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ABSTRACT 

Part I of the thesis describes the physical properties of an 
extremely weak and deformable model material, which is found to be 
ideally suited to the modelling of large gravitationally loaded 
rock masses. The strength-deformation characteristics are found 
to be very similar to those of rock at a reduced scale of 500 to 1. 
A method is described for generating parallel sets of tension 
fractures through the material. Tests on these interlocking 
model joints are compared with large scale shear tests on rock 
joints. The shear and normal stiffness of the model joints are 
found to dominate the deformation behaviour of the jointed 
material. 

Part 2 of the thesis describes a detailed study of the 
behaviour of model tegsion joints in shear. Strength-size and 
displacement-size effects are evaluated, and a simple peak strength 
criterion for rock joints is derived. A closer estimate of the 
peak bear strength of surfaces of different roughness is obtained 
from a statistical analysis of the roughness profiles. The peak 
strength criterion is used to obtain approximate strength envelopes, 
by extrapolation of the results from back analyses of slope failures 
in southern Spain. The effect of peak and residual shear strength 
is demonstrated in a limit equilibrium approach to progressive 
failure of rock slopes. 

Part 3 of the thesis describes the results of experiments 
on two-dimensional jointed model slopes. Preliminary tests 
were made on slopes which were rotated to induce failure. Large 
models wore finally constructed, having three joint sets and 
approximately 40,000 discrete blocks. These were loaded horizontally 
to simulate different tectonic stress levels, and vertically by 
gravity. Open-cuts ware excavated and the pre-failure displacements 
recorded photogrammetrically. The failures induced by excavation 
to increased slope angles were recorded on tine film. Some 
unexpected results of pre-consolidation were discovered. 
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INTRODUCTION 

The complex nature of discontinuous rock slope behaviour 
was a subject imperfectly understood when this project was begun 
late in 1966. Despite advances in various parts of the world 
during this time, the subject is still in its infancy. Powerful 
numerical methods of analysis have been developed, but their use 
has helped to define the problem as much as solve it. 

A detailed model study was undertaken in the belief that, 
at the time, no better method was available for evaluating the 
behaviour of discontinuous rock masses. Great care was taken to 
develop realistic model materials, and in particular model joints. 
Nearly two years were spent on these basic problems alone. As 
a result of these studies and the application of the methods to 
jointed slope problems, it must be admitted that a similar 
approach would be adopted if a new start were to be made at this 
time. The extremely sophisticated numerical methods which have 
been developed, while representing significant advances are, 
in real terms, extremely crude simulations of real processes. 

It is believed that physical models,although extremely in-
flexible analogs, should always be used as a preliminary to 
numerical methods. Many of the latter would have developed 
differently if joint behaviour had been more clearly understood. 
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1.1 PMYSICAL PARAMETERS OF ROCK MASSES AT REDUCED SCALE 

SUMMARY 

The differences between modelling underground rock excavations 
and rock slopes are discussed. These can be summarized as follows. 
Gravity induced stresses and joint properties must be carefully 
modelled in slope stability studies. Generally a slope model will 
be simulating a much larger dimension of jointed rock. This means 
that if simple gravity loading is to be used to load the model then 
the geometric scale factor will need to be unusually large. 

A basic set of dimensionless products is presented which 
governs the model-prototype mechanical scaling. The most important 
one is found to be that which relates density, Young's modulus 
(or stress) and the geometry of model and prototype. This governs 
the scaling of all the stress-deformation properties. 

The mechanical properties of intact rock are presented in 
diagrammatic form and the correctly scaled model performance is 
discussed. It is concluded that brittleness and brittle-ductile 
transition, tensile strength and compressive strength are properties 
which have an important bearing on the shear strengths of joints. 

The mechanical properties of discontinuous rock are presented 
diagrammatically in the form of direct shear characteristics. The 
scaling of shear stiffness - the displacement at which the peak 
shear strength is mobilized, and the scaling of normal stiffness -
relating joint closure and normal stress, are considered to be 
important properties of rock mass behaviour. It is concluded that 
model joints should idally have a rolighneso geometrically similar 
to that of the particular large scale joints in the field. Then, 
given identical intact properties, the dilation across any shear 
surface will be correctly scaled. It is thought that the dilation 
occurring before peak strength is mobilized largely controls the 
peak shear strength envelope, and the post-peak dilation controls 
the eventual position of the failure surface since in certain cases 
continued dilation will arrest failure due to increases in normal 
stress and a consequent shear strength increase. 

10 



1.1 PHYSICAL PARAMETERS OF ROCK MASSES AT REDUCED SCALE 

INTRODUCTION. 

The laws of similitude relating the behaviour of a geomechanical 
model and prototype are extensively covered in rock mechanics 
literature. Buckingham's important second theorem, on which the 
entire theory of qmensional analysizs is based has been rigorously 
proved by Langhaar. Hoek Fumagall and Hobbs to name only three, 
give fairly detailed discussions of the more significant factors 
affecting their particular modelling problems. In view of the 
fact that most of the available literature on geomechanical models 
concerns dams and foundations and underground excavations, it is 
perhaps advisable to pay some attention to the dimensional problems 
that are peculiar to the modelling of excavated rock slopes. 

The fundamental differences between modelling underground 
rock excavations and surface or near surface rock structures can 
be divided broadly into two parts. Firstly, the dimensions of 
most underground excavations which are modelled are probably 
between one and two orders of magnitude smaller than the mean 
depth of the excavation below the surface. It has therefore been 
considered perfectly acceptable to ignore any gradient of stress 
due to the different depth below surface of the top and bottom of 
the excavations. By comparison, the mean depth of rock slope or open 
pit below surface is one half of the height of the slope. This 
reversal means that gravity induced stress gradients have to be 
modelled in the case of rock slopes, while they can justifiably 
be ignored in underground mine models. 

Secondly, by the very nature of the different magnitude of 
the applied stresses, discontinuities dividing the rock matrix 
are fundamentally important to rock slope studies. Until recently 
discontinuities have been considered as relatively unimportant 
for the stability of underground excavations. Ergun2  has found 
that in certain cases the presence of discontinuities can actually 
improve the stability of an underground excavation, due to the 
possibility of redistribution of stress in highly stressed zones. 
It seems therefore that more emphasis should be paid to the modelling 
of rock masses (implying the presence of discontinuities) in all 
forms of geomechanical modelling. It is in this respect that the 
highly complex problem of modelling the interaction of dams and 
their foundations is most unreliable. The lack of suitable model 
materials has also induced somewhat artificial methods of self- 
weight loading to be used in a problem which is, afterall, 
governed by gravity induced stress gradients to the same extent 
as rock stability. 



SECTION T.I. 

There is a third though less important difference between 
near surface and underground model studies - the question of scale. 
It is considered important that a model of an open pit excavation 
should include the modelling of a large dimension of jointed rock 
beyond the pit limits. In this way the effect of the excavation 
on the applied stress distribution out at the boundaries of the 
model will be reduced. Excavated slopes in excess of one thousand 
feet depth are not uncommon, which means that acceptable models of 
open pit operations should have prototype dimensions of several 
thousand feet as a minimum. This is in marked contrast to models 
of underground excavations where in general, prototype dimensions 
are at least an order of magnitude less than this. Reconcilliation 
is therefore needed between available laboratory space and the 
smallest model-prototype scale factor that can be achieved. 

1.1.1. DIMENSIONLESS PRODUCTS. 

It is a simple matter to obtain the set of dimensionless 
products relevant to the problem in hand. The first step is to 
choose some basic parameters which are considered to be fundamental 
to rock mass behaviour. It is not necessary to make a comprehensive 
list since once the basic form of the dimensionless products has 
been ascertained, complications can be formulated at will. 

The following parameters will be considered initially: 
Dimensions 

Tensile strength 	ML-1T-2 

Cc 	Compressive strength 	ML-1T-2  

cy 	Local normal and ) 	ML-1T-2 

shear stress ) 	ML 
-1
T
2 

F 	Young's modulus 	 ML 1T- 
2 

Density 	 ML-3 

9 	Acceleration due to gravity 	LT
-2 

L 	Any linear dimension 

(1) 	Angle of friction 

c 	Cohesion 	
141,  1T-2  

K Stiffness 	 ML-2T-2 

0 	Poisson's ratio 

The set of dimensionless products that can be obtained 
from these is as follows: 

d-ciGy 	= 1#.4 	.1% c/ 	Kly ci) 
•F E a-  cr-c  E Cr 

12  



SECTION 1.1. 

For similitude to be achieved between model (n) and prototype 
(p), it is necessary that these dimensionless products be equal in 
model and prototype. For instance: 

(CA )111 =  

= (Op 

The most important equality to be satisfied is the second 
one relating density, Young's modulus and the geometry of model 
and prototype. It is this relationship which poses the problem 
of gravity loading. If a weak and deformable model material 
cannot be obtained then some means of increasing the self 
weight stresses must be found, such as loading the model in a 
centrifuge. At no stage was this method of loading considered 
leasable for a structure as complex as an open pit model, in 
which the whole mass is divided by systems of discontinuities. 

Since it is therefore decided that simple gravity loading 
is to be applied in the model as in the prototype, the second 
equality reduces to: 

F tn 

== L
%I
ID/  

4) . 	= X 
/c)v  

Where the stress scale factor 
the geometric scale factor. 

This is an extremely important relationship which governs 
all the stress-displacement properties of the model. Once the 
geometric scale factor is chosen, all physical parameters with 
the dimensions of stress in the prototype will need to be 
reduced in a ratio: 

1 :  % rn  

in the model. The density of the model material finally used in 
this study was approximately four fifths that of rock (see Section 
1.2) Therefore a geometric scale factor (X ) of 1:500 results in 
a stress scale factor (4) ) of 1:666. 

13 
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The time and velocity scale factors between a model and 
prototype depend on the ratio of the acceleration due to gravity 
between the two. Since this ratio has been made equal to one in 
this study, the time scale can ir shown to be (X 	Therefore 
the velocity scale is also (1)7  since the dimension of velocity 
is (L/T). 

It will be obvious that the scale factor (X) controls the 
scaling of joint spacing, displacements, depths of excavation and 
all things connected with the geometry. Having presented these 
fundamental similitude requirements it is necessary to look in 
more detail at some of the physical characteristics of rock 
masses underload. In doing so the dimensionless products will 
be extended to cover a more comprehensive range of physical 
behaviour particularly with regard to shearing of rock masses. 

1.1.2 SCALING THE MECHANICAL PROPERTIES OF INTACT ROCK 

Suppose that a cylinder of rock 1 inch in diameter and 
2 inches long is tested in unconfined compression, giving a peak 
strength ofG-c  G. It is usually most convenient to test the same 
size of model specimen. Suppoae that this gives a peak strength 
of (g,/y),It would appear that the strength scale factor is 
adequately defined by the ratio of these two strengths. However, 
interpreting the model test correctly it will be realized that 
the model represents a cylinder of rock (X ) inches in diameter 
and (2 ) inches in length. Inserting the geometric scale 
(1:500) this represents approximately 42 feet in diameter and 
84 feet in length. 

There are two impractical solutions to this problem. The 
model cylinder could be correctly scaled geometrically, giving 
dimensions of 0.002 inches in diameter and 0.004 inches in 
length. Alternatively an in-situ test of a cylinder of rock 
42 feet by 84 feet lould be carried out in the field. Unfortunately 
even a compromise between the two extreme sets of dimensions 
would not be entirely satisfactory due to the presence of 
discontinuities in the rock: For instance, in-situ compression 
tests on 4 feet by 8 feet of rock, and laboratory compression 
tests on model cylinders 0.1 inch by 0.2 inch would be practical 
possibilities, and would still satisfy the theoretical geometric 
scale factor. However, even for the most massively jointed rock 
the presence of micro fissures and small joints causes a reduction 
in compressive strength (Grb) the larger the specimen of supposedly 
intact rock that is tested. The author is unaware of any large 
scale experimental evidence of this effect for hard rocks, 
except indirectly from plate-bearing tests. However several 
authors report of a sign.ficant strength-size relationship for 
coal. Evans and Pomeroy have found marked strength variation 
for such small size ranges as i inch to 2 inch cubes. Bieniawski7 
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reported reduction of strength up to cube dimensions of 60 inches, 
though there seems no reason why he should consider this a 
limiting size. 

It would be unreasonable to suggest that hard rock might 
behave in as marked manner as coal because obviously the mode 
of origin and physical structure of coal sets it apart from the 
large majority of rock types. In addition, when testing very 
large cubes the end effects and machine stiffness become significant 
variables of the test. The problem will remain unresolved 
therefore until more data from large in-situ tests becomes available 
in time. These arguments demonstrate perhaps as well as any the 
need for large scale tests, and the need is particularly acute 
where realistic physical modelling is to be achieved. It might 
therefore be better to interpret the model with this strength-size 
effect in mind at least in a qualitative sense. Thus a model material 
of strength ( (Tvp ) is in reality scaling a prototype rock 
such that the strength simulated is actually somewhat greater thanqe. 

Figure 1.1.1 shows diagrammatically the model-prototype 
scaling relations that should ideally to satisfied if a model 
material is to be taken as a realistic physical model of unjointed 
(intact) rock. It is probably true to say that the properties of 
joints developed in the model material will be more closely 
representative of unweathered rock joints if these strength-
deformation conditions are satisfied, since shear failure of 
interlocking rock surfaces incorporates several phenomena of 
intact rock. 

The dimensionless axial strain at failure (E, ) and the 
brittle-ductile transition phenomena encountered in triaxial tests 
shown in diagrams (a) and (b) are two important properties in 
this respect. The true contact stresses across mating rock 
joints are in reality very large compared to the apparent contact 
stresses and this probably means that 'joint behaviour will not 
be governed entirely by brittle fracture phenomena. Likewise, the 
tensile strength (cyt) and the compressive strength (je) , may 
both be important properties, the first concerning pre-failure 
tensile fracture in the base of joint asperities, and the second 
the residual shear strength which results from the crushing of 
debris on the shear surface. 

Diagram (c) shows in a qualitative manner that the triaxial 
strength envelopes of model and prototype should be geometrically 
similar. A more useful quantitative comparison is shown by diagram 
(d), where the triaxial peak strength data (in the compressive range) 
is divided by the uniaxial compressive strength thereby reducing 
it to dimensionless form. In this case model and prototype curves 
should be identical. In the same way the modulus ratio (E /Go) 
proposed by Deereu  as a simple rock classification system is a 
useful dimensionless number for comparing the model and prototype 
performance directly, rather than qualitatively. In Section 1.2 the 
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Figure 1.1.1 	Model-prototype scaling of the properties of intact rock 
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comparison of model and prototype performance is extended qualitively 
using normalized strength data appearing in the literature. 

1.1.3 SCALING THE MECHANICAL PROPERTIES OF DISCONTINUOUS ROCK 

The scaling of shear strength properties of rock joints differs 
in one important aspect from the preceeding arguments. Since a 
joint is a discontinuity of the intact properties it is no longer 
realistic to describe stress-displacement characteristics in terms 
of stress-strain data. There is undoubtedly a stiffness-size effect 
with respect to direct shear properties of rock joints, but this 
will depend on the effect of joint roughness. It is therefore 
customary to describe direct shear tests of joints in terms of 
shear stress-displacement data, while the peak and residual 
strengths are plotted conventionally as shear stress-normal stress 
values. 

Figure 1.1.2 shows four diagrammatic representations of 
joint behaviour in direct shear. Suppose that for one of the 
prototype curves in diagram (a), the peak shear strength (Tp) is 
mobilized after a displacement of (dp) horizontally - representing a 
shear stiffness (Ks) of (Tp/dp). When modelling this stiffness 
the dimensionless product given in part 1.1.1 has to be satisfied. 
Thus the model shear stress - displacement data should be scaled 
as follows: 

Tp/y 	versus 	dp/A 

and for the residual strength: 

Tr/p 	versus 	dr4 

Since the stress scale factor (kV) is usually larger than the 
geometric scale factor (A ), the stiffness of the model joint as 
defined above should be lower than that of the prototype - 
one,and a quarter to one in this case. 

The same arguments apply to the normal stiffness (Kn) of 
joints. The closure (dn) of a joint under a given normal stress 
03-0 causes an important reduction of the deformation modulus of 
a rock mass compared to the Young's modulus of the unjointed matrix. 
It is therefore an important property to be modelled. 

The dimensionless ratios (Tp/Tr) and (Tp/ Cr n) which are sometimes 
presented in the literature (Krsmanovic9 and Krsmanovic, Tufo and 
Langof10) need to be identical for the model and prototype. 

Diagram (c) shows the form of a dilation diagram, which 
is the graph of vertical and horizontal displacements across a 
joint during direct shear. The angle of dilation (incremental dv/dh) 
has considerable influence on the gradient of the peak strength 
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envelope (diagram(b) ). In addition, the degree of roughness of 
a joint surface more or less dictates this peak angle of dilation 
at the stress levels under consideration. Therefore it will 
probably not be possible to satisfy the relation: 

Cr /Tr, ) p = ( 	/ vn  )ni 

unless the joint roughness in the model is geometrically similar 
to that of the prototype large scale rock joint. Very rough 
model joints tested under low normal stress levels will automatically 
produce a very steep peak shear strength envelope. This means that 
the relevant angle of friction (4' ) and probably the cohesion 
intercept (c) will be too high compared to the prototype. The 
cohesion intercept (c) for the prototype joint should of course 
be reduced to (cAp) in the model. 

In general the true residual strength envelope will pass 
through the origin, since after large displacements the strength 
potential is purely frictional. Thus the residual strength 
envelope for the model joint should follow the same line as 
that of the prototype, implying also that the residual angle of 
friction 	) should be identical for model and prototype. 

Diagram (d) shows two possible shear stress - dilation rel-
ationships. No.1 represents a shear test at a normal stress 
level that is low enough for the rock joint to continue to dilate 
(at a reduced rate) after the peak strength is passed. No. 2 
represents a test at a much higher normal stress such that the 
post-peak dilation is prevented. ( The peak angle of dilation 
will in reality be less for the latter than for the former.) 
Along a potential shear surface in-situ, any fundamental differences 
between the dilation characteristics of the model and prototype 
will cause important local differences in the mobilized shear 
strength due to different normal stress changes occurring 
during continued shear. Alternatively, the actual position of 
the failure surface may be governed by dilation properties to such 
an extent that irreversible failure will occur only on a shear 
surface which does not develop significant normal stress increases 
during shear. Having satisfied this condition failure will then 
be governed by the conventional stress-strength laws. 

It can thus be appreciated that the post-peak dilation 
characteristics can in certain cases assume more importance than the 
small pre-peak dilation; which largely controls the conventional 
shear strength. This can readily be appreciated for the case of 
stability of underground excavations. 

It has already been suggested that the shear characteristics 
of clean interlocking rock surfaces are dependent to a large extent 
on several phenomena of intact rock failure. It would seem therefore 
that a realistic model material must first scale the properties of 
intact rock. If geometrically scaled joint surfaces can then be 
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produced in the model material, there is a good chance of correct 
scaling of the discontinuous properties which, taken separately, 
are far more important to slope stability than the intact 
properties, but in reality are inseparably linked to them. 

20 



1.2 PHYSICAL CHARACTERISTICS OF THE UNJOINTED MODEL MATERIALS  

SUMMARY 

An unusually low strength brittle model material was developed 
from a cured combination of red lead-sand/ballotini-plaster-water. 

The mechanical properties are reported under three test 
catagories: uniaxial compression, tensile (Brazilian) and triaxial 
compression. Mode materials with unconfined comression strengths 
as low as 5 lbf/in could readily be produced and the values of 
Young's moduli for a range of strengths gave acceptable modulus 
ratios of between 350 and 560. In addition to a range of strengths, 
it was possible to obtain a range of deformation properties for a 
given strength of material. The Brazilian disc tensile test 
indicated a ratio of tensile to compressive strength of up to 
1 to 10. 

The series of triaxial tests at low confining pressures 
(0 to 5i lbf/in2) are reported in detail and indicated a further 
useful property: the intrinsic shear characteristics could be 
altered for a given strength of material by variations in the 
sand/ballotini proportions in the mix. 

The model material behaviour in unconfined and triaxial 
compression is critically examined in relation to two rock 
classification systems. From the comparisons drawn, the 
unjointed material appears to be particularly well suited to many 
aspects of rock mechanics modelling, where self weight loading and 
large geometric scale factors are required. 
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model materials. 
Appendix 2. contains details of 
(uniaxial and triaxial) and some 
these machines. 

the preparation of the unjointed 

the compression test equipment 
comments on the stiffness of 



1.2 PHYSICAL CHARACTERISTICS OF THE UNJOINED MODEL MATERIALS 

In order that a model study should provide quantitative 
information on rock slope failure it is important that relevant 
strength-deformation parameters which govern the behaviour of 
the rock slope should be correctly scaled. The parameters and 
scaling factors relevant to intact rock behaviour have been 
discussed in detail in Section 1.1. It will be sufficient to 
summarize here that for the relationship between the strength 
scaling, the geometric scaling and the density to be satisfied, a 
model material having both high density and low strength will 
need to be employed. Tlis problem is peculiar to rock slope 
modelling, and to similar studies where gravity induced stress grad-
ients are of importance. In addition the prototype scale of a 
slope stability study is so large that unless capital and 
laboratory space are unlimited then very large geometric scale 
factors have to be employed. 

The combined effect is that a model material has to be 
found which is considerably weaker and denser than those 
commonly in use in engineering rock mechanics modelling. 
Of the large number of materials in use none appeared suitable 
for the present problem. An extremely comprehensive survey 
of existing materials is given by Stimpson.'' 

After careful consideration of the problem of modelling 
an open pit mine in a gravitationally loaded model, a geometric 
scale factor of 1:500 was adopted. If an average rock density 
pp of 160 lbf/ft3 is assumed, then with <<m  equal to, say 
120 lbf/ft3 the stress scale ( 	) would be fixed at 1:666. 
Thus, if similitude was to be attained, all mechanical properties 
in the model material with the dimensions of stress would need 
to be 1 times those of the prototype rock. Model densities 

76-6 
less than 120 lbf/ft3  would mean that even lower strength 
materials had to be found. 

Strength and defOrmation range  

The design of the model material was not directed towards 
the modelling of any specific rock type or lithological group. 
The aim throughout was to produce a material which exhibited 
(at reduced scale) the broadly characteristic properties of 
rocks as a group of materials, both in terms of strength and 
deformation properties. The range of strength in engineering 
practice clearly demanded a range of model strengths, if the 
same scale factors were to be employed throughout. This basic 
requirement was readily satisfied. However, the variations in 
deformation properties for a given strength of material were not so 
easy to simulate. This, and the mode of failure under given 
stress systems were two features demanding special attention. 
As a general rule, it may be true to say that rock characteristics 
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will be more closely approached in a model material if the constituent 
elements of this material are derived from rock. 

For the present it will be helpful to state the approximate 
range of basic strength and deformation properties which were 
dictated by engineering rock mechanic-3 experience in open pit mins. 
Unconfined compressive strengths of between 5000 and 25000 lbf/in 
were generally to be expected of unweathered rock. Selecting a 
medium vale for the modulus ratio (E/0 of rock types of 400 
(See Deere ), the zone of interest with Fespect to values of 
Young's modulus was approximately 2 x 10°  to 10 x 106  lbf/in2. 
Vith the possible stress scale (1) ) of 1:666 for a material 
density of 120 lbf/ft3, it was necessary to consider the following 
ranges of unconfined compressive strengths and Young's moduli in 
the potential model material: 

crc 	7.5 - 37.5 	lbf/in2  

Et 	0.3 x 104  - 1.5 x l0 lbf/in2  

The tensile strengths which were to be achieved are difficult 
to state categorically, since there will be some variety depending 
on the testing technique employed (Hobbs 12). Broadly speaking 
a ratio of compressive to tensile strength (7c/at) of between 10 
and 20 was considered to be acceptable, though clearly there 
are rock types having values on oither side of this range. The 
maximum range of tensile strengths dictated by these figures was 
approximately 0.4 to 3.8 lbf/in2  for the model. 

The axial strain at failure associated with unconfined and 
triaxial compression tests is dimensionless and needs to be the 
same for the model and prototype. A range of between 0.15 and 
0.4% for unconfined failure strains was considered broadly 
representative of the required brittle behaviour. The failure 
strains under triaxial compression vary widely, depending on the 
strength of the specimens and the confining pressure employed, 
and no attempt was made to state any range of acceptable behaviour. 

Having stated the approximate range of basic properties that 
were required from a potential model material, it may be of 
interest to summarise the properties of some of the many test 
mixes which were tried before the successful combination of red 
lead - sand/ballotini-plaster-water was arrived at. 

1.2.1 PRELIMINARY TRIAL MIXES 

The search for suitable materials began with exploratory 
tests on plaster-sand mixtures, wl?.ich have been used by several 
research workers, including Hobbe, His technique for reducing 
the strength of the material by curing at about 90°C was adopted 
from the start and was used throughout for plaster cemented 
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materials (See Appendix 1.) Two drawbacks to this material 
relating to the present study, were the relatively high axial 
strain (E) at failure (0.7 to 0.9%) in unconfined compression) 
and low density (between 80 and 90 lbf/ft3). However, the 
unconfined compressive strength could be reduced to about 15 
lbf/in2  without difficulty, by suitable reduction of the plaster-
sand ratio. The ratio of oc/ot measured by Hobbs varied between 
approximately 1.5 and 3 which was disappointingly low for this 
study. 

The need for a high density filler was clearly indicated. 
A large number of trial mixes were tested so that the most 
suitable high density powder could be found. Plaster and water 
with barite (BaSO4), litharge (Pb0), iron powder (H2 reduced) 
and red lead (Pb304) were tried separately and some in combination. 
Densities as high as 170 lbf/ft3 were obtained with barite-iron 
powder-plaster-water mixes, but for all Vie mixes tested the 
strength was never below about 60 lbf/inc, and the strains at 
failure ranged above 0.7%. The plaster-filler ratio was 
reduced almost to the point where no set could occur. It 
appeared that some of these high density powders acted as 
retarders in much the same way as celite retards the setting 
of plaster-water systems (Raphaell3). 

The following table summarises some of the mixes tested. 
These were generally pourable, and set without too much 'bleeding' 
and settlement in the moulds. They were rejected from mechanical 
considerations. All results are the mean from unconfined 
compression tests on about five specimens of each mix. 
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Table I : The Properties of some trial model materials  

Mix components Weight 
proportions 

Properties of the minimum 
strength mix 

c-, 
 

4 Ex 	1  c.,.% • Ei , fi-  . c 1   . E % 00  . 

S-P-W 600-150-250 19.4 0.32 165 0.79 89 

Fe-P-W 1500-200-360 183.4 1.54 84 — 177 

Fe-Ba-P-W 1050-220-220-300 67.8 
1.96 290 0.75 172 
0.81 120 

Pb-P-W 950-160-350 111.6 3.13 280 o.68 139 

Pb-Fe-S-P-W 250-150-500-25-200 6.2 0.23 372 0.40 139 

i 

Where the symbols are as follows:- 

S = sand 	W = water 
P = plaster Fe = iron powder 
Ba = barium sulphate 
Pb = lead sesquioxide (red lead) 

The units of (CT  ) and (E) are lbf/in2, and of the density 
(p), lbf/ft3. It will be noticed that two values are given for 
the Young's modulus of the third material. The stress..strain 
curve was distinctly bi -linear, with the transition at a stress 
level of about one half of the compressive strength. All the 
materials containing iron powder rusted during curing, and 
perhaps for this reason were rather :nreliable from the point 

'13\11 of view of reproducibility, and reaso ably linear stress strain 
curves. 

The finally adopted combination of red lead.sand/ballotini-
plaster-water was unique in that the fine red lead powder acted 
both as a lubricant to the sand during mixing, and increased the 
density to an acceptable level without retarding the setting of 
the plaster. A large number of trial mixes were performed before 
a ratio of red lead-sand/ballotini of 1 t 2 by weight was chosen as 
the optimum. FUll details of the preparation of this material are 
given in Appendix 1., together with a design chart for the three 
series of mixes, A,B and C which contained different ratios of 
sand/ballotini thereby altering their shear characteristics. 
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The results of the strength and deformation testing are 
reported under three separate categories:- 

1. Unconfined compression test 
2. Tensile test 
3. Triaxial test 

1.2'.2. UNCONFINED COMPRESSION'TEST 

Prismatic specimens with the dimensions 1" x 1" x 2" 
were chosen as the standard for unconfined compression testing. 
The ease of fabrication of multispecimen moulds, and the speed 
of removal of set specimens were obvious reasons for the choice. 
The specimens were tested not only for ultimate compressive 
strength results for the various mixes, but also for the value 
of Young's modulus (Et) at 50% of the ultimate compressive stress, 
the percent strain at failure, and the bulk density from weight 
measurements. 

In Table 2, details of the nine mixes are given, together 
with the weight proportions of the constituent materials, which 
were read off the mix design chart (see Appendix 1.) Mix numbers 
1 and 5 for each of the types A, B and C were not tested in this 
series, since they were a little to each side of the zone of 
interest when scaled up to prototype stresses. In the right 
hand column values of the dimensionless modulus ratio (Et/ac) are 
given. 

Table 2 : Unconfined Compression Test Details  

Type/ 
mix 

Pb304-sand/ballotini- 
plaster-H20 

0-c  
(lbf/in2) 	( lbf/in2) 

Etx104  Ef 
(%) 

C-..  
(lbf/ft3) Et/oe 

A2 600-1200/0- 75-435 10.3 0.36 0.37 123.1 350 

A3 600-1200/0-100-442.5 17.8 0.73 0.37 122.2 410 

A4 600-1200/0-125-450 31.9 1.44 0.40 123.7 450 

B2 600-0/1200- 75-397.5 15.6 0.79 0.29 122.8 510 

B3 600-0/1200-100-405 28.7 1.60 0.29 122.7 560 

B4 600-0/1200-125-412.5 49.7 2.56 0.33 121.6 520 

C2 600-600/600- 75-416 8.6 o.4o 0.29 122.1 470 

C3 600-600/600-100-423.5 	20.14 1.07 0.31 121.2 530 

C4 400-600/600-725-431 	29.85 1.45 0.34 120.8 480 
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(a) Deformation behaviour 

The stress-strain curves of type A, B and C mixes for mix 
designs 2, 3 and 4 are given in Figures 1.2.1., 1.2.2, and 1.2.3 
respectively. Each curve represents the average stress-strain 
readings for the twelve prisms cast from each mix. The scatter of 
results of ultimate compressive strength was as high as 15% in one 
or two cases, but the large majority of results were within 10% 
of the mean for that batch. Type A mixes produced the greatest 
scatter and type C mixes the least. The problem of variability 
of batches of sand is discussed in Appendix I. Obviously a 
large volume of mix will tend to reduce the scatter. 

The apparently high rates of initial strain of the specimens 
are clearly visible in all the stress-strain curves and may be due 
to 'bedding-in' of the end faces. With a material so weak and 
abrasive it was not possible to prepare end faces on a lathe, and 
the smoothness was entirely dependent on the care with which the 
specimens were slid out from the lightly greased moulds. There 
may have been certain minor irregularities which caused an uneven 
stress distribution in the early stages of testing. It is 
reasonable to conclude that the axial failure strains measured 
were probably higher than they would otherwise have been, if perfect 
end faces could have been prepared. The behaviour was, however, 
sufficiently brittle for this aspect of performance to be 
acceptable. It was concluded in Section 1.1 that the model specimens 
should be interpreted as representing 42ft by 84ft. of prototype 
rock. The strength-size effect of rock ensures therefore that the 
model behaviour was in fact adequately brittle. 

(b) Modes of Failure  

The mode of failure of the specimens is clearly seen in 
Figure 1.2.4, which allows a selection of typical failed specimens. 
A particularly noticeable effect was the difference in behaviour 
between ballotini and sand specimens after the peak strength was 
passed. A much more rapid fall-off in strength occurred for the 
lower friction ballotini specimens. In some cases the shear 
resistance of the fracture was insufficient to support the weight 
of the upper part and this slid down the surface of rupture. 

(c) Strength Behaviour 

The high strength of the B mixes clearly demonstrates the 
effect of porosity on the set strength. The water demand of the 
100% ballotini mixes was some 8% less than that of the 100% sand 
mixes. The reason for this is thought to be chiefly due to the 
much reduced friction and ease of pour with ballotini mixes, but it 
will also be partly due to the greater specific surface area of the 
sand. The net result was a lower porosity and higher strength 
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Figure 1.2.4 	Failure of model 

material in unconfined compression 

Figure 1.2.5 Failure of model material 

in tension (Brazilian disc test) 
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for cured ballotini mixes. The effect of this appeared to override 
the lower internal friction of the latter, which is clearly seen in 
the triaxial results which appear later. 

It will be clear from the results of the unconfined compressive 
strength (off) for the range of mix types, that the material broadly 
satisfied the basic strength requirements which were outlined 
earlier. With the possible exception of the B mixes, any strength of 
material in the given range could be produced by suitable adjustment 
of the quantity of plaster used. 

(d) Effects of Vibration on the Mechanical Properties  

The results of an investigation into the effects of vibrating 
partially set mixes are reported here. The technique would appear 
to have very promising application to the more sophisticated of 
model studies. The tests were performed on only one material, a 
mix similar to Al but containing one of the two sands that were 
finally rejected in favour of Kingslynn (SS), (See Appendix I). 
The study was in three parts, and each set of unconfined compression 
tests were made on six 1" x 1" x 2" prisms of the material. 
Firstly, the mix was poured into the mould and allowed to set 
without any vibration, the set occurring three to four minutes 
after pouring. Secondly, the mix was poured and allowed to stand 
undisturbed for 1 minute, following which it was vibrated for 
15 seconds andtheh allowed to set. Thirdly, the mix was 
vibrated for 30 seconds, again 1 minute after pouring into the 
moulds. The comparative effects on the stress-strain curves are 
given in Figure 1.2.6 where each curve is the average for 6 
specimens. Three fundamental changes are seen:- 

(i) A reduction in the strain at failure (0.42% to 0.28%) 
(ii) A reduction in the ultimate compressive strength 

(6.60 to 4.95 lbf/in2) 
(iii) An increase in Young's modulus (0.19 x 104  to 

0.29 x 104  lbf/in2) 

No. (i) may be attributed to an increase in density with vibration, 
with a little of the excess water reaching the surface before the 
set occurs, thus reducing the porosity of the set material. This 
may also explain No. (iii). However, it is felt that a different 
explanation is needed to clarify No. (ii). No vibration was 
applied until one minute after pouring, and it seems probable 
that during this time a skeleton network of gypsum crystals 
was establishing itself. Two explanations for the reduction in 
strength appear credible: 

a) Vibration causing partial destruction of the network of 
crystals, with consequent malformed crystals limiting 
growth in the final period before setting, and con-
stituting flaws in the material. 

b) An anisotropic reorientation of crystal growth due to the 
consolidating effect of vibration. The consolidation 
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was in a direction perpendicular to the long axis of the 
prisms as tested. 

The net effect as stated was a material which failed at a lower 
unconfined compressive stress the more vibration it was subjected 
to during the partially set phase. Two surprising results 
emerge from these tests. Figure 1.2.7 shows the following 
plotted results: 

(i) Periods of vibration (0,15 and 30 seconds) vs. modulus 
ratios are in apparent linear relationship 

(ii) Strains at failure vs. modulus ratios are also in 
apparent linear relationship. 

Obviously, a more comprehensive testing programme is needed to 
confirm the linearity, but nevertheless, the trends indicated 
were of considerable interest. These results are discussed 
later in relation to theengineering classifications for intact 
rocks given by Deere°. 

1.2.3 TENSTLE TEST 

A test in wide use for determining the tensile strength of 
rocks was selected, so that the model results could be more easily 
related to the bulk of data available. The Brazilian disc test 
consists of loading a disc across a diameter, which causes a 
partly uniform tensile stress to be set up in a direction at 
right angles to the loaded diameter. The magnitude of the stress 
(at) at failure is related to the applied load (P), the disc 
thickness (L) and the diameter (D) in the following manner:- 

at = 2P  
TrDL 

The disc diameter used was 1.50 inches and the thickness 0.25 
inches. These dimensions, when inserted in the above evation, 
give: 

at = 1.70 P lbf/in2  for P measured in lbf. 

Four mix types were tested, namely A2, B2, C2 and C3. 
Two separate batches of each mix were cast, each producing four 
solid discs and two cylindrical specimens. The average 
results are given in Table 3. 
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Table 3 : Brazilian Test Results  

Mix Typo , 
No. 	of 

Specimens 

Average ot 

(lbf/inc) 

o-c  
Average--- 

at 

A2 8 0.84 8.10 
B2 5 1.44 8.45 

C2 7 0.87 10.27 
03 7 2.44 7.62 

A total of five disc specimens were rejected, one through 
careless handling and the other four for suspect failure mechanisms. 
Hobbs 12  has drawn attention to the types of failure which may be 
observed in such tests. Four of the eight typical failed specimens 
shown in Figure 1.2.5 appear to have wedge-shaped fractures 
adjacent to one or other of the loading plattens. The problems 
of handling failed discs were in great part responsible for 
these. At the point of failure no wedges were visible, but the 
slightest jar after removal from the plattens frequently caused 
some of this previously highly stressed zone to crumble and drop 
out. In every case a small 'flat' was observed on the curved 
edge of the disc adjacent to the plattens, by the time the failure 
load was reached. 

The average values of the ratio of compressive to tensile 
strength (e-5,/5L) lie between 7.6 and 10.3, which is an encouraging 
indication of the rock-like characteristics of the material. The 
ratios of (71-c/fitri, in excess of 10 found in many rock materials 
are believed to be due to the existence of Griffith type flaws in 
the grain boundaries of these materials (see review by Jaeger 14). 
In the case of the model material the shape of the pores is difficult 
to imagine, but it seems possible that the major pore spaces will 
not only occur in the interstices between the grains of sand, 
but also partly around the grains, thereby making a semi-continuous 
network. This argument is based on the assumption that the layers 
of water which surround the saturated grains become pore spaces 
after curing. The process of dissociation may be responsible for 
the production of extremely fine flaws in the cementing crystals, 
but the material will probably not contain the potential Griffith 
type flawb nefitioned above. 

1.2.4 TRIAXIAL COMPRESSION TEST 

For a representative picture to be gained from this series of 
low pressure triaxial tests, it is necessary to relate the confining 
pressures used to the prototype scale. Since the modelling of 
open pits was the major problem under consideration in this study 
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the triaxial test programme was chosen to cover the behaviour 
of rock at a depth equal to the pit slope height, and also to a 
depth more than twice this dimension, for a representative 
structural response to be observed. This involved simulating up to 
two thousand feet of overburden for, say an eight hundred foot 
deep pit. 

If the condition of confining pressure equal to the overburden 
pressure is considered, then for a rock of density 160 lbf/ft3  
the confining ppressure equivalent to 2000 feet of rock overburden 
is 2220 lbf/in. With a stress scaling C 4 ) of 1:666 this 
reduces to approximately 3.3. lbf/in2. The range of confining 
pressures chosen for the tests was in fact, 0 to 3.4 lbf/in2. 
This low pressure range made it necessary to employ a mercury 
U tube manometer for sensitive measurement of the confining 
pressure. A diagram of the apparatus is given in Appendix 2 
(Figure 4.2.1), together with details of the adjustments which 
have to be made when calculating the exact pressures acting on 
the specimens. 

The 3" x lin diameter specimens were tested dry, under 
'full drainage' conditions. There was no possibility of testing 
the material in a saturated state (under either effective stress 
conditions or drained) since, on contact with water, it rapidly 
lost the little strength it had and became non-brittle. A thin 
rubber membrane was used to isolate the specimens from the 
confining water, and was sealed to the capping plattens with 0 
ring rubber seals. The latter were made as loose as possible 
(consistent with no leakage) to reduce the possible damage to the 
specimens during assembly. 

For a given mix type, two specimens were tested at each of 
the six confining pressures. Two batches of each mix were 
mixed and cast separately and all the results reported here are 
the average of two tests each from separate batches. 

The results of tests on four of the mix types; namely 
A2, B2, C2, and C3 are given in Table 4. Axial strain 
measurements were obtained for the whole range of each test by 
direct computation from the loading ring dial gauge readings and 
from the known rate of jack advance, which was carefully 
measured under test conditions beforehand. The time taken to 
reach the failure stress ranged between about three minutes for 
the specimens under low confining pressure up to about twenty 
minutes for the weakest specimens tested at the highest confining 
pressure of 3.42 lbf/in2. 
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Table 4 : Results of the Triaxial Tests  

63 
(lbf/in ) 

01 at failure (lbf/in2)/% axial strain at failure 

A2 B2 C2 C3 

ciri  e Q; s Cr, E T, 

0 8.29 0.40 1 	14.89 0.24 7.40 0.34 15.21 0.28 
0.25 10.44 0.57 15.41 0.27 8.90 0.46 17.59 0.32 
0.85 11.73 0.63 17.36 0.29 8.73 0.45 19.71 0.45 

1.71 13.97 0.77 17.59 0.39 10.70 0.97 22.20 0.53 

2.56 17.17 1.63 19.60 0.46 13.73 2.58 23.72 0.87 
3.42 20.82 4.51 21.88 0.62 16.39 5.3o 25.79 1.15 

(a) Deformation behaviour 

Materials A2 and C2 deformed axially far more than B2 or C3, 
and there appeared to be a rapid increase in the percent failure 
strain for the two highest confining pressures. This characteristic 
is clearly shown by Figure 1.2.8, which gives the failure strain 
vs. confining pressure behaviour of the four mixes. Large 
increases in strain can be seen for the two weak materials 
when tested under confining pressures above one quarter of their 
unconfined compressive strength. The same may be the case for 
B2 and C3 but the confining pressure range only extended to about 
20 or 25% of their unconfined strength, so the effect could not 
be verified. 

The behaviour of C3 with increasing confining pressure can 
be seen in Figure 2-2.9, which is a plot of the axial load vs. the 
axial strain for the six pressures applied. There was a slight 
increase in Young's modulus with increasing confining pressure 
and the behaviour close to failure became increasingly non-linear 
with increasing confining pressure, indicating a brittle-ductile 
transition. 

(b) Poisson's ratio  

An inportant characteristic which was not investigated was 
the Poisson's ratio for the material. It is clear that some 
method which is less constraining than strain gauging must be 
employed, since the material was weak enough to be drastically 
effected by any high modulus skin of cementing agent. The nature 
of the material and its general similarity to rock would indicate 
that the Values of Poisson's ratio were likely to be less than 
0.2 and the hypothesis of a reducing porosity with increasing 
applied stress suggests that values may have been actually below 
those common to rocks. 



P
R

E
S

S
U

R
E

 C
C3

 	
'
 

• 
-
  L

bf
 /

Sq
  I

n.
  

B2 C3 
CO

N
FI

N
IN

G
 

1 2 3 4 5 

PERCENT STRAIN AT FAILURE . I/ 
f 

38 

Figure 1.2.8 	Relationship between confining pressure and percent 
axial failure strain for mixes A2, B2, C2 and C3 
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Figure 1.2.10 Failure of model 

material in triaxial compression 

Figure 1.2.11 Barrelling of the low strength specimens 

when tested under the highest confining pressure 
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(c) Modes of failure  

The modes of failure of the specimens can be seen in Figure 
1.2.10. Each pair are representative of the failed specimens of 
each confining pressure. At the lowest 03 values (right hand 
side), the failure surface appeared partly conical. In addition, 
several near-vertical fractures were developed in the thin-walled 
'shell' surrounding the cone. At higher confining pressures most 
failure surfaces appeared to be single and steeply inclined, with 
a slight curvature across their faces. Two specimens are high-
lighted in Figure 1.2.11. They were typical of the weakest mixes 
(A2 and C2) tested at the highest confining pressure. Large 
axial strains occured in these two materials (4.51% and 5.30% 
respectively) before the maximum stress was reached, and slight 
barrelling can be seen, particularly in the left hand specimen. 
In this state the specimens had to be handled with extreme care, 
as the whole of the central zone was badly fractured and in an 
extremely friable state. 

(d) Strength behaviour 

The Mohr rupture envelopes for the four materials A2, B2, 
C2 and C3 are given in Figure 1.2.12. Two conclusions can be 
drawn from a qualitative examination of the results: (a) the 
two lowest strength mix types A2 and C2 demonstrate a greater 
increase in strength with confining pressure than was the case 
for B2 or C3; (b) the slopes of the rupture envelopes for type 
C mixes lay between the upper limit of A (100% sand) and the lower 
limit of B (100% ballotini). This was of particular significance 
since it indicated that the intrinsic shear characteristics of 
the material could be manipulated at will between the two limits, 
by altering the constitution of the coarse filler. 

A simple and much better method for comparing the rates of 
strength increase with confining pressure is obtained by plotting 
the results of the axial stress at failure (dl) directly with the 
values of confining pressure (o3). It is of great advantage if 
this function can be in dimensionless form, so that the model 
results can be compared directly with those of rock materials. 
A simple technique used by Hoeki5  and Franklin16  consists of 
dividing the data by the respective unconfined compressive strengtths, 
thus converting the data to normalised form, i.e. al/ac,  a3/ac. 
Figure 1.2.13 shows a normalised plot of the results for the 
four materials A2, B2, C2 and C3. The large strength increase 
for A2 and C2 is shown particularly clearly with this typw of plot. 

The two failure criteria discussed above allow a visual 
comparison to be made between the triaxial performance of the 
model material and the performance of the rock material that is 
being simulated. Correct strength scaling requires geometrically 
similar Mohr rupture envelopes and geometrically identical 
normalised plots. In the final part of this Section, some of the 
mechanical properties of the model material will be briefly 
discussed in relation to two broad systems of rock classification 
developed from unconfined and triaxial compression results. 
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DISCUSSION 

1.2.5 UNCONFINED COMPRESSION BEHAVIOUR 

The non-linear stress-strain behaviour for all the mix types 
reported was noted in Figures 1.2.1, 1.2.2 and 1.2.3. The high 
rate of strain was thought to be largely due to 'bedding-in' of 
the end faces. However, it may also have been a function of the 
closure of the pores. Sandstones exhibit this non-linear behaviour, 
due to partial closure 5 micro-cracks, when initially stressed 
(Morgenstern and Phukan ). This behaviour was found to be 
greatly influenced by the porosity of the particular sandstone 
under test, an observation which is of particular relevance to 
the present work with a material of high porosity (40-47%) 
(See Appendix I). 

The essentially linear central portions of the curves 
enabled values of Et (tangent modulus at 50% of ultimate 
strength) to be determined quite closely, though small errors 
here may have been the cause of an appreciable scatter on the 
modulus ratios (Et/ad for the same mix type. The second non-
linear portion of the curve can be seen to extend over the 
last 10 to 20% of the stress range. However, unlike the case 
of triaxial compression when the highly stressed material was 
'supported' by a confining pressure, the non-linear strains that 
occurred before failure in this case were of a lower order -
between 0.10 and 0.15% axial strain in general. 

It will be convenient for comparison if the strength 
results are related to the full scale behaviour which is being 
simulated. In Sect4  n 1.1 on the dimensional requirements, a stress 
stale 	) of 1:666 was obtained by adopting a geometric 
scale ( A ) of 1:5004  and by assuming a full scale rock 
density of 160 lbf/ft,  compared to the model density of approxim- 
ately 120 lbf/ft3. Table 5 below shows the values of the 
unconfined compressive strength (ac) and Young's modulus 
(Et) obtained by converting the model results to the full scale 
values. The modulus ratio (Et/ad remains constant. 

Table 5 : Full Scale Unconfined Compression Test Results  

lbf/in2  A2 A3 A4 B2 B3 

ab 6,860 11,860 21,26o 10,390 19,120 33,14o 

. 	6 Etkxio ) 2.40 4.87 9.6o 5.26 10,66 17.07 
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A useful and simple method of rock classification was reported 
by Deere8  after the report by Deere and Miller (1966). It is based 
on only two variables; the unconfined compressive strength (dc) and 
the tangent modulus (Et) of intact rock specimens. The values of the 
compressive strength and the modulus are plotted to a logarithmic 
scale. The modulus ratio (Et/dc) is obtained from the plotted 
position with respect to the diagonal lines. The essential features 
of the system can be seen in Figure 1.2.14. The values of crc  and 
Et that were obtained by scaling up the model results are shown 
plotted in their prototype scale positions (See Table 5). The 
envelope shown dashed encloses results of 75% of the specimens of 
limestone and dolomite collected by Deere and Miller. Two-thirds 
of the model specimens are also contained in this envelope. The 
comparison can be extended to several other rock types reported by 
Deere and Miller; basalt and other flow rocks, granites, many of 
the sandstones, gneisses and so on. However, the closest similarity 
is with the limestone and dolomite group. 

The flexibility of the model material properties is well 
demonstrated by the relative positions of the three varieties taken 
from the vibration study (See Fig. 1.2.6). The material (nominally 
close to Al) has been scaled up to the prototype stresses and the 
three positions are shown in Figure 1.2.14.(Al (1), (2) and (3). 
If this technique could be extended also to the higher strength mixes 
then a considerable range of rock performance could be simulated 
by varied amounts of vibration. At this point attention should 
be drawn to Figure 1.2.7 (II) which is a plot of the strain at 
failure vs. the modulus ratio for the vibration tests. The tendency 
for higher failure strains with materials of lower modulus ratios is 
well demonstrated by the envelope Miller and Deere give for 75% of 
their results for shales. At least 75% of this area covers modulus 
ratios of less than 200:1,and a high failure strain is certainly 
to be expected from such materials. 

1.2.6 TRIAXIAL COMPRESSION BEHAVIOUR 

As an aid to comparison, the hypothetical full scale 
confining pressures and failure stresses are tabulated. They 
were obtained by multiplying the model stresses by 666 which is 
the previously selected stress scale. 
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Table 6 : Full Scale Triaxial Test Results  

.0"3 
(lbf/in2) 

6 at failure (lbf/in2) 

A2 	I B2 C2 C3 

0 5,530 9,920 4,930 10,130 

170 6,960 10,270 5,930 11,720 

570 7,820 11,560 5,820 13,130 

1140 9,310 11,720 7,130 14,790 

1710 11,440 13,060 9,150 15,800 

2280 13,870 14,590 10,920 17,180 

In a previous part of this section, the Mohr rupture 
envelopes for four of the mix types were given, together with 
a normalised plot of the axial stress at failure vs. the confining 
pressure. It was possible to compare their triaxial characteristics 
with those of rocks, but only on a qualitative basis. This final 
comparative discus ion is based on the strength criterion for rock 
given by Franklinlo  . His strength criterion incorporates both 
unconfined compression data and triaxial data, and is based on 
the trends exhibited by the maximum shear stress loci of 1100 
triaxial compressive strength results collected from the literature. 

The maximum shear stress locus was suggested in previous 
studies by Hoek15  as a useful form of failure criterion. The 
locus is defined by the points of maximum shear stress ero acting 
on the specimen at failure, and the normal stress (Tm) acting 
on the plane of maximum shear stress. (These points are simply 
the tops of the Mohr circles). 

111,= 11-1--T3 	= TI -FG3 

2 	2 
Normalising the results in the standard way: 
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Franklin
16 

gives scatter diagrams of this data for twelve 
lithological groups; sandstones, limestones, quartzites and so on, 
each showing a surprisingly similar trend in view of the variety of 
different materials. The scatter diagram for the four model 
materials tested is shown in Figure 1.2.15. It is possible to 
compare it directly with Franklin's diagrams, since the plotted 
data is dimensionless. Bearing in mind thg relatively low simulated 
confining pressure range (0 to 2280 lbf/in ), the results appear 
to bear most resemblance to the limestone group. 

A certain separation in behaviour becomes apparent if the 
data is replotted on logarithmic axes. Franklin found a near 
linear relationship to exist between log 'r and log Osvn for the 
various lethological groups. He obtained the following empirical 
failure criterion for brittle compressive failure:- 

Tyr: = i(2- Crrni  )B  

where B is the gradient of the log `q vs. log aj diagram. This 
function (to the base of ten) is shown in Figure 1.2.16 for the 
four model mixes A2, B2, C2 and 03. The approximate gradients 
(B values) are as follows: 

A2 	B2 	C2 	C3 

0.67 0.38 0.53 o.64 

Mix types A2 and C3 thus lie within the typical range of B values 
given as 0.6 to 0.8. Franklin observed that little could be seen 
in the way of systematic variation between rock types. It is 
therefore important that all potential model materials should also 
have a close range of B values, corresponding to the approximate 
limits just given. In addition, it has been shown that the 
strength envelopes in the brittle compressive range are geometrically 
similar between model and prototype, if the respective B values 
are identical. 

