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2. 

ABSTRACT. 

In the last few years one of the most significant 

new developments in hadron dynamics has been the introduction 

of the concept of duality. This thesis is concerned with 

dual models and their phenomenological application to 

specific reactions. 

In chapter 1, a brief account of the assumptions 

leading to the concept of duality and a discussion of their 

justification is given. The Veneziano model and its 

properties which will be needed in later chapters are 

considered. 

In the second chapter a model based on the five 

point Veneziano function is applied to three particle 

production processes. One of the difficulties encountered 

in phenomenological applications of the Veneziano model is 

that it has poles on the real axis. In chapter 3, we present 

— a simple smoothed Veneziano model for K-  p4K*0  n in which 

the poles are moved off the real axis. This gives the 

resonances a finite width without introducing ancestor 

particles into the amplitude. 

Residue recurrence relations for general Veneziano 

amplitudes are derived in chapter A. 

Finally, in chapter 5, the construction of a 

general class of dual amplitudes is considered. In particular 

an amplitude for equal mass scattering in which there are 

no daughter particles is constructed. 

In the appendix the asymptoti,; properties of 

Veneziano amplitudes are derived. 
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6. 

CHAPTER 1. 	DUALITY AND THE VENEZIANO MODEL.  

1.1 Introduction. 

The origin of duality(1)  lies in the use of finite 

energy sum rules(2). These rules are merely a convenient 

way of stating the analytic and Regge asymptotic properties 

of amplitudes. As an example we shall consider a two body 

scattering process described by an amplitude A(v,t) where 

4-Am 	
(1.1) 

and where m is the mass of the target particle. 

We shall assume that, for itil>N the amplitude may be written 

as a sum of Regge pole terms: 

 

(1.2) 
sit\ -ira•L(.0 

where oci(t) and F,i(t) are the trajectory and 

residue functions of the t-channel Regge poles. The ± sign 

depends on whether A(V,t) is even or odd under V--> —v. 

Experimentally, amplitudes are found to be approximately 

Regge behaved for V;,>J3-5 GeV/c. 

Now consider the integral 

rn vn 	811  (1.3) 

  

where the contour of integration is as shown in 

Fig.1. Since all the singularities of the amplitude lie 

outside the contour the integral vanishes. Substituting 

eqn.1.2 into eqn.1.3 we obtain 

S — U. 
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v plane 

CK t 	A 1 P 	t I I 1 1 1  III, 1 i 1 oii#1 	 (74 	ii) 

Fig. 1 
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N/ 

1)(1  Inky, Gt‘i = E NQ(L(&)+"i  

n -+ 1 (1.4) 

where n= even integer if A(P,t) = 

n= odd integer if A(v,t) = A(-v,t). 

These relations are examples of higher moment sum 

rules. They are derived using the assumptions of analyticity 

and Regge asymptotic behaviour of the scattering amplitude. 

Physically these rules imply that the Regge amplitude 

extrapolated to low energies, where it would not normally 

be assumed to apply, will provide an average description 

of the amplitude in the resonance region. That this is 

indeed true was shown in the early application of finite 

energy sum rules (FESR) to 7{N scattering(2). 

If we now make the additional assumption that at 

low energies the imaginary part of the amplitude is completely 

dominated by resonances, FESR indicate that the sum of 

t-channel Regge poles equals the sum of s and u-channel 

resonances. This may be stated in another way: either the s 

and u-channel poles or the t-channel Regge poles determine 

the complete amplitude. Thus the amplitude may be described 

in two different ways. This is the basis of what we call 

duality. If we regard the extrapolated Regge amplitude as only 

providing an average description of the amplitude in the 

resonance region we refer to this as "global duality" whereas 

if it reproduces the detailed structure of the amplitude in 

the resonance region we refer to this as "local duality". 

The models we consider in this thesis are locally dual. 
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Duality is in direct contradiction with interference 

models(3)  in which the Regge amplitude is added to the 

resonances. As far as duality is concerned interference 

models involve double counting. It is, however, difficult to 

make a definite statement on which approach is correct 

because of the freedom available in the way an amplitude may 

be divided into resonances and background. Recently 

interference models have become less popular and duality has 

gained wide-spread acceptance. Probably one of the best 

objections to interference models is the awkward resonance 

properties required to fit the data. For example, to explain 

the S11 ixN amplitude it is necessary
(4) to introduce a 

1440 MeV S11 resonance to cancel the Regge contribution in 

order to explain the physical amplitude which almost vanishes. 

In the early days of FESR it was observed by 

Freund(5) that the narrow resonance approximation failed for 

the It=0 Trit amplitude. This failure was attributed to the 

pomeron contribution to the It=0 amplitude. Freund (and, 

shortly after, Harari(6)) suggested that the pomeron should 

be associated with the s-channel background and not with the 

resonances. That the pomeron must be treated differently 

from other trajectories may be seen in simply terms by 

considering K-p and IT-p elastic scattering. The pomeron 

contributes to both of these processes, however, each has 

different s-channel resonances. It is difficult to see how 

the pomeron can be built out of either N and 1a or S' and 

resonances. A more quantitative argument for treating the 

pomeron separately has been given by Harari(1): 

The pomeron contributes only to the I=0 t-channel 
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amplitude. The crossing matrix tells us that this amplitude 

has equal projections on all s-channel isotopic spin states. 

Therefore if the pomeron were associated with any s-channel 

resonance structure this would have to be independent of the 

s-channel isospin. Although,for other trajectories, 

cancellations between trajectories can cause particular 

s-channel projections to vanish, for the pomeron this is not 

possible as it is higher lying than all other trajectories. 

As a result of the specialtreatment required for 

the pomeron we are led to a two component amplitude; 

1. Resonances 4-) Regge. 

2. Background 4-* Pomeron. 

This exclusion of the pomeron from the usual 

nresonance<4Reggen duality is exhibited by all present dual 

models since they do not include pomeron contributions. This 

thesis, which concerns dual models, will therefore only be 

concerned with inelastic reactions. 

At this stage it seems worthwhile to summarise the 

assumptions which have gone into the derivation of this two 

component amplitude. 

Firstly, using Cauchy's theorem we were able to 

relate the high energy behaviour of the amplitude to the low 

energy behaviour. We then made two assumptions; 

1. Resonance dominance of the imaginary part of 

theamplitude at low energies. 

2. Regge asymptotic behaviour. 

In 1 we imply that there is no background contribution 

(except that associated with the pomeron) to the imaginary 

part of the amplitude. A test of this has been made by 



examining the phase shifts of the s-channel partial waves 

for -ITN scattering using t-channel states of definite 

isospin(7). The results indicate that for the It=0 state 

there is a steadily rising purely imaginary background (due 

to the pomeron) whereas for the It=1 state there is no 

indication of any background. This seems to indicate that, 

at least for this process, the assumption of resonance 

dominance is reasonable. 

Our second assumption is somewhat more dubious. 

It is known phenomenologically that simple Regge pole models 

are often inadequate in describing the data and Regge cuts 

are important. No account of cut contributions has been 

taken and this problem is largely ignored in the literature, 

possibly because the exact details of the form of Regge cuts 

a:renot known. 

As experimental evidence of the two component 

amplitude we may quote the case of the K-p and ep total 

cross sections (see Jackson's review talk at the Lund 

Conference 1969). The physical region for K-p is given by 

V> mg  and that for K+p by 	The pomeron contribution 

is constant and symmetric on crossing 	For K+p (which 

is exotic) we have only the pomeron contribution whereas for 

Kp the total cross section has the resonance contribution 

superimposed on the pomeron contribution. As lioothe Kp 

cross section decreases towards a constant value equalling 

the pomeron contribution. 
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1.2 Exchange Degeneracy. 

Before we start to consider particular dual models, 

one important consequence of duality which will prove very 

useful in chapter 2 must be introduced. This is the 

connection between the absence of resonances in one channel 

and the exchange degeneracy of trajectories in the dual 

channel. If, for a particular process, there are no s-channel 

resonances then, because of our assumption of resonance 

dominance, the imaginary part of the amplitude must vanish. 

Duality tells us that the amplitude may be regarded as 

either a sum of resonances or as a sum of t-channel Regge 

exchanges. Hence, looking at the amplitude in terms of the 

t-channel trajectories it should still have no imaginary 

part. This is only possible if there is a cancellation 

between trajectories.. Such a cancellation between two 

trajectories can only occur at all energies if both the 

trajectories have the same o((t) and the same residue 

functions. Thus duality implies strong exchange degeneracy 

of the t-channel trajectories when there are no s-channel 

resonances. 

Consider, for example, the process; 

The t-channel trajectories describing this 

process at high energies are P,f,w,A2,e. Because of the 

absence of any resonances in the s-channel, duality implies 

degeneracy of the e  and A2  and of the u.) and f. Although 

exchange degeneracy seems to hold quite well for trajectory 

functions, especially for thee, Avii.),f system and K*,K**, 



13. 

detailed tests(8)  of degeneracy indicate that it is,at best, 

only an approximate property. Alternatively, one could 

adopt the point of view that because exchange degeneracy 

appears to be so good in the positive t region the apparent 

inconsistencies with experiment for negative t are really 

due to the presence of Regge cuts which have been ignored. 

1.3 Exotic Resonances and Duality Diagrams. 

At the present time there is strong experimental 

evidence supporting the assumption that there are no exotic 

particles (or, at least,that any such particles must be very 

weakly coupled). By this we mean that - all particles are 

either q-ci (mesons) or qqq (baryons) combinations of quarks. 

A graphical description of duality and the absence of 

exotic particles is provided by duality diagrams(9). These 

diagrams show the rearrangement of the quarks during an 

interaction and are drawn according to the following set 

of rules: 

1. All baryons are made up of three quarks. 

2. Mesons are made up of a quark and an antiquark. 

3. No quark line can terminate in the same 

particle as it originated from. 

4. Cutting the diagram in a baryon channel involves 

cutting through three quark lines. 

5. Cutting the diagram in a meson channel involves 

cutting through a quark-a,,tiquark pair. 

Quark diagrams constructed as above are said to be 



a. 

b. 

Fig. 2 

14. 
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"legal". Diagrams which disobey the rules are "illegal" and 

involve the exchange of exotic particles in at least one 

channel. In Fig.2a we illustrate a legal duality diagram 

and in Fig.2b an illegal diagram having an exotic s-channel. 

Any process for which we cannot draw a legal duality 

diagram must have a purely real amplitude. This is just a 

restatement of the fact that illegal diagrams contain 

exotic charnels in which there are no resonances. 

1.4 The Veneziano Model. 

It was first realised by Veneziano(10) that it is 

possible to construct an amplitude having many of the 

properties required by duality. This amplitude is simply 

Euler's Beta function. 	• 

If we consider the scattering of a system of scalar 

(e) particles then the Veneziano ansatz states that this 

process is described by an amplitude: 

A - V (s, 	v Cs, u) 4- V (Lk ;0 	(1.5) 

where 

v 	= 
	r c-- 	r 	(0) 

	

rc-,,,(s)-c((t)) 
	

(1.6) 

0C(s) is a trajectory function which, as we shall 

see later, must be linear in s. By construction, this 

amplitude is crossing symmetric. We note that it- has been 

written as a function of s, t and u although only two of 
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these variables are independent. This is a common feature 

in Veneziano theory and in doing calculations we must 

usually regard them as independent, not applying the 

constraint between them until the end. 

The amplitude, A, has poles in all three channels 

for o<=0,1,2... However, it does not have simultaneous 

poles in any two channels. To prove this it is sufficient 

to consider the residue of a pole in any one channel since 

the amplitude is crossing symmetric. 

We shall consider a pole in the s-channel. Such 

poles can only arise from the r(-a(s)) in the first two 

terms of A. We can write these terms as 

ri(- a (s))[  r(-  0( CO)  +_ r (-0(( )) 

r(-0(cs)-0((E)) 	recK(u)-0((s).)1 

Noting that 

(1.7) 

r(—c<cs)) 

 

-IT 

 

Flo+ ..,(s)).s,r,„(s) 	(1.8) 

we see that the residue of a pole at ,a(s)=m is 

given by 

C.71r+ 	c< CO)  +  r(0(("))  
r-r(_m_o<N) 	m - a  M) 

• (1.9) 

  

This expression is just a polynomial in oc(t) and 

b((u) and contains no poles in u or t. Hence simultaneous 

poles in two variables do not occur. We note that, if the 

trajectories are linear, the residue is a polynomial of 
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order m in t (since u may be expressed in terms of m and t) 

and may be expanded in terms of Legendre polynomials. We 

find that the residue of the pole at pc(s)=m contains terms 

in Po(cos9) for all j satisfying .ria;, j0. This means 

that each parent resonance has a complete set of daughters. 

We should also note that, if the trajectories are not linear 

then the residue will also contain contributions from terms 

inPj  .(cosO) for j> m i.e. ancestors. 
Using eqn.1.8 it is possible to write A as a 

series of s and u pole terms. For example 

VCs,) 

   

(1.10) 
111= c) ml(CI\ — o(CS) 	0<(k)) 

• 

We have to treat these series with caution since 

they are, in general, divergent (this must certainly be the 

case for c((t)=0,112... as we know that V(s,t) has poles at 

these points). 

It should be noted that the poles of the Veneziano 

amplitude lie on the real axis. This means that the 

Veneziano model is a zero width resonance model and hence 

violates unitarity. Although there are various methods by 

which the resonances may be moved off the real axis (see 

chapters 2 and 3) the unitarisation of the model has not yet 

been achieved. 

We have shown that it is possible to write the 

Veneziano amplitude as a sum of poles. In order to show 

that it is, in fact, a dual model it 7.13 necessary to show 

that it has Regge asymptotic behaviour. This is proved in 

the appendix where signature properties of the model are 
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also mentioned. 

So far we have only considered the simplest 

possible Veneziano amplitude for scalar particle scattering. 

