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ABSTRACT 

The nucleon-nucleon interaction is investigated 

using the dispersion theoretic formrAism of Goldberger, 

Grisaru, MacDowell and Wong. The contributions due to 

the exchange of one and two pions are included. The 

'N/D' method is employed and the resulting sets of 

integral equations are solved to a desired degree 

of accuracy by digital computer techniques. A partial 

wave approach is employed and scattering phase-shifts 

and coupling parameters are calculated for J (total 

angular momentum) =0 ... 5 	at laboratory energies 

up to 400 MeV. A short discussion of the deuteron is 

incorporated and its binding energy estimated. 
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CHAPTER I - INTRODUCTION 

In this thesis we investigate the two nucleon 

interaction within the framework of dispersion theory 

as formulated by GOLDBERGER, GRISARU, MACDOWELL and 

WONG (1) (hereafter referred to as GGMW). As well as 

the well-known one-pion exchange terms (OPEC), pass' 	Gt. 

contribution to the imaginary parts of the scattering 

amplitudes due. tqpion exchange is included/ Thl.o 

't: 	 t _!..,•7•11 

of GO:4W, viz. by a consideration of the process 

+ 	--;> N.+ 17 in Born approximation. 

Although good agreement with experiment should 

not be expected for the low-  partial waves, or for lab-

oratory energies greater than about 200 MeV (since the 

exchange of more massive and greater numbers of particles 

becomes increasingly important) we indicate below why 

we consider our calculation to be justified. 

Numerous calculations have already been performed 

(e.g. by AMATI, LEADER, and VITALE (2) (ALV), SCOTTI 

and WONG (3) (SW) and GELANIN et. al.(4)). The calculation 

of Gelanin et. al. shows little agreement with experi-

ment, and we disagree with their conclusion that a 
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model of the nucleon-nucleon interaction based on one 

and two meson exchange only is almost totally inadequate. 

The above calculations employ quite different 1-iethods 

from ours for approximetiag the two pion contribution. 

In all cases a knowledge of ohs amplitude for the process 

7 + 7 >N  + N 	(I1) 

is required. ALV employ the dispersion relations given 

by Chew, Goldberger, Low and Nambu(11) for 7N scattering 

which involve the usual amplituds .1-:1 and 3. Thus 

Re(l'i or B) = Born eras + 
I Itia(11 or B) 

, v + v 
dv °  (I2) 

(the notation is explained after equaions (II2J..8)of this 

thesis). The dispersion integnA_ involves terms which can 

be calculated from a Imowledge of the 	resonance of 7cN 
Mat 

scattering. .L'ilso L.LV findAthe best agree :gent pith exp- 

eriment is obtained when the p-waVe of the process (I1) 

above is represented completely by the p-meson. 

Galanin et. al. employ the work of G.1,22.7=and G21-Z7IN 

(4) to calculate the process (Ii). 	series expansion of 

the corresonding amplitude is obtLined and into ;rued 

directly to the desire( 1 degree of api.roximation in order 

to calculate the conoributin.n to NN scattering. 
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consider the effect of multimeson resonances in 

their work. The inclusion of the p for example necess-

itates a cutoff, since there is a contribution to the 

P1(7) terra in the partial wave expansion of (Ii). 

= 1 	2s  
(1  3) 

t - Lim?  

and this is linearly divergent in the energy s. (t is 

the momentum transfer). It similar difficulty arises 

in the analogous Tamm-Da, ncoff calculation (see for 

exaJ:Iple GOT.N and HOOMaG (6)). 	however, consider 

such particles as 2eg7J;e poles and they indicate that 

this merely amounts to multiplying the contribution by 

a dying exponential factor of the form 

where m is 
p 

exp[cp(t-mp2)1n(-1-1-s/2m2)] 	(1 4) 

the effective mass of the p, and co  is left 

as an adjustable parameter. in is the nucleon mass 

(939 MeV). STV also find it convenient to leave some of 

the masses of the resonances as adjustable parameters 

also, since if the resonance is broad it is difficult 

to attach a unique exact value. The parameters are then 

adjusted to give the bast fit with experimental data. 

In our work, ho Bever, a different point of view 

is adopted. 	The only terms that are included are 



those which we can compute uniquely and unambiguously. 

Using just this simple model, we investigate to what 

degree of.accuracy experimental data can be reproduced. 

In Chapter II we outline Gai's formulation of the 

problem. Since it is obviously impossible to give a 

detailed account of their paper, we have confined our 

summary to those sections most relevant to our calculation, 

and have endeavoured to be as brief as is consistent with 

clarity. 

The one particle exchange terms are well known, and 

we merely quote them from the paper of CHRAP, LUBKIN and 

SCOTTI (7) (CLS). In order to calculate the contribution 

due to the exchange of two pions, we employ the unitarity 

condition of CLS (equation (6.19a) of their paper), which 

we write symbolically as 

te 

d q 	 (I.5) 
47t 

q is the 3-momentum of one of the pions in the CM system 

for the process 7t 7t —> 117, and the integration is over 

all directions in space of either of the pions. i and 

f denote respectively the initial and final states of 

the nucleon-antinucleon pair for the process N7—> MN, 



and 	denotes the Frazer-Fulco (5) helicity amplitude 

for the process N,Jt 

In Chapter III we discuss how the 'N/Dr  method of 

Chew and Mandelstam (8) is applied in conjunction with 

the unitarity conditions 

Imh= 	I ti I 	 (-16) 

which permit us to write h in terms of a phase shift 

as follows 

E 
e 	sin t 

p 

p is the magnitude of the 3-momentum of one of the 

nucleons in the CM system of the process NN 	NN 

(channel 1), and E its energy given by 

E2  — p2  m2  

(17 ) 

(18) 

Assumptions about the analytic properties of the 

functions N and D are used in conjunction with Cauchy's 

integral formula. The resulting integral equations are 

then transformed into a form suitable for direct num-

erical solution by making a change of variable to reduce 
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the integration range from an infinite interval to the 

unit interval. The phase shifts and coupling para-

meters for each of the partial waves (J=0,5) are 

4
1 1 

com-

puted for laboratory energies —(-4)--> 3 pion masses. 

For the special case J=l, we examine the denominator 

function D for the coupled triplet amplitudes. We 

expect the determinant of D (a two by two matrix) to 

vanish for a value of the CM momentum v = v 	related 

to the deuteron mass m
D 

as follows 

4(v
1) 

+ m2) = D2 	 (1?) 

(see chapter III section 2) 

In Chapter IV some of the computational and numerical 

details are discussed, and in Chapter V we display graph-

ically our calculated phase shifts. For comparison, 

the corresponding results of other theoretical and ex-

perimental investigations are exhibited. In the appendix 

we outline a possible procedure for improving the solu-

tions of our integral equations by a combined iteration-

matrix inversion procedure. 



For future reference we now summarize our input 

data. 

m = nucleon mass 939 MeV 

µ = pion mass 	137 MeV 

g2/47E=-- 14 and g is the rationalised, 

renormalized coupling constant. 

1-1 app 	= IS0  scattering length -7.7 x 10-13cm. 

1=0 anp 3s1  scattering/length +5.4 x 10
-13

cm. 

for both S-waves our scattering lengths (a) and effec-

tive range (r) are related to the amplitude h and 

phase shift g by 

p cot g = -1/a 2  + 2-rp 

h(0) 	= -ma 

(T19) 

(n.1) 
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CHAPTER II 

The GGKW formulation - and calculation of the absor5tive 
parts of the scattering -amplitudes.- 

In this chapter for the sake of completeness we have 

reproduced those sections of GGIVIW (with suitable modi-

fications when necessary) which are relevant to our cal-

culation._ 

1) Kinematics and the Mandelstam representation 

N1  and N, are the incoming nucleons, N1' and Na' the 

outgoing particles. The respective 4-momenta are 

pi, pa, p11 9 p2'.  The process 

N1 + N2 -4 N1' + ' 	AT2  is referred to as 

13'; 	 'channel I' 

P 
(Pig. II 1) 

We define our scalar product by A.B 	- A0B0, and 

the Mandelstam variables by 

s = -(P1+p2)2  

t -(Fl-P2')2  

/ -(Pl-P1')2  

 

(II 1.1a) 
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Energy-momentum conservation implies PIA-P = 	(II H.  

and the 'mass-shell' relations P12  =. -m2  etc.;. protons 

and neutrons are assumed to have equal mass m. Then 

s+t-ET = 6m2 	2P1. F2  * 2P1. P2' + 2P1. P1'  

= 6m2  +- 2P1. (P1 -2 F-P2  ) = 6m2+2P1..1)1
=4m2  (II tic) 

As explained by GGMW (1) for each isospin state (I=0,1) 

we require five amplitudes viz. 

J=P, 	(total angular momentum = orbital angular 
momentum) 

for both spin singlet and triplet states 
(2 amplitudes) 

For z=Jil three amplitudes are required 

J + 1 -4 J + 1 

J 1 --> J 1 

J - 1 	J + 1 

The double arrow denotes two transitions, but due to 

time-reversal invariance these can be represented by 

one and the same amplitude. 

The Feynman amplitude for channel I can be written 

as 

I  
Cpl 13i  

j=195 I=091 

The F's are functions of spT,t; 	(I-0,1) are the I-spin 

projection operators. 
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330 = 	-..t1:c2V4  
)31 = (3  + 71.--c-2)/4  

} 
The Cpl denote five independent combinations of S,T 	etc. 

(the nature of the coupling involved - see belo). The 

actual combinations are arbitrary, but the set chosen by 

GGMW is convenient when used in conjunction with the Pauli 

principle. 

Thus Cpl1  S - 

Cpl2 = T + 

Cpl3  = A —1 	(II 1.4) 

Cpl = V+ V 

Cpl2  =- 

where 

S= 72(1)2'7'(I'2)u(P1')u(P1) 
T= -P(P2r)cu(P2)7(P1')qT.vu(P1) 
A= 71(P21  )4's L II(P2)17(Pl )114 p,u(P1 
V= li(P2').a)11u(P2)71(r1') p.u(P1 ).  
P= 75(P2

'),
5u(P2)7(P1 ? Thi -11(1)1

). 
 

SCALAR 	coupling 

TENSOR 

AXIAL-VECTOR "11(1.5 

VECTOR 	r 

PSEUDO-SCALAR 

etc. are obtained by interchanging the final par- 

ticles Ti(P1') 	71(P2') and can be related to the S,T 

etc. by a Fierz matrix given in GGMW. 

The u's are; positive energy spinors normalized so that 

rau-- 1 



ds° 	dt' 
7 

4µ2  
00 

2 

dE ' 	dt 
7 

L411 2  

313 j(s t') 

(s'—s)W— ) 

f23j(TF't')  
B.(s,T,t) 

Co 

4m2  
00 

CII 1.10) 
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The full amplitude changes sign when t <-.>t and so 

does )0  (but not 131). The Pauli principle thus implies 

Fi Ics9 L ty = 

If we also consider the process (as we shall later) 

N1 + 71-2  N
1' + c 	(Channel II) 

we have t_-le amplitudes F
iI

related to the FiI  by 

Fj(s,T,t)' 	jk B Ik(6,s,t) 	(II 1.7) 

We have superessed the I-spin indices but these are 

implicit in the matrix notation for I-spin. B is the 

well known I-spin crossing matrix 

1 1-131 
= 7 	1 1 

6 

2 

0 

0 

6 

-4 

0 

2 

2 

4 

4 

0 

2. 

2. 

-4 

-1 

1. 

-1  

-1 

) 

(II 1.9) 

We assume a Mandelstam representation (9) for the F''s: 

F j(s,T I t ds 

4m2  

12j( s 1 ,T ! ) 

( 



dt 913j(2,t 1) 	312i(s9T')  

4112 	442 	
Tr-T 

Aj(s,t) 
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Bbeing the one meson exchange terms, µ the pion o  

mass and m the nucleon mass. 

We write a similar representation for channel II in-

volving Fi(s,T,t). We must replace the 3  by ? and the 

limits of integration Till change in some cases since 

the roles of s and T'are interchanged. (N.B. if we do 

not explicitly mention I-spin indices they are implied) 

The Pauli principle then leads to 

13 (s',T') 	(-1)6±I A(si 	) 

9 23 (t9t') = (-1)J+IY23(t',Ti) 

Denoting by ii the 10 x 10 matrix 1-"=r,  B we obtain 

S'22 (s,t) -171-12k(T,$).  

?13 (s,t) =11.1923k(s,t) 	(II 1.12) 
n 323 (T,t) -SILA313k(7,t) 

These relations enable us to define the absorptive 

parts of the amplitudes 

41.12 dt''S)13 . ''tI, +jr dsr t12j(79 3')  

t',t 4m2 ic 
	sr-s 

) 

Jr 
r CD 

..i 

dt' y231-c(T,t') 	dAl2k(s'Y7)  
Riklf 	i, 	t'- 	2  t 	ic 

,r-S 
41-12 

 4m -   

(II 1.13) 



- 17 - 

These formulae will be employed when we calculate 

the absorptive part of the two pion contribution.. 

(Section 5 of this chapter). 

