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ABSTRACT 

Fluid flows effected by surface tension variations are 

considered. A discussion of the various agencies causing 

these variations is given together with laboratory, industrial 

and natural illustrations of such flows. The equations of 

motion, mass transfer and state for the surface phase are 

described and discussed. The various theoretical models 

produced for BLard's cells are described and compared. Yih's 

model for two dimensional variable surface tension driven 

flow when the variation is caused by an insoluble contaminant 

is discussed and an analysis of a singular point in a phase 

plane is used to examine' the possible instabilities in such 

a flow. By extending Yih's analysis, a model is produced for 

the flow in a shalloW fuel layer near, but not close to, a 

burning wick. The solutions for the variations of surface 

tension and fuel depth with distance from the wick are obtained 

numerically. A separate solution, developed from slow viscous 

corner flow theory, is provided for the flow close to the 

wick. Neglecting the variation of depth associated with these 

flows, a model is produced for the effect of a heat source 

placed at the corner of a rectangular cell. * The solutions are 

found using a Green's function which is obtained as a series 

of eigenfunctions and eigenvalues. A model produced for flow 

owing to a moving heat source involves the solution in a fast 

moving boundary layer close to the surface by formulating Yih's 

basic equations in a moving frame and then obtaining' numerical 

solutions for surface tension and liquid depth, and the 

solution in the layer below using a Von KArmAn-Pohlhausen 

technique. Using this Von Kal.rmAn-Pohlhausen technique again, 
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an analysis for the flow in an aqueous solution on contact 

with a hot gas is presented. 
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CHAPTER 1 

General Introduction 

The greatest influence on shallow liquid flows is 

probably that owing to surface tension variations: the 

variation of surface tension along the interface of a 

fluid gives rise to tangential stresses which affect the 

motion of the fluid. These variations can be caused by 

changes in the surface temperature, changes in molecular 

composition of the interface when more than one substance 

'is present and also by electrical effects. Heat and mass 

transfer processes taking place in a shallow liquid layer 

have, therefore, a strong effect on the motion taking place 

in that layer. 

The name "Marangoni effects" has been given to motions 

which are induced by variations of surface tension at the 

interface between two fluids, examples of which are given 

by Scriven and Sternling (1960) and in the review papers by 

Kenning (1968) and by Levich and Krylov (1969). Perhaps the 

easiest commonly observed effect is the "Tears of Strong 

Wine" which occurs when the walls of a glass are wetted by 

wine. A thin film of wine forms on the inside of the glass 

but the evaporation of alcohol rapidly reduces the concentration 

of alcohol in this film and causes the 'old' film to have 

a higher surface tension than that of the 'new' films just 

rising from the bulk of the wine. The 'old' thus retracts 

from the 'new' film and soon yields small droplets. 

A simple experiment which demonstrates very easily 

motion produced by surface tension variations is the "Camphor 
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Dance". A grain of camphor placed on the surface of clean 

water is seen to start moving about violently. Because of 

the dissymmetry of the grain the amount of camphor entering 

the water surface varies at different points of the grain. 

Hence the surface tension of water is lowered to a different 

.extent at different points on the circumference and the grain 

is pulled most strongly towards the point of greatest surface 

tension. Both the "Camphor Dance" and the "Tears of 

Strbng Wine'' are described by Bickerman (1968). The effect 

of surface temperature variations on a shallow liquid layer 

'can be observed in the laboratory by placing a heat source 

close to the surface of a pure liquid which does not decompose 

under the action of heat.' It will be seen that there is a 

net surface flow away from the source and a corresponding 

depression of the surface owing to the decrease in surface 

tension at the hot spot. The opposite effects will be 

observed when a. liquid is locally cooled. 

Marangoni effects occur naturally, on the surface of a 

polluted river for example. The effect is also important 

where a river enters the sea owing to the presence of natural 

solutes in river and sea water, in addition to the possible 

pollution of the river. A commonly observed effect is the 

damping of gravity waves by a thin layer of crude oil; a 

mathematical treatment of this effect is given by Miles (1967). 

As well as being apparent in nature, Marangoni effects 

are of industrial importance involving heat or mass transfer 

across an interface eg distillation, fractional distillation 

and liquid-liquid extraction. Minute quantities Of some 

substances present on the surface of some liquids can produce 
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extremely large changes in surface tension. Experiments, 

involving processes such as fractional distillation, carried 

out in the laboratory with clean apparatus and pure materials 

may not therefore be applicable to a large scale industrial 

plant where every trace of contaminant cannot be removed: 

This thesis contains a theoretical analysis of some 

flows driven by surface tension variations. Chapter 2 

contains the derivation and a discussion of the equations 

and boundary conditions at the surface which will be needed, 

in addition to equations for flow in the bulk of the layer, 

for the analysis of such flows. 

Chapter 3 and 4 are concerned with important work done 

previously on variable surface tension driven flows. 

Chapter 3 contains a review and discussion of the work done 

in connection with Benard's cells problem. Originally a 

classical example of buoyancy driven convection and subse—

quently shown to be affected by the surface tension gradient 

present, these cells have been the subject for many theoretical 

models based on buoyancy only, surface tension only and also 

models based on both buoyancy and surface tension. Chapter 4 

considers in detail the analysis produced by Yih for two 

dimensional variable surface tension driven flow in a shallow 

liquid layer where the surface tension gradient is produced 

by an insoluble surfactant. In particular, the instabilities 

mentioned by him are considered and some of his conclusions 

are shown to be incorrect. 

Chapters 5, 6, 7 and 8 provide theoretical analyses 

for variable surface tension driven flows produced by constant 

heat sources, the ones in Chapters 5, 6 and 7 being fixed in 



-11 

space. The effect of buoyancy is neglected in all four 

models and also in the model presented in Chapter 9. In 

Chapter 5 a model applicable to the problem of a shallow 

layer of fuel burning at a wick is presented. As the 

solution obtained does not satisfy the zero velocity 

condition at the wick a separate model, which is given in 

Chapter 6, is needed to describe the flow in the wedge shaped 

region formed by the wick and the surface. In Chapter 7 

a model applicable to the case of a heat source present at 

the centre of a pool of fuel is produced. The only limitation 

placed on the depth of the liquid layer in this model is the 

implicit one made.by assuming buoyancy effects are negligible. 

This depth is however assumed constant, contrary to all the 

other models presented in this thesis. In Chapter 8 a 

theoretical analysis is' presented for the flow produced in a 

liquid layer by a constant heat source moving with constant 

velocity over a liquid layer. 

The flow considered in Chapter 9 is that produced in a 

solution whose surface tension is varied both by the action 

of temperature and a soluble contaminant lowering the surface 

tension of the solvent. An experiment has been performed by 

Skogen where the solute in such a solution is destroyed by 

the action of a heat source present at the surface, thereby 

producing two opposing agencies affecting the surface tension. 

In Chapter 9 a theoretical analysis is provided for this 

Skogen effect. 

The concluding chapter, Chapter 10, contains suggestions 

how the models presented here could be extended. It also 

contains a review of the future importance of flows affected 

by variable surface tension. 



12 

CHAPTER 2 

Surface Phase Equations 

2.1 Introduction 

The concept of a surface phase has been introduced 

when considering two phase flows. This phase consists of the 

molecules of each bulk phase which are directly affected by 

the molecules of both bulk phases. One can suppose that these 

molecules constitute a two dimensional continuum with its own 

laws of physics. The basic results obtained from these laws 

are needed, mainly as boundary conditions, for theoretical 

models for flows in shallow liquid layers where surface 

phenomena are important. 

2.2 Dynamical Equations 

Scriven (1960) formulated the equations of motion for 

this phase. One must use a two dimensional set of coordinates 

and its associated metric tensor, aA , defined by the surface. 

Scriven considers the interface between two fluids to be a 

two dimensional isotropic continuum. He also considers it to 

be Newtonian so that by definition the relation between stress 

and rate of strain is linear, 

T°'' = pA  + EpAaP Sap 	
(2.1) 

where TA is the surface stress tensor and S4 
the surface 

rate of strain tensor. Using the property of isotropy one 

gets after suitable rearrangement 

TA = TaA KaAaaPSap s(aPAJP-FallPaXa-aAaaP)SaP'  (2.2) 

where 't the interfacial tension, K the coefficient of 



13 

dilational surface viscosity, and E _the coefficient of 

shear viscosity are scalar quantities dependent on the 

temperature and molecular composition- of the interface. 

With the fluid at rest, the surface is in a state of 

uniform stress, SaP 	, =0 	so that 

TP'7" = Tall?" 
	

(2.3) 

T coincides with the equilibrium interfacial tension from 

thermodynamic considerations. From these relations one can 

see clearly the analogy between surface tension in two 

'dimensions and pressure in three dimensions. 

The relation (2.2) between stress and rate of strain is 

then used by Scriven to obtain the equations of motion for 

the surface phase. These equations are formulated in a fixed 

Cartesian frame because in general the surface frame is non 

inertial. The equation balancing the forces which act in the 

direction Q on• a portion of surface, E , defined by the 

contour C , is 

YAK  did 	= 	Fit.d .ds 	(2.4) 

where latiin indices refer to the fixed franie, 	Y is the 

surface density, Al  the acceleration. Fi  is the resultant 

of the-external forces, which includes the effect of the 

bulk stresses at the interface. If, in the absence of any 

other forces, the stress tensors in the bulk phases A and 

B are TAij and TBi
j , respectively, 

Fi  (TAij TBij)nj 
	(2.5) 

where n. is the normal to the surface E pointing into 
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the bulk phase B. Ti  is the expression in the Cartesian 

frame for. TI1XmX  , mX  being the outward normal to the 

contour C. Usually the terms involving y can be neglected 

so that the equation of motion at the interface is just a 

relation between the stresses in the bulk phases at the 

interface and the surface stress. For a plane stationary 

interface in the (x,y) plane the relation 

	

av 	av 	av 	av 

dx 
(K+0.2.L( x __Y) 	.6(ayX  --Z) (2.6) TA  - TB  = dx 	` 	fax`ax 	ay ' 	ax 

-is obtained where (vx  ,vy  ) is the velocity of the liquid at 

the surface and TA' TB are the bulk stresses at the inter-

face in the x direction, with the normal from phase A to 

B being in the positive z direction. 

For most problems the terms in K and e are neglible. 

If in addition phase B is air and phase A is a viscous 

incompressible fluid then as the bulk stress of the air is 

negligible one obtains a boundary condition for the fluid 

velocity (u,v,w) given by 

"(21 aw\  _ da  
1-`az 	ax) 	dx `r) (2.7) 

which becomes 

au 
11  az = dx (2.8) 

if the mass transfer across the interface is uniform. This 

boundary condition will be used later in the problems of 

two dimensional surface tension driven flow which follow. 
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2.3 Equations of mass transfer 

If in addition to two homogeneous fluids as phases 

A and B a contaminant is present, the equation of mass 

transfer for the contaminant in the surface phase is required. 

The equation given in Levich (1962) is 

ar at + v.(rus—Ds  vr)+ in  = 0 (2.9) 

where r is the surface concentration of contaminant, Ds  

is the surface diffusion coefficient, jn  is the number of 

molecules leaving the surface to either bulk phase/unit area, 

and u6  is the tangential surface velocity. The differential 

operators refer to the surface coordinates. 

For insoluble contaminants jn=0. For soluble contaminants 

in is controlled by the adsorption-desorption process and by 

diffusion in the bulk phase (S) in which the contaminant is 

soluble; normally one of the two limiting cases for which jn  

is controlled completely by the slower process is considered. 

When adsorption or desorption is the controlling process 

Levich derived the equations 

	

in = 6.(r 	ro) 

	
(2.10) 

where r is the equilibrium value of r and a is given by, 

	

a = (22) 	raQ 

	

r = ro 	
‘axi r=r 

0 

with P(?.) the desorption flux and Q(X) the adsorption flux. 

When diffusion is the controlling process 

in  = D an 	 (2.11) 

where c is the concentration in the bulk phase, D the bulk 

mass diffusivity, and the outward normal to that bulk phase. 
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2.4 Equations of state 

For a three dimensional continuum there is an equation 

of state, f(P,p,T)=0. For the two dimensional surface phase 

with a contaminant, concentration r , present there is 

an analogous relation, F(a, r ,T)=0, called the surface 

equation of state. For a pure liquid the equation of state 

a = K(TO-T) 	 (2.12) 

where K is a positive constant and To the critical 

temperature of the liquid, is in good agreement with 

experimental evidence. 

Experimental results for the variation of surface tension, 

of an aqueous solution in contact with air, with concentration 

of solute show most solutes belong to one of three classes, 

see Figure 1. A good account is given by Davies and 

Rideal (1963) and Bickerman (1968). For the first class which 

contains unionized organic compounds at low concentrations, 

surface tension is a.linear decreasing function of concentration. 

For the second class which contains inorganic salts at high 

concentrations, surface tension is a linear increasing function 

of concentration. In the third class are the long chain ions 

such as soap for which at low concentrations -surface tension 

decreases very rapidly with concentration. Sulphuric acid for 

which surface tension is not a monotonic function of 

concentration is an example of a solute which does not belong 

to these categories. 

The -theoretical surface equations of state which are 

based on thermodynamics and chemical kinetics have good 

agreement with the experimental evidence. Gibbs adsorption 

which was derived from thermodynamic consideration is true in 
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its most general form for any solution in contact with its 

vapour. The adsorption isotherm for a particular system 

which is derived from chemical kinetics is then used in 

conjunction with Gibbis equation to derive the equation of 

state for that system. For solutes of the first class the 

equation derived is 

= KTr 	 (2.13) 

where Tc=cyoT-a , aoT being the value of a at temperature T 

and 	r=o, and K is a positive constant. It is easy to 

see the analogy between this relation and the ideal gas law 

P=RTp. The relationship n=KTr could have been obtained by 

regarding the surface phase as an ideal gas, each molecule 

having just two degrees of freedom. 

Contaminants which are insoluble in a liquid generally 

lower the surface tension of that liquid. For systems with 

insoluble liquid contaminants in which the bulk phase of the 

contaminant is neglected the surface equation of state is 

generally not ideal. Because the molecules in these so called 

monolayers are closely packed, neither the forces of attraction 

between the molecules nor the area occupied by them is 

negligible as is assumed in the ideal theory: One of the 

equations of state for monolayers which considers these 

factors corresponds to van der Waal's equation for gases. 

In the problems which follow the equation of state will 

be the Taylor expansion for a(T,c) with quadratic and 

higher powers neglected, 

a = u(To  ,co  ) 	
a(To

-T)1- p(c-co) 
	

(2.14) 



where 	cc = — 
ci6

)T=T 0 

and 
( ac)  

P 	ac T=To 

18 

c=c 	 c=c 
0 	 0 

The physical justification for this is seen in the preceeding 

review. 
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CHAPTER 3 

3 Surface tension driven cellular convection 

3.1 Introduction 

It has been observed that when the temperature gradient 

across a shallow layer of liquid, heated from below, exceeds 

a critical value the layer becomes unstable and after an 

irregular transition period the flow becomes steady. In this 

steady state the layer is divided into vertical cells of 

polygonal cross section, the fluid rising in the centre and 

falling along the edges. 

These cells were first observed by Benard in 1900 when 

he heated a thin layer of spermaceti and cooled it above. 

An illustration of these Benard Cells appears in 'Laminar 

Boundary Layers' (1963). A theory based on buoyancy was put 

forward by Rayleigh (1916) to explain this phenomenon. This 

basic theory has been refined by Jeffreys (1926), (1928), 

Low (1929), Pellow and Southwell (1940) and others. 

Block (1956) repeated Benards experiments and observed 

cellular convection for temperature gradients less than the 

critical value predicted by the -buoyancy thedry. He also 

observed cellular convection in a layer cooled from below, 

which cannot be explained in terms of buoyancy. He found that 

when a film of silicone, which reduces the surface tension 

of the liquid, was placed on the surface of the layer heated 

from below, convection was reduced by a half. Block concluded 

that the Benard cells were caused by variations of surface 

tension which are due to non-uniformities of temperature over 

the free surface. Led by the observation that the cells occur 
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in drying paint films whether the free surface is above or 

below, Pearson produced a theory for Benard's cells based 

on variations of surface tension at the free surface. 

This chapter contains a review of the models produced 

for Benard's cells. 

3.2 Models assuming that the flow is driven by buoyancy.  

An account of the buoyancy theory is given by Mn (1955). 

This section contains a summary of that work. 

