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. SUMMARY 

The principles and techniques of crystal-structure 

analysis are discussed and a brief description of the 

computer programs which have been used is given. The 

crystal structures of four metal complexes have been 

determined from diffractometer or photographic data. 

The first two are structures of the two polymorphic 

forms of hydridodicarbonylbis(triphenylphosphine)iridium(I). 

(i) The orthorhombic form of IrH(C0)2(PPh3)2. 

(ii) The monoclinic (I) form of IrH(C0)2(PPh3)2. 

The second two are stuctures of polynuclear 

nitrido-bridged transition metal anionic complexes. 

They are: 

(iii)Potassium µ -nitrido-bis [tetrachloroaquoruthenate(114 

K3Ru2NC18(H20)2. 

(iv) The ii-nitrido-hexasulphatotriaquotri-iridate 

(IV,IV,III) ion,P3N(SO4)6(H20)3] -4. 

(i,ii)The iridium complex is a homologue of 

RhH(CO)2(PPh3)2, which is believed to be the active 

species in the hydroformylation of alkenes using 

BhH(CO)(PPh3)3  as catalyst. In organic solvents the 

iridium complex is known to exist as two isomeric 

forms under-going rapid intermolecular inter-

conversion. It was interesting to find out what 

the molecular geometry is in the solid state. 

Examination of the crystals showed the presence of 



three polymorphic forms. The structures of two of 

those have so far been determined. 

Both structure determinations were from diffracto-

meter data and their main features are as follows: 

(i) (ii) 

Space group Pna2 1 P2
1
/a 

Unit-cell dimensions a=17.759 a=18.036 

b=10.001 b=10.075 

c=18.389 c-19.474 

Z 4 

Final R factor 0.0187 

Number of reflections 2518 

Some distances: 

Ir - P 2.372;2.377 

Ir - C 1.868;1:834 

Ir - 0 3.023;3.029 

Ir - H 1.64 

p =113.365°  
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0.028 

3248 

2.357;2.359 

uncertain 
(CO groups 
disordered) 

2.902-3.076 

In the case of the orthorhOmbic form the hydride 

hydrogen atom was successfully located and the co-

ordination about the iridium atom can be best 

described as a distorted trigonal bipyramid. In the 

case of the monoclinic (I) form both carbonyl groups 

were found to be disordered and locating the hydride 

hydrogen atom proved to be impossible. The results 

are compared with the well defined geometry of the 

orthorhombic form. 



(iii) The structure has been determined from the 697 

three-dimensional visually estimated intensity 

data and refined to R-0.088. The crystals are 

monoclinic with unit-cell dimensions a-15.89, 

b=7.34, c-8.16A,0=120.4o. The space group is 

C2/m and Z=2. The main features of the 

[Ru2NC18(H20)2]3  ion are: 

a) a linear 0-Ru-N-Ru-0 system with very short 

Ru-N distances of 1.720A, indicating multiple 

bonding, and fairly long Ru-O (water) distances of 
0 

2.18A. 

b) an eclipsed configuration of chlorine atoms 

co-ordinated to ruthenium (four to each one). 

The two independent Ru-Cl distances of 2.364 and 

2.367A are normal. 

The potassium ions are co-ordinated to eight 

chlorines at distances in the range 3.20-3.36A. 

(iv) This is believed to be the first trinuclear 

nitrido-bridged complex structure to be determined. 

The final R factor is 0.032 for 565 reflections 

measured on an automatic diffractometer. The 

compound crystallises in the cubic space group 

I43d with 16 molecules in a unit cell for which 
4 

a=22.805A. The complex anion has C3  point group 

symmetry with the nitrogen atom being co-planar 

with and at the centre of an equilateral triangle 

formed by the iridium atoms. The six sulphate 

groups link adjacent iridium atoms which have an 

octahedral coordination with the nitrogen and water 
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molecules trans to each other. 

Some of the more interesting distances are: 

Ir-N 1.918A, Ir-O(water) 2.058A, Ir-0(sulphate) 

2.006-2.059L 
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SECTION A. 

A short introduction to the theoretical and 

experimental basis of X-ray structure 

determination. 
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which with the interaxial angles 

When considered as a 

called the lattice  

of three vectors they 

are 

set parameters. 

CHAPTER I 

THEORETICAL PRINCIPLES OF STRUCTURE DETERMINATION 

INTRODUCTION 

The principles used in the determination of crystal 

structure are essentially those of physical optics. 

However, to get diffraction phenomena from crystals having 

interplanar spacings (which correspond to the repetition 

distances in an optical grating) of the order of a few 
0 
Angstrom units, a radiation of similar wavelength has to be 

used, such as the characteristic X-radiations of Cu, Mo, Cr 

or Fe. 

Crystals are composed of groups of atoms repeated at 

regular intervals in three dimensions, each group having 

an identical and parallel environment. For the purpose of 

diffraction theory it is sufficient to regard each group 

of atoms as replaced by a representative point, and the 

collection of points so formed is the lattice of the crystal. 

The lattice repetition distances along each of the three 

noncoplanar directions are called the lattice constants, 

11 

define a unit cell. 

The X-rays used in studying the arrangement of atoms 

have a range of wavelengths from about 0.5 to 3.0 R and 

therefore are capable of resolving separate atoms, but 

they cannot be bent sufficiently by any kind of lens to 

give a direct image of the atomic arrangements. They can 

only be scattered by the crystal matter so as to give 



various kinds of diffraction patterns. 

The following first chapter will deal briefly with 

the phenomena of X-ray scattering and its use in crystal-

structure determination, while the second chapter concerns 

itself with two basic experimental methods of recording 

diffraction patterns and determining the intensities of the 

individual reflections. 

An outline will be given of the theoretical and 

practical basis of only those procedures which have been 

used in the determination of the four structures described 

in this thesis. 
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I.1 THE DIFFRACTION OF X-RAYS 

An electron in the path of an unpolarised X-ray 

beam is set into forced vibrations of the same frequency 

as the X-radiation and acts as a source of secondary 

X-rays unmodified in wavelength but radiated in all 

directions. By this interaction the electron is said to 

scatter or to diffract X-rays. All electrons in the path 

of an X-ray beam scatter synchronously and scattered waves 

will interfere either destroying one another or combining 

to form new wave fronts. This cooperative scattering 

produces a diffraction pattern. The directions of 

possible diffracted beams depend only on the size and 

shape of the unit cell and the X-ray wavelength. Their 

intensities vary considerably and depend on the arrangement 

of atoms within the unit cell; some symmetrical arrangements 

produce recognisable patterns of systematic absences among 

the reflections. 

The geometry of diffraction 

Consider a parallel beam of X-rays of wavelength A 

falling on the lattice in a direction defined by the vector 

Sb and scattered in the direction defined by the vector s, 

both vectors having modulus 1/A . Let P1  and P2  (Fig.I.l) 

be two lattice points separated by a vector distance 
-) 

r 	 c ua + vb + wc, where a, b, 	are the lattice parameters 

and u, v, w are integers. The path difference between the 

two scattered waves is P1L - P2K (see the same figure). 
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P1L 	cos -y 

and 	cos 7 

since 	Is' 

cos y 

  

Irl 

Therefore P1L 

Similarly P2K = (r.s0)X 

and 	P1L - P2K = X (r.s - r.So) 

where = s - so is called the scattering vector. 

In order that the waves scattered by P1  and P2  shall be 

in phase, this path difference should be equal to a whole 

number of wavelengths. Thus (a. + vt + wc).S -.integer, 

and u,v,w are also integers. If now all lattice points 

must fulfil this condition simultaneously, i.e. it must 

be true for any integer values of u,v, or w, then 

a S = n1 

1-a5  S = n2 
	i.e. three integers 	(I.2) 

c S = n3 

These equations are known as Lame's equations. When Laue's 

equations are simultaneously satisfied, a diffracted beam 

of maximum intensity will be produced. 

Bragg showed that the incident and diffracted beams 

were equally inclined to (and therefore apparently reflected 

by) the family lattice planes whose Miller indices*are 

h k 1 if nl=nh, n2=nk, n3-111, where the common factor, n, is 

known as the order of reflection. 

* Miller indices can be regarded as showing the number of 

cuts made by the set of planes in each axis during one 

unit translation. 

14 



a 
h  

-4 
S 

 

a 
h . -S4 

The Laue equations can be rewritten in the following 

form; 

a . 

b 
h 

T • 

S = n 

-4 
S = n 

n 

Subtraction of the first two equations gives 

(a b) .S = 0 

which means that the vector S is perpendicular to the 

vector W./h - 	Similarly S is perpendicular to --a!,/h 

- C71. Since both vector differences are in the plane 

hkl 
	

(see Fig. I.2a) the vector S is perpendicular to 

this plane. But S is a vector in the direction of the 

bisector of the incident and diffracted beam, since the 

moduli of s and so  are equal (Fig.I.3); thus this 

bisector is identical with the normal to the h k 1 plane 

and therefore each diffraction can be regarded as 

"reflexion" of the rays from lattice planes. It is 

convenient to introduce the spacing d of the planes h k 1; 

this is the perpendicular distance from the origin to the 

plane shown in Fig.(I.2a), and can be calculated as the 

projection of, for example -a4./h on the vector g (Fig.I.2b). 

15 

d = 	r.-11 cos a 

but 

Cosa -= 

therefore 



O 

K 

Fig. I.1. 

2 sine 

• ?% 

trace of the MO plane 

Fig. 1.3. 

Fig.I.2a. Fig.I.2b. 
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But :4  4- • -S+  = n (Eq.I.3) and as is apparent from 

Fig.(1.31 

t 
2 sine 

X 

X  Thus d = 	n  2 sine,  

and nX= 2d sine 

This is Bragg's Law. 

In practice the order of reflection, n, is "absorbed" in 

the spacing d of the hkl planes: sine for the n-th order 

of reflection from planes with spacing d is the same as 

that for the first-order reflection from planes with 

spacing d/n . 

If we rearrange Bragg's equation such that 

sine = 2-1 /4  I • 2 d 

The interpretation of X-ray diffraction patterns would be 

facilitated if the reciprocal relation between sine and 

l/d could be replaced by a direct one. The reciprocal 

lattice concept gives the solution to this problem. The 

reciprocal lattice (r:1.) can be defined as follows. 

Consider the normals to all possible direct lattice planes 

radiating from some point taken as origin. Mark the point 

hkl on the normal to the planes hkl, and at a distance of 

p/dhkl from the origin. The value of p is usually taken as 

1 in theoretical considerations and as X in practical work. 

l/d is,  designated d* and from the deriva.tion of Bragg's Law 

it is evidently identical to IS.  To show that the array 

of points Phu  gives a lattice we can consider equations (1.3), 

The first one is equivalent to the statement that the 



projection of S on -a! is constant for a fixed value of h, 

namely h/a; that is, the ends of all vectors S having 

the same value of h lie on a plane perpendicular to a. 

If h = 0, the plane passes through the origin; if h = 1, 

the plane has an intercept on a of 1/a; if h = 2, it makes 

double the intercept; and so on. In other words, the ends 

of the vectors § fall on a. set of equispaced planes 

perpendicular to the -a! axis, each plane corresponding to 

a particular value of h. In a similar way, sets of 

equidistant planes perpendicular to the 13 and -C)  axes will 

be set up, with planes corresponding to a particular value 

of k and 1 respectively. The intersections of these three 

sets of planes represent the end points of vectors that 

satisfy the three Laue equations simultaneously, and so 

give the solution of Bragg's equation . The set of 

points obtained by intersections of planes equally spaced 

in each of the three directions giveS a lattice of points 

in reciprocal space and, therefore, known as the reciprocal 

lattice. The unit cell of this lattice is defined by three 

vectors a*, b*, c*, and each r.l. point is defined by three 
• -4 

integers h,k,l and the corresponding vector S=ha*+kb*4-1c*. 

Figure (I.4) shows a two-dimensional projection of two sets 

of lattice planes in direct space with their corresponding 

points in reciprocal space. 

We can show how useful 'the concept of the r.l. is in 

the interpretation of diffraction by the following 

considerations. 

Imagine the crystal oriented to the X-ray beam of 

wavelength X in such away that its reciprocal lattice plane 

a*b* is parallel to the beam. Draw a line X0 in the 

direction of the X-ray beam passing through the r.l. 
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origin 0 and along this line choose the point B at a 

distance of 1/X from point O. From the point B describe 

a circle of radius 1/X , having on its circumference 

r.l. origin 0 and r.l. point P. (Fig.I.5). Since the 

angle OPA is a right angle 

OP 
sin 8 = OA 

and since OA = 2/A and OP = 1/dhk1 (by definition), 

A 
sine = 2dhkl 

which is.just Bragg's Law. 

It follows that a reflection occurs whenever a r.l. 

point coincides with a circle constructed as described. 

By rotating this circle around its diameter AO, a sphere 

called the sphere of reflection is generated. When the 

r.l. is rotated about its origin, r.l. points are brought 

into coincidence with the surface of the fixed sphere of 

reflection and Bragg's Law is fulfilled. Since the 

diameter of this sphere is 2/X , every r.l. point within 

that distance of the origin can be brought into a reflecting 

position. Thus every r.l. point within a sphere of radius 

2/X , the limiting  sphere, is a potential reflection. 

(Fig.I.6). 

It is worth noticing that when the r.l. is defined in 

terms of d* = l/d, the radius of the sphere of reflection 

is 1/X , but when d* = X /d the radius is 1 r.l. unit. 

3.9 



sphere 

X-ray 

Sphere of 
reflection 
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Fig.I.4. Projection of direct lattice planes and the 
corresponding reciprocal lattice points. 

Fig.I.5. Section through the reciprocal lattice and 
the sphere of reflection. 

Fig.I.6. Section through the sphere of reflection and 
the limiting sphere. 
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The intensity of dif f raction 

Hitherto the scattering units have been assumed to 

be electrons whose linear dimensions could be neglected in 

comparison with the X-ray wave-length, and therefore 

scattering by a single electron was independent of angle, 

apart from the effects of polarisation. 

In atoms, however, the electrons occupy a finite volume 

and only the waves scattered in the direction of the 

incident beam are in phase. For other directions electrons 

scatter outof phase, and the amplitude of the wave scattered 

by the whole atom decreases as the scattering angle increases. 

If one assumes spherical atoms the amplitude is a function 

only of the type of atom and sin 0 A(Fig.I.7). The 

scattering power of a given atom for a given reflection is 

known as its scattering factor fo and is expressed by the 

ratio 

f = A /A o a e 

where Aa is the amplitude of the wave from the whole atom 

and Ae from a free electron located at the position of the 

atomic nucleus, both being measured in the same direction 

of the scattered wave. For angle 0= 0 this ratio is equal 

to the atomic number Z. 

The normal scattering-factor curves are calculated on 

the basis of the electron distribution in a stationary 

atom, but in reality the atoms in crystals are vibrating 

about their mean lattice positions. The effect of such 

thermal motion produce transient modulation of the 

periodicity d of the lattice planes over a large volume 

and thus the apparent scattering power of the real atom 



falls off more rapidly than that of the stationary model 

(see Fig.I.7). Debye and Waller showed that the X-ray 

intensity of reflection at temperature T is given by 

To exp {-2B(sin
2 

/ X
2
)1 
	

(1.5) 

where Io - intensity corresponding to the atom at rest and 

2 B = 811" u2  

2 . u is the mean-square displacement of the atom along the 

normal to the reflecting planes and depends on the 

temperature, the mass of the atom, and the elastic constants 

of the crystal. Thus the scattering factor for a real atom 

vibrating isotropically can be given by the expression 

f = fo exp [ -B(sin
2
8 / A

2
)] 
	

(1.6) 

The exponential part of this equation can be rearranged to 

underline the fact that the effect of the thermal vibration 

of an atom for any set of lattice planes(likl) depends on the 

interplanar spacing d. 
(  IT B 	2 sin 8 hia)2  exp 4 	A 

  

  

exp[- 
134-  (dhkil 

(1.7) 

 

  

Since 1  

d2hkl 

- (h2a*2+k2b*2+12c*2+2hka*b*cos Y 

+2h1a
*c*cos p *+2klb*c*cos a * ) 

	
(1.8) 

and since the temperature factor must have a parameter for 

every term in this expression, as each represents a 

component perpendicular to the set of planes(hkl), the 

general temperature factor expression for an anisotropically 

vibrating atom is 

exp 
L
-1/4 (B11h2 a*2  +B22k2 b*2  +B3312 c*2 +2B12 hka* b

* 
 cos y 

+2B13hla
*
c
*cos p *+2B23klb

*
c
*cos a * (1.9) 
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	point atom 

real stationary atom 

real oscillating atom 

sin 0 / X 

Fig.I .7. 

	A 

Fig.I.8. 
Vector representation of waves with 
different amplitudes and phases. 
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The six B.j  thermal parameters serve to describe the 

ellipsoidal electron distribution, and for an atom in a 

general position they are independent. For an atom in a 

position of special symmetry, however, certain restrictions, 

discussed by H.A. Levy (1), are imposed on them by the 

symmetry of the site. 

Whereas the scattering from an atom depends on the 

distribution of its electrons, the scattering from a unit 

cell depends on the atomic arrangements. Suppose that 

the unit cell of a crystal contains three atoms, each of a 

different kind. The amplitudes of the hkl waves scattered 

by those atoms and their phase relation is shown on a 

vector diagram (Fig.I.8). Each wave is represented by a 

vector whose length and inclination to the horizontal are 

proportional to the atom's scattering factor and the phase 

angle with respect to the wave scattered by hypothetical 

electrons at the origin of the cell. The length of the 

resultant.gives the amplitude Film:  and its inclination 

the phase angle a hkl  of the composite wave due to all 

three atoms. Fhkl is called the structure factor. In 

general for the unit cell containing j atoms the structure  

factor is the resultant of j waves scattered in the direction 

of the reflection hkl by all the atoms in the unit cell. 

The only observable quantities are X-ray intensities 

which, being proportional to amplitude squared, give only 

the modulus of the structure factor,IFhkll , called the 

structure amplitude, and leave the phase angle unknown. 
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To calculate the structure factor the knowledge of 

atomic scattering factors and their phases is required. 

The first are tabulated as a function of sin() /X, the 

latter can be calculated in terms of the positions of 

the atoms and the indices of the reflection. Thus, from 

the definition of the indices, the set of planes h k 1 cuts 

a,b and c into h,k and 1 divisions respectively. According 

to Bragg's Law the phase difference between reflections 
given 

from successive planes of any set h k 1 is 2n radians. Hence, 

the phase differences for unit translations along any of 

the three axial directions are 2 n h, 2 Trk and 2 TT 1 radians. 

If an atom A has fractional coordinates x,y,z the phase 

difference between this atom and the origin 0(0, 0, 0) for 

the set of planes hkl is 
6 = 2 11 (r.r)=2 TT (xa!+37-13-1-zn. h-g..*+ke -e* )=2 Tr (hx+ky+1z) 

From (Fig. I. 8 ) 

I Fhkli =  (A2hk14-1132hk1)1' 
	

(I. 10) 

where Ahkl and Bhkl 
for a unit cell with j atoms are: 

Ahkl = 	Ef.cos 2TT (hx.+ky.+1z.) 
=1 	J J J 

N 

Bhkl = Zf . sin 2 Tr (hx.+ky.+1z.) 
J  J J j=1  

The phase of the resultant wave is 

a 	= tan -1
( Bhkl 

hkl 	---- 
Ahkl 

  

 

I.13) 

  

These last equations are normally used for computing 

structure factors. 
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Other useful ways of representing the structure factor 

are writing it down as a complex number, 

Fhkl = Ahkl+113hkl 

N 

and 	F 	= 	f .e2 Tr ( hxj. +kyj. -1-1z3. ) hkl 	j =1 3  

(I.14) 

(I. 15) 

So far the structure factor has been considered in 

terms of the waves scattered from the N atoms in a unit 

cell. A more general approach treats the structure factor 

as the sum of the wavelets scattered from all the 

infinitesimally small elements of a unit cell with electron 

density changing continuously throughout. Thus, if 

p(x,y,z) is the electron density at the point (x,y,z) the 

amount of scattering matter in the volume element dx dy dz 

is p dx dy dz and the structure factor equation is 

1 1 1 

v)(jup(5c,y,z)expprri(hx+ky+141xdy dz 
o o o (1.16) 

This form of equation provides a means of calculating 

structure factors for a given electron distribution. In 

practice, however. in the process of determining a crystal 

structure the inverse operation has to be performed - an 

electron-density distribution has to be obtained from the 

structure factors which are calculated in turn from the 

measured intensities. The next section will deal with 

this problem. 

Fhkl = 



V 

i.e. there is one term in the Fourier series for each 

Ahkl 
Fhkl (1.18) 

1.2 	STRUCTURE DETERMINATION IN OUTLINE 

The density of scattering matter in a crystal is 

triply periodic, and can therefore be expressed by a 

three-dimensional Fourier series 

p (x, y z) = TTZ Ahkl exp [-2 TT i(hx+ky+1z)] h k 1 
(1.17) 

(where h,k,l are integers between -ooand+00) 

and if this is substituted into Eq.(I.16), it follows that 
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observed reflection. 

As we can only measure IFhkli  and have to deduce 

its phase a hki  separately, it is convenient to write 

Fhkl 	1Fhk11 exp  (2 Tri  ahkl)  

Hence Eq.(1.17) becomes 

p(x,y,z) = 	EZE IFhki I exp [-2 Tri(hx+ky+lz - ahkl)]  
hkl 	 (1.19) 

This form of equation will raise the question how 

the electron density, which is a real quantity, can be 

expressed in a form containing imaginary components. The 

following consideration answers this question. When 

Friedel's law holds 

Fhkl - Ahkl + Bhkl 

and Fhkl = Ahkl - Bhkl 

Using the contraction 

5 . hx+ky+iz 
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and combining the terms for.hki and hkl 

0{. 
hE 	1(A+1B)exp(-2 Tri8)+(A-iB)exp(+2 Tr i 

00 	 co 0 

hence 

p= 
2 3D, 5),I 1(A cos 2n5 + B sin 2 TrE) ), 

-co -m 0 

V 	 I -Fhk1 cos (2 Tr b - a hkl) -co -co 0 
which is real. 