(2) Partial Wave Analysis 

In order to carry out a partial wave analysis, 

the Jacob-Wick ("3) helicity amplitude formalism is 

followed. Primes again denote the final particles 

X's denote their respective spins. The differential 

cross-section is given by 

dcr 2 
< 1 .X2 	cl) 	X1X2 >1 

	(II 2.1) 
dfL 

in the C.A. system of channel I 

Sto is a matrix in spin space, and is a function of the 

total energy W. In the C.M. system our Mandelstam 

variables have the following form 

s 	4E2  = W2  = 4(p2  + m2) 

T = -2p2  (1 +.z) 	(II 2.2) 

t = -2p2  (1 	z) 

denote respectively the energy and 3-momentum of one 

of the nucleons, and z is the cosine of the scattering 

angle. Suitably modifying the formulae of Jacob and Wick, 

the connection between Land I1 is found to be 

41d = 27c -7 <Ai' X2' 1# 	> (II 2.3) 
m' 

Et 13  
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1 Since the nucleon spin can only be ±-7, vie attach to X 

only the appropriate sign. GGIVIW now define 

01  = <±-1- 411 ++> = 	(2J+1) <++,113-(7)1++> djoo 

	

P j 	 (b) 

	

<++11--> = pE 	 J 2 	 (2J+1) <++ 	--> doo (0) = 

9 5 3  = <LF-1 p+-> = 
	(2J+1) <+-iTJ(W)I+->d11 (&) ") 

= <+-41-+>-,71 	(2J+1) <+-.ITJ(W)1-+>d-11 ((9) P  

= <4.±1) +-> = P T, (2,3--1-1) <+, 1TJ(iiii) +->d1j0 ((9) 
J 

(II 2.4) 

J 
where doo(t) = P z) 

di0(6) 1,i(J+1)  P_u+1 (z )- J-1(z) 

 

d11(9) 

d-11(C9) 

= 

2J+1 

1 + 

_ r j( 6 ) 

tT(z) 

1-z2 

(J+1)PJ-1( 	)+JP,T+1(z) 

(II 2.5)' 

1+z.  

1-z 

2J+1 

(J+1)Pj_1(z)+JPJ+1(z) 

2J+1 



where 	1 

N = 12m(E+m)12  and)( is an eigenstate of 1  ,crz  with 
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For 561  and 02  J = 0, 1, 2 ... for 5639 049  5 J = 1, 2, 

3 ... (since d
jj 
 , is only defined for j 	= 0 and 

has the value +1)'. The usual conservation laws for 

striung interactions imply 

(0 Parity Conservation 

<7‘.
1
'x
2 
jTJ(W)IY

12
> 	<---X

1 
-X
2
yjTJ 	x (W)I- 2> 
•  

(ii) Time Reversal Invariance 

- • 
</l'%2'1TJ ('4)/%1%2> 	<1 	4  %2 T  ( )1%1 ,  

(iii) Conservation of total spin 

<111-X2 I  / VT( W) 	X2>' 	<12' %I.' 	%2%I>  

It is thus easily seen that we can define no more in- 

dependent helicity amplitudes than those in (II 2.4).  

above. 

The spinors ux  can be represented explicitly as follows 

(II 2.6a) 

(II 2.6b) 

(II 2.60 

E+m 

20J%1 

E+m'` 
1 

X2 2p%2\X-%2  

E1-111  
- "fl 2ph 1 
, 7  

1 

E 
, 

1 fi-na 

2p%21  

1 U X1 N 1 

eigenvalue X. 

The combinations of spinors occurring in equations (II 1.5) 
can now be evaluated and the 0i can be obtained in terms 
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of the F's (GGMW equs. 4.17) 

In order to find combinations of the <?.,1°X211J(W)Ix1x2>,  

which give rise to an uncoupled unitarity condition we 

begin with the unitarity condition given by Charap et 

al. (7) 

For the process N+11- ->N+N (Channel I) 

	

1 r 	 ft 

	

t. 	r x2 1Pf P`i x2Pi> 	FX2 ';Pf ? X1X9Pi1- 

	

12.. 	 jdaX 	IP I ? 14p2;P> <1-1-1112;00 IX 	> 

	

47c 	
p<

1 	 1 211 
/-1P2 

(II 2.8) 

i denotes an initial and f a final state of 2 nucleons. 

P'2 are their intermediate helicities. 

1 Let us for example choose X1° X2I X1X2 	7 + 	, then per- 

forming the decomposition of (II 2.4) we find 
1 1 
2i p 

1- 	railp f 
47cp 

I JJ' 
2J+,-1)P 

Js  
(cos fI  -)P (cosi) )(2J+1) X J r 	Ii 

1<++.4M++>. <++1 Tr 	T 1+-> <+- i++> + 2<++, 	++> 

(II 2.9) + <4-1-1111-j1--> 	++> 

where we have made use of the symmetry properties of the 

<X, X2'11j!XiX2> above ; equations (II 2.6) 

We then perform the angular integrations - giving rise 

to the factor -47c--- 	JJ°, 
2J+1 

J 
(2J+1)Pj(cos9f ) f<++1e1++.> 	<++!Tji++>- 1. 
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After equating coefficients of the single summation 

ensuing, we find 

Im. <++-/ T jI ++> 	1<++1r2 jI ++> 1 2  + 2 I<++ 	+->I 2  +1<-++IT ji -->t 2  

(II 2.10a) 

A similar calculation leads to 

Im <++I TJI -->— <++I T j  I ++> <++ I TJI --> +2<++1 T j  I +-> 

X <4-- IT jl--> 	<++ Tj  I —> <-- I T jI--> (II 2..10b) 

Subtracting the second. from the first yields 

Inal<++! 	++> _ 	<++I VT/ -->j= <++, T ji++> - <++ IT --> 

X <++ I T jl ++> - <++I TJi --> 2.11)  (II 

We define f o j  = <++ I T jI++> - <++ I T jI --> SPIN SINGLET (II 2.12) 

Then (II 2.11) can be written as 

Im fo 	= Ifo jr 

Similarly 

Im f1J  = 	f1j12  (II 2.,12) 

 

J 	J J j  

f12 
J 

f22j/ (fll f12 f22 

f
12 

f11 112 

 

f ll
J f

l2
J\  

   

   

 

f
12

j f
22

j/ 

 

 

where GGIIW we define 

f1 =, <+-IT j1+-> - <+-ITjI-+> ...... .. UNCOUPLED TRIPLET 
J 

f11
Y= <++111j/ ++> + <++ I  TJj--> 

f12 = 2<++I T jI+-> 

J - f 22 = <+-1T j1+-> + <+- IT ji -+> 

coupled TRIPLET 
(II 2.13) 

J±1 
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Making use of (II 2.4), (II 2.5), (II 2.13),amplitudes 

f. are defined by GGMW as follows 

1 = E(711 -5b2)  
1_  

f
2 

E(01  42) 

	

3 	16  4 

	

1+z 	1-E 
} 

   

where z cos & 
(II 2.14) 

  

 

03 
1+ z 

0 4 

1-z 

y = sin 

f4  

 

    

24,5  
f5  y 

Using (II 2.7) leads, as we have said, to GGMW (ecru. 4.17) 

relating the 96's and F's. GGM'4 find it is convenient 

to consider linear combinations of the F's to give amp-

litudes Gi  (also satisfying a Mandelstam representation 

47cG1  = 7
1  -- 4F3  + F - 	F3 

47G2  = 2F6 

47G3  = F1 - 2F3 - F5 
4cG4  = 2F4 
47G5  = F + 4F

3 
+ F5 

(II 2.15a) 

F, = 	[G +4G +3C ] 3  

Fr-‘ = '"A [ 1-1-Ge,
e 
 ] 

F3  = 	[-G1+ G5]  

F4  - [4G4] 

F5  = 2 [3G1-4G5+GO 

(II 2.15b) 



f l 
)dj 	(z)dz = gjil 2 

2+2 0 

(II 2.17, 
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Then f1  = E2G1 - zp
2G2 m2G7 

f2 = (E2G2 
+ m2G4)Z-p2G5 

-p2G
3 

f4 = m2G2 E2G4 

f
5 

= --m2(G2 + G4) 

(II 2.16) 

It can easily be seen from these relations that 

the 	are not Mandelstam amplitudes since they contain 

the factor E which gives rise to a new branch cut in the 
unphysical region E2  < 0 i.e. p2  < -m2. 

The fì  can now be projected out from (II 2.4) 

using the orthogonality of the dj  functions 

Thus 

fo
J _ fi(s,z)Fj  (z)dz 

4E -1 
1 

f 	2_ 	f2(s,z)Pj  (z)dz 
4E1 

1 

f5(s'z)—P(j+1)  f
12 4m 	2J+1 

P
J  +1(z)-P J-1  (z) dz 	(II 2.18) 



JPJ+1(z).-1--(J+1)19j_1(z)dz 

1 

JPJ+1(z)±(J+1)Pj_1(z)jdz 

2J+-1 

2J+1 

- 24- 

f J  P 22 	
f f3(s9 z)Pj(z)+f4(stz) 

4E -1 
ri_ .  

f
1
J = 2.. 	{,f4(s,z)Pj(z)+f3(slz) 

4E ... ...1 

These formulae differ from the corresponding ones 

1 of GGMW (egus. 4.25) by a factor of 7. This is due to 

the fact that I-spin has been suppressed in their work 

and a factor of 2 must be introduced into the original 

definition of the S-matrix to account for the fact that 

the nucleons are identical as far as I-spin properties 

are concerned. 

We now define 

JEJ JEJJ.E,JJEJ 
ho p h11 p h o 	p o 	11 	p 11; 12 	p -L12;1122 = p f22 

,J Efjand 	= mfJ n
1  = 
	1 	12 T 12 (II 2.19) 

Since the nucleon-nucleon transitions must satisfy the 

well known relation (-1)z+a+I = -1only the following 

are possible 

I=- 0 

I= 1 

a -- 0 

s =-1 

j -.„ z J = -6±1 

J odd 

J. even 

J even 

J odd 

J odd 

J even 

(=LE II 

- I am indepted to Professor D. Y. Wong and" Guisseppe 

Marchesini for private communications on this point. 



<JM;LS)T1JM;LS>- = 

25 

States of given orbital angular momentum ),; can now be 

found from the f11 '12J  and  f22j 
 by means of 

Cleb.sh Gor'.f,an coefficients 

Thus according to Jacob and Wick (10) equation B.5 

2L+1 	_, <JE;LS/JL;.xix2> 	C(I:SJ;0,X)C(s1' s,s,11'X2  - ) (II 2.20) 
2J+1 

J,M denote respectively the total and z-component of 

angular momentum, L the orbital angular momentum and 

S the spin. As usual X1 and X, are the helicities 

X 	X1 - X2 

Thus 

<JM;LSJ = 	E <JE;Xl,X2  1C(LSJ;0,X)C(si  

Al X- 

Thus 

_,9-x2)47  
(II 2.21) 

, <JMO.
1
-X2

ITIJEO, 	N 

2 	
(II 2.22) 

X C(LSjO,X)C(sis2s;.X1,-X2)C(LSJ,0,X7 ) 

X C(s1;s2''s'Al''-X2')  

where L = J:E1 and N is a normalisation factor. Similar for- 

mulae hold for the other transitions L = J+1 	. 

Lifter evaluating the corresponding coefficients 

equations (4.26) of GGMW result. 



f11 f10  \ /- 

Y12 f 22 / \- 

J+1 

2J+1 2J+l 

J+1 

2J+1 2-2J+V 

(II 2.23b) 
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- 1 

f 	
J-1 2J+1 

1 	J 	
f 22 

	

11 +(J+1) 	2[J(J+1)] f JI) 12 

1 

f 
= J+1. 2J+1 

[(J+1)f
11 
 + Jf

22 	J+ j  -2[J(1) 	112 j (II 2.23a) 

1 

f j- 	J+1 = J+1 [J(J+1)]7 c (f,, - c f11) 12 2  
J 	, J 

It is interesting to note thpt these relations can be 

expressed as a similarity traplifbrmation as follows 

J 

     

J+1 

  

fJ-1<--> J+1 

      

      

  

2J+1 	2J+1 

 

fZ=J+1 

  

J+1 

2J+1 	2J+1 

   

   

    

The multiplying matrix is easily seen to be unimodular 

and orthogonal. The inverse relations are obtained tri-. 

vially from these. It is also clear that the matrix of 

the f 	will satisfy a relation identical to (II 2.12), 

and it is in fact from this that the coupled phase-shifts 

J JJ- 	
and coupling parameter 	are defined, (see 

9 
Chapter III). We prefer, however, to work with the 
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-F" equations for fll
J 
 ' '12J. and f22j  and apply the trans—

formations (II 2.23) only in the final stage of the 

calculation in order to obtain these parameters. 

3) Crossing 

In a later section (II 4) we calculate the absorp-

tive part of the amplitude corresponding to N7 scattering 

(in lowest order)--channel II. In order to find the con-

tribution of this to NN scattering; (channel I) we re-

quire the relations connecting these channels. 

Let us write equations (II 2.15) as G 

then using (II 1.7) we find 

	

G(s2T,t) 	FRd(T,s,t) 	(II 3.1) 

_ 	ri_4(4,4:- where 	 (113.2) 

and as usual B is the I-spin crossing matrix (II 1.8). 