The above argument suggests that B type mixes should be viewed 
with suspicion, since the B value of 0.58 is well outside the 
common range for most rock types. However, support is lent to 
the belief that A and C type materials are well suited to the 
task of modelling both a range of rock types and the consequent 
range of properties. The resemblance to limestones is strengthened 
by the fact that the average B value for this group has been 
given as 0.65 by Franklin. This may be indicative of a relation 
between the B value and the plotted position of a group of rocks on 
the Deere and Miller diagram. 

CONCLUDING REMARKS 

The influence of discontinuities on the stability of open-pit 
slopes and rock slopes in general has been emphasised in Section 1.1. 
It is most important that the frictional characteristics of dis-
continuities built into the model closely reproduce the estimated 
shearing characteristics of rock discontinuities. Such features 
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Should include peak and residual strength and dilation, where the 
magnitudes of these will be based on results extrapolated from 
insitu and large shear-box direct shear tests. It is clear that 
the frictional properties of rock discontinuities will depend 
not only on the inherent shear characteristics of the intact 
material, but also on the roughness of the interlocking surfaces 
of rock. 

A material has been produced in which, for a given compressive 
strength, the inherent shear characteristics of the solid can be 
varied by the use of sand or ballotini coarse filler. 

A method has been developed for producing systems of inter-
secting discontinuities in the same material. The great advantage 
of this low strength brittle material is that it can be readily 
split into uniformly orientated fractures. It is this type of 
interlocking surface that has the closest resemblance to those inter-
secting a rock mass. Full details of the direct shear characteristics 
of these interlocking surfaces are given in the next Section. 
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1.3 PHYSICAL CHARACTERISTICS OF MODEL JOINTS FROM DIRECT SHEAR TESTS 

SUMMARY 

Existing techniques of joint modelling are reviewed. It is 
concluded that no methods in present use are acceptable as either 
realistic simulations of joints or as mass production methods. 
Some preliminary tests are described on flat, roughened surfaces 
of the red lead-sand-plaster-water material. Unfortunately the 
most realistic surfaces were the most difficult to produce 
systematically. 

A method is described for producing interlocking tension 
fractures in the model material using guillotine devices. A 
comparison of fractures through three different model materials 
shows that the direct shear characteristics of material C3 have 
optimum features. A realistic drop from peak to residual 
strength, and an approximately bi-linear envelope of peak shear 
strength (with curved transition) is obtained. An initial angle 
of friction-of 56°  and a cohesion intercept of 0.08 lbf/in2  are 
indicated. Considerable importance is attached to the variation 
of shear strength with horizontal (and vertical) displacement. 
Both pre-peak and post-peak strength characteristics are thought 
to have a fundamental effect on slope behaviour. 

The concept of primary and secondary jointing is discussed. 
Model joints can be produced in the guillotines which are 
continuous, cross jointed or offset (stepped) depending upon the 
chronological order of fracturing. The direct shear properties 
of these three types are compared and evaluated. 

The model joints, which simulate prototype dimensions of 
96 feet by 42 feet, are compared where possible with the results 
of large scale in-situ tests reported in the literature. It is 
concluded that the model shear strength envelopes display 
similarity, their being only a small strength-size effect for 
joint surfaces. However the comparison of displacements at 
which peak strength is mobilized, suggest that a marked 
displacement-size effect exists, which is probably controlled by 
the joint roughness wave form. 
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1.3 PHYSICAL CHARACTERISTICS OF MODEL JOINTS FROM DIRECT SHEAR TESTS 

Introduction 

Model materials with realistic intact properties have been 
described in Section 1.2. The remaining problem was to produce 
artificial joints with realistic shear properties. Two features 
of particular importance have to be considered. 

Firstly, direct shear characteristics for the joints showing 
an 'unstable mode' of failure rather than a 'stable mode' have to 
be created by some means. That is to say a graph of shear strength 
and shear displacement was required showing a marked drop from a 
peak strength at small displacements to a residual strength at 
large displacements. This would be in direct contrast to one 
showing stable characteristics; in which a maximum strength is reached 
followed by unchanging shear resistance with increasing shear 
displacement. The contrasted effects of these two modes on the 
progressive failure of rock slopes do not require emphasis here. 

Secondly, when an 'unstable mode' of failure has been successfully 
simulated the technique involved must be critically examined for 
its practical possibilities. The final large model to be constructed 
(described in Part 3 of this thesis) took two weeks to construct 
and test. Four days were spent in simulating joint sets in the 
intact model material. At least forty thousand discrete blocks 
were produced in this short period and this of course implies that 
some mass production technique was employed. 

A comprehensive review of joint modelling was given by 
Stimpson4 It is apparent that this aspect of modelling has 
received a minimum of attention in the past. Of the limited 
number of techniques in use many are suspect from several points 
of view. The simplest technique which is widely used is to cast 
discrete blocks of model material in smooth sided moulds. When 
these are cured the model structure is assembled by packing the 
blocks into the model frame. A regUlar packing is usually employed 
such that two orthogonal 'joint sets' are produced. 

The next logical step that is taken is to find some means 
of varying the frictional properties of the mating block faces. 
Several authors have reported the variable angle of friction that 
can be achieved by inserting various materials between the flat , 
faces of cast bricks or layers of the model material. Fnmagalli-)  
has achieved friction angles as high as ko°-k6° by inserting sand 
of various grain sizes. However it would appear that this might 
tend to produce a markedly stable joint behaviour rather similar 
to the residual strength of rock joints. This residual is largely 
controlled by sliding and rolling in the intermittent bed of debris 
which builds up between shear blocks after large displacements. 

Ladanyi and Archambault181  and Krsmanovic, Tufo and Langof
19 

tackled the problem of joint roughness rather more directly. 
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Imbricated (stepped) surfaces were produced by interlocking model 
bricks which could be set at various angles and with various 
heights of step. Total 'friction angles' (joint inclinations 
included) of between 40°  and 65° were obtained by the second 
authors. These angles were dependent on both the height of the 
step and the normal stresses. It seems likely that this form of 
joint would tend to produce some cohesion intercept when the 
direction of sliding was against steep teeth. However no details 
were given of this directional dependence. 

Patton
20 

produced interlocking teeth joints by casting 
directly against moulds with teeth. These teeth, ranging from 
15°  to 45°  inclination and with 90°  ends, produced his well 
known bilinear approximation to shear strength envelopes, and 
obvious drops from peak to residual strength. 

None of the above methods seemed to be practical possibilities 
where large, highly jointed models were required. A programme 
of direct shear testing was therefore initiated, firstly to find 
the basic friction angle for sliding on flat surfaces of the 
red lead-sand/ballotini-plaster-water material, and secondly to 
see if any simple methods could be found for producing unstable 
characteristics. 
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1.3.1 SOME PRELIMINARY TESTS ON MODEL JOINTS 

Flat joints were investigated first, where the surfaces in 
contact were produced by direct moulding against perspex mould 
faces. Two roughened variations were also tested. The three 
joint types can be summarised as follows. 

1. Smooth, as cast flat surfaces 
2. Flat surfaces roughened before setting. 
3. Flat surfaces roughened after setting. 

Joint surfaces Nos. 2 and 3 were produced as follows. 
Bricks were cast in moulds which had one open face (uppermost). 
Before final setting of the model material a steel straight edge 
was drawn across the open face to produce a flat but 'granular' 
surface. Alternatively the bricks were removed from the moulds 
after setting but before curing, and were scraped once with the 
same straight edge. This again produced a flat 'granular' 
surface but in this case the surface was slightly loose due to 
loss of cohesive bonds. 

The shear blocks had an apparent contact area of 5.3 .2  . 
These just fitted into a standard soil mechanics type direct shear 
box (6 cm. by 6 cm.). One important modification was made. The 
upper and lower split halves of the box, which conventionally 
slide in contact during a test, were separated by 1/16 inch 
P.T.F.E. (Teflon) strips. In this way the discontinuity under 
test could be located midway in the small gap between the upper 
and lower halves of the box. This prevented end interference 
occurring after small amounts of shear displacement. Without this 
device one edge of each block is sheared into by the adjacent 
edge of shear box, thereby rendering the results meaningless. 

The shearforce-displacement and dilation characteristics of 
the three flat joint types are shown in Figure 1.3.1. The intact 
material used in all three was an experimental one similar to 
A.1 but using one of the sands which was finally rejected in 
favour of Kingslynn sand (See Appendix 1.) The intact properties 
were as follows: 

"A.1" 	Unconfined compression strength 	4.2 
lbf/in2. 

Young's modulus 	0.2x10
4 )  

Strain at failure 	0.41%  

Density 	 130.6 lbf/ft.3  

It can be seen from the results of No. 1 joint type that 
the smooth surfaces became increasingly damaged both with large 
displacements and higher normal stresses. (Range 0.25 to 0.93 
lbf/in2). A small drop in shear strength was followed by a 
significant increase in strength after displacements of about 
0.06 inch. No.2 joint type was slightly unstable as desired. 
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However, as for the cases reported in the literature it was also 
the most impractical surface to produce, since only one face 
out of six could be treated in the desired manner. No. 3 joint 
type, which was relatively simple to produce on all sides of a 
cast block, gave completely stable results corresponding to the 
residual case discussed previously. 

Linear shear strength envelopes were found to fit the rather 
scattered data best. The following results were obtained. 

Joint type Angle of friction Shear Displacement 
(inch) 

1 34°  
o 

0.02 

31 0.04 
38°  oak 

....._ 

2 36°  0.01-0.03 

31
o  

0.12 

3 32°(approx). 0.0-0.12 

• 

Note: A cohesion intercept of zero was assumed for all envelopes. 

Later tests on flat surfaces of materials A3 and C3 (see 
Section 1.2 for strength data) gave residual angles of friction 
of 313°  and 283°  respectively. This was for displacements of 
0.12 inch. This illustrated the potential of ballotini for 
reducing the angle of 'basic friction' as compared to materials 
containing only sandfiller. The term 'basic friction', which 
will be used throughout this thesis, is used to describe the 
shear strength when sliding occurs between flat surfaces after 
displacements corresponding to residual conditions. When rough 
surfaces are sheared and the residual condition is not reached 
by the end of a shear test, the friction angle will be referred 
to as the 'ultimate' frictilm angle. This is the term used by 
Krsmanovic, Tufo and Langofi7. 

At the same time that the above three joint types were tested, 
a single series of direct shear tests were performed on intact locks 
of material "A.1'.' A normal stress range of 0.29 to 1.78 lbf/in 
was applied. The peak shear strength envelope that was obtained 
was remarkably linear over the full range. It represented a pea  
angle of friction of 42°  and a cohesion intercept of 1.50 lbf/in . 
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Peak strength was developed after an average of 0.055 inch shear 
displacement which was unexpectedly large. After 0.12 inch 
displacement the strength envelope had reduced to an inclination 
of 310,, but it still showed an apparent cohesion intercept of 0.80 
lbf/in if assumed linear. A significant feature of the test 
which was consistent with later results was that the maximum 
angle of dilation occurred at the same horizontal displacement 
as that at which peak strength was developed. It appeared that 
the development of initial shear surfaces at presumably very small 
displacements did not represent the peak strength. This was 
a suprising result, but in fact it supported some in-situ results 
discussed later. 

1.3.2 A METHOD FOR PRODUCING ROUGH JOINTS 

Soon after performing the series of shear tests on flat 
joints a discovery was made which was to affect all the following 
work. When a sharp edge such as a chisel was gently tapped 
against a block of the weak model material a fracture was readily 
propagated which passed right through the block. Such discontinuities 
which were in reality tension (or extension) fractures had the 
torn appearance of tension joints found in the field. They were 
however excessively rough and non planar when produced in this 
way. 

A small guillotine was designed (See Figure 1.3.2) in which 
a block of model material could be place so that its bottom face 
was supported on a blade projecting from a base plate. A weighted 
upper blade could be dropped from various heights (0 to 24 inches) 
to strike the upper face of the block. The blade angles were 
500  (upper) and 300  (lower). Limit screws could be adjusted to 
prevent too deep a penetration of the upper blade. The lower 
blade was also adjustable in this manner. 

The lower blade penetrated the base of the block due to the 
momentum imparted to the block by the falling blade. Obviously 
there was some time delay between the two penetrations, each of 
which was about 0.03 inch deep. However the mechanism produced 
somewhat more planar fractures than with a single penetration. 
It is believed that the mechanism was one of 'static' wedging 
causing extension fractures since the blade velocity at contact 
was hardly sufficient to produce any dynamic effects from wave 
reflections at the blade faces. 

A series of test fractures were made in differett thicknessec 
of model blocks using the experimental material "A.1." Thickness 
of 24 inches and 14 inches were rejected in favour of 1 inch, through 
which the most planar fractures could be produced. 

Figure 1.3.3 shows various components of the shear box 
arrangement used for testing the new 'tension joints'. The upper 



Figure 1.3.2 	A small guillotine for generating 
tension fractures in the model material. 

58 



Figure 1.3.3 	The shear box assembly used for testing 
tension joints in direct shear. 
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and lower figures show the P.T.F.E. shear box separator, which 
was increased in thickness to inch to encompass the maximum 
expected roughness of these joints (1:1/16 inch).* Note also 
the light aluminum loading platten and loading yoke to which 
weights were attached by four light wires. By this means 
extremely low normal stresses could be applied. 

A preliminary series of shear tests was performed using 
experimental materials "A.I" and "A.4." The tension joint 
surfaces were 1 inch wide and 2.3 inches long, and were aligned 
with their long axes parallel to the direction of shearing. 
Eight different normal stresses were applied. The smallest of 
these was simply generated by the weight of the upper block of 
inch depth. With model-prototype scales of 1 : 500 (geometric) 

and 1 : 666 (stress) this simulated an overburden of approximately 
twenty five feet of rock. It was hoped that at such low stresses 
the presence or absence of a cohesion intercept might be indicated. 

Figures 1.3.4 and 1.3.5 show the shear force-displacement, 
dilation and strength envelope characteristics for a series of 
tests on material "A.1." The strength envelopes were obtained 
from the mean of two tests at each normal stress, and are the 
best-fit curves to somewhat scattered data. The normal stress 
levels, which are denoted by numbers 1 to 8 were as follows. 

1. 0.047 5. 0.480 

2. 0.174 6. 0.667 

3. 0.292 7. 0.856 (lbf/in2) 

4. 0.386 8. 1.232 

Characteristics such as those shown were extremely encouraging. 
However the results for the stronger material, "A.4", which had an 
unconfined compression strength of 24 lbf/in , showed that the 
roughness of fracture was probably still too great. Initial 
angles of friction (at low normal stress) of about 700, and 
ultimate angles of friction (after 0.18 inch displacemewbr 
of about 48° appeared to be unacceptably high. 

The solution to the problem of excessive roughness of 
fracture was tackled in two stages. Firstly it was anticipated 
that the inherent frictional strength of the model material could 
be lowered by using finer grades of sand and combinations of this 
sand with ballotini. The concurrent work on the intact properties 
reported in Section 1.2 showed that this was true. Materials 

This means that the shear force was applied 1/16 inch below 

below the mean joint plane. It is possible that this small 
moment improved upon the conventional distribution of stress. 
It is widely assumed that a tensile region exists at the rear 
of a shear block, when loaded conventionally. 
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containing the largest proportion of ballotini to sand demonstrated 
the lowest inclination of shear strength envelope. 

Secondly it was decided to devote some time to the design 
of a larger guillotine. The special feature required was for 
both the upper and lower blades to strike the bricks simultaneously 
such that an extension fracture would be propagated from both 
sides at once. The mass production of jointed slabs of the model 
material was also envisaged, and necessary features were incorpor- 
ated in the design. 

Figure 1.3.6 shows the eventual form of this large guillotine. 
A lot of time was involved in having it constructed, and several 
months were spent on trials and modifications after its eventual 
delivery. However the end result was entirely satisfactory. 
Certain features of the design of the guillotine, and the methods 
used for mass production of jointed slabs are given in Appendix 3. 
All the joints that were generated for direct shear testing that 
are reported in the remaining sections of this thesis were produced 
on this large guillotine. With both upper and lower blades striking 
the model blocks simultaneously above and below, the roughness 
of fracture was reduced to acceptable levels. 

Selection of the optimum model material  

Figure 1.3.7 shows the direct shear envelopes of tension 
joints generated in model materials A3, C2 and C3 which were three 
of the materials described in detail in Section 1.2. It will 
be remembered that the C series contained coarse filler which was 
a 50/50 mixture of sand and ballotini. The inherent frictional 
characteristics of type C materials obtained from triaxial tests 
appeared to lie approximately midway between those of materials 
containing 100% sand filler (type A) and those containing 100% 
ballotini (type B). Figure 1.3.7 shows that the difference in 
shear strength obtained from triaxial tests on the three intact 
materials, was also prevalent in direct shear tests of joints in 
these same materials. 

Since joints with the lowest shear strength were required, C2 
and C3 were preferred to A3. However the final choice of a single 
model material, for use in all the models, depended on one further 
factor. The materials were so weak that damage of specimens when 
handling them presented considerable problems. This factor, and 
the low range of stresses anticipated in the final slope failure 
models pointed to the adoption of material C3. It can be seen 
from Figure 1.3.7 that despite a compressive strength almost 
twice that of C2, and representing 13,800 lbf/in at full scale, 
the direct shear envelope for joints in C3 is almost inseparable 
from that of joints in C2 at the four lowest normal stresses. 
For this reason material C3 was selected as the optimum model. 
All the test results presented in the remaining half of this 
Section are for material C3, and all the slope models described 
in Part 3 were constructed from the same material. 
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Figure 1.3.6 	The large guillotine used for generating 
joints sets through slabs of the model material. 
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Selection of the optimum strength test  

Triaxial tests on intact rock, and direct shear tests on 
rock joints are standard proceedures in rock mechanics practice. 
However there are certain schools of thought which favour 
triaxial tests for obtaining the shear strength of joints in 
rock. Jaegerel and Rosengren22  have used this technique extensively. 

It is obvious that for the determination of the peak strength 
of joints a triaxial system of stress application is most relevant 
to field conditions. However displacements are severely restricted 
both perpendicular and parallel to the failure plane. This means 
that the residual strength of joints and general post-peak 
behaviour cannot be determined with any degree of confidence, 
despite the elaborate corrections for displacements devised by 
Rosengren. 

The direct shear apparatus is the obvious alternative strength 
test machine since there need be no limit on displacements and 
these can be monitored continuously during each test. It must be 
admitted that neglect of the intermediate principle stress is of 
some importance. However this is not important when testing joints 
that are only to be used in so called 'two dimensional' models. 
Two drawbacks to the direct shear apparatus are the non uniformity 
of shear and normal stress distributions, and the consequent 
tendency for progressive failure to be induced by application of 
the shear force at one end of the joint. However, it would seem 
that large joint surfaces in-situ can only be tested by direct 
shear techniques. Since the bulk of available data has been 
obtained from such tests it seemed advisable to test all model 
joints in this way also. From a practical point of view it is 
much the simpler method. 

1.3.3 DIRECT SHEAR PROPERTIES OF JOINTS IN MATERIAL C3 

The performance of tension joints in material C3 will be 
described without reference to the in-situ field test results 
reported in the literature. A comparative discussion is given 
in the latter part of this section. The presentation of joint 
performance will be chiefly in visual form, by means of conven-
tional shear force-displacement, dilation and strength envelope 
diagrams. Considerable importance will be attached to the 
variation of strength with displacement, since this has a 
fundamental bearing on slope behaviour. In most diagrams the 
model performance will be illustrated together with the scaled 
up prototype performance where appropriate. 

The size of joint surfaces tested was as illustrated in 
Figure 1.3.3, namely 1 inch by 2.31 inches. At prototype scale 
this represents 96 feet by 42 feet, with the long axis along the 
direction of shearing. (The effect of scale and of roughness is 
discussed fully in Section 2.1 and will not be dealt with here.) 
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A standard rate of shearing was used throughout, and eight different 
normal stresses were applied. Once again the lowest normal stress 
was generated by the weight of the model block lying above the 
joint. These details can be summarised as follows: 

Model rate of shear 
	

Prototype rate of shear 

0.046 inch/min 	x( 	1.03 inch/min 

Model normal stress
(lbf/in2) 

Prototype• normal stress 

1.  0.044 	29.3 
2.  0.168 112 
3.  0.286 191 
4.  0.477 318 
5.  0.668 445 
6.  0.954 635 
7.  1.62o 1080 
8.  2.383 1589 

The range of normal stresses encompassed the anticipated 
range for the large models reported in Part 3 of this thesis. These 
had vertical dimensions of 48 inches. The slopes which were 
excavated in these models generated normal stresses across 
steeply dipping joints no higher than the first four listed above. 
A minimum of two specimens were tested at each normal stress and 
only the mean of these results has been plotted where strength 
envelopes are presented. However the scatter of results was 
less than that obtained from the unconfined compression tests reported 
in Section 1.2, and considerably less than for the three flat 
joint types described earlier. The peak shear strength results 
showed a maximum scatter of approximately 10% for each normal 
stress. A surprising number of joints gave identical peak strength 
results when tested at the same normal stress. 

Dilation measurements were taken throughout each test at 
one point only. This was the centre of the loading platten, 
and the point at which the normal stress was applied. Since the 
upper blocks were free to rotate with the loading system employed, 
the dilation measurement can be taken as the mean rise or fall 
of the whole block. 

Figure 1.3.8 -Shear force—displacement and dilation  

(Note: Use of the word 'primary' in the above figure caption will 
become apparent shortly.) 

It can be seen from the figure that the desired unstable 
joint behaviour was convincingly simulated by these tension joints. 
There was a greater relative fall from peak to ultimate strength the 
lower the normal stress level. The ultimate displacement of 
approximately 0.18 inch represented 7.7% of the total length of 
the shear surface. The word ultimate is used since it is unlikely 
that the residual strength was reached after the given displacement. 
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Reference to the dilation diagram shows that the specimen tested 
at the highest normal stress (No. 8) ceased dilating before the 
end of the test. However it is doubtful that this could be taken 
as positive evidence of residual conditions since the surface of 
the joint contained some large amplitude asperities right to the 
end of the test. 

The enormous influence of normal stress on the dilatency of 
a rough joint is clearly demonstrated. The significance of a 
dilatant surface was discussed iA,Section 1.1 and has been the 
topic of several papers by Mencl'7. He contrasted its effect on 
shear strength with that of a loose contractile type of surface. 
A second significant feature shown by this and all other dilation 
diagrams, for all the two hundred rough model joints tested, was 
that the maximum angle of dilation occurred at the same horizontal 
displacement as that of the relevant peak strength position. 
There was no dramatic change in dilation angle at the peak 
position, but unquestionably the maximum was approximately as 
indicated and generally just spanned the peak on either side. 
The horizontal displacements at which peak strength was mobilized 
lay between approximately 0.020 and 0.025 inch for the model. 
This becomes 10 to 121 inches at prototype scale. It represents 
approximately 1% of the total length of joint surface. 

Figure 1.3.9 	Shear force-vertical displacement  

This type of diagram demonstrates the relation between the 
vertical dilation across the joint surfaces, and the mobilized 
shear strength. It is significant that no total dilation was 
necessary for the peak strength to be mobilized at the two highest 
stresses. The dilatency effect was still in operation, but some 
contraction occurred after a small horizontal displacement. This 
can be interpreted as increased interlocking of the mating asperities. 
At prototype scale the peak strength was mobilized after a dilation 
of less than 24 inches for all but the two lowest normal stresses. 

Figure 1.3.10 	Post-peak shear strength envelopes  

The fall from peak strength to residual strength occurs 
during horizontal displacement across the loaded joints. The six 
strength envelopes presented give some idea of the nature of this 
drop in strength. It is significant that the complete loss of 
'cohesion intercept' with displacement, that is generally and probably 
falsely assumed, was not demonstrated by these model joints. 

It will be apparent from the ultimate envelope that this did 
not indeed represent residual conditions. A residual angle of 
friction of approximately 30° would be expected for material C3, 
based on the value of 28P obtained from residual tests on flat 
surfaces of the material. 
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Figure 1.3.11 	Post-peak 

Figure 1.3.12 	Pre-peak 

Strength envelopes at loss nr,rmal stl-esses.. 

A magnified impression of the above post-peak behaviour is 
given by figure 1.3.11, in which the six envelopes are plotted at 
the four lowest normal stresses only. It is interesting to compare 
this with the pre-peak behaviour shown in Figure 1.3.12. This is 
rarely, if ever, considered in the literature, but has an important 
bearing on slope behaviour that will be appreciated in Section 2.3. 
Pre-failure displacements of rock slopes during excavation are 
predictable by the use of such diagrams. It is seldom appreciated 
that a joint which is undisplaced has more or less zero strength 
depending perhaps on the cohesion or 'interlock intercept' as it 
should be called. The concept of cohesion as applied to soils 
and clays seems hardly applicable to rock joints that are free of 
infilling material. 

Primary and Secondary jointing 

It was realized at an early stage that an important physical 
concept could be modelled using the guillotine devices for 
extension splitting of model bricks or slabs. This 1p the concept 
of primary and secondary jointing discussed by Price 	A 
primary joint set was described as the dominant set, while the 
secondary set in this connotation was the intermittent, non-continuous 
set of joints crossing the primary joints. The subject of jointing, 
particularly in igneous rocks, is of course extremely complicated 
but it may be justifiable to simplify it for this presentation. 

The importance of primary and secondary joints sets in rock 
mechanics is that the former are continuous, except for intermittent 
en-echelon offsets. By comparison the latter are non-continuous 
and are effectively offset in crossing the primary joints. 
Therefore from the point of view of shear strength, secondary joints 
dipping into a rock slope would be favourable to stability compared 
to the more or less continuous primary joints. This difference 
highlights the problem of finding and testing those joints that are 
relevant to the failure mode anticipated, and not those irrelevant 
to it. 

When a model block of one inch thickness was placed on 
the large guillotine slotted table (See Figure 1.3.6) and located 
between the blades, the first cut produced a 'primary' continuous 
tension joint. The properties of this type of joint were illustrated 
in Figures 1.3.8 to 1.3.12. If the split block was then carefully 
rotated, keeping the split halves together by some means, a second 
cut intersecting the first produced an offset at the intersection. 
In fact tensile forces were not transmitted uniformly across an 
existing crack, even if this was apparently 'closed'. A perpendicular 
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intersection between the two joints produced a 'secondary' joint 
surface which had a small vertical step across it. A large number 
of primary joints intersected by one perpendicular secondary joint 
resulted in an interlocking castellated type of secondary joint 
surface. Features such as these are illustrated in Section 3.1. 

A third type of model joint generated in a similar manner was 
the primary joint intersected by a set of secondary joints. This 
produced no detectable offsets on the primary joint, but was a 
relevant joint to test since all the primary joints of the jointed 
slab models(reported in Part 3) were intersected by secondary joints. 
This type of joint has been termed 'primary cross jointed' (P.C.J.) 
The three joint types are illustrated in the inset to the next 
figure. 

Figure 1.3.13 	Strength envelopes of three model tension joints  

The number of joints in each tested block was as shown in the 
inset. The large guillotine produced a joint spacing of i inch. 
The comparison of strengths of the three joint types is quite 
illuminating. The secondary interlocked joints displayed the highest 
angle of friction and a cohesion or interlock intercept approximately 
two and a half times that of the primary or primary cross jointed 
surfaces. The difference was maintained up to high normal stresses 
when all three curves converged. 

A significant separation in behaviour can be seen between the 
primary and primary cross jointed specimens. This was most marked 
in the transition stage, where the two peak strength envelopes 
became less steeply inclined, signifying a changing mode of failure 
of the type discussed by patton2u. It appeared that the mode of 
failure involving shearing through of asperities was occurring at 
lower stress levels for the specimens (P.C.J.) than for the monolithic 
primary joints. There is a reasonable explanation for this. It 
will be realized that the large scale (first order) asperities 
were effectively reduced in length by the cross joints. Extending 
this concept, it will be acknowledged that a highly jointed rock 
mass dislays a markedly curved strength envelope, compared to the 
envelope obtained for a single joint. This has been repoTted by 
several authors including Rosengren and Jaeger25, Jaeger2°, and 
Pentz27. Cross jointing has the effect of intersecting first order 
asperities and generally promoting a progressive mode of shear 
failure. 

The model joints displayed ultimate envelopes that were more 
or less inseparable at low stress levels. However at high normal 
stress levels the specimens (P.C.J.) were strongest and the secondary 
joints weakest. The latter was probably due to the greater surface 
damage noticed for these joints after shearing, in which debris 
covered much of the lower surface, thereby controlling the strength 
to a marked degree. 
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Figure 1.3.14 Surface damage through shearing 

The numbers 1 to 8 refer to the level of normal stress at 
which the particular specimen was tested. The direction of 
shearing was as shown by the offset of the upper and lower blocks. 
The lower blocks in the test were those with some debris still 
evident (C3(P) No. 7 for instance). In all cases the damage to the 
surfaces (smoothing of asperities) was most noticeable at normal 
stressq.s of No. 5 and above. This represented stresses above 0.67 
lbf/inc  on the model joints, and stresses above 445 lbf/in2  on the 
prototype joints. It is significant that this corresponds to the on-
set of the transition stage, during which the changing mode of 
shear failure causes a flatter strength envelope to be approached. 

Figure 1.3.15 	Peak to ultimate strength ratio  

The effect of normal stress on the relative drop from peak to 
ultimate strength is clearly demonstrated by this type of diagram. 
The interlock effect in the secondary joint surface is clearly 
shown by the large ratio (16.6 : 1 ) of peak to ultimate strength 
at the lowest normal stress. The curves appear to be assymptotic to 
a ratio of 1 : 1. This might be expected at extremely high stresses, 
when the presence of joints has no effect on the strength. 

It is now necessary to try to relate some of the model joint 
behaviour just presented to the results reported in the literature 
for in situ tests on large areas of joint. This is the nearest 
comparison that can be drawn. Unfortunately it is a somewhat dis-
tant comparison due to the large difference in scale. It is 
inevitable and perhaps excusable, in view of the similarity with 
intact rock, that several model results will be taken to predict  
idealized large scale joint behaviour rather than to model it. 
Until large scale failures can be fully monitored and analysed this 
approach is inevitable. However it is wise to record the areas 
of doubt surrounding one or two aspects of the model simulation. 
These can be listed as follows: 

1. The model joint roughness is considerable and should be 
scaled up and interpreted appropriately. Large scale 
exposures of joints having lower degrees of roughness 
will have reduced strength compared to the model prediction. 

2. The model joints are completely free of soft infilling, 
unlike many joints encountered in the field. Likewise the 
joint walls are fresh fractures and are therefore unaltered 
by weathering. 

3. The width of the model joints when unstressed is too large, 
probably due to a few loose particles becoming dislodged in 
the fracture process. For this reason the irrecoverable 
closure of the model joints when first stressed will 
exceed that of equivalent joints in the field. In other 
words a loading history is required to compact the joints 



Figure 1.3.14 	The surface damage to two tension joint characters 
after shearing at eight normal stress levels. 
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to the 'tightness' appropriate to the stress applied. 

1.3.4 COMPARISON OF MODEL WITH LARGE SCALE TESTS ON ROCK 

During the past five years several laboratories round the 
world have developed large shear machinescapable of testing joint 
areas of approximately 1 to 2 ft 2. in the laboratory. The cost 
of field sampling and of mounting the blocks in these shear machines 
is of course quite high. However it may be assumed that the test 
conditions can be more reliably controlled than those operating 
in in-situ tests on larger joint surfaces in the field. 

Large scale field tests are extremely expensive to set up. 
It is for this reason that the general approach has been to run 
one 'undistrubed'test for each test block prepared. This is usually 
taken only just past peak strength, following which a series of 
sliding tests are run at different normal loads. Thus a 'psuedo 
residual' envelope can be obtained from one test block. This 
has obvious financial implications. 

The undisturbed point obtained from such tests generally 
lies above the psuedo residual envelope. (An exception to this 
is when the joints have some infilling material. Increased sliding 
can then result in increased rock to rock interference) The 

'vertical' separation of the undisturbed point from the envelope 
has been interpreted as the 'cohesion' by Ruiz, Camargo, Midea 
and Nieble29. 

As a direct consequence of the expense and the above test 
proceedure, there is a limited amount of data from in-situ 
tests which can be compared with the model joint performance. 
In addition, many in-situ tests are performed where there is some 
doubt as to the contribution to strength of failure through intact 
material, It is not always possible to excavate a test block 
with a horizontal axis coincident with the strike direction of a 
joint. 

A further problem encountered with large in-situ tests im 
the progressive failure which can be caused by applying the shear 
force at one end of a jointed block of rock. Krsmanovic and 
Popovic3° describe in-situ shear tests on fissures in limestone 
of 5m2(65ft2) in area. The horizontal displacements of the blocks 
were measured at twenty locations across the surfaces. For all 
the blocks tested the profile of displacement was greatest at the 
rear end of the blocks where the shear force was applied, and least 
at the front. Differential displacements of between 25 and 40 mm. 
(1.0to 1.6 inches) were recorded. With such large differences 
between ends it is to be expected that the rear of the block would 
pass the peak strength and reduce towards the residual before the 
front of the block had even reached peak strength. Such progressive 
failure, while producing a conservative strength result, does not 
facilitate the interpretation of the strength data obtained. 
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Comparison of Shear Strength  

One of the largest in-situ tests ever performed was reported 
by Ruiz et al29. The base area of 34.92  (430 ft2) was loaded 
normally by the weight of the block itself. This amounted to a 
stress of 1.71 Kg/cm2  (24.3 lbf/in2), which can be compared to 
the model tests at the lowest normal stress. The base of the 
block was arranged to be coincident with a basalt-breccia contact. 
The undisturbed and first sliding test gave peak values of arctan 
( T/o-) of 690 and 680 respectively. A large proportion of this 
function was due to the contribution of the roughness of the 
brecciated surface. Peak dilation angles of 390  and 320  were 
measured for the above tests. The same authors described tests 
on 4 m2  (52 ft2) areas of sparsely jointed basalt. A question 
mark exists over the contribution of failure through intact 
material. However, the results are of interest since they dem-
onstrate the different interpretations of peak strength envelopes 
that can be made. Two tests.were performed at a normal stress of 
2 Kg/cm2  (28.4 lbf/in2), and both gave peak values of arctan 
('r/t) of 730. Two further tests were performed at a normal stress 
of 7 Kg/cm2  (99.4 lbf/in2), giving peak values of arctan (17"1") 
of 530 and 630. Either these tests arc interpreted as demon-
strating an appreciable cohesion or interlock intercept, or they 
are taken as indications of a distinctly curved strength envelope 
inclined very steeply close to zero normal stress. 

Assuming comparison with the model results is valid, the 
two normal stress levels corresponding to the tests above produced 
values of arctan C-1",1) of 710  and 620 from the model joints. 

Several series of shear tests on a large laboratory shear 
machine have been reported by Krsmanovic and co-workers. Figure 
1.3.16 shows the strength curves for tests on 40 cm x 40 cm 
(15.75 inches square) surfaces of discontinuities in limestone. 
These were given in a paper by Krsmanovic, Tufo and Lang0101  
The discontinuities were described as 'stratification surfaces 
of different degrees of roughriess'. This was in contrast to a 
series on 'fissures of great roughness'. 

The unstable form of the shear force-displacement curves 
is quite similar to those obtained for the model (see Figure 1.3.8). 
However the peak strength envelope is uniformly curved compared 
to the envelopes obtained for model joints (Figure 1.3.13), 
which can be approximated to bi -linear relationships quite 
successfully. This may be indicative of a dominant wave form in 
the model roughness, which would promote a transition in the 
mode of failure within a distinct range of normal stress. 
By comparison a wide range of roughness wave forms would cause 
the uniformly curved envelope for the in-situ test. 
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Shear strengths on the surface of discontinuity of limestone. in dependence on the norml stresses and the deformations 

Figure 1.3.16 
	

The results from tests on a large shear machine reported by Krsmanovic, Tufo and Langofl° 
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The curvature of the ultimate envelope in Figure 1.3.16 
reinforces the suspicion discussed earlier, that an apparent 
interlock intercept exists even after post-peak displacements 
have occurred. Some shear tests on sandstones reported by 
Krsmanovic9, were taken to ultimate displacements of 4.5 cms 
(1.8 inches). The envelope obtained had an inclination of 
330  and zero interlock intercept, thus corresponding more or 
less to residual conditions. However the strength envelope for 
a displacement of 0.5 cm (0.2 inch), though parallel to the 
ultimate envelope still displayed an appreciable interlock intercept. 

Comparison of displacements at peak strength  

From a comparison of model and in-situ results it would 
appear that the strength-size effect of joints is small compared 
to the displacement-size effect. The model joints provide 
controvertial evidence that large areas of joint require much 
larger displacements to reach peak strength than do small specimens 
of joint surfaces. It is clear that roughness plays a large 
role in this effect. However this will not be discussed further 
here since it forms the subject of much of Section 2.1. 

The importance of the peak displacement is best illustrated 
by the results of Seraphim and Guerreiro31. A large number of 
in-situ tests were performed at three Spanish dam sites, both 
parallel and perpendicular to stratification planes. It was 
found that for equal normal stresses, the horizontal displacements 
at peak strength were 0.5 to 3.0 ems (0.2 to 1.2 inches) for 
the parallel tests, and 1.2 to 5.0 cms (o.6 to 2.0 inches) for 
the tests perpendicular to stratification planes. This result 
was also experienced in the model tests reported earlier. The 
tests through intact model material which presumably can be 
compared to the perpendicular tests above, showed peak strengths 
at a mean displacement of 0.055 inch. By comparison the 
numerous tests performed on model joints showed peak strengths 
at displacements averaging 0.020 inch. This is a suprising 
anomaly. It is pre.3umably caused by the fundamental difference 
in the roughness and amplitude of roughness, between surfaces 
generated by shear stresses, and those generated by tensile stresses. 

The same authors31  give interesting results illustrating the 
effect of clay infilling of joints on the peak displacements. 
Two test types were distinguished. 

1. Stratification plane partly covered with film of clay. 
Shearing occurring with considerable collaboration 
between the two blocks. 

2. Stratification plane totally covered with film of 
clay. No collaboration whatsoever between upper and 
lower block. 
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The horizontal and vertical displacements at peak strength 
were approximately seven times smaller for the shear surface 
entirely within the clay film (type 2). Similar observations 
were apparently made at many other dam sites. It is an 
illustration of the unpredictability of rock masses in which 
clay infilling exists. Failure can be expected at much lower 
stresses on clay filled joints. In addition, displacement monit-
oring systems will be that much less effective in such environments. 
Unfortunately this important aspect of joint performance could 
not be modelled with the present method of joint simulation, so 
no comparisons are possible. 

It appears from a literature review that the peak displacements 
obtained in large shear machines were of the order of 0.1 to 0.6 
inch in general 	The large in-situ tests while showing somewhat 
larger peak displacements, were still mostly less than 1 inch. 
In his review of the deformability of joints Goodman32  gives  
typical ranges of peak displacements for various types of joints. 
A mean value of 0.3 inch is quoted for undisturbed, clean rough 
fractures. In comparison, the range for filled joints, sheared 
zones, shale partings and smooth bedding was only 0.05 to 0.12 
inch, which illustrates the effect of roughness on joint displacement. 

Some tests on 12 inch by 9 inch areas of schist were performed 
by Kutter33. The specimens were tested parallel to bedding. 
Despite the fact that 'cohesive' bonds across the bedding had to 
be broken for shearing to occur, peak displacements were quite 
large and there appeared to be some relation between the magnitude 
of this displacement and the level of normal stress applied. Tests 
at normal stresses of 140, 400 and 800 lbf/in2  gave peak displace-
ments of approximately 1/10 1/5  and 3/5  inch respectively. An 
earlier series of tests on porphyry joints was performed on the 
same machine by Pentz34  . This shear machine has been described by 
Hoek and Pentz35. The range of normal stresses was 500 to 1400 
lbf/in2,and the peak displacements were 1/5  to 3/5  inch. There 
was in this case no apparent relation of displacements with 
normal stress. 

Several authors have recorded the variations of vertical  
displacement (dilation) with shear force. Ruiz et a129 recorded 
contraction at the beginning of some shearing tests, and peak 
strength was often defined by the point at which this movement 
inverted to cause dilation. Nose3b recorded initial contraction 
followed by up to 5 mm (o.2 inch) of dilation before peak strength 
was reached on large 10 m2  (129  ft2) in-situ blocks. Seraphim3?, 
and Jimenez Salas and Uriel38 give shear force-vertical displacement 
diagrams describing the behaviour of model curves given in Figure 
1.3.9, but unfortunately in-situ tests are seldom if ever taken 
past the peak without changing the normal stress to obtain a 
psuedo residual envelope. This practice which was discussed 
earlier, means that no continuous records of dilation from 
start to finish are available for model comparison. 

84 



ft) 
SECTION 1.3 

The controvernial evidence of a displacement-size effect 
predicted by the model joints is provided by the table below. 
It will be remembered that the prototype joint surface simulated 
by the model had dimensions of 96 feet by 42 feet. This is five 
times as long as the largest in-situ test that has been reported 
to date. 

Table 1. Prototype displacements extrapolated from the three joint 
types. 

NORMAL STRESS DISPLACEMENTS 

ccn (lbf/in2) dh  peak (ins)
1  

dv  peak (ins) 	! 	dv  ultimate (ins) 
I 

1 	i 
(ALL) C3(P) C3(PCJ) C3(S): C3(P) C3(PCJ)i C3(S): 	C3(P) C3(PCJ) C3(S 

1I 
li 

29.3 11.5 4.5 3.;_. - 
112 7.5 10.0 5.5 3.75 4.00 2.25 17.1 11.7 19.5 
191 12.5 8.o 9.0 3.10 3.45 2.05 12.8 13.3 18.6 
318 12.0 9.5 9.0 2.05 1.70 2.25 11.1 13.o 11.2 

445 12.5 9.4 10.0 1.70 2.85 0.60  11.7 6.6 14.2 
635 9.5 9.o 7.0 0.55 1.25 0,25 1 	7.o 6.3 11.4 
108o 11.o 10.5 9.5 o o.8o o 5.4 4.6 2.1 

1589 13.5 11.0 _ 0.70 0.35 - 2.4 2.6 - 

Where C3(P): repre. Fents single primary joints. 
C3(PCJ): represents primary joints with perpendicular 

secondary cross joints. 
C3(S) : represents secondary joints with perpendicular 

primary cross joints. 

and 	dh (peak) : is the horizontal displacement at peak shear 
strength. 

dv  (peak) : is the vertical displacement at peak shear 
strength. 

dv  (ultimate) : is the vertical displacement at the end of 
each shear test. The prototype scale dh  

(ultimate) for all three series was 90 inches. 
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A full discussion of roughness and of the displacement-size 
effect is given in Section 2.1. However it is pertinent to point 
out here that a series of model shear tests has been performed on 
joints in different strengths of material. By inverting this 
dimensional problem the tests can be interpreted as representing 
a series of tests on different dimensions of joint, all performed 
on the same strength of material. A range of joint surfaces from 
72 to 96 feet long was simulated by this means. It is significant 
that the peak horizontal displacements for the 7:-1- feet prototype 
were from 4 to 1 inch for the simulated range of normal stresses 
of 2i to 1640 lbf/in2. This 72 feet dimension corresponds closely 
to the in-situ test dimensions often tested. 

Conclusion  

The tension joints generated in model material C3 are assumed 
to be realistic models of rough, undulating joint surfaces which 
might be encountered in the field. Critics of the excessive rough-
ness of the joints may be misled by the ease with which planar 
joint exposures are seen in the field. In any open pit the planar 
joints exposed are immediately recognised due to their regular 
form and encreased reflection of light - particularly when wet. 
Rough joints are much less apparent from any cursory glance. 

Large scale joint roughness is unfortunately outside the field 
of interest of structural geologists. Consequently the number of 
joint profiles available for comparison is extremely small. Patton2° 
and more recently Rengers39  are perhaps the only two authors to 
have systematically measured large scale roughness profiles. The 
Ph.D thesis (in preparation) by Rengers (Die Reibungseigensch 
aften von Gesteinstrenn flachen in Zusammenhang mit deren 
Oberflachen beach affenheit. University of Karlsruhe 1970) should 
provide some much needed information on joint roughness, and the 
effect of this on the shear strength. 

It can be concluded that model joints have been produced which, 
whether too rough or too planar, display realistic characteristics 
when sheared. The magnitude of these characteristics is thought to 
be less important than the quality. Joints which are excessively 
rough will support steeper or higher rock slopes, but this should 
not effect the mode of failure induced. 
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1.4. STIFFNESS OF JOINTS 

SUMMARY 

The results of normal loading tests on model joints are 
presented, and values of normal stiffness calculated. It is found 
that these values are stress dependent, and suprisingly reduce 
to a minimum with increasing stress before rising at higher stress 
levels when the joints become more tightly closed. This behaviour 
is also seen in some in-situ plate loading tests. 

Some data on in-situ loading tests are analysed in which the 
joint spacing below the jacking plate was mown. This produced a 
value of normal stiffness of 33,400 lbf/in per inch which is in 
agreement with the projected model results at low stresses. The 
value of the modulus ratio (Emass / E intact) from this test and 
from some reported in the literature indicate that the jointed 
models have suitable values of this ratio, ranging from 1/2.4 to 
1/5.0. It does not appear that normal stiffness is size dependent. 

The shear stiffness of primary, primary cross jointed and 
secondary model joints are compared, and the corresponding prototype 
values presented. It appears from the model results that shear 
stiffness may be markedly size dependent as well as stress dependent. 
Values from 20 to 150 1bf/in2  per inch were obtained for a simulated 
prototype normal stress range of 0 to 1600 lbf/in2. The models 
represented a prototype length of joint of approximately 100 feet. 
In comparison, some large in-situ tests on lengths of jgint of 
approximately 16 feet gave values of 130 and 16 lbf/in' per inch 
at low stresses, while values up to 3500 lbf/in' per inch were 
obtained from shear tests of joint lengths of only 1 foot, tested 
at high stress. An inverse proportionality between shear stiffness 
size was indicated. 
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1.4 STIFFNESS OF JOINTS. 

INTRODUCTION 

The behaviour of a joint when stressed is an important compon-
ent of rock mass performance under load. At the stress levels 
encountered in near-surface excavations, it can be anticipated that 
joint behaviour will completely dominate the 'elastic' deformations 
of the intact rock. For this reason the shear and normal stiffness 
of joints have fundamental implications to the more sophisticated 
'Finite Element' and 'Finite Difference' analyses of rock masses 
under load. (See Goodman, Taylor and Brekke 20). 

The normal stiffness of a joint is usually defined as the 
normal stress per unit closure, with units of lbf/in2  per inch. 
Since this stiffness is generally lower than that for the intact 
rock separating the joints (depending on joint spacing), the mass 
E modulus may be as much as an order of magnitude less than the 
modulus measured from tests on unjointed laboratory specimens. 

A second measure of stiffness of a rock mass is that 
concerning the shear displacement on a joint under a given shear 
stress. This shear stiffness is assumed to be uniform up to the 
peak shear strength, and is defined by the mean gradient of the 
shear stress - shear displacement diagram, taken as far as the peak 
strength. It has the same units as normal stiffness. Goodman et'a148 . 
also define a residual shear stiffness in an attempt to model 
progressive failure numerically. However this will not be considered 
here since there is some doubt as to the shear displacement required 
to reach the true residual strength. (See Section 1.3) 

8S 
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1.4.1 NORMAL STIFFNESS 	Kn 

Normal loading and unloading tests were carried out in the 
small shear box (5.3 in2) on various joints generated in the model 
materials. The joint dimensions were identical to those tested in 
shear, and represented prototype surfaces of 96 feet by 42 feet, 
when interpreted at the same scale as that reported in Section 1.3 

It can be seen from Figure 1.4.1 that a datum normal stress 
of 0.30 lbf/in2  was applied throughout. This was unavoidable since 
the vertical displacement and loading systems had to be applied via 
the light platten and loading yoke shown previously in Section 1.3 
(Figure 1.3.3) These could not be removed between the normal load 
cycles without disturbing the specimens. 

The results shown are the mean of three tests. Similar results 
were obtained for primary joints in material C2, and secondary joints 
in material C3. However it might be expected that the normal 
stiffness of interlocking secondary joints would be affected by an 
intermediate compressive stress acting in a direction such as to 
stress the interlocked teeth longitudinally. This loading refinement 
was not possible in the test arrangement used. 

The first cycle of loading at each stress level produced a 
large and more or less irrecoverable closure of the joints. The 
load was applied for several minutes to 'pre-consolidate' the joints. 
It was then reduced to the datum and re-applied to produce an 
approximate stiffness line. The joint closures presented in Figure 
1.4.1 have been corrected for the elastic displacements predicted 
for the solid material which was situated above the joint in the 
loading box. It should be noted that the maximum normal stress 
applied (5.07 lbf/in2) was approximately one quarter of the unconfined 
compression strength of the intact material. 

Table 1. summarises the model normal stiffness results and 
gives the prototype equivalents predicted from geometric and 
stress scales of 1 : 500 and 1 : 666 respectively. The conversion 
factor is the ratio of ( Ti/)\ ) which is equal, to 1 : 1.25. 
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Table 1. Normal stiffness of primary joints from model material CZ,„ 

/_. 	cr  do  Total consolidation 

Stress (lbf/in2) 

Stiffness Kn   

(lbf/in3) 

(lbf/iri2) (x104) 

Model (lbf/in2) Model Prototype Model Prototype 

0.477 0.31 0.774 516 1.54 x 104  2.04 x 104  

0.952 0.88 1.249 832 1.09 	" 1.45 	" 
1.429 2.70 1.726 1150 0.53 	" 0.70 	" 
1.904 2.52 2.201 1468 0.76 	" 1.01 	" 
4.77o 5.17 5.067 3377 0.93 	" 1.23 	" 

It can be seen that the stiffness under intermediate stresses 
was smaller than that at both lower and higher stress levels. 
This unexpected trend is shown in Figure 1.4. 2 (a). The lower , 
bound value of 7000 lbf/in3  at a prototype stress of 1150 lbf/in' 
presumably indicates some radical change in the mode of 'normal 
failure', with changing normal stress. 

The first cycle'ofloading at each stress consolidated the joints, 
causing mostly irrecoverable closure appropriate to the stress 
level applied. This constituted a loading history, thereby colouring 
subsequent behaviour. The anomalous result for intermediate 
stress levels was probably due to the interaction of three modes. 
Namely, small elastic displacements (at low stress), loosening 
and rolling of par-Gicles on the asperity slopes (at intermediate 
stress), and large increases in true contact area (at high stress). 

1.4.2 SHEAR STIFFNESS Ks  

The shear stiffness of a joint was defined previously as the 
ratio of the peak shear stress to the shear displacement at this 
peak. It may have been noted from Section 1.3 that there was 
little variation in the peak displacements of the model joints for 
the range of normal stresses considered. For this reason one would 
anticipate considerable variation in shear stiffness for different 
normal stresses. 

Table 2 shows the mean shear stiffnesses for the three types of 
tension joint generated in material C3 (see Section 1.3), for the 
eight normal streses ap171ied. Model stiffnesses are shown scaled up 
to the prototype stiffnesses (x 11,12\ ) in the right hand columns. 



S
H

E
A
R

 ST
I F

FN
ES

S 

50 

.6 C 

a. C 
a. 	150 
Cl c  

le\ N •7 
A 

le
s 

100 (b) 

Ks 

500 	1000 	1500 

I 

1 

Knz  

1Ks  

I 
I 

• 

SOO 1000 

• 
a 

O • 

1500 

300 

la 

NI 
bd 	

200 

O 

4 
ad 

100 

(C) 

92 
-6 C 
I. 
V 
0. 
ti 20000 
..-..... 
-a 

MC  

v) on 15000 

ifil W 
o— on 

''.4 10000 

x ix 
O 
z 

Kn 

1000 2000 3000 

(a) 

CONSOLIDATION STRESS lb• 2  
in 

Figure 1.4.2 	The stiffness of prototype joints. 



