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ABSTRACT

This work is about the entrance boundary of the Markov
processes in a countable state space A. The analytical definifions
of J. Neveu and J.L. Doob are shown to be equivalent. The entrance
boundary is an extension of A which has the following property:
every process with values in A has a sténdard modification with
values in the entrance boundary and which is right continuous and
strongly Markovian.

We show that the size of the entrance boundary is the best
possible but in some cases its topology is not the finest to keep
the process.right continuous. We attempt to metricate the finest
topology by means of taboo semigroups, where the taboo sets are
subsets of the entrance boundary. A solution is found in two
very simple examples, which are introduced for their interesting
topologies on the entrance boundary.

We investigate the relations between the entrance boundaries
of the original semigroup and of a taboo semigroup. In varticular,
we show that for every point y of the entrance boundary, but outside A,
we can find a sequence of points in A which converées to y in both

entrance boundaries.



CHAPTER I

Intr oduction

Throughout this work we use the following notations :

N = the set of all positive integers
Q = the set of all rational numbers

R = the set of all finite real numbers
R, = the interval Lo, )

R_: = the interval (O ,co)

II (16) [resp, th II 2] is written to refer to relation (16) in Chapter

II [resp. to theorem 2 in Chapter II]. If the roman number is not
wri‘c;ten the reference is to a relation (or a theorem) in the same Chapter.
To begin we give some basic notions on general processes. 3By way of |
simplification‘_definitions and results will be quoted mainly from
P.AMeyer's books [1] and [2], and in this case M XI8is written for
Chapter XI, no. 8 in [1] or [2]

Let 5 be a set and £ be a ¢"~field of subsets of E.

A transition semi-group on (%, £) is a family of real valued functions,

P (t)y xin E, B in €, t in R, say, such that ‘

(i) for 211 t>o, and all B in €, the function 5 (t) 3 xin E— [0, 1]
is€measurable |

(ii). for all t> o and all x in B, the function Pyp (t) : Bet—~[0, 1] is
a measure on &

(iii) For all x in E, all B in€, all t>0and 211 s> O

f " Pray (t) Pon (s) = Pyn (t+s)
E .

Such a semi-group is usually extended to t = O by setting for all x in
-' p.g (o) =fx (B)
Yhere E,x (. ) is the atomic measure concentrated in x and of total

mass 1.
The transition semi-group is said to be stochastic if all x in E and

all t>0
P i (t) =1

-5=



A family of measures on (I, €) m.(t), t>0 say is called an entrance

relative to P.g (t) if for all B :'m€, all £t>0 and all s> 0 we have
X/V/A (t) Py3 (s) = Jay (t+s)
dy
E

o ,
Let{1l= ER+ and denote its elements by w.

Let?’rlbe the ¢’~-field of ) generated by the co-ordinate X (w) = w_, t> 0,

£
say

If the entrance/u_(t), t> 0 relative to thas stochastic semi-group
130 (t) is such that

/E (t) = 1 for all t>0

M.(t) is called a stochastic entrance.

By M XII. 12 there e:xdists in this case a probability measure P[L Jon
(N,¥ ) such that
(1) PL X, (w) e B] = A ()

for 211 B in € and all t> 0, and

tn

PL X, (we 3’Xt (we By X (w) e B, 1 X (w) =x] =
(2) 1 2 n-1

PLX, (we3| Xe (w) = x] = p_q (¢

n tn—'i?
n-1

tn

for all x in B, all O<t, <t,<.<t <t and all B, B,,B,, B, , in € .

117213 n-2

The equality of elementary conditional probabilities in (2) is called

the ¥arkov property and Xt (w) is then a Markov vrocess with PyR () as

transition function.
Let (1 ,¥ ,P) be a probability space and % be a sub- & -field of F.

If £ is a F-measurable function defined on 2 s the conditional expectation

of f relative to§is a (non uniquely defined) G-measurable function

to be denoted by E[f| (] which satisfies

g E[ flC]] Pldw] =§f(w) P [aw]
G G



for all G in §G.

: t
The conditional probability of a set B m? is a G-measurable function

to be denoted by P[B|G) which satisfies
f plBle] P [aw] = (IB (w) P [dw]
G G
for all G in G, Iy (w) being the characteristic function of B..
Denote by ?t (resp %) the ¢ -field of {1 gencrated by Xs (w), O<sst
(respe. X (w))t<s)
By M II 51, (2) is equivalent to
(3) P[A M}‘S’t] = P[A lxt] P [1 lxt] 2eS.

for all A in¥,, all M in t9 s all t> O, vhere the conditional expectation

t!
relative to a random variable is the one relative to the C’-field generated -
by this random variable.

A random variable € (w), possibly infinite, is called a stopping time

relative to an increasing family of C- field Gt’ t>0 if

[T (W)= tleG, for all t>0
I f G is the C-field generated by the union of all gt, the elements B
in G _such that '

BalT (w)< tleG for all t>0
form a C-field, denoted by G;, it is the set of events preceding ¢C.
If ¢ is a finite stopping time relative to ?t’ we may associlate with any
w inl and any s> 0 the point )i(w)+s (v) in ®. Under certain conditions
this new random variable is measurable (see e.g. M IV. 49). In this case

and if for all B in £ and all s20

(4) Py, e BBl =P %eB| % aus,

T+S

the process is said to enjoy the strong Markov proverty.

Ifz%’: is the c¢- field generated by )§+s’ s% 0,then by M II.51 the condition
(4) is equivalent to '

(5) PLA nlg] = P [4] X P [u]x;] a.s.

for a11A in¥; and allM in ¥ .

Two processes X+ (w) and Y, (¥), t in some interval I of R, defined on the

t
same probability trivle (N +% ,P) and with values in the sane snhace



(E,€) are said to be standard modifications (or versions) of each

other if : N

Plw| %, (w) =Y, (¥) J=1 for a1l ¢t in L.
Let E be a compact metrisable space. |
A process Xt’

to the closed sets ofiE, if there exists a countable set S dense in

t in Rt’ with values in E; is said to be sep~rable relative

R* such that if C is a closed set in E and i an open interval in R,
then the event .
L let (w)e C for all ¢ in SAI] - [ w'Xt (w)e C for all t in I]
is contained in an evént of probability zero.

A right continuous process is a process X , tz0 with values in a topelogical

space such that

i=d let (w) is right continuoﬁs at all t20] = 1
In this work we deal only with countable state spaces which are denoted‘
by A. Results and definitious concerning this particular case will
usually be quoted from K.L.Chung's book [3] and C th. II. 3.3 will then
be used for theorem 3 inéq of part II in [3]. We now give some basic
facts about this special case.
We consider the C-field of all the subsets of A.

A transition semi-group on this measurable space is called a transition

matrix, i.e. a set of functions Piﬁ; (t),iin A, J in 4, and t >0 such that

(6) Ospiy (%) for all £>0

™) FEA o, (8)<1 for all t>0

(8) B (& +5) z;p{'k' (£) 1 (s) for all £>0 and all s>0

e always have the additionzl condition of stochastic continuity, namely

(9)

limpy’. (s) = Jij

-0 1] -
Naturally we extend pij (t) to t = O by setting pij (0) = é;j, and

(pij (t) ) is said to be a standard transition matrix.




:

The conditions (6) to (9) are known to be enough to ensure the continuity
in t on [0,ee) of all the functions pij (t), see e.g. C th. II. 1.3.

We will also use the eguivalent matrix notation

(11) P (t) 1< 1 vhere 1 is the unit vector (1,1,1y.e+) in the
BQAR,GL( = - =

Hilber$ space of bounded sequences indexed by A

(12) P (t +s) = P(t) P(s)
(13) lim P(s) = I where I is the identity matrix
Seo

An entrance relative to (pij (t)) is a set of functions £y (), 14n\, t>0

such that
(14) o< £, (¢) for all t>0
(15) £, (t +8) =ka (t) pki (s) for all t>0 and all s>0
ke A '
(16) swp) £ (8) < oo
0< t< DokeA

Again in the vector matrix notations the family of vectors £ (t), t>0 of

BC«-AQGB Seres

the Hilbert space of converging sequenees indexed by A is an entrance

relative to P(t) if only if

(1?7) 0 < £(t)

(18) - £(t + 8) = £(t) P(s)

(19) sup I £(£) | < oo
O0<t<oo

where the norm is the one in [ .

Note that in the stochastic case (i.e. equality in (7) or (11) for all t)
we have f£(t) = c. Hence (19) holds vhenever lf(s)|| < for one s>o0.
The set of all entfances relative to F(t), including the trivial one, is
easily seen to be a convex cone which will be denoted by F.

We recall now some definitions about cones.

A subcone F of F is said to be thick in F if the conditions feF, f<F and

f<f ( the order being the inner order in ¥) imply fe F.



A subcone F is a positive band of F if it is thick in T and if every

nonvoid bounded abové subset H contained in T has a least upper bound
In a cone F a point f is extremél if for any g<{f there exists anxin
[0, 1] such that g -~ £
We will also use the extremality of points in a convex set, C, Say e
- £ is said to be gxtremal in C if the equali{:y f =g ¢ (1 =x) h, vhere o
is in (0, 1) and both g and h are elements of C implies £ = g = h;
Now if P(t) is stochastic and if p(t) is an entrance such that

ieA
We can apply what was recalled before about entrances relative to stochastic

transition semi-groups.

Let o
24
L) =a"
A _ . :
Xy ( w(A) = the t - co-ordinate of w (A) in (L (4), t>0
A
F (A) =cfield generated by all X, 5 £>0
then there exists a probability measure PA [ 1]
on (€1 (a), $(4) such that
. PA ) .
@) TIx ) =1)=p; @)
for 211 i in A and all t>0, and |
A
A PR DN S =3 ] . : C o a
(22) il M EAEE SR SR LI Py (b

for all i1liﬂrwin in A and all O<;t4 < t2< .. <'tn
If the discretz topology is used on A, then it is even possible to find
a standard modification of Xi separable relative to the closed sets
(see C th. IT. 4.3)., However it is not always possible to find a standard
modification .0f this process which is right~continuous and enjoys the strong
Markov property.

Therefore it is useful to find an extension of A in which such a standard

modification may be ohtained, Observe that the Alexandroff compactification

is geﬁerally of no use in tnis problem (cf. C th II. 9.3 and notes following

- 10 ~



II. 9)
Before proceeding to the description of our work, we give an account of the

manner in waich A is imbeded in a bigger space E in order that a vprocess
A ‘ )

X'b in A may be considered as a pfocess in E.
Let E be a topological spacé and € its Borel ¢ -field. Assume that the
measurable space (E; €) sé.tis;fies
(i) A is contained in E -
"(ii) every point of A considered as a suhs;t of E is an element of €.
Let .

QB = 5

Xf (I:I(E)) = the t-co-ordinate of w (E) in Q(E), t> 0

@ E
¥ (8) = ¢-field generated by all X,, t>O0

t!
A :
We call an element of ‘:? (Z) elementary if all the factor sets are equal

to the whole space E, except a finite number of co-ordinates t’l’ ta MRTOI tn

say, where the corresponding factor sets are B1, B2, Btn Borel sets

- :
of E. On suchA's we may define a finitely additive function P”[ 1 vy

setting '
(23) P°la ]=p* [ €BinA, XPeB nAy o , X* ¢ B, A4l
A P t, Tty th Tty
TR
Where the set in the second bracket is measurable in A, since every subset

. in A
of A is measurable there.
By Caratheodory's theorem (e.g.M II. 25), P°[ ] can be extended in a
b
probability measure on (L (%); ‘F (1)), which we also denote by P[]

-

B
Natuurally for  the process X, t>0 we define

t _
E E E

(24) P L xt‘I € Bt1, xfze Bta, . )ane Btn 1=pr[Aa] .

(23) and (24) give in particular

(25) POy (u(®) = 43 = PAT X () = 41 = 55 ()

for 211 t>0 and all i in A,

Similarly if O« ti< t2<t3 ...

we have the following equalities of elementary conditional probabilities

<t and th’ Bta, . Btn are in €

- 7 -



B B E E

P L €B,_ | X  eB X~ eB, 1=
tn” Ttnl Tt Y P Ttp-1 Ttpg

B T '

PU L X e By XE,eBt,’ J xfn_,,e By 4 3
n

P* [ . e B, xf eB, ]
1 1 n-1 -1

PAL XY eB A, X e nna xA e B, n AJ

th € Ttn” U Tt S Tt T 6 T

PA[XﬁeBtr\A, _ X‘: eBt N AJ

1 1 ' n-1 n-1

4S the Markov property holdg for Xﬁ , the last term is equal to

A ™ i
P [erB nA xA,e‘BnA] -P“[xE €eB,_, X, &B ]
) tn tn tn;1hq _ tn » tn tn_1 tn-1
“‘
P eB A 1) P [ X B ]
t t t t
n-1 n-1 ) . ) E n-1 n=1

(27)
E E g
P [thes.tnl XpqeB . ]
n-1
A
The equality (26) = (27) means that X; s t>0 is a Markov process, moreover

if we put Bt = 1 and Btn = j we can deduce that its transition semi-group

n-1
is P (t).

30?2:25y entrance p (t), t>0 relative to P(t) satisfying (26) we can associate
two Harkov processes, one with values in A and the other with values in

E. 3oth have P(t) as transition semi-group and n(t) as absolute distribution.
From now on we shall distiﬁguish between them simply by saying the process

in A (or in I) and drop all the indexing by A (or E) of 12,9 and so on.

To close this Chapter we give a short summary of the other Chapters.

The general content of this work is the'extensioﬁ of A (in the sense of (i)

and (ii) in p 11 by the so called entrance boundary,

In Chapter II,§ 1 we set out the analytical definition given by J.Neven [8]
the definition used by J.L.Doob in [5] is the subject of the second vparagrah.

In § 3 these two definitions are shown to be equivalent as was stated by

Doob in p. 237 of [2] .

- 12 -



Doob's proof is used in Chapter IIT to show that every Markov process
in A has a standard modification in the entrance boundary which is right
continuous and enjoys the strong Markov property.

Much of the content of these two Chapters is of course only a rearrangment
of pavers [5] and [8] and is introduced here for the sake of completencss.

In Chapter IV we see. that the entrance boundary is the smallest extension
of A on which the right.continuity of almost all trajectories can be expected,
In Chapter V we are mainlj cﬁncerned with the ﬁopblogy defined on the

entrance boundary in Chapter II, Chapter V may be said to throw some
darkness on the relations between the analytical aﬁd tne probabilistic
properties of P(t). The frivial example 1, in§ 2 shows that this topology
is not the best for oﬁr purvoses. Then in a search for a better one we
define in § 3 the taboo semi-group where the taboo set is in the extended
space. In fact we.try to define the best topology by adapting the techniques
used in Chaptér IT to the taboo semi-groups. But they appear to be Aifficuli
to handle in this respect and the example 2in¥ 4 is given to rule out
the most obviousAand seneral attempts in this direction,

Finally in Chapter VI we obtain some interesting analytical results
about the taboo semi-groups.

Among other vapers on the entraﬁce boundary =nd dealing partly

with countable state spaces are Ray [9],Kunita and Watanabe [6], and Williams

[131.

-

p¢}
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CHAPTER II.

Analytical Definitions of the Entrance Boundary.

0 Two preliminary results.

(a) A theorem on the weak convergence of probability measures.
Let E be a topological metric space and d its metric.
Let & be the C—-field of its Borel sets.
let /.A- and s+, n in N, be probability measures on (E;& ).
Let C(E) be the set of all bounded continous functions from E into R.
/un is‘ said to converge weakly tomas n—eo M -—‘—"r/l.& ’ ii_‘ and only if
ME— puf as n— e for all f in C(E).
For every measurable funct:'_.on f and every real number X define the

functions ¢ and Pn by setting

@ (£300) = (f50¢)

(pn(f; < ) =/V\;i(f7<x)' -

Lemma (which is a simplified version of theorem 2.1 in P.Billingsley [4])

The following statements are equivalent

(1) /V\n -—w—9/‘/\ as n —» oo

(i1) m(F) = Linsup _/«An(F) for all sets F closed in E.

(iii) For any measurable function, which is continuous except on a set
of M - measure zero we have

%;qlo(fngf; ) = P (f; <)

" At everyx where (¥ (f,« ).is continuous
Proof:
(1) => (ii) (which is reproduced here from [4])
Choose a closed set F
Let
U5=2’x,d(x, F)<5} where 0< O

If 5r is a sequence of positive numbers decregsing to zero we have

b



() g _-7) =&

r=1 T
hence
l%ggf/A(UJr-F)=/A(¢) =0
Fix £>O and rchoose a 55 such that
M (U‘;E -F) <« &£

Define f(x) as the following function

f(x)_ d(x, E'- UJE )

" a(x,E - Ug, ) + aGe:F)

As the denominator is bounded away from O by JE' s £(x) is continous,

alvays between O and 1, equal to 1 on Fand to Oon E - U A

We have then
M F) < e o for all n
R e | by (3)
ME 2 m(F) + €
We can deduce that
%;niup /(An(F) < M (F) + €
This ineéualii:y holds for every £ so that (ii) is established.
(i1) => (iii)
First note that (ii) implies
(G () = pan g (®)
for every Borel set B such that its bo@duy (to be denoted
by B) is of A=~ measure zero.
Choose aB such that /M(ﬁ) =0
We have for all n.

