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ABSTRALCT

The.nucleon—nucleon interaction is investigated
using the dispersion theoretic formslism of Goldberger,
Grisaru, MacDowell and Wong. The contributions dus to
the exchange of one and two pions are included. The
'N/D' method is employed and the resulting sets of
integral equations are solved to a desired degree
of accuracy by digital computer techniques. 4 partial
wave approach is employed and scattering phasec-shifts
and coupling parameters are calculated for J (total |
angular momentum) =0 ... 5 , at laboratory'energies'
up to 400 MeV. A short discussion of the deuteron is

incorporated and its binding energy estimated.
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CHAPTER I - INTRODUCTION

In this thesis we investigate the two nucleon
interaction;within the framework of dispersion theory
as formulatéd by GOLDBERGER, GRISARU, MACDOWELL and
WONG (l) (hereafter referred to as GGMW). As well as
the well-known one-pion exchange terms (OPEC), phe a
contribution to the imaginary parts of the scattering

fwo
anplitudes due_tq(pion exchange is included, This

oE—Go¥s—riz. by a consideration of the process

x + t —> N+ N in Born approximation.

Although good agreement with experiment should
not be expected for the low partial waves, or for lab-
oratory energies greater than about 200 MeV (since the
éXChange of more massive and greater numbers of particles
becomes increasingly important) we indicate below Why
we consider our calculation to be Jjustified.

Numerous calculations have already been performed
(¢.g. by AMATI, LE.DER, and VITALE (°) (ALV), SCOTTI
and WONG (2) (SW) and GELANIN et. al.(*)). The calculation
of Gelanin et. al. shows little agreement with experi-

ment, and we disagree with their conclusion that a



model of the nucleon-nuclcon interaction based on one

and Gwo meson exchange only is alwost totally insdequate.

The above calculations employ quite differcnt wmethods

from ours for approxinaticg th¢ two plon contribution.

In all ceses a knowledge of the auplituds for the process
w+ x —>W+ N (11)

i1s regquired. ALV cemploy the dispersion relations given

by chew, Goldbergaer, Low and Nambu(ll) for =¥ scattering

wilch involve thc usual auplitudes & 2nd 3. Thus

Ta(i or B) ' A
Re(4 or B) = Born Teras + ———— dv (12)

vV + v

(the notebion is gxplained after sguasions (II4.8)of this
thesis). The dispersion intesrel involves terms waich can
be celculated frou 2 knowledge of the %3 resoncnce of =l
. Fhat 1
scattering. also &LV flndAthe best azrcement with exp-

riasnt 1s obtesined when the p-waeve of the process (I1)

(v}

[¢

above ls represented coanplebsly by the p-meson.

Galanin et. al. cuploy tne work of GaLaMIN and GRaSTIN
(4) to czlculete the process (Il). s series cxpansion of
the corregronding awplitude is obtoined and intesrated

1

dircctly to the desire

dcgree of apjproximobtion 1n order

o

to celculste the contribution to NN scattering.
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2% consider the effect of aultimeson resonznces in

their work. The inclusion of the p for exeouple necess—

itates a cutoff, since tasre 18 & conwsribution to the
5

Pl('E ) teram in the partial wave expansion of (Il).

~

= (1 3)

t - 4m”

z=1 +

and this 1g linearly divergent in the energy s. (t is
the mowentum transfeor). 4 similar difficulty arises

in t2e analogous Teoum-Dancoff calculotion (see for
exeuple GOTLMaN a2nd MOCH3:DIG (6)). 3%, however, consider
such perticles as Regze poles znd they indicate thet
this merely amounts to multiplying the contribution by

a dying exponentizal factor of the form

exp[cp(t-mp2)1n<-l+s/2m2)3 (I 4)

whers mo is the sffective mnass of ths p, znd cQ is left
28 an adjustable paramster. m is the nucleon wmass

of

(6]

(839 MeV). 3W also find it convenient to leave som
the messss of the resonances as zdjusteble parameters
also, sgince if the rssonance is broad it i1s difiicult
w0 attéch a unique exact value. The paransters are then
adjusted to give the bast fit with séxperimental data.
In our work, howzver, a diffesrent point of view

is adopted. The only +teras that ere included are



those which we can compute uniquely and unambiguously.
Using just this simple model, we 1lnvestigate to what
degree of .accuracy experimental data can be reproduced.

In Chapter II we outline GGiW's formulation of the
problem. Since it is obviously impossible to give a
detalled account of thelr paper, we have confined our
sunpary to those sections most relevant to our calculation,
and have endsavoured to be as brief as is consistent with
clarity.

The one particle exchange terms are well known, and
we merely quote them from the paper of CHaRAP, LUBKIN and
SCOTTI (7) (QLS). In order to calculate the contribution
due to the exchange of two pilons, we employ the unitarity
condition of CLS (equation (6.19a) of their paper), which

we write synbolically as

. >
Tm., < fl41i>= [& <152- EF EF (15)
2% Lo a

g 1s the 3-momentum of one of the plons in the CM system
for the process w m —> NN, and the integration is over
all directions in space of either of the pions. 1 and

f denote respectively the 1nitial and final states of

the nucleon-antinucleon pair for the process NN —> NN,
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andt}r denotes the Frazer-Fulco (5) helicity amplitude
for the process Ngx ~> xil.

In Chapter III we discuss how the 'N/D'" method of
Chew and Mandelstam (8) is applied in conjunction with

the unitarity conditions
Imh = 2 | h l 2 (16)
B

which permit us to write h in terms of a phase shif%
as follows

he B o%ig (I7y

p is the magnitude of the 3-momentum of one of the
nucleons in the CM system of the process NN —> NN

(chaunnel 1), and E its energy given by
E® = p® + nm® (18)

Assuaptions about the analytic properties of the
functions N and D are used in conjunction with Cauchy's
integral formula. Th@ reéulting integral equations are
then tramsformed into a form suitable for direct nun~

erical solution by making a change of variable to reduce
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the integration range from an infinite interval to the
unit interval. The phase shifts and coupling para-
meters for each of the partial waves (J=0,5) are com-
puted for laboratory energics %(%)-—o % pion masses.
For the special case J=1, we¢ exanine the denominator
function D for ths coupled triplet amplitudes., Ve
expect the determinant of D (a two by two matrix) to
vanish for a value of the CI momentum v = vy related

D
to the deuteron mass n.. as follows

D
4(vy + m®) = uy? (19)
(see chapter III section 2)

In Chapter IV some of the computational and numerical
details are discussed, and in Chapter V we display graph-
lcally our calculated phase shifts. For comparison,
the corresponding results of other theoretical and ex-~
perimental investigations are exhibited. In the appendix
we outlins a possible procedure for improving the solu-
tions of our integral equations by a combined iteration-

matrix inversion procedurec,
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For future reference we now summarize our input

data.

ll

m nucleon mass 939 MeV
L = plon mass 137 Me¥
g?/4r= 14 and g is the rationalised,

reénormalized coupling constant.

I=1 ‘ '
&p = lSO scattering length -7.7 x 1072 cm.
I=0 "
anp = 5Sl scatterings length +5.4 x lO"lBCm.

for both S-waves our scattering lengths (&) and effec-
tive range (r) are related to the amplitude h and

phase shift & by

~1/a + #rp? (110)

-na (r11)

p cotg
h(0)

I

il
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CHAPTER II

_The GGMW formulation - and calculation of the absorptive
parts of the scattering amplitudes.

In this chapter for the sake of completeness we have
reproduced those sections of GGMW (with suitable modi-
fications when necessary) which are relevant to our cal-

culation.

1) Kinematics and the Mandelstam repressntation

N, and N, are the incoming nucleons, Nl"and Ng" the
outgoing particles. The respective 4-momenta are

1

pls.p23 pl” p2 The process

t LA -
Nl + N2 —> Nl + NE is referred to as

/ 'channel TI'
P \3k\\ - ﬁ channe |
NN
P2 P,

(Fig. IT 1)

We define our scalar product by 4.B = A.B - 4B, and

the Mandelstam variables by

- 2
s = (Pl+P2) |
. ™ - [RAN-] )
t = ~(F~Fy") (II 1l.1a)
T - N R
€ = —(P-P;")
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Energy-momentum conservation implies P +P, = Pl'+P°' (II Hb)
and the 'mass-shell' relations Pl2 = -m® etc.; protons
and neutrons are assumed to have equal mass m. Then

A 2 _ ) 1 t
s+t+t = 6nm = 2P1.P2 + ‘Pl'PZ. + 2P1.Pl

- 2 ., o 1 ' o 2, ~7
= 6m° + 2Pl.(Pl +E, PE) 6w +2P) « Py

=4m® (IT tic)
As explained by GGMW (l) for each isospin state (I=0,1)
we require five amplitudes viz.

J=2 (total angular momentum = orbital angular
momentum)

for both spin singlet and triplet states
(2 amplitudes)

For ¢=J31 +three amplitudes are required
Jd+ 1 —=J+ 1
J~-1—J-1
J =127 + 1
The double arrow denotes two transitions, but due to
time-reversal invariance these can be represented by
one and the same amplitude. |

The Feynman amplitude for channel I can be written

as
izjl - :E:; :E:: rloof g, (I 1.2)

j=1,5 I=0,1 J
The F's are functions of s,f,t;‘pI (I=0,1) are the I-spin

projection operators.
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1t

s
P

The -Cpl denote five independent combinations of S5,T.....etc.

il

(1 -7T, B/ ) (II 1.3)
’ (5 + El":gz)/q'

(the nature of the coupling involved - scee below). The
actual combinations are arbitrary, but the set chosen by
GGMW is convenient when used in conjunction with the Pauli

principle.

Taus Cpll'=~S —’E
cpl® =1+ ¥
cpl® = & - K QI 1.4)
Cpl4 = V + ?7
Cpl5 = P -?;
where
S =-G(P2“§GCP2)u(P1')u(Pl) SCATAR - coupling
T = %E(Pg")%v’u(szﬁ(Pl")C{:vu(Pl) TENSOR "
&= WP, Mu(PE)‘G(Pl'")ib)s (u(Py)  AXTAI-VEGTOR  "II(1.5
V = G(P2")A{Lu(P2)G(Pl‘ )'aﬁu(Pl)" VECTOR "
P = (P, ")Xsu(Pz YU(P, Y u(P) PSEUDO-SCALAR "
~

S etc. are obtained by interchanging the fincl par-
ticles u(Py') <= H("Pz")‘ and can be related to the S,T
gtc. by a Fierz matrix given in GGMW,

The u's are positive encrgy spinors normalized so that

uu= 1
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The full amplitude changes sign when t <«>T and so
does }o (but not ﬁl). The Pauli principle thus implies

s, B t) = (-1 Is, 6, ) (IT 1.6)

If we elso consider the process (as wo shall latcr)
o+ NN, + N.° e
Bl F j2 hl f N2 (Channel IT)
we have the amplitudes ?&I related to the FiI by
Fj(s,T:,t)‘ = F’J.k B F (T,s,t) (I 1.7)
We have suprressed the I-spin indices but these are
implicit in the matrix notation for I-spin. B is the
well known I-spiln crossing matrix _
_13y-13
B‘“Z%ll} II 1.8)
and
-1 6 -4 4 -1
‘ i 2 0 0] L. :
M=%{-10 2 2 1 (I1'1.9)
1 0 2 2 =1
-1 6 4 -4 =1

We essume a Mandelstam representation (Q) for the F's;

. o0 o : [l
/ t St 123(8 ’t )
Fi(5,%,1)- ds at ¥
. . (s'=s)(F'-F)
4m Ly,
CO QQQ . l '
. . 153(5 y ')
Am 4y, .
Q0 Q0
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B. being the one meson exchange terms, i the plon
mass ;nd m the nucleon mass.
We write a similar representation for channel IT in-
volving E}(s,f}t). We must replace the $ by § and the
limits of integration will change in some cases since

the roles of s and ¥ are interchanged. (N.B. if we do

not explicitly mention I-spin indices they are implied)

The Paull principle then leads to

9.1% (s',%') = (_1>j+1f1%(s',2“)

923 (3,5') = (-1 F23(6,T)
Denoting byﬂthe 10 x 10 matrix [ ® B we obtain

91% (s,%) =§13£§12K(E,s)

?1% (s,t) =S1?g§;5k(s,t> (II 1.12)

S2% (%,6) = NxS155GE, o)

These relatior.s enable us to define the absorptive

(1 1;11)

parts of the amplitudes

o3 . ®© P
A-(S,t) = = e -+ =2 .
J i 2 s Hlmt 5 Uy T-F
. i .
CO - . '— 1 @3] o~ o g 1N 3 .
_ Q4 2d(Bs ") b i(T,s") (II 1.13)
L.(T,t) 4t S1z3t v ) I as §10 '
J I 2 A, tr_t 5 s S"—S
HL 4m :
(03] v ' !
Jk / LH—LZ X .t!__t /_an 1 S'.—-s
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These formulae will be employed when we calculate
the absorptive part of the two pion contribution.