SECTION 1.4 

Table 2. Shear stiffness of model and prototype joints  

MODEL PROTOTYPE 

Cc, Ks  (lbf/in3) Cii Ks  (lbf/in3) 

lbq 2  C3 C3 C3 lbf/ , C3 C3 C3 
(P) (PCJ) (s) in' (p) (PCJ) (s) 

0.044 7.4 12.0 43.0 29.3 9.8 15.9 57.1 

0.168 24.2 17.8 49.0 112 32.2 23.7 65.4 

0.286 18.2 30.0 43.3 191 24.2 40.0 57.8 

0.477 31.0 46.5 63.7 318 41.3 62.1 84.7 

0.668 49.3 51.0 78.8 445 65.8 68.0 105 

0.954 84.o 77.5 123 635 112 103 164 

1.620 102 96.2 112 1080 135 128 149 

2.383 100 130 - 1589 133 172 - 

Note: No specimens of secondary joints (C3.S) were available 
for tests at the highest normal stress, due to handling 
damage. 

The mean trend shown by joints C3 (P) and C3 (PCJ) (primarary 
and primary cross jointed) are shown in Figure 1.4.2 (b). The 
shape of the curve is very similar to that of the peak shear 
strength envelopes given in Section 1.3 (see Figure 1.3.13) 
Diagram Cc) of Figure 1.4.2 shows the ratio of normal and shear 
stiffness for primary joints in material C3. Due to the datum 
stress applied in the normal stiffness loading tests, it is not 
possible to compare the two stiffnesses below a prototype 
stress of 500 lbf/in2. However it would appear from a tentative 
extrapolationthat the ratio (Kn/Ks) might rise to between 500 
and 1000 at very low stresses. 
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1.4.3 RELEVANCE TO ROCK MASS BEHAVIOUR. 

Currently available literature on rock joint behaviour is 
limited almost entirely to shear testing (laboratory or in-situ) 
and plate bearing tests (in-situ). From the former it is possible 
to obtain shear stiffness data. However no normal stiffness 
data can be obtained from the latter unless the joint spacing 
is known. As far as the author is aware no data has been published 
of both shear and normal stiffness for the same joint surface. 
It is for this reason that normal stiffness measurements have 
been made on the model joints. 

1. Comparison of shear stiffness  

The model joint results reported in Section 1.3, and the 
large shear machine and in-situ tests reported in the literature 
indicate that there is no marked increase in peak shear 
displacements with increasing normal stress. Peak displacements 
appear to vary from approximately 0.1 to 0.6 inch for a wide 
range of normal stresses, and for a fair range of joint dimensions 
(say 1 to 10 feet in length). For this reason the values of peak 
shear stiffness are largely dependent on normal stress. Consequently 
the shear stiffness can be expected to vary from values of 
perhaps a hundred or two at low normal stresses up to several 
thousand at normal stresses above say 1000 lbf/in. Three 
examples can be cited: 

a) The large in-situ test reported by Ruiz et al29(Sectiom 1.3) implies 
Vallx of slir stif-J.:7s of 16f 	128 lbf/in(= ner inch for the 
undisturbed and first slicing tests. This was for a joint 
area of 450 ft2, loaded normally by the self weight of the 
block to a stress of 74.3 lbf/in2. 

b) Goodman32  gives a mean value of shear stiffness for undisturbed 
samples of clean, rough fractures of 3600 lbf/in2  per inch, 
but without specifying the normal stress range which is 
applicable. 

c) Tests on porphyry joints of approximately 1 ft2  in area were 
reported by Pentz34. Normal stress levels of 500 to 1400 
lbf/in2  were applied in a large shear machine referred to in 
Section 1.3. Goodman, Taylor and Brekke 28  also refer to 
these tests and quote a shear stiffness of 3,780 lbf/in2  per 
inch for one of the joints tested, presumably at a normal 
stress in excess of 1000 lbf/in2  in view of the peak displace-
ments. 

It is clear therefore that joint shear stiffness is very 
much stress dependent. Model shear tests indicate that joint 
shear stiffness may also be markedly size dependent. Table 2. 
given earlier showed that for a range of modelled prototype 
normal stresses of 30 to 1600 lbf/in2, and for simulated joint 
surfaces of 96 ft by 42 ft, the range of joint shear stiffnesses 
was approximately 10 to 170 lbf/in2  per inch (see Figure 1.4.2 (b) ). 
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The effect of joint stiffness on the shear deformation of 
a rock mass can be readily evaluated. The shear nodulus (F ) 
is employed to predict the shear stiffness of the intact rock 
between the joints. The shear modulus is defined as: 

wheres= Poisson's ratio 
Ei . Young's modulus of 

intact rock. 

Ei model = 1.07 x 104  
lbf/in2.  Ei prototype = 7.13 x 10  

If a Poisson's ratio of 0.2 is assumed for model and 
prototype, then the she .F modulus for the prototype rock will 
be approximately 3 x 10° lbf/in2, 

The model joint spacing employed in all the models 
described in Part 3 was inch. At prototype scale this 
becomes one joint per 20.8 ft of intact rock. Thus the 
shear stiffness of the intact prototype rock will be approximately 
12000 lbf/in2  per inch. Therefore even with this extremely 
wide simulated joint spacing, the presence of joints 
completely dominate the deformation behaviour of the prototype 
mass that is being modelled. The joints appear to be between 
three and two orders of magnitude less stiff than the 21 ft 
of intact material separating them, depending on the normal 
stress level. The presence of three intersecting joint sets 
used in the models will probably accentuate the difference 
still more. 

2. Comparison of normal stiffness  

A large number of plate bearing tests are reported in the 
literature. These are generally performed at dam sites in an 
attempt to obtain c deformation modulus for the rock mass,for 
comparison with the E modulus of the concrete dam. Due to the 
complexity of jointing the deformation performance of each joint 
set is almost impossible to estimate. In fact even the joint 
spacing of horizontally bedded strata is seldom reported with 
any degree of certainty. 

However, attention has recently been focussed on the possible 
influence of the state of stress on the joint water flow in rock 
masses. Several authors have considered this problem, and it is 
to be hoped that some much needed information on joint normal 
stiffness will ensue. Louis40  and Louis41  has given some data 
on plate bearing tests performed during a comprehensive series 
of in-situ tests to investigate the foundation and abutment 
performance at a French dam site. The dam was constructed 
on more or less horizontally bedded limestone with conveniently 
regular systems of discontinuities. It was noted that a lot of 

= Ei 

2 
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the joints had some clay infilling material. A comparison of 
the deformation performance of the joints with laboratory tests 
on the intact limestone showed the following approximate results: 

Rock mass 	E 	710,000 lbf/in2 

Intact rock Ei = 7,100,000 lbf/in2 

The loading tests were performed perpendicular to the 
bedding joints, which had a mean spacing of 60 cms (2 ft). 
Knowing the spacing it is possible to estimate the normal 
stiffness of individual bedding joints. For intact material 
which is assumed elastic: 

Normal stiffness = 

 

= Ei 

    

d 	L 

where (d) is the deformation of a dimension (L) 
of intact rock for a given stress ((r ). 

Therefore when considering intact rock divided by joints 
at a mean spacing (L), the components of deformation of the rock 
mass can be written as follows: 

d mass = intact 	joints =  
Emass 

where: intact = L 

~' intact 

and •• joint = 

Kn 

Therefore one can write Emass as follows: 

1 

1  

l
Ei 	Kn.)! 

Kn.1:. 

Kn. 	+ Ei I 

The ratio of (E mass / E intact) given by Louis was (1/10). 
Therefore substituting in equation (1) one obtains an estimate 
of the normal stiffness of the joints that were tested. 

Kn = 33,400 lbf/in2 per inch. 

96 

L 

Em 

Ei 
(i) 
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The dimension of intact limestone with the same normal stiffness 
as one joint is therefore: 

L = Ei . 7.1 x 106  = 212.5 inches = 17.7 ft. 

Kn 	3.34 x 104  

It will now be of interest to compare this in-situ result 
with the prototype performacne predicted by the model joint 
results. The dimensions of model material having the same nor-
mal stiffness as one model joint can be calculated from the 
previous relationship. The model and prototype equivalent 
dimensions at five normal stresses are tabulated below. 

Table 3. Dimensions of intact material with equal stiffness to  
one model joint. 

MODEL PROTOTYPE 

..: n L ...-- .. n L 
(lbf/in2) (ins) (lbf/in2) (ins) (ft) 

r).774 0.70 516 350 29 
1.249 0.99 832 492 41 
1.726 2.02 1150 1013 84 
2.201 1.41 1468 706 59 
5.067 1.15 3377 578 48 

It should be noted that the stress distribution in the model 
tests was probably more uniform than that acting on the joints 
beneath the in-situ loading plates. The influence of boundary 
stresses in the latter would tend to 'stiffen' the result 
obtained. In comparison the model blocks were entirely separated 
from the influences of a boundary. 

The ratio of (E mass/E intact) can also be calculated for 
the jointed model. Since it is a dimensionless number it should 
be identical for model and prototype if similitude is to be 
achieved. For simplicity only one set of parallel joints will 
be considered here. With a model joint spacing of z  inch 
(20.8 ft in prototype), and using the normal stiffness values 
given in Table 1, equation (1) gives the following ratios of 
(E mass / E intact): 

4.4, 16.0 1/5.02 ;3.8' 36.3. 
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These values are for the five normal stress levels given in 
Table 3. 

42 
Coon and Merritt give some interesting data of the ratio 

(E mass/E intact) collected from in-situ measurements at 
several dam sites in the U.S.A. The majority of results for 
sheisses, limestones and sandstones lie in the range 1/10 to 
1/2.5. The model joint spacing is therefore seen to give quite 
representative values of the ratio. 

The anomalous nature of the model result shown in Figure 1.4.2 
(a) has already been referred to. For some reason the normal 
stiffness appeared to reduce to some minimum value with increasing 
normal stress, and consevently to rise as the joint became more 
closed. Coon and Merritt 2  show a load-deformation curve 
obtained from a plate jack test in which the apparent stiffness 
reduces with increasing normal stress over the range 500 to 
1000 lbf/in2. They concoed that the modulus can increase or 
reduce with increasing stress levels. It is therefore clear 
that considerable uncertainty surrounds the mechanism by which 
joints close under normal stress. 

Conclusions  

Observations of the model/prototype joints and comparison 
with some rock joint behaviour reported in the literature suggest 
that the following tentative conclusions can be drawn for clean 
rough joints: 

1. Normal stiffness results are stress dependent and 
may range from over 30,000 lbf/in'-. per inch at very low 
normal stresses down to a minimum perhaps below 10,000 
lbf/in2  per inch at medium stress levels of say 1000 lbf/in2° 
It must be anticipated that at high stress levels the stiff-
ness will increase considerably. It seems unlikely that 
this type of inverted performance would be found in a clay 
filled joint. The minimum stiffness would surely occur 
at the lowest normal stress in this case. It does not 
appear that normal stiffness is size dependent. 

2. Shear stiffness results are stress dependent and size 
dependent. Values predicted for a prototype joint 96 ft 
by 42 ft in area suggest that the range of values (10 - 
150 lbf/in2  per inch) for this size of joint are at least 
an order of magnitude less than those obtained from tests on 

rock joint areas an order of magnitude smaller. (100-4000 
lbf/ia. per inch .say). An inverse proportionality between 
shear stiffness and size is indicated. 

Conclusions apertaining to the future jointed models are as 
follows: 

98 
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3. The normal stiffness of the simulated prototype rock mass 
is probably at least as high as that generally encountered 
in the field.based on the values of the ratio (E mass/E intact). 
A closer or wider joint spacing than i inch/20,8 ft would 
enable this aspect of performance to be modelled very 
closely. 

4. The shear stiffnesses of the simulated prototype joints are 
probably at least on order of magnitude smaller than those 
predicted from conventional shear tests of limited dimension. 
(see 2 above) However, since the prototype joint spacing 
of 20.8 ft is an order of magnitude larger than that generally 
encountered, it may be assumed that the shear deformation of 
the prototype rock mass will be similar to that predicted 
from shear stiffness values obtained from rock joints of 
limited dimensions. 

If however shear stiffness does prove to be size dependent 
as suspected, then the model would be even more realistic if 
the joint spacing were closer. 

In Part 3 of this thesis some of the above stiffness data 
is used in a comparative study of the 'Finite Element' prediction 
and the model performance of one of the large, excavated slope 
models containing three intersecting joint sots (St. John43). 

The predicted deformation behaviour is seen to be grossly depen-
dent on the shear and normal stiffness values adopted. The 
jointed model rock slopes provide a unique opportunity for a 
comparison of this type since, unlike in the field situation, 
these joint properties are known with some degree of certainty. 



PART 2 



2.1 SHEAR PERFORMANCE AS A FUNCTION OF TEST DIMENSIONS AND 
JOINT ROUGHNESS 

SUMMARY 

Fractures generated in four different strengths of model 
material are taken to represent joint surfaces of four different 
dimensions. Direct shear tests performed on these surfaces 
indicate that, as far as peak shear strength is concerned, no 
appreciable strength-size effect is operating. By comparison, 
a marked displacement-size effect is indicated, with peak shear 
strength being developed at larger displacements for larger joint 
areas. 

Fundamental concepts of shear resistance of rock joints are 
reviewed. A powerful phenomenological parameter of shear performance 
is introduced; the peak dilation angle, which is found to be a maximum 
at the instant of peak shear strength development. 

In an effort to relate the stress dependent peak dilation angle to 
the roughness of the surfaces and to the shear strength developed, a 
set of photogrammetric roughness profiles for the model joints are 
reconstructed, in order to simulate the shearing process during a 
test. It is noted that only the steep tips of asperities are sheared 
through at low normal stress, compared to the larger asperities of 
lower inclination at high stress. 

Analysis of the experimental results for all the model shear 
tests reveals that a linear relationship exists between the peak 
dilation angle and the peak stress ratio. It is also found that a 
simple relationship exists between the peak dilation angle and the 
ratio of the normal stress to the compressive strength. A criterion 
of peak shear strength for rough tension joints is formulated on the 
basis of these results. 

A simple method is developed for statistically analysing the 
roughness profiles recorded for several different types of joint. 
This involves the computation of inclination angles for asperities 
of different base lengths. It is found that these quantities are 
analagous to the change of peak dilation angle for different normal -
stresses. 

The practical application of this shearing analogy to slope 
stability is summarized and a typical example enumerated. Photo-
grammetric recording of the roughness of joints exposed on rock 
faces, and a statistical analysis of the data, enables an estimate 
to be made of the ratio of peak shear strength to normal stress, 
for any range of normal stress. 
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?.1 SHEAR PERFORMANCE AS A FUNCTION OF TEST DIMENSIONS AND 
JOINT ROUGHNESS 

INTRODUCTION 

A weak, realistic model material which could be split into 
tension fractures presented an ideal opportunity for studying 
both scale and roughness effects of joint surfaces. The problem 
of test dimensions and their effect on shear strength has long 
been of concern to slope stability engineers. Deere, Hendron, 
Patton and Cording'

t
f‘ concluded that the strength of laboratory 

(6 inch), in situ (3 feet) and failure surface (10 to 100's of 
feet) 'specimens' would be mutually different for a wide range 
of surface profiles. It was thought that because the small 
specimens could only sample the second and third order scales 
of roughness, they could not be representative samples of the 
total failure surface problem. This scale effect was thought to 
be particularly true of rough undulating tension joint surfaces, 
and to a lesser degree of smoother surfaced undulating shear joint. 
By implication smooth, planar joint surfaces were not expected to 
exhibit any strength-size effect, which seems a reasonable conclusion. 

The first part of this section is devoted to an investigation 
of the effect of test dimensions on the performance of rough undul-
ating tension joints of the type produced in the model materials. 
Both strength-size and displacement-size effects are investigated. 

It is common practice to design rock slopes on the basis of 
a residual shear strength for the joint sets concerned. There is 
no doubt that in many situations this conservative method is the 
only safe alternative. However there are converse situations in 
which, due to favourable drainage and an absence of joint infilling, 
a design based on something nearer peak strength is justified. 

In the second part of this section a method is presented for 
predicting the peak strength envelopes (non linear) of clean 
unweathered joints from a statistical analysis of roughness 
profiles measured over representative exposures of the joints 
concerned. 
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2.1.1 THE taq'ECT OF TEST .DIMETISIONS.ON SHEAR .STRENGTH 

Four model materials of the C series having widely different 
compressive strengths were used in the investigation. All these 
materials contained coarse filler which was a 50/50 mixture 
of sand/ballotini. The materials, nominally C2, C4, C9 and C25, 
were produced by extrapolating the quantities of plaster and 
water from those of the weaker materials shown on the design 
chart in Appendix 1. 

The unconfined compression strength of the materials was as 
follows: 

	

C2 10.2 	c9 88.8 	
lbf/in2  

c4 	56.2 	c25 119.0 

It was intended to perform all direct shear tests on the 
same dimension of model tension joint, namely 2.31 inches by 
1.00 inches. However, if all the four materials were taken to 
simulate the same strength of prototype rock, then by a simple 
dimensional relationship, the four model joint types would be 
simulating four different dimensions of rock joint surface. 

The original geometric and stress scales of 1:500 and 
1:666 were employed to convert C2 to a prototype compressive 
strength of 6800 lbf/in2, and shear test dimensions of 96 feet 
by 42 feet. The three remaining materials were converted with 
respect to these scales. However, due to a reduction in density 
with increased strength (caused by an enormously increased 
plaster content) adjustments were required to the ratio of geometric 
to stress scales for C9 and C25. The scale factors and prototype 
dimensions are given below. 

Table 1. Model - prototype scaling of four materials  

r- 	
i 

Model 	1 	), 
I 	- 

Material 	(lbf/in2) 

, 
'\:. 

(lbf/ft ) 
.1. A 	. pi 

t 
Prototype 
(feet) 

Pr -Aoty-2e 

e7' ....p.c 
(lbf/in2) 

C2 	1 	10.2 

C4 	1 	56.2 

c9 	88.8 
! 

C25 	i 	119.0 

120.7 

120.8 

117.4 

108.7 

500 

91 

56 

38.6 

666 

121 

77 

57 

96 x 42 

17.5 x 7.5 

10.7 x 4.7 

7.4 x 3.2 

61800(a11) 

Each of the four model types were tested at different 
normal stress ranges such that, when these were converted to 
prototype stresses, the range for all four was the same 
and approximately 0 to 1600 lbf/in2. 
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Model s'crength envelopes  

The peak and ultimate shear strength envelopes for the four 
model joints are shown in Figure 2.1.1. Each plotted point is 
the mean of two tests at that normal stress. It should be noted 
that the peak envelopes for all four joints were more or less 
coincident over the lowest four of the eight normal stress 
levels applied in each case. In addition there was no apparent 
cohesion intercept. It is pertinent to state that in the event 
of genuine cohesion intercepts occurring, these would have to 
be in the same ratio as the compressive strengths of the four 
model materials. Otherwise the joint surfaces would not have 
been comparable scale models. 

The appearance of the model joint surfaces after shearing is 
shown in Figure 2.1.2. Materials C2 and C4 showed negligible 
surface damage after shearing at the four lowest normal stress 
levels (specimens C2.1 to C2.8 and C4.1 to c4.8). By comparison, 
only the two highest stress levels applied to materials C9 and 
C25 caused any appreciable surface damage (specimens C9.11 to 
C9.14 and C25.11 to C25.14). It will be apparent from a careful 
examination of the photographs that C9 and C25, representing the 
smallest prototype dimensions, displayed somewhat smoother 
joint surfaces than the weaker materials C2 and C4. 

Prototype joint roughness 

The roughness of the four model joint types were recorded 
photogrammetrically before testing. The results of this investi-
gation arc reported in detail later in this section. For the 
present, four typical roughness profiles obtained from measurements 
off a stereo pair of photographs will be presented. The ground 
dimension of each one was 2.31 in length. Each was photographically 
reduced to the correct relative length. The comparative result 
is seen in Figure 2.1.3. A cursory glance would lead one to 
believe that the 96 feet long (C2) joint was considerably rougher 
than the 17.5 feet long (C4) joint. This in turn appeared rougher 
than the 10.7 or 7.4 feet long joints. However the relative 
amplitude of the first order roughness is a misleading yardstick 
for comparison. 

Prototype strength envelopes 

The model strength envelopes shown in Figure 2.1.3 were con-
verted to the prototype values by applying the scale factors given 
in Table 1. The resulting values were all plotted on the same 
graph so that any differences in strength between the four test 
dimensions could be compared. Figure 2.1.4 shows the result. The 
closeness of the peak strength results leads one to the conclusion 
that there may not be a significant strength-size effect for rough 
joints of this type. The apparently more linear profiles of the 
7.4 and 10.7 feet simulated joints belie the fact that for many 
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Figure 2.1.2 The appearance of the model joint surfaces 
after shearing at different normal stress levels. 
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107 
96 ft 

Figure 2.1.3 Four typical joint roughness profiles from 
four dimensions of modelled shear tests. 
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Figure 2.1.4 The shear strength envelopes at prototype scale 
predicted from four dimensions of shear test 
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different joint dimensions there is probably a 'world within a 
world'. As will be seen later the small steep asperities seem 
to control the peak strength to a greater degree than the larger 
amplitude low inclination first order roughnesses. These only 
become dominant at normal stress levels considerably higher than 
encountered in slope stability problems. Consequently,'for a given 
normal of a=ss, shear failure on large or small joint surfaces may 
occur through failure of the same dimension of asperity. 

Just how small or large a joint surface a particular strength 
can be extended to is hard to say. There is no doubt that greater 
confidence should be placed in shear tests or profile measurements 
of joint surfaces of tens of feet in length rather than of 
'laboratory size' dimensions. However, if exposures of joints of 
only a few tens of square feet in area are accessible, the peak 
strength results measured or predicted may possibly be more 
representative than suspected. 

Seraphim and Guerreiro31  commented on this problem when 
reviewing a large body of experience of in-situ tests at dam 
sites in Spain. Test areas ranging from 10ft2  to 450ft2  
apparently failed to indicate any marked effect of area on strength. 

Cohesion apparent  

As in previous model shear tests the lowest normal stress 
applied to each of the four joint types was generated by the weight 
of the upper block of model material only. When the dimensions 
of these blocks are converted to prototype, the i inch model 
height becomes equivalent to rock overburdens of 26.0, 4.7, 
2.9 and 2.0 feet for joint types C2, C4, C9 and C25 respectively. 
The corresponding normal stresses were therefore low enough to give 
an indication of the presence of any cohesion intercept of practical 
significance. The inset given in Figure 2.1.4 provides conclusive 
evidence that even for joints as rough as the model tension fractures 
no cohesion intercept actually exists. The peak envelopes 
merely become tangential to the shear strength axis. 

2.1.2 THE la.bEiCT OF TEST DITENSIONS ON DISPLACEMENTS 

The shear displacement corresponding to the mobilization of 
peak shear strength is an important parameter in slope stability 
control. It has for instance, fundamental implications to rock 
bolting and to slope displacement monitoring. Particular 
attention has been focussed on the latter recently, due to the 
comprehensive programme_ undertaken at the Chuqicamata Mine, Chile. 
(Kennedy and Niermeyer4 ) The time of occurrence of an extremely 
large slide, estimated at several million tons, was accurately 
forecast by simple displacement-time graphs. 

Laboratory size joint specimens (6 to 12 inches) generally 
reach peak strength after tangential displacements of small fractions 
of an inch. The largest in-situ tests performed likewise reach 
peak strength after only 2  inch to 1 inch displacement at the very 
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most. Consequently the large pre-failure slope displacements of 
the order of feet or even tens of feet exceptionally, are usually 
explained as surface manifestations of a progressive rearrangement 
of slope geometry leading up to final collapse. 

The four model joints, representing prototype dimensions from 
approximately 7 to 96 feet in length, provided an opportunity 
for a comparative study of displacement - size effects. It 
seemed possible that a summation of the pre-peak shear displacements 
on all the critical joints lying above the toe of a slope could 
collectively explain the large pre-failure movements observed at 
the crest of unstable slopes. However, peak shear displacements on 
individual joints of greater than fractions of an inch were needed 
to explain these full scale phenomena. 

Figures 2.1.5 and 2.1.6 demonstrate the shear force-displacement 
and dilation characteristics for two contrasted dimensions of 
test. Apart from rather sudden drops from peak strength, the 
shear force -displacement behaviour appeared rather similar 
between the model representing 96 feet, and that representing 
7.4 feet of joint surface. However, when the model horizontal 
displacements were converted to prototype scale a wide separation 
in behaviour became evident. The prototype scales are illustrated 
on the top axis of the two figures. 

The dilation diagrams illustrated in the lower half of each 
figure suggest that some fundamental difference of roughness did 
exist between the two dimensions of test. However it was the 
post-peak behaviour that was affected. Figure 2.1.4 confirms 
that the pre-peak behaviour , which leads up to the point of 
maximum dilation and maximum strength, was very similar for the 
four tests, despite the first order differences in roughness. 

Figures 2.1.7 and 2.1.8 demonstrate further differences in 
behaviour between the two scales of test represented by C2 and 
C25. The simulated 96 feet test demonstrated a gradual reduction 
in the magnitude of the peak vertical displacement with increasing 
normal stress, to the extent that at the two highest normal stress 
levels no total dilation was required for peak strength to be 
mobilized. In direct contrast to this the simulated 7.4 feet 
test demonstrated a gradual rise in the peak vertical displacement 
with increasing normal stress. This important difference can 
be accounted for by consideration of the relative consolidation 
occurring across a rough joint and across a smoother joint 
when equal normal stresses are applied. Greater consolidation 
across the smoother joint (C25) would result in this tendency for 
increased vertical displacement occuring before the point of peak 
strength was reached. 

All displacement-size effects arc summarised in Table 2 
overleaf. 



Table 2. Prototype displacements extrapolated from four model materials 

NORMAL 	STRESS DISPLACEMENT - 

G„, 	(lbf/in2) peak (ins) d, 	peak (ins) d, 	ultimate (ins) 

C2 C4 C9 	C25 C2 C4 C9 C25 C2 	i 	C4 	I C9 	C25 C2 c4 c9 c25 

t 

29 5.3 3.4 2.5 3.35 0.54 0.35 0.34 N 0 	R E S U L T 

112 115 110 109 5.12 1.40 0.71 0.55 2.30 0.15 0.11 0.06 18.70 2.06 1.58 0.93 

190 196 184 207 5.32 1.04 0.66 0.70 1.65 0.13 o.06 0.06 11.10 1.86 o.8o 0.84 

318 288 316 327 8.46 1.40 0.71 0.46 0.75 0.09 0.06 0.03 11.10 1.10 1.21 0.51 

445 439 449 535 9.1+5 1.36 0.71 0.93 0.25 0.17 0.04 0.07 10.20 1.17 1.03 0.76 

635 611 726 658 11.61 1.36 0.75 1.05 0.45 0.13 0.09 o.o8 5.95 0.97 0.57 0.61 

1079 1140 1058 1026 9.65 2.37 0.91 0.79 -0.05 0.25 0.15 0.17 3.65 0.37 0.41 0.67 

1588 1661 1551 1640 8.85 1.40 o.64 1.03 -0.10 	0.16 0,07 	0.05 0.75 -0.01 0.11 0.37 
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The symbols used in the tabulation represented the following: 

dh  peak : is the horizontal displacement at peak shear strength 
d, peak : is the vertical displacement at peak shear strength 
d, ultimate : is the vertical displacement at the end of each 

shear test 

Each model was sheared for a horizontal distance of 0.18 inches. 
(This was 7.7% of the length of each joint tested). Therefore 
when scaled up to the prototype dimensions dh  ultimate becomes:- 

Material )\ d h  ultimate (ins) Test dimensions (feet) 

C2 500 . 	90.0 .96 x 42 
c4 91 16.4 17.5 x 7.5 
C9 56 10.1 10.7 x 4.7 
c25 38.6 7.o 7.4 x 3.2 

From the results presented it would appear that there is 
a marked displacement - size effect for certain joint types. 
This would probably be most marked for rough undulating tension-
type joints similar to those tested, and possibly negligible for 
planar, smooth surfaces such as unfolded bedding joints or 
planar shear joints. It is perhaps unwise to quantify these 
observations further, in view of the uncertain nature of the 
model roughnesses that were assumed to simulate the different 
dimensions of joint. 

However, strictly as model observations the following are 
worth recording here: 

1. The peak strengths were reached after tangential displacements 
approximately 1% of the lengths of the joints tested, whether 
these simulated 96 feet or only 7.4 feet at full scale. This 
figure is roughly the same as that obtained from large scale 
shear tests on rock (see Section 1.3). 

2. The ultimate tangential displacements were the same for 
each model and represented 7.7% of the length of each simulated 
test dimension. From an examination of the drop from peak strength 
towards residual strength, it would appear that a displacement 
of approximately 10% would reduce the shear strength of similar 
rough joints to close to the residual strength. 
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2.1.3 FUNDAMENTAL SHEAR RESISTANCE OF ROCK JOINTS 

INTRODUCTION 

The cohesionless model  

In the past, attempts have been made to relate the shear 
resistance of rock joints to the observed dilatant behaviour of 
granular materials such as sand. From considerations of statics, 
Newland and Allely46  developed an equation of the following type: 

T = c tan (4b  + i) 
to denote the maximum shear strength of a granular mass. The 
angle (i) was the average angle of deviation of particle displacements 
from the direction of the applied shear stress, and (010 was the 
angle of frictional sliding resistance between particles. 

Rowe, Barden and Lee47 developed the same relationship for 
cohesionless sands from energy considerations. For the direct 
shear test the total applied shear force was divided into three 
components. These took account of the external work done in 
dilating against the normal force, and the internal work done in 
overcoming dilational friction which was differentiated from 
the 'no volume change' frictional component. The sum of these three 
components produced the above relationship. 

The bilinear model  

Patton20, and Goldstein eta148  used the same realtionship to 
represent the shear strength of irregular rock surfaCes and broken 
rock when tested at low normal stresses. At high normal stresses 
it was anticipated that most of the irregularities would be 
sheared off. Consequently the Coulomb equation was introduced. This 
can be written as: 

-r = + Chan00  

where the constants (c) and (0)b) denote the Coulomb shear parameters 
relating to the strength of the unjointed rock material. Thus 
Patton and Goldstein etal. proposed the familar bi-linear approximation 
to the anticipated curved strength envelope. 

Patton's work is worth reviewing here since it provides a 
simple experimental basis for the development of more fundamental 
failure models. He performed a series of laboratory shear tests 
on idealised rock surfaces using plaster specimens having 
interlocking teeth. Specimens with teeth inclined at 450, 35° and 
250 (of the same height) produced peak strength envelopes which 
could be approximated to bilinear relationships. 
linear portions (representing low normal stress) 
75°, 66° and 55°respectively. The second linear 
inclined at 300, which was the same as the angle 
friction. The bilinear transition points varied 
types of specimen, with the 45°  toothed surfaces 

The initial 
were inclined at 
portions were all 
of residual 
between the three 
reaching the 

transition at lower normal stress levels than the 350  or 250  
models. 
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This was obviously a function of the relative base area of the 
teeth. It was therefore postulated that for a real joint surface 
the steepest teeth would be sheared off first. 

Effective (i) Value  

Patton had previously studied a large number of unstable 
rock slopes in the Rocky Mountains. Photographic observation 
and measurement of joint surface profiles, and a related series 
of residual shear tests on flat, sawn rock specimens led him to 
the conclusion that first order and second order irregularities 
had to be differentiated, if realistic parameters were to be 
obtained through back analysis. Figure 2.1.9 (taken from Patton20) 
demonstrates the significance of the two scales of roughness. 
In essence his conclusion was that an effective (i) value had to 
be used, rather than the absolute roughness of the small asperities 
lying on the slopes of the first order irregularities. 

Figure 2.1.10 (a) demonstrates the static considerations 
of sliding up a smooth .inclined rock surface which exhibits 
an angle of friction (c,;1.0 the same as the residual angle, and 
also obtainable from shear tests of flat sand blasted or sawn 
surfaces of the rock. Equating the resolved components of H 
and N for the condition of limiting equilibrium the following 
familiar relation is obtained : 

H/N =- tan ( 	+ i ) 

This is obtained more directly as follows. Sliding is just 
initiated when the resultant force is inclined at an angle 
from the normal to the inclined surface. Therefore the tangent 
of the 'total friction angle' is equal to the ratio of H and N. 

Peak dilation angle  

The real situation of shearing or sliding along a rough 
joint is illustrated in diagram (b) of Figure 2.1.10. A 
multitude of (i) values contribute to the shear strength, and 
the effective (i) value will be dependent on the normal stress 
acting across the joint. It is postulated that at the instant 
of failure (peak shear strength) the rock mass lying above the 
joint will move at an angle 	to the mean plane. This is the 
effective (i) value, but it will now be termed the peak dilation 
angle. It is a very powerful phenomenological parameter of shear 
strength, since for a given normal stress it represents the 
minimum energy path between a 'sliding up' and a 'shearing through' 
mode of failure. 

d;1  = maximum incremental dv  

dh 

All the two hundred shear tests performed on rough model 
joints demonstrated a peak angle of dilation corresponding to the 
shear displacement at which peak strength was mobilised. 
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Figure 2.1.9 First and second order irregularities of rock 
discontinuities (after Patton20) 
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Figure  2.1.10 Three diagrams of joint shear behaviour. 
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Previous measurements of joint dilation  

Unfortunately dilation measurements are seldom recorded 
in large scale shear tests of rock joints. This is the inevitable 
conclusion bearing in mind the almost complete lack of dilation 
measurements in the literature. However, it may be that the data 
is not published due to the wide scatter of results that one 
might expect when testing a limited number of joints. Only two 
references can be cited. 

Ripley and Lee i reported an interesting series of direct 
shear tests on natural discontinuities in sandstone, siltstone 
and mudstone obtained from 6 inch diameter drill core. Dilation 
measurements were taken during each test. When expressed in 
terms of an apparant friction angle, the increase in sliding 
resistance due to 'riding up' on the rough joint projections 
was found to be from 10° to 18° for the peak values at low 
strain, and from 2° to 13° for higher strains. It is significant 
that their total angles of friction at higher strains 'corrected' 
to approximately the residual angle of friction, while the peak 
values when 'corrected' were somewhat higher than this. 

For instance for the sandstone specimens: 

	

Measured 	Corrected 

Peak ultimate 	peak ultimate 

	

54° 40° 	36° 27° 

It was therefore apparent that the dilation 'correction' proposed 
by Ekempton and DiF3hop -''' for direct shear tests on (cohesionless) 
sands could not be applied to the peak strength state of rock 
joints. Even at low normal stresses some failure of intact 
material was occurring at the tips of asperities in contact. 

Ruiz, Camargo, Midea and Nieble29 measured the peak 
dilation angles during a series of large in-situ tests on 
basalt. Their largest test, which was referred to in Section 
1.3, was a shear teat of approximately 450 ft2  of basalt-breccia 
contact. Undisturbed, and first and second sliding tests 
produced the following results for a constant normal stress of 
24.3 lbf/in2. 

tan-1  (-170) 	an 

690  39° 

68° 32°  

52°  14° 

In addition to these measurements, dilation readings 
were recorded during concrete-basalt adhesion tests of approxim- 
ately 40 ft2  in area. Unfortunately the range of normal stresses 
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of 0 to 90 lbf/in2  was low enough for the adhesive forces to be 
rather significant. A graph of arctan (-(7') versus peak 
dilation angle gives the following (approximate) linear relation: 

-r A = tan (0.98 dn  + 530) 

which is probably a good deal higher than might be exhibited by 
a rock to rock joint interface. 

Component of asperity strength  

The theoretical maximum inclination of a smooth faced asperity 
which is to remain unsheared when tested at zero normal stress is 
as follows: 

(i)max = 90- d) b 

This is immediately apparent from inspection of the function 
tan (010+ i ), 	and was referred to by Ripley and Lee,49  
Withers5l and Patton20. 

The large amount of experimental data reported in the lit-
erature suggests that more or less all rocks have basic angles 
of sliding friction ( ()) the same as the residual angle and 
lying between approximately 250  and 350  (see for instance Ripley 
and Lee49, Patton20, Rosengren22,  Ross Brown and Barton52). 
For this reason smooth asperities inclined at between 550  and 
650 may be sheared through even when the test is conducted at 
a theoretical zero normal stress. 

Ladanyi and Archambault18  proposed a failure model in which 
this small area of sheared material was given a strength compon-
ent corresponding to the Coulomb relation for shear through 
unjointed material. They suggested that over the remaining area 
of the joint surface, only the frictional and dilational 
components were acting. This concept is no doubt a valid one, 
but unfortunately 	number of unknown parameters in their 
relationship was impractically large. 

Diagram (c) of Figure 2.1.10 illustrates the problem posed 
by this shear component. Peak strength is reached when the ratio 
of the shear and normal forces is equal to the tangent of the 
sum of (i) b, dn, and z;. The component (3) appears to be stress 
dependent in the same way that the peak dilation angle (dn) is. 

It will be apparent from this review of joint shear failure 
concepts that no practical method existed for predicting the peak 
shear strength envelopes of rock joints. A method which involved 
only the analysis of roughness profiles could therefore prove 
most valuable, despite the fact that only unweathered and unfilled 
joints could be considered. Obviously some relationship was re-
quired between the three parameters: 
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roughness of joint 
peak dilation angle 

normal stress 

2.1.4 EXPERIMENTAL OBSERVATIONS OF MODEL JOINTS  

Figure 2.1.11 is a photograph of twenty model joint 
surfaces representing seven types of joint. Each specimen is 
one of a mating pair, photographed before testing and later 
aligned in the shear box in a known direction. 

The Photogrammetry Department of University College 
London, kindly performed photogrammetric analyses of the 
roughness of these model joint surfaces. The specimens were 
collectively set horizontally, and were photographed with a 
Galileo Santoni Stereometric camera on a 560 mm, base pointing 
vertically downwards. Observations of the stereo pair of photo-
graphs were carried out on a Thompson Watts Mark II plotting 
machine coupled to an automatic tape punch. Plotting intervals 
of approximately 1 mm. ( 0.040 inch) were considered adequate to 
cover the small scale asperity slopes. This interval resulted 
in approximately 70 spot height coordinates for each traverse. 
Two profiles were computer drawn for each specimen, taken 
longitudinally along the two third points of the 2.31 x 1,00 inch 
surfaces. 

Figure 2,1.11 shows these roughness profiles (which are 
elevations) superimposed on the third points of the photographic 
plan views of the surfaces concerned. The following joint types 
correspond to the numbering shown in the figure. 

A3 (P) 1,2,3 
	C 25 (P) 12,13, 14 

C3 (P) 4,5 
	

C4 (P) 15,16,17 

C3 (s) 6,7,8 
	

C9 (P) 18,19,20 

C2 (P) 9,10,11 

The paler colour of the C25 (P) type joints is due to the 
larger amounts of plaster in this material, compared to the 
weaker orange material of the lower members C2, C3, C4 etc. 

Reconstructed shear tests  

As a preliminary to detailed analysis of the roughness profiles, 
it was decided to reconstruct some of the shear tests so that the 
effect of normal stress on asperity failure could be assessed. 

A 16 x 20 inches sheet of Ilford film, 5/1000 inch thick, 
was partially exposed and developed to a uniform transparent 
grey. Computer drawn model roughness profiles were traced 



Figure 2.1.11 	Photogrammetric roughneSs profiles 
superimposed on model tension joint surfaces 
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onto the transparent film at five times ground scale (approx. 
1 ft. long), carefully cut out, and the two interlocking halves 
mated to represent one section through the model tension joint 
concerned. This proceedure was followed for both profiles of each 
specimen. The'lower halves' of these reconstructed sections were 
glued to stiff, white card and the 'upper' matching halves were 
mated, representing the zero displacement position. 

It will be recalled that vertical displacement measurements 
were taken during each shear test, from dial gauge readings at a 
single point vertically above the centre of the joint area. The 
recorded displacement was therefore the mean of possibly complex 
vertical movements of the upper half of the specimen. A pin was 
therefore pricked through the centre of the 'upper' mating recon-
structed sections so that the white card was marked. These points 
were the origins for the dilation diagrams. Six coordinates of 
dilation were plotted on each card with pin pricks, after converting 
to the correct scale. These coordinates were the experimental results 
of shear tests performed on the model joints concerned. The following 
sketch shows the coordinate positions chosen. 

Position 1 represented the dilation at half the recorded dh  
peak value. 

Position 3 represented the dilation after the rapid drop from 
peak strength. 

Position 4 was half way between 3 and 5. 

Position 5 was the ultimate position, which approached that of 
residual strength. 
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When these six positions were reconstructed and photographed 
an interesting series of shearing events was observed. The 
sequence of shear positions are shown in Figures 2.1.12 and 
2.1.13. for joint type C2(P), and in Figures 2.1.14 and 2.1.15 
for joint type C25 (P). At prototype scale these models represent 
the following test parameters: 

C2 (P) 	96 feet long:CT,2 = 112, C r, 6 . 635 lbf/in2. 

C25 (P) 7.4 feet long:(1;1 2 = 109, G-vi 6 = 658 ibf/in2. 

The prototype unconfined compression srength simulated by 
both model materials was 6,8000 lbf/in as before. 

It will be apparent from observation of the shear sequences 
that at the lowest simulated normal stress of approximately 
100 lbf/in2, the area of asperities in contact or sheared 
through was extremely small. Where the dilation diagram caused 
the reconstructed sections to overlap the double grey appeared 
as black, representing the shear of intact material. The 
balancing of areas of sheared material about the centre axis of 
the profiles was carried out by eye. It is hoped that this 
subjective operation approximately reconstructed the experimental 
shearing paths of the upper blocks in the shear box. The following 
observations are worth recording. 

1. During the reconstruction of the shear tests a pin was used 
to locate the 'upper' sections in the particular dilation 
coordinates. It was noticed that very small rotations 
about this pin axis caused one end of the section to show 
sheared areas (black overlaps) of orders of magnitude 
greater than on the opposite side of the axis. This could 
not occur in reality without extreme variations of normal 
stress from one end of a shear plane to the other. It there-
fore seems likely that only very small rotational movements 
can occur during initial shear failure along rock joints, 
even if these are as rough as the model tension joints. 
This implies that limit equilibrium analyses of such 
failures may be more justified than expected. 

2. It is clear from Figures 2.1.12 to 2.1.15 that dilation 
across the model joints caused enormous increases in the 
volume of the joint space. This phenomenon,although 
exaggerated for rough tension joints, has important im-
plications to the flow of joint water along rock joints 
under high shear stress. It suggests a realistic mechanism 
by which a progressively failing rock slope could be 
temporarily arrested from catastrophic failure by enor-
mously increased permeability along the shear plane. A 
period of water flow might be required for the permeability 
to deteriorate for the next cycle of 	dilation (or complete 
shear failure) to occur. An ing9resting series of perrea-
bility tests performed by Maini-1-)  on mating araldite 
impressions of rock joints shows that this drainage effect 
may be even more marked than expected. 
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Figure 2.1.12 	Reconstructed shear test sequence of type C2 (P) 
tested at a prototype normal stress of 112 lbf/in2 
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Figure 2.1.13 	Reconstructed shear test sequence of type C2 (P) 
tested at a prototype normal stress of 635 	* 2 
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Figure 2.1.14 	Reconstructed shear test sequence of type C 25 (P) 
tested at a prototype normal stress of 109 lbf/in2 
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Figure 2.1.15 	Reconstructed shear test sequence of type C25 (P) 
tested at a prototype normal stress of 658 lbf/in2 
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Sharp 54  suggested that the failure of tips of joint 
asperities might cause a sudden reduction in the volume of the 
joint at some stage during the shearing process. It was 
envisaged that the resulting instantaneous water pressure increases 
would be a contributing factor to progressive failure. However, 
observations of the reconstructed shear tests suggest that joint 
volume continues to increase with increased shear displacement, 
at least up to displacements approaching the residual. Bearing 
in mind how many years rock slopes can take to progressively 
fail even after large displacements, a mechanism which explains 
the arrest of catastrophic failure is perhaps more appropriate 
than one which explains the acceleration of the same. 

3. The stoep tips of the model asperities appeared to be 
sheared off at an early stage in the shearing process. At low 
normal stresses (100 lbf/in for prototype) only a few points 
were in contact, and the shearing dam age was slight. However 
at the higher normal stress (650 lbf/in2  for prototype) the 
area in contact and the 'area' sheared was greatly increased -
perhaps as much as the square of the stress ratio. The 
sheared 'areas' had longer base lengths, and by implication a 
lower inclination of asperity was being sheared at the higher 
stress. 

4. The overlapping black areas represented double density. 
This sheared area is in reality distributed over the surface as 
detritus, and since it is in granular form much of the joint 
'spaces' generated by shearing will be partially filled. 
This will tend to increase the contact area, and reduce the 
permeability effect. However, these observations will only be 
relevant to shear under quite high normal stresses, unless the 
joint walls are sufficiently weathered for the effect to occur 
at lower stresses. 
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2.1.5 A PEAK STRENGTH CRITERION FOR ROCK JOINTS 

It was established earlier that the angular summation of (iltb+ dn) 
did not provide the correct experimental results of ( (I) peak) for 
rock joints. This was due to the component of strength resulting 
from shear through intact material. The peak dilation angles (dn) 
measured during tests on model joints C3(P) and C3(PCJ) were 
substituted in the following relationship: 

1(/(T 	= 	tan ( (1)10  + dn) 
with assumed basic friction angle (fi1)) of 30°. It was found that 
at all normal stress levels there was a discrepancy between experim- 
ental and predicted peak arctan ( 	) of from 6 to 14°, with 
the predicted value always lower than the experimental result. 

An accurate prediction of the experimental ratio (Y/(f) at 
very low normal stresses was given by the following: 

= tan (Cho  + dn) + c/G" 

where (c) was the apparent cohesion intercept extrapolated from the 
lowest normal stress tested. However at higher levels of stress an 
error resulted, and this increased to values almost as high as the 
previous range 6 to 140. 

It was obvious that the shearing component had to be related to 
the shape of the peak curve defined by the ratios of VG' at 
different normal stresses. Consequently the following relation was 
tested: 

TAy. tan (4)10  + dn) + K (-r/g) 
or 	-TA-. tan (4)10  + dn) 

1-K 

Experimental data had only been evaluated for joint toes C3(P) and C3 
(PCJ) at this stage. It was found that the mean value of (1-K), 
obtained from experimental results at the seven different normal 
stresses, was 0.580. It happens that the tangent of 30° (the assumed 
value of (4) is equal to 0.577. This implied that a good experimental 
fit would be obtained using the relationship: 

T/(-= tan (4)b 	dn)   (1) 
tan (I)b 

In fact this produced an extremely good fit over the lowest four 
or five normal stresses but seriously overpredicted the peak strength 
at the two highest normal stress levels. 

It was noticed that the ratio of ( nr /G) given by equation 1, 
was insensitive to changes in the assumed value of (4b). Continued 
experimental fitting resulted in a second workable relationship, which 
produced a slightly improved fit at the higher normal stresses: 

tan [tan-1 ( ) dn] 
 

tan [tan-1R)] 
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This expression simplifies to: 

tan -1  [SI] = 45°  - do 
lr 

or 1r/67=  tan (45°  + dn) 

 

(2) 

     

It seems probable that if a joint were sheared when under suf-
ficiently high normal stress, it would not dilate even at the point 
of peak strength. Equations (1) and (2) imply that the ratio of 
peak ( 	) at this high normal stress would be equal to one. 
A value of arctan (T/CY ) of 45°  seems unrealistically high for such 
high stress levels. At the lower end of the stress scale the maximum 
values of (dn) implied by the two equations are (90 -4)0 and 
45°  respectively. 

The relationship between peak stress ratio and peak dilation angle  

Peak dilation angles and corresponding ratios of ( l'/(Y ) 
were calculated for all the remaining model joints that were shear 
tested. In addition some experimental data for tension fractures in 
Blackstone granite were kindly supplied by de Freitas55. These 
were from tests on rough, artificial fractures of approximately 
35 in2  in area, which were produced in an effort to simulate the 
roughness of joints observed in the field. Unfortunately the 
experimental scatter for these five rock specimens was very 
large. However the results are presented for comparison with the 
model joints. 

A total of approximately 150 experimental results were thus 
available for experimental trends to be established. These ranged 
from the rough interlocking secondary joints C3(s), down to the more 
regular primary joints of C25(P). A minimum of two model joints 
of one type were tested at each normal stress. The mean of these 
results are the values that were analysed. Unfortunately it was 
not possible to take dilation measurements at the lowest normal 
stress applied to each joint type, because these were loaded by self 
weight only. Any mechanical displacement measuring system would 
have increased this minimum normal stress (0.044 lbf/in2) to 
unacceptable levels. 

Initially the experimental data was plotted as the ratio of 
-r 	CT ) versus the peak dilation angle (do). This resulted in 

a poorly distributed and slightly non linear configuration of 
points on the graph. Consequently the data was plotted in angular 
form; arctan (1r/cc )° versus (dn)°. The distribution of this 
data is shown in Figure 2.1.16. 

A least squares analysis was carried out by Markland561  and 
gradients and intercepts calculated for the best fit straight lines 
to each of the eight model joint types, and also for the total 
sample. The model results were doubly weighted compared to the 
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Figure 2.1.16 	The angular relationship between peak stress ratio 
and peak dilation angle for all model joints. 
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single tests on granite, and the peak dilation angle (dri) was 
taken as the dependent variable. 	The following table gives the 
results of this analysis:- 

Joint type 	Gradient (M) 	Intercept (C) 

C3 	(s) 1.16 44.4°  
A3 	(P) 1.50 42.7°  

C2 	(P) 0.92 42.6°  

C3 	(P) 1.28 40.6°  
c3 	(PcJ) 1.34 41.0° 
C4 	(P) 1.91 30.00 

c9 	(p) 2.04 26.2°  
C25 (P) 1.94 26.2° 

The following result was obtained for the total weighted sample: 

= tan (1.78 do  + 32.88°) 

Two important observations should be noted: 

1. If do  is put equal to the intercept (C) in the above 

equation the function (MC + C) is equal to 89.6°. 

2. If this is done for all the model joint types presented 

in the table, a mean value of (MC + C) equal to 91.3°  

is obtained. 

Bearing in mind the variety of joint surfaces, and the possible 
experimental scatter of results, it was felt that most reliance 
should be placed in the least squares fit to the whole test sample. 
The intercept of 32.880  was fortuitously close to the basic angle 
of friction of the model materials, and this suggested the 
following peak strength criterion: 

[ "i/G-1.0  = tan (90 - (1)b 

\ Cho 

) do 	()b   (3) 

When(tOb is 30°  this reduces to the simple form: 

Ti/crn  = tan (2dn  + 30°) 	 (4) 
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It will be shown presently that this approximate equation has 
considerable potential as a means for predicting peak strength curves. 

The relationship between normal stress and peak dilation angle. 

The model joints were tested at a variety of normal stress 
levels, depending upon the relative compressive strengths of the 
materials concerned. Direct comparison was therefore only possible 
when the normal stresses were 'normalized' by dividing by the 
appropriate unconfined compression strengths. The dimensionless 
plot of Rini GEC ) versus peak dilation angle (dn) could then be 
compared with data for rock. Figure 2.1.17 shows the trends for 
this relationship. Once again each model result is the mean of two 
tests at the same normal stress. 

A linear relationship is obtained if the data is replotted 
with the dimensionless ratio ((rn  I C c  ) on a logarithmic scale. 
Figure 2.1.18 indicates the experimental trend. A least squares 
fit to the total weighted sample gave the following equation: 

log 10 (IL ) = -0.1056 dn  + 0.1184 
Cic 

It will be noticed that only a very small adjustment is required 
to produce the simple relationship: 

log 10( IrL\ = -0.100 d_ 

r̀ I  
or dn  = 10 log 10  (L. 

