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ABSTRACT 

The phenomenon of turbulent drag reduction by the addition of 

certain polymer additives is described. The role of molecular 

elongation is discussed and we interpret its effect from a continuum 

viewpoint in terms of normal stresses differences. The development 

of turbulent flow is described, and the relevance of stability 

theory to an understanding of turbulence is argued. A review of work 

on the stability of parallel flows is given, and we discuss methods 

for solving the Orr-Sommerfeld equation, which underlies most of the 

work. The particular theoretical models used for the fluids are 

derived from a general theory of continuum mechanics. 

For plane Poiseuille flow of a second-order fluid a linear 

theory is developed. Unlike the Newtonian case Squire's theorem is 

not valid, and a three-dimensional analysis is required. The non-

Newtonian terms are in general destabilising. Under certain conditions 

the first growing disturbance will propagate at an angle to the basic 

flow, giving a longitudinal vortex structure close to the channel 

boundaries not present at the onset of instability in a Newtonian 

fluid. The analysis is extended to finite amplitude disturbances by 

introducing a time-dependent amplitude. The interaction of three 

fundamental wave forms with each other, their harmonics and the main 

flow is considered, and the existence of states of finite amplitude 

equilibrium is established. Detailed calculations are confined to 

the simpler two-dimensional case. Disturbances which would decay 

under linear theory may in fact grow provided the initial amplitude 

is sufficiently large. A threshold amplitude for instability is 

found as a function of Reynolds number. A further viscoelastic 

property, that of stress relaxation is introduced. For infinitesimal 

disturbances the relaxation terms lead to a modified form of the Orr-

Sommerfeld equation, and the net result is to destabilise the flow. 
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CHAPTER 1: INTRODUCTION  

1.1 	The Toms' effect  

In many practical situations involving fluid flow, turbulence 

or eddying occurs near solid surfaces, and resistance to motion is 

largely associated with this turbulence. Thus much of the power 

needed to drive a ship through the water is dissipated in the tur-

bulence which originates in the boundary layer close to the hull. 

Similarly, the pressure drop along a pipe is much greater than it 

would be if laminar conditions could be maintained. 

Large reductions in turbulent frictional resistance, for 

example, of the pressure drop in pipe flows, can sometimes be 

achieved by dissolving small quantities of certain substances in the 

liquid. The first clear scientific description of the phenomenon 

which now bears his name was given by Toms (1949), who investigated 

the flow of various dilute solutions through pipes of different 

diameters. Toms dissolved polymethyl methacrylate in monochlorobenzene, 

but since then many other polymers and solvents have been used to 

achieve drag reduction. See, for example, Hoyt and Fabula (1964), who 

examined a wide range of water soluble polymers and showed that the 

most effective could produce as much as 40% reduction in turbulent 

friction in concentrations as low as ten parts per million by 

weight. A frequent combination that has been used is a solution of 

polyethylene oxide in water as it is inexpensive and effective 

(Virk et al, 1967). The additive substances usually have very high 

molecular weights, of the order of 10
6, and are effective in 

concentrations of the order of ten to one hundred parts per million 

by weight. In these very low concentrations the solution has a 

viscosity, u, which is independent of shear rate and indistinguish-

able from that of the solvent alone. Here, then, are fluids which 
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are essentially the same as the solvent (usually water) in their 

values of density and viscosity, which are normally regarded as the 

relevant fluid parameters, yet they behave in a radically different 

way. 

In order to avoid confusion we define (Lumley, 1969) 'drag 

reduction' as the reduction in skin friction in turbulent flow below 

that of the solvent alone. This excludes substances such as polyvinyl 

alcohol and ammonium alginate which delay the transition from laminar 

to turbulent flow (Shaver, 1957), but after transition the drag is 

higher than that of the solvent alone (Hershey and Zakin, 1967). 

These polymer solutions are often described as non-Newtonian, and in 

this work a Newtonian fluid is defined as one for which the extra-

stress tensor, that is stress with the pressure part subtracted out, 

is proportional with a scalar coefficient to the rate of strain 

tensor. This is merely the three-dimensional extension of Newton's 

law of viscosity in simple shear. These tensors are defined in more 

detail in chapter 2. Any departure from this simple relationship is 

referred to as non-Newtonian. We shall also, use the word 

'viscoelastic'. Viscoelastic materials exhibit some of the properties 

of an elastic solid and some of the properties of a viscous fluid. 

For instance, if a tensile load is applied to an elastic solid the 

material will extend only a certain amount to accommodate the load, 

whereas a viscoelastic material will continue to stretch (until it 

breaks), a flow phenomenon called creep. Again, to produce a constant 

strain in a viscous fluid we should need to apply an instanteous 

stress, in an elastic solid we should require a constant stress, while 

in a viscoelastic material the stress would gradually decay. This 

last property is called stress relaxation. For a one-dimensional 

strain creep and stress relaxation are illustrated in figures 1.1 

and 1.2. 
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Polymers effective in drag reduction are linear and flexible 

(this will be discussed below). Such polymers, if isolated in a 

solution at rest, would take on a random walk configuration if the 

bonds were ideally flexible and interference of the links with each 

other could be ignored. In practice polymers do assume a tangled 

ball configuration which approaches this ideal (Lumley, 1969). An 

effective diameter can be assigned to this ball (roughly proportional 

to the square root of the number of monomer units), which may be 

determined by light scattering measurements. The effective diameter 

is, of course, much less than the extended length of the molecular 

chain. Merrill et al (1966) defined a critical concentration in 

terms of this effective diameter as the concentration at which the 

polymer molecules, if they were spheres of the appropriate diameter, 

would be in dense spherical packing. Concentrations less than this 

are termed dilute. We shall be discussion the very dilute solutions 

for which drag reduction is most marked. For example, Merrill et al 

(1966) found that a 38% drag reduction was produced by a 50 parts per 

million aqueous solution of polyethylene oxide of molecular weight 

6x105. The critical concentration in this case is 2450 parts per 

million, so the solution is very dilute. 

Hoyt and Fabula (1964) examined many aqueous solutions of 

natural and synthetic polymers and found that the most effective 

polymers were those with a linear structure having few, or no, side 

chains and those of simple form. Molecules with many branched side 

chains were relatively ineffective. Merrill et al (1966) compared 

polyethylene oxide with the less flexible polyisobutylene and 

concluded that effectiveness increased with flexibility. From 

further measurements they found that the number of monomer units in 

the main chain was the important factor rather than molecular weight, 
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and also that increasing the chain length improved the effectiveness 

of the polymer. Hershey and Zakin (1967) used different solvents 

and found that the drag reduction was better for 'good' solvents in 

which polymer-solvent interactions were favoured over polymer-polymer 

interactions. In good solvents the polymer is relatively extended, 

and we shall discuss the significance of molecular extension later. 

It is convenient to introduce a Reynolds number, pUL/u, where 

U and L are typical values of the speed and length of the flow 

situation. When a dilute polymer solution is made to pass through a 

sufficiently large pipe the curve of friction coefficient, a non-

dimensional parameter proportional to the pressure drop down the 

pipe, against Reynolds number (see figure 1.3) follows the curve for 

water until a certain threshold Reynolds number is reached, after 

which drag reduction occurs (Gadd, 1966). In a larger pipe the thres-

hold Reynolds number is higher, but the shear stress at the wall is 

then approximately the same as for the threshold condition in the 

smaller pipe. If two different drag reducing fluids are compared in 

the same pipe as in figure 1.4 (Gadd, 1966) it will be seen that it 

is impossible to give an unequivocal rating of the effectiveness of 

different additives. The drag reduction for a given additive in a 

given pipe becomes greater up to some limit (figure 1.5). It should 

be stressed that along the line of greatest effectiveness drag 

reduction does not occur in the region of laminar flow. 

A possible explanation of the threshold shear stress is 

provided by theories (Ericksen, 1962 and Tulin, 1966) which predict 

an elongation and orientation of the molecules for shear rates 

greater than some critical value. These theories imply that 

molecular elongation is the essential requirement for reduction of 

turbulent drag. The phenomenon of degradation, to which some polymer 
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solutions are susceptible when subjected to continued shearing action, 

also supports this theory. For example, polyethylene oxide loses 

its effectiveness (Gadd, 1965), and it is observed that the molecular 

chains are broken up. On the other hand guar gum shows very little 

mechanical degradation, probably because any broken molecules rapidly 

reform, and the solution maintains its effectiveness. 

If molecular elongation, or something equivalent to it, is the 

factor common to all fluids which reduces drag, Gadd (1966) has 

suggested that a primary mechanism may be a thickening on the laminar 

sublayer, a thin region close to wall where the flow is essentially 

smooth or laminar. The presence of the surface suppresses turbulent 

eddies near to it. Any elongated molecular filaments would tend to 

become aligned in the flow direction due to the action of the high 

shear. In chapter 3 we shall show that, in contrast to a Newtonian 

fluid, longitudinal vorticity may be established close to the wall 

in a non-Newtonian solution. The molecules will be 'unwrapped' in a 

helical manner and have a resulting elongation in the direction of the 

main flow. The theory only relates to conditions at the breakdown 

of laminar flow, but it does suggest a mechanism which may result in 

a different turbulent structure in the important region close to 

the wall. Tulin (1966) argues that elongated molecules would lead 

to an increase in dissipation of turbulent energy. A new balance of 

energy production and dissipation would need to be established, 

leading to a reduction in turbulence close to the wall and hence a 

thickening of the laminar sublayer. The change in energy balance 

need not be large to make a large differenftto the surface friction. 

Whatever its cause thickeningof the sublayer does occur (Goren, 1966 

and Elata et al, 1966), and the aligned molecules tend to suppress 

transverse motions. Instead of a molecular description we could 
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employ the continuum concept of normal stress differences to provide 

forces which would oppose transverse motions. Normal stress differences 

will be properly defined at the end of chapter 2, but in simple terms 

the phrase means that a modified form of the pressure does not act 

equally in all directions in situations when it would do so for a 

Newtonian liquid. Normal stress differences have been observed in 

drag reducing solutions by Metzner and Park (1964) who found that drag 

reduction increases with the ratio of a normal stress difference to 

shear stress. We shall use a continuum approach throughout this 

thesis and work mainly with a constitutive equation that models 

fluids exhibiting normal stress effects. 

Lumley (1969) considers the effects of agglomerations of 

polymer molecules. Adapting some results on the coalescence of 

raindrops (Saffman and Turner, 1956), he concludes that although 

agglomerations have been observed they are unlikely to be dynamically 

important since the time scale for their formation is much larger 

than the relevant time scale of the strain rate. Gadd (1966) supports 

this view. He passed a solution through filter paper to remove 

the agglomerations and found that the effectivenss was not impaired. 

Lumley also discusses the possible effect of the polymer molecules on 

the structure of turbulence. Gadd (1965) shows that some additives 

may have a dramatic effect on the small scale turbulence of jets 

squirted into ambient liquid, but other additives do not affect the 

jets at all. Lumley reviews attempts to relate appropriate length and 

time scales of the molecules to scales arising from turbulent eddies, 

but the situation is very confusing. Turbulent scaling creates more 

problems than it solves, and Lumley concludes that ass some important 
IS 

aspectkpot yet identified or understood. At present, molecular 

elongation and its affect on the laminar sublayer are the only physical 

facts which point to improving our understanding of the Toms' effect. 



- 7 - 

Since these observations can be interpreted in terms of a 

continuum theory as discussed earlier, we regard this as 

motivation for examining the effect of various viscoelastic properties 

and their possible relevance to drag reduction. In chapters 3 and 4 

we investigate the influence of normal stress effects on the stability 

of channel flow, and in chapter 5 examine channel flow of fluids 

exhibiting stress relaxation. The particular constitutive equations 

used are derived in chapter 2 from a general rational approach to 

continuum behaviour, and in the next section we discuss the 

relevance of stability theory to turbulence. 

1.2 Transition from laminar to turbulent flow in a boundary layer  

Although the drag reducing properties of polymer additives apply 

to turbulent flow there is no satisfactory mathematical theory for 

turbulent flow of a Newtonian fluid, let alone a non-Newtonian fluid. 

In attempting to develop a theory towards explaining the Toms' effect 

we restrict our attention to the early stages of transition from 

laminar to turbulent flow and show how viscoelasticity affects these 

early stages. We hope that it may shed some light on how the 

additives affect the later stages of transition and fully developed 

turbulence, but the calculations are too daunting to proceed far. 

Stuart (1965a, b) identifies the main stages of transition from 

laminar to turbulent flow in the boundary layer of a Newtonian fluid 

flowing past a flat plate. 

I 	Tollmien-Schlichting waves 

When the flow is wholly laminar any small disturbances to the 

flow that may be present decay. As the Reynolds number reaches a 

certain critical value two-dimensional waves, called Tollmien-

Schlichtling waves, cease to decay. In this region the disturbances 
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may be regarded as small, and, neglecting products of disturbance 

quantities, a linearised analysis is possible. These waves have 

been observed experimentally (Schubauer and Skramstad, 1943), and 

there is excellent agreement between their observations and the 

linear theory (for example, Lin 1945 and 1955). We should note that 

the waves observed by Schubauer and Skramstad grow spatially, while 

the theoretical waves grow in time. Comparisons are made by relating 

the two using group velocity as a transformation velocity (Watson, 

1962 and Gaster 1962, 1965a, b). 

II Three-dimensional wave amplification 

Minor irregularities in the flow can give rise to a rate of 

wave growth which varies with spanwise position (Klebanoff and 

Tidstrom, 1959), leading an initially two-dimensional wave into a 

three-dimensional form. In many cases the flow is nearly periodic 

in the spanwise direction. Controlled experiments have therefore been 

performed in which the three-dimensional waved is introduced by a 

vibrating ribbon (Klebanoff et al, 1962 and Kovasznay et al, 1962). 

III Peak-valley development 

As the three-dimensional waves progress downstream the boundary 

layer develops a much more pronounced three-dimensional structure 

with an associated streamwise vortex system. At certain spanwise 

locations called peaks the velocity fluctuations develop extremely 

strongly, and the streamwise vortex component of flow is away from 

the wall; at the neighbouring valleys where the flow is towards the 

wall the fluctuations develop more slowly (Klebanoff et a]., 1962). 

These longitudinal peaks and valleys are visible in the pictures of 

Meyer and Kline (1961). In this region non-linear effects become 

important, that is, the disturbances can no longer be regarded as 



- 9 - 

infinitesimal and products of disturbance quantities must be taken 

into account. The strong development of the three-dimensional 

structure appears to be a property of the wave motion itself, 

unprovoked by any irregularity. Benney and Lin (1960) and Benney 

(1961 and 1964) give a partial explanation for the range where the 

disturbance amplitude is finite though small enough for a perturbation 

theory to be applied. Their study is based on the interaction of a 

two-dimensional wave with a three-dimensional wave of the same 

streamwise wave number. Among other components to emerge at second 

order in amplitude is a slowly varying streamwise vortex component 

of flow. In order to match one form observed in the experiments of 

Klebanoff et al (1962) it is assumed that the frequencies of the 

waves are the same. Stuart (1962) questions this assumption and shows 

that if the frequencies are different an additional slowly varying 

interaction term is introduced. 

IV Shear layer development 

Downstream from spanwise stations corresponding to peaks the 

instantaneous velocity profile develops a region of large shear with 

an associated inflexion in the profile. (Klebanoff et al, 1962, 

Kovasznay et al, 1962). Stuart (1956) develops a linear theory to 

describe convection of vorticity and stretching of vortex lines. 

A boundary layer velocity profile (primary flow) is allowed to 

interact with a streamwise vortex flow field periodic in the spanwise 

direction. This secondary (vortex) flow may be obtained from some 

nonlinear analysis of the type described in III. At spanwise 

stations corresponding to peaks the vortex lines of the primary flow 

are convected outwards and are stretched in the outer regions of 

the boundary layer where the streamlines are divergent. The net 
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result is to develop a strong shear layer (vorticity concentration) 

in the boundary layer profile at such spanwise stations. The 

interaction time required to produce vorticity concentrations 

comparable with those observed is of the same order as the times 

required experimentally. The velocity profiles obtained are in 

reasonable qualitative agreement whose those observed in experiments. 

V 	Breakdown 

When the shear developed in IV is sufficiently strong a velocity 

fluctuation develops from the shear layer at a much higher frequency 

than that of the basic wave. Greenspan and Benney (1963) have 

calculated the growth of amplitude of oscillations in a shear layer 

which models that observed experimentally by Kovasznay et al (1962). 

Their theory explains the growth of such high frequency bursts, but 

they do not consider three-dimensional or non-linear effects. 

VI Turbulent-spot development 

The bursts described in V travel faster than the primary wave, 

and as they travel downstream the eddies spread spanwise and towards 

the wall. The agglomeration of these turbulent spots leads to fully 

developed turbulent flow further downstream. Meyer and Kline (1961) 

show many photographs of this stage of transition. 

The account above describes the development of intense shear 

layers from which turbulent spots develop. Runstadler, Kline and 

Reynolds (1963) express the view that the structure of the layer close 

to the wall, and its interaction with the outer flow play a dominant 

role in maintaining a fully developed turbulent flow. They argue 

that viscosity acts to amplify fluid disturbances and that the 

production of turbulent energy is due to instability in the wall layer. 



It follows, then, that the methods of studying the growth of fluid 

disturbances, i.e. hydrodynamic stability theory, are relevant to 

an understanding of turbulence. Runstadler et al observe a structure 

of longitudinal streaks in the viscous dominated wall layer, and 

the break up of this structure is very similar to the flow structure 

observed in the peak-valley and breakdown stages of transition 

outlined above. Kline (1967) reiterates the argument that it is an 

instability mechanism that plays a vital part in maintaining turbulence. 

In the discussion following Kline's paper T.J. Black drew attention 

to his experimental evidence (1966) which supports the hypothesis 

that the basic turbulence mechanism is one of periodic instability. 

His results indicate that turbulent momentum transfer measured near 

the edge of the wall layer exhibited definite and fairly regular peaks 

(in time). The flow is dominated viscous stresses and the stability-

governed energy exchange. Dr Black interprets turbulent flow as a 

developing laminar flow that is repeatedly modified by this 
KCol 

instability. Kliae et al (1971) examine the instability process in 

more detail and describe the bursting phenomenon in three stages: 

(i) lifting of low speed longitudinal streaks from the innermost 

layer; this forms unstable (inflexional) instantaneous velocity 

profiles; (ii) growth of an oscillatory motion in the region of flow 

downstream of the inflexional zone; (iii) breakup of the oscillatory 

motion into more random motions accompanied by a return to the wall of 

the longitudinal low speed streak. The third stage shows velocity 

profiles that have returned approximately to the mean profile. This 

bursting cycle is intermittent, but has a well-defined mean frequency. 

1.3 Stability of parallel flows  

In the previous section the relevance of stability theory to an 

understanding of turbulent flow is argued. The bulk of experimental 
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evidence relates to boundary layers, but from a theoretical viewpoint 

several difficulties arise. In the linearised theory it is 

assumed that the undisturbed flow is parallel, and the velocity 

profile at a given station is a function of one coordinate only, 

namely that in the direction of shear. The component of velocity 

normal to the boundary is ignored and the growth of the boundary 

layer is neglected. According to boundary layer theory these 

processes are small when the Reynolds number is large, and it seems 

reasonable to neglect them. However, when nonlinear effects are 

considered it is no longer valid to ignore them (Stuart, 1971), since 

terms neglected in the linearised parallel flow approximation may be 

comparable with terms arising from products of velocity fluctuations, 

and the growth or development of an oscillation in space or time will 

be strongly affected by the simultaneous spread of the boundary 

layer. Although this interaction is present in most boundary layer 

experiments it is not understood theoretically. 

The difficulties outlined above disappear if we consider the 

stability of plane Poiseuille flow, a prototype parallel flow which 

describes laminar motion in a channel. The basic flow is given by 

Ar,  = (U(x2), 0, 0) 

U(x2) = 1-x22, 

where v is the velocity whose components are expressed with 

respect to rectangular Cartesian coordinates, x1  being measured down 

the channel (-1 x2  1), x2  across the channel and x
3 

in the 

spanwise direction. This flow has another advantage for our analysis: 

it satisfies the equation of motion for both Newtonian fluids and 

the particular viscoelastic fluids considered in this thesis. The 
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basic boundary layer flow, however, is different for the various fluid 

models. Much of the subsequent analysis is given in terms of the 

general parallel flow velocity U(x2) as in (1.3.1). The equations 

derived will be applicable to the stability of jets, wakes and other 

shear layers, including Couette flow (U proportional to x
2
) between 

parallel planes. Detailed calculations, however, are confined to the 

stability of Poiseuille flow, when U takes the form (1.3.2). 

Reynolds (1884) is generally credited with the first description 

of turbulent flow. He regarded turbulence as arising from an 

instability of laminar flow and by dimensional analysis he uncovered 

(1895) the important number that bears his name. He pointed out that 

when this number exceeds a certain critical value the disorder begins. 

The key equation to the linear theory of stability of parallel flows 

was derived independently by Orr (1907) and Sommerfeld (1908). The 

critical Reynolds number can be obtained from this equation and 

appropriate boundary conditions. Much analytical and numerical work has 

been done with this equation, and since it forms the basis for most of 

the calculations in this thesis a more detailed exposition is given in 

the next section. A linearised theory is developed in chapter 3 and 5 

for non-Newtonian fluids, and it is shown that in some circumstances 

the first disturbance to grow in time will be three-dimensional. This 

is in contrast to the case (stage I) for a Newtonian fluid described 

in the previous section. In general the critical Reynolds number is 

lower for a non-Newtonian fluid (chapters 3 and 5). 

Linear theory for a Newtonian fluid leads to a critical Reynolds 

number of about 5000-6000, while it is observed that plane Poiseuille 

flow breaks into a turbulent flow at a much lower Reynolds number 

(1000-2500, Davies and White, 1928). Linear analysis describes 

conditions prevailing at the initial breakdown of laminar flow, providing 
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the disturbances are infinitesimal. Meksyn and Stuart (1951) 

suggested that nonlinear effects may permit the existence of a 

threshold amplitude above which oscillations can grow in time even 

though the Reynolds number may be less than the (linear) critical 

value. They obtained a minimum critical Reynolds number of 2900, 

and oscillations of amplitude greater than 8 per cent of the maximum 

speed of the undisturbed flow would grow in time at this value of 
Mow accurr-U ,  

the Reynolds number.I_Calculations by Grohne (1969),4AG-ineludes 

of 1/4° 	 cork t C41-0,01  
eexn nonlinear effects 	ed-by Meksyn and Stuart, give a 

critical Reynolds number of 2500. In chapter 4 a nonlinear analysis 

is developed for a non-Newtonian fluid. Three-dimensional 

disturbances are considered, leading to a formidable sequence of 

equations, which are only solved in the much simpler two-dimensional 

case. 

1.4 	The Orr-Sommerfeld equation  

It is convenient to give a brief description of the Orr-Sommerfeld 

equation at this stage. Modified forms of it for viscoelastic fluids 

are derived in chapters 3, 4 and 5. Throughout this section we shall 

work with variables expressed in non-dimensional form with respect 

to characteristic length and time scales and density. Let us 

introduce a two-dimensional disturbance to the original flow (1.3.1) 

so that the velocity takes the form 

v1  

v2 

v
3 

= 

= 

= 

U(x2) + u1(x2) exp{ia(xl-ct)}, 

u2(x2) exp{ia(xl-ct)}, 

O. 

(1.4.1) 

} 

The disturbance represents a wave travelling downstream with speed c. 

The equation for two-dimensional motion in an incompressible Newtonian 

fluid is 



{D2_a2_iaR(U_ c)}111-RU'u2  + iaRp = 0 3 

{D2-a
2
-iaR(U-c)lu2 
	+ Rf' 	= 0 

	

iaul  + u2' 	= 0, 
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ay. 	Dv. 	ay. 	ap 	1 
1 	1 
+ v1 	+ v2 	-- 	— 

at 	ax1 ax2 	ax. R 1 

(1.4.2) 

 

 

for i=1,2, where p is the (non-dimensional) pressure and R the 

Reynolds number. The condition of incompressibility is 

ay1 1.  av2 	o. 	(1.4.3) 
ax1 ax2 

Equations (1.4.2) and (1.4.3) are obtained in more detail in the 

next chapter. If we substitute (1.4.1) into (1.4.2) and (1.4.3) and 

neglect products of the small quantities u1, u2 terms linear in 

the disturbance quantities yield 

where D or the prime denote differentiation with respect to x2  

and the pressure, p, is expressed in the form 

p = 	P(x
2) exp{ia(xl-ct)}. 
	(1.4.7) 

Eliminating ul  and IS from (1.4.4)-(1.4.6) we obtain the Orr-

Sommerfeld equation 

{(D2-a2)2  - iaR(U-c) (D2-a2) + iaRU"}u2  = O. 	(1.4.8) 

This is a fourth-order differential equation to which we apply four 

boundary conditions. For instance, for plane Poiseuille flow (1.3.2) 

in a channel bounded by x2=±1 the conditions of no-slip at the 

walls (u1=0) and no flow across the boundaries (u2=0) yield via 
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(1.4.6) the boundary conditions 

u2=u = 0 at x
2=±1. 	(1.4.9) 

Since (1.4.8) is linear in u2 
is has four independent solutions 

which may be combined linearly to produce a general solution. 

Boundary conditions (1.4.9) applied to this solution lead to four 

relations linking the unknown coefficients in the linear combination. 

These coefficients may be eliminated to yield a condition of the type 

F(a, R, c) = 0. 	(1.4.1o) 

For each pair of real values a and R there is a characteristic 

value c, which is, in general, complex. If the imaginary part 

ci  of c is positive the disturbance grows exponentially in time 

accordingtolineartheoryandtheflowisunstable.Ifc.is 

negativethedisttzbancedecaysandtheflowisstable.Ifc.=0 

(1.4.10) leads to a relation between a and R, which may be 

drawn as a curve in the a-R plane. This curve is called the neutral 

stability curve. Alternatively, we may regard (1.4.8) and (1.4.9) as 

defining an eigen-problem to determine, given a and R, the 

eigenvalue c and the corresponding eigenfunction u2. 

Some of the difficulties encountered in solving (1.4.8) and (1.4.9) 

can be seen by first examining the inviscid form of the equation 

obtained by Rayleigh (1880). If we let R-)-co (1.4.8) reduces to 

u2"-a
2
u2 - 	u2 = 0. 	(1.4.11) 

U-c 

As the order of the equation is reduced we can no longer impose the 

no-slip condition, and the boundary conditions are now 

u2=0 at x2
=1 
	

(1.4.12) 

U" 
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for flow in a channel. For a general parallellflow Rayleigh shows 

that an inflection point in the undisturbed velocity profile (given 

by U"=0) is necessary for instability of an inviscid flow. As 

plane Poiseuille flow (1.3.2) does not satisfy this condition we 

conclude that the presence of viscosity is essential for instability 

to occur. In a later paper (1913) Rayleigh shows that U-cr, where 

Cr is the real part of the wave speed, must vanish somewhere within 

the flow field. The values of x2 for which U-cr vanishes define 

positions where the solution of (1.4.11) is singular. In thin 

regions, called critical layers, centred on these positions we must 

take viscosity into account to remove the irregularity in the inviscid 

solution. As the inviscid solution does not satisfy the no-slip 

condition, we also require viscous regions close to the wall across 

which the inviscid solution can be matched to the (viscous) boundary 

condition. We may therefore divide the channel into various regions, 

using (1.4.8) in the critical layers and the boundary layers, but 

retaining the Rayleigh equation (1.4.11) as a good approximation 

elsewhere. In practice the critical layers lie close to the walls 

and it is convenient to work with viscous regions that include a 

critical layer and a wall layer. 

