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Abstract 

The thesis begins with a study of a new form of tubular 

motor in which the flux takes transverse rather than 

longitudinal paths. An appropriate theory using multi-

layer techniques in cylindrical coordinates is presented. 

The subsequent chapters present new forms of analysis for 

linear and arc-stator induction machines. In chapter 4 a 

form of analysis using permeance and excitation harmonics 

is presented. A multi-layer theory applicable to thick 

plate linear motors is given in chapter 5. This theory 

uses excitation harmonics in both the longitudinal and 

transverse directions. All the theories given in the thesis 

are supported by results from experimental models. 
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• electrical field strength, V/m 

• magnetic field strength, A/m 
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J' 	= 	amplitude of line current density, J9, A/m 
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of field travel, m 

k 	= 	wave length factor = 2TE/X 

Z. 	= 	input surface impedance, Q in 

W 	= 	21.-Cf 

s 	= 	slip 

r,z,9 	= 	subscripts for cylindrical coordinates 

P 	= resistivity 

d 	= conductivity 
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in = 	power input per unit length in the direction 

of field travel, W/m 

F
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• 	axial force per metre of axial length, N/m 
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argument 
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at the working pole pitch 



p1 
A 
I 

HZ, EZ 
A A V 
H E ) 9' 0 

non 

B 

P- 

• pole pitch in the axial direction, m 

• peak of phase current,A 

the peak value of the respective quantities, 

which is a function of coordinate r only 

• integers 

• magnetic flux density 

• permeability of free space 

• relative permeability 

XI. 

11 	
. 

1-to µr 

x,y,z 	= 	subscripts for Cartesian coordinates 

P
w 	

= 	the winding pole pitch,m 

Pn 	
• 	the pole pitch, for the nth  excitation harmonic 

• total number of pole pairs around the machine 

• the number of pole pairs in the excited region 

• 2q 

V 	= 	rotor speed, m/sec. 

V 	• 	2P
w
f = synchronous speed, m/sec. 

Pr 	• 	rotor surface resistivity,Q 

Er 	= 	rotor surface leakage inductance, H 

B
g 	

= 	air-gap flux density, T 

Po 	
= 	pole pitch outside the excited region,m 

Bgo 	= 	air-gap flux density outside the excited region, m 

	

Prn' Vsn) 	the values of the respective quantities, 

	

, B - 	th rn 	gn)) 	for the n- excitation harmonic 

S
n 	) 



XII. 

• the magnetic air-gap, for the uniform gap machine, m 

gi' go 	
• 	the magnetic air-gap, inside and outside the 

excited region respectively, m 
go 0 	• 	air-gap ratio for a stepped gap machine 
gi 

B
g.s.s 	

= 	the steady state value of B 
g 

R 	= 	the rotor radius, m 

1S 	
= 	amplitude of stator line current density, A/m 

3R 	= 	amplitude of rotor line current density, A/m 

= 	
A 

3Ro the value of JR 
outside the excited region 

N2 	
= 	the total number of bars in the squirrel-cage 

rotor 

h 	= 	rotor width, m 

G 	= 	goodness factor 

R ( ) 	= 	real part of the quantity enclosed in brackets 

ci ( ) 	= 	imaginary part of the quantity enclosed in 

brackets 



CHAPTER ONE 

GENERAL INTRODUCTION 



The outstanding feature of an induction motor is that it 

can produce force on a movable secondary without either 

physical or electrical contact being necessary. It is this 

feature alone which has led to its immense popularity as a 

rotating machine, in which form it has a high power to weight 

ratio and efficiency. 

Linear forms of induction motor have been known for perhaps 

the last 70 years. They have, however, only recently found 

favour. This is mainly due to a shifting of emphasis in 

recent times from efficiency per se to the assessment of 

overall system economics. This assessment includes such 

factors as reliability and flexibility of application. 

Linear motors may be loosely divided into three main 

groups; force machines, energy machines and power machines. 

The criteria by which the quality of the motor is judged are 

different for each division. In the force machine case, 

that is, a machine which produces force on a mechanism with 

either a limited or no movement, the efficiency is clearly 

virtually zero since the output power is small. Accordingly 

the quality of such machines is judged in terms of quantities 

like force per weight or force per input power. 

2 
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Force machines have been manufactured couutercially for a 

number of years, notably in the United States, Sweden and 

in this country by Lintrol Ltd., who make a large range of 

linear stators. The range of application of these machines 

has been extremely diverse; probably their widest use has 

been in a crane drive system, although many apt uses in the 

general materials handling field have also been found. 

The conventional tubular form of linear motor is commonly 

used for force applications. This form of construction is 

described in chapter 2. The chapter goes on to show that 

the core flux density is a design limitation in the case of 

conventional tubular motors and further describes how the 

coil arrangements can be modified so that the situation is 

alleviated. 

An energy machine is employed to produce kinetic energy. 

The range of application of these machines has so far been 

limited. However, two large energy machines are at present 

in use in this country. One machines is in use at the East 

Kilbride National Engineering Laboratory as a rope snatch 

tester. The second is used to accelerate test vehicles for 

crash test purposes at the Motor Industry Research Association's 

Laboratory at Nuneaton. Both these machines, each of which 



requires a supply of about 2 MVA, have been extremely 

successful in operation providing reliable and repeatable 

test conditions. 

The range of application of power machines is almost wholly 

confined to transport systems. One of the first suggested 

applications of a linear machine was its use in a railway. 

This scheme was the idea of the Mayor of Pittsburgh in 1890. 

At the present time intensive research into hovercraft 

running on prepared tracks is going on in many countries, 

principally in the U.S.A., Japan, Germany, France and the 

United Kingdom. Most of the schemes use linear induction 

machines as the drive system. 

Whilst the range of linear motor sizes and shapes is 

extremely large, the analytical treatment required for 

design purposes is, of course, common to most of them. 

To date the majority of the analysis used for design 

purposes has been performed on what may be termed a one-

dimensional basis. That is to say, the width of the machine 

has been assumed to be infinite so that the effects in the 

plane transverse to motion have been ignored. In addition, 

tangential components of the air-gap field have been assumed 

to be zero. In some design procedures the leakage reactance 

4 



of the secondary has been ignored, in others the effect 

has been included, but only by use of an approximate method 

for calculating the parameter. Chapter 3 presents a simple 

harmonic approach to the analysis which is supported by 

experimental findings. The analysis is strictly one-

dimensional. It includes leakage reactance as a parameter, 

but again, as in the earlier analysis, an approximation to 

this quantity is necessary. However, the method is simple in 

computation and application,and it is hoped that it will be 

of value for design purposes. 

The treatment given for the effects at the exit-edge of the 

machine is extremely approximate in this method. However, 

chapter 4 confirms the value of these approximations by using 

again in one-dimensional form a new analysis using permeance 

harmonic techniques. This analysis will be of value in 

assessing some proposed techniques of gap-shaping at the exit-

edge of linear motors. 

In chapter 5, an analysis is presented which uses multi-layer 

theory to predict the performance of a thick plate linear 

motor. This analysis is two-dimensional; it includes the 

effects in plane transverse to the motion. This approach is 

5 



the most rigorous in the thesis and it gives extremely 

good results. It is hoped that it could in future work 

be used to find the effective rotor parameters so that 

tables could be computed to facilitate the design process. 

6 



CHAPTER TWO 

TRANSVERSE FLUX TUBULAR MOTORS 



2.1 	Introduction 

The form of a conventional tubular motor may be explained 

with the aid of Fig. 2.1 
(2.1). 

 Fig. 2.1a shows the 

instantaneous pole pattern of a planar linear motor. If 

this pattern is rolled about an axis parallel to its line 

of action the pole pattern of a tubular motor is produced, 

as shown at Fig. 2.1b. 

The primary coil construction may be explained in a similar 

manner with the aid of Fig. 2.2. Fig. 2.2a shows one phase 

winding of the planar motor. In order to convert this into 

the tubular form it is rolled into a cylindrical shape by 

joining AA to BB and omitting the end windings. Each 

conductor of the original winding forms one circular coil, as 

shown in Fig. 2.2b. 

2) 
It is shown in an earlier paper 

(2. that transverse flux 

linear motors have advantage over the more conventional type 

of flat machine, especially in that the flux density of a 

core of a given thickness is independent of the pole pitch 

and these machines are specially advantageous in high speed 

motors designed to run from 50 Hz supplies. 

It is the object of this chapter to examine some new transverse 



b 

Fig. 2.1 The development of a conventional tubular motor 

(a) Instantaneous pole pattern of a planar motor 
(b) The planar motor rolled to form a tube 
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a 

Fig. 2.2 Primary coil construction for one phase 
of a conventional tubular motor 

(a) Coil structure of a planar motor 
(b) Coil structure of a tubular motor 



flux machines in which the construction is tubular in that 

the primary coils completely surround the secondary conductor, 

not so much because they may be required to have large pole 

pitches but because the basic change of magnetic circuit 

axis enables a simpler form of laminated core to be used. 

So far commercial tubular motors have been restricted to 

small sizes and low powers so that a solid steel core could 

be used without incurring severe penalties. With expansion 

of the range of commercially manufactured linear motors it 

is now important to investigate the design of high powered 

tubular motors and it is hoped that this chapter is seen to 

represent a first step in the right direction. 

2.2 	The new machines  

2.2.1 	Primary winding arrangements using coils  

The construction of the new machines may be explained by first 

considering a flat structure with two windings sets. This 

is shown at Fig. 2.3. 	As in the case of the conventional 

machine this can be rolled to form a cylinder. However, this 

time the end windings are not omitted so that CC lies on DD. 

On the first coils of the winding sets one coil side is shown 

by a heavy line. When the windings are rolled up the points 

XX' will coincide. Thus, since the points YY' are also 



-D 

C 

D 

Fig. 2.3 Illustrating the development of the primary winding structure, 
using coils, of one phase of the transverse flux machine. 
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coincident the winding conductors XY and Y'X' can form a coil 

in the tubular form. This coil will be skewed with respect to 

the tube axis. Similar coils can be formed by using, in pairs, 

the conductors shown in plain lines. These coils form one 

layer, of the final winding. The dotted conductors again taken 

together in pairs form the second winding layer which is skewed 

in the opposite direction to the first. Fig. 2.4 shows a pair 

of skewed coils suitable for the first coil of the winding layers. 

The windings so far illustrated are single phase. Polyphase 

windings can of course be constructed following the same princ-

iples. Fig. 2.5 shows a one slot per pole and phase version in 

which the virtual coil pitch is two-thirds of a pole pitch. It 

will be appreciated that any virtual double layer winding may 

be formed using this coil construction. By the technique used 

in developing these new windings it will be understood that they 

correspond with a combination of two conventional windings so 

arranged that the "end turns" are coupled more closely with the 

secondary. In terms of surface windings it will be noted that 

whilst the system has been described in terms of original 

windings having coils of conventional shape, any original coil 

shape is in fact possible. 

2.2.2 	Primary winding arrangements using spirals  

The arrangement of Fig. 2.3 uses conventionally shaped coils. 

Fig. 2.6 shows in dotted lines a similar construction in which 

the coils are diamond shaped. The plain line marked AH on this 
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Fig. 2.4  Skewed coils used to construct the 
transverse flux motor primary. 
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Fig. 2.6 Development of a double helical winding 
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figure represents a conductor which could replace the coil 

sides marked A, B; C, D; E, F; G, H. The conductor marked 

IJ could similarly replace a further four coil sides. When 

the arrangement is rolled into tubular form H lies on I. This 

means that AHIJ could be a single conductor. This conductor 

is helical in shape since it is at the same angle with respect 

to an axial line at all points in its travel. By the same 

argument the same helical conductor could be extended at each 

end to form MP and KL. A second helix of the same angle and 

pitch but with its current oppositely directed could replace 

further coil sides as indicated on the diagram. All the coil 

sides which slope down from left to right have now been repl-

aced; the pair of helices so formed comprise the first 

winding layer. The coil sides which slope down from right 

to left may be replaced by a second pair of helical conductors. 

These will have the same pitch as the first pair but will be 

angled in the opposite direction to form the second winding 

layer. 

Polyphase versions of the windings may of course be arranged. 

Fig. 2.7 shows an unrolled 3 phase configuration, the two 

layers to be superimposed are shown on different diagrams for 

clarity. Fig. 2.8 shows a sketch of the conductor shape for 

one layer. The winding is in the form of a six start thread. 

The spiral windings have been described in terms of single 
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Fig. 2.7 Three phase helical winding arrangement 

(a) First layer 
(b) Second layer 



Fig. 2.8  One layer of a three 
phase helical winding 
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conductors. The construction using phase bands of conductors 

to increase the effective turn number is the same but in this 

case the conductors must be inter-connected at each end of the 

machine; each conductor as it emerges from say A in the red 

phase on Fig. 2.7a must be connected to a conductor at C. This 

leads to two possibilities. First, the conductors may be formed 

in spirals and then each individual wire connected, or secondly, 

a long coil can be made and twisted to produce both the negative 

and the positive conductors of one winding layer. 

The spiral winding has another feature which could be of value; 

if only one winding layer is used, then the secondary will be 

subjected to a torque as well as a translatory force. 

The windings described in Sections 2.2.1 and 2.2.2. have two 

poles in the circumferential direction. The system is not 

limited to these cases. By starting with say four winding 

sets on Fig. 2.3, machines with four poles in the circumferential 

direction can be produced. 

2.2.3 	The magnetic circuit  

Bearing in mind the original winding of Fig. 2.3 it will be 

noted that the pole flux enters the tube over one part of the 

periphery and leaves over a diametrically opposite area. At 
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any one section the flux lines appear as shown in Fig. 2.9. 

It will be seen that the flux paths in the machine may now be 

restricted to radial and circumferential directions, that is, 

the flux lies in planes transverse to the direction of motion, 

as did the flux in the planar machines described in ref. (2.2). 

Simple disc laminations may be used for the secondary. If a 

surface winding construction is to be used, annular laminations 

suffice for the primary. 

The use of surface windings implies a larger magnetic gap. 

However, it is possible to provide a virtual "tooth and slot" 

structure in the primary iron circuit. Fig. 2.10 shows a 

constructional drawing corresponding to a section of the 

diagram of Fig. 2.5. Here, in the sloping portions, the coils 

are in close proximity. Thus if the coil width remains the same, 

spaces are left in between the straight portions. This constr-

uction of course corresponds with normal practice in machine 

windings. 

The shape of lamination required to form the primary magnetic 

circuit is shown in Fig. 2.11a. A general view of the constr-

uction is shown in Fig. 2.11b, the windings are omitted in this 

diagram. It will be appreciated, however, that the sloping 

portions of the windings fit in the arcs labelled X-X on Fig. 2.11a 

with the straight portions lying between the lamination packets. 
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Fig. 2.9 Pulsating "two-pole" transverse flux 
distribution 
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Fig. 2.10 Primary lamination structure for the 
winding of Fig. 2.5 
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Fig. 2.11 Transiferse flux motor primary 
lamination structure* 

(a) Lamination shape to form the 
magnetic circuit of (b) 

(b) MagnetiC circuit 
(c) Lamination shape if furt 

her laminations are used 
between the lamination 
packets of (b) 

b 
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The construction of Fig. 2.11b could be modified by including 

further annular packets of laminations between those shown. 

These would be dimensioned as indicated at Fig. 2.11c. They 

would assist in carrying the circumferential flux. This would 

enable the outside diameter of the machine to be reduced. 

The above configurations have been developed in terms of the 

primary arrangement which uses coils, however the arguments also 

apply to the spiral case. 

The magnetic circuits so far suggested for the new machines use 

laminations transverse to the direction of motion. Other 

lamination systems are possible, for example Fig. 2.12 shows a 

machine in which axial lamination planes are used for the 

secondary magnetic circuit. Clearly the use of this hybrid 

system enables the flux to take either axial or transverse 

secondary paths, or both. Tubular actuators in industrial use 

couolonly have solid steel secondary circuits. These again 

provide both axial and transverse flux paths. Hybrid secondary 

magnetic circuits may be used either with machines with no 

primary iron circuit or with the transversely laminated circuits 

so far described. Hybrid primary circuits are also possible as 

shown at Fig. 2.13. In this arrangement slotted axial lamination 

packets are used to contain the primary winding. The annular 

punchings which surround the machine provide transverse flux 



annular 
punchings 

axial 
punchings 
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Fig. 2.12 Axial secondary laminations to provide 
both axial and transverse flux paths 

Fig. 2.13 Primary magnetic circuit with axial 
and transverse flux paths 
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paths. It is therefore possible for flux to take either 

transverse or axial paths. 

2.3 	A comparison between the new machines and 

conventional machines 

In conventional tubular motors the electric circuits are perfect 

in that no axial currents exist. That is to say, the secondary 

currents have circular paths only and no end-turns are required 

in the primary winding. However, the magnetic circuit becomes 

more difficult. At any section of the tube the flux crosses the 

rotor conductor radially, and its direction is the same at all 

points on the periphery. Thus the flux from one pole of the 

machine must pass axially to the next pole and the area of the 

rotor magnetic circuit limits the pole flux. This limitation is 

severe when the pole pitch is long compared with the radius. The 

core flux limitation implies that the air-gap flux density must 

reduce as the pole-pitch increases. 