More explicitly 

	

7-1 	6 

	

1 	2 

	

1 	0 

	

\-1 	0 

4 

0 

2 

2 

4 

0 

2 

2 

-1  

1 

-1 

1 / 

(II 3.3) 
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Using (II 2.16) we may write 

f(s,z) 	A(s,z) B U (T,s,t) 

and we find tae matrix A is given by 

;p2 	2 (1+z) 3E _p2z  3F, p2 n2 2  	 (11-z) 2 1 2 

z  ) 	-3p2+E2z 	m2z+2p2 171.2_2p2. 1 rE2 mayz+p  
' 

- 2 
0 

71).  

1 a 

1  s 	M2 	/72 	E2 	yE2*m2) 

0
2 	

-M
2 	

-M
2 2 

(II  3.5) 

Inverting (II 2.16) and formally putting a bar on all 

the quantities involved, we obtain equations (4.33) of 

GaN. 

The amplitudes 7- are written for the order of 

variables 7(T,s,t) - recall that T and s interchange 

their roles of momentum transfer and total energy. 

T 	422  = 452+m2) 

t = -2132(1-7) 
	

(II 3.6) 

s = 72-132(1-1-7).  

Combining (II 3.5) and (4.33) of GGEW we find 

f(E,z) 	2f( ',z)- 	(II 3.7) 

(apart from I-spin crossing), and X is given overleaf. 

(II 3.4) 



2p2  
t 817 2  

S+ tL7n 2 
p  2 

2s2f+ts 
47)4  

2m2  (1+- ) 
2 

2 

-2 	72 2p2  

2 
0 

-2 
p 

ra 2 
e — -2 

72 	
) 

2p 

2 
(1 57g  

-P 	81.-)2T2 

-s 
2p2 

-S 
2p2 0 

—1 
82p 

t 
2p2  272 2  

sT 
8p2-p2 2p2 (Lj 2P 

S 6. 	F 	) 	 sTt 
15 2   

8p 2T4 

2-2; (1-
P- 

2m2)  21112  
(1+—s  ) 

t 	272  

X = 1 
2 

rn CV 

2p2  
r 2 

2 S  2 

2-p4  

(II 3.8) 
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4) 	The one and two pion exchange terms 

The contribution to the G amplitudes from the 

exchange of a particle mass p, in the t,T channels, 

I-spin = I, coupling i = 1, 2, 3, 4, 5 (ST.LATF respec-

tively) has been calculated by CLS (equation 5.1) 

The appropriate Feynmann graphs are 

Fig. (II 4.1a) 	Fig (II 4.1b) 

and 

G. J . _ [I- 	+ (-1ij+j 	'S 
3 	2-1 ' ig .,3-9 0(gI,0-3  

2-t 	
1,1) 

P, 	11 	- 

+ ,1-91(  ‘'I,0 ±%I91)  'Aji (II 4.1a) 

NT the *irk of At eve"njea /7 0-421.414. and c. -4efe-Itst 4 the cen:frh ;ID  S TA V P 

1 

1 

1 

1 

( 1 

-6 

2 

0 

0 

-6 

1 

-4 

0 

-2. 

2 

4 

4 

0 

-2 

2 

-4 

1 

1 

\ 

-1 

-1 

1 

(II 4.1b) 

The special case for a pion (pseudo-scalar coupling ID) 

gives rise to the formulae given explicitly by GGlar 

(equ. 6.7). Since these formulae are well known we 
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shall not pursue this discussion any further. 

vve now turn to calculation of the two pion con-

tribution. The Jacob-ick helicity amplitudes Zra.  

are employed and describe the process 7c + 7c ---4N+ N 

which has differential cross-section 

x7C I 
d 	q 

(II 4.2) 

where 4(T2  +• m2) = s.- 4(q2+µ2) 

-42(1 + 7) = 	 (II 4.3) 

-2777(1 - 	t 

s is the totn1 energy 

p the 3-momentum of a nucleon in this process - channel II 

q the 3 momentum of a pion in the CM system. 

s is in fact numerically equal to T of channel I . 

applying the unitarily of the S-matrix to this process, 

(CLS) find (their equ. 6.19) 

Im, <X' p ;a1 	X97;131. ?  = 	dC2-  < ITIVp77;17f>‹]%177;152 

(II 4.4a) 

da q x 02(1) ?\.7- (qq )exPi E lq 

+'(xt—x 1 ) 2(1] 

(II 4.4b) 
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The notation is clear - thus a2
c:q i.s  the angle 

betc:aen:the final ,7.nd intermodiate-stetes and 0lq' 
for example, the angle between the initial and inter-

mediate states. Elementary trigonometry leads to 

z 2(4  = zici  7 + ylq  7 cos 6.„1.  

e2q 
1 

2q  
y 
zlq - 7 ylci  cos g5ig  + iyiq  sin 6.q j 

(II 4.5) 

Z = cos 	y = sin 0 

dQq = dziq  dgclq  

Similar formulae to (5.1) of GGMW can be derived from 

these. 

CLS (equs 6.9) give 

++ mi 	B z 

	

7 ' 7 	81t17; 

	

1 	 q q 

mi 
8'tE m i 

2F Bqyq  = - -+ 

A , B t  are the conventional amplitudes for 7c-N 

scattering 

Note 	(0) 	+ 
3: (1) - 2 

The (o) and (1) referring to I-spin 

(II 4.7) 

(II 4.6) 



Qo 

-1-K2/ 1112  

(II 4.8a) 

dv' inali(I)(v 9  K2)..{ Re A )  (v,K2 ) 
V — V 
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Dispersion relations for A and B are given by Chew, 

Goldberger, Low and Nambu (4-1) viz. (using their notation) 

0,2 Re 	(v,K2) 

v B+v 211 vE-v 

tzi3 

j)  

7 1-K2/M2 

dv! IM B(' )(v 9  
-72 1 	1 

v' -v 	v'+v 

   

(II 4,8b) 

ivre remark here that 

g2/47 = 14 allaT denotes 'principal value'. 

q1 and 02  are the 4-momenta of - 
the incoming and outgoing pions 

p1 and p2  are those of the nucleons 

f. 

(Fig II 4.1) 

Pl+qi = P2+c12 
1 

±27-.  7(P 4.P2) 2(q1+ q2 ) K= .(gl-c12) 
(II 4.9a) 



p1=(9/5) qi=(12 q)  

p2-(7-T) q2--(7=a) 

(Pig II 4.2) 
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The pion mass is taken as unity, nucleon mass E, 

1 	K2  v B 	-- 
21/1PiT 

(II 4.9b) 

pointed out by Frazor and Fulco ( 5 
 

in order to 

go over to the process 

+ j  --> N + g 

we substitute formally p1  — 	q2 
	-q2  

-,In the 	system for the process ;t1t --> NIT 

K = 

7 (32-P1)  = (09 -2)  

7 (ql-q2)  = (0,-4)  

7 ( q14-c12)  = (22 °)  

2  

	

Thus V 	2 B  = - - +  
2M M 

	

v 	P- J1  

(II 4.10) 

     

LI 
Hence the 3orn terms we require ore of the form 

1  1  
-1+272- 	6) 27qcos , -1+2E2+2-fq.cos i9, 

(II 4.11c) 



gnd 3 
147le  

=' 
, 	2 

2 

27q 

1 
x- z1 

(II 4.11b) 

(II 4.12) 

 + cos 

1 	 r  1 

X+ z1 	N-• Z2  
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In the Born approximation scheme we are adepting 

we take 11=0 

The upper factor and sign refer to I=0, the lower ones 

to I-1 

p-242 	S-242 	1 
Following GaD we have written A - 	- 

415q [(s_4m2)(s_
4
e)]7 

(II 4.11c) 

We remark that s = 422  and numerically corresponds 

to T of channel I. Substituting back into equations 
(II 4.6) and (II 4.4b) we find formulae similar to those 

of GGIiiW (ap-oendix B equation 2.5) 

For example 

1 1/6  lIm(73-FF4) a{ sin2 1 
.(e/4,7)'24n 

32,T2( 1+7 ) 

sin 0 sin 1(C1,6 9 co,, 2)e-i41 

and similar formulae for the remaining 6 amplitudes 

(Imf1
0 and Iiaf1' vanish) , 



[(4m2-s)-(s-4u2)]-2  1  

tan-1 [(4m2-s)(s-2)]' 

s-2u2  

a 

X-7
1 

	 1 
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GGM show that all the integrals of the type which are 

required in the present calculation can be obtained in 

terms of 

= X
— 
' 	1 	(s-2a2)2  	1 -2 

(X-zi)(N-z2) 	it(s-2412)[(s-iu2)2+76.(8-41,2)]] 

tan-1

t(s-4u2)  
(s-2u2)2+T(s-4µ 

T_ = 	1 	(s-211212 	1 

(N+zi)(N-z2) iT(s-442)i(s-4,2)2+t(s-* 2  )] j • C 
1 

tan-1 	T(s-442)  
( s-2u 2 )2+ t(s-4112) 

(II 4.13) 

47c 

	

Note that terms like 22. 	d 	1  

	

45.t 
	

( x-z1)(x+z2) 
obtained from T

3 by letting N. > -X 

We remark also that integrals of the form 

can be 

c2. zl z2  
N-zi)( z2) 

can easily be obtained from T1,  22 and T3 
by resolving -  



zi an 
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also into partial fradtions. 	soj 	
z 

id-C1 	is calculated 
X-z1 as follows 

From (II 4.5) 
cos gf 

z2  = z17 y1y cos 	1-  0 so the required 
X-z1 

integral can be evaluated. 

Returning now to equation (II 4.12) the contribution 

from the terms involving sin I  vanish, so let us consider 

2 	
sing sinC91(cosi91  + cos62)cos 	-1 sill  

1 cos® 

(11-7)(1-Z12)-Z1Z2-1-Z1
2 
 Z-Z2

2
1
z27 

1 + 7 
(again using II 4.5) 

1+z1z2 - 
(z1+z2)2  

1 + 

The first two terms, when combined with the usual factors 

  

1 	r  1  7 1 
+z1 .1 N-z2 	X+z

2  

 

  

are evaluated. 

  

   

as indicated above. 

 

For the final term We take (for example) 

(z1+z2)2  

(X-z1)(X+z2) 

and so (II 4.12) can be 

X-z 
—c 	1  

evaluated in terms of the known 

and because of the symmetry between z1  and 

is easily obtained 
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We now give our version of the contributions of 27c 

exchange to the imaginary parts of the amplitudes 
7, 

Ima"1°  = Im71 = 0 

I717,°  = 3/23 m2q/Ep2(2-4T1+T2+T3) 

Imf2 ' 
	m2  q/5 2  ( T2- T3  ) 

1_ Im(.73°+T4°) = -; 	 glin 	
4T1  -2+ 	z-3 	1 	T - 1- -1)T p2(1+z)  1+z 1+z 	2 2 x2 3 

{ 

_27 	...... 	n- + (z-3  + 1__) 
p(1+7) 1+7 1+7 X2  

IM( f3 

ImT
5
°  

Imf51 

where 

- 	1  ) 	- NA 	c12  
4T1 

	

{. 	1-7 

1 

	

1 	
1+Z  

T, 

1-1-z 

+ 	(1- 

T2  

T7 > 

1 --- ) T 
x2 	2 

+ 	1 — 

f4 	— i -2 	- p (1-z) 

,..-,,_,. 	11 2-2 	_ .2I 
' 1 --2-f 	1-72 

L 
-2-  

Li 	_ 
,k 22, 

- 	`' __L.,- 
....) 	p  2t- 	1_72 

( g2/ 47c ) 2  

(-7-3 
1_7  

T
3 1-7 

- 1-z 

(II 4.14) 

IM(73°-14°) = 1 3 	q 

(1-7)  

E  
i 	

c 	4 T1 -2+ --- + (1-11)T.,+(-41 + 1  2 	I-32  1-7 	X 	1-z 	x2 

1 ) + 	m 
x2.  

im(T"' T-') = T2 +(-
1  - 1)T3 } 



[(t- 4m2)( t - 4,2)] = 
2  

Thus X - 	
- 2u 

 
-7 -2u.2  
4 q 
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It can be seen that these functions contain factors in 

their denominators which appear to vanish for some 

values of the parameters T, T. It is, however, to 

be remembered that before these are used they most be 

multiplied by the crossing matrix (II 3.8). This matrix 

has similar vanishing factors in the denominators of its 

elements. We indicate below (section 5)' that the actual 

combinations of functions occurring are such thAt no 

infinity of this type occurs. 