(I.20)  

The fundamental difficulty in using these formulae is 

the determination of the phase angles ahkl.  A simplifica-

tion occurs if the crystal is centrosymmetric and the 

origin is taken at a symmetry centre. In such a crystal 

there is an atom at X,37,z for each atom at x,y,z. As a 

result the sine terms in expression (I.12) cancel each 

other, so that the only possible values of a are 0 or Tr . 

Then the phase problem reduces to the determination of the 

sign, + or -, of the structure factor. 

For structures containing a heavy atom whose scattering 

dominates the intensities and controls a large number of 

the phases, the Patterson function provides a means of 

solving the so-called "Phase problem" in crystallography. 

This approach is known as the "heavy-atom" method and has 

been used throughout the work in this thesis. 

Patterson showed that a Fourier summation using 

1  IFhk112 values 

pu,v,w = V1- Eh Ek 
-co hk 112  

 

cos 2 n (hu+kv+lw) 

 

(I.21)  
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gives a vectorial pattern of the distances between the 

atoms in the structure. Vectors between atoms with 

scattering factors f., fj  and positions (x" y z.) and 

(xj,57j,zj) give rise to peaks in a Patterson map at 

positions 4- (xi-xj, y1-yj, zi-zj) with heights approximately 

proportional to Z. . It follows therefore that a 

Patterson map is always centrosymmetric regardless of 

whether there is a centre of symmetry in the real structure. 

For a structure containing N atoms in a unit cell, the 

map will show (apart from a large origin peak) N2-N other 

peaks per, unit cell; the heavy atom - heavy atom peaks 

being the most prominent. Hence the positions of the 

heavy atoms may be obtained, which allows one to calculate 

their contribution to the structure factor and this gives 

an approximate phase angle for each reflection. 

Then a preliminary Fourier synthesis carried out 

with observed moduli and calculated 
ahkl's  leads to a 

first electron-density map which is a rough approximation 

to the crystal structure. The map may suggest minor 

adjustments to the heavy-atom positions, and may reveal 

the positions of several of the lighter atoms. This 

longer list of atomic coordinates is now used for 

calculating improved phases which in turn are used in the 

second Fourier synthesis which gives a still more accurate 

electron-density map. 

The Patterson approach can be conveniently used in 

determining the phases for structures where 	Z2 	\- 
heavy 

ZZlight) 	1. On one side, the heavier an atom, the 

easier it is to locate it and the more it tends to 
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determine the phases of all. the reflections. On the other 

hand, when the atom is very heavy compared with the others 

in the structure, its dominance becomes too great and the 

comparison of 11101 and IFol becomes relatively insensitive 

to the positions of the light atoms. If FH is the 

contribution of the heavy atoms to Fo, when the ratio 

IFHI /11'01 diverges too much from unity, the phase angle 

ac calculated for heavy atom contribution becomes a less 

reliable first approximation to the true phase of a 

reflection. We can then discard the terms with less 

reliable phases by using a rejection test by which only 

those reflections with 1FHI > plFol are used in the 

Fourier summation. Values of p in the range 0.25 -4 0.33 

have been found useful. 

When part of the structure is known, a difference 

Fourier synthesis is very useful.in revealing the remaining 

details of the structure. 

A p = I  ac -2rr i (hx+ky+1z) 
EEE 	IFol 	IFei )e 	e  h k 1 

(1.22) 

This largely eliminates series-termination errors, which 

appear as concentric peaks and ripples surrounding the 

heavy atoms if the Fourier summation is done on data which 

is truncated by the limiting sphere. 



1.3 CORRECTIONS TO INTENSITY DATA 

To solve a structure on the basis of measured 

intensities several corrections must be applied to convert 

these measurements into the squares of the structure 

amplitudes. The necessary corrections are: 

1. Scaling 

2. Polarisation 

3. Lorentz factor 

4. Absorption 

5. Anomalous scattering - dispersion 

6. Extinction 

The above mentioned factors can be considered as systematic 

errors in the measurement of intensities and their physical 

significance will now be examined for each factor in turn. 

The polarisation correction allows for the fact that 

the incident beam, which is usually unpolarised, is 

partially polarised in the process of scattering by 

electrons. The degree of polarisation depends on the 

angle of scattering and is expressed as 

1 	cos220  

2 
	 (1.23) 

The Lorentz factor is dependent on the method of 

collection of the data, and represents the rate at which 

the r.l. point is swept through the reflecting sphere. 

For the equilnclination Weissenberg technique the Lorentz 

factor is given by 
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L= sine (1.24) 
sin 2 0 (sing 	- sin 2  p. )2 

where µ is the equidnclination setting angle. 



For a four-circle diffractometer it is given by 

L = 1 
sin 26 

as every reciprocal lattice point is brought into the 

horizontal plane for measurement. 

As both L and p are functions of 0 only, it is usual 

to combine them in a single correction factor (Lp) as 

follows: 

I = kIF 12 Lp 	 (1.25) 

where I is the intensity measured on an arbitrary scale, 

k is the corresponding scale factor. In the early stages 

of an investigation an approximate value of k can be 

estimated by Wilson's method (2), but in the latter stages 

it is derived from EFc/E Fo or equivalent least-

squares operations. 

The absorption correction 

The incident and reflected beams are partially 

absorbed in passing through a crystal, and consequently 

the intensity of a reflection is less than it would be 

from a perfectly non-absorbing substance. If a narrow 

beam of monochromatic radiation passes through a thickness 

t of a crystal, the emergent intensity I is related to the 

intensity I0  by 

I = Io 	t 	 (1.26) 

In this expression µ is the linear absorption coefficient 

of the crystal for the particular type of incident 

radiation used, and can be evaluated from the relation 

= P 	Pi µm:i 	 (1.27) 

32 
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where p is the density of the crystal, pi  is the relative 

weight of element i, and li ra  is the mass absorption 

coefficient of element i. The absorption effect depends 

on the shape of the crystal and in general decreases with 

increasing Bragg angle. So it must be calculated separately 

for each reflection and is dependent on the path lengths 

of the individual incident and diffracted beams through the 

crystal. The amount by which the intensity of the h k 1 

reflection is reduced by absorption i.e. the transmission 

factor, is denoted by Ahkl.  The reciprocal of Ahkl  is the 

absorption factor A
*
hkl = 1/Ahkl : A

* 
is the factor by 

which the observed intensity must be multiplied to obtain 

the corrected intensity. 

Consider a crystal volume element 8V scattering the 

incident beam for the h k 1 reflection: ri  and rd are 

respectively the path lengths of the incident and diffracted 

beams from 8V. Then the transmission factor for the h k 1 

reflection for the whole crystal is given by 

V 

Ahkl =f (1/V) exp[µ(ri+rd)] dV 	(1.28) 
o 

 where V is the volume of the crystal, and µthe linear 

absorption coefficient. Several different methods have 

been published for evaluating this integral. The one used 

in this work is based on that proposed by Busing and Levy (3) 

i.e. the volume of the crystal is filled with a regularly 

spaced array of sampling points. For each reflection the 

path lengths of the incident and diffracted rays for all 

grid points are evaluated and used in a three-dimensional 

Gauss integration to give A h
kl ' 



The degree of accuracy of the correction depends on 

the accuracy with which the shape and size of the crystal 

has been determined and on the number of grid points used 

in a summation. 

Dispersion correction 

The diffraction patterns from all crystals are normally 

centrosymmetric. This was first pointed out by Friedel 

and stated in his law: 

Ihk1 - Ihk1 
	

(1.29) 

Hence it follows that 

1Fhk11_ = IFhk11 
	

(1.20) 

and as Fig.I.9 shows for the centrosymmetric case 

Fhkl = Fhk1 
	(as equal simply to Ahkl) 

and for a noncentrosymmetric structure 

F = 	I is 	 (1.31) hkl 	1 Fhk11 e  

F 	
fi 	

(1.32) hkl 	= I Fhkl 1 e-ici  

Friedel's law holds as long as no atoms in the crystal 

exhibit anomalous dispersion. 

If an atom in the crystal has an absorption edge just 

on the long-wavelength side of the radiation used, scatter- 

	

ing factors are no longer 	real numbers and can be 

represented by 

anom fo 	= fo +Af' 	i f" = f' + i Af" 

where fo is the normal scattering factor, Af' is the real 

component to be added to fo, and Af" is the imaginary 

34 
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component which has the function of advancing the phase 

slightly. The effects of anomalous dispersion are 

different for the centrosymmetric structure from those 

for the noncentrosymmetric one. It can be illustrated 

by the diagrams (I.10 - 1.12). 	Thus for: 

a) centric reflections - Friedel's law holds and 

	

Fhkl = Fhkl 
	 (Fig. 1.10) 

b) acentric reflections - Friedel's law does not 

hold and 

	

Fhkl # Fhkl 
	(Fig.I.11, 1.12) 

In Fig.(I.10 - I-12) 
Fw  is the resultant of scattering from atoms without 

dispersion. In Fig.(I.12) Fhklhas  been reflected across 

the real axis to show more clearly the difference between 

the structure factor amplitudes and phase angles. 

When a dispersion correction is applied in practice the 

effects are relatively greater at high sine than at low, 

because both terms Lif' and A f" are almost independent of 

sin 8 . 

Extinction 

The internal texture of the real crystals with which 

we are dealing lies between two extremes. On the one hand 

the regularity of the crystal is perfect throughout its 

volume. On the other small regions exist (mosaic blocks) 

in each of which there is strict regtIlarity, but the blocks 

are randomly and slightly misaligned. These give different 
resultant 

tntensities for diffracted beams, and most crystals give 

absolute intensity values somewhere between the two extremes, 

but more nearly of the mosaic type. The differences in 
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intensity are due to effects known as primary and secondary 

extinction. 

Primary extinction  

The incident beam penetrating through the layers of a 

perfect crystal is multiply reflected, and the transmitted 

beams mutually interfere. Since there is a phase change of 

n/2 on reflection the twice-reflected rays are parallel to 

the incident rays but are opposite in phase. This causes 

a progressive reduction in the intensity of the primary 

beam as it passes through the crystal, the energy having 

been diverted into the diffracted beam. The inner parts of 

the crystal, therefore, cannot make a full contribution to 

the diffracted intensity. This leads to the integrated 

intensity being proportional to IF Ifor the ideally perfect 

crystal. Most crystals, however, are broken into mosaic 

blocks so small that the primary extinction in each can be 

neglected and the intensity is therefore proportional to 

1Ff . If there is neglible primary extinction of the beam 

passing through a single mosaic block the crystal is 

"ideally mosaic". 

Secondary extinction  

When the incident beam penetrates into a mosaic crystal, 

blocks which are not correctly inclined at the Bragg angle 

do not reflect and are effectively "transparent". Those 

blocks near the surface, which do reflect, "screen" blocks 

further in. The total intensity of the reflection is 

therefore less that it would be if each block was bathed in 

a primary beam of the original strength. The effect is 
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equivalent to an increase of ordinary absorption over the 

range of angle in which reflection occurs. However, the 

beam penetrates to greater depth in a mosaic crystal than 

in an ideally perfect one, and a larger volume of the 

crystal takes part in the over-all reflection. The angular 

width of a reflection is largely determined by the range 

of misalignment of the mosaic blocks. 

Both primary and secondary extinction are dependent 

on the strength of the reflection, on the wavelength of the 

primary beam and on the dimensions of the crystal. The 

effect is most pronounced for reflection at low sin 0/X, 

where the general level of the intensity is highest. It 

results in a systematic tendency for the observed structure 

factors (Fo) to be lower that the calculated ones (Fe) for 

strong reflections only. The normal procedure for dealing 

with extinction is to remove the reflections for which 

extinction is suspected from the least-squares refinement. 

However, if possible it is desirable to apply a systematic 

correction for extinction. At present there is no 

established treatment for primary extinction, but a 

theoretical correction, to a first approximation, exists 

for secondary extinction. Zachariasen (4) has shown that 

the effect may be accounted for by modifying the absorption 

coefficient 

eff  = p +2gQ(l+cos42 0 )/ (l+cos22 0 )2  

where Q is the absolute integrated intensity per unit 

volume, and g is the secondary extinction coefficient. 



This gives an expression for the corrected structure 

factor 

= Fcorr 	Fobs (i+c  P2eiol  (1.33) 

whereto  is the observed intensity on an arbitrary scale, 

c is a parameter related to g, to be adjusted, and p 20  

is given by 

2(1+cos42 A ).A' (2 e)  
P20 = 
	

(l+cos22 0 )2  

where 

A' (2 0  ) = fiti÷t2 )V.exp(- µ (tii-t2 )dV 

(Rt exp(- Ii(ti+t2)dV)2  

and may be calculated for a crystal of an arbitrary shape 

during the calculation of the transmission factor Ahkl. 

The value of c may be found by a least squares procedure, 

substituting Fcalc  for F corr  (5) for the reflections 

suffering most strongly from extinction. 

39 
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1.4. REFINEMENT OF THE STRUCTURE 

The process of refinement is systematically to 

improve the agreement between Fo  and Fc  for all the observed 

reflections. This is done in two ways: 

1) all necessary corrections are made to Fo  to 

allow for known systematic errors 	•411111••• 

absorption, extinction, dispersion. 

2) adjustments are made to the atomic model (by 

varying the atom coordinates and thermal 

parameters) and to the scale factor(s) used for 

converting the observed structure factors from 

an arbitrary scale to an absolute one. 

The latter process of refinement is usually carried out 

by least-squares methods, minimizing the function 

D hkl ( )
2 (1.34) 

where the sum is taken over all independent observed 

structure amplitudes and w is the weight allotted to an 

observation. 

The extent of disagreement is expressed by the R 

factor which is computed as 

E Foi Fc 	 (1.35) 
EiFo i 

It should be emphasized that it is the D function and 

not the R factor which is minimized during the least-squares 

procedure, although in general both decrease when the 

refinement proceeds. 
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The method o f least squares 

If IFel 	p2...pn)1 where pi  are parameters 

to be refined, minimization of (1.34) is achieved by taking 

the derivative with respect to each of the parameters and 

equating to zero. This leads to n normal equations
*
. 

hkl 
whki(F0 1-1Fc (pl,p2...pn )1)1Fe(Pi , ••Pn)1

.  6 Pj  
j=1,2...n 	(1.36) 

Since IFc1 is not a linear function of the p's, 

equations (1.36) become intractable. They may be made 

linear, however, by approximating the function as a Taylor 

series and neglecting second and higher powers so that 

I 	(pi  . 	Pn  )1 = I Fe  (al 	. an  )1+  	. . . 61 FcI  
api 	 Pn 

A Pn 

(1.37) 

where a. are approximate values of pj  (representing the 

structure at the particular moment of the refinement) and 

AA Pi = Pi  - a.. Substituting (1.37) in (1.36) gives 

hkl 
Ewhki(IF(1-1Fc 

▪ • (a
l  . an  )1- 61Fc " • 	I Lipn I )alFci = 0 Tic TT  

j 	(1.38) 

where/1F now plays the role of the known observational 

quantity. 

*The set of n equations in n unknowns is called the 

normal equations. 
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Expansion and rearrangement of Eq.(I.38) leads to the 

following set of n equations in n unknowns, theAp 's. 

4 2 

• 

3IFcrI 61Fe l 
	AP' r 

r=1 	d  pn 3P1 

Ewr 
 (I

2  
Fer'
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  ),Npn pn  

	

NFe  I 	IFic  I 

	

+ Efir  14 	 
14 AP2  

r=1 Pn -P2 

IFc E wrAFr 

m 

E w 
m 

r 

r=1 	pn 

• • • 

(1.39) 

where m is the number of observations. 

Because the Taylor series has been truncated by neglecting 

second and higher powers in theApi's, the calculations 
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(1.40) 

must be repeated using as approximate values for each 

repetition the results derived from the preceding 

calculation.Theneurvalue:a.= aj  .4.Ap.. The process 

is repeated until convergence is obtained and successive 

cycles produce no further changes. 

The set of equations (1.39) may be written in a 

matrix form 
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where a.. = E  wr 
r=l 

7 
x 

3 
• = A PJ 

m 
vi  =E wr (AFr ) 	 

r=1 	6 Pi 

or more compactly as 

Ax = v 	 (I.41) 

It can be shown that if equations (1.39) have a solution, 

an inverse matrix, A-1, exists such that A-1 A equals the 

matrix equivalent of 1. Then 

A-1 Ax = A-1v 

x = A-1v 



Thus the least-squares computation can be divided into 

fourparts:WcalculationofFand derivatives 

(ii) building the matrix of derivative products 

(iii) inverting the matrix, and (iv) calculating the 

parameter shifts. 

It should be noticed that the matrix A is a symmetric 

one and that its elements on the principal diagonal are 

sums of squares and therefore considerably larger than the 

off-diagonal elements, which are sums of products which 

may be either (+) or (-). 

An anisotropic refinement of the structure requires 

that there are three positional and six temperature 

parameters for each of n atoms, and at least one scale . — 

factor. Altogether 9n+1=q parameters which give a q
2 

matrix to be inverted. To reduce the time and computer-

storage requirements the block-diagonal matrix approxima-

tion is commonly used, in which all off-diagonal terms 

except for those between x,y, and z and those between 

pij  of the same atom are omitted. In this way a 3 x 3 

and 6 x 6 matrix are all that are computed for each atom. 

However, the results do not converge nearly as rapidly as 

those from the full matrix, and there is sometimes a 

tendency to overcorrect, resulting in oscillation from one 

cycle to the next. To eliminate it damping factors may be 

applied, i.e. the shifts in parameters are multiplied by a 

factor less than 1.0. 
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Random errors 

Any measured value can be affected by random and/or 

systematic errors. They must be considered separately and 

the chief systematic errors common in X-ray structure 

analysis were examined in a previous chapter. Different, 

because statistical in their character, are random errors. 

Repeated measurements, provided they are affected 

only by random errors, follow the Gaussian error 

distribution. The curve is given by the equation 

N - 	1 	a  2) (x-x0)2 

(2 n) 2a 

where N is the relative frequency with which the value x 

is obtained, x0  is the true value of the parameter x, and 

a is the standard deviation defined for the set of m 

measurements as 
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(1.42) 

The least squares refinement gives the new values of 

the parameters and their a's calculated for any parameter 

p.1  from equation 

m 

1 	
) 	

I 1  
-2 apt = [b1. .1  (E wr  Li Fr2  On-n) 	(1.43) 

r=1 
where b.. al  is the i'th diagonal element of the inverse 

matrix, wr  the weight of the r'th A F, m the number of 

observations, and n the number of parameters. 

Refinement may be considered complete for a given 

structure, when the changes in the parametersare small 
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compared with corresponding a's. It has been suggested 

(6) that ratio 

parameter change  0.3 for full-matrix least squares 
a parameter 

and — 0.01 for block-diagonal matrix least squares,is 

satisfactory for the last cycle of the refinement. 

Weighting functions 

From statistical considerations, it can be shown that 

the weighting factor occurring in Eq.(I.34) is proportional 

to the square of the reciprocal of the standard deviation 

of the observation: yid. 1/a 2 . However, for data collected 

on the Siemens diffractometer (approximately "constant 

count" conditions) unit weights are found to be reasonably 

satisfactory in the early stages of refinement. It follows 

from the fact that aF0 is approximately constant throughout 

the data and that non-random errors, which predominate for 

diffractometer measurements, are distributed uniformly 

throughout the reflection data. Nevertheless, the use of 

proper weighting functions can produce a real, if small, 

improvement in the results from a given set of data. 

Hughes (7) suggested the following weighting scheme: 

w2  = 1 for IF015.1F*I 

1 
and w2 	for 11'01 >IF1 IF 01 

The value of IFIis chosen from an analysis of1F01 and 

IFel such that Ew AI'
2 will be approximately constant for 

all ranges of IF(J. 

When a weighting function is properly applied, standard 

deviations of parameters should reach more realistic 

values, whereas the R factor does not necessarily have to 

decrease. 



CHAPTER II 

EXPERIMENTAL TECHNIQUES OF INTENSITY DATA COLLECTION 

INTRODUCTION 

Two general methods are available for measuring the 

intensities of diffracted beams. Either the beams may be 

detected by some sort of quantum counting device which 

measures the number of photons directly - diffractometer 

method, or else the degree of blackening of spots on 

diffraction photographs may be measured and taken as 

proportional to the beam intensity - photographic methods. 

For many years only the latter methods were used with 

visual or sometimes photometric estimation of the 

intensities, but the accuracy was rarely better than 10%. 

However since 1945 when the first powder diffractometer 

was marketed, a rapid development of the new measuring.c 

technique has been observed. Automatic diffractometers are 

in general faster than visual measurements and far more 

precise. 

Since data for one of the structures comprising this 

work were collected photographically, and for three others 

on a diffractometer, both techniques will be described in 

this chapter. 

4 7 
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II.1. 	PHOTOGRAPHIC DATA COLLECTION 

The equi-inclination Weissenberg technique was 

adopted when intensity datavere collected photographically. 

Cu-K a  radiation filtered through nickel foil was used 

throughout. A pack of four Ilford Industrial "G" films 

was used for recording reflections for each layer and an 

appropriate exposure time was chosen in order to record a 

useful intensity range. 