In the new machines the flux has no axial component in the 

secondary core and the air-gap density is therefore independent 

of pole pitch. The flux passes transversely through the 

secondary as shown in Fig. 2.9 and no constriction is imposed 

on the flux path. The magnetic circuit is therefore improved. 

However, the electric circuits are inferior in the new machines. 

First the windings have virtual end-turns, that is the primary 

conductors have axial components. 
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Secondly, the rotor currents are constrained to paths of the 

form of those shown in Fig. 2.14. 	Therefore the apparent 

resistivity of the secondary viewed from the primary will be 

increased compared with that which would be obtained in the 

conventional case, due to extra path lengths involved. 

Thus as far as the ratio of the forces produced at constant 

core flux is concerned, as the pole pitch increases there is a 

trade-off between a reduced gap-density on the one hand and an 

increased effective rotor resistance on the other. However, it 

was felt that the new machines should be better over a range of 

parameters and it was therefore considered to be worthwhile to 

test the machines both practically and analytically. In the 

result, as may be seen from the following sections, substantial 

increases in force can be produced. 

2.4 	Theoretical analysis 

2.4.1 	The primary current density 

The primary winding considered consisted of two superimposed 

helical distributions, corresponding to the arrangement shown 

in Fig. 2.7. It is assumed that the windings produce perfect 

sinusoidal travelling waves. 

The current density then consists of two components, 



Fig. 2.14 Secondary current patterns in transverse flux tubular motors 
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Ji  =6
N I  
7- exp(j$) exPj(Clit - kz + n8) 

N1  I J2  =R[TL— expj(TU - $) exPj(00t  - kz - ne4) 

where $ is the angle of the winding with respect to a line 

parallel to the motor axis and is given by, 

1 k r 
0 = tan-  ( 	) 

and L = pl  sin 0/3 

The resultant current density can be represented by two 

components, 

.Jz =RD J' cos $ sin(n9) expj(60t - kz): 

J
e 
=KJ' sin 0 cos(n9) expj(COt - kz)] 

where J' = N1  t/L 

2.4.2 	Mathematical model  

A general multi-region problem is analysed. The model is taken 

to be a set of infinitely long concentric cylinders, with a 

radially infinitesimally thin and axially infinite current sheet 

excitation at radius r . 
g 

In order to simplify the problem it is assumed that the resist-

ivity in the radial direction is infinite. In particular this 

can be taken to imply that any conducting region is perfectly 

laminated, by being constructed from infinitely thin insulated 

(2.1) 

(2.2) 
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concentric cylinders. Displacement currents are assumed 

negligible and magnetic saturation is neglected. 

Maxwell's equations for any region in the model are, 

curl H = J 	 (2.3) 

div B = 0 	 (2.5) 

div E= 0 	 (2.7) 

B . p.11 	 (2.9) 

curl E = - mat 	 (2.4) 

div J = 0   (2.6) 

J 	= o E 	 (2.8) 

and from the initial assumptions we have J
r = 0 	(2.10) 

The boundary conditions are: 

(a) The radial flux density is continuous across a boundary 

(b) The axial component of magnetic field strength is 

continuous across a boundary, but allowance must be made 

for the current sheet, in the manner shown in Section 2.4.4. 

2.4.3 	The field equations of a general region 

As a first step in the analysis the field components of a 

general region are derived. 

Assuming that all the fields vary as exp DOA - kzXj and 

omitting this factor for shortness, from all the field 

expressions that follow, we have from equations (2.1) and (2.8) 



A 
EA = EA cos(n9)  	.(2.11) 
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Using equations (2.6), 	(2.8) and (2.11), 	it is shown in 

Appendix 2.8.1 that for n 	0, 

A 
Ez  = Ez  sin(nA) (2.12) 

A 	in A 
E 	= 	E and (2.13) z 	kr 	9 

Appendix 2.8.1 further shows that: 

Ez = [A in( a r) + D Kn( a r).] sin(n9) 	 (2.14) 

where a2 = k2 + jgAIT  	(2.15) 

In and Kn are modified Bessel functions of order n, and of general 

complex argument (2.3). A and D are arbitrary constants to be 

determined from the boundary conditions. 

Using equations (2.13), (2.14) and (2.11), for n # 0 

E9  = -1-1P (A In( a r) + D Kn( ar)) cos(nO) 	(2.16) 

Using equations (2.4), (2.11), (2.12) and (2.13), Appendix 2.8.2 

shows that 

-(n2  + k2r2)  E  Hr Wp.r2k 

 

(2.17) 

 

The appendix further shows at equations (2.59),(2.58) and 

(2.64) that 

 



and Hz = 

H 	- 
9 

H
9 
= 

kr. 

in  

:)(A In(ctr) + D Kn(Ctr)) 

	(2.18) 

	(2.19) 
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H rk 	z 

A 
H 	sin(n9) 

2rk2 

n2 + r2k2 

+a(A In_ i(c(,r) - D Kn_i(ar))] cos(n9) 	(2.20) 

2.4.4 	Field calculations at the region boundaries  

Fig. 2.15a shows a general region m, where E
9,m and Hz,m  are the 

field components at the upper boundary of the region, and E
9,m-1 

and Hz,m-1 are the equivalent values at the lower boundary. 

From equations (2.16) and (2.20), 

-jr k 
E0 ,m - 	m  FA In(amrm) + D Knmrm  cos(n9) 	(2.21) 

n L 	i 

, k r 	z 

F( 2 

r

m2 

k2 

)( A In(amrm) + D Kn( a mrm) ) 
Hz,m 	L n + rk2 rM 

+Ct m(A 	mrm) - D Kn_1(cc mrm))] cos(n9) 

	(2.22) 

Equivalent expressions for E9 m-1  and Hz m-1 can be formed by 

replacing rm  in the above equations by r(m_ i). 

Now for the regions when m # 1 or N, we can put, 



Reg ion (m+1) 

HzI m..1 

Region N 

Region (N-1) 

E 
	 rN-1 

a 

Fig. 2.15 Illustrating the mathematical model 
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E9,m 

H 
z,m 
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where [T
m is the transfer matrix (2.4)(2.5) for  region m, 

and is given by, 

••••• 	 MP/ 

T
m 

a
m b

m 

c 	d 
m m 

	(2.24) 

  

Expressions for am, bm, cm  and dm  are derived in Appendix 2.8.3. 

Hence given the values of E9  and H
z 
at the lower boundary of a 

region, the values of E9  and H
z at the upper boundary can be 

found using this transfer matrix. At the boundaries where no 

excitation current sheet exists, we have continuity of H
z 
and E

9' 

thus for example if two regions are considered with no current 

sheet at the common boundary, knowing Hz  and E9  at the beginning 

of the first region, Hz  and E9  at the end of the second region 

may be calculated by successive use of the two transfer matrices. 

Considering the current sheet to be at radius r , then: 

Hz m = Hz m 	when m g 	(2.25) ,, 

	

and H
z  ' ,m = Hz m  J9 	

when m = g 	(2.26) ,  

where H 	is the axial magnetic field strength immediately z,m 

below a boundary, and 	
m 

H'
z 	is the axial magnetic field 

strength immediately above a boundary. 
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then 

	(2.27) 

(2.28) 

If region N is now considered (Fig. 2.15b) then, as 

 

 

In  a r ) 	00 

Therefore, from equations (2.21) and (2.22), 

A = 0 

-j rN-lk  E 	D Kn(CC N  rN..1) cos(n9) 	(2.29) 

and 

Hz,N-1 = 
k rN-1 

( 

2 2rN-1k 
nWi/ 2 	2 	2 n 	+ rN-1 k 

r
N-1 

)D Kn(alirn.1) 

D Kn-1(aNrN-1)1 cos(n9) 	(2.30) 

Considering region (1) we have, 

as r --> 0 

Kn(a r) --> 00 

Therefore from equations (2.21) and (2.22), 

D = 0 
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= 
-j r

1 
k 

E0,1 
n  A In (a 1 ) cos(n9) 	 (2.31) 

.and 
k r1 f 	2r 

Hz,  1 = ncomi r1 )A In (a lr1) n2 + r2 k 1 
+ 1A In-1(a  1r1)1 cos (nO) 	(2.32) 

It will be appreciated that these equations for the field 

components at the "end" region boundaries of the model still 

contain arbitrary constants A and D. However, to solve the 

problem it is only the ratio of E to H, which has been defined 

elsewhere as the surface impedance (2.6, 2.7, 2.8, 2.9, 2.10,  

2.11, 2.12) that is required for the regions 1 and N. Using 

these ratios and equations (2.27) and (2.28), all the field 

components and hence the power and the force may be determined 

(2.6, -2.11, 2.12)
. Alternatively the surface impedance concept 

may be used at all the region boundaries as shown in the 

following sections. 

2.4.5 	Surface impedance calculations  

The surface impedance looking outwards at a boundary radius rs  

is defined as, 

E
9,s Zs+1 = UT 
z,s 
	 (2.33) 

and the surface impedance looking inwards is, 

s Zs 	
_ 
E 

 
H 
z,s 
	 (2.34) 
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Thus from equations (2.33) and (2.25), 

E 
N-1 

ZN H
z,N-1 
	(2.35) 

Substituting for E9,N..1  and Hz N-1 
 from equations (2.29) and (2.30) 

respectively, 
Kn(aN  

ZN  = -j(011N ( 

 

2rN-1
k2 

2 +
2 	2 r

N

n 

 -1
)K
n(aN

r
N-1)-CINKn-1 IN

r
N-1

) 
n r

N-1
k 

 

	(2.36) 

This gives the surface impedance of the Nth region uniquely since 

it contains no arbitrary constants. 

The surface impedance of the other regions going towards the 

current sheet may now be calculated successively using the 

following expressions. 

From equation (2.73), Appendix 2.8.4, 

b
N-1 

- Z
N 

d
N-1 

zN-1 	c
N-1

Z
N 

- aN-1 
bN-2 

- Z
N-1

dN-2  

(2.37) 

	(2.38) 

Similarly ZN-2 - 
cN-2ZN-1 - aN-2 
bg+1 - Zg+2dg+1  

Zg+1 cg+1Zg+2  ag+1 

The surface impedance looking inwards from the current sheet can 

be calculated as follows: 



b
2 
- a

2Z1  

1 
z
2 	c2 Z1 -d2 

1 
1 

and hence b
g 
- a Z 

g g-1 Z - 
g 	cg Zg-1 - dg 
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From equation (2.34) 

Z
1 

= 
-E
0 1 

Hz,1 

 

(2.39) 

 

Substituting for E91  and Hzol  from equations (2.31) and (2.32) 

respectively, 
In ( 0,1r1) 

Z1 
 = j0.411 	2r1 k2 

n 
(
n
2 
+ r2k2 

 	r  )In( alri)+CX1In_1( alr1) • •.(2.40) 

1 	
1 

Again this now contains no arbitrary constants and a similar 

chain of calculations can be performed to find Z . 
g 

From equation (2.74), Appendix 2.8.4, 

(2.41) 

(2.42) 

The input surface impedance at the current sheet, Zin  is given 

by the effective impedance of a parallel combination of Z
g 
 and 

Zg+1' hence 

Zg Zg+1  
Z. in 	Zg + Zg+1 

 

(2.43) 

 

Substituting for Z
g 
 and Zel.  using equations (2.34) and (2.33) 

respectively, and rearranging, 
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-E9
,g  Z. - 

in 	H 	- H' z,g 	z,g 

 

(2.44) 

 

From equation (2.26), 

H' 	= H 	J z,g 	z,g 	9 

Substitute this in equation (2.44), 

- E 
Z. = 9, g 
in 	J0 

Thus, the input impedance at the current sheet has been 

determined. This means that using the relationship, 

E
9,g 

= -J
9 
Z
in 
	 (2.45) 

all the field components can be found by making use of 

equations (2.45), (2.42), (2.34), (2.27) and (2.28). 

2.4.6 	Power calculations  

The time average power, flowing through a boundary is given 

by the equation, 

TL 
A 

 9 z 
A 	A  " 

P 	
rk,  2 	

(E H* cos
2
(119) - E z 9 H*sin

2  (n9))ddwim2 	(2.46) n  

A 	A 
Substituting for Ez  and H* from equations (2.13) and (2.18) 9 

respectively, and integrating, 

k 

2 A n

r 
 P = 0.25(1 + -7-7,) ,P, (E9HV w/ m2 	 

(2.47) 
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Now, at the current sheet, the powers flowing outward and 

inward are given by the equations, 

P. 
in,out 

2 
= 0.25(1 + 

k2 n 
	
r
2 )R(E

G,g z,g ) w/m
2 

g 

2 

n,in Pi 	' 	=4).25(1 + n 2 ) R ( 9,gz,g  ) 
w/m2 

k
2 
r  
g 

Thus, the total power flowing from the current sheet Pin,T 

is given by the equation, 

Pin,T p 
	+ P i 
in,out 	n,in 

2 

	

= 0.25(1 + k2 n 
 )R 	(fil* _ 11* )) wim2 

9,g z,g z,g r2 
g 

This expression may be re-expressed in terms of the input 

A 
surface impedance, whence substituting for H'* and 1E'

0,g z,g 

from equations (2.26) and (2.45) respectively, and 

rearranging, 

2 
Pin,T 	2 	i 

= 0.25(1 + 	)/J1/2  R (z n) k
2 
r 

 
g 

wira2 

 

(Z i n)  
T 

2 
or 	in 	= 0.57G r (1 + 	2)/J'/2 R., in/ 

kr 
0   

g 

 

	(2.48) 

The axial force, Fa, is given by, 

P. 
in F

a  = --- Newton/unit axial length 	(2.49) f  
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2.4.7 	Computation 

The method outlined above can be readily programmed for digital 

computer use and has been used to calculate the axial force and 

the core flux density for the experimental model. 

In this case, n is taken to be,l, which means that only the 

fundamental component in the 0 direction is considered. However, 

the method is of course general; any number of harmonics in the 

0 direction can be considered in turn (by changing n to the 

appropriate harmonic number with the exception of n = 0) to 

calculate the harmonic power. Since linear magnetic conditions 

are assumed, the total power input can be taken to be the sum of 

the power harmonic components, and the total axial force is then 

given by, 

	 (2.50) 

2.4.8 	Calculation of the core flux density 

The rator core can be represented by say region (1) of the 

model. If it is assumed that this region is made of infinitely 

laminated iron, then the contribution of Hz ,1 and  H9,1 
to the 

core flux density can be neglected. This leaves the radial 

component Br,1 
only to be considered. This component is 

cosinusoidally distributed in the circumferential direction, and 
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It will be appreciated that since. Hzo  and H9 fare negligible 

the whole of the flux from one transverse pole passes across a 

diameter of the core section. Thus since the average flux 

2 A  
density is given by ft- Bro., then the flux per metre crossing the 

2 A 
diameter is 17 Bro.TIr1  = 2r1  Bro.  so that the core flux density 

assuming that the flux is evenly distributed across the diameter 

A 	A 	A 
is given by Be  = 2r1  Br 1/2r1  = B

r1  

 

(2.51) 

 

2.4.9 	Comparison with existing theoretical 

approaches for a planar model 

If a model is chosen so that the thickness of each layer is very 

small compared with the radius, then it may be analysed as a 

planar model. 

The results for such a model were obtained with the layer thick-

nesses of the order 10
-3 of the radii, first from the analysis 

mentioned above (sections 2.4.1 

planar theory using the Preston 

to 2.4.7) and secondly from a 

and Reece 
(2.13)

model for one 

harmonic and employing for this the surface impedance method 

suggested in reference 2.14. The results obtained by the two 

methods were found to be numerically within 1% for the 

particular case calculated. 

A conventional simple analysis assuming that the flux density 

does not vary across the machine gap was also attempted. This 

again gave results consistent with the main analysis for the 
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model considered above. 

2 4.10 	Theoretical analysis for the 

conventional tubular motor  

The power input, force and flux components have been derived 

using the analysis given in reference 2.12. 

The core flux density is then calculated as follows. The 

excitation in this case is constant in the circumferential 

direction; the flux has the same direction instantaneously at 

all points on a circumferential line. Thus the flux from one 

pole must pass axially to the adjacent poles. If the tubular 

motor had no ends then conventional machine conditions would 

apply. That is one half of the flux from a particular pole 

would pass axially down the core to the preceding pole while 

the second half would pass axially to the following pole. Nix 

and Laithwaite (2.1) showed that providing a model having planar 

geometry could be assumed, the actual core densities, when end 

effects are accounted for, have values which are greater than 

the conventional value (of the order of 1.1 - 1.3). They also 

showed that the force calculated would be less than the 

conventional force by a factor between 0.85 and 0.95. In order 

to produce an optimistic view of the conventional machine for 

comparison purposes and in the absence of a cylindrical geometry 
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analysis that accounts for end effects, it was decided to treat 

the core flux and force on the conventional basis. Thus if 

region (1) of the model is infinitely laminated iron, then the 

core density may be calculated from the radial flux density 

component using the expression, 

A 
Bc = 

2p1  

Rrl 

A 
B
r,1 

 

(2.52) 

 

2.5 	Experimental machines  

In order to compare the performance of the new machines with 

conventional tubular machines, and in order to verify the 

analysis described in the previous section, two models were 

made. The first of these used the coil form of construction 

explained in Section 2.1.1. The second was a tubular motor 

equivalent to the first using circular coils. 

