed covarients:
' / +* _ / o+
TP = (1= 4T fle) (2. 74-23)

and:

* 2.pl %

V= (T F TSP g)T . (o7t 20)
These are already non-singular, and the second is equivalent
to zero at vanishing ci'_z. They furnish a suitable set of
covarients for the decomposition of the vertex, and in view
of 2,74-49 and 20 are ebquivalent to thepir appearing in
2., M-24, PFinally we consider the covarient 5d(TIcL'K)’6'5,IﬁJhich

also vanishes on contraction with Cl,,( . We have:

/ ’ :i:_ =% :
E (PN T, T =28, (KT¥L (2.71-25)
and on expanding the right-hand side of this by means of

equation A3-29, we find:
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* v AR
I L
£ T 2 [Ra-(mEmX, T (2.71-26)
Thus without introducing kinematical singularities into

the form-factors, we may choose, if we so desire, to eliminate
Y2

either u/%:( or jf“ in favour of 20((?/6{/7)75.

We have so far assumed that the hadrons are non-identical,
In the identical hadron case F—L(f‘) remains X.S.F., but F, (CZ,“’)
as defined by 2.74-24 has a kinematic pole at zero Ci,z .
This arises because we have tried to eliminate non-existent
terms. Taking the equal mass limit of equations 2,74-9, 410,

" and 44 we have:

) ol = :

‘\%_].;I;»L W&(b) Bl 7@( 3 (2071 "'27)
. Iy —o!

Pili':‘;’??t(?i) (b)=7P, ? (2.74-28)
: [ 1= — 1P

corresponding to the fact that in the identical hadron case,
(wheré the vertex is necessarily normal), 'Xﬂ and ’FO/( both
vanish on contraction with 5‘,“ . Thus in this special case
‘we still have ;cwo linearly inequivalent ccﬁvarients, but these
now remain inequivalent in the real photon limit,

Our equivalence relations read in the identical hadron

case:

. - |
26&9%‘3=2m3;"?0'( s - (2_'74 ~30)

{ ~ | _pl* |
Zd(?‘bfxﬁs"zm?d ¥ 'J'd- (2.71-31)
Without introducing kinematic singularities into the form-
factors we may choose to use any two of the four covarients
| appearing in these equations except the pairs (Zd(?lq,q) 75,
. [ A }) -
20"&(5‘{/(5) and(Zd(T’q,’(ﬂs;Fd . These latter correspond to

pairs of form-factors with kinematic poles at vanishing q2
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and vanishing'FIZG=4%@L1:)I%spectivelf;

It often proves convenient, parficularly in connection
with unpolarised cross-sections for lowest order elastic
electron-nucleon scattering, to decompose the y-nucleon-
nucleon vertex in terms of the covarients ZaxC?4LX>7§ and 724.
One may avoid poles in the form-factors by explicitly factoring
out the singular term 4/?“'. This then forces the form-factors
to satisfy the "threshold constraint" that they be proportional
to one another at vanishing Tﬂz , (the nucleon-antinucleon
pair-production threshold).

In this way one arrives at equations 4.2-3 and 4.

+ _
2.72 (v, +, 3 + %) VERTICES.

Assuming that J is non-zero, we have in our previous
notation:
/0 1
—— +-—- feed
N (172.7T Z) 5 >
80 our general rules yileld: ,
L N 4 - LR A L\
Nz, Tg)=3 N=(7 " Z Nt =2 . (2,72-2)

We know experimentally that the hadron masses will be

NF(ohE,T+E)=1, (2.72-1)

s

necessarily unequal, so we expect to find no exceptions to
equations 2,72-2.
In this case we shall ghoose to operate with f&&hx«ﬁ)‘
‘on a suitable set of covarients for the coupling function
=%
Cqu):r, '
remain free of kinematiec singularities even when the hadrons

- !
(1{%534"5). Our final set of covarients will then

are allowed to have variable squared mass.

(9)

We may conveniently choose:
+

e NN T-1 [ q |
L (5T 2)7 (% [;1-2185'%/*4"‘]1 ’ (2.72-3)
where:

\76;,;77“?{“ ’ Xﬁ,f‘@,’r& > 7{;1«33/«,«.(2.724).
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TR 29, (U /) | (2.72-5)

%ﬂ,&(‘ﬂ: ‘%/A,(’f’x"/f"‘lf‘im/f), (2.72-6)

‘%/"I"( (q’>: 3/&,@('_ 1 ,q’c;( /CL’L . . (2.72-7)

(Again, the 33 are K,S5.F. when we set the squared mass of the
47 hadron equal to cl:' , and no type B E.R.'s are involved.)
Bearing in mind once again equation 2.74-12, we have
Just a single linearly inequivalent singular tail in agree-
. ment with the second of equations 2.72-1, and we see that a

suitable tail elimination is achieved by defining:

~d
ﬂf(‘dIiE [J’d/ﬁ:d(i)-(Mxm) 3;((‘1/)]1' "’(%F‘% ?i'ﬂfx o() 5 (2,72-8)

~ 2 2
;e/k,&—:ae/‘&@)—f.q, (= B b P .
~ 2
v%/ule( q’ ) Sft,o("c}’//.ﬂf‘g. (2.72-10)
Thus the decomposition: y
. ~
v;;;;o( (15, 7+5)=(2,)" 669X, «
~r2, oA b
£6,(V)Z, FGWL]T (72
satisfies the counting rules 2,72-2, and involves only K.S.F,
form~factors. Without introducing kinematic singularities:
.one'could equally well replace p by P' throughout.

The plus/minus signs in front of G2 and G3 have been
introduced in order to simplify certain Feynman graphs
involving this vertex and appearihg in Chapter 5. "They allow
such graphs to be written in a form wﬁich is invarient under
a change of normality of the spin-(J + %) particle, to the
extent that no plus/minus signs are involved.

A decomposition alternative to that of 2.72-14 is derived
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in section 2.8,

A further altermative is providéd by the decomposition:
T-1 z
’U“(P)TD(( 7_) ( ) [7(‘1')%#,%(’
"‘@(‘?:“)3/”4!“*‘0 ()% % %g(lo( ')I (2.72-12)

This is only of use if the hadron masses are kept fixed and
unequal, but it does have the advantage of remaining valid at
zero J where just Sﬁﬁ((?l) disappesrs. The covarient
multiplying 6}9 is equivalent to zero for vanishing qf

Spin decompositions equivalent to ours have bheen
- obtained for special cases by Gourdin and Salin,(36) and
Mathews(37). Bjorken and Walecka(Q) treat the general case
but are mainly concerned with the non-covarient approach
based on heiicity "amplitudes". They relate these to the
covarient form-factors of the previous three authors and these

latter are related to ours in Appendix 9.

2.73% THE NORMAL (y. O, J) VERTEX.,

Assuming that J is non-zero we have:

N0z, NY(0h0,T)=1 (2.73-1)
50 ’
072, ,N""@",O,T)ﬂ : (. 75-2)
We may convenlently choose°(9) '
quﬁ 0,7)= (‘lr,k)—HZﬁﬂ , (2.72-3)
where:
‘z;L'O(ZCI’Iu,AoC . | X/('a( = ﬁ/x,,o(. (2.73-L)

Once again, no prdblem due to kinematic singularities of the
ﬂj arise, and no type B E.R.'s are involved. To savg repeat-
ing ourselves, we will state here and now that these same
observations apply in the following itwo sections.

We therefore have:
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/4 — | . 2y
Kiya(®)= ‘@,(A«"A T9/%) (2.73-5)
and:
‘ /2. _ .
‘%ﬂ;d(q’)” 3/*:"‘— q’,uﬁ’x/q» > (2.73-6)
and on eliminating the singular tail in the only suitable

manner we obtain the ¥.S.¥. decomposition:

VIO =CR) T @t 2 2% )
+ 69 Ipst™ by I )] (2.73-7)

We have denoted the form-factors by the symbols which will
- be used when this vertex appears in Chapter 4. Again, A
could equeally well be replaced throughout by P".

For zero J we only have the single primed covarient: &eﬁf
s0 eliminating its tail in the only way possible, that is,
by multiplication by q2, we obtain:

vy (1,0,0)= 5,) (Fau-2q.9.4), (2.73-8)

Alternatively, we can 0perata With,%Qdd(?”)on the
covarlents (GI,IA)T-A( /‘, ' ,c{, Ci/‘,urqfo{) s the final
covarient arising from (j )T(b, ;397’ Provided the hadron

masses are kept fixed and different, this yields the X.S.F.

decompositions:
—
Yl 60,)=C0) [£60%, (- FR/p14) |
+f6(ﬂ37( ok ‘Lp. /7’" ‘if)] (2.73-9)
which automatically reduces in the zero-~Jd case to:
+ 2
'\&(17070) = Jcs(qrz) (q”.x'" 1 Pe:,/'F"- ‘L) . (2.73-10)
Equations 2.73-8 and 10 agree with the counting rules:
-+ ' 0
N (’5%0;0)"1 ’ N (rﬁa070>=o ) - (2.73-11)
obtained frmn _
N'{,0,0)=1= N'{c}0 0) (2.73-12)

Ye thus have, apparently, the rather surprising situation that
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the real photon cannot couple to a pair of spin-zero hadrons
having different masses but the same normality. This is nét
indicative of a failure of the theory; rather, it should

be interpreted as a statement that such a coupling cannot

be described in gauge-invarient fashion with a X,S.F. form-
factor. (Remember that it is only this requirement which
leads to the second of equations 2.73-10, and only by trying
to impose it have we forced the coupling to vanish.) The
coupling can be restored in a gauge-invarient manner provided
we are willing to postulate that the form-factor has a pole at
ZET0 q? .

In the equal mass case we apparently have further problems
due to the vanishing of P".q. But for this very reason it
will now prove sufficient to use thé covarient P& (c.fs the
y-nucleon-nucleon vertex), OFf course, if one of the hadroﬁs
is'subseguently taken off-shell we lose both gauge-invarience
and current-conservation, ‘(This applies equally to the
HY—nucleon vertex)., However, it is wellknown that such
problems can.genérally be overcome,.at least for Born-terms
- involving a real photon, by requiring only that the sum of the

Born-terms in all three channels be gauge-invarient.

2.7 THE ABNORMAL (v. 0. J) VERTEX.

In this case we have:
-t 1 . 321
N (1 ’O:’:]')z N2

0, J=0 (2.74-1)

’

N(030,7) =0, a12 7. (2.74-2)
So: -
1,31,

N(5,0,7)= N(1303)=1 1 2o (2.7-3)
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Qa
The decomoosition'(’)

Zj( )«(1 0 'J')—( ) 38 d(Aa) (2.74-4)

already vanishes on contraction w1tk1%a and so0 a suitable
X.S.F, decomposition of the corresponding photonic vertex is
just:
- -1
=(- e A
,\Q'L‘)TO((W?OD:D ( q’}") 3(1(61’78 i”‘( CL) . (2.74-5)
For zero J, no coupling is possible since ho fﬁ index is

available, so equation 2.74~3 is satisfied for all J.

2.75 THE NORMAL (y, 1, J) VERTEX,

Here we have:

+ /0= 5 T»2
N 1,1,:1')--{ 1Y 75 )
( z,,,:r..q, (2.75-1)
: -+
and: N'(051,3)= 2,T>1, (2.75-2)
from which it follows ﬁhat:
22
N*(’ﬁ‘ﬂ,?)“ {i’ T =1 ? (2.75-3)
) 9
and: . _
- R - ﬁ :] ?’27
N (fd -J-)' 2; T=1. (2.75-L)

The countihg—rules and spin decomposition for zero J have
already been given in section 2.73.

We are going to let o(,f& and.(cjrbé the Lorentz indices
of the respective wave-functions of the photon, spin-4 hadfon,

and spin-J hadron, so we may choose (9)

t(c-) o((1 T) (q’cr)=J 12:8:156;0;_/14« 5 (2.75-5)
and:

(O_) (©1,D)=C9) ZZ 9; 7601% ,  (2.75-6)

where'

*76 30’,\&(301 s xzac’}f-q'c'AN ’ (2.75-7,8)
A= Qo Y% #oo X*= 3/M<q' 025 (2.75-9,10)
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X = Ci»a-‘i/o-ﬂ//wé»u' K= 90«,qu5;, > - (2.75-11,12)

2= Yo% ﬁf}u (2.75-13)

Thus : /1 y . '
V4 @)=X-K %c/q," . A (2.75-11)
7(/2(@___‘752_&%7{6%/%2 9 (2.75-15)
#PE)=x* % G , » (2.75-16)
75/4(@"‘ K=K 9 Y (2.75-17)
ond : ]Z/"(‘i») H-aq K, . (2.75-18)

1
For J equal to unity, .75 andj\{ {‘]») no longer appear.
Eliminating the two singular tails, we deduce the K.S.F.

spin decompositions:

+ -2 N3]
"fm’f “(11:,'):(.4,0’)7 ZZ&@}) ‘%O‘ ‘79./4“ 7:[‘?29

(2.75-19)

c’fxm@”)"i I (Clr):/yc,#“ , (2.75-20)

where: - 4E 77-;’4“3 ' '
X -2 =g, ( | (2. 7521 )
O‘U’IM(- ¥ “q’o' gcroﬂ’ -sl,mcf’o',) - .« 75-21

N:-o—/m"ﬁ/ a)-a-4. 7" 0)= i WA V) 5 (2:75-22)

Nc’, 0 p- yo<=~7d/2(¢')~A Cifjdﬂ(q’)" 60’,}4(‘1’6 A —A9 9 20{) . (2.75-23)

‘%:o'}u(”q'x/ @)= ' c}’ (‘1* 3}*& ?’lucf’o() > (2.75-24)

%j«/&d"q' K= s (‘L SW %, ) (2.75-25)

R ;ji:‘i’o.z ]C:,;z%;o( , (2.75-26)
and: .

‘%mﬂ“q’%: ﬂf\l’/ #) | | (2.75-27)

so that: w~oyg

‘%m/uoc* Svlu,(q‘A ~Aq9.,), (2.75-28)
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No special problems arise for identical hadrons,
equations 2,75-20, 2{, 22, 24, 26, and 28 still providing a
pérfectly valid decomposition in this case.

As usual, A, may be replaced throughout by Pl , ana
having made this substitution in 2,75-8 and 44, one may

choose for fixed unegual hadron masses to decompose instead

in terms of the five covarients: %/4(?”) ]d/g( ”) x/4(P//)

jﬁ qf ('F'”) ana K CL ( P"). These final two covarients then

vanish at zero q R x/'l (P” does not appear to J egual to
3 (et .
. unity or zero, and ]6/ (?)and \%q,o((ﬁ)disappear as well for

zero Jd.

2,76 THE ABNORWAL (v,4,J) VERTEX,

In this czse we have:

- b T2
N, 3= T (2.76-1)
and: $73’51 ’
N(o = 1,721 (2.76-2)
) - - T
SO N (W,'l.,:r): 4 N ZZ
, 3,3 =1 , (2,76-3)
~s R 3,3—22 P
N (3,31 9:0: 2,T=] . (2. 76-4)

The zero J case has already been treated in section 2,74,
We have some type B equivalence theorems here. With

Lorentz indices defined as in section 2.75; and writing:(g)

>=r ( 1:‘-) (‘q’ )tho‘o’//.o((")")z) (2.76-5)

we have seven "obvious" covarients in terms of which 80'0'/.4,“

can be decomposed, namely:

m »

$,A>Ci(o,ﬂ,ﬁ ) *7? /u G;(“')qf‘o‘z 'y (2.76~5,7>-
ﬂ

lll

z'=
K= /,cczo'(A)%*,. ) ow'(q’A) G'/A

(1,

(2.76-8,9)

42)
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~5 6
Rotaah ,  #=8uliDnn 5 (esron)

and 7575 8/‘,,‘:,.7 (CL A)Ci’aa_Ab( . (2,76-12)

The tildes denote those covarients which vanish on contrac-
tion with G Only certain sets of four of these seven co-
varients are linearly inequivalent, three type B E.R.'s

being operative, Equation A3%-141 yields:
3 6~ ~ L . '
- =
\% % ‘% ? : (2076"‘7)

whilst from A3-12 we deduce:

qf’jd"""’]d + A 1,‘7424-5%5‘ (2.76-8)
and:
AT q,?“?”“ \% -*:76 (2.76-9)
The gauge projection operation yields:
‘76/3(%) =%3+\7€3%</Cf , (2.76-10)
167, - 6 g .
Rq)= A7~ K q@/ﬂ« . (2.76-11)
TN = 27 A, 8 .
{K/,(le)-*]ﬁ &g K q’x/‘l, \ (2, 76-12)
where 8
X "%M(‘*A)q’oa . (2.76-43)

The single singular tail may be eliminated in two possible

"ways. The most useful elimination is provided by:

e O AR ORI A
%éé c%/é(q’>+-.%/3<q’)= g/ug;(qflgﬁoio(*' /u.U;o( (A> Cp'o“z ’ (2.76-1 5)

K= X @) raq 20 le ,N(M)A ~&q8 W(AD]%, 2.76-16)
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and the three equivalence relations then read:

o 50
(ﬂ ::z b ] . (2.76"”! 7)
N'z, sz. ~r 2 ~y
x =¢% - A‘C‘,x +t;€ > ' (2,76-1.8)
. 52 oo
and: A eV

. o (2.76-19)
~S
We may eliminate K > %, and (% without the introduction

of kinematic singularities, Jielding the spin decomposition:

(o*)‘r “(71 ) (OI’JFIIZF( 7')‘7{ AL - (2.76-20)

This is a particularly uoefll expression in that it holds for
all J (including zero), and remains valid both for variable

and for equal masses. In agreement with our counting rules:
~S

~s 2 .
\ZZ vanishes for zero q2 and dissgppears for zero dJ, y ¢ also
. ~ 4
disappears for zero J, and &8 disappears for J less than two.
~1

For zero dJ, Cﬁf is the same covarient as was derived in

section 2. 7L,

2,8 COVARIENT DERIVATION, IN*TmRMS ) rORN—FACTORS OF AN
UNPOLARISED CROSS-SECTION INVOIVING THE (y, 2, J + QY*
VERTEX,

We consider here the unpolarised cross—section For the
process: electron + Spln— hadron-—e»electron + spin-(J + %)
hadron, trecated to lowest (i.e. second) guantum electro-
dynamical order, and in the approxzimation that the hadrons
are treated as stable particles,

This provlem has already been considered by a number. of
aﬁthors,(g)(BS)(Bg) but their methods tend to be somewhat
awkward, involving various non-covarient operations and a
certain amount of trial and error in order to arrive at an
initial vertex decomposition which will lead to a final
expression free of cross-terms between different form-factors.

We shall repeat the calculation making use of the contracted
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forward propogators of section 2.2 together with equations
A3-22 to 26, These allow us to compute the cross-section
very simply and in a fully covarient manner, Moreover, we
are able to deduce the reguired initial vertex decomposition,

The momenta (masses) of the initial electron, final
electron, initial hadron, and final hadron are defined to be:
q,1(me,, 4, (me) ,-F(??’l) , and K(M> respectively, The momentum
of the virtual photon is defined by:

‘1,“:::- K*'j‘J?- ‘1,1- ‘Lz . (2.8-1)

It is assumed that the reader knows how to calculate to

>

second order the unpolarised cross—section(ja) given ?ZIT y
2

the squared modulus of the second-order T-matrix element
averaged over initial helicities and summed over Tfinal
helicities, Thus we shall only compute this latter quantity.
Ir T, (x) and J.(*) denote respectively the hadronic
and electronic.electromagnetic current operators, we have in

view of the hermiticity of these gquantities:

ZZ !T@f xffroc[s 5 (2.8-2)

where:

L‘dP:;ZQhHa(O)H’; <q,1lf]@(o>‘$ > (2,8-3)
T T LLETRODGITON . e
Yle have: <Cf"zlﬂ°€ (o)]%); ea(q&)%(b{(%) ) | (2.8-5)

and we define, (factoring out the electronic charge);

<KIT“(°)H’> eu )'.r(K) )rrdu()f’) - (2.8-6)

The lower (upper) case u's are the electron (hadron) wave-
+
functions, and the plus/minus sign on ’UE[A)TD( indicates the

overall normality of that vertex.
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tp((f% m (A4 W @. ”'7”e>] | (2.8-7)

and: y
ﬂﬂk 2
T“@=;1_-e b [V (W3 M (#+ )Y, (u)'Tf& (v)"' (/L)‘T<K>] 5 (2.8-8)
where as usual:
W= Vi T (2.6-9)
So: _
b“(b: 61[2<%dﬂxzﬁ+$2“%}(s)+ qfiad(b] s (2.8-10)
and since this tensor turns out to be symmetric, only the
symmetric part of qu need be calculated., We note as a check
that: :
iﬁtﬁ(b:ozbﬁ@ﬂﬁﬁ 9 (2.8-11)
as reqguired by current conservation.
Instead of calculating T directly foom 2.8-8, it is
convenient as an intermediate step to use a computational

(39)

trick due to von Gehlen. One performs a decomposition,
~into kinematic covarients and form-factors, of that part of

TdB which is symmetric and, (in view of 2.8-41),contains no
overall factors of g, or qB. In this case two form—factors
will be involved, and these can depend only on q2. The simplest
pair of kinematic covarients are g“ﬁ and papﬁ’ but we wish

to satisfy the current—conservation equation:

q’ocTN(b Q= (s ﬁ 5 (2.8-12)

so in the spirit of our previous discussions we write:

Tap /e = G BT 0Ny + TR Ty s ()

| YT RN P i "’"“/P.GLCZ/‘
_T(‘L)(ﬁa(s ré)ﬂl(%)(‘r’« 9 )(7’(5 T )'(2.8—13)

This is only an intermediate step in the calculation, and we

shall hot need to make any postulates about the analytic
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structure of the T1,2(q2); it will not therefore be necessary
to eliminate the singular tails from 2.8-13%. The gauge~
projection operators in the first equality of 2.8-13 only
become important when we relate the form-factors of the
hadronic vertex to the T1’2(q2). As far as relasting these
latter to the cross-section is concerned, we have from 2,8-41

that:

‘Q‘fdlo((‘fr)to(@‘%((g(y (1)2 to(’(b‘ 5 (2.8—1&)

so we deduce immediately that:

2 [T0f = 4 (/) (30 9 )T, (49

+(—F'q’1?.q’z+ %mﬁ'q"z)T?-(q})] . (2‘8;15)

Note this well known(z) result that the dynamics of the lowest
order unpolarised cross-section is parameterised entirely by
two scalar funcfions of q2. These will be linear combinations
of the three (in geheral conplek) form-fectors parameterising
- the dynamics of the hadronic vertex, Thus only a limited
amount of information about these latter form-factors is avail-
able from a study of this particular class of cross—sectiohs.

The power of the von Gehlen trick now bécomes clear:
we only have to calculate any two independent components or

‘ sYM
the tensor T X@ . We shall choose to keep the calculation

SYM S
covarient by computing f%[T ?P and 6“@ 72 . Relating

these quantities to T, and T2 by means of the second equality

.1
of 2,8-13% we have:

Ty 2;’(’}7"‘ i??ﬁ+§8ae SYM) (2.8-16)

- and:

Ty =§1’g‘£(3’f’o<'r:<yg Te "“7 Jopp Tt SVM) (2.817)
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where: g?" -—'}Dz(q,> . (2.8-—‘. 8)

From 2,.8-8 it follows that:
Uﬂv&

’Fo(T SYMT}P =tr [/Po( ( ):J'D((#{’l'??’l)'f’(@ 0;)3' 1,>-=;- (]'"J:r(K)] ,(2. 8-19)

- SYM :r-z-/:.
Qa@Toc(s Ztr [ ):rx(%"’m) ek v)?(/;)f( >] . (2.8-20)

3
Using these eguations to compute 'lbo(TSYMfﬂ, and gd(s‘r J(:

in terms of the G ,2 3(q ) of section 2.72, then yields the
unpolarised cross-section in terms of these form-factors, One
soon sees, however, that the expression is going .to invove
cross terms of the form G?Gj between the .various pairs of
different form-factors. In order to obtain an expression
involving only the squared moduli of form-factors, we must
look fof a more suitable decomposition of the hadronic vertex,
Consider the COVaPIPntS‘ (C{/P -7 5%0,(?%,)50.“()57,)1' (@P)?Z“(ﬂﬂ)?'s
and ( >¢15}*s°‘(’i)ﬁ’>75 . These are linearly ineguivalent,
~vanish on contraction with Qs and have the correct parity
behaviour. In addition they all vanish on contraction with

jo) and will not therefore contribute to 'Fd‘r ‘F'F, They

a’
will give rise to cross- terms in 3 'T’iﬂ" between their
%3 (3’
own respective form-factors, but not between these and a
form-factor corresponding to any additional covarient involv-
ing a factor of the form: (apa + cqa). This latter covarient
should be linearly equivalent to a combination of the foiumer
three; should vanish on contraction with Q3 should have the
required parity behaviour; and to satisfy the counting-rules,
should be equivalent to zero at vanishing q2. A suitable co-
: ' +
. . x TR T . —aZ
varient is furnished in: 0$ (? 1}pﬂ 1_TQ>I Wie can thus
usefully choose to use thls covarlent and any two of the pre-

vious three., Since we shell ultimately wish to releste the

covarients we pick to those appearing in eguation 2,.,72-14, we
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shall choose to leave out: (q/fjrﬂz/u,« (’Fﬂ,)ffs Ii. Of the

- above four covarients, this one has the most complicated
expansion, (equation A3-27), in terms of those of 2.72-11.
In order to eliminate the remaining cross-terms, we shall
maltiply (4,07 (pq.7) s I* ana (‘if,,c)”ﬁif&.w(7"?’75%(’?‘1/)1&
by an as yet undetermined pair of linear combinations of the

same palr of form-factors., Thus we write:

C/u»)?o( q’/ﬁ) 1[64(({,")%’4,“ (a'G' () + b 6’@(%))%,4,9(

(e G (T de @)l s (2.8-21)
where: ‘
‘7{/*' ‘17_4‘(? b Y= P be) . (2,8-22)
:’gp; = 8 U('FW)ZW{ (‘F‘?«) 9 (2,8-23)
‘%;A o ‘L 5«@%’% 5 (2.8-21)

and a,b,c,d are scalar constants, (Whlch may be complex), t
be determined so that cross-terms between G5 and G6 vanish,
We then have:

_.(q’yfﬁ"l]: [6'4 Jey F_,r_( %6_*"*'[3%6;}4)%:"/6

(v)T(b
e ],

BTLp P 25 |G b EmP T % 0] L o.ooze)

R e ARl A
+la Gy bG’@l Zlu.,c'(’}"?f)gcm(’f"l—)SV.’L’V(’P‘L)&m(’F@(%*M)W :.r+y;@’ﬂ.}}o
+(abst b)) (K es+d & >5 e BEru GVFHEM T E (oD

* PT@,95K)+ (65t dERN G+ 6 e (a2
XE s (PO (BN Por s 3K) + et d G Eu(pa. ) X
X (BFm)E BN P (%%:K) ]

(2.8-27)
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where:

55 7% =~ 297 (2)
[‘L (M‘!‘?n)z'}[ (M m)l] (2.8-28)

Now 2ll freed indices in the partielly contracted forward
propogators sre contracted with quantities of the forms: Sﬂn'(’f'CD
and Zp'. (’Fﬂ,} . Thus we can immediately drop from these

propogators all terms involving at least one of the factors:

’Pf/»n q,/*” K/A,) /Fy, 5 q,,,, czmc)i Ku,. For our purposes we then
9

have from Scadron's paper:

Tw/z(%‘?f‘l’oé Cqurq };V(W“‘M) ' | (2.6-29)
" .
P @02 T 5T RO MY, 5 (a.6o50)
@.TM(%%;H)% ~Z Cqaq ZT-WV:(%— MVL(K) (2.8-31)
T R K0 - 5 Can T (142 e (M)
”“'Uv.(”f‘“'mnﬁ*'] . - (2.8-32)
wh !/, ‘
where gE—qu(K)z g”/M2 ) (2.8-33)
Next, we dec’fuce from equations A3-22, 24, 25, and 26 that:
£ AN ElpaD)=23" | (2:8-20)

Z"t,(o.(*P@E,((’M,’yﬁs.(‘lg,(’m,}'k2“5’/(%/%“'?"‘?) 9 (208-35)
Eue (PNEru(PDEae (P 32)=23"" 5 (5 5 56

and :

Er ) Ear (b)) Ex (PANEPID=-25"" (5 5_59)

Finally we notice that 8°6f139anti-commutes with 8 and 4
and therefore with }ﬂ/ .
| Computation of the traces in 2,8-26 and 27 is now trivial,

and we find:

_C Z
P T e w8 (=] leul®

e

(2.8-38)
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whilst the condition that gcxp"ri§3,be free of cross-terms

 between G. and G6 turns out to be:

5
Mg=-2¢c, Db = o0, 4 arbitrary. (2.8-39)

In 2.8-38 we have replaced M by a new variable, N, defined Dby:

N = nl, ' (2.8-40)
where n is the normality of the hadronic vertex., This removes
a plus/minus sign from this equation, and also from 2,8-L43,

S\YM

L4y, 45, 49, 50, and 54. The simplest expression for 3uFfr“F

results from the choice:

= — = =M =
. a="Z +2 y b=0 , © V,l;a'-e-z 9 d=M . (2.8-14)
We choose to introduce an overall plus/minus sign into the
definition of the vertex, again in order to remove similar

signs from subseqguent eouations. We then have:

£ =1

~6 o~ ~G
7 G (aM %#‘M—zoe/f, JHHGEES I (2asn2)
and:
ETKFTZY(’I’ .—;\?;-r:'1 ;’/¢+1[(N+7fh) %][ﬂ, 16'4_]2
| +2NY( 1651+ |6 )] (2.8-43)

Equations 2.8-16, 17, 38, and 43 together yield:

TSlm ;/rﬁ[(wm) (el ] [, (2.8-4k)

TS 5T [t BNl e
(2.8-&5)
which in conjunction with 2.8-15 express %Zﬂh’“’lz in terms
of the linearly independent combinations of form-factors:
q*6u]" ana (lesIHIET)

It remains to determine GA, 5, 6 in terms of the G , 2, 3



of section 2.72. Ve immediately have:

~ L N2, 2. A\

R =gt K~ T (M=m= ) - (2.8-46)
From A3-48;: :

ME_Afar o, NDELA %

A= Z(M=mt+ Q)R+ (M=) L, (2.8-47)

Equation A3-29 and the Dirac equation together yield:
Mook far.e 21551 . 2 3ok
vl (M s .
Al _{z[q, (M /n)]?d +(Mﬁ.m>,‘7: Fm& }[ _ (2.8-18)
Thus

22,‘”6-4= ZNG + (N*-m"= oﬁ)C-E = (N~ q}) G, (2.8-L9)
N 2 g2
YRy G'5=“2(N'm>6a“(Nz"mq"“?f)(’z“‘z‘fé”z > (2.8-50)

lr = 2 - e G ) e
LNE'G, = 2]+ mN-m)| G NN 9)G = 2N 6, L (5 ais)
and irrespective of the normality of the hadronic &ertex,vthe
G each have kinematic poles at:
4,5,6 . . :
97 = (M+m) (2.8-52)

and at:

1 e NT

¥ = (M- m), (2.8-53)
As usual one may substitute threshold constraints for

these poles by explicitly exhibiting a double-pole factor t/S/

on the right-hand side of the definition 2.8-42,
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- CHAPTER 3
OFF-SHELL SUPERCONVERGENT SUM-RULES AND THEIR SATURATION.

3.4 INTRODUCTION AND BASIC ASSUNPTIONS; DERIVATION OF
SUM-RULES.,

The superconvergence programme reviewed in section 1.3
was only applicable to scattering processes involving two
initial and two final on-shell hadrons and/or real photons,

We saw in section 1.4 that it would be useful to try to extend
such a programme to four-point functions, (as discussed in
section 2.6), involving three on-shell hadrons and a virtual
photon. In this chapter we discuss the additional assumptions
needed to make such an extension possible.

Although our arguments will be obviously much more
general, we restrict for the sake of definiteness to the four-
point function corresponding to the "interaction": virtual
photon + baryon—s»baryon + meson. Such a four-point function
will arise when we treat to lowest quanpum electrodynamical
order the process: lepton + baryon-—identical lepton +
baryon + meson. |

Following section 2,6 we define the s, t, and u channels
of the four-point function, and then perform a decomposition
into invarient amplitudes or, more strictly, three-variable
Tform-factors, Let ﬁs assume for‘the moﬁent that these continue
to satisfy the crossing rules 2.44-14 and 2.42-4L. Ve tﬁen
postulate that the high sub-energy, (i.e. s), asymptotic
behaviour of these amplitudes is determined by exchanged,
(i.e. t-channel intermediate), Regge trajectories. Ve further
postulate that the only trajectories which appear are those
vhich would have been involved had the'photon'been:real.

Let us be a little more specific, The process: lepton +

"anti'-meson —ylepton + baryon + antibaryon is treated to
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second quantum eletrodynamical order, and we perform a
- partial-wave expansion in terms of the relative total angular
momentun between the baryon and the anti-baryon. We keep
fixed the difference between this guantity and the total
angular momentum of the three finagl particles. A Sommerfeld-
Wlatson transformation is performed, and the contour is expanded
in the usuzl way. Ouf assumption is then that the only additional
singularities picked up are those which would have been enéoun—
tered had the photon been on-shell, In the language of the
covaricnt formalism this corresponds to the calculation of
t-channel graphs of the form: virtual photon + "anti'"-meson—s
strohg'interaction Reggeon~—3=baryon + anti-baryon. The
process as a whole may well involve additional Regge trajec-
tories of purely electrodynamical origin, but it is assumed
that these will only manifest themselveé in a partial-wave
decomposition in terms of that angular momentﬁm which we have
held constant.

To justify this we argue that the invarient amplitudes
for the four—poiﬂt function are each the product of an overall
"scale factor'" and a functibn of the three "lMandelstam"
variables, The former represents the coupling of the electro-
magnetic lepton current to the bare hadrons, whilst the latter
describes the strong and radiative corrections to this coupling.
The strong interaciion corrections presumably dominate over
the radiative ones so it is not unreasonable to assume that
the highsub-energy asymptotic behaviour of these functions,
and therefdre of the invarient amplitudes themselves, is
determined by some characteristic behaviour of the strong
interaction, namely the existence of the strong interaction
Regge poles. It is hard to see how any purely electrodynamical

Regge trajectories can bhe involved without these continuing to
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manifest themselves when we extrapolate to the real photon
- limit. |
Having postulated a method whereby we can determine the
high sub-energy asymptotic behaviour of the amplitudes, we
have to see whether the statement that an amplitude super-
converges can be converted into a useful sum-rule. This
fequires that we know the analytic structure of the amplitude
as a function of the sub-energy, and have a prescription for
computing, at least appraimately, the discontinuity across its
cuts., If our previous postulate is to be meaningful we must
also be sure that the amplitudes indeed satisfy the sams
s,t,u crossing relations as would be operative were the photon
on-shell, |
There are two ways of proceeding. Following Chew et, alguo)
we may say that'sihce s,t, and q2 sre independent variables,
the s,t,u crossing rules and analytic structure should remain
unchanged when we take the zero q2 limit. They are therefore
the same whether the photon is real or virtual, apart from
slight kinematic'modifications in the latter case due to the
sum of s,t, and u being linearly dependent on the variable q?.
In particular, the cuts are to he calculated by extrapolation

2 of those‘unitarity relations which hold

to non-vanishing q
when the photon is on-shell. Essenfially, this is Jjust a
statement that the strong—interaction does not distinguish
between real and virtual photons. Our off-shell superconver-
-gence programme 1S then to be carried out in direct analogy
with the corresponding on~shell programme for a real photon.
Alternatively, wé may try to apply general S-matrix

theory arguments to the overall five-particle scattering

process treated non-perturbatively. We first postulate that
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there exists for this process a unitary S-operator and a

" corresponding T-operator defined in the usual way. Matrix
elements of this latter operator may certainly be decomposed
into invarient amplitudes and kinematic covarients since
this is a purely kinematic and group-theoretic operation,
These invarient amplitudes are then postulated

1) to satisfy the obvidus generalisations of the crossing
rules for four-particle T-matrix elements and

2) to be analytic functions of the renormalised electronic
charge at the point where'that guantity vanishes., The
assumptions of the previous paragraph may then be deduced as
a consequence of these three postulates and a comparison with
the fieldftheoretic perturbation expansion. This is demon-

strated in the following section,

3,2 THE ANALYTIC STRUCTURE OF VIRTUAL-PHOTONIC FOUR-POINT
FUNCTIONS: SATURATION OF SUM-RUIES.

In this section we are motivated by some ideas of Dresden
and Chou(ﬁu)'concerning an S-matrix theory of quantum
electrodynamicé, butvwe shall apply them to reactions between
arbitrary numbers of initial and final particles which involve
both electromagnetic and strong interactions. We shall be
concerned with electromagnetic interactions between leptons
and hadrons which are modified by the strong interactions of

these latter parficles. We postulate that even though such
reactions are primarily electromagnetic, they may be deécribed
by the relevent matrix elements, Sfi’ of a unitary operator S,
in the same way that one describes purely strong interactions,

A‘T—matrix may then be defined in the usual way by:

"‘8 '7’04(?:‘ T, (3.2-1)
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where Py and p; are respectively the total final and total
initial momenta, and we further postulate that Tfi may be
expanded in a powver series in e, the magnitude of the
renormalised electronlc charge:

T‘,ﬁ =Z: en —,;C(:) ” (3.2-2)

7n=0

and is therefore analytic in e in a region surrounding the
point where e vanishes, As usual we factor out the helicity
dependence of Tfi by defining an M-function (Lorentz tensor-
spinor) by:

Tyi= GENM:PE) (3.2-3)
and decompose M into invarient amplitudes, A;, depending on

suitably defined generalised Kandelstam variables, according

M= ZAK | (3.2-1)

In these equations (P<§) and (P(l) stand symbolically for

to:

the Rarita-Schwinger wave-functions of the initial and final
‘particles, colons denote coptraction over (suppressed)
Lorentz indices, -and tmantare-kinematic basis covarients
having the same Lorentz transformation properties as I,

| Since T,. and Té?) involve the same external particles

fi
we then have:

T;?LZE('Q:M(%): (i) . (3.2-5)

M Z;AL ‘X , (3,2-6)
where : _ %
» : M ~ §=oenM(nJ s (302—7)
00
a: ' _ n g ()
an Ai-%e A7 l(3.2—8)

Equations 3.2-2, 7, and & differ from the corresponding-ones

in Dresden and Chou's theory in that due to the presence of
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strong as well as electromagnetic interactions, we no longer
have that fﬁﬁ, r1“9, and Ai(o) necessarily vanish., This
turns out to be cruecial to our argument.

In view of the postulated unitarity of S we have:

2Im Ty = - A‘;g#(’f’i.’ﬂx) T T "

= -~ | Z"’A - ¥ '
Z@ (r"i ?N>TN3£TN'L 5 (3.2-9)
N
where-FN denotes the total momentum of the "intermediate
state' labelled by N. After expanding both sides of this

equation by means of 3.2-2, our postulate of analyticity in

e at zero e enables us to equate coefficients of e" obtaining:

) T - )
2T T - -;z_:s*m— ST

T 4 @O% Ozﬁnﬁ)
| Z}:ﬁ (hi=h) Tt . (3.2-10)
J N m=0
By further postulating that Tfi is hermitian analytic:

(\/) Tf ) | (3.2-11)

Tﬁ'(ﬂ Eééi?éﬁj—ﬁ (\/:l-:ie ’ W) ) (3.2-12)

V denotes the total energy Mandelstam variéble, and W denotes

where:

the remaining linearly independent Mandelstam variables, we

similarly obtain:

A
(n) %(V) T(M:F(V) (3.2-13)

Defining:

(3.2-14)

equations 3.2-9 and 10 respectively may then be written:

discvj';ci (v)= —1;(1- V)~ -‘;f:(v) ?

 dise, Tp0)=-L Y SHE R TR0 TG,

(3.2-15)

dLSC TW(V):"?’Z?—— 45“46,1, —RJT(?n)i(V)T("I"”?-r( )

=0
(3.2-16)
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Next, if 'Fq’",’?&j,")?r denote the momenta of the

initial particles, and qﬂ?‘“>ckl7'”7CL3 are the momenta of

the final particles, we postulate the crossing relation:

M (%47"‘9‘117---7%5;'}’1 ,...,’Fkr..,"]::r):
=8 M(Fg yoeoi PragersFisy Pa gonsm AP (3.2-17)

+ 4 for BB and FB crossing, ‘
where: Z; (3.2-148)

- 4 for F¥ crossing

We then obtain from 3.2-7:

M (n)(% 3oy Vg yeey e 3 Pryery Pre 7"';'Fr) =
=5 M (n)("m,...,*?@,...ﬁfs Py Fporesbr) o (3.2-19)

Thus if our initial postulates are correct, we now have
unitarity, hermitian analyticity, énd crossing relations on
our ”F;z , and these are exact to all orders in e.

Finally we connect with field theoretic perturbation
thedry‘of the electromagnetic interaction, by assuming that
éfq_rg?may be pa?tially computed, using our arbitrary spin
Feynman rules, by taking the sum of all topologically different
graphs involviﬁg #(n-j) virtual-photon propogators, where j is
the number of external (real) photons. These graphs are to
be such that they connect the external particle lines by means
only of: virtual-photon propogators, virtual-lepton propogators,
iépton—photon~lépton vertices, many hadron vertices, and many
hadron-many photon vertices., ZIach vertex is to carry one
power of e for each real or virtual photon coupled to it. This
is a fairly natural assumption since we have made a series
~expansion of Tfi in powers of e, but are continuing to treat
its strong interaction structure non-perturbatively.

We further assume that en~tg9has a (Born-term) pole at

2

V = m” if any of the hadronic or hadronic-photonic vertices
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involved in ifs computation can be subdivided into a pair of
vertices coanected only by an on—sheil, stable, single-
particle intermediate state with mass m and squared four-
momentum V, Here, V is again any one of the Mandelstam
variables involved.

We now specialise to the process in which we are interested,
namely: -electron (%,n% ) + nucleon (p,m)—s=electron (qz, me) +
nucleon (p',m) + meson (k,/k), vhere the first and second
quantities in the parentheses following each particle are
respectively the momentum and ﬁass of that particle. Let
the set -{p1, Po s p3, pu, p5} be any permutztion of the set
{qﬂ, D, - Upy - p', - ﬁ} . Then since the external particles
are on shell we can construct ten variable scalar products,
namely: | |

'P»L"Pj’—"}’j"'f’i 5 L#] y  1,4=1,2,3,4,5. (3.2-20)

Thus we have ten Mandelstam variables:

- o 1 - 4
Sﬂ'i—' ij=(?£+?ﬁ> 5 L# o, (3.2-21)

and therefore‘expect that the crossing relation (3.2-17)
should relate the M—function for our basic process to nine
other processes, This indeed turns out to be the case, since
ve may define the following ten channels and corresponding’

total energy landelstam varisgbles.

Channel V Mandelstam variable
1) el —» el s = (:r>+<;4)2
2) €3 —» TN a° = (q - a,)?
3) el -~ eliM | U = (qﬂ'— p')?
) el —» eNN T = (g -k )e
5) BN —3» MM u' = (p- q2)2
6) NN —s= e8H t = (p-1p' )2,
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7) TN —s> eN& - = (p- k)2
8) 8N — BIM t! = (p' + q2)2
9) TH —~ egl 5 = (' +x)°
10) 8N —p BNI s' = (q2 + k)2
(3.2—22)

Channel (4) is our basic reaction, (2) to (7) are obtained
by crossing a single pair of particles, and (8) to (10) by
crossing two pairs of particles.

Only correctly chosen sets of five Mandelstam variables

are linearly independent, since momentum conservation states:

P, + Dy + Pyt P = - Dy (3.2-23)
This allows us to express each of the 845, 825, 835, and Sh5

in terms of the 842, 843, S4M’ 823, SZM’ and S3h' But these

latter six variables are related according to:

Spt Syt Spt St Syt 5314-’-‘2'(7 e S mi)t ms 9 (3.2-24)
‘so only any five of them are linearly independent. Equation
3.2—2u_is obtained by taking the sealar product of each side

of 3,2-23 with itself. On subtracting by, from both sides of
3,2-23 and again squaring the result we obtain a second useful

constraint equation:

St S5+ S54= Sy s+ (mi+mi+my) . (3.2-25)
In particular, from 3.2-24 we mgy derive:
, . 2 z 2
S+T+U+s+t+u=4m +2/J. +3mg )  (5.2-26)
‘. . .
S+ T+ b+ = o™ p +hemg- (3.2-27)

and:

S+ q W+ Trurs=dnt +2pi+hmg (3.2-28)
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wvhilst 3.2-25 yields amongst other things:

S+b+u=q"+2m*+ (3.2-29)

and:

S+q e w=s+mr+2mg . (3.2-70)
o=

Thus for instance we may choose as our five linearly
independent Mandelstam variables any one of the seto.{s’ L,T T/{-g
/ / m
{S,b,iju,lﬁ} , and{ ,bt/,ﬁf,T,t/v} . The discontinuity
of a given amplitude in s when any two of t,u, q2 are held
constant ‘is then related to the corresponding discontinuity in

S by:

C{iSCs A(S;&,M,T, a)z-‘discg/l‘(sg t’ M7'I17 .U:) 9 (3.2—31 )
. discg A(s, b, a5 TEw)= ch/sc,S;A(S.,t,cf;H,u’) . (3.2-32)

discsA(s,MﬁL’; Tyw)= disc}s/A(S",u,,%?,T,vJ) . (3.2-33)
The discontinuities in t and u are similarly determined once
one knows the corresponding ones in T and U .-

The 8, T, .andU —-channels of our overall process are
shown graphically in figures 3%.2-1a, b, and c¢. In figures
3.2-2a, b, and ¢ we show the only possible graphs contributing
to the corresponding eET(Z) for each of these three channe.ls.

Suppressing the Lorentz indices of the hadronic wave-

funections, we have:

2012 . W‘?’z;%'ﬁ'q 1L
e M()(@MT,)F?J%,'F): ‘1(,1'+i’€ )MN('F;R,.’F,%)’ (3.2-31;)

2 o (2) T . Y. Va q,%q,-‘p) e T :
e M ("Vzaﬂf?,%,"fe)* q'(z_mé - M“(T,ﬁ,-k,%% (3.2-35)

B € M(i)(%;_.}, k %’.},/) Wq_ij’ %) u( P: T CL) (3.2-36)



Figure 3.2-18a - Figure 3.2-2a
S~channel of T S~channel of e2T(2)

b7

Figure %.,2-1h , Figure 3%.2-2b.
T-channel of T T-channel of eQT(Z)

Figure 3.2-1c¢ Figure 3,2-2¢C

U-channel of T v U-chanmmel of_ezT(z)
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where'v&'and the Ma are the respective vertex functions for
the leptonic and hadronic vertvices. -These equations are
subject to the spinor ordering convention that in each channel
N& is to be sandwiched between the lepton spinors and Ma
betwveen the baryon spinors.

The vertex functions M& and Ma can only depend respectively
on q2 and on any three of s,t,u, and q2, so vie note that ther
M(z) depend on only three linearly independent Mandelstam
variables., The dependence of the ¢verall i-function on a
further pair of varisbles only arises from terms of higher
order in e,

Equations 3.2-18, 19, 34, 35, and 36 together imply that:

MalPsRs1s9)= MofthB5R,)= = MaEhksP5%) - (5237
Thus the Ma satisfy the same crossing rule as would obtain
were the virtusl photoh propogator replaced by a real photon
wave-function., We may therefore perform a channel 1ndependent

spin decomposition:

A
Mu= Z:Aj(57 bﬂ:)xoc R (5.2-38)
; .

as detailed in section 2.6, and'conciude that the S,T,U
channels of‘ezm(z) arebgiven by taking the s,t,u physical
.sectors of the Aj'

Let us now specialise to the case in which we are
interested uhereAboth the baryons are nucleons,
2,,(2)

The Born-term poles of the three e are shown in

figures 3.2-3a,b, and c. These endow the Aj with poles at:

S=m é’: % U= m
Fa ? (3.2-39)
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> o
. 1
S D
=
e~ —P
Figure 3.2-3a Figure 3,2-3b
- Born-term vols at Born-term pole at
s-_—m2 in eZT(z) _1_;_5},12 in ezT(d)

Ficure 3,2-3%C Bisure 3,2-l

Born-term pole at A disaélzgii con?g%ggtion
U=m __in egT(z) to eQTfN (S)TN] (S)-

Fizure 3.2-5:  Graphical realisation of ecuation 3.2-L0.
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as would have been the case had the photon been real.
Turning finally to the unitarity relations, we have on

applying 3.2-46 in the S-channel:

disc g TE(S) ~~L7’8‘*(ﬂ ?N)[T“”‘(,sf)T@*(S)

AT T+ TEOTIN(]. (3,210

In partially computing the right-hand side of this equation
we have to observe the following constraints. Firstly, T§§)
vanishes .by definition unless Q4 and o, are unecvual. Secondly,
the "intermediate states" cannot involve any virtual particles.
Thirdly, since we arevassuming the absence of weak interactions,
hadrons and leptons can only be coupled via virtual photon
propogators, Finally, we must everywhere satisfy the momentum-
mass inequality:
(2{: ) Zr3n1) 9 2ll Dy equal,
,Pj 77’13) 9 otherwise. (3.2-11)
These constralnts serve to limit the right-hand side of
3.2-4L0 to graphs'with the structure shown in figure 3.2-5,
all of which arise from the term —r69$1$9-r@33159 « In this
Tigure the symbol:=Se= denotes a multiparticle "intermediate
state" with baryon number one and 1éptonvnumber ZEYo. |
Denoting by: sl=f=, a similar intermediate state with'
‘ baryon number zero, we show in figure 3.2-L another graph
apparently having the general structure: 1-$§£(5)7~52?(Sl
If our Tinal meson is a pion 3.2-U44 implies that the s tatesp=t
is also & pion in which case nrgaxcﬂinyolves no interaction
‘and vanishes. In cases where the final meson is a resonance,
£%=¢= could certainly be any multiparticle state into which
it is observed to decay énd %,2-11 would then be satisfied.
However, if the resonance decays electromagnetically into

this state the right-hand vertex must implicitly involve a
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virtual photon propogator. The graph then contirbutes to
T?Li(S’)T@;(S) not to T(O)i(sf)T@T(S) If the resonance
is observed to possess any strong decay modes it is doubtful
if we are justified in treating it as an external particle, -
We can only do so if we neglect the existence of its strong
~decay products. The state $=fcen then only be the final
rcsonance treated as a stable particle and the graph is
eliminated ssin the pion case,

After factoring out the external wave-functions, the
leptonic -vertex function, and the virtual photon propogator,

the equation represented grapnically by Tigure 3.2-5 reads:

dise g Mu(pra-r4irk; St =1 Lim, > §4h-hix

{ . . y T [ .
’F Ma’(f’*"”fw@s 1€, b}‘f)@r(‘\’)[‘/i'm(’}’*'ﬁf" s S“’f’_e; by'f}) 5(3.2-12)
where ﬁgﬁﬁw) denotes the set of propogator numerators for the
particles comprising the Nth. state =pe==, Adopting the spin

decomposition: ‘
, _ ; ﬁJﬁ
Mafprart kS 622 ASEIZS (o)

we may similsrly write:

é?j}é'*' Mgﬂ(’f’u"ﬂ’q k;,S’:l:‘Le’ {','ﬂf‘)fo)-@ (MM (,;,4.5[/.3)9 Prs
Swie,t,q2)= ZA,?(,S'f l',‘lf)i%i : (3.2-4%)
J

In view of 3,2-32, equations 3.2-42, 443, and Ll; together yield:

disc A 4(st,9%)= ‘iZN:”%l"(’fi‘ ?N)Ag(s*, b)) (3.2-45)

This is precisely the unitarity relation which would have been
obtained had the photon been real, except that it now zpplics
~

‘ R W:, .
in addition to those Aj whose corresvonding JYy 'Vanlsh at

zero qg. Similar considerations apply to the discontinuifies
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of the A. in t and u determined by application of 3.2-16
to 782) in vheT and Uchannels. |

The discontinuity condition, guaranteeing the hermitian
(rather than anti-hermitian) analyticity of Tg) for T-

invarient processes, continues to be given by 2.44-23 which

reads in this context:

%3 . A A S
Y R T AT G T, (3.0016)
where/x denotes the Lorentz indices of the meson wave-function.

For the obvious choices:

Va= % (3.2-L7)
and: .
Vx = [/3'04 F:;(qf)"'f"“%ﬁ&(ﬂf(gﬁ(‘i«”] R (3.2-48)

this reduces to:

~ . ;aéé'

x/ip(”]-rﬂ(f“‘)ﬁ("‘)nr 17’{0 75 ‘(:1%._]_ 0 | (3.2-49)
where Qgis now the product of the time-rceversal phases of
the virtual photon and the three hadrons, Again this is the
same equation as-that obtaining in the corresponding real
photon case, | ‘

| To summarise, the results of this section coupled with

the Reggeisation assumption of the previous one indicate
that we may derive and saturate superconvergent sum-rules -
for our virtual photonic four-point functions by utilising
exactly the same technigues as would be employed were thé

photon real.
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CHAPTER I

DERIVATION OF SUPERCONVERGENT SUM RULZS FOR THE
PHOTO-AND BLEGTROPRODUCTLION OF NON-STRANGE
MESONS OFF NUCLEONS .

In this chapter we utilise the formalism and results
of Chapters 2 and 3 to derive superconvergent sum-rules
for the four-point function corresponding to the process:
real or virtual photon + nucleon-non-strange meson + nucleon.
We consider the eight cases in which the meson has all pbssible
combinations of the guantum numbers: (Jp; I; Cn) = (0" or17; O
or4; +4 or ~1). (L-1)

The kinematical definitions and relations we shall use
throughout thié and the final chapter are listed in Appendix 5.

Throughout the remainder of this thesis we shall often be
dealing simultaneogsly with both three—poinf and four-point
vertex functions, For the sake of clarity we shall henceforih
use the term "M~function" when referring to these latter, and
will speak of decomposing them into "invarient amplitudes".
The use of the térms "vertex-function" and "form-factor"

will be restricted to three-point functions.

