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ABSTRACT  

Several problems of thermal ignition from a 

spherical hot 'pocket' in a cool infinite medium have 

been investigated theoretically. It is assumed that 

at some initial time a hot 'pocket' is introduced 

into a cool medium, where either the inner region, or 

the medium, or both are chemically reactive. Energy 

conservation equations have been examined with a view 

to finding the minimum initial radius of the hot 'pocket' 

for which ignition will just take place, and its de-

pendence on transport properties and chemical kinetic 

parameters. 

Firstly the case of a hot spherical gas bubble of 

reaction products in a stagnant atmosphere of fuel 

and oxygen has been considered. By assuming the reaction 

rate to be of simple step-function form, solutions valid 

for small values of the time have been found. On the 

basis of these, critical bubble sizes have been de-

termined as a function of ignition temperature. 

II  The same problem was then examined with a polynomial 

form of reaction rate function and thermal properties 

varying with temperature. An adaptation of 'profile' 
or 'integral' methods due to Spalding has been used and 
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the effect on critical radius of changes in the temper-

ature dependence of the transport coefficients, and 

variations in the activation energy parameter have been 

evaluated numerically. 

A corresponding problem in thermal explosion theory 

of hot spots in solids was then examined, using hoth 

linear and power law assumptions for chemical reaction 

rate. In the former case a first approximation to the 

formal solution has been used to determine a critical 

condition for ignition, while in the latter case the 

profile method has been employed. 

Finally the behaviour of a hot inert gas bubble in 

an infinite sea of cool reactive liquid has been investi-

gated. The profile method has again been used and an 

"inner solution" valid for small values of time has been 

found by singular perturbation methods. It has been 

shown that in this time region, inertia and chemical 

reaction effects are negligible. An " outer solution" 

has been found numerically using the properties of the 

" inner solution" . 

The results we have obtained are in good agreement 

with exact numerical solutions, when they exist, and 

in reasonable agreement with experimental work. 
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1. 

CHAPTER I 

INTRODUCTION  

The various problems considered in this work 

exhibit several common features and hence have been 

treated by related methods. Basically, we have that 

at some initial time, a hot 'pocket' is introduced 

into a cool infinite medium; either this spherical 

pocket, or the surroundings, or both, are chemically 

reactive. Consequently the initial temperature profile 

is of rectangular 'step' form. A balance must exist 

between conduction of heat away from the pocket, the 

production of heat by reaction within the reactive part 

of the medium, and the transport of energy by inertia 

effects, if any. Hence our primary concern is with 

energy conservation equations. The dominance of chemical 

reaction rate terms leads to ignition in the pocket or 

the medium, whilst dominance of heat conduction leads to 

final extinction. If these effects were comparable 

throughout the process, an oscillatory state could be 

achieved. We therefore seek to determine a critical 

condition for ignition of the pocket or medium, separa-

ting the two regimes of ignition and extinction. A 
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parameter which describes such a critical condition is 

the critical initial radius of the hot pocket for which 

ignition will just take place. 

The initial infinite temperature gradient at the 

pocket interface leads to very rapid changes in the 

temperature in that region; at the outset conduction is 

the controlling factor. Ignition processes take place 

within times of the order of several milliseconds, and are, 

as a result, difficult to observe accurately; for this 

reason relatively little experimental work has been 

attempted. The rapidity of the process also enables 

us to make several simplifying assumptions concerning, 

for example, thermal properties etc. 

Strong non-linearity is introduced into the energy 

conservation equation by the chemical reaction rate 

term; for this reason transient solutions have not been 

obtained in analytical form. This term is assumed to 

be temperature explicit, but as it involves an Arrhenius 

rate factor, it has been necessary to use various 

approximations to it. Formal solutions can only be 

obtained for the simpler of such approximations. For 

the less crude models where non-linearity is not elim-

inated an approximate technique must be used. 

Consequently, extensive use has been made of an 
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adaptation of the profile methods of boundary layer 

theory. The method was originally proposed by 

Pohlhausen (1921) who applied it to von Karman's 

momentum equation (1921). 

The exact boundary-layer equations are frequently 

not amenable to solution; von Karman's equation was 

derived by integrating the boundary layer equations 

across the boundary-layer, and so reducing the partial 

differential equation to an ordinary non-linear diff-

erential equation; this enables approximate solutions 

of the exact equation to be found. This procedure 

was extended to all boundary layer problems (heat 

transfer, compressible flow, etc.). 

The procedure adopted by Pohlhausen involved the 

approximation to a dimensionless velocity by a known 

simple function of a dimensionless distance variable. 

Ensuring that this function satisfies the appropriate 

boundary conditions, it may be substituted into von 

Karman's momentum equation, reducing it to an ordinary 

non-linear differential equation which may be solved 

for the boundary layer thickness. Pohlhausen used a 

fourth degree polynomial, in order to satisfy the four 

boundary conditions. The success of this approximate 

method, even when a very simple expression is assumed 
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for the velocity in the boundary layer shows that such 

a reduction is of fundamental importance. 

The basic principles of this method have been 

adapted to ignition problems by Spalding (1958). The 

energy conservation equation is integrated over the 

space variable, the integrals being evaluated by 

assumptions as to the form of the temperature distri-

bution or 'profile'. Two or more time-dependent para-

meters are introduced to evaluate the integrals, the 

number being determined by the number of equations and 

boundary conditions to be satisfied. Thus a set of 

ordinary differential equations is obtained for these 

parameters. In this investigation only the simple cases 

of linear and parabolic profiles have been considered. 

Spalding (1958) has shown that profile methods give an 

accuracy to within 20 per cent. Choice of profile 

assumption does not appear to affect the results greatly, 

provided that the profile exhibits the correct physical 

characteristics. 

The primary disadvantage of this method is the 

somewhat arbitrary choice of time-dependent parameters. 

We have used here quantities such as the temperature 

at the centre, or other convenient position of the 

pocket, and the pocket 'size', defined as the region 
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wherein the temperature is above the initial ambient 

value. The latter can only be specified in terms of 

simple linear, parabolic or other profiles having a 

discontinuity in temperature gradient at this point; 

only such profiles have been used by Spalding. A 

'continuous' profile given by, say, a negative expon-

ential term, does not uniquely define a second time-de-

pendent parameter, and hence, although physically more 

realistic, appears to have little application except 

for qualitative work. 

This degree of arbitrariness in the specification 

of the size of the pocket is exactly analogous to the 

definition of a boundary layer, as that part of the 

flow wherein the velocity increases from zero to some 

fixed proportion of the main stream velocity. This 

inadequacy is not felt in hydrodynamics since quanti-

tative values for the boundary layer thickness are 

not often required. 

A further disadvantage of the method is the 

difficulty of simulating the original rectangular 

step distribution of temperature by the assumed profile. 

The problem actually undertaken thus represents the 

solution of the appropriate equations with slightly 

altered initial conditions. 
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Despite these shortcomings profile methods are 

shown to give good agreement with exact numerical 

results. 

The first problem examined has been that of flame 

ignition from a spherical hot gas pocket. Although 

much study has been made of steady laminar flame 

propagation, transient solutions have not been obtained. 

We assume that the chemical reaction rate may be made 

temperature explicit. Spalding (1957) has shown that 

this assumption is valid for the cases of i) single step 

reactions ii) chain reactions obeying the steady state 

approximation iii) simple chain branching reactions. 

It is necessary that the diffusion coefficients of all 

components should be 'normal' i.e. equal to each other 

and to the thermal diffusivity, and that the flames 

should be adiabatic. Case (i) is assumed to be satisfied 

here. 

In Chapter 2 is considered the case of step-function 

reaction rate, using the concept of an ignition temper-

ature; a formal solution is obtained. Chapter 3 deals 

with a polynomial approximation to reaction rate function 

applied to the same problem; the approximation is due to 

Spalding (1957) and Rosen (1958); the profile method 

discussed above is used. The assumption of constant 
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thermal properties used in the preceeding chapter is 

,lifted, and numerical results are obtained. 

The classical theory of the thermal explosion of 

a combustible mixture is due to Semenov (c.f. Frank-

Kamenetskii (1955)). It considers a closed vessel 

filled with a combustible mixture, and is most easily 

understood graphically. Figure 1 represents curves 

of heat liberation (I) and heat loss (II) as a function 

of temperature. The quantity of heat liberated per 

unit time in a stationary process must evidently equal 

the quantity of heat given off in unit time by the 

vessel to the ambient medium; graphically this corres-

ponds to the points of intersection of curves I and II. 

It is possible that two such stationary points exist 

(points A and B), or only one (point C), or there may 

be no possible stationary states. The region of the 

point C is taken to be the critical ignition region and 

gives an ignition temperature. It is not difficult to 

show that the stationary point A is stable, while B 

is unstable. It follows from the Semenov theory that 

ignition conditions, in particular, ignition temperature, 

are determined by all the conditions for the growth of 

the process in a system, rather than by single properties 

of the mixture. Thus the concept of an ignition temp- 
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erature,as used in Chapter 2,is more of a mathematical 

idealization than representative of physical rea4ty; 

nevertheless it does provide a simple means of defining 

the 'flame radius'. 

Laminar flame theory regards the flame as a zone 

of heat conduction, diffusion, reaction and viscous 

effects; the latter are usually neglected. Flow 

velocities are assumed small and hence the assumption 

of constant pressure is not unreasonable. The chemical 

nature of the gas changes across the flame zone. 

Much attention has been devoted to the determina-

tion of flame speed. This is defined as the linear 

velocity of displacement of the flame front with res-

pect to fresh gas entering the combustion zone in a 

direction normal to the flame front, and is often used 

to test the correctness of a theory. The dimensionless 

Peclet number, based on laminar flame speed has been 

used to illustrate the results obtained with polynomial 

form of reaction rate function. 

Another useful concept is that of Lewis number 

defined as the ratio of diffusion coefficient to 

thermal diffusivity; hence it represents lae ratio of 

energy transferred by diffusion to that transported by 

conduction. It is most often taken to be constant, 



and generally assumed equal to unity. This is in 

accordance with the kinetic theory of gases. Consequently 

the combined heat and mass transfer equations take a 

simple form, and are reduced to an enthalpy conser- 

vation equation. The case of combustion in premixed 

gases considered here does not involve mass transfer 

considerations explicitly and is equivalent to a unit 

Lewis number assumption. 

Chapter 4 considers a similar problem in the 

thermal theory of hot spot explosion. Such 'pockets' 

arise in reactive solids, and clearly safety criteria 

for handling such solids are of some importance 

industrially - the critical initial radius for ignition 

is just one such criterion. The formation of hot spots 

is often due to the adiabatic heating of entrapped 

bubbles by compression. These hot spots, though small 

in diameter, are often large compared with molecular 

dimensions, and they may perhaps be of order of 10-5  

to 10-3cm. in diameter. In this problem, unlike that 

of the two previous chapters where the adiabatic flame 

temperature was the maximum attainable, there is no 

upper limit to the temperature rise of the hot spot. 

Two methods of solution have been attempted. The 

first assumes a linear reaction rate term and a formal 
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solution of the energy equation has been found by a 

method based on a continuous distribution of heat 

sources. Using a first approximation to the solution 

for the temperature at the centre of the hot spot, a 

critical condition was obtained. The problem was then 

considered using a power law approximation to the reaction 

rate function; the previous profile method was used. 

Both theories give good agreement with exact numerical 

solution. 

The development of detonation in solidsfrom an 

initiating source passes through the following phases: 

a) Initiation of reaction. b)The growth of this re-

action from the decomposition region to a burning region. 

c) Acceleration of the burning and a sharp transition 

to low velocity detonation. d) Propagation of low 

velocity detonation. e) Propagation of high velocity 

detonation. Of these a) is the best understood and it 

is this phase that we consider. It is generally accepted 

that the initiation mechanism is thermal in nature, 

although hot spots may be formed in several ways. 

Since it is essential to have instruments capable 

of measuring times much less than a microsecond and 

apparatus which can analyse reactions taking place in 

a region perhaps only one-tenth of a millimetre thick, 
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it is not surprising that little progress has been made 

in the experimental field. 

The original theory of thermal explosion of 

Frank-Kamenetskii (1955) and others considers the station-

ary state condition where the temperature distribution 

over space only is taken into account and not its 

variation with time. The conditions under which a 

stationary solution is just not possible will then give 

the critical condition for explosion; this is obtained 

in the form of critical values of one or more dimension-

less parameters. 