(Section 5 of this chapter).

(2) Partial Wave Analysis

In order to carry out a partial wave analysis,
the Jacob-Wick ('©®) helicity amplitude formalism is
followed. Frimes again denote the final particles
A's denote their respective spins. The differential

cross-gsection 1s given by

dU'__ 1 t 2 . V
e bo< A g A, ] (II 2.1)

in the C.il. system of channel I
¢ is a matrix in spin Space, and is a function of the
total energy W. In the C.M. system our Mandelstam
variables have the following form

s = 48% = W% = 4(p® + n®)
-2p® (1 + z) (IT 2.2)
t = -2p® (1 - 3z)

i

T

E,p denote respectively the energy and 3-umomentum of one
of the nucleons, and z is the cosine of the scattering
angle. Suitably modifying the formulae of Jacob and Wick,

the connection between fand”jCi is found to be

:l/’ - 2n o < 'a gy (IT 2.3)
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o . . 1 .
Since the nucleon spin can only ;3ei~2- we attach to A

only the appropriate sign. GGMW now define

f

9()1 = <++|¢}>I++>

J
% 2o (20+1) <110 () b++> doo (B)
J

J -
¢2 = <@l —=> = % Z, (2J+1) <++ITJ(W)! -=> doo (&)
J
J LI
s = <=l ple-> = %Z (20+1) <= I1T9 (@) I+->a11 (§) (IT 2.4)

J

J
(20+1) <+--1TJ(W)1-+>d-11 (@)

¢4 = <+~¢§5} _>

e
[

J
(23+1) <++]TJ(W)I+_>d10 ((9)

keI
]

?55 = <'++l;61+-> =

J

where doo(&) = PJ(Z)
J -
P, -(z)-P (z)

a1o®y - ¥J(J+1) I+l - J-1

2J+1 15" (II 2.5)
3 . v

(d+1)P. (z)+JP_ -(2)

a11(B) = I (2) + =1 Lo

l+z ¢ © 2J+1

J

(J+1)PJ_1(Z)"+JPJ+1(Z) }

a-11(8) =+ J-P(z) +
-7 , 2J+1

1-z
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FMj¢lami¢2J==O,1,2‘“.ibr¢5,¢4,¢5 J=1, 2,

% .es (since dJJ. is only defined for j = j' = 0 and
has the value +1). he usual ccnservation laws for
strung lnteractions imply

(i) ©Parity Conservation

<xl'x2’]TJ(W)}le2> :ﬂ<;hl';x2'JTJ(W)|~kl—A2>- (II 2.62)
(ii) Time Reversal Invariance

<Al‘x2'lTJ(W>lex2> =:<A’x21TJ(W))xl'xg'> (II 2.6b)
(iii) Conservation of total spin |
<xl“x2'/TJ(W)/xlx2>~:-<12'xl']TJ(W)fx2xl> (II 2.6¢)
It 1s thus easily seen that we can define no mo;e‘in—

dependent helicity amplitudes than those in (II 2.4)

above.
The spinors u, can be represented explicitly as follows
u. = = Em_x u., = Bro —1y&2
T T ]
(B {mm } . ‘91(11 2.7)
1 1 -1i¥%y
u = = — U ' = i ?\_
o ¥ Ep?\KX Ao Ao N 2pA, ' X 2
2 2
where 1

= {2m(E+m)}2 and)ﬁk is an eigenstate of %(Yé with
eigenvalue 2.
The combinations of spinors occurring in equations (II 1.5)

can now be evaluated and the ¢i can be obtalned in terms
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of the F's (GGMW equs. 4.17)

Tn ordser to find combinetions of the <i;'a.'| TJ(W)Mlx2>»

which give rise to an uncoupled unitarity condition we

begin with the unitarity condition given by Charap et

al. (7)

For the process N+N — N+N (Channel I)

él*i.{<7‘1"7‘2"pf"é_.’?@gpf = <A Ao pgd ﬁ‘f’f"‘l"zipi')}: -
(II 2.8)

T T
P vy é ‘ ;
fy 4 fdﬂp“‘l AoiPel @ ViqigP> <“1”2?‘¢”‘17‘2}°1>
gl
172
1 denotes an initial and f a final state of 2 nucleons.
By Ho are thelr intermediate helicities,
1 .
o ) ' ! = 4. = -~ —
Let us for example choose xl ha thg t 5, chen per
forming the decomposition of (II 2.4) we find

-L | .].: ' . . o J Il — :"nJ
31 % :%;(2J41)PJ(COS Bfi) {<.+1T b4+> = <++1 7T

c++>»}=

E£~i/ﬂdjlp{zzz (EJﬁl)PJ(OOS 9fI)PJ,(coséEi)(2J+l) X

TP
JJ'

r ' ] '
i<++leJ}++> <++ITJ I ++> + 2<++! T+Jl+_> <+_ITJ I ++>
: 1
+ <++1TTJI——> <;—ITJ| +4 > } (IT 2.9)
where we have made use of the symmetry properties of the
<K1'K2"}TJ!KIK2> above j equations (IT 2,6)

We then perform the angular integrations - giving rise
4r
2J+1

to the factor SJJ',
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After equating coefficients of the single summation

ensuing, we find

Im4<'++~lTJl++>-=-{<++ITJ|++>|8 +-2[<++;TJ1+->l2 +|<++1TJI-->12
(IT 2.10a)

A similar calculation leads to

J

Inm <++ITJI—-> = <++)T 0 ++> <++|TJI_—> +2<++’TJI >

J, —_— <;_|TJ;__> (IT 2»lOb)

X <+—ITJI——> + <+F+HIT
Sub tracting the second frowm the first yields
Im{<++lTJl++> - <++ITJI_->}= <++ITJ5++> - <++lT% —_—

X <rr 1T 44> cral 7] oes (IT 2.11)

We define be =-<++4TJ|++> - <++lTJl--> SPIN SINGLET (II 2.12)
Then (IT 2.11) can be written as
In 0¥ = {1072
Similerly
J _ Jyz
Im £, = | £, (II 2.12)
J J
J L J J J £ f
[T f11 fi2 1 Tle
T B J J
J J J
fi1p fopd fio0 T 1o Top
where GGMW we define
flJ =:<+_JTJ|+-> - <+—ITJI—+> e a0 .+ UNCOUPLZD TRIFPLET
£ = dJd
£ J = <++ITJ!++> + <++!TJ}-~> (II 2.1%)
L coupled TRIFLET
J_ J
f12 = 2<++| TV [ +=> ¢ = T 41
£ I <+_4TJ|+_> + <+—|TJ[_+>



Meking use of (II 2.4), (II 2.5), (II 2.13),amplitudes

fi arc defined by GGUW as follovs

17 E(?'Sl ‘sz)'

5= BP +f )
E{¢5 -.9/)4‘ } where z

f

I}

=y
i

:cosg

f. = -
2 1+z 1~z (II 2.14)
y=sin(_9
[ #Fs by
fq“ﬁ + _
1+z 1~z _
cm
P
y

Using (II 2.7) leads, as we have said, to GGMW (eQu. 4.17)
relating the 95s and F's. GGW find it is convenient
to consider linear combinations of the F's to give amp-

livudes Gi (also satisfying a Mandelstam representation

4Gy = Fy - 4F3 + T, Fy = g [G+4G +5G5]
4mGy = 2F, Fy = 5 [4G;]

4nGy = Fp = 2F5 = Ty F3 = 12‘}[—@14-(35]
44@4 = 21?4 B, -% [4@']

4nGy = Ty + 4F5 + Fg Ty = ?é‘ [36, ~ 4G 5]

(II 2.15a) (II 2.15b)



the @

the T

£, = B3, zszg + m®G,

£, = (EBG2 + mqu)Z?szB

T3 = ~p2G5 (IT 2.16)
£, = rzﬁ"G2 + E2G4

fg = -n7(Gy + G)

It can easily be gseen from these relations that

; arse not Mandelstam amplitudes since they contain

Py

actor B which

g

ives rise to a new branch cut in the

unphysical region E® < 0 i.e. p® < -m®.

T ,
The fi° can nmow be projected out from (II 2.4)

using the orthogonality of the dJ functions

1
:l . J-' . _ 2~ ~ ~N\
J/‘ Sa (z)d m (z)dz = gjj' -Ei+l (IT 2.17)
0 J
Thus 1
£ 9 = B £.(s,2)P- (z)dz
o 4E 1 J
VoLl
1
J_p_ -
£y ~.4E~[ X fg(o,z)PJ (z)dz
1 .
£ J_ B to(o,zy VI Tp 40 (o) (2) Jaz  (IT 2.18)
| 1 5 2J+1 J J-1
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JP.. - (2)+(J+1)P. - (z)
I b J+1 J-1 dz
Top =~ f{ 5( 8, 2)P ()5, (80 2) 20+1
(z)+(J+1)P. . (2)
T ) L Fri1 J-1
7 = ﬁg {f4(S’Z>IJ<Z)+i5(5’Z) 20+1 }

-]

These formulse differ fron the corresponding ones
of GGMW (equs. 4.25) by a factor of 5. This is due +to
the fact that I-spin has been suppressed in thelr work
and a factor of 2 must be introduced into the original
definition of the S-matrix to account for the fact that
the nucleons are identical as far as I-spin properties

E23
are concerned.

We now define

J B .J I8 .J,J_E.J,J3_8.J
8= 7 To yM1 = F Tanghie = 5 fioshee = 3 f22
I E . J g  _am., J )
h,“= ; £, and)lle =5 12 (II

Since the nucleon-nucleon transitions must satisfy the
2+t

il

we 11 known relation (-1) ~1,only the following

are possible

s =1
g =0 J = £ J = &1
I=20 J odd J even J odd
T =1 J. even J odd J even

(TABLE II &)

*® I am indepted to Professor D. Y. Wong and A& Guisseppe

Marchesini for private comzunications on this point.

2.19)



States of given orbital angular momentum 4 can mOw be

PSR J _ J
found from the fll = fl2

Clebgeh Gortan coefficients

agnd f J by means of

22

Thug according to Jacob and Wick (10> equation B.5

- 2
i o~ L 2.].!‘}':]_ AL T
<dM;Lb/Jn;klh2> =‘{—M«— } u(MoJ;O,k)C(slsgs;xl,-hg) (IT 2.20)

J,M denote respectively the total and z-component of

angular momentum, L the orbitael anguler momentum and

S Ttne spin. As usual Kl and kg are the helicities

]

7\. = 7\.1 - 7\.2
Thus
NG
<JM; LSl = ;E_J <JH;Kl,k2 lC(LSJ;O,A)C(slszs;h1,—hg) N
Ao As -
1z (IT 2.21)
Thus '
<TMLBYTVJN; L8> = Z , z ’ <JM;7\1—?&2iTiJ'l\:I;?\l",-X2'> N
hlhg hl'hﬁ' ‘ ‘
= (II 2.22)

X c(LSJ;o,x)o(slsgs;xl,—xg)'c(LSJ,o,x')
< U
X C( 81 S

1-
~
c

S;Kl’g“h2’>
where T, = Jj:l and N is a normalisation factor., Sipilar for-
mulae hold for the other transitions L = J+1 <> J-1 .

After evaluating the corresponding coefficients

aquations (4.26) of GGMW result.
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B 1
L J J z L. d
r, - = JE. S +(d+1)E 8 + 2[J(I+1)]° £
¢=Jd-1 o5 L 22 12
] 5
- 1l J J _ _ . J IO
L iy (J+1)£,] + I£,5 -2[J(I+1)]° £5 (IT 2.23a)
2d+1
- 1 -
_ 1 > J Iy _ . J
Tylesgel = :*““"(EJ<J+1>] (£25 = £13) = 1,5 —J
2J+1

It 1s interesting to note thet these relations can be

expressed as a similarity transformation as follows

¥ £ ol S 0

¢=d=1 J-le=>dr b | oogen 2741 >K:

- . B S )
: J J+1

f £ -

HooTle 23+l 20+l

(IT 2.23bY
J+l J
f £ - -
12 22 2J3+1 23+

The multiplying wetrix is easily seen to be unimodular
and orthogonal. The inverse relations are obtalned tri-.
vially from these. It is also clear that the matrix of
the fg's will setisfy a relation identical to (II 2.12),
and 1t 1s in fact from this the® the coupled phase-shifts

%Jii J and coupllng paramcter EJ are defined, (see
b4

Chepter III). We prefer, however, to work with the
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equations for fll 5 f12 and f22 and spply the trans—
formations (II 2.23) only in the final stage of the

calculation in order to obtaln these parameters.