Having collected all the film packs, the next step 

was to prepare a scale for estimating the intensities of 

the spots. This scale, or "wedge", was prepared by 

selecting an intense reflection from the crystal studied 

and then arranging that the crystal oscillates approximately 

2°  through the reflecting position. A series of 

exposures of this reflection of increasing length was made, 

moving the film pot along between exposures. The result 

was a series of spots of varying intensity with limits being 

on either side of the optimum intensity range. 

With the aid of this "wedge" the intensities of all 

spots (from the "contracted" side of the.film) were 

measured and values obtained for each reflection in the 

pack were scaled up to those on the top film and a 

subjectively estimated mean value was calculated for each 

reflection. 

The spot selected for preparing the "wedge" was 

typical of the majority of spots on all layers and no 

correction for spot shape was applied. 
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11.2. DIFFRACTOMETER DATA COLLECTION 

Basis of diffractometer design 

and control. 

A general, view of the Siemens Automatische Eine-

kristalle Diffraktometer, hereafter referred to as the 

A.E.D., is shown in Fig.II.l. 	It consists of the X-ray 

generator, goniometer for measuring diffraction angles and a 

number of electronic circuits for controlling the A.E..D. 

during its work and determining the intensity of diffraction. 

X-ray generator. 

High stability and intensity of the X-ray source are 

essential requirements of the X-ray generator, because 

they determine the rate of data collection and its 

reliability. A high-stability source is required since 

reflections are being recorded one at a time. On the A.E.D. 

the high-voltage stabilizer specifies voltage to ±.0.1% 

for f 10% mains voltage fluctuations. The X-radiation from 

a Cu target was passed through an appropriate p-filter and 

collimator to give an almost parallel beam homogeneous in 

intensity, which should bathe the crystal completely 

without being excessively wide so as to avoid high signal-

to-noise ratio in the detector. 

Goniometer. 

The A.E.D. four-circle goniometer allows one to bring 

each reciprocal lattice point into the equatorial plane, 

since this is the only plane in which the counter rotates. 

The three circles which determine the orientation of the 

crystal are: 
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1) 6J-circle, in the horizontal plane; 

range: - 40< w< 7,5°. 

2) 'x-circle, in the vertical plane and carried on the 

w circle; 

range: - 5o < X < 91o. 

3) 4)-circle, whose axis lies in the x circle plane 

and can be moved to become any radius of the 

xli-circle over a range of - 5°  to +910; 

range 0 < 4 < co 

The fourth circle, designated 28,carries the counter and 

is coaxial with the 	The w- and 26 -circles are 

usually coupled in a 0:20 ratio and the 6J-circle is then 

referred to as the 0-circle, Fig.II.2. 

There are various technical solutions of the goPio-

meter construction all governed by the need for high 

rigidity and stability and ensuring at the same time that 

no collisions or obscurations can arise during exploring 

the accessible part of reciprocal space. One normally 

needs to examine no more than a hemisphere of reciprocal 

space and the ranges of movement of the circles on the 

A.E.D. allow for access to - 58% of the sphere. An 

additional and very convenient provision is that the zero 

of the 4)-circle can be altered arbitrarily to coincide with 

a reciprocal vector of the crystal. 

The circles are driven by impulse motors, giving an 

increment of 0.01°  with each pulse. (0.02°  for 28). 

When controlled from the steering tape, they can be moved 

to the required position simultaneously (3 circles by the 

smallest increment, two circles by the next increment, and 
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the remaining circle by the final increment). Their 

destinations can be checked automatically, and any error 

in the range ± 0.2°  can be automatically corrected. If 

an error exceeds + 0.2°, the instrument stops and has to 

be reset manually, which can be done with an accuracy of 

0.01°. 

X-ray detector and accompanying circuits. 

Throughout the present work a Na(T1) I scintillation 

counter was used in preference to the proportional counter. 

It has poorer energy resolution than the latter, but its 

quantum efficiency is — 85%, i.e. 5 times better. The 

light flashes are converted to pulses in a photomultiplier 

and these are passed to a pulse-height analyser which has 

a voltage acceptance range preset so that about 90% of 

the main peak signal is accepted, but with suppression of 

harmonics, and most of the white and fluorescent radiation. 

To ensure a statistical, Gaussian distribution of the 

pulse-height for a given photon energy, the extra-high 

tension supplied to the photomultiplier must be stable to 
about 0.01% and we usually cool the counter with water. 

Diffractometer control. 

The A.E.D. is an automatic, off-line instrument, which 

uses five-track punched paper tape, called a "steering tape", 

which bears all the instructions to guide the diffracto-

meter during the intensity data collection. The tape has 

no timing instructions; optimum values of these are decided 

automatically by hardware. Thus a given steering tape can 

be used on any crystal of a given material. All control 

functions of the A.E.D., like the circles, digitizer checks, 
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half-shutters (their function will be mentioned later), 

0:20 couple/decouple, measurement commands, can be 

operated either by the paper tape or from the manual control 

desk. 

Principles of data collection 

on the A.E.D. 

Preliminary to the intensity measurements are 

alignment of the goniometer and setting up the crystal. 

The examined crystal is mounted on a quartz fibre 

with "Araldite" and the fibre was attached to the eucentric 

goniometer head with dental wax. To obtain thermal 

equilibrium, the crystal should be left in the air-

conditioned A.E.D. room for about 2 days. 

After that the goniometer head is placed on the A.E.D. 

and the slit collimator is placed in front of the detector 

to increase the resolution in 0 while setting up the 

crystal and determining its lattice parameters. The crystal 

is centred first by eye and then set and centered accurately 

with the help of the half-shutters. 

At this place it is perhaps worth mentioning how the 

half-shutters work. A chosen reflection is scanned three 

times: the first normally, the second with a horizontal half 

-shutter in the counter collimator, and the third using a 

vertical half-shutter in the same way. These are actuated 

from paper tape signals. When the setting of the crystal 

is completed, the half-shutter counts will be approximately 

half those with no shutter. 

The crystal 'is mounted with one of its crystallographic 
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axes parallel to the k-axis by adjustment of the goniometer 

arc and the help of the horizontal half-shutter. A series 

of 4  -0 scans is carried out around several reciprocal 

lattice points on each of the principal axes, from which 

accurate 0 values can be obtained.& hence accurate cell 
calculated. 

parameters/. Al the 4  axis zero position can be brought 

to coincide with a chosen r.l. vector. When satisfactory 

lattice parameters have been obtained, all the necessary 

information for generating accurate setting angles is known. 

Thus assume that the crystal is to be set with the c 

axis parallel to c  . Then x= 0.0°  for the a*,b* axes and 

their orientation must be chosen such that a right-handed 

system of axes is used. (This is important if absorption 

and dispersion corrections are to be applied correctly). 

If the crystal is to be mounted in an arbitrary orientation 

it is necessary to know approximately what this orientation 

is so that three non-coplanar reflections can be indexed 

and their corresponding e, x  and 4  values found. Using 

those reflections and their setting angles a list of 

reflections and approximate setting angles can be generated 

by program. 

There are three methods of integration over the 

reflection peak: the moving-crystal/fixed-counter scan, 

fixed-crystal/fixed-counter scan, and moving-crystal/ 

moving-counter (w/2 0) scan. The last method was employed 

throughout this work as giving a more realistic inter-

polation of the background with an intensity collection 

collimator greater in aperture size than the slit one used 

during preliminary work. 

Before the actual intensity measurements are commenced 
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the scanning limits A81 and A02  have to be obtained by 

0-scans of some representative peaks over the 0-range 

to be covered, and the "reference" and "control" reflections 

have to be chosen. 

The reference reflection monitors the stability of the 

X-ray tube and counting equipment and reveals whether the 

crystal is suffering X-ray damage. This reflection is also 

used during processing of the output data for scaling the 

intensities by the average intensity of the reference 

reflections which precede and follow the block of 

reflections (usually 20). 

The control reflections are usually specified after 

about every 250 reflections and each of them is measured 

three times with and without the half-shutters (as 

described previously) to check the crystal orientation. 

At this stage all the information for generating the 

steering tape is in hand. The approximate number of 

generated reflections is given by the formula 

A 
where 8 max is the maximum value of 8 to which data is to 

be collected, A is the radiation wavelength, V is the 

volume of the unit cell, and f is.the fraction of the 

sphere to be collected. This formula applies to primitive 

unit cells and thus for a (e.g.) face-centered cell the 

number of reflections is further reduced by a factor of 2. 

The special principle of intensity measurement on the 

A.E.D. is that all measurements start at the reflection 

peak, which enables the machine to test the maximum counting 

-rate of the reflection and either to insert automatically 

• 
N=4 
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one of five attenuators in the primary beam (for strong 

reflections), or to reduce the counting rate (for weak 

reflections), such that the counts fall within the range 

of maximum counter accuracy. A five-value measuring technique 

is employed to obtain the integrated intensity of each peak 

above the local background (Fig.II.3). The instrument 

first measures the low-0 half of the intensity peak (A81), 

then the low-8 background, the counts being Il  and 12  

respectively. The complete peak ( A 01  + A 02) is then 

scanned giving count 13  which is followed by measuring the 

high-0 and then scanning the other half ( p02 ) of the 

peak with counts 14 and 15 respectively. 

The output is in the form of a five-track punched 

paper tape which gives for each reflection its serial number, 

indices, setting angles, the limits of scan in 8 , five 

values of counts and the time measuring constant and the 

number of the attenuator used (if any). 



Figure 11.1. The Siemens diffractometer. 

-Top plate: Four-circle goniometer. 

Bottom plate : The measuring and control 

cabinets. 
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Figure II. 2. 

The basic design of the Siemens A.E.D. goniometer. 
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Figure II. 3. 

The five-value measurement 
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COMPUTER PROGRAMS USED 

Two distinct sets of crystallographic computer 

programs were used in this work: 

1. Diffractometer programs 

2. X-ray-63 system 

The programs in both systems will be conventionally 

referred to by their names, and brief description will 

indicate their functions. 

Diffractometer Programs 

The-se are written in EXCHLF and form a part of a 

locally-written system of separate programs for the 

University of London ATLAS computer (all written by 

P.G.H. Troughton). 

They are stored at the Centre on magnetic tape, 

from which they can be called by a short input paper 

tape containing the call to the required program, 

necessary data, and option instructions. 

SEKO - Calculates setting angles and generates Five-

value-measurement steering tape for the Siemens 

automatic diffractometer. 

SODI - Processes the data tapes output from the A.E.D. 

It tests the circle digitizer checks and evaluates 

the net intensities. Each intensity measurement 

is scaled up by the time-constant (M) and 

attenuation factors (AO, then by the reference 

reflection (K). (LP)-1 corrections are applied 
the 

and the value of-standard deviation for each 

observation evaluated. 
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On the basis of counting statistics, the 

standard deviation of the net count, ( Inet)' 

is given by 

(Inet)  :(I1+12+13+14+15)1- 

a(Fo2) = K.(Lp)-1  M.At. a(Inet) 

and a(Fo) = a(Fo
2)/2F 

If Inet<  Q  (Inet)  the reflection is regarded 

as unobserved and Inet is replaced by Q a (Inet). 

Q represents the confidence probabilities and 

its value 2.58 used throughout this work gives 

99% probability that any measured count is 

greater than the background. 

Cards with reflection indices, Fog and a(Fo) are 

punched in X-ray-63 format. 

11 
Unobservedureflections are flagged as "less-thans". 

ABSO - An extension of SODI which also applies an 

absorption correction to crystals of arbitrary 

shape and calculates the 'op term for the 

secondary extinction correction. 

Program ICABS, written in FORTRAN IV for the IBM 7094, 

was also used. 

ICABS - Processes 3- and 4-circle diffractometer, 

precession camera and equi-inclination 

Weissenberg data. It makes (LP)
-1 absorption, 

and extinction corrections. 
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The X-RAY-63 System 

This is a completely homogenous system developed 

by Professor J.M. Stewart of the University of Maryland, 

U.S.A., from programs written by himself and others. It 

is available on the IBM 7094 computer of•Imperial College, 

and has been slightly modified for ATLAS. 

The system consists of a number of programs, mainly 

written in FORTRAN II and linked together such that 

output of one program can be fed into the next, thus 

performing several different types of calculations 

successively in one run. 

The programs used by the author in this work are:- 

DATRDN - The entry point to the system. Data fed in are 

such as: reflection list, atomic scattering 

factors, cell parameters, space group 

symmetry operations, etc. 

Performed operations are: 

(LP)-1 correction (optional), scaling of the 

FC - 

initial intensities to an approximately absolute 

scale, evaluating Frelative value. The information 

from DATRDN is written up to magnetic tape for 

processing by the structure factor and other links. 

Calculates structure factors and a scale for 

each level of data (for A.E.D. there will be 

only one such scale factor). Since the least-

squares routines also calculate structure 

factors, it can be dispensed with when these are 

used in a straight-forward way. If, however, 

only some atoms of the set are to be refined, the 

remaining atoms can be placed in FC first as 
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a "fixed atom contribution". It has an 

application for large structures, when the 

number of parameters exceeds the capacity of the 

available least-squares programs. For a small 

structure atom parameters can be fixed in a 

least-squares refinement.FC always preceeds 

FOURR in the initial stages of finding the atoms 

FOURR - Calculates two- or three-dimensional Patterson and 

Fourier maps, for the latter using as input a 

set of observed structure amplitudes with phases 

calculated in FC link. The program is verj1 

flexible and a variety of modifications of the 

basic Fourier map can be produced, such as 

difference-and E-syntheses. 

ORFLS - A full-matrix least-squares refinement program. 

It allows the simultaneous refinement of up to 

180 variables such as: atomic positions, 

:temperature factors, scale factors (of different 

levels), multiplicities and scattering factors. 

Temperature factors can be all isotropic, all 

anisotropic, or a mixture of the'two. It also 

has an option of applying a dispersion correction. 

BLOKLS - This is the block-diagonal least-squares 

approximation which must be used for large 

structures. 

BONDLA - Calculates inter- & intra-molecular bond 

distances and angles, along with standard 

deviations. Symmetry and translation operations 

are allowed for. Hydrogen atom positions can 

also be generated from the positions of the 
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next neighbours, given whether the hydrogen is 

tetrahedrally, trigonally, or linearly bonded. 

LSWL - Calculates the best plane through a given set 

of atoms by least-squares methods, giving the 

displacementsof the atoms from the plane, and 

the displacementsof any additional atoms 

specified. The angle between planes and/or 

lines can also be obtained. 

LISTFC - Outputs structure factor lists in a format 

suitable for reproduction in theses and papers. 

Other Programs 

ICEXT - Written in FORTRAN IV for the IBM 7094, 

calculates the least-squares secondary 

extinction coefficient c and applies the 

extinction correction to all the data. It 
the 

can be used as the first link of-X-ray-63 

system to enable application of the extinction 

correction and further refinement in the same 

run. 

MOJO - Written in EXCHLF. This computes orthogonalised 
0 

Angstrom co-ordinates and dihedral angles for 

a given set of atoms. 

ORTEP - Written by C.K. Johnson in FORTRAN IV, (see 

Oak Ridge National Laboratory Technical Report 

ORNL-3794). Adapted for CDC 6600 by G. Richards 

and F. Stephens. It is the thermal-ellipsoid 

plot program used for crystal-structure drawings. 

The program can produce stereoscopic pairs of 

illustrations on a Calcomp and similar incremental 



plotters,and can calculate the principal axes 

of thermal motion for each atom. 
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STRUCTURAL STUDIES 



CHAPTER I 

The Crystal Structure of 

the Orthorhombic Form of 

Hydridodicarbonylbis(triphenylphosphine)iridium(I) 

IrH(C0)_
2
(PPh3)2 
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ABSTRACT 

The crystal and molecular structure of the orthorhombic form of 

hydridodicarbonylbis(triphenylphosphine)iridium(I) has been determined 

from three-dimensional X-ray diffractometer data. The. complex crystallises 

in space group Pna21  with four molecules in a unit cell of dimensions 

a = 17.759, b = 10.001, c = 18.389k. The structure was refined by least-

squares methods using all 2518 measured independent reflections to give 

R = 0.0187. 

The  complex is monomeric and the coordination about the iridium 

atom can best be described as a distorted trigonal bipyramid in which one 

of the phosphorus atoms and the hydride hydrogen occupy the axial positions. 

The Ir-P distances are nearly identical 2.375 and 2.370k, but the phosphorus 

atoms are differently oriented with respect to the two carbonyl groups: 

P(1)-Ir-C ca. 95°, P(2)-Ir-C ca. 115.; mean Ir-C(crbonyl) distance is 

1.850k.. The hydride hydrogen has been located and the estimated Ir-H 

distance is 1.64(5)k. 
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INTRODUCTION  

The complex hydridodicarbonylbis(triphenylphosphine)iridium(I) was 

prepared by Yagupsky and Wilkinson (1969) and found to have unusual 

spectroscopic behaviour indicating fluctional isomers in thermal equilibrium 

in solution. The iridium complex is the more thermally stable and 

chemically less reactive analogue of a rhodium complex, which appears to 

be the main catalytic species in the hydroformylation reaction of alkenes 

using RhH(C0)(PPh
3
)3 as catalyst (Evans et al., 1968). 

A structural study of the iridium complex was undertaken in order 

to compare the spatial arrangement of the ligands in the solid state 

with those suggested by Yagupsky and Wilkinson for this complex in solution. 

Since one of the ligands is a hydride hydrogen atom the determination 

of its position was important. In recent years hydride hydrogens have 

been located from X-ray data in second-row transition metal complexes 

(cf. La Placa and Ibers, 1965; Skapski and Troughton, 1968). This 

encouraged us to try to see whether this could be done for a complex of 

a third-row transition metal such as iridium (Z = 77). 

A preliminary account of this work has already been published 

(Ciechanowicz et al., 1969). 

EXPERIMENTAL  

Hydridodicarbonylbis(triphenylphosphine)iridium(I) is obtained by 

the action of sodium borohydride on an ethanolic suspension of trans-

chlorocarbonylbis(triphenylphosphine)iridium(I) saturated with carbon 

monoxide at atmospheric pressure. It can be recrystallized from toluene, 

cyclohexane or benzene, with or without addition of ethanol. Crystals 

were kindly provided by Professor. G. Wilkinson and Dr. G. Yagupsky. 

Preliminary oscillation and Weissenberg photographs showed that from a 

single solution as many as three polymorphic forms could be obtained, the 

main details of which are given below. 
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Table 1 

Form Unit-cell dimensions Space 

a b c S V Group 

Orthorhombic 17.759(3) 10.001(3) 18.389(2) 3266.0 Pna2
1 

Monoclinic(I) 18.036(5) 10.075(2) 19.474(5) 113°22(2)' 3248.5 P242 

Monoclinic(II) 17.679(4) 10.205(3) 18.390(5) 91°47(1)' 3317.1 P2./c 

The orthorhombic form was the first of these to be examined structurally. 

Weissenberg photographs showed systematic absences of the type Okl:k + 1 = 

2n + 1 and h01:h . 2n + 1. These are consistent with space groups Pna21  (N0.33) 

and Pnam (No.62); the successful solution and refinement of the structure 

showed the former to be the correct one. Other crystal data are: 

D
m 
 (by flotation) 	1.33 g cm-3, D

c 
 1.341 g cm-3 for Z = 4 F(000) . 1528, _ 

PM= 773.8 for IrP2
C
38
H
31
0
2.  

Intensity data were collected for a crystal of approximate size 

0.65 x 0.3 x 0.3 mm. The crystal was mounted about the longest morphological 

axis (b axis) on a Siemens off-line automatic four-circle diffractometer. 

Cu-KN radiation at a take-off angle of 4.5
o, a Ni8 filter and a Na(T1)I 

scintillation counter were used. The Q - 2Q scan technique was employed 

using a "five-value" measuring procedure (Skapski and Troughton, 1970). 

2518 independent reflections were measured to Q = 60°, of which 55 were 

judged insignificant as the net count was below 2.58 times the standard 

deviation (i.e. below the 9.92", confidence limit) and were assigned a count 

equal to this value. The 0 0 10 reflection was used as a reference every 

20 reflections: the net count of this reflection did not change significantly 

over the period of data collection (approximately 5 days). The data were 

adjusted to a common arbitrary scale using the reference reflection, and 

Lorentz and polarisation corrections were applied. 



SOLUTION AND REFINEMENT OF THE STRUCTURE 

A three-dimensional Patterson gave a straightforward solution for the 

position of the iridium atom. At this stage it was consistent with being 

placed in a general position in space group Pna2
1 

or on a mirror in space 

group Pnam. The z coordinate was therefore fixed at z = '4 and three 

cycles of least-squares refinement reduced the stendard agreement factor 

R(=Ellg 	11/EIF1) to 0.23. A difference Fourier revealed one of the 

phosphorus atoms essentially on the "mirror" and another one in a completely 

general position with peaks of half weight on either side of the mirror. 

This suggested that the true space group was Pna21, or Pnam with disorder. 

The first was thought more probable and it was assumed that one half-weight 

peak was a true phosphorus position, while the other was its mirror image. 

Least-squares refinement in the non-centrosymmetric space group including 

the two phosphorus atoms went smoothly and reduced R to 0.163. 

Although the pseudo-mirror persisted to a large extent in difference 

Fouriers it proved possible to unscramble the carbons of the phenyl rings 

from their mirror images and locate the carbonyl groups. Least-squares 

refinement with the iridium atom anisotropic and all non-hydrogen atoms 

isotropic gave R = 0.074. 

At this stage an absorption correction was applied, as the crystal 

was quite large and the linear absorption coefficient µ = 89.8 cm 1. 

The correction was made using the Gaussian integration method, with an 

8 x 8 x 8 grid, described by Busing and Levy (1957) with crystal 

pathlengths determined by the vector analysis procedure of Coppens et al. 

(1965). 'This correction reduced R to 0.051. 