Since then, several theoretical formulations have 

been proposed using the transient energy equation. These 

consider various approximations to the reaction rate 

function. Merzhanov et al. (1963) have obtained numer-

ical solutions using the exponential approximation. The 

various theories are compared in a paper by Thomas (1965); 

a graphical comparison is made which we, too, have util-

ised. 

The final chapter contains a study of the behaviour 

of a hot inert gas bubble in an infinite sea of cool 

reactive liquid; this is probably the most interesting 

problem considered here and correspondingly the most 

complex. It has possible applications in liquid fuel 
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rockets and chemical reactors. 

The interest of the problem lies in the interplay 

of thermal, inertial, and chemical reaction effects. 

It is assumed that the bubble has uniform pressure, 

temperature and density at any instant in time; this is 

justified by its small size; surface tension)too)is 

neglected. In addition to the non-linearity introduced 

by the reaction rate which is approximated by simple 

power law expression, a further complication is introduced 

in the form of a small parameter. Neglect of this para-

meter would lower the order of the equations; consequently 

the problem is ideally suited to the methods of singular 

perturbation theory. 

Once again the profile method has been used; it 

has been necessary to introduce an additional time-depen-

dent parameter in order to satisfy the temperature 

gradient condition at the bubble interface. Thermal 

and transport properties of both media are assumed 

constant. 

This investigation is thus an extension of classical 

hot spot theory to.the case of liquid explosives. With 

liquids, however, in addition to conduction, convection 

plays an important part in the transfer of heat; the 

effect of this is to increase the value of the critical 
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initial radius above which explosion can occur. 

Despite its obvious interest, theoretical work 

of other authors on such problems appears limited to 

dynamics of phase growth. Scriven (1959) has formulated 

the equations governing spherically symmetric phase 

growth in an infinite medium. These are then simplified 

to describe growth controlled by the transport of heat 

and matter. Similarity solutions are obtained for 

conditions typical of bubble growth in the nucleate 

boiling of a) pure materials and b) binary mixtures. 

There appear to be no formulations of the problem con—

sidered here, even in a simple form. 
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CHAPTER 2 

FLAME IGNITION FROM A SPHERICAL 

• HOT  GAS POCKET  

1. Introduction  

The theory of steady laminar flame propagation 

has been studied extensively and is well understood, 

but transient solutions of the energy balance equation 

have not been obtained in analytical form due to the 

non-linearity introduced by the reaction rate term. 

The case of transient propagation from a one 

dimensional slab has been solved graphically by 

Spalding (1955), using a finite difference method. 

It is possible to use a similar method for flame pro-

pagation from a spherical hot gas pocket but analytical 

solutions are preferable since they give some insight 

into the ignition process. 

The problem of flame propagation from a hot gas slab 

has also been considered by Spalding (1958) using a 

profile method. This approach will be discussed in 

greater detail in the following chapter. Profile methods 

are found to give an accuracy to within twenty per cent. 

Steady laminar flame propagation with spherical 
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symmetry has been studied by Jain (1961), the flame 

being supported by an outwards streaming source of 

premixed gas. He was able to obtain analytical 

solutions for step-function reaction rates and for 

Adams type reaction rate functions; Adams used the 

assumption of a constant temperature gradient in the 

reaction zone. Although the step-function reaction 

rate is not very realistic in shape, it is nevertheless 

more representative of reality than the spiked Adams' 

type of reaction rate curves. 

The propagation of flames in combuotible gases 

has been studied for many years from the experimental 

point of view, partly because of its importance in 

coalmines and in petrol engines. Experimental obser-

vations on ignition and initial flame growth in hydro-

carbon-air mixtures have been made by Arnold and 

Sherburne (1953). Premixed fuel was introduced into 

the burner and sparkecL Simultaneously a series of 

light flashes was triggered to produce Schlieren 

images of the flame growth on photographic film; 

pictures were taken at time intervals of about 400 

microseconds after the sparking. They were able to 

obtain the growth rates of hot gas bubbles for varying 

energy inputs. Critical bubble sizes below which 
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extinction always occurred were also deduced;.a cri- 

tical radius versus time curve was plotted and this 

was extrapolated back to the time origin to yield 

critical initial bubble radii. 

The present chapter is concerned with the theory 

of flame ignition from a spherical hot gas pocket. 

It is assumed that at some initial time a mass of 

hot reaction products is introduced into a stagnant 

infinite medium of cold combustible gas. Attention 

has been concentrated on finding the minimum size of 

hot gas bubble for which flame propagation will take 

place and its dependence on chemical kinetic parameters. 

In order to facilitate the solution the following 

simplifying assumptions have been made: (i) The 

system is adiabatic, (ii) the chemical reaction rate 

may be made temperature-explicit, (iii) the gases have 

constant properties. Assumptions (i) and (ii) are 

often made in steady flane theory and (iii) may be 

justified on the grounds that attention is restricted 

to small values of the time where gas expansion 

effects are not likely to be of importance. 

With the assumptions made, the mathematical 

problem is that of hDat,getsration and conduction 

with a moving boundary. Thus at any time sufficiently 
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small, there is a variable inner region within which 

heat is produced at a constant rate, the surface being 

kept at the ignition temperature. For an initial 

stepped temperature distribution it is required to 

find the step size for which the maximum central 

temperature will just fall to the ignition temperature. 

This determines the critical state, separating final 

ignition from extinction. 

2.1. Formulation  of the roblem 

With spherical symmetry, the energy conservation 

equation may be written 

8T 	8 	 8T 
cP at = P W 

(Tr  
"Pr4  77,  ) (1) 

where the independent variableV, which is effectively 

a stream function, is defined by 

r 

pr2dr 	 (2) 

Here p is an assumed function of T, and 

r = 13 o
r PCT) 

	1/3 	
(3) 

0 

The variables above have the following significance: 
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r Radial distance. 

t 	Time. 

p 	Gas density. 

c 	Specific heat. 

K Thermal conductivity. 

T Absolute temperature. 

Q Volumetric heat release rate due to chemical 

reaction, in general a function of temperature 

and fuel concentration. As shown by Spalding 

(1957), under adiabatic conditions and for 

'normal' diffusion, it can be made a function 

of temperature alone. 

To deal with equation (1) we shall assume the gas 

properties c,p, and k to be independent of T. 

Although this is not realistic in general, it is prob-

ably permissible for small values of time. 

With the above assumptions, it is convenient to 

introduce the following dimensionless variables. 

2 

Distance 	d=  
	

dr 	(4) 
Lk(Tb-Tu) 

Time 
	dQ - 	 dt 

	
(5) 

cp(Tb-Tu  



Temperature 
T-Tu 
Tb-Tu 

Reaction rate f(t) = gra 
	

(7) 
1 

where Q = 	OZ. . 

The suffices°  u,b refer to the unburnt and burnt 

states of the gas respectively. 
On introducing the dimensionless variables into 

the energy equation this becomes 

at = 1 	( g2 0 ) 	Et) 
ae 	t2  a 	ag 

The initial and boundary conditions applicable to 

equation (8) are 

0 < g <(:) 	= 1 9 

nig = 0 , 
t = 0 . 

G=0 

Q> 0 
= 0 9  

Y

= 

= GD 9 

(8) 

In (9), %0  denotes the initial dimensionless radius 

of the hot gas pocket. 

Definition (7) shows that the area under tf 4 t) 
between 1== 0 and 15= 1 is unity. A typical reaction 

rate function is sketched in Pig.2. and we approximate 

it by a simple step-function 
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0, 	0 < 	< t. , 

1/(1-1i), 	ti  < 	< 1 7  

 

 

where ti  is the dimensionless ignition temperature. 

We can now define yQ) to be the radius of the 

flame front at time 0, by 

0 < 	< 5i(8) : 17> ti  3 	> 	/:<17i  (12) 

Subsequently we shall refer to that part of the medium, 

where the temperature is greater than or equal to the 

ignition temperature as the flame. 

On writing W =Trr equation (8) becomes 

where 

Eta  = a2,4)  
ag a  2 + sd( 	) 	 (13) 

/(1—'T.) 
71(x) = 

o 
(14) 

2.2. Formal solution of the problem 

since wis an odd function of g (er is an even 

function due to (10))it is convenient to solve (13) 

by application of Fourier sine-transforms. We put 

oo 

Z7) = 	2 71- j- 	)di 	(15) 
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On applying the transformation to equation (13), 

this becomes 

dc7)2 — 	1 	1-11 
7./
2i 	( sin  

cT.6 + 	1-'L• 4  

Equation (16) implies that 

. (16) 

lim c-•.) = lim &r,/a:§ = 0 	. 
oo 	-a o0 

Initial conditions (9) give 

w 	a 	i s in gon ) 
Q 	=  0 : /700  = - 	 (17) 

12. 	/ 
On solving equation (16) subject to (17), one finds 

Z5 	
j(i)  s  inlzg 	) 

exp(-178) - 

417  N) 	sin gi 	
exp -117(g-81 ) 

(18) 

where 	!Si '= 	( ' ) • 

Expression (18) can now be formally inverted to 

give the required temperature distribution.. Thus 
co s_ sin 0 ) 2 1 t 	= 	

E 
11 	exp(-17,28)sin( 	)th-L- 

T 

2 1 
- dc 

sin 
 	exp.)  -172  (8-81 )1 

sin(1)(18edit . (19) 
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By using Pars eval s theorem for Fourier transforms 

(c .f . 9neddon (1951 ) , it is possible to change (19) into 

a more recognizable form. One finds 

[exp(-(go+)2/4(4-exp[-(g0-:02/4Q1] + 

+ 	erf f(; 0+! )/2 /Q +erf {(g0—)/2Ar9 	+ 
(31 

1 1 
1-1". 72.  

 

[ exPt- (11+1 )2/4Q '1 	)2/4G 	d81  + 

 

[ erft( 	)/2,19'1 + erq( ii-1)704-Q ]d‘Q 	(20 ) 

 

  

with V = i(8-9') 
	

In, (20) the first two terms are 

the usual ones wh ich arise in heat conduction theory 

for the given initial conditions (7), whereas the inte-

grals are the contribution to the temperature from the 

heat source term. 

By definition, when g = 	= 	, giving an 

integral equation for the flame front radius at any 

time 9. Thus 

= j( [expt-( 0+02/491-expl-Q0-k)2/481] + 

5i 	c + 	erft( 0  + )/2tr93 +erf( 1-0--,k)/2Nr9l] + 

+ 	12--  - 1\M - — 	NrG [ ex1D t-  ai+5i ) 2/48 -exp[- 	)2/4g ]dg Ti   
""o 

+ 1 iti 	[ erft(si+i )/24-8 J + erg ( ti- )/W013 ] ' 
(21) 



23. 

From (19) the temperature at the centre of the hot 

gas pocket is obtained as 

  

`r-  (e ) = - exp ( -12 G ) 	- 

  

oo 
2 1 
9t 1-ti  

0 

sin 	expi 	(9--8 )1d@tcly 
(22) 

We shall show from (22) that extinction will occur if 

the temperature at the centre of the bubble falls to 't'i  

	

Suppose that at some time 8 = 81 , 	 = 0 . Then at 

time 81  + 69 , where ogt is a small time increment, 

't(e +b8) =-2 iti L 
c9- , (sin'",s- 
	' 

(01 

	

' 	exp[-f (Q., +6Q) dil - 

	

rri 	1_ 	 4  -  

6 co 	 ._ I 'sin 5il..) 

	

.1) 	1-1 i. 
<`(81) = 	• 

Hence, if the temperature at the centre falls to T i' 
it will continue to fall below this value . Since "C is 

now everywhere below the ignition temperature, there is 

no heat addition and the process becomes one of pure 

conduction. It is easily shown (e .g . Oarslaw and Jaeger 

(1959) that under the se conditions the temperature t (e) 

decreases to zero . 

exif -rof (81+6Q-8' )3 dE) 
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2.3. Series approximation for small values of G  

Although representing a complete analytical 

solution, the complexity of the integral equation for 

yG) does not permit solution in closed form. Since 

the life history of the hot gas bubble is likely to be 

determined by its behaviour for small time, we derive 

a solution for yG) in the form of a polynomial in 

82  . Let 

l(G)  = Eo a20 - a383 /2 (24) 

wherethe. al  are constants depending on the two para- 

meters 	 c)  and "ti  . For very small 8, 	o - aig 

will be dominant in expression (24), and as it is 

expected that the flame initially contracts due to 

contact with the adjacent cold gas, we should have 

a1 > 0 . For larger time the term -a3
83/2  dominates, 

and so, in order that the flame continues to propagate, 

it is necessary that a3  < 0 

We make the reasonable assumption that for small 

(;) and 8' 

expp(gi+gi)2/403 	0 	erf-t(ti+k)/2A/Q1 -> 1 . 

