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ABSTRACT 

This work is about the entrance boundary of the Markov 

processes in a countable state space A. The analytical definitions 

of J. Neveu and J.L. Doob are shown to be equivalent. The entrance 

boundary is an extension of A which has the following property: 

every process with values in A has a standard modification with 

values in the entrance boundary and which is right continuous and 

strongly Markovian. 

We show that the size of the entrance boundary is the best 

possible but in some cases its topology is not the finest to keep 

the process.right continuous. We attempt to metricate the finest 

topology by means of taboo semigroups, where the taboo sets are 

subsets of the entrance boundary. A solution is found in two 

very simple examples, which are introduced for their interesting 

topologies on the entrance boundary. 

We investigate the relations between the entrance boundaries 

of the original semigroup and of a taboo semigroup. In particular, 

we show that for every point y of the entrance boundary, but outside A, 

we can find a sequence of points in A which converges to y in both 

entrance boundaries. 
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CHAPTER I 

Introduction 

Throughout this work we use the following notations : 

N = the set of all positive integers 

Q = the set of all rational numbers 

R = the set of all finite real numbers 

R = the interval [0,00) 

R°  = the interval (0 2 1o0) 

II (16) [resp, th II 2] is written to refer to relation (16) in Chapter 

II [resp. to theorem 2 in Chapter II]. If the roman number is not 

written the reference is to a relation (or a theorem) in the same Chapter. 

To begin we give some basic notions on general processes. By way of 

simplification definitions and results will be quoted mainly from 

P.A.Meyer's books [1] and [2], and in this case N XIgis written for 

Chapter XI, no. 8 in [1] or [2] 

Let B be a set andE be a c--field of subsets of E. 

A transition semi-group on (E, £) is a family of real valued functions, 

PxB  (t), x in El  B in s, t in RI., say, such that 
(i) for all t>oi  and all B in € , the function pxB  (t) ; x in E [0, 1] 

isemeasurable 

(ii). for all t> o and all x in El  the function p (t) 	BEE --[0, 1] is 

a measure on g 
(iii) For all x in El  all B in e l  all t>0 and all s > 0 

-
pxdy 	' pyB 	pxB 

(t) 	(s) = 	(t+s) 

E 

Such a semi-group is usually extended to t = 0 by setting for all x in E 

PxB  (o)  =E7x (B) 

Where ex (. ) is the atomic measure concentrated in x and of total 

mass 1. 

The transition semi-group is said to be stochastic if all x in E and 

all t>0 

p
xE 

(t) = 1 

-5 



A family of measures on (E, ) /A.(t) t > 0 say is called an entrance 

relative to pxB  (t) if for all B in e , all t>0 and. all s>0 we have 

ir
jlt (t) pyB  (s) 	(t+s) tly   

E 

Letn= 	and denote its elements by w. 

Let 	be the el-field ofngenerated by the co-ordinate X t (w) = wt , t> 0, 

say 

If the entrancep.(t), t> 0 relative to the stochastic semi-group 

pxB  (t) is such that 

/A B  (t) = 1 for all t >0 

)1(t) is called a  stochastic entrance. 

By N XII. 12 there e:d.sts in this case a probability measure P[ 3 on 

) such that 

(1) P[ X, (w) e. B] =/"B  

for all B in £ and all t> 0, and 

(2)  
1 	

2 P[ X, (w) 3I X, (w)6 	Xt  Cu) 1. 	 B2, 	X t 	(w) = 	= 11 	6 n-1 

PC Xt  (1.1)31 Xt 	(w) = x3  PxB (tn tn- n 	n-1  

for all x in 7  all 0<t1  <t2 -• <tn-1 <tn  and all B'11B21 'Bn-2 in E 

The equality of elementary conditional probabilities in (2) is called 

the Markov property and Xt  (w) is then a Narkov  process with pxB (t)  as 

transition function. 

Let (a,cr ,P) be a probability space and be a sub- d" -field of F1) . 

If f is a T.-measurable function defined on a the conditional expectation 

of f relative toqis a (non uniquely defined) q-measurable finiction 

to be denoted by E[f I q] which satisfies 

f I 	P[dw] 	f(w) P [dw] 



for all G in q. 
The conditional probability of a set B inTis a .•-•measurable function 

to be denoted by P[131] which satisfies 

PEBIGi3 P [dw] = r)IB  (w) P [dw] 

for all G 	IB  (w) being the characteristic function of B.. 

Denote by Tt  (resp tT ) the c -field of n generated by X s  (w), 0<s •‘. t 

(resp. Xs  (w))  t < s) 

By 1,1 II 51, (2) is equivalent to 

(3) PEA 11)3t] = PEA Xt3 P 	I Xt3 a.s. 

for all . in It , all 11 in t , all t> 0, where the conditional expectation 

relative to a random variable is the one relative to the C4- field generated 

by this random variable. 

A random variable (w), possibly infinite, is called a stopping time  

relative to an increasing family of C- field qt , t> 0 if 

tJc gt  for all t -> 0 

I f 	the .C-field generated by the union of all 4t , the elements B 

in 4..such that 

B n [Z (w) t]e qt  for all t> 0 

form a c field, denoted by 4T, it is the set of events preceding Z. 

If Z is a finite stopping time relative to t , we may associate with any 

w inn and any s 0 the point i(w)+s  (w) in E. Under certain conditions 

this new random variable is measurable (see e.g. 1,1 IV. 49). In this case 

and if for all B in £ and all s.?; 0 

(4) P[ 	Bk3 = P [ L/13 I 	a.s. 

the process is said to enjoy the strong Markov property. 

If 	is the 	field generated by 	s Ol then by M 11.51 the condition 

(4) is equivalent to 

(5) PEANi f = P [Al XL] P [Mkt] a.s. 

for allA in 9jz  and allM in -G Y . 

Two processes Xi.  (w) and Yt  (w), t in some interval I of R I  defined on the 
same probability triple (C1 ,94 ,P) and with values in the same space 
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(E,£) are said to be standard modifications (or versions) of each 

other if 

Kw! Xt 	= Yt  (w) ] = 1 for all t in I. 

Let E be a compact metrisable space. 

A process Xt, t in Rt, with values in E, is said to be separable relative 

to the closed sets of E, if there exists a countable set S dense in 

R+  such that if C is a closed set in E and I an open interval in 

then the event 

[ wiXt  (w)e C for all t in Sn I] [ 1Xt  MEC for all t in 1] 

is contained in an event of probability zero. 

A right continuous process is a process Xt, t?-0 with values in a topological 

space such that 

P[ wiXt  (w) is right continuous at all tXD] = 1 

In this work we deal only with countable state spaces which are denoted 

by A. Results and definitious concerning this particular case will 

usually be quoted from K.L.Chung's book [3] and C th. II. 3 .3 will then 

be used for theorem 3 in0 of part II in [3]. We now give some basic 

facts about this special case. 

We consider the C- field of all the subsets of A. 

A transition semi-group on this measurable space is called a transition 

matrix, i.e. a set of functions i.(t),iin A, j in A, and t>0 such that 

(6) 0:5p1S 	for all t >0 

(7) )-- 	
(t):5 1 for all t >0 

k 6- A 

(8) pig (t s) = 	(t) 	(s) for all t >0 and all s >0 
k A 

We always have the additional condition of stoQhestitinuity, namely 
(9)  
limo p 	 (s) = 

13 
Naturally we extend pij (t) to t = 0 by setting pij (0) =c51j, and 

(pij (t) ) is said to be a standard transition matrix. 
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The conditions (6) to (9) are known to be enough to ensure the continuity 

in t on [0,.e) of all the functions pij (t), see e.g. C th. II. 1.3. 

We will also use the equivalent matrix notation 

(10)  

(11)  

gilbar-t-space of bounded sequences indexed by A 

(12) P (t + s) = P(t) P(s) 

(13) lim P(s) = I where I is the identity matrix 

An entrance relative to (pij (t)) is a set of functions fi  (t), 

such that 

(14) 0<f. (t) 	for all t >0 

(15) f. (t + s) 	fk (t) pki (s) for all t >0 and all s> 
. e A 

(16)  
0 < t-c kcil 

sup Tfk  (t) 

Again in the vector matrix notations the family of vectors f (t), t-7-0 of 
se-ri 

the Hilbert space of converging coquo.nocs indexed by A is an entrance 

relative to P(t) if only if 

(17)  0 'f(t) 

(18)  f(t + s) = S(t) P(s) 

(19)  sup 	II f(t) II -‹ 00 

0< t<0.- 

where the norm is the one in ( 

Note that in the stochastic  case (i.e. equality in (7) or (11) for all t) 

we have 	f(t) = c. Hence (19) holds whenever Ilf(s)11 <- 0.4D for one s> 0. 

The set of all entrances relative to P(t), including the trivial one, is 

easily seen to be a convex cone which will be denoted by F. 

We recall now some definitions about cones. 

A subcone 1-3  of F is said to be thick in F if the conditions fel', fEt" and 

( the order being the inner order in F) imply f‘T'. 

0 	(t) 

P (t) 1 < 1 where 1 is the unit vector (1,1,1,...) in the = = 	= 



A subcone P is a positive band of F if it is thick in F and if every 

nonvoid bounded above subset H contained in 11  has a least upper bound 

in F. 

In a cone F a point f is extremal if for any g,5f there exists anc<in 

[0, 1] such that g =ocf. 

We will also use the extremality of poihts in a convex set, C, say,. 

f is said to be extrema' in C if the equality f =a g (1 	h, where 

is in (0, 1) and both g and h are elements of C implies f = g = h. 

Now if P(t) is stochastic and if p(t) is an entrance such that 

(20) 
	

(t) =1 for all t>. 0 

We can apply what was recalled before about entrances relative to stochastic 

transition semi-groups. 

Let 

n_ (A) = A +  
1R47 

A 
Xt ( w(A) = the t - co-ordinate of w (A) in fl.(A), t-,c) 

A 
T (A) = c'• field generated by all X

t , 
t 

then there exists a probability measure PA E 

on (n. (A), 55-(A) such that 

PA , 
(21)' 	E x; (w(A) = i3 = p i  (t) 

for all i in A and all t>01  and 

A 	..A 	. 
(22) 	P 	[ N. 	= 3. 

'tn 	n 

for all i1fi2r.)in  in A and 

A 
i,,A 	. .%. 	= 	3. 1 	... 	X 

ti 	1 	) 	tn-1 

all 0<ti  < t2< 

= i 	1 
in-1.  

<tn  

= p , 
i n  

t
n-1
)  

If the discrete topology is used on A, then it it even possible to find 

a standard modification of X. 	 p searable relative to the closed sets t - 

(see C th. II. 4.3). However it is not always possible to find a standard 

modification .of this process which is right-continuous and enjoys the strong 
Markov property. 

Therelore it is useful to find an extension of A in which such a standard 

modification may be obtained. Observe that the Alexandroff compactification 

is generally of no use in this problem (cf. C th II. 9.3 and notes following 
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II. 9) 

Before proceeding to the description of our work, we give an account of the 

manner in which A is imbeded in a bigger space E in order that a Process 
A 
Xt in A may be considered as a process in E. 

Let E be a topological space and t' its Borel 	-field. Assume that the 

measurable space (B,e) satisfies 

(i) A is contained in E 

(ii) every point of A considered as a subset of E is an element of C. 

Let 

11(E) = ER+  

Xt
E 
 (w(E)) = the t-co-ordinate of w (E) in n(E) , t>0 
(E) = C-field generated by all Xt, t> 0 

We call an element of qi(E) elementary if all the factor sets are equal 

to the whole space E, except a finite number of co-ordinates tl, t2  1 - I tn  

say, where the corresponding factor sets are B1, B2, Btn  Borel sets 

of E. On such 41  s we may define a finitely additive function PE[ 	] by 

setting 

A (23) 	P
E r 	

J = PA [X t e 3 n Al  X
A
E-B n A, 

• ti 	tl 	t2 t2 
I I,  XA  G B n A] tn  tn 

	

Where the set in the second bracket is measurable in 	since every subset 
In A 

of A is .measurable thert. 

By Caratheodory's theorem (e.g.M II. 25), PE[ ] can be extended in a 

probability measure on (CL(E); 91(E)), which we also denote by P" [ 3 

Natuurally for the process Xt  t >0 we define 

ti 
(24) P

E.
[ X

E 
6 B

ti  t 
XE  B

t 	, XE  E Bt 
 ] = PE[A] 2  2 	.

t
n 	n 

(23) and (24) give in particular 

(25) PE[ Xt (w(E)) = J.] =PAC x (w(A)) = 1] = pi (t) 

for all t > 0 and all i in A. 

Similarly if 0< 	t< t2  < t3  . . <tn  and Btl, Bt  2' Btn 
are in e 

we have the following equalities of elementary conditional probabilities 

jj - 



(26) 

PE E  4n €  Btri I Xt/E  F Btu, 

PE [
tn  c Btn'  XE  e B 

X, 	c B, 	] = 

xE  e B, 	3 
112-1 

PE  [ XE  c B' t/ 	t/ c Bt
n -1 

A 
PA[XtnA c.Btn  nA,XAeBn t4  A X

t 	B4. 
11-1 

 n A3. 
n-1 " 

PA  L r _A 
t 

Bt n A' 1 
XA  E B

t n A] tn-1 n-1 

AS the Markov property hold;; for 	, the last term is equal to 

PA  [ XA EB AA XA  tn 	tn 	t e 'Be]  - 	[ 	Btn' t 	Bt 3 n_i 	 n_i  

P t 
A L  r A_A 	Bt 	A] 	E L 

r E 

	

Xt 	Bt
n-1 n-1 	 n-1 

(27) 

PE[  Xtn B  tn I 4n-1 Bt
n-1 

E 

The equality (26) = (27) means that XE  t>0 is a Narkov process, moreover 

if we put Btn_i  = i and Btn  = j we can deduce that its transition semi-group 

is P (t). 
with 

So'every entrance p (t), t>0 relative to P(t) satisfying (20) we can associate 

two Narkov processes, one with values in A and the other with values in 

E. Both have P(t) as transition semi-group and p(t) as absolute distribution. 

From now on we shall distinguish between them simply by saying the process 

in A (or in E) and drop all the indexing by A (or E) of ii,p,c4": and so on. 

To close this Chapter we give a short summary of the other Chapters. 

The general content of this work is the extension of A (in the sense of (i) 

and (ii) in p 41 by the so called entrance boundary, 

In Chapter II,f 1 we set out the analytical definition given by J.Neveu [8] 

the definition used by J.L.Doob in [5] is the subject of the second paragrah. 

In f 3 these two definitions are shown to be equivalent as was stated by 

Doob in p. 237 of [5] • 

- 12 - 



Doob's proof is used in Chapter III to show that every Markov process 

in A has a standard modification in the entrance boundary which is right 

continuous and enjoys the strong Markov property. 

Much of the content of these two Chapters is of course only a rearrangment 

of pavers [5] and [8] and is introduced here for the sake of completeness. 

In Chapter IV we see that the entrance boundary is the smallest extension 

of A on which the right continuity of almost all trajectories can be expected. 

In Chapter V we are mainly concerned with the topology defined on the 

entrance boundary in Chapter II, Chapter V may be said to throw some 

darkness on the relations between the analytical and the probabilibtic 

properties of P(t). The trivial example 1, inS2 shows that this topology 

is not the best for our purposes. Then in a search for a better one we 

define in ' the taboo semi-group where the taboo set is in the extended 

space. In fact we try to define the best topology by adapting the techniques 

used in Chapter II to the taboo semi-groups. But they appear to be difficult 

to handle in this respect and the example 2 inF Yis given to rule out 

the most obvious and general attempts in this direction. 

Finally in Chapter VI we obtain some interesting analytical results 

about the taboo semi-groups. 

Among other papers on the entrance boundary and dealing partly 

with countable state spaces are Ray [9] ,Kunita and Watanabe [6], and Williams 

[13]. 

-13- 



CHAPTER II. 

Analytical Definitions of the Entrance Boundary. 

0 Two preliminary results.  

(a) A theorem on the weak convergence of probability measures. 

Let E be a topological metric space and d its metric. 

Let e be the C--field of its Borel sets. 

Letp. and „ph, n in N, be probability measures on (E;e). 

Let C(E) be the set of all bounded continous functions from E into R. 

it•tn  is said to converge weakly toitkas n > ,i(An _--7,A, if and only if 

)4.4j --yAf as n > oo for all f in C(E). 

For every measurable function f and every real numbercx. define the 

functions c°  and rn  by setting 

y (f ;  .c) 	(f5.0<) 

(en(f;°(- )  =/ii(f.()  - 
Lemma (which is a simplified version of theorem 2.1 in P.Billingsley [4]) 

The following statements are equivalent 

(i) 	
__12/LA as n - Cs0 

(ii),&(F) z 1psuoop ,x4.11(F) for all sets F closed in E. 

(iii) For any measurable function, which is continuous except on a set 

of/PI- measure zero we have 

lim (IP (f; 	) = (19 (f; 00 n=00 n 

At every a; where CIP(f,ac) is continuous 

Proof: 

(i) ='>(ii) (which is reproduced here from [4]) 

Choose a closed set F 

Let 

	

us  = .1 d(., F) <, ss 	where 0 C S 

If S
r is a sequence of positive numbers decreasing to zero we have 

14 



ov 

"' 
n (U r - F ) r=1  

=0  
hence 

lrm in fitk(lis 	) = jt,t ( cif ) = o 

Fix E>o and choose a 015€  such that 

(U,Ve - F)   < E 

Define f(x) as the following function 

f(x) 	d(x, E - UciE  ) 

d(x,E - USE  ) + d(x:F) 

As the denominator is bounded away from 0 by S, f(x) is continous, 

always between 0 and 1, equal to 1 on F and to 0 on E - Ucre  . 

We have then 

"All(F) 	4  /A'‘rlf 
	

for all n 

//Un f  = JAA:  f 	by (i) 

/4.,tf 	--.S/A&(F) + 

We can deduce that 

linsup n= ,AAn(F) 	./1A (F) + 

This inequality holds for every C so that (ii) is established. 

(ii) ="2. (iii) 

First note that (ii) implies 

(ii)1  ,AA (B) = ni,A.An(B) 

for every Borel set B such that its boundary (to be denoted 

by ils) is of 	measure zero. 

Choose aB such that im(t) = 0 

We have for all n. 

1 -,iun(Bc) = ,)LAII(B) 

Hence 

(1) lim in f (1 -/n(Bc)) = urn in f jAn(B) * limsup AA (B) n= co 	 LI= co 	 n= 	/ n 
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But B U B is closed so that (ii) implies 

(2) limseaup AA (B) 	11.11vp "n(B U E) 	(B U ) 

/1/t (B) +./44 	= 

similarly as Bc  UB is a closed set we have 

(3) lim in f ( 1 -,A411(Bc) ) > 	(B) 
z oo 

And from (1))  (2) and (3) we get (ii)' 

Now pick'an f satisfying the hypothesis of (iii) i.e. 

= 0 where Df  = y I f(x) is discontinuous at 

Let a be 
('
a point of continuity of Ce(f, 

Let C = j x I f(x) .4=z oc - 

	) 

We have C = Sx 'there exist two sequences yi  and z. 

such that lim yi  = lim zi  = x and 
i= o0 	i= erg 

yi  e'C for all i in N zi  3  C for all in N 

C is contained in 3n (E - Df) U Df  

For every x in -64(E - Df) we have 

f(yi) ---> f(x) 	as i 	00 

and 

cc f 

so that 

f(x) = 

and this shows 

f(x) 	as i 	c.3 

EIA(E Df) c 	x lf(x) = 

where the set on the R.H.S. is obviously equal to 
oo 

1 = 1 

By choice of g we get 

= 1111 	qK1 	04.1- 1.0 1 	1 
1 

lim in f 
1= oo 	[ Ce 	c( + 

	) - (f, 0L- 	=0 

16 
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so that 

../A 	./t6$1f(x) = c'() 	tiA(Df) = 0 

and we can apply (ii)' to C and obtain 

te n(f; 	= (e(f; oc ) 

(iii) ===> (i) 

Choose a bounded continuous function f. In fact as f is bounded we may even- 

assume 0 - f4.C. 11.40'a. 