2.5.1 	The model of the new machine  

This model used a surface primary winding which was formed on 

a tube made from an insulating material and having a diameter 

d
a 

= 70 turn. The skewed coils forming the winding were made to 

simulate an original winding having diamond shaped coils. The 

coil sides were skewed at 45°  with respect to the motor axis. 

Fig. 2.16 shows a photograph of one of the coils. Twelve of these 

were used to form each winding layer. The surface axial length 

of each coil was arranged so that three coils extended over a 



Fia. 2,16 One coil used in the transverse flux experimental motor 
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distance equal to Mda/2. The winding may be connected for 

either two or four poles by using either two coils or one coil 

per pole and phase. When the machine is connected for four 

poles it also simulates a helical winding. Connection as a 

two pole machine results in a virtual chording factor of 0.707 

since the winding is simulating an original structure in which 

the coil pitch is one half the pole pitch. No primary iron 

circuit was provided. The secondary member consisted of disc 

shaped laminations contained inside a copper tube. The outside 

and inside diameters of this were 63.2 and 57.3 mm. respectively. 

The analysis assumes an infinitely thin current sheet excitation. 

This cannot of course be achieved practically. The thickness of 

the windings of the model is appreciable and not completely 

uniform. Thus the average diameter of the excitation is used in 

the calculations. 

2.5.2 	The conventional tubular motor 

This machine was constructed so that it was equivalent to the 

new machine model. That is, the axial coil length and the 

number of the circular coils was identical. The rotor dimensions 

were the same, but in this case the rotor core was axially 

laminated as shown in Fig. 2.12. 
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2.6 	Experimental results  

2.6.1 	Flux measurements on the new machine  

In order to verify that the excitation produced by the winding 

was as calculated in Section 2.4.1 the windings were excited 

and the three flux components B
r' 

B
e 
and B

z were measured in 

the absence of the secondary. These values were found to vary 

by only a small percentage (approximately 5%) along the majority 

of the tube length. The average values measured were found to 

be within 5% of the predicted value. 

Measurements were then taken with the rotor present. It was 

anticipated that the axial component of core flux would be 

negligible. That is, the pole flux was thought to pass trans-

versely across the core. The analysis confirmed this prediction. 

In order to verify the point practically a coil of the shape 

shown in Fig. 2.17 was inserted between the rotor disc laminations. 

This coil should measure any flux of the form shown in the figure. 

Measurements made using this coil confirmed that the axial flux 

was negligible along the tube length. Thus in order to find the 

core flux density, coils on the surface of the rotor core of the 

form also shown in Fig. 2.17 may be used. As may be seen from 

the figure, five coils covering half the stator length were 

provided. With the field travelling in a first direction four 

sets of readings were taken from the coils, the rotor being 

displaced by one quarter of the search coil pitch between 



possible axial-flux 
/ paths 

_4_4 stator length 

11 	1 

LI 	1_1 

• I 
1 
r I o. 

1 	  

coil used to find 	coil used to verify 
flux profile 	absence of axial flux 
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successive sets. This of course gives readings which may be 

interleaved to provide a detailed flux profile over half the 

machine length. The process was then repeated with the field 

travel reversed. Fig. 2.18 shows the results obtained from 

this procedure for the case of the two pole connection at a 

frequency of 70 Hz. It will be observed that the flux is 

affected by the phase bands of the excitation. The dotted line 

shown on the figure is a suggested averp.ge value of the core 

flux neglecting the values at the ends of the machine. The solid 

line shows the predicted result from the analysis. This process 

was repeated for various frequencies for both the two and the four 

pole connections. Figs. 2.19 and 2.20 show the measured and 

predicted values for the two and the four pole connections 

respectively. It will be observed that reasonable agreement is 

obtained. 

2.6.2 	Flux measurements on the conventional machine  

Five circular coils around the rotor core were provided in the 

same relative positions as those for the new machine and sets of 

results were taken in the same manner. Fig. 2.18 shows a sample 

flux profile for one case. Again the dotted line represents a 

suggested average flux while the solid line shows the predicted 

value. The process was repeated for a set of frequencies for 

both the two and the four pole connections. Fig. 2.21 shows the 

calculated and measured values for the two pole connection plotted 

against frequency. Again the agreement is found to be reasonable. 
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2.6.3 	Area correction factor for the new machine  

It will be appreciated that the ends of the windings produce 

sections which are not complete. This may be appreciated with 

the aid of Fig. 2.22 which shows a developed view of the windings. 

In order to assess the effect of the ends an experiment was 

performed in which the excitation length was successively short-

ened. The pole pitch used corresponded to the four pole condition. 

Fig. 2.23 shows the standstill force produced at 50 Hz plotted 

against the number of coils omitted from each layer at one end of 

the winding. The theoretical force assuming that the length of 

excitation was 2nd
a 

in the complete winding case is also plotted 

on the figure. It will be observed that the measured force is 

deficient by an amount which could be considered to be constant. 

This is to be expected since as the excitation length is reduced 

the sections of incomplete winding become relatively more important. 

The ratio of the measured and calculated forces for full length 

excitation corresponds approximately to the ratio of the area 

covered by the complete excitation to 2(115da
)
2
. It was therefore 

felt that all the calculated results should be multiplied by this 

area ratio to allow for the ends. It must be emphasised that the 

confirmatory experimental results have been performed at only one 

frequency and the factor must be applied with some caution. 
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2.6.4 	Force measurements on the two models  

The measured and predicted standstill forces at constant 

excitation current for various arrangements are shown on 

Figs. 2.19, 2.20 and 2.21. 

In order to compare the performance of the two machines at a 

given core flux density the forces were scaled to a constant core 

flux density using the previous results. The comparison between 

the forces in the four pole connections showed that the perform-

ance of the two machines was about the same however in the two 

pole connection the transverse flux motor produced about twice 

the force of the conventional as shown in Fig. 2.24 which also 

shows the theoretical value. 

2.7 	Conclusions  

The new machines are useful when the core flux is the limiting 

design factor. In the comparisons attempted in this chapter only 

standstill forces have been considered. It will be appreciated 

that this is the most pessimistic comparison so far as the new 

machines are concerned; the core fluxes are of course at their 

lowest values at standstill for a particular current loading. 

The analysis was performed on the assumption of sinusoidal 

conditions in the axial direction, that is for an infinite 
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length. The predicted fluxes agreed more closely than the 

forces with the experimental results. This is thought to be 

due to the end winding effects. It is possible that if the 

true force per (metre)2 could be measured locally at the 

middle of the tube as could the flux, then this would show a 

better agreement with theory. 
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2.8 	Appendix 

2.8.1 	Derivation of the electric field strength 

From equation (2.6) 

(1.j 
	aJ 

div J - 1 	r) 	3age 	= 

J
r 
= 0 because 6 = 0 r 

then, assuming az  = (le  = or, and n 0, using equations (2.8) 

and (2.11) gives 

in A 
9 Ez kr = E 	 (2.53) 

and Ez  = Ez  sin(n9) 
	 (2.54) 

From equations (2.4) and (2.9) 

(curl curl E)z = -js(14 (curl H)z 

Then substituting for curl H from equation (2.3) and using 

equation (2.8) 

(curl curl E)z = - j s 11 cr Ez 

Then using equations (2.7) and (2.12) 

b2E
z 1 bEz - E ( 	+ a?) = 0 

art ' r  r a 	z 	2 r  
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where a2 =  k2 j + sWps 

Thus the general solution for Ez  is 

Ez = [A In(a r) + D Kn(ar) 	sin(n9) 	(2.55) 

2.8.2 	Derivation of the magnetic field strength 

From equation (2.4) 

(curl E)r = - j(.011 Hr  

Using equations (2.11), (2.12) and (2.13) 

-(n2  + k2r2)  Hr 	E 
Ufl1r2 k 	e 	 (2.56) 

then from equation (2.3) 

(curl H)9  = J9  

and using equations (2.1), (2.17) and (2.11) 

A 
Hz = Hz cos(nA) 

From equations (2.3) and (2.10) 

(curl H)r  = Jr  = 0 

1  a Hz  aHe i.e. — 	= 0 r a9 	3z  

	(2.57) 



substituting for He  from (2.59) and using (2.57) and (2.58), 

(rHr) 

	

-jkr 	 Hz - (n2 .4. k2r2) 	ar 	(2.61) 
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then substituting for Hz  from equation (2.57) 

A 

HA = HA sin(n9) 

	

A 	_in A 

	

where H 	H rk z 

	 (2.58) 

 

(2.59) 

 

From equation (2.5) 

div B = 0 

and assuming 	= 

div H = 0 

that is 
3(r Hr) 	H9 • 'a H 

Br 	
z 	 + 	+ r az  = 0 	  (2.60) 

From equation (2.17) 

_ -(n2  + k2r2)  Hr 

	

	E 
Unix.2k 

    

3(rHr) (n2 k2r2\  
	 E Therefore 	 3r 	0,41r2k 

(n2 +k2r2) aE9 	(2.62) Wiirk 	3r 

Then using this expression and equation (2.16) we have 

NrHr) 

3r 	
[(n2+k2r2_ 2k2r2

)(A In  (a 	K
n-1  (a, 

r)) Mirk 

r(n2+k2r2) 	(A i n 	n-1( C(r) - D Kn- 

( 2.63) 

( a r)-)1 cos(n9) 
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.)(rHr) 
Substituting for 	 from equation (2.63) into equation (2.61), 

2 
Hz = nWp 

kr 	( [.. 	2rk 	
r)  (AIn( ar) + D Kn(ar)) , 	(n2  + r2k2) 

+CC(A In-l( ar) - D K(n_i)( a r)) 	cos(nG) 	(2.64) 

2.8.3 	Calculation of the transfer matrix elements  

From equations (2.21), (2.22), (2.23) and (2.24), 

am = -rm  p2(Kn(c( mrm...1)In(amrm)-In(amrm_/)Kn(Ct mrm)) 

- 0C m(Kn(a mrm)In_1(a mrm_i  )+In( a mrm)Kn_i  ( a mrm_i  ) 	(265) 

bm = -j4L mrm  pn (a mrm)Kn(c( mrm_1)-Kn(a 	0C mrm)In( mrm_dil ....(2.66) 

-jrm  
cm = u4im  1 Y2  (1 n(amrm)Kn(0.mrm-1)-Kn(amrm)In(amrm-1)) 

+ y2 a  m(In-i( a  mrm )1(n( a  rfirrn-i )+Kn-i( a  mrm) In(  a  mrm-1)  ) 

- Y alm  (K 	r 	)1 (a r 	( a 	( a 	) ) n-1 mm-1n mm)+K  n mrmn-1 mrm-1 

, 
+ a 	K (a r )I 	( a r )K (a r )i 	Ca r ) ) m n-1 m m n-1 m m-1 n-1 m m-1 n-1 m m 

	  (2.67) 

dm  = rm  [Yi  ( in( a, mrm)Kii( a, mrm_ i  )-Kn( a mridin( a mrm_i)) 

+arn(In-1(ararm)Kn(otrarrn_d+Kn-i ( amrdIn( arnrm-i ))] 
	  (2.68) 

2r k2 
where 	Y1 = 	 (2.69) 

	

2 	2 2 	r n + rmk 	m  
2 

and 	Y2 - 	
2rm-1k

2 	2 (2.70) 

	

n2 	rm-1 + rm-1k 



Z = 
aN-1E9,N-2 + bN-1Hz,N-2  

N 	cN-1E9 N-2 + dN-1Hz,N-2 

E 

z,N -2 

9,N-2 Z - N-1 H (2.72) 

Z N-1 	cN-1 ZN - aN-1 
	(2.73) 

bN-1 - dN-1 ZN 
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2.8.4 	Surface impedance calculations  

From equation (2.35), 

ZN = 
E9,N-1 
Hz,N-1 

Substituting for E9,N..1  and Hz N-1  from equations (2.23) 

and (2.24) 

	 (2.71) 

Now from equations (2.33) and (2.25), 

Substituting for EG,N_2  from equation (2.72) into equation (2.71), 

aN-1ZN-1 + bN-1  Z - N 	cN-1ZN-1 
+ d

N-1 

Rearranging this, 

From equation (2.34), 

-E
0,2  Z

2 H z,2 

Substituting for E9,2  and Hz ,2  from equations (2.23) and (2.24) 
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(a2 E9,1 + b2 Hz,1)  • Z
2 	(c2 E91 + d2 Hz,1) 

' Substituting for E91  from equation (2.39) and rearranging, 

b2 - a2 Z1 Z 	c2 Z1 - d2 
(2.74) 



CHAPTER THREE  

ONE-DIMENSIONAL ANALYSIS OF 

SHORT-STATOR MACHINES 
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3.1 	Introduction 

There are two types of machine in which the stator is 

shorter than the rotor; the first of these is the short 

arc-stator machine, and the second is the short primary 

linear motor. This second type commonly uses a plate 

secondary. Fig. (3.1) shows the construction of these 

machines. The short arc-stator type has been used as a 

fixed pole pitch machine in Russia (3.1)(3.2)(3.3)(3.4) and 

has also been investigated as a variable pole pitch machine 

at Manchester University 
(3.5)(3.6)(3.7)(3.8). 

 Linear 

machines are currently being used as actuators for low 

10)9)(3. 
speed or standstill purposes (3. 

	
and are also being 

actively considered as the means of propulsion for high 

speed ground transport 
(3.11)(3.12)(3.13).  They also find 

use as liquid metal pumps (3.14)(3.15)  

The analysis of these machines falls into two categories 

according to whether the rotor current paths are defined. 

That is, whether the rotor is a squirrel-cage or a simple 

plate. In the case of the squirrel-cage arrangement, a 

one-dimensional analysis is sufficient because the rotor 

bars ensure defined current paths transversely to the 

direction of motion, and the use of relatively short 

magnetic air-gap associated with the slotted rotor means 



Stator Winding 

(a) 

Stator 

(b) 
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Stator 

Plate rotor 

Fig. 3.1  Short stator machine 

(a) Short arc stator induction motor 
with squirrel-cage rotor 

(b) Linear motor with plate secondary 
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that variations of the fields in the radial direction 

can be neglected. These conditions do not, of course, 

hold for the sheet rotor linear motors since firstly 

the sheet imposes no restriction on the current paths 

so that longitudinal as well as transverse currents can 

flow, and secondly the magnetic air-gap is relatively 

large to accommodate the sheet rotor. It follows from 

the above considerations that a two-dimensional analysis 

is required in the plate rotor case. 

3.2 	A review of some existing analyses  

A first relatively simple analysis was attempted in two 

early papers 
(3.6)(3.7)

concerned with machines using 

arc-stators. This analysis neglected the rotor leakage 

reactance and gave reasonable results when applied to 

machines with highly resistive rotors. 

The analysis assumes that the flux density is zero at the 

entry edge of the excitation. That is, on entering the 

excited section a rotor loop is assumed to acquire a 

current equal and opposite to the instantaneoue stator 

current at that point. It was further assumed that this 

"transient" rotor current would decay as the loop proceeded 
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under the stator, down to steady state value. The decay 

rate was tentatively assumed to be the rotor coupled time 

constant calculated for sinusoidal excitation conditions. 

The wave length of the rotor transient depends on the 

rotor speed. Thus the sinusoidal stator flux beats with 

the rotor flux to produce flux density patterns of the 

form shown in Fig. (3.2). In this figure the flux is 

divided into components in phase and in quadrature with 

the stator current, and the peak values plotted against 

distance. It will be appreciated that the flux distribution 

is very different from that of a conventional motor. 

The analysis went on to use this calculated flux to work 

out the external characteristics of machines. Fig. (3.3) 

shows as an example of these calculations the force-speed 

characteristic for a four pole block at constant current. 