The evaluation of the coefficients is facilitated by 

writing (24) as t = o + 872-S(Q) 	
which on substitution 
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in (21) gives an integral equation for S(Q). On ex-

panding S(Q) and equating coefficients of powers of 

Q1  one obtains 

erf 	) = 2 r1--1 	 (25) 

a2 = 2/ o 
	 (26) 

In order to obtain a3 it is necessary to con-

sider the coefficient of Q in (21). The term of 

lowest order in the first integral of (21) is pro- 
3/2 portional to Q 	. Hence, of the source terms, only 

the second integral need be considered. For small 

values of Q and Go we may take 

erfc( i-ii)/2q-Qjc,4 erftal(49-4-Q-Q1 )/2i/Q 11 . 

It is necessary to evaluate the integral 

I(a1) = 
	erf cal  (n18-V8-8' 	 Q'j dQ1  . 

al  
I(al) = [7f(77) + 

0 

+ (1 + la1  2) 2  

a, 
a12erf(y) 

- 4 
1 - -a1

2  - 

yields 
p 

- 
2a1 r 1 	a 4 1 -- 

e  4- 

Use of the substitution y = (VQ-18-81 )/4-Q1) 

(1+y2) 
	dy . 

The Integral in the above expression may be evaluated 
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by use of the technique of differentiation under the 

integral sign with respect to al; this gives a first 

order linear ordinary differential equation which 

may be solved to give the required integral. Finally, 

comparison of coefficients of Q in (21), and use 

of the previous expressions (25) and (26) for al, a2, 

gives 

al 
a3 	- 1I [a-1  + kIkexp$ 
	rfia12)(1 + (1+a12)e 	11 

o 
-1I  

- lia1(14a12)exp(2a12)fl - (erf2al)21]. (27) 

For specified Tei  and %a  all coefficients ai  are 

determined. Realistic values of 	are greater than 

and (25) shows that a1 is then positive. It may 

be sbown that the second term in (27) is always positive 

so that, for a given Tila3  can be either positive or 

negative, depending on the magnitude of 10  

2.4. Critical conditions  

Using the expression for the radius of the flame 

front valid for snail time, we now determine the 

critical conditions for flame propagation. This pro-

cedure is justified since the initial behaviour of the 

central gas core determines whether the process will 
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lead to ignition or extinction. Consider the expression 

(24) for a given value of iri  . Initially k =I°  and 

its value then decreases with increasing P. If 

falls to zero the process becomes one of pure heat 

conduction and the incipient flame is eventually ex-

tinguished. For S,0  sufficiently large, 17i  is 

always positive, has a minimum at some G = c and 

finally increases again with increasing G. The two 

possible modes of behaviour of 	are separated by 

a critical curve which just touches the G axis. 

Figure 3.shows qualitatively how i  varies with 

for a given Ti  . 

The critical condition is expressed mathematically 

by 

g = Qc  : i(9,) = 0 	dil i/dg = 0 . 	(28) 

With (24) these conditions become 

3/2  
(io)c - alQj - atgc  - a39 c 	= 0 , 	(29) 

1 

a1 + 2a28c2  + 3a39c = 0 	(30) 

Eliminating a3  between (29) and (30) and using (26) 

the following quadratic in Gc is obtained: 

29c+ 2al( o)cgc 	3(o2)0 = 0 . 	(31) 
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The appropriate root of (31) is 

e c 	= i( I;o )c [(a12+6)2  - all • 
	(32) 

Equation (32) shows that the time interval 40< 9 < Q - - 

is small for either ( o) c  ) 	small or Ti 	1 . The 

critical radius (1 o  )c  , is obtained on substituting 

for Gc in (30). The resulting expression is 
2 

). = 
= 4(1-ti.)[4(a12 4)i-2a1+3alta12-al(a121-6)21-33]/N7-a161746.  
al-1441+(l+a12)erfaliex+12-iwal(12al2)a-(erWlexpial2  

Values of (L)c  have been calculated from (25) and 

(33) for Ti  in the range i <' i  < 1 and are plotted 

in Fig.4. The curve so obtained has a maximum at 

I:. = 0.61 and then gradually decreases, becoming zero 

at 	= 1 . 

From first considerations one might expect the 

values of ( o) c  ) 	to increase steadily with tacreaging 

since the unburnt gas would begin to react at a 

higher temperature, which it could not attain so easily. 

This trend is counteracted, however, by the Increase 

in reaction rate with increasing ignition temperature. 

The appearance of the (1 ) o c versus t- curve results 

from the balancing of these two effects. From the 

arguments above it is seen that initial values in the 
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region above the curve always lead to ignition whereas 

those below the curve lead to extinction. 

3. 	Discussion 

Although some of the data is not given, a rough 

comparison with a result of Arnold and Sherburne is 

possible by assigning reasonable values to the rele-

vant physical parameters. In their experiments, 

critical sizes are determined by allowing premixed 

fuel and air to pass through a nozzle burner, and 

observing the behaviour of the hot gas bubble formed 

on sparking the mixture. For propane-air in stoi-

chiometric proportions, they find a critical radius 

of about 0.3 cm. 

From definition (4) it follows that 

= 

1 
2 

re 	 (34) 

where re is the measured critical radius. Taking 

= 10 cal/cm3sec, k = 2 x 10 cal/cm°Ksec, Tb  = 2000°K, 

Tu  = 300°K, re  = 0.3cm, one finds that ( *g e)e  = 16.3. 

Comparison shows that this critical radius is about 

25 times greater than the maximum value found by us 

above. Apart from uncertainties in the data, contri-

buting factors to the discrepancy are the following. 
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i) The reaction rate is assumed of step-function 

form. With a more apnventional rate function 

a larger reacting volume is required to have 

the same rate of heat addition at any time. 

ii) The gas properties are assumed constant. 

Expansion effects would tend to increase the 

critical bubble size. 

iii) The initial conditions are not identical with 

our assumptions. For the experimental bubbles 

the temperature decreases from the centre 

outwards. 

iv) Schlieren photographs mpuld tend to give an 

upper limit to the bubble size. Weinberg (1955) 

has shown that the effective Schlieren radius 

is at about one and a half times the unburnt 

gas temperature. 

v) Convective effects probably increase the rate 

of heat transfer from the bubble surface. 

Heat may also zwebe conducted away through 

the electrodes. 

vi) The results of Arnold and Sherburne were not 

obtained at the time origin. In order to 

find the critical initial bubble radius, the 

critical bubble size versus time curves were 
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extrapolated back, thus introducing a 

a possible error. 

Comparison of our method of approach with that 

of Spalding (1958) shows that the two are complementary. 

Instead of starting with a temperature profile, whose 

dependence on time for a given reaction rate is to be 

determined, we choose a profile for the reaction rate 

and determine the temperature distribution to match it. 

One could, of course, take reaction rate functions 

which approximate more closely to conventional ones. 

If these are made to consist of a series of straight 

lines, the energy conservation equation is still linear 

and an analytical solution can be found. 

An independent check of this result has been 

provided by using the temperature profile method to 

evaluate the problem of this chapter. The advantage 

of Spalding's method is that one can obtain approximate 

solutions of equation (1) for more general reaction 

rate functions and non-constant gas properties. Such 

a calculation has been undertaken and is presented in 

the following chapter, in which also, the two sets of 

results are compared. 



32. 

CHAPTER 3 

THE DEPENDENCE OF FLAME IGNITION ON 

TRANSPORT PROPERTIES AND CHEMICAL  

KINETIC  PARAMETERS  

1. 	Introduction 

Although much theoretical work has been done on 

steady laminar flame propagation, relatively little 

attention has been paid to transient flames. This is 

mainly a result of the mathematical difficulties, the 

relevant partial differential equations being strongly 

non-linear due to the dependence of chemical reaction 

rate on temperature and concentrations. Transient flame 

problems may be divided into two broad classes, (i) 

ignition problems; in which energy is supplied to a 

system capable of reacting exothermally and establishing 

a flame front, (ii) stability studies; in which a 

steadily propagating flame is subjected to some form of 

disturbance, In (i) the interest often centres on 

determining the minimum energy necessary for a flame to 

establish itself and in (ii) on finding conditions under 

which the system will once again reach a steadily 

propagating state. 
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The present study is concerned with flame ignition 

from a spherical hot gas pocket. It is assumed that 

at some initial time a mass of hot reaction products 

is introduced into a stagnant infinite medium of 

premixed fuel and air. Attention: has been concentrated 

on finding the minimum size of hot gas bubble for which 

flame propagation will take place and its dependence on 

chemical kinetic parameters and gas transport properties. 

In order to facilitate solution, some of the simplifying 

assumptions often introduced into steady laminar flame 

theory have also been made. Thus it is assumed that 

the system is adiabatic and that the chemical reaction 

rate may be made temperature explicit. 

In the previous chapter, the reaction rate was 

taken to be of simple step-function form and the gas 

properties assumed independent of temperature. Under 

these conditions analytical solution by integral 

transform methods was possible, leading to an integral 

equation for the effective flame front radius. For more 

conventional rate functions analytical solutions cannot 

be obtained. 

An approximate method for dealing with transient 

flame problems, based on a profile technique of boundary 
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layer theory, has been given by Spalding (1958), who 

considered the behaviour of some 'slab' flames. The 

transient heat balance equation was studied using the 

assumption that the product of the thermal conductivity 

and the density of the gas is constant; our assumption 

will be less stringent. The heat equation was then 

integrated formally over two ranges of the space variable; 

it was assumed that the temperature may be expressed as 

a simple function containing time-dependent parameters 

which were chosen suitably. Thus two ordinary differential 

equations for these parameters were obtained. For the 

purpose of simplification attention was restricted to 

symmetrical profiles and the reaction rate in cooler 

half of the flame was neglected. 

Within this general framework four problems were 

discussed by Spalding, the first being that of the sudden 

contact of semi-infinite burned and unburned gas masses; 

variation of flame thickness and position of the centre 

point of the flame ate. :.tft-- a-}=-ham ,  

tkre--4-with time were investigated. Clearly in this 

problem the maximum temperature remains at its initial 

value. Interest was centred on determining the time 

for development of a steadily propagating flame, the 
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velocity of steady propagation, and the stability of 

the flame. Next was considered the contact of a large 

mass of cold unburned gas with an adiabatic catalyst; 

the catalyst has the property of acting as a sink for 

the reactants so that the concentration of at least one 

of these is reduced to zero at the catalyst wall. It 

was found that initially the flame was 'attached' to the 

catalyst wall where the temperature gradient was initially 

steeply negative, gradually becoming less negative and 

finally tending to zero when the second phase commenced; 

the flame then detached itself from the wall and the 

equations describing the first problem determined the 

subsequent behaviour of the flame. Thirdly, Spalding 

considered the immersion of a finite slab of unburned 

gas in a large mass of burned; attention was focussed on 

finding how long it would take for the cold slab to be 

consumed. Initially the temperature distribution was of 

rectangular 'well' form, Subsequently flames propagated 

into the pocket from both sides; finally a composite 

flame was formed. 

Finally Spalding investigated the immersion of a 

finite slab of burned gas in a large mass of unburned; 

our interest lies mainly in this study due to its 
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similarity to our problem. It was found that for 

sufficiently large slab widths the temperature at the 

centre of the siabreialained at its initial value while 

the flame spread outwards; this was described by the 

equations fur the sudden contact of semi-infinite burned 

and unburned gas masses. For smaller initial slab widths 

the process falls into three parts; initially the 

maximum temperature remains at its original value 

while the temperature distribution is 'smoothed' out by 

conduction. Next the central temperature starts to 

fall below its initial value; if this temperature 

continues to decrease to the ambient value, the flame 

is extinguished. If, on the other hand, this temperature 

passes through a minimum and thereafter rises above its 

original value, the process is once again described by 

the equations of the initial phase and ignition occurs. 

A critical initial slab width separating these two 

regimes was obtained by Spalding. 