The classic simplicity of this relationship suggests that the result 
may be most significant. 

cic /(in dn  
1.0 0° 
10' 10°  

1:00 20° 
1000 30° 

When combined with equation (4) a very useful criterion of peak 
strength is produced: 

(5) 

170n  = ton 20 log 10  Gc 300] 
k Gn 

 

(6) 

   

This would seem to have application in situations where the joint 
surface was statistically unknown, but sufficiently rough to bear 
comparison with the model tension joints. In addition a basic 
angle of friction (14) of approximately 30° would be required. 
Some examples of possible applications will be cited, before going 
on to consider joint roughness and its effect on such a criterion. 
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SECTION 2.1 

The estimation of peak shear strength  

Equation 6 is a non linear function relating the ratio of peak 
shear strength to normal stress, to the ratio of the unconfined 
compression strength to normal stress. It can be applied to 
practical situations in two ways: 

1. The ratios of (1' /Oil) for unweathered tension joints in 
rock can be estimated from a knowledge of the unconfined 
compression strength of the rock concerned. 

For example; the design chart shown by Figure 2.1.19 
indicates that a rock of 10,000 lbf/in2  in unconfined 
compression, when tested at a normal stress of 200 lbf/in2  
(OC/Gr. = 50) would give a ratio of (-/- / G') of approximat-
ely 2.06. Thus for a range of normal stresses the desired 
peak strength envelope could be estimated. 

2. Weathered tension joints in rock present a more difficult 
problem since the unconfined compression strength of the 
sound rock cannot be easily related to the'effective joint 
wall compressive strength' of the weathered material. 
Consequently the best approach here would be to perform a 
limited series of shear tests (in situ if possible) all at 
the same normal stress. The mean value of (Irifcrio 
obtained from these tests could then be used in the design 
chart. 

For example; suppose the mean value of (ucni) was 
1.59 for a normal stress of 200 lbf/in2. Figure 2.1.19 
indicates that the ratio of (V c/ 	would be approximately 
25. This implies an 'effective joint wall compressive 
strength' of 5000 lbf/in2; half the previous value. This 
value could then be used to estimate the peak strength 
envelope for the normal stress range required. 

(Note: Unconfined compression strength was the most convient 
'normalising' parameter to convert the model results into dimension-
less data. However, it is realised that 'shear' failure of asperities 
at peak strength is probably characterised by tensile failure in 
reality. Consequently an index test of the 'point load' variety might 
prove a useful method for assessing the effective joint wall strength). 

The results of shear tests on rough joints in porgiyry performed 
in the large shear machine at Imperial College (Pentz,4  and Kutter33) 
have been referred to in Part I. The joints had cross sectional 
areas of up to 1 ft2, and were obtained from 9 inch diameter cores 
drilled along joints which were exposed in the bench faces of Corta 
Atalaya. This is a 900 feet deep open pit operated by Rio Tinto 
Espanola in southern Spain. 

The results of the shear tests are shown in Figure 2.1.20. 
The residual values (obtained after approximately four inches of 
shearing) indicated a residual angle of friction of approximately 310. 
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SECTION 2.1 

Ross Brown and Barton52  measured a basic angle of friction (14) 
for flat, sand blasted porphyry surfaces of 301°. These specimens 
were obtained from the same location as the above. 

In addition to shear tests, unconfined compression and triaxial 
compression tests were performed on the Rio Tinto porphyries (Ross 
Brown and Barton). Specimens of three varieties, taken from three 
open pits in close proximity produced the following mean values of 
unconfined compression strength: 

1. 1150 	(Corta Atalaya) 

2. 665 Kg/cm2 	(Corta Filon Sur) 

3. 295 	(Corta Dehesa) 

The Atalaya specimen was obtained from freshly fractured rock 
below a recent blast. That from Filon Sur also appeared freshly 
broken, since it was taken from the debris below a recent rock 
slide (see Section 2.2). However the cleaved variety taken from a 
bench of Corta Dehesa (which is now unworked) was badly weathered and 
fissured. 

These three compressive strengths were taken as possible examples 
of 'effective joint wall compressive strength',and were used to 
estimate three peak shear strength curves. Figure 2.1.20 illustrates 
the possible application of such methods of intrapolation. 

The highly weathered specimen appears to give a useful prediction 
of peak strength, which passes between the majority of the limited 
shear test data, and provides an estimate of peak strength at lower 
normal stresses. The single apparently inexplicably high test 
result may possibly be explained as being the result of a shear 
test performed on an unweathered, tight joint. 

The three curves presented in Figure 2.1.20 are in reality all 
the same curve plotted at different scales according to the 
effective compressive strengths. Figure 2.1.21 shows the complete 
curve that is given by equation 6, taken as far as a normal stress 
equal to the effective compressive strength. 

Modified Peak shear strength criterion  

Equation 6 has been briefly demonstrated as a possible criterion 
of peak strength for rough rock joints which display comparable 
strength and frictional properties to the scaled up model joints. 
It will be noticed that changes in value of the basic friction angle 
(Co) result in changes of gradient and intercept in equation 3. A 
value of ( b) less than 30° results in a gradient greater than 
2.0,and an intercept less than 30°. The validity of this concept 
seems to be in question since so far, changes in joint roughness have 
not been considered. 
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SECTION 2,1 

This dilemma can be resolved by closer attention to the details 
of behaviour of the individual model joints. The gradients and 
intercepts of the function: 

tan -1  (17671) = M do C 

were presented earlier for all eight different model joints. These 
values were obtained from least squares analyses, and were tabulated 
as far as possible in decending order of joint roughness. Thus the 
secondary offset joints C3(S) were obviously the roughest of all, and 
the primary joints C9 and C25 were smoothest. (The order of tabulation 
can be checked against the roughness profiles presented in Figure 2.1.11). 

It will be recalled that the 
mean value of the relation MC + C 
for individual model joints was 
91.3°, and for the least squares 
fit to all the data; 89.6°. This 
implies that the gradient M hag 
the value given in the sketch on 
the left. Thus: 

MC + c = (90-C).0 + C = go°  
C 

By implication, the dilation angle 
when tan -1  (TN) equals 90° is 
equal to the intercept C, when 
the dilation angle is zero. 

10 20 30 40 SC 
110  

Figure 2.1.18 indicated that average joint surfaces would 
cease to dilate only when the normal stress reached the same level as 
the effective compressive strength. ( ci;Aa-c  = 1.0). Therefore the 
intercept C represents the value of tan -1  Metrr) when the normal 
stress is equal to the compressive strength. Thus C, which is clearly 
dependent on joint roughness, appears to predict the shape of the 
strength curve. Rough joints having the highest C values, would also 
display the highest shear strength when the normal stress equalled the 
compressive strength. This seems a perfectly logical deduction. 

One further detail is required before a modified criterion can 
be formulated. The sketch just presented implied that the dilation 
angle was equal to the C intercept, when the value of tan -1  (VG) 
was 900  . (i.e. at very low normal stress). The log. versus linear data 
shown in Figure 2.1.18 indicated an overall angle of dilation of 
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approximately 29.6° at the lowest 'intercept' of ( Cr, / CC ) of 
0.001. For all practical purposes this ratio represents zero normal 
stress. However, when least squares analyses are performed for 
individual joint types, the'intercepts' show close similarity to the 
C values given earlier. Taking the best five pairs the following is 
revealed: 

Joint d  

03(s) 44.4 43.1 

02(P) 42.6 41.5 

C4(P) 30.0 30.9 

C9(P) 26.2 26.3 

025(P) 26.2 27.3 

Again the data is tabulated in decending order of apparent 
roughness. The symbol do represents the 'maximum' angle of 
dilation for practically zero normal stress. 

Thus for the range of normal stress: 

GI> 	> Tc./1000 

A 
and assuming the intercept Co is very nearly identical to d° for 
a given surface, the following modified criterion of peak shear 
strength is indicated: 

A 
= tan [(907d)dn  +   (7) 

J 

It now remains to statistically analyse the roughness profiles 
of the model joints, and attempt to find a method for estimating 
the 'maximum' dilation angle d of a joint surface, and the stress 
dependent peak dilation angle dn. 

2.1.6 A MATHEMATICAL ANALOGY FOR SHEAR BEHAVIOUR 

The reconstructed shear tests illustrated in Figures 2.1.12 to 
2.1.15 indicated the following: 

1. At low normal stress only the steep tips of asperities were 
sheared through. Thus only a small asperity base length (area) 
was involved. 

2. At higher normal stress, less steep asperities with longer 
base lengths were sheared through. 

3. The higher the normal stress the smaller the angle of 
peak dilation. 
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The forty roughness profiles illustrated in Figure 2.1.11 were 
available in the form of large scale computer plots (four are shown 
in Figure 2.1.22) and also as coordinates recorded on punched tape. 
It will be noticed that the measurements were made at points along 
the surfaces corresponding to the local high and low spots. This 
is clearly the most accurate way of representing a surface with a 
limited number of observations. However this means that coordinates 
were not recorded at regular intervals, though the mean distance 
between them was approximately 1 mm (0.040 inch) at ground scale. 

It was appreciated that the positive and negative angles 
between consecutive coordinates represented extremely steep (i) 
values. However the positive or negative angles between every second 
or third coordinate, represented appreciably smaller values. 
Thus in a crude way the shear behaviour of joints was simulated by 
(i) values of different base lengths. The longer the base length 
the lower the (i) value, corresponding to shear through larger 
asperities at higher normal stresses. 

A logical relationship was required between the two pairs of 
parameters: 

1. normal stress 
dilation angle 

2. asperity base length 
effective roughness (i) values. 

Input data  

The following computations were required (See Figure 2.1.22): 

(a) Inclination between successive coordinates, (one step, 
positive or negative) shifting one step at a time. N 
coordinates (N-1) data points. 

(b) Inclination between every second coordinate, (two steps, 
positive or negative) shifting one step at a time. N 
coordinates. (N-2) data points. 

(c) Inclination between every nth coordinate, (n steps 
positive or negative) shifting one step at a time. 
N coordinates. (N-n) data points. 

The majority of profiles were composed of approximately 65 
coordinates. (N=65). Steps were taken at coordinate steps from 
1 to 20. (n = 1 to 20). The ratio n/N was defined as follows: 

n x 100% = asperity base % (A.B. %) 
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The single coordinate steps which were spaced at approximately 0.040 
inch, represented about 1.4 % of the total joint length. 

Output data  

The forty available profiles with approximately 65 coordinates 
each, represented a very large number of computations. Consequently 
a computer programme was developed (Oundall5f) to produce the 
following output in the form of histograms: 

1. No. of observations for a particular effective (i) 
value. (Positive and negative angles within the 
range 0°  to 55°  for intervals of 2.5°) 

2. The same data for different asperity bases. 
(steps of 1 to 20) 

A typical compound histogram is shown in Figure 2.1.23. For 
each histogram at each asperity base, the statistical mean, median 
and standard deviation were computed. This output was divided into 
positive, negative, and average angles. 

It can be seen that as the asperity base (steps of 1,2,3 etc) 
increased the standard deviation of the effective (i) values reduced; 
rapidly at first and then very gradually. As it happened, the 
average standard deviatibns for all the profiles, for the smallest asp—
erity base (1 step) ranged from about 14° to 20°. This was very 
similar to the largest values of peak dilation angle measured for 
each of the joints at low normal stress. 

The twenty specimens shown in Figure 2.1.11 were sheared 
in a positive direction, with respect to the above output. However 
the average of the positive and negative standard deviations was 
considered more representative of a particular joint type. (It should 
be pointed out that one or two profiles demonstrated maximum positive 
and negative standard deviations as much as 8° to 10° different. 
The direction of shearing could therefore be most important). 

Relationship between asperity base (A.B. %) and standard deviation  
of (i) values. (S.D. i°)  

Figure 2.1.24 illustrates the distribution of S.D. (i) values for 
the lower range of asperity bases. The squares representing material 
C3(s) were widely separated from the main body of the results 
because of the offset, stepped nature of secondary joints compared 
to the continuous primary joints. With the exception of the secondary 
joints the data represented a well defined mean, and appeared to 
be approximately normally distributed. 
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PROFILE NO. 	9.2 	CZ' (P) 
KOMBER OF DATA POINTS s 60 
STEPS OF . 	1 	2 	3 4 5 	6 7 	8 9 10 11 12 13 14 15 	16 17 
TOTALS • 59 se 57 56 55 	54 53 	52 51 50 49 48 47 46 4S 	44 43 

055.0 0 0 0 0 0 	0 0 	0 0 0 O.  0 0 0 0 	0 0 
052.5 0 

0 
0 
0 

0 
0 

0 
0 

0 	0 
0 	0 

0 	0 
0 	0 

0 
0 

0 
0 

0' 
0 

0 
0 

0 
0 

0 
0 

0 	0 
0 	0 

0 
0 

0470,5 
045,C 

0 
0 

0 
0 

0 
0 

0 
0 
• 0 	0 

0 	0 
0 	0 
0 	0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 	0 
0 	0 

0 
0 

04?.0 
•4:.0 
037.5 

o 
1 
0 

0 
0 
0 

0 
0 
0 

0 
0 

• 0 

0 	0 
0 	0 
0 	0 

0 	0 
0 	0 
0 	0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
.0 

0 
0 
0 

0 
0 
0 

0 	0 
0 	0 
0 	0 

0 
0 
0 

•35.0 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
032.5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 

1 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
027.5 0 1 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 

2 1 1 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
022.5 1 1 0 0 O• 	0 0 	0.  0 0 0 0 0 0 0 	0 0 
417.0 4 1 1 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
'617.5 0 1 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
01S.LI 4 0 0 0 0 	0 0 	0 0 0 0 0 0 o 0 	0 a 
-12.5 4 2 0 4. 2 	0 0 	0 0 0 0 0 0 0 0 	0 0 

0 0 5 2 1 	1 1 	0 0 0 0 0 0 0 0 	0 0 
•To5 4 3 6 2 2 	4 0 	0 0 0) 0 0 0 0 0 	0 *, 

2 7 4 5 8 	5 6 	2 5 3 5 5 2 1 1 	0 0 
"*2.5 1 8 6 6 S 	7 8 	12 8 10 6 5 7 9 9 	7 8 
'.0 7 7 6 11 10 	10 9 	13 13 11 11 13 13 11 11 	13 10 
P.5 5 3 6 7 11 	12 15 	11 9 e 12 11 11 13 13 	16 19 
5.0 0 2 9 9 8 	9 8 	9 14 17 14 13 13 11 11 	8 6 
7.5 4 7 2 3 3 	3 4 	4 2 1 1 1 1 1 0 	0 0 
1;0 4 6 4 3 3 	1 2 	1 0 0 0 0 0 0 0 	0 0 
12.5 4 5 3 4 1 	2 0 	0 0 0 0 0 0 0 0 	0 0 
ts.n 4 2 3 0 1 	0 0 	0 0 0 0 0 0 0 0 	0 0 
17.5 1 0 1 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
2F14.0 1 0 0 0 0 	0 0 	0 .0 0 0 0 0 0 0 	0 0 
22.5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
25.0 1 1 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
27.5 2 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
3,1.0 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
32.5 1 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
35.0 1 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
37.5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
46,0 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
42.5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
45.0 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	P0 
47.5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 

0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
52.5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
55,0 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 
57,5 0 0 0 0 0 	0 0 	0 0 0 0 0 0 0 0 	0 0 

*MEAN 	 0134 08.0 074 -5.4 04,9 0483 -3.8 0267 11380 02.9 •3.1 0269 -2.5 024 •2*6-02.1 •2.0 
'MEAN 	 12.2 8.3 6.4 5.1 4.2 	3.7 3.1 	3.3 3.0 3.1 2.7 2.8 2.8 2.5 2.4 	2.1 148 
AV, MEAN 	 12.8 8,1 6.9 5.3 4.6 	4.0 3.4 	3.0 3.0 3.0 20 -AA 2.6 2.6 2.5 	2.1 2,1 
-MED 	 •1304 •5.4 -4.2 04.5 4,8 03.4 •2.6 .124 020 02.5 .2,2 -24 .2,4 .2,4 -1.9  .2.3 
.RED 	 10.6 7.9 4.7 4.2 3.3 	2.9 2.4 	2,9 3.1 3.2 208 2.8 2,8 2.4 2.3 	1.9 1,6 
AV. NM 	 12.0 6,6 So6 4.2 3.9 	3.3 2.9 	2,8 2.8 3.0 2.6 2.5 2.5 2.4 2.3 	1.9 1.9 
• S.D 	 16.7 11.0 9.3 7.0 641 	5.2 4.5 	3.1 3.6 3.0 3;7 3.5 3.0 3.0 3.0 	2.4 2.7 
• S.D 	 15.1 9.5 TO 6.2 5.4 	4.7  3.9. 3.9 3.4 3.3 3.1 3.1 3.1 209 2.7 	2.4 241 
AV,.9.0 	 15.9 10.3 8.6 6.6 5.8 41,0 4.2 4,5 3.5 3.4 3i4 3.3 3.0 2,9 2.8 	2,4 2.4 

Figure 2.1.23 An example of the computer output from the 
statistical analysis of model roughness profiles. 



8 

A
S

P
ER

IT
Y

  

6 

00 

CO 

•
 

41
 

■
 
•
  
4
 o
 ri 

o.
 

O.
 

0
 O.
 

O.
 

O. O
. 

vs 
el
 e
) e

) C4  
i
t  

0
4  C

4 
4
 u  

I J
 u
 v
 u
 16/

 
fir 

Clift 
Aft 
0 

00
■  

• 

t IN 

• 
lao• • 

0 	II 
.49 	I 

II 

• 

41 	MI 

• _ 
WO m 
0  

• 

0 

• 

A II 
• 4 
00e • • 
all 	0

•  a 	Ail mg 

A • 
413,44. 	

• 

• 
II • 

. 	, titi  Oa 

• 0.0 	A  
Ibt • 

	

445b40* 	* a Ey VA°  

• m  
• m  • 

• 0 • 
• JIB 

GAidt 
A 0 lig 

lib aloe 
A 

• 

•  i 	• 
• 

• 

• 

i 	II  " 

is  

• 

• • 

V••  
&t ato A  
A .40 ti 	0 4. 

II 

• 

A • 
• Mil 116 	. 	■ 

-,-op ° 
a 
1!). o

IIII
o A 

16 

14 

12 

0 10 

4 

2 

150 

5° 
	

10' 
	

15' 
	

20' 
	

25° 

STANDARD DEVIATION OF (i
°
) VALUES 

Figure 2.1.24 The results of a statistical analysis 
of seven different model joint types. 
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Sources of error 

Computation of standard deviation involved root mean square 
calculations. As such,possible errors in the steepest (i) values 
would be distorted more than errors in the lower (i) values. It 
will be recalled that observations of the joint surfaces were made in 
a stereo comparator, where the floating point was focussed on high 
and low spots as they appeared, rather than to some fixed grid. 
Figure 2.1.22 shows that abrupt changes in topography were measured 
more closely than the undistinguished flat lying features. 
Consequently the steepest features (positive and negative) were 
exaggerated since their base length was smaller then the mean of 
approximately 1 mm (0.040 inch). 

Thus the results for S.D. (i) of between 15°  and 200  should 
be viewed with suspicion. The remainder of the data was probably only 
slightly distorted compared to a strictly rigorous solution. Unfor-
tunately the latter would have required more time than was available. 

Shearing analogy  

The standard deviation of the (i) values is the position on 
a histogram for a particular asperity base, such that 67% of the 
observations lie below the S.D. (i) value, and 33% above it. 
Viewed as a shearing analogy, the 33% of observations of steeper 
(i) values are 'sheared' through, while the 67% of shallower angles 
remain unsheared. 

The interesting feature of Figure 2.1.24 was its similarity 
with the plot of ( 	q-c ) versus peak dilation angles (dn) 
(Figure 2.1.17). When these figures were overlapped for visual compar- 
ison a most encouraging feature was noticed. Figure 2.1.25 is a two 
colour figure, in which Figures 2.1.17 and 2.1.24 were overlapped 
and slightly off set so that the relative scales could be seen. 
It was noticed that the ordinate A.B. % was half the scale of the 
ratio (GrA1), when the latter was converted into a percentage. 
The scales of peak dilation angle dn, and standard deviation of (i) 
values were identical. 

This unexpected result represented further evidence that a 
useful mathematical shearing analogy had been found. It will be 
recalled that each effective (i)° value was calculated with respect 
to a given base length (every nth coordinate). This angle, which 
could be positive or negative, apparently simulated the shearing 
path of an actual shear test, at an equivalent normal stress. As 
such,the angle and base length combined, represented the up slope or 
downslope of an imaginary controlling 'asperity', which just remained 
unsheared at the normal stress simulated. Therefore, by doubling 
this base length the whole controlling 'asperity' would be simulated. 
During a shear test it is of course the whole asperity base rather 
than half that is sheared. 
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In other words asperity base (A.B. %) is really a misnomer 
since, as calculated, it is only half an 'asperity' base. It 
can be concluded from Figure 2.1.25 that the following are useful 
approximations: 

1. (en /Cie  ) x 100 ('%) slr.: 	2 x A.B. (%) 

2. do  ve S.D. (i)°  

It only remained to check the 'intercepts' of a log. linear 
relationship between asperity base and standard deviation of (i) 
values, for a practical solution to joint roughness to be confirmed. 

Log. linear relationship between A.B.% and S.D (i) values  

Figure 2.1.26 shows two computer plots (kindly produced by 
Markland5 ) of the S.D (i) values obtained from the statistical 
analysis of model joints at the lower range of asperity bases. A 
group of results were also plotted for the highest values of A.B. 
(I)). = 20 steps) which showed S.D. (i) values mostly between 2

0 
 and 

4 . It appeared from the lower figure (linear - linear) that the S.D. 
(i) value was approaching zero degrees, as the asperity base was 
increased towards 100%. The serious scatter of results of high 
S.D. (i) values was due to the computational bious already discussed 
as a source of error. 

The upper-most figure; a plot of S.D. (i) (linear) versus log. 
A.B.%, showed that in fact, the approximately linear scatter of inter-
mediate values of S.D. (i) pointed to an intercept of log. A.B. equal 
to 1.7. An intercept of 2.0 (100%) was obviously not occurring here. 
However, the antilog of 1.7 is exactly 50 (A.B. = 50%). 

It will be recalled that twice the asperity base was postulated 
as being equal to the ratio (Crn/f GC) expressed as a percentage. This 
was a highly satisfactory result since the intercept on the abcissa re-
presented zero S.D. (1)°, or zero peak dilation angle (dn) for a ratio 
of (Cin/ GC) equal to 100%. assuming the analogy was valid. 

One further boundary value was required to verify the shearing 
analogy. This was the value of S.D. (i) for each joint type at a 
value of A.B.% equal to 0.05% (This corresponded to the lowest 
ratio of din/ GC equal to 0.001 or 0.1%) 

Values of log. A.B.% of 2.0, 1.0, 0, - 1.0, - 2.0 represent 
linear values of 100, 10, 1, 0.1, 0.01 % respectively. With convention-
al terminology the log. of 0.05 is equal to 2.70. This can alter-
natively be expressed as above, as - 1.3. 

The relevant point on the abcissa of the uppermost plot given 
in Figure 2.1.26 had to be located by extrapolating the log. axis over 
to the left hand side. The best fit straight line through all the 
data with the exception of high S.D.(i) values (>15°) and passing 
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Figure 2.1.26 	Two relationships between standard deviation 
of (i) values and asperity base percentages. 
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through the abscissa at log. A.B. equal to 1.7, gave an intercept 
of S.D.(i) of approximately 27.3°. This was very close to the 
maximum dilation angle of 29.6°  (a) given previously for a ratio 
of 0-nd/ Gb of 0.001. (see Figure 2.1.18). 

The final point to be verified was whether this statistical 
shearing analogy was sensitive to the different roughnesses of 
the joint surfaces. 

The five straight lines reproduced in part in Figure 2.1.26, 
were best fit approximations to the data of five of the individual 
joints. Taken in descending order of steepness, these were for 
joint types C3(s), C4(p) C9(p) C3(p) and C25(p). The intercept 
values of S.D. (i) for an asperity base of 0.05% compared very fav-
ourably with the (dn) values for a ratio of ( Crn/ TO of 0.1%. 
Once again, as a concession to the inevitable scatter of results, 
only the best five results out of seven will be compared: 

Joint 
type 

S.D. (i)°  degrees 
(at A.B. 	= 	0.05% ) 

dn° (= g) 
(at(in/gc = 0.1%) 

C3(s) 40.8° 43.1° 
C4(p) 28.7°  30.9° 

C3(p) 27.6°  28.8°  

C9(p) 26.0°  26.2°  

C25(p) 24.4°  27.3° 

It can be seen that the shearing analogy enables prediction of 
the 'maximum' angle of dilation to be made to within one or two 
degrees, at best. Real situations involving rock joints would 
obviously produce a wide scatter of results, and the only solution 
to this would be extremely large numbers of observations. A 
statistically viable sample could then be analysed on the basis of 
probabilities. 

2.1.7 PRACTICAL APPLICATION TO SLOPE STABILITY 

The possible variation of structural features with depth below 
surface, and the problem of joint weathering andinfilling material 
suggest that the method described above can only be used to 
advantage, in a limited number of situations. 

The qualification of prime importance is that failure is an-
ticipated by translational shear, rather than by rotational shear. 
This antomatically implies well developed and relatively widely 
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spaced joint sets, in basically competent rock. Given these 
conditions and sufficient economic impetus, the following steps are 
suggested: 

1. Estimate the dimensions of the problem of concern (bench 
stability or complete slope stability), and the consequent 
range of normal stresses acting across the adversely  
orientated joints. (The normal stress range would normally 
be calculated from self weight stress assumptions.) 

2. Estimate the down-dip length of the potential shear surface. 

3. Estimate the effective joint wall compressive strength. 
This, combined with the normal stress range, puts the problem 
in correct perspective since the ratio of ( Gn/ Crc) 
determines the range of asperity bases that should be 
measured. There are two test methods that could be used to 
obtain this mechanical property: 

(a) Unconfined compression tests on cylindrical specimens 
cored from the weathered rock adjacent to the joints. 
(Figure 2.1.20 illustrates that the effective joint 
wall compressive strength of the specimens cored 
from the bench faces of Corta Atalaya, was approximately 
one quarter of the compressive strength of the 
unweathered rock, assuming that equation 6 was applicable). 

(b) Perform a limited number of direct shear tests on 
representative joint specimens, loading all at the same 
normal stress. The mean value of (-r MI) would then 
supply an approximate value of (0c/ Chn ) from 
Figure 2.1.19 (equation 6). This in turn, would give 
the value ofiab. 

Of the two methods (a) is preferred since (b) presupposes 
an approximate knowledge of the peak shear strength (equation 6). 

Suppose the following values were obtained for the above 
estimates: 

1. Nqrmal stress range of relevance to the problem = 0 to 
250 lbf/inc. 

2. Length of potential shear surface = 400 feet. 

3. Effective joint wall compressive strength = 5000 lbf/in2. 

civc-c range = 0 to 5 % 

Therefore the required range of asperity bases is 0 to 2.5 %,  
which represents 0 to 10 feet of the 400 feet potential shear 
surface. 
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Field measurement of (i) values 

As already indicated, a large volume of data is required 
from a large number of joint exposures. A photogrammetric 
technique is the obvious solution from the point of view of 
economics, time and accessibility. 

The larger the scale of the problem, the less sensitive is 
the range of asperity base. Consequently stereoscopic pairs of 
photographs could be exposed using a phototheodolite from as 
much as several hundred feet from the rock face, so that the 
stereoscopic overlap contained a large number of joint exposures. 
A smaller scale of problem would require a phototheodolite survey 
at much closer range, but since the asperity base would be reduced 
in proportion, the same amount of data could probably be obtained 
from one pair of photographs. 

Ideally the photographs should be taken from as near perpen-
dicular to the joint dip as possible. This facilitates the 
measurement of coordinates in the stereocomparator,but is not 
essential. Spot height coordinates measured along sections 
parallel to the dip direction could then be punched onto computer 
tape, and be statistically analysed in the specified manner. 

In the numerical example above, the range of asperity bases 
was equivalent to 0 to 10 feet. Therefore spot height measurements 
could conveniently be made at 1 foot intervals, and taken up to 
say 20 feet, so that a value of A.B. of 2.5% involving ten steps 
would supply at least 10 (i) values for that base length, 

for each section measured: (N-n=20-10=10).joint 
exposures having down dip dimensions of only 10 feet would therefore 
supply a limited number of data points for the high values of 
A.B.%. 

Evaluation of peak shear strength  

Equation 7, which is reproduced below: 

T/ Tri  = tan [-(.  90-d  
ft 

contains one constant for a particular joint roughness, and 
three interdependent variables. 

A 
The maximum dilation angle d for a particular surface is 

estimated from the following relationship: 

idb  = S.D.(i)°  for A.B.% = 0.05% 

In the numerical example, 0.05% represents 0.2 feet. A statistical 
analysis of (i) values obtained for asperity base steps of only 
2i inches is therefore required. This means that two scales of 
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phototheodolite photography are required, the second one for 
measurements of spot height coordinates for steps of only 23 inches. 

The variable peak dilation angle (dn), is dependent on 
normal stress and will be computed for different ratios of (0-n/ GC). 
The latter has been shown to be related to asperity base as 
follows:- 

( Gi/ Gc) x 100 (%) = 2 x A.B. (%) 

and dn = S.D. Ur 

Consequently the ratio of shear to normal stress (Y/ -a) can 
be evaluated for a range of normal stresses. 

CONCLUSIONS 

The statistical shearing analogy represents a potentially 
economic method for estimating the peak shear strength of unfilled 
rock joints. It has been verified by comparison against model 
joint tests, which from the point of view of reproducibility re-
present nearly ideal conditions. Much field work is therefore 
required to establish its importance or otherwise to real rock 
problems. As a first stage in this investigation, it is to be 
hoped that joint roughness profiles will be measured with more 
frequency than has been the case in the past. A large amount of 
experience needs to be accumulated on the joint roughness of 
different joint sets, and in different rock types. 

Secondly, systematic measurement and analysis of roughness 
profiles is required before performing direct shear tests on 
joints in the laboratory. (The thesis in preparation by Rengers 
on the effect of roughness on the shear strength of rock joints 
Should provide some very useful results in this respect. Rengers39 
described a method of statistical analysis of roughness, in which 
curves of tan (i) (positive and negative) versus istepsizer 
were presented. The latter appears to correspond to the present 
asperity base. The maximum values of tan (i) were used to predict 
a dilation diagram for the joint, when the latter had 'free dil-
ation possibilities' - i.e. zero normal stress. It is to be 
hoped that Renger's thesis will clarify these concepts. 
Comparison of results for rock joints with those for the model 
joints should prove most interesting.) 

Thirdly, the measurement of effective joint wall compressive 
strength needs to be carefully evaluated. It seems possible that 
an instrument along the lines of the Schmidt hammer might be 
developed to estimate this in the field. This index would need 
to be carefully related to unconfined compression strength, over 
a wide variety of test conditiorr. 
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2.2. THE ESTIMATION OF IN-SITU SHEAR STRENGTH FROM BAdK ANALYSIS 
OF FAILED SLOPES 

SUMMARY 

One month was spent on a field project in Rio Tinto, southern 
Spain. Particular attention was focussed on two failures in 
porphyry which had occurred in one of the older open pits. Field 
observations of geometry, geology, jointing and water are presented. 
A common cause of failure was thought to be the fracturing of 
surface drains by tension cracks. Both failures were reputed to 
have occurred after periods of prolonged rainfall. 

The geometry of the slides was determined by Plane Table 
surveying. Three cross sections through each slide were measured 
and compared with the pre-failure slope profiles obtained from 
mine plans. The slide scars were characterised by steep rear faces 
some 30 metres high corresponding to the pre-existing tension 
cracks. These were relatively smooth faced shear-type joints. 
Lower down, the surfaces were extremely rough and littered with 
debris. The steps of vertical joints could be seen in various 
places. 

Laboratory shear tests were performed on sawn planar specimens 
obtained from the debris. A residual friction angle of approximately 
30° was indicated. Consequently a friction angle of 35° was estimated 
for the smooth rear faces of the slides. The sections that were 
fabricated through the slides were divided into slices corresponding 
to changes in surface roughness and inclination. By assuming 
an arbitrary angle of friction of 45°  for the rough surfaces, the 
corresponding values of cohesion were obtained from back analyses 
of each section. The parameters c and ► were converted to shear 
and normal stress by calculating the mean normal stresses acting 
across the rough shear surfaces. 

The steepness of the failure surfaces meant that the mean 
normal stresses were remarkably low even for the fully drained 
case ( 1 to 3 Kg/cm2), despite the size of the failures; 
60,000 and 100,000 tons. A method is presented for extrapolating 
the shear strength data to higher normal stress levels. Comparison 
with large shear box tests on porphyry joints suggest that the 
method may prove extremely useful. 
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2.2. THE ESTIMATION OF IN-SITU SHEAR STRENGTH FROM BACK 
ANALYSIS OF FAILED SLOPES 

INTRODUCTION 

The rational deepening of existing open-pit mines, and the 
design of slopes in virgin ground are two problems which 
frequently confront slope stability engineers. The problem of 
slope design in virgin ground is a very acute one since at 
best the structure, shear strength and joint water can only be 
assessed from recovered drill core and bore hole measurements. 
Occasionally some of this information might be found in local 
outcrops having similar structural features, but such distant 
extrapolation could be extremely hazardous. 

However, the design of higher or steeper slopes in an existing 
open-pit excavation is somewhat easier since the designer is 
surrounded by in-situ evidence of what shear stresses can be 
tolerated by given joint sets. It is likely that localized 
slope failures will have occured during the life of the operation 
and every effort would normally be made to back analyse these. 
Slopes which are standing provide interesting height-inclination 
data, but it is only the slopes which have failed which provide 
the concrete evidence of a factor of safety reduced to below 
1.0. It is then up to the designer to assess the possible role 
of water pressure in these failures, and estimate the shear 
strength accordingly. However as will be seen this is not the 
end of the problem. The mean normal stresses operating when 
the failures occurred is found to be extremely small even for 
failures as large as several hundred thousand tons. Once again 
an extrapolation of limited strength data is required, if the 
stability of whole slopes is to be assessed. 

During the Spring of 1969 the author spent onemonth on a 
joint field project in Rio Tinto, Southern Spain by kind permis-
sion of Rio Tinto Espafiola. (Ross Brown and Barton 2). The 
stability of several rock slopes was studied, both in currently 
worked open-pits and in adjacent old workings. Particular 
attention was focussed on two failures in Corta Filon Sur. This 
open-pit has only been mined very locally since 1939, and it 
presented an ideal opportunity for back analyses to be performed. 
In view of the continental location of the field work, and the 
metric mine plans, all data is given in metric units in this 
Section. 

2.2.1 FIELD ASSESSMENT OF TWO FAILURES IN CORTA FILON SUR 

The two failures investigated occurred in 1935 and 1968 and 
involved approximately 60,000 and 100,000 tons of rock 
respectively. They were both located on the north wall of the 
pit where several benches had been removed during cutting back 
to the final slopes. 
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Pit geometry  

The total surface dimension of the pit was 1200 metres by 
600 metres, with the long axis approximately E - W. The slopes 
in porphyry on the north side rose to about 250 metres in height, 
while the slopes in slate on the south side were only some 120 
metres high. Bench angles in the porphyry were generally in the 
range 60° to 70°, and overall slopes usually 45° to 50°. 
However these are somewhat misleading gigures since the lower 
150 metres (which incorporated the failures) were frequently 
much steeper (up to 659, especially where some of the original 
benches had been removed in cutting back to the final slopes. 
Figure 2.2.1 gives an indication of these slope heights and 
inclinations and their relevance to failure of the slopes. 

Geology 

Most of the north side of Filon Sur was composed of strong 
chloritized porphyry, though towards the eastern end it appeared 
more sericitised and was white and crumbly. This was particularly 
marked due to the long period of weathering since the slopes were 
last excavated in that part of the pit. However it is thought 
that the two failures under investigation occurred entirely 
within the strong chloritized porphyry. Figure 2.2.2 shows 
sequence photos of these two slides S.1 and S.2. A third 
slide (S.3) immediately east of S.2 did appear to have occurred 
in weaker material, particularly at its upper limit. 

Jointing  

No systematic investigation of the jointing in the north 
face was undertaken due to the limitation on time. However it was 
apparent from the nature of the steep rear faces of slides S.1 
and S.2 (See Figure 2.2.2) that there were two important steeply 
dipping joint sets defining the upper limits of the slides. These 
sets had dip directions approximately S.W and S.E. and dips 
ranging from 75° to 850, and 850 to 950  respectively. 

The slide scar of failure S.1 was accessible and there 
was evidence to suggest that the shearing failure involved the 
opening of a nearly vertically dipping set of joints in tension, 
giving the surface a rough stepped appearance. It was impossible 
to recognise a second joint set due to the large amounts of debris 
littering the surface. The slide scar of failure S.2 was 
unfortunately more or less inaccessible due to the danger from 
loose debris. However when standing immediately below, a brown 
stained set of nearly vertically dipping joints could be seen 
in various places. This made the surface appear extremely 
irregular and stepped. The general roughness of both these shear 
surfaces led one to suspect that some intact material had been 
sheared through. Howeverlfrom nstrength point of view this could 
only have been very localised. 
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SECTION 2.2. 

Influence of underground workings  

In the interim period between 1935 (when slide S.1 occurred) 
and the present, four stoping areas were developed below what is 
now the failed area. Their location can be seen in Figure 2.2.2. 
Etope No. 1 with collapsed crown pillar is approximately below 
slide Sai stope Nos. 2,3 and 4 are now visible below slides S.2 
and S.3. since the entire roof area has collapsed. A lot of the 
slide debris from S.2 and S.3 was caught behind the lip of these 
stopes. However a large talus from S.2 is visible between 
sections 2180 and 2150. It will be seen later from sections 
through slide S.2 that this quantity of debris could not have 
passed over the lip of the stoping area unless the slide had 
occurred before the roof of the stope had collapsed. However, 
possible triggering of the slide by subsidence movements should 
be born in mind. No such problem existed with slide S.1 since 
it occurred before the stoping operation. 

Influence of water  

It is significant that slide S.1 (1935) is reputed to have 
occurred after a long period of rainfall. Likewise, slide S.2 
occurred late in 1968 during an unusually wet winter, and during 
a night of very heavy rain. The date and conditions prevailing 
when S.3 occurred are not known precisely. However in a previous 
visit to Rio Tinto in April 1967 it was noticed that a 30 metres 
long section of a major concrete drainage channel had been removed 
by a slide. This was located just above point F (Figure 2.2.2) 
and defined the top vertical face of the slide. Smaller drainage 
routes were located at the back of several benches particularly 
below the crest of the north face of Filon Sur, It appears 
reasonable to assume that the joints defining the steep rear 
faces of the slides S.1 and S.2 were well supplied with water 
during the period immediately prior to failure, since_ these 
joints were probably open as tension cracks. 

It is very douttful whether rigid surface drains (in 
concrete or directly in the rock) achieve the desired result in 
situations as potentially unstable as open pit mine slopes, where 
tension cracks are accepted as partners to high ore/waste ratios. 

Most surface drains encountered in Filon Sur and in other 
pits in the area were located near the crest of the slopes. This 
apparently ideal locp.tion is also where tension cracks are most 
numerous. Rigid drains will be cracked in the optimum positions 
for providing the tension cracks with surface run off, channeled 
from potentially large areas. Flexible plastic (P.V.C.) channels 
would seem a more economic alternative for unstable environments, 
despite the extra cost. 

It is common practice for the National Coal Board to sprgad 
puddled clay round the crests of their opencast mines (Walton5°). 
This would seem an ideal solution for certain environments, provided 
the moisture content remained high enough to prevent cracking. 
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SECTION 2.2. 

Survey of slide dimensions  

For the purpose of analysis it was necessary to survey the 
dimensions and locations of sections through the slides, and relate 
these to the correct transverse sections that were obtained from 
mine plans. The Plane Table method of surveying was employed 
using a Telescopic Alidade and setting up over two stations on the 
South side of the pit opposite the slides. These two stations 
defined a base line of approximately 120 metres in length, which 
was located on the plan of the open pit by resection from theodolite 
sightings to two shafts visible at the west end of the pit. 
Fourteen points were plotted by Plane Table Survey, all located 
on the failed north face, and chosen for maximum information, 
The location of these points is shown in Figure 2.2.2. 

A plan view of the points is obtained directly by such a 
survey, while the elevation of the points is obtained by simple 
computation using the plan distances and telescope inclinations. 
The appropriate plan and elevation have been given by Ross Brown 
and Barton52. As an indication of the scale of the photograph, 
the points E and N defining the upper half of the slide S.2 
were 35 metres apart vertically, and 7 metres apart in plan. 

Due to the inaccessibility and loose nature. of much of the 
slide area estimates of the variable inclination of the slide 
surfaces had to be made from below using clinometers. However 
it was possible to take a close look at slide S. 1. The zone 
between points K and L, and the rear faces of the slide were 
plotted with some certainty. Three vertical sections were measured 
for each slide scar at 10 to 15 metre intervals. The 
measurements were then related to the correct mine sections of 
the slopes as they existed before failure, using the Plane Table 
survey points. Figures 2.2.3 and 2.2.4 are scaled drawings of 
the three sections measured for each slide. 

2.2.2. LABORATORY SHEAR TESTS 

It is common practice to define the shear characteristics of 
rock joints in terms of the Coulomb constants namely, angle of 
friction ( () ) and the cohesion intercept (c). These are coif-
venient parameters since for a given normal stress they define a 
distinct coordinate of shear and normal stress (Tw). The fact 
that the peak strength envelope is curved in reality means that (c) 
and (4)) should be regarded not as constants but as pieoe-wise 
linear approximations to the shear strength for given normal stres-
ses. 

It was realised that the rock surfaces involved in the two 
failures ranged from smooth planar shear type joints in the upper 
half of each slide, down to very rough tension type joint surfaces 
and possibly even some failure through intact material in the lower 
half. Since this range of surfaces was encountered in each slide 
it was decided that the most rational method of back analysis 
would be one which was sensitive to these obvious changes in shear 
characteristics. Consequently the frictional resistance of the 
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Figure 2.2.4 	The geometry of three sections through slide S.2 
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smooth rear faces (when not vertical) would be based on an 
estimate a few degrees above the residual or basic friction 
angle for planar surfaces, and have an assumed zero cohesion. 
At the other end of the scale some coordinate (T, 4'i had to be 
obtained to describe the shear strength of the rough joints at 
the mean normal stresses operating. 

An arbitary value of the angle of friction was therefore 
guessed, and the corresponding value of cohesion intercept 
calculated by back analysis. These two parameters and the 
mean normal stress then provided the required (1', G) coordinate. 

Basic friction angle  

The friction angle of the planar shear type joints was 
required with some degree of accuracy since this was one 
estimated parameter not obtained through back analysis. 

Direct shear tests were performed on artificial planar sur-
faces sawn from 20 to 40 Kg. specimens which were transported 
back to the laboratory. The shear testing rig was capable of 
transmitting shear loads of the order of 200 Kg. to shear 
surfaces up to 35 cm2  in area. The rate of shearing was approx-
imately 1 mm. per minute and the range of normal stresses 0.5 
to 11.0 Kg/cm2. 

The specimens were prepared using a large diameter diamond 
saw which produced surfaces that were somewhat smoother than 
anticipated. In addition, the number of specimens successfully 
prepared was limited to three or four shear pairs per rock type. 
The solution to both these problems was obtained by sand blasting 
the mating surfaces before testing. At the end of a test the 
high spots, which were in contact and consequently slickensided, 
were preferentially sand blasted. In this way the distribution 
of contact areas was changed between tests and the same specimen 
could be tested at several different normal stresses. 

It appears from similar studies of artificial rock surfaces 
(Ripley and Lee ,49 Patton20, Rosen gren22) that the residual or 
basic friction angle of rock joints is most closely simulated by 
these artificial surfaces when shearforce-displacement character-
istics show no appreciable peak, or fall to residual. In addition, 
the surfaces should not be so smooth-that stick-slip oscillations 
occur, or so smooth that the frictional resistance rises due to 
roughening of the smooth surfaces with increased displacement. 
In other words the 'granular' texture of the rock should be 
exposed but not to the extent that macroscopic interlocking 
occurs. Sand blasting appears to satisfy all these requirements. 

Shear force-displacement characteristics, and measurements of 
the slickensided areas as a function of normal stress have 
been given previously by Ross Brown and Barton52. For the 
present the results of prime interest are the values of basic 
friction angle obtained for the Filon Sur porphyry and for some 
other local rock types. Figure 2.2.5 demonstrates that the 
range was typical of other results reported in the literature. 
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Both porphyry specimens (from two adjacent open-pits) gave the 
same value of ()b = 30i°. 

2,2.3 MULTI-LINEAR METHOD OF SLICES 

A simple method was developed in an attempt to account for 
changes in shear surface inclinations and changes in joint 
roughness. It can be seen from Figures 2,2.2, 2.2.3 and 2.2.4 
that changes in joint roughness (implying changes in joint set) 
always coincided with changes in inclination. Therefore, 
bearing in mind, the near-vertical joint sets in the north 
face, the failed slopes were 'reconstructed' as discrete slices 
with vertical boundaries coinciding with the roughness and inclin-
ation changes. 

The essential features of the multi linear method of slices 
are illustrated in Figure 2.2.6. The stability of each slice is 
dependent on the magnitude of the forces acting perpendicular and 
parallel to the failure surface beneath it and on the shear strength 
exhibited by the failure surface. The stability or instability 
of every slice is computed as a force acting along the failure 
surface, by simple limit equilibrium methods. If the sign of this 
force P is positive, this implies that a force of magnitude P 
acting down the slope is needed to bring that slice to limiting 
equilibrium. In other words the slice is stable, having a factor 
of safety greater than 1.0. If on the other hand, P is negative, 
this implies an unstable slice which requires a force of magnitude 
P acting LIE the slope to keep the slice from sliding. 

The following equation describes the limiting equilibrium 
of forces beneath slice No. 1 (see Figure 2.2.6). It is 
assumed for the present that the slope is fully drained of 
water. 

tan (I)1  = Wl  sink-c1 L1 + P1  

  

where 

w 

P 

L 

or Pi = W1 

W1 cos]P 

cosg, I (tan (1) 1 	tang) 1) + cl  Ll 	 (1) 

Suitable Units 

is the downslope equilibrating force 
is the weight of the slice 

is the inclination of the failure surface 
below the slice 

is the mean angle of friction of the 
failure surface below the slice 

is the mean cohesion intercept at the mean 
normal stress operating 

is the length of shear surface beneath each 
slice 

(Kg) 
(Kg/unit 

thickness) 

(degreeso) 

(degrees°) 

(Kg/cm2) 

(metres) 
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Figure 2.2.6 
	

Limit equilibruim multi-linear method of slices. 
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All the slices chosen to simulate the mass of failed rock 
are analysed in this way. The parameters W, R and L will 
be known for each slice. However P, () and c will be unknown, 
until the following substitutions are made:- 

Planar surfaces 

Rough surfaces 4) 

= (1)b 	+ roughness estimate 
= 0 

= 450  (arbitrary) 
= back analysis result for 
particular mean normal stress. 

The equilibrating P forces act in directions which are parallel 
to the respective failure surface inclinations. It has been 
assumed in this method of analysis that both shear and normal 
forces are transmitted across slice boundaries. Supposing that 
slice No. 1 in Figure 2.2.6 is unstable ( Pi), then the 
component of instability or 'unstable excess' acting on slice 
No. 2 is assumed to be as follows: 

P1 	OD = P1 cos (Al -A2 ) 

The local changes in normal stress on the failure surface 
that are implied by this assumption are ignored. 

When considering the whole failure surface each slice is 
analysed in turn starting with the uppermost one. The P forces 
for each slice-are resolved parallel to the assumed failure 
direction of the total sliding mass, which can generally be assessed 
from a glance at the sections (Figures 2,2,3 and 2.2.4) since 
the whole mass has failed anyway, the sum of the resolved P 
forces is zero. 

Z(P') = o   (3) 

Hence a simple solution is obtained for the unknown parameter 
cohesion. 

It is realised that the application of limit equilibrium 
methods to a discontinuous body of rock sliding initially on 
different joint surfaces is open to criticism, since the 
interslice behaviour is really unknown. However, in the 
absence of other simple techniques it is felt that the method 
presented is at least an improvement on grossly approximating 
the failure surface to a single plane, when it is clearly apparent 
that this could not occur, due to the non verticality of the rear 
of the slice. 

(2) 
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Undrained slopes 

In the absence of water the normal stress acting across a 
failure surface is obtained by approximating it to the resolved 
component of the distributed self weight of rock lying above the 
surface. The normal component of this self weight stress is a 
fanotion of cos2  3, where p is the inclination of the surface. 
It can be seen therefore that the normal stress on a steeply 
inclined surface may be a small fraction of the vertical 
overburden stress ( 	), where (6) is the density of the rock 
and ( h ) is the depth below surface: 

crri  = KVICOS2  B 	 (4) 

The effect of a water pressure distribution on this already 
small normal stress is to reduce the effective stress across 
the surface by an amount equal to the local water pressure: 

Gn xhcos2  p - UW 	  (5)  

This in itself leads to serious reduction in stability. 
However, tension cracks often delineate the rear face of potential 
rock slides, and these can be a great source of instability if 
they intersect surface drainage routes. 

A deep tension crack which is well supplied with water can lead 
to an infinite variety of transient water pressure distributions 
in lower parts of the potential failure surface, depending upon 
the tightness of the joints and the drainage path involved. For 
the purposes of analysis, two quite pessimistic assumptions of 
transient water pressure distribution were analysed. These 
are illustrated in Figure 2.2.7. Distribution (A) which is the 
easiest to analyse in a slices method, represented one possible 
state where seepage was limited, but not to the extent of pro- 
ducing a static head distribution. Distribution (B) is an alternative 
and perhaps more ra.allstic with-seepage distribution, and one which 
is frequently used (Sharp59). Both methods assume a zero exit 
pressure at the toe of the potential slide, and tension cracks 
which are full of water. 

The water pressure distribution on each slice, whether it be 
triangular, rectangular or trapezoidal produces a reduction in the 
normal force beneath each slice equal to the product of the mean 
water pressure (1.4,4 ) and the base length (area) of the slice 
concerned. Therefore equation (1) can be modified as follows: 

or P = 

tan(k =  W sin p -  cL + P 
W cos p - UwL 

tan(0( W cos p - uwii) 	cL - Wsin 

 

(6) 

 

In cases such as that illustrated by slice No. 1 (Figure 2.2.7), 
where the boundary of the slice is a water filled tension crack, 
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Figure 2.2.7 Two assumptions of water pressure distribution. 
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a slightly more complicated treatment is required. The 
horizontal force (1- Uwh) acting on the vertical rear face 
is resolved into its components perpendicular and parallel to 
the inclined surface beneath the slice. Hence equation (6) 
is modified to the following, for this special case: 

tanf 	_ 	pi - ci 	+ 4 Uw h cos pi Pi  
wa.  cos P1 - UwLi - 2  Uw  h sin pi 

or 	P = tanitil(W1 cos t31 - UWL1 iliwh sin pl ) 

+ c1L1  - Wi sin pi - Uwh cos pi 

No attempt has been made to generalize on the orientation of 
the tension crack, which is assumed to delineate the top of the 
unstable mass of rock. It is a simple matter to modify the 
calculations for overhanging or sub-vertical joint faces. 

Assumptions and results  

The following parameter assumptions were made for both slides: 

Planar joint surfaces 0 = 350 	c = o 
Rough sheared surfaces0= 450 	c = unknown 
Rock mass density 	3.00 g/cc. 

The assumed density was the measured mean of all the laboratory 
specimens of porphyry that were prepared before testing. 