,./A(Dr) = 0 and f satisfies the hypothesis of (iii). As Df  = 

The function Ce(f,cc) is monotonic and hence has at most a countable 

number of jumps; let J be the set of those points. For every positive 

integer r and every j 	m(r) choose an akj  not in J such that 

0 = ako< aki  < ak2  c 	< akm(r) = 

and 

ansm(rSakj akj-1)  

we have 

0 as r tends to oO 

m(r)-1 
(4) Af = lim  	akj .//u 

(akj  f 	akj+1) r=m j = 0 	J  

m(r)-1 
rimes  \  	akj[ 

	(f;aki+i) 	 (fiaki)] r= 

j = 0 

As all akj  are outside J and it(Df) = 0 we can use (iii) and the last 

sum becomes m(r) -1 

lim lim r= 00 n= akj[ 	n(f ,aki+i) - (en(f;ak;)] 
j = 0 

The positivity of all terms is ensured by the monotonicity of all 

. ) and the sums themselves being monotonic increasing in r 

we can interchange the limits to obtain 
m(r)-1  

(5) lim 	 ;> 	akj[  (en(f'akj4.1) - tti n(f;akj)]  = Alto Alf  
j = 0 

The equality (4) = (5) is the statement (i). 

Theorem 0 

Let
V 
 be a Borel set in a metric space Eiconsider the induced topology 

"17" 
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on B, it is also metric with the same metric (restricted to B). 

If/A and 	are probability measures on E, all fully supported by 

B such that /An 	
on E, then lAn 	on B. 

Conversely if/Ala -21vA on B the measures extended to E by setting 

iun(E - B) = 0 for all n tend weakly to,t extended to E in the same way. 

Proof: 

A set F' C B is closed in the induced topology if and only if it is 

of the form BrIF, where F is a closed set in E. 

We have 

~un(F' ) = /An B n F = n(F)  

_,LA (Ft ) = 	(B 	= 	(F) 

By the lemma we have 

limsup n=oo ACF2 L(P) 

Hence iiwp 	(F) 	(F) is true for all closed sets in the 

induced topology and by the le ma again this shows that ./Anf 

as n tends tomfor all bounded continuous functions defined on B. 

The converse is obvious as any continuous function on E restricted 

to B is continuous there. 

(b) A result which we shall need very often is the following theorem 

of Heriy Scheffe in [II] . From now on we shall refer to it as 

Scheff6's theorem. 

Scheffe'. theorem: 

Let (E, E 	) be a measure triple. If f (x), n in N, is a sequence 

of positive E- measurable functions defined on E such that 
lim f (x) = f(x) 
Tl= co 11 

for JA - almost all x 

and 

n=cci lim 	jrfn(x)y(dx) = ff(x),‘ (dx) 

then 

n=00 lim 	fifn(x) - f(x)! JAA(dx) = 0 

D 
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1 The entrance boundary as defined by J. Neveu. 

Contrarily to Nevell in [83 we restrict our study to the 

stochastic case (except in the last chapter) for the following 

reasons: 

a) it is always possible to increase A by an additional absorbing 

state cS and so obtain a stochastic matrix on Au M 	(see e.g. 

C th. II 3.3.). 

b) we want to compare the entrance boundaries as defined by Neveu 

and Doob in [3], but Doob works with stochastic matrices only, 

hence the procedure a) has already been used. 

We begin by quoting two essential analytical results about entrances. 

Theorem 1 (Neveu's th. 2.1.1in [7] ).  

For every i in A, f1(t) is continuous in t on (ol d, ), and tends 

to a limit f.(o) , say, as t tends to 0. Morever the vector f(o) 

satisfies 

f(o) P (t) f(t) for all t > 0 

ForallX,O,defineR..Wandl%(A ) as the following Laplace 10 

transforms. 

R.. (X) = )1 e-Xtp ij 	..(t)dt 	for all i and j in A 

f 	t. (X) = 	e-tf.( )dt 	for all i in A 

Th. 2 (Neveu's proposition 1 in [8J). 

The Laplace transforms. (X ) are such that fi  

(6) /1  1 ( X ) IJ < co 	for all A > 0 

(7) f ( X ) - 	) = 	- X ) 1( )R 	) for allA and "A > 0 

(8) f ( X ) e-Xsi\( )P( s) for all > 0 and all s 	0 

A 
COnlierhY 101aUfaildlyofpositiliernInthersf.W, i in A,„\> o 

such that (6) and (7) are true is the family of Laplace transforms. 

of a uniquely determined entrance relative to P(t). 
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Convergly 2°  if m(i), i in A, is a sequence of positive numbers such 

that 

(9) m(k) < 
keA 

(10) m(i) > e".A5  > m(k) pki(s) for one ‘X and all s>0 

ke-A 

then there exists a uniquely determined entrance relative to P(t), 

f(t), say, such that 

(11)m(i)f = 	e Xt f.(t) dt 	for all i in A 

If we consider the elements in the cone F which satisfy the additional 

conditions: 

(12) f (s) < 1 
	

for one (or all) s > 0 
k E A 

then every convex combination of such elements satisfies the same 

inequality (or inequalities), and hence those entrances form a convex 

set, Fil  say. 

Let M1 be the set of all positive measures on A(i.e. sequences of 

positive numbers indexed by A) such that 

(13) m(k) ‹, 1 
kE A 

CVO - 
e s 	 m(k) p (s) 

K E A 
m(i) for all i in A, and all s "=> 0 

We remark that M1 is also a convex set. There is a one-to-one correspondence 

between M1  and F1. 

Proof: 

a) Obviously the relations I (15) and (12) imply that /f(1) is an 

element of Mi  for all elements of F1. Furthermore if f(t) and 

g(t) are two elements of F1 such that I'M 
= /g(1) then theequation 

(7) gives 

i(1) 	(-1-›.) f(i)R(x) 
(i-A) g(1)R(..) ./1(),) 

-20- 
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r
if 

3
.(s)e-sds 

j6 A  k 6 A 
p. 	(t) 
3- 	

] 
j 6 A 

 m(j) 1 

or 
A  M  fi  ( 	i ) = g•( 	for all ).> 0 and all i in A 

But by th. 1 we know that f i(t) and g i(t) are both continuous on 

(0,00 ), hence this last equality is enough to check that 

fi(t) = gi(t) for all i in A and all t > 0 

b) ConverSly if )111(1), i in Ai is in 1.11'  by th.2, there exists an 

entrance f(t) in F such that (.11) holds for = 1. Since P(t) 

is stochastic we have for t > 0: 

y-  f i(t). 	fi(t)  
i et A 	i .J1 	k .Jk. 0 

e s Pik(s) ds:1 

00 

    

   

fi(t) pik(s) e ds 

 

    

0 

    

= 	fk  (t+s) 	ds = 	 f.(s) 	t) 	ds P jk(  
o  A 	 ke A jeA 3  

and hence f(t) is indeed in F1. 

Now if m1(i) and m2(i), i in A are both in 	and such that 

fl-(s) = 4(s) 
	

for all i in A and all s > 0 

then 	 00 

m1(i) = 	e-sfl(s)ds=e-s2(s) ds = m2(i) 
0 

?le consider the single convergence topology on 1.1.1  and denote it by T. 

m and in are in M1, 	m in T as n tends to act , if and only 

m 	 in(i)-->m(i) as n tends to--1,  for all i in A. If .,in A, is a 

sequence of strictly positive numbers such that their sum over all 

i in A is finite, then the topology T is metrisable by setting for 

all m and m' in 

d(m;m') =Y (3i  1m(i) - WW1 
ie A 
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m (k) pki(s) 

k6A 

A metric space is compact if and only if every sequence of elements 

has a convergent subsequence. 

Let 0111(i), i in A be in M1, for all n in N, then mn(i) is in 

[ 0, 1] for all i in A and all n in N; hence by the diagonal procedure 

we may extract a subsequence nr  such that mnr(i) tends to m(i) a point 

of [ 0,1] as nr  tends to oo for every i in A. 

The inequalities 

mnr(i)  

for all s> 0, all i in A and all nr and 

mPr(k) < 1 
	

for all nr 
Ice A 

yield by Fatou's lemma 

m(k) pki(s) 	m(i) 

for all s> 0 and all i in A and 

m(k) 	1 

ke A 

Thus the measure {m(i), i in A3 lies in M1, and we have mm' 

converges to n in T as nr  tends to 00 . This establishes that 

(M1' T) is a convex set, which is a compact space for the metrisable 

topology of the simple convergence. 

Th 3. 

For every k in A, the measure {Rki(1), in A3 is an extremal 

point of M1. 

Proof: First notice that I.(6); I.(7) and I.(8) ensure that 

Rki(1), i in Ae  is a point of Ml. Now assume 

Rki(1) = oc m(i) + (1-00 1 (i) 	for all i in A 

where m and 1 are in N1, and 0 < CK < 1. 
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By th. 2 there exist two entrances g(s) and h(s) such that for all 

i in A 

m(i) = 
00 

f
D  e sgi(s) ds = gi(1) 

0 
CYZ,  

1(i) = 	e shi(s) ds = 	 (1) 

0 

In fact their Laplace transforms exist for all )c> 0 and 

satisfy for all i in A. 

0% -I) g.(1) 	=gi(1) - gi( ) 
j6A 

(A-1)>11.(1) 11-
31 	

/‘(A) = hi(1) - hi(A ) 

j e A 

which in turn imply for all i in A 

- Rki(/\) 	 -1) Rki(1) Rii(X) = 

A 

(X-1)>  [04j(1) + (1-00 ;(1) ] Rji()‘ ) = 
j A 

g(1) -ocgiO\ ) + (1-0) hi(1) - (1-ac) hi(A) 

Hence 	) = cxigi( 	+ (1-0‹) /11\i( ) holds for all .X> 0 and 

all i in A, and from this we deduce the following equality 

(15) 	pki(t) = ID( gilt) + (1-00 hi(t) for all t > 0 and all i in A. 

Now use th 1 to define g' (t) and h` (t) by 

g'(t) = g(t) - g(0) P(t) 
	

0 

h/(t) = h(t) - h(0) P(t) 	0 

where gi(0) = li8 gi(s) and hi(0) = li8 hi(0) 

As g(t) and h(t) are both in F1  we get gi(0) --5=4,  1 and hi(0)4 1 

for all i in A. But if we let t decrease to 0 in (15) we get for 

all i in A 
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=cxg.(0) + (1-0 ) hi(0) ki 	I 

And the two last facts imply 

Ski  = gi(0) = hi(0) 	for all i in A 

so that(15) can be rewritten as 

Pki(t) = pki(t) + 0e.gi(t) + (1- 00 hl(t) for all t).0 

and all i in A. 

As g'(t) and h' (t) are both poitive the last equation is possible only 

if 

gilt) = hi(t) = 0 for all t, 0 and all i in A which implies 

m(i) = 1(i) = re-8  pki(s) ds 	for all i in A 
0 

i.e. 	 lRki(1), i in A'i is extremal in the convex set M.I. 

Naturally with every k in A we associate the element Rki(1), 

i in A3 of M1  and we may write A c M1. Define Aa  as the set of 

all the extreme points of 1I1  different from those of A and not equal 

to the trivial measure 0. 

Definition:  

The set A+Ae(contained in M1) with the topology induced by T is 

called the Neveu entrance boundary for P(t) and will be denoted 

by (A+AelT). 

By th. 2 we know that with any x in M1  is associated a uniquely 

determined entrance relative to P(t). This entrance will be 

denoted by pxi(t), i in A, t> 0 and its Laplace transforms by Rxi(A), 

i in Al.\ O. For every y in Ae  the corresponding entrance is such 

iE A°  

00 

(1-s 
e. Py1(s) ds = 1 

that 

If this were not true, i.e. if this sum were equal to c-(1, then 

-s 1 (1-c) 0+ c 	e — c p .(s) ds 	for all i in A 

0 
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would be a non-trivial convex decomposition of y in M1, and 

y would not be extremal in M. As we know that pyi(t), i in A, 

t>0 is indeed in FI' 
we can conclude 

(16)  

  

= 1 Pyi  for all t> 0 

 

lE A 

 

Th. 4. 

A is dense in Ae in the topology T. 

Proof: Pick an element l'3.(1), in Ai of M1. The following relations 

are known 

(17) f*(1). Ai(1)R(A+1) 
	

for all A> 0 

(18) lim il(),+1) 'f,(1) R(?,41) - 11(1)g = 0 

(19) 1(>,) 	= c 	I as we are in M ) for all >N 1 	0 

(20) Let 1(1) D 	(f(1) -)si(1) R (),+1)) 3 0 

(21) [ 1(1) D ()k)]R(1) 	i'(1) R (1) 	R 	+1= 

[ 1(1) R (1) - 1(1) R (1) +10\+1) R (1)1= 

(22) 1(1) - f'(A+1) = 

(23) 1(1) R (A +1) 

By the resolvent equation, (22) is increasing as increases to Co 

so if we use (18), the equation (21) = (23) for allA yields 

(24) lim 	[ 1(1) D ())] R (1) =1(1) 

Define A* as the set of measures on A which are limits of the measures 

generated by A, i.e. x = m(i), i in A3 is in A* if and only if 

there exists a sequence in  of points in A such that 

(25) m(i) = Rxi(1) =urn Ri  i(1) for all i in A 

If the topology on A* is the simple convergence one (see definintion 

of (MT)p.21 then for reasons similar to those used for M
1' A* is 

a compact metric space. 
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(20) is > 	[i(1) D ()\)1k Rki(1) for all i in A 

k 4- A 

and hence f 
A 
(1)D (A) may be considered as a measure, g(A; dx) 

say, on the Borel sets of A*, which is fully supported by A. 

(24) now becomes 

(26) fi(1) =)lirgo 	g(X;dx) Rxi(1) for all i in A 

A* 

where 	
g(A ; A*) = J)  )N f() +1) 11 	1 for all? 0 

by (19). 

The set of all measures of total mass < 1 on a compact set being 

itself compact, we may extract a sequence ,,,,,increasing to 00 

such that g(,c; dx) —> 1J (dx),a measure on A*. By the very definition 

of A*, Rxi(1) is continuous from A* into R; hence (26) gives 

(27) fi(1) = )17:1)(dx) Rxi(1) for all i in A 

A* 

If 1(1) is extremal in M1, we have 11 ?(1) = 1, so the corresponding 

measure V(. ) must be of total mass equal to 1, and indeed fully 

supported by the points in A* such that 

Rxi(1) = 1 

iE A 

As 17( . ) is not identically zero, there exists an xo  in A* such 

that any neighbourhood Vxo  of xo  is ofstrictly positive 	))- 

measure9  We may write1..(1) = r v(dx) Rxi(1) + f V (dx) R
xm  
.(1) 

Vxo 	A* -Vxo 

Now if V(Vx0) < 1, we get 

0 
fi(1) =1)(Vx0) 	(ax) Rxi 	+ (1- (Vxo)) p ( Vxo )  

(dx) 	(11 
1-'1•MCO  Rxi 

Vxo 	 A*-V 
/‘ 	A 	u(dx) and the extremality of f(1) implies f.(1) = 

) 	v ( Vx0) 
Vxo 

Rxi(1) 

for all i in A, and all Vxo. 

_ 



Choosing as neighbourhoods Vxo  a sequence of open spheres centred 

in x
o 
and whose radii decrease to 0, the continuity of R .(1) 

ensures that 

i (1) = Rx i(1) for all i in A 0 

Now we turn back to the definition of A* to obtain a sequence 

in in A for which (25) holds, and we get 

(28) li(1) = R .(1) = lim Ri ni i (1) for all i in A xof 	nr:oo 

This completes the proof of the density of A in Ae 
for the topology T. 

ForafixedyinA+Aeandeveryi.70theentrance Pr..(0  generates 

a measure on the Borel sets of (M4)T) in the following way. For 

every Borel set B define 133,13(  t) by 

(29) pys(t) = 	pyi(t) 

eAnB 

In fact as this measure is fully supported by A we may also consider 

it as a measure on the Borel sets of (A+Ae; T). 

These measures satisfy two interesting properties: 

(i) the strong Feller property 

i.e. for any bounded measurable function f defined on (A+Ae,T), 

with values in R, we have 

t) f (i) 	is a continuous function from 	 Pp.(. 
ieA 

(A+Ae  ,T) into RI  for every fixed t > 0. 

(ii) the stochastic continuity property 

i.e. for every bounded continuous function f defined on 

(A+A
e
,T) with values in R, we have 

> — pyi(t) f (i) = f(y) for all y in A+Ae  
iaA 

lemma  (which is the proposition 2 of Neveu in [8]). 

If m and mn, n in N, are elements of Mi  such that 
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mn(i) - 	J as n —> 

5.6A 

then their corresponding entrances f(t) and fn(t), t> 0 are such that 

(31) nib  e(t) = fi(t) for all i in A and for all t 	0 

Moreover the convergence is uniform on [a,c,0] for all a 7 0. 

Proof, (which is reproduced here from p.326-7 of [8]). 

For any entrance f(t) and any i in A we have for 0 < u v 
00 	00 

e-tfi(t)dt = 1e -tfi(t)dt - 	
-t fi(t)dt = 

0 

e-te-ufi(t+u)dt - e-te vfi(t+v)dt = 

o . 

e upki(u. ) J,  e
-tfk(t)dt - 	e-vPki (v) e

-tfk(t)dt 

kdaA 	o 	kEA 

Hence 

-tfni(t)dt - Ce-tfi(t)dt 

rel,(1) - k (1)] e -upki(u) - 
kE A 	" 

- 	rink(1) -1.k(1)] e vpki(v) 

ke.A. 

As e spki(s) 1 for all s;>01  all k and all i in A the last term 

is bounded by 

2 Yi mn(k) - m(k) f 

k6 A 

so that if we use (30) we get for all i in A 

- , 
(32) 	lim 	e t  i I (t)dt = I e-tfi(t)dt 

=c0 

By I (15) we have for all n in N, all i in A, and all 0-< u < t 00 

fni(u)pii(t-u) < fl (t) 

Hence 

v-u 	
/r/o 

e-ue.( u) 	e-811 (s)rls 4 
) 
f 

0 
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If n tends to 00 in this last inequality, (32) gives 

v-u 

e-u  limsup e(u) 	e s 	e-tf.(t)dt oo 1 

Next divide both sides by (v-u) and let v decrease to u, as fi(t) 

is continuous we obtain 

(33)  

n 0,0 up  i 12.1“0 ) =  

By using I (15) again we have for all n in N, all i in A, and all 

0< t< v  
41.(t) 	f(v) [ 

and hence 

-tfi 	r 
xi e 	(t)dt 	1.(v)Lp.(v-t)ridt 

e ne(v)[inf 	s)] 
1 
 (v-u) 

o< s at-v-u 

If n tends to co in this inequality, (32) then gives 

I 	- e tfi(t)dt 
v-u 

e-111-iimUtC JENv) R 	ii P  id -.(6)]-1  n=00 	i  
0 < S V—U 

The continuity of fi(t) ensures that when u increase to v this inequality 

becomes 

(34) fi(v) < liminf f7(v) n= 

Since (33) and (34) hold for every strictly positive number and all 

i in A they -  are equivalent to (31). 

As P(t) is stochastic, (30) yields for all t;,  0 

fk(t) = 

kA 

	

m(k) =n=ommn(k) = lim 	fn(t) = 	n=9. 	 k 
kE. A 	k A 	k eEA 

This fact used in conjuction with (31) is enough to yield by the 

Scheffeis theorem 
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_ ifnk(t) - fk(t) 	= 0 for an t>o 
k•G A 

(35) kill 

I R . (1) - R
Yol  

. (1)1 	0 
' 

ie A 

lim 
Y=Yo 

If t> 0 and s> 0 we have for all i in A 

1 frii(t'+s) - fi(t+s) I 

flic(t) pki(s) 	f(t) pki(s) 

k& A 	k 

Iflic(t) - fk(t)) 

k-EA 

This inequality and (35) prove that the convergence in (31) is 

uniform on [t,00], for every t>01  and the leWn is then established. 

Proof of th.5 (i) 

Suppose y converges to yo  in (A+Ao,T), i.e. 

	

lim Ryi(1) = Ryoi(1) 	for all i in A 
Y=Y0  

The additional condition (true on 10-Ae) 

Ryi(1) = 1 	= 	R Yoi(1) 

i & A 	i8 A 

is then enough to give by the Scheff's theorem 

f5g5e the le 	applies and it yields 

= py  .(t) 	for all i in A and all t> 0 
Y= Yo 

Pyi(  

But (16) holds for all points of A4Ae  so that if f is a bounded 

measurable function defined on A+Ae, the relation (36) and the 

Scheffe's theorem imply for any fixed t> 0. 

y=y 	 
o 	

Pyi lim 	(t)f(i) pyoif(i) 
 

leA 	i&A 

i.e. (i) is true. 

_30_ 



Proof of th 5(ii)(reproduced here from p. 328.9 of Neven [8]). 

Fix i in A and consider the function defined for all x in M1, as 

the value of the measure x on the Borel seqii , x(i) = Rxi(1). 

The function :R .(1) is continuous from (Mi,T) into [0,1] by the very 
X1 

definition of the single convergence topology. 