1 —/(An(Bc) =/'~4n(B)

Hence

(1) Lm in £ (1 -/Mn(B°)) = Ljm in £ /“n(B) < limsup u (B)

- 15-



But B U B is closed so that (ii) implies

(2) lIJ'igsoyp'/un(B) < limsup /un(B UB) S M (BUB) <

o (B) + m(B) = m(B)
similarly as BCUB is a closed set we have
(3) Lmin £ (1- . (3)) > _u(B)
And from (1), (2) and (3) we get (ii)'
Now pick an f satisfying the hypothesis of (iii) i.e.
/(A(Df) = O where D, = i’ y , f(x) is discontinuous at y§
Let < be a point of continuity of (@ (f, =)
Let C ={x I f(x) < o(%
We have C =(x f there exist two sequences ¥ and z;
such that 11m ¥y = lim z2, =X and

i=o0 i=o=

ji €C for all i in N z,4 C for all in N

C is contained in Ch(E - Df) U Df

For every x in Ca(E - Df) we have

x » £(y;) — £(x) as i — oo
and
x < f(zi> ~ £(x) as i —s o0
so that
f(x) = «

and this shows
CA(E - Df) c gx [f(x) = o&g
where the set on the R.H.S. is obviously equal to
oo
A Y-

1 =1

3 < 3
ok-l<f(x)\ o<+13

By choice of &« we get

/U\{Qq g) =lir£§§1f/(/\ ({x[o&-g«f(x)ﬁ o«+-]j-3>
lin in £ [C((f,“+%)-((’(f,o\-%)]=o

16



so that
o (@) \</a(§x]f(x> =o<ﬂ s (D) = O
and we can apply (ii)' to C and obtain

lim £ (500 = Q25 «)
(iii) = (1)
Choose a bounded continuous function f. In fact as f is bounded we may even-
assume 0 < f<< M<oo,
As D, = & '/”*(Df) = O and f satisfies the hypothesis of (iii).
The function ¥ (f, =) is monotonic and hence has at most a countable
number of jumps; let I be the set of those points. For every positive
integer r and every j < m(r) choose an %5 not in J such that
0= oS8 < Fo< e < Am(r) T M

and

[y

Biﬁsm(rsakj - akj_q) i 0 as ? tends to o

we have
_ n(r)-1
(%) ME = lim jz=0 ey M (akj<f < akj-(-']) =
m(r)-1

Mo, > sl €l ) - @ fia )]
j=o0

As all 3y ; are outside J and /«(Df) = O we can use (iii) and the last

sum becomes

m(r)=1
iin, x]iénclpo Z akJ[ (en(f’akjm) - (Fn(f;akj)]
j =0

The positivity of all terms is ensured by the monotonicity of all
Lfn(f,. ) and the sums themselves being monotonic increasing in r

we can interchange the limits to obtain
m(r)-1

) pim lm o S gl @ (e 0) - (e 0] = W Ke
70 -

The equality (4) = (5) is the statement (i).
Theorem O

1’4 .
Let be a Borel set in a metric space E, consider the induced topology

;.1? -



on B, it is also metric with the same metric (restricted to B).
If m and S, are probability measures on E, all fully supported by
W w
B such that /(.An —\>/q. on E, then /un —> M on B. |
Conversely if M —L’y« on B the measures extended to E by getting
/un(E - B) = O for all n tend weakly to s extended to E in the same way.

Proof:

A set F' C B is closed in the induced topolbgy if and only if it is
of the form BAF, where F is a closed set in E,.

We have

Mo (F') = (BAF) = s (F)

M (F') = m(BnF) = u (F)
By the lemma we have _

limsgp 4 (F) < _m(E) F/ |
- Hence limsup m (F{) < /lA (FI) is true for all closed sets in the
induced topology and by the lema again this shows that /unf w}f
as n tends téw for all bounded continuous functions defined on B.
The converse is obvious as any continuous function on E restricted
to B is continuous there.
(b) A result which we shall need very often is the following theorem

of Heny Scheffé in [II] . From now on we shall refer to it as
Scheffé's tﬁeorem.

Schefféls theorem:

Let (E, £ , M) be a measure triple. If fﬁ(x)’ n in N, is a sequence

of positive € - measurable functions defined on E such that

%i.!‘l,lo fn(x) = f(x) for m - almost all x
and
%Ergo ffn(x)/\ (ax) = ff(x)/u (dx) =< oo
E E
then
din ﬁfn(x) - f(x)l M (@x) =0 uniformly for all sets
° B in €

- 18-



1 The entrance boundary as defined by J. Nevel,

Contrarily to Nevei in [8] we restrict our study to the
stochastic case (except in the last chapter) for the following
reasons:

a) it is always possible to increase ‘A by an additional absorbing
state & and so obtain a stochastic matrix on Au {J3 (see €ege
C th. II 3.3.).

b) we want to compare the entrance boundaries as dqfined'by Neven
and Doob in [5L but Doob works with stochastic matrices only, |
hence the procedure a) has already been used.

tle begin by quoting two essential analytical results about entrances.

Theorem 1 (Neven's th. 2.1.1in  [71 ).

For every i in A, f,(t£) is continuous in t on (o,}o ), and tends
to a limit fi(o) , say, as t tends to 0. Morever the vector f(o)
satisfies |

f(o) P (t) < £(t) forall t> O

For all X > 0, define R, (%) and £,( 2 ) as the following Laplace

transforms.
-ht . .
Rij (XN) = e pij(t)dt for all i and j in A
0
T, (M) = fe_ktfi(t)dt for all i in A
0

The 2 (Neveu's vroposition 1 in [8]).

The Laplace transforms ?i ( )\ ) are such that

6) [T < oo for all A\ > O
@ TN -F ()= (h=2) FOOR (x)  for allhand w> 0
8 T (2)»675%(A)P(s) for all A> O andall s > 0

Convergly 1°

. . : A
, any family of positive numbers fi()), iin A, \>0
such that (6) and (7) are true is the family of Laplace transforms.

of a uniquely determined entrance relative to P(t).

-19 -



Convergly 2° if m(i), 1 in A, is a sequence of positive numbers such

that

(9) Z m(k) < o0

ke A

(10) m(i) = e">‘s Z m(k) pki(s) for one A and all s>0
' ke A :

then there exists a uniquely determined entrance relative to P(t),
f(t), say, such that

(1) m(i) = fe‘”’ £,(t) dt  for all i in A
0

If we consider the elements in the cone F which satisfy the additional
6onditions:

(12) 2 T (s) = 1 for one (or all) s > O
kea * |

then every convex combination of such elements satisfies the same
inequality (or inequalities), and hence those entrances form a convex
set, F1, say.

Let M, be the set of all positive measures on A(i.e. sequences of

1

positive numbers indexed by A) such that

3 2wk < A

k<A

(1)
e~° Z m(k) p ;(s) < m(i) foralliin4, andall s> 0
KeA

We remark that M, is also a convex set. There is a one-to-one correspondence

1
between M1 and F1.

Proof:

' A
a) Obviously the relations I (15) and (12) imply that £(1) is an
element of M1 for all elements of F,. Furthermore if f(t) and
A A
g(t) are two elements of F, such that (1) = g(1) then theequation

(7) gives

(1) + (1=2) FDR(N)
2(1) + (1=A) BODR(AN ) = %(N\)

FON)

i

<



or
N A ..
£5(t) = gi()\) for 211 A>0 and all i in A
But by th. 1 we know that £ (t) and g;(t) are both continuous on
(0,), hence this last equality is enough to check that
£,(¢) = gy(t) for 2lliin Aandall £>0
b) ConverSly if S[m(i), i din A{ is in M,, by th.2, there exists an
entrance f(t) in F such that (11) holds for A\ = 1. Since P(t)

is stochastic we have for t > O:

S sy f(t)[z feplkcs)as
i<A

i=A kA
-5
=f £,(8) py () ¢ ds
i=A keA
| oo

BN R
f_/___ fk(t+s) e S ds = }:: >- f (s) p.k(t) e ds
ke J
o

ke A
o

Z f (s)e™%a (t) -_-2 m(j) < 1

JéA keA Jjeh

(=7

an hence £f(t) is indeed in F1.

Now if m,l(i) and mz(i), i in A are both in M, and such that

: fg_'(s) = fi(s) for all i in A and all s> O
then oo o0
sy -Sai B -5.2 _ .
m1(1) = (qe fi(s) ds = Joe fi(s) ds = mz(l)
[/] (]

We consider the single convergence topology on M1 and denote it by T.
I.f o and m are in M1, m'— m in T as n tends to oo y if and only
n”(i) »>m(i) as n tends to-s for all i in A. If@,, iin A, isa
sequence of strictly positive numbers such thaf their sim over all

i in A is finite, then the topology T is metrisable by setting for
dlmemdm'inM:

d(mym') = (9 ’m(m) - m' (.1)

1cA
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A metric space is compact if and only if every sequence of elements
has a convergent sub= gquence,
Let gmn(i), i in A% be in M, for all n in N, then m?(i) is in
[ 0, 1] for all i in A and all n in N; hence by the diagonal procedure
we may extract a sﬁbsequence n, such that m (i) tends to m(i) a point
of [ 0,1] as n_ tends to co for every i in A.
The inequalities

e-sZ n (k) p(s) < wt(d)

‘keA :

for all s>0, all 1 in A and all n and

E k) < 1 for all n
ke A

yield by Fatou's lemma
e"sZ. m(k) Pki(s) < m(i) .
keA

for all s>0 and all 1 in A and

Z nk) =< 1

ke A
Thus the measure { m(i), i in AY) lies in M., and we have m™~

1’
converges to n in T as ., tends to o ., This establishes that
(M1, T) is a convex set, which is a compact space for the metrisable

topology of the simple convergence.

Th 3.

For every k in A, the measure ?Rkif'l), iin A} is an extremal
point of M1.
Proof: First notice that I.(6); I.(7) and I.(8) ensure that

{\ R}d(1)’ i in Afi is a point of M,. Now assume

Rki('l) = ot m(i) + (T-x) 1 (i) for all i in A

where m and 1 are in M,], and 0 < =< < 1,

22,



By th. 2 there exist two entrances g(s) and h(s) such that for all

iin A

cOo
m(i) = ( e-sgi(s) ds = /g\i('l)
ODO
. -8, A
1) = fe L&) ds = B, (1)
0

In fact their Laplace transforms exist for all >\> 0 and

satisfy for all i in A.

(A "'DZ jg\j('l) Rji(A) = /g\i(‘l) - @i(%)
' jeA

A A A
.(/\ -1)2 hj(‘l) Rji(A) = h, (1) - hi()\)
jeA
which in turn imply for all i in A

R () = BN = (e ) R () R (A) =

j<h
A A
(A-'l)i [°<gj(1) + (1=e<) 'h,(2) ] Ry (A =
i A
By (1) =By (N + (1=00) By (1) = (120 B (N -

A A
Hence Rkio\) = o(gi( A) + (1=-) hi()\) holds for all A> O and
all i in A, and from this we deduce the following equality
(13)  p(8) =g (t) + (1-=) h,(t) for all t> 0 and all i in A.

Now use th 1 to define g' (t) and h'(t) by
g'(t) = g(t) - g(0) P(t) =2 ©
h'(t) = h(t) - h(0) P(ti > 0

where g:__:L(o) = lig g;(s) and hi(O) = lip h, (0)

As g(t) and h(t) are both in F, ve get gi(O) < 1 and hi(0)< 1
for all i in A. But if we let t decrease to O in (15) we get for

all 1 in A
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i :o(gi(O) + (1= x) hi(O)
And the two last facts imply
Jki = g, (0) = b (0) for all i in A

50 that(15) can be rewritten as

P (B = p (8) + gl (8] + (1- «) hi(t) for all £>0
and all i in A.
As g'(t) andh' (t) are both positive the last equation is possible only
if
gi(t) = h]!_(t) = 0 for all t> 0 and all i in A which implies

m(i) = 1(i) = ()e_s p;(s) ds  for all i in A

o
i.e. S{Rki(ﬂ, iin A% is extremal in the convex set M1.

Naturally with every k in A we associate the element {,Rki(1)’

and we gay write A ¢ M DefineAé:as the set of

1 1°
all the extreme points of H1 different from those of A and not equal

iin A3 of M

to the trivial measure O.
Definition:
The set AfAe(contained in M1) with the topology induced by T is

called the Nevel entrance boundary for P(t) and will be denoted

by (AfAe,T).

By th. 2 we know that with any x in M, is associated a uniquely

1

determined entrance relative to P(t). This entrance will be
denoted by pxi(t), iin A, t> 0 and its lLaplace transforms by in()s),
iin A,)\;>O. For every y in Ae the corresponding entrance is such

that

o0

Z (;'s py;(s) ds = 1

. [
ie A

If this were not true, i.e. if this sum were equal to c<1, then
P

(1=¢) 0 + ¢ gwe-s % pyi(s) ds for all i in A

4

24—



would be a non-trivial convex decomposition of y in M1, and

¥y would not be extremal in M As we know that pyi(t), i in A,

1.

t >0 is indeed in F1, we can cbnclude

(16)AZ pyi(t) =1 for all t>0

Th. l+.

A is dense in Ae in the topology T.

Proof: Pick an -element gfi(‘l), in AE of M,. The following relations

are known
(17) '1\'(1)2 AE(1DR(A+1)  for all A> 0

(18) am [ (+1) (1) RO - 2] = 0

(190 [ XEOD [ =c (=1 as ve are in ) for all 2> 0

(20) Let  £(1) D (A) = M (F(1) =XF(1) R (A+1)) 2 0

1) [ £ b OIRM = X[ £(1) R (1) =>F(1) R (A +1{]=
ALE R () =T R () + T+ R (1]=

(22) (1) - T\ +1) =

(23)  XNE(1) R (O +1)

By the resolvent equation, (22) is increasing as ) increases to oo ;

s0 if we use (18), the equation (21) = (23) for all) yields

(@) 23m FLE D OO R () = FD)

Define A* as the set of measures on A which are limits of the measures
generated by A, i.e. x = {’ n(i), i in A% is in A* if and only if

there exists a sequence i, of points in A such that

(25) m(1) = R, (1) = Lin R

lim ini(‘l) for all i.in A

If the topology on A* is the simple convergence one (see definintion
of (M,l,‘l‘)p.ﬂ then for reasons similar to those used for M A* is

a compact metric space.

25~
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(20) is Z [£(1) D (M R (1) for all iin A
ke A

and hence {E\(1)D (M) may be considered as a measure, g(\ ; dx)

say, on the Borel sets of A*, which is fully supported by A.

(24) now becomes

(26) /f\i(1) = Jim f g(X’sdx) R (1) for all i in A

) A*

WBETe (N3 A% = | Me(#) | < 1 for a11)> 0

by (19).

The set of all measures of total mass € 1 on a compact set being

itself compact, we may extract a sequence A."f' incregsing to oo

such that g( ), ; dx) —> 1 (dx) a measure on A*. By the very definition

of A*, in(1) is continuous from A* into R; hence (26) gives

(27) ?i(1) = f))(dx) in(1) for all i in A
A*

A . 3 A 3
If £(1) is extremal in M,s we have n £\l 1, so the corresponding
measure V( . ) must be of total mass equal to 1, and indeed fully
supported by the points in A* such that

E in('l) = 1
icA
As Y (. ) is not identically zero, there exists an x, in A* such
that any neighbourhood on of X, is of strictly positive Y -
. . A
measure, We may write fi(‘l) = f)) (dx) R:d(1) + v (dx) in(‘l)

Vx A¥=Vx
o o

Now if V (on) < 1, we get

AL V (dx) v (dx)
£,(1) =V(Vx9) f W R (1) + (1= (vx ) 1:u_(v{Y R, (1)
Vx ATV

(o]
L (dx) R_.(1)

d the extremality of £(1) impli /1'\(1)
an e extremality of £(1) implies f. = v(on) xi

Vx
(o)

for all i in A, and all on.
- 26



Choosing as neighbourhoods on a sequence of open spheres centred
in x  and whose radii decrease to O, the continuity of in(1)
ensures that
A
£.(1) = R_i(1) for all i in A
i X,
Now we turn back to the definition of A* to obtain a sequence

in in A for which (25) holds, and we get

- A 3 - L - -
(28) fi(1) = Rxoi(1) = %éE,Rlnl (1) for all i in A

This completes the proof of the density of A in Ae for the topology T.
For a fixed y in A+Ae and every'ﬁ?O the entrance pyi(t) generates
a measure on the Borel sets of (Md,T) in the following way. For

every Borel set B define pyB(t) by

(29) pyg(t) = > B, ()

ieAnB
In fact as this measure is fully suéported by A we may also consider
it as a measure on the Borel sets of (A+Ae; ).
The 5.
These measures satigfy two interesting properties:
(i) the strong Feller property
i.e. for any bounded measurable function f defined on (A+Ae,T),
with values in R, we have
;§z:j pyi(t) £ (1) is a continuous function from
icA
(AfAe,T) into R, for every fixed t > O.
(ii) the stochastic continuity property
i.e., for every bounded continuous function f defined on
(A+Ae,T) with values in R, we have
lin Zpyi(t) £ (i) = £(y) for all y in AA_.
ieA

lemma (which is the proposition 2 of Nevey in [8]).

If m and mn, n in N, are .elements of }, such that

1

27,



(30) :E:: , i) - m(l)] as n —> ©©

i A

then their corresponding entrances f(t) and £*(t), t>0 are such that
(51 Lim f?.(t) = £,(t) for all i in A and for all t > 0

Moreover the convergence is uniform on [a,c»] for all a > O.

Proof, (which is reproduced here from p.326-7 of (8.

For any entrance f(t) and any i in A we have for O:< u <y <o

v . oo ' oo
f e-tfi(t)dt = ()e’tfi(t)dt - re-t £, (t)at =
u u v
) o
f -t “f (t+u)dt - f"t Vf (t+v)dt
(o]
Z i (0 fe £, (t)at -Z pk (v) f‘e £, (£)dt
kéA kel
Hence
v v

l Fe—tfni(t)dt - fe—tfi(t)dt J
I > [ - (1] ey )

ke A -y
- j{: [fnk(1) - fk(1)] e pki(V)
keA

As e-spki(s) 1 for all s>0, all k and all i in A the last term

2 Z [ o) - m(k)[

ke A

is bounded by

so that if we use (30) we get for all i in A

v ) v
(32) ' %i'é‘o f e~" fni(t)dt =f e-tfi(t)dt

u u

By I (15) we have for all n in N, all i in A, and all O« u< t e

£, |
itwp, (b-u) < £ (8)
Hence
v-u v
e'ufl_l(u) () e Sn_ | (s)as< (’ ~~t . (t)dt
= Fi J T
) u

28



If n tends to oo in this last inequality, (32) gives

v-u v
e I -5 < -t
e = limsup fg(u) jﬂ e pii(s)ds\ Jﬂ> e fi(t)dt
) u

Next divide both sides by (v-u) and let v decrease to u, as fi(t)
is continuous we obtain

(33) .
limsup fz(u) < . fi(U)

By using I (15) again we have for all n in N, all i in A, and all

O<t<v '
£2) s 2 [ py, -]
and hence
v v
jﬂ e—tfg(t)dté fje-tfg(v)[PiiCV—t)]-1dt
u u

e-ufg(v)[inf pii(s)]-1(v-u)

T0< 58 K1-v=u

If n tends to oo in this inequality, (32) then gives

v
l -t < -, . . . -1
= fje fi(t)dt e liminf fg(v) [inf pii(s)]
u 0< 5% V-1

The continuity of fi(t) ensures that when u increase to v this inequality

becomes

(34) fi(v)‘$ liminf £3(v)

Since (33) and (34) hold for every strictly positive number and all
i in A they - are equivalent to (31).

As P(t) is stochastic, (30) yields for all t»0

E fk(t) =Zm(k) =n;:1;>nZ m“(k) = %ggz fg(t)

ke A ke A k A ke

This fact used in conjuction with (31) is enough to yield by the

Scheffé's theorem



(35) %;g:jg:_Jfﬁ(t) - fk(t)} = 0 for all t>0
‘ ke A

If t>0and s>0 we have for all 1 in A

!f?(t+s) - fi(t+s)

| /Z f;(t) P (8) - 5 £,.(£) pki(s)( <

ke A keA

Z}f;(t) - fk(t)}

kel
This inequality and (35) prove that the convergence in (31) is
uniform on [t, oo], for every t> 0, and the lemma is then established.

