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ABSTRACT  

Measurement and interpretation of galvanomagnetio effects in 

well-oriented pyrolytic graphite has been carried out over a temperature 

range from 300°E:to 1°K in magnetic fields up to 17 k gauas. 

A cryostat was designed and constructed to fit between the poles of 

a Newport electromagnet. The thin-walled stainless steel cryostat was 

thermally shielded by a silvered glass nitrogen dewar. Long tails were 

required on the dewar vessels because of the magnet shape. Pumping 

systems were built for lowering the lemperature of the liquid helium bath, 

and maintaining thermal isolation. A closed helium-3 system was incorpora-

ted in the cryostat design. 

Graphite affords opportunity for studying the effects of extreme 

crystalline anisotropy and whilst much is known qualitatively about 

graphite, the present work makes a much needed contribution to the 

quantitative knowledge of electronic conduction in graphite. 

An analysis of the magnetoconductivity tensor components, following 

NoClurets work on Soulets single crystal data, leads to values for carrier 

densities and mobilities over the above range of temperatures. 

For the first time data are presented on the Shubnikov-de Baas 

oscillations in pyrolytic graphite. An analysis of these quantum 

oscillations at about 1°E was used to estimate carrier effective 

masses and Dingle temperatures. Oscillation periods were used to give 

estimates of the parameters A , y2, Ef  which appear in the Slonczewski-

Weiss band model of graphite and are not well determined by previous 

work. 



It was necessary to present the band model with an algebraic clarity 

not evident in the literature before undertaking these calculations. Use 

was made of this to investigate the value of the Jones-Zener expansion of 

the low magnetic field magneto-conductivity tensor. Extensive use of the 

Imperial College IBM computer was made throughout the course of the work 

reported here. 

Previous work on pyrolytic graphite has yielded general outlines 

only, though Spain's survey established that the electronic properties 

of the best pyrolytic graphite closely approaches that of single crystals. 

The present work affords a comparison between the two; we conclude that 

the electronic structure of both types are essentia:fly comparable, 

differences lying partly in scattering introduced by the mosaic), micro-

crystalline nature of pyrolytic graphite. Recent experimental results 

obtained by other workers have thrown new light on the interpretation of 

the xall effect in particular: there are strong indications that 

carrier-carrier scattering is of outstanding importance in determining 

electronic conduction processes in graphite. 
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CHAPTER 1.  

1.1 INTRODUCTION 

The physical and electronic properties of graphite provide a 

unique opportunity for studying extreme crystalline anisotropy. 

Whilst a great deal is known qualitatively about graphite, there 

remains a great deal to be achieved in the quantitative descrip-

tion of electronic properties, particularly as they relate to the 

magneto conductivity tensor, Fermi surface metrication and carrier-

lattice interactions. 

The anisotropy of graphite stems from its crystal structure 

which (see Section 2.1) consists essentially of strongly bonded two-

dimensional sheets weakly held together by van der Waals forces. 

Ratios of thermal and electrical conductivities in the basal planes to 

those perpendicular to the basal planes (along the c -axis direction) 

can exceed 200 and 5000 respectively, even at room temperature. 

Unfortunately, very few single crystals of the required per-

fection exist. The best of these won from the calcite deposits of 

Essex County, New York included untwinned regions only 2 mm. in extent. 

The high melting point (about 3800°C at 100 atmospheres) and mechanical 

weakness in the direction of basal shear make the task of growing 

single crystals in the laboratory an unusually difficult one. 

Crystallisation from solution in iron or tantalum monocarbide yields 
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graphite crystals with untwinned regions of adequate size, but no 

such single crystal has a thickness in the c -direction sufficient 

for accurate characterisation of the c -axis properties of graphite. 

The present work grew out of attempts in this laboratory to 

produce graphite by pyrolytic deposition which closely approached 

natural single crystal graphite in electrical and some physical 

properties. It is the first detailed analysis of the magnetoconductivity 

tensor components axx, orgy  and the periods and Dingle temperatures 

of the Shubuikov-de Haas oscillations in pyrolytic graphite. Previous 

publications have given general outlines only. In particular, 

Spain's (1967) survey of the electronic properties of the well- 

oriented material produced in this laboratory, though demonstrating 

convincingly the close approach of the best pyrolytic graphite to single 

crystal behaviour, did not extend to a detailed analysis of Hall-effect 

and conductivity data and he was unable to report any oscillatory 

behaviour observable under his experimental conditions. Some light is 

thrown on the striking low field behaviour of Soule's (1958) Hall- 

effect data which showed large excursions in the positive (77°K) or 

negative (298°K) direction at fields less than 1000 gauss. Soule 

suggested that these originated in the narrow regions connecting the 

hole and electron Fermi surfaces (see Figure 2.6). Ono and 

Sugihara (1968) disagreed, suggesting that on the simple model used by 

Soule the high mobility electrons near the tips of the electron Fermi 



surfaces play the dominant part in displacing the calculated Hall 

coefficient in a negative direction. Only vhen this effect was 

reduced both by trigonal warping of the ellipsoidal energy surfaces and 

also by inclusion of carrier-carrier scatteriag between majority and 

minority carriers were they able to explain Soules positive low 

temperature Hall coefficient. Later work by Yeoman has confirmed 

that carrier-carrier scattering is much more important in graphite 

than ever hitherto suggested. 

1.2 PrePgration of Pvrolytic Graphite. 

Under suitable conditions very pure carbon can be deposited in 

highly-oriented layers by the pyrolysis of hydrocarbon vapours passed 

over a heated substrate. Subsequent manipulation of the deposit 

produces quite large slabs of substantially pure mosaic single 

crystals, with densities approaching 95% of the theoretical single 

crystal value. 

Methane was used in this laboratory, but acetylene, cyclohexane, 

and other gases have been used elsewhere. Dilution with hydrogen, 

nitrogen or a rare gas serves to delay co-precipitation within the 

deposit of carbon particles nucleated in the gas phase as a fine 

black, and reduces the re-evaporation of the graphite crystallites 

which form with a finite distribution of c -axis directions centred about 

the normal to the substrate surface. Blackman et al. (1961) found that 

deposition temperatures around 2000°C led to deposits which were 



highly ordered in this respect. Crystal orientation improved prog-

ressively with increase in deposition temperature up to 2200°C and 

was brought still closer to ideal graphite by annealing at around 

2700°C. 

Such a deposition texture leads to an increasing temperature 

gradient through the thickening deposit normal to the substrate 

surface if the former is resistance heated because of the low c-axis 

thermal conductivity. Temperature gradients ofup to 350°Cimm. 

perpendicular to the deposit surface can be sustained at these high 

temperatures so that a 2 ram. layer having an external temperature of 

say 2200°C may be close to 3000°C for the inner layers. Whilst clearly 

requiring less power for a given maximum temperature than a uniform 

heating configuration this methcd does lead to a marked radial inhom-

ogeneity in the deposit. Further heat treatment at temperatures above 

3000°C leads. to increased crystallite size and improved properties but 

inhomogeneities remain. Samples from the best material of the inner 

layers are thin and curved. Deposits formed in this way are normally 

turbostratic and measure about 200 R along the basal planes of the 

crystallites. The c-axis distribution at this stage is about 20°  

wide, but soot particles, 2 to 34m across, falling on the surface act 

as nuclei for conical growths which can lead to misorientations of 

up to 80°  for individual crystallites. 
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Fortunately it was discovered (Moore et al., 1964) that when 

the inner layers reached about 3700°C (corresponding to deposits 

about 4 to 5 mm. thick) they distorted parallel to the surface of the 

substrate and the resulting shear largely eliminated soot nuclei and 

ripples, leading to an orientation (plane-normal distribution) of less 

than 1
o 
 in width. Sample W3 used in the present work was cut from 

such highly-annealed inner-layer material. 

Commercially produced pyrolytic graphite is usually made by 

cracking the hydrocarbon gas on to a former heated externally by 

radiation. Such homogeneous graphite is available in large sizes from 

High Temperature Materials Inc., and Le Carbone, but as it has not under-

gone basal shear nor has been treated at high temperatures, it is sooty, 

of small crystallite size, and not as well aligned as the inner-layer 

material described above. However, its homogeneity is an advantage as 

it offers the possibility of further heat treatments Moore et al. 