The family of curves corresponds to different values of 

ts/T where is 
is the transit time of a point on the rotor 

under the excitation and T is the rotor coupled time 

constant. The dotted lines on the curves correspond to 

conventional induction motors with the same rotor coupled 

time constants. It can be seen that the short-stator 

machine gives approximately the same output as the convent-

ional up to slips of about I /(N + 1) where N is the pole 
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Fig. 3.2 The flux profile of a short stator machine plotted 
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10 

slip 

Fig. 3.3 Force-speed characteristics of a short stator 
machine plotted for four poles of excitation 
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number. Whilst the curves are drawn specifically for 

Np  = 4, the analysis shows that the 1 /(Np  + 1) condition 

is in fact a rule which applies to all pole numbers, and 

it follows that the number of poles in a short-stator 

machine should be as large as possible from the point of 

view of getting conventional outputs. Machines of say 

20 poles could run at conventional slips. It may be 

deduced from the output curves that non-conventional rotor 

losses occur in short-stator machines. These were termed 

"excess rotor copper losses" in the references (3.6)(3.7) 

Fig. (3.4) plots these excess losses and reinforces the 

argument about the desirability of using a large pole number; 

it can be seen from the figure that the excess rotor losses 

are minimal for slips greater than 1 /(Np  + 1). If this 

were the whole picture then the penalties for short-stator 

working would seem to be wholly confined to the normal 

penalties incurred when using high slip conditions. However, 

the considerations so far have been limited to the input edge 

and the excitation region. If the core structure carries on 

past the excitation so that the stored energy in the rotor is 

dissipated at a rate which is decided by the same time 

constant as applied under the excitation, then no further 

penalty is incurred. However, in the"arc-stator" form of 

machine it is necessary to increase the machine gap outside 
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Slip 

Fig. 3.4 Excess rotor copper losses in 
short stator machines 
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the excited region or to provide a damper grid in the 

stator slots in order that the stored energy in the 

rotor shall be dissipated before the rotor re-enters the 

excitation (3.8).  If the gap is increased, then an "exit-

edge loss" penalty is incurred. It is shown in references 

(3.6) and (3.7) that this loss may be calculated approxim-

ately by finding the energy transported from the excited 

region and by multiplying this by a factor ( (3 - 1) where B 

is the air-gap ratio between the decay and the excited regions. 

Fig. (3.5) shows the exit-edge loss plotted against slip. It 

can be seen from these curves that the loss is not subst-

antially zero until a slip of about 2/(Np  + 2) is reached. 

This again reduces the slip at which short-stator working 

is desirable. 

The analysis in the references is performed mainly on a 

constant current basis. However, an attempt was made to 

calculate the voltage required to force this current at 

different slips and hence find the real and reactive intake 

power. The results of these calculations were disappointing. 

Laithwaite 
(3.16) showed that the resulting expressions did 

not power balance. The analysis was however shown to be a 

good guide by comparison with experimental results from 

machines having squirrel-cage rotors with low leakage reactance. 
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Fig. 3.5 Exit edge losses in short stator 
machines 
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This work was followed at Manchester University by a 

thesis by Tipping (3'17)  which took rotor leakage 

reactance into account by using an electromagnetic 

model of the machine which was first suggested by Cullen 

and Barton 
(3.18). 

 The model replaces the squirrel-cage 

rotor by an infinitesimally thin sheet of conducting 

material together with a "leakage flux" layer. The 

paramaters associated with these layers are arranged so 

that the surface resistivity Pr  and the surface leakage 

inductance 2
r provide a rotor approximately equivalent to 

the squirrel-cage ignoring finite slotting effects. The 

model is shown in Fig. (3.6). It will be appreciated from 

the values of permeability shown on the figure that the flux 

has only radial components in the air-gap; peripheral 

components being excluded by making la= 0 in this direction. 

This assumption is, of course, valid for machines with small 

magnetic air-gaps. The analysis is strictly one-dimensional 

and therefore applies strictly only to squirrel-cage rotors. 

It was assumed initially that the excitation occurred over a 

short region of a complete stator core. The basis of the 

analysis abstracted from reference (3.17) is given below:- 

Referring to Fig. (3.6) and applying Ampere's Law to 

loop 1 yields, 
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Fig. 3.6 The Cullen and Barton electro-magnetic model 
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bx = 	R  JR 

Then since b
x 

is constant over the leakage layer depth 

= co ) 

Obx b = d 2 7T 

R 
Or b = - 	d 2 R ox 

This is the leakage equation for the rotor and may be 

written as, 

aJ 
2r Ox 

 

(3.1) 

 

.6J 

where 2R = R
d, is the surface leakage inductance of the 

equivalent sheet rotor. 

From the figure it can be seen that, 

b = b + b 
g 	P 

Again applying Ampere's law to loop 2 on Fig. (3.6) 

yields, 

 

(3.2) 
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J
R 

+ JS 
 

 

(3.3) 

 

Finally, Faraday's Law applied to an elementary loop 

taken in the plane of the rotor sheet gives the e.m.f. 

 

equation, 

Pr R V = ob 
+ 

ab 
ax 	at 

 

(3.4) 

 

The excitation is taken to be, 

JS  = 3 exp(j(0)t - Px\N  

w 
11 

 

(3.5) 

 

Then by assuming that the rotor is homogenous so that all 

the quantities vary as exp(jwt), the characteristic air- 

gap flux equation in complex form is, 

P
3 

d
3
B P3 

d2B 

dx
3 	- 

T1  W 1-q- (1 - S) 	+ 
m2 (1 + jTiW ) ---a TO 	

dx2 
 

dB 
- TW 	(1 S)a- jTCOB g  

PV  
- jTCO 0V S (1 - jST1W ) exp(-j 

S 

'Ex)  
Pw 

(3.6) 

P 	o
2 

II w  where, 	T 
TZ2  Prg 

  

(3.7) 
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is the rotor coupled time constant for sinusoidal 

conditions, 

and, T1  
r 

Pr 

 

(3.8) 

 

is the rotor leakage time constant. 

The general solution of equation (3.6) is of the form, 

+ Ciexp( C(, x + C2exp(C( 2x) + C3exp( Ct3x)... (3.9) 
Bg = Bg ss  

where Cl,C2 and C3 
are found from boundary conditions and 

g.s.s is the steady-state value given by, 

Pr3S 	exp(-j 7P) 	(3.10) 
B 	T1 g.s.s. SV

S 	+ + 
1  

J T STW 

and al' a2' a3  are the roots of the auxiliary equation. 

W P3 

113  
a3 P 

rc

2 	
.. 2 

1 	w(1 - s) 	 + --(1 + iTiw.)cc 

- TW 	S)Ct. 	- jT(A) = 0 	(3.11) 

The steady state values of Bk  and B may be found from 

(1 + jST1W ) 
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equations (3.9), (3.3), (3.1) and (3.2) to be, 

_ j pr

Ti 

TO) 
B9.s.s 	

; 
	 exp(-j 	T — 

11X) 	 (3.12) 

Vs P1 + 7F) +  iSTW 	
w

1 

and 

Pr IS  
Bs.s 	TI 	exp( j 7) 	 (3.13) 

SVS 
 Fl + —) + T 	jSTW 

1 I 	w 

The roots of equation (3.11) may be found in any particular 

case by using computer techniques, but Tipping also showed 

that the roots were approximately, 

	

a ..L. fl 	1  
+ • 

P

1  
1 • 	 3  (1-S) 

	

w 	TW (1-S)3 + T1  CO (1-s) 

	

-11T 	T' a .. i . . _ _ ... 

	

2 • P
w 	

T
1  

for TU.) ..->1 and T1.0 of the order of unity. 

Now C1 exp(a1x + jOit) represents a wave travelling 

at rotor speed, having a pole pitch Pw(1 - S) and 

decaying with a space content TVs(1 - S)
3 + T1Vs(1 - S). 

Relative to an observer on the rotor this wave appears 

stationary, has a pole pitch Pw(1 - S) and decays with 

. _ a 3 
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time constant T(1 - S)
2 
+ T1, which is the sum of the 

rotor leakage time constant and the rotor coupled time 

constant as modified to a pole pitch of Pw  (1 - S). 

Examination of the 
CY.2' 

CY.
3 
roots indicates that for 

conventional machines where T
1 	

10, the space constant 
T 

 
given by the real parts of the roots is of the order of 

1/10 pole pitch of the excitation. The action of the 

D(. 2  and a
3 
components therefore confined to the bound-

aries between the excited and unexcited regions. Since 

the imaginary part is approximately zero, the phase change 

over the distance where the transients act is negligible. 

If these results are compared with the earlier analysis, 

(3.6)(3.7) it 
 is apparent that the modification introduced 

by the second analysis is mainly due to the rotor leakage 

being accounted for, since in its absence T1  becomes zero 

and the time constant of the transient mainly affecting 

the behaviour 0.1 is the same as that used in the early 

work. However, whilst Tipping(3.17)  showed that the 

transients CL2, Ct
3 did not affect the forces very much, 

they do provide a step in flux density at the input edge, 

whereas the simpler analysis sets this to zero. 

The description of Tipping's analysis has so far been 

confined to the excited region. If the model considered 
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is simply a constant gap machine with an unexcited region 

forming the "decay Section", then the equation for this 

section will be the same as that for the excited part but 

with J set to zero. However, practical short-stator 

machines usually either have the core iron confined to 

the excited region or have a damping grid inserted in the 

stator slots over the unexcited region to increase the rate 

of flux decay over this part of the machine. Tipping did 

further analytical work (3.19)to  include the effects of a 

region with a stator damper grid and further argued with 

some experimental evidence that if the damper grid resist-

ance was low, then the performance of such a machine was 

very nearly the same as an equivalent machine with 

discontinuous core. Tipping also analysed machines with 

stepped gaps by providing appropriate boundary conditions. 

A further form of transient analysis was offered in a 

report by the Garrett Corporation 
(3.11). 

 This makes 

virtually the same assumptions as the first simple analysis 

(3.6) (3.7) but takes leakage reactance into account. 

However, no rigorous method of calculating the secondary 

reactance is included, even though a "sheet rotor" is.  

analysed. 
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It is apparent that the one-dimenSional analyses are not 

strictly appropriate for sheet rotor machines. However, 

the use of these analyses can give approximate results if 

20) 
the rotor sheet resistivity is corrected (3'20). The 

plate rotor normally used has a dimension in the direction 

transverse to motion which is greater than the rotor core 

iron. This provides "end-rings". The apparent resistivity 

of such secondaries has been calculated by Russell and 

21) Norsworthy (3'21). In this approach it is assumed that the 

gap flux density is radial and that the rotor sheet is thin 

enough to neglect rotor leakage effects. It is also assumed 

that all the fields are sinusoidal in the direction of motion. 

The analyses described so far are of the transient form. 

It is apparent therefore that the resistivity calculations 

based on sinusoidal conditions in the longitudinal direction 

will be difficult to apply since the transients all have 

different pole pitches. The previous work mentioned earlier 

(3.20) used the stator pole pitch as a first approximation 

when calculating the apparent resistivity. However, if a 

harmonic form of analysis is used, then the resistivity  

presented to each harmonic could be calculated. Hesmondhalgh 

and Tipping 
(3.19) performed such an analysis again taking a 

strictly one-dimensional approach and using a shorting grid 

to simulate the effect of the discontinuous stator iron. 
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3.3 	A new simple approach to the analysis 

of short stator machines 

The earlier harmonic analysis 
(3.19) 

involved the solution 

of a large matrix to cope with the unknown damper grid 

currents. As was mentioned earlier, the model with the 

damper grid was intended to simulate a machine with open 

magnetic circuit outside the excited region. In the new 

approach, the model for the analysis is assumed to be a 

constant air gap machine with a short section of excitation 

and a "blank section" to complete the periphery. This model 

is used to calculate the forces and the flux profile under 

the excited and unexcited regions. In order to approximate 

to the open magnetic circuit case, the forces developed in 

the uniform gap case are reduced by an amount which was 

earlier referred to as the exit-edge loss. To calculate 

this, the rate of transportation of energy across the 

exit-edge is calculated and from this a retarding force is 

derived. 

3.3.1 	The excitation harmonics  

Fig. (3.7) shows the model with the stator excitation 

extending between -2221  and 4-(11-6  radians, and having 



Fig. 3.7 Showing the excited region 
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the form J exp D(Orit - Tx)] . w  

Using Fourier Analysis (Appendix 3.5.1) this excitation 

can be represented by, 

Js = 	 sc, 
n 

exp [j(00t - .-Tr;Lx)11  (3.14) 

(3.15) 

where, 
Sin an 

1 = -J 21— n S k 	a.p 	n 

an  =k ) 
P k 
	 (3.16) 

and the harmonic pole pitch, 

k P 
P = 
n n 
	  (3.17) 

n = ;1, ;2, ;3 	 

The haLmonic spectrum is sketched at Fig. (3.8); it will 

be observed that the peak of the spectrum is at n = k and 

that the pole pitch at this point is, of course, that of 

the original winding. Having found the excitation harmonics, 

the performance of the machine can be found by treating each 



9 10 11 12 13 14 15 16 17 18 9 20 

pole pair harmonic number 

Fig. 3.8 The harmonic spectrum produced by the excitation 
of Fig. 3.7 
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excitation wave separately to find the harmonic fluxes 

and forces. From these the total flux and force can be 

found by summation. 

3.3.2 	The flux calculation 

Using the same model as Tipping (3'17), that is, the 

Cullen and Barton model (3.18) shown in Fig. (3.6 ), the 

steady state flux densities on the nth  harmonic following 

equations (3.10), (3.12) and (3.13) are,.  

(1 + jS
nTCO ) exp() Prn3n 	 1-P  Bgn - S

nVsn 	T, 
[1 _111) 1  

T
n 	

jSnTEp 

 

(3.18) 

 

n 	exp(41n  ) J 	Prn Tin C° B
2n 

= - T 
V [(l+-)+ 1  

n 	jS T 	(3:19) sn 
n nO)  

th In these equations, S
n is the slip on the n - harmonic 
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given,for convenience by, 

S
n 
= 1 - — (1 - Sk

) 	 (3.21) 
p 

where S
k 

is the slip on the harmonic corresponding to the 

machine winding pole pitch. 

The other quantities subscripted "n" are the values of the 

parameters particularly relating to the nth  harmonic. 

Appendix (3.5.2) shows howtrn  and p'rn may be calculated 

for a squirrel-cage machine. 

7)6)(3. 
The previous simple form of analysis (3. 

	
gave the 

flux values in teLffls of components in time phase and time 

quadrature with the winding excitation wave. Displaying 

the results in this fashion is also convenient from the 

point of view of experimental verification. 

The total flux as a complex value at a general position x' 

can be found by taking the sum, 

B 	B
gn,x=x 

n 

= B expOlic say. 



Bpn 
Prn:fn 

) exp( 

S V n sn Tln 2 
+ 

1 
[1 + T TW)  

n n 

	(3.22) 
1 

nIn T,C0(1 P)1-47d n 	n n 

(1  + 

Tln 2 	1  1 
) + (S TW)  n n 

Bqn - 	 SnVsn 

Prn3n iTiS32s.)  

n 
exp 
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Now the excitation at the point x' is given by, 

x Js= JS  exp(-j -Tr-) 
w 

= js exp(j02)say 

and the in-phase and quadrature components can be found 

A 
by resolving B exp 0(01- )7S2  . 

3.3.3 	The force and voltage calculations  

The harmonic forces can readily be calculated by first 

resolving the harmonic flux into components in space phase 

and space quadrature with the harmonic excitation. Thus 

finding the real and imaginary parts of Bgn yields, 

	(3.23) 
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The harmonic force is then given by, 

1 A 	A 

7  Bpn  Jn 	N/m
2 

whence the total force is, 

	

71  13 	N 2  
pn 

3 
 n m  

	 (3.24) 

 

n 

  

The voltage may be calculated as follows: 

The total power input may be written as, 

P
T 

= A
S  

1 A 	A 
7  Bpn  Jn  Vsn  

where, 	A is the stator surface area. 

Similarly, the reactive power may be written as, 

QT. 
= A

S  

 

1 A 	A  
Bqn  Jn  Vsn  

   

n 

The equivalent circuit per phase may then be taken as a 

series combination of (R1 
+ R2) and (x1  + x2) where R1  and 

x1 
are the stator per phase resistance and leakage reactance 

respectively, and R2  and x2  are given by, 
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P
T 

31
2 
ph 

QT 
x2 

31
2 
ph 

where I
ph is the r.m.s. phase current. 

The input voltage may then be calculated from the equivalent 

circuit. 

3.3.4 	An experimental machine  

It has been argued for an idealised case in reference (3.6) 

that the rotor resistivity for a short-stator machine should 

be high compared with its conventional counterpart. The ratio 

of rotor coupled time constant (T) to rotor transit time (ts) 

under the excited region is thus coliationly in the range 1 to 2. 

The experimental model accordingly used high resistance rotor 

bars so that (ts/T) was (1.85) at (200)Hz. The rotor was 

constructed so that the rotor bar position in the slot could 

fairly readily be changed to enable the effects of different 

rotor leakage to be investigated. The air-gap was constant and 

the four pole stator winding which used (12) of the (72) stator 

slots was of the form shown in Fig. (3.9). This particular 

form of winding uses a "three plane" end winding construction 

which is unusual in rotary machines but which is apt in short 

arc windings since it is complete in two pole pitches. 

R
2 
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Fig. 3.9 The experimental machine winding 
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3.3.5 	Experimental results for the uniform 

gap short stator machine 

One of the more difficult parameters to calculate in 

induction machine analysis is the stator end winding 

leakage reactance. Accordingly the experiments were 

performed at constant input current so that the predicted 

and measured results could be compared without a knowledge 

of the stator leakage reactance. However, prediction at 

constant voltage is more desirable than the prediction at 

constant current. Thus the voltage-speed curve at constant 

current was also calculated for comparison with the 

measured results using measured values of stator leakage 

reactance and resistance. 