Proof of th.5 (i)

Suppose y converges to y_ in (A+Ae,T), i.e.

y=yﬁ1m Ryi(1) = Ryol("l) for 211 i in A

The additional condition (true on A*Ae)

ieA ie A

is then énough to give by the Scheffé's theorem

: E | | _
a!:'sl.rlm lRyi(1>-Ryoi(1)} = 0

°© iea
gggse the le applies and it yields

lim (t) = .t for all i in A and 211 t> 0
By pu®) = py (0

But (16) holds for all points of A+A_ so that if f is a bounded
measurable function defined on A+A_, the relation (26) and the
Scheffe's theorem imply for any fixed t> O.
1 At)F(1) = (4
yzytm E Pyl( YE(1) g Py-3 (1)
ie A ieh

i.e. (i) is true.

0.



Proof of th 5(ii)(reproduced here from p. 328.9 of Neven [8]).

Fix i in A and consider the function defined for all x in M1, as

the value of the measure x on the Borel set gl% y x(1) = Rx_i(‘l).

The function in('l) is continuous from (M‘,T) into [0,1] by the very
definition of the single convergence topology. -

Pick y in A+Ae, then as M, is compact the measures py.(t) which satisfy
p.. (t) = p_{t) =1  for all £t>0, have at least one weak limit for a
IMy YA .

suitable sequence tn’ n in N, decreasing to O. Let such a weak limit

be /u( ); it has the property that /A(M,I)ﬁ 1.

By definition/ /o\ is such that in particular

%ilgv rpy;{x(tn) in(1) = r/"‘ (ax) in(1)
M M

1 1 oo
ButZ pyk(tn) Rki(1) = _;_ pyk(tn) Y ?-s pki(s)ds

ké.A kéA 3
= fe-sz pyk(tn)pki(S) ds

¢ kea
= fe"sZ pyk(s)pki(tn) ds

p kea

kea

and the last term tends to RyiM) as t, decreases to 0. Hence we get

(37 ﬁu(dx)R}d('l) =Ry; (1) for all i in A
M

1
By an argument similar to the one used’to show the density of A in Ae,
(37) and the extremality of y in M,y imply that M) = €y( e
As (37) is true for any sequence {’tnrzx , Qy( ) is in fact the
weak limit of py'(t) as t tends to O.
By a theorem of Choquet (see e.g. M XI 24) we know that O + A + Ae
isa Gy - set in (1,,7). Since AHA = (M-fo)n(o + A+ 4) it

is also a G‘; -~ set and a Borel set of M,].

S



As gy( ) and py.(t) are all fully supported by A ¥ A, th O yields

n ) e (0500 = £)
kea

for every bdunded continuous function defined on(a + Ae’ T),

i.e. (ii) is true.

Another remarkable consequence of the lem is the following.

The function pyi(t) is not only continuous from (A + Ae,T) into
[0,1] for a fixed t>0 and a fixed i in A as established in (36),
but is in fact continuous from (A+Aex(o,°o); Tx (euclidean topology))
into [0,1] for every fixed i in A. This is readily concluded from Fhe
uniform convergence an any [a,o° ), a> O.

We now establish a useful property on the neighbourhoods of y in
(A+Ae,'1‘). If V is a neighbourhood of y, then for every ¢>0, there
exists a 1:E > 0 such that

(38) :>: pyi(t) > 1-€ for all t < t.
icVaa

Proof:
By the lemma of paragraph O we know that if E is a metric space,
the probability measures on its Borel sets /('\t converge weakly to

the probability measure /{Ao as t tends to O if and only if
Yimsup M (F) < _u (F)  for all closed sets F

By conplementation it yields

%gxginf/(ﬂt(G) 7//Ao(g) for all oven sets G

Now the statement (ii) in th 5 is p, (t) YEy(.) on A*A_ as t tends
to O. As every neighbourhood V of ¥y must contain an open set containing

v, G(y) say, we get
liminf pyv(t) 7 1itnl:'8nf Py G(ﬁ,(t) z gy(G(y)) =1

and this implies (38).
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Another result which will be used later is the following theorem
Theorem 6

If y is j_n'M;]-(A+Ae), then the measure pygt) does not tend weakly
to gy( . ) as t tends to O on the set 141.

Proof: The case of y = O in ¥ is obvious and hence we assume

y £ 0 in the following. !

By M XI 25 and M XI 29 we know that foz_- all y not in A+Ae, there

exists a uniquely defined measure Y (. ) on A+Ae such that

v(0+A+Ae)=1

and f
Ryi(1) = Y (dx) Rx_i('l) for all i in A
A+A
e
Equivalently by the Fubini's theorem
(39) py_i(t) = Y (ax) p(t) for all i in Aand all t> 0
A+A
e
As vy (. ) is fully supported by the extreme points of M,, we can
find a point z in A+Ae such that all its neighbourhoods are of
strictly positive V - measure. By choice of y, y is different of z,
and so a suitable ¢+ 0O may be found such that the closed sphere
centred in z with radius € ’ B (z , € ) say, does not contain y,

If we let

alxs B(z, €£))

£(x) = A7) + A7) for gn x in M,
then f is a continuous function defined on M,] which satisfies
f(y) =1
0 < f(x) <1 for all x in M,
f(x) =0 ‘ for all x in B(z, € ).

Now by (39) and positivity we have

Z pyk(t)f(k) = '? S"(dx)pxk(t)f(k) =

ke €A KEA_

e

A"‘Ae ked
I3

(40) = ()V(dx\,_s... n o (e & (1)
. J'}:K\" - Ny



The sums in (40) are bounded by 4 for all xin A+A and they converge
to f(x) as t tends to O by th 5(ii) and th O. Hence we can use the

Lebasgue's dominated convergence theorem to get

lim E Pyk(t) f (k) = f;(dx)f(x) <

kea A+A
e

1=V (Blz3¢) <1 = £(y)

and this proves th 6.
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2. The entrance boundary as defined by J.L. Doob,

With every k in A associate the following countable set of

non-negative numbers
(1) k—’i)\Rkl(%) i in A, A in %}
where Q.= Qn (0, c0)
(41) is a vector of the countable product space

= [0,1]x[0,1]x[0,1]x. , where the unit interval is taken
Ax Q, times. If we consider on C the simple convergence topology
(again denoted by T) then C is a compact metrisable spacde(as Kg was)
As pki(t) is continuous on [0,c0) for fixed k and i in A, its Laplace
transfoem is also continuou; on (0,c0) and the values ,kRki(.X) for
all\ in Q, are enoQgh to determine /\Rki(>\) for all )\ in R_. Hence

2
in C are identical, then the values Rkli()\) and R, (A ) are also

if two points k1 and k, of A are such that their corresponding vectors

equal for allAin R, and all i in Aj but this yields

Pia(*) = B 3(t) for all >0 and a1l 1 in A
which in turn implies k1 = kz.
Hence A may be considered as a subset of C.
‘Let K be the set of Gll the points § = {?i() ), i in A, X in
Q,_% in C such that there exists a sequence of I;oints i,y in A for

which

2) Ti(h) = &0 A R, 1()\) for all A in @ ), and all i in A

By this very definition K is a ctosed set in C and therefore is

a compact metric space for the induced topology.

Define Ko as those elements in K'for which there exists one,X in

Q such that
W D T =1
ie A

This property does not in fact depend on a particmlar j\.
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Proof:

By (42) we have ifu is in Q

(%) 2 3.,y o ‘ ..
3 71()\):111%210121111()\) for all l‘lnA

I]iii.__rg, Rlnl (/u) for all i in A

and;f—?i (p)

As all in are in A we have for all 1 in A

Rini()\)-R:L:L(/u) (= }\)Z Ri k(AR Cu )
k A .
and by (43) 2
) 1 k(X))
45)  m 2 R k</\>=—;=Z-———/\-—
k-ea kep

If we take the limits as n tends to oo on both sides of the resolvent
equation, (44), (45) and the Scheffé's theorem allow an interchange

between sum and limit so that we get

R T F YO\ E T PO R (/:A-/\>Z?kc/\)nkcﬁ>
X Sz
k ea
for all/u in Q+ and all i in A.
If we sum this last relation over all i in A we find
12%(%) _ ) Bsa = -X)Z?k(A)Zrzkc/u)
ieA ,/* icA k-.eA ic A
Since P(t) is stochastic and using (43) we get

J—-Lz?i(/‘)= (p=X) 1.1
A M4 iea A M

(&7 § ?igfa ) =1 for all Yz in Q

icA
From (42), (47) and the Scheffé's theorem we can deduce that (46)

holds for all ,X in Q+ and all/}t in Q* .
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As usual (42) for >\ = 1 and Fatou's lemma give

Z ?k(’l) e-spki(s) < Zi(’l) for all s>0 and all i in A
kige A _ |
Furthermore if 3% is in K;(#?) holds for A = 1 in particular ;

the measure on A defined by E?i('l), iin A % is then an element
of M,‘. Hence by th. 2 there exists an entrance relative to P(t),

Pz (t), 1 in A, t > O and its corresponding Laplace transforms

R;i( )y i in A, M in R, say,such that
oo

Zi(1) = re'b p,y (8)at  for all i in A

o
and by stochasticity and (47)

(QS)ﬂZR?i(/A)=1 forall/AinR+
ieA i
Ve have for all i in A and all/u inR+
Rz i(1) = Rgi(u ) = (/A—’I)Z R 7 k(1Rki( 1)
' kel

or

?1(1) - R?i(/u ) = (/4- 1)271{(1)'121:1(/ )

ke A
If we compare this last relation to (46) for A = 1 and 4 in Q_wve get
(49) wR5ilm )= $4(m)  for all u in Q_and all i in A

But (#ﬁ) also gives for all i in 4, all N\ in Q, and all u in Q

‘ 1
i fGaa) . . Tie]| < |« -%))*-f
= = /- M ARt

So that ¢ i( . ) has a continuous extension to all ¥ in R,,

satisfying for all i in A

Z. I . § ) :

1(\’)-/};3:@?1 (/u)-}}gg /(AR?I(/IA)—”R?ZL(U)
MeQ, MeQ

If we use the Schefféls theorem, these last relations and (48) are

then enough to allow an interchange in (46) of summation and limit as

M tends to ¥ along Q , and this proves that (4§) holds for the
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extended ¢i( .) for all Ain R, allm in R and 2ll i in A,
with

As in §) 1 we associate every g in Ko and every t>0 a measure on

the compact space K, by gsetting

(50) Py B(t) = § P 3i‘-(t) for all Borel sets B in (K,T)
ie BnA

The set Kb is defined as the set of all?in Ko for which Py (t) does
not tend weakly to E?( . ) as t tends to O. K, is called the set
of Abranchiné; points.
For & fixed i in A, the function {i(1) is continuoﬁs from (X,T)
into [0,1]; hence the sum function
Z?i(ﬂ is measurable and lower semicountinuous
ieA '
from (X.T) into [0,1]. Since KO is the inverse image of 1 by this sum
function, it is a Borel set of K and indeed a G - set.

Proof:

If £ is a lower semicontinuous function in a metric space then by
Saks p.43 in [10] the set

; >4 \ f(x) < a’i
is a closed set for every real number a.

Ve have .
gx[f(x)=?.§=fx/f(x)$ a}nn {);clf(x) >a-ﬂ-’§
n=1

Again in a metric space every closed set is a Gg - set (see th 84
in Sierpinski [12]). hence the set on the left hand side above. .
is an intersection of two G- sets and thus itself a G§ - set.

If Y is in K - K the measure p, (t) and é}( . ) are all fully

[4
supported by the Borel set Ko C K, so that by th.0O the weak convergence

also holds on Ko onlye.
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If k is &n A, (43) obviously holds forf)Rki(X ), iin A ,
}\ in Q.& , and so A is contained in Ko. foreover as pkk(t)

tends to 1 as t tends to O we get

o) (t) Y€ (.) as t tends to O
k- k
and A is in fact a subset of Ko - I{b

Definition:

The set K - K_ (contained in K)with the topology induced by T is

called the Doob entrance boundary for P(t) and will be denoted by
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3 Equivalence of the Nevey and Doob entrance boundaries.

In this paragraph we prove that the Neveu and Doob definitions
are equivalent. First we construct two mappings ( & and ¥ )
connecting these two entrance boundaries and then we show that they
form a topological isomorphism.

Construction of the mapping § defined on A + Ae with

values in K ,

Choose a y in A + Ae' By the density of A in A + Ae’ relative
to T, (see th. }6) there exists a sequence i,, n in N of points
in A such that

(51) Ryi(1) = lim Rini(1) for all i in A

On A + A, this condition is enough to check (30) and we may apply

the lemma p to get
Pyi(t) = I]ilgoopini(t) for all t > 0 and all i in A
As all these functions are bounded by 1, the Lebesgue's theorem

on dominated convergence yields for all A >0 and all i-in A
0 ol

At : -t
e Pyi(t) at = lim e pini(t) dt

o o

(52)

We nov define a mapping $ (y) from y in A + A, into C by letting

53 [ ¢ W] (r)=pim A, ;(X)

for all A in Q and all i i A
This mapping is well defined as the value ¢ (y) does not depend
on a particular choice of sequence in « Let in, n in N and ir, r in N
be two sequence in A such that
Ryi(1) = Lim Rini(1) = %EELRiri(q)' for all i in A
The equality |

=5 RA() = ) R = D Rid (1)

ieA ieA igA

4o



vhich holds for all n and r, allows us (by Scheffé's theorem)

to interchange summation ahd limits in the following

_ %E&Rinim + (1= A) Z %i’&Rinkm B ()
“keA :

it

dim Rini( A)

W

HLK )% (=00 Ha R () B (A)
ke p ‘

it

Mo R 3(A)

T ,
for all A in q ond all i in A. And this shows that & (y) is
uniquely defined. The topologies on A + Ae and C being those
of the simple convergence, the relations (51), (52) and (53) imply
the continuity of ¢,
As y is in A + Ae’ we have

1 =ZRyi(1) iR i(1) = Z [ & il

ie A iel ie A

hence we get the inclusion
Ga+nr ek

If x and y are two distinct points of A + Ae’ then in('l) £ Ryi('l)
for at least oneiin.A, but by definition of é(r (et (51) and (53))
this yields

[d Gl (s [&
so that ¢ is one-to-one from A + 'Ae into KO.
If k is a poinfc of Ac A+ Ae’ the special sequence in = k, for
all n, may be chosen to define @(k), hence for all A in Q, and

ald i in A

[3 ) (A)=1m AR (X )= XR,(X)

m
oo

(54) i.e. § (k) = k in K_ for all k in AcA + A_.

Construction of the mapping Y defined on K with values in H,].

Pick a ¢ in K,i as noted before (§’ 2 D 37) the measure $ i(1),

iin A, is an element of M'l' Define the mapping 9_7 from Ko into M'l’
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by letting

5 Yz ); = €4(1) for all iin A

Y (3 ), being the projection of { on the countable product of
unit intervals indexed by i in A only, is obviously a continuous’
mapping relative to the simple convergence topologies on Ko and M,I.

On K the equation (46) holds

kel

GOT-70 = (=X FR (X))

Hence the equality Y (2) = ¥ (z) yields
F0N)=ZfN  forall A inQ endalliin4
so that ¥ is also one-to-one from Ko into M1' If k is a point

of Ac Ko we have

‘P(k)i = R (1) for all iin A

(56) i.e. ¥(k) = kin M, for all k in A ¢ K
Each of the mappings $-¥ and 9-& (whenever defined) i& the identity.
Eroof:

The relation(53) for A=1in particular gives

[ ¢ )= R;(1) for all i in A

as by (55)
Yez)y, = 3,1 foralliina
we get
Yy (é(y))i- = Ryi('l) for all i in A

Hence V¢ is always defined and-is equal
to the identity mapping on A + Ae.

Let § be in Ko' i.e. there exists a sequence in A such that
Z(X) =3im ARiICA ) for all Ain Q and all i in A
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By definition of ¥ (see (55)) we have
Vegog= M -gn® () foralliima

I P(3 ) liesin A + A, then $(¥( 3 )) is defined and

must satisfy

(3¢ P (ITNL(X)=1im XR, ,(\) forall Ain Q and all i in A
) i oo ii +

where ir" r in N is a sequence in A such that
LinRLi(1) = ¥P(3); =1imRi i(1) for all i in A

But as we have just seen when checking the consistency of the
definition of ¢ , the fact that W( 3 ) is in A + A, is enough
to ensure that $( ¥ ( T )) does not depend on the sequence

used and we get

[$ (P (I NL(X)=1im XRLI( A ) forall A\ in Q and all i in A
= oo

Hence 9-¥ is equal to the identity mapping on the subset of Ko where

Y()is in A+ A

We proceed now to prove that (A + Ae" T) and (KO-I'%,T) are topologically

isomorphic by @ and ¥ .

By th. 2 we know that with y in A + Ae and ¢ (y) in K are associated

two entrances pyi(t) and p 3 (y)i(t)’ say. As their Laplace

transforms satisfy the resolvent equation the equality
Ryi(1) = [@(yji {1) for all i in A
is then enough to get
Pyitt) = - P&(y)i(t)  for all t>0 and all i in A.
Now fix y in & + Ae' As before we consider the measures generated
by Pyi(t) on A, A + Ae and A v { y‘% ", and the measures generated

by P (y)i(t) on K,and A v T@ (yji. Note that all these

neasures are fully supported by A.

b3 .



By th. 5 (ii) we have

Py.(t)l> gy(.)ast—»OonA+Ae

Note that these measures are fully supported not only by A + Ae
C M., but also by the smaller set Au £y1 . Since this latter
set is countable it is a Borel set of A + Ae and from the th. O we

deduce that for all bounded continuous functions g defined on A v ?y%

lim 2 ‘ pyk(t) glk) = gly)

kea

we have

Let f be any bounded continuous function defined on A v g § (y)z\
c Ko. As § is one-to-one we may let
g(x) = £( & (x)) for all x in A u (%
and the function g is bounded continuous from A v fy'{ into R,
because fﬁ is continuous.
By (54) we have
glk) = £( & (x)) = £f(k)  for gll k in A

Hence we get for all t> 0O

(57 > pultdgli) = S b g oy (8) 200

kea
According to the remark we have just made about weak convergence
on A v {yg , the L.H.S. of (57) tends to g(y) as t tends to O.