In chapter 3 an asymptotic method due to Heisenberg (1924) is 

used to obtain the inviscid solution, which includes some integrals 

whose integrands are singular at the critical layer. Lin (1944, 

1945 and 1967) shows that this difficulty can be overcome by 

regarding x2  as a complex variable and integrating round the 

singularity along a suitable contour in the complex x
2 plane. 

Tollmien (1929) introduces a stretched coordinate to handle the 

viscous region, and shows how to modify the inviscid solution in the 

critical layer by a viscous correction so that the resulting function 
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is regular. This point is discussed in some detail by Hughes and 

Reid (1965) and Reid (1965). In terms of the new coordinate)  

approximations to solutions of (1.1.8) are obtained. Tollmien (1947) 

improved these asymptotic expansions, but the method does not lead 

to higher approximations. Detailed analytical solutions to the 

Orr-Sommerfeld equation are obtained by Eagles (1969). He rationalises 

the Lin-Heisenberg approach by a careful consideration of inner, 

intermediate and outer approximations valid in particular regions of 

the complex x2  plane near the critical value of x2. By matching 

the asymptotic expansions he obtains solutions that are regular 

in the critical layer. Only the simpler approximate solutions 

obtained using the Lin-Heisenberg method are used in chapter 3. 

A computer is used only in the final stages to evaluate the 

functions obtained. Although the analysis of chapter 4 is non-linear 

the first stage in the solution is to obtain the eigensolution of the 

linear problem. The analytical method of the previous chapter does 

not yield sufficiently accurate results for subsequent use in the 

sequence of equations which describe the effects of a finite-amplitude 

disturbance, so a numerical method is used from the outset. 

Lee and Reynolds (1967) used a variational method to obtain 

a matrix eignevalue problem from the Orr-Sommerfeld equation and 

the boundary conditions. They employed a set of approximating 

functions to represent the eigenfunction, but this set was not 

complete. The method produced fast and accurate eigensolutions 

provided that the approximating functions were chosen well, but the 

adjoint function (defined in section 3.5), also required in 

subsequent calculations was not given accurately. 

Another method is to utilise the linear properties of the 

equation. Lock (1955) has shown numerically that even solutions 
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lead to greater instability than odd solutions, so for the stability 

analysis we need only consider even functions and restrict the 

eigenvalue problem to half the channel 0 x
2 

1. The even 

eigensolution that is required is a linear combination of the two 

independent even solutions of the equation. Accordingly, one starts 

at the centre of the channel and integrates towards the wall, or 

vice versa, to obtain the required functions, which are then combined 

linearly to satisfy the boundary conditions. The major difficulty 

of this method is that one of the solutions grows very rapidly as 

the integration proceeds. In a typical case a growth of 1018 may be 

expected. It is clear that numerical generation of a second solution 

that is linearly independent of the rapidly growing one will be 

difficult, since any round-off error in the computer will in effect 

throw in a small multiple of the growing solution, which will 

swiftly dominate the calculation. The eigenfunction does not exhibit 

this rapid growth, which means that only a small part of the growing 

solution is required. 

Nachtsheim (1964) chose to work in double precision arithmetic, 

but even so, he had to integrate both from the wall and the centre 

of the channel and match the solutions in between. He required a 

much shorter step-length than a finite-difference method to achieve 

the same accuracy. 

Kaplan's scheme (1964) involved suppression of the growing 

solution during the calculation of the second function. The well-

behaved solution is known, from asymptotic analysis, to satisfy 

the Rayleigh equation, that is, the inviscid form of the Orr - 

Sommerfeld equation, over much of the channel. At each stage of the 

integration Kaplan used the inviscid equation as a filter, and 

subtracted enough of the growing solution to ensure that the Rayleigh 



- 20 - 

equation is satisfied at each stage. This procedure upsets points 

previously treated, but not significantly. The Rayleigh equation 

cannot be expected to be suitable where viscous effects are important, 

but Lee and Reynolds (1967) found no advantage in using other 

filters. There is a discontinuity in the inviscid solution which is 

smoothed by the finite intervals used as integration steps. 

As the filtering technique is complicated and has uncertainties 

in the regions dominated by viscosity, it was decided to use a finite-

difference method first used successfully by Thomas (1953). As only 

even order derivatives appear in the Orr-Sommerfeld equation we 

replace derivatives by central differences. By transforming to a 

new variable via a central difference function the error in the 

difference representation of the differential equation can be made 

very small. The Orr-Sommerfeld equation is now reduced to a matrix 

eigenvalue problem, and standard algebraic methods may be employed. 

Fast and accurate computer routines were available to tackle the 

calculation. The method is described fully in section 4.9. Pekeris 

and Shkoller (1967) also use Thomas's method and obtain a neutral 

stability curve in very good agreement with the one obtained here. 

Since completing the calculations another method has come to 

the author's attention. Davey and Nguyen (1971) divide the half 

channel into intervals which may be of varying widths. At each grid 

point they form a vector, y, consisting of u
2 

and its first 
ti 

three derivatives. Using the Orr-Sommerfeld equation they integrate 

to obtain y at the next grid point and determine the matrix 
ti 

which defines the relation between the two values of y. Repeating 
ti 

the process for each interval leads to a sequence of matrices 

A(n)  which may be multiplied together to form a matrix B such 

that 



-21 - 

y(x 	
2 =1) = B y(x =0). 

.1, 2 	it,  
(1.14.13) 

B may be formed directly using Kaplan's method, but the approach 

outlined above avoids the problems encountered by Kaplan, who 

found it difficult to determine B accurately. An iterative 

technique may be used to determine the eigenvalue c and the 

eigenfunction u2 from (1.4.13). Although the method is basically 

simple each matrix A(n)  needs recalculating each time c is 

changed in the iteration procedure. Davey and Nguyen admitted 

that the resulting program could be faulted on grounds of efficiently, 

and it certainly requires more computer operations than the finite-

difference method used in chapter 14. 
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CHAPTER 2: CONSTITUTIVE EQUATIONS  

2.1 Introduction and notation  

In describing a fluid it is convenient to regard it as consisting 

of a number of fluid elements or particles X. In some reference 

configuration the particles will be at position whose cartesian 

coordinates are 

Xi  = Xi(X), 	i=1,2,3. 	(2.1.1) 

As the material flows the position of particle X at time t is 

given by 

x = x(X,t), 	(2.1.2) 

where x is a smooth mapping of the particle space into three-

dimensional Euclidean space. Velocity and acceleration at points in 

the fluid are given by time derivatives of the motion, namely 

d 	d2 

v = 	tiE 	X(X,t) , 	a 	= 	2  (X,t). 
dt 	dt 

(2.1.3) 

It is usually more convenient when dealing with fluids to use a 

spatial description rather than a material one and to express any 

varible ii(X,t) as a function of ;6 and t. If we let 

alp 
— = — 
at 	dt 

material and spatial derivatives are related by 

do(x,t) 	alp 
— (grad 04, 

dt 	at 

(2.1.4) 

(2.1.5) 

where grad IP denotes the spatial gradient of gyp. 
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If 	dV 	is a volume element of the fluid in the reference 

configuration and 	dv 	is a volume element at time 	t, 	then 

dv 	= 	J dV, 	 (2.1.6) 

where 
a(x1,x2,x3) 

0<J<00. 	(2.1.7) J 	- 
a(x1'x2'X ) 

It can easily be shown that 

dJ 
— 	= 	J div X, 	 (2.1.8) 
dt 

from which we deduce, for any 	IP, 	that 

dtp 
11)(,t)dv 	= 	— 	JdV 	= J [— + *V.X dv. 	(2.1.9) 

dt dt v(t) 	V 	v(t) dt 

In particular choose 	IP 	to be the density, 	p, 	of the fluid, and 

since the mass of a material volume is unaltered 

d 	dp 
0 = 	pdv 	— pV4 dv. 	(2.1.10) 

dt 	f 
v(t) 	v(t) dt 

This equation holds for any volume v, and hence we have the 

continuity equation 

dp 
= 0. 	(2.1.11) 

dt 

A motion is called isochoric if it preserves volume, that is 

dv/dt=0, which implies 

V.X = 0. 
ti 

(2.1.12) 
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dt 
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We shall be dealing throughout with incompressible fluids, for which 

p is constant, and in this case the continuity equation reduces to 

(2.1.12), showing that all possible notions of an incompressible 

fluid are isochoric. We note that isochoric describes a class of 

motions while incompressible refers to a type of material. 

If n is the outward normal to a surface S in the fluid, then 

there exists a stress vector 	n, t) such that the force exerted 

by the surrounding fluid on that enclosed by S is I 	dS. If f 

is the external body force per unit mass acting on thg fluid, 

conservation of momentum yields 

where S is the surface enclosing any volume v in the fluid. By 

letting v4.0 we can see that the stress vectors are locally in 

equilibrium, and this enables us to prove that the stress vector may 

represented by 

	

t. 	T.. 
j
n, 

	

1 	31  (2.1.14) 

where T.. is a second order tensor called the stress. For most 

fluids there is no intrinsic angular momentum, that is, all the 

torques on any volume of fluid arise from macroscopic forces. In this 

case conservation of moment of momentum leads to the result that the 

stress tensor is symmetric. We shall be considering incompressible 

fluids on which no body forces act, and so equation (2.1.13) reduces to 

p dxi/dt = T.. . 	(2.1.15) 
1J,J 

using the divergence theorem. Partial differentiation with respect 

to x. is denoted by ,j and the usual summation convention is used. 
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Description of the fluid, neglecting thermal effects, is completed 

by a constitutive equation, which relates the stress to the motion 

of the fluid. Before discussing constitutive relations it is 

convenient to introduce some further notation. 

If the motion of the fluid is such that the particle which 

reaches position 	at time t passes through position 	at 

time T, that is 

k 	, (ti, t, T), 	-m < T 	t, 	(2.1.16) 

we define the deformation function F(t) and the relative deformation 

function Ft
(T) by 

F(t) 	E v ,  (X, t), 	Ft(T) 	E \;7 (k, t, T). 	(2.1.17) 

We note that Ft(t) is the unit tensor. Now 

J(t) = Idet F(t)I, 	Jt(T) E det Ft(T) - 	 ,(2.1.18) 

and since Jt(t)=1 and Ft(T) is invertible we see that Jt(T) 

remains positive. By the polar decomposition theorem (see Ericksen, 

1960) F has two unique decompositions, 

F = RU = VR, 	(2.1.19) 

in which R is orthogonal and U and V are symmetric and positive 

definite. We now introduce the left and right Cauchy-Green tensors 

B E V
2 

= FF
T
, C E U

2 
= FTF, 	

(2.1.20) 

where T denotes a transposed matrix. Similar tensors may be 

derived from Ft(T). For any function 1p let 

“x1 1X29X3)  



a 
— 11)(T) 
aT 

so that the nth acceleration 

Ln(t) 

and the nth spin and stretching 

defined by 

n(t) 	E 	Rt(t), 

We shall also require the 

(n) 

Tr--t, 

= 	grade 

A. 	ri  sK. 

expression 

i=0 

to 

+ 

An(t) 

Ct(T) 

- 

E 

( n ) 
i 

n-1 

. =1 

t 
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(n) 	
an 

 

T=t, 

given by 

Dn, 	are 

. 

(2.1.21) 

(2.1.22) 

(2.1.23) 

(2.1.24) 

(2.1.25) 

(2.1.26) 

(2.1.27) 

Rivlin-Ericksen 

gradient 

(n) 

o Lri0,0  

= 	Ft(T)TFt(T) 

	

E 	n IP(T) 
aT 

Ln(t) 	is 

(n) 
= 	Ft(t), 

tensors, 	Wn 	and 

(n) 

	

Dn(t) 	= 	Ut(t). 

tensors 

(n) 
Ct(t). 

60003 oN, fit 4.3 

(V(T)T(111)  
Ft(T), 

L.TL 
1 	1 	n-1 

A , 	 ;A, 

By differentiating the 

we obtain 

(n) 
ct(T) 	= 

which reduces for 	T=t 

An 	= 	
L
n
+L
n
T 

In this way the kinematic matrices An  are given as polynomials in 

components of the acceleration gradients Ln. Rivlin and Ericksen 

(1955) have shown, under suitable conditions, that the inverse is 

true, namely that the acceleration gradients, Ln, can be expressed 

as polynomials in the components of A1 ,A2,...,An. We shall need 

to express our constitutive equation in a form that is independent of 
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the particular coordinates used, and since An  is frame-indifferent, 

unlike Ln
, these results enable a stress which is dependent on 

acceleration gradients to be expressed in a frame-indifferent form. 

Finally in this section we introduce the history 4
(t) up to 

time t of the function * by 

(t)
(S) E 	S30. 	(2.1.28) 

2.2 The general constitutive equation  

In determining the stress we lay down three postulates 

(Truesdell and Noll, 1965, p.56): 

(1) Principle of determinism: The stress in a body is determined 

by the history of motion of that body. 

(2) Principle of local action: In determining the stress at a 

given particle X, the motion outside an arbitary neighbourhood of 

X may be disregarded. 

(3) Principle of material frame-indifference: The form of the 

constitutive equation is to be written in a way that is independent 

of the choice of coordinates or frame of reference. 

If xy  = (X, t) is the position of particle X at time t 

we define the localisation TulL at X of the motion ) by 

)b:(Z, T) E )‘(.Z, T) - t()C, T), 	(2.2.1) 

for Z e an arbitrary neighbourhood of X. The localisation gives 

the motion of a neighbourhood of X relative to X. Under the 

principles above it can be shown that most general form of the 

constitutive equation is 

T(t) = ? ( ct)), 
	(2.2.2) 
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where 
	

is the response functional at X and 
(t) is the history 

up to time t of the localisation at X of the motion 	From 

the second principle it can be shown that the value of the 

( functional depends on 4,x
t) 
 (;, s) only for ; in an arbitrarily 

small neighbourhood of the origin. But for small ; the localised 

motion can be approximated by its derivative, namely 

(t) 	 (t) 
) x 	s) = 	(, s)};. (2.2.3) 

Since ac  differs from 	only by a translation (2.2.3) may be 

written 

(t) ) 3(  (Z, s) = F(t)(s) Z, (2.2.1) 

and the approximation may be made as precise as is required by 

restricting , to a small enough neighbourhood. We have now shown 

that for many materials the functional depends only on the history 

F(t) of the deformation gradient. 

With this motivation we shall confine our attention to simple  

materials, which are defined by an exact constitutive relation 

of the form 

T(t) = G IF(t)(s)1. 	(2.2.5) 
s=0 

Since this equation is invariant under rotation of the coordinate 

frame it may be written in the form 

1(t) E F
T
(t) T(t) F(t) = 	{c(t)(S)} 	(2.2.6) 

s=0 

using (2.1.19) and (2.1.20). 

2.3 Incompressibility  

Incompressibility is a form of internal constraint on the body, 

and the principle of determinism needs some modification to account 
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for it. Simple constraints are defined by a scalar valued function 

of a tensor variable, and particle X in a body is subject to the 

constraint y if the possible motions are restricted to those for 

which 

y{F(t)} = 0, 	—co<t<co. 	 (2.3.1) 

(2.3.1) is a constitutive equation subject to the principle of frame-

indifference and consequently it may be expressed in the form 

A{C(t)} = 0, 	—05<T<co. 	(2.3.2) 

If we denote the tensor ax/aCij  by Ac(C), differentiating (2.3.2) 

with respect to t gives 

tr { (C) 6} = 0. 	(2.3.3) 

It is possible from the definitions (2.1.20) and (2.1.23) to express 

C(t) in terms of the stretching tensor D (E D1 ), namely 

C(t) = 2F(t)TD(t) F(t), 	(2.3.4) 

and so (2.3.3) reduces, putting T=t, to 

tr {F Ac(C)FTD} = 0. 	(2.3.5) 

We are now in a position to modify the first principle postulated 

in section (2.2): 

Principle of determinism for simple materials subject to internal 

constraints: 

The stress T at time t is determined by the history F(t) of the 

deformation gradient only to within a stress N that does no work in any 

motion satisfying the constraints. ,(Truesdell and Noll, 1965, p.70). 
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The rate at which stresses do work is given by tr (TD) per 

unit volume, so the principle above requires that N satisfies 

tr (ND) = 0 	 (2.3.6) 

for all symmetric tensors D which satisfy (2.3.5). Since tr (AB) 

defines an inner product in the space of symmetric tensors, N must 

, 
be a scalar multiple of F Ac(C)FT. If there are several constraint 

functions A(1)  this result becomes 

N 	= 	i1 q. F A(i)(C) FT  , 
= 

(2.3.7) 

where qi  are scalar coefficients. The history of the deformation 

gradient then determines the extra stress 

T
E = T+ y q. F A(i)(C) FT •  1=1 

by a constitutive relation of the form 

TE(t) = 	G IF
(t) 

 (s)}. 
s=0 

(2.3.8) 

(2.3.9) 

Finally, we consider the special constraint of incompressibility. 

For isochoric motion we have from (2.1.8), (2.1.12) and (2.1.20) that 

det C(T) = 1. 	(2.3.10) 

A material is incompressible if it is susceptible only of isochoric 

motions, which is equivalent to saying, from (2.1.11) and (2.1.12), 

that the density at a material point remains constant. A corresponding 

constraint function is 

A(C) = det C - 1, 	(2.3.11) 

and the extra stress reduces to 
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TE = T + pi. 	(2.3.12) 

The response functional is determined only up to an arbitrary scalar 

multiple of the unit tensor, though this indeterminacy may be 

removed by a normalisation such as 

tr TE  = 0. 	 (2.3.13) 

2.4 Simple fluids  

Although specific fluid models, such as the one leading to the 

Navier-Stokes equation, are well-defined and of wide application, the 

physical concept of a fluid is somewhat vague, but it includes the 

idea that fluid should not alter its material response after an 

arbitrary deformation that leaves the density unaltered. A simple 

fluid is defined as a simple material satisfying certain isotropy 

relations which express this property in mathematical terms. It can 

be shown (Noll, 1958) the general constitutive equation (2.2.5) for a 

simple fluid can be written in the form 

T = -p(p)I + D {G(s); 	(2.4.1) 
s=0 

where p(p) is a scalar function of the density, 

G(s) E Ct(t-s)-I, 	(2.4.2) 

and the response functional D has value 0 when G(s) = 0. The 

response functional does not depend on -any reference configuration, 

which expresses the physical property that simple fluids have no 

preferred configurations, that is, they have no permanent memory 

for any particular state. A simple fluid remembers that past only 

through the tensor G(s), which measures the deformation of the 

configuration at time t-s with respect to the configuration at the 

ever-changing present time t. 
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For incompressible fluids the stress T in (2.4.1) must be 

replaced by the extra stress TE = T+pI. But the density p at a 

particle cannot depend on time and hence may be omitted from the 

constitutive equations. (2.4.1) is then replaced by 

T = —pI + D {G(s)}. 	(2.4.3) 
s=0 

As discussed in the previous sections  D is indeterminate. but may be 

fully defined by a normalisation (2.3.13) such as 

tr D {G(s)} = 0. 	(2.4.4) 
s=0 

If the domain of D is a suitable function space it is 

possible (Green and Rivlin, 1957) to approximate the functional by 

integral polynomials: 

CO 

D {G(s)} = 	I ... 1 g{si,...,sn; G(s1 ),...,G(sn)1ds1...dsn, 
s=0 	n=1 0  

where the tensor functions g are multilinear and isotropic in 

tensors G(si ),...,G(sn). The g's may be taken to be invariant:  

under permutations of 1,...,m, and consequently each integrand 

may be replaced by a sum of terms of the form 

11481,...,sn)tr{G(s1 )...G(sk  )1tr(G(sk  +1)...G(sk  )1... 
1 	1 	2 

{G(sk 	+1)...G(sk  )}G(sk  +1)...G(sn), 
r-1 	r 	r 

(2.4.6) 

where 1.zk1 <k2<...<kr*n, 	1 n-kr$5. If n=kr the 

product of the tensors in (2.4.6) is replaced by the unit tensor, 

and for incompressible fluids all such terms can be incorporated in 

the pressure term pI. The first few terms in the integral 

representation of an incompressible fluid are 

(2.4.5) 
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-pI + f as) G(s)ds + 

o o 
Em(s1 ,s2)trIG(s1 )}G(s2)+13(s1 ,s2)G(s1)G(s2)adsids2  

(2.4.7) 

In chapter 5 we shall examine fluids that may be represented in this 

way. The theories used in chapters 3 and 4 can also be obtained from 

(2.4.7) by using the Dirac 6-function and its derivatives in the 

kernels in the integrands. 

2.5 Fading Memory  

For simple materials the present stress depends on the history 

of the deformation gradient. Unfortunately the entire history can 

never be known, and it is usually assumed at the start of an experiment 

that the previous history has a negligible influence on the result. 

This assumption is expressed in the principle of fading memory, namely 

that deformations that occurred in the distant past should have less 

influence in determining the present stress than those that occurred 

in the recent past. The general mathematical definition is complicated 

but the principle can be easily illustrated in a special case of 

(2.4.7). If the kernels are decaying exponentials we see at once that 

the principle is satisfied. We shall examine kernels containing such 

terms in chapter 5. 

The magnitude of a tensor A is defined as 

,AI E 1(tr AAT ), 	 (2.5.1) 

and following Coleman and Noll (1961b) we now introduce the concept 

of an obliviator, h(s), which decays to zero as rapidly as required 

as s÷=. An obliviator is a weighting function which greatly diminishes 



- 35 - 

the influence of the distant past. A decaying exponential is an 

example of an obliviator. The recollection of a history G(s) is 

now defined by 

IIG(s)IIh 	{h(s)IG(s)I}2 ds 	. 	(2.5.2) 

The rest history, in which the fluid is always at rest, is given 

by G=O, and clearly this has zero recollection. If the deformation 

has deviated little from rest in the past it will have only a small 

recollection. Since the obliviator gives little weight to the 

distant past any deformation for which G(s) is small in the recent 

past will also have small recollection although the motion may have 

had a violent ancient history. 

The history of the deformation gradient is described by G(s), 

and the static continuation of this history is defined by 

Gn(s) 7-= 0 

G(s-n) 

if 

if 

Os$,.'n, 

s>n, 
(2.5.3) 

Then 

liGn(s)11 h2  = FIG(s+n)12{h(s)}2  ds40 as n-* 	(2.5.4) 

0 

provided G is bounded in magnitude and h decays fast enough 

(faster than Vis). From (2.5.4) we have the following theorem of 

stress relaxation: If G(s) is any bounded deformation history then 

the stress Tn corresponding to the static continuation of G(s) 

ultimately becomes the equilibrium value of the stress, that is, 

the stress corresponding to the rest history G=0. For an 

incompressible fluid 

T
n 

-pI as n =. 	(2.5.5) 
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The formulation of fading memory discussed above gives in 

effect only the equilibrium stress. In order to improve the 

approximation we restrict the functionals D to those that are 

times continuously differentiable. By using a Taylor expansion we 

can approximate the constitutive equation (2.4.3) in the form 

(Coleman and Noll, 1960 and 1961a) 

n = 
T = -pI 	Pi {G(s)}, 

j=1 s=0 
(2.5.6) 

where P. is a bounded homogeneous polynomial functional of G(s) 

of degree j. The principle of fading memory may be invoked by 

requiring that the remainder term Rn  approach zero faster than the 

nth power of the recollection of the deformation history, that is, 

Rn = 0(11Glin). 
	 (2.5.7) 

Equation (2.5.6) is an approximation to the general constitutive 

equation of a simple fluid when the recollection of the history is 

small. In physical termsIthe recollection is small when the deforma-

tion was small in the recent past, even though it may have been 

large long before. This condition will be satisfied if the motion 

is slow in a sense to be discussed in the next section. 

2.6 	Slow motions and Rivlin-Ericksen fluids  

For a given deformation history G(s) we define its 

retardation by 

Gals) E G(as), 	0<a<1. 	(2.6.1) 

Physically, deformations corresponding to Ga  are the same as those 

corresponding to G, but take place at a slower rate. Assuming G 
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is sufficiently differentiable it follows (Coleman and Noll, 1960) 

that 

n si  (j) 
Gals) = 	G a  + o(an), 

j=0 j! 
(2.6.2) 

where the order symbol means that the recollection of a-n  o(an) 

tends to zero as a+0, and 

(j)a  di  . di 
G = . Ga(s) G(s) 

dsJ  s=0 dsJ  s=0. 
(2.6.3) 

From (2.1.24) 

n si  
Gals) = 	1 — (-1)i 	+ o(an), 	(2.6.4) 

j=1 j! 

a  
where A. is related to the jth Rivlin-Ericksen tensor by 

Ac! = ai A.. 	(2.6.5) 

(0)a  
We note that G =0 from (2.4.2), and consequently Ga  = 0(a). 

If we substitute Ga  for G in (2.4.3) the error if of order 

o(an), and so to this order (2.4.3) may be replaced by 

n co 
Ta = -pI + 	P. {Ga(s)}, 

j=1  0 s=0 
(2.6.6) 

where Ta is the stress corresponding to the retarded motion. Since 

P. is a bounded homogeneous polynomial it can be proved (Coleman 

and Noll, 1960) using (2.6.4) that 

CO 

Pj  {Ga(s)} = E Lk 	k  (AZ,...,AZ ) + 0(an), 
s=0 	j 1 

(2.6.7) 
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where L is a multilinear tensor function of j tensor variables. 

The summation is over all sets of 
	

suffices (k1 ,...,k.) 

satisfying 

k1+...+k. n. 
	(2.6.8) 

The results (2.6.6) and (2.6.7) show that the general constitutive 

equation (2.4.3) of a simple fluid may be approximated by 

T = -pI + E Lk ...k. 	1 (Ak ,-..,Ak.), i   

where the summation is over all sets of suffices (ki ,...,kj), 

j=1,2,...,n satisfying (2.6.8). In this way the entire history is 

represented by derivatives of the deformation evaluated at the 

present time. We note, however, that the theory depends on the 

motion being slow. Fluids for which (2.6.9) is valid are called 

Rivlin-Ericksen fluids. 