Inclusion of all phenyl hydrogen atoms gave R = 0.045. All 

non-hydrogen atoms were now refined anisotropically, a dispersion correction 

for Ir and P was applied and four reflections were removed for suspected 

extinction to reduce R to 0.028. 
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approximate value 

Since 

reflections 

reflections 

getting the 

Lbrink and Werrer (1966). 

data, with shifts damped to 

'A weighting scheme of 

of the c parameter was that described by 

Least-squares refinement on extinction-corrected 

0.5, brought R to 0.0206. 

the type described by Hughes (1941) and a 

extinction was still visibly affecting the other strong 

it was decided to apply an extinction correction to all measured 

using the formula of Zashariasen (1963). The procedure of 

dispersion correction for oxygen and carbon were now applied. The weighting 
* 	* 	 * 

F, 	
* 

scheme was Irw = 1 if Fo  < F and IN = F /Fo  if F0  > 	with F = 100 — —    
found to be optimum. Application of the weighting scheme reduced the 

standard deviations by ca. 10%. To allow for the effect of the weighting 

scheme the extinction parameter was slightly readjusted several times 

to its final value of 8.1 x 105, and refinement was terminated at R = 0.0187. 

The atomic scattering factors used were those tabulated by Cromer 

and Waber (1965) and the values for the real and the imaginary parts of the 

dispersion correction for Ir and P atoms were those given by Cromer (1965), 

and for 0 and C atoms by Hope et al. (1969). 

The solution and refinement of the structure were carried out using 

the Crystal-Structure Calculations System, X-Ray '63 (described by 

J.H. Stewart in the University of Maryland Technical Report TR-64-6). The 

calculations were carried out on either the Imperial College IBM 7094 

or the University of London Atlas computers. 

Table 2 lists the final coordinates of the non-hydrogen atoms and 

Table 3 the coefficients for the anisotropic temperature factors 

exp [-(e11 h
2 

+ 822 k2 + s 1
33— 

 + 2B12  + 2813 
 hl + 28

23-- 
kl)]. In these 

tables the standard deviations have been estimated from block-diagonal 

matrix refinement and are, therefore, a slight underestimate of the true 

deviations. The coordinates of the hydrogen atoms are given in Table 4. 

Table 5 lists the observed structure amplitudes and the calculated structure 

factors. 
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DETERMINATION OF THE HYDRIDE HYDROGEN POSITION. 

The first attempt at localizing the hydride hydrogen was undertaken 

when R reached a value of 0.028. A difference Fourier for reflections 

with sin Q/X < 0.25 was calculated revealing an unambiguous peak at the 

expected Ir-H distance and in a stereochemically sensible position. 

From this stage on the hydride hydrogen atom was included in structure 

factor calculations but was not refined in least squares until R was 

0.0197. 

After the refinement of the structure was terminated at R = 0.0187 

the procedure described by Ibers and Cromer (1958) was used to determine 

the hydride hydrogen position more exactly. These authors have pointed 

out that in principle there is an optimum number of data to use in the 

location of light atoms in the presence of heavy atoms. Thus, in a 

Fourier series, the ratio of the peak height of an.atom to the standard 

deviation of the electron density should go through a maximum as a 

function of scattering angle. This maximum can be determined experimentally 

by varying the number of terms in the Fourier series. 

Difference Fourier maps were therefore calculated for different 

cut-offs in sinsQ/X and the results are summarised in Table 6. Among 

other information the table includes the observed height of the hydrogen 

peak (pc)//), the calculated peak height (pcH) of a hydrogen atom with B 

of 312, the estimated standard deviation of electron density a 

calculated according to Cruickshank's (1950) formula for a non-centrosymmetric 

2 	
1/4 

4 	 , 	, 
structure a = 2V

-1
(E(F

o 
 - Fo  ) )- and the signal-to-noise ratios 0

0 
H/ao 

c 
0 H/Qp) for this and two other instances where the analogous procedure 

was carried out i.e. for RhH(C0)(PPh
3
)
3 
(La Place and Ibers, 1965a)and 

RuC1H(PPh
3
)
3 
(Skapski and Troughton, 1968). 

While examining the Fourier maps calculated for different numbers 

of terms one should bear in mind that their reliability can be affected 
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by factors such as ripples from termination of the Fourier series, residual 

perturbations around the heavy atom due to the inadequacy in the description 

of its scattering form factors or its thermal motion, etc. In the 

present work, however, none of the four difference Fourier maps appeared 

to be markedly inferior on this score. 

As the observed signal-to-noise ratios gave no clear cut best value, 

and the ratios themselves were fairly similar it seemed most reasonable 

to take Ir-H as the average of all four distances, 1.04 	(This is 

identical to the distance from the Fourier having the best calculated  

signal-to-noise ratio.) 

It is encouraging to note that it proved possible to refine the 

hydride hydrogen to give an Ir-H distance of l.604A (c = 0.048). We 

believe, however, that the hydrogen position estimated from the series 

of.Fourier maps is more realistic because the least-squares procedure 

does not give really reliable values of the parameter shifts for such a 

light atom as hydrogen, when it is refined together with a very heavy 

atom. The hydrogen temperature factor, B = 0.02(a = 1.2), obtained 

in least-squares refinement, although low, is not significantly different 

from that characterising thermal vibrations of the Ir atom, i.e. B = 2.6A2. 

As all values of Ir-H distances found from the Fouriers 1.ie within the 

range of one least-squares estimated standard deviation, its value seems 

a reasonable one to adopt. 

The successful location of hydride hydrogen in the vicinity of an 

atom as heavy as iridium (Z = 77) was possible only because the following 

factors were present together: good quality of the diffractometer data, 

no disorder in the structure, easily describab3e crystal shape allowing 

accurate absorption correction, and good iridium scattering from factors. 

It is interesting to consider at what value of sin Q/X the maximum 

in calculated signal-to-noise ratio is likely to occur. In order to do that 



the function of the hydrogen atom peak height vs. sin g/X was calculated 

according to the formula 

c 	1 , (4)  
=— H 	2 , 	(1 + a

2
s
2
/4)

-2 
exp(-Bs

2
/16,7

2
)s
2
ds 

217 	0 

(where s = 4rX
-I 

sing, a is the Bohr radius (0.5292.) and the result is 

illustrated in Fig 1. 

As can be seen the function rises quite steeply and then flattens 

out to a plateau, but its exact shape depends markedly on the temperature 

factor B of the hydrogen atom. If a were a linear function of sing/X f S, 

the optimum signal-to-noise ratio would occur at S = 0.478 for B = 112, 

0.409 for 3A2  and 0.354 for 6A2, as shown in Fig 2. These values are 

very similar, but not identical to those corresponding to the "maximum 

of curvature" as indicated by the second differential of the function p 

which has a minimum at S = 0.449, 0.398 and 0.350 respectively. In 

reality (see Table 6) a (S) is not proportional to S. The values of 

a
0
(S
2
) - a

0
(S

1
) 

higher value of sing/X. 

In general, the higher the thermal vibration of the hydrogen atom, 

the smaller will be the optimum number of data to use in a difference 

Fourier. Secondly, if any distinction can be drawn between visual and 

diffractometer d'ta, it is that for visual data, where accuracy of 

individual measurements tends to deteriorate more at higher angles 

(ce1
, ry2 

separation etc.), a as a function of sing/X may show more of an 

"upswing". this would tend to shift the optimum Wcy to a lower value 

of sing/X compared to diffractometer data. 
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for successive points S
n 

tend to fall off with increasing 
So  - Si  

S. This hgs the effect of shifting the observed maximum in e/a to a 
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Fig. I 

Electron density function calculated for a hydrogen atom with three 

different temperature factors 
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Table 6 

IrH(CO) (PPh ) 
2 	3 2 

.RuMH(PPh
3
)
3
,C
6
H
6 

mill(co)(Pa
3
)
3 

P CH 
 sinG/x 

Number 	o 	.3
) 

 
Ir-H(A) p H(e/A 	a

o of terms P°H/lo Ao  H o 
c 
H/0 p co 

0 
P H/6.0' 

0.162 0.20 0.025 11.9 6.5 0.025 6.3 6.5 

0.254 0.25 230 1.674 0.27 0.028 9.6 9.1 0.029 15.0 8.8 0.033 8.1 7.7 

0.342 0.30 0.032 15.1 10.7 0.043 7.9 8.0 

0.423 0.35 619 1.673 0.45 0.036 12.5 11.8 0.036 16.8 11.8 0.052 9.9 8.1 

0.515 0.417 0.041 16.4 12.6 0.061 8.7 8.5 

0.553 0.45 1287 1.639 0.60 0.043 13.9 12.9 

0.643 0.56 2469 1..590 0.73 0.051 14.3 12.6 

CO 
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DESCRIPTION OF STRUCTURE AND DISCUSSION 

Figure 3, obtained using the program ORTEP (Johnson, 1965), shows 

the molecular structure of the complex and the thermal vibrations of 

the atoms. The more interesting bond lengths and angles are quoted in 

Table 7. The coordination about the iridium atom is a distorted one, 

but can best be described as trigonal bipyrimidal with one of the phosphorus 

atoms P(1) and the hydride hydrogen in axial positions, and the other 

phosphorus P(2) and the two carbonyl groups in equatorial positions. The 

atoms in the equatorial plane are bent away from the phosphorus towards 

the hydrogen atom, such that P(1)-Ir-P(2) is 101.4°  and P-Ir-carbonyl 

ca. 95o. This distortion can readily be understood in terms of the steric 

hinderance of the bulky triphenylphosphine ligands and the small size of 

the hydride hydrogen in the opposite positions. 

Although the two phosphorus atoms are differently oriented with respect 

to the carbonyl groups, with angles P(1)-Ir-carbonyl of ca. 95°,and 

P(2)-Ir-carbonyl of ca. 115°, the Ir-P distances are not significantly 

different (2.375 and 2.3701 respectively). These distances fall in the 

middle of the range of those found in other structures, e.g., 2.38(1) 

and 2.36(1)7k found for Ir02
Cl(C0)(PPh

3)2 (La Placa and Ibers, 1965), 

2.339(3)Z in [Ir(NO)2(PPh3)21C104, (Mingos and Ibers, 1970) and 2.407 

and 2.408Z. in [IrCl(C0)(N0)(PPh3)2W4  (Hodgson et al.,  1968). 

We believe the two Ir-C distances, which are unexceptional, are 

probably the same although they apparently differ by about 5a. This is 

because in the least-squares, refinement the atom C(2) is slightly pulled 

in towards the metal atom by the presence of a small iridium "ripple" 

visible in the final difference Fourier directly on the line Ir-C(2) 

and just short of the carbon atom. A more realistic pointer to equivalence 

of the two carbonyls is the Ir....0 distance which is virtually the same 
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Fig. 3 

Molecular structure of the orthorhombic form of IrH(CO)2(PPh3)2. A 

stereoscopic drawing with thermal ellipsoid vibrations scaled to 

enclose 40% probability. 
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for both carbonyl groups, 3.023 and 3.029(6)A. 

The position of the hydride hydrogen atom has been located and 

the Ir-H distance is estimated to be 1.64(5)X. The nature of the metal-

hydrogen bond in transition-metal hydride complexes has been of interest 

since 1955 when the first compound of this type (r-(C[1.5)2ReH) was obtained 

by dilkinson and Birmingham (1955). A summary of the existing theories, 

based among others on the results of the only two structural studies 

known at that time, viz. RhH(C0)(PPh3)3  and K2ReH9, was given by Ibers 

(1965). He discuaed the alternative concepts of a hydrogen being buried 

in the metal orbitals or of hydrogen being situated at a normal covalent 

distance from the metal and thus exerting a profound influence on the 

stereochemistry. Ibers regarded the latter theory as more probable. 

Table 8 summarises the recent structural determinations of metal-hydrogen 

distances. The results support Ibers.' conclusion, but it is noteworthy 

that in every case the observed Me-H distances are longer than the sum of 

Pauling's covalent radii. (This is true even in the case of the more 

reliable neutron diffraction studies.) 

Complex 

Table 8 Sum of * 
Coval- 
ent radii 	Reference 
Me-H 

Method 	Bond length 

K2ReH9  

MIH(C0)(PPh ) 
3 3 

HuH(c10H7)- 
(Me2P.CH2

.CH
2.PMe2)2 

RuHC1(PPh
3)3 

6-Hml(C0) 
5 

CoH(N2)(PPh3
)
3 

IrH(C0)
2(PPh3)2 

* Ref. Pauling (1960) 

neutron 1.61-1.72; 	1.58 
average 1.68(1) 

X-ray 	1.60(12) 	1.55 

X-ray 	1.7 	1.55 

X-ray 	1.68(7) 	1.55 

neutron 1.601(16) 	1.47 

X-ray 	1.64(11) and 	1.46 
1.67(12) 

X-ray 	1.64(5) 	1.57 

Abrahams et al. i1964) 

La Placa and Ibers (1965) 

Ibekwe et al. (1969) 

Skapski and Troughton(1968) 

La Placa et al. (1969) 

Davis et al. (1969) 

this work 
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Figure 4 shows a stereoscopic view of the packing of molecules in the 

structure while Table 9 lists some of the shorter intermolecular distances. 

Table 10 shows that the phenyl rings are satisfactorily planar. The 

main point of interest here, however, is that the phosphorus atoms are in 

some cases a considerable distance out of the least-squares plane of the 

phenyl rings (phosphorus atom not included in plane calculation). While it 

has seemed likely that due to steric strain some bending can occur at the 

C(m1) atom it has been difficult to demonstrate this conclusively as in 

most structure determinations the standard deviations at the phenyl rings 

tend to be relatively high, and the effect is a small one. Distortions 

of this type are most likely in structures when the packing of the 

molecules in the crystal is mainly determined by the phenyl rings of 

triphenylphosphine (or similar) ligands; one structure where a genuine 

distortion seems to occur is RhMeI2
(12Th

3
)
2 

(Troughton and Skapski, 1968) 

where P-C(1)-C(4) angles down to 175.7°  (a = 0.24) were found. 	Table 10 

shows that in this iridium complex significant bending occurs for five 

of the six rings. The most striking example is P(2), which is 0.321 out 

of the plane of ring C(5n) involving a P(2)-C(51)-C(54) angle of pa. 1700. 

A priori one would expect that serious distortion at C(m1) is most likely 

to be caused by steric pressure at C(m4) (or.  more strictly on the hydrogen 

atom attached to C(m4)), since pressure on C(m2, 3, 5 or 6)can more conveniently 

be eased by a twist of the ring about theP-C(ml) axis. It may be significant 

that the two shortest contacts between phenyl hydrogens, H(54)....H(46) 

(2.33) and H(64)....H(23) (2.31e4), involve the Hm4 hydrogens in the two 

rings showing the largest distortion. 

Pentacoordinate structures are known to be potentially non-rigid in a 

stereochemical sense (Muetterties and Schunn, 1966; Holmes et al., 1969). 

The two extremes of geometrical configuration encountered in these structures 



85 

• 

. 

N., 

ce;,73"Id 

7 I . 	, 
) 	. 

7, r''Clw  

, 

C 	 

Fig. 4 

Crystal structure of the orthorhombic form of IrH(CO)2(PPh3)2 
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can be idealised as a trigonal bipyramid (TBP) and square pyramid (SP), 

although in real molecules considerable distortion can be expected. In 

some compounds the difference in energy levels for the two configurations 

may be small with respect to such factors as lattice energy, and packing 

forces, or in solution, solvation and association energies. This fact 

explains the existance of isomers in both the liquid and the solid state. 

For structures of the type MLL2L"
2 
 with three different kinds of ligands 

there are five possible geometrical isomers for TBP and six for SP. 

Two different isomeric forms of IrH(CO)
2
(PPh3) have been found by 

2 

Yagupsky and Wilkinson (1969) to exist in thermal equilibrium in solution 

and to undergo rapid interchange. They considered the possible configurations 

for the two isomers and concluded that, although no decision could be made 

between TBP and SP, one isomer has C
s 
 and the other C

-2v  symmetry. In our —  

molecular structure of the orthorhombic form the coordination about iridium 

has approximately C symmetry if one ignores the phenyl rings, although it 

is different from those found in solution. This is not particularly 

surprising in view of the known lability of five-coordinate species. 

In a recent paper Wilkinson and his coworkers have discussed the 

different reactivity of IrB(CO)
2
(PPh3)2 and IrH(C0)(PPh3

)
3 

towards ethylene 

and the isomerisation of alk-l-enes. They do so in terms of the relatively 

easy approach ofetlylene towards the metal which can be visualised in this 

structure, and which is likely to be true of the species existing in 

solution (Yagupsky et al., 1970). 



Table 2 

Fractional coordinates, x, 

deviations in parentheses. 

z, with estimated standard 

Atom x Z z 

Ir 0.06919(1) 0.07000(1) 0.25000 

P(1)  0.19156(8) -0.08196(14) 0.24134(14) 

P(2)  0.11982(8) 0.18736(15) 0.35796(8) 

0(1) -0.0319(3) -0.1418(5) 0.2592(6) 

0(2) 0.1218(4) 0.2214(6) 0.1109(3) 

0(1) 0.0174(4) -0.0653(6) 0.2594(7) 

C(2) 0.1118(4) 0.1606(7) 0.1662(4) 

0(11) 0.2787(4) -0.0179(7) 0.1996(4) 

c(12) 0.2944(4) 0.1168(8) 0.2021(4) 

0(13) 0.3614(6) 0.1631(10) 0.1731(5) 

0(14) 0.4132(5) 0.0798(10) 0.1424(5) 

0(15) 0.3976(5) -0.0555(11) 0.1399(5) 

01.6) 0.3311(5) -0.1045(8) 0.1679(5) 

0(21) 0.2224(4) -0.1611(6) 0.3257(4) 

0(22) 0.2973(4) -0.1871(8) 0.3437(5) 

c(23)  0.3158(5) -0.2456(11) 0.4097(6) 

c(24)  0.2602(5) -0.2788(10) 0.4568(5) 

c(25)  0.1859(5) -0.2544(9) 0.4411(4) 

0(26) . 	0.1673(4) -0.1953(7) 0.3769(4) 

c(31) 0.1687(4) -0.2266(7) 0.1834(4) 

0(32) 0.1265(5) -0.2072(8) 0.1210(4) 

0(33) 0.1116(6) -0.3106(11) 0.0735(5) 

0(34) 0.1370(6) -0.4361(9) 0.0897(6) 

c(35) 0.1769(6) -0.4584(8) 0.1520(5) 

87 
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Table 2 ctd 

Atom x Z. z 

0(36) 0.1924(5) -0.3542(8) 0.2000(4) 

C(41)  0.0987(4) 0.1044(6) 0.4445(3) 

C(42)  0,1398(4) 0.1211(7) 0.5076(4) 

C(43)  0.1192(5) 0.0598(9) 0.5720(4) 

C(44)  0.0555(5) -0.0201(9) 0.5735(4) 

C(45)  0.0131(5) -0.0375(8) 0.5115(5) 

C(46)  0.0358(4) 0.0242(7) 0.4478(4) 

C(51)  0.2177(3) 0.2396(6)  0.3675(4) 

C(52)  0.2417(4) 0.3662(8) 0.3445(3) 

C(53)  0.3176(5) 0.3962(9) 0.3392(5) 

C(54)  0.3701(4) 0.2999(9) 0.3584(6) 

C(55)  0.3490(4) 0.1783(9) 0.3825(6) 

C(56)  0.2728(4) 0.1466(8) 0.3867(5) 

C(61) 0.0702(3) 0.3487(6) 0.3683(4) 

c(62)  0.0566(5) 0.4038(8) 0.4358(4) 

c(63)  0.0235(5) 0.5286(8) 0.4414(5) 

c(64)  0.0060(4) 0.6010(7) 0.3796(5) 

c(65)  

c(66)  

0.0193(5) 

0.0496(4) 

0.5467(8) 

0.4202(7) 

0.3116(5),  

0.3064(4) 

Carbon ?toms are numbered C(mn) where m is the ring no. and n is the atom 

no. in the ring. n is such that C(m1) is attached to P and other atoms 

are numbered in succession such that C(m4) is para  to C(m1). 
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Atom 8
11 

Anisotropic 

822 

Table 3 

812 813 823 

thermal parameters 

8
33 

Ir 0.00216(1) 0.00669(2) 0.00176(1) -0.00016(1) -0.00019(1) 0.00000(2) 

P(1)  0.00238(4) 0.0068(1) 0.0021(7) -0.0002(6) 0.00008(6) -0.0003(1) 

P(2)  0.00197(5) 0.0065(15) 0.00174(4) -0.00017(7) -0.00010(4) -0.00008(7) 

0(1) 0.0039(2) 0.0122(6) 0.0066(3) -0.0027(3) 0.0000(3) 0.0014(5) 

0(2) 0.0074(3) 0.0133(7) 0.0026(2) -0.0023(4) 0.0004(2) 0.0022(3) 

C(1)  0.0027(2) 0.0094(5) 0.0031(4) 0.0007(3) 0.0000(3) 0.0006(4) 

C(2)  0.0038(3) 0.0098(8) 0.0020(2) -0.0007(4) 0.0003(2) o.0000(4) 

c(ii) 0.0024(2) 0.0097(8) 0.0023(2) -0.0009(3) 0.0004(2) -0.00003(34) 

C(12) 0.0035(3) 0.0111(9) 0.0028(2) -0.0016(4) 0.0003(2) -0.0002(4) 

0(13) 0.0054(4) 0.0155(12) 0.0041(3) -0.0043(6) 0.0018(3) 0.0003(5) 

c(14) 0.0040(3) 0.0203(15) 0.0036(3) -0.0031(6) 0.0016(3) -0.0016(6) 

C(15) 0.0033(3) 0.0219(15) 0.0037(3) -0.0006(5) 0.0015(3) -0.0012(6) 

