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ABSTRACTf

In the iast few years one of the most significant
new developments in hadron dynamics has been the introduction
of the concept of duality. This thesis is concerned with
dual models and their phenomenological application to
specific reactions.

In chapter 1, a brief account of the assumptions
leading to the concept of duality and a discussion of their
justification is‘given. The Veneziano model and its
properties which will be needed in later chapters are
considered.
| In the second chapter a model based on the five
point Veneziano function is applied to three particle
production processes. One of the difficulties encountered
in phenomenological applications of the Veneziano model is
that it has poles on the real axis. In chapter 3, we preéent

On in which

a simple smoothed Veneziano model for K-p-af*
the poles are moved off the real axis. This gives the
resonances a finite width without introducing ancestor
particles into the amplitude.

Residue recurrence relations for general Veneziano
amplitudes are derived in chapter 4.

Finally, in chapter 5, the construction df a
general class of dual amplitudes is considered. In particular
an émplitude for equal mass scattering in which there ére
.no daughter particles is constructed.

In the appendix the asymptoti. properties of

Veneziano amplitudes are derived.
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CHAPTER 1. DUALITY AND THE VENEZIAKNO [MODEL.

1.1 Introduction.

The origin of duality(1) lies in the use of finite
energy suﬁ rules(z). These rules are merely a convenient
way of stating the analytic and Regge asymptotic properties
of amplitudes. As an example we shall consider a two body

scattering process described by an amplitude A(v,t) where

v = s[:mu | (1.1)

and where m is the mass of the target particle.
We shall assume that, for |V|>N the amplitude may be written

as a sum of Regge pole terms:

+ e—-L‘Wo( () Vtxa,((:)

sin o (£)

(1.2)

AG,b) = Z g

where o<i(t) and fsi(t) are the trajectory and
residue functions of the t-chapnel‘Regge poles. The ¥ sign
depends on whether A(V,t) is even or odd under v-> -v,.
Experimentally, amplitudes are found to be approximately
Regge behaved for v23-5 GeV/c.

Now consider the integral

§ Im UM A(VE) dv (1.3)

where the contour of integration is as shown in
Fig.1. Since all the singularities of the amplitude lie
outside the contour the integral vanishes. Substituting

eqn.1.2 into eqn.1;3 we obtain
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where n= even integer if A(V,t) = -A(vy,t),

n= odd integer if A(v,t) = ACv,t).

These relations are examples of higher moment sum
rules., They are derived using the assumptions of analyticity
and Regge asymptotic behaviour of the scattering amplitude.
Physically these rules imply that the Regge amplitude
extrapolated to low energies, where it would not normally
be assumed to apply, will provide an average description
of the amplitude in the resonance region. That this is
indeed true was shown in the early application of finite
“energy sum rules (FESR) to TN scattering(z).

If we now make the additional assumption that at
low energies the imaginary part of the amplitude is completely
dominated by resonances, FESR indicate that the sum of
t-channel Regge poles equals the sum of s and u-channel
resonances. This may be stated in another way: either the s
and u-channel poles or the t-channel Regge poles determine
the complete amplitude. Thus the amplitude may be described
in two different ways. This is the basis of what we call
duality. If we regard the extrapolated Regge amplitude as only
providing an average description of the amplitude in the
resonance region we refer to this as "global duality" whereas
if it reproduces the detailed structﬁre of the amplitude in
the resonance region'we refer to this as "local duality".

The models we consider in this thesis are locally dual,
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\ Duality is in direct contradiction with interference
models(a) in which the Regge amplitude is added to the
.resonances. As far as duality is concerned interference
models involve'double counting., It is, however, difficult to
vmake a definite'statement on which approach is correct
because of the freedom available in thé way an amplitude may
be divided into resonances and bac¢kground. Recently
interference models have become less popular and duality has
gained wide—spread'acceptance. Probably one of the best
objections to interference models is the awkward resonance
properties required to fit the data. For example, to explain
the Si11tN amplitude it is necessary(4) to introduce a
'1440 MeV S,, resonance to cancel the Regge contribution in
order to explain the physical amplitude which almost.vanishes.
In the early days of FESR it was observed by
‘Freund(S) that the narrow resonancz approximation failed for
the It=O-TrR amplitude. This failure was attributed to the
pomeron contribution to the It=0 amplitude. Freund (and,
shortly after, Harari(s)) suggested that the pomeron should
be associated with the s-channel background and not with the
resonances. That the pomeron must be treated differently
from other trajectories may be seen in simply terms by
considering K p and W p elastic scattering. The pomeron
contributes to both of these processes, however, each has
different s-channel resonances. It is difficult to see how
.the pomeron can be built out of either N and A or 3 and A
resonances. A more quantitative argument for treating the
pomeron separately has been given by Harari(1):

The pomeron contributes only to the I=0 t-channel
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amplitude. The crossing matrix tells us that this amplitude
has equal projections on all s-channel isotopic spin states.
Therefore if the pomeron were associated with any s-channel
resonance structure this would have to be independent of the
s-~channel isospin. Although,for other trajectories,
cancellations between trajectories can cause particular
s-channel projections to vanish, for the pomeron this is not
possible as it is higher lying than all othér trajectofieé.
As a result of the specialtreatment required for

the pomeron we are led to a two component amplitude;

1. Resonances & Regge.

2. Background <> Pomeron.

This exclusion of the pomeron from the usual
"resonance <> Regge" duality is exhibited by all present dual
models since they do not include poﬁeron contributions. This
thesis, which concerns dual models, will fherefore only be
concerned with inelastic reactions.

' At this stage it seems worthwhile to summafise the
assumptions which have gone into the derivation of this two
component amplitude.

| Firstly, using Cauchy's theorem we were able to
relate the high energy behaviour of the amplitude to the low
energy behaviour. We then made two assumptions;

1. Reéonance dominance of the imaginary part of

the amplitude at low enérgies.

2. Regge asymptotic behaviour.

In 1 we imply that ihere is no background contribution
(except that associated with the pomeron) to the imaginary

part of the amplitude. A test of this has been made by
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examining the phase'shifts of the s-channel partial waves
for TN scattering using t-channel states of definite
isospin(7). The results indicate that for the It=0 state
there is a steadily rising purely imaginary background (due
to the pomeron) whereas for the I,=1 state there is no
indication of any background. This seems to indicate that,
at least for this process, the assumption of resonance
dominance is reasonable. |

Our second aésumption is somewhat more dubious.

It is known phenomenologically that simple Regge pole models
are offen inadequate»in describing the data and Regge cuts
are important. No account of cut contributions has been
taken and this problem is largely ignored in the literature,
possibly because the exact details of the form_of Regge cuts
grenot known.

As experimental evidence of the two component
amplitude we may quote the case of the X p and K+p total
cross sections (see Jackson's review talk at the Iund
Conference 1969). The physical region for K p is given by
Vom

K
is constant and symmetric on crossing v--v. For K+p (which

and that for K+p by v<—mK. The pomeron contribution

is exotic) we have only the pomeron contribution whereas for
K p the total cross section has the resonance contribution
superimposed on the pomeron contribution. As v=< the K p
- cross section decreases towards a constant value equalling

the pomeron contribution.
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1.2 Exchange Degeneracy.

Before we stért to consider particﬁlar dual models,
one important consequence of duali?y which will prove very
useful in chapter 2 must be introduced. This is the
connection between the absence of resonances in one channel
and the exchange degeneracy of trajectories in the dual
channel. If, for a particular process, there are no s-channel
resonances then, because of our assumption of resonance .
dominance, the imaginary part of the amplitude must vanish.
Duality tells us that the amplitude may be regarded as
either a sum of resonances or as a sum of t-channel Regge
exchanges., Hence, looking at the amplitude in terms of the
t-channel trajectories it should still have no imaginary
part. This is only possible if there is a cancellation
between trajectories. Such a cancellation between two
trajectories can only occur at all energies if both the
frajectories have the same o« (t) and the same residue
functions. Thus duality implies strong exchange degeneracy
of the t-channel trajectories when there are no s-channel
~Tesonances.

Consider, for examﬁle, the process;

K+p > K+p .

The t-chahnel trajectories describing this
process at high energies are P,f,w,Az,p. Because of the
absence of any resonances in the s?channel, duality implies
degenéracy of the e and A2 and of the w and f. Although
exchange degeneracy seems to hold gquite well for trajectory

fﬁnctions, especially for thee,‘Azuu,f system and K*,K**,
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detailed tests(s) of degeneracy indicate that it is,at best,
only an approximate property.‘Alternatively, one could
adopt the point of view that because exchange degeneracy
appears to be so good in the positive ¥ region the apparent
inconsistencies with experiment for negative t are really

due to the presence of Regge cuts which have been ignored.

1.3 Exotic Resonances and Duality Diagrams.

- At the present time there is strong experimental
evidence‘supporting the assumption that there are nb exotic
particles (or, at ieast,that any such particles must be very
weakly cdupled). By this we mean that all particles are
either qq (mesons) or qgq (baryons) combinations of quarks.
A graphical desgription of duality and the absence of
exotic particles is provided by duality diagrams(g). These
diagrams show the rearrangement of the quarks during an
interaction and are drawn according to the following set
of rules: |

1. All baryons are made up of three quarks.

2. Mesons are made up of a gquark and an antiquark.

- 3. No quark line can terminate in the same

particle as it originated from.

4. Cutting the diagram in a baryon channel involves
cutting through three quark lines.

5. Cutting the diagram in a meson channel involves
cutting through a quark-autiquark pair.

Quark diagrams constructed as above are said to be

AY
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"legal". Diagrams which disobey the rules are "illegal" and

in#élve the exchange of exotic particles in at least one

channel. 1In Fig.2a we illustrate a legal duality diagram

and in Fig.2b an illegal diagram having an exotic s-channel.
Any procesé for which we cannot}draw a legal duality

diagram must have a purely real amplitude. ~This is just a

restatement of the fact that illegal diagrams contain

exotic channels in which there are no resonances.

1.4 The Veneziano Model.

It was first realised by Veneziano(1°) that it is
possible to construct an amplitude having many of the
properties required by duality. This amplitude is simply
Euler's Beta function.

If we consider the scattering of a system of scalar
(0%) particles then the Veneziano ansatz states that this

process is described by an amplitude:

A= V(s,6)+ V(s,u) + V(‘M{T) (1.5)

where V(SJ{:)-: r.,(_ 0([53) r‘(—x(l:)) ,
| M- x6)-«(®) (1.6)

< (s) is a trajectory function which, as we shall
see later, must be linear in s. By construction, this
amplitude is crossing symmetric. We note that it has been

written as a function of s, t and u although only two of
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these variables are independent. This is a common feature
in Veneziano theory and in doing calculations we must
usually regard fhem as independent, not applying the
constraint between them until the end.

The amplitude, A, has poles in all three channels
for ex=0,1,2... However, it does not have simultaneous
poles in any two channels. .To prove this it is sufficient
to consider the residue of a pole in any one channel since
the amplitude is crossing symmetric.
| - We shall consider a pole in the s-channel. Such
poles can only arise from the [ (-%(s)) in the first two

terms of A. We can write these terms as

(- (s M- o (1) D)
( » MEaG)-alb) M M (0)-e(s))

. (1.7)

Noting that

el o
IO Ml @) Somaly (0

we see that the residue of a pole at <«(s)=m is

given by

EO™MT P (1) + NENO) ’
T | TEm-o(8)) T m- e (W)

(1.9)

This expression is just a polynomial in o (t) and
o< (u) and contains no poles in u or t. Hence simultaneous
poles in two variables do not occur. We note that, if the

trajectories are linear, the residue is a polynomial of
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order m in t (since u may be expressed in terms of m and t)
and may be expanded in terms of lLegendre polynomials. We
find that the residue of the ﬁole at «(s)=m contains terms
in Pj(cosé)) for all j satisfying .m>» J ;0. This means
that each parent resonance has a complete set of daughters.
We should also note that, if the trajectories are not linear
then the residue will also contain contributions from terms
in Pj(cos9) for Jj>m i.e. ancestors.

Using eqn.1.8 it is possible‘to write A as a

gseries of s and u pole terms. For example

Vs, &) = oi )" (b  (1.10)
| m=o ml (m-w(s)) Tem-o(E)

We have to treat these series with caution since
they are, in general, divergent (this must certainly be the
case for «(t)=0,1,2... as we know that V(s,t) has poles at
these points).

It should be noted that the poles of the Veneziano
amplitude lie on the real axis. This means that the
Veneziano model is a zero width resonance model and hence -
violates unitarity. Although there are various methods by
ﬁhich the resonances may be moved off the real axis (see
chapters 2 and 3) the unitarisation of the model has not yet

been achieved.

¥We have shown that it is possible to write the
Veneziano amplitude as a sum of poles. In order to show
that it is, in fact, a dual model it & necessary to show
that it has Regge asymptotic behaviour. This is proved in

the appendix where signature properties of the model are
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also mentioned.
So far we have only considered the simplest
- possible Veneziano amplitude for scalar particle Scattering.

Ve could, however, add terms like -

M(n-x()). T (n—-«x(t'))
T(- o (8)- o (£)

(1.11)

with m and n {r {m+n
to the amplitude without spoiling the Regge
behaviour. ©Such terms are called satellite terms and lead
t§ an ambiguity in the Veneziano model. If the model is to
have any usefulness we must be able to obtain a good
approximation to physical amplitudes using only a few .

satellite terms

1.5 The Five-Point Amplitude.

It was known as long ago as 1905 (11) that
generalisations of the Fuler function existed. This fact

(12) shortly after

was rediscovered by several authors
Veneziano proposed his model. Here we shall only give a
simplé derivation of the five-point function (B5) which will
be used in chapter 2. Similar methods may be used to
obtain the general N-point function.