Consider a thin layer of fluid contained within the boundaries 

y=0,d. The equation of motion is 

Au 
p 	= - pgj- VP+pvV2u 	 (3.1) At 

the equation of continuity is 

R v* ( Pu)  = 0 

the equation of heat transfer is 

4.1 	u. VT = KV 2T 

and the equation of state is 

P  = Po[1-a(T-To)]  

(3.2) 

(3.3) 

(3.4) 

where o 	is the density at reference temperature T and ‘o 	iate unik oe 	tUsatri,re 
a is the coefficient of expansion,k It is assumed that v 

K, a are constants. In the unperturbed state 

▪ = 0 

ff = To  - Py 

= Po(l+aPY)  

where R is the temperature gradient T1-To d, T1 
 and To -  
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being the temperatures at the upper and lower plates 

respectively. When the system is perturbed write 

T = T + TI 	 (3.8) 

P = T 	p' 	 (3.9) 

and linearize the equations for T', u', p' to give two 

final equations for v and T' 
	‘zs.e)n  Re_ vel oc_ivy L.0.10AeviA- 

urvvar9 ‘Aci i reth Oft ) 

j KV2)TT = f3v 

- vV2)V9  -v = agV2T' 

(3.10) 

(3.11) 

The boundary conditions on v are 

av y=0,d : v= ay = o 	 (3.12) 

The boundary conditions on the temperature depend on the 

heat transfer properties of the surroundings. In Bel-lards 

experiments the lower surface was metallic and the upper 

surface was air so it can be assumed in this case that the 

lower surface is a perfect conductor and the upper surface is 

a perfect insulator. The conditions are therefore 

y=0 : T,  = 0 

t y=d : aT = 0 ay 

• 

(3.13) 

(3.14) 

Dimensionless variables are now introduced, 

t IC 
ti= 

d2 
(3.15) 

and a solution of the form 

v = 	,s moela 
	

(3.16) 

T' = 3d F( 	,3 )g( n)ePT 
	

(3.17) 
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This requires 

a2F a2F 2 + 	 7  + a F = o 
ac 	ant  

and a sixth order eigenvalue system is obtained: 

Cp-(D2-a2)] g = -f 

[ppr-1-(D2-a2)] ED2_a2if 	Ra2g  

(3.18.) 

(3.19) 

(3.20) 

n = 0,1 : f=f'=0 	 (3.21) 

n = 0 	: g=0 	 (3.22) 

n = 1 	: g'=-0 	 (3.23) 

where Pr is the Prandtl number and R is the Rayleigh 

number defined as - 

R = gapd  
4 

(3.24) 

By putting p=0, the neutral stability, (R,a),curve for the 

system is obtained. The curve exhibits a minimum value, Rc 

of R. For values of R<Rc all disturbances are stable. For 

instability due to buoyancy R>Rc; in the case of the conduc-

ting boundary below and insulating above R0=571 so that for 

Benards cells to be buoyancy driven 

gapd4  > 571 	(3.25) K 

This buoyancy model will be compared with the surface 

tension driven model which now follows. 

3.3 Models assuming that the flow is surface tension driven 

This model assuming that these cells were induced by 

changes in surface temperature varying the surface tension 

along the surface is due to Pearson (1958). The variation 

of density with temperature is neglected. 
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Using a perturbation analysis simil'ar to that in 3.2 

the equations for v'''' and T' are 

4 - vv2 ) V2v = 0 
	

(3.26) 

and 
	

(A - KV2)T' = f3v 	 (3.27) 

The boundary conditions on v are 

av y = 0 : v==0 	(3.28) 

y = d : v = 0 	 (3.29) 

With a fourth condition to be obtained by equating the 

viscous stress at the surface to the surface tension gradient 

there. The relation between surface temperature and surface 

tension is written 

S = So  - oT,  S ( 3 . 3 0 ) 

where as 
a  = (-E) T=T oS 

and S denotes surface quantity. 

Using (2.9), 

and 

I' (e
av 	as  

+ 77)  - a

aw 	

" 

11 (45 + kI)  - aasz 

which combine with (3.30) to give the fourth boundary 

condition on v , 

a2 v ...,2_ 
y= d • . 	—2. -- a V i 2T 1 	Vt_ al- -t-f_ (3.33) 

ay ) 	i -F.,:t.. ae  

It is seen how, in the surface tension dfiven theory, the 

role of the equation of state for the surface corresponds with 

the role in the buoyancy theory of the bulk equation of state. 
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The temperature boundary conditions considered are the two 

extreme cases of conduction and insulation for the lower.  

boundary, 

ay
y = 0 : T' = 0 or by t - 0 

	
(3.34) 

and a general condition at the top, 

-K 
ay = qT7 
	

(3.35) 

where K is the thermal conductivity of the liquid and q 

is the rate of change with temperature of the rate of loss 

of heat/unit area to its upper environment. 

Introducing dimensionless variables, as before, 

(E211 	) = (i, 	1 1)
t-K  T = (3.36) 

and trying for a solution with 

K 
V = T  F(E,f)f(n)eP' 	(3.37) 

T' = pd F(E,3)g(fl)ePT 	(3.38) 

requires 

a2F a2F 2 7 	--n +aF= 0 	 (3.39) 
a3` 

so that a sixth order eigenvalue system is obtained: 

Pr(B2-a2)][D2 	a2]f  ,_ = 0 	(3.40) 

[p - (D2-a2)]g = -f 	 (3..41) 

f(0)=f1(0)=0, f(1)=0, f"(1)=a2pg(1), gl(1)=Lg(1) 	(3.42) 

and either g(0)=0 or gl(0)=0 . The constant B , the 

Marangoni number, is given by 

2 
B = Pd  q (3.43) pv 
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and 
	

L = 12c 
	

(3.44) 

The neutral stability curves for this system are then obtained. 

For the case when the boundary below is conducting, the 

characteristic equation to be satisfied is 

B  = 3a(acosh a + L sinh a)(a-sinh a cosh a)  (3.45)  

(a3cosh a - sinh2  a) 

For each value of L, the neutral stability curve given by 

this equation exhibits a minimum value, Bc, of B . For 

values of B < Bc all disturbances are stable. In the case 

of Benards experiments, assuming the boundaries to be conducting 

loeloW and insulating above, Bc=80 so that for B‘nards Cells 

to be surface tension driven 

apd2 	80  
pv K (3.46) 

It is seen how the instability is governed either by the 

Rayleigh number or the Marangoni number according to whether 

it is thought to be buoyancy or surface tension driven. When 

the values of the Rayleigh and Marangoni numbers for Benards 

experiments are calculated it is found that although the critical 

Marangoni 

The onset 

number is exceeded the critical Rayleigh number is not. 
2 

of instability is governed by d4 or d 	depending 

on whether it is thought to be driven by buoyancy or surface 

tension, respectively. For shallow flows, d < 1 so one would 

expect Bc  to be exceeded rather than Rc. 

Scriven and Sternling (1964) extended Pearson's theory by 

including the effects of surface curvature and surface viscosity. 

The perturbation analysis used is similar to Pearson's and the 

• i• 
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characteristic equation for neutral stability which they 

derive for the case of the conducting boundary below is 

.1 8d(acosha + NNu  sinhaga-sinha cosha+(Nvi/2)a(a
2  -sinh2  a)j 

MA 	a3cosha-sin0a-Ncr  a3cosha 

(3.47) 

where N 	is the Marangoni number, NNu  is the Nusselt MA 

number and corresponds with Ii in Pearson's theory, Nor  is 

the crispitation group which represents the effect due to 

curvature and is inversely proportional to the mean surface 

tension, and Nvi  is the surface viscosity group which is self-

explanatory. Equation (3.47) reduces to that due to Pearson's 

(3.45) when Ncr=Nvi=0 	The neutral stability curves, NmA  

against a , are then obtained for various values of N , cr 

Nvi, NNu. From the curves with Nvi=0 it was seen that 

except in the mathematical limit Ncr=O no critical Marangoni 

number exists. This model therefore predicts that the layer 

is always unstable to disturbances of very low wave number. 

However the limit N cr=0 is a good approximation for large 

wave numbers and Ncr  < 10
-4 as in the case of Benards 

experiments. The stability of the layer is increased both by 

increasing surface tension and by increasing the surface 

viscosity. The increase is most marked for disturbances of low 

wave numbers. 

Smith (1966) considered the effect's of curvature on both 

gravity and surface tension driven waves. He found that gravity 

has a stabilizing effect for disturbances of small wave number 

and that there was a critical Marangoni number. This clarified 

Scriven and Sternling's analysis in which no critical Marangoni 

number existed. Scanlon and Segal (1967) have considered a 

non-linear analysis of the surface tension driven theory. 
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The convection cells occur when a liquid solute which 

lowers the surface tension of the solvent evaporates from 

a thin film of the solution. If the. temperature, T, is 

interpreted as the concentration, C, of the solute, the 

thermal diffusion coefficient, K , is interpreted as the 

diffusion coefficient, D, and the constant, q, is interpreted 

as the rate of loss of solute from the surface then one can 

use the previous analysis for the insulating boundary below 

to describe the cells. One must consider the gradient p to 

be quasi steady because a steady value for p is now impossible. 

3.4 Models assuming that the flow is driven by both buoyancy 

and surface tension 

Nield (1964) considered the effect of both buoyancy and 

surface tension variations. Curvature and surface viscosity 

were however both neglected. He used the usual linear 

perturbation techniques to derive a sixth order system as before. 

A Fourier series method is used 

equation for the case where the 

conductor and the upper surface 

to obtain the eigenvalue 

lower boundary is a perfect 

is subject to the more general 

for various values of a, R and L where 

condition. For neutral stability, values of B 

a, R, B and L are 

were computed 

defined as before. The minimum of B with respect to a was 

obtained by interpolation and the (R/Rc, B/Bc) locus 

corresponding to marginal stability was plotted for each of the 

two cases 1=0. L=oo where R c  , Bc  are the values of R and 

B at marginal stability when B and R=0 respectively. For 

intermediate values of L the loci lay between the two curves. 
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As the critical Marangoni number decreases with increase 

of R, Nield deduces that the two agencies causing instability 

reinforce each other. He presents a table for the numerical 

values of Bc and aB, the critical Marangoni number and 

wave number arra=7,77e. e.  when R=0, and of Rc and ar, 

the critical Rayleigh number and wave. number when R=O, 

for various values of E. He noticed that the values of aB 

and ar 
when L=O, 1.993 and 2;086 respectively, are extremely 

close. Pearson quoted the value 3.5 for the wave number at the 

onset of instability due to'buoyancy which was obtained by 

Jeffreys in 1926 using erroneous boundary conditions. Pearson 

used the difference between the predicted value and the observed 

value as an argument against the buoyancy mechanism' which as 

Nield points out is no longer justified. 

Assuming Benards cells to be driven by both buoyancy and 

surface tension, Cabelli and De Vahl Davies (1971) have solved 

the equations and boundary conditions directly by a numerical 

method. 
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CHAPTER 4 

The Surface Tension Driven Flow in a Shallow Liquid Layer  

produced by an Insoluble Surfactant  

4.1 Introduction 

Levich (1962) put forward in his book a model for flow, 

considered to be two dimensional, in a shallow liquid layer 

driven by a surface tension gradient which is produced by an 

insoluble surface active material. Finding inconsistencies 

in Levichts model, Yih (1968) produced a model for such flows. 

In this chapter the model produced by Yih will be discussed 

in detail. In particular the instabilities mentioned by him 

will be analysed in detail and it will be shown that some of 

his arguments are incbrrect. 

If industrial liquid waste discharged into a river contains 

quantities of an insoluble surfactant, the flow of the river 

close to its surface will be affected by the presence of such 

material; especially as even extremely minute quantities of 

certain• surfactan_ts produce very large changes in the surface 

tension of water. Because of this, the flows considered in 

this chapter are of industrial importance. • 

4.2 Equations cf Motion 

Using Cartesian coordinates (x,y,z), a channel of length 

L is thought to connect two reservoirs, at x=0 where a 

contaminant is added, and at x=L. The horizontal base of the 

channel is-at z=0 and the free surface' of the liquid at 

z=h(x), allowing for the variation in depth of the layer 

produced by the flow. The channel is assumed to be very much 
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wider than it is long so that the motion is two dimensional, 

but it is sufficiently long that the edge effects at x=0, L 

can be neglected. 

The Wavier Stokes equations for steady motion are 

u au 	w au _ —1 	
a  211 	a  2 

ax 	T ax 4 V  (-- 
aX
7 
 aZ 

.7-121)  

uaw 	w aw 	2 	a2vi 
ax 	az = 

-4 	
+ v u 
	a \ p az 	, 2 —7/ z g x  

and the equation of continuity is 

311- + aw  - 0 ax di 

(4.1) 

(4.2) 

(4.3) 

where (u,0,w) are the Cartesian components of velocity. It is 

assumed that the assumptions for shallow water theory, w<<u 

and H<<I, , are true. If the inertial effects are negligible 

so that the Reynolds number, VH/v based on a vertical height 

H and a.vertical velocity V, is small it follows that 

equation (4.1) reduces to 

= „ 32u 
'5x 	F4.  —7 az 

(4.4) 

Further, if vV/H2  <<g so that viscous forces in the z 

direction are very much smaller than gravity forces, then (4-.2) 

reduces to 

az _pg 
	

(4.5) 

(4.4) and (4.5) are the equations used by Yih. The equation 

of continuity becomes 

dx 
udz = 0 	(4.6) 



u= 1 da z 	1 .O.2.  . 	(4.10) z(2h-z) µ dx 	2µ ox 
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The boundary condition at the base is simply 

z = 0 : u = 0 
	

(4'.7) 

At the free surface the viscous stress must be equated with 

the surface tension gradient, so neglecting the curvature of 

the surface, condition (2.8), 

h(c)
8u do 	 (4.8) 

must be applied. Equating the normal stresses at the surface 

and neglecting curvature again, 

z = h(x) : p = 0 
	

(4.9) 

Yih assumes a form for u which satisfies (4.4), (4.7) 

and (4.8) given by 

It is interesting to note the similarity between this part 

of the problem and lubrication theory; for an account of 

lubrication theory see Cameronts book (1966). Yih satisfies 

(4.5) and (4.9) by assuming that the pressure is hydrostatic, 

and given by 

p = pg(h-z) 	. 	(4.11) 

Hence the expression (4.10) for u can be rewritten 

1 da 	dh 
u = — 	z 	z(2h-z) µ dx 	211 Pg  dx 	 • 	(4.12) 

Substituting this expression for u in (4.6) and integrating 

gives the result 

	

h2 r 3clo 	2 pgh 112--  

	

d x 	dx , 	(4.13) 
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where Q is the constant discharge of fluid/unit width. 

Using this equation the expression for the surface velocity, 

uS' is 

h( .1g 1. §..E2N 
11S =  4µ 'dx 	h2 / 

▪ (4.14) 

From considerations of mass transport'at the surface Yih 

derives the equation 

de uSa = D dx + q 	 ▪ 	(4.15) 

A more detailed derivation of this is now given. The surface 

diffusion equation (2.9) is 

a r 
at 	

. + 	us  —Dvr ) + i
n  = 0 (4.16) 

For steady state solutions in which the contaminant remains 

ay _ . 
.at 	(:)* 

integrating (4.16) gives the result 

d r 
us.r = D as-c  + q' (4.17) 

where ita1 is the.constant discharge of surface material/unit 

width. It is assumed that the contaminant is added at the 

reservoir x=0, so q' > O. One can assume a surface equation 

of state 

a - ao = kr 
	

(4.18) 

• where ao 
is the surface tension of the pure liquid and k 

is a positive or negative constant according to whether surface 

tension is raised or lowered by the addition of contaminant. 

In general insoluble contaminants lower the surface tension. 

Consider the following instability which would occur with an. 

insoluble contaminant raising the surface tension. If a very 

on the surface, Neglecting curvature and 
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small area of surface did not contain any contaminant then 

due to the surface tension surrounding that area being greater 

than that within it this area would enlarge and so such a 

contaminant would not therefore spread evenly over the surface. 

In general, therefore, k < 0. 

If a redefined as the relative surface tension u-u
o , 

the previous equations, except (4.18), remain unaltered 

because only derivatives of a occur. (4.18) becomes 

a = kP 	 (4.19) 

noting that as k < 0, a < 0. 

Eliminating r between (4.17) and (4.19) gives the result 

du usu = D 	
q 

dx 

where q=kq,. This is the equation derived by Yih, (4.15), 

and for the reasons given q < 0. Yih eliminates u between 

(4.14) and (4.15) to obtain 

ha_ 	da + 3 Qa 
4p, 	dx 	2 	h = q (4.20) 

  

The problem is now reduced to solving (4.13) and (4.20) 

together with some boundary conditions on a and h . 
• 

4.3 Special solutions 

Yih gave a solUtion, in complete form, for the case of 

zero bulk flow, Q=O. Healso gave a solution for the case in 

which the surface velocity is zero; a solution which will now 

be shown to be contradictory. 