Pick y in AtAel  then as M1  is compact the measuresipy.(t) which satisfy 

p 	(t) = p
YA
(t) = 1 	for all t 7 0, have at least one weak limit for a 

1 

suitable sequence tn„ n in N, decreasing to 0. Let such a weak limit 

be 	); it has the property that AA(Mi) 1. 

By definitioni? is such that in particular 

lim /1=cm,  pyjx(tn) Rxi(1) = 	 im(dx) Rxi(1) 

M1 	00 

But ;› pyk(tn) Rki(1) = 	Pyk(tn) 
k EA 	I A 

- co 

esyk (tn - )13ki (s) ds 

k EA 

I
-  e-sd> pyk(s)pki(tn) ds 

=> 	Ryk(1) pki(tn) 

k EA 

0 	keA 

-s ( Pki )d s  s  

and the last term tends to Ryi§1) as to decreases to 0. Hence we get 

(37) f-;(dx)R i(1) = Ryi(1) for all i in A 

14
1  

By an argument similar to the one used to show the density of A in A
e 

(37) and the extremality of y in M1, imply that M  ( ) = 	). 

As (37) is true for any sequence )  t13 	y( ) is in fact the 3 e  
weak limit of p (t) as t tends to 0. 

Y• 

By a theorem of Choquet (see e.g. M XI 24) we know that 0 + A + Ae  

is a G (5- - set in (MilT). Since A+Ae  = 	)n 	+ A + Ae) it 

is also a G d - set and a Borel set of 111. 
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As ( ) and py.(t) are all fully supported by A t Ae  th 0 yields 

llo 	 pyk
(t)f(k) = f(y) 

k6A 

for every bounded continuous function defined on (A + Ae, T), 

i.e. (ii) is true. 

Another remarkable consequence of the lemma is the following. 

The function Pyi( t) is not only continuous from (A + Ae,T) into 

[0.1] for a fixed t>0 and a fixed i in A as established in (36), 

but is in fact continuous from (A+Aex(o,00); Tx (euclidean topology)) 

into [0,1] for every fixed i in A. This is readily concluded •Prom Ftie 

uniform convergence an any [a,w), a>0. 

We now establish a useful property on the neighbourhoods of y in 

(A+Ae
,T). If V is a neighbourhood of y, then for every c>0, there 

exists a tE  7 0 such that 

(38)Pr.  .(t) > 1- E for all t 	t 
iern A 

Proof:  

By the lemma of paragraph 0 we know that if E is a metric space, 

the probability measures on its Borel sets/At  converge weakly to 

the probability measure/A°  as t tends to 0 if and only if 

liosup/At(F) o
(F) for all closed sets F 

By complementation it yields 

liEinf,/(At(G) 7/2,,b(g) for all open sets G 

Now the statement (ii) in th 5 is p
Y- 

 (t) 	Cy( . ) on A+Ae  as t tends 

to 0. As every neighbourhood I of y must contain an open set containing 

y, G(y) say, we get 

pyv(t) > lim?.pf py 66. (t) 	Ey(G(y)) = 1 

and this implies (38). 
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lqdx)pxk(t)f(k) = 

€A A+Ae 

Another result which will be used later is the following theorem 

Theorem 6  

If y is in M -(A+A
e
), then the measure p (t) does not tend weakly 

1 	 y• 

to Cy( . ) as t tends to 0 on the set Ml. 

Proof: The case of y = 0 in M is obvious and hence we assume 
1 

y 	0 in the following. 

By M XI 25 and M XI 29 we know that for all y not in A+Ae1  there 

exists a uniquely defined measure v  ( . ) on A+Ae such that 

1)(0 + A + Ae
) = 1 

and 

Ryi(1) = J V(dx) Rxi(1) for all i in A 

A+A 
e 

Equivalently by the Fubini's theorem 

	

(39)Pr.  (t) = 	1.) (dx) p (t) for all i in A and all t> 0 

A+A  

As Y( . ) is fully supported by the extreme points of Mil  we can 

find a point z in A+Ae  such that all its neighbourhoods are of 

strictly positive V- measure. By choice of y, y is different of z, 

and so a suitable .-70 may be found such that the closed sphere 

centred in z with radius C, g (z , E) say, does not contain y, 

If we let 

f(x) d(x; C))  for all x in M 

	

' 	d(x;y) + d(y;.5(z,€ ) 	1 

then f is a continuous function defined on M1 which satisfies 

f(y) = 1 

0 	f(x) 1 	for all x in M1 

f(x) = 0 	for all x in 1(z,e). 

Now by (39) and positivity we have 

>  Dyk (t)f(k) = - 
EA 

(40) I (t) I (k) 
A-FAe 	kat 
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The sums in (40) are bounded by i for all xin A4Ae 
and they converge 

to f(x) as t tends to 0 by th 5(ii) and th 0. Hence we can use the 

Lebasgue's dominated convergence theorem to get 

lira>  pyk(t) f (k) = 

k A A+Ae 

(dx)f(x) 

1 - v  (T3(z;) 	1 = f(y) 

and this proves th 6. 

- 



2. The entrance boundary as defined by J.L. Doob.  

With every k in A associate the following countable set of 

non-negative numbers 

(41) k 4\Rki(X), i in A, in 0j 

where Qt.= Qn (0, co) 

(41) is a vector of the countable product space 

C = [0,1]x[0,1]x[0,1]x. 	, where the unit interval is taken 

A x 	times. If we consider on C the simple convergence topology 

(again denoted by T) then C is a compact metrisable spade(as Mi was) 

As pki(t) is continuous on [o,o,o) for fixed k and i in A, its Laplace 

transform is also continuous on (0, oo) and the values )J411,100 for 

all in Q~ are enough to determine ARki(X) for all X in 124.. Hence 

if two points k1 and k2 of A are such that their corresponding vectors 

in C are identical, then the values R(,X) and Rk21(A) are also 

equal for allAin Rt and all i in A; but this yields 

Pki.(t) = Pk2i(t) for all t>0 and all i in A 

which in turn implies k1 = k2. 

Hence A may be considered as a subset of C. 

Let K be the set of all the points 7 = {Tip. ), i in A, Ain 

Q.3 in C such that there exists a sequence of points in., in A for 

which 

(42) 1i() ) = urn 
	R. if n=o n ‘'‘ 

By this very definition K is a 

a compact metric space for the 

Define K
o as those elements in 

Q+ such that 

(43) > 	i (A)  

for all in 0 and all i in A 

closed set in C and therefore is 

induced topology. 

K for which there exists one A in 

= 1 

This property does not in fact depend on a particilar ). 
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Proof: 

 

By (42) we have if/k is in Q. 

(44) I 'i(A) . lim Ri i( 	) n=c0 n 

and -1-7± 	) = el Rini (iu ) 
14  

for all i in A 

for all i in A 

As all in are in A we have for all i in A 

Rini (;)\ ) - Rinic/v ) = 14 - 0 	Rink( i\ )Rki(ik ) 

k € A 	' 

and by (43) 

(45) n 	k lim 	 R. ( 	) = --1- = 
= 00 	1  

k,• .E A n  K e A 

?k( A) 
A 

If we take the limits as n tends to 00 on both sides of the resolvent 

equation, (44), (45) and the Scheffe's theorem allow an interchange 

between sum and limit so that we get 

(46) I 3i( ),- 
A 

 

7i. 	) = 	)2 	k ( A  ) Rki( 	) 

k e A 	(\ 

  

for alliu in 	and all i in A. 

If we sum this last relation over all i in A we find 

E ?i( N ) 	1. 	Ti(M) = 	)) 	X) 	 Rki( ) 
i 	A 	,/4A 	i E. A 	k• .EA 	 i6 A 

Since P(t) is stochastic and using (43) we get 

()A  )= 	(j -A) 	=1 
A 	 A 	 A /IA 	>\ 

i.e 

(47) 	) = 1 	for all //it in 	Qt  
iEA 

From (42), (47) and the Scheffe's theorem we can deduce that (46) 

holds for all 	in Q+  and allyu in Q4.  
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As usual (42) for )\= 1 and Fatou's lemma give 

 	k(1) e spki(s) 4 i(.1) for all s> 0 and all i in A 

lc ,'E A 

Furthermore if 1 is in Ko(47) holds for A = 1 in particular ; 

the measure on A defined by Pi(1), i in A 3 is then an element 

of N1. Hence by th. 2 there exists an entrance relative to P(t), 

p 3i (t), i in A, t 7 0 and its corresponding Laplace transforms 

R-Ti( 	), i in A, fk in R.I., say, such that 
. 00 

l'i(1) = 	e pi i. (t)dt for all i in A 
0 

and by stochasticity and (47) 

(48)in 	R -;e i()u ) = 1 	for all? in R+ 

We have for all i in A and all i.. in RI. 

R 	i(1) -R~i(7 ) = (m-1) 	R k(1)Rki(}A ) 

k e A 

or 

3 J(1) R T ±(7 ) = 	1) >  T k(1) Rkic)L., ) 

k e A 

If we compare this last relation to (46) for A = 1 and7 in Q+ we get 

(49) 	R -3 i(rt ) = ic,c, ) 	for al12.4 in Q+ and all i in A 

4/ 	But (4) also gives for all i in A, all 	in Q+ and alli.4 in 0 

) I 

So that 	i( . ) has a continuous extension to all 9 in R+1 

satisfying for all i in A 

( v ) = lim 
/4=v 

€-Q4. 

( ,p ) = 	 I.A 11? i(,tt ) = v R 3 i( 

.),A€ Q+ 

If we use the Scheff6(s theorem, these last relations and (48) are 

then enough to allow an interchange in (46) of summation and limit as 

14 tends to V along Q.1., and this proves that (473) holds for the 
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extended 1i( . ) for all > in R+, all jA in R+  and all i in A. 

with 
As in F 1 we associate every in Ko and every t>0 a measure on 

the compact space K, by setting 

(50) 	p. g(t) = 	 p 1• (t) 	for all Borel sets B in (K,T) 
iE Bn A 

The set Kb  is defined as the set of all? in Ko  for which p 3. (t) does 

not tend weakly to 1( ) as t tends to 0. Kb  is called the set 

of branching points. 

For a fixed i in A, the function ?i(1) is continuous from (K,T) 

into [0,1]; hence the sum function 

> 	?i(1) is measurable and lower semicountinuous 
i 6  A 

from (K.T) into [0,1]. Since K0  is the inverse image of 1 by this sum 

function, it is a Borel set of K and indeed a Gg  - set. 

Proof: 

If f is a lower semicontinuous function in a metric space then by 

Saks p.43 in DO] the set 

x f(x) 

is a closed set for every real number a. 

We have 

'x 1 f(x) 

Again in a metric space every closed set is a Gg - set (see th 84 

in Sierpinski [12]). hence the set on the left hand side above. 

is an intersection of two Gs- sets and thus itself a GS- set. 

If 	is in Ko  - C the measure p.3, (t) and 6.( - ) are all fully 

supported by the Borel set Ko  C K, so that by th.0 the weak convergence 

also holds on Ko only. 

a  

00 

[3c if(x) 	n n 
n=1 



If k is in A, (43) obviously holds for i,Rki(x), in A 

), 	, and so A is contained in K. Moreover as Pkk(t) 

tends to 1 as t tends to 0 we get 

Pk (t)—wek(.  ) 	as t tends to 0 

and A is in fact a subset of Ko  - Kb  

Definition:  

The set Ito - Kb 
(contained in K)with the topology induced by T is 

called the  Doob entrance boundary for P(t) and will be denoted by 

(Ko  - Kb; • T). 
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3 Equivalence of the Neveu and Doob entrance boundaries. 

In this paragraph we prove that the Neveu and Doob definitions 

are equivalent. First we construct two mappings ( itt and ' ) 

connecting these two entrance boundaries and then we show that they 

form a topological isomorphism. 

Construction of the mapping 	defined on A + Ae 
with 

values in K. 

Choose a y in A + Ae. By the density of A in A + Ae
, relative 

to T, (see th. 46) there exists a sequence in, n in N of points 

in A such that 

(51). 
Yl(  

1) = urnR. .(1) for all i in A n=co n 

On A + Ae 
this condition is enough to check (30) and we may apply 

the lemma p 	to get 

a) . p
Y1  

lim 	p. 1  (t) n =0.0 n 
for all t > 0 and all i 

As all these functions are bounded by 1, the Lebesgue's theorem 

on dominated convergence yields for all A > 0 and all 	A 
00 

e 	p (t) dt (52) = lim n00 e 
-At

pl 
. i(t) dt 
n 

0 	 0 

We now define a mapping 1;(y) from y in A + Ae 
into C by letting 

(53) [ 	(Y)]i  ( 	) = lnim A R. .( 	) = co 	I
n
I 

for all A in 	and all i in A. 

This mapping is well defined as the value 4(y) does not depend 

on a particular choice of sequence in  . Let in, n in N and ir1  r in N 

be two sequence in A such that 

R. (1) = lim R. .(1) = lim R. .(1) for all i in A 
Y1 	n=00 1n 	r=°° 1r1  

The equality 

1= 	Ryi(1) 
	

Rini(1) = 
	Riri (1) 

ie A 
	

i F A 
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which holds for all n and r, allows us (by Scheffe's theorem) 

to interchange summation and limits in the following 

lim R. ( A ) 	lim R. (1) + (1- A) n=00
n 	n=00 ni 

k(1) Rki( A ) 

.kc A 

= lim R..(1) + (1- >) 	k(1) Rki(A ) n=00 r r=oo 

kE.A 

= lim R..()1) r=yo r 

for all. A in Q+  and all i in A. And this shows that a(y) is 

uniquely defined. The topologies on A + Ae  and C being those 

of the simple convergence, the relations (51), (52) and (53) imply 

the continuity of 

As y is in A + Ae, we have 

Y1(1)  =  
iE A 

11V1i(1) = 	[ 	(y)]i(1) 
i 4-A 	n 	is A 

hence we get the inclusion 

1(A + A e) c K 

If x and y are two distinct points of A + Ae, then Rxi(1) Ryi(1) 

for at least oneiin A, but by definition of 	(cf (51) and (53)) 

this yields 

[ 	(x)]i(1) * [ § (y)]i(1) 

so that 	is one-to-one from A +.Ae into Ko. 

If k is a point of A c A + Ae, the special sequence in = k, for 

all n, may be chosen to define 1(k), hence for all A in 0 and 

all i in A 

[ 	(k)]i( 	) = nirn >1/4  Rki( )\ ) = 	Rid( 	) 

(54) i.e. i(k) = k in K for all k in AcA + A. 

Construction of the mapping T defined on Ke  with values in M1. 

Pick a 3 in Ko; as noted before ( '2 p. 37) the measure ?i(1), 

i in A , is an element of Mi. Define the mapping V)  from K
o into N

1, 
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by letting 

(55) ql  ( 7 )i  = ?i(1) for all i in A 

( 	), being the projection of 7 on the countable product of 

unit intervals indexed by i in A only, is obviously a continuous 

mapping relative to the simple convergence topologies on Ko and M1. 

On Ko the equation (46) 
holds 

- 	= (1- )> 	3k(1)Rki( ) 
k 

Hence the equality 	) = ? (z) yields 

ii( A ) = Zi(A) 	for all A in 	and all i in A 

so that I' is also one-to-one from Ko into M
1. If k is a point 

of A c Ko we have 

P(k)i  = Rki(1) for all i in A 

(56) i.e. 	Y7(k) = k in M1  for all k in A c Ko 

Each of the mappings i.11 and T.i (whenever defined) id the identity. 

Proof;  

The relation(53) for X = 1 in particular gives 

[ C 	(y)]i(1) = Ryi(1) for all i in A 

as by (55) 

for all i in A 
1-1( 	)i 	

3i(1) 

we get 

  

= R!
Y1  
.( 1) for all i in A 

Hence TICi is always defined and is equal 

to the identity mapping on A + Ae. 

Let T be in Ko
, i.e. there exists a sequence in A such that 

?i( ) = lim 	Ri
n
i( 	) 	for all in Q and all i in A 

n=00 
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By definition of 9)  (see (55)) we have 

3i(1) = lim i  R i(1) for all i in A n=0.0 n  

If 	T( 3 ) lies in A + Ae, then 	( 3 ) ) is defined and 

must satisfy 

[ 	( 	( 	))]j( X ) = lim 	Ri i  ( \.) 	for all Ain Q.t.  and all i in A 

	

co 	r 

where ir, r in N is a sequence in A such that 

lim Ri r 	n i(1) = 	I I ). = lim 	R ini(1) i(1) 	for all i in A r=co   

But as we have just seen when checking the consistency of the 

definition af 	, the fact that q7( 1 ) is in A + Ae is enough 

to ensure that 4( 	( Z )) does not depend on the sequence 

used and we get 

? »]i( ) = lim n= Rini( 	) for all .X in 	and all i in A 

Hence• is equal to the identity mapping on the subset of Ko where 

( 3 ) is in A + Ae. 

We proceed now to prove that (A + Ae, T) and Ko-c,T) are topologically 

isomorphic by 	and `11  . 
By th. 2 we know that with y in A + Ae  and I (y) in Ko are associated 

two entrancesPyi(t) and p 	(y)i(t), say. As their Laplace 

transforms satisfy the resolvent equation the equality 

Ryi(1) = [§(y21  (1) for all i in A 

is then enough to get 

Pyi(t) = P (y)i(t) 	for all t? 0 and all i in A. 

Now fix y in A + Ae. As before we consider the measures generated 

by ?yi(t) on A, A + Ae  and A v r  yl  , and the measures generated 

by 	Fq(y)i(t) on Ko  and A 	Note that all these 

measures are fully supported by A. 
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By th. 5 (ii) we have 

py. 	w>  gy( . ) as t-->0 on A + Ae 

Note that these measures are fully supported not only by A + Ae  

C M1, but also by the smaller set A u 	. Since this latter 

set is countable it is a Borel set of A + Ae and from the th. 0 we 

deduce that for all bounded continuous functions g defined on A u 

we have 

pyk(t) g(k) = g(y) 

k Q. A 

Let f be any bounded continuous function defined on A u 	(y)--c 

C K. As 	is one-to-one we may let 

g(x) = f( 	(x)) for all x in A u 'y3 

and the function g is bounded continuous from A v 	into R, 

because 	is continuous. 

By (54) we have 

g(k) = f( c (k)) = f(k) 	for q11 k in A 

Hence we get for all t > 0 

(57) > 	pyk(t)g(k) = f(k) 
P 	(y)k

(t)  
e A 	keA 

According to the remark we have just made about weak convergence 

on A v 	, the L.H.S. of (57) tends to g(y) as t tends to 0. 

But by construction we have g(y) = f( 	(y)) so that 

(58) p § (y) • (t) 	
w > 	

g,I(y)( • ) 
	as t 	on A 	(Y;1 

All the masures in (58) are fully supported by A u 	(y)3 	whibh 

is a Borel subset of K
o, by its mere countability and we can use th.0 

to ensure this weak convergence on Ko. But the points of Kb  were 

defindd as those in K
o which do not enjoy this property (see f 2 p38) 

and it proves 

(59) (A + Ae) C Ko- Kb  
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For the same reasons with any t> 0 and -3 in Ko 
- Kb  we associate 

the measures p (t) on Ko and on A v 	c Ko 
and the measures 

fl( 	). (t) on Mi  and A y {?( 	C 	which satisfy 

(60) (t) = p 1  i(t) for all.i in A 

Let g be any bounded continuous function defined on A u 	( 3 

C 141, 
As 	is one-to-one we may let 

f(3 ) = g( 	( 3 )) for all 3 in A v 	c Ko 

and f is abounded continuous function defined on A v 	because 

IP is continuous. 

By (56) we have 

f(k) = g( W (k)) = g(k) for all k in A 

As above the weak convergence of 103  (t) to 3 	) as t tends . 

to 0 may be consideredas only on A v F33 and we obtain 

:5--  p 7)  ( 3 )k(t)g(k) = f(3 ) = g( q? ( 3 )) 

kE A 

Again the countability of A v 	)‘i and the th. 0 prove this 

convergence on M11  itself. And this is enough, by th.6 to check 

that 71( I ) is an element of A + Ae, so that 

(61) V (K0  - Kb) C A + Ae  

By the fact that P./ = I and the relations (59) and (61), we 

obtain 

A + Ae  = 	( 	(A+Ae)) C 9? (K0- Kb) C A + Ae 

and 

A + Ae  = 9% (K0  - Kb) 

Similarly and using (61) to make sure that i•T is defined on 

tp (K0  - Kb) and is then equal to the identity we get 

Ko  - Kb  = 	(9:7  (K0  - Kb)) c 	(A Ae) c Ko  - Kb  

and 

Ko  - Kb  = 	(A + Ae) 

We have now proved the following theorem 
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Theorem 7.  