4ot SPIN DECOMPOSITIONS.

L.44 SPIN DECOMPOSITION FOR THE PRODUCTION OF PSEUDOSCALAR
MESONS , '

The vertex is abnormal overall, and we write the M-function
as Ma where o is the Lorentz index of the real or virtual photon
wave-function,

We have:

N (T+5> £+0)=6 N(O%%>5+0)=2 e mt)

50

N'(’{‘"-*%_——» $+0)=6 N(+ > 2+0)=4 | (bo14-2)

2



‘We therefore require a K.S.FP., spin decomposition:

o~
M ZA( ASIVN 7 (he11-3)

in which the JZ;‘vanlsh on contraction with q, » and just Gﬁy
and ;é;< are proportional to q . The vertex is s<—»u crossing
symmetric and the éé; are therefore reguired to satisfy
2.42-14, This will ensure that each Aj; is an even or odd
function of ¥,

Since we are going to work with the gauge projection
Operator_éakk(él), we require as a starting point a suitable
set of covarients corresponding to the coupling function:
Zj:;(4' + #=>% + 0), No type B equivalence theorsms are
involved, and a suitable choice of initial covarients is fur-
rished(qo) in the set;: ([%{7%’,] 7?,,<,Au,’2‘“ ,?dﬁ,,Ac<ﬁ,)%'5 .

_Several other possible choices are avallable, and the
reasons for prefering this particular one are as follows,

To exploit sesu crossing symmetry we require that the initial

covarients be even or odd under the substitutions:

—pesp', Qe—sqg, kKe—sk, (L4 -l)
This dictates that we choose as our linearly inequivalent
"indexed" momenta: P, and either AQQ or Q,, (theée latter two
being respectively equivalent tO'-ka and + %ka). We choose
Pa andé& since A will be the momentum of the t-channel

Reggeons. We choose yito be oursingle "slashed" momentum

in order to exploit the useful equivalence relation:

{Ta.4}=0. (14 -5)

The covarient: [?Q,ﬂl?}- already vanishes on contraction

with Qg s and from the remaining five covarients we obtain:
@=Rvap A @)= &49/2
M@= G- doa/ar ,  PLOE=Tud-vd9./42

nd: ' '
a A{{(‘L)ﬁ/z Adﬂ/"'ﬁ'q’ﬂq’o(/‘f . (L,14-6 ‘tO 10)



153.

Two singular-tails: qa/ q2 and g{ qa/qz are involved in agreement
with the second of equations Ll..'H—-’L. Elimination of the
second of these need not introduce any singularities, but
elimination of the first will necessarily introduce electro-
dynamical poles into two of the amplitudes at the vanishing
of either VY or A-q, . We shall choose the following

elimination:
%:E Udﬂr”s a
Z 2= [a T ()AL @]l =(6 4R AT
\%3 [Aoc(“i’)?f/"A 1T @] %= (ax A ‘1»%)75—
K VAL [’Pd(@ﬂz V% ("V)]’Dlg (?o:?lb VI)Ys >

%da ‘fA{x (%),5’5; (a’} AM-A"LC"“)%; 9
~C 2 2
%,,(5 9 '5:((‘19{55: (cl, Wo&—- 9&161’“)65— . (Le41=11 to 16)

The covarients %z and ‘7’{23 are eqguivalent to zero at vanish-
ing q2 as required, and the amplitudes A2 and A5 have electro-
/dynamical poles at vanishing A'Cf—'

Equivalent sets of covarients for this vertex have already
been .given by a variety of autho'r-smo) using slightly different
techniques. |

The spin decomposition for scalar meson production is
given simply by dropping the ’/55'5 , but this we shall not.
reguire,

L,42 SPIN DECOMPOSITION FOR THE PRODUCTIOQON OF VECTOR MESONS.

This vertex is normal overall and we denote the -
function by M/’W where o again refers to the photon and/,L is
the Lorentz index of the vector meson Wave-functiqn.

In this case we have:

N (1+L>4+1)=18

° N+(O++ji'9%+1)= 6 9 (ﬁ.’, 2-1)
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S0: ’ .
N+(/Jv+ %.;%-{-1):’18 , N'*‘(/J'R,_}_%-—»;-ﬂi-l-']):']z 5 (l4o12-2)

and we write:

18 1 |
A8 A

The %/J ( are agaln to vanlah on contraction with Qp e and
just ;/;fx to 27/ are to be proportional to q2-. In order
to explolt s<=»U crossing symmetry we again require that the
.%/u,( satisfy equation 2.L42-14,

Wle are going to determine the %/wc by operation with
{}d/&;(ﬂ,) on a suitable set of covarients for the coupling
function: Zi/f“ (47 + t—=% +4). Two inequivalent type B
E.R.'s are involved., To see this we notice that the infinity
of possible \/d/uo( fall into threce classes. Firstly we have the
infinity of “"factorised" covarlents M4 -7(“, where ‘%/4 and %“
are any of the infinity of covar\\lents sultable for ‘_Dhe spin
decomposition of the functions 5;(0 + F=>21 4+ 4) and
”V"i (y + £~ + 0) respectively. Using only type A E.R.'s
these can all be'eXpressed in terms of eighteen “obvious"
covarients suitable for decompos:Ltlon of 'U;Lu(y + 5~rE +1),
for example the (P’q’Y)/“ «'ﬂ&"’ vhere the 7502 ”© asrare the final
covarients of the previous} section., Secondly we have the
infinity of (Ci,ﬂlf./ Xq‘ﬁ/,w()’ where Z/‘,( is any covarient
suitable for the decomposition of Zf'; + ->3% 4 0),

These are related by type A E.R.'s so that only any six are
linearly independent. For example one has the six covarients
obtained b& choosing for the Ky the set: (P,4,y)u (’ﬂq.,‘f‘;,)

As in the previous section there are then.just two linearly
ihdependent iﬁ/fi, , one involving an overall unit matrix and the

other an overall 71, . Thus by taking linear combinations of these

six covarients we may eliminate the metric tensor from all but
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two of them. The four which are free of metric tensors may
then be expressed in terms of the (P;q,y)/&%’:z"'7é using only
type A E.R.'s. Ve then have twenty covarients, the previous
eighteen and for example: (%MAM—A'%S,‘M) and (%A{a’d—.ﬁ/ﬂﬁkd} .
Thirdly we have an infinity of covarients involving terms of
the type: 8/,‘“(. .)')’5 . These are related to the previous
twenty covarients by means of eguivalence relations derived
from the equations of Appendix 3. All such E.R.'s are of
type A, and the “"Levi-Cevita" covarients may always be
eliminated in favour of the former twenty without the intro-
duction of kinematic singularities. Finally, the two covarients
involving 3/“"‘ 'ﬂq. and Q}mﬁ, - can only be related to the

(?7 ‘1»77) %1’ 26 through a pair of inequivalent type B E.R.'s
derived from egquations A7-6 and 7.

We are required, then, to take as our starting point

twenty covarients sui‘tablé for the decomposition of

B (‘1 + £—>1 +4) and related only through the above

pair of equations, An obvious choice is the set: [(’F A '6') (’F

ﬂ)o(? 8/»’-"(](7147%) but we sha}l choose:

#'= PP A =PPg
x°= 9P x=9Pd,
%%z PA #P=Pag

ALK | K= qnd
#%= PT A= P1,4]
#%= 1P A (KX
X'=q7 2"z q[%,4]
#5= 1 B=7, 4]0
#’=3 %"= g4,
A=[1,7] - K=

(Lo12-L to 23)
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where we have adopted the shorthand .ﬁotation of zppendix 7
with in addition:
KE T , , 353/&“ . (ho12-2L,25)

We have chosen to use [y,ﬂ and [ygf{ry] rather than yy
and yyff, since only the former two covarients satisfy the
S<—»U crossing relation 2.42-14. The choices q,/A and [’Jyﬁ,]ﬂ'
rather than A/u and T/.:./[, are then dicteted by the require-
ment that for simplicity the gauge projection operation should
lead to just six linearly inequivalen;c singular tails, As
in the pfevious section we choose [’5”6”« rathe;1 than ﬂ"‘fff
since the former glready vanishes on ’contractionlwi‘th qa.

The gauge projection operation yields:

2@)=PP-»5"  #"@)=PPg-vs®

2 (@)=qP-»5" K (3)=9 P - S°

RP@=Pa-aq ™ @/ Pa)-Pag-aq st

2H@=q.0-095  3I%0)=q8d -aq ¢

2 (4)=Py - 5° X E@=P 18]
xlé(%)=7P 3% ﬁ’lié(q.):['évé,]?ﬂ)y
2/7(@)=q7- 5 #"0)=a.[1,4]
AP@)=1a- g 5% ®"%e):[1,4Ja-2095
#(@)=g-5° *M@)= g4~ ¢

x/io(ar):[ﬁ’,’&f]..s‘i (7(/20@’):[’5%,’5] , (4,42-26 t;) u5)

where the singular tails are given by:

s=[1,8lafe StTe/r
5Pl 57 Pad. [

$¥=a9.j" s‘=qad /e

(L4.42-46 %0 54)
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Eliminating these in the usual manner so as to introduce

the least number of electirodynamical poles, we obtain:

-

A-qﬂf“—vifim = Ag PP-2TA

z \7({/2_2)7(/9 = q.P- g
w-aqit? = qn-aqg
1’/“ v = [1,4.1P-[1,7]
Mv&® = pPY-»PY
Bonqg K = PAg-2-4PT
7//7 \7//19 = q9-94,

i

N =X

]

lll

lll

lll
&

IH

R W %\{2 %’&2 NZ §'&Z ?’&Z
W
P

8 _ -‘LJL’/é- 7(/8 = A TP-PTA
Y2k -aq 2 = [1,4.]a-49]1,7]
xS =PIl
Z' =" =4.[7,4]
'%425 ‘7\{/20. - m%ﬂ
A %276/7’ = q* PA-Aq Pq.
A =97 3-99
S g2 76/8 = q*fn-~ A"LW%
s qr K =" PY-Pod.
R = r!? = 9" 94~ 494
Z®=qzr!" =q>[1,7]- 1,49

- 7(‘//12*”%/49 =qPd.~vg4
7= nq w0 =0 4

(L1 2-52 to 74)
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In terms of the covarients of equations L.12-4 to 23

equation A7-6 reads: Aq, ‘765."' A-qj{"—v&’d"*‘ V«%s

0 2 1 2 .
+ my K+ K- x 3'4‘771%15"”176164"(%1‘%)% 05(7,(&&2-72)
whilst A7-7 states:

((,":"-A.al,)xi- 6% 30 F mn (a-q~- VK T4 mq* *K®
+ g [Ur = (g P - m R R0 K 1
+ 3 (b-aq) KT+ o K mp k=0 (bt 275)

Operating on these two equations with'%/d/d(‘?) yields
a pair of eqguations which we will denote by L.12-72' and
| 'LL.12-73' in which each (7‘»/2’ is replaced by {ﬂ/i(‘f-) . As a
check we verify that eguations {(L‘,.'fQ-—?Q’ Y-(LA2-72 )]
and [(Lp.12-—73')~(h_.4 2-—73)] are indeed satisfied in the sense
that they esch reduce to the trivial result:  zero eguivalent
to zero. Inverting equatlons Lh42-52 to 74 and substituting
the results into L.{2-72' and L4L.412-73', we obtain from L.4 2-—72‘:

%%#+%é+ :)'.7/\27»%‘7?8-7?1 %"".;.(-g:-m”“)%"’—%” ~ 0

| | (Lot 2-74)

whilst L4.12-73' yields: (4‘1"%2)%1—D%3+D%4

T, A WO LR AN YRR AR

+ R p B mZ e Z - EX v mE 20 (haro-1s)

. Thus without introducing kinematic 'singularities into the

amplitudes we can eliminate any one onf‘\"’7é“"’6’8’4‘O’Jl 9, using

4,42-74, and any one of%43’45’17’20 by means of L.412-75.
Ve do not wish to eliminate any of the six covaricents

pfoportional to q2, nor any of those which by viftue of

the tail elimination procedure correspond to amplitudes

necessarily endoved with electrodynemicsl poles. Such a
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latter step would introduce these poles into more final
amplitudes than the minimum number reguired to have them. The

13,14,15,16,17,18 ana X $,13,15

=z 2
covarients vanish at zero q,

correspond to amplitudes haﬁing electrodynamical poles at
vanishing A-+q.
219 2520
We therefore choose t0 eliminate K ~ and x . Our
final spin decomposition is then given by equation 4.12-3 with
. 1
the eighteen (7€/A$ defined by equations L.{2-52 to 69,

The amplitudes 44 are subject to the above mentioned

1, 8,1%,15
poles., '

| Scadron and JOnes(13> have also obtsined twelve covarients
for the process: real photon 4+ nucleon - nucleon + vector meson.
They use a similar technigue but apbly their gauge projection
operator to twelve covarients for the elastic (!) reaction: -
vector meson + nucleon-—snucleon + vector meson, This method

seems to us to be rather hard to justify, and we prefer our

own approach.

.43 S¢>U CROSSING SYMMETRY OF THE SPIN DECONPOSITICNS.

For the covarients of the previous two sections, equation

2.u2—1u reduces to:
ﬁ;m(ﬁl\ AN NS ¥l 75)
= Z;;L ﬁ;w‘ 'F,A,Cl’,_ug E ,ﬂ:‘, WS’%.-"J}Y@V> 5 (LL.'S. 3-1)

Y ' Yev
where fﬁ} denotes any product of " %v's ", and {nj} ¢
denotes the same product with each Wv multiplied by minus
unity, and the order of Wp‘s reversed, For the covarients

of section 4.11 we then have:
+1 1=3 506

z ? 279 9

L —'17 ‘i=17’2-71‘*‘> (u-"! 3"'2)
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whilst for the covarients of section 4.12:

+1,4=1,%,%,6,8,10,12, 14,16, ( )
= L"o‘l 3_3

-1,1=2,5,7,9,11,13,15, 17,18.

4,2 ISOSPIN DECOMPCSITIONS AND ALLIED TOPICS

Following the methods outlined in sections 2.L2 and
2.6 we Tirst use the isospin M-functions corresponding to
t~channel polé diagrams to construct to within normalisation

constants the covarients (projection operators) corresponding
to eigenvalues of t-chennel total isospin. ¥We then inﬁoke
equation 2.42-15 to pick out those linear combinations of
these projection operators which when adopted as chennel
independent isospin covarients will lead to 0(3,1)05U0(2)
amplitudes which are even or odd under S<>u crossing.

We could equally well start by constructing the s or u
channel isospin projection operators, but we work in the
t-channel because our covarient Reggeisation calculations
will require us to know which combinations of invarient
amplitudes correspond to eigenvalues of t-channel total

isospin and third component’ of total jisospin.

Lh.24 PRODUCTICN OF ISOSCATLAR MESOIS.

We have in the t~channel:

 7<°’ —~~o?l)o<:7’~-o)zf> K0, 07) (12121
\%47\/ Aa ; O?)OC 7(,% % T, )@,E Q({L('I,OTO . (Lh.21-2)

From section 2,22:

P°=1 > Fr:,f SkL R (ho21-3,4)

and from sections 2.32 and 2.6:

%(2 2, ) 7 5 7/ (—i'y.,)1> ftra s (LL02)1—5,6)
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230,00 = K(0,00)=1 , (14.21-7)
‘752’(470@:‘%,67&@707)87%: Ses . (4.21-8)
5o x° 5(4?.,4 oY), , (L.21-9)
e RMCE R 5)‘7073 - (L.21-10)

Note that in equations L4.21-1 to 10, superscripts O and 1
denote the values of t-channel total isospin, whilst s and v
denote respectively isoscelar and isovector transitions.
The covarients ﬂz and 7% both satisfy 2.ﬁ2~45, so it is
unnecessary to take linear-combinations and we adopt as our

channel independent decompositions in Lorentz @ SU(2) space:

6 ' -
?—Z;Aﬂ“‘“/ém DR , C (h.21-11)

o Z(A ﬂ+/\ ’L’g,) [ (b.21~12)

as approprlate. The isospace "Eg ~-factors' of 2,42-15

are then giVen by:

ZS:H 5 };v="1 . (L.21-13,10)
It is important to realise that isospin crossing matrices do
not "mix" isoscalar and isovector amplitudes. . That is,
amplitudeé vhich are isoscalar (isovector) in a given channel
are also isoecalar (isovector) in all other chamnels. Hence
our notation for the smplitudes, For the same reason,

4.24-13, 14 may be usefully written:

7 5\57’ 763& 9y" -1 (LL.24-45,'_16)

Finally, we note IrOm L,24-9 and 40 that when we Reggeise,

the A

(2
v .
whilst the,Ai will only get contributions from trajectories

will only get contributions from trajectories with: I = O,

witht I =1, I3 = 0, (Rule L.24-17)
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Lh.22 PRODUCTION OF ISOVECTOR MESONS,

With the notation of the previous secticn, we now have

in the t-chsnnel:

KTEL NG 2P K 01T) |, (h2e)

U CER PN ACE R AN HRLIRICECD
and:

.763 %‘Fi 1'6)(%;7‘,& 12.31)0?/‘('3‘6”(1 17{) (4.22-3)

In addition to equations L.24-3 to 8 we now need:

R 351,1%) =Ry (1,10)= 8 .

| i (1) = Regrnl1108ma=18050 . (.00-5)

o RPN S5 (1.22-6)
g{l’s(ﬂi?{j’ﬁ)e@ T o, (1r.22-7)

and: ‘%gv(ﬁi T‘z',‘.;’T’Zf)OC z[ 733] (Lb.22-8)

Again it is unnecessary to take linear combinations of these
three covarients since each one already satisfies 2.42-15,

80 we wr:LZe in Lorentz@ SU(2) space:

mé 120 (ATws+A 837,+A .z.[’t’gﬁs])ﬂx , (h.22-9)

=1
for productlon of pseudoscalar mesons, and:

Z(A T3+ AT +Ai’5[’fﬁﬂ’3])t7¢io<

}Ld i=1
for vector meson production, (L.22-10)
The Ef factors of -equation 2.L2-15 are then given by:

.Zi“';szo=1=767v\g+ y 7@7\/2-:”1 o (2211, 42, 43).

From equations L.22-6,7,8 we see that when we Reggeise,
trajectories with I = 0,(4) will only contridbute to AT,
(A° ana A7), Furthermore, on inserting the appropriate

isospace wave functions we find:
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A (MY=pF) = - (AEJ“A?) , (o221
AL (MY =n7)= ~ (AS-AT) (4.22-15)
A, (MY =>np)==]z(A+ A7), (4e22-16)
AT R AD, e

where M denotes the meson. Eaquations L.22-1l and 15 each

correspond to linear ccmbinations of states with Itz 0 and

states with I° = 1, Ig _ 0; whilst equations 1j,22-16 and
47 have It = 1,.and Ig = -1 and + 4 respectively. In more
detail, h.22-44 and 415 read:
A+ cbl
A 0 e N Aivl '07
i(M W“”'T’” = o tboq (L,22-18)
Ai 9 1= 5
. ( + !:_O
| - ~Ay , 1750,
AMT ) =~ T
A, TET (L.22-19)

So the above rule is more precisely stated: A+-gets contri-
butions only from trajectories with I'z 0; A" gets contributions
only from trajectories with I = 4 and I3 # 0; and A° gets
contributions only from trajectories with I =4, but any value

of I, is allowed., However, if conservation of C-parity at the

3
photonic vertex disallowes a particular isovector trajectory
from coupling when I; = 0, then this trajectory does not

t
3
only to A”, _ , . (Rule L.22-20)

contribute to A° even for I # 0, contributing in this case

The detailed mechanism by which the latter part of this rule
comes gbout is easily seen if one ignores spin and denotes by
Ag (4) and A;(4) the contributions to A° and A~ respectively

of a given isovéctor trajectory. One then has in isospace:
- . 1
AR (") T+ Ag ()zlrs,T2)= Cr (% %,Of;{;; Qj (117%)
where : (\jk(%%,'\):: S,R(/'—Zéz,'])jdk(ﬂz%_ﬂ) >

(L.22-22)
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24q (1,10)= s;(1,17):7@(«,17)—%6;@,m:?dlo'@m s (h.22-23)

al:li.d 6R7ﬂﬁ7ﬂ? denote (factorised) Regge couplings. Now
X 00:§,§04)&>(N) is non—vanlshlng LQP all sU(2)-allowed

.f L] ~
configurations of isospin-projection, but % (N)[’—}’: Q(M)‘)TSJQ(N)
is non-vanishing only for allowed configurations with I; £ 0,

S0.

A;('):gﬂ (-71— Ji,’) 375’\ (l-;’ 7) s any I;’ (4.22-24)
i v
A (0=9 ( ) (‘ 17) . I; £ o. (L.22-25)

Hence the statement that C-parity conservation at the photonie
vertex forbids the trajectory from coupling when 15 = 0 is

eguivalent to saying:
S( -

Sﬁ I,l {b’)" 0 ,» for I; = 0. (U4, 22-28)

But ﬁ; (’Iﬂ'l)is independent of isospin-~projection as is
: )

equation 4,22-24, so L.,22-26 forces A.R('O to vanish even fTor
t
I £ 0.

6‘&(1,1?)'—; O, and so for I§ £ 0 the trajectory is 'Still able

However, consesrvation of C-parity does not recguire:

to contribute to‘A-.

4.3 M-FUNCTIONS FOR COVARIENT REGGEISATION AND FURTHER
REGGHON SELHCTION RULES.,

We write the matrix element of the e.m, current-operator
corresponding to the t-chamnel process: (real or virtual '
photon, momentum: q) + (meson, & - (JP,M, momentum: - k)—>
(on-shell particle, spin: J, normality: + 4, momentum: A ) —>
(nucleon, momentum: p') + (anti-nucleon, momentum: - p), as:
P L LRI

PP LGIMIEER) ) (T7)0=

" (431 ,2)
where: . v
] e Ve (T07)
II"*: "C/(z,)'-?‘(—?: Z )@ (o ( )
/.,ux (e-)'-“/m ([T17) . (4.3-3,1)
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Note that we are decomposing the matrix-element in spin-space
only, eand that we shall hereafter refer to the intermediate
particle as a Reggeon, even though we have yet to continue to
complex dJ,
*

The coupling function Ei(vﬁx% %+ J ) was given in section
2.32, (equations 2.32-24 and 25), but in terms of a different
set of momenta coupling at the vertex, In terms of the momenta

involved here, these two eguations read:

5&#@&@1:@3yw7@?%+3;%0 , (4. 5-5)

T (AL ()T
B(u)v( Z 7.T)' (?7)) (ﬂng, + 31.;-%),) /(Tg . ( h,3-6)
In section 2.32 we saw that normal trajectories only couple

to the nueleon-antinucleon system if they have:

G = (-1)971 (4.3-7)
Bither sign of G is sllowed for abnormal trajectories, but

they only couple via g3 or gﬁ according as they have:

Jd 4+ I J + I

G= (1) or G = - (~1) (4.3-8)
For non~vanishing Ig no C or G parity selection rules
are operative at the photonic vertex, but for zero Ig we

have the selection rule:

Cn Reggeon = CW Cniteson =~ %% keson. (L.3-9)

No "splitting" of the couplings takes place at this vertex
for any I§ . ’

The combined implications of eguations L.3-7, 8, 9 and rules
u;24—17, 20 of the previous section arc summarised in table
4. 3-II.
| In table L.3-1 we list the cuantum numbers andvzero—t
velues of the well established trajectories. All trajectories
having sets of guantum numbers other than those appearing in

table L.3-1I are indicated in table 4,3-II as "not known'". They
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are assumed to have negative definite a(o) since if this were
not so they would by now be well established.

Having deducedhtable L.3-II we are in a position to
complete the covarient Reggeisation calculstions by working
in Lorentz-space alone.

Teble U.3-III combines the results of tables 4.3-I and II.
| It lists, for trajectories coupling via 84,2; ga’ and &), the

least rapid asymptotic fall-off that trajectory can contribute
to a given amplitude if the latter is to satisfy an ordinary
(i.e. zeroth moment) sum-rule at vanishing t. At the present
time there exists some doubt as to whether C-parity is ever
conserved in virtual photonic interactions involving hadronssw)
For completeness we therefore list these minimum fall-off
requirements for both of the cases: C-parity conserved and
C-parity violated at the photonic vertex.

In table 4,3-IV we combine the results of equations:
2.02-4L to 17, 4u13-2,3: L.24-15,46; L.22-41 t0 13; and
4.3-Ll4 to 46, and 1list those Lorentz ® SU(2)-space amplitudes
which will give fise to non~-trivial sum-rules if sufficiently
superconvergent, This table is only applicable if the four-
point functions are charge-conjugation invarient. If this

is not the case, all superconvergent amplitudes result in non-~

trivial sum-rules,
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TABLE 4.3-1 THE KNOWN REGGE~-TRAJECTORIES.

‘\
n, |TRAJ (:"R Pr | Iz | S| G o(R(O)
P,P' + + 0 -+ + 1.00
Q - - 1 - + 0.57
+
A2 4 + 1 o+ - 0.40
- + 1 + -
_ Ay o<o<R(O)<1
w| o+ - 1 + ™ | &g(0)<0

TABLE L, 3-I1; RAJGGD-T'{AJ“C"‘Q?_{I:ﬁ”COr_ TRIBUTING TO BACH

ISOSPIN ANPLITUDE VIA THE VARTOUS RuGGEON-NUCLEON-
~ANTINUCLEON COUPILINGS.

g Ig o~ O 1 o

';‘7%«; wprrruef A% e At AV e a0f a7 | | B
(e
gfé TS - + - * § g
gfﬁ o¥f .l - -+ +:;
AR Sl Ml I T T
R ¢8| &~ R I A I R
_ 7 22

LI P + + éggé%/f,P'f:;éé9fQ Ao * -
il I 1 aEe
gy A—t /f222§7F 5222;§3T T+ | -

i HEER” BN~ ERE

| %
§ + | - EZ?;; 17 {j?%f N | - +
- // Z Rk
T, 3| Py S| wwom TRATEOTORIES
#Allowed by C-parity selecticn rule at ylUR R vertex.

fAllo~ed by C-varity selectﬂon rulc at REL vprte/.

%J ndicates disellowed,

I indicates '"none known',
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Ry

TABLE L,3-IIT: MINTMUM RESUIRENENTS FOR THE REGGE
CONTRIPUTIONS DUE TO Tis FOUR TYPes OF CODUPLING TO
GiVE RIGE TO A& SUPHRCONVARGENT AoLITUDS AT £ = o,

ISOSPTIH REGGEON-N-F COUPLING CORSTANT
INDEX OF :
PLITUDE C CONSIRVED AT |C VIOLATED AT
PHOTONIC VERTEX |PHOTONIC VERTEX
Li=O (4=t |Gy |8y 0 | 83 | By |8 o | B3 &l
+ 2 1 4
S + 3 1 1
- 3 04 |
4
v o + 2 y 5 ’ o
- 2 4 2
NOWE - < 2 4 2 2 1 2

Entry N indicates thal contribution must fall off as

least as fast asy®@- when |V]—+eo.

TABLE L.3-IV: AMPLITUDES GIVING RISE TO INON-TRIVIAT,
SUN-RULES 17 SUFFICIAITLY SUDARCONVARGENT, .