If we consider a term of the Veneziano amplitude

for two particle scattering, for examyle V(s,t), we note

that this term corresponds to the permutation of the

AY
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external particles indicated in Fig.%a. The crossing
symmetric amplitude is obtained by summing over the terms
corresponding to the other non-cyclic permutations of the
external particles. In deriving the five-point function
we shall consider the term corresponding to the permutation
shown in Fig.3b. As with the four-point function the
crossing symmetric amplitude is obtained by summing over
the twelve non-cyclic permutations of the external particles.
Noting that the term corresponding to Fig.3a has poles in
s and t only, the most logical way to generalise the Beta
function is to construct a function having poles’in all
(five) planar Mandelstam channels corresponding to Fig.3b.
These channels may be defined generally as
Siy = (P Peis By) (1.12)
where P, 1s the four momentum of the particle k.
These variables may be conveniently illustrated by means of
a dual diagram (not to be confused with duality diagrams).
This is a polygon whose sides are numbered according to the
permutation of.the external particles being considered.
The Mandelstam variables aré then represented by diagonals
on the polygon. If the diagonals corresponding to two
variables intersect the variables are said to be dual and
our generalised Beta function should not have simultaneous
poles in these variables (n.b. we cannot draw a pole graph
with simultaneous poles in dual channels). To see how we
may construct such a function wé return to the Beta function

and write it as an integral:



b ihra)= [
. ) ]

This may be written as
1

—u(s)—l —-oﬁ(t)‘\ ' 7-
fu. V dudw (1.10)

4]

with the constiraint u+v=1. Thersfore

~ox (€
- 'S(utv-r). (1.15)

x dut.dw

Poles in x(s) arise because of the singularity

!
B( oc(s), -«><[€'> fLL—X(S)
o

of the integrand at u=0 for (s)=0,1,2... and poles in o (t)
arise because of similar singularities at v=0. Simultaneous
poles in s and ¢ are prevented because when u=0 v=1 and
vice versa. If we denote the trajectory corresponding to
the variable Sij by °‘ij then we can immediately write down
the generalisation of eqn.1.14 as

\

=X\l ozl —Xge~l | =X e — )
f‘uw U, U3 U
o

(1.16)

X u;xgt—‘c\\u ,du,_dJch,{uLc{us

w1th the constraints ug=t-u. _,uy
The set of constraint equations may be solved in

terms of any two of the uy which corresrond to non-dual
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channels. (For the N-point function there are N-3 independent
a, . This corresponds to the ngmber.of mutually non-dual
channels).
If we take u, and uz as independent we obtain
W, — 1= U0y
U, = (L-uz) / (1=wug) (1.17)
bs= (- /) (1-wus) .

Thus we may write B5 as

BSG“X\L ,——0(1;3,*-%3(“ ~Kys, ‘—‘7<Sl> =

f——r %(LK.L‘{— Ui lB o — Xy~ \ - °<'1‘5‘—\
O L#L3

I R i ‘
\ ) .

1
—f 7=\ oyt K| — X
f(&l.&l% ™ & s Q—u‘u:.,) est XKs |~ Xz

xus 0 Ux ) 5 — IC u[) g =

(1.19)
If we substitute eqn.1.17 in egn.1.19 we obtain an
alternative form for 35 in which the pole structure is more

easily seen:

T s |
f ( .d_*_i_'i“_s \ Lk—db T (1.20)
6 o I—L U L= ' »

We show in the appendix that the five-point
function has correct double-Regge asymptotic behaviour. This
fact will needed in chapter 2.

In this chapter we have shown how the concept of
duality arose through the use of FESR and how a model having

many of the properties required of a dual model can be
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constructed. Finally we have shown how we may generalise
this model to.reactions involving five external particles.
We have only considered those simple properties of the

- Veneziano model which will be needed later in this thesis.

(13)

There are several good reviews of Veneziano theory

which also give refefences to the many papers written on the
detailéd properties of the model. For a more general survey
‘of high energy models contemporary with early work on the
Veneziano model, the reviews of Jackson(1) and Jacob(14) may

‘be recommended.
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CHAPTER 2. A VENEZIANO MODEL FOR THREE PARTICLE
"~ PRODUCTION.

2.1 Introduction.

Iﬁ chapter 1 we considered the Veneziano amplitude
for the scattering of a system of scalar (0+) particles.
Such an amplitude is of little practical use because no
data on such processes exist, even the existence of any ot
particles is nqt‘certain. However, the possibility of
being ablé to construct amplitudes in which one could
incorporate in a single term both resonances and Regge
asymptotic behaviour led to many attempts to construct
phenomenoldgical amplifudes for 2> 2 scattering processes(1)
for which data existed. Most of theée models compared only
the asymptotic form of the Veneziano amplitude with the
data. Essentially this was the same as using a Regge
amplitude with residues determined by the Veneziano model.
Because no entirely self-consistent way of constructing a
Veneziano model in which the external particles have spin
has been found, these phenomenological amplitudes used =a
Veneziano parametrisation for the invariant amplitudes.
However, perhaps the greatest contribution of the Veneziano
model to high energy phenomenology has been in three
particle production. Previous models for such processes
(suchkas the Chan-IlLoskiewicz-Allison model(z)) which
feproduce only the borrect Regge behaviour have large

numbers of parameters. Shortly after the rediscovery of the

five-point function Bardakgi and Ruegg(s) showed that,
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using this functioﬁ, it was possible to construct Veneziano
amplitudes for 23 particle processes in which the external
particles were pions and kaons. For such processes the only
trajectories coupling to the external particles are P,
f,-A2,¢5, f', K* and K**. Thue the amplitude must not have
a resenance for o«<=0. Bardakgi and Ruegg found that this
could be achieved by writing their amplitude in the form
A=._gms T: Epvs P7pP PY T

| | (2.1)
X Bs (l"°<n., l=0pa ) V= Rag, |- Kes, V- )

where the sum is over the non-cyclic permutations
of the external particles,'Pi is the four momentum of the

external particle i and X;5 are linear Regge trajectories

_ J
coupling to the particles i and j. The kinematiec factor is
uniquely determined by parity requirements and results in
the amplitude having correct Regge asymptotic behaviour in
all channels. The factor Ii is an isospin factor given for
KE=>3W by
, .
T}_'—‘ K TL L T; K\
R (2.2)
where K is an isospinor and ’ti are Pauli matrices.
The effect of the Ii is to eliminate terms which would
involve exotic exchanges.

The first application of this type of model was made

by Petersson and Tbrnqvist(4) to the process XK p>T wT A,
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This process is essehtially of the type considered by
Bardakgi and Ruegg except that two of the mesoﬁs are
replaced by baryons. Petersson and Torngvist used an
amplitude of the form given in eqn.2.1 only, instead of
“including an isospin féctor, Ii’ the requirement that there
~should be no exotic channels was imposed by hand by
excluding permutations- which would involve exotic exchanges.
In order to get the baryon resonances at the correct positions
the arguments of the five-point function were shifted by a
half integer. Although this model effectively ignores the
baryon spin, as a description of the spin éverage process,
it was a remarkable success and many other processes were
fitted using similar models(s).

In this chapter we shall construct a model which
takes some account of the spins of the external particles

and which allows the construction of amplitudes for

processes in which pion exchange is possible.
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I. THE MODEL FOR K p»K T 'n,
2.2 The Veneziano Terms.

We shall start by considering the process
K'p%»K*-1T+n'and assume that it may be described by an
ampiitude of the form

) ' ,
A = K fZl &st(hﬁdn,kz‘xzs,hs’ X3¢,
- (2.3)

h(‘_—oq_s /b.; - 0(5(3 .

where C(ij is a linear Regge trajectory coupling
to the external particles i and j and ki is the spin of the
lowest resonance on the trajectory. The sum is over the
twelve non-cyclic permutétions of the external particies.
K is a kinematic factor. By taking the same kinematic
factor in front of each B5 term we ensure that, if all
twelve terms are present, each trajectory has a definite
signature. | |

It is necessary for all trajectories to have the
same slope as otherwise the amplitude diverges exponentially

(7) and ghosts

at fixed angle(s), signature is impossible
are inevitable(S).

Of the twelve permutations in eqn.2.3 thqse in
which»the K~ and n or the K'~ and p are adjacent will not
contribute because they involve exotic baryon channels.
Sim;larly, permutations with the X and Tt adjacent will not
contribute because they have a doubly charged meson channel.
This leaves only the two terms corresponding to the

permutations shown in Fig.4. Both of these permutations

correspond to legal Harari-Rosner duality diagrams as shown
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in Fig.5. We note that,as a result of having three exotic
channels in this process, duality implies that all the
trajectories except the one coupling to the wn subsystem
are exchange degenefate.' Egn.2.3 implies that we only have
one trajectory coupling to each channel. Although for most
channels this is true, for some channels (such as K p)
. there are a number of possible trajectories. However, in
order to make practicable any application of the model we
must use experimental evidence to decide which trajectory is
dominant in each channel. Although, in theory, one could
add additional terms with all possible combinations of
trajectories computational difficulties prevent this being
practicable. Also, because of the poorness of the data, any
.~ determination of parameters to obtain a best fit to the data
would be impossible.

The trajectories we have used were determined as
follows:
1. TFor the X ~T ' channel the only possibility is a

degenerate K*,K** trajectory. |

- 2. It is known experimentally that the processes K-p%>i*on(9)

and K—p'9f**on(1o) are dominated by bion exchange.
Therefore we have used a pion trajectory for the pn
channel since strong K** production is seen in the K*-‘IT+
channel.

3. Having chosen a pion trajectory for the pn channel the
only possible choice for the K"K~ channel is a degenerate
e ,f trajeetory (wand A, are prevented by G parity

conservation).
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The effective mass distribufion for the T'n channel
shows a complicated resonance structure in which the

A (1236) is dominant and so we have used this trajectory.
However, there is also significant N(1470) production.
By omitting the N(1470) trajectory we will, of course,

not obtain this resonance in our results. Other than

- this we find the results are little altered by which

trajectory is chosen for this channel.

The K ~n channel in Fig.4b can only couple to a Y:
trajectory.. The experimental data for the K*—n mass
distribution shows no structure and provides no clue as

to which trajéctory we should use. According to Schmid(11)

the only Y? trajectory which couples strongly to the KN

system is the 2.(1385). In the hope that this still

applies to the N system we have used this trajectofy.
For the K p channel we also use a 2, (1385) trajectory.

In principle one could also use a Y; trajectory. Because
the data is at high energies (stt>1O GeVz) this choice
makes little difference to the results since all

trajectories have the same slopes.

Finally, for the T ¥p channel there are a number of

possible trajectories., Ve use a N, trajectory because
we would expect it to be dominant in the exchange

channel as is the case in TN backward elastic scattering.
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"~ Thus our amplitude is

A =K [Bs (1-oxp (txr=) , 1= e (), B - <5 (S,

—otrr (bpn), 3 - <z Grp))+ Bs (1= otp (brerc), (2.4)
32 Gren) S -xa G, 3 - bew), 3 - otz (i),

 We note that the argument of the N, trajectory in
the second term has been shifted by 1. As we shall see later,
this is to ensure that we get correct asymptotic behaviour.

As we have stated in chapter 1 the Veneziano model

'1s a zero width resonance model. If it were possible to
unitarise the Veneziano model we would expect the resonances
to occur as second sheet poles and to have a finite width.
In order to give the resonances a width in our model we add
an imaginary part to the tréjectories. This moves the poleas
off the real axis giving them a width but does not move them
onto the second sheet. Lovelace has proposed(12) that the

trajectories should be parametrised as
°<(S): X + 0(’3 + < \lso"s

Se = S‘tkresko\i_

This results in the trajectories being real below

(2.5)

threshold but complex above. An unfortunate feature of this
parametrisation is that it leads to an infinite series of |
ancestors because the trajectories are not linear in s. An
alternative procedure (which we shall use) is to add a
lineér imaginary part to the trajectories in the channels

for which s is above threshold. This does not give rise to
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ancestors but does lead to complications when we wish to go
to crossed procésées. We shall return to the problem of
finding more acceptable ways of moving thé poles of the
Veneziano model off the real axis in chapter 3. However in

this chapter we will paramétrise our trajectories as

—— ‘ ; .
x(s8)= xp+ 'S+ Loty (2.6)

°<I‘—'= k (S—'SQ) ) S>S° . (2.7)
@) S <S¢,

To evaluate the imaginary part we use the following
argument :
Near to a resonance at angular momentum ¢ the partial

wave amplitude is of the form(13):

£~ r(s.0)
—_— 2.8
2 R (2.8)

_ ~(s,0) | | (2.9)

Q' Xo— “‘S-;-“I

This corresponds to a Breit-Wigner resonance of half

width
As= T'M- x=z._ hts"go>. (2.10)
(-4 O(l

Using egqn.2.10 we can chose k so that the first few
resonances on each trajectory have approximately the correct
widths. (Strictly, by taking different k for different
trajectories, we are breaking the "equal slopes'" requirement

on the trajectoriesj.
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_ To determine the real part of the trajectories wve
have taken a slope of 0.9 (GeV)~2 for all trajectories and

have then determined the intercepts from a Chew Frautschi

plot. We obtain
X ()= 0.1 +0.95 + L 0-1(s-S0) , So= (Mer+m Y

xp(B) = 048 +0.9t,

. . 2
Xs(S) =-0.22+0.95 +L0.15(5-Ss) , So= Mp+m,)
xn(t) = —03+09¢t
Xn(t) = ~0.07S+0.9¢t,
«a(s) = 0J2+oﬁm +;oa5@—&3J%=(mmmmy_

(2.11)

We note that in deriving the amplitude of eqn.2.4 we

regard the external K as being a stable particle.

2.3 The Xinematic Factor

We now come to the problem of choosing the kinematic
factor K. The data for this process shows a strong
concentration of events at small tKK* and tpn' This suggests
that the amplitude is dominated by the nearby poles: the e

and W int  and t respectively as indicated in Fig.6a.

pn
In a Regge ggdel we would also expect the term corresponding
to Fig.6a to be more important than that corresponding to
Fig.6bh since it involves only meson exchange whereas Fig.6b
has a baryon exchange. Baryon trajectories have lower
intercepts than meson trajectories and this leads to terms
involving baryon exchange giving smaller contributions to

amplitudes. Therefore we base our choice of K on the

peripheral diagram of Fig.6a. This diagram correspornds to
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a double pole limit of the first term of our Veneziano
amplitude. Near to the W and p poles the first term of

eqn.2.4 behaves as

) \ | |
] K - : (2.12)
. - X \—- o(t, N

' We now evaluate the diagram corresponding to
Fig.6a using covariant vertex functions and propagators(14’152_

The vertex functions we require are given by

Cocp (K, K7 fex )= L g, Eap (ke 6 K0-K7)

CH(&xﬂTTaJ @wvoﬁﬁ_ - (2.13)

_\_
2
c (p,w.n) = q,¥%

where E£_, (P/Pl) = E’Kﬁxs'\)xP%

and where we have denoted the momentum of the K
étc; by K.. The subscript "ex" refers to exchanged particles.
g4r 8o and g3 are coupling’constants.