The constant current results can therefore be scaled to 

give the constant voltage performance. Figures (3.10) and 

(3.11) show flux profiles at synchronous speed for the low 

and high rotor leakage respectively. The profiles are 

plotted resolved, as explained earlier, into in-phase and 

quadrature components. The resolution method for the 

experimental points follows that explained in reference (3.22) 

and is outlined in Appendix (3.5.3). The full lines on the 

graphs represent the theoretical results and it will be 



Full lines simple harmonic analysis 
Dotted lines simple transient analysis 
Points show experimental results 
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Fig. 3.10 Flux profiles in the experimental machine at, 
synchronous speed, low leakage reactance case 

(a) 	B q 	(b) B 



Full lines simple harmonic analysis 
Dotted lines simple transient analysis 
Points show experimental results 
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Fig. 3.11 Flux profiles in the experimental machine at 
synchronous speed, high leakage reactance case. 
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observed that the agreement is generally good. The 

dotted lines on the graphs show the results of applying 

the early simple theory (3.6)(3.7)to  this case, Bq  

is an exponential rise whilst Bp  is zero. The chief 

difference is in the "input step" of flux predicted by 

Tipping (3.17)  due to the fast moving transients at the 

7)6)(3. region boundaries. (The early analysis (3. 	had a 

zero flux density at entry as a boundary condition.) The 

correlation between the Bp  predictions and measured values 

is not as good as the Bq  predictions. The B values are, 

however, very small and the differences are most likely 

due to the measurement of small angle differences, although 

it must be remembered that the harmonic content of the 

excitation wave (which was assumed to be sinusoidal in the 

analysis) could also be affecting these results. 

Fig. (3.12) shows the theoretical torque-speed curves 

plotted at constant current for the two leakage reactance 

cases together with the earlier simple theory (3.6)(3.7)  

prediction. It can be seen that the inclusion of leakage 

reactance is of some importance. Figures (3.13) and (3.14) 

show the correlation between the theoretical and practical 

torque and input voltage characteristics; it will again be 

noted that the correlation is good. 
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o 

~ig. 3.12 Theoretical torque-speed curves. 

(a) Simple transient analysis (no leakage 
reactance allowance) 

(b) Simple harmonic theory, 10\'1 leakage 
reactance case 

h h · h ] air~ge reactance (c) Simple harmonic t eory,1 19 _2 ~~ 
case. 
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Fig. 3.13 The correlation between the simple harmonic 
theory and the experiment, low leakage 
reactance case. 
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Fig. 3.14  The correlation between the simple harmonic 
theory and the experiment, high leakage 
reactance case. 

(a) Output torque 
(b) Terminal voltage 
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values. 
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3.3.6 	Exit-edge effects  

The preceding harmonic theory assumes a uniform air-gap 

and the analysis is rigorous for this case assuming that 

the electromagnetic model ( Fig. (3.6) ) is an accurate 

representation. However, practical short stator machines 

commonly have an open magnetic circuit outside the excited 

region. As a first step in considering this problem a step 

in the air gap will be considered, as shown in Fig. (3.15). 

It is assumed that whilst the ratio between the gap outside 

the excitation to that inside may be large, the length of 

the outside gap is sufficiently small to assume that the 

flux lines away from the immediate vicinity of the discont-

inuity are radial. As a rotor element approaches the end of 

the excitation it will in general be threaded by flux. The 

element must retain this flux as it crosses the discontinuity. 

Since there is now no stator current the rotor current must 

be sufficient to maintain this flux. The flux will decay 

exponentially as the element moves on owing to dissipation 

in the rotor conductors. 

If the air-gap is uniform, then the energy transported 

across the boundary is, of course, the same as the total 

rotor copper loss outside the excited region. This energy 

comes from the supply and for the uniform gap case, therefore, 
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Fig. 3.15 Illustrating the conditions at 
a step in the air-gap 
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the presence of the exit-edge will not modify the output 

characteristic calculated. However, if the air-gap 

increases outside the excited region, the rotor current 

necessary to maintain the flux at its exit-edge value will 

be increased, resulting in an increase in the rotor copper 

loss outside the excited region. The increase in this 

loss cannot come from the supply but must be produced by a 

retarding torque on the rotor. 

Reference (3.16) calculates the exit-edge loss for the 

case with no rotor leakage by finding the rotor copper 

loss outside the block as follows. For an exit-edge flux 

density of B
gx which must be maintained imatediately beyond 

the excited region the rotor current loading required is 

given by, 

go rc 
J= 
ro Popb  Bgx 
	 (3.25) 

assuming that the flux is radial and sinusoidally 

distributed. These assumptions are, of course, not 

strictly valid. However, the flux in the region immed-

iately beyond the gap step is a complicated two-dimensional 

pattern and in the absence of more rigorous approach the 

approximation was taken in the reference. The reference 



To - 2p g- r o 

	(3.27) 
P
2 

p, 
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further assumed that the rotor current will decay 

according to the formula, 

J = J exp( - xV 	 (3.26) r ro T
o 

 

where V = Vs(1 - S) is the rotor speed and 

To is the rotor coupled time constant outside the 

block, given by, 

Thus the reference calculated the rotor copper loss 

outside the excited block as, 

1 	 °2 
2 P 	J r o 
f 

ro 

B2 g V 2x A 	gx o  
exp(-TV

0
/ = 440 

As was indicated earlier, a part of this loss equal to 

B 	V 
2 

g. 
gx 	is provided from the supply. The remaining portion, 

4 i0 

B
2 

V 
gx  

4 1.1.0 	 Go 
	 (3.28) 

produces a retarding torque. This torque may be used to 
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modify the torque characteristics obtained from the 

analysis with a constant gap so that it approximates 

to the stepped gap case. 

Now reference (3.16) assumed no leakage, and the time 

constant outside the excited region was calculated on 

this basis. However, the new harmonic analysis includes 

leakage reactance and it is necessary to re-examine the 

retarding torque calculations in this light. If the 

electromagnetic model (Fig. 3.6) is considered, then as 

a rotor element leaves the excited region then it is 

apparent that the flux threading the element, B, must 

remain constant. The rotor current loading required to 

drive this flux can be calculated as follows. 

Firstly, if the leakage layer is considered, then, 

following equation (3.1), we have, 

B = Pro 
ax 

Po 	r 

where subscript "o" refers to the unexcited region. 

Then, making the assumptions of reference (3.16), which 

is that the flux is sinusoidal in space, we have, 



Bo = jPollo 
0 Tu

2 

1 + 	r 2 go 
o o 

Jro 
	(3.32) 

god 
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B 	P J Do P r ro 
0 

 

 

(3.29) 

 

Secondly, the gap flux may be considered and following 

equation (3.3), 

go 	3 B 

pb 	ax 	
j 
ro 

jPo 
or 	Bgo = it g Jro 

0 

Now the flux through the element is given by, 

Bo = Bgo 
+ B

Po 

(3.30) 

(3.31) 

so that 

and the current density 
jro  required to drive the flux Bo  

can be written, 

goTE  J - ro JP040  
1  

r-TU
2 	

B
o 1 + 

	 (3.33) 



where 2 
-oe 	2, II 2 

1 + 	r  
2 go 

go (3.35) 

P 2  o o 

where gie  = 
gi 

2 
)/r TC  1 + 	2 g. 
o Po 

(3.37) 
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Having calculated J
ro 
 the rotor copper loss can be 

calculated as in the earlier case, but using the time 

constant outside the excited region as, 

2 

T = Po µo  
o o 

o 2 
Prgo 

gr 

Pr  

 

(3.34) 

 

This yields a loss 
B
2 v xg  o e  
4 p, 0  

g
oe 

of course becomes g
o 
as

r 
tends to zero. 

The retarding torque is produced by the difference between 

this loss and the loss which would have occurred if no 

step existed, that is, by, 

B
2 
V 

x ( 
'6
- _ 

4 110 	oe 	61e)  
	 (3.36) 

Equation (3.36) will reduce to equation (3.28) if r  tends 

to zero. 



It will be noted that the above technique is by no means 

rigorous. The field under the excited region has been 

calculated on the basis of a uniform air-gap. Now strictly 

speaking this field will be modified under the excited 

region when the gap is increased outside due to different 

"boundary matching" conditions. However, as a first 

approximation this modification has been ignored and the 

exit-edge value of B calculated on the uniform gap basis. 

The considerations in this section have so far been 

confined to stepped gap machines. When an arc-stator case 

is considered it is apparent that there is a difficulty in 

ascribing a value to go. However, several authors (3.19)(3.20) 

(3.17)  have considered the analysis of a model consisting of a 

thin sheet of excitation located on a laminated iron boundary 

and facing free space. The conditions outside the excited region 

of an arc-stator machine approximate to the above model with 

the rotor current providing the excitation. Reference 3.20, 

page 161 in particular shows that the effective air-gap 

"seen" by such an excitation is 
P
w 

IC where P
w is the winding 

pole pitch. The calculation therefore for the exit-edge loss 

for an arc-stator machine can be performed approximately as 
P
w 

before by replacing go  by Tt 
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3.3.7 	Experimental results for an arc-stator machine  

The experimental model of section (3.3.4) was modified by 

removing the stator core and teeth over the unexcited 

region. Tests were then performed on the same basis as 

before to check the above theory. Fig. (3.16) compares 

the theoretical and practical torque-slip characteristics 

and it will be observed that the agreement is good. The 

input voltage characteristic is also shown on the figure. 

This voltage has been calculated on the basis of uniform 

gap, since the correction for the exit-edge loss has been 

confined to the torque calculations. It can be seen from 

the figure that the voltage prediction has good correlation 

with the experimental points. 

3.4 	Conclusions  

The theory presented in this chapter is extremely simple 

to compute and within its one-dimensional limitation 

gives extremely useful results. Since the computation 

time is short, it is a considerable aid to design, since 

many possible configurations may be quickly checked. As 

has been previously indicated, this form of analysis is 
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Fig. 3.16 The characteristics of a short-arc machine 
using the simple harmonic theory with 
allowance for exit-edge losses 

(a) Torque 
(b) Terminal voltage 



- 114 - 

useful for linear motors with plate rotors if an estimate 

of the effective rotor impedance can be made. However, 

the theory is not in any sense rigorous, nor can it be 

applied to the interesting cases where the outside gap is 

shaped. It was thought therefore appropriate to attempt 

a more rigorous approach adaptable to any gap shape. This 

second new theory is given in the next chapter. 



where, 	An = 21L exp(-jkpx) exp(jnx)dx 
1 
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3.5 	Appendices  

3.5.1 	Fourier Analysis of the excitation current sheet  

Fig. (3.7) shows the excitation, which extends between =51  

and 	radians. This excitation is assumed to be of the 

form, 

A 
JS  = JS  exp Ej(U) t - k x)1 	(3.38) 

where x is measured in radians. 

Using Fourier Analysis, the excitation may be represented as 

a sum of harmonic excitations acting on the range -1T to 

radians, 

+CO  

JS  = JS  exp(j0Jt) > 	An exp(-jnx) 	(3.39) 

k 

Sin(Ct n) 

k 	a n 

and, 	= (n - k P k ) 	(3.40) 
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Therefore, equation (339) becomes, 

+CO 

JS = > Jn  exp [j ( w t nx) 	(3.41) 

n=-00 

where, Jn = AnJS 

 

(3.42) 

 

Equation (3.41) may be re-written with x in metres rather 

than radians, as, 

+00 
J S 

-rc Jn exp [j( 	-fr t - x)1 

n=-CO 

	(3.43) 

k P 
where P

n 
 = 	P w  is the pole pitch for the nth  excitation 

harmonic. 

3.5.2 	The calculation of an equivalent surface 

impedance for the squirrel-cage rotor  

The harmonic analysis assumes that at each particular 

excitation harmonic, a sinusoidally distributed flux 

exists in the air-gap. This flux induces sinusoidal 

currents in the rotor bars, the r.m.s. values of which 

can be represented by phasors. The phasors of two 

adjacant bars are displaced by the slot angle at the 
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particular harmonic considered, 

 

9 = 2ntC 
n 	N

2 

 

(3.44) 

 

The end ring segments between the bars make, with respect 

to the bars at each particular harmonic, a polygonal mesh 

of impedance, the external line currents of which are the 

bar currents. Due to the symmetry of the cage, the current 

distribution in the ring is also sinusoidal in space and 

its r.m.s. value can be represented by phasors. The 

phasors of adjacent segments are also displaced by the 

harmonic slot angle An. 

Fig. (3.17a) shows a few bars and ring segments; Fig.(3.17b) 

shows the current phasor diagram. If the nth  harmonic of 

the bar current is denoted in general by Ibn  and the ring 

current by Irn, it follows from Fig. (3.17c) that, 

I
bn 

= I
rn 

 2S in 

 

	 (3.45) 

   

The copper losses in the cage for the nth  harmonic are, 

2 
L
Cn 

= N
2
(I

bn 
r
b 
+ 2Irn 

r
r
) 	(3.46) 



Fig. 3.17 Illustrating the 
calculation of the 
effective rotor 
parameters for a 
squirrel-cage motor 
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r
b 
and r

r are the resistances of a single bar and of a 

single segment respectively. 

Substituting for Irn  from (3.45) into (3.46), 

2 L
Cn = N2Ibnrben 	 (3.47) 

where 

r
ben = rb 

+ 
r
r 

 

	(3.48) 

 

n ] 2 Sint n — 
n 

r
ben is the equivalent bar resistance for the nth  harmonic 

which also takes into account the ring segments. 

The rotor leakage reactance may be calculated in the same 

manner as above, yielding an equivalent bar reactance, 

x
ben 

= xb + 
x
r 

   

[ 
n] 2 Sin

2 	
2 

 

(3.49) 

 

Now, the squirrel-cage rotor may be represented by an 

equivalent sheet rotor with a surface resistivity of qm, 

and surface inductance F,:na. The appropriate surface current 

density then has a peak value, 
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Ibn  
J
rn 	(TR)  

2 

 

(3.50) 

 

prn  may be calculated by equating the copper losses in 

the sheet to those in the cage, 

1 1̀  n  2 1 2 
2 r-rn 'j,rn = 7 "Lbn rben.N2 

to give 

_ (2TER)
2 

Prn N2 
rben 

 

Similarly, 

Q 
(2TCR)2  

rn toN
2 

xben 

	 (3.51) 

(3.52) 

3 5.3 	Resolution of measured flux profile into 

components in time phase and in quadrature 

with the current sheet  

A resistance of (.0251) ohms was connected in the red 

phase at the star point and the potential difference 

across this resistance used as a phase reference. 

Figure (3.18) is a space diagram showing the positions 

of the current and flux wave when the flux is wholly 
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Fig. 3.18 Space diagram. 
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reactive. The diagram is drawn for the particular instant 

of time when the red phase current has its maximum value. 

It can be seen that the e.m.f. induced in a coil at A is 

in anti-phase in time to the red current; hence if the flux 

were wholly reactive, that is, if it had no B component, 

the e.m.f. induced in the search coil positioned over the 

slot which carries a red conductor will be in anti-phase to 

the reference voltage. 

The search coils are positioned at ( 2—TC ) radian intervals 
3 

along the current wave and therefore the phase relationship 

between any coil and the reference voltage is known, for 

the case of wholly reactive flux. 

The method of resolving the flux at a particular coil 

position is then as follows if: 

R 
is the phase reference. 

v 
is the phase of the measured search coil voltage. 

Vlsis the magnitude of the measured search coil 

voltage, converted into flux density units. 

Y is the phase relationship between the coil and 

the reference voltage for the case of wholly 

reactive flux. 
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Then Vls cos (0
v 

- 0
R
) = B

q  
	(3.53) 

    

and 	
Vlssin  [ Y - (ev - (4R) i 

= B
P  
	(3.54) 



CHAPTER FOUR 

THE USE OF PERMEANCE HARMONICS 

IN THE ANALYSIS OF 

SHORT-STATOR MACHINES 
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4.1 	Introduction 

The harmonic analysis presented in the previous chapter 

• analysed a short stator machine by assuming initially that 

the air-gap was constant around the periphery. The effect 

of discontinuous core iron was then accounted for by a 

method which was not in any way rigorous. It is the object 

of this chapter to present a more rigorous approach to test 

the earlier simple method analytically and again to check 

the results against experimental findings. 

The model chosen for the analysis is again one-dimensional 

and it is again assumed that circumferential components of 

flux are absent in the air-gap, i.e. the field does not 

vary in the radial direction. Again in line with the 

previous approach it is assumed that the rotor can be 

represented by a conducting sheet which has surface values 

of resistance and leakage inductance. These values are 

calculated for a particular harmonic if the rotor is of 

squirrel cage form with reference to the bar and end-ring 

impedances by equating equivalent complex powers as shown 

in Section (3.5.2). 

The air-gap length considered by the analysis which follows 

may be any general function; the particular shapes of 
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interest are those which most closely model an arc-stator. 