TYPE OF EVEN . ODD
SUM~-RULE -MOMENT MOMENT

SET OF O(3§l} {A}.,_ {-"\} - {A }+W{A}-,

AIPLITUDL

Cr
o + |s,v |vows |wowz|s,v
- |nomm|s,v |s,v | woum
y + 0,+ - - | o
. - - 0,4+ | 0,4 -
1, (e, TSospIn IroEX ’

,{A}i indicates the set of A, for which
the 5i factor of eguations 4,.13-2 and

3 is ecuasl to .
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L.p LORENTZ SPACE COVARIZNT REGGEISATION CALCULATION FOR
PRODUCT ION OF PSAUDOSCALAR MESONS.

b

The relevant K-function, Mg is defined by eguation

. . ) £ 4y :
4,33, with the coupling-functions t3087(§ % J) given by
equations 4.3%-5 and 6, and involving twocoupling constants

each: g for &F and g5, forl.”. The vertex function

’
”U1;5754(J O y) is given by equation 2.74-5 and involves a
single form-Tactor ﬁl(qz). chsvu(J Oy ) is given by
equation 2.73-7 and involves two fbrm—factors f2,3(q2),Athe
covarient corresponding to f3(q2) being proportional to q2.
Thus. in agreement with our counting rules for this process:
Mg+ and Mg" together involve six factorised couplings:
ey, BoTy, B3Tp, &,Tp 'g3f3, and g, T, of which just the
final two correspond to covarients which are proportional
to q2. Eagh of these coupling constants and form-factors
should stfiétly carry an index J, so that on Reggeisation,

(J~»a(t)), it will gain a dependence on t, It is convenient

to define:

M= (9, MY+ 3, M5 1) 5, (8 (it )
MT— = <6 $M31u+64M42°{> :5:"' ( -

+ (gsMg,;u + g, M ’soc)ch(‘f') (Loli-2)
We then have: )
11o<~ﬁ)0" 20’04( CL) ) : (L4ob-3)
Moo ,,00 rEoul®d) (4.1
- ,
e:z.x (ﬁa Aoﬁ”“’ﬁ«)% 5 (L. 4-5)

T 0T
3so< &O +P a”“)% cfpf’?;{’a’s, (L.L-6)
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M42°,= *(Wp@?’Aﬁ'Aﬂﬁ'p Wz};x)ﬁs Y (Loly-7)
f\/ =(°1f I(}’z)ﬂ?: v<+0’2) vzqfxﬁs gq}%@; Vs s (L.4=8)

where the argument of each partially contracted propogator
numerator is: (P,-q;A).

We take these propogators from Scadron's paper?)but in
view of the following facts, their structure is in each case

equivalent to a considerably simplified form.,

In view of equations A5-5L, 55, and U47:

P@=P PE)4@)=2

2N DL 2 L
ana P @2P=mr—zg&, (Leli=9,10,41)

in all propogators.

f:, and 5?,?‘0.. are both contracted withl & v (/-‘» "[,-) » SO
AG,“::—'O ., Ge.)=0

Yo » and 32}0’(‘3)5-’{- Jve. (lel=12,13,14,%5)
As usual we have: D & o . (L u-16)

Finally, in view of the Dirac eguation on the nucleon and

]R

anti-nucleon s'pinors and the fact that the?® index is always
. . N T .
contracted with Tp in the case of ﬁa));o’ and Tp2’5 in

the case of ﬁ—r and &O Vil 2 we have:

Y,
J.m in ﬂ?;;o* s ()4-’4-"17)
B, (a)= . .
O in y; and @;« . (4.4-18)
- J
g in ﬁ;c' 3 (Loli—19)
LE)=  2matL T T
' _ﬂ" t ﬁ‘; nd @30& ) (LI--L%—QO)

B ) 2mh-% T
and: G @=L = PR (Uoli-21)
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Thus the propogator numerators are given by:

T_ Y =Cg /
P=cc by, Po2FFely (lnh-22, 23)
e /, J _
7» 0% o’ TW T’Po*ﬂpv -mqf"(A)"P @-‘I] (Lol-2h)

N ., —Cr / % /
@4 =*f“(ﬁ@+“§:‘P4“1’Am@-1) ’ (Lol-25)
Tha o C - / |
I 0 2 [(Frnac 1P +R(Frmat- AR/

A_*_%,P q,(—-—-m/:\:q, ﬁf)ﬁm fq]’lfs . (LoL=27)

The argument of all solid harmonic derivatives in the above
_equations i$ P(Ll) a(A ). When we make the continuation
d=vo(t) a term 09 \1111 therefore have lﬁadlng asymptotic

«f b)—-

behaviour As we mentioned in section 2,5, this
ieading asymptotic behaviour is not affected as far as the
dominant contributions to the ampli‘l;udes are concerned by
- any mechanism invoked to remcve the poles at zero t.

After substitution of the above expressions into equations
L,L-3 to 8, it remains to relate the nine covarients:(@l,ﬁlgﬁ(ﬂ;h
ﬁ,)'(fﬁ. ) (ﬂ;,,,ﬂ,)c‘;“(?Aq,) and &y ('EAq,) to our six %;‘2 and
two singular tails. This is achieved for the first six
covarients by inversion of equations L.41-14 to 16. We
expand the final three covarients in terms of the initial
six by means of equations A3-29 gnd 30, and the Dirac egusation,

On convertlnv these expansions 1nto expansions in terms of the

\750( and snzgular tails we obtain:

~ 21\41 - oo r\;)+ A
£.(PAg)z~P Kﬁ Ko 2mF o s (L. u—29)
b EulPaa) -y R hoeq Rl mili- 5

(u.u—zo)
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We note as a check that these three eguations involve no

singular-tails or terms in 5629/%3 , in agreement with the

fact that Zx('X[_\q:) and EM{'PA%) vanish on contraction with q..
This same check is available vhen we similarly expand the

MY , and as a further check we have that the only allowed

&o<
singularities will be‘V@ poles due to Reggeisation and @évq_
electrodynamic poles., The foxrmer may occur in the coefficlents
of all covarients, the latter only in the coefficients of 5?:
and &éi.To effect the necessary cancellation of all unwanted
singularities it is necessary to invoke the recurrence rela-
tions on the solid harmonic derivatives,

The two linearly independent recurrence relations on the

Legendre polynomials reads

3P0 @RGP D, )
and: ) 3('7::4)(%) -P (ﬂ+ 1)(%’) (2-:]"’“0‘ 1)D Cn)(%) ( LI- o LI-— 32 )

SO Pa)4.()P gz +1)[F(A‘) ] () (Pa(.%) [’P(A)-‘L(A)] =

- ’Pz(a.)qf'(é)ﬁj.(?'m)[’?’(@'%'(&ﬂ , (Lob-33)
- AR EORIAE PH=)9" (A)zf"”‘*")[P(A) ‘4.(&)]=

= @r+1) PP 1@)] . (4.b=34)

After some use of these recurrence relations we finally

obtain:

T+ D
M11°<=—T—_ [’P] +J(f Zm]{ _{, | (4.4-35)
Mt = [ (B v R+ P RN Bl m R F

1%

~2 (Rl v R MR R~ FUEER - m R E R oy 6

e Co .
Msz«"'“’f[ﬁ:% *‘Pﬁ[p/ "65.] 9 (4.4-37)

L )
o= Fag LER R TRATEEIRD
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T~ =~C . Hamier o4 I Lol '2. 1
Mug™ T* [A q'ﬁ:r'(uf:”ﬂoc*‘%o<)+(ﬁ¢-'.'p@'- i 1>‘7d

'%'P'JA‘GI— @{/—1 (zén‘%g vzo{)] (L.4-39)
M SRR Rt e @1, 2
+Er+Pa. 1_1)(2‘%%5‘”7&’3)] (Lo 4=10)

In table 4., Lu-I we pick out the dominant asymptotic
contribution each invarient amplitude receives from trajectories
coupling via each of the six gjfk. An entry N in the Aith.
row and gjflth. column indicates that after the continuation
J—0t(t) the coefficient of g (e)y(c;, )52;; has leading high |D|
asymptotic behaviour: e (6)=N , where Cxﬁ&(t) is the
leading trajectory which is allowed by the selection rﬁles to
6ontribute via that coupling. A dot indicates that the
amplitude receives no contribution via the particular coupling.

If several amplitudes receive the same leading asymptotic
behaviour via a givern coupling, it is often possible by taking
linear combinations of these to construct a new amplitude
with improved behavidur. We f£ind in view of table L.3-II1 that
only one such combinatilon is superconvergent and ve 1istlthis

in table L.4-I as well., It is denoted by A7 and defined by:

A7='.: Z(Q.A,l‘i'??ZA;*,)'*' tAZ . (L,A.)_l__iz_m )

It has an electrodynamical pole at vanishingJA'q,.

Picking out the dominant contribution each amplitude
receives via the threse pairs of couplings (33,2)f1, gB(fQ,B)’
and gu(f2,5)’ we deduce from tables 4,3-III and IV that we
have no first or higher moment sum-rules. But provided
C-parity is conserved at the photonic vertex for vanishing I§9

we have the following non-trivisl ordinsry (i.e. zeroth _
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moment) sum-rules., They are valid for all q2 and all] non-

positive definite t, and (JP, I, QH)N denotes the guantum

numbers of the final meson,.

(oF,1,0.),, = (07,0,+) - [ntsu9),7/(958), Bru20)

Ordinary sum-rules on the four amplitudes:

5,V 3,V

B, ag (List L.4-L2)
P - N

(J ,I,Cn)M = (07,0,-) (Wo known examples)

Ordinary sum-rules on the two amplitudes:

a5 | (List L.u-L3)

(37,1,6.), = (07,4,+) 9

Ordinary sum-rules on the five amplitudes:

0,4 Og4 - ,
AztT, Mg, AS (List . L-bLb)

(JP,I,Cn)M = (07 ,4,-) (o known examples)

Ordinary sum rules on the two amplitudes:

ADs

7 | (List L.L.-L5)

If interactions between virtual photons and hadrons are
not in fact charge-conjugate invarient then only A7 is super-
convergent for non-zero q2. But s<su crossing symmetry will
no longer force_the»amplitudes to be even or odd functions
of 72’ , so we then have the following sum-rules valid for

R 2 - o
non-vanishing g~ and non-positive definite t.
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P - , !
(37,1)y = (07,0) : (77 7,]3)
Ordinary sum-rules on the two amplitudes:
s,V
Ay7e (List L.L4-45)
P -
(J sI)M = (O ’1) (:nf)

Ordinary sum-rules on the three amplitudes:

AO,+3_

. (List L.L-47)

The sum-rules for pilon photoproduction have already been

(8)

obtained via rather different methods by a variety of authors.

Pande has obtained the sum-rule on A§5 Chqudhury and Nussinov,

and Altarelli and Colocci, those on‘Ag end A;; Halpern, the
one on AZ; and Musto and Nicodemi, all three.

7}
Subject to charge-conjugation invarience at the virtual

photonic vertex we have shown that these sum-rules remain valid
for non-vanishing q2. We stress that this does not follow
merely from the ésaumption that electro-production Reggeises

in the s ame manner as photo-production. The amplitudes

could easily have been given.poarer asymptotic behaviour in

the electroproduction case due to additi onal contributions.
pPOportional to q2. In particular, such contributions might
have come via t2f1c02?1ings (gB’gu)f3, since all terms of the
form (gB,gu)f3«7gc3"7 must appear with coefficients propor-
tional to q?.

We have also deduced two further sum-rules on the
amplitudes Ag and Ag. These appear only in electroproduction,
Since i is proportional to q2 it is not necessary, (as is
sometimes erronesously supposed), for these two amplitudes to

X . 2 . '
vanish at zero g°. So on saturating these two sum-rules and
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then continuing to zero g, we shall obtain additional

relations between form-Tfacio

4

76.

evaluated at zero argument,

These relations cannot be obtained by the purely on~shell

methods of the above cited authors,

CONTRIBUTIONS TO THE ANPLITUDLS FOR PRODUCGTION OF
SCALAR 1insOils Dus 0 TORAT TRAJECTOALES COULLLIG

TABLE L bL-T

(8)

LUDO--

P
Vv

S
I

A

(g, 5)f,  AND ABHORIAL TRAJECTORIZS
2 b)

COUPLING VIA

(g5 ) ) (£, 2).

= 48] - TT kg ;1 s

~ = | COUPLING INDEX jk, i.e.,CON-
2 |H S | TRIBUTION DUE TO: g. (t)5 (a2t).
] 1) 8 B J EXV
e

L B

28T L 2 | s 55 |ue |us
A,‘ - 1 1 . . . .
A2 - 4 3 4 4 2 2
A3 + - 2 L . 1 3
ALL - 1 1 L) . 2 2
A5 . 2 21 .0 3 1
A6 . 0 . 3 1
A? - ° L] 1 1 2 2
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L.5 LORENTZ-SPACE COVARIENT REGGEISATION CALCULATION FOR
PRODUCTION OF VECTOR MESCHNS,

This cslculation is carried out in direct analogy with
that of the previous section. The K-function Mj;":, is
defined by equation 4,3, and we use the decomposition Qf
eguations 2,75-19, 21,22, 23, 24, and 25 for the vertex

function fug)q " (T17).

Y -’ - 4 - -4 »
For the vertex function ’V“(crff,uﬁ (vJ i 'E) we shall use tl?e

decomposition:
QQ;FP@CT77):‘}Zoﬁoé%uﬁ0%590ﬁwq4a-‘é“1'36&%)
+ 3‘:7 <q}) 806 7 (ﬁ‘A) q’f’a CL'GE - ‘.ﬁ; (q/z> 2‘% 7 (q' A’) ﬂ 03 ,4
- 15:9 (49 5}.&01 {Q'qu.}ﬂoco;_’“ Cifg—ﬁ’“ )1 G.. a"'a‘) o A (L.5-1)

This differs from the decomposition 2,76-20 derived in

section 2.76, but has the advantage that:

~ o q. = )
520 5 820 5 @20, ana §.q 0230 1522 1o 5)
in all propogator numerators contracted with the vertex,

The form-factors of h.,5-4 are related to those of 2,76-20

by: ) : |
f=t(R-a9F) , (1t.5-6)
b= (8E-0F -1, (4.5-7)
5= [qf*%ﬁ Ff*'éé%‘:z TRyt Ry, (4.5-8)
fo==(F+F) . (4.5-9)

Thus the fg - o are subject to kinematic poles at zero t,
s 0y
But since the T are free of kinematic singularities in
‘6’7!8!9 :
Y, our results for the dominant asymptotic contribution to
each amplitude from a given abnormal trajectory will be un-

affected by our working with f6 9 rather than F4 M
LA 4 $o0 a0 gbte
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Again, with a suffix J implied on each of the &4 to L
, 0

and f4 £0

Mn%»gl—"zzzpqm+ g, ﬁ‘

2 2

Then:
T+
M
T+
12. /J-t&
}.
M'*T'

1'2»f.w(

T+
M‘Iﬁ Ve 1

Rl
M’l" I/»@(

M"J'}

21 /AC(

2.7. /,w(

PR~

we define:

9,

. --(oﬂ’*' RN ‘W,m)

PO 9 %)

= 9.&:7);“‘,033%‘ ,
-'6L(ﬁ3j6fu£4"ﬂ3?;q7A) y
=7, ﬁ“’( T A‘L Q)

&Z&Jﬁﬁ'(v# T AL fM)

.!.

24#«

T
Vg:p«

36,1/.0(

T
M%"{ fx,cf.

rdpﬂ) (Cl- ﬁlkt\-Ct‘//,q”c/>
Wv<q’ Vi 6R§¢Aqu> 3
= (F A+ 29 R e

q’/«bﬁc', 8o<c> (CL'A)W 3

0@ Ts

(L.

(L.

(4.

(4.

(L.

(L.

(L.

(4.5

(L.

05"11 )

5-12)

5-43)

5-4L)

5-45)

5-16)

5~17)

5-18)

-19)

05"'21 )

5-23)
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8,&« 0:,) o(O’ %Aﬂfs 3 " (L.5-24)

MS"),W# ( -%-ﬁ?q,) o'(‘i»/—\n{s > (u,5_25.;),-

1+6Ff'" Wz’( Vs 0“[‘\ *Aq'@ 0”&‘) /AO"@’A),&," o (Le5~26)

Mgy = =T SRy P (L.5-27)
14%#0&_%’ 6-/,'2(,{07(61,&)3’5 ” | — (L4.5-28)
Mz;.clu,v& 27(0!’2@ O’D’ Oz’> 0’@ Ay(/ys (L.5-29)

The propogators are again equivalent in view of simplify-
ing relations to considerably less complicated forms than those
listed by Scadronm%or the general case.

We have already noted the simplifying relations of
equations L.,5-2 to 5, end in addition equations L.4-G, 10,

14, and 16 are again operative. As the analogues of equations

L.,u-47 to 24 we now have:

Fy(a)xm , and 9, (A)= 9,

T
in ﬂjy; , &?::; , end &?};u i - (Le5-30,7%1)
2mbh
BAZ 0 , ana ah,(a)g 4~
arids 1nﬁ} : 6 9@) Gl s and ﬂ?} /LL 3 (u-5—32’33)
qp o in W , (LI-OB_BLI-)
OB

’fo MA(” po VP 2 (4.5-35)
for F = Q or/,L .
Thus the propogators are given by:

PI=Ccfr T s AR nTORL)
(L.5-36) (4e5-37)
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@ &’——i_——(P m‘f P ”("()Pﬁi) - (4.5-38)
%@?;og'_f: [T R~ CT+ )M (IR (1. ()T AR
‘-(ffw,f(A)P-"'P %(AM)/” ] (L.5-39)

ﬁ:fix T(:rﬂ 7) [F//JDW0 PGB T P(F T @)

R ORIRL P 9. L] 50)
77093’““’;:@ n{(?rw ﬁzg}m( )[ﬁz , [/‘ > /A Ik m%m(ﬁﬂpfx
Hr e D R et SR,
-(Z-?I'-! 1)/1’?? Il"'(ﬂ)(i (A)@ 2 l//‘Z( C}V(A,}J /A(A)E{D ri/g’ﬁxﬁ J.Q/I/
g EORRAP (o R 19, % )] B

m
,. ;P K @%(Amp (4.5-11)
R FTlr b 1S L AT,
(L 5-42) (4o5-L3)

.
A ?(,\M) (PP P e R =P Rt AL)

(Lo 5-Uly)

A 2 e ] A
e A A L (L
PP B+ Rt YR LN s

In these relations: e again stands for}x or ¢, and we have.

defined:

A ’ A
AEhmrnasf, GERIRAL L (s

The reader is also reminded that:

@P(A)%@/gb(?“!l"ﬁ/t) ;@A 8k (15us,n9)

| gﬂ.c{ (A)g 6/*‘“._ a"/J.AD’./(_' ; ‘if(“-‘) 5%&' (A'q’)m/t. (4,5-50,54 )
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The expressions L.5-3%6 to 45 for the propogators are
substituted into eguations 4,5-42 to 419, and it is then
necessary to exbress the thirty-six covarients: [(’P,qs'b')/,“(?/k '@')‘,{,
9, o] (M, %) ana: {I(, D Eu(P.8),Em(Pa 8) (R ), /ua(‘w)]("’%/ff)
'O'Iu &4 (P42, Eu (g AU, (?’q),v‘ «(Tq.5), Eu(8q,4)(% B §¥s
in terms of the eighteen Juxxand six singular tails,
Inversion of equations 4.42-52 to M yields the required
relations for eighteen of the first twenty covarients, and
since the remaining two of them are related to the others
through equations 4.42-72 and 73 they too can be similarly
expanded, Dxpansion of the final sixteen covarients is
achieved by relating them to the initial twenty through
equations A3-27, 29, and 30, As a check on the calculation
one uses the fact that covarients involving 8‘,{(’?qrA), 5«@‘{/’9;
and Ef“K01AQ vanish on contraction with Qg e Their expansionsg
cannot therefore involve any singular tails.

Finally, one obtains expansions for each of the eighteen
T4
JV#“. Again, the fact that all unwanted singularities must

- . : RN
and M@) Y }9)/”( in terms of the eighteen

cancel serves as a check on the calculations. To effect such
a cancellation of singularities it is necessary to make exten-
sive use of the recurrence relations L.L4-33 and 3.

We do not propose to give here the vector meson anaiogues
of eguations 4.L-28 to 30 and 35 to 4LO. DNot only do we have
fifty-four such equations, bul many of these are extremely
lengthy and complicated. Instead we nﬁrelj give the anzalogue
of table 4.L4-TI

Tn tables L.5-I and II respectively we list the leading
aéymptotic contributions to the amplitudes from normél and
abnormal trajectories. The notation is the same as that

employed in table L.4-I. Ve agein list those linear
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combinations of amplitudes which have better asymptotic behaviour
than the individual amplitudes involved, and vhich will, in
view of table L4,3-III, give rise to superconvergent sum-rules.

These linear combinations are defined as follows:

Ap=Athy, - (k.5-52)
A=A ~EAt AL (b 5-53)
A EAA, (4.5-50)
Az (AcAg)-9* AL s (L05-55)
AEtAaqAg (125-56)
ApiAgAy-Ay . (1.5-57)

Remembering that A ,8,4 and have electrodynamical poles
3, 15,
at vanishingé&$§ we see that A24 is subject to a similar pole.
Picking out the dominant contribvution to each amplitude
due to each of the three sets of couplings: (g, ,)(F )
’1,2 '1,000,5 .
gj(f6,...,9)’ and gu(f6’.'°,9), we find in view of tables
4.,3-II1 and IV the following non-trivial sum~-rules, They are

valid for non-positive definite t, all 02, and are subject to

C-parity being conserved at the photonic vertex for vanishing

t

IBI

(JP,I,Qn)M = (47,0,+) (No known examples)

Ordinary sum rules on the twelve amplitudes:
s,V ,S8,V s,v ,8,v ,s,v s,V

9
A4 ’ A6 ’ A16 s A,‘9 ’ A A24 s
and Tirst moment sum rules on the two amplitudes:
S,V

g | (List L.5-58)
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(JP,IQCn)}’: = (1-’09_) ( 2 2 975)

—tnanen

Ordinary sum-rules on the six amplitudes:
<
s,V s,V S,V

[ad

and first moment sum-rules on the two amplitudes:

48,7
19 (List L.5-59)
(JP,I,Cn)M = (17,4 ,+) (No known examples)

Ordinary sum~rules on the fifteen amplitudes:

O,+ - O,+ O,+ O,+ - -
A4’ H A5’ A6 ’ A H A,‘é ’ Az(,) H A2,1 H A239 Az}_!_’

and Tirst moment sum-rules on the three amplitudes:

0,+ - - '
Ag’ s Agge | o (List L4.5-60)
(5°,1,0 Dy = (1715-) (p)

Ordinary sum rules on the nine amplitudes:
Ao A3Ts Kgs Bgpy Bp3Ts Ao
and first moment sum-rules on the two amplitudes:

ACs* (List lLo5-51)

19 °

If interactions between virtual photons and hadrons
are not in fact charge-conjugate invarient, the number of
superconvergent amplitudes is again somewhat reduced. But
the amplitudes are no longer forced tolbe even or odd under
s <>»U crossing, so the sum-rules for electroproduction are
then as follows. They are again valid for all non-positive

“definite t,
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(3%,1), = (17,0) | (0, D)

Ordinary sum-rules on the ten amplitudes:
Vo pSsV 48,V As,v’_Asév’ 2S5V

b4 ’
A2 A57 0 Bg s Ap 2,
and first moment sum-rules on the two amplitudes:
Afév. (List L4.5-62)
. ) ,
Ordinary -sum-rules on the sixteen amplitudes:
O35~ O,+,- Oyety— 1 Oty Oyty—
AT s AgT T Byg T s Ao s Bog Ty Agy

and first moment sum-rules on the three amplitudes:

Af§+’“. (List 4.5-63)
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CONTRIBUTIOCNS TO THE ALPLITUDES FOR PRODUCTION OF
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VECTOR NESONS DUE TO NORWAL TRAJECTCRIES COUPLING

VIA: (g )Ty 5 5 ) 5)e

Eg %% COUPLIIG INDEX jk, i.e., gONTRIBUTION

E ?3? DUE TO: g;(t)fy(a”,t).

2 8% ja12 13 24 | 15| 21|22 [23 |24 |25
Al + . . 2 . > N . 4 o * 4
Ay - 1 3 . 3 3 1 3 . 3
Ay ¥ 2 0 2 . 2 2 1o 2 . 2
A4 + . . . . 2 ¢ 2 . 2
A5 - . . . . . . . .3 . 3
A6 + . . . . . 2 . 2 . 4
Aq - . . . . 111 3 . 3
A8 + . . . . 2 . 2 . 2
Ag - . . . . . 3 1 3 . 3
Mo |+ . . . . .| 210 2 . 2
Ay | - . . . . . 341 3 . 3
Ao |+ . . . . ] 210 2 . 2
hyy | - . . 3 . 1 311 3 . 3
Ayg |+ 2 . 3 0 2 210 2 2 2
Ayg | - . . . . . 3] 1 3 . 1
Al6 + . . . . . . 4 2
Ayq | - . . . . 311 3 1 3
AiS - . . . . . 311 3 . 3
A'lg + . . . . . . . . .
A2O + . . . . . 2 2
A2l + . . . . . . 2 . 2
A22 + . . . . . . . 2 . 2
Aoy | = . . . . . 3 . 3 3
A24 - . . . . 3 . 3 . 3




CONTRIBUTICNS TO THE ANPLITUDES FOR _PRODUCTION OF

TABLE b, 5-II

VECTOR LRSCHS DUE TO ARNORNAL TPAJECTORIES

COUPLING VIA: (g5 ) )(fg 5 g

o)

i

186.

‘é | COUPLING INDEX jk, i.e., gONTRIBUTION
E gé DUE TO: gj(t)fk(q ,t).

S | BF 36 | 37|38 | 39 |46 |47 |48 |49
Al + 7 2 . 2 2 3 . 3 3

A, - 1 1 3 142 2 2 2

Ay | o+ . . . 1 1 1 1

Ay + 0 0 2 2 |1 1 1 1

Ag - . . . .12 . 2 2

Ag + 2 . 2 2 11 1 3 3

Aq - 1 1 2 1 {0 2 2 2

Ag |+ . . S 1 3 1

Aq - 1 1 3 3 ]2 2 2 2

Ao | + 0 0 2 2 |1 1 1 1

Ayp |- 1 1 3 3 12 2 2 2

A, + ] O 0 2 2 |1 1 1 1

Ay | - 1 1 3 1 ]2 2 2 2

Ayg | o+ 0 0 2 0|1 1 1 1

Ays | - 1 1 3 1 }2 2 2 0

A |+ . . . 3 . 3 1

Ay | - 1 1 3 12 2 2 2

Al - 1 103 1l2 |2 2 2

A19 + 2 . 2 2 . . . .

Aog | + 2 . 2 2 |1 . 3 3

Aoy |+ 2 . 2 2 |3 . 3 1
A22 + 2 2 2 3 3 3
hpy | - 1 A . 3 .

