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ABSTRACT 

The work described in this thesis is the original work of the author 

except where full acknowledgment has been made. 

The significant parameters in determining the conditions for the 

growth from solution of optical quality, large single crystals of lead 

tantalate have been measured. Single crystals have been prepared which were 

suitable for electro-optic measurements. A model for the growth of lead 

tantalate crystals from solution is proposed. The half wave voltage for 

several orientations of the crystal has been measured. 

The structural and dielectric properties of a new series of 

tungsten bronze oxides based on the composition IITi
2Nb8030 

have been 

determined and the ferroelectric behaviour of the lead rich compounds has 

been established. 
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CHAPTER I 

1. 	INTRODUCTION  

1.1 The Need for Electro-Optic Materials  

The radio, television and telephone links between two major 

industrial cities in this country require a bandwidth of 200 MHz to 

transmit the volume of information. This volume is growing exponentially 

each year and communication systems with very large bandwidths will be 

needed. A communications system employing an optical frequency carrier 

wave could possess bandwidth in the 'k MHz region which could accommodate 

the growth in the volume of information to be transmitted for the forese-

eable future. 

Such a system is dependent upon the achievement of efficient 

means of modulation. Modulators using the linear electro-optic effect 

have been proposed. The linear electro-optic effect was first discovered 

by F. Pockels (1893) and in this effect a change in the refractive index 

of a crystal is achieved by the application of an electric field. 

Although a number of materials have been discovered which exhibit this 

effect, only a very few have been found to possess a sufficiently strong 

effect to be of practical importance. 

There is a further difficulty as the materials must be 

available as large single crystals of optical quality. It has been found 

that many of the materials exhibit a large effect but are not readily 

prepared as single crystals. Consequently, a better understanding of the 

conditions necessary for the controlled growth of good quality single 

crystals is required. 

There are potential applications for crystals exhibiting a 

large electro-optic effect in other fields in addition to communications; 

in high speed optical digital deflectors; in memories and in optical 



display systems. All these potential uses can only be realised when 

materials possessing large electro-optic coefficients can be easily 

prepared as optical quality single crystals. 

1.2 The Uses of Electro-Optic Materials 

The two most important potential applications are as modulators 

in an optical communication system and as polarisation switches in an 

optical digital system. In a modulator configuration, a coherent light 

beam which is polarised at 450  to the principal axes of the crystal,is 

propagated through the crystal. The light beam is divided into two equal 

components plane polarised at right angles. An electric field applied to 

the crystal changes the refractive indices of the crystal, usually by 

differing amounts in the two directions of polarisation. Hence, there is 

a phase difference between the two components which is dependent on the 

applied electric field. The electric field can be applied parallel to the 

light beam (longitudinal effect) or at right angles to it (transverse 

effect). By suitable choice of the analyser orientation and the crystal's 

natural birefringence either phase modulation or amplitude modulation can 

be achieved. 

In an optical digital light deflector a series of crystals is 

arranged with an electro-optic crystal alternating with a strongly 

birefringent crystal. As for a modulator, a beam is propagated through 

the crystal as two components which are given a relative phase difference 

by the field. In general, an eliptically polarised light beam is produced. 

However, at one value of the field, the half wave voltage, a phase 

difference of w radians is obtained and a planc,  polarised beam is produced. 

If the natural birefringence of the crystal is used, so that with no field 

applied there is a phase difference of 2Tr radians, then again a plane 

polarised beam is obtained. The two resultant plane polarised waves for 
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phase differences of Tr and 27T radians are polarised at right angles. Thus, 

applying the field to the crystal rotates the plane of polarisation by 900. 

The birefringent crystal is orientated so that one polarisation is trans-

mitted without deflection and the other is deflected. Hence, for each 

unit in the series there are two possible positions for the beam which may 

be switched by a voltage. This is the basis for a high speed optical 

computer write-in system. 

1.3 Other Non-Linear Optical Phenomena  

The linear electro-optic effect is one of a number of non-linear 

optical phenomena which are of technological significance. The most 

important are second harmonic generation (S.H.G.) and parametric oscil-

lation. In S.H.G. a fundamental wave of frequency C.? is transmitted 

through a non-linear crystal and secondary components of frequency 2 and 

'0, are generated. Furthermore,- if two waves of frequency (4), and CO2  are 

propagated through the crystals, then components of frequencies W1 +LI)
2 

and6)
2 
-0

1 are generated. This is of practical importance because if 4)
1

is an infra red frequency and W2 an ultra violet frequency, then W2  -01  

will be a visible frequency. Therefore, conversion from infra red to the 

visible is possible. 

In parametric oscillation two waves of differing frequencies are 

propagated through the crystal. Optical energy can be transmitted from one 

to the other and the crystal then acts as a light amplifier. 

In general a crystal which exhibits one non-linear phenomenon 

will also exhibit two others, but with differing efficiencies. Thus, when 

a new material is developed, even if it is poor in respect of one phenome-

non, it may be important with respect to another, consequently, it is 

worthwhile to investigate all the non-linear properties of the material. 

3. 



1.4 Linear Electro-optic Materials Currently Under investigation  

Only crystals with non-centrosymetric structure exhibit the 

linear electro-optic effect (4.5). Within this constraint a very wide 

range - of materials has been investigated. These may be broadly classified 

into five categories: 

(1) AB type semiconductors 

(2) KH
2
PO
4 

and its isomorphs 

(3) Organic materials 

(4) Oxygen-Octahedra ferroelectrics 

(5) Miscellaneous materials. 

Table 1.1 lists the properties of typical compounds of each 

category. The oxygen-octahedra ferroelectrics have been the subject of the 

most intense investigation in recent years. They can be classified into 

three structure types, each made up of BO
n
6 

octahedral units. The three 

are (1) perovskile type structure; e.g. BaTiO3, (2) pseudo-ilmenite-type 

structure; e.g. LiNb0
3' 

(3) tungsten bronze structure e.g. Sr 	Ba 	Nb 
0.5 	0.5 2

0 
 6' 

The tungsten bronze structure materials have been shown to have the highest 

electro-optic coefficients and the lowest half wave voltages of any of the 

groups. This has been ascribed by Wemple (1969) to the fact that these 

materials have the closest packing of B0
6 
octahedra. The two best 

materials that have been so far developed are barium sodium niobate, 

Ba2NaNb501.5  and strontium barium niobate Ba(1_x)Sr(x)Nh206. 

1.5 The Selection of New Materials for Investigation  

In addition to the requirement that the crystal should belong to 

a non-centrosymmetric class, the following criteria define a good electro-

optic material. 

(1) Low absorption at the relevant frequencies 

(2) Large electro-optic coefficients and high refractive 

indices. 

4. 



(3) Resistance to optical damage. 

(4) Easily grown as large single crystals. 

(5) Resistance to atmospheric attack and possessing 

long term thermical stability. 

(6) Low dielectric constant and dielectric losses. 

There criteria are obvious except for (3) but are not consistent 

with one another. Optical damage occurs when the crystal is irradiated in 

an electric field. The radiation excites electrons from the valence band; 

due to the internal electric field the electrons migrate through the 

crystal, in the beam area, and fall into deep traps. The electrons 

accumulate locally, producing a charge field which produces its own 

refractive index change which in turn scatters light out of the crystal. 

Although it is not possible to predict whether a new material 

will satisfy all or any of these criteria until large single crystals are 

grown, there are some grounds for chosing new materials. Miller's rule 

(Miller, 1964) states the electro-optic coefficient is proportional to the 

linear dielectric susceptibility. Thus a material possessing tungsten 

bronze structure and having a large dielectric constant should prove to be 

a good electro-optic material. One such material is lead metatantalate, 

PbTa
2
0
6' 

which is a tungsten bronze ferroelectric with a dielectric 

constant of about 800 (Francombe 1958). No measurement of its electro-

optic properties has been reported:, 

It is known that stoghbmetric tungsten bronzes are not optically 

damaged by lasers. While a number of different tungsten bronze composi-

tions have been investigated, very little attention has been given to 

tungsten bronzes of the type (Al2+)2  (A22+)4  (B144)2  (R25+)8 030- . which is 

the required composition for`a fully-filled tungsten bronze structure. 

Thus, it might be expected that the composition Pb6Ti2Nb8030  is a tungsten 

bronze ferroelectric. A study of its dielectric properties in ceramic 

5. 



form would indicate if further investigation of its growth as single 

crystals and subsequent measurement of electro-optic coefficient is 

desirable. 

1.6 Crystal Growth of Electro-Optic Materials  

On this topic the following quotation from Bergman (1970) is 

instructive. "The number of materials of any kind which can be grown as 

large single crystals is very limited indeed. It is, therefore, not 

surprising that the major bottleneck is not in finding materials to grow 

but in finding satisfactory ways of growing them." By far the most commonly 

used method of preparing crystals for electro-optic purposes has been the 

Czochralski technique. Virtually all the tungsten bronze ferroelectrics 

have been prepared in this manner. The review of recent electro-optic mate-

rials by Spencer (1967) mentions no other growth technique. While the 

technique has been successful for some materials, it limits the types of 

material that can be grown. For example, lead is a highly polarised ion 

and should have a beneficial effect when incorporated into the tungsten 

bronze structure. However, lead oxide is volatile at high temperatures 

(>1000°C) and the Czochralski technique cannot be used. Similarly, non- 

congruently melting materials cannot be prepared by this technique. The 
solution 

high temperature/technique (fluxed melt technique) must therefore be used 

for such materials; this has been employed with some success in the 

preparation of many materials for research purposes and has the advantage 

that small but good quality crystals are obtainable. It has been applied to the 

growth of potasSium tantalum niobate (KTN) from solution in potassium 

carbonate by Whipps (1970). 

1.7 The High Temperature Solution Technique  

High temperature solution techniques and aqueous solution tech- 
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nique are both examples of the same basic principle, that is the addition 

of a solvent component which lowers the melting point of the pure component 

to a temperature at which it may be prepared as a single crystal. However, 

as the solvent is a molten oxide or salt, the solution process must take 

place at high temperatures (>800°C) as the solvents are liquids only at these 

temperatures. The technique has proved remarkably successful in the 

preparation of refractory oxides which are extremely insoluble in room 

temperature solvents. (White I, 1965). Lead tantalate can only be prepared 

by this technique (1.13). The high temperature solution technique has 

limitations due to the problems in maintaining the solution at constant 

temperature and due to the highly corrosive nature of the solvents which can 

be contained only in crucibles of platinum or irridium. Furthermore, very 

little is known of the chemical or physical behaviour of these solutions, 

and by their very nature they make difficult measurement of their properties. 

However,Elwell (1967, 1968) has shown where an investigation of the 

solution's properties is made, a very substantial improvement can be 

achieved in the size and quality of the crystals grown. The conditions for 

the growth of large single crystals is discussed in Chapter 2. However, most 

crystals that have been grown from high temperature solutions have been 

obtained without any investigation of the solute solvent system. This is 

a fact deplored by reviewers of the subject (White I, 1965, Roy (1968)) who 

point out the great value of a systematic study of .the properties of the 

solution. 

1.8 The Scope of the Research  

In order to grow large single crystals of lead tantalate, it is 

necessary to find a suitable solvent (criteria of suitable solvents, 2.2). 

For this reason the solubility of lead tantalate in a number of solvents 

has been measured. Of these the solvent, lead vanadate 
Pb2V207 

was most 
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suitable and further measurements were made on the properties of this solute-

solvent system. Experiments to grow single crystals by slowly cooling the 

solution and by the temperature gradient transport technique, (White, T. 

1965) have been performed. A model for the growth of lead tantalate from 

solution was derived from the experimental evidence. The dielectric and 

electro-optic properties of the lead tantalate crystals were measured. 

The dielectric and structural properties of the system Pb6Ti2Nb
8 

0
30 

have been measured for a varying Ti:Nb ratio. Lanthanum oxide was 

added to provide charge compensation. Experimental attempts to grow single 

crystalS are described. 

LITERATURE SURVEY  

1.9 The Linear Electro-Optic Effect  

The linear electro-optic effect was first measured by F. Pockels 

(1893,1906 ) in crystals of quartz, tourmaline, potassium chlorate and 

Rochelle salt. Zwicker and Schirrer (1943 and 1944) reported the d.c. 

electro-optic coefficients of potassium dihydrogen phosphate and potassium 

dideuterium phosphate. The effect in these later materials was sufficiently 

large for their use in practical applications, and their discovery, with 

the advent of the laser, stimulated the investigation of the variety of 

materials whose properties are now known. 

Nye (1960) derived the dependt:nce of the electro-optic coefficient 

risk  on the symmetry of the crystal. He further demonstrated that the 

change in refractive index of the crystal with electric field was due to 

the dependence of the dielectric polarisation on higher orders of the 

electric field. Most theoretical models advanced since that time have 

tried to derive a mechanism for this dependence. 

In a phenomenological model for second harmonic generation 

Miller (1964) assumed that the free energy of the S.H.G. was depenatnt 

upon the amplitude of the polarisation waves of the secondary radiation. 
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In this way he derived a relation: 

2 cz? 	2 w 	• b; 

jk = ijk Xi; Xji Xkk óiik 

wheredi  .jk  is the coefficient of second harmonic generation, 

20 
x
ii 	

etc. are the linear susceptibilities at the appropriate 

frequencies. 

6..13k is a constant and was found by Miller to have a similar value 

for a wide range of materials. 

Miller then used Kleinman's relation (Kleinman (1962)) that 

rijk 
 

4r4  
d.. 

n.. 	13k 

toshowthedependenceofr.on the linear optical susceptibilities at 
ilk 

the appropriate frequencies. 

The classical model of a dielectric material due to Huang was 

extended by Kelly (1966) to give a non-linear polarisation. Huang's model 

needed only dipole interactions for the calculation of the susceptibility 

due to the lattice ions. Kelly extended the treatment to include the 

quadrupole interactions and hence obtained a polarisation dependent on the 

electric field. The electronic contribution was calculated using the 

linear susceptibility and Lorentz type local effective field value, which 

with 
field. Experiment results/agreed/their 

accuracy of within a few per cent. 

Kurtz and Robinson (1967) used the enharmonic oscillator model 

first derived by Bloembdrgen (1965) to derive an expression for the electro-

optic coefficient. In this model, each bonding electron is thought to 

oscillate with an ultraviolet frequency in a symmetrical potential well to 

which a small enharmonic term is added. The characteristic frequency of 

the electron describes the refractive index in the visible region, and the 

anharmonicity gives rise to a non-linear polarisation. Kurtz and Robinson 

included the applied theory to an 
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then used this and the Kleinman relation to deduce the electro-optic 

constant. They further extended their treatment to include ferroelectric 

materials and concluded that the linear electro-optic coefficient depended 

directly upon the spontaneous polarisation. Garret (1968) has shown that 

the enharmonic oscillator model provides a valid description for a number 

of non-linear phenomena. Kurtz and Robinson's treatment is most valid for 

ionic crystals and Kelley's treatment for covalently bonded crystals. 

There are two distinct mechanisms by which the applied electric 

field changes the refractive index of the crystal. The first is the 

interaction between the field and the lattice vibrational modes, which in 

turn through the lattice to bonding electron interaction changes the 

polarisability at optical frequencies and hence gives a refractive index 

change. The second mechanism is the direct interaction of the applied 

electric field with the bonding electrons. Kaminow (1967) has shown that 

in lithium niobate and lithium tantalate the lattice contributes 90% and 

. the electrons 10%. of the effect. 

The contribution of the ion of a given element to the effect has 

not been studied in detail. Emmenegger et al. (1968) have studied double 

sulphates of the Langbeinite structure, having the general formula M
2 
m
2
II 

 (SO
4
)
3
. 

They concluded that the metallic ions contributed very little, the chief 

contribution being made by the acentric sulphate group. The exception was 

for the material (NH4)2  Mn2  (SO4)3  in which the acentric ammonium group 

acted in an opposite sense to the sulphate group and a relatively small 

electro-optic effect was observed. 

, 1.10 Linear Electro-Optic Materials 

Tables of electro-optic coefficients can be found in the American 

Institute of Physics Handbook of Physics and Chemistry and in Physical 

Chemical Tables (1962). Further reviews have been published by Kaminow (1966), 
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Spencer et al. (1967). The properties of oxygen octahedron ferroelectrics 

has been summarised by Wemple (1969). 

Table 1.1 gives a list of typical electro-optic materials as 

classified in section 1.4. The largest coefficient and the half wave 

voltage is given where the data has been published. A large electro-optic 

coefficient does not necessarily mean a small half wave voltage as this is 

a function of difference between coefficients. 

1.11 The Tungsten Bronze Oxides  

A review of the chemistry of the tungsten bronze oxides is given 

by A. D. Wadsley (1960). The structure is made up of oxygen octahedra 

arranged in rings to form five, four and three sided tunnels as shown in 

the unit cell, fig. 1.1. The pentavalent ions are located near the centre 

of the octahedra, the monovalent or divalent ions are located in the 

tunnel sites. Fig. 1.1 shows the tetragonal form; orthorhombic and 

hexagonal unit cells are also found. The general formula for the tungsten 

bronze structure is (A1)2  (A2)4  (C)4  (B1)2  (B2)8  030. A detailed structural 

analysis of the material Ba0.27Sr0.75Nb205.78  has been performed by 

Jamieson (1968) who also reviewed the structure of tungsten bronze 

ferroelectrics. A wide range of properties is found in the bronzes, 

depending on the degree of stoichiometry and on the ions present in the 

structure. When all the A and B sites are filled the materials are 

ferroelectric. Of particular interest for electro-optic applications are 

materials in which 'A is lead, barium, strontium, potassium, sodium or 

lithium and B is titanium, niobium or tantalum. Rubin et al. (1967) 

prepared and determined the electro-optic properties of a number of niobate 

materials containing various combinations of the divalent and monovalent 

ions. Little work has been published on the properties of the tungsten 

bronze type (A)
2+
6  (Bi)4+2  (B2)5+8  030. The structure of Ba6Ti2Nb6O30 
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TABLE 1.1 

4 

Material 

AB Semiconductors 

CdS 

CuC- 

GaP 

ZnS 

KDP and isomorphs 

KH PO 
4 

(NH4) H2PO4 
KH As0 2 	4 

Organic compounds 

Rochelle salt 

Tourmaline 

C(C1120H)4  

Tungsten Bronze 

Sr
.75

Ba
.25

Nb
2
0
6 

BaNaNb
2
0
6 

K6Li4Nb10030  

Sr
2
KNb

2
0
15 

Miscellaneous 

K
2
Mg
2
(SO

4
)
3 

Bi4(Ge04)3  

Electro-optic 
Coefficient 
(x 108cm/V) 

r
51 

= 1.2 

r41 
= 2.0 

= 0.35 

r41 = 0.60 

ro  = 32 

r61 
= 25 

r63 = 39 

r41 = 6.0 

r
22 

= 0.1 

r
52 

= 0.5 

r
33 

= 10.1 

r
33 

= 0.3 

r
33 

= 0.84 

r11 = 1.3 

r
41 = 0.3 

r
41 = 0.34  

Half Wave 
Voltage 	References 
in Volts 

Kaminow (1966) 

7 do - 

- do - 

- do - 

	

7500 	- do - 

	

9600 
	- do - 

	

6200 	- do - 

American Institute of 

Physics Handbook 

Johnston (1965) 

2800 

	

37 
	

Lenzo (1967) 

	

1600 
	

Geusic (1967) 

	

930 
	

van Uitert (1967) 

	

400 
	

Giess 	(1967) 

Ememmengger (1968) 

Spencer (1967) 

B0
6 

Oxygen Octahedra 

Perovskite 

BaTiO
3 	

r42 = 8.2 

Illeminite type 

LiNb0
3 	

r
22 

= 20 

Electro — Opt i c Coefficients and 	Halt- Wave 

Voltages 	of typical materials . 
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has been analysed by Stephenson (1965). The X-ray evidence suggested 

the material should be a ferroelectric. 

1.12 Lead Tantalate PbTa 0 
2-6 

The earliest investigations were made on ceramic discs prepared 

from the two oxides. Smolenski et al. (1954) demonstrated that the 

material was ferroelectric with a Curie point at 260°C. Francombe (1958) 

reported that lead tantalate was a tetragonal tungsten bronze ferroelec- 

tric with a Curie temperature of 150°C. Ismailizide (1959) reported the 
phase 

space group as the orthorhombic Cm2m in the ferroelectric which/becomes 

the tetragonal P4/mbm above the Curie point. Ismailzide (1966) confirmed 

these results' with a more accurate'X-study and gave the Curie tempera-

ture as 265
o
C. 