When u5=0 ,'the expressions he obtained for a and h
2 

were 
a2  a = a1  + 	

x 	3 	(4.21) 



and 
_ kall2 = a1  + ( a2 al) x- 03  

1 	L  

34 

(4.22) 

(a1 ,h1 ) and (a2,h2) being the boundary conditions in the 

reservoirs at x=0 and x=L, respectively. 03 is a constant 

of integration. Substituting the expressions for h
2, da dx 

and dh  , obtained from (4.21) and (4.22), into (4.13) gives dx 

4
-a 	• a a 

(a1 + 	21,  1  x C3
)(3  2

L  1 
	4 	

2
L 	) = Q 	. 	(4.23) 

Excluding the case a2-a1
=0 for which the problem is physically 

trivial, this states that a linear function of x is equal to 

a constant; a contradictory statement. Thus the equation of 

continuity, which was implicitly ignored by Yih when obtaining 

this solution, is not satisfied. 

It is, therefore, impossible for the surface velocity to 

be zero. By specifying this, in addition to (4.13) and (4.20) 

equation (4.14) with us=0 must be satisfied. This system of 

3 differential equations for only two dependent variables, a 

and h is in general insoluble. 

4.4 General Solutions 

For Q / 0 one can specify q, Q, L, al  and hl, and then 

solve numerically (4.'13) and (4.20) with the boundary 

condition 

x = 0 	= a1 , h = hl  

In addition one could try to vary the values of . q, Q or *L 

to fit given boundary conditions at the second reservoir. In 

order to consider the possible instability of solutions 

obtained numerically it is necessary to examine the nature 

of integral curves in the (a,h), phase plane. 

( 	) 
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The phase plane equation, obtained from (4.13) and (4.20) 

is 
da _ ah2[2hq-300]  
dh. 	

3h
2q-6ahQ+6QµD 

(4.24) 

This equation is made non-dimensional by the transformations 

Y = 2 1Q1 [61Qq1 µD]-1/2 , X = 	[61Qq/t µD]-I /2h,(4.25) 

The non dimensional equation has two different forms according 

to whether Qq is positive or negative: for Qq>0 , 

and for Qq<0 , 

dY 	CX2[X-Y]  
dX 

3X
2-4XY+1 

dY _ CX2r  
dX 

3X
2+4XY+1 

(4.26) 

(4.27) 

where C is a non dimensional constant, 

1/2  

	

= 3gpdQ] 	• 

As q<0 , (4.26) must be considered when Q<0 and (4.27) 

when Q>0, noting that Q is positive or negative according to 

whether the bulk flow is in the same or the opposite direction 

to that of the contaminant. As h is positive and a is 

negative the region of physical significance in either case is 

X>0, Y<0 . 

Equation (4.26) has two finite singular points'at (1,1) 

and (-1,-1). The integral curves in the neighbourhood of these 

singular points' are examined using the discussion given in -the 

book by Davies and James (1966). With the singular point 

transferred to the origin and the numerator and denominator of 

the phase plane equation linearized so that it is of the form 

dy-  = cx±dy 
dx 	ax+by 
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the nature of the singular point is given by the following 

table: 

ad-hc>0 - 	'Node , • Stable a+d<0 

Unstable a+d>0 

ad-bc<0 	Col 	Unstable 

a + d 	0 	Focus, 	.Stable a+d<0 

Unstable a+d>0 

where A = (a+d)2-4(ad-bc) . 

The point (1,1) is a node or a focus according to whether 

C2-12C+4 is positive or negative. It is stable for C<2 , 

and unstable C>2. The point (-1,-1) is always a saddle 

point (Col). 

The integral curves for a large value of C are sketched 

over the whole (X,Y) plane in Figure 3, although only those 

in the fourth quadrant are of physical significance. For 

C<2 a limit cycle, which necessarily contains a node or a 

focus, is thought to exist. It is thought further that this 

limit cycle will be contained within the first quadrant so that 

instability in the flow owing to the presence of a limit cycle 

is impossible (when a limit cycle is present no point inside 

the limit cycle can be joined by an integral curve to a point 

outside. This restricts the choice of possible boundary 

conditions). The fourth quadrant does not contain any section 

of the isocline dY = oo and therefore instabilities caused dX 

by h obtaining a minimum value are also excluded from the 

case Q<0. 

For Q>0, Equation (4.27) has no singular points in the 

finite plane. The integral curves, for a typical value of C 

are sketched in Figure 2. Although instability due to the 

A > 0 

A > 0 

A < 0 



presence of a minimum value for h are possible. 

Another flow instability to be investigated is the 

possibility of cusps arising in solutions; cusps being 

physically impossible. Writing 

q
3  
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, 	(4.28) 12µpgD2 1Qq1 

the dimensionless equations for d a 
dx and dh 

dx are for Q<0 , 

dY = .0 1X-Z1 	dX _ 3X-4XY+1  
d 	XIXY-1) 	' 	d r --' • X5(XY—i) 

and for Q>0 , 

, 	(4.29) 

dY _ -C(X+Y)  
dE 	X(XY-1) 

dX _ -(3X2-1-4XY-1)  
d 	X3(XY-1) 

• (4.30) 

Cusps will arise in either case where XY-1=0. Since this 

curve does not lie anywhere in the fourth quadrant, cusp type 

instabilities cannot arise. This contradicts Yih's discussion 

of cusp type instability. 

4.5 Conclusion 

Yih (1969) has considered the three dimensional motion of 

a shallow liquid layer with variable surface tension produced 

by an insoluble surfactant. The vertical boundaries are two 

parallel plates with a cylinder placed symmetrically between 

them.. For the situation in which A a>>pgho
2, A a being a 

characteristic change in a and 110  a vertical scale, he 

finds the depth and surface tension to be functionally related 

and shows that a simple polynomial of the depth is a harmonic 

function of the horizontal components x and y . When 

considering the flow close to the vertical boundaries, Yih 
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postulates the existence of a velocity boundary layer with 

a thickness of the same order of magnitude as the depth. For 

the case where the angle of contact.between the free surface 

and the boundary is n/2 a solution for the velocity 

distribution in the layer is given. 

Adler and Sowerby (1970)- have also considered three 

dimensional flows with variable surface tension produced by 

an insoluble surfactant. The analysis used is also an 

extension of Yih's two dimensional model. Having eliminated 

the vertical coordinate from the set of equations to be solved 

by means of profiles similar to (4.10), they look for simi-

larity solutions to the resulting pair of partial differential 

equations for a(x,y) and h(x,y), x and y being the 

horizontal coordinates. In terms of the similarity variable 

(x,y) [If E (x,y) is the similarity variable then a and 

h assume constant values on each member of the family of 

curves .E(x,y)=constant] the pair of ordinary differential 

'equations obtained for a() and h(E) is equivalent to 

(4.13) and (4.20). They consider in particular the problem of 

a channel flowing into a lake, with the surface contaminant 

flowing in either direction. 
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CHAPTER 5 

The Surface Tension Driven Plow in a Shallow Layer of Fuel 

owing to a Burning Wick  

5.1 Introduction 

The flow when a shallow layer of liquid burns at a wick 

has been investigated experimentally by Burgoyne et al (1968a), 

the flow pattern observed consisting of an eddy close to the 

wick and a second region of circulation outside. A mathema—

tical model approximating to the physical situation in this 

outer region is now presented. 

Adler (1970) presented a model for this flow and obtained 

solutions by assuming that the fuel layer was subdivided into 

three different layers: a boundary layer near the free surface, 

a stagnation region in the centre of the layer and a velocity 

boundary layer near the base. In the model to be presented 

here the layer is not subdivided; the profiles assumed for the 

velocity and temperature being valid throughout the layer. 

In the work of Burgoyne et al (1968a) it was assumed that 

the flow induced was buoyancy driven, whereas Glassman and • 

Hansel (1968) assume it to be variable surface tension driven. 

It has been seen in Chapter 3, how in models including both - 

buoyancy and surface tension effects for cellular convection, 

the surface tension effects were more dominant in very shallow 

layers. A similar argument justifies the neglect of buoyancy 

effects in the theory presented here. The variation of 

viscosity with temperature has also been neglected. 

The liquid fuel is contained in a rectangular tray very 

much wider than it is long, with a plane wick immersed 
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vertically, widthways in the liquid. The fuel is assumed 

to burn steadily at the wick producing a two dimensional 

symmetrical flow in the liquid layer. The flow produced by 

the flame, being surface tension driven, will be of finite 

extent so that if the tray is sufficiently long the effects 

of the edge of the tray can be ignored. No account is taken 

of the processes occuring in the vapour phase. It is assumed 

that all the evaporation takes place at the wick, outside the 

region of interest. 

The analysis used is an adaption of Yih's for two 

dimensional flow with variable surface tension; a heat source 

being the agency producing the variation in surface tension 

instead of an insoluble contaminant. With suitable alterations 

the model here is applicable to the case where the surface 

tension variations are effected by a soluble contaminant. 

5.2 Equations of momentum and continuity 

The motion is steady and two dimensional and will be 

described in terms of a fixed Cartesian coordinate system Oxy. 

The xy plane is vertical with the base of the tray at y=0 

and the wick at x=0. The surface of the liquid, which is 

variable, Ls y=h(x). As the problem is symmetrical only the 

region x > 0 has to be investigated. 

In the region away from the wick, a u 	v and -Fsr- >> ax 

Because of the upward circulation current these assumptions 

break down close to the wick. The above are the assumptions 

on which Yih's analysis was based so the equations (4.4) — (4.14) 

are also valid here. The first order differbntial equations 
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obtained from dynamical considerations only, equation (4.13), 

was, 

h2 

 1

3 da _ 2,,h  dh] 
dx 	dx 0 	 (5.1) 

a(x) being the surface tension and Q the discharge of fluid 

per unit width. 

velocity, u, 

u  = 
µ 

and 	u 	
1 

S = 

The suffix 	S 

The expressions obtained for the horizbntal 

	

and 	us 	the surface velocity were 

	

do 	1 	dh (5.2) 

(5.3) 

dx 	Pg 717 Y( 2h-Y) 

do 	2a h2 111 
- 
	 . dx 	2µ 	dx 

will denote surface quantities. 

5.3 Equations of heat transfer 

In the shallow layer with the heat conduction in the y 

direction much larger than in the x direction, the convective 

diffusion equation becomes 

2 
ax 	ay (uT) + 2- (vT) = K a  ay 

The base of the layer is kept at a fixed temperature, Ti , and 

the heat transport from the free surface is assumed to be 

negligible. The condition that T=Ti  assumes that the base 

is a good conductor as in the experiments of Burgoyne and 

Roberts. If the model is adapted to describe the burning of a 

candle the temperature of the base will be the melting 

temperature of wax. Putting 

A.(x,y) = T (x,y)-T1  

the convective diffusion equations and these two boundary 

conditions are written as 
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a 	\ + 0X(U 9' 
K  a

20 (5.4) 

, 	(5.5) 

ay2 

y = 0 : 0 = 0 

y = h(x) : aoay  = 0 (5.6) 

Integrating equation (5.4) over the depth of the layer 

  

	

/ 	dh 	ao uo)  + u 	= -K 

	

ax L 	Sdx S 	ay 
y=0 0 

 

 

which can be rewritten 

rh(x) 

ax 
a dy = -K ao 

y=0 	

. 	(5.7) dy 

0 

It is now necessary to choose a profile for 0 compatible 

with the boundary conditions. The profile 

0 = 0S h  Z(2 - Z) 	 (5.8) 

satisfies the conditions (5.5) and (5.6) and at the surface 

0=0 	as required. The expression (5.2) can be rewritten 

u(x,y) u 	da 
S 	P. dx (h-y) + 21.1. ax

dh  
(h-Y)

2 (5.9) 

Using (5.8) and 

h(x) 

uOdy = Os  

0 

(5.9) 

h(x) 	r 
og dh, 	N 2 Y(2- Y) us-   :.-17  t(h-y)+ t .d.,-y)2-y, h 	h 	Fi. 

0 

dy 

I 

	

=h0s  t(2-t) fu1 da 	og dh o- - 	h(x) (1-t) + 	h2  (1-t)2  u 	dx 	2p. dx 

0 

dt 



d 	h du 2E 	 2 dh] hOs  
3 dx 	411 dx ' 15µ h  dx h 	S . (5:11) _ -2K 0  
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h  = hO ' [ —2 u - h da 	2 dh 	 (5.10) S 3 S 	dx 15p, dx 

Using expression (5.10), equation (5.7) becomes 

Substituting for u 
	

from equation (5.3), equation (5.11) 

becomes 

d 	{h 2  
dx 	3µ QS dx 

     

pgh2) _ -2K 
h es (5.12) 

      

Assuming that surface tension decreases linearly with surface 

temperature according to the relation 

a - a1 = -agS , a > 0 

a1 being the surface tension where the surface temperature 

is T 	equation(5.12) gives the result 

dx  	 h 
{h2(a-al) 	( 54a 	pgh2) 	= 2K  (a_a 1' ). (5.13) 

31,1 

The functions (5 and h can be determined by solving this 

differential equation together with equation (5.1) 

5.4 Solution 

To facilitate a solution of equations 

they are made non-dimensional by putting 

- x = 	2 H - 	, S= al  
x1 	u1 	pgh

cr2 

1 

(5.1) and (5.13) 

• (5.14) 

As the motion produced is finite, the scaling factors xi  

and h
1 

arise naturally by making xl  the distance from the 



44 

wick where the ambient conditions, T=T1  and h=hi , prevail X. 

The conditions at 	x=x1  necessitate the.boundary 

conditionS 

= 1 : S = 0 (5.15) 

= 1 : H = 1 (5.16) 

The equations (5.1) and 

( H2s  

(5.13) 	become, 

f.s 	
5 
H21 

' 
(
4 

) = b 

in non-dimensional 

2 aliS . 

form 

, 	(5.17) 

, 	(5.18) 

(5.19) 

. 	(5.20) 

(5.21) 

dS 	2 	dH H H2 (TIT  

, so that 

+ 3  

where (LJs  
a  

= x1 )1/2  

Dghl3 

and 

b 

h1 

n 

= -E2-4 
pgh1  

Introduce a new variable, 

d 	_ 1 H2 
dE 	- 1 	

do 

Lc_ where 

g 

H2 

0 

By this definition 

1 n 
n1 H2 

0 

so the region of interest 0 < C< 1, becomes the region 

0 <n< 1. The explicit relation for 	in terms of n is 

 

f
n 
2 o H (n) do (5.22) 

1 

H2(n) do 
0 
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In terms of the new variable equations (5.17), (5.18) become 

d 2 
do 	

( .s + 	2 u, 
	2o ii dri 	\ 45 	= al  oil , 	(5.23) 

. 	1 .7 	+ 5 H2  = b1 	, 	(5.24) 

where 	a1 = a n 1 / 	(5.25) 

b
1 

= b n
1 	 . 	(5.26) 

The boundary conditions (5.-1.5) and (5.16) become 

n = 	: S = 0 	 (5.27) 

n = 	: H = 1 	• 	(5.28) 

Equation (5.24) integrates directly to give the result 

H2 = 1-3S-3b1 (1—n) 	 , 	(5.29) 

when the constant of integration has been determined by 

boundary conditions (5.28) and (5.29). Using this expression 

for H2 to eliminate H from equation (5.23), 

d rs 
dn) 
dS. + 24b1 an 

dS = 20a1 2S rl - 38-3b1(1 	1/2 
 

-n )]  dn`  

	

. 	(5.30) 

In order that equation (5.30) is satisfied when S = 0, 

dS 
(171- = -24b1  or dS _ 

do 0 

dS Although 71-c  = 0 would give the physically realistic condition, 

no heat transfer across the boundary at the extent of the 

motion, this condition gives only the trivial solution 

S(n) = 0. The boundary condition to be applied is therefore 

n 	 dS 
= 1 	dfl 	= -24b

1 	(5.31)  
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Because equation (5.30) is indeterminate at T1=1 the 

numerical integration of (5.30) cannot be evaluated directly 

by means of a backward integration from n=1 so it is 

necessary to develop a series solution for S in the neigh-

bourhood of n=1 in order to start the numerical integration. 