0(16) 0.0036(3) 0.0114(9) 0.0036(3) -0.0009(4) 0.0010(2) -0.0012(4) 

C(21)  0.0025(2) 0.0063(6) 0.0025(2) 0.0004(3) -0.0002(2) 0.0001(3) 

C(22)  0.0026(3) 0.0128(9) 0.0039(3) 0.0001(4) -0.0002(2) 0.0013(5) 

C(23)  0.0031(3) 0.0202(15) 0.0053(4) 0.0001(6) -0.0013(3) 0.0036(7) 

0(24) 0.0048(4) 0.0155(12) 0.0039(3) -0.0002(5) -0.0010(3) 0.0030(5) 

0(25) 0.0037(3) 0.0172(12) 0.0025(2) -0.0010(5) 0.0002(2) 0.0021(5) 

0(26) 0.0026(2) 0.0093(8) 0.0029(2) -0.0004(4) -0.0002(2) 0.0005(4) 

0(31) 0.0027(2) 0.0077(7) 0.0028(2) -0.0004(3) 0.0004(2) -0.0013(3) 

0(32) 0.0051(4) 0.0114(9) 0.0028(3) -0.0004(5) -0.0004(3) -0.0016(4) 

c(33) 0.0061(4) 0.0180(14) 0.0037(3) 0.0010(7) -0.0011(3) -0.0030(6) 

C(34) 0.0056(4) 0.0139(12) 0.0042(6) -0.0005(6) 0.0000(3) -0.0033(5) 

0(35) 0.0064(4) 0.0074(8) 0.0046(4) -0.0007(5) 0.00;•4(3) -0.0013(5) 

C(36) 0.0045(3) 0.0083(8) 0.0034(3) -0.0007(4) -0.0005(3) -0,0012(4) 
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Table 3 ctd 

Atom 
B11 • B22 512 33 B13 1323 

C(41)  0.0028(2) 0.0070(7) 0.0017(2) 0.0001(3) 0.0002(2) 0.0001(3) 

C(42)  0.0039(3) 0.0096(8) 0.0023(2) -0.0010(4) -0.00008(21) 0.0001(4) 

C(43)  0.0050(4) 0.0149(11) 0.0023(2) 0.0007(5) -0.0006(2) 0.W08(4) 

C(44)  0.0045(3) 0.0129(9) 0.0022(2) 0.0014(5) 0.0008(2) 0.0012(4) 

C(45)  0.0036(3) 0.0119(11) 0.0032(3) -0.0009(5) 49.0007(2) 0.0008(4) 

C(46)  0.0023(2) 0.0103(8) 0.0027(2) 0.0002(4) 0.0002(2) 0.0003(4) 

0(51) 0.0021(2) 0.0080(7) 0.0022(2) 0.0001(3) 0.0001(2) -0.0004(3) 

C(52) 0.0023(2) 0.0099(8) 0.0048(3) -0.0010(4) 0.0001(2) 0.0000(5) 

c(53) 0.0037(3) 0.0143(11) 0.0060(4) -0.0025(5) 0.0004(3) 0.0002(6) 

C(54)  0.0024(3) 0.0163(12) 0.0056(4) -0.0016(5) 0.0000(3) -0.0021(6) 

C(55)  0.0027(3) 0.0143(11) 0.0039(3) 0.0003(4) -0.0007(2) -0.0018(5) 

C(56)  0.0024(2) 0.0119(9) 0.0030(2) 0.0005(4) -0.0006(2) -0.00)7(4) 

C(61)  0.0019(2) 0.0069(6) 0.0024(2) 0.0000(3) 0.0000(2) -0.0005(3) 

C(62)  0.0038(3) 0.0099(8) 0.0028(2) 0.0003(4) 0.0004(2) -0.0004(4) 

0(63) 0.0046(3) 0.0104(9) 0.0038(3) 0.0013(5) 0.0008(3) -0.0020(4) 

C(64)  0.0029(3) 0.0074(7) 0.0049(3) 0.0004(4) 0.0002(2) -0.0009(4) 

C(65)  0.0043(3) 0.0097(9) 0.0037(3) 0.0013(4) -0.0008(3) 0.0003(4) 

C(66)  0.0034(3) 0.0089(8) 0.0031(2) 0.0005(4) -0.0004(2) 0.0002(4) 



Table 4 

Fractional coordinates of the hydrogen atoms 

Atom x Z. z 

H(1) 0.019 0.176 0.248 

H(12) 0.251 0.172 0.230 

11(13) 0.373 0.245 0.182 

H(14)  0.459 0.118 0.127 

H(15)  0.438 -0.113 0.123 

H(16)  0.323 -0.187 0.175 

H(22) 0.341 -0.181 0.294 

11(23) 0.358 -0.256 0.433 

H(24)  0.275 -0.324 0.499 

H(25)  0.151 -0.257 0.474 

H(26)  0.115 -0.152 0.365 

H(32) 0.131 -0.124 0.107 

11(33) 0.080 -0.289 0.027 

H(34)  0.136 -0.536 0.061 

H(35)  0.12 -0.533 0.180 

H(36)  0.218 -0.367 0.245 

H(42)  0.175 0.167 0.50o 

H(43)  0.152 0.081 0.615 

H(44)  0.034 -0..557 0.618 

H(45)  -0.038 -0.089 0.515 

11(46) 0.001 0.013 0.411 

H(52)  0.204 0.436 0.327 

H(53)  0.339 0.493 0.321 

H(54)  0.430 0.319 0.357 

H(55)  0.382 0.115 0.410 

H(56)  0.248 0.052 0.411 

H(62)  0.075 0.352 0.474 

H(63)  0.009 0.566 0.491 

H(64)  -0.026 0.695 0.386 

H(65)  0.010 0.593 0.248 

H(66)  o.o58 0.376 0.252 

For phenyl hydrogens the numbers correspond to those of the carbon 

atoms to which they are bonded. 
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Table 5 

Final observed and calculated 

structure factors 

The format of the table is 

h 	k 	1 

1 	10IF I 	10F 
o 	Ic _. 

• Reflections of intensities not 

significantly greater than the 

background ("less-thans") are 

marked:* 
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Table 7 

Selected bond lengths a) and angles (°) with standard deviations in 

parentheses. 

Ir - P(1) 2.375(2) C(1) - 0(1) 1.163(8) 

Ir - P(2) 2.370(2) C(2) - 0(2) 1.199(9) 

Ir - c(1) 1.867(6) Ir....0(1) 3.023(5) 

Ir 	C(2) 1.833(7) fr....0(2) 3.029(6) 

Ir - H(1) 1.64 

P(1) 	C(11) 1.843(7) P(2) - C(41) 1.833(7) 

P(1) - C(21) 1.826(7) P(2) - C(51) 1.824(6) 

P(1) - C(31) . 1.842(7) P(2) - C(61) 1.848(6) 

mean C-C 

ring C(1n) 1.380(12) ring C(4n) 1.382(10) 

C(2n) 1.383(10) C(5n) 1.384(10) 

C(3n) 1.378(12) C(6n) 1.384(10) 

P(1) 	Ir - P(2) 101.38(7) P(2) - Ir,- C(1) 116.0(4) 

P(1) 	Ir - C(1) 93.8(2) P(2) - Ir - C(2) 114.2(2) 

P(1) 	Ir - C(2)95.3(2) C(1) - Ir - C(2) 125.9(4) 

P(1) - Ir - H(1) 175 

Ir - P(1) - C(11) 116.7(2) C(11) - P(1) - C(21) 104.7(3) 

Ir - P(1) - C(21) 116.7(2) C(11) - P(1) - C(31) 102.4(3) 

Ir - P(1) - C(31) 112.0(2) C(21) - P(1) - C(31) 102.5(3) 

Ir 	P(2) - c(41) 117.1(2) 0(41) - P(2) - c(5') 104.0(3) 

Ir - P(2) - C(51) 116.2(2) C(41) - P(2) - C(61) 102.1(3) 

Ir - P(2) - C(61) 114.1(2) C(51) - P(2) - C(61) 101.2(3) 
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Table 9 

Some selected non-bonded distances 

c(64) - 0(23)1 3.715 H(64) - 11(23)1  2.31 

C(54) - 0(46)11  3.802 H(54) - H(46)II  2.33 

C(55) - C(33)
III  

3.582 
- H(33)111 

11(55) 2.46 

c(52) - c(36)Iv 
3.956 

H(52) - H(56)Iv 
2.49 

c(65) - 0(15)
1 
 3.827 H(65) - 11(15)I  2.51 

c(43) - 0(16)
III 

3.894 H(43) - 11(16)III  2.57 

c(63) - c(14)III  3.897 11(63) - H(14)III  2.61 

0(26) - c(64)v  3.516 H(26) - 11(64)
v 

2.97 

0(63) - c(25)Iv  3.609 11(63) - H(25)Iv  3.09 

H(1) - H(66) 2.12 (intramolecular) 

96 

Superscripts refer to atoms in the following positions: 

I x-,3-, z 	II i + x, i - 2., z 	III 1 -2- - x 

IV x, 1 + x, z 	V x, z - 1, z 

Z 

Table 10 

Ring 
Mean 

deviation 

Planarity of Phenyl rings 
Maximum 

Distance of phosphorus deviation 
(A) atom from least-squares plane 

C(1n) 0.002 0.003 0.078(2) 

C(2n) 0.004 0.009 0.024(6) 

C(3n) 0.007 0.020 0.101(12) 

C(4n) 0.003 0.006 0.076(4) 

C(5n) 0.007 0.011 0.319(8) 

C(6n) 0.012 0.019 0.151(14) 
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The Crystal Structure of 

the Monoclinic(I) Form of 

Hydridodicarbonylbis(triphenylphosphine)iridium(I) 

IrH(CO)
2
(PPh

3
)
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ABSTRACT 

The crystal and molecular structure of the monoclinic(I) form of 

hydridodicarbonylbis(triphenylphosphine)iridium(I) has been determined 

from three-dimensional X-ray diffractorneter data. The compound crystallises 

in space group P21/a with four molecules in a unit cell of dimensions 

a = 18.036, b:=10.075, c = 19.4741,11 = 113.365°. The structure was 

refined by least-squares methods using 3248 measured independent reflections 

to give R = 0.028. 

Of the five iridium ligands two are triphenylphosphine groups in 

a cis configuration, with a P(1) - Ir - P(2) angle of 102.17°.and Ir 	P 

distances of 2.357 and 2.359A. Two other ligands - the carbonyl groups, 

are disordered and under these circumstances location of the hydride 

hydrogen atom 'has proved impossible. It appears from the arrangement 

of the disordered carbonyl groups that two different molecular forms 

coexist in the crystal in ratio ca. 2:1. 
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INTRODUCTION 

The significance of the hydridodicarbonylbis(triphenylphosphine) 

iridium(I) complex, as an analogue of a rhodium complex, was mentioned 

in a previous chapter. The main crystallographic details of the 

three polymorphic forms of the iridium complex, all obtained in one 

batch of crystals were also given in this chapter. 

The co-crystallization of three polymorphs suggests minimal free 

energy differences between them, and this is in general agreement with 

the conclusion of Yagupsky and Wilkinson (1969) that there are different 

conformers coexisting in solution. It was thought interesting to 

determine the molecular structure for each of the three polymorphic 

forms in a solid state, and the present work is concerned with the 

first of the two monoclinic forms, refered to as monoclinic(I). 
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EXPERIMENTAL 

The monoclinic(I) form of hydridodicarbonylbis(triphenylphosphine) 

iridium(I) was obtained by the reaction in solution of IrCl(C0)(PPh
3)2 

with NaBH
4 in the presence of carbon monoxide. Crystals were kindly 

provided by Professor G. Wilkinson and Dr. G. Yagupsky. Preliminary 

oscillation and Weissenberg photographs showed the crystals to be 

monoclinic with systematic absences given by OkO:k = 2n + 1 and 

h01:h = 2n +1. These absences are consistent with the space group 

P2
1 
 /a (No. 14). 

Intensity data were collected for a crystal of a platelike shape 

of approximate dimensions 0.3 x 0.3 x 0.1 mm, mounted about the b axis 

on a Siemens off-line automatic four-circle diffractometer. Cu-Ka 

radiation at a take-off angle of 4.5°, a NiB filter and a Na(T1)I 

scintillation counter were used. The Q - 2Q scan technique was employed 

using a "five-value" measuring procedure (Skapski and Troughton, 1970). 

3248 independent reflections ,(to Q = 50°), were measured, of which 235 were 

judged insignificant as the net count was below 2.58 times the standard 

deviation (i.e. below the 99% confidence limit) and were assigned a count 

equal to this value. The 8 00reflection was used as a reference every 25 

reflections and there were no appreciable changes in the counts for this 

reflection over the data collection period (5 days). The data were scaled 

using the reference reflection and Lorentz and polarisation corrections 

were applied. 

The unit-cell dimensions and their estimated probable errors, 

measured on the Siemens diffractometer at 20°C are: a = 18.036(5), 

b = 10.075(2), c = 19.474(5), 0 = 113.365(10); Dm  (by flotation) = 1.60 gCTII-3  

D
c 	

1.582 gcm-3  for Z = 4; M.W. = 773.8 for IrP2 C38 H31 02' F(000) = 1528. 
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SOLUTION AND REFINEMENT OF THE STRUCTURE 

The solution and refinement of the structure were carried out using 

the Crystal Structure Calculations System X-Ray-63 described by J.M. Stewart 

in the University of Maryland Technical Report TR-64-6. The calculations 

were carried out on the Imperial College IBM 7094 computer. 

A three dimensional Patterson gave a straightforward solution for 

the iridium atoms which are in a set of general positions. Refinement 

of this position gave a value for the standard agreement factor R (= EI1F
o
-1 

-(Fcii/IF I) of 0.33. The two phosphorus atoms were located from the 

resultant difference Fourier. Further refinement including these positions 

reduced R to 0.26, and the next difference Fourier revealed the positions of 

all six phenyl rings and one carbonyl group. Refinement of all these 

atoms brought R to 0.152 and the next difference Fourier showed what could 

be a second carbonyl group. Location of the carbonyl groups, and especially 

the second one, was difficult due to the "smeared out" appearance of the 

peaks and much lower height than one would expect for these groups. 

Refinement of all the located atoms, treating the iridium and both 

phosphorus atoms anisotropically, gave R = 0.129. 

The hydrogen-atom positions in the phenyl rings were calculated using 

the carbon positions and assuming a C-H distance of 1.081; all hydrogen 

atoms were assigned an isotropic temperature factor of 3.0A2. Two more 

cycles of anisotropic refinement of all atoms using a fixed hydrogen contribution 

gave R = 0.112. 

At this stage an absorption correction was made (p., = 90.31 cm
1
) using 

a program which combines the Gaussian integration method, described by 

Busing and Levy (1957) with the crystal path lengths determined by the 

vector analysis procedure of Coppens et al. (1965). In this particular 

case the crystal volume was sampled at 8 x 8 x 8 points. The next four 
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cycles of anisotropic refinement with fixed hydrogens for all phenyl rings 

reduced R to 0.068. 

To define the new, better, positions of the carbonyl groups a difference 

Fourier was calculated (Figure 1). This showed that both carbonyl groups 

are disordered, and the two alternative positions for the carbonyl group 

(2 and 2*) with greater separation of atoms were found. In the 

subsequent refinement they were assigned occupancies of 0.6 and 0.4 

respectively. The separation of the alternative positions of the other 

carbonyl group (1 and 1*) is much smaller and the identification of these 

positions was done in two stages: first the oxygen was split on the basis 

of the difference Fourier, calculated at R = 0.052 while the disorder of 

the corresponding carbon atom (C1) was not defined until after the 

dispersion correction had been applied. Further attempts to refine the 

disordered atoms as two separate carbonyl groups led to an estimated 

occupancy ratio of 0.63 to 0.37, and were eventually successful in giving 

two distinct orientations of each of the carbonyl groups. 

At this stage two reflections, strongly affected by extinction, were 

removed, and a dispersion correction for the Ir and P atoms was applied. 

These adjustments brought the R factor from 0.040 to 0.032. New 

positions of the hydrogens in the phenyl rings 

were used with an assigned B of 3.012  as fixed 

Up to this point unit weights were given  

were then generated and 

atom contributions. 

to the reflections in the 

refinement because of the approximately constant counting statistics arising 

from the method of measurement of the data. Inspection of the AF's 

suggested that secondary extinction was present. However, in view of the 

inadequacy of the atomic model arising from disorder it was felt that the 

labour involved in applying a correction was not justified. In these 

circumstances only a weighting scheme of the type suggested by Hughes (1941), 

which would partly compensate for lack of this correction, was used, with 
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Fig. 1. Electrr density difference maps87  Contours at intervals of 
0.50" (lowest contour t1-. 0.8e/0 
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4-W = 1 if F <5 F* and A: = F*/F if F > F*, and F* = 100. This reduced 

R from 0.028- to.0.027. 

Bond-length calculations showed that some Ir-C distances were on 

the short side (especially for C(1')), whereas the Ir....0 distances 

were more normal. This suggested that in the least-squares refinement 

the carbon atoms were being "pulled in" towards the iridium. The carbon 

atoms were therefore relocated at the geometrically calculated positions, 

and their coordinates were kept fixed during the last few cycles of 

refinement which brought the R value to 0.028. The final average ratio 

of shift to standard deviation was 0.05 and the maximum ratio Was 0.30. 

In the refinement, the usual least-squares function, o  - F
es)-, 

was minimised. The atomic scattering factors used were those tabulated 

by Cromer and Waber (1965) and the values for the real (f') and imaginary 

(f") parts of the dispersion correction were those given by Cromer (1965). 

The anomalous dispersion was treated as follows: the new ,values of the 

atomic scattering factors were calculated as a resultant f 	= [(f + f')2 
corr 

+ (f")
21 
 and used from then on in place of values not corrected for 

dispersion. The unobserved reflections were included throughout the 

refinement of the structure but are omitted from all estimates of the 

agreement'factor R. 

A final difference Fourier showed a -maximum electron-density peak 

of 0.8e/13  and nine other peaks of an electron-density range 0.3e/13  - 0.5e/1. 

All those peaks were in the vicinity of an iridium atom and the Ir-peak 

distances were calculated for each of them. Only three occurred at the 

expected Ir-hydrogen distance of about 1.7A , and of those only one was 

in a geometrically sensible position. 

Table 1 lists the final coordinates of the non-hydrogen atoms and 

Table 2 the coefficients for the anisotropic. temperature factors 

ex 
Pr  -(1311122 + 9

22k2 + 43312  + 
12—  
hk + 21313h1 + 213

23
ki)]. In these tables 

the standard deviations have been estimated from block-diagonal matrix 

.60  
refinement and are, therefore, a slight undereatimdtb of the true deviations. 
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The coordinates of the hydrogen atoms are given in Table 3. Table 4 

lists the observed structure amplitudes and the calculated structure 

factors. 

DESCRIPTION OF STRUCTURE AND DISCUSSION  

A steroscopic drawing (Johnson 1965) of an asymmetric unit of the 

IrH(CO)
2
(PPh

3
)2 structure found in monoclinic(I) form is shown in 

Figure 2. It can be seen that the carbonyl groups are disordered, 

whereas the triphenylphosphine groups are not. The position(s) of the 

hydride ligand were not found. The disordered carbonyls do not occupy 

the alternative positions with equal probability, but are present in 

a ratio of ca. 2:1. The major form is marked as (CO) and the minor 

form as (CO*), While it is fairly unusual to find such unequal occupancy, 

it has been encountered in other structures, for instance in Pt2S(C0)(PPh3
)3 

(Skapski and Troughton, 1969) or RuH(naphthyl)(dmpe)2 
(Gregory et al., 

1971). 

The triphenylphosphine groups are in a cis configuration with a 

P(1)-Ir-P(2) -angle of 102.17(5)°, very similar to that found in the 

orthorhombic form (101.4°). The two Ir-P distances are identical to 

within one standard deviation, 2.357(2) and 2.359(2). These are shorter 

than those found in the orthorhombic form by ca. 0.015i, possibly a 

significant difference. Comparison with Ir-P distances found in other 

structures was made in the previous chapter. 

The existence of disorder among the carbonyl groups, with unequal 

occupancy, suggests a number of possibilities. Firstly, one could 

envisage that only one molecular form, which may or may not be the same 

as that in the orthorhombic form (Form A), fits into the packing scheme 

in two orientations, such that P(1) takes the place of P(2) and vice 

versa (see below) 	P(1) 
	 P(2) 

C(2) 
c(1) c(2) 

  

p(2) 	 P(1) 
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Fig. 2 

Molecular structure of the monoclinic(I) form of IrH(CO)2
(PFh

3)2' 

showing disorder of the two carbonyl groups. 
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This would be possible if one assumed that during crystal growth the 

phenyl rings rotate to find the best fit onto the crystal surface. A 

second possibility is that two forms, one of which is form A, coexist 

in the crystal. P(1) 	P(1) 

C(1) 

  

C(2) 
c(i 

  

C(2) 

 

p(2) 

  

P(2) 

 

Thirdly the two forms present could be different from each other and 

from formA, and finally there might bethe possibility of dynamic disorder. 

This last is rather unlikely in view of the fairly large separation 

between C°(1) and CO(1)*. 

Figures 3(a) and 3(b) show separately the moleCular structures of 

the major and minor forms. The thermal vibrations of the atoms are shown, 

and the orientation of the ellipsoids of the carbon atoms of the dis- 

ordered carbonyl groups confirms what was observed during least-squares 

refinement, namely that these atoms were being "pulled" in towards the 

iridium atom. 

Selected bond lengths and angles relevent to both the major and 

the minor form are given in Table 5. In a separate table (6), a comparison 

is made of the spatial arrangement of ligands in these two forms with 

that in form A. While the presence of disorder has led to somewhat 

limited accuracy as regards the carbonyl groups, it would appear that 

all three forms are different from each other. 