To summarize, from now on our Mandelstam variables 

will be as follows 

,i 	C.M Channel I C.M Channel II x 

s 	4E2=4(p+ m 2) = -2-M + 7 ) 7 

7 =-2p2(1 + z) 2 2  =4E= 4( p 	+ m°) s 

t =-21)(1 - z) -=-215c:(l - 	7 ) t 

Table II B 

T 	= 	iX tan -1(1/iX) 	 (II 4.5) 
- -6, 	T). 	- 	< 	(.24)TD  > 
....2,443/ 

- 	
I 	

-1-041/1)1 

	  11/1.)  	(Fig II 3) 

In the region we are considering here p2  is negative--

unphysical region for channel I. 
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In region 1 of Fig(II 3) we have 	'6 -24 2  
T1= xtan_ 11/x 	x= 4 -152 g 

=X/2 lnli--  
-1 

x+11  

and X >1 if and only if z>-1-2m2/p2-(2m2-u2)2/-2m2p2  

which is always true in region 29  so T1 is always real. 

In region 2 
(II 4.16) 

If we define 

a={ (T-2  u 2)-i- s( T -4-p,2) 
t(7-4p) 

	

4 	u4 

a2----1+ - (m2+ 	' 	) 

	

t 	I- 12  

T2=a/b tan
-1  1/a and if a=ia°  

=ia° /b tan-1(-i/a° ).a1ap In 

	

Re T2= a' 	1n1 ---- I ° -1  

("E -41.2)2+s( 7 -4t-12) 	( II4. 17) 
(t- 2 u 2)2  

(II 4.17° ) 

(II 4.18a) 

(II 4.18b) 

11/2 
b= 

The expression in (II 4.18a) can have an imaginary part 

in the region in which we are interested. However, as 

we show in the next section, only the real part need be 

considered (due to the fact that principal values are 

taken in the Mandelstaei representation). Since T2  con-

tains the factor a/b , it tends to infinity as 

( 	-2[12)2  + s( -t-  -4pL,2)--) 0 

As is indicated in equation (II 5.7), the quantity we 

require is obtained by integrating the In f's wrt. 

between -1-2u2/p2  and +1. ,lthough, as we shall show 

T2--,,..00 within the integration range in which we are 
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interested, this type of infinity causes no difficulty 

/^- since it is only 1 /2 /LY 	that is involved, and the corres- 

ponding integral converges. 

Substituting from table (II B) we find T2-)AnY 

P2(14-z)--=(P2-1- m2-P,2) +41(P2.+1112)24-22(P2+r-12) 	(114.18c) 

If p2A- M
2>0, the vclue of z will be real-- we recall 

p2<-p:' for a contribution to the two pion exchange terms. 

__1_412/p2‘z, [ z in integration range of 

i.e. 	-2µ-2/p2 1-Fq2 	(II 5.7 below.] 

or 	-2.112?,p2(1+z)2p2 	since p2  is negative. 

.vriting p2+m2----.1\>0, we require 

-at 2  CA. —4 2  ) ±%/1\ 2!J. 

0 CA+µ2)-±/A2+2y,2A :2(P2+!12) 

and sine; A and !_t 2  Met be positive, this condition 

cannot be satisfied. 

If p2+m2<0, for the square root to be real we require 

p2+m2+2[12<0 	say) and again 

41 2  >,( 	3111  ) 	j 	2!-1, 2 ) 	2 2(-A-2 2) 	-2P" 
	

i.e. 
011-1„1.2 ±24^.2+2 21\ .2(p2+p.2) 	or 

-24\-!12-qk+2p.2./N ;2(-A. -m2-µ2) 	or finally 

A_t2+2m2 ±/(/1_ 4-21eL 

which is of course alw„.ys sat sfied, and so we can find 

two values of z for which00 
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In order to calculate 	we define analogously 

{( .6-  ....2p,2)2+t( t- ...44  2) 	1 ., 	( -E -2p  2) 2+“ T 	 2) 
Zd.--- b= (114.19) 

(114.19') 

(114.20) 

(114.20') 

s( ..E  _411 2 ) 	 (7 -21J, 
4 	P,4  
[m2+ 

)2  

alternatively 	a2=-1-1---s- 	
---- 

-E -41U2  
a -1 and wew may 	rite 	T,= - 	tan  

J 	b 

If a is complex =ia° 	say4then 

n 

Re T3 = - In 
2b 

] 

1 
- 
a 

a'+1 

a'-1 

Solving the equations implied by 

using (II 4.3) we obtain 

table (III) and 

D2(1+Z)  2 
2 

-2p2(1-z) 

2m2+p2(1+z) 

4(p2+m2) 

2m2+p2(1+z) 

_[M2-1--(1+2)] 
2 

1- 7= 

1+ 7= 

T2- 

(II 4.21) 

J 

-Ne now tabulate some useful properties of the variables. 



	 1+z rs 

2X2  
a=o 

T
3
= 

-C 	1+ z r 
r -- 

2m-2r+1 z 
r=o 

	/2m -2r+1 r=o 

mC 	.{1.- 7 fr 
r   

1+ z 
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1--- 
FUNCTION V.L1NI3HES POLE 

s p2--m2 p2=... op 

-E 	, 2 2   
-)' 

Z.- - -1,._.p2  / 	ap 
i . e , 	p 2  =-r,12  

p2=- w  , 	z /....1  

q 2  z=-1-2 2/p2  p 2— 00 	z / -1 

t z=1 p2=- w 
	z  / +1 

1- z z=1 z=-1-2m2/p 2, 
P
2
>112 

1+ 7 p2=-72, 	z /1 Includes 
p2,- CO, 	z=-1 

2 
P z=-1-21-12/p2,-p2>m2  p2=- CD, 	z--1 

TABLE II C 

X• This set of conditions does not lie within the 

integration range of (II 5.7) below. 

Before concluding this suction we give expansions of 

11' T, T3  which are valid if X2>1 

{

1-z lta 

727'7  j m=o 

The "Cr are the usual binomial coefficients. 

f 2 lu1 

T a2 	2m+1 m=o 

T,= 

(II 4.22a) 

(II 4.22b) 

(II 4.22c) 
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5) Application of the Mandelstam representation in 

order to calculate the imaginary parts of the h's. 

[Soae of the following can be found in section 5 of GGMW] 

Let us denote equations (II 2.16) by 

f.
..
= 	a. .(s,z)G.(s, -7 , t) 	(II 5.1) 

. 	1 

Substituting into (II 2.18) end using (II 2.19) we obtain 

h J(s)= 	dz 	JJ' 
a 	Jai 	aii(s,z)Gi(s, 79  t)Pv (z) (115.2) 

-1 	i,j,J' 
[j(j+1)]1/2  

The C's are constant coefficients e.g. 	 etc. 
2J+1 

The Born teras are of the fora [42+2p2(1+z)]-1'9  so as 

z varies in the integration range of (II 5.2) , this 

leads to a branch cut in p2  (=v) between -42/4  and -co. 

Since the G's have a Mandelstaa representation like 

equation (II 1.10), we have a singularity in s from 

4E12-3 eo as v=o--4co. Also 	gives rise to a sing-

ularity since it occurs in a denominator and can vanish. 

Since v=-2 t/( 1+z) we have a cut in the v-plane from. 

to — CO (since Th7.s a minimum value of 442). Hence 

the denominator only vanishes when -1-242/v<z<1 (v<0 

for T 	. We can supply a similar discussion to 

the variable t. GGMW show that the contributions from 

channels II and III are in fact equivalent in virtue of 

the Pauli principle. 



Imrh (v ) —h B(v)J=— 	C i
JJ ti 1 

s 9 dz 	• ( z ) 
i9j9 	2 J1   -1-2p /V 

— 46 — 

09 -) 
J Thus 	h (No )= 	(,,i) + i f oh!  Im h,,,,J  (\)! ) 

tK 	e< B 	ak- 	li - V 0 

(II 5.3) 
2 

4- 1 1-)1 dvi 	
h 	) 	)] 

v I— Y 

where we have split off the Born terms h B(v). We 

refer to the integral between 0 and 00 as the right 

hand cut (or integral), and to that betwee* -,Or and 
2 (or if we include the Born terms --'o to -4) as 

the left hand cut. 

Using equ. (II 5.2) and the Mandelstam represent-

ation for the G's, we may obtain the discontinuity 

across the left hand cut using Cutkoskyls rule. 

(II 5.4) 
00 

cist?12i(si37)+,? 	dt' j(T'2 tl) P (z) 171" 	 J 
4 2  sf-s t' —t 

minus a similar term due to singularities in the 

t-variable. 



Im[ hj  (1))-hB
J 
 Jt 

dzb(s,z) 

-1 -2)42,  

JJT 

- 

Since the discontinuity must be real ( we assume a 

hermitean analyticity property h*(U)=h(V*) ), and ti-t 

can vanish in the integration range, we must make a 

Cauchy principal value integration as indicated by9 

in the above equation. The negative sign outside the 

summation is the result of the way imaginary part is 

defined 

f 	 
Im1 1-= Im -t- +2  ( 	+z 	)+iel*= 	( 	) (II 5.5) 

since the ie is attached to s. Comparing equs. (II 5.4) 

and (II 1.13) we write 

x Re T. (T,t) Pj, (z)i 	(II 5.6) 

The factor 2 is present since the contributions from 

channels II and III (due to singularities in E,t res-

pectively) are equal. Finally, this may be abbreviated 

to 
Im fhj(v 	)j=. 

N—N 
-2 /  Cjj 	dz X B Re tIm' (6,t)-1 Pjf  (z) 	(II 5.7) 

Jr 
-1-2p/I) 

X is the matrix (II 3.8) and we recall that f must be 

considered as a (1 x 2) matrix in I-spin space. 

1 
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The amplitudes Im f calculated in (II 4 ) can now 

be substituted into this expression. Only the real part 

of these amplitudes is required, and this tells us that 

T2 and T3 
must be evaluated as indicated in equs. (II 4.18). 

We now demonstrate that the G amplitudes involved 

have no new singularity due to the appearance of vanish- 

ing factors in the relevant denominators. On inverting the 

system of equations (II 2.16) and considering the ampli- 

tudes for the channel II reaction (formally placing bars 

over all quantities), GGMd obtain their equations 

1 	m2 

[T  E2 1 +2 73  -7 T4-7 	T 
= 	

I 

(1+,33) 

2 -1 1 

G2 2 4 2 [T 	T 
5. T m  

1 
G = 
3 	3 

(II 5.8) 

74 = —2 [Tif + 751  

1 

7 	—2 

(72+ m2) 

7, = - 	 r f2  +._z_ T4  +z 	m2 	Te 
P 7 1. 

If the 7's are to remain finite at 22,1;2=0, we can see 

(using E2= 172+m2) that 



1+ 1 	1 

3X -;R 
(II 	5.10') 

1 2-7 
(1,  

7-67 +2z2  

1-z 
+3 \2+  15 
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4 9 + T5 T  9 3 
and T2 +7 75 , 0(52) and 

T1 - f 3 - 7 T4 = o(E (II 5.9) 

We now consider the imaginary parts of the quantities. 

Thus, for example, taking the I=1 component of the 2-pion 

contribution to the absorptive parts of our f amplitudes 

(equs. II 4.14), we require 

2-T3 +z(2T 	- T2 - 	= 0(-53 	(II 5.10) 

1-z2  1+z 1-z - 	

T 

Let us consider the case pL4-m2, then T 	0 if z 

2 remains finite. In this case 1//\ ^a p-2  and we may use 

the expansions (II 4.22). Taking the first three terms 

(see also GGHAT equ. B8) we have 

T1 = 1 + 1/3X 2  + 1/5\4

T2=1+(2+V 3A 2+(7+67  + 272)/10\ 4 	(II 4.22') 

T3=1 +(2- 7)/ 3 21-(7-67 + 272)/15X1+  

Substituting into equs. (II 5.10) we obtain 

m2q 2z 127+ z  - - 2 

13 2  3\2  15' _1-12  

1 	2+z 7+67  +272)  
+7 1  + 	+ 15 X+  
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m2q 	7 	{2 (1 - 	4- 2- (1- z)(2+z) - (1+7) (2-z)] = - 

EITA 3>2(1-72) 	+0 (1 /XI+) 

-m2q 

 

(terms involving 1/1\4 and higher powers only) 

 

f p-2 

Since Al4r-vp 4 the expression (II 5.10) is 0(52). 