For example, Fig. (4.1) shows a case where the gap is 

stepped so that the air-gap in the unexcited region is 

large. Fig. (4.2) shows as a second example a case in 

which the air-gap is gradually increased outside the 

1) 
excited region. It has been argued 

(4.
that this shape 

may reduce the effect of the exit-edge losses by limiting 

the rotor current step iumediately outside the excited 

region. 

The analysis is performed by again resolving the excitation 

into a series of harmonics of the same form as in the 

previous chapter. In addition, the air-gap is also 

represented by a harmonic series. In this case the machine 

permeance or reciprocal air-gap length is resolved. 

As a first step in the development of the theory the 

excitation is considered to act on the air-gap when no 

rotor conductor is present. Thus each component of 

excitation is considered to act on each component of 

permeance to produce flux density distributions. In 

essence a particular nth  excitation harmonic produces flux 

waves on each harmonic mode. It gives an nth  harmonic 

flux when acting on the average gap and also side-band 
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excitation 

excitation 

Fig. 4.1  Stepped-gap machine 

Fig. 4.2  Gap shaping outside the excited region 
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harmonics of orders n - m and n + m when operating 

th 
on the m- permeance wave. Thus to find the nth  harmonic 

of flux in the air-gap it is necessary to add the component 

due to the nth  excitation harmonic acting on the average 

- th 
gap to those produced by the (n + m)- excitation harmonics 

acting on the m-th  permeance wave. 

The total open circuit flux on a,particular harmonic may 

then be used to find a first component of the rotor 

induced e.m.f. 	This could be thought of as being due 

to a surface mutual inductance between the stator and the 

rotor. 

Further components of rotor e.m.f.'s may be found by cons- 

idering the induced rotor current sheet harmonics. The 

rotor current sheets act on the air-gap in the same manner 

as the stator sheets. Thus rotor e.m.f.'s, as far as the 

th th 
n- harmonic field is concerned, are produced by the n- 

± and the (n  m)-
th 
 rotor current sheets. These e.m.f.'s can 

be thought of as being due to a rotor surface self inductance. 

An additional rotor induced e.m.f. is produced by the rotor 

leakage field. This may be accounted for by including a 

rotor surface leakage inductance. 
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The rotor induced e.m.f.'s together with the rotor ohmic 

drop may be formed into a single equation for the nth 

harmonic. This equation will contain as the unknown 

quantities the rotor surface currents due to each of the 

harmonics considered. 

Thus, n equations, one for each of the harmonic fields 

included, are available and these may be solved simult-

aneously to find the rotor surface current distributions. 

These distributions may then be used to find the rotor 

copper losses and torque. 

The method follows the general lines adopted by Altenbernd 

2) 
et al. (4. for the case of a single phase squirrel-cage 

motor, but differs in treatment in that surface current 

densities are considered rather than rotor mesh currents, and 

of course in that the excitation considered here is poly-phase. 

4.2 	The open circuit flux density 

With the rotor conductor removed, the flux density for the 

nth 
	 th 
harmonic of excitation acting on the m- harmonic of 
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permeance (1/air-gap length) may be found from, 

 

b1 m,n = µo 1m Jln Rdx 

 

(4.1) 

 

where Jln 
is the nth  harmonic of the excitation 

and, Pm  is the general m-
th  harmonic of the permeance. 

From Appendix (3.5.1) in the previous chapter, 

j1n = 
3In 

Sin(t - nxi) 	(4.2) 

A 
where Jln = AIn 

Js 	(4.3) 

A 	. 	
sin a n 

Ain kp  
OC n 

and Ctn = (n - k ) p k 
P 

 

(4.4) 

(4.5) 

 

 

The permeance variations may be represented, in general, as, 

CO 

P= 
	x m cos(rax m ) 	(4.6) 

m=1 

That is, in equation (4.1), 

ffii=Xm  Cos(mxi 	)(m) (m/O) 	(4.7) 

P = X = average permeance (m=0) 	(4.8) 
-m o 



X m  
where K = 

m 2A  
	(4.14) 
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Defining 
Mln = pin  Rdx 	(4.9)  

we have, from equations (4.2) and (4.3), 

A 
Min  = Min  Cos(CO t - nxi) 	(4.10) 

A R A 
where M = — A J 

in n ins 

 

(4.11) 

 

Now, from equations (4.1), (4.9) and (4.10), 

blm,n = 40 Pm Min 	(4.12) 

The total open-circuit flux density may be given as, 

OM. 

b1  = p,o 
/ 
 Cl1n  Cos(COt - nxi) X0  [1 + > 2Kmcos(mxi  ym>1 

-n 	 m 	— 

	 (4.13) 

	

n = +1, ;2, ;3 	 

	

and m = 1, 2, 3 	 

Equation (4.13) could be re-written as, 
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bl = I-to X  o Min Cos(tit 	nx1) 

n 

-Foxo 	 
A 
MlnKm Cos Pt (n m)x

l  +Ym  

     

n m 

	 7- 
1-1  0 0 >  	

MlnKm Cos Pt (n - m)x1 - 1(m  

n m 

	 (4.15) 

which may be written as, 

    

b
1  

 

b1  (n'  n) + b1  ((n + m),n) 

    

>    b1 
 ( (n - m),n) 

n m 

 

(4.16) 

 

where 	bi(n,n)= p.o X 0  Ain n  Cos(Wt - nxi) 	(4.17) 

and 

bi((n+m),n) = p,0A 0114in  Cos(cot-(n+m)xl+Nm) 	(4.18) 

A 
bi((n-m),n) = [10X ()Min  Cos( 00 t-(n-m)xl- Nm) 	(4.19) 

Expression (4.17) represents a field of order n, due to the 

stator current sheet nth  harmonic acting on the average air-

gap permeance Ao, while expressions (4.18) and (4.19) 

represent the side-band fields of order (n + m) and (n - m) 

respectively which are due to the n-h  harmonic of the current 

th sheet acting on the m- harmonic of the permeance wave. This 



- 133 - 

means that the permeance wave exercises a modulation 

effect on the field. 

Equation (4.15) can be represented by a single expression, 

as follows, 

b1 =X o—o lnKm Cos Pt - (n + m)x1 +lirj...(4.20) 

where 	n = ;1, +2, ;3 	 

m = 0, ;1, +2, +3 	 

at m = 0, K
m 
= 1 	and 1/in  = 0, and for negative values 

of m, )/ m  is replaced by - m. 

If the first n excitation harmonics are considered, it is 

apparent that field harmonics will be produced outside this 

range because of the "side-band" effects. In the analysis, 

these harmonic fields will be neglected. That is, the value 

of (n m) must be in the range of the considered excitation 

haLmonics. 

4.3 	Surface mutual inductance "stator to rotor"  

The field in the air-gap of the order n can be produced in 

one of two ways:- 
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a) An excitation of the order n acting on the 

average air gap permeance o' 

(b) An excitation of the order n m acting on 

the m- permeance harmonic. 

4.3.1 	The nth  harmonic field due to the nth - 

excitation harmonic 

This field may be written using equation (4.17) in rotor 

co-ordinates as, 

b1 	o o 
(n,n) = 	X Mtn Cos(SnOJt - nx2) 	(4.21) 

This field causes an induced e.m.f. in the rotor, given by, 

e1(n,n) = Sn Vsn  b1(n'n) 

Now the synchronous speed for the nth  harmonic is, 

V = W sn n 

and from equation (4.11) 
A

R Ain Js Min = n 4-11n js 

 

(4.22) 
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Therefore, 

e1(n,n) 
= Sn n  p, o on 

X 	—R Aln ,T scos(SnW t - nx2) 

This could be written in complex notation, using jln as  

a phase reference, 

- -j WM E1(n,n) 	Sn 
	(4.23) 

where, 

m21n = 4 o  X o  ( E n )
2 A

ln 
	 (4.24) 

This quantity can be regarded as a surface mutual inductance. 

4.3.2 	The nth  harmonic field due to the 

th (n + m)- excitation harmonic 

This field may be written, using equations (4.18) and (4.19), 

in rotor co-ordinates as, 

bi(n,n+m) = 110  Xso  f‘[1 (11 )Km  Cos(SnUit - nx2  -')(111) ...(4.25) 

where m = ;1, ;2 	 

and for negative values of m, 	is replaced by - Yrn• 
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This field causes an induced e.m.f. in the rotor, given 

by, 

e1(n,n+m)=S Vsn b1(n,n+m) 

R 	RKm =S 	Cos (Snco t - nx2  n 	n 	o X o(n+m) tIl(n+rn)ls Y ) 

	(4.26) 

Writing this, as before, in complex notation, 

N'13  = -iSnC0 M21(n+M) 
s 
	(4.27) Ei(n,ni-m)   

where, 

M21(n) = 
R
2 

[-Lo o n(n + m). A1(n+m)Km.exp(-f%)...(4.28) 

The total surface mutual inductance may be written using 

equations (4.24) and (4.28) as, 

M21 = 

	

R2 	A 
1(n+T) 	 exp( j Ym)  

	

p, X -- 	((n-+)
K 

 m 

	

0 o n 	 
	(4.29) 

m 

where 	n = ;1, +2 	 

m = 0, ;1, +2, +3 	 

and when m= 0, m= 1 and Nm  = 0. 

Again when m assumes negative values, Ym  is replaced by - Y m. 
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4.4 	Rotor surface self inductance 

The rotor surface current density Jr  may be represented as, 

Jr = 
	

J2n Sin(Sn 
t - nx2 

 - 92n) 	(4.30) 

n 

where 92n is the phase of the 
nth 

 rotor current density 

harmonic relative to Jln 

The field due to this current may be considered,as in the 

previous section, in two parts. 

4.4.1 	The nth  harmonic field due to the nth - 

rotor current harmonic  

This field may be written, using equation (4.21), as, 

A 
b
2(n,n) 

. = 	
,
o 
M
2n 

Cos(Sn 	t 	nx2 - 92n) 	(4.31) 

where 	m 
2n J 

rJ2n Rdx 

= R J2n Cos(Sn 	
t - nx2 

 - °2n) 
	(4.32) 

n  

^ 	R 
that is, M = — J 2n n 2n 
	 (4.33) 
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The self induced e.m.f. due to this field may be written as, 

e2(n,n) = Sn Vsn2(n,n) 

Substituting for Vsn  from equation (4.22), and b2(n,n)  from 

equations (4.31) and (4.33), 

e2(n,n) , on  J2n = S
nn 

 W A o 	Cos(SnW t 
	

z 
nx_ - 

92n) 
	(4.34) 

Writing this in complex notation, and keeping Jim  as a phase 

reference, 

E2(n,n) = _
jSnWL22n 12n exp(j 92n) 	(4.35) 

R2  
where L = 22n 	 2 r" 0  0 n 

 	 (4.36) 

Further induced e.m.f. may be produced by the leakage 

inductance of the rotor sheet, given by, 

E2gn = -jSn
W L2gn 12n exp( j192n) 	

(4.37) 

Where L2gn 
is the surface leakage inductance of the rotor. 
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The resistive drop in the rotor may also be represented 

as, 

A 
E
2rn = P2n J2n el)(j92n) 	  (4.38) 

where 
	

P2n is the surface resistivity of the rotor. 

- 
4.4.2 	The 	harmonic field due to the (n + m)

th  

rotor current harmonic 

Again, this field may be expressed as follows, 

A 
H o X 0  M2(n+m)Km  Cosi: SIIW t 	nx„, - z 92(n+m) -Ym b2(n,n+m) 	r- 

	(4.39) 

where m = ;1, ;2 	 

and the induced e.m.f. due to this field is, 

e2(n,n+m) 
= Sn7sn 

b2(n,n+m) 

= S 	w 00  1.1 	R  
n n (n + m) J2(n) 

Km 
Cos E nw s t - nx2   - 92(n+m) 	m 

	 (4.40) 
and in complex notation this becomes, 



m 7 

- 140 - 

A 

E2(n,n+m) = -iSn(,t)1,  2(n+m) J2(n+m) exp Nn+rj 	(4.41) 

R
2 

where L22(n+m) 	n(n+m) 1.10-X0.Kth  exp(-j 'Yr) 	(4.42) 

4.5 	The rotor voltage equation 

From equations (4.29), (4.36), (4.37), (4.38) and (4.42), 

0 = ( p2n + jSnco L2gn)  .72n exp(i82n) 

K
m t + jS 	1,1  n 	2n 	 (nom) 	2(n+m) exP Ei92(n+m)1 p(-j 7m) 

m 

+ jS(-0 
	

 A1(n+m)  K 3s exp(-j 	(4.43) MT  ) n 	21n 	 (n+m) m 
m 

where = 	= 
-A  R2  

L2n M2ln 	o o n 

n 	= ;1, ;2 	 

0, +1, +2 	 

when m = 0, Kth = 1 and 'Ym = 0, 

and when m is negative, Nm is replaced by 

Now,writing, 

A (n+m) -7- Km  exp(-jV = F21n (m=0,;1,;2 nm)  . . . ) ....(4.44) 
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. 
K
m 	 _ 

(n + m) 
exp(-j ym  ) = F2(n+m) 	(m=+1,+2 ...) 	 (4.45) 

L' 
and 	L

2n 
= 2n  + L

2gn 
	 (4.46) 

Equation (4.43) may now be set in matrix form as shown in 

Fig. (4.3). 

This figure is drawn for a restricted harmonic range with 

n up to 3 and using the first 3 permeance harmonics. It 

will, of course, be appreciated that this matrix could be 

extended to include any desirable number of harmonics. 

For an appreciable number of harmonics a computer solution 

of the matrix is essential. This solution can conveniently 

be found by first inverting the impedance matrix to form an 

• admittance matrix, whence the rotor currents can be found by 

multiplying the admittance matrix by a voltage matrix. 

Once the rotor currents are known, the output torque may be 

calculated as shown in the following section. 

4.6 	Performance calculations 

4.6.1 	The output torque calculations  

A  >The rotor ohmic loss = —
2 	

P7_ j22n watts 

where Ar = rotor surface area. 



JS 

J2(-3) 

J2(-2) 

J2(-1) 

J2(1) 

J2(2) 

J2(3) 

1 0 0 0 0 0 0 

js...ev21( _3)1 

F
21(-3) 

p2(..3) 	+ 

jS_JI)L2(..3) 

los_y14( _3)  

F2(..2) 

. 	(..3) 

F
2(-1) 

0 0 0 

j pV21(..2)  

F
21(-Z) 

j
2
oL (..1)  

F
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F2(_1) 

_?-14(_2) 

F
2(1) 
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Fig. 4.3  The matrix for finding the rotor current components 
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A2 
= A \> 

 p 2  J • n 2h  
The synchronous power input watts 

z
n 	

Sn  

A2 
P2 j  

and the output torque =R 2
r 	N-m 	(4.47) 
2 	

Sn2n 

nVsn 

4.6.2 	The flux density profile calculations  

To calculate the total flux density in the air-gap, 

A 
equation (4.20) may be used, after replacing Mln by, 

M 	in 
 + 

R 
n 
LA

ln 
3 
s 
 + 32n  exp(j 92n) 	(4.48) 

The equation for the flux density in stator co-ordinates 

is then, 

bg  = 	o >  	 MnKm  Cos Pt (n + m)xi  + ym] ...(4.49) 
n 	rrt 

n = ;1, ;2 	 

m = 0, ;1, +2 	 

when m = 0, Km 
= 1 and 'Ym = 0, 

and when m is negative, yra is replaced by - 
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4.6.3 	Voltage calculations  

If the complex n-
th 
 harmonic of the air-gap flux density is 

denoted by B
gn

, then the rotor voltage equation may be 

rewritten as, 

or 

( p2n 

Bgn S 

jSnU)L2gn  

1 

)2n exP(j92n) 

[p  2n + isnw [ 	L2gn 

+ SnVsnBgn  = 0 

xp J
2n 
e(jA

2n
) 

n
V 
Sn 

The input power may then be given as, 

P
T 
= A

S 

 

1sn 	
144 

(
p ) 

v  

 

n 

 

where A is the stator surface area. 

Similarly, the reactive power input is given as, 

Q
T 
= A

S 
	

7 vsn li n .(Bgn)  
n 

Following the method given in section (3.3.3) these power 

inputs may be used together with the stator resistance and 

leakage reactance to find the input voltage. 
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4.7 	CoMparison of the permeance harmonic analysis 

with the simple excitation harmonic analysis  

It is apparent that the permeance analysis should reduce 

to the earlier simple halfflonic analysis when the case of 

a uniform air-gap is considered. In this case the permeance 

harmonic series reduces to a single term corresponding to 

the reciprocal of the air-gap length. 

The equation for air-gap flux density (4.49) then becomes 

(by putting m = 0, i.e. Km = 1 and "7 = 0), 

A 
b = 	EA 	 Cos t nX1 
g 	g   n 	ids 

+ J2n exP(jG2n)..] 	1 
n 

	(4.50) 

Now, from equation (4.22), 

Vsn Pn 
n 

= •••••••••••••• = oesiT• 

OJ 

   

(4.51) 

   

and from equation (4.3), 

A 
J
ln 

= AlnJs 

 

(4.52) 

 

Substituting for .11-1  and js  from equations (4.51) and (4.52) 

respectively into (4.50) and writing the equation for a 
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particular harmonic number, 

tloPn A 	A 
bgn = ort ln 

+ J
2n 

exp(j92n))Cos(6)t - nx ) 	(4.53) 

Writing this in complex notation, 

Pn 
bgn 	g 	ln = 	(j 	j2n)  

 

(4.54) 

 

Now, from equation (3.3), 

11° Pvi(j 	jR)  bg g Ti, s  -  

 

(4.55) 

 

It will be observed that for a single harmonic, equation (4.54) 

corresponds exactly with equation (4.55). This means that the 

two analyses are the same for the uniform air-gap case. 