Three values of cohesion were calculated for each slice based 
on the three assumptions of water pressure distribution: 

1. Drained 
2. Distribution A 
3. Distribution B 

Table 1. 	Values of cohesion intercept from back analysis  

SLIDE SECTION Cohesion c Kg/cm2  Approx. 
mass of slide 

Drained A B 

2265 0.40 3.98 2.6o 
5.1 225o 0.39 4.02 2.92 65000 

2240 0.83 4.00 2.90 (metric tons) 

2150 (-)o.17 3.41 2.28 
S.2 2135 0.18 3.78 2.35 105,000 

2120 0.47 2.19 1.87 (metric tons) 

(7) 
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The values of mean normal stress were calculated for each 
Section based on the assumption of self weight stresses (equation 4). 
However this was only done for the slices lying above 'rough 
sheared surfaces', since the above values of cohesion intercept 
were only relevant to these. The results tabulated below are 
again for the three cases; drained, and distributions A and B. 

Table 2. Mean effective normal stresses on rough shear surfaces  

SLIDE SECTION Mean effective normal stress Kg/cm2  

Drained A B 

2265 2.31 (-) 0.57 0.72 

S.1 2250 3.41 (+) 0.67 1.76 

2240 2.23 (-) 0.33 0.74 

2150 3.39 (-) o.o4 1.54 

S.2 2135 2.58 (-) 0.36 0.83 

2120 0.97 (-) o.64 o.o8 

The mean effective normal stresses acting across the whole 
rough, shear surface of each slide were best approximated by 
'weighting' the above results according to the relevant cross 
section areas. The following overall results were obtained for 
mean effective normal stress. 

SLIDE Drained A B 

S.1 2.74 (+) 0.015 1.15 
Kg/cm2  

S.2 2.61 (-) 0.28 0.98 

It is clear that the limited seepage distribution A was an 
excessively severe assumption, since the above results implied 
negligible and even negative effective normal stresses. Consequently 
distribution B was adopted as giving a more realistic approximation 
to the water pressure distribution at failure. 
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2.2.4 THE PROBLEM OF STRENGTH EXTRAPOLATION 

The weighted mean values of cohesion intercept obtained for 
slides S.1 and S.2 from Table 1 were as follows: 

S.1 

S.2 

C = 

0 = 

2.83 

2.23 
Kg/cm2  (for distribution B) 

Since these values were obtained for an assumed value of angle 
of friction of 450  the coordinates (1;(r) are simply obtained 
from the following relation: 

=Q-n 	c  

S.1 	3.98, = 1.15 Kg/cm2  

S.2 	r = 3.21, G.= 0.98 Kg/cm2  

The two slides that were back analysed were failures in-
volving approximately 60,000 and 100,000 tons of rock. These 
are by no means enormous failures, but they are probably larger 
than those that generally occur in situations amenable to back 
analysis. Despite the fact that the failure surfaces were 
located at depths up to 35 metres below the pit face, the mean 
effective normal stresses acting over the failure surfaces were 
only 1.0 Kg/cm2  or thereabouts, after the corrections for 
inclination ( cos2 ) and mean water pressure ( Uw ). 
How then can a strength envelope be extrapolated realistically 
from results of (7,T) at such low normal stress levels? 

There is a widespread and unfortunate tendency to shear 
test rockjoints at normal stresses up to 100 or 200 KOm2  
even though the projected slope heights rarely exceed 0 metres. 
Bearing in mind the effect of failure surface inclination and 
possible water pressures, a range of normal stresses of 0 to 
40 Kg/cm2  would seem more than adequate for any realistic shear 
testing programme for open pit design. However a back-analysis 
shear strength result at a normal stress of 1 Kg/cm2  is still 
extremely low for extrapolation purposes, if shear tests 
cannot be performed. 

The general equation of peak shear strength developed for 
model tension joints was tried in an attempt to provide a 
workable extrapolation of strength. It will be remembered from 
Section 2.1 that for a basic friction angle (GOO of 300 

the following equation was indicated: 

Tie 	ton [2.° (-110(k)+ 301 (8) 
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In view of the measured basic friction angle of 3Q o  for 
planar porphyry specimens, the above relation will be accepted 
as a possible peak strength equation for the failures in porphyry. 

Comparison with large shear tests on porphyry  

The results of peak and residual shear strength for natural 
joints in porphyry obtained from Corta Atalaya (the adjacent 
open W:t to Filon §14r) were presented in Section 2.1 (Figure 2.1.20 
Pentz,4  and Kutter2-7). The large shear machine was capable of 
testing joint areas of approximately 0.1 m. 

Unconfined compression tests were also performed on three 
porphyries from three pits in the Rio Tinto complex. (Ross Brown 
and Barton52). The most weathered specimen gave a mean strength 
value of 295 Kg/cm2. It was found that, if this was taken as 
the hypothetical effective compressive strength for porphyry joints 
in situ, a strength curve could be predicted using equation 8 
above, which was quite a good fit to the limited data. 

This curve is reproduced again Figure 2.2.8 (uppermost 
curve), for a more realistic range of normal stresses. The two 
coordinates of 	T) obtained from back analysis of failures 
S.1 and S.2 gave the following ratios of (71VG ): 

5.1 	3.46 

S.2 	3.28 

By using equation 8 or the design chart presented in Section 2.1 
it is a simple matter to produce predicted values of the ratio 
of effective compressive strength to normal stress (V.c/G-ri): 

S.1 158 

S.2 142 

Therefore the two effective compressive strengths can be 
calculated since the two mean normal stresses (1.15 and 0.98 Kg/cm2) 
are known: 

S.1 G c  = 182 
Kg/cm2  

S.2 = 139 

The predicted joint shear strength curve for the mean of these 
two effective strengths is shown in Figure 2.2.8. It passes 
between the two lowest shear test results, and if extrapolated 
would pass a little below the data obtained at normal stresses 
between 50 and 90 Kg/cm2  (See Figure 2.1x20) It is significant 
that the curve lies between the peak and residual results. 
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Figure 2.2.8 Predicted strength envelope from 
the back-analysis of two failures. 
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In view of the severe weathering that occurs in the acid 
environment of the Rio Tinto pyrite mines, it may not be 
coincidental that Slide S.1 which occurred in 1935 indicates 
an 'effective joint-wall compressive strength' at least 
20% higher than slide S.2 which occurred in 1968. 

However the uncertainties surrounding the water pressure 
distributions must always be appreciated. Despite this, the 
general equation of peak shear strength (equation 8) is seen 
to be a potentially very.useful extrapolation method when one 
considers that strength envolopes may be required up to normal 
stresses perhaps one hundred times that operating during 
failure of the rook slides that can be back analysed. 
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2.3. A LIMIT EQUILIBRUIM APPROACH TO PROGRESSIVE FAILURE 
IN EXCAVATED ROCK SLOPES 

SUMMARY 

The stability of a rock slope is largely controlled by the 
presence of discontinuities in the rock. Their presence means that 
failure is generally of a translational type, and is therefore 
amenable to simple methods of analysis. The most unstable situation 
is chosen; one joint set dipping into the slope with a strike 
direction parallel to the slope face. This situation is amenable 
to a two dimensional approach. 

A limit equilibrium method is used to analyse a simple plane 
failure. Three refinements are then incorporated; the division of 
the unstable rock mass into slices (representing vertically dipping 
joints), the assumption of zero tensile strength across the slices, 
and the effect of excavation on the assumed self weight stress 
distribution of the joints exposed by the excavation. 

A method is developed whereby states of stability other than 
the limiting case can be analysed. The stability or instability 
of parts of the slope are characterised by forces acting parallel 
to the failure surface. The length of each joint that is overstressed 
is produced by this method. Consequently the depth of failure can 
be calculated without recourse to computing methods. 

The concept of pre-failure shear displacements and increased 
weathering of overstressed joints is introduced. This progressive 
failure mechanism leads to a possible stepped portion of the 
failure surface. The predicted multi-linear slide scar is characterised 
by a vertical scarp passing through the crest of the slope, a 
stepped portion on which the vertical joints open, with sliding 
on the inclined joints, and shear failure on the inclined joint 
passing through the toe. 

The stepped portion is caused by progressive failure, and 
residual shear strength parameters are suggested for design purposes. 
The method is illustrated by worked examples, in which the progressive 
failure mode is shown to reduce the failure depth considerably. A 
further reduction in stability is caused by transient water pressures. 
The pessimistic assumption of a full tension crack, and steady 
seepage reducing to zero exit pressure at the toe is used as an 
illustration. 
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2.3 A LIMIT EQUILIBRIUM APPROACH TO PROGRESSIVE FAILURE IN 
EXCAVATED ROCK SLOPES 

INTRODUCTION 

The majority of rock slopes warranting stability investigations 
will be unstable due to one of two inherent structural features. 
This could be the chance interaction of the slope with unfavourably 
dipping fault surfaces or with clay filled joints or alternatively, 
the eventual overstressing of one or more sets of adversely 
orientated joints dipping into the slope. The overstressing 
mechanism may be one of joint water pressure increases caused by 
poor drainage, or simply due to excavation of the slope to steeper 
angles or increased cut heights. The failure mechanism may also 
be initiated by dynamic loading from earthquakes or very large 
blasts, but this type of loading will not be considered here. 

The type of failure to be investigated will be limited to 
that occurring on adversely dipping joints, associated with at 
least one further joint set. A two dimensional approach, and 
consideration of progressive failure lead to the development 
of a multi-linear failure surface. However this belies the fact 
that the mg de of failure is purely translational. (Skempton and 
Hutchinson°1) There is no rotational component. 

The stability of rock slopes has been the subject of several 
recent papers, in which the three dimensional graphical method of 
analysis has been utilized ( Wittke, Londe, Vigier and Vormeringer,63,  
1'4  and John65 .) There is no doubt that in any open pit excavation 
there are more potentially adverse rock tetrahedra defined by 
the intersection of two joint sets, than there are unstable 
wedges defined by single joint sets. However, the frequency of 
occurrence is somewhat overshadowed by the fact that potential 
failures delineated by two shear planes are inherently more stable 
than those delineated by one shear plane. At present the graphical 
methods do not incorporate any stress or limit analysis for deter-
mining the position of tension cracks in the unstable tetrahedra. 
Consequently the results obtained are dangerously under-conservative. 

The two dimensional approach which will be adopted here, 
incorporates sliding on combinations of a single joint set and 
opening of tension cracks in a secondary joint set. This is the 
most pessimistic failure mode and consequently the one demanding 
most attention. 

Stresses induced by self weight  

It is assumed in the present analysis that all stresses are 
initiated through self weight loading of a rigid body. This 
assumption is made in spite of the current fashion for computer 
produced elastic stress distributions. Mueller and John66  once 
suggested that the concept of overburden depth and self weight 
stresses used in shallow soil slopes was not applicable to steep 
unsupported rock slopes, due to the severe stress concentrations 
around the toe of these steep slopes. 
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These stress concentrations have been indicated in numerous 
photoelastic and finite element studies of elastic materials. 
They have also been demonstrated by rock bursts at the base of 
steep fjord slopes in Norway. However, fjords generally lie at 
the foot of mountain ridges which are frequently in excess of 
5000 feet high. It is well known that such areas are tectonically 
active. In addition and more importantly, most steep fjord slopes 
have extremely sparse jointing limited almost entirely to relief 
or 'sheet' type jointing (Bjerrum and Jorstad6 .9 ). 

Recent studies have indicated that elastic stress distributions 
can be very misleading when applied to normally jointed rock, as 
encountered in most open pit locations. St. John6° has suggested 
that a redistribution of stress can occur in these highly stressed 
zones due to the discontinuous nature of the jointed rock. This , 
redistribution of stress has been clearly demonstrated by Cunda110, 
from finite difference studies of discontinuous block models. 

The physical models of jointed, excavated rock slopes (reported 
in Part 3) which were loaded horizontally and by gravity, indicated 
that the assumption of a self weight distribution of stress may be 
the most valid one, even for steep slopes. 

2.3.1 SIMPLE FAILURE ON A SINGLE PLANE. 

A trivial approach will be followed initially as this helps 
to clarify the essential elements of the problem. Failure is 
assumed to occur on the failure surface AB illustrated in Figure 2.3.1., 
with the whole mass sliding coherently on this plane. The only 
stresses acting on this failure plane are assumed to be self weight 
stresses caused by gravity. No joint water pressures are considered 
for the present. 

The shear strength characteristics of the failure plane are 
assumed to be adequately described by the parameters (c) cohesion 
intercept, and (0) angle of friction. For the present a linear 
shear strength envelope will be assumed, taken as the best piece-
wise linear approximation to the actual curved envelope. 

From the geometry of Figure 2.3.1 the weight of material W 
above the assumed failure plane AB can be calculated as follows:- 

CB = H(cotP- cotot) 

W =1E(cot 	cottw)   (1) 
2 

where: H = the height of the slope 

8 
	

the average density of the rock mass 

= the inclination of the assumed failure plane 

cg°  = the inclination of the overall elope 



Figure 2.3.1 The equilibrium of forces on a planar joint 
in.duced by a self - weight stress distribution. 
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Based on the assumption of self weight stresses, the maximum stress 
occurs on the failure plane vertically below the crest C. The 
component of stress perpendicular to AB can be represented by the 
dashed lines AFB. It is assumed for the present that this can be 
approximated to a 'rectangular' distribution of normal stress 
such as AEDB, where AE is equal to half the height of AFB. 

The limiting equilibrium equation describing the normal and 
shear forces acting on the failure plane is as follows:- 

tan 4) = 	Wsin p cL   (2) 
Wcos p 

where L = the length of failure plane AB = H/sinp 

(The third dimension is unity in this two dimensional approach) 

Substituting for W and L in equation 2 gives the following 
relationship:- 

( 	 tan0= tan p [1- -- Pe  Az ((cotp - cotes) sing p )1 

Simple Method of slices  

Following this trivial approach the wedge of material above 
the plane AB is now split into parallel-sided slices. Figure 2.3.2 
illustrates four slices which are chosen such that the dimensions 
DE and EC are equal, and siriilarly 	and FB. 

Since GF is parallel to AB, triangle CFG is geometrically similar 
to triangle CBA. Therefore the weights of the four slices are 
related as follows:- 

W2 = 3W1 
	

W3  = 3144 

It is assumed that the stress distribution beneath each slice 
can be approximated to a rectangular distribution. The validity,  
of this assumption clearly is increased for larger numbers of 
slices. The limiting equilibrium equations for the four slices 
can be obtained by substitution in equation 2. The equations for 
slices 1 and 2 are as follows:- 

	

1 	(4) 
tan(1)= tan 13 [1- 4c/0 ((cot ta - cotoOsin2 	) 

Hence if treated as separate blocks lying on the failure plane, 
slices 1 and 2 must have different values of cohesion intercept (c) 
or angles of friction ((0), acting across the failure plane for 
them to both be at limiting equilibrium. Alternatively it can be 

(3) 

tanO= tan p 	4c/3z( 	1 	
(5) 

H ((cot t3 - cotpOsin2p )1 



Stable Unstable 

C 

!POSSIBLE TENSION 
I CRACK LOCATION 

Figure 2.3.2 The geometry of four slices dividing an unstable 'wedge'. 
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said that slice 1 is inherently more stable than slice 2 given 
the same shear strength parameters. The same can be said of 
slice 4 and slice 3. 

No-tension concept  

This simple idea can be extended by dividing the two triangles 
ACJ and CBJ into a larger number of slices. It is obvious that 
given certain conditions, several of the lighter weighted slices 
could be stable if they could be considered as independent 
blocks lying on the failure plane. It will be assumed fromnow on 
that the tensile strength of the rock mass in a direction perpendicular 
to the slice boundaries is zero. This assumption is readily justified 
if one considers the slice boundaries to represent a parallel set 
of more or less vertically dipping joints intersecting the rock 
mass with a strike direction perpendicular to the plane of the 
figure. The adoption of this "no-tension" concept leads to partial 
separation of the 'unstable' mass into a possible stable portion 
lying at the top of the failure plane, and a less stable remainder. 
The separation between the two parts will be referred to as a 
tension crack. It is assumed that the tensile nature of the movements 
across these cracks reduces their shear strength to negligible 
proportions. Figure 2.3.2 illustrates the concept. No tension 
crack occurs near the bottom of the failure plane since the slice 
boundaries in this zone are obviously under compression. 

It is important to realise that a stability analysis based 
on the assumption of a coherent wedge sliding on a plane failure 
surface will generally produce a stability estimate that is 
under-conservative. That is, the stability of the slope will be 
overestimated. A simple 'no-tension' assumption is a first step to-
wards improving this estimate, provided that the orientation of 
one of the joint sets makes the assumption reasonable. 

Excavation to increased slope heights  

The division of the unstable zone into slices will now be 
extended to include different depths of excavation. Figure 2.3.3 
illustrates the critical failure planes for four depths of 
excavation, each with the same slope angle. The steeply dipping planes 
can be regarded as a persistent set of parallel joints. At each 
stage of excavation a different joint will be most critically 
stressed. 

It is assumed that the presence of joints does not affect 
the stress distribution compared to an unjointed model. This 
would probably be valid if no shear displacements occurred on 
any of the joints. The degree to which the initial stress 
distribution collapses during progressive failure is of course a 
subject in itself, and cannot be accounted for in any simple 
presentation of this type. However, in a global sense the total 
stress across such failure surfaces remains the same during progressive 
failure. The discontinuous nature of a rock slope should not 
be forgotten, when stress concentrations are imagined. 



Figure 2.3.3. The critical joint planes at four depths of excavation. 
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The four critical failure planes illustrated in Figure 2.3.3 
delineate four geometrically similar triangles, each having as 
their third apex the crest position (C). It is a simple matter 
to modify equation 3 to account for the different limit equilibrium 
equations describing the slope instability at each depth of 
excavation. Supposing an unchanged angle of friction was assumed, 
for each failure plane, then for limiting conditions at each 
depth of excavation the ratios of cohesion values would need 
to be as follows. 

04 = 4/3. c3 = 2c2 = 4cl  

This is clearly a hypothetical way of viewing the relative 
stability at each excavation depth, but it illustrates the 
obvious point that stability is successively reduced as excavation 
proceeds. It is pertinent to point out here that if the failure 
planes (joints) exhibited zero cohesion intercept, then the 
problem would be dimensionless, and the stability identical for 
all depths of excavation. 

However, since peak shear strength envelopes are curved in 
reality the problem is far from dimensionless, whether the cohesion 
intercept (for zero normal stress) is zero or not. 

2.3.2. THE CONCEPT OF AN UNSTABLE EXCESS 

It has been established that individual slices will tend to 
be operating at different 'factors of safety' for equal shear 
strength parameters. It would therefore be useful if a simple 
method were developed, whereby the stability or instability of 
each slice could be computed separately. Integration of all the 
slices below the tension-crack would then give a more realistic 
interpretation to.the problem. 

An unstable excess is proposed, whereby the limit equilibrium 
equation (equation 2) is generalised to include states of stability 
other than the limiting case. This method was used in Section 2.2 
for estimating the stability of slices during back analyses of 
failed slopes. 

The stability of any slice is dependent on the magnitude of the 
forces acting perpendicular and parallel to the failure plane 
beneath the slice, and on the shear strength exhibited by the 
failure plane. If the'sign of,  this force P is positive, this 
implies that a force of magnitude P, acting down the plane, is needed 
to bring that slice to limiting equilibrium. In other words 
the slice is stable. If on the other hand, P is negative, this implies 
an unstable slice which requires a force of magnitude P acting up 
the plane to keep the slice from sliding down. The slice has an 
'unstable excess' of magnitude P. It is assumed that any unstable 
excess will be transmitted to the slice immediately below, but this 
aspect will be dealt with shortly. 
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Figure 2.3.4 illustrates the equilibrium of forces beneath an 
individual slice (number n) of weight Wn. The limiting equation 
is as follows: 

inn Sin p _ 	ph 
taut.,  = 	 

Wh cos p 

or 

Pn  = - Wn  cos p (tan(1)- tan p ) cLh 
 	 (6) 

where Ln  = the length of sloping base beneath the slice. 

Returning to the geometry of Figure 2.3.1 the new limiting 
equilibrium equation for the whole slope, from equation 6, will be 
as follows: 

P 	= 25112  (cot - cot 0( ) . cos 	tan 4) - tan 	+ c.H 
2 	 sin 

It has already been proposed that when splitting a part of the 
slope into slices, the width of the slices should be made equal to one 
another. Thus in the upper triangle CBJ (see Figure 2.3.5) all the 
slices are of equal width. Likewise, in the lower triangle ACJ, 
the widths of the slices are also equal, though not necessarily 
equal to those of the upper triangle. 

It is most convenient to treat the upper and lower triangles 
separetely. It only remains to formulate the two limit equilibrium 
equations for these two triangles, for the 'unstable excess' values 
to be obtained for all the individual slices dividing each triangle. 

From the geometry of Figure 2.3.5 the following limiting 
equilibrium equations can be obtained: 

(7) 

UPPER LS : P = 
2 

(1-cotoctanP).(cotp - cotc4) cosp[tan0- tarip] 

+ cH (1-cotlatanP) 	G8) 

sine 

(1-cotot tan(3)cotot.cos(3 [ tan 4) - tang 

+ cHcotot tan13 	  (9) 
sin 

LOWER 6 	P = gH2  

If both the.upper and lower triangles are divided into N 
slices each, then the individual lengths of the sloping bases beneath 
each slice are as follows: 
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Figure 2.3.4 The limiting equilibrium of forces beneath one slice. 



 

Figure 2.3.5 The nomenclature of the slices dividing the upper and lower triangles. 
Ca 
Z\f, 



193 
SECTION 2.3 

UPPERa : 1/N H (1-cotCoLtan6) 	LOWERA: 1/N H(cotot.tanf)  
sing 	 sinp 

The other variables which are dependent on the slice widths 
are the weights of individual slices. From the geometrical 
similarity of Figure 2.3.2 it can be easily verified that the weights 
of the slices as proportions of the respective upper or lower 
triangles are simply:- 

1/N2, 3/N2, 5/N2, 	  
N2  

where the slices are taken in order (1 to N) as in Figure 2.3.5 

Thus, with the nomenclature of Figure 2.3.5 the limiting 
equilibrium equations giving the values of 'unstable excess' for 
each slice are:- 
UPPER 4 : 

PI-N  411-345,-..-0-i1 R26(1-cotcAitanP).(coql- coto0cost+an0 - tang] 
L N2 12 

+ 1 cH (1-cotatan0) 
N 	sin 

LOWER LS : 

P-. ..2N-11H215 (l-cotc(tanig)cotoUcos 
N2 	_ 2 

+ 1 cH (cotOftanP)  	 
N 	sine 

where: 	H = the height of the slope 
= the average density of the rock mass 

V= the inclination of the assumed failure plane 
ao= the inclination of the overall slope 
c = the cohesion intercept exhibited by the failure plane 

= the angle of friction exhibited by the failure plane 
N = the number of slices dividing each triangle. 

Solution for P in simply a matter of substitution. Slices 
with P values (units of force) that are positive are stable 
individually, and those with negative P values are unstable. The 
choice of N is arbitrary, since once equations 10 and 11 have been 
reduced to simple expressions by substitution, it takes only a few 
minutes longer to compute the P values for twenty slices (total of 
forty) than for ten slices (total of twenty.) 

The theoretical existence of a tension crack will be clearly 
revealed by the P values obtained for the upper triangle. Taking 
the slices in order (from 1 to N), if a tension crack exists the P 
values will reduce successively from positive values, through zero to 

2N-1 

(io) 
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increasingly negative values - the greatest of these lying beneath 
the crest of the slope (the most overstressed position). The position 
of the tension crack is obviously where the P value becomes zero. 
The rock mass above this position will theoretically be stable 
independently, and failure of the remainder of the slope will be 
characterised by a slide scar having a vertical rear face 
(depending on the second joint set) and a planar slide surface. 

Markland60 has shown that by minimising the length of failure 
surface lying beneath the corresponding weight of slope, the 
position of the tension crack can be found directly. The distance 
of the tension crack behind the crest of the slope (t) is found 
to be purely dependent on geometry, and independent of the shear 
strength parameters: 

t = H ,/cot pcotcs - cotod 	 (12) 

The angles (c() and (1)) refer to the inclinations of the pit slope 
and failure surface as before. 

However, when going on to consider progressive failureithe unstable 
excess of all the slices is required for a full understanding to 
be gained. A failure mode not involving simple separation at 
one tension crack will be investigated. 

The method will be illustrated by some worked examples before 
moving on to considerations of progressive failure, which may be 
induced by excavation. 

Worked example No. 1. 

Firstly, an example will be chosen which illustrates the 
different results that are obtained when using a slices method, 
and when analysing the slope as a coherent 'wedge'. Figure 2.3.6 
illustrates the problem to be considered. Substituting the data 
in equation 3 ( the limiting equilibrium equation for a single 
coherent 'wedge' lying on a plane failure surface), it is 
found that failure will occur on one of the steeply dipping joints 
when the depth of excavation (H) exceeds 1000 feet. 

However, a method of slices analysis using equations 10 
and 11 (assuming that the rock mass exhibits zero tensile strength 
in a direction perpendicular to the slice boundaries) predicts 
failure at a depth of excavation appreciably less than 1000 feet, 
as will be shown. 

Substituting the data in equations 10 and 11 the following 
relations are obtained: 

UPPER n 	1,3,5...2N-1 (-8.05x105) 4 

N2  

LOWER 	1,3,5...2N-1  (-17.75x105) 
N  

(8.05x105) 
ft 

(17.75x105) lbf 
ft N2 
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Figure 2.3.6 Worked example No. 1 
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Choosing an N = 10 analysis (total of 20 slices), the P values of 
all the slices can be rapidly obtained and are as follows:- 

(Note: slice nomenclature as in Figure 2.3.5). 

P VALUE 
(Units) lbf/ft x 105  

LOWER 
.d.' 	. 

UPPER 
A 

P1 -+0.724 +1.598 

P2 +0.564 +1.242 

P3 +0.402 +0.887 
P4 40.242 40.532 
P5 40.080 40.177 
P6 -0.080 -0.177 
P7 -0.242 -0.532 
P8 -0.402 -0.887 
P9 -0.564 -1.242 

PIO -0.724 -1.598 

It is important to realise that the striking symmetry of results is 
strictly a function of the data chosen for this example. The P 
values are for slices dividing a 1000 feet slope which is at limiting 
equilibrium, and their summation (P) is equal to zero as would be 
anticipated. 

Since the failure surface is planar the total unstable excess 
is correctly interpreted as the summation of the individual P 
values of each slice. However, as pointed out before, the first 
few slices of the upper triangle may be stable (positive P values). 
These results have been bracketed in the table above. Thus in a 
'no tension' analysis the overall unstable excess is the summation 
of all P values with the exception of the five values in brackets. 

Hence for H = 1000 ft P = -2.013 x 105  lbf. per foot* 

i.e. the slope has theoretically failed. 

(* per foot refers to the third dimension) 

Calculation of failure depth by intrapolation  

A total of 20 slices (N = 10) have been chosen to divide the 
1000 ft. slope. From previous arguments it will be apparent that, 
due to the uniform spacing of the slices, eighteen (N = 9) slices of 
unchanged width will cover 900 feet, sixteen (N = 8) slices will 
cover 800 feet, and so on. Thus within the results for twenty 
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slices there exists all the information required for calculating 
the actual depth at which failure occurs. Hence the following 
table: 

1 

No. of slices included 1 2 3 4 5 6 7 	8 9 pi = 3.0_1 

depth ( feet ) 100 
CI

Equivalent 200 300 400 500 600 70 	800 900 1000 	1  

EP lbf/foot x 105  - - +2.1141..309 -2.013 	I 

The three results tabulated in the bottom row are sufficient 
for plotting a graph of depth of excavation versus unstable excess 

P). Where the curve crosses theXP = 0 line, the equivalent 
depth of excavation will be that at which limit equilibrium is 
reached. (See Figure 2.3.7) The shear stress along the failure 
plane will just have reached the available shear strength. 

Results: 

1) The intrapolated failure depth is 915 ft  

2) The tension crack is approximately 110 feet back from the 
crest of the slope. (Equation 12) 

Worked example No. 2. (using metric units) 

Question: At what depth will a pit fail, if excavated at 60° in 
jointed rock, where one of the joint sets dips into 
the pit, at an average of 52°? The shear strength 
parameters of the joint set are:- c = 2.5 tons/M', 

= 45°. Density of the rock mass is equal to 2.5 
tons/M3. 

As previously shown, the final result depends upon intrapolation 
of the results from a particular depth of excavation. The first 
step is therefore to make an informed guess of the depth at which 
failure will occur using equation 7. It is important that this value 
of H (or a guessed one)is greater than the actual depth of failure, 
since the result cannot be extrapolated, only intrapolated from 
the P values. 

Try H = 100 metres. For an N = 10 analysis, substitution in 
equations 10 and 11 gives: 

UPPERAPi_10  = (1,3,5,...19)(-109.0) +7.8 Tons/metre 
100 

LOWERIIP1-10 = (1,3,5, ...19) (-329.0) + 23.8 Tons/metre 
100 
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DEPTH OF EXCAVATION [feet] 

Figure 2.3.7. Graph of depth of excavation versus unstable excess. 
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The P values are therefore as follows:- 

P value 

Tons/metre A 

UPPER LOWER 

P1 +6.7 +20.5 

P2 +4..5 +13.9 

P3 ! + 7.3 
P4 [

4-2.3 
40.2j + 0.8 

P5 -2.0 - 5.8 

P6 -4.2 -12.4 

P7 -6.4 -19.0 

P8 -8.6 -25.5 

P9 -10.7 -32.2 

P10 -12.9 -38.7 

Slices 1,2,3, and 4 of the upper triangle are assumed to be 
independently stable as before. By selective summation of the 
P values for different depths of excavation, the second table 
of results are obtained, from which the failure depth can be 
intrapolated. 

A plot of the four P values against equivalent depths of excavation 
indicates that a zero value of P (limiting conditions) is obtained 
when the depth of excavation is 67.5 metres.  Figure 2.3.8 illustrates 
the shape of the slide scar ABCD predicted by this method. AB 
is the crack which opens up at the surface, BC is the zone which 
is overstressed (negative P values), and CD is the remaining portion 
of the failure surface which fails due to the unstable excess of 
all the slices lying above it, between C and B. 



A 

40m 

67.5m 

Overstress initiation 
at depth of 40m. 

D 
Failure at depth 
of 67.5m. 

521°  
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Figure 2.3.8 A diagrammatic representation of the overstressed -
joints predicted by worked example No. 2. 
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It will be apparent from the negative P values (see above table), 
that parts of several of the unfavourably dipping joints located 
above the latter are also °verb-tressed. The thick parallel lines 
shown ih Figure 2.3.8 represent the lengths of some typical joints 
which are overstressed. Each of these will have a consequent 
tension crack opening to the surface. (This theoretical prediction 
is frequently confirmed in practice.) 

The overstressing mechanism is seen to initiate at a depth of 
40 metres plus, and progresses with excavation until, at a depth of 
67.5 metres, the total unstable excess becomes greater than the avail-
able stable excess. With the given assumptions, failure will be 
expected on the first joint to intersect the slope at a depth of 
67.5 metres or more. 

2.3.3 TWO CONCEPTS OF PROGRESSIVE FAILURE 

Attention will first of all be focussed on the progression of 
the overstressed zone as excavation proceeds. A second, and 
most important factor to be considered, is the progressive failure 
brought about by the unstable shear strength characteristics of 
most joint surfaces. 

1. Progression of overstressed zone. 

In figure 2.3.8, the lower end of each of the idealized 
overstressed joints is circled. It is suggested that at these points 
there exists the maximum unstable excess for the particular joint 
in question. One of these joints is illustrated in Figure 2.3.9. 

The overstressed portion CD, of joint AB has negative P values. 
The area of the shear stress distribution triangle AGB which is in 
excess of the maximum shear strength level (CE = DF) is represented 
by the shaded area EFG. Each of the slices between C and D is over-
stressing the joint surface beneath it, and if shear displacements  
can occur with these localized 'failures' then the unstable excess 
will progressively increase between D and C by simple summation. 
The slices between C and A will be supporting the full unstable 
excess of part CD, which is at a maximum at the slice interface 
above C. If this concept is accepted, then the slice above C 
can be expected to be the one most highly overstressed with 
respect to direct shear. For the present, the reduction in shear 
strength (and consequent rise in unstable excess) implied by these 
displacements will be ignored. 	• 

It is proposed that failure of the rock slope illustrated in 
Figure 2.3.8 could possibly occur on a failure surface defined 
by points FECD, rather than the originally proposed ABCD. 

The pertion EC is the locus of maximally overstressed points 
on each critical joint that dips unfavourably into the slope. It 
is suggested that the rock mass might slide on a stepped surface 
between E and C, where each step is the secondary joint set 
(having zero tensile strength). In this way sliding would occur on 
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Figure 2.3.9 The distribution of shear stress assumed to act on an 
over-stressed joint, before displacements occur. 
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portions of all the overstressed joints, stepping down progressively 
from one joint to the next immediately beneath. This concept is 
illustrated diagramatically in figure 2.3.10. 

It should be pointed out that the secondary joint set need not 
be vertical for this type of failure to be analysed by the proposed 
methods. The vertical slice boundaries and the vertical steps 
illustrated so far should just be taken as the most simple method 
of illustrating secondary joint opening. In reality these artificial 
planar boundaries between slices could be saw-toothed. (Eg. two 
orthogonal joint sets dipping at 45°  each). However it is unlikely 
that such a system would have zero tensile strength in a horizontal 
direction, and in any case in practice at least one near-vertical 
joint set can be expected, more commonly two. 

The stability of the stepped and direct failure modes 
illustrated in Figure 2.3.10 were checked, and compared with the 
original failure surface ABCD. The parameters of worked example 
No. 2 were used, with unchanged shear strength values: - 

(a) Stepped shear surface. 	P = +42.9 tons/metre (stable) 

Note: CE is parallel to the 60°  slope DF. However the actual 
sliding surface is parallel to the joint dip of 52i°. 
The consequent reduced length of shear surface is 
accounted for in the above. 

(b) Direct shear surface. 	P = +4.6 tons/metre (just stable) 

Note: It was assumed that both shear and normal components 
of stress would be transmitted across the vertical slice 
boundary above point C. The unstable excess for the 
upper surface (60° dip) was resolved into the dip 
direction of the lower surface (5210), by the correcting 
factor:cos (600  - 524°). This method was adopted in 
Section 2.2 for integrating the unstable excess of 
slices lying on differently inclined failure surfaces. 

The latter mode of failure, although apparently predicting 
greater instability, is questionable because it will not be feasable 
unless the rock is very highly jointed. The location of the failure 
surface might then be independent of the structual discontinuities. 

However it is generally agreed that a 'circular stability analysis' 
can be usefully applied to rock slopes when the dimensions of the 
slope are very large compared to the joint spacing. The problem 
then approaches the soil mechanics end of the spectrum, and a rotational 
failure mode which is not structurally controlled can be anticipated, 
rather than failure mode No. 3 in Figure 2.3.10. 

However, the more usual rock mechanics problem is one of 
relatively wide joint spacing. The potential failure surface is 
then almost totally controlled by structural discontinuities. 
Translational shearing then becomes the dominant mode of 
failure. 



Failure modes 
investigated :- 

1. ABCD 

2. FECD ( EC stepped 

3. FECD t EC direct ) 
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Figure 2.3.10 The multi-linear failure surfaces investigated. 
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Jennings and Robertson7°, and Jennings71, developed an involved 
'mathematical' treatment to account for the discontinuous nature 
of joints. They considered a stepped failure surface involving sliding 
down one joint set, opening on a second joint set and shear and 
tensile failure of the.intact rock between the two. Some of the 
parameters involved are almost impossible to estimate in the field. 

For this reason the approach adopted by Terzaghi72  is considered 
more useful. He suggested that the rock bridges between joints would 
in all probability be eliminated by splitting, when the shearing 
stresses rose significantly due to erosion or excavation of the 
slope concerned. It is anyway safer to design slopes on (c) and 
(0) parameters no larger than those obtained from shear tests on 
continuous joints. The contribution of any failure through intact 
material is best ignored for design purposes. 

The progression of the overstressed zone as excavation (or erosion) 
proceeds has been illustrated as a possible mechanism for inducing a 
stepped multi-linear failure surface. (Mode No. 2 Figure 2.3.10). 
However this mode of failure has been shown to be the most stable 
when using unchanged peak shear strength parameters. 

Consequently a second mechanism of progressive failure has 
to be invoked to justify consideration of the stepped failure mode. 
This concerns the effects of displacement and weathering on the 
shear strength of joints in-situ. 

2. Unstable joint characteristics. 

The shear strength parameters of rock joints have been idealized 
to those shown in Figure 2.3.11. The curved peak strength envelope 
is approximated to a straight line displaying(c)and(0)parameters 
appropriate to a particular range of normal stress. Since this 
range is limited at low stress it may be necessary to interpret 
the curve in a piece-wise linear fashion. 

It will be noted that peak shear strength is reached after 
relatively small shear displacements. In addition the strength can 
drop significantly for displacements only a little greater than the 
peak displacements. 

However, before peak or residual strength characteristics can be 
meaningfully applied to parts of an unstable slope, certain questions 
need to be considered. 

1. Can relative shear displacements occur within the overstressed 
zone of the rock slope before final failure is approached? 

2. If so, will the 'slices' at the lower (down dip) ends of the 
overstressed joints be those most highly overstressing the 
joints concerned? 
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Figure 2.3.11. The simplified direct shear characteristics of an interlocking joint surface. 
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3. Will the fact that parts of the joints became overstressed 
at a relatively early stage of excavation, mean that their 
shear strength will have reduced by the time the failure 
depth is approached? 

4. If displacements can occur within the rock slope, will 
these be large enough for a significant reduction from 
peak shear strength towards residual strength? 

It is believed that the answer to all four questions is yes. 
However it is realised that positive answers depend upon No. 1 
being true. Certain observations can be cited in support. 

(a) Mueller73  has referred to slope bulging in the lower 
half of rock slopes of from 7 to 8% of the slope height. 
This exceptional figure was presumably for a slope in an 
advanced state of collapse. 

(b) Tension cracks are regularly found at and behind the crest 
of slopes. Exceptionally these can be ten or more feet 
wide. A graben is often in.evidence; the unstable portion 
below the crack having fallen vertically several feet. 
Ross Brown and Barton72  recorded vertical and horizontal 
displacements of 5 and 2 metres respectively, at the crest 
of a 100 metre high slope that was in the process of 
failing. Kennedy and Niermeyeerecorded vertical and 
horizontal displacements of up to 2.5 and 5 metres respectively. 
This was measured on a bench roughly in the middle of the 
enormous Chuquicamata Slide, approximately two weeks before 
catastropic failure occurred. 

(c) The excavated models reported in Part 3 indicate significant 
down dip displacements on unfavourably dipping joints. These 
tended to be greatest where the overburden depth was greatest. 

Down dip shearing displacements imply closure of joints in a 
direction at right angles to the joints, if one assumes zero shear 
stresses at the free face of the excavation. Figure 2.3.9 illustrates 
the distribution of shear stress on a typical joint that is obtained 
when analysing the situation with self weight stress assumptions. 
The shear stress on AB builds up from zero at the free face (A) 
to a maximum beneath the crest of the slope. If there are joint 
sets intersecting AB, then closure across these can be expected, due 
to the incremental increase in shear stress when proceeding from A 
towards C. (The effect of shear stress on the pre-peak displacements 
of model tension joints was given in Section 1.3., Figure 1.3.12. 
The closure of joints under normal stresses has been discussed in 
Section 1.4). 

In section 2.1 it was shown that small shear displacements 
across an interlocking joint surface could cause considerable 
increases in joint volume. (Figures 2.1.12 to 2.1.15). In an area 
of significant rainfall, this increase in effective permeability 
would surely accelerate the process of joint weathering. Over 
a period of time the shear strength of joint walls might be consid-
erably reduced. In view of the fact that open pit mining operations 
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are frequently in excess of 30 years duration, it is possible that 
rock slopes could be excavated in which overstresAin7 of the peak 
strength of the joints initiated ten or more years before the final 
depth of the pit was reached. 

It appears a practical possibility that residual strength could 
be approached on the critical stepped failure surfaces introduced 
earlier. From a design point of view such an assumption would 
surely be a more realistic 'worst case' than assigning a universal 
residual strength to the whole slope. Even in extreme cases slope 
failure is hardly a dimensionless problem. 

2.3.4 ANALYSIS OF MULTI-LINEAR FAILURE SURFACE 

Figure 2.3.12 represents a section through an idealized jointed 
rock slope. It is assumed that the strike of the joints in relation 
to the slope face, allows the problem to be analysed in two 
dimensions. As already indicated this is the worst case from the 
point of view of stability. 

In the absence of computing methods, or simple design charts 
such as those developed by Hoek74, the failure depth (H) for a 
fully drained block TCGD will be found by utilizing equations 10 and 11. 

The position of the corresponding tension crack TC can be most 
easily found by using equation 12 (Markland60). 

Thus: AT = H [)Cot4. cotPt - cotes] 	 (12) 

The proposed failure surface AEGD conveniently divides the 
unstable part of the slope into two portions: 

1. The block AEGF, lying on the stepped surface EG. The mean 
dip of EG is parallel to the slope face AF. Since 
residual strength is envisaged for the stepped surface 
(for design purposes), it will be termed the 
'residual block'. 

2. The 'toe triangle' FGD. Peak strength parameters 
are suggested for the planar surface GD. 

Estimation of failure depth for a DRAINED slope  

(a) The dimensions of the residual block AEGF are obtained 
from the geometry of Figure 2.3.12. 

AB = H (cotP- cot CI( ) 

TC = TB. 
AB  
A(' 

AE = TC= H (1-cot ct .tang: ) (cot - icot CL .cot)  
(cot - cot c ) (13) 
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NA = H cotO( 

MA = NA. EJ = NA. AT 
AJ 	AB 

MA. = H cotkX ( scot bk. cot P ' cot C(   ) 
(cot (3 - cotd, ) 

Since AE = FG 

1. the area of the 'residual block' AEGF = AE.MA 

2. the length of shear surface beneath it = 
where L1  = MA. sec i3 

The unstable excess (P1) of this block is given by equation 6, thus: 

p1 = Wi  cos0 [ban 0r  - tan f3 I   (15) 

(Note residual parameters: 0 .7.. 0r, c = 0.) 

(b) The dimensions of the toe triangle FGD are obtained in a 
similar manner: 

FG = AE = TC (equation 13) 

NM = NA. TB = H cot0((cot0- hotC4. cotri  ) 	 (16) 
AB 	. (cot p - cot a ) 

1. the area of the 'toe triangle' FGD = 4. FG. NM 
2. the length of shear surface beneath it = L3 

where L3  = NM. secg, 

If peak strength parameters are assumed for the surface DG, 
then the stable excess (P3) is given by:- 

P3  = W3  cos [tan G6 tani3] cL3   (17) 

For complete failure on the multi linear surface AEGD, the unstable 
excess of the residual block must just exceed the stable excess 
for the toe triangle. At limiting conditions: 

P1  + P3 	0 

The failure depth is most simply obtained when equations 13 to 17 
are evaluated in general terms, with H the unknown. Several 
values of H can then be tried (all less than for block TCGD). 
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A graph of stable or unstable excess plotted against depth H will 
give an intercept P = 0 at the required failure depth. (see 
Figure 2.3.7 for example). 

Estimation of failure depth for a TRANSIENT WATER PRESSURE assumption  

It is believed that the above assumption of residual shear 
strength for the stepped portion of the failure surface represents 
a realistic 'worst case' for design purposes. However there are 
many situations which also require pessimistic assumptions for 
possible water pressure distributions. Of the five slope failures 
investigated in the Rio Tinto area of southern Spain (Ross Brown 
and Barton52), three were almost certainly caused by the surface run 
off entering tension cracks through fractured drainage routes. 
(See Section 2.2.). The possibility of tension cracks becoming fil-
led with water must therefore be considered in areas where flash 
floods and consequent transient water pressures can be anticipated. 

The water pressure distribution assumed as one possible 'worst 
case' is shown in the inset to Figure 2.3.12. The full tension 
crack generates a hydrostatic pressure at its base of: 

UW = hXW 

where h the depth of crackingiven by equation 13, and 6w  is the 
density of water. It is assumed that this pressure reduces linearly 
in proportion to the length of drainage path, such that at D the 
exit seepage pressure is zero. It may be optimistic to expect 
constant permeability down the length of EGD. However there are in 
reality an infinite variety of possible assumptions. A tension 
crack only partially filled with water, and a reduced permeability 
along EGD is an alternative which could generate equal instability 
to the one assumed. 

Some attention may need to be paid to the equilibrium of the 
slide mass, since a severe assumption of water pressure can lead 
to zero effective pressures across the potential shear surfaces. 
Whether this could be expected at failure is not known. 

From the geometry of Figure 2.3.12:- 

1) Depth of tension crackll= AE=TC (equation 13) 

2) Length of inclined surface LI  = MA. seep) (equation 14) 

3) Total length of vertical steps between E and G = L2  

where L2 = EJ = AJ, AT 
AB 

L2 =  H(1-cot cal. tanP ) ( icotci.. cot 	- cot of  ) 

(cot 	— cot ac ) 
(18) 
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4) Length of inclined surface between G and D = L3  

where L3 = NM. sec p (equation 16) 

The mean water pressures assumed to act on the four surfaces above 
are as follows: 

1) AE (length }6) 	Uw  =   (19) 

This has force components perpendicular and parallel to the 
dip direction (3) of: 

(a) 41?)( w  sin 

(b) i+12  w  cos p 

2) EG (length L1 + L2) 
Since the pressure at G is 

the mean water pressure between E and G is: 

Ll  + L2 + 2L3  11Xw  

Ll+ L2 413 	2 

 

( 20) 

  

(a) This is distributed on the vertical steps of length 
L2 with components sin P. and cos p as before (I). 

(b) It is also distributed on the inclined surfaces of 
length L1. (Perpendicular component only). 

3) GD (length L3) 
The mean water pressure is 	 (21) 

Li +L2 + L3 2 

The failure depth for these transient water pressure assumptions 
is obtained by calculating the unstable excess (P1) of the residual 
block AEGF, and the stable excess (P3) of the toe triangle FGD. 
Once again, at failure: 

P1  + P3  = 0 

The limiting equilibrium equation for the residual block can 
be derived from equations. The tangent of the friction angle 
is equated to the ratio of forces acting parallel to the dip (p),  
and those acting perpendicular to it, thus: 

tan Ck a  

+ 
[Li + L2+ 

WI  sin8 + + L2 + L3 

wicosp — sinp 	-h,+ 1,24.211 
LLI  + 	L3 

(22) 
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Hence Pl. Note: For residual parameters44r  , c = o. 

The limiting equilibrium equation for the toe triangle is: 

tang) =  Wasin 0 - cL3+ 133  
W3  cos p 4  s„      (23) LLI  + L2415 2 

Worked example  

The parameters of worked example No. 1 will be used to illustrate 
the effects of the given failure mode on stability. (See Figure 2.3.6) 

CA = 6o° 
500 

= 45° 	e = 160 lbf/ft2  per ft. 
c = 1975 lbf/ft. per ft. 

The residual shear strength parameters will be assumed as follows: 

730°)  c 	0 

Substitution of the peak shear strength parameters resulted in the 
following estimates of failure depth. (See Figure 2.3.12 for lettering). 

1. Coherent wedge ABD sliding on plane DB with no tension crack. 
H = 1000 feet. 	Fully drained. Equation 7. 

2. Block ATCD. Method of slices and tension crack separation. 
H = 915 feet. Fully drained. Equations 10 and 11 

Equations 13 to 17 were used to calculate the failure depth for 
the assumption of a multi-linear failure surface, with residual 
strength on the stepped surface between E and G. With the given 
geometry, and fully drained conditions: 

3. AE = 0.171 H feet 
MA = 0.264 H feet 
Pi = (-)2.84 H2  lbf/foot. (unstable) 

NM = 0.314 H feet 
L3 = 0.489 H feet 
P3 = 965 H - 0.524 H2  lbf/foot. 

= P1 P3 = 965 H 3.364 H2  lbf/foot. 

A graph of1P versus H gives the failure depth as 290 feet. 

Equations 18 to 23 were used to calculate the failure depth 
for the transient water pressure assumptions. Once again residual 
parameters were taken to describe the remaining shear strength 
on the stepped part of the failure surface. 

L1 = 0.264 H feet 
L2 = 0.143 H feet 
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P1  = (-) 6.92H2  lbf/foot 
P3  = 965 H - 1.747 H2  lbf/foot 

= P1  + P3 = 965 H 8.587 H2  lbf/foot 

A graph of EP versus H gives the failure depth as 115 feet. 

It should be noted that the above assumption of a full tension 
crack (for a given geometry and density) generated such high water 
pressures that the effective normal stress on the inclined shear 
surfaces below the residual block just became negative. In other 
words the shear strength assumptions for this surface became 
meaningless. However the effective normal stresses beneath the toe 
triangle remained positive with the given seepage assumption. 

It may be argued that this state of affairs is preferable to 
one in which poor drainage causes the two triangle to 'float'. 
However this only serves to highlight the uncertainties of what 
form stress distributions can take at failure. An effective normal 
stress reducing to zero is certainly an ideal failure mechanism. Is 
right to reject it purely from a subjective assessment of what seems 
possible? 

In conclusion the following observations should be made as 
qualifications to the multi-linear failure mode: 

1. The ratio of the depth of tension crack (TC) to the depth 
of the shear surface beneath the crest (AJ) was found by a 
limit analysis. This was performed with the assumption of 
drained conditions, and for a particular geometry. 

The ratio determined what proportion of the total shear 
surface (L1 + L3) was stepped (L1). This proportion was 
assumed constant for a given geometry for all states of 
stress. In other words, for all conditions which produced 
failure, a geometrically similar shear surface was assumed. 

2. The concept of a multi-linear failure mode was based on the 
effect of excavation on the overstressing of joints. The 
weakening mechanisms of time and displacement were introduced 
to predict a failure surface with a stepped portion of 
reduced strength. 

The adoption of residual strength for this part of the 
failure surface led to considerably reduced failure depths. 
(i.e. 915 feet down to 290 feet). Paradoxically, if the 
slope was designed to the reduced height in the first 
instance, then in all probability the stepped/residual mode 
would not initiate. Consequently the proposed methods are 
conservative, and serve to emphasize the severity of a resi-
dual strength assumption. 



PART 3 
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3.1 OBSERVATIONAL BEHAVIOUR OF MODEL SLOPES ROTATED TO 
INDUCE FAILURE 

SUMMARY 

Small jointed slope models were constructed from fractured, 1 
inch thick slabs of model material. These were inserted into two 
dimensional frames for tilting experiments. The models were rotated 
in a vertical plane from a stable position, until the ratio of 
shear and normal stresses reached a critical value on steeply dipping 
joints. The failure mechanism was studied on enlargements of 
successive frames of a cine film, run at between 18 and 30 frames per 
second. 

The following effects were studied: 

1. Different angles of intersection between primary and 
secondary joints. 

2. Different orientations of joints with respect to the 
slope. 

3. Models with and without vertically dipping joints at failure. 

The only irrecoverable effect of a rotating stress distribution 
appeared to be the opening of tension cracks in positions which were 
no longer optimal when failure occurred. Back analyses of simple 
planar shear failures were performed and compared with the direct 
shear tests on single joints in the same material. 

Three principle failure modes were recognised; translational 
shear, translational shear with tensile opening, and toppling shear. 
The first two were caused by the absence or presence respectively, 
of joints within a few degrees of vertical when failure occurred. 
Only then could tension cracks open up prior to failure, thus 
separating the sliding mass from the stable remainder. One joint 
set dipping steeply into the slope and a second set near vertical 
represented the least stable configuration possible. 

Toppling failure is discussed with respect to recent analytical 
and numerical studies of idealized block models. It is concluded 
that, other than for planar weathered joints, or for loosened blast 
shattered rock, toppling shear is a self inhibiting mechanism, in 
view of the dilatency of joints in shear. 
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3.1 OBSERVATIONAL BEHAVIOUR OF MODEL SLOPES ROTATED TO INDUCE FAILURE 

INTRODUCTION 

Part 3 of this thesis is devoted to observations of jointed 
model slopes which were induced to fail by two methods of gravity 
loading: 

1. Rotating two dimensional jointed models about a perpendicular 
axis so that the shear stresses on unfavourably dipping 
joints reached their limiting value. These models were cut 
to the required slope and joint angles before being inserted 
into 'tilt frames', for controlled rotation. 