We could, however, add terms like • 

r(m 	is)) , 1 (n— oc CE-)) 
r6- oc(s)- (0 

with m and nr‘m+n 

to the amplitude without spoiling the Regge 

behaviour. Such terms are called satellite terms and lead 

to an ambiguity in the Veneziano model. If the model is to 

have any usefulness we must be able to obtain a good 

approximation to physical amplitudes using only a few 

satellite terms 

1.5 	The Five Point Amplitude. 

It was known as long ago as 1905 (11)  that  

generalisations of the Euler function existed. This fact 

was rediscovered by several authors(12) shortly after 

Veneziano proposed his model. Here we shall only give a 

simple derivation of the five-point function (B5) which will 

be used in chapter 2. Similar methods may be used to 

obtain the general. N-point function. 

If we consider a term of the Veneziano amplitude 

for two particle scattering, for example V(s,t), we note 

that this term corresponds to the permutation of the 
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b. 

3 

Fig. 3 
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external particles indicated in Fig.3a. The crossing 

symmetric amplitude is obtained by summing over the terms 

corresponding to the other non-cyclic permutations of the 

external particles. In deriving the five-point function 

we shall consider the term corresponding to the permutation 

shown in Fig.3b. As with the four-point function the 

crossing symmetric amplitude is obtained by summing over 

the twelve non-cyclic permutations of the external particles. 

Noting that the term corresponding to Fig.3a has poles in 

s and t only, the most logical way to generalise the Beta 

function is to construct a function having poles in all 

(five) planar Mandelstam channels corresponding to Fig.3b. 

These channels may be defined generally as 

svj 	PL..t_ t  -.• 13;1)2 
	

(1.12) 

where Pk is the four momentum of the particle k. 

These variables may be conveniently illustrated by means of 

a dual diagram (not to be confused with duality diagrams). 

This is a polygon whose sides are numbered according to the 

permutation of the external particles being considered. 

The Mandeistam variables are then represented by diagonals 

on the polygon. If the diagonals corresponding to two 

variables intersect the variables are said to be dual and 

our generalised Beta function should not have simultaneous 

poles in these variables (n.b. we cannot draw a pole graph 

with simultaneous poles in dual channels). To see how we 

may construct such a function we return to the Beta function 

and write it as an integral: 
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r 
04s),--cx CO) 	0:_u) 	AAA. (1.13) 

6 

This may be written as 
1 

f
- 	(s) -1 

V
- 0( (b)- 	

(1.14) 

with the constraint u+v=1. Therefore 

C- De(s)J-0<(0) (1.15) 

Poles in cx(s) arise because of the singularity 

of the integrand at u=0 for cx(s)=0,1 1 2... and poles in 6c(t) 

arise because of similar singularities at v=0. Simultaneous 

poles in s and t are prevented because when u=0 v=1 and 

vice versa. If we denote the trajectory corresponding to 

the variable s.1j  by 0ij then we can immediately write down 

the generalisation of eqn.1.14 as 

f -  '''<- 2 - 1 	- 0<z-3 - 1 	-o<34--t 	- c><4_G-  - 1 U., 	U2 	U3 	U-4- 
0 

(1.16) 
I — X U 5 	CLI 	CUJ 3 CG1 JAI 

with the constraints u=1-u
:  . u. -1 1+1 

The set of constraint eauations may be solved 

terms of any two of the ui  which correspond to non-dual 

in 
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channels. (For the N-point function there are N-3 independent 

ui. This corresponds to the number of mutually non-dual 

channels). 

If we take u1 and u3 
as independent we obtain 

U. 2_ - 

Lt= Ct -Liz) / 	kil/LI) 	
(1.17) 

Us= CI- U1) (i - Li t  

Thus we may write B5  as 

6s-  (--0( 	f ("Cs J --0(4-5, -0(5 

f 6 ,..#(i3 

e<S  taiA -LC(C138.LVIII5 

f caki  CLI-k 	c'( 	I 	t4S-± Pcs - 

0 0 
o_ u_13-0(1,s- 0_ ut y-c>esi- 

(1.18) 

(1.19) 

If we substitute eqn.1.17 in eqn.1.19 we obtain an 

alternative form for B
5 
in which the pole structure is more 

easily seen: 

13 = 
t 	 s- 

f 	hauz - 
0 0 

(1.20) 

We show in the appendix that the five-point 

function has correct double-Regge asymptotic behaviour. This 

fact will needed in chapter 2. 

In this chapter we have shown how the concept of 

duality arose through the use of FESR and how a model having 

many of the properties required of a dual model can be 
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constructed. Finally we have shown how we may generalise 

this model to reactions involving five external particles. 

We have only considered those simple properties of the 

Veneziano model which will be needed later in this thesis. 

There are several good reviews(13) of Veneziano theory 

which also give references to the many papers written on the 

detailed properties of the model. For a more general survey 

of high energy models contemporary with early work on the 

Veneziano model, the reviews of Jackson(1)  and Jacob(-14 •) may 

be recommended. 
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CHAPTER 2. 	A VENEZIANO MODEL FOR THREE PARTICLE 

PRODUCTION.  

2.1 Introduction. 

In chapter 1 we considered the Veneziano amplitude 

for the scattering of a system of scalar (04-) particles. 

Such an amplitude is of little practical use because no 

data on such processes exist, even the existence of any 01-

particles is not certain. However, the possibility of 

being able to construct amplitudes in which one could 

incorporate in a single term both resonances and Regge 

asymptotic behaviour led to many attempts to construct 

phenomenological amplitudes for 	scattering processes(1)  

for which data existed. Most of these models compared only 

the asymptotic form of the VeneMano amplitude with the 

data. Essentially this was the same as using a Regge 

amplitude with residues determined by the Veneziano model. 

Because no entirely self-consistent way of constructing a 

Veneziano model in which the external particles have spin 

has been found, these phenomenological amplitudes used a 

Veneziano parametrisation for the invariant amplitudes. 

HoweVer, perhaps the greatest contribution of the Veneziano 

model to high energy phenomenology has been in three 

particle production. Previous models for such processes 

(such as the Chan-Loskiewicz-Allison model(2)) which 

reproduce only the correct Regge behaviour have large 

numbers of parameters. Shortly after the rediscovery of the 

five-point function Bardakci and Ruegg(3) showed that, 
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using this function, it was possible to construct Veneziano 

amplitudes for 23 particle processes in which the external 

particles were pions and kaons. For such processes the only 

trajectories coupling to the external particles are p ,W,  
f, A2,15 , f , K

* 
 and K

**
. Thus the amplitude must not have 

a resonance for oc=0. Bardakci and Ruegg found that this 

could be achieved by writing their, amplitude in the form 

A 
perms 
	Pp psg P, pp -( P< 2 3 

(2.1) 
X Boc. I o.e. 	t-ote -•- 	 j 	4:7(34. (-o(45,  1-0(s). 

where the sum is over the non-cyclic permutations 

of the external particles, Pi  is the four momentum of the 

external particle i and a ij  are linear Regge trajectories 

coupling to the particles i and j. The kinematic factor is 

uniquely determined by parity requirements and results in 

the amplitude having correct Regge asymptotic behaviour in 

allchannels.Thefactor.is  an isospin factor given for 

KIT 31T by 

K 2  1-zz 	K 	
(2.2) 

where K is an isospinor and Ti  are Pauli matrices. 

Theeffectofthe.is  to eliminate terms which would 

involve exotic exchanges. 

The first application of this type of model was made 

by Petersson and Tbrnqvist(4) to the process K-paTr-lx-1-&. 
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This process is essentially of the type considered by 

Bardakgi and Ruegg except that two of the mesons are 

replaced by baryons. Petersson and T'Ornqvist used an 

amplitude of the form given in eqn.2.1 only, instead of 

including an isospin factor, Ii, the requirement that there 

should be no exotic channels was imposed by hand by 

excluding permutations which would, involve exotic exchanges. 

In order to get the baryon resonances at the correct positions 

the arguments of the five-point function were shifted by a 

half integer. Although this model effectively ignores the 

baryon spin, as a description of the spin average process, 

it was a remarkable success and many other processes were 

fitted using similar models(5). 

In this chapter we shall construct a model which 

takes some account of the spins of the external particles 

and which allows the construction of amplitudes for 

processes in which pion exchange is possible. 



I. 	THE MODEL FOR K p a K* n.  

2.2 The Veneziano Terms. 

We shall start by considering the process 
*-

ivn and assume that it may be described by an 

amplitude of the form 
12 

.1)=1 

11  4- c<4.s. /ZS 	t 

	(2.3) 
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where 0(ij is a linear Regge trajectory coupling 

to the external particles i and j and ki  is the spin of the 

lowest resonance on the trajectory. The sum is over the 

twelve non-cyclic permutations of the external particles. 

K is a kinematic factor. By taking the same kinematic 

factor in front of each B
5 
 term we ensure that, if all 

twelve terms are present, each trajectory has a definite 

signature. 

It is necessary for all trajectories to have the 

same slope as otherwise the amplitude diverges exponentially 

at fixed angle(6), signature is impossible(7) and ghosts 

are inevitable(8). 

Of the twelve permutations in eqn.2.3 those in 

which the K and n or the K*-  and p are adjacent will not 

contribute because they involve exotic baryon channels. 

Similarly, permutations with the K-  and Tr+  adjacent will not 

contribute because they have a doubly charged meson channel. 

This leaves only the two terms corresponding to the 

permutations shown in Fig.4. Both of these permutations 

correspond to legal Harari-Rosner duality diagrams as shown 
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rt+ 

a. 

b. 
Fi6, 



a. 

31 . 

Fig.5 
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in Fig.5. We note that,as a result of having three exotic 

channels in this process, duality implies that all the 

trajectories except the one coupling to the Ten subsystem 
are exchange degenerate. Eqn.2.3 implies that we only have 

one trajectory coupling to each channel. Although for most 

channels this is true, for some channels (such as K—p) 

there are a number of possible trajectories. However, in 

order to make practicable any application of the model we 

must use experimental evidence to decide which trajectory is 

dominant in each channel. Although, in theory, one could 

add additional terms with all possible combinations of 

trajectories computational difficulties prevent this being 

practicable. Also, because of the poorness of the data, any 

determination of parameters to obtain a best fit to the data 

would be impossible. 

The trajectories we have used were determined as 

follows: 

1. For the K IT channel the only possibility is a 

degenerate K
* 
 ,K
** 

 trajectory. 

— 2. It is known experimentally that the processes K 	*0 n(9)  
— 	 A*0 (10) and K p -)K n 	are dominated by pion exchange. 

Therefore we have used a pion trajectory for the pn 

channel since strong K
** 

production is seen in the K
*

IT 

channel. 

3. Having chosen a pion trajectory for the pn channel the 
_ 

only possible choice for the K K
*_ 
 channel is a degenerate 

P ,f trajectory (wand A2  are prevented by G parity 

conservation). 
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4. The effective mass distribution for the Tri'n channel 

shows a complicated resonance structure in which the 

A(1236) is dominant and so we have used this trajectory. 

However, there is also significant N(1470) production. 

By omitting the N(1470) trajectory we will, of course, 

not obtain this resonance in our results. Other than 

this we find the results are little altered by which 

trajectory is chosen for this channel. 

5. The K
*_

n channel in Fig.4b can only couple to a Yl  

trajectory. The experimental data for the K n mass 

distribution shows no structure and provides no clue as 

to which trajectory we should use. According to Schmid(11)  

the only Yl  trajectory which couples strongly to the Rt 

system is the 2:(1385). In the hope that this still 

applies to the TeN system we have used this trajectory. 

6. For the Kp channel we also use a 2:(1385) trajectory. 

In principle one could also use a Yo  trajectory. Because 

the data is at high energies (s/cp>10 GeV2) this choice 

makes little difference to the results since all 

trajectories have the same slopes. 

7. Finally, for the 1-0-p channel there are a number of 

possible trajectories. We use a ND, trajectory because 

we would expect it to be dominant in the exchange 

channel as is the case in -RN backward elastic scattering. 



Thus our amplitude is 

A = K [ 	0 -0<r(€KKA),1-- 	(sK4*-0, 2 "(.! (sTrA), 

—"c"<it (tpn),1-0(2 &Ka -4- $s (1- ar 	), 	(2.4) 

2- 
4, • - 	Cs peN) 	(sir f\), 	1 3 ace (st< P) • 

We note that the argument of the Na  trajectory in 

the second term has been shifted by 1. As we shall see later, 

this is to ensure that we get correct asymptotic behaviour. 

As we have stated in chapter 1 the Veneziano model 

is a zero width resonance model. If it were possible to 

unitarise the Veneziano model we would expect the resonances 

to occur as second sheet poles and to have a finite width. 

In order to give the resonances a width in our model we add 

an imaginary part to the trajectories. This moves the poles 

off the real axis giving them a width but does not move them 

onto the second sheet. Lovelace has proposed(12)  that the 

trajectories should be parametrised as 

(s) 	olo  + IS + oc, Jso— s 

(2.5) 
So = Cse-kr-esko)4, 

This results in the trajectories being real below 

threshold but complex above. An unfortunate feature of this 

parametrisation is that it leads to an infinite series of 

ancestors because the trajectories are not linear in s. An 

alternative procedure (which we shall use) is to add a 

linear imaginary part to the trajectories in the channels 

for which s is above threshold. This does not give rise to 

34. 
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ancestors but does lead to complications when we wish to go 

to crossed processes. We shall return to the problem of 

finding more acceptable ways of moving the poles of the 

Veneziano model off the real axis in chapter 3. However in 

this chapter we will parametrise our trajectories as 

cc Cs) = oc. -1-- 's 	 (2.6) 

—So) 	S> So 
	

(2.7) 

= 0 	S < So 

To evaluate the imaginary part we use the following 

argument: 

Near to a resonance at angular momentum e the partial 
wave amplitude is of the form(13). 

(2.8) 

(2.9) 

  

c<c. —  of S—Lc-c'z 

This corresponds to a Breit-Wigner resonance of half 

width 

As  , riv, ac= _  IzCs -so) 
04 

(2.10) 

Using eqn.2.10 we can chose k so that the first few 

resonances on each trajectory have approximately the correct 

widths. (Strictly, by taking different k for different 

trajectories, we are breaking the "equal slopes" requirement 

on the trajectories). 



