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Abstract 

This thesis is a description of the theory of the 

extraction of a solute from a spherical liquid drop which 

is moving at terminal velocity through another fluid. 

Free convective effects are ignored and the flow field is 

assumed to be known. 

In Chapter 1 the problem is specified in detail. 

In Chapter 2 previously published work that is rele- 

vant to the present work is described. 

In Chapter 3 the qualitative aspects of the problem 

are considered and the wakes and boundary layers described. 

In Chapter 4 the quantitative aspects of the mass 

transfer inside the drop are described. 

In Chapter 5 the quantitative aspects of the mass 

transfer in the boundary layers are described. 

In Chapter 6 the rate of mass transfer from the drop 

is calculated. 

In Chapter 7 the experimental evidence relating to the 

theory is discussed and the results of the theory summarized. 
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NOTATION  

This notation list contains only symbols that are not 

defined on every occasion that they are used. 

a 	radius of drop 

A 	parameter in boundary layer solution. See page 98 

B 	parameter in boundary layer sol.tion. See page 98 

C 	order of magnitude of overall concentration in drop 

Cl 	order of magnitude of local concentration 

c' 	concentration, equal to mass of solute dissolved 

per unit volume of solution 

c 	normalised concentration. See page 17 

ci 	value of c inside drop 

co 	value of c outside drop 

average value of c on a stream surface. See 

page 68 

7k,j 	value of c when m = (k-1)Sm and i = (j-1)Si 

c* 	deviation of c from c 

derivative of c with respect to m 

ca 	first approximation to 7 

b 	defined by c = ca + Pe ".7b 

D 	coefficient of diffusion 

D1 	coefficient of diffusion inside drop 

Do 	coefficient of diffusion outside drop 



J 

J 

E equilibrium constant. Defined on page 16 

16 EV157; pb(co) 
F 

EAT]: + 115-0  

h boundary layer thickness 

H -1111mhqh), dq 

hmlhq,hA non-dimensionalised scale factors for m,q,X 

co-ordinate system. Defined in Appendix Two. 

t D1  non-dimensionalised time 

a2  

h h 
2 a h dq 
m 

- 

J' 	derivative of J with respect to 

Jk 	value of J when m = (k-1)6m 

subscript = 0 or 1 to indicate outside or inside of 

drop, respectively. 	Also used in discussion on 

th numerical calculation to indicate the j 	mesh 

point 

Ko 	= E co 

K1 	= cl  - A Y - B 

= 4 p2  (1 - p2)sin20 

EV57 -• Z.; na 
EVDT +• 115; 

2 EVUT A nb 



nc 
EvrITT + /IT°  

Pe 
	voa Peclet number 

D 

Peo 	Peclet number outside drop 

Pei 	Peclet number inside drop 

p 	non-dimensionalised distance from drop's centre 

a p = r 

p(z) 	= Q(Y) 

pb(z), pc(z) 	defined by 	p(z) = nb  pb(z) + nc  pc(z) 

11(Y) 	concentration profile in internal boundary layer 

for small values of X 

Q(Y) 	= Q(Y) - A Y - 

Q*(Y) 	= C1(Y) - A Y 

q 	= p4  cos40  co-ordinate orthogonal to m and A 
2p2  - 1 

Re 	= Ua Reynolds number 

r 	distance from drop's centre of mass 

p - 
1/7 

axial component of cylindrical co-ordinate system 

with origin at front stagnation point: 

= a - r cos() 

Sc 	= 	Schmidt number 

-9- 
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t 	time 

T 	order of magnitude of t 

U 	speed of fluid flow at infinity 

u 	= p2 

i ul,u2 	the two zeroes of u(1-u) - 4m , u1 > -- u2 

✓ fluid speed 

✓ velocity field 

vm 	component of v in direction of increasing m 

v
q 	component of v in direction of increasing q 

vr 	radial component of v 

ve 	component of v in direction of increasing 0 

vo 	fluid speed at meeting of drop's surface and 

equatorial plane 

w 	radial component of cylindrical co-ordinate system 

cos30  4.  X 	• - cos e 3 	3 
Xe 	value of X at the rear stagnation point: Xe = 3 
Y 	= y* sin20 

y* 	= y Pei  2  

- r - a 
non-dimensionalised distance from drop's 

surface 

• -Y 

MY; 

z' 	= —
YT 

 
21/X; 
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di 	step length in time direction for numerical 

calculation 

dm 	step length in m direction for numerical 

calculation 

A 	A2 = (1_2p2)2sin20 	(l_p2 )2cos20 

4) 	= 71 - 8 

X 	co-ordinate such that A = constant are planes 

through the axis of symmetry 

v 	kinematic viscosity 

ratio of circle's circumference to its diameter 

stream function such that: 

1 	22 , 	—1  22 vr = 	V8  = r2  sin 	ae 	r sin 8 3r 

angular co-ordinate, measured from upstream 

direction 

V 	vector differential operator, equal to 

3 , 3 , a where x,y,z are Cartesian co-ordinates. 
ax 	ay 	az 

v 2  differential operator, equal to 32  
axe 

a 

	

a2 	2  

	

aye 	az2  

where x,y,z are Cartesian co-ordinates 

erfc 	integral operator: erfc z =— exp( -x2  ) dx r-1 
IT  z 

ierfc 
	

integral operator: ierfc z = 	 erfc(x) dx 

exp 	exponential function 
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** 	 equivalence relation: a ** b means a is of the 

same order of magnitude as b 

The word "interior" refers to everything enclosed by the 

drop's surface, except the internal boundary layer-wake 

system. 



-13- 

CHAPTER 1 

A statement of the problem 

1. 	Introduction 

The purpose of this thesis is to examine the forced 

convective transfer of a solute from a steadily falling 

liquid drop. 	This work is intended to form a first stage 

in the understanding of this type of system. 	The situa- 

tions discussed will be idealised and will have little or 

no immediate application to industrial processes; this 

simplification is necessary because the complexity of the 

problem and the studies made of it so far are such as to 

require an investigation of the basic processes, before a 

more comprehensive theory can be evolved. 

The situation under consideration is that of a liquid 

drop moving at constant velocity through a second fluid 

(the two liquids being immiscible) whilst a solute that is 

initially at higher concentration inside the liquid drop 

than outside, transfers from the inside to the outside by 

a diffusion process. 	The drop's interior is assumed to be 

steadily circulating without turbulence, and free convection 

is assumed to be unimportant. 	Furthermore it is assumed 

that the Peclet number of the diffusion process is large - 



in the sense that the rate of mass transfer by convection 

in either solvent is much greater than the rate of mass 

transfer associated with the diffusion of solute molecules 

through the solvent. 	It is also assumed, at least in the 

sections dealing with the quantitative aspects of the pro-

cess, that the drop is spherical and that the motion takes 

place either at high Reynolds number or at low Reynolds 

number (these regimes will be made more precise later). 

The principal effect that the thesis will consider is 

that of the internal circulation, and it is with this in 

mind that these assumptions have been formulated. 	It is 

possible - in fact relatively easy - to form drops which 

have little or no internal motion, but these cases will not 

be considered here. 	This implies that there is no varia- 

tion in surface tension along the surface of the drop - 

such a variation might arise if, for example, a surface 

active material were present. 

For the purpose of considering these assumptions in 

greater detail it is convenient to divide them into two 

groups - firstly, those assumptions that relate to diffusion, 

and secondly, those assumptions that relate to the fluid 

motion. 



-15- 

2. 	Diffusion assumptions 

It is assumed that the diffusion of a solute in a 

solvent may be described by the equation: 

Dc 
at -v.vc' + Dv 2c' 

where c' is the concentration of the solute, defined by 

cl = mass of solute dissolved per unit volume of 

solution, 

t 	is the time, 

is the velocity of the fluid, 

and D, which is the diffusion coefficient, is a quantity 

which describes the rate of diffusion of the solute molecules 

through the solvent. 	D is assumed to be constant, in the 

sense that it does not depend on any of the variables in the 

equation. 	It is, however, dependent on the chemical con- 

stitution of the solution. 

D is defined by: 

rate of mass transfer through a surface by diffusion per 

unit area 

- D f  an  dS 

ac' TT, where 	is the gradient of concentration in the direction 

of the mass transfer and normal to the surface, 

dS is an element of the surface, 

and the integration is taken over the surface. 
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Equation (1), which will be referred to as the 

diffusion equation, gives a valid description of the 

transfer process, provided that the concentration is 

sufficiently small. 	In other words, this investigation 

is restricted to systems in which the solution is always 

uniformly sufficiently dilute. 	This assumption is a 

realistic one and does not excessively restrict the applica-

tion of the theory. 

It will also be necessary to postulate a relationship 

between the concentrations on either side of an interface 

separating two liquids. 	This interface is a three-

dimensional region but in this discussion it will be treated 

as though it were a surface, which is reasonable since its 

thickness is very small compared with the magnitudes of the 

other distances involved in the problem. 	It is assumed 

that if a solution A of concentration y l  is separated 

by an interface from a solution B of concentration Y2 , 

then the relationship between y i  and 12  is given by: 

Y1 r:  EY2 

where the equilibrium constant E is a parameter dependent 

upon the chemical nature of the solutions but not on their 

concentrations. 	If the two solutions were in equilibrium 

this is of course the relationship that would hold. 	The 

assumption that it holds if they are not in equilibrium is 

realistic provided, once again, that they are sufficiently 
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dilute. 

A final assumption concerning the interface is that it 

cannot contain any solute. 	Thus the flux of solute into 

one side of any part of the interface must equal the flux 

of solute out of the other side of the same part. 

It is convenient to normalise the concentration so 

that it has value one inside the drop initially, and value 

zero outside the drop initially. 	The normalised variables 

that will be used here are: 

C l  
- Eci  

O  

ci  - Eci 

inside the drop 

and 

el - 	i  c co 

	

	outside the drop 

ci - Eci 1 

where the superscript i indicates an initial value, the 

subscript 0 indicates the region outside the drop, and 

the subscript 1 indicates the region inside the drop. 

The relationship connecting the concentrations on 

either side of an interface is preserved by this normalisa-

tion, and c satisfies the same equation as c' , namely 

the diffusion equation (1) 

An important assumption deals with the comparative 

effectiveness of convection and molecular diffusion when 

considered as mass transfer processes. 	A solute moves in 
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one of two ways - either it is carried along by the motion 

of the solvent, which is convection; or it moves through 

the solvent in such a way as to reduce the concentration 

gradients, which is molecular diffusion. 	In most physi- 

cally realistic situations this latter process is much 

slower than the former. 

The two effects may be compared by considering the 

terms that represent them in the diffusion equation (1). 

Dc  ' There the rate of change of concentration at  is related 

to two quantities: -v.vc', which represents the convection, 

and Dv20 which represents the molecular diffusion. 

Consider, for example, a one-dimensional variation in 

concentration. 	Then it is clear that vc will have the 

' order of magnitude of 2a  where a is some characteristic 

length and C' is a characteristic concentration; and 

CI v2c will have the order of magnitude of 	. 
a2 

Thus the ratio: 

rate of change of concentration due to convection 

rate of change of concentration due to molecular diffusion 

is equal (in order of magnitude) to Ua 
D 

where U is a characteristic speed of the motion. 

U -Ia This fraction 	is called the Peclet number and will 

be denoted by Pe. 	In many systems it is much greater than 

one. 	Typical orders of magnitude off' the parameters U, a, 
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and D would be 10 2m/s, 10 3m, and 10-9  m2/s respec- 

tively. 	Thus a typical value for the Peclet number would 

be 104. 

In Chapter 5, for reasons of algebraic simplicity, the 

Peclet number will be re-defined, but this re-definition 

will involve merely a multiplicative constant of order one, 

and for the present order of magnitude calculations this 

distinction is of no importance. 

This investigation will use the principles of boundary 

layer theory and consequently will be restricted to cases 

where the Peclet number is much greater than one - there is 

no point at this stage in expressing more exactly the range 

of Peclet number for which the theory is valid: the effects 

of different values of the Peclet number will become apparent 

at later stages in the discussion. 

It is also assumed that only forced convection is 

important - that is the variations in density that occur are 

sufficiently small not to affect the fluid motion. 	And it 

is assumed that the flux of solute is always sufficiently 

small for it not to contribute significantly to the fluid 

velocity. 	An important, and well-known, result of these 

assumptions is that the motion is independent of the diffu-

sion (although the diffusion remains dependent on the fluid 

motion). 	This is to be expected since the only parameters 
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dependent on the fluid's properties to enter into the 

Navier-Stokes equations (which determine the fluid motion) 

are density and viscosity. 	Clearly if these parameters 

do not vary and if the boundary conditions are fixed the 

flow will be independent of the nature of the fluid. The 

assumption that these parameters only vary by a small 

amount is really implicit in the assumption that the con-

centration is uniformly small. This assumption has 

already been made in order to ensure the validity of the 

diffusion equation (1), so that no new type of restriction 

is being introduced, although there may of course be a 

quantitative difference in the permissible magnitude of 

the concentration. 

Finally, it should be mentioned that throughout this 

discussion it will be assumed that the diffusion coefficients 
in 

Do and DI  :al the two solvents are of the same order of 

magnitude. This restriction is not essential and may be 

removed without affecting the following analysis, provided 

that care is taken to distinguish between the outer and 

inner Peclet numbers, which would then be of different 

orders of magnitude (but, of course, both would still have 

to be of order greater than one). 	The basic characteris-

tics of the transfer process would be unchanged, so this 

complication has been avoided here. 
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3. 	Flow assumptions 

Because the flow does not depend on the diffusion it 

is possible to discuss the flow field before proceeding 

with the investigation of the mass transfer. 	It is not 

the purpose of this thesis to derive the flow in and around 

a liquid drop. 	Instead two analytic solutions for flows 

of this type will be assumed to be valid approximations to 

reality, one at low Reynolds number, the other at high 

Reynolds number, but both for spherical drops only, and 

both for steady state flows. 

The term "Reynolds number" as used here is intended 

more as an indication of the relative importance of 

inertial and viscous forces in the flow rather than as an 

exact quantity. 	Strictly speaking there should be two 

Reynolds numbers - one for the interior flow and the other 

for the exterior flow - but implicit in this discussion 

is the assumption that both are of the same order of magni-

tude, so no clarity is gained by distinguishing between 

the two fluids in this matter. 	The expression "high 

Reynolds number" should therefore be taken to mean that 

the inertial effects predominate over the viscous effects 

everywhere in the flow, and the expression "low Reynolds 

number" means that the viscous effects predominate. For 

the sake of numerical exactness, however, the Reynolds 
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numbers will be defined by 

Re. . 22 
v. 

where U is the speed of the fluid at infinity relative 

to the drop, 

a is the radius of the drop, 

v is the kinematic viscosity of the fluid, 

and the subscript j is zero in the drop exterior, 

and one in the drop interior. 

In the interests of algebraic simplicity the centre of 

mass of the drop is assumed to be stationary whilst the 

fluid at infinity is in motion. 	In the case of mmilAmmeaSi-eall 

motion this situation is dynamically equivalent to the 

more usual situation of a drop falling through a fluid 

which is at rest at infinity. 

For the low Reynolds number case (Re«1) it is 

assumed that the flow corresponds to that described by 

Hadamard (1), and Rybczynski (2). 	That is the flow inside 

the drop is given by the stream function 

U 
(a2r2 	1,4) 

11)].   sin20 
a2 	1.1(K + 1) 

where K is the ratio 41  

o 	viscosity of external fluid 

whilst the flow outside is given by 

viscosity of internal fluid 
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U 
11)0  = 	-4 (2r

2  - 3K+2+1 	
K 

K+1 r 
a3% 4 2 ar + 	— ) sin 29 

Here r and e are co-ordinates in a spherical polar 

co-ordinate system. 	r is the distance from the origin 

(the centre of mass of the drop) and e is the angle between 

the radius drawn from the origin to the given point and the 

axis of symmetry. 	0 = 0 corresponds to the upstream direc- 

tion. 	The third co-ordinate A does not enter into these 

equations because of the axial symmetry. This symmetry 

will be assumed throughout the discussion. 

For the same reason as that given by Proudman and 

Pearson (8) in their discussion on flow around a solid 

sphere at low Reynolds number - namely that the inertial 

terms in the equation of motion are not uniformly negligible 

compared to the viscous term - this solution will not be 

valid at large distances (of the order of it ) from the 

drop, but, since such large distances will not be encountered, 

this qualification is not of practical importance. 	In any 

case the velocity field given by this solution is a uni-

formly valid approximation - it is only when derivatives 

of the velocity are required that inaccuracies may occur. 

Speeds of drops or bubbles measured in experiments 

(e.g. Haberman and Morton (3)) agree well with the predic-

tions of Hadamard and Rybczynski's theory, although it does 

seem that sufficiently small drops always deviate from the 
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predicted value. 	This may well be due to nothing more 

than lack of internal circulation caused, in the manner 

described by Frumkin and Levich (4), by traces of surface 

active material being present, rather than to any actual 

inaccuracy in the theory. 	But even if this speculation 

is not correct the theory provides a good explanation of 

the motion of some liquid drops. 

At higher Reynolds numbers (Re»1) the flow may be 

approximated by Hill's spherical vortex (5) together with 

the potential flow around a sphere. 	Harper and Moore (6) 

have shown that this approximation is uniformly valid, the 
_1 

only discrepancies being small perturbations of or er URe 2_11  
4E.XCtft-  flair staput6dAfoio-s coke t4 ocLax 2,_ 3  

(or less) from this first approximation. 	They also demons- 

trate that there is reasonable agreement between the results 

of their theory and experimental work. 

The fact that the perturbations are of order URe-1  

enables the expression "high Reynolds number" to be made 

more precise. 	These stream functions will be valid approxi-

mations to the flow when the Reynolds number is sufficiently 

large for terms of order Re 1  to be negligible (to the 

required degree of accuracy) compared with terms of order 

one. 	Thus, neglecting terms of order Re 2  the flow 

inside the drop at high Reynolds number is described by: 

_ 3 U (a2r2  - r4) singe 
W 
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and the flow outside is described by 

3  = - 2 	 3  Ur2  (1 - 	) sin20 

It is important to realise that the two stream functions 

for the internal flows are merely constant multiples of 

one another. 	The shapes of the stream surfaces are 

therefore identical in the two cases. 	This not only 

simplifies the calculations but means that the transfer 

processes are virtually identical since, as will become 

apparent later, the diffusion is affected mainly by the 

shape of the stream surfaces and not by the actual speed 

of the motion. 

The flow pattern in the low Reynolds number case 

is illustrated in Figure 1. 	In the case of high Reynolds 

number there is a similar flow pattern outside the drop, 

and an identical flow pattern inside the drop. 	In both 

cases the flow is axi-symmetrical, and also symmetrical 

about the drop's equatorial plane. 	There are stagnation 

points at the drop's front and rear poles, and a circle of 

stagnation points at r =1 , e = 2  . 	This circle will 
2 

in future be referred to as the stagnation ring. 