It has been shown (Rivlin-Ericksen, 1955, Spencer and Rivlin, 

1960) that the property of isotropy limits the possible forms of 

(2.6.9). The stress is given in the form 

N 
T = -pI + 1 a

m 
 (11 +11

m  T
), 

ra  m=1 
(2.6.10) 

where IIm and its transpose nm
T are certain matrix products formed 

from the kinematic matrices Al ,...,An, and am are polynomials 

in the traces of certain other matrix products formed from the 

kinematic matrices. In the particular case when the stress depends 

only on the first kinematic matrix Al  equation (2.6.10) takes the 

exact form 

T = -pI + n Al, 	(2.6.11) 

(2.6.9) 
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and consequently for slow flows of any incmpressible isotropic 

simple fluid 

T
a 

= -pI+nAla  o(a), 	(2.6.12) 

(2.6.11) is the constitutive equation for a classical Navier-Stokes 

fluid and the constant n is the viscosity. Although this theory 

emerges at the first stage of approximation for slow motion it has 

given excellent results in general flows of many, though not all, 

physical fluids. Better approximations for slow flows are given by 

further terms in the Rivlin-Ericksen formulation (2.6.10). To order 

o(a2) in the retardation factor a (2.6.10) becomes 

T = -pI nAl  XA2  uAl2, 	(2.6.13) 

and to order o(a3) it gives 

T = -pI+nA1-0,A2+1.1A1
2
+01A3+132(A2A1 4-A1A2)4433(trA2)A1 , 	(2.6.14) 

...DcftcoN:g1.46 fwe 14, A-4 At AK. 	inft Flea 
where the coefficients are constants. In the next two chapters we 

shall examine second-order fluids which are described by (2.6.13) in the 

hope that this theory will yield better results than the classical 

(Newtonian) theory for a particular flow of dilute polymer solutions. 

We note, however, first, that the retardation theorem refers to the 

constitutive equation itself and not to the equations of motion 

derived from it. Second, a small term introduced into a differential 

equation may have a large effect on its result, and, third, although 

(2.6.13) may be a better approximation than (2.6.11) for slow flows 

of dilute polymer solutions, it may not be better for general flows. 

Noting these possible objections to the theory we shall proceed in the 

next chapter to examine flow through a channel of a dilute polymer 

solution. 
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The physical significance of (2.6.13) may be seen in terms 

of normal stress differences. Let us consider a rectilinear shearing 

flow given by 

v = (Kk
2' 0' 0)' 
	(2.6.15) 

where K is a constant. The normal stress differences are then 

T
11-T33 

= uK2, 

T
22
-T
33 

= (2)010K2, I 

(2.6.16) 

which clearly vanish for a Newtonian fluid. In section 1.1 we 

discussed the role of non-zero normal stress differences in drag 

reduction, and we can see from (2.6.16) that the second-order fluid 

(2.6.13) provides a comparatively simple model that includes 

normal stress effects. 



CHAPZER 3: STABILITY OF PLANE POISEUILLE FLOW OF A  
SECOND-ORDER FLUID: LINEAR ANALYSIS  

3.1 	Introduction  

In the previous chapter we derived, under certain conditions 

and assumptions, a particular constitutive relationship for visco- 

elastic fluids, namely the second-order Rivlin-Ericksen formulation 

(2.6.13). These idealised fluids do not exhibit stress relaxation 

or elastic recovery, but since they do have properties such as 

normal stress effects not found in a Newtonian fluid they do provide 

a convenient starting point for investigating stability of non- 

Newtonian fluids. In this chapter we shall examine disturbances of 

plane Poiseuille flows which are regarded as small, and in 

section 3.3 derive linear equations based on this assumption. It 

will be shown that the stability of the flow is governed by a 

modified version of the Orr-Sommerfeld equation used in the analysis 

for Newtonian fluids. 

Squire (1933) has shown that for Newtonian fluids the analysis 

of three-dimensional disturbances is equivalent to that of two- 

dimensional in-plane disturbances, a result which is discussed in 

more detail in section 6. Apart from Gupta and Rai (1968), where 

three-dimensional disturbances to the flow down an inclined plane 

are considered, previous stability analyses for viscoelastic fluids, 

for example Gupta (1967), Chan Man Fong and Walters (1965), Listrov (1965), 

Gorodtsov and Leonov (1967), Gupta and Rai (1967), Mook (1967), 

Jones (1967), Jones and Walters (1968) and Schwarz and Chun (1968), 

have been confined to two-dimensional disturbances. These results 

give only a partial solution to the stability problem, for Lockett 

(1969a) has shown that Squire's theorem is not in general valid for 

viscoelastic fluids. In section 3.6 we shall therefore examine fully 
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three-dimensional disturbances of the basic flow considered. The 

fluid is regarded as only slightly viscoelastic so that we may 

develop a perturbation analysis about the solution for a Newtonian 

fluid, the derivation of which is outlined in section 3.4. 

As a consequence of Squire's theorem, at the onset of 

instability in a Newtonian fluid the component of vorticity parallel 

to the basic flow vanishes at the channel boundary. For a viscoelastic 

fluid, however, Squire's theorem no longer holds, and, under certain 

conditions, longitudinal vorticity remains non-zero at the walls. 

Thus viscoelasticity introduces a new structure into the flow at the 

onset of instability, and as the region close to the wall plays an 

important role in the subsequent development of turbulent flow 

this property may be significant. 

The constitutive relation for a second-order fluid introduces 

three parameters, one of which is the (Newtonian) viscosity. Of the 

other two viscoelastic parameters one affects disturbances parallel 

to the original flow, causing the flow to be more unstable than 

the corresponding flow of a Newtonian fluid. Both viscoelastic 

parameters affect out-of-plane disturbances and may cause either 

stabilisation or destabilisation. We shall show in the final section 

of this chapter that under certain conditions there exists a 

direction not parallel to the plane of the original flow along which 

the first unstable disturbance will propagate. 

3.2 Equations of motion for a second-order fluid 

The constitutive relation for a second-order fluid takes the 

form 

e 	= 	n*ki* 	A*k2* 	P*k1 *2  ' 
	(3.2.1) 
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where the stars denote dimensional quantities: s* is the stress 

additional to that produced by a hydrostatic pressure P*, p* denotes 

density, A * and A * are kinematic matrices defined below, 

n*, 	andpilarefluidconstants,andv
1.46 are components of 

velocityinarectangularcartesiancoordiamtesyste,*(i.,,2,3). 

We now define a set of dimensionless variables, denoted by removing 

the stars from the corresponding,symbol, defined with respect to 

p* and a characteristic length L and time T. The constitutive 

equation (2.1) now becomes 

+ 12, 
 	

(3.2.2) 

where R is a Reynolds number for the flow given by 

R = L2p*/Tn*, 	 (3.2.3) 

and the viscoelastic constants A and y are given by 

A = A*/p*L2, 	u = eip*L2. 	(3.2.4) 

The kinematic matrices Al  and A2 are defined (Rivlin 1955) by 

A1   = V+VT 

DA 	3A 
A2 	+ vk 	+ A V + (A V)T ' Dt 	3xk 

(3.2.5) 

(3.2.6) 

where 

navi/axi lk 	 (3.2.7) 

and T denotes the transposed matrix. The equations of motion 

(2.1.15) are now 

_ 	_ 
3p 	Ds.. 	ay. 	3v. 

+ v
k 

1 

3x. 3x. 3t 	axk 1 

(3.2.8) 



and the continuity condition for an incompressible fluid (2.1.12) is 

 

'Nrki'xk = 0. 

  

(3.2.9) 

3.3 Stability eauations for disturbances to Poiseuille flow  

 

We now consider velocity fields of the form 

   

 

v
1  = U(x2) + u1(x2)expli(ax1+13x3-act)1, 

2 	u2(x2)exp{i(ax1+13x3-act)}, 

v3  = u3(x2)exp{i(ax1+13x3-act)}. 

  

(3.3.1) 

    

These expressions represent a steady parallel flow U and a 

disturbance of the form required in stability analyses. A number of 

important situations, such as those found in boundary layer and 

lubrication theory, lead to velocity fields which are closely 

approximated by the form given here. In this chapter we shall confine 

our attention to Poiseuille flow between two parallel planes 

x2=±1 represented by 

U(x2) = 1-x2
2
' 
	 (3.3.2) 

though the equations developed will be applicable to a wide range 

of functions U. It is worth noting at this stage that the 

undisturbed velocity (1-x22, 0, 0) is an exact solution of the 

equations of section 2 with boundary conditions v
k=0 at x2=±1. 

In the present linearised theorylwe shall assume that squares and 

products of disturbance components uk  and their derivatives may 

be neglected. The flow and disturbance is expressed in the form 

(3.3.1) since the basic flow depends only on x2, and more general 

disturbances may be written, in this linear theory, in terms of 

harmonic components in the other variables. 
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Since the basic flow U is regarded as known we need only 

consider equations governing disturbance quantities. If we write 

these quantities in the form 

i(x2)exp{i(axi+ax3-act)}, 

we obtain from (3.2.8) 

ia; +i' +i 11 	12 g  13 

(3.3.3) 

ia(U-c)u1+U'u2+iaii, 

. - 
las122 +s'2  +las23 

+ig
33 13 23 

ia(U-c)u2+if , 

ia(U-c)u
3
+iali
' 

(3.3.4) 

where the prime denotes differentiation with respect to 

Substituting (3.3.1) in (3.2.5) and (3.2.6) we obtain 

A = 21au1 u1+iau2 
 i3u1+i 3 

1 u'+iau2 iau23 +u' 

iau1+iau3 	2iau
3 

x2. 

 

 

(3.3.5) 

  

     

" 2 A = U' --2ul+2iau2 1 2iaul+2uL 

2u11+2iau2 

iau1+iau3 

iau +1.1' -- 2 3 

iau1+iau3 

0 

 

  

2iau +2ut  1 	2 

iau +1.11  2 3 

(3.3.6) 

      

2  = ia(U-c)41  + 0 U"u2 0-- + 21au2 3iau1+q iau2 

Unu2 0 0 3iaul-Fu2 2(2131+iau2) 2iau1+iau3 

0 0 0 iau2 2iau1+iau3 0 

(3.3.7) 

The first order part of the extra stress, that is, stress other than 

that due to a pressure, is then given by 
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s11 = 	+Xia(U-c)}2iau1+2(X+11)Ut(ut+iau2 	11 )-2AU11  1 	1 

1 
s12 	1 = R +Xia(U-c)}(u1+iau2  )+AU"u2+(,+2p)U1(iau +u')+AU'iau 1 2 	1 

S13 = 	
. 

+Ala(U-c)1(i8u1+iau3)+11W(i8u2+u)+XU'i$u
2 

s
22 

= {-Ft- +Aia(U-c)}2u+2(A+11)Uf(u1 +iau )+21,1Pui 2 	1 	2 	1 

s23 	+Aia(U-c)1(i$u23  +uf)+(X+1.1)Ut(i$ul+iau3)+AU'i$u 1 

1 $33  = R +Xia(U-c)12i$u
3' 

`(3.3.8) 

a. 

which yields, when substituted in the equations of motion (3.3.4), 

the following equations governing the perturbations: 

2 2 2, {D -a 22-8 -iaR(U-c)}u1-RU'u2-iaRP = -iaRA(U-c)(D -a -$ )111-RNA1-RpA2, 

(3.3.9) 

, 2 2 2 	 2 2 2, iD -a -$ -iaR(U-c)}u2-RP' = -iaRA(U-c)(D -a -a )112-Rx131-RpB2, (3.3.10) 

(I)2-a2-$2-iaR(U-c)}u3-i$Rp = -iaR),(U-c)(D2-a2-132)u3-RAC1-RpC2,(3.3.11) 

where D or a prime denotes differentiation with respect to x2, and 

Al = -3a
2u2U1+31au'Uf+21au1 	3 

U"-$
2
u2Uf-iOuU'-ifiu U"+uU"+u 3 2 2 

B1 = -2(a
2+f32)u1   

U1+3iau2U"1-4iau'2Ut+4u"U'4.4u'U" 

(3.3.12) C1  = 2iau3U'-2a0u21.1 1 +2i$ulUf+2i0u1U"+iau3U" 

A2 = 2iaUf(u'+iau2  )+2U"(iau1 2 	1 
+1. 	

2
)+2U1(iau'+u")+i$W

3  
(ut+i$u

2 
 ) 

B2 = 2iaUf(iau12 	1 +u')+2U"(1.04-iau2 	1 )+2U'(e 	2+iau')-$1P(au3+Ou1) 

C2  = iaUt(u+i$u2)+U"(iau3+i$u1 )+U'(iOul+iau) 

In addition (3.2.9) requires 

iau1  +11.12+1$u3 
= 0. (3.3.13) 

We now introduce the following transformations due to Squire (1933) 
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au1  = au1+au3' 
U2  = u2, 	PR = PR, ,teu 

aR = aR, c = c, a = a2+a2, 

(3.3.14) 

and obtain from (3.3.9) to (3.3.11) and (3.3.13) 

= 

	

Al  + 	Cl  

-Ru { A2 	a  + 	C2 3, 
	(3.3.15) 

2 1,2 "t, 
ID -a 22

6' = -inA(U-C)(D242);.i2 a  - R  AB1  --all pB a 	2' 
(3.3.16) 

iau1 	2 + uf = 0 	(3.3.17) 

Following Lockett (1969a) we eliminate pressure from (3.3.15) 

(3.3.17) and obtain a modified Orr-Sommerfeld equation 

where 

{(D2 _e)2 	_a,)(D2 jcut2)..1.iu"1,11,1
2 = AN1  +a(2A+p)N2, 

N1 
	""a'2-(U-1C.)(D242)2flul2) 

(3.3.18) 

(3.3.19) 

N2  = inIUT(D2-e)-U"1 1(112g), 

and 

e =
2
/a
2
, 	g = u3/a. 	(3.3.20) 

We note that the right hand side of (3.3.18) involves u3  in 

addition to u2. 

For a Newtonian fluid, with A=u=0, equations (3.3.15)-(3.3.17) 

have the same structure as (3.3.9)-(3.3.11) and (3.3.13) with 

u3=B=0. Thus the analysis of three-dimensional disturbances is 
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equivalent to the analysis of two-dimensional in-plane disturbances, 

subject to the transformations (3.3.14). Further, (3.3.14) shows 

that the equivalent two-dimensional problem is associated with a lower 

Reynolds number. Hence the critical Reynolds number is given directly 

by the two-dimensional analysis. This result is known as Squire's 

theorem (1933). We note that the result is valid since, with X=p=0, 

a and a occur in (3.3.15)-(3.3.18) only via the combination 2i. 

Now let us consider the case where X and p are not zero. In 

(3.3.18) dependence on 13 occurs in e as well as via the combination 

ti 
a. Lockett (1969a) has noted that if 2X+p=0 dependence on B and 

u
3 

vanishes, and (3.3.18) is identical in form to the equation 

governing two-dimensional disturbances, namely 

f(D24.,2)2_in(u4)(3242)+inuulz = xinfunna _(u4,)(D2-re)2'111. 1.  
2 	2 	' 2 

(3.3.21) 

For this class of fluids Squire's theorem remains valid. In general, 

however, these conditions will not apply, and we shall need to 

investigate three-dimensional disturbances for which the theorem does 

not hold. It has been shown (Lockett, 1969a) that a modified Squire's 

theorem is applicable to the first-order perturbation analysis for 

slightly viscoelastic fluids, namely, that under the additional 

transformations 

11, 	 ft, ft, 
X = x, 	2A+p = 0(2A+u) (3.3.22) 

all equations governing three-dimensional disturbances take the same 

form, and may therefore be handled in a single calculation. 

For in-plane disturbances 6=0 and the term in 	vanishes 

from (3.3.18), showing that the viscoelastic parameter p does not 

affect stability considerations with respect to these disturbances. 
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It does, however, contribute to out-of-plane disturbances 000), 

and A affects both types of disturbance. 

We now restrict our attention to those second-order fluids 

which are only slightly viscoelastic. The constants A and u are 

presumed to be small and will be used in section 3.6 as parameters 

in a perturbation analysis about the solution for a Newtonian fluid. 

This procedure is possible since the basic flow (3.3.2) is the same 

for both Newtonian and second-order fluids. 

3.4 Solution of the Orr-Sommerfeld equation  

In this section we shall recapitulate some results of stability 

theory for Newtonian fluids. If we set A=11=0 equation (3.3.18) becomes 

{(D2-a2)2 _in(02 )(1)24,2 )1.inlinl2  . 0, 	(3.4.1) 

which is the familiar Orr-Sommerfeld equation. In general this 

equation, which is linear in u2, has four independent solutions 

ff2'f3 and  f4' 
and so the general solution may be written in the 

form 

u
2 

= k=1 a
k 
f
k' 
	(3.4.2) 

where ak 
are constants. For flow in a channel bounded by walls 

at x2=±1 the boundary conditions are 

u1=u2=u3=0 at x2=±1, 	(3.4.3) 

which from (3.3.17) may be written in the form 

rb_ 
u
2
=u
2
-0 at x2=±1. (3.4.4) 

Imposing these conditions on (3.4.2) we obtain four homogeneous 

equations in the coefficients ak. Since the fk  are non-trivial 
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solutions of (3.4.1) the coefficient determinant must vanish, 

that is 

F(a,R,a)  

  

f1(-1) f2(-1) f3
(-1) f4(-1) 

f1(-1) f2(-1) f3(-1) f)(-1) 

f1  (1) f2(1) f3(1) f4(1) 

f;(1) f2(1) q(1) f4(1) 

= 0, 	(3.4.5) 

   

which provides a complex eigenvalue relation between fed=cr+ici, 

and W. We regard rci and W as given real quantities, and (3.4.5) 

can be resolved into two real simultaneous equations to determine 

cr andc..Ifc.is positive the disturbance grows exponentially, 

while if ci  negative the disturbance decays to zero, so the motion 

isstable.Whenc.=0 we may eliminate Cr from the eigen - 

relations (3.4.5) to obtain a relationship between a and R. For a 

given value of itt' the corresponding values of 2; represent neutral 

oscillations, and the curve of CI; against W is called the neutral 

stability curve. The minimum value of W on this curve is called 

the critical Reynolds number Re
, since for flows where R<Rc all 

infinitesimal disturbances decay, and for flows where R>Rc there 

are some unstable disturbances. 

As discussed in section 1.2 we could have chosen to work with 

NN 
spatially growing waves and take the frequency ac to be real instead 

of a. From an analytical viewpoint it is more convenient for ac to 

be complex than a since time derivatives appear in the equation of 

motion (3.2.8) in a much simpler manner than spatial derivatives. 

Further if we apply Squire's theorem to reduce the analysis of a three-

dimensional disturbance to an equivalent two-dimensional case via the 

transformations (3.3.14) the corresponding two-dimensional flow will 

have a complex Reynolds number. Further consideration of spatially 
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growing waves is given by Gaster (1965a,b) and Gaster and Davey 

(1968). Here, however, we shall only consider waves which grow in 

time. 

The basic flow U is symmetric in x2, so any solution of 

(3.4.1) may be split into an odd part, fo(x2)' and an even part, 

fe(x2), and both fo  and fe  and their derivatives vanish separately 

at x2=±1. Thus both fo 
and fe 

are eigensolutions of (3.4.1) and it 

is sufficient to consider only odd and even functions in the eigenvalue 

problem. Lock (1955) has shown numerically that even solutions lead to 

greater instabilities than odd solutions, so in determining Rc  we 

need only consider even functions and restrict the eigenvalue problem 

to the intervals 0.5.x2:51, with boundary conditions 

ft/ 
U

2 
= u2' = 0 at x2=0 (3.4.6) 

replacing the conditions at x2
=-1. We note that in much of the 

literature the interval -10:20 is used instead of the upper half 

channel, though there is no difference in principle whichever is used. 

As laminar flow begins to break down the Reynolds number is 

fairly large, at least of the order of 1000 if we take the 

experimental value, so for much of the channel we may neglect the 

viscous terms and replace (3.4.1) by the Rayleigh equation 

(U -fclj)(D2 -a
n.,2 
 )u2 -U"u2 

= 0, 

which may be written in the form 

U" 
u2 - 	 u2 =au2. 

U-c 

(3.4.7) 

(3.4.8) 

The order of the equation has been reduced from four to two, and we 

can no longer impose all the boundary conditions at x2=0,1. Applying 

iteratively the method of variation of parameters to (3.4.8) Heisenburg 
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tit 

(1924) obtained solutions as convergent series in a , namely 

	

fe 	
= (.14,)  1 en h 

2n 
 (x 2), 

0 

(3.4.9) 
= (1.14,)  T.°  n.,2n 

	

fo 	L a k2n-1(x2)' 
0 

where 

fx2  dx2  ix 
	 2(u4')2 	(x )A- n?.0; h

o  = 1; h2h4.2 = (U4')2  

	

0 	0 

fx2  dx2 	fx2  dx2  fx2, rt, 2  
k1 = 	k2n+1 = 	lU-c) k2n-1(x2)dX2' nM.] 

(U41)2  ' 	(U4')2  0 
	

0 
	o 

(3.4.10) 

For convenience we write y in place of x2, and let yo be the 

value of y at which U-c vanishes. At y=y0  the integrands in 

(3.4.10) are singular and to define the integrals we must fix a 

contour in the complex y-plane round the singular points. Heisenberg 

(1924) and Lin (1944 and 1967) discuss this difficulty and show that 

it is necessary to integrate along a contour with passes below y-y0. 

Using this procedure Stuart (1954) obtains for fe(y) the approximate 

solution 

2 	2 f
e 
 = (y

o
-y 

f 	= 
‘J 	J  e 	o 2  

)(1 

I" 

1 	n,2 2 
+ 10 a y ) 

2 
u  10 u2 

4 	2'1,2 
-1-1 5 Yoci 

2 
15 Yoa   

+i(y:-y2)log{ 

4.1(y:_y2)  log  

2 

Y<Yo 

yvo  

2°  2 , 

Yo -Y  
2 
2o 2  

y -Yo 
(3.4.11) 

These two expressions have discontinuous derivatives at y=y0, and 

to obtain a regular solution throughout the channel we must solve the 

full viscous equation (3.4.1) since the inviscid equation (3.4.8) breaks 

down at y=y0. 
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The region close to y=yo is called the critical layer, for here 

viscosity plays an important part in determining the flow. To account 

fully for the action of viscosity we introduce a stretched coordinate 

n = (Y-Y0)/c, 	(3.4.12) 

where c is a small quantity defined by 

c = (0n)-1/3 
	

(3.4.13) 

and U' represents the value of U' at y=y0. We note that U(;<0 

in 04x2.41 so that c is negative. We now expand u2  in powers 

of c:- 

ti 
u2 = X0(n) + c X (n) + c

2 
X2(n) 	• 

The velocity U may be expressed in a similar way:- 

1  " U 	= 	c + U'en + 
oc2 n

2  + 	. 

(3.4.14) 

(3.4.15) 

Substituting these expansions in (3.4.1), and equating coefficients 

of powers of e we obtain 

d
4
xo n d2xo 0, 

dn
4  

dn
2 

d
4 xi 	U" 	1  U" 	d2 n d2 x1 

	

o 	2 	x  o 
dn
4 	— X 2 — n 	2 

dn
2 	

U' 	U' 	dn2 

(3.4.16) 

(3.4.17) 

and so on. (3.4.16) is the Airy equation if we regard d2x0/dn2  as 

the independent variable. The four independent solutions to (3.4.16) 

are 
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x(I) = 1, 0 

(2) = n, X0  

(3.4.18) 

X(3) 	fn  do  fn.  R(in)3/1/3  H(1 1/)3  [1(in)31dn, 

CO 	 CO 

  

f: 3(in)311/3  1.1 2)3  R(in)3/1dn, x(4) 
 

0 

 

do 

  

  

(1) where H1/3 and H
(2)
1/3 

are Henkel functions of order 1/3. The first 

two solutions correspond to the first terms in the inviscid expansions 

(3.4.9). To obtain a function which matches (3.4.11) outside the 

critical layer and is regular across it we seek the next term in the 

expansion of the even solution x
(1). First we set 

(1) .
1  
 g 
X(1) 	

(n) 

yo 

( 
and substitute in (3.4.17) with Xo  = Xo

1)  to obtain 

(3.4.19) 

+ n511 = 1. 	(3.4.20) 

Tollmien (1929) has shown that S(n) behaves like nlogn for large 

positive n and as nlogl nl-iwn for large negative n. If we 

express (3.4.11) in the form 

fe =-1-c(A1n+B1nlogn)+0(e
2), n>0, 

„ \ 
fe 	= A-1-e{A1n+B1(nlogInkiwn)}+0(E

2 
 ), 

(3.4.21) 

n<0, 

we see that we can replace nlogn or nlogini-iwn as appropriate 

by 	(71) to achieve a regular matching of (3.4.11) across the critical 

layer. We therefore take as one of the two independent even solutions 

of (3.4.1) the expressions (3.4.11) suitably modified by E(n) in the 

critical region, and let f
e
(Y) now represent this solution. 
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The other even solution is obtained from a linear combination of 

X(3) and x
(4). Use of asymptotic expansions of the Hankel functions 

shows that x(4) is large for large positive n, which corresponds 

to the centre of the channel. We therefore require only a very small 

multiple of x(4), and since it is small at the wall, it will have 

only a small effect on the eigenvalues, so in practice it is ignored. 

In the computation we shall take only the first term in the expansion 

of x(3), though Lock (1955) shows how to obtain the next term. 

We can now represent the even solution of (3.4.1) by 

where 	A 	and 

Eliminating 

A 

A 

A 

1'1;2 	= 	A fe 
	

B X
(3) 

B 	are constants. 	Boundary 

f 	+ Bx(3) 	0, 

df 	dX (3) , 

conditions (3.4.4) 

at 	y=1 

we have 

(3.4.22) 

yield 

(3.4.23) 

(3.4.24) 

	

+ B 	0, 
dy 	dy 

and 	B 	and using (3.4.12) 

x(3)(n 	) 0 	
fe(1) 

d 
 n1 	x(3)(n ) 	(1-yo) — fe(1) 
an 	dy 

where x(3)  is expressed as a function of n, f
e as a function of 

y, and n1 is the value of n at the wall. This equation reduces 

to two real simultaneous equations, which, for a given value of yo, 

tit 
may be solved to obtain n1 and a , and, from (3.4.12) and (3.4.13), 

R. In the computation values of x(3), S - and their derivatives 

were obtained from tables calculated by Holstein (1950). The eigen- 

values a,• E and y
o obtained in this way and corresponding eigensolutions 

of (3.4.1) are used in the perturbation analysis of section 3.6. 
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3.5 The adjoint function  

In the analysis of the next section we shall require a function 

adjoint to u2, which was obtained in section 3.4, and it is 

convenient to introduce it now. We consider the differential form 

L(0) 	(D2-2; 2)20_5.2g(u4)(13242)0:inuno, 	(3.5.1) 

and the adjoint form, which we denote by L*(0*), follows from the 

definition given by Ince (1944, p210), and is 

1,*(006) a  (D242)0* - in(u4)(D24 2)0* + 2iaRU'D0*. 	(3.5.2) 

It now follows that 

{0*L(0)-01,*(0*)}dy = [0(0,0*)1.10, 	(3.5.3) 
0 

where 

P(0,0*) = 0[0e+in(U4)1D0*+inU10*-D301 

-0T2ei-in(U-C))10*-D2011 - 0"1416  - 01"D0*. 
(3.5.4) 

In particular, if 4  is a solution of L(0)=0 and 0* is a 

solution of L*(0*)=0, then 

EP(o,e)101  = 0. 	 (3.5.5) 

ti 
In our problem we first identify 0 with the even solution u2 of 

(3.4.1) which satisfies 0 = 	= 0 at y=1, and if we similarly 

restrict 0* to be an even solution of the adjoint equation L*(0*)=0, 

we then have from (3.5.4) and (3.5.5) 

0"D0* = 01'10* at y=1. 	(3.5.6) 

It was shown by Stuart (1960) that, if we denote the independent even 

solutions of (3.4.1) by 01  and 02)  then the two independent even 
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0) ,.1  
solutions of L*(e 	

24,t2 
)=0 are 	)0 and 

(D24,t2 )(1)2.  
Hence we can 

write 0* as a linear combination of those functions, and we can 

formally satisfy one boundary condition on 0* by suitable choice of 

the combination. It is most convenient to satisfy the condition 

0*=0 at y=1, and we deduce at once from (3.5.6) that D0*=0 at y=1. 