2. Physically excavating slopes in pre-loaded jointed models, 
until the slope height or angle became critical and caused 
failure. These models were very large and only a limited 
number could be tested. 

The philosophy, test proceedures, and observations of failure 
of the large excavated models are presented in Sections 3.2 and 3.3. 
The present section will be devoted to observations of a few simple 
modes of failure which were induced by different joint orientations 
and slope angles. Experience gained from these small scale slope 
failures helped to define the best approach for design of the joint 
patterns in the large excavated models. 

Appendix 3 contains a summary of the sequence of operations 
that were required for production of jointed slabs of model material 
on the large guillotine. 

The construction of jointed models for tilting experiments 
provided valuable experience in this respect. Due to the delicate 
nature of the material it was several months before joint production 
became a routine operation. One of the tilt models will be presented. 
as an example of the problems that can occur. 

The failures were recorded on cine film, and most of the figures 
to be presented are prints of consecutive frames. The first series 
of models were recorded on 8 mm. film, which was unfortunate in 
view of the limited clarity of the resulting enlargements. Consequen-
tly 16 mm. film was used and in general this produced satisfactory 
results. The record of one or two failures were almost lost due to 
incorrect exposure when changing from colour to black and white film. 
The bright orange colour of the models needs to be test photographed 
before embarking on a series of experimental recordings. 

The presentation will be chiefly in visual form, with brief 
comments on each mode of failure. Dominant modes will be summarized 
at the end of the section. 
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3.1.1 A SELF WEIGHT SHEAR MODEL. 

Figure 3.1.1 illustrates stages in the construction of a diamond 
shaped jointed shear model. Orthogonal jointing was tested initially, 
and the character of the two joint sets is shown in the first two dia-
grams. The primary joints (1) which were generated first are seen 
to be continuous, while the secondary joints.(2) are effectively 
offset when crossing the existing jointsl.and result in an interlocked 
higher strength surface. 

Diagram C shows a model cut to shape before inversion into the 
perspex and aluminium tilting frame. The unusual design was for the 
following reasons: 

1. To support the model in a stable un-titled position with 
zero shear stress on the primary joints. 

2. To develop uniform shear and normal stresses on the primary 
joints when tilted 45° to the approximate anticipated 
failure angle. 

3. To rigidly support the toe of the slope and be adjustable 
so that different overburdens could be shear tested. 

The frame was tilted in a vertical plane by rotating a screw 
thread. The angle of tilt was measured with a plumb bob and angular 
scale, and could be seen in the cine films as a check on the reading 
taken at failure. 

The frame was designed concurrently with a test programme 
of direct shear tests on individual joints. It was intended as a 
check on the shear strength of a jointed mass compared to individual 
joints, since the effect of progressive failure was unknown at this 
stage. As it turned out, the shear strength of the joints was too 
high for shear failure to occur with the designed maximum 'overburden' 
of sixteen blocks. The jointed structures were still unsheared 
when the frame was tilted to a 45° dip on the primary joints, and 
most failures were recorded when the dip was approximately 60°. 
Consequently the shear and normal stresses were not as uniform as 
had been hoped, since shear failure occurred when the front of the 
model was overhanging by approximately 150, with a converse effect 
at the rear. However, as will be seen later, the results were comparable 
with conventional direct shear tests, and it is arguable that the 
stresses were as good as those operating in the conventional test 
with its known limitations. 
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Figure 3.1.2 Tilt model M.17 (30 frames per sec.) 

The nomenclature of this and later figures is as follows: 

1. The numbers land 2 with dense arrows refer to the primary 
and secondary joint directions respectively. 

2. The unshaded arrow refers to the direction of gravity. 

3. The angle of dip of the critically dipping joints is given 
in degrees. Where a sequence photograph is unmarked, an 
unchanged angle of dip is implied. 

All models had a joint spacing of 3  inch. 

Mode: Planar shear failure on the primary joint that was most 
highly stressed. The two joints below this were rigidly fixed at 
the toe. No joints were near vertical when failure occurred, 
and consequently no 'tension cracks' opened. 

Total Time 	1 
_ 	.. 	........ 	. 

(secs.) 	1 

i 
Total displacement 

-- 	(ins.) 

0 0 

1/30 0.059 
1/15 0.312 

1/10 0.742 
2/15 1.50o 

Figure 3.1.3 Tilt model M.3 (18 frames per sec.) 

The secondary offset joints were the critical ones for this 
model. The overburden was approximately 15% increased compared to 
the previous figure, and shear failure occurred for more or less the 
same angle of dip. 

Mode: The interesting feature was the stepped mode of failure 
which initiated beneath the point of maximum overburden depth. 
Tensile opening on the primary joints occurred more easily 
in this case, than tensile opening on the interlocked 
secondary joints of the previous failure. Hence the whole 
mass was able to separate so that shearing occurred along 
the stepped surface which was most highly stressed. Note 
the shear displacements of diagram A causing separation 
at the back of the model. It is probable that small shear 
displacements were occurring on all the dipping joints 
since the ratio of shear stress to normal stress was more 
or less the same for each ( = tan 6030). 
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Figure 3.1.3 lilt model M.3. Multi-linear failure on secondary joints 
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Figure 3.1.4 Tilt model M.5 (24 frames per sec) 

The secondary joint set was less than 10°  from vertical when 
failure occurred, and consequently tensile opening was possible on 
these joints despite possible interlocking. 

Mode: The tension crack six blocks from the front of the model 
opened when the dip of the primary joints was 43°. It 
remained open right up to the point of shear failure on the 
primary joints, after a further 9° of rotation. When the dip 
was increased a further 340, failure initiated once again 
by shearing, before any toppling mode. A toppling mode of 
failure relies on relative slip across the secondary joints. 
Since the shear strength of this set is greater than that of 
the primary, toppling failure cannot occur unless the 
secondary joints become loosened or open. 

Figure 3.1.5 Tilt model M.6 (24 frames per sec) 

Identical jointing to the previous model. Tension crack 
formation a few degrees before the joint reached vertical. 

Mode: Once again frontal shear failure occurred. It is probable 
that this only occurs in the front half of the model, since 
greater loosening of the secondary joints can occur there. 
This loosening progressed in the upper half of the model 
and resulted in a pure toppling mode seen in progress in 
diagram D. 

Note the manner in which the toe of the shearing mass 
kicks out relative to its centre of gravity. This is 
undoubtedly caused by the unstable joint strength. The 
drop from peak to residual shear resistance results in an 
acceleration of the toe since the shearing force remains 
more or less constant. 
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Figure 3.1.5 Tilt model M.6. Shear failure on primary 

joints. Tensile opening of secondary joints. 
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Figure 3.1.6 Tilt model M.7  (24 frames per sec.) 

In contrast to the two previous models the lower strength 
primary joints were the near vertical set. Consequently relative 
shearing and opening could occur on these joints more easily than 
shear failure on the secondary joints, even though these dipped at 
52°  when failure occurred. 

Mode: Classical toppling failure beginning at the front of the 
model and progressing backwards and upwards. There appears 
to be some limit on the height of column that can topple in a 
'uniform' manner before a hinge develops. This is probably 
related to the limited loosening that can occur at depth. 

Figure 3.1.7 Tilt model M.8  (24 frames per sec) 

Joint orientations were chosen such that shear failure on a 
single joint set was impossible. This model was only comparable 
with the previous in that both had near vertical primary joint 
sets. The secondary set dipped away from the slope in this case. 

Mode: A preliminary frontal toppling occured at about the same 
angle as in the previous model. However the different 
orientation of the secondary set appeared to inhibit a 
further toppling failure. It was noticeable that the vertical 
joints were tending to open in tension when the model was 
a few degreeson either side of a 45°  dip (vertical primary 
joints). Further tilting caused these slightly open joints 
to close, and the steady increase in normal stress across 
them inhibited opening until final collapse when the angle 
of dip was up to 63°. A limited toppling mode occurred, 
with relative shear on a small number of steeply dipping 
joints. A jagged hinge is just appearing in diagram C. 



223 

Figure 3.1.6 Tilt model M.7. Opening of primary 

joints causing 	multiple toppling failure 



A 
	

B 
	

C 

Figure 3.1.7 Tilt model M.8. Eventual toppling failure of stable configuration of joints 



Figure 3.1.8 Failures induced in an unsupported edge when 
rotating the large model frame into a vertical plane. 
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Figure 3.1.8 Demolition failures of one large excavated model  

The two sets of photographs A,B,C and D,E,F represent the left 
and right hand edges of one of the large models to be reported in 
Section 3.3. Failures induced by excavation when in a vertical 
plane can be seen on the inside. The object of the present 
excercise was to rotate the whole model into a horizontal plane, 
remove the edge supports, and then rotate the model slowly back 
into the vertical. In this way an increasing gravity field was 
simulated, which was proportional to the sine of the angle of tilt, 
if friction between the model and the glass walls (12°) was 
ignored. 

For convenience each side of the model was studied separately, 
hence the different proportions of gravity. 

Mode: Conventional shear failure was impossible with the given 
joint orientations. The mode of failure was primarily one 
of relative shear along the primary joint directions, thus 
causing dilation and consequent toppling failure. Both 
slides eventually reached a stable slope through a series of 
limited toppling failures. The height of the model was 4 feet. 

3.1.2 SMALL TILT MODELS OF STEEP SLOPES 

A series of tests were performed on jointed models that were 
pre-cut to resemble steep slopes. Different joint orientations 
were tested ranging from about 75°  down to 20° of angle of inter-
section. The models were cut from one 16 inch by 16 inch by 1 inch 
slab. Unfortunately this limitation on size meant that, with the 
given slope angle relative to the primary joint dip, shear failure did 
not occur until the slopes were tilted almost vertically. 
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Figure 3.1.9 Tilt model M.9  (24 frames per sec) 

Diagram A shows the model with the primary joints horizontal 
and therefore unstressed in shear. The lowermost joint is 
rigidly held at the toe. This can be likened to the base of a 
slope where the unexcavated rock acts as a buttress to all 
dipping joints that have not been exposed by excavation. An 
attempt was made to improve these artificial boundary conditions 
by placing the model on 11 inch strips of sponge rubber which were 
cemented to the perspex base. This was highly frictional and 
hopefully it helped to distribute the shear and normal stresses 
in a reasonably uniform manner. 

Mode: Unfortunately the cine film was not running when failure 
initiated. Diagram B shows that some failure had occured 
at the toe where the overburden depth was greatest. The 
formation of a bilinear tension crack involved opening of 
the secondary joint set, and shearing at low normal stress 
on the uppermost primary surface. In other words the given 
joint system could be expected to exhibit a tensile strength 
greater than zero across any vertical plane. From what 
can be seen of the sliding mass in diagram C, failure appears 
to have occurred by shearing along the primary joint. No 
toppling failure is in evidence. The small amount of slope 
left standing after collapse suggests that the mass did 
indeed have some tensile strength since the shear strength 
of the joints would normally support a higher rear face to 
the slide. 

Figure 3.1.10 Tilt model M.10  (24 frames per sec.) 

Mode: The tensile strength of potential vertical tension cracks 
is again illustrated. The secondary joints dip away from 
the slope at such a shallow angle that any opening is followed 
by overturning and complete failure occurs with no rear 
face left standing. 
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.Figure 3.1.9 Tilt model M.9. Shear failure on primary 
joints with opening on a bilinear tension crack. 
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Figure 3.1.10 Tilt model M.10. Shear failure on 
primary joints with partial toppling at reac 
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Figure 3.1.11 Tilt model M.11 (24 frames per sec.) 

Mode: Diagram B illustrates the shear strength of secondary 
joint surfaces. Despite undercutting and almost zero 
normal stress, the interlocking nature of secondary joints 
provides sufficient strength to support a column of blocks. 
Further tilting causes internal strains associated with 
the formation of a tension crack, and progressive failure 
ensues. 

Careful study of consecutive frames indicated that the 
tension crack propagated in depth simultaneously with the 
progressive toe ravelling. The two processes coincided 
at the position of shear failure, half way up the vertical 
slope. 

The secondary failure induced by tilting a further 
6°, again indicated some relationship between tension crack 
depth (i.e. loosening) and the position in which shear 
failure initiates despite higher shear stresses on 
lower joints. 

Figure 3.1.12 Tilt model M. 12 (24 frames per sec.) 

Mode: A progressive mode similar to that in the previous model 
was indicated. However here the ravelling which progressed 
upwards from shear failure at the toe, passed beyond the 
deepening tension crack. Shear failure occurred on a 
stepped surface nearer the toe of the slope. 

A pertinent question is raised by this failure: 
what inaccuracy is introduced by back analysing for 
instantaneous shear failure along all the stepped 
surface shown in diagram F, when in reality failure occured 
at the toe about 0.1 second before general failure 
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Figure 3.1.11 Tilt mode M.11 illustrating progressive failure. 



237 

Figure 3.1.12 Tilt model M.12 illustrating progressive failure 
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Figure 3.1.13 Tilt model M.13 illustrating overturning failure 
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Figure 3.1.13 Tilt model M.13  (24 frames per sec) 

This model was damaged during construction, hence the reduced 
size and unconventional shape. It is of limited interest since an 
overturning failure caused by an overhang must be of rare occurrence, 
certainly in open pit operations. 

Mode: Tensile opening, with no apparent shear component, initiated 
on a stepped primary surface. The resulting movement 
presumably translated the centre of gravity of a smaller, 
loosened block, to beyond the toe. Shear failure occurred 
as a secondary mode, possibly as a result of a momentarily 
reduced normal stress. 

3.1.3 LARGE TILT MODELS WITH THREE JOINT SETS. 

The remaining tilt models to be presented, were performed 
concurrently with the excavation experiments in the large loading 
rig. These large models were constructed of eighteen 16 inch by 
16 inch by 1 inch jointed slabs, making a total dimension of 8 feet 
long by 4 feet high, with a 1 inch wall thickness. Slopes were 
failed by excavating down to a depth of 32 inches, between the glass 
supporting walls on each side of the model. 

Large tilt models were consequently tested, to compare the 
modes of failure between the two cases. Identical jointing and 
slope heights were used. 

Figure 3.1.14 shows one of the large tilt models being 'cut' 
to shape, by removing blocks from one side of a straight edge. The 
models consisted of two jointed slabs placed one against the other. 
These were carefully fractured in the guillotine, so that the 
jointing matched between slabs. The character of the three different 
joint types is clearly ullustrated. The numbers 1,2 and 3 refer 
to the primary, secondary and tertiary joint directions. The models 
were cut so that the lowest strength primary joints dipped steeply 
into the slopes, both for the tilt models and the excavated models 
to be reported in Section 3.3. 
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Figure 3.1.14 The joint surfaces produced by 
three intersecting joint sets. 



241 
SECTION 3.1 

Figure 3.1.15 Large Tilt model M.14 (18 frames per sec) 

The six sequence photographs were consecutive frames of an 
incorrectly exposed 16 mm. cine film. The tension crack seen in 
diagram A opened when the angle of tilt was approximately 63°, 
in other words 3°  before the secondary joints became vertical. 

It should be noted that, because of an intersection angle 
between primary and secondary joints of only 24°, the previous 
interlocking character of secondary joints was not exhibited in 
these models. 

Mode: Diagram B shows shear failure initiating in the zone vertic-
ally below the crest of the slope. The zero tensile 
strength between the two slabs allowed failure to propagate 
in the lower half fractionally before shear failure followed 
on a stepped surface through the upper half. The horizontal 
tertiary joints exhibited interlock of similar character 
to the original orthogonally intersecting secondary 
joints (compare Figures 3.1.14 and 3.1.1). Two features 
of particular interest should be noted: 
1. The vertical crack in the lower slab shown in diagram B 
did not partake in the eventual stepped shear surface 
shown developing in diagram C. 
2. The tension crack opening to the surface in diagram A 
was not involved in the major shear failure shown in diagram 
C. This is significant since a limit analysis (Equation 12, 
Section 2.3) predicts that the first tension crack was 
inside the zone which was potentially stable, when substit-
uting the slope and joint inclinations existing at failure. 
The tension crack position giving minimum factor of safety 
was theoretically 3.2 inches back from the crest. The 
crack actually involved in failure was 3.5 inches from the 
crest. Presumably shear failure of the column between 
these two cracks occurred due to the loosening and vibrations 
induced by the main failure. This double tension crack may 
have been a function of the rotating stress distribution 
during tilting. This could be one irrecoverable effect 
compared to the static distribution. It appears from later 
comparison with the more realistic excavated models that this 
is the only way in which the two results differ. The major 
failure mode is the same in both cases. 

Figure 3.1.16 Large tilt model M.19 	(30 frames per sec.) 

Mode: Diagram B,C and D show the development of several tension 
cracks as the slope is rotated through the position of 
vertical secondary joints. The resulting strain in the 
body of the slope resulted in several block falls from the 
middle and lower parts of the slope. 
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Figure 3.1.15 Failure of Large tilt model M.14 
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Figure 3.1.16 Large tilt model N. l 	zowieg the development 

of tension cracks and block falls that preceed failure 
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Figure 3.1.17 Large tilt model M.19 (continued) 

The remaining four diagrams illustrate a further block fall, 
increased opening of tension cracks and eventual shear failure of a 
somewhat superficial nature, when the angle of tilt was several 
degrees more than that predicted for failure. This sequence has been 
presented by way of introduction to pitfalls encountered when 
splitting slabs on the large guillotine: 

1. The model slabs were cast in a large steel mould which 
had been machined and ground to close tolerences with respect 
to slab thickness. The first large excavated model, which 
was of an experimental nature, involved the casting of a large 
number of slabs before sufficient uncracked ones had been 
recovered from the moulds (see Appendix 3). The mould 
was always hammered to agitate and remove air bubbles while 
pouring the mixes. It was eventually noticed that over a 
period, the residual stresses in the steel had caused the 
hammered side of the mould to bow slightly. This resulted in 
slabs which were up to 0.015 inch too thick in the centre. 

2. When splitting these slabs on the guillotine, the upper-
most blade penetrated the slabs 0.015 inch deeper than usual, 
in the humped region. This resulted in an abnormally large 
increase in dimensions in the slab, due to the combined 
width of all the joints. (Conventionally there is about 1% 
increase in dimensions). 

It happens that model M.17 consisted of two unmatched slabs. The 
uppermost slab was produced on the guillotine after the mould had 
been remachined when the hump was discovered. (Both slabs of model 
M.20, Figure 3.1.18 were also split after the fault was put right). 
However the lower slab was an extra one which had not been used 
when the first large excavated model was constructed. Due to its 
slightly larger dimensions it was, in ignorance, carefully consolidated 
by pressing straight edges along its boundaries. In this way its 
dimensions were matched with the upper slab. 

The consequence of this mistake is evident from Figure 3.1.17. 
The artificial consolidation had stiffened and strengthened the 
lower slab, and it resisted shear failure at the predicted angle of 
tilt, and up to four degrees past this point. 
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Figure 3.1.18 Large tilt model M,20 (30 frames per sec.) 

Mode: The tension crack shown in diagrams B and C initiated when 
the model was in a position 3°  before the secondary joints 
became vertical. Once again it developed in the zone 
which, at failure, was theoretically stable. The theoretical 
position for a tension crack giving the minimum factor 
of safety was 3.46 inches back from the crest. 

It can be seen that the double tension crack which 
opened during shear failure was 3.0 and 4.0 inches 
from the crest. Failure occurred at the predicted slope 
angle and din angle (81°  and 66°  respectively) but the 
height of the failed slope was one joint spacing less than 
the predicted heignt. The shear strength parameters used 
in these predictions will be introduced next. 

3.1.4 BACK ANALYSIS OF SIMPLE SHEAR FAILURES 

Several of the tilt models presented earlier failed in a 
manner which was amenable to back analysis. In particular, some of 
the self weight shear models (sub section 3.1.1) with orthogonal 
jointing provided useful information on the shear strength of 
jointed masses, where failure occurred along one joint which was 
intersected, but not offset, by several others. These were termed 
primary cross-jointed surfaces (PCJ) in Part I. 

The following table gives the results of the simple back analyses. 
No attempt was made to split the unstable masses into slices, since 
the stresses were considered to be uniform enough for approximation 
to mean values. The ratio of (1r/(r) is equal to the tangent of the 
angle of dip of the shearing joints. 

Model T (lbf/in2) Cr(lbf/in2) 

M.1 0.53 0.25 

M.1 0.42 0.18 

moi 0.48 0.21 

M.5 0.61 o.42 

M.9 0.60 0.25 

mao o.54 0.25 

M.12 0.64 0.54 

M.17 0.76 0.42 
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Model M.1 was not illustrated previously since it did not repres-
ent modes of failure any different to M.17 (Figure 3.1.2) Both M.1 
and M.17 had orthogonal jointing. However in the former, the 
adjustable toe support of the self weight shear apparatus (Figure 
3.1.1 D) was set to different heights. The smaller the overburden 
depth the greater the angle of tilt required for shear failure: 

Model 
No. 

No. of blocks 
of overburden 

Angle of joint 
dip at failure 

M.1 5 670 

M.1 6 66° 
M.1 7 650  

M.17 13 61°  

In Figure 3.1.19, the eight coordinates of shear strength are 
compared with the shear box results reported in Section 1.3. In 
both cases the model material was C3. This has been described in 
detail in Part I. 

The failures chosen for back analysis did not exhibit progressive 
failure, at least not in a visual sense. This is also clear from the 
comparison of shear strength, since the jointed mass appeared stronger 
than individual joints. The unexpected result can 'be explained 
(with the benefit of hind sight) as follows: 

1. The primary joints involved in failure were horizontal before 
tilting commenced. 

2. When at the point of failure the dip of these joints was 
approximately 60°. As a result the normal stress was reduced 
by a factor approximating cost 60°  ( = 0.25). Consequently 
there was a reduction of normal stress during the test of about 
4 to 1, with a corresponding rise in shear stress proportional 
to the sine of the angle of tilt. This is not a conventional 
loading path for a direct shear test. 

However it represents a most important practical consequence 
of excavation, which was the second method of inducing failure 
by gravity loading. The unexpected results of 'preconsolidated' 
shear tests will be reported in a later section. 

In the absence of later test results the data presented 
in figure 3.1.19 was used as a rough guide to mass shear strength. 
The (c) and ()) parameters approximating the nearly linear part 
of the envelope of peak strength were changed from the original 
0.08 lbf/in2  and 560  for single joints, to 0.10 lbf/in2  and 
58°  respectively. These values were used in the design of the 
jointing, slope angle and slope height of the large excavated 
models. The method of slices developed in Section 2.3 was 
employed. These design calculations are summarized in Section 3.1 
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Figure 3.1.19 Comparison of shear strength of jointed mass 
with direct shear tests on individual joints 
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3.1.5 SUMMARY OF PRINCIPLE FAILURE MODES. 

It is clear from an examination of all the failures shown 
in the proceeding figures that the following two parameters fundamen- 
tally affect the mode of failure: 

1. The relative orientation of the primary and secondary joints 
with respect to the slope, and with respect to the gravity 
field. 

2. The orientation of the joint set not involved in translational 
shear failure. Depending upon this orientation, tensile 
opening within the slope may or may not be possible. 

These two parameters dictate whether the mode of failure is one of 
purely translational shear, translational shear with tensile 
opening, or toppling shear. These three modes are illustrated by 
Figures 3.1.2, 3.1.18 and 3.1.6 respectively. 

A. Translational shear 

This will only occur if none of the joint sets dip to within 
10
o or 15°  of vertical. Admittedly, non vertical cracks can open 

up during the final failure process, but since an overhanging rear 
face is inherently unstable, the mass lying above the crack invar-
iably fails with, or fractionally after, the main translational 
failure. The volume finally involved in collapse is more or less iden-
tical in each case. 

B. Translational shear with tensile openinz 

This mode of failure is perfectly illustrated by situations 
in which a primary (lower strength) joint set dips steeply into the 
slope, while other joints are within a few degrees of vertical. 
When the strike direction of these two joint sets coincides with the 
slope direction, (as in the two dimensional models) this configura-
tion can represent the minimum possible factor of safety. 

The joint set that dips to within a few degrees of vertical 
allows tension cracks to open up prior to failure, thus separating 
the sliding mass from the stable portion above it. Similar situations 
having non-vertical joints would be inherently more stable since 
tension crack separation would be inhibited by the effective tensile 
strength of the intersecting joints.* The more stable zone lying 
above the potential tension cracks, would then contribute to the 
overall strength of the slope. This cannot occur when tension 
cracks open prior to failure. 

* The terms; tension crack and tensile strength are used in a 
loose, observational sense. The phenomenon of joint opening is caused 
primarily by the collective effect of small pre-peak shear displace-
ments lower down the slope. As such the tension crack zone behind a 
jointed rock slope will not necessarily correspond to the tensile 
zones predicted by elastic stress distributions. 
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It was suggested in Section 2.3 that in real environments, 
weathering of overstressed joints prior to failure might cause 
translational failure to occur on a partially stepped surface 
below the tension crack. Even without the benefit of weathering, 
one or two models illustrated this type of failure mode. (Figure 
3.1.15 C in this Section, and one or two excavated slopes reported 
in Section 3.3) 

C. Toppling shear failure  

For this mode of failure to occur one of two features has to 
exist: 

(a) higher frictional resistance on the joint set dipping 
into the slope than on the near vertical (overhanging) 
set potentially involved in toppling shear, or 

(b) an angle of dip for the joint set dipping into the slope, 
low enough to preclude shear failure on this set. 

The frictional resistance of the joint set potentially involved in 
toppling presumably controls the post-vertical angle required for 
relative shear to initiate. 

Bray75  and Cundrill69  have conducted some interesting theoretical 
and numerical analyses of toppling failures. Using a finite difference 
approach Cundall produced computer drawn diagrams of the progressive 
toppling mechanism in idealized block models. 

Toppling failure is seen to initiate through a process of 
relative shear across the 'overhanging' joint set. This mechanism 
allows the 'columns' of blocks to bend by the development of hinges 
on the second joint set which intersects the leaning columns. 
Eventually, further opening between the columns is inhibited at depth, 
andaline,of major hinges develops, thus separating the toppling mass 
from the part no longer involved in failure. 

The effect of joint dilation 

This toppling mode of failure represents an interesting digression 
from the conventional rotational, or translational shear mode. However 
one important property of rock joints has been overlooked. That is 
the property of dilation during shear. It is appreciated that the 
numerical methods of toppling analysis are complex enough without 
introducing this component of volume change. However, in this instance 
dilation is unquestionably more important than shear strength itself. 

The range of normal stresses acting across the potential toppling 
joints will be extremely low, in view of their near vertical orientation. 
Consequently during relative shear across these joints, large dilation 
angles can be expected. Depending upon the joint roughness, it 
would appear from Section 2.1 that the peak angles of dilation could 
be anything from 150  to 40° at such low stresses. Obvious exceptions 
to this would be: 
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(a) smooth, loosened cleavage surfaces (particularly in slates). 
(b) severely weathered, planar, shear type joints. 
(c) any joints near the surface opened by blast damage. 

For these reasons toppling would appear a valid mechanism for 
predicting limited surface failures such as those involving steep 
benches in opencast mines. 

However, unless the above exceptions are relevant, a toppling 
mechanism which involves shear displacements on a large number of 
joints is impossible, due to the dilational characteristics of 
the joints. 

A fundamental concept of soil mechanics can be cited in support 
of this generalization. Cassagrande, the originator of the critical 
density concept, found that sands dilated in shear in relation to 
the density of packing existing before searing commenced. This 
concept was developed further by Roscoe", who coined the phrase 
'critical state'. Put simply, granular materials such as sands 
were found to dilate in shear, if the density of packing was 
greater than critical. Conversely they contracted in shear if less 
dense than critical. The latter represents an extremely loose 
state which, in rock mechanics, might be approached by blast 
shattered rock, and presumably by rock fill. 

The important consequence of this dilation or contraction in 
shear is that shear failure is forced to occur on a minimum 
number of shear surfaces (usually one) when the medium is denser than 
critical. This is obvious from simple energy considerations. 

Jointed rock masses are clearly much denser than critical, 
even when simple shear failure on individual joint surfaces is 
envisaged without block rotations. Consequently, shear failure on 
a single surface is a prerequisite of near-surface shear failure 
within a rock mass. Undoubtedly, limited shear displacements 
occur on many joints surrounding the critical one, but it should be 
remembered that only smooth joints can be expected to stop dilating 
after passing their peak strength. Rough, large scale joints 
may dilate several inches more than their peak strength dilation, 
particularly at low normal stresses. 

Consequently toppling, which has to initiate by relative 
shearing between many joints, would seem to be a totally self 
inhibiting mechanism for dilatent joints. The failure 
illustrated in Figure 3.1.6 could only occur because of progressive 
loosening of the steeply dipping joints when the sloge was past 
vertical. Conventional open pit slopes of 30°  to 60 do not present 
the opportunity for deep seated loosening of the jointed rock mass. 
Consequently toppling failures would probably be limited to steep 
benches where blast damage could render suitable joint configurations 
prone to toppling failure. Frost wedging and similar weathering 
mechanisms might have a similar effect near the surface of steep 
slopes. 
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3.2 A MODEL LOADING RIG: PHILOSOP11 AND TEST PROCEEDtRES 

SUMMARY 

Near-surface stress measurements reported in the literature 
suggest that a model loading rig should be designed to apply 
horizontal stresses which increase linearly with the depth of the 
model. This triangular distribution is in marked contrast to the 
rectangular distributions required of biaxial loading frames for 
testing underground mining situations. 

The advantages of two-dimensional simulation of near-surface 
rock masses are argued. Problems which arise from two dimensional 
simulation of underground (high stress) situations are thought not to 
be relevant to near-surface situations, since failure here occurs 
primarily on joints perpendicular to the plane of the model, in 
contrast to failure through intact material at high stress levels. 

The concept of a soft loading system capable of storing a 
fixed amount of strain energy, equivalent to a stressed slice of 
rock surrounding the model is presented. The horizontal loading 
beams eventually designed consisted of a rigid beam loaded by a 
hydraulic piston at its lower third point. This triangular distribl. 
ution transmitted to opposite edges of the model via proving rings and 
independent plattens, twenty four per beam. 

The proceedures involved in loading the model horizontally and 
by gravity are discussed. Cyclic loading is employed to imprint 
a consolidation pattern on the model, consistent with the desired 
stress distribution. 

During stage by stage excavation of the model, pre-failure 
displacements are recorded by a photogrammetrie method. Comparison 
of successive photographic plates in a stereocomparator allows 
vertical and horizontal displacemenis to be calculated. The actual 
failures induced by excavation are recorded on 16 mm. cine film And-
video tape. 

The limit equilibrium method of slices developed 
previously, is used to design slopes which will fail when the 
desired slope height and angle is reached. The predicted zone of 
overstressed joints and the tension crack position are presented. 
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3.2. A MODEL LOADING RIG: PHILOSOPHY AND TEST PROCEEDURES 

INTRODUCTION. 

The components of rock mass behaviour have so far been 
simulated in stages, before attempting to combine them in a realistic 
model of a loaded rock mass. The previous section on tilt models 
represented only a first stage, in which jointed models were loaded 
by a rotating gravity field, until the ratios of shear to normal stress 
became limiting. The problem remaining, and the one of most relevance, 
was to load a model both horizontally and by gravity, making the 
boundary conditions as realistic as possible. Excavation of model 
slopes in this stressed environment would then indicate the relevance 
of stress history, and stress concentrations, to the eventual failure 
of the slopes. 

Photoelastic and finite element studies indicated that in 
elastic materials (with isotropic or anisotropic properties), stress 
concentrations at the toe of slopes were very real, particularly when 
'excavating' in a high horizontal stress field. (see for instance 
Blake 77, 78.) 

However the effect of discontinuities and non linear deformation 
properties on these theoretical stress distributions was not known. 
It was hoped that by performing more realistic physical model tests, 
the failures induced by excavation would give some clue as to the 
relevance or otherwise, of conventional numerical methods for pre-
dicting slope failures and deformations within and around the slopes. 

There was obviously no reason to beleive that the jointed model 
material created complications with respect to a real rock mass. On 
the contrary it was more likely that, due to the absence of weathering, 
variable structure and joint water, the models presented an extremely 
simple version of idealised rock mass behaviour. Yet despite this, 
the complexity of the components of model joint behaviour (in partic-
ular dilation) even now defies numerical simulation in anything but 
crude terms (seegor instance Mahtab and Goodman79, Zienkiewicz, Best, 
Dullage and Stagg°°, St. John43 and Cunda1169) In addition, existing 
computer storage limits numerical simulation to a relatively small 
number of discrete blocks, where discontinuous rock masses are 
concerned. 

It will therefore be seen that the large models to be described 
in Section 3.3 were designed not only to clarify rock mass behaviour 
where possible, but also to determine whether or not it was justifiable 
to view existing numerical analyses with some scepticism. 

The fundamental differences between modelling underground 
and open cast excavations have been discussed previously in Section 1.1 
These related chiefly to differences in scale and stress distribution, 
and in particular to the negligible importance of self weight 
stresses in underground situations. These differences will be 
expanded upon before going on to consider practical details. 
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3.2.1 NEAR-SURFACE STRESS DISTRIBUTIONS TO BE MODELLED 

It is clearly apparent from the large number of rock stress 
measurement studies (for instance Hast81, Wisecarver, Merrill, 
Ransch and Hubbard82, Li83  and Pallister, Gay and Cook84,) that 
although a hydrostatic distribution may be a universal mean, 
wide variations can occur. Horizontal stresses ranging from 
one third to three times the vertical stress are encountered, and 
even the vertical stress is not necessarily related to the depth 
of overburden and rock density. 

The well known measurements by Hast81, which were made 
in mines in three Scandinavian countries, indicated that an almost 
linear relationship existed between the sum of the two horizontal 
stresses (al +CY2) and the depth of overburden. When intrapolated 
to the surface these measurements indicated that a stress sum in 
excess of 2000 lbf/in2  might exist at or just below the surface. 
Although these measurements have been received somewhat sceptically 
they do at least focus attention on a subject which is full of 
anomalies. 

However the linear increase of horizontal stress with depth 
has been confirmed by several other measurements. Most of these 
have indicated a less marked increase in stress with depth than 
found by Hast, and also a negligible stress ellipsoid at the 
surface. 

In view of these measurements the model loading rig was designed 
to apply a triangular stress distribution to the vertical sides of 
the model, which could be changed in gradient as desired. The 
density of the model material used in all the jointed models (material 
C3, see Sections 1.2 and 1.3) was 121 lbf/ft-'. This meant that 
for every 1 foot of model overburden the vertical stress increased 
by 0.84 lbf/in2. When converted to prototype scale these values 
represented a 550 lbf/in2  stress increase for every 500 feet of 
prototype overburden. (Geometric scale A = 1:500, stress scale 

= 1:666) The model loading frame was designed to apply a 
horizontal stress of the following range of intensities: 

rjj =(21 to 5)(iv  

where (31 = horizontal stress 

cr, = vertical stress (0.84 lbf/in2  per foot) 

3.2.2. MODEL BOUNDARIES FOR SIMULATION OF NEAR-SURFACE ENVIRONMENTS 

1. Two-dimensional simulation  

It was decided at an early stage that the models should be 
two dimensional. Any three dimensional loading system complicates 
the measurement of model displacements and recording!.ofrslope 
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failures to an impractical degree. In fact the advantages of 
cross-sectional observation are entirely lost with three dimensional 
models, unless one is thinking of crude photoelastic type 'rock 
mechanics' in which the 'stress freezing' method is utilized. 

For this reason it was only necessary to apply horizontal 
stresses down the opposite vertical edges of the jointed models, 
which would be supported between glass walls, to give lateral 
support against possible buckling. 

Experience with high stress biaxial loading frames for simulating 
underground mining situations, has indicated that certain problems 
are created by two dimensional models which can only be overcome 
when loading and modelling in three dimensions, thereby substituting 
a different set of problems. 

These relate to the fracture of intact material between the 
joints, which will occur around underground excavations, if the 
horizontal to vertical stress ratios are sufficient to cause shearing 
and tensile failure. Ergun5  reported these problems in his study 
of the stability of underground openings, when modelling jointed rock 
in a large two dimensional biaxial loading frame designed to test 
40 inches by 40 inches models. 

The stresses applied to the edges of these 1 inch thick 
models were so high (design range 0 to 10,000 lbf/in2) that thick 
Perspex and glasO support walls were designed to prevent buckling. 
When the models were dismantled brick by brick after testing, it was 
found that the limited zones of shear failure around the exec. pions 
actually extended through larger areas of the model without 
previously having been dotected. Tensile fractures were occurring 
parallel to the plane of the model, inside the plaster model bricks, 
and therefore invisible from the surface. 

However this invisible fracturing, which in itself would 
have been a valid mode. of failure in certain three dimensional 
stress situations, was sufficient to cause wedging between the 
glass walls after a certain amount of movement had occurred. This 
was an. unfortunate situation, since Ergun5  demonstrated that only 
a very small lateral pressure was required to prevent buckling, if 
the bricks were closely supported on each side. This lateral pressure 
increased enormously if appreciable buckling could occur. This anomaly 
meant that a wider spacing of the support walls was not a very 
satisfactory solution to the problem. 

Fortunately, near-surface modelling did not appear to present 
these problems since, unless the rock to be modelled was excessively 
weak and the slopes extremely high (an unlikely combination), 
failure would probably only occur along pre-existing joint surfaces. 
At the relatively low stresses operating in opencast mining situations, 
the shear strength of the joints is low compared to the shear strength 
of the intact material, and consequently intact strength is seldom 
mobilized. The pre-existing joint surfaces in the models were all 
designed to have strike directions perpendicular to the plane of the 
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model. Consequently wedging was not likely to occur during 
failure. 

All that was required for support of the model in the third 
dimension was two rigid glass walls, with a small clearance 
between the model and the glass, sufficient to allow unhindered 
movement, but small enough to inhibit any tendency for buckling. 
Due to the lower relative stress range operating in a near surface 
environment, buckling was less likely anyway. (It was found later 
that the angle of friction between the model material and the glass 
walls was approximately 110  to 12°. The verticality of the model 
and the lack of buckling meant that interaction between the glass 
walls and the model could be ignored.) 

The two model boundaries in the third dimension left the 
base of the model and the two horizontally loaded edges as the 
remaining artificial influences on the planned model. In an 
effort to reduce their influence, these three edges were separated 
from the model by a mi 'mum of two, face to face strips of P.T.F.E. 
(Teflon) low friction tape. A coefficient of friction of 0.05 meant 
that shear stresses on the boundaries were minimal. 

2. Horizontal stress simulation 

The conventional methods for loading the boundaries of 
biaxial models consist of constant load devices usually hydraulic 
pistons, which transmit boundary stresses via distribution 
plattens. Three methods can be cited: 

1. A loading system incorporating an equal number of pistons 
as plilttens, on four edges of the model (for instance 
Hobbs E) 

2. A loading system incorporating only one piston on each 
of the four edges of the model. The load from each 
piston is distributed in turn to two, four, eight and 
sixteen semi circular plates of reducing diameter, 
supported in line contact fro leaf springs. This 
method was developed by Hoek8-' ,and results in a more 
uniform distribution of stress on the boundaries than the 
above. 

3. A loading system incorporating a large number of P.T.F.E. 
lubricated steel shims, all of which are loaded by end 
contact with hydraulically pressurized adiprene rubber 
bags. This method, which was developed and successfully 
used by Ergun5  is an extremely good one, and results 
in a very uniform distribution of stress even when 
differential displacements occur at the boundaries. 

All the above systems were designed to apply constant loads 
which were independent of displacements at the boundaries. They 
were also designed to apply rectangular distributions of stress, 
rather than triangular, since self weight stress gradients can be 
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ignored in most underground mine operations. (The vertical extent 
of the workings is generally small compared to the depth below 
surface). 

The larger scale of opencast excavations, and the necessity 
to model as much of the surrounding rock mass as possible, presented 
considerable problems. These were to some extent resolved by the 
development of the very weak model material. Nevertheless the 
dimensions of the model compared to the dimensions of the slopes to 
be excavated in it presented a difficult decision. 

The only data available concerning the influence of an 
excavation on the stresses and displacements surrounding it were 
from finite clement solutions for idealized elastic materials. 
The effect of joints and non linear deformation properties on 
these solutions was unknown. 

It was therefore decided that the model should be made as 
large as was practical for the available laboratory space, so that 
vertical boundary effects would be reduced to a minimum. If, 
during excavation of a model pit, it was found that the limited 
dimensions were effecting the problem, then the depth and width 
of the pit would obviously need to be reduced. 

It was originally intended that enough of the surrounding 
rock mass should be modelled to allow horizontal loading via two 
rigid beams. Piston loading at the lower third points of these 
beams could then produce the desired stress gradient, and solve 
the problem of a triangular distribution in a very simple manner. 

However it was suggested by Bray86, that, since the loads 
were being applied just outside the middle third of the beam, small 
displacements in the upper part of the model would result 
in separation of the model from the beam in the upper levels of 0  
the model. A novel solution to the problem was suhgested by Hoek'70  
Third point loading of the beams would be combined with individual 
loading of plattens via proving rings, which would distribute 
the triangular stress to the model, and greatly reduce the non 
uniformity of stress when relative displacements occurred at the 
boundaries. 

The implications of this method became apparent when a 
design was attempted. There were two possibilities. 

1. Loading of the beams with a constant piston force, 
while the models were excavated, so that the total 
distribution of stress was constant. Local variations 
in stress could be detected by dial gauges mounted across 
the proving rings. 

2. Loading the beams with the required force before locking 
them in position when excavation was to begin. The strain 
energy initially stored in this system would be that of 
the triangularly stressed model, and the triangular 
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distribution of load in the proving rings. 

Displacements occurring at the boundaries for case No.2 
would result in a fall off in the stored strain energy (therefore load) 
of individual proving rings, which could be monitored by dial gauges, 
and would occur in a linear manner depending on the stiffness of 
the rings. 

After a lot of thought it was decided that such a system 
was a much closer approximation of near-surface rock mass loading, 
than the conventional constant force devices. It was conceeded 
that these were probably justified for underground situations where 
displacements were small, and the stresses so high that the 
surrounding rock mass effectively applied a constant stress field, 
independent of displacement. However, for open cast operations, 
where the unloading by excavation was enormous, it seemed likely 
that the surrounding rock mass was far removed from any constant 
stressing device. The duration of opencast operations was insignifi-
cant on any geological time scale, and the /theological properties 
operating during tectonic movements were surely irrelevant here. 

It was therefore concluded that near-surface rock masses 
(excluding tectonically active mountain chains) had a limited 
potential for storing strain energy, due in particular to the low 
stress levels and also the presence of joints with irrecoverable 
deformation properties. It was thought that stored strain energy 
that existed would be dissipated irrecoverably by unloading 

displacements caused by excavation. 

However, accepting the limited strain energy of the system, 
what dimension of rock could be said to be 'active', in terms 
of responding to displacements? 

In the complete absence of relevant information, an 
arbitary decision was made. The proving rings (24 each side), 
were designed with a stiffness equivalent to that of half the 
model dimension of un,jointed model material. This meant 
that the design was based on the value of Young's modulus 
(E) for the intact model material.The sketch overleaf illustrates the 

'equivalent slice° concept of the 'soft' loading system. 
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Provin, YinGs 	Ecl„uiVC119nt Slice 

Figure 3.2.l illustrates the completed loading frame and 
included model (measuring 8 feet by 4 feet by 1 inch) held in a 
vertical plane prior to excavation between the glass walls. Some 
design features of the loading frame, and in particular the loading 
beams and proving rings are given in AppCndix 4. 

The model dimensions, when converted to prototype scale 
(geometric scale A = 1:500) represented a jointed slice of 
rock, 4000 feet long and 2000 feet high. The model joint 
spacing of - inch meant that a model with two joint sets was split 
into approximately 40,000 blocks. This meant that the models 
were acceptably 'discontinuous', with probably more elements than 
previously attempted in rock mechanics terms, both physically and 
numerically. 



Figure 3.2.1: A large loading frame for near-surface stress simulation in two-dimensional models 
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3.2.3 TEST PROChEDURES 

1. Cyclic loading of the model 

The models were constructed from eighteen jointed slabs of 
model material, each measureing 16 inches by 16 inches. The 
construction proceedures are discussed and illustrated in Appendix 5. 
(The sequence of operations involved in production of jointed slabs 
are given in Appendix 3) 

After construction of the models, the front wall of glass was 
replaced while in a horizontal plane, and the all round model-glass 
clearance adjusted to approximately 0.040 inch. The loading 
beams could then be positioned in place of the steel straight edges 
supporting opposite edges of the model. 

In a horizontal plane (see Figure 3.2.2) and with no force 
applied to the two loading beams, the model was in an unstressed 
state. (Q-v  =Q-11  = 0.) The loading proceedure was as follows. 
The dead weight compensated loading tank (Appendix 4) was filled at a 
uniform rate from a constant head water supply thereby pressurizing 
the two, third point loading pistons. Simultaneously, the model 
was rotated towards a vertical plane by screwing the large 
worm reduction gear seen in Figure 3.2.2. The model was rotated at a 
rate approximating a linear increase in the sine of the angle of 
inclination from horizontal. The rate waschosen so that both 
horizontal and vertical (gravity) stresses should reach their 
maximum at the same time. Thus as far as was possible the model was 
loaded under a constant ratio of horizontal to vertical stress, whatever 
horizontal stress level was chosen (01 = 1 to 3(1V). This meant 
that the loading history, at least from the end of construction, 
was known with some certainty. 

The non uniform loading history induced by unavoidable 
construction loadings, and the desire to consolidate the joints 
appropriate to the design strees, suggested that the models should be 
loaded cyclically (Morgenstern °°). This would help to dissipate the 
irrecoverable displacements, in much the same way that the 'hysteresis' 
is reduced or even removed by repeated loading and unloading in plate 
bearing tests. Only then would the strain energy in the system be 
known, at least with some degree of confidence. 

The models were therefore loaded and unloaded (see Figure 3.2.3) 
with the same attention to the stress ratio. After each loading the 
displacements that had occurred at the top and vertical edges of the 
model were recorded, and the proceedure repeated. It was found that 
about three cycles was sufficient to consolidate the models, such 
that no further displacements could be detected. Each model was 
cycled five times in all, before leaving it in a vertical plane, and 
locking the loading beams in position. The frame was actually rotated 
about 2° past vertical so that the model just rested on the front glass 
wall. This removed the shadow of the 2 inch square grid, which was 
etched on the inside of the front glass wall, adjacent to the model. 
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Figure 3.2.2: A jointed model lying in a horizontal plane before loading 
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Figure 3.2.3: Rotation of a Lodel to induce gravity loading 
while applying an increasing horizontal stress. 
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2. Excavation of the model  

This operation, which initially appeared likely to cause 
considerable problems, in fact proved quite simple. A large indus-
trial vacuum cleaner with tubular extension, was connected to one 
exit at the top of a sealed oil drum. The drum was half filled 
with water, and a second exit tube positioned so that the bottom 
of the tube was a few inches below the water surface. The top of 
this tube was connected via flexible hose, to variable lengths 
(9 inches to 3 feet) of thin walled plastic tube which was steamed 
into an oval shape so that it would fit between the glass walls 
which were spaced at just over 1 inch apart. According to the 
current depth of the excavation, one or other of the oval sections 
was used to touch the bottom and sides of the excavation, thereby 
removing whole model blocks and smaller debris by suction forces. 
This debris was sucked through the water in the oil drum, thereby 
removing the dust problem. Every so often, the sludge in the bottom 
of the drum was washed out and the tubes cleaned internally or 
replaced to reduce internal caking, and improve suction. 

It was found that a sharp steel pin, when fixed to the end of 
finch diameter steel rods, was a useful tool for loosening between 
blocks. Joints were scratched in a direction perpendicular to the 
plane of the model so that no adverse forces were applied to the 
excavated slopes. Extension pieces for the steel rods allowed 
excavation down to the maximum depth, of 32 inches. It was particularly 
noticeable that as the depth increased the tightness of the joints 
also increased, making excavation more difficult. 

It will be seen from photographs of the excavations reproduced 
in Section 3.3, that 'tight' excavations wore initially it down 
to full depth, and the slopes steepened until failure occurred. The 
failed debris was then sucked out and new slopes excavated on each 
side, again until failures occurred. In this way four failures were 
obtained from each model, with the exception of the first trial model. 

3.2.4 DISPLACEMENT AND BOUNDARY STRESS MEASUREMENT. 

The kind and most helpful cooperation of the Photogrammetry 
Department, University College, London, resulted in all pre-failure 
displacement measurement being made using photogrammetric techniques. 
The failures themselves were recorded on 16 mm. cine film, running 
at 30 frames per second, with a stand by video tape recording system 
in case the cine film was not running when failure occurred. 

Figure 3.2.4 shows the recording systems in operation 
behind a black sheet of paper, designed to reduce reflections in the 
front glass wall. 

1. Displacement measurement using photogrammetry  

One of a pair of Gallilco-Santoni cameras was used, set up on a 
560 mm. bar and positioned to give coverage of the whole 8 feet by 
4 feet model. Stereoscopic overlap of two cameras was not required 
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Figure 3.2.4: Three recordin:,, techniques for displacement and 
failure observations used during excavation of model slopes. 
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since the method involved comparison of the unexcavated model with 
successive stages of excava4on. The method has been described in 
detail by Wickens and Barton°9. For the present, the following steps 
will be taken to summarize the proceedures: 

1. The camera was set up on a rigid tripod whose legs were 
placed in holes drilled in the concrete floor of the 
laboratory. It was essential that no movement of the 
camera occurred during the two to three days taken to 
excavate the model, stage by stage. 

2. A photograph of the model was taken when it was fully 
loaded, but before excavation took place. This was the 
control model, which was taken to represent the zero 
displacement condition. 

3. Photographs were taken when the pit was 8,16, 24, and 32 
inches deep and for several steepening stages, until failure 
occurred. A second set of photographs were taken when the 
slopes were excavated behind the inner failures. 

4. The control photograph, and each of the others in turn were 
viewed in a stereocomparator. Horizontal displacements 
occurring as a result of excavation caused the displaced 
parts of the model to 'bend' away from the 2 inch grid on 
one side of the model, and 'bend' forward on the opposite 
side. This three dimensional parallax effect enabled the 0C 
(horizontal) displacements to be computed for any points on 
the model. For convenience this was always done at grid 
intersections. 

5. Rotation of the same photographic plates through 900  enabled 
the y (vertical) displacements to be measured in the same way. 

The sensitivity of measurement was ± 0.15 mm. (0.006 inch) 
at best, and individual displacements of nearly 3 mm. (0.120 inch) were 
recorded near the .rest of several slopes. When converted to prototype 
scale, these represented 3 inches and 60 inches respectively. This 
was for prototype pit depths of 330, 670, 1000 and 1330 feet deep. 
The displacement vectors for all the excavation stages of all three 
large models tested, are presented in Section 3.3 

2. Measurement of boundary stresses and displacements  

When the models had been finally loaded before excavating com-
menced, the readings of all the dial gauges on each loading beam were 
recorded. These displacements represented the approximately triangular 
distribution of load in each bank of proving rings. They also 
represented the zero displacement condition. 

At each stage of excavation corresponding to each photograph 
taken, all the dial gauges were gently tapped and read. It was there-
fore possible to compute the reduction of applied stress at the bound-
aries and the displacements causing this reduction. 
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Boundary displacements could be read to approximately one fifth of 
an O.00Olinch division. At prototype scale this represented 1 0.01 
inch which was extremely sensitive. Similarly, boundary stress 
changes could be read to approximately f 2.5 lbf/ins at prototype 
scale (see Appendix 4) All these results are recorded in Section 3.3 

3.2,5 DESIGN OF EXCAVATIONS FOR FAILURE 

Unlike most mining situations, the model slopes to be 
excavated needed to be designed to fail when it was considered that 
sufficient displacement measurements had been obtained. They were 
in fact designed to fail just after the slopes had been cut to 
32 inches height, during the steepening operations. 