As described in section 1.13, Subbarao (1960) prepared single 

crystals of lead tantalate. They gave the lattice constants as a = 17.68, 

c = 7.7548 and b/a = 1.002. The polar axis was normal to the [001] axis 

and the spontaneous polarisation was 10 x 10-6 coul. cm
2
. They measured 

the natural birefringenCe along the three crystallographic axes. Their 

dielectric study on the single crystals indicated a Curie temperature of 

265°C. Thus a Curie temperature of 265°C is independently confirmed and 

may be taken to be the most accurate value. 

The sub-solidus phase diagram of the Pb0-Ta
2
0
5 

system has been 

investigated by Subbarao (1961). He concluded that ferroelectric lead 

tantalate was a metastable phase formed only above 1140°C. The equili-

brium room temperature form is rhombohedral and non-ferroelectric. The 

transition from orthorhombic to rhombohedral is extremely slow and can he 

only partially accomplished by heating the orthorhombic form at 900°C for 

24 hours. 
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1.13 The Growth of Lead Tantalate Single Crystals 

Lead tantalate crystals cannot readily be grown from the pure 

melt as lead oxide is very volatile above 11000C, the melting point of 

lead tantalate being above 15000C (Subbarao, (1961)). Crystals have been 

grown from solution in lead vanadate, Ph
2
V
2
0
7 
by Subbarao (1960). The 

best crystals obtained measured 1 x 1 x 4 mm. They were elongated along 

the [ooiJ axis and were frequently twinned. The ferroelectric phase 

could only be prepared from solutions initially heated above 1140°C. 

Chemical vapour phase transport is unsuitable for such a 

refractory oxide as tantalum pentoxide due to its low vapour pressure and 

chemical activity. This leaves the possibility of using the hydrothermal 

technique. Hill (1966) found that for lead niobate, which has a_very 

similar phase diagram to that of lead tantalate, had no stability field 

for the ferroelectric phase at any pressure below 25 atmospheres or at 

any temperature below 1150°C. A similar result may be expected for lead 

tantalate. Hence, high temperature solution is the only effective 

technique for preparation of lead tantalate crystals. 

1.14 High Temperature Solution  

Reviews of the high temperature solution technique have been' 

published by Laudise (1963), White (I, 1965) and Roy (1968). Laudise 

discusses phase relationships of solute and solvent and illustrates the 

discussion with reference to the growth of barium titanate and yttrium 

iron garnet. White has given a more comprehensive review, and discusses 

the experimental techniques and apparatus, the criteria for the choice of 

solvents, methods of determining solubility, and finally, the crystal 

quality in terms of the growth process. Roy describes recent improvements 

in experimental techniques. All the reviewers state there is a great 

need for measurement of the solution's properties. Kohman (1963) has 
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reviewed the theory of growth of solution. Cobb (1967) has given 

theoreuical requirements for the growth of large single crystals of 

alumina from a lanthanum fluoride solution by slow cooling and tempera-

ture gradient transport. He also measured the density and viscosity of 

the solution. 

1.14.1 Nucleation  

The theory of nucleation of crystals has been given by 

Strickland-Constable (1968). White (I, 1965) has remarked that the 

supersaturation for spontaneous nucleation is much greater than that 

required for stable growth. Crystals grown by spontaneous nucleation are 

characterised by cores of highly disordered dendritic type material. The 

best method of obtaining good crystal growth is to use a seed crystal 

(Kohman, 1963). 

1.14.2 The rate of growth of the interface  

The theory of crystal growth has been discussed by Strickland-

Constable (1968). The conventional model of crystal growth is shown in 

figure2.3. There is an unstirred layer in contact with the crystal face 

in which there is a concentration gradient through which the crystal 

molecules diffuse. In the surface layers the molecules migrate until they 

are incorporated into the crystal. There are two rate determining 

processes, one is diffusion through the unstirred layer, the other is the 

incorporation of the molecule into the interface. The rate determining 

step for particle integration was thought to be the rate of production of 

a two-dimensional nucleus on an otherwise atomically flat surface, 

(Volmer (1931)), (Stranski (1928)), (Becker (1935)), but it predicted a 

much slower growth rate than the experimentally observed one. Frank. (1949) 

suggested a screw dislocation emerging from the surface would provide a 

nucleus which would be perpetuated during growth. Burton, Cabera and 

Frank (1951) calculated the rate of growth of the interface for molecules 

integrated into the lattice at a kink in such a nucleus. They derived 
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a linear growth rate 	..-_ — 02 	at low supersaturations and v .  = ea 
al  

at high supersaturations where c, a, are constants and a is the relative 

supersaturation. This treatment was extended by Benema (1965) to include 

surface diffusion. 

Bryce (I, 1967) has consinfed non-diffusion limited solution 

growth. He derives six relationships between supersaturation and growth 

rate which are dependent on the nature of the surface. He considers three 

situation (1) where particles are incorporated at any point, (2) where they 

are attached to a nucleus on an otherwise flat surface, and (3) where there 

is a spiral dislocation. He considers these at high and low super-

saturations. He further considers diffusion limited growth (Bryce II, 1967) 

and concludes that the growth rate v = k
1 
a at high supersaturation and 

v = k
2 
a
n 

at low supersaturations where k1, k
2 
n
, are constants and n varies 

between 1 and 2 and is determined experimentally. 

_ 1.14.3. The rate of production of supersaturation  

The rate at which supersaturation is produced in the solution is 

determined by the rate of slow cooling of the solution, the temperature 

gradient or the temperature of solution according to the technique chosen. 

In general, these conditions may be chosen before by the experimenter. 

Laudise (1963) has derived the linear growth rate, R, of a crystal face in 

M8 
slowly cooled solution as R = 	

de 
c7i. 	where M is the mass of solution, 

dt 

A the surface area of the growing crystal face, P the density of the melt, 

a the temperature coefficient of solubility, and 
de 
 the cooling rate. 

Wood (1970) has derived the relation for the decrease in solution 

temperature with time for a linear growth rate a constant supersaturation 

as: 

A8t = at
3 

where AO
t 
	-

t
;

c is the saturation temperature and 0t 
is the 
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solution temperature at time t. 

a is a constant given by 

a 
= N p f3 

nk 27 
R
3 

where N is the number of seed, n the number of litres of solution, k is 

the slope of the solubility curve, f
3 

the habit factor and p the density of 

solution. 

Both relationships require a knowledge of the solubility as a 

function of temperature. While (I, 1965) describes methods of determining 

solubility by quenching techniques. These experiments are somewhat 

tedious and can fail to give any consistent results. This was found to be 

so by Cobb (1967) who also used differential thermal analysis techniques 

without success. A simple and very effective method of determining 

solubility using a thermobalance technique has been reported by Elwell 

(1967). 

Standard thermodynamic techniques can be used to derive an 

expression for the solubility of a given solute-solvent system (Kohman, 

1963) provided all the thermodynamic variables are known. This is rarely 

the case, especially for new materials. Cobb (1969) has derived an 

expression for solubility which depends only on temperature of the 

solution and the melting point and heat of fusion of the solute in the pure 

state. 

1.14.4. The Transport of solute through the bulk solution 

The transport of heat and mass through the bulk of the solution 

to the crystal surface is a problem of fluid mechanics. Jakob (1953) 

reviews the problems of heat and mass flow in systems where there is a 

change of phase. There is an exact equivalence in the description 

between a system where there is an isothermal transport of mass and a 

system where there is a transport of heat at constant composition. Thus, 
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solutions of heat flow equations can be applied to equivalent problems 

in mass flow. Growth by slow cooling approximately to isothermal mass 

transport. Where heat and mass flow occur simultaneously the transport 

is defined by the equations 

a 
a = L  . 	IN

Gr  , 
N
Pr' 

N
Sc

I 

6 b = — . L IN 
Cr' N Pr' 

 N 
c

I 

where a, b are the coefficients of heat and mass transfer respectively, 

is some function defined by the experimental conditions, 

	

a 	is the thermal diffusivity, and 

	

-6 	the mechanical diffusivity. 

N
Gr , 

N
Pr 

and  N
Sc 

are modified Grashof-number, the Prandtl number 

and the Schmidt number. A glossary of these terms is given in 

Appendix A. 

Carlson (1958) used the similarity between heat and mass flow 

to study the growth of crystals from aqueous solution. For an equal 

deposition of mass to occur over the crystal surface, neglecting surface 

diffusion, there must be a variation of concentration over the surface. 

For a given solution velocity there are points on the surface where the 

solute concentration falls below the equilibrium concentration and a 

'starvation' veil results. Carlson calculated the length which a crystal 

face may grow at a given solution velocity without any veils forming. 

1.14.5 Constitutional supercooling  

Constitutional supercooling has been shown by Bardsley (1961) 

to cause instability in the growing interface of crystal grown from 
a 

slightly impure melts. Hurle (1961) has derived/theory for this effect, 

the condition for stability being a negative gradient of supercooling 

ahead of the interface. Mullin (1963) derived from the diffusion equa- 
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Lions the conditions under which an interface was stable. He agreed with 

Hurlers criteria, but with the further condition that a perturbation of 

the interface will not expand if the increase in surface energy is 

greater than the decrease in free energy due to the supercooling. 

White (II, 1965) has described the conditions for constitutional 

supercooling in solution growth. Tiller (1968) has extended the theory of 

constitutional supercooling from melts to solutions. He derives a 

maximum growth rate for stable growth which is dependent on the tempera-

ture gradient at the interface and the decrease in the liquidus tempera-

ture caused by each component in the solution. This treatment neglected 

any effect due to the increasing surface energy of an interface 

perturbation. Brice (1969) has used the criteria that if the interface 

were instantaneously advanced a small distance then its growth rate 

would decrease and the interface would be stable. He derives a maximum 

growth rate which depends on the temperature gradient, the heat of 

crystallisation, and the change of the growth rate with temperature. 

Unfortunately, there is insufficient experimental evidence to test the 

theories of Brice and Tiller. 

White (I, 1965) and Elwell (1970) consider that dissipating the 

heat of crystallisation through the crystal, rather than through the 

solution, increases the interface stability. 
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CHAPTER II 

2. THE MEASUREMENT OF TUE PROPERTIES OF SOLUTIONS OF LEAD TANTALATE  

2.1 High Temperature Solution Techniques  

The reviews in section 1.13 noted that: the high temperature 

technique has been used to prepare crystals of many materials, but that in 

all but a very few cases very little systematic study has been made of the 

properties of the solutions used and the conditions required to prepare 

large crystals. The reviews were unanimous in deploring this lack of 

study and point out that the need for an investigation of the mechanisms 

involved in crystal growth technique and of the solution properties which 

determine these mechanisms. This need. arises because there is little consistency 

in the results when the same crystal growth experiment is performed in 

different laboratories. This must be the case when the significant 

experimental parameters are unknown and hence unmeasurable. In order that 

the high temperature techniques can be used in large scale production of 

crystals for devices a reproduciblity in experimental results must be achi- 

eved and this can follow only from a measurement of the significant 

experimental parameters. In order to make this specificatiOn the solution 

properties that are to be measured must first be deduced. These proper- 

ties can be found from the following consideration of the techniques used 

to grow crystals from solution. 

.An idealised phase diagram of a solvent system to be used for 

high temperature solution growth is shown in figure 2.1. 
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Solid B is the desired phase to be crystallised and A is the 

solvent material. If B is incongruently melting, or has a destructive 

phase change between its melting point and room temperature, it cannot be 

grown as large single-crystals from the pure melt. The addition of 

component A to molten B is shown in figure 2.1. It effectively lowers the 

melting point of B so that solid B is in equilibrium with a melt over a 

range of temperature. Thus, by variation of composition or temperature B 

may be precipitated at a temperature below that of any undesirable phase 

change. Although the addition of component A creates additional growth 

problems over those encountered in growth from the pure melt, there are 

advantages in the high temperature solution technique: growth rates are 

much lower as are the temperature gradients in the crystal and environment, 

and consequently crystals can be obtained with much lower defect densities 

than by other techniques. This is of great importance when crystals are 

required for applications using high power light beams. 

A number of different experimental configurations are used to 

prepare crystals from solution. If components A and B are mixed to give 

the composition NB  and are heated to a temperature T, to give the point P, 

the solution is a single phase liquid at P. If the solution temperature 

is decreased at constant composition, the slow cooling technique, the 

point P describing the solution moves parallel to the ordinate and when it 

reaches the phase boundary the solution becomes saturated. On further 

cooling solid B is precipitated, usually at a number of different nucleii, 

although .a finite degree of supersaturation is observed before crystal-

lisation commences. With further cooling, molecules orio0or complexes 

containing B are transported through the solution to the nucleii either by 

stirring, or by a combination of convection and diffusion, and are then 

incorporated into the molecule (after dissociation if molecular complexes 

are formed). Supersaturation may also be produced by evaporating the 
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solvent A, which is generally more volatile than the soluteB. in this case 

the point P moves parallel to the abscissa until supersaturation occurs. 

Crystal growth may also be achieved by the temperature gradient 

technique (White, I, 1965). A. temperature gradient is applied to the 

vessel such that the solution is coolest at the top. The vessel is 

charged so that at the base there is an excess solid material B. The 

solution can be divided into three zones; the hottest zone at the base in 

which the solution becomes saturated, the middle zone through which the 

saturated solution is transported by convection and diffusion, and the 

third, coolest zone at the surface where the solution becomes supersaturated 

and growth occurs onto a seed crystal. The reverse configuration may 

also be used where the more concentrated solution becomes.denser. In this 

case the excess charge is held in a hot zone at the surface and the seed 

is in a cool zone at the base. 

Whilst the production of supersaturation in some arbitrary 

manner will serve to precipitate the solute phase, a close control of the 

experimental conditions is necessary for large single crystals to be grown. 

Returning to the model of crystal growth by slow cooling it was noted that 

the first stage in crystal growth was the formation of nucleii; i.e. 

spontaneous nucleation. Obviously, for a given mass of solute precipitated 

larger crystals will result if fewer nucleii are formed. Tammann (1903, 

1925) has shown that the rate of nucleation is a function of supersaturation 

of the form shown in figure 2.2 
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The straight line shows the rate of growth of a crystal as a function,of 

supersaturation. Clearly, once an appreciable number of nucleii.form at 

supersaturation A. they are able to grow very rapidly and many crystals, 

each containing a core of dendritic material, result. Ho•;ever, if a seed 

crystal is inserted into the melt at supersaturations less than A, growth 

can proceed with no further nucleation and a large dendrite-free crystal 

results. Hence, wherever the phase diagram is accurately known, seeding 

of the solution rather than spontaneous nucleation is used. 

Given that a seed crystal is used, the situation in steady 

crystal growth is depicted in figure 2.3. 

Solute is brought through the bulk of solution by some mass 

transport process such as stirring or convection. The solute is then 

transported through the boundary layer (3) by diffusion only as determined 

by the concentration difference between the bulk and the interface. In 

the interface region the arriving solute molecules are redistributed by 

surface diffusion until they are incorporated into the crystal lattice. 

In addition to moving through the boundary layer into the crystal, there 

may be some chemical interaction between the solute and solvent due to the 

dissolution process. Each step (2), (3) or.  (4) may be the rate limiting 

process in the crystal's growth. Carlson (1958) has considered the rate 

of transport of solid to the crystal surface and the effect of diffusion 
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through the boundary layer. He found that for a given velocity of 

solution flowing past a crystal plate the solution flow could only carry 

enough solute for the crystal to grow inclusion free to a certain 

maximum length x . This relationship between velocity and crystal size 

depends on the diffusivity of the solute in the solvent, the viscosity and 

density of the solution and the ratio of growth rate to the difference 

between the bulk and interface concentrations. As many high temperature 

solution growth experiments have been carried out using natural convec-

tion, that is a low solution velocity, to produce the solute transport, it 

would have been most informative if the experimenters had determined these 

parameters as their results could then be extrapolated for use in other 

experiments to grow the same crystal with different apparatus. No such 

measurements have been reported. 

In solutions that are well stirred either stage (2) or (3) forms 

the limiting step. In aqueous solution these stages are investigated by 

measurement of growth rate as a function of supersaturation over a wide 

range of conditions and the mechanism of growth is deduced. This is not 

possible in high temperature solutions, since the measurement of solution 

concentration is made by visual study of a seed crystal at a given 

temperature in a solution and furthermore, very small temperature 

differences must be measured. While aqueous solutions are contained in 

glass vessels and very accurate temperature control is possible (better 

than ±0.05°C) these measurements are relatively simple. High temperature 

solutions must be contained in platinum or similar inert metal crucibles 

due to their highly corrosive nature and the crucible must be heated in a 

furnace which can be controlled to a temperature at best only of -11°C. 

Hence direct visual measurement of small changes cannot be performed. The 

rate determining step can only be deduced from examination of the grown 

crystals, which are usually rods or plates or which exhibit rapid growth 
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at corners for diffusion limited growth. 

Figure 2.3 indicates the stable growth of a crystal interface, 

but instability can arise from two sources. The first is due to the 

phenomenon of constitutional supercooling which was responsible for 

instability of interfaces in the growth of materials from impure melts 

(Hurle, 1961) and was further shown by White (II, 1965) to cause instability 

in solution growth. The two cases are shown in fig. 2.4 (a), (b). 

In the melt case (2.4(a)) impurity atoms are rejected at the 

interface and accumulate in the adjacent melt, causing a depression of the 

melting point. This creates a region of supercooled melt ahead of the 

interface and any ridge on the interface will enter a region of increasingly 

supercooled solution which causes rapid growth of the ridge. Volumes of 

high impurity concentration melt are then trapped between ridges, thus 

forming troughs of impure material in the crystal. A similar phenomenon 

occurs in the solution case (2.4(b)). There is a concentration gradient 

at the interface due to the adsorption of solute into the crystal. Any 

ridge on the interface will see an increasingly supersaturated solution 

and will grow rapidly, creating inclusions in the crystal between ridges. 

The interface is in a metastable state and unless a perturbation occurs 

the growth will be stable. The perturbation may be caused by a fluctua-

tion from the temperature control mechanism or the emergence of high 
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Miller index planes on the crystal due to twinning. The perturbation will 

not expand if its increase in surface energy is greater than the correspond-

ing decrease in the free energy of the chemical forces causing crystal-

lisation. Constitutional supersaturation is, therefore, inherent in crystal 

growth in diffusion limited systems, but does not produce instability where 

the surface free energy of the crystal in the solute solvent system is high. 

The second case of instability is the local heating of the inter-

face by the heat of crystallisation liberated there. This is illustrated 

in fig. 2.4(b) by the slight increase in the equilibrium concentration bear 

the interface. This further enhances the effect of the constitutional 

supersaturation already present. Thus, the heating of the interface is a 

perturbation likely to cause unstable growth. Its magnitude may be 

calculated if the heat of crystallisation, thermal conductivies of solution 

and crystal and the specific heat of the solution are known. A similar 

cause of instability may be temperature fluctuations in the solution as a 

direct result of natural convection. 

To conclude, an adequate description of the growth of single 

crystals from solution depends upon the measurement of certain parameters 

which•determine the rate at which molecules are incorporated into the 

crystal and of other parameters which determine the stability of the 

interface during growth. From the above discussion of the crystal growth 

there are a number of physical properties to be determined. Firstly, the 

dithensionless numbers which specify the fluid motion in the solution; 

these are functions of the density, viscosity, expansivity, thermal 

conductivity, thermal capacity of the solution, the diffusivity of the 

solute and geometrical factors such as the temperature gradient in the 

solution and the size of the crucible. Further parameters which are 

needed to determine the conditions for stability of the interface are the 

heat of crystallisation, the surface energy of the crystal and the rate 

26. 



of growth as a function of supersaturation. 

In order to determine the initial conditions of temuaratur.e and 

composition of the melt for crystal growing experiments and. for the 

experimental determination of the above solution properties, the solubility 

must be known as a function of temperature. No systematic investigation of 

all these variables has been carried- out and at the present time, due to 

the difficulties in containing the melt in suitable measuring apparatus, 

the surface energy of 'the crystal in solution cannot be measured. However, 

the remaining necessary properties have been measured as described below 

and their relative importance in the growth of crystals of lead tantalate 

is discussed in Chapter 3. 

2.2 The Choice of a Solvent for Lead Tantalate 

The criteria for a good solvent have been given by White (I, 1965) 

as:- 

1. Reasonably high solubility of the solute 

2. Will not react irreversibly with the solute 

3. Low melting point, high boiling point, low vapour 

pressure. 

4. Low viscosity 

5. Low toxicity 

6. High solubility in water or other common solvent 

7. Contains common ion with the solute or ions of such 

size as not to readily enter the solute crystal lattice. 