We cannot impose two arbitrary homogeneous boundary conditions on 0* 

because the parameter c has already been fixed in solving the eigen-

value problem (3.4.1) and (3.4.4), though we should comment that the 

adjoint problem has the same eigenvalues as the original problem 

provided we impose the boundary conditions e=D046=0 at y=1. 

Following Michael (1964) we now identify 4  with the even 

solution of the inhomogeneous Orr-Sommerfeld equation 

L(0) = k(y); 0=D0=0 at y=1, 	(3.5.7) 

where k(y) is an even function of y. With 0* defined as in 

the previous paragraph,we still have the relation (3.5.5) holding, 

and hence 

fl 

0* k(y)dy = 0. 	(3.5.8) 

0 

We shall require this relation in the subsequent analysis. 

3.6 	Perturbations from the Newtonian case  

As indicated earlier in the chapter we restrict the analysis 

for three-dimensional disturbances (OW to slightly viscoelastic 

fluids for which A and p are small. We express eigenfunctions, 

u2, g, and eigenvalues a, W and c in the form 

f = fo 	Afl 	8(2A+P )  f2 	• 
	 (3.6.1) 

and neglect squares and products of A and p. The suffix zero 



- 58 - 

refers to the solution for a Newtonian fluid. We now substitute 

these expressions in (3.3.18) to obtain from terms independent of A 

and p 

2'2 2 	rt, 	2 q,21, a,  {(D -a
o
) - 	 U o E  o 	

. (U-C)(D -ao) + 	R 
o o")u20 = 0, (3.6.2) 

which is identical to (3.4.1). Terms proportional to X and to 

0(2X+p) give the first order perturbation equations 

2 rt,2 2.ft, 	2 n,2, 	.% 	, 
{(D -ao) - la o  R  o 	o oU 

(U-co)(D -ao) + la R 	2n = kn(x2) 	(3.6.3) 

where n=1,2 refer to the components in (3.6.1) and 

	

, 	ft, 	n, 	.1,2, kn(x2) = E
no 

+
o
a
n+i(anRo+aoRn)kU-c o)-ia°Bo o nl(D

2 
 -ao) 

. 
-22.ao anRo ( U-c o ) ( aoRn+anRo ) U" u20 ' (3.6.4) 

N
no referring to the functions in (3.3.19) for a Newtonian fluid. 

n, 
To obtain the eigenvalues a

n, En and cn we use a method suggested 

by Stuart (1960) and Watson (1960, 1962) using the adjoint function 

0* obtained in the previous section. For the inhomogeneous Orr-

Sommerfeld equation we have from (3.5.8) 

f
1 0* kn dx2 = 0; 	n=1,2. 	(3.6.5) 

0 
This is a complex equation which yields, for each value of n, two 

real equations linking an, Rn and cn which are all real on the 

neutral stability curve. To provide sufficient relations to determine 

the eigenvalues we must fix a direction for the perturbation of the 

Newtonian neutral curve by viscoelasticity in the form of a linear 

relation between an, n and cn. We choose in this chapter to 

take perturbations at constant a (with both a and 0 constant), 

as this direction is approximately normal to the neutral stability 

curve in the region of greatest interest, namely near the critical 

Reynolds number. 
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The only unknown function involved in (3.6.5) is Igo, which 

appears in the term governing out-of-plane disturbances. Setting 

X=u=0 in (3.3.9) and (3.3.11) we obtain 

2 %  
{D -ao

2 
-iao o(U- o)}(aou30-0ou10) 	-aooU'u20' 

which may be written 

2 n..2 	% 	."2% 	% A, 	A, 
{D -a o  -iao  R (U-co)}(u' +la o  g o) = -iaooUlu20 o 	20  

(3.6.6) 

(3.6.7) 

provided 00. The boundary condition at the wall is Ido=0 at x2=1. 

From (3.3.18) we deduce that,since u2 and U are even functions of 

x2, go  is necessarily odd, giving a second boundary condition g
o
=0 

at x2=0. (3.6.7) is solved numerically for f=11 0+i*0  by representing 

2 2 , 
h D fty) = f(y+h) - 2f(y) + f(y-h) + 0(114), (3.6.8) 

where 0.$7.5.1 is divided into N equal intervals of step-length h. 

This formula may be applied at y=h, 2h, 	, (N-1)h and the 

resulting set of simultaneous equation may be solved by matrix methods, 

which will be discussed in greater detail in the next chapter. The 

boundary conditions give 

f(0) = if(1), f(Nh) = 0, 	(3.6.9) 

and finally go is calculated from f. 

3.7 	Discussion of the results  

The eigensolutions for a Newtonian fluid were obtained by the 

method outlined in section 4. The eigenvalues are given in table 3.1, 

and a typical example of 't'12  is illustrated in figure 3.1. 	1 and 

are independent of 13, but dependence of the Reynolds number of 

may be obtained by using the transformations 
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R 	R 	0(2A+11 
o • 1 	)W2' 

aR = aR. 
} (3.7.1) 

The points labelled A-J in the table correspond to values obtained 

by Stuart (1955), but as they give little detail of the neutral 

stability curve in the critical region further points, labelled 1-5, 

were obtained using the method of section 3.4. With the eigenvalues 

rx, 
and u

20 
thus calculated the out-of-plane velocity component g

o 
is 

obtained from (3.6.7). Step-lengths of h=0.04, 0.02, 0.01 and 0.005 

were tried and there was little difference between values of go  for 

the last three values of h, so it was decided to use h=0.01 throughout 

ti 
the calculation. The behaviour of go  for several points on the 

neutral stability curve is shown in figures 3.2-3.5. The curves for 

points 1-5 are not shown, as they lie close to those for points A 

and J. 

A result of particular interest obtained from the graphs is 

ti 
that g(;00 at x2=1. For a Newtonian fluid the first unstable 

disturbance to appear is in-plane with u3=0=0, but Lockett (1969b) 

has shown that under certain conditions, which will be determined 

below, the first unstable disturbance in a viscoelastic fluid may be 

out-of-plane. The significance of this will be seen if we examine 

vorticity of the flow, whose components are given by 

wl  

w2 

w
3 

= 

= 

= 

(1.1 -if3u2)exP{i(ax1fl3x3-act)}, 

i(Ou1-au3)exp{i(ax1+x3-act)}, 

-1P+(iau2-upexp{i(ax1+f3x3-act)}. 

(3.7.2) 

For the first growing disturbance in a Newtonian fluid w1 
and w

2 

vanish, whereas if the first perturbation in a viscoelastic fluid is 



E D C B A 1 2 3 14 5 J.  I H G F 

o 44600 19400 10350 6320 5460 5300 5250 5250 5320 5700 7050 10150 21200 49600 140000 

n, 
ao 

0.58 0.68 0.80 0.94 1.02 1.04 1.06 1.08 1.10 1.14 1.18 1.17 1.10 1.00 0.86 

Yo 0.93 0.91 0.89 0.87 0.86 0.858 0.857 0.856 0.855 0.855 0.86 0.87 0.89 0.91 0.93 

4, 1
x10 

-7 
R - 3.099 1.543 1.114 1.305 1.369 1.593 2.009 2.610 8.310 - 9.025 - 7.173 -16.5o - - 

,A,
1  

c - -55.6 -59.1 -73.9 -99.o -107 -124 -152 -193 -546 455 243 179 - - 

2
x10 6  - -15.75 - 5.59 - 2.78 - 2.98 -2.51 -2.19 - 2.45 - 2.96 - 7.79 11.55 6.59 9.45 - - 

et, 
c
2 

- 6.03 4.46 5.64 11.1 2.47 9.88 11.9 15.5 45.o -70.9 -38.4 -28.9 - - 

Table 3.1 
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out-of-plane (41 and co2 are non-zero, and, since 14 is non-zero 

at the walls, w1  is also non-zero there. Slight viscoelasticity 

may therefore introduce a longitudinal component of vorticity which 

persists in the region close to the wall; conditions under which this 

occurs are discussed in the next section. This vorticity component may 

play an important role in the subsequent development to turbulence, and 

the region near the wall is believed to play a major part in this 

transition. Lockett (1969b) has suggested this mechanism as a possible 

starting point for a theory to explain the drag-reduction properties 

of certain long-chain polymer solutions. 

The adjoint function 0* (corresponding to u20  at each point 

on the neutral curve for which eigensolutions were calculated) was 

obtained from the two independent even solutions of (3.4.1) as indicated 

in section 3.5. Rather than calculate the required second derivatives 

numerically, which is an inaccurate process, they were obtained from 

/ direct differentiation of (3.4.11), “n) and X(3)  (n), using the 

tables of Holstein (1950) where necessary. A typical form of 0* is 

shown in figure 3.6. 

fx, 	ti 
The perturbation terms Rn and cn may now be calculated from 

(3.6.5), the integrals being evaluated by Simpson's rule. In table 

3.1 the figures for points E,F and G were omitted as they were too 

large to be realistic; this results directly from seeking perturbations 

at constant a. For large Reynolds numbers this direction is roughly 

parallel to the neutral stability curve and is therefore unsuitable. 

In the perturbed neutral curves, figures 3.7 and 3.8, there is some 

uncertainty in the region of maximum 2(, and this again reflects the poor 

choice of direction in this area. Considering disturbances at constant 

ft, 	. 
a is, however, well suited to the critical region with which we are 

chiefly concerned. (Michael (1964) describes how to choose more 
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appropriate directions for perturbations at other parts of the neutral 

stability curve). For certain values of A and p some of the 

larger coefficients
n 

and c
n 

in table 1 may have to be discarded 

though the perturbation procedure is still valid at points close to the 

critical part of the curve. All the coefficients may be used for 

sufficiently small values of the viscoelastic parameters. 

Figure 3.7 shows neutral stability curve for three different 

values of A, when 0(2X+p)=0. The solid line refers to a Newtonian 

fluid. It is known from thermodynamic considerations that A is 

negative (see Coleman and Markovitz, 1964), and the limited experimental 

evidence that exists tends to confirm this result. The graphs show 

that for negative values of A the presence of viscoelasticity in 

the fluid is destabilising in the sense that it reduces the critical 

Reynolds number, in agreement with previous results (Chan Man Fong and 

Walters, 1965, Mook, 1967, Jones and Walters, 1968, Jones, 1967, and 

Schwarz and Chun, 1968). Although there is some discrepancy in the 

literature about the exact form of the perturbed curves, there is no 

doubt about the main result, that negative A causes destabilisation. 

It will also be seen that the value of 2j( at the critical point 

increases with IXI, though it is difficult to determine this trend 

accurately. This uncertainty is reflected in the papers already 

cited, where a is found to increase with IA! by Chan Man Fong 

and Walters (method (ii)), Mook, and Schwarz and Chun, but to decrease 

by Chan Man Fong and Walters (method (i)), Jones, and Jones and 

Walters. 

The effects of perturbations corresponding to the term in 

0(00-0 are shown in figure 3.8, where the Newtonian case is again 

shown by a solid line. These curves are for constant values of 0. 

A plot of neutral stability curves at constant a is obtained via 
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(3.7.1) and shown in figure 3.9. The parameter 2X+u may be either 

positive or negative, the flow being destabilised for positive values 

or stabilised for negative values. Again, increasing values of the 

ti 
parameter cause the value of a at the critical point to increase. 

In a real fluid both viscoelastic parameters need to be considered, 

and in the linear perturbation theory of this chapter their separate 

effects can be added together. It is possible, with suitable choice 

of A and u, for the critical Reynolds number to be the same as 

that of a Newtonian fluid, though the neutral curves would only 

coincide at a few points. 

Although the approximations made in section 3.4 in specifying 

u2 are sufficiently good to determine whether the terms in A and 

u stabilise or destabilise the fluid, they do not enable us to determine 

the position of the neutral curve with any great accuracy. For instance, 

for A=u=0, the present results give a critical Reynolds number of 

about 5240, in contrast to the usually quoted figure of 5780 obtained 

by Thomas (1953). In the next chapter, where it is far more important 

to specify the eigenfunctions accurately, a direct numerical approach 

to (3.4.1) is used, and better results are obtained, namely a value 

of 5774.4 for Re  and a corresponding wave number of a = 1.02024, 

which compare well with the results of Porteous and Denn (1971) who 

used a Runge-Kutta method developed by Kaplan (1964) to obtain 

Rc = 5775, a = 1.0206. 

3.8 The possibility of a critical direction  

The investigation so far has been in terms of eigenvalues 

defined by transformations (3.3.14), but to determine how the value 

of 8/a affects the critical Reynolds number we must work with 

a and R directly. The neutral stability curve becomes a surface 
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if we use as axes a, a and R. We may cut this surface with a 

plane parallel to the aR-plane and obtain a neutral curve and 

consequently a critical Reynolds number corresponding to a particular 

value of 6. The values are obtained via (3.7.1). Variation of R
e 

with 0(=62/a2) is shown in figure 3.10. The curve for a Newtonian 

fluid is labelled A, and the effect of terms corresponding to 

X=-10
-6 

is shown by B. We observe that R
c increases with 6, 

showing that the least stable disturbance occurs when 6=0. We note 

also that the term in A makes little difference to the slope of the 

curve, while perturbations corresponding to the 2A+p term affect 

the gradient as indicated by C and D. For sufficiently large 

values of 2A+p (>0.001o6 approximately) the value of Rc  decreases 

with 6 as shown by E and F. The value 0.00106 is insensitive 

to variations in X. Since we require the product 6(2X+p) rather 

than the combination of parameters, 2A+p, to be small for the method 

of perturbing the Newtonian solution to be valid, we may choose p 

as large as necessary, but remaining consistent with the second-order 

model of a fluid, though its application will be restricted to small 

values of O. The physical significance of 2A+p may be seen by 

considering a rectilinear shearing flow given by 

v =Kx 
1 2' v2=v3=0' (3.8.1) 

where K is a constant. The second normal stress difference required 

to support this flow is, by (3.2.2)-(3.2.7), 

S
22
-S
33 

= (2X+OK2. 	(3.8.2) 

Thus the type of behaviour exhibited in C-F is governed by the 

magnitude and sign of the second normal stress difference for the 

fluid in rectilinear shearing motion. 
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When a=0 all disturbances of a Newtonian fluid are stable, 

and consequently the critical Reynolds number is infinite, as we 

shall now show. We write the velocity field in the form 

v1  

v2 

v
3 

= 

= 

= 

U + u1(x2)exp{i8(x3-ct)}, 

u2(x2)exp{ia(x3-ct)}, 

u3(x2)exp{ia(x3-ct)}. 

(3.8.3) 

Using (3.2.2) and (3.2.5) the resultant stress tensor for a Newtonian 

fluid has first order components 

S R 
1 

0 	u' 	iau 

u' 	2u' 	iau +u' 2 	2 3 

iau1 	i8u2  +1113 	2i8u
3 

and from the equations of motion (3.2.8) we obtain 

••• 

S'12 + is S13 = -iacu1  + U'u2,  

22 + i8 23  = -i8cu2 + f', 

s'3  + is S 33 = -iacu
3 
+ iap, 

2 

(3.8.4) 

(3.8.5) 

where the pressure perturbation is p exp{ia(x
3 
-ct)}. The continuity 

condition (3.2.9) gives 

u3  = 0, 	(3.8.6) 

and this enables us to reduce (3.8.5) to 

(D2-82)111 -i8Rcu +RU'u 1 	2' 

(D2-a2)u2  = -i8Rcu2+Rf', 

(D2-82)u
3 	

-iaRcu
3
+I8n, 

} 

(3.8.7) 
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where D again denotes differentiation with respect to x2. 

Eliminating p and u
3 

the Orr-Sommerfeld equation becomes in the 

case a=0 

(D2-eidacR)(D2-62)u2  = 0. 	(3.8.8) 

The two independent even solutions are 

f1 = ch ay, 

f
2 	

ch ay cos by + ish ay sin by, 

 

 

(3.8.9) 

 

where a and b are real quantities satisfying 

ab = -2 13,  crR, 	a2-b
2 

= 82+0c.R. 	(3.8.10) 

Boundary conditions u2=u2=0 at x2=1 lead to the eigenvalue 

relation 

f12 f' = f2f1 at x2=1, 	(3.8.11) 

which from (3.8.9) becomes, 

a sh a cosb-b ch a sinb+i a ch a sinb+i b sh a cosb 
f3th g = 

ch a cosb+ish a sinb 	(3.8.12) 

The imaginary part of this equation is 

0 = (a+b)sinb cosb 
	

(3.8.13) 

from which we deduce that 

i32 13c.R = 0, 	(3.8.14) 

showingthatac.is negative for all values of R, and hence all 

disturbances of the form (3.8.3) are stable. 
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We have assumed that slight viscoelasticity makes only a small 

change in Re, and we expect curves E and F to remain close to 

A and B for every value of O. In particular Rc-a3 as e4m(c0-0) 

for both Newtonian and slightly viscoelastic fluids, so E and F 

will diverge from the straight lines shown in figure 3.10 in a manner 

indicated by the broken curves, and there will be a minimum value of 

R
c at some value of Ho for viscoelastic fluids. This is in marked 

contrast to Newtonian fluids where the minimum value of R
c 

is given 

by 0=0. Linear perturbation theory leads to terms proportional to 

02, so R
c is linearly dependent on 0 and hence there is no tendency 

for curves E and F to bend upwards. In the next chapter we shall 

examine non-linear effects, though the analysis does not lead to a 

critical direction along which the first (linearly) unstable wave would 

propagate. The first stage in performing a nonlinear calculation is 

to solve the linear Orr-Sommerfeld equation. As more accurate results 

are required than in this chapter for subsequent computation a finite 

difference method was used to obtain eigensolutions of the Orr-

Sommerfeld equation. Details of the method and results which are 

applicable to linear theory will be found in sections 4.9 and 4.10. 
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CHAPTER 4:  STABILITY OF PLANE POISEUILLE FLOW OF A SECOND-ORDER  
FLUID: NON-LINEAR ANALYSIS  

4.1 Non-linear interactions  

In the previous chapter conditions were obtained under which 

disturbances first become unstable. Linear theory predicts that such 

disturbances grow exponentially until they are sufficiently large for 

the transport of momentum by the finite fluctuations to be considerable, 

and the associated mean stress, the Reynolds stress, has an 

appreciable effect on the mean flow. This distortion of the mean flow 

modifies the rate of transfer of energy to the disturbance. As this 

energy transfer is the cause of the growth of the disturbance the rate 

of growth is itself modified. It is possible that there may exist an 

equilibrium state in which the rate of transfer of energy from the 

modified mean flow to the disturbance is exactly balanced by the rate 

of viscous dissipation of the energy of the disturbance. 'Equilibrium' 

in this sense means that the oscillations have a steady finite 

amplitude. 

The effect of the non-linear terms in the momentum equations is 

shown in three ways, (1) the generation of harmonics of the basic 

disturbance, (2) modification of the mean flow by the disturbance, 

and (3) modification of the fundamental. To see how these effects 

arise we shall consider for simplicity a disturbance whose x-dependence 

is exp(iax), where a is a wave number. In the non-linear terms 

the product of the fundamental with itself immediately introduces 

the harmonic proportional to exp(2iax), which in turn interacts with 

the fundamental and with itself to generate higher harmonics, and 

so on. In physical terms we are dealing with real quantities, so 

corresponding to exp(iax) we must introduce a term proportional to 

its complex conjugate exp(-iax). The product of these expressions 
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gives a term independent of x which represents the modification of 

the mean flow by the fundamental. The mean flow is modified by the 

harmonics and their conjugates in a similar way. The product of 

terms in exp(2iax) and exp(-iax) gives a term in exp(iax), and 

so represents a modification of the fundamental. The argument above 

suggests that we ought to Fourier analyse the velocity components in x. 

4.2 Fourier analysis of the flow  

As in the previous chapter we shall examine the stability of 

Poiseuille flow in a channel bounded by planes y=±1, where the 

undisturbed flow (3.3.2) is 

(u, v, w) = (1-y2, 0, 0), 	(4.2.1) 

all quantities being expressed in non-dimensional form. This flow 

is caused by a uniform and constant pressure gradient in the x-direction. 

When a disturbance is present the arguments of the previous section 

suggests that we may express the velocity as a Fourier series in x, 

and similarly in z, namely 

imax 	-imax 	inyz 	-inyz 

	

u=uo + 	(umo 	m e 	+u oe 	
) + 	(u

on
e 	+u

on
e  

	

m=1 	n=1 

	

= 	= 	imax+inyz ti -imax-inyz 	imax-inyz ft, 	-imax+inyz 
+ 	(use 	+umn  e 	+u

m-n
e 	+um-ne  ), 

(4.2.2) 
e 

where uo and umn  are functions of yi_and the tilde denotes a 

complex conjugate. Similar expressions hold for v and w. In 

addition to the longitudinal pressure gradient there will exist pressure 

variations within the fluid arising from the Reynolds stresses of the 

non-linear interactions, so we must also express the pressure as a 

Fourier series: 

m=1 n=1 



3u. 1 

at 
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imax 	-imax 	co 	inyz 	-inyz 
p=xp

o
(t)+p1  + 	(pmo e 

	+p
mo  e 
	) + 	(p

on
e 	+p

on
e  

	

m=1 	n=1 

co m 	imax+inyz 	-imax-inyz 	imax-inyz 	-imax+inyz 
pmn 	mn e 	+p e 	+pm-n e 

	+p
m-n

e 	), 
m=1 n=1 

where p1  and p 	are functions of y and t. We note that the 

pressure gradient po  will vary with time if the mass flux is held 

fixed. Pressure variations arising from Reynolds stresses are 

represented by p1  and per. 

In suffix notation the momentum and continuity equations for a 

second-order fluid are 

1 	(aui.„.4 
+ u
kI 
u.,k = -p ,1  . 	h 	

at+ ukui,kij  +(a011)(ui,kuk,ji  

+2u. u. ) j,k i,jk 

+(2X+11)(uk,iuk,jj-Euj,kuj,ik+uj,kuk,ij ) ' 

1 u1  . . = 0, 

(4.2.4) 

(4.2.5) 

sdlere"idenotesdifferentiationwithrespecttox.,and the 

viscoelastic parameters are A and p. We substitute (4.2.2) and 

(4.2.3) into these equations and separate similar harmonic components. 

We note immediately from (4.2.5) that 

v' = 0, 	 (4.2.6) 

where the prime denotes differentiation with respect to y. There 

is no flow normal to the solid boundaries y=±1, so we deduce from 

(4.2.6) that vo 
vanishes everywhere. We shall also use the operator 

D to denote differentiation with respect to y, and define 

(4.2.3) 
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E 	E D
2 - m2a2 n2y2. mn 

(4.2.7) 

U, Vim, mn will be used to represent terms arising from non-linear m 

interactions. We then obtain the following system of equations 

au 	au" 0 	1 	, 
Po — uO — A 	- U , 

at 	 at 	oo 

p; 	= 2(2A+11)(u:Dug+w,?'c') )+Voo' 

aw 	314" _ 1
0  
w” _ A  

R at 	 at 
- Woo' 

(4.2.8) 

(4.2.9) 

(4.2.10) 

a 
—a  + k - R — E 	+ klE -(X+p)(k" +2k' D) mn 	mn 	mn 	mn 
at 	at 

mn 

w ran 

+ ima 

D 

my 

{Pmn-(2X+p)(kmn' vmn o +u 	+u'u' +w"w mn om +sew!  n )) 
"u mno mn o  

  

u'- o 0 Au"'-(A-1-11)(u'Emn  o +2u"D) o  vInn  - (2A+P) 

0 

wt-Aw"1-(x+ )(w'E +2w"D) 
o o 	0 11111 	0 

 

(u'E -u'")u +WE -w'")w o mn o mn o mn o mo 

0 

   

mn 

V mn 

W mn 

(4.2.11) 

  

imauran + vi +inywmn 
 = 0, 	 (4.2.12) 

mn  

where (4.2.11) is written in matrix form and 
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If we write 

k 	imauo 
+ inyw

o
. 

mn 

h 	= inyuo  - imawo, mn 

s 	= inyu - imawmn , 
Mn 

(4.2.13) 

(4.2.14) 

(4.2.15) 

and eliminate pressure terms from (4.2.11) using (4.2.12) we obtain in matrix 

form 

[ak 	- 1 	" 	/ 2 	(4)1 
mn 	Emn  Emn-k 	— + k E -k 

Mn mn at 	 at 

h' -Ah'"-(X+11)(h' E +2h" D) mn 	mn 	nn mn mn 

-(2X+u)(NinEmn-hl") 

a 	a 1 — + kmn R -- — E -A — + k Ems-  	mn (X+p)(k" +2k' D) mn 	mn mn at 	3t 

Mn 

Mn 

-imaU' -inyW' -(m2a2+n2y2)V mn 	mn 	mn 

inyU -imaW mn mn 

(4.2.16) 

The linear theory developed in the previous chapter is recovered by 

putting m=n=1 in (4.2.16) and neglecting non-linear terms. We see 

from (4.2.10) that wo arises from non-linear interactions and so we 

may neglect it in the linear theory. Equation (4.2.16) then reduces 

to (3.3.18). 

The mean flow equation (4.2.8) represents the distorted mean 

motion in the x-direction averaged with respect to x and z. Although 

there is no basic flow in the z-direction a flow parallel to the 

z-axis will be generated through Reynolds stresses in the fluid, and 
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this flow is given by (4.2.10). The disturbance may be regarded as 

being composed of a number of fundamental waves, and their harmonics 

generated by non-linear interactions. In the next section we shall 

introduce a particular choice of fundamental waves. The fundamentals 

and harmonics are described by (4.2.16) for particular values of 

m and n. 

4.3 Fundamental disturbances  

We choose as fundamental disturbances three waves:- 

iax 	iax+iyk; 	iax-iyz 

u10e ue 	u e n., 	' 	' ,14-1 (4.3.1) 

These particular waves were chosen to cover several different 

possibilities. By setting)11 = 1-1   = 0 we have the interaction 

of a two-dimensional wave with itself. With3
10=0  and either u =0 q,11 

or k1 _1=0 we may examine the self-interaction of a three-dimensional 

disturbance. Linear theory predicts that the first unstable disturbance 

may be either two- or three-dimensional and these special cases of 

(4.3.1) enable us to trace the subsequent development of this distur-

bance. In some circumstances there may be more than one periodic 

disturbance present, and (4.3.1) allows us to consider the interaction 

of two- and three-dimensional waves (/11-1=0)  or of two oblique 

waves (u10= 
 0). The case examined by Stuart (1962) is obtained when 

1-111' ) 
	so that the three-dimensional disturbance is a standing 

 

wave in the z-direction. 

