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ABSTRACT

-

FPluid flows effected by surface tension variations are
considered. A discussion of the various agencies causing
these variations is given together with laboratory, industrial
and natural illustrations of such flows. The equationsof
motion, mass transfer and state for the surface phase are
‘described and discuséed. The various theoretical models
produced for Bénard's cells are described and compared. Yih's
model for two dimensional variable surface tension driven
flow when the variation is caused by an insoluble contaminant
is discussed and an analysis of a singular point in a phase
plane is used to examine the possible instabilities in such
a flow. By extending Yih's analysis, a model is produced for
the flow in a shallow fuel layer near, but not close %o, a
burning wick. The solutions for the variations of surface
tension and fuel depth with distance from the wick are obtained
numerically. A separate solution, developed from slow viscous
corner flow theory, is provided for the flow close to the
wick. ©Neglecting the variation of depfh associated with these
flows, a model is produced for the effect of a heat source
placed at the.corner of a rectangular cell. The solutions are
found using a Green's function which is obtained as a series
of eigenfunctioﬁs and eigenvalues. A model produced for flow
owing to a moving heat source involves the solution in a fast
moving boundary layer close to the surface by formulating Yih's
basic equations in a moving frame and then obtaining numerical
solutions for surface tension and liquid depth, and the
solution in +the layer below using a Von K4drmdn-Pohlhausen

‘technique. Using this Von Karmén-Pohlhausen technique again,



an analysis for the flow in an aqueous solution on contact

with a hot gas is presented.
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CHAPTER 1

General Introduction

The greatest influence on shallow liquid flows is
probably that owing to surface tension variations: the
variation of surface tension along the interface of a

fluid gives rise bto tangential stresses which affect the
motion of the fluid. These variations can be caused by
changes in the surface temperature, changes in molecular
composition of the interface when more than one substance
‘is present and also by electrical effects. Heat and mass
transfer processes taking place in a shallow liquid layer
have, therefore,.a étrong effect on the motion taking place
in that layer.

The name "Maraﬁgoni effects!' has been given to motions
which are induced by variations of surface tension at the
interface between two fluids, examples of which are given
by Scriven and Sternling (1960) and in the review papers by
Kenning (1968) and by Levich and Krylov (1969). Perhaps the
easieét commonly observed effect is the '!Tears of Strong
Wine!' which occurs when the walls of a glass are wetted by
wine. A thin film of wine forms on the inside of the glass
but the evaporation of alcohol rapidly reduces the concentration
of alcohol in this film and causes the 'old! film to have
a higher surface tension than that of the 'mew! films just
rising from the bulk of the wine. The 'o0ld' thus retracts
from the 'new! film and soon yields small droplets.

A simple experiment which demonstrates very easily

motion produced by surface tension variations is the ''Camphor



Dance'!'. A grain of camphor placed on the surface of clean
water is seen to start moving about violently. Because of
the dissymmetry of the grain the amount of camphor entering
the water surface varies at different points of the grain.
Hence the surface tension of water is lowered to a different
.extent at different points on the circumference and the grain
is pulled most strongly towards the point of greatest surface
tension. Both the 'tCamphor Dance'! and the ''Tears of
Strong Wine'! are described by Bickerman (1968). The effect
of surface temperature variations on a shallow liquid layer
‘can be observed in the laboratory by placing a heat source
close to the surface of a pure liquid which does not decompose
.under the actioniof heat. It will be seen that there is a
net surface flow away from the source and a corresponding
depression of the surface owing to the decrease in surface
tension at the hot spot. The opposite effects will be
observed when a liquid is locally cooled.

Marangoni effects occur naturally, on the surface of a
polluted river for example. The effect is also important
where a river enters the sea owing to the presence of natural
solutes in river and sea water, in addition to the possible
pollution of the river. A commonly observed effect is the
damping of gravity waves by a thin layer of crude oilj; a
mathematical treatment of this effect is given by Milqs (1967) .

As well as being apparent in nature, Marangoni effects
are of industrial importance iﬁvolving heat or mass transfer
across an interface eg distillation, fractional distillation
and ligquid-liquid extraction. Minute guantities of some

substances present on the surface of some liquids can produce
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extremely large changes in surface tension. Ixperiments,
involving processes such as fractional distillation, carried
out in the laboratory with clean apparatus and pure materials
may not therefore be applicable to a large scale industrial
plant where every trace of contaminant cannot be removed.

This thesis contains a theoretical analysis of some
flows driven by surface tension variations. Chapter 2
-contains the derivation and a discussion of the equations
and boundary conditions at the surface which will be needed,
in addition to equations for flow in the bulk of the layer,
fTor the analysis of such flows.

Chapter 3 and 4 are concerned with important work done
'previously on variable surface tension driven flows.
Chapter 3 contains a review and discussion of the work done
in connection with Benard's cells problemn. Origiﬁally a
classical example of buoyancy driven convection and subse-
quently shown to be affected by the surface tension gradient
present, these cells have been the subject for many theoretical
models based on buoyancy only, surface tension only and also
models.based on both buoyancy and surface tension. Chapter 4
considers in detail the analysis produced by Yih for two
dimensional variable surface tension driven flow in a shallow
liquid layer where the surface tension gradient is produced
by an insoluble surfactant. In particular, the instabilities
mentioned by him are considered and some of his conclusions
are shown to be incorrect.

Chapters 5, 6, 7 and 8 provide theo?etioal analyses
for variable surface tension driven flows produced by constant

heat sources, the ones in Chapters 5, 6 and 7 being fixed in
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space., The effect of buoyancy is neglected in all four
models and also in the model presented in Chapter 9. In
Chapter 5‘a model aﬁplicable to the problem of a shallow
layer of fuel burning at a wick is presented. As the
solution obtained does not satisfy the zero velocity
condition at the wick a separate model, which is given in
Chapter 6, is needed to describe the flow in the wedge shaped
region formed by the wick gnd the surface. In Chapter 7

a model applicable to the case of a heat source present at

?he centre of a pool of fuel is produced. The only limitation
placed on the depth of the liquid layer in this model is the
implicit one made by assuming buoyancy effects are negligible.
This depth is however assumed constant, contrary to all the
other models presented in this thesis. In Chapter 8 a
theoretical analysis is' presented for the flow produced in a
liquid Iayer by a constant heat source moving with constant
velocity over a liquid layer.

The flow considered in Chapter 9 is that produced in a
solution whose surface tension is varied both by the action
of temperature and a solubie contaminant lowering the surface
tension of the solvent. An experiment has been performed by
Skogen where the solute in such a solution is destroyed by
the action of a heat source present at the surface, thereby
producing two opposing agencies affecting the surface tension.
In Chapter é 3 theoretical analysis is provided for this
Skogen effect.

The concluding chapter, Chapter 10,. contains suggestions

how the models presented here could be extended. It also
contains a review of the future importance of flows affected

by variable surface tension.
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CHAPTER 2

Surface Phase Lquations

2.1 Introduction

The concept of a surface phase has been introduced
_ when éonsidering two phase flows. This phase consists of the
molecules of each bulk phase which are directly affected by
the molecules of both bulk phases. One can suppose that these
molecules constitute a two dimensional continuum with its own
.1aws of physics. The basic results obtained from these laws
are needed, mainly as boundary conditions, for theoretical
models for flows in shallow liquid layers where surface

phenomena are important.

2.2 Dynamical Equations

Scriven (1960) formulated the equations of motion for
this phase. One must use a two dimensional set of coordinates
and its associated metric tensor, a“h , defined by the surface.
Scriven considers the interface between two fluids to be a
two dimensional isotropic continuum. He alsoc considers it to
be Newtonian so that by definition the relation between stress

i ;
and rate of strain is linear,

phh h oy ghhaf s

= P B (2'1)
where Tuh is the surface stress tensor and S&B the surface
rate of strain tensor. Using the property of isotropy one

gets after suitable rearrangement

L KaukaaBSaB+ s(aukakﬁ+a”6aha-a“haaﬁ)SaB, (2.2)

where T +the interfacial tension, K the coefficient of
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dilational surface viscosity, and é -the coefficient of

shear viscosity are scalar quantities dependent on the

temperature and molecular composition  of the interface.
With the fluid at rest, the surface is in a state of

uniform stress, SaB=O , so that

phA = PR (2.3)

T coincides with the equilibrium interfacial tension from
thermodyﬁamic Considerationé. From these relations one can
see clearly the analogy between surface tension in two
‘dimensions and pressure in three dimensions.

| The relation (2.2) between stress and rate of strain is
then used by Scriven to obtain the equations of motion for
the surface phase. These equations are formulated in a fixed
Cartesian frame becéuse in general the surface frame is non
inertial. The equation balancing the forces which act in the
direction "& on a portion of surface, It , defined by the

contour C , is

jj YAiﬁid = jf Fizid + j\Tizids (2.4)
L . z

C
where‘latifn iﬁdices refer to the fixed frame, Yy is the
surface dehsify, Ai the acceleration. Fi is the resultant
of the-exterﬁal forces, which includes the effect of the
bulk stresses at the interface. If, in the absence of any
other forces, the stress tensors in the bulk phases A and

B are 1,7 ana 1,79, respectively,
Pt o= (TAla - TBla)nj . (2.5)

. where nj is +the normal to the surface I pointing into
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the bulk phase B. ™ is the expression in the Cartesian

frame for - T”hm m being the outward normal to the

A N
contour C. Usually the terms involving y can be neglected
so that the equation of motion at the interface is just a
relation between the stresses in the bulk phases at the

interface and the surface stress. TFor a plane stationary

_interface in the (x,y) plane the relation

ov

v, .
TA'TB=EI + (K+a) = (= *637'2) + € (-———-——-—X) (2.6)

[o]]

:is obtained where (VX,Vy) is the velocity of the liguid at
the surface and TA’ TB are the bulk stresses at the inter-
face in the =x direction, ﬁith the normal from phase A to
B Dbeing in the positive 2z direction.

For most problems the terms in K and € are neglible,.
If in addition phase B 1is air and phase A 1s a viscous
incompressible fluid then as the bulk stress of the air ié
negligible one obtains a boundary condition for the fluid

velocity (u,v,w) given by

il - A
(g 4 ) = 48 s (o=21), (2.7)
which becomes
) 0o
l.l-él'zg: = 1x (2.8)

. if the mass transfer across the interface is uniform. This
boundary condition will be used later in the problems of

two dimensional surface tension driven flow which follow.
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2.3 IEquations of mass transfer

If in addition to two homogeneous fluids as phases
A and B a contaminant is present, the equation of mass
transfer for the contaminant in the surfaée phase is required. -

The equation given in Ievich (1962) is

o . .
3Tt V.(FuS-DS VI)+ j, =0 (2.9)

where T dis the surface concentration of contaminant, DS

is the surface diffusion coefficient, jn is the number of
molecules leaving the surface to either bulk phase/unit area,
and ug is the tangential surface velocity. The differential
operators refer to the surface coordinates.

For insolublé contaminants jn=O. For soluble contaminants
jn is controlled by the adsorption-desorption process and by
diffusion in the bulk phase (S) in which the contaminant is
soluble; normally one of the two limiting cases for which jn
is controlled completely by the slower process is considered.
When adsorption or desorption is the controlling process

Levich derived the equations
Jy = UT =T ) (2.10)

where T 1is the equilibrium value of T and d is given by,

(2L

« = (3%

e
oA [ =T

r = TO o

with P(A) +the desorption flux and Q(A) +the adsorption flux.

When diffusion is the controlling process

0

(¢]

=D

|

(2.11)

@
=]

In
where ¢ is the concentration in the bulk phase, D the bulk

mass diffusivity, and the cutward normal to that bulk phase.
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2.4 Equations of state

For a three dimensional continuum there is an equation
of state, £f(P,p,T)=0. TFor the two dimensional surface phase
with a contaminant, concentration T , present there is
an analogous relation, F(o, I' ,T)=0, called the surface

equation of state. Tor a pure liquid the equation of state

c = K(Té—T) (2.12)

where X 1is a positive constant and TO the critical
temperature of the liquid, is in good agreement with
experimental evidence. |

Experimental results for the variation of surface tension,
of an aqueous solution in contact with air, with concentration
of solute show most solutes belong to one of three classes,
see Pigure 1. A good account is given by Davies and
Rideal (1963%) and Bickerman (1968). TFor the first class which
contains unionized organic compounds at low concentrations,
surface tension is a-linear decreasing function of concentration.
For the second class which contains inorganic salts at high
concentrations, surface tension is a linear increasing function
of concentration. In the third class are the long chain ions
such as soap for which at low concentrations surface tension
decreases very.rapidly with concentration. Sulphuric acid for
which surface tension is not a monotonic function of
concentration is an example of a solute which does not belong
to these categories.

The theoretical surface equations of state which are
based on thermodynamics and chemical kinetics have good

agreement with the experimental evidence. Gibb's adsorption

which was derived from bthermodynamic consideration is true in
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its most general form for any solution in contact with its
vapour. The adsorption isothgrm for a particular system
which is derived from chemical kinetics is then used in
conjunction with Gibb's equation to derive the equation of
state for that system. TFor solutes of the first class the

équation derived is
n = KIT (2.13)

where =0 n~0 5 Ogm being the value of o at temperature T
and I'=0, and X is a positive constant. It is easy to

see the analogy between this relation and the ideal gas law
P=RTp. The relationship n=KTTI could have been obtained by
regarding the surface phase as an ideal gas, each molecule
having just two degrees of freedom.

Contaminants which are insoluble in a liquid generally
lower the surface tension of that liquid. For systems with
insolubie ligquid contaminants in which the bulk phase of the
contaminant is neglected the surface equation of state is
generally not ideal. Because the molecules in these so called
monolayers are closely packeg, neither the forces of attraction
between the molecules nor the area occupied by them is
negligible as is assumed in the ideal theory: One of the
equations of state for monolayers which considers these
factors corresponds to van der Waal's equation for gases.

In the problems which follow the equation of state will
be the Taylor expansion for o(T,c) with quadratic and

higher powers neglected,

o = o(T, ,c,) + (T -T)+ Ble-c,) ' (2.14)
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00 dg
where a = = k—~) and f = ——)
0L/ par ( 9¢ / p=p

The physical justification for this is seen in the preceeding

review,.
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CHAPTER 3

%  Surface tension driven cellular convection

3.1 Introduction

It has been observed that when the temperature gradient
across a shallow layer of liquid, heated from below, exceeds
a critical value the layer becomes unstable and after an
irregular transition period the flow becomes steady. In this
steady state the layer is divided into vertical cells of
polygonal cross section, the fluid rising in the centre and
falling along the édges.

These cells were first observed by Bénard in 1900 when
he heated a thin layer of spermaceti and cooled it above.

An illustration of these Bénard Cells appears in 'Laminar
Boundary Layers' (1963). A theory based on buoyancy was put
forward.by Rayleigh (41916) to explain this phenomenon. This
basic theory has been refined by Jeffreys (1926), (1928),
Low (1929), Pellow and Southwell (1940) and others.