(1964) cut pellets of commercial material, selected to be practically 

soot inclusion free, and subjected them to temperatures up to 2900°C. 

in a r.f. inductively-heated graphite die whilst under a unidirectional 

c -axis presure of 400 atmospheres. The die flowed plastically and 

allowed basal plane shear to occur. This increased the diameter of the 
0.1 • 

pellets by 15 to 20% and produced samples within of the theoretical 

density of pure graphite (2.266 gm/cm3), compared with starting material 

densities as low as 2.04 gm/ 3  cm • Crystallite c-axes were oriented 
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within 0.4°  on average, but crystallite size along the basal planes 

was only about 0.1 4m. Subsequent annealing at 3600°C in a few 

atmospheres pressure of argon, under slight c-axis constraint to 

prevent exfoliation, led. to no change in density but did reduce the 

half-width of the angular distribution of c-axes to 0.2°. Layer 

buckling over distances of the order of millimeters was much greater 

than this, say 1
o 

depending on the starting material; score marks 

and other irregularities in the original substrate are not removed by 

the small shear which takes place on hot-pressing. X-ray work has 

shown that a slight radial inhomogeneity is present, presumably 

introduced by interaction of the pellet edges with the surrounding 

die. However, by this means, crystalline graphite of large c -axis 

dimensions and with crystallite basal planes some 2 to 3 tim wide has 
been produced with a spread of c -axis orientation angles small 

enough to make comparison of its properties with theoretical single 

crystal models rewarding, even though the basal plane vectors A/1  A2  

are still oriented planar-isotropically. Samples W1 and W2 reported 

here are both cut from pyrolytic graphite hot-pressed and then 

annealed as described above. 

1.3 Texture of Pyrolytic Graphite  

Klein (1962) reported in general terms that heating to greater 

than about 3500°C was required to eliminate high angle grain boundaries 

in the as-deposited graphite, but in fact post-deposition heat 
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treatment has three main effects: 

(1) The layer order is increased with increasing temperature; 

A useful measure is the probability of stacking disorder p 

related to c-axis spacing, d„ as given by the Bacon-Franklin 

equation (Franklin, 1951; Bacon, 1958). This drops rapidly 

towards zero (ideal graphite) for material deposited at 

successively higher temperatures above 1900°C (Blackman et al 

1961). 

d = 3.44 - 0.086(1-p) - 0.064(1-0/1  

A value of less than 0.07 is to be expected for good (not 

hot-pressed) material, implying less than one layer in 14 is 

disordered with respect to its neighbours. Spain et al (1967) 

suggest. from electron microscopy that the crystallite dimensions 

.in the c-axis direction Were Lc 1000-,  2000 A implying 

p 0.002 for well-oriented hot pressed and annealed pyrolytic 

graphite. 

(2) The distribution of preferred orientation decreases markedly  

in width. It has been pointed out that hot-pressing produces 

angular distribution half-widths of about 0.2°  although layer-

plane buckling sometimes leads to deviations of 10  or so over 

distances of mms. 



(3) Crvst llit •rowth occurs in both directions at hi _h t-m.e tur s. 

This is reflected in the value of p, above, for the c-axis 

direction. In the basal planes Klein estimates from carrier 

mobility that crystallites have diameters 1 gm after treatment 

above 3000°C. The approach of the low temperature thermal 

resistivity to the T2 specific heat law was calculated by Hooker et 

al to yield values 2 -• 5 gm for basal plane dimensions of the near-

ideal material used by Spain et al in general agreement with 

Klein and the results of electron micrography. 

Recrystallised soot nuclei, in orientations differing greatly 

from their surroundings (Moore et al, 1964) survived in some hot-

pressed material. In such materials the differential thermal expansion 

which occurs cn thermal cycling can lead to basal dislocation formation 

and the production of voids. Accordingly care was taken to select 

soot-free materials. Even so, sample W1 (Spain's SA22) used in the 

present work has a very narrow angular c-axis distribution despite the 

inclusion of some soot particles. 

The density of ideal graphite is 2.2654 g/cm3. With increasing 

deposition temperature above 1900°C (Blackman et al, 1961) the sample 

density quickly reaches values close to this. Hot-pressed graphites 

usually have densities greater than 2.263 + 0.001 g/cm3, implying a 

void concentration of less than 0.1%. 

Since the covalent bond strength within basal planes of - 5 eV 

per atom (Kanter, 1957) is many times that between the planes 
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(- 0.2 eli per atom) it is not surprising that glide takes place 

between layer planes and that non-basal glide has not been observed. 

The most common type of dislocation has its line and Burgers vector 

both lying within the basal plane. Because of the low stacking fault 

energy which causes basal glide,dislocations split into two partial 

dislocations with the region between the partials becoming effectively 

a ribbon some 600 to 1000 A wide of rhombohedral material. 

Screw dislocations with line and Burgers vectors both in non-

basal directions have been observed, but are less common. Thus 

Hennig (1965) demonstrated 10
6 
screws/cm2 in pyrolytic graphite 

heated to 3600°C with the screw pitch equal to the layer spacing. 

Ticonderoga (New York) natural crystals show some screws and growth 

spirals with a pitch of 4501 or more (for a review see Roscoe and 

Thomas, 1966). 

Moire patterns enabled Dawson and Follet (1959) to demonstrate 

the existence of crystallites of 3000 A in diameterin material which 

X-ray line-broadening studies had led to mean estimates of - 800 A. 

An interpretation of certain Moire fringes in terms of a type of 

dislocation having its line in a non-basal direction and Burgers 

vector in the basal plane is not generally accepted, but the 

existence and importance of such dislocations in the graphitisation 

process seems indicated in experiments by Jenkins et al (1962) 
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on the crystallisation of carbon films at 3000°C. 

From electron microscope studies Spain et al (1967) estimate 

a dislocation content of 104 cm per cm2 basal plane area for the 

best of their stress-annealed material. 
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CHAPTER 2 

2.1 BAND STRUCTURE 

2.1.1 The Structure of Graphite and the Brillouin Zone 

Graphite has a hexagonal close—packed structure with four atoms 

per unit cell (Bernal, 1924). Fig. 2.1 shows 4-he stacking sequence 

abab.. and the interatomic separations. There are two inequivalent 

pairs of lattice sites, one(AA') having atoms immediately above and 

below in nearest planes and the other (B8') having atoms immediately 

above and below in next nearest planes. 

A rhombohedral graphite modification with stacking sequence abc, 

obtainable by the passage of partial basal plane dislocations, can co—

exist with the stable hexagonal form, but does not concern us here. 

The first Brillouin—zone is a flat hexagonal cylinder, shPwn-ih 

Figure 2.3. 

If we take the origin of the unit cell at an A site then the 

1 
atomic positions within the unit cell are 1A  0, IB  = 3(11—.12), 

t 	 4/ 	t = — -- (t t )i A! 	1 21  B' 	172— 3 14/2 
where t t21  t4  are the primitive — 

translations for a simple hexagonal Bravais lattice and t1  .t2  .t3  .2:46 4(1  ) 

t4.6.74 A  (Co). 

The reciprocal lattice vectors Ki  are obtained from these primitive 

translation vectors through the definition K.s.tij (ij = 1,2,4). 

This is most conveniently expressed in the form K.T = 2111 where the 

matrices K and T are composed of the rectangular °artesian components 
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of K1,K21K4  and t1,124.4  and I is the unit matrix. 

K = 

Klx K1y K1z 

K2x K2y K2z 

K3x K3y K3z 

T 

_1  

tlx t 	t 2x 	3x  

t1y t2y t3y 

tlz t2z t3z 
J 

422 	0 

	

2 	2 

	

ao 	ao 	0 

	

2 	2 

	

0 	0 	Co 

referred to axes in 
figure 2.2 

For example, the equations for K1  are 

K1x 
	ao  + K1y  ao + K1z.0 = 211" and these give 2 	2 

isike + K1y  ao + K1z.0 = 0 2 	2 

Klx.0 + Kly.0  + K1z.Co 
	= 0 

K 	2ffk3ao 1x 

K1y = +211,/ao 

K1z = 0 

i.e. 1 frrr 3ao"apo'')  

The power of this way of finding the reciprocal lattice vectors, 

due to Jones, is that we may now write down all the required components 

simply by inverting T, for K = K.T.T.-1 = 21TIT 1 = 21111.1  

We find 1 	A 	1 — 

	

T' = N/3—ado 	ao 	0 

	

—1 	1 

	

dr3 a o 	a o 0 

0 0 1 
... 

a... 	
Co  

and so the required lattice vectors, referred to the °artesian axes 

	

shown in Figure 2.2. are 	K1 
 = 625 

43a01  ao , 0 

. rag 2IT 
Eq 	43aol —,_ ao' 0 

—3 = ( 	0, 60- 
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if we now construct planes to bisect the lines joining nearest 

neighbour reciprocal lattice points we see that all of reciprocal 

space can be filled by stacking together hexagonal prisms. We take 

the one arranged symmetrically about the origin to be the first 

Brillouin Zone, figure 2.3, where we have drawn the half vectors 

and also included the co-ordinates (K,a) of a point near 

2 2 2 
the vertical zone edge HKH in McClure's notation (which will be 

employed later). 