A + A
e and Ko - Kb, both with their simple convergence topologies 

are topologically isomporphic by the mappings 	and 	. 
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CHAPTER III 

Markov Processes on the Entrance Boundary 

Throughout this chapter the topology considered on the entrance 

boundary is always T we write AtAe  for (AtAe, T) and Ko- Kb for 

(K0- Kb , T). 

Let p(t) , t> o be an entrance relative to the stochastic 

semigroup P (t) satisfying 

7_ pi 	- 1 
(1) 	iA 

for all t>o 

Then as pointed out in Chapter I 	the main interest of the 

entrance boundary is that (as stated by Doob in theorems 3.1, 4.3, 7.1 

and 8.3 of [5] ) a right continuous process in Ko- K' can be found 

such that its absolute distribution is equal to p (0 for all t 0 

and satisfying the strong Markov property with the transition semigroup 

extended to the entrance boundary by means of II (50). 

The existence of a Markov process in At Ae  with similar properties 

is obvious from the existence of the topological isomorphism ''from 

Ko- Kb into A + Ae  defined in II (55). 

Indeed if Xt , t.?) o is a process in Ko - Kb defined on the 

probability triple (4_ 137.,P* ) which has the properties just described, 

then the process Yt, 	defined by letting 

Yt-(w) 	(Xt(w) ) 	for all t?.-- o, and all w in -a 

has the same properties in A-FAe. 

Proof: 

As is a topological isomorphism 
	
V(w) is right continuous from 

tin 	0 oo] into A-I-Ae  for a fixed w, whenever Xt  (w) is right 

continuous. Hence Yis right continuous with probability one. 

Next for all Borel sets B in A +Ae  and all t 7?--  o we have 
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I w I 	(w) E 8 	7.[wl X (w)-e V(B) ] 

so that all the C'-fields generated by Xt or their corresponding Yt  

are identical. A stopping time for Yt is then also a stopping time 

for Xt. 	By II (60) for t> o and trivially for t = o, we get for 

all Borel sets D in Ko  - Kb,  all in Ko  - K6and all t z-C) the measure 

equality 

P 	) 	(t) (D) 	= p 3  D  

These two last facts are enough to ensure that the strong Markov 

property which holds for Xt must also hold for Yt(with the transition 

semi-group extended to A +Ae  as in II (29)). 

As the analytical construction of A + Aeneeds only one auxiliary 

space (namely Ni) instead of the two (K and Ko  ) used in the definition 

of K0  - Kb, A +Ae  seems slightly simpler than K0  - Kb . Thus it 

might be interesting to see if a proof of the existence of a right continuous 

strong Markov process in AtAe  can be obtained faster than ix Ko  - Kb 

(and not using 1' ). If we proceed along the lines of Doob some results 

are easier to check; unfortunately it turns out that the use of A+ Ae  

instead of K0  - Kb is no real simplification. 

What follows reads as a copy of Doob's proof, except that the spaces 

Mi and A+Ae  are used rather than K , K0, K 0- Kb. 

As seen in Chapter I to every stochastic entrance p (t), t -> o, 

relative to P(t) we can associate a Narkov process Xt  , t>o 

defined on a probability triple (S1;T';P) and such that 

(2) 	p i (t) = P [ Xt  (w) 	for all t> o 



and 

(3) P X. (w)E A 	1 	for all t>o 

As usual the G--field7 is completed. 

1.1 is an extension of A in the sense of (i) and (ii) I p 11 	and 

Xt, t>o can be considered as a process in M1. But as is completed 

and M
1 

is a compact metrisable space we can apply M. IV L3 to get a 

standard modification of Xt separable relative to the closed sets of 11 

and again de_noted by Xt . 

Now fix an i in A and consider the family of random variables 

-t 
(4) e RXt (w) i (1) 

	
for all t > o 

This family forms a separable super martingale relative to the 

t> o (which are as usual those generated by X. ,o<s- < (- 

and containing all null sets). 

Proof: 

Let r`-..sg<t and choose an elementary event of T of the following form 

w I Xs4(w) =k 3 	for one k in A 

':.Te have 

(5) cEEe-t
ti

(1)1cP 	P [d[day] 
 

-t 
R:
X i 

( 1 ) P [dw] 
E 

 

By (3) this last term is equal to 

e-t R.. (1) P Lit Xt (w)  

Le-t Rj, (1) pkj (t-s' ) v.  [A- ] = 
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=-- P 	e-31  	pk i ( t-s1  ) e-t esi• e- 
:161  

(10 du Pji 

(6) =P [A] e-s I 	e-vpki(v) dv 

1-s" 

Similarly we get 

(7) 1 e's Rxs  i (1) P Cditr3 = 
00 

(8) F 	] e-s' 	e-v pki(v) dv 

But the ineauality (6) 	(8) yields (5) < (7) (for all s 1 :5.• s -ct and 

all k in A) and this completes the proof that (4) is a super martingale. 

As the functions Rxi  (1), i in A,are continuous and separate the points 

of 1.11, we find by 14 VI 3 that almost all sample paths have a right limit 

in /,'.1  for all t % 0, to be denoted by X , t70. 
t+ 

The super martingale (4) is also such that 

(9)  

By 

re-t R • (1) P [dw] = Ze-t Rm.  (1) pk(t) 
ke A 

(1) and the Scheff6's theorem we get for all i in A 

Eim >-- e-t pk (t) Rki (1) = 
1—  :' kerl 

e-ti pk  (t') Rki (1) 

k 6  A 

i.e. 
.(1)] t  R.-(1)] 

Xt 	 t 

By C th II 8 1 it is known that 3't  , t>o is a right continuous 

family i.e. 

fl 
r)t  

for all t>o 
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Hence M VI 4.3) can be used to met for all t> o and all i 

in A 

(10) 	Rx
t(w) 	(1) = R„ 	, (1) a.s. 

Now keep t>o fixed. Since A is countable the probability that 

(10) holds for all i in A simultaneously is equal to one. 

This implies 

(11) Xt 
(w) = X 	(w) in Y1 

	a.s. 

From (2) and (11) we deduce that the absolute probability distribution 

of Xti. , t>o is p (t), t>o. 

The Markov property (I (2) ) is defined with elementary events 

(i.e. with a finite number of different times), since (2) and (3) hold 

for Xt , t'Po and X 	t> o, the process X 	t> o is also a Markov 

process with the same transition semigroup as Xt' t>o. Therefore P(t) 

is the transition semigroup of Xt 1  t>o. 

The process X
t , t>o is extended to t=o by letting 

(12) 
X0 	= llg Xt  (w) 

for all w such that this limit exists (i.e. with probability one) and 

choosing as X0  (w) any arbitrary value in M1  for the other w is. 

From (9) we get for all i in A 

nip ECe-t 
RXtWi 

(1)] = :57  e-t  R 	(1) 	(t) 	1 
h>10 	k6A 

These inequalities are enough by M VI 7 to ensure the measurability 
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of Xo relatively to the c"-field 

= 
o 

(] 

O<S 

The right continuity of the family of c---fieldsTt. is then extended 

to t .0. 

What has been obtained so far is summarised in the following theorem 

(which corresponds to th. 3.1 in Doob [5] ) 

Theorem 1 

If p (t), t>o is an entrance relative to P (0 such that (1) holds, then 

there exists a right continuous Markov process X 	-t%o(denoted by Xt 

only from now on) with values in M1  , P (0 as transition semi group and 

p (t) as absolute distribution for t? o. 

Now by Choquet's theorem (M XI 25 and 29) the entrance p (t) is 

known to be of the form 

(13) 	p.(t) = 	,p(dx) p(t) 	for all t>o and all i in A 
1 	 xi 

AfAe  

Where)(. ) is a uniquely defined measure on A+Ae  such that J(A+Ae) = 1. 

We proceed now to prove the following result 

Theorem 2 

The measure(• ) is the absolute distribution of X0  (=X 	a s) o+ 	• 

Proof: 

X
o 

being a random variable the function defined on the Borel sets B of H 1 

by setting 

P[ Xoe B] . B —> [0,1] 

is a probability measure on Mi. 
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Let -- be a positive bounded continuous function defined on M1. The 

integral 

(14) (y) P [ x06 dy] 

111 

is by our choice of X0  (in (12)) equal to 

c
lt(y) P X0÷Edy] = 	f (X0+ ) P [dw]= 

M1 	-S2- 

lim f (Xt  ) P [dw] 
-11 tbo 

By F-atou's lemma the last term is bounded above by 

lim in f cf (Xt) P [dw] = 

t=o 	-SL 

(15) lim in f 	pk  (t) f (k) 

t=o 	keJ 

By (13) and positivity,(15) becomes 

( 1 6 ) 
	lim in f l 7(dx) >  pxk  (t) f (k) 

tr-o A+Ae  kEA 

As t decreases to 0 the sum over all k in A in (16) converges to f(x) 
for all x in A4-Ae (see th. II 5 (ii) and th II.o ) and since f is bounded 

the Lebesgue's dominated convergence theorem can be applied to (16) which 

is then equal to 

(17) 	2x (dx) f (x) = )/ )4 (dx) f (x) 

M1 
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The inequality (11+) .r..<.; (17) which holds for all positive bounded 

continuous functions on M1  implies 

(18)P[X0  B]tfk(B) for all Borel sets B in 1i1 

But we have 

P[Xo  1.0= 	(11.1) =1.4(A+Ae) =1 

and so there is indeed equality in (18) and this proves th 2 

Corollary 

If we choose for a given y in A+ Ae the particular entrance fy(E) 

, i in A, t7o then the associated 7-rocess (as in ti 1) starts in 

y airiest surely. 

Hence if the entrance boundary has to be an extension of A in 

which every rrocess has a right continuous standard rodification then 

all its points are actually needed. 	
m.19 

The arguments used between (15) and (17) 1,:revc in fao4 that 

P(11 - (A4-Ae )) (t) =0 	
for all t o 

..;hich is a result similar to lemma 8.1 in Doob [53. 	should the 

rarkov 
strong '7rorerty be valid for 

and theorem 3 in Doob [5J could then be used to get 

Theorem 3 
The orocess described in theorem 1 is such that almost no sample path 

ever meets (Mi -(At,e  )). 

Proof of t--e strong 2.1‘kov rIrererty 

We have to show 

-t' 
	oin;:1,the proofs of lemma 8.2 
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(19)PXC+5,EBI6J = pxyB(s) 
	

a . s . 

for every finite sto-p-pin_.; tin :e Z. , every s )o and every Dorel set D in 

I;ote that by richt continUity of ::t , 1.: IV 47 and 49 the event in the — 

L.H.S of (19) is Leasurable. 

If s = C pv 6 (0) = 	and. (19) is true. 

	

-"6 	• -"z 

If s >0, (19) is equiva.lent to 

(20) 	E 	)[gi„ 	17 k  (s) f (k) 
	a.s. 

k 

for all boun-7ed continuous functions on El 

Let C•-• be a discrete valued stopoing tine for Xt. Denote by tn , n in N, 

its values and by A, the set of w's where CIO = tn. 	is the union 

of all the An, which are disjoint. 

Pick a A. in go., , i.e. 

A n Eld l c'(w) 	e 	 for all t) o 

If f is a bounded continuous function on Mi we have for any -9> o 

(21) 	E[f 	)/ Ea P [dw] 	[f (::)310, ]F[dw] 
n=o 

Att„ 

But as tn  is a fi;:ed real number one term of the sum above 

is equal to 

(22) f (x,„ ) 
AAn  

Furtl-errnore as Xtn4s and Xt are both almost surely in A the last 

integral is equal to 

	

f(k) 	P[Xtni.s., 	Titn]P[dw] 

Ice A 	AA 
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>  f(k) 

k .c.A Ad„ 

4 s. 	Xtn  = i I g
tn 

 P[dw] 

As Alin is in g7tn  and P (t) is the transition semigroup of the flarkov 

process Xt, the last term becomes 

2Y f (k) j P;k(s) hx  _.3(w) P [dw] 
k .A.A 	l e A' 	to 

Lith 

(23) 	= S1  >  p„ k (s) f (k) P [dw] 
k 6 A .'tn 

i1A,, 

Now if we sum over n inN the equalities (22) =(23) we get by (21) 

(24) 	Ea (X c...". )1 IR, J P [dw] 

A 

k  (s) f(k) P[dwJ 

As this holds for all A in T1  it yields (20). 

If -6 is a finite stopping time it is always Dossible to construct a 

decreasing sequence of discrete valued stopping times 	converging 

to 6 . By N IV 40 we have 	e crcr, so that (20) for c.", implies for 

all r 

E[f(x,;.2)1q; ] =E[ 	p jc k(s) f (k)IVIc] 
k.e A 	c: 

a.s. 

As f is continuous on Ni we have 

lim 	E[f (Xer  ,s, )156  =E[f(X44,.)1% ] 
	

a. s. 

r=oo 

The strong Narkov property would then be proved if any sequence 

YM, 	m in N, converging to y in M1 were such that 

(25) 	limL p 	(s) f (k) 	puk(s) f(k) 
m=oo k 6 A Yidn. 	k•6 A '1  

for all s;,,o and all bounded continuous functions f on M
1* 
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But it is not known if this is true: the nearest result to this property 

being the lemma Chapter I p 2 7 where the condition 

(26) lim \i> 	IRymk (1) - Ryk (1) 1 =0 

m=do t“ A 

is assumed. 

Starting from ym---> y in M/ 	i.e. 

lim Ry. (1) = Ryi (1) 	for all i in A 
m=oo 

the most obvious way to get (26) is to use the Scheffe's theorem and 

state 

(27) E Ryk (1) 
	

Ryk (1) =c 	o(c<1 

k E A 
	k EA 

As Xt, t > o is in.A for almost all w (see theorem 1), we are led to choose 

c = 1 and to introduce a set Ill  (1) defined as the part of M1  where (27) 

is equal to cne (and corresponding to the set Yo  of Doob). But we must 

now check that the sample paths remain constantly in Yi  (1) for almost 

all w. To do that we use lemma 4.2 and theorem 4.j of Doob [5], and 

therefore no step used by him in K can be ommitted in Mi. 

It should be noted that by M VI 3 the supermartingales (4) 

have left limits at all t > o for almost all ;i; hence Xt has the same 

property in M1. But these limits do not lie necessarily in 114-As and 

therefore in general Xt is not a Hunt prccess. 

Here we give briefly an example where the left limits are not 

always in A+Ae. 

Let Xt be an ascending escalator on A =NI (see C. II. 20 ex 1) 

with first infinity (C II f 19) almost surely finite. From the first 

infinityi jurp to two different absorbing states, cand J, say, both 
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with -crobability 1. Then the left limits of Xt  at the first infinity 

will be 

R 	i ( 1) + R J2  i (1) 
	

for all i in N v Fc5,3 u 

Which is not an 	point of the convex set /11. 

Nevertheless Xt verifies the so called quasi left continuity which is 

the matter of the next theorem which will be needed once in Chapter V. 

It torreslmnds to th. 7.2 in Doob [5] and is not proved here. 
Theorem 4 
Let 	be an increasing sequence of stopping times and Z be its limit. 

If X6(w) (0=lim X (w), then 

x6(w) 	--xz(w) (w) 
	

a.s. on the 

. set of w's such that 

. 	(1) 	6",sw) < 6(u) < .0 for all n 

(ii)X6..(w) (w) e A + Ae  

Finally we remark that if B is a Borel set in A+Ae  the random 

variable defined as 

• 	1:1  (w) = inf 	o 	t(w) e B3 

is a ston7ing time relative to Ivc. 

This is true by N IV 52 and 53. Both results can be used because 

the 	fields g have been shown to be right continuous (see p 50 and p 52 ) 

and the right continuity of the process Xt ensures its progressive 

measurability (see N IV 47) 

If we define another random variable (;13 by letting 

28) TB(w) = inf f t I t> o X (0 e 

then it is also a stopping time relative to 

Proof: 
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.E 1 ] n 

For all llositive integers n let 

'17. 1  (w) = inf {142 t(w) G 3 

=inf {t I t. o pit 	(w)) e .3 3 

where as usual (see M X II 16) e is the shift operator i.e. 

Xs, ( 9n (w)) = Xs,44i(w) for all s> o and all w in SL 

Obviously we have the equality 

0 
[z < ti di [z" 5 t - -1  ] 

n m 

By the arguments used above for -6, we get for all n 

[K" < t- 
•  

For all ni 
n  
-- 

is a stop- ins time. 

is 	contained in t  and. this proves that ?;')13  
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CHAPTER IV 

On the Size of the Entrance Boundary  

Notation: In the last 3 Chapters A + Ae  is used for the known completion 

of A instead of Ko
- Kb, because it is easier to distinguish at first 

sight between the points of A the initial state space (usually noted 

i,j, or k) and those of Ae  (usually noted x,y or z). 

In Chapter iII the topological space (A+Ae; T) was shown to have the 

following property: 

for every stochastic entrance p(t), 	t>01  relative to !P(t), there 

exists a probability triple Oa 29r, P) on which there exists a 

Markov process X,, t?0, such that: 

(i) all the values are in A + e 

(ii) almost all sample paths are right continuous at all tz:,%0 

(iii) the strong Markov property holds with the transition probabili 

defined on A + A
e 
(II.(2 9)). 

(iv) P1 Xt  (w) = 	=pi  (t) for all t> 0 and i in A. 

An interesting question is whether this extension of A by the entrance 

boundary is in some way general. The purpose of this Chapter is to 

show that if certain assumptions hold for a measurable space (E, E ) 

such that for every stochastic entrance p(t) a process Xt  in E satisfying 

(i) to (iv) may be found, then E is at least as big as A + Ae i.e. 

there exists an injection of A + A
e 
into E. 

Assumptions on.E.  

(a) Let E be a state space such that E has a Hansdorff topology which 

is metrisable. 

(b) A is included in E, every i in A is also a point of E. 

(c) If we denote by e the G-  -field of the Borel sets in E, then there 
E 

exists a transition semigroup on (E,c) to be denoted by peB(s)  which is 

such that in particular if i = e in A and B = j in A. 

Pij(s) = P 	(s) for all s>0 

II.enever (a) (h) and (C) 1":1C1., hyp^fhese--. (4) n-,14 (ii) 
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Hence with every stochastic entrance p (t) we can associate a probability 

triple and a Markov process defined on CI and with values in E satisfying 

the equality 

(1) PC Xt  (w) = i] = pi  (t) 

for all t >0 and i in A. 

(d) Suppose that for:-every stochastic entrance p (t) the process.  Xt in E 

has a standard modification, which is right continuous in the topology 

of E at all t>0 and which tends to a limit in E as t tends to zero 

with probability one. In this case Xt is extended to t= 0 by letting 

X0(w) = urn Xt  (w) 

for all 1r such that this limit is defined and choosing as X0(w) any 

arbitrary point in E otherwise. 

The Marlcov process Xt, t z 0, is then right continuous at all t in 

Co, co). 

(e) This extended process has transition probabilities peB(s)' 3?-0. 

ErAor erg  

If E satisfies (a) to (e) then there exists a mapping E defined on 

A + Ae and with values in E which is one-to-one. In other words A + A  

is the best extension of A with regard to the size for which a right 

continuous process may be found for every stochastic entrance p (t), 

t >0. 
Proof; 

Pick y in A + .le and choose the entrance p.a  (t) = Y1(t). ;le know 

that the corresponding process with values in A + Ae defined in Chapter III 

is concentrated in y at time t = 0 (th. III 2). We will show that the 

associated process with values in E is also concentrated in one point 

of E at time t = 0. 

Ey (d) we have PC X06 33 =1, hence there exist some Borel sets B such 

that 

(2) P C Xv  B3> 0 

For such B's the elementary conditional probabilities PC Xt = 	B] 

are dezined _Tor all i >0 and i in A. 
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(3) As 
P[ Xt A] = 	 Pyk  (t) = 1 for all t>0 

k € A 
we have for any B satisfying (2) 

(4) PE xt+s 	i 1 )cc,. B] = 

 

	

	P  I xt+s = 	xt = k X0 ,6 1 
 p [xe.  Et3 

keA 

The set [ of  B]belongs to Tv  for all t> 0; therefore if we apply 

the Markov property this sum becomes 

ti (s) P[Xt  = k X e B] I 	 B] 
kEA 

(5) = 	P[Xt  = kiXoeB] p' (s) 
keA 	 ki  

But (4) = (5) for all t 7 01  sO and all i in A means that P[Xt  = iiXoe B] 

is an entrance relative to P(t) .(for all B satisfying (2) ) 

Now suppose that X0  is not concentrated in one point of E, in this case 

there exists a Borel set B and its complement in E Bc for which J 

(6) > P 	B] >. 0 

and 

(7) 1 > P [X., e Bc]>0 

The eauality P[Xo  E E] = 1 gives 

P[Xt  = 	= P[Xt  = i Xe  E 1'3] = 

P Ext  = i pcoE 3] + P[xt  = i X0  e Be] = 

f's 

P[ 	= 11)4 e Bp P 	] + PC Xt  = i X.4 B.c ] P[ X Be] 

and by (1) we get 

p-yi  (t) = P[Xt  = 11X0eB] P[Xe e B]i-P[X = ilX0 G Bc  ] PT; Bc] 

for all i in A and t> 0. 