The information available on the shear strength of the model 
joints was that obtained from direct shear tests (Section 1.3) and 
from tilting slope experiments (see Figure 3.1.19, Section 3.1) 

The Coulomb parameters appropriate to the normal stress 
range estimated from self weight stress assumptions were as follows: 

cohesion c . 0.10 lbf/in2  

angle of friction (16= 58°  

(These parameters refer to the primary, continuous joints.) 
The limitations on the values of possible joint dip angles have 
been discussed in Appendix 5. In view of these considerations the 
slopes were designed to be cut in slabs having primary joints dipping 
at 660. (Preliminary calculations with dips of 58° and 62°  showed 
that shear failure could not be induced without using.steeper angles.) 
Secondary (and tertiary) joints were taken into account purely as 
no-tension surfaces, and it was assumed that vertical tension cracks 
could open unhindered, behind the crest of the slopes. 

The limit equilibrium method of slices developed in Section 2.3 
was used to calculate the depth of failure for slope angles of 
81.7°. This extremely steep slope angle was chosen by trial and error 
as a convenient slope grade having regard for the dimensions of bricks 
making up the slopes. The steepness reflects the high shear strength 
of the rough model joint surfaces, and the absence of water pressure 
as a failure inducing agent. 

For the following input information: 

c = 0.10 lbf/in2  

58° 
0.07 lbf/in3  

cis = 81.7°  

(2 = 66° 
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trial value of depth (H) = 36 inches 

equations 10 and 11 (Section 2.3) yield the following simplified 
expressions: 

Upper LI : 

P1 ---,a.10 = [1,3,5  .... 191-2.408) + 0.265 	lbf/inch 
100 

Lower t, 

P
110 

=1.1,3,5 .... 19_1( -1.170) + 0.129 	lbf/inch 

100 

The following tabulation of stable and unstable excess 
forces acting on each of the twenty slices,delinoates the stable 
portion (bracketed). 

P values Upper A Lower A 

P1 -+ 0.241 + 0.117 

P2 + 0.192 + 0.094 

P5  + 0.144 + 0.071 

P4 + 0.096 + 0.047 

P5  + 0.048 + 0.024 

P6 - 0.001 + 0.001 

P7 - 0.049 - 0.023 

P8 - 0.097 - 0.047 

P9  - 0.145 - 0.070 

P10 - 0.193 - 0.093 

A tension crack is predicted 
between slices in the upper 
triangle, denoted by P5 
and P6. The forces 
bracketed, represent 
the portion of the slope 
that is independently 
stable, assuming a tension 
crack can open. 

The following pairs of values were plotted to determine the 
failure depth (at /7P = 0): 

H (inches) P (lbf) 

36.0 -0,363 

32.4 -0.077 

28.8 +0.138 

The intercept with thelEP = 0 (limiting) axis, predicted failure 
for slopes higher than 31.2 inches. 

The above tabulation was for a slope height of 36 inches. 
Consequently a reiteration with H=31.2 inches was needed to produce an 
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accurate tabulation of the P values for slices dividing a slope of 
31.2 inches in height. Alternatively equation 12 (Section 2.3) 
could be used to find the position of the tension crack behind 
the crest, using the minimising relation suggested by Markland6°. 
However this would not delineate the zones where joints were theoretic- 
ally overstressed, which was of interest in terms of pre-failure dis- 
placement measurements. 

The reiterated calculations and tabulations are given below. 

Upper A.  : 

Lower A : 

= 

= 

(1,3,5, 	19) (-1.809) + 0.229 lbf./inch 

(-0.879) + 0.112 lbf/inch P1--*10 

100 

(1,3,5, 	19) 
100 

P values Upper Lower 

PI 1-0.211-  +0.103 

p2 +0.175 +0.086 

p3 +0.139 +0.068 

P4 +0.103 +0.051 

p5 +3.067 +0.033 

P6 1-0.031 +0.015 

P
7 

-o.006 -0.002 

P8 -0.042 -0.020 

P9 -0.077 -0.037 

Plo -0.114 -0.055 

The value of P for 
all values with the 
exception of those 
bracketed was 
0.002 lbf/inch 

which confirmed the 
accuracy of the iteration. 

The approximate length of joints overstressed, and some stages 
of excavation are shown in the scale drawing reproduced in Figure 3.2.5. 
The heavy vertical and horizontal lines represent the 2 inch square 
grid etched on the glass in front of the model, and also coincide with 
vertical and horizontal, secondary and tertiary joints. The steeply 
dipping primary joints ( 	= 66°) are marked with dashed lines where 
the shear stresses calculated from self weight stress assumptions, 
exceed the shear strength defined by c = 0.10 lbf/in2, = 58°.  

The failures of tilt models shown in Section 3.1 (Figures 3.1.15 and 
3.1.18) should be compared with these theoretical limit equilibrium 
predictions. The agreement is remarkably close. 

It is shown in Section 3.3 that slopes excavated in high horizon-
tal stress fields aril  = 2G0 produce most unexpected slope failure 
angles, which contradict current opinion on the effect of stress 
concentrations at the toe of steep slopes. 
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3.3 PRE-FAILURE AND POST-FAILURE OBSERVATIONS OF THREE MODEL 
OPEN CUTS. 

SUMMARY 

The displacements occurring behind model slopes as a 
result of excavation are plotted as scaled vectors on photographs 
of the excavations. These vectors, which were obtained from 
photogrammetric measurements, indicate the far reaching effect of 
even small open cuts on displacements in the surrounding rock. 
The displacement vectors are given for several stages of excavation 
for three large mdels. The first two were tested with a high 
horizontal (tectonic) stress but had different jointing. The 
last model was tested with a low horizontal stress. 

The displacements and stress - changes occurring out at the 
vertical boundaries of the model as a result of excavation, wore 
monitored at corresponding stages of excavation. Those show the 
relevance of a fixed strain energy loading system. 

An unexpected joint closure phenomenon is reported. It was 
found that the normal and shear stresses acting on a given joint 
act before excavation, reversed in magnitude when slopes were exca-
vated above the joints. This meant that a joint involved in 
shear failure as a result of excavation had previously been 
consolidated at a much higher normal stress. A series of pre-
consolidated direct shear tests were performed and demonstrated 
the important effect of mass closure on shear strength. 

The post-failure characteristics of steep model slopes arc 
shown by means of sequence photographs, taken from tine films of 
the failures. The steepness of the slopes at failure was seen 
as a direct result of the mass closure effect. The failures were 
back analysed by simple limit equilibrium methods. 



273 

3.3 PRE-FAILURE AND POST-FAILURE OBSERVATIONS OF THREE MODEL OPEN 
CUTS. 

INTRODUCTION 

This final section on model behaviour presents all the results 
of the large model tests, in which highly discontinuous models were 
loaded both by gravity and horizontally. Open cuts were excavated 
from the surface of these models, and the eventual slope failures 
recorded on 16 mm. tine film. The displacements occurring within 
the slopes as a result of stage by stage excavation were recorded 
and measured by means of simple photogrammetric techniques. Displace-
ments and stress changes at the boundaries of the model caused by 
the excavations were also monitored. 

A total of three large models were constructed and excavated to 
failure. The first one, which was of an experimental nature, was 
jointed in two directions neither of which coincidcd with the 
vertical and horizontal slab boundaries (see Appendix 5 ). In the 
light of experience gained with this first model, the two subsequent 
cnes were jointed in three directions, two of which coincided with 
the slab boundary directions. 

The last two models were structurally identical, but were 
loaded horizontally to two different levels of stress. Firstly, a 
triangular distribution approximately twice the vertical gravity 
stress was applied. It was anticipated that this would induce failure 
at slope heights and inclinations of lower values than for the 
second model, which was loaded to a stress level equal to only half 
the vertical gravity stress. As will be shown, this proved to be 
a false assumption. 

The observations and measurements of pro-failure displacements, 
both in the slopes and at the model boundaries, will be presented for 
each of the three models in turn. Following this the post-failure 
deformations will be shown in the form of sequence photographs 
taken from the tine films of the failures. The unexpected effect 
of different horizontal stresses on stability is convincingly 
explained by a series of specially designed shear tests. 

3.3.1 PRE-FAILURE OBSERVATIONS OF MODEL L.M. 1 

The first model test differed from the following ones in two 
ways: 

1. The jointing was symmetrical about a vertical plane, 
such that the two joint sets dipped at 66°  and 114°  (66°) 
It was arranged so that a symmetrically excavated cut would 
be intersected on both sides by primary joints dipping at 
660. The centre of the model was therefore an axis of 
symmetry. 
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2. Overlapping pairs of photographs were taken to give stereo 
coverage of the central two thirds of the model. This 
technique proved to be unnecessary, and the following models 
were photographed with only one camera, placed centrally to 
give complete coverage of the model. Displacements were 
measured by comparing the undisplaced photograph taken before 
excavation, with succeeding photographs of different stages of 
excavation. 

Figure 3.3.1 illustrates this jointing and also the non-symmetry 
of the camera position. The white sheets of paper fixed to the 
model frame were placed so that the collimation marks of the camera 
would be visible in the exposed plates. 

Model L.M.1 was loaded horizontally to a stress level 
approximately equal to twice the gravity induced self-weight stress. 
(q= 2(rv). However a stress intercept of 1.4 lbf/in2  was found to 
exist at the surface, based on the dial gauge readings. Tests con-
ducted on the loading beams prior to model construction indicated 
that when loading against a flat, rigid steel beam in place of the 
model, relatively linear triangular distributions of load were re-
corded in the proving rings showing zero stress at the surface 
(see Appendix 4.) For design distributions of Cih  = 2 and 3T1r, 
overall errors of 11.4 and 11.7% were recorded in these trial 
loadings, which were presumably caused by frictional losses in 
the pistons. 

However, the surface stress intercept obtained when loading 
the discontinuous models indicated that the model resistance was 
trapezoidally distributed. This was perhaps a function of the active 
and passive resistances of the models. An unloaded vertical model 
slope 4 feet high tends to topple outwards in the upper third 
(see Figure 3.1.8) which constitutes an active pressure on the 
loading beam compared to the passive resistance lower down. 

1. Slope deformations  

Figures 3.3.1, 3.3.2 and 3.3.3 illustrate stages A,B and C 
of excavation in model L.M.1. A limited number of displacements 
were measured, mainly to delineate the optimum positions for 
measuring displacements in the later models. 

The mean displacement vectors for both sides of the excavations 
shown in these figures, and in all the others to follow, are drawn 
to a scale of 5:1 (0.2 inches representing 1 mm. of model displacement). 
They are drawn in the overall direction of maximum displacement for 
each excavation stage. Any points on the model which indicated an 
undetectable amount of displacement are indicated by blank circles. 
The sensitivity of measurement was no better than ± 0.15 mm 
(1  0.006 inch), therefore elastic displacements resulting from 
unloading were undetectable. 

The magnitude of the displacements at the measurement points 
closest to the slope crests for each of the stages A,B,and C are 
given overleaf. 



Figure 3.3.1 	Mean displacements, Stage A of model. L.M.1. 
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Stage Displacement Inclination 

A 0.028 inch 17° 
B 0.063 inch 18°  
C 0.116 inch 23°  

When converted to prototype dimensions ( A = 1:500), the 
slope heights, inclinations and crest displacements have the 
following values: 

Stage Slope Displacement at 

Height Inclination Crest (inches) 

A 

B 

C 

375 
1020 

1330 

77° 
77°  

81°  

14.0 

31.5 

58,0 

The displacement vectors illustrated in the three figures 
suggested the following conclusions: 

1. At no point in the models were uplift displacements detectable 
as a result of unloading. 

2. The maximum displacements occurred at the crest of the slopes 
and reduced with increasing depth below the crest. This was 
presumably a function of the small pre-peak displacements 
occurring on all the joints which dipped steeply into the 
excavation. The joints nearest the crest would obviously 
be less highly stressed in shear than those lower down. 
However, since tne normal stress acting across these joints 
was also reduced ( -"r /0-  = tan 66°), the small pre-peak 
displacements occurring on all the exposed joints were 
contributing to the total displacement. 

The fact that the displacements were not a maximum in 
the 66° dip direction was probably due to two phenomena in 
particular: 
a) The low normal stress range acting across the steeply 
dipping joints meant that pre-peak shear displacements were 
probably following steeply dilatant paths due to the joint 
roughness (Section 2.1). 
b) Small approximately vertical tension cracks were noticed 
behind the crest of most of the slopes once the slope height 
was approaching that of stage B. 

3. In the early stages of excavation, photogrammetric measurement 
points located behind the crest in a horizontal line showed 
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undetectable displacements close to the model boundaries. 
However, as the excavations became deeper (and steeper) 
the displacements increased enormously. It will be seen 
presently that the models eventually came out of contact 
with the loading plattens. The displacements occurring as a 
result of the excavations were so large that the strain 
energy in the system was dissipated in the upper third of the 
models and proving rings. 

It is clear that the usual constant stress loading devices 
would have been artificial in the extreme, for such model situations. 
The fixed strain energy 'soft' loading system was clearly more 
relevant, though the most realistic 'equivalent slice° to be 
designed remained an unknown. 

2, Boundary displacements  

Figure 3.3.4 shows the displacements occurring over the full 
height of the model, as recorded on the proving ring dial gauges. 
Six of the proving rings could not be fitted with gauges and the 
displacements occurring here are shown dashed. 

It will be recalled from Appendix 4 that boundary displacements 
as small as 0.00002 inch could be recorded on these sensitive dial 
gauges. (This was 300 x the sensitivity of the photogrammetric 
method.) At prototype scale this represented 0.01 inch which was 
still extremely sensitive. The plot of displacements was not drawn . 
to this accuracy, but despite this the sensitivity of the boundaries 
to excavations can be clearly seen. Stage A excavation which was 
only 9 inches deep effected the boundaries 36 inches away horizontally, 
and down to a depth of 48 inches. At prototype scale these 
represented 1500 feet and 2000 feet respectively, for a pit depth of 
only 375 feet, 

The photogrannetric displacements of the points closest to the 
boundaries are given by points a, b and c. These correspond to 
the excavation stages A,B and C respectively. They indicate that 
the small amount of strain energy stored in the upper-most proving 
rings was dissipated early on in the excavation sequence, since 
an obvious discrepancy exists between the two displacement records. 
It can be concluded that approximately one-third of the model was 
no longer stressed or even in contact with the loading beams, by 
the time stage C was reached. 

3. Stress changes at boundary 

Figure 3.3.5 shows the irregular nature of the initial stress 
distribution (0) recorded from dial gauge readings before excavation 
commenced. It was suggested in Appendix 4 that the real distribution 
of stress at the face of the models was more uniform than that 
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recorded across the proving rings, due to the precautions taken to 
distribute the platten loads via P.T.F.E. lubricated laminations 
of rubber. It is not however possible to verify this one way or 
the other. 

The changes of applied stress with excavation were a function 
of the displacements occurring across the proving rings due to 
model relaxation. These changes wore proportional to the boundary 
displacements presented in Figure 3.3.4. 

The mean linear distribution of stress is seen to be somewhat 
higher than the triangular distribution (GI, = 2ci-v.). The 
following equations describe the mean values for the model: 

(.1T. 1.40 + 0.121h 

Cl v = 0.07h 
	lbf/in2  ( h in inches) 

Conversion to the prototype values depends on the ratio of the 
stress to geometric scales (9/A ), since the equations relate 
stress to depth. Thus for the prototype with ( 	) = 666/500:  

Ch  = 933 + 1.94 VI 

= 1.12k 
lbf/in2 	( b in feet) 

The surface intercept of 933 lbf/in2  is of a similar magnitude 
to half the horizontal, stress sum ( cri ±(72) deduced from stress 
measurements by Hast 81  (see Section 3.2). Therefore although not 
zero as designed, it is at least no more severe than has been 
measured in certain situations. It can perhaps be taken to 
represent possible stress levels in a tectonically active area. 

3.3.2 PRE-FAILURE OBSERVATIONS OF MODEL L.M.2 

Figure 3.3.6 illustrates the jointing employed in this and 
model L.M.2. Once again it was designed so that primary joints 
dipped steeply into the slopes at 660  on both sides of the 
excavations'. The vertical centre line of the model was therefore 
an axis of symmetry, and the displacement vectors shown are the 
mean of both sides of the excavation. Exceptions to this will 
be indicated in the text. The horizontal stress distribution 
was similar to that applied to model L.M.1 

1. Slope deformations  

The unexcavated stage A of Figure 3.3.6 shows the total 
number of points which were measured for displacement monitoring, 
during the various stages of excavation. The crest positions for 
stages B and C of Figure 3.3.6, and for D,E and F of Figure 3.3.7 
indicated the following magnitudes and directions of displacement: 
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Figure 3.3.6 	Mean displacements, stages A, B and C of model L.M.2 
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Stage Displacement (inch) Inclination 

B 0.018 13° 

C 0.042 17°  

D 0.078 12°  

B 0.076 12° 
F 0.082 12° 

When converted to prototype dimensions, the slope heights, 
inclinations and crest displacements have the following values: 

Stage Slope Displacement at 
crest (inches) Height (ft). Inclination 

B 333 81° 9.0 
C 667 81° 21.0 

D 1330 81°  39.0 

E 1330 84' 38.0 

F 1330 87°  41.0 

Due to a faulty exposure, the displacements measured for stage F 
were only those of the left hand side of the excavation. 

It can be seen from the tabulation of pit slope inclinations, 
that the model slopes were standing at considerably steeper angles 
than the predicted maximum of 31 inches/810  derived in Section 3.2. 
When failure did eventually occur the debris was cleared and two 
new slopes were excavated closer to the boundaries, in essentially 
unstressed 'ground'. Figure 3.3.8 shows that failure had not 
occurred even when the slopes were vertical, for this highly 
stressed model. There is a fundamental reason for this which will 
be introduced after the sequence photographs of failures have been 
shown. 

The crest displacements for the new stages G and H were .072 
and 0.093 inch, and wore inclined at 8°  and 16°  respectively. The 
increased inclination of the displacement vectors caused by steeping 
the slopes from 81°  to 90° are clearly shown in Figure 3.3.8. 
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Figure 3.3.8 Mean displacements, stages G and H of model L.M.2 
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A particularly noticeable feature of the displacement vectors 
was the horizontal nature of the surface displacements behind the 
crest of the slopes. However, nearer the crest a marked declination 
of the vectors occurred. This appeared to initiate at the surface 
intercept of the most highly stressed joints which were exposed right 
at the toe of the excavations. It can therefore be seen as a 
direct result of pre-peak shear displacements occurring on the 
steeply dipping joints. 

The displacement vectors of points behind the toe of the slopes 
are seen to flatten out with increasing depth below the crest. Most 
of the vectors are horizontal in the bottom 4 inches of the slopes, 
and reduced to undetectable magnitudes at and below the toe of the 
slopes. 

Comparison of the magnitudes of displacement between models 
L.M.1 and L.M.2 reveal that the displacements in the latter were 
as little as 65% of those of the first model. In view of the 
'act that the stress distributions were fairly similar this must be 
a reflection of the differences of joint directions. Normally 
one would expect a 33% increase in the number of joint sets to 
cause larger displacements. However model L.M.2 was jointed 
horizontally and vertically, with only one joint set inclined to 
the principle stress directions operating before excavation. In 
comparison, both joint directions were inclined in model L.M.2, 
which meant that shear stresses were developed on twice the number 
of joints. 

It should be remembered that the displacements occurring in 
these models were several orders of magnitude larger than the 
elastic displacements which would be predicted from analyses of 
unjointed models. The enormous influence of jointing was dominated 
by the low shear stiffness effect. Therefore two sets of joints 
subjected to shear stresses during unloading would be expected to 
have far greater influence than only one set. 

2. Boundary displacements  

Figure 3.3.9 shows the incremental displacements for eight 
stages of excavation in model L.M.2. Unfortunately the photogramm-
etric record of the unlettered stage between B and C was spoiled. 
However the boundary displacements are recorded for completeness 

It is interesting to compare Figures 3.3.9 with the equivalent 
Figure 3.3.4 for model L.M.1. Comparison of an equivalent stage 
of excavation (D and C respectively) reveal that the difference 
in the joint orientations also affected the boundary displacements 
at the base of the model. This difference was maintained to a 
great extent, for most of the height of the model. Note in 
particular the photogrammetric displacements plotted at the 
top of the figures (points d and c). 
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Figure 3.3.9 Mean displacements at boundaries of model L.M.2 
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3. Stress changes at boundary  

Figure 3.3.10 reveals another non-uniform distribution of 
stress with a particularly marked bulge in the upper third of the 
model. Once again it must be assumed that this is a result of 
the active and passive regions of model resistance. 

The equations describing the mean model and prototype 
principle stress distributions are given below: 

Model: 	Gh  = 1.39 + 0.093 b 

O'v = 0.07 11 

Prototype: Gil  = 926 + 1.4811 

G-, = 1.12 h 

lbf/in2  ( 	in inches) 

lbf/in2  11 in feet) 

The surface intercepts of stress for this model, 
L.M.1 are seen to be almost identical. However 
the gradients differed by about 25%. Again this 
of the different jointing causing differences in 
sive resistance. The same piston load was actual 
case. 

and for model 
for some reason 
may be a function 
the active and pas- 
ly applied in each 

3.3.3 PRE-FAILURE OBSERVATIONS OF MODEL L.M.3 

Figure 3.3.11 illustrates the jointing used in model L.M.3 
which was identical to that of model L.M.2. The only difference 
between the two models was the lower horizontal stress. A 
distribution approximately equal to 40; was applied in this case. 
Therefore the vertical self weight stress was now the principle 
stress direction. 

It was noticeable when excavating this model that the whole 
structure was looser. Blocks could be sucked out of place with 
much greater ease and more care had to be taken when excavating. 
For this same reason tension cracks developed somewhat earlier, 
and sometimes one 'major' opening was accompanied by small 
loosening movements of 'columns' adjacent to the slope face. 

1. Slope deformations  

As a result of the lower magnitude of stored strain energy 
in the proving rings, the displacements occurring near the 
boundaries of this low stressed model were less than both the prev-
ious cases. However, stages B,C, D and E (right had side only) 
indicated that the slope displacements were similar. The following 
magnitudes of crest displacement were recorded: 
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Figure 3.3.12 	Mean displacements, stages D, E and F of model L.M. 3 
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Stage Displacement (inch) Inclination 

B 0.034 21°  

C 0.031 15°  

D 0.049 14°  

E o0o86 16°  

The corresponding pairs of Figures: 3.3.6 and 3.3.11, and 3,3.7 
and 3.3.12 should be carefully compared to verify these differences. 
The result of the unusually small boundary displacements was that 
the excavation was partially isolated from the boundaries, at least 
to a greater extent than in the previous two models. This was 
7110bably due to the greater possibility of loosening of the jointed 
mass close to the excavations, with the formation of many fine 
tension cracks coinciding with the vertical secondary joints. These 
were not identified visually or by photogrammetry, but it was clearly 
apparent that the joints were less tight. 

Figure 3.3.12, stage E shows the total displacement vectors 
for the right hand slope0 The fine dotted line illustrates the 
eventual failure surfaces. These consisted of a deep vertical 
tension crack, a stepped shear surface, and a long planar shear 
surface extending down to the toe. This right hand slope was 
particularly interesting since during the excavation from stage D 
to E, the tension crack and planar shear surface suddenly developed, 
but without causing failure. The reason for this was that the long 
planar shear surface was not quite intersected by the toe of the 
slope. 

Figure 3.3.13 illustrates the shear surface in detail. Even 
by eye, the shear and dilational components of displacement can 
be detected by comparing the vertical and horizontal joints with 
the fixed 2 inch square grid. It was noticed that the maximum shear 
and dilation occurred some 4 to 6 inches from the toe, up the 
critical joint. Displacements could not be detected by eye either 
adjacent to the toe, or at the upper end shown in diagram D of 
Figure 3.3.13. Therefore the only significant shear displacements 
were occurring from a position roughly below the crest of the slope 
down to three or four inches from the toe. The relative change 
of displacement along the length of the joint was particularly 
significant, since it indicated that closure of intersecting joints 
was occurring. (See Section 2.3) 

The displacement vectors drawn on the left hand side of Figure 
3.3.12 are those of the relative slope deformations that occurred in 
the right hand slope, when the excavation was deepened from stage 
D to stage E. It was hoped that this increment would delineate the 
areas of maximum displacement prior to failure. 



A C 

D 

294 

Figure 3.3.13 	Close-up of pre-failure shear surface 
developed at stage E of model L.M.3 
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The vectors drawn in the upper half of the slope demonstrate 
the effect of the tension crack very clearly. Even more convincing 
are the three pairs of vectors nearest to the toe. These delineate 
the down dip shear displacements occurring on the upper part of 
the eventual failure surface, and show the effect of dilation 
superimposed on this. It results in an almost horizontal translation 
towards the face in the lowest part of the slope. 

Some interesting backward displacements are in evidence along 
the surface of the model, away from the slope. These were presumably 
the result of relaxation of the jointed mass behind the slope, after 
the transfer of stress resulting from the shear displacements. 
The slope failed when the excavation was deepened another i inch 
(24 feet at prototype scale). This was sufficient to expose the 
overstressed joint, from which shear stress had been transferred 
to the narrow 'column' at the toe. 

Figure 3.3.14 shows the final stages of excavation in which 
'eater' slopes were excavated after removal of the 'inner' 
2ailures. Diagram G shows the vectors for the right hand side 
only. An interesting relaxation can be seen in the berm at the toe 
of the uncompleted slope. This is the only significant relaxation 
measurement that was recorded for any of the models. Why it 
should be so marked in this instance is uncertain. The slope 
excavated above it represented no larger an unloading than 
previous excavations. 

It might be partially explained by considering the direction 
of the 'lines of force' that elastic analyses indicate, below the 
base of excavations or notches in idealized, stressed materials. 
The applied horizontal stress at the boundaries of the model must 
be in equilibrium with the resistance generated by the stressed 
model. Excavations disturb this equilibrium with the result that 
the 'lines of force' are channelled and concentrated below the 
base of the excavation. On either side of the axis of symmetry 
these lines of force will be inclined appreciably. Therefore 
measurement points located within these zones would tend to 
exhibit inclined displacements which would dominate any possible 
upward displacements due to relaxation. The two points located in 
the berm in Figure 3.3.14 G are somewhat 'protected' from this 
force field, which is probably insignificant anyway in view of the 
graded nature of the excavation, and the low horizontal stresses. 

Diagram H of Figure 3.3.14 illustrates the incremental 
movement in the left hand slope, when the latter was steepened 
from approximately 83° (H) to 840  (J). It is significant that 
the only movements that could be detected, occurred at the lower 
ends of some of the most critically stressed joints, and in a 
vertical plane just down dip from that passing through the crest. 
This incremental displacement, and the one discussed above (Figure 
3.3.12 E) should be compared with the concepts put forward in 
Section 2.3, and also with the diagram showing the zone of 
overstressed joints (Figure 3.2.5). 
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Diagram J of Figure 3.3.14 shows the total displacement vectors 
for the final stage of excavation. The predominantly horizontal 
direction of total displacement for this stage and stage G is 
presumably a reflection of the loosened nature of the slopes, 
each of which contained more than one vertical tension crack. 
However it is suprising that tension crack formation should dominate 
any pre-failure down dip displacements to such an extent. It 
might be significant that only the lower part of the model was 
stressed horizontally at this stage. Almost half the proving 
rings appeared to be unloaded. It is possible that this could 
induce a backward rotation. 

2. Boundary displacements  

Comparison of Figure 3.3.15 with Figure 3.3.9 reveals that 
the displacements occurring at the boundaries of model L.M.3 were 
a,proximately one fifth of those occuring in the highly stressed 
alodel. This is undoubtedly a function of the greater amount of 
strain energy stored in the proving rings in the latter. However 
it is believed that the looser nature of the jointed mass was also 
significant. The formation of tension cracks, some of which could 
be traced to a depth of 8 or 10 inches (330-400 feet in the 
prototype) tended to isolate the unloading effects from all but 
the immediate vicinity. 

3. Stress changes at boundary  

Figure 3.3.16 shows that the mean horizontal stress applied 
to model L.M.3 was triangular, and just slightly higher than the 
design value of ( G = 2 GO. 

The model and prototype mean principle stress equations are 
given below: 

Model 	crh = 0.0385 

G-, = 0.07 11  
lbf/in2  ( k in inches) 

Prototype: G-6  = 0.621i 

= 1.12 h 
The reason for the distribution being triangular and not 

trapezoidal as in the previous two cases is frankly not understood. 
Roscoe76  indicated in his Rankine Lecture that retaining wall 
problems were not amenable to conventional analysis, and several 
model results were presented to confirm this. The present case 
is different from these in that: 

lbf/in2  ( h in feet) 
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2 

2 

2 

2 

1 

2 

3 

4 

S 



1 

5 

1 

2 

299 

A 

B 

• 

O 

, 

. 

C 

s 
0 1 

0 	0 

/ 1 . c 	C . 	, 
I i 	• 

I • , 

/ 	• 

I
s 	

f
; 

I ;A 
I , I  

1 • 
O \ 

) 
\ 

VB 
1 

• . • .... I% %;-::',•Z.\ 
% 	%. 	• 

% 	• 

%% % 44 

•%b 

44% 

•• 
44 	4406 

.4.:%.  

It 

5 ''••ILI)1,._ 11\44.:'  
4 

7 I I 1 
. 	1 

I i 
I 
i 

i ,I 	i 	ii ! \, 	i g 
I 	LI 
i 	\I I- • 1 	i 
I 
I 	I Pc 

0 

\ ‘g4: 

 

2 • 
3 
t41 \ 

	

as 	1.0 
	 20 

STRESS lbf/in2 

	

Figure 3.3.16 	Mean horizontal stresses at boundaries of model L.M.3 

1 
1 

1 
2 

3 



300 
SECTION 3,3 

a) the material is not homogenous but jointed 

b) the loading beam is both translated and rotated 
about the top (slightly) when loading the model 

c) the beam is moved at the same time as the model 
is 'activated', by rotation into the vertical plane 

d) the loading beams are 'soft'. 

These complications put the problem in a higher plane of complexity 
than need be considered in this thesis. 

3.3.4 SHEAR STRENGTH AS A FUNCTION OF MASS CLOSURE 

Before presenting sequence photographs of the slope failures 
induced in the three models, a most important phenomenon needs 
to be introduced. 

Excavation of the first model L.M.1 proved to be somewhat 
disconcerting, when it was found that: 

a) slopes did not fail at slope angles less, or even 
equal, to the predicted values, even though the 
horizontal stress was high 

b) slopes did not even fail when vertical 

c) failure could only be induced by undercutting 
at the toe of vertical slopes 

(Significantly, the failures that occurred were planar failures, 
involving simple shear along a steeply dipping joint and tension 
crack opening. Despite the verticality and undercutting, 
no rotational or toppling mode was induced). 

This unexpected result caused a lot of concern. It was 
thought that two explanations were possible: 

a) incomplete fracturing of the slabs on the guillotine 
b) the absence of any vertical joints for tension 

crack formation 

Consequently the two models L.M.2 and L.M.3 were designed with 
three sets of joints, one of which was vertical. Great care was 
also taken to check that the guillotine was fracturing the slabs 
correctly. It was at this stage that the large tilt models presented 
in Section 3.1 were tested. 
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Model L,M.2, which was loaded to the same high stress as 
the first large model was anticipated with great interest. 
However once again undercutting of vertical slopes was required to 
induce failure. In comparison, model L.M.3 which was stressed to 
only one half of the vertical stress, could be excavated to failure 
at angles equal to or at least only a few degrees steeper than the 
design value. 

It will be recalled that the design shear strength parameters: 
c = 0.10 lbf/in2, (i) = 58°, were deduced from the combined results 
of direct shear tests of single joints, and back analysis of the 
simple tilt models (see Figure 3.1.19). The conventional loading 
path used in a direct shear test consists simply of the application 
of the desired normal stress (applied instantaneously or gradually) 
followed by a gradually increasing shear stress, which rises until 
leak shear strength is mobilised. 

Virgin stress levels  

Failures occurred in all the models by shear failure 
along the steeply dipping joints ( Q = 66°), combined with tension 
crack formation. They could therefore be regarded as shear tests 
where the ratio of shear stress to normal stress was more or less 
constant along the steeply dipping joints, assuming that self weight 
stresses were applicable. 

i.e.fr/(3-  = tan 66° 

Failure occurred as a result of increased loading (through 
excavation), such that the stress ratio lino inclined at 66

0 
 and 

passing through the origin, eventually crossed the shear strength 
envelope, as illustroted below. However, the point which had been 

overlooked was that the normal 
stress acting across the 
steeply dipping joints at 
failure, was lower than 
that which originally 
applied at the same 
location, in the virgin 
or unexcavated state. 

The original horizontal 
and vertical stresses could 
be regarded as the principle 
stresses applied to the boundaries 

of the jointed, unexcavated models. Depending on whether the 
horizontal stress was higher or lower than the self-weight stress, 
it was either the major or minor principle stress. Only the one joint 
direction was of interest ( = 66°) in these symmetrically jointed 
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slopes. The sketches below illustrate the idealized case of a 
singly jointed model (see for instance Bray90). 

t (7-6-v) 

r 

P 

The normal and shear stresses acting on the joint can be written 
-ts follows: 

	

Gn  = 	( 0-1*. 6-2)- 	(0-1--0-2,)cos2P 

	

= 	-G-z) sin 2 p 

Diagram A refers to the model with low horizontal stress, for 
which 	24°. Diagram B refers to the models with high horizontal 
stress, for which 	66°. 

The mean equations forGi,andG; were presented previously for 
each of the models. These were evaluated, and the depth-dependent 
values of G1  and C-2  inserted in the above equations. Figure 3.3.17 
shows the resulting linear relationships, which will be assumed to 
represent the virgin stress state. (The possible influence of stress 
history cannot be evaluated and will therefore be ignored). 

It is significant that, due to the steep dip of the relevant 
joint set, even the model loaded with the low horizontal stress 
displayed a ratio of virgin normal to shear stress of approximately 
4 to 1, at intermediate depths. However, excavation of slopes 
above these joints caused the stress ratio to reverse, and at 
failure the ratio of normal to shear stress was approximately 
0.44 to 1. 

Approximate back analyses of the slope failures induced in the 
high and low stress models, revealed that the normal stress 
across a given joint dropped by as much as 8:1, between the stage 
when the model was unexcavated and just before failure. In all 
cases the factor was at least 4 to 1. 
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Pre-consolidated shear tests 

This important fact suggested a series of direct shear 
tests in which joints would be pre-consolidated with a high normal 
stress, before shearing them at a lower level of normal stress. 

(Skempton91  has referred to the terms 'consolidation'and 
'gravitational compaction' to describe the well known soil 
mechanics phenomena which result in soft muds consolidating 
through clays, to mudstones and shales. The process involves 
primarily the squeezing out of pore pressure under increasing 
weight of overburden. The present use of the term 'pre-consolidated' 
is not intended to imply any pore or joint water changes, although 
undoubtedly these might well be involved it an in-situ test on a 
rock mass. A better term for the present rock behaviour might be 
'joint closure' or 'mass closure', since, as will be shown, the pro-
cess is one of joints closing tightly under high normal stress 
D-vels). 

Joints were generated in prismatic specimens of model material 
C3, which was used in all the jointed models. Two series of 
shear tests were performed: 

1. [-.11  (initial) / 	(test) 	= 8/1  

2. Girl  (initial) / 	(test) 	= 4/1  

The comparative effect on the shear strength, particularly when 
compared with the conventional (1/1) test, was quite dramatic. 
Figure 3.3.18 shows the three peak strength envelopes and two of 
the ultimate curves. (The coordinates obtained from back analysis 
will be discussed later.) 

The initial normal loads were applied for two or three minutes 
before reducing carefully to the test loads. 	Reference to 
Section 1.4, Figure 1.4.1 indicates the amount of irrecoverable 
closure that takes place when these model joints arc loaded initially. 
This effect is particularly noticeable for the model joints since 
they are generated in tension and are placed together manually 
before loading. 

The real geological situation is different in that the degree 
of closure of joints insitu cannot be easily observed, at least 
not at depth. It is probably true to say that all the present 
methods of obtaining or exposing rock joints for shear testing in-
volve such a degree of disturbance that any mass closure effect 
is lost. Therefore it is postulated that shear testing may be 
a very conservative method of estimating strength, if the joints 
are: 

1. relatively unweathered, clean and rough 

2. steeply dipping 
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Figure 3.3.19 	The surface damage caused by shearing 
of preconsolidated model joints 
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Figure 3.3.19 shows the surface roughness of the joints after 
testing at a ratio of 8/1. Specimens P.C.1 to P.C.6 show negligible 
surface damage compared to the specimens tested at the highest 
normal stress P.C. 15 and 16. 

It is inevitable that the above concepts will be viewed with 
suspicion, since the model joints are totally unweathered, and 
display roughness characteristics which are certainly very high, 
when converted to prototype. However two practical observations 
can be cited in support. 

Seraphim37  reported a comprehensive series of deformability 
plate-bearing tests in jointed granites at several dam sites. He 
noted that "once the joints are closed, the adhesion forces between 
the faces of the fissures or between the adsorbed layers prevent 
their opening until a certain unloading is reached." 

De Freitas55  has performed a series of shear tests on rough 
tension fractures in granite in a large laboratory shear machine. 
(These were referred to in Section 2.1) Apparently, in the early 
stages of this work the normal load was once accidentally increased 
to the maximum capacity of the machine (10 tons). However this 
mistake was not noticed until large strains were observed in the 
shear loading ring. The specimen could not in fact be sheared. 
What was suprising was that,when the jointed specimen was removed 
from the machine it could not be prised open without mechanically 
wedging it apart. 

The model joints wore obviously behaving in the same way. 
However, the reason for the large increase in shear strength was 
probably not only due to the adhesive forces generated by inter-
locking asperities. The increased closure of the joints meant 
that for peak strength to be mobilized, slightly more dilation 
was required. Since peak strength is reached after approximately 
0.020 inch, the closure of several thousandths of an inch that is 
indicated from Figure 1.4.1, represents a possible increase of 
dilation angle of several degrees. This alone might be enough to 
explain the model results shown in Figure 3.3.18. 

3.3.5 POST-FAILURE OBSERVATIONS 

The failures induced in the three large models will be 
communicated primarily by the following ten pages of sequence 
photographs. A minimum of commentry is required but the 
following observations will be recorded. 

Figure 3.3.20 
	

This was the only slope which proved to have an 
additional unwanted joint in it. This can be 
seen in the lower half of the slope, diagram B. 
A model slab that hac an unnotaeod hair line 
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Figure 3.3.20 	Failure sequences of model L.M.1 (L.II.S. outer) 
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crack in it cannot be 'reclaimed' by 
developing fractures across it. The 
crack will always be primary and therefore 
continuous. For this reason this failure 
was not back analysed. 

The failures shown in Figures 3.3.20 and 
3.3.21 could only be induced by undercutting 
to a more serious degree than was required 
for any of the failures in model L.M.2 
(Figure 3.3.22 to 3.3.25). This was due to 
two factors: 
a) a higher pre-consolidation ratio 
b) the absence of vertical tension cracks. 
Opening of a saw-tooth crack will inevitably 
involve a certain amount of shearing, and 
consequently it will have a small effective 
tensile strength. 

Figure 3.3.26 	The position in which shear failure initiated 
has been referred to p-eviously for this slope. 
Excavation through the 'column' of blocks at 
the toe of the slope resulted in immediate 
collapse. 

Figure 3.3.27 

Figure 3.3.28 

Figure 3.3.29 

Figure 3.3.30 

The cine film was not running when failure 
occurred and the four sequences were photographed 
from a screen linked to a video tape recorder. 
Unfortunately it is not possible to obtain a 
very clear 'still' frame, and photography 
of on animated sequence is unsatisfactory 
since shutter speeds faster than about 1/20 sec. 
result in an incomplete picture. Howevers both 
the slope profile immediately prior to collapse, 
and the shear surface, are recorded clearly in 
diagrams A and F. The failure was therefore 
amenable to accurate back analysis. 

These two series of sequence photographs 
add further weight to the opinion .that slope 
failure actually initiates through shearing on 
a deep seated surface, rather than by being 
triggered by tension crack opening. It appears 
that the point of initiation lies somewhere 
between the toe, and a position vertially 
below the crest of the slope. Close-up high 
speed photography would delineate this position 
accurately. 

This shows the debris from four failures. The 
upper pair were denoted as 'inner' failures in 
the proceeding figure captions, and the lower 
pair; 'outer' failures. Both illustrate 
remarkably similar failure scars. 
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Figure 3.3.22 	Failure sequences of model L.M.2 (R.H.S. inner) 
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Figure 3.3.23 	Failure sequences of model L.M.2 (L.H.S. inner) 
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Figure 3.3.24 	Failure sequences of model L.M.2 (L.H.S. outer) 
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Figure 3.3.25 	Failure sequences of model L.M.2 (R.H.S. ou- 
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Figure 3.3.26 	Failure sequences of model L.11.3 (R.H.S. inner) 
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Figure 3.3.27 	Failure sequences of model L.M.3 (R.H.S. inner) 
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Figure 3.3.28 	Failure sequences of model L.M.3 (R.H.S. outer) 
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Figure 3.3.29 	Failure sequences of model L.M.4 (L.H.S. outer) 
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Figure 3.3.30 	Two pairs of model slope failures 
illustrating symmetrical modes of failure. 



320 
SECTION 3.3 

It is interesting to note the large 
intact blocks lying amongst the smaller 
debris. There is no reason for a moving mass 
of interlocked rock blocks to separate, unless 
relative shear stresses are applied at the 
boundaries. The presence of the vaccuum tube 
or the needle excavation rod, invariably 
reduced the magnitude of these stresses. 
Consequently the final stages of collapse 
were somewhat artificial in most cases, since 
the sliding mass did not hit the floor of the 
excavation under natural conditions. 

3.3.6 BACK ANALYSIS OF FAILURES 

The failures illustrated in the proceeding figures were for 
the most part quite trivial to analyse by limit equilibrium methods. 
No attempt was made to divide the failing mass into slices and the 
assumed shear and normal stresses acting across the failure planes 
were treated as mean values. 

The following assumptions were made: 

1. The stresses acting on a given failure surface 
were due solely to the weight of unstable material 
lying above the surface. 

2. The total weight / unit thickness of slide mass (which 
could be very accurately measured) was converted to 
mean shear and normal stress components, by dividing 
by the total area of shear surface. 

3. The ratio of mean shear stress to mean normal stress was 
equal to the tangent of the angle of dip of the failure 
surface (tan 660  = 2.25) 

4. Failure was assumed to occur simultaneously along the 
whole length of the shear surface. 

The mean depths of the shear surfaces were carefully measured 
and the corresponding mean virgin stress levels read from Figure 
3.3.17. The following tabulation gives the results of the back 
analyses, and the approximate pre-mpsolidation ratios for each 
slide. The stress units are lbf/in'. 
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Photograph 

of failure 

Virgin stresses Failure stresses Pre-consolidation 

ratio - r-  a- -r a- 

3.3.21 	A 1.00 4.10 1.23 0.55 7.5 
3.3.22 	B 0.71 3.19 0.88 0.39 8.1 
3.3.23 	B 0.71 3.20 0.92 0.41 7.8 
3.3.25 	C o.75 3.54 1.39 o.61 5.8 
3.3.26 	c 0.26 0.99 0.36 o.16 6.2 
3.3.27 	c 0.23 0.88 0.39 0.17 5.2 
3.3.28 	D 0.25 0.97 0.53 0.24 4.1 

3.3.29 	D 0.26 0.99 0.49 0.22 4.5 

Figure 3.3.18 shows these eight pairs of failure stresses plotted 
for comparison with the pre-consolidated shear tests. It will be 
realized that all these points lie on a line inclined at 66° and 
passing through the origin. By a strainge twist of fate this 
line happened to be almost coincident with the strength envelope 
obtained from the test conducted at a pre-consolidation ratio 
(P.C.R,) of 4 to 1. Therefore the angles of intersection between 
the line --r= Cl". tan 66°  and the relevant peak strength envelopes, 
were vanishingly small. Consequently failure was possible for 
a range of normal stress levels. 

This meant that failure was to some extent independent of 
the slope angle. This unexpected result explains why a variety 
of slope angles induced failure, in the range 800  to 90°. 

One further unexpected result should be recorded. Figures 
3.3.28 and 3.3.29 illustrate two failures which were obviously 
progressive. It is these types of failures which would traditionally 
be rejected for limit equilibrium analyses, since shear failure 
clearly was not occurring simultaneously along the whole length 
of the surfaces. 

However, the pre-consolidation ratios for these failures 
were 4.1 and 4.5 respectively. This means that the shear 
parameters estimated from back analysis were almost exactly 
the same as the peak values measured in the shear box. Why these 
two failures should apparently occur when peak strength was 
mobilized, and the remainder when the mean shear stress was 
below peak strength, is frankly uncertain. 
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Mass closure effect in tilt models  

The jointed slopes that were rotated to failure (Section 3.1) 
indicated back analysis (c) and (dp ) parameters that were slightly 
higher than the results obtained from direct shear tests. The 
mass closure effect discussed above was clearly responsible for 
this. 

It will be recalled that before tilting the models, the 
primary joints were horizontal and therefore were unstressed in 
shear. However these same joints were consolidated by the self 
weight of the reclining slope. Large tilt models such as that 
illustrated in Figure 3.1 18 were subjected to a triangular 
distribution of normal stress acting across the horizontal 
primary joints. This 'virgin' stress was a maximum beneath the 
crest of the slope. The mean normal stress acting across the 
full length of the critical joint (that exposed at the toe of 
the slope) was approximately 0.31 lbf/in2. At failure, when 
'his same joint was dipping at approximately 66°, the mean normal ,) 
stress acting across the shear surface was approximately 0.2 lbf/in'. 
Even this small pre-consolidation ratio of 1.5 to 1 was sufficient 
to increase the shear strength to a noticeable degree. 

CONCLUSIONS 

The large models described in this section represented an 
unusual departure from conventional modelling techniques for two 
reasons: 

1. The models were exceptionally discontinuous. (Models 
L.M.2 and L.M.3 were jointed into at least 40,000 discrete blocks.) 

2. The models were not constructed of smooth faced regular 
bricks. 

The latter was responsible for the fundamental differences in 
behaviour between the present models, and the usual brick models. 
These differences can be summed up in one word: dilation. 

A model rock mass consisting of smooth joints will deform in 
the initial stages, purely as a result of the frictional character- 
istics of the joints. Consequently the initial shear surfaces 
will develop in direct response to increased shear stresses, 
which may result in slip on several surfaces at any one time. 
This is a conventionally held belief and one that must be 
questioned. 

Joints which exhibit dilational characteristics, whether these 
be as high as those of the present model joints, or as low as might 
occur on smooth shear joints in rock, will tend to inhibit shear 
failure of slopes to a minimum number of surfaces, usually one. 
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The only exceptions to this fundamental energy concept can be 
joints which, for various reasons, do not dilate in shear. 
Therefore slopes which are badly weathered, or internally strained 
as a result of deeper seated shear movements will probably 
perform in a similar manner to the conventional brick models, 
at least near the surface, (H0fmann92  and Muller and Hofmann93) 

If weathering could have been simulated at the surface of the 
present models, the result would have been extremely realistic. 
For this reason all types of discontinuous models should be care- 
fully evaluated since, in all probability one or other of the 
many phenomena exhibited in progressive failure will be illustrated. 
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CONCLUSIONS 

1. COMPARISON OF MODEL WITH NUMERICAL METHODS OF SLOPE ANALYSIS 

The normal and shear stiffness data presented in Section 
1.4 represented valuable input information for a numerical 
analysis of the model slopes described in Section 3.3. A 
comparison was made between the deformation behaviour measured in 
model L.M.3 (Figure 3.3.12 E), and that predicted from a simple 
finite element analysis. This study, which was kindly performed 
by St. John99., represents the initial results pf a more extensive 
study to be reported at a later date (St. John 3). 

The finite element program was used to simulate the excavation 
of a slope geometrically similar to the physical model, and 
subject to similar boundary conditions. The only difference was 
the total vertical extent. For the real model the total depth 
(4 feet) was approximately l times the slope height, while 
the finite element model was three times the slope height in 
depth. The deformed slope profiles are shown with and without 
correction for this difference in Figure 3.4.1. 

Two analyses were conducted. First the model was considered 
as unjointed and possessing the elastic properties of the intact 
thOdel-materiar.—The-ditplacementd-fOr'this idcitrtilSib-model shoW 
the elastic recovery of the model due to the removal of material 
from the excavation. The corrected displacements (solid lines) 
indicate approximately 0.001 inch upward heave in the base of the 
pit. This is approximately six times smaller than that detectable 
by the photogrammetric method employed to measure displacements. 

The stresses obtained from this isotropic analysis were 
used to perform a 'ubiquitous joint analysis'(IDancan and Goodman95). 
No slip was indicated on the primary joint set (dipping at 66°), 
assuming the joint strength parameters determined by testing. 
It will be recalled that these same joint parameters (c = 0.10 
lbf/in2  and 4) = 58°) caused failure for the same pit depth of 
31.2 inches, when used in a limit equilibrium method of slices 
(see Section 3.2). 

In the second numerical model, an attempt was made to take 
into account the deformability of the joints by linear superposition 
of the elastic properties of the modelling material, and the 
stiffnesses of the three joint sets. The latter were obtained 
from the relevant values tabulated in Section 1.4. Figure 3.4.1 
shows that the resulting displacements were nearly three orders 
of magnitude greater than for the isotropic case. The influence 
of the primary joints, 'soft' in shear, that dip steeply into 
the excavation was clearly demonstrated. 

The corrected displacements shown in -the upper part ofAhe 
slope appear to be similar -to -those found in the model (Figure 
3.3.12 E, right side) although a little larger. However, due to 
the theoretical elastic recovery, slope bulge and floor heave are 
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Figure 3.4.1 	Slope displp,se7mts predicted by two finite element 
analyses of the milelled rock slopes. 
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enormous with the anisotropic deformation properties. A floor 
heave of approximately 3  inch is predicted, which at full scale 
represents more than 20 feet. 

The stress distribution obtained for the anisotropic case 
was markedly different to the isotropic elastic model. A second 
'ubiquitous joint analysis' indicated a potential slip on 
primary joints over approximately 80% of the slope height and 
a maximum of 30% of the slope height inwards. However no 
conclusion as to the stability of the slope can be drawn from 
these observations 	slip on joints may only cause a redistribution 
of stress (St. John°°). 

It can therefore be seen that the shear and normal stiffness 
of joints should not be treated as elastic properties since 
clearly they are not recoverable to any marked degree. It is 
possible that under normal loading and when pre-consolidated, 
joints may almost behave elastically. However it seems probable 
that shear deformation is largely irrecoverable, even just up 
to the development of peak shear strength. The extreme 'softness' 
of joints in shear, means that even slight inelasticity here will 
make the overall behaviour grossly inelastic. 

Joint analyses have been developed in an attempt to overcome 
these difficulties. The sophisticated numerical methods being 
developed, (for instance Mahtab and Goodman79, Zienkiewicz, Best, 
Dullage and Starr °, Cunda1169 and St. John43  ) while representing 
significant advances are, in real terms still extremely crude 
simulations of real processes. 

One of the fundamental limitations of conventional finite 
element methods appears to be the conservation of energy that is 
demanded in the course of computation. It is for this reason 
that anisotropic deformation properties cause such an impossibly' 
large 'elastic' recovery, when slopes are excavated in a loaded 
model. 

The 'finite difference' approach adopted by Cundall69 appears 
to be one method of overcoming this problem. Multiple block models 
are loaded in any desired manner, and the deformations and failure 
movements resulting from removal of blocks are plotted by 
computer in consecutive stages. Energy is lost during these 
relative movements, and there are few limitations on the strength 
and deformation properties that can be simulated. 