The problem of determining an analytic expression for 

the flow at high Reynolds number in and around a non-

spherical drop does not seem to have been solved. Corres-

ponding to Hill's vortex in the spherical case there is a 
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Hill's spheroidal vortex which solves the problem for a 

spheroidal drop in inviscid flow. 	However the fortunate 

coincidence that simplifies the problem in the spherical 

case - namely that the tangential velocity of the inviscid 

flow is continuous at the interface - does not recur in 

the spheroidal problem. 	It seems likely, therefore, that 

a boundary layer is formed which significantly affects the 

flow so that Hill's spheroidal vortex, although it may be 

a valid approximation throughout much of the flow field, 

may not be a uniformly valid approximation. 	A solution 

of the transfer problem for the spheroidal case would be 

of debateable value if the solution were dependent on an 

uncertain expression for the flow field and so this problem 

will not be dealt with here. 

For a different reason the diffusion problem for a 

non-spherical drop at low Reynolds number will not be con- 

sidered. 	By using Proudman and Pearson's method Taylor 

and Acrivos (7) were able to establish an expression for 

the shape of a drop at small Reynolds number in the form 

of a perturbation expansion, together with a similar 

expression for the flow. 	Because these expressions are 

merely perturbation expansions - that is expansions in 

terms of the perturbation parameters, which are asymptoti-

cally valid as the parameters tend to zero - they do not 
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represent significant changes to the spherical case. 

That is to say, the principal effects remain those of the 

spherical case, and to a first approximation the results 

are not altered. 	This does not mean that these results 

are of no use, but no significant new effects will be 

introduced by considering this modified flow pattern. In 

a discussion like the present one that is concerned prin-

cipally with investigating the basic processes rather than 

the details, the inclusion of these non-spherical effects 

would add greatly to the algebraic complexity of the 

solution without contributing a corresponding increase in 

understanding. 

4. 	Analogy with vorticity transport problem 

Frequently there is at least a superficial resemblance 

between fluid flow and a mass transfer process in a fluid, 

with the Peclet number having a similar relationship to the 

diffusion as the Reynolds number has to the flow. 	Thus, 

whereas vorticity boundary layers and wakes may form in 

high Reynolds number flow so concentration boundary layers 

and wakes may form in high Peclet number transfer processes. 

This analogy between vorticity and concentration is some-

times of value because it may be that a solution is known 
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for a flow but is not known in the equivalent diffusion 

process. 	This is the case with the problem that is the 

subject of this thesis. 

In this case the equivalent flow situation is the 

flow in and around a liquid drop which is moving through 

another liquid at high Reynolds number. 	This flow has 

been studied by Harper and Moore (6) and, as was mentioned 

in the previous section, they found that the flow was per-

turbed by a small amount from Hill's spherical vortex and 

a system of vorticity boundary layers and wakes was formed. 

Clearly one might hope that a similar system of concentra-

tion boundary layers and wakes would occur in the problem 

of mass transfer from a liquid drop and, as will be 

demonstrated in a later chapter, this does in fact happen. 

Unfortunately the analogy is not as complete as one might 

have hoped, so that the detailed calculations in Harper 

and Moore's work cannot be used to solve the diffusion 

problem. 	In the flow case vorticity is generated at the 

surface of the drop. 	In the mass transfer case there are 

no sources of solute. 	The mass transfer situation is 

therefore intrinsically time dependent, the vorticity 

transfer is not. 

Of course this difference affects other aspects of the 

situation and the final result is that the two situations 
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are not as similar as might have been expected. 

This does not, however, alter the fact that the 

boundary layer - wake systems are very similar so that 

the flow solution provides an excellent guide to the 

solution of the diffusion problem. 
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CHAPTER 2 

Survey of Previous Work 

A large number of papers have been published on various 

aspects of mass transfer from drops, ranging from models for 

the mechanisms involved to experimental measurements. 	This 

section does not, however, provide a detailed historical 

survey of the research, nor even an account of these pub-

lished results, but is a discussion of the comparatively 

few published papers that have considered the same subject 

as this thesis (that is extraction of solute from a liquid 

drop) in a similar theoretical manner and used mathematical 

analysis to obtain a solution. 	A more comprehensive account 

of the work done in the field of transfer from bubbles and 

drops may be found in review papers by Calderbank (19) and 

by Brounshtein, Zheleznyak, and Fishbein (20). 

Before moving on to these theories, however, one paper 

that deals with an attempt to solve the mass transfer 

Problem by numerical means should be mentioned. 	This is 

the paper by Johns and Beckman (9). 	By assuming that the 

flow pattern is given by Hadamard's solution and by approxi-

mating the diffusion equation by a finite difference equation, 

they are able to obtain solutions for a range of Peclet 

number from 0 to 80, in the case when all the resistance 
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to diffusion is inside the drop. 	They provide concentra- 

tion profiles which demonstrate that the flow near the axis 

of the drop profoundly affects the concentration in this 

region by convecting fluid at low concentration from the 

rear of the drop - this is one of the few papers to empha- 

size that this effect occurs. 	One of the major purposes 

of this present thesis is to demonstrate that this axial 

convection has an important effect on the mass transfer. 

The other papers to be described here deal with the 

problem by a mathematical analysis approach. 	Three of 

these theories - two by Levich, Krylov, and Vorotilin 

(10, 11) and one by Ruckenstein (12) - consider that the 

behaviour of the boundary layer determines the mass trans-

fer, and consequently they attempt to solve the boundary 

layer equations. 	The first of the papers by Levich et al., 

and the paper by Ruckenstein both use essentially the same 

method - an approximation, valid in the concentration 

boundary layers, to the diffusion equation is found. 	The 

resulting problem has three independent variables (one in 

time, two in space - axial symmetry having been assumed) 

and one of them is reduced to the status of a parameter 

either by a Laplace transformation (Levich) or by a trans- 

formation of variables (Ruckenstein). 	This leaves a two- 

variable problem which can be reduced to the one-dimensional 
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heat equation and hence solved. 	Both approaches use 

Hadamard's flow in the low Reynolds number case and arrive 

at equivalent solutions. 	Ruckenstein also considers the 

high Reynolds number case, for which he uses Hill's 

spherical vortex. 

The second paper by Levich et al. (11) is restricted 

to the consideration of an interval of time in which the 

boundary layer is assumed to be in a steady state. 	The 

resulting equation is solved by the "Poincare-Lighthill-Kuo 

method" which involves expanding the dependent variable and 

one of the independent variables in the form of perturbation 

expansions in terms of a parameter. 	The remaining inde- 

pendent variable (again axial symmetry is assumed) is then 

expanded in such a way that the solutions obtained do not 

contain singularities that would lead to non-convergence. 

The solution obtained is of greater accuracy than that in 

the first paper (10) and the first order terms of the two 

solutions are in agreement. 

All three papers assume that the solute concentration 

in the drop's core (that is away from the boundary layer) 

is unchanged throughout the process - an assumption which, 

as Levich points out in (10), is not inconsistent with the 

assumption that diffusion occurs because the relaxation 

time of the boundary layer (that is the time taken for the 

concentration in the boundary layer to fall by roughly its 
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initial order of magnitude) is much shorter than the time 

taken for the concentration in the drop core to be similarly 

affected. 	It is therefore a reasonable assumption to 

ignore the change in the core's concentration, although 

this restricts the validity of the solutions to the initial 

stages of the diffusion process. 

A second point requiring emphasis is that all these 

solutions are obtained by assuming that the concentration 

inside the drop in the region near the front stagnation 

point is at all times equal to the initial concentration 

in the drop. 	In other words it is assumed that the 

internal boundary layer is, near the front stagnation point, 

constantly being fed with fresh solute. 	This assumption 

is likely to be valid only in a very brief period when the 

diffusion process has just commenced and it will become 

invalid when fluid from the boundary layer in the region 

of the rear stagnation point is swept up the axis of the 

drop by the drop's internal convection and carried to the 

region of the front stagnation point, and thence into the 

boundary layer. 	This fluid will be lacking in solute, 

since during its original passage through the boundary 

layer some of the solute will have diffused into the drop's 

exterior, and, as will be demonstrated in Chapter 3, this 

lack is not overcome during the passage of the fluid up the 
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axis of the drop. 	If this is so, then the paper by 

Ruckenstein (12) and one of the papers by Levich et al.(10) 

can be applicable only to a period of time shorter than the 

time that is required for fluid to be convected up the 

drop's axis, whilst the second paper by Levich et al. (11) 

can have no region of application at all, since, as the 

authors point out, the assumption of a steady state requires 

that the time be greater than the period of circulation of 

the drop, whilst the assumption of constant concentration 

in the interior near the front stagnation point requires 

that the time be less than the period of circulation of the 

drop. 	(Of course, these times are not meant to be exact, 

but merely indications of the order of magnitude of the times 

for which the theories may be valid.) 	This question of the 

time required for the boundary layer to attain a "steady 

state" will be examined in more detail in Chapter 3, where 

it will be shown that there is reason to suspect that 

Ruckenstein's result for the high Reynolds number case is 

not valid. 

The approach favoured in these papers contrasts with 

that used by Kronig and Brink (13). 	Instead of assuming 

that the behaviour of the boundary layer is the governing 

factor in determining the mass transfer Kronig and Brink 

assumed that the diffusion process in the interior of the 
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drop was of paramount importance. 	The problem that they 

consider is that of mass transfer when all the resistance 

to diffusion is inside the drop. 	By assuming that the 

concentration at any point inside the drop is a function 

only of the stream function (an assumption which can be 

justified for diffusion at high Peclet number, except in 

a thin region near the drop's surface, which is ignored 

by Kronig and Brink) they are able to reduce the problem 

to one in two independent variables - one in time and one 

in space. 	The resulting differential equation is then 

solved by separation of variables, the Raleigh-Ritz method 

being used to solve one of the equations because its 

complexity prohibits an analytic solution. 

It is not clear whether Kronig and Brink were aware 

of the importance of convection along the axis of the drop 

but the co-ordinate system used is such as to give the 

central axis the same co-ordinate value as the drop's 

surface. 	Consequently the condition on the concentration 

that is imposed at the drop's surface is automatically 

imposed also at the drop's axis and this has the effect of 

implying the presence of an internal wake of zero concentra- 

tion. 	It is also worth noting that instead of applying a 

boundary condition at the drop's stagnation ring, Kronig 

and Brink make the assumption that the concentration at a 
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given time may be approximated by a quadratic function of 

the stream function. 	An assumption of this type - namely 

that a polynomial approximation is possible - is usual in 

the Raleigh-Ritz method. 

This paper by Kronig and Brink is probably the best 

known theoretical treatment of the problem and several 

attempts have been made to obtain experimental verification 

of their results. 	These will be discussed further in the 

final chapter of this thesis (Chapter 7). 

The results given in Kronig and Brink's original paper 

have been extended by finding higher eigenvalues and 

functions. 	This work was done by L. van den Brandeler and 

the results are given in a paper by Heertjes, Holve, and 

Taisma (14). 
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CHAPTER 3 

The boundary layer and wake system 

The purpose of this chapter is to discuss in quali-

tative terms the process of extraction of a solute from 

a liquid drop falling through another liquid. 

1. 	Initial conditions  

One of the more important distinctions to be made is 

that between the initial period, in which the drop is 

accelerating or decelerating and the motion is unsteady, 

and the ensuing period in which the drop is moving with a 

steady terminal velocity. 	In the latter period the drop 

motion is well understood (at least for a spherical drop 

in the extremes of high and low Reynolds number) and it 

is this period that this discussion will mainly consider. 

Some comment on the initial period is, however, necessary, 

if for no other reason than to ensure that the initial con-

ditions for extraction from the drop are physically 

reasonable. 

Discussions on diffusion from falling bodies sometimes 

begin by assuming that the body is moving at terminal 

velocity through a liquid when the diffusion process starts. 
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Obviously this picture does not correspond exactly to 

reality for, no matter how short the time that the body 

takes to assume its terminal velocity, the diffusion 

process will already have produced some movement of 

solute into the bulk fluid. 	But if this time is suffi- 

ciently small it is clear that the penetration distance 

will also be small and, in this case, the description 

given above may suffice to give an understanding of the 

subsequent events. 	It is therefore useful to estimate 

the distance that the solute will penetrate whilst the 

drop is attaining its terminal velocity. 

The flow will be governed by the Navier-Stokes 

equation of motion, which is: 

aV 
Tt" v.Vv = - Vp + v v2v  

where P is the fluid density, 

p is the pressure, 

and v is the kinematic viscosity. 

In the case of a drop moving at small Reynolds number 

(i.e. much less than one) the inertial terms in the equation 

of motion may be neglected, leaving: 

av _ 
at — vv 2v 

So that, taking U to be a characteristic speed (the 
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terminal velocity), a a characteristic length of the 

motion (the body's radius), and T to be the time taken 

to attain the terminal velocity 

** v 
T 	a2  

and therefore 

a2  
T ** 

Here and elsewhere in this thesis the symbol ** is used 

to indicate that the quantities on each side of it are of 

the same order of magnitude. 	To the degree of accuracy 

required in this type of calculation the derivatives may 

be estimated by considering the order of magnitude of the 

variation in the dependent variable as the independent 

variable changes. 	Thus the derivative 
et  is approximated 

2 
111 	

9  , 
by 	, and the derivative 	- by -- . 

ax2 	a2 

The diffusion process is described by: 

ac 
at 
	v.Vc = DV 2 c 

so that the effect of molecular diffusion (as opposed to 

convection, which does not aid the penetration but merely 

carries the solute approximately parallel to the drop's 

surface) is described in order of magnitude terms by: 

C' ** DC' 

T' 	d2 
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where C represents the change in concentration in time 

Thus in time T the diffusion effect shc•uld penetrate 

a distance d given by 

/Daz  a.Sc 

where Sc is the Schmidt number, defined by 

Sc v - 	. 
Thus the effects occurrinduring the initial period when 

the drop has not attained its terminal velocity will be 

negligible provided that only distances from the body's 

surface greater than a.Sc 	are considered. 

In fact much of the future discussion will be concerned 

with concentration boundary layers whose thicknesses are of 

the order a.Pe 	These will be substantially unaffected 

provided that 

a.Pe- >> a.Sc 1  

But this is equivalent to 

Re « 1 , 

which is always true for the low Reynolds number regime. 

These boundary layers will not therefore be significantly 

affected in the initial period. 

For high Reynolds number the result of this typ of 
d; 

estimate, is not so encouraging. 	In this case the 
Voft-i 	u"to 	u.aco.;04- htfoti.43. 	crt 	t-ck 	eta-ok 

so treat 



The time taken for the drop to reach terminal velocity is 

al 1 therefore of the order of 	. 	In this time the diffusion 

effect will penetrate a distance d , given by: 

a.Sc. d ** (D§)2  
Muck 14:1vcef 14..0,v% 

and this is the oamc rdor ac the thickness of the boundary 

layer £J nr JOINtALL Small" ALA a 

The drop interior away from the boundary layer will 

not therefore be directly affected, but the effects of the 

initial period will be significant in the boundary layer. 

For this reason Ruckenstein (12) may be mistaken when, in 

his description of the time dependent boundary layer round 

a drop, he uses the condition of no penetration as an 

initial condition for the high Reynolds number problem. 

2. 	The Boundary Layers 

Whatever the value of the Reynolds number, concentra-

tion boundary layers will form both on the inside and on 

the outside of the surface of the drop. 	These layers 

represent the regions in which the molecular diffusion has 

an effect on the concentration comparable to that of the 

convection. 

The interface is a surface at which there is a sudden 
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change in the properties of the fluid - in particular there 

is a sudden change in the diffusion coefficient, and this 

affects the concentration field. 	The direct effect does 

not penetrate a large distance from the interface: as a 

parcel of fluid moves it is in contact with the interface 

for only a short time of order T , say, and in this time 

the parcel can only be affected to a depth h say. 	This 

depth can be determined by considering the rate of change 

of concentration due to molecular diffusion as given by the 

diffusion equation. 	In order of magnitude terms: 

C' ** DC' 
T 
	

h2  

However, the speed of a particle moving down the sur- 

face of the drop is of the order of the characteristic 

speed of the fluid U , and the length of the drop's surface 

is of the order of the drop's radius a 	so that such a 

particle is in contact with the surface of the drop for a 

time of order t and in that time the effect can only 

penetrate a distance h where 

h ** 	= a.Pe . 

This, then, is the thickness of the boundary layers. 	Since 

the Peclet number is very large the layers are clearly very 

thin. 

This applies to both the internal and the external 
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boundary layer. 	Just as there are two Reynolds numbers so 

there are two Peclet numbers - one for the external fluid, 

and one for the internal fluid - but for the purpose of this 

order of magnitude calculation there is no point in distin-

guishing between them. 

3. 	Wakes 

The fluid in these concentration boundary layers will 

participate in the general motion round the drop. 	When it 

reaches the neighbourhood of the rear stagnation point the 

fluid outside the drop turns away from the drop surface to 

form a wake. 	Similarly, the fluid in the inside boundary 

layer turns away from the drop surface and forms an 

"internal wake". 	The fluid in this wake moves up the central 

axis of the drop until, in the neighbourhood of the front 

stagnation point, it merges back into the inside boundary 

layer. 	This system of boundary layers and wakes is pictured 

in Figure 2. 	It should be emphasized that the words 

"boundary layer" and "wake" as used here refer to properties 

of the concentration field, and not to properties of the 

flow (although, in the high Reynolds number case, there will 

also be vorticity boundary layers and their associated 

wakes). 

It is possible to estimate the thickness of these 



concentration wakes by considering the flow, at least in 

the two cases of high Reynolds number and low Reynolds 

number when the flow is known. 	In either case, as was 

explained in Chapter 1 the stream function inside the drop 

is of the form 

	

2 	r2 o r  (1 - --) sine© 

	

2 a2 	a2  

where vo is the flow speed on the drop's surface, at the 

equator. 	The boundary layer has been shown to be of 
_1 	 -1 thickness a.Pe 2  and, on substituting a(1 - Pe ) for 

r in the equation for the stream function (2), it is clear 

that the stream surface that bounds the boundary layer is 

given by 

*3. ** Voa2  Pe 
2  

Substituting this value for *1 in the equation for the 

stream function and changing to a cylindrical polar co-

ordinate system, with w as the radial co-ordinate (measured 

from the drop's axis) and s the axial co-ordinate (Treasured 

from the rear stagnation point towards the drop's centre), 

results in: 

vo a2 Pe 
2 Vn  2 ** 

2 w  (1 	w2 + (a - s)2)  
a2 

Solving this for w gives the distance of the stream surface 

from the axis. 	When s is of the order of a the smaller 

solution for w is given by: 
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w ** a.Pc4 

Thus the stream surface that bounds the boundary layer is 

at a distance a.Pe 4  from the drop's axis at its closest 

approach. 

But the internal wake is formed of the fluid that has 

flowed from the boundary layer and it will therefore be 

bounded by the same stream surface as bounded the boundary 

layer. 	It has just been shown that this stream surface 

is at a distance a.Pe l  from the drop's axis. 	Consequently 

the internal wake has thickness a.Pc 4  

A similar calculation demonstrates that the external 

wake also has thickness a.Pe 4  . 

The two wakes, therefore are much thicker than the two 

boundary layers. 

To summarize: boundary layers of thickness a.Pe-1  

are formed on both the inside and the outside surface of the 

drop. 	In the region of the rear stagnation point these 

merge into an internal and external wake respectively. Both 
_1 

these wakes arc of thickness a.Pe 	. 	The internal wake 

lies along the central axis of the drop and rejoins the 

internal boundary layer in the region of the front stagna-

tion point. 
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4. 	Relative diffusion rates 

The relative thicknesses of the wakes and boundary 

layers is of importance in obtaining a qualitative under-

standing of the diffusion process because their effect is 

to determine the relative rates of the mass transfer from 

one stream surface to another in the different regions. 