The inequalities (6) and (7) (which imply that both P [ Xt  = *Co 	and 

P[Xt = itX0  E B ] are entrances )together with the last relation and 

the extremality of F.- (t) (which is an analytical notion) are enough 
Yi 

to give the equalities 

(8) P[Xt  = iI xo  E  BJ = P[Xt  = ilx,, E BC: = Pyi  • (t) 

for all i ILL A min 0. t 
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From (6),(7) and (8) we obtain 

P[Xt  = i Xo  E B] 	P[Xt  = i Xo  E Bc] 

P[X, E 33] 	P[X. Bc] 

or 

(9) P[Xt  = i X,e. )3] P [X° 	= P[Xt  = i X,E Bc] P 	B] 

But P[Xt  = i Xo  a Bc] = P[Xt  - 	- P[Xt  = i Xe. E• B] 

so that (9) becomes 

P[Xt  = i X0  E B].(P[X,,e Bc] +:13[X,,e B])= P[Xt  = i P 	BP] 

and finally we.get 

(10) P[Xt  = i x B] = P[Xt  = i] P[Xos B] 

which hinds for all Borel sets B, i in A and t> 0, the case for 1 being 

obtained by inverting the roles of B and Bc  and the cases for B's such 

that P[Xo :B] = 0 or P[X.6 B] = 1 being trivially true. 

Next the assumption that Xois not concentrated in one point of E implies 

that there exist two distinct points e1 and e2 say, such that'all'their 

neighbourhoods are visited with strictly positive probability by 

As e1 	e2, we have d(e1, e2)7.01  where d is a metric defining the 

Hausdorff topology on E (assumption (a)). 

Choose e>0 such that 

d(e1, e2) 

4 

Denote by B(e1r) the open:sphere in E centred in e and of radius r. 

By the choice of e
1 
 - and e2 we have 

P[X0 1/ 	= a1> 0 

1 
Let Un 

P[Xoe B(e22 6 )] 

[11 Xo c B(ei,€ )) 

= a
2:>.' 0 

X, 6. B( e12  g ) for all q in 

U1  is in 	for all n 

and 1 
Un c Un+1 for all n 
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The continuity of Xt  (w) at t=0 for almost all w implies the following 

inclusion 

[X
o

E  B(e 	)] C n=1 n 

Similarly define 

Un
2  = [w I 0  EB(e2, ) X 

then U2  is in for all n and 

B(e2,2 ) for all q in g-F,c1.. 
n. 

[Xoe B(e2  , 	0 )3 	U.. n-1 Un 

Choose a S, 0 such that - 

(12) a1  -cl 
all  

and 	. 
(13) a2  

a2 

By the monotonicity of U1.11  and U221, n may be chosen sufficiently large 

to satisfyboth 

(14) P[  Unl 	P[Xo c B(ei , )] - 
and 

(15) P[ Un2  ] z- P[xo 6B(e2, E)] - 

We have 

(16) p[unl 	-‘ PDC. E 3(e1, ) and. X/ 	2E.)] 

By (3) the right hand side equals 

P[X0  e B(ei , e ) X1  e Bi(ei , 2€ )n ;1]  

n  

PDC°  B(ei  E ) 	X1  = 
n 

1.B(ev e.) n A 

and using (10) this sum becomes 

3 7 -4 

3 7 4' 

PEXo  3(ei  e )] P [Xi  = 1] 
n ieB(e

11 
 e )n A 

prxo  6 11(ei; 	p  [X1  E .0(01)  )n A] 
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Hence (16) reads as 

JpCx0 &.B(e11 E)3 P [X
1  e 
	1, ) n A] 

n 

and by (14) we get 

P[X„ B(ei  E )] 	.pcxi 	 2 € ) n A] 

P[X,,e-B(eve)] 

But our choice of a (see (12)) implies 

4P[X1  e.B(e112 E )3 
- • 

Similary using (13) and (15) we get 

-Z‘P[X1  E.B(e2' 2E. )] 
n 

But the condition (11) fore ensures that B(ei?C) and B(e212€) are not 

overlapping, therefore the two last inequalities which are established 

for the same t = '1//n are not possible simultaneously. 

The process Xt  in E corresponding to the entrance ;o ..(t) rust then be 
,y1 

concentrated in One point of E at time t = 0. 

Denote this noint by ::(y). 

t. is the idenity from A as subset of A+Ae 
into A as subset of E. 

If k is a fixed point of A the process 4:K1 
 (t) is concentrated in one 

- 

point, 	(k) at time t = 0 i.e. 

(17) l'EXo==-:(k)] = 1 

Choose a sequence of positive numbers 412  n in N, such that 
Co 

c.5n < 
n=1 

As p„.&.7 (t) tends to one as t tends to 0, we can P:et a decreasing sequence 

of positive numbers tn' 
n in N, such that to 

tends to 0, as n 	ao 

and 

1 - 	- (t ) 
n 	n 

But by (1) this yields 

for all n 

rEy.tn = k for all t1  3 1 
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According to the assumption (d) Xt(w) tends to Xo(w) as t tends to 

zero with probability one. Thus the last inequality shows that X0(w) 

= k on a set of probability at least 2. 

Taking into account (17) this is enough to give 

L(k) = k in E for all k in A 

LI, is one-to-one from A+A
e into E. 

Let y1  and y2  be elements of A+Ae-such that 

(y) = 	(y2) 

Uith y1  is .associated a Markov process X. in E such that 

(18) 	P[Xo  = 	(y1)] = 1 

and 

P[Xt  = i] = py1  i(t) for all i in A and t >0 

Hence 

P[Xt  = i] = P[xt  i x0= 2(y1)] = 

r-n 

P[Xt  =1 I X = 	(y1)] 13  [X =:::(y1)] 

By assumption (e) and (18) the last line is equal to 
E 

P- 	(Y1)  i (t) 
	

for all i in A and t 0 

and therefore 
E 

(t) = P 21(3,1) i (0 for all i in A and t'>0 

Similarly we get 
E 

P
Y2 	

(t)= p (77 (y2) i (t) for all i in A and t 

But the equality 2 (y1) = „:7_,(y2) then implies that y1= y2  in A+Ae 

i.e. 	is one-to-one and this completes the proof of theorem 1. 

Note that we do not need to assume the strong Markov property in E to 

prove theorem 1. On the other hand the assumptions (a) to (e) are 

by themselves not sufficient to show the strong Markov property. 

Usually some analytical assumptions are made about the transition 

semi-group itself, which used with the right continuity of sample 

paths are enough to check the strong Markov property. E.g. in Chapter III 

we used_the strong Feller property to obtain the convergence in III. (25). 
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CHAPTER V 

On the Topology of the Entrance Boundary  

1. Introduction. 

Limitation on the size of A. 

The semigroup P(t) is assumed to have only a countable number 

of extremal entrances. This simplifies the notation in some cases 

and as in fact no general results are obtained it does not matter 

very much. Having made this assumption, pick a stochastic entrance 

A(t), t> 0. such that its corresponding measure on A + Ae at t = 0 

is a probability measure attaching strictly positive weight to every 

point of A + A
e. 

Denote by (r). , 	, P) a probability triple and by Xt, 

t 70=0 a process in A + Ae  right continuous relative to T, of absolute 

distribution p(t) and strongly Markovian with the extended semigroup 

(as in Chapter iii). From now on the trajectory for every w in .0. is 

kept fixed. 
a 

In this chapter process is always supposed to be as described 

above unless otherwise stated. 

In 	2 the trivial example 1 shows that there exist topologies 

finer than T for which the fixed trajectories which are right 

continuous in T are also right continuous relative to these finer 

topologies. Then for every process within the scope of this chapter 

T' will denote the finest topology on A + Ae  such that every right 

continuous trajectory in T is also right continuous in T'. To end 

the second paragraph we show that T' is coarser that T*, the fine 

topology, which is not equal to T, as was originally overlooked 

by Chung. 

My hope was to see that T' is metrisable and to determine an 

equivalent metric with the help of taboo semigroups. The taboo set 

is to be a subset of A + A
e 
and in paragraph 3 we define the taboo 
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semigroups and remark that in some sence a taboo semigroup may 

be more discriminating than the original P(t). 

In my mind the metric would have had to be of the following 

form: Let Bn, n in B, be a sequence of subsets in A + Ae  such 

that the taboo semigroups exist. Denote by 8nR(X ) the corresponding 

resolvents. Let ocn, n in N and (3i, i in A be two sequences of 

strictly positive numbers such that 

O. 

-<" 00 	 and 
	00 

n=o 
	 i A 

For all x and y in A + Ae  define a metric d(x;y) by letting 

(1)  
d(x;y) = 

n=o 

The main difficulty is to make sure that a given sequence of Bnis is 

suitable to obtain a metric (1) generating the topology T'. 

As the sequences B
nn

i and B
n
' = y

n (where in and yn are 

enumerations of A and A + A
e) are very simple and general, they are 

interesting choices to use in (1). But both ideas are ruled out by 

the example 2 given in paragraph 4. 

Another very general way to define a metric with the taboo 

semigroups is to let, for all x and y in A + Ae. 

(2) d(x;y) = sup 
A a 

BRxi(1) - BRyi(1)I 

where the supremum is taken over all the subset B's for which the 

taboo semigroup is defined. Example 2 is again a counter example. 

In fact examples 1 and 2 suggest a probabilistic characterisation 

for a suitable B, but it appears to be a set with a very elusive 

analytical definition. 
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2. Basic example 

Example 1. 

Let A = (0,1,2,...) 

Define a corresponding conservative Q matrix by 

0 0 0 
1 	-1 	0 
2 0 -2 

0 
n 

O 

The resolvent is then 

1 	. 1 

	

A +-I 	A 	?, 
• 

R(A 

n 	1 

	

+n 
	O 

We have- 

Q= 

-n 

0 

Rno(1) = n+1 
	. 1 	1 = R00(1) 	as n 	00 

and 

1 
n+1 0 = R.(1) 	as n --> 

01 

Hence 1'03 is limit of the sequence 

Note that A
e is void. 

niin the topology T. 

Proof: 

By th.II 4 we know that A is dense in Ae. Take any sequence of 

points in A, {ir-i say, where r is in N. 

There are three possibilities 

(i) it 
may be equal to the same point i of A for all sufficiently 

big r; then the limit of it  is i itself as r tends to 04 

(ii) i
t 

may be increasing tomo as r increases tom; in this case 

we have just seen that the limit is 	in (A,T). 
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(iii)
r 

is different from (i) or (ii) then it 
is not convergent 

in its components Ri i  (1). 

(i), (ii) and (iii) are enough to show that Ae 
is void. 

Description of the sample paths. 

From the usual interpretations for the matrix Q(see C.th 11.5.5 

and p. 259) and the Xt+  version we can deduce that all sample paths 

are particularly simple. Either they start in 0 and stay always 

in it or they start in an i>01  stay there for a while and leave 

it by a jump to 0 in which they remain thereafter. So- every 

trajectory is composed of a finite number (one or two) of left 

closed and right open intervals. The discrete topology is then 

such that all sample paths are right continuous and as it is the 

finest topology on A, it is T'. 'Therefore in this example T' is 

strictly finer than T. 

An interesting feature of this example is that it is a 

counter-example to part of C th.II.11.4. 

Let P(t) be a stochastic standard transition matrix on A 

and define with Chung the fine topology TF  on A. For all k in A 

denote by Sk(w) the subset of [ o, 0.] on which Xt(w) is equal to k. 

Let i be in A and H be a subset of A. Consider the probabilities. 

p[ U  gk(w) n (t,t±C ) = 0 for some € > o 	Xt(w) = 5.] 

kE H  

and 

U Ek(w) n (t,t -E ) = 0 for some co (Xt(w) = i] 
kc H 

By C th II. 5. 6 for a stable i and C th II. 11. 3 for an instantancous 

one, we know that these probabilities are equal and that their common 

value is 0 or 1. 

H is called nonadjacent to i, if and only if this value is one. 

A fine neighbourhood of i is a complement of a nonadjacent set to i. 



Finally the fine topology TF  on A is the topology generated by all 

fine neighbourhoods of all states in A. 

Part of C th II. 11. 4 reads as follows: a base of fine 

neighbourhoods of i is given by the sets 

c. 	= k A sup 	pi,_.(t) > 1 - a 
o$. td 

0 < C1  

   

In example 1, choose i = Oi and H = 1.c>o3 

Then 

P[ Ll 	(1.1) n (t,t+ E ) = 0 for some E > 0 	Xt(w) 	03] 
kEH 

p[ U Sik(w)n (t, Do ) = 0 IXt(w) = 0 1 = 1 
k>0 

as fol is absorbing. 

Hence H is nonadjacent to r:03and 	01 is a fine neighbourhood 

of itself. 

For every cr> 0 we have 

Co(c5) =fk 	sup 

o_ tad 

Pko(  
) 	1-a3 

= 51  0  U I. 

= 0.i v 

= t' 0 i ii  

k > 0 1 	sup (1 - e
-kt) 	1- g 

o.t: t v J 

k > 0 1 1 - 	3 1 - e-kJ>, 

t)  k S  , k eT+1, k 
042"." 

where ke is the smallest positive integer such that 

k 
e - 
	c5-  a 

It is now clear that no C
o(s) nor any finite intersection of them is 

contained in F03 . Therefore the family Co( dr ), CT> 0, does not 

form a base of neighbourhoods of 50'i in the topology TF. 

Nevertheless the following weaker result is contained in Chung's 

proof: 

TF isfinertharithetuologYgeneratedbyC.(g ), i in A, c5--> 0. 

Proof: 

Recall the relation (10) in C p 191. 
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"Let i and Ci( d ) be given; then for almost every w the sample 

path Xt( w ) has the following property: if X ( w ) = i then there 

exists h( w )> 0 such that 

	

X 	( w ) e Ci( cr.  ) D r 0.3 	for all s in (t,t+h(w)) 

where 1'003 is the Alexandroff additional point". 

From this we can deduce that A - C.( 	) is nonadjacent to i, and 

hence C.( os.  ) is a fine neighbourhood of i. As this is true for 

every Ci( 	), this completes the proof. 

Definition of the fine topology T* on A+Ae 

( the fine topology of Chung, TF, was on A only) 

As assumed in the introduction Ae 
is countable; hence every 

subset of A+Ae 
is a Borel set for T and by III (28) its corresponding 

stopping time exists. 

Let T* be the topology generated by the following open sets 

(cf. Meyer[2] p. 152 ). 

G c A + A
e 
is open if and only if 

(3) P[ Z.Gc > 0 I Xo  = y] = 1 	for all y in G 

G
c is the complement of G in A + Ae

, and by the 0 or 1 law 

(M XIII 14), (3) must be equal to 0 or 1; in particular as G n G
c = p5 

all G satisfying (3) are such that 

	

P[ 	G =O 1 Xo  = y] = 1 
	

for all y in G 

These sets from a topology because 

(i) A + Ae and 0 are open 

(ii) every union of open sets is an open set 

(iii) every finite intersection of open sets is an open set. 

Proof: (in which open set stands for open relative to T*) 

=" I X = y] = 1 for all y in A + Ae  

i.e. A + Ae 
is an open set. 
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As 0 does not contain any point of A + Ae, the Condition (3) is 

meaningless for 0 and so 0 is an open set. 

(ii) Let G„ be open sets, where 0(runs in some family. Then by 

our countability assumption their union is a Borel set relative 

to T, so that its complement is also one. Thus the corresponding 

stopping time is well defined. 

By the set inclusion 

(ErG e<  )c  c G, 	for all .e 

we get 

P[ 	(UG 	
) c >0 I Xo =y 	

P [ 	Gc...  
, 

for all y in G,4  , and hence also for all y in UG, 

satisfied. 

(iii) Let G1 and G2 be two open sets. Pick an w in 

> 0 X
o 
= y] = 1 

I i.e. (3) is 

[ Z7  (Gi n G2)c 
	= 0] 

and then there exists a sequence tn(w) decreasing to 0 such that 

Xt 	(w) is in (G
1  n G2

)c G 
1 

G 
 2 

So 	at least one subsequence of tn(w) is such that Xt (0 lies 

always in the same Gi  and hence w is in 
	n. 

rZr, 
vri
c .0b.)  Z

G2
c .0] 

This inclusion gives the probabilistic inequality 

P[ 	(G1 G2
)c = 0 xo y] 

P[ TG1c=0 I  Xo = y] + P[ 6G2c  = 0 X =y] 

and the last sum is equal to 0 for all y in G1 G i.e.(3 ) 

holds for Gln G2. 

As we know (th III. 1 and th III. 3) that T is such that 

almost every sample path is right continuous at all tt  then a sample 

path starting in any open set E in T will stay there for a strictly 

positive time with probability one, i.e. 
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PE TEc >0 IY = y] = 1 
	

for all y in E 

Hence E-is an open set for T* and this shows that T* is finer than T. 

Let T" be a topology strictly finer than T*, i.e. there exists an 

open set for T which is not open in T*. Pick such a set, C say. 

By assumption there exists a y in C such that 

PE Z oo >‘ 0 Xo  = y] * 1 

By the 0 - 1 law this last relation yields 

p[tcc= 0 f  X0  = y] = 1 

which implies that a.e. sample path starting in y leaves the open 

neighbourhood C at least once as soon as it leaves t = 0; 

hence X
+ 
is right discontinuous in 0 relative to T". 

So if
a
topology To on A + A

e 
is such that all the right continuous 

trajectories for T are also right continuous for To, then To  must 

be coarser than T*. Therefore the finest topology with this property 

must also be coarser than T* and this gives 

T* finer than T' finer than T 

the second relation being obvious as T itself is a topology for 

which all right continuous trajectories in T are right continuous in 1. 

The next question is naturally: does T* itself keep the right continuity 

property of the trajectories which are right continuous for T? 

Unfortunately the answer is affirmative in the obvious examples but 

not clear in general. We now give some reasons why it is difficult 

to answer. 

Taking into account the countability of Ae  here is a simplified 

version of M XV 38. 

Let F be a closed set of (A + A
e
, T*); then for a fixed w the set 

s. 	Xt(W) E F 3 
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is such that every right adherent point to it is in it, except 

on a set of w 's of probability zero. 

Now we use this result to show the separability of Xt  relative to T*. 

Let I be an open interval . 

Let S be a countable dense subset of R+ 

Choose an w outside the exceptional set, .11.F  say. 

If w is such that 

X
t
( 	E. F 	for all t in I 

then 

Xt(w)  e F 	for all t in the right closure of InS 

i.e. 

X
t 	

F 	for all t in I 

Therefore 

P[ FXt EF 	VtcIns3 -fXt  F,dteI3] 

P[.CIF] + 14( Xt  F, V -t e I n 	- Xts F, V t eI3 )(1 (a -.Cy] 

= 0 + 13[ 0]= 0 

in other words X
t 
is separable with respect to the closed sets of 

T* and any S. 

Consider the usual topology on R and define C(A + Ae, T*; R) as the 

set of all continuous functions defined on (A + Ae, T*) with values 

in R. The theorem M XV 39 reads as follows: 

if f is an element of C(A + A
e
, T*; R) then f(X

t
(w)) is right 

continuous for almost all w. 

Consider the following diagram: 

t e [ 0, a)] ^-> Xt (W) E (A + Ae, T*) --* f(Xt(w)) e R 

If we want to deduce the right continuity of Xt(w) itself from this 

diagram and M XV 39 we need some additional conditions on (A + A
e
, T*) 

e.g. : 

(a) C(A + A
e
, T*; R) must be good enough to define T* as its initial 

topology. This is known for a compact (or locally compact) space 

T* but an 	 "I '" a r3fincmcnt of M 	A^ 	4P .1 	 *. 
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(used with (M
1'  • T) or (11!.; T) still holds. 

(b) C(A A
e, T*; R) must be spanned by a countable set a functions 

fn so that the union of 1-Ifn (the exceptional sets depending 

on fn in M XV 39) is of probability zero. 