The propagators are simply

()= 0 ~(Eebcl

t * __ M:
Kem = e (2.14)

P @Tcn> = ___J_____ i
Cten- i

The pole graph then gives

Apcte =g (A) € F (K, KX, oc) Por (fec)
: . (2.15)

c “(eec,'“'f‘"er—) P(Ter) Uo O's Ue



= 9.9:92 €« EXE )T Fs e (2.16)
(EK«r’““i*)(épn’*“§)

‘where €,(A) is the K polarisation vector. Thus |
if we choose , A o L
K= «'?q,929:; €« (A) (W, K*K) T ¥sUp
= c €, €%, ) UnYsu,. (2.17)

our Veneziéno model has the correct couplings at

the v and P poles. For higher poles on the W and e
frajectories we cannot expect the two models to correspond.
This is because; 1) for higher spins more covariant coupling
mechanisms become available, 2) the Veneziano model has.
daughter contributions. It should alsd be poihted out thét
the vertex functions we have used are strictly only o
applicable when all the particleé are on mass shell. We:
shall assume that the choice of K given by egn.2.17 stlll

holds when t , # m2 and t ¢ m .
KK ¢

2.4 Asymptotic Behaviour of the Amplitude

We now show that our choice of X leads to our
Veneziano amplitude having correct Regge asymptotic behaviour.
To show this it is easiest to consider the spin average

2
s‘:u\s\A\z Firstly we need to evalua’e SZ_W\JK[
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5 Ik|? =2 lc Wo¥sup e () ™, ) (2.18)

SPM\S

= c? "i?[(?’n«rm,\)(?’;.-mfﬂ % (1, ™, 1)

(2.19) -
i(%«xg‘ K_*L)E (T( K> K)

‘3‘
v |
KRk i K-Tv (2.20)
Kt kK me

- Y™ (ti’“‘@\P'“\:\)"> [mi,, m2K "‘\}‘]—mt‘(i(-ﬁ)"‘

= (- ok (o () (e )
' (2.21)

Using

A . .
K‘ K& - mt + IY'\K* - {‘K.Kx ) (2.22)
2
o= Ske® — Mpx — Nt (2.23)
2 . Vs
KT - (mZ 4 nZ-ten) /2 |
(2.24)

= "Svc*'ﬂ—%-'h(&*"t?‘\" M
L

We obtain



5 1KN? = e (Bon-(ne-ma)?) | moe m% m2
SPN\S ; .

2
._..m‘:;* (SK""Tl -+ 'ep;cf“ - tfl\- “\');Q*)

4 (2.25)
_ :"l (ﬂ\'{‘( + mv‘-‘i“ ’{-KK"‘)'Z -.m"; Cgk*n mn». mn)1
4L : A
+ (0% + mEe - B (Ser =i =3 ) (Siemr b o mij.]
4

- If we now consider the asymptotic behaviour of the

-amplitude of egn.2.4 as 8, _->oa, 8 Seqy B__>00 wWith t
Kp *,

s wn pn
and t , fixed and with
KK
Bx%n =7 (finite) (2.26)

Then using the asymptotic form for B5 as given in

the appendix.
BSQ'NP)"‘XK" 1%")(& e ’°<z:> B (cx)
£

e F(eKK“)" S‘ﬂ‘r\d“ (fpr\)

X 'F(V)) V- o U:m(*), - X ({‘Ph>)-

>~ S

(2.27)

- Bsg (3?_.— =g, |-o<o J%'“Z,%-&QJ%—«N>E Bs (b)

= .0,
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Using eqn.2.25

2,

7 o A\ & s T
SPINS .

2 - 2
Stra o [" c‘l]((nf"'“(’;""(n)z

X (tp(\'(‘.‘\p.‘m'\)i) tKK*j
ton ,ten~ fixed
with Sk*n Swn - ,'7
Skp
Thus our amplitude has the correct asymptotic

L]

behaviour for the double-Regge limit corresponding to Fig.6a
We may also consider the double-Regge limit corresponding
to Pig.6b, i.e.

| € x| ‘:TP fixed

| . (2.29)
SK‘"“ . S“’f\ = 7} (finite) M . )
SKP ‘-

To evaluate this 1limit we need to express eqn.2.25
in terms of the variables used in eqn.2.29. To do this we

return to egn.2.21 and use

K= = SKP — Se*n = Swa+ Mm% ‘

- )

| o ‘ (2.30)
SR ’ (2.31)

ton = Cwex -ty Sext e anianT - (552

Eqn.2.25 becomes

Z \K\‘Z = %C'z ({:(K“-‘&,P’n —Srv“ +ﬂ'\3‘} +2mpm‘\)
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2 .9 2 _ 2\
X [m‘i‘(‘, mi M —m;@“(stcp“l’tp'rr SK"‘r\—ﬂ\p)
4

- (2.33)
2

—_ n\“@v\( -!-(\'\v;ae‘—-tKK*) - N\z (SKQ Sk* (\‘sm\""miB

4 4

+ (N2+ e —Eee ) (g cp =~ Sk*h -—Smr+m% \é’(?+t?“-s;?ﬂ. m’%
| 4

In the limit given in eqn.2.29 the Veneziano terms

behave as

%5(0*\ = 0

(2.34)
BS (\33 Ly Smto{N(éFW) 2 SK*r‘\xe( « ) ‘

£ 3 -otnlb)  1mote (i)

Using egn.2.33 _
2 ot (£ 2 oo Erx)
Z la\r ~  saq i o) Sk
SFu\S
_ ; : (2.35)
<Lt £01.3- mulomiselone Y ]
. - 7”2.
8% Syn ,Swkin Skp Do

with € x| ten fixed

S‘m\ Sw*n
Skp

=7

P
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Thus we have the correct double-Regge behaviour
expected in this limit. We note that if we had not shifted
the argument of the N trajectory in the second term of
egqn.2.4 we would not have obfained correct asymptotic
behaviour for the limit of egn.2.29.

| Our choice for the factor K is based on consideration
of the dominant peripheral diagram for the process
K"p>K ~w'n. The amplitude of eqn.2.4 may also be used to
describe the processes obtained by crossing the external
particle lines. In general, for processes which only
involve crossing meson lines, we would have obtained the
same kinematic factor if we had started with the crossed
process and applied our preséiption for determining K. In
~the case of processes in whic¢h baryon lines are crossed
(e.g2. pH-?K*-TT+K+) we would obtain different kinematic
. factors. This is partly a consequence of our inaﬁility to
include fermions iﬁ the Veneziano model in an internally
consistent way. HoWever, we do note that the amplitude of
eqn.2,4 does have correct asymptotic behaviour in all
double-Regge limits for all crossed processes including

those in which the baryon lines are crossed.

2.5 K (1420) Production.

’ The most significant feature of the data for the
process being considered is the K**(1420) production in the
*_ ’ .
K 1T+ channel. We must check that the kinematic factor

we have chosen is a reasonable choice for describing the
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K** produétioﬁ; In order to do this we consider the
diagram cbrresponding to Fig.7a. This diagi‘am may be
evaluated using exactly the same techniques as ‘were used
before. 1In addition we shall need the spin-2 propagator

numerator:

P,‘@,x‘g (K*“) = Q¥ ‘i\gs* s ‘3"93’ ”%%é?\s”
T [Z e Cr Ps + %“dsws?«fp ~A¥Pp Py
B SAC CA RS Y |
b P pepsfs

where P'.-_- Puxx , m= Mocxx -

(2.36)

The vertex functions are

Cygy (¥, k)= Lg, (kx_x), Es &) “(2.37)
C <@ (,K A :Kﬂé) = ‘Z‘_'C% s CK- ner-),< (K'-“_er-)(s - (2.38)

‘The X' production diagram then gives
AK** = C33E“Xsup CKF’CK ;"W,K*x) PO\?B'S(K*’K)
x Cysm (K4, W*) e”(A)

(Sw=xn- m1>ctpn— N\-J{t)

(2;39)

= 929, 9s ’-Ll,\?fs\kp 'Xﬂen (’\) (2.40)
16 (tpn=m% (Srmr —)
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470

where o ok BS o ¥

0 = (e e @ e

| " | y (2.41)
% x

e [P v p” 1) (wom)y

&g s,y (K*-m’,?)
(2.42)

=3 g.,](K,K*,T)EZK\K*‘-m’;&* - 2w T Mm%

—_}‘7\1 (ZK' K 4 2k -y - 21 c* —m}})@‘%c‘*' :\\‘J "

We obtain '
= > 70\
AK‘X‘* E-,, (K)K J—‘T) é ()\) unXSUP . %3%“_%5

’.( [m‘\LQ +m’f‘@ + m?a —?—tka + t?,\"‘ggg*ﬂ

- (m%\,@: n ) (nr\*‘,; - tpn >—_{ - / (Z(SK*T;-‘m‘Xf:P,\- m%)) )
m (2.43)

The residue at the double pole is

939295 _67 CA)G(\\JSLLP En(K.,K*,Tl‘B [mﬂ'k* .
2 - .

2
L2k —m =26 o — (Mix %) (- )]
M=
(2.44)
We may compare this with the residue of our Veneziar.xo'

amplitude at the double pole « . =0, o(K*=2. This gives
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Res Afom=0, %= )= C€7(K,N,K*) €, (A)
_ (2.45)
°(¢°({—KK"’) UWn¥es Ye . :

We see that both eqns.2.44 and 2.45 have the same
form. Thus our kinematic factor may be regarded as being
consistent with the K** production mechanism. The residues
given in eﬁns.2.44 and 2.45 are not expected to be identical
as the Veneziano amplitude also contains a 1 daughter at

the K** mass.

Thus we have shown that the amplitude for K-paK*-‘n"'

defined by eqns.2.4 and 2.17 has correct Regge asymptotic

behaviour and is consistent with the K**'production mechanism.

2,6 The Amplitude for K'péaf*on.

We now shoy that the five-point amplitude:for
K'p<9K*'1T+n may be consistently reduced to obtain an
amplitude for X p>% °n. We note that only the first term
of our amplitude has a K' resonance in the K ~w' channel.
In order to see how the five-point amplitude should be
féctorised we make use of the experimental fact that the K*
is produced by pion exchange for this reaction. Therefore
we consider the diagram of Fig.7b. We evaluate this diagram

as before using vertex functions:
" N - : .
Co( CK )TlQJCIKex->' E%g(K 'T‘Qx‘.B.(

CKPCK;:CJ \(*)‘(13: ,'ic%_,g“?(\fé-‘!—ﬂj\z—ﬂ> . (2.46)
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We obtain

2‘33‘36%7 WnlsUp C\( “ex.y’( Fuce— (5 ) (Kor)s /m.‘

{:91\—(\(\“ S*n— mK,

x L g“(mm ) ey (N (2.47)
2

= Qi+ A ls We SX(K Ay ,K”"B c x(x)

(Eon-0%) (Swrn- Wix) (2.48)

The numerator of this expression is t}he same as the
residue of our Veneziano amplitude at the v and K* poles
(it is, in fact, just the kinematic factor X). We can now
see how to factorise the five-point amplitude. Near to the

K* pole our Veneziano amplitude may be written as

Ax =-C af\\(s Ue EXCK.T\ ,K*‘)éx(’\) B(- “1\,%;"(2)

f
X (S K~ n\l | (2.49)

T s e (KT Y Q- (kEe (K e /]

=-C
2’
Sk<n - m";‘@

oY (2.50)
(k*+m,<*-1) eg(f\) Blany-oy) |

x I e
2
We now replace the spin 1 propagator numerator by a

complete set of spin 1 states{i.e. we put the K" on mass shell)

— of .
/\ K 'qu w t\XS e CK ’T@L) £ (’°<‘n :?3 - “Z) €a( (A)

s et (W) e f (W n,sm) v < o« (A)

SN - me

(2.51)
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Here the three point KZXK*TF vertex has been
- geparated from the five-point amplitude and we may

thefefore write the four-point amplitude as

- R4 .
Ricpairen C;; es-,uP el €I Blotn3-o5)
(2,52)

'Oy
We must now check that this amplitude has the
correct Regge asymptotic behaviour. Considering first the

spin average:

32 \AP —e!? kP (g - AR YK

‘SP\(\S

o (2.54)
B (""(T\,%;Ms_)?- . (ﬁ—(ﬁ\e-m;\)"’-) :
where el e ' |
<Y .
75 alF=-c? ('“ -(mz:::\w*) )(t’('“f ‘“*\l> (2.55)

For 8 > e, t fixed

Q_Z \Px\7' MCS) 'n(f.')[ 124y Iq_(mK'L

5?\!\5

(2.56)

— (2 4—me-—(:) )(&— Q“?"“t\)”) ya o(n&)y)_]

M
For the crossed process K*Op-aK"'n (obtained by

crossing s<»u) as s>e , u fixed

Bnlt) 3-22(0)) ~ o's)"ETET(E -, )
, _ . (2.57)



| A&

2 8?,“6 K"OPQK‘*—’\\ N~ i( ) [ l =

e

(— - oty @))2]

Both these asymptotic ‘behaviours have the correct

(2.58)

Regge form.