Consider a flow system which has two regions A and 

B . 	Suppose that the fluid flows from A into B and 

that as it moves from one region to the other the stream 

surfaces move further apart - in other words any two stream 

surfaces are separated by a greater distance in region B 

than separates the same stream surfaces in region A . 

Suppose also there is a variation, from one stream surface 

to another, in the concentration of some solute, and that 

the flow is sufficiently fast for a fluid particle to be 

carried through the system in such a short time that mole-

cular diffusion is not able to greatly change its concentra- 

tion (i.e. the Peclet number is large). 	Now, because the 

stream surfaces have different concentrations a diffusion 

process will occur in region A . 	As the fluid flows from 

A into B the stream surfaces approximately maintain their 

original concentrations (because of the high Peclet number) 

but they move further apart, causing the concentration 

gradient to fall. 	Since the rate of the diffusion process 
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falls when the gradient falls it follows that the rate of 

diffusion from one stream surface to another is smaller 

in B than it is in A . 

The essential point here is that in regions in which 

the stream surfaces are relatively close together diffusion 

between the stream surfaces is much faster than in regions 

where the stream surfaces are relatively far apart. 	Now 

this situation is exactly that met when the fluid in the 

boundary layer moves into either of the two wakes. 	In 

the boundary layer the change in concentration from its 

internal value to its external value takes place over a 

distance of order a.Pe-1  , whereas in the wakes the con-

centration change takes place over a distance a.Pe-4  , 

which is an order of magnitude larger (provided that the 

Peclet number is sufficiently large) so that the wakes are 

a much less effective system for mass transfer. 	This has 

an important consequence when the case of the internal 

wake is considered. 	The thinness of the boundary layer 

enables the fluid in it to significantly alter its concen-

tration in its passage round the inside of the drop's surface, 

and it would be expected that, since the wake is so much 

thicker, fluid in the wake could travel a similar distance 

without its concentration being significantly changed. Now, 

because the distance along the drop's axis is of the same 
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order of magnitude as the semi-circumference of the drop 

this means that when the internal wake flows along the 

central axis and back into the inside boundary layer in 

the region of the front stagnation point its concentration 

is relatively unaltered. 	Thus the concentration of a 

particle which is part of the boundary layer-wake system is 

the same when it reaches the region of the front stagnation 

point as it was when it left the region of the rear stagna-

tion point in spite of having moved along the central axis 

of the drop in the internal wake. 

In other words if the concentration in the region of 

the rear stagnation point is given as a function of the 

stream function then the concentration in the region of the 

front stagnation point will, to a first approximation, be 

the same function of the stream function. 

It is clear that some attention should be paid to the 

length of time that the particle spends in the internal 

wake system, for if a fluid particle spends a relatively 

long time in a region in which the stream surfaces are far 

apart its concentration may alter by an amount comparable 

with that of a particle which has spent a relatively short 

time in a region where the stream surfaces are relatively 

close together. 	This is of particular importance in the 

boundary layer-wake system because the thinness of the 
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regions involved means that flow very close to the stagna-

tion points must be considered, and it is therefore necessary 

to eliminate the possibility that fluid lingers in the wake 

for sufficient time for diffusion from one stream surface 

to another to significantly alter the concentration profile. 

The time for a particle to make the journey through 

the internal wake may be estimated by considering the stream 

function. 	Using the cylindrical polar co-ordinate system 

that was introduced earlier in this chapter (namely, with 

w as radial co-ordinate, measured from the drop's axis, 

and s as axial co-ordinate measured from the rear stagna- 

tion point towards the drop's centre) the stream function is_ 

*1 = 	w2  (1 	w2 + (a - s)2
)  2 	a2 

For small s and w (i.e. in the region of the rear 

stagnation point) this is approximately: 

2 S vo w a 

Thus the speed in the s direction is 

1 Ai vs = w 9w 

= 2 vo a  1  , approximately. 

i.e. 

ds = 2v  dt 	o a 

r.  
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So 	log a = 2v0  a 

s changes from order a.Pe 1  in the boundary layer to 

order a in the internal wake so the time T for a particle 

to cover this distance is given by 

2v 	** log 1 - log Pe-1 

i.e. 	T ** 2  log Pe 

since vo and U are at the same order of magnitude. 

The particle will of course take a similar length of time 

to move through the region near the front stagnation point. 

The time taken in moving along the central axis from the 

region of the rear stagnation point to the region of the 

front stagnation point is of order f since this distance 

is of order a and in this region the flow speed will be 

of the order of the characteristic velocity of the flow, 

that is U. 	For large Peclet number this time will be 

smaller than the time spent in the stagnation regions so 

that the order of magnitude of the time spent in moving 

through the central wake is determined by the length of 

stay in the stagnation regions. 

It is now possible to examine more closely the idea 

that the concentration of a particle is not significantly 

altered during its passage through the oentral wake. 

The width of the wake is a.Pe 4  and its concentration 
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profile can only be altered by molecular diffusion from 

one stream surface to another. 	The rate of change of 

concentration due to diffusion is given by: 

ac = Dv2c at 

so that the time scale T' for diffusion (that is the 

time taken for the concentration to fall by its own order 

of magnitude) is given by: 

i.e. 

C' 

T' 

T' 

* * 

* * 

DC'  

(a.Pe-4)2  

a2Pe
- 

D 

Pe A  

The condition that the concentration should not be signi-

ficantly altered is that a particle should be convected up 

the wake in a much smaller time than the time scale of the 

diffusion, 

i.e. 	T « T' 

i.e. 	
Ulog Pe <  2Pe  

which is always true for sufficiently large Peclet number. 

It is therefore safe to assume that, in the case of high 

Peclet number, solute is convected through the internal 

wake of the drop with negligible diffusion. 
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The external wake has the same thickness as the 

internal one and so the time scale for diffusion in it is 

U 
1 also given by T  Pe . 	In that time a fluid particle 

will move a distance a.Pel  so this wake therefore has a 

length of the order of a.Pel  . 	Thus the drop has a very 

thin concentration wake stretching behind it for a distance 

a.Pe2  . 	It is from this wake that the extracted solute 

finally moves into the bulk fluid. 

Having described the boundary layer-wake system it is 

now possible to describe, in general terms, the mechanisms 

of the transport process. 	The essential point to realise 

is that the inner boundary layer forms an extremely effec-

tive mechanism for transferring solute to the surface and 

hence to the external boundary layer. 	The timescale for 
h2 

the diffusion process in a boundary layer is D= —F 
a2  

Pe  -1 

 
On the other hand material can only be transferred U 

into the internal boundary layer from the interior of the 

drop (here and in following use the word "interior" refers 

to everything enclosed by the drop's surface, excepting the 

internal boundary layer-wake system), and in this interior 

the gradients of concentration are of the order of -g (since 
a 

the concentration falls from a value of order C to zero 

in a distance of order a , where C is the order of magni-

tude of the concentration at the stagnation ring), so it 
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follows that this diffusion process has the time scale 

U Pe , calculated in the same manner as the diffusion 

time scale in the wake. 	Thus the boundary layer is effi-

cient in transferring solute to the exterior of the drop, 

but the interior is relatively inefficient in transferring 

solute to the internal boundary layer-wake system. 	The 

result of this is that in the initial stage the solute in 

the boundary layer is transferred to the outside of the drop 

and, since the rate of transfer from the interior is far 

too small to replenish this loss, the concentration in the 

boundary layer-wake falls to a low value. 	The internal 

wake also has a low concentration because it consists of 

fluid which has flowed through the boundary layer. 	This 

initial stage lasts only as long as it takes for the 

material to be transferred out of the boundary layer-wake 

II
system - that is for a time of order u , which is the time 

taken fcr the drop to move (relative to the fluid at infinity) 

through a distance equal to its own radius. 

The next stage of the process is one in which solute 

is slowly transferred from the interior to the boundary 

layer, and from there transferred to the exterior. 	During 

this stage the governing process is the transference of 

solute within the interior, and the effect of the boundary 

layer is of minor importance. 	The time scale of the overall 
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process is therefore given by the time scale of diffusion 

a2  in the interior, and this is 1T  . 

The internal wake plays practically no part in the 

transfer. 	Transfer into it from the interior occurs in 

the same manner as transfer into the internal boundary 

layer, but its surface area is too small (it is of order 

a2Pe-4  , compared with the boundary layer's area of order 

a2  ) for any significant quantity of solute to be involved. 

And, as previously described, the wake is too thick for 

its own structure to be significantly altered. 

The role of the external boundary layer is simply to 

transfer the solute from the drop's surface to the external 

wake. 	This boundary layer is also an effective mechanism 

for the transfer and can remove the solute from the surface 

at a rate comparable with that with which it is transferred 

from the internal boundary layer. 	There is no transfer 

from the external boundary layer directly to the continuous 

phase: the external boundary layer is, by definition, the 

only part of the bulk fluid upstream of the wake to contain 

any solute that has been extracted from the drop. 

Finally, it is possible to estimate the magnitude of 

the concentration of solute in the boundary layer-wake 

system in the second stage of the process by considering 

the mass fluxes into and out of the system. 
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skleour., 
The mass flux through aourface is given by the integral: 

-  ID an  . dS 
where dS is an element of

f 
 surface, 

Do 
is the gradient of concentration in a direction an 

normal to the surface, 

and the integral is taken over the surface. 

The concentration gradient in the interior is of order 

and, because the boundary layer is very thin and the 

surface area of the internal wake is very small, the area 

of the "surface" dividing the interior from the boundary 

layer-wake does not differ significantly from the area of 

the drop's surface, which is of order a2  . 	Consequently 

the order of magnitude of the mass flux from the interior 

into the internal boundary layer-wake system is of order 

D..a2  

The concentration gradient in the boundary layer is of 

C' order Tr  , where C' is a characteristic concentration 

for the boundary layer. 	Thus the mass flux from the 

internal boundary layer to the exterior is of order 

CI D'—h .a2 

There being no build up of solute in the boundary layer 

these two fluxes must be equal, so: 
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C' ** C 

C.Pe- 

The boundary layer-wake system therefore has a concentration 

which is much less than the concentration of the interior, 

and in fact is almost zero. 

The concentration in the external boundary layer will 

have the same order of magnitude if it is assumed that the 

equilibrium constant is of order one. 

It is worth emphasising that this result means that 
S cfaciiklk of 

there can be no 	• concentration in the boundary 

layer. 	The interior and the boundary layer merge smoothly 

into one another and the gradient of concentration is of 

order 	in both regions. 

5. Remarks 

Calculations of the type used in this chapter are not, 

of course, intended to be anything more than approximate 

and, indeed, for a variety of reasons, they can sometimes 

be completely inaccurate. 	But they can provide a basis 

for more detailed investigations - which is the reason they 

are presented here - and their results should not be ignored 

without justification. 	Of particular importance is the 

result that solute is carried up the internal wake without 
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significant diffusion. 	As was mentioned in Chapter 2 

this contradicts one of the assumptions made by Levich et 

al. (10, 11) and by Ruckenstein (12). 	The assumption 

made by these authors (namely that the internal boundary 

layer is constantly fed with fresh solution in the region 

of the front stagnation point) should therefore produce 

an inaccurate picture because it implies that the highly 

efficient boundary layer transfer is the rate-governing 

process, instead of the much slower interior transfer 

that the present theory emphasizes. 
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CHAPTER 4 

Diffusion in the Interior 

This chapter describes a way in which a first 

approximation to the concentration and the mass transfer 

may be derived. 

In their paper (13) Kronig and Brink consider the 

problem of extraction from a spherical liquid drop falling 

in Hadamard-type flow, when all the resistance to diffusion 

is inside the drop. 	They ignore the possibility of boun-

dary layers being present and they do not consider the 

internal wake. 	For these reasons their calculations might 

be expected to be inaccurate, but in fact this is not so. 

The reason for this is apparent from the previous chapter 

- the fact that diffusion in the interior is the rate-

governing process means that a first approximation to the 

concentration field may be found by considering only what 

happens in the interior. 	Since the interior is bounded 

by a thin boundary layer, whose concentration is almost in 

equilibrium with that of the exterior, only a small error 

is caused by assuming that the interior region stretches 

as far as the drop's surface. 	A complication of course 

arises because of the internal wake, since this means that 
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the concentration near the central axis is in equilibrium 

with the exterior (to this degree of approximation). 	No 

error is however introduced into Kronig and Brink's solu-

tion by this fact because the co-ordinate system that they 

use is such that the central axis is treated as part of 

the drop's surface as far as imposing boundary conditions 

is concerned. 	In fact the only cause of inaccuracy in 

Kronig and Brink's work (apart from the inevitable inaccura-

cies of the numerical work, which was done without the aid 

of a computer) was the use of an insufficiently precise 

boundary condition at the drop's stagnation ring. 

In this chapter I wish to describe a way in which the 

problem of diffusion in the interior may be solved. 	Much 

of this work closely parallels that done by Kronig and 

Brink. 

Essentially the problem is to solve the diffusion 

equation: 

3c 
+ at v.Vc = Dv2c 

Since the situation is axi-symmetric this is a partial 

differential equation with three independent variables - 

two in space, and one in time. 	However, as will be shown, 

by making use of the properties of mass transfer at high 

Peclet number, it is possible to eliminate one of the space 

variables, whereupon the equation reduces to a recognisable 



type that may be solved by fairly simple numerical means. 

The idea behind this approach may perhaps best be 

grasped by considering a hollow circular cylinder in which 

a fluid is flowing in such a way that the stream surfaces 

are concentric circular cylinders - Figure 3a. 	Suppose 

that initially there is a non-constant distribution of 

concentration c(10 such that the concentration c at a 

point is a function only of the stream function tp which 

defines the stream surface on which the point lies. 

Clearly, as time progresses a transfer process will occur 

but, because of the symmetry of the situation, the concen-

tration remains a function only of the stream function and 

time - that is, no variation in concentration between 

different points on the same stream surface can arise. 

But now consider a situation in which the stream 

surfaces are eccentric circular cylinders - Figure 3b. 

In the region AB the stream surfaces arc closer together 

than in the region AC . 	The gradient of concentration 

is therefore higher in the region AB than in the region 

AC so that diffusion here is more rapid. 	This will set 

up variations in concentration between different points on 

the same stream surface. 	Thus, at any time after the 

initial instant the concentration is a function of time, 

of the stream function, and of position on a stream surface.  
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If q is the co-ordinate orthogonal to the stream function 

i then 

c = c(q, t) 

However, this dependence on q can be shown to be very 

weak when the Peclet number is large. 	Any variation in 

concentration from one point on a stream surface to another 

must be the result of the particles at these points having 

been in different concentration fields at some time. 	Now 

if e is the distance AC and b is the distance AB 

(both of the same order of magnitude) then the time scales 

of the diffusion process in these regions are of the order 

b2  and -5- respectively. 	Suppose U is a characteristic 

speed of the motion and s' is the circumference of a 

stream surface (and of the same order of magnitude as b 

and e), then a particle moves from the region AC to the 

' s region AB in time of order 71-. . 	In this time the con- 

s ' DC 
centration field will not have altered much (by about -- --

U e2  
s' DC or 	, both of which are small compared with C, 
U b2  

provided that the Peclet number - defined by either 

Ub - is much greater than one), nor will the particle's 

concentration have changed greatly (again by about s' DC  

DC ). or s' 	But it is this change which causes the varia- 
U b2  

tion in concentration. 	The variation brought about in time 

e2 
D 

Ue D or 

U ea 
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U7 	 s' DC 77  is therefore of the order of 	or !1- DC , and 

	

U e2 	U b2  

both these are small compared with C. 

Even so a variation comparable to C could be built 
2  
D up (since the diffusion process goes on for time 	) if 

one particle were continuously in a privileged position -

but this is not so: the particles quickly rotate through 

the different parts of the flow field and no one particle 

receives greatly different treatment from its fellows on 

that particular stream surface. 

This illustrative situation is similar to the situa- 

tion inside a liquid drop. 	In terms of the example the 

distances which correspond to b and e are of the same 

order of magnitude as the drop radius a. 	The circumfer- 

ence s' is also of this order. 	Thus the variation in 

concentration on a stream surface is of order a DC  
U a2  

which is equal to C.Pe-1  . 
Thus if c (v, t) is, in some sense (to be made more 

precise later), the average concentration of a stream surface, 

then the concentration at any point may be represented by 

c(q, v, t) 	= E(v, t) + Pe-i.c*(q, V, t) 

where c and c* are both of order one. 

(Here it is assumed that the situation is axi-symmetric so 

that there is no dependence on the co-ordinate X ). 

Thus for high Peclet number the dependence of the con- 

centration on the co-ordinate q may be neglected. 
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This argument is not valid if a stream surface passes 

near a stagnation point, for then the flow speed can no 

longer be represented by the characteristic speed U , and 

the flow may be so slow that a significant change in con-

centration could occur as a particle passes through this 

region. 	There are two types of stagnation point in a 

liquid drop - the stagnation points at the poles, and the 

ring of stagnation points in the drop's equatorial plane. 

Consider firstly the stagnation ring. 	Here the speed 

tends to zero, but the circumference of the stream surface 

tends to zero as well and, as might have been hoped, the 

time taken for a particle to make one circuit is substan- 

tially the same as on a normal stream surface. 	The rest 

of the argument is not affected by the slowness of the 

flow so the approximation remains valid. To be more 

precise, the time taken for a particle to go once round 

the stream surface represented by ip = constant, is: 

ds 
v 

where ds is an element of length of the particle's path 

and the integral is taken round the stream surface, on the 

path of the particle. 

This integral is evaluated in Appendix 3 where its 

value is shown to be: 

a 
vo 1-2-7r 
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The circulation time is therefore still of order 1  so U , 

that the variation remains of order 
a DC 	-1 - C.Pe 	• 

Near the stagnation ring, therefore, the dependence of the 

concentration on the co-ordinate q remains negligible. 

Secondly, there is the effect of passing near the 

polar stagnation points to be considered. 	As was seen in 

the previous chapter in the discussion on diffusion in the 

internal wake the time that a particle takes to move through 

a region near a stagnation point has a logarithmic depend-

ence on the closest axial distance from the stagnation 

point. 	Suppose s is this distance. 	Then the time 

taken to move through the stagnation region is of order 

U log 	, and in this time the concentration can change by 

an amount of order C Pe-1  log ! (assuming that the order 
a 

of the rate of change of concentration is -7 ). 	This is 
a 

negligible for all s in the interior - in fact one would 

have to be a considerable distance into the boundary layer-

wake system before this would become of the same order as C. 

Thus the region in which diffusion near the stagnation 

points produces significant variations from the average 

concentration is contained inside the boundary layer-wake 

system, and since only the interior of the drop is under 

consideration here this effect introduces no new restriction 

and consequently may be ignored. 
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This discussion has shown that everywhere in the 

interior the average concentration for the stream surface 

is a valid approximation to the concentration at any point 

on the stream surface. 