(a) and (b) would be enough to imply that for any w outside 

U a fn, f(Xt(w)) is right continuous from [0,0o] into R for 

all f, and hence X (w) itself is right continuous from [ 0, co  ] 

into ( A Aej T*). 
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3 Definition of the taboo semigroups. Let B be a Borel set 

of AtAe  relative to T. It is known (see III (28) that the random variable 

(4) TB(w) = inf 	I t -7o Xt  (w) G B 

is a stoppin; time relative to the family of c-fields 	, t 

Hence the set 

[w 1X0(w) = i, Xe(w)+-B, o< 	t Xt(w) =j] 

= [w I X (w)= i, Xt(w)=j 	(w)>t 

is in Tt  c ), and we can define for all i, j and t>o, the number 

Bpii  (t) as the following elementary conditional probability: 

(5)- P[Xt  = j -/3:,t1 0
= i] =  P[Xo= i 	Bt  

p[xo = i] 

Obviously we have for all i and j in A, and all t>o, 

(6) (t)‹ 13  (t) 

Next we check the serligroup equation for BP(t). 	As P (t) is stochastic 

we have for all t>o and all s>o 

(7) (t,$) = 	 P  [Xts=j rB 	t+s XE.= k X0  = 1.3 
k e 

. 
 

Now fix k in A, t> o and s> 0. 

Let 

.2 `k = [Xt =1° 

Ile have 

P[X0  = i Xt  .k Xt±r= j 	t + s] = 
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(8) PC x0  =i 	> t xt  = 	C;B >s st .j] 

‘Nere et is as usual the shift operator. 

As 	is a stopping time the event 
4.) 

B
- et>s J is in t 

where t7ti.s  is the augmented e--field generated by 

xu, 	s 

Let 

A 	[ xo >t3 

M = [xsa et  = j WB•et>s] t7 

Ly the arkov property we get the following equality of random variables: 

PEA is I xt] = P [./11X0 PEN Ixt] 
	a•s• 

so that (8) is equal to 

(9) :P[11. IXt] P 	I:ac P[dw] 

ZS*  
By definition P [N X.0 is a random variable such that 

P[M 1Xt] P[dw] = PEXseet=i ; ° et  > s Xt= 13 = 

.6.1c 
P[xs. et  = i B.  et  c7 s) xo. et=0 P[.a.k] 

By'stationarity and (5) Vie last term becomes 

P[Xs  .j 713-'s X0  .K]P[64143 = BPItj  (s) PV\k] 

We have just proved that 
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PEM ( Xt] =B,cti  (s) 
	

a.s. 

(9) is then equal to 

Bp (s) P  

or usins (5) again 

.= i Z.B  > t I Xt3 P[dw] 

(10) BL 
p. • 	

Bpik 
(s) 	(t) P[X

o 
=i] 

j 

If we sum over all k in A the equalities 

(8) 	
1 	— (10 

P [X0  =i] 
	

Pfxo  = 

(7) becomes the semigroup equation 

(11) Bp j ( he-.4 .43.  ±k (t) 	
(s) 

kj 

As "CB  is a stovoing time, [ B.> 0] is in 
	Hence by the 0.1 law 

we have for all y in 171+Ae  

(12) P[IrB 	0  I X =y ] =0 or 1 

By the ineou-ility (6) we find 

	

(13)0 4  limsup 	(t) 	lim 	(t) = 0 if i 	j 
ij t=o B 	t=o lj  

and 

	

(1.14P < limsup 	 17).-  (t) < lira>  -c: 	(t) =0 
t=0 	k+i B-  ik 	t=o k*i iv 

By th. III. 1 we have 

P[-613 > s J  xo=±] =P[B> s 
 X E A ) X 

o
=i] 

Rewrite this e:luality as 
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(15) BPja- ( 	= P[ Z.B>s 1 X0 	gik(s) 

By monotonicity we get 

(16) slo P[ZB7 six0  =i] =P[Z.B   70lx o=i] 

The relations (14) and (16) imply that the R.H.S. of (15) has a limit 

as s decreases to O. 

Hence th? same property holds for its L.H.S. and by (12) this limit 

must satisfy 

(17) um 	(s) = P[' > 01 X . 	= 0 or 1 
s=o 3 

If i is such that this limit is zero, then for all j in A and all t>o 

we have 

(18) 0 	Bn j (t) =P[ T B ,'t X 
t
= j IX

o 

PC Z B > o I Xo. i] = 0 

Let BA0  = i in A I Bpi  (t) = 0 for all t >o 

This set is eaual to 

Fi in A B " (t)=0 for all t >o and all j in A 
ij 

One inclusion is obvious conversely if i is such that Bpii (t) = 0 

for all t, then its limit as t tends to 0 is also 0 and by (17) we are 

in the case (18) and this shows the other inclusion. 

If we let A = A - A the relation (11) can be written as 
B o 

(19) BP:- (t + s) = Z__-
ke BA  

Bpik  (t) Bpkj  (s) 

for all i and j in 
B
A and all t.?...0 and s.z. O. 
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in 

If j isY3A0  then 

(20) Bp
:1 
 (t) = o 	for all i in A and all t?-- o 
j 

Proof: (11) gives for all s< t 

 

(21) Bpi (t) 

	

	(t-s) Bpic (s) + Bpi (t-s) B̂ j j (s) 
fc*.i 

As- j is in BA°  the second term in the R.H.S. is equal to 0; on the other 

hand the sum over all k different from j is bounded above by 

	 pik  (t-s) pkj  (s) 	-pij  (t-s) p(s) 
k4i 

hich by the stochastic continuity of P(t) tends to C as s decreases to 

0; hence if we let s tend to 0 in (21) we obtain (20).(13),(17) and (19) 

mean that BP(t) is a standard substochastic semigroup on BA. By 

C // /th. II 3.3 we can use /th. II 2:3 to check the continuity for t•.?, o of 

(t) for all i and j in BA. 
ij 

As the initial distribution of Xt was chosen to attach strictly 

positive weight to every point of the countable Ae , we can lat 

.. 	(t) = FCr
B 	

t X = IX =y3 

By the method used to get (11) and (19) we find 

Bp,yi (t+s) = 

 

( t)  .aPki (s)  

 

kEBA 

for all i in A and all t;>o and s?,=0. 

Since 
BFI(t) 

 is an entrance relative to Br(t) the theorem just quoted 

applies to ensure the continuity in t of By.yi  (t) for all i in BA (or 

indeed in A because the erocif of (20) works also for y). 

This general continuity allows us to use BP(t) or the Laplace 

transforms which will be denoted by BRij 

heve just shown that 

(22) R (›,) < R ().) 
B 

-81- 



(23) lire A BR (\) = IBA (the identity matrix on ( BA x A x BA) 

(2'f) BR a) 	BR(i. ) = 	)1/4 ) BR( ) BR S/A) 

and 
BRyi (A), X> o, i in A satisfies the resolvent equation for BR ( A ) 

for all y in A+Ae. 

Theorem 1  

For all open and all closed sets B in (A+Ae  , T), BP(t) is completely 

determined by P (s) and B. 

Proof:  

We have to show that any 
Bi  
p. 
 j 
 (t) is determined by t.-?; o,i in A,i in A, 

P (s) and B. This result is obvious for a point i (or j) in B, because 

C th. II. 5.3 and the definition (5) give 

( t)  = 0 for all t> o and i or j in An3 

So we choose i and j outside the taboo set in the sequel. We remark also 

that if BP(t) depends only on P (s) and B for all t>o, the stochastic 

continuity will then imply the same for t= 0. 	Hence from now on t is 

a fixed strictly positive number. 

Let 1—Lc.[wiXt(w) is right continuous/on [o000)3 
	

n IA 4 A, ,T) 

=[w IXt(w) has a left limiqat all t in (0000)] 

(25) We have P[12c] = P[ft] = 1. 

Firstly we prove theorem 1 for an open set G in (A+Ae, T) using the 

method given in C. p. 194. As the process Xt is right continuous the 

values Xs(w) for all s in a countable subset S dense in R are enough 

to determine the complete sample path for all w in .ac  . Let S be 

enumerated in some way and let n  be the nth element in this enumeration 

lying in [C, t]. 

Let 	n =D.: I X s(vr) G o <s.<, t Xt=jj 

=[w 	s (w) G r=1,2,...)n Xt=j] 
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The following inclusion is obvious 

re nr 
n=1 

Conversely any w in this intersection is such that 

Xs 	G for all n u (w) 

i.e. 

(w) 4 G for all s in Srt[o,t] 
0, 

As Ge  is a closed set this invaies for all w in n 
n=1 

Xu 	= lim Xs(w) E.Gc for all u in [o,t) 

s tu 
s. ES 

As j is not in G, then 

F[Xt  G Xt=j]=1 

so that we have now proved 

(26)r ?1 r- n 
n=1 

From the definition (5) and (26) we get 

(2?) Bp j  (t) = lim 	rn o =1] 
n=oo 

But for any fixed n theorem III 1 gives 

c 
P[X', E 	G ] = PEX 	e Gn.ill,r =1,2, 

Ur 	sr 
n 

which in turn implies 

(28) PC 

 

pik1  (s1  I) n I k2  2 	i 	- 
(s1_51).. 	1 

p, (t-sn) Kn  

   

Icte Gen Ai  .... 	knc. 6n 

where 1'4, r=1,21 	n is the set Sr,  r=1,2, 

reindexed to follow the natural order in R. Some obvious chan7es have 

to be made in the sum above if one sr  is equal to 0 or t, but it does 
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not alter the fact that (27) and (28) proves theorem 1 for the open 

set G. Since the event I' is independent of S, so is the limit in 

(27) and we can use any countable set S dense in I. 

Next using this result for an ol:en set we can proceed to show 

the same for any closed set F in (A+Ae, T). As the entrance boundary 

is a metric space we can define the following open sets 

	

Gm  4 X j d(x; F) < A 	min N 

which are such that 

	

oo 	co 
(29) F = 	1 1 Gm  = 

	
am 

	

m It 1 
	

m 1 

Where Gm  denotes the closure of Gm  in (A+Ael  T) 

Let A =[11 X 4F o<s<t Xt= j] 

JL =cw I Xs Gm o<s<t xt=i] 

The following inclusion is obvious 

(30) A 	U Am 

Conversely if w is in Ll =12- Oikm  there exist tm(w), m in N, 
mA 

• 

such that 

0 < tm(w) <t 

and 
	 for all m 

X.tm(w)  (w) e Gm  

Define roi  as the stoTping time associated with Gm as in (4). Using the 

right continuity we have 

(31) :t,(w) 	
E. dm 	for every w in _ne  

The monotonicity of the sequence Gm  yields for all w 

m
(w) Tni.t.1(0 lim (w) 

m=oo 
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If we denote the limit above by r, M IV 42 ensures that is also 

a stopping time. 

0,0 
Let di  = 	. 6 (0,4,  t Xt(w) =j 	C 

1 

- 
For every w in dninfic, there exists an m (w) in N such that (by (31)) 

X7*, 	= 111  (wi N(W) E Gm  for all m 
ukw  

and using (29) this implies 

(32) X6( iti w) e. cfl -dm  
m., 

= for all w in /\1 n  -n-c 

Similarly if w is in .n.2/11/c0S11  we find 
0. 

(33) x-6(w)(w),  n Gm  = c.A+Ae  
trirl 	 • 

As a' is bounded by ton .A2, theorem III. 4 applies and we get 
a,a, 

(34) Xt(w)(w) .xtm(14)E -F-- 	fora1. win 	 n CI L  

From (25), (32) and (34) we deduce 

- U Arn  — ai u d2  c a- A 
p"-r 

This last relationfthe definition (5) and (30) give 

(35) (t) = PGA I xo=i3 = lim p[Aixo=i7= 
m=oo 

= lim 	(t) 
m=oo Gm ij 

The sets Gm  being open the last limit derends only on P (s), i, j and 

Gm  (i.e. F). Theorem 1 is now proved. As the event 1Ldoes not depend 

on a particular sequence of Gm, any sequence of open sets Gm  which • 

satisfy (29) will define Fpij.  (t) by (35). 

Note that theorem 1 sernis also likely for a Borel set B but the 

proof used here does not work (even in our particular case of a countable 

Ae where every Borel set is a Gs- set) Instead of (4) we get for some 	9/ 

family of open sets Gm  the less stringent relation 
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00 r‘  
(\ Gm  C / Gm  

rn =1 	m=1 

so that theorem III 4 cannot be used betreen relations corrocronding 

to (33) and (34) to show that t'le corres:.onding A and satisfy 	c 	Aim 

Theorem 2 

For all open and closed sets B in (A+Ae, T), pyi(t), i in A, 

is completely determined by P (s), B and y. 

This is -:roved as theorem 1 with only one change namely pik(s) is 

to be replaced by pyk  (s) in (28) (which is why y is needed). 

Finally we e:;plain the meaning of the words "more discriminating 

than the original semigroup" used in the introduction. 

In the exam le 1 if the subset B of A is chosen as V f 

then obviously we get 

(36) ,Roo (-s+) = -- =Roo (A ) 

(37) pRok ( A ) = 0 = Rok 	) 	for all k> o 

and 

(38) 1?Rik 	) = 0 for all k if 	1 

Therefore 
B
Rio (1) = 0 does not tend to ,,Roo (1) =1 as i tends to 0* 

the taboo semigroup relative to B introduces a refinement of T (but 

only locally near p3 in A as all the other points are merged in the 

trivial entrance). 
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4. Metrication of T' 

I tried to introduce the taboo semigroups in the definition 

of a metric for T', because it seemed an easy way to generalise 

the form of metric used for the definition of T( see below (1)) 

and also because I did not know what else, in analytical terms, 

could be used. 

As I said in the introduction to this chapter I wanted a metric 

of the form 

(1) 	d(x; y) 	CK > 	B
:x1 (1)  Bn RYi(1) 1 

i 6 A 

for all x and y in A + Ae, where the Bn's are a sequence of subsets 

ofA+Ae,andocn,ninN,(3.1 i in Aare the strictly positive 

terms of two converging series. I also pointed out before that 

the use of the sequences of singlet:5ns 	of A or 	y 3 of 

A + A
e as sequences of taboo sets is very tempting, because it 

requires no further knowledge. 

But in the next example in which T' is indeed metrisable these 

two new metrics are unfortunately not equivalent to the one defining 

T'. We remark that if the sequence A + Ae  does not give the solution, 

the sequence A which induces a smaller metric can not work either. 

So we will only consider the sequence A + Ae. 

Example 2.  

Let A = (..., -2, -1, 0, 1, 2,...) 

Let qi  be a sequence of stricly positive numbers ( indexed by 

i > 0 only) such that › 	1 	< oo 
i=1 qi 

Define a conservative Q-matrix in the following way. 

qi 	i • 0 

for all i > 0 

for all i < 0 

everywhere else 
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By our choice of an absorbing k103 the corresponding minimal 

solution is a stochastic matrix. Its terms are 

Roo( X ) Roi( ) =0 	for all i * 0 

( I ARI.. 	) _ 	1 	for i * 0 
A* cli 	i 

R 	.( X ) - 
1 	qk  

(-i)3 	--).+% 	,\.+gk 
J k=j+1 

i 

11' 	( A ) - 	1 	qk  
(-i)0 	- ),‘ 1 I A + qk 

k=1 

R(-i)j ( 
	) = 0 

13J 	) =0 

R. .( A ) 13  - +qj 	+1k 
n=j+i 

1+1 

if 1>0, and 0 < j <i 

if i>0 

if i> 0 and j 

and i> 0, j< 0 but j 1 -i 

if i> 0 and j > i or j < 0 

if i>0 and o < j < 

if i>0 
I I 	A 	+qk 

1 

It is helpful to dr
kaw the (A x A) - matrix to compare it later with 

the taboo resolvents. 

i< 0 	 0 ›- 0 

Rio( 	) - qk 

0 
i •4 0 

0 0 

i>0 

Let i
n 

be any sequence in A such that the absolute values n 
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form an increasing sequence. 

If j > 0 (resp = 0) then for all in such that nI 	j we find 

irrespectively of its sign 

ij 	I in' 
1 	ok P. 

nj
(1)  - 1 + qj 	1 + qk 	(resp 

k=j+1 

  

qk  
1 + qk 

  

   

k=1 

 

Now if n is increasing to oo the R.H.S. has a decreasing limit 

and we get 	 co 
1 

(39) R. 4(1) = 	resp 	) 1+qj 	11+q 	 1 + qk n' k=j+1 	k=1 

If j < 0, then we have for all in  

R. .(1) < 11+ qn I
n
j 

Again if n is increasing to oo the R.H.S. decreases to 0 and we get 

(40) lim R.(1) = 0 
n=oo 1

nj  
for all j< 0 

From the density of A in A
e and the sort of arguments used after 

example 1 we deduce that Ae is composed of only one point, y say, 

defined by the R. H. S's of (39) and (40). 

The interesting point about the topology T is that (-i) tends 

to y as i tends to + oo 

Description of the sample paths. 

(a) Sample paths starting in the state i of A 

The usual interpretations for Q (Cth.II5.5. and p.259) and 

the X+ version imply that every sample path is composed off 

a finite number (1 	+ 1) of left closed and right open intervals, 

the last one (spent in 	0 ) being oo . 

(b) Sample path starting in y 

The sample path are step functions. The number of steps 

is countably infinite and they accumulate at t = 0; all the 

steps are spent in some 5..›0 of A and the left closed right 

open interval spent in i is followed by one spent in (i-1) 
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and so on until reaching 	where the sample path remains for ever. 

With probability one there is a finite number of steps after any 

strictly positive time t. 

By (a) we have 

P[ Xs has a finite number of steps after t I Xo 
= y] = 

00 

P Xs has n steps before reaching 0 after t X0  = y] = 

n=o 

P[ Xt  = n I X6  = y] = 	PYn (t) = 1 

n=o 	n=o 

For almost all trajectories starting in y, y is a right limit of 

points i;>0 of A increasing to + 00. 

On A v Tyidefine a topology T1  as follows: 

every i is isolated; 

(T1) every neighbourhood Vy of y contains all positive i's bigger 

than some 	there exists one Vy not containing any negative i. 

This T1 is metrisable by (e.g) 

d(i,j) = 1 	if i or j is negative and i j 

d(i,j) = 1/21 + 1/2i if i and j are positive and i 1  j 

d(y,i) = 1 	if i < 0 

(41) d(y,i) = 1/2k  if i ?-1 0 

\d(i,j) = d(y, y) = 0 fort all i in A 

By the very description of sample paths ((a) and (b)) it is clear 

that all the X (w ) which are right continuous in T are also right 

continuous from [0, co ] into (A v 	
, 
T
1
). 

Moreover in any topology T°  strictly than T1, we can find a neighbourhood 

of y, Vo say, such that (T1) does not hold. Hence there exists a 

sequence i,,3 of positive i's increasing to +0o but not in V°y.  

By the description given in (b) we have 

P[ Xs  visits Nfor one s in [o; 711  ] X o = y] = 1 

for all n and hence 
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P[X
s is in V°  for all' s in [0; -

1] I X
o 
= 	= 0 

for all n. But the right continuity relative to T°  would need 

in particular 

P[X
s is in V°  for all s in [0; 	] 

  

Xo = T1 
as n tends to + co . 

Since the last two relations are contradictory, Tl  is the finest 

topology on A v 	for which the right continuous trajectories 

for T are also right continuous for T1, i.e. Tl  = T' 

Next we use (a) and (b) to compute the resolvents related to the 

taboo set fxS , a point of A vfy.i . 

Case (i) x = k < 0; the only trajectories which ever visit 

k are those starting there, 

kRkj( A  ) = 0 
	

for all j in A 

k
R
ij
( A ) = R. .( 	) for all i k and j in A 13 

k g? - (A) = 	(A) lo g  

kR(A ) is the following matrix 

   

k 

0 

 

0 

 

   

Case (ii) x = k 	0: if0<i<kor-k<i < 0 

the sample paths starting in i never meet k, 
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The resolvent is 

-k-I 

hence 

kRi 	.3% ) = R..( 	) for all j end 0 < i < k or -k < i < 0 

if i > k or i < -k, the sample paths descend the finite escalator 

between i and k and stop at k, never reaching any j 	k. Hence 

cI( 	= 	 j .Ri  ( 	
) if j > k and k < i or i < -k 

R.( 	) = 0 	if j k and k < i or i < -k 
k i j 

j>k 
= 

(3  
if i = k then kRkj( ) = 0 for all j in A 

Case (iii) x = y: then almost no sample pathE starting in i ever 

meets y, i.e. R()X ) = R(). ). 

Now look at what happens to these various resolvents (for 	= 1), 

when (- i) tends to - 00 (i.e. to y in (A v ' y3 ; T)). 

In case (i) we get 

(42) 1.lim =00 kR(-i)j(1) = kj (1) 	for all j in A YJ 

In case (ii) we get 

k R(-i)j 	k(1) = Ryj  (1) for all j > k 

= 0 	for all j 4.5 k 

In case (iii) nothing is changed. 