For computational purposes it is most convenient
to express our four-point amplitude (eQn.2.53) in terms of
helicity amplitudes. Adopting the convention that the beam
‘direction is along the positive z axis we may write (in the
s-channel c.m. frame) |

(By,0,0,k),

° 2.
(Es)qwslo)qmﬁ), (2.59)

where © is the scattering angle and where the
particles are labelled: K =1, p=2, K °= 3, n=4., In this

frame the polarisation vector has components(16)

e.()=- - _‘(_E(o,@ss {,-swB),

H(b)‘ (C" , E"“ 3ub,0, E?' C‘D@ (2.60)

Enl)= -~ (o ~cos© SU\S)

The hellcity spinors are

As
Qe (ho)= [Eamm, (1 + e ¥s) “P( >(9)



®)
o

$¢") (0-0)- (é) v %) (0-0)- (°>
| . o 8 )

G0 - Exm 0N (1- L0 Y

Eo4+ N,

Wy () (@) = (Coﬁe/l 3{4\9/1 , O/O) .
2 ; (2.62)

\*Jf (‘%')(9> = <.— SU\Q/’L , C,QDB/Q- Re ,0) ‘

Using eqns.2,59-62 we obtain
G (a)¥s () = ~Tn (0 ¥sue () ()

= -;. C.GDS/Q_ (Eﬂ»’k“\«-)\&;@fmz)c\/

‘/ZEU“ “\L)(\E 7—‘\‘“\1) ’
G (%)% Ue (1) = Tnl-%)¥s up(2)
| (2.64)
= —¢ %i:.x\ 9/2 LEA-’*' R\Q_B\Z'F(EL*“\'L)%
\/(Ea—* M) (Eovma)
€ (/\b)‘ K™= “——————k SIONE ; >\'s= |
2

- | (2.65)

E\g(" ‘P\E'BC’CDB ) >\3;O

My My
R%U\S A3> -

V2
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From eqns.2.63-65 it is easy to construct the

helicity amplitudes:

AP AN = €0 K u.\(&)Ysup(AzB
x.?g(-&n(&))%— s (). (2.66)

Parity invariance implies

</\3>\q_\<§\)\|>\7_>= 7?3774 L I>S3+S¢—S.—S,_
7 72 2.67)
x (- l))‘ F\(/\g, A A, X,}
where )\ )\ }\2, A= /\ )\ Sy is the spin and
7) 4 the parity of the particle i. '
Thus only six of the twelve helicity amplitudes are

independent. In terms of the helicity amplitudes the

- differential cross section is given by

do _ | 3\ P |2 o
EE; = , T . ~ (2.68)

(25, +)(25.+1)é4mk?s

The density matrix elements for the f*o are given

by

( N | G
CAL A, = )\ZAX LA AN A ANNAIAAY
VAR > 4.\ (2.69)

However, the experimental results for the density

matrix are given in the Jackson frame. This is the rest

*0

frame of the K chosen such that the z axis is parallel to

the incident particle's (K~ ) momentum and the y axis is

perpendiculér to the production plane. The density matrix

(Jackson)

elements, P} , in the new frame are given by



('J'auc‘lSo«\) | s
— 1 1
= v (W ,
P,\,)\ AZ;_AE d )\ >\,'3<' 3) Af/\ ,\bCLF3) P*laA’?’ (2.70)

‘where dl\' are the usual spin 1 rotation matrices
and 4’3 is the angle between the K~ and n as seen in the

Jackson frame. We may evaluate this angle using

£y (con®- 25 > (2.71)
RE~

2.7 Normalisation of the Amplitudes.

Up to now we have not attempted to interpret'the
couplings 8 which appear in the vertex functions we use to
construct kinematic factors. In the amplitude for
Kp>K 7 'n they only affect the overall normalisation of -
the amplitude and, since we are only comparing the model
with percentage distributions we do not need to know this.
However, for K—p-éf*on, we compare the model with the
differential cross section data which requires us to know
the normalisation constant (c') in the amplitude of eqn.2.53.
In our results (Fig.12) we have used ¢ as a parameter to
fit the data.

Our kinematic factors have been determined by
evaluating pole graphs using vertex functions which are

8trictly on mass shell. Therefore the g; can, in theory,



-be related to physical coupling constants. Unfortunately,

in many cases these‘are very poorly determined experimentally
and it is therefore more appfopriate to use a suitable
symmetry'scheme to relate the coupling constants we require
to thqse which are well determined (e.g. gETfW and gNhhr)f
One such symmetry scheme which has had considerable
success(17) is u(6,6) (18). This alléws us to determine all -
meson-meson-meson coupling constants in terms of g oy and
all meson-baryon-baryon coupling constants in terms of BNNT

For example, writing egn.2.53 as

A= °“Clmc*rr Anpw angue e () (2.72)
| Bl-oal®), 3 -« 5(9))

and using U(6,6) we may obtain (see Ref.17)

3{\(31'\'2 1. \

czK”‘Kn = 7.\

(n.b. for our particular example we have only really

(2.73)

used SU(3) to relate the required coupling constants to Eenw

and gy )

Hence we obtain
{ — .
% Qnpw Ae*kn = TS 122 (2.74)

- We may compare this with the wvalue obtained by
fitting ¢ to the data:

od%mﬂlﬂ#Kﬂ: < ©(2.75)



2.8 Comparison with the Data.

The amplitude for K p>K ~w *n has been compared
with data (15) at 6.0 and 10.0 GeV/c using the phase space
pfogram FOWL(19) and the program(zo) for 35 written by _
Hopkinson. The K_p;>K*°n amplitude was-compared with data(21)
at 4.1, 5}5.and 10.1 GeV/c using the progranm FCN(ZZ). The
reéults are shown in Figs.8-13.

Agreement with the main features of the three
particle production data is gdod. Because of the large
statistical errors on the experimental bins it is not
possible to make a detailed comparison with the theory for
the mass squared distributions. We do, however, get
approximately the correct coupling for the K** resonance in
the K*tﬁ*channel. Because of the exchange degeneracy of this

trajectory we also get a resonance corresponding to a 3~
.recurrence of the K*. There is no indication of such a
resonance in the data. For the T n channel the A (1236)
appears to be too strongly coupled at 6.0 GeV/c (the data is
too poor to draw any conclusion at 10.0 GeV/c). However,
this is probably due to the fact that we have not included
terms with the N(1470) and other possible N and A\ trajectories
in this channel. ZEach of these terms would be expected to
give a similar background contribution to the A trajectory
term we have used and would lead to the /A peak not
appearing so high. The K ~n distribution is featureless;
the general shape is reproduced correctly by the theory.

The agreement for the momentum transfer distributions is good.
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For the K-p;aK*On amplitude the differential cross
section results agree well with thé data. We obtain the
correct t dependence. The s dependence is also correct - as
we expect since the amplitude is known to have correct
Regge asymptotic behavidur. -For the dgnsity matrices our

amplitude predicts

Colt)=1 | Rep (B)-0,p, _(H=0. (2.76)

- These are the values expected for simple pion

~ exchange and the values obtained from Regge models with pion
trajectories. However,since. the Regge exchange includes
,contfibutions from high spin particles we expect the dehsity
~matrices to vary with t as is seen in the data. If we take
absorptive corrections into account th§ results are

somewhat improved. However, since such éorrections are not
included in the five—point amplitude we are not justified

in including fthem just in the four-point amplitude.
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Figure Captions

Mass-squared distributions at 6.0 GeV/c for

- ¥ +
K p=*K 71 n.

Momentum transfer distributions at 6.0 GeV/c
for X p>K ~T n.

Mass- squared distributions at 10.0 GeV/c for
K p‘>K “ttn.

Momentum transfer distributions at 10.0 GeV/c
for K“p-aK*—Tr+n.

Differential cross sections for K'p%»ﬁ*on.

Density matrix for K p>% °n at 4.1 GeV/c..
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' II. THE MODEL FOR T _p=>K°K’n.

2.9 The Veneziano Amplitude.

In the last section we:éhowed that it was possible
-to construct a Venézianb model fo;'three particle
pioduction having correct Regge asymptotic behaviour.
However, our model does not correspond to a conventional
double-Regge model such as that proposed by Chan et al.(23).
Therefore it seems worthwhile to compare our Veneziano
model with data in the double-Regge region. The process we
shall consider ié Tr—p%>K°K°n at 12 GeV/c. This process has
alreadyvbeen treated using a double-Regge mode1(24).

To determine the five-point Veneziano amplitude
for this pfocess we follow exactly the same procedure as for
Kp>K ~7w *n. Because of the requirement that there should
be no exotic eXchanges'ali permutations where p and fo, n
and K° or w~ and K° are adjacent do not contribute to the
amplitude. The two remaining permutations are shown in
Fig.14 together with their cbrresponding duality diagrams
which are both legal. As a consequence of there being
three exotic channels for this process, all the trajectories,
except the one coupling to the 71 p subsystem, will be
~exchange degenerate.

The trajectories we have used were determined as
follows:

1. The only possibility for the T K® channel is a
degeneréte K*,K**Atrajectory.

2. The experimental data(zs) for the K?K?n decay mode of

K°K°n shows strong resonances in the K?K? effective mass



- Fig.14
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distributions corresponding to the f and A2. Therefore
we have used a degenerate ED,LQ, f, A2 trajectory for
the K°E° channel. | '

For the pn channel we have used the same trajectory as

~ for the K°K° channel. We make this choice because we

expect the e trajectory to be dominant at high energies
because of its high intercept. Also experimental
evidence (26) suggests that the A, in the KK channel is
producéd by P exchange. The situation is not so clear
for the production mechanism for‘the f. However, it is
éonsistént with A2 exchange.

The 1T"p->K?K$n data show no structure in the K?n mass
distribution and in the absence of any preference we
choose a 2 (1385) trajectory for the nk°® channel. This
is the only YT trajectory c&upling strongly to the XN
system. We could, however, use a YS trajectory.

Bgéaﬁse we shall only be considering events where Snf73’5
C wé do not expect the results to be sensitive to

this choice (This has been checked using a A(1520)

trajectory in the Kn channel. To within the statistical

errors on the data the distributions are not significantly
altered except for the Sx% distribution for which a

poorer fit is obtgined for sij>-5 Gev?).

For the W p channel we use a N trajectory. Again the
choice is rather arbitrary but because we are using

high energy data (Svp= 23 Gevz),the results are insensitive
to this crkoéice. VWe note that the trajectory coupling

to the TW p sSubsystem has a definite signature in our
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model. This is fortunate as there is no experimental

evidence for the N trajectory being exchange degenerate.
6. TFor the pK° channel we use a S (1385) trajectory because

it is the only trajectory which couples strongly to thié

subsystem.

Thus we may write our five-point amplitude as:
A= K (%5( - ot ee(brg ), 1o (Skw), 3 -o<c (Szn),

\- o (ton), yl'“N(S“F)B'\' B (%,' e Lbrrc\} ) (2.77)
%— ol)_(s(\‘r'cy) I- oo (SKR): ;Si-"(}: (tFK)J V5 - %(S“P)> '

We note that the argument of the Np<in the TTn
channel in the second term of this expression has been
shifted as before. Again this is to ensure correct asymptotic
‘behaviour. We do not shift. the N°<argument in the T'p
channel as this would result in there being no ng938)
resonance on this trajectory for the process being considered.
Unfortunately as a resuit of doing this some of the crossed
processeé“will have incorrect asymptotic behaviour but this
will not interfere with our study of the Regge limit of the

process T p= K°K°n.

Our trajectories are given by
Xy (s)= —0340.98+ L 0.2 (5-5), Se=(marm,)?
Xe(s)= 043 +0.95+ LOUS(S-S), So=4bmk

x3 (s)=~0.22+0 IS+ 0.5 (8-%),0= (Mt Y (2.78)

°<K;(&)= C)f@ +-§).9_£..
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In order to determine the kinematic factor for this
process we consider the two peripheral diagrams of Fig.15.
- We expect the diagram of Fig.15a to give the dominant
contribution to the amplitude because the diagram of Fig.15b
involves double baryon exchange (numerically we find that
the contribution to the amplitude from diagram 15b is about
10%4 of that from diagram 15a). Therefore we determine our
.kinematic factor by evaluating diagram 15a according to our

usual prescription. The following couplings are required:

Cux (?/ Cox, “)’ Q¥+ Q' (_._,—PH\}“
: o 53

C“P(G& Ko \C* > ca Eo(g(eex:“"{ Lo K) (2.79)

Ce CK‘:;C—J_“-JK‘)): Qi” @T«—K ).;4
-:we obtaln
Laq” (n ) (P es D SSIOES
Enn-me, ‘
(?l "e?)c eec/m >u[\(q§ *%QLXQ>LLF (2.80)
é‘,,\ - mx:
f
;- “af % (\\ K, M) Ualq¥er (pmk
QQ ) (C& et 5 )  o.80)

1G5 mﬁ‘)(fen.’ e )

. Near to the K and f: poles the Veneziano amplitude

may be written as



n—>—>— K°
AK¥ .
K
AQ‘
p > > n
a.
nm—> > n
A N
>— K%
AL
p—> >— K°
b.

Fig.15
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~ K |
A = - . ' (2.82)
"1 ~ : . .
x (tTIK’ S K* )Ct()r\’ lY\?)
Comparing egns.2.81 and 2.82 we write
S, ~ . o
K= €& (« 1™ Uy (q¥s+a (e+mds ) u,
2

(2.83)
c=-9"9" <. -

Although the absolute normalisation of the
amplitude is irrelevant in comparing the model with the data
~the relative magnitudes of the couplings g and g' are
required. Rather than use this as a parameter we have used

- the value predicted by U(6,6) (see Ref.17). This gives

9

¢

= — 72 .
(2.84)

' 2.10 Asymptotic Behaviour.

