AT LOW TEMPERATURES.

A thesis submitted to

THE UNIVERSITY OF LONDON
by
J. WOORE B.Sc., M.Sc., A.R.C.S.

Candidate for the Degree of Doctor of Philosophy in the Faculty of Science.

Department of Chemical Engineering and Chemical Technology,
Imperial College of Science and Technology, LONDON, S.W. 7.

August, 1969.

ABSTRACT

Measurement and interpretation of galvanomagnetio effects in well-oriented pyrolytic graphite has been carried out over a temperature range from $300^{\circ} \mathrm{K}$ to $1^{\circ} \mathrm{K}$ in magnetic fields up to 17 kg gauss.

A cryostat was designed and constructed to fit between the poles of a Nemport electromagnet. The thin-walled stainless steel cryostat was thermally shielded by a silvered glass nitrogen dewar. Long tails were reguired on the dewar vessels because of the magnet shape. Pumping systems were built for lovering the temperature of the liquid helium bath : and maintaining thermal isolation. A closed helium-3 system was incorporam ted in the cryostet design.

Graphite affords opportunity for studying the effects of extreme crystalline anisotropy and whilst much is lnown quelitatively about graphite, the present work makes a much-needed contribution to the quantitative lnowledge of electronic conduction in graphite.

An analysis of the magnetoconductivity tensor components, following MoClure's work on Soule's single crystal data, leads to values for carrier densities and mobilities over the above range of temperatures.

For the first time data are presented on the Shubnikov-de Haas oscillations in pyrolytic graphite. An analysis of these quantum oscillations at about $1^{\circ} \mathrm{K}$ ซas used to estimate carrier effective masses and Dingle temperatures. Oscillation periods were used to give estimates of the parameters $\Delta, \gamma_{2}, \mathrm{E}_{\mathrm{f}}$ which appear in the SlonczewskiWeiss band model of graphite and are not well determíned by previous work.

It was necessary to present the band model with an algebraic clarity not evident in the literature before undertaking these calculations. Use was made of this to investigate the value of the Jones-Zener expansion of the low magnetic field magneto-conductivity tensor. Extensive use of the Imperial College IBM computer was made throughout the course of the work reported here.

Previous worls on pyrolytic graphite has yielded general outlines only, thoush Spain's survey established that the electronic properties of the best pyrolytic graphite closely approaches that of single crystals. The present work affords a comparison between the two; we conclude that the electronic structure of both types are essentially comparable, differences lying partly in scattering introduced by the mosaic, microcrystalline nature of pyrolytic graphite. Recent experimental results obtained by other workers have throw new light on the interpretation of the Holl effect in particular: there are strong indications that carrier-carrier soattering is of outstanding importance in determining electronic conduction prooesses in graphite.

ACKNOWLEDGEMIENTS

It is a pleasure to acknowledge the supervision and constant encouragement of Dr. D.A. Young, D.Sc.

Professor A.R. Ubbelohde, C.B.E., F.R.S., kindly provided laboratory facilities for this work and generously made available the means for a short extension to the S.R.C. studentship.

The author thanks M.L. Yeoman, Dr. B.J. Jackson and D. Cooper of this laboratory for helpful discussions and permission to quote results before publication where applicable.

Miss Nanette Kingan and Miss Linda Harding of Sussex University were patiently competent in the preparation of the manuscript and thanks are due to Mrs. Mary Lewis for help with xeroxing and diagram reproduction.

Finally, the author gratefully acknowledges the research studentship provided by the Science Research Council.
CONTENTS
Page
CHAPTER 1 Introduction 1
1.1
1.2 Preparation of Pyrolytic Graphite 3
1.3 Texture of Pyrolytic Graphite 6
CHAPTRR 2 Theory
2.1 Band Structure 11
2.1.1 The structure of graphite and the Brillouin Zone 11
2.1.2 The Band Structure of Graphite 13
2.1.3 Slonczewski-Weiss Band Model 16
2.1.4 Cross-sectional Areas of the Fermi-surface 40
2.1.5 Values of Band Parameters 43
2.2 Galvanomagnetic Properties 46
2.2.1 Phenomenological treatment 46
2.2.2 Relation between Single Crystal and 52
2.2.3 The Boltzmann Transport Equation 56
2.2.4 The Relaxation Time Approximation 60
2.2.5 The Jones-Zener Solution 61
2.3 Quantum Oscillations 67
2.3.1 Motion of Wave Packets in a Magnetic Field 68
2.3.2 The Generalised Landau Formula 70
2.4 Magnetoconductivity Tensor Analysis 72
2.4.1 General Theory 72
2.4.2 Application to Graphite 80
CHADMTR 3 Experimental
3.1 Materials - Preparation of Samples 89
3.2 Form of the Results - Taking the Measurements 95
3.3 Apparatus 101
3.3.1 Magnet 102
3.3.2 Cryostat 102
3.3.3 Blectrical Measurements 121
CHAPTER 4 Results-Data
4.1 Non-Oscillatory Data 126
4.1.1 Chart Reading 126
4.1.2 Results; Hall coefficient and Conductivity 129
4.1.3 Data Fitting 132
4.2 Oscillatory Data 143
4.2.1 Separation of Oscillatory Fffects from the Background 144
4.2.2 Nodal Plots 146
4.2.3 Fitting Oscillatory Data to the Landau Expression 148
4.3 Resistance Variation with Temperature 151
CHAPTER 5 Derived Results
5.1 Non-Oscillatory 153
5.1.1 Derived Conductivity Tensor Components 153
5.1.2 Average Mobility and Numbers, Following Soule 155
5.1.3 Carrier Densities and Mobilities 157
5.2 Oscillatory Derived Results 159
5.2.1 Result of the Landau Fitting 159
5.2.2 Bffective Masses, Collision Damping, Periods 161
5.2.3 Estimation of γ_{2} and E_{F} 162
CHAPTER 6 Discussion and Conclusions
6.1 Classical Results 164
S. 2 Oscillatory Results 168
6.3 The Low-Field Hall Coefficient 170
APPENDIX 1
Wave Mechanics of Conduction Electrons APPENDIX 2
Application of the Jones-Zener Bxpansion to Graphite
APPENDIX 3
Data
APPENDIX 4

CHAPTER 1.

1.1 INTRODUCTION

The physical and electronic properties of graphite provide a unique opportunity for studying extreme crystalline anisotropy. Whilst a great deal is known qualitatively about graphite, there remains a great deal to be achieved in the quantitative description of electronic properties, particularly as they relate to the magneto conductivity tensor, Fermi surface metrication and carrierlattice interactions.

The anisotropy of graphite stems from its crystal structure which (see Section 2.1) consists essentially of strongly bonded twodimensional sheets weakly held together by van der Waals forces. Ratios of thermal and electrical conductivities in the basal planes to those perpendicular to the basal planes (along the c-axis direction) can exceed 200 and 5000 respectively, even at room temperature.

Unfortunately, very few single crystals of the required perfection exist. The best of these won from the calcite deposits of Essex County, New York included untwinned regions only 2 mm . in extent. The high melting point (about $3800^{\circ} \mathrm{C}$ at 100 atmospheres) and mechanical weakness in the direction of basal shear make the task of growing single crystals in the laboratory an unusually difficult one. Crystallisation from solution in iron or tantalum monocarbide yields
graphite crystals with untwinned regions of adequate size, but no such single crystal has a thickness in the c-direction sufficient for accurate characterisation of the c-axis properties of graphite.

The present work grew out of attempts in this laboratory to produce graphite by pyrolytic deposition which closely approached natural single crystal graphite in electrical and some physical properties. It is the first detailed analysis of the magnetoconductivity tensor components $\sigma_{x x}, \sigma_{x y}$ and the periods and Dingle temperatures of the Shubuikov-de Haas oscillations in pyrolytic graphite. Previous publications have given general outlines only. In particular, Spain's (1967) survey of the electronic properties of the welloriented material produced in this laboratory, though demonstrating convincingly the close approach of the best pyrolytic graphite to single crystal behaviour, did not extend to a detailed analysis of Hall-effect and conductivity data and he was unable to report any oscillatory behaviour observable under his experimental conditions. Some light is thrown on the striking low field behaviour of Soule's (1958) Halleffect data which showed large excursions in the positive ($77^{\circ} \mathrm{K}$) or negative $\left(298^{\circ} \mathrm{K}\right)$ direction at fields less than 1000 gauss. Soule suggested that these originated in the narrow regions connecting the hole and electron Fermi surfaces (see Figure 2.6). 'Ono and Sugihara (1968) disagreed, suggesting that on the simple model used by Soule the high mobility electrons near the $t i p s$ of the electron Fermi
surfaces play the dominant part in displacing the calculated Hall coefficient in a negative direction. Only when this effect was reduced both by trigonal warping of the ellipsoidal energy surfaces and also by inclusion of carrier-carrier scattering between majority and minority carriers were they able to explain Soule's positive low temperature Hall coefficient. Later work by Yeoman has confirmed that carrier-carrier scattering is much more important in graphite than ever hitherto suggested.

1.2 Preparation of Pyrolvtic Graphite.

Under suitable conditions very pure carbon can be deposited in highly-oriented layers by the pyrolysis of hydrocarbon vapours passed over a heated substrate. Subsequent manipulation of the deposit produces quite large slabs of substantially pure mosaic single crystals, with densities approaching 95% of the theoretical single crystal value.

Methane was used in this laboratory, but acetylene, cyclohexane, and other gases have been used elsewhere. Dilution with hydrogen, nitrogen or a rare gas serves to delay co-precipitation within the deposit of carbon particles nucleated in the gas phase as a fine black, and reduces the remevaporation of the graphite crystallites which form with a finite distribution of c-axis directions centred about the normal to the substrate surface. Blackman et al. (1961) found that deposition temperatures around $2000^{\circ} \mathrm{C}$ led to deposits which were
highly ordered in this respect. Grystal orientation improved progressively with increase in deposition temperature up to $2200^{\circ} \mathrm{C}$ and was brought still closer to ideal graphite by annealing at around $2700^{\circ} \mathrm{C}$.

Such a depoaition texture leads to an increasing temperature gradient through the thickening deposit normal to the substrate surface if the former is resistance heated because of the low c-axis thermal conductivity. Temperature gradients of up to $350^{\circ} \mathrm{C} / \mathrm{mm}$. perpendicular to the deposit surface can be sustained at these high temperatures so that a 2 mm . layer having an external temperature of say $2200^{\circ} \mathrm{C}$ may be close to $3000^{\circ} \mathrm{C}$ for the inner layers. Whilst clearly requiring less power for a given maximum temperature than a uniform heating configuration this methcd does lead to a marked radial inhomogeneity in the deposit. Further heat treatment at temperatures above $3000^{\circ} \mathrm{C}$ leads to increased crystallite size and improved properties but inhomogeneities remain. Samples from the best material of the inner layers are thin and curved. Deposits formed in this way are normally turbostratic and measure about $200 \AA$ along the basal planes of the crystallites. The c-axis distribution at this stage is about 20° wide, but soot particles, 2 to $3 \mu \mathrm{~m}$ across, falling on the surface act as nuclei for conical growths which can lead to misorientations of up to 80° for individual crystallites.

Fortunately it was discovered (Moore et al., 1964) that when the inner layers reached about $3700^{\circ} \mathrm{C}$ (corresponding to deposits about 4 to 5 mm . thick) they distorted parallel to the surface of the substrate and the resulting shear largely eliminated soot nuclei and ripples, leading to an orientation (plane-normal distribution) of less than 1° in width. Sample W3 used in the present work was cut from such highly-annealed inner-layer material.

Commercially produced pyrolytic graphite is usually made by cracking the hydrocarbon gas on to a former heated externally by radiation. Such homogeneous graphite is available in large sizes from High Temperature Materials Inc., and Le Carbone, but as it has not undergone basal shear nor has been treated at high temperatures, it is sooty, of small crystallite size, and not as well aligned as the inner-layer material described above. However, its homogeneity is an advantage as it offers the possibility of further heat treatments Moore et al. (1964) cut pellets of commercial material, selected to be practically soot inclusion free, and subjected them to temperatures up to $2900^{\circ} \mathrm{C}$. in a roof. inductively-heated graphite die whilst under a unidirectional c-axis pressure of 400 atmospheres. The die flowed plastically and allowed basal plane shear to occur. This increased the diameter of the 0.1% pellets by 15 to 20% and produced samples within of the theoretical density of pure graphite ($2.266 \mathrm{gm} / \mathrm{cm}^{3}$), compared with starting material densities as low as $2.04 \mathrm{gm} / \mathrm{cm}^{3}$. Crystallite coaxes were oriented
within 0.4° on average, but crystallite size along the basal planes was only about $0.1 \mu \mathrm{~m}$. Subsequent annealing at $3600^{\circ} \mathrm{C}$ in a few atmospheres pressure of argon, under slight c-axis constraint to prevent exfoliation, led to no change in density but did reduce the half-width of the angular distribution of c-axes to 0.2°. Layer buckling over distances of the order of millimeters was much greater than this, say 1° depending on the atarting material; score marks and other irregularities in the original substrate are not removed by the small shear which takes place on hot-pressing. X-ray work has shown that a slight radial inhomogeneity is present, presumably introduced by interaction of the pellet edges with the surrounding dic. However, by this means, crystalline graphite of large c-axis dimensions and with crystallite basal planes some 2 to $3 \mu \mathrm{~m}$ wide has been produced with a spread of c-axis orientation angles small enough to make comparison of its properties with theoretical single crystal models rewarding, even though the basal plane vectors $\boldsymbol{a}_{\boldsymbol{1}}, \boldsymbol{a}_{2}$ are still oriented planar-isotropically. Samples W1 and W2 reported here are both cut from pyrolytic graphite hot-pressed and then annealed as described above.

1.3 Pexture of Pyrolytic Graphite

Klein (1962) reported in general terms that heating to greater than about $3500^{\circ} \mathrm{C}$ was required to eliminate high angle grain boundaries in the as-deposited graphite, but in fact post-deposition heat
treatment has three main effects:
(1) The laver order is increased with increasing temperature;

A useful measure is the probability of stacking disorder p related to c-axis spacing; d, as given by the Bacon-Franklin equation (Franklin, 1951; Bacon, 1958). This drops rapidly towards zero (ideal graphite) for material deposited at successively higher temperatures above $1900^{\circ} \mathrm{C}$ (Blacknan et al 1961).

$$
d=3.44-0.086(1-p)-0.064(1-p) p
$$

A value of less than 0.07 is to be expected for good (not hot-pressed) material, implying less than one layer in 14 is disordered with respect to its neighbours. Spain et al (1967) suggest. from electron microscopy that the crystallite dimensions -in the c-axis direction were $L_{c} \sim 1000 \rightarrow 2000 \AA$ implying $p \sim 0.002$ for well-oriented hot pressed and annealed pyrolytic graphite.
(2) The distribution of preferred orientation decreases markedly
in width. It has been pointed out that hot-pressing produces angular distribution half-widths of about 0.2° although layer plane buckling sometimes leads to deviations of 1° or so over distances of mms.
(3) Gxystallite growth occurs in both directions at high temperatures. This is reflected in the value of p, abore, for the c-axis direction. In the basal planes Klein estimates from carrier mobility that crystallites have diameters : $1 \mu \mathrm{~m}$ after treatment above $3000^{\circ} \mathrm{C}$. The approach of the low temperature thermal resistivity to the \mathbb{T}^{2} specific heat law was calculated by Hooker et al to yield values $2 \rightarrow 5 \mu \mathrm{~m}$ for basal plane dimensions of the nearideal material used by Spain et al in general agreement with Klein and the results of electron micrography.

Recrystallised soot nuclei, in orientations differing greatly from their surroundings (Moore et al, 1964) survived in some hotpressed material. In such materials the differential thermal expansion which occurs on thermal cycling can lead to basal dislocation formation and the production of voids. Accordingly care was taken to select soot-free materials. Even so, sample W1 (Spain's SA22) used in the present work has a very narrow angular c-axis distribution despite the inclusion of some soot particles.

The density of ideal graphite is $2.2654 \mathrm{~g} / \mathrm{cm}^{3}$. With increasing deposition temperature above $1900^{\circ} \mathrm{C}$ (Blackman et al, 1961) the sample density quickly reaches values close to this. Hot-pressed graphites usually have densities greater than $2.263 \pm 0.001 \mathrm{~g} / \mathrm{cm}^{3}$, implying a void concentration of less than 0.1%.

Since the cowalent bond strength within basal planes of $\sim 5 \mathrm{eV}$ per atom (Kanter, 1957) is many times that between the planes
(~ 0.2 eV per atom) it is not surprising that glide takes place between layer planes and that non-basal glide has not been observed. The most common type of dislocation has its line and Burgers vector both lying within the basal plane. Because of the low stacking fault energy which causes basal glide, dislocations split into two partial dislocations with the region between the partials becoming effectively a ribbon some 600 to $1000 \AA$ wide of rhombohedral material.

Screw dislocations with line and Burgers vectors both in nonbasal directions have been observed, but are less common. Thus Hennig (1965) demonstrated 10^{6} screws/ cm^{2} in pyrolytic graphite heated to $3600^{\circ} \mathrm{C}$ with the screw pitch equal to the layer spacing. Ticonderoga (New York) natural crystals show some screws and growth spirals with a pitch of $450 \AA$ or more (for a review see Roscoe and Thomas, 1966).

Moiré patterns enabled Dawson and Follet (1959) to demonstrate the existence of crystallites of $3000 \AA$ in diameterin material which X-ray line-broadening studies had led to mean estimates of $\sim 800 \AA$. An interpretation of certain Moiré fringes in terms of a type of dislocation having its line in a non-basal direction and Burgers vector in the basal plane is not generally accepted, but the existence and importance of such dislocations in the graphitisation process seems indicated in experiments by Jenkins et al (1962)
on the crystallisation of carbon films at $3000^{\circ} \mathrm{C}$.
From electron microscope studies Spain et al (1967) estimate a dislocation content of $10^{4} \mathrm{~cm}$ per cm^{2} basal plane area for the best of their stress-annealed material.

CHAPTER 2

2.1 BAND STRUUCTURE

2.1.1 The Structure of Graphite and the Brislouin Zone

Graphite has a hexagonal close-packed structure with four atoms per unit cell (Bernal, 1924). Fig. 2.1 shows the stacking sequence abab.. and the interatomic separations. There are two inequivalent pairs of lattice sites, one ($A A^{\prime}$) having atoms immediately above and below in nearest planes and the other (B.B) having atoms immediately above and below in next nearest planes.

A rhombohedral graphite modification with stacking sequence abc, obtainable by the passage of partial basal plane dislocations, can coexist with the stable hexagonal form, but does not concem us here. The first Brillouin-zone is a flat hexagonal cylinder, shown in Figure 2.3.

If we take the origin of the unit cell at an A site then the atomic positions within the unit cell are $t_{A}=0, t_{B}=\frac{1}{3}\left(t_{1}-t_{2}\right)$, $\underline{t}_{A^{\prime}}=\underline{t}_{4} / 2, \quad t_{B^{\prime}}=-\left(t_{1}-t_{2}\right) / 3+t_{4} / 2$ where $t_{1}, \underline{t}_{2}, \underline{t}_{4}$ are the primitive translations for a simple hexagonal Bravais lattice and $t_{1}=t_{2}=t_{3}=2: 46$ (å ${ }^{\circ}$) $t_{4}=6.74 \AA\left(C_{0}\right)$.

The reciprocal lattice vectors \underline{K}_{i} are obtained from these primitive translation vectors through the definition $K_{i} \cdot \underline{t}_{j}=2 \pi \delta_{i j}(i, j=1,2,4)$. This is most conveniently expressed in the form $\underset{=}{K} \cdot \underline{\underline{T}}=2 \pi \underline{\underline{I}}$ where the matrices $\underline{\underline{K}}$ and $\underline{\underline{T}}$ are composed of the rectangular cartesian components
of $\underline{K}_{1}, \underline{K}_{2}, \underline{K}_{4}$ and $t_{1}, \underline{t}_{2}, \underline{t}_{4}$ and I is the unit matrix.

$$
\underset{\underline{K}}{\underline{K}}=\left[\begin{array}{lll}
K_{1 x} & K_{1 y} & K_{1 z} \\
K_{2 x} & K_{2 y} & K_{2 z} \\
K_{3 x} & K_{3 y} & K_{3 z}
\end{array}\right] \stackrel{T}{=}=\left[\begin{array}{ccc}
t_{1 x} & t_{2 x} & t_{3 x} \\
t_{1 y} & t_{2 y} & t_{3 y} \\
t_{1 z} & t_{2 z} & t_{3 z}
\end{array}\right]=\left[\begin{array}{ccc}
\left.\begin{array}{ccc}
\frac{\sqrt{3 a o}}{2} & -\sqrt{3 a o} & 0 \\
\frac{20}{2} & \frac{a 0}{2} & 0 \\
0 & 0 & c o \\
\begin{array}{l}
\text { referred to axes in } \\
\text { figure } 2.2
\end{array}
\end{array}\right]
\end{array}\right.
$$

For example, the equations for K_{1} are

$$
\begin{array}{rlrl}
K_{1 x} \frac{\sqrt{3 a o}}{2}+K_{1 y} \frac{a 0}{2}+K_{1 z} \cdot 0 & =2 \pi & \text { and these give } K_{1 x} & =2 \pi / \sqrt{3 a o} \\
-K_{1 x} \frac{\sqrt{3 a o}}{2}+K_{1 y} \frac{20}{2}+K_{1 z} \cdot 0 & =0 & K_{1 y} & =+2 \pi / a o \\
K_{1 x} \cdot 0+K_{1 y} \cdot 0+K_{1 z} \cdot c o & =0 & K_{1 z} & =0 \\
& \text { ie. } \quad K_{1} & =\left(\frac{2 \pi}{3 a 0},+\frac{2 \pi}{20}, 0\right)
\end{array}
$$

The power of this way of finding the reciprocal lattice vectors, due to Jones, is that we may now write down all the required components
 We find

$$
T^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{20} & 0 \\
\sqrt{3 a} & \frac{1}{\sqrt{20}} & \frac{1}{20} \\
0 & 0 & \frac{1}{c o}
\end{array}\right]
$$

and so the required lattice vectors, referred to the cartesian axes shown in Figure 2.2. are $\mathrm{K}_{1}=\left(\frac{2 \pi}{\sqrt{3 a 0}}, \frac{2 \pi}{\mathrm{ao}}, 0\right)$

$$
\underline{K}_{2}=\left(\frac{-2 \pi}{3 a 0}, \frac{2 \pi}{a 0}, 0\right)
$$

$$
\mathbb{K}_{3}=\left(0,0, \frac{2 \pi}{C 0}\right)
$$

HEXAFOMAL LATTICE

Latrue yectross

FIGURE 2:3

THE FIRST BRILLOUN ZONE OF GRAPHITE

Reciprocal Lattice vectors are show m, together with Mc Clare's notation for the coordinates of a point near a zone edge.

If we now construct planes to bisect the lines joining nearest neighbour reciprocal lattice points we see that all of reciprocal space can be filled by stacking together hexagonal prisms. We take the one arranged symmetrically about the origin to be the first Brillouin Zone, figure 2.3, where we have drawn the half vectors $\underline{K}_{1} \cdot \frac{K}{2}_{2}, \underline{K}_{4}$ and also included the co-ordinates (K, α) of a point near the vertical zone edge HKH in McClure's notation (which will be employed later).

2.1.2 The Band Structure of Graphite

Early calculations of the graphite band structure were based upon a two-dimensional approximation because the large spacing between layers compared with the atomic spacing within the layers suggested that interplanar interactions might be neglected in a first approximation. In such an approach each layer is, in effect, a covalentlybonded two-dimensional crystal held to the next layer by much weaker Van der Waals forces.

Wallace (1947) constructed trigonally hybridised covalent bonds ($s p^{2}$) from three of the valence electrons, forming two σ-bands; he considered the remaining one electron per atom to be in the $2 \mathrm{p}_{z}$ state with its symmetry axis perpendicular to the layer planes, forming two π-bands. Considering only nearest-neighbour interactions; he found that the highest occupied (valence) band and the lowest unoccupied (conduction) band were degenerate at the (two-dimensional)zone corners. Later tight-binding calculations by Coulson and Taylor (1952), Lomer (1955), Hove (1955), McGlure (1956), Corbato (1956) using different
approximations, agreed qualitatively with Wallace and with each other. The calculations asserted that graphite behaves like a two-dimensional semiconductor with a zero energy gap. It was necessary to invoke surface electrons or impurities to account for electrical and magnetic properties (Haering and Wallace 1957). Also, the model did not allow differing hole and electron masses (Galt, Yager, Dail, 1956).

The $\sigma-\pi$ energy gap was found to be large (Lomer $\sim 1 \mathrm{ev}$, Corbato $\sim 6 \mathrm{ev}$) at the zone corners so that transport properties are determined by the Π-bands only. Coupling between the σ and π bands, though weak ($\sim 0.01 \mathrm{eV}$), is important in that it helps determine the sign of one of the parameters (ν_{2}) in the Slonczewski-Weiss band model in three dimensions (to be described below).

In Wallace's calculations for the three-dimensional case, he considered only the nearest-neighbour interactions between different planes and neglected the difference between A and B atom sites. This led to two bands being degenerate along the vertical zone edge (HKH). All bands were degenerate at the zone corners. Johnston $(1955,1956)$ took more distant neighbours into account which gave a band overlap and anisotropy of the constant energy surfaces in the $K_{x}-K_{y}$ plane.

Group theoretical studies were then undertaken to establish which types of structure are possible. The single layer Brillouin zone was
investigated by Lomer (1955) and Slonczewski (1955) and the threedimensional zone by Carter (1953), Slonczewski (1955), and Slonczewski and Weiss (1955). The latter combined group theory with perturbation theorys previous calculations, reported above, had shown that the interesting part of the Brillouin zone was near the zone edge (not more than 1% of the distance from the edge to the zone centre). Thus, S-W made a Taylor expansion of the Hamiltonian in terms of K_{x} and K_{y}. In the K_{z} direction, however, they made a Fourier expansion which, because of the large layer spacing, was rapidly convergent becoming essentially equivalent to the tight binding approach. They used the "K.P" perturbation method of B.S.W. (1936) to calculate the change in the Hamiltonian for points just off the zone edge. This approach leads to a band model containing six constants which S.W. proposed should be obtained from experiment.

Three later papers contained band calculations based on the 1955 S.W. proposal and in 1958 Sl-Weiss themselves published a full description of their group theoretical perturbation calculation. MoClure (1957) used the S.W. model to interpret the DHVA data of Shoenberg (1952), and Noziere (1958) interpreted the cyclotron resonance data of Galt, Yager and Dail (1956) using a modified form of the S.W. theory. He neglected the difference between A and B atom sites and replaced the hyperbolic bands by parabolic bands. Nozieres justified these approximations for interpretation of cyclotron
resonance data, but pointed out that they lead to a completely false picture of the bands near the hexagonel zone faces. This would be very important for the interpretation of other properties, e.g. diamagnetic susceptibility.

We now describe the slonczewski-Weiss band model in some detail.

2.1.3 Slonczewski-Weiss Band Model.

The increasing complexity of early band models of graphite compelled an examination of the possible structures from a general point of view. The group theoretical study by Slonczewski and Weiss (SW, 1955, 1958) filled this need and has stood the test of experiment admirably.

The two-dimensional calculations located the carriers in graphite on the BZ corners and three-dimensional calculations all agreed that the Fermi surface must be close to the vertical edges of the zone. In summary, SW found from their symmetry calculations that the wave functions for points on the vertical zone edge can be written in terms of Bloch sums of the single-layer eigenfunctions. Points just off the edge were treated by perturbation theory. They found four bands coming from $2 p_{z}$ orbitals, two of which are degenerate along the zone edge HKH and H'K'H'and on the hexagonal faces, the other two being degenerate only on the hexagonal faces in agreement with Hiffring's finding that the small representations on the conyers
hexagonal faces are 2-dimensional. Band 1 oorresponds to the sum of Bloch waves made up from $2 p_{z}$ orbitals on A and A^{\prime} atoms and is generally the highest in energy. Band 2 corresponds to the difference between these same Bloch functions and is generally the lowest in energy. Bands 31 and 32 are degenerate along the zone edges and are made up from $2 p_{z}$ orbitals based on B, B^{\prime} atoms.

K.P. Perturbation Method

To explain the basis of this method we follow Callaway (p.173, 1964), but mention that a concise derivation is given by Jones, (p.40, 1960). We start with wave functions $y_{n}(\underline{K}, \underline{I})$ for a state in the nth energy band with wave vector K and $M_{j}\left(K_{0}, r\right)$ for a state in the j th band with wave vector K_{o}, and assume there is no degeneracy. Define the functions $\Psi_{j}(\underline{K}, \underline{\underline{x}})=e^{i\left(\underline{K}-\underline{K}_{0}\right) \cdot \underline{r}} \psi_{j}\left(K_{0}, \underline{r}\right)=e^{i \underline{\underline{r}} \underline{\underline{r}}} \psi_{j}\left(\underline{K}_{0}, \underline{\underline{r}}\right)$ (where $\underline{S}=\underline{K}-\underline{K}_{0}$).

These are satisfactory functions for describing one-electron states since they still have the Bloch forms-

$$
\Psi_{j}(\underline{K}, \underline{\underline{r}})=e^{i \underline{\underline{S}} \underline{\underline{r}}} H_{j}\left(\underline{K}_{0}, \underline{\underline{r}}\right)=e^{i \underline{S}_{0}, \underline{r}} e^{i K_{0} \cdot \underline{r}} U_{j}\left(\underline{K}_{0}, \underline{r}\right)=e^{i K_{0} \underline{\underline{r}}} U_{j}\left(\underline{K}_{0}, \underline{r}\right)
$$

where $U_{j}\left(K_{0}, \underline{x}\right)$ has the required lattice periodicity, since h_{j} is assumed to be in a Bloch form. Also, if the ψ_{j} form a complete orthonormal set then so do the Ψ_{j} and any wave function can be expanded
in a linear combination of the latter. In particular, we take;

$$
W(K, \underline{x})=\sum_{j} A_{j}(K) \Psi_{j}(\underline{K}, \underline{\underline{x}})=e^{i \underline{S} \cdot \underline{I_{2}}} \sum_{j} A_{j}(K)_{\boldsymbol{H}_{j}}\left(K_{o}, \underline{\underline{r}}\right)
$$

Substituting into the Schrodinger equation for the required energy eigenvalues, $E: H_{b}(\mathbb{K}, \underline{\underline{r}})=E(\underline{K})_{b}(\mathbb{K}, \underline{\underline{r}})$

- where $\quad H=\left[\frac{1}{2 \mathrm{~m}_{0}}\left(\frac{h}{i} \nabla\right)^{2}+V(r)\right]$
we obtain :- $H\left[e^{i \underline{S} \cdot \underline{\underline{E}}} \underset{j}{ } A_{j} \psi_{j}\right]=E\left[e^{i \underline{S} \cdot \underline{\underline{I}}} \underset{j}{ } A_{j} \psi_{j}\right]$
Now, the operator $\left(\frac{A}{i} \nabla\right)^{2}$ acts on both parts of $e^{i \underline{\underline{S}} \cdot \underline{\underline{x}}} \varphi_{j}$ so we have;

$$
\begin{aligned}
\left(\frac{\hbar}{i} \nabla\right)^{2} e^{i S \cdot \underline{r}} w_{j} & =\left[\frac{\hbar}{i} \frac{\partial}{\partial x}\left(\frac{\hbar}{i} \frac{\partial}{\partial x} e^{i \underline{S} \cdot \underline{r}} u_{j}\right)+\ldots+\ldots\right] \\
& \left.=\left[\frac{\hbar}{i} \frac{\partial}{\partial x}\left(\frac{\hbar}{i} e^{i S \cdot \underline{r}} \frac{\partial}{\partial x^{\prime}}\right)_{j}+\frac{\hbar}{i} i S x e^{i S \cdot \underline{r}} w_{j}\right)+\ldots+\ldots\right] \\
& =\left(\frac{\hbar}{i}\right)^{2}\left[e^{i \underline{S} \cdot \underline{r}} \nabla^{2}+2 i e^{i \underline{S} \cdot \underline{S}} \underline{S} \cdot \nabla-e^{i \underline{S} \cdot \underline{x}} \cdot S^{2}\right] \|_{j}
\end{aligned}
$$

Thus, operating with H in the Schrodinger equations-

Multiplying by $e^{-i S} \cdot \underline{\underline{r}} \psi_{i}^{*}$ and integrating over the normalisation volume for the $\|_{j}{ }^{3}$

$$
E_{i} A_{i}-E A_{i}+\frac{\hbar^{2} S^{2}}{2 m_{0}} A_{i}+\frac{\hbar}{m_{0}} \underset{j}{ } \cdot \Sigma P_{i j} A_{j}=0 \text { where } P_{i j}=\int \psi_{i}^{*}\left(\frac{h_{i}}{i} \nabla\right)_{b_{j}} d t
$$

Similarly, we may maltiply by all other $e^{-i \underline{s} \underline{\underline{r}}} \psi_{i}^{*}$ to generate further equations, obtaining a set of linear simultaneous equations for the coefficients A_{i}. For a non-trivial solution the determinant of the matrix of the coefficients of A_{i} must be zero, which leads to the usual polynomial in $E:$

The general element of this matrix is

$$
M_{i j}=\frac{\hbar}{m_{0}} S_{i j} \cdot E_{i j}+\left(E_{i}-E+\frac{\hbar^{2} S^{2}}{m_{0}}\right) \delta_{i j}
$$

which we write as $H_{i j}-E(K) \delta_{i j}$
where $H_{i j}=\left(E_{i}\left(K_{0}\right)+\frac{\hbar^{2} S^{2}}{2 m_{0}}\right) S_{i j}+\frac{\hbar}{m_{0}} \underline{S}_{i} \cdot P_{i j}$

Thus, we have the condition that $\left|H_{i j}-{ }_{H \delta}{ }_{i j}\right|=0$ and with this form of the equations we see that the required energy levels E at K (a distance S from \mathbb{K}_{0}) are given as the eigenvalues of the Hamiltonian $H_{i j}$ in terms of the eigenvalues $E_{i}\left(K_{0}\right)$ at K_{0}. Notice that if $S=0$ then $H_{i j}=E_{i} \delta_{i j}$ and the values of E are simply the $E_{i}\left(K_{0}\right)$ at K_{0}.

In the present case, we want to discover the effeot on the energy levels of a very small change in $\left(\frac{|S|}{\left|K_{0}\right|} \sim 1 \%\right)$ so we appeal to perturbation theory for a further simplification.

Second order perturbation theory gives an expression for the new energy levels in terms of the matrix elements of a perturbing Hamiltonian, H' (Schiff p.153).

$$
E_{n}=E_{n}^{o}+H_{n n}+\sum_{j \frac{1}{T} n} \frac{H_{n} H_{n} H_{j}^{\prime}{ }_{n}}{E_{j}-E_{j}^{\prime}}
$$

- where \mathbb{E}^{0} is an unperturbed level, belonging to the wave vector K_{0} in our case. Thus, we have finally :-

$$
E_{n}(K)=E_{n}\left(K_{0}\right)+\frac{\hbar^{2} S^{2}}{2 m_{0}}+\frac{h}{m_{0}} \underline{S} \cdot \underline{P}_{m_{1}}+\frac{\hbar^{2}}{n_{0}^{0}} \sum_{j \neq n} \frac{\left(S_{n} \cdot P_{n, j}\right)\left(S \cdot P_{j n}\right)}{E_{n}\left(K_{0}\right)-E_{j}\left(K_{0}\right)}
$$

- which is the required expansion of the energy in terms of S . The Hamiltonian Matrix

We shall now indicate how SW proceeded to derive their Hamiltonian for states near the vertical zone edges and relate this to McClure's Hamiltonian (1957) which is often used as a starting point for discussions relating to the SW band model. No attempt will be made to give a complete group-theoretical background to the derivation of the appropriate wave-funotions.

First of all slonczewski and Weiss considered the single-layer wave functions, U, satisfying the Bloch condition (imposed by translational symmetry) and having the local symmetry of the zone edge. By applying the K.P perturbation to the single-layer Hamiltonian they arrived at a secular equation giving energy values which varied linearly with K, the distance from the zone edge HKH (see Figure 2.3).

The three-dimensional lattice has four atoms per unit cell, twice as many as in the single layer unit cell, so each layer state must give rise to two threemimensional states. In particular, each of the layer Π states, U_{1}, U_{2} gives rise to two wave functions, ψ at K_{S} where S labels a general point on the vertical zone edge HKH. These $\|^{2}$ s can be constructed from single-layer functions but they mast have the required symmetry at K_{S}. The four wave functions are

$$
\begin{aligned}
& \psi_{1}=\sqrt{2}^{\frac{1}{2}\left(a+a^{\prime}\right)} \\
& \psi_{2}=\sqrt{2}\left(a-a^{1}\right) \\
& \phi_{31}=b^{\prime} \\
& 4_{32}=b
\end{aligned}
$$

$$
\begin{aligned}
& a=\underset{S}{ } e^{i c K_{z} S}\left\{\varepsilon \mid S_{-4}\right\} U_{2} \\
& b=\underset{S}{\Sigma} e^{i c K} z^{S}\left\{\varepsilon \mid S t_{4}\right\} U_{1} \\
& \left.a^{\prime}=\Sigma_{S} e^{i c K_{2}\left(S+\frac{1}{2}\right)}\left\{\rho_{3} \left\lvert\, S+\frac{1}{2}\right.\right) \mathrm{t}_{4}\right\} U_{2} \\
& \mathrm{~b}^{2}=\sum_{S} \mathrm{e}^{\mathrm{icK}}\left(\mathrm{~S}+\frac{1}{2}\right) \quad\left\{\rho_{3} \left\lvert\,\left(\mathrm{S}+\frac{1}{2}\right) \mathrm{t}_{4}\right.\right\} \mathrm{U}_{1}
\end{aligned}
$$

This notation indicates the nature of the $\|^{\prime} s$; for example, if the function a were written as a linear combination of atomic orbitals, only those located on type A atoms would occur. Similarly for the $a^{\prime}, b, b^{\prime}$ functions and $A^{\prime}, B, B^{\prime}$-type atoms respectively.

The syrmbols $\{\alpha \mid \underline{t}\}$ occurring in the above expressions are symmetry operators with the meaning $\{\alpha \mid \underline{t}\} f(\underline{r})=\alpha f(\underline{r})+\underline{t}$ where $f(\underline{r})$ is a function of position r, α is a point group operator (e.g. a rotation) and t is a translation vector. Thus, the $\left\{\varepsilon \mid S t_{4}\right\}$ in ψ_{32} simply means
that U_{1} is to be displaced through the translation t_{4} (on to the next-but-one layer) each time a new term is added to the sum over S. (ε stands for the identity operation, ρ_{3} is a reflection in the $\mathrm{t}_{4}-\underline{t}_{3}$ plane). We note that the above wave functions are approximate in that overlap energies between layers and $\sigma-\pi$ band interaction energies have been neglected.

The way in which the energies $\mathrm{E}_{\mathrm{i}}\left(\mathbb{K}_{\mathrm{Z}}\right)$ of the above states vary with K_{2} is not given by group theory and appeal must be made to tightbinding approximations and experiment for this information. However, the change in energy levels as the wave vector K moves a short distance K away from the vertical zone edge at K_{S} can be obtained using the K. P perturbation method; the new set of energy levels is obtained by diagonalising the matrix of the perturbed Hamiltonian $H=H_{0}+H^{\prime}$, where $H^{\prime}=\frac{h}{m} K \cdot P+\frac{\hbar^{2} K^{2}}{2 m}$ and H_{0} has the eigenfunctions $h_{1}, H_{2}, \|_{31}$, H_{32} with corresponding eigenvalues $E_{1}^{\circ}, E_{2}^{0}, E_{3}^{0}$. Group theory gave the momentum matrix elements $\underline{P}_{i j}$ apart from a constant factor.

SW obtained a Hamiltonian matrix given below with respect to the orthogonal set of wave functions $b, a, a^{\prime}, b^{\prime}$. The element $H_{a a}$ in the matrix below, for instance is given by $H_{a a}=\int a\left(H_{0}+H^{1}\right) a d_{r}$ which quickly reduces to

$$
\begin{aligned}
H_{a a} & =\int a H_{0} a d \tau+\int \frac{h^{2} K^{2}}{2 m} a d \tau+\int a_{m} K \cdot P a d r \\
& =\frac{1}{2}\left(E_{1}^{0}+E_{2}^{0}\right)+\frac{a^{2} K^{2}}{2 m}+\Gamma a \frac{\hbar K \cdot P}{m} a d r
\end{aligned}
$$

In the above, $F=\hbar^{2} K^{2} / 2 m$ and $D=\left({ }^{\lambda^{P}} / / m\right) K e^{i \alpha}-$ this comes from the momentum matrix P. The P, q, r are functions of K_{z}. One could diagonalise this matrix to obtain the required energy levels, but we prefer to switch to McClure's notation in order to pursue our investigation of the band structure. Unfortunately, McClure quotes but does not derive a Hamiltonian matrix (see below) which is different
in form from the one given above. It is evident, in fact, that he has used a different set of basis functions to generate his matrix. To give the same eigenvalues, his matrix must be related through a unitary transformation to the SW matrix above and this implies that his basis functions are linear combinations of the $a, a^{\prime}, b, b^{\prime}$. In fact, it is fairly obvious that he has used the actual $\|^{i}$ s above $\left(w_{1} \cdot \|_{2}, \psi_{31}, b_{32}\right)$ as his basis. We proceed to demonstrate this : We have $b_{1}=\frac{1}{\sqrt{2}}\left(a+a^{1}\right), \quad v_{2}=\frac{1}{\sqrt{2}}\left(a-a^{1}\right), v_{31}=b^{\prime}, v_{32}=b$. Now, if our assumption is correct, McClure's Hamiltonian matrix elements are given by

$$
\begin{aligned}
& \quad H_{i j}^{M c}=\int w_{i} H_{l_{j}} d_{q} \quad \text { where } i, j \text { stand for the labels on the } \\
& h^{i} s((1),(2),(31) \text { etc. }) \text {. }
\end{aligned}
$$

Substituting for the ψ^{\prime} s :-

$$
\begin{aligned}
& =\frac{1}{2}\left(H_{a a}+H_{a a^{\prime}}+H_{a^{\prime}} \dot{a}+H_{a^{\prime} a^{\prime}}\right)
\end{aligned}
$$

where $H_{i j}$ is the ijth element of the SW Hamiltonian matrix.
Thus we see that it is not necessary to recalculate the matrix elements; it is sufficient to take combinations of elements from the SW Hamiltonian to generate the matrix with respect to the new basis
functions. We now list the required combinations

$$
\begin{aligned}
& H_{1,1}=\frac{1}{2}\left(H_{a a}+H_{a a^{\prime}}+H_{a^{\prime} a}+H_{a^{\prime} a^{\prime}}\right)=E_{1}^{0}+F \\
& H_{1,2}=\frac{1}{2}\left(H_{a a}+H_{a^{\prime} a}-H_{a a^{\prime}}-H_{a^{\prime} a^{\prime}}\right)=0 \\
& H_{1,31}=\frac{1}{\sqrt{2}}\left(H_{a b^{\prime}}+H_{a^{2} b^{\prime}}\right) \\
& =P^{*} D-D\left(1+r^{*}\right) \\
& H_{1,32}=\frac{1}{\sqrt{2}}\left(H_{a b}+H_{a^{\prime} b}\right) \\
& =P^{*} D^{*}-D^{*}\left(1+r^{*}\right) \\
& H_{2,1}=\frac{1}{2}\left(H_{a a}+H_{a a^{\prime}}-H_{a^{\prime} a}-H_{a^{\prime} a^{\prime}}\right)=0 \\
& H_{2,2}=\frac{1}{2}\left(H_{a a}-H_{a a^{\prime}}-H_{a^{\prime} a^{\prime}}+H_{a^{\prime} a^{\prime}}\right) \quad=E_{2}^{0}+F \\
& H_{2,31}=\frac{1}{\sqrt{2}}\left(H_{a b^{\prime}}-H_{a^{\prime} b^{\prime}}\right) \\
& H_{c, 32}=\frac{1}{\sqrt{2}}\left(H_{a b}-H_{a^{t} b}\right) \\
& =P^{*} D+D\left(1+r^{*}\right) \\
& =-\left(P^{*} D^{*}+D^{*}\left(1+r^{*}\right)\right) \\
& H_{31,1}=\frac{1}{\sqrt{ } 2}\left(H_{b^{\prime} a}+H_{b^{\prime} a^{\prime}}\right) \\
& =P D^{*}-D^{*}(1+r) \\
& H_{31,2}=\frac{1}{\sqrt{2}}\left(H_{b^{\prime} a}-H_{b^{\prime} a^{\prime}}\right) \\
& H_{31,31}=H_{b^{\prime}}{ }^{\prime} \\
& H_{31,32}=H_{b^{\prime} b} \\
& H_{32,1}=\frac{1}{\sqrt{2}}\left(H_{b a}+H_{b a t}\right) \\
& H_{32,2}=\frac{1}{\sqrt{2}}\left(H_{b a}-H_{b a}\right) \\
& \mathrm{H}_{32,31}=\mathrm{H}_{\mathrm{bb}} \\
& =q D^{*} \\
& \mathrm{H}_{32,32}=\mathrm{H}_{\mathrm{bb}} \\
& \Rightarrow P D^{*}+D^{*}(1+r) \\
& =\mathrm{E}_{3}^{0}+\mathrm{F} \\
& =q D \\
& =\operatorname{PD}-D(1+x) \\
& =-(P D+D(1+r)) \\
& =\mathrm{E}_{3}^{0}+\mathrm{F}
\end{aligned}
$$

This leads to the following matrix which can be directly compared, term by term, with McClure's (neglecting the second order in K term; F, and assuming r, P are real.
$H=\left[\begin{array}{cccc}E_{1}^{0} & 0 & (P D-D(1+r) & (P D-D(1+r))^{*} \\ 0 & E_{2}^{0} & (P D+D(1+r)) & -(P D+D(1+r))^{*} \\ (P D-D(1+r))^{*} & (P D+D(1+r))^{*} & E_{3}^{o} & q D \\ (P D-D(1+r)) & -(P D+D(1+r)) & q D^{*} & \end{array}\right]$

From this point on we use McClure's notation (Figure 2.3) and the set of dimensionless cylindrical variables defined by:
$\alpha=\tan ^{-1}\left(-\frac{K x}{K y}\right), \quad \sigma=\frac{1}{2} / 3 a_{0}|K|, \zeta=K_{2} C_{0}$
where, as show in the figure (2.3) K is the perpendicular distance of a point \underline{K} in the B.Z. from a vertical zone edge.

The Hamiltonian matrix given by McClure is

$$
H=\left[\begin{array}{cccc}
E_{1}^{\circ} & 0 & H_{13} & H_{13}^{*} \\
0 & \mathrm{E}_{2}^{\circ} & \mathrm{H}_{23} & -\mathrm{H}_{23}^{*} \\
\mathrm{H}_{13}^{*} & \mathrm{H}_{23}^{*} & \mathrm{E}_{3}^{\circ} & \mathrm{H}_{33} \\
\mathrm{H}_{13} & -\mathrm{H}_{23} & \mathrm{H}_{33}^{*} & \mathrm{E}_{3}^{\circ}
\end{array}\right]
$$

which, we have seen, follows directly from Slonczewski's work, where

$$
\begin{aligned}
& E_{1}^{\circ}=\Delta+\gamma_{1} \Gamma+\frac{1}{2} \nu_{5} \Gamma^{2} \\
& E_{2}^{0}=\Delta-\gamma_{1} \Gamma+\frac{1}{2} \gamma_{5} \Gamma^{2} \\
& E_{3}^{\circ}=\frac{1}{2} \gamma_{2} \Gamma^{2} \\
& H_{13}=2^{-\frac{1}{2}}\left(-\gamma_{0}+\gamma_{4} \Gamma\right) \sigma \exp (i \alpha) \text { and } \Gamma=2 \cos \left(\frac{1}{2} K_{z} C_{o}\right) \\
& H_{23}=2^{-\frac{1}{2}}\left(\gamma_{0}+\gamma_{4} \Gamma\right) \sigma \exp (i \alpha) \\
& H_{33}=\gamma_{3} \Gamma \sigma \exp i \alpha
\end{aligned}
$$

It is clear that to first order in σ (second order does not change the form of the Hamiltonian) and to second order in the Fourier expansion the band structure can be completely described by six
parameters. S.W. did not attempt to derive these parameters from theory but proposed they be obtained from experiment; some of them may be negligible in a given application. We have neglected spin orbit effects at this stage as these have been shown to be very small (G. Dresselhans and M.S. Dresselhans 1965), but of course each of the four bands obtained from this Hamiltonian is two-fold spin degenerate. The secular equation for the above Hamiltonian matrix leads to an unwieldy quartic equation in energy which it is uninstructive to examine. Certain restrictions, however, lead to factorisation into two quadratics.

Multiplying out the secular determinant $|H-E I|=0$ where I is the unit matrix, leads to the expression

$$
\begin{aligned}
& \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}^{2}-\varepsilon_{1} \varepsilon_{2} \gamma_{3}^{2} \Gamma^{2} \sigma^{2}-\varepsilon_{1} \varepsilon_{3}\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}-\varepsilon_{2} \varepsilon_{3}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2} \\
& +\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}\left(-\gamma_{0}^{+} \gamma_{4} \Gamma\right)^{2} \sigma^{4}-\varepsilon_{1} \sigma^{3} \gamma_{3} \Gamma\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \cos 3 \alpha \\
& \quad+\varepsilon_{2} \sigma^{3} \nu_{3} \Gamma\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \cos 3 \alpha
\end{aligned}
$$

where $\varepsilon_{1}=E_{1}^{0}-E_{X} \quad \varepsilon_{2}=E_{2}^{0}-E_{y} \quad \varepsilon_{3}=E_{3}^{O}-E_{\text {. }}^{0}$ This is the equation which must be solved for the energy, E. A numerical solution is possible, but more physical insight is gained by examining approximate solutions. For instance, neglecting γ_{3} leads to :-

$$
\begin{array}{r}
\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}^{2}-\varepsilon_{1} \varepsilon_{3}\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}-\varepsilon_{2} \varepsilon_{3}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}+\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{4} \\
=0
\end{array}
$$

Which factorises into

$$
\left(\varepsilon_{1} \varepsilon_{3}-\left(-\gamma_{0}+z_{4} \Gamma\right)^{2} \sigma^{2}\right)\left(\varepsilon_{2} \varepsilon_{3}-\left(\gamma_{0}+\gamma_{4} \Gamma^{\prime}\right)_{\sigma}^{2}\right)=0
$$

Leading to solutions which are independent of angle α :

$$
\begin{align*}
& E_{1,31}=\frac{1}{2}\left(\mathbb{E}_{1}^{0}+E_{3}^{0}\right) \pm\left[\frac{1}{4}\left(E_{1}^{0}-\mathbb{E}_{3}^{0}\right)^{2}+\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2} \sigma^{2}\right]^{\frac{1}{2}} \\
& E_{2,32}=\frac{1}{2}\left(E_{2}^{0}+E_{3}^{0}\right) \pm\left[\frac{1}{4}\left(E_{2}^{0}-E_{3}^{0}\right)^{2}+\left(y_{0}+\gamma_{4} \Gamma\right)_{\sigma}^{2}\right]^{\frac{1}{2}} \tag{2}
\end{align*}
$$

Now, the reciprocal effective mass tensoris defined by

$$
R_{i j}^{*}=\frac{1}{n^{2}} \frac{\partial^{2} E_{1}}{\partial K_{i} \partial K_{j}}
$$

Thus,

$$
\begin{aligned}
R_{x x}^{*}= & \left. \pm \frac{1}{\hbar^{2}} \frac{\partial^{x}}{\partial K_{x}^{x}}\left[\left(\frac{1}{2} \cdot \frac{3}{4} a_{0}^{2}\right)\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2} 2 K\right)\left(\left(\frac{\Delta E^{0}}{2}\right)^{2}+\left(\gamma_{0}-\gamma_{4}^{\Gamma}\right)^{2} \sigma^{2}\right)^{\frac{1}{2}}\right] \\
= & \pm \frac{1}{h^{2}}\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2} \frac{3}{4} a_{0}^{2}\left[\left(\frac{\Delta E^{0}}{2}\right)^{2}+\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2} \frac{3}{4} a_{0}^{2} K_{y}^{2}\right] /\left[\left(\frac{\Delta E^{0}}{2}\right)^{2}\right. \\
& \left.+\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2} \sigma^{2}\right]^{\frac{3}{2}}
\end{aligned}
$$

where $\Delta E^{\circ}=E_{1}^{0}-E_{3}^{\circ}$ or $E_{2}^{0}-E_{3}^{\circ}$ depending on which surface the mass tensor is evaluated. The upper sign refers to the upper of two conjugate hyperboloids. For $R_{y y}^{*}, K_{y}^{2}$ should be replaced by K_{x}^{2}. For $R_{x y}^{*}$ the term ΔE° does not appear in the numerator, K_{y}^{2} is replaced by $K_{x} K_{y}$ and the signs are written \mp :

We see that the effective mass depends on K_{z} (through Γ and ΔE°); and also on the distance σ from the zone edge. However, for small enough σ one obtains paraboloidal bands and constant effective mass for a given value of K_{z} :-

$$
\begin{aligned}
& R_{x x}^{*}=R_{y y}^{*} \simeq \pm \frac{3\left(y_{0} \gamma_{4} \Gamma\right)^{2} a_{0}^{2}}{2_{\hbar}{ }^{2} \Delta E^{0}} \\
& R_{x y}^{*}=0
\end{aligned}
$$

Inverting this tensor to give the effective mass tensor ;

$$
M_{i j}^{*}=\left(R^{*^{-1}}\right)_{i j}=\frac{(\operatorname{adj} R)_{i j}}{|R|}
$$

leads to $\mathrm{m}^{*}=\left[\begin{array}{lll}\frac{1}{R_{x x}^{*}} & 0 & 0 \\ 0 & \mathrm{R}_{\mathrm{xx}}^{*} & 1 \\ 0 & 0 & \mathrm{R}_{\mathrm{zz}}^{*}\end{array}\right]$ where we have invoked crystal
symmetry ($6 / \mathrm{mm}$) to give $R_{i z}=R_{z i}=0$ (where $i=x, y$). [\quad See Burs, 1964]. Finally, then, we have an effective mass for directions parallel to the basal plane:

$$
1 / m_{a}^{*}\left(K_{z}\right)= \pm \frac{3\left(y_{0}-K_{\Delta} \Gamma\right)^{2} a_{0}^{2}}{2_{n}^{2} \Delta E^{0}}
$$

The energy-wave number relationships for these four bands are quite complicated surfaces which can be envisaged by examination of figure 2.4.