2.1.2 The Band Structure of Graphite 

Early calculations of the graphite band structure were based 

upon a two-dimensional approximation because the large spacing bet-

ween layers compared with the atomic spacing within the layers sugges-

ted that interplanar interactions might be neglected in a first approx-

imation. In such an approach each layer is, in effect, a covalently-

bonded two-dimensional crystal held to the next layer by much weaker 

Van der Waals forces. 

Wallace (1947) constructed trigonally hybridised covalent bonds 

(sp2) from three of the valence electrons, forming two o-bands; he 

considered the remaining one electron per atom to be in the 2pz  state 

with its symmetry axis perpendicular to the layer planes, forming two 

TI-bands. Considering only nearest-neighbour interactions, he found 

that the highest occupied (valence) band and the lowest unoccupied 

(conduction) band were degenerate at the (two-dimensional)zone corners. 

Later tight binding calculations by Coulson and Taylor (1952), Lomer 

(1955), Hove (1955), McClure (1956), Corbato (1956) using different 
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approximations, agreed qualitatively with Wallace and with each 

other. The calculations asserted that graphite behaves like a 

two-dimensional semiconductor with a zero energy gap. It was 

necessary to invoke surface electrons or impurities to account for 

electrical and magnetic properties (Haering and Wallace 1957). Also, 

the model did not allow differing hole and electron masses (Galt, 

Yager, Dail, 1956). 

The ci -Tr energy gap was found to be large (Lomer-,  *ley, 

Corbato 6ev) at the zone corners so that transport properties are 

determined by the Tr-bands only. Coupling between the g and IT bands, 

though weak 	0.01 eV), is important in that it helps determine the 

sign of one of the parameters (1/2) in the Slonczewski-Weiss band model 

in three dimensions (to be described below). 

In Wallace's calculations for the three-dimensional case, he 

considered only the nearest-neighbour interactions between different 

planes and neglected the difference between A and B atom sites. This 

led to two bands being degenerate along the vertical zone edge (HKH). 

All bands were degenerate at the zone corners. Johnston (1955,1956) 

took more distant neighbours into account which gave a band overlap 

and anisotropy of the constant energy surfaces in the K x  -K  y  plane. 

Group theoretical studies were then undertaken to establish which 

types of structure are possible. The single layer Brillouin zone was 
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investigated by Lomer (1955) and Slonczewski (1955) and the three-

dimensional zone by Carter (1953), Slonczewski (1955), and Slonczewski 

and Weiss (1955). The latter combined group theory with perturbation 

theory: previous calculations, reported above, had shown that the 

interesting part of the Brillouin zone was near the zone edge (not 

more than 1% of the distance from the edge to the zone centre). Thus, 

S-W made a Taylor expansion of the Hamiltonian in terms of Kx and y. 

In the Kz direction, however, they made a Fourier expansion which, 

because of the large layer spacing, was rapidly convergent becoming 

essentially equivalent to the tight binding approach. They used the 

"K.P" perturbation method of B.S.W. (1936) to calculate the change in 

the Hamiltonian for points just off the zone edge. This approach leads 

to a band model containing six constants which S.W. proposed should 

be obtained from experiment. 

Three later papers contained band calculations based on the 1955 

S.W. proposal and in 1958 Sl-Weiss themselves published a full des-

cription of their group theoretical perturbation calculation. 

McClure (1957) used the S.W. model to interpret the DHVA data 

of Shoenberg (1952), and Noziere (1958) interpreted the cyclotron 

resonance data of Galt, Yager and Dail (1956) using a modified form of 

the S.W. theory. He neglected the difference between A and B atom 

sites and replaced the hyperbolic bands by parabolic bands. Nozieres 

justified these approximations for interpretation of cyclotron 
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resonance data, but pointed out that they lead to a completely 

false picture of the bands near the hexagonel zone faces. This 

would be very important for the interpretation of other properties, 

e.g. diamagnetic susceptibility. 

We now describe the 51onozewski-Weiss band model in some 

detail. 

2.1.3 Slonczewski-Weiss Band Model. 

The increasing complexity of early band models of graphite 

compelled an examination of the possible structures from a general 

point of view. The group theoretical study by Slonczewski and 

Weiss (SW, 1955, 1958) filled this need and has stood the test of 

experiment admirably. 

The two-dimensional calculations located the carriers in 

graphite on the BZ corners and three-dimensional calculations all 

agreed that the Fermi surface must be close to the vertical edges of 

the zone. In summary, SW found from their symmetry calculations that 

the wave functions for points on the vertical zone edge can be written 

in terms of Bloch sums of the single-layer eigenfunctions. Points 

just off the edge were treated by perturbation theory. They found 

four bands coming from 2pz  orbitals, two of which are degenerate 

along the zone edge BIM and WKIlitand on the hexagonal faces, the 

other two being degenerate only on the hexagonal faces in agreement 

with lgringts finding that the small representations on the 

Cc-vt/144 
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hexagonal faces are 2-dimensional. Band 1 corresponds to the sum of 

Bloch waves Made up from 2pz  orbitals on A and A' atoms and is gener- 

ally the highest in energy. Band 2 corresponds to the difference bet- 

ween these same Bloch functions and is generally the lowest in energy. 

Bands 31 and 32 are degenerate along the zone edges and are made up 

from 2pz  orbitals based on B, B' atoms. 

K.P. Perturbation Method 

To explain the basis of this method we follow Callaway (p.173, 1964), 

but mention that a concise derivation is given by Jones, (p.40, 1960). 

We start with wave functions On(KLE) for a state in the nth energy 

band with wave vector K and thi(Kolr) for a state in the jth band with 

wave vector ICo  and assume there is no degeneracy. Define the iS.r 
functions TJ  .Cliv r) = e 	o  1zJ .(ji0 — 

,r) = e 	ib j  (1-001.1.) 

(where S = K Ko). 

These are satisfactory functions for describing one-electron 

states since they still have the Bloch forms- 

(1ST = 
iS.r 	 iSor iK o,r 

e 	g).(Ko  1r) = e 
	

j u ( opr) = e 
iKer 

U (LC 1r) 
J 0  

whereU(ILIr)hastherequiredlatticePeriodicitylsince.is 

assumed to be in a Bloch form. Also, if the 0i  form a complete 

orthonormalsetthensodotheltand any wave function can be expanded 
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in a linear combination of the latter, In particular, we take; 

iS.r 

	

0)011.0 = Aj tj(LCLE) e 	AjO-C)z4P-CetZ) 

Substituting into the SchrOdinger equation for the required 

energy eigenvalues, 	E s 111b(LCI.1.') = E0-011LI.E) 

- where 	H = 	
0 

v )2  + V(r)] 

iS.r 	iS.r 
we obtain 2- H[) 	E A. 6.] = Ete 	E Aj  0j) 

j  J 

Now, the operator ( v)2 acts on both parts of e so we have; 

iS.r 	iS.r 
V)-  e 	lbj 	L 

	

= rh. .1a  -(1 ae 	0,) 	.. 	..] i a x  

	

iS.r 	j) 
[tt 77A 	

iS.r 

e  	
ire 
	

th + ..] 

iS.r 	iS.r, 2  

	

= q)2[e 	V2  2i e 	e 	*S Ibj  

Thus, operating with H in the Schrodinger equations- 

iS.r 	2 iS.r 	a 2 	2 	iS.r 
E 	- it e 	v E A.0. + 44. 	e 	S EIL40. 	e 	EEJk.,D. 