Suppose, therefore, that in the neighbourhood of n=1 

S = 01 (1-11) + 02 (1—n) 2  + 	
• 
	 (5.32) 

Substituting this expression in equation (5.30), and balancing 

terms 0(1-n)°  yields 

2 01  - 24b1C1  = 0 

the solution of which is, for reasons already stated, 

C1  = 24h 

Balancing terms 6(1-n) yields 

20201 + 2021 = 20a1
20

1 

so that 

02 = 5a1
2 

Substituting for Ci  and 02  in (5.32) gives the series 

expansion close to n=1 as 

S = 24b
1
(1,7n) + 5a

1
2(1-n)2 + 	• • 	(5.33) 

5.5 Numerical results 

The functions S(11), H(11), S(), H() have been evaluated 

numerically for different values of a and b using a CDC 6600 

computer. 
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dS For fixed a1  and bl' the values of S and — were dn 

evaluated at n = 0.99 using the series (5.33). With these 

values as boundary values, the function S(n) in 0 <n < 0.99 

was evaluated using a Runge-Kutta method. The function H(n) 

was calculated similtaneously using (5.29). The explicit 

relation for 	is, using (5.22) and.(5.29), 

ri  n(1-3b1 + ;bin )- 3 SSdn 
0 

(5.34) 
1- 3  -b1  - 3 	Sdn 2   0 

so that the function S(n) has been obtained throughout the 
1 

range 0 < n< I enabling SSdn to be evaluated, the function 
0 

E(n) can be found, and hence the functions S(E), H(E). 

It is necessary to find the values of the parameters a 

and 	b, which are. groupings of the physical parameters, corres- 

ponding to values of a
1 

and b1. From the definition of a
l' 

(5.25), and the expression (5.29) for H2, 

a 
a1 

 

, 	(5.35) 1 
1- 2b -3 Sdn I 	0 

and similarly 

b 
b
l  

 

. 	(5.36) 1 
1- 3  -bI 

 -3 Sdn 2  0 

By varying the values of a1 
 and b1  the functions S(E) 

and H(E) can be obtained for different values of a and. b 

typical curves being shown in Figures 4,5 and 6, those in 

Figure 4 being for the. case when the sink is.absent. It is 

seen that H is a monotonic increasing and S a monotonic 
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decreasing function of X. This implies that the depth and 

surface tension of the liquid both increase monotonically 

with distance from the wick. 

The expression for the non dimensional surface velocity, 

U = 12x1 3U -, f4 	is found from (5.3) to be ( S' S ----3 

dS 1 7 dH Us  = -H(77  +  H 	) 

This can be written in terms of fl and S only using (5.21) 

and (5.29) 

u = 
-1 ( dS 10  

S 	41-ln 	dri 	
7 

1  )  (5.37) 

Using this expression the surface velocity can be obtained as 

a function of E for different values of a and b ; 

a typical u (E) .curve is shown in Figure 7. From this curve 

it can be seen how the surface velocity, which is away from 

the wick throughout, decays as x increases in agreement with 

experimental evidence. 

5.6 Discussion 

On examining the numerical solutions obtained it is seen 

that for values of a1 and b1 which are not small the 

expression (5.29) for H2 becomes negative at some n2, 

0 < 11,2  < I. Although physically the solution obtained does 

not apply close to the wick where the assumptions on which this 

theory is based break down, it is necessary to be able to obtain 

the functions H(n) and S(n) throughout the region 0 <n < 

in order to obtain the functions H(E), S(E) • in the region 

of interest. The values of a1 
and b

I 
used must therefore 

be small. 
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As the value of a
1 

is increased for fixed b1  , the 

value of H(0) decreases until a value a1C is reached 

where H(0) is zero. No solution exists.with this value of 

b1 	fora1 	diC . For different values of b1'  the values 

of a10 decrease as b
1 is increased from zero. The maximum 

value of b
1 for which solutions can exist is given by the 

case a10=0 and the maximum value of b1 possible is found 

1 
5 

to be b
1 	7

. It follows that for all solutions to the 

problem 0 < b1  < 75. , 0 < a1  < a1c(b1) ; the function a10(b1) 

is shown in Figure 8: 

Prom the results obtained it is seen that aa 	ab 
I > 0 aa1' -817 

3a, 	ab and 	' oal < 0. Hence the maximum possible value for 

a(a1 ,b1 ) is a(a1c(0),0) and the maximum value for 

b(a1 ,b1) is b(7i  ,0). By evaluating these values of a 

and b the restriction placed on those parameters is 

0 < a < 0.220 , 0 < b < 0.0067. 

A Marangoni number for this flow is given by 

pg h 3  
Ma — 	1  

1K 

so that the parameter a can be rewritten 

a 
kr 6 

MaT/2 hi 

For flows governed by surface tension effects, the Marangoni 

number is large, so, because the ratio xl/hi  is not very 

large the parameter a is small. As the source strength .Q 

is small the parameter b must also be small. It is seen 

that the physical constraints on a and b .are compatible 

with the mathematical ones. 
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This solution with u / 0 at x = 0 cannot be valid 

close to the wick, even if the strong upward current there 

were ignored, because of the no slip condition at the wick. 

A separate theory is needed to describe the flow close to 

the wick. 
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CHAPTER 6 

The Surface Tension Driven Flow in a Corner 

6.1 Introduction 

In the previous chapter it was stated that when a 

shallow liquid fuel layer burns at a wick the flow pattern 

divides the liquid layer into two regions. The flow in the 

region away from the wick was considered in the previous 

chapter and in this one the flow in the region close to the 

wick is investigated. Local solutions, valid only in the 

region close to the wick are obtained. 

It is observed when a candle burns that close to the 

wick the depth of liquid increases as the distance from the 

wick decreases. The Reynolds number for the flow will be 

small and by assuming the surface to be planar close to the 

wick, the flow there will be slow viscous flow in an acute 

angled corner. Flows of this nature have been investigated 

by Dean and Montagnon (1941) and Moffatt (19614 a,b). 

Bouyancy effects and variations of vislosity with 

temperature are neglected throughout. 

6.2 Basic dynamical equations 

To describe the two-dimensional steady flow in the corner, 

polar coordinates (r,O) are introduced with the plane 0=0 

being the wick and 0 =a the surface. In the case when the sink 

is negligible  a will be the contact angle. 

The flow can be described by a stream function IP which, 

as the Reynolds number is small, must satisfy the biharilionic 

equation 

4 v 	o 	 (6.1) 
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Following Dean and Montagnon, and Moffatt, solutions of (6.1) 

can be of the form rnfn(0) provided that 

fn(0) = A cos nO + B sin nO + C cos(n-2)0 + D sin(n-2)0, 

for n = 0, 1, 2. 

fo(0) = A cos 20 + B sin 20 + CO+D 	. 	(6.3) 

(c.f. Moffatt's expression for f0(0)). 

f1(0) =AcosO + B sine + C ()cog) + D ()sin® 	(6.4) 

f2(0) = A cos 20 + B sin 20 + CO+D 	. 	(6.5) 

Moffatt (1967a) considers the problem of slow viscous flow 

in a corner when one of the boundaries is rigid and on the 

other a constant stress T is applied. Moffatt's analysis 

is extended by assuming that the stress applied at the 

surface, produced by the surface tension gradient there, can 

be expressed as, 

T = To  + T1r + T2r + . . . • (6.6) 

The velocity in polar coordinates, expressed in terms of fp, is 

(1 alp, -DO. The boundary conditions at the wick are 
7 DO 	Dr 

0=0: 	aq,  = Dip = 0 
	

(6.7a,b) 
DO Dr 

and the normal velocity being zero at the surface implies 
• 

0=a: 
	DIP = 0 
	

(6.6) 
Dr 

Equating the viscousstress tangential to the surface with the 

applied stress T gives the condition 

0=a: 1 	(1 D 	= T qJ \ 	up  
r 30 'r 90' 

. 	(6.9) 

6.3 Solution for i  in terms of T when the sink is negligible 

An expression for IP is sought as a function of the 

unknown coefficients T
n 

for the case where the sink is 
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negligible. The expression for T suggests the following 

form for 

= Tr2f2(0) 	Tir3  f3 
vp  

(6.10) 

This solution will satisfy (6.1) provided the fn(0) are of the 

form (6.5) for n=2 and (6.2) for n>2: The boundary conditions 

(6.7a,b), (6.8) and (6.9) will be satisfied if each fn(0) 

satisfies fn(0) = 0, fn(a) = 0, fnI(0) = 0, fn"(a) = 1 

(6.11 a,b,c,d) 

For each n, these four conditions give a set of four non-

homogeneous equations, determining the four arbitary constants 

An, Bn, Cn, 

found to be; 

A2 = 

B2 = 

C2 = 

• D2 	= 

and for n>2, 

An = 

Bn = 

Cn = 

Dn = 

where A 	= 
n  

and 

1 
7 

1 

1 
2 

1 

1 
Fn 

1.  

1 

Dn in the expressions for 

(sin 2a - a) 

fn(0). 

-2)a 

They are 

(6.12) 

(6.13) 

sin nal 	.(6.14) 

(2acos 2a- sin 2a) 

(1 - cos 	2a) 
(2acos 2a- sin 2a) 

(cos 2a - 1) 
(2x cos 2x- sin 21 ) 

(a- sin 2 a ) 
(2acos 

n 

- 

- 

• 

[n 

sin 

2a - sin 2a) 

(n-2 	- sin na 

cos 	(n-2)a] 

n 	sin (n-2)al 

[cosna 

[sinna 

n [cos(n-2)a - cosnul  

sin 2a - 2 cos 	(n 

An 71:2) 

4(n-1) 
(n-2) 

• 
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The stream function has now been expressed in terms of a 

and the unknown coefficients Ti. 

6.4 Zero stress solutions 

When T = 0 the boundary condition (6.11d) becomes 

fn" (a) = 0, so that the set (6.11). becomes homogeneous. 

In this case, there can be a non trivial solution for the 

constants An, Bn, Cn and Dn and hence a non trivial solution 

for tp , if and only if An=0. Because zero stress solutions 

for the cases n=0, 1 or 2 would not depend on this condition 

they were considered separately before this conclusion was 

reached. It was seen that f1(0) and f2(0) could not satisfy 

the homogeneous set, and the case n=0, the only one in which 

the physical conditions (6, 7a,b), (6.8) and (6.9) do not 

reduce to (6.11), would be a zero stress solution but it 

would also represent a sink in the flow, a case which is 

excluded here. An=0 when 

(n-1) sin 2a = sin 2 (n-1)a 
	

(6.15) 

This equation was investigated by Moffatt and shown to have no 

real solutions for a<78°, which is assumed to hold in this 

problem. The 1 	t positive real value-S of.the complex roots 

were shown to increase from 3.84 as a decreased from 780. 

Whatever the stress may be, any zero stress solutions 

can be superimposed on the solution obtained. As r is small, 

it has been shown that the dominant zero stress solution 

r
m
fn
(0) must have m>3.84 so it can be seen that the flow will 

be dominated by the first two terms in the expression for 4) 

already obtained. The zero stress solutions become more 

important as r increases since they represent the effects 

of the flow far from the corner.region on the flow close to it. 

• 1: 



• 

' ' 
0.

1 	

t 1. or  1 - 0 

•  

g2
I' 	g2 

= 0 

-TO  (f2tgl  - 212
g
1
t)

3 
 + 

g3
tt 

(6.20) 

(6.21) 

(6.22) 

55 

6.5 Heat Transfer Close to the Wick 

The convective diffusion equation in polar coordinates 

is 

_1(DO4 
Dr  
DT - 4 DT 

aoi 
)::: K @2 	. T 	1 DT 	1 D2T 1 

YV 	Dr 	(517 1",  Dr 	r2  DO2 

The wick is assumed to be an insulator so that, 

0 = 0: 	BT = 0 
DO 

(6.16) 

(6.17) 

Close to the wick it is assumed that the heat flux into the 

liquid layer is uniform, giving a condition at the surface 

0 = a: 	KP3  1 	BT = H 	(6.18) 
r DO 

where H is the amount of heat crossing a unit area of the 

surface; K is the thermal diffusivity, p the density and 

C the specific heat of the liquid. 

Because of the form for IP it is seen that the 

convective diffusion equation will admit solutions of the 

form rn 
	

0) and a superpositioning of such solutions. The 

series 

T = To 	rg1(0) 	r2g2(0) 	(6,  lq) 

gives a valid solution to the convective diffusion equation 

provided that the gn(0) satisfy the sequence of ordinary 

differential equations obtained by balancing powers of r 

when (6.19) is substituted in (6.16). The differential 

equations obtained by matching powers of r-1, r°avid rl  are 

The boundary conditions will be satisfied provided 

g1  I  (a) 

 

gn 
(a) = 0 for (6.23) 

pKc 
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and 
	g

n
1  (0) = 0 	for all n. 	(6.24) 

The sequence of differential equations and the boundary 

conditions (6.23) and (6.24) can be solved directly giving 

the results 

g1(0) = -H coseca cos@ • 
K 

(6.25) 

and 	g2(0) = 0 	 (6.26) 

Using the expression (6.25) for g1(0), (6.22) can now be 

solved with the boundary conditions, giving the result 

g
3
(0) = ToH cosec a [-A2 cot 3a - cosec 3a 5 C2  sin a +1 acosa 

pKc 	 16 	-4* 

+A2  cos a) cos 30 - A2sin30 + l C2cos0 -1 C20sin0 4. A2sin() , 
2 	6 	4 	2 

(6.27) 

the constants A2 and C2 are the coefficients of f2(0) which 

are given by (6.12). 

It is seen that g1(0) is independent of convective 

effects so that heat transfer close to the wick is mainly by 

conduction when the sink is neglected. 

6.6 Determination of T 

The stress of T is produced by the surface tension 

gradient. The surface tension will decrease linearly with 

increasing temperature so that the stress is related to 

the surface temperature gradient according to 

• dT (r,a) 
.dr 

..: - T 
Y (6.28) 

where y is a constant. Substituting -the series 

expansions for T(a) and T 	into (6.28), 

g
1 
(a) + 2rg2 (a) + ... = 1 (T

o 
+ T

1
r + T

2
r2  + ...) 

Y 
5 	(6.29) 

- I. 
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so that when the functions gn(0) have been determined, the 

values of T
n 

can be found by balancing powers of r in 

(6.29). Thus equating the constarits,of"zero, 

T
o 

= Li/ cot a 
pcK 

and equating the coefficients of r to zero, 

(6.30) 

T
1 

= 0 	 (6.31) 

When these expressions for Ti  have been found, \b and T 

can each be expressed as a series in powers of r with 

coefficients expressed in terms of known physical parameters. 

6.7 Solution when a sink is present. 

At a burning wick, the liquid fuel is. vapourized at the 

surface and passes across a very thin inert gas layer, where 

it is supposed that heat transfer is by conduction only so that 

(6.18) holds, into the combustion region above where mixing 

with the atmosphere and combustion take place. The model 

assumes that all the vapourized fuel leaves the liquid at the 

corner. 

The basic equations in 56.2 must be satisfied together 

with the condition representing the effect of the sink, 

IP wick 	11)  surf = 
Q 
	

(6.32) 

where Q is the strength of the sink (Q>0). The angle between 

the surface and the wick, a, will no longer be the contact 

angle. Very close to the corner the typical velocity will 

become very large so that the Reynolds number will no longer 

be small. This model therefore breaks down extremely close to 

the corner. 

• r - 
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Suppose that the expression for ip in the presence of 

a sink is 

• • • • 
	 (6.33) 

vp 	Pv 

where fo(0) is of the form (6.3) and the coefficients An, 

Bn, Cn and D in the expressions for fn
(0) when /.12 are 

given by (6.12) or (6.13). It satisfies the biharmonic 

equation and boundary conditions (6.7b) and (6.8). The 

conditions (6.7a), (6.9) and (6.32) require 

fo'(c) = 0, fo"(a) = 0 and fo(a) 	fo(0) = Q 	(6.34) 

The definition of a stream function allows the constant Do' 

-in the expression fo(0)„ to be set zero so that these three 

conditions (6.34) determine the constants Ao, Bo and Co 

giving the result 

fo(0)  =  	(sin 20- 20- tan tacos 20), 
(2a-tan sa) 

so that 

=f0(0) 	iar2 f2(0) 	ar3  f
3
(0) + 

= 	Q 	(sin 20- 20- tan tacos 20) 
(2a- tan 2a) 

Tor2f2  (0) + Tir3  f3  (0) 

N.) P 	 Vp 
• 

(6.35) 

An exact solution for the Navier-Stokes equation for 

flow in a wedge shaped region is given in Langlois (1964). 