4.8 	Application of the theory to an arc-stator machine  

The above permeance analysis allows the use of any gap 

variation. In order to apply the method to an arc-stator 

machine, a model with a symetrical air-gap variation may 

be considered as a first approximation. This model is 

shown on Fig. (4.1). If it is assumed that the outside 



R = gi 	 (4.59) and 
go 
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gap is go, then Appendix (4.11) shows that the harmonic 

series is given as, 

00  

P = X0  +) Xm  Cos(mxi) 	(4.56) 

m=1 

where 	X = 1 
	

[(13 - 1) 	+ 	(4.57) 0 	gi 	kp  

x  _  2  
m RTImgi  

(0 1) Sin( V- 	 (4.58) 

   

If this series is compared with the general form given in 

equation (4.6), it is apparent that .\11 11  = 0 for the 

symetrical gap case. 

Following the discussion in the previous chapter, the gap 

outside go  appropriate to the arc-stator case can be taken 

as P
w 	. 

In order that the present analysis may be compared with the 

earlier analysis (Section (3.3.6) ), an equivalent set of 

results for the torque were computed. The results are shown 

on Fig. (4.4). It will be observed that the agreement is 

generally good and it now remains to verify the permeance 

harmonic results experimentally. 
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Fig. Lt.4  Theoretical torque-slip curves 

(a) Permeance method 
(b) Sim le harmonic method with allowance 

for-exit-edge losses 
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4.9 	Comparison of the experimental results with 

the permeance harmonic theory 

4.9.1 	Torque measurements  

Experimental torque-slip and voltage-slip curves for the 

arc-stator machine are given in Fig. (3.16). These curves 

are repeated on Fig. (4.5 ) together with the predicted 

values using the perweance harmonic analysis. It will be 

observed that the agreement is better than that obtained 

in the previous chapter, as far as the torque is concerned. 

4.9.2 	Flux measurement 

Measurements were taken to find the flux profile in the 

same manner as that described in Section (3.3.2). The 

search coils used were positioned in the air-gap under 

the excited region at intervals of 
2Pw and also at the 
3 

same spacing, in positions about an air-gap length from 

the rotor, outside the stator arc. Fig. (4.6) compares 

the practical and theoretical values. It will be noted 

that the agreement is acceptable. 
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continuous lines show theoretical results 
o-o-o-o-o 
-X-X-X-X ) experimental values 

Fig. 4.5 Comparison between predicted results using the 
permeance harmonic method and experimental values 

(a) torque 
(b) voltage 
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Fig. 4.6 Flux profile for the arc stator machine. Measured values shown 
by points. Calculated values, using the permeance harmonic 
analysis, by the line. 
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4.10 	Conclusions  

Despite the assumptions made in formulating the theory, 

the experimental and theoretical results show remarkable 

agreement. This more rigorous method has confirmed 

theoretically the value of the earlier more simple 

analysis. 

It must be emphasised again that whilst the longitudinal 

end effects have been considered more rigorously, the 

analysis is still strictly "one-dimensional" and neglects 

transverse edge effects. Plate-secondary machines can be 

analysed by this technique only if the rotor surface 

resistivity and leakage inductance are known. 

Clearly a two-dimensional approach is necessary either as 

a complete analysis or as a method of finding the surface 

impedances for a particular harmonic excitation mode. 

A suitable form of analysis is attempted in the next 

chapter. 



a
n Cos(mx) 	

(4.60) 

  

Cos(mx)dx k Cos(mx)dx) 

 

k 
p 
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4.11 	Lpendix 

Fourier Analysis of the permeance wave 

for the symetrical air-gap case 

The permeance (1/air-gap length) variation for this case 

is shown in Fig. (4.7). It can be seen from the figure 

that the function is even about the chosen axis, and 

therefore the harmonic components will include no sine 

terms, and the permeance may be represented as, 

CO 
a
o P = 
2 + 	 

1 

2 where 	an  = 

and 

1 
X= 

gi 

g 
= o  

g• 

	  (4.61) 

	  (4.62) 

After performing the integration, 

= 2X a
n pUm 

[(R— 1) Sin moTh  kp  

ao 	
ikp X dx + 

    

( p — 1) .17q— + 1 

    

      

 

kp  
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Fig. 4.7 Permeance variation for the symetrical case 
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Therefore, 

P = x o X m  Cos(mx) 

 

(4.63) 

 

  

m=1 

  

 

X 	[ (p _ o p 

 

where 	(4.64) 

  

2  
m Rmg ((3 	1) Sin( 11.111 ) 	(4.65) pi 



CHAPTER FIVE 

TWO-DIMENSIONAL ANALYSIS OF LINEAR 

INDUCTION MACHINES 
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5.1 	Introduction 

It has been previously pointed out that the effects of 

finite width secondary plate may be accounted for by 

ascribing effective values to the plate surface impedance. 

1) 
The Russell and Norsworthy paper 

(5.
quoted in chapter 3 

used a simple model and, assuming a thin rotor plate, 

calculated only the resistive part of the impedance. Other 

authors have also presented analyses with varying degrees 

2) of difficulty. Bolton (5. used a model which also had a 

thin sheet rotor and neglected field variations in the dir-

ection perpendicular to the plane of the rotor sheet. 

However, the analysis was perfoLmed on the basis of a current 

sheet excitation rather than the forced flux conditions 

assumed by Russell and Norsworthy. Thus longitudinal 

components of plate current were allowed to drive flux 

components in the stator iron. Therefore the effective plate 

surface impedance which could be derived from the paper (D.2)  

would include at least some rotor leakage reactance effect. 

Preston and Reece
(5.3) used an ingenious model and perfoLmed 

harmonic analysis in a direction transverse to the field 

travel. The development of the Preston and Reece model is 
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illustrated in Fig. (5.1). Fig. (5.1a) shows a transverse 

section through a plate secondary linear motor. In order 

to use a hasmonic analysis it was assumed that a large 

number of machines existed side by side with their excitat-

ions alternatively arranged positively and negatively. In 

order to make the problem tractable the authors assumed 

that the iron surfaces were planar and continuous. A trans-

verse section through the resulting model is shown in 

Fig. (5.1b). The transverse variations of the excitation 

amplitude is shown in Fig. (5.1c). The lengths marked "2C" 

correspond to the width of the original stator core. The 

sections of excitation between these constant portions were 

intended to represent the excitation produced by the end-turns 

of the original windings. This excitation was assumed to form 

a current sheet on the surface of the stator iron as shown in 

Fig. (5.1b). 

Veske (5.4) also considered a model which is similar to 

that of Preston and Reece with the exception that the 

excitation is assumed to have zero value outside the 

original stator core. This excitation is shown at Fig. (5.1d). 

The use of a multi-layer approach to induction machine 

analysis was considered in a paper by Greig and Freeman (5.5) 
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(a)  
(b)  
(c)  

(d)  
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Fig. 5.1 Development of the Preston and Reece model 
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This first paper assumed a sinusoidal excitation and an 

infinitely wide model. This paper was followed by a paper 

6) 
by Freeman 

(5.
which analysed the same model using a 

8) 7)(5. 
surface impedance approach. Freeman (5. 

	
has also 

used the surface impedance multi-layer technique to 

analyse the Preston and Reece model. This results in a 

large simplification compared with the original analysis. 

All the above mentioned analyses ignore the longitudinal 

effects by assuming a sinusoidal excitation in this 

direction. 

It is the object of this chapter to perform an analysis 

following Freeman as far as transverse effects are 

concerned, but including longitudinal effects by performing 

a second harmonic analysis in this direction. The treatment 

of the longitudinal harmonic follows the same lines as that 

in chapter 3 and allowance for the exit-edge loss is made in 

the same fashion. 

5.2 	The double harmonic analysis  

The analysis performed in chapter 2 used harmonics in 

the transverse direction and also used the surface imped- 
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ance multi-layer approach. However, this analysis was 

given in cylindrical coordinates. Thus, whilst the 

same broad steps are apparent in the treatment which 

follows, the detailed equations are different in that 

they are concerned with a planar model rather than 

tubular and in that harmonics in the longitudinal 

direction are considered. 

5.2.1 	The excitation harmonic series 

The model considered in this section is the same as that 

used in Section (3.3.1), that is, a cylindrical machine 

with a constant air-gap and a short patch of excitation. 

It will be assumed that in modelling a particular linear 

motor the radii are arranged to be very much greater than 

the layer thicknesses. This means that planar geometry 

can be assumed in forming the field equations. The axis 

labelling system is shown on Fig. (5.1a). 

The current sheet is assumed to extend longitudinally 

over the range, 

to
akTL  	qm ---- radians. 
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The harmonic analysis in the y direction is shown in 

Appendix (3.5.1). 

The transverse harmonic series, was found by considering 

the excitation shown in Fig. (5.1c). However, in order 

to introduce more flexibility into the analysis the shape 

shown in detail in Fig. (5.2) was used. This has the 

advantage that the curved portions representing the end 

windings may be varied in length. The original Preston and 

3) 
Reece 

(5.
model took the end winding representation to the 

edge of the plate. However, it is probably more appropriate 

to extend it only to the edge of the end winding. 

The transverse harmonic series is found in Appendix (5.7.1). 

The current density may be represented by, 

J
x 

Mqx J
x,n,m 

Cos( —h— ) exp D(U)t 	kny)] ....(5.1) 

n m 

where, 	
x,n,m 

= A
ln
C
lm
J
S 

A
ln 

is the longitudinal harmonic coefficient, and C
lm is 

the transverse harmonic coefficient. 
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Fig. 5.2 The excitation variation considered in the analysis 
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From Appendix (3.5.1) in chapter 3, 

 

Sinan = A 	-9- ln 	kp  a n 

= (n - k ) -1T 
P k -2P 

nTE kn kpl'w 

 

(5.2) 

 

and 	n = +1, +2, ;3 	 

From Appendix (5.7.1), 

4 C= lm TT 1  Sin Eri--1-T 
 (C + a)1 - (A1 + A2)cos(11L2) 

  

] TE A3, + A 	4, + A1  cos, 2h ----)  A2cos, 
TEA  
-77) 

where, 

A - 	 1 	h+ 2m 

a  A 2 	h - 2m a 

A3 = h + 2m(C + 

A4 = 	- 2m(C + a) 
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and, 	m = 1, 3, 5 	 

This expression will reduce to that obtained by Preston 

and Reece 
(5.3), 

 by putting, 

= 1 

and a -
h - 2C 

 
2 

5.2.2 	The mathematical model  

A general multi-region model is considered. The model is 

taken to be a set of planar regions infinite in both 

the longitudinal and transverse directions. The current 

sheet excitation takes the form described above and is 

considered to be infinitesimally thin and situated in the 

plane z = i. 

In order to make the problem tractable, the resistivity 

in the z direction is assumed to be infinite. This means 

that it is tacitly assumed that the conducting regions are 
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foLmed from infinitely thin insulated layers. Displacement 

currents are assumed to be negligible and magnetic saturation 

is neglected. 

Maxwell's equations for any region in the model are: 

curl H = J 	 (5.3) 	curl E = - 
oBa- 	 (5.4) 

div B = 0 	 (5.5) 	div J = 0   (5.6) 

div E = 0 	 (5.7) 	J 	= aE   (5.8) 

B 	= pLH 	 (5.9) 

and from initial assumptions we have, 

J
z
= 0 	 (5.10) 

The boundary conditions are: 

(a) The no 	fflal component of flux density Bz  is continuous 

across a boundary. 

b) 	The longitudinal component of magnetic field strength H 

is continuous across a boundary, but allowance must be 

made for the current sheet, in the manner shown in 

Section (5.2.4). 
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(c) The transverse component of electric field strength 

E
x 

is continuous across a boundary. 

(d) All field components disappear at z = 

5.2.3 	The field esuations  

The field components of a general region are first derived. 

This is done in terms of the nth  longitudinal harmonic and 

the m-
th 
 transverse harmonic. Whilst the field terms 

strictly speaking should be written with subscripts, say in 

the form 
Exn,m, 

 the last two subscripts are omitted for 
, 

 

shortness and the term written as simply Ex. All the 

fields vary as exp [ j(Wt - kny)j and this factor is 

omitted from all the field expressions which follow. 

We have from equations (5.1) and (5.8), 

M1TX 

E
x 
= E

x 
cos( h  ) 	 (5.11) 

Using equations (5.6), (5.8) and (5.11) it is shown in 

Appendix (5.7.2) that, 

E 	= E sin ( 71-1.12-s )   (5.12) 
Y Y 

^ 	j mTI and E = 	Ex  	(5.13) 



-1 
oq)2 ki21  

Ex Hz  =711- k 
n 

 (5.16) 

- 

Appendix (5.7.2) 

Ex = 

where, 

further shows that, 

	

[A 	cosh (E z) + D 	sinh (E z) 

	

2 	k2 	rnTC 	+ = 	+ ()2 	jS 

- 168 

)..(5.14) 

(5.15) 

mh x  cos( 

n 	h 

A and D are arbitrary constants to be determined from the 

boundary conditions. 

Using equations (5.4), (5.11), (5.12) and (5.13), Appendix 

(5.7.3) shows that, 

The Appendix further shows that, 

Hy = Hy cos(IIIIEx) h 

A 	H jkn  A H - 	ic 
) 

x 
Y  (-

m
T - 

	(5.17) 

	 (5.18) 

Hx 	(2-) 	[A sinh (E z) + D cosh (E z)] Sin(12P) 

	(5.19) 

From equations (5.17),(5.18) and (5,19), 
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Hy  - µ FA sinh (E z) D cosh (E z) 
L 

 

Cos (mTCh 	x) 

  

	(5.20) 

5.2.4 	Field calculations at the region boundaries  

Fig. (5.3a) shows a general region L where E
x L and H  

are the field components at the upper boundary of the region 

and Ex L-1 and  Hy,L-1 are the equivalent values at the lower 

boundary. 

From equations (5.14) and (5.20), 

Ex,L = 
 

CA 
cosh ( EL  zL) + D sinh ( E L  zL) ] cos(mnx) 

(5.21) 

H = y,L  L FA  

(1) A, L 
sinh ( E L  zL) + D cosh( E L  zdi cos(m+-c) 

	(5.22) 

Equivalent expressions for Ex L-1 and  Hy,L-1 can be formed 

by replacing zL  in the above equations by zL-1. 

Now, for regions when L 1 or N, we can put, 
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E
x,L 

region L + 1 
Y, L  

x,L-1 

H 	, 	region L 

(a) 

4* E
x N-1 

H 
	region N 

region N-1 

(b) 

Fig. 5.3 Illustrating the regions in the analysis 

(a) A general region L 
(b) The conditions at the Nth  

region boundary 
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— 	_ 	_ 
E
x,L 
	E

x,L-1 

_y,L 

= 
	

T
L 	

_Hy,L -1_ 

	(5.23) 

[ 
where TL 	

(5.5) (5.9) 
is the transfer matrix 	for region L 

and is given by, 

a
L 

b
L 

T
L  = (5.24) 

cL dL 
4•••• 	a.. 

Expressions for aL, bL, cL and dL are derived in 

Appendix (5.7.4). 

This transfer matrix can be used to find the values of Ex 

and Hy at the upper boundary of a region from the equivalent 

values at the lower boundary. 

If no excitation exists at the boundary say between regions a 

and b, then from the continuity of Ex and Hy at this boundary 

the fields at the upper boundary of region a may be found 

from those at the lower boundary of region b by successive 

application of the transfer matrix. 

Considering the current sheet to be at z = i, then, 

	

H' 	= H 	when L 	i 	(5.25) 
y,L 	y,L 

	

and Hi 	= H 	- J 	when L = i 	(5.26) y,L 	y,L 



E
x,N-1 

••••• 	1•••••• 

T
N-1 

T
N-2 

H. -J 
x 
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where, 	H
y,L 

is the longitudinal magnetic field strength 

immediately below a boundary, 

and, 	HI 	is the longitudinal magnetic field strength y,L 

immediately above a boundary. 

Bearing in mind the boundary conditions, it is apparent then 

that for the model considered, we can write, 

	 (5.27) 

and, 

         

Om, 

 

x,i 

 

T. 
1 

 

T. 