Similar, but somewhat longer calculations along these 

lines can be carried out for the remaining equations of 

the set (II 5.9) for both I-spin amplitudes. We note 

0., so E never reaches its branch cut (q2=-112) in 

the integration range of (II 5.7), so the factor 1/ E 

causes no difficulty here. It is also seen that when 

7-i+ 1, the Im f apear to develop singularities, but 

again it can be seen that this is not so if we use 

table (II D) below. We have given the first and second 

derivatives of T2 and T3 
(wrt z) to enable us to employ 

a L'HOsbital limit when appropriate. For such a calc- 

ulation it is convenient to consider 	and z as ind-

ependent variables. Let us define 

1+7  _2),2 	1/2 	2 2 

x-  	x2 - 	_ 	(II 5.11) 
1- z 

then T2=xy tan
-1  1/x 

dT2 y2 (x-x3)tan-1  1/x 

c17 	)-1-i\2  

+x2 )  } (II 5.12) 

d T2= _ 	3x-2x3+3x5)tan-1  1/x+(3x2-3x4) 

dz 2  16 X4 

1-z 
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The corresponding formulae for T3 are obtained by chang-

ing 7--4 -7 everywhere (and of course prefixing a minus 

sign to dT3/cri). 
_ 
z 1 -1 

T2  
A2 

T1 )2._.1  

T2'  ,x2 
4 	T1(1+ 1 	) 	-1),  

,X2  3(-1)2  

T2" 
›; 

116))+1(34-22+3"Xlf)T1 
-.3> (14)1-  

15(W

4  

-1 	) 3 

3 
T1 

l 
 

A 
X2...1 

T3'  —ipi  (1+ i.2)-1 / 2  _  
30\2_ 1)2 

T3It  , 	(3+2)\2+3X4)Ti 
16 1+  ,-, 

—3,(1+)\ 2 ) 1 

LFX2 
15(V-1)3  

Table (II D) 

The dashes denote derivatives with respect to z. Using 

these formulae in conjunction with equs. (II 4.14) we 

find 



5'2 

Im (f +f4)z ,_1  = Im(f -f&)-i=1  = 

3citj1 + 1 + 	1 	_ 	T1 	(1 _ x2 ) 2 

2 p2  k.8 8X2 	3(1- 2 ) 

--1 +f14.)- 	 -T1  )- z=- 	- 	3 	Li- z =1 

qE I 1 	1 	1 	T1 (1_ A2 ) 2 

172 	 3(1-X2) 8 1-f- 

Im T' ) z=-1=-Im -q )7 =1  
(II 5.13) 

rn2q  

2p2  E 

.1 
T1 	12 + - 1-T- 

2 

2 (N2-1 ) 

-1 
5 Im f 	)=-1-m  -I 	1751  )- z = 1 

D-+.(1+9+1_ 
A

2 
/\2 

2(A2-1) 

As a further 

ini(T4+ 

obtain 

example, we demonstrate 

= 0(p 2). Using 

Im f 1  = 	qE 

(II 	5.13) 

2 

3\ 2" 
4 

that 

and (II 

00, 

when p =0,7=1 

4.14), 	we 

p 2 15x 

 

-2 q7 (1  + p ) -1{ 2 	8 
2 	 31i2 .75

34 

(II 15.4) 
1 Im f 5 = 

 

  

and the above condition follows immediately. 



- 53 - 

CILIFTER III 

THE N/D INTEGRAL E0..--TIONS 

In this chapter we eaploy two versions of the 

N/D method. The first is that described by GGM4, and 

is extremely effective for the uncoupled amplitudes. 
J 

Since the a:aplitude h12  has a branch cut due to the 

factor E (starting at p2=-u2), and this method solves 

the equation for D on the left hand cut, new difficult-

ies arise due to the fact that only I il-JL is known 

and not Im(q12) [=I: h12  x n], to the left of this 

branch cut (see chapter II, section 2 for definitions). 

For the coupled aalplitudes, we therefore eaploy 

the method described by Scotti and Wong (3), since 

this involves solving equations on the right hand 

(unitarity) cut. In the appendix we describe a method 

for improving the solutions of these coupled equations. 

Method 1) 

The amplitudes hj  have a right hand cut, and a 

left hand cut due to singularJ_ties of the exchange terms. 

, 	r----r  °TT / i ,  
2 pion cut 1 pion cut Unitarity cut 

Branch points at p2=-;12,- 2/4  

(Fig.III 1) 
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We now take hj(v)=Nj(v)/Dj(v) 
	

(III 1.1) 

where N(v) has only the left hand cut r:nd D(v) only the 

right hand cut. Since all quantities involved are ass-

umed to satisfy the hermit an analyticity prorerty 
-?rt- 

X -(x)-X(X), we illay write 

N(v+i E )- N(v-i E ) 
I. N(v)  

on left hand cut 

Im D(v) 
on right hand cut 

   

Ci 

D(v+i E)- D(v-i€ ) 

2i 

The unitarity condition a7y be taken as 

2 
1M h(v)= 

V-i-n
2 	1 h( V ) 

 
or Im[l/h(v)]=- v+m 	(III 1.3) 

Ira D(v) 	v 
thus   .--/--- (on the right hand cut) 

N(v) 	A, +m2 	 (III 1.3') 

We may, therefor, write the following dispersion rel-

ation containing one subtraction, and arbitrarily 

normalise D(0)=1 --only the ratio N/D is to be det-

ermined, so we can choose either N or D to have any 

finite value we please at an arbitrary point 	 

except of course when we have a bound state pole 

w:Jose position is determined by other considerations. 
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1 
D(v) = 1 - 

vN(v t) 

    

dv' 	(III 1.4) 
vi(v' 	v'+ m' 

On the left hand cut Im h(v) is given by the con-

tributions of one and. two pion exchange as derived in 

chapter II, and following GGMW we write 

In h(v) = -,Ta(v) 	(III 1.5) 

Im N(v) 
thus 

D(v) 
	= 7ta(v) on the left hand cut (III 1.5') 

.'gain making one subtraction and writing 

N(0)= h(0) 

since D(0)=1, we have 

-1/4 v a(v')D(v 1 ) dv' 

v'(v'- v) 
N(v) = h(0) + 

(III 1.6) 

(III 1.7) 

h(0) will vanish in 	cases except when we are 

considering S-waves, and then we supply the scatt-

ering lengths (and h nce h(0) ) from experiment. 

Note th -:it we have taken the pion mass as unity in 

equation (III 1.7)9  the upper limit, in fact being 

giv(,;n. by -1.1/4 	(see Fig. III 1) 



b(0) 

7C 
D(v)= 1 - 

V 

7C 

V 
	 dv' 

v I(v'-v) v'+ m2  
N 

4  a(v ")D(v ")dv 

V I I 

(III 1.8) 

-OD 
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Substituting (III 1.7) into (III 1.4)and interchanging 

the orders of integration we find 

In the notation of GGMN 

11/4 	
y(-v')-y(-v) dv' 

D(v)=1+h(0)y(-v)-v 	a(v')D(v v )  	(III 1.9) 

v 1 -v 

1 	X+1 	v t112 
where y(-v) = -X In 	,X 	  

7c 	X-1 	2 

V 

(III 1.10) 

We now employ a device similar to that of NOYES(12) 

to facilitate the numerical solution of our integral 

cluations. He makes the substitution 

v 1 = -1/4y' 	(III 1.11) 

and the integration range [v'=-oo to -1/4] becomes the 

unit interval. From an examination of (III 1.19) it is 

seen that this substitution will be most effective 

when a(v')=0(1/v ° ) at -olo. hn inspection of equations 
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(II 4.17-4.20) and an analysis similar to that of 

chapter II, section 5 indicates that, although the 

appearance of factors of v' in the appropriate den-

ominators will ensure the convergence of the integrals, 

due to the occurrence of logarithmic factors, a sub-

stitution of the form 

v'=-1/4y'n  

v =-1/4y n  
n>1 	(III 1.12) 

will be more convenient numerically. [We recall that 

ln x dx is more easily performed numerically if we 0/1  o 
write x=ynl  and the integral takes the form 

tin2yo 

n-1dy In y, and if n>1 the integrand vanishes 

at the lower limit]. If we wish to take n an integer, 

the most obvious choice would appear to be n=2, but 

then y would have to be imaginary in the physical reg-

ion since v>0 -- thus unnecessarily complicating the 

arithmetic. We therefore choose n=3.Making the sub-

stitutions 

v=-1/4y3 	v'=-1/4y13 	dv'=3/4y'4  C41  
(III 1.13) 

a(v')=R(y) D(v')=D(y) 	70r(-v)= r(Y) 

in equation (III 1.9), we find 



D(y)=1+ 
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'1 
h(0) (Y)  3 

R(y')D(y')
r(YI )-  (Y)  

3 	3 dy' (III 1.1A Y Y 

If an integration formula is used which requires a 

knowledge of the function at the end points of the 

integration range, the above form of integral equation 

is not suitable, since the kernel is infinite when 

y=y'=0. It is, therefore, :Lore convenient to consider 

the equation 

( 

F(0)17Y))  2  3Y2  1  
1(Y')-T7Y)  

ay)

7c f 	
VR(Y )819: , 
	

7 
y y5 

where 	(Y) = Y2D(Y) 

 

 

X + 1 

 

r(y)= X In 

  

  

 

X - 1 

 

X = (1-4y3m2)-1/  

At the 'diagonal points' we require r(y) and we have 

7 	X 4-  1 
1"(y) = 6y2m2X-q1n T7-1 -2X/(X2-1)] (III 1.18) 

It is now seen that the kernel of (III 1.15) remains 

finite even at the net point y=y'=0. In practice, 

Gaussian quadrature formulae were found most con-

venient, and the end points of the integration range 

are not used (see chapter IV for details). 



3yi a 	1-1(Yj)-  n(Yi) 
R( Y•) 	 

Y 3 	3 7c 	 • 	- 	• 
J 

1 	
R(y.

J
) 	

Y •) 

Kl  •j= /j 

i=j 

(III 1.20) 
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The integral equation can be replaced by the matrix 

equation 

5ThX8 • 13 
• 	

1 
-K• 

3
.w 

h(o)d"`. 
[1+  	yiz 

] (III 1.19) 

where a
ij  . . is the Kroneckor delta, w j  are the uadra-

ture weighting factors, and 

7L 

Having solved this system of equations by matrix 

inversion, the value of 
	

(y) for y<0 (v>0, physical 

region) may be obtained by a direct integration of equ. 

(III 1.15), provided we remaTiber that r(Y)  has an 

imaginary part in this region. Thus 

•TN., 
Re(Y)  = 1  +  h(o)r(Y) 	3 

y2 	

7C 

	

7C 

R(Y')0(0(Y') 

incy')- rfl Y) 
x 	  

d 

3 3 Y -Y 
X+ 11 

where 	( y ) = X In X- 1 

X 	= 	(1-4y'7, m2 )-1/2  

(III 1.21) 

(III 1.22) 
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Also N(y)=h(0)+3 
R(y! )0(Y');7' 2dY 1  

(III 1.23) 

The intection of equs. (II 1.21,1.23) then gives 

h(v)=N(v)/D(v) for any positive value of v we require. 

The uncoupled phase-shifts are given by 

5 = tan-1  [IL h(v)/Re h(v)] (I1I 1.24) 

Also, since in the scattering length effective range 

approxiraation 

h=E/p eiasin 5 and pcot ,§=-1/a  +r/2 p2 	(III 1.25) 

for a nucleon with 3— eomentura p. Thus 

1/h =p/E (cot 	- i) and Re[l/h],op/m cot 5 for stlIall 

p (since Ewa) 	 (III 1.26) 

The scattering length is given by 

a =-h(0) n 	(III 1.27) 



vN(v ) 
v' (v '—v) 

V 

V+112 dv' (III 2.1) 

he(v)- he(0) + 
1/4 In h(v 1 )dv i  

- co v'(v'-v) 

exchange terms 

(III 2.2) 
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Method 2) 

We again write 

1 
D(v)=1- 7  

but instead of equ. (III 1.7), which relates N(v) to 

values of D(v) on the left hand cut, we employ the 

(we have performed just one subtraction). Since the 

full amplitude contains both left nd right hand cuts, 

we pay write 

h(v)=he(v) + h(0) +  
V 

'7C 

a) In  h(v ' )dv 
v (v 	) (1112.3) 

hR(0) is, of course, the contribution to h(0) from 

the unitarity cut. Note h(0)=he(0)i-hR(0)=-a/m 	(II 2.4) 

Again noralising D(0)=1, and observing that he  contains 

the left hand cut only, we write, following SW 

N(v)-- h(v)D(v)-he(0)-a/m 

(III 2.5) 
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The dispersion integral merely removes the right hand 

cut of the product 0(v)D(v), but leaves the singul-

arities of the exchange terms unaffected. Taking the 

imagin=y parts of both sides of equ. (III 2.5) gives 

La N(v) right  0 	

(III 2.5') 

= In he(v). D(v) = In h(v)D(v) 
left 

as it should. Substituting aeu. (III 2.1) into (III 2.5) 

leads to 

N(v) = he(v) - he(0) -a/re 

v ttO 

"IL 0 

	he(v')-he(v)
dv 

v'(v'-v) 	V+02 

as shown by SW. This method is used for the coupled 

equations, so that he,N, and D are two by trio matrices. 

The advantage over method 1) above, is that we can write 

/4 h12(v')]dv i  
he  (v)- e  12 	h 12(0=  3L1:1 

    

-1/24 In 
h12(vi)  dv' 

 

on right hand cut = v i(vd-m' 

7c.m. (III 2.7') — co 	v'(v'—v) 

 

by.  Cauchy's integral formula (if both integrals exist). 

(III  2.6) 

	 N(v') 

v'(v'—v) 
(III 2.7) 



v--(1/y2-1)2  v°--(1/y'2-1)2  E(v)=I1G(v)-he(0)-a/m 

(y) 
	

(y)/y 9 p(v)-- Z(37)- 	(Y)/37 
(III 2.9) 
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In the corresponding expression of method 1) (III 1.9) 

al2(v.)1/E/z im42(v 1 )], which is 

unknown, since it involves Re 	12(v')' 

Again, for the numerical ini;egration of equ. (III 2.6), 

it is convenient to make substitutions to improve the 

convergence 'behaviour at the end points of the range. 