There is no one universally good solvent, but a number of useful 

ones are known and experiments must be performed to find out how suitable 

they are for a given solute. 'Using the thermobalance technique (described 

in 2.3) a number of common solvents were tried and the first phase to 

crystallise from solution was identified by X-ray powder diffraction tech- 
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niques as described in 2.3. The results are given in Table 2.1 in which 

the figures in column four refer to figure 2.5. 

Table 2.1 

The Phase Crystallising from from various solvents. 

Solvent 
Phase 

Crystallising 
Structure 

Pyrochlorc 

Pyrochlore 

Orthorhombic 

Orthorhombic 

Orthorhombic 

X—ray 
Photograph 

PbF
7 

PbB
2
0
4 

Bi
2  03 

 —B
2  03  

Pb 1.7
2
o
6 

Pb
2
V
2
0
7 

Pb2Ta207  

Pb2Ta207  

PbTa
2
0
6 

PbTa206  

PbTa206  

(1) 

(ii)  

(iii)  

(iv)  

(v)  

As lead fluoride and lead borate reacted with the solute no 

further use was made of these solvents. The variation of solubility with 

temperature was measured using the thermobalance technique for the 

remaining three solvents which precipitated the desired phase. 

2.3 The Determination of Solubility by the The Thermobalance Technique  

Elwell (1967) first described the determination of the 

crystallisation temperature of a high temperature solution using a 

thermobalance. A platinum wire was suspended from a chemical balance and 

immersed to a depth of a few millimetres into a solution contained in a 

platinum crucible supported in a furnace. The weight of the wire was 

monitored regularly as the solution was cooled. The wire acted as a 

nucleating site when supersaturation occurred; solute was deposited on the 

wire and a consequent-increase in weight was observed. The temperature 

at which a weight change occurred was called the crystallisation 

temperature and this is assumed to be the temperature at which the 

solution is saturated, only a very small degree of supersaturation being 
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required for crystallisation to be detected. The concentration of the 

solution may be varied and a series of crystallisation temperatures are 

obtained. As these are effectively the saturation temperatures for given 

solution concentrations, the solubility-temperature curve is obtained. 

Hence the solubility as a function of temperature is measured. 

The apparatus used is shown in fig. 2.6. The furnace consisted 

of a recrystallised alumina tube, three inches internal diameter and 

eighteen inches long, mounted vertically. Kanthal Al wire was tightly 

wound around the tube, and cemented into place, as the heating element. 

For later measurements on vanadate fluxes silicon carbide furnace rods 

were used due to the high failure rate of the Kanthal windings. For 

temperature control a Eurotherm PID/SCR25 controller was used in 

conjunction with a platinum/platinum - 137 rhodium thermocouple. A 

similar thermocouple was inserted into the mouth of the furnace tube to 

monitor the solution temperature. A temperature control to within ±1°C 

was obtained. The furnace was insulated with Morgan MI28 bricks and was 

mounted on a steel frame designed to support the microbalance measuring 

head. The solution was contained in a 3Oml platinum crucible supported on 

an alumina cylinder inside the furnace. The temperature gradient across 

the crucible was approximately 1°C per cm. 

A C. I. Electronics, mark II, model C, microbalance was used, 

the head of which was enclosed in a pyrex glass mounting which was positioned 

above the furnace. The balance head is shown in figure 2.7. In this 

instrument balance arm is mounted on a galvanometer type movement and acts 

as a shutter between two photo-diodes which are symmetrically placed above 

and below the balance position. When the arm is displaced a differential 

current is produced by the photodiodes which is amplified and fed into the 

galvanometer and a restoring force is applied. Hence, a closed servo- 

loop is established in which a static torque on the moving arm is directly 
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proportional to an electric current. This current can be read off on a 

the 
scale on the instrument case or can be fed into/input of a chart recorder. 

The right hand end of the balance arm is used for weighing and a counter-

weight may be applied to the left hand end. The full scale measurement 

is 100 mg, but using counterweights, weights of up to 1.5 g may be 

weighed without loss of accuracy. A matching unit is necessary between 

the balance and the recorder to filter out the fluctuating a.c. components 

of the servo mechanism. A C. I. Electronics Universal Matching Unit was 

used. A fine gain adjustment control was fitted to allow calibration of 

the chart recorder, a Smith's Servoscribe Potentiometric recorder. The 

usual ranges used were 0 to 100 mg on the balance and 0 to 100 mV on the 

recorder. 

The balance was calibrated before each solubility determination. 

Scale pans were attached to each end of the balance arm and the coarse 
ti 

medium and fine zero adjustments were used to give a zero reading for 

each balance range. Standard weights were placed in the right hand pan 

and the reading was adjusted using the calibration potentiometer. The 

chart recorder was also calibrated using the balance output. The balance 

head worked accurately at ambient temperatures up to 50°C. It was 

protected from direct furnace heating by a series of aluminium baffles and 

an insulating plate. 

The suspension from the balance arm to the melt was made of 

platinum wires, 0.8 mm diameter and about 10 cm long, ending in hooks. 

These suspension wires rapidly damped out any oscillation and were easily 

threaded through the apparatus. The length of suspension was chosen so 

that the end wire was immersed 3 mm into the melt. 

The following procedure was used in the determination. The 

starting materials were finely mixed in powder form and loaded into the 

crucible, which was then heated at 1000°C. After complete melting of the 
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powder, the crucible was removed and placed in the thermobalance furnace. 

The required length of suspension wire was measured, the baffles put in 

position and the suspension wires attached to the balance, which was 

counterweighted to give a reading in mid-scale. The furnace was switched 

on and the solution was- left for 16 hours at a temperature 100 C above the 

expected crystallisation temperature. This was found by a process of trial 

and error for each new solvent. The balance and recorder were then 

switched on and the temperature was reduced in 10°C intervals by resetting 

the temperature controller. A period of 30 minutes was allowed for the 

solution to come to equilibrium before a further decrease was made. The 

chart could be read to an accuracy of ±0.1 mV and a kink in the weight-

time curve was readily observed at the crystallisation temperature which 

was read from the monitoring thermocouple with a potentiometer. The 

crystallisation temperature could be determined to an accuracy of ±3°C. 

This uncertainty arose due to the time required for the solution to come 

to thermal equilibrium. When an increase in weight was observed the balance 

and recorder were switched off and the solution was further cooled. The 

suspension wire was then removed and the material which was precipitated 

was examined using the X-ray powder diffraction technique. 

2.4 The Solubility Determination for Bismuth Borate and Lead Vanadate  

The procedure described above was followed. The starting 

materials used were the oxides of lead, bismuth, boron, vanadium and 

tantalum. They were of Analytical Reagent quality, supplied by B.D.H. 

Chemicals Ltd. A typical charge weighed 50g. For bismuth borate the 

solvent oxides were in the proportion 0.55 Bi203  to 0.45 B203. Two 

compositions of lead vanadate were used, Pb0:V205 and 2Pb0:V
2
0
5' 

In each 

case a weight loss of 0.25% of the total solution mass was experienced 

due to evaporation of PbO. 
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A standard reference X-ray powder photograph of the ferroelectric 

orthorhombic form of lead tantalate was taken using a ceramic disc of lead 

oxide and tantalum pentoxide finely mixed in 1:1 proportions, pressed and 

fired at 1180°C. The spacings of the lines agreed with those of Subbara0 

(1960). The X-ray photographs obtained from the material grown in the 

thermobalance were then compared with this standard. In each case the 

phase crystallising was ferroelectric, orthorhombic lead tantalate. 

The graph of crystallisation temperature against concentration 

for each solvent is given in figures 2.8, 2.9 and 2.10. These results are 

also plotted as the log of the mole fraction of solute against the 

reciprocal of absolute temperature in figure 2.19 and a discussion of the 

significance of these results is given in 2.11. 

2.5 The Determination of Density and the Coefficient of Expansion of  

Solutions of Lead Tantalate in Lead Vanadate  

A review of the methods of determining the density of liquids at 

high temperatures has been given by White (J. L. 1959). A robust technique 

using simple apparatus must be used with high temperature solutions. 

White suggests that the simplest method is the two bob Archimedean method. 

In measuring the upthrust on an immersed body a correction has to 

be made for the effect of surface tension on the suspension to the bob. 

This may be eliminated if two bobs of identical suspension but differing 

volumes are used. If U is the measured difference between the weight in 

air and the weight in liquid, p is the density of the liquid, V the volume 

of the bob and S the surface tension force, then 

U = pV + S 

Using subscripts 1 and 2 for the smaller and larger bob 

respectively, then 

U
1 

= pV
1 
+ S 

U
2 	

pV
2 

+ S 
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and 
U
2 

 - U1  

V, - V1  

If the density is measured a function of -temperature then the 

coefficient of cubical expansion B may be found from the slope of the 

density temperature curve as 

PT  - Po 
p 
o 
 (T-T 

o
) 

where T is the temperature and pT  and or)  the density of the liquid at T and 

T
o 
respectively. 

2.5.1 Apparatus and Experimental Procedure 

Two platinum bobs were made by welding platinum wire into a ball 

using an oxy-hydrogen torch. The platinum wire was 99.9% pure metal 

supplied by Johnson Matthey Chemicals Ltd. The two bobs were of differing 

volume, but had similar suspension wires (fig, 2 .11). The bobs were 

weighed in air and their volumes calculated using the density data for 

Platinum (American Institute of Physics Handbook of Physics and Chemistry 

p.2-19). Correction has to be made for the volume expansion of the bob at 

the temperature of the solution, using the coefficient of linear 

expansion given in tables (ibid p.4-52). The furnace and balance 

previously described were used. In addition, at the high temperatures used 

the solution lost Pb0 by volatization and an air-cooled copper coil was 

placed immediately above the furnace mouth to act as a site for condensation 

of the vapour rather than the suspension wires. 

The crucible was charged as for the solubility determination. 

The length of suspension required to completely immerse the bob was found 

and the bob was then weighed in air. The crucible was placed in the 

furnace and the suspension wires fitted. The furnace-was brought to a 

temperature above the crystallisation temperature of the solution and held 
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at that temperature for 16 hours. The balance and recorder were swithced 

on and the weight of the bob recorded at a number of temperatures. The 

same procedure was used for the second bob. 

2.5.2. Results of Density Determinations  

Determinations of the density of the two pure solvents PbV
2
0
6 

and 
Pb2V207 

were made over a wide range of temperatures to permit an 

accurate estimate of the coefficient of expansion to be made. The density 

as a function of temperature is plotted in figures 2.12 and 2.13 for 

Pb1V206  and Pb2V207  respectively. 

The density as a function of concentration of lead tantalate in 

the two solutes was measured and is shown in figure 2.14 and 2.15 for 

PbV
2
0
6 

and Pb
2
V
2
0
7 respectively. The error in the results is estimated at 

±2%. This was deduced by using the measured density to calculate the 

surface tension force. This is approximately constant over a small 

temperature range and hence any variation in its calculated value must be 

due to the error in measuring the density. The error due to changes in 

the composition of the melt was negligible, since the loss of Pb0 was less 

than 1% of the charge which produces a compositional error of less than 

0.01%. The coefficient of expansion for PbV206  was (2.21 ± 0.4) x 10-4 and 

for Pb2V207  was 	-1.  
(3.5 ± 0.6) x 10-4  C 	This compares well with the 

published figures for the coefficients of expansion of molten salts as 

shown in Table 2.2.. The figures quoted are taken from Janz (1967). 

34. 



1350 1400 1300 1200 1250 

FjG.2.12 — THE DENSITY vs. 	-11.1PERATIPIE OF MOLTEN 	Pb 1120
6 

DENSITY 

3.9 

3.8 

3.7 

3.6 , 

3.5 

3.4 

3. 3 



0 

FIG. 2.13 	THE DENSITY OF 	Pb
2

V
2 

0
7 	

Vs. 	TEMPERATURE 



Onsity 

0. 

density of on ideal solution 

9 	10 

mole °in P1; Tci 06  

FIG. 2.14. THE DENSI TY 	OF A SOLUTION OF 	Pb Ta 206  IN Pb 7 0b AT 113 ° C 

Vs. CONCENTRAT 



experimtal 

calculated density of an 
ideal 	solution 

0 

density 

7.0 

6.0 

5.0 

4.0 

•••••• mmnmli ImM• 	 41•=0•11, 	 m••••••• 

2 	3 	4 
	

7 	8 	9 	10 	II 
mole 	°/0 	PbTa?  06  

FIG 2.15 	THE DENSITY OF A SOLUTION OF 	POTa206  IN 	Pb2V2  07  AT 1230 °C 

Vs. 	CONCH TRAT 



Table 2.2 

The coefficient of expansion of lead vanadate and other salts. 

Material Coefficient of 

expansion C
-1 

x 10
4 

Pb
2
V
2
0
7 	

3.5 

PbV
2
0
6 	

2.21 

NaC1 	3.5 

KC1 	4.5 

PbC1
2 	4.10 

Li
2
CO
3 	

2.20 

AgBr 	1.88 

2.6. The Determination of Viscosity of a Solution of Lead Tantalate in Lead  

Vanadate (Pb2V207) 

Mackenzie (1959) has reviewed the methods of determining viscosity 

in liquids at high temperatures. The simplest method which has also been 

used by Cobb (1967) is the oscillating bob technique. A bob inlinersed in 

the melt is set into rotational oscillation and the viscosity is calculated 

from the damping of these oscillations by the following formula. 

1 
A - X

o = C1(nP)2  + C2(1) 	C3 
(4py 

, . 
where A is the logarithmic decrements that is the 

amplitude of two consecutive oscillations, n is the dynamic viscosity and 

p is the density of the melt. 	C
1, 
 C2, C

3 
are geometrical constants 

dependent on the shape of the hob and the clearauees within the melt. 

This formula was derived by Fawsitt (1908) and was found to be 

valid for a wide range of liquids with viscosities: up to 0.4 poise. The 

constants C
1, 
 C2, C

3 
must be found by calibration with three known liquids; 

water, alcohol and benzene were used. 
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2.6.1. Apparatus and Procedure to Measure. Viscosity 

The bob was made of platinum foil wound into a solid cylinder and 

welded in place. The bob support is made of a platinum rhodium wire brazed 

to a molybdenum foil strip. The strip was bent into a loop and the loop 

threaded over a rod held 'in an adjustable clamp which could be used to 

lower the bob into the melt. 

The apparatus used is shown in figure 2.16. The oscillations were 

observed using an optical lever; a mirror was mounted on the molybdenum foil 

to reflect the light source onto the scale. The furnace used was described 

above (2.4). 

To calibrate the bob a 120 ml platinum crucible was filled two-

thirds full with distilled water and placed in the furnace. The bob was 

imutersed in the melt and set into oscillation by giving the mirror a small 

deflection. The amplitude of the oscillations were then observed. The 

logarithmic decrement was calculated from the initial amplitude and the 

amplitude five ascillations later. Consecutive amplitudes could not be 

accurately measured due to the rapid oscillation of the bob. The 

procedure was repeated using absolute alcohol, benzene, and with an empty 

crucible to determine A 
 

The crucible was then filled with an eight mole per cent mixture 

of lead tantalate in lead vanadate (Pb2V207) and premelted. 	Further 

charge was added until the crucible was two-thirds full. The crucible was 

placed in the furnace and brought to a temperature above the crystallisation 

temperature and maintained for 16 hours to allow complete solution. The bob 

was then immersed in the solution and the logarithmic decrement measured at 

a number of temperatures. 

2.6.2. Results of Viscosity Measurements  

The following density and viscosity data (Kay(1959)) were used to 

calibrate the bob at 20°C 
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Viscosity 
Density 	in 

.Centi-Toise 

Water 	1.000 	1.0020 

Benzene 0.8787 0.647 

Alcohol 0.918 	1.197 

The logarithmiC decrements, the average of twelve measurements, 

for calibration were 0.0259, 0.0279, 0.0196 and 0.0035 for water, alcohol, 

benzene and air respectively. This gave the value of the constants as: 

C
1 

= 0.158 

C
2 

= 0.662 

C
3 	

-0.0038 

The mean logarithmic decrements of the solution as a function of 

temperature are given in Table 2.3 and were used to give the stated 

dynamic viscosities. 

The density of the solution was taken from the data in section 

2.5.2. The dynamic viscosity as a function of temperature is plotted in 

figures 2.17. 

Table 2.3  

The logarithmic decrement and dynamic viscosity of an 

eight mole per cent solution of lead tantalate in Pb2V207  

Temperature 
in °C 

Mean logarithmic 
decrement 

Dynamic Viscosity 
in Centipoise 

1,184 0.0772 2.23 

1,214 0.0761 2.13 

1,218 0.737 2.02 

1,230 0.0742 2.06 

1,257 0.0744 2.09 

The measurements of A are accurate to .± 0.5%; however, this small 

error leads to a large error in the calibration constants, giving an error 

in the viscosity of "± 57. 

37. 



0 

40 	50 	G 0 

T ° C 

V iscosity 
in cp. 

FIG..2.17 THE DYNAMIC 	VISCOSITY 	OF Al.1 8 ml °h. 

SOLUTION OF Pb Ta 0 	IN PIO/ 0 
2 	2 2 7 

Vs. 	TEMP ERATURE 



The value of 2.23 centipoise for dynamic viscosity is less than 

that observed by Cobb (1967) for a lanthanum fluoride- alumina solution 

(8 centipoise) but agrees with the generalisation of Bloom (1967) that 

molten salts have viscosities comparable with that of water. 

2.7 The Measurement of the Diffusion Constant of Lead Tantalate in Solution  

The experimental evidence discussed in 2.11 indicates that lead 

tantalate is not ionised in solution. Thus electrical methods are unsuitable 

for measuring the diffusion coefficient. Other methods of measuring 

diffusivity are described by Chen (1959) using radioactive tracing elements. 

These techniques involve highly specialised apparatus and rely upon 

quenching the solution. The disadvantages in quenching experiments have 

been discussed above (1.14.3) 

A simple technique for measuring the diffusion coefficient which 

to the author's knowledge has not previously been reported, for high 

temperature solutions, has been used. A small crystal was suspended in the 

solution and its weight loss as a function of time recorded. The experiment 

was repeated for a range of values of undersaturation of the solution. 

Nernsts' Equation (Levich, 1963) describes the rate of isothermal mass 

transfer by diffusion, Q, from a dissolving crystal as 

Q = —AD  (Cs - Co) 
	

(2.7.1.) 

where A is the area of the crystal, D is the diffusion coefficient, C
s 

and 

C
o 

are the concentration of the solution at the interface and in the bulk of 

solution, d is the thickness of the mass boundary layer. Nernst assumed 

that C
s 
was the saturation concentration at the solution temperature. The 

value of ,5 for a plate immersed in a turbulent liquid moving with a 

uL 2 
relative velocity V is (3 =

o  /N sc 
4, where (5 	

V 4.64 — , the thickness 

of the momentum boundary layer (Knudsen, 1958) Nsc is the dimensionless 
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Schmidt number defined as N 	= D 
sc 

where u is the kinematic viscosity and L, a characteristic dimension of the 

crystal. Hence 

IT)= 4.64 (: D 

2.7.1. Experimental procedure  

The thermobalance equipment described above was used. The 

crucible was charged with the appropriate mixture of the starting oxides 

and placed in the furnace after premelting. A small crystal of lead 

tantalate, prepared as described in Chapter 3, was mounted at the end of 

the platinum suspension wires. The length of the suspension and the 

counterweight were chosen so that with the balance switched off the 

balance arm was raised and the crystal suspended just above the solution. 

When the solution had been brought to temperature and complete solution 

achieved, a small weight was added to the crystal suspension and thus 

made the crystal arm heavier than the counterweight arm. Consequently 

the crystal arm swung downwards, immersing the crystal in the melt. This 

was found to be the most efficient method of inserting the crystal into 

the melt. The weight loss was measured until the crystal was totally 

dissolved. The experiment was repeated at different temperatures which 

corresponded to varying degrees of undersaturation of the solution. 

2.7.2. Results and calculation of the diffusion coefficient  

The weight loss indicated on the chart had to be corrected for 

the upthrust on the crystal due to the density difference between the 

crystal and solution. Thus, if the weight loss on the chart was Qm, then 

the true weight loss Qr was 

Qm/(1 - Ps/pc  ) 

where p and p
c 

are the densities of solution and crystal. 

It is noted in Chapter 3 that the crystals are elongated in the 

Doi). direction and it is probable that dissolution of the crystal occurs 
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preferentially in that direction. Thus, the area of the crystal. A in 

equation 2.7.1. is that of the L0017 faces of the crystal. As all the 

crystals used were very nearly of the same length, that is 4.01nm, the 

area was, therefore, proportional to the mass of the crystal used. 