J J J 	. j j 	2m 	• J J 	. II. JI J 
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—iS.r * 
Multiplying by e 	gyi  and integrating over the normalisation 

volume for the ,bj  ; 

42 

	

E.A. — EA + A—'1  A. + 
o 
 S.E 	= 0 1 2mo 	m .  j 

* 
Similarly, we may multiply by all other a 	thi  to generate further 

equations, obtaining a set of linear simultaneous equations for the 

coefficients. AI. For a non--trivial solution the determinant of the 

matrix of the coefficients of Ai  must be zero, which leads to the usual 

polynomial in E 

The general element of this matrix is 

2 2 

	

11....  11 .5.p.._ El 	 LL)b.  
mo —1j 

4. (EI 	m
0 1i 

which we write as Hij  — E(K)bij  

where H.. = (E.(K: ) + 	+ m — --o 2m

,

o ij 0 

Thus, we have the condition that 'Fiji  — *10 = 0 and with this 

form of the equations we see that the required energy levels E at K 

(a distance S from Ko  ) are given as the eigenvalues of the Hamiltonian 

Hij  in terms of the eigenvalues Ei(lio) at K0. Notice that if S . 0 

then Hij  = Eibij  and the values of E are simply the Ei(J10) at K o 

In the present case, we want to discover the effect on the energy 

levels of a very small change in 
( 1K0 	1%) 

 so we appeal to per—

turbation theory for a further simplification. 

A 
where Ei ji  = 

*
(l V )tbidt 



-20— 

Second order perturbation theory gives an expression for the 

new energy levels in terms of the matrix elements of a perturbing 

Hamiltonian, H' (Schiff p.153). 

He.He 
En — En + Ho

nn 
 + E 

j'n n 3 

— where E
o 
is an unperturbed level, belonging to the wave vector Ko 

in our case. Thus, we have finally t- 

	

2 2 	2 	Cad'  )0.E. ) 

	

%CO = nom)te- 	+ 	E 	ni 	 -3a  

	

mo —lai  mo 	En(4)—Ej(Ko)  

— which is the required expansion of the energy in terms of §. 

The Hamiltonian Matri); 

We shall now indicate how SW proceeded to derive their Hamiltonian 

for states near the vertical zone edges and relate this to McClure's 

Hamiltonian (1957 ) which is often used as a starting point for discus—

sions relating to the SW band model. No attempt will be made to give 

a complete group—theoretical background to the derivation of the approp—

riate wave—functions. 

First of all Slonczewski and Weiss considered the single—layer 

wave functions, U, satisfying the Bloch ,conntion (imposed by 

translational symmetry) and having the local symmetry of the zone edge. 

By applying the K.P perturbation tothesingle—layer HIamiltoniali they 

arrived at a secular equation giving energy values which varied linearly 

with K, the distance from the zone edge HKH (see Figure 2.3). 
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The three—dimensional lattice has four atoms per unit cell, 

twice as many as in the single layer unit cell, so each layer 

state mast give rise to two three—dimensional states. In partiaular„ 

each of the layer Ti states, U1, U2  gives rise 	two wave functions, 

0 at gs where S labels a general point on the vertical zone edge HKH. 

These O's can be constructed from single—layer functions but they must 

have the required symmetry at Ks. The four wave functions are 

i t  0+0) 
= A/2  

1 t  

1,b2 =4f2  

31 b' 

032= b  

} where 

icKS 
a = E e z 

	

— 
(elSt I 

4 2 S 
icK S 

b=Ee z  [EIS:14) Ul  

icK
S  

z  (S+i) 
a? = E e 	[p3Is + 104U2  

S 
icKz(S+i) 

= E 	p31 (S-1-1)t1  )1J1  S 

This notation indicates the nature of the oils ; for example, 

if the function a were written as a linear combination of atomic 

orbitals, only those located on type A atoms would occur. Similarly 

for the a', b, b' functions and A', B, B' —type atoms respectively. 

The symbols (ait )occurring in the above expressions are 

symmetry operators with the meaning tacit) f(E)=af() + t where f(r) is 

a function of position r, a is a point group operator (e.g. a rotation) 

and t is a translation vector. Thus, the (s1St4  )in 032  simply means 
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that U1 is to be displaced through the translation t4  (on to the 

next-but-one layer) each time a new term is added to the sum over S. 

(e stands for the identity operation, p3  is a reflection in the 

t
4  
-t
3 
 plane). We note that the above wave funtions are approximate 

in that overlap energies between layers and or - Ti band. interaction 

energies have been neglected. 

The way in which the energies Ei(Ez) of the above states vary 

with Ez is not given by group theory and appeal must be made to tight-

binding approximations and experiment for this information. However, 

the change in energy levels as the wave vector K moves a short 

distance 	away from the vertical zone edge at Ks  can be obtained 

using the K.P perturbation method; the new set of energy levels is 

obtained by diagonalising the matrix of the perturbed Hamiltonian 

,2m 

272 
H 	Ho + H' 	where H' 	1"--* 	and Ho has the eigenfunctions 

0 0 0 
Co 02, 'b31' *32  with corresponding eigenvalues Ell E.21 E. Group 

theory gave the momentum matrix elements P..ij  apart from a constant 

factor. 

SW obtained a Hamiltonian matrix given below with respect to the 

orthogonal set of wave functions b, a, al, b' 4, The element Han  in 

the matrix below, for instance is given by Has 
 = ra(ao+HI)adT  

which quickly reduces to 
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Haa 	
railed/  + ran_.7; adz` 

. 1(27 E;) 
.21(2 
2. 	r_ atE 
2m 	m 	iam4 

b 	a a .i% • b• 

r 
b 	' E3+F 	-D(1+r) 	PD qD

*  

a41 -D*(1+r*) 1-(E7+4).+F 2(E7-4) P
*
D 

* * 
a/ 	P D 	(E7-1-E;)+F -- D(1+r*) 

bt 	qD 	PD* 	D*  (1+r) 	E3+F 

2 
F = 	

-2 
* A / 

2m In the above, 	and D = OPo/m)Keil  - this 
/ 

comes from the momentum matrix E • The P, q, r are functions of Kz. 

One could diagonalise this matrix to obtain the required energy levels, 

but we prefer to switch to McClure's notation in order to pursue our 

investigation of the band structure. Unfortunately, McClure quotes 

but does not derive a Hamiltonian matrix (see below) which is different 
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in form from the one given above. It is evident, in fact, that he has 

used a different set of basis functions to generate his matrix. To 

give the same eigenvaiues, his matrix must be related through a 

unitary transformation to the SW matrix above and this implies that 

his basis functions are linear combinations of the a, a', b, b' . 

In fact, it is fairly obvious that he has used the actual *ts above 

(141, *2, 
*31' 

 *32) as his basis. We proceed to demonstrate this s 

1 	1 
We have 	= 	(a-fat), 62 =42 (a-a1).' 4331 = 131.1' 	

= b 

Now, if our assumption is correct, McClure's Hamiltonian matrix 

elements are given by 

= r*iHtbidr 	where i, j stand for the labels on the 

Os ((1), (2), (31) etc.). 

Substituting for the IA's 

1 	1 

Hme1 - - r„12a  ( +a OH12  (a+a OcIr = raHadr + ranatctr  + r a! Had?. + II a! Ha 'dr 
1  

i(H
aa 

+ H
aa a  + Hr 1 -a  + Hat a,)  

where H.. is the ijth element of the SW Hamiltonian matrix. 
ij 

Thus we see that it is not necessary to recalculate the matrix 

elements; it is sufficient to take combinations of elements from the 
SW Hamiltonian to generate the matrix with respect to the new basis 
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functions. We now list the required combination, 

(H + H 	+ H H1,1 = 	aa 	ea' 	a' a 

H112 = L-(Haa  + Hat a  - Haai 
1 H 	- -(H 	+ H 	) 1,31-  j2 Oa' 	b 
1 H 	- -(H + H 	) 1 I  3r 	ab 	a' b 

H211 = i(Haa + Has.'  - Ha' a - Ha, a' ) 

H2,2 = Yllaa - Haa, - Ha' a + Has  ) 

(1., 
H2,31=  4/2 v-ab" - 	 ) 

H, 	- (H - H ) 32- 	ab 	a b  

4. Ha, at  = E°1  + F 

- Ha, a,) = 0 

= P*D-D(1+r*) 

* * * 	* = P D -D (1+r ) 

= 

= Eo2+F 

= P*D+D(1+r*) 

• - (P*D*+Die  (1+1.46) ) 

H31,1 = 4/
1  

	

2  (Hb, a  + 	a, ) 

	

H3112  = Iii(1113  I a  - 	) 

H31,31= H131  bl 

H31,32= Hill b 
1  

1132,1 = ,12 vHba Nal ) 
1 

H32,2 = „;2-(Hba Hbal ) 

H32,31= Hbbl 

H32,32=Hbb 

= PD*-Die  (1+r) 

* *, • PD +D (1+r) 

= E3+• F 

= qD 

= PD-D(1+r) 

= -(PD+D(1+0 ) 

= qD
*  

= E3+• F 
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This leads to the following matrix which can be directly 

compared, term by term, with McClure's (neglecting the second 

order in K termiF,and assuming r, P are real. 