Block (1956) repeated Benards experiments and observed
cellular convection for temperature gradients less than the
critical value predicted by the buoyancy theory. He also
observed cellular convection in a layer cooled from below,
which cannot be explained in terms of buoyancy. He found that
when a film of silicone, which reduces the surface tension
of the liquid, was placed on the surface of the layer heated
from below, convection was reduced by a half. Block concluded
that the Béﬁard cells were caused by variations of surface
tension which are due 1o non-uniformities of temperature over

the free surface. ILed by the observation that the cells occur
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in drying paint films whether the free surface is above or
below, Pearson produced a theory for Bénard's cells based
on variations of surface tension at the free surface.

This chapter contains a review of the models produced

for Bénard's cells.

3.2 Models assuming that the flow is driven by buoyancy,

An account of the buoyancy theory is given by Lin (1955).
This section contains a summary of that work.
Consider a thin layer of fluid contained within the boundaries

y=0,d. The equation of motion is

e
>|>
cH [e

- =~ pgf- VP+py¥u (3.1)
the equation of continuity is

%%+ v.(pn) =0 (3.2)

the equation of heat transfer is

0
0

=

+ou. VT = k¥ 2p (3.3)

l

<t

and the equation of state 1is
p = p l1-a(T-T,)] : (3.4)

where o is the density %¥Hiefgrggﬁgrteggerajuris T . and
§ e unik o 810 proulirt Qi bion .

oo 1is the coefficient of expansion,k It is assumed that v ,

K, & are constants. In the unperturbed state

u=0 (3.5)
T :-To - By ' | (3.6)
o = p (1+aBy) (3.1

where B is the temperature gradient T,-T /4, T, and Tj

1
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being the temperatures at the upper and lower plates

respectively. When the system is perturbed write

.T = T + Tt (3.8)
+p! ' (3.9)

ol

p."_'

and linearize the equations for T!', u', p' +to give two

final equations for v and T' V ‘oen\s the. veloeity component
i upward gdirecfion,

(é% Z kve)Tr = By (3.10)
(.a_a_.t_ —- \)V2)V2V = agva' (3-11)

The boundary conditions on v are

y=0,d : v = KA (3.12)

The boundary conditions on the temperature depend on the

heat transfer properties of the surroundings. In Béhardg
experimehts the lower surface was metallic and the upper
surface was air so it can be assumed in this case that the
lower surface is a perfect conductor and the upper surface is

a perfect insulator. The conditions are therefore
y=0 ¢+ T' =0 (3.13)

y=a : (3.14)

oo
= 1=
il
O

Dimensionless variables are now introduced,

(E:n 33) = ('}ags %’ %) y T ='§_§' (3-15)

and a solution of the form
v =X ,f)r(n)ef” ' (3.16)

Tt = pd F( g, )e(n)el” (3.17)
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This requires

2 2. : '
g_g + g—% + a®F = 0 (3.18)
o0& on :

and a sixth order eigenvalue system is ohtalned:

[p-(D?-a®)] g = -£ (3.19)
[pPr= - (02=?)] [D2-a?]t = Ra‘g (3.20)
n=0,1: £=£'=0 (3.21)
n=20 : g=0 (3.22)
n =1 : g'=0 (3°23)

where Pr is the Prandtl number and R 1is the Rayleigh

number defined as-

R = 8984 (3.24)

K
By putting p=0, the neutral stability, (R,a),curve for the
system is obtained. The curve exhibits a minimum value, RC
of R. Tor values of R-<RC all disturbances are stable. For
instability due to bﬁoyancy R>RC; in the case of the conduc-
ting boundary below and insulating above RC=571 so that for
Bénardé cells to be buoyancy driven

4
gapd 5y : (3.25)

K

This buoyancy model will be compared with the surface

tension driven model which now follows.

3.3 Models assuming that the flow is surface tension driven
This model assuming that these cells were induced by

‘changes in surface temperature varying the sﬁrface tension

along the surface is due to Pearson (1958). The variation

of density with temperature is neglected.



23

Using a perturbation analysis similar to that in 3.2

the equations for v» and T!' are

g% - vv2) vev = 0 (3.26)
and 2 - kYA = py | (3.27)

The boundary conditions on Vv are

[
|2
|

(o]

y=0 : v = (3.28)

y=4a : v=20 (3.29)
with a fourth condition to be obtained by equating the
viscous stress at the surface to the surface tension gradient
there. The relation between surface temperature and surface

tension is written

S =8, - old (3.30)
where o = (%%) and S denotes surface guantity.
T=T
oS
Using (2.9),
du v a3
P Q&y +3%) T oA (3.31)
ow dvy _ 05 .
and U (5§ + "E) = = (3.32)
which combine with (3.30) to give the fourth boundary
condition on v ,
vy =4 %Y _ 4y 2 vl 2 2 (3.33)
"oyt ! 2 Tt e T

It is seen how, in the surface tension dfiven‘theory, the
role of the equation of state for the surface corresponds with

the role in the buoyancy theory of the bulk equation of state.
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The temperature boundary conditions considered are the two

extreme cases of conduction and insulation for the lower,

boundary,
- . = 8T _
y=0 :+ T'=0 or 5y 0 (3.34)
and a general condition at the +top,
-K 97" _
'63; = qT'! (3.35)

where X is the thermal conductivity of the liquid and ¢
is the rate of change with temperature of the rate of loss
of heat/unit area to its upper environment.

Introducing dimensionless variables, as before,

(601 =& 5D , ==% C (3.36)
and trying for a solution with
v = "= F(E,f)£(n)eP" (3.37)
71 o= Bd F(E,S)g(n)eﬁT ' (3.38)
requires
%z—,g-+-§-§%+oc2]?=o (3.39)

so that a sixth order eigenvalue system is obtained:

[p - Pr(DQ;aQ)][DQ - a?lf = 0  (3.40)

[p - (D°~a®)]g = - (3.41)

' 2
£(0)=£1(0)=0, £(1)=0, £*'(1)=a"Bg(1), g'(1)=Ig(1) (3.42)
and either g(0)=0 or g'(0)=0 . The constant B , the
Marangoni number, is given by .

2
B = B (3.43)

pvk
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and L ==~ - (3.44)

The neutral stability curves for this system are then obtained.
For the case when the boundary below is conducting, the

characteristic equation to be satisfied is

B =

8afacosh o + T sinh a)(g-sinh a cosh @) (3.45)
(? |

cosh a - sinhza)

For each value of 1L, the neutral stability curve given by

this equation exhibits a minimum value, Bo’ of B . TFor

values of B k BC all disturbances are stable. In the case

of Béhardé experiments, assuming the boundaries to be conducting
below and insulating above, BC=80 so that for Béhardé Cells

to be surface tension driven

2
oBd 5 gg (3.46)

pV K

It is secen how the instability is governed either by the
Rayleigh number or the Marangoni number according to whether
it 1s thought to be buoyancy or surface tension driven. When
the yalues of the Rayleigh and Marangonl numbers for Béhard%
experiments are calculated it is Lfound that although the critical
Marangoni number is exceeded the critical Ra&leigh number is not.
The onset of instability is governed by d4 or d2 depending
on whether it is thoﬁght to be driven by buoyancy or surface
tension, respectively. For shallow flows, d <1 s0 one would
expect B, to be exceeded rather than R,. )

Scriven and Sternling (1964) extended Pearson's theory by

including the effects of surface curvature and surface viscosity.

The perturbation analysis used is similar to Pearson's and the
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characteristic equation for neutral stability which they
derive for the case of the conducting boundary below is

8d (acosha + NNusinha)[a—sinha éosha+(Nvi/2)d(az—sinhza)]

N, = . : .
MA a)cosha~sinhja—Ncrajcosha

(3.47)

where NMA is the Marangoni number, NNu is the Nusselt
number and corresponds with I in Pearson's theory, Ncr is
the crispitation group which represents the effect due to
curvature and is inversely proportional to the meaﬁ surface
tension, and Nvi is the surface viscosity group which is self-
explanatory. Equation (3.47) reduces to that due to Pearson's

=N

(3.45) when N, .= 0 . The neutral stability curves, Na

vi~

against o , are then obtained for various values of Ncr’

N NNu' From the curves with Nvi=0 it was seen that

vi’
except in the mathematical 1limit Ncr=O no critical Marangoni
number exists. This model therefore predicts that the layer

is alwdys unstable to disturbances of very low wave number.
However the limitb N0r=0 1is a good approximation for large

wave numbers and N, < 10™% as in the case of Benards
experiments. The stability of the layer is increased both by
increasing surface tension and by increasing-the surface
viscosity. The increase is most marked for disfurbances of low
wave numbers.

Smith (1966) considered the effects of curvature on both
gravity and surface tension driven waves. He found that gravity
has a stabilizing effect for disturbances of small wave number
and that there was a critical Marangoni number. This clarified
Scriven and Sternling's analysis in which no critical Marangoni

number existed. Scanlon and Segal (1967) have considered a

non-linear analysis of the surface tension driven theory.
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The convection cells occur when a liquid solute which
lowers the surface tension of the solvent evaporates from
a thin film of the solution. If the temperature, T, is
interprcted as the concentration, C, of the solute, the
thermal diffusion coefficient, k , is interpfeted as the
diffusion coefficient, D, and the constant, q, is interpreted
as the rate of ioss of solute from the surface then one can
use the previous analysis for the insulating boundary below

to describe the cells. One must consider the gradient f to

be quasi steady because a steady value for B 1is now impossible.

3.4 Models assuming that the flow is driven by both buoyancy
and surface tension
Nield (1964) considered the effect of both buoyancy and
surface tension variations. Curvature and surface viscosity

were however both neglected. He used the usual linear

perturbation techniques to derive a sixth order system as before.

A Pourier series method is used to obtain the eigenvalue
equation for the case where the lower boundary is a perfect
conductof and the upper surface is subject to the more general
condition. For neutral stability, values of B were computed
for various values of o, R and I where a; R, B and L are
defined as before. Thebminimum of B with respect to a was
obtained by interpolation and the (R/R_, B/B_) locus
corresponding to marginal stabllity was plotted for each of the
two cases I=0. L=o00o where RC, BC are the values of R and

B at marginal stability when B and R=0 respectively. For

intermediate values of L +the loci lay between the two curves.

[
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As the critical Marangoni number decreases with increase
of R, Nield deduces that the two agencies causing instability
reinforce each other. He preéents a table for the numerical
values of Bé and ap, the critical Marangoni number and
wave number ard—wove—amumbez when R=0, and of RC and .. —_
the critical Rdyleigh number and wave  number when R=0,
for various vélues of L. He noticed that the values of ag
and a, when 1I=0, 1.993% and 2.086 respectively, are extremely
close. Pearson quoted the value 3.5 for the wave number at the
onset of instability due to buoyancy which was obtained by
Jeffreys in 1926 using erronecous boundary conditions. Pearson
used the difference between the predicted value and the observed
value as an argument against the buoyancy mechanism which as
Nield points out is no longer justified.

Assuming Béqardé cells to be driven by both buoyancy and
surface tension, Cabelli and De Vahl bavies (1971) have solved

the equations and boundary conditions directly by a numerical

method.
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CHAPTER 4

The Surface Tension Driven IMlow in & Shallow Tiquid Layer

produced by an Insoluble Surfactant

4.1 TIntroduction .

' Levich (1962) put forward in his book a model for flow,
considered to be two dimensional, in a shallow liquid layer
driven by a surface tension gradient which is produced by an
insoluble surface active material. Inding inconsistencies
in Levich's model, Yih (1968) produced a model for such flows.
In this chapter the model produced by Yih will be discussed
in detail. In particular the instabilities mentioned by him
will be analysed in detail and it will be shown that some of
his arguments are incﬁrrect.

If industrial liquid waste discharged into a river contains
quantities of an insoluble surfactant, the flow of the river
close fo its surface will be affected by the presence of such
material; especially as even extremely minute quantities of
certain surfactants produce very large changes in the surface
tension of water. Because of this, the flows considered in

this chapter are of industrial importance. *

4.2 Equations cf Motion

Using Cartesian coordinates (x,y,z), a channel of length
L dis thought to connect two reservoirs, at x=0 where a
contaminant is added, and at x=L. The horizontal base of the
channel is at 2z=0 and the free surface of the liquid at
z=h(x), allowing for the variation in depth of the layer

produced by the flow. The channel is assumed to be very much
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wider than it is long so that the motion is two dimensional,
but it is sufficiently long that the edge effects at =x=0, L
can be neglected.

The Navier Stokes eguations for steady motion are

2 2
uodu , wou_ -1 8p SR 3 u
ox 0z p 0x v (ax2 + 622) ? (4.1)
u 0w + W ow - -1 ap + v (g_z.y + ..._.‘,_azw).. (4 2)
X Z p 0z 6x2 azd S e

and the equation of continuity is

ou ow _
'-a‘i'c' + '-a‘é = 0 ’ (4.3)

where (u,0,w) are the Cartesian components of velocity. It is
assumed that the assumpltions for shallow water theory, wkZu
and H(<L , are true. If the inertial effects are negligible
so that the Reynolds number, VH/v based on a vertical height
H and a.vertical velocity V, is small it follows that
equation (4.1) reduces to

2

ap — 0_u
- lJ' lamany'sY . (4-4‘)
% aza

Further, if vV/H2 22g so that viscous forces in the =z
direction are very much smaller than gravity forces, then (4.2)

reduces to

L = —pg . (4.5)

(4.4) and (4.5) are the equations used by Yih. The egquation
of continuity becomes '
h(x)

d _ .
= udz = 0 . (4.6)



The boundary condition at the base is simply

z=0 : u=0 . (4.7)

At the free surface the viscous stress must be equated with
the surface tension gradient, so neglecting the curvature of

the surface, condition (2.8),

z=n(x) @ p=20 ,  (4.8)

must be applied. ZIEquating the normal stresses at the surface

and neglecting curvature again,

z=h(x) : p=0 . (4.9)

Yih assumes a form for wu vwhich satisfies (4.4), (4.7)

and (4.8) given by

QJIQJ
o} (o}

u:

z - gﬁ 2 5 (2h-z) . (4.10)

1
M
It is interesting to note the similarity between this part

of the problem and luﬁrioation theory; for an account of
lubrication theory see Cameron's book (1966). Yih satisfies
(4.5) and (4.9) by assuming that the pressure is hydrostatic,

and given by

p = pg(h-z) , . (4.11)

Hence the expression (4.10) for u can be rewritten

z - QL-pg %% z(2h-z) . (4.12)

u = 2ll

QJIQ-'
KilQ

1
m
Substituting this expression for u in (4.6) and integrating

gives the result

o .
h %240 éh _ :
. 6"" [ ax - 2 pgh dx :I - Q b} (4‘-13)
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where Q 1s the constant discharge of fluid/unit width.
Using this equation the expression for the surface velocity,
Ug is
_ b (dg , 640
ug = 7 (52 + ) C (4.14)
From considerations of mass transport at the surface Yih

derives the equation
Voo = D do + (4.15)
S ax 4 . y

A more detalled derivation of this is now given. The surface

diffusion equation (2.9) is

5T : |
Ef'+ V.(FuS—DyF ) + iy = 0 ' (4.16)

For steazdy state solutions in which the contaminant remains

ji.= 0. Neglecting curvature and

on the surface, %% =y

integrating (4.16) gives the result

arl
uSF = D -a?{- + q’ . (4-17)

where q'!' is the.constant discharge of surface material/unit
width. It is assumed that the contaminant is added at the
reservoir x=0, so ¢q! > 0. One can agssume a surface equation
of state

"¢ - o, = kT (4.18)

- where %, is the surface tension of the pure ligquid and k

i's a positive or negative constant according to whether surface
tension is raised or lowered by the addition of contaminant.