Here an attempt has been made to indicate the variation of the bands with small excursions from the K_{z} axis (HKH) because this is all-important in determining where electrons and holes can exist. However, before examining this question further, we shall list the parameters defining the energy surfaces show, indicating their main effects and where they arise in the theory. The latest values assigned by Dresselhams and Maveroides (1964) are quoted here, but are not $p \%$ completely independent of the method by which they were measured so various earlier experimental determinations will be discussed later.
γ_{0}. This is the same as Wallace's γ_{0} and is most important in determining the dependence of energy on σ (i.e. $|\mathrm{K}|$). It is the only parameter in the single-layer case and represents overlap between wave functions centred on nearest neighbour A and B atoms. (2.8 eV).
γ_{1}. Represents the main splitting of the singly-degenerate bands caused by the interlayer interaction between wave functions on nearest A atoms. (0.39 eV).
$\boldsymbol{\gamma}_{2}$. Determines the amplitude of the variation of the E_{3} bands with K_{z} and so is responsikle for the band overlap. It arises from both the next-nearest layer interaction between B atoms and from $\sigma-\Pi$ coupling, but these two effects almost cancel. It is no w thought that γ_{2} is + ve. $(+0.016 \mathrm{eV})$.
$\boldsymbol{\gamma}_{3}$. Arising from nearest layer interactions, this gives rise to anisotropy in the xy plane and to extra degeneracies found by Johnston (see below). Wallace neglected this term although it appeared in his Hamiltonian. (0.15 eV).
γ_{4}. Although this does not have a qualitative effect on the band structure, it could give rise to appreciable (10% or so) quantitative effects. It would be the same as γ_{3} if the orbitals on A and B atoms were identical and was assumed to be $\simeq \gamma_{3}$ in the absence of experimental evidence. However, Dress. and Mavr. estimate $\gamma_{4}=-0.20 \mathrm{eV}$.
$\boldsymbol{\gamma}_{5}$. This is essentially the coefficient of the second term in the Fourier expansion along K_{z} and is often neglected. In the absence of an experimental value, it is assumed to be $\simeq \gamma_{2}(0.016 \mathrm{eV})$.
Δ Reflects the fact that A and B atomic sites are situated in different crystalline fields and also involves nextnearest layer overlap integrals. It causes a separation in the two sets of levels at $K_{z}= \pm \pi / C_{o}$. (-0.02eV).

In practice, one cannot assume that the sample is entirely free from impurities so the Fermi level (somewhere between 0 and $2 \gamma_{2}$) must be regarded as another unknown parameter. However, on the assumption of pure graphite (equal numbers of vectrons and holes) Dresselhans and Mavroides have calculated $\mathrm{E}_{\mathrm{f}} \simeq 0.019 \mathrm{eV}$.

One must now decide where in the Brillouin Zone the holes and electrons must lie with these values of the band parametars. We still neglect γ_{3}. By writing equations 2.1.3(2) for small values of σ it is easy to see that the variations of the energy levels with σ are as indicated in figure 2.3. For instance, the E_{1} level increases in energy with a small excursion from the zone edge (a small increase in σ) at constant K_{z} near $K_{z} \simeq$ zero but decreases in energy for a similar excursion made near $K_{z}= \pm \pi / C_{o}$. It is not so obvious at first sight where the change-over in behaviour takes place. We examine E_{1} first and then ε_{3} :

From 2.1.3(2) for small σ :
$\left.E_{1} \simeq \frac{1}{2}\left(E_{1}^{0}+E_{3}^{0}\right)+\frac{\left(E_{1}^{0}-E_{3}^{O}\right)}{2}\right)\left[1+\frac{1}{2} \frac{4\left(\nu_{0}-\gamma_{4} \Gamma\right)^{2}}{\left(E_{1}^{O}-E_{3}^{0}\right)} \sigma^{2}\right]$

$$
=E_{1}^{0}\left[1+\frac{\left(\gamma_{0}-x_{4} \Gamma\right)^{2} \sigma^{2}}{E_{1}^{0}\left(E_{1}^{0}-E_{3}^{0}\right)}\right]
$$

Now, the σ-variation changes its nature (towards or away from the K_{z}-axis) when the slope of this linear relation between E_{1} and σ^{2} ..
changes sign. Notice the constant inside the bracket has been made independent of K_{z}. Thus, the σ-variation changes its nature when $E_{1}^{0}\left(E_{1}^{0}-E_{3}^{0}\right)=0$ i.e. $E_{1}^{0}=0$ or $E_{1}^{0}=E_{3}^{0}$. So, as K_{z} is increased from zero, where E_{f} increases positively away from the K_{z}-axis with a small σ-excursion, towards π / C_{0}, the E_{1} behaviour will change where E_{1}^{0} crosses E_{3}^{0} and so beyond here E_{1} will decrease (towards the K_{z}-axis) with increase in $\sigma \cdot$ At $E_{1}^{\circ}=0$ the nature again changes so E_{j} will once more increase away from the axis with small increase in σ, but its sign also changes here so this represents a continuation of previous behaviour, viz. a downward change in E_{1} with σ. Thus, E_{1} changes its σ-variation from an increase in E with σ to a decrease in E with σ as K_{z} is increased through the value where E_{1}^{0} and E_{3}^{0} intersect. Similarly for E_{3} :

$$
\begin{aligned}
E_{31} & \simeq E_{3}^{0}-\frac{1}{4} \frac{\left(\gamma_{0}-\gamma_{4}^{\Gamma}\right)^{2} \sigma^{2}}{\left(E_{1}^{0}-E_{3}\right)^{2}} \\
& =E_{3}^{0}\left[1-\frac{1}{4}\left(\frac{\left.\gamma_{0}^{-} \gamma_{4}^{I}\right)^{2} \sigma^{2}}{E_{3}^{0}\left(E_{1}^{0}-E_{3}^{0}\right)^{2}}\right]\right.
\end{aligned}
$$

So we see E_{31} changes its nature from E - inoreasing at $K_{z}=0$ (easily verified) to $E-$ decreasing with small excusions of σ as K_{z} makes $\mathrm{E}_{1}^{0}-\mathrm{E}_{3}^{\mathrm{O}}$ change sign, i.e. as K_{z} increases through the point of intersection of E_{1}° and E_{3}°.

ENERGY GANDS ALONG A ZONE EDGE HKH. Energy increases and decreases
a short distance from the edge are indicated by arrows.
E_{32} remains E-decreasing over the whole range $-\pi / C_{0} \leq K_{z} \leq \pi / \sigma_{0}$. We can now see that the curve $\mathrm{H}_{3} \mathrm{CK}_{6} \mathrm{JH}_{3}$ represents the bottom of the conduction band and $\mathrm{H}_{1} \mathrm{CK}_{6} \mathrm{JH}_{1}$ the top of the valence band. With the Fermi level as shown we have holes in the central region below $\mathrm{LK}_{6} \mathrm{M}$ and electrons above the two end curves $\mathrm{H}_{3} \mathrm{GL}, \mathrm{MJH}_{3}$:

This is clear if we note the following properties of the bands. The effective mass tensor has only diagonal components $m_{i i}^{*}$ for small enough σ and these have the same sign as the corresponding reciprocal mass tensor components $R_{i i}^{*}$. Now, by differentiating the expressions for the energy levels, E_{i}, twice with respect to the components of K (as we have demonstrated above in the case of $\frac{\partial^{2}}{\partial K_{x} \partial K_{x}}$) and also differentiating once with respect to σ, we can see that the sigm of $\frac{\partial E}{\partial \sigma}$ is the same as that of $R_{x x}^{*}\left(=R_{y y}^{*}\right)$. Thus, we have finally that the sign of $\frac{\partial E}{\partial \sigma}$ is the same as the sien of $m_{x x}^{*}\left(=m_{y y}^{*}\right)$ and so the σ-variation of a particular band indicates the electron or hole nature of the band; + ve means the band is electronic in nature at the given value of K_{z}. This arises from the particular form of the bands near to the vertical zone edge. We see immediately that holes are located on the E_{3} surface below the line $L K_{6} M$, which is the cross-section taken where the band reaches its highest point. A complication arises near the point C, however, where the bands E_{1} and E_{3} are degenerate. Group theory does not require more than the two-fold $E_{31}-E_{32}$ degeneracy at
this point on the zone edge so we have a case of so-called "accidental" degeneracy. To examine the probable conseq 1 ences, it is convenient first to lift the degeneracy of the E_{3} band by means of spin-orbit coupling. This effect is small, but enables one to draw E_{31}, E_{32} separately and thus see what is happening. We now have the situation shown in Figure 2.5A.

However, the interaction between these bands at this point will cause the wave-functions to mix and prevent their crossing (see Slater, Vol. II, p.270, 1967), leading to a situation shown in Figure 2.5B.

Putting in the σ-variation of energy in the usual way enables us to see immediately that there are two energy surfaces which can give rise to electron behaviour near the Fermi energy, $L^{C H} H_{3}$ and the new one DCH_{3} which gives rise to a pocket of electrons. Indeed, in the presence of spin-orbit coupling, when the H_{3} band splits all the way to the hexagonal zone face, the pocket is completely isolated. The Fermi surface is illustrated in Figure 2.6 for the case with no spinorbit coupling where the pockets may be translated by the reciprocal lattice vector \underline{K}_{4} to join on to the ends of the electron surfaces. This join is perfectly smooth because of time reversal degeneracy on the horizontal zone faces (MoClure, IBM, $8,258,1964$).

The inclusion of the γ_{3} in the Hamiltonian leads to the additional structure shown in Figures 2.6 and 2.7), destroying the rotational symmetry of the energy bands so far considered. Although it is

FIGURE 2.6
Eermi surface with no
SPN-ORGIT COWPLINE

no longer possible to factor the secular equation for general values of α, σ, this is possible for special values of $\alpha\left(=\frac{1}{3} n \pi\right)$. Equation 2.1.3(1) reduces to that expression with $\cos 3 a=(-1)^{n}$ which immediately factorises into two quadratics;

$$
\left(\varepsilon_{1} \varepsilon_{3}+\varepsilon_{1} \nu_{3} \Gamma \sigma(-1)^{n}-\left(-\nu_{0}+\nu_{4} \Gamma\right)^{2} \sigma^{2}\right)\left(\varepsilon_{2} \varepsilon_{3}-\varepsilon_{2} \nu_{3} \Gamma_{\sigma}(-1)^{n}-\left(\nu_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}\right)=0
$$

Substituting for $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ givss two quadratics in E which can be solved, leading finally to the solutions:

$$
\begin{align*}
& \mathrm{E}_{1,31}=\frac{1}{2}\left(\mathrm{E}_{1}^{0}+\mathrm{E}_{3}^{0}+\gamma_{3} \Gamma \sigma \cos 3 \alpha\right) \pm\left[\frac{1}{4}\left(\mathrm{E}_{1}^{0}-\mathrm{E}_{3}^{0}-\gamma_{3} \Gamma \sigma \cos 3 \alpha\right)^{2}+\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2} \sigma^{2}\right]^{\frac{1}{2}} \tag{3}\\
& \mathrm{E}_{2,32}=\frac{1}{2}\left(\mathrm{E}_{2}^{0}+\mathrm{E}_{3}^{0}-\gamma_{3} \Gamma \sigma \cos 3 \alpha\right) \pm\left[\frac{1}{4}\left(\mathrm{E}_{2}^{0}-\mathrm{E}_{3}^{0}+\gamma_{3} \Gamma \sigma \cos 3 \alpha\right)^{2}+\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}\right]^{\frac{1}{2}} \\
& \left(\alpha=\frac{1}{3} n \pi\right)
\end{align*}
$$

These equations can be used to obtain the cross-section of the FermiSurface in the $K_{z}-K_{y}$ plane $(\alpha=0)$ for, putting $\alpha=0, E=E_{f}$ we have, for examples

$$
\left(\nu_{0}-\nu_{4} \Gamma\right)^{2}=\mathrm{E}_{f}^{2}+\mathrm{E}_{1}^{0} \mathrm{E}_{3}^{0}-\mathrm{E}_{\mathrm{f}}\left(\mathrm{E}_{1}^{0}+\mathrm{E}_{3}^{0}+\nu_{3} \Gamma_{\sigma}\right)+\mathrm{E}_{1}^{0} \gamma_{3} \Gamma_{\sigma}
$$

- which gives σ in terms of K_{z} (contained in Γ). Putting $\alpha=3 x \frac{\pi}{3}$
leads to the same equation with the sign attached to γ_{3} changed, so we can find the cross section of the Fermi-Surface in both halves of the $K_{z}-K_{y}$ plane. The Figure 2.7 (after MoClure) shows the cross sections
for the cases $\gamma_{3}=0$ and $\gamma_{3} \neq 0$ superimposed to emphasize the asymmetry introduced by this parameter.

Obtaining the $K_{x}-K_{y}$ cross sections is difficult because the secular equation has to be solved for general α and with γ_{3} included. This can be done (in the case E_{1}, E_{2} are well separated from E_{3}) but note that this will still leave the exact structure in the region near C (Figure 2.4) in some doubt.

Specifically, we aasume $\varepsilon_{1} \varepsilon_{2} \gg \varepsilon_{3}, E$, which reduces equation 2.1.3(1) to

$$
\begin{aligned}
& \mathbb{E}_{1}^{\circ} \mathbb{E}_{2}^{0} \varepsilon_{3}^{2}-E_{1}^{0} \mathbb{E}_{2}^{0} \gamma_{3}^{2} \Gamma^{2} \sigma^{2}-E_{j}^{0} \varepsilon_{3}\left(\gamma_{0}+\gamma_{4} \Gamma\right)_{\sigma}^{2} \sigma^{2}-E_{2}^{0} \varepsilon_{3}\left(-\gamma_{0}+\gamma_{4}^{\Gamma}\right)^{2} \sigma^{2} \\
& -E_{1}^{0}\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{3} \gamma_{3} \Gamma \cos 3 \alpha+E_{2}^{0}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{3} \gamma_{3} \Gamma \cos 3 \alpha \\
& \\
& \quad+\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{4}=0
\end{aligned}
$$

Substituting for $\varepsilon_{3}=\varepsilon_{3}^{\circ}-\mathbb{E}$ leads to a quadratic in E :$E^{2} E_{1}^{O} E_{2}^{0}+E\left[-2 E_{1}^{0} E_{2}^{O} E_{3}^{0}+E_{1}^{0}\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}+E_{2}^{0}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}\right]$ $E_{1}^{0} E_{2}^{0} E_{3}^{2}-E_{1}^{0} E_{2}^{0} \gamma_{3}^{2} \Gamma^{2} \sigma^{2}-E_{1}^{0} E_{3}^{0}\left(\nu_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}-E_{2}^{0} E_{3}^{0}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2}$ $+$

$$
\begin{gathered}
-E_{1}^{0}\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{3} \gamma_{3} \Gamma \cos 3 \alpha+E_{2}^{0}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2}{ }_{\sigma}^{3} \Gamma \cos 3 \alpha \\
+\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{4}
\end{gathered}
$$

$$
=0
$$

This can be solved and simplified to give

$$
\begin{aligned}
& E=E_{3}^{0}-\frac{1}{2 E_{2}^{\circ}}\left(\gamma_{0}+\omega_{4} \Gamma\right)^{2} \sigma^{2}-\frac{1}{2 \mathrm{E}_{1}^{\mathrm{O}}}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{2} \\
& \begin{array}{c}
\pm\left\{\frac{1}{4} \frac{\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{4}}{E_{2}^{02}} \sigma^{4}+\frac{1}{4} \frac{\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{4}}{E_{1}^{02}} \sigma^{4}-\frac{1}{2} \frac{1}{E_{1}^{0} E_{2}^{o}}\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2} \sigma^{4}\right. \\
+\gamma_{3}^{2} \Gamma^{2} \sigma^{2}
\end{array} \\
& \left.+\left(\frac{-1}{E_{1}^{0}}\left(-\gamma_{o}^{+} \gamma_{4} \Gamma\right)^{2}+\frac{1}{E_{2}^{0}}\left(\gamma_{o}^{+\gamma_{4}} \Gamma\right)^{2}\right) \gamma_{3} \sigma^{3} \Gamma \cos 3 \alpha\right\}^{\frac{1}{2}}
\end{aligned}
$$

Finally, this can be written :

$$
\begin{equation*}
E=E_{3}^{0}+A \sigma^{2} \pm\left\{B^{2} \sigma^{4}-2 \gamma_{3} \Gamma \sigma^{3} B \cos 3 \alpha+\gamma_{3}^{2} \Gamma^{2} \sigma^{2}\right\}^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

where $A=\frac{1}{2}\left\{\frac{\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}}{-E_{1}^{0}}+\frac{\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}}{-E_{2}^{0}}\right\}$

$$
\mathrm{B}=\frac{1}{2}\left\{-\frac{\left(-\gamma_{0}+\gamma_{4} \Gamma\right)^{2}}{-\mathrm{E}_{1}^{0}}+\frac{\left(\gamma_{0}^{+} \gamma_{4} \Gamma\right)^{2}}{-\mathrm{E}_{2}^{0}}\right\}
$$

Apart from the terms $-E_{1}^{0},-E_{2}^{0}$ in the denominators of A and B (McClure has $E_{3}^{\circ}-E_{1}^{\circ}, E_{3}^{O}-E_{2}^{O}$ respectively) this result is identical to that obtained by McClure (IBM, 1964) for levels near E_{3} using a "perturbation treatment" under the restriction ${ }^{\prime} E_{1}$ and E_{2} are well
separated from E_{3} ". We note here that the definition of A and B is wrong by factors of σ in the 1964 paper, but is given correctly in McClure's 1957 paper. The latter gives the wrong sign to the $\cos 3 \alpha$ term, however.
2.1.4 CROSS-SECTIONAL AREAS OF THE FFRMI-SURFACE

It is now fairly straightforward to derive estimates of crosssectional areas of the Fermi surface in the $x-y$ plane, for if we put $\gamma_{3}=\gamma_{4}=\gamma_{5}=0$ then equation 2.1.3(4) reduces to

$$
\sigma^{4}\left(A^{2}-B^{2}\right)-2 \sigma^{2}\left(E_{f}^{0}-E_{3}^{0}\right) A+\left(E_{f}-E_{3}^{0}\right)^{2}=0
$$

- which can be solved for σ^{2} to give the result below.

$$
2 r^{2} \nu_{0}^{2}=\left(E_{f}-E_{3}^{0}\right)\left[2 E_{f}-\left(E_{1}^{0}+E_{2}^{0}\right) \pm\left(E_{1}^{0}-E_{2}^{0}\right)\right]
$$

Since the LHS is always toe we must take the positive sign for electrons and the negative sign for holes, so:

$$
\begin{aligned}
\sigma_{e}^{2} & =\frac{1}{\nu_{o}^{2}}\left(E_{f}-E_{3}^{0}\right)\left(E_{f}-E_{2}^{0}\right) \\
\sigma_{h}^{2} & =\frac{1}{\nu_{o}^{2}}\left(E_{f}-E_{3}^{0}\right)\left(E_{f}-E_{1}^{0}\right)
\end{aligned}
$$

These give:

$$
\sigma_{e}^{2}=\frac{1}{\gamma_{0}^{2}}\left\{\frac{E_{f}^{2}}{2}-E_{f}\left(\Delta-\left(\gamma_{1}-\frac{1}{2} \gamma_{2} \Gamma_{e}\right) \Gamma_{e}\right)+\left(\Delta-\gamma_{1} \Gamma_{e}\right)\left(\frac{1}{z \gamma_{2}} \Gamma_{e}^{2}\right)\right\} \text { for electrons }
$$

and

$$
\sigma_{\mathrm{h}}^{2}=\frac{1}{\gamma_{0}}\left\{\mathrm{E}_{\mathrm{f}}^{2}-\mathrm{E}_{\mathrm{f}}\left(\Delta+2\left(\nu_{1}+\nu_{2}\right)\right)+\left(\Delta+2 \gamma_{1}\right)\left(2 \nu_{2}\right)\right\} \quad \text { for holes }
$$

Γ_{e} is the value of Γ which maximises the electron cross-sectional area A_{e} and hence σ_{e}^{2} :

$$
\Gamma_{e}=\frac{1}{3 \gamma_{1}}\left(\Delta-E_{f}+\left[\left(\Delta-E_{f}\right)^{2}+6 \gamma_{1}^{2} / \gamma_{2} E_{f}\right]^{\frac{1}{2}}\right)
$$

Finally, we note that on the hexagonal zone faces ($\Gamma=0$) the cross-sectional area is given by

$$
\sigma_{m}^{2}=\frac{1}{\gamma_{0}^{2}} \quad E_{f}\left(E_{f}-\Delta\right)
$$

Actual areas in K-space A are obtained from the above ${ }_{o}^{2}$ by using

$$
A=\pi K^{2}=\pi\left(\frac{2}{\sqrt{3 a_{0}}}\right)^{2} \sigma^{2}, \text { where } a_{0}=2.46 \AA .
$$

The above results are quoted in Anderson et al (1968) but they give no indication of the derivation. They also state formulae for F. S. volumes in the same approximation.

For the more interesting case $\nu_{3} \neq 0$ a numerical solution of 2.1.3(4) is necessary but we can obtain a useful result by assuming that γ_{3} merely introduces a trigonal perturbation in σ. Assume $\sigma=\sigma_{0}(1+\eta)$
where $\eta=\varepsilon \cos 3 \alpha, \eta, \varepsilon$ are to be found and σ_{0} is the solution found above for the case $\gamma_{3}=0$. Substituting back into 2.1.3(4) and using the fact that σ_{0} satisfies this for $\gamma_{3}=0_{9}$ we obtain a linear expression in 2

$$
\eta=-\gamma_{3} \Gamma \cos 3 \alpha\left[\frac{\left(\gamma_{0}+\gamma_{4} \Gamma\right)^{2}}{E_{3}-E_{2}}-\frac{\left(\gamma_{0}-\gamma_{4} \Gamma\right)^{2}}{E_{3}-E_{1}}\right] \sigma_{0} /_{D}
$$

where

$$
\left.\begin{array}{rl}
D & =4 \frac{\left(\nu_{0}+\nu_{4} \Gamma\right)^{2}\left(\nu_{0}-\gamma_{4} \Gamma\right)^{2}}{\left(E_{3}-E_{2}\right)}\left(E_{3}-E_{1}\right) \\
\sigma_{0}
\end{array}+3 \nu_{3} \Gamma \cos 3 \alpha\left[\frac{\left(\nu_{0}+\nu_{4} \Gamma\right)^{2}}{E_{3}-E_{2}}-\frac{\left(\nu_{0}-\nu_{4} \Gamma\right)^{2}}{E_{3}-E_{1}}\right] \sigma_{0}\right)
$$

Recall here that the above equation 2.1.3(4) is not valid when $E_{1,2}$ are close to E_{3} so there are no critical points to examine. Putting in typical values for the parameters, we find the first and third terms dominate D making D practically independent of α so we have finally :
$\sigma=\sigma_{0}(1+\varepsilon \cos 3 \alpha)$ where $\varepsilon=-\nu_{3} \Gamma_{0}\left[\frac{\left(\nu_{0}+\nu_{4} \Gamma\right)^{2}}{E_{3}-E_{2}}-\frac{\left(\nu_{0}-\nu_{4} \Gamma\right)^{2}}{E_{3}-E_{1}}\right] / D \quad \approx 0.01$

A simple calculation now demonstrates the effect that γ_{3} has on the oross-sectional area of the Fermi surface normal to the c-axis
for this area (in σ-units) is

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{2 \pi} \sigma^{2} d \alpha=\frac{3}{2} \sigma_{0}^{2} \int_{0}^{2 \pi / 3}(1+\varepsilon \cos 3 \alpha)^{2} \mathrm{~d} \alpha \\
& =A_{0}\left(1+\frac{1}{2} \varepsilon^{2}\right) \quad \text { where } A_{0} \text { is the cross sectional area }
\end{aligned}
$$

$$
\text { when } \quad v_{3}=0
$$

Therefore γ_{3} produces a negligible change in the crosssectional area of the Fermi surface and will not measurably influence DHVA-type oscillation periods. Altematively, measurement of periods will not give a reliable estimate of $\gamma_{3}{ }^{\circ}$

2.1.5. Values of Band Parameters

Finally, values quoted in the literature for the band parameters appearing in the Sloncewski-Welss model will be collected together.

The review by Hearing and Krowski (1960) on the Band Structure of Graphite Crystals contains details of earlier determinations. At that time there were two schools of thought concerning the magnitude of $\boldsymbol{\gamma}_{1}$. Heering and Wallace proposed a small (40.005 eV) value of ν_{1} on the basis of constant susceptibility results. The analysis yields $\boldsymbol{\gamma}_{0} \simeq 2.6 \mathrm{eV}$ and gives roughly the correct specific heat. However, the small ν_{1} model can account for the presence of holes only at high temperatures, whereas Hall effect and cyclotron resonance experiments
indicate the simultanecua presence of electrons and holes, the latter strongly suggesting equal concentrations of each (Nozieres, 1958). In the overlap model, ν_{o} is determined by the susceptibility to be $\simeq 2.6 \mathrm{eV}$, which is in grod agreement with theoretical predictions (Lomer, Johnston; 3 eV) but y_{1} is calculated from the ratio $\frac{\nu_{0}^{2}}{y_{1}}$ whose value of 25 eV is given by DHVA, by cyclotron resonance and by electronic specific heat measurements. This gives $\mu_{1} \simeq 0.36 \mathrm{eV}$, much larger than the value indicated by the susceptibility experiments. Independent estimates of γ_{1} give 0.32 eV (electron energy loss, Ichikawa, 1958), 0.14 eV (infra-red absorption, Boyle and Nozieres, 1958). Later confirmation that ν_{1} must, be large came from the work of soule, McClure and Smith (1964) in which they showed that both electron and hole Fermi surfaces are closed sheets. This is consistent with the overlap model whereas the small ν_{1} model leads to an extended Fermi surface.

The DHVA effect yields a value of 0.016 eV for ν_{2} the magnitude of which agrees with that given by Boyle and Nozieres (0.02 eV). Nozieres' analysis of cyclotron resonance data confirms the positive sign and a rough check is afforded by identifying the knee of the resistivity-temperature curve at $120^{\circ} \mathrm{K}$ with a carrier degeneracy temperature. Early determinations of Δ were uncertain in sign. Carter and Krumhanslestimate 0.01 eV while McClure's DHVA analysis indicated 0.02 eV and Dresselhaus and Mavroides obtain -0.02 eV . However, later experiments seem to agree on a larger negative value; Soule, McClure and Smith calculate -0.12 eV and McClure and Yafet obtain -0.1 eV .

Johnston estimated γ_{3} to be 0.13 eV and γ_{4} was assumed equal to γ_{3} until the g-shift in electron spin resonance (McClure and Yafet, 1962) gave $\left|\gamma_{4}\right| \sim 0.28$ eV and the 1964 magnetoreflection experiments of Dresselhans and Mavroides (on pyrolytic graphite) led to $\gamma_{3}=0.145 \mathrm{eV}$ and $\gamma_{4}=-0.2 \mathrm{eV}$. So far no experiment has yielded a value of γ_{5} and it is assumed $\gamma_{5}=\gamma_{2}$ (McClure, 1960, Indue, 1962).

2.2 GALVANOMAGNEILC PROPERTIES.

Introduction.

In this section we shall be concerned with understanding the galvanomagnetic effects in graphite, notably the magnetic-field and temperature-variation of the magnetoconductivity tensor $\sigma(\mathbb{H})$ and its inverse $\rho(H)$ with a view to correlating these experimental data with the SW band model. Broadly speaking, the phenomena can be divided between low field, high temperature effects; the classical effects, and quantum effects occurring at high magnetic fields and low temperatures. The weak field phenomena are strongly influenced by interactions between charge carriers and the lattice, e.g. the nature of the scattering process, whereas in strong magnetic fields certain transport processes become dependent upon charge carrier character istics alone, such as density and Fermi energy. Section 2.3 will be devoted to the quantum effects.

2.2.1 Phenomenological Treatment.

One can write a relation between electric and thermal fields and fluxes in the following form:

$$
\begin{align*}
& J_{i}=\sigma_{i j}(H) \varepsilon_{j}^{*}+B_{i j}(H) \frac{\partial}{\partial x_{j}}\left(\frac{1}{T}\right) \tag{1}\\
& Q_{i}=P_{i j}(H) \varepsilon_{j}^{*}+K_{i j}(H) \frac{\partial}{\partial x_{j}}\left(\frac{1}{T}\right)
\end{align*}
$$

where J and Q are the electric and thermal currents, T is the temperature and $\underline{\varepsilon}^{*}$ is the electrothermal fie?.d which is essentially the gradient of the electrochemical potential, $\mu ; \quad \varepsilon^{*}=\frac{-1}{q} \nabla \mu$. The externally applied electrostatic field, ε, is related to the electrothermal field by $\underline{\varepsilon}^{*}=\underline{\varepsilon}-\frac{\nabla \mu_{c}}{q}$ - where q is the charge of the carriers and μ_{c} is the chemical potential of the charge carriers.

Now experimentally it is more usual to define the current flows than the electric and thermal force-fields, so we invert these relations to give:

$$
\begin{align*}
& \varepsilon_{m}^{*}=P_{m n}(H) J_{i n}+\alpha_{m n}(H) \frac{\partial}{\partial x_{n}} T \tag{2}\\
& Q_{m}=\pi_{m n}(H) J_{n}-K_{m n}(H) \frac{\partial}{\partial x_{n}} T
\end{align*}
$$

- where the arrays p, α, π, K are known as the resistivity, the thermoelectric power, the Peltier coefficient, and the thermal conductivity respectively.

For an isothermal, uniform conductor these reduce to $\underline{\varepsilon}^{*}=\underline{\varepsilon}$, $Q_{i}=\pi_{i j}{ }_{j}{ }^{J}, \quad E_{i}=P_{i j}{ }^{J}{ }_{j}$, where $\rho=\sigma^{-1}$ and $\pi=P_{\sigma}^{-1}$.

The general thermodynamic relations of Onsager apply to these tensors :

$$
\sigma_{i j}(\underline{H})=\sigma_{j i}(-\underline{H}) \quad \rho_{i j}(H)=\rho_{j i}(-\underline{H}), \text { etc. }
$$

At first sight, one is still left with a large number of independent tensor elements to be obtained experimentally, but the requirements of crystal symmetry help to reduce this number. By Neumann's principle, the above tensors must be invariant under the symmetry operations of the point group of the crystal structure. Graphite has the point group $6 / \mathrm{mmm}$ which consists of the symmetry elements 1 , six of $21,2_{z}, \pm 3_{z}, \pm 6_{z}$, together with all of these multiplied by the inversion operation $\overline{\bar{\gamma}}$, making 24 in all. It is easily seen that second order tensor effects are isotropic in the basal plane for zero magnetic field and this leads immediately to drastic restrictions on the components

$$
\text { Thus: } \quad \sigma_{x x}=\sigma_{y y}
$$

$$
\text { Also, } \sigma_{x y}=\sigma_{y x}=\sigma_{x z}=\sigma_{z x}=\sigma_{y z}=\sigma_{z y}=0
$$

Now, when a magnetic field is applied, the symmetry of the system (crystal plus magnetic field) is considerably reduced and in general $\sigma(H)$ will have nine non-zero components. For small magnetic fields the tensor components can be expanded in terms of magnetic field components, H_{i}, with field-independent coefficients a
$\sigma_{i j}(H):=a_{i j}+a_{k i j} H_{k}+a_{k l i j} H_{k} H_{l}+a_{k i m i j} H_{k} H_{l} H_{m}+\ldots$
(see Kao and Katz and Birss). The coefficients must allow σ to obey the Onsager relations and are further restricted by crystal symmetry

From the former we have $a_{i j}=a_{j i}, a_{k i j}=-a_{k j i}, a_{k I_{i j}}=a_{k I_{j i}}$. Following the method of Birrs (1964) we find for the point group 6/mmm:

$$
\begin{align*}
& \sigma_{11}=a_{11}+\left(a_{1122}+a_{1221}+a_{1212}\right) H_{1}^{2}+a_{1122} H_{2}^{2}+a_{3311} H_{3}^{2} \\
& \sigma_{22}=a_{11}+a_{1122} H_{1}^{2}+\left(a_{1122}+a_{1221}+a_{1212}\right) H_{2}^{2}+a_{3311} H_{3}^{2} \\
& \sigma_{33}=a_{33}+a_{1133} H_{1}^{2}+H_{2}^{2} \\
& \sigma_{12}=a_{312} H_{3}+\left(a_{1212}+a_{1221}\right) H_{1} H_{3}^{2} \\
& \sigma_{23}=a_{123} H_{1}+\left(a_{1313}+a_{3113}\right) H_{2} H_{3} \\
& \sigma_{31}=-a_{132} H_{2}+\left(a_{1331}+a_{3131}\right) H_{1} H_{3} \tag{4}\\
& \sigma_{13}=-a_{123} H_{2}+\left(a_{1313}+a_{3113}\right) H_{1} H_{3} \\
& \sigma_{32}=a_{132} H_{1}+\left(a_{1331}+a_{3131}\right) H_{2} H_{3} \\
& \sigma_{21}=-a_{312} H_{3}+\left(a_{1221}+a_{1212}\right) H_{1} H_{2}
\end{align*}
$$

Now, obviously $a_{\text {kIij }}=a_{\text {lkij }}$, and Onsager's relations give $a_{1212}=a_{1221}, a_{1313}=a_{1331}, a_{3113}=a_{3131} a_{123}=-a_{132}$ so there are 10 independent coefficients to second order in magnetic field, 4 to first order, and only 2 in zero field as was mentioned above.

It is interesting to consider the case when the magnetic field is confined to the c-axis direction $H=(Q O, H)$. The conductivity tensor now reduces to

$$
\sigma_{i j}(H)=\left(\begin{array}{c}
\left(a_{11}+a_{3311} H^{2}\right) \tag{5}\\
\left(-a_{312} H\right) \\
0
\end{array}\right.
$$

To obtain the resistivity tensor we use the fact that p is the inverse of σ the above expressions for $\sigma_{i j}$ apply to any second rank polar tensor property of graphite but to relate the coefficients a of the resistivity tensor ρ to those of its inverse, the conductivity tensor σ, we use the relation $\sigma_{i k} \rho_{k j}=\delta_{i j}$. These nine equations can be solved for a general (small) field but we restrict ourselves to the case $H=(0, O, H)$ which leads tc

$$
\begin{align*}
& \rho_{11}=\rho_{22}=\frac{\sigma_{11}}{\sigma_{11}^{2}+\sigma_{12}^{2}}, \rho_{33}=\frac{1}{\sigma_{33}^{\prime}}, \rho_{31}=\rho_{32}=\rho_{13}=\rho_{23}=0 \tag{6}\\
& \rho_{21}=-\rho_{12}=\frac{\sigma_{12}}{\sigma_{11}^{2}+\sigma_{12}^{2}}
\end{align*}
$$

- giving to second order in magnetic field:

$$
\rho_{i j}(H)=\left(\begin{array}{ccc}
{\left[\frac{1}{a_{11}}-\left(\frac{a_{3311}}{a_{11}}+\frac{a_{312}^{2}}{a_{11}}\right) H^{2}\right]} & \left(-\frac{a_{312}}{a_{11}} H\right) & 0 \\
\left(-\rho_{12}\right) & \left(\rho_{11}\right) & \\
0 & 0 & \left(\frac{1}{a_{33}}-\left(\frac{a_{3,33}^{2}}{a_{33}^{2}}\right) H^{2}\right)(7
\end{array}\right)
$$

- which is of the same form as $\sigma_{i j}(H)$.

We can now see that the Hall coefficient is given by $-\left(\frac{a_{312}}{a_{11}}\right)$ and the transverse magnetoresistance, $M_{T}^{a}=\frac{\rho_{x x}(H)-\rho_{x x}(0)}{\rho_{x x}(0)}$, by

$$
M_{T}^{a}=-\left(\frac{a_{3311}}{a_{11}}+\frac{a_{312}^{2}}{a_{11}^{2}}\right) H^{2}
$$

The longitudinal c-axis magnetoresistance, $M_{L}^{c}=\frac{\rho_{z Z}(H)-\rho_{z z}(0)}{\rho_{z Z}(0)}$ is given by a similar expression:

$$
M_{L}^{c}=-\left(\frac{a_{333}}{a_{33}}\right) H^{2}
$$

2.2.2 Relatick between single crystal and pyrolytic graphite.

The above tensors afford a description of the galvanomagnetic effects for single crystal graphite but it is not immediately obvious that they may be employed for the polycrystalline structure of pyrolytic graphite; although pyrolytic graphite is well aligned in the c-axis direction the a-axes of its individual crystallites are randomly orientated. To obtain rigorous expressions for the polycrystalline material would entail complex averaging calculations which are not at all well developed but it might be expected that the behaviour of such a material lies close to that of a hypothetical solid with perfect cylindrical symmetry about the c-axis. Calculation shows that none of the non-zero elements in the above tensors are reduced to zero by the increased symmetry of this solid so one expects the above tensors to hold for pyrolytic graphite for all effects which are not dependent too strongly upon crystallite shape and size.

Although the exact solution of this problem appears to be intractable at present (perhaps computer simulation studies would yield useful information as they do in the field of radiation damage) the above considerations provide reassurance. The following arguments, based on H.J. Juretschke's note in Appl. Phys. Letters, 12,213,1768, concerning the 'third order elastic constants of polycrystalline media', elucidate a little more clearly the restrictions under which one might reasonably expect an equivalence between the tensors for single crystal and
pyrolytic graphite. We start by writing the relation between current density J^{\prime}, electric field E, and conductivity tensor $\underline{\underline{\sigma}}: J_{i}=\sigma_{i j} E_{j}$ 。 For a polycrystalline specimen, we are interested in a spatial average, giving $\left\langle J_{i}\right\rangle=\left\langle\sigma_{i j} E_{j}\right\rangle$ which reduces to $\left\langle J_{i}\right\rangle=\left\langle\sigma_{i j}\right\rangle E_{j}$ when we make the (extreme; assumption of uniform electric field throughout the polycrystalline mass. The problem has now been reduced to an averaging of the single crystal tensor $\underline{\underline{\sigma}}$ over all the orientations which occur. Pyrolytic graphite is composed of crystallites with randomlyorientated a-axes so one has to average over all possible rotations θ about the c-axis. For a rotation θ of the crystal about the z-axis (which is coincident with the crystal's c-axis) the tensor components are transformed in the following way: $\quad \sigma_{i j}^{\prime}=\alpha_{i p} \alpha_{j q} \sigma_{p q}$ where repeated irsilices are summed in the usual manner. $\sigma_{i j}^{1}$ denotes the new tensor components and $\underline{\underline{x}}$ is the rotation matrix describing θ

$$
\left[\alpha_{i j}\right]=\left[\begin{array}{ccc}
c & s & 0 \\
-s & c & 0 \\
0 & 0 & 1
\end{array}\right] \text { where } \begin{array}{ll}
& c \equiv \cos \theta \\
& S \equiv \sin \theta
\end{array}
$$

The average value of $\sigma_{i j}$ is thus

$$
\left\langle\sigma_{i j}\right\rangle_{\neq}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sigma_{i j}^{1}(\theta) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \alpha_{i p}(\theta) \alpha_{j q}(\theta) \sigma_{p q} d \theta
$$

As an example, we take

$$
\begin{aligned}
\left\langle\sigma_{12}\right\rangle_{E} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\alpha_{11} \alpha_{21} \sigma_{11}+\alpha_{11} \alpha_{22} \sigma_{12}+\alpha_{12} \alpha_{21} \sigma_{21}+\alpha_{12}{ }_{22} \sigma_{22}\right) \mathrm{d} \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(-\sigma_{11} s \cdot c+\sigma_{12} c^{2}-\sigma_{21} s^{2}+\sigma_{22} \text { Sc }\right) \mathrm{d} \theta=\left(\sigma_{12}-\sigma_{21}\right) \frac{1}{2}
\end{aligned}
$$

Similarly, we find

$$
\begin{aligned}
& \left\langle\sigma_{11}\right\rangle_{E}=\left\langle\sigma_{22}\right\rangle_{E}=\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right) \\
& \left\langle\sigma_{12}\right\rangle_{E}=-\left\langle\sigma_{21}\right\rangle_{E}=\frac{1}{2}\left(\sigma_{12}-\sigma_{21}\right) \quad\left\langle\sigma_{13}\right\rangle=\left\langle\sigma_{31}\right\rangle=\left\langle\sigma_{23}\right\rangle=\left\langle\sigma_{32}\right\rangle=0 \\
& \left\langle\sigma_{33}\right\rangle_{E}=\sigma_{33}
\end{aligned}
$$

The corresponding resistivity tensor is found by inverting < σ 〉:

$$
\begin{aligned}
& \left\langle\rho_{11}\right\rangle_{E}=\left\langle\rho_{22}\right\rangle_{E}=\frac{\left\langle\sigma_{11}\right\rangle_{E}}{\left\langle\sigma_{11}\right\rangle_{E}^{2}+\left\langle\sigma_{12}\right\rangle_{E}^{2}}=\frac{\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right)}{\frac{1}{4}\left(\sigma_{11}+\sigma_{22}\right)^{2}+\frac{1}{4}\left(\sigma_{12}-\sigma_{21}\right)^{2}} \\
& \left\langle\rho_{33}\right\rangle_{E}=\frac{1}{\left\langle\sigma_{33}\right\rangle_{E}}=\frac{1}{\sigma_{33}} \\
& \left\langle\rho_{21}\right\rangle_{E}=-\left\langle\rho_{12}\right\rangle_{E}=\frac{\left\langle\sigma_{12}\right\rangle_{E}}{\left\langle\sigma_{11}\right\rangle_{E}^{2}+\left\langle\sigma_{12}\right\rangle_{E}^{2}}=\frac{\frac{1}{2}\left(\sigma_{12}-\sigma_{21}\right)}{\frac{1}{4}\left(\sigma_{11}+\sigma_{22}\right)^{2}+\frac{1}{4}\left(\sigma_{12}-\sigma_{21}\right)^{2}}
\end{aligned}
$$

All others zero

Referring to equation (5) for the single-crystal conductivity tensor under a magnetic field $H=(0, O, H)$, we see that the average resistivity tensor reduces to:

$$
\left.\begin{array}{l}
\left\langle\rho_{11}\right\rangle_{\mathrm{E}}=\left\langle\rho_{22}\right\rangle_{\mathrm{E}}=\frac{\sigma_{11}}{\sigma_{11}+\sigma_{12}^{2}} \\
\left\langle\rho_{33}\right\rangle_{\mathrm{E}}=\frac{1}{\sigma_{33}} \tag{8}\\
\left\langle\rho_{21}\right\rangle_{\mathrm{E}}=-\left\langle\rho_{12}\right\rangle_{\mathrm{E}}=\frac{\sigma_{21}}{\sigma_{11}+\sigma_{12}^{2}}
\end{array}\right\}
$$

- under the assumptions of c-axis directed magnetic field and uniform electric field.

Now, we may carry through the same analysis under the assumption of uniform current density $\left\langle E_{i}\right\rangle=\left\langle\rho_{i j} J_{j}\right\rangle=\left\langle\rho_{i j}\right\rangle J_{j}$. This leads to an average resistivity tensor expressed in terms of the single-crystal cumponents:

$$
\begin{aligned}
& \left\langle\rho_{11}\right\rangle_{J}=\left\langle\rho_{22}\right\rangle_{J}=\frac{\rho_{11}+\rho_{22}}{2} \\
& \left\langle\rho_{33}\right\rangle_{J}=\rho_{33} \\
& \left\langle\rho_{12}\right\rangle_{J}=-\left\langle\rho_{21}\right\rangle_{J}=\frac{1}{2}\left(\rho_{12}-\rho_{21}\right)
\end{aligned}
$$

Finally, these may be expressed in terms of the single-crystal conductivity tensor components under the assumption of $\mathrm{H}=(0, \mathrm{O}, \mathrm{H})$:

$$
\left.\begin{array}{l}
\left\langle\rho_{11}\right\rangle_{J}=\left\langle\rho_{22}\right\rangle_{J}=\frac{\sigma_{11}}{\sigma_{11}^{2}+\sigma_{12}^{2}} \tag{9}\\
\left\langle\rho_{33}\right\rangle_{J}=\frac{1}{\sigma_{33}} \\
\left\langle\rho_{21}\right\rangle_{J}=-\left\langle\rho_{12}\right\rangle_{J}=\frac{\sigma_{12}}{\sigma_{11}^{2}+\sigma_{12}^{2}}
\end{array}\right\} \text { all others zero }
$$

Comparing (8) and (9) we see the average tensor components are the same under both extreme assumptions with the additional one that the magnetic field is along the c-axis in each aase.

In short, provided one does not destroy the high symmetry of this material about the c-axis by $\mathrm{H}_{1}, \mathrm{H}_{2}$ field components, the tensors describing the polycrystalline material have exactly the same components as the single crystal tensors under each of the assumptions; uniform current density and uniform electric field distribution. This does not prove the identity between the macroscopic descriptions of the two types of graphite, but it certainly makes a common assumption more plausible and indicates that one should be even more wary when the magnetic field has components in the basal plane.

2.2.3 The Boltzmann Transport Equation.

It was shown in Appendix 1 that for some purposes electrons in a crystal can be treated as fictitious particles with mass given by $\left(\frac{1}{m}\right)_{i j}=\frac{1}{\hbar^{2}} \frac{\partial^{2} E}{\partial k_{i} \partial k_{j}}$ moving classically under the influence of the
extermal electric and magnetic fields. We now consider the average effect of the whole assembly of electrons on the transport processes; a statistical approach is necessary to condense the vast amount of information required for a complete description of the microscopic behaviour of the system. We define a distribution function $\underline{E}(\underline{X}, \underline{x}, t) d V_{K} d^{3} r_{r}$ giving the probability of finding a particle with position $\underline{\underline{x}}$ and momentum K lying within $d^{3} r, d V_{k}$. The fundamental equation determining this distribution function is the Boltzmann equation, derived for instance in Wilson p.4.

$$
\left.\frac{\partial f}{\partial t}+V_{V} \cdot \nabla_{r} f+\dot{K} \cdot \nabla_{K} f=\frac{\partial f}{\partial t}\right) \text { collisions }
$$

The term on the right-hand-side of the Boltzmann equation represents th:e effect of certain terms in the crystal Hamiltonian (which have so far been neglected) leading to transitions between electron states. Whenever the principle of detailed balaice applies, such transitions do not influence the equilibrium distribution function (the Fermi function) but they do establish it in the first place, and in the presence of disturbing external fields they have the effect of limiting the response of the system so that in the steady state there is a balance between the external fields and the effects of scattering.

The change in f due to collisions can be written more explicitly in terms of the probability per unit time $W\left(\underline{K}, \mathbb{K}^{\prime}\right)$ that an electron will make the transition $K \rightarrow K^{\prime}$ induced by an aperiodic term in the crystal

Hamiltonian resulting from an irregularity in the lattice. Such irregularities can be lattice vibrations (phonons), leading to temperature-dependent scattering, isolated impurities, electron-electron scattering due to the screened Coulomb repulsion between electrons remaining after the usual one-electron treatment has taken care of the average potential, and other lattice disturbances such as vacancies, grain boundaries and dislocations.

As an example, consider the scattering by a fixed impurity or grain boundary which are both massive compared to an electron. The energy change of such an irregularity is tiny because of the disparity in masses and we may regard the process as being one in which the electron energy is conserved; $W\left(\underline{K}, \mathbb{K}^{\prime}\right)$ is proportional to $\delta\left(\mathrm{F}_{\mathrm{K}}-\mathrm{E}_{\mathrm{K}}\right.$). The probability of a transition occurring from state K into any other state in time dt depends on the occupancy of the initial and final states and is given by

$$
d t \int_{B Z} W\left(K, K^{\prime}\right) f_{K}\left(1-f_{K^{\prime}}\right) d V_{K^{\prime}}
$$

Similarly, the probability of a transition into state K is

$$
d t \int_{T}^{T} W\left(K^{\prime}, \underline{K}\right) f_{K^{\prime}}\left(1-f_{K}\right) d V_{K^{\prime}}
$$

Thus, the net increase in f_{K} due to collisions of this kind per unit time is

$$
\begin{equation*}
\left.\frac{\partial f}{\partial t}\right)_{c o l l}=\int_{B Z}\left[W\left(\underline{K}^{\prime}, \underline{K}\right) f_{K^{\prime}}\left(1-f_{K}\right)-W\left(K, K^{\prime}\right) f_{K}\left(1-f_{K^{\prime}}\right)\right] d V_{K^{\prime}} \tag{1}
\end{equation*}
$$

A formally similar equation is obtained for processes which do change the electron energy with $\Omega\left(\underline{K}, \underline{K}^{\prime}\right)$ in place of $W\left(\underline{K}, \underline{K}^{\prime}\right)$, where \subseteq is no longer proportional to $\delta\left(\mathbb{E}_{K^{\prime}}-E_{K^{\prime}}\right)$. Because of the additivity of independent-event probabilities, the total expression for $\left.\frac{\partial f}{\partial t}\right)_{c o l l}$ will be the sum of the appropriate integrals for the independent scattering processes.

In uniform equilibrium, the left hand side of the Boltzmann equation is zero which implies that $\left.\frac{\partial f}{\partial t}\right)_{c o l l}$ must be zero for all scattering processes. This forces the intergrand in (1) to be zero, Ieading to

$$
W\left(K^{\prime}, K\right) f_{0}\left(E_{K^{\prime}}\right)\left(1-f_{0}\left(E_{K}\right)\right)=W\left(K, K^{\prime}\right) f_{0}\left(E_{K}\right)\left(1-f_{0}\left(E_{K^{\prime}}\right)\right)
$$

This is a consequence of the 'principle of detailed balancing'; every process and its inverse must occur with equal frequency in equilibrium.

The equilibrium solution is the Fermi distribution function

$$
f_{0}=\frac{1}{e^{(E-\mu) K T}+1}
$$

where E is the total electron energy and μ is the electrochemical potential per electron or 'Fermi energy'.

Now the electric current density \mathcal{J} is given by

$$
\underline{J}=\frac{-\mathrm{e}}{4 \pi^{3}} \int \underline{\mathrm{~V}} \mathrm{dV} \mathrm{~V}_{\mathrm{K}}
$$

so our task is to solve the Boltzmann equation in the presence of electric and magnetic fields and then substitute in the above equation to obtain the conductivity. We note immediately that, since graphite obeys Ohms' law, we are only interested in functions f which lead to an integral proportional to electric field.

2.2.4 The Relaxation Time Approximation.

The solution of the Boltzmann equation is greatly simplified if it is assumed that disturbances die out with time with a time constant $T(\underline{K}) ;$

$$
\left.\frac{\partial f^{\prime}}{\partial t}\right)_{c o l l}=-\frac{f_{K}-f_{K}^{0}}{\tau_{K}}
$$

This is not always a valid assumption (e.g. for lattice scattering at low temperatures) but is $=$ commonly used starting point for transport calculations. S. Ono and K. Sugihara (1966) show that it is a reasonable assumption for graphite at least in the region $25^{\circ} \mathrm{K}$ to $400^{\circ} \mathrm{K}$, where lattice scattering is dominant. When the approximation fails, it is necessary to solve the full integral equation for the distribution function as has been carried out by E.H. Sondheimer (1950) for some special cases.

Substituting in, and using the effective mass approximation, the Boltzmann equation in the steady state becomes

$$
-\frac{e}{A_{h}}\left(\varepsilon+\frac{1}{G} \underline{V} \wedge \underline{H}\right) \nabla_{K} f+\underline{V} \cdot \nabla_{r} f=-\frac{f-f_{0}}{T}
$$

where 1 KS $\tau(\mathrm{K})$ must have the same symmetry as the crystal. For an isothermal, uniform conductor;

$$
\left(\frac{e_{n}}{n}\right)\left[\underline{\varepsilon}+\underline{V} \wedge \underline{H} /{ }_{C}\right] \cdot \nabla_{K} f+\left(f_{0}-f\right) / \tau=0
$$

This is the starting point for our discussion of MoClure's method of solution for a general band structure in section 2.4., but we note here that Chambers (1952) has given a formal solution which is of use in high magnetic fields and can be expanded in low fields. However, the same low-field expansion can be obtained more simply by an iterative procedure presented by Jones and Zener (1934).