,-1/2 a 
ov 	converges, but the integrand is infinite 

at the origin. The substitution v'=y2  eliminates this 

difficulty. t, substitution is also made to reduce the 

integration range to finite limits. In equ. (III 2.1) 

it is convenient to subtract N(v), so that only the 

combination [N(v')-N(v)]/(v'-v) occurs. The residual 

integration can be performed e=ctly and is elel:lentary. 

vN(v) 
Namely ---- 

qz 
(III 2.8) 

We now make the following substitutions in equ.(III 2.6) 

H(yv)-H(Y) 
?IL (y)----37-I-7(y)+ 

 

)11(y° )dy'F(y',y) 	(III 2.10a) 

 



1 
TTyf )-Yr /Y111(Y) F(y'

ly)dy t  
Y' -Y 

(III 2 -1 ,)1-:) 

F(yr,y).= — y(1 -y2) 	 
7(7 1 _y!2 )2 4.m2y ,4 (y1.17)(2y2yf 2-y2...yf 2 )  

Y r2 
 

-64- 

Tl(y) 	X.+11 

	

Y   X 1n--1 
x-11 

where 
(III 2.10c) 

and we also have h(y) = ruy) (y ) -1 (III 20.11 

and the square of the CM momentum is related to y by 

the expression in equ. (III 2.9). 

The solution of the system of equations is performed in 

the same manner as in section 1) of this chapter. Since 

7111 and h are two by two matrices we have indicated 

below, more explicitly, the actual matrices involved in 

the numerical solution. 

Y712(1)7  

912(n)  

7/722 (1  ) 

-I.

Y1E11 (1)  

YnHil (n )  

5r1H21 (1)  

YnHi (n )  

 

Y1H1 ( 

YnH12(n)  

Y1H22(1)  

YnH22(n) 722 (n) 

 

   

   



-K11 (1  31) 	 K11 	' (1 	n) K12(1 ,1) 	 K12(1n) 

K11 (n,1  ) 	 Kll (n Ki2(n51) 	 K7n) 12 (n 5n) 

K21 (171  ) 	 K21(1,n) K22(1,1) 	 K22(1,n) 

K21(n71) 	 K21(n1n) K22(n:1) 	 K22  (nn) 17 22 1 ( ri 	( rl )   1 /4. 

(III 2.12) 

Each element of the K matrix is composed of the factors F(yiori):  the quadrature 

weightingfactorsw.: and the exchange terms 

H(yi)-H(yj) 

Yi  - Yj  • 

For the diagonal terms i=j so we must employ the derivatives of the exchange terms. 

These are calculated by a differentiation under the integral si;n of equ. (III 2.2) 

In practice n=30:  so we had to deal with a 60 x 60 K. 
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A direct integration of equ. (III 2.10b) then yields 

for any value of"/ in the physical region, since this 

only involves a knowledge of 	at the grid points (known 

from the inversion od3-K) 7-S being the Kronecker delta.) 

The solutions h11  , h12  , and h22  are then multiplied by 

the appropriate Clebsch-Gordan coefficients to give states 

of orbital angular momentum 	. The resulting amplitudes 

satisfy the unitarity condition stated in equ.(II 2.23) 

and can be expressed in terms of phase-shifts and coup-

ling parameters as follows 

hJ-1 7J =tip"Lcos 2EJ  exp(2SJ-17J  )-1 

hj+i  9j =tip { cos 2EJ exp (2iSJ+1,J)-1 

hJ 	_ E 
p sin 2E 	exp 	j_i 	J+1 ,J)1  - 2 

(III 2.13) 

(the first suffix referring to the orbital angular momentum). 

In the case of the J=1 triplet states, we also evaluate 

the determinant of the 2 x 2 matrix 	at 10 points 

between %)=0 and -0.2. As explained by GGMW, section 7, 

we expect it to vanish for a value of V such that 

s-mD
2 =0 	mD is the deuteron mass. 

i.e. 	+('U +m2)= mD2  or 	'D
2/L_m2 

Equ. (III 2.10b) is used for this calculation, and in 

chapter V we have plotted this determinant against -1) 
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CHAPTER IV 

DETAILS OF NUM=ICAL AND CUPUTATIONAL TECHNIQUES 

Although some of the early development work was 

performed on the London University ATLAS computer, the 

main body of the work was carried out on the Imperial 

College IBM 7090/1401 system. 

In this chapter we describe the function of 

each individual subroutine, how the various subroutines 

are connected, and we also give flow diagrams to 

indicate how the whole computation was executed. 

If during the execution of routine A, transfer 

is made to routine B, then we say 'A calls B' ,and in 

general B will then 'return' to A. We have indicated 

our subroutine names by capital (upper case) letters. 



- 68 - 

The folloTing subroutines are the same for both methods 

1) and 2) of chapter III . 

INVERT --- The standard matrix inversion subroutine 

obtained from the IBM Fortran SHARE library. 

POLY -- Generates the first seven Legendre Polynomials. 

MESONS --- Given any pair of values of v and z (square 

of CM 3-momentum and cosine of scattering angle for 

channel I), the Mandolstam variables and related para-

meters for channels I and II are evaluated. (We recall 

that t'1.e contributions from channels II and III are 

identical). The actual variables calculated are 

t, T  9 T 2, E2, q2, X2, T 	T2, T
3
. The appropriate 

formulae of chapter II section 4 are used, and these 

depend on the sign of X2. As we have indicated previously 

only the real parts of T, and T
3 

are required. 

.Z.3SORB --- This calculates the absorptive parts of 

the ± 'amplitudes by employing equations (II 4.14 and 

II 5.13). The crossing in I-spin space and the eval- 

uation of In T and In T 4   from Ian( T3 	
(+ T4  ) are also 

carried out automatically. The subroutine 

CROSS - 	employs the values of the parameters 

calculated in MESONS to evaluate the crossing matrix 

X , equ. (II 3.8). ABSORB then employs this matrix in 

order to calculate the variables in oqu. (II 5.7).  
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SOURCE 	This subroutine evaluates the contribution 

to In h from the one pion exchange terms directly 

since it only involves the calculation of the app-

ropriate Legendre polynomials. The two pion con-

tribution is then found by porforming the integration 

over the z variable [ qu. (II 5.7)] of the terms 

calculated by the previous three subroutines. The 

limits of integration depend on the value of v, and 

the range must be divided into three regions if 

p2+LI2+2p..2. <0 [see analysis following equ. (II 4.18c)]. 

The routines ABS0213, CROSS, and MESONS share 'common' 

storage., so that the variables calculated by MESONS 

are made available to the other routines. 

Execution of Method 1) 

In Fig. (IV 1) we have given a. flow diagram of the 

subroutines. A straight line indicates a direct 'call' 

fron one routine to another, a broken line indicates 

that a routine lower down the chart uses inforaation 

already evaluated and stored by a routine above. A 

wavy line indicates that a routine lower down the 

diagram refers back to a routine above. We have in-

dicated the various stages of the ciculation within 

the main routine by the numbers 1 . . 6. 
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[1] Selects the net points (yi) of equation (III 1.20) 

according to the Gaussian integration method. The app-

ropriate weighting factors etc. are made available to 

all subroutines requiring integrations. The subroutine 

KNLFAC 	is t!.len called and this evaluates"' and f"' 

at the net points. The factors in equ. (III 1.20) 

apart from the source term R(y,i ) are stored in a 

matrix F PARTKL' since this will be the same for all 

partial =ves. 

[2] Selects the partial wave required --read from 

input data. The program was written so that either 

the one pion or both one and two pion exchange terms 

could be considered separately. The choice is also 

J. made at this .stage. 

[3] The source terms R(yi) are evaluated by calling 

ABSORB, CROSS, and MESONS, The integral equation is 

now of the form 

[]=[1+h(0)1-1  ]y2-[Kernel][] 

in an obvious matrix notation. The matrixil+Kernel 
›fte• 

is then inverted in section [4 matrix multiplication 
giving the required values of 
[5] chooses the laboratory energy for which the phase- 

shifts are required. E=2v/m 	and the value of c at 
ta6 

the corresponding value of y is found using 

4(-  The numerical accuracy of the inversion routine 

is checked by verifying that MM 1=l (error <10-6) 
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— 71 — 

BAKSUB 	The solutions ;2(y) at the n Gaussian net 

points, having been evaluated by section [4] of the 

main routine, are placed in a coLmon storage block, 

so that  they are available to this subroutine also. 

Direct integrations are performed corresponding to 

equations (III 1.21, 1.23) to yield D(y) and N(y) at 

the required value of v. Since D is complex in the 

physical region, full use is node of the machine soft— 

ware which facilitates complex arithmetic. The ratio 

N/D is then. calculated and returned to the main routine 

where the phase shifts are calculated using equ. (III 1.24). 

Estimation of the nunerical accuracy of the N/D method 

is then perforaed by section [6] of the main routine. 

Thusi perforing only one subtraction in each of the 

Im h(vI)dv° 	v 

v'(v°-v) 

Im h(v I )dv °  
	 (IV 2) 
v'(v'—v) 

Having selected the required value of v (in practice, 

corresponding to a 1...,boratory energy of n/4 pion 

masses ---n=1, 	. ,12 ) and evaluating h(v) by BAKSUB 

the integrals in the above equation are evaluated, to 

give a further check of the accuracy of the method. 



INTGL 	This performs the left hand integration for 

v=- co to -1/4. v>0 so no difficulties arise from a 

vanishing denominator. a(v')=Im h(v')/7c can be found 

for any value of v °  on the left-nand cut by calling 

the subroutine SOURCE. However, to save a considerable 

amount of computer time, we employ the sane net points 

as in the integral equations, use the same substitution 

as before, and employ those values of a(v') already eval-

uated and placed in common storage. The value of the 

integral is then returned to the main routine. 

INTEGR This routine performs the integration on the 

rigt hand cut. Some difficulties arise because 

1) v' can equal v 

2) v'=0 is in the integrc'tion r=ange, 

so the denominator vanishes for some points in the 

integration range. The second of these is easily over-

come when we recll that 

h(v°)= 	+02 h(v ) 1 

in the integrand. The behaviour at the origin is thus 

1/Wv° , and the inbe3ral is easily performed if we 

me,ka a substitution of the form v'=z2  (or higher power). 

The integral now hats the form 
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dv' (IV 3) 
ylV '(v '+m 2)1 v'- v 

The difficulty arising from the vanishing of v'—v 

is overcoEle by rewriting equ.(IV 3) as 

W v . )1 2 	111(1))1 2  
V - V 

(Iv 3') 

The final integral contributes an imaginary part 

equal to Ia h(v) in virtue of the unitarity condition 

(as, of course, it should), and a real part 

X 	1—X In 	{ h.( v  ) 1 2 = 	11( V ) 
	  In l—X  

1+X 	1+x 

(IV 4) 

and 

  

v+m 

Slightly different raothods were employed for the actual 

numerical inte rtion, but almost identical results were 

obtained. 



1) The range was split into two regions 0 to 1 and 

1 to co. In the first region wo substitute v'=z2  
(IV 5) 

in the second region v'=1/z2. 

It is alwLys an advantage to =.ke both sets of limits 

reduce to the interval 0 -..*1 , then both integrations 

may be carried out simultaneously since the sane net 

points and weighting factors are employed. 

2) Alternatively, we can make the substitution 

v'=(1/z 2-1)2 	(IV 6) 

as is done in chapter III section 2. Again the 

integration range is reduced to the unit interval. 

3) The real part of equ. (IV 3) nay be written as 

v /2 	dv' 	lh(v r )12  

     

 

v'(v'+m2 ) 

  

V — V 

(Iv 7) 
In h(v')-In h(v) 

V 

7C 
	vt(v'-v) 

and then we need no further compensating term since 

In h(v) .Re 

I- 

co 
dv'  

v'(v'-v) 
v /2 

0 	(IV 8) 

dv 
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Both integrals in equ. (IV 7) are easily evaluated 

numerically by e7:Iploying substitutions siziilar to those 

outlined above. The integration ranges are again reduced 

to the unit interval for convenience. Note, however, 

that in 2.11 these methods TO must repeatedly call 

BAK= in order to find h(v') at the required points. 

We can ensure that the derivative of h(v) is never 

required :---- one might expect it to be pn examining 

the second integral of equ .(IV 7)---since we have 

only to ._lake sure the Gaussian integration points do 

not coincide with v. 

The final results are returned to the main 

program and added to the results from INTEGL. We can 

then coopore both sides of equ.(IV 2). Using our 30 

point net (5-point Gaussian foraula repeated 6 times) 

resulted in an error of only 3 or 4 % at worst, the 
actual error depending on the partial wave chosen. 

IThen only the one-pion exchange terms are considered 

both sides of equation (IV 2) agreed to 5 significant 

figures. 

After section [6] has been executed, control is 

transferred back to section [2], and the next partial 

wove is selected. 
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- 7? 