Wé now'have to check that our amplitude has
correct Regge asymptotic behaviour. To do this we need to

evaluate the trace

z; |K|* = c* "?‘[(&D’v*“_\e)(%*s+%Ms)(ﬂ+m)
Spins. _ T 7. / :

o "f’(cﬂr\—k q’ QP;ﬂ)z%ﬂ,Ei(K wmyel (k&)
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= C'L[(?-%lz((mP+mn)l~t9“\)+3cﬁl@\f>+m‘\)

+32) £(0, 17 + 2 (Eon-lre-ma ) )g

— H ———
:::»(K,“I‘V\ e (K/KJ“E- | (2.85)
. Now ‘
= 2
€ (n,%, K, )% = e(n,p,%,m)?
— mn2 p.a K- TN
= _ "~ F " (2.86)
SN P S
' 2L
K-a pK My KT
o pm XT M
and
K.“ = Sn?—-sm? _S‘Kh+'“?\f
2
Pk = S'ﬂp“' t'm(- SAK ~ m% (2.87)
2
_ L
T Q0 — Sm:—t—t‘pn—gKK—mP
2
P. N = m%% IT\}\—E?“ A K-Tl = n\’;co-(- "\?f;—t‘—(w

0 2

(A
P = Spp—my—mF
ga
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Using these relations we can see that, in the limit

Sk 20 , ST Do ,Snp> 0
such that OKK SRn - ”) (finite)

_(:mq/{?,\ fixed. |
- ‘ “ (2.88)
6 CA,K}\Z[T\)l N SK‘?\:-(’ S\E?-\ ’Fr\ (’7’) ,(:TIK,{:P'\B

We have already shown (p.40 ) that in this limit

~ v _ | - (2.89)
EI* CK)K)T_\B 8ﬁCKJK;1T) = + tTlK 3%62

and
'BS (\" 0(&"} \"' O(e -, 32—0(2 , (" °<ejl/2—0<“>
o lbme )t odolEon)—1
~~ SKR W “KS Sb-([\ 3 ) «F(’lbl—a(el\—o(‘@;
| | (2.90)
bs (3- <N, 3%z Ve, 3-ws,by) > 0,
cLoL | S 20t (Erue) 2 oxe (Epn) .
. ) Z \ﬁ \ N Ok Skn :ﬁ:uxc,(ﬁjtm(ﬁp:\)‘

(2.91)

Thus our amplitude has correct Regge behaviour in
this limit. Similarly it can be shown that the amplitude
has correct Regge behaviour in the double-Regge limit

corresponding to Fig.15b, We note that the asymptotic form
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of our amplitude contains an explicit dependence on ﬁ .
Here our model differs from the assumptions of conventional
double-Regge models. For example, in Chan's model for this
process Fig.15b is ignored and the amplitude for Fig.15a.is
written as |

XK*(E‘n )Y (G0 )Y En pn, qé) oaelom) N (2. 92)_

Kn

where ?f % and'zk describe the Reggeon--K and
Reggeon-p~-n coupl%ngs and '6 describes the Reggeon—Reggeoh-K
coupling. We note that the latter coupling depends on some
azimufhal'angle,¢', describing the relative orientations
of the "top and bottom halves" of the double-Regge graph.
¢’ may be taken és the Treiman Yapg angle defined in the

rest frame of the X as  ‘
(EI‘KP_K>'<E_P>< ﬁt\)

cond -
| |80 < @] |Pe x Ba |

- En(kx) gF(P,0 R) (2.93)
le . xR\ e (e, )
When sKK, sKn_éndisfn71tﬂﬁ,}tpn[and mg, we can
_writecl3) '. : '

”E;:r (2.94>

| = thnmtw\"‘ ?—“\7& (tnK‘PtPf\S + m}*B/’ﬁ ) -
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‘Therefore 3' may be expressed as a function of_t“K,
tpn and 7‘. However, in applying the double-Regge model it
is assumed that the variation of ¥ with ¢4 can be ignored

and the couplings are pafametrised as

flwfthk oCen
WK*' '(tnm)b}(tf)(\) X(tnmt?‘\fg): e eQF P (2.95)

where D K* and D’P are used as free parameters in
fitting the data. Thus in this model the amplitude is
assumed to be independent of 7 - The Veneziano model has far
less freedom thén double-Regge models. VWe have no
parameters with which to modify the dependence of the

amplitude on tﬂK and t This dependence is already built

pn’
into the model. Chan et al. obtained good fits to the data
with their model. However, in order to do so they found it

necessary to take a,K* trajectory slope of almost zero.

2.11 A,Comment on the Data.

Experimentally it is only possible to observe the

K{Ky decay mode of the K°K°final state. The KJKg and KHKJ
decays are not seen. This experimental limitation is

equivalent to projecting out the K°K° states with positive
C pafity and G parify (;1)1. This can be seen as follows:

"Writing the X and X as spinors

_ KT\ =N ke o
1K>:(K°) s B =.L;) (2.96)
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we may construct I=1,13=1 states of definite

C parity.

*
v, D™ =
\

where the s sign refers to the C parity. Using

$,

(\K*’E") T \E°K*>> (2.97)

o]

the lowering operator we may obtain
+ N . _
1,057 = L (ke k- w>F K=K )(2.99)
and the orthogonal I=0 states

‘OJ O)i’ :*J@QKOIE°>+ (K+ K.‘>-_l-. IK-K+> i— \F\o K%)- (2.99)

The X° and ¥° are only observed through the weak
decays of the definite CP states K?'and Kg (we ignore CP

violation which is a small effect).

| D:__ o ‘K'D ) _o— o_’ (4]
K ______Kl\;L 2 , Ki= ———~———K\;_fK’- ' (2.100)
2 ,_ _ 2

:g?Substituting eqn.2.100 in 2.99 we obtain
11,057 = LIRS+ KD 1D — 1k )
oy = 4 (Llkgkd - LIRS (kD +HK kD)

'|OIO>+ = ‘—'—(‘K? K°\> + \K;K02>+ h,('t“ K‘>+ \K—K+>J
= (2.101)

l6, 0y - '—,;.(@\kg__x‘m—a\K?KDHK*K’)-SK‘K*)), |
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Thus we see that the K1K1 final state can only
arise from C=+1 K°K° states. Also, because the K?K? state -
- consists of two identical bosons and the K and X both have
intrinsic parity -1, any resonance coupling to K?K? must
have Jf= ot,2*,4*... and @ parity (-1)I. |

VTherefore Some resonances (e.g.'f:N(1650)) which can
couple to the K°K° channel will not be seen in the data.

At high energies we do not expect the resonances to be
important and, providing we can distinguish which K? came
from the K° and which came from the fo, we can use the

T patK1 1n data to test our model. '

In order to distinguish the K and X° we note that
the c.m, longitudinal momenta in the direction of the beam
are given by( 3)

N

oL (sap-Seast 2bme)

PQE o —()f; (S®n—Skr +2tpn- Len)  (2.102)
' Snp
PQ ~ _ | (sﬂ,\)asvcz-r'ltpn\

- 2
foxr SUP ;5% a,Skn ,SKK>> N

As explained earlier we expect Fig.15a to give the
dominant contribution to the amplitude. In the Regge limit
.for this diagram we have

S‘RQ Sk, O%a BD\tT\Kl \tef\\
7) - Szn Sk

~ tae, Ben , 02 (2.103)
%T‘P ’
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Eqns.2.102 and 2.103 imply
¢ { 1 |
PK > FE > Pr\ | (2.104)

All the experimental events satisfy

¢ Q.
P 7 Peo > P?\

This confirms our assumption that the diagram of

(2.105)

Fig.15a gives the dominant contribution to the amplitude.

The Regge limit of the term corresponding to Fig.15b would

imply

SN ) "
PK < Pk < P * | (2.106)

No experimental events were found with

£ . 4 2.10
Foc P <Py (2:107
To within the accuracy permitted by eqn.2.104 and
eqn.2.105 we can use these equations to distinguish the K°
and X°. Unfortunately due to the flatness of the tWK
distributioﬁ the estimated fraction of wrongly ordered

mesons is about 20%?”4
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2.12 Discussion of the Results.

The predictions of our Veneziano amplitude are
shown in Figs.16-18. We have made a comparison with two

sets of experimental events:

1. Those with 8gn’ SFn® Sxx 7 3¢5 GeV%

. 2
2. Those with Sgn? S%n' SKE 7 5.0 Gev™.

In both cases reésonable agreement-with the data

- for the mass squared distfibutions is obtained. However, the
agreement with the momentum transfer data is notigood. In
particular the model fails to reproduce the shape of the

tWK distribution - the Veneziano model does not provide a
solution to the difficulty found by Chan et al. in fitting
this distribution (except by assﬁming the K trajectory

slope is approximately zero). The tpn distribution is not

sufficiently peaked in the forward direction. This is

.ffffpr0bab1y caused by our neglect of pion eichange in this

- channel which may still have a significant effect at the
>'enérgy we are considering.

_ We also show the Treiman Yang angle'distribution.
Oour model gives‘satisfactory agreement with the data. We
note that there is a. peak near to $ =180°. This is more a
kinematic consequence of the model producing forward peaks
. in the momentum transfer distributions rather than the

explicit dependence of the amplitude on 7 (#).



Figure 16

Figure 17

Figure 18

‘8=, and -t

80.

Fipure Captions

Mass-squared and Treiman-Yang angle ()
distributions for the 224 events for which
2

Sp%r S%n'Sgn” 50 GV at 12.0 GeV/e.

Experimental data:
Theoretical prediction:

Momentum transfer distributions for the 224
. 2
events for which Sgx+ 5§ ,sKn>-3.5 GeV™ at

12.0 GeV/c.

%K K“_distributions at 12.0 GeV/c for2

the 73 events for which SEK15%n? Sgn > 20 GeV .
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IXI. CONCLUSIONS.

In this chapter we have presented a Venéziano model
for.three particle production in which an attempt has been
made to take account of the spins of thé external particles.
'In doing so we have been able to avoid having the
unphysical fermion resonances in crossed processes which were
an undesirable feature of the earlier‘"spinless" model,

The K-p‘>K*—TV+n amplitude has correct asymptotic behaviour
for all crossed processes and the Tr—p-aKofon amplitude
for'processes which do not invdlve crossing the baryons.

The model providés a prescription for determining the
kinematic factor for ahy process including those involving
pion exchange for which the choice made in earlier Vemeziano
models has been rather arbitrary. .

Against these adtantageé of the model we must set
- its weaknesses., The most important of these is the fact
that the ?rescription for determining the kinematic faétor
is baséd on consideration of what we consider to be the most
important peripheral diagram for the process being |
considered. This means that the choice is made by refering
to only one of the permutations contributing to the
amplitude. If we were to evaluate every possible doubhle
peripheral graph correspdnding to our five-point blob
diagréms we would, inigeneral, find that our kihemétic
factor was only one of many possibilitigs. However, since

our choice is based on physical arguments concerning which

term we expect to be most important for the process under
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coﬁsideration it is not unreasonable to assume that our
amplitude should provide a reasonable description of that
process. It is also guite often the case (e;g. for
K-p€>K*—TT+n) that our prescription gives the same kinematic
factor for all processes involving only crossing the mesons
and therefore we would expect the amplitude to provide a
reasonable description of these processes on crossing.
Although often still having correct asymptotic

behaviour our Veneziano model is not, in general, self
consistent on crossing the baryons. This difficulty is
associated with the fact that ‘it is not possible to include
fermions in the Veneziano model in a fully satisfactory
‘manner, - Some progress towérds constructing a Veneziano
mbdel which is consistent under:baryon crossing has been
made recently by making use of the U(6,6) symmetry scheme
and duality diagrams(®7). |

. In applying the model proposed in this.chapter we
find that We obtain good agreement with the main features
of‘fhé data but when we look at more detailed properties of
- the model (such as the double-Regge limit) we find the
agreement is not so impressive. This is probably due to
the simplifying assumptions made in order to make the
application of the model practicable. Perhaps, in the
future, improved data and numerical techniques will allow

some of these difficulties to_be overcome,
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' CHAPTER 3. A SMOOTHED VENEZIANO MODEL FOR K_Lef*on.

3.1 The Zero Width Resonance Problem.

One of the main difficulties encountered in
phenomenological applications of the Veneziano model is the
problem of how to give the resonances a finite width. The
simplest method of achieving this is to add an imaginary
part to the trajectories thusvmoving the poles off the real
axis and resulting in the resonances having a finite width
(howéver, the poles still remain oh thé physical sheet).

We have already discussed two possible parametrisations for
the imaginary part in chapter 2. Both of these lead either
to the introduction of ancestors or to the loss of crossing
symmetry of the amplitude, However, since it is possible
to construct phenomenological amplitudés in which these
disadvantages are not manifestly apparent this method of
giving the resonénces a width has gained wide spread
acceptance among phenomenologists.

A far more elegant technique for moving the poles
off the real axis ggg onto the second sheet is to perform
a convolution of the Veneziano amplitude with a suitable
"smoothing" funetion. Models of this type have been
proposed by Marfin(1) and Burkhardt et al.(z). These authors

write the smoothed amplitude in the form

b |
V(sk) = [ &G Vs, tx)dx

(o W

- (3.1)

where ¢(x) is a suitably chosen smoothing function



and ¥(s,t) the original Veneziano term. This particular

method of smoothing the amplitude has several disadvantages:

1, Because of the form of the integral of eqn.3.1 the
Veneziano amplitude is effectively averaged over a line
in the s-t plane. This implies some correlation
between the independent variables s and t.

2. One finds that this smoothing technique leads‘to all
resonances of the same mass having the same width.

This is a éerious disadvantage when one wishes to
construct phenomenological amplitudes with different
trajectories in different channels.

3. The evaluation of integrals of the type given in eqn.3.1

is generally difficult.

Instead of using an amplitude of the type given in
eqn.3.1 we shall consider a smoothed amplitude consisting

of terms of the form

b |
V(s,t)= S.¢CX).9CL5)‘V@CSJ%{:>°5CA%- (3.2)

Although at first sight this appears even more
complicated than eqn.3.1 we shall see that it enables us
to overcome the disadvantages listed above. It is
immediately obvious that, since the vériables s and t are

smoothed independently, the first of these is removed.
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3.2 The Model.

We have shown in chapter 1 that the Venegiano
amplitude may be written as a sum of pole terms. For
example the s-t term of the simple scalar (01) particle

amplitude may be written as

. _ co CT‘)M F1G'°<(€D-
= - (< -—K(_‘&) = N (3.3)
V(s &)= BEx@),~=®) mZo T (oD T Lot

Consider ‘the term containing the pole at «(s)=k.