A = km 

where k is a constant and m is the crystal mass. For a 1X 1 x 4 mm 

crystal, then A = 0.02 cm2, and if pc 
= 7.17, then k = 0.6969. The 

value of pc 
was calculated from the X-ray diffraction data given by 

Subbarao (1960). 

If the mass of the crystal indicated on the chart was ml 
 and the 
 

real mass was mr, then mr 	m1/(1.- Ps/Pc) 

Therefore: Qr = Qm 
kmr 	km 

1 

but: Qr = D (C - Co) 
A 

6- s 

therefore: 
Qm 	kD 
m

= 
1 	

(C
s 
- C

o
). 

Hence a graph of rate of weight loss divided by the mass of crystal 

(using the figures from the chart) against unsaturation should be a straight 

k 

	

line with slope -6-- 	This graph is plotted in figure 2.18. The values of 

C
s 
were obtained by measuring the temperature of solution with the monitoring 

thermocouple and finding the saturation concentration from figure 2.9. 

The plot is a straight line with a slope 2.428 x 10
-4 sec

-1
. 

2 
_ r  k /3 	I 'V) -4 

• 6 

	

4.
D 	4  

64 	
= 2.428 x 10 . 

Using L = 4mm, u =P' where n = 2.4 x 10-2  centipoise, p = 6.22, V = 9.0 cm 
• 

sec, a typical figure for the velocity of a liquid flowing under free 

concection in a turbulent manner, as deriVed in section 3.3. Hence the value 

of D is D = 1.137 x 10
-6 

cm
2 
sec

-1
. 
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This is a factor of ten less than that observed for diffusivities 

of ionic salts in aqueous solution. However, a lower value might be expected 

due to the large size of the diffusing lead tantalate molecule and due to 

the higher dynamic viscosity of the solution, since diffusivity is inversely 

proportional to dynamic viscosity (Tyrell, 1961). 

In Figure 2.18, the curve does not pass through the origin which 

might be expected from the theory. However, if a certain supersaturation is 

required for surface diffusion and particle incorporation into the lattice 

the supersaturation across the boundary layer becomes C
1 
— Co where C

1 
is 

the concentration at the interface. Then Cco — C
1 
is the supersaturation 

required for surface diffusion and equals the intercept on the x axis in 

figure 2.18. 

2.8 Heat of Crystallisation of Lead Tantalate  

It an ideal solution the molar concentration K is related to the 

heat of crystallisation by the following relationship 

AR 
VA N = 	 c  

RT 
 

where Ali
c is the heat of crystallisation, R is the gas constant and T is 

the absolute temperature. In section 2.11.3. it is shown that lead tantalate 

dissolved in 
Pb2V207 

is nearly an ideal solution. In fig. 2.19, log N has 

been plotted against the reciprocal of absolute temperature. The slope is 

2.35 x 10
4 
 and therefore the heat of crystallisation is 11.8 ± 3.0 K cal/mole. 

2.9 	Specific Heat of Lead Tantalate in Lead Vanadate Solution  

Specific heats of solutions may be measured by standard D.T.A. 

techniques. The rate at which the solution cools is compared with the rate 

of cooling of a similar crucible containing aluminium oxide. If the heat 

capacities were the same no temperature difference would result. In fact 

there is usually a difference. A curve is therefore obtained in the 

differential temperature against time. The area under this curve is 
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related to the heat evolved by the.relation 

0 	
T
2 

AN 	— 	I 	OdT (Hahn, 1963) 
m T1 

where AN is the heat evolved, m the mass of material, T1  and T2  the 

initial and final temperature, 0 is the differential temperature and JP is 

a constant of the apparatus to be determined by calibration. 

Two identical platinum crucibles were charged, one with 4 grm of 

alumina and the other with 20 grm of sodium chloride. They were placed in 

a furnace which could be slow cooled at 100 deg C/hr and their temperatures 

were monitored with platinum - platinum 13% rhodium thermocouples connected 

in opposition to a potentiometric recorder. The furnace temperature was 

raised to well above the melting point of sodium chloride and the furnace 

was then slowly cooled. The differential temperature was then recorded on 

the chart. The initial and final temperatures were recorded and the area 

under the curve measured. Using a value of Cp for sodium chloride of 

16.0 cal/deg mole (Janz 1967) the value of the constant IP was found to be 

6.57 x 10
3 

The crucible was then cleaned and charged with 62 grm of an 

8 mole % solution of lead tantalate in 
Pb2V207 

and the experiment was 

repeated. The heat capacity of the solution was found to be 9.3 x 10
-2 

cal/g
7-1 

C, alternatively as 58.2 ± 5 cal/deg C
-1 

mole. 

2.10 Thermal Conductivity of Lead Tantalate Solutions  

Tyrell (1961) has reviewed the methods of measuring thermal 

conductivities of liquids. The basic requirement in each technique is that 

a volume of liquid in which no convection takes place, should be contained 

in a cell formed with at least four walls of thermally insulating material. 

These requirements make the measurement of the thermal conductivity of high 

temperature solvents extremely difficult, as the solvent can only be 

42. 



contained in noble metal crucibles which ace not thermal insulators and are 

not easily formed in complex and easily demountable npnaratus. The 

requirement that there should be no convection places the constraint for a 

lead vanadate solution according to 3.3, that the total temperature 

variation through 1 cm of solution should not exceed 1°C, which is less 

than the accuracy with which it may be measured. Thus, the equipment to 

measure thermal conductivity requires an inert high temperature impervious 

thermally insulating material that has not yet been developed and a 

temperature control better than that which is normally achieved in crystal 

growth experiments. For these reasons it is necessary to take an average 

value of thermal conductivity from the literature. A study of the table 

of thermal conductivities given by Janz (1961) leads to an average value of 
measured on rna tends whtch d~ rat rtseat the &Mc-a:ties d bove . 

4.0 cal cm -1 sec-1 C-1./ This is sufficiently accurate for ensuing 

calculations, which only require an order of magnitude accuracy. 

2.11 The Comparison Between Experiment and Theory for the Values of  the 

Solubility of Lead Tantalate in Solution  

2.11.1. The theoretical relationship of solubility with temperature  

Whilst it is.possible to predi.ct the solubility from theoretical 

considerations, the data necessary to compute a solubility value at a given 

temperature is rarely available, especially for "new" materials. As noted 

in 1.14Cobb (1969) has derived a formula for solubility which depends on 

the heat of fusion AH
F
, melting point T

m
, the change in heat capacity on 

melting of the pure solute, ACp, and the temperature of the solution T. 

The relationship is 

n K 
(Tin _Of AHm ,K,I) I 

1 T 	/ t RT
in 	R / R 

ACp 
In 

T
m 
T ...(eqn. 2.11.1) 

where ln K is the equilibrium constant. Equation 2.11Ais derived in 

Appendix B. 
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ln (K) . 

where y is the activity coefficient and N the mole fraction. of solute, 

a
o 

is the activity of the solute in the pure reference state and is by 

definition unity; for the derivation of 2.11.1 this reference is taken as 

pure molten solute at temperature T.' 	If the solute is fully ionised 

the ionic fraction :X.1 
 and an ionic activity coefficient a. must be used 

1 

instead of the molar fraction. For an oxide solute RxOy the ionic 

fraction is of the cation 

2x A  

XR  (2xY7- 	  
2.1 A + sum of the other cationstimes their charge 

and similarly for the anions. Where all the molecules present are fully 

dissociated oxides the ionic fraction of the oxygen ions is unity. 

In an ideal solution y = 1 and 1 (K) = ln (N). 

Where the solution is regular yiik 1 and there is a heat of mixing 

term AHM  = RT lm y, which in general is not known for a new material. 

Equation 2.11.1. has not been tested experimentally. However, if 

proved to be valid it should be valuable in giving an estimate of the 

solubility from very little experimental measurement. 

2.11.2. The theoretical estimate of solubility  

None of the values of the constants in equation 2.11.1 is to be 

found in the literature for lead tantalate and so approximations must be 

made. To determine the heat of fusion AHm, molten lead oxide and molten 

tantalum pentoxide are assumed to form a solution in one another, this 

solution being molten lead tantalate. Consider the following reaction at 

the melting point of lead tantalate. 

PbTa 06(S) # PbO(S) + Ta205(S) # Pb0(Z) + Ta205(2.) r.  PbTa206(0 

(A) 
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This is equivalent to 

• PbTa
26  
0.(S) 
	

PbTa206(Z) 
	

(B) 

TheheatofreactionforreactionMwhichisi,by Hess's law equals the 

total heat of reaction for reaction (A). 

.. 	AF 	= AH
d ± ( H. ) 	 All 'M 	-A  M. Pb0 	4. (AHN)Ta20, 	s 

AH
d 

is the heat of dissociation of solid lead tantalate into its component 

oxides, - ( R
A M-  

)Pb0 and ( AyTa205  are the heats of fusion of the respective 

oxides, and AH
S 
 is the heat of mixing liquid oxides. .Assume that AHd = -AH, 

and therefore 

AHm 	(OHM) Pb0 • 	(AHM)Ta205 	 .. 2.11.2(1) 

where (AHm) pbo and are measured at the melting point of lead m Ta205  

tantalate, Tm, which has not been reported. It was measured using a hot 

stage microscope as described in section 5.4, single crystals of lead 

tantalate were used and a melting point of 1700 ± 20°C determined. The 

error was due to the loss of lead oxide from the crystals and due to the 

failure of the thermocouple, since 1700°C was very close to its maximum 

working temperature. 

The heat of fusion of lead oxide is 6.3 K Cal mole
-1 

at 886°C 

(Kubochewski, 1956). No value of the heat of fusion of tantalum pentoxide 

could be found. However, Kubachewski (1956) suggests that chemically 

similar compounds have similar heats of fusion. The heat of fusion of the 

very similar niobium pentoxide is 30.0 Kcal per mole, and this figure was 

used for the heat of fusion of tantalum pentoxide at 1890°C. These heats 

of fusion must be given at 1700°C. The heat of fusion is related to 

temperature by the equation 

(AH)T  = (AH), 
2 T 

T 
- ACpdT .. 2.11.2(11) 
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where ACp is the difference in heat capacity between liquid and solid. An 

average.value of ACp is used as given. by Cobb .(1969) ie. ACp = 1.0 cal deg
-1 

g atom
1. Using the above values in equations 2.11.2 (i) and (ii.) one obtains 

AI D •=r 36.7 K Cal/mole
-1 

at 1700°C. Thus, using the values of AH 	Tm and 

ACp the value of log (K)-  can be calculated as a function of absolute 

temperature. In fig. 2.19 the graph of log (K), against the reciprocal of 

absolute temperature has been plotted. The error in the measurement of 

the melting point is significant and the consequent error in log (K) is shown. 

2.11.3 Analysis of the experimental data  

The solubility was measured in 2.4 by finding the temperature at 

which a solution of certain concentration becomes saturated. In order to 

compare the experimental results with the theoretical one of section 2.11.2, 

the concentration of solution must be expressed in the form log (K). If 

the solute is fully ionized, then (K)1  = al  Xpb  + 	22XTa5+, where a
l 

and a2  are.the activities of the ions in solution, Xpb2+ and XTa5+ are the 

ionic fractions of the lead and tantalum ions in the melt. In calculating 

(K)
I 

it is assumed that the solution is ideal and, therefore, a
1 
and a

2 
are 

equal to unity. The results given in section 2.5 are used to calculate 

(
K)
I 

and log (K)
I 

is plotted against the reciprocal of absolute temperature 

in figure 2.19 for each solvent. A different value of K is obtained if it 

is assumed that the solute is undissociated in the melt. If the equilibrium 

in this case is 
(K)II' 

then  K
II 

= YN, where y 18 the` activity_ coefficient 

and N is the mole fraction of solute. The solution is assumed to be ideal 

and y = 1. The log (K)IT  is plotted against the reciprocal of temperature 

in figure 2.19 for each solvent. 

2.11.3 Discussion of the correlation between the'experimental and  

calculated results  

In fig. 2.19, while all of the K curves show only a poor 

correlation with the theoretical curve, the KII 
curves do show some 

correlation. The K
II 

curve for bismuth borate lies parallel to the 
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theoretical curve, but is displaced from it. This de-,,iation can be 

explained if the regular solution model were used in deducing the theoretical 

curve rather than the ideal solution molecule. A factor of log y must be 

added to the theoretical value of log K to include the heat of mixing term 

not present in the ideal case. Measuring the difference between experimental 

and theoretical curves for lead tantalate in bismuth borate leads to a 

value for the heat of mixing of 31.5 K cal moles. This is rather large and 

indicates some chemical reaction between solute and solvent. Further 

support for this interaction is provided by the fact (3.2)that single 

crystals of lead tantalate grown from this solvent contain a high 

percentage of bismuth in solid solution. 

The K
II 

curve for the solvent PbV
2
0
6 

is of interest since there 

is little change in solubility with temperature. Since dissociation into 

ions decreases solubility, and as the temperature increases so the degree 

of ionisation of lead tantalate becomes greater s 	the overall solubility 

remains unchanged. To confirm this the depression in the freezing point 

of pure PbV207  was measured as a function of lead tantalate added. The 

slope of the curve obtained is proportional to the number of species of 

molecules or ions other than those of 
PbV206' 

present in the melt. Owing 

to the comparatively large experimental error incurred by the use of simple 

equipment, the results were not precise enough to give conclusive evidence 

of ionisation. It is likely that there is some irreversible interaction 

between solute and solvent as crystals grown from this solvent contain a 

significant proportion of vanadium (0.6 mole %). 

The K
II 

curve for the solvent 
Pb2V207 

is parallel to the 

theoretical one and nearly equal in magnitude. Thus, the solution is nearly 

ideal and the crystals grown from this solvent contain only traces of 

vanadium. Consequently, the density of the solution should increase 

linearly with increasing concentration of solute at constant temperature: 
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The graph of .density against concentration is given in fig. 2.15 and the 

hypothetical density of an ideal solution is also drawn. However, the 

density data is not sufficiently accurate, nor is there information over 

a sufficiently wide composition range to confirm the ideal nature of the 

solution. 

The most important conclusion. that may be drawn is that lead 

tantalate exists in the solution as a molecule rather than as ions. 

Therefore, a description of the crystal growth of lead tantalate must 

consider the diffusion of entire lead tantalate molecules. 
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CHAPTER III 

3. THE GROWTH OF SINGLE CRYSTALS OF LEAD TANTALATE 

3.1 Introduction 

In this chapter the experimental growth of single crystals of 

lead tantalate from solution in 
Pb2V207 

is described. The rate limiting 

process is deduced from the experimental evidence and probable causes of 

instability of the interface during growth are discussed. 

3.2 The Growth of Lead Tantalate Single Crystals  

The three solvents, Bi203-B203, PbV206  and Pb2V207  were used in 

the experiments which were performed using both the slow cooling technique 

and the temperature gradient transport technique which have been described 

in section 2.1. The slow cooling technique was used initially for each 

solvent as this technique is simpler than the temperature gradient trans-

port technique. When the slow cooling technique was found to be 

inadequate because it was impossible to cool the solution at a sufficiently 

rate-,---the temperature- gradient-technique-was- employed because its ---

advantages are that growth occurs at constant temperature, hence with less 

thermal strain in the crystal, and slower growth rates are possible. The 

same furnace and temperature control equipment was used in all experiments 

and is shown in figure 3.1. 

The furnace consisted of a vertical recrystallised alumina tube 

four inches in diameter, heated with six silicon carbide crusilite rods 

(Morgan Electroheat Ltd) and insulated with Morganite M128 refractory 

bricks. The temperature was controlled by a Eurotherm PID SCR 25 controller 

using a platinum-platinum 13% rhodium thermocouple located inside the 

alumina tube. A similar thermocouple was used to monitor the crucible 

temperature and to determine the vertical temperature gradient in the 
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furnace. A temperature programming unit was included in the temperature-,  

control circuit as shown in figure 3.2. A small positive d.c. voltage, 

equivalent to a temperature increase,from the potentiometer was added to 

the control thermocouple signal and consequently less power was supplied by 

the SCR unit to the furnace so that the furnace temperature decreased by an 

amount exactly determined by the additional d.c. voltage. The potentiometer 

was of helical type and the variable voltage output was determined by the 

position of a central spindle which could be rotated by an electric motor 

via a variable gearbox to give a continuously increasing or decreasing 

signal to the controller. The voltage across the potentiometer was 

supplied by a 1.5 Volt battery which provided adequate stability at the low 

current used during the length of a run. The rate of cooling was 

determined by the choice of the fixed resistance R
f 

and by the rate of 

rotation of the spindle as set by the gearbox output drive, which could be 

increased in discrete steps from 0.0003 to 10 r.p.m. The minimum rate of 

cooling that could be used was 0.5°C hr
-1 
 because the temperature control 

was only stable to within limits of f 0.2°C. 

The crucible was mounted on an alumina pedestal which rested on a 

firebrick, which closed the lower end of the furnace tube. The upper end 

was similarly closed with a firebrick through which holes had been drilled ,  

to admit the thermocouples and the seed support. The seed crystal was tied 

with fine platinum wire to a platinum-rhodium rod 1 mm in diameter which in 

turn was fixed into a stainless steel rod. The whole seed support could be 

rotated and raised or lowered. The rotation was provided by a geared 

synchronous motor at a set speed of 4.5 r.p.m. 

In slow cooling experiments the crucible was charged with the 

oxides constituentS(all were supplied by B.D.H. Chemicals Ltd.) as shown in 

table 3.1 and placed in the furnace, which was then raised to the 

crystallisation temperature of the solution. The solution was maintained 
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at this temperature for sixteen hcurs to allow complete solution to occur 

and then the seed crystal was inserted so that only the crystal and no part 

of the support was in the melt. Seed crystals were obtained initially by 

spontaneous nucleation onto the seed support rod. The slow cool 

programmer was then switched on and the crystal was then allowed to grow 

while the temperature was lowered through 40°C. Cooling rates of 0.5, 1.5 

and 4.0°C hour
-1 were used with and without rotation of the seed. The 

typical results obtained are shown in table 3.1. 

Table 3.1  

Composition and cooling rates of various solutions used 

to grow lead tantalate single crystals 

3.1(a) Solvent 55 mole % Bi203  - 45 moles % B203. 

Concentration 
of solution 
in moles % 

Charge 

 

Slow 
Cooling rate 

 

Product 

    

     

5 	Bi
2
0
3 

324g 

B
2
0
3 39g 

Pb0 	14.3g 

Ta
2
0
5 

29.1g 

total 405.4g 

3.1(b) Solvent PbV206  

6 	Pb0 223.2g 

V
2
0
5 

171.6g 

Ta
2
0
5 

26.2g 

total 421.0g 

3.1(c) Solvent Pb2V207 

4.0°C hr-1 
	

Many small, needle- 

1.5°C hr-1 
	

like crystals up to 

4mm in length 

4.0, 1.5, 

0.5°C hr
-1 	

Opaque crystalline 

mass 1 x 1 x 1 cm. 

8 
	

Pb0 	300g 	4.0, 1.5, 	Crystals 1 x 1 x 1 cm 

V
2
0
5 

116g 	0.5°C hr-1 	containing 

Ta
2
0
5 

25g 	 inclusions 

total 441g 
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As indicated in table 3.1(a) for the solvent Bismuth 

Borate growth did not occur on the seed, but many small, needle-like 

crystals grew up to 4mm long and less than 0.5 x 0.5 mm in cross section. 

The crystals were frequently cracked and contained many inclusions. So 

that slower growth rates could be used the temperature gradient transport 

technique was used, but no improvement in crystal quality was obtained. 

There was no investigation to determine the optimum conditions for growth 

by temperature gradient transport as Bismuth Borate was found to be 

unsuitable for the following reasons. A crystal was examined with a 

transmission polarising microscope, the light being parallel to the [04 

direction, which had been identified by X-ray rotation photograph technique 

as the elongated dimension of the grown crystals. The crystal was seen to 

contain many antiparallel domains (fig. 3":3). Further electron microprobe 

analysis of the crystals showed that Bismuth was present in solid solution 

in the crystals in concentrations up to 10% by weight. This impurity, 

which possibly causes the fine domain structure by fixing domain walls, 

renders the crystals unsuitable for electro-optic measurement, since the 

domain structure scatters light out of the crystal and any variation in 

impurity content would cause irreproducibility in measurements of the 

electro-optic constant. 