But by construp{;ion we have g(y) = £( @ (y)) so that

(58) P § (y) - () LS E,@(y)( . ). ast —-0on A v {'@ (Y)}

A1l the masures in (58) are fully supported by A v ?% (y)'ﬁ , whith
is a Borel subset of Ko’ by its mere countability and we can use th.0O

| to ensure this weak convergence on Ko. But the points of Kb were
defindd as those in K_ which do not enjoy this property (see § 2p38)
and it proves

(59) DA+ A)C KK



For the same reasons with any t>0 and ¢ in Ko - K we associate
the measures Py. (t) on Ko and on A v 5:;% ¢ K, and the measures

. Pwl 7 ). (t) on M, and A U ?&( 4 )% C M, which satisfy
(60) P\P-'.('{)i () = 3 i(t) for all.i in A

Iet g be any bounded continuous function defined on A v f@_ (3 )‘S

C M, As ¥ is one-to-one we may let
£03)=g( ¥ (3)) forall 3 inAvil] ck
and f is abounded continuous function defined on A v {?'5 because

¥  is continuous.
By (56) we have
f(k) = g( ¥ (k) = g(k) for 211 k in A
As above the weak convergence of Pz . (t) to £'3( . ) as t tends

to O may be consideredas only on A v f’{% and we obtain

Ln D by g R0 =3 =gl ¥ (3
ke A

Again the countability of AU {EV (3 )} and the th. O prove this
convergence on M1' itself. And this is enough, by th.6 to check
that Y (7 ) is an élement of A + A, so that

(61) ¥ (k -K)CA+A

By the fact that ¥-3 =T and the relations (569) and (61), we
obtain

A+ A= P (¢ (a+A))) C ‘I/(Ko-xb)CA+Ae

and

A+A = T (K -K)
Similarly and using (61) to make sure that &:% is defined on
V% (Ko - Kb) and is then equal to the identity we get

K, - K, = §(‘I’(K0-Kb))c @(A+Ae)cxo-1cb

K, -k = & (a+a)
We have now proved the following theoren
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Theorem 7.

A+ Ae and Ko - Kb, both with tkeir simple convergence topologies

are topologically isomporphic by the mappings _JE and 4 .
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CHAPTER III

Markov Frocesses on the Entrance Boundary

Throughout this chapter the topology considered on the entrance
boundary is always T we write A{'Aé for (AtAe, T) and Ko~ Kp for
(Ko~ Kp 5 T

Let p(t) , t> o be an entrance relative to the stochastic

semigroup P (t) satisfying

Z P‘ (;_) = | for all t>o

(1) A

~ Then as pointed out 1n Chapter I the main interest of the

entrance boundary is that (as stated by Doob in theorems 3.1, 4.3, 7.1
- and 8.3 of [5] ) a right continuous process in K- Ki can be found
such that its absolute distribution is equal to p (t) for all t > ©
and satisfying the strong Harkov property with the transition semigroup
extcnded to the entrance boundary by means of II (50).

The existence of a Markov process in At Ae with similar properties
is obvious from the existence of the topological isomorphism ':P from
Ko- Kp into A + A, defined in II (55).

Indeed if Xt , £t 2 0o 1is a process in Ko - Kp defined on the
probability trirle (& ,¥ , P ) which has the properties jﬁst described,

then the process Yt, t> o defined by letting

Yt (w) = Y (Xg(w) ) for all t>o, and all w in .0,
has the same properties in A+A,.

Froof:.

AsY is a topological isomorrhism );(w) is right continuous from
tin - [ o,00] into A+44A, for a fixed w, whenever X (w) is right

continuous, Ience Ytis right continuous with probability one.

Next for all Borel sets B in A+Ae and all t 2 o we have
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[w[Y,(weB T=[ul xzte ¥w) 1

so that all the c’-fields generated by Xt or their corresvonding \,t
are identical. A stopping time for \/t is then also a stopping time
for Xt. By IT (40) for t> o and trivially for t = o, we get for

all Borel sets D in K - Kb,a11¥ in K, - Kgand all t > o the measure

equality

()
P YO T ap,, P

These two last facts are enough to ensure that the strong Markov
rroperty which holds for Xt‘ must also hold for X’t(with the transition
semi—groﬁp extended to A +A, as in II (29).

As the analytigal construction of A + Agneeds only cne auxiliary
space (namely M1) instead of the two (K and K, ) used in the definition
of Ko = Kp; A +A,  seems slightly simpler than K - Ky . Thus it
might be interesting to see if a proof of the existence of a right continuous
strong iarkov process in A+A, can be obtained faster than in Kol- Ky,

(and not using ¥ ). If we proceed alonz the lines of Doob some results
are easier to check; unfortunately it turns out that the use of A+ A4
instead of Ky - Ki is no real simplification.

hat follows reads as a cory of Doob's zroof, exceptthat the spaces
Mq and A+ A, are used rather than K ; X, K - K.

As seen in Charter I %o every stochastic entrance p (t), t > o,

relative to P(t) ve can associate a larkov process X 4, t>o0

defined on a probability triple (f;F;P) and such that

2y »p i(t) =P [ X, (w) =4 1 for all t>o



and

(3 PLx (wWe A1=1 forall t>o

As usual the C=ficld‘¥ is completed.

H1 is an extension of A in the sense of (i) and (ii) I p 11 and

X t>0 can be considered as a yrocess in M,. But as?? is completed
t 1} & . 2

1
and M, is a compact metrisable space we can apply M. IV L3 to get a
1

standard rodification of XZi separable relative to the closed sets of I

and again de-noted by X¢

Now fiz an i in A and consider the family of random variables

-t _
(4) e th () i (1) for all t>o

This family forns a separable super martingale relative to the
c-fields .(?f- , t> o (which are as usual those generated by g ,0<s st
and containing all null sets).

Yroof:

Let s'€9 <t and choose an elementary event of %é of the following form

A=T[Tw | XSJ(W) =k ] for one k in A
e have
(5) le~t Ry 3 (D[, 1 P [av] =

-t
e R_ .1 P [aw]
}(tl

é};
Af

By (3) this last term is equal to

[}
[N
—t
1l

5%% e-t Rji (1) p[A Xt (w)

D et Rys (D Py (=t ) » LA 1=
J€A -
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Similarly we get

re—s R;{S> i (1) P lav] =

AL oo

(?7)

(8) PA] 8" f) e™V prilv) av
£-5 '

But the ineguality (6) < (8) yields (5)s(7) (for all s's s<t and

all k in A) and this completes the proof that (4) is a super martingale.

As the functions in (1), i in A,are continuous and separate the points

of M4, we find by M VI 3 that almost all sample paths have a right limit

in Mq for all t > O, to be denoted by J{t , £70,
The super martingale (4) is also such that
-t ' A -t
(99 fe Ry (1) P [av] —Ze R, (1) p(¢)

Q ke A
By (1) and the Scheffé's theorem we get for all i in A

' -t _ -4t
i‘:; kEZA et p (1) R (1) _Z et'p (8) R (1)
ke A

i.e. '
lm st g, (0] =3l ry, ()

t=t

By Cth IT 8 1 it is known that (?Jt y t>0 is a right continuous

farily i.e.

('5? =ﬂ (’?J for all t>o
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Hence M VI %4.3)° can be used to get for a1l t»o and all i

in A

How keep t>o fixed. Since A is countable the probability that

(10) holds for 2ll i in A sirmltaneously is equal to one.

This implies

(1) X G =X, (w) in ¥, a.s.

From (2) and (11) we deduce that the absolute probability distribution
of X, » t>o0 is p (t), t>o.

The larkov vroperty (I (2) ) is defined with elementary events
(i.e. with a finite number of different times), since (2) and (3) hold

for }Ct , t>0 and }Ct+, t> o, the process Xt+’ t >0 is also a larkov

process with the same transition semigrouv as x,, t>o. Therefore P(t)

t!

is the transition semigroup of X, , t>o.

t

The trocess Kt y t>0 is extended fo t=o by letting

(12) X, (w) = %ig X, (w)

for all v such that this limit exists (i.e. with probability one) and

choosing as Xo (w) any arbitrary value in H,] for the other w ’s.

From (9) we get for all i in A
wa=t 3 = -t
S’ur.u[e R, . (1] _Z VR, (1,)P,k(t)§ 1

Fobo Letwy i CeA

These inequalities are enouzh by M VI 7 to ensure the measurability
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of Xo relatively to the c-field

7-n¢%

o<s
The right continuity of the family of Cﬂfields<gl is then extended
to t =0. |
What has been obtained so far is summarised in the following theorem
(which corresponds to th. 3.1 in Doob [5])
Theoren 1 7
If p (t), t>o0 is an entrance relative to F (t) such that (1) holds, then

there exists a right continuous lMarkov process X L1 t 2 o(denoted by X

t t

only from now on) with values in Mq 3 P () as transition semi group and
p (t) as absolute distribution for t7 o.
Now by Choquet's theorem (M XI 25 and 29) the entrance p (t) is

known to be of the form

(13)  p (&) = mlax) p (%) for all t>o and all i in A
1 X1

At

Where A( . ) is a uniquely defined measure on AtA_, such that mw(A+A ) = 1.
e Ve e

Ve proceed now to prove the following result
Theorem 2

The measure/u(. ) is the absclute distribution of X, (=Xo+ a.s!

Froof:

Xo being a random variable the function defined on the Borel sets B of M1

by setting

FL Xe - B]: B — [0,1]

is a probability measure on lq,
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Let -E be a positive bounded continuous function defined on M1. The

integral

(1%) ( $ @ [ X < ay]
M4

is by our choice of X, (in (12)) equal to

(qﬁ(y) P tXO+6 dy) = £, )F [awl=
M . .

1 S

lim f (Xt ) P Caw]
o tido

By Fatou's lemma the last term is bounded above by

lim in f £ (x,) P [av] =
t=0 S

(15)  limin £ 2 3, (£) £ (%)
t=o0 kedh

By (13) and positivity,(15) becomes

(g Hmint | ma) >y (8) £ (W)

t=o0 A+hg keA

As t decreases to O the sum over all k in A in (16) converges to f(x)

for all x in A+A¢ (see th., II 5 (ii) and th II.o ) and since f is bounded

the Lebesgue's dominated convergence theorem can be applied to (16) which

is then equal to

(17) /A(dx) £ (x) = /M(dx) £ (x)
A+l o M4



The inequality (14) < (17) which nolds for 21l vositive bounded

continuous functions on M1 implies

(18)P[Xoe Bl=< A (B) for all Rorel sets B in ¥

But we have

|
-

PlX e tigl= p(Hg) = u(ata))
and so there is indeed equality in (18) and this proves th 2

Cerollary

If we choose for a given y in At Ae the narticular entrance Pﬂf(ﬂ

-y 1 in A t> o ithen the associated rrocess {as in th 1) stzrts in
b ] b} Z

o

ence if the entrance boundary has to be an extensicn of 4 in

1Ly

which every rrocess has a rizat continuous standard rodification then

all its points are actuaily neaded.
may bewsed ko shoaor

The arguments used between (15) and (17) freve—in—fasd that

' W C!,\CJ N L - -~
__4%L*J‘—*it*&}}—E;J/M\QAI tx C ) on iy =5 ttends o C.

etk
<ence we—have
%(151 - (a*a_ ) (t) =C for all t>o

Which is a result similar to lerma 8.1 in Doob [5]. Lo shouwld the

Moarkov
stronz rroverty bve valid for X, , t> o in K1, the proofs of lemra 8.2

t,
and theorex .3 in Doob [5] could then be used to get

Theorez ?

Tre rrocess described in theorem 1 is such that alrost no sarple path
ever neets (Mq -(Ati, )).

Troof of t-e strong arkov wnrorverty

W'e rhave to slovw
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(19)P [J{g*§63|%3 = szB\S) a.s.

for every finite storpin: ti‘.z:ez, every s»o and every korel set B in lig,
tote that by right continmity of X, I IV 47 and 49 the event in the
L.4.3 of (19) is neasurable.

Ifs=2¢C szB(o) = 6XZ(IJ) and (19) is true.

If s>0, (19) is eauivalent to

Loee . . ~

(20) ELf (7.0 )[('??,'] = X (s) 1 (k) a.s.
ket

for all bounded continuous functiens on liq
Let ¢ be a discrete valued stopeing time for Xy. Denote by tp, n in N,
its values and by.Am,the set of w's where C(w) = t,. Ll is the union
of all the Ap, which are disjoint.

Pick a A in T , i.c.

Aalu| ¢ln< t]eﬁ for all tx o

If £ is a bounded continuous function on M1 we have for any f£>o

(21) ﬁ?ﬁf (Xouo )l Fy 3 P Lav] =z Bl (::U,S.)‘% JeLaw]
A n=o0
Ad,

But as t, is a fi:xed real number one term of the sum above

is equal to

(22) £ (e ) Flaw]

Ay
Furtherrore as X¢n+s and X, are both almost surely in A the last

intezgral is egual to

| Z f(k)r P[y‘tnfr =k ]?;HJP[M =
Ahy '

ke A
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Z f(kfz PIXy ,p =k gy = 1 7,3 Plav]

kA Ad, i€

As AAn is in g?tﬁ and P (t) is the transition semigroup of the Markov

process Xt, the last term becomes

£ 0> \pu () Iy (0 ® )

KeA [ eA;
Al .
= > (s) £ () P [awl
(23) g’k % P:{tn k {s < \}
AA,

Now if we sum over n inN the equalities (22) =(23) we get by (21)

(o) |BLE (Rope)| %D P [av) ’fsz (s) £(k) Plav]
2 .O‘ k
ké.:x
A g .
. As this holds for all A in %‘Z, it yields (20).
If G is a finite stopping time it is always possible to construct a
decreasing sequence of discrete valued stopping times €] converging

to & . By M IV 40 we have @’5 € ¥ so that (20) for ¢ implies for

~

all r

EL£(Xp o )| F; ) =E[kz§Ap qu(s) £ (0%, ] a.s.

As f is continuous on Mq we have

lim E[f (Xg )| T I =El2(xp, )| %, )

r=00

QaSe

The strong Markov proverty would then be proved if any sequence

ym, m inN, conversging to y in Mq were such that

(25) 11mZ (s) f (k) _Z P k(s) (k)
m—ookeA ke A

for all s>o0 and all bounded continuous functions f on M,].
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But it is not known if this is true: the nearest result to this progperty

being the lemma Chapter I p 27 where the condition

(26) . 1lim E ,Rymlc (1) - Ryk (1) | =0
n=go ke A

is assumed.

Starting from Yp—> ¥ in M1 Ry

lim Ry. (1) =Ryi (1) for all i in A

n=oo %

the most obvious way to get (26) is to use the Scheffé's theorem and

state
(27) Z Rypk (1) =Z Ryk (1) =c - o<c<1”
kei kK eA

As Xt, t>o0 is in A for almost all w (see thaeorem 1), we are led to choose
¢ = 1 and to introduce a set H,] (1) defined as the rart of 1-51 where (27)
is equal to cne (and corresponding to the set Ko of Doob). But we must

now check that the sample paths remain constantly in Fy (1) for alrost

all w. To do that we use lerma 4,2 and theorem 4.3 of Doob ["‘3, and
tnerefore no step used by him in K can be ommitted in kq,

It should be noted that by M VI 3 the supermartingales (4)
nave left limits at all t>o for alrost all w; hence X has the sane
proverty in M1, But these linmits do not lie necessarily in A+Ae and
therefore in general Xt 1is not a Hunt preccess.

Here we give briefly an example where the left limits are not
alvays in Atdg,

Let Xt be an ascending escalator on A =N (see C. II. 20 ex 1)
with first infinity (CII § 19) alrost surely finite. Fror the first

infinity jump to two different absorbingz siates, rj\ and J, say, both
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with rrobability +. Then the left limits of Xy at the first infinity

will be

TR, 1 (1) + 2R (D for a1l i in Ny §$53v{d,3
Vhich is not . aniextreme point of the convex set HMq,
Nevertheless Xt verifies the so called quasi left continuity which is
the maticr of the next theorem which will be needed once in Chapter V.
It ¢orresyonds to th. 7.2 in Doob [5] and is not proved here.
Theoren
Let g, be an increasing sequence of stopping times and € be its limit.
If X-¢0.y (W)=2im X_ (w), then
G.(w) 1z ©
Xz (w) (W) =Xz (u)(w) - ~a.s. on the

set of w's such that
(1) 'G.(u) < G(u)<eo for all n

(iidx w)Ee . A+ A

2o

Finally we rerark that if B is a Forel set in AtAp the random

variable cdefined as

) C;S(w) = inf [t I tzo Xt(w) e B}

is a stonsing time rclative to Lo

This is true by M IV 52 and 53. DBoth results can be used because
the ¢~ fields ?;. have been shown to be right continuous (see p‘ So0znd £ 52 )
and the right continuity of the process X ensures its progressive
measurébility (see M IV 47)

If we define another random varizble ZB by letting
[23) Caly) = inf {tl t>o X (w) e ‘Bg

tien it is 2lso & stopring time relative to Lo

Proof:
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Q
H
)
'_l
'_l
3
Q
@

>itive integers n let

tyd %, (w) €D g
n ¢ g
FS

i _
(}f% C_ () = inf {t
3
=inf {t [tzo Xy (81 (w)) e 33
where as usual (see ¥ X IT 16) 8. is the shift orerator i.e.

Xa(O1 (1)) = o, 1 (w) for all szo and all w in L
3 A S+x .

Obviously we have the equality

[7_ < ] =U[‘C;<t - =1

ne{

By the arsunents used above for EB ve get for all n

ng<t--§1—] %

n

1 ‘;’ , i '
For all n,=~7 is contaired in ?tand this proves that EB

is a stopzing tirne.

- 59 -



CHAPTER IV

On the Size of the Entrance Boundary

Notation: In thes last 3 Chapters i Ae is used for the knowm completion
of A instead of Ko— Kb’ because it is easier to distinguish at first
sight betwéen the points of A the iniﬁial state space {usually noted
i3, or k) and those of Ae‘(usually noted X,y or z).

In Chéptcr IIT the topological space (A+Ae; T) was éhown to haove the
following proverty:

for every stochastic entrance p(t), t3>0, relative to P(t), there
exists a probability triple (Q ,¥, P) on which there exists a

Markov process Xt,'t;CL such that:

(i) 211 the values are in A + Ay

(ii) almost all sample paths are right continuous at all tzO

(iii) the strong Markov proverty holds with the transition probabili
defined on A + A (II.(2 9)).

(iv) p[ X, () = il =p, (t) for al1 t>0 and i in A.

An interesting question is whether this extension of A by the entrance
boundary is in some way general. The purnose of this Chapter is to
show that if certain assumntions hoid for a measurchle syace (E,€ )

such that for every stochastic entrance p(t) a process X, in 3 satisfying

g L
(i) to (iv) may be found, then E is at least as big as A + Ay dee.
there exists an injection of A + Ae into Z=.

Assumptions on ¥,

(a) Let © be a state space sﬁch that & has a Hansdorff tonology which

is metrisable.

(b) A is included in =, every i in A is also a point of E,

(c) If we denote by € the ¢ ~field of the Borel sets in I, then there
B

exists a transition semigroup on (Z,& ) to be denoted by peB(s) -which is

such that in particular if i = e in A and B = j in A,

o
.(s) =p.. (s) for all s>»0
pla( ) i3
Yhenever (a) (») ond (2) n21d, hypotheces (1) and (33) nMore cotificd,



Hence with every stochastic entrance p (t) we can associzte a probability
triple and é Harkov vrocess defined on{) and with values in E satisfying
the equality

(1) pPL Xy () = il = p; (%)

for all t>0 and i in A.