. We may write this term as

R (e
Rl (5.4)
R- e (s)
where»Rk(t) is a polynomial of order k in t. We
now take " :
#Gr= hED o) )

(e-)*+ ¥ B CERR (3.5)

where h(x) and g(y) are analytic functions in the
range of integration. The contribution of the pole term to
the smoothed amplitude will be

[+

j" hx) qlu) Re(Ey)dxdy
e [@c_.)%+>s§][(%-qz+xﬂ(h- (3

(3.6)



Here we have éhosen the-range of integration so
that we are, in effect, averaging the Veneziano amplitude
over a rectangle of side 2€ centred on the point s,t in

the s-t plane. If we choose h(x) and g(y) so that

i+ +€

alu)dsy ~ _ S’ hée) S

1-e (Q-)+¥% Lo G20 B (3.7)

then, providing ¢ is sufficiently small, on

performing the integral over y we obtain

+e

. Re(t v D
AN Relba)dy =R, )~ R, G0
\-< Qﬁ”‘)"-kxt
However, even without making any assumptions about
c or g(y), Rk(t) will still be a polynomial of order k in t.
We must now consider the integral over x. We can reWrite

eqn.3.6 as

i+ &

R O} h () . ! ob; (3.9)
) ‘£Q(CKV‘P+3i> (h-deQSx)

where oc(s)=oc, +x's

285 (R-wo = oc's (14 13:))

= R [ !

+e (3.10)

X J' h(x<) dxe

“'é x—l~LXS
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_ [ f hie) de
20 (koo — s (1-1%)) P, e UEs

1+e
[ Wee) dee |

(V- o(o—-cxls*x)

| (x's)*
(k- oto-ot's)? + (et's ¥ )?

\-&

Hence the x integration is reduced to the evaluation

of integrals of the form

I+£ ' ' .
[0 e 511)
e XT-\+cC

where ¢ is a constant.
When ¢ lies on the lihe of inteération we interpret
the integral as its principal value.
The first two terms of eqn.3.10 give rise to poles

at
k = Xo+ x's t .L,Xs o(‘S.
(3.12)
Thus the poles are moved off the real axis in the
same way és would result from adding a linear imaginary
part to the trajectory. However, in our model we do not
destroy the crossing symmetry of the amplitude nor are
" ancestors introduced since Rk(t) is a polynomial of order
k in t. Ve shall also see 1ater that the poles now 6nly
occur on unphysical sheets.

The third term in egn.3.10 gives rise to a cut from
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_ k= Xo _ k=o<o R . '
S—o(-m to s= m in the s plane. This cut does not

correspond to any physical cut and is an unfortunate feature
of this type of model. Burkhardt et al. have'proposed(z) a
method of smoothing in wﬁich the resulting Qut has some of
the properties of the threshold cut required by unitarity.
However; their method is only applicable to four-point
amplitudes and suffers from the same disadvantages as were
mentioned earlier. |

In choosing h(x) and g(y) we must ensure that h(x)=0
and g(y)=0 at the ends of the range of integration in order

that the integral shall not diverge. The simplest choice

for h(x) and g(y) satisfying this is

hec)= A [ Ge-1)2—e?)™?

A [(g-r- ]

where A and A' are chosen so that eqn.3.7 is

\

(3.13)

1)

3(%)_

satisfied. In general, one finds that for m= odd integer the
éut term has a square root branch point(B) and for m= even
integer the cut is logarithmic. As m increases the relative
vmagnitude of the cut contribution to the amplitude decreases.
The first two terms in eqn.3.10 are found to be independent
of h(x) but the third is not. By choosing m sufficiently
large in egqn.3.13 we can make the cut contribution negligivly
small. Fbr m=1 (as used by Burkhardt et al.) numerical tests
suggést that the cut contribution is of about the same order
of magnitude as that from the pole terms. TFor m=2 the cut

contrivution is a few orders of magnitude smaller
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than the pole terms. Although we could make the cut
contribution even'smailer by taking a larger value for m,'we
shall use m=2 as this allows the integral of egn.3.11 to be
evaluated easily.

Therefore eqn.3.11 becomes

1+

I- | Al(x-)-e] dx

x—{+C (3.14)

Let x-1=€1u

f
T- ( A’ _wi-t du

eu+¢

(3.15)
= [ P)e[}ztb- +cr-c ‘] s
- Eu+c
(3.16)
Assuming ]f§l> 1 if ¢ is real, we obtain
T- —2fcc +A(c>-c?) [QO"‘B (e + <)

(3.17)
Lo (c-2)],

. Care must be taken when evaluating the logarithm.
We shall take the physical sheet as corresponding to the

principal value of the logarithmic function. Thus we obtain
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\+ &€ '
( _hG&) doe - Al F2ei¥ —(¥ise?)

—e -1 Ei¥

(3.18)

»>< [ Lo (e + Ye) - Loy (x L\ds—eﬂl
= T AS ie e+ (_?5”?@’)[&%@*“‘0
— Lam (Y= T

(3.19)
Using eqn.3.7 we may determine A:
(+e
Ce \ 2-1-L¥s x-t+¥s / 2¥g
(3.20)
=8 i 2 etV + (3 em) Lo (e %)
¥
g (-] T
Therefore
L+ & ,
S\ h G) de = F L8 . (3.21)

The third term of egn.3.10 has a singularity on the

kK- °<c . k- xXe .
é7r7527‘<s<%7TT:27' The integral

of eqn.3.15 must then be interpreted as a principal value

line of integration when

taking the contour of integration above the real axis as we

go round the pole. Thus, when 'gw-<1 and ¢ real, we obtain:

1= ~2Acc + A (Ci'él)[L”ﬂ Cé‘\‘c) (3.22)

-—Latg lc-el -L”’\T:l .
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Therefore we obtain our final result for the
smoothed pole term of egn.3.4:
nJ
R, (8 [ ' + :
2 (R-sto-'s(+1%e))  2(R-xom 'S (1-135))
' (3.23)

;|_ x's[ieb + (él—b")(‘—ﬁﬂs'@*b) *L&q (b-é))]
(Qk-fxg—ok'S)zi- (d'SXs)Z)

« LY |
2ie¥s + (¥% + )] Log (e+ i) Log((¥s-¢))
where b= | — b;:,:" .

In fhis expression the cut term has been evaluated
for s+i€ ,S-»O+ and is therefore the correct contribution
for the physical region. It can be shown that on the
physical sheet the pole terms in egn.3.23 are‘cancelled by
similar poles in the third term of the expression. Thus the
poles of the smoothed amplitude only occur on unphysical
sheets. To see this more clearly we return to eqn.3.6 and.
look at the singularity structure of the integrand in the
complex x plane. The integrand has fixed poles at x=1iiﬁs
and g moving pole correspohding to each pole of the

Veneziano amplitude at

Ly

)

R- e J \Z—;OJ\JQ‘"‘ (3.24)
x's |



The cohtour of integraftion required for evaluating
the amplitude in‘the physical region lies just above the
real axis (see curve C in Fig.19a). The poles in s will only
occur when the contour is pinched against one of the fixed
poles by one of the moving poles. .The Physical amplitude in
the region of the cut is defined by approaching the cut from
- above on the physical sheet of the s plane (e.g. along path
P1 in Fig.19b). Row consider the moving pole at X, as we
follow the path P2 o; P3 in the s plane. On the x plane Xy
will follow the corresponding curves shown in Fig.19a. In
neither case will the contour be pinched and therefore the
poles will not occur on the physical sheet. In order to
pingh the contour Xy must follow a path such as P4. However,
in doing so we must pass through the cut on the s plane
thereby going onto another sheet. The'pole occuring af

R= &+ o{'Cl—ﬁ-LXs)S (5.25)

will lie on the second sheet and be reached by going
through the cut from above. It therefore lies near to the
Physical region and will correSpond to a resonance. The

pole at

k= e + ! (1% )s (5.26)

lies on a third sheet reached by going through the
cut from below and is far removed from the physical region
and its contribution there may be ignored.

The second sheet resonance given by eqn.3.25 will



Fig. 18
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have a width given by

M= m¥s ! | (3.27)

where m is the mass of the resonance.

Hence the width will increase. linearly with mass
along the trajectory. For most trajectories this is not
inconsistent with the experimental daté on resonance widths.
We may also note that since we can choose Y differently for
each trajectory we are not forced to give all resonances of
the same mass the same width.

The asymptotic behaviour of the Veneziano amplitude
will of course be modified by the smoothing integration.

As well as Regge pole terms, the asymptotic form of the

amplitude will also contain Regge cut terms of the form:

\’7(3,%).5'_\;& PCS) Soc.;-t-o((\-é)e
£ Pued |

where p(s) increases slower than a power of s

(3.28)

(i.e. p(s) will contain terms in logs). Providing the range
: ’of smoothing is small ( € of the same order of magnitude as
the experimental error in determining the trajectory slopes
or smaller) then we would not expect this modification to be
discernible in a phenomenological applicatiOn. Because we
have chosen our smoothing function @ (x) so that it

vanishes at the ends of the range of integration the real
axis poles of the Veneziano amplitude will become smeared

- out for lafge 8. This will give rise to a smooth asymptotic

behaviour even along the positive real axis (i.e. in the
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physical region).

3.3 Application of the Model to K:p—>f*°n.

In our smoothed Veneziano model the poles acquire
a similar parametrisation for their widths as is obtained
by adding linear imaginary parts to the trajectories. One
expects the contributions from the poles at k=cx0+o/s(1—iYS)
which aré far removed from the physical region to be
"negligible. However, it is not immediately obvious that the
second sheet.poles at k=<xo+x's(1+ixs) will dominate the
amplitude since, in addition to the poles, we also have a
cut contribution which may'be significant, Therefore we
shall test our smoothing technique by applying it to a simple
Veneziano model.

In chapter 2 we have already obtained a simple

®°hn and have used it to calculate

amplitude for K p>%
differéntial cross sections. In this application a linear
imaginary part was added to the s~-channel trajectory. Hence
this provides us with an ideal choice for testing our
smoothing technigue.

Our Veneziano amplitude for K—p-aK*on is given by

A= N K e MY BEow(t), 2 - ‘X_f—(éﬁ

(3.29)



102.

Wue' Xs(s)= -0.22 +0.9¢
X (E) = —0.0IS + 0.9t
"and where N is a normalisation parameter;
In this amplitude we replace the Veneziano term by

its smoothed form obtaining:

AS“\OO‘H\ = N T-L(\X-s \lP K‘xéx (A)

I+€ +€ (3.30)

EOY () 8(3 - (), -otn(ta))dmcyy

-€ l-¢

We have chosen sz and X; so that we obtain the
correct width for the bion and approximately the correct
widths for the resonances on the 2 (1385) trajectdry. We
use ‘Ks=.05, Xt=5.10°5. The integral of eqﬁ.3.30 cannot
be evaluated explicitly. However, the integration over x
may be carried out by using egn.3.23 and the expansion of
eqn.3.3. The y integration may be carried out numerically
by computer. |

In Fig.20 we show the differential cross secfion
predictions at 4.1, 5.5 and 10.1 GeV/c for € =.05 (dashed
line) and € =0.1 (so0lid line). For small € the results are
obviously sensitive to the range of integration. For €<.03
the contribution from the third term in egn.3.23 is very
small and the first two terms combine to give an amplitude
which is essentially a sum of the real parts of a series of
Breit-Wigner resonances. As ¢ increases the imaginary
part of the amplitude becomes more significant and

cancellations between the contributions from the first two



103.

W T
- Kp—~K*%

10% E
L1 GeVie -

s
200l 55 GeV/c -
| .=
R 1
10.1 GeV/c
109 :

00 05 10 15
CGeVe) 2]

Fig.20



104.

and the third terms of eqn.3.23 give rise to a complicated
cross séction structure for €~ .05. As € is increased
further (€2.08) the cross sections becomeé smoother changing
'little as € 1is increased. This is what we would expect.from
viewing the smoothing procedure as averaging the Veneziano
.amplitude over a small area in the s-t plane. 1In simple
“terms we expect the averaged amplitude to become "smooth"
when the range of s over which we integrate is of the same
order of magnitude as the distance between the poles (i.g.
~1 GeV?. ). OQur data is for s lying between 8 and 20 GeV2
Therefore we would expect our predictions to be "smooth"

for 22,'.1'0. This is what we find on doing the detailed

calculations.

3.4 Conclusions.

In this chapter we have seen how the poles of the
Veneziano model can be moved off the real axis onto the
second sheet withouf destroying the crossing symmetry of the
amplitude or introducing ancestor particles. This provides
a great improvement on the "imaginary parts" method. As a
result of the smoothing technique the amplitude contains
unphysical cuts. However, these cuts are essential in
order that the poles should be removed from the physical
sheet. Ve find that our results are sensitive to the range

of integration in the smoothing integral. However, as the
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range is increased this sensitivity diminishes.
We also note that there is considerable freedom

in choosing our smoothing function. This may possibly be

used to advantage by trying to find smoothing methods which

lead to more realistic cut terms and which are less

sensitive to the range over which we average the Veneziano

amplitude.
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CHAPTER 4. - RECURRENCE RELATIONS FOR POLE RESIDUES IN

GERERAL VENEZIANO ANMPLITUDES.

4,1 The Four—-Point Amplitude.

In this chapter we derive relationships .between’
the residues of neighbouring poles in a general class of

Veneziano amplifudesQ .

We start by considering the simple Veneziano

amplitude for scalar (07) particle scattering:

A(S 6= fx‘“(s) G- x)”d&) doc

+ (S,u)’.}u{ﬁ) + (Q,t term),

where w (S)= Q(,)-\éo('é.

(4.1)

As it was pointéd out in chapter 1 we may add

gsatellite terms of the form

Pe-x@).T0-«©) | ocecmn, o)
T(r-e<() - (B)

to this amplitude without affecting.the asymptotic

behaviour. The extra terms simply alter the fesidues of the

poles. Ve shall consider the class of Veneziano amplitudés

given by
\ ..
A= yx—«(s) | )—o(&)—\f(x)&n N
a .