Such profile methods, as described above, are 

ideally suited for ignition problems and the procedure 

has been used by us below. 
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2.1 Energy conservation equation  

Without heat losses and with spherical symmetry, 

the equation of energy conservation may be written 

aT 	a aT cpp at = p -aT  kh.pr ay  ) + I 	 (1) 

where the independent variable y , which is effectively 

a stream function, is defined by 

pr2 dr 

Here p is assumed a function of T 

1/3  r = 

/ ,o 
,x154J  p(T) 

4/  4) 
	and 

In the equations above, the variables have the following 

significance: 

r 	Radial distance 

Time 

p 	Local gas density 

Cp 	Average specific heat at constant pressure 

K 	Local thermal conductivity 

T 	Absolute temperature 

4"1  Volumetric heat release rate due to chemical 

reaction, in general a function of temperature 

and fuel concentration. Spalding (1957) has 

shown that for normal diffusion and certain 

reactions it may be made a function of 

temperature only, 

= 
(2)  

(3)  
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To write equation (1) in dimensionless form we introduce 

the following dimensionless variables: 

Stream function 

Time 

Temperature 

Reaction rate 

where 

cy (4) 

41, 
(19 = C

p Pu(Tb-Tu) dt 

T-T ft:  _ 	u 
Tb-Tu 

0(1) = ( c27) (21'11''-) 
u quf 

• (2—)ifttdrc .  

Pu 

(5)  

(6)  

(7)  

The suffices u, b refer to the unburnt and burnt states 

of the gas respectively. 

Introducing the function 

.p /4 
R = 

	

	3 kupu  (8) 
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which is proportional to the dimensionless radial 

distance, the energy conservation equation becomes 

aag — as - 2- (R4  21) + 0(T) 	 (9) 

2.2 	 dependence  

The above formulation assumes that diffusion is 

normal, namely, that the diffusion coefficients of the 

reactants are equal to each other and equal to the 

thermal diffusivity. 

In deriving a transient, dimensionless energy 

equation, Spalding (1958) assumed that kp = constant. 

For the usual constant pressure assumption and ideal gas 

law this means that k is directly proportional to T 

A more convenient form of these relationships is 

K Pu = 	+ anE Ku 
(10) 

where a is a parameter. For a = 0 the gas properties 

are constant and with increasing a equation (10) approxi-

mates to the ideal gas law. By definition 



u  a = 	-1 	-1 . kb u  Pb 

With (10), the diffusion coefficients may be written 

40. 

D = (1 + aT )2  . 
pvu 

The function defined by(8)can now be reduced to 

1/3  
+ 

0 

{3 

(12) 

( 1 3 ) 

2.3 Reaction-kinetic assumptions  

It is assumed that the flame propagates by means 

of a first-order,,single-step reaction and that the 

conditions under which the reaction rate may be made 

temperature-explicit, are satisfied (c.f. Spalding (1957)). 

We can then take 

0(T) = (n+1)(n+2)(1-it)T11 	(14) 

where n is a constant, which in general depends on 

the activation energy and on parameter 'al. For 

large activation energy, it may be shown to be nearly 
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independent of 'a'. In equation (14), t1:11  approximates 

the usual Arrhenius term and (n+1)(n+2) ensures that 

the area under 0(1) , between 1: = 0 and 1:= 1 is 

unity. 

2.4 Solution by profile method  

Integrating the energy equation from 	= 0 to 
3.  = 4.0 , we obtain 

oo 

	

dg 	= 	O(t ) d 	(15) 
0 

since when 	= 00 	: 1: = 0 . Similarly an integration 

from 3 = Si  to 	:=00 , where 37i  is a function 

of Q only gives 

9c 

d 	/...- 	d 	 . _ p4(8/: 
ilTF.j. 4- L(T)z_ (16) -d-4  7. d-. + -7T- Li 	,i 

1 

where, when 	= 	: 	, R = Ri  . To evaluate 

the integrals in (15) and (16) we make the profile 

assumption 

d 
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= 	) 
	

(17) 

in which f(x) is a monotonically decreasing function 

of x , and f(0) = 1 , f(oo) = 0 . 1:11a  is the 

temperature at the centre of the gas pocket and is a 

function of Q . 

It is convenient to introduce the following 

notation: 

K1  = ft(1) 
	

K2 = f(1) , 

J1
0 f(x)dx 	J2 = 

	flx)dx 

(18) 

J10 	o f nif cx dx 

Po 
I2(Tm) = 	0 fir f(x)}. dx 

m  , • 

Substituting (17) into (15) and (16), we obtain the two 

equations 

+J2)%a( Si  Tin) = 
	I1 ( ` t-m ) + 	('rn) } 	(19) 
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ft m  IL( 	+ K 	_+. 	K1  [3 si(i+Ji  a tm) ] 
4/3  

v2i4;,-)1 gym) 	2 "-- m c14) 

I ( rt 1 2 m (20)  

from which the required functions Tm  and 	can be 

found.K.,J. are constants, depending on the choice 

of profile, and Ii  ('Cm)are determined by o(`) and 
f(x) 

Since 9 does not occur explicitly, (19) and (20) 

can be combined to give a single equation. Solving for 

the derivatives and dividing one equation by the other 

we find 

VI:m  3 ft = m 
d,Si  

 

4)-1(1-,m)  
+ tp2( zm) (21)  

 

where 

and 

-3/2  
(22)  
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Y1(9:m) = 	(K24-j2)I1(1:m) 	(K2—Ji)I2(1:m)  

Ki (Ji+J2)(1+JiaTm) "Tm  

(23) 

ft-) 	
j2i1(;) jii2VCm)  

Y2(  m 

KI (J1 +J2) (1 +fi a erm)413/1: m  

Equation (21) must be solved subject to the boundary 

condition 

.1 0 	m = 
	

(24) 

2.5 Approximate analytical solution 

In order to obtain an approximate solution of equation 

(21) we suppose that the reaction rate in the cooler part 

of the medium may be neglected and hence that I2(Tm) = 0 

this is equivalent to the assumption made by Spalding 

(1958). The functions V1i(Tm) 	4J2  ('gym)then simplify 

to 
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(K2-142)I1(11:m)  
Yi(tt-m) = 	4/3 

K1  (J1  +J2  )(1+J1m) ' 

(25)  

1 	3211( m)  
Y2(rt m)  - 9 

	

	4/3  
Kl(j14-J2)(11-Jlattm) 1:m 

Since the K. , J. are constants, it is easily seen 

that kli i(1:m) and 1. 2(1 m) are simply multiples of one 

another. We now write 

(rti.) = - 
(26)  

412( Tm) 	
- it

m 
 

where 11 ' 
	k are positive constants. By 

definition 

K 
1 = 1 + 	1 L2 	

J, 

2 
> L2 

If this assumption (26) is written in the form 



I1  ( m ) f fsilf(x) 	ax 
0 
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, k+1 = 	(1+Jia'c'm) 4/3 'L m  

where = 	K (j1-1-j)  -9L1 IK
1 +J  

it is readily seen that, 

given f(x) , this is an integral equation for 

Conversely, given 0(q5) as an appropriate power series 

in (1" , the function f(x) is specified. 

Under these assumptions equation (21) may be written 

drt 	3 't m 	m =  
k 

i- L1 m 

-L2m , 
(27) 

This must be solved subject to the initial condition 

tra  = 1 : 	i 	o ° = 17; 	Integral curves of this equpttor -  

have a zero gradient along 1 = Litm  and infinite 
k 

gradient along .! j_  = L2 rLm , In the region between 

these two isoclinals, the integral curves have negative 

gradient while elsewhere in the positive quadrant the 

slope is positive. The integral curves satisfying 

equation (27) will either have a minimum on 	= 

or pass through the origin which' is a singular point of 

the equation. The initial value 	i = (0)c 'tm = 



04(;141-L2)-(P-1)  

3k 
r-  -I L1 
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separating these two regimes defines a critical condition 

for ignition. 

/ On substituting y = tr 	a separable equation 

is obtained which is readily solved to yield 

3k 

= 
	

(32L1 	L2)y 	( 2  - ) 	(28) 

-21(L1  -L2  ) where a = 	and B is a constant. a L  -Z21   

Use of the initial condition yields 

3k 

j.)(4) 	= 

 

{( L
1
-L2)7 - 

k -1),1 	 (k , 	- k -  ( i)o 2  

 

In order that an integral curve should pass through a 

minimum it must cross the isoclinal of zero slope where 

y = 
L1 

; hence at the intersection 

	

3k 4 	Lo 

	

F- ' 	B 
O 

On elimination of B it follows that 
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To ensure positive real 	, the expression in brackets 

on the right hand side of this equation must be positive; 

the vanishing of this expression yields a critical 

condition for ignition. Hence 

)c  = L1 

 + (111-112) 
	

(29) 
2 

For values of o greater than this,extinction will 

always occur as the integral curves pass through the 

origin. 

The integral curves of the simplified equation (27) 

exhibit similar characteristics to those of the exact 

equation and predict an extinction condition. 

2.6 Linear profile assumption 

As a simple illustration, we shall consider the 

linear profile 

0 < x < 2 : f(x) = 1 - lx 
•••• 	 010 	 2 

x > 2 : 	= 0 
(30) 

Substituting in (18) we find 
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1 K 	K .1 j - 2 j -1. 
2 ' 	2 - 4 

For reaction rate function (14) and n, large, 

I2( Lm)is small compared to Ii(Tin) and can be 

neglected (c.f. Spalding (1958)). We then obtain 

- {n+2 	(n+1)1:1113 , 
( Tm)  M 

(31) Tin) 3  (1)2( 	= 	 A 

3(1 	•̀m) " 

2.7 Numerical results  

We have obtained numerical solutions of equation 

(21) for the linear profile (30). Typical integral 

curves for n= 11 , a = 1 , are shown in Fig.5. 

Examination shows that the integral curves have a zero 

gradient where the numerator of (21) vanishes and 

infinite gradient when the denominator is zero. These 

two curves are marked by So  and q, in the diagram. 

For initial conditions (24), step-by-step backward 

integration results in either integral curves with a 

minimum on So , (a) and (b), or curves which pass 

through the singular point 	= 0 	m = 0 , (c) and 

(d). The former correspond to flame ignition, the 

central temperature first falling to a minimum and 
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6,  

then rising again to Tm  = 1 , whereas the latter relate 

to flame extinction. The two possible types are 

separated by an integral curve which just passes through 

the origin and represents the critical state. We have 

determined initial conditions = ( i)c 	15132 = 

corresponding to the critical state. 

For the linear profile the temperature just 

vanishes where 	= 2. i. It is thus convenient to 

put 8 = 23;i  , where 8 is the 'radius' of the hot 

gas pocket at any time. Critical values Sc have been 

calculated from (22) for n = 11, 20 and values of a , 

the resulting curves being shown in Fig. 6. 

2.8 Physical interpretation of results. 

Substituting the differential form of (2) in (4) 

and integrating 

    

	 i:3/2  
tKu(Tb-Tu)i 

 

  

(i+aZ)dS (32) 
0 

  

For the critical profile 9 = 0 : frc  = 1 - `/8c, 

(32) gives 

(14a)8c f
Ti7"/ku(Tb-Tu ) (33) 
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where rc is the measured critical radius. 

For large activation energy 

= 1 + a 

rt 4tH d 

0  

lr 

4"t det 
0 

1 + a 	(34) 

where ( )H  is the appropriate variable with a = 0 . 

From (33) we obtain 

1 	1 
) re 	(1 + 7a1 N,  ) 	Sc r  

re (1 + a)
/2 Vo (35) 

Expression (35) has been evaluated as a function of a 

using the previous results and is shown in Fig. 7. 

The critical radius for constant gas properties 

can be found from (33). Thus 

I .1.••••• 

rH  = 	 /3 (3.5 H•  ) 	IKu  (Tb  -Tu  OCI" c 	 (36) 

Taking (4111)H  = 103  cal/cm3sec , ku  = 2 x 10-4  cal/cm°K sec, 

Tb  = 2000°K , Tu  = 300°K we find 
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n = 11: rc = 3.56 x 10
-2 cm 

n = 20 : rR  = 3.74 x 10-2  cm . 

For the values chosen, n is nearly independent of a 9 

hence Fig. 7 shows how rc varies with changing gas 

properties and approximately constant activation energy 

parameter. By use of the results' of Rosen (1958), n 

can be related to the usual activation energy. 