2. 	The interior equation 

The equation describing the diffusion process is the 

diffusion equation (1), that is: 

ac + v.vc = DV2c 3t 

Bearing in mind the comments of the previous section it is 

obviously convenient to use a co-ordinate system in which 

one of the co-ordinates is constant on a stream surface. 

For this purpose a non-dimensionalised stream function is 

suitable. 	In order to make the system the same as that 

used by Kronig and Brink, which has the advantage that the 

co-ordinate is equal to unity at the stagnation ring, the 

following system is used: 

732  a2m 

i.e. 4 p2  (1 - p2) singe 

where 	ap = r . 

A co-ordinate orthogonal to m in planes containing the 
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axis of symmetry (that is the drop's axis) is given by: 

p4  cos40  

2p2  - 1 

The derivation of a co-ordinate orthogonal to m is des- 

cribed in Appendix 6. 	This co-ordinate system is illustrated 

in Figure 4. 	The third co-ordinate A (where A = constant 

are planes through the axis of symmetry) remains the same 

as in a spherical polar co-ordinate system. 

In this co-ordinate system the diffusion equation (1) 

becomes: 

a h h ac h a 	h 	ac 
) 	( A m __) 

aq hq  aq am hm  am 

a 	h h ac 
— ( m g ) 
ax 	h 	ax 

  

where hMI  hq,  h 	are the scale factors of this co-ordinate 

system. 	They are given in full in Appendix 2. 	Since the 
. 

flow lskalong surfaces of constant m the velocity in the 
SmaU 

directions of increasing m , i.e. vm, is mope. 	The fluid 

is incompressible so that the continuity equation is: 

v 47171 . 	N m 
+ 
 a

a q (hmhx  vci = 0 

(there is no velocity in the A direction). 

ac 	v c 	Di  
hq  a q 	a2hmhqhx 
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Thus: 

ac 
v1, hm  hX aq dq — 	% - 	aq - f a  (v h m  hX  c)dq - 	

c t-:). 	
X 

(hmh_  vci•)dq 

= 	f cst (11,i i, ) vr„)41, 

where 	..dq indicates integration at constant time round 

a stream surface along a line on which X = constant. 	So, 

multiplying equation (4) by hmhqhX and integrating results 

in: 

h h h 11  dq m q X at 
11.)cict, 

)iin 6" 1 N 

 

h h ac 	3 h h ac 
— 	) + — ( ?1-1-11 	) 
Dm hm am aq hq  aq a2  

  

3 hh 3c 

	

( m q 	) dq  

3X hx  as 

= ac 
Using the assumption of axial symmetry, so that ax 	0 

and putting 

a 	 h h ac 
(_1_11  --) dq 

3q hq  aq 

because of the single valuedness of hhm  Lc , the equation 

hq  aq 

is further simplified to: 

0 

h h, ac 
(-2-2  --) dq . 

@m hm am 

Now let 

c = j(m, 	+ Pe-1  c*(q$  m, t) 
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with 
hmhqh), c*(q, m, t) dq = 0 . 

c and c* have been mentioned before, when it was explained 

that E is an average of the concentrations on a given 

stream surface. 	c and c* are now uniquely defined. 

By inverting the order of differentiation and Integra- 
* * tion (which is permissible because at  is bounded so that 

Dc* the integral of hmhqhx TT  is uniformly convergent) it 

follows from the definition of c* that 

3c* hmhqhx at   dq 

is equal to 

a —61- ci  hmhqhxc*  dq 

which equals zero. Also. p-,),(V,14),E) 41 -- 0)  64  ,, co673. 

On using this result the equation becomes: 

- 0).h h h dq = 
atj m  q 

D1  

a2  

 

	

a h h ac 	a h h 	c* 
(g! ) Pe-1 	) dq 

	

am h am 	am hm 3m 
m pelL 	*) tit 

   

4t 	Ai.; rd. 

  

The secondl,termson the right-hand side o*. small enough to be 

neglected 

, leaving 

3t 
	(-L1 	) dq . -2 

h h, 3J 

am hm  am 

Finally, by writing 

m
hqhX dq 

Di  
t — 

a2 
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H h h h dq , M q X 

h h and 	
—21hm 

and reversing the order of integration and differentiation 

on the right-hand side, the desired form of the equation 

is obtained: 

r, " ac - L (j 1T) _ 
ai 	am 	am 

This is the equation that must be solved to obtain the 

concentration at any point in the interior. 

The functions H and J are described in greater 

detail in Appendix 2, and the validity of inverting the 

order of integration and differentiation in obtaining 

equation (5) is discussed in Appendix 4. 

This equation is of the similar form to the one-

dimensional heat equation, which is: 

3c , 32c 

at 	axe 

However there are several complicating factors associated 

with the behaviour at m = 0 . 	These are that the function 

H(m) has a logarithmic singularity at this point, and that 

equation (5) may not be valid there. 	Further description 

of these matters is deferred to Appendices 2 and 4. 

These properties will not be of practical importance 
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because the equation will be applied to solve the problem 

only in the drop's interior where m is always greater 

than zero, but the method of solution is such that they may 

cause difficulty. 	For the present it suffices to point 

out that m = 0 is a singular point. 

3. Boundary and initial conditions 

Equation (5) is a parabolic partial differential 

equation. 	To solve it therefore requires two boundary 

conditions in the m direction and one boundary (or 

initial) condition in the i direction. 

Consider firstly the boundary condition in the m 

direction. 	One of these will be derived from the condi-

tions at the drop's surface and axis (more exactly at the 

meeting of the interior with the internal boundary layer-

wake system), and the other from the conditions at the 

stagnation ring. 

Near the surface and axis, where m ** Pe-  , the 

interior merges into the boundary layer-wake system. 

Here the concentration is of the order C.Pe-1  . 	Assuming 

that the equation's solution does not exhibit an unusual 

behaviour - an assumption that will be confirmed in Chapter 

5 - it is clear that a condition c = 0 may be imposed 

in this region (where m ** Pe-1  ) and will result in an 
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error of order only Pe-1  , which is negligible as far as 

this first approximation is concerned. 

If a numerical method of solution is to be used it is 

obviously undesirable that this condition should be imposed 

at m = Pe 2  since this would require that the calcula-

tion be repeated for different values of the Peclet number. 

It is therefore preferable to impose the condition at a 

constant point m = b , where b is of the order of Pe 2. 

Putting b = 0 would be the most convenient value but 

this might be expected to cause inaccuracies due to it being 

a singular point. 	In fact the problem of a singularity in 

H does not arise because, as will be seen later, the value 

of H at the boundary is never required for the purpose of 

the numerical calculation. 	From the point of view of the 

numerical calculation, therefore, it makes little difference 

whether the boundary condition is imposed at m = 0 or 

at some small value. 	For simplicity the condition is taken 

to be: 

c = 0 	at 	m = 0 . 

Later, in Chapter 5, it will be shown that the solution of 

equation (5) is well-behaved in the neighbourhood of m = 0 

and this will confirm the statement that no great inaccuracy 

is caused by imposing the boundary condition there. 

Assuming for the present that the solution is well-

behaved the use of this boundary condition may also introduce 



-72- 

an error of order Pe -2  , which again may be neglected in 

the determination of the first approximation. 

The condition at the stagnation ring is obtained by 

assuming that 7 is a regular function of m at this 

point. 	That being so it may be represented by a Taylor 

expansion in the neighbourhood of m = 1 : 

7(m,i) = 7(1,i) + (m - 1) 7'(1,i) + 0(m - 1)2  

where c' is the derivative of c . 

The fact that the concentration at the stagnation ring will 

not be zero whilst the diffusion process lasts means that 

the first term, namely 7(1,i) , is non-zero. 

H and J are regular at m = 1 and have Taylor expansions 

(see Appendix 2). 	However J(1) is zero, so that: 

J(m) = (m - 1) J'(1) + 0(m - 1)2  

Substituting these series into equation (5) results in: 

a7(1 i) H(1) -57 	o(m - 1) 	(m - 1) JI(1) c'(l,i) + 

+ 0(m - 1)2] 

and taking the limit as m tends to one gives: 

	

H(1) ii(1,i) 	= J1(1) i7-1(1,i) 

This, as is shown in Appendix 2, is equivalent to: 
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ai 
Dc - 	3m 

	

20 -- 	at m = 1 

which is the required boundary condition. 

The physical meaning of this condition is that it 

represents the relationship between the flux through a 

stream surface which surrounds the stagnation ring and the 

fall in concentration in the volume enclosed by this stream 

surface, in the limiting case as m tends to one. 	The 

first step is to obtain the mass loss per unit time in terms 

of the concentration: 

The rate of mass loss from a volume enclosed by a 

stream surface m is given by 

2 Tr 

a3 c hmhqhA dm dq d), . at 
0 	 m  

For small values of (1-m) the integral with respect to m 

may be approximately evaluated so that this expression is 

approximated by 

which equals 

(1-m) a
3 

ac 
-51- 

fJ 
hmhqhA dq d), 

[ - 

(1-M) '1 at 	da 3 	H 
c""  

The mass flux through the stream surface is: 

/

27T  r 0,  

1 am h h D 1  a 	h 	), m q X dq d  
0 m 4., -co 

m=1 
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which equals 

D1  a ac 
am TI 

h h 
hdq dA 

m 

which is 

D I  a Dm  f J clA 

Using the Taylor expansion of J near m = 1 , this 

expression can be approximated by 

+ D1  a am jr -- 	(1-m) J' dA 

where the derivatives are evaluated at m = 1 . 

Because all the mass lost from the volume enclosed by 

a stream surface must be diffused through the stream 

surface the two expressions can be equated, resulting inz 

aC 	_ ac J , 
TT - — DM at m = 1 

which is the condition previously derived. 

This boundary condition is omitted by Kronig and Brink 

who use in its place the condition that the concentration 

profile may be adequately represented by a quadratic 

function of m . 	The inaccuracy that this causes seems 

to have no significant effect. 

The initial condition is the state of the concentration 

profile at i = 0 . 	As was described in Chapter 3 the drop 

will attain terminal velocity before the diffusion effect 
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has penetrated further than a thin layer - that is thin 

	

compared with the size of the drop. 	It is therefore valid 

to use the following condition: 

	

C = 1 	at 	i = 0, m > 0 , 

but still retaining the condition 

	

6 = 0 	at 	m = 0 . 

To summarize, a first approximation for the concentra-

tion at any point in the interior may be obtained by solving 

the equation 

(J 
 ac) 

al 	am 	am 

with the boundary and initial conditions: 

= 0 at m = 0 

- 20 -51-13 	at 	m = 1 

	

1 	at 	i = 0 , m> 0 

4. 	Numerical method 

Equation (5) is difficult to solve by analytic means 

because of the complexity of the functions H and J , and 

I have therefore obtained a solution by a numerical method. 

The method of solution is suggested by the strong resemblance 

of this equation to the heat equation. 	This suggests that 

ac 
ai 

and 
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a numerical method that may be used to solve the heat 

equation may solve equation (5). 

The problem can be solved numerically by transforming 

the equation into finite difference form. 	Provided that 

care is taken to ensure stability this will produce a 

solution. 

Considering the left-hand side of the equation first, 

this is: 

and may be represented by: 

	

j+1 - 	j  
k 	Si 

where 

7k9j 	(m = (k-1)6m, i = (j-1)di) 

Hk 	H (m = (k-1)dm) 

Si 	is the step length in the time direction, 

and dm 	is the step length in the m direction. 

In the right-hand side J 12 may be represented by Dm 

c 	- 7 k+2,j 	k-2,j 

am 

So that 

(:r  a-C )  
am x -  3m' 

can be represented by: 

Jk 
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k+1 	k 1 	- (..r 	ck 	ck-1)  
Om '-k+1 	Om 	J 

	

k-2 	Om 

and this is equal to: 

M f 
(J 1 + 	) + 7 	j (0)2 	

k 	k,j 	k+2 J +1 ck+1,j 	k- 1  

	

2 	k-1,j k-1  

So that the equation may be represented by: 

7 +  (a)  .T  - 	, jk,j+1 	k,j 	H (6m)2 -k+1 ck+1,j 	c 	+ J k,j k+1 	k-2) +  

C k -1,j jk -1 

This scheme has used forward differences to represent time- 

wise differentiation and central differences to represent 

space-wise differentiation. 

Similarly the boundary and initial conditions may be 

transformed into finite difference form: 

The condition 

	

0 	at 	m= 0 	for all i 

becomes 

c 1, j 	0 	for all j , 

whilst 

	

ac 	 ac - 20 -- 	at m 	1 

	

ai 	am 

becomes 

5N 	20 ,j+1 - ca 	- 	
cN, j 	- c 

	

+1 	N-1,j+1 

	

Oi 	Sm 
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or 

aN,j+1 

Sm N,j + 20 Si N-1,j+1 
6m + 20 Si 

where N is the value of k that corresponds to m = 1 

i.e. 	(N - 1) Sm = 1 . 

The initial condition 

c = 1 	at 	i = 0 , 	m > 0 

becomes 

k1 = 1 	for all k > 1 . 2  

To determine a stability criterion use is made of a 

variable Ak defined by: 

Si  Ak = 
Hk  (6m)2 

The equation may therefore be written in the form: 

Ck,j+1 = c 
m2J  
. 	- A

k
(Jk+ + A

k 
Jk+ik+1,j 

+ A
k 
Jk-ik-1,j 

It is to be expected, by analogy with the heat equation, 

that if Ak  is too large instability will result. 	However, 

it is easy to determine a range for A
k 

in which the equa- 

tion will be stable. 	Suppose an error of absolute magnitude 

less than, or equal to, 1E1 occurs in Ck+1,j ' 6k,j 1  

or k-1,j 	Then this produces an error in the determina-

tion of k,j+1 9 of magnitude E* , where 
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IE* I 4, 1E111 - Ak(Jk4.1  + Jk_ l)y + lAkJk+111E1 + lAkJk_1 11E1 

Since AkJk+i 

provided that 

it follows that 

and A Jk-2  , are known to be positive then, k  

1 - A (J k+ + Jk-  ) > 0 

	

i 	1 

	

IE* 1 	1E1 

In other words the process is stable if 

1 - Ak(J10.1  + Jk_1) >, 0 

This does not of course demonstrate that the process is 

unstable if this condition is not satisfied, but it was 

found in practice that if this condition was not obeyed 

then instability resulted. 

The easiest way to satisfy the condition is to 

calculate di in such a way as to ensure that the condi- 

tion is obeyed for all k . 	This may be done in the 

following manner: 

The stability criterion is: 

1 	(Si 	, 
+ J 	i. 

(6m)2H 	k+1 	k_ )  0 
k  2 

Therefore 

di sJ
k+1 + J k-i 

So let 

(6m)2Hk  

for all k . 
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Si = x (6m)2  min  Jk+1 	Jk_i 
2 

where 

0 < x 	1 

and the minimum is to be taken over all values of k 

Since it is desirable to proceed in as large time 

steps as are compatible with the required accuracy (in 

order to minimise calculation times) it is natural to 

chose x near one, and in the numerical calculations 

X = 0.9 was used. 	X = 1.0 would be the best value 

but here the round-off error inherent in any numerical 

process might produce instability. 	In practice any 

instability soon makes its presence obvious and no unde-

tected error of this type can be expected to occur. 

A detailed analysis of the errors involved in this 

numerical work would be superfluous since it is a routine 

type of calculation. 	However the magnitude of any errors 

has been established by some simple checks which will now 

be described. 

That the finite difference approximations are suffi-

ciently accurate can be ensured in the usual way by halving 

the step length dm until this change produces no signifi- 

cant difference in the solution. 	In the present case of 

course decreasing óm automatically results in a decrease 

in di , so that there is no need to consider the two 

Hk 
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variables separately. 	It was found that decreasing Sm 
1 	1 

from -- to -- produced a difference of less than 1% 
40 	80 

in the concentration at the stagnation ring (the difference 

at any time being expressed as a percentage of the concen-

tration at that time). 

A more comprehensive check is to solve a similar 

problem analytically as well as numerically. 	In this way 

any error that occurs for any reason should become obvious. 

It has already been remarked that the equation at present 

under consideration is of the same type as the heat equation. 

A comparable, but simpler, problem is to find the temperature 

distribution inside an insulated bar, with uniform initial 

temperature, whose ends are kept at zero temperature. 	The 

equation for this problem is: 

D 2c  
axe 

with the boundary conditions: 

 

1 	at 	t = 0 , 0 < X < 2 

0 at x = 0, all t 

ac 
ax 0 	at 	x = 1 , all t 

where x = 1 is the centre of the bar. 

The solution may be determined in the form of an infinite 

series. 	Its value at x = 1 is: 

4 
TT 
exp(- 

11.2 
-4- t) - 

3
4
7r 	

2 07  
exp(- 	t) + 5; exp(- 2-45-712t) 

0(exp(- 1249-1r2t)) 
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Investigation of the numerical solution shows general agree- 

ment with this result. 	With sufficiently small step length 

(i.e. ax = 	) the error is reduced until it is less 
90 

than about 3.5% of the analytic solution. 	In general the 

error increases with time. 	This is presumably due to an 

error accumulating with each time step. 

A final check on the calculation utilised the calcula- 

tion of the mass loss. 	This may be found either by 

calculating, from the concentration profile, the amount 

of solute inside the drop at any moment and subtracting 

this from the original amount, or by integrating the rate 

at which mass diffuses through the surface of the drop 

(which is found from the gradient of concentration at the 

drop's surface) with respect to time. 	Ideally these two 

calculations should produce identical results. 	In practice 

certain discrepancies occur. 	These are partly due to the 

differing round-off errors involved in the two calculations, 

but any error in the work that produces an effect similar 

to a mass source inside the drop (e.g. a mistake in the 

boundary condition at the stagnation ring) would cause a 

significant difference between the two results. 	This is 

because one method of calculation - that using the concen-

tration profile - assumes that the mass loss at any time is 

equal to the mass at that time subtracted from the initial 

mass, and this would be untrue if a mass source were present. 
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The other method makes no such assumption. 

It was found that agreement between the two calcula-

tions improved as time increased, and the discrepancy was 

always of the order of .05% or less of the initial mass 

of solute in the drop. 

6. 	Results and Discussion 

The results of this calculation are given in Tables 

1, 2 and 3, and are summarized in graphs (Figures 5, 6 and 

7) showing the concentration profile at various times, and 

the mass loss (calculated from the concentration profile) 

as a function of time. 	The concentration at the stagna- 

tion ring as a function of time is also shown for the 

purpose of comparison with Kronig and Brink's work. 	The 

calculations were terminated when the concentration at the 
1 

stagnation ring fell to less than -- of the initial 
20 

concentration. 

Perhaps the chief characteristic of these results is 

that the transfer process takes considerably less time than 

might be expected on order of magnitude considerations. 

The only property that could be responsible for this effect 

is the internal circulation, which decreases the effective 

size of the drop because the diffusion effect merely has to 

penetrate to the stagnation ring (at a distance a(1 - --) 
IT 



-84- 

from the surface) instead of to the drop's centre (at a 

distance a) as is the case with a stagnant drop. 

From the point of view of obtaining experimental 

verification of these results it is of importance to note 

the close agreement between them and the results of Kronig 

and Brink. 	This is because many experimenters have 

commented that the results of experiments are, at least 

approximately, in agreement with Kronig and Brink's calcula- 

tion. 	The fact that the present work imposes a boundary 

condition at the stagnation ring in place of Kronig and 

Brink's assumption that the concentration profile may be 

approximated by a quadratic expression makes the close 

agreement between the two sets of results surprising. 