In the growth experiments by slow cooling of the PbV206  

solution, controlled nucleation was achieved. Crystals measuring 1 x 1 x 1cm 

were formed on the seed and possessed facet-like faces, although they were 

frequently cracked and contained many inclusions. The crystals were a 

dark brown colour and were opaque. Electron microprobe analysis indicated 

a vanadium concentration of up to 0.6% by weight in the grown crystals. 

As the dark brown colour is characteristic of vanadium compounds and as 

oxygen firing failed to reduce the colour, this vanadium impurity probably 

caused the crystals to be opaque and hence this solvent is unsuitable for 
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the growth of lead tantalate for electro"optic measurements. 

By slowly cooling the 
Pb2V207 

solution controlled nucleation was 

achieved and the seed crystal grew to 1 x 1 xlcm in size. However, as can 

be seen in figure 3.4, the crystal contained many solvent inclusions. Upon 

prolonged treatment in dilute nitric acid some large crystals broke up into 

many smaller, transparent crystals, of which some were plates measuring 

4 x 2 x 1 mm and were free of inclusions. A number of slow cooling rates 

were used as shown in table 3.1 and the seed crystal was rotated during 

growth, but no significant increase in crystal quality was observed. 

In addition to linear cooling rates, a cooling rate which 

followed the t
3 

law (section 1.14.3) was used to eliminate any rapid 

dendritic type growth when the seed is first lowered into the melt. Using 

the relation that4.O =• at3, wherea0, a and t are defined in 1.14.3, and 

where a = 6.6 x 10-4  using the values of the p and k given in figs. 2.15 

and 2.9, a temperature programme was used as shown in figure 3.5 with a 

series of linear cooling steps to approximate to the t3 dependence of 

temperature on time. This experiment did not improve the crystal 

---- 	quality, although no other nucleation sites were formed in the crucible, 

all the growth occurring on the seed. 

As slower growth rates generally give better interface stability 

(1.14.5) the temperature gradient transport technique was used with the 

solvent Pb2V207. The charges and temperature gradients that were used are 

shown in table 3.2. Poor quality crystals grown by the slow cooling 

technique were used as the source material at the crucible base, and were 

encased in platinum foil to inhibit dissolution. A number of temperature 

gradients could be applied to the crucible by varying its height in the 

furnace. The crucible was placed so that the base was hotter than the top, 

the furnace temperature gradient being determined during each growth 

experiment using the monitoring thermocouple; the usual depth of solution 
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was 4 cm. The crucible was charged by placing the platinum encased crystals 

into the crucible and then adding the rest of the charge as given in the 

amounts given in table 3.2. The crucible was heated to the crystallisation 

temperature of the solution and the seed was inserted after a sixteen hour 

soak period. No rotation of the seed was used as an adequate growth rate 

was observed without rotation. The grown crystal was removed after a few 

days. Crystals very similar to those produced by slow cooling were obtained. 

The variations of the applied temperature gradient had no appreciable effect 

on the crystal quality. 

Table 3.2 

The conditions used in the growth of lead tantalite from Pb
2
V
2
0
7 

solution by the temperature gradient transport technique. 

Solution Mass of Additional Mass of Duration Temperature 

concentration source 
material 

charge 
in g 

crystal 
in g 

of run 
in hours 

gradien t 
o
C cm

1 

8 mole % 20g Pb0 	450 13.0 144 5 

V
2
0
5 	174 8.0 120 4 

Ta
2
0
5 	

37.5 1.0 112 3 

total 661.5 

After treatment with dilute nitric acid the large crystalline 

masses usually broke up into many smaller crystals (fig. 3.6) which were 

plates or rods. The rod-like crystals were most common and typically 

measured 1 x 1 x 4 mm, the facets being mutually perpendicular. An X-ray 

rotation photograph (fig. 3.7) taken by rotating the crystal about its 

longest axis showed this axis to be the [001] axis, using the lattice 

parameters given by Subbarao (1960) to index the photograph. A Lau4 

• , 
back reflection photograph (fig. 3.8) taken of the crystal face parallel 

to the CO011 axis. Clearly, two mirror planes can be seen, demonstrating 

that the crystal facet is of an (100) type. Hence, the grown crystals are 
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bound by. .400> faces and are elongated in the rb011 direction. 

. To confirm that the phase crystallising from solution was 

ferroelectric and to estimate the stoichiometry of the crystal, measurement 

was made of the dielectric constant of the crystal as a function of 

temperature. An inclusion-free crystal plate measuring 0.7 x 1.0 x 5.0 mm 

was chosen and gold electrodes were evaporated onto the 5.0 x 0.7 mm faces. 

The crystal was placed between aluminium electrodes, which also had been 

coated with gold to ensure good electrical contact, and which were connected 

to a Wayne Kerr capacitance bridge. The electrode assembly to which a 

nickle chrome-nickle alumel thermocouple was attached was placed in a 

furnace. The 	capacitance was then measured as a function of tempera-

ture and from the capacitance measurement the dielectric constant was 

calculated. The plot of dielectric constant against temperature is shown 

in fig. 3.9 and a Curie-Weis plot of the reciprocal of dielectric constant 

against absolute temperature is shown in fig. 3.10. The dielectric 

anomaly shown in figure 3.9 is typical of a ferroelectric transition and 

the Curie-Weis plot gives the Curie transition temperature of 260°C. This 

agrees well with the value 265°C as reported by Subbarao (1960) and 

Ismailizide (1966) within the experimental error of ± 5°C. Thus, the 

crystals were ferroelectric with an average composition very close to the 

ideal PbTa206. 

The crystals were pale yellow in colour and as oxygen defficiency 

causes colouration of tungsten bronzes (Levinstein (1967)) crystals were 

fired in oxygen at 1000°C for sixteen hours. No change in the colour was 

observed and it is, therefore, possible that the colour is due to traces 

of vanadium in the crystal. Electron microprobe analysis revealed the 

vanadium content of the crystals to be below the limit of detection, that 

is less than 0.2% by weight. This limit is relatively high and there is 

sufficient vanadium below this limit to cause the colouration. 
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When viewed using transmitted light,using a polarising micro7' 

scope,the crystal appeared strain free and ferroelectric domains were 

observed only at the very edge of a crystal. The polar direction was 

normal to the surface of the largest area in the plate like crystals 

grown. This is consistent with the X-ray analysis result that the 

crystal faces are (100) type. 

In summary, crystals may be grown from the solvent Pb
2
V
2
0
7 

which are of good optical quality and of sufficient size for measurement 

of their electro-optic coefficients. 

3.3 A Model For The Growth Of Lead Tantalate Single Crystals From a 

Solution in Pb
2
V
2
0
7 

An adequate description of. the growth of lead tantalate single 

crystals must specify the rate limiting process, the cause of instability 

of the interface and should indicate how the experimental conditions may 

be changed in order to improve the quality of the grown crystal. 

There are three possible rate limiting processes in crystal 

growth as discussed in section 2.1; these are the transport of solute 

through the bulk of solution, diffusion through the boundary layer and, 

finally, surface diffusion and incorporation into the crystal lattice. 

The rate of stirring in the melt determines which process is the rate 

limiting one, as is illustrated in fig. 3.11, which shows the rate of 

growth of yttrium iron garnet as a function of the rate of stirring of the 

solution. (Laudise, 1963) 
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At high stirring rates the growth rate is independent of the , 

stirring and the growth rate is determined by the surface diffusion on 

molecules (or ions) on the crystal interface. At lower stirring rates 

diffusion through the boundary layer is the limiting step. At very low 

stirring rates the growth rate is nearly independent of the cooling rate 

and corresponds to crystal growth limited by transport of solute to the 

crystal through the bulk of solution. In the growth of lead tantalate 

the only stirring in the melt was effected by free convection, which is a 

relatively slow when compared with mechanical stirring, and consequently 

the first consideration must be given to transport of solute process and 

the diffusion through the boundary layer. 

It must first be established that convection occurs in the 

crucible. The criteria for the onset of convection in a liquid zone 

heated at the base is given by the inequality Npr
N
Gr > 2000 (Tyrell, 1961) 

where N
Pr 

is the Prandtl number and N
Gr 

is the Grashof number. Their full 

definitions are found in the glossary in Appendix A, and their values for 

an 8 mole % solution of lead tantalate in 
Pb2V207 

is calculated in 

Appendix-A-as N
Pr 	Gr 

0:513 and N --= 19 x 10
6 

 . Hence, NGr.Npr  = 10 x 

10
6
. For products Npr.NGr  in the range 2000. < Npr.NGr  <' 45,000 the liquid 

forms a number of cells and within each cell elements of liquid move in a 

circulatory motion as illustrated in fig. 3.12(a). If Npr.NGr  > 45,000, 

the cellular structure breaks down (3.12(b)) and a generally turbulent 

flow results (Tyrell, 1961) and this is the case for the lead tantalate 

solution. 

A turbulent liquid is characterised by a Reynolds Number 

N
Re 

= 10
4 
(Levich, 1963) where N

Re 	v 
= 

yl 
as defined in Appendix B. 

Using L = 4 cm and v = 3.48 x 10
-3 

poise the velocity of a fluid element is 

V. = 9.0 cm sec
-1
. This is only an approximate calculation as there is 

no established theory for calculating the velocity of a fluid under free 
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convection and contained in a crucible nor is there any publihed 

experimental evidence on which an estimate can be made. The uncertainty 

of V is the chief source of error in a fluid mechanical description of 

.crystal growth. As there is-no net translation of the solution in the 

crucible,the velocity V is the average velocity of an element of fluid 

within an eddy of the turbulent flow and it is taken as the velocity of 

the liquid relative to a crystal plate placed in the solution. 

The diffusion of a solute in.a moving solution is described by 

equation 3.1. 

2 

	

vx Dc 	vy -Dc vz Dc 	D  n 4_ D
2
c 	a

2
9 

	

Dx 	Dy 	3z 
Dx2 D

572 
az
2 ... 3.1 

where c is the concentration of an element in a position x,y,z and 

possessing a. velocity with components vx, vy, vx. This equation can be 

reduced to a dimensionless form-by dividing through by CoVL2  where V is a 

characteristic velocity of the fluid, L a characteristic dimension of the 

fluid and Co is the bulk concentration. The equation becomes 

	

Vx DCVy C Vz DC 	D ( a
2
C 	

2
C 	

2
C  

+ 	+ 	= 	+ 	+ 
ax 	ay 	aZ 	VL 	

2x
2 	

gf
2 	DZ2 	... 3.2 

where Vx = ---, etc. C = 	' x = • etc. 
C
o 

 

L V —D is dimensionless and is defined as the Peclet number NPe
. 

Rewriting equation 3.2 to include the P6clet,number as 

Vx DC + 	+ 	= Vy DC Vz DC 	1 	2
2
C 	D

2
C 	2

2
c 

Dx 	Dx 	Dz 	N
Pe 
	

2X
2 	

DY
2 	

2Z
2 	... 3.3 

it may be seen that the Peclet number determines the importance of the 

fluid motion relative to the pure diffusional change in changing the 

solute concentration at a given point. For if NPe 
is small, the right-

hand side of equation 3.3, the pure diffusion terms, are large compared 

with the left-hand side, the fluid motion terms, and pure diffusion is the 
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most significant process. The distribution,of solute and its rate of 

change can then be found by solution,of the diffusion equation with the 

relevant boundary conditions. If, howeVer, Npe.is large, the right-hand 

side of equation 3.3 tends to zero and the fluid motion determines the 

solute distribution and its rate of change. There is no sharp boundary 

between the two extreme mechanisms and no critical value of N
Pe 

has been 

given for the transition. However, for NPe > 10
3 
(Levich, 1963) the fluid 

motion will certainly be dominant. ,For an 8 mole % solution of lead 

- 
tantalate, V = 9.0 cm sec-1, D = 1.13 x 10

-6 
cm
2 
sec

-1 
and L = 4 cm, 

thus N
Pe 	

3.2 x 107, which is so large that only fluid motion terms are 

significant. 

The fluid motion in the bulk of solution is extremely turbulent 

as indicated by the high value of the Npr. 
NCI.  product. Since the fluid 

motion determines the concentration distribution, the concentration in the 

bulk of solution will be uniform, turbulent flow being very effective in 

mixing individual fluid elements (Levich 1963) of differoing concentration. 

Transport of solute is not the limiting process because as the solution is 

cooled the rapid turbulent mixing ensures the uni-formity of concentration. 

The situation for crystal growth of lead tantalate is, therefore, 

depicted in 3.13. 

The bulk of solution is at uniform concentration, which falls to 

a value near the equilibrium concentration Co at the interface through the 

mass boundary layer S. For systems with a high Schmidt number the mass 
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boundary layer (alternatively called.the diffusion.boundary layer) 6o lies 

within the momentum boundary•layer'fi. The Crystal growthbccurs as the 

supersaturated solution of the bulk flows past the crystal with velocity V 

and solute diffuses through the mass boundary layer into the crystal. The 

thickness of the boundary layer, and hence the rate of diffusion, is 

determined by the velocity of the solution past the plate. At low solution 

velocity the layer thickness is large and the growth is diffusion limited. 

That diffusion limited growth takes place may be deduced from the maximum 

size of crystal that can be grown free from inclusions. This is calculated 

in the following way. 

Carlson (1958) has shown that a crystal plate grows in a turbulent 

flow of solution at a rate per unit area of 

1 	7 	2 

Qd  

	

NSe-5 	D 1 	
(Q 	

... 3.4 
c°-Q)R)7c) 

EA U 
where the bulk solute concentration, C the concentration at the interface, 

and x, the distance downstream on the crystal, D the diffusion coefficient 

and v the kinematic viscosity. This assumes that the concentration is 

constant over the crystal plate and leads to an uneven rate of growth over 

the crystal as shown by the form of9d in figure 3.14. 

An irregular wedge shaped crystal will result which is inconsistent 

with the observation that crystals grOw with flat faces. Carlson showed that 

this difficulty is removed is the concentration is allowed to vary over the 

. crystal plate in the form 

C= 	- bx2 
	 . 3.5 
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where b is a.constant. By a treatment analogous to that.of Page (1931).  

the rate of growth.becomes uniform over'the.plate.and 

1. u  
Qd = 0.463 Db N -3-  

Sc 	L 
3.6 

However, the concentration now varies over the plate in the form 

shown in figure 3.14. 

At some point x
s 
along the crystal the concentration falls to 

that of the equilibrium concentration C
o 

and growth is no longer possible 

at lengths of crystal greater than xs. Putting x = x
s 
and C = C

o 
in 

equation 3.5 and substituting for b in equation 3.6, the length of crystal 

that may be grown is xs  

0.214 VD  
xs 	1 	2 

NSc3  (Qd/C0.-Co 

... 3.7 

The value of x
s 
may now be evaluated. V, D and N

Sc 
have been 

measured for an 8 mole % solution. of lead tantalate and are given in 

Appendix A. The value of Qd/Cco-Co is found from the slope in figure 2.18, 

which is the plot of loss of weight of crystal against supersaturation. 

Although figure 2.18 was drawn using dissolution data it may also be used 

for the crystal growth situation since in diffusion limited growth the 

chemical reactions involved are not limiting processes. Using 

Qd/C°-Co. = 3.48 x 10-4,NSc = 3.06 x 103, V = 9.0 cm sec-1, 

1.137 x 10
-6 

cm
2 
 sec-l. in . 	equation 3.7 one obtains xs 

	1.2 cms. 

It should, therefore, be possible to grow cubes of material 
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1.2 x 1.2 x 1.2 cm free from inclusions. However, it was observed that 

crystals rarely grew bigger than 4 x 2 x 1 mm inclusion free and typical 

crystals measured 4 x 1 x 1 mm. The growth rate in the 00013 direction is 

therefore four times that for growth in the (010 and [14 directions 

when inclusion free crystals are grown. Crystals were grown measuring 

1 x 1 x 1 cm, but contained many inclusions which were in troughs parallel 

to the [001 direction. This indicates an abnormal growth due to inter-

face instability in the C0101 and (10(3. directions that is twice that for 

normal inclusion free growth. Hence, a value of 2(?d/Cco-Co must be used 

to calculate the length of crystal that can be grown inclusion free at the 

abnormal rate, giving xs  = 0.3 cm. Thus, the maximum size of inclusion 

free crystal that may be grown measures 1.2 x 0.3 x 0:3 cm. While the 

largest inclusion free crystal grown measured 4 x 2 x 1 mm, crystals were 

found up to 1 cm long, although generally less than 0.5 x 0.5 mm in cross 

section. Other crystals were found with dimensions up to 0.3 cm in the 

(*I  and (104 directions, but none were found to be larger than this. 
To summarise, the growth of lead tantalate from solution using 

_ .onlyfree convection.is-diffusion limited.as demonstrated by the-correla----

tion between the size of inclusion free crystal grown and that expected by 

a theory based on diffusion limited growth. There is an instability in 

the growth of the interface which results in a decrease in the size of 

inclusion free crystal that may be grown. Before further discussion of 

this instability the mechanism of diffusion limited growth should be 

confirmed by reference to the temperature gradient transport technique 

and by reference to the effect of rotation on the quality of the grown 

crystal. 

If the growth rate is determined by diffusion through the mass 

boundary layer, then equation 3.6 can be used to predict the rate of growth 

of a crystal by temperature gradient transport. Source material is 
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dissolved in the base hot zone and is carried by the turbulent flow to 

the region of the crystal interface where the solution is depleted of 

solvent by the diffusion into the growing crystal. The rate of growth 

will be determined by the velocity of the solution which determines the 

thickness of the mass boundary layer. There is a concentration gradient 

in the solution, therefore, there is also a density gradient associated 

with it and this gradient acts in addition to the one caused by the 

temperature gradient driving convection. This gives rise to a different 

velocity of solution V' to that in the case of slow cooling. Assuming 

that the velocity due to thermal convection V
c 
and the velocity due to the 

density difference, Vd, are additive, then.V f  = Vd  + V
c 	

fee 3.8 

V
c 

is taken as V
c 

= 9.0 cm sec
-1 

as in the slow cooling case. 

The calculation of V
d 

is as follows. Consider a spherical 

element of fluid radius r. Then the viscous drag on the element is 

47r
3 

average density difference between the element and the rest of the solu- 

tion and is caused by the concentration gradient only. Assuming that if 

the solution is in thermal equilibrium at all points, then the concentration ----- - 

gradient is directly proportional to the temperature gradient. The density 

difference between an 8 mole % solution and 10. mole % solution is 

Ap = 0.14 per mole (fig. 2.15). This is equivalent in solution to a 

density difference of Ap = 0.004 C. Therefore, if Ae is the temperature 

4 00A0  . 
difference across the solution, then Lpav = 

0.0248 	
Equating the 

2 
2 

upthrust to the viscous drag on the element one obtains V
d 
= r  /4 AO using 

n - 2.2 cp. As the flow is turbulent, r must be less than 0.1 cm and Vd 

<0'25 cm/sec for Ae = 20 and the maximum temperature difference used. 

This is insignificant compared with V
c 
and V' = V

c 
= 9.0 cm sec-1. 

1 
2  

1101) It is now possible to evaluate Qd = 0.463 	Nsc-3-  .17 	(3.6) 

using b = 1.146 x 10
-3 

which was calculated from equation 3.5, using 

671-DSV
d 

and the upthrust on the element is 	 
3 

ApaV where Apav is the 
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x
s 

= 1.2 cm and C$  - Co.= 0.18 from figure 2.18; the other constants 

in equation (3.6) are known. Hence, it is found that Qd = 0.37 x 10-7  g 

cm
2 
sec

-1  
,independent of the temperature gradient. Table 3.2 records the 

results of experiments to grow lead tantalate by the temperature gradient 

transport technique using a number of temperature gradients. The figures 

given in table 3.2 are used to give an experimental value of Qd for each 

temperature gradient and the results are given in table 3.3. Qd is 

calculated by assuming the rate of deposition of mass on the seed to be 

constant in time and using the final area of the crystal to calculate the 

mass flux per unit area per unit time into the crystal, since this 

corresponds nearest to a steady state condition. As the grown crystal 

contained many inclusions it grew with an abnormally fast growth rate, 

which must be divided by a factor of four to give the normal growth rate 

for an inclusion free crystal. 

Table 3.3  

The theoretical and experimental growth rates of lead tantalate 

from solution by the temperature gradient technique. 

Temperature -1 	Qd experimental 	Qd 	Qd 
Gradient C cm 	(abnormal) 	(corrected) 	(theoretical)  

5 	0.313 x 10
-5 

7.8 x 10
-7 

0.37 x 10-7 

4 	0.309 x 10
-6 

7.7 x 10
-7 

0.37 x 10-7 

3 	1.195 x 10-7 	0.3 x 10
-7 

0.37 x 10
-7 

All Qd are in units of g cm
2 
sec

-1
. 