The solution which is due to Hamel shows qualitatively that 

flow with a sink differs from the corresponding flow with a 

source, a fact which, due to the neglect of inertia effects, 

the biharmonic equation does not predict. 

When a sink is present the heat transfer equation (6.16) 

and the boundary conditions (6.17) and (6.18) must still be 

satisfied•so that as in §6.5 a solution for T of the form 

• r 
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(6.19), 

T = To  + rg (0) + r2g2(0) + 

is sought. Substitution of this expression into (6.16) 

and balancing powers of r-1  gives 

g1  ft = gl 	gl" 
	

(6.36) 

In general, no analytic solution to this equation can be 

found. As the strength of the sink, Q, is small suppose 

that 

g
1(0) = G10(0) + QG11(0) + Q

2G12(0) t 	. 	(6.37) 

Substituting (6.37) into (6.36) and equating coefficients of 

Q°  gives 

G10" + G10 = 0 

which has the solution satisfying the boundary conditions 

(6.23) and (6.24) on g1(0), 

G10 = -H coseca cos() KPc 
. 	(6.38) 

Substituting (6.37) into (6.36) and equating coefficients of 

Q gives 

G11" G11 + 2H pos20-1 + tan 2asin 20] = 0 

    

Kpc (2a- tan 2a) 

the solution of this equation and conditions (6.23) and (6.24) 

being 

C-7 G11 (0) = H 6oSec
2  a  L-7 sina cota tan 2a - 3 sin 3a 

4K(2a-tan 2a) 

3 tan 2a cos 3a 	tan 2a cos a - 4a tan 2a sinal cos® 

-* 7 H coseca tan 2asin0 + H cosec 	X 
TI K (2a - tan 2a) 	K(2a-tan 2a) 

p7 cos 30 + 1 tan 2a sin 30 + tan 2a cos61 	. (6.39) 
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The differential equation for g2(0), obtained by equating the 

coefficients of r to zero after (6.19) has been substituted 

in (6.16) is 

2 2f0' = 4g2 	g2" 	. 	(6.40) 

Trying for a solution 

- g2(e) 	020(0-) 	QG21(0) 	Q2G22(0) 	3  

it can be shown that the solution of (6.40) compatible with 

the boundary conditions is 

g
2
(0) = 0 

The coefficients T. can be eliminated from the 1 

expressions for IP and T 	as in §6.6, so that they can 

be expressed as a series in r with coefficients in terms of 

known physical parameters and the unknown angle a . Each 

Ti  will be obtained as a series in powers of Q, those for 

T
o 
and T

i 
being 

T
o r-  YH cot a 	Q7G11(a) 	2Q2YG12(a) 	..3 (6.41) 

pCK 

T
1 	

0 
	 (6.42) 

6.8 Discussion 

The corner solution must in general be matched to the 

solution in the outer region, obtained in Chapter 5. This 

problem is similar to that of laminar incompressible flow 

past a flat plate, where the solution valid near the leading 

edge has to be matched to the flow downstream. In his 

paper Davis (1967) uses a series truncation method on the 

fullNavier Stokes equations in order to overcome the matching 

problem and such an approach might be used here. 
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CHAPTER 7 

The Surface Tension Driven Plow in a Rectangular Cell owing 

to a Heat Source in a Corner 

7.1 Introduction 

A line heat source placed on the surface of a liquid 

layer contained in a tray will produce motion in the layer 

of a two dimensional nature which is driven by buoyancy and 

surface tension effects. Essentially, a problem such as 

this arises when a liquid is heated steadily at the centre 

of a pool of fuel, as in the paper of Murad et al (1970). 

The theory presented here assumes that the buoyancy forces 

are negligible compared to the surface tension forces. If a 

model were developed including buoyancy effects as well as 

surface tension effects, a Rayleigh number would represent 

buoyancy whilst a Marangoni number would represent surface 

tension. For shallow layers the Rayleigh number has less 

influence on the regime that the Marangoni number since it is 

proportional to the depth cubed and the Marangoni number is 

proportional to the depth; cf chapter 3 on Cellular Convection 

for B6nards Cells. 

The steady motion produced will be of a cellular nature 

and of finite extent. The motion outside the two symmetrically 

placed cells adjacent to the source will be negligible and is 

therefore neglected. It is only necessary to investigate the 

motion in one of these two cells, taken to be of rectangular 

shape. TO do this, a virtual heat source which passes all its 

heat into this cell is thought to be placed actually inside 

the cell and as close as possible to the position of the real 

source. 
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This cell is assumed to be of aspect ratio 1, in order 

to reduce the number of parameters, but the analysis is easily 

adapted for other aspect ratios. In the experiments of Murad 

et al it was 5. In stability flows Malkus (1954a,b) has 

proposed a criteria: that the fluid will tend to flow in a 

manner which maximises heat transfer. Although the criterion 

has been confirmed in a proof, for small amplitudes only, given 

by Schulter et al (1965), it has been questioned by Foster (1969) 

who concluded that it was not valid at low Rayleigh numbers 

for two dimensional flow. For the two dimensional flow, with 

the Rayleigh number zero, considered here one must have 

reservations about assuming that the actual aspect ratio could 

be obtained from MalkusTs criteria. 

As usual variations of viscosity with temperature are 

neglected. 

7.2 Equations of motion and heat transfer 

The motion induced is thought to be two dimensional so 
— — 

a fixed Cartesian coordinate system 0 x y is introduced. 

A bar will denote dimensional quantities throughout this 

chapter. The 7 7 plane is vertical with the base of the 

layer at 7 = 0 and the surface, assumed horizontal, at 7 = L. 

The origin lies in the base, vertically below the position of 

the real source. The virtual source is at the point (LS, 

L[1-5]), & << 1. The motion created in the layer by this 

virtual source is within the boundaries x=0 and x=L . 

The Reynolds number for the motion in the cell is small 

so the stream function, T , satisfies 

v 4 	= o 	, 	(7.1) 



= L : 

(7.2a,7.2b) 

(7.3) 

(7.4a,7.4b) 

= o 

aV = o 
a7 

x̀ =o,z • =o 
D-3-77  
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the biharmonic equation. By the definition of the cell, 

there can be no motion across any of the boundaries of the 

cell and as the base is rigid there-will be no motion along 

the base of the cell. As there is no motion across the base 

of the cell,.the-base is a streamline 1p = constant; and 

because aEtream function is unaffected by the addition of a 

constant, this constant may be set zero for convenience. AS 

the Cartesian velocity components are ,ay 	ax, 
 the 

aforementioned boundary conditions can be written 

The Heat Transfer equation, which holds everywhere except 

at the source, can be written in the form 

) 	
K V 2T 
	

(7.5) 
'3(7,7) 

T being the temperature. The base is assumed to be a pure 

conductor so that throughout it is at a constant temperature 

To
; and at the surface the heat transfers by radiation and 

conduction are assumed negligible compared to the strength 

of the heat source. Due to the existence of the symmetrically 

placed cell there is no heat transfer across the boundary • 

x = 0 and as the motion outside this cell is thought to be 

negligible it is consistent to argue that the heat transfer 

across x = L is negligible. The boundary conditions on 

!.. 
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temperature are, therefore, 

7 = 0 : T = To 

aT = 7 L : 	0 
.5y 

7 = 0,L : aT = 0 
aX 

(7.6) 

(7.7) 

• (7.8a,7.8b) 

The surface stress must be equated to the surface tension 

gradient so 

= L a2  tp da 

ay 11 	 2 	= dx . (7.9) 

If the surface tension, o , and surface temperature are related 

by an equation. 

(a-ao)  = %(To-TS) 	 (7.10) 

where the suffix .s denotes a surface quantity, so that 

d a 	dTs = -x 
di 	d7 

the condition(7.9) becomes 

a- ip 	dTs 
11 	' 

ay 	d7 

, 	(7.11) 

. (7.12) • 

7.3 Solution 

The system of equations and boundary conditions 

and (7.12) is made non dimensional by putting 

= UL 	 2 

T-T0  

= AT 

= LX 

y = 1,7 

I) 

G 

(7.1)—(7.8 ) 

(7.13) 
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where AT is the temperature difference across the cell 

and U is a typical velocity. The equations of momentum 

and heat transfer become 

V 4 
tp = 0 	 , 	(7.14) 

and = 	v 20  
x,y) Pe , 	(7.15) 

where Pe, the Peclet number, is given by 

UL Pe 

The boundary condition (7.12) becomes 

Pe 	ag  
.Ma ay2 ax 

where Ma, the Marangoni number, is given by 

(7.16) 

Ma XATIJ 
. we 

A solution of the biharmonic equations subject to the 

non-dimensional forms of boundary conditions (7.2b), (7.4a), 

(7.4h) is 

= sin nitx [sinh nity+y(a sinh nity+b cosh nny)] 

(7.17) 

where n is an integer. The parameters a and b are 

determined by the conditions (7.2a) and (7.3) to give 

= sin n7tx[sinh ngy+y((nn coth nit-1 ]sinh ngy-nit cosh ngy)] 

(7.18) 

as a solution of the biharmonic equation with all the boundary 

conditions (7.2)-(7.4). Clearly a superpositioning of such 
• solutions is a solution so that 

Co 
= 

n=1 
sin nix f[sinh nny sinh ng](1-y)+y sinh nn(y-1)1 

(7.19) 



66 

where the coefficient An  are to be determined. For 

convenience this expression can be rewritten as 

co 
y A sin nmx fn(y) 

n=1 n  

with fn(y) = (1-Y) sinh nn sinh nny+y sinh nn(y-1) 

The problem has been formulated in terms of two para-

meters; the Marangoni and Peclet numbers so clearly 

any solutions obtained must depend explicitly on these 

parameters. If the Peclet number is assumed small it is 

reasonable to suppose that IP and G can each be expressed 

as a series in powers of the Peclet number. Prom boundary 

condition (7.16) it is necessary that 0-Peep . Even though 

when the Peclet number is small, the heat transfer by convection 

is negligible compared to that by conduction, nevertheless, 

the magnitudes of the velocities in the convection currents 

need not be small. It is therefore clear that the expression 

for IP and 0 should be of the form 

= 	+ 1 	+ 6 2 4'2 

0 = eel 	c202  + 

+ • • • 

(7.20) 

where c = Pe . 	
• 

In order that the expression for ip  already obtained 

can be written in the form of equation (7.20) each of the 

unknown constants An  in that expression must be expanded as 

a series in s ; 

co 

A = V Er  A n • 	nr 
r=0 
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The expression for each ip r  is then 

co .  

r = y Anrsin nnx f(1-y)sinh nn sinh nny+y sinh nn(y-1)1. 

n=0 (7.21) 

The result of making the substitutions (7.20) into the 

equation of heat transfer (7.15) and balancing the powers of 

E is the sequence of equations 

0 291 
= 0 	 , 	(7.22) 

(g1' 	V2 
a(x,y) 	e2 	, 	(7.23) 

with the general equation for n > 2 being 

n-1 

X 

r=1 

8(gr,q)n-r-1) - V2G a(x,y) 	n  . 	(7.24) 

Each of the functions G. satisfy the same set of homogeneous 

boundary conditions as 0 , which are 

y = 0 : G = 0 

ao 
- _ 0 y = 1 	: ay 	 , 	(7.25) 

aeo 
x = o,1 : ax = o 

With the expansions (720) the boundary condition (,i6) yields 

the condition 

for each n . 

2 	aen+1  y = 1 : —2—.n  — Ma ax ay 
, 	(7.26) 

In order to find the functions Gn the Greens Function 

for Laplaces equation and the given homogeneous boundary 

'conditions (7.25) is required. This can be written as an 
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expansion involving the eigenfunctions and eigenvalues for . 

the corresponding solution to Poisson's equation with the 

same boundary conditions. A detailed derivation is given in 

Appendix A and the Green's function obtained is 

G(x,y,xt,y1 ) 

CO 00 	 (2m+1) (2m+1) , 
= 16 v 1 m 0 cosKnx sin 2 	qty cosKnx'sin 2 	nJ

.„  

K=
L  -7 

n 	4K2 + (2m+1)
2 

= 

(7.27) 

The function 9
1 

satisfies, Laplaces equation everywhere 

except at (8,1-0 where the source is present, and the 

boundary condition (7.25). Hence 

01= 
OD 	OD 	 (2m+1) 	 2r11-I-1 )  

16 H 	cosKn8 sin 2 	n(1-0cosKnx sin 2  

n2 K=1 m=0 	4K2  + (2m+1)2  

(7.28) 

H being the constant non-dimensional rate of heat produced 

by the virtual source. It makes this expression simpler if it 

is rewritten; 

00 CO 

y 	7 
01 = 	BKm 

sin (2m+
2
1)  qty 

K=1 m=0 

cos KTEx , 	(7.29) 

BKm being constants. The boundary condition (7.26) with 

n = 0 is 
	 • 

2 
y = 1 	: 	8 1P0 	80 

=_Ma ax 
ay  

This condition is true if 

00 	 00 	00 

y A .nof"(1)sin nnx = -Ma 	Bnm (-1 ) m  sin nnx - n. 
n=1 	 n=1 m=0 

Equating coefficients of sin nmx , the boundary condition is 

qty 
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AnO 

nMa( r(-1)mBnm) 
m=0 (7.30) 

  

f 
n
f(1) 

This condition determines the function IP 0  . 

Making the substitutions for the now knownfunctions 91 

and 1Po' equation (7.23) can be written 

0292 
= 	0(x ,y) 	, 	(7.31) 

where 0(x,y) is a known function. 92 satisfies the same 

set of homogeneous boundary conditions as the Greens function 

(7.26) for Laplaces equation. From the fundamental property 

of Greents functions, it follows that a solution of equation 

(7.31), with those boundary conditions is 

1 	1 

02 

= 

 0(xi,y1 ) G(x,y,x',y')dx'dy' 

0 0 

1 	:1 

or 	02 = -1 1 G(x,y,x',y') 	 a(x7/y1 ) 
8(01  (x' /30), q) o(x' /3r')) 

dxl dy' 

Hence 
oo co 

+1) 
G2 	y cKmIKm  cosKn 	

(2m x sin 	2 	ity 	, 	(7.32) 

K=1 m=0 

0 0 

= 4 cKm 71  
1  

4K2+(2m+1)
2 where 

and I Kin 

1  -4KA  3n OKc  KmLBKp(m-p)(m+p+1)[ 
2  2 	2 / 	\2x2 

pK +(m+p+1) (K +(p-m) ) 
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] 
m1-1341[ 1.-°inh2Kn+l ]i-sinh2Km+coshKn ,  2 

if K=1 ,3,5  . • • 

or Km=0 	if K=2,4,6 . . • 

The boundary condition (7.26) can now be used to show that 

the coefficients in the expansion of IP
I satisfy 

Ant  = 
Man 

)mcnmInm . 	(7.33) fil(1) 
m=1 

When the functions Qr'r-I have been determined for all 

r < n-I , the equation (7.24) can be written in the form 

V 20n = 	(x,y) 

which is the form of equation (7.31) so that the method used 

to find 02 and q) 	can be repeated to find 0n and IP n-1' 

In this way the perturbation series for 0 and IP can be 

developed. 

7.4 Discussion 

The stream function and temperature have each Veen 

obtained as a series in powers of the Peclet number. A 

solution, in complete form, which is valid for small Pe and 

throughout the entire cell has been found. 

As the Marangoni number tends to zero, which only occurs 

realistically when AT->0 , it can be seen from the solution 

obtained that the magnitude of the characteristic velocity U 

must also tend to zero thereby making the Peclet number 

tend to zero and hence 0 tend to zero. Schematically, 
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AT --> 0 => Ma >0 >U ->0 => Pe >0 >9 >0 

Thus the limiting case when Pe = 0 in the expansions must 

occur simultaneously with Ma = 0 

No direct assumption that the layer is shallow has been 

necessary although buoyancy effects will become more signifi-

cant as the depth of the layer is increased. 
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CHAPTER 8 

Surface Tension  Driven Flow owing to a Moving Heat Source 

8.1 Introduction 

The problems in the three preceding chapters have all 

been concerned with fixed heat sources. In this chapter the 

motion and heat transfer processes set up in a liquid layer, 

over which a constant line heat source passes with uniform 

velocity, are considered. By supposing that the flame is a 

line source of heat, this model can be applied to that of 

flame spread over a liquid surface. 

It is assumed that the motion in the layer is surface 

tension driven and that buoyancy effects can be neglected. 

Variations of viscosity with temperature, evaporation, and 

curvature effects are also assumed negligible. 