3) Orossing
In e later section (II 4) we calculate the absorp-
tive part of the amplitude corresponding to HN scattering
(in lowest order)=-channel II. In order to find the con-
tribution of this to NN scatterins (channel I) we re-
quire the relations connecting these channels.
Let us write equations (II 2.15) as G =ATF
then using (II 1.7) we find ‘
G(s,t,t) = LBG(E,s,t) (II 5.1)
where 2 =1%,ril\fl (I 3.2)
and as usual B is the I-spin crossing matrix (II 1.8).

More explicitly

-1 6 4 I -1
A= 5
i R - - S | (IT 3.3)
-1 0 2 2 1
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Using (II 2.16) we nay write
f(s,z) = 4(s,z) BG (%,s,t) (IT 3.4)

and we find the matrix A 1s glven by

]
~ 5p?(1+z) 3EP-p%;,  3EP-p?  ~E%-p®  -u%zp?(l+z)
%ngl+Z) ~2p?+E?g n2z+2p? mz-2p? %: (Ez+m?)2+pzl
- ' .
%pg 0 -p” -p? zPa
- %pz m? T2 w2 %(E2+m2)
0 ~n? -m? -m® -mn®

N | (IT 3.5)
Inverting (II 2.16) and formally putting a bar on all
the guantities involved, we obtain equations (4.33) of
GGMW,

The amplitudes G are written for the order of
variables G(T,s,t) - recall that T and s interchange

thelr roles of umomentum trensfer and total energy.

T = 4E® = 4(p%+n®) |
t = -2p7(1-Z) (II 3%.6)
s = =2P%(1+Z)

£(®,2) = XT(H,7) (IT 3.7)

(apart from I-spin crossing), and X is given overleaf.
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49 The one and two pilon exchange terms

The contribution to the G amplitudes from the
gxchange of_a particle mass | in the t,? channels,
I-spin = I, coupling i = 1, 2, 3, 4, 5 (BTiVF respec-
tively) has been calculated by CLS (equation 5.1)

The aprropriate Feynmann grapns are

Fig. (IT 4.1la) Fig (IT 4.1b)

) r}‘
J e g LA {SJ o<g ,0” 581 ,1)
Ry 1(81 0 +% l)} " (II 4,12)

—tefets lo the cmgythSTAvP

A
3

T s the yun of /the evrlaned jzcuuu,u, and J

1 -6 -4 4 1

0 -2 -2 -1 (II 4.1b)

1l
& = 1
1 0 2 2 =1
1

L
8w

The special case for a pion (pseudo-scalar coupling P)
zives rise to the formulae given explicitly by GGMW

(equ. 6.7). Since these formulee are well known we
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shall not pursue this discussion any further.

we now turn to calculation of the two plon con-
tribution. The Jacob-Wick helicity amplitudes 3~’ﬁ
ars euployed and describs the process m + 1 — N + N

which hos differential cross-—-section

_ — B
a9 . 2 )Fx ! (1T 4.2)
asd g
where 4(7? + m®) = s = 4(g%+u?)
~B7(L +3Z) = % (I 4.3)
_OR(L - F) = %

s 1s the total snsrgy

the 3-meouentum of a nucleon in this process - chonnel I1

el

g the 3 moumentum of a pion in the CM system.

s is in faocet numerically equel to © of channel I .
Applying the unitarity of the S-matrix to this process,

(CLS) find (their equ. 6.1S)

” ' . e = E
Im2W<xr’xv;£T[é|h,X;£i; = f;d/;§7q<g|3f;xvsxv;£f><glgjx,x;gi>
(IT 4.4a)

s] S 3 XD - v
::s.;fdgq? v G 62@> TW(QQLX”[(K R
+-‘(7\,‘*7&’>Z{2q]

(TI 4.4b)
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The notetion is clear - thus é?ﬁq ig tho ongle

betveen -the finsl 2nd intcrocdicts stetes and éplq’

N

for example, the angle bstween the initiazl and inter-

mediate states. Elementary trigonometry leads to

Ze. = &

oq 1q 2 * J1q ¥ ©OS diq

i, - 1 ‘{ 5 P1q = 2 Jiq COS dlq + iy, sin 6iq}
T

(IT 4.5)
z=cos@ y=sin49

allq - dz do’lq

Similar formulae to (6.1) of GGUW can be derived from
these.

CL3 (equs 6.9) give

3 + -+ E? = E}_j: o .E A + B 7z = ?_—
oL L 8xE m 49
272 i (IT 4.6)

ol - b5

o - = .@i _E_ qu\ = - ?..4-

8xE | m 4

S % .
AT, B are the conventional amplitudes for =x-N
scattering
Note F©-us Fr (IT &.7)

v Te

> F

I

F (1)

The (o) and (1) referring to I-spin



Dispersion relations for 4 and B are given by Chew,

Goldbergsr, Low and Nambu (1) viz., (using their notation)

Q
re (%) (v,K*) :gi dv' ImA<i)(v’,K2){ ; : - }
T -1-x? P viey vy
(IT 4.8a)
4 5 a2 - '
Re B<~> (V,K"') = L. ;._J‘.._.._. 3 ___];_____ }
2])& \)B-V VB+V
o0

' + - 1 - 1
av' Im 88E)¢y 1, %2 T }
viey vy

(IT 4.8b)

1~-K? /107

i

We remark here that

g®/um = 14 dndg)denotes 'principal valus'.

5‘ N
- ,
q/ )"“». \ R
I

‘ .
Py and P, are those of the nucleons /7{;

"~

ql and q2 are the 4—wmomenga of

the incoming and outgoing pions

(Fig 1T 4.1)

P1t4y = Potds .
o Lo 1 ! (II 4.9a)
P= 5(pytop) Q= 5(qy+35) K= 5(9-95)
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plion maess is taken 2s unity, nucleon moss I,
y = L. = PN

- (XTI 4.%b)
B 21 I

pointsd out by Frazor and Fulco (2 ) in order o
over to the process
w4+ o —> N+ K

substitute formelly Py —>-Py 9 —>=d,

the C.l%. system for the process wx—> NN

p1=(B,D) ¢;=(F g)
pp=(T-p) 9 =(E=q)

F = % (pg‘Pl) (05-2)
Q = % (9,~a5) = (0, ) (II 4.10)
K = % (q,+2,) = (E,0)
1 E?
Thus vy = = EM + E
v B3R
M

Hence the Born terms we require are of the form

1 -~ 1
.+
—l+2Eg~-2'1_5qcos (9, ~1+2E2+2%qcos 8, }

(IT 4,112)
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In the Born approximation scheme we are sdepting

we take L=0

J6 ) -
end B = 8- L7 A (II 4.11b)
2 Jepa | A-zy A+Zy

The upper factor and sign refer to I=0, the lower ones

to I=1
. s5—2u @ s-2u® 1
Following GGUW we have written A = <= = - -—&5“—* -
4Dq [ (s=4m®) (s-4n®)]

(II 4.11c)
Ne remark thet s = 4E® and numerically corresponds
to T of channel I. BSubstituting back into equations
(II 4.6) end (IT 4.4b) we find formulae similar to those
of GGMW (appendix B cquation 3.5)

For example

L 2 /i Y2 GT z
e (| In(E+T MG dQ{ 5in” @
{ Ye } 375, 327P2( 147 ) !

sin8sin (91(005 @lﬂ:os 492)6“.10/1

1+ cos @

P L R (TT 4.12)
s 1T 4.12
K“Zl ?\+zl h—zg K+22

74

and similer formulee for the remsining 6 amplitudes

(Inf,° cnd Imfl' venish)

1
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GGMY show that all the integrals of the type which are
required in the present calculation can be obtained in

terms of

- A [ 2
m, = & {gQ2 = <
L lHL/ A~z [(4m -3y (s~ Apz)]g

! 1
- 2_ (ol © Jal
x tan~t [(4mZ-s)(s-uu”)]
s=2u”®
T, = A2 [a2 1 _ (s-2u?)? i
Qe —
b (h-z,)(A=2,)  { t(e-4u?)[(s-2u®)%+T(s-tpu?)] § °
1 2 ! T _
, -1 t(s-u?) |2
X tan ™ . =
(5-2u6)2+t(s—4u83
T = 1 _ (s=2u2)% 1
2 (A2, )(A-2,) -{t(s~4u2)[(s—2u2)9+u(s-4u )]'}é
tan™t *SZQ#‘) 2
(s=2u7 )"+t (s-41?)
(II 4.l3)
2 :
Note that terms like AZ éng L can be
Lo (x—zl)(x+22)

obtained from T3 by letting N —> -2
zZ, 2
1 72
(A2 ) (1 5,)

Ve rewark also that integrals of the form d£2.

can easily be obtained fron Tl, T2 eand T, by resolving

5
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Zo
is calculated

into pzrtial fractions. Also‘/ﬂasz

. A-2
as follows — 1
From (II 4.5)

. cos ¢
Z - 315'008 51 ’ 4K1«~——~;= so the required

Za = 2
2 1 h—Zl

integrel cz2in be evaluated.
Returning now to equation (II 4.12) the contribution

from the terms involving sin dl vanish, so let us consilder

sin@ sin(9:L (cos L91 + 005(92)308 z{l
1l + cos é

(142)(1-2,®)-2,25+2, *B-2,%+2,2,7
1 _1 2 1 __2 12 (egain using II 4.5)
1l + z

(zl+z2)3

1+ z

= l+zlz2 -

The first two térms, when comblined with the usual factors

S ' f_1 + 1 ;} are evaluated.

as indicated above.

For the final term we teke (for cxample)

2 7
<Zl+22> . j:fi . Ay
(A-2,)(A+2,) Mtz A=z

and so (IT 4.12) can be evalueted in terms of the known fundiows.

41
and because of the symmetry betweon z4 and Zsy 42

v obtainad K“zz
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We now give our version of the contributions of 27
excheange to the imaginory narts of the amplitudes

FL.

mEO==hﬁf = 0

i

Im-fgo 5/2 3 mZQ/E“p?‘(E—LLT oTAT)

171t
Y wRq /T2 - -
Imf2 = jf n~q/Ep (T2 T3)
T /~1'-T .T::_ : v
m(T,%4F,°%) = 298 ¢ 1 +(£~§ n L) T -(X-1)7,
p2(1l+z) l+z 1+z A7, AZ
— —_ = 4T -
Ta(E"e Tty = § et 2 (Z—E ' l‘) Ty +(Z; - 1) }'
-7 - p?(l+z) | 1+z 1+z  A® A°

- 2 T
Tnf ° = é‘g Ly e T~ R
< 2 PPE\ 1-%° 1tz 1z 3
A IR
g < p%E | 1-22 17 1%

2

/475)3 =‘f

(11 4;14)

N =z
whare =
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It con be scen that these functions contain factors in
thelr denowinators which appear to vanish for sone
values of the parameters p, z. It is, however, to

be remewmbered that before these are usedvthey muet be
multiplied by the crossing matrix (II 3.8). This matrix
hes similar vanishing factors in the denominctors of its
elements. Ve indicate below (section 5) that the actual
combinztions of functions occurring ars such that no

infinity of this type occurs.
Mo sunaarize, from now on our Mandelstam variables

will be as follows

« + CoM Channel I CeM Channel II X
s 14ES=4(p<+ n <) = 2791 + %) rT
T =—2p<(1 + z) -4 B 4('52 + m%) b8
t 1 =-2p=(l - 2) ==2p°(1L - z) I
Table II B
= 2 sy 2
Thus A = — tz‘ 2L - i} £ -2u
[(F - 4n)( T~ 4p=)]'/? 4D q
T, = in tan T(1/i)) _x (IT 4.5)
l‘-‘-~l..(|)-§‘2<D--.~-ZL{‘~~‘-(2¢:)P >0 3
b2/ pt ~1=2m*/pt l
o e e\f Y O e s (Fig I 3)

In the region we are considering here p? is negative —
unphysical region for channsl T.
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In region 1 of Fig(II 3) we have
Ty = Xtan_ll/x x=
In region 2 /2 ln{%ii]
-1
and A >1 if and only if z>-1-2m®/p®-(2n®-u?)2/-2m°p?®
which 1s always true in region 2, s0 Ty is always rcal.