It is noted that there is good agreement between experiment and 

theory for growth under a temperature gradient of 3 C. cm'. The discrepancy 

between the other resulLs and Lhe theory is probably due to the error in 

estimating the area of the crystal. The crystals grown at temperature 

gradients of 5 C cm 1 
are 4 C cm

1 
were much larger than the 3 C cm

1 
one 

and did not possess good crystal facets, and it is probable that the area 
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of these crystals was underestimated clue to the break down of the inter-

face to give many smaller facets, particularly on the (001) face. Thus, 

after allowing for experimental error, the temperature gradient transport 

technique results confirm that diffusion limited growth occurs. 

As diffusion limited growth occurs, it is to be expected that 

rotating the seed crystal would decrease the boundary layer thickness and 

lead to more stable growth. This was not observed at the rotation rate 

used because the decrease in the boundary layer was too small. That this 

is so has been calculated in the following way. A body rotating in a 

semi-infinite liquid with an angular velocity w induces a velocity 

component in the liquid of 0.891-71T7 (3.9) at distances greater than the 

momentum boundary layer, where v is the kinematic viscosity of the liquid 

and this velocity is directed towards the crystal (Levich 1963). This 

rotational component Vr  is assumed to be additive to the velocity due to 

convection V. Thus, the velocity of the liquid becomes 

V = V
c 

V
r 
	 ... 3.10. 

For an 8 mole % solution of lead tantalate V = 3.48 x 10-3  and w = 0.151r 

rad sec-1  rotation used thus from equation 3.9. V
r = 0.032 cm sec

-1
. 

Using Vc  = 9.0 cm 
-1 
 as previously, then V

k 
= 9.032 cm sec

-1
. Substitu-

ting for V
k 

in equation 3.7 a new value x
s
1 
for the length of the crystal 

than can be grown is obtained such that x
s
1 	

1.003 x
s
, where x

s 
is the 

maximum length of crystal that can be grown without rotation. Thus, the 

use of low rotation rates produces very little increase in crystal quality, 

but the use of higher rates of rotation could result in better quality 

crystals. From equation 3.9 and 3.10 a rotation rate of 10
5 
r.p.m. would 

have to be used to produce x
s
1   = 2x

s
, which is roughly the desired increase 

in quality. This calculation is invalid, since equation 3.9 is only true 

if the liquid is semi-infinite and the liquid in the crucible only 

approximates to this at low rotation rates. As the rotation rate increases 
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the diffusion boundary layer diminishes and the surface diffusion controls 

the growth, but the transition stirring rate can only be found experimentally. 

It has been demonstrated above that if the growth is diffusion 

limited a crystal may only be grown to a certain size. As there is an 

instability in the growth,crystals can only be grown to a size 1.2 x 0.3 x 

0.3 cm. The diffusion limited growth process does not itself cause 

inclusions in the crystal, but constitutional supersaturation is present 

and will produce inclusions if a perturbation of the surface occurs, given 

that surface free energy considerations do not cause the perturbation to 

decay. 

The first possible perturbation of the surface can be caused by 

local heating due to the heat of crystallisation being liberated, which may 

produce a very small area of the interface of sufficiently high supersatura-

tion for a secondary nucleii to form and grow rapidly. This effect may now 

be calculated for a crystal measuring 1 x 1 x 1.2 cm of mass 9.8 g grown on 

cooling a solution through 40°C at a linear cooling rate 1.7 C per hour. 

The growth rate is Qd = F71 x 10-4  g sec-1  and the heat liberated per 

second is Q 	Qd AH where AH is the heat of crystallisation per mole of T 	M 

solute and M is the gram molecular weight of the solute. From 2.8)AH = 11.8 

K cal mole
-1 

and therefore Q
T 

= 3.04 x 10-5 cals. If the conditions are 

initially isothermal Q
T 

will be conducted away through the crystal in amount 

Q 1 and through the solution in amount Q2' Then Q
T 	1 

= Q-14)2 	6.. 3.10. 

	

Let K K AZ 	dT 

	

l' 2 dx 	' 	dx 	be the thermal conductivities and 
1 	2 

temperature gradients in crystal and solution respectively. Assuming that 

the heat conducted through each is proportional to the thermal conductivity 

of that medium then 

Q1 	kl 
k
2 

... 3.11 
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k  NT) 	
and Q 	

, 2 d 
CT) 

Q = 	 2" 
= 	— 

	

11,dx) 	x 
1 	2 

... 3.12 

Simplifying 3.10, 3.11. and 3.12 yields 	dx 

and using k
1 

= 2.5 x 10-2 cal cm
-1 

sec
-1 

C
-1 

typical for that of an ionic 

crystal and k2 	4.0 x 10
-3 

cal cm
-1 

sec
-1 

C
-1 /

clx
dT 

1 x 10-3  C cm
-1
. (,  

2 
This temperature gradient will only exist in the thermal boundary layer for 

which the thickness -is 

o  
= 4.64 ( 	 ) 	N 

4 	 Vv 	Pr 
pr 

All terms are defined in appendix A. Hence, for an 8 mole % solution 

Ax = 3.41 x 10
-2 

and therefore AT = 3 x 10-5C at the surface where 

AT = Ti - To, Ti being the temperature of the interface and To being the 

initial:isothermal temperature. This temperature produces a change in 

concentration (from fig. 2.9) of ACo = 0.0002 mole in the equilibrium 

concentration at the interface. The required concentration difference to 

drive the surface diffusion is 0.018 moles (from fig. 2.18). Therefore, 

the effect of interface heating is negligible and dissipation of heat does 

not form a source of instability. 

The source of instability is probably a two-dimensional nucleus 

or a plane of high Miller indices appearing on the surface. Considering a 

(010) plane shown in figure 3.16(a) the distribution of supersaturation over 

the surface is shown. 
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Suppose that a number of perturbations occur on the surface,, 

they will grow rapidly depleting the solution in the boundary layer of 

solute. The solution flow can only supply enough solute to the boundary 

layer for one perturbation to grow 3 mm long parallel to the flow. As 

there are many perturbations depleting the solute, they will not grow to 

3 mm long, but will grow rapidly outwards from the interface enclosing 

approximately a volume of solvent between them. The distance between the 

rapidly growing ridges will be about equal to xs divided by the number of 

perturbations. The normal growth of the crystals in the [0011 direction 

is sufficiently fast that the perturbation grows normally in that 

direction. A similar effect occurs on the (100) surface and consequently 

a pattern of inclusions is obtained as shown in figure 3.17, which is a 

diagramatic simplified representation of figure 3.4. 

• In conclusion, the growth of lead tantalate is diffusion 

limited with an interface instability caused by constitutional supersatura-

tion and the combination of these factors leads to a crystal which can only 

be inclusion free if smaller than 0.3 x 0.3 x 1.2 cm. 
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'CHAPTER IV 

4. MEASUREMENT OF THE LINEAR ELECTRO-OPTIC EFFECT IN LEAD TANTALATE  

4.1 The Linear Electro-Optic Effect  

When an electric field is applied to a crystal there is a 

change in the refractive indices which is directly proportional to the 

applied field. The effect was first noted by F. Pockels (1893) in quartz 

and the effect is sometimes called the Pockels effect. The magnitude of 

the effect varies with the relative orientation of the electric field to 

the crystallographic axes of the crystal. If the crystal is isotropic 

initially, then under the influence of the applied electric field it 

becomes birefringent. 

,4.2 The Optical Indicatrix  

'Before discussing definitions of the electro-optic coefficients, 

the nomenclature of conventional optics must be established. A crystal can 

be characterised by the number of independent refractive indices it 

possesses. An isotropic crystal has one refractive index, a uniaxial 

crystal has two and a biaxial crystal has three. Whether or not a crystal 

is isotropic, uniaxial or biaxial is determined by the crystallographic 

symmetry class to which the crystal belongs. The optical properties of a 

crystal can be described by the optical indicatrix, which is an ellipsoid 

of equation: 

a11x12 +a22x2
2 
 + a33x32 = 1 	 ... 4.1 

where x1,  x2, x3 are the principal axes of the ellipsoid and are directions 

in the crystal, and 

a.. 13 2 n..  
13 

where nib 
 is the refractive index in the direction x. of the crystal. Any. 
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light ray propagated through the crystal is propagated in components, each 

of which has its electric field polarised parallel to one of the principal 

axes. In an isotropic crystal al  = a2  = a3  and the ellipsoid becomes a 

sphere. In a uniaxial crystal a
1 

= a
2 and the ellipsoid is a body of 

resolution about the x
3 

axis and possesses a circular cross section normal 

to it. The refractive index in the x
1 direction is called the ordinary 

refractive index and in the x
3 direction is called the extraordinary 

refractive index. Biaxial crystals have a14 a2 a
3 

and hence there are 

three refractive indices. 

In general,, the .axes' of the indicatrix are not identical with 

the crystallographic axes. Referring the indicatrix to the crystallo-

graphic axes its equation becomes 

aui  x.
2 	

a22x22 	
a33x2

2 
+ 2a23x2x3  + 2a13x1x3  

•2a
21x2x1 = 	 ... 4.2 

where x.
1 
 is the crystallographic axes, a-

I. = n 	, where n..is the j 	. 
1  

refractive index in the x.. direction. The cross terms a.. describe the 
13 

rotation of the indicatrix relative to the crystallographic axes. 

4.3 Definition of the Electro-optic Tensor  

The electro-optic tensor is defined by the equation 

Aaij  = rijk  Ek 	 ... 4.3 

where Aa.
j  is the charge in the coefficient of the optical indicatrix for 

theappliedfield,Eie wherer
ijk 

 is the electro-optic coefficient. The 

general electro-optic tensor is a matrix of eighteen elements, but the 

number of independent coefficients depending on the symmetry of a particular 

crystal. A monoclinic crystal has all 18 independent coefficients, 

whereas a cubic crystal has one. 

As the subscripts ij are repeated on both sides of equation 4.3, 
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a reduced form of notation is used. Equation 4.3 becomes 

Lai  = r. E 
ik k 

The convention used is that when ij = 11, then i: = 1 

	

22 	i = 2 

	

ij . = 33 	i. 3 

	

= 23 	i = 4 

	

ij = 13 	i = 5 

	

ij = 12 	i = 6 

Thus, writing equation 4.4. in full: 

Dal 	
r11 r12 11 	r13 	E1 

Aa2 
	r21 r22 r 

	

21 22 23 	
E
2 

Aa3 	r31  r32  r33 
	E3 

 

Aa4  
r4I r42 r43 

Aa5 	r51  r52 r
53 

Aa6  
r61 r62 r63 

• • • 
	4.4 

... 4.5 

4.4 Change of Refractive Index with Applied Electric Field  

It is not immediately apparent that equation 4.4. leads to a 

change in refractive index linearly dependent upon the applied electric 

field. Consider a field applied in the x
1 
direction and a wave normal 

propagated in the x
3 
direction; the equAtion of the indectrix becomes: 

1 
+r  

k n1
2 	11  

x12  + r21 E
1 

2 	1 
2 + 
	x22 + 2r61  El  xix2  = 1 	... 4;6 

n
2 

This is equivalent in a new indicatrix 

x
1
2 x

2
2 

1 1 
n 	n 
1 	2 

2r61  El  xlx2. = 

where the indicates the refractive index with the field applied. Now 

nl
1 
 = inl 
	An1) where An1 is the change in the refractive index n1

. 

71. 



1 	 1 	.-1 
then 2 + r

11
. 

	
E
I 

1 ni  n
;2 	= 

(n
1 
 + An  

1
)2   

... 4.7 

Then, since An is small compared to n
1 
by binomial expansion of (n

1 
+ An)

2 
 

equation 4.5 reduces to ..  

3 
Ant 
	
= -n r 

1 11
E 
 1 

2 

Therefore, there is a change in refractive index directly proportional to 

the electric field. A similar relationship can be derived for Ant. The 

term 2r61  El  is equivalent to a rotation of the indicatrix about the x
3 

axis. 

4.5 Electro-Optic Effects in Centrosymmetric Crystals  

As noted in 4.3, the number of independent values of r.. depends 
3 

on the crystal symmetry. In centrosymmetric crystals all values of r.. are 
13 

zero. This may be seen from a consideration of equation 4.7; with the 

field in one direction a certain value of n
1
1 
 is obtained, but on reversing 

the field An
1 changes sign and a different value of n1

1 
results. This is 

inconsistent with the centrosymmetric requirement that the applied field 

should give the same refractive index in either direction of the electric 

field. Hence, all values of rijk  must.be zero. Electro-optical effects 

- are possible in centrosymmetric materials, but the change in refractive 

index must be a function of even powers of the applied electric field. In 

this way symmetry requirements are satisfied and An.. = gijkEk
2
, where 

g.., is the coefficient of the second order or quadratic electro-optic 
1JK 

effect. The quadratic effect is observed in all materials, though it is 

usually much weaker than the linear effect in non-centrosymmetric crystals. 

4.6 Direct and Indirect Linear Electro-Optic Effect  

The electro-optic coefficients can be measured experimentally,  
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under conditions of constant stress or constant strain, which are called 

respectively the indirect and direct effects. The indirect arises through 

the addition of piezoelectric strains when the field is applied (All 

linear electro-optic materials must also be piezoelectric). The piezo- 

-electric strain produces'a retardation through the elasto-optic effect. 

The indirect effect can be greater or less than the direct effect and the 

latter can only be measured at high frequency or by clamping the crystal. 

4.7 Electro-Optic Retardation in Birefringent Crystals  

In applications of the linear electro-optic effect light polarised 

in two components is propagated through the crystal and the components are 

given a relative retardation by the electric field. Equation 4.6 was 

derived for light propagated along the x
3 

axis and for a field in the x
1 

direction, and if the wave is polarised along the x
1 

axis and has 

frequency w it is described in the crystal by 

A
l 

exp i (wt -. 
2,711

1 
A 

where A
o 

is the wavelength in free space. The phase of the wave depends 

on n
1
. After traversing a length of crystal, L, the change in phase, 11, 

due to the field is n = -21T AL 
	

( n
1 

- n
1
'1 

0 

= 
3 

n
1 
	
r
11  E1

L 
. z 

rr. 

A 
0 

... 4.9 

If E
1 
varies sinusoidally, there is a sinusoidal variation in the phase 

delay. 

If the incident wave is polarised at 450  to x.. then two equal 

plane polarised components are propagated at right angles. The emergent 

beams with E7L. 0 are respectively described by 

A 
2  exp i (wt - 2 (nit ) xl) 

A 
0 
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(112  ) r  A 
and 	exp i 	wt - 27 ---- X

2 
 

, 0  
... 4.11 

There is a phase difference between these components and they 

produce a resultant eliptically polarised wave. This resultant can be 

described by two orthogonally polarised waves referred to any arbitrarily 

chosen axes. If these axes are chosen as parallel and normal to the 

incident direction of polarisation, the the components have amplitudes 

A cos 
1, 
 (n1  - n2  + An1  - An2) = Acos y 

and A sin 7L 
Xo 

- n2  + Ln1  - Ln2) = Asin 

Respectively, where P is the retardation. 

Considering the parallel component, if nL (n
1 
- n

2
) is an even 

multiple of 7/2 the amplitude is zero except for the component due to the 

electro-optic effect ,Using equation 4.8 for An the value of this 

component is 

± cos 
EL 

(n3  r
21 

-n
1
3 r

11 ) E1 Xo 
 2  

which approximates to 

3 	3 

(n
2 

r
21 

- n
1 

r
11

) El 
.0 

 

Thus, the amplitude, modulation is small and contains even pOwers of E. The 

same reasoning holds for the other component if 
7L 

  (n1  - 
n2) 

 is an odd 

value of 7/4. 

If -
EL 

(n1  - n2)is an odd multiple of 7/4, then the amplitude 
X
o 
   

for. either polarisation is 

la, 	3 n13  ri2) Eli ± 	El ± 2' sin 
(n2 r21 - 2X

o  
( 

ry na 	
2 
— 	+ 71, fil 	3 	- - 3 

- 
xo  (n2 

r21 - n
l  r11) E1 

In this case the retardation is larger and is linear in E. The 
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If 

then 
A 

0 
L  

TL 
condition that — (n1  - n2) should be an odd multiple of T/4 is called 

the optical bias and is achieved either by using a compensator or by 

utilising the temperature dependence of the crystal's birefringence. 

4.8 The Half Wave Voltage  

This is a useful measure of the effectiveness of an electro-

optic material in device applications. It is the voltage necessary to 

produce a relative retardation of the w radians between the two components 

propagated through the crystal. The phase difference between the two 

components from equations 4.10, 4.11 and 4.8 due to the applied field only 

is: 
2 L 

(Ani  
6n2)  

 

A 
0 

1, 	3 
- n

1 
3 
r11) El  

0  
r21 

(n
2
3 
r
21 

- n
1
3 
r11)

-1 

If the distance between the electrodes is d, then the half wave voltage V 

is: 

	

d 	3 3 	-1 
= 	Xo L 	(n2 r21 - n1 r11)  ... 4.12 

It is desirable from a device viewpoint that V be as low as 

possible. This can be done by choosing a large value of L and a low value 

of d and large reductions in V are then possible. Limitations are imposed 

on this reduction by the morphology of the grown crystal. In order to 

quote half wave voltages in a manner independent of the crystal dimensions 

the half wavelength field path length product (E.L.))y2  is used. This 

is the product of the field required to achieve a half wave phase 

difference and the path length of the light through the crystal. Thus: 
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A 	(n
2  3•E  L.7 X/2 	= 	r21 - n1 

3
r11 )

-1 
o   

4.9 	The Dependence of the Electra-optic Coefficient on the Spontaneous  

Polarisation  

Kurtz (1967) has given a theoretical relationship between the 

linear electro-optic coefficient and the spontaneous polarisation of a 

ferroelectric material. The refractive index in the visible region is mainly 

determined by the strong ultraviolet absoption band electrons. The model 

of the electro-optic effect uses a single electron oscillating in a 

potential well with an ultraviolet frequency. A small anharmonic 

perturbation is added to the potential. In the electro-optic effect the 

d.c. field E(o) is added to the driving optical electrical field E(w,t) of 

light wave. The equation of motion of the electron is 

X + RX + w
o
2
x + vx

2
=11 	E(w,t) 	0E(o) 	... 4.14 

where R is a damping constant, wo  the electron frequency, w the light wave 

frequency, v the anharmonic potential, e and m the charge and mass of the 
_(K+2) 

electron, and R is a 	 0 local field parameter. 	3 	where K is the 

dielectric constant of the material. With no anharmonicity the applied 

field E(o) merely shifts the equilibrium without affecting w . However, 
0 

using the co-ordinate transformation 

x - e0E(o)  
Y = 	2 

mw 
0 

... 4.15 

in equation 4.14, which shifts the origin to a new equilibrium position, a 

new electron frequency is given by 

(w01)2 
wog  + 2 ve 6E (o) 

mw 
2 

 
0 
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This gives rise to a field dependence of the refractive index on the 

electric field as the refractive index varies inversely as (w
o
')
2 
- w

02
. 

Solving equation 4.14 one obtains a non-linear susceptibility for 

NL 	NL 
P  

(w) 	
w 
_ (w 	o,w,o) E

x(w) '°' 
E( ) 

x '  

where 	
XNL 
xxx(w 

o,w,o}. 
	-2 Noe 

3
av  

m
2
D
2
(w)D(o) ... 4.16 

where D(w) = w
o
2 
- w

2 
- 2Rw. Using the Klienmann relation 

411.  r 	 (Klienmann, 1962) one obtains for r after simplification 
= 

n 	
XNL 

of equation 4.16 

2 	2  
(n -1) f3v  

27rn
4
No e wo

2 

For a ferroelectric material below its Curie point the local 

field is augmented by the spontaneous pOlarisation P
s 

and replacing the 

term vx2 in equation 4.14 by px
3 

one obtains 

471-  e N
2/3 

P 
o 	s 

V 
m 

where p = w o 
2
N o
2/3 

Hence, electro-optic coefficient if given by 

2 	(n
2 
- 1)

2 	KP
s 

 
... 4.18 

 

.4 mN.2/3w 
2 

O • 	o 

 

4.10 	The Electro-optic Tensor for m2m Crystal Symmetry  

Lead Tantalate belongs to the same crystal class m2m, and Nye 

(1960) has given the electro-optic tensor for each crystal class which 

exhibits the effect. 	The tensor for the m2m crystal class where the 

0 	(Johnston, 1969) axis is taken as the b axis is: 	0 	r
12 

0 	r
22 	

0 

0 	r
32 	0 

0 	0 
r43 

0 	0 	0 

0 r61 	0  
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An electro-optic effect may, therefore, be observed at in the following 

combinations of light and field directions:- 

light in x
1 	

field in x
2 

light in x
1 	

field in x3  

light inx
2 	

field in x
2 

light in x
3

, 	field in x
l  

light in x3 	field in x
2 

Thus, both a traverse effect with field and light orthogonal and a 

longitudinal effect with field and light parallel may be observed. 