Experiments have shown, eg Glassman and Hansel (1968), 

that two mechanisms control the rate of flame spread above a 

liquid fuel according to whether the liquid fuel temperature 

is above or below its closed flash point. Above the flash 

point the vapour phase mechanisms are controlling, below it 

the liquid phase mechanisms. Burgoyne and Roberts (19686) 

imply that the motion in the liquid layer was buoyancy driven. 

The reason why. the dominant driving mechanism in shallow heated 

liquid layers is variable surface tension rather than buoyancy 

has been discussed previously. Because Glassman and Hansel 

showed that the layer of convecting fluid away from the flame 

is thin, it is reasonable to suppose that the motion is.surface 

tension driven as in the paper of Glassman and Hansel. This 

model is, therefore, applicable to the case of a flame 
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propagating over a shallow liquid fuel below its flash point. 

8:2 Statement of the problem 

As found experimentally by Glassman and Hansel, the 

effect of the source on the motion of the fluid is mainly 

confined to.a region close to the surface. The layer has, 

therefore, two characteristic regions which will be considered 

separately and then matched. 

A theoretical model is considered in which a line heat 

source placed across the width of the tray, travels lengthways 

over the liquid layer in the tray, so that the motion is two 

dimensional. The tray is assumed to be of infinite length. 

The problem is formulated in the frame in which the heat source 

is at rest so that a steady state problem occurs. With (xy.) 

as Cartesian coordinates, the x axis is such that the fixed 

frame moves with velocity 	in the positive x-direction. 

The y axis is vertical and the origin is vertically below 

the heat source. The horizontal and vertical components of, 

velocity will be u and v. 

8.3 Equations of motion in the boundary layer 

In the boundary layer it is assumed that the conditions, 

a 
Y Re << 1, u >> v, and 	 7  >> 	, for shallow water theory hold. 

These are the assumptions of Yih (1968), and the analysis 

given here is Yih's analysis adapted for a moving frame. 

The Navier-Stokes equations reduce to 

as = 	a2u 
ax 	ay2 

9 . ay 
= _pg (8.1a,b) 
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The equation of continuity and the boundary conditions on v 

are unaltered in the moving frame so that, as in Yih's paper, 

the equation of continuity reduces to 

.h(x) 

u dy = 0 	. 	(8.2) 

0 

The boundary condition at the bottom of the layer is 

y =0 : u= U 	. 	(8.3) 

At the free surface the conditions are 

au _ do- 
ay - dx 

and 	p = 0 

(8.4) 

. (8.5) 

(8.1a), (8.3) and (8.4) are satisfied by assuming 

,-_ 1 do 
" 	µ dx Y I  2µ Ox 	-y)+ U .12 (2h v  . (8.6) 

The hydrostatic approximation, 

P = Pg(h-Y) 
	

(8.7) 

is made in order to satisfy (8.1b) and (8.5) 
	

Equations 

(8.2), (8.6) and (8.7) combine to give 

,2 
u 	

, 	dhl 
[3 72gph  TE'  + Uh = Q 	, 	(8.8) 

where Q is a constant of integration which reprethents the 

flux of liquid at infinity, 

Q =Uhoo 
	 . 	(8.9) 

a 
ax 
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Using (8.7) and (8.6) the expression for the surface velocity, 

S , is 

us  = u + 	hpg  dh 
µ dx 2 dx (8.10) 

Throughout, the suffix S will be used to denote surface 

quantities. 

These equations are comparable with the hydrodynamic 

equations in the paper of Sirignaro and Glassman. They write 

the Navier-Stokes equations in non-dimensional form as 

Re 
u 

= DIT) 	, 	= a217. 	a2

ax 	ay 	
3171c + v 	+ 	-.7.7  

a7 a72  ay (Si) 

  

	

2— 	2— 
e (I

av   + v a 	+10.17=av + -=7  N 	(S2) 
8]-(' 	a a7 	87 —2 x 	ay 

where N is the ratio of gravity forces to surface tension 

forces, N=R/F2  where F is the Froude Number. A .variable 

with a bar will denote non dimensional form of that variable. 

Because N >> 1, (S2) becomes 

85r" 

which is the non dimensional form of (8.1b). By assuming 

N >> Re and ay  -- » ax  , (S1) becomes 

N 	= 8217  
OR'ax —2 

which is the non dimensional form of (8.1a). Sirignano and 

Glassman have obtained (8.1a) by assuming N >> Re instead 

of R << 1. All the other assumptions made here, u >> v , 

ay - 	ax — 	p is hydrostatic, and the form (8.6) for u , are 
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also used by them. Their final hydrostatic equation, which 

will be discussed in § 8.8, is the non-dimensional form of 

(8.8)'when Q has been set equal to Uhco . 

8.4 Heat transfer equations in the boundary layer 

The equation of heat transfer in the boundary layer, 

a under the assumptions ay 	ax >> — and u >> v becomes 

0 	2Y u a 	ay + v 	= 0  
ay 

, 	(8.11) 

where Y is the temperature. Define T(x,y) by 

T(x,y) = T(x,y) - To  

c) being the temperature far away from the heat source. 

Assume a profile for T(x,y) of the form 

T(x,y) = f( A6Y)) Ts(x) 
	, 	(8.12) 

where A(x) is the thickness of the boundary layer. The 

velocity components in the boundary layer can be written 

u = u5(x) + 0(h-y) 

dh 
v  = uS(x)  dx 	°(h-Y)  

(8.13) 

Substitution of (8.13) and (8.12) into (8.11) gives 

dT 	u 
uSf dx 

S 	dh 

	

+ 
8 	dx ft TS 	22 = 2L fl 2Ts + 0(h-y) , (8.14) 

where 	denotes differentiation with respect to the variable 

(4). The function f can be expressed as the Taylor Series 

+ ()ft(0) + (1L1)2  Iii-Y  	flf(°)  + A 	?; f( 
	

1 
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Heat passes through the free surface where the line heat 

source is present. The heat losses, due to conduction, 

evaporation and radiation at the surface, are taken to be 

negligible, which has been shown to be true experimentally 

by Burgoyne and Quinton (1968a) for the static heat source 

case. The above condition can be written 

ag = R 8(x) ay 

8(x) being the Dirac delta function and KcR is equal to 

the constant rate of heat emitted by the source, c being 

the specific heat of the liquid. It follows that, except 

at x = 0 , 

f' (0) = 0 

SO I + (LiY)2 f"(0) + • • • 

Ignoring terms 0(h—y), equation (8.14) now becomes 

dT us  
dx 	A(x)2 

f"(0) T8 	. 	(8.15). 

All the heat from the source must pass through the base of 

the boundary layer, so 

ayl y=h—A(x) dx = R 

which using (8.12) gives the result 

-f (1 ) 
TS  Fr.)  dx = R (8.16) 
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A mean boundary layer thickness 81 can be defined by 

TS  dx 

. (8.17) 
TS  3TR)  dx 

It will be assumed that the boundary layer thickness A(x) 

can be replaced by its mean value 81. This approximation 

produces considerable simplification in the subsequent analysis. 

It is, also necessary to choose the function f so that as 

many observables as possible are satisfied. The conditions 

at the surface, f(0)=1 and f'(0)=0, will be satisfied by 

assuming 

477 
l(h7y)  = cosn (h-y) Oi 	1 

. (8.18) 

This function decreases monotonically with decreasing depth 

in agreement with observation. With these assumptions 

equation (8.15) becomes 

dT S 	-IC 
	2, 

uS dx 	2 n TS 1681  

which can be rewritten 

dT ,2 uS dxS  - - A T (8.19) 

where 	
= 4t 
	 . 	(8.20) 

Equation (8.19) could have been obtained, as follows, by 

making directly the assumptions which have already been made 
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implicitly. When terms of 0(h-y) are neglected in 

equation (8.15) it is implied that u and v take their 

surface values. Making this assumption directly on equation 

(8.11), with T=Y(x,y)-To  , 

aT 	dh 8T _, a2T uS 	ax dx ay -- 8y 

Trying for a separable solution of the form X(x)F(h(x)-y), 

which is assumed by equation (8.12) together with the constant 

boundary layer thickness assumption, the heat transfer 

equation becomes 

u X' = KF"X 

This separates into 

usX'(x) = -X
2 KX 

and 	
F" = -X2F 	 , 

where X2  is constant. By assuming that F(0)=1 , an 

assumption made in the form of the Taylor series, 

X(x) = Ts(x) 	/ 

so that the separated equation for x becomes (8.19). 

8.5 Solution in the boundary layer 

Using the usual relation between surface tension and 

surface temperature, 

a-ao = -aT 
	

(8.21) 

where a is a positive constant and ao  is the surface 

tension at infinity; eqUation (8.9) can be rewritten in terms 
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-h2 

.67 DaTo0+2gph ht] + Uh = Q . (8.22) 

Substituting for us in equation (8.19), using (8.10), 

yields another equation for Ts  and h , namely 

_ h d m 	,1  
71:D ajS+  7 Pgh

2  )J TS = -X2KT . (8.23) 

This pair of first order ordinary differential equations for 

T 	and h must be solved together with the boundary conditions 

at infinity which are, 

X -> ± OD TS  -> 0 	(8.24) 

x> - • oo 	h -> hoo 	• 	(8.25) 

dh dTs  
The condition, — dx = 0 when Ts=0 and h=hop' required dx =  

by these conditions is satisfied by equations (8.22) and (8.23) 

The system (8.22)-(8.25) is made non-dimensional by 

putting 

4 2 
g = a [12-E-T--] Ts  

µ U pg 
, 	(8.26) 

2 	1/3  
H = [LLEZ] 	, 	(8.27) 

µU2  

2 X K X = 	X . (8.28) 

It becomes 

1 2 	1 H - 	H X kg +  H2 ) = B 

El - H d  (c)I 12 1 dg dX dX + 	= 0  

X> ± co : 	-> 0 

(8.29) 

(8.30) 

, 	(8.31) 
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X -> 1" co : II -> B 	, 	(8.32) 

where B is the non-dimensional parameter 

B=REx2 	P8. 
]/3  

µU5  • 

The only parameter in this non dimensional system is B . 

From (8.29) and (8.30) the equations for Try 	dH and 	are 

dO
2  

UY - 	'1171(1- 	;17 110- 	+ 4110 (8.33) 

dll - 	3 	5B)  - 	32and rA 3B
2 

dX 	(3- 	+ 	j/ kl-  7r) + 4110 	• 	(8.34) 

	

2H 	H 	2H 

From physical considerations, the temperature gradient is 

positive in front of the source and negative behind it. It 

follows that the negative root in (8.33) should be taken in 

the region X positiVe and the positive root where X is 

negative. 

Behind the source the system to be solved is, therefore, 

dO _ 	1(4_ 3B 	1 \ 	1(1 _ 3113)2 +4110 
dX — 11` ' H 	H 

  

 

, 	(8.35) 

3
„ 2 ' 

dH 
- 

3 	5B) 	3 	(I- 	I) + 	, 	(8.36) 
2H dX 	2 `'- H/ + 2H2 	H 

X -> +co : 9> 0 
	

(8.37) 

X -> +co 	H> B 	 (8.38) 

Because the boundary conditions are to be applied at infinity, 

an analysis of the (0,H) phase plane is necessary before a 

numerical solution to this system can be found. 



3 	I 	32 dH _ 2H2`' 	2H 

2 
1-• 1(1- •=•'==) + 4110 
H: 

I
(1-B)

2 
 +4110 

d0 

- H0-  -3T-13 )± 

(8.39) 

The phase plane equation 
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has a singular point (0,B) which is a Saddle point and 

corresponds to the points at infinity in the (H,X) and (G,X) 

planes. Hence the required integral curve in the phase plane 

is a separatrix. One separatrix is the line H=B which 

corresponds to a trivial solution to the problem, and the other 

separatrix of physical significance has the equation 

H = B - 3 B20 

2  (3+B3) 
, 	(8.40) 

close to the saddle point. Close to the source at 

at,  0 << 1 8=0 , H(e) can be evaluated using (8.40) and with 

the condition Q=e : H=H(e), equation (8.39) can be solved 

numerically to give the equation of the separatrix. Assuming 

that the effective temperature at the source is Qp  , the 

'value for H at the source, Hp  , can be obtained from the 

equation of the separatrix. Using the boundary conditions 

X = 0 : 0 = 9r 	H = H 	1 	(8.41) 

together with equations (8.35) and (8.36), numerical solutions 

for 0(X) and H(X) in the region X > 0 can be obtained for 

arbitrary B and 01' • 

In the region X < 0 , the positive root is to be taken 

dll 
in (8.33) so that the equations for -- and 

d0 dX are 
dX 
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(10_ 11, 3B\   
FLY 	11` 1-  1T)  - 

7, 
1(1- 	2 + 4H9 	(8.42) 

    

and 
2 dll _ 320- --T 5B) 	32 

	(1- Tr 
 3B 
-) 4H0 dX 2H 	211 

. 	(8.43) 

The functions H and 8 must be continuous at X=0 although 

their gradients will be discontinuous because of the input 

of heat there. The boundary condition to be applied to (8.42) 

and (8.43) is therefore (8.41). A solution in the region 

X < 0 must also satisfy the downstream conditions (8.31) and 

(8.32). The condition, 0 = g = 0 as X -> -co , is not 

compatible with equation (8.42) because H=  B and when 

d4) 0 = 17=0 , equation (8.42) requires H > 3B. However, 0(x)=0 

is a solution to (8.29) and (8.30) but it was discarded when 

deriving (8.33) and (8.34). When 0=0, (8.30) is satisfied 

identically and (8.29) gives a differential equation, for H 

only, satisfied by 

4113-H 	1 	 () +B2(H-H )-4-B310.,H-BB  1
3)+ 2B(H2-H 1 

 2\ 	1 	( 	 )-
_ 
3(X-X1)  ' 

(8.44) 

where H=111  at X=Xi . This expression satisfies the condition 

H->B as X --)-010. This expression (8.44) for H together 
solution 

with 0=0 is a valid/to the problem in the region x < Xi. 

If a:numerical solution to equations (8.42) and (8.43) with 

boundary conditions (8.41), is obtained with 0(x2)=0 and 

H(x2)> 3B; then by putting X1 =X2  and H(x2)=11.1  these two 

solutions match together at x=x1  to give a solution valid 

throughout x < 0 . 
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8.6 Numerical results for solution in boundary layer 

The numerical results to the method given in §8.5 were 

obtained using the CDC 6600 at London University. The 

numerical integrations were performed using the trapezoidal 

rule. 

Provided that they gave solutions with 8(x2)=0 and 

H(x2) > 3B, solutions for H(X) and G(X), in -co < x < co, 

were obtained for arbiliary values of 8F and B . A typical 

solution for H(X) and 0(X) is shown in Figure 9. It is 

seen how the fluid is pushed up into the form of a solitary 

wave in front of the source and is depressed behind it. 

The non dimensional surface velocity us(x) ,. 

us(X) = 17S(x)  = 1 - H 	+ H g 
u 

, 	(8.45) 

was obtained for arbitrary B and OF  when valid solutions 

for H(X) and Q(X) had been obtained. Figure 10 shows 

a typical surface velocity curve. It is seen from this curve 

that the fluid flows away from the source throughout the region 

behind the source. Ahead of the source it flows away only 

as far as a stagnation point which occurs where H=3B , after 

which it flows towards the source throughout. 

Also calculated for arbitrary values of 0F and B was 

the value of A , 

co. 

A= 	0 dX 

-oo 

From (8.16) it follows that 

A = '12 [-1--- 
µ
2
Kpg 

7/3 
R 	. 	(8.46) 



0 , 	(8.48) = a Nr2 
µ2u4pg 

[x.4 2 
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Thus A is fixed by the heat source strength Kc.R and hence 

the effective source temperature is fixed by the source strength 

From the non dimensional solution in the boundary layer the 

.dimensional solution can easily be deduced. It will be 

obtained in terms of two parameters, X and X/U . 

8.7 Solution in the region outside the boundary layer 

By the definition of the boundary layer the motion in 

this region produced by the source is negligible. As 

a y >> 77  the heat transfer equation becomes a 

U = DT 	a
2T 

ax ay2 
, 	(8.47) 

T = 7-T0  as before. To make this equation non dimensional 

..„[ x2 
 pg 
2 µ u 

1/3  

y 

 

, 	(8.49) 

  

E 

Pg  
Xµu] 

1/3  
. 	(8.50) 

-The boundary layer thickness being small X >> 1 , so that 

<<1. With these definitions, the heat transfer equation 

becomes 

= E2 a20  
ax 

ay
2 

. 	(8.51) 

The solution obtained in this stagnation region must be matched 

to the solution 'in the boundary layer above by matching the 

temperature at the interface and the heat flux across it. 
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In terms of the non dimensional variables these two conditions 

are 

Y= H - E 
4 : 0 = a 

ay g(x) 	 . 	(8.52) 

A Laplace transform method was used to try and solve 

(8.51) with the boundary condition (8.52), as shown in 

Appendix B , but when the Laplace transform of the solution 

had been found its inverse could not be obtained. This method 

did not, therefore, give a solution but the following Pohlhausen 

method does. 