(d) Suppose that for:-every stochastic entrancz p (t) the process:xt in E
has a standard modificétion, which is right continuéus in the topology

of B at all t>0 and which tends to a limit in E as t tends to zero

with »robability one, In this case Xt is extended to t=0 by letting

Xo(w) = lim X, (w)
for all w such that this limit is defined and choosing as X (w) any
arbitrary opoint in = otherwise,
The Markov process Xt’ t2 0, is then right continubus at 221 t in
{o,e0),
(e) This extended process Has transition probabilities pgg(s), 52 0.
Theoren 1 |
If & satisfies (a) to (e) then there exists a mapping_EB defined on

A+ Ae and with values in 2 vwhich is one~to-one, In other words i\ + Ae

is the best extension of A with regard to the size for which a right

continuous vrocess may be found for every stochastic entrance p (£),

t>0.

Proof;

Pick y in A + Ae and‘choose the entrance Y (t) f Q?i (t). ‘e know

that the corresponding process with values in A + Ae defined in Chapter TIII
is concentrated in y at time t=0 (th, III 2), Ye will show that the
associated nrocess with values in E is also concentrated in one point

~

of E at time t = O.
By (d) we have P[ X,e =] =1, hence there exist some Borel sets B such
that |
(2) P [ X,eBl>0
For such B'5 the element=ry conditionzl nrobabilities f[ Xt = if X.€ BJ
are derined zor 211 ©>0 and i in di.
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(3) as |
p[ X, € Al = E :py'}'c (£) = 1 for 211 t>0

kel
we have for any B satisfying (2)
(") P, =i [x.eB] =
. - a1
> PlX, =i¥ =kXe3] P[%,<BJ
kel

The set [ X, e B] belongs to (»F’t, for aliL t>0; therefore if we apply-

the Markov nroperty this sum becomes

| 1
v P = 1 j .
Z Py (8) PLX, =k Xoe Blp oy
keh :

(5) =ZP[X1; = k|28l p " (s)
kel ki

But (4) = (5) for 2ll t>0, s20 and all i in A means that P[X, = i|X,e B]
is an entrance relative to P(t) -(-for 2ll B satisfying (2) )

Now suppose that X,is not concentrated in one point of E, in this case
there exists a Borel set B and its complement in E,Bc} for which

(6) 1>P[X,eB]>0

and

(7) 1>P [X,e B°]>0

The eguality P[X,eE] = 1 gives

=31l = p, = 3 21 =
P[x,c i) PL{,c i X,e =]

P[x

' c
£ i X, e 8] +1>[:<,c =i X,€B ]

PL ¥, = ilXoeB] P [LXeB) + PL X, = i [%3°1 P[ x B°]
and by (1) we get

. - : . . c c
P5 (t) = Plx, = i|%,eB] P[X, e Bl+PLx, = i)x, e B 1 P[x, & B°]

for all i in A and t>O. |

The inequalities (6) and (7) (which inmply that both P[ X, = i}XOeB] and
P[}{t = ilXoeBc] are entrances Josether with the last palation and
the extremality of p- (t) (which is an analytical notion) are enough

: yi
to give the equalities

(8) PLx, = i[x,e3] = Plx, = ilx, €31 = p ;" (¢)

yi
for a1l 1 in & wia ©20
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From (6),(7) and (8) we obtain

PlX, =i X,eB] P[X, =i X,eB8’]
P[X, e B] = P[X, e B°]
or A
(9) 15[>c,c =i X,eB]P [X eB%] = Plx, =1 X,e B°] P [X e B]
But P[x,c =i %eB°] = Px, =1) -PIX, =1 X, B]

so that (9) becomes _
P[x,c =i X,e B]'(P[Xoe B%) + P[X, e B]):-. P[Xt = iJ P [X,6< B]
and finaliy we.get ‘

(10) P[xt =i X,eB]=P[X, =il P[X,e B]"

t
which hblds for all Borel sets By, 1 in A and t> 0, the case for 8° being
obtained by infrerting the roles of B and B® and the cases for B's such
that P[X,& B] = O or P[X,e B] = 1 being trivially ti-ue.

Next the assumption that X, is not concentrated in one point of E implies
that there exist two distinct points g and e2 say, such that all- their
neighbourhoods are visited with strictly vpositive probébility by X5 .
 As & + €5y Ve have d(e,], e2)70, where d is a metric defining the
Hausdorff topology on E (assumption (a)).

Choose €>0 such that

(11 € < : d(e,l,qea)

Denote by B(e,r) the open-sphere in E centred in e and of radius r.

By the choice of e and e, we have

1 2
Plx,eB(e,€)] = a,>0
and >
PlX e Ble,,€)] = 2,70
1 :
: 1
Let U = [w[%,¢ B(e, ¢ )y %q €B(e2€) for all g dn Q; Y7 ]

U:l is m? for all n

- and 1 1
U cU for all n
n n+1
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The continuity of Xt (w) at t=0 for almost all w implies the following

inclusion

e g
[X < Bleyy € )] €U, T

Similarly define

Ui = [ [ X, €Bles €) % B(ea,-aé') for all q in Q+ A< ;1;]

then Urzx. is in? for 211 n and

o€ Bley, €)1 6,0, T

Choose a &> 0 such that -
(12) a, -3 3

7

and

(13) a, ) . E

a2
By the r;:&onotonicify of U:l and Ui, n may be chosen sufficiently large
to satisfy both
(%) PL U} I > PlX,eB(e,,6)] =S
and
(15) P[ U121 ]z PlX,e B(eZI, )] -8
We have |
(15) P[Ur"1 J < PIX,e3(eqy€) and Xy & Bley, 2¢)]
n
By (3) the right hand side equals

P[XoeB(e,l,E) X, e B'(e,l, 2¢)n A]

n

,ie B(e,“E)nA
and using (10) this sum becomes
plx, e 3(e € 1P [xl = i)
1eB(eyy € )N A | n
= P[X,eR(e,, €)1 P [x, € 8le, ¢)n A
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Hence (16) reads as -
P[Ul ]SP[XoeB(eq,E)J P [X1 e Ble,,€)n Al
n
and by €14) we get

P[X, < B(e, € )] -3 P[X, & Ble,, 2€)n 4l
< 1

PlX,e Ble,,€)] ?

But our choice of & (see (12)) implies
%SP[XJ- e B(e,,2¢ )]
n
Similary using (13) and (15) ve get
Z<P[X; € B(e,, 2¢)]
n
But the condition (11) for € ensures thet B(qué) and 3(92,25) are not
overlapiaing, therefore the two 1ast inequalities which are established
for the same t = 4/n are not possihle simultaneously.
The process Xt in E correspondipg to the entrance -py.i.(t) must then be
concentrated in ane point of & at time t = O.
Denote this voint by .~ (y).
E is the iderlfity from A as suhset of A+Ae into A as suhset of E,
If k is a fixed point of A the process _qﬁl (t) is concentrated in cne
point, - (k), at tine t=0 i.e.
(7)) PX =2 ()] =1

Choose a sequence of positive numbers J:1, n in N, such that
O

38 <

n=1
As B»<L (t) tends to one as t tends to 0, we can got a decreasing sequence
~ of pozitive numbers tn, .n in ¥, such that tn tends to 0, as n —> co
. and

1 - én < ;i(k (tn) for all n

But by (1) this yields

F[X, = ¥ for all t 1=z _Z,efl ~ 1 -

n=i

(B}
1
rjs

- 65 -



According to the assumption (&) Xt(w) tends to X (w) as t tends to
zero wvith probability one. Thus the last inequality shows that X_(w)
= k on a set of probability at least yé.

Taking into account (17) this is enough to give
o~ (k) =X in E for all k in A

., is one-to-one from A+Ae into E.

Let Yy and Y, be elements of A+Ae-such that

oW o)
With ¥y is associated a Markov process Zt in E such that
(18) PIX, = = (y)) =1
and _
Plx, =il = p% i(t) for all i in A and t >0
Hence

il =P[X, =i X-= Z(y,,)l =

Plx t

t

P[X

. ilX:Z(y,l)]P [g == (y,)]

By assumption (e) and (18) the last line is equal to
k]
e (yq) i (t) for alliin Aand t> 0

and therefore

E :
7y 5 (8) =p Z(yy) i () for all i in A and £>0
Similarly we get
B
Py2 i =0 E(YZ) ;- (£) for all i in A and £>0

But the equality :Z:(y1) = :E:(ya) then implies that y,= y, in A+A_

—

i,e. s 1is one~to-one and this completes the proof of theorem 1.
Note that we do not need to assume theAstrong liarkov property in E to
prove theorem 1. On the other hand the assumptions (a) to (e) are
by themselves not sufficient to show the strong Harkov property.
Usually some analytical assumptions are made about the transition
semi~-group itself, which used with the right continuity of sample

paths are enough to check the strong Markov vroperty. E.g. in Chapter IIX

we used. the strong Feller property to obtain the convergence in III. (25).
1 -
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CHAPTER V

On the Topology of the Entrance Boundary

1+ Introduction.

Limitation on the size of Ae.

The semigroup P(t) is assumed to have only a countable number
of extremal entrances, This simplifies the notation in some cases
and as in fact no general resultis are obtained it does not matter
very much. Having made this assumtption, vick a stochastic entrance
plt), t> 0. such that its corresponding measure on A + A at t =0
is a probability measure attaching strictly positive weight to every
point of A + Ae.

Denote by (XL , & , P) a probability triple and by X, s
t 20 a process in A + Ae right contimuous relative to T, of absolute
distribution p(t) and strongly Markovian with the extended semigroup
(as in Chapter III). From now on the trajectory for every w in {L is
kept fixed. | |

o a :

In this chapter process is always supposed to be as described
above unless otherwise stated,

In § 2 the trivial example 1 shows that there exist topologies
finer than T for which the fixed trajectories which are right
continuous in T are also right continuous relative to these finer
topologies. Then for every process within the scope of this chapter
T!' will denote the finest topology on A + Ae such that every right
continuous trajectory in T is also right continuofs in T'., To end
the second paragraph we show that T' is coarser that T*, the fine
topology, which is not equal to T, as was originally oveflooked
by Chung.

My hope was to see that T' is metrisable and to determine an
equivalent metric with the help of taboo semigroups. The taboo set

is to be a subset of A + Ae and in paragraphi 3 we define the taboo
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semigroups and remark that in some sence a taboo semigroup may
be more discriminating than the original P(t).

In my mind the metric would have had to be of the following
form: Let Bn’ n in B, be a sequence of subsets in A + Ae such
that the taboo semigroups exist. Denote by BHR()\ ) the corresponding
resolvents. Let X 3 B in N and (3i, i in A be two sequences of

strictly positive numbers such. that

. .
Z_ocn<oo and Z_Bi<oo
i A

n=o

For all x and y in A + A, define a metric d(x;y) by letting
(1) i
d(x;y) = c<11 g Gi.]BnRX1(1) - BnRy1(1w
n=o ) i& A
The main difficulty is to make sure that a given sequence of Bn's is
suitable to obtain a metric (1) generating the topology T'.
. - 3 | B—— . ) 3
As the sequences B = ?ln% and B ' = gyn% (where i and y are
enumerations of A and A + Ae) are very simple and general, they are
interesting choices to use in (1). But both ideas are ruled out by
the example 2 given in paragraph 4.
Another very general way to define a metric with the taboo

semigrouvs is to let for all x and y in A+ Ae.

(2) d(x;y) = sup jg:-ﬁ. ] Bin(1) - BRyi(1)
B

jea
where the supremum is taken over all the subset B's for which the
taboo semigroup is defined., Example 2 is again a counter example.
In fact examples 1 and 2 suggest a probabilistic characterisation
for a suitable B, but it appears to be a set with a very elusive

analytical definition.
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2. Basic example

Example 1.
Let A = (0,1,25ss.)

Define a corresponding conservative Q matrix by

1 -1 0 o
Q= 2 0 -2
: 0
n -n
O

The resolvent is then

[ 1
—— 0
A
(U ©
PNE D P '
R(X )= - 0 .
n ._1__ 1
Pk TS © A0
We have -
R (1) = n . 1 —_— 1=1R (1) as n —m» oo
no n+1 1 00 .
and
1
< —_ _ —
Rni(’l) S 5 > 0 = Roi(1) as n > o0

Hence foz is limit of the sequence S:n’i in the tovology T.

Note that Ae 1s void.,

Proof:

By th.II 4 we know that A is dense in A . Take any sequence of

points in A, gir’g say, where r is in N,

There are three possibilities

(1) i, may be equal to the same point i of A for all sufficiently
big r; then the limit of ir is 1 itself as r tends to o0

(i1) ir- may be increasing toeo as r increases to «3; in this case
we have just seen that the limit is ?_o{ in (4,T).
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’

(iii) i is different from (i) or (ii) then i, is not convergent

(1.

in its components Ri 5
r

(1), (ii) and (iii) are enough to show that A_ is void.

Description of the sample vaths.

From the usual interpretations for the matrix Q(see C.th II.5.5

and Pe 259) and the X + version we can deduce that all sample paths

t
are particularly simple. Either they start in O and stay always
in it or they start in an i>'0, stay there for a while and leave
it by a jump to O in whicﬁ they remain thereafter. So~every
trajectory is composed of a finite number (one or two) of left
closed and right open intervals. The discrete tovology is then
such that all sample paths are right coﬁtinuous and as it.is the
finest topology on A, it is T', 'Therefore in this example T' is
strictly finer than T,
An interesting feature of this example is that it is a
counter-example to part of C th.II.11.k4.
Let P(t) be a stochastic standard transition matrix on A
and define with Chung the fine topology TF on A, For all k in A
denote by Sk(w) the subset of [ o, =] on which Xt(w) is equal to ke
Let i be in A and H be a subset of A, Consider the probabilities.
P[ ng(\f) n (t,t4€) = O for some €>o0 l Xt(w) =i]
keH

and

[ U S‘k(w) an (t,t =€ ) =0 for some £>0 [Xt(w) = ij
ke H

By C th II, 5. 6 for a stable i and C th II. 11, 3 for an instantancous
one, we know that these probabilities are equal and that their common
value is O or 1.

H is called nonadjacent to i, if and only if this value is one.

A fine neighbourhood of i is a complement of a nonadjacent set to i.
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Finally the fine topology TF on A is the topology generated by all
fine neighbourhoods of all states in A,
Part of C th II. 11. 4 reads as follows: a base of fine

neighbourhoods of i is given by the sets

Ci(é)={keA sup pki(t)> 1-3? O<CS—

o< t<d -

0] anaw={Ksof

In example 1, choose i

Then

p[ U S’k(w) n(tyt+ £ ) =0 for some £> 0 ! Xt(w) = ’{ O'S] =
keH .

Pl S n (&, e ) =0 I X (w) =0 1=
k>0 :

as {' oz is absorbing.
Hence H is nonadjacent to fogand { O% is a fine neighbourhood
of itselfo

For every J>0 we have

C,¢ J) = { k sup pko(t)_ > 1= 5}
o<ted
=€0§u€k>o! sup (‘l-e_kt)> 1-5}
oxts<d

{'O%u €k>o-l 1-e"k‘;z1-<5‘§

{‘og v {kj ] kcj+1a k J-‘_a,-o:' {

where k § 1s the smallest positive integer such that

'e-kJJ < 3

it

It is now clear that no CO(J) nor any finite intersection of them is
contained in $0J . Therefore the family ¢ (&), & >0, does not
form a base of neighbourhoods of § 03 in the topology Tpe

Névertheless the following weaker result is contained in Chung's
proof':

Tp is finer than the topology generated by Ci( S ), iin A, d > 0.
Proof:
Recall the relation (10) in C p 191.
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i .
"Let i and Ci( d ) be given; then for almost every w the sample

path Xt( w ) has the following property: if Xt( w ) = i then there
exists h( w )> O such that 7

X (w)eC, (&) ufw]  for all s in (t,t+h(w))
where {e{ dis the Alexandroff additional point'.
'From this we can deduce that A - Ci( d ) is nonadjacent to i, and
hence Ci( & ) is a fine neighbourhood of i. As this is true for

every Ci( d ), this completes the proof.

Definition of the fine topology T* on A+A

<

~ ( the fine topology of Chung, Tp, was on A only)

As assumed in the introduction Ae is countablej hence every
subset of A+A_ is a Borel set for T and by III (28) its corresponding
stopping time exists.

Let T* be the topology generated by the following open sets
(cf. Meyer[2] p. 152 )e

G c A+ Ae is open if and only if

(3) p[ZGc>o/xo=y]=1 for all y in G
G° is the complement of G in A + A s and by the O or 1 law
(M XIIT 14), (3) must be equal to O or 1; in particular as G n 6% =g
all G satisfying (3) are such that

P[ZG=O | X°=y]=1 for all y in G
These sets froﬁ a topology because
(i) A+ A and ¢ are open
(1i) every union of open sets is an open set
(iii) every finite intersection of open sets is an open set.,
Proof: (in which open set stands for open relative to T*)
(i) P[Zg = oo X°=y]=1 forallyinA+Ae

il.e. A+ Ae is an open set.

-72 =



As ¢ does not contain any point of A + Ae,'the ¢ondition (3) is
meaningless for @ and so & is an open set.
(ii) ZLet G. be open sets, where « runs in some family. Then by
our countability assumption their union is a Borel set relative

to T, so that its complement is also one. Thus the corresponding
stopping time is well defined.
By the set inclusion

(va,, )° ¢ G for all =
wve get
P[Z(Ueq yeo >0 [ x, =31 zPI Cqe >0 | %, =v]=1
for all y in G , and hence also for all y in UG, , i.e. (3) is

satisfied.

(iii) Let G, and G, be two open sets. Pick an w in

[ [6 (G1n G2)C = O] _
and then there exists a seguence tn(w) decreasing to O such that

. . c c c
th(w) is in (G141 G2) = G1 v G2

So ..at least one subsequence of tn(w) is such that X, (w) lies
, n .
always in the same G; and hence w is in

[G6e® =o0lul g’ =o0]
This inclusion gives the probabilistic inequality

P[Z(G,]/\Ga)c =O]Xo=y] <

Ge.C = =
[ ZG1c_olxo-y]+P[ G, _olxo_y]
and the last sum is equal to O for all y in G,nG,, i.e.(3)
holds for G1n G2.
As we know (th III. 1 and th III, 3) that T is such that
almost every sample path is right continuous at all t, then a sample

path starting in any open set E in T will stay there for a strictly

vositive time with probability one, i.e.
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p[ YZEc > 0 ’ X°'= y] =1 for all y in E
Hence BE-is an open set for T* ahd this shows that T* is finer than T.
Let T'" be a topology strictly finer than T*, i.e. there exists an
open set for T" which is not open in T*. Pick such a set, C say.
By assumption there exists a y in C such that

P[Gge 70 % =y)w
By the O = 1 law this last relation yields

PLCge= 0 [ X =5]=1"

which implies that a.e. sample path starting in y leaves the open

neighbourhood C at least once as soon as it leaves t = 0
hence X+ is right discontinuous in O relative to T'",
So if topology To on A + A_ is such that all the right continuous
trajectories for T are also right continuous for To, then To must
be ccarser than T*. Therefore the finest topology with this property
must also be coarser than T* and this gives
T* finer than T' finer than T

the second relation being obvious as T itself is a topology for
which all right continuous trajectories in T are right continuous in T!
The next question is naturally: does T* itself keep the right continuity
property of the trajectories which are right continuous for T?
Unfortunately the answer is affirmative in the obvious examples but
not clear in general. We now give some reasons why it is difficult
to ansver.