In general insoluble contaminants lower the surface tension.
Consider the following instability which wouid occur with an

insoluble contaminant raising the surface tension. If a very
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small area of surface did not contain any contaminant then
due to the surface tension surrounding that area being greater
than that within it this area would enlarge and so such g
contaminant would not therefore spread evenly over the surface.
In general, therefore, Xk < 0.

If o redefined as the relative surface tension -0,

the previous equations, except (4.18), remain unaltered

because only derivatives of o occur. (4.18) becomes

o =kr . (4.19)
noting that as k 2 0, o < 0.
Eliminating I between (4.17) and (4.19) gives the result

deg = D 39
Us9 = D.dx 4
where gq=kq'. This is the equation derived by Yih, (4.15),

and for the reasons given q < 0. Yih eliminates Ug between

(4.14) and (4.15) to obtain

[%3_}.@-94-%%?:(} . . (4.20)

The problem is now reduced to solving (4.13) and (4.20)
togethei with some boundary conditions om o¢ and h .
4.3 Special solutions

Yih gave a solution, in complete form, for the case of
zero bulk flow, Q=0. Headlso gave a solution for the case in
which the surface velocity is zero;‘a solution which will now
be shown to be contradictory.

When uS=O , the expressions he obtained for o and h2

were 02__0,1
=0 + T, X 3 (4'21)

1
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and
h2 . g

-0
2 i) x - C

; ( I (4.22)

3 L
(01,h1) and (cz,hz) being the boundary conditions in the
reservoirs at x=0 and x=L, respectively. 03 is a constant
of integration. Substituting the expressions for h2, %% ,
and 32, obtained from (4.21) and (4.22), into (4.13) gives

Op—0 : Op—0 (6,~0,)
L o(or 2l xo)(6 B -0 210 0 L (4.23)

Excluding the case Op—0 =0 for which the problem is physically

1
trivial, this states that a linear function of x is equal to
a constant; a contradictory statement. Thus the equation of
continuity, which was implicitly ignored by Yih when obtaining
this solution, is not satisfied.

It is, therefore, impossible for the surface velocity to
be zero. By specifying this, in addition to (4.13) and (4.20)
equation (4.14) with ug=0 must be satisfied. This system of

3 differential equations for only two dependent variables, o

and h , is in general insoluble.

4.4 General Solutions
For Q # O one can specify aq, Q, L, o, and h,, and then
solve numerically (4.13) and (4.20) with the boundary

condition

In addition one could try to vary the values of g, Q or L
to fit given boundary conditions at the second reservoir. In
order o consider the possible instability of solutions
obtained numerically it is necessary to examine the nature

of integral curves in the (o,h), phase plane.



The phase plane equation, obtained from (4.13) and (4.20)

is
d
d

Q

I

2
_ goh thQ‘30Q] ' : . (4.24)
3h"g-60chQ+6QuD

n

This equation is made non-dimensional by the transformations

. ~1 -1
t=3 1 [6teal w] /%0, x = i [6leal ud) /2n. (4.25)

The non dimensional equation has two different forms accordihg

'to whether Qg is poéitive or negative: for Qg>0 ,

2
day _  ex°[x-Y] (
ax 5X°~4XY+1 ’
and for quo )
&= K [Xi11 , (4.27)
3X +4XY+1

where C 1s a non dimensional constant,

3 /2

As q<0 , (4.26) must be considered when Q<O and (4.27)
when Q>0, noting that Q 1is positive or negative aécording to
whether the bulk flow is in the same or the opposite direction
to that of the contaminant. As h is positive and o is
negative the region of physical significance in either case is
X>0, Y<0

Fquation (4.26) has two finite singular points-at (1,1)
and (—1;—1). The integral curves in the neighbourhood of these
singular points are examined using the discussion given in the
book by Davies and James (1966). With the singular point
transferred to the origin and the numerator and denominator of
the phase plané equation linearized so that it is of the form

dy- . Cxidy

dx ax+by ?
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the nature of the singular point is given by the following

table: _

A >0 ad~bed0 - Wode , ~ Stable a+d<0
Unstable a+d>0

A >0 ad~be <0 Gol , TUnstable

A <O a+d#o Focus,  -Stable a+d<0

Unstable g+d>0

where A = (a+d)2-4(ad-bc) .
The point (1,1) is a node or a focus according to whether
C°-12C+4 is positive or negative. It is stable for ©<2 ,
and unstable C>2. The point (-1,-1) is always a saddle
point (Col).
The integral curves for a large value of C are sketched
over the whole (X,Y) plane in Figure 3, although only those
in the fourth quadrant are of physical significance. Tor
CQQ a limit cycle, which necessarily contains a node or a
focus, is thought to exist. It is thought further that this
limit cycle will be contained within the first quadrant so that
instability in the flow owing to the presence of a 1limit cycle
is impossible (when a limit cycle is present no point inside
the limit cycle can be joined by an integral.curve to a point
outside. This restricts the choice of possible boundary
conditions). The fourth quadrant does not contain any section
of the isocline %% ; oo and therefore instabilities caused
by h obtaining a minimum value are also excluded from the
case QQO. |

For Q>0, Equation (4.27) has no singular points in the

finite plane. The integral curves, for a typical value of C ,

are sketched in TFigure 2. Although instability due to the



37

presence of a minimum value for h are possible.
Another flow instability to be investigated is the
possibility of cusps arising in solﬁtions{ cusps being

physically impossible. Writing

3
£ _ : 5 X (4.28)
T 12ppgD” iQa] ' ’ :
the dimensionless equations for dg and gh are for QZO
dx dx ’
ay _ o(x-¥) AX _ 3X°-4XY+1 (4.29)
£ X XY"‘)i) ’ dE . er (XY—"1) ’ '
and for Q>0 ,
ay _ —ch+Y) ax _ ~(3X°+4XY-1) (4.50)
3 X(XY-1) e X(xy-1) ) .

Cusps will arise in either case where XY-1=0. Since this
curve does not lie anywhere in the fourth quadrant, cusp type
instabilities cannot arise. This contradicts Yih's discussion

of cusp type instability.

4.5 Conclusion

Yih (1969) has considered the three dimensional motion of
a shallow liquid layer with variable surface tension produced
by an insoluble surfactant. The vertical boundaries are two
parallel plates with a cylinder placed symmetrically between
them. For the situation in which A o>>pgh ®, A ¢ being a
characteristic change in o and ho a vertical scale, he
finds the depth and surface tension to be functionally related
and shows that a simple polynomial of the depth is a harmonic
function of {the horizontal components x and y . When

considering the flow close to the vertical boundaries, Yih



postulates the existence of a velocity boundary layer with

a thickness of the same order of magnitude as the depth. TFor
the case where the angle of céntact.between the free surface
and the boundary is "/2 a solution for the velocity
distribution in the 1ayér is given.

Adler and Sowerby (1970) have also considered three
dimensional flows with variable surface tension produced by
an insoluble surfactant. The énalysis used is also an
extension of Yih's two dimensional model. Having eliminated
the vertical coordinate from the set of equations to be solved
by means of profiles similar to (4.10), they look for simi-
larity solutions to the resulting pair of partial differential
equations for o(x,y) and h(x,y), x and y Dbeing the
horizontal coordinates. In terms of the similarity variable

£(x,y) [If £ (x,y) is the similarity variable then o and

h assume constant values on each member of the family of

curves .£ (x,y)=constant] the pair of ordinary differential
‘equations obtained for o(g) and h(g) is equivalent to
(4.13) and (4.20). They consider in particular the problem of
a channel flowing into a lake, with the surface contaminant

Tflowing in either direction.



39

CHAPTER 5

The Surface Tension Driven Flow in a Shallow Laver of T'uel

owing to a Burning Wick

5.1 Introduction

The flow when a shallow layer of liquid burns at a wick
ﬁas been investigated experimentally by Burgoyne et al (1968a),
the flow pattern observed consisting of an eddy close to the
wick and a second region of c¢irculation outside. A mathema-
tical model approximating to the physical situation in this
outer region 1s now presented.

Adler (1970) presented a model for this flow and obtained
solutions by assuming that the fuel layer was subdivided into
three different layers: a boundary layer near the free surface,
a stagnation regién in the centre of the layer and a velocity
boundary layer near the base. In the model to be presented
here the layer is not subdivided; the profiles assumed for the
velocity and temperature being valid throughout the layer.

In.the work of Burgoyne et al (1968a) it was assumed that
the flow induced was buoyancy driven, whereas Glassman and - -
Hansel (1968) assume it to be variable surface tension driven.
It has been seen in Chapter 3, how in models including both -
buoyancy and surface tension effects for cellular convection,
the surface tension effects were more dominant in very shallow
layers. A similar argument justifies the neglect of buoyancy
effects in the theory presented here. The variation of .
viscosity with temperature has also been-neglected.

The liquid fuel is contained in a rectangular tray very

much wider than it is long, with a plane wick immersed
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vertically, widthways in the liquid. The fuel is assumed

to burn steadily at the wick producing a two dimensional
symmetrical flow in the liquid layer. The flow produced by
the flame, being surface tension driven, will be of finite
extent so that if the tray is sufficiently long the effects
of the edge of the tray can be ignored. No éccount is taken
of the processes occuring in the vapour phase. It is assumed
that all the evaporation takes place at the wick, outside the
region of interest.

The analysis used is an adaption of Yih's fdr two '
dimensional flow with variable surface tension; a heat source
being the agency producing the variation in surface tension -
instead of an insoluble contaminant. With suitable alterations
the model here is applicable to the case where the surface

tension variations are effected by a soluble contaminant.

5.2 Equations of momentum and continuity

The motion is steady and two dimensional and will be
described in terms of a fixed Cartesian coordinate system Oxy.
The xy plane is vertical with the base of the tray at y=0
and the wick at x=0. The surface of the liquid, which is
variable, is y=h(x). As the problem is symﬁetrical only the

region x > O has to be investigated.

2

§
ay»'ﬁ:'

In the region away from the wick, uw >> v and

Because of the upward circulation current these assumptions
break down close to the wick. The above are the assumptions
on which Yih's analysis was based so the equations (4.4) - (4.14)

are also valid here. The first order differential equations
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obtained from dynamical considerations only, equation (4.413),

was,

2
%1_‘: [3 %—q ~ 2gph gi] = q ,  (5.1)

o(x) %being the surface tension and Q +the discharge of fluid
per unit width. The expressions obtained for the horizontal

velocity, u, and Ug the surface velocity were

14 ] dh
U= GE Y -7 P8 gy v(2h-y) ,  (5.2)
_ 1,8 _pg,2dh
and ug = h 4 - o h® 32 (5.3)

The suffix S will denote Surface quantities.

5.3 Equations of heat transfer
In the shallow layer with the heat conduction in the ¥
direction much larger than in the x direction, the convective

diffusion equation becomes

' 2
0 0 . 07T
3 () gy (V) =

The base of the layer is kept at a fixed temperature, T1, and
the heat transport from the free surface is assumed to be
negligible. The condition that T:T1 assumeé that the base
is a good conductor as in the experiments of Burgoyne and‘
Roberts. If the model is adapted to describe the burning of a
candle the temperature of the base will be the melting

temperature of wax. Putting
Q'(X7y> =T (Xﬁy)—T«I . ’ )

the convective diffusion equations and these two boundary

conditions are written as
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(uo)+ - (ve) = x &3 ,  (5.4)
ay ayz ?

y=0 : =0 ' , (5.5)

= h(x) : gg =0 C . (5.6)

Integrating equation (5.4) over the depth of the layer

h(x)
6 dh ~ 099
5 i y=0

which can be rewritten

h(x)

é% ‘f ue dy = -k %%’ . (5.7)
| _

It is now necessary to choose a profile for 6 compatible

with the boundary conditions. The profile
0 = oq £(2 - &) (5.8)

satisfies the conditions (5.5) and (5.6) snd at the surface

Q:QS as required. The expression (5.2) can be rewritten
1 dh 2
u(x,y) = uS - 'ﬁ" 'a"g (h-y) + %ﬁ 'a'; (h—y) (5-9)

Using (5.8) and (5.9)
h(x) h(x)
2
X uedy = o & Le- D) | ug- & q2o-y)+ 88 (-1} ay

0
1

1 dh , 2 2
=hoq St(2~t) ug= 5 EE h(x)(1-t) -+ %ﬁ T b (1-%) at

0
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Cvos[2y _.hdo,ps .2an
"hgs{aus Typ dx T fop P dx} (5.10)

Using expression (5:10), equation (5.7) becomes

4 2ug _ b do o ps .2dnll _ -2x -
A% {hgs {——-33 Zr ax T 7o B dx] T w8 - (Ga)

Substituting for ug from equation (5.3), equation (5.11)

becomes

.2 -
d h d ,bc 2 2 _ 2K
GE [?ﬁgsa'zﬁr"‘s‘f’gh)} = ® % (5.12)
Assuming that surface tension decreases linearly with surfacé

temperature according to the relation

o = —aGS , o« >0 ,

gy being the surface tension where the surface ‘temperature

is T, equation(5.12) gives the result
a [n%(o-0,) @& (5 2 .2 _2k
% ~——3ﬁfi— 7= (0 - % pgh”) = 5 (0-0,). (5.13)

The functions ¢ and h can be determined by solving this

differential equation together with equation (5.1)

5.4 Solution
To facilitate a solution of equations (5.1) and (5.13)
they are made non-dimensional by putting
0,=0

c.%X _ yonh ; 2 | .
Se% H_h1 , S oEn, | . (5.14)

As the motion produced is finite, the scaling factors X,

and h1 arise naturally by making X, the distance from the



wick where the ambient
The conditions at
conditions
E =1 ¢ B
E =1 : H
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conditions, T:T1 and h=h1, prevall’yf<

X=X, necessitate the boundary
=0 ,  (5.15)
= 1 . (5.16)