However, the ratio 

8c 	20 

Di 	Dm 

when calculated from the first term of Kronig and Brink's 

result has the value -20.24 at m = 1 , compared with 

the accurate value of -20 , so the different conditions 

are compatible. 

This first approximation is the only part of the 

solutions produced in this thesis that can be experimentally 

checked. 	The difficulties associated with satisfying the 

necessary assumptions in an experiment are such as to make 

the detection of second order effects (which are of order 
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Pe 2  of the first order effect) almost impossible at the 

present time. 	This first approximation is therefore the 

only part of practical importance in the prediction of 

mass transfer rates. 

This solution, namely that: 

inside the drop, 

0 	outside the drop, 

is a uniformly valid first approximation to the concentra- 

tion field. 	The errors are everywhere of order Pe-  or 

less. 	To a first approximation the drop exterior is 

unaffected by the transfer process, and the transfer process 

is unaffected by the exterior (except for the presence of 

the external concentration in the normalisation formulae) - 

in particular the mass transfer is not dependent on the 

coefficient of diffusion in the bulk fluid (D0). 

It should be noted that the case where a continuous 

phase is a pure solute which dissolves into a solvent drop 

is included in the results of this chapter. 	In such a 

situation the drop surface is held at a constant concentra- 

tion and the solute diffuses into the drop. 	Mathematically 

this process is identical (to this first approximation) to 

the extraction process described here: the physical differ-

ences are removed by the use of the normalised concentration. 

This result is important because it is often easier to obtain 
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experimental results for a system of this type than it is 

to obtain results for an extraction process. 
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CHAPTER 5 

Diffusion in the boundary layers  

1. 	The boundary layers 

There were two principal sources of inaccuracy in 

the determination of the first approximation, apart from 

the errors inherent in the numerical process. 	These were 

the inaccuracy due to assuming that the concentration was 

equal to the average concentration on the stream surface, 

and that due to imposing the condition 

0 	at 	m = 0 . 

The latter of these two errors is the larger, for 

the concentration in the boundary layer is actually of 
_ 	 _ 

order C.Pe 
1 
2  and the boundary layer has a thickness a.Pe 1 2  

whilst the variation in concentration round a stream surface 

was shown in Chapter 4 to be only of order C.Pe-1 	The 

purpose of this chapter is to demonstrate how the larger 

error may be eliminated and so to obtain a more accurate 

expression for the concentration in the interior. 	This 

will involve a more detailed investigation of the boundary 

layers. 

Clearly this search for greater accuracy in solving 
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the diffusion equation should not be taken too far in view 

of the limited accuracy of the diffusion equation itself, 

and of the equilibrium condition at the drop's surface 

but, on the other hand, the boundary layers have an intrin-

sic interest, not least because they have sometimes been 

assumed to be the dominant effect in drop diffusion. 

The boundary layers have already been described 

qualitatively in Chapter 3 where the distinction between 
two different time periods - an initial period and a final 

period - was made. 	It is this final period (in which the 

drop interior dominates the diffusion process) that is 

under consideration here. 

Often the presence of a boundary layer in a system is 

indicated by the existence in the system of a region of 

relatively large gradients of some quantity. 	For example 

in flow at high Reynolds number past a solid there is a 

large gradient of velocity near the surface of the solid. 

Similarly in flow past a dissolving solid at high Peclet 

number there is a large gradient of concentration. 	In 

both these cases the boundary layers are regions of first 

order perturbations. 	The case of diffusion from a liquid 

drop is completely different; here the boundary layers 

are a region in which only second order terms are perturbed, 

whilst the first approximation is uniformly valid, instead 
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of being valid only outside the boundary layers. 	There 

is therefore no region of high concentration gradients 

that can be easily identified as a boundary layer. 

The practical effect of the boundary layers in the 

present case is that variation in concentration along a 

stream surface near the drop's surface affects the con- 
_1 

centration field by an amount of order C.Pe 2  . 	The 

boundary layers are of thickness a.Pe-1  and a correspond- 

ing change in concentration occurs over that distance 

scale in the normal direction as occurs over a distance of 

order a in the tangential direction. 

Although the approximation of the previous chapter 

is no longer possible if the required accuracy is to be 

achieved, another approximation becomes valid in the 

boundary layer. 	This is fortunate since, otherwise, the 

problem would involve three independent variables (two of 

space and one of time) and would consequently be intract-

able. 

This other approximation is to neglect the time 

derivative which appears in the diffusion equation. 

Recall that the diffusion equation is 

ac 
+ v.vc = Dv2c at 

Consider this equation in spherical polar co-ordinates, with 

origin at the drop's centre and upstream direction at 0 = 0, 
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then one of the terms on the right-hand side is 

D a (,2 3c)  

r2  ar 	3r 

The other term (there are only two because the situation 

is axi-symmetric) is 

D 	a 
(sin e ) . 

r2 	0 sin 	30 	a0 

In the boundary layer this term is negligible compared 

with the former because of the property of the boundary 

layer that the variation in concentration over a distance 

a.Pe-1  in a direction normal to it is comparable to the 

variation over a distance of order a in the tangential 

DC' direction, so that the former term is of order -- whereas 
h2  

this term is of order DC' 
a2 • 

Still near the surface (i.e. at a distance small 

compared with a ) but in the interior this term remains 

negligible because it approximately represents the variation 

along the stream surface, whilst the former term approximately 

represents the variation normal to the stream surface. 

(This is not true near the poles where differentiation in 

the e direction can correspond to variation normal to the 

stream surfaces.) 

In a region of distance of order aN from the drop's 

surface the former term will be of magnitude at 01.05t 
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DC'  

a2  N2  

(Here the word "region" refers to a group of entire stream 

surfaces - not parts of stream surfaces - whose least 

distance from the surface is of order aN .) 

The time derivative term is of order 

DC' 
a2 

since the time scale for the boundary layer is determined 

2  Dby the time scale of the interior (which is 	). 

Thus 

magnitude of time derivative 
magnitude of diffusion term ** N2  

so that, for N * * Pe 2 	i.e. in the boundary layer, the 

time derivative is negligible. 	(This also shows that it 

is negligible for some distance into the interior and it is 
_1 

not until N becomes greater than Pe 4  that the error 

caused by neglecting the time derivative becomes greater 

than Pe 1.) 

When the time derivative is omitted the equation 

becomes: 

	

, ac 	170 ac - D 	(r2 2S) 
vr 

	

Dr 	r 30 	r2  3r 	Dr 

which is the boundary layer equation for drop diffusion. 

The equations for the internal and external boundary layers 
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are the same, except for the different diffusion coefficients, 

which have been represented here by the one symbol D. 	It 

is only by the omission of the time derivative that this 

equation differs from the equation for the concentration in 

the interior. 

Now let 

ay = r- a 

so that y is the non-dimensionalised radial distance from 

the drop's surface. 

The stream function inside the drop ty l  is given by: 

r2  
*1 	r2  (1 - --) sin20 

2 	a2  

Since the region under consideration is very thin compared 

with the radius of the drop, it follows that, in this region: 

y « 1 

So, when tpl  is expressed in terms of y , and terms of 

smaller magnitude than y are neglected, the equation for 

11/ 1  becomes: 

*1 = - vo a2  y.sin20 

So 	 v0 = vo sin e 

vr = - 2 v0  y.cos e 

These will be valid expressions for the velocities outside 

as well as inside the drop (provided always that y « 1 ) 

since these velocities are continuous at the interface. 
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y*  = Y Pei 

voa 
D. 

where 
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Putting these expressions into the diffusion equation one 

obtains: 

0  ac + , 
' Pc 	D 92  - 2 —a y cos sin 0 -- = 	c  -- 

a 	ay 	a 	30 	a2  aye 

Define a new variable y* by: 

1 represents the inside of the drop 

0 represents the outside of the drop. 

It should be noted that distances in the external 

boundary layer are scaled differently to distances in the 

internal boundary layer. 

With this scaling the two boundary layer equations 

(that is the internal and the external one) are identical: 

- 2 y* CO3 9 211- + sin 0 12  = 
ay* 	PO 

The substitutions biz 1-141f-ear(lut tiorm_60): 

CO30 
 2 - cos 6 + 

3 + 

Y = y* sin20 

2c  

 

ay*2 

will reduce this equation to the heat equation: 

a2c  

aye  
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It is worth noting that Y is closely connected with the 

non-dimensionalised stream function m - in fact in the 

boundary layers they differ only by a multiplicative 

constant: 

m is given by 

= 4 p2  (1 - p2) sin28 

• - 8 y sin20 	approximately. 

So that 

• - 8 Y Pe ,4 	approximately. 

Also, since 

• p4  coske  

2 p2  - 1 

q may, in the boundary layers, be approximated by 

So that X is a function of q alone, and Y is a func-

tion of m alone. 

The only essential difference between the boundary 

layer equation and the equation for c in the interior is 

that the former does not involve time as an independent 

variable (although time will enter, as a parameter, into 

the boundary conditions). 	Apart from the omission the two 

equations are identical when allowance is made for the 

scaling and for the approximations (i.e. neglect of y2,etc.) 
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that are permissible in the boundary layer because of its 

thinness. 	Thus for a region sufficiently close to the 

surface (a distance less than a.Pe-4  ) there is no 

difference between the two equations, since the same 

approximations and omission of the time derivative are 

valid assumptions. 	This does not mean that no new infor- 

mation can be gained from solving the boundary layer 

equation - on the contrary, the fact that the time has 

been eliminated means that the dependence of the concen-

tration on both space co-ordinates, X and Y (i.e. q 

and m ) can be examined, whereas the interior solution 

considered only dependence on one space variable. 

Once again it is necessary to solve a parabolic 

differential equation, although in this case it is of a 

sufficiently well-known type to be solvable in analytic 

form. 	Again three boundary conditions are required -

one "initial" condition (corresponding to X = 0 ), and 

two boundary conditions corresponding to the solution's 

behaviour in the Y direction. 	The situation is compli- 

cated by the fact that there are really two equations -

one for the external, and one for the internal, boundary 

layer - so that further conditions are necessary at the 

interface between them. 

One boundary equation may be determined by considering 



-96- 

the behaviour of the solution of the interior equation in 

the region near the boundary layer (that is for small 

values of m ). 	The interior equation is: 

H 3c = 	rj 
31 am am 

As is shown in Appendix 2, 

at 
	

0, 	J = -31  
3 

whilst 	
H ti- - log m 	as m 0 . 

So that for small m the equation may be approximated 

by 

26 a27 
3 	 2 = (-log m) al — 

am 
= 

An .approximate solution for this equation may be 

obtained by taking the Laplace transform with respect to 

time. 	If the transform of 7 is defined by: 

Si 
	

ir oc. 

o 

6 e-ki di  

(here k indicates the variable in the Laplace transform 

and should not be confused with the earlier use of k in 

the numerical analysis), 

then the transform of the equation is: 

256 d2S1 
3 dm2 

= log m - kSilog m . 
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Writing 
1 S1  

the equation becomes 

256 d2S + kS log m = 0 . 

Since the intention is to determine the behaviour in 

the interior where it meets the boundary layer the region 

of interest is where m is small. 

S is continuous for small m , so it may be expressed 

by: 

S(m) = S(0) + W 

and, by taking m sufficiently near zero, W may be made 

as small as required. 

Then 

256 w /I 
3 + k S(0) log m 	- k W log m 

where the dashes indicate differentiation with respect to 

m . 

Now IS(0)1 > 0 , because c < 	= 0) and so, 

by taking m sufficiently small, it follows that 

Iwl « Is(0) I 	. 

The equation is therefore approximately equivalent to: 

3 W" + k S(0) log m 

which has the solution 

3 dm2  

256 
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W = -k S(0) 	m2 (2 log m - 3) + Alm + F . 
256 4 

At m = 0 	W = 0 so that F = 0 , and therefore 

m2 
S1  = 1 + S(0) + AIM - k 8(0) -- lr (2 log m - 3) . 

It should be noted that both S(0) and Al  are functions 

of k and that the transform cannot be inverted unless 

they are known. 	Inversion is not, however, necessary. 

This solution demonstrates that for sufficiently small m, 

SI  may be written in the form 

SI  A,  Aim + Bl  

where AI  and B1  are functions of k . 

Hence 7, may be written in the form 

c ti Alm 	B2 	as m 	0 , 

where A2 and B2 are functions of the time i . 

This has justified the assumption made in Chapter 4, 

that the solution of equation (5) is well-behaved near 

m = 0 . 

A boundary condition for the boundary layer equations 

is therefore furnished by requiring that the concentration 

c must approach a behaviour similar to that of 

A Y + B 

as Y moves from its value in the boundary layer to its 
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value in the neighbouring part of the interior. 	This 

transition from c to c is permissible because 6 is 

a sufficiently accurate approximation for c in the inte-

rior. 

As usual with equations of the boundary layer type 

there is no need to be so specific over the values attained 

by the boundary layer variable; sufficient accuracy is 

achieved by assuming that a condition that should be 

imposed at the edge of the boundary layer may instead be 

imposed in the limit as the variable tends to infinity. 

With this assumption the boundary condition is: 

cl  q,  A Y 	B 	as Y 	- 00  

The corresponding condition for the outer boundary 

layer is that the concentration should tend to the con-

centration of the bulk fluid: 

i.e. 	co 0 as Yco 

And there are two conditions to be satisfied at the drop 

surface in order to link the internal and external solution. 

The first of these is the relationship between the concen-

trations on each side of the interface: 

c l 	E co 	at 	0 

and the second is an equation representing the fact that 

the mass flux into any part of the interface from the inside 
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of the drop is equal to the mass flux out of the same part 

of the interface into the exterior of the drop: 

acl 	ac 
Dl 	 Do  

 ar 	ar 
at 	Y = 0 . 

This is equivalent to: 

  

ac1 ac / 0  
D1  --- 	D 4  

aY 	0  aY 

at 	Y = 0 . 

Here the derivatives on the left-hand side must be inter-

preted as being the limiting values of the derivatives as 

Y tends to zero from below, and those on the right-hand 

side are the limiting values as Y tends to zero from 

above. 

Two more boundary conditions are required. 	These 

relate to the concentration profiles near the front pole 

of the drop - that is where X equals zero. 	Outside the 

drop fresh solvent at zero concentration is swept from the 

bulk fluid into the boundary layer, so that: 

co 	at 	X = 0 	Y > 0 . 

It is necessary to explain in greater detail what is 

meant by the statement X = 0 , Y > 0 for, according to 

the definitions of X and Y this is a self-contradiction. 

The line 0 = 0 is a singular point of the X, Y co-ordinate 

system in the sense that both X and Y are zero there. 
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The statement X = 0, Y > 0 must be interpreted to mean 

a limiting process in which X tends to zero, whilst Y 

is 'cept fixed at a positive value. 	This means that as 

X becomes small y* must become large, and this corres- 

ponds to moving along a stream surface in a direction away 

from the drop. 	The statement 

co = 0 	at 	X = 0 , 	Y > 0 

should therefore be interpreted to mean 

co  + 0 	as 	X -+ 0 , 	Y = constant > 0 . 

The situation in the interior is more complicated than 

that in the exterior. 	In the interior the internal wake 

feeds solute into the boundary layer. 	Suppose that the 

concentration profile where the internal wake flows into 

the boundary layer is -Q(Y) - since Y is constant on a 

stream surface near the surface of the drop, and the con-

centration profile in the wake is constant with respect to 

position in the wake it is not necessary to specify exactly 

at what value of X the wake joins the boundary layer: 

the profile would be the same at any sufficiently small 

value of X . 

Thus the condition in the interior is: 

c 	= Q(Y) 	at X = 0, 	Y < 0 

and the expression X = 0, Y < 0 must be interpreted in 
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a similar way to the expression X = 0, Y > 0 . 

At this stage Q(Y) is unknown: it is merely the initial 

(i.e. at X = 0 ) value of the concentration. 

To summarize, the problem is as follows: 

There are two simultaneous equations to solve (alternatively 

described as one equation in two regions). 	These are: 

a2 c, 	ac t  
Y < 0 

a y2 	ax 

inside the drop, and 

12 r, 
s'0 

outside the drop. 

 

aY2  

The boundary conditions are 

el  q, AY+ B 	as 	y -0. - 0, 

e 0 +0 	as 	Y -* + co 

co = 0 	at X = 0 

el  = 7:)(Y) 	at 	X = 0 

cl  = Eco 	at Y = 0 

DC1 	1 DC 
DI 	= D2  ° 	at Y = 0 

BY BY 

This problem has strong similarities with the one 

solved by Harper and Moore (6) and a similar method of 

solution was consequently employed. 	The details of the 

method are lengthy and are given in Appendix 1. 	The 



1 
Q(Y') 

2/Ta 1-. 

EAT; 
-• /5;  1 

EJ +• VD 2/ 

T o 
J 

Q(Y') exp( 

(Y1 - V)2  
exp( 	) dY' 

4X 

(Y1 	Y')2  
) dY' 

4X 
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solution is: 

V157 B 	Y, 
Co  = 	 erfc 

15-0  +• EZT 	215-C 

2157A 
ierfc 

Yo  

  

1.57)  +• EV57 	2J 

Di 	1 	0 	(Y
o 
- YI)2  

+ 	. 	Q(Y') exp(-  
15- 	-. +• EV5T.  /7.7 	4x o  

= A Y1  +B 

) 

TD-  B 

rD" +• EiD-7 

2 Ei-157 A 

+ 

-Y1  
erfc --- 

2VY 

-Y1 
V7 ierfc 

211 

. . . (7) 

where Q(Y) = T2(Y) -AY-B. Y0 and Y1  represent 

values of Y corresponding to the outside and the inside of 

the drops  respectively. 	The function Q(Y) and the con- 

stants A and B are still to be determined. 	(A and B 
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are constant with respect to X and Y , but are functions 

of time.) 

Q(Y) is determined by a similar method to that used 

to obtain the analogous function in Harper and Moore's 

paper. 	Their method uses the fact that the internal wake 

convects the solute without appreciable diffusion occurring. 

The concentration profile in the region near the front pole 

is consequently the same function of the stream function as 

it is near the rear pole. 	Since Y1  is a constant multiple 

of the stream function this is equivalent to the condition 

c1(Y1  , X = 0) = c1(Y1  , X = Xe) 

where Xe is the value of X at 0 = n (the downstream 

direction) and c1(Y1  , X = 0) should be thought of as the 

concentration profile for small, but non-zero values of X. 

Thus 

Q(Y1) = c1(Y1  , X = Xe) - AY1  - B , 

SO 

Vb.; B 	Yl 
Q(Y1) = 	 erfc 

if5; + Ei57 	2,7; 

AT-  ierfc 1 
1/17 Ei/Tri 	 2✓Xe  0 

	

(YI 	YI)2  1  
Q(Y') exp(   ) dY' 

2ITTC„ 	4 Xe 

2 	A 	-Y 
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E —• /5-0  
E1/57 +• 15; 21 

(Y1 	YI)2  
Q(Y') exp( 	) dY' 

4 Xe  

  

. . . (8) 

This is an integral equation for Q(Y), which can be 

solved numerically. 	In order to avoid the presence of the 

five parameters (A, B, E, Do' D1) in the problem it is 

desirable to re-write the problem as two equations by using 

suitable transformations. 