Taking into account the countability of Ae here is a simplified
version of M XV 38.

Let F be a closed set of (A + Ae, T*); then for a fixed w the set

gt ’Xt(w)e F?
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is such that every right adherent point to it is in it, except

on a set of w 's of probability zero.

Now we use this result to show the separability of Xt relative to T*,
Let I be an open interval .

Let S be a countable dense subset of R+ .

Choose an w outmide the exceptional set, .fLF saY.

If w is such that

Xt( w) e F for all t in I

then

X, (e F for all t in the right closure of InS
i.e. '

Xt(W) e F fof all t in I
Therefore

P[ § X eF, VielInss -{'Xt;eF,V-teI’i] <
PO+ P[C §% e Vi e Insh -{XeF Vel In(a -0p)]
=0 +P[g]=0
in other words X_t is separable with respect to the closed sets of
T* and any S.
Consider the usual topology on R and define C(A + Ae, T*; R) as the
set of all continuous functions defined on (A + Ae’ T*) with values
in R. The theorem M XV 39 reads as follows:
if f is an element of C(A + Ay T R) then f(X_t(w)) is right
continuous for almost all w.
Consider the following diagram:
tel[0,0] — Xt(") e (A+Ae, T™*) — f(Xt(w)) e R
If we want to deduce the right continuity of Xt(w) itself from this
diagram and M XV 39 we need some additional conditions on (A + Ae, T*)
€eBe
(a) C(A + Ae; T*; R) must be good enough té define T* as its initial
topology. This is known for a compact (or locally compact) space

Y o~ 3 S m .. 4+ 1 - S 4
but as T* iz a rofincment of T, wo do nct lmow if this prepexty
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(used with (!~11; T) or (K; T) still holds.

(b) Cc(A + Ae’ T*; R) must be spanned by a countable set a functions
f so that the union of n-fn (the exceptional sets depending
on £ in M XV 39) is of probability zero.

(a) and (B) would be enough to imply that for any w outside

u (L £ f(Xt(w)) is right continuous from [0, 00 ] into R for
n

all f, and hence. Xt(w) itself is right continuous from [ 0, oo]

into ( A + Agi T*).
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3 Definition of the taboo semigroups. Let B be a Borel set

of AtA, relative to T. It is known (see IIT (28) that the random variable

(4) €5(w) = inf {t [ t>o X, (w) €B }

is a stoppins time relative to the family of c:fields %,t’ tzo

Hence the set

[w Ixo(w)‘ =i, X ,(W&B, o<sst X (w) =3]
= [w !XO (w)= 1, Kt(w)=j ZB(\-!)>t ]

s ,
is in '?‘t (¢ §), anad ve can define for all i, j and t>o, the number

Bpiﬁ (t) as the following elementary conditional probability:

(5) PLx, =3 ZB>t] X =il = PlXo=i 3 %j]
PlXo = il

Obviously we have for all i and j in A, and all t>o,
. < o
(6) 2P (t) < pij (t)

liext we check the semnigroup equation for BP(t). As F (t) is stochastic
we have for all t>o and all s>o
(7) BPyy (tis) = > P [y =i fg > tas Y=k X, = i]

keA

Now fix k in A, t> o0 and s> o.
Let

Ay =[x =1
Wle have

PIXo =i ¥y =k Xgo=d Tg>t+sl=
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(8) PLX =i Cy>t X, =k GgoO>s Xo0, =j]

Uhere €t is as usual the shift operator.

As (_ is a stopping time the event
D .

| e O 15 1
[ZB t>s] is in t?tﬂrs

vhere tq?t+s is the augmented c-field generated by
Xu,tsusté-s

Let

A =0% =1 Zg>t] e T,

[Xe0, =3 €p0.>s] ét‘?

M

Dy the Markov prozerty ve get the following equality of random variavles:

PLA I | X, = P [Alxt] Pl [, a.5.

- so that (8) is equal to

.« X ',: '
(9) gp[/\ [, P [ ]x,] Blav]
Ak v
By definition P [k Kt] is a randon variable such that

gp[r-z | xid Plaw] = PlXp6y=j fpo6y > s Xy= K =
Al .

PXp 0, = § Cp'€ & s|Xy0,=8] FEOK]

By ‘stationarity and (5) the last term becomes
PlXg =3 Tprs Xo =KIP[Ou] = gpy, (o) P[A K]

Vie have just proved that
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P(H {th =B+ j (s) aeSe

(9) is then equal to

sy (s) (P[XO =1 Ty>t|xd plav]
A
or usinz (5) again

- (s)

(10) )
Bpkj

If we sum over all k in I the equalities

1 1
(&) P L
F[x, =i] E[X, = i]

(7) becomes the semigroup equation

t.' A

A
”~
[xa
~
3
o)
~
2}
~

(11) Bp:i‘-j' (t + 8) = £

As ZB is a stovring tine, [Z’B> 0] is in qj . Hlence by the Ow1 law

we have for all y in A%a

(12) P[TB7O [ XO =y ] =C or 1

By the inequazlity (6) we find
(13)0 € limsup %, (t) < limp, (£) =0 if i <4
{=0 5 *J +=0 td
and
(140 = limsup p (b)) < 1imz-p:, (t) =0
4=0 = k4i B ik 4=0 k&i ik
By th. III, 1 ve have

P[ZB> S , oni] =P[ZB> S X:- & A} X :i]

Rewrite this ezuality as
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(12)

(16)

(17)

(18)

Pyp (8) = BT s |:r:O =i ] - 2; 3Py (s)

By monotonicity we get

ln Pl >s|X =11-= PLT 7 0] % = i]

The relations (14) and (16) imply that the R.H.S. of (15) has a limit
as s decreases to Q.
Hence tle same property holds for its L.I.S. and by (12) this limit

must satisfy

lim p.(s8) =P[E >o0|X =il =0or 1
3 1 B

5=0 I o

If i is such that this limit is zero, then for 211 j in A and all tso

we have

0 x

A

Bp:i;;]: (t) =P[TB>'t X = j\xo =i ]

P[ZB>°!X0= il =0

pE. . (t) = O for 211 t>03

11

Let ph, = {i in A

This set is equal to

?i in A

One inclusion is obvious conversely if i is such that ppyi (t) =0

Bp. . (£)=0 for all t>o and 2ll j in Al{
ij

for all t, then its limit as t tends to O is also O and by (17) we are
in the case (18) and this shows the othier inclusion.

If we let BA = A - BA the relation (11) can be written as
o

S
BE:. (b + 8) =4
13 kEBA

(t) (s)

BFik By

for all i and j in _A and all £20 and s2 O.

B
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oy

in
If j isVgdo then

(20) gp. ; (t) = o for all i in A and all tzo
ij -

Froof: (11) gives for all s< t

33

(21) gp;, (®) ;;zijgpik (-5) 5oy (&) + gy (t=8) gy (s)
*§

As j is in gA, the second term in the R.5.S. is equal to O3 on the other

hand the sum over all k different from J is bounded above by

}: D5y (t-s) ij (s) = plj (t) D33 (t-s) p'jj(s)
*J

Wrhich by fhe stochastic continuity of F(t) tends to C as s decreases to
O; hence if we let s tend to O in (21) we obtain (20).(13),(17) and (19)
mean that BP(t) is a standard substochastic serigréup on jA. By
/tb. I1 3.3 wé can use ith. II 2.3 to éheck the coﬁtinuity for tz o of
pry; (+) for all i and j in pi. |

As the initial distribution of xt was chosen to at{;ach strictly

positive weight to every point of the countable Ae s We can l=t

w2 () =P[ZB7tXt=i!Xo =y]

By the rethod used to get (44) 2nd (19) we find

L (t+s) = E BPyy (t)_Bpki (s)
kEBA
for all i in A and 21l t>o and szo.
Since sF. (t) is an entrance relative to BI(t) the theorem just quoted

applies to ensure the continuity in t of gp, o (t) for all i in A (or
indeed in A because the proof of (20) works z2lso for y).

This general continuity allows us to use BP(t) or the Laplace
transforms which will be denoted by BRij (N.

e h2ve just shown that

(22) BR (N <R

- 81 =



Iph (the identity matrix on ( gh x BA)

(23) }i:go )\BR o

(24) ROV = R(x) = (&= 3) ROV SR ()

and BRyi ()\), > 0, 1in A satisfies the resolvent equation for BR (A)

for all y in A+Ae,
Theorem 1
For ail open and all closed sets B in (A+Ae , T, BP(t) is completely
determined by P (s) and B.
Proof:

Ve have to show that any . (t) is determined by tZo,iin A,j in A,

B4 3
P (s) and B. This result is obvious for a point i (or j) in B, because

C th. II. 5.3% and the definition (5) give

B-pj'._j‘ () =0 for all t>o0 and i or j in AnB

So we choose i and j outside the taboo set in the sequel. Ve remark also

that if BP(t) depends only on P (s) and B for all t>o0, the stochastic

continuity will then imply the same for t= O. Hence from now on t is

a fixed strictly positive number. _

Let _()1 =[w [ Xt(w) is right continuous[on lo,e0)] /’“ b +ac,T)
| _(1( =[w | X4 (w) has a left limit/at all t in (o,e)] Lo, T)

(25) Ve have B[Q ] = P[02] = 1.

Firstly we prove theorem 1 for an open set G inA(A+Ae, T) using the
method given in C. p. 194, As the‘process Xt is right continuous the
values Ks(w) for all s in a countable subset S dense in R+ are enoughA
to determine the complete sample path for all w in ). . Let S be
enumerated in sorie w2y and let sy be thg nt? clement in this cnumeration

lying in [2, tl,

Let [ =[u| 2 (")dG o<ss<t Xy=3]

o =lu|%s (w)¢G r=1,2,..n Ag=3]
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The following inclusion is obvious

o

ARNARE

Conversely ahy w in this intersection is such that

Xsn (w) é# G for alln

i.ee

Xg (w) &G for 211 s in Snlo,t]

o0

As G® is a closed set this imvlies for all w in (\1 r; n glc
ns=s
Xy (w) = 1lim Xg(w) e G for all u in [o,t)
s lu
S €5
As j is not in G, then
P[Xy ¢ G Xy=3]=1
so that we have now proved
o0
(26) =
M=
n="1
From the definition (5) and (25) we get
(27) gpys (8) = Lim F( r_‘n X, =i]
' n=o0c
But for any fiﬁed n theorem III 1 gives
c ' c
Flx. e GJ1=PX e Gnalr=1,2, ,n
Sp Sr .
which in turn implies
AN
, Co [ x =17 = . 1 1_1 _1
(28) F[Mnlx,=1] //) : p1k1(81 ) pk1k2 (s2 81)...Pknj(t Sp)
k.‘_éG'I\AI..- , ,knéG‘nA

vhere Ys;‘., r=1,2, n’s is the set Ysr, r=1,2, n 3

reindexed to follow the natural order in R. ~ Some obvious changes have

to be made in the sum above if one s, is cqual to O or t, but it does



not alter the faét that (27) and (28) proves theorem 1 for the opeﬁ
set G, Since the event | is indepehdent of S, so is the limit in
(_27) and we can use any countable set S dense in R,.

Next using this resuvlt for an oren set ve czn rroceed to show
the same for any closed set F in (A+Ag, T). As the entrance boundary

is a metric space ve can define the following open sets

Gp ={XJd(x; F) < %3 min N

which are such that

] . o
(29) F = q Gn = [) Gn
ms=

m=1

Where Gy denotes the closure of Gy, in (At+Ae, T)

Let A =[W./KS¢F o<sst X= 3]

_Am=[w ' Xs¢CGmo<sxt Xt=3]

The following inclusion is obvious

(20) ../\ 2 mk;j’ Avn

Conversely if w is in A =f2—ml2 A, there exist tp(w), m in I,
such that .

O<tp(w) st

and for all nm

??tm(w) () € Gp

Define (, as the storping time associated vith Gm as in (4). Using the
righit continuity we have

(31) KZ(W)(W) & Gp for every w in (.

m

“he monotonicity of the sequence G yields for all w

zm(\V) < Zm+1(\»’l) $ linm Cn (w)

m=00
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If we denote the lirit above by €, M IV 42 ensures thatlis also

a stopping time.

Let 4,4 = Cj [w l’(,'m(\-i) =C (w)st %) =51 ¢ A

m=1
Az = A\ - Aq
For every w in A\nf)_, there exists an m (w) in N such that (by (31))

) = XL ; G, 1
XZ(WSU) z’m(w)(”) € G for all m3m (w)

and using (29) this implies

(z2) XE(WSW) e N G, = ¥ for all w in é.] n L

m=i
Similarly if w is in &Doafl a0 we find
’ o0
(33) Az () e ) Gy = FPeirdg
T m=1 .

As & is bounded by t on .A2’ theorem III. 4 applies and ve get

Q.

. a
(24) Xz(w)(w) = XZ’(w)("")e 0 for g¥1 w in AZ N a2
From (25), (32) and (34) we deduce

Q-q./\m =A1uAZC{n—/\

This last relation,the definition (5) and (30) give

(35) iy (8) = PLA [ 25211 = 1im PLA, % =1)=

- - m=00

=mlﬁ2 Gn pi‘.-j(t)‘

The sets G, being open the last limit derends only on F (s), i, j and
Gy (i.e. ). Theorem 1 is now proved. A&s the event A does not depend
on a particular sequence of %y, any sequence of open sets Gp which
satisfy (29) will define FP"ii‘j (£) by (35).

Note that theorem 1 seecns also likely for a Borel set B but the
proof used here does not vork (even in our particular case of a countable
he where every Borel set is a G- set) Instead of (2’/) we get for some Q/

family of open sets Gp the less stringent relation
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oo 'o__
3 = N\ g,c /g,

m =4 1

"

m
so tho* theorem IZI &t cannot he used betueen relations. corresvonding

o
to (33) and (34) to show that the correstonding /A andA gatisfy Ne Ji‘/\m

Theoren 2

For all oren and closed sets B in (A+A,, T), Pyi(t>’ i in A,

is completely determined by P (s), B and v.

This is rroved as theorem 1 with only one change namely p; (s) is
to be replaced by Pyk (s) in (28) (which is why y is needed).

Finz2lly we explain the reaning of the vwords '"more discriminating
than the criginal semigroup! used in the introduction.

In the examnle 1 if the subsét B of A is chosen as {f?

o

then obviously we get

[
-~
o
o}
~
>,
~r
1]

(35) i— =Roo (A )

:Rd{()) fer a1l k> o

|1
o

(37) Rok (A)

(38) pRik (A) = 0 for 2all k if iz 1

Therefore BRio (1) = O does not tend to BRoo (1) =1 as 1 tends to e

fhe tnaboo semigroup relotive to 5 introduces a refinement of T (but
only locally near {O] in A as all the other points are nerged in the

trivial entrance).
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L, Metrication of T!

I tried to introduce the taboo semigroups in the definition
of a metric for T', because it seemed an easy way to generalise
the form of metric used for the definition of T( see below (1))
and also because I did not know what else, in analytical terms,
could be used.
As I said in the introduction to this chapber I wanted a metric

of the form

(1) alx; y) =z_ = Z@i jB Rxi(1) - 5 Ryi(1)
n=1" n n

ie A
for 211 x and y in A + Ae, where the Bn's are a seoguence of subsets
of A + Ae, and > s 1 in N, Gif i in A,are the strictly positive
terms of two converging series. I also pointed out before that
the use of the sequences of singleténs ? i% of A or $ y% of
A+ Ae as sequences of taboo sets is very tempting, because it
requires no further knowledge.

But in the next example in which T' is indeed metrisable these
two new metrics are unfortunately not equivalent to the one defining
T's Ve remark fhat if the sequence A + Ae does not give the solution,
the sequence A which induces a smaller metric can not work either.
So we will only consider the sequence A + Ae.

Example 2.
Let A = (euuy =2, =1, 0, 1, 25ee4)
Let a9 be a sequence of stricly positive numbers ( indexed by

i>0 only)such that Z 1

<< oo
i=1 qi '

Define a conservative Q-matrix in the following way.

qoo-: 0
a; =q(-i)(-i) =-q, 10
qi,i-‘l = q; for all i > O

qi,(-i)-1 = q; for a11 1 € O

qij =0 everywhere else
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By our choice of an absorbing $ o§ the corresponding minimal

solution is a stochastic matrix. Its terms are

(>‘)=T’Roi()‘)=° for all i O
R, ()\) /\1q fori*O
Jk_;|+1_

1
. 1 ’ l k o
R(-i)o( )\ ) = T 72—6{' if i>0
k=1

- i s . 5
R(-i)j (X)=0 ifi>0and j2 1

and i>0, j< Obut j # -i

Rij()\)=0 ifi>0 and j > i or j< O
Rij()\)=)\+qj ST ifi>0 ando< j< i
n=j+i
i+1
R.( = ifi>0
A) )\ } l A +qk

It is helpful to draw the (A x A) - matrix to compare it later with

the taboo resolvents.

i<0 0 i > 0
- . _
icO —7
Q 7o
0 O
O S
i>0

Let in be any sequence in A such that the absolute values Iin[
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form an increasing sequence,
If j > O (resp = O) then for adl i_ such that ]ini > j we find

irrespectively of its sign

REN EN

R (1) = 1 ak . ak
i3 % Ty T+ gk (resp T+ ok )
' k=j+1 . k=1

Now if n is increasing to oo the R,H.S. has a decreasing limit

and we gét s <
- __1 } I gk ’ l qk
(39 %%25 Ri j(1) T 14+q] 1+gk ( resp 1 + gk )
n .
k=341 k=1

If j <'O; then we have for all in

1
1+ gn

R, j(1) <
n

Again if n is increasing to oo the R.H.S. decreases to O and vwe get

(40) %iﬁaRinj(1> =0 for all j< O

From the density of A in Ae and the sort of arguments used after
example 1 we deduce that Ae is composed of only one point, y say,
defined by the R. H. S's of (39) and (40).

The interesting point about the topology T is that (-i) tends

to y as i tends to + oo

Description of the sample paths.