2.2.5 The Jones-Zener Solution.

In the above-mentioned oaper, Jones and Zener obtained a solution by simple iteration. Let us define a vector operator

$$
s=\frac{e}{C \hbar^{2}} \nabla_{K} E \wedge_{K}
$$

and assume a solution of the form $f=f_{o}-\phi \frac{\partial f_{0}}{\partial E}$. Then the Boltzmann equation can be written

$$
\begin{aligned}
& =0
\end{aligned}
$$

This reduoes to the following equation when we neglect all powers of ε higher than the first (to impose Ohm s law) and note that

$$
\text { Putting } \underline{H}=0 \text { one obtains the zero-order solution }
$$

$$
\phi_{0}=-\frac{T E}{\hbar} \varepsilon \cdot \nabla_{K}{ }^{E}
$$

Higher-order solutions are obtained by substituting back successively into

$$
\phi_{r}=-\frac{\text { 是e }}{\dagger} \varepsilon \cdot \nabla_{K} E-\underline{H} \cdot \underline{\Gamma} \phi_{r-1}, r=1,2,3
$$

Obviously, there is some critical value of magnetic field, H , above which the series no longer converges for a given band structure. The critical value is best found by actual computation as no general expression is available. Jones and Zener themselves point out that the Boltzmann equation is only meaningful for values of H such that
$\frac{e H t}{m c} \ll 1$ - this restricts the magnetic field to values below the quantumeffect region so that electrons never have time to complete more than a small fraction of an orbit in the field before being scattered. We shall mean by a 'small magnetic field' a value which satisfies the above condition and which is also small enough to ensure convergence of the Jones-Zener expansion.

$$
\begin{aligned}
& \underline{V} A \underline{H} \cdot \nabla_{K} f_{O}=\frac{\partial f_{0}}{\partial E} \quad \underline{Y} \mathcal{H}_{-} \cdot \nabla_{K} E=0 \text { since } \nabla_{K} E=\hbar V \\
& \frac{\mathrm{e}}{\mathrm{~A}} \underline{\varepsilon} \cdot \nabla_{\mathrm{K}} \mathrm{E}+\underline{H} \cdot \Omega \phi+\frac{\varnothing}{\tau}=0
\end{aligned}
$$

The development of this series solution is undertaken in Appendix 2 where the conductivity tensor $\sigma_{i j}(H)$ is calculated from $J_{i}=\sigma_{i j} E_{j}$ and $\underline{J}=\int \frac{e}{4 \pi}-3 \underline{V} \frac{\partial f_{o d}}{\partial \mathrm{E}} V_{\mathrm{K}}$. The Jones-Zener terms are compared with the terms in the phenomenological expansion;

$$
\sigma_{i j}(\underline{H})=\sigma_{i j}(0)+\sigma_{k i j} H_{K}+\sigma_{k l i j} \ddot{H}_{K} H_{I}+
$$

and integral expressions applicable to graphite are developed for the coefficients $\sigma_{i j}, \sigma_{k i j}$, $\sigma_{k l i j}$. These final expressions involve integrations over the Fermi surface and have been derived under certain conditions: Degeneracy of the carriers, magnetic field parallel to the c-axis, and $\gamma_{3}=0$. The final expressions are:-

$$
\begin{aligned}
\sigma_{i j} & =\left(\begin{array}{cc}
\pi & 0 \\
0 & \pi
\end{array}\right) \frac{e^{2}}{4 \pi^{3} \hbar} \int r\left(\frac{\partial E}{\partial K}\right) K d K_{z} \\
\sigma_{3 i j} & =\left(\begin{array}{cc}
0 & \pi \\
\pi & 0
\end{array}\right) \frac{-e^{3}}{4 \pi^{3} C_{\hbar} 4} \int r^{2}\left(\frac{\partial E}{\partial K}\right)^{2} d K_{z} \\
\sigma_{33 i j} & =\left(\begin{array}{cc}
\pi & 0 \\
0 & \pi
\end{array}\right) \frac{-e^{4}}{4 \pi^{3} \mathrm{C}^{2} \hbar^{6}} \int\left(\tau^{3}\left(\frac{\partial E}{\partial K}\right)^{2} \frac{1}{K} d K_{z}\right.
\end{aligned}
$$

It is interesting to note, in passing, that the analysis in Appendix 2 yields as a condition for a non-zero c-axis longitudinal magneto-resistance or conductivity that the expression $\left(\tau\left(K_{\hat{Z}}\right) \frac{\partial E}{\partial K_{\tilde{Z}}}\right)$ must have some K or α-dependence; a K_{z}-dependence alone is insufficient.

We are using here the cylindrical oomordinato byatem inntroduced in Section 2.1 .3 ; K is the distance from the zone edge. The angle α has gone out of our expressions because whe neglect of γ_{3} leads to circular symmetry about a zone edge.

To proceed, one needs to know $T\left(K_{z}\right), \frac{\partial E_{z}}{\partial K_{z}}, K\left(K_{z}\right)$. The latter two functions can be obtained in a straightforward manner from the Sloncewski-Weiss band model with $\gamma_{3}=0$, butt is a very doubtful quantity. Perhaps the best one can do at present is to regard \boldsymbol{r} as a parameter (varying with K_{z} and temperature). K. Sugihara and H. Sato (1963) have calculated the relaxation time for two temperatures, $25^{\circ} \mathrm{K}$ and $50^{\circ} \mathrm{K}$, where lattice scattering is dominant, but it could differ considerably at lower temperatures. In a later paper, S. Ono and K. Sugihara (1968) show that the inclusion of γ_{3} cames T to vary with position on the hodograph (with α), though the magnitudes at the two temperatures are maintained roughly at the same values of $1.3 \times 10^{-12} \mathrm{sec}\left(50^{\circ} \mathrm{K}\right)$ and $3 \sim 3.5 \times 10^{-12} \mathrm{sec}\left(25^{\circ} \mathrm{K}\right)$.

A computer programme has been written to evaluate the above integrals for a given set of band parameters $\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{4}, \Delta_{2} E_{f}\right)$. These parameters yield, through the equations of Sections 2.1.3, 2.1.4, expressions for the factors K (from the cross-sectional areas in Section 2.1.4) and $\frac{\partial \mathrm{E}}{\partial \mathrm{K}}$ in terms of the integration variable K_{z} 。 The range of K_{z} was split into three, corresponding to values of K_{z} between K and M, M and H, and J and H of Figure 2.4 which parts of
the Fermi surface describe holes, electrons and minority electrons, respectively.

It was found that to prevent computational difficulties the region of the electron surface near M had to be excluded from the range of integration. We recall that the expressions developed in Sections 2.1 are not valid for this difficult region in any case. The lower limit on K_{z} for this integration was increased away from the K_{z} value of M by some 0.5 to 1%. No such automatic adjustment occurred for the other two types of carrier although this was allowed by the programme.

No absolute values are available for the magnetoconductivity tensor components at the present time, but using the Dresselhaus and Miavroides (1964) set of parameters (2.88, 0.39, 0.016, -0.2, 0.012), the following ratios m_{i} (minority electron/majority electron),

$$
h_{i} E \text { hole /majority electron), }
$$

for the contributions to the zero field conductivity ($i=1$), Hall effect ($i=2$) and magnetoconductivity ($i=3$) were obtained;

$$
\begin{array}{lll}
m_{1}=0.06, & m_{2}=0.3, & m_{3}=0.96 \\
h_{i}=4.8 & h_{2}=1.4, & h_{3}=0.2
\end{array}
$$

showing the important influence of holes on the low field Hall effect and that of the minority electrons on the magnetoconductivity.

Changing the Fermi level from 0.012 to 0.019 resultod ins

$$
\begin{array}{lll}
m_{1}=0.03, & m_{2}=0.13, & m_{3}=0.41 \\
h_{1}=0.59, & h_{2}=0.22, & h_{3}=0.57
\end{array}
$$

showing how sensitive electrical conduction is to changes in Fermi level, for the majority electrons now dominate completely.

The band parameter set $(2.85,0.3,0.021,-0.2,-0.006$, 0.029) yields

$$
\begin{array}{lll}
m_{1}=0.14, & m_{2}=0.05, & m_{3}=0.11 \\
h_{1}=0.67, & h_{2}=0.30, & h_{3}=0.11
\end{array}
$$

The above calculations were performed with a constant rylaxation time \boldsymbol{r} but the programme can accept any K_{z}-dependence one wishes to attribute to \boldsymbol{r}.

2.3 Quantum Oscillations.

In degenerate conductors it is possible under certain conditions to observe quantum effects in the electrical conductivity. The application of a magnetic field to an electronic system causes a quantisation of electron energy levels for motion perpendicular to the magnetic fields, such that the energy level spacing becomes $\hbar \omega$ where the cyclotron frequency $\omega=\frac{e \mathrm{eH}}{\mathrm{m}^{*} \mathrm{c}}$. At sufficiently low temperatures, where $\mathrm{KT} \leq \hbar \omega$, the thermal broadening of the levels is less than the level spacing and the effects of this quantisation can be observed provided other level broadening mechanisms are not dominant. For graphite, the above condition requires liquid helium temperatures and magnetic fields above about 6kgauss.

This section illustrates the effect of magnetic condensation of energy levels in 2.3 .1 by means of a semiclassical model, and goes on in 2.3 .2 to present the 'generalised Landau' formula which is used for data analysis in Section 4.2.3. Literature cited below should be consulted for details.
2.3.1 Motion of Wave Packets in a Magnetic Field.

It was shown in Appendix 1 that, under conditions stated there, electrons in crystals may be regarded as classical particles with an effective mass m^{*} and with $A K$ replacing the classical momentum. In particular, under the influence of a magnetic field \underline{H} the representative point in K - space, K, is given by $\underline{K}=\frac{e}{c h} \underline{V} \Lambda$ where \underline{V} is the velocity of the electron. Thus \underline{K} is normal to both

H and V. The latter is normal to the Fermi surface, being given by $V=\frac{1}{\hbar}$ grad $K E$. Thus X is confined to an orbit defined by the inter section of a plane normal to the magnetic field with the Fermi surface. The electron makes one revolution in a period

$$
\begin{equation*}
\frac{2 \pi}{\omega}=\frac{\mathrm{ch}}{\mathrm{eH}} \oint \frac{\mathrm{dK}}{\mathrm{~V}_{1}} \tag{1}
\end{equation*}
$$

where $d K$ is an element of the orbit and V_{1} is the electron velocity perpendicular to H in the plane of the orbit. For free electrons $E=\frac{\hbar^{2} K^{2}}{2 m}, \quad V=\frac{\hbar K}{m} \quad$ so that $\omega=\frac{e H}{m c}$. It is convenient to define a 'cyclotron effective mass' for other band shapes $m^{*}=\frac{e H}{\omega 0}$
From (1) above this obviously varies from orbit to orbit in general.
We point out here that equation (1) leads usefully to the definition of a 'phase variable' $\phi=\omega_{\mathrm{eh}}^{\mathrm{ch}} \frac{\mathrm{dK}}{\mathrm{V}_{1}}$ wh ch is equal to 2π for a complete circuit. This is used in Section 2.4.1. to solve the Boltzmann transport equation.

The periodic motion of an electron in a magnetic field leads, as one might expect by analogy with a simple harmonic oscillator, to a quantisation of the electron energy levels in units of $\hbar \omega$ to motion perpendicular to the magnetic field. (See for instance Ziman, 1965).

It can be shown that (2) is equivalent to $m^{*}=\frac{\hbar^{2}}{2 \pi} \frac{\partial A}{\partial E}$
where A is the area of an orbit in K-space. Thus if $\delta E=\hbar \omega$ we have
$\delta A=\frac{2 \pi m^{*} \omega}{n}$. which indicates that the areas of orbits in K-space are themselves quantised. In a crystal the area of an orbit on the nth energy level is $A_{n}=\frac{2 \pi e H}{c h}(n+\gamma)$ where γ is $\sim \frac{1}{2}$.

As the magnetic field is increased the sreas of occupied cylindrical energy surfaces increase, but these cylinders depopulate as they pass through the Fermi surface. Consequently, the density of states jumps (discontinuously at $0^{\circ} \mathrm{K}$) every time a magnetic energy level passes through the Fermi surface of area A_{F}. This happens as n changes by unity in intervals of reciprocal magnetic field of

$$
\begin{equation*}
\Delta\left(\frac{1}{H}\right)=\frac{2 \pi e}{c h} \quad \frac{(n+1+y)-(n+y)}{A_{F}} \tag{3}
\end{equation*}
$$

For a more complicated Fermi surface the energy cylinders may cut the Fermi surface in several places and cannot be said to be 'passing through' the Fermi surface at any given value of magnetic field; many values of A_{F} are involved. However, a more thorough analysis shows that the effects of all but the extremal cross sectional areas of the Fermi surface average out and the density of states changes periodically in ($\frac{1}{\mathrm{H}}$) with (possibly superimposed) periods deterrined by the extremal cross sections. Electronic properties such as the electrical conductivity or Hall effect which depend directly on the density of states reflect the above changes in the form of oscillations superimposed on the classical background. The semiclassical model is presented in an interesting manner by Pippard (1965).

2.3.2 The Generalised Landau Formula.

Equation (3) of the last section gives the relation of Onsager (1952) and Lifshitz (1957) for the period P (gauss ${ }^{-1}$) of oscillations in resistivity, known as the Shubnikov - de Haas effect (1930), and Hall effect. All theories of the SDH effect agree on this period behaviour and also on the thermal damping factor D (Landau, 1939) which describes the temperature dependence of the oscillation amplitude, $D=u /$ sinhu, where $u=\frac{2 \pi^{2} \mathrm{KT}}{\hbar \omega} . T$ is the temperature, $\omega=\frac{e H}{m^{*} c}$ and m^{*} is an orbital effective mass. This factor is seen to reflect the condition mentioned in Section 2.3 above.

Extensive references to the literature on theories of susceptibility-type oscillations are given in the paper by Soule et al (1964). This presents data on a graphite single crystal which proves that the electron and hole Fermi surfaces of graphite are closed and effectively resolves the controversy mentioned in Section 2.1.5 in favour of the overlap model. Roth and Argyres (1966) give a review of magnetic quantum effects with an extensive bibliography of direct interest in the present case.

Imperfections affect the motion of the electrons in a variety of ways. Scattering is all-important for transport phenomena but another effect, the broadening of the unperturbed energy levels through collisions with imperfections, proves to be important in determining the amplitude of the oscillations. Dingle (1952) was the first to
derive the effect of a finite level width $(\sim \Gamma)$ on the oscillations; the amplitude of the r th term is diminished b_{j} the factor $\exp \left(-\frac{2 \pi \Gamma_{r}}{r}\right)$ $\hbar \omega$ This goes quickly to zero as the broadening becomes comparable with the level separation. It is sometimes useful to express Γ as an equivalent temperature ΔT, the 'Dingle temperature' $\Delta T={ }^{\hbar} / \pi K T$ where τ is the collision time. In the relatively low field region where an exponential approximation can be made to the hyperbolic sine term mentioned above the collision damping term amounts to a simple additive correction to the measured temperature.

Soule, Moclure and Smith (1964) give a formula which can approximately reproduce mest of the results of the various theories of the SDH effect. This gives for the oscillatory term due to one canrier:

$$
G=H^{n} \sum_{K=1}^{\infty} W_{K} \frac{K U}{\operatorname{sinhKJ}} \exp \left(\frac{K U \Delta T}{T}\right) \cos \left(\frac{2 \pi K}{P H}-\psi_{K}\right)
$$

where $U=\frac{2 \pi^{2} \mathrm{KTm}^{*} \mathrm{c}}{\hbar \mathrm{e}} \frac{1}{\mathrm{H}}$ and ΔT is the effective temperature change due to collision broadening $\Delta T=\hbar / \pi K \tau$ where τ is the collision time. Another similar term is added for the other carrier.

The results of various theories can be represented by choosing specific values of n, w, y. The generalisation comes in allowing these to have arbitrary values. In Section 4.2 .3 this expression is used to fit experimental data in order to derive values for m^{*} and P the effective mass and period, respectively.

2.4 MAGNETO-CONDUCTIVITY TENSOR ANALYSTS

We follow McClure, 1956, in deriving the form of the magnetoresistance effect and Hall effect as finctions of magnetic field strength. However, we shall not carry it through to the end with the generality of McClure's paper as this would be unjustified in view of our subsequent application of the theory.
2.4.1 General Theory

Wilson p. 196, gives the Boltzmann equation in the presence of uniform electric and magnetic fields, assuming a relaxation time T (see section 2.2.4):

$$
\begin{equation*}
(e / h)[\varepsilon+\underline{E} H / c] \cdot \nabla_{k} f+\left(f_{0}-f\right) / \tau=0 \tag{1}
\end{equation*}
$$

Writing the distribution function as

$$
\begin{equation*}
f=f_{0}-\Psi \partial f_{0} / \partial \mathrm{E} \tag{2}
\end{equation*}
$$

Where $\mathbb{\%}$ is proportional to electric field strength (leading to a solution satisfying Ohm's law) we find the Boltzmann equation reduces to:

$$
\begin{align*}
& \quad e / \hbar \underline{E}_{0} \nabla_{k} f_{0}-e / h_{c} \frac{\partial f_{o}}{\partial E} \underline{v} \underline{H}_{0} \nabla_{k}+\sigma_{\tau} \frac{\partial f_{o}}{\partial E}=0 \\
& \text { i.e. } \quad-\left(e / \lambda_{c}\right) \underline{A} \underline{H}_{0} \nabla_{k} \Phi+\Phi / T+\theta \underline{\varepsilon}_{\bullet} \underline{V}=0 \tag{3}
\end{align*}
$$

This is to first order in ε.
The first term represents the derivative of Φ along a curve called the hodograph, formed by the intersection of a plane perpendicular to H with a constant energy surface.

To describe the position of the representative wave vector of the electron on the hodograph we define a new variable S such that $\frac{\partial \underline{k}}{\partial S}=-\left(e / h_{\mathrm{C}}\right) \underline{\mathrm{v}} \mathrm{H}$. Thus S represents the time at which the representative point, moving in a magnetic field only, reaches the point k. Equation (3) now becomes:

$$
\begin{equation*}
\frac{\partial \phi}{\partial S}+\phi / \tau+e \varepsilon_{\cdot} \underline{y}=0 \tag{4}
\end{equation*}
$$

This is easily solved, to give:

$$
\begin{equation*}
\Phi=-\int_{r}^{S} d S^{\prime} \operatorname{e\varepsilon } \cdot \underline{\forall}\left(S^{\prime}\right) \exp \left[-\int_{S^{\prime}}^{S} d S^{\prime}\left(S^{\prime}\right)\right] \tag{5}
\end{equation*}
$$

where r is to be determined by the boundary condition that ϕ must be a periodic function of S and turns out to be $-\infty$.

If we now assume that T is constant on a given hodograph and use the periodicity of the velocity to write it as a Fourier expansion:

$$
\begin{equation*}
\underline{\mathbf{v}}=\sum_{-\infty}^{\infty} \underline{\mathbf{v}}(m) \exp (i m \omega s) \tag{6}
\end{equation*}
$$

where ω is the cyclotron frequency for the hodograph, given by $\frac{2 \pi}{\omega}=\oint \frac{\hbar_{c}}{e H} \frac{d k}{v \rho} ;$ v ρ is the velocity component perpendicular to H, our
solution now becomes:

$$
\begin{equation*}
\phi=-\tau \sum_{-\infty}^{\infty} \frac{\operatorname{e\underline {\varepsilon _{0}}\underline {v}(m)\operatorname {exp}(im\omega _{s})}}{(1+i m \omega \tau)} \tag{7}
\end{equation*}
$$

To find the conductivity tensor we must first write down the current. For a single band this is:

$$
\begin{equation*}
\dot{f}=-e /(2 \pi)^{3} \int d^{3} k \underline{ }{ }^{3}=\frac{-e}{(2 \pi)^{3}} \int_{B Z} d^{3} k \underline{ } \phi\left(\frac{-\partial f_{o}}{\partial 玉}\right) \tag{8}
\end{equation*}
$$

Now, since for a given band, the energy is a continuous function of \underline{k} within the Brillouin zone, we may replace the integrand at any point k by the average over the hodograph through k. This does not change the value of the integral over the BZ.

Thus,

$$
\begin{equation*}
\dot{j}=e^{2} /(2 \pi)^{3} \int_{B Z} d^{3} \underline{\underline{k}}\left(-\partial f_{0} / \partial E\right) r \text { 婴 } \tag{9}
\end{equation*}
$$

Where the vector

$$
\begin{equation*}
\underline{M}=-\left(\frac{\omega}{2 \pi e \tau}\right) \oint d S \phi \underline{V} \tag{10}
\end{equation*}
$$

Sutstituting for ϕ from 7 we find

$$
\begin{align*}
& \underline{M}=\frac{\omega}{2 \pi e_{\tau}} \sum_{m} \frac{1}{1+i m \tau} \oint d S\left[\underset{n}{\Sigma} \underset{\sim}{v}(n) e^{i n \omega \in}\right]_{\underline{E} \cdot \underline{Y}}(m) e^{i m \omega s} \\
& \text { i.e. } \quad \underline{M}=\sum_{-\infty}^{\infty}[\underline{E} \underline{y}(m)] \underline{v}(-m) /(1+i m \omega T) \tag{11}
\end{align*}
$$

We now define a tensor S by $M=\underline{S} \cdot \underline{E}$, and choose \underline{H} to be parallel to the z-axis. The components of $\underline{\underline{S}}$ give rise to the compoents of the magnetoconductivity tensor. Using the fact that $\left.S_{x x}=\frac{M_{x}}{\varepsilon_{x}}\right\} \varepsilon_{y}=\varepsilon_{z}=0$ etc., it is easily shown that the components of S_{m} are:

$$
\begin{gather*}
s_{x x}=v_{x}^{2}(0)+\sum_{m=1}^{\infty} \frac{\left|v_{x}(m)\right|^{2}}{1+(m \omega r)^{2}} \tag{12}\\
s_{x y}=\sum_{m=1}^{\infty}\left[\begin{array}{l}
\left(v_{x}(m) v_{y}(-m)+v_{x}(-m) v_{y}(m)\right) \\
+i m \omega r\left(v_{x}(-m) v_{y}(m)-v_{x}(m) v_{y}(-m)\right)
\end{array}\right] /\left(1+(m \omega r)^{2}\right) \tag{13}\\
S_{z z}=v_{2}^{2}(0)+\sum_{m=1}^{\infty} \frac{\left|v_{z}(m)\right|^{2}}{1+(m \omega \tau)^{2}} \tag{14}
\end{gather*}
$$

Similar expressions hold for the other components. In general, $S_{i j}(H)=S_{j i}(-\underline{H})$. McClure shows that $v_{x}(0)=v_{y}(0)=0$, but this is imposed by our more severe symmetry restrictions in any case. Thus, $S_{z z}$ is the only component which approaches a finite limit as $\mathrm{H} \rightarrow \infty$.

The conductivity follows:

$$
\begin{equation*}
g=e^{2} /(2 \pi)^{3} \int_{B Z} d^{3_{k}}\left(-\partial f_{0} / \partial E\right) \tau \underline{S} \tag{15}
\end{equation*}
$$

If degenerate statistics apply, $\partial f_{0} / \partial E$ is only appreciable for energies near the Fermi energy so the integral can be transformed to one over the FS. If, in addition, τ is constant over the FS the form of $\underline{\underline{g}}$ would be the same as that of $\underline{\text { S. }}$

So far we have been dealing with one band only and we note here that summing the contributions from several bands would lead to additive contributions to \underline{g} from the different bands, each of the form derived above.

It is now necessary to find the Fourier components of velocity for use in 12, 13, 14. The energy can be expressed in cylindrical coordinates, $E=E\left(p, \theta, k_{z}\right)$. A given hodograph can be described by $k_{z}=$ const., $\rho=\rho(\theta)$. Since the energy is a single-valued function of k for a given band, it must be periodic in θ :

We can write, $\quad E=\sum_{\infty} E_{n}\left(\rho, k_{z}\right) \exp ($ in $\theta)$

The velocity is obtained by taking the gradients of E. e.g.
$v_{x}=\frac{1}{\hbar} \frac{\partial E}{\partial k_{X}}$.
It is easy to show that the gradient operators required are:

$$
\begin{aligned}
& \frac{\partial}{\partial k_{x}}=\cos \theta \frac{\partial}{\partial \rho}-\frac{1}{\rho} \sin \theta \frac{\partial}{\partial \theta} \\
& \frac{\partial}{\partial k_{y}}=\sin \theta \frac{\partial}{\partial \rho}+\frac{1}{\rho} \cos \theta \frac{\partial}{\partial \theta}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& v_{x}=1 / \hbar \Sigma\left[\partial E_{n} / \partial \rho \cos \theta-i(n / \rho) E_{x_{i}} \sin \theta\right] \exp [i n \theta] \\
& v_{y}=1 / \hbar \Sigma\left[\partial E_{n} / \partial \rho \sin \theta+i(n / \rho) E_{n} \cos \theta\right] \exp [i n \theta]
\end{aligned}
$$

These can be written:

$$
\begin{align*}
& v_{\mathrm{x}}=1 / \sqrt{2}\left(g+g^{*}\right) \tag{17}\\
& v_{y}=i / \sqrt{2}\left(g-g^{*}\right) \tag{18}\\
& \text { where } \quad g=\sum_{n=-\infty}^{\infty} 1 / \sqrt{2} A\left[\partial E_{n} / \partial \rho-(n / \rho) E_{n}\right] \exp (i(n+1) \theta) \tag{19}
\end{align*}
$$

Now we shall restrict ourselves to a band structure with rotational symmetry about the k_{z} axis. This implies that E is independent of θ and so all Fourier coefficients, E_{n}, except $E_{0}\left(\rho, k_{z}\right)$ are zero. Moclure considers less severe symmetry restrictions but as we intend to apply the Kramers-Kronig relations to our conductivity at a later stage, it is more convenient to impose one of the conditions for their validity, viz. cylindrical symmetry, at this point. (19) now becomes

$$
\begin{equation*}
g=\frac{1}{\sqrt{2 \hbar}} \frac{\partial E_{0}}{\partial \rho} \exp (i \theta) \tag{20}
\end{equation*}
$$

But this must be expressed in terms of the time variable, S. In general, ρ is a function of θ and θ is a function of $s(\theta=\omega S+$ periodic function of S). For our symmetry, ρ is independent of θ and $\theta=\omega S$ so we have:

$$
g=\left[\begin{array}{ll}
\frac{1}{\sqrt{2 \hbar}} & \frac{\partial^{E}}{\partial P} \tag{21}
\end{array}\right] \exp (i \omega S)=B \exp (i \omega \cdot S), \text { say. }
$$

Thus, the velocity components are

$$
\begin{aligned}
& v_{x}=\frac{1}{\sqrt{2}}\left(B \exp (i \omega S)+B^{*} \exp (-i \omega S)\right) \\
& v_{y}=\frac{i}{\sqrt{2}}\left(B \exp (i \omega S)-B^{*} \exp (-i \omega S)\right)
\end{aligned}
$$

Comparing this with (6), we see int

$$
\begin{array}{ll}
\nabla_{x}(1)=B / \sqrt{2}, & v_{y}(1)=i B / \sqrt{2} \\
v_{x}(-1)=B^{*} / \sqrt{2}, & v_{y}(-1)=-i \quad B^{*} / \sqrt{2}
\end{array} \text { all other } v(m) \text { 's are zero. }
$$

Hence we nave for the tensor $\underline{\underline{S}}$

$$
\begin{align*}
& S_{x x}=S_{y y}=\frac{B^{2}}{1+(\omega \tau)^{2}} \tag{22}\\
& S_{x y}=-S_{y x}=\frac{B^{2} \omega T}{1+(\omega T)^{2}}
\end{align*}
$$

The conductivity follows from (15):

$$
\begin{align*}
& \sigma_{\mathrm{xx}}=\sigma_{y y}=\sum_{b} \frac{e^{2}}{(2 \pi)^{3}} \int_{B Z} \tau\left(\frac{-\partial f_{o}}{\partial \mathbb{E}}\right) \frac{B^{2}}{1+(\omega T)^{2}} d^{3} K \tag{23}\\
& \sigma_{x y}=-\sigma_{y x x}=\sum_{b} \frac{e^{2}}{(2 \pi)^{3}} \int_{B Z} \tau\left(\frac{-\partial f_{o}}{\partial E}\right) \frac{B^{2} \omega^{2} T}{1+(\omega T)^{2}} d^{3} K
\end{align*}
$$

where summation b is over the bands.
Now, for graphite, which is highly degenerate below $200^{\circ} \mathrm{K}, \partial_{0} / \partial^{E}$ localises the integrand to the neignbournood of the FS. We nave thus reduced the number of independent variables to one, since the integration is over a surface with circular symmetry. Fixing any one of the functions τ, B, H (proportional to ω) k_{x}, k_{y}, or k_{z} immediately fixes the values of the others (with the reservation that some functions may be multivalued with respect to a given variable) and thus the value of the integrand.

McClure 1958, chooses a variable S ($\left.\frac{(\omega T}{H}\right)$ which is proportional to relaxation time. The fact that τ has been taken to be constant on a given nodograpn in the above analysis is of no consequence, nor is the possibility that parts of the integrand may be multi-valued in the new variable, as this is easily absorbed into the function $g(S)$ with which we now replace all explicit references to τ, k, B or E. Bearing this last remark in mind, we can see that the integration is merely
being taken over all complete nodograpns lying on the FS, each one being labelled by its relaxation time and that the appropriate limits of integration are from 0 to ∞.

Thus, we have finally:

$$
\begin{align*}
& \sigma_{x x}=\sum_{b} \int_{0}^{\infty} \frac{f(S) d S}{1+(S H)^{2}} \tag{24}\\
& \sigma_{x y}=\sum_{b} \int_{0}^{\infty} \frac{S H g(S) d S}{1+(S H)^{2}}
\end{align*}
$$

Where the summation b is over the bands.

2.4.2 Application to Graphite

We shall now employ the expressions obtained in the last section to show now the carriers in graphite can be separated and their properties found from measurements of the conductivity and Hall effect.

Dividing the carriers in graphite into positive and negative carriers, we can write:

$$
\begin{align*}
& \sigma_{x x}=\sigma_{x x}^{p}+\sigma_{x x}^{n}=\int_{0}^{\infty} \frac{d S g p(S)}{1+(S H)^{2}}+\int_{0}^{\infty} \frac{d S \operatorname{SH}(S)}{1+(S H)^{2}} \tag{1}\\
& \sigma_{x y}=\sigma_{x y}^{p}+\sigma_{x y}^{n}=\int_{0}^{\infty} \frac{d S(S H) g^{p}(S)}{1+(S H)^{2}}+\int_{0}^{\infty} \frac{d S(S H) \operatorname{gn}(S)}{1+(S H)^{2}}
\end{align*}
$$

where σ^{p}, σ^{n} could each possibly contain additive contributions from several carriers of differing mass, etc. We recall, too, that these
expressions are based on circular orbits and a constant relaxation time on a given orbit.

Kramers-Kronig Relations
It can be snown, by contour integration, that

$$
\frac{1}{i \pi} P \int_{-\infty}^{\infty} f(x) /(x-X) d x=f(X)
$$

where P means that the Caucny principal part of the integral is to be taken. Now suppose $f(X)$ is complex: $f(X)=f^{\prime}(X)+i f^{\prime \prime}(X)$. Then we find:

$$
\begin{align*}
& f^{\prime}(x)=\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f^{\prime \prime}(x) d x}{(x-x)} \tag{2}\\
& f^{\prime \prime}(x)=\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f^{\prime}(x) d x}{(x-x)}
\end{align*}
$$

By applying these to two functions of magnetic field

$$
f(H)=\sigma_{x x}^{P}(H)+i \sigma_{x y}^{P}(H)
$$

and

$$
f(H)=\sigma_{x y}^{n}+i \sigma_{x x}^{n},
$$

we obtain relations between the diagonal and off-diagonal partial conductivities:

$$
\begin{aligned}
& \sigma_{x x}^{P}=\frac{-1}{\pi} P \int \frac{\sigma_{x y}^{P} d x}{H-x} \quad \sigma_{x y}^{P}=\frac{1}{\pi} P \int \frac{\sigma_{x x}^{P} d x}{H-x} \\
& \sigma_{x x}^{n}=\frac{1}{\pi} P \int \frac{\sigma_{x y}^{n}}{H-x} \quad \sigma_{x y}^{n}=\frac{1}{\pi} P \int \frac{\sigma_{x x}^{n} d x}{H-x}
\end{aligned}
$$

These can be reassembled to relate the partial conductivities to the total conductivities:

$$
\begin{gather*}
\sigma_{x y}^{P}-\sigma_{x y}^{n}=\frac{P}{\pi} \int_{-\infty}^{\infty} \frac{d H^{\prime}}{H-H^{\prime}} \sigma_{x x}\left(H^{\prime}\right) \tag{3}\\
-\sigma_{x x}^{P}+\sigma_{x x}^{n}= \\
\frac{P}{\pi} \int_{-\infty}^{\infty} \frac{d H^{\prime}}{H-H^{\prime}} \sigma_{x y}\left(H^{\prime}\right)
\end{gather*}
$$

It can now be seen that by simple addition and subtraction between 1 and 3 the four partial conductivities can be obtained. We assume, of course, that $\sigma_{x x}$ and $\sigma_{x y}$ can be written in the form of the integral expressions in (1); this point is taken up later.

Total Number of Electrons and of Holes
Swanson (1955), and Lifsnitz et al (1957), snow that the number of carriers of a given kind is given by pec $=\int_{0}^{\infty} \frac{d g_{g}(S)}{S}$, where p is the number of holes per unit volume (n for electrons), e is the electronic charge and c is the velocity of light. Thus we can obtain p and n from nign-field Hall data for obviously pec $=\left(H_{X y}^{P}\right)_{H} \rightarrow \infty$ and nee $=\left(H \sigma_{x y}^{n}\right)_{H \rightarrow \infty}$.

Average mobilities of electrons and holes

For a given carrier, we have the relaticn between conductivity and mobility $\mu: \sigma=$ ne μ. Thus, using the zerv-field partial conductivities:

$$
\begin{equation*}
\mu_{n}=\frac{\sigma^{n}(0)_{x x}}{n e}, \mu_{p}=\frac{\sigma^{p}(0)_{x x}}{p_{e}} \tag{7}
\end{equation*}
$$

Where p and n are known from the above section. The mobilities so derived are obviously 'averaged' in the sense that they have been calculated from a combination of high and low-field data.

Finally, the difference in the zero-field conductivities can be shown to be given by:

$$
\begin{equation*}
\sigma_{x x}^{p}(0)-\sigma_{x x}^{n}(0)=\frac{2}{\pi} \int_{0}^{\infty} \frac{d H}{H} \sigma_{x y} \tag{8}
\end{equation*}
$$

For

$$
\left[\sigma_{x x}^{p}-\sigma_{x x}^{n}\right]_{H}=0=-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\partial H^{\prime}}{-H^{r}} \sigma_{x y}\left(H^{v}\right)
$$

Now,

$$
\sigma_{x y}(H)=-\sigma_{y x}(-H) \text { since } \sigma_{x y}=-\sigma_{y x} \text { for graphite. }
$$

Hence,

QED

$$
\begin{aligned}
& L H S=+\frac{1}{\pi} \int_{-\infty}^{0} \frac{d H^{\prime}}{+H^{\prime}} \sigma_{x y}\left(H^{t}\right)+\frac{1}{\pi} \int_{0}^{\infty} \frac{d H^{\prime}}{+H^{\prime}} \sigma_{x y}\left(H^{\prime}\right) \\
& =-\frac{1}{\pi} \int_{0}^{-\infty} \frac{+d H^{0}}{+H^{i}} \sigma_{x y}\left(+H^{t}\right)+\frac{1}{\pi} \int_{0}^{\infty} \frac{d H^{v}}{H^{\prime}} \tau_{x y}\left(H^{v}\right) \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{\partial H^{*}}{H^{*}} \sigma_{x y}\left(H^{\prime}\right)
\end{aligned}
$$

Total number of carriers

As a check on 4 and a useful result in itself, we shall show that the total number of carriers, $(n+p)$, is given by

$$
\begin{equation*}
(n+p) e c=\frac{2}{\pi} \int_{0}^{\infty} d H \sigma_{x x}(H) \tag{5}
\end{equation*}
$$

The RHS is, from 1 ,

$$
=\frac{2}{\pi} \int_{0}^{\infty} d H\left[\int_{0}^{\infty} \frac{\left(g_{D}+g_{n}\right) d S}{1+(S H)^{2}}\right]
$$

Hence, as there are no discontinuities in the plane of integration, we may reverse the order of integration, to obtaing

$$
\frac{2}{\pi} \int_{0}^{\infty} d S\left[\frac{1}{S} \tan ^{-1} \frac{H}{S}\right]_{0}^{\infty}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d S}{S}\left(g_{p}+g_{n}\right) \frac{\pi}{2}
$$

which is the LHS by the relations pec $=\int_{0}^{\infty} \frac{d S \operatorname{sp}(S)}{S}$ etc.
In analogy to equations (4), a further expression for the total number of carriers is:

$$
\begin{equation*}
(n+p) e c=\left(H \sigma_{x y}\right)_{H \rightarrow \infty} \tag{6}
\end{equation*}
$$

Representation of data as a function of magnetic field

Our problem at this stage is to obtain the integrals in (1) which describe the experimental variations of the conductivity with field. We follow McClure in using a sum of Lorentzians of the form

$$
\begin{equation*}
\sigma_{x x}, \sigma_{x y} / H={ }_{n} \sum\left\{A_{n} /\left(1+\left(H / H_{n}\right)^{2}\right)\right\} \tag{9}
\end{equation*}
$$

where the A_{n} and H_{n} are constants to be used in fitting the experimental points. The justification for this is that very good fits can be obtained with two or three terms and that these expressions make it easy to apply the Kramers-Kronig relations. We regard this as a convenient way of representing the data and do not at first make any identification between the individual terms and the various carriers, though such might be justified if the carriers turned out to have very different characteristics. The procedure used in fitting data to these expressions is described elsewhere (4.1.3).

Let us now apply the $K-K$ relations to these Lorentzians as required by (3). To evaluate the integrals (3) we use partial fractions

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d H^{\prime}}{H-H^{\prime}} \sigma_{X y}\left(H^{\prime}\right) & =\sum_{i} \int_{-\infty}^{\infty}\left(\frac{H}{H_{i}^{\prime}}+H^{2}\right. \\
H-x & \frac{d x}{H_{i}^{2}+H^{2}} \frac{H}{H_{i}^{\prime}+x^{2}} \\
& \left.-\frac{X d x}{H_{i}^{\prime}+H^{2}} \frac{H^{\prime}}{H_{i}^{2}+x^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} \frac{H}{H_{i}^{\prime}+H^{2}} \frac{1}{2}\left[\log _{i} \frac{H_{i}^{2}+x^{2}}{H^{2}-2 H x+x^{2}}\right]_{-\infty}^{\infty} \\
& -\sum_{i} \frac{H_{i}^{2}}{H_{i}^{2}+H^{2}} \frac{1}{H_{i}^{2}}\left[\tan _{i}^{-1} \frac{x}{H_{i}^{1}}\right]_{-\infty}^{\infty} \\
& =-\underset{i}{H_{i}^{\prime}+H^{2}}
\end{aligned}
$$

Similarly,

$$
\int_{-\infty}^{\infty} \frac{d H^{\prime}}{H-H^{\prime}} \sigma_{x x}\left(H^{\prime}\right)=\underset{i}{\Sigma} \frac{\pi}{H_{i}} \frac{H}{H_{i}^{2}+H^{2}}
$$

This equations (3) become:

$$
\begin{align*}
-\sigma_{x x}^{p}+\sigma_{x x}^{n} & =-\sum_{i} \frac{A_{i}^{\prime} H_{i}^{3}}{H_{i}^{\prime 2}+H^{2}} \tag{10}\\
\sigma_{x y}^{p}-\sigma_{x y}^{n} & =H \sum_{i} \frac{A_{i} H_{i}}{H_{i}^{2}+H^{2}}
\end{align*}
$$

In accordance with the view that the $A_{i}, H_{i}, A_{i}, H_{i}^{\prime}$ are merely fitting parameters, we do not expect the H_{i} and H_{i} to be the same in general.

By combining (1) and (10) we obtain the four partial conductivities. Summary of formulae

We now collect some of the above formulae for future convenience, using the fitting parameters to describe the magnetoconductivity tensor components.

Carrier densities

$$
\begin{array}{r}
\binom{p}{n^{\prime}} \text { ec }=\left(H \sigma_{x y}^{n}\right)_{H \rightarrow \infty}=\frac{1}{2}\left[\sum_{j} A_{j}^{2} H_{j}^{2} \pm \sum_{i} A_{i} H_{i}\right] \\
(n+p) \text { ec }=\frac{2}{\pi} \int_{0}^{\infty} d H \sigma_{x x}(H)=\underset{i}{\sum A_{i} H_{i}}
\end{array}
$$

Partial conductivities

$$
\begin{align*}
& \stackrel{p}{n} \sigma_{x x}=\frac{1}{2}\left[\begin{array}{l}
A_{i} H_{i}{ }^{2} \\
i \\
i \\
H_{i}^{2}+H^{2} \\
\sum \\
j H_{j}^{2}+H^{2}
\end{array}\right] \\
& \sigma_{X y}^{p}=\frac{1}{2}\left[\begin{array}{llll}
\sigma_{X} & \frac{A_{j}^{2} H^{2}}{H_{j}^{2}} \pm & H \Sigma & \frac{A_{i} H_{j}}{H_{j}^{2}+H^{2}} \\
H_{i}^{2}+H^{2}
\end{array}\right] \tag{13}\\
& \sigma_{x x}^{P}(0)-\sigma_{x x}^{n}(0)=\frac{2}{\pi} \int_{0}^{\infty} \frac{d H}{H} \sigma_{x y}=\Sigma A_{j}^{i} H: \tag{14}
\end{align*}
$$

$$
-88-
$$

Mobilities

CHAPITR 3

EXPERTIENTAL

3.1 MATERTALS - PREPARATION OF SAMPLES

Sample Shape

With materials which are known to be highly anisotropic, it is essential to ensure that the current flow in principal directions is homogeneous. This makes the adoption of suitable sample shapes, electrode positions and application techniques more important than is perhaps the case with homogeneous isotropic media. Thus it is desirable to minimise the shorting effects of the current eleotrodes on the hall voltage and the perturbation of the potential probes on the uniform current distribution down the sample. Spain ${ }^{(1967)}$ used paper coated with a nearly uniform conductive layer to form a two dimensional analogue of the proposed sample configuration and verified that corrections were negligible provided that the ratio of sample length to width was greater than about four. The samples used in the present investigation were out with this finding in mind and a similar analogue technique was used to observe the actual current flow in the samples as fabricated. A photograph was taken of each sample and the outline traced onto the conductive paper from an enlarged print. Silver dag was then painted along the outlines of the plated contact areas and a current of about 10 mA was passed through the current electrodes from an accumulator. An ordirary pencil connected to a high impedance electronio voltmeter was used to plot the course of
the equipotential lines across the analogue. In particular, the positions of the three equipotential lines Zeaving the silver paint on the three potential arms were noted, and it was found that a slight correction was necessary to give the actual distance between these equipotentials (electrical separation). The correction was usually less than 1%. The three analogues obtained for the samples reported here are shown in Figure 3.1.

Previous measurements of c-maxis properties have depended upon having samples from 5 to 10 mm . thick in the c-axis direction. However, analogue experiments by M. L. Yeoman (unpublished) have shown that it is possible to perform useful measurements upon samples only 2 or 3 mms. thick. The technique is to cut a rectangular piece out of a sleaved disc of the required thickness and to copper-plate all of the top and bottom faces except for small islands near the centre of each face. These regions are plated separately, leaving a narrow annulus of untouched graphite between the two areas on each face. Current is fed into the large areas and potential leads attached with silver dag in the usual manner to the central areas. It is doubtful whether accurate absolute values of resistivity can be obtained by this means because of the difficulty in measuring the thickness of the slab and in making the side faces perfectly parallel to the c-axis. Additionally, corrections to the measured resistance of the order of a few $\%$ must be applied. Probably an analogue investigation of samples as-

made rather than as-desired would enable the correction to be estimated with sufficient accuracy, as is the case with basal plane samples. Extra care must be exercised during plating to prevent the formation of copper globules on the edge of the sample since these would have a disatrous effect on the current distributiun.

Cutting the samples

The samples reported here were cut from four different preparations of pyrolytic graphite. Their properties are listed in the table following. Wl had been prepared previously by Spain ${ }^{(1967)}$ with four potential arms, only three of which were in good enough condition to be used. Unfortunately, these were wrongly disposed relative to each other for simple Hall measurements and it was necessary to reverse the magnetic field and subtract two sets of readings before a meaningful Hall voltage could be obtained. This considerably complicated the analysis of chart recordings for this sample. The other two basal plane samples were cut in the usual bridge pattern: starting with a cleaved disc in the case of W2 and a cleaved piece of inner-layer material in the case of W3 (the current path was parallel to the cylinder axis so this sample ended up with slightly curved potential probes), the pyrolytic graphite was fixed to a layer of tissue paper stretched over a hole in a brass plate. A suitable shaped mask, cut and filed from thin brass, was similarly fixed with a flexible red cement onto the upper face of the graphite and an air-carried jet of abrasive dust (alumina) was directed at the unprotected parts of the graphite. After a little practice it was possible to cut samples with
straight edges, at right angles to the front face, in about 20 minutes. A pencil brush was used to remove mask, tissue, and backing plate from the sample with the assembly immersed in acetone.

Before plating, the contact areas were slightly abraded with the dust jet. A simple mask was employed to shield the main body of the sample and one or two quick passes with the jet were all that was required. The coloured cement was used to shield all areas of the sample except the tips which were to be plated, particular care being taken with the edges of the graphite where plating occurs very readily. A plating lead was attached with silver dag cement and the sample left to plate in a slightly acid 10% solution of copper sulphate with a current density of about $1 \mathrm{~mA} / \mathrm{cm}^{2}$. Once a continuous copper sheath sufficient to short all the graphite layers together had formed, the plating wire was removed with acetone and wires were attached to all other contact areas of the sample with the conducting silver paint. This final contact was then completed in a similar manner. The initial copper plating was considered to be essential to the success of this technique because analogue experiments have shown the extreme importance of electrically tying all the high conductance basal planes together. Finally, all contact areas were given another plating to form copper caps over the dried
silver cement. Great care was needed to prevent shorting the current and potential areas of c-axis samples, and for both types of sample there was a tendency for copper to be plated in globules along the "masked" edge of the graphite. Several carefully applied cement layers were needed to prevent this. The 40 swg copper wires used to make connection to the samples could be bent without fear of damaging the graphite but they were easily broken off at the sharp edges of the silver paint. Any short length of wire inadvertently sheathed in silver paint could not be safely bent at all. Contact resistances achieved by the above techniques were quite insignificant compared with the several ohms resistance of the wires leading out of the cryostat. Mounting of samples - alignment

Basal-plane samples were stuck to tufnol frames for ease of manipulation, the current leads being soldered to electrically insulated heat posts attached by "Araldite" to the copper sample block. By gently bending these wires until a travelling microscope indicated that the basal-planes were parallel to the axis of the copper block, the normal to the basal-planes was brought to within 0.2° of a position perpendicular to this axis. Once the copper block was screwed into position on the cryostat, the sample c-axis was within 0.2° of the horizontal plane. Because of the effective planar isotropy within the layer planes it was

SAMPLES USED IN THIS STUDY

W1 Starting material IFP53 (Spain et al. 1967). Hotpressed at $2970^{\circ} \mathrm{C}$, annealed at $3500^{\circ} \mathrm{C}$. Density $2.266 \mathrm{gms} / \mathrm{cm}^{3}$.

W2 Starting material IFP64T. Hot-pressed at $2850^{\circ} \mathrm{C}$, annealed at $3500^{\circ} \mathrm{C}$. Density $2.26 \mathrm{gms} / \mathrm{cm}^{3}$.

W3 Selected inner layer material (Section 1.2); annealed at $\geq 3700^{\circ} \mathrm{C}$.
not necessary to align the current axis accurately to the vertical so this was done by eye. A simple rotation of the magnet about its vertical axis now brought the magnetic field vector (B) parallel to the c-axis (position $T 1$), or normal to it (position T2) see Figure 3.2. Coloured cement was used to fix the sample into position and to hold the wires firmly in contact with the copper block. Forces of the order of fractions of a gram-wt were expected on the wires when the magnetic field was near its maximum value so they were coated with the cement to stiffen them sufficiently to prevent movement. Tissue paper was used where electrical insulation was required. C-axis samples were aligned in a similar way and fixed with the cement. The thermocouple bead was attached to the sample face with a thin layer of tissue paper to isolate it electrically but not thermally. Care was taken to prevent any wire from touching the outer copper cap which was slipped over the whole assembly to form the exchange gas space.

3.2 FORII OF THE RESULTS - TAKING THE IEEASUREMENTS

Sample voltages were of the order from $\mu \mathrm{V}$ to hundreds of $\mu \mathrm{V}$ for the Hall effect and from $\mu \mathrm{V}$ up to mV for magnetoresistance. A Pye three-dial Vernier potentiometer, measuring to $1 \mu \mathrm{~V}$ on the last dial, was employed with a Tinsley galvanometer amplifier to enable voltages to be estimated to within $0.1 \mu \mathrm{~V}$. By means

FIGURE 3.2 SAMPLE orientations

Figure 3.3 !illustrating Sample Dimensions
of a switchbox described below this potentiometer was used for measuring sample resistive and Hall voltages, sample current as measured by the voltage developed across a standard 0.1Ω and the current supplying a Hall probe placed in the magnet pole gap. The Hall probe output could be switched to the potentiometer when required. Free inputs on the potentiometer itself were used for measuring the thermocouple output with respect to a liquid oxygen standard maintained in a dewar vessel. The Hall probe output and sample voltage were usually switched into the two axes of an $X-Y$ chart recorder to produce a trace which was approximately a plot of sample voltage against magnetic field approximately because, although the electronic system was verified to be linear in response to about $1 / 10$ th percent, the Hall probe output was quadratic in field. A slow-sweep unit was used to change the magnetic field at a low rate, generating a trace on the chart recorder. It was usual to generate two sets of charts for each temperature - one set over the whole field range available (up to nearly 18 kgauss) and the other, using expanded recorder scales, up to about 6 kgauss. Calibration points were put onto charts by stopping the field sweep as was convenient and measuring relevant voltages with the potentiometer.

Consider now a sample with the dimensions shown in the diagram, Figure 3.3 of width ω, thickness t and with a uniform current flow down its length.

The Hall coefficient R_{H} and resistivity $\rho(H)$ in transverse magnetic field H are related to the Hall voltage V_{H} across the width of the sample and the voltage V_{S} down the length of the sample (between probes spaced a distance p apart) by

$$
\begin{aligned}
\mathrm{R}_{\mathrm{H}} & =\frac{\mathrm{V}_{\mathrm{H}} / \omega}{\mathrm{HI} / \mathrm{Ct}}=\frac{\mathrm{V}_{\mathrm{H}} \mathrm{t}}{\mathrm{HI}} \\
\rho & =\left(\frac{V_{\mathrm{S}}}{\mathrm{I}}\right)\left(\frac{\omega t}{\mathrm{p}}\right)
\end{aligned}
$$

Now suppose we make a series of measurements of Hall voltage, reversing magnetic field and current to give four measured voltages:

$$
\begin{aligned}
& V_{1}=V_{H}+R I+\Delta V+f(I)_{g}(H) \\
& \nabla_{2}=-V_{H}-R I+\Delta V+f(-I)_{g}(H) \\
& V_{3}=-V_{H}+R I+\Delta V+f(I)_{g}(-H) \\
& V_{4}=+V_{H}-R I+\Delta V+f(-I)_{g}(-H)
\end{aligned}
$$

where RI represents a resistive drop due to misalignment of the two effective Hall potential probes, ΔV represents spurious current-independent thermal emf's in the copper leads, and
$f(I) g(H)$ is a function of current I and field H representing magnetothermal effects. We see that the usual practice of taking the combination $\left(V_{1}-V_{2}-V_{3}+V_{4}\right) / 4$ gives $V_{H}+\frac{1}{4}(f(I) g(H)+$ $\left.f(-I)_{g}(-H)-f(-I)_{g}(H)-f(I) g(-H)\right)$ which is just equal to the Hall voltage V_{H} if the second term is zero.

The second term is zero provided only that $f(I) g(H)$ is not odd in both of the variables I or H. Now if we examine the consequences of the sample not being completely isothermal we see that there are three main sources of transverse voltage, stemming from combinations of magnetothermal and thermoelectric effects. Diagramatically, we have

The final effects, the transverse voltages, depend on heat flows and so take time to decay and remestablish themselves if the current is reversed. Neasurements taken so quickly that thermal gradients do not have time to change appreciably are termed 'fast'. 'Slow' measurements enable the thermal gradients to reverse completely. The effect of fast and slow reversals of I and H on

TABLE 3.1

Erreil of current arid magnetic field reversal
OM THE TAGNETDTHERRIAL EFFECTS REPRESENTED BY $f(T) G(H)$.

For example: The magnetuthernal voltages change sign on reversal of current (stone) unless measurements are mode before thermal gradients have tryma to change appreciably (fort').
the transverse voltages produced by the Nernst (N), Righi-LeducPeltier (RLP), and the Ettingshausen-Peltier (\mathbb{P}) combinations are shown in the following table 3.7.

We see that either of the two combinations formed by slow or by fast magnetic field reversal with fast current reversal leads to elimination of all these spurious effects but that the other two combinations, with slow current reversal, fail to eliminate either the Nornst (N) effect of any effect at all.

Hall measurements on sample W1 were performed by reversing both current and field at leisure, since there was no hope of being able to take 'fast' current-reversed measurements because of the high layer-plane thermal conductivity. This procedure eliminated the appreciable misalignment voltage inevitable with this particular sample and also thermal voltages in the leads but it left in the above effects. However, c.f. Putley (1960) P. 86, estimates give about $0.1 \mu \mathrm{~V}$ at 5000 gauss for the dominant effect (Nernst) and orders of magnitude less for the others. Observation of these spurious voltages is possible with bismuth using an oscilloscope triggered by the current or field reversing switch but a high gain d.c. amplifier with sufficiently short response time was not available for checking in the present case. The other basal plane samples were measured by reversing the current. The field was not reversed partly because of the practically impossible task of
rotating the water-cooled magnet through 180° in the confined space around the cryostat without endangering the long-tailed glass dewar which rested, with little lateral movement, in the pole gep. The alternative procedure of slowly decreasing the field to zero, shutting down the generator, reversing the magnet leads and then re-setting the field to its original value took too long to be practicable for the time-limited low temperature runs and introduced the risk of inducing temperature changes through eddycurrent heating. 'Slow' current reversal alone eliminated the (not negligible) thermal voltages in the sample leads but accurate zero field balancing was necessary to ensure that no resistive term (RI) appeared in the measured voltage. Two resistance boxes gave a total of about 30 ohms connected across the sample potential arms and the Hall voltage was measured between the junction of the boxes and the third potencial arm on the sample. In zero field, the measured voltage was set to zero by adjusting the box resistances to within 0.1 ohm. Thus, at worst, one third of one percent of the resistive voltage drop across the first two potential arms appeared added to or subtracted from the actual Hall voltage. This is most critical at magnetic fields near 3 kgauss where the Hall effect sometimes changes sign. Below this field the magnetoresistance voltage dropped rapidly to zero as H^{2} whilst the Hall voltage increased in magnitude before dropping to zero. Above 3 kgauss
the Hall voltage increased more rapidly then the magnetoresistance voltage (though it was always of smaller magnitude) so the fractional error decreased once more. We see that, except for a slight shift in the position of zero Hall coefficient on the field axis, this effect is less than the error involved in measuring sample thickness which appears explicitly in the calculation of the Hall coefficient.