*MO 

El 
	(PD-D(l+r) 	(PD=D(l+r))*  

H= 

0 
	

E2 
	(PD+D(l+r)) -(PD+D(l+r))*  

(PD-D(l+r))*  (PD+D(l+r))* 
 

E
3 
	qD 

(PD-D(1+r)) -(PD+D(l+r)) qD 
	

E3 

From this this point on we use McClure's notation (Figure 2.3) and 

the set of dimensionless ,nylindrical variables defined byt 

a = tti1(7e), a= iV3 aoIKI, C = KzC
o  

where, as shown in the figure (2.3) K is the perpendicular distance 

of a point K in the B.Z. from a vertical zone edge. 
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The Hamiltonian matrix given by McClure is 

H 
E1 

0 H13 

0 H23 

H13 H23 E
3 
o 

H13 
ram.. 

-H23 H
33 

H13 

-H23
*  

H33 

E
3 

which, we have seen, follows directly from Slonczewski's work, 

where 

A. 	2 • = E1 	6+1/1  r+  2v5 r  
O i E2 	= '11.1r+ w5 r 2  
O i. r2  = E.3 	21/2  

H13 
= 2 2(-iy0  )V.) a  exp(ia) and r = 2cos(iKzC0) 

H23 = 2 2(y0 
 + 1/4  r) a  exp(ia) 

H33 = y3r a exp is 

It is clear that to first order in a (second order does not 

change the form of the Hamiltonian) and to second order in the Fourier 

expansion the band structure can be completely described by six 
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parameters. S.W. did not attempt to derive these parameters from 

theory but proposed they be obtained from experiment; some of them 

may be negligible in a given application. We have neglected spin 

orbit effects at this stage as these have beer shown to be very small 

Dreseelhams and M.S. Dresselhans 1965), but of course each of the 

four bands obtained from this Hamiltonian is two—fold spin degenerate. 

The secular equation for the above Hamiltonian matrix leads to 

an unwieldy quartic equation in energy which it is uninstructive to 

examine. Certain restrictions, however, lead to factorisation into 

two quadratics. 

Multiplying out the secular determinant 111 — Ell = 0 where I is 

the unit matrix, leads to the expression 

2 2 2 	2 2 	2 2 
e 2 — 

	

1 2 3 	1 0/3 r 	— 6183 ("Yo#Y4r) a  — 6263('Yo+Y4r)  

+ (10,4  r)2(—yo-by4ri2174  — Eldnr (1/ctl,402cos 3a 

+ e2  ay3 	0 ' 
r(ny 1-1,

4 
02 

cos 3a 	 = 0 

0 
where 61  = 	62  = E2 	63  E3  —E. This is the equation which 

must be solved for the energy, E. A numerical solution is possible, 

but more physical insight is gained by examining approximate solutions. 

For instance, neglecting y3  leads to :- 

	

2 	2 2 	2 2 	2 4 
616283 6183 (1/01/4 T ) a 	€283(-Yo+PY40 	+ (VI/4r 

)2 
("*Y0414r) 
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Which factorises into 

(e183 	(,y.4.4v)2a2)(e e 
2  3 	(Y04-Y4 r)2a2) 	

= 0 

Leading to solutions which are independent of angle a : 

E1,31 	
1, o o, 	1, o o.2 

= 	11E1+E3) ± [73E1  -E3) + (4-y4r)
2er2 -0 

, 	1, 	0.2 	r  , )2 24 E2,32 = i74+E.3) ± EzE2-E3) + kyd.hy4 	a j 

(2) 

Now, the reciprocal effective mass tensor is defined by 

1 	B
2
E  

2 BK.BK. j 

Thus, 

= 'r R 

	

, 
2 	r 

‘4 1  
21 (y°-y4  r) 22K) (,) 2  4. f̀Yo-Y4r) 2Cr2 n  alCA L  xx 

0 

21-Y 	
2 

34.4[(11-)24-(y0-y4r)2  i4k;VI(1 
0
--)2  t1   

2 +(yo-y4  r) 2a 2 

	

o 	o 
where AE°  = E1

0-E3 or E2
-E depending on which surface the mass 

tensor is evaluated. The upper sign refers to the upper of two 

conjugate hyperboloids. For R
Y 	

le should be replaced by x. 
Y 

For R 	the term 0
o 
does not appear in the numerator, K

2 
 is 

3r7 
replaced by K K and the signs are written x y 
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We see that the effective mass depends on Kz  (through r and AE°), 

and also on the distance 0. from the zone edge. However, for small 

enough a ons obtains paraboloidal bands and constant effective mass 

for a given value of Kz  

R 	= R*  xx 	yy 
••• 
•••• 

3(y0114  r)2a: 

2h2AE
o 

R
* = 0 
xy 

Inverting this tensor to give the effective mass tensor 

	

*-1 	(adj R)ij  
Mij  = (R )ij  

'RI 

leads to m* 	1 	0 	0  

R 1 	0 

0 R
* 
 1 
xx 

0 0 R zz 

where we have invoked crystal 

symmetry (6/mm) to give Riz  = Rzi  = 0 (where i = x,y). See Birss, 1964]. 

Finally, then, we have an effective mass for directions parallel to the 

basal plane : 

1 
/m*(K z) 	+ a  

3  (5,6_,z4  r )24 

2h
2
AE
o 
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The energy-wave number relationships for these four bands 

are quite complicated surfaces which can be cnvisaged by examination 

of figure 2.4. 

Here an attempt has been made to indicate the variation of the 

bands with small excursions from the K
Z axis (HKH) because this is 

all-important in determining where electrons and holes can exist. 

However, before examining this question further, we shall list the 

parameters defining the energy surfaces shown, indicating their main 

effects and where they arise in the theory. The latest values 

assigned by Dresselhams and Maveroides (1964) are quoted here, but 

are not Ap'completely independent of the method by which they were 

measured so various earlier experimental determinations will be dis-

cussed later. 

This is the same as Wallace's yo  and is most important in 

determining the dependence of energy on a  (i.e. IKI). It 

is the only parameter in the single-layer case and rep-

resents overlap between wave functions centred . on nearest 

neighbour A and B atoms. (2.8eV). 

Represents the main splitting of the singly-degenerate 

bands caused by the interlayer interaction between wave 

functions on nearest A atoms. (0.39eV). 
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112' Determines the amplitude of the variation of the E.3  

bands with KZ and so is responsible for the band 

overlap. It arises from both the next-nearest layer 

interaction between B atoms and from cr - coupling, 

but these two effects almost cancel. It is now thought 

that y2  is \re. 	0.016eV). 

y3. 

 Arising from nearest layer interactions, this gives rise 

to anisotropy in the xy plane and to extra degeneracies 

found by Johnston (see below). Wallace neglected this 

term although it appeared in his Hamiltonian. (0.15eV). 

v4.  Although this does not have a qualitative effect on the 

band structure, it could give rise to appreciable (10% or 

so) quantitative effects. It would be the same as 10,3  if 

the orbitals on A omd B atoms were identical and was 

assumed to be - n  in the absence of experimental evidence. 

However, Dress. and Mavr. estimate 1,4  = -0.20eV. 

1,56 
 This is essentially the coefficient of the second term in 

the Fourier expansion along KZ  and is often neglected. In 

the absence of an experimental value, it is assumed to be 

y2  (0:016eV). 

A 	Reflects the fact that A and B atomic sites are situated 

in different crystalline fields and also involves next-

nearest layer overlap integrals. It causes a separation 

in the two sets of levels at KZ  ± n/Co  (-0.02eV). 
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In practice, one cannot assume that the sample is entirely 

free from impurities so the Fermi level (somewhere between 0 and 

2y2) must be regarded as another unknown parameter. However, on the 

assumption of pure graphite (equal numbers of .:lectrons and holes) 

Dresselhans and Mavroides have calculated Ef - 0.019eV. 