(a) Sample paths starting in the state i of A
The usual inte;pre.tations for @ (Cth.II5.5. and p.259) and
the X+ version imply that every sample path is composed of
a finite number ( | i| + 1) of left closed and right open intervals,
the last one (spent in g O{ ) being oo .
(b) Sample path starting in y
The sample path'are step functions. The number of steps
is countably infinite and they accumulate at £ = 0; all the
steps are spent in some 120 of A and the 1eft‘closed right

open interval spent in i is followed by one svent in (i-1)
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and so on until reaching $0§ vhere the sample path remains for ever.
With probability oné there is a finite number of steps after any
strictly positive time t.

By (a) we have

P[ X_ has a finite number of steps after t [ X, =]

o0

j{: P[ Xs has n steps before reaching O after t [ Xo = y] =

- n=0 ‘

o : . ,

Zp[xt=n f Xo=y]=2 pyn(t)=1

n=o0 n=o0

For almost all trajectories starting in y, y is a right limit of

points 120 of A increasing to + oo,

Oon A v §yjdefine a topolozy T, as follows:

every i is isolated;

(T1) every neighbourhood Vy of y contains all positive i's bigger
than some va; there exists one Vy not Fontaining any negative 1.

This T, is metrisable by (e.g)

(a(i,3) =1  if i or j is negative and i # j
a(i,3) = 1/2" + 1/25if i and j are positive and i # j
aly,i) =1 if i < 0 |

W) day,i) = 1/28 if 120

\d(i,3) = a(y, y) = 0 for all i in A

By the very description of sample paths ((a) and (b)) it is clear
that all the Xﬁ(w ) which are right continuous in T are also right
continuous from [0, oo ] into (4 u fy? . T1).
Moreover in any topology i strictly than T1, we can find a neighbourhood

of ¥, V°y say, such that (T1) does not hold. Hence there exists a

sequence {i,? of positive i's increasing to + oo but not in Voy’

By the description given in (b) we have
. . . . 1
P[ Xs visits gljfor one s in [o; = ] ’ Ko = y] =1

for all n and hence
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v s yO el d e
P[As is in Vy for all’ s in [0; n] } Xo =yl =0
for all n. But the right continuity relative to T° would need
in particular

. P o] . 1 :
P[Xs is in V& for all s in [03 oy ] ] Xo =y ] ‘r 1

as n tends to + = .

Sinée the last two relations are contradictory, T1 is the finest
topology on A wv gyg_ for which the right continuous trajectories
for T are also right continuous for T1, j.e. T1 = T!

Next we use (a) and (b) to compute the resolvents related to the
taboo setl {’x?) s @ point of A u{’ﬂ .

Case (i) x = k < 0O; the only trajectories which ever visit

k are those starting there,

kRkj( A)=0 for all j in A

kRij( A)

Rij()\) for all i £k and j in A

K EW‘ (A) =Ry, (A f oty

kR()\ ) is the following matrix

—

. =

(o] 66 coco OO oo O°

Case (ii) x =k =2 0: if O0< i< kor -k <i < 0

the sample paths starting in i never meet k,
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hence

kRij( X )=Rij( XN ) for all jand O < i<k or =k si< O

if i > k or i < -k, the sample paths descend the finite escalator

between i and k and stop at k, never reaching any j < k. Hence

kRij( A)

Rij()\ )if j>kand k< i oric< -k

kRij()\)=0 if j€ kand k< i or i < -k
sos _ : R .Ix) =
1f1_.kthenkRkj()\)—O for all j in A kKy; (0 ) o
The resolvent is k
| e ———
[ ) e—
o 4
-k-l o'ouoloocﬂz)
% 0
k o oo o000 o0 Q
.
4
o i
L4
4
L :s——_._

Case (iii) x = y: then almost no smmple paths starting in i ever
meeté ¥y i.e. yR()x ) = RCX ).

Now look at what happens to these various resolvents (for A\ = 1),
when (; i) tends to - co (i.e. toy in (A v ;yg ;s T,

Iﬁ case (i) we get

(k2) ;1im (R 5y5(1) =kRyj(1) for all j in A

In case (ii) we get
(43) Lin 1R(-3)3(1) =Ry for all j >k
=0 for all j< k

In case (iii) nothing is changed.

Similarly if i temds to oo (i.e. to y in (A vJy5, T)).

[Ry (N, j>k

yr<k



In case (i) we get

(h) - lim kRij(‘l) =kRyj(1) for all j in A
In case (ii) we get

(45) lim knij(ﬂ =KRyj(1) for all j >k

=0 for all j € k
In case (iii) nothing is changed.
Let T2 he the topology defined by the metric (1) where the sequence
of B is the sequencé of singletons fx% in A v{y%. This is

equivalent to say that T, is defined by the simple convergence of

2
R, (1, R (1) and R ;(1) for all i and k.

The equalities (42) = (L4) and (43) = (45)

are then enough to show that (-i).tends to y in TZ as well as in T
(# T' ). This completes the proof that the use of A + A, in the
definition of the metric (1) is not a good way to obtain T',

As this method to define a metric is not sharp enough to refine T and

obtain T', it might be interesting to disrupt T in a more brutal way;

for example to define boldly for alltx and z in A + Ae‘

(2) d(x; z) = sup E Gk JBka“) - BRax (M
B ke A

where the sup is taken over all the subsets of A + Ae.
Let i tend to + co (i.e. i tends to y in T) and choose B, = (i + 1},
By the case (ii) p.91 we get for all i > O.

alisy) = sup Z Bic [ gRy (1) = Ry (M

B keA
z E @3k {(i+1)Rik(1) - (i+'1)Ryk(1)’
kel '
i : oo
= E Gk R, (1) + 5 Gx Ry (1)
=0 k=i+2
ZBR;o(1) = (goRyo('l) > 0
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Thus y is isolated in the topology ddfined by the metric (2)
and hence the sample paths starting in y are no longer right
continuous, so that this method is not delicate enough to obtain T'.

This suggests that we should handle these taboo resolvents
more carefully. Taking into account the description of the.sample

paths (given in (a) and (b) p 83 ) a good candidate as metric is:

(46) d(x;2) =Z(3k [ka(ﬂ - Rzk('l)‘ +Z@k [Bkam - BRsz)[
ke A "k A%

for all x and 2 in A u{y% s where B is the set of all strictly ng?a-kve
integers in A.

The first sum ensures that all i's are isolated (propert& of T ).
By (a2) and (b) p. §3 again it is obvious that the only sample paths
affected by the taboo B are those starting there, and the corresponding

BRij( }\ ) are

(47) BRij()\) OforallA>0, i < Oand jin A

(48) BRiJ.(A ) = Rij( AN) for ald\ >0, 1 >0 and j in A

The taboo resolvent is o
|
O |
|

By (b) we find

(49) BRyj('l) = Ryj('l) for all j in A

We have by (47) and (48)

(50)1__]:.:5:'}1 BR(-i)j“) =0 for all j in A

(51) and ;1im BRij('l) = Ryj('l) for all j in A
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By (43) and (49) the metric (46) is such that
(52) ;g ) = g2y By Ry - R | =0
ke A
By (49) and (50) the metric (46) is such that
1in a(-isy) = %gﬁz B[Rty = Ry +Zsknyk(1>
(53) ke A - ke A
= g CSkRyk(” > O
ke A
Now (52) and (53) are enough to show that the metric (46) is equivalent

to (41) and defines T' (= T, as seen in p. 91)

1
If we look back at the example 1 and in particular at the description

of the sample paths given in p70.,, we find that the set of all stictly

positive integers is a good candidate to define a metric (46) where A

must be read as A of example 1. Recall (36), (37), and (38)

1
BRoo( A =—A-

BRok()s) 0 k=0

0 i >0 and all k

1

pRip (A )
For all i and j in A define a metric d(i;j) by setting

133 =y @y | Ry (1) - Rjk(1)\+ > @ | R - BRjk“)}
ke A - ke A

In the topology generated by this metric all strictly positive

i 's are isolated by the first sum. HMHoreover for all i >0 we have:

. 1
d(l’°)=(go(i:-1-1)+ 8i§+ﬁo1>’80

so that 5: 03 is also isolated in this topology which is then the

8iscrete one we were looking for as-T'.
Examples 1 and 2 suggest a probahilistic definition of the kind
of sets needed so that (46) is a metric for T'.

Definition :

A subset V of A + Ae is ealled a right neighbourhood of y if and only if
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(1) p[ C1ec >0 |X°=y]=1
(i1) If V- Ty} is not @, then every infinite sequence S of
different points contained in V - fyﬁ has the oroperty that
Pl Tg=0 )%, =3]=1
Note that by this definition the set {iJ is a right
neighbourhood of itself for a stable point but not for an

instantaneous one, as in the latter case we have by C th. II. Selt.

(st)  p[ Z(A_yﬂ)=o|xo=i]=1

i.e. (;ﬁ) does not hold.
Another interesting point to be stressed is that contrary to

D, Williams's conjecture in [13], if y is in Ae an@ V is a right

neighbourhood of y but not a T-néighbourhood as well, then if W

is a T-neighbourhood of y, the set W -V is not necessarily visited by

the sample paths just before hitting y.

D, Williams' conjecture is:

let y be in A + Ae and I be a sequence of points in A + Ae such
that N does not equal y for all n.
In this case a necessary and sufficient condition that Y, tends to y

in T as n tends to oo 'is

(55) im wax[P [T < t|% =y,], ¥ TR y]l =1

for all strictly positive t.

The example 2 where the escalator process starting in y
(or + © ) is somewhat parasited by the processes starting in the
negative integers is a counter example.
As seen in (a) p. 8% any sample path starting in (-n) is a finite
step function which never reaches y; hence

P[Zy:ao’}(oz--n]:’l for all -n < O
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From (b) p.83 we know that a sample path starting in y, is a step
function on the positive integers which is finally absorbed by 5’03 ’
and hence never visits a strictly negative n. So we have

P[z(_n)=ao | X =y]=1 for all -n< O

These two equalities yield for all -n < O

P[Zy<t[xo=_n]=p[z(_n)<t{ X =y]=0

Thus their maximum is zero for all -n < O, and if we take the
limit as -n tends to - e we get

%én}:o max [P[ Ey<t [ X°='n], P[ Z(_n)< t{ Xo’—'-Y:']:O.

As -n converges to y in T, this shows that Williams’ conjecture
does not hold for a semi-polar point y.
The next problem is to try to find an analytical characterisation
of a V satisfying (i) and (ii), i.e. is it possible to define such
a V by means of Rij(‘x ) and Ryj( A ) only?
It is easy to get a necessary conditionfor (L).

We have

g pyk(t)=P[ X e VoA lxo=y]

k e y©
< Pl Tyc « ¢ !ony:l

=1-2[Bye >t | X =y]

But the assumption (i) implies that the last term tends to zero as

t tends to zero and we get

This is an insufficient condition as the case of an instantaneous
point i readily shows.

For such an i we have

E pik(t) — 0 as t—> 0

k « A- {i3
but as seen before the relation (54) is contradictory to (i).
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Let D = YiinA tRyi()\)=og

We have

P[ZD = oo ]ony]=‘1
¥ i

Hence if Dy is an infinite set,'it cannot be contained in a right
neighbourhood of y (otherwise it would contradict (ii)). But it
is only incidental that in both our exampleé the complement of Dy
in A + Ae is actually a right neighbourhood of the troublesome
point ( § 0§ in ex. 1 and gy? in ex. 2).
It should be noted now that the existance of a right neighbourhood

has not been established except in the constructed examples!
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CHAPTER VI

On some analytical relations between the original semi-zroun and

its associated taboo semi-groups.

The fact that D, Williams' conjecture is false may lead us
to wonder whether analysis is a good enocugh tool to obtain
probabilistic properties. But this does not change the likelihood
of the following analytical result: |

Would be theorem 1.

Let B be a subset of A + Ae
Let y be a point of 4 + Ae not isolated in the topology T.

Then there exists a sequence, Ypr 1 in N of points of A + Ae such that

(1) ¥, £y for all n
(2) Y, — ¥ inT asn— oo
(3) prni(t)._9 pri(t) for all t> 0O and i in A

This chapter is mainly concerned with the proof of a weaker.
result (and also with an important restription on the choice of y).
On the way some interesting related points are alsoc investigated.

Note that the countability assumption made earlier on Ae
may be relaxed, if we choose a set B such that the corresponding
semigroup and entrances are well defined as in Chapter V § 3. €2
if B is a Borel set for T.

The cone of entrances relative to BP(t) will be denoted by gF.
Naturally the first thing to check is the extremality in BF of

the probabilistically defined pri(t).

Theorem 2.

. . . .
The entrance pri(t) is extremal in SF for all y in A + A_.

To prove this result we use the th 3.2.2 of J, Neveu [ 7 ] of

which we give a version adapted to our special pair of semi-groups.



For every f in F, we have

? (w) P (t + s) f(u)BP(t)BP(s) <

£ (u) P(t)BP(s)

f(u +s)BP(s)

so that f(s)BP(t s) is monotonic decreasing as s decreases to O,

for all t > 0.
For all i in A and t >0, define

(&) <[« ]i(t) = lm (£(s)zP(t - s));

@[ £ ] is an element of B

Proof:
“f[f]i(tm) = ]5:,112 z fk(s)Bpki(t-i-u—s) =
kel

: ; N _ _

ﬁz f, (s) /) Bpkj(t S)Bp;ji(u) =
k <A j=A

(5) 322 [z fk(s)Bpkj(t—s)]Bpji(u)

jeA kel

In (5) the sims in brackets are monotonic decreasing as
s tends to O,
Therefore the relation
5) = Plel¢t+u) < £(t+u) < oo
allows us to interchange the summation over j in A and the limit
as s tends to O in (5) and we get:

g [f]i(t+u) = Z 1im[ Z fk(s)Bpkj(t—s)]Bpji(‘u)

jeAs"°keA

ST
=/ Pleli@rp,;
j €A

For every _f in BF we have

B

Bf(u)P(t+s) = Bf(u)P(t)P(s) =

Bf(u)BP(t)P(s) = Bf(u+t)P(s).
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so that Bf(s)P(t-s) is monotonic increasing as s decreases to O,

for all £t > 0. For all i in A and all t > O define

&) VY[l = un  GEs)P(E-s)),

Q'[Bf] is an element of F,
First note that the limit in (6) is always finite.
We have for all s O

Z ZBfk(S)Pki(t-S) =Z Bfk(s)z_ Pki(t-s) -

iedA keA ke A ieA

Z Bfk(s) £ ¢ < oo by I.(16)

kel
hence
i3 E g (s)py; (t-8) < lénisgpz pfs) =< ¢ < e
ke A kel

Now we prove the entrance equation

q/[Bf]i(t+u) lim ;E: Bfk(s)pki(t+u-s)

kel

— 3 b -

= Lin E ? Bfk(S)pkj(t S)pji(u)
keA jehA

As WY [Bf]i(t) is the limit of the increasing (Bf(s)P(t-s))i,

ve may interchange limit and summation in (7) to zet

Z %irg( z Bfk(s)pkj(t-s))pji(u)

q/[Bf]i(t+u)

jeA kel
JjeA

Neveu's theorem 3.2.2 in [7] reads as follows:
There exists a positive band F contained in F such that & and Y
are isomorphisms between .F and F. Moreover ¥ and ¥ satisfy:

for every k in A
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@  Yp_ € )] (t) = ;p, . (t) or 0 for all i in A
and for every k such that 5Py . (.) is not identically zero

(9) LI (.)]i(t) = p;(t)  for all i in A

Proof of th 2

The extremality of the trivial entrance is clear, therefore we now

choose a y in A + Ae such that (t) # O for at least one i.

BPyi
e have for all s » O and Jin A
- 13 ‘ -st ,
Blr, (DL = 1n > py(Dpoles) < p ()
kel

s0 that for all t>0 and all i in A

f‘l’[‘? [p, €11 ¢6) = Lim Z @ [p, (- )]5(sdpy; bms) <
(10) T jeA
% Ln > pyy(e)py(t-8) = b, (4)
Jed

Let Bh be an element of BF such that
<
(11) g o< Y[ p, (- )]

Since Y is an isomorphism (10) and (11) give

WV ghl(t) < W[ [p, . €] < Pyy (¥

As y is extremal in F we can find an = in [0,1] such that

Y [ghli(e) = &y (e)
which in turn yields

i) = PLYI[HILE = <« Pl (] @)

As this can be done for every Bh in BF this implies the extremality

of ¢ [py ()] in gF

By V (6) we get the inequality

E pyk(s)B Py (E-8) > B yi(t)
ke

and letting s decrease to 0, this yields

(12) o [ (I](8) » poy, (1)

Hence the extrewality in gF of pri(t) itself is proved
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Note that the inequality (12) is in fact an equality (as is already

known for a state in A by (8). We have

(13) @ [p, ()] ®) = Lum E P gl t-q ) =

ke A

. . . 1
%;E> P[Xt =1 Xsé.B for all s in [ pg t] [ XO = y]

But as n increases to oo , the events considered in the probability

are decreasing and we get

. A 2% =i . %
lim  P[ g‘ctu X ¢ B for all s in [, t] Ixo =y] =
n="1

P[Xt=i X,¢ B for all s in (O,t]l X, = v
() = pri(t) by definition (see V(5))

The equality (13) = (14) gives for all t > O and iin A

(15) ¢ [p,, €.)];(8) = poy,; (8)

Similarly we now extend the relation (9) to all y in Ae such that

pri(t) is not identically O.
We have

. 1 1
(16) W [pp, . ()] () = 14p E Py B (6 =

ke A
lim p[ ZB = X=i { ony]

As n is increasing to oo the events considered in the probability

are increasing and we get

lin P[G (757 2] %=1 [xo=y]=

n=
n= 1

(17) Pl (gz >0 X,=1 / Xo=y]
By our choice of y there exists a k in A such that

0 <P[ ZB>t thk ( Xo=y] < P[ZB> 0 ! x°=b']

By the o - 1 law this implies
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P[ TB70 !ony]=1
If we use this last relation in the equality (16) = (17) we get

for all t> 0 and all i in A

(18) Y lge,  CO)(8) = p,(8)
As a first attempt to show would be theorem I we imitate the

stochastic case (see th IIL. 4)

Recall that oA = { ie A f gP; 4 (E) # 0 f

Let BM1 be the convex set of all the positive measures such that
(19) E k) < 1
k:eBA

and for all s > O and all i in BA

(20) e-s% (k) 5oy (s) & pM(i)

IceBA
By Neveu's result (our th. II, 2 which holds also for substochastic

semigroups) there exists an isomorphism from BF onto B M the convex

cone of positive finite measures on A satisfying (20). Therefore

B

to any extremal ray BF corresponds an extremal point of B} Denote

11.
by B(A + Ae) those extreme points which are not O, For every y such

that pri(t) is not identically O for all i the corresponding entrance

is extremal, as an extrémal point of BM1 must be of total mass equal

to 1, the measures

1 R_. (1), iin A
) [ S B
(21) Br(y) B yi

(22) where Br(y) =_2 BRyk“) ~ 0

keBA

are elements of (A + & )
B e

A
If Bf(1) is an element of II (17) and II (18) hold with respect

BM 10
to BR()\) and we get
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@3 i T [H1) 5D GOLRA) = 521

=Cb

where BD()\) is the obvious equivalent of II (20)
S{milarly to A* ve define BA* as the set of measures on BA which
are limits of the measures of total mass egual to 1 generated by
. _ R s a . s . s .
_ BA’ i.es X = {,Bm(l), iin gt g is in pA* if and only if there
exists a sequence in of points in _A such that

B

1 B 5(1) foralliin A
(1n) n

(2h) pm(i) = lim

= Br B

A* is a compact metrisable space if the topology

Once again this set B

is the simple convergence one.