3. 	Discussion 

One can make general predictions about the general 

behaviour of the integral curves of equation (21). For 

large activation energy, I2( m) can be neglected 

compared to Ii(`tm) 	since 0(T) is very peaked, and 

hence yi rrm) and W2(7r1n) differ only by a constant 

multiplier. In general JI, J2  , K2  > 0 and K1  < 0 , 

so that in the ( i,rtm) plane there exist limiting 

curves similar to So and S, where the integral 

curves have zero and infinite gradients, respectively. 

The integral curves which satisfy (24) will either 

have a minimum on So or pass through the singular 

point (0,0). The starting value Si  = 	: 	= 1 

separating the two behaviours, determines the critical 
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state where ignition will just take place. 

It is possible to obtain energy criteria based 

on simple energy balance requirements and these may be 

expressed in various alternative forms. A useful concept, 

introduced by Putnam and Jensen (1949), is the dimensionless 

Peclet group based on laminar flame speed. The critical 

Peclet number may be written 

(Pe)c  = 2Su rc/l? 

where, for large activation energy, the flame 

p u 1177---Tu):1/2 

ul 
Su 	

2kucl 
0 p 

(37)  

speed is 

(38)  

Substituting (12), (33) and (38) into (37), this 

becomes 

(Pe)c  = 2n(2 [3(14a)(5 	. 	(39) 

Function (39) has been plotted in Fig. 8. for various 

values of n and a . Spalding (1955) has pointed 

out that although (Pe)c must vary with different gas 

conditions its value should be about twelve. 
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Experimental observations on ignition and initial 

flame growth in hydrocarbon-air mixtures have been made 

by Arnold and Sherburne (1953) and by Olsen, Gayhart 

and Edmondson (1953). Critical sizes were determined 

by allowing premixed fuel and air to pass through a 

nozzle burner and observing the behaviour of the hot 

gas bubbles formed on sparking the mixture. For gas 

mixtures involving either ethane, methane, butane or 

propane and air, Arnold and Sherburne found critical 

radii in the range 0.2 to 0.3 cm. The values calculated 

by us above agree within an order of magnitude with 

these measurements. 

We now compare the results of this study with those 

of the previous chapter. Further inspection of the 

variables used shows that 

2 t-  8 = 	3  (40) 

where 	is the flame radius of Chapter 2. It is 

also possible to relate the ignition temperature Ti  

to the parameter n ; if 	is taken to be the 

centroid temperature of the reaction rate function we 

have 
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= n+1 
n+3 (41) 

In the previous chapter, thermal and transport properties 

were assumed constant; this is equivalent to putting 

the parameter a equal to zero. 

With these assumptions, the critical Peclet number 

becomes 

1/3  
(Pe)c  = 21/2.2 	(1  cr• (42) 

Hence for n = 11 , when gli =r .857 , (Pe)c = 1.02 , 

while for n=20,when .915 , (Pe)c 	1.53 . 

These points are shown on the plot of critical Peclet 

/umber versus the parameter a (Fig.8); it is shown 

that the profile method investigation gives better 

agreement both with Spalding's estimate of twelve and 

with experimental observations. 

The investigations of the two previous chapters 

have been published as papers (c.f. Zaturska and Adler 

(1966) and Adler and Zaturska (1966)). 
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CHAPTER 4 

THERMAL EXPLOSION OF A HOT SPOT 

1. 	Introduction 

The question of hot spot explosion has been discussed 

extensively in the literature and several theoretical 

formulations have been proposed. Such localised regions 

of high temperature may be produced under impact conditions 

or by irradiation with light, neutrons, and fission 

fragments or by the arrival of s shock wave at an 

impedance discontinuity. They have also been attributed 

to tribochemical effects i.e. that in some way the com—

bined application of high pressures and the fast 

shearing of adjacent molecular layers either causes a 

direct rupture of the molecule or produces sufficient 

deformation to bring about rapid chemical reaction. 

Nevertheless there is strong evidence that in the 

majority of cases the initiatin mechanism is predominantly 

thermal. 

Thermal explosion results when the rate of heat 

production due to chemical reaction exceeds the rate 

of heat loss to cold surroundings. Under these conditions 
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the reaction accelerates to a great speed and explosion 

may occur. 

The physical and chemical changes which take place 

in the initiation of such an explosion are completed in 

milliseconds, thus imposing limitations on the experi—

mental approach, since elaborate electronic or photographic 

equipment is needed to record this rapid sequence of 

events. 

The various theoretical formulations of this problem 

have been compared in survey papers by Thomas (1965) and 

Merzhanov (1966). All the authors concerned have neglected 

reactant consumption, variation of thermal properties 

with temperature, and differences in these between the 

interior and exterior of the hot spot. Chemical reaction 

has been assumed to be of single—step form, and a 

function of temperature alone, but various approximations 

to it have been used. In all but one model a spherical 

hot spot has been considered, but the method used in: 

the case of the slab hot spot has been extended to cover 

the spherical case. 

Briefly the methods may be summarised as follows: 

Merzhanov et al. (1963) obtained numerical solutions of 

the energy conservation equation using the exponential 
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approximation to the reaction rate term. Friedman (1963) 

considered the case of the slab hot spot but his method 

was extended by Thomas (1965) to cover the cylindrical 

and spherical cases. It was assumed that chemical 

reaction within the hot spot takes place at a constant 

rate, while the environment remains inert. A critical 

condition was obtained, without actually solving the 

energy equation, for which the hot spot temperature fell 

after first rising. Boddingtm (1963) assumed the 

exponential approximation for reaction rate and integrated 

the energy equation over the hot spot volume, introducing 

mean values with respect to volume. He then found the 

critical value of the dimensionless parameter for which 

the hot spot temperature rose after first falling. Zinn 

(1962) considered first the cooling of an inert hot 

spot and obtained the time at which cooling by conduction 

becomes important and equated this to the adiabatic 

induction period of thermal explosion at the initial 

hot spot temperature. Thomas proposed a method which 

was essentially a combination of the Zinn and Boddington 

theories. He also postulated a simple model, equating 

the heat required to maintain the initial temperature 

indefinitely at the centre of the bubble, with the heat 
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produced in the hot spot at that temperature; the 

generation of heat outside the hot spot was disregarded. 

Each author sought to determine a critical condition 

separating the regimes of extinction and explosion. 

The theories were compared on a graph which will be 

utilised to demonstrate our results. 

Hot spots may arise in both liquids and solids; 

this chapter considers the solid case, while that of 

the liquid medium will be investigated in Chapter 5. 

2. 	Formulation of the problem 

Due to insufficient information on the exact nature 

of a hot spot, its initial temperature profile is 

assumed to be rectangular, with the temperature within 

the hot spot equal to T1  and that of the cool sur-

roundings To. Let us denote the radius of the hot spot 

by a . We make the additional simplifying assumption 

that reactant consumption may be ignored. 

Under these conditions the energy conservation 

equation with spherical symmetry, constant specific heat 

and thermal conductivity, is 

8T 	k 	t_2 AIN  + Qfe-EAT  
P7t = 	-TX: 	ari  (1) 
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where the notation is identical with that in Chapters 

2 and 3. The density, p , is plainly constant for 

solids. Clearly the assumptions of constant thermal 

properties are not very realistic; they have however 

been used in all theoretical formulations for the sake 

of simplicity. 

The initial conditions are 

t = 0 : T = T 

	

	< a , 1 

=To 	> a , 
(2) 

Mathematically speaking, the difference between 

this problem and that dealt with previously is that, 

whereas in the flame ignition problem the temperature 

was bounded above by the adiabatic flame temperature, 

that of the hot spot may continue to rise indefinitely, 

and this situation is to be interpreted as initiation of 

explosion. 

3.1 Reaction rate a linear function of tem•erature 

In view of the chemical reaction rate being of 

greater significance in the higher temperature range 

we may write 



1 

1 +(T-T1  ) RT 2 

a 

temperature 

distance 

e
-E/RT Y e-E/RT, (T-T1 ) -g/RTI . e  

RT
i
2 

-E/RT1  
e 	7c 

where rt,...= 1 + 	E2 (T-T1), a dimensionless quantity. 
RT1  

We now take 

e-E/RT = e-E/RT t 
	 >0 	

(3) 
= 0 	 11 <0 

i.e. chemical reaction rate is taken to be a linear 

function of a dimensionless temperature. 

This enables us to define a convenient set of 

dimensionless variables, namely: 

-E/RT1  
E  

time 	• 9 	Qfe 	
2. . t . 

cp RT 



i 1 a 2 3rCt 
,N L  a L  +ti,  for 'r ? 0, 

  

(4) 
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It is appropriate to introduce the dimensionless 

parameter 

-E/RT 
Of Ea2e 	

1 
- 2 

We further define 

-(T -T ) RT  2 	o 1 
1 

In terms of these new variables the energy equation 

becomes 

KRT1  

_ila 	( t2 8zt ) 
aQL  — 6 e art  st ag / 

At 8 	0 : 	L. 

for n
Et 
 < 0 

0<, i <1, 

> 1 

Substitution of 	yields 

at,) 	1 a
20 

= 6 a  2 
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where 
	

0(co) = GD 
	

(A) > 0 

= o 	< 0 . 

.The initial and boundary conditions are 

•QL  = 0 	LA.)
te 	 L 

0 < 	 < I 

= 	ti 	9 	 > I 	• 
	

(7) 
St > 0 
	

(A,) = 0 	 0 

• 

ew 	continuous at 	 = 	(Gc  ). i.e. at 

(A3 = 0. 

This defines the radius of the hot spot 2F(4) ) (L 	L 

as a function of time; the hot spot is taken to be that 

part of the medium in which the dimensionless temperature 

is greater than or equal -co zero. Hence it is assumed 

that no chemical reaction takes place outside the hot 

spot. The problem of linear reaction rate in a finite 

slab, with no flow of heat across one boundary, zero 

temperature at the other, and zero initial temperature 

throughout, is considered by Carslaw and Jaeger (1959a) 

using the Laplace transform method. 
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3.2 Formal solution of the problem 

The temperature distribution due 

taneous heat source at  and time 

_( 	) 2 

e 4(QL 
( 

777 
(Q - QJ)1/2 

to an instan- 

is given by 

4(Q e 	_Q!L) _  

g 

(c.f. Carslaw and Jaeger (1959)). 

This is a solution of the heat equation (6) with 

zero reaction rate, and represents the instantaneous 

generation of a quantity of heat. We may regard our 

problem as a continuous distribution of such sources 

from distance 0 to 	(4) ) , and over time 0 to 
tL L  

. Further, we have to incorporate the initial 

tstept condition. 

Thus 

(.0 ( 	,Q t  ) = 247 1
;(4)4).5(.0( t  ,Q(!) 

r 1/ 
0 	(Qt, 	aPL  ) ' 2 

e4(4)L-Qt) 
d f  d4P 

L 

) 2 

4G L  
e 

')2  0L. 
4“).t.  

(8) 

  

k 
1/2 

  

  

)  

e 
4Q 



,-gki(OL) 

(Ilk/  ) 
N3/2. 

0 	L 
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where 'rk  = 1 
	0 < 	< 	

(9) 

T1  

The second integral in this expression (8) represents 

the temperature distribution due to the initial 'step' 

temperature profile. 

Denote the temperature at the centre of the hot 

spot 	rtt,( 0 ) 9 L  ) 

Then 	't L(9  L 

Consequently 

by 	
TL(Qt. ) . 

) = lira 	60(-FL/4;)t. ) 

----> 0 

00 

 

L 

Our concern is primarily with the ignition process, 

i.e. with small values of time. It is reasonable to 

expect that, for such a situation, 	remains St4 

approximately equal to unity, while the temperature 

profile is not altered appreciably, and hence 
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) 

	
(10a) 

Under these assumptions we have 

(49L- A (-1  

e 	fs fe:, ziff 
( et - 	)311- o 0 

e3/1  e 	
dst 

, 
-VaLiet, 

\ 	e 	CqL  2  Ff. 	et, / 

which, on simplication, may be written 

act 

4 = 	z e-z2dz 	- 
_ 4 T1 

z2e-z2dz 77 

+ 8 	z.erfcz.dz 	(12) 
a 

where I  o _ 
244)1, 

Differentiation with respect to 8L  yields 

2 	-°2 

	

= -24(1 +T OG e  -0 - 28 7E f - ae 	oin  

	

1  —2- 	+ 	erfal]. (13) 

Initially 	= 0, i.e. 6 —400. Thus, initially, 

d8, 



erfo 	e -2u -a 77   
05e-a  

ff 
2 > 0 . (15) 
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= 8 which is always positive by definition. We 

deduce that the temperature at the centre of the hot 

spot always rises initially. 