\

t
fx:-ac(s)vlo_x>—a<(\»\)*\9@(:)&_*_ faf“(k)"@_,@"‘(“)'o‘\@gf{-3)
: 5

0
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where f(x), g(x), and h(x) are arbitary functions analytic
in the range 0£Lx<1. By expanding f, g and h as Taylor

series in x we may write the amplitude, A, as
o0 A
A= 2 baBMm-«(),-x()) +3 4 B(n- «(s),~oc (w))
M=0 A=O

== PN (4.4)
2 dp Bl- « (), - (W)
p=o. '

If £, g and h are symmetric under x<1-x, then A
is crossing symmetric in s, t and u. The amplitude given by
eqn.4.3 is the most general Veneziano amplitude which can be
written as a sum of Beta functions.
| Consider the first term V(s,t) of egqn.4.3. In the
left hand plane of both s and t V(s,t), V(8T$7’t) and

V(s,t-;%) are analytic and we may define
F(S,t)—‘ \/(S,f" ‘/°<')+\)(S—'/°<',Jf>“ \)(‘3;15). (4.5)

F(s,t) will be analytic in this region and from

eqn.4.3 we see that

¥ (s,t)= 0. | (4.6)

However, if egn.4.6 is true in the left half
planes of s and t, by Liouville's theorem it will be true
everywhere that F(s,t) is aralytic.

Now consider a pole at «(s)=k. Near to this pole

we may expand V(s,t) and V(s—.%,t) as
. o

': e (6) \
\] (S,&) E-_—Eo-(—(—s—j +€t\%\re QL.U\C{\L()(\. | (4.7)
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V(s=4,6) = Ora (O | oabice Punction. (4.8)
| R- o< (S)

where rk(t) is the residue of the pole of V(s,t) at

o¢(s)=k. Near to the pole we may write eqn.4.6 as

‘ Croy (4 O (6-Y) = P (O
»F(S,E)= | h | R\ix(s) -

+ entice Fundion = 0O,

(4.9)

Thus

| Ty ‘(‘?)—" NS '/od) -t (0=0.  (4.10)

This relation between the residues of neighbouring
poles of V(s,t) in the s-channel applies for any function,
f(x), in the amplitude of éqn.4.3. The same result may also
be obtained by considering each. term of the expansion of
eqn.4.4. The residue from the term with coefficient b, mLk
for the pole at <(8)=k is

(=™ by TEx)

C n(6)=
= S T'(kx1- m) T'(m-k- x(&)) | (4.11)

 end ta-\—\ m(ﬂ* Q )b MHb P(—‘X(fc)))
F(R+Z—m§. T (k= 1= (6))

(4.12)

ﬂu\ w(O = 0 O = )R b T 0)
T (kt2-m) T (m-k-x(¥)

x[(mok-\»o(&))-k@\—\-\-«\)] (4.13)
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) ‘lmﬂ-l"w(__o(((_-)*.()h (S /o()
r'(\{'f').“"’\) r‘(m-h-d&)) '

Summing over m we 6btaih eqn.4,.10. A similar
relation will connect the residues of the s-channel poles
arising from the (s,u) term, Relations of the type given
in eqgqn.4.10 provide a!means of checking whether it is
possible to construct a Veneziano amplitude of the type
given in egn.4.3 having some spedified residue structure.
Using eqn.4.10 it is simple.to see whether, having constructed
an amplitude having the reqﬁiredAresidue structure at one

pole,it will still have the required structure at the next.

4.2 The Five-Point Amplitude,

We shall consider a general five-point term of the

form -
VCS"’-’SZ?‘ /Sa4,Ss, Sst>= YS d'u_;—‘A**s ,ULTO(CSQ)“

_ _ —_ < - - ; - - D
uz O((st) | Us 0(( 54.) IU[‘_ O(LS:..S) \ usx(ss)_\f(u‘)u'_J,) (4.14)

Z Z Cm‘\ B‘S (‘,\‘K(SIQ.B)-D((S?-.B)) N -K(qu‘)l .
M=o 0=0 (4.15)

— <(Sus) ;=< CSS\>>

O

As described. in chapter 1 there is a constraint on
the variables uj given by

u‘x: ",—ud-—l-L\J-‘-‘- (4-16)
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Thus V will satisfy equations of the form
V(S“?— s S22- L 133, 34-8,59\ )+ U(S.7_—'/,"13131334fl4(«,545153|)

o1
_\/(Sll,Sn,Sy‘,S‘,‘_stgl) = QO (4 7)

with corresponding residue relations of the form

Cemi (S\'z; Sag, '3¢‘s,351>= M (S, S3q ,Sus, Ssl)

' 4.18
Ok (Svam Yt 5 Sa- % s Ses JSS|5 ( )

for poles in 523.

For the N-point case V will be a funection of the
g.(N-S) planar Mandelstam channels s; corresponding to the
permutation being considered. We should note that, for N>5,
only 3N-10 of the sy are independent. Thus, in general, V
will not be on mass shell. In using N-point functions the
8; may be regarded as independent in doing calculations and
the constraints between the 84 only applied to the final

results.

The constraints on the integration variables uy of

the N-point function are

where k runs over all channels dual to i. Thus
we obtain

V(S‘L . Si— |/0('1"‘>+\‘l(SL_€L%.Z’>— V(S,_) = O
_ (4.20)

for poles in sj..
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where ei=1 if Sy is duval to s

J

=0 otherwise.

This leads to residue relations

Ph—l (Sl ).\.)S\i;| JS:)'*'I)")J(' ‘\h(S‘L—GLl )

"o_(l

: (4.21)
‘PE(S(J' ve) Sj—-l _,3,34-1,..): 4.
Since for N> 5 not all terms in eqn.4.21 can be

simultaneously put on mass shell the usefulness of these

'relations will be reduced.
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CHAPTER 5. A GENERAL CLASS OF DUAL AMPLITUDES.

"5.1 Introduction.

As we have mentioned earlier the asymptotic
behaviour and pole positions in the simple Veneziano
amplitude for scalar (0F) particle scattering are unaffected
by the addition of sattelite terms. The residues of the
poles are, hbwever, altered. The most general crossing
symmetric VenezianoAamplitude for such processes may be

written as

2.2, cme Tln-<6). T (n-x()
et (- o (s) - <(6))

(5.1)
+. (s<—>u) r (u@t)-‘

A If we congider the pole at «(s)=k then the
iesidue will be a polynomial of order k in x(t). There
will, in general, be k+1 terms with m=k which do not have
poles for «(s)< k. The choice of the coefficients ey for
these térms wiil not affect the residues of the lower poles.
These terms will have residues of order k,k-1,..0 in (t).
By making suitable choices for Cyp We can give the
cdefficients of the polynomial residue of the pole at xX(s)=k
any values. Thus we see that it is poSsible to construct
Veneziano'amplitudes of arbitrary polynomial residue
structure in terms of an infinite series of Veneziano terms.

The construction of such series and their convergence has

been investigated in great detail by Khuri(1). Although
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the existence of such series may be established the actual
construction of an amplitude with some required residue-
‘étructure will usually be a formidable task.

In this chapter we shall investigate the explicit
construction of dunal amplitudeé having any desired residue
structure. In order to do this we shall not adopt the
type of procedure discussed above but instead construect an
amplitude by,modifying Buler's Beta function integral.

A featufe of the Veneziano model is the presence
of infinite series of daughter particles accompanying the
the resonances on the parent trajectory. Theoretically
daughters must be present in unequal mass scattering in
order to preserve the analyticity of the amplitude.
However, for 2->2 equal mass scattering they are theoretibally
unnecessary; As a specific application of our technique
we shall construct an amplitude for such processes in
which there are no daughter particleé. Although the
technique may be straightforwardly eitended to construct
amplifudes for unequal mass scattering without daughters
such amplitudes would have unphysical singularities. If
the residues of the poles in the unequal mass case are to be

entire functions of the Mandelstam variables then daughters

must be present.

5.2 General Four-Point Amplitudes.

For 2->2 scattering of scalar (0%) particles we

may write the fully crossing symmetric amplitude as a sum
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of terms each of which corresponds to a different ordering
of the external particles. We may write each of these
 terms as integrals of the form .

P [t faep e

where f is any function having continuous
derivatives to all orders in x in the range of integration.
We have written the amplitude in terms of the variables
j and A y where these are linear trajectories (e.,g. - (s)
and - (t)), in order to simplify the notation later on.
The amplitude of eqn;5.2 is more general than that

considered in chapter 4.

If £ can be expanded as a Taylor series in x of

the type

:F(’C)f")‘): O'OG‘\)\B+Q\(H'>‘>'7C(‘-‘xj>-~- (5.3)

- where, assuming the amplitude is crossing
Symmetric in }*_and )\, the coefficients a,, may be written
as

. o j
J=° (5.4)
then we may write F(}A,)\) as a series of the type

given in eqn.5.1.

- In general the amplitude of eqn.5.2 will have poles
for (i and A =0,1,2,... The pole at i =-k will have a

residue given by
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k At
AU GRS SR
k! | (5.5)

Our aim is to construct an amplitude with any
required résidue structure. Therefore we shall require that
the residue given in eqn.5.5 should be h1(k,,X) where h1 is

any analytic function of X, This may be achieved if

S LAY = (k) k!

\n (5.6)
and m ,
’ax_zo 'F(If‘k,%> = O) m-_'O,\,..‘P\—\ .
These conditions may‘be satisfied by writing
$Ge Xy = [+ 0= (qu (o)1)
' : - (5.7)
1+ 6. (@0, 1))
where ’ ‘ . ‘ ‘ '
¢(‘\ = | ) CF(O): @) | .
c - . (5.8)
Bxco;‘qé(x):o =l
and

DI, C;\\‘(-‘R,I)=O ,T=0,0. . Ry
: | | =\Z\ \\‘G&,)\)) V=t?~ (5.9)
| %((0,0):_: h-(‘))-
Egn.5.7 has been constructed so that the residues
of the poles in . and A'ére equal to h, and h, respectively.

The functions defined by eqn.5.8 are called van der Corput

neutralisers(z). These functions have already proved useful
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in the removal of parity ddublets in the supermultiplet
Veneziano model(B). An example of these functions is given

by

b)) - B
0

where = (- V) (5.10)

oC)- | (.Q,\\,) NS u))

‘We shall discuss choices for the functions gi(u,x)
in the next section. For the present we shall assume that
functions satisfying eqn.5.9 exist.

With f(x,p, A) defined as in eqns.5.7-5.9 we
obtain an amplitude with any required residue structure.

As a particular example we shall gonstruct an amplitude for
equal mass scalar particle scattering in which there are no
daughter particles. In order to do this the residue at the
pole at rl(*—o((s)) -k must be proportional to Pk(cosé? )
where Pk is a Legendre polynomlal and Q is the s-channel
c.m, scattering angle.- Similarly the residues of the poles
at /\_(=7 (%)) =-j must be proportional to Pj(cos Bt)‘ As
we are considering equal mass scattering we can write thé
scattéring angles as

+ 2t

COS 93 = \ —_
S=d4mt (5.11)

where m is the mass of the external particles.

If '
e —ex(s) = - xo—ex's

A = cax ()= — oo —u't (5.12)
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|t

then Cos O | + 2(0(01—>\>

’ ’ 0(0""‘-\4-[‘,0\7—9(/
. a (5.13)
= |+ Q-(Ko+>\> = Coo g{)
o(o*h-l-é,n\lp('
atthepﬂe'ngd
Similarly
CosO, = |+ Uetoty) = Cos&(é) (5.14)

“0—3.\.[].“\10(’
at the pole X.=—j

If we choose

ho ()= ck Prlcasl))
l\'11_ (3,2 = .C'J P, (@s@%j)l (5.13)

where Cye gives the coupling strength of the spin k
particle, then the residue at the pole M=-k is ckPk(cosé;s)
and at the pole )\:-—j the residue is chj(cos et).v
| Hence we obtain an amplitude for 2->2 equal mass
scattering with no daughter particles. It should be
-emphasised that this does not mean that therelare no
daughter trajectories. These are in faect still present but
are empty. It should also be noted that there will also be
poles in s in the (s,u) term of the full amplitude. This
term must also be constructed\so that it has daughterless

residues.
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5.3 The Functions g;-

The functicns gi(u,x) are definsd by eqn.5.9.
We may write them as a Taylor series in x:
) o
n : _
. q‘(PwJC): Z x= C%(P‘)\“\LMM (5.1.6) -
=0 : .

vhere qn(}*) satisfies
Qa (-0)=0 C= 04,

Ynln)= t. (5.17)

Therefore the functioné qﬁ(rx) must have zeros at
all integers less than -n. They must also be entire
functions of g as they must not introduce additional
singularities in p . The simplest choice satisfying these
conditions is |

qn () = : |
r1(ﬂ+—LetA) (5.18)

Choosing g () as above will ensure that we get
the required residue structure.' However, asymptotically
this expression will increase faster than any finite power
of P as \H\ew, T1>\arg}4>ﬂa. This will prevent us
from obtaining Regge behaviour in this region. Therefore
we may redefine qn(r\) as

q“CH)r Pa (i‘*)
" (1\"‘: (B fuk)

\Dr\(“\'\) = |

(5.19)

‘(5.20),
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where Pn(fL) is such that qn(}¢) is asymptoticaily
constant or decreasing with ]Fq.

Noting that(4) |
Mz+o) o 225 72 52 o

as |Zzl>e0

(5.21)

locgq= | <.

We shall consider two choices for Po(p). Firstly

P (#)= QLPELH"’“)("L‘(“'A)YJ- (5.22)
This satisfies eqn.5.20. With this choice qn(p)m,pﬂﬁ
as |p|>ea . It should be noted that this does not result
in an extra }('% factor in the asymptotic behaviour of our
amplitude which would spoil the Regge behaviour. This will
become obvious when we consider the asymptotib behaviour
of the amplitude in the next section. We have written
eqh;5.22 in exponential form so that, together with the
condition [argiJ\gﬁ-, q, is single valued. We note that,
as defined by eqns.5.19 and 5.22 qn(rA) has a branch point
at }1=A.‘ Below this point g(rx,x) is real whereas above
}l:A 'g(}t,x) becomes complex. As we expect amplitudes to
be réal below threshold and complex above we shall chobse
A to be the threshold point in the H channel.