Similarly if i tends to 00 (i.e. to y in (A t,  15/1 , T)). 
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In case (i) we get 

(44) 1 	k1aim R. .3(1) =k 
 R 
YJ  
.(1) for all j in A =0.  

In case (ii) we get 

(45) Jim kRij(1) = RY3  
.(1) 	for all j 	k oo  

=0 	for all fi k 

In case (iii) nothing is changed. 

Let T2 
he the topology defined by the metric (1) where the sequence 

of Bn is the sequence of singletons Fx3 in A v 
	. This is 

equivalent to say that T2  is defined by the simple convergence of 

R .i(1), kR .i(1) and yR".i(1) 	for all i and k. 

The equalities (42) = (44) and (43) = (45) 

are then enough to show that (-i).tends to y in T2 as well as in T 

( 	T' ). This completes the proof that the use of A + Ae in the 

definition og the metric (1) is not a good way to obtain T'. 

As this method to define a metric is not sharp enough to refine T and 

obtain T', it might be interesting to disrupt T in a more brutal way; 

for example to define boldly for all x and z in A + Ae. 

(2) d(x; z) = sup 	(1.c 	BRxk(1) - BRzk(1)1 

B ka-A 

where the sup is taken over all the subsets of A + Ae. 

Let i tend to + 00 0-e.iterldstoYin 19 ancichoose 131  — “i + 11. 

By the case (ii) p.91 we get for all i > 0. 

d(i;y) = sup 5 (k B  R. (1) - B Ryk (1)I ik  
B 	k a A 

> 	63k (a+1)Rik(1) - (i+1)Ryk(1) I 

k a-A 

p k 	R
ik( 1) + > 	k Ryk

(1) 

k=i+2 

(o P. o  (1) 	R yo(1)  >- 0 I 	o  
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Thus y is isolated in the topology ddfined by the metric (2) 

and hence the sample paths starting in y are no longer right 

continuous, so that this method is not delicate enough to obtain T'. 

This suggests that we should handle these taboo resolvents 

more carefully. Taking into account the description of the. sample 

paths (given in (a) and (b) p 93 ) a good candidate as metric is: 

(46) d(x;z) 	6k ick(1) Rzk(1)i  43k 1BRxk( 1) - BRzk(1)[ 

k c A 	k 

for all x and z in A 4y3 , where B is the set of all strictly ne50-4;ve 

integers in A. 

The first sum ensures that all i's are isolated (property of T ). 

By (a) and (b) p. eg again it is obvious that the only sample paths 

affected by the taboo B are those starting there, and the corresponding 

B Rij( X ) are 

(47) Bij  R(X ) = 0 for all A> 0, i < 0 and j in A 

(48)05..1(A)=R..()\ ) for ali,\ > 0, i ?..:0 and j in A 

The taboo resolvent is 
0 

1 

C) 

0 	0 

By (b) we find 

(49) gyiN = R 
YJ  
.(1) for all in A 

We have by (47) and (48) 

(50).3.lim B R(-i)j(1) = 0 	for all j in A =c.  

(51)andlim 
B
R..(1)=IR

YJ
.(1) 	for all j in A 

Oh. 
• 



By (48) and (49) the metric (46) is such that 

(52) .lim d(i,y) = im 1= co 	l 1=Do  2 	(3k I Rik  ( 1 ) — Ryk(1) 

k 6 A 

By (49) and (50) the metric (46) is such that 

lim d(-i;y) = lim 	IR(_i)k(1) - Ryk(1)( 	(skRyko) 
3..00 

(53) 	ke- A 	 ke A 
=> pkRyk(1) 7  0 
kE A 

Now (52) and (53) are enough to show that the metric (46) is equivalent 

to (41) and defines T' (= T1 
as seen in p. 91) 

If we look back at the example 1 and in particular at the description 

of the sample paths given in 1370., we find that the set of all stictly 

positive integers is a good candidate to define a metric (46) where A 

must be read as A of example 1. Recall (36), (37), and (38) 

1 
BRoo( ) A 

B-  

	

Rok ( ) = 0 	k=0 

	

BRik( ) = 0 	i >0 and all k 

For all i and j in A define a metric d(i;j) by setting 

d(i;j) = 	ek iRik(1) - Rjk(1)Li->  6k  / BRik(1) - BRik(1)1 
k E A 	kE A 

In the topology generated by this metric all strictly positive 

i 's are isolated by the first sum. Moreover for all i >0 we have: 

i 	1 d(i,o) = po( i + 1 	1) + Pi -r 2. + Oo 1 y  (30 
so that TO3is also isolated in this topology which is then the 

discrete one we were looking for as T'. 

Examples 1 and 2 suggest a probabilistic definition of the kind 

of sets needed so that (46) is a metric for T'. 

Definition : 

A subset V of A + Ae is called a right neighbourhood of y if and only if 

= 0 
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(i) P[ "C 	? 0 I x. = y] 

(ii) If 1/- 1:y3 is not 0, then every infinite sequence S of 

different points contained in V -Fy3 has the property that 

P[ g =o I Xo = y]= 1  

Note that by this definition the set ti3 is a right 

neighbourhood of itself for a stable point but not for an 

instantaneous one, as in the latter case we have by C th. II. 5.4. 

(54) P[ Z(A_ F5.3  ) = 0 

i.e. (A) does not hold. 

Another interesting point to be stressed is that contrary to 

D. Williams's conjecture in [13], if y is in Ae  and V is a right 

neighbourhood of y but not a T-neighbourhood as well, then if W 

is a T-neighbourhood of y, the set W -V is not necessarily visited by 

the sample paths just before hitting y. 

D. Williams' conjecture is:  

Let y be in A + Ae  and yn  be a sequence of points in A + Ae  such 

that yn  does not equal y for all n. 

In this case a necessary and sufficient condition that yn  tends to y 

in T as n tends to 00 'is 

(55) nlim max[P [Ty < tiXo = yn], P[ y
< t ] Xo 

= y]] = 1 
n =co 

for all strictly positive t. 

The example 2 where the escalator process starting in y 

(or + 00 ) is somewhat parasited by the processes starting in the 

negative integers is a counter example. 

As seen in (a) p. 83 any sample path starting in (-n) is a finite 

step function which never reaches y; hence 

P[ 	y =a>I X0  = -n] = 1 	for all -n < 0 

I X = i] = 1 0 
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From (b) p.89 we know that a sample path starting in y, is a step 

function on the positive integers which is finally absorbed by F03 , 

and hence never visits a strictly negative n. So we have 

PE -6  (-n) = 
	Xo 

= y] = 1 	for all -n < 0 

These two equalities yield for all -n < 0 

P[Z y ctlX0  = -n] = PEZ(-n) <t 	Xo = 	= 0 

Thus their maximum is zero for all -n < 0, and if we take the 

limit as -n tends to -.0 we get 

limo  max [P[ Y < t I X0  = -n], P[ 	(_n)  < t Xo = Y]] = 0 

As -n converges to y in T, this shows that Williams' conjecture 

does not hold for a semi-polar point y. 

The next problem is to try to find an analytical characterisation 

of a V satisfying (i) and (ii), i.e. is it possible to define such 

a V by means of 
R3..3  J A )and RYJ  

.( A ) only? 

It is easy to get a necessary condition for (1). 

We have 

pyk(t) = P[ Xt 	cr, A 1 X = y] 

PE z,c sz5.  t 	Xo  = y] 

= 1 - P[6 v  c 7 t I Xo  =y] 

But the assumption (i) implies that the last term tends to zero as 

t tends to zero and we get 

lira 	pyk(t)  = 0 

t=o k EV c  

This is an insufficient condition as the case of an instantaneous 

point i readily shows. 

For such an i we have 

Pik( t) 	0 as t--> 0 

k <A- 

but as seen before the relation (54) is contradictory to (1). 
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Let D = 	i in A
Ym 	

) =0 

We have 

   

 

1D[ Z D 
y 

= CO X = y] = 1 

   

Hence if D is an infinite set, it cannot be contained in a right 

neighbourhood of y (otherwise it would contradict (ii)). But it 

is only incidental that in both our examples the complement of D 

in A A
e 
is actually a right neighbourhood of the troublesome 

point ( 	in ex. 1 and 	y3 in ex. 2). 

It should be noted now that the existance of a right neighbourhood 

has not been established except in the constructed examples! 
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CHAPTER VI  

On some analytical relations between the original semi-,n;roun and  

its associated taboo semi-groups. 

The fact that D. Williams' conjecture is false may lead us 

to wonder whether analysis is a good enough tool to obtain 

probabilistic properties. But this does not change the likelihood 

of the following analytical result: 

Would be theorem 1.  

Let B be a subset of A + Ae 

Let y be a point of A + Ae  not isolated in the topology T. 

Then there exists a sequence, yn, n in N of points of A + Ae  such that 

(1) yn  y 	for all n 

(2) in T as n 	00 

(3) B- i(t) Bpyi(t) 
n 

 for all t 0 and i in A 

This chapter is mainly concerned with the proof of a weaker 

result (and also with an important restriction on the choice of y). 

On the way some interesting related points are also investigated. 

Note that the countability assumption made earlier on Ae  

may be relaxed, if we choose a set B such that the corresponding 

semigroup and entrances are well defined as in Chapter V 53. e.g. 

if B is a Borel set for T. 

The cone of entrances relative to 
B
P(t) will be denoted by F. 

Naturally the first thing to check is the extremality in BF of 

the probabilistically defined Bpyi(t). 

Theorem 2.  

The entrance Bpyi(t) is extremal in BF for all y in A + A. 

To prove this result we use the th 3.2.2 of J. Neveu [ 7 ] of 

which we give a version adapted to our special pair of semi-groups. 
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For every f in F, we have 

Cu)r 	BP (t + s) = f(u)BP(t)BP(s) 

f (u) P(t)BP(s) = f(u +s)
BP(s) 

so that f(s)BP(t - s) is monotonic decreasing as s decreases to 0, 

for all t > 0. 

For all i in A and t >0, define 

(4) CP [ f ]i(t) = lim (f(s)BP(t - s))i so 

Ce[ f ] is an element of BF. 

Proof:  

(4)[f]i(t+u) = lim 	fk(s)Bpki(t+u-s) = 
sio 

k e A 

lim 
s yo 

   

f
k
(s) 	BPkj(t-s)B- D ..(u) = 

j A k 6 A 

(5) lim 
s4o 

fk  (s)B  pkj(t-s)]Bpji(u) 

jE A 	k e A 

In (5) the sums in brackets are monotonic decreasing as 

s tends to 0. 

Therefore the relation 

(5) 	= cp[f]i(t + u) 	< fi(t + u) < oo 

allows us to interchange the summation over j in A and the limit 

as s tends to 0 in (5) and we get: 

C, [f]i(t+u) = > 	lim[ 	fk  (s) 	(t-S)] P..(U) s i 0 	B-Dkj 	B 
jeA v  k 6A 

(P[f].(t)Bji  p(u) 

j E A 

For every Bf in BF we have 

Bf(u)P(t+s) = Bf(u)P(t)P(s) 

Bf(u)BP(t)P(s) = Bf(u+t)P(s). 
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4/ [Bi]i(t+u) = fk  (s)pkJ  .(t-s))pji(u) 

k e A 

Vicopii(u) 

lim s o 

so that Bf(s)P(t-s) is monotonic increasing as s decreases to 0, 

for all t > 0. For all i in A and all t > 0 define 

(6) W [Bf]i(t) 	110 (Bf(s)P(t-s))i  

T[Bf] is an element of F. 

Proof: 

First note that the limit in (6) is always finite. 

We have for all s 0 

Bfk(s)Pki(t-s) B fk   - (s)\), 	Pki-s (t ) - 

• ieA k6A 	k e A 	i E A 

	 Bfk(s) G  c < on 	by I.(16) 

kA 

hence 

f (s)pki(t-s) 	li msup> B  fk  (s) 	c < o  

k&" A 	 k eA 

Now we prove the entrance equation 

[Bf]i(t+u) = lto 	B fk - (s)ki (t+u-s) 

k e A 

= lim 
sio B fk(s)p(t-s)pji(u) 

j E A 

 

k e A 

As 	4/[Bf]i(t) is the limit of the increasing (Bf(s)P(t-4, 

we may interchange limit and summation in (7) to Set 

i lM 
SO 

je.A 

Neveu's theorem 3.2.2 in [7] reads as follows: 

There exists a positive band F contained in F such that CP and 41  

are isomorphisms between BF and P. Moreover IP and 41  satisfy: 

for every k in A 
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(8) y [pk  .( )]i(t) = Bpki(t) or 0 for all i in A 

and for every k such that Bpk  ( . ) is not identically zero 

(9) [Bpk  . (.)].(t) 	pki(t) 	for all i in A 

Proof of th 2  

The extremality of the trivial entrance is clear, therefore we now 

choose a y in A + Ae  such that Bpyi(t) 	0 for at least one i. 

We have for all s > 0 and j in A 

[py - ( • )]j(s)  = 110 > 	PYk( 81)BPkj 	) 	
GZ  p

YJ 
.(s) 

k e A 

so that for all t> 0 and all i in A 

rY El by . ( )11i(t) = 110 

(10) j EA 
(P • 

( • )].(s)p31  (t-s) 3  

   

p
YJ 
.(s)p..(t-s) = pyi .(t) J1   

j e A 

Let Bh be an element of BF such that 

(11) Bh 	9 [ py ,( 

Since 4' is an isomorphism (10) and (11) give 

\.1) [Bh]i(t) 	W [ LP [Py 	( • ) ]]i(t) 	Pyi(t)  

As y is extremal in F we can find an a in [0,1] such that 

4 [Bh]i(t) = 	of Pyi(t) 

which in turn yields 

[Py 	)]i(t) o( CP Bhi(t)  = 	[T1 	= 

As this can be done for every Bh in BF this implies the extremality 

of 	sp [pY • ( . )] in BF. 

By V (6) we get the inequality 

> 	Pyk(s)B pki(t-s) B- P  yi(t) 
k ‹-A 

and Letting s decrease to 0, this yields 

(12) CP by  .( . )]i(t) B yi 

Hence the extrewality in BF of Bpyi(t) itself is proved 
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Note that the inequality (12) is in fact an equality (as is already 

known for a state in A by (8). We have 

1 
B (13) CP [py • ( • )]i(t) =nlig > 	pyk  (-n) pki 	

1 ( t - - ) = 

k s A 

limco P[Xt  = 	xs4- B for all s in [ 	, t] 	xo = y] n  

But as n increases to 00 , the events considered in the probability 

are decreasing and we get 

limco P[  n t =i Xst B for all s in [il , t]3 IXo 
 = y] = n  

n=1 

P[Xt=i Xs4 B for all s in (0,t]l X
o = 

(14) = Bpyi(t) by definition (see V(5)) 

The equality (13) = (14) gives for all t 0 and i.in A 

(15) (19  [Py 	. )]i(t) = BPyi(t) 

Similarly we now extend the relation (9) to all y in Ae such that 

Bpyi(t) is not identically 0. 

We have 

(16) q)  [Bpy 	. )]i(t) =Jig 
1 	1 

B pykn ' 
Dki (t* n-) = 

 

k e A 

 

n Xt=i ( x =y] 

As n is increasing to oho the events considered in the probability 

are increasing and we get 

lim n=00 p[  U [7  
n=1 

X =i I X =y] = 

(1?) 	P[ B 	0 	Xt=i 
	

x =y] 

By our choice of y there exists a k in A such that 

0 <P[ -6B>t Xt
=k [ Xo=y] < P[ Ce 0 [ o=y] 

By the o - 1 law this implies 
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P[ 	B  > 0 J Xo=Y]=1 

If we use this last relation in the equality (16) = (17) we get 

for all t) 0 and all i in A 

(18) 	li./[Bpy 	( .)]1(t) = pyi(t) 

As a first attempt to show would be theorem I we imitate the 

stochastic case (see th II. 4) 

Recall that BA = 	i E A I Bpii(t)  .A  0 3 

Let BM1 
be the convex set of all the positive measures such that 

(19) 
k 6 

B
A  

BM(k) -
.S. 1 

and for all s > 0 and all i in BA 

(20) 	BM(k) BPki(s) 	BM(i) 

By Neveu's result (our th. II. 2 which holds also for substochastic 

semigroups) there exists an isomorphism from BF onto 
B  M the convex 

cone of positive finite measures on BA satisfying (20). Therefore 

to any extremal ray BF corresponds an extremal point of BM1. Denote 

by B(A Ae
) those extreme points which are not O. For every y such 

that p .(t) is not identically 0 for all i the corresponding entrance 
B ya. 

is extremal, as an extrdmal point of BM must be of total mass equal 

to 1, the measures 

(21)  
1 	

B 
R 
 yi 	' (1) 	i in BA . 

Br(y) 

(22) where 

are elements of 
B
(A A

e
) 

If 
B1(1) is an element of B

M
1' 

II (17) and II (18) hold with respect 

to BROO and we get 
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(23) liM 	I [4(1) B  D (),0]BR(1) = Bf(1) = ot, 

where 13D(A) is the obvious equivalent of II (20) 

Similarly to A* we define BA as the set of measures on BA which 

are limits of the measures of total mass equal to 1 generated by 

BA, 
 i.e. X = Bm(i), i in BA 

	
is in B

A* if and only if there 

exists a sequence in of points in BA such that 

1 
(24) Bm(i) = n=00 Br in/  

lim „ 	BRi
n
1(1) 	for all i in BA Br(in)  

Once again this set BA* is a compact metrisable space if the topology 

is the simple convergence one. 

To generate a measure on BA* by means of iBi(1)BDCA) as in th II 4 

we let 

Bg(,\ ; k) = Br(k) [B1(1)BD(.),  )] 	for all k in BA 

so that (20) becomes 

(25) Bf(1) = 	 7  
lim Bg( 	, dx) I DRxi.0) N0,a 	67  ,  

BA* 

Now we have 

43 	13.4 
	

A 
	(i) 	 (1),, 	i) 

	
r (k) 

k e&A 
	

ie.BA 

> 	 t;\ • `B cR'Jci( 1)  
rkE sA 	 je A 

;22 ) 

_ > 	, r,i  cil, _/  --E  l'i.  ( A 4 1 ) 
i 3 .1 	 i eB11. 

Hence if Bf(1) is the extreme point of BMl' associated with y 

(by (21) and (22) ) we may use the arguments of th. II 4 to show 

the existence of an x
o   
in BA* such that Bg( 	. ) 

as)' 	 . 	By the construction of BA* this is enough to get 

a sequence in  in BA satisfying (24) and it yields for all i in BA 

(26) 	1 	R .(1) = lim 	 1_, 777  B yi 	nr co BR ini(1) 
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1  
r(y) BPyk(s)  -s) 

If we hope to deduce (1), (2) and (3) from (26) we must check that 

the sequence in (26) converges to y in the topology T. By lemma p.27 

this amounts to showing 

lim 
	p.  .(t) 	Py1.(  t) 	

for all t > 0and all i in A 
n=0.0  InI 

But we get only =the f,ollowing inequality: 

every sequence in  in BA for, which (26) holds
i2
such that for all i in A 

and t 0 

(27) 	B 1 	
BrlIn 

1 y,-)pyi(t) 	lim 00  in f 	pi ni(t) 
n=  

Proof: of (27)  

By v(6) we have for all in, all i and all 	s > 0 

Pini(t) BPink(s) pki(t-s) 

BA 

If we divide both sides by Br(in) and take liminf as n tends to co 

we may use Falou's lemma to obtain 

liminf 
n= 049 

1 
I pi  . .(t) 
n  liminf

1 

00 Br 
k(s) (t_s) n= 

B n 	
Pki 

  

k E BA 

 

Let in be a sequence satisfying (26). The corresponding sums over 

all i in BA are normalised byBr(in) (see (21) and (22)). Therefore 

the lemma p 27 in its original form for substochastic semigroups 

given by Neveu implies for all k in A and all s > 0 

lim 
11:-- 

1 
Br in)Bpink(s' - B

1 
-77TByk(s) 

From the two last relations we deduce 

1  
I liminf 	p 

n= 	Br(in) 	nI 

k6 BA 

If s decreses to 0 in this inequality we get 

1 	1 liminf ,. p. .(t)? 	4qpn ( 	)]i(t) n= 	
Br (in) -nl 	B17-757 	IJ- Y • 
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1 2 
A +n 

 

-J 

which is equivalent to (27) by the equality (18). 

Note that this proof does not use the fact that in lie in BA only; 

so if we change in  in yn, points of B(A + Ae), such that (26) holds, 

the same inequality (27) is satisfied. 