3.3 Critical Condition for ignition 

Consider the expression for 	rrt, 	) , the central 

temperature of the hot spot. Initially this is an 

increasing function of time. If this should continue to 

rise indefinitely, ignition and finally explosion, would 

result. The case of this function rising and 

subsequently decreasing would describe a subcritical 

state. 

At the outset, when G is large, the 8 term 

dominates in (13); this is strictly positive. We may 

rewrite (13) in the form 

ett 
G5 

_02 _ 8  
dGL 

= e 	777-t (1+  "t1) 

 

(14) 

 

where A(a) is given by 
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The minimum value of this positive term in 6 , 

i.e. the maximum value of A(c) , gives the position 

negative. If --- 

where the sign of 7'. is most likely to become 
d
,-c  

dQ 
	is exactly equal to zero at this 

point, a critical condition is obtained. 

Calculation has shown that the maximum of A is 

attained for r = 1.365 where A = 1.0396 (to 4 

decimal places). Figure (9) shows a plot of A(o) 

against G . The critical condition, where dQt  = 0 , 

is hence given by the expression 

6or  = 4.689 (1 +T1) . 	(16) 

3.4 Discussion  

The various critical conditions obtained by the 

several formulations are compared in the paper of Thomas 

(1965); a plot of 6cr  versus (i+Ti) is given. 

Figure (10) reproduces this graph incorporating the 

results obtained in this section and in the next. It 

may be seen that the relation obtained in (16) is 

almost identical with that obtained by the method of 

Friedman, which assumed constant reaction rate within 

the hot spot regardless of temperature, while outside 
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the hot spot the reaction rate was assumed to be zero 

i.e. a step-function reaction rate. It has been shown 

by Merzhanov (196) that this approximation gives good 

results for low values of (if Ti). Low values of 

(1+ it1) correspond to low values of the activation energy 

E , and hence are suitable for a linear reaction rate 

assumption. Consequently we may expect to find good 

agreement in this range. For higher activation energies 

a polynomial reaction rate is more applicable and this 

will be considered in the following section. 

Merzhanovis exact numerical computation also shows 

that for intermediate and higher values of 8 , the 

temperature at the centre of the bubble rises initially; 

this behaviour is shown in our model. 

The remarkable similarity of our result and that 

of Friedman deserves further comment. Although our 

reaction rate is a linear function of temperature and 

not a step-function; the additional assumptions (10a), 

valid for small values of time, are in fact equivalent 

to a step function assumption. However, the expression 

(10) is in fact a complete analytical expression for the 

central temperature with a linear reaction rate function. 
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4.1 Polynomial form of reaction rate function 

The reaction rate was assumed to be zeroth order 

and of single-step form. It has been shown by Rosen 

(1958) that the Arrhenius term may be approximated in 

the following way 

e
-E/RT / T-T0)  

r":77-1 
(17) 

where n = 
E(Ti-T0) 

RT1
2  . This is obtained by equating the 

Arrhenius reaction rate function and its gradient to 

the corresponding approximations, at the upper temperature 

T1 ' where reaction rate is more significant. 

4.2 Dimensionless form of the equations  

The approximation (17) enables us to introduce the 

following dimensionless variables 

T-To Temperature: ril-= T
1-To 
-E/RT1  

Time 	: 	9 _ Qfe  
pC(Ti-T0) 

 

1/2 

Distance 

  

   

t 



Written in terms of these new variables, the 

energy equation is 

71 

at 	1 a 
2 aI ) (18) 

with initial conditions 

G = 0 : 	1: = 1 , 	o < 	< ego  , 	
(19) 

	

= 0 , 	>c) 

where o denotes the initial dimensionless radius 

of the hot spot. 

4.3 Solution by profile method  

For convenience, we rewrite the energy conservation 

equation in terms of 047= 	. 

We have 

atz 2Lcs 	c0 n - 	n-1 

with JP = 0 : 	c = 	0 <,s > t o  , 

0 	 0 

(20) 



We denote by Ei  the distance from the centre 

of the hot spot at which some fixed value of the 

temperature is attained. This value is somewhat 

arbitrary and in this sense 	is analogous to 

boundary layer thickness; its physical significanas 

not immediately apparent. Consequently we make use 

of the profile method again. 

We make the profile assumption 

72. 

(21) 

where f satisfies the following: 

f ( 0) = 1 ; f ( Go ) = 0 ; f 1  (00 ) = 0 ; and 

fl(x) < 0 foi. all x > 0 

`gy m  denotes the maximum or 'central temperature 

of the hot spot, and io a function of time, P, alone, 

as also ie 	. An even function of g is used to 

ensure zero temperature gradient At the centre of the 

hot spot. 

Integration of the energy equation (20) in the 

direction from 	X ti to 	.co , where X 

is an arbitrary constant and 0<h<1 , and use of the 
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d 	 n 

dG - 
2  .7 	+ --2-- (24) 

73. 

profile assumption, gives 

d + 2 
x2f(x2  e 	 )  77:m & y1  

 

n 
si 
•?. 

--- _ -- 
2 

 

= - '11m  f (X2) + 2X2f (X2)3 fn( di,  (22) 
2 

 

The significant part of the ignition process takes 

place close to the centre of the hot spot; for this 

reason our interest lies in small values of X . 

Consequently we expand the equation (22) in ascending 

powers of 72 and compare coefficients of terms in X
o 

and X2 , since we have only two time-dependent para-

meters and hence require only two equations. 

It follows that 

,2 	n 2 
A d 	( Lms.ri _ 	m Si  

...01.• 

dG 	2 ) 2 An (23) 

2 
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where 	Al 

  

f 	)d-17.  

 

0 

 

An = 	fn(rt )thel 
0 

  

In obtaining these, it is assumed that f(x) may 

be expanded in a Taylor series about the origin. 

Since JP does not occur explicitly, equations 

(23) and (24) may be combined to give a single equation. 

Solving for the derivatives and dividing one equation 

by the other, we have 

 

dI5:01  = Al  rm 	6f1(0) +elrt-1  

d Zi 	.2. 	-2(1+3f' (0)A1 ) + (An- ) 	1 2 

  

 

(25) 

  

This equation must be solved subject to the boundary 

condition 

i = 
	

'gym= 1. 	(26) 

The integral curves of this equation have zero gradient 

where the numerator of (25) is zero, and infinite 

gradient where the denominator vanishes. These curves, 

So and Sco  , are shown qualitatively in Figure 11., 



which also indicates the behaviour of integral curves 

of the equation. 
n-1 

On substituting y = m  , 	 equation 

(26) becomes 

-11:11.11 I 6f_' (0) 	Y  
dS 	S 	-2(1+5vP(0)A1)T +(An-A1)y1 (27)  

which is a first order ordinary differential equation of 

the homogeneous type. The solution of (25) is thus 

n-1 	21A  2 

'.c2) / 
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-2+6f1(0)A1(n-2)] +Tr '0A1  (u,-2) 

B  
A1(n-2.)+An  

B  
A1(n -2)+An 

-2+6f 1 (0)A1 (1-2)] + 	[.4.1 (n-2)+An  (28) 

where A and B are given by 

1+3f' (0)A1 
A = 7751757.77.777 

(29) 

-A1  , (n.-1)+6f 1(0)A1i 
B - -1 + 3f'(0)A1(n-2) 
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4.4 C2itic _ conditions  section  

Equation (28) may be rewritten in the form 

_c+tcn —1 	
i 	I f D(

.0 \2(F+1) ri  

—C + s2 D 	 d* 	-crY k 

 

= 	'tm) 

 

where C, D and F are positive and dependent only 

on n and the assumed profile; since we are concerned 

with real, positive 	Tr2, P( j.t 1trn) is therefore 

essentially positive with P(i0,1) = 1. Consequently 

the above expression may be rearranged to give 

n-1 	C + (—C+L)P(Si,tt ) 
m  

Now, :§702  D > C always gives a positive value for 

rt- "in ' hence describing a supercritical case; C >L) 2 D 

makes it possible for tin  to become negative, so 

becoming equal to zero at some stage—extinction. The 

case of S2D = C may hence be regarded as the critical 

condition separating these two regimes. 

This condition may be written 
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2-6A1  P(0)01-2) 
(ID 	Al  (n-2) + An 

(30)  

The corresponding critical integral curve is 

2 _ 2-6f1(0)A (n-2) ., 
Lm Si -  775-2) + An  

6f 1 (0)An+2 
= -6f1(0) 	Ani-A1(11 -2) 

> 61'1(0) 	since A 	0 as n--->cv and 

the expression is valid for all ii 

Hence it lies to the right of So  as expected. 

In order to compare this result with those of 

other authors, we consider the parameter 8or  = (V) 	n. t,o'crit 
The parameter n is identical with the 80 of Thomas 

and with the (1+''r) of the previous investigation. 

Hence 

8cr = n . 
2-6A1  ft(0)(n-2) 
A1  (n- f) + An 

(31)  

For large values of n it may be seen that 

cr > -6f1(0).n. 	(32) 
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since An decreases to zero with increasing n . Thus 

cr depends only on the value of ft(0) and not on 

the exact nature of the profile used, for large n 

But the profile assumption may be written 

2  
= 	+ 	 f ,  (0) + .../ (33)  

since it is assumed possible to expand f in a Taylor 

series about the origin. For this reason, a simple 

parabolic profile would appear most natural as it does 

not involve any unnecessary information. 

Vie therefore write 

irm 	k2 ) , o <1< 	, 

= 0 	 ? Si  • 

The critical condition for this profile becomes 

6 	_ 2(n+1)(3n-4)  
cr 	(n-1) 	° (34)  

For large n , Oc.  r  —> 6n . 
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4.5 Discussion 

Our interest lies mainly in the region 10 < n < 20 

for which it may be seen that in the parabolic profile 

case 8cr  is very close to 6n. This is somewhat high 

and one might hope to improve on it by a more realistic 

form of profile assumption. Use of an exponential 

profile, f(x) = e-ax  , would appear to be more 

representative of reality, but since there is no precise 

way of defining f(1) a degree of arbitrariness is 

introduced in the form of the parameter a . Such a 

profile would yield a critical condition of 

8er  = 2a (1171:-1-- )2  [1+3(n-2)] 

The parameter a is indeterminate inasmuch as 

there is no unique way of defining the 'Faze of the 

hot spot at any time, other than as that part of the 

medium wherein the temperature is above a given fraction 

of the central hot spot temperature. This would be 

analogous t the concept of boundary layer thickness, 

but as our interest in ignition is not only of a quali-

tative, but also of a quantitative nature, such profiles 

are not suitable for our purposes. Spalding (1958) too, 
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in his adaptation of profile methods to ignition problems 

has used only the simpler, well—defined profiles (e.g. 

linear profile) which have a discontinuity in the 

gradient at the hot pocket interface. 

The result of the parabolic profile case is 

plotted on the same graph as our previous investigation 

(see Figure 10.). It compares favourably with the 

criteria obtained by other authors, although somewhat 

higher. Since the accuracy of profile methods is to 

within the order of 20% this shows good agreement. 

Further study of the integral curves of Figure 11. 

indicates that except for very small hot spots, the 

central temperature always rises before subsequently 

falling, or just continues to increase with time. This 

is in agreement with the exact numerical results of 

Merzhanov et al (1963). 

It is worth noting that although the choice of 

profile is restricted practically by the form of the 

reaction rate function, and hence the computation of 

An , this has no effect on the result for large values 

of "n , and for such n the qualitative behaviour of 

8cr is identical for all profiles. 
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5. 	Conclusion 

Comparison of the results obtained in the 

investigations of sections 3 and 4 of this chapter 

shows that in both cases the temperature of the hot 

spot centre rises first before falling. This is fully 

in agreement with the exact work of Merzhanov et al. 

although our results are higher. The first study is 

valid for lower values of the activation energy E and 

is a good approximation for such values. 