Aoy | = 1 1 3 1. . 3 3
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CI'IAP.L Th '_5

APPROXTIIATE SATURATION OF THE SUM-RULES FOR REAT, AND
VIRTUAL PHOTONIC PRODUCTION OF PSEUDOSCALAR MESONS,

5.1 INTRODUCTORY REMARKS

5.11 THE BASTIC SATURATION FORMULA,

Let {) stand for either of the superscripts s and v
if the meson is 1soscalar, and for any one of the superscripts
0,+, and -, if the meson is isovector, Then in the approxi-
mation of equation 4.3-47 as modified by the spin considerations
of equations 2.44-27 and 28, a non-trivial mth. moment sum-

o)
rule on the amplitude A, v, t,q ) reads'

o 5% "
Z_(ZM%--Z%‘*‘-/X«;};-@ [ +tan’( M T;L, o )] ,A\@'R(t?q,
+ (b= q2) AL B (k) =0, C (5ut4-1)

where R denotes an s-channel resonance, and B indicates the
s-channel (nucleon) Born-term residue., With N and M denoting

respectively a nucleon and the meson, the A"Q'K and.ﬁgB are

defined for isoscalar mesons by

(A AP T T M (o)
i S=Mg ?

Z(A?T)'nz""A\fTs) %; = M (1 N> N->N-+1)
)

(ho11-2)

S=int” 0 ‘
(5-11"3)

and for isovector mesons by:

Z(AOR’C’ AT A [, v ]) R 7+N~>7<~»N+M)l

. . (5.41-4) Mz
oR .!.B -3 ~ . _ 3'
2_(As Tt AT St A, [Tfj,"l,’sD?@;:Mc((”J'ﬁ*N“’?N"—"N+M>l )
i o 18=m
| : (5.14-5)

o
processes indicated in parentheses, and the intermediate states

The M. and 1 ”J are the numerstors of the pole graphs for the

are to be treated as single stable particles.
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5.15 INPLICATIONS OF THE ISOSPIN STRUCTURE OF THE S-CHANIEL
POLE GRAPH NULERATORS.

The s-channel pole graph numerator for a single stable
intermedizte particle of spin (J + %) and normality =4,

has the general Lorentz-space structure:

Mif 0(3y1) Ezﬁﬁla'%>AJ
=C” (077‘;1% )ﬂ *‘“’Z(K)jv:(v _?.,:fg) (5.12-1)

where the right-hand side of the second equalluy is to be

r-

evaluated at s equal to the sguared mass of the intermediate

particle,

The full Lorentz &SU(2) structure of this pole graph

numorato“ is tnen given by. \
i

| T
33'—~ 5—1 Ao Fr i 3

_{ A‘i X ;agﬂo,‘, Awéﬁ'“d; E-Uj; 3]
jﬁ()zyi é)

P
-+1fV:kJ€%j+v"V Kﬂ fo M:{? | ' (5.12-2)
) 3

~1
Ko, =

1

]: [&O’“ %'(K)ﬂjw "/"]:[’L{"‘S’*%S(I-%'/g_; 129@

In this equation (I + ; is the iscspin of the in'terznediate
partic'le, and '\fj’i ('V;’ > is to be obtained from '\fi: by
substituting the corresponding isoscalarb(isovector) 0(3,1)@sU(2)
form-factor for each 0(3,4) form-factor appearing.

If the final meson is isoscalar we can only have intef-

mediste particles with isospin o..e half, and from sections

2,22, 2,32, and 2,6:

K(o%4)=H>(%,20)= ﬂo/z (5.42-3,14,5)

REE)=", . 5,108

. (5.42-7)
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Comparing with equations 5.12-% and 2 we see that if P denotes

any form-factor resulting from the spin decomposition of Vg ,

o, Tk T _
then the Aa, may be obtained from Ai by the substitu-
tions: S -

ATE AT
FF (5.12-8)
V, Tk T ‘
FsF' ?
(5.12-9)

for all F.

Intermediate particles with isospins one-half or three-
halves are allowed if the final meson is isovector, So in

addition to equations 5.12-4,5,6 we need:

‘%ﬂ (1 % ij} =T

s qfam i»'if gjfeﬂz v (5.12-10,11)

KEAN=6:0 , R =368 200D, Gaeens)

yielding: |
Mj(:r:ka:%:):\(f% P "/Z(K/'{ 1’ H/‘vﬂ'(gf 51T 77/}(5 4 2-11)
and:
MET* (1= 1) ™ R L (8 2 1%0]) L (5urens)
The isospace covarient J’ff;(é;: 7%: 7) corresponds to a
disallowed coupling and hence Mf&(l =3§_~) receives no

S,

contribution from V. . Comparison with 5.12-1 and 2 yields

the following isovector meson analogues of ecquations 5.12-8

and 9:

0, Tk 4y _ AT

A-Z (I“%:) —‘A‘Z'; CF:) F,_?‘:S > (50‘1 2"16)
T4

Aoi (12%.‘>= O, (5.42-47)
'*'7Ti: a:_i. v Tk -

A (1=3) AL (F) = pY (5.12-18)
+71Td: ::.?‘L :_2,__ T \l

Ay (I=5)=F A F) Y (5412-49)
=T 4 Y. AT |

A,-L (.L :z.) AL (F-‘ F——'>Fv \ (5,12_20)
ST 3N, _ A AT

. 1 == A (F) -
(I3 20 M e (5:12-21)
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Having obtained equations 5.12-8,9, and 16 to 24 we may
drop the isospin dependence from our saturation graphs and

work in spin-space alone.

513 A NOTE O THE 0(3,4) STRUCTURE OF THE S-CHANNEL POLE
GRAPH NUMERATORS.,

In the following section we compute in spin-space alone
the s-chamnel pole graph numerators necded for saturation of
our sum~-rules., These come out naturally in terms of the
structure'

bq 2 B. Gmasues, coupling constants, form-factors,
i=1

s[—> squared intermediate mass] ,t,‘f’){é = [:Bq [’b’d,ﬁ,]

. +'B ’Fe"’"Bs «+B, B+B st EBG Tt +B ’"%‘"{"ng'“ﬁ’ 5 o (5.43-1)

where the By do not involve any poles in s,t, or . i

i

Iifr Ma vanishes on contraction with Qs the Bi must satisfy:

PH4B P B = -, (5.13-2)

Byt ?l‘ 1 BsTP9B="9"By (5.1 3-3)

and from equations L.41-14 to 416 we then have:
M= B, Kot (BB R g + (Bsm B ) K
| '*‘(Bs*"Be)%“*(’F’"LB + 4B, ) K o\/ *A0g,)
(Bt P4 B+ P4 BT S /a7 . (5u13-1)

~ s . 2 X . .
This satisfies our counting rules for all g, since in view

ns

of 5.13-2 and 3 the coefficients of %dand [/%6;( are free of
poles irxb%?.

In practice we shall drop terms in a, whenever they
a@pear in the calculation, but since our initial expression
will always contain a photonic vertex function’U& which

venishes on contraction with a,, (plgBy + p.qBB) and
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-

(Bu + p’.qB5 + p.qB6) will still be proportional to q2.

Even if V.q does not vanish, we can still write Ma in
the Torm 5.13-L by using the fact that qa/q2 and qayé/q2 are
both eguivalent to zero for all qg. That is, the equality
in this equation is then replaced by an equiveslence. However,
5.43-2 and/or 5.43-3% will no longer be satisfied and our
final‘eﬁpression for Ma will violate the counting rulesrin the

real photon limit.

- Note that at zero q2 5.13=-2 reads:
(B.+B2)|_2(8:4B.)| _ -23.| __ 2By
. - - "7717‘ - - =)+ t"’ > d A
59 g EF |5 | ETER) s (om0)

Thus if M.q vanishes, the coefficient of jﬁi remains finite
~in the real photon limit for all t provided s is not equal to
mz. This is the situation for our resonance pole graph
numerators where s is equal to Mg. The fact that M.g is zero
then forces B3 to be proportional to (t+M§-m2—P?).

In the case of the s-channel Porn-term residue B2
fortunately vanishes and the coefficient ofj%ijust has the
pole at zero (t—}@) in the resl photon limit.

For non-vanishing q2 the coefficient of 5éz has a
pole even in the case of the resonsnce grapns, and the

~.5 :
cosfficient of K« has a similar pole for all g°.

Except in the case of the photoproduction Born terms
these poles have no obvious dynamical origin, and would seem
td be kinematical., They are essential, however, if the
correct number of covarients are to be proportionzl to q2.

The dynamical interpretation of the (E—If)‘"pole in the.
amplitude of the photoproduction Born-terms is well knovin.
The photon-nucleon-nucleon vertex relies for its gauge
invarience on the Dirac equation, and the s znd u channel

Born-terms are therefore only gauge-invarient at their
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respective poles. The same applies to the pion Born term since
the photon-picn-pion vertex is proportional to AXN . The(b-/ﬁﬁi
~2
pole in the ﬁﬁ:d amplitudes ensures that the sum of the
three Born terms remains gauge invarient for arbitrary s,t,u.
Failure of gauge invarience is accompanied, if one is treating
photoproduction as a limit of electroproduction, by a viole-
tion of the counting rules. Away from their respective poles
25 /) a -1

the three Born-graphs gain terms in‘ﬂg“/éL . The (bf 1)
poles in the coefficients of these terms ensures that they
cancel from the sum of the three Born-graphs.

Our graphs for intermediate resonances with spin greater
than one half turn out to have rather complicated structures.

' w b

loo
~We shall therefore compute them in terms of the Z:Z<) and

will pick out only those combinations of the corresponding

P

o needed for sum rule saturation,.

5.2 COMPUTATION OF THE 0(3.1) S—-CHANNEL POLE GRAPH
NULMERATORS NEBDED FOR SATURATION.

5.24 THE BORN-TERNM.

This is well known, One has:

B omlnd AN 0% 404 |
M8 OEDPOVEEY) . (saim)

where: '
C(O?-rz—) 3{5{5 J (5.24-2)

4
fz(f/\)“%/”*‘?” > | (5.21-3)

EED=FONA AR E@oee] . e
After using the Dirzc eqguation to express BQ in terms of m and

4 one essily obtains:

9., g dom e :
| Md :;: 271’1[ //Z(FI'*‘F?.)J:“ '*'4'77“::1 »:'*'zpz‘(d] ’ (5.24~5)

and 1t then follovws from 5.43-L that:
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. 8 ~s4 4_772 ~
Mi]s-r; T R PR VAR or ol A A Y
b 2 ,;Ng,»fi'w - Né
+2F2\/V°{~ A‘%F“\’c{ Iz_(%oc] . (5.24-6)

5.22 INTERMEDIATE RESONANCES WITH SPIN 5

In this case we have:

i 4 sk
ME*=L (0% )F (V%Y (5.22-1)
vhere: t:F(O P} ?-) 31 | (5.22-2)
1 .
=(K)=IK+M (5.22-3)

(271?”) 6[{*@,)( b V ) @)l ,<F,$€,]I:t. (5,22-1)

In these equations the plus/minus superscript on the l-function
indicates the normality, n, of the intermediate resonance, and
M is the mass of this resonance., The decomposition of the
photonic vertex is taken from 2.,74-24, except that for later .
convenience we have introduced a plus/minus sign into the
definition ovagg and have explicitly exhibited a factor e.

As in section 2.8 we define:

N=nM _ (5.22-5)

>
and 5,22-1 may then be written:

= el N (T izl . e
After a little Dirac algebra we obtain:

&N
Mct.

3

~ e%{‘"h F o+ N+m)r]f; +2 ¢7F me
| -(N~m)[01, Fq-%(rd—m)ﬂ]ﬁ; T2 ii} ,  (5.22-7)

from which we have Tinally:
ﬂ'r\! ne A ..-,1.. 2 i) de ] . _.‘__?:_ ’tv — >y
" s—N_eﬁ{ L PR R| R R B R R

+LFE ﬂ:}"-i A,CL(N?‘"M?‘"%Z)F‘}%“"(N"”@F;“"Fz] d}.(s.zz_s)
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We note as a check that this reduces to equation 5.24-6

under the substitutions:

Ff("’PFq/CLi s Fz".’;’FZ/Z'/'?Z- ) N> . (5.22-9,10,11)

5.23% INTERLEDIATE RESONANCES WITH SPIN (J 4 1)>3/2,

Ve define n, ¥, and N as in the previous section and now

have:

vﬁ{: T4

MO IR o Mige 50 (e
where:

£ Ot = g (11 (5,252

and the decomposition of V' . (J + %; %,y) is given by

()vd
_egquations 2,72-8 to 14. We shall modify 2.72-44 by again
explicltly exhibiting a factor of e on the right-hand side.
As we are only interested in evaluating Mgi:at the point s
equals M2 we may, in view of the structure of the propogator,

make the substitution:

A5 (MFmI* (5.23-3)
N .

in ’U}GTQX'

Dropping terms in g,, equation 5.23-4 then reads:

2eq TP (P ) (60 6:R)

$=pM*
+1/a . . L 2 = |
P lesgemn eIt oy

< 9) ’
From Scadron's paper we have at s=M

AT a0 g R,
~(M'/:»”+*r",!<)(5f"MXMW'%'KW], ()

and:
(8 C 7y % W\ }
) >w§(§+1>{<f“uo M1+ TR
9009, (081, |- M MR + 29 (10 ]
= (Mp+ PR~V (M T KR } ; (5.23—6)

V-
M
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where each of the solid harmonic derivativVe€s has argument:
= p(K)9.(K).

After some tedious algebra, we thereforé obtain in view of
. the Rarita-Schwinger subsidiary conditions and the Dirac

‘eguation:

M:m - %%Y% W [N =216 -2 Lo (-mils] G}

FNT @ N [HE RN+ N -2 1L+ (N4

'”“VK)ﬁ"a"“ﬁ]‘%“[{“f‘wmévK)ii+(N"+ N g:K)L4 ]G

-5 (KB 34 KB (e 26D gl [

+m)12-z5 ]}+(~}> KNI R [ANZ Y = (N4 )L, N (N
P N g ) (=10

[ KB+ QKR [ (N g K)LS + (N2 Nom

j“#"@ftﬂ}} [(N“m)@f‘*”?‘ﬂf@"%? Gg]] . (5.23-7)

The solid harmonic derivatives are given Dby:

o ] ) ot P00k
'J);r [ ?(K)’q.(K)]"( ) [’P (K ( )] [TIZ(K)CLCK)J%}(S 25-8)

2 N
so to evaluate b4§ 15=Nz we need the following relations -

obtained from Appendix 5:

/ .t 2
PR =ER, P ijz“(N"m"‘P) 5(5.23-9,10)
9 Kls:n =L(N-mqt) | PP(K) s-Nf*Nz(4Nm ~R’) o(5423-14,12)
Ry s=nt iir\l""'[(N = f[(N-m=4t] | (5.23-13)
1 2, 2 2 ) ARt 2
Q(K)'?I(K) S=N"-ﬁ A_N,_[R(N'f'ﬁl“ﬁ,)"lﬂ\l m+2ZN t] s (5.23-1L)
where we have defined:

-R_—__.;Nz_i_ma._; 2
2 (5.23-15)
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TH
Since M3,

R depends on}i only through its dependence on

. . . )
R, our expressions for sp601flcfﬂz4‘ .
S=N=

simplified if we work with R rather-thandp.. Vthen saturating

are considerably

sun-rules, however, we must not lose sight of the fact that

R also depends on N2 and m2.

TH
A gz

achieved by expanding out the solid harmonic-derivatives and

The computation of M for a given value of J is
then invoking eguations 5.23-9 to 14. Before doing this it
is useful to deduce in a general way the basic structure of
M:g'm

UI\ S:Nz

and from the standard eguation for the expansion of the nth.

" as a polynomial in t and q2. This is straightforward,

derivative of a Legendre polynomial we £ind:

MT] ~eqfrbereGLi + 642°)

S=n*

+(CJ'*‘:fq_ﬂ-—]-ﬁ &)T"'J[G:l Zt?:(s)é“‘- (:}.'%'EO‘:)G-ZZ.{‘&Z)}';'}{;

+q,7‘6% i*?ii,%gli-;ff,é ]}

vhere a,b,c,d,f,h,j,k denote functions only cf the masses.

5 (5.23-16)

The notation of this equation is memifestly loose and inexact,
but its meaning should be clear to the reader, It is meant
to indicate the values of the integers r and s for all terms

of the type (q2>r(t)s appearing in the coefficient of each

P BN
P 14 S0

of t aprearing in each such coefficient is particularly useful,

Fal

of the eighteen egl . A kxnowledge of the powers
since we are eventually going to separstely egquate to zero

the coefficient of each power of t appearing in the sum-rules,
We are now éble in advance to deduce, to within polynomizls in the

masses, the structure of these equations for any attempted

saturation of a particular sum-rule,
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5.2 CONTRIBUTIONS TO THE SUNM-RUIES O A3 6 FROI RESONANCES

WITH SPIN THREE-HALVIS,

From equation 5.23-16 we may usefully define in the case

of intermediate resonances with spin three-halves:

6 & 1
AN _ €9 2‘“}"2 rore
Mc{ -12[\'2. [ aikt 6@.%0( ?
§=N* iz1 =1 v=0 (5.2h"1)

P .
where the &if are functions only of q2 and the masses. From

egquation 2,21-6 we have:

Cri1 1
TEH) |y 30 (5.24-2)

and we have chosen for convenience to further factor out the
quantity: eg/uNz.

In this case we recguire the expansions:

/ 1
rl=1 7% ==30<)-9-(K) (5.24-3,k4)

i

£y =O=ﬁ// ’ ﬂl/zg’ ' (5.24-5,6,7)
Substitution of these into equation 5.23-7, followed by the use
of equatiéns 5,23~9'to 14 and 5.13%-4 enables us to determine
all thirty~sik a{?.

Some of these are quite complicated and we certainly
don't propose to bore the reader by listing them all here.
Instead we merely give those which will be needed later,

r . ) .
namely the a and agk. These are as follows:

3k
4 _ . 4 1 _ Z
0\,31"0-&33 . a'32-‘-~ %r\" 9y . (502)4"‘8,9910)
o _ - ~ L2 ' |
Ay, = 2[mR-N(EN=#)] (5.24-11)

&, =RENBNI2m]E=N[(N-P)RINEN S 2Nm=Tm) |, (5 o) )

(<]

g, 2[RENENEM)]GT (5.24-13)
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f _ A= 1 ‘

Gg=0=Ag, 0‘2’526'\’7‘? "2“432 > (5.24-1L4 to 47)
Zg1= =L (N=-m)(R+Nm) o (5.24-18)
48, =2[(Rt-Nwm)qZ~ (N=12)(2R+Nm) (5.24-19)

Ry = 2[ (Rt N )q™+ (N=Nowot 2 )R+ N (N*4Nm+22)] (5. -0

5.25 CONTRIBUTIONS TO THE SUNM~RULES ON A3’6 FROM RESONANCES

WITH SPIN FIVE-HALVES,

Heré we may usefully define:

6 3 2 . '
2N eg N ropks ST :
M ’"’“é?)WZZZ. biet'Gr Ky (5.25-1)

S=i® i1 fesq r=o 2
where the bik are again functions only of q ,R,HN, and m, Ve

have used the fact that:

Co_ | _ 4
TEED| 15 (5.25-2)
\.'5
and have also chosen to explicitly exhibit a factor: 663/16:%”1
In addition to the expansions of‘@%, 5¥, and.@g given

in the previous section we now need:

Py = Z[5 (P00 400 -+ 0] (5.25-3)
&93//*;—151:"(@‘%(@- (5.25-1)

The fifty—four bik may then be obtained in the same manner. as
were the a§k of the previous section.
Again we 1list only those bgk and bgk which we shall necd

later. They are as follows:

N 2 _aonk
by, =0=b,, |, 32 =1ONT (5.25-5,6,7)

| 52;1 = 4N [N (5N*11)=2 K] > (5.25-8)
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by = 2{?_ [#R*= NN N~ m* )R~ N*m (N-m)" |4

~ MmN 1) R*+2 N[(w+m)(7 N®~2 N2+ SN~ m*)R

N (N 10N%7 -+ 2N~ )]} (5.25-9)
z=0=h? b2 ==20N*=-2b2
61~ YT D5 (< =74 Pz2 (5.25-10 to 13)
::Zsz[lf-(N"‘?}t)?\"}'N'h’l(?)N"’?ﬂ)] s (5.25-11)

2,1:: Z(Nj‘?n){(?)w"'~2N7rz+m IR* +/+N7n[(m " 3N+ m >R

~2N#(N=1m)]~R(3R+4Nm)g2 b (5.25-15)

5.3 PRELIMINARY CONSIDZRATIONS RECARDING POSSIBLE SATURATIONS.

Before plunging into an attempted saturation of a
particular sum-rule with the Born-term plus a given supér—
position of resonances, one would like to know whether such a
saturation is likely to prove fruitful. We now investigate
the extent to which such pre-cognition is furnished in the
genheral results of sections 5.4 and 2.

Firstly we show thet sum-rules on A7 as defined by
equation L.U-l44 are not saturable with the Born-term plus a
superposition of resonances of finite spin.

Equation 5.24~6 indicates that in the real photon 1limit

t disc»A2 receives a contribution:

4ed POt - ) oaF o)Z( , l<p (5.3-1)

from the Bonn—term numerator., On the other hand, we saw in

section 5,43 that thé contribution to t discl>A2from any
resonance graph was non-infinite for all ¢ at vanishing q .
We have also seen that t discD(ZA,ﬁ'?ilA.rgdoes not receive 4/Aqy

poles from the Born-term or the resonance graphs. Thus 1T
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(J + %) is the spin of the highest spin resonance(s) used in

the saturation, we see from equations 5.{3-L and 5,23-16 that
the highest powver of 1 appearing in the contribution to discD.A7
of the superposition of resonances will be tJ+4. After

differentiating the sum-rule (J+2) times with respect to t, we

shall therefore obiain onjsetting £ and q2 equal to zero:

= o):
867-4( O > (593“'2)
where F, (o) will carry the superscript s or v according as
1
. 8 v
our sum-rule is on A;’O or A7 yHs . But our nucleon form-
factors are normalised to:
\' 4
0)= 35 -
)27 (5.3-3)

" so for finite J the sum-rule is not saturable at vanishing
q2 unless g vanishes. This would certainly not appear to be
the case for the pion or for the pionic resonances.

For non-vanishing q2 the above argument does not
immediately apply since the resonance graphs then contribute
kinematical UZNQ_ poles to ¢ discpA2. However, the form-factors
are supposed to be anzalytic in q2 at zero qg; so any atitempt to
saturate the sum~-rule for non-vanishing q?lwill vield predic-
tions which will tend smoothly to nonsense as q2 tends to
ZEero.

We therefore scrap our sum-rules on A7 and turn our
aﬁtention to those on AS and Ag. The above considerations do
not apply to these latter since no1/&'q,polos are involved.

On defining:

TN $h!
MY -3GZA D, ror 731,

S=N*  i=1
we note 1ron equations 5,13-4 ana 5,23%3-45 that

Z& (TM,VG_+ U‘r\,&> > trA\;N, G .

(5.3-12)

(5.3-5)
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:m ZLA Ztr/ 6‘ ATN o o)

vhere tne AJL’.q o 3 are polynomisls in q2 and the masses

but are independent of t. In particular, only GQ contributes

Y

. J JN . e s .
to the coefficient of +° in A3 whilst the same coefficient in

AgN recelves contributions only from G, end GB' Also, G3

. . . JN R 2 .
gives no contribution to AB at vanishing o but continues to

PN JN e o
contribute to A6 at that point.

Except in as far as reconances with isospin three-halves
contribute only to sum—~-rules on AB 6 . let us assumne that we
utilise the same set of particles (i.e. resonances plus the
nucleon) in attempting to saturste all sum-rules on A3 6

H
corresponding to the production of a given pseudoscalar
meson. Let s' and s" denote the highest and next highest
spins of all those isospin one-~-halfl particles utilised, and
let s"' and s"" be the corresponding respective guantities for
the isospin three-halves resonances used in the case of sum-
miles on AleT

R

Suppose that for a set of sum-rules on,Ag g

‘ -
S ;»,_2)/2 (503"7)
and only one of the isospin one-half particles utilised has
e

this spin. Then on separtely ecguating to zero each power o0f t

appearing in the sum-rules we shall obtagin:

S,V | La -
’3 (S';Cf):O: . (Coeffs. of L‘S = )’, (5.3-8)
1.3
V(s}qz)zo,if s'-2 2:5"7 (ooeffs.of t° A)- (5.3-9)

If a similar situation obtains in the case of a set of

- O, 44 . . -
sum-rules on A3’6’ these will yileld:
H .

{a
G'Z’b(slﬂ—z)"‘"oa (coef’fs. of Ifs s AS)(o)
‘ l_,3/
G'zss (Sia cl});o , AT sl-2 28", (ooeffs. ort’ fn a@)

(5.3-10,14)
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sl
G‘:?,S(Sﬁéf'):O, if §~1% 5% (coelfu. of £ in A 6>

2

Lq/ -
G':(S' =0, if § 5/~ 22 May /"’/S) (coerrs. of L’s n .r.,é)

(503—42,13)

Similarly, if for a set of sum-rules on A;’é :

b4
s, 5
s"» %2 (5.3-44)

and only one of the isospin three-halves resonances has this

spin we shall obtain: .
sti=4,
2’3(5/"‘],> =0, if sh-12s! (coerts, ort in 36)
3l
/
611 (Sl q,f') o, // 2“‘["!%.(‘"[(’”) (ﬁooffs oft' in 3;6

(5.3-15,16)
. The spin in the argument of each form-factor indicates the
resonance involved.

Equations 5.3-8 to 13 and 15,16 are identities in q2
and are useful in two ways. Firstly they tell us whether a
given superposition of resonances is likely to saturate the
sum-rules, Clearly the sum-rules are not well-saturated if
they are forced to predict the vanishing of all form-factors
corresponding to a given resonance. Secondly, if we know in
advance that a given saturation is going'to predict that all
G2’7 form~factors corresponding to a given resonance vanish,
we only need to compute the coefficient of G4 in the Ag g
corresponding to that resonance,

Since resonances with isopsin three-halves contribute
only to sum-rules on.Ag’g we may finslly enquire whether it

2

is reasonable to try and saturate sum~rules on”A§’+’ with
the Born-term plus a superpoéition of isospin three-halves

resonances onlye.

From 5.24-6 and 5.12-16 we see that the contributions of
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the Born-term numerator to discl)Ag ‘ and disg»Ag are
given by:
A% ~MNe ~ es F’,), (‘L) 251 | (5.3-17)
So with this saturation the sum-rules on Ag and Ag both
imply the identity: i
S/aN\ o '
F.05)=0 (5.3-18)
- that is:
Prav.  ~N/sz
Fa@)=-Fa() . (5.3-19)

These equations appear to be satisfied experimentally to within
about 5% at all values of q? Tfor wnich they have been tested,

. 2 .
At vanishing g 5.3-19 relates the anomalous magnetic moments

~of the proton and neutron according to:

Pz
I e (5.3-20)

The presence of the isospin three-halves resonances in the

saturation prevent the sum-rules on Ats7 from implying the

3,6
contradictory result: _
v
Fa(#)=0 (5.3-21)
so we are not forced to the erroneous conclusion:
‘F Y e freansd n L
F«L(‘t)“ 0 Fz(ﬁﬁ) . (5.3-22)

In the following sections, whilst bearing in mind the
results of this one, we shall try to saturate the sum»ruleé
on A3,6 for the production of given mesons with the Born-term
together with those resonances which are clearly seen
experimentally in the process under consideration.