It is possible to take 111,01exP(iYz) as a fundamental disturbance, 

but as linear theory does not predict a growing disturbance with 

a=0 we have preferred to allow this wave to arise as a secondary 

effect due to non-linear interactions of the waves (4.3.1). 
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4.4 Finite amplitude expansions of the harmonics  

The method of tackling (4.2.16) was developed by Stuart (1960) 

and Watson (1960), and in this section we extend the techniques used 

by Stuart (1962), converting the partial differential equations 

(4.2.16) into a sequence of ordinary differential equations which may 

be solved successively. Separation of variables is completed by 

introducing time-dependent amplitude functions, A(t), B(t) and C(t), 

corresponding to the fundamental disturbances (4.3.1). Although these 

amplitudes are finite we assume that they are nevertheless small and 

seek expansions of the harmonics in powers of A, B and C. We now 

take as the fundamental waves 

(*loo' (Ploo' X100 )A(t)exp(iax), 

(4'110' 4
110' X110 )B(t)exp(iax+iyz), 	(4.4.1) 

(4)1-10' (1) 1-10' X1-10 )C(t)exp(iax-iyz), 

and their complex conjugates, where IP,  4),  X are functions of y 

only. Functions X10' X11' 1-1 in (4.3.1) contain the waves in 

(4.4.1) together with products and higher powers of the amplitude 

functions. Terms independent of x and z arise from products of 

harmonics with their conjugates. Terms proportional to exp(iax) 

4, 4, 
come from products such as ABB, ABC, and the terms in exp(iyz) 

involve AB, AC, etc. Proceeding in this way we obtain the following 

expansion scheme:- 

u 	= f+I A I 2fl+I BI
2 f
24-1C12 f  o 34....  

w 
 

2 	2 	2 
u10 	

= 
(4)100+1AI 4)101+1B1 *102+ 

 
I C I *1034--)+ABCip104+-..  

u11 	B(*1104-1A12 /P111+I BI 2 4)112+  ICI
2
1P113+—.)+A L4, 1144-- 

IAI
2
g1+IBI

2  g2+1C12  g3+... 
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u1-1 
2 	2 	2 	2fts 

*1_13+...)+ A B* 
= c41-1e1A1 *1-11+I BI *1-121.1c1  

u01 = zw/1)0114A40124.—  

u20 = A2*201+334202+— 

ti 
u
02 	= BC*020 +... 

u
21 	= AB*210 +... 

u
2-1 

= AC*
2-10

+... 

u
22 = B

2
*220+... 

u2-2 = C
2
*2-20+... (4.4.2) 

where *pqr' jj f., g. are functions of y only. Similar expressions 

hold for v n' wmn  and s 	with *, X and a replacing 1 
111/1 

respectively. We shall show later that it is consistent to work to 

third order in amplitude, and the expansions above have been written 

to this order in anticipation. 

Under linear theory the amplitude A(t) satisfies 

dA 
= -iacA, 	 (4.4.3) 

dt 

which yields the exponential behaviour. The function A is associated 

with spatial dependence proportional to exp(iax), and in the non-

linear extension it is consistent to add to the right hand side of 

(4.4.3) those products of the amplitudes that are also associated 

with exp(iax). We therefore write 

dA 
— = A(ao+a1 1Al2+a21B12+a3

ICI2+...)+a4A:BC+... . 
dt 

(4.4.4) 

In a similar way we obtain 
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dB 
— = B(b +b

1
111.12+b

2
IB12+b

3
IC12+.-..)+b4A u+... , 

dt 

dC 
— = C(co+cl IA12+c21B12+c31C 1

3+...)+c 	. 
dt 

(4.4.5) 

(4.4.6) 

The coefficients a 
o 
 , b

o 
 and c

o are determined from linear theory, 

and it will be shown later how the other coefficients may be 

calculated. 

To establish that it is possible to work to third order in 

amplitude let us consider the simplified system where B=C=0. The 

order of magnitude argument which is presented below does carry 

through for (4.4.4)-(4.4.6) though it is rather complicated. For the 

special case)(4.4.4).reduces to 

dA 
— 	= 	A(a

o
+a

1
IAI
2 
 +a
5
IAI4  +...). 

dt 
(4.4.7) 

ti 
If we multiply through by A, take the complex conjugate and add the 

two equations we obtain 

dIAI2  
2 	1A124.a 	, = 2IAI (ac

i+alr'—' 	Sr' 	' 
(4.4.8) 

dt 

where,  ci  is the imaginary part of the wave speed obtained by linear 

theory, and akr  is the real part of ak. We shall be examining 

disturbances close to the neutral curve, and in this region I c • I is 

small, showing that 1A I 2  is slowly varying. There exists the 

possibility of an equilibrium amplitude, when IAI is constant, 

which is given by 
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1 
1 	1  

0 	= 	ac.+a1r  'AI
2 	

a,r1111 e
4 
+.. • 2 e 

(4.4.9) 

where e denotes the equilibrium amplitude. To a first approximation 

ac. 
2 

IA I2=  

air 

(4.4.1o) 

We shall later show that as c1.-)-0) a1r  in general remains finite and 

non-zero,showingthatWisoforderlc1.P. Similarly a5r 

remains of order unity as ci40. In the right hand side of (4.4.8) 

thefirsttwotermsarebothoforder1c.12, while the third and 

subsequent terms are at least of order Ic.13. It is therefore 

consistent, for small amplitude disturbances, to retain only the first 

two terms in (4.4.8). The terms retained in (4.4.4) to (4.4.6) as 

written down are of the same order of magnitude, and to this order 

equations (4.4.2) are consistent with amplitude equations as they 

stand. 

It remains to express the non-linear terms in (4.2.16) in a way 

similar to (4.4.2) and we write 

U 	= 	1 1 	1 12u  

	

IA12u 	1.312u 	ilci 	4....  
00 	001

0 
 002 003 

	

1 	1 	1  
U10 	= A(1A

2 
 U101+012 U102+I C I

2 U
103+— )41BCU104+—  

U11 	= B(IAI2U
111

+IBI2U112
+ICI2U113+...)+A2ab114  +... 

U1-1 = C( I A I 2U1-1141B12U1-124-1C12U1-134.—)+A224.j1-14+— 

U01 = AhU0114-AU012
+... 

U20 = A2U201+BCU202
+... 

U02 	
= BU020 +... 

U21 = ABU210
+... 
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U2-1 = ACU2-10
t... 

U
22 = B2U220

+... 

U
2-2 = C2U2-20 	9 (4.4.11) 

where Upqr  depend only on y. Similar expansions hold for V mn 

and W . mn 

4.5 	Equations governing the harmonics  

The set of partial differential equations (4.2.8)-(4.2.10) and 

(4.2.16) may now be reduced to ordinary differential equations by 

substituting the expansions (4.4.2) and (4.4.11) into them, and 

separating the coefficients of products of A,B and C. We specify 

that in the mean motion equation (4.2.8)1  the pressure gradient is 

constant. Otherwise we might choose the mean motion to have a 

constant mass flux, in which case we should need to expand 

p
0  (t) = p00 + Al

2 	
P021B12 PO3 1C12 +— (4.5.1) 

and retain the constants 
p 

in the equations below. These 

constants may be determined by integrating the mean flow across the 

channel. However, the condition of constant pressure gradient 

yields pon=0 for n?.1. 

To simplify the notation we define the following operators:- 

L(a,a,y) =  L11 
L
12 

L21 
L22 

where 

1 I 2 2 	2 2 2 L11 = 	
; _R_ ki)  _a y2 )1()  _a 	)ictfalA{(a.i.ictfo)(1)2 a2 y2)2 f(1.1. ), 

0 	 " 0 j  

L12 
= -(2X+u)iy{ft(D2-a2-y2)-fm}, 

L
21 

 = iyfc,)_Aiyfc,3"_0,41.0iyuc;(D2-a2-y2).1.2f"Dj, 

L22 = a+iaf -- (D
2
-a2-y2)-A(a+iafo)D

2
-a
2
-y
2
)-(A+p)ia(e+2f1D), o R 	 0 0 

(4.5.2) 
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L(k'ek'a'Y)  = L11 

[ 

L12 

where 

L21 L22 

= 
le  4.5.a _ 4..l 	1 , 2 2 	2 2 2 

11 k 	fk ygk- (D -a - y)1(D -a -Y )-iar-iygn  k k 

(, 
-Xl(ek+iafkl-iYgk)(3)2 -a2 -Y2 )2  -iafk4) 

	(4) 
j' 

12 = -(2X+p){(iycTiagOD2-a2-y2)-iyq"+iagr, 

L21 = iyftk
-iagt- 

k 	gm 	'- 	
k 	k

Aiyf"I+xia-(A+u){(iyfiag!)(D2-a2-y2)+2(iye-iag")D1, 

1 	 2 L22 = Ok+iafk+iygk  - 	(D2  -a -y2  )-A(Elk+iafk+iygk)(D2-a2-y2) 

-(A+p){iaq+iy<+(iacc+iy4)D}, 

(4.5.3) 

and the function 

-imaUmak inyW' -(m2a2+n2y2)Vmnk - mnk 
(4.5.4) 

inyU k-imaWmnk 

From the mean motion equations (2.8) and (2.10) we obtain 

21  f"o  + po  = 0, 	(4.5.5) R  

2aorf1 - 
	1 	U001' 	(4.5.6) k 
(
R 
 4. act

or) f1  

2borf2 - U+ Abor) .q 	= U002' 	(4.5.7) 

2c
or
f3 - (RI  ÷ Xcor ) f3" 	= U003' 	(4.5.8) 

rank 

• 
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2aorg1 	01 + Act
- 	or) gt  -  

2borg2 - (1 R + Xbor) g2 

2corg3 - (
I+ + 

Xcor) g3 

= 
001' 

W002' 

= W003' 

(4.5.9) 

(4.5.10) 

(4.5.11) 

where aor,  , b or  and 
 cor denote the real parts of a o  , bo 

 and co. 

(4.5.5) may be integrated immediately to give the undisturbed flow 

f
o 
 = 1-y2, 	 (4.5.12) 

so that the pressure gradient necessary to drive the flow is 

Po 
= -2/R. 	(4.5.13) 

We note from (4.5.5) that 	f'" 	and 	f
(4) are both zero. 	For 

convenience let 	(P, Q) 	denote a column vector in the matrix equations 

which follow. 	From (4.2.16) coefficients of appropriate products of 

A, B 	and 	C 	yield the following system of equations:- 

L(ao,a,o)( 	 = 0, 	
(4.5.14) 

L(bo'a'Y)4110'a110)  = 0, 	
(4.5.15) 

L(co,a,-y)(6 1-10'a1-10)  = 0, 	
(4.5.16) 

(4.5.17) L(ao+b0,0'Y)($011'a011)  = M011' 

6 	 (4.5.18) L(a0410,0'''(. If) 	012“5012) 	= M012' 

L(2a0,2a,0)(6 

	

	 (4.5.19) 
201°201)  = M201' 

L(b +c 	,2a,0) 	 (4.5.20) 
o o 	-('6  202'a202)  = M202' 

L(b 	,) 	6 	 (4.5.21) 
o o,02y  ' L  020°5020)  = M020' 

L(a +b 	,2a 	 (4.5.22) 
o o 	'Y)4210'a210)  = M210' 
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L(ao+c0,2a v)(do = M2-10' 

L(2b0,2a,2y)(6 '220'a220)  = M220' 

L(2c0,2a,-2y)(42-20'a2-20)  = M2-20' 

L(a0+2aor,a,0)(4101 '45101)  = l'(i'al'a'°)4100'a100)+11101' 

L(a0+2bor,a,0)4102'a102)  = 1:(2'a2'a'0)(41100'a100)+M102' 

L(a0+2cor,a,0)(0103'a103) = E(3'a3'
a,0)(6100'a100)+M103, 

L(10+bo+co,a,0) 6 '('104'0104)  = i'(11'a4'a'0)(°100'a100)+11104' 

L(b o +2aor 'a'Y)4111'a111)  

L(b0+2bor   'a'Y"T112'a112)  

L(b0+2cor,a,y)(6 .113'a113)  

= f(1,b'a'Y)4110'a110)+11111' 

= f(2,b2 'a'Y)4110'17110)-1-M112' 

= L(3, b3,a,y)( (I)110'a110)+M113' 

) 	= L(4, b4'a'Y)(.110°.110)+M114' L(2a04-co'-'V)(th
'''T 114'-114 

(4.5.23) 

(4.5.24) 

(4.5.25) 

(4.5.26) 

(4.5.27) 

(4.5.28) 

(4.5.29) 

(4.5.30) 

(4.5.31) 

(4.5.32) 

(4.5.33) 

L(c0+2aor'a'-Y)(c1-11 1°1-11)  = 11(l'el'a'-Y)41-10'a1-10)+M1-11' 
(4.5.34) 

= L(2,c2,a,-y)(4) L(c0+2bor  a 1,)(6 ' 	 1-10'a1-10)+M1-12' 
(4.5.35) 

L(c o +2c or ,a,-Y)(4)1-13 'a1-13 ) = i"(3'e3'a'-Y)(¢1-10'a1-10)+M1-13' 
(4.5.36) 

L(2ao4'o'a'")(41-14'a1-14) = L(4,c4,a '")41-10'a1-10)4441-14. 
(4.5.37) 

In (4.5.29), (4.5.33) and (4.5.37) we have introduced the functions 

f4  and g4  which are identically zero. The continuity equation 

(4.2.12) becomes 

imaonnk ( Mnic iniXmnk = 0 
	

(4.5.38) 

for relevant values of m, n and k. 
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The boundary conditions to be applied to these equations are that 

the velocity components vanish on the walls y=±1. (We have already 

used these conditions in obtaining (4.5.12)). By inspection of the 

operator L and equation (4.5.38) we see that it is possible, since 

each component of L is either wholly even or wholly odd, to examine 

separately the symmetric and antisymmetric parts of the disturbance. 

In chapter 3 we saw that waves whose x-component was antisymmetric 

about y=0 were less stable than symmetric waves, and in this chapter, 

too, we choose the fundamentals u10, u11' u1-1 to be odd functions 

of y and consider flow in the half-channel 0;y:1. Then v1n 
will 

 

be an even function of y and wln  odd for n=0,1 and -1. After 

examining the equations further we see that the boundary conditions 

become 

at y=1 f1=f2=f3=g1=g2=g3=4, =*L=4==x1m=amn = 

at y=0 even function 
fk'gk410k411k41-1k for  k=0,...,4, 

*0114012402042014202'*21042-10422042-20' 

X011')(012')(020')(201')(202')(210')(2-10')(220')(2-20' 

odd functions ID 	 for k=0,...,4, 
'10k411k41-1k'X1Ok'X11k°(1-1,k 

41)0114012402042014202'4)210'4)2-10'(1)220'4)2-20.  

(4.5.39) 
4.6 	Method of solution  

For given values of a and R equations (4.5.14)-(4.5.16) represent 

eigenvalue problems to determine the wave speeds of the fundamentals 

and the fundamentals themselves. In particular we note that (4.5.14) 

where y is zero, decouples to give separate equations for h)100 
 and 

T  

X100.  
The equation for cp100 is the eigen-problem which determines ao, 
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and is the equation obtained by linear analysis in the previous 

chapter. With ao thus determined the equation for X100 is satisfied 

only by 

X100 = 0. (4.6.1) 

Having solved these eigen-problems, ao, bo  and co  and the 

fundamentals given by (m,n,k) =(1,0,0),(1,±1,0) are known, so that 

the right hand sides of (4.5.6)-(4.5.11) and (4.5.17)-(4.5.25) are 

fully specified, and we may now solve these equations to obtain fk,gk' 

Rmnk. At this stage the functions on the right hand side of (4.5.26)-

(4.5.37) are known apart from the constants ak,bk  and ck. To 

obtain them we first introduce an operator adjoint to L:- 

L*(a,a,y) = 	L* 	L* -- 11 	12 

L* L* 21 	22 

where 

L*1  
= f a+iaf

o 
  - R (12_a2_(2)10)2_a2_12)_x(a+icfo)()2_a2_y2)2_LA  iafiD3  

+2iaf'D-6Aiaf"D2+4Aia(a3+y
2WD+2Xia(a2+1,2)f", 

0 	0

L* = 
12 	' o 	0 

= -(2A+p)iy{f(D2-a2-y2)+2fgD}, 

(D2-a2-y2)41.1ia(2f,D.i.fuo).4(a+ictf )(D2-a2_y2),  L22  = a+iaf o - R 	o 

(4.o.2) 

and adjoint functions cp*, a* which satisfy 

L*(e,a*)=0; 046=01=0 at y=1; 4,* even, a* odd at y=0, 

(4.6.3) 

where corresponding suffices and functional dependence of the 
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operators have been suppressed for simplicity. The value of D0* at 

y=1 is left unspecified for otherwise (4.6.3) would become an 

eigen-problem, and since the eigenvalues have already been determined 

in solving for the fundamentals the only solution to (4.6.3) would be 

0* = a* = 0. However, we shall now prove from the definition of 0* 

that De = 0 at y=1. If we let 	and a represent any solution 

of L(0, a) = 0 subject to boundary conditions, 

0=D0=a=0 at y=1; 	even, a odd at y=0 	(4.6.4) 

1 
1[0*,cr*]L(4),a)-[0,a]L*(4)*,a*)}clY 

„2„:„.1,2004.2(,2+1,2)(0„„epol  A(a+iafoifaDa*-a*Da4-0D30*-0D30*+De 

-(A4-211)iafct)aa*-1-(2A+p)iy{f(aD0*-0*Da)-1-f;a0*}+(X+p)iy{f(;(0Da*-a*D0)-fg0e1 

+(a+iaf0)($4.14-gle)-iafi(1-2A(a2-1-Y2))44*+A(0*D
24)-214.121e+3412e)} 

1 
+Xiaf"(300*-0*D0] 	 (4.6.5) 

where 	and a are defined following equation (4.4.2). When we 

substitute the boundary conditions this reduces to 

0 = + 	( a+ictfo)] D0*.D2  0 	at y=1 

In general D
200, and we deduce the result 

D4,*=0 at y=1. 

(4.6. ) 

(4.6.7) 

Now functions 0 and a appearing in the left hand sides of (4.5.26)-

(4.5.37) satisfy boundary conditions (4.6.4), from which, together 

then 

0 = 

with (4.6.7), it follows that for such 4, and. a 

1[0*.p*]L(0,a)-ML*(0*,a*)}dy = 0. 	(4.6.8) 
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Substituting from (1.5.26)-(l.5.37) this equation becomes 

f [06,a*I(i(cp,a)+M}dy = 0, 	(4.6.9) 

0 

where the suffices have again been suppressed. (4.6.9) may be written 

in the form 

J1 	f1 

k 	[0,a*]Fdy + 	[i*,a4.]Gdy = 0, 	(4.6.10) 

0 	 0 
where

k is an unknown constant and F and G are functions that 

are known at this stage of the calculation. The adjoint functions 

appear linearly in (4.6.10), and as they are undefined to within an 

arbitrary scalar multiplier it is convenient to specify 

4)4=1 at y=0. 	(4.6.11) 

We shall show that in solving for the adjoint functions numerically 

we can take the known value of 43 (0) to the right hand side of (4.6.3) 

expressed in finite difference form, and solve the resulting algebraic 

equations by normal matrix methods. In this way we may calculate 

the coefficients ak, bk  and ck  without obtaining the unknown 

functions in (4.5.26)-(4.5.37). 

There is, however, a difficulty that arises in determining the 

adjoint functions (1)46, a*. The argument above hinges on our ability 

to specify a non-zero solution of L(0,a)=0, for otherwise cp*,a* 

as defined above would necessarily vanish. For example, a o  +2a  or, a, 

0, R do not form a system of eigenvalues of the operator L(a0+2aor,a,0) 

in equation (4.5.26), and consequently there is no (non-zero) eigen-

function of this operator. Watson (1960) shows that we may overcome 

this difficulty by working to order Iaorl, which is small close to 

the neutral stability curve since it is proportional to the imaginary 

part of the wave speed determined by linear theory. Now ao,a,O,R do 
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form an eigenvalue system of operator L, and we therefore specify 

that cp*,a* satisfy L*(ao,a,0)(e,e)=0, from which we can obtain 

0*,e* and hence a, to order la orI. Similar difficulties arise 

from equations (4.5.27), (4.5.28), (4.5.30)-(4.5.32), (4.5.34)-(4.5-36), 

but by ignoring terms of order la 
or 

 I, lbor  I and lc Or  I we can 

define the appropriate adjoint functions, and hence obtain the 

coefficients ak, bk, ck  for k=1,2,3. In this way we obtain solutions 

which remain regular for small values of laorl, lbor  I and Icor!. 

The work required to calculate the coefficients is considerably reduced 

as nine equations require only three different adjoint functions, 

namely (e'a*)101' (4)4I'a*)111 and  (e'a46)1-11.  We observe 

immediately from (4.6.2) that the last two are simply related, that 

is (e'a*)1-11 = (e'-a*)111' since b =co  as we shall prove later. o  

Equations (4.5.29), (4.5.33) and (4.5.37) present a different 

problem as the coefficients in the left hand sides differ from those 

in (4.5.14)-(4.5.16) by large amounts. The adjoint functions 

defined by (4.6.3) are therefore necessarily zero, even to order 

la 
or

I, and consequently a4,b4  and c4  may take any value. As 

Stuart (1962) argues we may choose)in particular,,that 

a4=b4=c4  = 0, 	 (4.6.12) 

for even then the solutions of (4.5.29), (4.5.33) and (4.5.27) remain 

regular. 

We note that (4.5.15) and (4.5.16) are essentially the same 

equations and we deduce that 

b0"0' 4110 4)1-10' 	1107111-10' X110 X1-10 
	(4.6.13) 

The non-linear terms appearing in (4.5.6)-(4.5.11) and (4.5.17)-(4.5.26) 

were obtained using a computer program and the results thus obtained 
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are given in the appendix. Using (4.6.1) and (4.6.13) we can deduce 

various relations between the non-linear terms, and consequently obtain 

several symmetries between the functions (1)11,11k' Xmnk' which are IIlilk'

expressed in the table 4.1 below. 

/ Table 4.1 



101 	0 	5.26 

Table 4.1 

x101 = 0 
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U2-10 

V2-10 

W2-10 

U2-20 

V2-20 

W2-20 

W202 = 0 

= V  020 	V020 

relations between 
non-linear terms 

WOO1 = 0 

= U003 	U 002 

W012 = 011 

et. 
U020 = U020 

114 	= -w 
020 	020 

W003 -W002 

V
012 = V011 

W201 = o 

U012 = U011 

= 

= 

= 

= 

= 

= 

U210 

V210 

-w210 

U220 

V220 

-w220 

} 

5.22, 

5.24, 

5.23 

5.25 

1 

applied to 
equations 	between 

5.9 

5.7 	, 	5.8 

5.10, 	5.11 

5.17, 	5.18 

5.19= 

5.20 

5.21 

gives relations 
the harmonics 

g = 	0 
1 

f3  = 	f2 

g3 = -82 

	

*012 	
=

'011 

	

O012 	= 	X011 

	

X012 	= -f)t(011 

0 X201  

= 	0 
x202 

	

020 	
= 	th  

7020 

	

020 	
= 	th 

T020 

*2-20 *220 

.2-20 .220 

X2-20 	 X220 

1 ;60 = X020 

*2-10 = *210 

.2-10 = .210 

X2-10 =-̂ 21O 
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The non-linear functions in (4.5.27)-(4.5.37) may also be 

obtained using the computer program, but it is possible to deduce 

certain symmetries by inspection without evaluating the products them-

selves. For example M112  is obtained from the non-linear terms in 

(4.2.4) from products of functions with suffices q,1, 1, 0 and 2, 2, 0, 

where the tilde denotes that the conjugate functions are used. Similarly 

M1-13 is obtained from products of functions with suffices q,1, -1, 0 

and 2, -2, 0. Now since 

"')1-10 = 	4'°°°2-20 = (4''4)1-X)220 ,(4.6.14) 

we can see from the non-linear terms in (4.2.4) that 

(u,v,w)1 _13  = (U,V,-W) 112' 	(4.6.15) 

We may further show that other non-linear functions (U,V,W) k  are 

related as in (4.6.15) providing that both pairs of corresponding 

functions involved in the products forming (U,V,W) 	are related 

as in (4.6.14). Using the results of table 4.1 we obtain in this way 

the results given in tables 4.2 and 4.3. 

j Tables 4.2 and 4.3 
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mnk suffices of functions involved in the products 
forming (U,V,Td) m  

I, 0, 2 1, 0; 2, 1, 0 and 1, 1, 0; rt,O, 1, 1 

1, 0, 3 q,1, -1, 0; 2, -1, 0 and 1, -1, 0; 0, 1, 2 

1, 1, 1 1, 0, 0; 0, 1, 1 and '1,1, 0, 0; 2, 1, 0 

1, -1, 1 1, 0, 0; , 1, 2 and 0, 0; 2, -1, 0 

1, 1, 2 '1,1, 1, 0; 2, 2, 0 

1, -I, 	3 '1,1, -1, 0; 2, -2, 0 

1, -1, 2 1, 1, 0; q,0, 2, 0 and 'IA, 1, 0; 2, 0, 2 

1, 1, 3 1, -1, 0; 0, 2, 0 and '0, -1, 0; 2, 0, 2 

1, 1, 4 1,1, -1, 0; 2, 0, 1 and 1, 0, 0; 0, 1, 2 

1, -1, 4 1, 0; 2, 0, 1 and 1, 0, 0; n-.0, 1, 1 

Table 4.2 
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gives 
relations between applied to relations and relations 
non-linear terms equations between 

coefficients 
between harmonics 

(U,V,W)103 =(U,V,- W)102  5.27, 5.28 a3=a2 ("°°103 ="4'-x)102 

(U,V,W) 1-11=(14/72-W)111 5.30, 5.34 c1=b1 (",x)1-11=(",-X)111 

(u,v,w)1-13=(14/7,-14)112 5.31, 	5.36 c3=b2 ("°°1-13=44'-X)112 

(U,V,W) 1-12(U'V'-W)113 5.32, 5.35 c2=b3 (P,41,X)1_12=0i),4),-)0113 

(U,V,W) 1-14=(U'V'-W)114 5.33, 5.37 c4=b4 (114'°1-14 ("'-x)114 

Table 4.3 



d1B12  ,2, 	1  12 	1  2 	2 
= 21B1 kbor+blrIAI +b2r

1BI +b ICI ), 
dt 

(4.7.5) 

*12  
1 1, 	1 	1 	12 

- 	21012 kb
or
+b

lr
1Al2+b1B12  +b

2r
ICI ). 

dt 
(4.7.6) 

-93 - 

4.7 Amplitudes of equilibrium states  

The results of the previous section lead to considerable 

simplification of the amplitude equations (4.4.4)-(4.4.6), which 

reduce to 

dA 
— 	= 	A(ao+a1 1AI

2+a2iBi2+a2ICI
2 
 ), 

dt 

dB 
— 	= 	B(b o +b

1 1  1 
iAl2+b

2 
 IBI

2
+b
3

I IC
2
), 

dt 

dC 
— = C(bo+bi lAl

2
+b3IB1

2
+b2ICI2) 

dt 

(4.7.1) 

(4.7.2) 

(4.7.3) 

to third order in the amplitudes. If we multiply these equations by 

W, 	and 	respectively, take complex conjugates and add the 

corresponding pairs of equations,we obtain 

d l AI2 

 	- 	21AI2(aor+a 1r1A1 
2 

dt 	+a2rIBI2 4-a2r1c12)' 
(4.7.4) 

If equilibrium states are possible we obtain at once from (4.7.5) and 

(4.7.6) that 

1  
IBI=0 or 1C1=0 or (b2r-b )(1B12  -ICI2  ) = O. 	(4.7.7) 

If b2r=b3r 
then (4.7.5) and (4.7.6) yield 
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d 
1 12 	12 — logIBI = d — logICI , 

dt 	dt 
i.e. C =kIBI 	(4.7.8) 

for all time, where k is a constant. We are now in a position to 

examine the possible equilibrium states. 