(2.11) 
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To determine the real part of the trajectories we 

have taken a slope of 0.9 (GeV)-2 for all trajectories and 

have then determined the intercepts from a Chew Frautschi 

plot. We obtain 

cK ick(s).-  0.1S 4- 0.9s 	L0.1(5-50) jc,= crr\,,c,„.4.01.Try- 

c.< e () = 0.4-$ -1- 0.9 
(s) = -0 .22 + 0.4 s I 0.1s (s-so) 

° N (E) 	obci 

0<„ (0 = - o.00s 4- 0.9 E., 
c<21  (s) = 	. 12 + 0 . 9 s + i. 0, 25 Cs —S.) j  se= Or\ n+ 

We note that in deriving the amplitude of eqn.2.4 we 

regard the external K*  as being a stable particle. 

2.3 The Kinematic Factor 

We now come to the problem of choosing the kinematic 

factor K. The data for this process shows a strong 

concentration of events at small t KK * and t
Pn
. This suggests 

that the amplitude is dominated by the nearby poles: the p 

and 1r in t * and tPn respectively as indicated in Fig.6a. 
KK  

In a Regge model we would also expect the term corresponding 

to Fig.6a to be more important than that corresponding to 

Fig.6b since it involves only meson exchange whereas Fig.6b 

has a baryon exchange. Baryon trajectories have lower 

intercepts than meson trajectories and this leads to terms 

involving baryon exchange giving smaller contributions to 

amplitudes. Therefore we base our choice of K on the 

peripheral diagram of Fig.6a. This diagram corresponds to 



K *  

> 	 Tr 

K- 	> 

. 	37. 

TE 

P 	> 

a. 

Fig. 6 

K- 
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a double pole limit of the first term of our Veneziano 

amplitude. Near to the 	and e  poles the first term of 

eqn.2.4 behaves as 

K 	i 	i . 

We now evaluate the diagram corresponding to 

(2.12) 

Fig.6a using covariant vertex functions and propagators(14,15) 

The vertex functions we require are given by 

eK 	(K VC*, ee= )--= 	g 	(K-t 	 , 

C 	(Pex-- 
	 I 

 'a r-% (1T +-WeX.) 
	

2.13) 

C (?rrr ,c\) 
	

93 v5 

where 	Effie, (p, r) 	s 
and where we have denoted the momentum of the K 

etc. by KM.The  subscript "ex" refers to exchanged particles. 

g1, g2  and g3  are coupling constants. 

The propagators are simply 

Prtv (ee3c-) 1-xv (fe,c-)1...(feJc)v 

 

 

LKK* me (2.14) 

   

   

I* 
The pole graph then gives 

=-_che c, (X) el' (KKK .ems) Ppr, (ee.„) 

c kL(e„,-tv,-rr,) P (Tee) 	p 

(2.15) 



39. 

CSt92.9s €0/(x).s°((iT,K,K zi,oss up 	(2.16) 

(Kte-rf\;,.)(1,11 - 

where C,(>) is the K*  polarisation vector. Thus 

if we choose 

K= 0<12' 	e..< CA) eq1K3wA)tit.Xsuie 

C coc cx)EcNOT,Kit,K)ar,istAe . 	(2.17) 

our Veneziano model has the correct couplings at 

the Iv and r  poles. For higher poles on the It and e  

trajectories we cannot expect the two models to correspond. 

This is because; 1) for higher spins more covariant coupling 

mechanisms become available, 2) the Veneziano model has 

daughter contributions. It should also be pointed out that 

the vertex functions we have used are strictly only 

applicable when all the particles are on mass shell. We 

shall assume that the choice of K given by eqn.2.17 still 

2 holds when tom* 
  

mr   and t
Pn  m

2. 
IT 

2.4 Asymptotic Behaviour of the Amplitude  

We now show that our choice of K leads to our 

Veneziano amplitude having correct Regge asymptotic behaviour. 

To show this it is easiest to consider the spin average 

1 2: Ul 2  spms Firstly we need to evaluate 2= 1K12  
sint\s 
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I K 
spir‘s 

2 	IC 6: Ys- e 	(A) 
1 2. 

(11,1<'4,K)1 	(2.18) 

C2  Tr 	 C(-rt,K -J‹) 

* 	)90q. 	tk  

rn2- W`" 

(2.19) - 

( 1". - 6Y\ - 

e•K e•-ff 

(2.20) Wf̀ • K 	K•TT 

e% 

c2- (ten- 6\ p - rt\ t‘ )2. 	fiN2te. 	in?/-1 	(.1( 

Using 

r(Vri 
2. IC

* 	Mlisc (W  'Td1  + 2  Oci *T1) (lc 'it  )(I(. I()] 
(2.21) 

-2_ 
ft\ K + Fr\  Kit  - 	 (2.22) 

2. 
SK  ly 	 AT7- 	 (2.23) 

We obtain 

2. 

K 11" (N2--  - 	/2 

S e 	K41  - €(!)(1 mtcx  
• 

(2.24) 

      



41. 

12 	1/\ 	 M 4C nA-1-11 

MK."' (Skca"1-1 t 	'Lim\ - fr\lc4. \2  

4- 
	 (2.25) 

(rT\li.  rrqc),-  - t-K K.* )2  -.m w  @tell rt\ c.w M-nr- 

G_ 

CrYt,, 	- EKte)( 	- 	- 	)(K.*T i--t(be` ter\-- 

4- 

If we now consider the asymptotic behaviour of the 

amplitude of eqn.2.4 as sKp =0.01, s
K

*IT op sin, 00 with tpn 
and t * fixed and with 

KK 

sK m' 
 . * ern E 11 (finite) (2.26) 

   

sKp 

Then using the asymptotic form for B5  as given in 

the appendix. 

5 	- 	 , - 	" s  (0,) 

S yr 0.4e 

x (7) 	 _ 	 (2.27) 

B5 	tkE 



42. 

Using eqn.2.25 

2 sim.s 1P1 \2- 
	

SK  n 	siriN2-`" 	0j1--oce j-c<n) 

X (tpc\-Or\p-cA02) 

as 	VS'CL Sir r\ JSKp 
	(2.28) 

 

tvt. 
5  K'n Sirn 

fixed 
with 

1 

  

S. p  

 

Thus our amplitude has the correct asymptotic 

behaviour for the double-Regge limit corresponding to Fig.6a 

We may also consider the double-Regge limit corresponding 

to Fig.6b, i.e. 

K p 7 4>t1 	 K4(-  n 	,b0 	5-cm 	04 

KKK  LITT fixed 

3 .̀-F‘ 	7) 	(finite 
• 	(2.29) 

gKP 
To evaluate this limit we need to express eqn.2.25 

in terms of the variables used in eqn.2.29. To do this we 

return to eqn.2.21 and use 

2_ 
	 (2.30) 

	

K. TC 
	S 	pZr - S‹:rn 

2_ 	 (2.31) 

	

r-- 	fr KICK - &p c-  S 	rAlp  + ITC2-6 -t- 41\27. 	
(2.32) 

Eqn.2.25 becomes 

Z,  1 ic 	8 c2 	ctKA - 'Eva 	n 0\2-k. 4-20\pcn,,) 
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0.\17:ft-  (S ice  4-evtr 	K-4-11 — (Alp' )2 
4- 

K 	K m2  rn 

K 	*)1. 	Sec\--  S ma' r(1.111(;"133)  Crc\ K2+-0\1-* 
4 	 4- 

In the limit given in eqn.2.29 the Veneziano terms 
behave as 

e.5 (ct) 

Bs  (6) , smto<NC6e/r)- 2_ 0<e. (6 <K-ft')." t 
(2.34) 

x 	, 	, (-ace  (g,,,,„ 

Using eqn . 2.33 a 	rt  11..\ < 
	

.2_04e(e.wc) c4N I e ) _I 	Pt VI  r-= swn 	-e-r\ 2 Sv.u\S 

,(1 4-(1 ) (-a N PTE ) 

(2.35) 

le)12  tv,,e1 
711- 

as 	Srrn 	Svc e  t..c) 

with t Kve tr-t  

SA-N SK4*IN 

fixed 

 

SKP 
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Thus we have the correct double-Regge behaviour 

expected in this limit. We note that if we had not shifted 

the argument of the Nec trajectory in the second term of 

eqn.2.4 we would not have obtained correct asymptotic 

behaviour for the limit of eqn.2.29. 

Our choice for the factor K is based on consideration 

of the dominant peripheral diagram for the process 

K-p=0K*-7r4-n. The amplitude of eqn.2.4 may also be used to 

describe the processes obtained by crossing the external 

particle lines. In general, for processes which only 

involve crossing meson lines, we would have obtained the 

same kinematic factor if we had started with the crossed 

process and applied our pres4iption for determining K. In 

the case of processes in which baryon lines are crossed 

(e.g. pN-K*-11-4-K1-) we would obtain different kinematic 

factors. This is partly a consequence of our inability to 

include fermions in the Veneziano model in an internally 

consistent way. However, we do note that the amplitude of 

eqn.2,4 does have correct asymptotic behaviour in all 

double-Regge limits for all crossed processes including 

those in which the baryon lines are crossed. 

2.5 K
**
(420) Production. 

The most significant feature of the data for the 

process being considered is the K
** 
 (1420) production in the 

K 1r channel. We must check that the kinematic factor 

we have chosen is a reasonable choice for describing the 



K production. In order to do this we consider the 

diagram corresponding to Fig.7a. This diagram may be 

evaluated using exactly the same techniques as were used 

before. In addition we shall need the spin-2 propagator 

numerator: 

	

PocfWC OC") cipetr f&S ± 90(S IOC 	$((3 cAS 

4- 	E 90cp. fy 	+ 9%i fo 	w Pe. Pg 

— clxs c)e. 	— 90 	— 9 ps Poc 
	(2.36) 

3 m4 

where P= P, 	ri\ to..„ 

The vertex functions are 

s 	(K'4,,,, K**)- -1- 9400 —TI))f  Es 77(0.- V*4-11 (2.37) 

C 	C KDT, 	, K** 	13_1  s- 	CK--11-er_)0 	(2.38) 

** 
The K production diagram then gives 

	

7-sk 	t-kp co< is (K ;ix 1.4"  rOrc(e) 

	

ss 	,K" E-17 (A) (2.39) 
Csw-n— nA2)Ceer. — eAl-t) 

94.9s- u1,-?Cs p )(77  G7)  (A) (2.40) 

(tel‘—  ANTI )Cs K-wi-k 

  

45- 
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Fig. 7 



where 
(K- 

 

(se (16 .4s pr 

47. 

   

(2.41) 
04S. 	Y 	pi) pc  Xi \ I  

111,‘ E 	P 	± 9 (3' F 	L'-4( —11)Y 

(2.42) 

= 3 E (K )  K 1 7c)12 k tv<*.— ynto, - 2t,c-7 

• (• 2 K • es+ 2K-7- akw 2-n • ke` — Er‘ Tr)r -n1 )1 

We obtain 

A wt. Ne 	r ,e;0 	 u rn rsuF .(1,94cl s  

	

X  [ 	+ 0\1-1  - ea' kle 4- Ef3r,- S 

- (rA2,o -  In2-1-1) n'Ck tpn )-1 /( ( ;— 	n\li.1)) 
en 

(2.43) 

The residue at the double pole is 

 	e (A)ti \ s uLe 	Ck lc' , k K*  
2 

	

4- 2m?„, - 	2-tvcw* - 	-0\211) ( 	- 0\21,-   )7 
(2.44) 

We may compare this with the residue of our Veneziano 

amplitude at the double pole cx7r =0, c<K*=2. This gives 



Res 	, 	2)= ce9(K )-(1,14**)e,i (A) 

oCP ( -E-Kvc.ok 	u,p  

We see that both eqns.2.44 and 2.45 have the same 

form. Thus our kinematic factor may be regarded as being 

consistent with the K
** 

production mechanism. The residues 

given in eqns.2.44 and 2.45 are not expected to be identical 

as the Veneziano amplitude also contains a 1 daughter at 

the K
** 

mass. 

Thus we have shown that the amplitude for K 	Ttn 

defined by eqns.2.4 and 2.17 has correct Regge asymptotic 

behaviour and is consistent with the K
** 

production mechanism. 

2.6 The Amplitude for K-p-4R4°n. 

We now show that the five point amplitude for 
*-

IT n may be consistently reduced to obtain an 

- amplitude for K 	-*o n. We note that only the first term 
_ 

of our amplitude has a K* resonance in the K
* 
 ir channel. 

In order to see how the five-point amplitude should be 

factorised we make use of the experimental fact that the K 

is produced by pion exchange for this reaction. Therefore 

we consider the diagram of Fig.7b. We evaluate this diagram 

as before using vertex functions: 

Ce< 	Kam)' -(19 c 

j  Kj j1T) = 	(Kr''+-rt ,Z—Tt . (2.46) 

48. 