4.11 The Apparatus and Procedure for the Measurement of the d.c. Electro- 

Optic Coefficients in Lead Tantalite...  

The apparatus used in the determination was designed and constructed 

by the Post Office Research Station, Dollis Hill. The apparatus is shown 

in figure 4.1. The apparatus records the voltage required to rotate the 

plane of polarisation of the incident wave through 900, i.e. the half wave 

voltage. The light source is a model 132 Helium Neon Laser, frequency 

6328k produced by Spectra Physics Inc., with a minimum power output of 

1 milliwatt. The laser and the other optical components were mounted on a 

two metre optical bench. Neutral density filters.were used to reduce the 

intensity of the laser radiation, as a safety precaution and to reduce 

the signal level from the detector to a suitable value for input into the 

photodiode amplifier. The polariser and analyser were made of polaroid 

mounted on rotating frames. The measurement cell is shown in figure 4.1. 

The electrodes are bress faced with platinum. The lower electrode is 

earthed. The electrodes were held in a perspex cell, which was filled with 

benezene to prevent electrical breakdown in the air gap between the 

electrodes. A quartz wedge compensator which could be adjusted with a 

micrometer screw was mounted after the cell and was used to correct for 
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the crystal's natural birefringence, giving either maximum or minimum 

transmission. After the analyser a focussing lens is used to focus the two 

light rays from the crystal onto the photodiode detector. A dark paper cone 

was placed between the lens and the detector to eliminate any effects due 

to the laboratory lighting. The detector output was connected to a d.c. 

amplifier, which had an adjustable sensitivity. The amplifier output formed 

the Y input of an XY chart recorder. The high tension source used was a 

Brandenburg High Tension generator. The high tension line was connected to 

the upper electrode of the cell and the generators earth cable to the lower 

electrode. The voltage could be varied by a manual control. A potential 

divider circuit in the generator gave an output 10-3 of the voltage across 

the cell. The potential divider circuit output formed the X axis input of 

the XY recorder. 

An electro-optic crystal was placed between the electrodes and 

the compensator set to give a minimum, polariser and analyser being crossed, 

and as the voltage was increased an increase in the transmitted light was 

observed, up to a maximum and the signal then decreased again to the 

minimum, and so on. A chart trace was recorded. A typical example is 

shown in figure 4.2 (a). The distance between a maximum and a minimum on 

the X-axis is the half wave voltage. In the linear electro-optic effect 

the 	half wave voltage will be independent of the applied voltage. 

However, if the crystal exhibits a quadratic effect a decrease in the half 

wave voltage will be noted for increasing applied voltage, giving a trace 

of the type shown in figure 4.2 (b). 

The lead tantalate crystals used were usually of dimensions 

1.5 x 1.5 x 3 mm, the longest dimension being the C axis. The [1003 

dimension of the crystals was usually longer than the [010] dimension. 

The crystals were polished on the appropriate surfaces with varying 

grades of diamond paste down to ip. The crystal dimensions were then 
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measured with a micrometer screw gauge. Silver dag electrodes were painted 

on the crystal, which was then placed on the lower electrode and aligned in 

the beam. The upper electrode was then placed on the crystal and the high 

voltage connections were made. The polariser was set at 45°  to the vertical 

and the analyser was crossed. The ordinary and extraordinary rays from 

the crystal were focussed with the lens onto the front of the aperture of 

the photodiode. 

The diode was mounted 2.4 cm behind the front aperture and, 

therefore, the diode stand was moved forward 2.4 cm after the light had 

been focussed onto the aperture. Recorder and amplifier were then switched 

on. The compensator was adjusted to give minimum transmission and the 

voltage was switched on. The voltage was then increased until a series of 

maxima and minima were obtained. The experiment was repeated at each 

orientation for different positions of the beam on the same crystal and for 

different crystals. The calibration of they axis of the recorder was 

checked using a standard potentiometer. The average half wave voltage for 

each orientation was found. A spread in the values of half wave voltages 

of about 10% of the mean was found. This was probably due to lags in the 

servo mechanism of the X-Y recorder, which was prone to giving an 

irregular response. 

4.12 Results of Electro-Optic Measurements  

The results of the electro-optic measurements for lead tantalate 

is given in Table 4.1. 	p 

Table 4.1  

Half wave field path length product for each orientation of a 

single crystal of lead tantalate PbTa206  measured at 6328°A. 
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and 

271 
( nl3 r12 - n2 

271-1, 3 
X 	( n3 r32 - n2 r22) E2 

) E2 

Table 4.1 continued 

Field Direction 

Light 
Direction 100 	010 	001 

100 
	

/ 
	

1.14 	N.D. 

010 	 u.m. 	/ 

001 	1.56 	0.60 
crystal symmetry indicates no effect 

N.D. effect so small in cannot be measured 

U.M. unable to be measured with the apparatus 

Field wave products are measured in KV. 

The refractive index of lead tantalate along the b axis, i.e. 

n2' 
measured by the true and apparent depth method is 1.9 ± 0.5. Using the 

results in Table 4.1 and this value of n2 
in section 4.12.1. the value of 

r61  is calculated to be 1.49,x 10
-8 

cm/V. 

The retardations due to an applied electric field in the b 

direction and light in the a and c directions are respectively 

Since in each case a very low half wave voltage is obtained, and 
'9'o 

since n1, n
2 

and n
3 

are equal to the first decimal place (Subbarao) then 
A 

if it may be assumed that r12  and r32  are small compared t43,r22  an 

approximate value of r
22 
 = 7.6 x 10 7 cm/V is obtained from Table 4.1. 

No optical damage due to laser radiation was observed. 

4.12.1 The calculation of r
51 

With light propagated in the C direction, that is with x3 
= 0 

and with the field in the a direction, the equation of the index 

elipsoid becomes 

a1x1
2 

+ a
2
x
3
3 + 2ra Eixix2.  = 1 	... 4.19 
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This indicates that the eliptical section normal to the x
3 
axis is 

rotated through an angle 0 as illustrated in figure 4.3. Referring the 

elipse to new axes x1
1 

and x2
1 

the equation of the elipse becomes 

1 12 . 1 12 all x112 

	

x 	+ a x
2 	

1 	 ... 4.20 

where a
1
1 
and a

2
1 
are the new coefficients due to the distortion of the 

elipse by the applied field. Since the axes x
1
1 
 and x

2
1 
are rotated by an 

angle from the axes x1  and x2  the following relationship holds between them. 

(See figure 4.4) 

a1 x1 
1 
 + 01x2

1 	
... 4.21 

a2x1
1  +

2
x
2 
	 ... 4.22 

where of1, a2' 	l' 
6
2 

are the direction cosines of the angles between the 

axes. From figure 4.4 

a
1 
 = -0

2 	 ... 4.23 

and 	a2  =S 1 	 ... 4.24 

Substitute for a1  and 2 
from equations 4.23 and 4.24 in equations 4.21 

and 4.22 and then, substituting for x1  and x in equation 4.19 one obtains 

	

12 , 	 1 , xl 	kaial2 + a2a22 + 2r61E aia2) + x2  kala22  + a2a12 - 2r61E1a1a2) 

+ 2r601(a1
2 
- a

2
2 + a

1  a2 z  
a„.-a/ 	

11 
X
2
1 = 1 	4.25 

a2  - a/  is small compared with unity and, therefore, this term may be 

neglected in the calculation of al. Equations 4.25 and 4.20 are identical 

and therefore 

2r61 1 (a12 - a2
2
) = 0 	 ... 4.26 

since there are no x
1
1  x 1 . 

ecuation 4.90. 

Therefore al  = ± a
2 

and from figure 4.3 al  = cos 0 and a
2 

= sin 0, 

hence 0 = ± 45° ... 4.27 

Thus, there is a rotation of the optical indicatrix about the c axis of 45°  
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when the field is applied, but independent of the magnitude of the field. 

This solution is only approximate, since if al  = a2  exactly the elipse 

becomes a circle and no electro-optic retardation is possible. Hence 

a1a2(a2 - al)  is important in determining the electro-optic properties of 

the crystal. Since there is a rotation of very nearly 45 degrees and as 

the polariser had been set at 45°  to the initial indicatrix, the amplitudes 

of the two transmitted components are no longer equal. Hence, total 

extinction will not be obtained at minima of transmitted intensity. To 

calculate the retardation the new indicatrix with the field applied is 

used, the retardation r being given by 

2TrL [  1 	1 
X I va1 	

Vra2 / 	

... 4.28 

1 

 

Using a
1 

= a
2 

= 0 	in equation 4.25, and letting al  + a
2 
= a, 

then 

61
E
1  2irL 	

- r 	- 2_!f Aw r4, Er 

a2 
.r • • • 

	4.29 

where it is assumed that a
1 
 >> *(r 1 a = 11 ne 

From Table 4.1, when L = lcm and E1  = 1.56 KV/cm, r = Tr at X = 6328°A, 

then r
61 

= 	x 10-9 cm/V. 

A 	z-23 	15 ( Wemp IQ 1969 ) 
approximate values of no 1:9x10 	and w20 x 10 	(V, 1-1 4, 	19C7) and 

me = 9.1 x 10-28  grm, then r = 	x 10-9  cm/Volt. This agrees well with 

the value r61  = 	x 10-7  ' 	cm/Volt measured for lead tantalate. The value 

of r
22 

is larger than this. This is probably due to an enhanced biasing of 
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4.13 Discussion of Results  

Equation 4.18 gives the electro-optic coefficient in terms of the 

spontaneous polarisation, dielectric constant and refractive index. Using 

a value of P
s 
= 8 x 10

6 
coul. cm

2, K = /00 (Subbarao, 1960) and 
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the quadratic effect when applied electric field and spontaneously polarisa-

tion are parallel. That no effect determined by the r43  term could be 

detected from the apparatus is to be expected from the prediction by 

Miller (1964) that the dielectric constant and hence the electro-optic 

constant is an order of magnitude less for the c direction than for the a 

or b. 
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"CHAPTER V 

5:0 THE'STRUCTURAL AND DIELECTRIC PROPERTIES OF THE TUNGSTEN'BRONZE 

Pb
6
Ti
2
Nb
8
0
3 

FOR VARYING TITANIUM:NIOBIUM RATIOS 

5.1 Reasons for the Investigation of Pb2Ti2Nb8030  Type Material  

The general formula for a filled tungsten bronze structure material 

is (A t)2  (A2)4  (Ci) (B1)2  (B2)8.030  where AI  and A2  are slightly differing 

sites and are occupied by monovalent or divalent ions. The B sites are 

occupied by tetravalent or pentavalent ions. The C site is a small one 

which can accommodate only small monovalent ions such as lithium and for 

most materials the C site is vacant: Within the requirement of the general 

formula materials have been investigated which form five distinct groups, 

which are classified by the valencies of the ions in the structure. The 

groups are:- 

(1) A5  B10  030  e.g. PbTa206,Ba0.5  Sr0.5  Nb206  

(2) A 	B 0 	e.g. Ba NaNb 0 
42+ 

A 
 2+ 10 30 	2 	5 15 

(3) A6 C4 
B10  030  e.g. K6Li4Nb10030  

(4) A
2+
0 

xB205 
1 lc<2.5 e.g. Pb0 - 2.5 Nb

2
0
5 

(5) A
2
2+ 

A
4
2+ 

B
2
4+ 

B
8
5+ 

0
30 

e.g. Ba6Ti2Nb8030  

Mant investigations have been carried out on materials in groups 

(1) to (4). The only investigation of group 5 materials has been the X-ray 

study of Ba6Ti2Nb8030  by Stephenson (1965), who concluded that ferroelectri-

city was probable in this structure. As lead is a more highly polarisable 

ion, a requirement of ferroelectric materials, than barium, the material 

Pb6-- 
Ti
2 
Nh
8-  n30 should also be ferroelectric. If the titanium-niobium ratio 

is varied, then the Curie point of the material should also vary because 

of the different numbers of Ti-0. and Nb-O bonds which possess different 

polarisations. In order to vary this ratio a charge compensating ion must 

be added. Burns (1968) has shown that the addition of lanthanum to a 
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ferroelectric tungsten bronze reduces its Curie temperature. This is 

desirable as Miller's rule has established that the dielectric constant 

is directly proportional to the electro-optic coefficient. When measured 

near the Curie point of a material where the dielectric constant is large 

the half wave voltage will be low. Thus, it should be possible to 

synthesize a material of tungsten bronze structure with suitable dielectric and 

electro-optic properties. 

This investigation was undertaken as a secondary project in 

order to evaluate the fifth group of tungsten bronze structures as a source 

of possible electro-optic materials. 

5.2 X-ray Analysis of the Materials  

The specimens for analysis by the X-ray powder diffraction tech-

nique were prepared by firing the appropriate mixtures of the constituent 

oxides. A charge of 25 grins was weighed out, mixed with 10 cm
3 

of distilled 

water and placed in a ball mill. The charge was milled for sixteen hours, 

then filtered and dried. Approximately one gram of material was then 

placed on a platinum sheet and heated in an oxy-hydrogen flame until molten. 

The molten charge was allowed to cool, ground with a pestle and mortar and 

then refired. This process was repeated several times. The final product 

was then examined by Debye-Scherrer powder diffraction technique. 

Figures 5.1(a) and 5.1(b) show the results. To simplify identification, a 

standard specimen of lead niobate PbNb2
0
6 

was similarly prepared, yielding 

the ferroelectric orthorhombic tungsten bronze structure which was 

identified by comparing the d spacings with those given in the ASTM index. 

The lead-rich members of the series were found to have structures similar 

to that of lead niobate. For compounds containing less lead than 

Pb
3
La
3
Ti5

Nb5030 
a different structure was obtained as seen in figures 5.1(a) 

and 5.1(b). Few lines were visible for these compounds, and the structure 
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could not.be identified by comparison with known materials. No unreacted 

components were present, nor.wete any known binary combinations of them. 

5.3 The Structure of the Pb
6
Ti

2Nb8030 
Series  

The d spacings of each of the first five strong lines for each 

X-ray photograph was calculated from the measurement of the diameter of 

each line on the photograph. No correction was made for film shrinkage, 

as only the low angle lines, which are the least accurate, were visible 

on the film. The index of each line was deduced by comparison with the 

standard lead niobate photograph, and using the d spacings given by Roth 

(1957). The lattice spacings measured in Angstroms for each composition 

are given in Table 5.1. 

Table 5.1 

The lattice spacings of the first five strongest lines in 

Pb
6
Ti

2Nb8030' 
type materials. 

Pb Ti Nb 0 
6 	8 30 

Pb LaTi Nb 0 
5 	3 	7 30 

Pb
A
La
2
Ti
4 Nb

6
0
30 

PbLaTiNb0 
5 	7 	3 3 

 
Lae 2  bTi8030  (h.k.1) 

3.440 3.187 3.173 3.43 3.413 150 

2.941 3.030 3.001 3.232 3.307 131 

2.848 2.911 2.905 2.930 2.995 440 

2.700 2.756 2.756 2.689 2.757 350 

2.548 2.582 2.573 060 

As ceramic discs were used as the source material the lines on the 

photograph were broadened due to the compositional variations typically 

found in specimens prepared in this way. Because of this doublets, due to 

the orthorhombic structural deformation, were not resolved for lead 

niobate or for any of the other materials. Hence, it was necessary to use a 

tetragonal cell to calculate the lattice parameters. There was insufficient 
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evidence to decide if in fact their structure was orthorhombic or tetragonal. 

The lattice parameters were calculated for each material and are shown in 

figure 5.2. The series appears to divide into two parts with a phase 

boundary near the composition Pb3La3Ti5Nb5030. Little change is observed 

in the c parameter on varying the Ti:Nb ratio. This may be expected, since 

the 0-Ti and()-Nb bonds are of similar lengths in tungsten bronze materials 

(Stephenson (1965); Jamieson, (1968)). The a parameters are smaller than 

for PbNb206' which is consistent with the smaller diameter of La compared 

with Pb. 

5.4 Determination of the Melting Point as a Function of Composition  

In order to prepare ceramic discs for dielectric studies the 

melting point of each composition was determined using a Griffin and 

George Hot Stage Microscope. The heating element was a platinum 5% rhodium/ 

platinum 20% rhodium thermocouple junction. The element was heated by a 

chopped electric current which allowed the thermocouple temperature to be 

monitored in between the heating pulses.. The temperature of the thermo-

couple could be set manually and its value was displayed on an accurately 

calibrated scale. 

To determine the melting point of each specimen a small amount 

of material was placed on the thermocouple, which was then clamped in 

position on the microscope. The thermocouple temperature was increased 

until the material became molten. The temperature was then decreased to 

solidify the material. Again, the temperature was increased and the 

melting point was then taken as the temperature at which the solid material 

was in equilibrium with its liquid. The initial melting of the material 

was necessary to ensure complete reaction of the oxides. The measurement 

of melting point was performed several times for each composition and the 

average taken. The melting point as a function of temperature is shown in 
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figure 5.3. 

5.5 Preparation of Ceramic Discs  

Sintered discs of each composition were fired in the following 

manner. About 2g of material was placed in a 1 cm internal diameter 

cylindrical die and hydraulically pressed at three tons indicated pressure. 

The disc was then removed and the die cleaned to remove material adhering 

to the sides. The discs were fired initially for sixteen hours at a 

temperature 0.6 Tm, where Tm was the melting temperature. The firing 

temperature was then increased subsequently until a dense, impervious 

disc was obtained. The weight loss on sintering was in all cases less 

than 2%. Table 5.2 gives the firing temperature for each disc. A number 

of discs of each composition were fired at a time. One disc was crushed 

and examined by the X-ray powder photography to ensure the correct phase 

had formed. 

Table 5.2  

The firing temperature for sintering Pb6Ti2Nb8030  type 

materials. 

Material Firing  
temperature 

Pb
6
Ti
2
Nb
8030 

1160°C 

Pb
5
La
T
i
3
Nb
7
0
30 

1180°C 

Pb3La3Ti5Nb5030  1200°C 

PbLa5Ti7Nb3030  1220°C 

La
6
Ti
8
Nb
2
030 1240°C 

5.6 Measurement of the Dielectric Constant as a Function of Temperature  

The dielectric constant was determined using a capacitance bridge 

technique. Dielectric anomalies indicating ferroelectricity were found in 
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materials that were lead rich. No anomalies were found in materials with 

lead contents less than Pb3La3Ti5Nb7030. 

The results showed a weak anomaly at 670°C for Pb6Ti2Nb8030, a 

reproducible large anomaly at 375°C for Pb5LaTi3Nb7030  and evidence of an 

anomaly below room temperature for Pb3La3Ti3Nb7030. 

With the exception of Pb
5
LaTi

3
N
b7030 

a wide variation in results 

was observed for different discs of the same material. This was probably 

due to an imcomplete reaction of the oxides and the difficulty of achieving 

a uniform composition for such complex materials. However, the fact that 

no ferroelectric behaviour was found for lanthanum rich members of the 

series is consistent with the observation that these materials did not 

possess the ferroelectric lead niobate structure. To confirm the existence 

of ferroelectricity it was clearly necessary to prepare single crystals of 

the lead rich members of the series. 

5.7 The Growth of Single Crystals  

From the dielectric study the material Pb5LaTi3Nb7030  exhibited 

the most sharp dielectric anomaly. As it had a melting point of 1305°C 

and appeared to melt coherently, it was capable of preparation as single 

crystals by the Czochralski technique. However, when molten, the material 

rapidly lost lead oxide by evaporation. An attempt to encapsulate the melt 

by floating boric oxide, B203, on the surface was made to suppress the 

evaporative loss of Pb0 — undesirable because of its toxicity and because 

of the change in melt composition. This attempt was unsuccessful, as lead 

oxide diffused into the boric oxide layer, which then mixed with the melt 

within a period of about an hour, after which lead oxide was again evolved. 