While the configuration of form A could be described with some 

confidence as a distorted trigonal bipyramid(TBP), a description of the 

major and the minor forms in terms of TBP or SP is much more difficult. 
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FiG  3 a 

Molecular structure of the major form in monoclinic(I) IrH(CO)2(PPh3)2 

Molecular structure of the minor. form in monoclinic(I) Ir1i(C0)2(1Th3)2. 

Thermal ellipsoid vibrations were scaled to enclose 40°: probability. 
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This is because of the five ligands one, the hydride hydrogen, was not 

located, and two othersare known with limited accuracy. The major form 

is probably closer to SP, with P(2) at the apex and four atoms of the 

, base bent away from it at average angles of 10/o  . The minor form is, 

if anything,nearer TBP, with arrangement of ligands similar to that in 

form A. 

While discussing the configuration of ligands around the iridium 

atom in the orthorhombic form of the complex the conclusion was reached 

that it is different from those suggested by Yagupsky and Wilkinson (1969) 

for the two isomers existing in thermal equilibrium in solution. It 

seems likely that the two forms in the monoclinic(I) polSTmorph are also 

different from those in solution. 

Calculations were carried out to check the planarity of the phenyl 

rings and the results are summarised in Table 7. 'All the rings are 

satisfactorily planar. In this structure also some bending is found 

to occur at the C(m1) atoms; thus P(1) (not included in the plane 

calculation) is 0.1431 away from the plane of ring C(2n) and 0.1471 

from plane of ring C(3n). This corresponds to P(1)-C(m1)-C(m4) angles 

of ca. 1750. The bending is almost certainly due to. steric pressure. 

As in the orthorhombic form, the shortest intermolecular contact between 

phenyl hydrogen atoms involves Hm4 hydrogen .(H(34); and indeed, 

all four shortest contacts are between hydrogens of rings C(2n) and 

C(3n), as shown in Table 8. 

The P-C(m1) distances are very similar to those found in the 

orthorhombic form (1.838 and 1.836. respectively). The same applies to 

the C-C dist-nces in the phenyl rings, which would lengthen a little 

if a libration correction were applied. 

Figure /1 shows a stereoscopic view of the packing of molecules in 

the unit cell. It may be noted that monoclinic(I) has the smallest 
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• Fig. 4 

Crystal structure of the monoclinic(I) form of IrH(COyPPh3)2. 
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unit-cell volume of the three polymorphs of IrH(C0)2(PPh3)2  as shown 

in Table 1 of the previous chapter. It may be that slightly more 

efficient packing is a consequence of the disorder present. Hopefully, 

the structure of monoclinic(II), which has yet to be determined and 

which has the highest unit-cell volume, will be free of such disorder. 
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Table 1 

Fractional coordinates, x, y, z, with estimated standard deviations in 

parentheses. 

Atom x I. z 

Ir 0.42979(2) 0.64219(3) 0.73383(2) 
P(1)  0.55377(9) 0.52821(15) 0.77153(8) 
P(2)  0.33731(9) 0.46734(15) 0.71731(8) 
0(1) 0.4094(6) 0.7313(10) 0.5808(5) 
0(2) 0.4774(9) 0.7840(12) 0.8832(7) 
0(1*) 0.3723(10) 0.6957(15) 0.5651(8) 
0(2*) 0.3933(13) 0.8345(20) 0.8270(13) 
c(1)  0.417 0.698 0.637 
c(2)  0.460 0.732 0.828 
c(1*) 0.394 0.676 0.628 
c(2*) 0.407 0.763 0.793 
c(11)  0.5941(4) 0.5017(6) 0.6992(3) 
c(12)  0.5444(4) 0.4517(7) 0.6302(4) 
c(13)  .0.5727(5) 0.4232(7) 0.5768(4) 
c(14)  0.6532(5) 0.4480(7) 0.5905(4) 
c(15)  0.7029(4) 0.4996(7) 0.6571(4) 
c(16)  0.6749(4) 0.5253(6) 0.7135(4) 
0(21) 0.5628(3) 0.3595(6) 0.8106(3) 
c(22)  0.5900(4) 0.2524(6) 0.7821(4) 
c(23)  0.5892(5) 0.1270(7) 0.8091(4) 
c(24)  0.5633(4) 0.1057(7) 0.8655(4) 
c(25)  0.5378(4) 0.2115(8) 0.8965(4) 
c(26)  0.5373(4) 0.3400(6) 0.8684(4) 
c(31)  0.6380(3) 0.6161(6) 0.8435(3) 
c(32)  0.6474(4) 0.7484(6) 0.8338(4) 
c(33)  0.7146(4) 0.8177(7) 0.8843(4) 
0(34) 0.7708(4) 0.7538(7) 0.9435(4) 
c(35)  s0.7606(4) 0.6207(7) 0.9546(4) 
c(36)  0.6947(4) 0.5526(6) 0.9047(3) 
c(41)  0.3470(3) 0.3339(6) 0.6577(3) 
c(42)  0.3117(4) 0.3547(7) 0.5797(4) 
c(43)  0.3201(5) 0.2611(8) 0.5308(4) 
c(44)  0.3618(4) 0.1463(7) 0.5587(4) 
c(45)  0.3973(4) 0.1265(7) 0.6361(4) 
c(46)  0.3899(4) 0.2190(6) 0.6842(3) 
c(51)  0.2294(3) 0.5078(6) 0.6703(3) 
c(52)  0.1728(4) 0.4067(7) 0.6420(4). 
c(53)  0.0905(4) 0.4361(7) 0.6092(4) 
c(54)  0.0638(4) 0.5644(7) 0.6018(4) 
c(55)  0.1200(4) 0.6612(6) 0.6291(4) 
c(56)  0.2013(4) 0.6353(6) 0.6628(4) 
0(61) 0.3390(4) 0.3841(6) 0.8021(3) 
c(62)  0.3636(4) 0.4566(7) 0.8677(4) 
c(63)  0.3666(5) 0.3963(8) 0.9330(4) 
c(64)  0.3459(5) 0.2672(9) 0.9342(4) 
c(65)  0.3189(5) 0.1966(8) 0.8686(5) 
c(66)  0.3145(4) 0.2545(7) 0.8028(4) 

Phenyl carbon atoms are numbered C(mn) where m is the ring no. and n is the 

atom no. in the ring. n is such that C(m1) is attached to P and other 

atoms are numbered in succession such that C(m4) is Para  to C(m1). 
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Atom 511  

Anisotropic 

8
22 

Table 2 

8
12 

8
13 33  823 

thermal parameters 

8 

Ir 0.00317(1) 0.00804(2) 0.00425(1) -0.00025(1) 0.00107(1) -0.00064(2) 

P(1)  0.00334(6) 0.0081(2) 0.00311(5) -0.00036(8) 0.00109(5) -0.00011(8) 

P(2)  0.00334(6) 0.0085(2) 0.00326(6) 0.00015(8) 0.00121(5) -0.00030(8) 

0(1) 0.0104(6) 0.0213(14) 0.0056(4) -0.0034(8) 0.0034(4) 0.0025(6) 

0(1*) 0.0100(10) 0.0177(21) o.0054(6) -0.0054(6) -0.0021(6) 0.0015(9) 

0(2) 0.0182(11) 0.0267(19) 0.0090(6) -0.0071(12) 0.0081(7) -0.0071(9) 

0(2*) 0.0108(13) 0.0288(34) 0.0129(13) 0.0028(16) 0.0033(11) -0.0117(18) 

c(1)  0.0044(5) 0.0126(13) 0.0036(4) 0.0028(6) 0.0017(3) 0.0039(6) 

0(1*) 0.0052(12) 0.0278(49) 0.0226(31) 0.0009(19) -0.0059(16) -0.0221(35) 

c(2)  0.0073(7) 0.0212(22) 0.0102k8) 0.0016(11) 0.0060(7) 0.0036(11) 

c(2*) 0.0061(10) 0.0138.27) 0.0121(15) -0.0052(14) 0.0064(11) -0.0107(17) 

c(ii) 0.0043(3) 0.0085(7) 0.0028(2) 0.0009(4) 0.0015(2) 0.0004(3) 

c(12) 0.0057(3) 0.0112(8) 0.0037(3) 0.0016(4) 0.0016(2) -0.0003(4) 

0(13) 0.0083(4) 0.0129(9) 0.0033(3) 0.0030(5) 0.0022(3) -0.0001(4).  

c(14) 0.0081(4) 0.0140(1) 0.0048(3) 0.0037(5) 0.0036(3) 0.0016(4) 

0(15) 0.0061(4) 0.0121(9) 0.0057(3) 0.0023(5) 0.0036(3) 0.0021(4) 

c(16) 0.0050(3) 0.0089(7) 0.0044(3) 0.0007(4) 0.0023(2) 0.0009(4) 

0(21) 0.0035(3) 0.0085(7) 0.0031(2) -0.0004(3) 0.0006(2) 0.0002(3) 

c(22) 0.0044(3) 0.0084(7) 0.0047(3) 0.0004(4) 0.0012(2) 0.0005(4) 

0(23) 0.0057(4) 0.0108(9) 0.0057(3) 0.0008(4) 0.0011(3) 0.0012(4) 

c(24) 0.0052(3) 0.0089(8) 0.0064(4) 0.0001(4) 0.0002(3) 0.0027(4) 

0(25) 0.0041(3) 0.0175(11) 0.0044(3) -0.0015(5) 0.0005(2) 0.0032(5) 

0(26) 0.0037(3) 0.0116(8) 0.0037(2) -0.0002(4) 0.0003(2) 0.0014(4) 

c(31)  0.0034(3) 0.0086(7) 0.0032(2) -0.0000(3) 0.0013(2) -0.0006(3) 

c(32)  0.0046(3) 0.0104(8) 0.0047(3) -0.0003(4) 0.0012(2) -0.0006(4) 

c(33)  0.0039(3) 0.0118(9) 0.0064(4) -0.0019(4) 0.0009(3) -0.0024(5) 

0(34) 0.0039(3) 0.0153(10) 0.0047(3) -0.0006(4) 0.0007(2) -0.0027(4) 

c(35)  0.0045(3) 0.0150(9) 0.0034(3) 0.0001(4) 0.0003(2) -0.0011(4) 

c(36)  0.0039(3) 0.0117(8) 0.0028(2) -0.0003(4) 0.0011(2) -0.0003(3) 

c(41)  0.0032(?) 0.0094(7) 0.0034(2) -0.0008(3) 0.0017(2) -0.0014(3) 

c(42)  0.0053(3) 0.0129(9) 0.0040(3) 0.0001(4) 0.0022(2) -0.0003(4) 

c(43)  0.0064(4) 0.0171(10) 0.0037(3) -0.0001(5) 0.0020(3) -0.0014(4) 

c(44)  0.0055(4) 0.0154(10) 0.0053(3) -0.0009(5) 0.0026(3) -0,0035(5) 
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Table 2 ctd 

C(45) 0.0043(3) 0.0121(9) 0.0063(3) 0.0011(4) 0.0022(3) -0.0014(4) 

c(46) 0.0042(3) 0.0083(7) 0.0038(2) 0.0003(4) 0.0016(2) -0.0009(3) 

C(51)  0.0033(2) 0.0095(7)  0.0033(2) 0.0004(3) 0.0015(2) 0.0001(3) 

C(52)  0.0031(3) 0.0098(8) 0.0068(3) 0.0000(4) 0.0013(2) -0.0001(4) 

C(53)  0.0040(3) 0.0118(9) 0.0063(3) -0.0016(4) 0.0012(3) 0.0004(4) 

C(54)  0.0037(3) 0.0125(8) 0.0041(3) 0.0002(4) 0.0014(2) 0.0007(4) 

C(55)  0.0049(3) 0.0091(8) 0.0054(3) 0.0013(4) 0.0012(3) -0.0014(4) 

C(56)  0.0039(3) 0.0097(7) 0.0039(3) 0.0000(4) 0.0009(2) -0.0006(4) 

C(61)  0.0035(3) 0.0104(8) 0.0039(2) 0.0002(4) 0.0015(2) 0.0003(3) 

C(62)  0.0058(3) 0.0137(9) 0.0035(3) 0.0013(5) 0.0019(2) 0.0003(4) 

c(63)  0.0079(5) 0.0189(12) 0.0042(3) 0.0013(6) 0.0028(3) -0.0018(5) 

c(64)  0.0074(4) 0.0217(13) 0.0046(3) 0.0007(6) 0.0033(3) 0.0016(5) 

c(65)  0.0077(4) 0.0153(10) 0.0063(4) -0.0022(6) 0.0037(3) 0.0022(5) 

c(66)  0.0053(3) 0.0149(9) 0.0037(6) -0.0016(5) 0.0019(2) 0.0000(4) 
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Table 3 

Fractional coordinates of the hydrogen atoms 

Atom x X z 

H(12)  0.488 0.434 0.620 

H(13)  0.539 0.384 0.524 

H(14)  0.661 0.421 0.549 

H(15)  0.759 0.521 0.668 

H(16)  0.715 0.559 0.759 

H(22)  0.618 0.270 0.747 

H(23)  0.613 0.051 0.788 

H(24)  0.568 0.012 0.882 

H(25)  0.524 0.216 0.944 

H(26)  0.515 0.430 0.887 

H(32)  0.614 0.790 0.786 

H(33)  0.729 0.904 0.883 

H(34)  0.832 0.791 0.983 

H(35)  0.80o 0.583 1.000 

H(36)  0.688 0.460 0.915 

H(42)  0.267 0.438 0.560 

H(43)  0.284 0.281 0.475 

H(44)  0.373 0.082 0.530 

H(45)  0.430 0.052 0.654 

H(46)  0.416 0.201 0.740 

H(52)  0.200 0.325 0.641 

H(53)  0.055 0.369 0.589 

H(54)  0.002 0.580 0.573 

H(55)  0.101 0.745 0.623 

H(56)  0.246 0.708 0.694 

11(62) 0.386 0.555 0.872 

H(63)  0.391 0.448 0.983 

H(64)  0.366 0.247 0.996 

H(65)  0.320 0.112 0.869 

H(66)  0.297 0.213 0.760 

The number of each hydrogen atom is the same as that of the carbon to 

which it is bonded. 
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Table 4 . 

Final observed and calculated 

structure factors 

The format of the table is 

h 	k 	1 

1 	10IF 1 	10iF 
-o 	'-c 

Reflections of intensities not 

significantly greater than the 

background ("less-thans") are 

marked:* 
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Table 5  

Selected bond lengths (A) and angles (0) with standard deviations in 

parentheses. 

Ir - P(1) 

Ir - P(2) 

2.357(2) 

2.359(2) 

Ir - C(1) 1.886 Ir - C(1*) 1.938 

Ir - C(2) 1.916 Ir 	C(2*) 1.829 

Ir....0(1) 2.994(10) 3.076(15) 

Ir....0(2) 3.042(12) Ir....0(2*) 2.902(25) 

0(1)....0(1*) 0.714(19) 

0(2)....0(2*) 1.562(22) 

P(1) - C(11) 1.842(7) P(2) - C(41) 1.829(6) 

P(1) - C(21) 1.843(6) P(2) - C(51) 1.838(6) 

P(1) - C(31) 1.836(5) P(2) - C(61) 

mean C - C 

1.841(7) 

ring C(1n) 1.380 ring C(4n) 1.385 

C(2n) 1.385 C(5n) 1.375 

C(3n) 1.379 C(6n) 1.377 

P(1) - Ir - P(2) 	102.17(5) 

P(1) - Ir - C(1) 100.5 P(1) - Ir - 0(1*) 107.1 

P(1) 	Ir C(2) 93.3 P(1) - Ir - C(2*) 123.6 

P(2) 	Ir C(1) 106.7 P(2) - Ir 	C(1*) 93.7 

P(2) 	Ir C(2) 113.4 P(2) - Ir - C(2*) 105.1 

0(1) 	Ir C(2) 133.5 C(1*)- Tr - C(2*) 119.1 

Ir - P(1) - C(11) 116.5(2) C(11) - P(1) - C(21) 100.6(3) 

Ir - P(1) - C(21) 119.7(2) C(11) - P(1) - C(31) 101.3(3) 

Ir 	P(1) - C(31) 113.5(2) C(21) - P(1) - C(31) 102.7(2) 

Ir - P(2) - C(41) 113.3(2) C(41) - P(2) - C(51) 101.3(3) 

Ir - P(2) - C(51) 117.0(2) C(41) - P(2) - C(61) 105.2(3) 

Ir - P(2) - C(61) 117.3(2) C(51) - P(2) - C(61) 100.7(3) 
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Table 6  

Selected angles for three forms of IrH(C0)(PPh ) 2 	3 2 

Orthorhombic 	Monoclinic(I) 
. form 	Major form 	Minor form 

P(1) - Ir - P(2) 	101.38(7) 	102.17(5) 

P(1) - Ir....0(1) 	95.7(1) 	100.5(2) 	107.1(4) 

P(1) - Ir....0(2) 	96.7(1) 	93.3(3) 	123.6(4) 

P(2) - Ir....0(1) 	117.6(2) 	106.7(2) 	93.7(3) 

P(2) - Ir....0(2) 	114.6(1) 	113.4(3) 	105.1(5) 

0(1).. .Ir....0(2) 	122.2(2) 	133.5(3) 	119.1(5) 

Since the carbonyl carbon atoms in monoclinic(I) were placed in 

calculated positions, angles involving the oxygen atoms are quoted. 

.Table 7 

Planarity of phenyl rings 

Ring 
Mean 	Maximum 	Distance of 

deviation 	deviation 	phosphorus atom from 
(A) 	(A) 	least-squares plane 

C(1n) 	0.008 	0.013 	0.084(10) 

C(2n) 	0.007 	0.011 	0.143(8) 

C(3n) 	0.006 	0.009 	0.147(7) 

C(4n) 	0.005 	0.009 	0.078(6) 

C(5n) 	0.005 	0.010 	0.058(7) 

C(6n) 	0.012 	0.020 	0.045(14) 
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Table 8 

Some selected non-bonded distances. 

C(34) - C(25)1  

C(33) - C(23)1/  

C(32) - C(23)1I  

C(35) - C(24)I  

C(44) - c(54)III 

C(13) - C(13)IV  

o(1) - c(54)V  

0(1*) - c(14)17  

c(1*) - C(14)Iv  

3.643 

3.787 

3.934 

3.682 

4.007 

3.463 

3.354 

3.134 

3.223  

H(34) - H(25)1  

H(33) - H(23)II  

H(32) 	H(23)1I  

H(35) - H(24)I  

H(44) 	
H(54)III 

H(13) 	
H(13)IV 

0(1) - 1.1(54)v  

0(1*) - H(14)IV 

C(1*) 	H(14)Iv  

2.540 

2.621 

2.630 

2.663 

2.680 

2.703 

2.573 

2.374 

3.327 

Superscripts refer to atoms in the following positions: 

I 1i - x, 2 + y, 2 - z 	II x, 1 + y, z 
	III i + x, 2  - y, z 

Iv 1 - x, 1 	y, 1 - z 	V 4 + x, 14 - y, z 
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CHAPTER III 

The Crystal Structure of 

Potassium p-Nitrido-bis[tetrachloroaquoruthenate(IM 

K tRu NC1 (H 0) 3 -  2 8 2 2 
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ABSTRACT 

The structure of potassium p-nitrido-bis[tetrachloroaquoruthenate(pb], 

K3[Ru2NCL8(H20)21, has been determined by three-dimensional X-ray crystal 

structure analysis. 	The crystals are monoclinic with unit-cell 

dimensions a = 15.89, b = 7.34, c = 8.161, B = 120.4°. 	The space group 

is C2/rn and Z = 2. 	Full-matrix least-squares refinement, using 697 

visually estimated reflections, has reached R = 0.088. 

The structure contains the nitrido-bridged complex ion [Ru2NCt8(ll20)213 ' 

which has 2/M crystallographic symmetry with the nitrogen atom lying on 

a centre of symmetry. 	The Ru-N distances are very short, 1.720A, 

indicating multiple bonding. 	The water molecules are trans to the 

nitrogen, with a fairly long Ru-0(water) distance of 2.181. 	The four 

chlorines about each ruthenium are bent away from the nitrogen and towards 

the water molecule, such that the N-Ru-CL angles are ca. 95°. The two 

independent Ru-C2 distances of 2.364 and 2.367A are normal. The 

potassium ions are co-ordinated to eight chlorines at distances in the 

'range 3.20 - 3.36A. 
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There has been much recent interest in transition-metal p-nitrido 

complexes, although only a few are known. 	They include [0s2N(N113)02]X3  

(X = CL, Br or I) 1, and the heterometallic compound [(PEt2Rh)3Ct2ReN 

PtCA2(PEt3)].
2 

Recently Cleare and Griffith3showed, on the basis of 

spectroscopic data, that the 	 K3[Ru2NX8(H20)2] (X = CL or Br) 

belong to this category. 	As no structural information existed about 

this type of compound we have determined the structure of IS[Ru2NC28(R20)2] 

by X-ray single-crystal methods. The structure determination has 

confirmed Cleare and Griffith's conception and shows that the Ru-N-Ru 

bridge has multiple bonding with very short Ru-N distances of 1.7201. 

A preliminary account of this work has appeared4. 

In the final stages of the refinement of this structure we became 

aware that Gee and Powell had independently determined the structure of 

the ammonium analogue of the title compound5. A comparison of the two 

shows them to be isostructural. 

EXPERIMENTAL 

Potassium p-nitrido-bis[tetrachloroaquoruthenate(IV)] crystallises 

from dilute hydrochloric acid as deep red plates. 	They were examined 

by single-crystal oscillation and Weissenberg methods with Cu-Ku 

radiation (X = 1.5418X). 