(2.45) 



We obtain 

—cWz364=-7 Tin p 	— 	 (-1(4)0c(1(1c-)0  

    

 

x 	E 	(c't +n, 	 e. (A) 
2 

-7= %c=l6.•=z-, Ti,Xs 	Y(‘c ,Ti K) 	s()1/ 4 ) 

AN'k) (sK4'1-1-  A<zte6) 

(2.47) 

(2.48) 

The numerator of this expression is the same as the 

residue of our Veneziano amplitude at the IT and K*  poles 

(it is, in fact, just the kinematic factor K). We can now 

see how to factorise the five pointamplitude. Near to the 

K
* 

pole our Veneziano amplitude may be written as 

A lee =-Ca(,\‘sUp EY6C -111,e)(.71N4-0(TI A-0<z) 

°<1  CS K4 1-1 —  n\liZ/t 	 (2.49) 

a t.6s u1/4 	[c3.41.--6e(e),((<43 /n11-0:-.1 
Ste,  -rt  en-t.<2.e 

(2.50) 
x 	E 	L_K 4-271)<°*- 1) e‘ (A) 	—oe • 2 

We now replace the spin 1 propagator numerator by a 

complete set of spin 1 states(i.e. we put the K* on mass shell) 

Ac 	,`6', 	6 	c,„ (x) 
K 	2;Z7 1:11 

2_ €4:s (x j )  E °C CK**-11 ,r.lt-1-1 )  01-7 	(x) 

(2.51) 

49. 
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Here the three point K:xeTr vertex has been 

separated from the five-point amplitude and we may 

therefore write the four-point amplitude as 

PtIce  RAor\ 	U"^Is LA P  CK--11.e.t.r(Goc(K) (--.(T1,1_ ,) 
es, 

(2.52) 

= C U•NIC5 LLP Kg'&•  e 	( <̀rt 	`'`As)) (2.53 ) 
Wcs, 

We must now check that this amplitude has the 

correct Regge asymptotic behaviour. Considering first the 

apin average: 

1P02-=-ci 
‘•-• Set IRS 

2. 	lA K 	- tK 4E'frl 

(2.54) 

04-0 CE - (m - 

where 

2 	 4 
-t-- rrkico, - ..t.)1(e-Cmc  ,\Y-) (2.55) (2.55) 

For s •-• 	t fixed 

sems 
(7  s) .29(11  (.0 r , 

[:°( 	 ON  

cm2-  	Pc- ,=TILE)Y1:1 
rY\ 

(2.56) 

For the crossed process K*o+n (obtained by 

crossing s4.--)u) as shoo , u fixed 

(-0(11(0 s - 0( (Lk)) r\-J 	s) 4)5'- Z 
	

z-`<
•
) 	

(2.57) 



— - 	T._ (LL) Lc /
1,, 

 , 2pez  -3 
4- 17‘.:,-,  

x r (31_- ,(_y. (42-1 . 
Both these asymptotic behaviours have the correct 

Regge form. 

For computational purposes it is most convenient 

to express our four-point amplitude (eqn.2.53) in terms of 

helicity amplitudes. Adopting the convention that the beam 

direction is along the positive z axis we may write (in the 

s-channel c.m. frame) 

Ka* (2.59) 

where Ois the scattering angle and where the 

particles are labelled: rs1, p 2, eo 3, n 4. In this 

frame the polarisation vector has components(16)  

 

r 
C.JC - S 19 J 	- S U\ ) 

 

(s Lt 
m3 

0 EsCss--Z), ty\  (2.60) 

C. 	t) = - 	(0 -cos& 	) 

The helicity spinors are 

t_ - I e 	A 	E 1:4-PA2 	4- 	is) 	
(AO  (e) 

(2.61) 

 

51. 

(2.58) 



E4.3- fr\,, Cr• 05) 

242+0\4_ 

'2) 19=0 = est  

 

52. 

  

  

 

O 

 

    

     

     

4>+ (112)(&) 	Cci, e7) st-Ng(2 0,0) 
	

(2.62) 

4)-t- (---16-)(p) = (st-N67,_ , cs:ret,2_ ,0 Jo) 

Using eqns.2.59-62 we obtain 

(-1/2_)Ysuc, 

 

(2.63) 

(E-4. 2::“‘\.2)(A, 

‘/(E0-0\44.)CE.2--k-m-2-) 

ti,(1,2)Y, Lk, 	a,\(- vo \is- L., cf2.) 
(2.64)  

el/2  

iCE,i 	CE2_-k-n\2_) 

(2.65) 

1 

• kSt.r.0 
\ -2_ 



From eqns.2.63-65 it is easy to construct the 

helicity amplitudes: 

60414  1 Ati\ 	C Ee'4(A 3 .K: ar\(k)istie (Az) 
(s)).  (2.66) 

Parity invariance implies 

<A3AJc6tAIX2)= /hi), (.7:0 1-t-see—st—s, 

where = X 1- X 2, ft= A 3- X 4. si  is the spin and 

7/1  112 

K 	1)A -1A A3.,--A4.1c19> 	
(2. 

67)  

the parity of the particle i. 

Thus only six of the twelve helicity amplitudes are 

independent. In terms of the helicity amplitudes the 

differential cross section is given by 

01.0- 	 st9J2- 
cLt 	 (2.68) 

The density matrix elements for the 	are given 

by 

(0,\A3= 	<AA4PcxiXAIX4VIA,2I  
x,),2)% 

Z.  IOLA-2- 	( 2.69) 

However, the experimental results for the density 

matrix are given in the Jackson frame. This is the rest 

frame of the K chosen such that the z axis is parallel to 

the incident particle's (K-) momentum and the y axis is 

perpendicular to the production plane. The density matrix 

elements, (Jackson) 
e, in the new frame are given by 
AIA 
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cyc,c6.ur, 

P 
A' X 

= 	al 04,z) di 
" x 	x 13 	A A, 	PAI,X3 	(2.70 .3   

where d1 are the usual spin 1 rotation matrices 
kV 

and 13 is the angle between the K and n as seen in the 

Jackson frame. We may evaluate this angle using 

MckiN ̀VI 	rivs  -.cos 

'Es (Go-w9 	 
12 t3 ) 

(2.71) 

2.7 Normalisation of the Amplitudes. 

Up to now we have not attempted to interpret the 

couplings gi  which appear in the vertex functions we use to 

construct kinematic factors. In the amplitude for 

K-p-?K*-Tr +n they only affect the overall normalisation of 

the amplitude and, since we are only comparing the model 

with percentage distributions we do not need to know this. 

However, for K-p-417*°n, we compare the model with the 

differential cross section data which requires us to know 

the normalisation constant (c ) in the amplitude of eqn.2.53. 

In our results (Fig.12) we have used - c'  as a parameter to 

fit the data. 

Our kinematic factors have been determined by 

evaluating pole graphs using vertex functions which are 

strictly on mass shell. Therefore the gi  can, in theory, 
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be related to physical coupling constants. Unfortunately, 

in many cases these are very poorly determined experimentally 

and it is therefore more appropriate to use a suitable 

symmetry scheme to relate the coupling constants we require 

to those which are well determined (e.g. gum  and glom ). 

One such symmetry scheme which has had considerable 

success(17)  is U(6,6) (18). This allows us to determine all 

meson-meson-meson coupling constants in terms of g e 	and 

all meson-baryon-baryon coupling constants in terms of gmor  

For example, writing eqn.2.53 as 

A 
	

c4  9 1,<K4(TV 9 n pc 	u,t) 	 (2.72) 

rk 	, 2 - 01,2  (%)) 

and using U(6,6) we may obtain (see Ref.17) 

91\p-r;== 1"?. 

9 K44 Krk  = 
(2.73) 

(n.b. for our particular example we have only really 

used SU(3) to relate the required coupling constants to gems  
and gNw17 ), 

Hence we obtain 

cletcri = 	t27  • 	 (2.74) 

We may compare this with the value obtained by 

fitting c to the data: 

t • 	
q6z. 	 (2.75) 



2.8 Comparison with the Data. 

The amplitude for K-p4>K*--110-n has been compared 

with data (15) at 6.0 and 10.0 GeV/c using the phase space 

program FOWL(19) and the program(20) for B5 
written by 

Hopkinson. The K-1)=.? -1:(*°n amplitude was compared with data(21)  

at 4.1, 5.5 and 10.1 GeV/c using the program FCN(22). The 

results are shown in Figs.8-13. 

Agreement with the main features of the three 

particle production data is good. Because of the large 

statistical errors on the experimental bins it is not 

possible to make a detailed comparison with the theory for 

the mass squared distributions. We do, however, get 

approximately the correct coupling for the K
** 

resonance in 
- 

the K
* 
 7T channel. Because of the exchange degeneracy of this 

trajectory we also get a resonance corresponding to a 3 

recurrence of the K . There is no indication of such a 

resonance in the data. For the -en channel the i(1236) 

appears to be too strongly coupled at 6.0 GeV/c (the data is 

too poor to draw any conclusion at 10.0 GeV/c). However, 

this is probably due to the fact that we have not included 

terms with the N(1470) and other possible N and 	trajectories 

in this channel. Each of these terms would be expected to 

give a similar background contribution to the L, trajectory 

term we have used and would lead to the L. peak not 

appearing so high. The K*-n distribution is featureless; 

the general shape is reproduced correctly by the theory. 

The agreement for the momentum transfer distributions is good. 
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- For the K p=1( n amplitude the differential cross 

section results agree well with the data. We obtain the 

correct t dependence. The s dependence is also correct - as 

we expect since the amplitude is known to have correct 

Regge asymptotic behaviour. For the density matrices our 

amplitude predicts 

()tote), o , el 	0. 	(2.76) 

These are the values expected for simple pion 

exchange and the values obtained from Regge models with pion 

trajectories. However,since the Regge exchange includes 

contributions from high spin particles we expect the density 

matrices to vary with t as is seen in the data. If we take 

absorptive corrections into account the results are 

somewhat improved. However, since such corrections are not 

included in the five-point amplitude we are not justified 

in including them just in the four-point amplitude. 
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Figure Captions  

Figure 8 Mass-squared distributions at 6.0 GeV/c for 
_ 	_ 

K 104 K
* 
 IT n. 

Figure 9 	Momentum transfer distributions at 6.0 GeV/c 
for Kp-4.K* Tr +n. 

Figure 10 Mass-squared distributions at 10.0 GeV/c for 
' 

Figure 11 Momentum transfer distributions at 10.0 GeV/c 
for K-p-*K*-Tr -1-n. 

Figure 12 - - Differential cross sections for K 11-4K4(-o  n. 

Figure 13 Density matrix for K-p=if"n at 4.1 GeV/c..  
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II. THE MODEL FOR iip=ern.  

2.9 The Veneziano Amplitude. 

In the last section we showed that it was possible 

to construct a Veneziano model for three particle 

production having correct Regge asymptotic behaviour. 

However, our model does not correspond to a conventional 

double-Regge model such as that proposed by Chan et a1.(23)  

Therefore it seems worthwhile to compare our Veneziano 

model with data in the double-Regge region. The process we 

shall consider is ITp-K°1-rn at 12 GeV/c. This process has 

already been treated using a double-Regge model(24)  

To determine the five-point Veneziano amplitude 

for this process we follow exactly the same procedure as for 

g p=K
*-

n. Because of the requirement that there should 

be no exotic exchanges all permutations where p and V, n 

and K0  or Tr and 17°  are adjacent do not contribute to the 

amplitude. The two remaining permutations are shown in 

Fig.14 together with their corresponding duality diagrams 

which are both legal. As a consequence of there being 

three exotic channels for this process, all the trajectories, 

except the one coupling to the Tr-p subsystem, will be 

exchange degenerate. 

The trajectories we have used were determined as 

follows: 

1. The only possibility for the 1T K°  channel is a 

degenerate K
*
,K
** 

trajectory. 

2. The experimental data(25)  for the K1
0  K1
0  n decay mode of 

ern shows strong resonances in the K7K7 effective mass 
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a. 

b. 

Fig I cf. 
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distributions corresponding to the f and A2. Therefore 

we have used a degenerate e  ,L0, f, A2  trajectory for 

the K°1711)  channel. 

For the pn channel we have used the same trajectory as 

for the eir channel. We make this choice because we 

expect the e  trajectory to be dominant at high energies 

because of its high intercept. Also experimental 

evidence(26) suggests that the A2  in the KR channel is 

produced by e  exchange. The situation is not so clear 

for the production mechanism for the f. However, it is 

consistent with A2 exchange. 

The 1r p,K°1 1K% data show no structure in the K1n mass 

distribution and in the absence of any preference we 

choose a 2:(1385) trajectory for the nir channel. This 

is the only 	trajectory coupling strongly to the RN 
system. We could, however, use a Yo  trajectory. 

Because we shall only be considering events where snK —W.5 
GeV2 we do not expect the results to be sensitive to 

this choice (This has been checked using a 61520) 

trajectory in the Kn channel. To within the statistical 

errors on the data the distributions are not significantly 

altered except for the sxr distribution for which a 

poorer fit is obtained for sij)5  GeV2). 

For the Trp channel we use a 	trajectory. Again the 

choice is rather arbitrary but because we are using 

high energy data (sIrp= 23 GeV2) the results are insensitive 

to this e'oice. We note that the trajectory coupling 

to the Tr p subsystem has a definite signature in our 
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model. This is fortunate as there is no experimental 

evidence for the Na  trajectory being exchange degenerate. 

6. For the pK°  channel we use a 21(1385) trajectory because 

it is the only trajectory which couples strongly to this 

subsystem. 

Thus we may write our five-point amplitude as: 

K (Bs  ( I - 	(.11 ) 	CS  KR))  " 	Rn) 

1- ar  a-F IN) 	Csi- I 0) + 	Pc) 	, 	(2.77) 
3 	, f*, (.1-Z)) 	e CSKk)i 	(em), 	Kt,3 (sn 0) • 

We note that the argument of the N o<  in the 11-n 

channel in the second term of this expression has been 

shifted as before. Again this is to ensure correct asymptotic 

behaviour. We do not shift. the N argument in the AT p 

channel as this would result in there being no N <(938) 

resonance on this trajectory for the process being considered. 

Unfortunately as a result of doing this some of the crossed 

processes will have incorrect asymptotic behaviour but this 

will not interfere with our study of the Regge limit of the 

process 	 p KoKon.  

Our trajectories are given by 

oc w(s).-,- —0.3+ 0 .cf S + 0. t2 (s -So) ) So .-4A-0- Inf  
0( e (s) = 0 . Va-  0 .9 S + L O. ts -sQ) so  

2_ (S = 	 . ct S 	tS-  (S -So) , 	ni KT; (2.78) 

0( i(4( (E) = p . 	O. 9 E . 
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In order to determine the kinematic factor for this 

process we consider the two peripheral diagrams of Fig.15. 

We expect the diagram of Fig.15a to give the dominant 

contribution to the amplitude because the diagram of Fig.15b 

involves double baryon exchange (numerically we find that 

the contribution to the amplitude from diagram 15b is about 

10% of that from diagram 15a). Therefore we determine our 

kinematic factor by evaluating diagram 15a according to our 

usual prescription. The following couplings are required: 

C (p, 	(N)= 	c,( cA' 
'2. 