No satisfactory method of overcoming this problem was found, and the 

Czochralski technique was discarded as being unsuitable for the preparation 

of lead rich members of the series. 
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The high temperature solution technique was then employed, as 

this offers the advantage that the growth could be carried out at a constant 

temperature by evaporation of the solvent. With such complex materials, 

temperature variations would not only result in a variation in the crystal 

composition; but might also lead to the precipitation of secondary phases 

within the crystal. The problem was to find a volatile solvent which did 

not react irreversibly with the solute. In order to test the solvent a 

trial run was carried out in a 30m1 platinum crucible using a solute 

solvent ratio of 1:5 by weight. The first two solvents to be used were 

lead fluoride and lead oxide. Both precipitated an unwanted pyrochlore 

type phase, rich in lead oxide. The next solvents tried were molybdenum 

triodixe, lithium molybdate Li2Mo207  and lithium molybdate, Li2Mo04. The 

first two of these precipitated lead molybdate over a wide range of 

compositions and solution temperatures. Using Li
2
Mo0

4 
as solvent, a 

mixture of lead molybdate and the desired tungsten bronze phase was 

precipitated. However,, the results were inconsistent, as seen when an 

experiment was repeated, additional phases were present and the tungsten 

bronze phase absent. In order to obtain a more easily reproducible system 

the slow cooling technique with a non-volatile solvent was used. The 

solvent used was potassium carbonate and the tungsten bronze phase was 

precipitated. However, a pyrochlore phase was also present in the crystals 

and sometimes only this phase formed. The temperature and composition at 

which the pyrochlore phase formed could not be determined from the 

experimental results as the solution was cooled over a range of temperatures. 

Thus, there appeared to be two problems in the preparation of 

Pb
5
LaTi

3
N
b7030 from solution. One is the reaction of the component oxides 

with the solvent, and the other the phase change from tungsten bronze to 

pyrochlore structure. The first problem may be overcome by a series of 

trial and error experiments with possible solvents. The second may be 
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overcome by a study of the phase diagram of the Pb0-1,a203-Ti02  Nb205  

system." A protracted series of tedious experiments is, therefore, necessary 

before single crystals can be prepared. As this study was undertaken as a 

topic of secondary interested, extended work of this kind could not be 

undertaken and the investigation ended. 

5.8 Conclusion  

From the structural and dielectric evidence, the series divides 

into two parts, each possessing differing structure and properties. The 

lead rich part is ferroelectric and possesses a structure very like the 

orthorhombic tungsten bronze structure. There is no evidence for 

ferroelectricity in the lanthanum-rich part and the structure is not 

tungsten bronze. The phenomenon of two structural types in a series of 

solid solutions of varying composition has been previously observed by 

Subbarao (1960), who studied the systems Pb(Ta,Nb)206, (Pb,Ba)Nb206  and 

(Pb,Sr)Nb
2
0
6. 

In each case two different structural groups were found 

with structures similar to the end members. 
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CHAPTER VI  

6. 	'CONCLUSIONS 'AND 'FUTURE 'WORK  

6.1 - - The Growth of Single Crystals of Lead Tantalate  

The control of the growth of optical quality single crystals is the 

principal barrier to the development of new and improved non-linear optical 

materials. The high quality of crystals obtainable from high temperature 

solution growth makes this an attractive technique for the preparation of 

optical materials, but very little work of a fundamental nature has been 

directed to the study of either the properties of high temperature solutions 

or the mechanism of crystal growth by this technique. In the present work 

a systematic investigation of the properties of lead tantalate solutions has 

been made. It has been shown that the variables which determine the 

principal mechanisms in crystal growth can be measured, and in particular 

the thermobalance has been used effectively for the solubility and 

diffusivity measurements. Density, viscosity and heat capacity of the 

solution have been measured by conventional techniques. 

The theoretical model for estimating solubilities proposed by Cobb 

(1969) has been tested with the experimentally measured solubilities. Good 

agreement was obtained for lead tantalate dissolved in lead vanadate, 

Pb
2
V
2
0
7' 

but the theory had only a poor predictive value where there was 

interaction between solvent and solute as for solutions in bismuth borate 

and PbV206. 

The measurement of solution properties made possible the growth of 

single crystals of lead tantalate by controlled nucleation on a single seed. 

In this was a crystal 1x1x1 cm could he  grown.  However, the crystals  

were of very poor quality even when the optimum slow cooling programme was 

used. The crystal growth was found to be diffusion limited and this led to 

instability of the interface due to constitutional supersaturation. The 

effect of local heating of the interface by the liberated heat of crystallisation 
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was found to be negligible. It was deduced that the maximum size of good 

quality crystal that could be grown under diffusion limited conditions was 

1.0 x 0.3 x 0.3 cm. It was found that rotating the seed crystal marginally 

improved the quality of the grown crystal and it was deduced that higher 

rotation rates would further improve crystal quality. 

The crystal gorwth experiments were successful in producing 

crystals of good optical quality with dimensions 4 x 2 x 1 mm which were 

suitable for electro-optic measurement. 

6.2 The Measurement of the Transverse Linear Electro-Optic Effect in  

Lead Tantalate  

Lead tantalate possesses a large transverse electro-optic effect 

for light propagated in the [0017 direction and the field applied in the 

[010.7 direction, the half wave voltage-being 600V for a cube of material. 

-7 An approximate value of r22  = 7.2 x 10 cm V -1  and a measured value of 

r61 = 	.Zr x 10-9  cm V 1  were determined. Good agreement was found 

between this value of r
61 and that given theoretically by Kurtz (1967). 

Its low half wave voltage makes lead tantalate a promising material for 

device applications. A crystal of dimensions 1.2 x 0.3 x 0.3 cm, that is 

the largest that could be grown using the apparatus in this study, would 

possess a half wave voltage of 150V which may be generated in standard 

electronic circuits. 

6.3 Properties of Pyi2Nb8030  Type Materials  

The series of compounds based on Pb6Ti2Nb8030  was shown to possess 

tungsten bronze structures in either the orthorhombic or tetragonal form. 

The series exhibited a typical phenomenon of tungsten bronze solid solutions 

in dividing into two structural types, the lead rich being ferroelectric, 

and the lanthanum rich, non-ferroelectric. An adequate method of growing 
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single crystals was not found due to the high volatility of lead oxide, 

the reactive nature of the component oxides with common high temperature 

solvents and the formation of a pyrochlore phase at certain temperatures. 

FUTURE WORK  

6.4 The Growth of Lead Tantalate and its Non-Linear Optical Properties  

As lead tantalate is a good electro-optic material it may be 

expected to strongly exhibit other non-linear electro-optic phenomena. 

In particular, it should be a good source for second harmonic generation 

as it should possess a large coefficient of second harmonic generation 

and it should exhibit non-critical phase metching due to its tungsten 

bronze structure. A measurement of its S.H.G. coefficients should, 

therefore, be valuable. 

It is desirable to grow larger crystals of lead tantalate than 

those obtained in this study. A possible method is to 'pull' the 

crystal from high temperature solution as described by Elwell (1968), in 

the growth of nickle ferrite crystals. This method has the advantage 

that growth occurs in one direction. Thus, growth could be achieved in 

the COO 11 direction with only a small growth rate in directions normal to 

it. This corresponds to the normal growth, which is anisotropic for lead 

tantalate. The slow growth rates used would enhance the stability of the 

interface to constitutional supersaturation (Mullin, 1964). In addition, 

the rotation of the crystal necessary in this technique would increase the 

crystal quality as predicted in section 3.3. 
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—APPENDIX A 

THE DEFINITION OF DIMENSIONLESS NUMBERS  

Dimensionless numbers are used in the solution of problems where 

the fluid mechanical equations which define the system under study are so 

complex that direct analytical solution is impossible. The well known principle 

of similarity is used in the solution. In a geometrical problem, if there 

are n triangles which are similar, and if the lengths of sides a
l' 
 b1,  c

1 

of the first triangle and of the a sides of the other triangles are known, 

then the lengths of the b and c sides of all the others may be found by 

multiplying by the ratio of.alt/a 	By the same principle, if the fluid 
1.  

flow through two systems is similar, then if a relationship is true in one 

system it will be true in the other. In this way relationships between 

variables may be established experimentally for a simple system and then 

generalised for the solution of more complex problems. The two systems are 

similar if the dimensionless numbers specifying the systems are equal. 

The value of the application of this principle can be seen in the 

case of flow through an infinite tube of diameter L. The flow along the 

tube in the one dimension is characterised by the Navier Stokes equation: 

2u.  
x 	

V 	
x 	P 	40 -a -x 

at 	x ax 	x 	3 	 2 ax 
.... (Al) 

#41143144 
where p is the density of the fluid,10, the 	 viscosity, p the 

pressure at the point x and Vx  the velocity of flow. This equation cannot 

be solved analytically. For two systems to be similar they must exhibit 

geometrical, kinematic and dynamic similarity. Geometrical similarity 

exists if the surfaces in the two systems in contact with the fluid are 

similar, i.e. both infinite tubes or infinite plane surfaces. Kinematic 

similarity occurs if all combinations of products and ratios of lengths and 

distances in the Navier Stokes equation have the same proportionality 
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the equation are the same. That is, 

2 aVx  

pVx ax 
ax 

C3  y 
ax 

.... (A4) 

constants. Thus: 

aV 	 .2 
..V

m • 
V
x ax

x 
• 

C
1 L .... (A2) 

and 
a2V 	V

m x._ r  
"" 

ax
2' 	2 D..  .... (A3) 

Dynamic similarity occurs if the ratio of the different forces in 

C
1, 
 C2, C

3 are dimensionless constants found for one system. From (A2), 

(A3) and (A4) then, (v is the killAtua4c 

VmL . 	C C 
2 3 	

C. 
Cl 

.... (A5) 

C is known as the Reynolds number N
Re and any two systems with the same 

Reynolds number will have similar flows. Thus, a Reynolds number of 2300 

in any systems corresponds to the transition form lamellar to turbulent flow. 

This method may be applied to the problem of convective heat 

transfer, where the relevant equations are more complex than the Navier 

Stokes equation. The relevant equations are: 

.... (A6) d 	= -k
an  dA = 'h es dA 

av 	ay av 	. DV 

P  atZ 

	

Vx ax 	
Vy 
	a

z 
y 	ay y 

+ Vg 

ay az  

a
2
V 	a

2
V 

2 	2 	2 
z 	z 	 7 

"E' gpep 

y  DV
x 	3V z. = 0 

3x 	ay 	Dz 

.... (A7) 

.,.. (A8) 
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) DO 	80 	BO 	ao _ 	 12 o 0 ' pcp ta  + v. 
ax + vy 	+ vz 	— k 	 + 	+ . 2 	2 	2 	

.... (A9) 
ax 	ay 	Dz 

where dq is the heat flow across and element dA of surface with normal in 

direction n, k is the thermal conductivity of the fluid, h the coefficient 

of convective heat transfer, Os the temperature difference across the surface, 

Cp the heat capacity of the fluid, O the fluid temperature at the point 

x,y,z, 0 the coefficient of expansity, g the acceleration due to gravity and 

the other terms have been previously defined. 

Assuming that a similar geometry exists for two systems designated 

by subscripts 1 and 2, then if the systems are similar the following 

relations hold: 

x
2 
 = Ax

2'  
• y

2 
 = Ay2, z2  = Az L

2 
= AL

1 

t = 

	

2 	1 

	

.02 	
401, Os

2 
	40s1  

vx2  = v
xl 
 etc. 

g2  = gi  

P2 • "1 

0 2 • X13 

p2 	
41 

Al2 
Cp2 = e Cp

l  

k
2 

= Kk
l  

.... (A10) 

Rewriting (A7) for cases 1 and 2 

D zl 	v- 	zl 
D t1 	vx1Dx1  + vii 

 

2 	2 
a vz1 	a v

1 	D
2
vz1 + 1.. 	 2 	2 a  2 lDx

1 	°Y1 	xl 

.... (All) 
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3(ga X 

.... (A16) 

.... (A17) 

.... (A18) 

.... (A19) 

11 = 

tP = 

2 
 aQ 	

2 	. 2 

	

z2 	
av 	av

" hr 
 
z2 	z • 	z 

Dv "2 	.vz2 
and 	P2 Dt 

	 + v 	v 	 
x2 ax 	y2 Dx 	az2. 112 	2 	2 • 2 	2 	2 	 Dz 

aY2 

g2 521'2 02 

Now, substituting for x2  = vx2 = wv
zi  etc in Al2 

°Pl[ 	ax1 	X 	Dx 1 	ax1 	Dyi) 	
1 

X Dzi  
. l w 	zl 	zl 	z2 2 av  	av 	av 	aP  

tz
av  

2 	2 	2 

	] 

a  v.1
2 

a  vy1

2 	

a  v

z2  

 
EXagi  81  P 

ax
1 	axl 	az1 

(A13) and (All) must be identical and this only occurs if 

2 

(Al2) 

A13) 

aw. = 0 	 w 
 7  Ex 

= 
x 	 x2 	o .... (A14) 

Other relations may be found in the same way using equation (A9) 

(10 	1 ac  

X 	X
2 (A15) 

From,(A14) and (A15) the following relations hold 

K = 11c 
	 .... (A20) 

Equation (A16) yields 

p1L1
v
1 	

P
2
L
2
v
2 

A42 

As previously defined (A5) this is the Reynolds number. Hence, 

one requirement for similarity of heat flow is that both systems should 

possess the same Reynolds number. 
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2 	2 
vl 

Equation (A.18) yields 
Pl 

 n  . 	
P2v2  
P
2 

L 1  

that is, the ratios of kinetic energy to pressure must be constant in 

similar systems. 
pv 
— is called the Euler number and is of little P - 

significance in problems of free convection. 
tiv

1 
t
2
v
2 

Equation (A17) yields 

requirement for similarity. 

Equation (A19) yields 

2 3 g
1
a 1p1. L1.51 	g

2
13
2
p 
2 
 L
2
3 
 0
32 

 

2 	2 
Pi2 

L
1 	

L
2 

which is an obvious 

.... (A21) 

This is termed the Grashof number NGr, and is important because it is a 

measure of the driving force for convection,-i.e. gB.Oagainst the viscous 

forces apposing convection v = P/P. 

Equation (A20) yields 
p
1
Cp
1 	

p Cp 
2 2 

k
1 	

k2 
 

and the relation 114  is called the Prandtl number, Npr, and can also be k 

expressed as N.,,
rr 	a 

= 2)1- where a is the thermal diffusivity. The Prandtl 

number relates the thermal flow to the momentum flow. If the Prandtl 

number equals unity, then isotherms and streamlines are identical. 

A further relation may be derived from equation (A6) if 
hL

1 
hL

2 h
2 

= ih
1 

then one obtains 	i, that is 	. The 
k1 	k2 

dimensionless 
kL

is called the Nusselt number, NNu. The Nusselt number 

contains the coefficient of heat transfer by convection, h, which is the 

quantity that has to be determined for the solution of many heat flow 

problems. 

The heat flow problem has been reduced to three variables, i.e. 

the Prandtl, Grashof and Nusselt numbers, of which only two are independent. 
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Thus, N
Nu - 

	

	
(NGr' NPr ) where 4  is some power function of NGr 

and N
Pr
. 

The principle of similarity may also be applied to systems in 

which the concentration of a moving fluid solution varies in time. The 

equations of mass transfer are 

3m 	-D Dc 
at 	3n 

	

Dc v 3c v .3c v 3c 	
rc 	,2c  

and 	+ 	+ 	+ 	D 	 + 	+ 
ax 	ay 	az 	ax2 	2 	3

z
2) 

.... (A21) 

.... (A22) 

3c 4.  c 4.  ac 	 .... (A23) 
9x 3y 9x 

where c is the concentration at the point x, y, z and D, the coefficient of 

diffusion. These equations are exactly similar to equations (A6), (A8), (A9) and 

equation (A7) also applies to the mass transfer problem, except the term 

gOep is replaced by OAP where Ap is the change in density imposed by the 

concentration differences. Hence, it is possible to derive Prandtl, 

Grashof and Nusselt numbers for the mass transfer where the appropriate 

thermal variables are replaced by their mass equivalent. Thus, the Prandtl 

number becomes Npr  = -b- and is usually called the Schmidt number Nsc. The 

gApL
3 Lb 

	

Grashof number becomes 	and the Nusselt number 7-s- , where b is the 
112 

coefficient of mass transfer defined by 3m — = b(CS  -C o
) and is the thickness 

at  

of the mas$boundary layer, C
s 

and C
o 
 are'-the concentrations at the surface 

and bulk respectively. 

A further dimensionless number is obtained from equation (A22) in 

the following way. Dividing through by CoVL2, where Co is the bulk 

concentration, V and L a characteristic fluid characteristic fluid velocities 

and lengths, then (A22) becomes (A23) 

17 	DC 	
V 

3C 	, 9C 	D ( D
2
C 	a2C 	3

2
C 

x  	y 	" z aZ = VL 2 	2 	2 
9X 	DY 	DZ 

46 



where V 
 

x X = — 
V ' 	L 

C = / 	etc. 

VL  
The term -75- is dimensionless and is called the Peclet number, NPg 

This number determines the relative importance of fluid motion to pure 

diffusion in the mass transfer process. The thermal equivalent is VL 

where a= PCP  the thermal diffusivity, and measures the relative 

importance of convection to conduction in heat transfer. At large Pgclet 

numbers the fluid motion terms are dominant. 

Table Al summarises the principal dimensionless numbers for 

both heat and mass transfer systems. 

Dimensionless 
number 	Symbol 	Thermal 	Mass 

Reynolds 

Pgclet 

Prandtl 

Schmidt 

Grashof 

Nusselt 

For an 8 mole % 

N Re 

N
Pg 

N Fr 

NSc 

N
Gr 2 

N
Nu 

solution of lead 

VL 
v 
V 
a L 

— 
a 

g0 01/L3  

VL 
V 

DL D 

— 

g4L3 

v 	fv  2 

hL 	Lb 
 

tantalate at 1160°C. 

Table A2 lists the values of the relevant dimensionless number 

using the data derived in Chapter 2. 

Table A2 

Number 	Value 

N
Re 	

104 

Npe.  31.8 x 10
6 

N
Sc 	

3.06 x 103 

NPr 	
0.513 

NGr 
(Thermal) 	19 x 10

6 
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' .APPENDIX B 

'THE DERIVATION 'OF THE RELATIONSHIP 'BETWEEN THE - SOLUBILITY OF - A REFRACTORY 

OXIDE - AND .THE -TEMPERATURE OF SOLUTION 

The derivation of solubility follows from a consideration of 

figure B.1, in which a cycle of the states of the oxide is shown. Pure 

solid oxide is in equilibrium with the solution at temperature T °K, where 

N moles of oxide is the saturated concentration in solution at temperature 

T °K. To derive the solubility N moles of pure oxide are melted at 

temperature T with a free energy charge AGF  and then mixed with the solvent 

with a free energy charge AGs  = 0. 

By standard thermodynamics 

AGM  = RT in K = RT ln
a 	 (B1) 
o 

where K is the equilibrium constant, y the activity coefficient of the oxide 

in the solution and a
o 

is the activity of the oxide in the, pure molten state. 

This pure molten state is taken as the reference state for the free energy 

change and therefore, a
o 

= 1. 

If AG is known, then N can be found, but AGM  cannot be deduced 

from first principles. However, considering figure Bl, the total free 

energy change aroung the cycle must be zero. Therefore 

AG = -AGF 	 .... (B2) 

AGF may be derived by standard thermodynamics. 

AGF  = (AI) m T 	
T (ASM)T  .... (B3) 

where (411...
m
)
T 
 and (AS

M
)
T 

are the heat and entropy of mixing at the 

temperature T. If AH and AS are the heat and entropy of mixing at the 

melting point Tm and pCp is the difference in heat capacity between solid 

and liquid oxide, then 
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FIG. 	Bl. 



(AH
m)T. = AHm 

+ I 	ACp.dT 	..AHm  + Cp (T-Tm) 	....(B4) 
. T

m 

	

T 	AH

T
mm (ASm)T: = ASm  + 	À 4)  d = 	+ LCp In 

	

Tm 	
Tm  ....(B5) 

Substituting from B2, B3, B4 and B5 into equation Bl, then 

	

AHm 	Tm 	Tm log yN 

	

= RTm 	ACR2) 	- ) + ACp In ....(B6) 

If the solution is ideal y = 1 and 

	

AHm 	tCp 	T
m 

	

1°g N  = RT m 	)(T 
+ ACp In 

T
in 
T 

If the solution is regular then 

AHm 	Acp  ) 	
+ ACp In 

(Tm  ) 	T
m — Log N = RT

m 	R T -1 	RT 

where iH' is the heat of mixing and 	= RT In . 
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