We define magnetoresistance by $\mathbb{V}(H)-V(0) \quad \frac{\rho(H)-\rho(0)}{\rho(0)}$. In practice this reduced to $M=\frac{V_{s}(H)-V_{s}(0)}{V_{s}(0)}$, since negligible current change occurred during a run. Once more, spurious thermomagnetic potentials could have arisen to perturb the potential difference due to the sample resistance. No current was drawn through the contacts in the potentiometer balance position so only Saebeck emfs due to longitudinal temperature gradients down the sample were likely to have an effect. 'Slow' current reversal does not eliminate these but the temperature gradient which can be established down the sample is held to low values by the high layer-plane thermal conductivity. 3.3 APPARATUS

The apparatus used in the present investigations may be divided into three parts for the purposes of description: the magnet, the cryostat and its associated vacuum equipment, and the electrical measuring equipment.

3.3.1 MAAGNET

This dictated the main dimensions of the cryostat. The magnet employed was a Newport Type D electromagnet fitted with high-power, water-cooled coile. Special conical pole-pieces made by Zewport to increase the maximum attainable field-strength at the expense of pole-gap. The working pole-gap with these polepieces was 4.5 cms , giving a maximum field of about 18 kgauss.

The magnet yoke was mounted on a turn-table inscribed in degrees and fitted with a vernier device reading to tenths of a degree. A trolley enabled the whole magnet assembly to be noved into position on a pair of rails.

A Newport Type 905 C power supply was used in conjunction with the magnet. This consisted of a 25 LW motor-generator whose output was controlled and stabilised from a bench consol. A slowsweep unit was used to vary the magnet current linearly with time, although this did not, of course, result in a linear variation of field-strength with time.

3.3.2 CRYOSTAT

It was required to maintain the samples at temperatures ranging from room temperature down to below $1^{\circ} \mathrm{K}$. Because of the fairly narrow magnet pole-gap and the requirement that it should be possible to rotate the magnet about a vertical axis passing through the sample, the cryostat had to be quite long and thin.

This severely restricted pumping speeds for tubes of reasonable diameter extending down to the sample, and it was apparent that the higher-vapour pressure liquid helium-3 would have to be used to attain temperatures below $1^{\circ} \mathrm{K}$.

A diagram of the cryostat appears in Figure 3.1.
The sample was mounted on a copper block screwed into the copper heliun-3 chamber. This was kept evacuated at all but the lowest temperatures, when helium-3 was condensed into it. Stainless-steel tubes with thin walls were used to suspend the copper sample block in vacum and to provide lines for the evacuation of the heliwn- 3 chamber and connections to a vapour pressure manoneter. The sample vacuum jacket, maintained within a removable copper cap, was produced by punping through a further thin-walled stainless-steel tube. It was possible to fill the sample vacuum space with heliun- Λ gas during initial cooling operations to thermally short-circuit the stainless-steel tubes and ensure rapid cooling of the sample.

The above assembly was immersed in a bath of liquid helium-4 contained in a metal dewar extending upwards to the thick brass base-plate, keeping the steel pumping tubes at very low temperatures (and hence considerably reducing their thermal conductivity) for most of their lengths. In particular, the copper radiation trap was as low down in the dewar as possible to ensure that it

re-emitted energy at a low power to the sample block hanging immediately below it. Radiation shields consisting of foam plastic faced with aluminium foil were positioned at intervals along the pumping tubes. These helped to reduce room-temperature radiation reaching the liquid helium and so boiling off large volumes of cold helium gas; the shields acted as heat exchangers which caused the radiation to warm the helium gas already boiledoff by other thermal leakage currents. The helium dewar vacuum space was continuously pumped by means of an Edwards EO 2 oil diffusion pump - it was not sealed for fear that a leak of superfluid helium into this space might cause an explosion on warming up.

To reduce radiation across the helium dewar vacuum space the standard procedure was adopted of surrounding the dewar by a jacket of liquid nitroger: a long-tailed glass dewar fitted over the metal helium dewar and was hung in a webbing harness from six stout springs attached to the base-plate.

Different parts and systems making up the cryostat will now be described in greater detail.

Sample Exchange-Gas Space

This was filled with helium-4 gas to speed the initial cooling down process and, in fact, whenever a thermal tie was required between the copper sample block and the liquid in the metal dewar. For temperaturesdiffering from that in the metal dewar, and
especially for helium-3 work, the space was evacuated with an Edwards 102 oil diffusion pump backed by an ED 150 two-stage rotary pump. Exchange gas could be admitted from a small coiled copper tube reservoir (Figure 3.5), a Bourdon gauge enabling the pressure to be monitored up to 20 torr.

Helium-4 Dewar

Thin-walled stainless steel tubing was used for this dewar because of its low thermal conductivity and high mechanical strength. The limited width between the magnet pole-pieces precluded the use of a relatively thick-walled glass dewar. Flanges were machined from stainless steel plate and then the dewar was assembled and argon-arc welded commercially. Brass tubes were supplied to act as a thermal sink and spacing tube during the welding operations which were made more delicate by the thinness of the steel tubes. Six bolt-holes in the upper steel flange enable the dewar to be fixed to the brass base plate of the cryostat, using a plastic gasket to render the assembly vacuum-tight. The large outer tube of the vacuum jacket was constructed of 18 gauge brass for strength. It was hard-soldered into position.

A type $E 02$ oil diffusion pump was used to evacuate the helium dewar vacuum jacket through a liquid nitrogen vapour trap. The pressure, monitored on a Penning gauge, was usually 2.0 or 3.10^{-5} torr near the diffusion pump. However, because of space limitations, a small ($\frac{1}{4}$ "diameter) pipe had to be used near to the dewar and this
constriction undoubtedly allowed the inner wall of the vacuum jacket to cryopump this space to a much lower pressure when the dewar was being used with liguid helium. .

It was necessary to lower the temperature of the main bath to below $1.5^{\circ} \mathrm{K}$ to enable helium-3 to be condensed into its chamber at a reasonably low pressure. This meant lowering the pressure above the liquid helium -1 to below 3.6 torr. A large rotary pump, an Edwards ED450, was used through a $4^{\prime \prime}$ diameter line to effect this. Metal bellows were placed strategically in the line to isolate pump vibrations. Temperatures close to $0.9^{\circ} \mathrm{K}$ were achieved using this system alone. This seems to indicate that esoteric devices for limiting the rate of flow of the superfluid film below the lambda-point $\left(2.2^{\circ} \mathrm{K}\right)$, such as minute pinholes in an otherwise blocked pumping line, are unnecessary unless the lowest temperatures attainable with single-stage helium-4 cooling are desired.

In the event of a sudden energy input to the helium bath (through, for instance, failure of the vacuum jacket) considerable volumes of helium gas would have been boiled-off, because of the low latent heat of liquid helium. A flap valve was fitted on the pumping line at the top of the cryostat to prevent the internal pressure ever building up much above atmospheric pressure.

The dewar pumping system enabled temperatures down to about $50^{\circ} \mathrm{K}$ to be reached by pumping on liquid and solid nitrogen
contained in the metal dewar. A liquid nitrogen jacket in the glass outer dewar was not essential for this but did increase the length of runs at the lower temperatures.

By using a small (1SC35) rotary pump plugged into the helium transfer port it was possible to pump at the slow rates necessary at higher temperatures. A butterfly valve in the large 4" line and small valves in the transfer-port line made it possible to vary the pressure continuously over the whole range attainable.

Helium-3 System

This was designed to enable helium-3 gas to be condensed into the small copper chamber on which the sample was mounted and then to pump on the liquid to lower its temperature. As the gas is expensive a closed system was necessary, (Figure 3.6).

A mercury diffusion pump, type 2 M 4 , was chosen to pump on the liquid helium-3 because it can work into backing pressures as high as 3.5 cms . Hg. This means that no rotary backing pump was required provided that the system was not filled to a pressure higher than 3.5 cms. Hg. In fact, a mercury Toepler pump was included for several reasons: it was not known (during the design stage) what temperature could be reached in the main helium dewar (mainly because of the uncertain effect of superfluid film-flow) and a value of $1.4^{\circ} \mathrm{K}$ was assumed. It then appeared that the condensing pressure required was greater than 3.5 cms . Hg. which meant that either the system had to be filled to the higher pressure, implying
some form of backing pump for the 2 M 4 , or it could be filled to below 3.5 cms . Hg., implying some form of condensing 1 ump. A Toepler pump could be switched to fulfill either of the se functions as needed. In addition, it is normal practice to return as much as possible of the helium-3 to the storage vessels to avoid loss by diffusion out through glass parts of the system or contamination with atmospheric helium- A diffusing into the system.

From the diagram (Figure 3.6), it can be seen that suitable combinations of valve positions gave the following facilities:

1. The system could be evacuated through a connection to the EO2 diffusion pump prior to filling with helium-3 gas.
2. Filling was accomplished through valve 1 and the storagecylinder valves.
3. Once the sample chamber was below $1.4^{\circ} \mathrm{K}$, condensation of helium-3 could be achieved by using the Toepler pump to force gas through the small-bore condensing line via valve 4. During this operation the large volume of the diffusion pump was isolated by means of valves 5, 6 and that of the vapour-pressure manometers by valve 7 .
4. The liquid helium-3 could be pumped off rapidly through the diffusion pump and returned to storage via the path 6, 5, 3, 1. In this mode, the needle valve, 8, was effectively across the diffusion pump, controlling its pumping speed and hence the temperature of the sample.

Figure 3.7

Therimal Desigri of
CRJOSTIT

Thermal Design of the Cryostat

The main dimensions of the cryostat were dictated by the magnet. Thus, the largest diameter of the outer, nitrogen, dewar was fixed by the distance between the magnet current coils and the diameter of the tail was fixed by the pole gap. This, in turn, decided the diameters of the stainless steel tubes used in the construction of the helium dewar - since there is a limited choice of diameters of thin-walled cryogenic-quality tubing.

It is proposed to examine the cryostat as constructed rather than report the design process which was affected by many outside influences.

Helium-3 System

The copper sample block was hung on two stainless steel tubes, 4 cms. long, $\frac{1^{\prime \prime}}{8}$ diameter, and of $0.006^{\prime \prime}$ wall thickness, within a vacuum space. These provide the thermal isolation necessary to maintain a temperature difference between the sample and the main helium bath. We shall consider the extreme case of the helium bath at $1.5^{\circ} \mathrm{K}$ and the sample at (about) $0.3^{\circ} \mathrm{K}$ (due to pumping on the helium-3), see (Figure 3.7). The actual sample temperature depends on the balance between pumping speed at the surface of the liquid helium-3 and the total heat flux into the helium-3 bath. Heat Leakage to the helium-3 Chamber
a) Down the two steel tubes. Taking a mean thermal conductivity of $0.7 \mathrm{~mW} \mathrm{deg}^{-1} \mathrm{~cm}^{-1}$ this is easily calculated to be approximately $\leq 0.007 \mathrm{~mW}$.
b) Radiation from the copper cap at $1.5^{\circ} \mathrm{K}$. Taking an area of $60 \mathrm{cms}^{2}$ and using the Stefan-Bnltzmann constant ($5.6710^{-9} \mathrm{~mW} \mathrm{~cm}^{-2} \mathrm{deg}^{-4}$) this is $1.710^{-6} \mathrm{~mW}$-negligible. It is interesting to note here that if the radiation trap had been maintained at liquid nitrogen temperature then radiation down the two $\frac{1^{\prime \prime}}{8}$ diameter tubes would have been 70,000 times this value.
c) Joule heating of sample. A typical sample would have dimensions $1 \times 0.1 \times 0.05 \mathrm{cms}$, and resistivity 0.3×10^{-5} ohm-cm at these temperatures. Joule heating for the fairly high sample current of 200 mA is then 0.012 mW .
d) Heat down copper leads. There were seven copper wires of $40 \mathrm{~s} . \mathrm{W} . \mathrm{g}$. Using a mean thermal conductivity of $2 \mathrm{Watts}^{\mathrm{deg}} \mathrm{m}^{-1} \mathrm{~cm}^{-1}$ this gives 0.5 mW .
e) Joule heating of copper leads. Assuming all the heat generated flows into the helium-3 chamber, a resistivity of $\sim 10^{-9}$ ohm-cm and a sample current of 200 mA , the heat input from the two current wires is $\sim 0.001 \mathrm{~mW}$. Calculation yields 46 gauge as the size of wire which minimises the sum of contributions (d) and (e), giving a value of 0.02 mW . However, such thin wire would overheat with reasonable currents for room temperature measurements.
f) Heat down thermocouple wires. The gold wire had a diameter of $0.012^{\prime \prime}$ which gives a heat leak of 0.2 mW . We expect the chromel contribution to be negligible.
g) Conduction through residual gas in the vacuum space. Assuming the abnormally high pressure of 10^{-4} torr this was estimated at less than $\frac{1}{10}$ th $\mu \mathrm{N}$ which is negligible.
h) Eddy current heating due to changing the magnetic field. This was observed during the flyback of the magnetic field scanning system but was negligible during the slow measuring scan. Pumping Speed at the Surface of the helium-3

Figure 3.7 shows the layout of the helium-3 pumping line. Assuming the temperature distribution indicated, the conductance of the line was estimated to be 0.008 litres/sec. Now under equilibrium conditions, the gas flow rate through the line is equal to the rate of boil-off due to heat leaks into the helium-3 chamber. This, together with the above value for the line conductance, enables us to calculate the pressure drop across the line. Neglecting the pressure at the throat of the 2M4 diffusion pump then leads directly to an estimate of the vapour pressure in the helium-3 chamber. Calculation shows that the gas flow rate (throughput) is $7.84 \times 10^{-4} \mathrm{~W}$ litre-torr/sec where T is the heat leak input in milliwatts"s giving a pressure drop of $0.98 \times 10^{-4} \mathrm{~W}$ torr. Thus we expect the lowest vapour pressure to be $(W=0.7 \mathrm{~mW}) 0.07$ torr, corresponding to a temperature of $0.45^{\circ} \mathrm{K}$. This is the worst value for the lowest attainable temperature because the greatest values for heat leaks have been used throughout the calculation and we might expect something a little better in practice. The run duration, assuming
$2 \mathrm{~cm}^{3}$ of liquid helium-3 and a heat leak of 0.7 mW , comes out at about 20 minutes.

Helium-4 System

The purpose of this system during a very low temperature run was to maintain the liquid helium-4 in the metal dewar at $1.4^{\circ} \mathrm{K}$ or below for as long as possible. Figure 3.7 shows the essential features. The pumping system was shown in (Figure 3.5).

Helium-4 System - Heat leaks into the helium-4 bath

a) Down the wall of the dewar. Making the reasonable assumption that all heat from the top flange is dumped into the liquid nitrogen bath, we are left with a leak path from the nitrogen bath to the helium which grows longer as the helium level falls. With a full helium dewar (level at A Figure 3.7) this must completely dominate the situation and cause a rapid boil off of helium but as the level falls the low thermal conductivity of the wall quickly reduced the heat influx. With the level at B the heat leak is 0.076 watts. When the level has fallen to C the heat leak is reduced to 0.038 watts.
b) Down the pumping tubes leading to the radiation trap and the sample block. There were two tubes of $\frac{1}{2}$ " diameter, $0.010^{\prime \prime}$ wall thickness and one of $\frac{1^{\prime \prime}}{8}$ diameter, 0.006" wall thickness. They conduct heat directly from the room-temperature base-plate of the
cryostat into the helium bath. Once again the length of the conduction path varies with the helium level. Calculations taking into account the variation with temperature of the thermal conductivity (p. 57, Rose-Innes) give heat leaks of 0.20 watts for a helium level at B and 0.15 watts for the case C.
c) Conduction down electrical leads. This is estimated at $\leq 5 \mathrm{~mW}$ 。
d) Padiation. Shields were used in an attempt to stop direct room-temperature radiation. It was hoped that the cold helium gas would remove this heat from the shields and maintain the lower ones at least at nitrogen temperatures. We assume, then, that the lowest shield radiates at a temperature of $77^{\circ} \mathrm{K}$, directly into the helium bath. This gives a heat influx of 6.3 mW . A surface maintained at room-temperature would radiate about 160 times as much power.

The above heat leaks into the helium bath, total about B: 0.29 and $C: 0.20$ watts, cause the helium to boil-off and limit the duration of a run. 0.3 watts correspond to 415 ccs of liquid helium per hour which is appreciable. However, the cold helium gas being driven off is capable of absorbing a lot of heat as it warms up to room-temperature. The enthalpy of the gas between a few degrees Kelvin and room-temperature is about 13 watts/mole. Thus, the gas boiled off by the above heat leaks is capable of
absorbing all and more of the unwanted heat influx, implying that if efficient heat transfer is arranged letween the issuing gas and the leakage paths a very low nett boil off rate will results.

The situation is complicated by the fact that liquid helium is in the superfluid state at temperatures below $2.2^{\circ} \mathrm{K}$. The superfluid film is extremely mobile and climbs up all surfaces kept below the transition temperature (lambda point), greatly increasing the surface area from which the liquid can evaporate. The upper limit of the film corresponds to the position of the $2.2^{\circ} \mathrm{K}$ isothermal in the cryostat, for above this the helium could only exist as ordinary helium - without any climbing abilities. A typical maximum film flow rate is $6 \times 10^{-2} \mathrm{cos}$ liquid/sec for a one cm film-width but a dirty wall surface or an air-film can increase this by an order of magnitude. Provided the pumping system can take care of this evaporation rate then temperatures below the lambda-point can be reached; at higher pumping rates the more distant parts of the film will become depleted and the evaporation area will be reduced once more.

Considering conditions at the lambda point; the maximum evaporation rate is around $20 \times 6 \times 10^{-2} \mathrm{cos} / \mathrm{sec}$, assuming the upper edge of the film to have a perimeter of about 20 oms. This is easily converted into the gas flow rate and corresponds to a throughput of 0.A liter-torr/sec. A vapour pressure of 3 torr is assumed under

Abstract

these conditions. Now, the impradonce made negligible and the main pressure drop will occur across the nitrogen trap in the line. This has a conductance of $601 / \mathrm{sec}$. Hence the pressure drop is throughput/conductance or approximate? y 0.01 torr. This means the pressure at the inlet of the rotary pump will be 3 torr and the pump speed required will be throughput/ pressure or $0.4 / 3$ liters/sec. A pump, then of some 10 liters per minute is required. Even if the film flow were much higher due to surface contamination 100 liters per minute would suffice. It appears that the pump actually used, an Edwards ED450, had an adequate reserve of pumping speed and its full 450 liters per minute could be used to take the system down to temperatures below the lambda point.

Estimates of durations of runs to be expected from one filling of the helium dewar are difficult to make because it is not known how much heat the cold gas takes up before reaching the top of the cryostat. However, assuming very poor heat exchange between the gas and the lower parts of the cryostat, the heat leaks calculated above lead to a boil off rate of 0.42 liters/hour for level B and 0.28 liters/hour for level C. These are maximum rates expected for these levels. Since the volume of the dewar between these levels is about 0.4 liters, a mun duration of about 1.2 hours is to be expected and was in fact exceeded in practice.

At lower temperatures, a large fraction of the liquid helium is used to cool the body of the rest of the liquid; approximately $\frac{1}{3}$ of the liquid is required to cool the helium bath from $4.2^{\circ} \mathrm{K}$ to the λ-point. However, the liquid-level will quickly approach B and less will have been boiled off uselessly by the heat leak from the nitrogen bath.

Procedure for Working at Chosen Temperatures up to Room Temperature

There are few easily-available refrigerant liquids: liquid nitrogen is by far the most convenient for higher temperatures and can be employed usefully in the solid form below $63^{\circ} \mathrm{K}$ down to about $50^{\circ} \mathrm{K}$. Liquid oxygen has a boiling point of $90^{\circ} \mathrm{K}$ which is too close to that of nitrogen $\left(77^{\circ} \mathrm{K}\right)$ to make it of considerable use but its high latent heat is an advantage in that long runs are possible. Helium-4 boils normally at $4.2^{\circ} \mathrm{K}$ and is convenient for temperatures down to about $1^{\circ} \mathrm{K}$ but below this very high pumping speeds are required and it is easier to use the higher vapour-pressure isotope, helium-3, for the very low temperatures down to $0.3^{\circ} \mathrm{K}$, say. The large temperature gap between helium and nitrogen can be reached by heating the sample block with a small heater wound onto the helium-3 chamber. However, the extra power input resulted in considerably shorter runs. There are refrigerants with normal boiling points in the gap but they are expensive and sometimes
are only supplied on condition that the gas be returned to the suppliers - implying the possession of a complete gas recovery unit.

Below $1^{\circ} \mathrm{K}$

The nitrogen dewar was filled and about 2 liters of liquid nitrogen poured into the metal dewar. Helium gas at about 20 torr was let into the exchange gas space to connect the sample thermally with the nitrogen in the metal dewar. The system was then allowed to cool to $77^{\circ} \mathrm{K}$. When this temperature was reached, the metal dewar was evacuated and refilled with helium gas from a cylinder. Any remaining liquid nitrogen would cause a drop in sample temperature at this stage and pumping was continued until the temperature started to rise again. Solid nitrogen has a low thermal conductivity and would prevent successful cooling down to helium temperatures if allowed to remain. With the dewar and contents at $77^{\circ} \mathrm{K}$ in an atmosphere of helium gas the system was ready for helium transfer.

Liquid helium was transferred through a vacuum-jacketed tube by squeezing on a rubber bladder attached to the supply dewar. It came over as gas until the transfer line had cooled to $4.2^{\circ} \mathrm{K}$ when liquid started to issue from the tube, accompanied by a characteristic limpness in the rubber bladder. As liquid condensed in the metal-dewar tail the sample temperature decreased rapidly but it
took about half an hour for thermal gradients to die out. The transfer process was not.hurried unduly to avoid wasting the liquid helium; gas issuing from the top of the cryostat should have absorbed heat from the cryostat interior in warming up to room temperature and not from the top of the cryostat. A gas rotameter plugged into the flap-valve port enabled the helium flow rate to be monitored. It was found that an average rate of about 1.3 liters/ minute with occasional puffs of over 3 liters/minute gave a reasonably short cooling time with little wastage of the liquid helium. When the dewar was full, as indicated by a rapid increase in the rotameter reading, the transfer tube was removed and the transfer port was plugged. After closing the flap valve against its rubber sealing ring, pumping on the helium bath was started. Again, the cryostat top was not allowed to cool appreciably as this would have meant inefficient cooling of the cryostat interior. When the sample temperature had reached $1.4^{\circ} \mathrm{K}$ or below, helium-3 was condensed into its chamber by means of the Toepler pump, as described earlier. Pumping on the liquid helium-3 with the 2 M 4 diffusion pump then resulted in a further lowering of temperature, after evacuating the exchange gas space thoroughly by means of the 102 diffusion pump.

Temperatures between the lowest attainable and $1^{\circ} \mathrm{K}$ could be maintained either by adjusting the $2 M 4$ pumping speed or by using
the sample block heater. The former method was preferable the point of view of run length. $1.0^{\circ} \mathrm{K}$ to $4.2^{\circ} \mathrm{K}$

Temperatures below the normal boiling point of helium-4 were reached by pumping on the helium in the metal dewar, using helium gas in the exchange gas space. This gas condensed at about $\leq 1.9^{\circ} \mathrm{K}$ and its vapour-pressure provided a convenient indication of temperature at lower temperatures. Temperature control was effected by varying the pumping speed of a small rotary pump plugged into the helium transfer-port, leaving the butterfly valve to the large rotary pump cracked open a convenient amount. The small pump could be used alone down to the lambda point but it could make no impression on the large volumes of vapour produced by the evaporating superfluid film at lower temperatures. $4.2^{\circ} \mathrm{K}$ to $50^{\circ} \mathrm{K}$

This was the most difficult region to work in as refrigerants with boiling points in the region were not available. The procedure used was to fill the metal dewar with helium-4, as described above, and with a suitable helium exchange gas pressure, to pass a current through the constantan heater winding on the sample block. Temperature was controlled by varying this current.

At low temperatures a fairly high exchange gas pressure was required (10 to 20 torr) to reduce the sensitivity to small changes

Abstract

in current. At the higher temperatures a lower pressure (below 1 torr) enabled these temperatures to be reached with a reasonably small power dissipation.

 $50^{\circ} \mathrm{K}$ to $77^{\circ} \mathrm{K}$By filling the metal dewar with liquid nitrogen and pumping on this liquid, temperatures below the normal boiling point ($77^{\circ} \mathrm{K}$) down to about $50^{\circ} \mathrm{K}$ could be reached. The nitrogen solidified at $63^{\circ} \mathrm{K}$ and this proved to be a convenient, stable, point provided it was approached from below to ensure that an appreciable volume of the solid had formed. Pumping on the solid nitrogen lowered the temperature further but, because of the low thermal conductivity of the solid, cooling of the sample was very slow in this range. $77^{\circ} \mathrm{K}$ to Room Temperature

A similar technique was employed in this range to that employed for working above the normal helium boiling point; a suitable exchange gas pressure was used and the sample block heater current was adjusted to maintain the desired temperature. The exchange gas pressure was reduced from about 10 torr to about 10 microns as the working temperature was increased to avoid an unmanageable sensitivity to current variation at low temperatures and to enable reasonably small power levels to be used at higher temperatures.

3.3.3 ELECTRICAL MEASURENENTS

Voltages from the sample arms were presented to one axis of an X-Y chart recorder or, for calibration purposes, to a Pye $1 \mu \mathrm{~V}$ Vernier potentiometer with a Tinsley photocell galvanometer amplifier enabling voltages to be estimated to $0.1 \mu \mathrm{~V}$. A Keithley Model 149 milli-microvoltmeter was used to amplify sample voltages up to the millivolt level before they were presented to the Y-axis of the chart recorder. By this means, a sensitivity of better than $0.1 \mu \mathrm{~V}$ per 1% chart width could be obtained but the maximum useable sensitivity was usually determined by noise-broadening of the traoe. This originated mainly in the Keithley because of mains-frequency pickup but was kept to acceptable levels by the insertion of a low-pass filter in the input lead to this instrunent. The main source of interference appeared to be from the mains transformers of the various electronic instruments since capacitive coupling to their chasses caused currents to flow between the chasses giving rise to potential differences between the ends of the signal wires carrying these currents. Thorough grounding with thick wire seemed to have a useful effect. The X-axis of the chart recorder was driven by a signal from a comercial hall probe AEI NK III placed in the magnet pole gap and supplied with a constant current of about 10 mA from a 250 V supply through large dropping resistors.

The electrical measuring system was thus required to present either the sample hall voltage or the voltage across the sample potential probes to the chart recorder or to the potentiometer. In addition, the potentiometer was to be used to measure the sample and hall probe currents and it was necessary to ensure that the Keithley milli-microvoltmeter was never open-circuited for long because the ensuing drift of its output to the fos.d. of 10 volts would have damaged the chart recorder. The fairly complicated switching arrangement dictated by these requirements is indicated in the block diagram, figure 3.8.

High quality (Cropico) stud switches were used to switch these low-level voltages, an aluminium box being used for screening. Screened cables were used for interconnecting the various instruments and the wires from the sample to this box were confined inside a rigidly-mounted copper pipe to prevent movement (noticeable voltages were induced by movement of wires in the laboratory stray magnetic field).

A 30 V Farnell constant voltage supply DSV $30 / 5$ was available for the sample current. Two modes of operation were considered the usual case where a large dropping resistor is used to convert voltage stability into current stability and the method actually employed: a 100 ohm constantan resistor was wound non-inductively on a long thin-walled stainless steel tube and was connected in series with the negative lead from the supply as shown (Figure 3.9).

The voltage developed across this stable resistor was taken back to the 'feedback' terminals of the supply which consequently varied the output voltage to keep this feedback voltage, and hence the sample current, constant. It is estimated that the current stability using this method was better than that given by the usual method by a factor of at least four. Sample current was varied by means of the feedback controls on the supply unit which did not carry any large currents and could be changed without fear of drifting whenever required. Previous trials using a switched set of resistors to vary the sample current led to long periods of drifting current values between measurements. In the interests of current stability, again, it was found necessary to employ the on-off switches available in an unusual manner because of their relatively unreliable operation. Had such a switoh been connected in series with the sample, its varying contact resistance would have ruined any current stability achieved in the power supply so it was connected across the sample current leads as shown. The 6 ohm lead resistance between the sample and switching box ensured that the sample current fell to the tens of $\mu \mathrm{A}$ level whenever the switch was closed ('off'). Magnetic Field Measurement

A commercial AEI hall probe was used either to drive the X-axis of the chart recorder or to provide a magnetic field-dependent

BIUCK OMCBNA OC ELECTKAL MEASURING GYETEM

$$
\text { FIGURE } 39
$$

Stariused sample current suppy
voltage for the potentiometer as determined by the position of the mode switch, see Figure 3.8. Constant current of about 10 mA was provided by a 250 V stabilised Roband power supply through a 25 kohm resistor. Calibration to 1% of the probe was effected using a Norma ballistic fluxmeter. It was found that the output voltage was related to the magnetic field through the relation $V / I=10^{-3} B\left[(0.2346 \pm 0,001)-(0.496 \pm 0.025) 10^{-6} B\right]$ where V is the probe output (volts), I the probe current (amps) and B is the magnetic field (gauss). The current was measured by connecting the potentiometer across a 0.1 ohm Rivlin standard resistor. With the probe head used, it was necessary to draw current out of one of the potential leads in oxder to obtain a zero output in zero field only two potential leads were provided on the hall plate. A simple variable resistor enabled the probe to be zeroed before each run, though this was only really necessary for low fields - it had very little effect on the high field readings. As with the Keithley voltmeter input, it was found necessary to use a low pass filter in the input circuit of the X-axis to prevent sluggish operation of the chart recorder induced by a.c.-mains pickup.

Temperature Measurement
A gold (plus 0.03% iron) alloy - Chromel P thermocouple was usce for measuring temperatures against a liquid oxygen standard. The gold wire ($0.012^{\prime \prime}$ diameter) was from the same Johnson-Mathey batch that Berman et al (1963-64) used in their thermoelectric power
measurements. Their emf - temperature data (private communication) was used for interpolation between calibration points, but it was first neoessary to reduce this data graphically to values against an oxygen reference. We employed this particular combination because it maintains a high thermoelectric power down to below $4^{\circ} \mathrm{K}$ (~ 10 NT/deg.) whilst having a reasonable value over the higher temperature range up to $300^{\circ} \mathrm{K}$.

It is convenient to mention here that oil and mercury manometers were connected to monitor pressures in the main helium-4 dewar and these provided a useful indication of temperature when pumping on the refrigerant in this dewar (whether helium or not). An aneroidtype manometer ($0-20 \mathrm{~mm} \mathrm{Hg}$) connected to the exchange-gas space proved vary useful at temperatures below $4^{\circ} \mathrm{K}$ when it acted as a helium-4 vapour pressure thermometer, and an oil manometer and McLeod gauge were provided for the helium-3 system.

APPARATUS

Showing Helium Dewar in place

Showing Cryostat Interior

APPARATUS

Showing Pumping Systems

GHAPTER 4

RESUITS - DATA

The present chapter deals firstly with th: nature and the preliminary analysis of the non-oscillatory Hall effect $R(H)$ and magnetoconductivity $\sigma(H)$, and secondly with the treatment of data obtained on Shubnikov - de Haas oscillations, observed at magnetic fields above 5 kgauss for temperatures of $4.2^{\circ} \mathrm{K}$ or below. Procedures adopted for data fitting; described at the end of each of these sections, lead on to the derived results contained in the next chapter.

4.1 Non-Oscillatory Data.

4.1.1. Chart Reading.

It was described earlier ("experimental") how chart recordings were produced on which voltages proportional to the sample Hall or magnetoresistive voltage and the output of a Hall probe placed in the magnet pole gap were automatically plotted on an X-Y recorder by slowly scanning the magnetic field. Calibration points were inked on to the chart at intervals during each run, using the potentiometer to obtain voltage co-ordinates of each point.

The first stage in the chart reading process was to obtain the relationship between chart distances and voltage input for a particular channel (X or Y). This procedure was identifcal for both channels.

A pencil line ruled on the chart parallel to one axis served as a datum, and the distances of the calibration points from this line were measured using the printed lines on the chart as units. An engraved glass scale was used for interpolation between chart lines when necessary. Preliminary measurements of this sort produced straight line plots (within $\pm 0.2 \%$) of voltage against chart distance for between ten and twenty calibration points, so later runs usually employed only three to six calibration points. To avoid tedious graphical work, a simple least-squares fitting programme was written for use with an IME86S electronic desk calculator. One writes for the Hall probe (P) axis (X) and the sample (S) axis (Y):-

$$
\frac{V_{P}}{I_{P}}=Q_{p}+K_{p} d, \quad \frac{V_{S}}{I_{S}}=Q_{S}+K_{S} d
$$

where V and I are voltage and current respectively Q and K are the constants to be found and d is the chart distance. The programme reduced the problem of finding the best pair of coefficients in the linear law to a routine sequence of operations with the desk calculator on data for all samples and temperatures reduced to a common form in consistent units.

The actual reading of the chart then followed. Sixty or more lines were ruled at intervals along the Hall probe (magnetic field, X) axis and the corresponding distances of the trace along the other axis (Y) measured. Later analysis required that the data from both

Hall and magnetoresistance charts, taken under a given set of conditions, be tabulated in pairs as functions of magnetic field, so it was necessary to derive the chart intervals corresponding to a given set of magnetic field values for each chart before laying off the construction lines along the Hall probe axis. A computer programme was written to generate chart distances for a batch of charts, corresponding to a standard set of magnetic field values contained within the programe. For this purpose it was only necessary to read-in the coefficients of the linear law between Hall probe voltage and chart distance along that (X) axis for each chart, the (non-linear) Hall probe calibration being written into the programme in a suitable form.

Conversion of the Y-axis chart distances into sample (voltage/ current) was performed either with the desk calculator or, later, as part of a larger computer programme. The latter went on to derive the actual values of Hall coefficient, $R(H)$, and conductivity, $\sigma(H)$, and also the magnetoconductivity tensor components, $\sigma_{x x}, \sigma_{x y}$. It required the input data to be in the form of pairs of chart distances (from the Y-axes of Hall and magnetoresistance charts) together with the corresponding values of magnetic field. A printed output was produced tabulating $R, \sigma, \sigma_{x x}, \sigma_{x y}$ and some intermediate products against magnetic field. Punched cards were also obtained as part of the output with the values of field, $\sigma_{x x}, \sigma_{x y}$ coded on to them in a
form suitable for later analysis.
The following Hall coefficient values, $R(H)$, given in units of $\mathrm{cm}^{3} /$ coulomb, are calculated from the expression $R(H)=\left(V_{H} / I_{S}\right)(t / H)$ where V_{H} is in volts, I_{S} in amperes, t in oms, and H is in gauss $/ 10^{8}$. 4.1.2. Results. Hall coefficient and conductivity

We mention here that temperatures quoted on the following graphs should be regarded as labels; actual temperatures are given in the tables of Appendix 3 and in Table 5.1, which also contain data for temperatures other than the four selected for full presentation. The conductivity curves afford a close approximation to the desired $\sigma_{x x}$ curves since the correction from the Hall effect usually amounts to less than 10% when deriving $\sigma_{x x}$.

Graphs 4.1, 4.2, 4.3 display conductivity against magnetic field for the three samples W1, W2, W3 at temperatures of $300^{\circ} \mathrm{K}$ and $77^{\circ} \mathrm{K}$. Results for the three samples superimpose well at high magnetic fields but deviate markedly at low fields; successively higher zero-field values of σ are reached by W1, W2, W3 in that order. This high field behaviour provides a check on the reproducibility of our sample preparation technique, in particular the establishing of uniform current flow across the width of the samples. Similar superposition is evident at $63^{\circ} \mathrm{K}$ and $4^{\circ} \mathrm{K}$ (Graphs $4.4,4.5,4.6$) with the sarne trend in the low-field deviations. Our extension of the range of measurement to magnetic fields above the 6kG used by Spain is fully
justified by the significant tail on the conductivity conve at higher fields. The present analysis is based on estimating the area beneath such curves and the tail obviously contributes greatly to this, at least above helium temperatures. The maximum available field of 18 kG is reasonable for all temperatures except room temperature where at least double this value would have been desirable. At low fields, room temperature behaviour for samples W1 and W2 closely mirrors that shown by Soule's (1958) samples BP-14 and EP-7 respectively, in that one shows a downward trend towards zero magnetic field whilst the other has a pronounced positive-going excurgion which leads to a positive Hall coefficient below a few hundred gauss. W3 shows an intermediate type of behaviour with a lesspronounced rise starting at a lower field than W2. At higher fields W1 and W2 slowly converge but W3 shows a steeper, roughly linear, increase in the negative direction. Such characteristic behaviour (Graph 4.7) for sample W1 follows closely that reported for Spain's materials SA19/20/22/12/18 and places this sample outside the group of best materials used in their study.

The insistent positive excursion at low fields of some of these Hall curves down to $63^{\circ} \mathrm{K}$ has not been detected before in pyrolytic graphite. At $77^{\circ} \mathrm{K}$ in particular the trend is most interesting the peak at roughly 2 kg auss appears to move to lower fields and less negative values with samples W1, W2, W3 whilst the low field side
for the peak becomes more dominated by a positive-going tendency leading in the case of $W 3$ to almost complete moothing of the peak. It should be noted, however, that the exact details of the curves were markedly irreproducible at this temperature and appeared to change upon thermal cycling, an effect not present at other temperatures studied.

The general shape, viz. large negative values on either side of a peak rising towards zero at a few kilogauss, is a familiar picture for pyrolytic graphite (Spain at al., 1967). For material of high perfection the peak actually orosses the zero axis, having a range of positive Hall coefficient for a few kilogauss at around $77^{\circ} \mathrm{K}$. We note that none of our samples cr'ssed the axis in this region, al hough W2 practically touches the axis at $77^{\circ} \mathrm{K}$ (Graph 4.7) whilst all samples approach very closely at $63^{\circ} \mathrm{K}$ (Graph 4.10).

Graph 4.11 illustrates the result of fitting the magnetoconductivity tensor components, derived from the data presented above, to Lorentzian curves as described in Section 4.13. The fitting parameters for $\sigma_{x x}$, $\sigma_{x y}$ have been used to regenerate Hall coefficient curves by means of the loop from raw data to tensor components to fitting parameters and thence back via regenerated tensor components to Hall curves. The fits obtained for the conductivity are usually so good that little is gained by showing them, but
we will illustrate here extreme oxamples of good and of disappointing results one obtains for the more complicated dall curves. Thus, sample W2 at $300^{\circ} \mathrm{K}$ yields a very good fit provided four Lorentzians are used, whereas sample W3 at $63^{\circ} \mathrm{K}$ has not been satisfactorily fitted even by four terms. This is discussed further in Section 5.1.1. 4.1.3. Data Fitting.

We now come to the fitting of the magnetoconductivity tensor components. It has been show in Section 2.2.1 that only two independent components $\sigma_{x x}, \sigma_{x y}$ need to be considered in the basal plane configuration and that these are given by

$$
\sigma_{x x}(H)=\frac{\sigma_{0}(H)}{1+\left(\sigma_{\sigma} H\right)^{2}}, \sigma_{x y}(H)=R \sigma H x \sigma_{x x}(H)
$$

- where R, σ are the (field-dependent) Hall coefficient and conductivity, respectively. Gaussian units are used throughout, various useful relationships being:

$$
\begin{aligned}
& R(\text { gaussian })=R\left(\mathrm{~cm}^{3} / \text { coulomb }\right) \times 1 /\left(9 \times 10^{19}\right) \\
& \sigma(\text { gaussian })=\sigma(\text { ohm }-\mathrm{cm})^{-1} \times\left(9 \times 10^{11}\right)
\end{aligned}
$$

where the value 9 comes from the velocity of light squared and is more accurately 8.988.

Calculated tensor components $\sigma_{x x}(H), \sigma_{x y}(H)$ and the results of this fitting process are presented in chapter 5.

As indicated elsewhere, (Section 2.4.2) representation of the experimental data in the form

$$
\sigma_{x x}=\sum_{2} \frac{A_{i}}{1+\left(H / H_{i}\right)^{2}}, \quad \sigma_{x y} / H=\sum_{2} \frac{A_{i}^{\prime}}{1 r\left(H / H_{i}^{\prime}\right)^{2}}
$$

is necessary before the partial conductivities due to electrons and holes can be found. The present section deals with the methods employed to fit data to the expressions we use σ_{xx} as an example, but all remarks apply equally to $\sigma_{x y} / \mathrm{H}$.

Were the data free from errors, it would be sufficient to take $2 i(i=1,2,3 \ldots)$ data points and solve the resulting equations for the A_{i}, H_{i}. This is not the case in practice, where random errors are superimposed on data. The calculated values of $\sigma_{\mathrm{xx}}(\mathrm{H})$ would not pass through all the experimental values unless the number of fitting parameters (2i) were equal to the number of data points, but our object is to represent the data to sufficient accuracy with as few terms as possible, preferably less than four, so some statistical criterion is necessary to decide upon the goodness of fit. We use the sum of the squares of residuals (the differences between experimental and calculated values) and employ the standard theory of linear least squares fitting where possible.

The Method of Least Squares.

Suppose measured quantities $y_{1}, y_{2}, \ldots y_{n}$ are related to the quantities $x_{i j}$ by the equations $y_{1}=x_{11} a_{1}+x_{12} a_{2}+\ldots+x_{m} a_{m}$

$$
y_{n}=x_{n 1} a_{1}+\cdots \quad+x_{n m}{ }^{2} m
$$

or, using matrix notation, $Y=X A$ where the a_{j} are the parameters which it is required to find. Since, in practice, $n>m$ there are more equations (n) than unknowns (m), and we must determine a criterion for defining the 'best' set of parameters a_{i}. The best set of a_{i} is usually taken to be that which minimises the sum of the squares of the residuals. That is, we want the a_{i} which make

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i j} a_{j}\right)^{2}
$$

a minimum.
Differentiating:

$$
\begin{aligned}
& \frac{\partial}{\partial a_{K}}\left[\left(y_{1}-x_{1} a_{j}\right)^{2}+\left(y_{z}-x_{2 j} a_{j}\right)^{2}+\ldots\right]=0 \\
& \text { ie } \left.E_{1}-x_{i j}{ }^{2}{ }_{j}\right] x_{1 K}+\left[y_{2}-x_{2 j} a_{j}\right] x_{2 K}+\ldots=0 \text { for each } K(=1,2, \ldots m) \\
& \text { i\& } \sum_{i}^{\sum[Y-X A]_{i} x_{i K}=0, \sum_{i} \tilde{x}_{K i}(Y-X A)_{i}=0 \text { for each } K} \\
& \text { where } \tilde{x} \text { is transpose of } X \\
& i \varepsilon[\tilde{x}(Y-X A)]_{K}=0
\end{aligned}
$$

We want to find A :

$$
\begin{aligned}
(\tilde{X Y})_{\mathrm{K}} & =(\tilde{X X A})_{\mathrm{K}} \text { for each } \mathrm{K} . \\
\text { ie } \tilde{X} Y & =\tilde{X} X A \\
\text { and so } \quad \mathrm{A} & =\left(\frac{1}{\tilde{X} X}\right) \tilde{X} Y
\end{aligned}
$$

Thus the procedure for finding the fitting parameters a_{i} is first to set up the matrices X, Y then calculate the products $B=\bar{X} Y$, $\mathrm{C}=\tilde{\mathrm{X} X}$. The matrix C is then inverted and post-multiplied by B. Stated in this way, the problem is seen to be ideally suited for computer solution espcially if FORTRAN language is used since this is well adapted to the handling of matrices. The Imperial College IBM 7090 computer was used for all the data-fitting calculations - they would have been impossibly time-consuming without its use. It should be noted that the method depends upon the first set of equations (the 'observational equations') being linear in the parameters a_{i}. In the present case this is only true for the parameters $A 1$ and not for the H_{i} so, unless the Lorentzian functions can be linearised by Taylor expansion for instance, one is only able to use the above matrix method to find the best set of A_{i} for a given set of H_{i}. The best set of H_{i} will have to be found by another method, but at least the number of parameters to be varied has been reduced by a factor of two.

Methods Fmploved in Fitting the Data.

Two-term fi.ts.

First attempts employed the method indicated above, viz. a set of H_{i} was decided upon and the corresponding 'best' set of A_{i} calculated by the matrix formulation of the method of least squares. Two terms were tried at first as it was know that graphite has two majority cerriers, and it was hoped that the minority carriers would merely represent a small correction term. Values of H_{1} and H_{2} were selected in turn so that all pairs of values within prescribed limits on H_{1} and H_{2} were tried. For each pair the corresponding values of A_{1}, A_{2} were calculated by least squares and the function (ΣR^{2} termed the sum of the squares of residuals) evaluated. Finally the crmputer sorted the 30 sets of parameters giving the lowest values of $\Sigma \mathrm{R}^{2}$ and printed them out for inspection. By plotting points representing these pairs of values of $\mathrm{H}_{1}, \mathrm{H}_{2}$ and labelling each point with its ΣR^{2} value, it was possible to draw 'contour' lines of constant ΣR^{2} value. From such a diagram the next area in the $H_{1}-H_{2}$ plane for exploration was selected. In favourable cases it was possible to select the area containing the lowest value of ΣR^{2} at the first attempt, in which case the contours took the form of closed loops and the position of the minimum could be estimated. An example of such a diagram is shown in Figure 4.1.

Unfortunately, the contours around the minimum were not simple circles or ellipses, but were shaped more like the lmgitudinal crosssection of a banana, so location of the minimum was not easy. A programme witten to overcome this difficulty was based on a Taylor expansion of the Lorentzian expression about values of $\mathrm{H}_{1}, \mathrm{H}_{2}$ which were considered to be close to the true values at the minimum. This essentially linearised the observational equations in all the parameters $H_{1}, H_{2}, A_{1}, A_{2}$ and enabled one calculation by the matrix method to find approximations to the best values of all parameters. Of course, the method depended upon discarding higher order terms in the expansion and so it was necessary to repeat the calculation several times, changing $\mathrm{H}_{1} \mathrm{H}_{2}$ to the latest values before each colculation in order to arrive at the best set of values. Five or so repetitions were usually sufficient to produce unchanging values of the parameters, but the calculation was only stable provided the distance between the starting point and the actual minimum in the $\mathrm{H}_{1}-\mathrm{H}_{2}$ plane was less than about 20% of the values of $\mathrm{H}_{1}, \mathrm{H}_{2}$ 。 Stability also depended somewhat upon the direction in which the starting point lay from the minimum.

After two-term fits to the data of each sample at each measured temperature had been produced by the above methods it was decided to extend the fits to three terms.

Three-Term Fits.

With three terms to be fitted the problem became much more difficult. Although the linear parameters A_{1}, A_{2}, A_{3} could still be found by the linear least squares method for a given set of H_{1}, $\mathrm{H}_{2}, \mathrm{H}_{3}$, it was extremely difficult to find the best set of the latter parameters since this involved drawing contour diagrams in three dimensions - or at least superimposing two-dimensional plots. Even with closed-loop contours in the two-term problem it was not easy to decide where the minimum lay within the elongated contours, but with the contours of the three-term problem one could wander along the resulting narrow, curving tunnel without much indication as to the proximity of the minimum. It soon became evident that a new approach was needed and it was decided to try a gradient-following method:

A computer programme was written to find a minirnum of the function ΣR^{2} by, in effect, moving in H_{i} space in such a direction that ΣR^{2} was always decreased. The principle is best illustrated by considering the two-term problem where one has to find two parameters $\mathrm{H}_{1}, \mathrm{H}_{2}$. (Perhaps it should be stressed that in all the methods described for fitting data to Lorentzien the only problem was in finding the best set of H_{i}. The A_{i} were always calculated by the matrix formulation of the method of least squares described above). By plotting ΣR^{2} against the two parameters H_{1}, H_{2} in three dimensions one sees immediately that the problem is to find the lowest point of
the surface so defined. The computer programe was started at a point whose ($\mathrm{H}_{1}, \mathrm{H}_{2}$) co-ordinates were expected to be reasonably close to those of the minimum. It then proceeded to decide in which direction lay the steepest gradient down the surface by taking two side-steps parallel to the H_{1}, H_{2} axes and noting the resulting changes in height; a simple calculation then gave the direction and values of the steepest down-gradient at this starting point. A step was then taken in this direction, this step being much longer than the two exploratory side "shuffles", and the whole process of shuffle-andstep was repeated until a particular step produced an increase in the 'height of the surface (i.e. the value of ΣR^{2}) when it was deduced that a minimum had just been traversed. Going back to the s'art of this last step, (Δ) the programme then proceeded to take a series of steps (each from the same position) and in the same direction as the step (Δ), with the condition that each was half the length of the preceding step until one of them finally landed on the slope at a lower point than the commencement of step Δ. The usual process of shuffle-and-step was then resumed or the programe terminated itself according to criteria buift into the programme concerning the accuracy with which the position of the minimum was desired. Of course, for a three-term fit the surface is plotted in four-dimensional space, but this makes little difference to the algebraic expressions for the gradient at any point - the programme could operate in either of these modes as required.

A further point embodies in the hill-descending programe was that an initial two-term fit was performed using only high-field data in the belief that the violent excursions of the data at low fields were caused by Lorentziuns with low characteristic fields $\left(H_{i}\right)$ and so would not unduly influence the main terms at high fields. The object in performing this two-term fit was to obtain a better estimate of the position of the minimum for three terms to save time on the three-term hill-descending. This was always desirable because the hill-descending programme was not very refined and tended to take a long time in reaching the minimum, especially if it were started on the side of a valley, when it would proceed to zig-zag across the valley, making only slow progress along the length. In s.mmary, then, this method involved sorting the data into high and low-field then making a two-term hill-descent with the high-field data only and finally, after a rough scan with changing H_{3} values, a three . . term hill-descent down a new hill defined by all the data.

An extension to more terms soon became desirable, if only to check the effect of an extra term on the goodness of fit and, besides, the simple method of proceeding step by step downhill was timeconsuming. A more satisfactory way of reaching the minimum would be to try to predict its position from the local curvature and move each time to the predicted position. M.D. Powell has written several subroutines for minimising any function of several variables and one of
these (VAOAA; see Computer Journal 7. 303, 1964) was employed on a programme for fitting data to up to five Lorentzians. This proved to be extremely reliable and reasonably fast in operation though there is another subroutine (VAO2A) which might prove faster in this application since it is specially designed to minimise a function composed of the sum of the squares of quantities, however, VAOAA started working smoothly before VAO2A and it was felt that the fault-finding time necessary to make the latter work was not available. Progranme to fit data to five or less Lorentzians.

We now describe in outline the fitting programe employing VAOMA. A little knowledge of the FORTRAN computing language is assumed here but the essential points are that variables being manipulated must be given names of up to six letters (e.g. DATA, ESCALE, TEXT, etc.), that orders or 'statements' are obeyed sequentially in general; starting with the first and moving through to the last which is usually ITOP, and that 'subroutines' are self-contained programmes which may be 'called' into operation by the main programme. Once a subroutine has been called, it performs its calculations until it reaches a statement within itself returning control to the main programme. The main programme, in effect, ties the separate subroutines together and may call a given subroutine as many times as necessary. Indeed one reason for writing a subroutine is to avoid having to write whole blocks of statements again and again.

The purpose of our main programme is to provide subroutine VAOMA with a suitable set of input numbers and to accept the output from it. In addition, experimental data must be read in and the final set of fitting parameters printed out at the end. The essential input to VAOAA is the array $X(I)$ of parameters which it has to vary in order to minimise the function ΣR^{2}. Here $X(1) \equiv H_{1}, X(2) \equiv H_{2}, \ldots$ in previous notation. VAOAA returns execution to the main programme when it has found the minimum, in which case the array X will contain the set of best parameters H_{1}, H_{2}, and a variable, F, equal to the latest value of the function $\Sigma_{R}{ }^{2}$. Now, VAOAA is a subroutine for minimising a general function so our function (which is $\Sigma(\text { Resid })^{2}$) must be explicitly stated. In fact, we must provide our own subroutine called CALCFX to calculate the function $F=\Sigma R^{2}$ each time it is required; the latest values of H_{1}, H_{2}, \ldots are fed in and the corresponding value of $\Sigma \mathrm{R}^{2}$ must come out. So far no mention has been made of the linear parameters A_{i}. As in previous fitting programmes, these are found for each set of H_{i} 's by the matrix method described above. In fact CAICFX itself calls on a subroutine LSTSQR which takes the latest values of H_{1}, H_{2}, \ldots and sets up the matrices necessary to perform the least squares calculation. A final subroutine MATRIX is employed to calculate $\left(\frac{1}{\tilde{X} X}\right)(\widetilde{X} Y)$ and so find the coefficients A_{i}. Once the best A_{i} are known for the given set of H_{i}, the function is calculated by LSTTSQR and returned, via CALCFX, to VAOAA for examination. VAO/A

MAIN PROGRAMME

Prints out coordinates of minimum.

$$
\text { FIGURE } 4.2
$$

BLOCK DIAGRAM OF COMPUTER PROGRITIME FOR FITTING DATA TO THE SUM of UP TO FIVE LORENTTIANS.
calls for many (possibly over 300 on occasions) such calculations of $\boldsymbol{\Sigma} R^{2}$ to be made with slightly different values of H_{i} before deciding on a change in one of the H_{i}. In operation, changes are made cyclically in the list H_{1}, H_{2}, \ldots and so on until a minimum is reached. It then only remains to print out the latest values of H_{i}, A_{i} and ΣR^{2}, as shown in the block diagram below Figure 4.2. A photograph of the actual programme statements is included in Appendix 4.