The equations (5.1) and (5.13) become, in non-dimensional form

2
a 2 4 (5 2 2)_aS
Tt KH S Az (48 + £ H) § = I ) (5.17)
2,45 2 dH :
H (g + S HgE ) = b ,  (5.18)
1
where /2 x
bu K
az(_e_3 -1
pgh1 1
and
b_—:-.E—.—Q4
pg?g
Introduce a new variable, 1 , so that
2d _1 4
g =W @ ,  (5.19)
1
where n1=§ & (5.20)
H
0
By this definition
&
n:% j'd_% ) (5'21)
1 H

so the region of interest O ( £< 1, becomes the region

O kr1( 1. The explicit relation for g .in terms of n is
N
T2
g = &4 (n)_dn . (5.22)
2
S H™(n) dn
0
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In terms of the new variable equations (5.17), (5.18) become

d d ,5 2 42 _ . 2ay
'a-ﬁ- LS -d—n- (ZS + ‘g H ) ) = 8.1 oH s (5.23)
d 2
a—n— (S + %— H ) = b']‘ ’ ) (5.24)
where a, =an, " (5,?5)
b, =Dbn, - . (5.26)

The boundary conditions (5.15) and (5.16) become

n=41 : H=1 . (5.28)

Equation (5.24) integrates directly to give the result

% = 1-35-3b, (1-n) ,  (5.29)

when the constant of integration has been determined by
boundary conditions (5.28) and (5.29)., Using this expression
for H® +to eliminate U from equation (5.23),

ds

' 1
d as _ 2 /2
-a—ﬁ(S 'a-—h-) + 24b'1 .CT]- = 208.1 S [1 -~ 38"31)1 ('1—71 )]

(5.30)

In order that equation (5.3%0) is satisfied when S = 0,

as _ . as  _
——r]- = 24b_1 or ) '— 0O

Although %% = 0 would give the physically realistic condition,
no heat transfer across the boundary at the extent of the
motion, this condition gives only the trivial solution

s(n) = 0. The boundary condition to be applied is therefore

- ., 45 . _
no=1r & 24D, . (5.31)
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Because equation (5.30) is indeterminate at n=1 'the
numerical integration of (5.30) cannot be evaluated directly
by means of a backward integration from n=1 so it is
necessary to develop a series solution for S in the neigh-
bourhood of n =1 din order to start the numerical integration.

Suppose, therefore, that in the neighbourhood of n=1
s =0¢,(1-n) + 02(1—n)2 e (5.32)

Substituting this expression in equation (5.30), and balancing

terms 0(1-1)° yields

2 _
C1 - 24b1C1 =0 ’

the solution of which is, for reasons already stated,

C1 = 24b1 .

Balancing terms b(1—n) vields

G, + 20,0, = 20a G ,

2C 2”1 17

2
so that

Substituting for C, and C, in (5.32) gives the series

expansion close to n=1 as

S = 24b1(1-_n) + 5a12(1—n)2 +oe . . (5.33)

5.5 Numerical results
The functions S(n), H(n), S(¢), H(¢) have been evaluated
numerically for different values of a and b using a CDC 6600

computer.



For fixed a, and b, the values of S and 2 were
evaluated at n= 0.99 wusing the series (5.33). With these

values as boundary values, the function S(n) din 0 (11< 0.99

was evaluated using a Runge-Kutta method. The function H(p)
was calculated similtaneously using (5.29). The explicit

relation for & dis, using (5.22) and -(5.29),

n
n(1-3D, + -,g-b,ln ) 3 Jsan

0 (5.34)
5— %b,l- Bf Sdn
"0
so that the function S(n) has been obtained throughout the

1
range O < n< 1 enabling XSdn to be evaluated, the function
0

E(n) can be found, and hence the functions S(g&), H(g).
It is necessary to find the values of the parameters a
and b, which are. groupings of the physical parameters, corres-

ponding to values of a and b,. From the definition of a

1 Bne 0y 17
(5.25), and the expression (5.29) for HZ,
24
a = 5 X ’ (5-35)
1= 2b, -3 SOSdn
and similarly .
b1
b = ; - . . (5.36)
- 5b, -3 SOSGn

By varying the values of a, and b, the functions S(g)

and H(E) can be obtained for different values of a and. b ,
typical curves being shown in Figures 4, 5 and 6, those in
Figure 4 being for the case when the sink is.absent. It is

seen that H is a monotonic increasing and S a monotonic
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decreasing function of X. This implies that the depth and
surface tension of the liguid both increase monotonically
. with distance from the wick. |
The expression for the non dimensional surface velocity,

“\/—/\
/u , h’ 1 @@\\ is found from (5.3) to be

pgh1
as 1 aH

US:_H(—E_’-?HHT)

This can be written in terms of n and S only using (5.21)

and (5.29)

(52 + 3v,) . (5.37)

Us T 4H

Using this expression the surface velocity‘can be obtained as
a function of § for different values of a and b {

a typical us(g) .curve is shown in PFigure 7. From this curve
it can be seen how the surface velocity, which is away from
the wick throughout, decays as x 1increases in agreement with

experimental evidence.

5.6 Discussion

On examining the numerical solutions obtained it is seen
that for wvalues of a, and b1 which are not small the
expression (5.29) for H2 becomes negative at some N5 5
0 < m, < 1. Although physically the solution obtained does
not apply close to the wick where the assumptions on which this
theory is based break down, it is necessary to be able to obtain
the functions H(n) and S(n) throughout the region 0 <n < 1

in order to obtain the functions H(E), S(t) - in the region

of interest. The wvalues of a1 and b1 used must therefore

be small.
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As the value of ad is increased for fixed b1 , the

value of H(0) decreases until a value a,q is reached
where H(0) is zero. No solution exigts with this value of
b, for a, > d,,. Tor different values of b1, the valmes

of aya decrease as b1 is increased from zero. The maximum

value of b1 for which solutions can exist is given by the

case 31020 and the maximum value of b possible is found

.1

to be b, = %% . It follows that for all solutions to the
o ) . —-1.... ¢ ) -~ 1
problem 0 < b, <z, O < a, < a1c(b1) s the function a1c(b1)
is shown in Figure 8. '
From the results obtained it is seen that %% ’ %E > 0
1
ob, * da, < 0. Hence the maximum possible value for

1 1
a(a1,b1) is a(a1C(O)}O) and the maximum value for
b(a1,b1) is b(#% ,0). By evaluating these values of a
and b +the restriction placed on those parameters is
0 <a<0.220 , 0<b < 0.0067.
A Marangoni number for this flow is given by
Ma = E§~Eli
BK

so that the parameter a can be rewritten

V6 x4

1 h
Ma /2 1

)

For flows governed by surface tension effects, the Marangoni

number is large, so, because the ratio *4/h, is not very

1
large the parameter a 1is small. As the source strength Q
is small the parameter b must also be small. It is seen
that the physical constraints on a and b .are compatible

with the mathematical ones.



This solution with uw #Z 0 at x = 0 cannot be valid
close to the wick, even if the strong upward current there
were ignored, because of the no slip condition at the wick.

A separate theory is needed to describe the flow close to

the wick.
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CHAPTER 6

The Surface Tension Driven Flow in a Corner

6.1 Introduction

In the previous chapter it was stated that when a
shallow liquid fuel layer burns at a wick the flow pattern
divides the liquid layer into two regions. The flow in the
region away from the wick was considered in the previous
chapter and in this one the flow iﬁ the region close to the
wick is investigated. Local solutions, valid only in the
region close to the wick are obtained.

It is observed when a candle burns that close to the
wick the depth of liquid increases as the distance from the
wick decreases. The Reynolds number for the flow will be
small and by assuming the surface to be planar close to fhé
wick, the flow there will be slow viscous flow in an acute
angled corner. Flgws of this nature have been investigated
by Dean and Montagnon (1941) and Moffatt (1964 a,b).

Bouyancy effects and variations of vis~osity with

temperature are neglected throughout.

6.2 Basic dynamical equations

To describe the two-dimensional steady flow in the corner,
polér coordinates (r,0) are introduced with the plane 0=0
being the wick and.e = a the surface. In the case when the sink
is negligible o will Be the contact angle.

The flow can be described by é stream function ¢ which,
as the Reynolds number is small, must satisfy the biharmonic
equation

vV = 0 ' (6.1)
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Following Dean and Montagnon, and Moffatt, solutions of (6.1)

can be of the form rnfn(O) provided that

fn(O) = A cos nd + B sin n® + C cos(n-2)0 + D sin(n-2)0,
forn =0, 1, 2.
fO(O) = A cos 20 + B sin 20 + CO+D . (6.3)

(e.f. Moffatt's expression for fo(e)).

fl(O) =Acos® + B sin® + C Ocos® + D Osin®d (6.4)

f2(®) = A cos 20 + B sin 20 + CO+D . (6.5)
Moffatt (1967a) considers the problem of slow viscous flow
in a corner when one of the boundaries is rigid and on the
other a constant stress T 1s applied. Moffatt's analysis
is extended by assuming that the stress applied at the
surface, produced by the surface tension gradient there, can
be expressed as,

T = T, * TIT FT,r F .. . (6.6)

The velocity in polar coordinates, expressed in terms of ¢, is

(1 29, =99). The boundary conditions at the wick are
r 9 or
0=0: 3y = 3y = O 5 (6.7a,b)
00 or

and the normal velocity being zero at the surface implies

O=a: 3y = 0 (6.6)
i ar

Equating the viscousstress tangential to the surface with the
applied stress T gives the condition

_3_11)_) = T ‘ . (6-9)

O=0: 1l 9 (
r 0 up

00

L=
(o3}

6.3 Solution for ¥ in terms of T when the sink is negligible
An expression for ¢ 1is sought as a function of the

unknown coefficients T, for the case where the sink is



negligible. The expression for T suggests the following

form for V¢,

Y = EQLZfZ(O) + tqrd s () + .... ' (6.10)
v vp

This solution will satisfy (6.1) provided the fn(e) are of the
form (6.5) for n=2 and (6.2) for n>2. The boundary conditions
(6.7a,b), (6.8) and (6.9) will be satisfied if each fn(e)
satisfies f _(0) = 0, f (a) = O, fn'(o) =0, £f,'"(a) =1

(6.11 a,b,c,d)
For each n, these four conditions give a set of four non-
homogeneous equations, determining the four arbitary constants
C

A s B and D in the expressions for £ (e). They are

n* 'n’

found to bey

A2 =1 (sin 20 - o)
T " " (2acos 20~ sin 2a)
B2 =1 (1 - cos 2a)
T  {20cos 2a- sin 2a)
C, =1 (cos 23 - 1) (6.12)
2 (2xcos 2x- sin 2v)
: D2 = (o- sin 2 a )
(2acos 2a - sin 2a) s
and for n>2,
An = 1 [ n sin (n-2)o - sin na]
An n-2)
B. = 1 cosno - cCOS (n—2)a] (6.13)
nox
n
c_ =1 [sinna - n sin (n—2)§}
n An (n-2)
D=1 _n = [cos(n-Z)a - cosn&] ‘s
An n-2) ‘ ’

" where An = U(n-21) [n sin 2a - 2 cos (n-2)a sin na] L(6.10)
n-2
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The stream function has now been expressed in terms of «a

and the unknown coefficients Ti.

6.4 Zero stress solutions

When t = O the boundary condition (6.11d) becomes
fn" (¢) = 0, so that the set (6.11) becomes homogeneous.
In this case, there can be a non - -trivial solution for the
constants An’ Bn’ Cn and Dn and hence a non trivial solution
for ¢ , if and only if An=0. Because zero stress solutions
for the cases n=0, 1 or 2 would not depend on this condition
they were considered separately before this conclusion was
reached. It was seen that fl(O) and f2(e) could not satisfy
the homogeneous set, and the case n=0, the only one in which
the physical conditions (6, 7a,b), (6.8) and (6.9) do not
reduce to (6.11), would be a zero stress solution but it

would also represent a sink in the flow, a case which is

excluded here. An=0 when

(n-1) sin 2a = sin 2 (n-1)a . (6.15)
This equation was investigated by Moffatt and shown to have no
real solutions for a<78°, which is assumed to hold in this
pe-ts

problem. The ;gaéf/positive real values of.the complex roots
were shown to increase from 3.84 as o decreased from 780.

Whatever the stress may be, any zero stress solutions
can be superimposed on the solution obtained. As r is small,
it has been shown that the dominant zero stress solution
rmfn(e) must have m>3.84 so it can be seen that the flow will
be dominated by the first two terms in the expression for
already obtained. The zero stress solutions become more

important as r increases since they represent the effects

of the flow far from the corner region on the flow close to it.
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6.5 Heat Transfer Close to the Wick

The convective diffusion equation in polar coordinates

is
2. 2 .
l(ﬂi!-@ﬂﬂ]=m(a'f+_l.ﬂ+l a__T.)
T\J0 3¢ or 00 572 T d9r 1e 902 . (6.16)

The wick is assumed to be an insulator so that,

© =0: 9T =0

0

H

|

. (6.17)

Close to the wick it is assumed that the heat flux into the

®

liquid layer is uniform, giving a condition at the surface

0

o Kpe 1 9T =H s (6.18)

r 090
where H is the amount of heat crossing a unit area of the
surface; «k is the thermal diffusivity, p the density and

C the specific heat of the liquid.

Because of the form for V¥ , it is seen that the
convective diffusion equation will admit solutions of the
form r" ()(O) and a superpositioning of such solutions. The
series

T =T 4 rg (0) + rog (0) + (5*4)

‘ O 1 2 ¢ & » o
gives a valid solution to the convective diffusion equation
provided that the gn(O) satisfy the sequence of ordinary
differential equations obtained by balancing powers of r

when (6.19) is substituted in (6.16). The differential

equations obtained by matching powers of r_l, rPard rl are
Byt By =0 ,  (6.20)
8217 + 82 frord O 3 (6021)
f< ! ! - 1y = 1 . .02
S (f,'8y = 2058, ") =985 * 85T (6.22)

oY
The boundary conditions will be satisfied provided

gl' (d) = H R gn' {(a) = O for n3 2 (6.23)
pKe
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and gn' (0) = 0O for all n. (6.24)

The sequence of differential equations and the boundary
conditions (6.23) and (6.24) can be solved directly giving

the results

~H coseca cos® | L . (6.25)
K

0 (6.26)

gl(O)

and gz(O}
Using the expression (6.25) for gl(e), (6.22) can now be
solved with the boundary conditions, giving the result

83(O> = toH cosec o [-A2 cot 30 - cosec 3a( 5 02 sin o +1 acosa
pKe 16 T

A, cos u) cos 30 - N,sin30 + (CzcosO -1 C,08in0 + AzsinO)J ,
-2 6 © b 2
(6.27)
the constants A, and C, are the coefficients of fz(@) which
are giveh by (6;12). .
It is seen that gl(e) is independent of convective

effects so that heat transfer close to the wick is mainly by

conduction when the sink is neglected.