The modes of failure illustrated by the Cundall method 
(which includes simple shear, toppling and rotation) closely 
resemble the failures induced by excavation of slopes in conventional 
brick models. A very interesting comparison can be made 
between this numerical method and the slope model study reported 
by Hofmann92, and Muller and Hofmann93, 
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2. COMPARISON OF MODEL WITH HOFMANN'S BRICK MODEL 

As far as the author is aware the only other model study of 
jointed rock slopes was that performed by Hofmann at the University 
of Karlsruhe. This study was more or less contemporary with the 
present one. The two models differed in two important aspects: 

1. The present model was loaded horizontally in an effort 
to simulate the linear increase of stress with depth. 
As far as can be ascertained Hofmann's model was loaded 
only by gravity. 

2. The present model was more highly jointed, and joint 
surfaces were rough and interlocked compared to the 
smooth sided orthogonal bricks used by Hofmann. 

The first of the above differences was shown to be very important 
due to the mass closure effect exhibited by rough interlocking 
model joints (Section 3.3). However it would probably have had 
much less effect on a smooth-jointed model. 

The second of the above differences was of overriding 
importance for several reasons: 

1. The present model had to be excavated to extremely 
steep slopes to induce failure, due to the high shear 
strength of the rough joints. By comparison the 
brick model began to exhibit signs of incipient 
failure early in the excavation process, due to the 
greater possibility of toppling and multiple slip. 

2. The present model evantually failed in a translational 
manner, on a single compound shear surface. The 
brick model (which was jointed in such a manner as to 
exclude simple translational shear) failed by multiple 
toppling and gross loosening of the jointed mass. 
Such failure mode's were seen to be self inhibiting for 
rough joints (See Section 3.1). 

The extent of loosening and brick rotation illustrated in 
the paper by Muller and Hofmann93  was particularly significant 
since the resulting concentration of forces at the tips of bricks 
caused fracture of the intact material in these enormously 
dilated zones. No fracture of intact material was detected in 
the present model, until catastrophic failure occurred. However, 
differences in prototype dimensions and strengths were not respon-
sible for this, as can be seen from the following comparison. 
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Present model 	Hofmann's brick model 

Maximum excavation depth: 	1330 ft. 	135 ft. (4o metres) 
Compressive strength: 	13,800 lbf/in2 	2270 lbf/in2(160 Kg/cm2) 

Geometric scale 	1:500 	1:50 

It is apparent from comparison of the two models that widely 
different characteristics are simulated. For this same reason 
enormously different modes of failure are exhibited. Since only 
two model slope stability studies have been reported to date, this 
is perhaps advantageous. There can be no clear demarkation of 
'correct' joint behaviour since, depending on the conditions, 
a whole range of properties will need to be simulated. 

It may be valid to conclude that the present model represented 
a realistic simulation of high rock slopes in which the unconfined 
compression strength of 13,800 indicated the unweathered nature 
of the prototype rock. By comparison the brick model, simulating 
a slope height one tenth as high, had a compressive strength low 
enough to suggest weathered conditions. Highly weathered loosened 
joints (i.e. near surface) can perhaps be realistically 
simulated by smooth non-dilatant model joints. Deeper seated, 
unweathered joints can only be simulated realistically by the 
model tension joints that have formed the foundation of this 
study. 
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4.1 	PREPARATION OF THE MODEL MA1ERIAL  

The multi-component mix consisting of red lead-sand/ballotini 
-plaster-water was finalised after a long period of development. 
In this appendix details of the component materials are given, 
together with notes on the design of the mixes, and the method 
of production. Following this a more detailed description is 
given of the physical and chemical changes that occur during 
mixing and curing. Some problems of repeatability are discussed, 
and simple methods of solution given. 

The constituent elements used in the preparation of the 
material can best be termed as follows: 

(i) dense filler (red lead powder) 
(ii) coarse filler (sand-ballotini) 
(iii) cementing agent (plaster and water) 

The ratio of (i) to (ii) was finally fixed at 1:2 by weight. A 
range of strengths were produced simply by varying the content 
of cementing agent. A range of inherent shear characteristics 
were produced by varying the proportions of sand and ballotini in 
the coarse filler. 

a) 	Coarse filler 

Three different sands were tried before a satisfactory 
grading was found. A sand between the extremes of fine and coarse 
must be used, with the latter limit depending upon the desired 
frictional properties of the fractured material. The practice of 
removing certain fractions of the sand was avoided, since the 
overall aim was to develop a material which could be reproduced 
with readily available products. The grading distribution for 
the selected sand is given in Figure 4.1.1 It can be seen that 
60% is retained on a B.S. sieve No. 150. The average chemical 
analysis is as follows:- 

Si02 
98.4 

A1203 
0.82 

Fe203 

0.15 

Ca0 

0.03 

Na20 

0.04 

K20 

0.33% 
Loss on Ign: 0.25% 

The loss on ignition represents the organic matter in the sand. 
The significance of this impurity is described in a later section 
of this appendix. 

Coarse filler, consisting of a combination of sand and 
ballotini, was used in an attempt to vary the internal frictional 
properties of the material. Ballotini consists of small spherical 
beads of glass and, despite the fact that it consists entirely 
of Si02, the internal friction of a mass of the material is much 
lower than for sand, since the spherical surfaces are so smooth 
by comparison. The grading distribution of the ballotini used 
throughout in the present work is given in Figure 4.1.2 
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Figure 4.1.1 	Average physical analysis of Kingslynn(ss) sand 
used in the model materials 
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Figure 4.1.2 	Average physical analysis of Grade (AF) Ballotini 
used in the model materials 
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b) Dense filler  

Red Lead (Pb304) is obtainable from any large chemicals 
firm. Since it is a fine powder, it was preferable to store it 
in moisture proof containers, to reduce the possible uptake of 
water. 

c) Cementing material  

A widely used fine casting plaster was preferred to some 
of the faster setting varieties, since the set strength of quick 
setting plasters is generally much higher. Again,dry storage 
was a necessity. 

d) Suppliers of materials in Britain  

The material trade names and distributors are given below:- 

Sand: Kingslynn ( SS )British Industrial Sands Ltd., Surrey 
Ballotini: Ballotini (AF) Ballotini Manufact'ng Co. Ltd., 

Yorkshire 
Red lead: Pb

3
04 (5112) Hopkin and Williams Ltd., Essex 

Plaster: Fine white casting British Gypsum, Ltd 
plaster: 

MIX DESIGN 

The range of mixes appropriate to rock modelling when 
employing the stress scale (p) of 1:666 are summarised by 
Figure 4.1.3 A standard mix consisted of a fixed ratio of 
1:2 by weight of dense to coarse filler. The proportions of 
sand-ballotini which make up the coarse filler were chosen 
according to the frictional properties desired. Type A is seen 
to consist of 100% sand (1200 weight units), type C of 50/50 
(600/600 weight units) and type B of 100% ballotini (1200 weight 
units). Since the water demands of mixes containing either 
100% sand or 100% ballotini were different, the five design lines 
have a finite gradient. 

Mix numbers 1,2,3,4 and 5 represent the quantity of plaster 
in the mix; 50,75,100,125 and 150 units of weight respectively. 
This is in a standard mix of 600:1200 weight units of dense to 
coarse filler. The choice of mix number was of course based on 
the desired strength of the mix. The amount of water required 
for the selected mix was read off from the abscissa. These quant-
ities were obtained after careful experimentation, so that the 
whole range of mixes, while easily pouredl did not 'bleed' 
excessively while setting. 

Example 	Type C, mix No.4 (C4) 
is 600-600/600-125-431 by weight 
of Pb304 - sand/ballotini-plaster-water 
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Figure 4.1.3 	Design chart for modelling materials 
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(weighing quantities in grammes (i.e. 600 ens. of Pb304 etc.) 
gave a batch of suitable volume for casting a dozen compression 
specimens of dimensions 1" x 1" x 2"). 

a) Notes on mixing 

The optimum order for combining the materials in the 
mixing bowl was: water, coarse filler, dense filler and plaster. 
A Kenwood Major electric mixer was used (double orbital type) 
and run at its slowest speed setting to combine the materials with 
the minimum of air entrainment. A stop clock was set to time 
the mixing from the instant when the plaster was added. Obviously 
the optimum mix times and consequent set times depend on the 
materials used and the desired pourability, Mix times in this 
study ranged between 6 and 14 minutes, and the set times (total 
from start from 9 to 24 minutes. 

All materials were stored in the same room, which was 
kept at 24°C1°. The water was adjusted to this temperature 
as necessary. Care was needed to ensure that the mixing bowl 
(stainless steel) was also at room temperature. Small mix 
volumes began to set several minutes early if the mixing bowl 
was still hot after a hot water rinse, with consequent alteration 
in the physical properties of the mix when cured. 

b) Notes on vibration 

A useful technique for improving the uniformity of results 
was obtained by vibrating the moulds for 15-20 seconds while 
pouring the mix. This was adopted as standard practice for all 
the mixes tested and reported in this paper. Any air entrained 
during mixing was almost entirely removed. The set specimens 
were removed from the moulds about 1 hour after pouring and were 
placed on trays ready for oven curing. 

c) Notes on curing 

An oven curing temperature of 105-110°C was employed, 
together with forced ventilation across the shelves. All 
batches of the material were cured for a minimum of five days 
under these conditions, and no mechanical testing was begun 
until at least 3 hours after removal from the oven. In this 
way the material had time to cool and stabilise its surface 
moisture distribution. A photograph of the oven containing all 
the 18 slabs for one of the large models is shown in Figure 4.1.4. 

Dehydration of the gypsum cementing material begins at 
temperatures above 70°C, and the hemihydrate thus obtained is 
stable up to about 150°C, above which further dissociation 
occurs. The rate of dehydration is increased if the vapour 
pressure is kept low (Holdridge and Walker)iwhich suggests that 
higher curing temperatures might be needed in an oven having no 
forced ventilation. 
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Figure 4.1.4 	The large oven used for curing 

the model material 
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The importance of adhering closely to a standard preparation 
procedure should finally be emphasised. The mechanical properties 
were noticeably affected if the above procedures were not followed 
in every case when preparing a set of supposedly identical mixes. 

As a guide to potential users of the material; some comments 
on the physical and chemical processes involved when mixing and 
curing are given in the next section. Problems which can arise 
and cause variations in the setting times are also summarised. 

PHYSICAL AND CHEMICAL CHANGES DURING MIXING AND CURING 

The constituent elements used in the preparation of the 
material have been termed as follows:- 

(i) dense filler (red lead powder) 
(ii) coarse filler (sand-ballotini) 
(iii) cementing agent (plaster and water) 

It will be obvious that for a larger proportion of plaster 
to filler, a larger quantity of water is required. The demand 
for water is threefold:- 

(i) chemical hydration of the plaster 
(ii) saturation of the dense and coarse filler 
(iii) rheological requirements of the mix 

The quantity of water required to obtain a pourable mix is 
considerably in excess of that needed for hydration, even for 
plaster-water systems alone (Sohiller,2  ). The addition of a fine 
powder such as red lead increased this demand greatly, and the 
further addition of a frictional material like sand increased it 
yet again. It will be clear therefore that the set material was 
quite porous, since so much excess water was evaporated during 
oven curing. 

a) Porosity of the cured material  

Hemihydrate plaster sets in accordance with the equation: - 

CaSO4. -H2O +.3 H2O = cas04. 2H20 

or 145.15 g. hemihydrate + 27.03g water gives 172.18 g. gypsum. 
If the gypsum is cured above its dissociation temperature of 
70°C (Holdridge & Walker ), the hemihydrate is re-obtained but in 
crystalline form. 

If it is assumed that at the curing temperature used 
(105-110°C) there was 100% dissociation to the hemihydrate, and 
further, that the free moisture content was reduced to zero, then 
a simple estimate of the porosity of a given mix can be made. 
Selecting a typical one; 600-1200-100-442.5 by weight of red 
lead-sand-plaster-water (A3), it is assumed that all 442.5 portions 
of water were evaporated during curing. Using gramme units of 
weight, if there was no volume change there would be 442.5 ccs. 
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of pore volume in a cured material which weighed 1900 gms. 
Experimentally, Vac bulk density of the cured material (A3) 
was 122.2 lbf/ft or 1.96 gms/cc. 

1900 
bulk volume = 	ccs. 

1.96 	 1.96 
Hence, porosity p (volume of voids/bulk volume) = 442.5 	= 45.7% 

1900 

For the range of mixes considered, the porosities should 
lie between approximately 40 and 47%, if the above assumptions 
are valid. This range is high but not excessively so compared 
with plaster-water systems in general use (30 to 80% or more). 
(The range may be a little lower than ko to 47%, since the small 
volume of water lost by surface evaporation. and by bleeding has 
been ignored, both of which occur during the setting period). 

b) Lubrication phenomenon  

The characteristics exhibited by the material when mixing 
the constituents together have considerable influence on the 
properties of the material when cured. The four components were 
added to the mixing bowl in the following order; water, sand, red 
lead and plaster. A few seconds' mechanical mixing of the water-
sand phase removed all the air from the sand and it settled to 
the bottom of the bowl with perhaps 3  inch of water above it. 
The addition of the red lead caused the 'free' water to be 
absorbed and the whole mass became stiff as negative pore pressures 
were developed, due to the capillary action of the pores. It 
gave every appearance of being too dry to mix any further, and 
certainly too dry to accept the plaster which had still to be 
added. However, after a few seconds of churning what from all 
appearances was a solid, a remarkable change occurred and the 
mass became a creamy orange fluid, and readily absorbed the 
additional plaster. It appeared that, in some way, the saturated 
red lead was acting as a lubricant and reduced the frictional 
resistance of the sand, thereby making the mixture readily 
mixable and pourable. It was clear that this phenomenon reduced 
the water demand appreciably and thus ensured that the porosity 
was not excessively high when cured. A most important consequence 
is that the amount of 'bleeding' which occurred in a setting mix 
was much less for this material than it would be for a multi-
component mix which relies solely on the addition of water for 
its rheological properties. 

c) Variations in the setting times  

Three problems which occurred and can cause considerable 
difficulties are summarised below: 

1) Small concentrations of salt (NaC1) in the sand may have 
a catalytic effect on the setting of the mixes. Increased 
compressive strengths and increased modulus ratios were the 
unfortunate side effects. The simple solution was to obtain 
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dried batches of washed sand from a reliable source. 

2) Small amounts of organic matter in the sand (represented by 
% loss on ignition analysis) had a retarding effect on the 
setting of mixes. Most sands have insufficient quantities to cause 
any worries, the problem arises from (3) below. 

3) Initially, careless storage and handling of sand batches 
caused fines to predominate in the lower half of the storage 
bins, coarse particles to predominate in the upper half, and 
organic matter to steadily work its way to the surface. If 
sand batches were withdrawn from the top of the bins, the effect 
during bin use was the following: 

a) the setting of mixes became successively less retarded 
b) the water demand successively increased due to the 

increasing fines content 

The combined effect was a considerable reduction in the 
setting times during the 'life' of any sand bin. To prevent 
this occurring, the purchased bags of sand were eventually care-
fully mixed and placed in the storage bins manually, so that all 
batches withdrawn were very close to the average physical and 
chemical analysis. It is pertinent to state here that successive 
mixes had closer mechanical properties, the larger the batches 
mixed at any one time. 
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4.2 STRENGTH TEST EQUIPMENT  

The development of materials as weak as 5 lbf/in
2  in  

unconfined compression made it necessary to use apparatus of the 
soil mechanics testing range, for sufficient sensitivity of load 
measurement to be obtained. 

a) Unconfined compression test  

Unconfined compression and tensile testing (Brazilian disc 
method) was performed on a standard direct shear apparatus 
(Clockhouse Engineering Ltd.), but with the following fundamen-
tal modifications which can be seen in Figure 4.2.1 (a). The 
shear box and runners were removed, and the apparatus was set 
in a vertical plane, with the constant rate of advance jack 
moving vertically downwards. A spring-retained ball seated platten 
was bolted to the jack to act as the upper platten. The lower 
platten which was similarly mounted, was bolted to the proving 
ring fixture. Both plattens had ground faces in an attempt to 
improve the stress distribution on the specimens. The proving 
ring dial gauge (sensitivity 0.0001"/division) could be used 
for both load measurement and axial deformation readings, since 
the jack advance rate was accurately known. This method removed 
the need for a separate axial deformation dial gauge, or strain 
gauge methods which would have been impractical for such a weak 
material. 

b) Triaxial compression test  

Triaxial testing was also performed with soil mechanics' 
apparatus. Cylindrical specimens of 	ins. diameter were cast 
and were placed in standard thin-walled rubber membrane sleeves. 
The only modification to the apparatus that was required was a 
more sensitive method of cell pressure measurement. A mercury 
U tube manometer was used, with the conventional constant pressure 
mercury pot devices. The essential features of the apparatus can 
be seen in Figure 4.2,1 (b). The low range of confining pressures 
(0-3.4 lbf/in ) made it imperative to correct for several factors 
which would normally have been ignored both in soil and rock 
mechanics practice. The following is a summary of the factors 
allowed for when computing the magnitudes of dl  (axial pressure) 
and:cr.;  (confining pressure) acting at the mid-height of the 
3-incli high cylindrical specimens. 

Confining Pressure 

G" 

(i) The pressure gradient due to 
the head of water between the 
mercury manometer and the cell 

(ii) The pressure gradient due to the 
head of water2in the cell itself 
(0.108 lbf/in across the 3-inch 
cylinders) 



UNCONFINED 
COMPRESSION 
APPARATUS 

TRIAXIAL COMPRESSION 

APPARATUS 
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Axial Pressure (i) The self weight stresses in 
material 

(ii) The weight of the 
ball bearing 

(iii) The cell pressure acting at 
of this platten 

(iv) The effective weight of the 
upper ball bearing 

(v) The reduction in the latter 
cell pressure acting at the 
the lower end of the piston. 

the model 

the level 

piston and 

due to the 
level of 

capping platten and 

Factors which were ignored were the following: 

(i) The confining effect of the rubber 
membrane when slight 'barrelling' 
occurred in the tests at the highest 
o',3  values. 

(ii) The change in elevation of the cell 
during any one test. (The jack drives 
the cell vertically uryards against 
the loading yoke). 

The six confining pressures employed in the tests ranged from 
zero to 3.42 lbf/in2  . The tests under zero confining pressure 
were performed with the specimen in the rubber membrane for 
consistency, but with the cell empty of water and 2pen to the 
atmosphere. The next cell pressure of 0.25 lbf/in (acting at 
mid-height on the specimen) was obtained by simply filling the 
cell with water, but applying no additional pressure. In the other 
four cases, the uppermost valve on the cell was closed, and the 
desired pressures were generated by small increments in the elevation 
of the dual mercury pot system. The mercury manometer was calibrated 
so that head differences between the two arms could be related dir-
ectly to the confining pressure acting at the mid-height of the 
specimens. 

c) Stiffness of machines and loading rates  

The following proving ring stiffnesses were used for the 
three standard testing procedures. They represent the 'machine 
stiffness' and are compared with the range of material moduli. 

Unconfined compression: 400 lb. proving ring 2.97 x 10-4  , 
Brazilian disc test: 	50 lb. proving ring 2.26 x 10 
Triaxial test: 	400 lb. proving ring 2.97 x 10-9' 

For specimen under test : Deformation/unit load = L/AE 
where L = length of specimen 

A = cross-sectional area 
E = Young's modulus. 

ins/lb. 
ins/lb. 
ins/lb. 
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For the case of unconfined compression, when testing 1" x 1" 
x 2" prisms of the material, the following simple result is 
obtained: 

Deformation of specimen/unit load = 2/E ins/lb. 

which will be termed the stiffness 

Range of Young's moduli tested : 

A2 0.358 x 10
4 
lbf/in2  

B4 2.56 x 104  lbf/in2  

Thuslthe,stiffness range for the material is 5.59 x 10-4 

to 0.78 x 10-'4  ins/lb. It can therefore be seen that the proving 
ring used for unconfined compression loading had a stiffness of 
the same order of magnitude as the prismatic specimens tested. 
Clearly, the machine must be considered 'soft'. The important 
difference to rock testing was that the amount of strain energy 
stored in the machine was extremely small; thus, at the point of 
peak material strength the strain energy was released much less 
explosively, so that in most cases a fair amount of the descending 
portion of the load-deformation curve could be followed quite 
easily. 

With the system of loading through proving rings, actual 
loading rates depended on the relative stiffness of the specimen 
under test, and the proving ring applying the lead. A specimen 
of equal stiffness to the proving ring would be loaded at half the 
jack advance rates given below:- 

Unconfined compression ) 
Brazilian disc 

Triaxial test 

0.0064 ins/min 

0.0051 ins/min. 
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4.3 THE SYSTEMATIC PRODUCTION OF MODEL JOINT SETS  

Certain design features of the large guillotine will be 
summarized before going on to consider the sequence of operations 
required to produce jointed slabs of the model materials. 

4.3.1 DESIGN FEATURES OF Thb LARGE GUILLOTINE 

The requirements of a system for generating uniform sets of 
tension fractures in model slabs of dimensions 16" x 16" x 1" 
can be summarized as follows: 

1. Two long blades are required which strike the upper and 
lower surfaces of the slabs simultaneously. This ensures 
the most uniform distribution of tensile stresses, and 
consequently the most uniform and reproducible fractures. 

2. The blades must travel in the same plane so that 
fractures are produced which are perpendicular to the 
slab faces. In addition the blades must move parallel 
to one another, so that the slabs are penetrated to a uniform 
depth everywhere. 

3. The depth of penetration must be controlled so that the 
excess momentum of the blades does not force the fracture 
open, after generating the crack. 

4. The slab of model material must be capable of perpendicular 
movement relative to the blades, so that a set of parallel 
tension fractures can be generated from one edge or corner 
of the slab to the other. 

Figure 4.3.1 shows end and side views of the guillotine that was 
finally developed. Letters (aa) and (bb) represent the upper and 
lower blades. These travel towards each other down the same 
machined slot, on ball race roller bearings: (cc) and (dd). The 
depth of penetration is controlled by two adiprene rubber pads (ee) 
fixed to the ends of the upper blade. These make contact with 
corresponding steel pegs at each end of the lower blade, just at the 
point of crack propagation. Penetration of the blades is thereby limited 
to approximately .020 inch, by which time the excess momentum of 
both blades has been adsorbed. 

The electric motor, which drives the blades through a worn 
reduction gear (j) and a series of pulleys, causes the blades to 
move at approximately 5 inches/sec. Each blade weighs approximately 
25 lbf. and the combined momentum is more than sufficient to generate 
corner to corner fractures (23 inches) in the slabs of model 
material. 

The operation was made semi-automatic by a relay switching 
system (k) linked to two limit micro-switches (m). The sequence 
of events was as follows: 
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A 

B 

Figure 4.3.1 Design features of thelarge guillotine 
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.4.  

Figure 4.3.1 (C) Design drawings of Large guillotine. 
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1. Press button (n). Electric motor switched on. 
2. Blades driven towards each other, causing contact 

break with uppermost micro-switch. 
3. Blades strike slab simultaneously, and switch lower 

micro switch to the off position. Electric motor 
switched off, and momentum of blades destroyed by 
adiprene pads. 

4. Time delay relay reverses motor, blades are driven 
back to start position where upper micro-switch 
completes the cycle of events. The momentum of the 
blades at the end of the cycle is again adsorbed by 
rubber pads. 

The slab of model material which is placed on the slotted tray 
Cr) can be moved perpendicularly to the blades by a screw feed (h). 
Ten turns moves the slotted tray exactly inch along the runners 
(g g), so that the lower blade travels up the centre of the adjacent 
slot, when the next fracture is generated. 

A feature of the design which caused the manufacturers considerable 
problems was the runners (gg). These had to be parallel on each 
side of the frame,absolutely flat, and perpendicular to the plane 
of movement of the blades. Variations in blade penetration of little 
more than * .005 inch could be tolerated, when generating fractures 
along the length of any slab. This point also emphasises the need 
for accurate moulds. A uniform slab thickness of 1.000 ± 0.005 inch 
was required as a minimum. 

4.3.2 SLAB CASTING 

One of the most difficult operations of the entire production 
sequence was the casting of slabs. The preliminary operations of 
material mixing, pouring and vibrating to remove bubbles presented 
no problem. However, stripping the mould and removing the model slab 
without fracturing it was extremely difficult, and unlike most operations 
it never became entirely routine. Many slabs were rejected for this 
reason. The problem can best be explained by quoting the tensile 
strength of the model material which was used for all the jointed 
models: (C3)(it= 2.44 lbf/in2. 

The following list summarizes the operations which were required 
to optimize the chances of recovering an unfractured slab from the mould: 

1. The constituent materials had to be accurately weighed 
before mixing, so that the volume of water was never large 
enough to cause 'bleeding' and never small enough to cause 
premature setting during pouring. Approximately 2% change 
in the water content, or a few degrees change in ambient 
temperature was sufficient to cause these problems. 

2. A minimum of approximately 30 minutes setting time was 
required before attempting to strip the mould. 
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3. The cohesive bond between the top face of the mould and 
the top face of the slab had to be broken by rotating 
the mould face across the slab. 

4. The same operation was required to break the cohesive 
bond across the lower face of the slab. 

5. If the water content and temperature were correct 
these cohesive (suction) bonds were minimal, and 
the slab could'Uhen be slid off the mould-onto a flat 
perspex tray with edge supports. 

It was possible to produce approximately one slab every hour 
when all conditions were optimal. The slabs were cured in the 
large oven (See Figure 4.1.4) for approximately three days. 

4.3.3. SYSTEMATIC PRODUCTION OF JOINTED SLABS 

All the components required for the production of jointed 
slabs are shown in Figure 4.3.2. The slabs were removed from the 
oven after curing and left to cool on sheets of plate glass insulated 
with inch asbestos board. When cold, a 1 inch strip of P.V.C. tape 
was gently fixed round the edge of each slab. This reduced the amount 
of damage that could occur to the edges when a slab was highly jointed. 
The slab was then inverted onto the perspec tray shown in diagram (F). 
This was an indispensable piece of equipment since the slabs could 
not be directly handled either when jointed or completely unjointed. 
All handling was performed by a process of invertion, taking care 
that the two edges of the perspex tray were supportive, rather than 
redundant. Six sequences can be summarized as follows: 

1. Diagram A. The unjointed slab is carefully clamped between 
the perspex tray and the slotted tray of the guillotine, while 
in a vertical position. The supporting crutch shown in the 
diagram holds the slab in the correct position for generating 
a set of parallel joints inclined at 66° / 24° to the slab edges. 

The assembly is then hoisted into a horizontal position 
on the runners of the guillotine, and the perspex tray is 
removed by unscrewing the2 BA nuts and bolts which pass 
through the slots of the guillotine tray. The position of the 
slab is checked, and then one complete set of parallel 
fractures is generated with 3  inch spacing. 

2. The perspex tray is replaced, and the singly jointed slab is 
reclamped to the slotted tray. This assembly is hoisted off 
the runners and lowered to the floor in a vertical position. 
The slab and perspex tray are unclamped and removed to a 
horizontal surface. Diagram (B) shows an aluminium bar 
supporting the left hand edge of the slab. Thus three edges 
of the slab are supported in preparation for reclamping to the 
slotted tray for a set of 0° / 90°  fractures. 

The sequence; hoisting, unclamping, fracturing, clamping, 
hoisting is repeated. 
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Figure 4.3.2 Six sequences in the production of a jointed model material 
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3. Diagram (C) shows two joint sets generated. The 
aluminium bar is now fixed to the right hand edge of 
the slab, so that the correct three edges are supported 
before clamping in position for a second set of 0°  f 90°  

4. Diagram (D) shows the tertiary set of joints being 
developed on the guillotine. When completed, the 
perspex tray and aluminium bar are reclamped. 

5. Diagram (E) shows the fully jointed assembly hanging 
from the hydraulic hoist. 

6. Diagram (F) shows all the components used in the slab 
support proceedures. One set of components has so far 
been omitted. These are the curved perspex slats on the 
left hand side of the jointed slab. The convex side of 
these slats is covered with i" foam rubber strips. 
When a slab has been hoisted into position on the guillotine 
tray, the perspex tray is unclamped and removed. 
However before commencing the fracture routine, the four 
curved slats are interlocked round the edge of the slab, 
thus providing a reasonably uniform and gentle pressure 
round all four edges of the slab. After fracturing the 
slab they are removed temporarily, before being replaced 
for the next set of fractures. 

This proceedure, combined with the P.V.C. tape proved to be. a 
most useful method for reducing damage to the edges of the jointed 
slabs. The fracture process vibrates the slabs sufficiently to 
dislodge bricks round the edges, unless these supporting devices 
are employed. 

One or two problems have been passed over in this brief summary 
of joint production. Attention can usefully be drawn to one of these. 
It was found that orthogonal joint sets developed parallel and 
perpendicular to the slab edges caused an increase in the dimensions of 
the slab of approximately 1%. In other words a slab of dimensions 16"x 
16" x 1" when cast, became 16.15" x 16.15" x 1" when jointed 
symmetrically in two directions. The fracture spacing of inch. 
implies that 31 joints had a total, width of 0.15 inch. In other words 
each fracture was approximately 0.005 inch wide when in this (almost) 
unstressed state. When designing jointed slabs to fit into fixed 
dimensions, this expansion must be allowed for, and the mould 
designed approximately 1% under-size. 

In conclusion, it can be seen that the method of fracturing 
slabs provides a realistic simulation of ideally jointed rock masses. 
The primary set of joints are continuous with no offsets, and 
thus represent the dominant joint set that is frequently encountered 
in practice. The secondary and tertiary sets are not continuous, and 
are effectively offset where they cross the primary set, and each 
other. Consequently they are of minor importance where shear 
failure is concerned. Figures 3.1.1. and 3.1.14 in Section 3.1 
illustrate the surface appearance of these three types of joint. 
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A slab of model material measuring 16" x 16" x 1" can be 
split into three sets of joints in approximately one hour. In other 
words approximately 2000 discrete blocks can be generated in this 
time. Even allowing for the casting tine, this is considerably 
faster then individual smooth bricks can be produced. More important, 
the 2000 blocks are already assembled, and no problem exists in 
obtaining identical sizes of bricks, so that they can be built to 
form continuous 'joints'. 
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4.4. DESIGN FEATURES OF THE LARGE MODEL LOADING FRAME. 

Design features of the loading frame and loading beam assembly 
will be described with reference to two reduced scale engineering 
drawings, which are reproduced in Figures 4.4.1 and 4.4.2. In 
addition, three photographs reproduced in Figure 4.4.3 will be 
used to illustrate the details of the loading beams, and the whole 
assembly. 

4.4.1 	RECTANGULAR LOADING FRAME (Figure 4.4.1) 

The large rectangular frame, which was supported on bearings at 
each end (See Figure 4.4.3 D), was designed to support two plate 
glass walls of dimensions 8 feet by 4 feet by 1 inch, the jointed 
model also of dimensions 8 feet by 4 feet by 1 inch, and apply a 
reaction force for the loading beams at each end. 

Section AA through one of the glass wall supports, illustrates 
the rubber strip which was used to regulate the clearance between 
the model and the glass walls. When unstressed the rubber spaced 
the glass at li inch. However when 1" B.S.F. screws were tightened 
on all the glass supports, the space between the walls could be 
reduced to 1 inch, representing zero clearance with the sandwiched 
model. The all round clearance aimed for was approximately 0.040 
inch. Apart from the function of regulating the glass clearance, 
the rubber pads were essential for preventing fracture of the 
front glass wall when this 450 lbf. sheet was lifted into position 
after construction of each model. 

The rubber beds at the base of the glass walls are shown in 
Section BB. Unfortunately the clarity of this detailed section 
has been lost by the reduced size of the figure. However, the 
member marked X was a hardened (E.N.8) steel beam with a machined 
tongue. On each side of this tongue were V notches. The tongue 
slid inside a groove and was located centrally by inch diameter 
ball bearings. The model was supported on this hardened steel 
beem, and could in fact be translated to the left or right so that, 
after construction, it could be moved symmetrically to the glass walls. 
It also effected a regulation of the stress distribution along the 
vertical edges of the model, since any serious mismatching of the 
applied forces would result in the model moving to one end or the 
other, thereby tending to equalize the applied stresses. In direct 
line with this tongue and groove arrangement were 1 inch wide 
rectangular slots for the location of the loading beam rollers. 

4.4.2 LOADING BEAM DESIGN (Figure 4.4.2) 

The requirement of a triangular stress distribution, to simulate 
the increase in horizontal stress with depth below surface, meant 
that the loading beam design was unconventional to say the least. 
However, in addition to applying a triangular distribution of stress, 
it was decided that the loading system should be capable of storing 
strain energy (see Section 3.2) to represent the/stiffness of an 
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additional slice of model jointed ripck.These requirements will 
be dealt with separately: 

1. Triangular distribution of stress  

The side elevation shown in Figure 4.4.2., shows one of the deep 
'U' section beams, which were designed for minimum weight and max-
imum stiffness. Each beam was loaded internally at the third 
point of its length, via a ball seating and hydraulic piston rod. 

Each beam was located in a vertical position above a milled slot, 
by two roller bearings at its base. The central bearing marked 
B had a fixed axis of rotation, while the one marked A at the 
bottom edge of the beam was spring loaded. The dimensions of the 
beam were so designed that the whole beam pivotted about the 
bearing B (only one or two lbf. of counter-balance weight was 
required to aohieve this). Thus the rear, spring loaded roller 
merely acted as a locating device ensuring that the beam moved in 
the plane of the model. (see Figure 4.4.3 A). The pivotting 
facility was required since when appling the triangular stress 
distribution: 

a) the model was consolidated more at the base than at the 
top, which involved a small rotation of the loading beam. 

b) the proving rings at the base were also deflected more 
than those at the top, again causing a small rotation of 
the beam. 

Each beam was loaded at its third point internally in an 
effort to apply the load vertically above the pivot point, and as 
close to the edge of the model as possible. In this way, the 
rotation of the beams during loading caus3d the minimum misalignment 
of the applied forces with respect to the third points of the edges 
of the model. 

As already stated, at the lower end of the loading beams 
alignment with the model was achieved by the two roller 
bearings, rolling(and sliding) in the machined slot. The 
performance of the beams was improved by inserting P.T.F.E. 
(Teflon) strips in an enlarged machined slot (see figure 4.4.3.C) 
The upper ends of the beams were positioned in the same vertical 
plane as the model by screwing or unscrewing P.T.F.E. faced 2  inch 
diameter bolts which located onto each side of the beams. 

During the loading and unloading cycles, when the whole frame 
was rotated between horizontal and vertical, these locating bolts 
were loosened slightly so that the beams could move unhindered. 
However, when the model was finally loaded the bolts (six to each 
loading beam, Figure 4.4.3 C) were screwed tightly against opposite 
sides of the beams to lock the stress distribution both in the 
bank of proving rings and in the model itself. Excavation of the 
model could then take place in a stressed environment of more or less 
known initial values. 



A C B 

Figure 4.4.3: Detailed design features of the loading beams 
and their assembly in the loading frame 
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2. Local distribution of stress  

The two uppermost drawings of Figure 4.4.2, and Figure 4.4.5.A 
show the method of locating proving rings between the °U° 
section beam and the individual 2 inch by 1 inch plattens. Dial 
gauges were fixed across the supports of each proving ring so 
that displacements of the rings occurred during loading, when 
the model was sufficiently consolidated to resist further displace- 
ments from the applied triangular stress distribution. 

The individual plattens, which were designed to hang loosely 
from steel pegs located in machined slots on either side, transmitted 
resistance via centrally located ball bearings, to the diametral 
axis of each proving ring. Thus although the mean stress distribution 
was approximately triangular down the edges of the model, it could 
perhaps be more correctly described as stop-triangular, since 
each platten (24 per beam) transmitted a theoretically rectangular 
distribution of stress. 

It was realized that serious discontinuities of stress were 
likely to be caused unless steps were taken to distribute the load 
from the plattens themselves. This was done as follows. Strips 
of rubber 48 inches long, 1 inch wide (same as plattens) and :A. 
inch thick were prepared with 0.005 inch thick pressure sensitive 
P.T.F.E. tape stuck to back and front. Each model was loaded 
through a minimum of three thicknesses of these laminated rubber 
strips, depending on the completed dimensions of the model. The 
rubber was a relatively hard one, but the P.T.F.E. lubricated lamina-
tions made the assembly extremely flexible. 

As precaution against possible tensile stresses due to deformat-
ion of the rubber adjacent to the model, this outer face was 
covered with segments of accurately cut steel shim 1 inch wide, 
inch high and 0.005 inch thick. This layer was itself covered with 
a final 0.005 inch thickness of P.T.F.E. pressure sensitive tape, 
followed by a loose layer. There was therefore the minimum 
possible friction between the loading system and the edge of the 
model. The above precautions meant that the apparent stress dis-
tribution, as recorded from dial gauge readings of proving ring 
deformations, was probably considerably improved at the model face 
itself. 

3. Loading beam simulation of stiffness  

The theoretical reasons for favouring a loading system which 
has a capacity for storing strain energy, and releasing it according 
to a simple linear stress-displacement relation, have been pkasented 
in Section 32 The proving rings were designed to have a stiffness 
equivalent to a slice of model of dimensions 48 inches by 48 inches. 
This represented half the dimensions of the model. Thus, in a very 
crude manner the proving rings at each end of the model effectively 
doubled the amount of strain energy that could be stored. However 
since the mass E modulus was lower than the intact E modulus 
which was used in the design, the simulated slices were somewhat 
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less than half the model dimensicus. 

A) Force-displacement relation. 
The stiffness of the proving rings was designed by assuming 

elastic isotropic properties for the model: 

thus E.= 	F/A 	d = FL  
E 	2AE 

where E = strain 
F = force applied 
A = area of application of force 

Young's modulus 
displacement at each end of model 

L = length of model 

Considering each individual platten of area A = 2 in2, and 
the length of model L = 96 inches: 

then d = 24 F/E inches 	(1) 

where F is the force on one platten applied by the strained 
proving ring, and resisted by the model material. 

The rings were designed according to the E moduli of model 
materials C3 and A3, 

Average E intact = 0.9 x 104  lbf/in2  

Since the stiffness of the proving rings was chosen to equal the 
stiffness of an unjointed 48 inch by 48 inch slice of model material, 
the force-displacement characteristic required from the proving 
rings was as follows: 

d/F = 24 x 10 -4  = 26.65 x 10 -4 ins/lbf 
0.9 

B) Range of loads 

The required range of horizontal stresses capable of simulation 
in the model were calculated with respect to the density of the 
model material. It was decided that a range of horizontal stresses 
of from one third to three times the vertical weight stresses 
was sufficient: 

C41 = ( -->3) Gv 

?model = 121 lbf/ft3  
At 48 inch depth: 	= 121 x 48 = 3.36 lbf/in2  

144 x 12 

Therefore the required range of horizontal stresses calculated 
for a 48 inches depth (zero at surface) were as follows: 

(2) 



a= 0.149 P r3  
E.I. 

O max. = 0.318 P.r.y 

	 (3) 

(4) 

APPENDIX 4 
	 359 

Minimum crH  = 1.120 

Minimum crH  = 10.08 
lbf/in2  

This meant that the range of loads to be applied by the lowest 
proving rings (located at 47 inches depth) was approximately 
2.24 to 20.16 lbf respectively. Therefore with the stiffness given 
by equation 2, the minimum and maximum displacements required of the 
lowest proving rings were 0.006 and 0.054 inch respectively. 

C) Stress drop sensitivity. 

During excavation of the models while under load, displacements 
occur at the boundaries, which result in a reduction in the 
applied stress. It was of interest to known what sensitivity 
could be achieved in monitoring these changes of stress during 
excavation. 

The stiffness of the proving rings given by equation 2 was: 

d/F = 0.002665 ins/lbf 

Using dial gauges of 0.0001 inch / division, each division was 
equivalent to 0.0375 lbf. Therefore for a platten of area 2 #2.1 
the stress change represented by 1 division was 0.0187 lbf/in'.. 
This model sensitivity could be converted to prototype sensitivity 
by multiplying by the stress scale ( 	) of 666. Thus a stress 
change of 12.5 lbf/in2  in a prototype could be simulated by the 
model. 

In fact the stress changes during excavation of the model were 
monitored to an estimated accuracy of better than 1/5  th of a 
division. Thus it was possible to detect stress changes at the 
boundary of the model equivalent to about 2.5 lbf/in2  in a 
prototype situation. 

D) Design of proving ring dimensions. 

The standard equations for design of proving rings, which 
have been experimentally verified by Hoek 3  are as follows: 

I 

where E = Young's modulus for the ring material 
= radial deflection 

P = load 
r = radius of ring 

Moment of inertia for section (rectangular) 
(F) max. = fibre stress 
y = distance from neutral axis at which (f)max. 

occurs ( = d/2) 
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Note: r = mean radius = D - d 
2 

I = 1/12 •  "bd3 

in this case: 

r3  = 26.65 x 10 -4  x 30 x 106  = 4.475 x 10-4  (in-1) 
770 	0.149 x 12 

	 (5) 

The dimensions (r) and (d) of the ring were chosen so that the 
rings would conveniently fit in the loading beam frames and 
produce a ring width (b) which was small enough to allow the 
dial gauges to be read with ease (Note that the dial gauges were 
all turned at 45°  to facilitate this; see Figure 4.4.3 A) 

The following dimensions were chosen: 

['mean 1 0.D 4.480 inches 
I.D. 4.320 inches 	lradiusJ = 2.200 inches 
wall thickness (d) = 0.080 inch 

These dimensions represented a minimum of machining, when the 
following stainless steel tube was used: 

Type 304 Austenitic T.I. (Tube Investments) stainless 
Standard tube. (.old drawn, seamless) 
Nominally: 4.500 inches 0.D (± 0.010 inch) 
Wall thickness 0.120 (± 0.004 inch) 

When the above dimensions were inserted into equation 5, the ring 
width (b) obtained was: 

Fibre stresses: 

b = 0.465 inch 

( 17  )max = 0.318x20.4x2.2x0.04x12  
0.465x0.08x0.08x0.08 

= 28,800 lbf/in2  

 

  

     

(Yield point for steel = 47,100 lbf/in2) 
(Tensile strength 	= 96,300 lbf/in2) 

When the proving rings had been machined and ground, and assembled 
in the loading beam, a series of load-deformation checks were made. 
The mean values of eight random tests produced extremely consistent 
results which indicated that the stiffness achieved was: 

01/F = 27.50 x 10-4  inches/lbf. 
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This was within 3.1% of the design value of 26.65 x 10-4  ins/lbf. 

4.4.3 DEAD WEIGHT COMPENSAThD LOADING SYSTEM 

The two hydraulic cylinders used to apply the third point 
loads to the loading beams had 1 inch diameter, 1 inch stoke 
pistons. (Martonair Ltd). They were originally designed for 
accurate position control mechanisms. These had the lowest piston 
friction that could be obtained, consistent with sealing offeciently 
up to the maximum expected load of approximately 240 lbf/in2. 
A very low vicosity hydraulic fluid (Shell Tellus 13) was used to 
improve this quality. 

As already explained in Section 3.2 the loading of the model 
had to be carried out at a uniform rate, so that while the loading 
beams were applying a linearly increasing (or decreasing) load, 
the whole frame was being rotated at a rate approximating a linear 
increase (or decrease) of sine (C4), where CA was the angle of tilt 
of the model. In this way the principle stresses H (horizontal) 

and 0-v (gravity) were increased to their final values in a fixed 
ratio. 

The maximum load to be applied to the loading beams was 
approximately 250 lbf ((Yr' = 3c3-0 and the minimum load only 28 lbf 
(TH = 4 v). Therefore to achieve a uniform increase of load from 
zero to less than 30 lbf, required an extremely finely controlled 
'Amsler Valve' or similar device. 

It was decided that the simplest system would be a dead weight 
loading device in which a graduated tank was filled with water at 
a constant rate from a constant head supply. The increasing weight 
of this tank acted as the pressurizing force acting on a third piston 
held in a vertical plane. This single piston supplied the hydraulic 
pressure to both the loading beam pistons, which were connected to 
the latter via equal lengths of nylon tube, so that the response of 
both sides would be the same. 

One problem had to be overcome. The perspex tank used to hold 
up to 250 lbf. of water had a dead weight of approximately 30 lbf. 
Pressures increasing from zero could only be applied if the self 
weight of the tank was supported by a spring. However, during load-
ing of the model, each beam moved towards the model due to consoli-
dation and proving ring deformation. This effective increase in 
hydraulic volume resulted in the longer stroke vertically mounted 
piston moving downwards under the weight of the filling tank. Parad-
oxically, the spring supporting the self weight of the tank was 
now stretched further and applied an upward force greater than the 
self weight of the tank. 
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This problem was overcome by a marker device fixed across the 
length of the spring. The marker was set when the spring was 
supporting the empty weight of the tank. During filling of the 
tank the spring was kept at a constant length, by screwing a 
stretcher device. The rate of increase of hydraulic pressure 
was then purely a function of the rate of water flow from the 
constant head supply. The maximum load((H = 3TV) was 
applied in about 5 minutes, with the given water supply. During 
this period the whole frame was rotated at an approximately 
linear rate of increase of Sin Ck, the angle of tilt. 
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4.5 THE CONSTRUCTION OF LARGE JOINTED MODELS. 

Appendix 3 contained a summary of the sequence of operations 
required to produce jointed slabs of model material. One problem 
which was referred to then, and concerns the present model construc-
tion, was the expansion of slab dimensions due to the finite width 
of the fractures generated through them. It was found that by 
suitably reducing the mould size, jointed slabs could be produced to 
the required final dimensions. 

4.5.1 JOINT CONTINUITY BETWEEN SLABS 

The large models were constructed from three rows of six 
slabs. Each of the slabs was approximately 16 inches by 16 inches 
by 1 inch, making a total size of 8 feet by 4 feet. Obviously 
uniformly sized slabs were required. However in addition to this, 
each set of fractures had to be continuous across slab boundaries, 
so that one fracture at one corner of the model could be traced 
across several slab interfaces in a continuous line. Only then would 
the vertical and horizontal boundaries of slabs effect the total 
shear performance to a minimum degree. There was no practical 
solution to the effective offsetting of apparently continuous 
joint lines, when crossing the (primary) slab boundaries. 

The two diagrams below, illustrate the two joint systems 
that were used in the large models. The one on the left illustrates 
two requirements: 

 

 

 

  

IWO 

 

 

 

1. Continuity of all joints across slab boundaries. 

2. Intersection of both joint sets at the slab boundaries so 
that half bricks were created along the slab edges, which 
mated exactly with opposite halves on the edges of adjacent 
slabs. 

The half bricks illustrated in the left hand diagram were 
cemented together to remove the structural defect of smooth 
horizontal and vertical slab edges. Clear 'Bostic' adhesive was 
painted between joint intersections, so that no joints would be 
affected. 

The diagram on the right illustrates only the one problem 
of continuity. The horizontal and vertical fractures were convenient 
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in that the slab boundaries then merely represented additional 
joints in a given set, though with reduced frictional properties. 

The fixed dimensions of the 1 inch thick glass supporting walls, 
and the given loading system, required a completed model dimension 
of 8 feet by 4 feet with tolerances of approximately - and - inch 
respectively. Therefore if the model was to be constructed from 
16 inch by 16 inch slabs, the tolerances on these dimensions needed 
to be better then ±0.1 inch. In other words the slab dimensions 
were more or less fixed. 

It will be appreciated that the two diagrams of jointing 
implied a whole number of half bricks or cross joints per slab 
edge of 16 ± 0.1 inches. In addition, the guillotine produced a 
fixed joint spacing of z  inch. (This could of course be increased 
to multiples of i inch if desired). These two 'constants' meant 
that the possible angles of intersections of the joints with each 
other, or with the edges of the slabs was limited to those 
producing whole numbers of intersections. The figure below illustrates 
the general case, which is then modified to the case with 2  inch 
spacing for each set. 

Slab edge intercept AB = 	dl 	d2 

cos (90- ) c os (90 - 

where d1 and d2 are the two joint spacings. 
In the present case: 

d1 = d2 = inch 

C> = 	= E) (say) 

i.e. AB = 	1 
2 cos(90-(a) 

The angles 9 and (90- 8) had to be chosen to satisfy the following: 

n. AB = 16 f 0.1 inch. 
where n = whole number. 
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This condition limited possible angles of intersection (with 
respect to slab edges) to approximately: 

58°  / 32°  , 	62°/ 28°, 66°/ 24°, 700/ 20°, 

in the range of dips consistent with possible shear failure of a 
slope intersected by joints with these inclinations. (See Section 3.2) 

4.5.2 CONSTRUCTION SEQUENCES FOR MULTI-SLAB MODELS 

The sequence of operations is most easily communicated by 
reference to a series of photographs taken during construction of 
the final large model to be tested. Figures 4.5.1 (A to F) and 
4.5.2 (G to J) show the stages involved: 

A. The large loading frame is tilted to within about 10°  of 
vertical so that slabs will lie on the rear plate glass wall 
without toppling forward. A line of mating slabs is already 
in position, with the left hand vertical edge supported 
rigidily by a straight edge clamped over the full height of 
the completed model. The next slab is inverted from its 2  inch 
plate glass tray, into the perspex support tray. (This was 
described in Appendix 3). An aluminium bar is screwed into 
position on one side of the tray so that three edges and one face 
of the slab is supported. The slab and tray are then lifted in 
a sub-vertical position onto the loading frame, and firmly 
rotated through vertical so that the unsupported rear face 
of the slab comes into contact with the glass wall which 
supports the back of the model. 

The large frame is then rotated into a horizontal plane, 
by which time the perspex support tray and the perpendicular 
straight edge can be safely removed. 

B. The P.V.C. tape surrounding the edges of the slab is carefully 
cut, and even more carefully removed. It should be noted that 
this tape is two thicknesses, with the adhesive inside. One 
thickness of tape with the adhesive outside will tend to stick 
to the perspex walls of the tray. One thickness with the 
adhesive inside will remove the entire outside edge of the 
slab brick by brick, when the tape is removed. 

C. It is at this stage that adhesives should be applied with 
a set square, after brushing away the small pieces of material 
that are inevitably dislodged when the tape is removed. 

D. Note the axis of symmetry at the centre of the model. The 
jointing was designed so that the steeply dipping set of joints 
(primary) dipped into any symmetrical excavation on both sides. 
This involved turning half the eighteen slabs back to front, 
if the same guillotine proceedures were used throughout. 



Figure 4.5.1: Six sequence photographs ce. the construction 
procedures for building the large model 



X 

G 

Figure 4.5.2: The final stages of model construction 
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E. A 16 inch straight edge is clamped against the edge of the 
slab while the frame is still horizontal. 

F. The frame can then be rotated back to within about 10°  of 
vertical. Note the steel beam at the left hand edge of 
the slabs. This is clamped in position throughout the 
construction, so that slabs line up correctly and are 
supported when the frame is rotated. The right hand edge has 
to be supported in stages as will be seen. 

Figure 4.5.2 shows the remaining sequences of clamping operations 
that have to be employed to ensure the stability of all unsupported 
slab edges. 

G. This shows an L shaped clamp fixed to the top of the glass 
wall, to support the edge of one of the second row 
slabs. 

H. The end slab of the bottom row also has to be supported while 
the second row is being built up. Note that this end clamp is 
fixed to a wooden recessed beam, The front face of this is flush 
with the glass and acts as an extension to the glass wall for 
the placing of the extreme right hand edge slabs. 

I. The 32 inch and 16 inch straight edges are reversed in position 
when the second row is completed. 

J. The completed model is supported at both ends by rigid, 
steel straight edges. The model is rotated from horizontal 
to a few degrees from vertical and allowed to consolidate under 
its own row uniformly distributed weight. 

It should be noted that the above proceedures represented a 
collection of extremely non uniform 'loading histories'. For this 
reason loading and unloading cycles were religiously performed 
before finally stressing a model for testing. (See Section 3.2). 
It was hoped that this would help to'imprint' a joint consolidation 
pattern .(stressilli:Itory) of a uniform nature. 

The last two stages of model construction consisted of lifting 
the 450 lbf, 1 inch thick glass wall into position on rubber pads in 
front of the model, while the model was horizontal. The glass could 
be uniformly translated towards or away from the model until an all 
round clearance of approximately 0.040 inch had been achieved. 
Finally the two loading beams were substituted in place of the 
straight edges. The loading frame had then to be kept horizontal, 
until the beams were loaded at the third points to apply a triangular 
stress distribution simultaneously with the model rotation. 
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