Whilst very good fits were obtained for $\sigma_{x X}$ by this method, it was found that better fits could be obtained for $\sigma_{x y} / \mathrm{H}$ by weighting the high-field data; the violent excursions in the data at low fields tended to make the sum of the squares of the residuals insensitive to the high field data points. More representative fits were obtained by making several copies of the high field data cards and including them with the data (the IBM 7090 accepts instructions and data coded on to punched cards).

4.2 Oscillatory Data

At temperatures below about $5^{\circ} \mathrm{K}$ and for magnetic fields greater than a few kilogauss oscillations in the Hall effect and magnetoresistance (were observed) as the field was swept slowly upwards. These consequences of the quantisation of energy levels are reported here. We first describe how the oscillatory part of the data was separated from the monotonically varying background, since
theories of these quantum effects do not include the background terms quantitatively at the present time.

4.2.1. Separation of Oscillatory Effects from the Background.

An example of the charts obtained at low temperatures is shown below. It can be seen that there is a strong background to the oscillations in the form of a fairly simple curve which might possibly be fitted to a polynomial expression. However, the difficulties attending such an attempt especially when beats were present made it attractive to use a simpler method of fitting the midline by eye: Tangents were drawn between the adjacent maximum excursions of the curve as show, and points were constructed by taking mean Y-values from these straight-line segments. Finally a smooth curve was drawn to follow these points as closely ©s possible.

Between 110 and 140 lines were then drawn on the chart parallel to the Y-axis at intervals of 1 mm . along the X (field)axis. The lengths of these lines between the chart trace and the midline were found by taking them off with dividers and pricking on to graph paper. In this way, a plot of the oscillatory function was built up as measurements were noted down. The fact that this plotted curve appeared to oscillate equally above and below the axis indicated that a satisfactory midline had been used. The figure (4.3) illustrates the necessity of associating a sign, + or -, with each measurement according as the trace lies above or below the

$$
\text { FIGURE } 4.3
$$

Showing effect of temperature on Hall (H) and magnetoresistance ($\mathrm{M}-\mathrm{R}$) for different samples.
midline respective. By applying the chart cdlibration constants, found as described earlier (Section 4.1.1), it was possible to convert chart distances into magnetic-field values and sample (voltage/current). These pairs of values were then recorded on punched cards for later detailed analysis, described in Section 4.2.3. Most charts were not treated in such detail, but were merely examined for the field values at which the trace crossed the midline. Resulting "Nodal Plots" are presented below in Section 4.2.2.

Figure 4.3 showstracings of the chart recordings obtained at helium temperatures. The horizontal axis for each trace represents a magnetic field change from zero to nearly 18 kG and is the same to within 2% for all curves whilst the vertical axis is proportional to the sample voltage arising from the Hall effect (H) or magnetoresistance ($M-R$).

Superposition of the two M-R curves for sample W1 shows clearly how the oscillatory magnetoresistance changes with temperature. The oscillations deepen in the negative direction with a lowering of temperature, but the positive peaks and background are essentially unaltered. Sample W2 is used to illustrate the greater detail which is present in the Hall effect oscillations compared with magnetoresistance oscillations taken at the same temperature. It can be seen that the amplitude of the oscillatory part is a
greater fraction of the background in the former case. This is not all, however, for the W3 curves bring out very clearly the increased structure visible in the Hall effect oscillations. The effect of a lowered temperature is much more dramatic in the case of this sample. Data for three curves from which the background has been removed are included in appendix 3. One of these, the Hall effect at $1.2^{\circ} \mathrm{K}$ for sample W3, was intensively analysed in the manner reported in Section 4.2.3. The results of this analysis appear in Section 5,2. 4.2.2. Nodal Plots.

Suppose one attached integer labels to corresponding points of successive oscillations of a single-period function $f(x)$. Then a plot of integer against x would yield a straight line whose slope gives the friquency of $f(x)$. Such a procedure is not valid in general for a function containing more than one periodic element. It is interesting, however, in the absence of sufficient data to make the periodogram technique of astronomy (Whittaker and Robinson, 1956, p.344) worthwhile. to plot the midline-crossing points ("nodes", labelled by integers) against reciprocal magnetic field. We do not at first sight expect much information from such Nodal Plots since the oscillatory effects in graphite have contributions from two majority carriers with distinot periods. However, the plots (shown for W1, W2, W3 in Graphs $4.12,4.13,4.14$ respectively) turn out to be well represented by straight-line segments.

We attribute this to a rapid decline in the amplitude due to one carrier with decreasing magnetic field; at low fields only one carrier is contributing whereas at high fields both contribute. It should be pointed out that the slopes quoted on each curve (in units of 10^{-5} gauss $^{-1}$) could be in error by as much as $\pm 0.1 \times 10^{-5}$ gauss $^{-1}$ because it depends critically on the number of points chosen to be represented by the straight line.

At $1^{\circ} \mathrm{K}$ the mean behaviour of $W 3$ is to move from a slope of 1.38 to 1.73 with increasing magnetic field. W2 has a constant slope of 1.69 whilst W1 moves from 1.74 to 2.02×10^{-5} gauss $^{-1}$. Since high fields must yield some sort of weighted mean of the separate periods one concludes that the more lightly damped carrier has an oscillation period around 1.4×10^{-5} gauss ${ }^{-1}$ for $W 3$ and this becomes mixed at higher fields with a period somewhat higher than 1.7×10^{-5} gauss $^{-1}$. The single straight lines for W3 at 4.2° K most likely mean the observed behaviour is due to both carriers; the slope of two of these curves (1.74) bears this out but the third $4.2^{\circ} \mathrm{K}$ curve has a much lower slope. W2 yields single straight lines at both 4.2 and $1^{\circ} \mathrm{K}$ and moreover they have practically the same slope. This sample, like W1, showed no remarkable increase in structure when the temperature was lowered to $1^{\circ} \mathrm{K}$.

4.2.3 Fitting Oscillatory Data to the Landau Fxpression

It was described earlier (Section 2.3) row we expect the oscillatory data to follow the generalized Landau expression:

$$
\begin{aligned}
& G=H^{n} \sum_{K} W(K) \frac{(K J)}{\sinh (K U)} e^{-i K J} \frac{A T}{T} \cos \left(\frac{2 \pi K}{P H} \psi \psi(\lambda)\right)^{t} \\
& \text { (harmonios) }
\end{aligned}
$$

where $U=\frac{2 \pi^{2} \mathrm{KMm}{ }^{*} \mathrm{C}}{\hbar \mathrm{e}} \frac{1}{H}=\frac{A}{H}$, say ($\underset{\Delta T}{A}$ and $\underset{W}{U}, P, y, n$) can differ for the other carriers.

We attempted to fit our data to this expression by iteration. Powell's VAO4A subroutine was again employed to minimise a function defined as the sume of the squares of the differences between calculated and experimental values, but the main programme was complioated by provisions for choosing the number of carriers to be fitted and the number of harmonics of each to be included. In addition, it was decided to hold various parameters (PERIOD, POWER, A, DTBT) constant when desired in order to have some control over the direction in which the minimum was approached and to prevent physically unrealistic swings during the initial stages. It should be borne in mind that for two carriers, with two terms each, a total of 16 paraneters are being varied. This represents a major problem in data fitting and some control over the process was thought essential, even though it considerably complicated the computer programme.

It is proposed to describe the fitting programme in outline, indicating the function of each subroutine is suffjcient detail to enable an understanding to be gained of the FORTRAN listing (see photograph in appendix 4) if this is desired.

Once more, the main task was to supply suoroutine VAO4A with a list $X(I)$ of independent variables to be changed in order to obtain a minimum in the function defined in the subroutine CALCFX to be the sum of the squares of residuals. The MAIN programme first reads the number of carriers, and marmonics of each one it is desired to fit and a set of starting values for all the parameters: $P \equiv$ PERIOD, $n \equiv \operatorname{POWER}, \mathrm{~A}, \frac{\Delta \mathrm{~T}}{\mathrm{~T}} \equiv \mathrm{DTBT}, \mathrm{N}, \mathrm{b}, \equiv \mathrm{PSI}$. In addition, a matrix NHOLD (I, J) must be filled with $1^{\prime \prime}$ s or O^{\prime} s depending on which of the parameters' PERIOD, POWER, A, DTBT it is desired to hold constant during this fitting attempt. For instance, if $\operatorname{NHOLD}(3,1)=1$ and $\operatorname{NHOLD}(1,1),(2,1)$, $(4.1)=0$ then A for carrier 1 will be held constant and PERIOD, POWER, DTBT for carrier 1 will be allowed to vary. Similarly, NHOLD (1,2) where $i=1,2,3,4$, defines which parameters for carrier 2 are to be allowed to vary.

This facility introduces complications in the programme in the form of two subroutines ADJINL and ADJUST, which are necessary to fill the matrix $X(I)$ with only those parameters which are to be varied during the run. In effect, ADJINL is a shunting yard, filling the siding X with only those trucks marked "to be fitted", and with

NHOLD controlling the switching of points. Once ADJINL has filled X with the appropriate parameters (these always include W,PSI for all harmonics of each carrier) then VAO4A is called upon to take control.

VAO4A periodically calls upon CALCFX to supply it with the value of the function $\Sigma(\text { Residuals })^{2}$, Giving CALCPX the latest values of the fitting parameters in $X(I)$. Before CALCFX can do this, however, it must change the values of PERIOD, POWER, A, etc. to the latest values in X, leaving unchanged the values of parameters not contained in X. To do this, CALCFX calls upon ADJUST which employs the array NHOLD as a translation key in unravelling $X(I)$ and presents the latest values of all parameters to CALCFX. EALCFX next calls upon CALC to evaluate the value of the Landau expression G, given these parameters and the data points one at a time. As each value of G comes back from CAIC, CALCFX subtracts from it the corm responding experimental value, squares this difference, and adds it to the current value of ΣR^{2}. When all data points have been used CALCFX returns the final value of $\Sigma_{R}{ }^{2}$ to VAO4A. This process is repeated each time VAO4A calls for a new value of $E R^{2}$, which might happen several hundred times before it decides upon a new approximation to the best set of parameters (one 'iteration'). We see then, that ADJINL is called upon once only to perform the initial filling of $X(I)$, while ADJUST is required each time VAO4A calls upon CALCFX.

BLOCK BIAGRAM OF COMPUTER PROCRAMME FOR FITTIAG

Usually the programe was terminated automatically, having exceeded the five or ten minutes running time it was allowed. The print out from VAO4A was then examined to assess progress made in reducing $\Sigma \mathrm{R}^{2}$ and the latest values were punched on to cards for the programme to be restarted, possibly with changes made in NHOLD (i,j). On occasions, however, probably under fairly restrictive conditions of NHOLD, VAOAA found a minimum in ΣR^{2} and returned control to the main programe, which then printed out the complete list of parameters in easily readable form under appropriate headings. The fitting process was finally completed when this form of termination of the programme occurred under the conditions $\operatorname{NHOLD}(i, j)=0$ for all i,j. A block diagram is show below in Figure 4.4.

4.3 Resistance Variation with Temperature.

We briefly present here the variation of resistivity with temperature for the three samples W1,W2,W3. Graph 4.15 - Ehows that the curves mun parallel to each other at temperatures above $80^{\circ} \mathrm{K}$ and indeed would coincide if each were normalized by its room temperature value. The much greater resistance ratio $\rho 295 / \rho 4.2$ for $W 3$ should be noted; it is some four or five times the ratios for W2 and W1. This indicates a greater perfection in texture for sample W3 and probably explains the much greater amplitude of oscillatory effects observed with this material.

S1YinIX 34

C- AIS HSSISTIVITY

For the sake of completeness re present here some results and comments on c-axis concuction, that is, with current normaid to the basal planes.

Whe technique of sample preparation was described in chapter 3, 190. Grapha3 shows the temperature-resistivity plot for one sample of hot-nressed annealed pyrolytic craphite (HJGT GI/2/A(62)) the dimensions of which were $0.065 \times 0.749 \times 0.378 \mathrm{cms}$. Absolute values could be in error by as much as lo; because of (a) the error in the thickness measurement $\pm 4 f^{\prime}$, (b) possible correction of 54 or so from the effect of non-uniform current flow near the electrodes (mentioned on p90).

We have made use of c-axis results in the Discussion, pl65, and shall now briefly present a few comments on this subject.

Spain et al (1967) found that P_{c} was insensitive to sample periection (is judged, For instanca, by basal plane resistivity) and concluded that the beheviour shown for a range of their hot-pressed and anmealed material mut be close to that of ideal. Eraphite. Griph A3 agrees closely with their results for sucin haterici.

It has been conclusively a ued that waning of the c-aris resistivity by misalismer basal plames does not contributc significantl: to weasured c-oxis eitects. 'rise
two main araments are bused on (a) busul plano and c-anis roaistivity have onosite temparture cocfificients move
 increascs busal plane but oequescs o-axis roristivity.

As the temperature is necreased from $300^{\circ} \mathrm{V}$ the c-axis resistivity rises becuuse of the decrease in carrier concentration; it is thonkit that the meon free petin in this recion is linited to a few intorlayer spacings. A constent mean free peth at hich temperatures is consistent with a conductivity pressure coefficient (Yeonen and Young, 1969) Which closely follows the mown (Anderson ct al, 1967) carrier concentration rossure coefíient.

Below $50-60^{\circ} \mathrm{K}$ the scattering is dominated by the LA c-axis phonons which heve the low Debje temperature of $185^{\circ} \mathrm{K}$ and couple stronsly to charge carriers because of the sensitivity of band paremeters such as γ_{2} to interleyer spacing.

At the iowest temperatures we 1 ind ρ_{c} becomes constant with the mobility presumably dominatec by some form of static obstacle scattering. We have seen some evidence for a minimum in the resistivity curve at around $4.5^{\circ} \mathrm{K}$ but the region appears to be structure-dependent and changes on thermal cycling.

The description of c-axis conduction in terms of a band model is not yet satisfactory, particularly at higher temperatures.

CHAPTER 5

DERIVED RESULIS

We now present the tensor components $\sigma_{x x}$ aid $\sigma_{x y}$ derived as described in Section 4.1.3. This is followed by a derivation of hole and electron mobilities and densities. Section 5.2 is devoted to the Landau expression for Hall effect oscillations in W3 and its interpretation.

5.1 Non-Oscillatory.

5.1.1 Derived Conductivity Tensor Components.

It has been described elsewhere (Section 4.1.3) how the Hall coefficient and conductivity curves were fitted to the sum of up to four Lorentzians in the form

$$
\sigma_{x x}=\Sigma \frac{A_{i}}{y+\left(\frac{\mathbb{H}_{i}}{M_{i}}\right)^{2}}
$$

where A_{i} and H_{i} are the fitting parameters. Sections 2.4 show how this representation of the data can be used to separate out the effects of electrons and holes and derive partial conduotivities for these two types of carrier. These, in turn, lead to values for electron and hole densities and mobilities. We present here the results of such an anaiysis, performed by a computer programme which accepted the fitting parameters for $\sigma_{x x}$ and $\sigma_{x y} / H$ and then derived
densitities and mobilities for each type of carrier. In addition, tables of conductivity σ and Hall coefficient R with corresponding magnetic field values were printed out for comparison with experimental curves, and total and partial conductivity tensor components

$$
\sigma_{x x}, \sigma_{x x}, \sigma_{x x}, \sigma_{x y}, \sigma_{x y}, \sigma_{x y}^{n}
$$

were tabulated against magnetic field. Appendix 3 contains these results for the four standard temperatures for W1,W2,W3. Table 5.1 of Section 5.1.3. lists the carrier mobilities and densities.

Referring to Graphs 5.1 and 5.2 , we see that the $\sigma_{x X}$ curves have the appearance of being single Lorentzians. However, any attempt to fit them to a single term yields disappointing results. The appearance is due to the simple fact that a sum of Lorentzians has the same form as a single Lorentzian at both high and low values of the argument (magnetic field). The constants of these equivalent single terms are different at the two extremes, however. In practice, it was found that up to four terms were required to achieve a satisfactory fit. In all grapns presented in this section the data points are discrete symbols whilst the solid curve is the final result of the fitting process; it has been regenerated from the fitting parameters (up to eight in number) which best describe that data.

The $\sigma_{x x}$ component presents little trouble, as the agreement between data and fitted curves in Graphs 5.1, 5.2 shows. The graphs are all arranged to facilitate comparison between samples.

Fitting $\sigma_{x y}$ data proved more difficult as Graphs 5.3 to 5.6 demonstrate. Nevertheless, reasonable fits were achieved with the exception of curves having violent oscillations at low field. At $77^{\circ} \mathrm{K}$ there is a striking contrast between the excellent fit for W3 which shows no anomalous low field behaviour and those for $W 2$ and W1. Both of the latter execute marked oscillations below 5kG. and we see that the fitted curves tend to smooth out such extremes. It is evident that more forceful application of the art of weighting the data points could have improved the fit in situations like this.

Except at $4^{\circ} \mathrm{K}$ all $\sigma_{x y}$ curves move towards positive values at very low fields and in some cases actually cross the zero line. This behaviour is not visible at $4^{\circ} \mathrm{K}$ presumably because it has moved to much lorer fields.

5.1.2 Average mobility and numbers, following Soule.

For later comparison, we present here the result of applying a two-band model to conductivity and Hall data, as employed by Soule (1958) in his analysis of single crystal data. Using the expression $\rho=\sigma_{x x} /\left(\sigma_{x x}^{2}+\sigma_{x y}^{2}\right)$ and the representation of the tensor components below (c.f. Section 2.2.1).

$$
\sigma_{x x}=\underset{\text { carriers }}{\sum \sigma_{o i}} /\left(1+H^{2} / H_{s i}^{2}\right) \quad \sigma_{x y}=\underset{\text { carriers }}{\sum\left(n_{i} e_{i} \mathrm{CH} / H_{s i}^{2}\right) /\left(1+H^{2} / \mathrm{H}_{s i}^{2}\right)}
$$

Soule derived an expression for the magnetoresistance

$$
\Delta \rho / \rho_{0} \equiv(\rho(H)-\rho(0)) \cdot / \rho(0)
$$

Using $\sigma_{o i}=n_{i} e_{i} \mu_{i}$ and $H_{s i} \equiv \frac{\operatorname{Com}_{i}^{*}}{e_{r_{i}}} \equiv \frac{C}{\mu_{i}^{p}} \quad$ where μ_{i}^{\prime} is an average mobility (assumed equal to the conductivity mobility) an expression for the low field magnetoresistance is obtained

$$
\frac{\Delta \rho}{\rho_{o} H^{2}}=\frac{a b}{c^{2}}\left[\frac{1+b}{a+b}\right]^{2} \mu_{h}^{2}
$$

where

$$
\begin{aligned}
& a=\frac{n_{h}}{n_{e}}, \quad \text { the ratio of carrier densities } \\
& b=\frac{\mu_{e}}{\mu_{h}} \quad \text { the ratio of carrier mobilities. }
\end{aligned}
$$

This reduces further to $\frac{\Delta \rho}{\rho_{0} H^{2}} \bumpeq \frac{b_{C}}{2} \mu_{h}^{2}=\frac{1}{C^{2}} \mu_{e} \mu_{h}=\frac{1}{C} 2(\bar{\mu})^{2}$ if $a \simeq 1$, which is a good approximation at the higher temperatures.

Graph 5.8 was calculated from conductivities at zero field and at 3 kgauss , using

$$
\frac{\Delta \rho}{\rho_{0}}=\left(\frac{-\Delta r}{\sigma_{0}}\right) /\left(1+\frac{\Delta r}{\sigma_{0}}\right) \quad \text { and } \quad \bar{\mu}=\left(\frac{\Delta \rho}{\rho_{0} H^{2}}\right)^{\frac{1}{2}} \times 10^{8} \quad\left(\mathrm{~cm}^{2} \text { voltsec}{ }^{-1}\right)
$$

Magnetic field values have been corrected by -4% because of a late discovery of a calibration error relating to our Norma fluxmeter. Tables of results in the appendices and graphs do not embody this correction, but it has been applied to all final derived values, in particular Table 5.1 and graphs arising from this.

Included in Graph 5.8 is the slope of Souled's EP-14 (-1.2) for comparison with samples W1,W2,W3 which give slopes of $-0.94,-0.98$, -1.09 respectively.

A rough determination of the total carrier density, $n_{e}+n_{h}$ can be made from the above mean mobility and zero field resistivity, for $n_{e}+n_{h}=1 / e \rho_{o} \bar{\mu}\left(e=1.602 \times 10^{-19}\right.$ coulombs, ρ_{o} is in ohm-cm $)$. Graph 5.9 presents the result of this calculation and shows that W1,W2 yield practically coincident straight lines against temperature down to about $60^{\circ} \mathrm{K}$ whilst W 3 has a slightly higher concentration. The analysis breaks down at lower temperatures as boundary and impurity scattering take over.
5.1.3. Carrier densities and mobilities.

This section contains the final stage of the magnetoconductivity tensor analysis. Expressions were derived in Section 204.2 for carrier mobilities and densities in terms of the parameters used to fit $\sigma_{.}, \sigma_{x y}$ data to Lorentzians as detailed in Section 4.1.3. A computer programme was written to perform the summations of equations 2.4 .2 (11 to 15) and print out tables of mobilities and densities which are here presented as Table 5.1.

The -4.0% magnetic field correction mentioned earlier (5.1.2) has been applied and thus is embodied in graphs based on the table.

Table 5.1 is in three sections corresponding to the three samples W1, W2, W3. The six columns are as followss Column 1; the sample temperature in degrees Kelvin. Column 2 is a code giving the conditions under which the data were fitted to Lorentzians; W means the points were weighted in an effort to improve the fit, U means the data were

```
OENSTIES AND AVERAGE HOFILITIES.
N TERNS W:IGHTEG =NW
SAMPLE W1 N TERNS WEIGHTEG =NW
```

N TERMS UIWEIGHTED =NU

$7 E M P$.	
295.0	$3 U$
295.0	$3 W$
295.0	$4 U$
295.0	$4 W$
88.0	$3 U$
88.0	$3 W$
88.0	$4 U$
88.0	$4 W$
77.0	$3 U$
77.0	$3 W$
77.0	$4 U$
77.0	$4 W$
63.0	$3 U$
63.0	$3 W$
63.0	$4 U$
63.0	$4 W$
15.0	$3 U$
15.0	$3 W$
15.0	$4 U$
15.0	$4 W$
4.5	$3 U$
4.5	$3 W$
4.5	$4 U$
4.5	$4 W$

MOBILITY	$10-4$
HOLES	ELECTRONS
0.90155	0.96987
0.04517	-0.03137
0.03905	-0.00952
0.03424	-0.01293
.1 .70446	1.79080
3.83725	3.83675
-4.55935	-4.95373
2.35040	2.35179
3.93215	3.97473
3.05357	3.95363
3.56790	3.93794
3.95869	3.94687
3.06967	3.27026
0.00009	0.00000
2.60988	2.77278
2.73068	2.65263
0.00000	0.00000
0.00070	0.00000
0.00000	0.00000
0.00000	0.00000
17.91965	22.47239
17.82430	22.53920
13.80276	31.35004
17.59695	21.07825

NUMBER*10-18 HULES ELECTRONS
$7.25807 \quad 7.98818$ 192.95218-177.70593 . $350.96486-335.75671$
307.424.39-298.21623
$-102.10783107 .31364$
$1.00000 \quad 1.00000$
$117.20354-106.01037$
$0.00000 \quad 0.00000$
$2.40397 \quad 2.43490$
2.37906 $\quad 2.45981$
$\therefore .38893 \quad 2.47668$
$2.39633 \quad 2.46928$
$3.21047 \quad 3.28602$
$3.21275 \quad 3.28375$
$3.70786 \quad 3.74830$
$3.73994 \quad 3.71622$
$6.25579 \quad 1.75090$
$3.24809 \quad 0.75859$
$-2.40828 \quad 5.77645$
$\because .00000 \quad 1.00000$
$1.26742 \quad 1.34091$
$\because .26095 \quad 1.34738$
$1.82466 \quad 0.76742$
i. $54899 \quad 1.04308$
dENSTIES GND AVERAGE HOGILITIES.
n terms Di:Weicihted = Nid

YEMP.	
299.0	$3 U$
299.0	$3 W$
291.0	41
291.0	$4 W$
77.0	$3 U$
77.0	$3 W$
77.0	$4 U$
77.0	$4 W$
63.0	$3 U$
63.0	$3 W$
63.0	$4 U$
63.0	$4 W$
47.5	$3 U$
47.5	$3 W$
47.5	$4 U$
47.5	$4 U$
4.5	$3 U$
4.5	$3 W$
4.5	$4 U$
4.5	$4 W$
1.0	$3 U$
1.0	$3 W$
1.0	$4 U$
1.0	$4 W$

SAMPLE W?

MUbILITY*10-4		NUHBER*10-18	
HDLES	Electrons	HOLES	ELECTRONS
1.04452	1.09858	\%.31810	7. 20997
1.108430	9.05922	7.02708	7.50099
1.08283	1.06750	7.01050	7.46908
1.08345	i.06094	0.99806	$\because .47353$
13.03436	-4.96730	$\therefore .42180$	2.40048
10.73934	-1.7081?	2.41489	7. 40739
0.000100	0.00000	4.52909	4.73069
0,00000	- 00000	4.57375	4.68603
5.86269	5.01280	1.90685	2. 36665
5.44456	5.37105	2.09830	2. 21378
5.32927	5.38337	2.15498	2.19944
9.90581	14.76914	29.35896	-25.00299
6.34 .459	7.55588	1.92618	1.90470
-28.01369	42.31794	1.87227	1.89416
-1,04187	6.91015	0.62482	6.73242
$-39.0 .5044$	51.84171	1.89584	1.96297
0.00000.	0.00000	i. 44075	1.51068
0.00000	0.00000	1.44077	1.51067
- 0.09000	0.00000	1.45518	T. 49188
0.00000	0.00000	1.46379	4.48326
0.00090	0.00000	1.00000	$\because .00000$
0.00000	0.00000	4.00000	0.00000
0.00000	0.00000	1.00000	0.00000
0.00000	0.00000	0.00000	0.00000

unweighted. The number preceeding U or W gives the number of Lorentzian terms employed to fit the data and hence used to generate the rest of that row or the table. Columns 3 and 4 give the carrier mobilities in units of $10^{4} \mathrm{~cm}^{2} / \mathrm{volt-sec}$ and the final two columns 5 and 6 give carrier densities in units of $10^{18} / \mathrm{cm}^{3}$. All zero entries in the table are to be ignored as they represent large numbers which are physically unrealistic and have been set to zero to avoid an untidy appearnace. Negative entries once more result from unrealistic fits.

Graph 5.10 presents the mean carrier mobility as a function of temperature in the same way as Graph 5.8 which was based on simpler calculations. We see that the two approaches yield essentially the same results at high temperature, but Graph 5.10 indicates a decreasing slope at lower temperatures.

Carrier densities in Table 5.1 are a little higher (Graphs 5.11) than the values given by the simpler treatment (Graph 5.9) but the temperature dependence is essentially unaltered.

The mobility ratio μ_{e} / μ_{h} is extremely dependent on the data-fitting process but the expected shape (Spain et al, 1967) is obtained in Graph 5.12.

graph 5.12
MOBILITY RATIO - TEMPERATURE

5.2 Oscillatory derived results.

5.2.1 Result of the Lendau fitting.

In Graph 5.7 is shown the analysis of the oscillatory part of the Hall effect in $W 3$ at $1.2^{\circ} \mathrm{K}$. The circles are data points, obtained by eliminating the monotonic background from a chart recording as detailed in Section 4.2.1. The generalized Landau fitting programme (FRIIRR, Section 4.2 .3) chose the 'best' set of sixteen fitting parameters to generate the continuous line superimposed on the data points. This curve, labelled "total", is composed of contributions from both holes and electrons each of which, in turn, are split into fundamental and 1st harmonic terms.

The function describing the electron term is (Section 2.5)

$$
G_{e}=H^{n}\left\{W_{1} \quad \frac{U}{\sinh J} e^{-V \frac{\Delta T}{T}} \cos \left(\frac{\pi T}{P H}-W_{1}\right)+W_{2} \underset{\sinh 2 U}{2 U} e^{-2 U \Delta T}{ }^{-2 U} \cos \left(\frac{\pi T}{P H}-\psi_{2}\right)\right\}
$$

where $U=\frac{2 \pi^{2} \mathrm{KTm}^{*} \mathrm{C}}{\hbar^{e}} \times \frac{1}{H} \equiv \frac{A}{H}$, say
Thus, $n, W_{1}, W_{2}, A, \frac{\Delta T}{T}, P, H_{1}, H_{2}$ are adjustable parameters. A similar expresfion holds for the hole term.

We report here the result of allowing FRIER to run until it was very close to the best fit as defined in Section 4.2.3. Under restrictions such as holding $A, \frac{\Delta T}{T}$, etc. constant the run did terminate itself (that is, it satisfied convergence criteria specifying
approximately 1% accuracy of parameters) but under conditions where all sixteen parameters were allowed to change during the fitting process it had a little way still to go. We believe, however, that values of $P, \frac{\Delta T}{T}$ and n listed velow are realistically close to their final values; errors were estimated by comparing an earlier mun (where the sum of the squares of the residuals, ΣR^{2}, was 20.41) with the final $\operatorname{mun}\left(\mathbb{R} R^{2}=17.3\right)$.

Electrons

n	Period	A	$\Delta T / T$	W	क
0.5005	1.77×10^{-5}	5303	5.034	0.1346	3.301
				-0.1406	17.90
$\pm 0.5 \%$	$\pm 2 \%$	$\pm 20 \%$	$\pm 1 \%$	$\pm 50 \%$	$\pm 5 \%$

Holes

n	Period	A	$\Delta T / T$	W	$\\|$
0.4995	1.48×10^{-5}	9654	2.509	0.0188	-0.496
				0.1032	-2.245
	$\pm 0.5 \%$	$\pm 50 \%$	$\pm 20 \%$	$\pm 200 \%$	$\pm 100 \%$

We see that the electron parameters are much more closely defined than those of the holes. A glance at Graph 5.7 will show that it is indeed the electron behaviour which dominates with the hole terms supplying detail and, of more importance, perturbing the zero-orossing points.

5.2.2. Effective masses, collision damping, period.s-

Recalling the definition of the parameter A from Section 4.2.3 and 2.5. ;

$$
\mathrm{A} \equiv \frac{2 \pi^{2} \mathrm{KTm}{ }^{*} \mathrm{C}}{\hbar}
$$

we can derive estimates for the effective masses. Calculation gives $\mathrm{m}^{*} / \mathrm{m}_{0}=0.036,0.065$ for the electrons and holes respectively. These are to be compared with the values $0.030,0.060$ respectively found by Soule (1958) and 0.039, 0.057 respectively by Soule, McClure and Smith (1964) for single crystal graphite.

The factors $\Delta T / T$ yield values for the so-called Ding? e temperatures; the effective increase in temperature due to collisions. We calculate $\Delta T=6.0,3.0$ for electrons and holes respectively.

Our corrected periods for pyrolytic graphite are 1.84×10^{-5} and 1.54×10^{-5} gauss $^{-1}$ for electrons and holes respectively. The electron period is much lower than values found in single crystal graphite (2.01, 1.57; Soule 2.07, 1.51; Soule, McClure and Smith), though x the hole period is in satisfactory agreement. Later, unpublished, work by J.D. Cooper has suggested that the present electron period is uncharacteristically low even for pyrolytic graphite, for which he reports periods in the region of $2.1 \times 10^{-5} \mathrm{G}^{-1}$. The reason for the discrepancy is not known at present. Other features of the present analysis are fully confirmed, however.

5.2.3. Estimation of γ_{2} and E_{F}

The oscillation periods were used to calculate γ_{2} and E_{F} given the well-established values of γ_{0}, γ_{1} and $\Delta\left(\gamma_{4}=\gamma_{3}=\gamma_{5}=0.0\right)$ and the oscillation periods $\mathrm{P}_{\mathrm{e}}, \mathrm{P}_{\mathrm{h}}$.

It is difficult to obtain analytic expressions for γ_{2} and E_{F} from the equations in Sections 2.1.3., 2.1.4, so a double iteration technique was used; assuming a value of K_{z} for the point M of figure $2.4 \gamma_{2}$ and F_{F} were calculated and recalculated, in order, from starting values until a consistent pair of values was obtained. These were then used to obtain a better estimate of the position of M. The whole process was repeated until a consistent set of three values was obtained. In practice, convergence was extremely rapid and was checked by calculating P_{e} and P_{h} from the final set of band parameters for comparison with the values supplied.

Using our corrected periods; $P_{e}=1.84 \times 10^{-5}, P_{h}=1.54 \times 10^{-5}$ gauss ${ }^{-1}$ and $\gamma_{0}=2.88, \gamma_{1}=0.395, \gamma_{4}=\gamma_{3}=\gamma_{5}=0.0$, we obtained for various values of Δ the values of γ_{2} and \mathbb{E}_{F} shown below:

Δ	γ_{2}	E_{F}
-0.006	0.0162	0.0227
-0.01	0.0162	0.0225
-0.02	0.016	0.0221
-0.05	0.0156	0.0209

An extension to this computer programme accepted the complete set of band parameters and by perturbing thesa by $\pm 10 \%$ produced estimates of the partial differential coefficients of the oscillation periods $\frac{\partial P}{\partial b}$ where b is a band parameter. It was found that for all the combinations above $\frac{\partial P}{\partial y_{2}}, \frac{\partial P}{\partial F_{F}}$ were one or two orders of magnitude greater than the others. Their values were (for $\Delta=0.006$):

$$
\begin{array}{ll}
\frac{\partial \mathrm{P}_{\mathrm{e}}}{\partial \gamma_{2}}=-0.53 \times 10^{-3} & \frac{\partial \mathrm{P}_{\mathrm{e}}}{\partial \mathrm{~F}_{\mathrm{F}}}=0.12 \times 10^{-2} \\
\frac{\partial \mathrm{P}_{h}}{\partial \gamma_{2}}=0.35 \times 10^{-2} & \frac{\partial \mathrm{P}_{\mathrm{h}}}{\partial \mathrm{~F}_{\mathrm{F}}}=0.17 \times 10^{-2}
\end{array}
$$

The largest of the other differential coefficients was $\frac{\partial P_{e}}{\partial \Delta}=-0.46 \times 10^{-4}$.
Finally, we mention that using Anderson et al's values
$\gamma_{0}=2.85, \gamma_{1}=0.30, \Delta=0.006, F_{e}=2.08810^{-5}, P_{h}=1.50210^{-5}$, we obtained $\gamma_{2}=0.0194$ and $\mathrm{E}_{\mathrm{F}}=0.0256$ which compare well with their quoted values of 0.02 and 0.26 respectively. Once more, their periods were more sensitive to γ_{2} and F_{F} than to other parameters by one or two orders of magnitude.

CHAPTER 6

DISCUSSION AND CONCLUSIONS.

6.1 Classical Results

For the first time for pyrolytic graphite (PG) the present work provides a complete set of parameters whereby the zero field conductivity can be related to the electronic band structure in the sense that relaxation times and carrier densities are defined as a function of temperature. There is essentially nothing in the present analysis to identify physical restrictions on the mean free paths; one cannot discerm the origins of scattering from these results alone. However, at the lowest temperatures it is reasonable to assume that carrier-phonon scattering is absent, the relaxation times being determined in the main by crystalline imperfections, whereas at high temperatures one supposes that scattering originating in thermal effects outweighs static obstacle scattering. At intermediate temperatures a mixed scattering régime evidently occurs.

In the past (of Young 1968) the specific scattering mechanisms invoked have been high-angle scattering at basal plane crystallite boundaries and stacking faults for the lowest temperatures, with electron-acoustic phonon interactions at high temperatures in the spirit of the theoretical work of Sugihara and Sato (1963), Ono and Sugihara (1966) and McClure and Smith (1961). An apparently selfconsistent account of both basal plane and c-axis conduction could
be obtained by considering out-of-plane vibrations associated with a deformation potential of $\sim 18 \mathrm{eV}$ and in-plane vibrations with a deformation potential of $\sim 5 \mathrm{eV}$, with various assumptions involving the role of the trigonal warping parameter γ_{3}. For present purposes a less sophisticated model is required. Thus we note that a mean mobility $\vec{\mu}=\left(\mu_{e} \mu_{h}\right)^{\frac{1}{2}}$ can be defined and that for the best single crystals (Soule's EP11) its temperature dependence can be represented between 4.2 and $295^{\circ} \mathrm{K}$ as $\alpha \mathrm{T}^{-1 \cdot 24}$. Following Klein (1962) and Hooker (1963), Spain et al (1967) assumed a dependence

$$
(\bar{\mu})^{-1}=\frac{\bar{m}^{*} \overline{\underline{y}}}{\operatorname{ex} 10^{7}} 7\left(\frac{1}{\lambda},+\frac{1}{\lambda} \text { carrier-phonon }\right)
$$

to explain why $\vec{\mu}$ for $P G$ always falls below Soule's limiting relationship particularly at low temperatures. λ^{\prime} represents the effects of static obstacle scattering which, it was held, dominates the basal plane resistivity at the lowest temperatures. As the temperature is increased, interaction with the longitudinal acoustic c-axis mode $\left(\theta_{\mathrm{D}}=185^{\circ} \mathrm{K}\right.$, Dolling and Brockhouse 1962), which couples strongly to the charge carriers via γ_{2}, dominates c-axis resistivity up to $60^{\circ} \mathrm{K}$ and basal plane resistivity up to $170^{\circ} \mathrm{K}$, above which the c-axis mean free-path is limited to $\sim 3 \AA$, leading to a decreasing resistivity with increasing temperatures. The basal plane resistivity continues to increase, whereby acoustic in-plane modes with high characteristic temperatures are invoked.

However, Yeoman and Young have recently indicated (May 1969) that the source of charge carrier scattering has hitherto been completely misrepresented. They have measured the pressure coefficient of conductivity at temperatures in the range room to $4.2^{\circ} \mathrm{K}$ using pressures up to ~ 400 bar and find that conductivity always increases on application of pressure but the increase is always less than that expected from the known (Anderson et al 1967) pressure coefficient of carrier density, $\frac{d \ln n}{d P} \div 37.5 \times 10^{-6}$ bar $^{-1}$. Thus, they write for the pressure coefficient of conductivity

$$
\frac{d \ln }{d P} \sigma=c o n s t a n t+\frac{d \ln n}{d P}+\frac{d}{d P} \ln \Lambda
$$

The mean free path Λ is given by $\frac{1}{\Lambda}=\sum_{i} \frac{1}{\Lambda_{i}}$ where i stands for all zossible scattering mechanisms. Now, carrier-obstacle and carriercharged acceptor scattering are expected to be pressure independent provided non-parabolicity is disregarded and carrier-phonon scattering would lead to the opposite pressure dependence, for increase in pressure would raise the characteristic temperature leading to a greater mean free path. One is left with carrier-carrier scattering of which Yeoman and Young only consider electron (e) - hole (h) interactions: e-e and $h-h$ collisions would only affect conductivity via a randomisation of carrier energies which would be reflected by energy-dependent relaxation times were the electron and hole masses single-valued. The known range of electron masses in graphite
will, it is true allow light electrons to be scattered by heavier carriers leading to the well-known anomalous iow-field behaviour in the Hall effect (see Section 6.3), but not much change in the zero-field conductivity will thereby result since the partial conductivity of light electrons is only a few percent of the whole.

In the c-axis direction the fixed mean free path at high temperatures leads to a pressure dependence of conductivity which is nearly independent of temperature and close to that of the carrier density. The basal plane pressure coefficient, however, falls rapidly as the temperature is increased from $4^{\circ} \mathrm{K}$, the carrier density change being almost completely compensated at room temperature. Yeoman and Young attribute this temperature dependence to e-h scattering which will increase in importance in the same way as does the carrier density. Neutron irradiation doses which are small enough not to affect the Fermi level as judged by electron and hole periods, nevertheless increased the pressure coefficient $\frac{d}{d P} \ln _{\sigma}$ towands $\frac{d}{d P} \ln n$ because the e-h scattering can be no longer dominate in the presence of charged traps; even at room temperature.

For electron-hole scattering, $\frac{1}{\lambda_{e-h}}$ is approximately proportional to carrier density and thus to temperature, accounting for the observed mobility-temperature relationship. A corresponding relationship has been found to apply to $\frac{\partial \ln }{\partial P} \sigma$ by Young and Howell. It may be written $\left[\frac{\partial \operatorname{lnn}}{\partial P} \cdot \frac{\partial P}{\partial \ln \sigma}-1\right]=\frac{\lambda}{\operatorname{cons} t} \times T$.

We accordingly conclude with Yeoman and Young that carrier carrier scattering is of the foremost importance in graphite. In good PG samples at all temperatures $\bar{\mu} \sim T^{-1} ;$ in bad $P G$ it is $\sim T^{-1}$ at high temperatures becoming independent of temperature at low temperatures. Typically $\lambda^{\prime}(P G)=17000 \AA$. Good and bad single crystals show the same behaviour as PG except that here the exponent is closer to -1.2. In graphites which have not been irradiated there is an element of carrier-carrier scattering even at $0^{\circ} \mathrm{K}$ which reduces $\frac{\partial \ln \sigma}{\partial P}$ by some 20% of $\frac{\partial \ln n}{\partial P}$. At this temperature, carrier-carrier scattering is only made completely unimportant by the introduction of at least 10^{12} charged traps per cm^{3}. It is reasonable to assume that any fixed mean free path, however introduced, will make carriercorrier scattering less important.

The experimental work which led to these conclusions became available after the bulk of this thesis was written. Accordingly, the analysis of low temperature data is put into a completely new perspective but the data itself exists, where it did not before, ready for analysis in the light of the latest interpretation.

6.2 Oscillatory Results.

With the oscillatory phenomena the key point is the question:"Can one replicate single crystal properties if one makes a mosaic well-oriented pyrolytic graphite or are the band parameters of single crystal and pyrolytic graphite intrinsically different?"

It was argued that if one could observe oscillations at all the analysis of these would highlight any differences. At the start of this investigation no such oscillations had been observed, though they are now commonplace. One single crystal (IP14) had given a hole period of 1.5×10^{-5} gauss ${ }^{-1}$ and an electron period of $2.07 \times 10^{-5} g^{-1}$. It was evident that the Dingle temperature for the electrons was higher than that for the holes, but no quantitative analysis for these had ever been attempted. Our aim was to determine both periods and Dingle temperatures for $P G$ to answer the question whether $P G$ is the same sort of material as single crystal graphite or whether the high basal dislocation content and mosaic structure measurably affects the band parameters.

The best sample, W 3 , at $1^{\circ} \mathrm{K}$ produced a sufficient number of oscillations for analysis though with only about $1 / 5$ th of the single crystal amplitudes. There is evidence of structure in the oscillatory pattern indicating that both electron and hole effects were being observed. The analysis described in the text (Section 5.2.2) leads to a hole period of $1.52 \times 10^{-5} \mathrm{~g}^{-1}$, in general agreement with that found in other work, but the electron period is somewhat less than is found elsewhere. The Dingle temperatures bear the correct relationship to the effective masses of the carriers involved. Later work by J.D. Cooper at Imperial College on other pyrolytic graphites suggests that the periods might be higher ($1.63,2.15 \times 10^{-5} \mathrm{~g}^{-1}$ respectively), but the

Dingle temperatures are wholly confirmed. Accordingly the present results are used to compute values of γ_{2} and the F ermi energy, E_{f}; which are not well determined by the magnetoreflection experiments of Dresselhauss and Mavroides (1964).

We conclude that apart from uncertainty in the electron period the electronic structure of pyrolytic graphite is essentially comparable to that of single crystal graphite, the differences lying partly in scattering introduced by the microcrystalline nature of the former. At the lowest temperatures in single crystal graphite the mean free paths and thus the Dingle temperatures, are determined in the main by carrier-carrier scattering, whereas in PG highangle scattering events at grain boundaries are necessarily dominant. We therefore suppose that for our better graphites (W3) the Dingle temperatures will be smaller than for the less perfect materials (W1, W2) not merely because λ^{\prime} is larger but also because low angle scattering on other carriers will play a part.

6.3 The low-field Hall coefficient

One outstanding problem is the sign of the Hall coefficient below 2KG. Spain et al (1967) using a range of $P G$ always found a negative zero-field Hall coefficient at $77^{\circ} \mathrm{K}$ with a positive slope against magnetic field, indicating that the light electrons are exerting their proper Hall effect with a mean free path limited by static obstacle scattering. Soule, with good single crystal material
observed a positive zero-field Hall coefficient at $77^{\circ} \mathrm{K}$ with a negative initial slope which he took to indicate the presence of minority holes. Now, it is true that in the electronic band structure of graphite as known there is a pocket for minority holes contained by the band E_{2} below Δ near to the hexagonal zone faces at H. This pocket might just be accessible by thermal spread of the electron energy distribution ($\sim \mathrm{kT}$) above $77^{\circ} \mathrm{K}$, but Soule continues to observe this hole-like behaviour even at $4^{\circ} \mathrm{K}$. Spain, with his more imperfect material consistently observed a negative Hall coefficient at $4^{\circ} \mathrm{K}$ in agreement with Sugihara's calculations (1966), but the present work shows clearly a tendency to more positive low field values for samples W1, W2, W3 in that order of increasing perfection. We conclude that Soule ${ }^{1}$ s attribution of the zero-field Hall coefficient to minority holes is incorrect. Following McLean and Paige (1960), Sugihara (1966) att ributes a positive Hall coefficient (for the best material) to drag on light electrons by carrier-carrier interactions. Evidently, only when λ is controlled by carrier-carrier scattering can such a drag effect be of importance. Yeoman and Young confirmed that this is so in the best material. The effect can be suppressed by increasing the static obstacle scattering, permitting the light electrons to contribute their normal negative Hall coefficient. Pre-irradiation with light doses of fast neutrons has shown that this is so.

REFERENCES

Anderson, O'Sullivan and Śchirber, Phys. Rev. 164, No. 3, I038, 1967. Bacon: 1958, A.E.R.E. Report M/R 2707

Berman, Brock, Huntley, Cryogenics, 4, 233, 1964
Berman, Huntley, Cryogenics, 3, 1963
Bernal, 1924, Proc. Roy. Soc., A106, 749
Birss, 'Symmetry and Magnetism', North-Holland, 1964
Blackman, Saunders, Ubbelohde, Proc. Roy. Soc., A264, 19, 1961
Bloch, Z.Physik, 52, 555, 1928
Blount, Solid State Physics, 13, p. 305, 1962.
Boyle, Nozieres, Phys. Rev., 111, 782, 1958
B.S.W. Bouckaert, Smoluchowski, Wigner, Phys. Rev., 50, 58, 1936

Calleway, "Energy Band Theory", Academio Press, 1964.
Carter, Ph.D thesis Comell University, 1953
Carter, Krumhansl, J.Chem.Phys. 21, 2238, 1953
Chambers, Proc. Phys. Soc. A65, 458 and 903, 1952 also A238, 344, 1958
Corbato, Proc. 3rd. Carbon Conf. Pergamon Press p173, 1956
Coulson, Taylor, Proc. Phys. Soc. A65, 815, 1952
Dawson, Follet, Proc. Roy. Soc. A253, 390, 1959
Dingle, Proc. Roy. Soc., A211, 517, 1952
Dresselhaus, Dresselhaus, Phys. Rev., 140A, 401, 1965
Dresselhaus, Mavroides, IBM Journal Res. and Devel. 8, 262, 1964
Franklin, Acta Cryst., 4, 253, 1951

Galt, Yager, Dail, Phys. Rev., 103, 1586, 1956
Haering, Mrowski, Prog. in Semicond., 273, 1950
Haering, Wallace, J. Phys. Chem. Solids 3, 253, 1957.
Herring, J.Appl.Phys. 31, 1939, 1960
Hennig, Science, 147, 733, 1965
Hooker, Ubbelohde, Young, Proc. Roy. Soc., A276 83, 1963
also " A284, 17, 1965
Hove, Phys. Rev., 100, 645, 1955
Ichikawa, Phys. Rev., 109, 653, 1958
Inoue, J.Phys.Soc. Japan, 17, 808, 1962
Jenkins, Turnbull, Williamson, J. Nucl. Mater., I, 215, 1969
Johnston, Proc. Roy. Soc., A227, 349, 1955 also A237, 48, 1956
Jones, "Theory of Brillouin Zones" North-Holland 1960.
Jones, Zener, Proc. Roy. Soc., A144, 101, 1934
Juretschke, Appl. Phys. Letters, 12, 213, 1968
KaO, Katr, J. pHYS. CHEM-SOLIOS 6, 223, 1958
Kanter, Phys. Rev., 107, 655, 1957
Klein, Rev. Mod. Phys., 34, 56, 1962
Landau, Appendix D. Shoenberg, Proc. Roy. Soc. A170, 341, 1939.
Lewis, Solid State Physics, 7, p.353, 1958.
Lifshitz, note added in proof of Shoenberg, Prog. in Low Temp. Phys. 2, 226, 1957
Lifshitz, Azbel, Kaganov, Soviet Phys., JEPP 4, 41, 1957
Lomer, Proc. Roy. Soc. A227, 330, 1955
McClure, Phys. Rev., 104, 666, 1956; 108, 612, 1957; 112, 715, 1958; 119, 606, 1950 also IBM J. Res. and Dev., 8, 258, 1964

McClure, Smith, Proc. 5th Carbon Conf. 2, 3, 1961, Pergamon HicClure, Yafet, Proc. 5th Carbon Conf. 1, 22, 1962, Pergamon Moore, Ubbelohde, Young, Proc. Roy. Soc.: A280, 153, 1964 Nozieres, Phys. Rev., 109, 1510, 1958

Ono, Sugihara, J. Phys. Soc. Japan, 21, 861, 1966 also 24, 818, 1968 Onsager, Phil. Mag*, 43, 1006, 1952

Pippard, "Dynamics of Conduction Electrons", Blackie and Son, 1965 Powell, Computer Journal, 7, 303, 1964.

Putley, "The Hall Effect and Related Phenomena", Butterworths, 1960 Roscoe, Thomas, Carbon, 4, 383, 1966

Rose-Innes, "Low Temperature Techniques" English Univ. Press, 1964. Roth, Argyres, "Semicond. and Semimetals", Vol. 1, p159, 1966 Academic Press Schiff, "Quantum Mechanics", 1955, McGraw Hill

Shoenberg, Trans. Roy. Soc. A245, 1, 1952
Shubnikov-de Haas, Commun. Phys. Lab. Univ. Leiden, No. 207a, 1930 Slater, "Quantum Theory of Molecules and Solids" MoGrawr-Hill 1963-65. Slonczewski, Ph.D. thesis, Rutgers University, unpubl., 1955 Slonczewski, Weiss, Phys. Rev., 29, 636A, 1955 also 109, 272, 1958 Sondheimer, Proc. Roy. Soc. A203, 75, 1950

Soule, Phys. Rev. ; 112, 698 and 708, 1958
Soule, McClure, Smith, Phys. Rev., 134, A453, 1964
Spain, Ubbelohde, Young, Phil. Trans. Roy. Soc., A262, 345, 1967
Sugihara, J. Phys. Soc. Japan, 21, supplement V111-2, 1966
Sugihara, Sato, J. Phys. Soc. Japan, 18, 332, 1963

Swanson, Phys. Rev., 98, 1534, 1955 also 29, 1799, 1955
Willace, Phys. Reve, 71, 622, 1947 also 72, 258, 1947
Whittaker, Robinson, p344
Yeoman, Young, J. Physies, part C (Solid State Physics) in press, 1969.
Young, Carbon, 6, 135, 1968
Young, Howell, Imperial College, 1969, unpubl.
Wilson, "Theory of Metals" 2nd ed. Cambr. Univ. Press, 1953
Ziman, "Principles of the Theory of Solids" 1965.
Ehrenberg "Electric Conduction in Semiconductors and Metals" Oxf. Univ. press, 1958.

APPENDIX 1

Wave Mechanics of Conduction Electrons

In using the Pippard-type geometrical approach to visualise electron processes we are applying a model which, at first sight, is extremely unlikely. One would suspect the presence of many pitfalls in an unwary application of the model and we accordingly propose to outline the main quantum-mechanical arguments leading to a justification for our sometimes regarding electrons in a lattice as discrete particles obeying classical laws of motion.

The quantum-mechanical treatment is mainly due to Bloch, 1928 Whose work was based on Schrodinger's early work. Born's theory of lattice vibrations is also of great importance in this field and an excellent accounts are given by Blount and Lewis 1962, 1958 respectively.

We start with Schrodinger's time-dependent wave equation

$$
\begin{equation*}
\left(H+\frac{\hbar}{i} \frac{\partial}{\partial t}\right) \varphi=0 \tag{1}
\end{equation*}
$$

For an electron in a magnetic field \underline{H} described by a vector potential \AA and an electric field $\underset{\sim}{E}$ described by a scalar potential V, we have the hamiltonian

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{i e \hbar}{m c} A_{0} \nabla+\frac{i e \hbar}{2 m c} \nabla_{0} A+\frac{e^{2}}{2 m c^{2} A^{2}}+\phi \tag{2}
\end{equation*}
$$

where curl $\quad A \equiv V A A=H$,
and, by Maxwell's laws, $\quad \subseteq=-\nabla V-\frac{1}{C} \frac{\partial A}{\partial \dot{t}}$
ϕ is the potential energy of the electron, $=\mathrm{eV}$. (See Schiff 1955. equation 23.24).