Profile methods have been found to give reasonable 

agreement quantitatively although the use of crude 

profiles appears preferable. The use of 'smooth' 

profiles has been found inadequate except for quali-

tative studies. The limitation of profile methods has 

been shown in their arbitrary nature. 
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CHAPTER 5 

THERMAL STABILITY OF A HOT INERT GAS BUBBLE  

IN A COOL REACTIVE LIQUID  

1. 	Introduction 

The problem of the behaviour of a hot gas bubble in a 

cool reactive liquid medium has not yet attracted attention, 

in spite of its obvious application in liquid fuel rockets 

and chemical reactors. Such hot spots may also arise in 

explosives from (i) the adiabatic compression and heating 

of enclosed gas spaces, (ii) the reinforcement or the local 

distortion of the explosive into fine particles and, (iii), 

the formation of micro Munroe jets. For gentler shocks it 

is necessary for some discontinuity, cavity or bubble to be 

present where the energy can be concentrated and a local 

hot spot formed. 

Case (i) could be achieved practically by subjecting 

the fuel or explosive to some form of impact e.g. by acci-

dentally dropping it. The importance of micro Munroe jets 

in initiation and growth of explosion has been studied ex- 

perimentally by Bowden and McOnie (1967). 	In their experi- 

ments nitroglycerine was placed on a flat anvil and subjected 
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to impact by a flat hammer. It was shown that micro Munroe 

jets can be formed at the surface of a compressed gas 

bubble; these jets are projected at high speed into the 

gas as the compression continues. 	It is believed that 

these jets facilitate initiation of explosion by dispersing 

the liquid within a bubble of hot compressed gas and by 

increasing the impact velocity of the liquid. 	Such jets 

are also formed between two drops of explosive coalescing 

on impact. 

Initiation of explosion in liquids, whether by impact 

or shock)is generally held to be thermal in origin. As 

such it is an obvious extension of conventional hot spot 

theory. 

Work on problems of a similar nature appears to be 

limited to considerations of the dynamics of phase growth. 

Scriven (1959) has formulated the general case of equations 

governing a spherical vapour bubble growing in a quiescent, 

superheated liquid of infinite extent. These are then 

simplified to describe growth controlled by the transport 

of heat and matter. Similarity solutions are then ob-

tained for conditions typical of bubble growth in the 

nucleate boiling of a) pure materials and b) binary mix- 

tures. 	The effect of radial convection resulting from 
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unequal phase densities is then established, the position 

of the phase boundary being asymptotically proportional to 

the square root of time. Although the chemical reaction 

rate term is included in the initial formulation of the 

problem, this is subsequently ignored. 

Much consideration has also been given to the theory 

of underwater explosions (c.f. Cole (1948)). 	This regards 

the explosion as a chemical reaction in a substance which 

converts the original material into a gas at very high 

temperature and pressure, the process occurring with ex-

treme rapidity and evolving a great deal of heat. Reactions 

of this kind can be initiated if sufficient energy is pro-

vided at some point of the explosive. A shock wave is 

set up by the arrival of the pressure wave at the water-

explosive interface. Subsequently motion of the gas 

sphere is considered and it is shown both theoretically 

and experimentally,that the bubble radius oscillates in 

time. 	Only hydrodynamical effects are considered; the 

bubble sizes considered in this kind of theory, although 

dependent on the charge used, are nevertheless large e.g. 

of the order of one foot in radius. 

Our problem deals with minute bubbles, of order 

-3 10 ems. or so, where temperature gradients have much 
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greater significance. Thus our approach studies thermal 

as well as hydrodynamical effects; nevertheless a useful 

energy conservation equation derived from the first time 

integral of the equation of motion appears in both theories. 

2.1. Formulation of the problem  

The formulation naturally falls into two parts: 

Gas bubble:- 

For simplicity it is assumed that the gas of the bubble 

obeys the ideal gas law. Since the bubble is small, it is 

convenient to take pressure, temperature and density within 

the bubble to be uniform at any instant. 

Hence the equation of state may be written 

( Ps 
Ts 
T1 131./ 	/ 

(1) 

where ps, Ts, iC denote the pressure, temperature and 

radius of the bubble, while the suffix 1 refers to initial 

values of these variables. 

We introduce an extra parameter associated with the 

equation of state, namely the radius '  p,o 
 to which the 

bubble radius would tend as it approached a state of 

thermal equilibrium; this is defined by 



To 
T1  

(2) 
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where To denotes the initial ambient temperature and hence 

To  < Ti. 

Liquid)- 

The liquid is taken to be inviscid, irrotational, in-

compressible, and under the action of no body forces. 

Further, the system is assumed to be spherically symmetrical. 

Under these conditions the equation of continuity is 

	

1 	4!), Tr- (r2  

	

r2 	
vr ) . 0 (3) 

where vr is the radial fluid velocity. Since there is no 

flow across the bubble interface 

(vr)r.a,  = A. (t) 	(4) 

which simplifies to 

0 „: 
V
r 
= (1 )

2 
 K. (t) . 

The independent variables r and t denote radial distance 

and time respectively. The radial momentum equation is 

3vr 	 (6) 
7ri- 

-I- V 	r 
r 	PL r 

(5) 
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where p, pL  are the pressure and density of the fluid, the 

latter assumed constant. 	This, together with (5), on 

integrating over the space variable, gives at r 

A (Ps 1 -P ) = 	2  + 6L 	(7) pL   

which may be rewritten in the form 

PL d 
(Ps-Pi) 	Ite,3) = -T• at (47ta3K 2  (8) 

thus expressing conservation of inertial energy; the ex-

pression on the right hand side is a rate of change of 

kinetic energy. This is exactly equivalent to the energy 

conservation energy given by Cole (1948). 

The heat conservation equation for the fluid may be 

written 

	

T 	k 8 	2 c)T 	• C p 	+ v 	= 	(r 	+ q 

	

p L at 	r or 	r or 	or (9) 

where T denotes temperature within the liquid, Cp, k are 

the specific heat at constant pressure and the thermal 

conductivity of the liquid and are both assumed constant, 

while it" is the volumetric heat release rate due to 

chemical reaction. 

A zeroth order reaction with no reactant consumption is 

assumed, and the reaction rate term is taken to be of 

standard Arrhenius form. 
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The boundary condition at the bubble interface, which 

expresses the balance of the rate of inflow of heat into 

the bubble, and the rate of increase of heat within it, 

making use of the combined first and second laws of thermo-

dynamics, is 

117C R
^2
k(4) Cv(4) 	+ ps . 11-71 

2 	
(10) 

r=c1k, 	r=6?, 

where C is the constant thermal capacity of the gas bubble. 

2.2. Dimensionless form of the equations  

To write the above equations in dimensionless form, 

we introduce the following dimensionless variables: 

-E/RT1  

distance 	=  Qre 	 . r K(Ti-T0 ) 

-E/RT1  

time 	Qfe - 	. t 
PLcp(Ti-To )  

T - To  temperature 	r- 	T1  - To  

Ps 
pressure 	= 
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bubble radius 

-E/RT1  
Qfe  

, 
K(1,1- To)  • 

 

  

where the reaction rate term is approximated by 

If I = Qfe 
 

T T n 
t'l-L Qfe 	( T1 	-To)   

and n is given by 

= 	i  

1 	

- n 
RT 2 	

(m 
-` 

as in previous chapters. This gives a very good degree of 

accuracy for n of order 10. 	To denotes the initial tem- 

perature of the cool liquid. 

Written in terms of these new variables the equations 

are: 

Equation of state 

To ) 

s 

Momentum 

3 2 + 2'1 = a3(7ts ) 
	

(12) 



Energy conservation 
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(13) 

while initial conditions are: 

G = 0 	: s = 

= 

1 

= 0 for 111 
7;s  = 1 

= 	= 0 

and for G > 0 we have 

al et' 
(7) 	7 =1,1  = 412 (76) =4,1  a2ns 1;), • 

The parameters al'  a2, a3 are defined by 

Cv  1 a1  = 

	

	121 4 

	

3 	ro3 	' 
3 n ‘Rai'LL'p 

(15) 

a2  = p1 (16) 
pLC p 

(Tl-To ) 

a
3 

2p1  

PL 

K(T/-T0) 

Qfe 

 

1 
• (*) 

and together with 11020, and n, a six-parameter system 

is defined. 
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2.3. 	Physical discussion of parameters  

In order to reduce the system to one of only four 

parameters we make the following simplifying assumptions 

n 0 = 1 	
(17) 

a3 =1 

It may be seen from (16) that T1  represents the ratio 

of thermal capacity of the gas bubble to that of an equal 

volume of liquid; due to low density of gases this is a 

very small quantity unless a highly compressed gas bubble 

is considered. 	In fact, generally al  3 x 10 4. 
alt 

Never- 

theless it cannot be neglected as the term --,Tyi4 = 	is of 

great signifidance in the early stages of the process, where 

the temperature at the bubble surface falls very rapidly. 

Neglect of this term would lower the order of the equations; 

hence the problem is suited to the methods of singular per-

turbation theory. 

The parameter a2 represents the ratio of energy trans-

fer by inertia forces to that by thermal effects and has 

magnitude of order unity. 

The introduction of a velocity U, defined by 

-E/RT1 1/2  

U Qfe 	(18) 
CppL CppL 	K(T,- To)„, 
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and analogous to the laminar flame speed enables a
3 

to be 

(19) 

which may then be interpreted as the ratio of internal 

energy to kinetic energy of disturbance. 

Similarly 

written 

p1 
t--- 	-1 1 	2 
2 PLU  

(20) 

CppL 

has the form of a Peclet number based on this velocity U. 

The assumptions (17) imply a value for 6to  of order 

10 4 cms., which is of the desired magnitude. 	T1  and To  

are assumed to be approximately 1000°K and 300°K respectively. 

2.4. 	Solution by profile method  

On multiplying the energy conservation equation (13) 

by r and integrating over the space variable from 11 to 

00, we obtain 

00 
	 CO 

B „ 	d = 	+ 	Pel  C1 	(21) 

since (e)  --) o'g = 0. 
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In order to evaluate the integrals in (21) we assume 

a profile of the form 

LS  	, a) 
	

with f(l,a) = 1 

where mss, a,,vt are functions of the time variable A only. 

Such a profile must admit the possibility of either positive 

or negative (---) 	, this being the reason for the intro-

duction of the time-dependent parameter a. 

Further, we may combine the integrated energy con-

servation equation and the boundary condition at the inter-

face, also making use of (12), the momentum equation, to 

obtain a conservation principle for the total energy 

d4j 	00 	

+ a., ' 	a2 /v13(4 + 

CO 

  

  

s2 rtn (22) 

    

This expression equates the rate of change of total energy, 

both thermal and inertial in origin, to the rate of increase 

in energy due to chemical reaction. Written in terms of 

the profile assumption we have 

ts  ('13A ( a ) + a 3.  ) + a2  113(13  + 3 , s  17,, An a) 	(23) 
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where 
	

A1(a) 
	

y2f(y,a)dy 

00 

An(a) = 	 y2  [f (y, a ) Indy.  

This, together with the equations 

Ts  ft  (1,a) + cc In n 
al rEs 	2 L s (24) 

ns  

rts 

e• 

= 3r12  + 2 	+ 1 

3 - 1 
_ 	 

3  - 

(25)  

(26)  

determines the whole system. We shall eliminate the 

pressure variable its at this stage using (25) and use only 

three equations henceforth. 