The séuared coupling constants for the decays into the
final state af-the various resonances utilised are related
to the observed partial widths in Appendix 8. Such computa-
tions leave undetermined the sign of these coupling constants,

and we have taken them to be positive in &ll cases.
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Fach coupling constant appears in the various sun-rules
multiplied by a fom-factor. If improved experimental
evidence determines a given coupling constant to be negative,
the corresponding form-factor in our predictions must be
multiplied by an additional factor of minus unit&.

Similar remarks apply to the pion-nucleon coupling con-
stant which we have taken to he positive, but the relative
signs of this and the‘7 -nucleon coupling constant are

determined by SU(6) symmetry.

5.4 APPROXIMATE SATURATION OF THE SUM-RULRES FORﬁ7nPRODUOTION.

| For production of pseudoscalar mesons with zero isospin
~we have ordinary sum-rules on A 6 for those with positive
C-parity, (the? ,72’ , and E); and on A?’V for those with
negative‘c-parity. This latter case is hypothetical to date,
but in any case we have already seen that sun-rules on A7
cannot be saturated using the resonance approximation. In the
former case, only the photo-production of the:? has been
gtudied in any détail, and we shall gccordingly restrict
ourselves to a saturation of the sum-rules for production of
this particle.

The only resonance which has been clearly seen in

7Z-phot0produntion is the N(41550) with(':'sj

(I :r?) 2. 3 2-—) s (Beli=1)

a situation in qualitative agreement with the fact that this
is the only knovn resonance wilh an gppreciable width for

) ) L, (%)
~decay 1ntolN7 . Indeed with: -

(550> N7)=0-70 17, (1550) | (5.4-2)
and:

(o) (1550) = 120 MeY (5.14-3)
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this partial width is quite large. We shall try to saturate
the sum-rules for photo- and electrégroduction of the

with just the nucleon and the N({550). With M ana I"
denoting the mass and total width of this resonance, and fL
denoting the pion mass, we then have in view of equations
5:41-1, 5.412-8 and 9, 5.2/-6, and 5.22-8 that the predictions

of the sum-rules are as follows. From the sum-rules on A?’V

Y(?SSO 130)8(15 O~?N7z)F (WN%S”O)_M Fs’ @’N(“; N )
4 5

, S,V
and from, the sum-rules on Ag’ :

Y(1550,130)9 (1550 Ng)[ F “‘V(@’Nv? 550) (M-t 72) E SV (4 N+ 15 50)]

= -';f’n—zgé\jmv Nfz) Fz’v(’lf’N’? N) . (5.&—6;7)

' In these four equations we have introduced the shorthand

W

notation:
) =1 [i* = ()™
e sk 't N T
2 ] sn [ o . ( 5 ° L!,_ o )

(M,
Y(4,r) MT
The pion mass appears because although the final meson is an
7 the s-~channel cut still starts at (m +'f02’
The solution of eguations 5.L-l to 7 is a trivial matter

and they yield:

F(Tp~>1550%) = O = F, (Tn1550%) , (5.1-9,10)

E(n>1550°)  E(Tn>n)
R(Up>15507)  Fa(Tp1) o (5.4-44)

=g (NN F (Tp->)
27Y (1550,130)9 (1550 Ny)

+
We stress that these equations hold.for all non-positive

definite qz. -

The first two equations predict the vanishing for all
- - 2 . - T g o NP
non-positive ¢ of the pair of yX-»4{550 formm-Tactors which

appear only in the virtusl photonic case. These two equations
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cannot be obtained from pure photoproduction sum~rules.
Equation 5.4~44 predicts that the moment " orm-factors for
the yN<4550 vertex are in the same ratio as the corresponding
nucleon ones, In as far ss the empirical scaling relations:
D ene
1+KkKP K"

P2y e : 7 /02).
(5-1—!»"1 39}( L;.”\B)
are valid the right-hand side of 5.,Li-{4 mey be replaced for

211 ¢© by:

n/ o, |
"t 2 ~1:067 . | (5.4-16)
Taeking the respective mean masses of the nucleon and the

pion to be 939 ¥eV and 438 eV we obtain:

Y (1550,130) = 0- 949 (5.4-17)
-and from Appendiz 8, Teble AS8-I:
6(1550”3’ N?Z)'"'-Z:ﬂ . : (5.-48)

Thus 5.0~12 predicts:
F, (%1550 )= ~(0-266)[ 3 (w2 N7 (Fp )] eV (5.4m19)

If we decide to relate g(N-91N7 ) to g(W-»N3r) by
unitary symmetrije must go at least to SU(6), the ¥/D coupling
ratio and 7~7/ mixing angle being involved at the SU(3) level,
With the SU(6) predictions of negligible mixing and an F/D

coupling ratio of +2/3, we have:

g(N- sz)=+%g_ g->NT) (504-20)
so with g(N—>H7 ) given by equztion 5.5{~6, 5.L-19 reads
finally: ~(1-26) )

. - 9 ~1
F, (’I»;)-*Mb"ﬁo%) ::/@(/,59/} F, (’b?"? $) GeV™ L (5.4-24)

n case the reader is myvstified by the dimensions of

=~

se
FZ(YE—¢455O), we remind him that although we are using the

o

conventional dimensionless nucleon form-Tzctors, our F2(YH~>4550)

' . . . -1 , < .
as defined by 2.7/-24 has dimensions of mass . These dimensions

~J
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are then carried by the coefficient of FZ(YNF¢E) in equations

50)'lr—42, 49, and 240

5.5 SOME APEROXIVATE SATURATIONS OF THE SUN-RULES FOR
PLON PRODUGTLON.

5,51 INTRODUCTORY REMARKS AND DEFIHITIONS

In the case of the production of pseudoscalar mesons

v s . . \ < 0,
. with isospin unity we have ordinary sum-rules on: A3’ ,

Ag’+, and A; for the~pion, and ont A;’+ for the hypothetical
case where the meson has negative C-perity. Having already
seen that sum-rules on A7 cammot be saturated in the resonance
approximation we now restrict ourselves to the A%:g sum-rules
for pion production.

The situation here is a little less certain than that of
the previous section., A large number of baryonic resonances
with apprecisble partial widths for decay into N T are now

“5)

known and might be expected to contribute to this production

process, Whilst the A(4236) with

P . o P
is very clearly seen in photoproduction, the higher resonances
would not appear as yet to be fully disentangled. The experi-
mental evidence favours the view that this process is dominated

at low energies by, (spart from the A ({236)), the N(41525) with

4 P ‘ - -

(IQJ ,P)I\T(4525>= (1/2’ 3/2 I3 115)’ ()051—2>
and the N(4688) with

(I,JP,P)N“688)=(1/’2,5/2““9 130). (5.51-3)

On the other hand, the possibility of an apprecisble contri-

bution from the K(4680) with

(1,55, My 680y= (1/2:5/275470) (5.5L)
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is not completely ruled out. ILow energy pion photoproduction
does not appear to receive any appreciable contributions from
resonances vith spin-one-half, In particular, the presence

of the Roper resonance, N({470), with

(1,35, My yy70)= (1725 172, 210) (5.51-5)
has not been detected experimentally.

In the following section we zccordingly attempt to
saturete the sum-rules with the nucleon together with the

A(1236), N(4525), N(41680), and N(4688). The predictions
obtained‘are not very illuminating at present and in the
subsequent sections we attempt to gain more useful (ana
approximate) predictions by progressively leaving out the
“higher mass resonances,

But first, let us define some further symbols to simplify
the notation of the following sections.

We keep the symbols and/{for the nucleon and pion masses,
and define M{; MZ’ MB’ and MLL to be the respective massés of
the A(1236), N(41525), N(41680), and N(4688). The standsrd
notation is used for the nucleon form-Tfactors and g(ll) will
stand for the pion-nucleon coupling constent., We shall adopt
the value:

9*(N) g = 1+ 8 (5.51-6)
corresponding in standard notation to

57/4&:30-080 . (5.51-6A)
The symbol g(1236) will denote the'coubling constant for the
interaction: A(1236) —» N, and G¥,2’3(4 236) will be the
0(3,1) ® sU(2) form-factors for: yN —» A(41236). Similar

notation will be used for the remaining coupling constents
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and form-factors., The relevent coupling constants are
computed in Appendix 8 using equations 5.5{-{ to L, (taken from
the January 41968 Rosenfeld tables), as input data.

The finite width correction factors, Y(¥,["), are
defined es in the previous section, the s-chammel cut again
starting at the point (Wz+f4)2. With the above input data
we find:

Y(1236,120) =0+ 878 Y(1525 ,115)=0-95

’

Y(1680,170) =0 946 , Y(16$8,130)=0:959 5 (5.5!~7 t0 10)
so as in the previous section, the predictions of the sum-rules
will differ but slightly from those which would have been
obtained had we neglected the widths of the resonances.

It will prove convenient to define:

ooy #19(12.36) )
%,13_,3(%);. Y(1236,120) 6" (1236) | (5.51-11)

9Mzg(N) 1,2,3
.. M9 (1 52'{5) SV
/; 273(61’) 6 rvi?iﬂ(N) Y<152,5 115)@ 2 (1"‘7 J) (5.51-12)

s, 2. 7 §(1680) LSV
( ( 3z 7 AY(qéso,wo)G%);?%@éso) , (5.54=43)

40 ME M)

SyV 1 2(1688) R
Ly )2 40 MEG(H) Y(1688,130) 6,7 (1688) ,  (5.51-14)

in which the various coupling constants, masses, and numerical
Tactors are suggested by the structure of eguations 5,ﬂ1—1;
5¢12-16 t0 19, 5.24-6, 5.2L~1, 5.25-1, and 5.4-8,

| Finally, in view of equations 5.2L-1 and 5.25-1 we shall
define quantities (W,X,Y,Z)?k vhich are functions only of

q2 and the felevant masses, by:

: 6 % _1 , » ‘
Mi(12%é)_587§-7.b12;e5r7d;«%»&Sﬂ'g , (5.5115)

i= 1 rn-'l r"

N“(ms) 87-_;—}— X t%d(l(’b’j H?SO@) (5.51-16)

v=1f=17=0
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. 6. 3 2 ) . | |
[4:((4630)';8} > > Y;{{t;’%;( %T'j‘f‘K};Sjs) , (5:54-17)

i 1 E..-“?ro

M 16“8)“e>n> LG&t 7\/,“(1.. Ty L 833) (5.51~18)

=1 (=] v= '
where the qpqnululcs on the left-hand sides are the 0(3,1)6 SU(2)

space l-functions corresponding to the pole-greph numerators

~ for the intermediate states indicated. The (K,X,Y,Z)fk that

we shall need may then be computed from equations 5.24-8 to 20
or 5.,25-5 to 45 as appropriate by inscrting the relevant mass x
normalit& product for N.

Specifically, with;:

= M 2 .
. ,R'I?zo’byli': M1,?.7'3>,1++ 7t /""’ 2 (505:—4\9)
we have:
V/r WAt XY"_ r
k™ FiR| 5 = A
Ry b (5.51-20,21)
Rzﬂﬂ ’R::ﬂﬂ. o Ji 9
]/Y}x r f br
k™ Pik| ,z '%P/a , Zif™ bife =My -
R} R" (A PIN (5.5.1 -22,23)

5,52 ATTEMPTED SATURATION USING THE 1M(939), 4 (1236), N(1525),
N(1680). and m(4688)

In terms of the quantities defined in the previous section,
we obtain the following egquations on separately equating to
zero the coefficient of each power of t appearing in each of the
four sum-~-rules after.attempted saturation., Repeated k
indices are meant to imply summation over k = 4,2,3. In
deriving these relations we have made use of equations:

e

5.24-8,9, and 1L to 17, and: 5.25-5,6, and 10 to 1 3.
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Sum-rule on Aﬁ

Coefficient of t2:

A S Z S
Y32K2+Z‘32.L7-"o )
coefficient of *t:
! ) 1 S,.~1 8 .
stHz—*_YzfaK& i Z"&fal‘{c © 9
coefficient of tO:

© 1S LVO 1S =0 1S S
Xs& &4 3&Kk4zskLk"Fz

Sum-rule on Ag

Coefficient of tz:

» 2 108 7% 1S _
| Y%zK%44%zL%fo ’-

coefficient of t:

oyl S.vt 8 1,5 .
2 X3 Hy W@fzKr{"Z‘ékL =0 ;

coefficient of t°:
© S 0 /S 0 S =5
X HrtYer Kk v 2. L7 =F)

Sum-rule on A;

Coefficient of t2:

TR, 2 v
Y$1K2+Z‘32LZ" o s

coefficient of t:

1 T\ ARV VA A R
Wsz., z+>\32 H2+Y3Fz Kk”*‘é3kl‘k =0 )

" ecoefficient of tO:

WO

’ 0 A% 0 v o v
i e Yo e + Yo Kt Zag L = F

211 .

(5.52-1)

(5.52-2)

(5.52-3)

(5.52-4)

(5.52-5)

(5.52-7)

(5.52-8)

(5.52-9)
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Sum-rule on Ag

Coefficient of t2:
2 ,V 2,V _
Y;ZK%-FZSZLS-O ’ (5.52-10)
coefficient of t:
_-7_W % ~2 X1, Ha Y()[QK[A";Z(,F:LF =0, (5.52-11)
coefficient of 10
A 0,V _ =V '
WGFﬁ VJ/IQ"%'XGYQHIJ{'Y(:&Kfv+zéfel“k" Fa (5.52-12)

From equations 5.52-4,4,7, and 10 we have immediately
the predictions:

) S v v 2

Ko Ko Ko KD 23, MA |

L2l L YR oME | (5.52-15)

.This set of relations holds independently of the other
resonances used in the saturation provided none of these has
spin excéeding three-halves, In view of equations 5.54-13 and
1L, 5.52-13 reduces to:

Ga(1680)  GS(1630)  G(1630) GY(hs0)  §(1688)Y(1698,130)

- 39 ).
6-(1688) (;.5(1630) G (1688)  &Y(168%) 6(1680)\/(%50/(170)21&)9)]'

One may equaliy'well replace the superscripts s and v in these
equations by superscripts o and + referring to the charge of the
resonance,

In conjunction‘with 5'5247 we may use equations 5,52-2,
3 5, and 6 to express G (1680) and G 4 (4688) in terms of
(1525) and FS. Similearly, from 5,52—8,,,12, and 13
we may obtain G (4680) and G4 5 3(4688) in terms of G1 o 3(4525),

The present scarcity of experimental

1 2,3

4 5 3(4 236), and Fz.
.V

data on the G4 5 3(452g) does not render such information very

useful at the present time, and we shall not pursue this parti-

cular attenpt at saturation any further.



5.53 INCLUSION OF THE N(939), A(4

1(1688).
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N(1525) and

If the contributions from the N({680) are left out

of the eguations of the previous section, 5.52-1,

10 become:

yS_ 1 S_V_, V_
L2~L3—L2~L,b—o

that is, we have the prediction that G2 and G3

identically for both charge states of the N(1688).

4, 7, and

(5.53-1)

Agquations 5.52-2 and b.52-5 may therefore be written:

S o1 S 4
HZ—. Z$1L1/X2>2 5
s 1,58
- 1
He= ZglafXt,
and on defining:
vl ~° _v® 51 1y0 o1
V1 X_ezzw stzsf{ ZX%’»'ZM

oo o __y@ 1 . 4.v° 9
Vz = stz‘m Xéa.z’:m'* ?-Aéfs Zm

i

equations 5.52-3 and 6 become:
1 yve S vyt Syl =5
Koo XaaHiF VAl =X Fo
1 0 S S
XS’LXG'IH }V’Ll" 3’2-Fz .

These eguations may be solved for

in terms of Fz yielding:

Lf"’(xzf\/q“x;\/z) Xaz(Xm X'b’l)
S = (Yo Vo= Xa V) (= )

_Hi'f*“(quV«"X;V) 3|(X61 XS")
HE =4(XeVam X Vo 2 (Ko Yer)F

N 1 1 g . 0
Jovw X nd X
Now %30, 53 261, xfﬂ, and

masses, but<(v4-V2) and (%2 v, -x°

of qz. It turns out that:

'depend only

A

6117 %31 2) are linear

(5053“‘2)

(5.53-3)

(5353‘_L!—)

(5.53-5)

(5.53-6)

(5.53-7)

(5.53-8)

(5.53-10)

(5.53-11)
on the

functions
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(\/;V?_):-(?>=03)(’;01)(4--Lr8'-q}) 5 (5.5%-12)
KoaVim XV )= (@2 (09(6:48-97) |, (5. 5300 3)

where in these, and in all subseguent equations, the

evaluated functions of the masses are expressed in units of

GeV/c raised to the appropriate power. In connection with

these equations we remind the reader that our choice of

metric corresponds to positive q2 for time~like photons.

There is certzinly nothing very~sfartling about the prediction
S,, - 2

that G4(4688) includes a factor (L4.48-qg"), and since the

17(1688) - T(939) pair production threshold is situated at

the time-like point:

q=(Mytm) = 6:91 eV, (5.53-411)

there is no objection to a pole in this form~factor at

q = o 486eV . (5. 591 5)

However, since this point lies above the (41 525)-11{939)
production threshold: ‘
@=(Mytm) > 608GV | (5.53-16)
we require that the G4?2,3 (4525) should be finite st the
point given by 5.53-15. Hence we have the additional predic-
tion: g | .
Fo (47 =645)=0. (5.53-17)
There is really no experimental evidence to confirm or
contradict this prediction. = Although it does not satisfly the
combined erpirical scaling laws 4.2-17 and 20, we have already
seen that the former of these violates the threshold consiraint
1.2-46 if continued unmodiiied to time-like qz. Tt becories

& plausible prediction if one bears in mind that the equation:

pf(o) =~ F) (5.53-18)

if satisfied to within about 5%.
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Let us now turn to the remsining'isovector" equations.
On leaving out the N(4680) contributions, equations 5.52-8

and 44 now read in view of 5.53-1

v_,________ 4 Vo ol
Vv 19
l(lr:‘) quz (ZGIL Z'W?,?_ka/'f)) . (5053"'2(}) '
On defining:
Vo = (v, 15, W, XL
3 32 A" Waz Aas ) (5.53-21)
=f{i A yo 0 1
Vl!. = (Wﬁ?. Xé,j_*wél X'Z,Z) 5 (5053"22)
v E(W;z X§3 L\'/b?) )/fzz> (5-53"23)
- 1 0
\, = (W X,q) (5.53-21)

equations 5.52-2 and 42 therefore reduce to:

X; quzH:'*'\éLZ = gz(F?Y"W'&oﬂ{?’*i)"*'vs%d*'vsfe, 5 (5.53-25)
X61 H +VL "/(sv(F WM@ )"\/Jf(”’ ’vé'%‘s 0 (5.53-26)

We mey use 5.53-19, 20, 25 and 26 to obtain L%’ and

H A

v —_— R ,
1,2,3 in terms of F, and.i%’g 5, The solutions are:

= (X21 Vi >‘,-;1v2-)m1 [ng(x Zfa"X':1) F Z’*’XZ:;,(W& < 31""‘/301 XZ'QQ 1
()x AS )’M\/,‘,ﬁ)"’ (ngvs”'){%q\/(o)%@] ; (5.53-27)
Hy =-[x37_(xmvc-xmvﬁ)] RIVRAT ~Xe(v-Wa)L,
""(qurvzv?’)ﬁ(fﬁ(v«vé"va.vﬁ')[P] J (5.52-28)
H:-:. '3,1[“37.( (,1\‘/ X;V {ysz Ngq '51 -V'*'st(wm Xm)«%q"‘[ IRk
| “‘X,qu‘;‘:_)"r'(‘32/21,1)(){61A“XMVJI.%&"?(% Vs Xz ézz,} (5.53-29)
SN TMEAT AN RN MU ALE
SPRVAS SATATSEN [PV SATA RS CLA- TN (PAVAS $YA
A OG0 (26, )

(5.53-30)
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There are no consistency problems here; we mercly
reqﬁire that the nurerator of the right-hand side of each
cguation should vanish when 02 is eoqual to 6.48 GeVg. in
particular, due to the contributions of the A(4236) to the
isovector sum-rules we are not lead to predict the vanishing

FY(6,48).

On evaluating the variocus mass polynomials gppearing in

eguations 5.53-8 to 11 and 27 to 30, we obtein finally in

view of 5.51 -114 to 1lk:
. L =1 -
G, (1528)= =(1-81)(6::3- %) (4-hg-42)F5 Gev™, (5.53-31)

G (1525) = - (179 (64842 FS Gev™
2 79 ) Fe ’ (5.53-32)

s "1 [ -2
525)= (4 e li.B~-a* ; GeN
6, (i929)= (1oke)(63-47) 'F. G (5.53-33)

2y -8 -2
6 (1688) =~(0-0850)(& 48-q7) FZ GeV (5.53-31)

S o -5 S -3
G,(1638)=0 GeV G3(1688)=0O GeV  (5.53-35,36)

6] (1525)= (g—,;‘%—?{?ﬂw PRL (07247764 >e~r<«z%>«=~(z-zf»sxowo
“+ 4 ) (765~ 97) 65 (1236) +(z-lefi)(o-zélﬁ'qi‘)(ly57~1,'“)6—§(17..’56)] e
(79 (5.53-37)

G—(1575') &H-0) [F‘q_ (o 53?)6-"(17. 6)+ (0250 ) (4 53~92) 6 (1236)

+<O,2)+:-)(1.2_17_-§-5‘}) G, ('1’2,%6)] GeV™, (5.53-38)

(10ia)
(648

“(7'033)(4‘74"‘L")G'é(“i%@] GeV ™ (5.53-39)

G - (1525)= [F'V 1+(0:552) 6 (1236) = (0-245)(8 4 =9*) G2 (12:36)

v -(0-0850) 1. " ' ;
G (163 )(e(hs ) [f‘z“%"(O'552)@;(123@”(0-215~5>(‘8'4-’-2-“‘1.2>6-:(12’3:€_>>
(5.53-40)

+0-25)(1212:+97) 65 (1236)| GV

. : (5.53-L4,12)
G(1688)=0 GV~ , G (1688)=0 GV,
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The iSOScalar‘solutions speak for themselves,
lG4?2,3(1525)l and !G?(4688)l whilst non-vanishing are
predicted to be relatively small compared with the correspond-
ing isovector form-Tactors, since each i1s equal to the product
of Fg (vhich is very small compared with FZ) and a term whose

2

modulus is less then unity for all non-time-like g¢~, In

particular,!&?(4688)[ is predicted to be relstively small

S
G, 0, 5(1525) .

Not very much can be sald sbout the isovector solutions,

Vv
1236) only G1(1236, q2 = 0) 1is known with

even in comparison with

. V'
ir ? the G
since of the 1,2,% ( |
any accuracy empirically. However the factor (0.0850) in
equation 5.53-40 does suggest that ]G¥(1688)Iis relatively

small in comparison with ‘G v (4525)l .
' 19293

5.5 IKCLUSION OF THE 13(9%9), A(4236), AND 11(4525).

On omitting from the previous section the contributions
from the N(41688), the equations and results are modified as
follows.,

Dealing first with the isoscalar equations, 5.53-2 and 3

now predict:
S _ _ 115 A .
Hz=0=H; (5,541 ,2)

whilst 5.53-6 and 7 read:

S_ =5 0
H1 - ri/<X31 D) (5.5L-3)

Hf: Fi/%21 . o (5.50-k)
Since: |

'X;z-(m-é”{)é—a\/%) | (5.50-5)
and:

X (10:96)6eVE, (52501-6)



21 8,

these latter two equations are inconsistent, but their pre-
dictions only differ by sbout 14%. It is interesting to note

, o . . . ; s
that X51 and Xg, both venish in the limit:
t

Momm, p o (5.54-7)

So in this "equal mass" limit equations 5.5L-3 and L are
consistent, Both predict the identical Vanishingcﬁ‘Fzs,
which as discussed in section 5.3 is a prediction which holds
experimentally to within about 5%. Nothing can then be sald
about Hf wnich does not corntribute to the sum-rules, but
caguations 5.54-1 and 2 remain valid in this limit,

With the N(4688) contributions absent from the previous

isovector equetions, thegse can be solved for and
: 0 423 73

in terms of PV and-?ﬁ 5 We obtain:

- "(X;\/S"X;\/é) [st(X:,,'X;)FY+X12(N°f‘ X301"W33X21>%’1
(va Xs'z\/zx.)fgzdfz] ’ (5.54-8)
HV (vas XMV(:») [(V Vé)Fz <W61V5 "/G'Ivé)%
+(st (Vz;-Vs"VaVé)&/;J , (5.54-9)

( W?:Z/ 3?')23@, 0 (5.54-10)

w /1 | |
31 ~ . : DBLL—“JI
LA (554-11)
Again, no particular consistency problems arise; we
QimpTy recguire that the numerators of the right-hand sides of
5& 8 and 9 vanish vhen (X6ﬂ 5 XB Vg) vanishes. This turns

out to occur at the spacelike point:
%t 2\ foy?
G == (1212) GeV” (5.54-2)

In view of the detsiled structure of the mass polynomials

appearing, these two constraints turn out to be the same. On



21 9.

approximate evaluation they both yield:

[F:+(o-550)c~}’ 4236}-(2.-3(:5)6{(41%)] =0,

qj”z-1~2.12 (565l-13)

This prediction becomes plausible if we suppose, as is
v S .
not unreasonable, that the G4 5 (1236) are proportional to
$
oV . 2w e .
¥, for all space-like gq~. Ve then reguire:

2
[F:.;. (0-550)6) (12%)~(7..%5)6~§(17_e,@] =0.
=0

In view of the results of Appendix 9, we Tind that this

(5.5L-11)

equation égrees with the empirical data on pion-photoproduction
. - . . St gt .
in the 33-resonance region if one assumes an b4 /m:{ ratio of
i 97 7 . : . . . -
avout 5/0 . As mentioned in the said appendix, the data
Bl /MY is subject t y large tage experimental error
on B, /5, is subjec o very large percentage experimental errors,
: A - ‘30/1 oL * - - N . .' R
and the value of ~2 o certainly lies inside this error range.
On evaluating equations 5.54~1 to L4 and 8 to 11 we obtain

the predictions:

- ~f
(1‘ 80) f'g_s GeV s (sum-rule on AD),
. 3
G (1525) = — : s 4
(1'56)[:2_ GeV 9 (sum-rule on Ag),

(50 5*’4—")’5>

S s = | : -2 > 23)= : 2
G, (1525)=0 G¥™* , G (1525)=0 Gev? , (5.54-16,17)

-~ 08 '
G (12’56):@;3;%2) [F;f +(0552)6 (1226)

— (0-245)(8- 4k~ 9*) &Y (’12%)] GV (5.54-48)

6 (152 5)'-'-@2%% [FZ“ (+218)(0-762-+9*) & (1236) (5.50-19)

= (56)(0:506-9) 6 (1236)] v
6,(1525)=-(0878) &;(1256) GeV

Gy (15'25)=aj%§-@

-0 245)(8 =) 6 (1236) | GeV ™' | (s.50-21)

(5.5L-20)

[F,f +(0:552)6; (1236)
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The isoécalar solutions again speak for themselves,

They are in qualitative agreement with the corresponding
results of the previous section, and this is not surprising
since we have neglected the form-factor G§(1688) which was
predicted_as being reletively small compared with G1?253(1525)o
Howéver, the results 5.53-3% to 36 are to be preferred to
5.BL4-45 to 17 due to»their increased predicti?e power and the
fact that they (presumably) correspond to a betier saturation
of the isoscalar sum-rules., On the other hand, 5.53-34 at
least will have to be scrapped should it be discovered that
F§(6,a8) is non-vanishing.