Let 	- Y1 	- Y' 
z = 	z' 

21/Y; 	21/R: 

P(z) = Q(Y) so that p(z') = Q(Y') 

EV —• 'Bic; 
Eiff7 +• 46; 

2 Eil-51.  Ai7; 

E) 	+ irro.  

nc 
1/5--  B 

0 

Ei571 + if; 

Then,by writing 

p(z) = 	nb  pb(z) + nc  pc(z) 

the equation may be split into two parts: 

13b(zy)expf -(z - z')2} + na  exp( -(z ▪ z')21 dz' ,  

- Pb(z) = ierfc z 

and 

na 

nb 

1 
iTT 
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expf-(z - z')2} + na  exp(-(z + z')2} dz' 

Pc(z)  = erfc z 	. . . (10) 

This leaves only one parameter (namely na  ) in each equation. 

The solution of the first of these equations is given 

in Harper and Moore's paper. 	It is not expressible as an 

elementary function and is given only in numerical form (see 

Table 4). 	The solution of the second equation is suggested 

by the obvious fact that if pc  were a constant then the 

left-hand side of the equation would contain only comple-

mentary error functions and constants, which is a similar 

composition to that of the right-hand side. 	Thus, putting 

Pc = L 

where L is constant, the left-hand side becomes: 

LT—II (/71.-  7F  erfc z 	na 2  erfc z) - 

and this is equal to 

L 1 (na  - 1) erfc z 

which is a constant multiple of the right-hand side. 

Therefore 2  
Pc(z)  = na - 1 

and 



-107- 

is the solution. 	Thus 

p(z) = nb  pb(z) + nc n 2 	1 a 

= nb pb(z) - B 

So Q(Y) is given by 

Q(Y) = nb  pb  (- 
2JC-e- 

At this point, although the constants A and B are 

still unknown, it becomes possible to examine in greater 

detail the behaviour of the boundary layers in the regions 

near the stagnation points, and the way in which they merge 

into the wakes. 	It is clear from the expressions (6) and 

(7) for the concentration that the boundary layer thickness 

is associated with the behaviour of the terms -YI 	and 

)/7 Y 	 2 
o 

These expressions appear in terms which are, or 
2)/X 

Y o behave to some extent like, erfc 	That is these 

terms cease to change rapidly when 

Y  

 

( or 
-Y1 

247 24? 

becomes, in some sense, large, and the value at which rapid 

change ceases gives a measure of the boundary layer thick- 

ness. 	For the purpose of order of magnitude calculations 

21(7 
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it may be assumed that when 

Yo 	-Y1 
( or 

2iR 	2I 

is of the order of one, then the edge of the boundary layer 

has been reached. 

Since 	Y = y Pei  sin2e , 

where y is the non-dimensionalised distance from the drop's 

surface, the value of y at the edge of the boundary layer 

is given by 

y Pe' sin20  * * 1 
21/R 

i.e. 

which, of course confirms the previously obtained result 

that the boundary layer is of thickness a.Pe 1  . 

In the case of the external boundary layer this is true 

even in the neighbourhood of the front stagnation point where 

sin 0 becomes small, because X also tends to zero in this 

region. 

More exactly 

cos 30  X 	- cos e 3 	3 
So that 

1 	as 	8 	0 
X 
8 4  
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with the required result that 

** pc  2  

in the region of the front stagnation point. 	This applies 

only to the external boundary layer because the thickness 

of the internal boundary layer is determined by the function 

Q(Y) and the flow pattern. 

The significance of this is that the external boundary 

layer does not start with zero thickness at the frontstagna-

tion point: there is a boundary layer of non-zero thickness 

at all points of the drop's surface. 	This also means that 

there will be a finite non-zero mass transfer even at the 

drop's front pole. 

In the neighbourhood of the rear stagnation point the 

situation is different. 	Here X is of order one so that 

equation (11) shows that the boundary layer becomes thick 

as sin e tends to zero. 	Diffusion in the boundary layer 

will therefore be less significant in this region, because 

the thickening of the boundary layer will cause the concen- 

tration gradient to fall. 	The boundary layer equation, 

however, remains 	the only effect is that the convec-

tion terms must become dominant over the diffusion term, 

whereas in the rest of the boundary layer they are of the 

same order of magnitude. 	Thus near the rear stagnation 

point there is a region where diffusion is unimportant and 

the solute is convected along the stream surfaces. 
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Because the boundary layer solutions (6) and (7) are 

well-behaved in the region of the rear stagnation point 

there can be no separation in the sense of the boundary 

layer solution breaking down, as happens, for example, in 

Harper and Moore's solution for the vorticity boundary 

layers around a drop. 	However, in this region the flow 

turns away from the surface either into the interior in 

the case of the internal boundary layer or away from the 

drop in the case of the external boundary layer. 	The fact 

that near the rear stagnation point the solute is being 

convected therefore provides a clue as to how the solute 

may move from the boundary layers into the wakes.. 	Clearly 

a reasonable hypothesis is that the solute reaches the 

region in which diffusion becomes unimportant, so that it 

is convected along until it reaches the region in which 

the flow turns away from the surface. 	The solute is then 

convected by the fluid to form one of the wakes. 	That 

this is so can be verified by determining the point at 

which the fluid turns away from the surface and demonstrat-

ing that at this point the solute is being convected with 

negligible diffusion. 	This "separation" can, for the 

purpose of an order of magnitude calculation, be said to 

occur at the point where the stream surfaces are at an angle 

of about - with the drop's surface. 
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Now the stream function is given by 

*1 = - vo a2  y sin20 

and, at the edge of the boundary layer 
_1 

y ** Pe 2 	in the region where sin 0 

so that the stream surface that forms the edge of the 

boundary layer has the equation 

y sin20 ** Pe 1  

Let 	4 = n - 0 

then in the region of the rear stagnation point sin 0 

may be approximated by 	so that the equation of the 

stream surface becomes 

y 4,2 * * Pe -1  
The angle that the stream surface makes with the drop's 

surface is 

tan-1 fly dcb 

* * 
	1 

and this is approximately equal to 

Pe- A 
2 	** 

7 

1 

when 

4) 3 

i.e. 	(I) 	* * 
	

Pe 4  

So that, from the equation of the stream surface, 

y ** Pe 4  as well. 

Recall that the boundary layer thickness is given by 
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Pe- a 2 
 

singe 

Using the calculated order of magnitude for ¢ it can be 

seen that this expression for the boundary layer thickness 

is of order a.Pe4  in the region of the rear stagnation 

point. 	This is much greater than a.Pe 	, which is the 

thickness of the boundary layer in regions where diffusion 

is significant. 	It follows that solute is convected 

through this region and swept away from the drop surface 

to form the wakes. 

In the interior the solute is carried up the internal 

wake to the region of the front stagnation point where the 

fluid flow is the mirror image of the flow in the region 

of the rear stagnation point (the plane through the drop's 

equator is a plane of symmetry for the flow) so that the 

solute is convected into the front part of the boundary 

layer in a similar manner to the way it was convected out 

of the rear part. 

It now remains to determine the two constants A and 

B . 	(It should be emphasised that, although A and B 

are constant with respect to the boundary layer variables, 

they are functions of time.) 	It is not possible to obtain 

the actual value of either constant without referring to 

the interior solution - this of course is to be expected 

because diffusion in the interior is the governing process 
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which determines the time dependence of the entire system. 

If the boundary layer problem could be solved completely 

without reference to the interior that would imply that 

the behaviour of the boundary layer was independent of the 

interior. 	It would also mean that the mass transfer could 

be determined from the boundary layer solution alone, which 

is unlikely in view of the fact that it is the diffusion 

in the interior that is the important part of the process. 

It is, however, possible to obtain a relationship between 

the two constants from the properties of the boundary layer. 

The necessary property is that Q(Y) , which represents 

the concentration profile "at" X = 0 must, like the 

concentration profile at other values of X , behave like 

A Y + B 	as 	Y - 

So that 

i.e. 

Q(Y) 	0 	as 	y 	- co 

nb  pb  (- Y  ) - B 	0 	as 	Y 	- 
2,7-e- 

Or 	B 	2 E15--17; 
= 	 

E 	Pb(  ) • 457 o 

Values of 7L- are given in Table 4. 

It now remains to determine the actual values of the 

constants by examining the effect of the interior upon the 

boundary layer. 
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The property that connects the two regions is the 

mass flux - the flux into the boundary layer from the 

interior can be determined either from the boundary layer 

solution (in which case it contains the unknown constants) 

or from the interior solution (in which case the first 

approximation to it is known). 	Equating the two expres- 

sions provides an equation for the constants. 	It was 

shown earlier that in the interior, in the thin region 

bordering the boundary layer, the concentration behaves 

like 

A Y + B 

whilst c may be approximated by 	so that 

1, AY+ B as Y - 

and, therefore 

a?  A as Y 

Since a first approximation to 7 is known, a first 

approximation to A , and hence to B , may be determined 

and a first approximation to the boundary layer solution 

obtained. 

In fact c is not known as a function of Y but as 

a function of m . 	Near the surface these two co-ordinates 

are merely constant multiples of one another: 

m = -8 Y Pe71  

So that A is given by: 
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A = -8 Pei/ am  

Since Y - ... corresponds to the edge of the boundary 

layer and m is very small in this region it follows that 

the derivative 21 am  is to be evaluated at a small value of 

m 	In fact the gradient of a is constant near m = 0 

so the derivative may be evaluated at m = 0 . 	may 

be found from the calculated values of a , and hence A 

can be determined. 

The result of the calculation of 	A _ is given in 
Pei 

Table 5 (a) and in graphical form in Figure 8. 

Finally, it i;; worth noting that the fact that pc(z) 

is a constant enables the expression for the concentration 

in the internal boundary layer to be simplified by writing: 

Q*(Y) = Q(Y) + B 

so that 

Ce(Y) = -(5(Y) - AY 

= n D b .b ( -Y ) 
2/c 

The simplified expression is: 

el = AY 

2 EAT A 	-Y1 
	 IR ierfc 
VUT + /U; 	2iR 

(Y1 - Y )2  1 
24;1 	 )(e(Y') exp (- 	 ) dY' 

X 
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E 157 - Iff - 	1 0' 	Y')2 
 

(Y1   
Q*(YI ) exp ( 	) dY' 

EVUT + lc)  21T-  _co 	4 X 

2. 	A second approximation to the concentration in the 

interior 

The first approximation to the concentration in the 

interior was obtained by imposing the condition 

0 	at 	m = 0 . 

The boundary layer solution has shown that this condi-

tion is inexact, and that C should behave like 

A Y + B 	as 

i.e. 	c behaves like A Y + B 	for small m 

where B is non-zero, and hence 

c = B at m = 0 

is a more exact boundary condition. 	Of course B can 

only be determined when the first approximation is known. 

Thus, let c be given by 

= a 
+ Pel 2  cb  

(the suffices a and b are intended to distinguish between 

the first and second terms in this expression for the concen-

tration), where 

ca 	0 at m = 0 
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and — Pei  cb 	at 	m = 0 . 

7a  is then the first approximation, whilst adding cb  

(which is possible because the equation is linear) gives 

a second approximation. 	cb may be obtained in a similar 

manner to ca ' except of course with slightly different 

boundary conditions. 	The equation for 7b is the same 

as the equation for 6 (because of the linearity of the 

equation). Therefore 

a7b acb  a (j  

ai 	am 	am 

At 
	

i = 0 	1 	and 	ca 	1 9 

so that the initial condition for Cb is: 

	

cb 	0 	at 	i = 0 . 

Whilst at m = 1 

aE -20 E 
ai 	am 

This condition is also satisfied by Ca  and hence must 

be satisfied by cb  , so that 

acb 	b 

	

-20 	at 	m = 1 . 
ai 	am 

And the boundary condition at m = 0 is: 

Pe 2 	at 	m = 0 



16 Ei577; pb(0,) D-c-a i.e. b EIBT + 15; 	Dm 

F 	a 	say. 
Dm 
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at m = 0 

The equation for CID  may therefore be solved in the 

same way as the equation for Ca  , the only differences 

being in the boundary condition at m = 0 , and in the 

initial condition. 

The first approximation has therefore furnished a 

value for the derivative at the surface which, because of 

the properties of the boundary layer, can be used to form 

a more accurate boundary condition at the surface and so 

produce a second approximation. 

For simplicity in numerical calculation it is conven-
e b 

ient to solve for 	rather than for 	• 

3. 	Results and remarks on Chapter 5  

The effect of the second term (El) upon the mass 

loss is given in Table 6 and in graphical form in Figure 9, 

and the effect upon A is given in Table 5 (b). 	In the 

numerical work it was found that the result of the calcula-

tion for the second term (i.e. the term associated with the 

effect of Cb ) was noticeably less accurate than the results 
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for the first approximation, in the sense that decreasing 
1 	1 

the step length dm from 7-0-  to TT resulted in a change in 

the results for the rate of mass transfer of between 10% 

(for small values of the diffusion time i) to 3% (for 

larger values of the time), compared with a change of less 

than 1% in the first term. 	It is reasonable to assume 

that the results could be made more accurate-by decreasing 

the step length further, but this would of course increase 

the computation time, and in the present work it was not 

done. 

These results have been obtained more in order to 

demonstrate the effect of the Peclet number and of the 

parameters D
o 

Di  , and E than for the increased 

accuracy that they confer to the solution. 	The fact that 

the Peclet number typically has a high value means that 

the second approximation does not differ greatly from the 

first. 	Certainly the increased accuracy is too small to 

be experimentally detectable in most cases. 

The process described in this chapter could be 

repeated to obtain higher approximations - that is the 

second approximation to the concentration in the interior 

could be used to give a more accurate value for the 

derivative 
Dm 
 at the surface and this in turn would 

provide a boundary condition for a third approximation, 

and so on. 	But there is no point in this because the 



-120- 

approximation made in the interior - that the concentration 

at any point may be approximated by the average concentra-

tion on the stream surface through that point - causes 

greater errors than those that are eliminated by this pro- 

cedure. 	The present work has therefore achieved as much 

accuracy as it is possible to attain without a more detailed 

examination of diffusion in the interior. 

It is interesting to note that the situation in which 

the bulk fluid is a pure solute which dissolves into a 

solvent drop may be obtained as a special case of the results 

of this chapter. 	In such a situation there is no external 

boundary layer and wake, but the internal system still 

exists. 	There is a short initial period in which the 

solute dissolves into the internal boundary layer and is 

convected into the internal wake, so that the internal 

boundary layer-wake system is, to a first approximation, 

in equilibrium with the exterior. 	This is followed by a 

longer period in which the solute dissolves inwards until, 

finally, even the fluid at the stagnation ring is in 

equilibrium with the exterior. 

It has already been noted that the first approximation 

theory that was described in Chapter 4 will be applicable 

to this process. 	It is not so clear that the internal 

boundary layer-wake system may be described by the theory 

developed in the present chapter. 	If the bulk fluid is 
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pure the boundary condition that equates the mass fluxes 

on either side of the interface, namely, 

D 	ac 
= Di 

ac 	at 	0 o aYo 	aYi  

is not applicable: the flux of solute from the pure solute 

cannot be measured by the gradient of concentration at the 

outside surface of the drop. 	Consequently this condition 

need no longer be satisfied, leaving the remaining boundary 

conditions, which are 

cl  = 0 	at 	Y = 0 

c 	= C5(Y) 	at 	X = 0 9 Y < 0 

c 	-,- AY+ B 	as 	Y + 	. . 

Under these conditions the solution of the boundary layer 

equation is: 

cl  = A Y + B 

+ (-B) erfc 

This is equal to the limit, as D
o tends to infinity, 

of the expression for cl  obtained earlier in this chapter. 

An infinite value of D
o implies that, in the external 

fluid, solute is diffused to and from the interface as fast 

as it is diffused from or to the interface by the internal 
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fluid, and that condition is satisfied by a situation in 

which the continuous phase is pure solute. 
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CHAPTER 6 

The mass flux 

So far the discussion has been limited to determining 

the value of the concentration at any point. 	This of 

course is because the differential equations are simple to 

formulate in terms of this variable. 	However, in an 

experiment the determination of the concentration at any 

point would present difficulties and most experimenters 

are content to measure the overall mass transfer. 	For 

the purpose of obtaining experimental verification of the 

theory it is therefore important to obtain an expression 

for the mass transfer. 

This may be done in one of three ways. 	The local 

mass transfer at any point on the drop surface may be found 

from the expression for the concentration in the boundary 

layer and this result may be integrated over the drop's 

surface to give the overall mass transfer. 	Alternatively, 

the result may be obtained by finding the mass flux in the 

external boundary layer in the region near the rear stagna-

tion point (that is the flux through a surface perpendicular 

to the flow in the boundary layer). 	It was pointed out in 

Chapter 3 that there is no mass transfer from the external 
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boundary layer directly to the bulk fluid - all the solute 

is convected into the external wake. 	Thus, finding the 

mass flux in the boundary layer at a point just before it 

feeds into the external wake is equivalent to finding the 

mass flux from the drop as a whole. 

Thirdly the mass transfer may be determined by calcula-

ting the mass flux from the interior into the internal 

boundary layer. 	This neglects the fact that the internal 

boundary layer contains a small, but decreasing, amount of 

solute which accounts for part of the total mass flux. 

However the concentration in the boundary layer is of order 

C.Pe 	and the volume of the boundary layer is of order 

a3.Pe 2  , so that the total mass in the boundary layer is 

of order a3.C.Pe-1  and this is negligible to the order of 

accuracy considered here. 	This method of calculation is 

by far the simplest of the three, and it will be described 

first. 

The mass flux - that is the mass of solute transferred 

per unit time - through any surface tangential to the flow 

must be due entirely to molecular diffusion, and is therefore 

given by 

c D a  dS n  

ac  where -- is the gradient of concentration in the direction 
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of the transfer and perpendicular to the surface, 

dS is an element of the surface, 

and the integral is taken over all the surface. 

In the present case this integral is equal to 

f 
27 a2  sin e (- D1  1-9) dO 

o Dr 

where -al is to be evaluated at the surface joining the 
Dr 

boundary layer and the interior. 

3c , 1 3c = 1 3c Pei =
Pei singe ac 	1  

Dr 	a ay 	a ay* 	3Y1 	a 

c 
aYi = A by the argument used in Chapter 5, 

so the total mass flux is 

7 Pe 
- 27 a2  DI  --- A 	sin30 dO 

a 	fo 

8 	3 1 - 	7 a2 v
o  DI 

 A 

This of course refers to the rate of transfer of mass 

based on the normalised concentration. 	In terms of the 

dimensional concentration the rate of transfer of mass from 

the drop is 

1 

Now 

and 

8 - 3 

3 
.17 Tr v 	D1

/ A (c1 - Eco ) 

using the same symbols as were used in Chapter 1. 
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If a Sherwood number is defined by 

a 
Sh = Rate of mass transfer X 	 

- Eco )41Ta2  

then 

Sh = 2 A 

3 PeT3 

It is worth re-calculating the result in a different 

way, just to demonstrate the consistency of the theory. 

Consider, therefore, the mass flux in the external boundary 

layer. 