Now, by identifying ${ }^{6}$ as the time-averaged density of matter and in particular for charged matter, $\mathrm{F}^{*} \mathrm{~T}=\frac{\rho}{e}$ (where ρ is the charge density and e is the electronic charge), we can relate $\frac{\partial \rho}{\partial t}$ ($\boldsymbol{T}^{*} \Phi$) to current flow I through the conservation equation $-\frac{\partial \rho}{\partial t}=\nabla . I_{e c}$

Thus

$$
\frac{\partial}{\partial t}\left(\Phi^{*} \Phi\right)=\frac{\partial}{\partial t}(\underset{e}{e})=-\frac{1}{e} \nabla_{0} I
$$

$\frac{\partial}{\partial t}$ (雨 Φ) can be obtained from the Schrodinger equation (1) and the hamiltonian (2) to give a relation between current I and the quantities in the hamiltonian. Finally, identifying $\int I d_{T}$ with ep where \underline{v} is the velocity of a wave packet described by Φ_{0} we have

$$
\begin{equation*}
\underline{\nu}=\frac{\hbar}{i m} \int d_{T} \nabla \Phi \Phi-\frac{e}{m c} \int d_{T} \triangleq \Phi \bar{\Psi} \Phi \tag{4}
\end{equation*}
$$

In the absence of a magnetic field, the Shrodinger equation simplifies to

$$
\begin{equation*}
i n \frac{\partial \Phi}{\partial t}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+\phi\right) \Phi \tag{5}
\end{equation*}
$$

and ir $\bar{\xi}$ is zero at infinity or periodic boundary conditions are applied then $\bar{\Phi}$ can be split into time dependent and time independent parts

$$
\begin{equation*}
\Phi=\psi e^{-i E t / h} \tag{6}
\end{equation*}
$$

is a solution of (5) where ψ does not depend on time and satisfies the time independent Schrodinger equation

$$
\begin{equation*}
\left(\frac{\hbar^{2}}{2 m} \nabla^{2}+E-\phi\right) \psi=0 \tag{7}
\end{equation*}
$$

The application of Born-Karman boundary conditions then leads to discrete eigenfunctions ψ_{n} and eigenvalues E_{n}, distinguished by the set of quantum numbers, n.

Linear combinations of solutions of type (6) can be constructed \therefore describe any type of charge distribution. In general

$$
\begin{equation*}
\Phi=\sum_{n} C_{n} \psi_{n e}-i \operatorname{sit/h} \tag{8}
\end{equation*}
$$

where $e_{\text {by }}$ normalisation, $\Sigma\left|C_{n}\right|^{2}=1$.
Now let us assume we have the solutions to the above problem for a potential ϕ_{0} ana we apply small electric, and magnetic fields. Thus, we require solutions of

$$
\begin{equation*}
H^{\prime}=\frac{i \theta A}{m C} A, \nabla+\frac{i e A}{2 m c} \nabla \cdot A+\frac{e^{2}}{2 m c^{2}} A^{2}+e V \tag{9A.}
\end{equation*}
$$

Then, for a small enough perturbation, the new solutions will still have the form (8), but the coefficients C_{n} will be time dependent. The $C_{n}(t)$ satisfy

$$
\begin{equation*}
\dot{C}_{n^{\prime}}=(i \hbar)^{-1} \sum_{n} C_{n} H^{r}{ }_{n}{ }^{2} e^{\left.i\left(E_{n}\right)^{2}-E_{n}\right) t / \hbar} \tag{10}
\end{equation*}
$$

where the matrix element $H_{n n}^{*}=\int \psi_{n}^{*} H^{4} \psi_{n} d \tau$
(H^{\prime} can be simplified for small H ; $\mathrm{H}^{\prime}=\frac{i \in \hbar}{\mathrm{mc}} \mathrm{A} \cdot \nabla+\mathrm{eV}$)

Motion in a periodic potential

Bloch's theorem states that solutions of (7), when ϕ is periodic, are of the form

$$
\psi_{k}=c e^{i k \cdot \underline{r}} U_{1 k}(\underline{r})
$$

where $U_{k}(\underline{r})$ has the same periodicity as the lattice. Substituting into the Schrodinger equation, (7), gives

$$
\begin{equation*}
\nabla^{2} U+2 i k \cdot \nabla U+\frac{2 m}{\hbar^{2}}\left(E-\phi-\frac{\hbar^{2} \hbar^{2}}{2 m}\right) U=0 \tag{11}
\end{equation*}
$$

Solving this equation for a given value of \underline{k} leads to a discrete set

meters k and n.
However, as things stand, we have some ambiguity in the wave function ψ, for we can add to \underline{k} some vector $k^{\mathbf{s}}$ leaving ψ unchanged

$$
\psi=e^{i \underline{k} \cdot \underline{r}} U \underline{\underline{k}}(\underline{r})=e^{i\left(\underline{k}+\underline{k}^{i}\right) \cdot \underline{r}}\left(e^{-i \underline{k^{\prime}} \cdot \underline{r}} U k(\underline{r})\right)
$$

This expression for ψ is still a solution of (7) provided $e^{-i k^{\prime}} \cdot \underline{\mathrm{Ik}}(\mathrm{r})$ has the required periodicity. If \underline{R} is a lattice
 i.e. $\quad e^{-i k^{\prime}} \cdot \underline{R}=1$, as $\operatorname{Ul}(\underline{\underline{n}})$ is periodic.

For a cubic lattice of primitive translation a the components of \underline{k} have to satisfy $k_{x} a=2 \pi x$ integer, etc. Thus we can change the components of vector \underline{k} by integral multiples of $\frac{2 \pi}{a}$ without affecting ψ, provided the phase of the periodic function $U k(r)$ is changed at the same time.

In general, it is possible to make the k vector describing any state lie within the first Brillouin zone ($-\frac{\pi}{a}<k_{i}<\frac{\pi}{a}$ for a cubic lattice). The resulting vector is called the "reduced wave vector".

By substituting $\psi_{k}=c e^{i \underline{k} \cdot \underline{r}} \operatorname{Uk}(r)$ into the Schrodinger equation (7) and imposing Bcrn-Karman periodic boundary conditions $\psi_{\mathrm{k}}(\underline{\underline{r}}+\mathbb{N} \underline{R}$ $=\psi_{k}(\underline{r})$ where N is an integer, we find that $\underline{\underline{k}}$ can only take values such that $\underline{k} \cdot N R=2 \pi n$ where n is an integer and \underline{R} is a translation vector of the lattice. For a cubic lattice, this means that compon-
ents oi adjacent k vectors are separated by $\frac{2 \pi}{a N}$. This is a very small quantity compared with the width of the Brillouin Zone and we can usually regard \underline{k} as being continuous.

The sets of eigenfunctions $\underset{=}{\underset{y}{2}, n}$ for different values of the quantum number n usually have widely separated sets of eigenvalues $\mathrm{F}_{\underline{k}, \mathrm{n}}$. Almost all conduction processes involve much smaller energies than these gaps and n will not usually change for these processes. At most, we are concerned with a few such n values, corresponding to the "valence" and "conduction" bands and we shall omit the band index in what follows.

Velocity of electron packets
Let us construct a wave packet from Bloch states with wave vectors 12 localised near $1=k:$

$$
\begin{equation*}
\Phi_{\underline{k}}=\sum_{I} C_{I} \psi_{I e}{ }^{-i E_{1} t / \hbar} \tag{12}
\end{equation*}
$$

By 4 and 12 the velocity of the packet is

This can be reduced to

Now, if 委 is localised near $1=k$ and al so $\Sigma\left|C_{1}\right|^{2}=1$ by normalisation of ψ then

$$
\begin{equation*}
\underline{\underline{k}}_{\underline{k}}=\frac{\hbar}{i m} \int_{\underline{1}} \psi_{\underline{k}}^{*} \nabla_{\psi_{\underline{k}}} d \tau-\frac{e}{\mathrm{mc}} \int_{1}-\alpha_{\underline{k}}{\underline{\Phi_{k}}}_{\underline{k}} d q \tag{13}
\end{equation*}
$$

which relates the velocity of a wave packet $\because 0$ the wave vector of the eigenfunction which contributes most strongly to the wave packet. k is the "representative wave vector". The shape of the wave packet enters through the second term.

Now we must digress to point out that the magnetic field H is still described by a vector potential A when this latter is changed by addition of the gradiant of any scalar field, f.

For $\nabla \Lambda(\underline{A}+\nabla f)=\nabla \hat{A} \underline{A}+\nabla \Lambda \nabla f=\nabla \Lambda \underline{A}=\underline{H}$
(since curl (grad f) $\equiv 0$)。
But this "gang etransformation" changes the potential V.
Thus, for constant magnetic field \underline{H} and electric field e we have $\underline{A}=\frac{1}{2} \underline{H} \underline{r}+\nabla f$ and $V=-\underline{\varepsilon} \cdot \underline{r}-\frac{1}{C} \frac{\partial f}{\partial t} \quad \quad(f r o m(3))$.

Thus, (13) can be reduced th a single term if we add $\nabla f=-\frac{1}{2} H \bar{X}$ to $\frac{1}{2} \underline{H} \Lambda \underline{r}$, where $\bar{r}=\int \Phi_{k} \underline{\underline{r}} \bar{\Phi}_{k} d r$, for the second term is easily shown to be zero.

Then

$$
\begin{equation*}
V_{\underline{k}}=\frac{\hbar}{i m} \int \psi_{k} \nabla \psi_{k} d \tau \tag{14}
\end{equation*}
$$

This simpler expression is thus valid provided we use a vector potential whose mean value is zero. This is known as the "JonesZener condition".

Now the $\psi_{\underline{k}}$ have the Bloch form, and satisfy $\frac{\hbar^{2}}{2 m} \nabla^{2} \psi_{k}+\left(E_{k}-\phi\right) \psi_{k}=0$ where ϕ is the periodic potential. By operating with $\frac{\partial}{\partial k_{X}}$, multiplying
by $\underset{\underset{K}{*}}{\psi_{k}^{*}}$ and integrating, we find $\hbar \dot{x}_{\underline{k}}=\frac{\partial}{\partial \mathrm{K}_{\mathrm{Y}}} \mathrm{E}_{\underline{k^{*}}}$ Thus, combining similar equations for the other components, we have for the velocity of the wave packet:

$$
\begin{equation*}
\hbar \underline{V}_{\underline{k}}=\nabla_{k} E_{\underline{k}} \tag{15}
\end{equation*}
$$

Acceleration of the electron
Taking ${\underset{\underline{k}}{k}}$ formally as a function of k and \underline{r} we have

where the tensors have elements:

$$
\begin{align*}
& T_{i j}=\frac{1}{\hbar} \frac{\partial V_{k i}}{\partial k_{j}}=\frac{1}{\hbar^{2}} \quad \frac{\partial^{2} E_{k}}{\partial k_{i} \partial k_{j}} \tag{17}\\
& T_{i j}=\frac{1}{n^{2}} \frac{\partial^{2} E_{k}}{\partial k_{i} \partial x_{j}}
\end{align*}
$$

Rigorous justification for letting the eigenvalues $E_{\underline{k}}$ vary with position in this way is not easy. It is as if the conductor were made of adjoining pieces, each having slightly different sets of eigenvalues.

We must find an expression for $\dot{\mathrm{E}}$. From (10) we have

$$
\begin{equation*}
c(I)=\frac{1}{(i \hbar)} \sum c(1) H_{1}^{\prime} 11 \exp \left(i\left(E_{1},-F_{1}\right) \frac{t}{\hbar}\right) \tag{18}
\end{equation*}
$$

Now, using the vector potential satisfying the Jones-Zener condition,

$$
\frac{\partial f}{\partial t}=-\frac{1}{2}\left(H \Lambda \frac{\partial \bar{r}}{\partial t}\right) \cdot \underline{r}=-\frac{1}{2}\left(\underline{H} \Lambda \underline{V}_{\underline{r}}\right) \cdot \underline{r}
$$

Hence the new potential $V=-E \cdot \underline{E}-\frac{e}{20}\left(\underline{V}_{k} \Lambda H\right) \cdot \underline{r}$

So, using (18), (10A), (19) and $A=\frac{1}{2} H A(\underline{r}-\underline{r})$ we have for small values of H, t and $\left(E_{1},-E_{1}\right)$:

$$
\dot{c}\left(1^{8}\right)=\Sigma c(i) \int \psi_{\underline{1}}^{*}\left(\frac{i e h}{2 m c} H \mu(\underline{r}-\bar{r}) \nabla-\frac{e}{2 c}\left(\underline{V}_{k} \Lambda \underline{H}\right) \cdot r-e \underline{r} \cdot \underline{r}\right) \psi_{\underline{1}} \partial r
$$

This must be evaluated for the Bloch waves $\psi_{1}=c e^{i l} \cdot r_{U_{1}}(\underline{r})$. After some involved calculation we find (Ehrenberg, P.99)

$$
\dot{c}_{1}=-\left(\frac{e}{h} \underset{\sim}{e}+\frac{\theta}{2 c h}\left(\underline{V}_{1}+\underline{V}_{\underline{k}}\right) \Lambda H\right) \nabla_{k} c_{1}:-\frac{i e}{2 c \hbar} c_{1} H A \overline{\underline{y}} \nabla_{1}
$$

For the representative vector, $\underline{1}^{\prime}=\underline{k}$, this can be written

$$
\underset{\partial}{\partial t}\left|c_{\underline{k}}\right|^{2}=-\frac{e}{\grave{h}}\left(\underline{\varepsilon}+\frac{1}{c}{\underset{k}{k}}^{A} A\right) \cdot \nabla_{k}\left|c_{k}\right|^{2}
$$

which is satisfied by

$$
\left|c_{k}\right|^{2}=\text { function of (} \bar{h} \underline{\underline{E}}-\underline{e} t-\frac{e}{c} \overline{\underline{r}} \Lambda \underline{H} \text {). }
$$

For k to continue to denote the representative wave vector as the wave packet moves, k must change with time to keep the argument constant. Thus the rate of change of the representative wave vector of the wave packet, \dot{k}, is given by

$$
\begin{equation*}
\hbar \underline{\underline{k}}=e_{\underline{\epsilon}}+\frac{\mathrm{e}}{\mathrm{c}} \underline{V}_{k} \mathbb{N} \tag{20}
\end{equation*}
$$

But the RHS is the Lorentz force F acting on a particle with charge e. Thus, tik changes under the force F just as does mV for a charged particle outside the lattice.

Equation (16) now reduces to

For a homogeneous material, $\underset{\underline{T}}{\underline{T}}=\underline{\underline{0}}$ and

$$
\begin{equation*}
\dot{\underline{V}}_{\mathrm{k}}=T \mathrm{~F} \tag{21}
\end{equation*}
$$

Comparing this with Newton's relation $\dot{V}=\frac{1}{m} E$ we see that \underline{T}^{-1} is analogous to a mass tensor. This discovery is subject to the approxi-
mations we have made, viz. that the material is homogeneous and that the field H is small enough to neglect A^{2} in(9A), leading to (10A). Jones and Zener have given the condition for the validity of neglecting A^{2} as $(o H / 2 m c) t \ll 1$, where t is the time over which $\lambda \underline{k}-e_{c}-\frac{e}{c} r A$ $=$ constant is valid, essentially the relaxatior time. For graphite, taking $m=0.02 \mathrm{~m}_{\mathrm{o}}, \mathrm{t}=5 \times 10^{-13} \mathrm{sec} \mathrm{s}$, this gives $H \ll 250$ kgauss.

A further condition is that the ca:riers can be described by Bloch waves taken from single bands i.e. no band degeneracy is allowed or the effective mass approximation will break down. Of course, our picture suffers from the fundemental drawbacks of the independentparticle model; correlation effects are entirely neglected. "Slectrons" and "holes" strictly exist, respectively, well above and below, the Fermi energy. Close to the Fermi energy neither particle is welliefined and there exists the possibility of strongly correlated states. However, for a semimetal like graphite we put our faith in the low density oî carriers compared with the density of available states and hope that correlation effects are reasonably small.

APPENDIX 2.

Application of the Jones-Zener Expension to Graphite

The object of this appendix is to reduce the Jones-Zener solution of the Boltzmann equation to a form where comparison can be made between Jones-Zener terms and terms in the phenomenological expansion of the magneto-conductivity tensor, $\sigma_{i j}(H)$. These tensor components are then reduced to fairly simple integrals over the Fermi surface which enable one to relate the low field magnetoconductivity tensor directly to the Slonczewski-Weiss band parameters.

We recall the solution of the Boltzmann equation $f=f_{0}-\frac{\partial f_{0}}{\partial E}$ where ϕ is given by $\frac{1}{r} \phi+\frac{\mathrm{e}}{\hbar} \underline{\varepsilon} \cdot \nabla_{\mathrm{K}} \mathrm{B}+\mathrm{H} \cdot \Omega \phi=0$ and $\boldsymbol{S}=\frac{\mathrm{e}}{\mathrm{G} \hbar^{2}} \nabla_{\mathrm{K}} \mathrm{EA} \nabla_{\mathrm{K}}$ This aan be solved for to any order by iteration; for instance, the zeroth order solution is $\phi_{0}=\frac{\operatorname{nef}}{n} \varepsilon \cdot \nabla_{K} \mathrm{E} . \quad$ Substituting back, one obtains higher order solutions. Jones and Zener first obtained the series solution in 19348-

$$
\phi=-\frac{E}{\hbar}\left[\tau \underline{\varepsilon} \cdot \nabla_{K} E-\tau \underline{H} \cdot \underline{S}\left(\tau \underline{E} \cdot \nabla_{K} \mathbb{E}\right)+q \underline{H} \cdot \underline{S}\left(\tau \mathcal{H}_{0} \underline{S}\left(\tau \underline{E} \cdot \nabla_{K} \mathbb{E}\right)\right) \ldots\right]
$$

- where e is positive for electrons.

Now, bearing in mind the definition of J, θ, and ϕ, particularly in respect of their signs, one can write the current density \mathbb{J} in terms of the above expansion 8

$$
\underline{J}=\frac{e}{4 \pi^{3}} \int \underline{V} \frac{\partial f_{0}}{\partial E} d V_{K}
$$

Hence $J_{i}=-\frac{\dot{e}^{2}}{4 \pi^{3}} \cdot \frac{\partial f_{O}}{\partial \tau} \nu_{i}[\tau \varepsilon \cdot \underline{V}-\tau \underline{H} \cdot \underline{\Omega}(\tau \varepsilon \cdot \underline{V})+\tau \underline{H} \cdot \Omega(\tau \underline{H} \cdot \Omega(\tau \underline{\varepsilon} \cdot \underline{V}))] d V_{K}$

- where we have used $\underline{V}=\frac{1}{\hbar} \nabla_{K} E \quad=\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$

It is easily shown that any function of energy alone commutes with the operator $E ; \subseteq f(E(K))=f(E(K)) \subseteq$ so one nay bring out the electric field components from within \mathbb{S}

$$
J_{i}=-\frac{e^{2}}{4 \pi^{3}} \int_{\partial E}^{\partial f_{0}} \nu_{i}\left[\tau \varepsilon_{j} \nu_{j}-\tau \varepsilon_{j} H \cdot\left(-\left(\tau \nu_{j}\right)+\varepsilon_{j} \tau H_{0} \Omega\left(\tau \underline{H} \delta\left(\tau \nu_{j}\right)\right)\right] d V_{K}\right.
$$

The conductivity tensor follows immediately

$$
\sigma_{i j}(H)=-\frac{e^{2}}{\Delta \pi^{3}} \int_{\partial E}^{\partial f_{0}} \nu_{i}\left[\tau \nu_{j}-\tau H Q\left(\tau v_{j}\right)+\tau H \cdot \Omega\left(\tau H \cdot \Omega\left(\tau v_{j}\right)\right)\right] d v_{K}
$$

Comparing this with phenomenological expansion

$$
\sigma_{i j}(H)=\sigma_{i j}+\sigma_{K i j} H_{K}+\sigma_{K l i j} H_{K} H_{l}+\ldots
$$

where $\left.\left.\sigma_{i j}=\sigma_{i j}(0), \sigma_{K i j}=\frac{\partial \sigma_{i j j}(H)}{\partial H_{K}}\right)_{H=0}, \sigma_{K l i j}=\frac{\frac{1}{2}}{\partial} \frac{\partial^{2} \sigma_{i j,}(H)}{\partial H_{K} H_{l}}\right)_{\underline{H}=0}$ one can identify the coefficients in the two expansions :-

$$
\begin{aligned}
& \sigma_{i j}=-\frac{e^{2}}{4 \pi^{3}} \frac{\partial f_{0}}{\partial \mathrm{E}} \nu_{i} \tau \nu_{j} d V_{K} \\
& \sigma_{K i j}=+\frac{e^{2}}{4 \pi^{3}} \frac{\partial}{\partial H_{K}} \frac{\partial f_{0}}{\partial E} \nu_{i} \tau H_{\cdot} \Omega\left(\pi \nu_{j}\right) d V_{K}=\frac{e^{2}}{4 \pi^{3}} \frac{\partial f_{0}}{\partial E} \nu_{i} \tau \delta_{K}\left(\tau \tau_{j}\right) d V_{K}
\end{aligned}
$$

$\sigma_{\mathrm{K} 1 \mathrm{ij}}=-\frac{e^{2}}{4 \pi^{3}} \frac{1}{2} \frac{\partial^{2}}{\partial \mathrm{H}_{\mathrm{K}} \partial \mathrm{H}_{1}} \frac{\partial \mathrm{f}_{0}}{\partial \mathrm{E}} \quad \nu_{\mathrm{i}}\left[\tau \mathrm{H} \cdot \Omega_{\mathrm{E}}\left(\tau \mathrm{H} \cdot \Omega\left(\tau \nu_{j}\right)\right)\right] \mathrm{d} V_{\mathrm{K}}$

One can remove the product of the $\mathcal{\Omega}$ - operator from the last expression by using $\Omega(A B)=A \Omega B+B \sum A$ with $A \equiv\left(\tau \nu_{i}\right)$, $B \equiv\left(T H \cdot R\left(\tau v_{j}\right)\right) \cdot T h e n$
$\sigma_{K l i j}=-\frac{e^{2}}{4 \pi^{3}} \frac{1}{2} \frac{\partial^{2}}{\partial H_{K} \partial H_{l}} \frac{\partial f_{0}}{\partial E}\left(H \cdot \Omega\left(r \nu_{i}\left(r H \cdot \Omega\left(\pi \mu_{j}\right)\right)-\tau H \cdot \Omega\left(\tau \nu_{j}\right) H \cdot \Omega\left(\eta \nu_{i}\right)\right) d V_{K}\right.$

We now show that the first integral is zero Operate on any scalar field A with ($H \cdot \nabla_{K}$ AV). By writing the scalar triple product in determinantal form it can be seen that this operation results in

$$
\left(\underline{H} \cdot \nabla_{K} \cdot(\underline{V}) A=-\left(\underline{H} \cdot \underline{V} / \nabla_{K}\right) A+A\left(H \cdot \nabla_{K} N\right)\right.
$$

However, the last expression is zero, for its terms cancel in pairs. Taking the pair associated with the H_{x} component as an example, we see

$$
\mathrm{AH}_{x}\left(\frac{\partial \nu_{3}}{\partial \mathrm{~K}_{2}}-\frac{\partial \nu_{2}}{\partial \mathrm{~K}_{3}}\right)=0
$$

since $\nu_{i}=\frac{1}{\hbar} \frac{\partial \mathbb{E}}{\partial \mathrm{~K}_{i}}, i=1,2,3$. Thus, we are left with

$$
(H \cdot \underline{S}) \mathrm{A}=-\left(\mathrm{H}_{0} \underline{\nabla}_{\mathrm{K}} / \overline{\mathrm{V}}\right) \mathrm{A}=-\left(\underline{\nabla}_{\mathrm{K}} \cdot \underline{\nabla} / \mathrm{H}\right) \mathrm{A}=\operatorname{div}_{\mathrm{K}}(-\mathrm{A}(\mathrm{I} / \mathrm{H}))
$$

- which means that any scalar field can be transformed into the divergence of a vector field by application of the operator (H. (2).

The above integral has thus been transformed into the integral over volume of the divergence of a vector field

$$
\left[\frac{\partial f_{O}}{\partial E} \tau \nu_{i}+H \cdot \Omega\left(\tau \nu_{j}\right)(V A H)\right]
$$

By Gauss' theorem, this can be written as a surface integral of the vector field which immediately reduces to zero because $E(\mathbb{K})$ has the same values on opposite faces of the Brillouin zone.

One is left withs

$$
\sigma_{K l i j}=\frac{1}{2} \frac{e_{i}^{2}}{4 \pi^{3}} \quad \frac{\partial^{2}}{\partial H_{K} \partial H_{l}} \frac{\partial f_{0}}{\partial \mathrm{E}} \tau \underline{H} \cdot \Omega\left(\tau v_{i}\right) \mathrm{H} \cdot \Omega\left(\tau \nu_{j}\right) d v_{K}
$$

i.e.

$$
\sigma_{K l i j}=\frac{e^{2}}{8 \pi^{3}} \int \frac{\partial f_{o}}{\partial E} T\left[\rho_{K}\left(T^{i} y_{j}\right) \Omega_{I}\left(\tau \nu_{i}\right)+\Omega_{I}\left(T v_{j}\right) s_{K}\left(q_{i} v_{i}\right)\right] d V_{K}
$$

To go further, we look for simplifications resulting from the symmetry of the graphite crystal and impose the condition that the magnetic field vector lie parallel to the c-axis, $\mathrm{H} \equiv(\mathrm{O}, \mathrm{O}, \mathrm{H})$. It was shown in section 2.2.1. that the only tensor elements contributing to $\sigma_{i j}(H)$ with the magnetic field along the z-axis are $\sigma_{11}, \sigma_{22}=\sigma_{11} \cdot \sigma_{33}, \sigma_{312}, \sigma_{321}=-\sigma_{312}, \sigma_{3311}, \sigma_{3322}=\sigma_{3311}, \sigma_{3333}$, so one can work with $K=3,1=3$ from now on.

Taking $\sigma_{3 i j}$ first, one requires an expression for δ_{3}. By expanding $\quad \frac{e}{C_{n}} V A_{K}$ one obtains

$$
\sigma_{3 i j}=\frac{e^{2}}{4 \pi^{3}} \frac{e}{C_{\hbar}} \int \frac{\partial f_{o}}{\partial \#} \nu_{i T}\left(v_{1}-\frac{\partial}{\partial K_{2}}-v_{2} \frac{\partial}{\partial K_{1}}\right)\left(\sigma_{r} v_{j}\right) d V_{K}
$$

The reduction of σ_{Klij} to $\sigma_{33 i j}$ follows simply:

$$
\begin{aligned}
& \sigma_{33 i j}=\frac{e^{2}}{4 \pi^{3}} \int \frac{\partial f_{o}}{\partial E}-\alpha_{3}\left(\pi v_{i}\right) s_{3}\left(\pi v_{j}\right) d V_{K}
\end{aligned}
$$

Now, since the energy-band structure of graphite is not known over the whole Brillouin zone, we must introduce an approximation here to change the volume integral to an integral over the Fermi surface.

Using the well-known expansion for an integral $I(E F)=\int_{0}^{\infty} \frac{\partial f_{0}}{\partial \mathbb{E}} f_{0}(E) d E$ where $G(E)$ is a clown function of energy; $I(E F)=G(E F)-G(0)$

$$
+\frac{(\pi k T)^{2}}{6} \frac{\partial^{2} G}{\partial E^{2}}
$$

one can verify, by integrating by parts, the following relation for any function $g(E)$ of energy:

$$
\left.-\int_{0}^{\infty} g(E) \frac{\partial f_{0}}{\partial E} d E=g(I F)+\frac{(\pi k P)^{2}}{6} \frac{\partial^{2} g}{\partial E^{2}}\right)_{E F}
$$

We use the lowest order approximation, obtaining:

$$
\sigma_{i j}=\frac{e^{2}}{4 \pi^{3}} \int v_{E=E f} v_{i} v_{j} \quad \frac{\partial S}{\left|\nabla_{K} E\right|}
$$

- since $d V_{K}=\left|\frac{d B d S}{\nabla_{K}} K^{R}\right|$ where $d S$ is an element of Fermi surface area.

$$
\begin{gathered}
\sigma_{3 i j}=\frac{-e^{3}}{4 \pi^{3} \mathrm{C} \hbar} \int v_{i} \tau\left(\nu_{1} \frac{\partial}{\partial K_{2}}-\nu_{2}-\frac{\partial}{\partial K_{1}}\right) \tau \nu_{j} \frac{\partial S}{\left|\nabla_{K}^{E}\right|} \\
\sigma_{33 i j}=-\frac{e^{4}}{4 \pi^{3} C^{2} \hbar^{2}} \int \tau\left(\nu_{i} \frac{\partial}{\partial K_{2}}-v_{2} \frac{\partial}{\partial K_{1}}\right)\left(\nu_{i}\right)\left(v_{1} \frac{\partial}{\partial K_{2}}-v_{2} \frac{\partial}{\partial K_{1}}\right) \\
\left(4 \nu_{j}\right) \frac{d S}{\left|\nabla_{K} E\right|}
\end{gathered}
$$

Onus task is now to perform these integrations over the Fermi surface of graphite, and so relate the band parameters to the lowfield conductivity tensor. To do this, we recognise that one can not obtain an analytic expession for the Fermi surface from the secular equation of sloncewski-Weiss's band model for $\gamma_{3} \neq 0$. We accordingly assume $\gamma_{3}=0$ throughout and make great use of the resulting circular symmetry about the K_{z}-axis.

In view of the circular symmetry, let us transform to the cylindrical coordinates $K_{,}, K_{z}$ as defined in section 2.1.3. In what follows we rake use of the relations

$$
-\frac{\partial}{\partial K_{1}}=\cos \alpha \frac{\partial}{\partial K}-\frac{\sin \alpha}{K} \frac{\partial}{\partial \alpha}, \frac{\partial}{\partial K_{2}}=\sin \alpha \frac{\partial}{\partial K}+\frac{\cos \alpha}{K} \frac{\partial}{\partial \alpha}
$$

and the resulting expressions for the Fermi velocities:

$$
v_{i}=\frac{1}{\hbar} \frac{\partial E}{\partial K_{i}} ;\left(v_{1}\right)=\frac{1}{n}\left(\frac{\partial E}{\partial K}\right)\binom{\cos \alpha}{\sin \alpha}
$$

The expression $\left(\nu_{1} \frac{\partial}{\partial \mathrm{~K}_{2}}-\nu_{2} \frac{\partial}{\partial \mathrm{~K}_{1}}\right)\left(\tau_{i} \nu_{j}\right)$ reduces as follows:

$$
\begin{aligned}
& \frac{1}{\hbar}\left[\cos \alpha\left(\frac{\partial E}{\partial K}\right)\left(\sin \alpha \frac{\partial}{\partial K}+\frac{\cos \alpha}{K}-\frac{\partial}{\partial \alpha} j-\sin \alpha\left(\frac{\partial F}{\partial K}\right)\left(\cos \alpha \frac{\partial}{\partial K}-\frac{\sin \alpha}{K} \frac{\partial}{\partial \alpha}\right)\right]\right. \\
& \left(r_{\hbar}^{1} \frac{\partial E}{\partial K}\right)\binom{\cos \alpha}{\sin \alpha}=-\frac{1}{\hbar^{2}}\left(\frac{\partial E}{\partial K}\right)^{2}\binom{-\sin \alpha}{\cos \alpha}
\end{aligned}
$$

where one takes the $(-\sin \alpha)$ if $j=1$ and $(\cos \alpha)$ if $j=2$. In deriving this, we have used the key fact that $\frac{\partial E}{\partial \alpha}=0$ fcr our band model with $\gamma_{3}=0$. An additional assumption is that T is constant on an orbit round the Fermi surface in a plane perpendicular to the c-axis; $\tau=\tau\left(E_{;} \mathrm{K}_{\mathrm{z}}\right)$ 。

The element of surface area is given by

$$
\left.\mathrm{dS}=\mathrm{Kd}_{\mathrm{daK}}^{\mathrm{z}}\left(1+\left(\frac{\mathrm{dK}}{\mathrm{dK}}\right)_{\mathrm{z}}\right)^{2}\right)^{\frac{1}{2}}
$$

Because of the circular symmetry, one may integrate with respect to α immediately.

$$
\begin{aligned}
& \text { For } i, j=1,2:- \\
& \int_{0}^{2 \pi} \nu_{i} \tau v_{j} \mathrm{~d} \alpha=\int_{0}^{2 \pi}\left(\frac{1}{h}_{\frac{1}{\partial \mathrm{~K}}}\right)^{2}-\left((_ { \operatorname { s i n } \alpha } ^ { \operatorname { c o s } \alpha }) \left(\left(_{\sin \alpha}^{\cos \alpha}\right) \mathrm{d} \alpha=\tau\left(\frac{1}{\hbar} \frac{\partial E}{\partial K}\right)^{2}\left(\begin{array}{ll}
0 & 0 \\
0 & \pi
\end{array}\right)\right.\right.
\end{aligned}
$$

which shows that $\sigma_{21}=\sigma_{12}=0, \sigma_{11}=\sigma_{22}$ as we have already seen from other symmetry considerations, in Section 2.2.1.

$$
\begin{aligned}
\int_{0}^{2 \pi} T V_{i}\left(\nu_{1} \frac{\partial}{\partial K_{2}}-v_{2} \frac{\partial}{\partial K_{1}}\right)\left(-\nu_{j}\right) d \alpha & =\int_{0}^{2 \pi} \frac{\pi^{2}}{K_{\hbar}^{2}}\left(\frac{\partial E}{\partial K}\right)^{2}\left(\frac{1}{n} \frac{\partial E}{\partial K}\right)\binom{\cos \alpha}{\sin \alpha}\binom{-\sin \alpha}{\cos \alpha} d \alpha \\
& =\frac{r^{2}}{K_{\hbar}}\left(\frac{\partial E}{\partial K}\right)^{3}\left(\begin{array}{cc}
0 & \pi \\
-\pi & 0
\end{array}\right)
\end{aligned}
$$

showing $\sigma_{311}=\sigma_{322}=0, \quad \sigma_{312}=-\sigma_{321}$

$$
\text { showing } \sigma_{3311}=\sigma_{3322}, \sigma_{3312}=\sigma_{3321}=0
$$

For $i, j=3$ we see that for σ_{33}

$$
\int_{0}^{2 \pi} \nu_{3} \pi \nu_{3} \mathrm{~d} \alpha=\frac{I}{n}{ }_{n}\left(\frac{\partial E}{\partial K_{z}}\right)^{2} 2 \pi
$$

Since $\tau \nu_{3}=\frac{\pi}{\hbar} \frac{\partial E_{Z}}{\partial K_{Z}}$ has no K or α dependence we see that our assumption of $\gamma_{3}=0$ has imposed $\sigma_{3333}=0$, whereas it is not necessarily zero from the symmetry of the crystal structure. One

$$
\begin{aligned}
& \int_{0}^{2 \pi} \tau\left(\nu_{1} \frac{\partial}{\partial \mathrm{~K}_{2}}-\nu_{2} \frac{\partial}{\partial \mathrm{~K}_{1}}\right)\left(\tau \nu_{\mathrm{i}}\right)\left(\nu_{1} \frac{\partial}{\partial \mathrm{~K}_{2}}-\nu_{2} \frac{\partial}{\partial \mathrm{~K}_{1}}\right)\left(\tau \nu_{j}\right) \mathrm{d} \alpha \\
& \left.=\int_{0}^{2 \pi} \frac{r^{2}}{\hbar_{n}^{2} K}\left(\frac{\partial E}{\partial K}\right)^{2}(-\sin \alpha)-\frac{\pi}{\cos \alpha}\right)_{\hbar K}^{2}\left(\frac{\partial E}{\partial K}\right)^{2}(-\sin \alpha) d \alpha \\
& \left.\left.=\frac{\pi^{3}}{\left(\hbar^{2} K\right)^{2}} 2^{\left(\frac{\partial E}{\partial K}\right)^{4}}\right)^{\pi} \quad 0 \quad \pi\right)
\end{aligned}
$$

deduces that a K or α - dependence of ${ }_{\tau} \frac{\partial E_{z}}{\partial K_{z}}$ is essential to explain c-axis magneto-resistance or conductivity, both of which are proportional to σ_{3333} *

Before collecting our results, we present another simplification which leads to considerable reduction in the cumputational difficulties ahead.

We note simply that, since the integrations are being taken over the Fermi surface whose energy is, by definition, constant, the following relation must hold :

$$
\begin{array}{r}
d E=\frac{\partial E}{\partial K} d K+\frac{\partial E}{\partial K_{z}} \partial K_{z}=0 \\
\left(\frac{\partial E}{\partial \alpha}=0 \text { since } \gamma_{3}=0\right)
\end{array}
$$

This leads to

$$
\frac{\partial K}{\partial K}=-\frac{\partial E}{\partial K_{z}} / \frac{\partial E}{\partial K}
$$

Now, the integrals all contain a factor $\frac{\left[1 \cdot\left(\frac{d K}{\partial K_{z}}\right)^{2}\right]^{\frac{1}{2}}}{\left|\nabla_{K}\right|}$ and it
is this which we simplify by realizing that

$$
\left|\nabla_{K} T\right|=\sqrt{\left(\frac{\partial E_{K}}{\partial K}\right)^{2}+\left(\frac{\partial W}{\partial K_{Z}}\right)^{2}}
$$

and using the above result;

$$
\frac{\left[1+\left(\frac{\partial K}{\partial K}\right)_{Z}^{2}\right]^{\frac{1}{2}}}{\left|\nabla_{K}{ }^{E}\right|}=\frac{1}{\left(\frac{\partial E}{\partial K}\right)}
$$

The integrals may now be collected, in preparation for the final integration over K_{z}.

$$
\begin{gathered}
\sigma_{i j}=\left(\begin{array}{cc}
\pi & 0 \\
0 & \pi
\end{array}\right) \frac{e^{2}}{4 \pi^{3} \hbar^{2}} \int r\left(\frac{\partial E}{\partial K}\right) K d K_{z} \\
\sigma_{31 j}=\left(\begin{array}{cc}
0 & \pi \\
-\pi & 0
\end{array}\right) \frac{-e^{3}}{4 \pi^{3} C_{n}^{4}} \int r^{2}\left(\frac{\partial E}{\partial K}\right)^{2} d K_{z} \\
\sigma_{33 i j}=\left(\begin{array}{cc}
\pi & 0 \\
0 & \pi
\end{array}\right) \frac{-e^{4}}{4 \pi^{3} C^{2} 6} \int r^{3}\left(\frac{\partial E}{\partial K}\right)^{3} \frac{1}{K} d K_{z}
\end{gathered}
$$

To proceed further we must find the functions $K\left(K_{z}\right), \frac{\partial F}{\partial K}\left(K_{z}\right)$ and assume some K_{z}-dependence for $\tau\left(K_{z}\right)$, but these expressions represent a remarkable simplification of the original Jones-Zener expressions.

The following tables of data are in three sections. First there is raw data on the variation of conductivity and Hall coefficient with magnetic field at stated temperatures for each of the three samples. This makes up the bulk of Appendix 3.

After this comes a short section detailing the results of fitting the raw data to Lorentzians. The solid curves of the graphs in Chapter 5 were plotted from the total conductivities $\sigma_{x x}, \sigma_{x y}$ listed here. However, the tables also contain partial conductivities e.g. $\sigma_{x y}^{n}, \sigma_{x y}^{P}$ from which the contribution of negative (n) and positive (P) carriers can be ascertained. Gaussian units are used. Magnetic field values are in gauss.

The last section presents raw data on the oscillations observed on W3 in three experiments at $1.2^{\circ} \mathrm{K}$, two on the Hall effect and one on the magnetoresistance oscillations. The columns are magnetic field B (gauss), reciprocal field ${ }^{1} / \mathrm{B}$ (gauss ${ }^{-1} \times 10^{6}$), and sample voltage V, arbitrary units. One of these experiments was subjected to the detailed analysis of Section 5.2.

Errors.

Errors were introduced mainly in the chart reading process. Chart calibration, involving measurement of chart distances ($<1 \%$), sample current ($<0.1 \%$) and sample voltages (1% for low field Hall voltage at $1^{\circ} \mathrm{K}$, though greater for values of magnetic field giving near-zero Hall coefficient) introduced a slightly smaller error. Total errors from these sources to be expected at $1^{\circ} \mathrm{K}$ vary from 10% at 200 gauss for magnetoresistance and 30% for Hall effect. This quickly drops to 3% for both effects at 2000 gauss and 2% or less above 4000 gauss. At $300^{\circ} \mathrm{K}$ errors are similar in magnitude for both effects, being about 10% at 200 gauss and less than 2% above 5000 gauss.

The magnetic field values must be corrected by the factor 0.960 because of a late-discovered calibration error in our fluxmeter. Final derived values in Chapter 5, in particular Table 5.1 embody this -4% correction. Calibration of the Hall probe was accomplished to within 2%. It should be remembered that the magnetic field appears explicitly in the definition of Hall coefficient.

W1 $295{ }^{\circ} \mathrm{K}$			W1 $295^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ (\mathrm{~cm} 3 / \mathrm{c}) \end{gathered}$	$\left(\Omega^{-\mathrm{cm})^{-1} \times 10^{-3}}\right.$	$\begin{aligned} & \text { B } \\ & \text { gauss } \end{aligned}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ (\mathrm{~cm} 3 / \mathrm{C}) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} x: 0^{\alpha \cdot 3}$
647	. 06365	22.8	17080	.07919	6.51
1093	. 067529	22.56	17420	. 07876	6.40
1602	. 05993	22.17	205	. 07031	22.819
2128	. 05969	21.71	205	. 07408	22.936
2644	. 05447	21.15	214	. 06736	22.918
3758	. 05841	19.75	218	.08176	22.914
4335	. 05696	18.99	229	. 06294	22.827
4860	. 05983	18.25	273	. 06529	22.897
54.70	. 05069	17.42	319	. 0823	22.883
6560	. 06064	15.95	365	. 07546	22.859
7640	. 06284	14.55	456	. 05416	22.764
8790	. 06398	13.13	548	. 06611	22.831
9705	. 06587	12.11	683	. 06916	22.772
10710	. 06789	11.10	914	. 05886	22.575
11660	. 07014	10.22	1003	. 06281	22.595
12550	. 07168	9.47	1139	. 0576	22.526
13620	. 07394	8.65	1253	. 06111	22.449
14550	. 07616	8.00	1364	. 06133	22.283
15830	. 07695	7.23	14.59	. 06087	22.288

W1 $295{ }^{\circ} \mathrm{K}$		
B gauss	$\frac{-\mathrm{R}_{\mathrm{H}}}{\left(\mathrm{~cm}^{3} / \mathrm{c}\right)}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
1595	. 06132	22.168
1713	. 06161	22.052
- 1822	. 06039	21.905
1916	. 05877	21.851
2056	. 06197	21.715
2278	. 06017	21.453
2374	. 05828	21.380
2516	. 05831	21.219
2630	. 05823	21.090
2736	. 05805	20.936
2836	. 05784	20.852
2976	. $0580{ }_{4}$	20.676
3090	. 05885	20.525

W1 $88{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\frac{\sigma}{(\Omega-\mathrm{cm})^{-1} \times \mathrm{xic}^{-3}}$
3480	. 0465	11.759
4436	. 0637	8.831
5395	. 0825	6.847
6360	. 1012	5.3916
7330	. 1197	4.3203
8300	. 137	3.5679
9280	. 1525	2.9792
10260	. 1666	2.521
11245	. 1792	2.1453
12240	. 191	1.8612
13225	. 2015	1.6350
14220	. 2117	1.4385
15225	. 2213	1.2719
16225	. 2297	1.1325
16230	. 2298	1.1314
221	. 282	28.661
410	. 1775	28.163
598	. 133	27.062

W1 $88{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -R_{\text {PII }} \\ & (\mathrm{cm} 3 / \mathrm{c}) \end{aligned}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
786	. 1055	26.044
974	. 0837	25.036
1163	. 0707	23.867
1352	. 061	22.432
1537	. 0536	21.350
1541	. 0535	21.252
1731	. 0482	20.274
1920	. 0442	19.004
2110	. 0416	17.948
2298	. 0403	16.887
244.5	. 04.02	15.838
2680	. 0412	14.913
2682	. 0412	14.870
2908	. 0425	14.0495
3059	. 0437	13.261
3251	. 0452	12.445
3421	. 0468	11.766
3632	. 0492	11.094

W1 $88{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\frac{\sigma}{(\Omega-\mathrm{cm})^{-1} \times 10^{-3}}$
3832	. 0517	10.494
4208	. 0562	9.377
4780	. 0632	7.967

W1 $77{ }^{\circ} \mathrm{K}$			W1 $77^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -R_{H} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$(0-\mathrm{cm})^{-1} \times 10^{-3}$	$\begin{gathered} \mathrm{B} \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -R_{W} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
-	-	31.020	9435	0.1891	2.4349
206	-0.0156	30.328	11370	0.2238	1.7732
278	0.02546	30.043	13320	0.25112	1.3486
370	0.06087	29.516	15290	0.27381	1.0613
463	0.06532	28,947	16790	0.28802	0.9030
695	0.06342	27.311	610	-	28.0097
926	0.05865	25.471	1551	-	20.986
1158	0.0469	23.627	2498	0.03	14.714
1391	0.03807	21.748	3446	0.0502	10.477
1624	0.03344	19.9896	4400	0.0737	7.758
1857	0.03289	18.422	5355	0.0975	5.8986
2092	0.02888	16.948	6315	0.1233	4.601
2324	0.03295	15.570	8250	0.1697	3.0116
2558	0.03446	14.331	9225	0.189	2.5141
2790	0.03852	13.367	10200	0.207	2.114
3022	0.04344	12.178	11185	0.223	1.8041
3260	0.04737	11.244	13160	0.252	1.3588
3730	0.06193	9.6309	14150	0.2648	1.1975
4200	0.07155	8.3080	15150	0.277	1.0622
4670	0.08833	7.2106	7300	0.1485	3.6675
5615	0.10796	5.5612	12140	0.2377	1.5634
7515	0.1517	3.5422	16180	0.289	0.94761

W1 $63^{\circ} \mathrm{K}$			W1 $63{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\frac{\sigma}{(\Omega-\mathrm{cm})^{-1} \times 10^{-3}}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{om})^{-1} \times 10^{-3}$
-	-	33.100	1300	0.0972	20.86
204	0.24 .95	32.222	1400	0.0905	20.02
372	0.2975	30.947	1500	0.0855	19.28
699	0.1703	27.761	1600	0.0808	18.51
1400	0.09358	20.685	1700	0.0768	17.8
2808	0.0834	11.335	1800	0.0748	17.1
3750	0.1082	7.9227	1900	0.074	16.4
9520	0.2772	1.8549	2000	0.074	15.74
16885	0.4128	0.6951	2100	0.0744	15.13
250	0.254	31.88	2200	0.0753	14.55
400	0.219	30.85	2300	0.0759	14.0
500	0.1945	30.0	2400	0.0772	13.48
600	0.1718	28.88	2500	0.0788	12.96
700	0.154	27.5	2600	0.0803	12.44
800	0.140	26.24	2700	0.082	11.97
900	0.1278	25.0	2800	0.0838	11.5
1000	0.1189	23.75	2900	0.0856	11.04
1100	0.111	22.73	3000	0.0875	10.6
1200	0.104	21.8	4000	0.1262	7.25

W1 $63^{\circ} \mathrm{K}$		
$\stackrel{\text { B }}{\text { gauss }}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ \left(\Omega^{\text {-ami }}\right)^{-1} \times 10^{-3} \end{gathered}$
5000	0.1517	5.095
6000	0.1839	3.94
7000	0.2128	3.10
8000	0.239	2.44
9000	0.2643	2.28
10000	0.2879	1.685
11000	0.3098	1.422

W1 $63{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\left(8^{-0 \mathrm{om}}\right)^{-1} \times 10^{-3}$
12000	0.3304	1.23
13000	0.35	1.075
14000	0.368	0.94
15000	0.3852	0.84
16000	0.4008	0.755
17000	0.415	0.698
3500	0.1002	8.75

W1 $15^{\circ} \mathrm{K}$			W1 $15^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} \mathrm{RH}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	σ $(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\left(\Omega^{-\mathrm{om}}\right)^{-1} \times 10^{-3}$
220	2.75	144.46	2000	0.632	8.45
350	1.8	104.0	2100	0.636	7.8
400	1.61	83.0	2200	0.640	7.28
500	1.36	67.0	2300	0.645	6.76
600	1.19	48.0	2400	0.650	6.26
700	1.05	38.0	2500	0.656	5.82
800	0.94	32.0	2600	0.662	5.44
900	0.86	27.0	2700	0.670	5.12
1000	0.79	23.2	2800	0.677	4.84
1100	0.74	20.0	2900	0.685	4.58
1200	0.70	17.4	3000	0.694	4.32
1300	0.665	15.4	3500	0.740	3.42
1400	0.64	14.0	4000	0.789	2.78
1500	0.6181	12.8	4500	0.8335	2.27
1600	0.62	11.7	5000	0.879	1.92
1700	0.623	10.7	5500	0.925	1.64
1800	0.626	9.9	6000	0.970	1.44
1900	0.629	9.1	6500	1.0115	1.27

W1. $15^{\circ} \mathrm{K}$			W1 $15^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{C}\right) \end{aligned}$	$\left(\Omega^{-c m}\right)^{-1} \times 10^{-3}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -R_{H} \\ & \left(\mathrm{~cm}^{3} / \mathrm{C}\right) \end{aligned}$	$(\Omega-a m)^{-1} \times 10^{-3}$
7000	1.053	1.14	12000	1.264	0.538
7500	1.08	1.052	12500	1.275	0.510
8000	1.113	0.944	13000	1.285	0.485
8500	1.142	0.860	13500	1.295	0.467
9000	1.168	0.794	14000	1.3055	0.438
9500	1.1895	0.733	14500	1.315	0.417
10000	1.208	0.682	15000	1.323	0.399
10500	1.224	0.638	15500	1.331	0.382
11000	1.239	0.601	16000	1.34	0.366
11500	1.2515	0.568	16500	1.349	0.352
			17000	1.357	0.340

W1 $4.55^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$(\Omega-\mathrm{cm})^{-1}=10^{-3}$
200	0.882	64.4
300	0.81	51.2
400	0.778	40.9
500	0.754	32.0
600	0.733	26.0
700	0.715	21.8
800	0.699	19.56
900	0.683	17.5
1000	0.67	16.0
1100	0.66	14.6
1200	0.651	13.43
1300	0.644	12.4
1400	0.6415	11.38
1500	0.643	10.44
1600	0.65	9.8
1700	0.658	8.83
1800	0.667	8.15
1900	0.6765	7.5
2000	0.6865	7.0

W1 $4.5{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \mathrm{B} \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$(\Omega-c m)^{-1} x: 0^{-3}$
2100	0.697	6.58
2200	0.702	5.88
2300	0.717	5.4
2400	0.728	5.0
2500	0.739	4.70
2600	0.751	4.45
2700	0.765	4.22
2800	0.778	4.01
2900	0.792	3.83
3000	0.806	3.661
3100	0.820	3.518
3200	0.834	3.372
3300	0.849	3.24
3400	0.864	3.115
3500	0.878	2.99
3600	0.892	2.875
3700	0.905	2.76
3800	0.918	2.648
3900	0.935	2.542

W1 $4.55^{\circ} \mathrm{K}$			W1 $4.5{ }^{\circ} \mathrm{K}$		
$\begin{gathered} B \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	σ $(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	B gauss	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
4000	0.948	2.442	4700	1.023	1.90
4100	0.912	2.35	4800	1.032	1.84
4200	0.925	2,26	4900	1.043	1.78
4300	0.936	2.18	5000	1.053	1.725
4400	0.996	2.103	5100	1.069	1.68
4500	1.005	2.035	5200	1.081	1.63
4600	1.014	1.962	5300	1.095	1.583

W2 $291{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{Z}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	0 $(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
0	-	25.006
100	-	-
200	-0.2472	24.967
300	-	-
400	-0.0978	24.928
500	-	-
600	-0.0482	24.791
700	-	-
800	-0.0218	24.791
900	-	-
1000	-0.00715	24.637
1100	-	-
1200	$+0.00472$	24.485
1300	-	-
1400	+ 0.01229	24.316
1500	-	-
1600	0.01796	24.168
1700	-	-
1800	0.02095	23.931
1900	-	-

W2 $291^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -\mathrm{R}_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$(\Omega \mathrm{mom})^{-1} \times 10^{-3}$
2000	0.02526	23.628
2100	-	-
2200	0.02879	23.249
2300	-	-
2400	0.03176	23.060
2500	-	-
2600	0.03373	22.746
2700	-	-
2800	0.03453	22.440
2900	-	-
3000	0.03564	22.081
3100	-	-
3200	0.03582	21.733
3300	-	-
3400	0.03597	21.483
3500	-	-
3600	0.03682	21.153
3700	-	-
3800	0.03556	20.724
3900	-	-

	$W_{2} 291^{\circ} \mathrm{K}$	
B	$-\mathrm{R}_{\mathrm{H}}$	0
gauss	$\left(\mathrm{cm}^{3} / \mathrm{c}\right)$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
4000	0.03634	20.339
4500	0.03686	19.597
5000	0.0383	18.773
5500	0.03948	17.635
6000	0.04046	16.965
6500	0.04149	16.202
7000	0.04274	15.445
7500	0.04348	14.693
8000	0.04445	13.962
8500	0.04530	13.312
9000	0.04649	12.699
9500	0.04741	12.107

W2 $291{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}:} \\ \left(\mathrm{cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-c m)^{-1} \times 10^{-3}$
10000	0.04863	11.501
10500	0.04936	10.983
11000	0.05061	10.482
11500	$0.05: 65$	9.987
12000	0.05270	9.582
12500	0.05377	9.119
13000	0.05475	8.752
13500	0.05587	8.373
14000	0.05691	8.011
14500	0.05783	7.67
15000	0.05909	7.314
15500	0.05989	7.029
16000	0.06084	6.741
16500	0.06210	6.464
17000	0.06290	6.205