One must now decide where in the Brillouin Zone the holes and 

electrons must lie with these values of the band parameters. We still 

neglect yr  By writing equations 2.1.3(2) for small values of fy it 

is easy to see that the variations of the energy levels with a  are as 

indicated in figure 2.3. For instance, the E1  level increases in 

energy with a small excursion from the zone edge (a small increase in 

a) at constant Kz near Kz  - zero but decreases in energy for a similar - 

excursion made near KZ  = ± n/o. It is not so obvious at first sight 

where the change-over in behaviour takes place. We examine E1 first 

abl then e
3 
: 

From 2.1.3(2) for small a  : 

E 1-(e+E°  
11 	2  1 3 ) 	 C 1  + t. 4 (70-114-12 20'2  

2 	(4-4) 

x2 2 
= E

o 
[1 + ('Y0-  r)  a  

1 

Now, the a-variation changes its nature (towards or away from 

the Kz-axis) when the slope of this linear relation between El  and 0
.2 

E0 fE,...EN  

1‘ 1 31  
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changes sign. Notice the constant inside the bracket has been made 

independent of K.  Thus, the 0--variation changes its nature when 

N  Eo(Eo-E3o = 0 i.e. E
o 
= 0 or E

1 
= E. So, as Kzis increased from 1‘ 1 	) 	1 

zero, where El  increases positively away from the Kz  -axis with a 

Tr 	 0 
small 0'—excursion, towards /Coythe E

1
behaviour will change where E1 

crosses E
3 

and so beyond here E
1 

will decrease (towards the K
z
-axis) 

with increase in 0. At E7 = 0 the nature again changes so E.j will 

once more increase away from the axis with small increase in a, but 

its sign also changes here so this represents a continuation of 

previous behaviour, viz. a downward change in El  with 0.. Thus, El  

changes its a-variation from an increase in E with a to a decrease in 

E with a as Kz is increased through the value where E1 and E3 intersect. 

Similarly for E3  : 

E31 	
E
3 - (.01 - E3  )1.*  

0 	1 Yo-Y23)24(12  ElE1 - 4 - 0. 0 0.* E3 k,E1-E3) 

So we see E31 
changes its nature from E - increasing at K

z 
0 

(easily verified) to E - decreasing with small excusions of a as Kz  
o 

makes 
E1-E3 

change sign, i.e. as K
z 
increases through the point of 

intersection of El  and E3. 



K 

3 
Er 

H°f rt. 
H, 

re, 

271 

H 	 K 

ErttRCei iS 'IN DS 	rte A 70HE e pc, H KH  . Le1.11 	and km0444 

0. 	sk., 0 ft gS 	-Co 	cy.. Art t.r. tole tStj  arft 	. 
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E
32 

remains E-d.eoreasing over the whole range - TrICo s KzS TI/C. 

We can now see that the curve H3CK6JH3  represents the bottom of 

the conduction band and H1  CK6  JH1  the top of the valence band. With 

the Fermi level as shown we have holes in the central region below 

LK6M and electrons above the two end curves H3CL, MJN3  

This is clear if we note the following properties of the,bands. 

The effective mass tensor has only diagonal components mii  for small 

enough a and these have the same sign as the corresponding reciprocal 

mass tensor componentsRii  . Now, by differentiating the expressions 

for the energy levels, Eil  twice with respect to the components of K 
2 

(as we have demonstrated above in the case of BK BK —"L—) and also 
x x 

differentiating once with respect to a, we can see that the sign of 
* 	*

Y  

	

is the same 	as that of R 	(=R
Y 
 ). Thus, we have finally that the 

XX  

	

, bE 	 * 
my sign of 	is the same as the sign of m (= m
*

Y 
 ) and so the 

	

aor 	 XX  

a-variation of a particular band indicates the electron or hole nature of 

the band; + ve means the band is electronic in nature at the given value 

of Km 
 . This arises from the particular form of the bands near to the 

vertical zone edge. We see immediately that holes are located on the 

E3 
surface below the line LK6  M which is the cross-section taken where 

the band reaches its highest point. A complication arises near the 

point C, however, where the bands El  and E3  are degenerate. Group 
theory does not require more than the two-fold E31-E32 degeneracy at 
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this point on the zone edge so we have a case of so-called "accidental" 

degeneracy. To examine the probable consequences, it is convenient 

first to lift the degeneracy of the E3  band by means of spin-orbit 

coupling. This effect is small, but enables one to draw E31, E32  

separately and thus see what is happening. We now have the situation 

shown in Figure 2.5A. 

However, the interaction between these bands at this point will 

cause the wave-functions to mix and prevent their crossing (see Slater, 

Vol. II, p.270, 1967),  leading to a situation shown in Figure 2.5B. 

Putting in the a-variation of energy in the usual way enables us 

to see immediately that there are two energy surfaces which can give 

rise to electron behaviour near the Fermi energy, LCH3 
and the new one 

DCH
3 

which gives rise to a pocket of electrons. Indeed, in the 

presence of spin-orbit coupling, when the H3  band splits all the way 

to the hexagonal zone face, the pocket is completely isolated. The 

Fermi surface is illustrated in Figure 2.6 for the case with no spin-

orbit coupling where the pockets may be translated by the reciprocal 

lattice vector K4  to join on to the ends of the electron surfaces. 

This join is perfectly smooth because of time reversal degeneracy 

on the horizontal zone faces (McClure, IBM, 8, 258, 1964). 

The inclusion of the T3  in the Hamiltonian leads to the addit-

ional structure shown in Figures 2.6 and 2.7), destroying the rotat-

ional symmetry of the energy bands so far considered. Although it is 
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no longer possible to factor the secular equation for general values 
1 of a, a, this is possible for special values of a (=-3  n11). 

Equation 2.1.3(1) reduces to that expression with cos 3a = 

which immediately factorises into two quadratics; 

(e  e +e 	rff( 1)11 	
' 	+-4r, 	-ft. )2IT2V 1 	3 	1113 	r0 	'263 -c2v3ra( -1)n  - (110'74.r) 2Cr2) I  = 0 

Substituting for el, 621  e3  gives two quadratics in E which can be 

solved, leading finally to the solutions$ 

o +E 	r cos1, 	, 	rN2 211-  E 1,31 = 2  1 3 3 	3a)±[-zikE--E -y ra cos 3a)2  + 0—y4.) CI .1 1 3 3 
(3) 

E 	efE
3
°_-, 	0 	- rr cosos Jc91 714tE2-E3+y3ia cos 3a)2  + 	

r,2 
2,32 

Af 
 2 -T3r 	 Wo-r-r4  cr 

(a = 	n Tr ) 

These equations can be used to obtain the cross-section of the Fermi-

Surface in the Kz-Ky  plane (a = 0) for, putting a = 0, E = Ef  we have, 

for examples 

(110_,y4r)2 = Ef  4. 
E7E3 - Ef(E7 E(3)  + nra) + E7y3ra 

- which gives cr in terms of K:z (contained in r). Putting a = 3X1  3 
leads to the same equation with the sign attached to y3  changed, so we 

can find the cross section of the Fermi-Surface in both halves of the 

IC-K plane. The Figure 2.7 (after McClure) shows the cross sections y 
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for the cases y3  = 0 and y3 T  0 superimposed to emphasize the 

asymmetry introduced by this parameter. 

Obtaining the 	cross sections is difficult because the 

secular equation has to be solved for general a and with y3  included. 

This can be done (in the case E1, E2  are well separated from E3) but 

note that this will still leave the exact structure in the region near 

C (Figure 2.4) in;some doubt. 

Specifically, we aasume e1 e2 >e3,E, shich reduces equation 

2.1.3(1) to 

oo2 	802 2 2 	of 	%2 2 - 0 / 
ElE2s3 - 21E21/3r 	- Ec3k70474r) 	E2e3k-70414r)2°  

N  47(ypi4r)2  a 3 r cos 3a + E;( +y4r)2a3,y3r cos 3a 

(y45474r)2(.76*y4r)20.4 

Substituting for .3 =4-E leads to a quadratic in E a- 
_2 o o EE_2ETE:E3 Eat_ 	2 2 	o/ 	%2 2 E1E2 + 

	

	l'fo're) a 	E2k-704.114 )  ] 
2-2 

El
0
E24 ElE2oY31 a

2 
 - 

o 
E3
o 
(v0  +y 2Q2 - E2

o
E
o  
3 (-y0  +y  

-4(Y041/4")203  y3r cos 3a + E2(-yo+y4r)2a3r cos 3a 

+(yo-bv4r)2(-Yo-Nr)2a4  

0 

0 
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This can be solved and simplified to give 

E = E3 	
1 , y 	.2a - 2 	1 

E3 - 	0 v 	
r) 

2E°(-Yo+Y4r)
2a2 

o+v4 2E2 	1 

1 610474 , 40.4  + 	(-70 	 14 
r 	i Af 	2 	1 (y0+y4r)  2 (.....y04„v4r)  204. 