T -2u?
-2
=D 9 (1T 4.16)

If we define
a={(’ﬁ—2u2)+ s( T -4u°) }1/2 pe B -2®)%+s(T-4u® (1 17

(T -4p®) (T-2u?)”
2 4
2. 14 _ (m? '
Tk (™ E_Lma) (I 4.17")
T2=a/b tan_ll/a and if a=ia' ‘
a'+1 (IT 4.18=2)
. -1 . ]
=ia'/b ten “(-i/a')=a'/&p lnl?,_l
a'+1l

(IT 4.18b)

Re T=a'/2b lo| 73

The expression in (II 4.18&) can have an imaginary part
in the rcgion in which we arc interested. HMowever, as
we show in the next section, only the real part need be
considered (due to the fact that principal values are
teken in the Mandelstam representation). Since T2 con-
tains the factor a/b , it tends to infinity as

= (T-207)% + s(T-4u®)> 0
As 1s indicated in equetion (II 5.7), the quantity we
require is obtained by integrating the Imn £'s wrt. z
between -1-2u?/p® and +1. .lthough, as we shall show

Tz—éﬁo within the integration range in which we ars



interested, this type of infinity causes no difificulty
since 1t 1s only'b@i/g that 1s involved, and the corres-
ponding integral converges.

Substituting from tablc (II B) we find T,>C0 if

p?(1+2)=(p?+1m2~u?) 4o (p>+n?) ?+212(po+m?) (II4.18c)

If p?+m®>0, the velue of z will be real — we racall

p®<-u? for a contribution to tie two pion exchange terms.

~1-2u?/p?sz¢1l [z in integration range of
i.c. -2u?/p?4lrzg2 (IT 5.7 belou.]
- ~ 2 2 ~N 2 - - 2 2 . i~
or ~2u”®>p”(1+z)22p since p~ 1s negaetive

writing pP+a®=A>0, we require
~u PN RN
0 A DEIAZ LA 32(pPHu?)

and since A\ end w® aust be positive, this condition

DZ

f\)

cannot v¢ satisfied.
If p?+m®<0, for the squarc root to be real we require
p+mP+2u7<0  (=-/\ say) and again
2?32 A (CA-2u2) Pt ut(A-2n®)  22p°
02=A\ —1? £/ATI20PA 32(pP+u?)

(6]

or
~ AL BN LR S2(A ~nPeu?) or finally

A +Peoun? /A o0 A
wnich i1s of course alw.ys sat.sfied, and so we can find

two valucs of z for which T.-3 ©O
el



e

In ordsr to ccleculats T, we define znalogously

2 A{ T-a )26 (F -2 (- ()
a=

= = = 5 14,
S(Towy ] T TEeaT) (114.19)
L i
alternatively aZ:—L+E[ﬁnak_ ] (II4.19")
t -4nm®
a -1 1
and we may writes T.= — tan -
’ b a (II4.20)
If & is complex =ia' sy, then
a' a'+1
Nedty s DM (II4.20')

Solving the equetions implicd by table (IIB3) and
using (II 4.3) we obtain

2
p~(1l+z
gan 22C0HE)_ 2

_ =2p*(1-z)
l=-2z= ——
2m+p?(1+z)
- (IT 4.21)
_ 4(p®+m?) ’
1+ z=

2n?+p?(1+z)

pB
B%= -[2%—(1+2)]
2

y
We now tebulate sows useful properties of the veriables.
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FUNCTION VANISHES POLE
s p2=~n® pP==Q
T, B2 z==1, p~# @ p?==®, z#~1
xR i.e. p 2 =-u”
g z=-1-21%/p% pZ=-& z#-~1
t z=1 pZ==® z#+1
1-%z z=1 z==1-20"/p?,
Zp?>n?
1+ 2 pF=-n®, z#1 Includes
p2=- ®, z=-1
T ? z=-1-201%/p2,-p">w® | p®=- 0, z=-1
Tal3LE II C
¥ This set of conditions does not lie within the

integration range of (II 5.7) below.

Before concluding this scction we give expeénsions of

Tys Toy Ty which are volid if a®>1
o f 2 }m 1
Ty= g;; {ZKZ 2+l
o {l-z3n n n
S S
T,= 2 '
2 50 oo em-2rtl
© {l+z M mo o
T o
TB_ e o =) e 2m-2r+1

e)

The “Cr ore the usucl

l+5}r

1-z

1+ z

1~z

binomial coegfficients.

(IT 4.22a)

(II 4.22b)

r
(IT 4.22¢)
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5) Application of the Mandelstam representation in

order to calculatc the imaginary parts of the h's.

[Soxze of ths following can be found in scction 5 of GGMW]

Let us denote equations (IT 2.16) by

fi=.§§: aij(s,z)Gj(syf, t) (IT 5.1)

Substituting into (II 2.18) @nd using (II 2.19) we obtain

n 7(s)= | az Z }uaiJJ’aij(s,z)Gj<s,f, )P, (z) (II5.2)

-1 i9J9J‘
' o [J(J+l)]l/£
The C's are coanstant cocfficients ¢.g.——— etc.
2J+1

The Born teras are of the fora.[u2+2p2(lj:z)]_l’, SO 2s
z varies in the integretion range of (II 5.2) , this
leads to a braonch cut in p® (=v) betwecn -u?/4 znd - .
Since the G's have a Meandelstom representotion like
equation (II 1.10), we have a singularity in s fréu
4u®— @ as v=o—> ®. 4lso t' -T gives rise to a sing-
ulerity since 1t occurs in = denoninator and can vaonish,
Since v=-21%/( 1+z) we have a cut in the v-plane from
~u? to - ® (since T has a aininuw value of 4p?). Hance
the denominator only vanishes when -1-2u®/v<z<l (v<0
for T'-T=0) . We can supply o siamilor discussion to
the variable t. GGMW¥ show thet the contributions frowm
channels IT and IIT arce in fect equivelent in virtue of

the Pzull principls.
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o0 T )
Trno v T 1 Im hi(V'
Thus  h (V)= hqB(\i) +31_f ay'! ,jéf_;_,

(II 5.3)

_)l2

+ l d\’l Im [h J(V')"‘h B(Vr)]
Ny .
- v T Y

where we have split off the Born terms h §(v). We
refer to the integral between O and 00 as the right
hand cut (or integral), and to that betwee~ =@ and
__HZ (or if we include the Born terms -0 to —%}‘42) as
the left hand cut.

Using equ. (II 5.2) and the Mandelstam represent-
ation for the G's, we may obtain the discontinuity

across the left hand cut using Cutkosky's rule.

Imfh I (v)-h B(v)]—- 2 b(i / LT a; (s z)

{
939J o8 2}/«/
(IT 5.4)
| oEedenm pf el
s ol S'-s u}f T -t 7

minus a similar term due to singularities in the

t-variable.
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Since the discontinuity must be real ( we assume a
hermitean analyticity property h*()=h®*) ), and t'-t
can vanish in the integration range, we must make =z
Cauchy principal value integration as indicated byg3
in the above equation. The negative sign outside the
summation is the result of the way imaginary part is

defined

1 1 —_ -
w7 E}: m % '+2(s/4-m2)(1+z)+i€}: T (F-T) (11 5.9

since the i€ is attached to s. Comparing equs. (II 5.4)

and (II 1.13) we write

1
Im[hJ(\))—hBJ@)):)=—2§CJJ“/ dz[a(s,z) B

-1—2}3/\)'

x Re B (§,8) Py (2) | (II 5.6)

The factor 2 is present since the contributions from
channels II and III (due to singularities in t,t res-

pectively) are equal. Finally, this may be abbreviated

o In [ 17 (v)-hy” (v)]=
S o0 N s |
24 4C dz X B Re Elm f (t,ti} PJ,(Z) (II 5.7)
J'f
~1-2)E /N

X is the matrix (II 3.8) and we recall that f must be

considered zs a (1 x 2) matrix in I-spin space.
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The amplitudes Im f calculated in (II % ) can now
be substituted into this expression. Only the real part
of these amplitudes is required, and this tells us that
T, and T3 must be evaluated as indicated in equs. (II 4.18).
We now demonstrate that the G amplitudes involved
have no new singularity due to the appearance of vanish-
ing factors in the relevant denominators. On inverting the
system of egquations (II 2.16) and considering the ampll-
tudes for the channel II resction (formally placing bars

over all quantities), GGMd obtain their equations (%.33)

2 ...
- 1 m- _ —— E
Gy, = =l £y + =, F -zf -7 5
1 E2[1 52 73 2 5]
- 1 [_ Eg__
Gy == = | F) + —. T
2 52 1 m2 5
@% . ;2 f3 (IT 5.8)
p
R T _;]
T 5+ %

P

- U _(E_Z_t_rrf)_
GS: - :2[f2 +z f)+ +tz m2 fsf .

2

If the G's are to remain finite at E°,p°=0, we can See

(using i ) 2m®) that
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-f-)‘i' + -.-ES 9 ?3 9 and -:EZ +-Z- Z\-S = 0(52) and

f, - F

=Ty -7 T, =0F 2) (II 5.9)

We now consider the imaginary parts of the quantities.
Thus, for example, taking the I=1 component of the 2~pion
contribution to the absorptive parts of our f amplitudes

(equs. II L4.14), we require

» 4 JT,-T, +'z‘<2T1 - Lo T%)} = 0(p%  (II 5.10)
T pe 1.2 1+7  1-Z

25 -m”, then p °= 0 if Z

Let us consider the case p
remains finite. In this case 1/)\2fu 52 and we may use

the expansions (II %4.22). Taking the first three terms

(see also GGMW equ. B8) we have

L= 1+ 17302+ 19N
I,=1+(242/ IN24(7+6F + 27D /15NT (1T k.221)
T,=1+(2-2)/ 3IN+(7-67 + 239)/1 s\

Substituting into equs. (II 5.10) we obtain

n°q [23 +122+E[2 (:“ . 1)_
E32|132 15N 2\ 3R s\

/
(II 5.109
1 1 2+7  7+67 +2%° 1 5.7 7-67 +27°
—_— 1+ + - — M — ———
147 U 3\ 15)&* 1-2 \ 33 15 \¥
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2

SO E L [20-304 22 (-2 (1+D (2-D)
B2l 33 (1-79) 0/ND

. L

g ( terms involving 1/ N\ and higher powers only)
= =2

Ep

Sincelx%mz1/5)+ , the expression (II 5.10) is 0(52).
Similar, but somewhat longer calculations along these
lines can be carried out for the remaining equations of
the set (II 5.9) for both I-spin amplitudes. We note
q2é’0, so E never reaches its branch cut (q2=—}L2) in
the integration range of (II 5.7)9 so the factor 1/ B
caduses no difficulty here., It is also seen that when
Z-+ 1, the Im f'aphear to develop singularities, bhut
again it can be seen that this is not so if we use
table (II D) below. We have given the first and second
derivatives of T2 and T3 (wrt z) to enable us to employ
3 L'HGspital limit when aporopriate. For such a calc-
ulation it is convenient to consider )\and z as ind-
ependant variables. Let us define

- 2 1/2 2
142z -2 A\ 2
X={}—————“— J& x2y= - A__ (IT 5.11)

1=z P

then T,=xy tan™] 1/x
2

E2 =Y { (x-x3)tan‘“1 1/x +x2)} (II 5.12)
a7 uae |

2 3
d T2:=y {}3x—2x3+3x5)tan_1 1/x+(3x2—3xu7 }

472 16 \¥
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The corresponding formulae for T3 are obtained by chang-
ing z—3 -~z everywhere (and of course nrefixing a minus

sign to dT3/de’ ).

z 1 -1
T, ff— | iy
N1
T, A %{T1(1+jé) —1}
302-1)2 A
2 )
T," 210\ 3 12)\”‘{(3‘“2/\2‘“3’\*)%
T | / 2
T
3 1 AZ_JI
T, -%{T (1+ 3—9)-1} - /\2
3 1 - ——
AT 3(0\%- 12
1 DAl 1N
v | L (342)2e3N0T T
3 16)\”{ RN 15(32-1)3
-3,\2(1+,\2) }

Table (II D)

The dashes denote derivatives with respect to Z Using
these formulae in conjunction with equs. (II 4%.14) we

find
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20 L0 _ 20 .0 -
Im(f3 )5 4= Im(fg )z, =

3§qﬁ{1+_1__+__1__ ) <1—A22}
252 Ls 8\ 301-\D) 8}?1

=1 =1 _ =1 =1y _
In(F) F)g _ =-1aE] T3, =

b
- - (IT 5.13)
Im fg )= q==Im fc; )7 4=
2 2
3800 f o Taeras L))o }
2p° E{ Lo /2] BT S
Im fgj)—:_1=lm f%);z 1=
¥ n?q A
{1 [imt0e 3l - 25
5'2 5 2(%‘—1)

As a further example9 we demonstrate that when p =O,_z_=1

Im(f4+ f5) 0(p 2y, Using (II 5.13) and (II L%.14%), we

obtain £l - qE 2 . v }
SRE S
- —5 (II 15.%)
Im'fﬂs: E(1+E)_1{—i -8 ...}
EQ m2 3>? ;E;b

and the above condition follows immediately.
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CHAPTER IIT

THE N/D INTIGRAL BoU-TIONS

In this charter we euploy two versions of the
N/D wmethod. The first is that described by GGMw, and
is sxtreucly effective for the uncouplesd anmplitudes.
Since the anplitude hlg has 2 branch cut due to the
factor ¥ (storting a2t pP=-n®), and tais method solves
the c¢quation for D on the left hand cut, new difficult-

les orise due to the fact that only Im is known

12
and not Im(}@}{lg) =Ia hy, x m], to the left of this
branch cut (see chapter II, scction 2 for definitions).