   

T
2 

  

	 (5.28) 

H 

       

            

If region N is now considered (Fig. (5.3b) ), then, 

as z 	>CO 

exp ( E z) 	co 
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Therefore, from equations (5.21) and (5.22), 

A = - D 

miT x 
Ex N-1 = A exp(- E N  zN_i) cos(-11—) 	(5.29) 

and, Hy,N-1  = 	E  -j  N 	mx A exp(-E N  zN...1) cos( h --) 	(5.30) 
P'N 

Considering region (1) we have, as z 

exp(- E z) 	CD 

Therefore, from equations (5.21) and (5.22), 

A = D 

'a x 
Ex ,1  = A exp(E izi) cos(

m
11 ----) 	(5.31) 

jE  
and 	H 	= — 1 A exp( E izi) cos (

m TC 
x)h  	 (5.32) 

y, 1 	CO Pa  

The field components at the boundaries of regions 1 and N 

still contain an arbitrary constant A. The ratios, however, 

of Ex 
to H at these boundaries contain no arbitrary constants 
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and it is only these ratios that are needed for a complete 

solution. The next section shows how this may be accompl-

ished. The ratios of E
x to H have been termed the surface y 

impedance (5.6) (5.10)(5.11)(5.12)(5.13)(5.14) 

5.2.5 	Surface impedance calculations  

The surface impedance looking upward at a boundary z =() 

is defined as, 

Ex,(1)  
Z(1)+1  - H' 

Y.94/ 

 

(5.33) 

 

and the surface impedance looking downward is, 

zg, 

   

(5.34) Hy,) 
 

  

  

Thus from equations (5.33) and (5.25), 

 

x N-1  
Z - ' N H y,N-1 

 

(5.35) 

 

Substituting for Ex 
N.-1 

 and Hy,N..1  from equations (5.29) 

and (5.30) respectively, 

	N 

E N 
	 (5.36) 
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This gives the surface impedance of the Nth  region 

uniquely since it contains no arbitrary constants. 

The surface impedance of the other regions going towards 

the current sheet may now be calculated successively using 

the following expressions. 

From Appendix (5.7.5), 

b
N-1 

- d
N-1

Z
N  

Z 	- N-1 
cN-1ZN 

- a
N-1 

Similarly, 

b
N-2 

- d
N-2

Z
N-1  

Z - 
1N-2 cN-2

Z
N-1 

- a
N-2 

bi+1  - di+1  Zi+2  

Zi+l c
1.Z +1 i+2 ai+1 

 

(5.37) 

(5.38) 

 

 

The surface impedance looking downwards from the current 

sheet can be calculated as follows, 

from equation (5.34), 

-E 
= 	' Z1 
	H

y,1 
	  (5.39) 
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Substituting for Ex 1 
and Hfrom equations (5.31) and y,1 

(5.32) respectively, 

zi  
j°411_ 

E1 

 

(5.40) 

 

Again this now contains no arbitrary constants and a 

similar chain of calculations can be performed to find 

z.. 
1 

From Appendix (5.7.5), 

2 
1 

1 

b2 - a2  Z1  
c2 Z1 - d2 
	(5.41) 

and hence 
Z. 1 

b.1  - a. Z. 
c. Z 	- d. 
1 Z. 	1 
	 (5.42) 

The input surface impedance at the current sheet, Zin, is 

given by the effective impedance of a parallel combination 

of Z. and Z. 1 

Hence, 
Z
1  . Z. 1+1 

Z. in Z.+Z. 1 1+1 

 

(5.43) 

 

Substituting for Zi  and Z1+1  using equations (5.34) and 

(5.33) respectively, and rearranging, 
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- E 
1  
. 

Z in 	H. 	H' 
Y, 	y,1 

 

(5.44) 

 

From equation (5.26), 

H'. = H . - J y,1 	y,1 	x 

Substituting this in equation (5.44), 

-E . 
z.  = 
in 	Jx 

Thus, the input impedance at the current sheet has been 

deteLmined.. This means that using the relationship, 

E . = - J Z. x,1 	x in 

 

(5.45) 

 

all the field components can be found by making use of 

equations (5.45), (5.42), (5.34), (5.27) and (5.28). 

5.2.6 	Power calculations  

The time average power flowing through a boundary is given 

by the equation, 

h 2 
,TC x 

(P:x 	Cos 2(mith 	x) AEy  HA  Sin2  kmm--7))dx-i W/m2  

	 (5.46) 

[h  
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Substituting for E and H* from equations (5.13) and (5.18) 

respectively, and integrating, 

P = 0.25 [ 1 + 
(IIT 	R  x 	W/m2 	(5.47) 

Now, at the current sheet, the powers flowing upward and 

downward are given by the equations, 

Pin,up 
m1T1 = 0.25h [ 1 + hk \2 n  

K
eN A 	A 

(E. H'*.) W/m x,1 y,1 

1.6n  
0.25h 	+ Pin,down=  (E . Ex 1 W/m 

   

Thus, the total power flowing from the current sheet Pin  

is given by the equation, 

Pin = i P 	+ P. 
n,up 	in,down 

raTC [E .6-C* - /1\1*Y  = 0.25h 1 + (R17) 
x,1 y,i 	y 	W/m  

This expression may be written in terms of the input surface 

A 
impedance, whence substituting for A'*. and E . from 

Y,1 	x,1 

equations (5.26) and (5.45) respectively, and rearranging, 

Pin  = 0.25h [ 1 + 	/ Jx/2n  (zin) W/m 	(5.48) 
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Inserting the harmonic subscripts, equation (5.48) 

becomes, 

mTI 2 	2 n P. 	 W/m ln,n,m = 0.25 h [1 + (T17;
) 	/ J

x,n,m
/ 	(z

inn1 M 
) 

(5.49) 

The traction force F
T is then given by, 

A
r 

F  = -- 
T h 

n — 

m 
P. 
in,n,m 

Newtons 

 

VSn 

 

   

	 (5.50) 

where 	A
r 

= rotor surface area 

and, V
Sn = the synchronous speed for the nth - 

longitudinal harmonic 

5.3 	Equivalent circuits  

It is interesting to look at the results of the multi-layer 

theory in terms of equivalent circuits. The theory has been 

developed for the case of a constant excitation current and 

the complex power flow found is equivalent in conventional 

machine terms to the.power flow into a parallel combination 
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of magnetising reactance and rotor impedance referred to 

the stator. 

The surface impedance (calculated by taking the summed 

complex power into the machine at any slip) can be regarded 

as a simple series circuit. Any circuit may be considered 

to be equivalent to this provided its complex power intake 

is the same. Now the magnetising reactance of a machine may 

be considered to be the usual conventional value converted 

to surface terms. Thus if this is computed it may be used 

as the "magnetising impedance" shunt component in an equivalent 

circuit. The "rotor branch" of which may be computed so that 

the complex power into the equivalent circuit is the same as 

the original summation from the layer theory. Thus if the 

surface impedance into the complete machine is Z, and the 

conventional value of magnetising reactance converted to 

surface terns is Xis, then the equivalent circuit is formed 

from a parallel combination of X
ms 
 and Zr  = ZXms/(Xms  - Z). 

In conventional terms but using surface values: 

R
2S 

and X
2S 
	Czr) 
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X 
ms  may be calculated as follows. 

The rotor coupled time constant referred to in the simple 

transient analysis (chapter 3) is, 

p2 
'w 

T = 

Now this term is the same as X 
ms/(w 

 Pr) 

thus, X = WE2P,o 
ms 

TE
2 
g 

Recalling chapter 3, it will be remembered that the design 

procedure recommended in reference (5.15) was to calculate 

the effective rotor resistivity by using the Russell and 

1) 
Norsworthy 

(5.
factor. This then was used in the same 

way as the factor R28  given above and may be used for 

comparison purposes with the new analysis. 

There has been no rigorous method to date of calculating 

X
2S 

for a sheet rotor and the early transient analysis 

assumed it to be zero. Much of the linear motor design 

work performed, at least in this country, has either used 

empirical formulae for X
2S 

or has neglected its effect. 
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Linear motors for high speed traction purposes using 

50 Hz supplies have dimensions and specifications of 

the order of those given below: 

pole number 	= 	4 

winding pole pitch = 	1.4 m 

stator width 	= 	.3 m 

plate width 	= 	.4 to .6 m 

clearance 	= 	.04 m 

plate thickness 	= 	.007 m 

plate material 	aluminium 

The variations of R
2S 

and X
2S 

as the plate width is 

increased are shown on Figs. (5.4) and (5.5). The value 

of R2
S 
 using the simple approach is also shown as a 

dotted line on Fig. (5.4) for comparison. 

5.4 	Voltage calculations  

From equation (5.49)the complex harmonic power input 

may be written as, 

mTC 2 
= 0.25 A

r 
[*.1 + (

hk  
---) 	

/j x,n,m 
/2 

Zin,n,m n  
watts 
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layer theory 
Russell and 
Norsworthy values 
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slip=.2 

TI•lemeg• 

.4 	.45 	.5 	.55 
plate width, m 

Fig. 5.4 Theoretical secondary surface resistance values 
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Fig. 5.5 Theoretical secondary surface leakage 
reactance calculations. 
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where A
r 

is the rotor surface area. 

Now, the total input power is, 

PT 	 
(P. 

inc,n,m) 

and the total reactive power is, 

QT=  (P. inc,n,m)  
n m 

Knowing PT  and QT, the terminal voltage may be calculated 

in the same manner as that in section 3.3.3 of chapter 3. 

5.5 	Experimental results  

5.5.1 	Experiments with continuous stator iron 

An experimental model was provided by making a "plate 

rotorti  for the previously described "patch excitation" 

machine. The aluminium plate rotor had a plate axial 

length. of 26.5 ems. so  that it protruded 4.15 ems. beyond 
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the rotor core iron at each side. The plate thickness was 

1.27 cms. and the clearance between the upper surface of 

the plate and the stator iron was 0.635 cms. These 

dimensions give an effective main time constant of the same 

order as that obtained from the squirrel-cage rotor, when 

the machine was excited from a 200 Hz supply. 

Fig. (5.6) compares the theoretical and practical values of 

torque; it will be noted that the agreement is good. 

However, when the predicted voltage was computed using the 

measured value of stator impedance it was found that the 

agreement was only approximate. Now the measured value of 

stator impedance previously (in the squirrel-cage rotor 

case) provided good agreement between theory and practice. 

However, it is apparent that the model used for the layer 

theory allows coupling between the stator end winding and 

the secondary plate. This coupling will exist in practice 

in the plate rotor machine but will not exist practically 

in the squirrel-cage arrangement where the end-rings were 

of very limited axial length. The coupling will effectively 

reduce the stator end winding leakage in the plate rotor 

case. However, a calculation of this effect would be 

extremely complicated and could probably be done only by the 
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continuous lines show theoretical results uniform 
gap case 
0-0-0-0-0 experimental results for the uniform 

gap case 
X-X-X-X-X experimental results for the arc-stator 

theoretical voltage prediction with 
modified stator impedance 

X 

1 	.8 	.6 	.4 	.2 
	0 

Slip 

Fes. 5.6 Comparison between predicted results using 
the multi-layer analysis and experimental 
values. 

(a) torque 
(b) voltage 
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use of a purely numerical method. In the absence of this 

an empirical approach can be made by assuming that a 

fraction of the measured stator leakage reactance is 

effective. Fig. (5.6) shows the result of using 75% of 

the leakage reactance and in this particular case good 

agreement is obtained. 

Fig. (5.7) shows the measured total flux profile measured 

using the search coils described in the previous chapters. 

Theoretical values are also shown and it will be observed 

that the agreement is generally good. 

5.5.2 	Experiments with an arc-stator 

In chapter 3 the arc-stator arrangement has been described. 

This arrangement was used again with the plate-rotor 

described above. Torque-speed curves only were taken and 

it will be observed from Fig. (5.6) that practically no 

difference exists between the results obtained for continuous 

iron and those obtained using the arc-stator. Thus whilst 

the exit-edge loss should have been calculated for the arc-

stator case in the manner described in chapter 3, this has 

not been done on the grounds that the results for torque 

are practically indistinguishable. 
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5.6 	Conclusions  

The analysis presented in this chapter has been shown 

to provide excellent correlation with practical results 

as far as the prediction of the force produced at part-

icular current loading is concerned. 

The prediction of input voltage has been shown to be more 

difficult. In particular the effects of coupling between 

the stator end windings and the rotor plate give rise to 

a reduced effective stator leakage reactance. Future work 

should include the prediction of the effective stator leakage 

reactance to help account for these effects. 
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5.7 	Appendices  

5.7.1 	Fourier Analysis of the excitation 

current sheet in the transverse direction 

Fig. (5.2) shows the transverse variation of the current 

sheet. It can be seen from the figure that the variation 

represents a symetrical even function of x. 

Using Fourier Analysis, this variation may be represented 

by a series of halmonic components, 

C cos (m  
lm 	h 

 

(5.51.) 

 

where, 

C
lm 

= T jr F(x) cos(1-11-I)dx 
o  

The values of F(x) are shown on the figure for the range 

considered in the integration. 

Performing the integration, 

4 C= lm 11 m sin [ C + 	- (A1  + A2) cos(- )111P 

    

IC A4 
+ A

I cos( 	2h
) + A

2 cos(----) 2h ' 	 (5.52) 
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m = 1, 3, 5 	 

and Clm = 0 for m = 2, 4, 6 	 

Al h + 2m a 

a 

A
3 = h + 2m(C + 

A4 = h - 2m(C + a) 

5.7.2 	Derivation of the electric field strength 

From equation (5.6), 

"oJ 
	bJ 	.20  div J = ;;;:- ++ 	= oy oz 

Jz= 0 because 6z = 0 

Then, assuming d = 6 = 6, using equations (5.8) and (5.11), 
x y 

= /21 
y hkn x 

and Ey  =
Y 
 sin(- x) 

4 

	 (5.53) 

	 (5.54) 

a 

A2 - h - 2m 
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From equations (5.4) and (5.9), 

(curl curl E)x  = -j5.1411.1 (curl H)x  

Then substituting for curl H from equation (5.3) and 

using equation (5.8), 

(curl curl E)x  = -jSipp,6 Ex  

Then using equations (5.7) and (5.11.), 

2
E  

2 	2 	mit 2 where E = kn + (—) + jS 041 6 

Thus the general solution for Ex  is, 

E = 
C

A cosh(E z) + D sinh(E z)..] cos(ml-C  X)-- 	(5.55) 

5.7.3 	Derivation of the magnetic field strength 

From equation (5.4), 

(curl E)z  = -j(t4LHz 

E2 Ex = 0 bz2 
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Using equations (5.11), (5.12) and (5.13), 

	

,a11 \2 	k2 
-1 [ 	h I 	n  

1  

Hz - 	(5.56) Wil 	k 	
E

n 

From equation(5.5), 

div B = 0 

and assuming z = x = 

div H = 0 

bilx 	-OH 	.1-1 
That is, 3; -1 dy  + 	- 0 	(5.57) 

From equations (5.16), (5.11) and (5.57), 

A 	 ,rnIT x \ Hx = Hx 
. ---) 

H = H
Y 
 cos(flax-) 

	(5.58) 

	(5.59) 

From equations (5.3) and (5.10), 

(curl H)z 	J = z = 0 
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7311 	aH 
That is, X  = 0 ox 	ay 

Using equation (5.59), 

A  jkn A  
Hy  = Ti7E- . fix  	(5.60) 
(71 ) 

From equations (5.60),(5.58) and (5.57), 

1 MTE = x H  
x 	\hkn' az 

Using equation (5.14), 

H x = (T1Lhk  ) --ft [A sinh(E z) T D cosh(E z)1 sin(11-1Lx) 
n 

	(5.61) 

5.7.4 	Calculation of the transfer matrix elements  

From equations (5.21), (5.22), (5.23) and (5.24), 

a = cosh(E LgL) 	 (5.62) 

-V4IL  
bL  = 	sinh(E 	L (5.63) 

L 
j E j  
71 	s i 	E oL ) 	 (5.64) 4 = 

dL = cosh( E LgL ) 	 (5.65) 



- 196 - 

5.7.5 	Surface impedance calculations  

From equation (5.35), 

Ex,N-1 Z -  N Hy,N-1 

Substituting for EX N-1  and Hy,N-1 from equations (5.23) 

and (5.24), 

aN-1 Ex,N-2 + bN-1 Hy,N-2  ZN c E N-1 x,N-2 
+ dN-1 Hy,N-2 
	(5.66) 

Now, from equations (5.33) and (5.25), 

ZN-1 =  Ex,N-2 H 
 

	 (5.67) 

Substituting for Ex,N..2  from equation (5.67) into equation 

(5.66), 

a
N-1 

Z
N-1 

+ bN-1 

Z= N 	cN-1 ZN-1 
+ d

N-1 

Rearranging this, 

= b
N-1 - dN-1 ZN 

Z  N-1 	c 	Z - a. 
N-1 N N-1 
	(5.68) 
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From equation (5.34), 

E
x,2 

2 	H
y,2 

Substituting for Ex ,2 and  Hy,2 from equations (5.23) 

and (5.24), 

Z
2 
= - 

c2 Ex,1 + d2 Hy,1 

Substituting for Exo1  from equation (5.39) and rearranging, 

b2 - a2 Z1 
Z2 	c2 Z1 - d2 

	 (5.69) 

a2 Ex,1  + b2 Hy,1 
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