02 4 E02 	4 E
1 	441  

2 

+ 
-1 

) 	+ -ty r2 
° 	4  

1 

° E 2 

2 	3r cos 3a}2  (Yo'T4r) )na  
(„„ 0 

Finally, this can be written : 

E = E3 
+ Ag2 
	

(B2a4  - 2y3ra3B cos 3a + 1,r20-2 
	

(4) 

(-yr,47 r)
2 	

+1,  r)
2 

where 	 ( ?--4.— A = 	 o 	3 
-E2 

0  o 
-E1 	-E2   

Apart from the terms -E1
0 
, -E2 

in the denominators of A and B 

E3 	E3 E2 (McClure has E3  -El
o 

 l  E3  -E2  respectively) this result is identical to 

that obtained by McClure (IBM, 1964) for levels near E3  using a 

"perturbation treatment" under the restriction "E1  and E2 are well 

2 2 + y3r2  a 
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separated from E3". We note here that the definition of A and B 

is wrong by factors of cf in the 1964 paper, but is given correctly 

in McClurels 1957 paper. The latter gives the wrong sign to the 

cos 3a terms  however. 

2.1.4 CROSS-SECTIONAL AREAS OF THE FERMI-SURFACE 

It is now fairly straightforward to derive estimates of cross- 

sectional areas of the Fermi surface in the x-y plane, for if we put 

= y4  = )15  = 0 then equation 2.1.3(4) reduces to 

0,4(A2  B2) - 20.2 (Ei-EDA 	(Ei-S3)2  = 0 

- which can be solved for art to give the result below. 

Wys!,  = (Ei-E3) [2Ef-(4+4) ± (4-4)] 

Since the LHS is always +ve we must take the positive sign for 

electrons and the negative sign for holes, so: 

2 	1 
2 a 	(Ef3 -E°)(Ef  -E2) 
vo  

h 
2 	1 

f = 	2 (E -E3)(E f  -E1) 
vo  

These give : 
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2 2 _2 
tb;
f 
 -Ef  (AN-(y1  -by 

r 
e 	A-11 
)r.) + ( 	re2  re2).1 for electrons = 	2 	er 	' 

a  Yo 

and 	f,2  / / 

Qh = 2  toirEf0+2kyliN2))+(A-ayi)(21/2)1 
To 

for holes. 

re is the value of r which maximises the electron cross-sectional 

area Ae and hence a2 t 

2 r
e 	31/1 

-1-(6-Ef  + ((A-Ed + by2  l/y2 EiT) 

Finally, we note that on the hexagonal zone faces (r = 0) the 

cross-sectional area is given by 

2 	1 
am = 2 	Ef(Ef-A) 

1/0  

2 
Actual areas in K-space .k are obtained from 	a the above  by 

A  = Tre =10_1 )2a2,  where ao = 2.46 L. 
Oao 

The above results are quoted in Anderson et al (1968) but they 

give no indication of the derivation. They also state formulae for 

F.,S, volumes in the same approximation. 

For the more interesting case 1/3  # 0 a numerical solution of 

2.1.3(4) is necessary but we can obtain a useful result by assuming that 

y3  merely introduces a trigonal perturbation in 0.. AmsuMe 0.0.0(1+710 

using 



where 

D 4
(v0Y4r)2(YC-114r)2  2 

cro  
3E2 (E3E1 
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where YJ = c cos 3a, 71, e are to be found and cro  is the solution found 

above for the case y3=0. Substituting back into 2.1.3(4) and using 

the fact that ao  satisfies this for v3.0„ we obtain a linear 

expression in 4 s 

, 
3 41  / 

(11 -tyfir)2 	(yo-If4r)2,..; 
_n  r cos  3a  [ 

E3-E2 	E 	
0 33,

3-E1 

+vAr)
2 

(1/ —yAr)2  
3v 3r cos 3a [ 	] 116° 3 	E3 E2 	E3 E1 

(_ r12 (1,04.y4r)2 
‘122.42, 	— 2y3r2  + 2(EeE3) [ 
E3E1 	E3-E2 

Recall here that the abo7e equation 2.1.3(4) is not valid 

when E1,2 
are close to E

3 
so there are no critical points to examine. 

Putting in typical values for the parameters, we find the first and 

third terms dominate D making D practically independent of a so we have 

finally $ 

(YIN r)
2 

(1,  -v r)2  

	

a = 0.004.6 008 3a) where e - r r 	_  0 4  / 	0.01 

	

113 crei 	D 
E E3-E2 	3-E1  

A simple calculation now demonstrates the effect that yi has on 

the cross-sectional area of the Fermi surface normal to the c-axis 



-43— 

for this area (in a—units) is 

211 	211 
p 	,/, 

r 	(Ifs cos 3a)2da A = lzi a "a ' 

= Ao(14E2) 	where Ao is the cross sectional area 

when 	'V3 = 0. 

Therefore 1/3  produces a negligible change in the cross—

sectional area of the Fermi surface and will not measurably influence 

DHVA-type oscillation periods. Alternatively, measurement of periods 

will not give a reliable estimate of n. 

2,1.5. Values of Band Parameters  

Finally, values quoted in the literature for the band parameters 

appearing in the Sloncewski —Weiss model will be collected together. 

The review by Hearing and Mrowski (1960) on the Band Structure 

of Graphite Crystals contains details of earlier determinations. At 

that time there were two schools of thought concerning the magnitude 

of N/. Haering and Wallace proposed a small 6( 0.005 eV)value of NI  

on the basis of constant susceptibility results. The analysis yields 

No  :12.6 eV and gives roughly the correct specific heat. However, 

the small 1/1  model can account for the presence of holes only at high 

temperatures, whereas Hall effect and cyclotron resonance experiments 



indicate the simultaneous presence of electrons and holes, the 

latter strongly suggesting equal concentrations of each (Nozieres, 1958). 

In the overlap model, yo  is determined by the susceptibility to be 

— 2.6 eV, which is in good agreement with theoretical predictions 
"v 2  o 

(Lomer, Johnston; 3eV) but yi  is calculated from the ratio — 
141 

whose value of 25 eV is given by DHVA, by cyclotron resonance and by 

electronic specific heat measurements. This gives 11.1  0.36 eV, 

much larger than the value indicated by the susceptibility experiments. 

Independent estimates of .y.,1  give 0.32 eV (electron energy loss, Ichikawa, 

1958), 0.14 eV (infra—red absorption, Boyle and Nozieres, 1958). Later 

confirmation that Nri  must be large came from the work of Soule, McClure 

and Smith (1964) in which they showed that both electron and hole Fermi 

surfaces are closed sheets. This is consistent with the overlap model 

whereas the small 141  model leads to an extended Fermi surface. 

The DHVA effect yields a value of 0.016 eV for 72  the magnitude 

of which agrees with that given by Boyle and Nozieres (0.02 eV). 

Nozieres' analysis of cyclotron resonance data confirms the positive 

sign and a rough check is afforded by identifying the knee of the 

resistivity—temperature curve at 120°K with a carrier degeneracy 

temperature. Early determinations of A were uncertain in sign. Carter 

and Krumhanslestimate 0.01 eV while McClure's DHVA analysis indicated 

0.02 eV and Dresselhaus and Mavroides obtain —0.02 eV. However, 

later experiments seem to agree on a larger negative value; Soule, 

McClure and Smith calculate —0.12 eV and McClure and Yafet obtain —0.1 eV. 
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Johnston estimated T3  to be 0.13 eV and y4  was assumed equal 

to y3  until the g—shift in electron spin resonance (McClure and Yafet, 

1962) gave 1y41 —0.28 eV and the 1964 magnetoreflection experiments 

of Dresselha= and Mavroides (on pyrolytic grarhite) led to 

y3=0.145 eV and y4=-0.2 eV. So far no experiment has yielded a 

value of y5  and it is assumed 11.5=y2  (McClure, 1960, Inoue, 1962). 
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2.2 GALVANOMAGNETIC PROPERTIES. 

Introduction. 

In this section we shall be concerned with understanding the 

galvanomagnetic effects in graphite, notably the magnetic—field and 

temperature—variation of the magnetoconductivity tensor a(g) and its 

inverse p() with a view to correlating these experimental data with 

the SW band model. Broadly speaking, the phenomena can be divided 

between low field, high temperature effects; the classical effects, 

and quantum effects occurring at high magnetic fields and low 

temperatures. The weak field phenomena are strongly influenced by 

interactions between charge carriers and the lattice, e.g. the nature 

of the scattering process, whereas in strong magnetic fields certain 

transport processes become dependent upon charge carrier character—

istics alone, such as density and Fermi energy. Section 2.3 will be 

devoted to the quantum effects. 