For the coupled caplitudes, we therefore caploy
the method doscribed by Scotti and Wong (5), since
this involvss solving equations on the right hond

(unitarity) cut. In the oppendix we describe o nethod

for improving the solutions of these couplzd eguations.

Method 1)
The awmplitudes hJ have a right hand cut, and @

left acnd cut due to singuloritics of the exchange terus.

< .
\\\\ \ AN AN Y | A Y Y ASEA >
NN N\ ¢ N ol 7+ 7 4 1 ’
"1 w
2 plon cut 1 pilon cut Unitarity cut Vv —3

Bronch points at pZ=-p?,-u2/4
(Fig.IIT 1)
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We now toke hJ(v)=NJ(v)/DJ(v) (IIT 1.1)
where N(v) hos only the lsft hend cut ~nd D(v) only the
right hend cut. Since 21l quontities involved cre oss-
uned to sctisfy the hermitcon cnalybticity prorerty

3%
X.(X)zx(x*), we noy write

N(v+i €)= N(v-i€)

In N(y) =
on loft hand cut 21
- (IITI 1.2)
D(v+i €)- D(v-i€)
In D(v) =
on right hond cut 21

The uniterity condition ncy be token as

In h(v) /v+m |h(v)

v

or Im[l/h(v)]=‘:\/\,+mz (IIT 1.3)

In D(v)
thus — = - (on the right hand cut)
N(v) 4/ v+n® (IIT 1.3")
We may, therefor, writc the following dispersion rel-

ation contcining one subtroctilion, and arbitrarily
noraclise D(0)=1 ——only the raotio N/D is to be det-
ernined, so we can choose e¢ither N or D to have cay

finite volue we please ot an arbitrary point

except of course when we have & bound state pols

72108¢ position is determined by otacr conslderations.
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1 yl(v') v' '
D(y) = 1 ~ — av' (IIT 1.4)
f ' 5
T v'(vi - v) v'+ n®

On the left haond cut Im h(v) is given by the con-
tributions of one 2nd two pion exchange as derivad in

chapter IT, 2nd following GGWW we write

In h(v) = zma(v) (III 1.5)
Im N(v)
D(v)

thus = qa(y) on the left nand cut (IIT 1.5")

Agein moking one subtroction and writing
N(0)= h(0) (IIT 1.6)

since D(0)=1, we have

“L/% (v ID(v') av'
N(v) = w(0) + (III 1.7)

v'(v'=v)

- @

n(0) will vonish in all coses except when we are
considering S-woves, and then we supply the scatt-
ering lengths (2nd acnce h(0) ) from experiwment.
Note thit we hove taken the pion mass as unity in
equction (III 1.7), the upper liuit, in fact being
given by -u?%/4 (see Fig. IIT 1)
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Substituting (III 1.7) into (III l.4)snd interchanging

the orders of integration we find

@®
h(0) v y!
D(v)= 1 - dv'
P v'(v'=v)/ v'+ mn® .
0 X
y ' (III 1.8)
~-1/4 N 1] T ¢ 0] Vv 1
; L//q alv'")D(v "Dav U//n AV/CTIE2 dv
-~ y'' (v'=v)(v "=v")
©~ Y 0
In the notation of GGMW
1/4 y(=v')=y(~v) av'
D(v)=1+h(0)y(~-v)~v alv')D(v") (III 1.9)
l_ 1
- v -y v
1 X+1 [V 1/2 '
where y(~-v) = =X 1n S X = (IIT 1.10)
T -1 1v+m2

We now enploy & device similar to that of NOYES(lE)
to facilitate the nuwmerical solution of our integral

sguations. He nakes the substitution

v' = —1/4’}7' (III lcll)

and the integration ronge [v'=-c to ~1/4] becoues the
unit interval. Froa an exeninction of (IIT 1.19) it is
seen that this substitution will be most effective

when a(y')=0(L/v') at -~ m®. 4n inspection of equations
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‘(II 4.,17-4,20) and an anzlysis siuilar to that of
chapter II, section 5 indicates that, although the
appearance of factors of v' in the appropriate den-
ominators will ensure the convergence of the integrals,
due to the occurrence of logarithmic factors, a sub-
stitution of the form

v'==1/4y'"

n n>1 (IIT 1.12)

y ==1/4y
will be wore convenient nuuerically. [We recall that
J/Hn X dX is nore socsily performned nunericzslly if we
ngte X=yn, and the integral tockes the form
u/7n2yn—ldy ln y, end if n>l the integrand vanishes
a% the lower limit]. If we wish to tzake n an integer,
the most obvious choice would cppear to be n=2, but
then y would have to be inaginary in the physical reg-
ion since v>0 — thus unnccessarily conpliceting the
arithmnetic., We therefore choose n=3 . Making the sub-

stitutions

v=—l/4y5 V'=—l/4y'5 dv’=5/4y'4 d@j'\
(IIT 1.13)

alv')=R(y) D(v")=D(y) =wy(-v)=[ (3)

in equation (III 1.9), we find
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_ g
. h(O N T
D(y)=1+ ___E_(_J_f_) - —3— aﬁz(y')D(y')P(y ?5 l(?dy' (IIT 1.14
g o y -y

If an integration foriuls is ussd which requires a
knowledge of the function at the end points of the
integration range, the above form of integral souation
1s not suitable, since the kerncl 1s infinite when
y=y'=0. It is, therefore, worec convenient to consider

the equation

1
h(0)[ Cy) 352 P, o Y-y
o(()y>= {l+““—"—- \-yg -— dyR(y’)ﬁ(éa') 3 (III1.15)

2
(']c J T o y'/)- y

where,ﬁ)(y) = y?D(y) (III 1.16)
X+ 1

T(y)= X 1n (IIT 1.17)
X -1

T = (1_4y5m3>—1/a (IIT 1.17")

At the 'diagonal points' we require J''(y) and we have

X+ 1
M'(y) = 6y°ux’[1a T -2X/(X?-1)] (III 1.18)

It is now seen that the kernel of (III 1.15) reuains
finite even at the net point y=y'=0. In practice,
Gausslan quadrature formulas were found uwost con-
venient, and the end points of the integration range

are not used (see chapter IV for details).



..59-.

The intesgral egquction can be replaced by the matrix

equation
h(o) .
N} i -
_S_j (5 KIJWJ>§} . R (T7T 1.19)
where aij is the Kroneckecr delte, WJ arg the quzadra-

ture weighting factors, and

%y, 2 (y.)- T (y.
K - - 354 (5. i ya) My vy
J x J 7.2 - 3.0
J - (III 1.20)
1 R(y3) F'(yj) i=]

T

Having solved this systen of eqguetions by matrix
inversion, the valuc of‘é@(y) for y<0 (v>0, physical
region) may be obtained by a direct integration of equ.
(III 1.15), provided we rencuber that [(y) has an

inaginery part in this rzgion. Thus

ReJ@(Y) = 1 + h(O>E:(Y) - 3 R(yr)da(yv)

2
y o © fo
ns
Py )- Ty
x 5 (ITT 1.21)
yrB _y5
~N ~ X+ 1
where T '(y) = X ln. 1

(IIT 1.22)

X (l—4y5m2)“l/2
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R(y")u(y")y'*ay' -
Also N(y)=n(0)+3 : — (III 1.2%)
0 VAR o

The intezretion of egus. (II 1.21,1.23%) then gives
h(v)=N(v)/D(v) for any positive value of v w¢ require.

The uncoupled pheose~shifts are given by

§ = tan™T [In h(v)/Re h(v)] (LI 1.24)
Also, since in the scattering length c¢ffectlve range
approxination

h=E/p e'9sin 5 and pcot §==1/a +r/2 p® (IIT 1.25)
for a nuclcon with 3-zomentun p. Thus

1/h =p/E (cot § - i) 2nd Re[l/h]~p/nm cot § for small
p (since Een) (III 1.26)
The scattering length is given by

a =-h(0) n (III 1.27)



We cgailn write

1 /' vI(y' ) v'
=7 — — f ~
D(V)-—l - 4 v (V "V) V'+D.2 dv (III .c.l>
but instead of equ. (III 1.7), which rslatea N(v) to
valueg of D(v) on the left hond cut, we enploy the

gxchanege terms
~L1/4 I h(y')dy'

v'(v'=v)

al<

n®(v)= n%(0) + (III 2.2)

-
(we have performed just one subtraction). Since the
full auwplitudc contains both left =nd right hand cuts,
we nay write

v L In h(vy')ay'

h(v)=h®Cv) + n(0) + — T (TIT2.3)

T Jo

hR(O) is, of course, the contribution to h(0) fron

the unitarity cut. Note h(O)=he(O)+hR(O)=—a/m (IT 2.4)

Again noruclising D(0O)=1, and obscrving thot h® contains

the left hand cut only, we write, following SW

N(v)=h®(v)D(v)-h%(0)-a/n

V[P %) Im D(v')adv' '
— - (IIT 2.5)

® [0 v'(v'-v)

[




The dispersion integral nerely removes the rignt hand
cut of the product h®(v)D(v), but lcaves the singul-
arities of the exchange terms unaffected. Taking the
itnagincry parts of both sides of equ. (III 2.5) gives
In N(v) _=

right © |
(IIT 2.5')

E = T h°v). D(v) = In h(v)D(v)
% left

as it should. Substituting ecu. (III 2.1) into (IIT 2.5)

leads to

H(v) = he(v) - he(O) -a/n

. . (TII 2.6)
y ® h~(v')=-h"(v) y!
+ — dy’ N(v'")
w0 v'(v'=v) y'+n?

as shown by SW. Thig method is used for the coupled

eguations, so thet he,N, and D are two by two actrices.
The advaentogs over nethod 1) above, is that we can write

-1/4 In[ vv'+n® hys(v')]av'

hé. (v)=-hl,, \= = (IIT 2.7)
12 12(0) g o v'(v'=y)
S —1/4 1 t
on right hand cut = vd/v+m? o h12<v ) v
o (IIT 2.7")
: - v'i(v'-v)

by Ccuchy's integrel foromula (if both integrals exist).
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In the corresponding cxpression of method 1) (III 1.9)
alg(v')=l/mm Im[@#&}z(v’)], which is

unknown, siace it involves Re;}zlz(v').

Agoin, for the nunerical incezgrotion of equ. (III 2.6),

it is convenicnt to ncke substitutions to improve tae

ot

o

convergence behoviour ot the end points of the range.

Lo

-1/2 , : e
JQV' / dv' convergss, but the integrend is infinite

2 glinminctes this

at the origin. The substitution v'=y
difficulty. 4 substitution is zlso made to reduce the
integration renge to finite limits. In cqu. (III 2.1)
it iz convenient to subtract W(v), so that only the

conbination [W(v')-IN(v)]/(v'~v) occurs. The residual

integration cen be performed exoctly and is elenentory.

(9] T :
VI\I<V> V dV )
Namely . V,+f_'12 Vr(V,-V) (III 2.8>
~ 0

T

e now make the following substitutions in equ.(III 2.6)

v=(1/7%-1)7 , v'=(1/y'*-1)% , H(»)=h°(v)-%(0)-a/n

NO)) =Py . p0d= o (0= Wy

(III 2.9)

L H(y )-E(y)
7ﬁ[(§0=yﬁ(y)+Jé - ™M (y)ay'F(y',y)  (IIT 2.10a)
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’YT)\(y) K+
Yra(ys =y + X In]—1 -iX M)
gﬁ) v JT " X1 ’quy
MGy THG) (T 2105!
vy =y'/y y
- t L F(y',y)ay!'
Jo v'=y
where X= 5 and
V (III 24i00)
L y'2
F(y',y)=— y(1—y2>2 ' N
BN “J/(1-y'2>2+m2y' (y'fy)<2y2y’2-y2-y'2)
and we also have h(y) =¥Pl(y)é§> Conk (III 241

and the square of the CM momentum is related to y by
the expression in equ. (III 2.9)
The solution of the system of eguations is performed in
the same manner as in section 1) of this chapter. Since
771-{%@) and h are two by two matrices we have indicated
below; more explicitly, the actual matrices involved in
the numerical solution.