One of the assumptions leading to the concept of
duality is that, at low energies, it is the imaginary part
of tﬁe-amplitude which ié dominated by resonances. With

this in mind it is interesting to consider a second choice
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for pn(+&) and take

- qn (H)- exp (pen)(i-t (H—ﬂ))‘* 5 (ned)-Tabeal))
T (n+ie )

| with this choice qn(F*) is asymptotically constant
for all \arg P\<TT. Above threshold the resonances occur in
the imaginary part of the amplitude. This appears to be
more in keeping with the concept of duality than thé original
Veneziano model. However, in a unitarised model the poles
would occur on the second sheet and until one knows how to
construct such a model it is not possible to tell what
should happen to‘the poles as the width of the resonances
tends to zero.

At this Stage we may gote_that there is considerable
ambiguity in the definition of the gi(rx,x). Just as the
addition of satellites does not affect the asymptotic
behaviour in the Veneziano model, so we-find in cur model
there is an arbitrariness in the choice of the functions 8
if we only insist on the amplitude having a certain residue
- structure and Regge asymptotic behaviour, .

Finally, in order to show that the functions g5 do
exist, we must show that the series of eqn.5.16 converges.

By D'Alembert's ratio test the series will converge if

U+t - xr CM\HO’Q \\\((\H,)\)
U An(k)  No(n,K) .(5'24)

AN W=
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Taking qn(f*) as in eqn.5.22

Unrt] /x &‘P(—l+%(ﬂ+ﬁ)>,hl(h+l,X> -
(TN
O+t Y RGN
~ | | (5.25)
c = ey NGy |,
e (huep) hdln )Y
u R A
A8 no09, aEil will be less than 1 for all finite pn and
by providing |
| “}\1((\+\)}\> A>o0
> O .
ﬂ}\‘(ﬁ;x>
- . (5.26)

5.4 Asymptotic Behaviour of the Amplitude.

To start with we shall consider the asymptotic
behaviour of our amplitude as A (i.e. s> - o0) along the
| real axis. As a specific example we consider our

'daughterless' amplitude. This is given by

Flaa)= [oem ()" [ir dgoey
(3 %%q, () e aleat?) 1) ]

[ e3P, e, e

(5.27)

'



123.

Substituting x=e ™

Pk - fe““ (-es) [\+¢(1—e“§)
< (2 €39 e Pa o)1)

% [t+¢(e"*)(§__ (-e)q, We;
« @ (co}@)\‘)) ] dy.

As (»> the integral is dominated by the

(5.28)

contribution from the region near to y=0. Since qS(1-e"y)->O

and ‘qb(e-y)-ad as y>0 faster than any finite power of y

Soe N -
Flro A A2 (et 3 oed) ™
| ° 9= (5.29)

Now let riy:w

o . o
Flh) A fgjz Q,Q"W/A)J”‘“
o]

. <31
(\*‘d }’\ (5 )

G- w; e, <m (f—)
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where the Stlrllng polynomials, Y (x), are defined

by the generating functlon(s)

<.‘-_é"_‘i>-x_‘ = Lx:-t—l)z Pal)y .

Ty - _ * (5.32)
_mh;m

Py R S e 0G0 940)
| | | . C ? (o 6?)) . (5.33)
As _pam'

R
) 1!
P, (caseﬁf‘) ~ ( Q**m ‘ )(%“QJ (5.34)
ode + b=y 7 \J
SOF (e, 8) T p S TN 9, ()

§=0

x( 2 )3 2y < (5.35)
(24

ot a_m’—oc'-J 2\3 (d\_ )1

-(3fX)(«—u<A-A))

oq
5 @)e
°-=° J+>\)(o<.,+4mo<—.3 ) )
v (5.36)
with g chosen as in eqn.5.22.

This series converges providing A is not a negative

integer and c. does not increase with j. Therefore we obtain

J
Regge asymptotic behaviour along the positive real R axis.

1
i
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‘The integral of egn.5.28 is well defined for
larg p\<1’2. and the same argumeﬁts as above can be used to
establish Regge asymptotic behaviour everywhere in the right
half plane of M.

Ih order to prove that the amplitude is Regge
behaved in the left half plane we must first show that the
integral of eqn.5.28 can be analytically continued into this
region. In order to do this we rotate the range of
integrafion in the complex y plane.

, To illustrate how this may be done consider the

integral
R

f*ﬂﬂdw

N (5.37)

Now consider the integral of T(y) around the contour
ABCD as shown in Fig.21a. Providing there are no

singularities of T(y) either on or inside the contour we

have
8 C < P
gT(‘o\de= gTC%)obj - fT(*d)obj ~ g‘T(Kﬁ\A\Aﬁ. (5.38)
A D & R

If we now allow A->0 and B-> « and, if the integrals

over BC and DA vanish)we have

B

(rtydy - [ Twdy (5.39)
0

&
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/DA
)
A B
a.
Vi

Fig. 21
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Hence, providing the contributions from the arcs

Hy

the ranzge of integration are zero

=

traced out by the ends o
and the line of integration passes over no singularitigs of
the‘integrand, we may rotate the line of integration.
through an angle S as shown in Fig,21a.

Considering the integral of eqn.5.28 we see that,
on rotation, thevline of integration passes over no
singularities of the integzrand providing ‘argyh<§g and
| areuy|< ", throughout the rotation. Also, because of the
factor e™Y"the contribution from the arc BC vanishes as
B>c subject to the same conditions. The contribution from
AD also vanishes as A>0 since we still have hﬁ(e'y)lao
and‘L£(1-e—y)l5 1 faster than any finite power of y. We
note that this would have not been the case if we had chosen

the more familiar van der Corput neutraliser:

S B (5.40)
were )= (o TF TV 4
| )

Therefore we can make the rotation through the angle
S providing f4-lies in the segment A shown in Fig.215b.
However, the rotated integral will be well defired for alil
| satisfying —%;+5<:argrx<ﬂLyS i.e. in segment 3. 1If S<T&i
the two segments overlap and provide an analytic
continuation of F(p,\) for -M+S<argzp <+$. e can now
follow through thes arguments of egns.z.29-5,35 and-proven;
Regge asympic.ic behaviour in this rezion. Thus we.are able

to prove that our amplitude is Regge behaved for \arg(4}<ﬂ,
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This is the same region for which Regge behaviour of the
Veneziano model can be established. Finally, we note that

in order to show that the full amplitude is Regge behaved

we must show that the (s-u) term tends to zero‘exponentially
as s>o0, t fixed. This may be achieved by using the mefhdd
employed by Suzuki in a mode1(6) which uses van der Corpﬁ%i'}
neutralisers to construct a Veneziano model with gon-linea; :

trajectories.

5.5 Conclusions.

We have shown that, by using van der Corput
neutralisers, it is possible to constrﬁct dual amplitudes
with any required residue structure.

If we consider the integral of ImF(p,A) with a,
defined as in egn.5.23 around the contour shbwn in Fig.22
we see that, since the contour encloses no singularities,
the integral is zero. The contribution from the circular

arc as R will be a sum of Regge terms. As €-> 0 we expect

the contribution from the straight zortion of the contour 1o
be dominated by the poles on the resl axis., TFowever, our

amplitude will also have a backzround term. In order to
evaluate this background term as R>« withws =0 we would
requlre the asymptotic behaviour of the amplitudg along the
negative real = axis. If our zmplitude is 1o bé'cqﬁsisﬁent

with "Resonance = Regge" duality and with the experimenial

evidence supporting the concept of resonance dominance
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 Fig. 22
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the background must be small. It is possible that this
requirement could remove some of the arbitrariness in the
choice of the gi+ The cuts starting at threshold in each
channel in our amplitude do not correspond to the threshold
cuts of unitarity. The construction of_émplitudes with more
realistic cuts provides scope for further investigations of
this type of ﬁodel.

Finally, it is interesting to speculate that, sinée
it is possible(7) to write propagator numerators (this is
essentially what the hi are) for continuous spin J exchanges

coupling to any external particles, it may be possible to

construct -an amplitude for processes involving fermions.



4.

131,

REFERENCES

N.N. Khuri, Phys. Rev. 185, 1876 (1969).

J.G. van der Corput, Proc. nederl. Akad. Wet. 51,
650 (1948); '
see also: E.T. Copson, Asymptotic Expansions,
Cambridge University Press (1965).

R. Carlitz, S. Ellis, P.G.0. Freund and S. Matsuda,
A.E.C. Research and Development Report, CALT-68-260;
S.A. Adjei, P.A. Collins, B.J. Hartley, R.W. Moore,
K.J.M. Moriarty, Phys. Rev., May 1971 (to be published).

E.T. Whittaker and G.N, Watson, A Course of Modern
Analysis, Cambridge University Press, p.278.

Higher Transcendental Functions, edited by A. Erdelyi,
MecGraw Hill (1953), Vol.3, p.257.

M. Suzuki, Phys. Rév. Letters 23, 205 (1969).

M.D. Scadron, Phys. Rev. 165, 1640 (1968),



132,

APPENDIY,

Asymptotic behaviour of the Veneziano model.

~In this-éppendix we shall prove that the Veneziano
model has-Regge asymptotic behaviour. Firstly we consider

a simple four-point amplitude of the form:

P ). T Ex(®)
T (- <) —ec ()

A -

In order to determine the asymptotic behaviour of
this amplitude we use Stirling's asymptotic form for the
Gamma}function(1): -

Meta)= Zz=*2"2 % @w (14 OC—;:))
| L | (4.2)
for 2zl ezl

lagz+a)| LT,

Therefore as |slse, arg s%»0 , t fixed we obtain:

A~ a6y © 4 cx@lt?]
(A.3)
The second term in eqn.A.1 may be shown to vanish
exponentially as |s|>«x, P fixed providing «(s) and (%)
are linear trajectories of the same slope. The asymptotic
form of eqn.A.3 only corresponds to Regge behaviour if the
trajectories are linear., If both trajectories havé the

same slope we have

S Tl (e .
A ~ r(.«((:))@’s)"(@[e o Q+ l] (A.4)
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“Here we seé that the (s,t) and (u,t) terms
combine to give the trajectory a definite signature. " If
the s-channel was exotic then the (s,t) and (s,u) terms
would be absent. As a result we would no longer have a

- signature factor and the t-channel trajectory would be

degenerate.

We note that, because of the infinite series of
poles on the real axis, it is not possible to show that the
" Yeneziano amplitude is Regge behaved along the positive
real axis. o '

Because of the.well known asymptotic properties
of the Gamma function it is relatively easy to prove the
Regge behaviour of the fouf»point amplitude. We shall now
consider the five-point amplitude and show briefly how it
has~Regge behaviour in the double-Regge limit. To do this
we shall follow the mefhod of Bardakeci and Ruegg(z). As in
the four-point cése it can be shown(s) that by adding all
twelve terms of the crossing symmetric amplitude each
trajectory is given a definite signature. However, we shall
only consider a single term of the five-point amplitude.

From eqn.1.19 we may write
B (—o(\?. J"°<‘23 ;T Kag J‘-°<4-'5J“°<5|)

)°<45‘+°<sa‘°(5-3

|
—eyn—
= H dur, duy W, G -uwg (A.5)
O

<y — \

oy — s -
x Us"(u‘ "(1=ua) “T- W) '

!
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Substituting

1

we esp (22, y‘*f“*(?‘i) .

B - ffdﬁow T

e 4 \XasHolsim Koy éf?a)_ A5 - |
V= @ Xaolas  Xag -

—-o(gl" _ -
(l aq.o<'q.5> (A.7)
where 7 = X3¢ Xas

s
' = -9
Now let x'= 2%, Y97 =
K K34
o =d . -
- 22 Byl i aiie Job
B= C‘XQS) C_N
: 6 o
-ohy — | _—esi— T TS L
q K
' _x'y’ \ (A.8)
where K= ( - € )__.
¢ I xl
|—e™> %73
' ! —g5 ~|
-x,ld’-%’ -‘d
= \—<
n= - - ,
g [-em Y

We shcll consider the limit <X34,°‘45,C*12»-oosuch
that n remzins finite and negative. However, our final |

result will be true for the limit |0<74\,\0<‘45\,1c>(123->00,
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larg o 13;> O. This limit corresponds to the double-Regge
diagram:
2 5 5 3
34
] 545
11— >—5
In the integration x and y,and x' and y' lie
between O and +<0, It can be shown that there exists a
. constant, C, such that |K|,|L|,|M|<C in the range of
" integration. We can also show that the following limits,
uniform in xr and y' exist.
Lim K=\ L Lim M = | Lim L = e
x'y's0 2 y’>0 7 xl,y'se (4.9)
: x,4 fixed
X4s D> — o8

We can write eqn.A.8 as

S-S I3  (4.10)
(££+££+ (5‘4- gg (Toteqrand) dac dy

Because L,M and N are bounded we can make the last

three of these integrals arbitrarily small by choosing P

sufficiently large. Keeping P fixed we can then make (s

and ]s45\ sufflclently large so that

[ttty | oot o oo

34 |
Ty

<€ (4.11)
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where € is any arbitrarily small positive constant. This is
possible because of the existence of the uniform limits for
E, L and M. By choosing P sufficiently large initially we
can also make :
0 00 PP '2: +cy
\((f‘” docduy e’ 3 A <] —“’3"]
~ o Y
o0 e :

« (A.12)
<L e | -

Therefore we obtain finally

. ' ' X, - 23
L~ B(—"(\l;"‘l’u"xag , ’“as,’“m) = (~os) (— “343(
0(3LJ°(‘*5>-°° ob ’

7 faide x

=33, %15 fized

R

-x-y+ LY ot |~ g2 -
e B 1 s st Y = oL)C&LJ

(A.13)

o =

| o
= ("Sus)xs‘ (82.)""* -F('?r“:sf"ts)

providing the trajectories are linear.
In the 1limit considered in eqn.A.13 the terms in

the full five-point amplitude giving rise to the double-Regge

diagrams:
32 3 T2 2 >3
—>—4 B —>— 4
1-—*—~—>¥-5 5—4%—"—}——1- 5 —>——>— 1

will combine with the term we have considered to
~give the °<23 and c><15'trajectories a definite signature.
The other eight terms in the amplitude will vanish

exponentially in this limit.
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