6.6 Determination of =<

The stress of T 1s produced by the surface tension
gradient. The surface tension will decrease linearly with
increasing temperature so that the stress is related to
the surface temperature gradient according to

" dT (r,o) = - T .

dar Y s (6.28)

where vy 1is a constant. Substituting the series

expansions for T(oa) and Tt into (6.28),

(TO + T.T + T r2 +ouel)

gl (a)+2rg2 (0!.)+...'—'-__ 1 5
3 (6.29)

1
Y
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so that when the functions gn(e) have been determined, the
values of T, can be found by balancing powers of r in

o
(6.29). Thus equating the constants _of zero,

T, = Hy cot a
° ek s (6.30)

and equating the coefficients of r to zero,

T =0 . (6.31)
When these expressions for T4 have been found, y and T
can each be expressed as a series in powers of r with

coefficients expressed in terms of known physical parameters.

6.7 Solution when a sink is present.

At a burning wick, the liquid fuel is. vapourized at the
surface and passes across a very thin inert gas layer, where
it is supposed that heat transfer is by conduction only so that
(6.18) holds, into the combustion region above where mixing
with the atmosphere and combustion take place. The model
assumes that all the vapourized fuel leaves the liquid at the
corner.

The basic equations in 856.2 must be satisfied together

with the condition representing the effect of the sink,

v = Q > (6.32)

wick lpsurf
where Q is the stréngth of the sink (@0). The angle between
the surface and the wick, a, will no longer be the contact
angle. Very close to the corner the typical velocity will
become very large so that the Reynolds_number will no longer
be small. This model therefore breaks down extremely close to

the corner.
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Suppose that the expression for ¢ in the presence of

a sink 1is

¥ :fo(e) + Ear2 f2(0) + ELPB £,(0) + ... s | (6.33)

v Pv 3

where fo(G) is of the form (6.3) and the coefficients A s

B, C, and D in the expressions for fn(e) when n>2 are

n’ “n
given by (6.12) or (6.13%). It satisfies the biharmonic
equation and boundary conditions (6.7b) and (6.8). The

conditions (6.7a), (6.9) and (6.32) require

1 = e = - =
£,1(¢) =0, £ "' (a) = 0 and £ _(a) - £ (0) = Q (6.34)
The definition of a stream function allows the constant Dy
-in the expression fo(O), to be set zero so that these three
conditions (6.34) determine the constants Ao, Bo and Co

giving the result

£,(0) = Q (sin 20- 20- tan 2cacos 20),
(20-tan so)
so that
Y o= Q (sin 20- 20- tan 2dacos 20) +
© 7 (20~ tan 2a)
+ TOP2f2 (0) + T]r3 T4 (0) + ... (6.35)

vp o

An exact solution for the Navier-3tokes equation for
flow in a wedge shaped region is given in Langlois (1964).
The solution which is due to Hamel shows qualitatively that
flow with a sink differs from the corresponding flow with a
source, a fact which, due to the negleét of inertia effects,
the biharmonic equation does not predict.

When a sink is present the heat transfer equation (6.16)

and the boundary conditions (6.17) and (6.18) must still be

satisfied so that as in §6.5 a solution for T of the form
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(6.19),

T =T 4 rg (8) + rog (0) + .... ,
o) 2
is sought. Substitution of this expression into (6.16)
and balancing powers of r—l gives
— ) {
In general, no analytic solution to this equation can be

found. As the strength of the sink, Q, is small suppose

that
_ ' 2
Substituting (6.37) into (6.36) and equating coefficients of
QC gives
t -
GlO ' o+ GlO =0

which has the solution satisfying the boundary conditions

(6.23) and (6.24) on g, (8),

Glo = -H cosec0O cos® . (6.38)

KPe
Substituting (6.37) into (6.36) and equating coefficients of
Q givés

tt - > -
Gyq'' + Gyp * 2H [cosee 1 4 tan 2asin 2@] =0 ,

kpe (20- tan 2o)
the solution of this equation and conditions (6.23) and (6.24)
being

Gll (0) = H COSeCEG [—7 sina coto tan 20 - 3% sin 30+

Ik (20-tan 20)

3 tan 20 cos 30 + tan 20 cos o - Yo tan 2o sina] cos0O

-~ 7 H coseco tan 2asin® + H cosec o x
T ¥ (20 - tan 20) k{(20-tan 2u)

[% cos 30 + % tan 20 sin 30 + tan 2a cosé] . (6.39)
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The differential equation for gg(e), obtained by equating the
coefficients of r to zero after (6.19) has been substituted

in (6.16) is
- 1t
2§2f0' = Hg2~+ By . (6.40)
Trying for a solution
- 2
85(0) = G,0(07 + QG (0) + Q7G,,(0) + ...y

it can be shown that the solution of (6.40) compatible with

the boundary conditions is

g,(0) =0 .

The coefficients T; can be eliminated from the
expressions for Y and T , as in §6.6, so that they can
be expressed as a series in r with coefficients in terms of
known physical parameters and the unknown angle o . Each
T will be obtained as a series in powers of Q, those for

To and Ti'belng

2
YHpgzt o - QyGll(a) - 2Q YGlg(“) + .., (6.41)

T =0 (6.“2)

-
(]

6.8 Discussion

The corner solution must in general be matched to the
solution in the outer region, obtained in Chapter 5. This
problem is similar to that of laminar incompressible flow
past a flat plate, where the solution valid near the leading
edge has to be matched to the flow downstream. In his
paper Davis (1967) uses a series truncatior method on the
full Navier Stokes equations in order to overcome the matching

problem and such an approach might be used here.
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CHAPTER 7

The Surface Tension Driven I'low in a Rectangular Cell owing

to a Heat Source in a Corner

7.1 Introduction

A‘line heat source placed on the surface of a liquid
layer contained in a tray will produce motion in the layer
of a two dimensional nature which is driven by buoyancy and
surface tension effects. Issentially, a problem such as
this arises when a liquid ié heated steadily at the centre
of a pool of fuel, as in thé paper of Murad et al (1970).

The theory presented here assumes that the buoyancy forces
are negligible compared to the surface tension forces. If a
model were developed including buoyancy effects as well as
surface tension effects, a Rayléigh number would represent
buoyancy whilst a Marangoni number would répresent surface
tension. For shallow layers the Rayleigh number has less
influence on the regime that the Marangoni number since it is
proportional to the depth cubed and the Marangoni number is
proportional to the depth; cf chapter 3 on Cellular Convection
for Bénards Cells.

The steady ﬁotion produced will be of a cellular nature
and of finite extent. The motion outside the two symmetrically
placed cells adjacent to the source will be negligible and is
therefore neglected. It is only necessary to investigate the
motion in one of these two cells, taken to be of rectangular
shape. To do this, a virtual heat source which passes all its
heat into this cell is thought to be placed dctually inside

the cell and as close as possible to the position of the real

source.
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This cell is assumed +to be of aspect ratio 1, in order
to reduce the number of parameters, but the analysis is easily
adapted for other aspect ratios. Ir the experiments of Murad
et al it was 5. 1In stability flows Malkus (1954a,b) has ]
proposed a criteria: that the fluid will tend to flow in a
manner which maximises heat transfer. Although the criterion
has been confirmed in a proof, for small amplitudes only, given
by Schulter et al (1965), it has been questioned by Foster (1969)
who concluded that it was not valid at low Rayleigh numbers
for two dimensional flow. TFor the two dimensional flow, with
the Rayleigh number zero, considered here one must have
reservations about assuming that the actual aspect ratio could
be obtained from Malkué's criteria.

As usual variations of viscosity with temperature are

neglected.

7.2 Equations of motion and heat transfer

The motion induced is thought to be two dimensional so
a fixed Cartesian coordinate system O X y is introduced.
A bar will denote dimensional quantities throughout this
chapter. The X y plane is vertical with the base of the
layer at y = O and the surface, assumed horizontal, at ¥ = L.
The origin lies in the base, vertically below the position of
the real source. Thé virtual source is at the point (LS,
L[1-8]), & << 1. The motion created in the layer by this
virtual source is within the boundaries x=0 and x=L

The Reynolds number for the motion in the cell is small

s0 the stream function, ¢ , satisfies

v4% =0 . (7.1)
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the biharmonic equation. By the definition of the cell,
there can be no motion across any of the boundaries of the
cell and as the base is rigid‘there-will be no motion along
the base of the cell. As there is no motion across the base
of the cell, the -base is a streamline y = constant{ and
because a stream function is unaffected by the addition of a
constant, this constant may be set zero for convenience. As

the Cartesian velocity components are (%% , ~ %%) the

aforementioned boundary conditions can be written

5-0 : 7= _9 ,  (7.2a,7.2b)
oy
_ 1
y = T s ..a..: = 0 9 (7'3)
ox
X=0,T ¢ a—_, =0 (7.4a,7.4b)
. oy

The Heat Transfer equation, which holds everywheré except

at the source, can be written in the form

CICEATI R, . (7.5)
a(x,y)
T being the temperature. The base is assumed to be a pure
conductor so that throughout it is at a constant temperature
TO; and at the surface the heat transfers by radiation and
conduction are assumed negligible compared to the strength
of the heat source. Due to the existence of the symmetrically -
placed cell there is no heat transfer across the boundary
X = 0 and as the motion ou%side this cell is thought to be
negligible it is consistent to argue that thé heat transfer

s

across x = LI is negligible. The boundary conditions on
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temperature are, therefore,

y=0 : T= T, ,  (7.6)
F=1 : =0 ,  (1.7)
0y )
=01 : &L=0 . (7.8a,7.8Db)
0x :

The surface stress must be eduated to the surface tension

gradient so

o
vy=L : p §:£L = %g (7.9)
y

If the surface tension, o , and surface temperature are related

by an equation.

(o=0,) = MT ~Tg) ,  (7.10)

where the suffix .s denotes a surface quantity, so that

aT
dx dx
the condition(7.9) becomes
2~ dT
l.l'a-:% = =A ——_-'§- . (7-12)
oy dx

7.3 Solution
The system of equations and boundary conditions (7.1)-(7.8)

and (7.42) is made non dimensional by putting

Y = UL(!’ ]
T-TO
° = Z7 ’
_ (7.13)
x = Ix s
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where AT 1is the temperature difference across the cell
and U is a typical velocity. The eguations of momentum

and heat transfer become

v =0 ’ (7.14)

0(0,0) _ 1 o2
and 6é§f§%" 55 V76 . ,»  (7.15)

where DPe, the Peclet number, is given by

Pe =;%%/'K

The boundary condition (7.412) becomes

P 0 00 :
—.ﬁg g 0x ? (7'16)

where Ma, the Marangoni number, is given by

_ ML

M
& 3

A solution of the biharmonic equations subject to the
non-dimensional forms of boundary conditions (7.2b), (7.4a),

(7.4b) is

¥ = sin nnx [einh nty+y(a sinh niy+b cosh nny) ] )
(7.47)
where n is an integer. The parameters a and b are

determined by the conditions (7.2a) and (7.3) to give

Y = sin nnx[sinh nny+y([nn coth nn-4 Jsinh nny-nn cosh nny)] R

(7.48)
as a solution of the biharmonic equation with all the boundary
conditions (7.2)-(7.4). Clearly a superpositioning of such
solutions is a solution so that

m .
o= ) A, sin nnx [sinh nny sinh nn](1-y)+y sinh nn(y-1) ,
(7.19)
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where the coefficient An are to be determined. TIor
convenience this expression can be rewritten as

®
P =n£1 A, sin nmx £, (y) ’

with fn(y) = (4~y) sinh nn sinh nny+y sinh nn(y-1) .

The problem has been formulated in terms of two para-
meters{ the Marangoni and Peclet numbers so clearly
any solutions obtainea must depend explicitly on these
parameters. If the Peclet number is assumed small it is
reasonable to suppose that ¥ and © can each be expressed
as a series in powers of the Peclet number. From\boundary
condition (7.16) it is necessary that O-Pey . Even though
when the Peclet number is small, the heat transfer by convection
is negligible compared to that by conduction, nevertheless,
the magnitudes of the velocities in the convection currents
need not be small. It is therefore clear that the expression

for ¥ and 6 should be of the form

]

| 2
¥ wo + Cﬂﬁ +ETY, t .. )

(7.20)

ée + 829 S R

° ’ 5

where & = Pe

In order that the expression for ¢ already obtained
can be written in the form of equation (7.20) each of the

unknown constants An in that expression must be expanded as

a series in € ;
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The expfession for each dJr is then
o - : .
= ) A, .sin nnx {(1-y)sinh'nn sinh nny+y sinh nn(y—1)} .
n=0 ' S (7.21)
The result of making the substitutions (7.20) into the
equation of heat transfer (7.15) and balancing the powers‘of

€ 1s the sequence of equations

v291 -0 . (7.22)
a(e,,v.)

1 "o gl
W =V 92 P (7.23)

with the general equation for n > 2 Dbeing

n-1
o(e_, ¥ )
r n-r-1/ _ .2
3(%,7) =V Qn . (7.24)

o~

r=1
Each of the functioms On satisfy the same set of homogeneous

boundary conditions as 6 , which are
y=0 : 8
_ . 99 _ |
y=1 : 55=0 ,  (7.25)
— . -Q-g—_
x = 0,1 5% 0

With the expansions (20) the boundary condition (6) yields

the condition

32y 20
yEaos s 2 = -Ma —t , (7.26)
y

for each n .

In order to find the functions Qn the Greens Function
for Laplaces equation and the given homogéneous boundary

“conditions (7.25) is réquired. This can be written as an



68

expansion involving the eigenfunctions and eigenvalues for
the corresponding solution to Poisson's equation with the
same boundary conditions. A detailed derivation is given in

Appendix A and the Green's function obtained is

oy o (2mt) .,
G(x,y,x!,y!) = 1% ;7 CosKmx sig oy CSSKﬂX'Sin 5 Ty
T ®=1 m=0 4K + (2m+1)
(7.27)

The function @1. satisfies, Laplaces equation everywhere
except at (6,1-8) where the source is present, and the

boundary condition (7.25). Hence

0 le0) 2m-+ §2m+1 )

_ 16 ) ) cosKnd sin 2 mw(1-8)cosKnx sin 2 Y
9,= 5 I 2 N2 ’
7 et m=o 4K° + (2m+1)
(7.28)

H Dbeing the constant non-dimensional rate of heat produced
by the virtual source. It makes this expression simpler if it

is rewritten;

00
o, = Yoy By, Sin iZE%ll ny cos Knx ,  (7.29)
K=1 m=0
BKm being constants. The boundary comdition (7.26) with

n =0 -is

y=1 : % o _ 99,
o =Ma g
oy
This condition is true if
0 Ios) 0
. m .
) Anbfﬁf(1)51n nnx = -Ma ) ( Y Bnm(—ﬁ) ) sin nnx
- n=1 m=Q -

n=1 ol

Equating coefficients of sin nnx , the boundary condition is
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true if, for each =n ,

- .
Ao = nMa(méo(—1) Pon) . (7.30)

£10(1)

This condition determines the function ¢ o

Making the substitutions for the now knownfunctions 91

and V., equation (7.23) can be written

v292 = - #(x,) . (7.31)

where f(x,y) is a known function. 9, satisfies the same

set of homogeneous boundary conditions as the Greens function
(7.26) for Laplaces equation. From the fundamental property
of Green's functions, it follows that a solution of equation

(7.31), with those boundary conditions is

1A
9, = B(xt,y') G(x,y,x',y')dx'dy" ;
0O 0
14
o(e, (xt,y"), v (x',5"))
or 0, = - G(x,y,x',y') a(x;yy') dx' dy!
0 0 ' ' '
Hence
0
_ . (2m+1)
8, = ) ) Crplgn ¢OSKnx sin 5 ny , (7.32)
K=1 m=0
4 } :
where c = - - ,
and IKm =

_%%AOKCKm B (m;p)(m+p+1) L - K %
D Kp K2+(m+p+1)2 (K‘£+(p—m)‘a)2
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[(-1 ymrpHr -;—sinhZKm—'l ]-l—sinhZKm—coshKn}

if X=1,3,5 . .
or Ip.=0 if K=2,4,6 . . . .