(a1 () M0N0 [y E (1) yE (D))

° o

‘<‘TQ11<H) 772 5(n) ynH11(n) ynH12(n)
;o= S

. .

7?21(n) 70 () ‘ynH§1(n) ynH22(n)
L / ~ y




”K11(1,1) K11(1,n) Kioll) ov o K12(1,nf‘ r7711(1) 'F?12(1)W

° °
° o

K11<n,1) K11(}_’1,n) K12(n,1) 6o » ¢ o K12(n3n) 7211(11) ,}’YZ‘lg(n)
< , S {
Koy (1,1) o o v o o Ky (1,n) Kpu(1,1) o o w w4 Kyp(1,0) Tr (1) IWEA

a 2 4 o 3
2 3 2 a -

] I
K21(n,1) « » s o e K21(n,n) K22(n,1) o e o e K22(n,n)J \]1%1(n) }”Zzz(n)-‘ig\l

o
L

..

(IIT 2.12)

Each element of the K matrix is composed of the factors F(yi,yj), the quadrature

welghting factors Wi and the exchange terms
J
For the diagonal terms i=j so we must employ the derivatives of the exchange terms.

These are calculated by a differentiation under the integral sizn of equ. (III 2,2)

In practice n=30, so we had to deal with a 60 x 60 K.
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A direct integration of equ. (III 2.10b) then yields
(229 for any value of ¥ in the physical region, since this
only involves a knowledge of?ﬁl at the grid points (known
from the inversion of (§ -K) 5—-8 being the Kronecker delta.)
The solutions h1{ s h1g y and h2g are then multiplied by
the appropriate Clebsch-Gordan coefficients to give states
of orbital angular momentwﬁ‘{. The resulting amplitudes
satisfy the unitarity condition stated in equ.(II 2.23)
and can be expressed in terms of phase-shifts and coup-

ling parameters as follows

-k ,
hJ_1’J = ip*{cos 2€ 7 exp(21gj_13J)—1.}

-k . C
Rr+1,7 T 2ip { cos 26y exp(2lSJ+1,J)'1} (IIT 2.13)
J N :
g = 3p sin 265 exp[ (5 J-1,J+%J+1,J)]

(the first suffix referring to the orbital angular momentum).
In the case of the J=1 triplet states, we 2lso evaluate

the determinant of the 2 x 2 matrixéZD 3t 10 points

between V=0 and -0.2., As explained by GGW, section 7,

we expect it to vanish for a value of ¥ such that

s—mD2 =0 My is the deuteron mass.

i.e, b (v )= mD2 or V= mD2/L+--m2
Ezu. (III 2.10b) is used for this calculation, and in

chapter V we have plotted this determinant against V .
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CHAPTER IV

DETAILS OF NUMERICAL AND COMPUTATIONAL TECINIGQUES

altnough sonmce of the carly developnent work was
performed on the London University ATLLS computer, the
main body of the work was carried out on the Imperial

College IBM 7090/1401 system.

In this chapter we describe the function of
gach individual subroutine, how the various subroutines
are connected, and we also give flow diagrams to

indicate how the whole cowmputation was executed.

If during the exsccution of routine A, transfer
is mede to routine B, then we say 'A calls B' ,and in
general B will then 'return' to 4. We have indicated

our subroutine nemes by capital (upper case) letters.
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The following subroutines are the szme for both methods

1) and 2) of chapter IITI .

INVERT —=—— The stondord wmotrix inversion subroutine
obtained from the IBM Fortran SHaARE library.

POLY —— Generatcs the first seven Legendre Polynonials.

MESONS Given any pair of values of v and z (square
of CM 3-nowmentunr and cosinc of scattering angle for
chaennel I), the Mandelstan variables and related para-
neters for channsls I and II are evalucted. (We recall
that tne¢ contributions from channcls IT and III ars
identical). The actuzal varicbles calculated are

s, t, T, 77, E?, g%, A%, T1s To TE' The appropriatec
formuloe of chapter II section 4 are uscd, and these
depend on the sign of A®. As we heve indicated prsviously

only tGhe rocl parts of TE and 'I‘5 are rcquired.

AB50RB This calculates the cbsorptive parts of
the T amplitudes by employing cquations (II 4.14 and
IT 5.13). The crossing in I-spin spice and the eval-

ati f In f_ ar 1 f o In( T T, ) are els
uation of I f'3 nd In JS'AL fro Iw(_5 + f4) re also
cerried out autowmatically. The subroutine

CROSS -~—— cuploys the valugs of the parameters

calculated in MESONS to evaluate the crossing uatrix
X, equ. (II %2.8). 4BSORB then onploys this wmatrix in

order to calculcte the vaeriablees in squ. (II 5.7).
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SOURCH This subroutine evaluates the contribution

to In h from the one pion exchange terns directly
since 1t only involves ths calculation of ths app-
ropricte Legendre polynomicls. The two pion con-
tribution is then found by perforaing the integration
over the z variesble [cqu. (II 5.7)] of the terus
coleculated by the proevious three subroutinss. The
linits of integration depcnd on the valus of v, and
a3 range uust be divided into three regions if
p?+n2+2u7<0 [see acnoalysis following equ. (II 4.18c)].
The routines ABSORB, CRO3S3, and MESONS share 'coumon'
storagae, so that the variebles calculated by MESONS

are wnads aveldlsble to the other routines.

Execution of HMethod 1)
In Iig. (IV 1) we have given o flow dicgram of the
subroutines. A straight line indicates a direct 'call'
from one routine to c2nother, a broken line indicates
that @ routine lower down the chart uses information
alrecdy evaluated cond stored by a routine cbove., A
wavy line indicates thot o routine lower down thea
dicgron refers back to a routine above. We have in-
dicoted tirc vorious stoges of tihc pilculation within

the moin routine by ths nuwbers 1 . . 6.
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[1] Belects the net points (y;) of equation (III 1.20)

cccording to the Gaussicn integration nmetnod. The app-

}

ropricte weighting foctors stec. are made aveilable to

=

all subroutines regquiring integrations. The subroutine
KNLFAC is tuen called and this evalucites [ endf 7'
ot the net points. The factors in equ. (III 1.20)
apart from the source term R(yJ) are stored in a
notrix "PARTKL' since this will be the sawme for all

partial waves.

[2] Selects the partial wave requirad recd fron

input data. The program was written so that either
the one pilon or both one and two pion exchonge terms
could be considered separately. The cholce ig clso

)

nads &

.

this stege.

[3] The source terus R(yi) are gvolueted by calling
ABSORB, CROBS, cnd MISONS. The integral equation is
now of the forn

[2]=[1+0(0)T™ Jy2-[Ke 0

2 )= y®-[Kernel] ]

in cn obvious matrix notation. The matrix{l+Kernel}

¢
is then inverted in section [4], matrix nultiplication
giving the required veclues of .
[5] chooses the laboratory cnergy for which the phase-
shifts are required. E1=2v/m , ond the value ofwéaat

b,

the corresponding velue of y 1s found using

* The nunerical =zccuracy of the invorsion routine

is checked by verifying that i =1 (error <1O"6)
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BAK3UB The solutions é@(y) &t the n Gaussizn net
points, having besn eveluzted by section [4] of the
main routine, are placed in 2 cocwon storage block,

so thot they are availoble to thls subroutine also.
Direct integrations are performed corresponding to
equations (III 1.21, 1.23) to yield D(y) and N(y) at
the required vaolus of v. Bince D is conplex in bae
physical region, full use is ncde of the nachine soft-
ware which feocilitates couplex arithmetic. The retio
N/D is thmcaleculated ond returned to the ncoin routine
where the phase shifts are calculated using equ. (IIT 1.24).
Bstination of the nuasrical accuracy of the N/D nethod
iz bthen perforued by section [S] of the meain routine.

hus, perforaing only ons subtraction in each of the

]

integroals, we write

”
, v ~1/4 T (v )dv' v APIn b(v')dy!
h(v)=n(0) + — + —

] 1 I 1
L . vi(v'=v) T [y V (v'=-v)

(IV 2)

Having selected the required velue of v (in prectice,
corresponding to a laborstory encrgy of n/4 pion

nasges — n=1, . ., 12 ) and cvzluating h(v) by BAKSUB
the integrals in the above equation are evaluated, to

give a further check of the accurccy of the method.
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INTZGL This perforns the left hand integration for
v=—®@ to =1/4. v>0 so no difficultiecs crise froa a
venishing denoninstor. a(v')=In h(v')/x can be found
for cny value of v' on the left-hand cut by calling

the subroutine SOURCE. However, to save 2 considerzble
amount of conputer tione, wse enploy the same net polints
as in the intesgral eguations, use the scme substitution
as before, ond eaploy those valuces of a(v') already eval-
uated and ploaced in coumon storags. The value of the
integrel is then returncd to tae noin routine.

LHTEGR This routine perforas the intezgrztion on the
rignt hond cut. Some difficultics arise becouse

1) v' con equal v

2) v'=0 is iu the integrotion ranga,

so tane denoninstor vanishes for sowme points in the
intcgraetion range. The secoud of these is easily over-

come when we recoll thet

in the integrand. The bghaviour ot the origin is thus
1/4/v", ond the integral is eocsily performed if we
ncke o substitution of the form v'=z? (or aigher power).

The integral now hus the fora
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v th(v' )% dv' (IV 3
n %{Zb'(v'+mz)} v' =y )

The difficulty arising fron the vanishing of v'-v

is overcone by rewriting equ.(IV %) as

; M 101 Kl 1T
EN AR vho-

!

v o
+ = |a(v) | _dv
o ,\/{v'(v’+m“‘)}(v'~v)

The fincl integral contributes an imeginary part

(Iv 3')

equal to Im h(v) in virtue of the unitarity condition

(cs, of course, it should), and a real pars

Ln X | b(v) |? =<EE;E£X> 1n %
1+X 0 i 1+X

v
and X=
o) v+

Slightly differsnt wucthods were enployed for the actual

IV %)

nunerical integration, but aloost identical results were

obtained.



1) The ronge was split inte two reglons O to 1 and
1 tc w. In the first region wo substitute v'=z%,
. (IV 5)
in the second r<glon v'=1/z%.

It is 2lwiys on advaantage to unoke both sets of linits
reduce to the interval O —=1 , then both integrations
nay be corried out simultaneously since the same net
polnts and weighting factors are eaployed.

2) Alternatively, we ccn meke the substitution

v'=(1/z7-1)" (IV 6)

as ls done in chapter III section 2. Agaln the
integretion ronge is reduced to the unit interval.

3) The real pzrt of equ. (IV 3) noy be written as

y y/2 dv' lh(v')lz
-;‘Aéz/ v'(v'+n®) v' =y i

© In h(y')-In h(v)

(IV 7)

v ay'
- v'(v'i-v)
Toy/2

and then we need no further coupensating term since
Q©

dy' '
In h(v) .Re v (vi—yy = © (IV 8)
Jy/2
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Both intsgrals in ggu. (IV 7) are casily evaluated
nuterically by eidploying substitutions similor to those
outlined above. The integration rcnges are agoln reduced
to the unit interxval for convenience. Note, however,
that in 211l these methods we nust repeatedly call
BAKBUZ in order to find h(v') ot the required points.

We can snsure that the derivative of h(v) is never
required -— oné night expsct it to be on examining

the second integral of equ .(IV 7)— since we have

only to mncks sure the Gzussian integration points do

not coincide with v.

The finzl results arc returncd to the zain
prograa and odded to the rosults fron INTEGL. We can
then compore both sides of equ.(IV 2). Using our 30
point net (5-point Gaussian foraula repscted 6 tines)
resulted in an srror of only 3 or 4 ¢ at worst, the
actual error depending on the partial wave chosen.
when only tihe one-pion exchangs teruns are considered

both sides of aquation (IV 2) agreed to 5 significant

After section [6] has been executed, control is
troansferred back to section [2], and the next partial

weve 18 gelected.
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For nmethod 2) (the coupled triplet amplitudas),
we heve agoin drown a flow diogran consisting of 9
sections. [1] performs similer functions for both
methods, the only difference between the two methods
2t this stage being that instead of KNLFAC, the routine
FACKNL is called at this point, and this evaluates the
function F(y',y) of equ. (III 2.10c). Sections [2] and
[3] are identical for both uethods, but in section
[4] I

in both nethods, i.e. gvaluates the exchange terus

NTZEGL is celled. Thisg perforas the saae functions

h%(v)~h%(0) —the first integral of equ. (IV 2). All
these functions are 2 x 2 matrices as we emphasized
in the previous chapter. In section [5] the approp-
riate kornel is inverted cnd the nunerator function
is evcluated at the net points. In [6] the energy is

selected and the nunmerator found at the corresponding

point by a call to BAKN analogous to BAKSUB of

method 1). [7] calls +the roubtine DANDH which eval-

uates the denouinator znd the a(v)'s using equ.