For method 2) (the coupled triplet amplitudes), 

we have again drawn a flow diagra consisting of 9 

sections. [1] performs similar functions for both 

methods, the only difference between the two methods 

at this stage being that instead of KNLFAC, the routine 

FACK1L is called at this point, and this evaluates the 

function F(y',y) of equ. (III 2.10c). Sections [2] and 

[3] are identical for both methods, but in section 

[4] INTEGL is called. This performs the same functions 

in both ae,thods, i.e. evaluates the exchange terms 

he(v)-0(0) 	the first integral of equ. (IV 2). All 

these functions are 2 x 2 matrices as we emphasized 

in the previous chapter. In section [5] the approp—

riate kernel is inverted and the numerator function 

is evaluated at the net points. In [6] the energy is 

selected and the numerator found at the corresponding 

point by a call to BAKN — analogous to BAKSUB of 

method 1). [7] calls the routine DANDH which eval—

uates the denominator and the h(v)I s using equ. 

(III 2.10b). We recall that h=ND 1. If J=1 the routine 

DENLFT is called, and this computes the determinant 

of the denominator function at 10 points on the left 

hand cut, in the region where we expect the deuteron 

to be located. 

*In the present method he,(v) is also required, and 

is obtained by a differentiation under the integral sign. 
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In section [8], the matrix h(v) returned from 

DANDH is fad into TRPLET  which multiplies the amp-

litudes by the Clebsch-Gordan coefficients of equs. 

(II 2.23), and evaluates the phase-shifts and coup-

ling paraLeter by using equs. (III 2.13). Again full 

use is made of the software to handle the complex 

arithmetic. In [9] a checking procedure very similar 

to the one outlined for method 1) is performed. This 

again uses the routines INTEGR and INTEGL. It is 

a further check to note that we consider the amp- 

litudes h11, 	12 and h22  in order to verify that 

equ. (IV 2) is satisfied. The numerical techniques 

required for this section are, of course, the same as 

for the corresponding section of method 1). Again 

after the execution of [9] control is transferred to 

[2]. We observe that the above checking procedure 

cannot be used for the J=1 state, since there is an 

extra term (residue/(s-mD2)) that must be added to the 

left hand side of equ. (IV 2). 
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We now give the various Gaussian quadrature formulae 

employed in the calculation. 5, 8, and 16 point formulae 

were used for the net of the integral equations. Very 

satisfactory results were obtained when 5 points were 

used to represent the one pion contribution region 

(-14-  to -1), and 25 points (5 times repeated 5-point 

formula) to represent the region -1 to -CO. We have 
b 

f (X)dX= 	CO 9  and the numerical values of the 

w's and t's are given by 

tl= f(a+b) + f(b-a)t 

wt 
	t 

.09472530 .095012510 

.091301708 .281603551 

.084578260 .458016778 

.074797995 .617876244 

.062314486 •755404408 

•047579256 .865631202 

.031126762 .944575023 

.013576230 .989400935 

8-point 

.284444444 .000000000 

.239314335 .538469310 

.118463443 .906179846 

16 point 
	

5-point 

t also takes the same values as above but with the 

negative sign, the same weights being attached as 

above. 
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CHAPTER V 

RESULTS AND CONCLUSION 

We now display graphically the energy dependence of 

our phase shifts. As well as our final results calculated 

from one and two pion exchange we give the corresponding 

graphs for one pion exchange only (OPEC). When the OPEC's 

consist of a series of crosses this indicates that the 

results were obtained by our own calculation only. 

Otherwise (for the higher angular monenta) they are taken 

from the paper of Amati, Leader and Vitale (2) (ALV), but,   

of course, we were able to reproduce these results also. 

We also display the results of those experimental 

groups given in ALV, and have followed their abbrevia-

tions e SMMN (1  '), YLAN 1 (14) and YLAN3M (15). For the 

lower angular momenta the results of Scotti and Wong are 

given (SW3) and these agree closely with those of the 

Yale group (YLAN 3M) or the Livermore group (private 

communication between STAPP and SW). 

In the paper of Galanin et. al (4) two sets of 

results are given; (a) OPEC 	Two pion contribution 

(b) Supplementary contribution 

from the 0 meson. 
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We repeat only the results of (a) since these are anal-

ogous to our calculation. For most of the 1=0 phase-

shifts (even for the higher angular momenta) the para-

meters have either the wrong sign or are too small in 

absolute value when compared with the experimental results. 

For some of these cases we have not attempted to include their 

(I=0)results on our graphs. The Galanin calculation is 

her,,,!ifter referred to as 'G'. For the uncoupled states 

some of the results of the one and two pion contributions 

calculated by the Tamm-Dancoff method are displayed ---

Gotsman and Hochberg (6) (GH). All our parameters are 

measured in radians, and the laboratory energy E in pion 

masses. 

Before we give these results the deuteron bound-

state (see Fig. V 1) is discussed. It is seen that the 

determinant of the denominator function vanishes at 

V = -0.09 and -0.127 for OPEC and OPEC+TPEC respectively. 
7.4,0,,theev4- 	fettlt-u.,5 Mae 

4(V+m2)=mDD-2m),G4dso the binding energy 

(the difference between the mass of two nucleons and that 

of the deuteron)is just the numerical value of V/m 

(pion masses). Multiplying by the pion mass 137 MeV we 

obtain the respective values of the deuteron's binding 

energy .-- 1.75 MeV (OPEC), and 2.45 MeV (OPEC+TPEC) 

compared with the experimental value of 2.2 MeV. 
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Although the 
	and 331 

phaso shifts were not calculaLd 

nar Elab.
=0 we expect our graphs t: have turning pints and 

pass through the origin. 
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The corresponding Galanin results are .001 9.007,0022,0044 

radians at 409 1003200,300 MeV respectively (incorrect sign). 
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Galanin gives values of 5x10-60.2x10-459x10-4,2x10-3 radians 
at 409 100,200,3oc MeV respectively. 
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For the 1 S0  and 3S1  phase-shifts our results follow 

the general shape of the SW and YLAN 3M graphs and are 

considerably better than the OPEC results. The numerical 

values of the 1 S0  phase-shifts are, however, rather poor. 

Since we have neglected the more complicated exchange 

processes, and would expect these to be important for the 

S-waves, the general tendency of these graphs towards the 

experimental results is rather encouraging. We suggest 

that this is mainly due to the fact that we have supplied 

the actual values of the scattering lengths from exp-

eriment. 

The 1 P1  and 3P1  phase-shifts have the wrong sign and 

even the OPEC results are much better. It is interesting 

to note that the Tamm-Dancoff method (GH) also yields / Pi  

phase-shifts with the wrong sign. Our 3P0  and 3P2  phase-

shifts are beginning to show the characteristic shapes of 

the SW results (which closely follow experiment (3)). 

Again the numerical values are rather poor but consider-

ably better than the OPEC results. The il)2  phase-shift is 

much too large, and the ALV and Galanin results fit the 

experiments very well. For the 3D2  phase-shift the OPEC 

te=s are closer to the experiments than our results 

which are, however, good up to 60 MeV. The ALV, GH, and 

Galanin results are much too small in the whole range. 
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The 3D
3 

phase-shift is considerably closer to the YLAN 

results than that of ALV. The Galanin values are much too 

large, and the OPEC values have the wrong sign. Our €2 
mixing parameter (and that of Galanin) is much too large 

although ours has a similar shape to the SW results. The 

OPEC values follow the S;1 graph up to about 60 MeV. 

Jur 1 F
3 

phase-shift has the same general shape as the 

graphs of ALV and YLAN 3M, although our numerical values 

are too large. The OPEC results follow YLAN 3M up to about 

100 MeV and seem  to fit the YLAN 1 results better for the 

higher energies. The Galanin values are too large and have 

the wrong sign throughout the range. For the 3F3  and 3F 

phase-shifts the OPEC results are too small and our results 

too large. Again (together with ALV) we have obtained the 

general curvature character of the SMMN graph. For the 3F3  

phase-shift Galanin's results are much too small in 

3 

abs-

olute value, but for the F4  phase-shift they fit SMMN's 

results quite closely. Our C.:3  mixing parameter, together 

with the OPEC results fit the YLAN 3M graph very well. 

Galanin's values are, however, very poor. 

Our 1 G4  and 3G4  phase-shifts are similar to those of 

ALV and fit in fairly well with the experimental results. 

From the 3G4  graph we note that the OPEC results are also 

quite good. On the other hand, for both phase-shifts the 

Galanin results are much too small. 



- 109 - 

Our 3G
3 

phase-shifts follow those of MAN 1 quite closely, 

but the ALV results begin to diverge from these at about 

100 MeV. In the low energy region (<100 MeV) the OPEC 

results follow the YLAN 3M curve. The Galanin results 

are again too small by a factor of about 10 2  (in absol-

ute value). For the 3G
5 

phase-shifts a similar situation 

occurs ..our results follow the YLAN 1 graph but are a 

little too large. The ALV results diverge considerably 

from both of these and vanish at about 250 MeV. The OPEC 

and Galanin graphs follow the YLAN 3M phase-shifts quite 

closely. Our E. 4 mixing parameter follows the SMMN graph 

more closely than do the ALV results. The Galanin values 

are too small in absolute magnitude by a factor of about 

1/10. 

For the 5  phase-shift we have a graph of similar 

shape to that of ALV but our values are too large. Again 

the Galanin results are rather small in absolute value. 

For the -' 
7,  
11
5 
phase-shift the OPEC results are Mood 

Lux 
approximation to the SMEN graphs,4a.nd•both our calc- 

.ulation and that of ALV tend to :ostpimmoolt 	bviaur.  

For the 3H4 phase-shift the results of ALV, SMMN, and 

SW agree u.o to about 150 MeV and then begin to diverge, 

the ALV graph following =DT most closely. The Galanin 

values are again too sc:Lall. 
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For the E5  mixing parameter we have an interesting 

situation—the OPEC results follow the YLAN 3M graph 

closely up to about 150 May and our results follow 

those of YLAN 1 more closely. ALV's results are similar 

to ours but a little larger. 

In view of the discrepancies between different 

experimental results, and the fact our results using 

one and two pion exchange tend to adhere to one set 

and the OPEC results to a different set for any 

particular graph—this adherence being inconsistent 

for different graphs --- does not enable us to draw 

any absolutely firm conclusions about our results. 

However, except for some of the P waves our graphs 

have the general curvature characteristics of the 

experimental results and the correct sign. Whereas 

the OPEC results in general are smaller than the exp-

erimental values, our phase-shifts are a little too 

large —produce too much attraction. Evidence of this 

is also found in the fact that the OPEC underestimates, 

and our results overestimates the deuteron binding 

energy although our results do come closer to the 

experimental value. We conclude that using one and two 

pion exchange contributions produces a fairly adequate 

description of the NN interaction at least for the higher 

partial waves within the energy range investigated. 



APPENDIX. A 

If accurate solutions to the coupled integral equ-

ations are required we may be forced to invert very 

large matrices (containing four times as many elements 

as those for the uncoupled equations). This can lead to 

computational difficulties due to both numerical and 

time-consuming considerations. We also have the branch 

cut in h12(V) which leads to the difficulties described 

in chapter III. It may, therefore, be useful to solve 

the equations by inverting a comparatively small matrix, 

and then to improve the solutions by a small number of 

iterations (one iteration may be quite adequate in some 

circumstances) using the method outlined below. 

Our approximate solutions are h11 ,  h12, and  h22 

satisfying equ. (III 2.3) on the right-hand (physical) 

cut. Also, on the left-hand cut 

Im 12 = ImE h12 "12(v)" 

Im h 11 = 11( v):11.  

Im v )it 22 	22 

The unitarity condition can be rewritten as 

(A 1 ) 
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Im h11 = -E- 1 h11 I 2 4. PE
21h1212 m  

P 	* 
Im>12= E- ( h1 1 )112 +)i,  h ) 12 22 

Pi 
Im 1122= E 1  h22 1

2 	pE 
+ 7 I il 12 12 

m 

(A 2)  

The exact solutions we seek will satisfy equations of 

the form 
-1/4 Im h(v t )dv' 	v 	Im h(v ° )dv' 

h(v) = 77-t. 	v i(v 1 -v) 	7 	v°6)'-v) 
(A 3)  

+ h(0) 

except for the case J=1 when we must also include the 

deuteron pole term gp2/ 	v +4,) • We now define 

Re h = hR 
	

(A 4) 
Im h = hI 

and let us suppose that a better approximation to the 

solution of the system (A 3) is h+ c, and powers of e 
above the first may be neglected. Then using the fact 

that our approximate solutions will satisfy unitarity 

exactly*, and imposing the following conditions on the 

E to ensure our improved solutions do so also 

* This is ensured by the N/D method exactly, even if our 

integration formulae are very crude. 
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2pr g R,R , I 	+ 2pEr E  FOL  R 	I 

C11_ 	
n + h = 	L 	11 11 	11 11 J 77372' 12/(12+  12 

L _ 
	re  R. \ R.+  R h  R 

12 	E 	11 '1412 	`1.2 11 
I I 

%-11/12 h1
I  
1 

+ € 22  
(A 5) 

c. 