The isovector solutions again suffer from the lack of
reliable data on _the G4Y2,3(ﬂ236), end the reader is referred
to Appendix 9 for a discussion of the empirical data on
G¥,2(4236, q2 = o). Although a reasonsbly accurate estimate
of GY(ﬂ236, q2 = 0) is availaeble, the predictions 5.54-18 to
24 depend rather violently on the (relatively unreliable)
value of the parameter'e of that appendix.

We t abulate below the values predicted by 5.5L-18 to 24

2 v (1525, q2 = o) using input data
9253 :

for Gg(4236, g“ = o) and G

1
based on three different values of P . The value

=0
corresponds to pure magnetic dipole excitation at the

YV 1(939) —> A(1236) vertex; the value

= — 0 06k
corresponds to the vanishing of Gg(4236, q2 = 0), and therefore
7 : -
of G;(1525, q2 = 0) in this case; and the value:

p=-0-018., (5.55-21)



224,

(wvhich is well within the error range of the empirical data)9
is that for which the sum-rules predict the vanishing of Gg
(1236, q2 = 0) and Gg(1525, q2 = 0)., It is obtained by setting
Gg(ﬂ236,q?=o)equa1 to zero in 5.54-418 and then solving the
resulting equation simultaneously with A9-3,16 and 21 of
Appéndix 9, The corresponding empirical solutions for Qy’z

(1236, q2 = 0) are:

v . -
Gy (1256,4720)= 2:63 GV, (5.54-25)

y 2 AN e 4.0) Coo\~Z
6 (1236 ,97=0)= 194 GeV ™ | (5.54-26)

Ve have not bothered to compute the value of e for which
GX(&EQB, q? = 0) will be predicted as vanishing since such
a value will lie outside the error range of fhe empirical data,
Vie remind the reader that in practical applications
dg(ﬂ236) and Gg(ﬂ525) will be darmped by kinematical factors
proportional to q2, thus the relatively high values of
l Gg(1236, q2 = o)l and ,Gg(1525, q? = 0)]| corresponding to

a e value of - 0,084 are not superficially unrcasonable.

TABIE 5H.5h-T

(B, /1)) (yi>4)

FORM-FACTORZ | 0 | -0,018] -0.06k
G§(1236,q2=0) 3,88 0 ~10,87
6, (1525,0°=0) | 2.56 | 2.35 | 0.705
6y (1525,6°=0) | ~1.90 | -4.70 0
_G\g(ﬁ525,q2:0) ~3,50 | 0 9. 5L
Predicted values of ¢1(1236, o® = o) and 6, 5 5(1525, ¢ = o)

corresvonding to invut data based on various sssumed values

for Ef/i.-iﬂ (A ).
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5,55 INGLUSION OF THE 1(9%9) AND A(41236) ONLY.

In this case we have only two iscscaler equations. The
a

are consistent, and both imply:

S _ :
Fa=0. (5.55-1)
As discussed in scction 5.3, this is a remarkably sound
prediction in view of the crudity of the approximation. It
holds more generally for any attempted saturation in which
21l the resonsnces utilised have isocpin three-halves.
Gouations 5.54-{0 and 4{ reduce to:
G (1236)= 0 555-2)
v
6 (1296)= 0 . (5.55-3)
As we demonstrate in Appendix 9, a very wide range of values
fgr the ratio M1GZ(1236, q2 = o)/G¥(4236, q2 = 0) are in
gualitative asgreement with the experimental data on the Ef/M;
ratio for pion pnotoproduction in the A(4236) resonance
region., For finite_G¥(1236, q2 = o) the vanishing ratio

predicted by ecuation 5.55-2 corresponds to a value:

E.:/M}" ==0-064, (5.55-L)
In view of the widespréad uncertainty concefning the correct
enmpiricel value for this guantity, it is in good agreement
with Gourdin and Salin's value of ~0,0U45.
If we accept 5.55-2 and 3, the remaining pair of isovector

equations read:

o -~V .
V@1€%1— Ez 5 (sum~rule on A;); (5¢55-5)
0 p _ .V
%&T%@~ F. o, (sun-rule on Ag). (5.55-6)
Since:
® N [ 3
Woy 2 (15:62) GeV° | (555-7)
and:

o . 70) 5
Wé?”‘ (40 7'O/ GeY . (5.55-8)
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these two equations are inconsistent, although their
respective predictions will only differ by about 23%%, In the
"equal mass" limit:

Mi»# , >0, (5.55-9)

W become egual and non-vanishing, rendering the

ol
21 1
eguations consistent and non-trivial., (C.f. the eqgual mass limit of

-0
and J6

O s 0 1, Y a . k) : PO ' .
X3, and X61' These differing behaviours arise out of the
|
opposite normalities of the resonances concerned, )

On evaluation of eqguations 5.55-5 and 6 we obtain:

(’1'075’)) F;f GGV-1, (sum--rule on A;) ,

v (5.55-10)
G, (1236) =

1-57%)F ) el (sum-rule on AX).

(17278)F2 617, ¢ (5.55-11)
At vanishing q2 this becomes:
, 2:00 GeN™’ , (/\35) , (5.55-12)
G, (10%6 ,47=0) =
- - 4 + -

2-54 GeN™', (AL) . (5.55-13)

(%)

A number.of‘éuthors have obtained results eguivalent to
equation 5.55-12 by means of the sum-rules for pure photo-
production., On bonmarison with our four fits o the photo-
production data given in Appendix 9, we see that whichever it
is adopted this prediction is beitween about 20% and 30% too
low. In view of the drastic nature of the approximation this
ié nevertheless a reasonablg result.

However, equation 5.55-13 is in spectacular agrecement
with the thrée 1owerifits and in good agreement even with the
highest one. Itidiffers from the fits corresponding to .

/il ratios of +6.4%, zero, ~l1.5%, and ~5.L% by about 11%,
%, 0.h%, end 2% respectively. Since the prediction is based

on the vanishing of Gg(1236), the final fit possibly provides
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the most Jjustified comparison.

This prediction camot of course be obtained by the
methods of the authors cited asbove. Its accuracy may simply
arise out of the happy coincidence that all the errors
introduced by the approximation procedure exactly compensate
oné another @s far as this equation is concerned. On the
other hand, it could indicate an almost exact cancellation,
in the vanishing q2 continuation, of gll contributions to
the coefficient of t in the Ag sum~-rule other than those due

3 7
to G¥(4236)‘and F;. This could well include the contributions

v \ . . . .
from G2 3(1236), thus eliminating the reliance of the result

a4
on equations 5.55-2 and 3. We are unable to offer any
explanation for the mechanism responsible for such a cancellation,

FYinally, we wish to indicatle a possible alternative

2

approach to the sum-rule on Ago At vanishing ¢ this can

. - . \ ] ;
receive no contrivution fron G3(1236), and as a check on the

2

calculations we note that W9 is indeed proportional to g,

33

Thus in this 1limit the vanishing of the coefficient of t% in the

3
o 40
Way 4{4 (0)+ W,
q-=0

We may argue that a great deal of faith cannot be placed in

AT sum-rule implies:
Y,
b, @=F6) | (5.55-114)

equation 5,55-2 since as it involves only a single form-factor
it is unlikely to correspond to a well-saturated coefficient
of t in the sum-rule. If we then scrap this equation as
unrclianle we may keep the é%(o) tern in 5.55-1L. By
substituting into this equation an empirical value for the

+

-gé(o)/gq(o) ratio we may try to improve the A3 prediqtioﬁ for

G{(o), or vice versa,
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On substituting for gé(o) the value:

b ()= Go)v, (5.55-15)

corresponding to a pure magnetic dipole transition, we find:

M L a*=0)=0.64-Ge -1
Gy (1056, qr=0)= 2606170 (5.55-16)

wnich is within {%% of the empirical fit obtained by assuming
s I . .
such a vanishing bﬂ/m1 ratio, If on the other hand we substi-

ture the value:

13’7.(0)‘: (0-308))%/4(0)/,41 ; (5.55-47)

hict - 1 s ey ot ',!+
which corresponds to Gourdin and Salin's value of n%/h1, ve
find:

A *z0)=7 -
G, (1236,97=0)= 216 6V (5.55-18)

This is in much poorer agrecment with the corresponding

empirical fit form which it differs by about 10% .
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SUMIARY OF RESULTS AND CONCLUSIONS

Using the (original) 0(3,1) ® SU(2) invarient off-shell
technigues developed in Chapter 2 Part IX and in Chapter 3,
and assuming charge-conjugation invarience of hadron-virtual
photon interactions, we have obtained the following suoper-
convergzent swa-rules. They are velid for non-positive definite
t and for all non time-like q2; v denoves a real or virtual
photon.

1) Tour sum-rules, (list L.L-42), for each of the

ProOCESSESs

TN—N7 ’ .- | . (1)
TN—-N7' o (2)

ii) Pive sum-rules, (list L.4-L4l4), Tor the process:
iii) Two sum-rules, (list L.L-L3), for the production
of hypothetical mesons with:
Crglvcﬂ)z(oﬁo7"> . (5)
iv) Two sum-rules, (list L.L.45), for the production

of hypothetical mesons with:

(T0,1,C)=(031,7) . (6)

v) Eight sum-rules, (list L.5-59), for each of the .
processec: IN—>Nw . (7)

| WN—>NG . | ()
vi) DBleven sum-rules, (list L4.5-61), for the process:

| IN—>Ne . | | ()

vii) Fourteen sum-rules, (list 4.5-58), for the
production of hypothetical mesons with:
? = (17.0.- )
(T .)I)Cf,l)'- (q 703 }—> . (‘O>

viii) Bighteen sum-rules, (list L.5-60), for the
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production o hypothetical mesons with:
(TG )= (1145 (11)

Of the above eightly sum-rules, fourtcen refer to emplitudes
having electirodynamical poles &s a necessary conseqguence of
gauge~invarienca and/or current-ccnservation., e conclude
thaf these cannot be saturated in the resonance approximation.

All eighty sum-rules remain non-trivial in the vanishing
q2 limit, but only fifty-three of these can be obtained 1T one
treats the photon as an on~shell particle from the outset,

Thus we conclude that even if one is only interested in obtain-
ing sum-rules for a real photoprodudtion process, the correct
way to proceed is to treat the photon as a virtual particle
and only take the vanishing q2 limit at the conclusion of the
calculation.

All the gbove sum~-rules are original, but in the real
photon 1imit three of the sum-rules Tor pion production have
been dbtaiﬁed independently of our own investigations by a
variety of authors. They all employ a rather different non-
covarient approach.

On assuming instead that hadron-virtual photon interactions
are not charge-conjugation invarient we have obtained the
following sum-rules for Spacé—like virtuel photcoproduction
processes., All are original.

ix) Two sum-rules Tor each of the processes 4,2,3 and 5,
and three sum-rules on each -of the processes L and 6, of which
noné can be saturated in the resonsnce avpproximation, (lists
Lhoh-16 and bL7).,

'x) Twelve sum-rules, of which eleven can be saturated in
the resonsnce approximation, for each of the processes 7.8,
and 40, (list L.5-62).

xi) Nineteen sum-rules, of which seventeen csn be saturste
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in the resonance approximation, for each of the processes
9 and 14, (list L.5-63).

The amount and complexity of the algebra invelved in a
proper saturation of the sum~rules for the p:oduction of vector
mesons 1s so great that we have postponed these calculations
unfil list programming technigques have been developed to
enable this algebra to be carried out by canputer,

Wle have instead restricted our saturation attempts to the
sum-rules for the processes 1 and h.. Here we have a reasonable
idea of which resonances should dominate the sum-rules, and
since none of these has spin exceeding five-halves the algebra
is just about manageable vhen carried out by hand. It has been
necessary to aséume charge-conjugation invarience of the hadron-
virtual photon interactions gince dtherwise we obtain sum-rules
Tor the two virtual photoprcduction processes which cannot be
saturated in the resonance approximstion. Whilst alternative
approximation procedures are available only this particular
approach will yield predictions about the form-factors for
electromagnetic nucleon —»isobar excitation,

Saturation of the sum-rules for 7 -production is a rela-
tively trivial mastter since only the N(41550) is expected to
contribute strongly, (in addition to the nucleon Born-term
of course), We have predicted the values Tor all non time-like
q? of all four form-Tactors parameterising the yI(939) —>
17 (4550) excitation, (equations 5.4-9,10,11, andb24). Wle have
vet to compere these predictions with the experimental date on
7Z photo- and electro-production in the W(4550) resonsnce
region,

On saturating the sum-rules for pion production with the

y
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N(4688), N(1680), (1525), A(4236), and nucleon Born-term,

vie. have obtained relsations between the nucleon moment form-

factors and those parameterising the excitation of the nucleon
into these various isobars, (equations 5052—2,3,5,6,8,9,12

and 13). These may be solved for the Gﬂsz ,{1688) and 1 (1680)
in terms of the Q192,3(1525) and P, end for the G4V2 5 1688)

and q1 »,3(1680) in terms of the G1’g,3(1525), GaY2’3(12J6>

and Fgo
production may be obtltained in terms of the eleven remaining form-

Thus all twelve form-factors for N(1688) and H(1680)

factors. ‘In particular, the G v (4688) and 2:3(4680) are
related to one another through tne four equations 5.52-1%. he
rather large dimensionless constant, -39.4, appearing on the
right-hand side of these equations becomes plausible once

one bears in mind the fact that with our choice of coupling

constants for the isobar-nucleon-pion vertices, we have:

g [N(630)~> Na| 1 |
q [N(6s—>nat] 389 . (12)

The empirical dala on the above inelastic form-factors

was very sparse at the time when the resesrch reported in this
thesis was initiated. The author was in fact only well
acquainted with the data on GX ,(1236, o= 0). A detsiled
s

comparison of the above predictions and the present experi-
mentél information will be carried out in the near future.

On omitting the N(4680) contributions from the sum-rules
we can how longer discuss the 1 j(4600) but are now able
to predict the G? g 3(1525). That is, we can still predict
twelve form-Tactors but the input data reguired is reduced
erm eleven to five form-Tactors,

In this saturation attempt we have predicted the vanishing

(152

AS}
N

- Q '\'f "
of the four G§’3(168o), and have obtained U”(4088) and C-1’2’3
)
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in terms only of F., (eon tions 5.53-7 to 3lt). If the

I\) w2

expressions for the Gﬂ 3(1525) arse required to remain Tinite

when continued unmodified into the physicsl time-like region,
. . s - , . 2
we reguire in addition that F2 should vanish when g  has the
. . o sl v s - .
time-like valus 6,48 GeV™. Ve have concluded that this
constraint is oplausible., The isovector equations have becn
. Vi, coo Vv Coa P .
solved for G, (1688) and G (1525) in terms of G .(41236)
1 4:2:3 1:23-)

and ﬂx (equations 5.53-37 to LO). Fiﬁiteness of the

23

1 2 3(1)?5) in the time-like physical region again reguires

v J . . .
the Gﬁ o 3(1256) and Fg to satisfy a constraint ecusztion for
>, 2

a equal to 6.L6& C—c—V2° Lack of data in the time-like region

has prevented our discussing the plausibility of this latter
constraint. . |

Qualitatively, this saturation attempt has led to the
predictions that the isogcalar form-Factors are small in
comparison with the isovector ones, and that the yN—»1(1688)
form-factors are small in comparison with the corresponding
ones for the yl—+1(1525) transition. These are not unreason-
-able results. Again; a detailed comparison with the latest
experimental data will be attempted in a subsequent article,

On leaving out the N(41683) contributions as well, the
predictive power of the isovector eguations is reduced buﬁ
G§(4236) can now be predicted rather than being neesded as
input. In this way we have obtaired expressions for G1V2 2(1525)

? $ -

and G§(1256) in terms OI’G1Y2(1236) and Fg, (equations

e o . 2
5.54-18 to 24 )., TFiniteness of these solutions at ¢  ecual

2

to the space-like value -1.212 GeV  requires the latter three

Q

s

form-factors to satisfy a constraint eguation at this voint.

P

e hqve demonstrated the plausibility of this constraint,

O
N
—
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5.50-I), and found them to be particularly sensitive to the

value adoptea Tor the ratio Gg(4236, q2 = O)/Q¥(4236, a 0).
Unfortunately this ratio is not well determined by the present

data and these particular predictions may possibly prove more
useful as a means of prediciing it in terms of empirical
infﬁrmation on, say, GX(1525).

There is not really much point in omitting the 17(41688)
contributions from the isoscalar suvm-rulss since all form-
factors avpearing are already erreD51OTe in terms of 1 2
only. On doing this for the sake of completeness, however,
we have predicted the vanishing of the G2?3(1525) and have
obtained two inconsistent equations, (5.54-15), relating
Gﬂs(1525) to Fg; One may insist that these together predict
the vanishing of both G§(1525) and Fg, this latter prediction
at least being in agreement to within about 5% with all
available experimental data. Alternatively one may note that
the predictions of the two equations treated separately only
differ by about 14%, and are guite close at vanishing q2 to
corresponding result of the previous saturation attempt. In

the equal mass limit the tvo equations become consistent;

G \452)) no longer contributes to the sum-rules and both then
s .
20
Finally we have investigated the possibility of attemptling

predict the vanishing of ¥

to saturate these sun-rules with the Born-term and the A (1236)
alone. In this case we have predicted the vanishing of Fg;
Gg(1236), and Gg(4236). The first of these predictions is in
good agreement with the data, as discussed previously. The

~ s 2
second corresponds at vanishing g ©o an & /“1 ratio of about

-5,45, in qualitative agreement with the experimental result

C)\
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that this ratio is of the order of a few percent and probably

negative., Vle have also obtaincd two inconsistent eguations,
3 2 1.v. - £ -v—;V a7 FARY
(5.5-10 and 44 ), releting 64(1230) to 5. We cannot use them

to predict the vanishing of these two form-factors since ve
know that Pé(O) is non-vsnishing and also reguire C (12J6)
to be non-zero if GZYB(ﬁ236) both vanish., In the ecual mass
limit the two equations become consistent and remain non-
trivial, Vith physical masses their respective predictions
differ by about twenty-three percent. Lvaluating these
eguations 'in the vanishing q2 limit we have obtained two

6, (1236, o° = 0).

inconsistent predictions for
One of these can be obtained by suvcrconvergence of real
photoproduction, It differs from the empirical data by
between aboutiwenty and thirty vercent, depending on the value
adopted for the E;/M; ratio. On the other hand, the particular
sum-rule from which this equation is obtained receives no

contribution from G (1236) at vanishing q2 so one can try to

it it to the empirical data by adopulng a non-gero value for

e

Gg(1236, q2 0). (The equation predicting the vanishing of
this latter form-factor is expected to be rather poorly
saturated.) In this way we have found that the sum-rule
satisfies the experimental dats to within about 4 3%,
. "6 <. o 4 + 1.;’*‘
(equation 5.5-16), if one adopts the velue E,’/m1 egual to
zero, as predicted for example by SU(6)W symmetry. On
adopting Gourdin and Salin's value of -4.5%, howsver, the
equation (5,.5-18) differs from the data by about 1u%.
The second eou tion can only be obtained by means of our

off-shell approach., It agrees excellently with experiment
as it stands, differing by 2% from the fil corresponding to the

snishing of C'\] .y 2 O) d v O 1 Faar the ©4+
vanishing of —2(12Jo,_q = , and by Q.U from the Tit

o 4 . - . - St
corresponding to Gourdin and Salin's velue Tor E /Qw.
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Thus the predictions of this final saturation attempt
are in surprisingly good asgreement wiﬁh experiment, especially
when the crudity of the approximation is borne in mind. This
gives us confidence that the predictions of the more realistic
saturation attempis will prove to be sdbstantially correct
when more detailed comparisons wilh experiment are available.

Vle conclude thal the derivation and saturation of off-
shell superconvergent sum-rules for hadron-virtual photon
scattering processes provides a usefuvl and powerful means of

investigating the hadron clectromagnetic form-factors,
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APPENDICES

APPRENDIX 4 DEFINITION OF OUR WETRIC AND DIRAC LATRICES.

We use the Lorentz-space metric defined by:

4300:”311:_3 "“6,-3-1 1 (A1=1)
Rather than distinguish between covarient and contra-
varient four-vectors, we simply write all such vectors in
the form:
@y = (st 0, 5) = (8, 8) = (a0,03) (s1-2)
with the sun'ﬂ'aatlon convention for repeated Lorentz (Greek)

indices defined by:

wb?.:'d«f,bf,, é’vobo"‘f: =do bo""ﬂ L 42,}:’2-"“3b3 s (&4-3)
s0: 3/&1) Oy = A (A1-L)

Our Dirac matrices are then required to satisfy:

{%(/,,;zrl,} =29, (M1-5)
and we define:
Ia‘r' —-’D’o(bf /{7.,5 5 (M1-6)
=1 s
<j.’/”"’zpzv:[?’r/“"7 ["J ) (A1-7)
_ 1 7 :
0“},1.5' = i‘[lb}xvfa(s.[ . (A". -3)

It follows from A1-5 and 6 that:
{,b/* o}' ‘ (A1-9)
In cases where our work is simplifisd by using an explicit
realisation of these matrices, we shall always choose:

__A'ﬂ O _ O o
AO’°~<OZ “ﬂ) 9 ’O’i-_-_éog’ 5) > (A"'j"ﬁo)

with the usual Pzuli matrices:

7 1 0
U = © 1) OJ':- (o ¢ OJ = ) s A
1 (1 0 . % 10 ; 3 o -1/ . (44 -44)
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o =if |
We then have: @% :( ) * (M-12)
“Lﬂz O p) '
and: .
zvv‘,.. 2-e-- [ ?':;,.. 1....,, = ——
ﬁo" %4" 2;2 5 - “"1 . (A4 =1 3)

The eight matrlces:'ﬂ. and 075 are hermitian in

1;} ’
IR TR S K . . P PR S, ) 3 ~ . it

this realisation, whilst the eight: 13,735;700L7 and OUqs
are anti-hermitian, In this same realisation, if 7 denotes

any one of these sixteen matrices,; then all sixteen satisfy:

r\ = (Xor’ 0, "P (A2 =14 )

That is, the sixteen OOF’ are all hermitian,

APPENDIX 2. FXPLICIT REALISATION OF THE PASIC SPIN ONH-HALF
AlND SPIN O;u JAVED FULCTIOCHS,

. Our basic spin one-half four-component spinor wave-

function is foallsea by :
7 o [errm) (/)
U ((F)d Po F 777, ,Q:'f}'l Wi (‘/},-2 ) , (A2-1)

where the two-component spinor twvi@@Q%o is given for‘$

parallel to the 3-axis by:

4 L[
41)“«(0,0,1)“(0) , (A2-2)
and for general orientation of;? by:
1 1+ cos B
cosp sinf, singsing, cos6)=
( "{) ¢ ),\/‘—(I“-cose)\e%ﬁmne) (Ao- 3)

The wave-functions "ﬂ&(fa Nwﬁ'vi(F) iny% P and
ﬁ}dﬂ& ﬂ are then generated from 'zGﬂ by means of the
appropriate equationsof section 2.44., The normalisation of
these wave-functions is:

t ?“( U (?) 21844, (a2-1)

We reglise the four-vector wave-functions for a massive

spin-one particle Dby:

o(b> ( y 10"" ) (A2-5)
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dz A
E%1(4,0,0, 1) =/:f~‘2-7(0-)»-«17z,o) . (15-6)
J:?(AFO,HZ}CO DSy nB [fb[sz,zg)sw@, COJ@)-T:(%

:hcos¢cose LSW(p,:’r‘;ancosﬁ—%'bcocglJ =—:-‘i725/ o (a2-7)

0 -the nomva"l isauion in this case is:

&% @7 g/»( SM - (£2-8)

APPANDIX 3 USHFUL RELATIONS INVOLVING THE FOURTH-RANK
TEVI-CEVITA 17 50R

Vle definc: _
()U.,)),ﬂu,(? ) = even permutation of (0,%,2,3),
%y;}/‘o% -4 (/l;)),ﬂvy(Q ) = odd permutation of (0,1,2,3),
0, any two indices. equal, (A3-1)
This numerical tensor then satisfies the useful basic
relations: - -
&b S/,WZ{O 60{'@ = 2@»:1)3,(0 3/,9(5 "+ S/J,O(?L(J 5;}@
(04 atE el
T e DptEwladee 5 (a3-2)
and:

/ / ! ¢ !
%/A/A 8/.42’ ﬂ/g,?v SV'P
Ivpd Gvp’ Gpa Jup!
3?,/.4’ v’ 9o af g0’

L a / ’/ / .
der’ 3pv" Fp2" Jop’| . (a3-3)

A third basic relation follows from equations A1-5,

8//'”%6 8/“’)),2/?/ oy e

A -6, and A3-{, which together imply:

...1 A B
'0’5 ”.Z:'T Elmvﬂ,‘o /5’/./.%) Jx /()"o 9 (A3-4)
from which after some tochous algebra one obltains:
favkp ?fr'"' Q/A))IM 'zf(o + S?Q%TV + ﬂft.(oTv ?'/L + i fg’/‘?rp
\J/,x,’/'b 5‘” Zio 6Vﬁ 0//-72, 3[M’ Sﬂf’
- 9,29 e b -Clp.;’vﬁ‘op - %J‘(p s 3‘}0 . (A3-5

Bquations A{-1,5,6,7,8, and 43-1,2,3,5 are togsther sulficient



for the derivation of all possible relat‘ions involving the

7 Diréc matrices, the metric tensor, an.ri the Levi-Cevita tensor.
Wle shall generally use the shorthand notation mede clear

by the following examples:

E(ab CGDE g/,w?bie @pbucﬁvdf) R
Ef"w (a'b)gai""”?”f" “a bf’ 2 > (A3-6)

end in particular for non-commutative four-vectors:

o\ P * Euvd TeTa
8?/@)('5’5):* Ef,m)?‘.,f) UQTQ{:IE O/ | e ? (i57)

Note, however, that if b is just a four-momentum, it follows

from the antisymmetry property:

8/#2/;1/(0 = 8#)/‘0%

| * (A3-8)
that: Z/Ay(bb) =0 =5/A(b)(_.,(b) = ... GlC. | (A3-9)
Similarly if S/q/(ois a symmetric tensor,

g//wuﬂ(.w 82/(.7:0: Z/uvﬁ,{o S/%{o = ete. (A3-10)

We now list some useful relations; a,p,c,;d;... Will
always stand for four-momenta and not for Dirac matrices

vriless this is - explicitly stated,

From A3-2 we have: g/iv(a@aﬁp-{'?;v;{,(ab)ﬁy(s

+Z?»;\A(a‘b)59)(3' = a’@ 8}»))2(‘5)- b(ﬁ 5}.}.«));\:(0-) Y (A%=41 )

so in particular:

8/Av(0~b)cﬂv + Ep), (CL b) Cir

,+ g?.}A- (&b}Cp = (&‘C)E/A),R (b)"(b 'C’>£/XPA<“’) . (A3-12)
Bouations A3-44 and 42 continue to hold if any oI the '
a,b,c are Dirsc y-matrices, provided one writes the eguations

wvith these faciors aspoearing in the same order throughout,
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In particular, if a,b,c are all y-matrices, we have,
using:

{a[.u)l (,6) o /0(') }=2' 5}&1)?\(9 (A:f)-"]. ’L'r)

and, (in our realisation): v.y = L, (A3-+5)
thaé: gjw) (Ta‘)ﬁ?vp%'g))?u(rﬁ. ?1“)3;/4» "‘CC;?V};,CFMT)?W(U :

[ Tp el (T)-Epot P] (A3-16)
and:
EpTT)0,+ Exp AT Gt Erp )T =~6E00.(1) (A5-17).
Further relations are easily derived by satursting free
indices in A3-14 and 42 with additional four-momentaz or
y-matrices.