Using the Pohlhausen method, a profile is chosen for 0 

0 = o 111+ 4117)( 1 _e i(HIE—Y))] 	 , 	(8.53) 

which satisfies the boundary conditions (8.52) and in which 

f(x) is a parametric function. The integral of (8.51) across 
this layer is 

H(x)- iE .  

ax 

dy 	g dH = 
dX 	

Eg — E2 2gly=0.  dY 
a 

Substitution for 0 reduces this to 

d 	0 	n 	+ 2 (1-J(H-  iE)) 4-E(11-- L' E\(12 	m  -01- -0 	 =s2u 1-J)  4 dX I 	Vic) + 	4 idX 

(8.54) 
Define 	by by 

E = J (H- is) 

so that (8.54) becomes 

dX f(3/(H- is)2,1+E  2 
 -eE% ) 	E(H- ac\12 =  E28(1-e  E 

' 	4 1dX 	) 

(8.55) 

. 	(8.56) 

0 



Using this result and (8.58), 

= 	-OH2 

irK  

H(dX)dXde.  

X1  
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Writing 1 	
2 

+ 	= E 	+6
2 
n2+ ••• 

(8.57) 

(8.56) becomes 

dX 1
0(H_ n 

4 
)2( 

1 +6
2n
2
+ + c(H- ac)dX  (1(3  = c249(1-e E) 	. 4  

. 	(8.58) 

It follows by considering the profile (8.53) in detail that 

as 	c << I , S >> I and hence - E >> 1 . As - E >> 1 , 

(8.57) shows that 

 

(8.59) 
C 

Equating coefficients of c in (8.58) to zero one obtains the 

result 

X (9H2111) 	H  dX = 0 

which when integrated determines Ail  , 

X 

n 	

-I de 1 9H2 	H(dX) dX 
: XI  

. 	(8.60) 

From this expression the parameter .1)  in the profile for 0 

is easily deduced. 

The integral of (8.51) over the entire range of X reduces 

to 

cA + 

+CO 

—CO 

dHd3C 2 0 ,--. 6 
dX 

OD 	1100— 

1/4f ;41 

 

dX 1'  

Y=0 
—OD 	0 

71-6  
-0(X ,Y)dY 
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Substituting from (8.53) for 

this becomes 

, and using the result (8.60) 

co 
dH EA + 	Q 	dX = 6 dX 

X
1  

co 

   

   

-9H2  Q exp 	1-X 

Ei H(dX)dX 
x
o 

dX 

. 	(8.61) 

    

This equation determines the parameter E . It can be solved 

iteratively: 

co 

1 	dH 
g (dX)  

X
1 

to 	00 

A 	G(414 	A )(IX I 	-9H 	dX f 

X1 

exp co  

X1  Eif H(47gc) 	d

X dX 1 E 
 

X1  

Cl 
dX 

   

co 

 

00 

X1 

      

E
n 

= 1 
A 

En-1 G exp 

 

-QH2 

  

dX 
A 00 

cn-lf 
X1  

d0 H(a)dX 

if the values of E
n 

converge to E. This seems likely 

although a proof has not been established. 

A value for E -is also given by (8.50) so that this is an 

eigenvalue problem with X , which is directly related to the 

boundary thickness, as the eigenvalue. It can be determined 

numerically by comparing the values of 6 obtained from (8.61) 

and (8.51) fcr different values of X . The solutions obtained 

in both boundary and stagnation layers' can then be written in 

terms of the strength and speed of the source, and the known 

physical constants. 
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In the problem of a flame propagating over a liquid 

fuel below its closed flash point, the speed of propagation, 

U , will be determined by coupling this solution with the 

solution in the gas phase. • 

8.8 Discussion 

This model is comparable with that of Glassman and 

Sirignano for flame spread over a liquid surface. It has 

already been stated that their model assumes the flow to be 

surface tension driven and the hydrodynamic equations have 

been compared in §8.3. They assume that the surface tension 

gradient is prescribed by the flame, ignoring the heat transfer 

effects in the liquid layer. The only differential equation 

they have to solve is their non-dimensional form of equation 

(8.3) and the solution for h is obtained in terms of this 

prescribed surface tension gradient. They describe the 

solutions which suitable surface tension gradients would give. 

Their expression for h is monotonic in disagreement with 

this model but their surface velocity has a stagnation point 

ahead of the flame as it does here. 
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CHAPTER 9 

The Surface Tension Driven Flow in a Solution on Contact  

with a Hot Gas  

9.1 Introduction 

The surface tension gradients driving the flows 

considered in the previous problems have been produced either 

by a surface temperature gradient or a surface active 

contaminant, but not both together as in the case considered 

dhere. The contaminant is a solute which lowers the surface 

tension of the solvent and is destroyed by heat, so that a 

hot gas on the surface will act on the solution as both a 

heat source and a solute sink, producing opposing effects on 

the flow. 

In a simple experiment, Skogen (1958) has demonstrated 

that it is possible to increase the surface tension of a 

solution on contact with a hot gas in spite of the decrease 

in tension caused by the rise in temperature. He used 

solutions of water and soap or detergents, but the effect can 

be produced with any surface active substance provided the 

concentration lies within certain limits. When a flame of coal 

gas was directed vertically downwards towards the surface of the 

solution, Skogen showed that under suitable conditions the 

following phenomena occured: (a) a rapid flow of the surface 

• layer from all directions towards the area of contact between 

flame and water; (b) a surface elevation of several millimetres 

at this area; (c) a downward current from the elevation. The 

observed phenomena are consistent with a rise in surface tension 
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directly below the flame and this was verified by measurements 

on the solution. Instead of a flame, a similar effect can be 

produced by placing an electric arc directly above the 

solution, but it appears that this experiment is more difficult 

to perform. 

The model presented here is a theoretical analysis of the 

Skogen effect under the assumptions that the process takes 

place in a shallow layer under steady state conditions. A two-

dimensional symmetrical flow is considered, separated by the 

,Oy l z' - plane, in which a thin flame sheet touching the surface 

of the liquid is assumed to lie. The flame sheet raises the 

temperature of the liquid and maintains zero concentration of 

contaminant along the line of contact. It is assumed that the 

concentration of surface active agent is everywhere small and 

that the physical properties of the solution are independent 

of temperature and concentration of contaminant. Buoyancy 

effects have been neglected, the flow is taken to be surface 

tension driven with the tension gradient maintained by heat 

and mass transfer processes along the layer. Such an 

assumption is consistent with experimental observations by 

Skogen, since no effect was observed when the'layer became 

covered with a thin inert film. Under the above assumptions it 

will be shown that the phenomena are  characterised by the rates 

of heat and mass transfer along the layer, Prandtl, Schmidt and 

Reynolds numbers and the Marangoni numbers for temperature 

and concentration changes. 

9.2 Equations of continuity and momentum 

Consider a Cartesian frame of reference Oxlylzi  with z, 
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measured vertically from the horizontal bed of the liquid, 

which is locally of depth h?(x?). Let (1.0,o,wl) be the 

components of velocity in the liquid. The continuity equation 

is 

3u? - 	aw? = 0 
	 (9.1) 

ax? 	az? 

Dimensional quantities are denoted by primed symbols, the 

corresponding dimensionless variables will appear without 

primes. The boundary conditions at the base and free surface 

are 

z' = 0 : 	w' = 0 • 
(9.2) 

z' = h' : 	w' = u?dhl 
dx' 

Integration of (9.1) over z' and use of boundary conditions 

(9.2) gives 

d 	 eh' u' dz' = 0 	(9.3)% 
dx1 	

0 

Since the flow is symmetrical and the volumetric flow of 

contaminant may be taken to be neglible, equation (9.3) gives 

an integration 

(hr u' dz' = 0 

For this slow two-dimensional viscous flow in'a shallow layer, 

the equations of Yih (1968) are again appropriate. They may 

be written 

BP' 	=1-1  a21-1? 
	

(9.5) 
axl 	az' 2 

apt 	Pg 
	 (9.6) 

3z' 

in which p' is the pressure, p the viscosity, p the density 

and g the gravitational acceleration. 
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The boundary conditions at the base and free surface 

may be written 

z' =0 	u'= 0 	(9.7) 

z = h 	p au' = da 
Dz 	dx' 	 (9.8) 

p = 0 	(9.9) 

where a' is the surface tension, it being assumed that the 

maximum curvature of the surface is small compared to some 

characteristic length. 

The solution for p', from (9.6) and (9.9) is 

p' = pg (hi - z') 	(9.10) 

The solution of (9.5) subject to boundary conditions (9.7), 

(9.8) is 

u' = 1 clai z' - 1 Dpi z' (2h' - z') 	(9.11) 
p dx' 	2p Dxi 

Substitution in the continuity equation (9.4) and integration 

over z' gives 

Hence 

11'2  (dal - 2 Pgh' dhi = 0 	(9.12) 
2p 	dx' 	3 	dxi 

ai = uo  + 1 pg (h'2  - d2) 	(9.13) 

where d is the depth and aoi the surface tension at x =0. 
• 

Substitution of (9.13) and (9.10) in (9.11) now gives 

ui = sg dh' z' (z' - 2 hi) 
2p dx' 

The other component of velocity may be obtained by substituting 

in (9.1) and integrating over z'. The result is 

(9.14) 

pg 
OP 

z12 dh 2  + 'd2h 	(h' 	 )1 
a7ci 	dx (9.15) 
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Equation (9.14) shows that near the surface, u'>0, according 

to whether dh' 	0, and that 	changes sign when z'=2 h'. 
ax' 

From (9.15) it is seen that w' is everywhere small. 

9.3 Equations of heat and mass transfer 

In a shallow layer, with Prandtl and Schmidt numbers 

large, the equations of heat and mass transfer can be written 

and 

	

u' 3TI 	w' 3TI = K 32T' 

	

3x' 	@z' 	TiT2 

u' 3c' + w' @c' = D 32c' 

	

3x' 	az' 	57T2  

(9.16) 

 

where T' is the temperature, c' the concentration of 

contaminant, K the thermal diffusivity and D the diffusion 

coefficient for mass transfer. The temperature and concentration 

at the surface are related to the surface tension and hence by 

(9.13) to the depth. Denoting surface values with a suffix S, 

one can take 

a' = ao' 	a' (T,- Ts') - 	'c3' 	(9.18) 

where T+ ' is the surface temperature directly.below the flame 

where the concentration of contaminant is assumed to vanish. 

a' and Pi' are positive constants given by 

a = - (3aI 
DV/ T' = s s 

c' = 0. 

( 0.?) 
9c' T'=T' s 

cI=0. (9.19) 

9.4 Dimensionless equations 

Introduce dimensionless components of velocity 

u = u'd 
Ite3  

3 w = w'd (9.20) 
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with )/the kinematic viscosity, and dimensionless coordinates 

x=xt 	z=z 
	

h=h' 
	

(9.21) 
d 
	

d 
	

d 

Expressions (9.14), (9.15) for the components of velocity now 

become 

u = 1 Re2  dh z (z - 2 h) 	(9.22) 
2 	dx 	3 

and 

w = 1-Re2 z2 dh )2 + d2h (h - z) '1 	, 	(9.23) 
-6- 	f 

 
(dx) 

4- 
where the Reynolds number occur ng in these expressions is 

defined by 

Re = (gd3y 	 (9.24) 

Taking To and co as reference values for the temperature and 

concentration, introduce dimensionless variables 

T = T' - To' 

T1' - To 

and 

C = c' 
C ' 0  

(9.25) 

(9.26) 

in terms of which the equations of heat and mass transfer 

become 

where 

wDT = 1 2T 
ax 	Dz 	Pr 3z2 

uDc wDc 1 D2c 
ax 	Dz 	Sc az2 

Pr =.7V1) 
	

Sc 
K 
	b 

(9.27) 

(9.28) 

Eliminating the surface tension between (9.13) and (9.18) and 

expressing the result in dimensionless form, one obtains 

h2 = 1 	a (l-Ts) - Scs 	(9.29) 



j
h 

0 

(9:34) 

(9.35) 

uT dz = A 

Jo uc dz = 

96 

in which a, 13 are dimensionless parameters, given by 

a = 3Ma1. 

Re2Pr 

= 3Ma2 

  

 

Re2Sc (9.30) 

.The Marangoni numbers for temperature and concentration 

changes, occu ing in (9.30) are defined by 

Mal  = a' 	T(;) d 

   

Mat 	of 
UK 

cod 
(9.31) 

    

pD 

From the definitions above it follows that the surface 

variables satisfy boundary conditions 

x=0: h=1, Ts=1, cs=0. 	(9.32) 

It is assumed that all the heat entering the surface near the 

flame is convected downstream. Further, since there is no 

downstream mass transfer across the base and free surface, the 

boundary conditions on temperature and concentration are 

x>0, z=0,h: 
	

3T = Dc = 0 	(9.33) 
@z 	3z 

9.5 Solution by von KarmAla-Pohlhausen method.  

The equations of heat and mass transfer (9.27), (9.28) 

are now integrated over the depth of the layer. Using the 

equation of continuity and in view of boundary conditions 

(9..33) and the relationship between the velocity components at 

the surface, one obtains, 
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where A, B are positive constants which represent the 

dimensionless heat and mass fluxes along the layer, respectively. 

The temperature distribution in the layer will be taken 

in the form 

T(x,z) = Tb(x) + ps(x) - Tb(x)] fl(t) 	(9.36) 

t = 1 - z 	5 

h 
where Tb(x), Ts(x) are the temperatures along the base and 

free surface, respectively, and fl(t) is a suitable profile 

function. Similarly, the distribution of contaminant Will be 

assumed of the form 

c(x,z) = cb(x) + 	rcs(x) - cb(x)] f2(t) 	(9.37) 

with cb(x), cs(x) the base and surface concentrations and f2
(t) 

a profile function. These definitions, together with the 

boundary conditions on temperature and concentration, show that 

the profile functions fi(t), i=1,2 must satisfy the following 

boundary values 

f.(0) 	= 	1 	fi(1) 	= 0 3 

(9.38) 
f!(0) 	= 0 	fl(1) 	= 

with primes here denoting derivatives. 

0 

Expressing (9.22) in terms of us(x), 

component at the surface, one obtains 

u = us(1-t)(1-3t) 

and .similarly (9.23). can be written 

w = u 	dh 	+ 0(t) 

the velocity 

(9.39) 

(9.40) 
s  dx 

Substituting the above functions for temperature and concentration 

in equations (9.34), (9.35) and using (9.39) 

hus  (Ts 	Tb  ) = Al 	 -(9.41) 



us  dTs  = 1 f"(0)  (Ts-Tb) 	. 

Pr . h2 dx 

(9.44) 
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0 
where 	A = A1 

 
(1-t)(1-3t) f1(t) dt 3 0 	 , 

and 	hus(cs-cb) =7-B1 	, 	(9.42) 

where 	B = B1 	J o  (1-t)(1-3t) f2
(t) dt 	. 

14  

Since f.(t) i=1,2 are specified profile functions, the constants 

arising in (9.41), (9.42) are just the heat and mass fluxes 

multiplied by numerical factors. Further information about 

the profile functions and other functions introduced may be 

obtained by direct substitution in equations (9.27), (9.28). 

In view of (9.38) 

f. (t)= 1 + 1 t2 fi" (0) + 1 t3 fill? (0) + 

(9.43) 

Substituting (9.36), (9.39), (9.40) in (9.27) and equating 

terms without t one obtains 

A similar equation, but with a different numerical factor on 

the right hand side is obtained on equating terms in t. 

Comparing this with (9.44), one finds that 

f1",  (0) = -4 f1" (0) 
	

(9.45) 

Similarly, substituting in (9.28) and equating powers of t 

us  dcs  = 1 	l2'(0) (cs  - cb) (9.46) 
dx 	Sc h2  

where 	q" (0) = -4 fy (0) . (9.47) 

The temperature difference between the base and free surface 

'can be eliminated between (9.41) and (9.44). The result is 

2 dT h3 u s 	s 2 
dx 	'Pr (9.48) 
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where 	A2 = -Al
fa' (0) 

Close to the surface the vertical component of the 

temperature gradient will be positive or negative according 

to whether the surface temperature is less than or greater 

than the base temperature. In either case ft(t)>0 for small 

t, and examination of (9.43) then shows that f"(0)<0. A2 is, 

therefore, a positive constant related to the dimensionless 

heat flux along the layer. Similarly, combination of (9.42) 

and (9.46) gives 

h3 us
2 dcs = B2 	 (9.49) 
dx 	Sc 

where B2 = -B1  f2
" (0)>0. 