Co< (eex-J 	Eta) 
	

1 /4.-z) (2.79) 

Cc( 	 ° 
	afiz or_ koz.0)04.  

we obtain 

(1.1_, K)c4  erLeLyite:sxyla 

   

  

(Y6 -e2e/m)) 
6 - 

ar,(c-. 60- clVs)Lkt, •(2.80) 

Jen) Tat\  (c‘6,•-t- 91  (c)-(-(\))Lke  
(2.81) 

(6TIK 	fi< 

Near to the K and () poles the Veneziano amplitude 

may be written as 



	 K °  

K*  

	 n 

a. 

70. 

Fig.15 



fl ti ( 
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(2.82) 

Comparing eqns.2.81 and 2.82 we write 

r C E 	U4.14;7 ) 	(c  Os --1-- q I C P-t--(\)S 
2 

p 

(2.83) 

C 
	it 	ra t  

Although the absolute normalisation of the 

amplitude is irrelevant in comparing the model with the data 

the relative magnitudes of the couplings g and g are 

required. Rather than use this as a parameter we have used 

the value predicted by U(6,6) (see Ref.17). This gives 

— 	• 
9 (2.84) 

2.10 Asymptotic Behaviour. 

We now have to check that our amplitude has 

correct Regge asymptotic behaviour. To do this we need to 

evaluate the trace 

	

-R- [_   )(gl-  IN) .ntiNS 

X (clit.t. A__ 
gt  0)-fr-r\ 
	 )] ec 	,TZ ;Tv E.tk 	)70 
2 
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c2 [(2 12.  (Ca\ n 	i5r‘ —t- 	( p+ m(,) 

cf-) 	 p—MNI1)41 

CkCi?-1K- 	(tK  K  J-VOI 	 (2.85) 

E Ch,tc,1k,11)1 = E Cr\ ,v, 
Now 

•I•••• c't K•r\ 114\ 

f). P •" ?.h1 

K. (\ e.K mK Wit 

it.t1 ("Ti  Mic  

(2.86) 

K 

S ikTz 	r14 Ilk - 

S — 	.6:1W — 	1.4. 	rr\Ifi (2.87) 

2 

Sip 4- Elp 	K V7( — 11\j-20  

2 

2 

p •-o 	-- m - 

P• _t 	_ e r  k TI = m •-t- 	t- 
K 



\Pt z- z StM.S 
t 
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Using these relations we can see that, in the limit 

S KR. 	045 	k r1 ao 
	

Sit •=-, 

such that Siccc SiZiN 	
"7 

(finite) 

6T/ k fixed. 

E C41  ) 1( ,CZ 

(2.88) 
'2. 	'2. 

f\-2  SKiZ SKn rEN 	JeTIK,tpr,) 
We have already shown (p.40 ) that in this limit 

6c, )1 Et  (K)Zitr 
	 2 

	(2.89) 

6s  0- 0<„-. t- 04 ., 	c.ez 	0‹e  

ti 	 (En 	-1,e(tr,)- sK 	K 	 5ci 	
4'  6,1-  aej l.-9(te) 

(2.90) 
B6- 	

J 	 .•• 

204e  (Er) - r 
KK 	 S  lk n 	V•C• el) L'n t()LPA). 

(2.91) 

Thus our amplitude has correct Regge behaviour in 

this limit. Similarly it can be shown that the amplitude 

has correct Regge behaviour in the double-Regge limit 

corresponding to Fig.15b. We note that the asymptotic form 
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of our amplitude contains an explicit dependence on 1 . 

Here our model differs from the assumptions of conventional 

double-Regge models. For example, in Chan's model for this 

process Fig.15b is ignored and the amplitude for Fig.15a is 

written as 

aelece-rtv...) 	(e,pf.) Ylc4t(e-iitc) 	( -p1 	(Env( 	Jck)st6z 	s—e 	(2.92) kr\ 

where re  and t, describe the Reggeon-lc-K and 

Reggeon-p-n couplings and ). describes the Reggeon-Reggeon-17 

coupling. We note that the latter coupling depends on some 

azimuthal angle,15 , describing the relative orientations 

of the "top and bottom halves" of the double-Regge graph. 

may be taken as the Treiman Yang angle defined in the 

rest frame of the I as 

PT‘ K 1)1( • ( P? X Pr)  

I 	K 	!Pe  x .13r1 

Cit j i< jr< E CP, n 
	 (2.93) 

18t-01)<JR)1 	(e,f\,) 

writeCLS) When s

ick-, 	and sKn7jtI.jj, itpni and mi, we can 

ce5- 	tte. (En K 	pc\ 	 ETTI 
2_ item ; 	 (2.94) 

tP.n) 4- et\ 	/17 
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Therefore )/ may be expressed as a function of.tioi, 

tpn  and . However, in applying the double-Regge model it 

is assumed that the variation of Y with 0 can be ignored 
and the couplings are parametrised as 

(€11perYe (t-e(%) Nkf„ -iLEN,M= en- w-'€1` \ 

(2.95) 

where n K* and II are used as free parameters in 

fitting the data. Thus in this model the amplitude is 

assumed to be independent of 7) . The Veneziano model has far 

less freedom than double-Regge models. We have no 

parameters with which to modify the dependence of the 

amplitude on trio and tpn. This dependence is already built 

into the model. Chan et al. obtained good fits to the data 

with their model. However, in order to do so they found it 

necessary to take a K*  trajectory slope of almost zero. 

2.11 A Comment on the Data. 

Experimentally it is only possible to observe the 
- 	vo 

	"2'2 
vovo K°1K°1 	 1'2 

decay mode of the Ko Ko final state. The K°  and 

decays are not seen. This experimental limitation is 

equivalent to projecting out the K°  K°  states with positive 

C parity and G parity (-1)1. This can be seen as follows: 

Writing the K and 7 as spinors 

 

(Kis\ 
K° ) 

  

(2.96) 

  



we may construct 1=1,13=1 states of definite 

C parity. 

tKITC°) 	1Z` 3̀1.‹.4>) 

where the ± sign refers to the C parity. Using 

the lowering operator we may obtain 

(k. 	o>  ___ Iv+ ,--> \--iN9(2. 98) 2 
and the orthogonal 1=0 states 

@QiZ°)4-(1,(4 K->±-- Itcte) -± 1.-R°141'))) (2.99) 

The 0 and 17°  are only observed through the weak 

decays of the definite CP states Ki  and K2  (we ignore CP 

violation which is a small effect). 

K ° 	 KO c K t-t K2  
(2.100) 

  

     

Substituting eqn.2.100 in 2.99 we obtain 

2(11( `), et ) + Ve‘2,02.-\teK>- 1K-Kn) 
(L tic z«° - L let K°2_> -IK+C)±(K -e)) 

1 0, 0).-h  = 	let  1<cl) + 4e2)-1-- itk÷ K->t-  K-K÷).) 
(2.101) 

l 	9)-  .7- --!?:(11 lez 	1 et  e2)-EiK1-1()--iriCt.)) 
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Thus we see that the K°K°1  final state can only 1  
arise from C=+1 K°170  states. Also, because the K7K7 state 

consists of two identical bosons and the K and I both have 
intrinsic parity -1, any resonance coupling to K7K7 must 

have JP= 0+,2+,4+... and G parity (-1)I. 
Therefore some resonances (e.g. e N (1650) )  which can 

couple to the eff°  channel will not be seen in the data. 

At high energies we do not expect the resonances to be 

important and, providing we can distinguish which K7 came 

from the K°  and which came from the 17°, we can use the 

IC -ppK°K°n1 	data to test our model. 

In order to distinguish the K°  and K we note that 

the c.m. longitudinal momenta in the direction of the beam 

are given by(23) 

2b ) 

(2.102) 

	(Sri) S; KIV4-3/4-2tpn) 
2 ‘,s717i, 

for 	sTip,s7_1\jsKr\jsvcjk̀ ..j> 11.(2L  

As explained earlier we expect Fig.15a to give the 

dominant contribution to the amplitude. In the Regge limit 

for this diagram we have 

4), 

Tt 

) 	kr\ SKR 	\ -1  tit j  Ept‘ j Ilkt. • 
	

(2.103) 



Eqns.2.102 and 2.103 imply 

Pn (2.104) 

All the experimental events satisfy 

PQ d > P Q  r, 
(2.105) 

This confirms our assumption that the diagram of 

Fig.15a gives the dominant contribution to the amplitude. 

The Regge limit of the term corresponding to Fig.15b would 

imply 

< Pn 	 (2.106) 

No experimental events were found with 

Q 
< 1 1<c, < 
	

(2.107) 

To within the accuracy permitted by eqn.2.104 and 

eqn.2.105 we can use these equations to distinguish the K0  

and Ko. Unfortunately due to the flatness of the twK 
distribution the estimated fraction of wrongly ordered 

mesons is about 20% l° 
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2.12 Discussion of the Results. 

The predictions of our Veneziano amplitude are 

shown in Figs.16-18. We have made a comparison with two 

sets of experimental events: 

1. Those with sKn' K s-n' s  KK  -) 3.5 GeV
2 

2. Those with sKn' Kn sr- '  s KK  - ) 5.0 Gev
2. 

In both cases reasonable agreement with the data 

for the mass squared distributions is obtained. However, the 

agreement with the momentum transfer data is not good. In 

particular the model fails to reproduce the shape of the 

trK  distribution - the Veneziano model does not provide a 

solution to the difficulty found by Chan et al. in fitting 

this distribution (except by assuming the K trajectory 

slope is approximately zero). The tpn distribution is not 

sufficiently peaked in the forward direction. This is 

'probably caused by our neglect of pion exchange in this 

channel which may still have a significant effect at the 

energy we are considering. 

We also show the Treiman Yang angle distribution. 

Our model gives satisfactory agreement with the data. We 

note that there is a peak near to ok =1800. This is more a 

kinematic consequence of the model producing forward peaks 

in the momentum transfer distributions rather than the 

explicit dependence of the amplitude on 7) (0). 
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Figure Captions  

Figure 16 
	

Mass-squared and Treiman-Yang angle ((k) 
distributions for the 224 events for which 

skE, syli vsKia> 3.5 GeV2  at 12.0 GeV/c. 

Experimental data: 
Theoretical prediction: 

Figure 17 
	

Momentum transfer distributions for the 224 
events for which s-KK'K s-n' sKn >3.5 GeV2  at 
12.0 GeV/c. 

Figure 18 sKK and -tK distributions at 12.0 GeV/c for 
the 73 events for which s-KK' s-n' sKn >5.0 GeV

2. 
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III. CONCLUSIONS.  

In this chapter we have presented a Veneziano model 

for three particle production in which an attempt has been 

made to take account of the spins of the external particles. 

In doing so we have been able to avoid having the 

unphysical fermion resonances in crossed processes which were 

an undesirable feature of the earlier "spinless" model. 

The K-13.- --1-Cfn amplitude has correct asymptotic behaviour 

for all crossed processes and the Trpern amplitude 

for processes which do not involve crossing the baryons. 

The model provides a prescription for determining the 

kinematic factor for any process including those involving 

pion exchange for which the choice made in earlier Veneziano 

models has been rather arbitrary. 

Against these advantages of the model we must set 

its weaknesses. The most important of these is the fact 

that the prescription for determining the kinematic factor 

is based on consideration of what we consider to be the most 

important peripheral diagram for the process being 

considered. This means that the choice is made by refering 

to only one of the permutations contributing to the 

amplitude. If we were to evaluate every possible douhle 

peripheral graph corresponding to our five-point blob 

diagrams we would, in general, find that our kinematic 

factor was only one of many possibilities. However, since 

our choice is based on physical arguments concerning which 

term we expect to be most important for the process under 
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consideration it is not unreasonable to assume that our 

amplitude should provide a reasonable description of that 

process. It is also quite often the case (e.g. for 

K-11=-7>K
*—

n) that our prescription gives the same kinematic 

factor for all processes involving only crossing the mesons 

and therefore we would expect the amplitude to provide a 

reasonable description of these processes on crossing. 

Although often still having correct asymptotic 

behaviour our Veneziano model is not, in general, self 

consistent on crossing the baryons. This difficulty is 

associated with the fact that it is not possible to include 

fermions in the Veneziano model in a fully satisfactory 

manner. Some progress towards constructing a Veneziano 

model which is consistent under baryon crossing has been 

made recently by making use of the U(6,6) symmetry scheme 

and duality diagrams(27) 

In applying the model proposed in this chapter we 

find that we obtain good agreement with the main features 

of the data but when we look at more detailed properties of 

the model (such as the double—Regge limit) we find the 

agreement is not so impressive. This is probably due to 

the simplifying assumptions made in order to make the 

application of the model practicable. Perhaps, in the 

future, improved data and numerical techniques will allow 

some of these difficulties to be overcome. 
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CHAPTER 3.  

3.1 The Zero Width Resonance Problem. 

One of the main difficulties encountered in 

phenomenological applications of the Veneziano model is the 

problem of how to give the resonances a finite width. The 

simplest method of achieving this is to add an imaginary 

part to the trajectories thus moving the poles off the real 

axis and resulting in the resonances having a finite width 

(however, the poles still remain on the physical sheet). 

We have already discussed two possible parametrisations for 

the imaginary part in chapter 2. Both of these lead either 

to the introduction of ancestors or to the loss of crossing 

symmetry of the amplitude. However, since it is possible 

to construct phenomenological amplitudes in which these 

disadvantages are not manifestly apparent this method of 

giving the resonances a width has gained wide spread 

acceptance among phenomenologists. 

A far more elegant technique for moving the poles 

off the real axis and onto the second sheet is to perform 

a convolution of the Veneziano amplitude with a suitable 

"smoothing" function. Models of this type have been 

proposed by Martin(1)  and Burkhardt et al.(2). These authors 

write the smoothed amplitude in the form 

,E) = 	ce0c-). 	)cLx_ 
(3.1 ) 

where 06(x) is a suitably chosen smoothing function 
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and ir(slt) the original Veneziano term. This particular 

method of smoothing the amplitude has several disadvantages: 

1. Because of the form of the integral of eqn.3.1 the 

Veneziano amplitude is effectively averaged over a line 

in the s-t plane. This implies some correlation 

between the independent variables s and t. 

2. One finds that this smoothing technique leads to all 

resonances of the same mass having the same width. 