The mass flux through a surface perpendicular to the 

flow is due almost entirely to convection - the fraction 

that is due to diffusion being of the order of Pe-1  of 

the whole - and hence is given to the required degree of 

accuracy, by 

v dS 

where v is the velocity normal to the surface, 

dS is an element of the surface, 

and the integral is taken over the surface. 

In the present case it suffices to take a surface 

perpendicular to the surface of the drop. 	Such a surface 

is not exactly perpendicular to the flow but the discrepancy 

is sufficiently small for the effect of molecular diffusion 

to be negligible. 	The integral is then equal to: 
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Jr c v8 
2ff a2  sin e . dy 

where terms of order y and smaller have been neglected 

and the integral is taken over all values of y in the 

boundary layer. 

v is given by 

and 
	 vo sin e 

Yo 	y* sin28 = y sin20 . Pe 0 

So that the integral becomes 

27r a2  vo  Pe-1 	c dYo . 

This is the mass flux through a surface at any value 

of 8 (or X ) . 	The total mass flux from the drop may 

be obtained by finding the limiting value of this integral 

as 8 tends to 7 (its value at the rear stagnation 

point, corresponding to X = Xe ) for in this region 

diffusion ceases because of the thick boundary layers, 

and the solute is convected from the external boundary 

layer into the external wake from where it will diffuse 

into the bulk fluid. 

Since the integral is uniformly convergent in the 

neighbourhood of X = Xe it follows that 

r lim c dYo 	
e° ( lim 	c) dY 

X 4 Xe 	o 	o X axe j 

and hence the value of c required in the integral is that 
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obtained by substituting Xe  for X in the expression (6) 

for the concentration in the external boundary layer. 	On 

carrying out the integration (see Appendix 5 for details) 

the same result as before is obtained. 

The local mass transfer is obtained by calculating the 

gradient of concentration in either of the boundary layers. 

It is expressed in the form of the mass flux per unit area 

and, in the case of the internal boundary layer, is given 

by: 
ac 

- D1 -- 
ar 

where the derivative is evaluated at r = a (the drop's 

surface). 	This equals 

Pe sin2o ac 

	

— D1 	 
a 	aY1 

Substituting the value of the derivative at Y = 0 from 

equation (7) results in the following expression for the 

local rate of mass transfer: 

D1  Pe 	AT 	[4 E45—  17- 1 

	

co i 	
o 	1 	e  

	

sin20 . A 	pl,(z')zle- f2  2 dzl- 1] 
a E/5745; 	EV57 + VDT; VTR 	" o 

The overall mass transfer could be found again by inte-

grating this expression over the drop's surface, but the 

presence of the integral whose value is known only in 

numerical terms makes this approach less useful than the ones 

previously described. 
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CHAPTER 7 

Remarks on the theory and its experimental verification 

1. 	Experimental verification 

Experimental work with drops has many difficulties. 

The chief of these is probably the removal of surface 

active materials. 	Even a very small quantity of one of 

these substances will radically alter the flow pattern and 

this affects the rate of mass transfer. 

However the literature contains several reports of 

observations of mass transfer from drops and bubbles. 

Most of these experiments have been carried out with the 

object of investigating an industrial process so that the 

results are not normally applicable to the verification 

of a theory like the present one. 	Usually no attempt is 

made to remove surface active materials. 	Or, in the high 

Reynolds number case, the drops have insufficient inter-

facial tension to retain a spherical shape and their motion 

may be unsteady and not in the straight lines predicted by 

the Hill's vortex solution that has been used here. 	In 

addition comparatively few experimenters have considered 

the case of very low Reynolds number (Re «1). 	And many 
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of the experiments are concerned with pure liquid drops 

dissolving into a bulk solvent instead of with an extrac-

tion process. 

typo f sy....t.alga is a cpooial eaoo f the—ppeeefit--theery-. 

Heertjes, Holve and Talsma (14), Johnson and Hamielec 

(15), and Skelland and Wellek (21) have measured the rate 

of mass transfer in such a system. 	All three groups of 

experimenters compared their results to those predicted by 

Kronig and Brink (13). 

In these experiments it was found that some systems 

(e.g. water drops in cyclohexanol, isobutanol drops in 

water) were in agreement, at least approximately, with 

Kronig and Brink's results, and others are not. 	The 

reason for these discrepancies is not always clear: some-

times the drops are observed to be oscillating and this 

obviously renders the theory inapplicable, but in other 

cases (e.g. water drops in n-butanol) the fluids appear 

to be flowing in accordance with the assumptions of the 

theory. 	In the former group there is general agreement 

between the observed results and those of Kronig and Brink, 

but the agreement is not sufficiently close to support a 

claim that Kronig and Brink's results are an accurate 

prediction of the rate of mass transfer. 	The observed 

rates of mass transfer are higher than those predicted by 
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Kronig and Brink. 	hone of these experiments was done 

with the flow at Reynolds numbers less than one. 

Since the results of the present theory are close to 

those of Kronig and Brink, at least to the order of 

accuracy required fcr comparison with experiments, the 

same comments apply. 	In Figure 12 the results of Heertjes, 

Holve and Talsma for the transfer of water into isobutanol 

drops are compared with the results of the present work. 

Experimental results for an extraction process are 

rarer than those for a pure bulk fluid dissolving into a 

drop. 	Kadenskaya, Zheleznyak, and Brounshtein (16) 

measured the rate of mass transfer when acetic acid was 

extracted from water by single drops of ethyl acetate. 

This system is complicated by the fact that some of the 

ethyl acetate dissolves in the water and some of the water 

in the ethyl acetate, but they conclude that there is good 

agreement (the mass transfer coefficients agree to within 

about 10%) with the results predicted by Kronig and Brink 

for drops smaller than 2.7 mm in diameter. 	It is not 

clear why the result ceases to be accurate at this point 

but the fact that the mass transfer approaches that predicted 

by Handles and Baron (17), who considered a similar problem 

with turbulent flow inside the drop indicates that the 

explanation may lie in an inaccurate expression for the flow. 
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Kadenskaya, Zheleznyak and Brounshtein do not give the 

Reynolds numbers at which their experiments were made but 

a calculation based on their values of drop diameter and 

velocity, together with an estimate of the viscosity of 

the liquids involved implies that the Reynolds numbers 

must have been of the order of 100 to 500. 

It can be seen therefore that the experimental results 

are insufficient to provide verification of the theory, 

although they do indicate general agreement. 

2. 	Summary and remarks  

The principal objective of this thesis has been to 

give a qualitative description of the extraction of solute 

from a liquid drop with internal circulation, and this has 

involved dividing the system into several regions - the 

boundary layers (internal and external), the wakes (also 

internal and external) and the interior and exterior of 

the drop - and describing the various parts that they play 

in the transfer process. 	A secondary objective has been 

to obtain quantitative expressions for the concentration 

at any point, and for the mass transfer. 

From a practical point of view the most important 

result of the qualitative description was the role of the 
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internal wake in convecting solute from the region of the 

rear stagnation point to the region of the front stagnation 

point and the consequential dominance of diffusion in the 

interior. 	If molecular diffusion played an important role 

in the internal wake then fresh solute would be continuously 

fed into the internal boundary layer. 	The result of this 

would be that the relatively fast boundary layer diffusion 

would determine the time scale of the process, instead of 

the relatively slow diffusion in the interior which this 

thesis has shown to be of paramount importance. 

Another consequence of the dominance of the interior 

is that the coefficient of diffusion in the bulk fluid (Do) 

is of little importance. 	The process is almost entirely 

governed by the coefficient of diffusion in the dispersed 

phase (D1). 

It has been shown that these circumstances give rise 

to a problem very similar to that solved by Kronig and 

Brink (13) except in one boundary condition, and that the 

solution to this problem is a uniformly valid first approxi- 

mation to the concentration field. 	This solution has a 

time scale significantly shorter than that of diffusion 

from a non-circulating drop of the same size. 	There is 

close agreement between the results of the present work 

and those of Kronig and Brink. 
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In the boundary layer there is no inherent time 

dependence, and time enters into the solution only as a 

parameter. 	The boundary layer equation itself is para- 

bolic in form, but in the internal layer this is modified 

by the condition that the solute is convected up the 

internal wake from the rear to the front without diffusion. 

Thus conditions in the "downstream" region (meaning, 

increasing X) have some effect on conditions in the "upstream" 

region, which is more characteristic of an elliptic equation 

than one of parabolic type. 	This solution in the boundary 

layer demonstrates the effects of the parameters Do  and E. 

The boundary layer solution was used to improve the boundary 

conditions for the interior problem and hence to find a more 

accurate solution in the interior, and a better approximation 

to the mass transfer. 

It was noted that the results of the theory are applic-

able to the case of a pure bulk solute diffusing into a 

solvent drop, the first approximation being identical with 

the first approximation to the extraction process, and the 

second approximation being obtained by adding a correction 

term which is a limiting case (as Do  tends to infinity) 

of the correction term in the second approximation to the 

extraction process. 	This result is of importance in obtain-

ing experimental verification of the thecry. 
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Throughout this thesis the phrase "high Peclet number" 

has been used to characterize the diffusion, but the meaning 

of this has not been made precise. 	The meaning has, 

however, been implied every time that a statement like 

"Pe-4  is much larger than Pe 2" has been used: "high 

Peclet number" means that the Peclet number is sufficiently 

large for the various powers of the Peclet number mentioned 

to be of distinct orders of magnitude, to the required 

degree of accuracy. 

The approach of this thesis has been entirely theore-

tical and the experimental results quoted were intended 

only to demonstrate that the derived results are not wildly 

at variance with those of experiments. 	This means that at 

present the theory lacks the experimental verification that 

is required to make its results conclusive. 	The basis for 

arguing the validity of the theory is that it is a valid 

mathematical deduction from valid assumptions. 

In a practical situation liquid drops are often 

spheroidal. 	The problem of mass transfer from such a drop 

has not been mentioned, except to exclude it from considera- 

tion. 	However, it is obvious that the conclusions of the 

qualitative theory will apply, at least in the case of flow 

at sufficiently small Reynolds number (where the flow is 

known to be only slightly perturbed from the flow around a 
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spherical drop) and it seems likely that this theory will 

be valid at higher Reynolds numbers when the perturbations 

are not so small. 	And, of course, the results of the 

quantitative theory will be a valid first approximation to 

the mass transfer at very small Reynolds numbers. 	It is 

tempting to assume that the qualitative theory will be 

valid for spheroidal drops at high Reynolds number, but 

care should be taken in making this assertion because the 

concentration boundary layers and wakes formed would be 

inside the velocity boundary layers and wakes associated 

with the flow and the nature of these is not yet understood. 

But it does seem almost certain that a similar theory will 

be valid and, even without considering the details of the 

qualitative theory, a quantitative theory could be established 

in a manner similar to that described here. 	Since the 

velocity in the velocity boundary layer is not known such 

a theory would ignore these boundary layers - just as the 

first approximation of the present theory ignores the 

presence of the concentration boundary layers - and would 

consequently contain inaccuracies of the order of Re-1  

(assuming that a.Re-1  is the order of the thickness of 

these layers). 
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APPENDIX ONE 

Solution of the boundary layer equations  

The problem is to solve two simultaneous equations, 

namely, 

a2c1 

ay2 

a2c  
0 

ay 2 

with the following boundary conditions: 

c l  q, AY+ B as Y 	CO 

co + 0 	as 	Y 

c1  = Ec0 	at 	Y = 0 

ac t 	ac c  

	

D2 	= D2 	at 	Y = 0 

	

1 	0 aY 	aY 

co = 0 	at 	X = 0 

cl  = 	 (Y) 	at 	X = 0 

	

At this stage 	is an unknown function. 

The problem is similar to that solved by Harper and 

Moore (6), and the same method of solution is used. 	For 

the sake of mathematical simplicity it is convenient to 

ac t  

aX 

aco 

aX 

Y < 0 

Y > 0 , 
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make some changes in the dependent variables co and c 

These are: 

Ko = E co 

K1 	cl  -AY- B 

Then K0 and K1  satisfy the same equations as co and 

cl  , but with the boundary conditions: 

K1  -3-  0 	as 	Y 4- - co 

K0 
-* 0 	as 	Y -3-cc. 

Kl  + B = Ko 
at Y = 0 

aK 	D1  aK = 0 0 Di 	1 + Di  A 	at 	Y = 0 1 	1 aY 	E aY 

Ko = 0 	at X = 0 

K1 	= Q(Y) at X = 0 

where Q(Y) = 1:7(Y) - A Y - B 

Probably the easiest way to solve this problem isto 

split it into three parts. 	The three parts will have 

the same equations but different boundary conditions. 

Since the equations are linear the final solution can be 

obtained by summing the solutions of the three parts. 

These are: 

(1) 	K1 
 = K

o 
= 0 at X = 0 

Di  aK 	1  aKi 0 0 	D2 	at Y = 0 1 
E BY 	BY 



DI  DK 
0 0 

E aY 

	

1 	aK 1 

	

= D2 	at Y = 0 1 aY 
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K
o 

4 0 	as 	y 4 m 

K1  4  0 	as 	Y 4. - co 

and Ko = K1  + B 	at 	Y = 0 

(2) Ko = K 1  = 0 at X = 0 

K0 = K 1 	at Y = 0 

K0 
4 0 	as 	y 4 m 

K1  4  0 	as 	Y 4- - co 

1 
D2  ax 	ax o o DI 1 	

1 
and -- 	= 	+ DI A 	at 	Y = 0 1 E ay 	aY 

(3) Ko = 0 
	

at X = 0 

Ko 	= K 1 
	 at 	Y = 0 

K0 9- 0 	 as 	Y -* co 

K 1  -* 0 	 as 	Y 4- - CO 

and K1  = Q(Y) 	at 	X = 0 

It is well known that 

M erfc  + N 
2IR 

Y 

is a solution of the diffusion equation. 	Clearly, with 

appropriate values for M and N, this will form a solution 
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for part (1) . 	This solution is: 

EAT B Yo 
o K 	1  erfc 

EA5 + 	iR 1 	15-0- a 

-,/5; B 	-Y1 

	

K I   erfc --- 
EV5T + 17 	21 

Part (2) is similar to part of the problem solved by 

Harper and Moore so that it is reasonable to guess that 

the solution must be of the form: 

Y 
ierfc 

24? 

On substituting this into the boundary condition the 

appropriate values of M are found. 	The solutions are: 

2 EAT A 	Yo Ko   1/7 ierfc 

2 Ei5 	-Y 
K1 	

1 = 	 4T ierfc 1 
 

	

E1/5-  + iff 	247 1 	( 	, 

In the same way part (3) is of similar form to part of 

Harper and Moore's problem, and the solution is therefore: 

Ko 	 Q(YI ) exp 
Ei57 	 (Yo  Y')2  

E/ + 0 	2/ 

dY 
E 	+ A5-0-  irTt 4 x 



0 1 	(Y 
Q(Y') exp ( 

- yl)2 
} dY' K1  1 
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E1/15-1-  - 0  	1 	(Y1 	Y')2  
Q(Y') exp 	} dY' 

EAT + 15; 2i7N 	4 X 

The complete solutions are obtained by adding the solutions 

of the three parts. 
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APPENDIX TWO 

The functions H and J 

H(m) and J(m) are defined by the following equations: 

	

H = 
	
hmhqhX dq : 

	

J = 	h h 
fe
l;
! dq 

where 	means that the integration is to be taken around 

a stream surface (along a line on which X is constant) 

and hm,  hg,  hx  are non-dimensionalised scale factors of 

the co-ordinate system, so that an infinitesimal displace-

ment of length ds can be represented by: 

	

ds2 = a2h2 dm2 	a2h2 de 	a2h2 dx2 

where dm, dq, dX, are the changes in co-ordinate values 

associated with the displacement. 	Since m, q, and X 

are known in terms of the spherical polar co-ordinate system 

p, 0, and X, then hm, hq, hx  may be determined from the 

expression for ds in spherical polars, which is: 

ds2 	a2 dp2 	a2p2  d02  + a2p2sin20 dX2  

Since 	dp = 22  dm + 12  dq + 22  dx 
am 	aq 	as 
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then 

ds2 	= a2{(12)2 	p2 (12) 2 + p2  sin20 (12.)2) dm 
am 	am 	am 

	

+ a 21(111)2 	p2 (12)2} de 
Dq 
	aq 

a2p2 sin20 dA2 

since all the cross-product terms involving 12 12  etc., am 3q 

are equal to zero because of the orthogonality of the 

system. 

Thus 

etc. 

In this manner hm' and hq  may be found. 	hA is not 

altered from its spherical polar value. 

hm 8 p sin 8.A 

(2p2  —  1)2 

4 p3  cos30.6, 

hA = p sin e 

where 
	

(1 - 2p2)2sin28 + (1 - p2)2cos20. 

The sign of the scale factors is arbitrary and the absolute 

value has been taken so that hq  is everywhere positive. 

From these the functions H and J may be determined. 

a2t 2l  = a2  i (12 ) 2  + p2 (.2.2) 2  
am 	am 

1 

q 



pV1 - pz 

(1 - p2) ✓pz(1 - 	- dp 
4In 
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Consider firstly H : 

  

m
hqh), dq 

(42  - 1)2  
32 p3  cos3e.A 

 

   

  

dq 

    

Since 	dq = - 4 p3  cos2e.A2  	dp  

(1 - 2p2)2  (1 - p2) 

when the displacement is along a surface on which m is 

constant, H is equal to 

where the integral is taken in the direction of increasing 

q (i.e. decreasing p ). 

Putting 	u = p 2  

and letting ul  , u2  (u1 	u2  ) be the two zeroes of 

u(1 - u) - 4m 

(u1  and u2  are the two values of p2  at the points 

where the stream surface cuts the equatorial plane), 

this is equal to 
U2 

1 	du 

U1 ✓(u - 1)(u - 111)(u - u2) 

and by making the transformation 

- U2 
t 

 

U1 - U2 



1 - U2 

/1-11 - u2 
where 
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this may be transformed into an elliptic integral. 	Thus 

1 
1 	dt  

4i177-.71-; - o  V(1 - tz)(1 - kztZ) 

In a similar fashion J , which is given by 

'h h 
dq 

J m 

is equal to 

2 
2 

(2p2  - 1) singe  dq 2 

p cos30 

which is equal to 

u 
2m {(1 - 03  + (311 - 2)4M1  du 

1(1 - u) { u(1 - u) - 4m} 

1 
4 	-m 
	

dt  
3 	V(1 - tz)(1 - kztl) 

O 

+ 2 

	

f
/1-7-71; (4 - 3m) 

o 1 _t2 

1 

/1 - k4tz  dt 

Graphs showing the behaviour of H and J are in Figures 

10 and 11. 

It is worth drawing attention to the nature of the 

singularity in H at m = 0 . 	It is well known (see, for 

example Page 522 in (18) ) that 

2 

So that 
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1 
dt 

ti - I log (1 - k2) 2 	 as 	k 4 1. 
1/(1 — tz)(1 — kztz) 

/U1 	- U2 

1 - U2 

e%, 	1 - km 	as 	m ÷ 0 . 

So 

H A,  - 7 log m 	as 	m 4 0 . 

J has no singularities in [0,1] . 