(TII 2.10b). We recall thet h=ND"T., If J=1 the routine
DENLFT 1is called, and this computes the determinant
of the dencninator function ot 10 points on the left
thand cut, in the region wherc we expect the deuteron

to be located.

*In the present method he’(v) is also required, end
1s obtained by a differsntiation unéer the integral sign.
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In section [8], the motrix h(v) returned fron
DANNDH is fed into TRPLET which nultiplies the anp-
litudes by the Clebsch-Gordan cocfficients of equs.
(IT 2.23), 2nd eveluatces the phase-shifts and coup~
ling poramgber by using equs. (III 2.13). Agein full
use is made of the softwere o handle the conmplex
arithnetic. In [9] 2 checking procedure very similer
to the one outlined for aethod 1) is perfornmed. This
egain uses the routines INTEGR and INTEGL., It is
a further check to note that we consider the omp-
litudes aqq, )112 and h,, 1in order to verify thot
equ. (IV 2) is saotisfied. The nuuerical techniguas
required for this section are, of course, the sane as
for the corrssponding scction of method 1). Again
after the execution of [S] control is trzasferred to
[2]. We observe that the above checking procedure
cennot be used for the J=1 state, since there is an
extra tern (residue/(s~mD2)) thet must be added to the

left hand side of equ. (IV 2).
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We now give the various Gaussian quadrature formulae
employed in the calculation. 5, 8, and 16 point formulae
were used for the net of the integral equations. Very
satisfactory results were obtained when 5 points were
used to represent the one
(=% to -1), and 25 points

formula) to represent the

b

t
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pion contribution region
(5 times repeated 5-point

region -1 to -C0. We have

u/ﬁ f(x)ax= E_Jwtf(ﬂ) s and the numerical values of the
a

w's and t's are given by

t'= $(a+b) + F(b-a)t
Wy t W t
.094725305 | .095012510 <181341892 | . 183434642
.091301708 | .281603551 . 156853323 | 522532410
.084578260 | 458016778 111190517 | . 796666477
074797995 | .617876244 . 050614268 | .960289856
.062314486 | . 755404408 8-point
047579256 | .865631202 o 2844HLLLL | 000000000
.031126762 | .94%4575023 «239314335 .538469310
.013576230 | .989400935 . 118463443 | ,906179846
16-goint 5-point

t also takes the same values as above but with the

negative sign, the same weights being attached as

above.
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CHAPTER V

RESULTS AND CONCLUSION

We now display graphically the energy dependence of
our phase shifts. As well as our final results calculated
from one and two pion exchange we give the corresponding
granhs for one pion exchange only (OPEQ): When the OPEC's
consist of 3 series of crosses this indicates that the
results were obtained by our own calculation only.
Otherwise (for the higher angular monenta) they are taken
from the paper of Amati, Leader and Vitale @) (ALV), but,
of course, we were able to reproduce these results also.
We also . display the results of those experimental
groups given in ALV, and have followed their abbrevia-
tions ¢ st (13, voaw 1 (M) ana viaw 3 ('%). For the
lower angular momenta the results of Scotti and Wong are
given (SW3) and these agree closely with those of the
Yale group (YLAN 3M) or the Livermore group (private
communication between STAPP and SW),

In the paper of Galanin et. al (4) two sets of
results are given: (a) OPEC + Two pion contribution

(b) Supplementary contribution

from the \a meson.
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We repeat only the results of (a) since these are anal-
ogous to our calculation. For most of the I=0 phase-

shifts (even for the higher angular momenta) the para-
meters have either the wrong sign or are too small in
absolute value when compared with the experimental results.
For some of these cases we have not attempted to include their
(I=0)results on our graphs. The Galanin calculation is
hercafter referred to as 'G'. For the uncoupled states

some of the results of the one and two pion contributions
calculzated by the Tamm-Dancoff method are displayed ==
Gotsman and Hochberg (6) (GH). All our parameters are
measured in radians, and the laboratory energy E in pion
masses.

Before we give these results the deuteron bound-
state (see Fig. V 1) is discussed. It is seen that the
determinant of the denominator function vénishes at
?LQi,E?lﬁ? and#;glliztfor OPEC and OPEC+TPEC respectively.
M(‘0+m2):mD2 se Y “’m(mD—Zm)mdso the binding energy
(the difference between the mass of two nucleons and that
of the deuteron)is just the numerical wvalue of VY /m
(pion masses). Multiplying by the pion mass 137 MeV we
obtain the respective values of the deuteron's binding
energy e 1.75 MeV (OPEC), and 2.45 ¥eV (OPEC+TPEC)

compared with the experimental value of 2.2 MeV.
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Although the lSﬁ and 381 phasc shif'ts were nct caleutai:d

n:ar B =0 we expect our graphs t. have turning points and

lab.
pass through the origin.
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Galanin gives values of 5x107°,1.2x107",9x10™ ,2x10_3 radians

at 40,100,200,30C MeV respectively.
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For the 1SO and 381 phase-shifts our results follow
the general shape of the SW and YLAN 3M graphs and are
considerably better than the OPEC results. The numerical
values of the 1SO phase~shifts are, however, rather poor.
Since we have neglected the more complicated exchange
processes, and wbuld expect these to be important for the
S-waves, the general tendency of these gréphs towards the
experimental results is rather encouraging. We suggest
that this is mainly due to the fact that we have supplied
the actual values of the scattering lengths from exp-
eriment.

The 1P1 and 3P1 phase-shifts have the wrong sign and
even the OPEC results are much better. It is intesresting
to note that the Tamm-Dancoff method (GH) also yields 1P1
phase-shifts with the wrong sign. Our 3PO and 3P2 phase-
shifts are beginning to show the characteristic shapes of
the SW results (which closely follow experiment 3)).
Again the numerical values are rather poor but consider-
ably better than the OPEC results. The 1D2 phase-shift is
much too large, and the ALV and Galanin results fit the

experiments very well. For the 3D phase-shift the OPEC

2
terwrs are closer to the experiments than our results
which are, however, good up to 60 MeV. The ALV, GH, and

Galanin results are much too small in the whole range.
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The 3D3 phase~shift is considerably closer to the YLAN
results than that of ALV. The Galanin values are much too
large, and the OPEC values have the wrong sign. Our €2
mixing parameter (and that of Galanin) is much too large
although ours has a similar shape to the SW results. The
OPEC values follow the S4 graph up to about 60 MeV.

Jur 1F3 phase~shift has the same general shape 2as the
graphs of ALV and YLAN 3M, although our numerical values
are too large. The OPs8C results follow YLAN 3 up to about
100 MeV and s=em to fit the YLAN 1 results better for the
higher energies. The Galanin values are too large and have

3

the wrong sign throughout the range. For the F3 and 3F4
phase~shifts the OPEC results are too small and our results
too large. Again (together with ALV) we have obtained the
general curvature character of the SMMN graph. For the 3F3
phase-shift Galanin's results are much too small in abs~
olute value, but for the 3F4 phase-shift they fit SMMN's
results quite closely. Our é;3 mixing parameter, together
with the OPEC results fit the YLAN 3M graph very well.
Galanin's values are, however, véry poor.

Qur 1G# and 3G# phase~shifts are similar to those of
ALV 2nd fit in fairly well with the experimental results.
From the 3G# graph we ncte that the OPEC results are also
quite good. On the other hand, for both phase-shifts the

Galanin results are nuch too small.
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Qur 5G5 phase-shifts follow those of YLaN 1 quite closely,
but the ALV results begin to diverge from these at about
100 ¥MeV. In the low energy region (<100 LeV) the OFZ
results follow the YLAN 33X curve. The Galznin results
are again too small by a factor of about 10™% (in absol-
ute value). For the 5G5 phase-snifts a similar situation
occurs —our results follow the YLAN 1 graph but are a
little too large. The ALV regsults diverge considerably
from both of these and vanish at about 250 MeV. The OFE
and Galanln graphs follow the YLAN 3M phase-shifts quite
closely. Our 6.4 mixing parameter follows the SHMN graph
more closely than do the ALV results. The Galanin values
are too small in absolute magnitude by a factor of about
1/10.

For the 1H5 phase-siiift we have & graph of similer
shape to that of sLV but our values are too large. Agsin
the Galanin results are rataner small in absolute value.
For the 5H5 phase-shlft the O0YiC results are g;%ood
approxiaation to the SMUN graphsglg%é both our calc-
ulation and that of ALV bend to Aemrsvate the fesawious.
For ths 5H4 phase~shift the results of ALV, SMLN, and
SW agree up to about 150 eV and then begin to diverge,
the ALV graph following SMEY most closely. The Galanin

values are again too saall.
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For the 65 mixing parameter we have an interesting
situation — the OPZC results follow the YLAN 3M graph
closely up to about 150 keV and our results follow
those of YLAN 1 more closely. ALV's results are similar
to ours but a little larger.

In view of the discrepancies between different
experimental results, and the fact our results using
one <ond two pilon exchange tend to adhere to one set
and the OFPEC results to a differcnt set for any
particuler sgraph —— this adherence being inconsistent
for different graphs —— does not enable us to draw
any absolutely firm conclusions about our rssults.
dowever, except for some of the P wsves our graphs
nave the general curvature characteristics of the
experimental results and the correct sign. Whereas
the OPEC results in general sre smaller than the exp-
grimental values, our phase-shifts are a little too
large — produce too much attraction. Evidence of this
is also found in the fact that the OF3C underestimates,
and our results overegtimatecs the deuteron binding
gncrgy although our results do come closer to the
experimental valuc. e conclude that using one and two
pion cxXchange contributions produccs a falrly adegquate
degcription of the NN interaction at least for the higher

partial waves within the cnergy range investigated.
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APPENDIX A

If accurate solutions to the coupled integral equ-
ations are required we may be forced to invert very
large matrices (containing four times as many clements
as those for the uncoupled equations)., This can lead to
computational difficulties due to both numerical and
time-consuming considerations. We also have the branch
cut in h;,(V) which leads to the difficulties described
in chapter III. It may, therefore, be useful to solve
the equations by inVerting a comparatively small matrix,
and then to improve the solutions by a small number of
iterations (one iteration may be gquite adequate in some
circumstances) using the method outlined below.

Our approximate solutions are hiys hyo, and h22

satisfying equ. (III 2.3) on the right-hand (physical)
cut. Also, on the left-hand cut

. - m -

Im b5y =a (v

The unitarity condition can be rewritten as
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P2 DB 2
Im hyy= g [y +;n‘§|}112|

» p * *
Inhy 1= g hﬂ)}m +)‘L12h22) (a 2)
p 5 DPE 5
Im hop= 5| hyp | +g§,}l12l

The exact solutions we sesk will satisfy equations of

the form

) ~1/4 Im h(v')dy' v Im h(y')dy'
h(v) = - o vi(vi—vy * A v (v =v) (3
+ h(0)

except for the case J=1 when we must also include the

deuteron pole term gD2/(H(\;+m%). We now define

R
h (4 4)

hI

Re h

f]

1}

Im h

and let us suppose that a better apvyroximation to the
solution of the System (A 3) is h+ &, and powers of &
above the first may be neglected. Then using the fact
that our approximate solutions will satisfy unitarity
exactly*, and imposing the following conditions on the

€ To ensure our improved solutions do so also

* This is ensured by the N/D method exactly, even if our

integration formulae are very crude.
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2pre R, T.+2pE . Ry R, o I3 I
e 11+ €17 By7 ] —t e12>112+€127212]

T R,
Cq5-= - [Cll 127 ‘12 11 11)119 +€
(A 5)

Ty T I, T
+€22}(12 €5 M5+ )212 +(12 s 1

2p f
T “I R R R R I I

we find that the € satisfy integral ecuations, viz.
- R iy ..0 (v')o-v
C 11(\))—A11(\))+ J /’_L

v i(v'-v)

. w & lg(v')dv’
e L4032 Ty (4 6)

@ eg%(\)')dv’
/ ] 1
v'(v'=y)

< 2g(v )=A22(\))+.}%‘

ord

The functions All ete. represent the difference between
the two sides of ecu. (4 3) using our approxiuate
solutions h(v), and 2s usualEF) denotes principal value
integration. This syste. of three lincar sinultaneous
algebraic and three integral egquaticns can easily be

solved appr xiwnetely by first tdkrygélﬁ =A etc. and

11
then substituting into cqu. (4 5) to find the inaginary

, . . R . .
parts. The next approxination to{ill etc. is obtained
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by nerely integrating the right hand side of equs. (A 6).
Ve could then expect our new solutions h+ £ to be
considerably better approximations to the solutions

of equations (A 3) than h alone.