This is a serious disadvantage when one wishes to 

construct phenomenological amplitudes with different 

trajectories in different channels. 

3. The evaluation of integrals of the type given in eqn.3.1 

is generally difficult. 

Instead of using an amplitude of the type given in 

eqn.3.1 we shall consider a smoothed amplitude consisting 

of terms of the form 

b 

(3.2) 

Although at first sight this appears even more 

complicated than eqn.3.1 we shall see that it enables us 

to overcome the disadvantages listed above. It is 

immediately obvious that, since the variables s and t are 

smoothed independently, the first of these is removed. 



3.2 The Model. 

We have shown in chapter 1 that the Veneziano 

amplitude may be written as a sum of pole terms. For 

example the s-t term of the simple scalar (e) particle 

amplitude may be written as 

91 . 

ec<(c),- (10) 
tit 

r ( 	CO) 	(3.3)  
A.1 (n\-o<N)) I (_ft\-0(tf)) 

Consider the term containing the pole at c<(s)=k. 

We may write this term as 

(3.4 ) 

 

k-o (s) 

where Rk(t) is a polynomial of order k in t. We 

now take 

ocid), 	gC(-5)  
C(3-1).2- ± re. (3.5) 

where h(x) and g(y) are analytic functions in the 

range of integration. The contribution of the pole term to 

the smoothed amplitude will be 

\6c) g 6-3 ) ‘z(€1-3)  	  
I_ LCD4-1C2s][(-t)14- \J'1)02-- of, 

	(3.6) 
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Here we have chosen the range of integration so 

that we are, in effect, averaging the Veneziano amplitude 

over a rectangle of side 2E centred on the point s,t in 

the s-t plane. If we choose h(x) and g(y) so that 

, 	 c 	Er-) (Jac  

1-6 (t6-1).11- 	 (z_--1)14)51- 

then, providing e is sufficiently small, on 
performing the integral over y we obtain 

9 S).  R (b),1,,,3  

CLA-02- 
tkj  (3.8) 

However, even without making any assumptions about 

E3 or g(y), Rk(t) will still be a polynomial of order k in t. 

We must now consider the integral over x. We can rewrite 

eqn.3.6 as 

q)  
`1 ,-2-} 	 - c<isx) 

(3.9) 

 

where o<(e)= oeo  oe 

[ 	2 ;.S, (k— °c c, — o. 's (t + 1.(J S)) 

hC,c)  
-1 OS's 

(3.10) 

(3.7) 
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i+ 
h6c)  .cLr. 

Nt(s( —oco  — oc IS (t 1-Xs) 	1—E 2C_- 14-0Ss 

1,16c)  
czo-oeis)2 -+ 	sI,y1 1- e 	czo— oci5X) 

Hence the x integration is reduced to the evaluation 

of integrals of the form 

14-E.  

h  `mil Ct5C- 	 (3.11) 
-1- C 

where c is a constant. 

When c lies on the line of integration we interpret 

the integral as its principal value. 

The first two terms of eqn.3.10 give rise to poles 

(3.12) 

Thus the poles are moved off the real axis in the 

same way as would result from adding a linear imaginary 

part to the trajectory. However, in our model we do not 

destroy the crossing symmetry of the amplitude nor are 

ancestors introduced since Rk(t) is a polynomial of order 

k in t. We shall also see later that the poles now only 

occur on unphysical sheets. 

The third term in eqn.3.10 gives rise to a cut from 
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k- (KO 	k-o<0 s=c7777 to s=.77.--)..e- 	in the s plane. This cut does not 

correspond to any physical cut and is an unfortunate feature 

of this type of model. Burkhardt et al. have proposed(2)  a 

method of smoothing in which the resulting cut has some of 

the properties of the threshold cut required by unitarity. 

However, their method is only applicable to four-point 

amplitudes and suffers from the same disadvantages as were 

mentioned earlier. 

In choosing h(x) and g(y) we must ensure that h(x)=0 

and g(y)F0 at the ends of the range of integration in order 

that the integral shall not diverge. The simplest choice 

for h(x) and g(y) satisfying this is 

,n12 (3.13) 

where A and A' are chosen so that eqn.3.7 is 

satisfied. In general, one finds that for m= odd integer the 

cut term has a square root branch point(3) and for m= even 

integer the cut is logarithmic. As m increases the relative 

magnitude of the cut contribution to the amplitude decreases. 

The first two terms in eqn.3.10 are found to be independent 

of h(x) but the third is not. By choosing m sufficiently 

large in eqn.3.13 we can make the cut contribution negligibly 

small. For m=1 (as used by Burkhardt et al.) numerical tests 

suggest that the cut contribution is of about the same order 

of magnitude as that from the pole terms. For m=2 the cut 

contribution is a few orders of magnitude smaller 
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than the pole terms. Although we could make the cut 

contribution even smaller by taking a larger value for m, we 

shall use m=2 as this allows the integral of eqn.3.11 to be 

evaluated easily. 

Therefore eqn.3.11 becomes 

A E(x-t)2- 
- t -- c 	 (3.14) 

1= 

Let x-1=en 

S' Pt 3  t-X.1  
G Lt. 4- C (3.15) 

f A € [eu-c 	e   I au,. 
- 1 Eufc 

(3.16) 

Assuming IS-I> 1 if c is real, we obtain 

I= -2_Acc ÷ A (di- 	perc, 	c)  
(3.17) 

Care must be taken when evaluating the logarithm. 

We shall take the physical sheet as corresponding to the 

principal value of the logarithmic function. Thus we obtain 
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t 4- C 

c k (c) 	c6- -7--  A L -I- 2e i.Ys  - Or: 4- 67) 
1- c x.--- 1 4--  a s  

g [_) 	(e LY s) - 	(.±:- ' c' 6 s  c)j] 
_(3.18) 

A 	2E (1% + 0S1'4.-  C2)Ll_c25(C4-a0 

- Lon oss--)11. 
(3.19) 

Using eqn.3.7 we may determine A: 

R&c.) 	_ 
+as Tas t-6 \ 	-.4-15  

=1 

(3.20) 

÷ (XI+ 	EL,37:4-*L`ss) 
C6s  

1-ct (r6.1 	1-  • 
Therefore 

(3.21) 

The third term of eqn.3.10 has a singularity on the 

line of integration when k-  «6<s< k- The integral 
a'(1-1-c) 

of eqn.3.15 must then be interpreted as a principal value 

taking the contour of integration above the real axis as we 

go round the pole. Thus, when 	<1 and c real, we obtain: 

-2.Aec + 6 (c"2-- -- -) F_Lcz-, (c-t-c) 

lc 	1-71 

(3.22) 



Therefore we obtain our final result for the 

smoothed pole term of eqn.3.4: 

G) 

2-  (k-  0(0 - s + i_Wc)) 	2(k..-0(0--0<'s(1-Oss)) 

(3.23) 

is E2.eb +(e2-b2)(Late-i-b) 	(b--))] 
0('s) + (ass s ,2) 

Of5 

s 	Oct ± 	LeSz3 (€4- 	- 1-Ork.Xs- E '53 

	

where b= 	
oCo  

a( S 

In this expression the cut term has been evaluated 

for 	,S-40+  and is therefore the correct contribution 

for the physical region. It can be shown that on the 

physical sheet the pole terms in eqn.3.23 are cancelled by 

similar poles in the third term of the expression. Thus the 

poles of the smoothed amplitude only occur on unphysical 

sheets. To see this more clearly we return to eqn.3.6 and 

look at the singularity structure of the integrand in the 

complex x plane. The integrand has fixed poles at x=1+iirs  

and a moving pole corresponding to each pole of the 

Veneziano amplitude at 

a , t J L " (3.24) 
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The contour of integration required for evaluating 

the amplitude in the physical region lies just above the 

real axis (see curve C in Fig.19a). The poles in s will only 

occur when the contour is pinched against one of the fixed 

poles by one of the moving poles. The physical amplitude in 

the region of the cut is defined by approaching the cut from 

above on the physical sheet of the s plane (e.g. along path 

P1  in Fig.19b). Now consider the moving pole at xk  as we 

follow the path P2  or P3  in the s plane. On the x plane xk  

will follow the corresponding curves shown in Fig.19a. In 

neither case will the contour be pinched and therefore the 

poles will not occur on the physical sheet. In order to 

pinch the contour xk  must follow a path such as P4. However, 

in doing so we must pass through the cut on the s plane 

thereby going onto another sheet. The pole occuring at 

oco 	0.< 1 	s)S 	 (3.25) 

will lie on the second sheet and be reached by going 

through the cut from above. It therefore lies near to the 

physical region and will correspond to a resonance. The 

pole at 

D4e 	c;. 1  (k 	
(3.26) 

lies on a third sheet reached by going through the 

cut from below and is far removed from the physical region 

and its contribution there may be ignored. 

The second sheet resonance given by eqn.3.25 will 
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have a width given by 

r= tIN 
	

(3.27) 

where m is the mass of the resonance. 

Hence the width will increase linearly with mass 

along the trajectory. For most trajectories this is not 

inconsistent with the experimental data on resonance widths. 

We may also note that since we can choose Y differently for 

each trajectory we are not forced to give all resonances of 

the same mass the same width. 

The asymptotic behaviour of the Veneziano amplitude 

will of course be modified by the smoothing integration. 

As well as Regge pole terms, the asymptotic form of the 

amplitude will also contain Regge cut terms of the form: 

c
s, 	f‘_, 	pcs)  scxd  -t-  ne(1--  6. )E- 

5-• cap 
6 Pu.ceei, 

where p(s) increases slower than a power of s 

(i.e. p(s) will contain terms in logs). Providing the range 

of smoothing is small ( E of the same order of magnitude as 

the experimental error in determining the trajectory slopes 

or smaller) then we would not expect this modification to be 

discernible in a phenomenological application. Because we 

have chosen our smoothing function yS(x) so that it 

vanishes at the ends of the range of integration the real 

axis poles of the Veneziano amplitude will become smeared 

out for large s. This will give rise to a smooth asymptotic 

behaviour even along the positive real axis (i.e. in the 

(3.28) 
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physical region). 

3.3 Application of the Model to Kv-*17*°n. 

In our smoothed Veneziano model the poles acquire 

a similar parametrisation for their widths as is obtained 

by adding linear imaginary parts to the trajectories. One 

expects the contributions from the poles at k= cxos) 

which are far removed from the physical region to be 

negligible. However, it is not immediately obvious that the 

second sheet poles at k=o<0-1-xi s(1+As) will dominate the 

amplitude since, in addition to the poles, we also have a 

cut contribution which may be significant. Therefore we 

shall test our smoothing technique by applying it to a simple 

Veneziano model. 

In chapter 2 we have already obtained a simple 

amplitude for K-p-L:›17*°n and have used it to calculate 

differential cross sections. In this application a linear 

imaginary part was added to the s-channel trajectory. Hence 

this provides us with an ideal choice for testing our 

smoothing technique. 

- Our Veneziano amplitude for K-  p4K*o  n is given by 

Nrikjis  up  11 (.6,,,(AgEo<-,(t) , 	czL(s)) 

(3.29) 
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where 	a x 	- oaa +0.9 s 
o<mr  LE) = —o. onS -+ 0.9 E 

and where N is a normalisation parameter. 

In this amplitude we replace the Veneziano term by 

its smoothed form obtaining: 

A sc,..6it, 	\ )5 5 p 	 c (X) 

1+6 t-1-6 
	 (3.30) 

46(x-) & CLo) 6 (1- — c'E (sx), -okn(tk-S))cLa 
I-6 I-6 

We have chosen s  and y so that we obtain the 
correct width for the pion and approximately the correct 

widths for the resonances on the !(1385) trajectory. We 

use Ws=.05, Wt=5.10-5. The integral of eqn.3.30 cannot 

be evaluated explicitly. However, the integration over x 

may be carried out by using eqn.3.23 and the expansion of 

eqn.3.3. The y integration may be carried out numerically 

by computer. 

In Fig.20 we show the differential cross section 

predictions at 4.1, 5.5 and 10.1 GeV/c for E=.05 (dashed 

line) and e=0.1 (solid line). For small E the results are 

obviously sensitive to the range of integration. For E4c.03 

the contribution from the third term in eqn.3.23 is very 

small and the first two terms combine to give an amplitude 

which is essentially a sum of the real parts of a series of 

Breit-Wigner resonances. As e increases the imaginary 

part of the amplitude becomes more significant and 

cancellations between the contributions from the first two 
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and the third terms of eqn.3.23 give rise to a complicated 

cross section structure for E N.05. As e is increased 

further (4E2.08) the cross sections become smoother changing 

little as E.  is increased. This is what we would expect from 

viewing the smoothing procedure as averaging the Veneziano 

amplitude over a small area in the s-t plane. In simple 

terms we expect the averaged amplitude to become "smooth" 

when the range of s over which we integrate is of the same 

order of magnitude as the distance between the poles (i.e. 

r,J1 GeV2  ). Our data is for s lying between 8 and 20 GeV2. 

Therefore we would expect our predictions to be "smooth" 

for eZ.10. This is what we find on doing the detailed 

calculations. 

3.4 Conclusions. 

In this chapter we have seen how the poles of the 

Veneziano model can be moved off the real axis onto the 

second sheet without destroying the crossing symmetry of the 

amplitude or introducing ancestor particles. This provides 

a great improvement on the "imaginary parts" method. As a 

result of the smoothing technique the amplitude contains 

unphysical cuts. However, these cuts are essential in 

order that the poles should be removed from the physical 

sheet. We find that our results are sensitive to the range 

of integration in the smoothing integral. However, as the 
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range is increased this sensitivity diminishes. 

We also note that there is considerable freedom 

in choosing our smoothing function. This may possibly be 

used to advantage by trying to find smoothing methods which 

lead to more realistic cut terms and which are less 

sensitive to the range over which we average the Veneziano 

amplitude. 
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CHAPTER 4. 	RECURRENCE RELATIONS FOR POLE RESIDUES IN 

GENERAL VENEZIANO AMPLITUDES.  

4.1 The Four—Point Amplitude. 

In this chapter we derive relationships between 

the residues of neighbouring poles in a general class of 

Veneziano amplitudes. 