The boundary condition (7.26) can now be used to show that

the coefficients in the expansion of w1 satisfy

M ®
- ar _ m
An1 f11(1) E ( 1) CnmInm ’ (7'33)
n m=1

When the functions Qr, Y have been determined for all

r-1
r { n-1 , the equation (7.24) can be written in the form

V29n = % (x,¥) )

which is the form of equation (7.31) so that the method used
to find 9, and ¢1 can be repeated to find o, and Y N’
In this way the perturbation series for 6 and ¢ can be

developed.

7.4 Discussion

Thé stream funcltion and temperature havq each been
obtained as a series in powers of the Peclet number. A
solution, in complete form, which is wvalid for small Pe and
throughout the entiré cell has been found. |

As the Marangoni number tends to zero, whicﬁ only occurs
realistically when AT->0 , it can be seen from the solution
obtained that the magnitude of the characteristic velocity U
must also tend to zero thereby making the Peclet number

tend to zero and hence 6 tend to zero, Schematically,
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AT >0 2M¥Ma 20 =2U -0 2Pe =20 =28 =20

Thus the limiting case when Pe = 0 in the expansions must
occur simultaneously with Ma = O

No direct assumption that the layer is shallow has heen
necessary although buoyancy effects will become more signifi-

cant as the depth of the layer is increased.
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CHAPTER 8

Surface Tension Driven Flow owing to a Moving Heat Source

8.1 Introduction

The problems in the three preceding chapters have all
been concerned with fixed heat_sources. In this chapter the
motion and heat transfer processes set up in g liquid layer,
over which a constant line heat source passes with uniform
velocity, are considered. By supposing that the flame is a
line source of heat, this model can be applied to that of
flame spread over a liquid surface.

It is assumed that the motion in the layer is surface
tension driven and that buoyancy effects can be neglected.
Variations of viscosity with temperature, evaporation, and
curvature effects are also assumed negligible. |

Experiments have shown, eg Glassman and Hansel (1968),
that two mechanisms control the rate of flame spread above a
liquid fuel according to whether the liquid fuel temperature.
is above or below its closed flash point. Above the flash
point the vapour phase mechanisms are controlling, below it
the liquid phase mechanisms. Burgoyne and Roberts (1968c)

imply that the motion in the liquid layer was buoyancy driven.

The reason why the dominant driving mechanism in shallow heafed
liquid layers is variable surface tension rather than buoyancy
has been discussed previously. Because Glassman and Hansel
showed that the layer of convecting fluid away from the flame
is thin, it is reasonable to suppose thaf the motion is.surface
tension drivén as in the paper of Glassman and Hansel. This

model is, therefore, applicable to the case of a flame



propagating over a shallow liquid fuel below its flash point.

8.2 Statement of the problem
As found experimentally by Glassman and Hansel, the

effect of the source on the motion of the fluid is mainly
confined to'a region close to the surface. The layer has,
therefore, two characteristic regions which will be considered
separately and then matched.

| A theoretical model is considered in which a line heat
source placed across the width of the tray, travels lengthways
over the 1liquid layer in the tray, so that the motion is two
dimensional. The tray is assumed to be of infinite length.
The problem is formulated in the frame in which the heat source
is at rest so that a steady state problem occurs. With (xyy)
as Cartesian coordinates, the x axis is such that the fixed
frame moves with velocity }&' in the positive x-direction.
The ¥y axis is vertical and the origin is vertically below
the heat source. The horizontal and vertical components of .

velocity will be u and v,

8.3 Equations of motion in the boundary layer

In the boundary layer it is assumed that the conditions,

Re <k 1, u > v, and é% >> g% , for shallow water theory hold.

These are the assumptions of Yih (1968), and the analysis
given here is Yih's analysis adapted for a moving frame,

The Navier-Stokes equations reduce to

-.Q.E = ___a u -E-)-p- = - ! ° ’
5% M 6y2 » By 223 . (.8-1a:b)
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The equation of continuity and the boundary conditions on v

are unaltered in the moving frame so that, as in Yih's paper,

the equation of continuity reduces to
h(x)
9 -
'E-'}-}-(- u dy =0 ) . (8.2)
0

The boundary condition at the bottom of the layer is
y=0 : u=10 . . (8.3)

At the free surface the conditions are

ou _ do
pgd o= g2 (8.4)
and p =0 . (8.5)

(8.1a), (8.3) and (8.4) are satisfied by assuming

d

Q

I

u = y - — %g v(2h-y)+ U . (8.6)

2p

jok

1
u dx

The hydrostatic approximation,

p = pglh-y) , (8.7)

is made in order to satisfy (8.1b) and (8.5). Equations

(8.2), (8.6) and (8.7) combine to give

2
h do dh _
3n [3 = = 2gph ag] + Uh = Q . ) (8.8)

where Q 1is a constant of integration which represents the

flux of liquid at infinity,

Q = Uh ' . (8.9)
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Using (8.7) and (8.6) the expression for the surface velocity,

Uy , is
- ~h rdo _ hpg dh
ug = U 4 n [ - =52 = ] (8.10)

Throughout, the suffix S will be used to aenote surface
gquantities.

These equations are comparable with the hydrodynamic
equations in the paper of Sirignanagnd Glassman. They write

the Navier-Stokes equations in non-dimensional form as

[ = — - O o W
Re | U 9% + v ) 4w a_ = a_g + a;%ﬁr ,  (81)
0x oy 0x 0x oy
— 9% L = %) 05 _ 8°% . 0%
Re \UZL+7v L) +n02E=23 +-—F-7x ,  (s52)
0x 0y oy 0x oy

where N is the ratio of gravity forces to surface tension
forces, N=R/F2 where T is the Froude Number. A variable
with a bar will denote non dimensional form of that variable.
Because N >> 1, (S2) becomes
oy

which is the non dimensional form of (8.1b). By assuming
0 0

N >>.Re and 35 >> == (S1) becomes
dx  0x

which is the non dimensional form of (8.1a). Sirignano and
Glassman have obtained (8.1a) by assuming N >> Re instead
of R kk 1. All the other assumptions made here, u >> v ,

é% >> 3% , p is hydrostatic, and the form (8.6) for u , are



76

also used by them. Their final hydrostatic equation, which
"will be discussed in § 8.8, is the non-dimensional form of

(8.8) when @ has been set equal to Uha)'

8.4 [eat transfer equations in the boundary layer

The equation of heat transfer in the boundary layer,

under the assumptions g% >> é% and u >> v becomes

u_a.'QJFV.@E_K_@_zE (8.11)

= , .
0x oy ay2

where T 1is the temperature. Define T(x,y) by

(x,y) = F(x,y) - T, ;
To being the temperature far away from the heat source.
Assume a profile for T(x,y) of the form

h-
T(x,y) = £(57Ey) Tg(x) . ,  (8.12)

where A(x) is the thickness of the boundary layer. The

velocity components in the boundary layer can be written

ug (x) + 0(h-y) | ,

u

(8.13)

alo
&5

v = us(x) + 0(h-y)

Substitution of (8.13) and (8.412) into (8.11) gives

dT u :
S S dh = K
ugf gz * % gx £ = g L' + O(b-y) , (8.14)

where ' denotes differentiation with respect to the variable

(Eix). "The function f can be expressed as the Taylor Series

2 tt?
s(BE) = 4+ (BX)rr(o) + (B2D) L ) , .

2!
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Heat passes through the free surface where the line heat
source is present. The heat losses, due to conduction,
evaporation and radiation at fhe surface, are taken to be
negligible, which has been shown to be true experimentally
by Burgoyne and Quinton (1968a) for the static heat source

case. The above condition can be written

—a-:?,-:Ra(x) ,

6(x) being the Dirac delta function and «cR is equal to
the constant rate of heat emitted by the source, c¢ Dbeing

the specific heat of the liquid. It follows that, except

at x=0,
£1(0) =0 ’
2
h— _ h— £fr17(0) +
S0 f(—zx) =1 +,(_ZX) (0)

Tgnoring terms O(h-y), equation (8.14) now becomes

daT — K i .
dXs = A(X)2 £11(0) Tq . (8.15)

All the heat from the source must pass through the base of

the boundary layer, so

+m
[ %% dx = R s
Joo y=h-b(x) ' ~

which using (8.12) gives the result

4+

i
_£1(1) j‘ K%E) ax = R _ (8.16)

-~ 00
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A mean boundary layer thickness 61 can be defined by

+00

TS dx

51 = ;‘g . (8.17)

Tq
Ax)

-00

It will be assumed that the boundary layer thickness A(x)
can be replaced by its mean value 61. This approximation
produces considerable simplification in the subsequent analysis.
it is. also necessary to choose the function f so that as

many observables as possible are satisfied. The conditions
at the surface, £(0)=1 and f£'(0)=0, will be satisfied by

assuming

f(%‘f) - % () . (8.18)

This function decreases monotonically with decreasing depth
in agreement with observation. With these assumptions

equation (8.15) becomes

u s = =K n2T
= _ _ ,
S dx 16612 S
which can be rewri%ten
art
S _ 2
Vg gz - ¢ Mg ,  (8.19)

where _ T )

A = T . (8.20)

1

Equation (8.19) could have been obtained, as follows, by

making directly the assumptions which have already been made
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implicitly. When terms of O(h-y) are neglected in
equation (8.15) it is implied that u and v take their
surface values. Making this assumption directly on equation

(8.11), with T=T(x,y)—To ,

[22 . ae02]., 0°r
S 0x dx 9y | ay2 :

Trying for a separable solution of the form X(x)F(h(x)-y),
which is assumed by equation (8.12) together with the constant
boundary layer thickness assumption, the heat transfer

equation becomes

t — tt
uSX kIrtX

This separates into

uSX'(x) = —X2l<X

and
Pre o= A°F ,

where xz is constant. By assuming that F(0)=1 , an
assumption made in the form of the Taylor series,
X(X) = Ts(x) 3

so that the separated equation for x becomes (8.19).

-
—

8.5 Solution in the boundary layer
Using the usual relation between surface tension and

surface temperature,

o-c, = -alg , (8.21)

where a 1s a positive constant and S, is the surface

fension at infinity; equation (8.9) can be rewritten in terms
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of TS and h as

2 . .
"%ﬁ [3aTS+2gph h'] + Uh = Q . (8.22)

Substituting for ug in equation (8.19), using (8.10),

yields another equation for T and h , namely

S
[0 - & Flangr § pgn®)] mgy = a%emg . (8.23)

This pair of first order ordinary differential equations for
Tg and h must be solved together with the boundary conditions

at infinity which are,

x > ¥ w h > h . (8.25)
. an dTS
The condition, = - T 0 when TS:O and h=ha), required

by these conditions is satisfied by equations (8.22) and (8.23)
The system (8.22)~(8.25) is made non-dimensional by

putting
rh4K2 ] ( )
g = L‘—T—‘ T s 8.26
ugU ofs S
1
2 /3
H = [AEBE] 7 p : . (8.27)
. pU
>
X = 28 x . (8.28)

It becomes

= B ., (8.29)

[1—1{%(@+%}12]%}9{=-9 . (8.30)

¥X> Yo : 0> 0 ., (8.31)
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X>%o0 : H> B ,  (8.32)
where B is the non-dimensional parameter

1
2 /3
B=q [ 28]

The only parameter in +this non dimensional system is B .
dae dH

From (8.29) and (8.30) the equations for 7y and gy are
30 10, 3By + 1 / N
X = - ﬁ(1— j;) g J (- 57) + 46 ) (8.33)
dH 3 ( 5B 3 /( 3B)2 ' ( )
and S = 2 (3-2B) - 2. [ (1= 28) + 4mo . 8.54
dXx 2H2 H2 + 2H2 H

From physical considerations, the temperature gradient is
positive in front of the source and negative behind it. It
follows that the negative root in (8.33) should be taken in
the region X positive and the positive root where X is
negative.

Behind the source the system to be solved is, therefore,

T 2
Q%: _1“'_{(1~ %é) _% j(1~ —3-H§) + 4HO , (8.35)
aH _ 3 5By , 3 | 3BY . (
= 2 (3= 22) + == | (1~ 22) + 4HO 8.36)
ax - H -2 H
X S+m ¢ 6> 0 , (8.37)
X >+0 ¢+ H-> B . (8.38)

Because the boundary conditions are to be applied at infinity,
an analysis of the (©,H) phase plane is necessary before a

numerical solution to this system can be found.
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The phase plane equation

| 2
- (3= 2B) + 25 j (1- 22y + 4H0
% = = = (8.39)
dae h - ) .