W2 $77^{\circ} \mathrm{K}$			W2 $77^{\circ} \mathrm{K}$		
$\begin{gathered} \mathrm{B} \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -R_{H} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\stackrel{\sigma}{(\Omega-\mathrm{cm})^{-1} \times 10^{-3}}$
0		35.547	1900	0.004559	18.885
100	-0.264	34.998	2000	0.005805	18.160
200	-0.087	34.205	2150	0.007167	17.422
300	-0.0283	33.840	2200	0.008853	16.645
400	-0.00422	33.098	2300	0.01071	16.079
500	+0.00648	32.257	2400	0.01262	15.422
600	0.01321	31.363	2500	0.01447	14.789
700	0.01483	30.314	2600	0.01675	14.232
800	0.01451	29.305	2700	0.01904	13.650
900	0.01318	28.489	2800	0.02152	13.076
1000	0.00965	27.524	2900	0.02391	12.528
1100	0.00475	26.468	3000	0.02640	12.093
1200	0.00190	25.286	3100	0.02909	11.670
1300	0.001375	24.205	3200	0.03202	11.177
1400	0.000573	23.332	3300	0.03553	10.778
1500	0.000687	22.393	3400	0.03881	10.403
1600	0.001269	21.410	3500	0.04192	10.021
1700	0.002206	20.510	3600	0.04580	9.688
1800	0.003448	19.658	3700	0.04961	9.345
	,				

W2 $77{ }^{\circ} \mathrm{K}$			W2 $77{ }^{\circ} \mathrm{K}$		
$\left\lvert\, \begin{gathered} \text { B } \\ \text { gauss } \end{gathered}\right.$	$\begin{gathered} -\mathrm{R} \\ \mathrm{H} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	B gauss	$\begin{gathered} -\mathrm{R} \\ \mathrm{H} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\stackrel{\sigma}{(\Omega-\mathrm{cm})^{-1} \times 10^{-3}}$
3800	0.05322	9.036	14000	0.3264	1.139
3900	0.05615	8.723	14500	0.3362	1.074
4000	0.05940	8.444	15000	0.3449	1.009
4500	0.07780	-	15500	0.3545	0.9557
7000	0.1623	3.672	16000	0.3388	0.9032
7500	0.1788	3.258	16500	0.3736	0.8647
8000	0.1913	2.907	17000	0.3820	0.8118
8500	0.2052	2.642			
9000	0.2192	2.391			
9500	0.2301	2.184			
10000	0.2435	2.010			
10500	0.2538	1.853			
11000	0.2651	1.711			
11500	0.2783	1.578			
12000	0.2869	1.475			
12500	0.2941	1.391			
13000	0.3051	1.299			
13500	0.3147	1.220			

W2 $63{ }^{\circ} \mathrm{K}$			W2 $63{ }^{\circ} \mathrm{K}$		
$\left\lvert\, \begin{gathered} \text { B } \\ \text { gauss } \end{gathered}\right.$	$\begin{gathered} -\mathrm{R} \\ \mathrm{H} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{\sigma} \times 10^{-1}$	B gauss	$\begin{gathered} -\mathrm{R} \\ \mathrm{H} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\stackrel{\sigma}{(5-\mathrm{cm})^{-1} \times 10^{-3}}$
4000	0.0823	7.028	13500	0.3826	0.954
4500	0.1102	5.776	14000	0.3952	0.8982
5000	0.1255	4.931	14500	0.4076	0.8462
5500	0.1447	4.280	15000	0.4191	0.7987
6000	0.1673	3.698	15500	0.4321	0.7546
6500	0.1855	3.205	16000	0.4427	0.7150
7000	0.2029	2.8618	16500	0.4546	0.6793
7500	0.2191	2.551	0		37.348
8000	0.2339	2.293	100	0.01214	37.086
8500	0.2506	2.077	200	0.06274	36.657
9000	0.2658	1.891	300	0.07578	35.991
9500	0.2772	1.728	400	0.07943	34.692
10000	0.2931	1.587	500	0.07933	33.447
10500	0.3050	1.462	600	0.06802	32.224
11000	0.3174	1.349	700	0.0502	30.785
11500	0.3288	1.258	800	0.03685	29.441
12000	0.3450	1.164	900	0.02961	28.085
12500	0.3565	1.088	1000	0.02611	26.735
13000	0.3704	1.017	1100	0.02422	25.633

W2 $63{ }^{\circ} \mathrm{K}$			W2 $63^{\circ} \mathrm{K}$		
$\begin{aligned} & \text { B } \\ & \text { gauss } \end{aligned}$	$\begin{aligned} & -\mathrm{R} \\ & \mathrm{H} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$(5-\mathrm{cm})^{\sigma} \times 10^{-3}$	$\begin{aligned} & \text { B } \\ & \text { gauss } \end{aligned}$	$\begin{aligned} & -\mathrm{R} \\ & \mathrm{H} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\stackrel{\sigma}{(\Omega-\mathrm{cm})^{-1} \times 10^{-3}}$
1200	0.02412	24.113	3000	0.04567	10.182
1300	0.02486	22.944	3100	0.04968	9.744
1400	0.02510	21.959	3200	0.05256	9.342
1500	0.02532	20.833	3300	0.05438	8.980
1600	0.02551	19.695	3400	0.05978	8.633
1700	0.02567	18.762	3500	0.06405	8.272
1800	0.02519	17.814	3600	0.06793	7.971
1900	0.02507	16.974	3700	0.07222	7.672
2000	0.02607	16.169	$\underline{2800}$	0.07627	7.395
2100	0.02673	15.355	3900	0.08069	7.141
2200	0.02809	14.626	4000	0.08650	6.887
2300	0.02883	13.993	4500	0.1084	5.762
2400	0.03069	13.351			
2500	0.03241	12.729			
2600	0.03464	12.158			
2700	0.03650	11.619			
2800	0.03925	11.102			
2900	0.04238	10.623			

W2 $47.5{ }^{\circ} \mathrm{K}$			W2 $47.5^{\circ} \mathrm{K}$		
$\stackrel{\text { B }}{\text { gauss }}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm} \mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{om})^{-1} \times 10^{-3} \end{gathered}$
0	-	45.168	1900	0.09054	14.322
100	0.1727	43.856	2000	0.09613	13.499
200	0.05768	42.053	2100	0.1028	12.709
300	0.1172	40.341	2200	0.1095	12.006
400	0.1262	37.838	2300	0.1144	11.292
500	0.1198	35.631	2400	0.1209	10.734
600	0.1078	33.307	2500	0.1255	10.212
700	0.09733	31.55	2600	0.1279	9.617
800	0.09276	29.414	2700	0.1312	9.154
900	0.08920	27.81'+	2800	0.1344	8.659
1000	0.08567	25.695	2900	0.1400	8.281
1100	0.08218	24.26	3000	0.1466	7.884
1200	0.07870	22.633	3100	0.1530	7.514
1300	0.07524	21.069	3200	0.1612	7.169
1400	0.07228	19.707	3300	0.1674	6.816
1500	0.07286	18.510	3400	0.1736	6.523
1600	0.07505	17.299	3500	0.1736	6.2015
1700	0.08056	16.277	3600	0.1868	6.0019
1800	0.08507	15.259	3700	0.1914	5.7474

W2 $47.5^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
3800	0.1981	5.5366
3900	0.2058	5.2971
4000	0.2140	5.1011
4500	0.2414	4.2408
5000	0.2941	3.596
5500	0.3161	3.130
6000	0.3424	2.679
6500	0.3646	2.330
7000	0.6714	2.071
7500	0.4107	1.856
8000	0.4441	1.670
8500	0.4644	1.496
9000	0.4913	1.375
9500	0.5119	1.257
10000	0.5368	1.1497
10500	0.5623	1.0637

W2 $47.5^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
11000	0.5856	0.98534
11500	0.6095	0.91642
12000	0.6275	0.8563
12500	0.6492	0.8029
13000	0.6704	0.7535
13500	0.6936	0.7060
14000	0.7093	0.6689
14500	0.7295	0.6323
15000	0.7493	0.6008
15500	0.7721	0.5696
16000	0.7872	0.5449
16500	0.8034	0.5185
17000	0.8218	0.4942
17500	0.8342	

W2 $4.5{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
1500	0.9566	9.223
2000	0.9060	6.397
2500	1.0448	4.564
3000	1.1374	3.315
3500	1.2708	2.744
4000	1.3708	2.2536
4500	1.4696	1.8885
5000	1.5583	1.624 .4
5500	1.6387	1.4289
6000	1.7067	1.2755
6500	1.7706	1.159
7000	1.805	1.0427
7500	1.8700	0.9508
8000	1.8973	0.8689
8500	1.9301	0.8151
9000	1.9586	0.7580
9500	1.9840	0.7117
10000	2.0096	0.6706
10500	2.0354	0.6315

W2 $4.5{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
11000	2.0477	0.5978
11500	2.0707	0.5675
0	-	100.342
100	3.609	94.651
200	1.99	77.907
300	1.475	62.541
400	1.2278	49.236
500	1.0497	39.685
600	0.9737	33.272
700	0.8982	27.937
800	0.8517	23.592
900	0.8230	20.171
1000	0.7967	17.355
1100	0.7819	15.237
1200	0.7662	13.47
1300	0.7701	11.983
1400	0.7768	10.796
1500	0.7821	9.715
1600	0.7960	8.827

W2 $4.5^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{om})^{-1} \times 10^{-3}$
1700	0.8083	8.015
1800	0.8211	7.403
1900	0.8447	6.783
2000	0.8658	6.3051
2100	0.8921	5.899
2200	0.9156	5.473
2300	0.9406	5.104
2400	0.9728	4.8086
2500	0.9906	4.486
2600	1.0155	4.2148
2700	1.0441	3.9839
2800	1.0733	3.7766
2900	1.1005	3.5715
3000	1.1234	3.3876

	W2 $4.5^{\circ} \mathrm{K}$	
B gauss	$-\mathrm{R}_{\mathrm{H}}^{3}$ $\left(\mathrm{~cm}^{3} / \mathrm{C}\right)$	σ $(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
3100	1.152	3.2243
3200	1.1837	3.0875
3300	1.2088	2.9414
3400	1.2323	2.8085
3500	1.2609	2.6871
3600	1.2797	2.5758
3700	1.3036	2.4695
3800	1.3242	2.3787
3900	1.3475	2.2927
4000	1.3659	2.2020
4500	1.4691	1.8630

W2 $1^{\circ} \mathrm{K}$			W2 $\quad 1^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -R_{H} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\frac{0}{(\Omega-c m)^{-1} \times 10^{-3}}$
3500	1.2172	2.602	1200	0.8191	13.011
4000	1.3295	2.1688	1300	0.8132	11.752
4500	1.4489	1.8392	1400	0.8307	10.591
5000	1.554	1.5966	1500	0.8459	9.4398
5500	1.6485	1.4018	1600	0.8559	8.5930
6000	1.728	1.2314	1700	0.8833	7.9211
6500	1.780	1.1212	1800	0.9047	7.2575
0	-	113.469	1900	0.9238	6.6488
100	-	82.789	2000	0.9411	6.1966
200	1.845	67.464	2100	0.9746	5.783
300	1.266	52.015	2200	0.9999	5.398
400	1.056	44.409	2300	1.0254	5.0259
500	0.9714	37.164	2400	1.0532	4.6712
600	0.9860	30.875	2500	1.0831	4.4322
700	0.9502	26.579	2600	1.1107	4.1738
800	0.9242	22.205	2700	1.1206	3.9262
900	0.8920	19.276	2800	1.1447	3.7436
1000	0.8669	17.020	2900	1.1636	3.54444
1100	0.8261	14.572	3000	1.1848	3.3426

$W 2$${ }^{\circ} \mathrm{K}$		
B gauss	$-\mathrm{R}_{\mathrm{H}}$ $(\mathrm{cm} / \mathrm{B})$	σ $(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
3100	1.2149	3.1765
3200	1.2398	3.040
3300	1.2535	2.8957
3400	1.2788	2.7596
3500	1.3027	2.6490
3600	1.3254	2.5407
3700	1.3410	2.4391
3800	1.3655	2.3540
3900	1.3943	2.2714
4000	1.3966	2.1974
4500	1.4954	1.8586

W3 $293{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
200	0.0333	27.2668
300	0.0345	27.2223
400	0.0320	27.1780
500	0.0354	27.1338
600	0.0377	27.0897
700	0.0428	27.0897
800	0.0436	27.0020
900	0.0415	26.9149
1000	0.0423	26.8284
1200	0.0454	$26.656 y$
1500	0.0495	26.3205
2000	0.0506	25.6726
2500	0.0523	24.8320
3000	0.0534	24.0102
3500	0.0549	23.0484
4000	0.0554	22.1607
4500	0.0574	21.2302
5000	0.0590	20.2511
5500	0.0613	19.2911

W3 $293{ }^{\circ} \mathrm{K}$		
$\begin{gathered} B \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$
6000	0.0635	18.3775
6500	0.0662	17.4547
7000	0.0685	16.6867
7500	0.0705	15.8618
8000	0.0731	15.0601
8500	0.0763	14.3109
9000	0.0789	13.6105
9500	0.0810	12.9353
10000	0.0835	12.3056
10500	0.0863	11.6852
11000	0.0887	11.1540
11500	0.0916	10.6418
12000	0.0940	10.1870
12500	0.0963	9.6788
13000	0.0990	9.2291
13500	0.1015	8.7915
14000	0.1040	8.4189
14500	0.1062	8.0610
15000	0.1081	7.7323

W3 $293{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\left.{ }_{(\Omega-\infty)}^{\sigma}\right)^{-1} \times 10^{-3}$
15500	0.1114	7.3767
16000	0.1139	7.0525
16500	0.1160	6.7555
17000	0.1183	6.4775

W3 $77.5^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$
4500	0.2437	6.6547
5000	0.2953	5.6913
5500	0.3513	4.8812
6000	0.4000	4.2593
6500	0.4452	3.7048
7000	0.4929	3.2383
7500	0.5309	2.8886
8000	0.5879	2.6020
8500	0.6322	2.3422
9000	0.6786	2.1330
9500	0.7228	1.9299
10000	0.7702	1.7621
10500	0.8058	1.6172
11000	0.8566	1.4910
11500	0.8964	1.3802
12000	0.9350	1.2774
12500	0.9725	1.1930
13000	1.0168	1.1080
13500	1.0560	1.0343

W3 $77.5{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathbb{P}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega \mathrm{mm})^{-1} \times 10^{-3}$
14000	1.0979	0.9698
14500	1.1351	0.9116
15000	1.1731	0.8557
15500	1.2088	0.8071
16000	1.2453	0.7612
16500	1.2804	0.7202
17000	1.3135	0.6834
200	-0.0667	43.8892
300	-0.0355	42.8163
400	-0.0233	41.7945
500	-0.0267	40.3502
600	-0.0222	38.8941
700	-0.0210	37.3394
800	-0.0200	35.8124
900	-0.0148	34.2373
1000	-0.0066	32.4907
1100	-0.0060	30.9136
1200	-0.0078	29.6072
1300	-0.0051	28.0653

W3 $77.4{ }^{\text {U }} \mathrm{K}$			W3 $77.4{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	$\begin{gathered} \text { B } \\ \text { geuss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$
4500	0.2030	6.6521	14500	1.0022	0.9006
5000	0.2478	5.6993	15000	1.0332	0.8470
5500	0.2940	4.8634	15500	1.0676	0.8004
6000	0.3395	4.2114	16000	1.0940	0.7568
6500	0.3812	3.6792	16500	1.1276	0.7142
7000	0.4290	3.2487	17000	1.1599	0.6792
7500	0.4732	2.9013	200	-0.3171	44.0033
8000	0.5198	2.5869	300	-0.1989	42.6506
8500	0.5608	2.3340	400	-0.1515	41.7179
9000	0.5973	2.1111	500	-0.1240	40.3929
9500	0.6322	1.9086	600	-0.1073	38.7519
10000	0.6783	1.7569	700	-0.0940	37.0581
10500	0.7120	1.6100	800	-0.0852	35.4238
11000	0.7512	1.4766	900	-0.0809	34.0791
11500	0.7907	1.3667	1000	-0.0747	32.4143
12000	0.8242	1.2580	1100	-0.0769	31.2848
12500	0.8618	1.1756	1200	-0.0728	29.5866
13000	0.8981	1.1018	1300	-0.0676	28.1668
13500	0.9333	1.0278	1400	-0.0621	26.8299
14000	0.9690	0.9600	1500	-0.0564	25.3587

W3 $77.4^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	0 $(\Omega-\mathrm{m})^{-1} \times 10^{-3}$
1600	-0.0496	24.1547
1700	-0.0423	22.9212
1800	-0.0365	21.7455
1900	-0.0302	20.5730
2000	-0.0235	19.7222
2100	-0.0159	18.6611
2200	-0.0085	17.7910
2300	-0.0008	16.9230
2400	0.0065	16.2042
2500	0.0145	15.4184
2600	0.0228	14.6489
2700	0.0293	14.0037
2800	0.0368	13.4129
2900	0.0451	12.8052
3000	0.0538	12.2403
3100	0.0623	11.7593
32000	0.0695	11.2729
3300	0.0775	10.7641
3400	0.0875	10.3692
3500	0.0990	9.9241

W3 $63.2{ }^{\circ} \mathrm{K}$			W3 $63.2{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	$\stackrel{\text { B }}{\text { gau:ss }}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$
3500	0.2996	7.5794	13500	1.5838	0.7318
4000	0.3592	6.0285	14000	1.6381	0.6842
4500	0.4291	4.9803	14500	1.7009	0.6424
5000	0.5062	4.1739	15000	1.7501	0.6062
5500	0.5757	3.5429	15500	1.7962	0.5694
6000	0.6513	3.0413	16000	1.8525	0.5447
6500	0.7153	2.6641	16500	1.9055	0.5153
7000	0.7852	2.3274	200	-0.1162	48.4404
7500	0.8505	2.0745	300	0.0239	46.0864
8000	0.9165	1.8379	400	0.0433	44.1781
8500	0.9872	1.6657	500	0.0549	42.2118
9000	1.0461	1.5052	600	0.0345	39.8470
9500	1.1025	1.3657	700	0.0247	37.7332
10000	1.1744	1.2483	800	0.0216	35.5340
10500	1.2328	1.1393	900	0.0230	33.5770
11000	1.2955	1.0619	1000	0.0241	31.5887
11500	1.3589	0.9737	1100	0.0249	29.4117
12000	1.4214	0.9021	1200	0.0229	27.6940
12500	1.4761	0.8417	1300	0.0263	26.0064
13000	1.5279	0.7841	1400	0.0341	24.3727

W3 $63.2{ }^{\circ} \mathrm{K}$			W3 $63.2^{\circ} \mathrm{K}$		
$\begin{gathered} \mathrm{B} \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{B}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
1500	0.0386	22.8095	2900	0.1900	10.2073
1600	0.0488	21.3811	3000	0.2051	9.7192
1700	0.0559	19.9797	3100	0.2181	9.2354
1800	0.0659	18.9590	3200	0.2345	8.7976
1900	0.0767	17.774^{6}	3300	0.2489	8.4159
2000	0.0864	16.7294	3400	0.2645	8.0205
2100	0.0967	15.8591	3500	0.2752	7.6743
2200	0.1077	14.9691	3600	0.2892	7.3568
2300	0.1162	14.0801	3700	0.3033	7.0412
2400	0.1269	13.2908	3800	0.3184	6.7623
2500	0.1353	12.5483	3900	0.3336	6.4800
2500	0.1496	11.8514	4000	0.3473	6.2293
2700	0.1591	11.2574	4500	0.4190	5.1104
2800	0.1751	10.7471	5000	0.4988	4.2887

W3 $54{ }^{\circ} \mathrm{K}$		
$\begin{gathered} B \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cin})^{-1} \times 10^{-3} \end{gathered}$
3500	0.6920	5.4802
4000	0.8193	4.2490
4500	0.9514	3.4515
5000	1.0645	2.8558
5500	1.1942	2.4002
6000	1.3209	2.0571
6500	1.4195	1.7901
7000	1.5571	1.5620
7500	1.6764	1.3913
8000	1.7901	1.2448
8500	1.8948	1.1111
9000	1.9961	1.0063
9500	2.1181	0.9222
10000	2.2055	0.8489
10500	2.3130	0.7699
11000	2.4107	0.7142
11500	2.5225	0.6581
12000	2.5971	0.6119
12500	2.6866	0.5747

W3 $54{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \mathrm{B} \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	σ $(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$
13000	2.7663	0.5374
200	0.0827	55.1862
300	0.1379	52.4828
400	0.1656	49.2650
500	0.1738	45.1158
600	0.1794	41.6112
700	0.2011	38.1535
800	0.1863	34.8444
900	0.1886	31.4363
1000	0.1904	28.8929
1100	0.1994	26.0796
1200	0.2001	23.9425
1300	0.2038	22.1292
1400	0.1981	20.3112
1500	0.2235	18.7146
1600	0.2303	17.1654
1700	0.2508	15.9316
1800	0.2668	14.8290
1900	0.2920	13.7212

W3 $54{ }^{\circ} \mathrm{K}$		
$\stackrel{\text { B }}{\text { gauss }}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$\begin{gathered} \sigma \\ (\Omega-\mathrm{cm})^{-1} \times 10^{-3} \end{gathered}$
2000	0.3125	12.7927
2100	0.3391	11.8933
2200	0.3594	11.0738
2300	0.3762	10.3934
2400	0.3933	9.7325
2500	0.4189	9.0988
2600	0.4331	8.6228
2700	0.4600	8.1319
2800	0.4849	7.6487
2900	0.5125	7.2349
3000	0.5382	6.8204
3100	0.5609	6.4508
3200	0.5873	6.1899
3300	0.6072	5.8732
3400	0.6295	5.5776
3500	0.6588	5.3104
3600	0.6831	5.0756
3700	0.7093	4.8314
3800	0.7299	4.6363
3900	0.7515	4.4317
4000	0.7700	4.2670
4500	0.8822	3.4737

W3 $4.2^{\circ} \mathrm{K}$ Bauss		$-R_{H}$ $\left(\mathrm{~cm}^{3} / \mathrm{C}\right)$
3500	3.9411	1.7602
$(\Omega-\mathrm{cm})^{-1} \times 10^{-3}$		
4000	4.3071	1.4627
4500	4.5667	1.2271
5000	4.7407	1.0569
5500	4.9854	0.9471
6000	5.1142	0.8424
200	0.6590	126.8895
300	0.5364	78.8938
400	0.5478	52.0479
500	0.6129	39.5022
600	0.6684	28.2968
700	0.7081	22.4756
800	0.7833	18.3428
900	0.8418	15.2873
1000	0.9177	13.0300
1100	0.9798	11.0794
1200	1.0195	9.5965
1300	1.1314	8.4950
1400	1.2065	7.4959

W3 $4.2{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \mathrm{B} \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	$(5-\mathrm{cm})^{-1} \times 10^{-3}$
1500	1.2910	6.6680
1600	1.3741	6.0206
1700	1.4473	5.4358
1800	1.5044	4.9760
1900	1.5975	4.5515
2000	1.6632	4.1861
2100	1.7399	3.8948
2200	1.8196	3.6070
2300	1.8861	3.3441
2400	1.9469	3.1255
2500	2.0146	2.9262
2600	2.1107	2.7640
2700	2.1672	2.6011
2800	2.2406	2.4563
2900	2.3089	2.3315
3000	2.3823	2.2017
3100	2.4322	2.0971
3200	2.4926	2.0019
3300	2.5494	1.9055

W3 $4.2{ }^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} -\mathrm{R}_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{gathered}$	${ }_{(0-\mathrm{cm})^{-1} \times 10^{-3}}^{\sigma}$
3400	2.6028	1.8295
3500	2.6657	1.7540
3600	2.7170	1.6820
3700	2.7694	1.6134
3800	2.8191	1.5501
3900	2.8625	1.4956
4000	2.9146	1.4429

W3 $1.5^{\circ} \mathrm{K}$			W3 $1.5^{\circ} \mathrm{K}$		
$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{gathered} R_{\mathrm{H}} \\ \left(\mathrm{~cm}^{3} / \mathrm{C}\right) \end{gathered}$	0 $(\Omega-\mathrm{cm})^{-1} \times 10^{-3-3}$	$\begin{gathered} \text { B } \\ \text { gauss } \end{gathered}$	$\begin{aligned} & -R_{\mathrm{H}} \\ & \left(\mathrm{~cm}^{3} / \mathrm{c}\right) \end{aligned}$	$\left(\Omega_{\operatorname{mon}}\right)^{-1} \times 10^{-3}$
1500	$\cdot 1.9933$	6.3412	1300	1.0288	8.3338
2000	2.4426	3.9935	1400	1.1404	7.3097
2500	2.8754	2.8528	1500	1.2610	6.5817
3000	3.2987	2.1655	1600	1.3943	5.9408
3500	3.6207	1.7229	1700	1.5015	5.3891
4000	3.9132	1.4305	1800	1.6266	4.9007
4500	4.1066	1.2119	1900	1.7385	4.5277
200	-1.9790	101.2501	2000	1.8347	4.14 .87
300	-1.1109	67.0239	2100	1.9601	3.84 .07
400	-0.5875	47.1155	2200	2.0537	3.5752
500	-0.3270	33.2772	2300	2.1742	3.3069
600	-0.1236	26.5845	2400	2.2548	3.0920
700	0.1238	21.5322	2500	2.3433	2.9069
800	0.2870	17.5595	2600	2.4594	2.7301
900	0.4338	14.7326	2700	2.5635	2.5820
1000	0.6049	12.5557	2800	2.6347	2.4391
1100	0.7773	10.7418	2900	2.7164	2.3338
1200	0.8641	9.4982	3000	2.8284	2.1818

$\sigma_{X X}^{n}$	$\sigma^{+} \times$	Oxx	field	$\sigma_{x y}^{n}$	$\sigma_{x y}^{p}$	Gxy		field	$\sigma_{45 \times x}^{n}$	$\begin{array}{r} \sigma \times x \\ \sin , 25<1 \end{array}$	OXx 160．H641	field	$\theta^{n} x y$	$\sigma_{x y}^{P}$	－0．0y
149．4hth	134．11s4	2H\％．4i3n	n．	－0．	0.			100．0	190． 1052	105．1932	141．8カハリ4	100.3	－122．9160	12.4202	－5＜．445
	134．shat	24H．4617	100.0	－7．0519	6.8879	－0．7641		200.0	119．e八4	261.0184	， 44.504	200．	－181．1031	119．7669	－81．9992
144．4469	131．448n	247．94，	$3 \times n+n$	－16．9703	13.4447	－3．4756		30u． 0	236.4139	213．06b4	449.3314	306.3	－202．1061	142．340	－62．1143
141．44）	137．0541	244.404 M	300.0	－26．3336	20.55	－5．		400.0	111．0309	112．sb41	353．4150	439.0	$-145.35>0$	147．3641	－47．4903
147．8ros	14．4．450	271．3n¢	400.0	35.0633	15	－6．0tt4		Sco．j	144.3043	141．）	285．ncse	bec． 0	－181．3473	145．3）17	－11．8396
191．2140	131.1139	Cn4．4001	500.0	－42．c85s	45.1530			600．6	$11 \mathrm{H}, 8021$	114.1481	241．9530	600.0	－166．9594	116.3649	－30．3904
－ 11.08 ¢	1／20．31）	247．1491	300.3	－47．064	43．145	－6．51RA		104．1，	10．1342	10．629	202．3st1	190．0	-153.4310	124．9031	－23．025
1 $\langle 5.73 \mathrm{c}\|$	121．4164	74n．6474	700.0	－52．0147	45．9747	－6． CH 4 C ，		Bu0．0	H1．420）	4 ta ． 400 f	176．3213	800.0	－142．6423	121．3514	－21．110？
110．4644	11．0？sh，	239．1105	H0C．${ }^{\text {a }}$	－53．3439	40.7814	－5， 6965		－${ }^{\text {cos．}}$	19．20．65	fe．yoj	158．0234	Ca	－133．1211	114．4249	－14．1842
119．96こら	111．2611	263．7254	907.0	－57．4940	52.7415	－5．206n	Hercer	100600	（1）．1484	rent＜1	139.8110	1050．0		108． 1841 $^{\text {c }}$	－15－9391
＇＇16．414＂	168．4974	2：4．417	10nc．1）	－60．6307	59.1736 57.0799	－4．8nt		109．n	crescys	65．this	1P10．4＇4，	1103.0	－111．8101	103．1634	－14．113
144．1033	901.4184	293．4AO4	1100.0	-51.6444	57.0799	-4.5665 -4.300		1200.0	Sin．90／	5－3035	11.2417	1233.0	－111．1503	44．94．33	－12．1312
49.4004	47.7048	147．144\％	1700.7	－62．4170	b8． 2160	－4．300		130100	21.0454	＝1．4．4＋28	lusponse	1500.3	－100．5098	94．7016	－11．3962
＂3． 2449	＂9， 5 n43	1HR．4144	1300.0	－63．0208	59.8599	－4．01809		1400.0	4 A －1106	44.2014	4 $1.11 / 2$	1403.0	－101．5766	90.9462	－10．0309
4.1401	AO．AT14	141．07An	1400.0	－54．1074	M． H （2？${ }^{\text {a }}$	－7．0457		1500． 6	4 4，0．063	43.45045	リツ．Y ¢ ¢	15.06 .0	－4f．1114	81.4631	－9．0141
47.6495 47.4	80． 1942	183．5411	$\begin{aligned} & 1 \operatorname{sno} .0 \\ & 1 \text { ann.0 } \end{aligned}$	-53.3120 -65.7598		－7．0488	B⿴囗 0 ¢18	t ouv．9	41.2721	$42.12<0$	85．3441	1600.0	－43．9812	84.2646	-4.1160 -0.5120
H0．4＞P		150．435	－ 700.0	－66．017c	67.765^{3}	－3．10R 7		1 Poter 0	34．308u	19． 1201	11.4541	1100.6	－山9．act	81．Jcit	－8．5120
17．1ヶら7	16.2974	139．4n44	17 nc .0	－60．2594	63.100 A	－3．1545	0^{-14}	2800．	32． 31716	96．4141	10．0451	180 cos	－ 80.3454	78．5375	-7.4839 -7.321%
14．＂n？ 1	15．200．	147．28）n	1400.0	－66．3195	$6^{7} .3185$	－2．020n		2000.9	15．1614	31．1213		200．0．	－athetas	73．3143	－7．1096
＂．nlor	70．109）	141．4007	＞non． 0	－6t．3211	23．4274	－2．8937		210．．9	（4）．1941	24．n3sd	ग\％．19（）	2140．0	－14．045	11．3020	－6．1993
9，4．14：1	＋7．434	134．714n	2ro．n	56．2149		－2．71a		＜＜ue．0	［7． 6424	く1．力1く2	35.0962	2200.9	－15．3622	64．15\％1	－6．404：
Ab， 4841	36.474%	110.4079	3700.0	btion2P\％	67．36i4	－ 2.8671		2301．0	25.2041	40． $31 \% 4$	21.04032	24．0．	－ 11.1020	－1．120］	－6．1ご4
＋1．1474	$3 \mathrm{SO}+18 \mathrm{n}$	135.2790	3807.0	－ 54.7111		－7．31， 50		a4010，	34，whey	14．3148	$4 \mathrm{4}, 3 \mathrm{Bl}$	zate．n	－11．02ds	69.1898	－ $3.435 \times$
क0，4al：	30.701	－ $20 . \operatorname{son} 2$	$3420 . n$	－65．4509	62.6494	－2．473		2blu．n	26．0．114	14.3600	＋5．6．447	2505.6	－uv．44\％	03.1241	－3．5312
H．014 54	$3 \mathrm{~F}, 3148$	1	27	－05．0720	62．6194	－2．3836		20014．0	11．3204	21．1140	43.0454	2600．0	－6t． 900 H	61.0611	－5．1341
Hzac	のn．3．3nt	1110104t	Pron．0	－64．6431	61，Wh7t			20130．0	110．1134	20．4約	4，bysy	2rabo	－6， 0 4 4	31．9426	－3．141\％
		116.0121 in2．ayt，	2700.0	－64．1115	A）． 5044	－2．0242		2sur）．	16.4921	14． 3944	34．3264	2400．n	－0．5．10\％	20.1341	－4．4559
4 4，大ッら，	44.3634	$4 \square .4194$	z ¢ ¢	－6E．1160	69．0319	－7．084）		2900．1）	11.459		36． 2 ets 4	240．r	－61．0112	3 Co .0361	93
4 P .1101	41.41210	प\％．14\％？	$3 \mathrm{mon.0}$	－62．543n	60.5230	－2．n？r1		1100．9	16.045	10.3182	42．4134	310c． 3	－54．4344	53．4447	4．4341
4．9．700n	43.8444	$91.684{ }^{2}$	31000	－61．9459	30．09t0	－1．4599		3200.0	13.2034	15．3505	30． 14.4	3270.0	－30．9018	32.6724	－4．3044
44.3404	4．7．3580	H4．：347	$3 \times \mathrm{con}$	－61．32P4	59.4754	-1.00070		3500.3	14．44t5	14.1420	24．23144	3¢儿， 0	－53．3144	31.415	－9．1139
43．からA！	41.34 AL	H4．ग74	3100.010	－64．6942	5N．4451	-1.9481		3409.0	13．7101	14．sult	2ticir	3470.0	－34．2241	b0．1824	－4．5461
41.0409	410.4044	R1．4070	3400.0	－60．044R	49， 74 Cb	－1．7413	I	1509.0	13．：4\％	13．3294	16．4124	153）．．		44.1441	－ 3.9267
14.8141	10．941\％	Pa．Yath	3900.0	－59．3847	37.65 PR	-1.7499		360% \％	12.4111	12．6\％4n	23．1563	36－0．7	－31．1074	47.8435	－3．8138
44．ctis	17．0612	19．1634	$7 \mathrm{nOn.0}$	－58．7249	57.0198	-1.104		18010	11． NHGT	12 －00nd	19.4141	1190．0	－5．2250	46.1174	－3．1010
＊＊＊ヶ）＂	36.51445	11．4ヶ4n	1700.0	5 CHO	56.3911	－1．0605		3 scu．	11.538%	11．930！	22，86日		－4y， 9411	45.1841	－3．6010
4h．nsisk	17．3242	门．вчон	n	－57．3770	55.7579	-1.6109		340．）	12．4くら1	11.80 .914	21．6330	y t0\％	－45．333	44.1404	－9．51＜0
44． 4 4， H	14.1018	49．4425	2950.0	－50．1004	53.1213	－1．5706	1	4 noug．	1．． 16.41	10．b1H3	20．862，	4etro．0	－41．chbl	49.8363	－3．4219
14．134m	17．246）	Cb， 1040	4000.0	－56．024	54.4829	－1． 5478	\％	souce	4．3435	8.488	16．315	4 ras －	－42．0640	94．3111	－1．6311
94．1739	2t．4n？	¢hathath	4500.0	－52．0423	51.3169	－1． 2773		suou．0	6．8544	6．9615	19．82es	3000．0	－ 38.1400	36.0159	－2．7241
pa．0xpt	24．7041	47.7819	5000.0	-49.4113	48.2713	－1．2439	\cdots	3 3uber	5．1262	S．H1 5n	11．3341）	3 bue．j	－15．4000	33．r．120	－1．4127
ro．n－91	20．3144	$41.144 n$	5500.0	40.5575	43．4137	-1.1339		69000	4.4434	4.9228	サ．	6909．1）	－32．721）	3＇1．4574	－2．2641
17．941m	17．44as	th． 1474	6．jor．0	－43．18314	47.7900	－1．04，		\％ 000.0	4.1494	4.2168	H． 3006	－¢ ¢－	－32．9416	20．2631	－2．2880
13，135	19．tsha	11．tint	5500.0	－41．3364	40.7738	－0．0529	$6{ }^{\circ}$	peeu．0	3． 5921	3，6508	P． 345	10¢0．0	－28．2136	2b．3342	－1．9374
13.010	14.4364	21．1440	70rc．n	－39．0602	34． 1850	－0．0955			3．1348	$3.1+1{ }^{2}$	6.3501	15co． 0	－26．4ue	44.6598	－1．8014
12．079	12．3111	14.5414	750 Co	－36．944	38.1483	－0．9364		－ 000.0	C．Ptob	2．H112	3.618	s033．8	－ $24 .+113$	23.1719	－1．6434
11.9471	11．0375	》．＇こо4	9nno．n	－35，01915	74． 3048	－0．7749		asuls．0	2．453）	2．9453	4.4504	8505.0	－23．4331	＜1． 8 occ	－1．う）${ }^{\text {a }}$
9．0．158	4.4509	19．4484	H5n0．${ }^{4}$	－33．3623	32.6732	－0．7391		4000.0	2.1440	2.1248	4.4234	900\％．0	－21．1869	20.6426	－1．3042
0．1071	4.02011	－H．OHz	400	－31．7850	31.0816	－0．7984		y 5 ¢0．0．	1．4／19	2.1090	5．4（b）	yocas	－21．1417	19．6．235	－1．4240
4.5 ¢74	K． 214 ¢	16．476，	45 nn .0	－30．329）	29.6670	－0．6620		twoue．	l． 8 is	1．HiUs	3．5414	10300．0	－K．0．lyd	18．6658	－1．3530
7.35419	1．524010	＇b．ruzt	100no．n	－28．9054	24.96 .63	－0．292		10500	1．01t	1.6 .36	S． 2011	lubuc．e	－19．0441	11.1804	－1．2883
A．unnt	h．＇S14t	－9．Ho44	10500.0	－27．7669	27.1675	－0．9994		12000.0	1．4 ¢1	1.44 \％	1．4t9	11350.0	－18．2324	17.0034	－1．2293
6．41t？	6．4974		！ $110 n \pi$	－26．6324	20.0500	－0．5723		11500.0	1．35י3	1.3126	2．1221	11530．0	－17．4234	16．2774	－1．1154
2．3454	3.9194	$11.4+53$	11500.0	－2．9822？	25.0146	－0．5476		12300．0	1.2411	1． 2010	2． 50×1	12900.0	－16．1312	15.6104	－1．1268
$4+4204$	S．3042	11.0147	12000.0	－24．604n	24．047！	－0．5249		12300．L	1.1444	1.1621	2.3011	12\％02．c	－10．0110	14.1454	－1．culo
3.1597	3.1368		12500．0	－25．7022	23．1981	－0．5041		19000.0	1．0ヶ\％	1．0）3s	2，1941	19000.0	－15．4060	14.4267	－Licius
4.4240	$4 . \mathrm{AOPH}$	4.6766	13000.0	－22．15542	22． 9734	－0．4847		13500.0	0.488	1．4411	1.9191	13502．9	－14．9006	11.8944	－1．2013
4.3127	4.3 ！24	7.0431	13500． 3	－ 22.0701	21.0032	－0．4669		14000．0	C．419 4	C．4241	1． 8415	14006.0	－14．3143	13.4040	－ 0.9654
4.26 ¢	4.7415	R．3＇31	14300．0	－ 21.3229	20．4826	－0．45n3		$143 n 0.6$	（1．8518	C． 4 ¢54	1．14＂	14500.0	－13．6838	12.4317	－C．9320
4.0104 H	4.00 H ）	H．CiJn	14500.0	－20．4419	20．3071	－0．4344		15000.9	C． 1941	0.4084	1.8031	12000.0	－13．4254	12．b243	－0．9009
3.4 ¢\％ 7	4．F411	1．n478	15 ¢ 15000	-19.9971 -10.3829	$19.57 ? 7$	－ 0.4 .204		15310.15	0．143	c．ibib	1－3） 16	13300．9	－12．916	12.1244	－2．8118．
A．anys	3.5960	1.2070	bscuen	－ 10.38829	18.9760	－0．4069		16uuv．0	0.1001	4．1115	1.4114	15000.0	－12．3935	11.7490	－0．8445
	3.4144	$6 . \mathrm{R43}$	1858000	－19．8079 -14.2654	114．4127	－0．3942		10500.0	0.0 .5844	J．nce	1.1214	163020	－12．1148	11．3ザ方	－0．8183
3.1483 9.1123	3，7 304	b， 1131	，7000．0	-18.2654 -17.7527	$17.883)$		－	11000.0	0.6204	0.6903	1.2381	11000.0	－12．0582	11.0634	7467

field	$\sigma_{x x}^{n}$	$\sigma_{x x}^{P}$	$\sigma \times x$	field	$0^{n} x y$	$\sigma \stackrel{p}{x y}$	Oxy		field	$\sigma_{x x}^{n}$	$\dot{\sigma}_{x x}^{p}$	σx	field	$\sigma^{n} x y$	$\rho_{x y}$	Oxy
0.	110.3850	103．24．4	315.8310	0.	-0.	0.	0.			69175．9н7\％	559．1704	9！6，7177	0.	－0．	0.	
100．0	170.0320	164．1044	314．1658	103.0	－10．83 8 右	10.6810	－0．1578		inn．r	44．P074	35．9774	7AX，43RA	$: 00.0$	－220．5401	－37．8538	－260．3969
200.0	101．806	161．blbs	124．1220	202.0	－21．8104	20.3528	－1．4576		，nu．0	341．4843	244．1051	640.5451	300．0	－233．5767	57.2421	－194．3148
sod．］	109．1215	154．0651	121．1425	100.0	－32．0062	29.2211	－2．7851		406．0	345．0047	203．nat	5！8．6963	30 n .0	－253．2508	100.1206	－144．1304
400	154．1156	133．8304	312．2Cb0	400.0	－40．9103	37.3685	－3．5419		401.0	10f．inus	222.1213	420．011）	400.0	－237．1281	133．3930	－101．7332
500.6	152．j041	148．903C	161．2C11	500.0	－48．4363	44.7160	－3．720		4nig．＂	14．00464	i 4 h．3nas	344，4 4 79	500.0	－219．0235	745.9998	－73．023 ${ }^{\text {a }}$
600.0	143.408 tc	143.4676	284.3564	800.0	－54．6919	51.1400	－3．5012		nosio 0	124．00s	！90．月179	246，5R43	600.0	－202．2504	149.1112	－ 54.1331
N0．0	194.4416	111．6361	211．6863	700.0	－34．dil1	56.7703	－3．C810		明い。＂	－14．4か？	！$\times 1.7045$		700.0	－187．3245	$145 \cdot 8405$	－4， 4847
600．0	115.0601	121．64ht	［E4．1817	80う．0	－64．0904	61.4816	－2．6008		4no．i	－ 20.0 OH	113．0234	203．95？	9CO． 0	－174．7026	141．3611	－32．7415
＋0c．0	126.0424	125．6C／t	2 22.4303	$4 \mathrm{CJ.0}$	－67．5793	65.3850	－2．174		O）n．a	¢ 4	09．7914	，17．3005	900.0	－162．3494	$133.455{ }^{\circ}$	－20．4925
1000.0	120.8163	114．6346	240.4484	1000.0	－70．3745	64.5586	－1．8199		\％nuc．or	ax．3刀：9	95．774M	194．2701	1000.0	－151．8562	129.9713	－21．9849
1100.0	113.0082	119．1418	228．8C54	1103.0	－12．6418	71.0869	－1．5549	1		49．0ヶ 17	Th，＞¢ ${ }^{\text {a }}$	149.2244	1100.0	－142．4528	124．0597	－18．3940
1200.0	104.4245	108．1541	411.5836	1203.0	－14．4243	73.0524	－1．3719		－ 50.0	91．9．45	Ah．ashit	119.4044	1200.0	－133．4393	118.3117	－15．6876
1500.0	104.0864	102．1371	－C0． $\mathrm{H24C}$	1300.0	$\rightarrow 75.7801$	74.5316	－1．2565		， 4 coin	$47.043 ?$		178．38＊＊	－ 100.0	－125．3775	112.8310	－13．5464
1400.0	48.9841	91.3557	196.5400	1433.0	－76．7861	75.5916	－1．1925		－4019．n	$42.1 /{ }^{\text {a }}$	¢9．1921	95， 7124	1400.0	－119．4469	107.5629	－11．8230
1500.0	44.1211	42.6451	140．119	1203.0	－17．4648	76.2996	－1．1653		－anton	45.0504	41.0944	49，947n	1500.9	－113．2405	． 02.8224	－10．4189
1500.0	dy． 3034	41.4413	117．454，	1003．0	－77．8657	76.7028	－1．1636		（ Artos n	$14.40 \mathrm{HOM}_{1}$	47.9354	17，4435	1500.0	－107．5631	9H． 3068	－9．2563
1700.0	$45.1<18$	81．3日15	104．1C47	1100.0	－18．6263	76.8449	－1．1164	－17	－mo．n	4， 1 ance	a0． 10% \％	PI，nama	1700.0	－102．3889	94．103：	－9．2459
1800.0 1400.0	84．9158	19.4336	160.4074	1835.0	－77．9861	76.7813	－1．1987	unimutiviy	－$\mu \mathrm{n}$－ 0	$\ddot{z 4} .140 \mathrm{~N}$	24．3715	$\text { Sa, } 11 R^{2}$	1800.0	－97．6606	90.1938	－7．4668 $-t .759 R$
1400.0 2000.0	11．0592	13.3146	154．5124	14 cos 0	－17．7572	76.5319	－1．2253	$\times 10^{-14}$	－प1019\％	N．4．as	－ 1.4×10	34.0430	1700.0	－73．3284	95． 55 R H3． 1768	$\begin{aligned} & -1.759 R \\ & -6.1720 \end{aligned}$
$\begin{aligned} & \angle 000.0 \\ & \angle 100.0 \end{aligned}$	15.9522 64.0021	11.8501 cu． d	143.1883 138.234	2000.0 2103.0	-77.9845 -76.8899	76.1318 75.6069	-1.2527 -1.2790		2000.0	\％ 4.4702	30.9472	55．4；24	2500.0 7100.0		33.1768 40 17897	$\begin{aligned} & -6.1720 \\ & -5.6555 \end{aligned}$
2200.0	66．3194	63．1154	131．6452	2200.0	－16．2822	74.9744	－1．3024		P1811．0	\％2．920	$24.70 n h$ $2 n .10 \rightarrow 2$	$41.47{ }^{4} 4$	$2 \times 0 \mathrm{O} .0$	－ $\mathrm{H2} 2.3004$	17．0935	－5．2063
2000.0	03.4161	62．0354	125．5314	2300.0	－15．5419	74.2685	－1．3233		\％¢00．0		74．0nt4	44.7174	？ 400.0	－79．7541	74.3551	－4．8149
－400．0	60.5601	59.1804	114．1403	2400.0	－14．8369	73．4905	－1．3404		？ 400	14．590，	8 Pa .100 O	41.94 n \％	$\rightarrow 500.0$	－76．2648	71．79x1	－1．4697
¢00．0	3．01bs	56.4101	114．2446	¢） 00.0	－74．0131	72.6592	－1．3535		Parin．${ }^{\text {a }}$	17．4n4．	70.0144	$30.475>$	1500．0	－73．9650	69.4014	－4．7536
\leq ¢00．0	53.2315	53.4986	109.1701	2603.0	－73．150	71.7406	－1．3034		simon	－大．ららヶ	10．7010	A1．7）3号	？hro．0	－71．0498	67．1514	－3．9924
，100．0	32.1491	51.5366	104．3691	2135.0	－72．2532	70.8820	－1．3701		3 Poran	－4．n＊in	－0．5bit	Ab．ioun	Proc．n	－49．7017	43.0515	－3．6964
： HOU O 0	5 Cb 5 scs	44.3045	Y4． $4!11$	2400.0	－71．1101	69.9547	－1．3744		\％Hoven	14．4．ana	10．b149	31．3634	2900.0	－66．5039	53.0723	－3．4736
	48.3610	47.14 CB	45.5418	2400.0	－16．3846	69.6132	－1．3755		，4nn．0	14．n090	－ 7 －5¢ちp	7．athas	panc．0	－54．4680	61.2095	－3．2365
1904．0	46.1118	45.2005	41.5183	1003.5	-09.4351	6H．Cb10	－1．3741		4noo．n	12.4731	18.5040	40．137）	30 nc .0	－62．blt	59.4537	－3．0024
9100.0	44.4004	41.1224	H1． 7203			67.1043	－1．3765		3100．n	17.4720	－9．oncn	29．7700	3100.0	－ 50.6994	\＄7．7966	－2．9028
\＄200．0	42.5426	4.5518	44.1508	3203.0	-67.5123	66.1472	－1．3651		secou．c	1）．2Ang	13．173s	21．4190	$3200+0$	－5H．9881	56.2304	－2．7577
31400.0	44.8458	14.0968	EC． 1160	3303.3	－6．6．313	65．1432	－1．3581		$1+\mathrm{rra}$	11.1	14．5134	2h．7n＞n	7200.0	－57．3730	54.7443	-2.4253
$\begin{aligned} & 1400.0 \\ & 1500.0 \end{aligned}$	94． 1714 31.1504	38.3161 $3 t .0<4 c$	71.5499 14.5154	3403.0	－65．59 50	64.2453	－1．3497		340000	11．2129	13.9841	P．1nth	3400.0 3500	-33.8481 -54.445	53.3439	－2．5042
1600．0	30.9040	35.4212	11． 7130	3353.0	－64．6454	63．3059	－1．34CC		4ヶ10．＂	17．4420	1．7045	＞4，${ }^{2} \times 64$	3500.7	－23．0357	52.7450	-2.3929 -2.2908
3 Pcu． 0	14．4465	14．041 ${ }^{\text {a }}$	69．c348	3700.0	－62．9718	62.45988	－1．3186		1 1\％\％	11．0．14，	\cdots	R，1914	3700.0	－51．7389	49.5474	－2．1964
9840.0	13.6539	12．8343	66.4691	38000	－61．8618	80.5560	－1．3058		t＋100．0	，	：1．ximo	Pent	390\％．0	－50．505\％	48.3946	－2．1092
3900.0	12．416x	11.0414	c4．0116	3903．0	－60．4545	99．6669	－1．2936		4anc．n	9.14211	$\because \because .747 \mathrm{~A}$	20．71ax	2900.0	－49．3324	47.3044	－7．0284
4090.0	11．2121	3 cosioy	61． 1826	4003.0	－60．0717	54．7919	－1．2799		40 He 0	0	10．97\％	20．0．99	4000.0	－4R．2167	46.2625	－1．9532
4500.0	26.284	23．6351	51.4448	4303.0	－55．8689	56.6588	－1．21cc	1	45190	7．14．9	0．phar	－1．0744	4 tancon	－43．3437	41.6073	－1．6464
$\bigcirc 000.0$	22.1428	21.6586	44.2519	5002.0	－52．0132	30.9341	－1．1351	．	－Mruen	0.1471	M．n110	14．14 14	5000.0	－34．4083	37.9863	－1．4220
2300.0	14.2403	14．0414	54．1582	5532．0	－48．6695	47.5986	－1．0709			9.9474	7.0 \％0：	12．9564	5500.0	－36．＇609	34.9097	－1．7515
1000．0	16.8000	16.4048	33.2698	6000.0	－45．6234	44.6161	－1．c073		3ann．0	3.40411	C．＜0＞2	$11.800{ }^{1}$	600n．0	－33．4522	32.3142	－1．1180
$\begin{aligned} & 2500.0 \\ & 1000.0 \end{aligned}$	14.1010 11.0155	14.4281 12.1144	24．1837	8506.0	－42．8955	41.8467	－0．5489	\bigcirc	Anom．0	4．1442	h．bsim	1．0．s04\％	5300.0	－31．1065	30.0039	－－0．010
\％ 500.0	11.0612	11.4680	23． 3 （441	7000．0	－40．4472	39.5518	－0．8934		moter ${ }^{\text {a }}$	4.7147	4.9 H112	9.0044	7 PrO 0	－27．3291		－0．022 ${ }^{-0.8489}$
， 000.0	10.4149	10．2419	2C．1408	7500.0	－30，2436	37.3968	－0．8467		1476．010	7．9761	$4.9 n \mathrm{nax}$	9.8974	40nt	－25．1842	24.4477	－0．8489
， 200.0	4.4610	4.2804	18.7214	－8000．0	－36．2534	35．4512	－0．8024		Mreorin	3	4.7993	7．5439	9500.0	－24．4044	？3．5715	－ 0.7329
revo．0	8.5944	8.4114	11.0118	9002.0	－32．0102	32.0852	－0．7250		Haty．	3，300n	9．1441	C．17174	9000.0	－24．1678	72．6418	－0．6863
－ 200.0	\％．847	7.68 C 2	15.3213	$4>39.0$	－31．3139	30.6227	－0．0912		ymmon	O．704n	1．4347	？．0．4nctin	9500.0	－27．0527	21.4072	－0．0．453
cuu． 0	7．1928	7.6414	14.2342	10900.0	－24．4442	29.2839	－0．6602		ogncto 0	\％）$\%$ Hen4	－91\％	？${ }^{\text {annss }}$	10000．n	－21．0413	20.4319	－0．6094
200．0	6.6142	0.4814	13.1601	10500.0	－24．680	28．054	－6．6317		－n4nn．n	，．4nct	¢1nu＊		10500．0	－20．1194	19．342？	－0．577）
1000.0	6.1116	5.5816	12.1012	11006.0	-27.3275	26.9221	－0．0055		$\cdots 000.0$	\％．9470		4.184	110000	－29．2753	18.7259	－0．3484
1300.0	3.6041	5.5441	11.215 C	11530.0	－20．4371	25．4759	－c． 5812		1．mnu．a	\％．（14）	\％，＋3＞7	4064	12500．0	-28.4903	17.9770	－0．5223
． 2000.6	5.2660	5.1545	10．4235	12305.0	－25，4655	24.9068	－0．5547		romoc	1.0448	3 31744	$4.1<0$	12000.0	－17．7834	17．2847	－0．4987
$\begin{aligned} & \text { soo. } \\ & \hline \text { snou.0 } \end{aligned}$	4.4085	4.4162	4.1181 4.0832	12503.0	－24．5446	24.0067	－0．5374		八ッツ．＂	－．4ens	POR84	4.7574	125000	－17．1207	16.6435	－0．477？
，hus．l	4.2912	4.2125	Hepcs 7	11500.0	－23．0472	43.1687	－0．6184		－40\％0．0	1.1070	1.9048	5．6）04	135 nc 100	-16.5034 -15.9375	16.0479	－0．4575，
－ 300.0	4.0144	1．435t	1.9500	13500．0	－22．0370	22.3867 21.653	－C．0．203		14ny．	$10 * n+7$	$\cdots 1945$	3.2404	14800.0	－ib．3970	14．0751	－0．4394
－300．5	3．143e	1．1くく	1．9175	14003.0 14500.0	－22．1387	21.6523	-0.4834 -0.4675		4019，	$1.54) 47$ 1.4014	！－nchn	3．1874	14500.0	－14．4976	14.6903	－0．4073
1．00：0	3．3111	1．5089	1．6866	145003.0	－26．1787	26.3260	－0．0．427		9050．0	$10.14!0$			3nnon．n	－14．4245	14．035	－0．3930
－ 304	9，110	9.919	0.0423	15500.0	－20．1590	19.1203	－0．4381		4amiol		？，4017	2，4799	：550n．0	－13．9478	13．ecral	－C．3798
400.0 500.0	3.1436	3．13bc	6． 3906	16000.0	-19.3130	19.1494	－0．4253		－bucoeo	－．2004	T．130	2，43）	16000．0	－17．572\％	13.2058	－0．3672
500.0	9.4215	2.4104	5， 6914	10503．0	－14．0 236	10.6105	－0．4131		－ armog	$\because .1974$	－Prap	2．707a	15500.0	－13．1917	12.8932	－0．7536
000．0	2．4724	＜．818t	b．6910	17003.0	－18．5023	18.1009	－0．4014		－plope．n	1．0゙us	＇．193n	2.7744	17000.0	－12．8122	1．4．4676	－0．3446