A
To generate a measure on A* by means of Bf(1)BD(A') as in th II &4
we let

SN K = k) [B?(1)BD(.A )Jk for all k in A
%/ so that (2¢) becones

?xi(1)

(25)  GE(1) = Lim (] A, ax) 1

A= Br(x
*
BA

Now we have

| kegh ' |

JeBA

A2 ST SR 00 L, (92)

Legﬂ IGFA
A A
§ )
= Bf,-\’l. - Z 'Bf';('/\*/!) < 1
i iésﬁ 'JEBA .
Hence if Bf(‘!) is the extreme point of Bﬁ1’ associated witha y

(by (21) and (22) ) we may use the arguments of th. II 4 to show
) . . A
the existence of an x, in BA such that Bg(.X s . ) > xo( . )

as,A —~ oo, By the construction of _A* this is enough to get

B

a sequence in in A satisfying (24) and it yields for all i in BA

(26) BRyi(1) = lim 1

e Ty Bani(n)
| - 105..
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If we hope to deduce (1), (2) and (3) from (26) we must check that
the sequence in (26) converges to y in the topology T. By lemma p, 27
this amounts to showing

%%ga pini<F) = pyi(t) for all t > O and all i in A

But we get only fthe following inequality:

every sequence i in A for which (26) holds such that for all i in A

and t > 0O

(27) 1
—Ij-(;)p (t) < lim in f W) pl 5 € (t)

Proof: of (27)

By V(6) we have for all i, all i and all s >0

DP: -
i) = g B k(s) p,, (t-8)

k:eBA

If we divide both sides by Br(in) and take 1liminf as n tends to oo ,

we may use Falou's lemma to obtain

liminf 1 0
nm oo o Py (B> _z Fiming —re=ygp; ((s)py, (t-s)

r(i ) n B '™n n

5. n ke A

B

Let i be a sequence satisfying (26)., The corresponding sums over
all i in gh are normalised byBr(in) (see (21) and (22)). Therefore
the lemma p 27 in its original fofm for substochastic semigroups

given by Neveu implies for all k in A and all s > O

Lim r(1 )BPi_ k(s Z y5Pyk (S)

From the two last relations we deduce

. . 1 . 1 .
liminf —;13—7 pi i(t)z —;T§7*— prk(s)pki(t-S)
n= B n n B

kéBA

If s decreses to O in this inequality we get

- 1 1
liming Br(in)pini(twlgr—(;)- W[pr O )]i(t)
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which is equivalent to (27) by the equality (18).

Note that this proof does not use the fact that in lie in BA only;
so if we cﬁange i in y , points of 'B(A + Ae), such that (26) holds,
the same inequality (27) is satisfied.

The inequality (27) cannot be improved upon as the following example
shows:

Lxample 3.

Let A be the set {’1; 27 33 esee ?

Define the following conservative Q matrix

1 2 3 n
1 [ o 0 0 ]
2 0 0 0 O
3 13 32 -F
b 43 0 -4
n n n(n-1) o C T ?
O

As 1 and 2 are absorbing states the minimal solution is stochastic

and is equal to

F a2 0 0
pN
1
- - (6]
© >
a3, 1373 _ag
R(N ) = | MA3 A A3 A3
' 0
2
1 n 1 n " —n 1
BN >\+n2 ;\' >+n‘2 © A4n

From R( X\ ) we get
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(28) lin Rn1(1) = 1im - =0 = 1221(1)
+n .
- . — 4 n —n_ —
(29) o R (1) = lin L2 T = Ry(1)
+n .
. . 1 .
(30) lim R (1) < lim 5= 0 =R,(1), i>2

i.e. n tends to 2’22 in the topology T, as n ~> <o

Note alsc that for all n > 2

(31) R,,(1) =R (1) = 1 - == > 1.2
11 n 24 4

ice. §17 is isolated in T.

By the usual interpretations for @ (Cth.II. 5.5. and p.259) and the
Xt+ version we can now describe the sample paths. Either they start
in 1 or 2 which they never leave, or they start in n > 2, remain._
there for a while and then jump to the absorbing states 1 and 2,
with respective probabilities 1 / n.and n-1/ n. Thereforé if the
point {25 is dhosen as taboo set the associated resolvent is.

equal to R( )\ ) except in the second row and column which are

identically O.

hs T (1) =Z R (1) =

=1
k#£2
n ) 1 _.n+1
or(n) = E R = 5 2 = >
14+ n 1+ n 1+ n
k#2

the extreme points of M1, which are given by (21) and (22) are

ped
1 o R1i(1) for all i £ 2

and

n2 + 1

2<n~r
n + 1

Rni(1) for all i £ 2

These relations imply

(32) 1im 1 Rni(1) ; 1im —

n=oo zr(n) 2 Nn:o

2 + 1 n 1

= 1 = ——— R (1)
n + 1 02 4+ 1 2r(1)211
and if i > 2
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- 2
. 1 1Ay o« 4 n_+ 1 1 P
(33) He sy '™ T ML wTT Z o, 0T Al

Therefore Yn‘i is a sequence in >

holds for y = $13 and B= §23 .

A= (1,3,4,...) such that (26)

Consider now (27) for i = 2,
0= p,‘a(t) = Y [291(1)]2 (t)

1 2° + 1 n-1 -nt
BHp =) P = Jimgt T G- D =

Thus in this case (27) is a strict inequality.
From example 3 we can also deduce the interesting fac't that if T and
B'I‘ are the simple convergence topologies on A + Ae and B(A + Ae),
(as lieveu defines in [8]) then T and gl are wildly different.
By (28),(2?()50) and (31) we know that
?nz — 23 inTasn — <o
and .
$19  is isolated in T -
But (32) and (33) mean
Tn?l — {15 in 2'1‘ as n — ©°
Next we prove a kind of converse to inequalit.y (27)
If the sequence Yy, converges toy in (A + Ae’ T), then for all i in

»

BA we have

. y - \{ "
(34) linsup prnl(t) pri(t) for all t > 0

Proof of (34)

We have for all s> 0O and t > s, and all ¥y
(35) pp,i(t) < E pynk(S) P (E-5)
K €A
Remember that the relation II (16) holds for all extreme points of M

i.e. we have for alls > 0O

Z pynlﬁ(s) = g Pye(s) =1

keA kel




This fact and the choice of a sequence Yy converging in T are
enough by the Scheffé's theorem to check that the sum in (35)

has a limit as n tends to o0, which then satisfies
limsup prnl(t) < lim E Pynk(s)Bpki(t"S)
: k e A

and we get

(36) Jingwp o (8) < > b (8) g (b-s)
kel

Now if we let s decrease to O in (36) we get

limsup prni(t) < @ [pyg.)Ji(t)

Finally this last inequality is equivalent to (34) by the equality (15)
As the . inequality (27), (34) cannot be improved upon.

Example 1 provides a trivial counter example. We have §{nj — O

in T (see p.6£38) but relations V(36) and V(38) give for the taboo.

set B= §1, 2,000 9

%%mgyp'Bpno(t) =0<1-= Bpoo(t)

Thus in this case (34) is a strict inequality.

Now look at what happens in this example under the hypothesis of
would be th. 1

{ O? is not isolated in T.

Every sequence in such that

i # O for allm (i.e. (1))

i —0 inTasn— oo (ieev (2))

has the property that

Bpino(t) =0 —f ﬁpoo(t) =1 as n — ©o

Therefore would be th 1 is false in the case of a y in A and ye nmust
assume in its hypothesis that y is in Ae.

The results obtained so far are summarised in the following theorem.



Theorem 3.

If B is a Borel set of A + A,» T) the topologies T on A + A

and oT on B( A+ Ae) are completely unrelated but the following analytical
in/equalities always hold.

For any sequence y converging to y in (A + Ae, T), we have for all

t »0and 1 in A.

(34) llmoup pr l( t) < 'ﬁgyi(t)

For any sequence y  converging to y in (B(A + Ae); T), we have

for all t > Oand a1l 1 in A

(27) ER"?)— Pyi(t) < llmlnf—-—-—-y p (t)

Later on we shall need the ineguality (34) in its Laplace transforms
form. ((t) < 1 for all y' , i and £ > 0, ve can use Fatou's

lemma in thelr respective Laplace transforms to get

oo lod
. -2t -2t
lig .
limsup ( e prni(t)dt < ( e linsup prnl(t)dt

o o
Taking (34) into account, this shows that every sequence ¥, converging

toy in (A + Ay T) is such that ’

R.(XN)

(37) limsup R s OX ) < BRyi

for a1l A\ > O and all i in A,

Here is &i:second attempt to prove  VWould be th 1.

Choose y in A_; then either pri(t) =0

for all i in A and 211 t > O or there is at least one 1 in A such

that pri(t) > 0 forallt > O

In the first case any sequence Y, in A + Ae such that
¥, Zy for a1l n (i.e. (1))
and

V> yinTasn— o (iee. (2))
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satisfies for all 4 in A and all t > O

< 1img
(33) 0 liminf prnl

() = Jimsup prni(t)

But by th. 3 (relation (34)) the last term is bounded above by
pri(t) which is equal to O by choice of— y; hence limsup and liminf
are equal in (38) and their common value is pri(t) as expected.

So only the second case remains unsolved and from now on y in Ae

is such that BRyi( A ) is not identically O for one i at least.
Lenma

Let y be in Ae

Let C be a subset of A such that tﬁere exist one i (kept fixed)

in Aand a A > 0 for which

(39)  sup BRki(A Y < R.OXN)

Byi
kecC .
Then
%éné E pyk(S) =0
k egé

Proof of lemma

As the inequality (39) is strict, there exists a o > O such that

(40)  sup BRki( A) < BRyi( N) - 3
keC '

. Cqs
Mow let o< = lipsup g——_ pyk(s)
.k € C

Choose a seguence S, of strictly positive numbers decreasing to O

such that

(41) %“52‘05 pyk(sr)= o

keC
Obviously o¢ lies in [o,‘l]
First we khow that <« <1, Assume the converse (i.e. & = 1) and
choose € > 0 such that

(4k2) 2¢ < o

“12 T



By II (16) , (41) and our assumption we may find s( € ) > O

such that
(43) E P k(s ) < "~ for all 5. < s( € )
k ¢ A~ C
By definitions | . oo
-\t _ -Xt .
Ryi( A) = (e Bp&i(t)dt + (e Bp&i(t)dt

s

As e—)\t pr:&(t) < 1 for all t, we have for all s <min( € , s( € ))

(W) R AN € €+ (’ ABp (t)at

The integral on [s, c© ) is equal to

)r’e:Mt ) o (5 5y ; (-8)at
k e
ﬁ D k(s)Bpkl(t ~s)at

k€A
By positivity we may interchange the summation and the integration

in the last term to get

o

-\t
}: Py (s) ( ¢ BBy ; (t-s)at
k €A Y
R E ()R (N )
= e Py 5/ pRs
ke A .
SO (S>Rk</\>+g OO PP
ke C € A-C )
§ e"xS supBRki( XD E pyk(S) + e-)\s é Pyk(S)
keC keC k € A-C

Now let s decrease to 0 along 5.9 the second term is bounded above

(see 43))
by € and the last expression remains bounded by

sup BB € N) Limsup E pyk(sr) + € <

keC ke

sup R .(\) by II(16)
kec Bk - € -113_y



The inequality (44) gives then

Rl XD € supgh (M) + 26
keC

whiich by our choice of € in (42) is incompatible with (40).
Hence ol < 1. |
As o is < 1 we can now proceed to prove « = O.
Fix n in N and iet Bn be 1‘:he dpen sphere centred at y and of radius
1/n. By II (38), for every ¢ > 0 we can find Sn( € ) such that
(45) ) pyle) 2 1-€ foralls<s(€)
keBn
By the analytical arguments we have just used we get for all O < s <
min ( € , sn(é ))
(46) R (A) € N> p ()R (A) s 2E

Byi
ke B
n

As Bn is contained in (Bn - C) UC the R. H.S. of (46) is boﬁnded

above by
e As E pyk(é)BRki( A) o+ e"'A SZ pyk(S)BRki( A)+2 €
ke Bn-C keC

Taking into account the inequality (40) in the second sum the last

expression is bounded above by

(47) '
e">‘9$°ut’ 3 i O Z Pyx (s + e‘kgé’?ﬁ"m"é)z Py 2€
keC

keB,-C keB,-¢
‘So we have L.H.S (46) < (47); next if we divide both sides by

W ) e

keB -C
n

we may rearrange the terms to get the inequality

R0 [1-edZpu®] e T )
e pp(® e 2 P (e

keB,-C keB,-C

/N

(49)

Supe 3?‘&; S\
ke®,-C ekkg Z_ Pﬂk(S{)’]
' keB,-C ~

4 -



For all s > O we have

keC 1«:.5131'1 ‘kecC

Hence the coefficient of BRyi( A ) in the upper side of (49) is
always % T,

As s decreases to O along the sequence s, (41) and (45) ensure
that the denominator in (49)(which is (48)) is always bigger than
(1= ¢ - ).

From the two last facts we ;:an deduce that as s decreases to O

along s, (49) becomes

J o 26
BRyi(X>+—m < s RN+ T

s keB =C
n

Hext let € decrease to O in this dinequality to get

(50) BRlyi(/\ )+ 77,%— < sup BRki(>\ )
k'c.Bn-C

To establish (50) we do not use a particular property of n, hence

as II (38) holds for all n we can find a ¥, in every B - C such that

J o 1
BRyi()\ )+ W - o < BRyni()\)

From this we get

But as Yo is in Bn for all n, Yo tends to y in T as n tends to oo

so that we can use (37) to get

lmsup BR AA) < R .(X)

These two last inequalities afe obviously incompatible for o<~ 0.
Therefore ¢ is equal to 0 and this completes the proof of the lemma.
Now we fix )\ =1 for convenience.

In what follows A is not only countable but actually enumerated

along N (i.e., we use the order relation of N to define subsets of Aj
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i

but this order has usually no relation whatever with the topology T).
Choose a sequence of strictly positive numbers Cﬁ decreasing to O
as j tends to oo

For all i in A define the following sets in A.

Ii( ¢’'3) = fk in A BRki('l) < BRyi('l) -0 j%

Note that I, ( CJJ) is void if either R ;1) =0or BRyi(1) < C73

By definition Ii( G’ j) satisfies (39) of the lemma; hence we get

(51) lim g ‘yk(s) =0

k eIi( O‘J)

. 4
Let A, = A~ U I )

i=1

We have the inequality
J

NEETCED D pale)  F ) B e =1
A

kehy - i=1 keI (O] ke

The double sum above being a finite sum of sums satisfying (51), we

get for all j

(52) llm E yk =1

k|:A

Now for n in N (or A) consider at the same time Bn and An. Ye have

(53) E (s) +§ (8) + E pyk(s) > Zpyk(s) =1
keA

k eAr»B keA- keAd%

If s decreases to O, the sum over A-A in (53) tends to O by (52)
and so does the sum over A - Bn’ by the knowm ﬁroperty of T-neighbourhoods

(11(38)), so that we find

lim » pyk(s) = 1
k e.Ann Bn
This is enough to ensure that An ) Bn is not void, and we can now

choose in in An Bn for all n. Note that as En is a subset of A

this point can be an in and not just a Yo which might be in Ae.
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By definitions of An and Bn’ in satisfies both

(5%) d(in;y) < 1/n for all n
) and . v

(55) BRyi(1) - Ch < BRini(1)

for alliin A, 1 < i < n.

(55) yields for all i in A

BRyi(1) < %éqipf BRini(1)

By (54), (37) can be used and gives for all i in A

%}Figp BRini(1) < BRyi('l)

This proves that the sequence in which converges to y in T is such

that

(56) lim R, i(1)

R .{(1) for all i in A
n . -

Byi

The convergence is now extended to 211 A > O
(a) Case of A < 1
for all in we have

pRy () = gRy (D) (1= X )E BRs 1 (MgR; € A )
n n n
: kel

which yields by Fatou's lemma
- . 5 - - R. ]
(57) liminf R, i(A ) > liminf R, i(‘l) + (1= X )Z liminf R k(1)BRk1( )
n n n
kel

But by (56) , the R.H.S of (57) is in fact equal to

(D + (= 30> R (RO
ke A

As we know that the resolvent eguation holds for y ( see p 82 ),

(57) can be rewritten as

X)) for all i in A

liming BRini( AN) 2 BRy1

Once again we use (37) and obtain
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- . ..
BRyi( N) 7 %%WEPP BRini(’k ) for all i in A
s0 that we have for all i in A and A < 1

(58) lim_ BRini( A) = gRL (X))

(v) Case of X\ > 1
Fifst choose a & < 1; we have for all in and all i

E BRink(")BRki(/« ) - Z‘ BRyk(‘i)BRki(/},\ ) =

k e A ' ke
- (59)

1
[y (BRini(/u ) - BRini(‘l) - BRyi(/M? + BRyi(’l))

By (56) and (58) the lower side of (59) tends to O as n tends to <°

hence we get

1 > BRink(")BRki(/" ) = §__ By VR )

ke k €A

(60)

=Z 325Rs (VR O )
ke "

As M < 1< A we have for all k and i in A

61 R (X) S R Cu)

Consider the following sum

» AR
EA BRink(nBRki(/" ) B v )
p .

By (61) the coefficients in parentheses are bounded by 1 for all k,
so that (60) and the Scheffé's theorem are enough to give after
obvious simplifications:
(62)  lim E BRink('l)BRki( X)) = E; BRyk(’l)BRki( X)

k ¢ A keA

Write the resolvent equation for in in the following form:

i
-)
e, 3
co

H



Ry (D) = g8 (0 ¢ O MDY R PRIV

k<A

By (5$) and (62) we see that the R.H.S. has a limit as n tends to 2 ,

so the L.H.S., must also have one satisfying

R (”*(1')‘);3 k(1) (>\ )
k € A .

lim R (%)

BRyi( X))

This completes the proof of the following theorem:

Theorem L.

Let B be a Borel set of (A + A T).
Let y be a point in Ae.

Then there exists a sequence, in, n in N, of points of A such that

in-> y in T as n — o
and
lim B11(>\)- yl(A) for all i in A and all A > O

This theorem is the so called "civilised'" form of would be th1.(for
a point in Ae).

Unfortunatelly'it is not clear if the two are equivalent.
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