APPENDIX B

We now suwiarize those nisprints occuring in GGLW

which we have corrected in cur work.

Our equ. (II 2.18) corresponding to GGMW equ. (4.25)

(IT 3.5 ) (4.31)
(II 3.8 ) (4.34)
(IT 4.14) (B 9)



(1)

(2)

(3)

(%)

(5)
(6)

(7)

(8)
(9
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The Zilch in General Relativity.

K. S. FELDMAN

Mathematies Department, Imperial College - London

(ricevuto il 16 Settembre 1964)

Summary. — The conditions for the vanishing of the covariant divergence
of traceless, bilinear combinations of Van der Waerden spinors are investi-
gated for the electromagunetic field in the presence of gravitation, and
the free gravitational field.

1. — Introduction.

LipkIN (') has recently discovered the conservation laws of Zilch for the
free electromagnetic field, and these have been simplified by KIBBLE (?), using
the notion of u dual tensor *#,. The aims of the present paper are to show
how the same results may be easily obtained using spinors, and how they may
be extended in the presence of gravitation. We refer extensively to the work
of PENROSE (®) (on the application of spinors to general relativity), and here-
after abbreviate it to P. Any equations we require from that paper will be
denoted by (P 2.12 efe.). The third-order tensor 29, (and its six-index spinor
equivalent) of KiBBLE and Lipkixn, will be called «3-Zilch », and in Sect. 2
we investigate its properties in spinor formalism.

Section 3 is devoted to the determination of conditions for the 3-Zileh to
remain (covariantly) divergence-free in a gravitational field, and in Appendix A
we outline a proof that its divergences all have the sgame form. In Appendix B
we define a 10-index spinor analogue of Zilch for a free gravitational ficld in
empty space.

M D. M. TarxiN: Jouwrn. Math. Phys., 5, 696 (1964).

(*) T. W. B. KiBBL.E: Tmperial College Preprint, ICTP/64/55, submitted to Jouwrn.
Math. Phys.

(*) R. Prxrost: Ann. Phys., 10, 171 (1960).
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2 THE ZITCT IN GENERAT, RELATIVITY [105]

In order to obtain conservation laws from a vanighing covariant divergence
a procedure explained by EpmpineTox (*) (Chapter 4) is employed. See also
our conelusion.

The notation is as follows (suggested by PIraNI (%)): @, b, ¢ ... denote ten-
sor indices; 4, B, (... undotted spinor indices; and %, Y, X ... dotted spinor
indices. The antisymmefric spinor e =¢ . bakes the value -1 for AB =12,
The spinor eovariant differentiation operator is V,., and O =V4V, =V V47,
Symmetrizing braekets are used as follows:

1
Xisneny = 4—y ( z X) .

all permutations of ABCD

2. — The 3-zileh in spinor formalism.
The gpinor equivalent of the Maxwell tensor #, is given by

(P. 1.3) Fywrx = 2 (Qupbyx T EinPrx)

and that of its dual *I,, by

(P. 1.5) “Fgrsr = Hile0p Pux — Panrx)

where ¢ is symmetric. Adopting Kibble’s definition (®) of 3-Zilch

(2.1) zt, =*F*F, ,—*F I

. and replacing tensors by their spinor equivalents, partial derivatives by co-

variant §pinor derivatives, and remembering that V commutes with &, we find
that the spinor equivalent of the 3-Zileh is given by

(2'2) ZAWL'Y.DZ = %i((ﬁWYVDZ (pAc' - (pAC VDZ (}-)WY) ‘
(Cf. the density/eurrent of, e.g., the Klein-Gordon field:
@00 — ¢8¢,) -

The symmetry zv,=z2¢; follows immediately from the symmetry of ¢; note
AW replaces @, OY replaces ¢ ete. Now In charge-free empty space, Maxwell’s

Kppingrox: The Mathematicai Theory of Relativity (Cambridge, 1960).

() A, 8.
. A. E. Prran1: Lectures at King’s College London.

)
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[106] K. 8. FELDMAN 3
equations and the wave equations take the following fors respectively (%):
(P‘ 3‘10) VAIV(]’)AB = 0 y VAW(]’)WX = 0 y

(folIO\VS (1)' 3'13)) D(pAB = yjAB’}D (pCD - -gﬁ }'(I’)AB ? D{pWX: iPIVX‘YZ QBYZ - % }'QBWX

where 2 is the cosmological constant, and ¥, which is totally symmetric, is
part of the spinor equivalent of the conformal tensor (P and Appendix).
The vanishing of all the contractions of the 3-Zilch now follows imme-
diately from Maxwell’s equations and the faet that ¢ is symmetric—which
implies ¢*, =0 ete.
We now discuss the various divergences of the 3-Zilch. Covariant differ-
entiation, contraction, and a trivial cancellation, lead immediately to

(2'3) v ZAWCYDZ }" (99 4 D(p ¢ Aa D(ﬁwr) - %i((pw}'l}mcgp WBD —‘(pAo Twyxz(pxz)'

In a flat space-time O, 1 and ¥ all vanish, and so does this divergence, by
ingpection. The only other independent divergence is obtained by a differ-
entiation with respect to ¢, ¥; recall the symmetry in 4, C; W, ¥. We find
(after altering the positions of some dummy suffices) that

(2’4) VCYZFWCYDZ 2 2(‘}—7ulyvc'1r'vliz (P - (/’ACVCYVDZ @WY) N

In a flat space-time, we may alter the orders of differentiation, and then Max-
well’s equations tell us that this quantity vanishes. In the Appendix we dem-
ongtrate that (2.3) and (2.4) have the same form.

3. — Conditions for the vanishing of the divergence.
From (2.3), we see that the divergence will vanish if, and only if

(3.1) ik S e S

Since the complete classification of all solutions of this equation is rather
involved, it suffices to demonstrate that (3.1) is satisﬁed for some cases of
physical interest. From P. Scet. 4, we see that ¢ =3(045"+04%®). 0 and
7 are termed « Electromagnetic Prineipal Null Dhec‘mons », where the nuil
vector 0¢ has spinor equivalent 640", and similarly for 5. Should 0=7n=x,
say, the electromagnetic field is termed « Null», and %#, with spinor equivalent
#'%7 is the direction of motion of the wave. This is the case of an electro-
magnetic plane-wave, and ¢*® =x*%®. Tn the same way the spinor ¥ may be

2822



1 THE ZILCH IN GENERAL RELATIVITY [107]

decomposed as follows:
TABUD = Uy ﬁ}z Ve (SD) ’

«, f, ¥, 0, are « Gravitational Principal Null Directions ». It is, then, casy to
see that both sides of (3.1) will vanish if a) a=f=p=06=0 or 5 (to within
a scalar factor), or b) 0=1n=x, say, and x is equal to any three of «, 8, », 6
(again to within a scalar factor).

4. — Conclusions.

It has, therefore, been demonstrated that for an electromagnetic field in
a curved, charge-free, empty space-time, we may define a bilinear, trace-free
combination of spinors, whose divergence vanishes in physically interesting
circumgtances.

We may, of course, define gsimilar expressions for the gravitational field
interacting with meson fields, neutrino ficlds, Dirac spinor fields etc., and it
may be of interest to discover under what circumstances these have vanishing
divergence.

It should be noted that the vanishing of a covariant divergence does not
immediately imply a conservation law. We have first to write it in the form
of the ordinary (partial derivative) divergence of a tensor-density. This will
be the sum of the Zilch tensor-density and a « pseudo-tensor-density », defined
from a convenient Lagrangian. For {he details of this procedure see Eb-
DINGTON (*) (Section 59) for the case of the Material-Energy-Tensor, or any
standard work on General Relativity.

The author would like to thank Dr. S. HocuBeRrG for his continual encour-
agement, and the D.S.I.R. for financial support.

APPENDIX A

We now prove the result quoted at the end of Sect. 2. The spinor equi-
valent of the Riemann tensor is given by:

(P‘3~4) Riwpzornz = % (ZABUD Ewx Erz T Ecp PanrzEwx + &4p q-)WXL‘D Erz T+ €z o XWXYz) ’

(P-2.2) Hasop = TABL‘D -+ ;'/3(8ACSBD + €40 ge) -
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[108] K. 8. FELDMAN 5

Y corresponds to the conformal tensor, and ¢y, to the Binstein tensor.
In the case we are considering (P-3.11), @uuwr = @4 Pwy. Using (P-2.14), and
noting that any spinor may be written as the sum of products of one-index
spinors, we obtain the following results:

(Vop Vp? 4 Vpp Vo P) A2 = yop*® e’ + Keo" @hn

(Vy VE, - Vi, VER) 42 = @481, @ + ¢z @,

(Veop VoF 4 Vop VoP) Prx = P 0o + @up™ 0"

(VEY VEZ -+ sz VEY)Q’WX == }?YZWU(}—OUX + mevq-)gw .

(A.1)

These are used in conjunction with
(P-2.12) V5 Var — Vpx V= 3 ewx(Vip Va4 Vs, V,2) 4% es(Vaw V- Ve VB,
Substituting into (2.4) and using Maxwell’s equations, we find
(A'Q) ver ZAY ypg = %'i(i)WZ(XoDAHQ)HUJF ZC’DCH (PAE) ~+ %'E@WY((PAHYZ ‘PHDJF (pDHYZ (PAH) _
- 71‘":(}7‘110(‘PC'DWL7 Poz + Povs” ‘,TJUW) - T}Q'i‘PAD()?YzWU (PUY + }?YZYU¢I7W) .
Using (P-3.4), (P-3.11), it is seen that all the terms involving A, and @45,
cancel, and we are left only with ¥ terms. Note also that the symmetry of ¥

implies that 7,2 ete. vanishes. The final result is

(A.3) VO¥ ZAW 4 ypg = — ‘i"i((ijwz WADBU¢BU — 4y WWZXY P*Y) (Cf- (2 3)) .

APPENDIX B

We now brielly discuss the problem of obtaining a Zilch tensor (or spinor)
for the free gravitational field. In analogy with (2.2), we define

(B'l) ZAWBXCYDZHP = q’WXYZ V’IZPEIABC’D_'z ABOD VHPTWXYZ M

Note that in empbty space @uupx=0 (P-3.3), V??¥ 4, =0 (P-3.5), and
O se0 = 3P Pemrzr — 21 izop (P-3.8).

We see immediately that all the contractions of onr 10-spinor-index Zilch
(10-Zilch), vanish in virtue of the symmetry of ¥ and relation (P-3.5). By
an argument similar to that in Appendix A, we see that all the divergences
of this 10-Zilch have the same form, viz.

(B,‘_}) g—lwxrz D l1141301) - ':[IABCD D '—“—[—warz .
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6 ) THE ZILCII IN GENERAL RELATIVITY [109]
Using (P-3.8), we sce that this vanishes if, and only if
(B'3) ' T(ABCD y{Z‘I))EF’ YIWXYZ = WAB(,'D YI(WX‘UVYII’Z)UV .

When the Gravitational Prineciple Null Directions coincide in pairs, Petrov-
type [22], ¥ypep 15 proportional to ¥,,57 V., %r (see footnote (%), pag. 189
of P), so that (B.3) is satisfied. In the case of a plane gravitational wave,
Petrov-type N, when all four prineipal null direetions coincide, each side
of (B.3) vanishes identically. It remains to show that one of those conditions
is in fact necessary. Multiply both sides of (B.3) by ot a®a®, f4p2Bep2, ete.
in turn, where, as usual, «, 5, ete. are the Principal Null Directions. We obtain
the following sets of conditions, to be satisfied simultaneously:

afoayad=0, fraf-yp8=0, yayfyd=0, draxd-fdy=0

the only solutions of which are Petrov-types [22], N. Since the Sehwarzschild
solution is of type [22], this work may be of some physieal interest.

RIASSUNTO (%)

Si esaminano le condizioni di annullamento della divergenza covariante delle combi-
nazioni bilineari senza traccia degli spinori di Van der Waerden per ile ampo elettro-
magnetico in presenza di gravitazione, e per il campo gravitazionale libero.

(*) Traduzione a cura della Redazione.
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