We start by, considering the simple Veneziano 

amplitude for scalar (0+) particle scattering: 

fpc -"((s)—  (.1 
— 	(t) — cbc 

(4.1) 
(S, 	(u,,e te,cri\ 

where 	b‹.(s) 	(X t, -V-  c4 it. 
As it was pointed out in chapter 1 we may add 

satellite terms of the form 

r(m_A<(s)).1-1 (n---c< (0) 	tryl--r<cr\-+(\, (4.2) 
17 6-- 	CO) 

to this amplitude without affecting the asymptotic 

behaviour. The extra terms simply alter the residues of the 

poles. We shall consider the class of Veneziano amplitudes 

given by 

A = 	fp
z—oe(s)-- i n 	0( (e) - 

f -) O 
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where f(x), g(x), and h(x) are arbitary functions analytic 

in the range 0.5.cx:1:1. By expanding f, g and h as Taylor 

series in x we may write the amplitude, A, as 

06 	 06 
Z_ bn\ B (n\ --e‹Cs), .--e‹ CO) +2-  cr. B6\— 0((s),—,,‹ (Lk)) 
m=0 	 n=o 

pr---0 

If f, g and h are symmetric under x<-41-x, then A 

is crossing symmetric in s, t and u. The amplitude given by 

eqn.4.3 is the most general Veneziano amplitude which can be 

written as a sum of Beta functions. 

Consider the first term V(s,t) of eqn.4.3. In the 

left hand plane of both s and t V(s,t), V(s-iL,t) and 
«(' 

V(s,t-,) are analytic and we may define 

FCS,0 -= 	cs, 	t/c)( i)-4- \)(S-k41,{-)- \)(.% 	(4.5) 

F(s,t) will be analytic in this region and from 

eqn.4.3 we see that 

1"---(s,t)= 0. 	 (4.6) 

However, if eqn.4.6 is true in the left half 

planes of s and t, by Liouville's theorem it will be true 

everywhere that F(s,t) is analytic. 

Now consider a pole at (›((s)=k. Near to this pole 

we may expand V(s,t) and V(s- I ,t) as 
e7d  

(4.4) 

) ci tz_(0  
k- 0<(s) 

± enta-e C."-kINC:ECOI\ (4.7) 
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V (s —2? ) = r 	eitwe Pw\cti-on 
k- (s) (4.8) 

where r (t) is the residue of the pole of V(s,t) at 

0.<(s)=k. Near to the pole we may write eqn.4.6 as 

r,,_, (0-4 rn  (E-14<i)--  riz(0  
k- Ls) 

4 ent'ic'e Functior\ = 0 

().+ 	'4e) -r((-)= o. 

 

Thus 

(4.9) 

(4.10) 

This relation between the residues of neighbouring 

poles of V(s,t) in the s-channel applies for any function, 

f(x), in the amplitude of eqn.4.3. The same result may also 

be obtained by considering each. term of the expansion of 

eqn.4.4. The residue from the term with coefficient bm, m<k 

for the pole at c(s)=k is 

rkim  (0, 

	

	  

Tl(k*-1-riN) l (m-k -o< CE)) _ 

E.  (t-} C— 	b, LO)) 
,n\ 

(k-t--2- nN) , t (1)\-k- t -0<tOi 

- rk,n, (k) = E k) --(^4' k  bet. r ED( (M  
r 	r 	4E))  

[cfr\_lz_ k o‹(E)) 	-0\)] 

(4.11) 

(4.12) 

(4.13) 
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ok_m+1 

(k+o_-m) 
(0((e)H) L 

rt.+ ‘, Tr\ (6--  Va t ) r 

  

Summing over m we obtain eqn.4.10. A similar 

relation will connect the residues of the s-channel poles 

arising from the (s,u) term. Relations of the type given 

in eqn.4.10 provide a.means of checking whether it is 

possible to construct a Veneziano amplitude of the type 

given in eqn.4.3 having some specified residue structure. 

Using eqn.4.10 it is simple to see whether, having constructed 

an amplitude having the required residue structure at one 

pole it will still have the required structure at the next. 

4.2 The Five-Point Amplitude. 

We shall consider a general five-point term of the 

form 

V CS 12 52-3 it S34. 4-5", Sst) 
SS

CUL A-1,3 
0 4 1— U-%li3 

20.((sa3)-1 	tC14_) - I - (54.5) - 	(55-  f 
uU4_ 	 T 	ti .̀.̀ 3) (4.14) 

o4 op z CIAN Es-(1)\--0( iS12).1— °<(52-3), —0<.(S343 j  
fh=o (4.15) 

(s 4.5.) , - Cs s- 	' 

As described,in chapter 1 there is a constraint on 

the variables u given by 

= I 	- 	• 	 (4.16) 



Thus V will satisfy equations of the form 

V (S J 52.2 I/14 S  34 . ! S4--S j  SS% )4- CS z- 	54s, Ssi) 

\.(511-52.siSs4.5.4_s i5si) = 0 
	(4.17) 

with corresponding residue relations of the form 

rk-i (srl S34 	):--- rh.(st/ , 53c J 	Ss!) 

lac'  j  S4.s  iSsi) 	(4.18) 

for poles in s23. 

For the N-point case V will be a function of the 

7.(N-3) planar Mandelstam channels si  corresponding to the 

permutation being considered. We should note that, for N>5, 

only 3N-10 of the si  are independent. Thus, in general, V 

will not be on mass shell. In using N-point functions the 

si  may be regarded as independent in doing calculations and 

the constraints between the Si only applied to the final 

results. 

The constraints on the integration variables ui  of 

the N-point function are 

Lkk 	(4.19) 

where k runs over all channels dual to i. Thus 

we obtain 

(4.20) 

for poles in s... 
3 
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where 	 i  e.1.1 if s is dual to s J 
=0 otherwise. 

This leads to residue relations 

rit 	(s, 	J 81-1-1).- )4 C'k (SL—E1-1—oc ,) 

(4.21) 

Since for n>5 not all terms in eqn.4.21 can be 
simultaneously put on mass shell the usefulness of these 
relations will be reduced. 
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CHAPTER 5. 	A GENERAL CLASS OF DUAL AMPLITUDES.  

5.1 Introduction. 

As we have mentioned earlier the asymptotic 

behaviour and pole positions in the simple Veneziano 

amplitude for scalar (0+) particle scattering are unaffected 

by the addition of sattelite terms. The residues of the 

poles are, however, altered. The most general crossing 

symmetric Veneziano amplitude for such processes may be 

written as 
2_rr, 

7  1, r P(n.- ...<CS)) , r 01.\- oc (0) 

c"(c-- oCs) 

 

irirz 0 	c'= fy\ 

 

( 5 . 1 ) 

(s.-->ki.) 	(u_,-->€.). 

If we consider the pole at o<(s)=k then the 

residue will be a polynomial of order k in c(t). There 

will, in general, be k+1 terms with m=k which do not have 

poles for ods).<:k. The choice of the coefficients ckr  for 

these terms will not affect the residues of the lower poles. 

These terms will have residues of order k,k-1,..0 in cv(t). 

By making suitable choices for ckr we can give the 

coefficients of the polynomial residue of the pole at <(s)=k 

any values. Thus we see that it is possible to construct 

Veneziano amplitudes of arbitrary polynomial residue 

structure in terms of an infinite series of Veneziano terms. 

The construction of such series and their convergence has 

been investigated in great detail by Khuri(1). Although 
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the existence of such series may be established the actual 

construction of an amplitude with some required residue 

'structure will usually be a formidable task. 

In this chapter we shall investigate the explicit 

construction of dual amplitudes having any desired residue 

structure. In order to do this we shall not adopt the 

type of procedure discussed above but instead construct an 

amplitude by modifying Euler's Beta function integral. 

A feature of the Veneziano model is the presence 

of infinite series of daughter particles accompanying the 

the resonances on the parent trajectory. Theoretically 

daughters must be present in unequal mass scattering in 

order to preserve the analyticity of the amplitude. 

However, for 2-i2 equal mass scattering they are theoretically 

unnecessary. As a specific application of our technique 

we shall construct an amplitude for such processes in 

which there are no daughter particles. Although the 

technique may be straightforwardly extended to construct 

amplitudes for unequal mass scattering without daughters 

such amplitudes would have unphysical singularities. If 

the residues of the poles in the unequal mass case are to be 

entire functions of the Mandelstam variables then daughters 

must be present. 

5.2 General Four-Point Amplitudes. 

For 2-'>2 scattering of scalar (0+) particles we 

may write the fully crossing symmetric amplitude as a sum 
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of terms each of which corresponds to a different ordering 

of the external particles. We may write each of these 

terms as integrals of the form 

F( ,X) = f xtk- 	) A - 
0 

  

ax- (5.2) 

 

where f is any function having continuous 

derivatives to all orders in x in the range of integration. 

We have written the amplitude in terms of the variables 

µand L, where these are linear trajectories (e.g. - c4(s) 

and - g(t)), in order to simplify the notation later on. 

The amplitude of eqn.5.2 is more general than that 

considered in chapter 4. 

If f can be expanded as a Taylor series in x of 

the type 

f 	1X) = 	x) + 	6-k) X) • 'x (11-C)* • • 	(5,3) 

where, assuming the amplitude is crossing 

symmetric in IA.  and A, the coefficients ar  may be written 

as 

-(3 
	

(5.4) 

then we may write F(IA,X) as a series of the type 

given in eqn.5.1. 

In general the amplitude of eqn.5.2 will have poles 

for FA. and X =0,1,2,— The pole at Ft  =-k will have a 

residue given by 



J r2- 
.• • 

(5.8) 
(a) = 

4,  (X) 
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(5.5) 

Our aim is to construct an amplitude with any 

required residue structure. Therefore we shall require that 

the residue given in eqn.5.5 should be 111(k, A) where h1 is 

any analytic function of X, This may be achieved if 

cx,_k,x) 	. 
(5.6) 

-c):10  

These conditions may be satisfied by writing 

SI 6c, , 	40-Dc).(cAl(Ft/x)-01 

g[t± ,c6(-).(q20,1-x-)-0-1 
	(5.7) 

where 

and 
9 ► C-‘2,x)-= 

10. k i(k X) 

ct (© 0) = h Co) 
(5.9) 

Eqn.5.7 has been constructed so that the residues 

of the.poles in t...x and A are equal to h1  and h2  respectively. 

The functions defined by eqn.5.8 are called van der Corput 

neutralisers(2). These functions have already proved useful 
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in the removal of parity doublets in the supermultiplet 

Veneziano model(3) An example of these functions is given 

by 

where 

fr) = 	t9c=c)  
G(1) 

i""(-11. 	
JZA6-,) , 

v)) 	k5.10) 

We shall discuss choices for the functions gi(u,x) 

in the next section. For the present we shall assume that 

functions satisfying eqn.5.9 exist. 

With f(x,/,,x, X) defined as in eqns.5.7-5.9 we 

obtain an amplitude with any required residue structure. 

As a particular example we shall construct an amplitude for 

equal mass scalar particle scattering in which there are no 

daughter particles. In order to do this the residue at the 

pole at kt(=-05(s)) =-k must be proportional to Pk(cos1 13) 

where Pk is a Legendre polynomial and 0s is the s-channel 

c.m. scattering angle. Similarly the residues of the poles 

Po  atA(=-cdt))=-jmustbeproportionalto.(coset). As  

we are considering equal mass scattering we can write the 

scattering angles as 

C.OS les 

  

 

(5.11) 

where m is the mass of the external particles. 

If 	
= 	cx(s) 	c<0— '<'S( 

= 	—c< (I) 	c<c, 
	 (5.12) 
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then Cass 	 (c<0  -t-X) 
g t, + t-k+ R-0(1  

(5.13) 
= 1 + 2  CP( 0 X) 	eLsk  

0( 0  — t246.""L p(l  

at the pole f4= —k 

Similarly 

COS e& = 1 4-  2(94 + 1-) 	a COS 6)6)  (5.14) 

at the pole =—j 

If we choose 

h i  (k,X)= C k k(c-z 6Csk)) 

hi. Go) = 	(coseiV) 
	

(5.15) 

where ck gives the coupling strength of the spin k 

particle, then the residue at the pole J.A=—k is ckPk(cos0s) 

and at the pole X=—j the residue is ciPi(cost)t). 

Hence we obtain an amplitude for 22 equal mass 

scattering with no daughter particles. It should be 

emphasised that this does not mean that there are no 

daughter trajectories. These are in fact still present but 

are empty. It should also be noted that there will also be 

poles in s in the (s,u) term of the full amplitude. This 

term must also be constructed so that it has daughterless 

residues. 
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5.3 The Functions  gi. 

The functions r7.2.(1.x) are defined by ean.5.9. c> 

We may write them as a Taylor series in x: 

‘nt 0,,x) (5.16) 

where qn(t.x) satisfies 

(-r) 

ern C-A)= 

 

(5.17) 

Therefore the functions qn(tA) must have zeros at 

all integers less than —n. They must also be entire 

functions of tA as they must not introduce additional 

singularities in }A. The simplest choice satisfying these 

conditions is 

  

r ((N., + H.) 	(5.18) 

Choosing qn(yA) as above will ensure that we get 

the required residue structure. However, asymptotically 

this expression will increase faster than any finite power 

of µ as ItAkcd, 17 -> lare;VAI>n/2:  This will prevent us 
from obtaining Regge behaviour in this region. Therefore 
we may redefine a (L) as 

CH-) 
r(A--lir p.) 

pc, e— t-\) = 
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where pn(tk) is such that qn(1.0 is asymptotically 

constant or decreasing with 114 
Noting that(4) 

	

z-a_-4- 	 21":71  
10,) 1•_.! 	 e. 