Crystal Data. 	K3[Ru2NC/8(H20)2]1  M w = 653.2, Monoclinic, 

8. 	15.89, b = 7.54, c = 8.16, 0 = 120.4°, U = 820.9X3, D = 2.64, Z = 2, 

D = 2.64g cm-3, F(000) = 616. 	Space group C2/m (No.12). 

A crystal of approximate size 0.12 x 0.15 x 0.025 mm3 was selected 

and equi-inclination Weissenberg photographs were taken about [010] to 

give hot - h62 reflections. 	Intensities were estimated visually from 

multiple-film exposures. 	A total of 703 observable independent 

reflections were measured: 	The Lorentz-polarisation correction was 
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applied, as was also an absorption correction (p, = 340.8 cm-1). 	This 

correction was made using the Gaussian integration method with an 

8 x 8 x 8 grid, described by Busing and Levy6 with crystal path lengths 

determined by the vector analysis procedure of Coppens et a17. 

SOLUTION AND REFINEMENT OF THE STRUCTURE  

The structure was solved by standard Patterson and Fourier methods. 

Computation was carried out on the Imperial College IBM7094 computer 

using the Crystal Structure Calculation System X-ray -63 described by 

J.M. Stewart in the University of Maryland Technical Report TR-64-6. 

The atomic scattering factors used were those tabulated by Cromer and 

WabeA a correction for anomalous dispersion was applied and the values 

of the real and imaginary parts of dispersion correction were those 

given by Cromer9. 

The first round of isotropic least-squares refinement using all 

measured reflections gave R = 0.15. 	The absorption correction was 

applied, and the R fell to 0.104. 	At this stage it was obvious that 

the strongest reflections suffered from extinction, and 6 of them were 

removed. 	Isotropic refinement was used to fix the inter-layer scale 

factors and gave R = 0.096. 	Anisotropic refinement reduced R to 0.035. 

At the final stage a weighting scheme of the type suggested by Hughes
10 

* 
was applied, where w = 1 for F < F , Vw = F /F for F 	. Various 

* 
values of F were tried, the most satisfactory being F = 17.0. 	Although 

the R factor rose to 0.088, the standard deviations were approximately 

25% lower compared to unweighted refinement. 

The final fractional coordinates and their standard deviations are 

listed in Table 1, as are the orthogonal coordinates. Table 2 shows 

the coefficients in the expression for the anistropic temperature factors 

exp[-(511— h
2 

p22— 
k2 	

33 
 + 213hk 	1 28n3 	2f323 10„)] and also the -   

isotropic temperature factors B. 



Observed structure amplitudes and calculated structure factors 

are listed in Table 3. 	Structure factors were also calculated for 

those reflections too weak to be observed. None of these in a 

position to be recorded were calculated to be greater than twice the 

minimum locally observable 11'01. 	The positions of the water hydrogen 

atoms could not be confidently located from the final difference 

Fourier. 

DESCRIPTION OF THE STRUCTURE AND DISCUSSION  

The determination of the crystal structure has shown that the title 

compound contains the complex ion [Ru
2 
 NCA8  (H2 0)2- 1

3- and potassium ions. 

The nitrido-bridged complex ion is shown in Figure la and the more 

important interatomic distances and angles are in Table 4. 	The anions 

have 2/m crystallographic symmetry, with the bridging nitrogen atom 

lying on a centre of symmetry. The ruthenium atoms lie on mirror planes 

as do the water molecules which are trans to the nitrogen. Four chlorine 

atoms complete the distorted octahedral coordination about each metal 

atom. 	The main feature of the distorted coordination is that all chlorines 

are bent away from the nitrogen and towards the water molecule. Two such 

octahedra share a common corner (N) to give a linear O-Ru-N-Ru-O system. 

A further important feature is that the orientation of the chlorines in 

the two octahedra is such that they are eclipsed, as found in the 

Re
2
CI8

2- ion.11 

The structure of the complex ion is mainly determined by two factors: 

a) the strong metal-nitrogen bond 

b) repulsion forces between the chlorine atoms and nitrogen. 

The Ru-N distances are very short,1.720k, indicating multiple bonding 

with a considerable amount of TT-character
2 '12. 	Thus the eclipsed  

configuration of the chlorine atoms is almost certainly a result of the 



CI 2 

CI 4' 

CI4 

CI3 

Fig. 1.a. 	 Fig. 1.b. 

Schematic drawing of the 	Schematic drawing of the 

CRu2NCA8(H20)213-  anion. 	OsNCA
5
2  anion. (Ref. 16). 
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rigidity of the central Ru-N-Ru bridge. The short Ru-N distance may 

be compared with bridging Ru-O distances of 1.80X found in 

[Ru2OCt10
4
(Ref.13) and Re-0 distances of 1.86A in [Re2OCA10

4-(Ref.14) 

and 1.91X in Re203(S2ONEt2)4 (Ref. 15). 

The repulsion between nitrogen and chlorine atoms is best discussed 

by comparison with the structure of the OsCL5N2 anion
16 shown in Fig.lb. 

This ion is similar in having a short metal-nitrogen bond with all four 

cis chlorines bent away from the nitrogen. 	The Os-N bond is a triple one 

and shorter than the title compound, nevertheless the N-CL distances are 

very similar, average of 3.041 in the ruthenium complex and 3.001 in the 

osmium complex. This is possible because the angular distortion in the 

osmium complex is greater, with an average N-Os-cisCL angle of 96.2°  as 

against an average N-Ru-cisC2 angle of 94.7
o. Thus the amount of 

angular distortion seems to be dictated by the requirement that.a minimum 

N-cisCL distance of ca 3.0A be achieved. 

In both complex ions the bond length trans to the nitrogen is rather 

long (Ru-0(water) of 2.1751). Although a trans-influence is a possible 

reason the more likely explanation is that the trans atoms are pushed 

away by the cis chlorines. 	The Ru-0(water) distance may be compared to 

2.101 found in Cs2RuCt5(1120) 17  and an average of 2.12A in (C05)4AsRuCt4  

(H20)2*II20 18 	The Ru-C2 distances are normal, only slightly longer 

than the average Ru-C2 distance of 2.341 found in the last two compounds. 

A comparison of the bondlengths and angles in the complex ion with those 

obtained in the parallel and independent study of the ammonium salt5 

shows very good agreement. 

There are two crystallographically independent potassium ions in the 

structure, both of which are co-ordinated to eight chlorine atoms placed 

at the corners of a distorted cube at normal distances in the range 

3.20 - 3.36X. 	The next nearest neighbours are in one c.-'.se two nitrogen 
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atoms at3.67A (Fig. 2a), and in the other an oxygen at 3.42% and a 

nitrogen at 3.75A (Fig. 2b). 	These stick out of opposite faces of the 

cube, but are too far away to be considered as coordinated. 	The 

spatial relationship of the complex ions and the potassium ions is 

shown in Figure 3. 

The water molecule also has four chlorine neighbours from two 

adjacent complex ions. 	Two of these are at a distance of 3.25A which 

might be consistent with a weak 0-H...CA hydrogen bond. • However, it 

is difficult to say whether any such interaction occurs as the water 

hydrogen atoms could not be located. 

CI 

N 
O 	 

Fig. 2.a. 	 Fig. 2.b. 

Schematic drawings of the coordination round the two 

crystallogrphicaly independent potassium atoms. 



134 

Figure 3. 
The 10101 projection of the structure of K3[Ru2NU,8(H20)21. 

The figures in parentheses indicate the height of atoms. For sake of clarity 

the chlorine atoms related by a mirror perpendicular to b have been slightly 

offset. 
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perpendicular to both, in a right-handed system. 
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TABLE 1. 	K3[Ru2NCA8(H20)21 :fractional co-ordinates x, 	z with 

estimated standard deviations in parenthesis; orthogonal co-ordinates 

X, Y, Z1 , in A. 	X is parallel to a, Y is parallel to b, and Z' is 

TABTR 2. 	K3[Ru2NCA8(H20)2] : anisotropic thermal parameters and 
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O 2.4(4) 

isotropic temperature 

511 

factors(B). 

322 	5
33 B12

$
13 
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0 0.0018 0.0129 0.0171 0 0.0037 
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were omitted from least-squares refinement because of extinction. 
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TAMP, 4. 	K3[Ru2NCA8(H20)2] : interatomic distances [A] and bond 
angles (°). 	The standard deviations also take into account the 

uncertainty in the unit-cell dimensions. 

Ru - CA1 2.364(6) 

Ru - C/2 2.367(6) 

Ru -N 1.720(4) 

Ru - 0 2.175(17) 

Kl - CA1 

Kl C/2 

Ki N 

K2 - C/1 

K2 - C/14  

K2 - C12
3 

K2 - CA2
5 

K2 - 03  

K2 - N 

3.225(7) 

3.253(7) 

3.67(1) 

3.206(8) 

3.197(9) 

3.201(9) 

3.358(8) 

3.42 (2) 

3.75 (1) 

N ca 3.027(6) 

N - CL2 	3.046(7) 

	

CA1 - C.2 	3.34(1) 

	

C/1 - CA1 	3.33(1) 1 

C/2 - C/21 	3.32(1) 

CA1 - C122 	3.83(1) 

O - C/1 	3.09(2) 

O - C/2 	3.07(1) 

N - Ru - C/1 
	94.3(2) 	CA1 Ru C22 	90.0(3) 

N Ru - C12 
	

95.1(2) 
	

Ckl Ru Ctl1 	89.7(3) 

O - Ru - CA1 
	

85.6(3) 
	

CL2 Ru C/21 	88.9(3) 

O Ru C/2 
	

85.0(3) 
	

N - Ru 0 	179.9(4) 

Subscripts refer to atoms in the following positions : 1 x,-y,z ; 

	

2 	-x,y, -z ; 	3 i-x,i+Yl-z 
	4 i-x,i+y,l-z ; 5 1+x,3-y,14-z. 
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CHAPTER IV 

The Structure of the 

p.-Nitrido-41exasulphatotriaquotri-iridate(IV, IV, III) ion 

-4 
Fir N(S0 ) (H 0) 

3 	4 6 2 3' 
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ABSTRACT 

The crystal structure of ammonium p-nitrido-hexasulphatotriaquotri-

iridate(IV, Iv, III) has been determined from three-dimensional X-ray 

diffractometer data. The compound forms cubic crystals for which 

a = 22.805A, least-squares refinement in space group I43d using 565 

independent reflections gave R = 0.032. 

The structure contains the complex ion. rIr
3 
 N(S0

4  )6  (H2 0)3- 1
4-. In it 

the central nitrogen atom, which lies on a threefold axis, is coordinated 

to three iridium atoms, and each pair of metal atoms is joined by double 

sulphate bridges. The octahedral coordination about iridium is completed 

by water molecules trans to the nitrogen. The arrangement of the nitrogen, 

iridium atoms and water molecules is essentially planar. The Ir-N 

distances are 1.918i, Ir-H20, 2.0582, and Ir-0(sulphato) 2.006 - 2.059% 

A clear-cut distinction could not be made between the ammonium cations 

and molecules of water of crystallisation which are also present in the 

lattice. 
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INTRODUCTION  

Although a substantial number of polynuclear oxy-complexes are known, 

there are few examples in literature of polynuclear nitrido-species. The 

structures of two binuclear µ-nitrido complexes have recently been 

reported. They are those of K3[Ru2NC18(H20)21
(1) 

and (N114)4[Ru NC18(H20)2  
2 

The structures of trinuclear µ-nitrido complexes have not been 

examined by X-ray methods until now, although some have been known for a 

(2) 

long time(3)  A number of these compounds have, however, been examined 

by I.r. and Raman spectroscopy: K4fIr3N(SO4)6(H20)31, Cs4[Ir N(SO4)6(H20)31, 
3 

K
7 
 rIr

3 
 N(S0

4  )6 
 (OH)

3- 
1, and Cs4

rIr
3NC112(H20)3I

(4)  
. Our original intention 

had been to examine the structure of the complex K4[Ir3N(SO4)6(H20)33. 

Unfortunately, the crystals were found to be unsuitable for data 

collection. 

It proved possible, however, to find a good crystal of an ammonium salt, 

containing the same complex ion and given the formula (NH4)4[Ir3N(SO4)6(H20)31. 

3H 0. The presence of both NH4
+ 

2 - 	 groups and molecules of water has led, rs 

had been feared, to difficulties in distinguishing them. Nevertheless, 

the main point of interest i.e. the structure of the complex ion 

[Ir3N(S9 )6(H20)31 has been established with confidence. 



3 

E7PITT/4FPTM, 

Ammonium ti-nitrido-hexasulphatotriaquotri-iridate(IV, IV, III) 

was prepared by Delecines method(5)  and crystallised from sulphuric acid 

as very dark green crystals. They were kindly provided by Dr. M.J. Cleare 

and Dr. W.P. Griffith. The crystals were tetrahedral in shape and showed 

a tendency to twin, forming aggregates which, however, could be easily 

broken up to give separate crystals. 

Preliminary oscillation and Weissenberg photographs showed that the 

crystals were cubic, with m3m LEu.e symmetry. The systematic absences 

were hkl: h + k + 1 = 2n + 1 and hhl: 2h + 1 = 4n 	1. these indicate 

uniquely the space group I:43d (No. 220). 

Three-dimensional X-ray data were collected for a crystal of 

tetrahedral shape, with edge dimensions of ca. 0.15 mm. It was mounted 

about the rill] axis on a Siemens off-line automatic diffrPctometer, using 

Cu-K radiation at a take-off angle of 4.5
o
, a Ni0 filter and a Na(T1)I 

-CY 

scintillation counter. The Q - 2Q scPn technique was employed, using a 
• 

"five-vPlue" measuring procedure
(6). A total of 565 independent reflections 

were measured (to Q = 50
o
), of which 14 were judged to be unobserved as 

their net count was below 2.58 times the standard deviation (i.e. below 

the 99 confidence limit) and were assigned a count equal to this figure. 

The 1200 reflection was used as a reference every 25 reflections; its 

count did not alter significantly during the period of data collection 

(ca. 2 days). The data were scaled using the reference reflection and 

the Lorentz-polarisation correction was applied. 

The unit-cell dimensions measured on the Siemens diffractometer 

(Cu-K = 1.540511) at 20°C gave a = 22.8051 (rs = 0.0051). V = 113600, _
oe1 

space group Ik3d, Dobs  = 3.06 gcm 3, Z = 16, Dclix  = 3.05 gem-3  for a 

formula (N114)4[1r3N(;304)6(I120)33.341420, M.W. = 1360.71, F(000) = 10200. 
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SOLUTION AND RSFIN=HT OF THS STRUCTURE  

The solution and refinement of the structure were carried out 

using the Crystal Structure Calculations System X-Ray-63 described 

by J.M. Stewart in the University of Maryland Technical Report TR-64-6. 

The Imperial College IBM 7094 computer was used for these calculations. 

The space group I43d has 48-fold general positions. As this 

coincided with the number of iridium atoms in the unit cell it seemed likely 

that there was only one independent metal atom in a general position. 

The predicted structure of the complex anion had a triangle of iridium 

atoms held together by a central nitrogen. If this structure was 

accepted as correct (as proved to be the case), one would have a triangle 

of iridium atoms ca. 3A apart. This gives rise to a regular planar 

hexagon of peaks in the Patterson all^.3A from the origin. Although 

several such peaks were present, no combination gave a planar hexagon. In 

retrospect it can be seen that this difficulty was caused by the very high 

symmetry, 3m, such that a total of eight hexagons are found about the 

origin - in four pairs, which are perpendicular to the 3-fold axes, and the 

two hexagons of each pair are related to each other by mirror planes. 

This profusion of peaks produces overlaps in cases of some of them, giving 

peaks whose maxima are in incorrect positions. It was only after it was 

realized, that a planar hexagon can be built up only out of peaks whoSe 

coordinates obey the following rule 1u1 	1 v 1  . 1 w 1 , that it proved 

possible to disentangle all the existing hexagons and show where the true 

positions of peaks 1--y in the case of coalesced peaks. These hexagon 

Peaks, together with those of the type u, 0, w, were used to fix an iridium 

position at. = -0.O125, y = 0.1000, z = 0.0750. Refinement of this 

position gave a value for the standard agreement factor 

R 	( 	= 71IF 	- 1'1 1/7.2 IF 
o
I ) of 0.25. The tlao indeoendent sulphur atoms 

— 



145 

were located from a resultant difference Fourier. Further refinement 

including these positions reduced R to 0.16. Next, all eight oxygen atoms of 

the sulphate groups were located, and refinement reduced R to 0.090. 

The two remaining anion atoms, the bridging nitrogen on a triad, and 

the water oxygen were then located and gave R = 0.086. Four other peaks 

were at this stage assigned bearing in mind required point symmetries, 

es follows: a nitrogen on a triad, a nitrogen on T(NH )' 
an oxygen on a 

diad and an oxygen in a general position (H2
0). Refinement including 

these atoms reduced R to 0.051. 

Refinement was carried out by the least-squares procedure, minimising 

the function Ew(F - F )
2
. The full-matrix ORFLS program, which was used 

—o -c 

throughout, has no facilities of refining atoms having two or three coordinates 

equal, and therefore at this stage the atoms on the three fold axes were kept 

fixed in their positions during the refinement. 

Next the iridium and sulphur atoms were allowed to refine anisotropically, 

but this gave only a fairly small improvement in R, to 0.047. A correction 

for anomalous dispersion was applied for the iridium atom: with the sign 

of hf" one way R dropped to 0.045, while with the sign reversed R rose 

to 0.060. A difference Fourier now revealed another atom in a general 

position, but its low peak height and very elongated shape suggested the 

presence of disorder. Further refinement including this atom, tentatively 

as oxygen, with half-occupancy, reduced R to 0.038. 

Although the crystal was regular in shape, it was decided to carry out 

an absorption correction before proceeding with refinement, because the 

absorption coefficient (11 = 301.6 cm
1
) was quite high. The correction 

was made using the Gaussian integration method with a 10 x 10 x 10 grid, 

described by Busing and Levy(?)  with crystal path lengths determined by the 

vector analysis procedure of Coprens et al. No significant positional 

shifts occured, but the temperature factors rose, on average, by 25i. There 

was no significant improvement in R. 
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In order to be able to refine the two ntoms lying on a triad the 

ORFLS program was "natched"(9) to keep x = = z. Refinement in this 

way reduced R to 0.035. 

At this stage a difference Fourier was computed to try to find the 

hydrogen atoms. Although various peaks were observed, which could be 

hydrogen$,it was felt that such positions would only be hopeful guesses. 

Inability to locate the hydrogens with confidence makes it very difficult 

to decide which of the atoms outside the complex anion is an ammonium ion, 

and which is a w,ter molecule. Various refinements were carried out in 

which the labels were changed, but these gave only changes of B of 	
2 

 

and insignificant change in R. Even the point symmetry of some of the 

positions can not be a firm guide (i.e. NH4
+ 
on 4 or 3) since disorder is 

known to exist for at least one atom in the structure. It must in 

honesty be stated that the naming of these five atoms (Table 1) is not 

certain, and probably could only be placed on a firm basis if a neutron-

diffraction study of the compound were carried out. 

The limited number of independent reflections does not allow all 

atoms to be refined anisotropically. Of the light atoms, only five were 

chosen for anisotronic refinement - four of the sulphate oxygen, which 

showed greater anisotropy than others in the complex ion, and the disorder 

oxygen. This gave R = 0.033. 

At this stage a weighting scheme of the type described by Hughes
(10) 

was applied where ;fur = 1 if F < F*, and 1,rW = F*/F if F > F*, with 
--o 	- -o -o - 

F* = 500. This reduced the standard deviations by ca. 20°:,  and refinement 

was terminated at R = 0.032. 

A final difference Fourier showed the highest remaining peak to be 

0.9e/4
3 
 in the vicinity of the iridium atom. The atomic scattering factors 

used were those t,bulated by Cromer and 'v!-ber
(11) 

and the values for the 

real and imaginary parts of the dispersion correction those given by 

Cromer(12) 
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Table 1 lists the final coordinates of the atoms together with their 

isotropic temperature. factors, and Table 2 the coefficients for the 

anisotropic temperature factors: expr-(P11— h
2 
+ 0

22— 	' 
k
2 
+ P

33
1.2 + 

2R12-- 
hk 

+ 29a3-- hi + 24
231)1. The standard deviations quoted are from full-matrix 

refinement and are probably more realistic than those which would have been 

obtained from a block-diagonal refinement. Table 3 lists the observed 

structure amplitudes and the calculated structure factors. 

DESCRIPTION OF THE STRUCTURE AND DISCUSSION 

The madm-point of interest in the structure is the complex anion 

[1r3N(SO4)6(120)314  , shown as a stereoscopic pair in Figure 1. The central 

nitrogen atom lies on a triad, and is bonded to three iridium atoms at 

a distance of 1.9184 (a = 0.0021). The iridium atoms, therefore, form an 

equilateral triangle of edge 3.322(2)A; there is of course no metal-metal 

bonding. Each pair of metal atoms is joined by double sulphate bridges, 

and the distorted octahedral coordination about iridium is completed by 

a water molecule trans to the nitrogen. The arrangement of the nitrogen 

atom, iridium atoms and water molecules is essentially planar, with a 

maximum deviation from the least-squares plane of 0.012% The:structure 

of the complex ion has therefore confirmed the prediction of JOrgensen
(13) 

and Orgel(14) and supports the results obtained from studies of the vibrational 

spectra of normal and 
15

N-enriched salts
(15)

. 

The Ir-N bond length, (1.9184), may be compared with other known 

metal-triply bridging nitrogen distances in ( CH3N)2Fe3(g))9  of mean value 

1.928(11)et. This bond length is 0.147,  shorter than the sum of the single- 

bond covalent radii, 1.321 (Ir(III), octahedral) and 0.74A(N)(15.)T•his 

suggests that there is some Tr-bonding between the 2D orbital of the nitrogen 
--z 

atom (perpendicular to the Ir
3
N triangle) and the suitably placed orbitals 

on the iridium atoms. 