	

I I 2I 	R 	R 
12 	12 	2 	22'112 + 12 h22 

2p R  E  I 	 R g 1, 	2-11.1S 7 +-"Cg 	R 	I -1%  
22 =T 	22 h22 	22n22 + n2  L  12 / (12 	 2 IL 12 

v'(V'-v) 

R

I(  

E 12(v)=Al2(0+ IT, wE 10)1/dv ' 

n 	
vt(v'-v) 

Rco  E 22" 
i f. ,, 

)dv, 
€ 22(v)=A (v)+.- 9r 	 n L  v'W-v) 0  

The functions All  etc. represent the difference between 

the two sides of ecii. (A 3) using our approxivate 

solutions h(v), and as usual9 denotes principal value 

integration. This syste'l of three linear simultaneous 

algebraic and three integral eauations can easily be 

solved appr .xizliJ.tely by first taking E n  =An  etc. and 

then substituting into equ. (A 5) to find the imaginary 

parts. The next approximation toe11 etc. is obtained 

we find that thee satisfy integral collations, viz. 

E 11(v)" (0+ 	1 
E 
 11)

, 
 )av c5  

(A 6) 
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by nerely integrating the right hand side of equs. (A 6). 

We could then expect our new solutions h+ c to be 

considerably better approxiiiiations to the solutions 

of equations (A 3) than h alone. 

APPENDIX B 

We now suaiarize those misprints occuring in GGMW 

which we have corrected in our work. 

Our equ. (II 2.18) corresponding to Gaig equ. (4.25) 

(II 3.5 ) 	 (4.31) 

(II 3.8 ) 	 (4.34) 

(II 4.14) 	 (B 9 ) 

* 
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The Zilch in General Relativity. 

K. S. FELDMAN 

Mathematics Department, Imperial College - London 

(ricevuto it 16 Settembre 1964) 

Summary. — The conditions for the vanishing of the covariant divergence 
of traceless, bilinear combinations of Van der Waerden spinors are investi-
gated. for the electromagnetic field in the presence of gravitation, and 
the free gravitational field. 

1. — Introduction. 

LIPKIN (1) has recently discovered the conservation laws of Zilch for the 
free electromagnetic field, and these have been simplified by KIBBLE ( 3 ), using 
the notion of a dual tensor *.Zi7  ab . The aims of the present paper are to show 
how the same results may be easily obtained using spinors, and how they may 
be extended in the presence of gravitation. We refer extensively to the work 
of PENROSE ( 3 ) (on the application of spinors to general relativity), and here-
after abbreviate it to P. Any equations we require from that paper will be 
denoted by (P 2.12 etc.). The third-order tensor zabd  (and its six-index spinor 
equivalent) of KIBBLE and LIPKIN, will be called « 3-Zilch s, and in Sect. 2 
we investigate its properties in spinor formalism. 

Section 3 is devoted to the determination of conditions for the 3-Zilch to 
remain (covariantly) divergence-free in a gravitational field, and in Appendix A 
we outline a proof that its divergences all have the same form. In Appendix B 
we define a 10-index spinor analogue of Zilch for a free gravitational field in 
empty space. 

(1) D. M. LIPKIN: Journ. Math. Phys., 5, 696 (1964). 
(2) T. W. B. KIBBLE: Imperial College Preprint, ICTP/64/55, submitted to Journ. 

Math. Phys. 
(3) 1Z. PENnosn: Ann. Phys., 10, 171 (1960). 
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In order to obtain conservation laws from a vanishing covariant divergence 
a procedure explained by EDDINGTON (4 ) (Chapter 4) is employed. See also 
our conclusion. 

The notation is as follows (suggested by PIRAm (5)) : a, b, c ... denote ten- 
sor indices; A, B, C 	undotted spinor indices; and Z, Y, X ... dotted spinor 
indices. The antisymmetric spin or eAB = EAB takes the value +1 for AB = 12. 
The spinor covariant differentiation operator is 	and ❑  =VAlvV,,,, =VA,,,VATv. 
Symmetrizing brackets are used as follows: 

1 
X (ABCD) TO: 

all permutations of ABCD 
x) . 

2. — The 3-zilch in spinor formalism. 

The spinor equivalent of the Maxwell tensor Fah  is given by 

(P. 1.3) 	 WB 	('t AB STYX + R TWA' ) 

and that of its dual *Fob  by 

(P. 	1.5) 
	

*PI  All'BI 	;11?. 1(AB (P11-.X 	99.4B iv x) f 

where IT is symmetric. Adopting Dibble's definition (2) of 3-Zilch 

(2.1) 	 Zac,i = *Fab  Fbe,a —*-Pbc,d-11"b  

. and replacing tensors by their spinor equivalents, partial derivatives by co-
variant spinor derivatives, and remembering that V commutes with s, we find 
that the spinor equivalent of the 3-Zilch is given by 

(2.2) 	 ZATVC EDZ —  WV  D Z (PA  C (P A  D Z (Pr  y) • 

(Cf. the density/current of, e.g., the Klein-Gordon field: 

99697,) • 

The symmetry z",= z", follows immediately from the symmetry of g); note 
AW replaces a, CY replaces e etc. Now in charge-free empty space, Maxwell's 

( 2) A. S. EDDINGToN': The Mathematical Theory of Relativity (Cambridge, 1960). 
(5) F. A. E. PIRANI: Lectures at King's College London. 
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equations and the wave equations take the following forms respectively N: 

(P. 3.10) 	 VA1V TAB  _ , 	
vAwm,rx = 

(follows (P. 3.13)) 
	

ET AR 	IFABOD TCD  — 3 49,1B 1 	°TB:,  X — tif  TV X YZ 

where A is the cosmological constant, and T, which is totally symmetric, is 
part of the spinor equivalent of the conformal tensor (P and Appendix). 

The vanishing of all the contractions of the 3-Zilch now follows imme-
diately from Maxwell's equations and the fact that rp is symmetric—which 
implies ( A A  = 0 etc. 

We now discuss the various divergences of the 3-Zilch. Covariant differ-
entiation, contraction, and a trivial cancellation, lead immediately to 

(2.3) 	via 7/111,  cy.oz 	i WV I  DTA _ TA, L9-511,  r) 
	2 
	y yrA cap TBD (pA TIC yxz  9,1"Z ). 

In a flat space-time ap, A and 	all vanish, and so does this divergence, by 
inspection. The only other independent divergence is obtained by a differ-
entiation with respect to C, Y; recall the symmetry in A, C; W, Y. We find 
(after altering the positions of some dummy suffices) that 

(2.4) 	V"Z"cypz =2 i(C`"VCIVDI TA°—  T AcVor VDI99") • 

In a fiat space-time, we may alter the orders of differentiation, and then Max-
well's equations tell us that this quantity vanishes. In the Appendix we dem-
onstrate that (2.3) and (2.4) have the same form. 

3. — Conditions for the vanishing of the divergence. 

From (2.3), we see that the divergence will vanish if, and only if 

(3.1) 
	

VT% WAR TCD T AB !I/WI yz  

Since the complete classification of all solutions of this equation is rather 
involved, it suffices to demonstrate that (3.1) is satisfied for some cases of 
physical interest. From P. Sect. 4, we see that T AB  -=-:11(6011B +0A  riB). 0 and 
n are termed « Electromagnetic Principal Null Directions », where the null 
vector Oa has spinor equivalent OAP', and similarly for n. Should 0 = =2,c, 
say, the electromagnetic field is termed «Null », and k", with spinor equivalent 
;-4 A ;.-iw  is the direction of motion of the wave. This is the case of an electro-
magnetic plane-wave, and 99' = xArR  In the sane way the spinor P may be 

CO 
CO 
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decomposed as follows : 

ABCD 	 fl B7 0 6  D) 

a, fl, y, 6, are « Gravitational Principal Null Directions ». It is, then, easy to 
see that both sides of (3.1) will vanish if a) a = = y = S = 0 or 7) (to within 
a scalar factor), or b) 0 = 7y = %, say, and ;.c. is equal to any three of a, 	y, 6 

(again to within a scalar factor). 

4. — Conclusions. 

It has, therefore, been demonstrated that for an electromagnetic field in 
a curved, charge-free, empty space-time, we may define a bilinear, trace-free 
combination of spinors, whose divergence vanishes in physically interesting 
circumstances. 

We may, of course, define similar expressions for the gravitational field 
interacting with meson fields, neutrino fields, Dirac spinor fields etc., and it 
may be of interest to discover under what circumstances these have vanishing 
divergence. 

It should be.  noted that the vanishing of a covariant divergence does not 
immediately imply a conservation law. We have first to write it in the form 
of the ordinary (partial derivative) divergence of a tensor-density. This will 
be the sum of the Zilch tensor-density and a « pseudo-tensor-density », defined 
from a convenient Lagrangian. For the details of this procedure see ED-
DINGTON (4) (Section 59) for the ease of the Material-Energy-Tensor, or any 
standard work on General Relativity. 

* * * 

The author would like to thank Dr. S. HOCHBERG for his continual encour-
agement, and the D.S.I.R. for financial support. 

APPENDIX A 

We now prove the result quoted at the end of Sect. 2. The spinor equi-
valent of the Riemann tensor is given by: 

(P-3.4) RAW B XOYDZ = 2 (ZABCD EW% EPZ T ECD yABPZ X + EAB q)  TV %CD EY 7, ± AB ECD 	Z) 

(P-2.2) 	ZABCD = 1  ABCD T 2 I3(E ACEBD + AD EEC) • 
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W corresponds to the conformal tensor, and o9 r ABYZ to the Einstein tensor. 
In the case we are considering (P-3.11), au ABW Y = TBA QJWY • Using (P-2.14), and 
noting that any spinor may be written as the sum of products of one-index 
spinors, we obtain the following results: 

(A.1) 

(V CP V D P  VDPV 0P ) T AB  

E 	

— 

(V Y VE  Z 	EZV E  AT AB  

(VCP VD P  VDp VCP) sow/ = 

(VBy 	VEZVE  Y)47)wx  = 

ZCDAll  THB  )(CD"  T A  H 

(F AH yz 9,11B 4_ T I311.rzT AH,  

TODWU TuX 	fpan X0 q5uTf7  

27xzWU c)uX 	Zyz. KU (ijul,  

 

These are used in conjunction with 

(P-2.12) V AW V  BX V /̀ BS V AW —  E1VX (V AP V  BP+V BPV AP ) 4-  EAB(V IIWV I 1  X +V RXV HW) • 

Substituting into (2.4) and using Maxwell's equations, we find 

(A.2) Vol' Z Aw  CYDZ 	iT9W  Z(XCD AB  (PH6+ ZCDOff  T A  II) + liTowr  (T AB  YZ TED+ 99.,' Z ry AR) 

i i(PAc(TeDwu  c)uz + TGWU  OW ) 	D (5?Y Zwu  TUY  T 27,YZY  9-9UW  ) • 

Using (P-3.4), (P-3.11), it is seen that all the terms involving 2, and TABlvx 
cancel, and we are left only with terms. Note also that the symmetry of 7-/ 
implies that TAcc'D  etc. vanishes. The final result is 

(A.3) VcY Z AwCYDZ = 

	

	i(95117  Z WA  DBC(BO 	zzy(pxY ) 	(ef. (2.3)) . 

APPENDIX B 

We now briefly discuss the problem of obtaining a Zilch tensor (or spinor) 
for the free gravitational field. In analogy with (2.2), we define 

(B.1) ZAWBXOYDZHP = 11 ;VXYZV IIPWABCD WABOD V  EIPTWXYZ • 

Note, that in empty space CD ABW x = 0 (P-3.3), VI3z WARCD = 0 (P-3.5), and 
El VI  A BCD = 3  VI  (A /3"  WCD)EF — 221/Amp (P-3.8)- 

We see immediately that all the contractions of our 10-spinor-index Zilch 
(10-Zilch), vanish in virtue of the symmetry of Vrf and relation (P-3.5). By 
an argument similar to that in Appendix A, we see that all the divergences 
of this 10-Zilch have the same form, viz. 

(B.2) VilfXYZEI YrABCD TABCDLI  WWXYZ • 
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Using (P-3.8), we see that this vanishes if, and only if 

(B.3) 
	

1If 	
— VIA BCD Tirnr u7 VEz)u v • 

When the Gravitational Principle Null Directions coincide in pairs, Petrov-
type [22], T — ABCD is proportional to Iff(ABEF VcD) " (see footnote (12 ), pag. 189 
of P), so that (B.3) is satisfied. In the case of a plane gravitational wave, 
Petrov-type 11T, when all four principal null directions coincide, each side 
of (B.3) vanishes identically. It remains to show that one of those conditions 
is in fact necessary. Multiply both sides of (B.3) by GO an ocC ce, , fiA AB fie fin , etc.  
in turn, where, as usual, a, /3', etc. are the Principal Null Directions. We obtain 
the following sets of conditions, to be satisfied simultaneously: 

cc•fl cc•yo:•(5 =0, 	fi•ocfi•y13•6=0, y•cf- y .13 	= 

the only solutions of which are Petrov-types [22], H. Since the Schwarzschild 
solution is of type [22], this work may be of some physical interest. 

RIASSUNTO (*) 

Si esaminano le condizioni di annullamento della divergenza covariante delle combi-
nazioni bilineari senza traccia degli spinori di Van der Waerden per ilc amp° elettro-
magnetieo in presenza, di gravitazione, e per it eampo gravitazionale libero. 

(*) Traduzione a cura della Redazione. 
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