1 	A=B=C=0. This represents basic Poiseuille flow, which is 

stable to small disturbances if aor and b 
or 
 are both negative. 

2 	B=C=0. The disturbance reduces to a single two-dimensional 

wave, which is examined in detail in the remaining sections of the 

chapter. The amplitude is given by 

IA 12  = 
Ka exp(2a t) 
or 	or (4.7.9) 

1-Kalr 
 exp(2a

or 
 t) 

where K is a constant. For air < 0 an equilibrium state exists 

when aor 
 > 0, and then 

IAI
2  
+ -aor /a1r as t400, 	(4.7.10) 

.  

while for a
ir 

> 0 equilibrium is possible when aor 
 < 0, and then 

2 
1A1 	-aor/alr 

as t-*-m. 	(4.7.11) 

In the latter case instability arises if the initial amplitude lies 

above a threshold value given by IAI2 =-aor/a1 ' 
for then 

IA(t)12  4- co as t 4- 
1 	1 

log 
2a or 	

Ka1r 

(4.7.12) 

3 	A=C=0. The disturbance reduces to a single three-dimensional 

wave, whose amplitude is given by 
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IB12  _ 
Kb or  exp(2b 

 ort) 
(4.7.13) 

1-Kb
2r
exp(2b t) or 

The equilibrium states are similar to those discussed above, when they 

exist 
2 

I BI 	-13or/132r.  
(4.7.14) 

A=B=0. This is included for completeness. The analysis is 

identical to the last one. 

5 	1°20,  b2r=b3r. 	This represents the interaction of two three- 

dimensional waves, and since (4.7.8) holds for all time the analysis 

proceeds as in case 2, with 

I BI2  
Kb exp(2b t) or 	or 	

I CI = k 
2 	2 2 IBI , 	(4.7.15) 

1-Kb2r(1+k2)exp(2bort)  

where they exist the equilibrium amplitudes are given by 

2 1BI -b
or
/b
2r
(1+k2), ICI2  -k2b

or
/b
2r(1+k

2
). (4.7.16) 

6 	A=0, IBI=ICI. 	The analysis is again similar to that above, and 

1 B 12 = 1c12 = 
Kb or  exp(2b  ort) 

1-K(b2r+b3r
)exp(2b t) or 

(4.7.17) 

(4.7.18) 

with equilibrium conditions given by 

i
B1
2 

= ICI2 4- -bor/(b2r+b3r ).  

C404-' 
A specialLoccurs when B=±C, for then the fundamental disturbance is 

cs 
proportional to exp(iax)s

o  . yz, and so represents a standing wave in 
in 

the z-direction. 
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7 	001B101C100, b2r0b3r. 	No equilibrium states are possible 

since (4.7.7) cannot be satisfied. 

In all the situations considered so far the analysis has reduced 

to that of a two-dimensional disturbance, and we shall now examine 

the more interesting cases which are fundamentally three-dimensional. 

It is not possible to obtain analytically the time-dependence of 

the amplitudes, and only the equilibrium amplitudes are given. We 

note that there are four possible equilibrium cases consistent with 

(4.7.7). 

8 	C=0. 	From (4.7.4) and (4.7.5) we obtain 

b a -b a 
or 2r 2ror  IAI

2 
e 

b2ralr-a2rb1r 
(Bre = 

b
1r
aor-a1rbor  

b
2r
a1r-a2rb1r 

(4.7.19) 

9 	B=0. 	This is identical to case 8 with ICI
e
2 
  replacing IBIe 

10 	IBI=ICI. 	From (4.7.4)-(4.7.6) we have 

IA I2 
	a 

e 	2rb 
 -a  
or or

b 
 2r  

alr(b2r+b3
r)-2a

2r
b
1r 

IBI e-lere  
a
or
b
1r
-a

1r
b
or 

 

a1r(b2r+1)3r)-2a2rb1r 
(4.7.20) 

As in case 6 the special case B=±C represents standing waves in 

the z-direction. 

11 	b2rb3r. 	
Equation (4.7.8) holds in this case, and equilibrium 

conditions are given by 

f AI2 = 
a2rbor-aor

b
2r , 	 e 	e  = 	

aorblr 
-a1rbor 	, ICI2  = k2IBI2. 

e a
lr
b
2r
-a

2r
b
lr 	(1+k

2
)(a

1r
b
2r
-a
2r
b
1r
)  

(4.7.21) 



where cli  and c2i  are small, and we assume that a 1r 

have non-zero values as c. 114.° and that b
lr' 

ba.  and 

and a
2r 

b
3r remain 
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The situations above represent the possibility of an equilibrium 

state arising out a combination of two- and three-dimensional 

oscillations. An important feature of the analysis in this chapter 

lies in the determination of which of the possible equilibria 1-11 

above is most likely to occur. If there are two competing disturbances 

we could determine which one was likely to dominate. The stability 

analysis is based on equations (4.7.4)-(4.7.6), and is therefore 

restrictive in not including all hydrodynamic disturbances. 

Finally, we establish the self-consistency of the method 

developed in this chapter, and relate the arguments of section 4.4 

to a three-dimensional context. If c1 and c
2 are wave speeds of 

the two- and three-dimensional disturbances, then 

 

/277.5.  
aor = aC

11 bor 	
a +y c2i. (4.7.2 ) 

Our analysis is concerned with the region close to the neutral curve 

non-zero as c2.-*O. This assumption may break down for isolated 

values of a and R but should be true in general. In each of the 

cases 

order 

order 

listed above 

2 	2 2  
(C .+c21 

 
.)2. 11  

2 2 
(cli+c2i), 

we note that IA12, IB12  and ICI2  are all of 

In (4.7.4) and (4.7.5) the terms retained are of 

while the neglected terms are of order (c112 
 
.+c .

2
2) 3/2 

and higher. In this way we justify truncating the expansion of 

amplitude equations and velocity components at third order in amplitude 

rather than including higher-order terms. We note that to truncate at 

first order is invalid as some of the neglected terms are of similar 

magnitude to those retained. However, at a (R) location where a 

solution changes character still higher order terms may be needed. 
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4.8 Two-dimensional flow  

The linear analysis of the previous chapter suggested that three-

dimensional disturbances may be fundamentally important in the 

development of turbulence in a viscoelastic fluid, but the computation 

of the functions necessary to calculate ak, bk  and ck  is 

prohibitively lengthy, and calculations have been restricted to the 

considerably simpler two-dimensional problem. It is convenient at 

this stage to set w=0 and to work with a stream function, 0, 

defined by 

u = ao/ay, v = -DO/ax, 	(4.8.1) 

so that the continuity equation (4.2.5) is satisfied identically. 

The momentum equation (4.2.4) reduces to 

{

D 	DO a 	DO a 
— + — - — — (1-XV2 )V20 
at 	ay ax ax ay 

= 	V46 R 	' (4.8.2) 

and we note immediately that two-dimensional motions are independent 

of p, which is consistent with a more general result obtained by 

Rivlin (1955). The only disturbance to be considered is the one 

proportional to A(t)exp(iax). With notation similar to that already 

used in this chapter, the relevant equations are (4.5.14), (4.5.6), 

(4.5.19) and (4.5.26) which, on writing for simplicity 

become 

e=13 201
=e

101 

L(ao, a, 0)(01 , 0) = 0, 

	

1 	2., 	. 	(4r) 	N4)x 

	

2a f -F- 	+ Xa
or
)f7 = ia(1+2Xa AO

1
07-0!;0

1
)+1aXkO 	-0 6 	) 

	

or 1 R 	 1 	1 	1 1 	' 
(4.8.5) 
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2L(2a0, 2a, 0)(02,0) = fel(1-AE10)E1081-81(1-AE10)Ell el' 0),  

(4.8.6) 

L(ao  -1-2a or,a,0)(611'0) = f(ia1/a-f1)(1-XE10)E1061+101-Xf1
(4) 

 61 

-1-O t2(1-XE10)E10W1+262(1-XE )E 10 10 1 

-281(1 -AE20)E202-W1(1-XE20)E202' 0),  

(4.8.7) 

with boundary conditions 

e1 --eT1=e11 1 .e.1  =f 1  =0 at y=1, 
	(4.8.8) 

6 ,011  ,f1  even at y=0, 62 odd at y=0. 

In contrast to chapter 3, we make no perturbations in X. As in 

section 4.6 we introduce an adjoint function, 0*, which satisfies 

{(a0i-iaf0)(1-XE
10)E10-4iaAfO D

3+2(1+2Xa2)f 1 D-6Xf"D2+2a2Xfic:16*= 

6*=0 at y=1, e* even at y=0. 

(4.8.9) 

The result obtained in section 4.6 that DO*=0 at y=1 is used 

instead of the boundary condition at y=1 specified in (I.8.9) for the 

numerical determination of 6*, which is described in the next 

section, and we also normalise 6* so that 6*=1 at y=0. 

Equation (4.6.10) simplifies in the two-dimensional case to give 

1 

is 	6*qdy a1 	
e*(1—E10)E10e1

ay' 
0 	/ 0 

(4.8.1o) 

where q is the non-zero element of the right hand side of (4.8.7) with 

a
1 
 set equal to zero. We again note that this expression is valid 

only in the limit aor4O (Watson 1960). 
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4.9 Numerical method of solution  

Instead of expressing equations (4.8.4)-(4.8.9) in finite 

difference form directly.,Thomas (1953) introduced an auxiliary function, 

and he was then able to reduce the truncation errors contained in the 

finite difference approximations to the differential equations. We 

here follow Thomas's idea, though the auxiliary function g is 

defined slightly differently from his to give an even better 

form of the finite difference representation of the differential 

equation. We define g by 

1 	1 	6
4 ) g, [ 1 + 	

62 
01  = 	720 

(4.9.1) 

where 6 denotes a central difference. If we divide the interval 

0:5y0 into N equal intervals of step length h and let (n) 

denote the appopriate grid point so that 

0(n) 
	

el (nil)' 
	(4.9.2) 

we then obtain the following representations for derivatives of 81: 

4 4 (n) 
6
4 

g
(n) 

+ 0(610), h D 81 	
= 

h3p3e(
u ( 63 _ .i__ 65 J g(n)  + 0(67), 1

n) = 
(4.9.3) 

h 
2
D  20 

(n) = ( 62 4. .ifi 64 ) 	
} 

s(n) 4. 0(66), 	1 

hD81  (n) = p6g(n)  + 0(65), 

where p now denotes the usual average operator defined by 

(n) 	i r (n+D 	(n-1), 
Vg 	= 21g 	g 	I. (4.9.4) 

Boundary conditions, 01  even (hence 0;=8;"=0 at y=0) and 

611 =87=0 at y=1, are incorporated by setting 



g
(n)+h 

[ • 3 

eo
_a2(f o _0(1+Act2) 	8(n) 

R 
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(-1) 	(1) 	(-2) (2) 	(N)_ 	(N+1)_ (N-1) 
el =e1 ' el =el ' el -0' el -el (4.9.5) 

and (4.9.3) may now be applied for n=0, 1, 2, ..., N-1. Before 

expressing (4.8.4)-(4.8.9) in finite difference form it is convenient 

to divide the equations by is and replace ao  by the wave speed 

c, which is given by 

ao = -iac. 	 (4.9.6) 

We may now represent (4.8.4) by 

, 
X(f -c) 	6 g

(n) 
 +h
2 	

lf -c)(1+2Aa2) 	
ia( 62 4.  L. 64 

12 

2 6 (n)\ = 0(h 6 g 	4 	n=0,1,...,N-1, (4.9.7) 

which we may write in the form 

(B-cC)k = 0, 	(4.9.8) 

where B and C are matrices and k is a column vector with 

components g(n). An eigensolution (c, k) is found iteratively 

using a method developed by Osborne (1967). To derive the iteration, 

we consider the problem 

(B-cC)k = (3(c))f,, 	(4.9.9) 

sLT  k = K, 	 (4.9.10) 

where x and s are fixed vectors, K a fixed constant and (3 a ft, 
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multiplier which ensures that the vector p obtained from (4.9.9) 

satisfies the scaling condition (4.9.10). As c varies,so must 61  

and when c passes through an eigenvalue of (4.9.8) then S in 

general vanishes. Use of Newton's method to determine the zeros of 

13(c) provides a convenient way of obtaining the eigenvalues of (4.9.8). 

To apply Newton's method it is necessary to know dVdc, which 

can be found by differentiating (4.9.9) and (4.9.10): 

dg 	d$ 
(B-cC) 	- C g = 	x 

dc 	dc 

(4.9.11) 
T d  

= 0, 
dc 

and obtaining 

d0 T 1 
k 	= 	(B-cc)

-1  
dc 

(4.9.12) 

The correction to the current estimate of c is then 

 

T s g 
ti 

-k
T(B-cC)-1C g 

(4.9.13) 
dO/dc 

Osborne has shown that this method gives a third order iteration 

provided that sT g is non-zero, which is readily achieved by an 
ti 

appropriate choice of k and there we choose s = 	a unit vector 

whose only non-zero element is in position p, where p is the 

index of the component of maximum modulus in the vector (B-cC)
-1C fi* 

In implementing the method it is unnecessary to calculate an inverse 

matrix, and the form of each iteration is as follows: 

1 	given the kth estimate (c 
k' fEk) of (c,  §) 

obtain vector 

h 	from 
q,k4.1 
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(Pk)  
(B-c C)h 

	

k %k+1 	
C gk4k  , 

2 obtain g 	from 
Pok+1 

	

(B-c C)g 	Ch 
k Pek+1 	qa+1 -  

3 form 

= c + h
(Pk+1 	(Pk+1)  ck+1 	k ruk+1 lik+1 ' 

(4.9.13) 

(4.9.14) 

(4.9.15) 

where 
Pk 

is the index of the component of maximum modulus in g k. 

The eigenvectOr 
	

is normalised so that k(0)=1. B and C are 

both of band diagonal form, and advantage is taken of this structure 

in the matrix procedures used in solving (4.9.13) and (4.9.14). At 

each stage the matrix B-c
k
C is decomposed into LU form, where 

L and U are lower and upper triangular matrices respectively. An 

equation of the form 

LUx = y 
	

(4.9.16) 

is solved by direct elimination in two stages, 

Lv=y, Ux=v. 	 (4.9.17) 

A more direct method using inverse matrices could be used, but the 

band structure would be lost, with resulting storage problems and a 

considerable increase in computer time required. With an initial 

estimate of c=0.24+0.008i the process converged in three or four 

iterations to an accuracy of five decimal places for the eigenvalue 

and four for the eigenvector 6, in agreement with Thomas (1953) for 

the same values of a and R. Previous work suggested that this value 

of c was of the right order of magnitude, and the work of Lee and 

Reynolds (1966) shows that the higher eigenvalues are well separated 
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from the one of particular interest where Ic.1 is small. It was 

found that the initial estimate of the eigenvalue did not affect the 

convergence process very strongly; with the same initial eigenvector 

doubling or halving the starting value of c only added one more iteration 

to give the same result. Choice of initial eigenvector may be important 

in the numerical procedure, but as we are only interested in one 

particular eigensolution of the system this dependence was not 

investigated, and throughout a parabolic profile was used with 

g(n) 
	2 2 	. 
= 1-n h + 01 (4.9.18) 

as starting values for the eigenvector. Step-lengths of h=0.04, 

0.02, 0.01 and 0.005 were tried, and it was found that little further 

accuracy was obtained using h=0.005, so it was decided to use h=0.01 

throughout. 81  and its derivatives are obtained from (4.9.1) and 

(4.9.3), and a check it was found that (4.8.4) was satisfied to eleven 

decimal places, the working accuracy of the computer, with 81 

normalised so that 01(0)=1 

Direct finite difference schemes are used to represent the left 

hand sides of (4.8.5), (4.8.6) and (4.8.9), namely 

hD = u d - 6 d3
/ 
 + OW), 

h2D2 	
{ 
d2 
	1 
- 	6 ) + 0(66), 

h3D3 = pa3 + O(o5  ), 

h
4
D14  = 64 + o(6). 

(4.9.19) 

We note from (4.8.5) and the boundary conditions (4.8.8) that f1  is 

a real function of y, which simplifies the numerical solution of 

the equation. As the right hand side of (4.8.9) is zero the condition 



- 105- 

8*(1)=0 is replaced by d0*(1)/dy=0, this interchange being 

permitted by the argument leading to (4.6.6) and (4.6.7). 	The 

adjoint function was normalised by setting e*(0)=1, and this value 

at the grid point n=0 may be written on the other side of the 

equation to give a non-zero right hand side. LU decompositions are 

used to solve the algebraic equations derived from (4.8.5), (4.8.6) and 

(4.8.9). It was found that **(1)=0 to the accuracy of the finite 

difference representation. 

Finally, Simpson's rule, in which 
fl 
 f(y)dy is calculated by 

0 

fl 

0 

i 
f(y)dyy)dy 	h {f(0)  + f(N)  + 4 yN f(2n-1)+2 

n=1 
f(2n)}, 

(4.9.20) 

is used to evaluate the integrals in (4.8.10). We note that both 

01  and 0* may be multiplied by any scalar without altering the 

value of a1
. 

4.10 Discussion of results  

Typical graphs of the various functions calculated are shown in 

figures 4.1-4.4, corresponding to a=1, R=10000 and X=0. There is 

excellent agreement with Thomas (1953) for the fundamental 01 and 

with Lee and Reynolds (1966) for the adjoint function 0*. For other 

values of a and R functions 01'  02 and 0* had the same 

general form, while f1 sometimes had additional oscillations. 

Different values of X made only small differences to the functions, 

and in particular the position of the extrema of 01i' and 02r' 62i 

the inflexion point of 61r 
are unaltered by changes in X. As we 

should expect 

f

l 

f
o 
f1  dy < 0, 
	(4.10.1) 
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FIG. 4.2 THE FIRST HARMONIC e2  FOR 
06=1 , R=10000 , X =0 
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FIG.4.4 THE ADJOINT FUNCTION e* FOR 
oe =I , R=10000., X =0 
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so that 

1, 
f
o
2 dy > J 1 (fo+f1 IA')

2 
aY
, 	(4.10.2) 

0 	 0 

provided that we neglect IA'
4 
 , indicating that energy is transferred 

from the basic flow to the disturbance. 

Distortion of the mean motion can be seen in terms of the 

influence of the Reynolds stress. For two-dimensional flow of a 

Newtonian fluid Stuart (1958) shows that if the disturbance velocities 

are u and v and the mean motion is u then,by integrating the 

momentum equation, we obtain an energy balance relation 

at 

a 
ff 22 	f ;(u+v)dxdy = f (—uv) 

au 
— 
ay 

dxdy - ff 
ay 

[-- - 
ax 

au 

Dy 

2 

dxdy, 

(4.10.3) 

where the integrals are evaluated over a volume bounded by the channel 

walls and one wavelength. The overbar denotes an average with 

respect to x. The first integral gives the rate of increase of the 

disturbance energy within the volume considered. The second term 

represents the rate of energy transfer from the mean flow to the 

disturbance. The final integral is the rate of viscous dissipation of 

energy of the disturbance. In the notation of section 4.8/the 

Reynolds stress is 

ae ae 

ay ax 

and its spatial dependence is given by 

F 	= - 1. Re fia(0'W1  401  )1 a 	1   

-uv (4.10.4) 

(4.10.5) 

to second order in amplitude, where a prime denotes differentiation 
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with respect to y and a tilde denotes the complex conjugate. The 

Reynolds stress function F is therefore given by 

F  = 2(e1re1i-elra1i). 
	(4.10.6) 

For a viscoelastic fluid, too, the function F gives the rate of 

energy transfer from the mean flow to the disturbance. A typical 

example of the Reynolds stress function for both Newtonian and 

second-order fluids is given in figure 4.5. The function for A=0 is 

in good agreement with that obtained by Stuart (1958). It will be 

seen that the function is increased by viscoelasticity, suggesting 

that more energy is passed to the disturbance than in a Newtonian 

fluid, though the overall energy transfer will also depend on the 

amplitude of the disturbance. The effect of viscoelasticity on the 

amplitude is discussed below. 

The second-order model of the fluid (2.6.13) is only likely to 

be valid for small values of A and It. In the linear analysis of 

the previous chapter,it has been possible to work with 0?.A?..-10
-4
. 

In the non-linear analysis developed in this chapterjwe have worked with 

similar values of A. For convenience)results were obtained for a 

Newtonian fluid (A=0) and a viscoelastic fluid for which X=-10 5. 

Sample results for other values of A in the range 0 to 
	were 

obtained,andthedisplacementsofthecurvec.1=0 and a1r=0  from 

those for a Newtonian fluid are similar to those shown in figure 4.10. 

Values of the wave speed c for A=0 and -10 5 are given in tables 

4.4-4.7. The one result that can be compared with Porteous and Denn's 

(1971) agrees closely with theirs, namely, for R=5000, (1=1, X=-10
-5 

the wave speed obtained here is c=0.268259-0.001581i, whereas they 

calculated c=0.2682465-0.0015824i. 
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AT 06= I , R=104 
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The behaviour of a1 for X=0 and -105 for various values 

of the Reynolds number is given in tables 4.8 and 4.9 and illustrated 

in figures 4.6-4.9. The curves of air against a for X=0 are 

in reasonable qualitative agreement with Pekeris and Shkoller (1967), 

who use a different parameter. The curve in figure 4.10 on which 

a
1r=0 is close to the one they obtained, though values of a differ 

by up to 7% for points not close to the neutral curve. This may be 

due to their neglect of the time derivative in the mean motion 

equations (4.2.8), but, as Reynolds and Potter (1967) point out, values 

of air can only be expected to be accurate close to the neutral 

stability curve, and higher order terms should be included in the 

amplitude equation to determine air  more accurately elsewhere. 

In figure 4.10 perturbations represented by points within the 

neutral stability curve (regions II and III) are unstable according 

tolineartheorysincec.>0 and the time dependence exp(iact) 

indicates a growing disturbance. In region III, however, the non-

linear theory of this chapter permits equilibrium states of finite 

amplitude given by (4.4.10). The equilibrium amplitude is given by 

IA1 	= (ac./-air  )
2  

1 	' 
(4.10.7) 

and its value for various Reynolds numbers is shown in figure 4.11, 

from which we see that viscoelasticity increases the equilibrium 

amplitude. LIt may be seen from figure 4.10 that region II for a 

viscoelastic fluid contains points from all four regions for a 

Newtonian fluid. Flows corresponding to those points from I and IV 

are destabilised by viscoelasticity since disturbances which decay 

under linear theory (I and IV) now grow (II) whether linear or non-

linear theory is used. Points from region III for a Newtonian fluid 

which lie in region II for a viscoelastic fluid also correspond to 

sAltataAss a.w miaut b) intamwrake. FkyecAl vuoktli4. 



a/R 4000 5000 6000 7000 8000 10000 12000 14000 

1.2 0.301052 0.289202 0.279674 0.271716 0.264881 0.253545 0.244321 0.236481 

1.1 0.290744 0.279671 0.270821 0.263484 0.257217 0.246960 0.238743 0.231887 

1.0 0.278541 0.268128 0.259820 0.252932 0.247071 0.237532 0.229940 0.223677 

0.9 0.264659 0.254908 0.247086 0.240601 0.235087 0.226088 0.218952 0.213082 

0.8 0.248980 0.240011 0.232783 0.226744 0.221582 0.213144 0.206417 0.200871 

0.7 0.230981 0.223023 0.216554 0.211106 0.206434 0.198713 0.192506 0.187356 

0.6 0.210357 0.203241 0.197581 0.192868 0.188825 0.182118 0.176691 0.172142 

0.5 0.189204 0.181989 0.176455 0.172021 0.168320 0.162403 0.157742 0.153907 
0.4 0.172062 0.163934 0.157754 0.152843 0.148792 0.142452 0.137628 0.133790  

Table 4.4 

Values of cr when X=0 

8 



a/R 14000 5000 6000 7000 8000 10000 12000 14000 

1.2 -0.006420 -0.005619 -0.005501 -0.005760 -0.006238 -0.007533 -0.009017 -0.010534 

1.1 -0.004013 -0.002021 -0.000935 -0.000381 -0.000160 -0.000308 -0.000892 -0.001699 

1.0 -0.004948 -0.001753 +0.000320 +0.001711 +0.002659 +0.003733 +0.004155 +0.004206 

0.9 -0.009575 -0.005204 -0.002157 +0.000063 +0.001732 +0.004014 +0.005429 +0.006327 

0.8 -0.018085 -0.012648 -0.008682 -0.005666 -0.003298 +0.000164 +0.002548 +0.004266 

0.7 -0.030126 -0.023979 -0.019305 -0.015621 -0.012636 -0.008088 -0.004784 -0.002277 

0.6 -0.043910 -0.037803 -0.032988 -0.029055 -0.025762 -0.020531 -0.016541 -0.013385 

0.5 -0.056950 -0.050946 -0.046524 -0.042900 -0.039835 -0.034852 -0.030902 -0.027652 

0.4 -0.067620 -0.061942 -0.057610 -0.054140 -0.051263 -0.046695 -0.043159 -0.040287 

Table 4.5 

Values of c. when X=0 
1 



a/R 4000 5000 6000 7000 8000 10000 12000 14000 

1.2 0.301178 0.289332 0.279807 0.271849 0.265016 0.253682 0.244452 0.236626 

1.1 0.290863 0.279802 0.270957 0.263615 0.257355 0.247089 0.238862 0.231999 

1.0 0.278661 0.268259 0.259949 0.253065 0.247212 0.237662 0.230073 0.223803 

0.9 0.264766 0.255026 0.247217 0.240738 0.235225 0.226232 0.219098 0.213221 

0.8 0.249056 0.240111 0.232889 0.226862 0.221713 0.213279 0.206564 0.201023 

0.7 0.231012 0.223067 0.216616 0.211195 0.206532 0.198830 0.192642 0.187500 

0.6 0.210314 0.203217 0.197574 0.192879 0.188850 0.182176 0.176770 0.172236 

0.5 0.189098 0.181884 0.176365 0.171929 0.162328 0.168237  0.157693 0.153874 

0.4 0.171942 0.163800 0.157616 0.152695 0.148647 0.1423w 0.137475 0.133630 

Table 4.6 

Values of cr when A=-10-5 



a/R 4000 5000 6000 7000 8000 10000 12000 14000 

1.2 -0.006133 -0.005254 -0.005063 -0.005249 -0.005656 -0.006811 -0.008156 -0.009535 