148 

The distances Ir-0(sulphate) of 2.006 - 2.059 (a = 0.037.,) and Ir-0 
(a = 0.035A) 

(water) of 2.058X) are normal. The differences observed in the S-0 

distances in the sulphpte tetrahedra are not significant; the average 

S-0 distance is 1.479.k. The more interesting bond distances and angles 

in the complex anion are quoted in Table 4. 

In a recent study(16) of the 
193

Ir MOssbauer spectrum of 

KOIr
3
(S0

4
)
6
.3H

2
02at 4°K two peaks were observed, and this was interpreted 

as showing iridium atoms in' two different oxidation states (III and IV). 

The X-ray evidence does not indicate any departure from symmetry about 

the threefold axis of the molecule. However, even if some inequivalence 

of the three iridium atoms were present it would not necessarily appear 

in the crystallographic data because, in the first place the complex 

ion might adopt three different orientations in the crystal with equal 

probability, fulfilling in this way the requirements of three-fold symmetry. 

Secondly, on the basis of X-ray data, the three iridium atoms might 

appear to be equivalent due to a time-averaging effect, whereas the 

very short time scale of Wissbauer measurements makes possible a distinction 

between the iridium III and IV atoms. The third possibility is that the 

situation at 46K is not quite the same as at room temperature at which the 

X-ray structure was determined. 

It is worth pointing out that the standard deviation quoted for 

the Ir-N distance 0.002X, assumes that the three-fold axis operates even 

at the molecular level, in which case the uncertainty in this distance 

depends mainly on the standard deviations of the iridium atom.coordinates. 

If the three-fold axis is merely the result of averaging asymmetric 

complex ions the "standard deviation" will be indeterminable, but the 

variation in Ir-N distances will be much greater than implied by a = 0.002X. 

In view of the difficulty of distinguishing between a nitrogen and an 

oxygen atom by'x-ray methods the other evidence for the anion containing a 
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nitrogen and not an oxygen as the central bridFing atom can be summarised 

as follows: 

1. A complex of a green colour can be obtain only from the ammonium 

salt in the reaction
(17) 

(NH4)31IrC16] + H2SO4  -)[Ir
3 
 N(S0 )

6  (H2  0)3
4- 
' while an oxy-complex of a 

blue colour is obtained in the reaction(18) 

K3[ Ir C161+ H2SO4 	Ir32( SO4)91 
 10- 

2. Analytical data for K4[1r3N(SO4)6(H20).3], Cs4[Ir3N(SO4)6(1120)311  

K7rIr3N(SO4)6(OH)3] and Cs4[1r3NC112(H20)31 all show presence of the 

nitrogen(15) 

3. The infrared spectra of normal and 1511 substituted Cs4[Ir3N(SO4)6(H20)3], 

K7[Ire(SO4)6(OH)3) and Cs4[Ir3NC112(H20)31 are different. In each 

case one band near 780 cm
1 
shifts downwards in frequency by ca. 20 cm

-1 
 on 

15
N substitution(15). This band can not be attributed to NH4

+ 
or NH

3 
since 

such species do not show infrared bands in this region. 

4. All the complexes quoted in (3) above are diamagnetic(19); the 

corresponding,oxy-complexes (e.g. K4EIr30(SO4)6(H20)33 are paramagnetic, since 

they contain an odd number of electrons. 

The presence of a nitrogen atom at the centre of the alion also 

has crystallographic support - the temperature factor B of the nitrogen, 

0.8 2, is the same as that of the iridium atom. This is exactly what one 

would expect i.e. that the tightly bonded Ir
3
N unit would vibrate in a 

very similar way. When, in the final stages of refinement an oxygen atom 

was substituted, at the centre of the anion, its temperature factor rose to 

2.9 2. 

The formula used in a previous section of this chapter, (NH4)4[Ir3N(SO4)6  

(H20)31.3Z1120, agrees reasonably well with the analytical data
(20) 
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Found 	 Calculated 

NH
4 

N(total) 

4.9% 

4.8% 

5.3% 

5.1% 

S 14.4% 14.1% 

0 36.0% 36.2% 

Ir 41.2 36.2%' 
mean 42.45 

43.7 42.4% 

As was pointed out when describing the refinement of the structure, 

the labelling of the atoms outside the complex anion is uncertain, and 

therefore detailed discussion of them is omitted. Intermolecular 

distances were, however, calculated for all those species, and some of 

the more interesting ones are quoted in Table 5. It is quite obvious 

from these distances that a considerable number of hydrogen bonds occur 

between the ammonium ions, water molecules and the outer atoms of the 

complex anion. 

The structure of the complex ion fIr3N(SO4)6(H20)31
4 
 is the first" 

established example of a coplanar triangular 3N unit, with the nitride 
•  

nitrogen acting as a bridging atom. An analogous arrangement has been 

- suggested by JI6rgensen(13) for the Ir30 unit in r1r30(SO4)9110   and his 

suggestion has received some support from studies of the vibrational 

spectra of oxy-complexes
(4) 

 . 

The coplanar (or nearly so) M30 unit has been suggested for a 

number of complexes such as Du
3
0(0Ac)61(0Ac).81.12

0 and r(MeHg)
3
01C10

4
(17)

' 

investigated by Raman and I.r. methods, and for four others which had 

structures determined by X-ray methods. These four complexes are: 

[Mn
3
0(0Ac)610Ac.H0Ac(21) 

' - 
(-Fe 0(0Ac)

6 
 (H 0) 1C1.6H

2
0
' the chromium(III) 3 	2 3 

analog
(22) 

isomorphous to it and recently examined compound 

fRu
3
0(0Ac)

6(PPh3)3
1(23)

. Since the accur,cy of the determination of 



151 

the structure of the first two compounds is rather low, the selected 

average interatomic distances are quoted below only for the Cr and Ru 

compounds 

rCr
3
0(0Ac)

6
(H
2
0)
3
1C1.6H20

(24) , [Ru30(0Ac)6(Pa3)3.1(23)  

M-0 (central) 1.89(1) 1.92(2) 

M-0 (acetate) 1.98(1) 2.06(2) 

M....M 3.274(4) 3.329(3) 

M-L 
	

2.02(1) (L = H20) 	2.414 (L = PPh
3
) 
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Fig. 1 

Molecular structure of rIr3N(S04 6 
-4 . Ion. 



x. 53 

Table 1 

Fractional coordinates, x, y, z, with estimated standard deviations in 

parentheses, and isotropic temperature factors. 

Atom z B(Z2) 

Ir 0.23706(8) 0.32403( 8) 0.35079(8) 0.8(0.1) 

N(1) 0.3042(14) 0.3042(14) 0.3042(14) 0.8(1.2) 

s(1)  0.2208(6) 0.1861(5) 0.3406(6) 1.4(0.4) 

s(2)  0.3280(6) 0.2834(5) 0.4519(5) 1.2(0.4) 

0(11) 0.1946(16) 0.2455(14) 0.3381(16) 2.3(0.9) 

0(12) 0.2839(15) 0.1910(15) 0.3599(15) 1.5(0.8) 

0(13) 0.1890(14) 0.1536(15) 0.3836(15) 2.0(0.7) 

0(14) 0.2160(16) 0.1628(17) 0.2825(18) 3.0(0.8) 

0(21) 0.3283(15) 0.2300(14) 0.4866(15) 2.1(0.7) 

0(22) 0.2663(15) 0.2932(14) 0.4278(14) 1.4(0.8) 

0(23) 0.3458(16) 0.3343(15) 0.4855(15) 2.7(0.7) 

0(24) 0.3714(14) 0.2789(15) 0.4001(14) 1.5(0.8) 

0.(1) 0.1651(15) 0.3500(15) 0.3990(15) 2.4(0.6) 

N(2) 0.1646(15) 0.1646(15) 0.1646(15) 0.5(1.2) 

N(3) 0.0859(24) 0.2233(20) 0.4220(23) 5.8(1.1) 

0(2) 0.1830(35) 0 5.3(2.3) 

0(4) 0.2879(51) 0.0723(34) 0.2493(40' 5.9(3.0) 

0(5) 4.6(1.9) 

(The atom labels of the last five atoms are subject to uncertainty.) 
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Table 2  

Atom '11 

Anisotropic thermal parameters 

- 22 	33 	R12 R13  
23 

Ir 0.00061(5) 0.00056(5) 0.00060(5) 0.00007(3) 0.0010(3) 0.00007(3) 

6(1) 0.0008(3) 0.0005(3) 0.0007(3) -0.0003(2) -0.0001(2) 0.0002(2) 

S(2) 0.0009(3) 0.0006(2) 0.0003(2) -0.0001(2) 0.0000(2) 0.W01(2) 

0(11) 0.0014(8) 0.0003(7) 0.0016(8) -0.0001(6) -0.0004(7) -0.0000(7) 

0(12) 0.0011(8) 0.0007(7) 0.0007(7) -0.0004(6) -0.0003(6) -0.001(6) 

0(22) 0.0005(7) 0.0015(8) 0.0005(6) -0.0001(6) 0.0001(6) -0.0001(6) 

0(24) 0.0013(8) 0.0004(7) 0.0007(7) -0.0001(6) -0.0001(6) 0.0004(6) 

0(4) 0.0067(41) 0.0003(15) 0.0026(27) 0.0023(21) -0.0029(28) -0.0014(17) 
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Table 3 

Final observed and calculated 

structure factors 

The format of the table is 

h 	k 	1 

1 	10IFoI 	10IZ c  

Reflections of intensities not 

significantly greater than the 

background ("less-thans") are 

marked:* 
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2 02)7 	3409 12,2,1 5 1364 	1344 7 4918 	5421 G 	1592 	1962 1899,1 

. 	99[6 61445 4 6469 	96.69 / 1465 	4614 i 	4475 	4976 
a 1343 	1144 6. 2619 	1594 9 2433 	2636 159991 4 	3626 	3665 0 	3697 	3201 

69191 4 5729 	5002 11 5457 	62)5 o 4106 	2252 2 	3322 	3557 
9.0.1 0 735 	612 4 	2175 	2411 

4 	4254 	4467 140,1 1311391 	- 2 4113 	4247 16050. 6 	170 	137) 
1 6454 	941,7 4 2M5 	4271 

0.402 3 4705 	4190 A 000 	06114 .4 7348 	6066 o 4168 	44(5 1 	4214 	33(43 18,9,1 
3 3599 	3067 o 4441 	4030 0 3433 	4166 3 	453029C5 

L. 	141081,472 7 4613 	A912, 44$4•1. 10 W1 	5228 5 	2501 	2665 1 	064 	4644 
15,12,L 3 	27o6 	0573 

6,491 3,9,1 U 1660 	- 601 14.111 16,16,L 5 	4123 	bc.11 
2 4503 	v455 1 1313 	1364 7 	149: 	1172 

1 	7419 	7417 2 1963 	2440 4 >646 	5642 1 2264 	2331 a 5.226 	5612 L 	231.4 	2620 9 	1465 	1444 
3 	5017 	504 6 9567 11044 5 837 	446 

.449591 14940. 7 2663 	2199 0091. 10.1,91 
W441 1,1.1 9 2576 	4..06 

1 4788 	3597 6 5514 	536 J 	2674 	2463 5 	1466 	0060 
4. 	1441 	7..94 1 0.0.8 	096 44606 	3642 15040. 2 	502 	2394 
. 	3461 	2751 14.3,1. 17,2,1. 4 	Isaa 	1369 

409491 149o,l. 2 314, 	4476 6 	32 .92 	3551 
6,011 1 407 	400 4 2661 	3076 I 	4640 	008 b 	1922 	5250 

0 92644.316 6 4m4 	3606 3 4400 	6043 4 1342 	4479 
4 	4$4.... 	A014 i. 4414 	3665 t 1510 	1943 17.3.1 164101. 
3 	496.4 	34.34 100301 4 5466 	5661 149491 a 32.4 	3529 
5 	6404 	4>45 6 4565 	4055 10 4519 	4925 L 	5.52 	5741 1 	5911 	647; 

• 4145 	44,0 5 11776 14454 2 	4..44 	140e .  3 	14,.., 	1.62., 
4, 6• 5. J 20464 1607u 141711 2 7522 	6166 15414.1 5 	4345 	2511 

17,4,1 7 	3415 	155M 
C 	4040 	5503. 1l0,4/1. 1 4412 	4053 14.5,1 1 3112 	35)0 
4 3 1740 	105 a 1,49 	ti.' i 	147 	0102 16,1291 

V 752* 	186, . 7041 	1657 1 5439 	5729 s 9268 	407 3 	5254 	6511 
7401 2 4106 	304 3 5494 	5742 7 4274 	3159 7 	2022 	4393 

14,6.1 5 041 	001 9 2337 	2,73 17.5,1 i 	1.149 	1497 
6,11a/4.5564 16,5.1 11 3531 	4245 4 	6099 	5M6 

4 4446, 	4614 14,891 0 	067 	6494 5 	1495 	1572 
714.1. 1 2081 	4056 2 4541 	5113 13,130. 2 	6746 	7461 

4 1.4555 	1123 4 26.47 	Oda J 45, 	28)3 4 	623 	916 1891391 
1 	4412 	9,79 . 7379 	7614 6 5777 	44614 4 14315 10917 0 0124 	652, 

0 4400 	4207 4 as 	255 2 301 	.930 1798,1 1 	5473 	54.53 
79491 109641 4 16.3 	1520 3 	1504 	8424 

449991 19.192 8 8804 	962 i 	2702 	015) 
6 	416> 	3061 u 5701 	505 6 3666 	4247 3 	4221 	2276 1991,1 
6 	0444 	0A14 4 1260 	6645 4 4146 	4490 1 31,6 	4771 10 22ov 	450 s 	4684 	4973 

4 1151 	1190 4 4414 	4742 3 2022 	2074 ) 	5410 	61,.5 
7,4,1 5 4704 	4994 S 	4525 	4795 1590,1 11,1,1 

11..7.1 7 0093 	0721 7 407 	3553 14,291 
1 	4150 	9564 1 4763 	6213 1 	7551 	602 
J11444 	1.4.. 4 674., 	7490 12,1.041. .1490M. J 2191 	4334 2 	4522 	405 1 	3444 	301 

3 483. 	4883 5 4463 	1763 4 	4458 	2093 
70M 5 140 	4646 u 573* 	194 V 7547 	8437 7 1415 	4694 19091 

7 639. 	5475 4 4443 	50.1 2' 4451 	4649 i 601 	7317 17980. 
C 	1020 	0424 • 403 	4776 4 26.0 	2655 •6 	2463 	2677 
e 	35o9 	3142 •16,0,1 6. 3231 	307 o 4444 	3163 15.15,1 1 	7722 	3150 2 	049 	1529 
• 4144 	1977 b 4433 	,711 a 	2411 	35112 

u 461.4 	5406 19 4642 	5,29 14.0.1 c 5755 	6141 5 	6054 	266 19,491 
410.1. •4 45.6 	.61. Cr 5314 	064 7 	4145 	2444 
' n 2444 	5924 1291191 1 140 	loll 1 	4577 	4915 

1 	3941 	4305 0 7024 	04.0 a 5654 	62)6 10,9.1 1799.1 3 	055 	lilt 
4 	5532 	6406 1 4755 -  4004 5 4540 	2633 
5 	4415 	3745 1494.4 a 16C4 	1...,7 7 049 	4249 4 410 	9417 0 	1403 	1592 19.591. 

5 3415 	0.02 9 Mioi OM 2 	4117 	2307 
707M. A 47.8 	471. 7 1494 	1)51 16.2.1 4 	875. 	477 2 	5144 	5579 

3 7664 	0195 4 401 	543o 141, 091 0 	4541 	2719 2 	2 926 	330 
4 	9n810,49 5 4315 	4765 2 916 	9164 6 	5426 	5760 4 	1145 	957 
0 	0644 14444 7 044 	1W1 14 444 AL ' 	4 5579 	500 4 5435 	5660 

V 4,08 	5.74 4 4)41 	4159 17.10,1. 199691 
69691 b 4791 	5670 4 4/36 	2237 16,391 

1.914.4 4 4754 	4765 6 6.449 	7221. 1 	1174 	1515 1 	2334 	2453 
4 	19.14 	1434 0 4473 	4465 6 454) 	5155 1 pnt 	.4:0 3 	3152 	4223 3 	4215 	4531 

• 0 041 	1346 14 /419 	6747 5 	6:75 	0423 5 	140 	254) 
N. 4. I. . 1784 	...J. 1491191 169491 7 	4922 	5291 

0 5046 	47.,5 134141 4 	4,06 	2753 19.7,1 
4 	0135 	5930 '1 1655 	2752 D 106 	1702 
4 	1704 	1.467 11.1.1 , 2510 	4612 1 1633 	1524 i 1545 	7665  17001 3 	317) 	1421 

5 7511 	8366 4 2640 	2753 2 	5555 	5647 
41130. 4 01.2 	917 149201 7 1944 	1671 0 	1756 	1745 4 	1556 	894) 

9 1691 	ms 18.5a 8 	3835 	3502 5 	1 ,663 	4264 
1 	54.6 	00 102,1 1 .1964 	4353 11 3244 	3424 4 	21 92 	4839 

1 5919 	5724 1 	1452 	1727 194391. 
3,491 1 1411 	1556 13,341 1491291 3 0311 	7297 a 	07 	713 

10 	4665 	2619 1 	15.0 	156/ 
V 	6401 	6755 11.3.. u 444,11Q 	9213 C. 206 	2222 18.0,1 3 	4614 	360 
, 	3.47 	40.4 2 4422 	4424 2 103 	2341 17,1141. S 	2151 	114) 
4 5994 00 o 931,5 	7159 4 4910 	4450 6 9473 16065 7 2416 	2544 

4 441.6 	0.41 1.10,1 a 407 Me 2 401 	2:12 1 	[in 	ms 
• 4432 	5362 4 2427 	3212 3 	27.34 	3239 

1 4792 . 3474 14 4202 	4516 0 4.65 	5135 5 	5131 	5919 
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Table 4 

Selected bond lengths a) and angles(°) in the anion [Ir3NS (04)6(H20)31. 4-  

(Standard deviations are given in parentheses) 

Octahedron around iridium atom 

Ir - N(1) 
Ir - 0(1) 
Ir - 0(11) 

1.918( 2) 
2.058(35) 
2.059(33) 

Ir 
Ir 
Ir 

- 0(12) 
- 0(22) 
- 0(24) 

2.025(32) 
2.006(32) 
2.051(32) 

N(1) - Ir - 0(11) 95.1(1.1) 0(1) - Ir - 0(11) 87.0(1.4) 
N(1) - Ir - 0(12) 95.0(1.1) 0(1) - Ir - 0(12) 83.c.(1.3) 
N(1) Ir - 0(22) 98.0(1.1) 0(1) - Ir - 0(22) 84.0(1.4) 
N(1) - Ir - 0(24) 87.9(1.0) 0(1) - Ir - 0(24) 90.2(1.3) 
0(11) - Ir - 0(12) 90.0(1.4) 0(24) - Ir - 0(22) 87.0(1.3) 
0(12) - Ir - 0(24) 94.0(1.3) 0(22) - Ir - 0(11) 88.4(1.4) 
0(11) - Ir - 0(24) 175.0(1.4) 0(12) - Ir - 0(22) 167.0(1.3) 

N(1) - Ir - 0(1) 177.1(1.0) 

Tetrahedrons around sulphur atoms 

S(1) - 0(11) 1.482(34) s(2) - 0(21) 1.461(35) 
S(1) - 0(12) 1.510(36) s(2) - 0(22) 1.529(35) 
S(1) - 0(13) 1.426(35) s(2) - 0(23) 1.457(36) 
s(1) - 0(14) 1.433(42) s(2) - 0(24) 1.532(34) 

0(11) - S(1) - 0(12) 109.1(2.0) 0(22) - S(2) - 0(24) 109.3(1.8) 
0(11) - S(1) - 0(13)'107.3(2.0) 0(22) - s(2) - 0(21) 108.'7(2.0) 
0(11) - S(1) - 0(14) 105.9(2.2) 0(22) - S(2) - 0(23) 109.1(2.0) 
0(12) - S(1) - 0(13) 108.8(2.0) 6(24) - S(2) - 0(21) 110.7(2.0) 
0(12' - S(1) - 0(14) 111.7(2.1) 0(24) - s(2) - 0(23) 105.9(2.0) 
0(13) - SW - 0(14) 113.9(2.2) 0(21) - s(2) - 0(23) 113.1(2.0) 
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Table 5  

I 

Some selected non bonded distances in (NH
4
)Dr

3
N(S0

4
)
6
(il
2
0)
3
1.30

2
0. 

N(2) - 	0(14)i 	2.935 	x3 

0(23) 	
N(2)II 

	

2.896 	x3 

N(3) - 	0(13)1 	2.972 

N(3) 	- 	0(4)
III 

2.409 

0(13) - 0(1)Iv  2.680 

0(2) 	- 	0(24)1v  

	

3.093 	x2 

0(2) 	- 	0(4)I 	2.906 	x2 

0(4) 	- 	0(14)1 	2.746 

0(4) 	- 	o(11)
v 	

3.013 

0(4) 	- 	N(3)
v 	

3.131 

0(4) 	
N(3)vi 

3.114 

0(13) - 0(5)v 	3.065 	x4 

0(21) - o(5) 	2.995 	x4 

x, y, z, 	II 	* + y, -47 + x, 4  + z 

III z- f, 	y, 	x 
	

IV y *, 4-x, 4 -z 

V z,x, y 	VI 	-z, y - 	4 - x 

Superscripts refer to atoms in the above positions. 
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