(5.21) 
CAS 	117.t moo 

-2.1‹..-TC • 

We shall consider two choices for pn(F.I.). Firstly 

FIN 	= 	 Li
-.+n) 

j6\  Ctj'-Ani 	(5.22) 

This satisfies eqn.5.20. With this choice qn(1.1),.44  

as WA-7-G. It should be noted that this does not result 

in an extra 1.C4  factor in the asymptotic behaviour of our 

amplitude which would spoil the Regge behaviour. This will 

become obvious when we consider the asymptotic 

of the amplitude in the next section. We have 

eqn.5.22 in exponential form so that, together 

condition targi.).1,..57 , qn  is single valued. We 

as defined by eqns.5.19 and 5.22 1  qn(1..) has a  

behaviour 

written 

with the 

note that, 

branch point 

at p =A. Below this point g(µ ,x) is real whereas above 
g(1.0x) becomes complex. As we expect amplitudes to 

be real below threshold and complex above we shall choose 

A to be the threshold point in the p. channel. 

One of the assumptions leading to the concept of 

duality is that, at low energies, it is the imaginary part 

of the• amplitude which is dominated by resonances. With 

this in mind it is interesting to consider a second choice 
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for pn(1.) and take 

. 	et, 
 p

=  ex?  Ek.k-k-f\xt-ti,(,-A))-k-J2-0_,-A).-9„\A+ 503)  

With this choice qn(Fk) is asymptotically constant 

for all kargVA<7. Above threshold the resonances occur in 

the imaginary part of the amplitude. This appears to be 

more in keeping with the concept of duality than the original 

Veneziano model. However, in a unitarised model the poles 

would occur on the second sheet and until one knows how to 

construct such a model it is not possible to tell what 

should happen to the poles as the width of the resonances 

tends to zero. 

At this stage we may note that there is considerable 

ambiguity in the definition of the gi(tt,x). Just as the 

addition of satellites does not affect the asymptotic 

behaviour in the Veneziano model, so we find in our model 

there is an arbitrariness in the choice of the functions gi  

if we only insist on the amplitude having a certain residue 

structure and Regge asymptotic behaviour. 

Finally, in order to show that the functions gi  do 

exist, we must show that the series of eqn.5.16 converges. 

By D'Alembert's ratio test the series will converge if 

      

9.4+CIA) \\%(1\4k, 

c‘f CM) Ki((\ ,X) 

 

       

       

       

 

Ur, 

    

(5.24) 

       

        

        

c>0 



As 21-16 un  
\ providing 

will be less than 1 for all finite 1-A and 
un+1 
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Taking qn(frL) as in eqn.5.22 

    

 

exe 	+ 	 ((\ + 

\\,G\ }‘) 

  

   

    

    

(5.25) 

.7, (i_k-rt) \\,Cr\-k-k 
e ON+ 	ht(r\,X) 

• 

k, (r\-1-1,X)1 (N.04) 
0 . 

I nh, (N,)\) 
(5.26) 

5.4 Asymptotic Behaviour of the Amplitude. 

To start with we shall consider the asymptotic 

behaviour of our amplitude as ti-'>0.3 (i.e. 	- 00) along the 

real axis. As a specific example we consider our 

'daughterless' amplitude. This is given by 

[It ciio_c) 

11=0 
x-r\  ct,r: 	cr‘ 
	 (5.27) 
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Substituting x=e-Y 

r(i-k,)%) = cre.-1-9 	-e."") 

 

  

,c-\  (r‘) K ( 	i‘  0-0 c c\ 	 J 
\ 
— 1-3 

(5.28) 

J 	\ c; I 4- #(e"i)( 	i- e \ 	
4 vv  

nO) 

As Napo the integral is dominated by the 

contribution from the region near to y=0. Since c6(1-e-Y)---).0 

and 43(e-Y)..i1 as y-)0 faster than any finite power of y 
oo 

f (--"5 a  ( 
0 

(x) 	Cc-ca- a1(,,.) 
Now let f.fLy=w 

ti 
(5.29) 

26  _ 	- 

Ft- 	dr- 0 

< 1.4 (A)c ..11),;(car4) 
	(5.30) 

We may expand 

X-t 

(5.31) 

(.1- :) -X)L Yt•(-3-)1/4) 

F 	
0 



- 	r (14- x) cv:1 cx) 

x c 	(ccYs 	- 
(5.33) 

=-0 

(5.34) 2_1-x  
Deo  

124. 

where the Stirling polynomials, kV n(x), are defined 

by the generating function(5): 

1-x-1 	0.0 
+ (x.+ 	Yr, 

A=0 	. 

	
+1 

Then 

(5.32) 

As 	ao 

F 
	

) r.J 	• 4.o r(j
-I-X) ck,j(X 

Q_ 	)i  (2-1/41)`  C3 	(5.35) 

(2_3 )1 cf4  e,"t')  --16•0 -A)) 

-c  (J- x) (..<0 	(0 )1- 
(5.36) 

with qn  chosen as in eqn.5.22. 

This series converges providing X is not a negative 

integer and cj  does not increase with j. Therefore we obtain 

Regge asymptotic behaviour along the positive real Fk axis. 
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The integral of eqn.5.28 is well defined for 

farg t-tklil and the same arguments as above can be used to 

establish Regge asymptotic behaviour everywhere in the right 

half plane of frk. 

In order to prove that the amplitude is Regge 

behaved in the left half plane we must first show that the 

integral of eqn.5.28 can be analytically continued into this 

region. In order to do this we rotate the range of 

integration in the complex y plane. 

, To illustrate how this may be done consider the 

integral 

(5.37) A 

Now consider the integral of T(y) around the contour 

ABCD as shown in Fig.21a. Providing there are no 

singularities of T(y) either on or inside the contour we 

have 

8 	 A- 

-1-(16) cU 	 f 	(i)-3 	7-(u)) 	(5.38) 

If we now allow A,,90 and 	and, if the integrals 

over BC and DA vanish we have 

(5.39) 
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a.  

b.  

Fig. 21 
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Hence, providing the contributions from the arcs 

traced out by the ends of the range of integration are zero 

and the line of integration passes over no singularities of 

the integrand, we may rotate the line of integration 

through an angle a as shown in Fig,21a. 

Considering the integral of eqn.5.28 we see that, 

on rotation, the line of integration passes over no 

singularities of the integrand providing lar ykli and 

larglAyk:% throughout the rotation. Also, because of the 

factor e-Yllthe contribution from the arc BC vanishes as 

B-00 subject to the same conditions. The contribution from 

AD also vanishes as A=“) since we still have Ici5 (e-Y)k0 

and lq4(1-e-37.)( 1 faster than any finite power of y. We 

note that this would have not been the case if we had chosen 

the more familiar van der Corput neutraliser: 

6:•)•=- & 	) 

where 
"aC 

cx:) 	-c- 
o 

(5.40) 

Therefore we can make the rotation through the angle 

S providing t...k lies in the segment A shown in Fig.21b. 

However, the rotated integral will be well defined for all 

p.  satisfying -II -4<arz.f.t <T,11,4 i.e. in segment B. If g<'.11, 

the two segments overlap and provide an analytic 

continuation of 17(p,X) for -11-4-S<argt_iL e)v-c. ';:e can now 

follow through the arguments of eons.5.29-5.35 and prove 

Regge asy%tom c ,mac behaviour in this region. Thus we are able 

to prove that our amplitude is Regge behaved for \arfrkl<TI. 
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This is the same region for which Regge behaviour of the 

Veneziano model can be established. Finally, we note that 

in order to show that the full amplitude is Regge behaved 

we must show that the (s-u) term tends to zero exponentially 

as s-4oc, t fixed. This may be achieved by using the method 

employed by Suzuki in a model(6) which uses van der Corp-dt 

neutralisers to, construct a Veneziano model with non-linear 

trajectories. 

5.5 Conclusions. 

We have shown that, by using van der Corput 

neutralisers, it is possible to construct dual amplitudes 

with any required residue structure. 

If we consider the integral of ImF(µ,A) with an  

defined as in eqn.5.23 around the contour shown in Fig.22 

we see that, since the contour encloses no singularities, 

the integral is zero 	The contribution-from the circular 

arc as Rio will be a sum of Regge terms. As E.-3- 0 we expect 

the contribution from the straight . Portion of the contour to 

be dominated by the poles on the real axis. However,. oUr 

amplitude will also have a backround term. In order to 

evaluate this background term as 	with E =0 we would 

require the asymptotic behaviour of the amplitude along the 

negative real p. axis. If our amplitude is to be consistent 

with "Resonances: Fte.•;:Ee" duality and with the experimental 

evidence supporting the concept of -  resonance dominance 
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the background must be small. It is possible that this 

requirement could remove some of the arbitrariness in the 

choice of the gi. The cuts starting at threshold in each 

channel in our amplitude do not correspond to the threshold 

cuts of unitarity. The construction of amplitudes with more 

realistic cuts provides scope for further investigations of 

this type of model. 

Finally, it is interesting to speculate that, since 

it is possible(7) to write propagator numerators (this is 

essentially what the hi  are) for continuous spin J exchanges 

coupling to any external particles, it may be possible to 

construct an amplitude for processes involving fermions. 
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APPENDIX. 

Asymptotic behaviour of the Veneziano model. 

In this appendix we shall prove that the Veneziano 

model has Regge asymptotic behaviour. Firstly we consider 

a simple four-point amplitude of the form: 

r (-p((s)--..<(0) 
	 (A. 1) 

In order to determine the asymptotic behaviour of 

this amplitude we use Stirling's asymptotic form for the 

Gamma function(1): 

r (z-t-a) --= 	ez 	(I+ () 
(A.2) 

k 00 Acm z\<11 
I &R 2 0-) \ 

Therefore as Isivo, arg s>0 , t fixed we obtain: 

Pt 	 [(-0(s))0((t) '4(01 	
(A.3) 

The second term in eqn.A.1 may be shown to vanish 

exponentially as 	t fixed providing 01;(s) and 01;(t) 

are linear trajectories of the same slope. The asymptotic 

form of eqn.A.3 only corresponds to Regge behaviour if the 

trajectories are linear. If both trajectories have the 

same slope we have 

r(-0,ce))Q.<,5),Kcok-LTiv.co..÷ 	
(A.4) 
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Here we see that the (s,t) and (tilt) terms 

combine to give the trajectory a definite signature. If 

the s-channel was exotic then the (s,t) and (s,u) terms 

would be absent. As a result we would no longer have a 

signature factor and the t-channel trajectory would be 

degenerate. 

We note that, because of the infinite series of 

poles on the real axis, it is not possible to show that the 

Veneziano amplitude is Regge behaved along the positive 

real axis. 

Because of the well known asymptotic properties 

of the Gamma function it is relatively easy to prove the 

Regge behaviour of the four-point amplitude. We shall now 

consider the five-point amplitude and show briefly how it 

has Regge behaviour in the double-Regge limit. To do this 

we shall follow the method of Bardakci and Ruegg(2). As in 

the four-point case it can be shown () that by adding all 

twelve terms of the crossing symmetric amplitude each 

trajectory is given a definite signature. However, we shall 

only consider a single term of the five-point amplitude. 

From eqn.1.19 we may write 

e> 	x,23 	°X
34- 	e<51) 

f
t cku. 6-1-11 /41 U.. i 	- ( U.3 	 (A.5) 

o 
(i_ u3 )--(4_s— ( I - li,) Est — 



- 	 • Now let 	= 	 0434. 4..s 

0006 

C--- 
•"-c)  ax.  oui 

where 
(A.8) , y r  

- e 

a-r 1 Le--1/4i e 
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Substituting 

- - cb< 34. C:44-S- C44) (A.6) 

oa o0 

 

4- 

 

   

 

„, eAs 

  

- 	.4- y 	s 4  oes t-  c‹.):1 
x e 0(31...445 

e(t.i.S - 1 

(1-e--"z-) 

.--- 34_ p<4_5 

)-0(st-I 	
(A.7) 

where I) = 	t414-S— 

s- 

-041 - 
	 .9( 2_3  -- 2. L  

• 

12 
We shall consider the limit c<34' ca<45'O 	- c••0 such 

that I) remains finite and negative. However, our final 

result will be true for the limit ic<34A , \o<4.51 	12I 0.0 



135. 

largociit>0. This limit corresponds to the double-Regge 

diagram: 

2 > 3 

s 
334 

4 

' 

5 

12 

 
345 

> 

In the integration x and y,and x and y lie 

between 0 and +00. It can be shown that there exists a 

constant, 0, such that IK1,11,1,11/10 in the range of 

integration. We can also show that the following limits, 
I 

uniform in x and y exist. 

X 4,  -3 p 
L m N1 	1 LIty\ L = e_- 
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c'e4S 	04 

 

(A.9)  

• 
We can write eqn.A.8 as 

c)(4.s  y.e ( 0(14,  r.3 

P 	F 	P 

(ff 	11± J + oo Po oP 

o4 C4 

fae-CrOA3) (LC CLA 
? r 

(A.10)  

Because 1,,M and N are bounded we can make the last 

three of these integrals arbitrarily small by choosing P 

sufficiently large. Keeping P fixed we can then make (s3E0 

and Is451 sufficiently large so that 
P 	 P P 

f C I (Nie_gcw\ck) Ix 41.3 — 	c 	 c<51—  (6'-'2<23-'-taxcq 
0 0 	 0 0 

(A.11)  
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where e is any arbitrarily small positive constant. This is 
possible because of the existence of the uniform limits for 

K, L and M. By choosing P sufficiently large initially we 

can also make 
0000 	

P 

1(i 	

X_L•Sin 	 -dam-1cs  

14X-a9  e 	-‘) 	,c- o 	0 0 
(A.12) 

Therefore we obtain finally 

Lin\ 13 	 , - Dez,g ,--(c 47 2-a 
 

'45 -ao  

04_11  a is Pi Aect 

o&.04 -x -y+ x-4 _ or sri .1 a 	 P(11  - 101,3c egai 
0 0 • 	

(A.13) 

Csz,cr (s34.)°(.2-1  f (7) 

providing the trajectories are linear. 

In the limit considered in eqn.A.13 the terms in 

the full five-point amplitude giving rise to the double-Regge 

diagrams: 

	2 	2 	3 

	4 	 5 	 4 

> 	 1 	5 	> 
	1 

will combine with the term we have considered to 

give the 023 and 0<15 trajectories a definite signature. 

The other eight terms in the amplitude will vanish 

exponentially in this limit. 
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