2
1. l(1- 2By + 4mo

H
H-
has a singular point (0,B) which is a $addle point and
corresponds to the points at infinity in the (H,X) and (6,X)
planes. Hence the required integral curve in the phase plane
is a separatrix. One separatrix is the line H=B which
corresponds to a trivial solution to the problem, and the other

separatrix of physical significance has the equation

2
n-s-3 B2 . (8.40)
(3+B7)

close to the saddle point. Close to the source at
0=0% , 0% << 1 , H(6®) can be evaluated using (8.40) and with
the condition 0=0% : H=H(6F), equation (8.3%9) can be solved
numerically to give the egquation of the separatrix. Assuming
that the effective temperature at the source 1is QF , the

"value for H at the source, H can be obtained from the

F ?
equation of the separatrix. Using the boundary conditions

X=0 : 0=26 H = Hy , (8.41)

together with equations (8.3%5) and (8.36), numerical solutions
for ©6(X) and H(X) in the region X > 0 can be obtained for
arbitrary B and GF

In the region X 3 0 , the positive root is to be taken

are

QJ[Q-:
<l

. dH
in (8.33) so that the equations for % and
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2
do 3Ry . f 3B\
EX (1- H) + -I_-I- (‘l—- '-E—) + 4HO (8.4—2)
nd an _ —2—(3- 22y - 25 4 B;2+ A0 (8.4
a o= g - % ) .43)

The functions H and 6 must be continuous at X=0 although
their gradients will be discontinuous because of the input
of heat there. The boundary condition to be applied to (8.42)
and (8.43) is therefore (8.41). A solution in the region

X <0 must also6 satisfy the downstream conditions (8.31) and

(8.32). The condition, 0 = 4% = 0 as X >-w, is not
compatible with equation (8.42) because HB and when
0 = %%:O , equation (8.42) requires H > 3B. However, 6(x)=0

is a solution to (8.29) and (8.30) but it was discarded when
deriving (8.33) and (8.34). When 6=0, (8.3%0) is satisfied
identically and (8.29) gives a differential equation, for H

only, satisfied by

2(-m, %)+ B(eP-u, %) +82 (11, ) +B71L0g é ))— 3(X-X,)

1
(8.44)

where H=H1 at X=X1. This expression satisfies the condition

H>B as X 2> -oo. This expression (8.44) for H together
solution

with 6=0 1is a valldlto the problem in the region x < X1

If a numerical solutlon to equations (8.42) and (8.43) with

boundary conditions (8.41), is obtained with 9(x2)=0 and

H(x2)> 3B; then by putting x,=x, and H(xz):H1 these two

solutions match together at X=X, to give a solution wvalid

throughout x S o .
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8.6 Numerical results for solution in boundary layer

The numerical results to the method given in §8.5 were
obtained using the CDC 6600 at London University. The
numerical integrations were performed using the trapezoidal
rule.

Provided that they gave sélutions with G(x2)=0 and
H(x2) > 3B, solutions for H(X) and 8(X), in —a)s X 3 o ,
were obtained for arbitrary values of GF and B . ‘A typical
soiution for H(X) and o(X) is shown in Figure 9. It is
seen how the fluid is pushed up into %he form of a solitary
wave in front of the source and is depressed behind it.

The non dimensional surface velocity ﬁs(x) ;.

ug (%) = ug(x) -y _ g [3—% + —12- H%J ,  (8.45)
u

was obtained for arbitrary B and QF when valid solutions
for H(X) and ©(X) had been obtained. Figure 10 shows
a typical surface velocity curve. It is seen from this curve
that the fluid flows away from the source throughout the region
behind the source. Ahead of the source it fiows away only
as far as a stagnation point which occurs whe;e H=3B , after
which it flows towards the source throughout.

Also calculated for arbitrary values of QF and B was

the value of A ,

1 7
A = ~f2‘: - } /3 (& /3 R . (8.46)
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Thus A 1is fixed by the heat source strength xcR and hence
the effective source temperature is fixed by the source strength
From the non dimensional solution in the boundary layer the
dimensional solution can easily be deduced., It will be

obtained in terms of two parameters, A and /U .

8.7 ©Solution in the region outside the boundary layer
By the definition of the boundary layer the motion in

this region produced by the source is negligible. As

éL >> 2 the heat transfer equation becomes
N 0x
2
v &= 22 ,  (8.47)
oy
T = T—TO as before. To make this equation non dimensional
K4 2 :
25 = qa N2 -—2——4— T ’ (8.4—8)
B upg
1
2 /3
Y = L—gﬁ} y ,  (8.49).
L u
V4
3
£ = _Q&E ' . (8.50)
Apu ] .

-The boundary layer thickness being small A >> 1 , so that
£ (<'1. With these definitions, the heat transfer equation

becomes

L/ g2 QEQ .‘ (8.51)

The solution obtained in this stagnation-region must be matched
to the solution in the boundary layer above by matching the

temperature at the interface and the heat flux across it.
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In terms of the non dimensional variables these two conditions

are

e : O = € %g = 9(x) . (8.52)

A Taplace transform method was used to try and solve
(8.51) with the boundary condition (8.52), as shown in
Appendix B , but when the Laplace transform of the solution
had heen found its inverse could not be obtained. This method
did not, therefore, give a solution but the following Pohlhausen
method does.

Using the Pohlhausen method, a profile is chosen for @

g=0 {1+ ?ﬁ-}z)u-ef(H‘%*Y))} ,  (8.53)

which satisfies the boundary conditions (8.52) and in which
f(x) is a parametric function. The integral of (8.51) across
this layer is
T .
H(x) 7€

a B _ g _ 2 3f
= BdY - 6 5% = €6 - £ 35 o

0

Substitution for @ reduces this to

gi{‘?(H— %8) +‘%2(1—ef(H— %8))} +e(H~ %g)%§=829 {1_GY(H_ % )1

(8.54)
Define & Dby

e = fu-Ze) ,  (8.55)

so that (8.54) becomes

. .
= {Q(H— %8)2(11535EL01 + e(H- %e)%g = ¢%g(1-e8) . (8.56)
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Writing EE= 87 = o g sefn+ L. . (8.57)

(8.56) becomes

é% iG(H— %8)2(€n1+€2n2+ ...jl + g(H- %s)%% = 829(1—eg) .

(8.58)
It follows by considering the profile (8.53) in detail that
as € k( 1, j >> 1 and hence - £ >> 1., As =& >> 1,
(8.57) shows that

E —_— . (8.59)

Equating coefficients of e in (8.58) to zero omne obtains the

resuldt

d /Al d9 _
-ﬁ(QHT\,I)-i-HE'X-—O R

which when integrated determines.n1 R

X

n, = — ae

1 ) j H(EX) ax
SX,

Using this result and (8.58),

2
g - —=SH , . (8.60)

X
de
Ef H(a—x)dx

X1

Trom this expression the parameter :f in the profile for J
is easily deduced. |

The integral of (8.51) over the entire range of X reduces

to +00 o H(X)'— %E
- dHK_ 2 g R i

—00 -0 . 0
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Substituting from (8.53) for £ , and using the result (8.60)

this becomes

. 2
A .. ~OH
eA +j~ o % dX = € J 0 exp —% ax
X X i] H(%%)GX . (8.61)

XO

This equation determines the parameter € . It can be solved

iteratively:
[60)
_ 1 dH
T Jﬂ o (Fx) & ;
%
[60) [60)
£, = — o o(dydx 4 L 0 ex ot ax
2 - T & ax A Pl == )
a0
Xy X, 34‘ H(EX)dX
Xy
@ - 00
2
1 dH n-1 -0H
€, T - % j G(dX)dX + = J‘ 0 exp = ax
. a0
X, X, sn_J H(—d-—) ax
X

if the values of e, converge to €. This seems likely
although a proof has not been established.

A value for € -is also given by (8.50) so that this is an
eigenvalue problem with A , which is directly related to the
boundary thickness, as the eigenvalue. It can be determined
numerically by comparing the values of & obtained from (8.61)
and (8.51) for different values of A . The solutions obtained
in both boundary and stagnation layers can then be written in

terms of the strength and speed of the source, and the known

physical constants.
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7
In the problem of a flame propagafing over a liquid
fuel below its clésed flash point, the speed of propagatioan,
U , will be detcermined by coupling this solution with the

"solution in the gas phsse.

8.8 Discussion

This model is comparable with that of Glassman and
Sirénano for flame spread over a liquid surface. It has
already been stated that their model assumes the flow to be
surface tension driven and the hydrodynamic equations have
been compared in §8.3. They assume that the surface tension
gradient is prescribed by the flame, ignoring the heat transfer
effects in the 1iéuid layer. The only differential equation
they have to solve is their non-dimensional form of equation
(8.8) and the solution for h is cbtained in terms of this
prescribed surface tension gradient. They describe the
solutions which suitable surface tension gradients would give.
Their expression for h is monotonic in disagreement with
this model but their surface velocity has a stagnation point

ahead of the flame as it does here.
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CHAPTER 9

The Surface Tension Driven Flow in a Solution on Contact

with a Hot Gas

9.1 Introduction

The surface tension gradients driving the flows
~considered in the previous problems have been produced either
by a surface temperature gradient or a surface active
contaminant, but not both together as in the case considered
‘here. The contaminant is a solute which lowers the surface
tension of the solvent and is destroyed by heat, so that a
hot gas on the surface will act on the solution as both a
heat source and a solute sink, producing opposing effects on
the flow.

In a simple experiment, Skogen (1958) has demonstrated
that it is possible to increase the surface tension of a
solution on contact with a hot gas in spite of the decrease
in tension caused by the rise in temperature. He used
solutions of water and soap or detergents, but the effect can
be produced with any surface active substance provided the
concentration lies within certain limits. Whén a flame of coal
gas was directea vertically downwards towards the surface of the
solution, Skogen showed that under suitable conditions the
following phenomena occured: (a) a rapid flow of the surface
layer from all directions towards the area of contact between
flame and water; (b) a surface elevation of several millimetres
at this area; (c¢) a downward current froﬁ the elevation. The

observed phenomenaare consistent with a rise in surface tension
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directly below the flame and this was verified by measurements
on the solution. Instead of a flame, a similar effect can be
produced by placing an electric arc directly above the
solution, but it appears that this experiment is more difficult
to perform.

The model presented here is a theoretical analysié of the
" Skogen effect under the assumptions that the process takes
place in a shallow layer under steady state conditions. A two-
dimensional symmetrical flow is considered, separated by the

'z!' - plane, in which a thin flame sheet touching the surface

Oy
of the liquid is assumed to lie. The flame sheet raises the
-temperature of the liquid and maintains zero concentration of
contaminant along the line of contact. It is assumed that the
concentration of surface active agent is everywhere small and
that the physical properties of the solution are independent

of temperature and concentration of contaminant. Buoyancy
effects have been neglected, the flow is taken to be surface
tension driven with the tension gradient maintained by heat

and mass transfer processes along the layer. Such an
assumption is consistent with experimental observations by
Skogen, since no effect was observed when the layer became
covered with a thin inert film. Under the above assumptions it
will be shown that the phenomena are characterised by the rates
of heat and mass transfer along the layer, Prandtl, Schmidt and

Reynolds numbers and the Marangoni numbers for temperature

and concentration changes.

9.2 Equations of continuity and momentum

. . . ! .
Consider a Cartesiari frame of reference Ox'y'z with z!
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measured vertically from the horizontal bed of the liquid,
which is locally of depth H'(x'). Let (ut,o,w!) be the
components of velocity in the liquid. The continuity equation
is |

du! - + dw' = 0 B - (9.1)

Dimensional quantities are denoted by primed symbols, the
corresponding dimensionless variables will appear without
primes., The boundary conditions at the base and free surface
are

z! =0 w' =0 - s
(9.2)

u'dn' .
dx?

z' = h' : w!

Integration of (9.1) over z' and use of boundary conditions
(9.2) gives

4 _fh'u'dz' = 0 (9.3)
dx! o

Since the flow is symmetrical and the volumetric flow of
contaminant may be taken to be neglible, equation (9.3) gives

an integration

Jh'u'dz' =0 (9.4)

O

For this slow two-dimensional viscous flow in a shallow layer,
the equations of Yih (1968) are again appropriate. They may

be written

ap! = u e s (9.5)

Bx! 3l 2 .

%E: = - pg B (9.6)
VA

in which p' 1s the pressure, ﬁ the viscoéity, n the density

and g the gfavitational acceleration.
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The boundary conditions at the base and free surface

may be written

2'=0 : u'=o0 -, (9.7)
z' = h' Ll'_'a_u_' =_@9_' . .

3z ! ax ! , - (9.8)

p' =0 ) (9.9)

where o' is the surface tension, it being assumed that the
"maximum curvature of the surface 1s small compared to some
characteristic length.
The solution for p', from (9:6) and (9.9) is

pt = pg (ht - z') (9.10)
The solution of (9.5) subject to boundary conditions (9.7),
(9.8) is
zt (2ht - z1) (9.11)

ut = dot zt - 1 39p
2y

1 do 1
p dx! EFd

Substitution in the continuity equation (9.4) and integration

over z! gives

212 (gg. - 2 pght ghn =0 (9.12)
2u daxt 3 dx 1
Hence gt = o _t +1 pg (n2 - d2) s (9.13)

© 3
. ' } ’
where d is the depth and o, the surface tension at x =0.
Substitution of (9.13) and (9.10) in (9.11) now gives
ut = —gs @t Z'(Z'_gh') .
The other component of velocity may be obtained by substituting

in (9.1) and integrating over zt!'. The result is

ax! dx 12 (9.15)

(@)Y
=

w! = p Z‘2{ (dhl)2 + d2nt (ht - g1)
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Equation (9.14) shows that near the surface, u'§0, according

to whether dh' > 0, and that uw' changes sign when z'=2 h',
dax! 3

From (9.15) it is seen that w' is everywhere small.