We have at 8 = 0 

• O 

s 1 	
(27) 

= 1 

which, together with a suitable initial condition for a 

defines the initial conditions. 



a — 4,1 	' 1 < — < 1 + a 
(28) 
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It is convenient, at this stage, to specify the profile 

assumption to be used. 	This is given by 

= 0 > , 	1 + — . 
11-1 	a 

This gives positive, zero, or negative temperature gradient 

at the bubble interface according as to whether a < 1, a = 1, 

a > 1 respectively. 	To obtain the desired initial rect-

angular temperature distribution, a must be chosen to be 

infinite initially. 	It is worth noting that in our former 

use of profile methods no attempt was made at simulating 

the initial rectangular profile. For small values of 

time, corresponding to a >> 1, the choice of profile 

assumption is not crucial. 	Thus, a different profile, 

for example T= 	'g -a , 	> 	with a > 0, where l a' 

has a very different significance leads to similar equations 

for the profile parameters. 	This form of profile, however, 

does not permit the possibility of positive temperature 

gradient at the bubble interface. 
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2.5. 	Solution for small values of time  

Due to the initial stepped temperature distribution 

it is expected that the early stages of the process will be 

dominated by thermal conduction effects. Accordingly let 

us assume a power series expansion for each of the three 

time-dependent parameters in powers of 91/2, as is usual 

in processes of pure conduction. The constants may then 

be determined by comparing coefficients. 	In order to 

achieve self-consistency the expansions must be of the form 

S 
	1 + 1 

1/2  + 'N29 + 

a 	= 	µ10-1/2  + 42 + • • • 
	 (29) 

1= 	÷ iG5/2 	y203+ • • • 

We also assume that a >> 1 and hence we may take 

1 	1 
A (a) 	2a2 

Comparison of powers of G
1/2 then yields 

,, 2 
r  1 8 	+ 3 

1/2 	2 47.1 a2 + 
Its 	1 - `41 

 

3 
G 	+ (1 	1 a == 2
-1/2 	

6 al
) + 
l  

2 
(0-1) 

'121 	
2 	1 	( ,y13 1)(45/2 + 1 	 
15 a  11 	-17 ll 	 a 	

+ . . 

	

2 	L  

(30) 



Equations (30) are an exact series representation for the 

time-dependent parameters;'  a, '/Z 	Due to the extremely 

small magnitude of al, it can however be seen that they are 

valid only for very small values of the time variable G. 

Consequently, in accordance with the methods of singular 

perturbation theory it is necessary to scale the time 

variable suitably. We therefore make the substitution 

= 	(31) 1 a1 • 
1 

Equations Equations (30) then indicate that the perturbation solution 

is of the form 

= 1:°) (01) 	a1er 1) (01) 

a = 1• b(9
1
) + c(91 ) + a1  

(32) 

( 
ai 	

) 
(gi )  -I- a1

5 (1) 
/1 	(g1

) + 
 

Substitutions of these expressions into equations (23)-(26), 

and comparison of coefficients of powers of a1  yields 

(1 °)(81)(le - 1) + 1 = 113(21,11  i_(0)(8) + 1] 

,o)(Go 	11113  
1' 2b(0+ 1 1) 

(33', 

1 	 (34; 



lg. .5fr. 

- ti°)(g1)13(01)121 = /t-0 ) (91) 
	

(35) 

where differentiation is now with respect to el. 	It 

should be noted that equations (34) and (35) could be 

obtained by ignoring inertia terms in the original equations 

(°Y= 	E 0) and taking the parameter a large and equal 

to b. 	This first perturbation sthlution is thus equivalent 

to a 'frozen flow' approximation where all motion within 

the fluid is 'frozen' and, in effect, a hot gas inclusion 

in a solid medium is studied; this is, of course, a valid 

problem in its own right. 

The above equations (33)-(35) yield 

tt 
1 /11 i + logrt °)(01) = 	0 

2 -l-  
(36)  

() 
ets (91)  

but no explicit relations may be obtained for b(81), 

(0)(91). Consideration of the second perturbation tams 

yields the following simple results 

1:(1)(g  

s 	1) = 0 

(37)  
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The use of the variable Al !stretched' the time scale 

so that for small times 	al' it is possible to take 

A
l 
4 OD. Consequently as Al  4 op, we have, considering 

only lower order terms in al, 

s 0 

a ÷ 	 (38) 

• 

The above analysis shows that the bubble temperature 

initially falls very rapidly to the ambient value. 	It 

should be noted that the activation energy parameter n does 

not feature in the perturbation solutions obtained; the 

chemical reaction rate thus plays no part in the initial 

stages of the process, which is consequently one of pure 

conduction. The extreme rapidity of the process is due 

to steep temperature gradients at the bubble interface and 

also due to the very small thermal capacity of the gas 

bubble as compared to that of an equal volume of fluid. 

The above investigation represents an 'inner' 

expansion valid for small values of time. 
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2.6. Numerical solution for 'outer' expansion  

In order to extend the 'inner' expansion to describe 

the process at larger values of the time variable, it is 

necessary to find an 'outer' solution. 	The full set of 

equations to be solved may be written 

d 
dg rts(113A1(a)+al) + a21113( 	An(a) 	(39) 

- 	(a-1)1 = al  s  + a2 	(3 2+21;i+l) 	(40) 

rts(113-1) + 1 = 113(3 	2  + 2 1:1/ + 1) • 	(41) 

At this stage, steep temperature gradients no longer exist 

and it is possible to neglect the term in al  completely. 

This assumption does however lower the order of the 

equations; to compensate we assume that the parameter a 

remains at a mean value of unity. These two additional 

assumptions imply that n must remain small. 

Using the properties of the 'inner' solution we take 

the following initial conditions 

9 = 0 • • 

= 0 

some starting value, 

(T....s -1)  
0 

(42) 
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Equations (39)-(41), together with the two additional 

assumptions were solved numerically using a forward 

integration process; as before the calculations were 

performed on an IBM 7090 electronic computer. Typical 

integral curves are shown in Figs. 12, 13, 14; the para-

meter n was assumed to be equal to 10 throughout the 

calculations. Examination shows that the integral curves 

of tts versus G (see Fig. 12) are basically of two kinds; 

for large initial Ts  it is found that the central tem-

perature rises indefinitely with time; as rts  decreases, 
0 

oscillations begin to appear but the bubble temperature 

still ultimately rises. 	For small values of cr.s sus- 
s 

tained oscillations appear. 

It will further be seen that the somewhat large 

variations in lel are not consistent with the assumption 

of a mean value for a of unity, as 11 is not now very 

small. 	In addition, the sustained oscillations do not 

represent an equilibrium state as one might expect for 

small values of its . This apparent inability to achieve 
o 

 

equilibrium may be partially due to the neglect of the 

term proportional to al; this term represents the rate of 

change of internal energy of the bubble. 	If this term 	is 

taken to be zero, the internal energy of the bubble remains 
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constant, only inertial and conduction effects being taken 

into account; an incessant interchange of these two kinds 

of energy occurs, producing oscillatory integral curves. 

Although these computations represent an outer solution 

of the problem, there is no means of matching the two 

solutions. The parameter al  does not feature in the 

outer region; hence powers of al  may not be compared. 

For this reason and those mentioned above, the outer 

solution as derived here should be viewed with some 

scepticism. 

3. Hot gas bubble initially surrounded by a thermal layer 

Finally, we consider the behaviour of a hot inert gas 

bubble surrounded by a heated thermal layer whose thickness 

is of the same order of magnitude as the bubble radius. 

It is assumed that a temperature distribution is already 

established in this layer. 

The problem to be solved is then defined by equations 

(39)-(41), together with the initial conditions 

9 = 0 

0 
(43) 
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i.e. the temperature gradient at the interface of the 

bubble and the thermal layer is taken to be zero initially. 

This assumption is analogous to our previous use of profile 

methods. 	In this case the problem is no longer one of 

pure conduction, and attempts to consider power series 

expansions in powers of 8
1/2 

fail. 	It is however possible 

to find power series expansions of the form 

s = 1 + T102  + T 03  2  + 

a = 1 + µIA + µ20 + 

= 	v 04 + 1)20
5 + 

• (44) 

Comparison of coefficients of powers of 8 in (39)-(41), 

then yields 

Ts  
An(1)4/1  

+ o( 03) 1 	 

	

2a11 A t(1) 	ale  
(45) 

	

An(1) 	Q2 
a 	1 + 	 + o(a1)

AT(1) 

An(1) 013-1) 4 	olik5 
411 = 171 

	

	+ 0(.1'0.tT) 
alA1(1) 481/1-1  

(46)  

(47)  

where it is assumed that A1(a), A
n
(a) may be expanded in a 
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Taylor series about the value a = 1. These expansions 

represent an exact solution of the problem valid for very 

small values of the time. 

In accordance with the methods of singular perturbation 

theory it is therefore necessary to scale the time variable 

suitably. 	Further inspection of the expansions (45)-(47) 

indicates the cnoice of new variable. We put 

= 9- . Al a1 
(48) 

Then the perturbation solutions must be of the form 

1 + 	(o) 
(9 ) 	

a 2 re.(1)(g 

	

its 	a1 Ts 	1 	1 L's ` 1) 

	

a 	= 	1 + a1 a(°)(01) + a12 a
(1)(G1) + 	(!9) 

~vp
1) = 11 4. al3 4D)(91' 	- u 4 (1)0 t I 	l 

Substitution of these expansions into equations (39)-(41) 

and comparison of coefficients of powers of a1, once more 

assuming expansions for A1(a), An(a) about a = 1, yields 

(o), 	An(1)r— 	A1 1 (1) 	A1(1) 

kG1) - 	 —
G1 + 	 (1 exp — "li 

Gi 
A1(1) 	A1(1)111 	A ?1 (1) (50)  

(51)  

• • 



(°) 1'1 0 ) 1 
0413-1\ (Ana) h3  A1(1) e12  

105. 

2 
A1(1) 

 2 N114) A3_(1) ) 	6 A1(1)111  2 A1(1)11/ 

/ Ai(1) \ 3  

\ A1(1)11/ 

A1(1) exp  
Ai(1) 

••• 

 

(52) 

It is not possible to obtain simple expressions for the 

second order perturbation solutions. 

Since At(1) < 0, it may be seen that as Al increases, 

,N-(0) 
s 	increases, a(0) decreases and Ali(,0) increases. 	Now by 

definition a > 0 and hence an additional restriction on the 

validity of these expansions is obtained. 	This is of the 

form 

alAn(1) 	< 1 . 
A1(1)171 

Since a1 << 1, An
(1) << 1 this does not represent a serious 

restriction. 

Consequently this inner expansion defines an ignition 

regime and it is unnecessary to seek an outer solution. 	It 

will be noted that the characteristic time of this process 

is larger than that for the initial stepped temperature 

distribution although still small. Nevertheless the change 
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in initial conditions produces a distinctly different 

sequence of events; the process is,not characterised by 

pure conduction, in fact there exists no expansion in 

powers of p1/2. 

4. 	Discussion  

The early stages of the process in the case of the 

initial stepped temperature distribution are characterised 

by the very rapid fall to zero of the bubble temperature; 

during this time the bubble size remains fixed and chemical 

reaction plays no part. A process of pure conduction takes 

place due to steep temperature gradients. 	It has not been 

adequately established whether this phase is followed by 

another during which the temperature rises again; this 

would perhaps yield a critical condition for ignition. 

For the problem of the bubble surrounded by a thermal 

layer the situation is very different. 	Steep temperature 

gradients do not exist at the bubble interface and both 

chemical reaction and inertia affects play a part. 	Ignition 

takes place inasmuch as the bubble expands and its temperature 

rises. 	The characteristic time for this process, although 

small, is one order of magnitude in al  larger than in the 

first case. 
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It is worth remembering that the bubbles considered 

are very small; the assumptions a
3 	

7.1 1 imply small 

initial bubble radii. The effect of surface tension has 

been neglected in the above analysis; since the surface 

tension coefficient decreases rapidly with rising tempe-

rature this assumption is partially justified. The 

inclusion of this effect would leave the energy and 

momentum equations unaltered, while the equation of state 

and the boundary condition at the bubble interface would 

be adjusted by an additional 20/R, where o is the surface 
Grg' uiet 

tension coefficient, added to the ordinary 
	pressure. 

In making the equations dimensionless it would be necessary 

to introduce an additional dimensionless parameter. 	It 

is expected that the result of including these extra terms 

in the problem with a thermal layer would be to prevent 

the bubble from expanding initially and hence could perhaps 

yield some critical condition for ignition. 

The inherent difficulties of the problem are several, 

namely: 

1) Non-linearity introduced by chemical reaction 

rate and inertia terms. 

2) Initial stepped temperature distribution implies 

a 4 OD initially; for small a, on the other hand, the terms 

An(a), A1(a) become very large. 



108. 

3) The introduction of the small parameter a1; 

this makes it impossible to solve the equations numerically 

in their complete form. 

4) The large number of parameters, and hence effects 

involved. 

Further, since we are unaware of any experimental obser-

vations on problems of this nature, we have no means of 

verifying assumptions or checking results. 

It is felt, however, that the use of profile methods 

cannot be extended further, as the choice of profile 

assumption implies some foreknowledge of the physical 

characteristics of the process which may not always be 

known. 

Although this problem is by no means complete, some 

insight into the mechanisms governing it has been obtained. 
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