The inequality (27) cannot be improved upon as the following example 

shows: 

Example 3.  
Let A be the set 	31; 2; 3; .... 	3 
Define the following conservative Q matrix 

1 	2 	3 

1 	0 	0 	0 

2 	0 	0 	0 	0 

3 	3 3.2 -32 

4 	4.3. 	0 	-42  

n n(n-1) 0 

As 1 and 2 are absorbing states the minimal solution is stochastic 

n -n
2 

and is equal to 

0 

• 1 	3 2  1 3 -3 1 _a  7 X+32  A+3 A +3 R()\) 
0 

1 	n 1 n2-2^ 0 
N+n- >.+n 

From R( )'\ ) we get 
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(28) 	
n= 
lim  R

n1 
 (1) 

=urn 
	

2 

	

= 0 	= R
21
(1) 

•5 	n 1 +n  

2-n (29) 	lim Rn2 	n (1) = nip 	n 
2 	1 	= R22(1) n=0. 	=co 1 + n - • 

(30) 	Urn R ni 
	nine 1  ) 4 1im 	

2 - 0 = R2i 	, (1)i > 2 n=0. 	=c,•• 
1 + n  

i.e. 	n tends to 23 in the topology T, as n 	00 

Note also that for all n > 2 

- (31) R
11
(1) - R

n1
( ) = 1 

2 	
1 	= 

n  + 1 

i.e. T13 is isolated in T. 

By the usual interpretations for Q (Cth.II. 5.5. and p.259) and the 

Xt+ version we can now describe the sample paths. Either they start 

in 1 or 2 which they never leave,.or they start in n > 2, remain._ 

there for a while and then jump to the absorbing states 1 and 2, 

with respective probabilities 1 / n and n-1/ n. Therefore if the 

point i.23 is dhosen as taboo set the associated resolvent is. 

equal to R(,\ ) except in the second row and column whiCh are 

identically 0. 

As 2  r (1) = 2R1k(1) = 1 

k/2 

2r(n) 
= 

k/2 

2
R
nk
(1) = 1 	n + 1  

1 + n2 	1 + n2 - 1 + n2  

the extreme points of 
2M1' which are given by (21) and (22) are 

1 	R
1i(1) 	for all i / 2 

n + 1 	n  	R i(  1) for all i / 2 

These relations imply 

1 	n2  + 1  	1 = 1 - 
r(1) 2

R11(1)  (32) lim 
r(n) 2 n R 	= lim 

n =co 2  

and if i > 2 

and 

2 < n2 + 1 



1 	R (1) lim n
2 

(33) 
+ 1 	1 	1 

pla, 
2r(n) 2ni n=o,

- 0 - r(1) 2R i(I) n+ 1 n2 + 1 	2 

Therefore F n1 is a sequence in 2
A = (1,3,4,...) such that (26) 

holds for y = 	13 and B = 	23 . 

Consider now (27) for i = 2, 

0 = P12(t)  = 	[2p1(1)]2 (t) 

?Mill. -770 P(t) = liminf n + 1  n-1 (1 - e
-n2t) 

2 	n2 	n ==w 	n + 1 
1 	2 	

CO 

Thus in this case (27) is a strict inequality. 

From example 3 we can also deduce the interesting fact that if T and 

B
T are the simple convergence topologies on A + Ae 

and B(A + Ae
), 

(as Neveu defines in [8]) then T and BT are wildly different. 

By (24130) and (31) we know that 

r23 	in T as n —' CO 

and 

1 1 	is isolated in T 

But (32) and (33) mean 

in 2T as n 

Next we prove a kind of converse to inequality (27) 

If the sequence yfl  converges to y in (A + Ae, T), then for all i in 

BA we have 

(34) limsup B p
yn 	BPyi i(t) 	(t) 	fOr all t > 0 

n=po 	- 

Proof of (34)  

We have for all s > 0 and t > s, and all yn 

(35) i(t) p (s) (t-s) y k(s)  B-ki 

kC E A 

Remember that the relation II (16) holds for all extreme points of 2•f1' 

i.e. we have for all s > 0 

 

Py k(s) = 
n. 

  

P k(s) 	= 1  

k 	A 	k E, A 
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This fact and the choice of a sequence yn  converging in T are 

enough by the Scheffe's theorem to check that the sum in (35) 

has a limit as n tends to ao , which then satisfies 

plogup Bpyni(t) 4
n=o0 	 p ynK  -(s)B  pkx  .(t-s) 

k a A 

and we get 

(36) limsup B pynx (t) > Pyk(s)  BPki(t-s)  n= 00  
kEA  

Now if we let a decrease to 0 in (36) we get 

limsup B  p .(t) 	4"4:,  Y [10 (.)].(t) n 	y x n 	y. 	x 

Finally this last inequality is equivalent to (34) by the equality (15) 

As the. inequality (27), (34) cannot be improved upon. 

Example 1 provides a trivial counter example. We have 	n3 — 0 

in T (see p.69) but relations V(36) and V(38) give for the taboo 

set B = St)  1, 2,... 

limsup pno 	B (t) = 0 <1 - p oo(t) n= 0D  

Thus in this case (34) is a strict inequality. 

Now look at what happens in this example under the hypothesis of 

would be th. 1 

f is not isolated in T. 

Every sequence in  such that 

in X 0 for all n 	(i.e. (1))  

in 	0 in T as n---, 000 	(i.e. (2)) 

has the property that 

Bpi (t) = 0 -/-> 	(t) = 1 	as n 	00  
no 	B oo 

Therefore would be th 1 is false in the case of a y in A and we  must 

assume in its hypothesis that y is in Ae. 

The results obtained so far are summarised in the following theorem. 
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Theorem 3. 

If B is a Borel set of )A Ae
, T) the topologies T on A + Ae 

and BT on B( A + Ae
) are completely unrelated but the following analytical 

inequalities always hold. 

- For any sequence yn  converging to y in (A + Ael  T), we have for all 

t 70 and i in A. 

(34) lims,up Bpy i(t) < gyi(t) 
n 

For any sequence yn  converging to y in (B(A + Ae); BT), we have . 

for all t > 0 and all i in A 

1 	 < 
(27) 755 pyi

(t) 
 liminf 1 

B n= 00 ---r—CrY pYni(t)  

Later on we shall need the ineouality (34) in its Laplace transforms 

form. As Bpy i(t) < 1 for all yn, i and t a 0, we can use Fatou's 

lemma in their respective Laplace transforms to get 
00 	 0' 

linsup n= oo B-y .(t)dt 

0 	 0 

t 
lims Bup p (t)dt n=0.0 	y i n  

Taking (34) into account, this shows that every sequence yn converging 

to y in (A + Ae, T) is such that 

(37)  riin1011  BRyi(  •)` ) 	BRyi( 	) n   

for all ,\ > 0 and all i in A. 

Here is a3:second attempt to prove Would be th 1. 

Choose y in Ae; then either Bpyi(t) = 0 

for all i in A and all t > 0 or there is at least one i in A such 

that B  p y
.(t) > 0 for all t > 0 

In the first case any sequence yn  in A + Ae such that 

yn 	y for all n (i.e. (1)) 

and 

yn 	y in T as n 	00 (i.e. (2)) 
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satisfies for all i in A and all t > 0 

( 38 ) 0 	liminf p 	..s limsup p (t) 
n= 0. B yni 	n= 0. B 

yn
i 

But by th. 3 (relation (34)) the last term is bounded above by 

Bpyi(t) which is equal to 0 by choice of y; hence limsun and liminf 

are equal in (38) and their common value is Bpyi(t) as expected. 

So only the second case remains unsolved and from now on y in Ae  

is such that BRyi( 	) is not identically 0 for one i at least. 

Lemma 

Let y be in Ae 

Let C be a subset of A such that there exist one i (kept fixed) 

in A and a A > 0 for which 

(39) sup BRki( 	) < BRyi( X ) 
k C C 

Then 

lim s0 	pyk(s) = 0 

k E16 

Proof of lemma  

As the inequality (39) is strict, there exists a S > 0 such that 

(40) sup BRki( ) ) 	B
R .( 	) - 

k c C 

Now let 	oc = le.i8sup 	pyk(s) 

. k 	C 

Choose a sequence sr  of strictly positive numbers decreasing to 0 

such that 

(41) lim r=00 
pyk(sr) = 

k e C 

Obviously 0( lies in [0,1] 

First we hhow that a. < 1, Assume the converse (i.e. do< = 1) and 

choose e > 0 such that 

(42) 2E 
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Pyk(s)BRki(  ) 
k E C 

-yk (s)B  Rk.( A) ) 
k E A-C 

By II (16) , (41) and our assumption we may find s( E ) > 0 

such that 

(43) pyk(sr) < e 	for all Sr < s( E ) 

k €.A-C 

By definitions  

BRyi( A ) - 
Byi 1Y(t)dt + 

0 

00 

re- t , 
Arikt)dt 

As e t  Bp .(t) < 1 for all t, we have for all s < min( g , s( 	)) 
yi 

The integral on [s, 	is equal to 
co 

)   B
pyk(s) 	.(t-s)dt 

k c A 

00 

(44) BRyi( n ) < e + 	e . Bp .(t)dt 

- 

 

Pyk (s)B  pki(t-s)dt 

   

9 
	

k E A 

By positivity we may interchange the sammation and the integration 

in the last term to get 
co 

p (s) e 
t 

yk 	BPki(t-s)dt 

k E A 

Pyk(s)BRk 

k E. A 

-As 	 -Xs 
e 	supBRki( 	) 	_ Pyk(s) 	e 

kG C 	k e C 
Pyk(s)  

k E A-C 

Now let s decrease to 0 along sr, the second term is bounded above • 
(see (43)) 

by C and the last expression remains bounded by 

Sup 	Bki( X ) imsup> pyk  (s r) e 
r=  

kE C 	,k E C 

sup k6c BR ( A ) 	 by 11(16) 
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The inequality (44) gives then 

BRyi(  ) 	surBRki(  ) 2  
kEC 

which by our choice of £ in (42) is incompatible with (40). 

Hence 01. < 1. 

As oc- is < 1 we can now proceed to prove c(= 0. 

Fix n in N and let Bn 
be the open sphere centred at y and of radius 

1/n. By II (38), for every "7 0 we can find sn( E ) such that 

(45)> 	pyk(s) 	1 - £ for all s < 8n( 6  ) 
k EB  

By the analytical arguments we have just used we get for all 0 < s < 

min ( 	sn( 6  )) 

(46) BRyi( ) 	s> pyi(s)Oki()) + 2 
k t; Bn 

As B is contained in (Bn 
- C) UC the R. H.S. of (46) is bounded 

above by 

e6> 
	pyk(s)B ki( A ) + 	s> 	

pyk(s)BRki( A) 4. 2 

k 6 Bn-C 
	

k eC  

Taking into account the inequality (40) in the second sum the last 

expression is bounded above by 

(47)  
-).5) 	).)? 	e-)‘5'(-Be.c (>` c5) 	 FIJk C's* 	

28 e ?up ki 
k 	keB„-C 	 E C 

So we have L.H.S (46) 	(47); next if we divide both sides by 

(48) pyk(s) 
k e B

n
-C 

we may rearrange the terms to get the inequality 

(49)  

-6T/X)1 1  - e-)*2) 	plk(r)]  

e -A2  	p/2, Cr) 
keTic-C 

e5  

As,  	 hi, Cs.) 
k 	- c 

N S'tto 	I,: 	• 
k€ e 	 fo,k  (S"') 
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BRyi  ( X) 	 sup 

k e Bn-C 

along sr  (49) becomes 

c,‹ 2 E  
' 	(1 - ¢ - « ) 

For all s> 0 we have 

1 - e- s) pyk(s) pyk(s) pyk(s) 
k C k E. Bn 

  

Hence the coefficient of B Ryi 	
) in the upper side of (49) is 

always 16 1. 

As s decreases to 0 along the sequence sr, (41) and (45) ensure 

that the denominator in (49)(which is (48)) is always bigger than 

(1 - e 	c4 ) 

From the two last facts we can deduce that as s decreases to 0 

Next let e decrease to 0 in this inequality to get 

(50) BRyi(A ) sup BRki( ) 
k eBn-c 

To establish (50) we do not use a particular property of n, hence 

as II (38) holds for all n we can find a yn  in every Bn  - C such that 

R 	) + 	
do(  R ( ) 

B yi 	12142›t 	n 	Byi 

From this we get 

R ()\ ) J  
yi  liminf 

B  R ( 	) 
n= 	y i n 

 

But as yn  is in Bn  for all n, yn  tends to y in T as n tends to 00 

so that we can use (37) to get 

limsup R 	) 	R ( ,\) 
n= ao B yn 	B yi 

These two last inequalities are obviously incompatible for o<'> 0. 

Therefore cc is equal to 0 and this completes the proof of the lemma. 

Now we fix A = 1 for convenience. 

In what follows A is not only countable but actually enumerated 

along N (i.e. we use the order relation of N to define subsets of A; 
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but this order has usually no relation whatever with the topology T). 

Choose a sequence of strictly positive numbers Cdj decreasing to 0 

as j tends to 

For all i in A define the following sets in A. 

Ii( 0'j) = ?k in A Rki(1) 	BR .(1) - ce 
j 

Note that Ii( Cjj) is void if either BRyi(1) = 0 or BRyi(1) 	0-j 

By definition Ii( Gjj) satisfies (39) of the lemma; hence we get 

(51) lim 	nyk  (s) = 0 s=0 	- 

k E 	0-j) 

Let A. = - A 	G ji) 

We have the inequality 

Pyk(s)  
k E 	i=1 k Li  ( 

The double sum above being a finite sum of sums satisfying (51), we 

get for all j 

(52) lim pyk(s) = 1 s=o 	 
k A. 

Now for n in N (or A) consider at the same time Bn 
and An. We have 

1=1 

pyk(s) 7 	pyk(s) = 1 

Cj) 	k cA 

(53) 	n (s) 	p k(s) 	'yk 
k e An B 	k E K:A n n 	n  

pyk   - nyk (s) > 	(s) = 1 

k e A-B 	k E A n 

If s decreases to 0, the sum over A-An 
in (53) tends to 0 by (52) 

and so does the sum over A - n 
by the known rroperty of T-neighbourhoods 

(II(38)), so that we find 

s=o = 	pyk(s) = 1 

e. An B n n 

This is enough to ensure that An  /-N Bn  is not void, and we can now 

choose in in An Bn 
for all n. Note that as A is a subset of A 

-11 
this point can be an in  and not just a yn, which might be in Ae. 
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B Ri k  (1)B Rki( 	) 
n 

 

By definitions of An  and Bn, in 
satisfies both 

(54) d(in;y) < 1/n 	for all n 

and 

(55) BRyi(1) 	0-h 	Bii(1) n 
 

for all i in A, 1 °: i.< n. 

(55) yields for all i in A 

BRyi(1) 	liminf BR(1) n= 00 	 i n i 

By (54), (37) can be used and gives for all i in A 

limsup R(1) 
n 	B i n i 

R(1) - B yi 

This proves that the sequence in 
which converges to y in T is such 

that 

(56) 
no n = C.3  

lim 	1(1) = BRyi(1) for all i in A. 

The convergence is now extended to all A 7 0 

(a) Case of X < 1 

for all in we have 

i( 	n BRi 	) = BRii(1) 4- (1-  )‘ n  

k c A 

which yields by Fatou's lemma 

(57) liminf R. .(X ) 	liminf 	.(1) 	(1- X cCj-  liminf 	(1) R (). ) 
n= 0,0 	- n= 00 B n 	

// n=c,0 B ink B ki 

k e A 

But by (56) , the R.H.S of (57) is in fact equal to 

	

BRyi(1) 	(1- X )› 	B Ryk 
(1)B k 12. .l( X ) 

ke A 

As we know that the resolvent equation holds for y ( Pee p RT_ ), 

(57) can be rewritten as 

nonlinf  B Ri i 	B ( 	) 	R .( 	) for all i in A 
a= o 	

n 	
yi 

Once again we use (37) and obtain 
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B
Ryi( 	) 	limsup R. 	(,X ) for all i in A 

n= 	B ini 

so that we have for all i in A and A 4 1 

(58) l
n
im 	R 	( 	) = Byi

( 	) 
00 Bi i n  

(b) Case of \ > 1 

First choose a /4.4 < 1; we have for all in and all i 

BRink(1)BRki(/ ) 
Bilyk(1)BRki()A  ) = 

k E A 
	

k c•A 

(59) 

(BRi i()(4 ) - BRi i(1) - BRyi(t) + BRyi(1)) 
n 

By (56) and (58) the lower side of (59) tends to 0 as n tends to 

hence we get 

n=e0 lim 	__ 1  BRi nk
(1)BRki(i/E.% ) . y B Ryk B i (1) Rk/,' ) 

-- k E. A 	 k c A 

(6o) 

limoB ink R 	(1) B K R, .a.  (f ) 	 n=  
k 6 A 

As 	< 1 < 	 we have for all k and i in A 

(61) BRki"` ) 	BRki(./LA  ) 

Consider the following sum 

1c E A 
By (61) the coefficients in parentheses are bounded by 1 for all k, 

so that (60) and the Scheffe's theorem are enough to give after 

obvious simplifications: 

(62) nib > 	Bi R 
 k 

 (1)
B Rki ( 
	) = 

n=rx, 	 
k E A 

n 
 k e A 

BRyk(1)BRki( X  ) 

Write the resolvent equation for in  in the following form: 

Bki( X  )  
	 BRink(1)BRki(/ ) Bki(/ ) 



c0 Urn B  R .( 	B ) = 	.(1 + (1- )) 
n n= 	 . 

BRyk(1)BRki( 	) 

k E A 

BRi i( 	) = BRi i(1) + (1- \) > 	BRi k(1)BRki( 	) 

k <A 

By (50)  and (62) we see that the R.H.S. has a limit as n tends to 00 

so the L.H.S. must also have one satisfying 

= 
BR .() ) 

This completes the proof of the following theorem: 

Theorem 4. 

Let B be a Borel set of (A + Ae, T). 

Let y be a point in Ae. 

Then there exists a sequence, in, n in N, of points of A such that 

-> y 
	

in T 
	

as n0.-01) 

and 

BRi i( X) = BRyi( ) for all i in A and all \ 0 
n 

This theorem is the so called "civilised" form of would be th1.(for 

a point in Ae). 

Unfortunatelly it is not clear if the two are equivalent. 

- 119 — 



BIBLIOGRAPHY 

[ 1 ] Paul-Andre MEYER: Probabilites et potenti 

M Hermann, Paris (1966.) 2 4e XI 

[ 2 ] Paul-Andre MEYER: Processus de Markov, Springer, 

Berlin-Heidelberg-New York, (1967.) ZJI 4o A/ 

C 	[ 3 ] Kai Lai CHUNG: Markov Chains with Stationary 

Transition Probabilities 12nd  edition, Springer, 

Berlin-Heidelberg-New York, (19670 

[ 4 ] Patrick BILAGSLEY: The Invariance Principle for 

Dependent Random Variables, TAMS, volume 83, no. 1, 

p. 250,(1956.) 

[5 ] J.L. DOOR: Compactification of the Discrete State 

Space of a Markov Process, Z. fur Wahrscheinlichkeits-

theorie, Band 10, Heft. 3, p. 236-251, (1968.) 

[ 6 ] H. KUNITA and T. WATANABE: Some Theorems Concerning 

Resolvents over Locally Compact Spaces, Proceedings 

of the fifth Berkeley symposium, volume., p. 131-164, 

University of California Press, (196 .) 

[ 7 ] Jacques NEVEU; Lattice Methods and Submarkovian 

Processes, Proceedings of the fourth Berkeley 

Symposium, vol. II p. 347, University of California 

Press, (1961.) 

[ 8 ] Jacques NEVEU: Sur les etats d' entree et les 

etats fictifs d' un processus de Markov, Annales 

[9] 

de 1' Institut Henri Poincare, vol. XVII, p.323, 

(1961 - 2.) 

D. RAY: Resolvents, Transition Functions and 

Strongly Markovian Processes, Ann. of Mathematics, 

vol. 70, pp. 43 - 78,(1959.) 

-120- 



[ 10 	Stanislaw SAKS: Theory of the Integral, 2nd  edition, 

Hafner, New York, (1937) 

[ 11 	Henry SCHEFFii: A Useful Convergence Theorem for 

Probability Distributions, Ann, of Mathematical 

Statistics, vol. XVIII, D. 434 - 438, (1947) 

[ 12 ] W. SIERPINSKI: General Topology, University of 

Toronto Press, (1952.) 

[ 13 ] David WILLIAMS: Fictitious States, Coupled Laws and 

Local Time, Z. fur Wahrscheinlichkeitstheorie, Band 11, 

Heft 4, p. 288 - 310, (1969.) 

- 121 - 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121