A

9.3 Equations of heat and mass transfer
In a shallow layer, with Prandtl and Schmidt numbers

large, the equations of heat and mass transfer can be written

u' AT' + w! AT = K 52mt

ax! 3z 3z ' 2 , (9.16)
and .
u' a¢' + w' 39¢' =D 32c!

ax! 0z! 3z 12 s (9.17)

where T' is the temperature, c¢' the concentration of
contaminant, K the thermal diffusivity and D the diffusion
coefficilent for mass transfer. The temperature and concentfation
at the surface are related to the surface tension and hence by
(9.13) to the depth. Denoting surface values with a suffix 3,
one can take

o' =o'+ a' (T, - T.') - pg'ey’ s (9.18)
where T" is the surface temperature directly below the flame
where the concentration of contaminant is assumed to vanish.

a' and B' are positive constants given by

ars- (égﬁ) == (azj
AN DR AR ac! TreTy

¢! = 0, cl=0.  (9.19)

{4

]

9.4 Dimensionless equations
Introduce dimensionless components of velocity

. u = u'd R w = w'd s (9.20)
-~ wo %o
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with‘;ithe kinematic viscosity, and dimensionless coordinatés
x=x' ,  z=z' h=h' . (9.21)
d d d
Expressions (9.14), (9.15) for the components of velocity now
become
u=1Re? dh z (z - 2 h) , . (9.22)
2 dx 3
and
w = 1 Re® z° { (@)2 + d°h (h - 2) } ,  (9.23)
6 ax dax<
where the Reynolds number occuﬂgng in these expressions is
defined by
Re = (ggf)'é , . (9.24)
u

Taking Té and Cé as reference values for the temperature and

concentration, introduce dimensionless variables

T =1T' - Ty
ET—:ﬁf;' s (9.25)
and
c = ¢'
et R (9.26)

in terms of which the equations of heat and mass transfer

become
udT + wdT = 1 3°T , (9.27)
90X 0z Pr 3gz2
- 2
ude + wdc = 1 I7¢c
X 0% Sc 5,2 s (9.28)
where Pr = 2’1} R Sc = XV
: K D

Eliminating the surface tension between (9.13) and (9.18) and

expressing the result in dimensionless form, one obtains

n = 1+ o (1-T) - Be ; (9.29)
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in which a, B are dimensionless parameters, given by

o = 3Maj. s B = 3Mas

RezPr Rezsc . (9.30)

"The Marangoni numbers for temperature and concentration
$

changes, occu%ing in (9.30) are defined by

Mal = a!' (D' - Té) d s
. K (9.31)
Ma2 = B cod
ub

From the definitions above it follows that the surface
variables satisfy boundary conditions

x=0: h=1, T_=1, cs=0. (9.32)
It is assumed that all the heat entering the surface near the
flame is convected downstream. Further, since there is no °
downstream mass transfer across the base and free surface, the

boundary conditions on temperature and concentration are

c =0 . (9.33)

97 Z

@

H
i
Q

x>0, z=0,h:

9.5 Solution by von Karman-Pohlhausen method

‘The equations of heat and mass transfer (9.27), (9.28)
are now integrated over the depth of the layer. Using the
equdtion of continuity and in view of boundary conditions
(9..33) and the relationship between the velocity components at

the surface, one obtains,

(9.34)

i
=

h
J uT dz
o}

(9.35)

—
)y
[w]
)
o,
N
i
1
w
“w
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where A, B are positive constants which represent the
dimensionless heat and mass fluxes along the layer, respectively.
The temperature distribution in the layer will be taken
in the form
T(x,2) = T (x) 4 [T (x) - Tb(x)] £2(6) ,  (9.36)
t = 1 - E s
h
where Tb(x), Ts(x) are the temperatures along the base and
free surface, respectively, and fl(t) is a suitable profile
funetion. Similarly, the distribution of contaminant will be
assumed of the form
elx,z) = op(x) + e x) - e )] (6, (9.37)
with cb(x), cs(x) the base and surface concentrations and fz(t)
a profile function. These definitions, together with the
boundary conditions on temperature and concentration, show that
the profile functions f;(t), i=1,2 must satisfy the following

boundary values

1
o
-

£,00) =1, £, (1)

(9.33)

{
o
"

{i

f1(0) =0 £1(1)
with primes here denoting derivatives.
Expressing (9.22) in terms of us(x),'the velocity
component at the surface, one obtains .
u = u (1-£)(1-3t) s (9.39)

and similarly (9.23) can be written

w=1u_ dh + 0(t) . (9.40)
S—-—
ax .

Substituting the above functions for temperature and concentration
in equations (9.34), (9.35) and using (9.39)

hu, (TS - Tb) = A (9.41)

1 2
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N
where A=A &o (1-£)(1-3t) fl(t) dt s
and hus(cs—cb)ft'B1 . s (9.42)
where B = Bl jo (1-£)(1-3%) fg(t) dt

Since fi(t) i=1,2 are specified profile functions, the constants
arising in (9.41), (9.42) are just the heat and mass fluxes
multiplied by numerical factors. Further information about
the profile functions and other functions introduced may be
obtained by direct substitution in equations (9.27), (9.28).

In view of (9.38)

2 t
£ fi' (0) +

3 £010(0) + ...
(9.43)

Substituting (9.36), (9.39), (9.40) in (9.27) and equating

f.(t) =1 +1 1
* 2! 3

terms without t one obtains

= e - ‘

ug dfg = 1 _E;_%Q) (Tg~Ty) ) _ (9.44)
dx Pr 'h

A similar equation, but with a different numerical factor on

the right hand side is obtained on equating terms in t.

Comparing this with (9.44), one finds that

1
Similarly, substituting in (9.28) and equating powers ot ¢t

v = -h£ (0  (9.45)

ug deg =1 TL1(0) (e - ¢p) , (9.46)
HE— Se h2 ’
where £Ar (0) = -4 £ (0) . ' (9.47)

The temperature difference between the base and free surface

" can be eliminated between (9.41) and (9.44), The result is

3 2
h us de = =A

2
dx Pr s (9.48)
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where A2 = -Alfi' (0)

Close to the surface the vertical component of the

temperature gradient will be positive or negative according
to whether the surface temperature is less than or greater
than the base temperature. In either case f'(t)>0 for small
t, and examination of (9.43) then shows that f£''(0)<O0. A, is,
therefore, a positive constanf related to the dimensionless

heat flux along the layer. Similarly, combination of (9.42)

and (9.46) gives

3 2 - '
h uS _d__C_S_ - E_Z_ - 3 (9'1"9)
ax Sc

- Tt
where B2 = Bl f2 (0)>0.
Equation (9.48), (9.49) can now be substituted into the
differential form of the surface relation (9.29) to give an

equation for h. Since by definition

u, =1 Re® n® dh . -, (9.50)
6 dx
one obtains
n® gg) 5= 54 [ Mag A, - Map Ep) . (9.51)
ax Reb6 | — —_
Pr2 Sc2

The solution of (9.51) with boundary condition (9.32) is

3_ ) .
h = (1 +Cx)11 (9.52)
whetre c3= 2662 [ Mag Ay - MapBp
Re6
P2 sc? i

The free surface is thus raised or lowered below the flame
according to -whether C§O. The significance of this dis-
criminant will be discussed below. The solution for the other

variables of the system is now straightforward. The surface
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velocity component becomes

u, = 1 Re? G (1 + Cx)”2/ 11 > (9.53)
22

and hence from (9,48) and (9.49)

T, = 1+ _1 Ao 1- (L+px)~ '~ > (9.54)
S 260 I
PrRe 'C3
- 6/91
c. = 1 Bo (1+cx) -1 , (9.55)
| 1
ScRe 03

on using boundary conditions (9.32). Substitution in (9.41)

“and (9.42) also shows that

T, - T, = 224 (14Cx) AL > (9.56)
Rezc
-1a1
o, -, =-22By (Lrcx) A : (9.57)
Re2C

To describe the temperature and contaminant distributions in
the layer suitable profile functions fi(t) are féquired. Since
the boundary conditions are similar in view of (9.45) and

(9.47), take

£i(E) =1+ pt? - 4 pt> + qt” s (9.58)

3

with p, q parameters to be determined. Applying boundary

conditions (9.38), p = -6, g = =3, so that
£,66) = (1-£)2(1+3t) . (9.59)

9,6 Conclusions

From the results obtained in the previous section the

following conclusions can be drawn:



101

(1) h increases or decreases with x according to whether
géo. i.e. there is a depression or rise in the liguid surface
where the heat source is applied,

(ii) the surface velocity uéﬁo according to whetherc%?cn
(iii) the surface temperature Tg decreases with x, -
(1iv) TS—sz 0 aceording to whether %}O. e.g. When QZO, u< 0
. and hot 1iéuid is convected downwards below the heat source
towards the base,

(v) the surface concentration Cg increases with x,
20 according to whe‘cher@% 0. e.g. for @_>O,

b
uS>O and the concentration of contaminant near/the surface

(vi) cg = ¢C

tends to be lower than that at the base, ;

. 2 o
(vii) for similar profile functions of the (9.59), the
discriminant C is given by

& = 210x113( Ma, A - Ma, B ,
Re5 Pr2 802

in which A, B are the dimensionless heat and mass fluxes along
the layer, respectively.

" Reference to equation (9.1%) shows that a rise in the
surface below the heat source is associated with an increase
in surface tension, and from conclusion (i) C'is negative in
this case. The discriminant above shows that this condition
is satisfied when mass transfer is dominant compared to
heat transfer or when relatively large changes in surface
tension are associated with small changes in the concentration
of contaminant (Ma5> Mal). Although both these conditions are
likely to be satisfied in a Skogen type éxperiment, more
measurements are required in order to substantiate the depend-

ence of the flow on the discriminant C.

(,4,1"
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CHAPTER 10

.General Conclusion

The models produced in Chapters 5-9 could all be
extended by considering the effects of buoyancy, the surface
curvature and the variation of viscosity with temperature as
was done by many workers for the Bénard cells probilem. The
effect of buoyancy is probably the most significant of the
three. The models could also be improved by conéideriné, where
applicable, the effects of distributed instead of concentrated
‘heat and mass losses.

Further analysis of variable surface tension driven flows
is needed in connéction with several current problems of
practical importance. From the safety aspect, a problem of
industrial importance is: will a spiht liquid fuel below its
flash point permit a flame to spread if an ignition source is
present? The layer spilt will probably be shallow and therefore
the motion in the layer, which determines whether or not a
flamé will spread, will be driven by variable surface tension.

ﬁeat exchanges are becoming of increasing importance in
engineering, particularly in connection with nuclear reactors.
In some device;, coolant passes under pressur; through a tube
so that the external heat flux produces a central core of
vapour and a thin annular liquid film on the inside of the tube.
Heat transfer takes place by conduction through the liquid film,
followed by evaporation on the interface. In the phenomena of
'burnout', the liquid becomes locally unstable, the absence of

the liquid film produces a sharp increase in temperature with

resultant catastrophic breakdown of the tube wall. Although
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the phenomenm of burnout is complex, c.f. Symposium on two-
phase flow dynamics (1967), surface tension effects must play
a role in producing annular film breakdown. This is therefore
another problem to be investigated in connectlon with variable
surface tension driven flows.

The effect of pollution on our environment is becoming
. increasingly more important. The presence of surface active
material in industrial waste being discharged into a river
will affect the flow of the surface of that river. This could
be of particular importance where the waste mixes with the
river water. A report was given in Science Journal (1969) of
an experiment in which an oil slick was burnt off the surface
of a pool of water by placing a chemical Cab-0-Sil on the
surface. This surfactant isolatéd the o0il from the water, which
acts as a heat sink, so that the oil could be ignited at the
surface. Once ignited the particles of Cab~0-Sil act as a wick
to keep the oil burning. Although the processes taking place
in that experiment appear complex, it seems that variation in
depth caused by surfactants could be used to help in the
removal of crude oil from the surface of the sea. Further
experimental and theoretical studies of this problem are clearly
desirable.

From the evidence given 1t is seen that more work is
desirable in connection with flows affected by variable
surface tension and the associated investigations of the heat

and mass transfer processes producing such variations.
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APPENDIX A

In one dimension it can be proved that for a linear
differential operator L , the Greens function for the

differential equation
L[U.] =0 s
which holds everywhere in a region, a < x < b , except at

some source point &, a<i<b; together with a set of homo-

geneous boundary éonditions, is given by

G(x,E) = °§ u (x)u (€)
n=1

A
n

where An and u, ~are the eigenvalues and normalised

eigenTunctions for the problem
Lu 4 Auz=20

with the same boundary cdnditions. This formula relating
Greens function to eigenfunctions and eigenvalues of the
above éigenvalue problem is called the bilinear relation. It
can be extended to 2 dimensions, an example iluustrating this
extension is given in Courant and Hilbert (1953).

_In Chapter 7 it is necessary to find the Greens function

for
V%29 = O (A1)

in the region 0<x<l, 0<y<l with the boundary conditions

y=0 : ©=0 5 (A2)

_ 00 _
y = l "53]‘ - O * . 3 (AB)
x=0,1 : .22 - ¢ . (Aba,Alb)
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To obtain a solution in the form suggested, it 1s necessary

to find the normalised eigenfunctions and eigenvalues for

vee + 2% = 0 , (A5)

with the boundary conditions stated. Substituting a
solution in the separable form )
X
0(x,y) = X(x) ¥(¥) .

one obtains the equations

1 d°x = -K'° (46)
¥ dxe - _

and 1 %?%) — , (AT)
¥ dy?

" where K' and m' are constants connected by

K12 oy w12 = 22 .

The solution of (A6) satisfying (Alla) and (Alb) is

x= A cos Kmnx R
where A is constant and
K' = K , K being an integer.

The solution of (A7) satisfying (A2) and (A3) is

~

Y = B sin (2m+l)w ¥y R
2
where B 1s constant and

m! = (2m+l) , Mm being an integer.

2
The required set of eigenfunctions, Oy, and corresponding

eigenvalues, MAyps 1s therefore,

eKm = AKm cos Kr x sin (2m;;)ﬂ Y, (A8)
Mgy = T2 (_(2m+1)2+uK2] ' , (A9)
} .
where AKm is constant. The eigenfunctions must now be

normalised by determining the constants A, . The normality

Km
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condition is

which gives the result

AKm = %

The normalised eilgenfunction is therefore

OK = 2 cos Kmx sin (2m+l)wy (A10)
m 2

Using the bilinear relation it now follows that the

required Greens Function is

G(x,y,E,n) =

o)

} 4 cos Kmx sin (2m+l)mwy cosEmx sin (2n+l)my
1 m=0 2 ' 2 .

lr; [(2m+1)2 s 1IK2]

Z

K
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APPENDIX B

Trying to use a Laplace transformation method to solve

¢ = 82 322
% 3y s (B1)

with boundary conditions

Y = H-7e: ¢ = €3¢ = 8(x) s (B2)
T 3Y

and X+too: $-+0 : (B3)

_rewite the system by putting

z = H-Y-7me
Iy
_ 2,2
so that 3¢ + dH 3¢ = €“9%¢ s (B4)
9X dx 9%z due
z = O: ¢= -ed¢p = 6(x) . (B5)
97

Suppose that $ is the Laplace transform of the solution for ¢,

$ =L {6} = J: e %% g(x,z) dz
Using the boundary conditions (B5), it follows that

and . L {%£}= s{s$-06} + 16 ,

€
so that the transformed equation to be solved is

3¢ + (s aH - 8282) $ = {<€% + ¢ + aHlo . (B6)
9% : dx

dx
Because of the form of 8(x), this equation must be solved
separately in the regions x>0 and x<0. ‘Integrating (B6) in

x20 and using the boundary condition at infinity
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~ . _ 2 ~m o — 2 2
3 = e SH+e sx_ S (_823 +e+ d ge”H e st dat. (B7)
. X dt

Unfortunately, the inverse of this Laplace transformation is

difficult to obtain so this method does not give a solution.



112

FIGURES



113

IT

g//-_——
o .
-
n
o
@
KL
o
et I
p
pa IiT
0

concentration

Figure 1 The three types of curves for the change of

surface tension of water by solutes

ay
x 0
Figure 2 Sketch of integral curves in the region of physical

significance for the equation

4 _ CKo(xaY)

dX  sx2i4xy-1



114

Figure 3

Sketch of the integral curves for the equation
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3
Figure 4 Curves of S and H versus for bl =0 ’
I al=0.l,a.=0.097,b=0.0
-II al=0.2,a.=0.17, b = 0.0
III' a. = 0.346,a = 0,220, b = 0.0
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l.O
Figure 5 Curves of S and H wversus for bl = 0,001 ,
I al = 0.0 9 a8 = OoO y b = 0.00962
IT a; = 0.1, g = 0.092 , b= 0,00921
ITT a; = 0.2 , a = 0,163, b = 0,00816
Iv a, = 0.324 , a =0,201, b = 0,00622
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