1.1 -0.003810 -0.001753 -0.000614 -0.000003 +0.000272 +0.000228 -0.000254 -0.000960 

1.0 -0.004824 -0.001581 +0.000538 +0.001973 +0.002964 +0.004117 +0.004616 +0.004740 

0.9 -0.009528 -0.005119 -0.002036 +0.000219 +0.001921 +0.004265 +0.005740 +0.006692 

0.8 -0.018114 -0.012649 -0.008657 -0.005613 -0.003220 +0.000290 +0.002719 +0.004480 

0.7 -0.030223 -0.024062 -0.019375 -0.015674 -0.012672 -0.008090 -0.004753 -0.002213 

0.6 -0.044042 -0.037942 -0.033131 -0.029197 -0.025900 -0.020657 -0.016650 -0.013476 

F\ii  
0.5 -0.056714 -0.051080 -0.046673 -0.043061 -0.040007 -0.035040 -0.031102 -0.027858 1 

0.4 -0.067717 -0.062049 -0.057728 -0.054267 -0.051400 -0.046850 -0.043323 -0.040474 

Table 4.7 

Values of c. when A=-10-5 
1 



a/R 4000 5000 6000 7000 8000 10000 12000 14000 

1.2 27.6-2231 34.1-1841 44.5-1621 59.6-85.71 80.4-49.31 115-37.61 197-95.41 304-132i 

1.1 22.0-1601 21.9-1281 24.3-1111 27.7-57.2i 30.9-32.1i 45.2-23.8i 68.8-67.91 110-97.21 

1.0 27.3-1071 15.3-79.31 8.62-67.7i 2.36-30.41 -1.67-15.8i 2.74-11.1i 11.9-44.01 27.2-65.4i 

0.9 35.8-59.61 20.2-38.01 7.31-28.51 -5.08-7.431 -16.2-0.451 -20.4+0.651 -21.7-21.6i -21.4-37.81 

0.8 44.3-16.8i 27.8-3.80i 15.9+3.42i 3.54+13.7i -5.31+13.21 -18.0+11.21 -30.3-3.711 -40.1-11.9i 

0.7 52.7+20.31 35.3+25.31 23.0+29.61 11.9+26.2i 9.25+23.91 4.15+20.4i -5.72+14.41 -13.3+8.44i 

0.6 59.8+47.81 42.0+39.81 29.7+32.9i 18.1+27.1i 20.2+30.81 21.3+27.8i 22.4+28.3i 17.9+24.71 

0.5 65.7+30.4i 46.6+27.5i 33.9+24.21 24.0+24.0i 28.1+28.31 33.6+31.31 39.0+35.41 38.5+36.91 

0.4 70.4+1.94i 50.1+6.38i 35.1+11.4i 28.3+18.4i 31.8+23.7i 40.0+29.41 48.1+38.11 52.0+44.21 

Table 4.8 

Values of a
1 

when A=0 



a/R 4000 5000 6000 7000 8000 10000 12000 14000 

1.2 29.4-2411 35.2-2031 47.4-1801 62.8-90.41 85.1-53.61 121-40.31 211-102i 347-1481 

1.1 23.1-1771 22.8-1411 26.1-126i 29.0-60.31 33.4-34.41 47.3-25.71 73.5-72.5i 126-1041 

1.0 28.1-114i 15.5-88.5i 8.70-75.31 3.62-32.51 2.01-17.61 4.94-12.11 14.1-47.11 34.2-68.31 

0.9 37.2-61.31 2.1.0-39.11 7.34-29.11 -3.91-7.76i 17.2-1.631 21.5-0.051 -22.1-21.51 -20.7-39.01 

0.8 46.0-16.81 29.4-3.121 16.5+3.961 4.78+13.1i -3.64+12.91 -15.7+11.0i -32.5-2.071 -40.5-12.31 

0.7 55.1+20.91 37.1+26.51 23.9+31.01 13.2+27.51 10.6+24.61 7.24+21.61 -2.57+14.81 -9.62+8.041 

0.6 63.7+48.41 44.3+41.3i 30.9+34.71 19.6+29.81 22.7+32.11 23.7+29.41 24.5+28.9i 20.7+25.1i 

0.5 69.4+30.9i 49.5+28.61 35.3+26.11 27.1+26.31 30.6+29.51 35.3+32.01 42.3+36.11 42.4+37.31 

0.4 73.8+2.411 54.3+7.04i 36.8+12.6i 32.4+20.9i 34.2+25.2i 41.8+29.9i 51.9+38.9i 56.7+45.21 

Table 4.9 

Values of a1 
 when X=-10-5 
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line (y=0) the fluctuation intensity is, to order IAI 

2  2/7  u2 	i  = 	a IAI (4.10.8) 
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disturbances destabilised by viscoelasticity, for disturbances in 

III would reach an equilibrium amplitude, but in II no such 

equilibrium is reached. 

Points outside the neutral curve (I and IV) represent stable 

disturbancesunderlineartheory,forc.is negative, but non-linear 

effects result in instability in region I if the amplitude is greater 

than some finite value. We can estimate a reduction in the critical 

Reynolds numbet due to finite-amplitude disturbances. On the centre- 

where the overbar denotes an average with respect to x. We note 

that the perturbation in the x-direction, u1-u1, is of order IAI2  

on y=0. Since 1*,(0)1 and 1.111(0)1  are both unity the fluctuation 

intensity reduces to /5 a IAI to order A. For a given value of the 

Reynolds number the minimum value of (4.10.8) was obtained from 

tables 4.1-4.6. Disturbances with fluctuation intensities below this 

minimum decay, while those with greater intensities are unstable, so 

this minimum value, plotted in figure 4.12, serves to define a relation 

between critical Reynolds number and the centre-line turbulence 

intensity present in a particular flow. The curve for A=0 is 

similar in shape to that obtained by Reynolds and Potter (1967). The 

presence of viscoelasticity is destabilising in region I as the 

critical Reynolds number is reduced for a given intensity, as may be 

seen from figure 4.12. Porteous and Denn (1971) have solved an 

equation essentially the same as (4.8.2) and their results are 

broadly similar, as may be seen in figure 4.12. 

The reasons given by Stuart (1960) and Watson (1960) for 

truncating the series expansion (4.4.7) after the second term are 
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based on certain magnitude estimates, and in particular require 

c.(aR)
1/3 

to be small. We should therefore expect the method to be 

valid close to the neutral curve. To determine the region of validity 

we should need to calculate the next coefficient as in the amplitude 

equation (4.4.7), but this has not been undertaken as it would 

entail a prohibitive amount of computation. 

Davey and Nguyen (1971) argue that for subcritical flows (ci<O) 

itisnecessarytoimposethemorerestrictiveconditioniclaR<<1 

and to suppose that the disturbance has already attained its 

equilibrium amplitude. If we set 

n2 = 2a R = -2ac.R or (4.10.9) 

then for cos n = 0 the solution, f1 , of (4.8.5) for a Newtonian 

fluid may contain an arbitrary multiple of cos ny in the subcritical 

case, thus invalidating the subsequent calculations for these 

specific values of n. A similar argument holds for A non-zero, 

though the definition of n is slightly different. It is not 

necessary to suppose that Icil a R«1 for the condition lei! a R<n
2
/8  

will ensure that cos n 0 and the time-dependent approach of 

Stuart and Watson remains valid for subcritical flows, though the 

region of validity is restricted. For example, the values quoted in 

figure 4.12 for the lower range of Reynolds number must be viewed®  

with some caution. However, provided we remain close enough to the 

neutral curve for subcritical flows it is clear that viscoelasticity 

has a destabilising influence, for at a given Reynolds number a 

lower turbulence intensity is required in the viscoelastic case for 

finite amplitude instability of the flow. 
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CHAPTER 5: EFFECT OF STRESS RELAXATION PARAMETERS ON THE 
STABILITY OF PLANE POISEUILLE FLOW  

5.1 Limitations of Rivlin-Ericksen theory  

Although the theory used in the previous two chapters does 

introduce non-Newtonian properties, especially normal stress effects, 

into the fluid, important features are neglected. The Rivlin-Ericksen 

description expresses stress in a fluid in terms of time derivatives 

of the rate of strain field evaluated at the time instant under 

consideration. The history of the motion is approximated, in a way 

essentially similar to a Taylor series expansion, by sufficient 

derivatives at one particular time, and there is no explicit use of 

the history in the final specification. Consequently properties such 

as stress relaxation are omitted. In this chapter some of the effects 

of stress relaxation are examined. 

In the next section a Maxwell fluid is used. A constitutive 

relation introduced by Oldroyd is also included as it leads to 

similar stability equations. For both types of fluid the history is 

introduced by requiring the stress to satisfy a time dependent 

differential equation. Walters (1970) shows how these fluids are 

related to those of an integral type, and the remainder of this 

chapter is devoted to the integral representation of a fluid derived 

in section 2.4. The stress is expressed as integrals over past time, 

and specific dependence on history of the motion is determined by 

kernels in the integrands. By particular choices of the kernels both 

Newtonian and Rivlin-Ericksen theories can be extracted from this more 

general representation. In section 5.4 non-trivial stress relaxation 

behaviour is retained by means of decaying exponentials in the 

kernels, and linearised equations governing small disturbances to a 

parallel flow are derived. By comparing the resulting Orr-Sommerfeld 
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equation with that obtained for a Newtonian fluid we deduce that the 

effect of stress relaxation is to decrease the Reynolds number at 

which instability sets in. 

5.2 Maxwell and Oldroyd fluids  

The Maxwell constitutive relation assumes that the material can 

be characterised by a single relaxation time 6 and a constant kinematic 

viscosity v. Dependence of stress on the history of the motion is 

achieved by making the stress T, extra to a hydrostatic pressure, 

satisfy a differential equation of the form 

.0 T. 
+ E 	- 2- A Taj 	R

tt 

where the elasticity number E is defined by 

E = vO/L2, 

(5.2.1) 

(5.2.2) 

and L is a representative length scale, which we shall take as 

half the channel width as before. The other variables in (5.2.1) are 

expressed in non-dimensional form as in section (3.2). 	/it is the 

convected derivative defined in (2.1.21). We note that as for a 

second order fluid there exists a solution of the form 

2 
v1  = U E 1-x2' v2=v3=0' (5.2.3) 

namely, undisturbed plane Poiseuille flow. As we are considering 

theories applicable to dilute polymer solutions we assume that 

elasticity effects are small and take E<<1, in which case (5.2.1) 

reduces to first order in E to 

[ 1 - E— ] A
l' 

Ot 
(5.2.4) 
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which is identical to the second-order fluid relation (3.2.2) with 

p=0. Platten and Schechter (1970) used a Maxwell model (5.2.1) to 

examine stability of the flow U=constant. Since the undisturbed flow 

may be reduced to rest by a suitable choice of axes we should expect 

the flow to be stable at all Reynolds numbers. Their analysis shows 

that for any Reynolds number there is an infinite set of frequencies 

for which the disturbances amplify, and therefore the flow is always 

unstable. Their argument assumes that elasticity effects are small 

and that the term E OT../$t is small compared with T..1j. The 

latter assumption breaks down for the high frequency disturbances 

which, according to their theory, amplify. A better constitutive 

equation is required to investigate such disturbances. High frequency 

disturbances would be damped by viscous dissipation and are not 

relevant to our discussion. The argument above, however, does illustrate 

. 4 the dangers of misusing an approximate theory, a- p.4% emi4.4 606d 1,3 004. (0 8).  

Another constitutive relation that has attracted much attention 

in the literature of non-Newtonian fluids is that due to Oldroyd 

(1950), where the extra stress is given in non-dimensional form by 

1 
1 + RE1 

—1 T = 	FT + E2  — Ai. 
et 	at 

 

(5.2.5) 

 

This equation contains features of both Maxwell and second-order 

fluids, provided the term containing elasticity effects is small 

(5.2.5) reduces to 

1 T = -g Al  + (E2-E1  )A2 , (5.2.6) 

and stability conditions are given by the theory for second-order 

2 
fluids. A term in AI 

can easily be incorporated. 
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The interesting cases are those for which the viscoelastic terms 

in (5.2.1) or (5.2.5) are not small, although the parameters, E 

or E1 and E2, may themselves be small. These constitutive 

equations have been derived in a semi-empirical manner, though 

Walters (1970) has shown how they may be related to the more general 

integral forms derived in section 2.4. We shall use an integral 

representation for the succeeding analysis. 

5.3 An integral representation of the stress  

In an attempt to describe the history of the motion we shall 

use the integral representation of the stress tensor derived in 

section 2.4. Assuming that the response functional is sufficiently 

differentiable the stress in an incompressible isotropic fluid can 

be approximated in the form 

T..=-p8.4 + ij 

f t 
ft 	4)(t-TqC (T)]13  -dT + I t 1P(t-T1 	T2  ,t- 	t(T 1  )Ct (T2ij  -dT1  dT2  +. t 	 "' 
-00 

(5.3.1) 

where 6.d  is the Knonecker delta, p a hydrostatic pressure and 

C
t the right Cauchy-Green tensor relative to time t. This equation 

is similar to (2.4.7), but it is more convenient here to work with C
t 

rather than the tensor G defined by (2.4.2). We shall redefine the 

(indeterminate) pressure at a later stage so that it includes terms 

from the integrals which arise from multiplies of the unit matrix con- 

tained within C. In their most general form the kernels of (5.2.1) 
(n) 	(n) (m) 

are functions of the invariants of C
t and Ct 

C
t 

for m,n=1,2,3,..., 

but we shall only consider the dependence specifically indicated in 

(5.3.1). 
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ItisconvenienttouseareferenceconfigurationX.introduced 

in section 2.1 and to allow the fluid particle X, whose reference 

coordinatesareL,movetothepointg.after time T and to 

point xi  after time t. For linear analysis of perturbations of a 

parallel flow we seek a velocity field of the form 

x(z,t) = {U(x2),0,0}+fu1 (x2),u2(x2),u3(x2)}exP(iax1+ilsx3-iwt), 

(5.3.2) 

similar to equation (3.3.1), and we shall neglect products of the 

small quantities uk. We may obtain this velocity field by taking 

X1 = x1-U(x2)t+{a(x2)+c(x2)t}exp(z), 1.  

f 

X2 	= x2  +b(x2  )exp(z), 	 (5.3.3) 

X
3 

= x3+d(x2)exp(z), 

where 

z 	= in):1+ix3-iwt, 

a(s) = -[1.1.1 (s)fiaU(s)-iwl+IP(s)u2(s)igiaU(s)-i02, 

b(s) = -u2(s)/{iaU(s)-103}, } (5.3.4) 

c(s) = Ut(s)u2(s)/{iaU(s)-iw}, 

d(s) = -u3(s)/{iaU(s)-iw}, 

the prime denoting a derivative. Expressions similar to (5.3.2)- 

(5.3.4) hold with 	T and 	(gi.,T) replacing xi, t and z(xi,t) 

respectively. It follows from (5.3.4) that 

U'b+c = 0. 	(5.3.5) 

The continuity condition for an incompressible fluid (2.1.12) becomes 



3Ek BCk [Ct(T)]ij  
DXmk aEk @Xn 

ax. ax ax ax. lmnj ax. ax. 1 

(5.3.8) 
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iau1  +11'2+i5u3 
= 0, 	(5.3.6) 

or, from (5.3.4), 

iaa+bi+if3d = 0. 	(5.3.7) 

The right Cauchy-Green tensor Ct(T) is defined by 

and may be evaluated from (5.3.3) and the equivalent form Xi=Xi(i,T). 

Before evaluating Ct(T) it is convenient to obtain 	as a 

function of x, t and T. From the equation for particle paths, 

namely, 

dWcit = 	Ci(T=t) = xi, 	(5.3.9) 

we obtain 

El = x1-(t-T)U(x2i  
)+0(u), 

E2 = x2+b(x2)(exp(z)-exp(0)+0(4), 

E3 	= x3 
 +0(u.). 

a. 

Using Taylor expansions it then follows that 

U'( 2) = Ui(x2)+b(x2)U"(x2)-(exP(z)-exP(0)40(111), 

	

11.( 2  ) 	= 11-1(2c2  )1-0(11-
2  
), 

	

f(E2) 	
f(x2)+0(f2) for f=a,b,c,d. 

(5.3.10) 

(5.3.11) 

exp(O = exp[-{iaU(x2)-iw}(t-T)] + 0(ui). 	(5.3.12) 

Also 
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We now obtain 

1 F (t)  1+(iaa+iact)e
z 

-Utt+(al+c't)e
z 

(iBa+iact)ez 
ax
n 

ax. 

iabez  1+b'ez iabez  

iadez 	d'ez 	1+iadez  

(5.3.13) 

where the functions 	a, b, c, d 	are evaluated at 	x2. 	Now 

detF 1 	= 	1+(iaa+iact+b1+iod+iaUlbt)ez+0(u.2  ) ' 
	(5.3.14) 

which, by (5.3.4) and (5.3.7), becomes 

detF-1 	= 	1 + 0(ui
2  ), 	(5.3.15) 

We may therefore 

ax
k 

invert F 1 	
to obtain, to first order, 

F(t) 	E 1-iaaez 	Utt-(a'+cit-iaU'dt)ez 	-iaaez  .(5.3.16) 
ax
m 

-iabez 	1+(iact-b')ez 	-iabez  

-lade
z 	

-(iaUt dt+d i )ez 	1 -iadez  

An expression similar in form holds for HaCk/aXm ll, but with the 

functions evaluated at 	2. Using (5.3.11) and (5.3.12) we can rewrite 

Hay axm  II in the form 

F( T) ask 

axm 

1-iaaeC  Ut T+(UnbT+iaUl dT-a'-c i T)J-UubTez  -iBaeC  

-iabJ 	1+(iacT-bt)J 	-iBbeC  

-iadeC 	-(iaUi dT+d t )eC 	1-iade 

(5.3.17) 



[Ct(T):] 13 

[ct(T)]22 
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to first order, where U1 , U", a, b, c, d 

We are now in a position to express Ct(T) 

are now evaluated at x2. 

in terms of exp(c), 

exp(z), t-T and functions evaluated at x2. If we write 

S = t—T, (5.3.18) 

equation (5.3.8) becomes, after some manipulation, to first order, 

= 1+2(iaa-icaPbs)exp(z)-2iaaexp(4), 

= U1s+(e+iabi-i0U1s-U"bs+ictU12bs2)exp(z) 

+(-9.1-iab+2101as)exp(C), 

= (i0a+iad-ii3U1 bs)exp(z)-(iaa+iad)exp(0, 

= 1+U'2s2+2(b 1 -U'a's+U12b1 s2+U 1U"bs2)exp(z) 

+2(-121'+Ul a1 s+iaUl bs-iaU1 2as2)exp(d, 

ECt(T)l23 = (iBb+d1 -ialPas+iaU12bs2)exp(z) 

+(-ia-d1 +iaUl as+iaUl ds)exp(0, 

t(T).]33 = 1+2i6dexp(z)-2iadexp(0, 

(5.3.19) 

where U', a, b, c, d and their derivatives are evaluated at x2. 

In the next section determination of the stress will be completed 

by specifying particular kernels in the integrals of (5.3.1). 

5.4 Effects of stress relaxation  

Theories for Newtonian and Rivlin-Ericksen fluids can be 

incorporated in the constitutive equation (5.3.1) by use of the 

Dirac 6-function and its derivatives. For instance, a Newtonian 

fluid is described by 

0(S) = 116 1(s), 	 (5.4.1) 

636K• Si  AIA•ekt4 	4.$81: 0c- 	6f t'L. 	 sake,V3 dtfi,,,441  

and other kernels are zero, where n is the viscosity of the fluid. 
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Terms proportional to d(s) may be included in the pressure. A second- 

order fluid is described by 

gs) = ns,(s) + xe(s), 
(5.4.2) 

11)(s1's2 )  = 116(s1 ) (3(s2)' 

and other kernels zero, where A and p are the viscoelastic 

parameters used in previous chapters. To obtain the theories 

discussed in the last section it is convenient to integrate (5.3.1) 

by parts so that the integrands contain 8t(T) rather than Ct(T). 

Walters (1970) then shows, by using decaying exponentials in the new 

kernels, that equations for the Maxwell (5.2.1) and Oldroyd (5.2.5) 

fluids may be recovered. We shall introduce stress relaxation 

behaviour by including decaying exponentials of the form vexp(-ks) 

in the kernels of (5.3.1), with v and k positive. 1/k is a 

relaxation time. If the relaxation processes are characterised by 

a distribution of relaxation times their effect can be determined 
N 

by replacing the single exponential by a sum 1 vnexp(-kns). The 
n=1 

form of the subsequent algebra is unaltered by additional exponentials, 

so for simplicity a kernel with a single decaying term is used, 

though it is possible at any stage of the calculation to observe the 

effect of more than one exponential. We shall examine in detail the 

fluid described by 

0(s) = n6'(s) vexp(-ks), 	(5.4.3) 

with other kernels zero. The algebra is considerably simplified by 

omitting the second-order fluid terms, though their effect will be 

discussed later. 



p = 

T = 	(x2) + Ii(x2) exp(z), 
}

P(x) + S/k + f(x2) exp(z), 

(5.4.6) 
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As in previous chapters it is convenient to work with non-

dimensional quantities defined with respect to density p, channel 

width 2L and undisturbed centre-line velocity U* (the characteristic 

time used in chapter 3 is given by 2L/U*). From hereon the variables 

refer to non-dimensional quantities. The Reynolds number of the flow 

is given by 

R = U*Lp/n, 	(5.4.4) 

and we define a stress relaxation parameter 

S = v/U*Lp. 	 (5.4.5) 

If we separate the zero order and first order parts of the stress and 

pressure, namely 

we find, on substituting in the momentum equation 

@vi 	Dv. 	DT. 
1 _Li + v. 	- 

3t 	J Dx. 	ax. 

	

J 	J 

that the undisturbed flow satisfies 

(5.4.7) 

3 
f f 	

p 

ax 
U 

1 

= 0 = 
@p 	@p 

ax2 	Dx
3 

(5.4.8) 

Flow between stationary parallel planes situated at x2
=1 is then 

given by 

U(x2) = 1-x
2
2  . 
	 (5.4.9) 
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It is worth remarking that the stress relaxation term does not alter 

the flow or the pressure gradient required to drive the flow. The 

second-order fluid terms, too, have no effect on the flow of the 

pressure gradient (see section 3.3). We note also that the part of 

the integrand in (5.2.1) which is proportional to the unit matrix leads 

to the term S/k in (5.4.6), which is incorporated in the redefined 

zero order pressure. 

The first order terms in the momentum equation (5.4.7) give, 

using (5.2.19), 

(iaU-iw)u
1+Utu

2+iap = -(iaU-iw) 113  (an-a2a-a2a)  
k(k+iaU-iw) 

1 	. - (21aU'a'+iaU"a) 

fu,(b _a2b_01))+2U
nb' 1 

S 	
{1.1,

(3"_2a2b_02b)-2U"b ' +jail ' a ' 	) 1 
- k2  

S 
	2  (3iaLl'a'+2iaU"a-a21111)) 
(k+iaU-iw) 

S 
+ — (21aUt2b1 +4iaUTU"b) 
k3 

	 Ita2U'
2
a, 

(k+iaU-iw)3 
(5.4.10) 

   

/ (b"-a2b-13b) (i00-iw)u2+15' = -(iaU-iw) 

  

 

((k+iaU-iw) 

    

1 	. - (21aUtbi+iaU"b) 



S 
	, 12a2U' 2a, 

(k+iaU-iw) 
(5.4.11) 
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S 
+ - 2a-ccp,d-2a")+U"(-iab-2a 1 )} 

k2 

2 {111(2a"-m2a-62a+3iab1)+U"(2iab+2a1)} 
(k+iaU-iw) 

S 
+ — {1.112(4b"-2a2b-2eb)+12U'U"b 1 +4U"2b} 

k3 

.  	{U1 
2  (4a2  b-81aa')-8iau'Una} 

(k+icLU-iw)' 

S 

(iaU-iw)u3+if315 = 	[R1  	(d"-a d-s2d) 
k(k+iaU-iw) 

1 	. - — (21aU 1 d 1 +iaUnd) 

S 
+ 	(aBUib-iBU 1 a 1 -ifiU"a) 

k2 

S 
	2  (2iaU'd 1 +iaU"d-a01.11 b+iaU'a1 +i0U"a) 
(k+iaU-iw) 

S 
+ 3 (2ipW 21:1 1 +4iU'Ullb) 

k 

	,(2aBU12a+2a2U12d). 	 (5.4.12) 
(k+iaU-iw)-)  

Since we are concerned with dilute polymer solutions for which the 

viscoelastic effects are small we expect the stress to decay rapidly. 

Accordingly we shall take 
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and neglect terms of order 

reduce to 

(iaU-iw)u1+U'u2+iaf = - R 

1 
R 

k » 

k-3. 

S 

j

- 
k2 

_ S 

k2 

1 	 (5.4.13) 

Equations 	(5.4.10)-(5.4.12) then 

 {(iaU-iw)(an-a2-$2a)+2iaLl'ai+iaUnal 

fu,(1)”_a210_13210).1.2u"b,l, 	(5.4.14) 

(iaU-iw)u2+fl  = - IR CiaU )(b"-a2b-132b)+2iaUW+iaU"bl, 

(5.4.15) 

  

(iaU-iw)u3+ifif = - 
S 1 k

2 R 
-- - — {(iaU-iw)(d"-a2d-ed)+2iaUld'+iaUnd). 

  

(5.4.16) 

If we introduce the following transformations, based on those being 

used by Squire (1933), 

2t2 a2+02, ar1 rt;
(n

1_sik2),  rvt, 
au1  = au1+f3u3 

a a = a(aa+13d), 
% 	rt, % 

ap = aD, u2 = u2
,ab=ab, aw  = aw, 

(5.4.17) 

   

a linear combination of (5.4.14) and (5.4.16) gives 

R,(laU-iw)u1+U'u2+lap = -11 {(1aU-1(0)(a -a a)+21aU l at+laU"a}, 

4-1{1p(bn_n)+2u".}, 	 (5.4.18) 

while (5.4.15) becomes 

(laU-10u2+p' = -rf(irCtU-icql;)(11'"-iii2ti  1)+2ik'14P+ik" 
	

(5.4.19) 

The last two equations are identical in form to (5.4.14) and (5.4.15), 

showing that, when (5.4.13) holds, Squire's theorem is applicable, 
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and three-dimensional disturbances are equivalent to a two-dimensional 

flow under the transformations( 5.4.17). Since a ?_ a critical 

conditions when the flow first becomes unstable are given by the 

analysis for two-dimensional disturbances. These results do not hold 

if we retain higher order terms in k
-1

, and Lockett (1969a) has shown 

that they are not valid for second-order fluids. However, we are 

concerned in this section with the particular effect of a small measure 

of elasticity for which equations (5.4.14)-(5.4.16) do apply, and in 

this case Squire's theorem remains valid. Eliminating pressure from 

these equations and using continuity equations (5.3.6) and (5.3.7) we 

obtain 

S  (iaU-iw)(D
2
-a2--f3

2
)u2-iaUnu2 

= - 	
R  - 
	{(iaU-iw)(D2-a2 4)2b+4iaWbut  k2 

+6ialrb"-4ia(a24)WW-2ia(a24-82)1r13/, 

which, from (5.3.4), reduces to 

- (iaU-iw)(D
2
-a
2
-(3
2
)u2

2 
4 
R 

S 

k
2 (D

2
-c4
22

)
2
u
2 

= O. 