ficid	$\sigma_{x x}^{n}$	$\sigma \stackrel{P}{x}$	$\sigma \times x$	field	$\sigma_{x y}^{n}$	$\sigma x y$	$\sigma x y$		field	$\sigma^{n} \times$	$\sigma_{x x}^{P}$	Jxx	field	Oxy	$\sigma_{x y}^{P}$	$\sigma x y$
	113．NAPA	111．1342	$245 . n 02 n$	0.	－6．	0.										
1n1．＂	187．4くy	111．8！	$744.9+64$	100.0	－1，5998	$1,3392$	－0．2443		，0．0		213.0226	402．9340	100.0	$\begin{aligned} & -0 . \\ & -7.4!92 \end{aligned}$	$\begin{gathered} 0 . \\ 18.5205 \end{gathered}$	10.9013
2urs，	！19．144！	1190011		700.0	－3．1445	2.8950	－0．4527		100.0 200.0	:97.0687 $103.47 n 4$	Pn7.ASh4	400.1754 394.4028	$\begin{aligned} & 100.0 \\ & 200.0 \end{aligned}$	-7.4192 -19.7312	18.5205 30.7460	$\begin{aligned} & 1: 9013 \\ & 11.0148 \end{aligned}$
	14．01107	1110.9844	744．6784	300.0	－4．7102	4.037 P	－ C .4574		200.0 $\times 0 \% \% 0$	$\begin{aligned} & 193.42 \mathrm{nc} \\ & 10 n \mathrm{anc} \end{aligned}$ $10 n .30 \times 1$	$\begin{aligned} & 201+0484 \\ & 104.984 ; \end{aligned}$	394.4028 $4 \mathrm{MS.174}$	30n．0	－-31.3959	41.3075	9.9116
40	$185 . A 147$ 108.440	11notore	144．4114	40 O .0	－B． 2888	5．JRAl	－0．900b		$10 \% .0$ 400.0	18ち．4RRS		313．7903	400.0	－41．9356	50.7774	9.2414
virc．n		$\cdots{ }^{1}$	＇ta4．nami	509.0 800.0		A．brab $i .9818$	－1．1825		4 mos 0	${ }_{7} 70.10164$	181．3719	3 31.1427	509.0	－50．7344	99．1326	8.8582
PיM，${ }^{\text {and }}$	1 th． 1.4 ？ 4	－ 0 －	244．＇のx	30．0	－11．1085	P．9A53	－－htor		900.0	［13．大40）	14．017s	347．7615	400.0	－57．7817	66.4040	$8+6203$
4410.7	192．1足	104．41\％	4．9．3нан	$9 \mathrm{no.0}$	－17．7041	10．519	－2．2425		mo．n	－¢\％．474	－ha．tantin	373．904n	700．n	－54．？810	77.5758	9.3448
unic．n	－9，purn	－no． 3 Crip	741．04／4	umn．0	－14．243	11.7970	－？， 534		भto． 0	： $40.84 ? 2$	159．：904	370.0 .424	900.0	－69＊＊77．	78． 7135	9．3361
beren	6194．＇	rne．isin	（4，Pun）	－nen．0	－19．4655	12.4894	－7．47ヶ1	arimet	4no．n	： 44.3730	14．1．1414	304.0739 $24 \%-7404$	1000.0	－74．7507	86.1897	7．433n
Thyar		104.1944	？ 4 ¢ 041144	1imen	－17．4142	14.20 .74	－3．7109			167＊＊344	144.4024 171.2109		1100.0	－82．1859	69．！697	\％．992A
201000	\cdots	$1{ }^{19} \cdot 4000$	＜ta．n74	1ene．n	－18．4445	15．409？	－3．5345		$1 / 0 \mathrm{OHO}$	194．14／9	191．7150	285．1932	1200．0	－83．0230	91.5008	A． 4759
An9．01		－ntentich	？ 14.5478 $11 / .51 / 1$	$12 n 0 . n$ 1400.7	-20.4547 -11.4347	$15.5 n 20$ 17.1575	－2．AAM ${ }^{-4.1772}$		－900．${ }^{\text {a }}$	120.0736	174．5042	242．9270	1300.0	－47．3311	02.2549	5.9238
$9 n \mathrm{n} .0$		－nt．juma	\％ 6 ¢， 4009	－ano．n	－24．341？	19．7n13	－4．4947		－401．	124.0474	119.1504	240．134n	？ 1900.0	－49．1300	94．49R0	3.3390
Msnor	184．4411	1nt．734？	235.3040	14cr．0	－74．H14	20.0244	－4．79P0	Hitcham	nu0．0	11.0858	IOn．4941	22H07349	1 400.0	－41．5847	95．7036	4．1193
irman	174．1／44	10t．niob	？44．104．	－Tan．n	－70．8903	7．1嵒	．09		7no．	1）f．40nt	O0．0his	2nhelny	1100.0	－02．2758	95．7897	3．505 A
，9nn．＂．		109.4685	272．4571	1407.0	－27．5714	22.1948	－5．9118	0^{-14}	；BCu	1ヵ1．ちn	44.2419	142.8505	1800.0	－92．6771	95．5788	2.9018
\％00．0	17K．077	174．910		2non．0	-7 A -30.2109	22．2532 74.2421	-5.4571 -5.9776		10017	75．7303	00.1750	196．1422	1000．0	－92．r2to	95．：401	2.3141
sorin	Pr．ester	103．70n	274．0473	$\rightarrow 1$ no．n	－31．4424	25.2894	－6．19s？		2000.0	प2．01s4	44．1531	175.7691	2000.0	-92.7570 -92.5007	94.5053 09.7095	1.7484 1.2048
2906．0	124．404 ${ }^{1}$	101．0431	221．）明	3 P0ו．0	－32．72P4	76.2726	－6．455A		C＇790n	9月．5409	9n．42＇7	189．3711	$2>n 0.0$ $2 \geq 00.0$	－92．5007	97.7830	0.0985
¢ 90.	1＞3．a0？	1n3．4bIA	226．1947	$23 n \mathrm{cos}$	－33．4416	27．2323	－6． 1093		2200．0	то．ппн	$\begin{aligned} & \text { Phosh94 } \\ & 7 P .45>4 \end{aligned}$	192．04A］	2100.0	－ $0: 09325$	91.7510	0.2904
Panu．n		In＇．4ic？	224＊6001	2400.0	－35．1246	2R．1648	－6．9558		2400.0		94．9月44	143．2234	7400.0	－90．10000	90.6398	－0．2272
¢ 5 ¢09．	－\％－¢\％	－ 11.1804	275．1064	7500.0	－3b．2775	29.0825	－7．1951		4400．0	17.1500	59.0575	198.4114	350．0	－40．1035	99.4675	－0．1404
mann．0	1＂191921	100.4026	PP1．大781	2500.0	－37．4007	79．9735	－7．4273		260n．0．0	50．412	S\％．30	137.0010	2500.0	－84． 7617	HH． 2395	－1．0217
7100.0	＇m．71m	49．4！41	270．1711	2700.0	－39．4944	？ 0 84？${ }^{\text {a }}$	－7． 8523		3×00.11	AR．stas	Su．hnso	12h，गARK	2700.0	－88，3537	AR．9430	－1．3709
SMeO．	19．4470	49.1704 04.6748	218．5．5043	2400.0	－39．5399	31.6885	－7．4703		2400.0	n3．4tal	btaphst	120．？905	7800．0	－87．3921	85． 1047	－ 0.6874
$9 \mathrm{nou.0}$	1， 10.541	97．725d	215.3059	3000.0	－41．5010	93．3162	－ A －2848	1 －	\％ 010.7	anotaga	54.2 San	114.0451 144.710	$90 r n .0$ 3900.0	$\begin{aligned} & -86.3893 \\ & -85.3210 \end{aligned}$	$\begin{aligned} & 84,4134 \\ & 43.1184 \end{aligned}$	$\begin{aligned} & -1.0744 \\ & -2.2375 \end{aligned}$
410 m	19．7ア43	97．0144	214．7hin	3100.0	－42．5704	34.0980	－R．4814		anmo．	1）？	3）．9		3100.0			
37970	1＇90．HCb4	96， 2945	212.2 ח04	3700.0	－43．5297	34．9587	－8．6710		10n．0	4	40	．1AR1	3 ？nn．0	-84.2882 -83.2089	82.8269 R月． 5385	-7.4533 -7.80 H
44010	134．4744	95.480 H	$290.444!$	3300.0	－44．4522	35.5986	－9．8526		1200．0	3	47.3050 49.510	150.6474 85.447	3300.0	－42．1120	70.2635	－2．889\％
3400.0 $>\rightarrow n 0.0$	！13．03nh	44.4305	2014．714	3400.0	－45．1474	36． 1181	－9．0292		1400.7 3400.0		44.6363	47.5025	3400.7	－ 11.0113	74.0034	－3．0079
1890.0	112.0409	94．114 44.3	2010．045	3500.0	－46．7154	37.0498	－9．3602		3 achn	45.4751	4.4714	4S．74a7	33000.0		76． 1509	－3．1456
47 TO	19．014 ${ }^{19}$	97.4208	203．7055	1700.0	－47．6714	74．3550	－9．3155		stu0．0	44.0405	4 n .1019	45.1014	3n00．n	－75．80＜2	75．5383	－3．7640
3 mDTo	115．1248	91．8193	23t．9484	38 CD 0	－4A．ntioz	38．9859	－9．4843		1700.7	47．313n	$34.63 \% 7$	4 H .0427	3900.0	－70．7016	74.3388	－3．1644
44 กn． 0	1n4．ifno	91．1347	？ 7 C .8041	390n．0	－49．4232	34．0166	－9．80ts		9800.0	41.3045	19．1597	18.6594	1900.0	－75．521砣	73.15028	－2＊4493
400 n － 0	（0n．1）4？	91.1176	＇ЧH．5A4\％	4000.0	－50．1sen	40.2184	－9．9424		0	\＄4．0ก20	35．76＊＊	3.6857	4000.0	－14．44AB	70.0028	－3．514n
$45 n 0.0$	＇n7．4744	нR．th55	！ 49.0749	$45 n \mathrm{n} .0$	－53．4274	42，0535	－10．5299		4100	3H． 1808	34．44n2	12，8208	450 n .0	－09．2715		－7．6477
41509.9	$4 \mathrm{H.4444}$	R？．4005	141．3004	$9 \mathrm{non.0}$	－36．7296	45.2537	－10．9759		4 4nnon		28.46540 24.4090	\＄5．6404	5000.0	－84．3193	60．4491	－3．6282
4ann．0	4．1919	19.0546	172．7051	5500．n	－54．6534	47.1583	－11．？976		athern	Ch．tiche	34.60080	$43.7 \times 1 \mathrm{n}$	atne．0	－60．7014	＊6．13F5	－2．4630
\＄000．0	H4．Owl）	13.1947	164．491 ${ }^{\text {a }}$	6n00．0	－80．2102	68． 7039	－1．5123		9hnc，${ }_{\text {anden }}$	22．1742	$1 \mathrm{~A}, 7439$	17．7594	5000.0	－56．3098	33.3991	－3．2507
nhnten	\＃．als ${ }^{\text {a }}$	15.8394	15A． 4494	65070	－61．3540	49.9793	－11．t766		bsoon，	Ch．new）	15．904	97，976n	650n．0	－52．813s	49.1997	－3．0？29
rnuora	40．4114	ab，in：4	144．734	71000	-62.5539 -63.2310	40.8682 51.5546	－11．8857		1009．0	14．4134	14．1454	＜H．9547	7000.0	－69．0674	46.8700	－2．7973
mnou．0	\％\％．01リ？	Bi．enns	14.9378 114.2510	7snc．0	-63.2319 $-63.04 ? 2$	52.0319	－11．0．114		chnilen	13.0 ¢0）	12.3947	35，nAM4	7500.0	－4n．8374	4．4．2541	－2．5934
ньात．	An，niyes	¢4．04\％	127．5409	9500．0	－03．9275	52.3175	－11．5100		R000．n	U．astan	11.2915	22.9143	－ 5000	－44．284	4.80893	－2．3854
youn．n	b） 61014	9 argams	121．2027	9000.9	－63．6！98	52.4419	－11．3718		$44 \% 10$	C．303n	n．lans	71， 5 ［6，		－39．8007	37．0390	－-2.20417
－4nc．n	A． 090	93.7414	＂唯．7n＞＂	7500.0	－63．6508	52.429 A	－11．7220		9 ¢00． 0	1R03	$9.74{ }^{\circ}$	10，A071	9570.0	－37．9741	31.0490 3.0793	－2．0417
－0000．0	4H．PUS	storatu	104．3974	10000．0	－63．3474	52.29 AB	－11．0485		，	－4758	9．4？	13．4087	1000n．0	－36．7336	34.4705	－1．7630
16400．0	54．7H54	4H．4）？${ }^{\text {a }}$	174．146．	10500.0	－52．9324	32，0702	－10．8622		10000＊＊	Peubs？	7．0ヶ4\％	13．4239	10500.0	－34．0397	32.0949	－1．644B
－ 000.0	94.10×67	64．）／19	49．1639	11000.0	－62．4256	61.7587	－10．6669				Yo．bils	13，0217	11000.0	－35．1737	31.6371	－2．5386
－ 14×9.0	416.4677	47.9800	94．433n	11500.0	－61．R440	51.7781	－10．4659		$\cdots 000.0$	S．4407	horibir	l3，028	11500.0	－31．8272	30.3840	－3．4432
12000.0	$4 \mathrm{H} \cdot \mathrm{O} 2 \mathrm{~ns}$	41.9345	n9．9541	1.2000 .0	－61．2019	50．9402	－10．2618		12000.0	3.9414	S．62H2	11.1598	12000.0	-70.5816	29.2244	－2．3572
－＜4no．n	64．7494	41）．n143	9力．7amn	12500.0	－50．5117	50．4552	10.0563 -9.2516		12000．0	4．3， 974	5.7440	10．3973	12500.0	－29．4201	28．1485	－9．7796
＇4000．0	41.6 In＇s	94.2044	M1．RU47	13000.0	－59．7836	49.9320 49.3781	-9.1516 -9.1444		1ave\％．0	4.7856	4．401，	9，4880	13000.0	－28．3571	27．1477．	－1．2094
140000	99．6494	34．98P8	74.5177	13500.0 140000	－58．2480	49．8000	－0．4480		193nn．n	4.4778	4.5423	9.0854	$1350 n .0$ 14000.0	-27.3505 -26.4309	26.2147 25.3431	－1．1457
14400.0	41.0594	37．1419	71.2869	14500．0	－57．4542	49.2033	－9．2509		$14000 \cdot 0$	4.1911	4.3136	9，5047	14300．0	－25．5619	24．3770	－ 1.0350
－ 5 couso	7 A ，2\％${ }^{\text {a }}$	3）．9294	6A．1919	15000.0	－50．6505	47.5927	－9．0577		1430.7	3.931	4.8915	Presen	15000.0	－24．7481	23，7514	－0．0980
$\cdots 5090$	44.0447	$3 \mathrm{~T}, 5602$	A5．2＇07	＋5500．n	－55．8413	46.0724	－8，8689		15000.0	3.1072	3.8313 3.4219	r．33， 7.1204	15500.0	－23．9943	23，0420	－0．9473
－bonu．0	35.1334	20.2440	62． 4414	16000.0	－55．0304	45.3457	9．6847		15000．00		3，4304	0.7389	26000.0	－23．2662	22．3648	－0．9016
－naboro	11．1474	39．0770	90.4748	16500．0	－54．2209	45.7156	－8，5054		Lenooto	9，1727	3.75948	－．340h	18307.0	－22．3899	21．725	－0．864．
1／000．0	30．4214	7r．9314	41．3536	！7900．0	－ 53.4155	45.0846	－8．3309		¢ 7 ¢000．a	2.972	9．7744	A． ARGR	17000.0	－21．0510	22.1225	－0． HzO_{4}

f ield	$\sigma_{x x}^{n}$	σ_{x}	－ $0 \times x$	tield	$\sigma_{x y}^{n}$	B_{B}	$\sigma x y$		field	$G_{x \times x}^{n}$	${\underset{0}{p \times x}}_{890.04<0}$	$G \times x$ 2304.3790	ield	$\sigma^{n} x y$	$\vec{J}_{x y}$	Oxy $=0$.
D． 1	18126.00006	312．43364	47，9315	0.	－0．	0.	0.			$\begin{array}{r} 140 \mathrm{fr} \cdot 1304 \\ 489.2 C 17 \end{array}$	$\text { +13. } 1541$	1802.3603	100.0	-611.5782	302.6244	$\begin{gathered} -0 . \\ -328.9534 \end{gathered}$
100.0		23\％．1854	445．7511	$100.0-$	2870．4947	2493．0978	22.5431		200.0	534.2325	370．4444	1104.6769	200.0	－653．2232	466.5583	－-188.6859
200.0	121．3644	207．yu0s	435．7164	200．0－	1461.2544	1466.1516	4.8972		160.0	328.8824	306．yrbu	645．16C9	300.0	－hbl．8353	402．4817	－90．3517
100．0	213．0101	144．5617	414.983 H	$300.0-$	1000．40C7	494.1157	－1．2855		409.0	221.4802	241．54＜1	464.3423	400.0	－467．2894	410.4103	－56．4789
medou	204．3620	142， 3162	196． 3182	400.0	－ 18.9014	111．4864	－3．417c		300.0	194.0441	178.6260	134．2612	500.0	－401．1442	359．5668	－41．5773
soc． 0	145.4962	1H4．1984	318．9146	500.0	－642．3520	63 H .6659	－3．6882		600.0	120.1412	195．8338	＜50．1 1810	600.0	－349．6612	317．0927	－32．5685
800．0	149．6113	115．4963	354，1289	\＄00．0	－ 555.4745	352.2171	－3．2188		100.0	44.1631	107．3211	20t．490？	760.0	－309，0154	282．1416	－26．2684
mus．	119．3＜34	165.0512	\＄34， 3128	160.0	－494．2＜42	491.6241	－2．6002		800.0	15.9093	81.2018	163.1111	800.0	－276．4022	254.7635	－21．6387
Bu0．0	163．6404	156．4014	340.042%	100．0	－4480．3413	446.4756	－2．1		Y40．0	¢く．68ч0	12． 3401	192.2247	900.0	－244．1945	211.6379	－18．1616
Tru．t	154.0045	148．4415	101．0311	1004	－384．3431	411.2764 302.8007	－1．8214		nu0．	\＄2．8021	61.3414	114.1855	1000.0	－221．7605	212.2538	－15．5067
1100.0	14．6．1296	118．3184	202． 1086	1000.0	－384．5451	382.8007	－1．1643		luc．0	43.2032	\＄2．1185	91.9218	1100.3	－209．2384	145.1971	－13．4418
11000	146．4858	12H． 1444	265.2311	2100.0	－364．-3050	359.0783	－ 2.8341		1200.0	34．2203	45.856	85.0628	1200.0	－193．475	181．6033	－11．8122
12 Uu．0		120．4111	248． 1103	1200.0	－340．8638	334．d2tl	－2．6427		1 sou．d	14．43c0	40.2148	14.1067	1300.0	-274.4054	164．4022	－10．3037
1 stio．t	12（1．0） 18 ）	112.6109	239，1464	1300.0	-325.3154	171.2121	$\begin{array}{r}-2.3232 \\ -2.0398 \\ \hline-2.080\end{array}$	1	1404.1	10．5204	15．1111	66.2318	1400.0	－164．1078	158.6690	－9．4384
1400.0	119．3181	103.1444	214.6623	1400.0	－308．3044	309.6646	2.6398		1500.0	［f．chal	11．9168	39.1494	1500.0	－157．157\％	149.1419	－ 8.5597
$1 \mathrm{Bnu.9}$	110.5144	$9 \mathrm{H.hU04}$	¢＇5．11\％	1500.0	－244．1332	291．1616	－2．9850		1800.0	［4．3649	28.1235	35.2948	1600.0	－148．6053	140.1811	－7．8242
103U．0	$1141.15<5$	42．3543	142.6010	1600．0	282．3035	274．2214	-3.2820 -3.5174		1 co．o	21．2042	26.0143	44.2855	1700.0	－140．4545	133.2336	－7．2015
1／us．13	44.1111	0.3110	100.1401	1100	211．97	261．8014	-3.374 -3.8450		1 ноч． 7	cristoy	25．6903	41.9412	1800.0	－133．1492	126．4809	－6．8883
1800.7		H1．2343	164.9144 134.8298	18000.0		257.3337 248.6849	－4．0816		1900.0	14．bu＜4	21.6820	49.2844	1900.0	－126．5648	120.3365	－6．2043
190．9	－1， 3141	16． 1041	154.0298			247.6899 218.1511	－4．0816		coog．0	17．1233	14.9344	37．0397	2000.0	－120．5444	114．1914	－5．8080
2000.0	14．1140	11.1435	151．46s2	2000．0		258．45c8	－4．2406		1100.0	15.8323	18.4031	34．2960	<100.0	－115．1688	104．7115	－3．4553
1100．9	14． 2943	th．3stl	141．1854	1210．0	－234．3092			$\times 10^{-14}$	22000	14.6434	11.0532	31．7436	2200.0	－110．2049	105．08c8	－5．1442
2200.9	H0，1cls	63.6334	133．1447	$\begin{array}{r}1260.0 \\ \hline 30000\end{array}$	－226．1685	215．4444	－4．4．734		Smuen	13.6848	13.8010	24．5458	2300.0	－105．6495	100.7827	－4．4668
Scu．0	＋6．2342．	61.0262 96.6854	126.2644 114.1247	2400．0	－213．4537	213．4444	－4．0440		2400．0	12.1873	14.1982	27.5854	2400.0	－101．4542	96．8359	－4．0183
Abu．${ }^{\text {a }}$	5\％． 2441	5）．SHCY	lic．sanb	＜900．0	－207．1209	＜02． 2302	－4．8967		2004.0	11.9844 11.2044	19．13482	23．8190	2500.0	-47.5778 -43.4853	93．1836	-4.3942 -4.1913
chou．${ }^{\text {col }}$	3t．1 1 ¢ 1	90． 1162	206．yO20	2boc． 0	－201．1301	140.1919	－4．9441		¢ IUu．a	ic．015	12.2615	＜2．84d	2100.0	－40．0468	46.6348	－4．1973
ctouso	34．8H51		101． 1.111	20c． 0	－195．4646	190．4884	－4．9808		［ 800.0	10．0230	11．9931	21．3612	2800．0	－81．4302	43．6975	－3．8387
couce	$\mathrm{SC}_{6} 3813$	45.3645	96.1506	cdico． 0	－19C．0480	185.6931	－5．0029		2400．1）	4.4435	10．7039	20．348b	2400．0	－84．6307	80.9408	－3．6839
＜40c．？	44.0545	43.2624	$41.3 / 14$	14Lu．9	－184．4983	119.9801	－3．c123		3090	9.0104	10． 1904	14．3408	3000.0	－81．9109	78.3895	－3．9414
1uco．${ }^{\text {c }}$	45.105	41.1149	U6．8196	3000.0	－180．1392	17.12 d	－5．0109		164.0	\％	－	18.103	$316 C .0$	－19．3298	75.4445	－3．4102
1100.0	$45.9 \mathrm{Cb6}$	34.1111	02.6111	9100.0	－173．3179	170.5177	－4．00C1		310000	8.1624	4.3244	11.4425	3200.0	－76．4620	73.6132	－3．2888
1260．0	41.4508	31.2414	18． 6927	3290.0	－111．1129	166.1314	－4．9814		3304.9	7.1913	d．вч0н	16．6421	3100.0	－14．7039	71.5285	－3．1754
33000.1	34．3212	36.9431	83.0124	3520.0	－166．4045	161.4333	－4．4560		\＄400．0	1.4446	8.4816	12.4112	3460.0	－72．5142	64．3039	－3．0703
$341) \mathrm{Ca}$	$31.1<3!$	31．00＜8	11．9848	3400.0	－162．8443	157.9696	－4．9249		359\％．9	8.1141	\％．1161	15.2 ¢04	3500.0	－16．3626	61．58\％9	－2．9722
$3500 . c$	34.9172	12．3143	68．3115	35050	-154.1560	154.1670	－4．0899	83	360000	8.04438	1.1111	14.6169	3600.0	－68．6511	05.1774	－2．8799
3600.0	34.4531	10．9020	65．34bl	360 C .0	－155．3829	150.5338	－4．4491		1100.0	6．3142	1.4538	14.11903	3100.0	－66．0390	64．0398	－2．7933
910 H	$31.46 b 1$ 11.2518		62．3248	3 Pu0．0	－151．8653	147．C592	-4.8080 -4.7003		syue．e	6.3148	1.1611	13.4885	3800.0	－69．1401	62.4243	－2．7124
$\begin{aligned} & \text { 1HOU.0 } \\ & \text { j 4 (1). } \end{aligned}$	\＄1．2878		59.8690 $b 1.3741$	3460.0	-148.4937 -145.2548	143.7335	－4．7003		3900．0	6.2429	6.888	1く．9814	340000	－63．3133	00.8116	－2．6357
400 ra	24.0150	25.9401	54.0111	4000.0	－142．1390	157．4428	－4．8628		4000.0	2.8111	6.6344	12．5115	400 C .0	－61．4650	99.4016	－2．5635
4301.0	4．81）	21.3041	43.1114	4360.0	－124．3420	121．94CH	－4．4012	\bigcirc	4500.0	4.9434	5.3456	10．3843	430	－53．2904	52.9740	－2．2509
3owu．0	14.8492	1／．163／	19．6144	\＄30L．C	－116．8484	112.7313	－4．137C	3	3000.0	4.3503	4.8348	4.1409	5	－49．8143	47.1987	－2．C158
33000	16.1441	13．0300	91．4242	3500.0	－1u7．2060	163.3211	－3．4844		5500.7	3.8681	4.2131	8.1408	6000．0	－4， 4636	43.5433	－1．8223
ounu．0	14．3404	12.8811	cherer	6500.9	－98．41C5	45.3198	－3．6507		6000.0	3.4961	3.8313	\％．3336	6300.0	－ 36.4444	39.4840 36.9634	－ 1.06834
6300．0	12．4ijs	11．1633	23．6354	bscoel	－71．8163	Ht．44r4	－3．4365		cseor	3.2041	9.4953	6.6496	1000.0	－35．7474	36．9639	-1.5305 -1.4174
100\％．0	20．414C	4.8130	20.6846	10co．c	－65．7076	62．4613	－3．24C3		100．0．	2．11804	3.2220 2.4444	b． 1424	1900．0	－33．4383	32．1181	-1.4174 -2.1402
1bluct	Y．t303	4.6334	18．2111	scoso	－ 8 C .2984	17．2300	－3，0824		\％ 000.9	2．h＜s	2.4168	5.7845	8000.0	－31．3410	30.1455	-1.1202 -1.2354
acou．n	4．313	f．6840	16．2644	U3C0．0	－15．5145	12．6169	－2．9006	1	4 4 coir． 0	2．h298	2.8168	5.4468	$450 c .0$			
aboler	1．065	0.8453	14．3HCH	－5te．0	－11．2690	68.5158	－2．7534					3.1518	4coa． 0	－27．9446	20．403	－1．2612
49 mog	6．43／0	b． 2613	13．1533	4300.0	－67．4032	64.8460	－2．6191		4 ¢G\％．${ }^{\text {a }}$	2．3848	2，3334		4500.0	－20．3042		-1.0954 -1.0367
vstu．0	－． 2 Hes	3.6446	11．4981	43 CO 0	－04．0423	61.3454	－2．4964		10000.0	2.2080	2．4238		10300.0	－25．2012	24.2192	-1.6367 -0.9839
lumue．？	3．1341	5.1534	10.18906	100000	－65．9467	\＄4．5628	－2．3834		105uc．${ }^{\text {c }}$	2.1914	2．344 2．		いら30．0	－24．0201	25.0899	-0.9839 -6.9363
1150c．0	3.1541	4.1214	4.4481	Usocto	－ 28.1343	35.4537	－2．2066		11000.0	2.0160	20．144	4.3812	110	－22．4563		$-C .9363$ -0.8930
11000.0	4.8360	4.3346	4.1406	l100c ．0	－35．5842	53.582 B	－2．1694			2．0．60			11200.0	－21．9799		-0.8830 -0.8534
11 riv．0	4.4685	$4.0<10$	－4．445s	11300.0	－33．2119	31.120 .5	－2．047		12000.0	2．6219	\because		12000.0	－21．0851		-0.8538 -0.8177
$1 \times$ voc． 0	4.1442	3.8318	1．88＜0	12000．0	－31．0576	49.0416	－2．0162		12000.0	1.4739 1.4910	2.0600	4.0194			20．2673	－0．4177
123cm．0	5．336s	3.4812	1．3518	12500．0	－44．cub 3	41.1248	－1．94cs		12300.0	1.4910 1.8426	2.0104 1.9606	3.9415 3.854	13000.0	－19．30 31		
130 O .0	3.06101	3.2525	0.8527	13000.0	－47．2224	45.3521	－1．87c2		13540.0	1.8588	1.4234	3． 1831	13500.0	－18．8005	18.0745	－C．1543
1ssue．0	3.9106	3.0418	6.4189	t3bcc 0	－45．5121	43.7080	－1．8047		14000.0	1．8803	1.8896	3． 115 B	14000．0	－18．1486	11.4487	－C．7281
14000.0	5.1042	2.8636	$6 . \mathrm{c} / 8$	24003.0	－43．4225	42.1790	－2．7435		14300.9	1.1914	1．83ロら	3，6） 14	1450c．0	－17．5420	16.8604	－0．6756
14500.9 15000.6	2．4784 2.4042	2．641s	3.6832	14300．0	－42．4347	40.1335	－1．6862		15000．0	1.1810	1.8282	3.5412	13000．0	－16，9782	16．3294	－0．6528
13900．0	2．6554	2.4098	3.0654	15500．0	－42．0339	3.4225	－ 2.6314		15300.0	1.1461	l．194s	3.9430	15300.0	－16，4454	13.8157	－C．6316
16090．0	2．3134	2.2641	4.8006	18000．0	－34．3318	31.0034	－1．5344		16000.0	1.1241	1． 17126	3.4968	15000.0	－15．4520	15．3402	－0．6114
900．c	2．3814	2.1104	4.5381	16506.0	－17．1922	35.9027	－1．4846		10500.0	1.1032	1.1488	3.4514	$165 c 0.0$	－ 15.48869	14．8938	－0．5931
	－${ }^{\text {crom }}$	T．1064	3ちら4	17000.0	－36．3131	34．8659	－1．4473		11000.0	1.6836	1．1260	3.4102	1000．0	－15．6496	14.4741	－0．5756

DATA - OSCILLATIONS.

8		V	B		V	B	$1 / 8$	V	R	$1 / 8$	1	8	$1 / 6$	V	8	$1 / 8$	V
			9965.7	100.332	0.728	15527.5	64.402	2.873	6259.5	159.784	0.	$9860 . \mathrm{A}$	101.412	-3.359	154 ¢ 5.2	64.85	-10.295
5379.A			10066. ${ }^{\text {a }}$	99.337	0.923	15629.9	63.980	3.172	$8491 . ?$	153.983	0.	9960.t	100.396	-4.660	15517.5	64.444	-5.960
559\%*	185.880 178.723	0.	10166.7	96.360	0.988	15732.3	63.563	3.250	6907.4	144.77?	0.	10060.A	99.400	-4.443	15619.8	64.021	0.
5820.7	171.801	0.	10266.7 10366.7	97.402 96.163	0.923	1583n.A	63.157 62.746	3.224	7301.6	136.935	0.	1016n.?	98.423	-2.709	15722.2	63.604	6.394
6115.1	163.530	0.	10465.A	95.54,	-0.663	15937.4 16039.7	62.746	3.107	7745.9	129.100	0.	10260.1	97.465	0.542	15824.6	63.193	12.137
6498.3	153.885	0.	1056k.9	94.635	0.481	16142.0	62,944	2.8514	830.08	119.768	0.	10360.1	96.524 95.502	3.359 6.069	15927.1	62.786	17.122 71.565
6878.4	145.510	0.	10667.0	93.747	0.273	16245.3	61.556	2.652	976:.1	110.204	0.	10560.1	94.690	6.502	16132.1	81.98 Am	21.565 22.065
7237.2	130.175	0.	10767.2	92.875	0.	1534.0.0	61.170	2.444	1096).5	92.077	0.	10660.?	93.807	7.261	.16239, ${ }^{\text {a }}$	61.9.906	22.065
7711.3	129.4.80	0.	10867.4	92.018	-0.234	16450.A	60.787	2.353	11844.5	84.427	0.	10760.3	92.934	6.502	16337.4	61.209	25.033
8285.5	170.693	0.	10967.7	91.177	-0.494	16553.6	60.410	2.210	13492.9	74.124	0.	10860.5	92.077	6.177	16447 l	60.027	25.900
A801.0	112.600	0.	11068.0	90.350	-0.780	16056.5	80.037	2.067	15108.6	86. 187	0.	10960.7	91.235	4.877	16542.9	60.449	25,683
9897.4	103.120	0.	11168.A	89.53 A	-1.053	16759.4	59.568	1.950	18214.3	54.90?	0.	11061.0	90.009	A.118	16605.7	60.076	25.249
10747.2	93.048	0.	11208.8	B8. 740	-1.274	16862*4	59.304	1.781	7775.6	128.60 B	0.	11161.7	89. 595	2.167	16749.5	54.707	г4.708
11721.3	A5.315	0.	11369.3	A7. 956	-1.300	18065.4	58.944	1.599	7973.4	125.418	1.626	11201.6	RA- 797	1.409	16851.4	59.347	23.644
13195.4	75.784	0.	11469.9	87.185	-1.196	17068.5	58.588	1.458	8270.3	120.914	-0.542	11362.0	98.017	-0.433	16954.4	$4 \mathrm{se9}$ 9\%	23.191
14995. ${ }^{\text {17698 }}$	66.685	0.	11570.4	A6.128	-0.884	17171.6	58.236	1.300	8567.7	116.717	-2.384	11483.5	87.241	-2.384	17057.4	5R.626	21.998
17698.2	56.503	0.	11670.9	B5.883	-0.390	17274.7	57.988	1.040	8815.8	113.433	0.	11567.0	86.483	-3.901	17160.4	58.274	21.505
5810.9	172,091	-0.143	11771.6	84.950	0.104	17377.9	57.544	0.845	0064.2	110.324	4.335	11663.5	65.738	-5.635	:7263.5	57.928	20.48:
6007.1 6203.5	166.070 161.200	0.169 -0.026	11872.3	84.230	-0,702	17481.2	57.204	0.650	9561.7	104.584	0.	11764.1	85.005	-7.477	17365.7	57.592	19.50\%
6400.0	156.250	-0.169	12073.8	82.824	1.170	17583.5	56.968	0.403	9960.8	100.396	-4.335	11864.7 11965.7	B4.284 83.575	-8.453	17969.0	47.241	18.478
6596.7	151.590	0.130	12179.6	82.138	1.807	17791.3	56.207	-0.039	P369.4	122.379 119.783	-1.517	12065.0	82.877	-7.802	17678.4	56.5179	16.905 15.970
6793.6	147.197	0.130	12275.5	81.163	2.041	17894.7	55.982	-0.260	8567.7	116.717	-2.492	12165.A	82.191	-5.527	17779.7	56.244	14.196
6892.1	145.094	0.	12376.4	80.799	2.080				A763.?	114.075	-0.650	12267.6	81.516	-2.384	17893.1	55.910	13.004
6990.6	143.048	-0.221	12477.3	00.145	2.054	-			8964.A	111.547	3.251	12368.4	$80.85{ }^{\text {d }}$	1.517	179es.a	59.597	11.847
$7080 . ?$	141.054	-0.351	12579.3	79.502	1.963	11			9153.6	109.127	3.251	12469.3	R0.197	4.660	18000.1	55.279	9.for
7187.9	139.127	-0.312	12679.4	78.868	1.781				9362.6	106.808	2.059	12570.3	79.553	8.453	18107.6	54.984	8.853
7286.5	137.239	0.	12780.5	78.244	1.547		\square		9361.7	104.584	0.	12671.?	78.919	10.945	18207.3	54.653	-6.719
$7385 . ?$	135.405	0.299	12881.6	77.600	1.222				9761.1	102.448	-2.709	12772.3	78.295	13.004	18400.8	54.345	5.418
7aba. ${ }^{\text {a }}$	133.618	0.403	1298\%.8	77.025	0.923							12873.3	77.600	13.654	18503.5	54.041	3.001
7592.8	131.877	0.390	13081.	76.429	0.572							12974.5	77.074	13.979	18503.?	53.740	2.276
7881.6	130.180	0.208	13185.7	75.84?	0.247							13075.6	76.478	13.112			
7780.5	128.528	-0.065	13285.6	75.264	-0.130				,			13176.A	75.991	12.787			
7879.5	126.912	-0.312	13308.0	74.594	-0.364							13278.1	75.312	11.497			
7978.4	125.338	-0.481	13489.4	74.132	-0.598							13379.4	74.747	9.970			
E077.4	123.802	-0.416	13590.0	73.579	-0.780							13482.7	74.180	0.344			
A176.5	122.302	-0.377	13692.4	73.033	-0.975							13582.1	73.626	6.502			
A275.6	120,837	-0.065	13793.9	72.496	-1.157							13893.6	73.080	4. 768			
A37n. 7	119.407	0.156	13895.5	71.966	-1.326							13785.1	72.545	3.251			
6473.9	128.009	0.468	13997.2	71.443	-1.521							13886.6	72.017	1.951			
8573.2	110.643	0.520	18098.9	70.928	-1.716							13088.2	71.489	0 .			
8672.4	115.308	0.416	14200.6	70.420	-1.924							14009.8	70.973	-1.300			
R771.7	114.003	0.200	1.302 .4	69.918	-2.093							14191.5	7 C .465	-2.601			
ER71.1	112.726	0.078	14404.2	69.174	-2.210					1		14293.7	69.963	-4.118			
8970.5	111.1777	-0.078	14506.1	68.936	-2.24y					80		14395.0	69.469	-5.835			
9067.9	110.254	-0.260	14609.0	68.755 67.981	-2.223 -1.937							14895.8 14590.6	68.981 68.500	-7.261 -8.886			
9169.4	109.058	-0. 390	14710.0	67.981	-1.937							14596.6	68.500	-8.886			
9260.0	107.887	-0.520	14812.0	67.513	-1.560							14700.5	68.025	-10.837			
0368.5	106.740	-0.650	14914.1	67.051	-0.793							14802.5	67.556	-12.679			
9468.2	105.617	-0.754	15015.7	66.595	-0.286							14904.5	67.094	-13.979			
7567.8	104.517	-0.663	15118.4	66.145	0.546							15006.5	66.638	-15.384			
8367.5	103.439	-0.351	15223.8	65.701	1.378							15109.6		-16.255			
9767.3	102.383	0.169	15323.8	85.262	2.080							15210.A	65.743	-15.280			
$9 \mathrm{A67.1}$	101.347	0.520	15425.1	64.829	2.496							1531.7.9	65.304	-14.088			

DATA - OSCILLATIONS.

APPENDIX 4

COMPUTER PROGRAMMES.

Only the two most important programmes are listed
here.
The Lorentzian fitting programme is in the form of a main programme followed by three subroutines.

The more complicated programme FRIER, for fitting data to the generalised Landau expression, is in the form of a fairly long main programe followed by four subroutines and, finally, M.D. Powell's long subroutine VAO4A. This last subroutine is also essential to the working of the above Lorentzian fitting programme, of course.

Loremizian fiituing progranme.

O DIMENSION DATAXIIOOI, DATAY\{100I, X\{5\},E\{5\}, W\{40\},

1 (ExT(13) COEFFB\{5)
COMMDN UATAX, DATAY, COEFFB, NOATA
READTS. 1005 MSETS
300 FORMAT 1151
DU 99 NSET $=1$, NSETS
READ\{S,110) TTEXTIIS. $1=1,131$
110 FORMATII3ABI
READSS,IZO1 ICUN, NDATA, JXXY, H, ESCALE
120 FURMATII1,14,11,14,F1044
IFIICON.EQ.O: ICON $=1$
$0011=1$ M
1 REAOIS.1251 XIIf EIII $\because \cdots$
125 FURMATIZF10.15

WRITEI6,115I ITEXIIII,I=1.131
115 FORMATIIHJ. $2 \mathrm{X}, 13 \mathrm{AG}$ ///1
1FIJXXY 11, I1, 22
12 OU 2 I: 1. NDATA
READI5.1301 OATAXYIJ. DATAYCI
130 FDRMAT\{F10.4,10X,F10.4)

2 DATAY(I)= DATAY(II/OATAXII'

- $\because=-\cdots=-$

140 FORMAT I HO. $9(2 H X Y, 10 X$) ///1
GO T0 4 1. NOATA
3 READIS.150) OATAXIIB, DATAYIII
1>0 FORMAT (2FIO.4)
HR1TE(6,1453
145 FORMAT(1HO, 9 (2HXX.10X)///1
4 CUNTINUE
Maxit $=200$
N3N $=40$
IPRINT -
EXTERNAL CALCFX
CALL YAO $4 A R X, E, M, F, E S C A L E$, IPRINT,ICON, MAXIT,CALCFX,W,N3NI MKITE\{6,1601

CTEXTIIt, I=1.131
160 FORMATIHIFIX: 1346 //H1
IFIJXXY 13,13.14
14 WRITEI 6,1701
170 FORMATIIHO. GE2HXY,10X: ///1 601015

- 18 WRITE! 1801

180 FORMATIIHO, 9I2HXX, 10XI //71

- 15 CONTINUE

WRITET 6, 190
\therefore

 MRITE(S.210) F
 WRITE\{G, 220! NDATA, JXXY; My ESCALE, MAXIT - ICOM

2 EIO.3.IX, 15 1HO,SHICONx, I2
99 CONTINUE STOP
SNO

$\therefore-\cdots$ SUBRDUTINE CALCEXUM, X, F)
OIMENSIDN X(5) -DATAX(IOD) IDAIAY(IDD) COEFFB(5)
크 $\therefore \because^{*}$ - COHMON DATAX, OATAY,CDEFFB, NDATA
CALL LSTSQRIOATAX, DATAY, NDATA; M, X CUEFFB;F) \quad, \quad
CETURA
ENO

$$
x=0
$$

$$
=
$$

1 RESIDIIDO1,H(5):E1 51
OUUBLE PRECISIDN A*B,C
SET UPCII\&NH, WHEKE OBS. EQU IS T = ITRAMSPOSECIEB.
DU 6 I= 1\%
$007 . d=1 . N$
$C!1, j!=0.0 \quad 10, \cdots$

6 CONTIMUE

$00 \quad L=2, n$
DO $9 \mathrm{~J}=1,11$

हIII $=0.0$
DO 20 Km \& H

CONTINUE
DO 11 $K=1, M$

COMTINUE
MUM $=10$
CALL mATRIXIA,B, M, MUM,OETERI $\ldots \ldots$
SUMR2 $=0.0$
00 12 I* 1, K
RESIDIIS E VII
0013 1. $1, M$
23 RESIDI! = RESIOIIJ-CIf:II*B!J!
12 SUMik - SUMR2 RESIDIIIARESID(II
0014 IF1. 5

Lorentzian fitting.

```
SUBRDUTINE MATRIX (A,B,N,M,DETER)
this deck replaces matmal
This solves the set df linear equations
    A{1,11\times111+A(1,2IX12)\ldots....A(1,NIX(N)= Bil)
```



```
    M IS THE DIMENSION OF bOTH A(M,M) ANO bIMI AND MUST be SET EqUAL
    mo that uf the matrices in the main programme. m must be greater
    ham dr equal to N.
    after computation
    AF CONTAINS THE INVERSE dF THE ORIGINAL MATRIX.
    O CUNTAINS THE VALUES OF X(I) TO X(N) IN ORDER.
    DETER CUNTAINS THE VALUE OF THE OETERMINANT OF A
    entry lineon gives the sulutions of the equations and the
    NVEKSE OF A ONLY
    entry determ gives the value df the deterninant of a and its
    INVERSE UNLY.
    The mAXImum NUMBER OF EQUAIIONS is }100
    DINENSIUN IPIVOT(1001, INOEX(200,2I
    IIMENSION A(M,M),B(M)
    EOHIVALENCE IAMAX,T, SWAP)
C
    ENHY LINEON (A,B,N,M)
    ENO 10 10
    ENTRY DETERM IA,N,m,DETER
    INO - 2
c initializatiun
    EF (N-LT-101) GO To 10
    MRITE IS,SIN
    * format ligh too many equatiuns, 16)
    STOP
C
10 DETER = 2.0
l5 OO 20 J= 1,N
```

30 OO 550 I $=10 \mathrm{~N}$

```
An
SEARCH for pIvot ELEHENT
    40 Mmax mo.0
    45 DO 105 J=1,N
    60 DO 100 K=1,N
    70 it {\PIVOTSKl-11 B0,100,740
    80 IF CABSIAMAXI-ABSIAIJ,KIII 85,1 00,100
    85 IRDN-JJ
    90 ICULUAK
    95 AMAX=A\J,K)
    200 CONYINUE
    aIO IPIVUT|ICULUAI=IPIVUTIICOLUMIOL
C
intehGhange rows tu PUT PIVOT ELEMEMT ON DI mgomal
    130 [F IIRON-ICOLUN\ 140.260.140
    140 UETER O -OETER
    150 0U 200 L El,N
    170 AIIRUH,LI=A!ICULUM=LI
    200 A(ICOLUM,\)=SHAP
    IF IINO .EQ.2I Gu TO 260
    220 SHAP=BII KDWI
    l
    200 INDEX(1) 1) EIMOH
    270 MNDEXC1, 21 - ICOLUM
    270 MDEXXI: 2I EIICOLUM
    320 DETER M DETER *PIVO
    330 AlICULUM,ICULUMz=1.0
C
givide pivat row by pivot element
    340 OU 350 L"L,N
        AIICDLUM,LI=A(ICOLUM,LI/HIVO
            IF IINO EO. 2I GU TO 380
    370 b(ICULUM)=B!icOLUNI/PIVOT
c
C
            reduce num pivot rows
380 do 350 LI-I,N
    380 D0 350 LI-1,N (% 400,550,400
    390 TF ILI-ICICULUM)
    420 A1LI,ICOLUMI=0.0
    430 DO 430 L=1,N
    450 AlLI,L, EAILI,LI-AlICOLUM.LIET
    IF IINO EO.2I GU TO 350
    500 B(III-8(LI)-B(ICOLUM)*T
    500 BILIIEBUE
C
        INTEMChange COLUMNS
    600 00 710 I=2,N
    600 00 710 %
    620 IF IINOEXIL,II-INOEXIL,2I) 630,720,630
    630 JKUH=INOEXIL,II
    640 JCOLUN-1NOEXIL,2
    650 00 705 K-1,N
    660 SHAP =A (K,JKUL\
    O7O AIR, JKUWI-ACX.JCOLUMS
    700 Alx JCIL I
    700 A/K.JCOL LNIESWAP
    70S cONTINUE
    mo cuntinue
    TIO RETUNN
750 ENO
```


VAOGA

3) If (FPREV-r-SUM) 94.95,95

SUM=rPKtV-
IF ((DiKN-JJ) 7ifis
84 60 TO 192.721, IND
92 FHOL U=F
IS=b
ixp=JJ
UU 59 I $=1, N$
IXP=IXP+1
W\{ $\mid \times P)=X(1\}-W(1 \times P)$
CUNI INUE
u0. 1.
GU 1038
96 GU 10 (112.87), INO
122 It (tP-FI $31.91,91$

If $1 D *(+P-F H L D-S U M I *=2-S U M) \quad \forall 7,31,37$
$37 \mathrm{~J}=\mathrm{JIL}+\mathrm{N}+1$
(1) $50,60,61$

60 UU 62 IEJ, JJ

$K=I-N$
Hex
1

2 coni inut
WU 97 laj ILin
w $971-1)=W!11$
97 CuNTIVUE
of IUIKN=10IRN-N
ITONE=3
IIGNEX
$K=\{\operatorname{OIRN}$
$K=\{D I R$
$K P=J J$
$A A A=0$.
DO os IEI,N
IXP=IXP+1

IF (AAA-ABSFIHEKI/EUII: $06,67,07$
66 AAA ABSFIHIKI/E! I)
$67 K=K+1$
65 CUNTIVUE
UDM AG=1.
h(N)=ESCALE/AAA
IL $1 \mathrm{Mt}=\mathrm{N}$
GU 107
. 11 1 $1 \times P=J J$
AAA $=0$.
F= FHUL D
io $99 \mathrm{I}=1$
W0 $99 \quad I=1, N$
$\times 1 \times 1=x$ 1
(1)

ABSF(t) (1)1-AUSH(WI $1 \times P) 11) 98,99,94$
98 AAA=ABSF(HIIXP) $1 \in\{t\}$
CUNT INUE

- 38. AAA=AAA*1 $1 .+011$....

12 gu rot7z106i:INO
12 It \&IPRINT-21 bs 30, 30
$53 \mathrm{GU} \mathrm{TO}(109,68)$. IND
109 IF (AAA-0.1) 84,89. 86
6960 10 120.116), ICUN
116 INU=2 100,1018, IVY
100 INN=2
LNN=
KロJJJ
DO $102 \quad 1=1,4$
$\mathrm{K}=\mathrm{K}+1$
$\mathrm{H}(\mathrm{K})=\mathrm{X}(1)$
X(1) $=x(1)+10, \neq t(1)$
. 102 Cuni inut
CALL CALCFX (N, X, F)
$\mathrm{NH} \mathrm{CC}=\mathrm{Y}+\mathrm{CC}+1$
dum $A G=0$.
go 1010 B
76 It ir-tPi $33,7 \mathrm{H}, 1 \mathrm{~B}$
78 WHITESG, 801
 60 Tu 20
88 INU=1
35 UUM $A G=0.4$ SSNRI (1 PP-F) ISGRAU=1
20y litrcilltactl
it (ITERC-MAXIT) $3, b, B$
al WRIIt 0,02$)$ MAKIT
H2 RURMAIIIS, SOH IIEKAIIUNS CUMPLEIEO BY YACAAI If (rーHEEP) 20.20 .110
110 F=FK tef
$0114 \mathrm{I}=\mathrm{Lr} \mathrm{N}$
JJJ \quad JJJ + 1
12.2 CUNIIVUE

101 JIL

104 JILE 2
$-P=t$
frafktep
DO 123 [-1,N
$1 K p=1 \times p+1$
$K=I X P+N$
GO TU $1114,2151,1 \mathrm{IL}$

GU IU 113
1is wisxplextly
X(1)=W(K)
123 cuntivut
GOIO 42
106 It (AAA-0.21 20, 20, 101
20 RETUAN
01 INN=1
EO 1035
ENU

WRIEEGI601 IEXItif, (E1.13)

1 NMHMCI

3. 11 H, 65x, t20.5. 5x, E20.51 ,

IFINCARKS.EQ
HRITEIG 1801
180 FURMAItIHO, 9HCAKRIER $2 / / 7$
NHRAC NHRHCSI 25
 1. MHRHCI
 119X. SHPHADE //IH .tb.l.

$311 H, 65 x, E 20,5,5 x, E 20,511$
〒I WRIIEIS, 1YSI F

C
E
-99 CUNIINUE

-

SUBRDUIINE CELEEXI $\mathrm{H}_{2} \mathrm{Xi}_{1}+1$

-1 MHOLDCUNSI+SLOPE

FRIER

osubr $\mathbf{1} \times 1$

c
c
c
c
c
INITIAL FILLING ur - x -

1 NHRMCSI 21 , NMOL D(4, 21, XI20)
1" $x^{1} x=1$, NCARRS

X(1) PERIUUTK)
$=1+1$

सII = PUAERIKI
2 it intolus
xIImA(K).

xift = ursi(k)
cunilinut
til
x(1) W(i,k)

$x(1)=H(2, K)$
$1-1+1$
$\ldots \times 11=P 5(12, x)$

$x(1)=W(3, k)$
x(i) PSIM3.xi
- Cunt $\frac{2}{+}$
heturn
$=$