Equation (9.48), (9.49) can now be substituted into the 

differential form of the surface relation (9.29) to give an 

equation for h. Since by definition 

u = 1 Re2 h2 dh 
s 6  dx 

3 (9.50) 

one obtains 

h8 (:1c) 3  — 54 	Mai A2  - Ma2 E2 
Re6  

Pr2 	Sc2 

The solution of (9.51) with boundary condition (9.32) is 

(9.51) 

3 
h = (1 + Cx)11 	 (9.52) 

whei'e 	C3  = 2662 	Mal 	A2  - Ma2B2 

Re6  
Pr2 	Sc2 

The free surface is thus raised or lowered below the flame 

according to-whether C§O. The significance of this dis-

criminant will be discussed below. The solution for the other 

variables of the system is now straightforward. The surface 
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velocity component becomes 

us  = 1 	Reg  d (1 	'cx)-2/ 1.1 (9.53) 
22 

and hence from (9.48) and 	(9.49) 

= 1+ 	1 A2 1- (1-+X)6/1
1

Ts (9.54) 
264 

PrRe4C3 

cs = 1 B2 	(1+cx)6/11  -1 (9.55) 

scRe4c3  

on using boundary conditions (9.32). Substitution in (9.41) 

'and (9.42) also shows that 

Ts - T 	= 22A1 	(14Cx)-1/11 (9.56) 

Re2c 

cs - cb = -22B1 	(l+cx)-1/11 	(9.57) 

Re2C 

To describe the temperature and contaminant distributions in 

the layer suitable profile functions fi(t) are required. Since 

the boundary conditions are similar in view of (9.45) and 

(9.47), take 

fi(t) = 1 + pt2  - 4 pt3  + qt4 (9.58) 
3 

with p, q parameters to be determined. Applying boundary 

conditions (9.38), p = -6, q = -3, so that 

fi(t) = (1-t)3(1+3t) 	 (9.59) 

9.6 Conclusions 

From the results obtained in the previous section the 

following conclusions can be drawn: 
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(1) 	h increases or decreases with x according to whether 

CO. i.e. there is a depression or rise in the liquid surface 

where the heat source is applied, 

(ii) the surface velocity 140 according to whether 0:0, 

(iii) the surface temperature Ts  decreases with x, 

(iv) TS-Tb(0 according to whether 
4:  
g<
> 
0. e.g. when e01 

u(0 = 	= 
. and hot liquid is convected downwards below the heat source 

towards the base, 

(v) the surface concentration cs increases with x,  

(vi) es - cb<0 according to whether e 0. e.g. for 	 O, 

us>0 and the concentration of contaminant near/the surface 

tends to be lower than that at the base, 
Farr 

(vii) for similar profile functions of the (9.59), the 

discriminant.0 is given by 

c'3 = 210 x 113  ( Mal A - Ma2  B) 

Re6 
	

Pr2 
	

Sc2 
3 

in which A, B are the dimensionless heat and mass fluxes along 

the layer, respectively. 

Reference to equation (9.13) shows that a rise in the 

surface below the heat source is associated with an increase 

in surface tension, and from conclusion (i) 9 is negative in 

this case. The discriminant above shows that this condition 

is satisfied when mass transfer is dominant compared to 

heat transfer or when relatively large changes in surface 

tension are associated with small changes in the concentration 

of contaminant (Ma2" Ma1). Although both these conditions are 

likely to be satisfied in a Skogen type experiment, more 

measurements are required in order to substantiate the depend-

ence of the flow on the discriminant C. 

fl elf 
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CHAPTER 10 

General Conclusion  

The models produced in Chapters 5-9 could all be 

extended by considering the effects of buoyancy, the surface 

curvature and the variation of viscosity with temperature as 

was done by many workers for the Benard cells problem. The 

effect of buoyancy is probably the most significant of the 

three. The models could also be improved by considering, where 

applicable, the effects of distributed instead of concentrated 

'heat and mass losses. 

Further analysis of variable surface tension driven flows 

is needed in connection with several current problems of 

practical importance. From th'e safety aspect, a problem of 

industrial importance is: will a spil4t liquid fuel below its 

flash point permit a flathe to spread if an ignition source is 
si 

present? The layer split will probably be shallow and therefore 

the motion in the layer, which determines whether or not a 

flame will spread, will be driven by variable surface tension. 

Heat exchanges are becoming of increasing importance in 

engineering, particularly in connection with nuclear reactors. 

In some devices, coolant passes under pressure through a tube 

so that the external heat flux produces a central core of 

vapour and a thin annular liquid film on the inside of the tube. 

Heat transfer takes place by conduction through the liquid film, 

fdllowed by evaporation on the interface. In the phenomena of 

'burnout', the liquid becomes locally unstable, the absence of 

the liquid film produces a sharp increase in temperature with 

resultant catastrophic breakdown of the tube wall. Although 
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the phenomena-10f burnout is complex, c.f. Symposium on two-

phase flow dynamics (1967), surface tension effects must play 

a role in producing annular film breakdown. This is therefore 

another problem to be investigated in connection with variable 

surface tension driven flows. 

The effect of pollution on our environment is becoming 

increasingly more important. The presence of surface active 

material in industrial waste being discharged into a river 

will affect the flow of the surface of that river. This could 

be of particular importance where 	the waste mixes with the 

river water. A report was given in Science Journal (1969) of 

an experiment in which an oil slick was burnt off the surface 

of a pool of water by placing a chemical Cab-O-Sil on the 

surface. This surfactant isolated the oil from the water, which 

acts as a heat sink, so that the oil could be ignited at the 

surface. Once ignited the particles of Cab-O-Sil act as a wick 

to keep the oil burning. Although the processes taking place 

in that experiment appear complex, it seems that variation in 

depth caused by surfactants could be used to help in the 

removal of crude oil from the surface of the sea. Further 

experimental and theoretical studies of this problem are clearly 

desirable. 

From the evidence given it is seen that more work is 

desirable in connection with flows affected by variable 

surface tension and the associated investigations of the heat 

and mass transfer processes producing such variations. 



104 

REFERENCES 

Adler, J 1970 Combustion Science and Technology, 2, 105 

Adler, J and Sowerby, L 1970 J Fluid Mech, 42, 549 

Bickermann, J J 1968 Surface Chemistry. Academic Press 

Block, M J 1956 Nature, 178, 650 

Burgoyne, J H, Roberts, A F, and Quinton, P G 1968a Proc Roy Soc 

A308, 39 

Burgoyne, J H and Roberts, A F 1968b Proc Roy Soc A308, 55 

Burgoyne, J H and Roberts, A F 1968c Proc Roy Soc A308, 69 

Cabelli, A and DeVahl Davis, G 1971 J Fluid Mech 45, 805 

Cameron, A 1966 .The Principles of Lubrication. Longmans 

Courant, R and Hilbert, D 1953 Methods of Mathematical Physics, 

Vol I. Interscience 

Davies, J T and Rideal, E K 1963 Interfacial Phenomena. 

Academic Press 

Davies, T V and James, Eleanor M 1966 Nonlinear differential 

equations. Addison Wesley 

Davis, R T 1967 J Fluid Mech 27, 691 

Dean, W R and Montagnon, P E 1949 Proc Camb Phil Soc 45, 389 

Foster, T D 1969 J Fluid Mech 37, 81 

Glassman, I and Hansel, J G 1968 Fire Research Abstracts and 

Reviews 10, 217 

Jeffreys, H 1926 Phil Mag 2, 833 

Jeffreys, H 1928 Proc Roy Soc A118, 195 

Kenning, D B R 1968 Appl Mech Rev 21, 1101 

Laminar Boundary Layers (ed L Rosenhead). 1963 Illustration 

facing page 512. Oxford 

Langlois, W E 1964 Slow Viscous Flow. Macmillan 



'105 

Levich, V G 1962 Physicochemical Hydrodynamics. Prentice Hall 

Levich, V G and Krylov, V S 1969 Annual Reviews of Fluid 

Mechanics 1, 293 

Lin, C C 1955 Theory of Hydrodynamic Stability. Cambridge 

University Press. 

Low, A R 1929 Proc Roy Soc A125, 180 

Malkus, W V R 1954a Proc Roy Soc A225, 185 

Malkus, N V R 1954b Proc Roy Soc A225, 196 

Miles, J W 1967 Proc Roy Soc A297, 459 

Moffatt, H K 1964a J Fluid Mech 18, 1 

Moffatt, H K 1964b Arch Mech Stosowanej 2, 16, 365 

Murad, R J, Lamendola, J, Isoda, H and Summerfield, M 1970 

Combustion and Flame 15, 289 

Nield, D A 1964 J Fluid Mech 19, 341 

Pearson, J R A 1958 J Fluid Mec h 21, 489 

Pellew, A and Southwell, R V 1940 Proc Roy Soc A176, 312 

Rayleigh, Lord 1916 Phil Mag 32, 529 

Scanlon, J W and Segal, L A 1967 J Fluid Mech 30, 149 

Schulter, A, Lortz, D and Busse, F 1965 J Fluid Mech 23, 129 

Science Journal March 1969 5, No 3, 14 

Scriven, L E 1960 Chem Eng Sci 12, 98 

Scriven, L E and Sternling, C V 1960 Nature 187, 186 

Scriven, L E and Sternling, C V 1964 J Fluid Mech 19, 321 

Sirignano, W A and Glassman, 11970 Combustion Science and 

Technology, 1 

Skogen, N 1958 Amer J Phys 26, 25 

Smith, K A 1966 J Fluid Mech 24, 401 

Symposium on two phase flow dynamics; Eindhoven 4-9 September 

1967. Proceedings as Euratom publication EUR 4288e, 



106 

Commission of the European Communities, Directorate 

General for Dissemination of Information, CID, 

Brussels 1969 

Yih, C S 1968 Phys Fluids 11,  477 

Yih, C S 1969 Phys Fluids 12,  1982 



107 

APPENDIX A 

In one dimension it can be proved that for a linear 

differential operator L , the Greens function for the 

differential equation 

LEUI = 0 	 5 

which holds everywhere in a region, a < x < b , except at 

some source point C, a<C<b; together with a set of homo-

geneous boundary Conditions, is given by 

un
(x)u

n
() 

n=1 	A 
 

where An and un are the eigenvalues and normalised 

eigenfunctions for the problem 

L. u + Au = 0 

with the same boundary conditions. This formula relating 

Greens function to eigenfunctions and eigenvalues of the 

above eigenvalue problem is called the bilinear relation. It 

can be extended to 2 dimensions, an example iluustrating this 

extension is given in Courant and Hilbert (1953). 

In Chapter 7 it is necessary to find the Greens function 

for 

v 2 0 = 0 	 (Al) 

in the region 0<x<1, 0<y<1 with the boundary conditions 

y = 0 : 0 = 0 	, 	(A2) 

	

y = 1 3° 	0 

	

- : 	•rs-7. 
0Y - 
20 x=0,1 : .T.5. = 0 

(A3) 

. (A4a,A4b) 

1 
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To obtain a solution in the form suggested, it is necessary 

to find the normalised eigenfunctions and eigenvalues for 

V20 X20 	0 	 (A5) 

with the boundary conditions stated. Substituting a 

solution in the separable form 

0(x,y) = X(x) Y(i)/  

one obtains the equations 

1 d2X ,= -K'2 
I TIRT 

and 	1 d2Y = _mt2  
Y dy2c. 

where K' and m' are constants connected by 

K'2 	2 = A2 

The solution of (A6) satisfying (A4a) and (A4b) is 

(A6) 

(A7) 

x= A cos Kwx 

where A is constant and 

K' = 	K being an integer. 

The solution of (A7) satisfying (A2) and (A3) is 

Y = B sin (2m1-1)71-  y 
2 

where B is constant and 

= (2m+1) 	, m being an integer. 
2 

The required set of eigenfunctions, Okm, and corresponding 

eigenvalues, Xkm, is therefore, 

0Km = AKm  cos 
Kit x sin (2mq.1)Tr 

2 
Y, 

 

(A8)  

(A9)  r 
XKm = 2 L(2m1.1)2+4K2 

4 

 

3 

where AKm is constant. The eigenfunctions must now be 

normalised by determining the constants AKm. The normality 



0Km = 2 cos Knx sin (2mi-l)ny 
(A10) 

2 

condition is 

1109 

02Km dx dy = 1 , 
0 	0 

 

which gives the result 

A 	=  Km 2 

The normalised eigenfunction is therefore 

Using the bilinear relation it now follows that the 

required Greens Function is 

G(x,Y,E,T1) = 

00 	00 

I 	x 4 cos Knx sin (2m4-1)ny cosEn-x sin (2r14.1)ny 
K=1 m=0 	2 	2 

Tr2 [(2m+1)2 + 4K2] 
-4- 
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APPENDIX B 

Trying to use a Laplace transformation method to solve 

9(/) 	62 	92
5 

(Bi) Dx 	3Y2  

with boundary conditions 

Y 	= H-7E: 	41) 	= 	Ea¢ = 0(x) 3 

3 

(B2)  

(B3)  

(134) 

aY 

and 	4)4.0 

rewite the system by putting 

z = H-Y-Ire 

so that 	34 	dH 	9(I) 	= 	e292q5 
3x 	dx 	3z 	372.  

z 	= 0: 	(p= -0(1) 	= 0(x) (B5) 
az 

Suppose that 4  is the Laplace transform of the solution for 

L {q} = f: e-sz p(x,z) dz . 

Using the boundary conditions (B5), it follows that 

L r 34)1 = scl) 	0 1--f  az 

and 	
L qzp = s{s71; - 0} + 10 

so that the transformed equation to be solved is 

3.75 	s dH - e2s2  
Dx 1 dx 

 

{-e2s 	E 	di- }0 . 	(B6) 
dx 

-4; 

 

Because of the form of 0(x), this equation must be solved 

separately in the regions 	and x<0. 'Integrating (B6) in 

*,0 and using the boundary condition at infinity 



-4; 	 v ... _e-SH+c2sx 	/ 2 
-c s + e 4- dH 

OesH-s2s2t dt. 	(B7) 
m 

x 	 dt 

Unfortunately, the inverse of this Laplace transformation is 

difficult to obtain so this method does not give a solution. 
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FIGURES 
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Figure 1 	The three types of curves for the change of 

surface tension of water by solutes . 

dY 
d5c  = 0 

Figure 2 	Sketch of integral curves in the region of physical 

significance for the equation 

dY CX2(X+Y)  
dX r 

3X2+4
xy
-1 
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Figure 3 	Sketch of the integral curves for the equation 

dY CX2(X-Y)  
dX 3X

2
-4XY+1 

when C is large 
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11 5 

	

Figure 4 	Curves of S and H versus 	for b1  = 0 , 

	

I 	a1 = 0.1 , a = 0.097 , b = 0.0 

	

TI 	a1 = 0.2 , a = 0.17 , 
	b = 0.0 

	

TIT 	a1 
= 0.346, a = 0.220 , b = 0.0 
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Figure 5 	Curves of S and II versus 	for b
1 
 = 0.001 , 

a
1 
 = 0.0 , a . 0.0 , b = 0.00962 

a
1 
 = 0.1 , a = 0.092 , b = 0.00921 

a
1 

= 0.2 , a = 0.163 , b = 0.00816 

a
1 
 . 0.324 , a = 0.201 , b = 0.00622 
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Figure 6 	Curves of S and H versus 	for b1 . 0.005 , 

	

I 	a1 = 0.0 , 	a = 0.0 , 	b = 0.00406 

	

II 	al  = 0.1 , 	a = 0.077 , b = 0.00384 

	

III 	a1  = 0.2. E 	a = 0.131 , b = 0.00328 

	

IV 	al  = 0.252 , a = 0.146 , b = 0.00290 
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Figure 7 	Typical curve for us(); 

al  = 0.1 , bl  . 0.005 

a = 0.077 , 	b = 0.00384 
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Figure 8 Curve for a10(b1) 



Figure 9 	Curves for H and G versus X 

when GF = 10.0 , B = 1.0 

X -> +co 
H >B 
G -> 0 
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Figure 10 	Curve for us  (X) when B= 1.0 , 9F  = 10.0 
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