(5.4.20) 

(5.4.21) 

This equation is the Orr-Sommerfeld equation for a Newtonian fluid 

with R-1 replaced by R-1-S/k
2
. We define a number 

R* = 1/(R-1-S/k2). 	(5.4.22) 

For given values of R* and the wavenumbers a and P. equation 

(5.4.21) together with boundary conditions u2=q=0 on the walls 

define an eigenvalue problem to determine the frequency w. If the 

imaginary part of w is positive the disturbance grows exponentially, 

indicating instability, while if it is negative the disturbance 

decays and the flow is stable. Neutral conditions are given by real 
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(5.4.23) 

R 	R
+ 

k
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values of w. The least value of R* for which w is real determines 

conditions under which instability is about to set in. The results 

of Squire discussed above show that critical conditions are obtained 

when 13=0. By comparison with (3.4.1) critical conditions occur when 

R* = R
c(=5774), the critical Reynolds number for a Newtonian fluid. 

The critical Reynolds number, R
+
, for a fluid exhibiting stress 

relaxation is then given by 

Since S is positive we deduce at once that R+  < R. Viscoelastic 

effects that can be expressed in the particular form of stress 

relaxation discussed in this section are therefore destabilising. 

Although Squire's theorem no longer holds when second-order 

Rivlin-Ericksen terms are included, a two-dimensional analyses will 

still suffice to determine critical conditions when 2X+u, which is 

a measure of the second normal stress difference, is less than a 

certain positive number (see section 3.8). It is convenient to retain 

terms of k 3, and under these circumstances (5.4.21) is replaced by 

S  (ictU-iw)(D2-a2)u2-ialni2  - [1i- - k2  .1 
S 

+ — (iaU-iw)) 
k3 

(D2-a2)2u2  0. 

(5.4.24) 

As previously discussed the relaxation term proportional to S/k
2 

is 

a destabilising influence as it increases the effective Reynolds 

number, R* (5.4.22). The second-order fluid parameter, X, is 

negative, and its influence is destabilising. Although this 

destabilising effect is reduced, and may even be reversed, by the term 

proportional to S/k3, the greater influence of the term in S/k
2 
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dominates. Hence, the second-order fluid also is destabilised by 

the addition of stress relaxation terms. Squire's theorem is also 

invalid when the restriction k >> 1 is removed, but in this case, 

too, we expect stress relaxation to be destabilising as some of the 

terms in the equations corresponding to (5.4.14)-(5.4.16) can be 

grouped to give the number, R*, defined in (5.4.22). 

There seems little prospect of extending the integral 

constitutive equation for disturbances of finite amplitude. Non-

linear effects would make the determination of the particle paths 

(5.3.10) and matrices required to evaluate the Cauchy-Green tensor 

exceedingly difficult. 
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CHAPTER 6:  SOME CONCLUSIONS  

In the introductory chapter the phenomenon of turbulent drag 

reduction by the addition of minute quantities of certain polymer to 

the solvent was described. In some way, elongation of the polymer 

molecules in the direction of the mean flow is responsible for a 

thickening of the laminar sublayer of fluid close to the wall. The 

effect of molecular elongation can be interpreted from a continuum 

viewpoint in terms of normal stress differences. There is no satis-

factory theory of turbulence for Newtonian fluids, let alone the non-

Newtonian solutions that exhibit drag reduction. In order to make a 

start on an otherwise intractable problem a stability theory for non-

Newtonian fluids is developed in chapters 3-5. The theory deals with 

conditions obtaining when laminar flow begins to break down. The 

initial and subsequent stages of transition from laminar to turbulent 

flow are described in order to establish the relevance of stability 

analyses to an understanding of turbulence. 

A general theory of continuum mechanics is described in chapter 2, 

and the constitutive relations describing the particular fluids used 

in chapters 3-5 are placed in the context of this general theory. 

Under various assumptions models exhibiting (1) normal stress 

effects and (2) stress relaxation are derived. 

For a second order fluid, which exhibits normal stress effects, 

a linear stability analysis is developed in chapter 3. Such an 

analysis is applicable to the first stage of transition. For a 

Newtonian fluid Squire's theorem is valid, and the analysis may 

consequently be restricted to two-dimensional disturbances. The 

first growing disturbance will lie in the plane defined by the stream-

wise and cross-channel directions. For a non-Newtonian fluid Squire's 
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theorem is not valid, and a fully three-dimensional analysis is used 

to determine conditions under which the first growing disturbance 

will travel outside the plane defined above. Further (non-linear) 

analysis would be required to determine the direction of the first 

growing disturbance, but the theory developed in chapter 4 was too 

complicated for calculations to be made in this case. When the first 

growing disturbance is out-of-plane a longitudinal vortex structure is 

established in the region close to the wall. The importance of this 

structure in the subsequent transition to and maintenance of turbulent 

flow is discussed in section 1.2. This structure is not present at 

the initial breakdown of laminar flow in a Newtonian fluid, though 

it does appear at a later stage of transition. In order to assess the 

significance of this difference in flow fields of Newtonian and non-

Newtonian fluids at the onset of instability we should need to follow 

the subsequent development of turbulence, but the prospect is 

daunting! In addition to predicting this change in structure of the 

flow field linear theory establishes that viscoelastic effects as 

expressed in the second-order fluid model destabilise the flow, that 

is, the critical Reynolds number, Rc, is less for dilute polymer 

solutions than for the solvent alone. 

Linear theory deals only with the initial onset of instability, 

and in order to examine further stages of transition a non-linear 

theory is developed in chapter 4. The possibility of equilibrium 

states in which disturbances oscillate with a steady finite amplitude 

is established. A three-dimensional analysis governing the 

interaction of three fundamental modes of oscillation is described, 

and a formidable sequence of equations is obtained. The solution of 

these equations will have to await the development of more powerful 

computer, and calculations were only made in the special case of a 
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single two-dimensional wave interacting with itself, its harmonics 

and the mean flow. For this case the existence of finite amplitude 

equilibrium states in the supercritical region (unstable under linear 

theory) is established. The equilibrium amplitude given wave 

number and Reynolds number is greater in a viscoelastic fluid than in 

a Newtonian fluid, indicating that there is a greater transfer of 

energy from the mean flow to the disturbance in the viscoelastic 

case. In the subcritical zone, where infinitesimal disturbances 

decay, the results show that finite amplitude waves can lead to 

instability of the flow provided the initial amplitude is sufficiently 

large. The critical Reynolds number is now dependent of the maximum 

amplitude of disturbances present in the flow, and this maximum is 

a measure of the intensity of turbulence. For a given level of 

turbulence the critical Reynolds number is less for a non-Newtonian 

fluid than for a Newtonian liquid, confirming the result of linear 

theory that viscoelasticity is in general a destabilising influence. 

The two-dimensional analysis considered above does not, clearly, 

lead to the direction of propagation of the first growing disturbance 

suggested by linear theory. With considerable addition complication5 

one could examine the non-linear development of a three-dimensional 

wave (A=C=0, BOO in equation 4.4.1), or the interaction of two 

three-dimensional waves (A=0, BOO, COO). The latter may be more 

appropriate for future study, since it is the square of the spanwise 

wave number rather than the wavenumber itself that is involved in 

determining the critical direction of the initial instability. With 

B and C non-zero we have two waves equally inclined to the 

x
1
x2
-plane that would be relevant for this analysis. Under suitable 

conditions their interaction would produce standing waves in the 

spanwise direction and generate streamwise vorticity and the 
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longitudinal streak pattern that are important in the later stages 

of transition and the maintenance of fully developed turbulent flow. 

The additional difficulties in performing the calculation can be most 

easily seen by comparing the eigen-problems (4.5.14) and (4.5.15). 

For the two-dimensional case (4.5.14) the matrix operator decomposes 

to give a single fourth order differential equation for the eigenfunction. 

(4.5.15), however, gives two simultaneous differential equations in 

¢ and a, which leads to a sixth order equation in ¢ alone. The 

choice for future study is to tackle the involved and lengthy calculations 

that (4.5.15) and subsequent equations require or else to develop some 

simpler theory that is more tractable, yet includes the essential 

features of non-linear interactions. 

Viscoelastic fluids have properties other than normal stress 

differences, and in chapter 5 the effect on stability of another 

property, stress relaxation is examined. The contribution of the 

history of the motion to the stress is incorporated in an integral 

representation of the stress. The formulation is unfortunately too 

complicated to consider anything other than a linear theory governing 

infinitesimal disturbances. The second-order fluid terms are neglected 

to isolate the stress relaxation effects. Provided the relaxation 

time is sufficiently small Squire's theorem remains valid and leads 

to a modified form of the Orr-Sommerfeld equation, from which we 

deduce that stress relaxation is a destabilising influence. It is 

difficult to see how to develop this approach further. The results of 

chapter 5 reinforce those obtained earlier, that viscoelastic properties 

are in general destabilising. 

The work reported here has been confined to channel flow, and 

one area of future study would be to examine the stability of 

boundary layers. Since viscoelasticity modifies the undisturbed 
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velocity profile comparisons with the Newtonian case are much harder 

to make, and it would be more difficult to assess the influence of 

non-Newtonian properties on the flow structure. 

Although we have not explained the Toms' effect we have shown that 

the viscoelastic properties of normal stress differences and stress 

relaxation hdve a destabilising influence. The results point to a 

new flow structure at the onset of instability, and we have discussed 

its significance in the subsequent development and maintenance of 

turbulence flow. The results obtained make some contribution to the 

long process of understanding turbulent drag reduction. 
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APPETIDIX 

Expressions for the non-linear terms used in chapter 4. Use has 

been made of relations obtained in (4.6.1) and (4.6.13) and 

continuity conditions. 

41111 et' 111% 	2f 	 1 U 	= -44'41r Xiaae-4") A(0 	) Acc k(14 	) 001 

+ia(3A+211)(4"-4"-3410 ) Aia4" 

+(A 111)(11)1 T"+11Pe4-207)"4-2N"),  

where suffices on all * and $ are 1,0,0. 

W 	= 0. 001 

U002 = -*T'410+Ximae-IPT")+A(44"1+ T'et)-A(a2+y2)(41+4') 

"I'XiY(4"-X")+AiY(a2+y2)(x -j(*) 

▪ (3A+211)ia(44"-4")+(X-41 )(a24-Y2)(044'$) 

+(A0.11)6Pqn4V+24))"+41 4)")+(A+p)iy(a2+y2)(*Z-xi0 

+00.0iY(*"-Ile-201:01-2N1) 

+(2A+11)ia(44"440'+X?"), 

where suffices on all *,* and x are 1,1,0. 

U003 = U003(a'Y'*1-1041-10°(1-10)  = U002(a'"41104110,-x110) 

= U002(a,Y,1P110 ,(1)110 ,X110 ).  

Hence U 	= U . 003 002 

= ia('XIlix)-(1)Z I-TX' 49tia(TX"-*Z")+Xia(a2+y2 )( 11,Z4x) 002 

49‘($X m4X'")-A(a2+Y2 )(4"4-TX 1 )+AlY(XX"-XZ" ) 

+(A-411)ia(a2+Y2 )(11h-li)0 4-(X+11)(a24-y2 )(X'T+,Z1 ) 

+(A011)(Xij"-Nn+240?+2T'X") 

+(x+11){ia(X1:"-4")+iY(XZ"-ZX" )+2ia(xq'4W)) 

+(2A+OiY(01;"1-4"410("411)"-4"-ZX"), 
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where suffices on all 	ip, (1) 	and x are 	1,1,0. 

W003 = W003(a 'Y '11"1-10 41-10,X1-10)  = W002 (01'' Y4110 4110' X110 )  

= - W002(a"1104110 °C110 ).  

Hence W 	= -W 003 	002 

U011 = 2145100t/'110-4'1001104-Aia( 1004)11041004)110 )+A( 100/1)1"1011)1100)  
q, 	q,  

-Act2  (C51001/j1104100110)-AY2 4)1004°110 

+("11)lia(411101004100111110)"2411011;100+1'1104)100 )  

-Y2 100110-FictY2 100*1104100.1104111j100+4.10011)110+2(1)110111001  
21-,  +(a+11){icry2q, 	iay cp

100
cp.
110 4'1004'11e 

+54"11j10041001P110+4)11010041004)1101' 

U 012 = -4'10J1-10-4100"1"1-10-Aia(1P10j1-10-4)1001-10)+A(4)1001041-104)100)  

-Act2 (0 	4 	XY2q) 	t  1001)1-104  10A-10 -  ) 	10017;1-10 

4-("31)1-ia(V;1-104)100-4)1001-10)+a2( 1-104100-41-10(1) 100)Y2 41004) 1-10 

-5-aY211)1001-10+411001-10441-1041100+2411001"1-10+23'1-101P 700 )  

+(2A-1.°1-iay21P10011)1-10-"Y24)100(1 1-10-ia°)61-104)100-4)10A-10 

41-10100-4)1007-101.  

Hence U012 =l if011 .  

V011 = ia(4)1101004100110)-(P100(P;10+4)110100 )+Aia( 100(1) 110-1/111j700)  

4-Aia3 11041;100-Aia(a241/2) 1004)1104-A( 1004)1110-41100)-Aa2(1)110(q‘100 

-A(a2 1-Y2 )(1)100°110 

4-(A4-11)lict3(17;1004)110- 110(1)100)-EiaY21P1103'1001-(a2-112)(:°11014) 100+a2 100tP 110 

1-3( 1004111044100110)1-ict6/100(f9 11041001/110+*00110-41110100 )/  
2 2 

4-(2A431)1(a -Y )14)11017 1004-2 110100-Y24)110(7 100+*004) 10+2 1004)110 

4.*004)110+41004)110+ia(13'1004)110-11010041004)110-1111j100)). 
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-A(a2  " )4110031-10 

4-(A411){ia3a1-10o100-4)100T1-10)-in'T1-10100+(a2-y2a1-109100 
fk,, 	

+ +a24)1-10100 	lW  T" 	" 	' +30 	T 	-fic'(4) 	T" oo 1-10 	loo 1-10 	100 1-10 100 1-10 

+2410j1-10-21/1001-10)/  

4-(2A+P)((a2 -Y2 )411-10*1004-a /P1-10100-Y2T1-10100+41001-10+24)10J1-10 

+34'1001-10+3C6100311-104-ic4'1-10100-1P1003'1-101L10100 

-11)1001-10".  

hence V012 V011
.  

2 	2 ek,  
W011 = -iaT100X1104100X1101-"4100410-Aia("Y ) 100)(110 

2 2 ni 
+4' 100)(1"10-A(c4 +Y  )4)100110 

+(X-111)liaX110100+2iaX1101/100+41004104-X11j1001  

4-(2A431)1iY(//1004)11041)110/1;100+2T1004110+4)11j100)  

+ia214100110+aY(110041104100(11 110)1' 

, 2 2 
W
012 

= 
1(41001-10-41001-10-"c4100X1-10+Alaka " 4100X1-10 

ti 
+)4100;41-110-A(a21r 2  + )1001-10 

rk,fl 	 '1', 	4,, 
4-(A+P)14100X1-1041(1-10100-"X1-104)100-2lax  1-10Y100' 

4(2A+11)1-aY(°1001/1-10-11100T1-10)+1(12YI°1001-10 

+iY(41001-1041-104)1004-24100T1-1041-10(1) 100)/.  

Hence W
012 

= -
W011.'  

U201 = -ia**-**1+Aia**".494*'" 

-Aia34H 

4-(A").(-31a3**-1-ia**"+21a*Y-3a2*1 0+*1 0"+2*"0'1 

+(2X+p){-3ia3  Wia**"+ia*W-2a
2
*'*-2ia

3
Seia**"+2ia*W}, 

where suffices on * and 4  are 1,0,0. 
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V201 = A(ic(44"+W") 

+(A-1-11)(-3ia3Wiatre2i0W+3qh le-3a2(1)(1) ,) 

+(2A+11){icoreicupW+3Ve-2a24W-3a21W+24 1 11)"}, 

where suffices on 1p and 4  are 1,0,0. 

W201 = 0. 

U020 ,  V020 and  W020  arise from products of functions with suffices 

1,1,0 and 1, -1, 0. Equation (4.6.13) has been used to express them 

entirely in terms of suffices 1,1,0. 

U020 -44'414--iY(XT40 

+Afict(Te-IR,")+4m4-TIV"-(a21-Y2)(4"411)1) 

+iY(X1P-N")+IY(a2-Fy2)64-xi» 

+(x+p)ficc(PT"-Te)÷iY(TX"-IP?)+0"1-Tte 
....(a2.1.y2)(1pq4,01.iy(a2+y2)(4,4x)  

+2a2(4'14V)-2Y2(TV+41')+2(0"44V) 

+21y(x'TI4Y)+2i0L2Y(XT410-1-21Y3(4-XT)1 

+(2 A-1-1)ia(V4"44"+44"-Te-X)("4-3;X"), 

where suffices on all V,, 4,  and x are 1,1,0. 

Hence U020  is real. 

V020 = ia(4-4)-4'-4'+iY(.X4X) 

+A{ia(ta"-(1)10+ia(a2+y2)(4-4)+4'"441" 

-(a2+Y2)(41 44')I- iY(X$"-N")+iy(a2+y2)(cP -Tx)} 

+(X+0{ia(44"-Te4-2TOV -20')-1- iY( X"-4"4-2Xq'-2N 1 ) 

+3(P I T"+3951I-2Y2(0+44')) 

+(2A+p){(a2-2y2)(1WIT+4')+3Y2 (X I X'41 X)-2Y 2(4,q+4') 

+2(tp i tTn+TV)+341T"1-(01 )-2(X'?+?x" ) 

+ict/1-TY+4"-TIP")+iY(Xql-Nil-TX"-41?) 

-aY(4)3'C+X1114110X'+&)}, 



- 147- 

where suffices on all *, 	and x are 1,1,0. 

Hence V020  is real. 

Z -im•(  Xy+LPAel ,+.A t-W4-21Ya 020 =  

+A{ia(*Z"+X"?0-ia(a2+y2 )(X;434)4X1-c& 

+2iy(a2+y2 ))&-iY(X"Z+a")} 
2 2 4, 	2 2 +(x+Oliy(6y -2a )x)(4.1Y(a -3Y )(X01(4)+ia(Xe+Xtr+2XV -1-20P1 ) 

-iY(a"4-Ze+11X'Zi )+(a2-3Y2 )(Xq-cPZ') 

4 (q"-Zie+2Px"-2VZ"} 
.1,q, +(2A+11){2iy(a2-2y2 ) 1  _ 4iy-44+6iy3a-2iceY2(41Mx) 

+iy(4"40-20'4"4"44)"4.444'-XZ"-ZX"-2X) 

+2ay41-07;').1-2y2(4)Z'-xq)}, 

where suffices on all *, 	and x are 1,1,0. 

Hence W020  is pure imaginary. 

U20i = -icaP4J-W+X(ia**"+0*'"-ia3**-a20*') 

4(A+u)lia(**"+2*'*1 )+20'*"-3a20*1  

+01 0"-3ia3**1 

+(2X+11){ia(**"+00"+*'*1 +20 1 40)-ia3(3**+2**)-2a24401, 

where suffices on all 4'  and 0 are 1,0,0. 

V201 = A{iallgr+44'"} 

4-(A+11){ia0e-We} 

4 ( 2 A411){21t e+3(P i e+ia(WWV)-a2(314I-2440)), 

where suffices on all 4'  and  4  are 1,0,0. 

W201 = 0' 
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U202 = -2441-2iall,2+2irPx+X{2i4e+20Pm-21Y0"} 

+x2 (a2+y2)(iroP-W-i(114) 
4.20030{(3a2_y2 ) ,.yx._ (1 * ic0p-ip'fl+iatInp"4-2ia*WW(p" 

+2( 2A+0{-3ia4*-2ia344+2ia3XX4-2ia2Yk-2a2V4)+2aYW 

+ia(11~4044e+2$T$I-XX"-X'X')}, 

where suffices on all IP, cl) and x are 1,1,0. 

V202 = -2ia0-2**1 +2iyx* 

+2Afiatkr-ia(a2-1-Y2
40+W"-(a2 4-Y2 

 )44?-iYX(r+iy(a2+y2)*x} 

+2( A+11 ){( 3a2-Y2)(-ialW1Yrk-441 )+3Ve+iacK" 

+(2A+11){-6a2**'-4a2*01-2 ( 2a2-y2
)xx'441PV+64)'4)"-14XY 

+2ia(IPWW0)-2ia(0 1 X 1 +0(")+aY('W -1-0')}, 

where suffices on all *, * and x are 1,1,0. 

W202 = 0. 

U210  -21a*10011) 110-0510011110-11100110 
2 

1-X($10011)170441104100-1  '10011'110 )  

4.(X+11){ia(3*100*11041100110)-41a3  1 100110 Y2  41004'110 
-2a2($110+100441004)110 )4410X104-41004'1104-4110°100 /  

+(2A+u){ia(2* *" +3*' *' 	* +0 *" +44, 	1-11, 	) 100 110 	100 110 100 110 100 110 	100 110 100 110 
-3a2 *100(1) 110-3a240110(1) 100-ia(8a2+2y2)11)100*110 
-ia(2a2+y2)(1)1001101. 

U2-10 = U2-1Q(a"1-1041-1041004100)  = U210(a '-"1104110")1004100)* 

= U210(a 'Y '11041101004100 ).  

Hence U2-10 = U210. 



(,xii-,4)(491T+(.41,41e+,0),DT+,(Pn4le+,0,41}(d+y)+ 

c4,XkT+,0403T)(314.en)_,AuT41„44+000-Fly+ 

0AT_,04,103T_ = oaen 

OL3 	oL-e m- 	m 

(001.41,,ON,OLLx,OLL 40 	41  A D)OLa  M- = 
(001.0,001.41,01.LX_ 

,01.1.4),OLLd1,),_,70)0Lam  = (004,001.41,01.-Lx,OL-4,01-L41,A,u)01.-am  = OL-am  

k  ComeLL,41+olvoLiwn_(oLteoL4)z+oLL*ooLthzI  

	

' a 	s' 
OLL OOL .1- 01.1.v0OLA  lic1) 

(01.1.x001:14401.1x00141)73T+01.1.4x0014 De_OLLx0014  

OLL OOL f ,X C
a
A+

a
7:9- 

01.1.x001.1t( 
a 

 A.+ 
 a 
73)73T_O,ix004.1.011.,x001.00Tly.1.0004_01.1.x00L0T_ = 

OLaA = OL-F A aotiaH 

.(ooL,,00LvoLyoLL41,A,n)oLeA  

(ooLvooLcroL4oLyA_,10)oLeA (ooLvooLvot-yok-LvA.,10)oi-aA  of-?.A  

OLL OOL 	Olt OOL 'f A 0e+ 0 141E+ 
OLL OOL 	OLL OOL 	OLL OOL 	OIL OOL 	OLL 10 nCbEi- 	icb+( 	41E+ 	41 141E+ ,(1) 	0e)

a
13- 

(C1.LOOL011+01.409()ZA_(00!.(11011.40W00+00i1.44101.1.04.0iii,4100Lontguy3)1.  

{(011,(1)001;40Liiie0LiflE4.011.4,09.el, A_(OLI;(1)004.1.01.4001;0)  DE_ 

OOL OLL 	OLL OOL 	OOL OIL OLL OOL ( 141  141F+ 141  141Z+ .41  4 H41 41)DT+ 

OLL41004 Ami_(OLL4300L4OLLeOls) viE_1(4,04.  

{0114)004 k_(0001.1.0.011.,004) u_OLL(1)004 ADT_ 

(00401.1.0010001fle_c_0214,01.1400044.(0040141.440L4004)70T)y+  

OLL400k,_OL4,004_00401.Lon_01.1.00Lon_ = OLZA  

- 6to. - 
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-3(a2+y2)(i40.01'4IYX0)1 

+(2a+p){-2ia(a2+y2)(,4+004-XX)-ia(a200-1-2aY4iXEY2XX) 

-2ay0 t x-2a2010+ia(WW4i +010"+4'4)'+XX"+X'X')}, 

where suffices on all 0, 	and x are 1,1,0. 

U2-20 = U2-20(a"1-1041-10')(1-10) = U 220 	110' 110,-X  110 )  

= U220(a'110'cP110 ,X110 ).  

Hence U2-20 = U220. 

V220 = -i00-001-iYX04-2(X+11)(S'0"-00'") 

+2(2X+11){0'0"-(a21-Y
2
)011-11Pe+X'X"-(a

2
+Y2

)(1W+Xx')}, 

where suffices on all 0, 	and x are 1,1,0. 

V2-20 = V2-20(a'Y41-1041-10')(1-10 )  = V220(a'-y41104110,-X110)  

= V220(a'y '1104110 ,X110 ). 

Hence V
2-20 = V220. 

W220 = 

4.(A+11){01 X"-ex'-4)'"X+2(a
22

)(0 r X-X y 0)} 

442xilima2+1,2)(0,x-x0_2iy(a2+y2 )(114-RWXX) 

+iY(44"4-11)Y4-XX"+X I XI-OV+30'0')), 

where suffices on all 0, $ and x are 1,1,0. 

W2-20 = W2-20(a'1(41-1041-10')(1-10 )  = W220(a '"'IP110'4)110' X110)  

= -W220(a'Y '1104)110'X110 ).  

Hence W2-20 -W220'  
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ti 

U101 = -i°20J)100-4)201T)100410011);01 

' 	
. 3T 

4-X12ia11;100*2 	
`L„ 	3T 

v1001'201 
h 2T 	th 6 1" 26 T 14100G1+'201'100-.1  '201-100--a /'100v °1' 

4(A411)16ia3/7;1004)201+ia(r41'100*2°1+21/'2011/11004100*201)  

+34;1004)20141004)20101T100+2 1001/1201+24)20A001  
1,  +(2A+p){6ia3 t100t201-Oda  0100¢201-a2  (4¢100  ¢201 +¢201  T 100  ) 

2  +2a ( 
'T)100201+4)20111100)  

+ici(420117;1004100201410011)201+24)201T1°0+24)2011004100q01".  

V101 =ia' t 201100-2ia 10020141004)201-4)201100 

+Aia(2T)1004)201-4)201100+a2*201100-8a2T)1004)201)  

+A(¢100¢20'1+¢201¢100-x2¢201¢100-4x2¢10 0201)  

+(A+11){6ia3 100 (1) 201+3a2T)100q014-ia(4/11004)201-24) 011;100+2$20A00 

410041201)  

+3(3'1004)2014100.201" 

4(2A431){a2(341;01100+4201T100410041201)+2(1110011) 20141004)201)  

+3(1(1"100q0141004)201)+Ia(2T1004)20141004)201-11)201(1;100-41201(7;100)1.  

W
101 

= 0. 
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