For the purpose of obtaining the boundary condition 

at the stagnation ring, namely 

ac = — 20 22- 	at 	m = 1 1  
Di 	am 

it is necessary to know DJ  and H at m = 1 . 	It is 
Dm 

easier to determine this in the spherical co-ordinate system 

than in the m,q system. 

As before 

h h, 
) -2-= dq hm 

p2sin20 A2 

	

= -   dp 
cos 6 (1 - p2 ) 

u 0 

Now 

— 16 dR 



a. 
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where 	R = p - 1 

1 - m 

and terms of order R3, y3, and smaller have been neglected. 

This is therefore a valid approximation for J in the 

neighbourhood of the stagnation ring (which is at R = 0 

y = 0 ). 

This integral is equal to 

77 	y . 

5 So that 	3J - _ -
n 	at 	J = 1 . 

3m 	i2 
Similarly 

dp  

(1 - p2) cos 0 

2 V 2 

/Y 	8 RZ 

211 

dR 1 
2 

1  

4W 

with the required result that 

ac 	ac — 20 	at 	m = 1 . 
ai 	Dm 



-1148- 

APPENDIX THREE 

Evaluation of C1 ds 

The continuity equation in the m, q, A co-ordinate 

system is 

(h,
A  h

m  vq) = 0 2 
aq 

there being zero component of velocity in the directions 

of increasing A or increasing m . 

Thus the velocity component vq  must be given in 

terms of the stream function m by 

V 
q hAhm 

am - • Fri  K 

7 where K' is some constant. 	At 0 = -27 there is a 

discontinuity in the direction of increasing q and a 

consequential change of sign of vq  and hence of Kt. 

Since the velocity on the surface of the drop at the 

equator is vo and since the velocity is in the direction 

of decreasing q in the hemisphere 0 < 0 < 	, and in 

the direction of increasing q in the hemisphere 

tr 7  < 0 < 7 it follows that 
vo  

Kt - 7- 	0 < 6 < 2 
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K' 	0  2 
— < e < 

Hence 

ds d = 	s  
JSivq 

fi 
f

S 

 ds 

2 q 

where S1  is the part of the surface of constant m in 

the hemisphere 0 < e < 2 , and S2 is the part of the 

surface in the hemisphere 7
< 	

< 7 , 

so that 

C) 
.12 a 	

17  

8a 

hcidct h d 
ci 

v 

= 

-- vg  

h
m
h
q
h
A 
dq 

SI 

h
m
h
q
h

A 
dq 

H(m) 

a 

S2  q 

h m  h q  h X  
S2 

vo 

8a 

Sao 

V 
0 

vo 

= 	if 1T 	at 	m = 1 . vo 

dq 
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APPENDIX FOUR 

Inversion of order of integration and differentiation 

The derivation of equation (5) in Chapter 4 is complete 

apart from the demonstration of the validity of inverting 

the order of integration and differentiation, which is given 

here. 

The equation is: 

DC H  

at 

h h — D 	( 	A 3c) dq  

a2  , 3m hm am 

and it is desired to invert the order of differentiation 

and integration on the right-hand side. 	It should be noted 

that q varies from - co to 	and m varies from 

0 to 1 . 

The right-hand side becomes simpler in form when 

written in the same form as is used in Appendix 2 to evalu- 

ate J : 

4 D 	3 

3 a2 	am 

    

    

 

11-771; 1/(1 	kzu2 )(1 - uz) 

     

2 	u2  (4 - 3m) 	
1

- k2u2  l ac 

/ 1 — 1.12 	DM 
du 
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where 	k2  
111 - U2 

 

1 - U2 

and u1  and u2  are the two zeroes of 

u2  - u 	Im 

with 
	

U1 > U2 

It is now clear that for k < 1 (which corresponds to m 

being greater than zero) this integral is convergent, being 

equivalent to 
1 
Ddu _ 	A(u) 	--  
a2 	f o 	it - uz  

where A(u) is bounded in [0,11 . 	(This assumes that 

i -- 	s a bounded function of u). am 

It will now be shown that the order of differentiation 

and integration may be changed for any value of m such 

that E . m < 1 where E is any real number such that 

0 < E < 1 . 

Let 
	

f(u,m) denote hghx 37 

hm Dm 

and 	g(u,m) denote af. 
am 

u and m are both space co-ordinates: the dependence of 

the functions on time is ignored here. 

Then f and g are continuous functions defined in 
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O< u < 1 and E < m < 1 , where 1 > E> 0 . 

Then 

a 	f(u,m) du 	 du lim 	f(u m+x) 	f(11°71)  du 
3m ilo 	x 	 7441

0 	 0 

1 

= 
	lim 	f(u,m+x) - f(u,m)  du 
x 0 

V 0 

Jr 1  

lim g(u,m+4)x) du 
x4-0 0 

where 0 < 	< 1 , by the mean value theorem. 

It will now be shown that this is equal to 

P 1 

g(u,m) du 

%./ o 

The function g(u,m+x) is a well-behaved function of 

u except near u = 1 where it becomes infinitely large. 

Since, as was shown above, its integral converges it follows 

that for every Z > 0 , there exists V > 0 such that 

g(u,m+x) du 

g(u,m) is uniformly continuous in 0 < u < 1 - V 

E 	m < 1 so that for every Z > 0 there exists x0 > 0 

such that, for every x satisfying Ix1 < x0 
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It follows, therefore, 

f  

g(u,m+x) 	- 

that for 

g(u,m+44)x) 	du 

g(u,m) 

Ix' < xo  

1 

g(u,m) du 

./1 

fg(u,m+csx) — g(u,m)} du 

1-v  f

fg(u,m+4x) - g(u,m)} du 

o 

1-V 

2 Z 	Z (1 - V) 

= (3 - V) Z 
which proves the required result that 

x 0 lim jil g(u,m+(px) du 	g(u,m) du 

and hence that 
1 

g(u,m) du a 
am f(u,m) du in E 4 m 	1 

For k = 1 (corresponding to m = 0), the integral of 

the derivative does not converge, since it contains a term 

of the form 
	1 

du  

1 - u2  

This is of no practical importance since inverting the order 

of integration and differentiation is valid everywhere else 

in [0,1] . 
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APPENDIX FIVE 

ir  
Evaluation of c dY 

o 

This appendix demonstrates a method of evaluating 

c dY 

CO 

where 

 

iff B 

  

	 erfc 
EVTT + Do 1 	21/K- 

 

 

2/5-  A 

 

Y 

 

17-  ierfc 
Ev/171-  + 15 	e  

 

  

V5- 
+ 	1  1 	 - (Y - Y')2  Q(Y') exp 

E/U + 1/757)  V7a; 	4 Xe  

dY' 

Clearly the most difficult part of this problem is in 

integrating this last term, especially as Q(Y) is not 

known in an analytic form. 	This term may, however, be 

integrated by using the integral equation for Q(Y) - 

equation (8) 1-ILL, K,44.1 	u- 44a 	ktdaelcaalterult(0- 
2=Z  • 

B 	-Y 
Q(Y) =   erfc 

E)5-  + 	21/Y; 1 



equals 

co 	o 

Q(Y1 ) exp 
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2 Ei157.  A 	-Y 
ierfc 

EAT; + /15-0. 	21/T- 

1 
	0 

Q(Y') 
21/7a;  

exp 	(Y
--v )2 
 + na exp 	(Y+V )2 

	
dY' 

4 Xe 	4 Xe  

where 
- 

na EAT + 

When the the last term in hhis expressicn is integrated 

with respect to Y from -co to 0 it produces a term 

which is equal to the right-hand side of the equation (when 

integrated) and a term which is similar to the last term in 

the integration of c . 	In fact: 

rojqo 
(Y+Y')2  Q(Y?) exp 	(Y-y, )2}  + n c:xp 

co -co 	4 Xe 	
a 
	4 Xe  

 

dY' dY 

  

(t+Y')2  + n exp f (t - Y')2  
4 Xe 	

a 
	4 e  

ildY' dt 

where t = -Y . 

On reversing the order of integration (which is permissible 

because the fact that Q(Y) 	0 as Y - 	means that 

the integration with respect to Y 1  is uniformly convergent) 
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this becomes: 

o - Y' 
Q(Ye)1/.71(; 2 - erfc 

2V77-m 

which equals 

- Y' 
na erfc 	.dY' 

247- 

ir  Jr 	

_ yl 
21/77 	Q(Y 1 ) dY' +117 	Q(Y')(na-1) erfc 	dY' 

247- o 

In the integration of c with respect to Y the 

last term is equal to 

	

A57 	- Y' 

E 	+ 	
Q(Y') erfc 2JC- dY' 

i5-  o ir e -03 

on reversing the order of integration. 

And, by the previous result this must equal 

AT; B 

EAT+ 15- o 

erfc 

	

-Y 	EV5-  21/5-  A 	o 	-Y 1 	1  dY 	ir ierfc dY 

	

21/r 	/To  E1/5-+Jj- c 	267 1 o 	e 
CO 

0 	 0 

•• CO 

and this equals 

q,  B 	EAT 	2VT:-.), A 
erfc 	dY 

E 	2V EIT5T+11To  1 	0 0 

CO 	

Y 
ierfc 	dY 

2IR- 

So that 
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1c dY = 

J o 

21 AVR: 	ierfc 	dY 1 0 	 2 JR- 

A , =- 2-- Pi A 

0
e 

Since the mass flux is given by 

27a2  v Pe 	c dY o o 

it is equal to 

- 
3  —8  Tr a2  vi  D2  A o 

which is the required result. 
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APPENDIX SIX 

The co-ordinate q 

In order to make the co-ordinate system orthogonal it 

is necessary to find an orthogonal compliment (q), to 

the co-ordinate m . 

m = 4 p2  (1 - p2) singe 

Since q is orthogonal to m it follows that: 

2g. am 	1 22 am 

ap ap 	p2  ae ae 	0  

that is 

12 	12 
8 (p - 2p3) sin20 + 	8 (1 - p2) sin 0 cos 8 	0 3p 	ae 

This is a Lagrange linear equation and has the solution: 

any function of p cos e  

In order to be consistent with Kronig and Brink's 

notation 

q 
	p4  COS40 

2p2  - 1 

is taken. 

The co-ordinate system is illustrated in Figure 4. It 

should be noted that as one moves along a line of constant 

(1 - 2132)4  
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m and X 	q decreases as p increases. 	In other words 

in the upper hemisphere (0 < 0 < ) the co-ordinate 2 

decreases in the direction of the flow, and in the lower 

hemisphere (i < e < 	q increases in the direction of 

the flow. 	This means that there will be a change in the 

sign of v as one moves through the plane 0 = 
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TABLE 1  

Profiles of the first approximation to the 

concentration at various times 

    

m = 

Time* 

.00009 

.0004 

.0007 

.0011 

.0014 

.0018 

.0021 

.0092 

.0163 

.0234 

.0305 

.0375 

.0446 

.0517 

.0588 

.0659 

.0730 

.0800 

.0871 

.0942 

.1013 

.1084 

.1154 

.1225 

.1296 

.1367 

0.025 	0.225 	0.425 	0.625 	0.825 	1.000 

 

0.9798 	1. 	1. 	1. 	1. 	1. 

	

0.2110 0.9835 1. 	1. 	1. 	1. 

	

0.1449 0.9085 0.9989 1. 	1. 	1. 

	

0.1157 0.8267 0.9923 1. 	1. 	1. 

	

0.0983 0.7561 0.9783 0.9996 1. 	1. 

	

0.0866 0.6974 0.9586 0.9986 1. 	1. 

	

0.0779 0.6483 0.9356 0.9963 1. 	1. 

0.0317 0.3014 0.5701 0.7942 0.9397 0.9949 

0.0213 0.2067 0.4095 0.5129 0.8029 0.9362 

0.0161 0.1573 0.3173 0.4908 0.6706 0.8253 

0.0128 0.1251 0.2545 0.3991 0.5567 0.7026 

0.0104 0.1016 0.2074 0.3275 0.4611 0.5887 

0.0085 0.0833 0.1704 0.2698 0.3816 0.4897 

0.0070 0.0686 0.1405 0.2227 0.3156 0.4060 

0.0058 0.0567 0.1160 0.1840 0.2610 0.3361 

0.0048 0.0468 0.0959 0.1521 0.2158 0.2781 

0.0039 0.0387 0.0792 0.1258 0.1785 0.2073 

0.0033 0.0320 0.0655 0.1040 0.1476 0.1902 

0.0027 0.0264 0.0542 0.0860 0.1220 0.1573 

0.0022 0.0219 0.0448 0.0711 0.1009 0.1301 

0.0018 0.0181 0.0370 0.0588 0.0834 0.1075 

0.0015 0.0149 0.0306 0.0486 0.0690 0.0889 

0.0013 0.0124 0.0253 0.0402 0.0570 0.0735 

0.0010 0.0102 0.0209 0.0332 0.0472 0.0608 

0.0009 0.0085 0.0173 0.0275 0.0390 0.0503 

0.0007 0.0070 0.0143 0.0227 0.0322 0.0416 

 

    

* Time 
	i 
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TABLE 2 

The first approximation to the mass extracted 

from the liquid drop as a function of time 

(Initial mass of solute in drop = 1.0) 

Time* Mass loss Time* Mass loss 

0.00009 0.0504 0.06397 0.8803 

0.00053 0.1208 0.06927 0.8962 

0.00097 0.1608 0.07458 0.9099 

0.00150 0.1968 0.07989 0.9219 

0.00204 0.2261 0.08520 0.9323 

0.00734 0.3992 0.09051 0.9413 

0.01088 0.4712 0.09582 0.9491 

0.01442 0.5288 0.10112 0.9558 

0.01973 0.5987 0.10643 0.9618 

0.02504 0.6554 0.10997 0.9651 

0.03035 0.7027 0.11528 0.9698 

0.03566 0.7430 0.12059 0.9738 

0.04096 0.7776 0.12590 0.9773 

0.04627 0.8072 0.13120 0.9803 

0.04981 0.8248 

0.05512 0.8482 

0.06043 0.8683 

* Time 



-165- 

TABLE 3 

The first approximation to the concentration at the 
stagnation ring as a function of time 

Time * Concentration Time* Concentration 

0.00009 1. 0.06043 0.3217 

0.00053 1. 0.06397 0.2926 

0.00097 1. 0.06927 0.2538 

0.00150 1. 0.07458 0.2202 

0.00204 1. 0.07989 0.1909 

0.00734 0.9989 0.08520 0.1656 

0.01088 0.9882 0.09051 0.1436 

0.01442 0.9592 0.09582 0.1245 

0.01973 0.8865 0.10112 0.1080 

0.02504 0.7967 0.10643 0.0936 

0.03035 0.7047 0.10997 0.0852 

0.03566 0.6177 0.11528 0.0739 

0.04096 0.5389 0.12059 0.0640 

0.04627 0.4689 0.12590 0.0555 

0.04981 0.4270 0.13120 0.0482 

0.05512 0.3707 

Dl  
* Time = = t - 

a2 
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TABLE 4 

Solution of the integral equation (9) 

and values of B7 

0.2 0.5 1.0 

pb 	(z) 

2.0 5.0 CO 7 
E D1 2  

Z 

0.0 -2.543 -1.441 -1.000 -0.7808 -0.6503 -0.5643 

0.2 -2.469 -1.358 -0.9150 -0.6941 -0.5620 -0.4741 

0.4 -2.424 -1.308 -0.8643 -0.6425 -0.5090 -0.4200 

0.6 -2.401 -1.282 -0.8378 -0.6152 -0.4812 -0.3914 

0.8 -2.391 -1.271 -0.8263 -0.6034 -0.4690 -0.3788 

1.0 -2.387 -1.267 -0.8227 -0.5996 -0.4651 -0.3748 

1.2 -2.387 -1.267 -0.8224 -0.5993 -0.4647 -0.3744 

1.4 -2.387 -1.268 -0.8229 -0.5999 -0.4654 -0.3751 

1.6 -2.389 -1.268 -0.8235 -0.6005 -0.4659 -0.3757 

1.8 - -1.268 -0.8238 -0.6008 -0.4662 -0.3760 

2.0 - - -0.8239 -0.6009 -0.4664 - 

2.2 - - - - -0.4662 - 

-2.389 -1.268 -0.8239 -0.6009 -0.4662 -0.3760 

B 
A = 4.597 1.953 0.9514 0.4626 0.1794 0. 
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TABLE 5(a)  

(a) 	The first approximation to A/PeT1  

as a function of time 

Time * 
_1 

A/Pel2  Time* 
_1 

A/Pel  

0.00009 -145.78 0.06043 -1.747 

0.00053 - 54.33 0.06397 -1.588 

0.00097 - 38.69 0.06927 -1.376 

0.00150 - 	30.19 0.07458 -1.193 

0.00204 - 25.35 0.07989 -1.035 

0.00734 - 11.62 0.08520 -0.8971 

0.01088 - 	8.969 0.09051 -0.7780 

0.01442 - 	7.372 0.09582 -0.6746 

0.01973 - 	5.839 0.10112 -0.5850 

0.02504 - 	4.814 0.10643 -0.5073 

0.03035 - 	4.057 0.10997 -0.4614 

0.03566 - 	3.462 0.11528 -0.4001 

0.04096 - 	2.975 0.12059 -0.3470 

0.04627 - 	2.567 0.12590 -0.3009 

0.04981 - 	2.330 0.13120 -0.2609 

0.05512 - 	2.016 

* Time = i = t -11  
a2 
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TABLE 5(b)  

(b) 	Effect of 6b 
on the value of A/Pe lf  

Second approximation to A/Pe-1  = First approximation + Ab  

Time * b 1 
x 	/ 
Ab 

, 1 Ti 	pe 7  Time * 1 	
A 

f, X  	1p0-.1 

0.00009 -385.44 0.06043 -3.324 

0.00053 - 97.29 0.06397 -3.183 

0.00097 - 60.39 0.06927 -2.971 

0.00150 - 42.81 0.07458 -2.762 

0.00204 - 33.74 0.07989 -2.556 

0.00734 - 10.06 0.08520 -2.357 

0.01088 - 	8.082 0.09051 -2.166 

0.01442 - 	6.881 0.09582 -1.984 

0.01973 - 	5.772 0.10112 -1.813 

0.02504 - 	5.096 0.10643 -1.652 

0.03035 - 	4.655 0.10997 -1.550 

0.03566 - 	4.344 0.11528 -1.407 

0.04096 - 	4.098 0.12059 -1.275 

0.04627 - 	3.881 0.12590 -1.153 

0.04981 - 	3.742 0.13120 -1.041 

0.05512 - 	3.534 

* Time 
	D 

a2 
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TABLE 6 

Effect of b on the mass loss 

Time * -7" x Mass loss 	(b) Time* i,x Mass loss (b) 

0.00009 -1.559 0.06043 -0.5473 

0.00053 -1.407 0.06927 -0.4916 

0.00097 -1.339 0.07989 -0.4329 

0.00150 -1.285 0.09051 -0.3828 

0.00204 -1.244 0.10112 -0.3407 

0.00734 -1.077 0.10997 -0.3109 

0.01088 -1.013 0.12059 -0.2810 

0.01973 -0.8933 0.13120 -0.2565 

0.03035 -0.7842 

0.04096 -0.6917 

0.04981 -0.6224 

Second approximation to mass loss 

= First approximation + Pe1 1  (mass loss (b)) 

* Time 	i D 

a2 
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