From equation A3-3 one may derive the following relations:

Gop! 9oy 3:)@’
Epple € uo'ale' ™ =11 199» s Ine’
' 9@ 2/ ﬂf’?”/ ﬂ(:(o’

7 (A3-48)
' ~ Jaa/ 9ae’
E pvlko & upily! = =21 W v g
PYeCp . (A3-19)
/ P ﬂf)z/ S’]?P/ ,
E/f«vﬁp 5/,@112(3' = 3 S(c,[g , (A3-20)
and:

2 pvdp 5/;»1)9»\0 = bt (A3-24 )

Contracting free indices in A3%-3 znd A3-18 to 21 with

four-momenta and/or y-matrices then yields additional useful

lations. If two or more y-matrices are involved they are
best distinguished by superscripts, since it is important that
vhen the determinants are expanded the y-metrices occur in
each term in the order in which they sppeared in the original
"double-epsilon" product. At leasit, one must not re-order |
the matrices in a particulsr term without taking proper

account of the enti-commutation relations
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e have derived from the ebove egusations the following
interesting relations which greatly s:mplifly the calculation
of lowest order unpclarised cross-sections for processes

sucn as: eleciron + nucleéon—=electron + isobar:

| Eﬁ(ab'd)ﬁﬁ(&bﬂ = =2 e b (a B)*]) (Az-22)
E(TabT)E(Nab¥)= 4l b= (a- b)T] (A3-23)

€1 @B £ (@b £(ebT)=2 [o2 b7 - @b (b 4)

(Az-2L)

£y (BD)E(b)ENp(b) Eop(ab) = 2 [a7 b ~@ bM]”

(A3-25)

En(abT)En(@bT)E u (ab) Ervle k)= —2[atb (@b,

(A3-2

(o2

)

A large number of relations can be derived from equation
A3-5 by contraction with 'y—-rnatrices‘ and/or four-momenta and
possibly invoking equations A1-7 and 8., The only ones needed
Tfor this thesis are es follows.

Contracting A3~5 with @) and bF , we obtain alfter some
anti-commutation: E}A-V(ab)fz',g':‘ gi’b'#’bfp [‘5 - a/ccrd'y},"ﬁ ‘
"+ {0‘40'»}}5"{’ (fib,ﬁv "'?!’“ (a’,u by — f’]/m 9“»"9

FGpwocb=ablly tapbo=buan (1)

The reason for enti-comnuting the right-hand-side into
the form above, is that it is then pearticularly simple to

\ ) X .
invole the Dirsc eguation if 2#1;(4}3) 55 is sandwiched between

half-integer spin Dirac spinors: L!)(CQ and (!)(b> .
Contraction of A3-5 with @"e yields:
\A s Y
efxv?»(rtf)@g - ﬂ//‘-v {Jﬁ +3a J}J»“‘ﬂ,ﬁ.%v - WP%%’ 5 (4%-28)

vhich on contraction with Cc./-;, and b/’{. gives: -



Ev(@Th) 5= byt~ AT, 0 -a b7, . (4
Finally, contracting A3-27 with Co we obtein:
Enlach)ly=-Algb-aclul+bcdlu+ablug
-ra,/&g/ ,Z{J" b/a,,é'v;f -+ C/,JL
~b-captac bju-a-be

APPEIDIX L. USEFUL RELATIONS INVOLVING THE THIRD RARK
LUV*J. CCEVITA Ay w ::OR

Vie similarly define:

j’a , (i,3,%)
= "'1’ (lsaal(:)

even vermutation of (4,2,3),

it

0odd permutation of (1.2,3),
0, any two indices egual, ' (A1)

We then have the useful relations:
.. -, . ] L .,
gtjf’t‘ Sifm 5xfg.fi817n+5'z,ﬁfé837/4 a 5'L3£gfa'm 5 (Al~-2)

11

R
O/ &

i S/ |
1L S iR/ | (AL-3)

3
fi
kil OfR!

:

ikl ™ g”f g”f - (Ali-iy)
i 0341

EgrCilik =285 | (8-5)

ieir ()= 2]V (111-6)

e (= ey OGS BT, ()

Eﬂ (TAC')T-Z‘LT:} . ' (A11-8)
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APPENDIX 5  KINmL

A
FOR Cii

gt

IAPTERS L =nd 5.

\TTCAT DEFINITIONS AND RGLATICHS
AL

With N denoting a nucleon, i a meson, and y a real or virtual
photon, we define the s,t, and u channels of the processes

considered in Chapters 4 and 5 Dby:

T(a)—=N($") + M(k) | (85-1)

s channel: M(’P)
t channel: [\-71(—'{” ( )-—-“’-1’\'( ) m(““}l) (A5-2)
u channel: N(“'P’) “+ ’0’(0,,) —— N( )‘} {x((e,) . / (A5-3)

The parentheses in these channel definitions define the
rmomenta oi? the varticle involved, and we define: m, m', dnd//L
to be the masses of the initial nucleon, final nucleon, and
meson respectively, We have distinguished between m and m'
in- order ‘to keep the relations of this appendix as general as
possible, but throughout the remainder of this thesis we always

take m and m' to be equal,

We define:

2 - -t
S= K P where K = Jf)"*'ci,"’ Jf"i (%- 9 (A5-l;.,5)
a 2‘ v " s e pod I—- il
L’:A » where AE q' Q’ '}J )]D 9 (A5—6,7)
: A
W= V\/ s Where KIE ’}3,"‘1/: ']‘L"w ﬁ‘ ] (A5-8,9)

A& % (p=4) > VQE’%‘(&""@ ,  N'=%( }’I*“Q (A5-10,11,12)
/\/5"4:‘:?(7’," k), ’Pzﬁi('?l"'?> v /\///542“('}’+E> > (A5-13,40L,15)
y>,

2

=5 (5~W) 5 ana fo = /S W gT (A5-1€,17)

The sete (x,A, N ), (A, <Q,P), ana (<K', =A", ~A"")
are sets of "natural" momenta for the s,t, and u channels

respectively. Under st crossing al fixed u:
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vhilst under s<=u crossing at fixed tT:
Y% ke, 'P"“’”’“’f"l? Kes "K/ s N> "/\”9 /\é“f’—/\we Ver—) .
(45-19)
Equations 2.12-1l to 17 are applicable to the processes
under consideration here, and the '"natural" pair of Nandelstam
variablés is therefore 27 and t.
With the above definitions we have the following relations

between the Handelstam variables:

S+bt+u=lC , s=L(it~t+4v) , (A5-20,24 )
and ¢ . u=—g(l6"‘ —-4-p) (45-22).

Note that IC is a.funétion of q2 and not a constant in
thé virtuzl photon case, and q2 is then itsclf a MMandelstam
variavle as discussed in Chapter 3. So we strictly have three
independent Mandelstam variables in the off-shell case, the
5 .

natural set being:22,t, and q°,.

Equations A5-5,7,9, and 10 to 15 yield on inversion:

2P=K+2/\=2P”A=2_/\”/‘+‘Kl Y (A5-23,201,25)
29.=K~2A= ZQ'*'A= 2N =K , (A5-26,27,28)
2¢’=K+2A/= 2P+A= 2N+, (A5-29,%0,31 )
2k=K-2N=20-A=2A"- K", (A5—32,33,;;%u)

The scalar products between the six pairs of different

momenta choosable from p,q¢,p', and k, are given Dby:

»36)

i

‘ P P S LA
299 =8-m"=qF = w+u-t-u, (A5-3

I .,.A.‘/’?'_ 7".;. - - — e =
‘_21;.%’_,,1 FgE- = fHS—mt T (45-37,38)

AN 4

— g 7',_ o L ~7/L.. c
2?-&-?;2 'f—'ILL U = E+Ss—m 4 (A5-39,L0)

2pth= gl pt 2 -E (A5-1 ,12)



22-480
! Y A T __ - — 7~~ 2z
2?-';3-7/5’ +w=t = srU-p-q > (AB-Li3,L0)
. - 2z - T —_ o o l?:_. 2- .
2k g it = STU = (AB-Li5,L6)

Similarly, in terms of for example the '"natural' t-channel

momenlts we have:

4P = 2(ml* 4 p)-t ) PQEY y (A5-L7,48)
2PA = (] % 550> X OIS G
(m ,77’) ,  2QA=(g f*) 5 (A5-19,50)
and: LQ° = 2(/L2 P (45-51)

Having taken the particle with momentum ¢ off-shell, we
shall in fact £ind it more convenient to worx in the t-channel

with momenta: A, ~g, and P, and we then need the relations:

g =D ~%~-}:‘;(f;;-d*'~ "™ ) \

(A5-52)
and : A8 = '}' 2 1 .
and: 249 I (A5-53)
Note that for m' = m:
P A =0, P.g=2, (A5-5L,55)
l .
| ==tk 6
S=ao0 w=x ? (45-56)
' g e - ’.
(N Fnd % PR  (45-57)
‘ ~M'l,. . ) .
?.E 559; f &14:$ K (45-58)
=—ah
’P'{é we )!3 k’s-_:g; ® (A5_59)

APPRIIDIX 6: KINEVATICS OF THE THREFupARTICLE VERTHEX,

. We assume that the veriex couples an initial on-shell
particle with mass m, momentum p, to a finsl on-shell particle
with mass M,'momentum ¥, The third particle is assumed to be
Cinitial with momenitum g, but its sqgusred four momentum will
a

_— - . < o e . . .
always simply be written zs ¢© to allow for the possibilivy of

its being a virtusl photon.
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Then:
a = K-p, (AG-1)
and we define:
P' 2K +p . | (AG-2)

The following useful relstions then hold:

K=4% (P + q) (A6-3)
p =% (P -q) | (A6-L)
op.g = H-ino—q° . (AG-5)
op.K = 2 + m° - o° A (46-6)
Zqu = ue - n® 4 q2 | (A6-7)
P'l.g = H° - m (A6-8)
p1e . 2(”” 4 m2)—q2.. (46-9)

Note in perticular that since any momentum, &, involved at The
vértex may be vwritten in the form:

Q = aP' + ba, (£6-40)
where é and b are constant coefficients, then if g refers
to the only off-shell particle, Q.q is a constant only vhen
Q= P, ' (A6-11)
the general relétion being:

Q.q = a(hﬁz—mz) + 'bbq2. ' (A6-12)
Hote also the useful relations:

~hq A (q)= = LMK = 4l -2 (M) 4 (M=)
= [47= (M) ][ (M=) (46-13).

.

APPENDIX 7. SOiZ TJO_INDEX TYPE 2 BAUIVALBINCE RELATIONS FOR
FB=>i5 PROCLo94 |

Consider covarients of the generzl form:
é;jcqb)‘g'(c,d), where a,b,c, and d are four—mouenfa. Sueh

covarients arise for example in the study of normal feactions



g 250,

with the spin configuration: 4 + %-%4‘+ t. Ve mey expand
%%ﬂayb) £.(cvd) in two ways: fLirstly by means of equation

A3-3, and secondly by using equation A3-29 and the Tact that:

2 /,,“(a?f b)E (c'b’d}—"—[g/u (@%’5)3'5][&&5%!) /(}.5] . (A7-4)

fBquating the right hand sides of the two expensions leads to
the trivial result (o = o) only in the special case:
a=oc¢cy, b=d, (A7-2)

and in other cases one oblains type 2 eguivalence theorems
between normal FB~»FB two-index covarients.

| In particuler, one may derive in this way type 2 E.R's.
relating the non-gauge-invarient covarients of section L.12.
Choosing o', p, and g to be the three independent four-momenta

one may apply the above treatment to the covarients:

0N -

'%fm(: ‘c’/%(’}",&"ﬂwo-z(?l?"f) 9 ' (A7-3)
( i) ’

/‘:LC/ = O;A(T’V‘y f’> Cet (‘1/7 P) | (A7-L)

1 S (.“).-c
- 7‘{/,‘3@1:‘*/,Kfr’?f"ﬁ%(w'ﬁ. (47-5)

where as usua

1 we have chosen and ordered the momenta in

m

each case in that way which reduces to a minimum the number of
anti-commutation operations required prior to invokation of
the Dirac equation on the nucleoﬁ.spinors. We find thet in
view of the subsidiary conditions, the above operation perférmed
on Jﬁ/f‘“ anﬁ_akfia& leads to the same L.R. in both cases,

(iii

vnilst L/AM_ leads to a second independent L.R., No further

“inde ndent 's are generated by considering the three
covarients which may'be obtained from the orevious tnvee by
o

interchange of the indices. In the special case m' = m, the

(i e (i)
Z¢R, coning from Jﬁf;&x or vﬁi/&u resds:



a [0, 71+ P 4]+ »17, 2] - a4 [1,P]
Falgrn Rl 20, o,
whilst ‘76’/93 vields:
[2v*= (o) ][Y, 7]+ 2m2 [TAT ]~ A 4{P0%F + 244
_ i~ (l-\' %“qu')[’ﬁ K-\:‘ R A Ci, ‘{2}';4&} +* (?'Ci" e A\ 7/-) [f()/j AJ
~2madd. + 20 [RIT,41] + 7Eia A1}
+=(t-2a9)[5,[1,4]] 20 . (17:7)

Eere we have adopted the shorthand notation that:
AB = A B, A B12ABBAL |, (a7-6,0)
{/‘\93} = A//. Bo BG,;AI% 5 (_47.-». 0)
LY kﬂ'ﬂ = rdf* L‘Wa =T };J"/U‘/«l > (A7~41)

where A,B'are momenta or y-matrices, and b is a momentum,

One might try.to deduce further type 2 E.R.'s by
considering Tor cxample the forms: 8#(3. bec) £lade),
8/4(3'\'Y> Ee(bye), f/‘ft(a'\’b)f’:c,((YYC), %u(aY'Y> 25((\”;"1)); >£/ULG‘(AB)X
XEde-(CD>: and g'/AG"t(A) E e (-rq;(B)o
However,we have succeeded in showing that irrespective of
vhether or not m' = m, none of these forms leads to a type
2 E,R. inequivalent to those already obtained for the process

under consideration.

APPENDIZ &

0(3.,4.) )ﬁ@uU(?) COUPLING

Per T en

"'lL T TD

In this apopendix ve compute the coupling constant Ffor the

g £, o e .
decay: (J + %) =1 4 O in terms of the partis

|
-3
[N
joh}
b
"

J
a
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After deducing the general relation We use it to calecnlate
the coupling constants encountered in sections 5.L and 5.5,
Yie adopt the notation that the (momentum, mass, helicity, isos
isospin projection) of the resonance, Tinal baryon, and meson
are defined to be: (K, M,A, I, t5), (p'.m, A, Iy, %), and
(k./ 0,L,,%,) respectively.

The 0(3,4) ® SU(2) invarient coupling constant, g, is

defined in our usual notation byb

<F ?LI t'g,,[ E«'M}Tlﬁ A t‘R> = ’)(}) )TI M(f/.)f( 5—1)(“/;&;;,,,
! ﬁj P tﬂ
X(LI)IB a0 () (5 (e ly IM)%@IR  (48-1)
vhere as usual: ; 1
A {NI,L

who
el
o
P
-

Is > (A8-2)
and the plus (minus) signs arce to be adopted for decays
which are normal (abnormal) overall; The partisl width for
decay in a particular configuration of isospin projsction is
then-

M ertsrt) oy } Gyt RulriiAby

Ksfio){ 46~3)

where the final-state phase-space factor is given by:

Cr ll
K=(M,0) %W * (=(M,0) °

4=
The partial width, F’ ’ conventlona]ly tabulated by

(a8-)

experime 11;311;'53 is then defined by:

&
rl ;ﬁ— [ (txzw“tu’h tM)
all allowed (A8~5)

bb) tM
and has the same value for all members of the initial multi-

plet. Hence:
BN

T ] = ~?J/'\ "
F" h B 4>> >/\ ’ 9t M? K= (+,0) ,(_-Lo——6)

vhere: Tﬂv/‘ - ﬁu?()/)(;/ ):].L M’(FW_(K) (AB-7)



and:
- L — { L'V L‘ﬂ 7 U
X(If‘\ ’I‘E:' I M) - Z )é.s ':7 v /')TM( /)hs( )IR(I ) G)r ¢ lfjrrw 5
all alloved
Epy by for (A2-8)

any fixed Er
‘this latter quantity being the same for all tR' The factor X

arlse because we have not bothered to normalise our isospin

covaricnts; that is, they yield un-normalised Clebsh-Gordan
coelfficicents when contracted with the external SU(2) wave-

1
functions., They may be normalised by multiplication by X 2,

:kThus: :
r‘ ' /‘ 1474 T2 l / /
M 5 3
where the forward contracited provogator is given bJ @7
T/ Ve
@ (‘f’;'f’ly K) = =Coup [75“0'01(%’ v M) . (AB-10)

In view of the kinematical relations:

. ,,,1;/2

K=(1,9)
2 (K M) = [ (Mo )™= ] (A8-12)

we easily obtain finally:

[ & _ Cipg [( M-t h) = /A'Z‘] T [( M) /,J'] T [( Mk 771)"’:-/;7’]

&

]

'; 3| (M) Tl mi=pr] (A8-11)

and:

PRV T T

9> X LIV () MAEITE . (A8-13)
Note that our coupling constants have the dimensions of’

mass—J.

Using equation A8-43% wie compute the coupling constants
for the decays tabulated below; The X-Tactors are obtained
from equation A8-8, and the input data is taken from the
Janary 4968 Rosenfeld tahlsgﬂ For the masses of the

pucleon, the pion, and tne,? ve take the respective valu sioiH

939 lieV, 138ieV, and 5LY9 lieV, Note that the partial decay
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COMPUTATION OF THE COUPLING COISTAINS FOR BARYON DHCAY
APPEARIGG LI S5CTI0WS H.0r and 5.5.

SIELR g DECAY
RESOHANCE al.8lglde 5% | courning
"HO "qu ;‘:H £ = NG HIA T
53‘ :;j) é’ = g} O E,j A CONSTART
(17ASS, F% » |BO AR "éd ﬁ: g
(ltev I J SRR R L.
A(1236,420)|3/2 | 3/2% wa| + |1 }1,00]420 | 15.5 GeV™'

N(4525,115) |1 /2 | 3/27| wat| - | 3| 0.55] 63.3| 40,8 Gev™
§(1550,430) [1/2 [ +/27| x| + |1 ]0.70] 1.0 2.4 cevY
(1680, 70)14/2 | 5/27| waw| + | 3} 0.b0) 68,0 5.48 GeV™

W(1688,130) (4 /2 | 5/2% wa| - 0.65] 84.51 213 eV

je

width oﬁly determines the relevant coupling constant to
within an overall sign factor. We have assumed that all the
coupling constants listed are positive, and the reader is
referred to section 5.% for a discussion of the implications

al

of this assumpiion.

APPENDIY 9. P[m TOMENOLOGICAL FITS TO PIQN PHOTOPRODUCTION
TIT THa, 43— RS ORANCE RAGLION.

The empirical values of the coupling~constants G, V2(ﬂ236,
q2 = 0), hereafter abbreviated to G4 2(0); may be obtained
from a phenomenological fit to the data on the resonant

scavtering process:

r()»(ﬁ)+ P (e TP Tt (A9



n
Ul
n
9

The centre-of-mass frame angular distribution for this
process is proportional to:

o 3 I e [ 4
A+Ccos?@+osinfeos2@ (ho-2

. /4)
where f is the scattering angle and ¢Sis the angle subtended
by the production plszne andthe plane of polarisation of the
incident (real) photon. The constants A,C, and ¢ are poly-
nomial in the masses and homogeneous guadratic in Gqu(o).

Assuming the reality of these coupling constants, the ratio

f2 MG 0)/6'0) (49-3)

may be determined from cither of the ratios C/A or «/C. In

il

practice the data is usually esnslysed in terms of the ratio:

o)z E/mr | (A9-1)
whgre E:(M:) is the non-covarient multipole amplitude
corresponding to a purely electric quadrupole (magnetic
dipole) induced transition.

Once f’ and therefore f is known, the value of GY(O) may
be obtained from the empirical value of the product réé Ohes
where |pgop 1is the total width of the A (4236) and Opg, is the
total unpolarised corss-section for the'prochs A9

All empirical fits aﬁd theoretical calculations indiecate
that lﬁ{ is very small, probably not more than a few percent,
Thus, for example, SU(6)W symmetry predicts e = O? whilst
U(6,6) implies a Iel value of a few per-cent. The dispersion

(40)
theoretic treatment of CGLN indicates that’e[is probably

not more than 2%, and the empirical data of licDonald et. aL.(+5)
is consistent with a value:
e =0:00%=00b, ‘ ,
) (A
m3 Ty 3 S e 4 3 st - L I 8 - ()-LQ)
The combined investigations of Drickey and Hozley s

(Ll)

- - o Ly .
Berkelman and YJaggoner , and Vasilikov et. al.< 5) yield
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values of «/C at three energies near to resonance. Gourdin
(%6) -

and Selin it these to a best value:
> (A9-6)
but do not give an errvor estimate,

The error range in the empirical values of both C/A and
®/C is about == 10%, and this unfortunately leads to a much
larger fractional error in @ . Yie shall show in a moment
that £ is itself a rather violently varying function of p for
le! of the order of a few per-cent. Consequently, anelysis of’
the preseﬁt data does not lead to a very precise estimate for f.

The phenomenclogical value of G:‘V'(o) has been computed by
Gourdin and Saliﬁ?eénd by MathewsgyTTheir metheds are essentially
identicsl, but they obtain widely differing results. Dalitz
and Sutherland(u1> have pointed out that this is due to an
error in the it of Gourdin and Salin arising mainly out of
negleci of an SU(2) Clebsh-CGordan coefficient. This error
affects their estimales of E1+ and M1+ by identical overall
factors, so their value forf)‘wouldjappear to be substantially
correct.

Mathews' estimate is free from computational errors, but
his value for ﬁ&:needs to be updated from 410 to 420 MeV.‘ In

"addition, he takes for Ofythe value:

6;65(/{/‘{;-.;~A+-5>’}>7T°): O‘éot(’(ﬁ;y S -P:rz:°> o 269/,,\) . (A2-7)

5=y (u)

A more up to date value is now available, namely:

res ® Ofot|. 2 %ackﬁhound 2 :::[(2(,7:&: 5)“‘ (7:{:3)] /A"D

Sstg S--M4
‘ -’2(.’2.605{36)/,‘-5 .

ct

L. n . e an . \
It is therefore necessary to update MHathews' estimate of G,(o)
by a factor of 4.023.

v ) [ h A
(ﬁe show in a moment that G (o) is proporticnal to bl 0. .)
1 SR e T res



257n

This ecstimate is besed on the assumption that‘o vanishes, and
it will be useful to see how the updated it 1s affected by
assuming instead: a) Gourdin and Salin's value for §)9
b) the value
a2 = (0-065-
P > (A9-9)

' . s o AV -
corresponding to the vanishing of G2(o), and c¢) the value
%+ 0064
A S (49-10)
wnich should give some idea of the upper bound on the values

.V
of G,{’Q(o}.

For the benefit of the rcader we Tirst mention that our

v V B . 0 inan] 3 &3 T
Q1,2,3(O) are related to the CE,M,B(O) of Gourdin and Salin
(denoted by Cg’ug5(o)) and the CB,M,S(O) of Mathews (denoted

¥
by CI s Tollows.
v 3,&,5(O)> as Tollows

N @Z(o)-‘- C:(°> = C:CZ(")//" ' (A9-171)
[2/3 6. (0) = =Cle)==[CE(e)+CE(o)] //v:z : (A9-12)
[*s 6,(0) = €O+ C LY=)o ' (h9e13)

Hote that llathews does not define his CB,M,E in the same way
as do Gourdin and Salin. . Also, these authors work in terms of
0(3,1) decompositions of the matrix element <Aﬁ+lja(°>rf>5
whereas we define our G¥,2,3 by meéns of an O(B;ﬁ)<Z>SU(2)_.
decomposition of <&]{ @)|N> . This is responsible for the

27% 'factors appearing in eguations A9-11,12 and 413. They
arise because:

SO EORICA (1515

<

Salin's paper,

Qn

From expressions given in CGourdin an
cbupled with eguations AS9-1{ end 12 we have:
- ~ \’ -,
CEF (M) (- M)
= + - (s Vi - V ‘
P M,‘ [(SM,]‘T' m)@—;/(o)"" f‘/H (M'l ‘%L}(«}z(m)] . (29-45)




258,

Ly

:F" 1 1+ (g,M»;m)P :[1-5«(15;(56)(3] |
(1+p) (Mig=1) (1+6) g (49-16)

and in perticular:

i

O’(pure 11 transition), implies £ =1, (A9=47)
- t
—-0,0LLS,(Gou:r?din and Jalin's estimate), implies
f ~ 0,308, (A9-4 8)

. . __(;,‘ m) _ ,
:f.—. 05(6’7\,’("): 0),1122131188 fO ( 5 1y ) o2~ 0064 > (89-19)

(M 7/1)
(3 M m)

Jo £ varies over the range zero to (’1‘,88) wnen P varies over

I

(Q +ocoé}+> , implies :}r-..'\.'. 1-88 . (89-20)

the range (-0,06L) to (4 0,06L), and conscouently f is not

oL

well determined by the present empirical data.

In view of eguations A9-{4 and 42 we have from Mathews!

paper:
<3 /- J’i‘l
G«’V(O) . inl,‘/?- Lok Ore/fs . (’? - P)
5 (0) = 1 T T A
1 @( 44“'771)/?'(‘\41"}'770 ! (’I i 3\0> ?‘ Y ( 904 )

501

[1+p=F +0(c%)]

=0 » (Ag-22)

and as expected, the empirical error in f? only affects the

6,(0) = G ()

determination of GY(O) by a Tew per-cem;,

Multiplying Mathews' estimate of C‘ o) by q/O/Z 1. 025)
to obtain G;J(o) on R and then invoking ecguaticn AS-22,
we obtain the fils tabulated below., If lo is assumed known

. ; v .
with perfect accurascy the error renge Ifor C~4 2(0) iz about
H

R
pok o4 $oe



VALUES OF QY
e ‘

TARLE AQ-T

2(0) OBTAINED BY FITTING THER

259.

e TS T - TN T
BAPERLIONTATL

DATA OF [Ty 4 O,

)

2 s

FOR VARIOUS VALULS

o for T
OF EI /M7,

e ik A

o~

-
—

I'."i)",‘

Y
H4 92 (0)

HE©

HE

(GeV~1)

'}O e 06).{.
0
- O [ OL;'B

""Oe 0611'_

1,88
1
0.308
0

2,84
2,68
2.25

2.9
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