2.2.1 phenomenological Treatment. 

One can write a relation between electric and thermal fields 

and fluxes in the following form: 

1  • 	= 	1 • (LI) e
J  . + Bid 	ax 

(11.) —4)— (
T
.) 

J   

Qi = Pii(g)'; Kii() --fr. (T) 

(1) 
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where J and 2 are the electric and thermal currents, T is the 

temperature and e
* 

is the electrothermal field which is essentially 

-1 the gradient of the electrochemical potential, 0 e*  -V = v. The q  

externally applied electrostatic field, e, is related to the plectro- 
Vp 

thermal field by e 
c 
q  

- where q is the charge of the E 

carriers and vc  is the chemical potential of the charge carriers. 

Now experimentally it is more usual to define the current flows 

than the electric and thermal force-fields, so we invert these 

relations to give: 

em = p 	+ 	(a) ran 	mn Bx
b T 
n 

Qm  = Tr ql.)Jn  - K (1.1) 	T 
mn 	mn Bxn 

- where the arrays p, a, V, K are known as the resistivity, the 

thermoelectric power, the Peltier coefficient, and the thermal con-

ductivity respectively. 

For an isothermal, uniform conductor these reduce to e
* 
.JI, 

Q. = j E.1  = p..J.j
, 

13  where p= a 1 and V = Pa-1  . 

The general thermodynamic relations of Onsager apply to these 

tensors : 

crij 	. a  (-H) p (g) 	Phi(—H),  etc. — 

(2) 



-48— 

At first sightv one is still left with a large number of 

independent tensor elements to be obtained experimentally, but the 

requirements of crystal symmetry help to reduce this number. By 

Neumann's principle, the above tensors must be invariant under the 

symmetry operations of the point group of the crystal structure. 

Graphite has the point group 6/mmm which consists of the 

symmetry elements 1, six of 21, 2z, + 3z, ± 6z, together with all of 

these multiplied by the inversion operation 1, making 24 in all. It 

is easily seen that second order tensor effects are isotropic in the 

basal plane for zero magnetic field and this leads immediately to 

drastic restrictions on the componentss 

Thust ff = a xx yy 

Also, a 	= a  . cr 	a  = a  . a 	. 0 
xy yx xz zx yz zy 

Now, when a magnetic field is applied, the symmetry of the system 

(crystal plus magnetic field) is considerably reduced and in general 

0(E) will have nine non-zero components. For small magnetic fields the 

tensor components can be expanded in terms of magnetic field components, 

H.1, with field-independent coefficients a 

= aij  + aksek  + a.klijHkHl  + aklmij H. 	+ 	( 3 ) 

(see Kao and Katz and Birss). The coefficients must allow a  to obey 

the Onsager relations and are further restricted by crystal symmetry 
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From the former we have aij  = aji, akij  = 	akiij  = akiji. 

Following the method of Hires (1964) we find for the point group 

6/mnun: 

2 	2 
(711 = 411 + (411224-a1221+41212)H1 + 41122"

„  + 
2 	a3311"

,
3 

a1122H1 	
+ (a 

(722 = all + 	 11224.a12214-a1212)4 + a331111  

2 	2 	2 
a33 = a33 -I-  

a1133H1 	
+ a1133H2 	-1.- a3333H3  

a12 = a312E3 ▪ (a1212+a1221)H1H2 

+ la sfa3113)H2H3  
(723 = a123H1 	 .131 

(731 = -4132H2 	(a133.0-a3131)H1H3 	 (4) 

a13 = -a123H2 	(a13134-a3113)H1H3 

/32 = a132H1 ▪ (a1331
+a3131)H2H3 

/21 = -a312H3 	(a1221+a1212)H1H2 

Now, obviously aiaij  = 	and Onsager's relations give 

a1212 = a12212 a1313 = a1331, a3113 = a3131 a123 -a132 
so there are 10 

 

independent coefficients to second order in magnetic field, 4 to first 

order, and only 2 in zero field as was mentioned above. 
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It is interesting to consider the case when the magnetic field 

is confined to the c-axis direction; H = (cio,H). The conductivity 

tensor now reduces to 

'(a11+a3311H2) 	(a312H) 	
0 

alj  .(H) = 	(-a312H) 	(a11+a3311H2) 0 

0 	0 	(a33+a3333H 

To obtain the resistivity tensor we use the fact that p is the 

inverseofaltheaboveexpressionsfor Crij  apply to any second rank 

polar tensor property of graphite but to relate the coefficients a of 
the resistivity tensor p to those of its inverse, the conductivity 

tensor a, we use the relation aikpkj  Sir  These nine equations can 

be solved for a general (small) field but we restrict ourselves to the 

case H = (0,01H) which leads tc 

(711  
P11 = P22 - 2 	2 	' 

P33 
(711 + a12 

a12  
P21 = -p12 = 2 	2 

1711'12 

a' 	"31 = P32 - P1'3 - P23 = ° 
33 

(6) 

- giving to second order in magnetic fields 

(5) 
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2 

	

- 48-3211 	2i1gAH23 (2lia H) 
2 	3 J 

11 	all 	all 	a11 

(-c12) 	 (phi ) 

0 

Pl  • .j  (1) 	= 

 

0 

 

(al 	(a33 33)H2)  (7)  
33 	a33  

0 	 0 

--whichisathasarneformas01  ) alj 
/LIZ. 

We can now see that the Hall coefficient is given by -k 2  ) 
a
11 Na 

pxx(H)-pxx(0)  
and the transverse magnetoresistance, MT 	p(0) 	

by 
xx   

a2  
= .43.111 

all 	all 

c Pzz(H)-Pzz(°)  

	

The longitudinal c -axis magnetoresistance, ML = 	pzz(0) 

is given by a similar expression: 

M
c 	-(a3333)H2  a33 
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2.2.2 Re3g:ticttt:bejye2nainlcstag_guj.§p ic  graphite. 

The above tensors afford a description of the galvanomagnetic 

effects for single crystal graphite but it is not immediately obvious 

that they may be employed for the polycrystalline structure of 

pyrolytic graphite; although pyrolytic graphite is well aligned in the 

c-axis direction the a-axes of its individual crystallites are randomly 

orientated. To obtain rigorous expressions for the polycrystalline 

material would entail complex averaging calculations which are not at 

all well developed but it might be expected that the behaviour of such 

a material lies close to that of a hypothetical solid with perfect 

cylindrical symmetry about the c-axis. Calculation shows that none of 

the non-zero elements in the above tensors are reduced to zero by the 

increased symmetry of this solid so one expects the above tensors to 

hold for pyrolytic graphite for all effects which are not dependent 

too strongly upon crystallite shape and size. 

Although the exact solution of this problem appears to be 

intractable at present (perhaps computer simulation studies would yield 

useful information as they do in the field of radiation damage) the above 

considerations provide reassurance. The following arguments, based on 

H.J. Juretschke's note in Appl. Phys. Letters, .21213,1968, concerning 

the 'third order elastic constants of polycrystalline media', elucidate 

a little more clearly the restrictions under which one might reasonably 

expect an equivalence between the tensors for single crystal and 
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pyrolytic graphite. We start by writing the relation between current 

density J1  electric field Et  and conductivity tensor a  s Ji  = a..ij E.. 

For a polycrystalline specimen, we are intexested in a spatial average, 

giviligo.)...<0..E.
J
>whichreduceeto 0. 	xj >=<0,..>E• when we make 

the (extreme;• assumption of uniform electric field throughout the 

polycrystalline mass. The problem has now been reduced to an averag-

ing of the single crystal tensor a  over all the orientations which 

occur. Pyrolytic graphite is composed of crystallites with randomly-

orientated a-axes so one has to average over all possible rotations 

about the c-axis. For a rotation 9 of the crystal about the z-axis 

(which is coincident with the crystal's c-axis) the tensor components 

are transformed in the following ways ce..= a.xpj a.q-pq where repeated xj  

irdices are summed in the usual manner. oe. denotes the new tensor xj 

components and a is the rotation matrix describing 9- 3  

   

 S 0 

-S C 0 

0 0 1 

C 

where C E cos 

S E sin 9 

   

The average value of aij  is thus 

25 	211 
1 

exj 	2 
<cr1, ..> 	r .(0 	

TT 
d9 = -1- r aip(8).jqcocixrdo 
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As an example, we take 

1 
<a 	k 	a 	a 	-1-a a 	)(le 
12 E 	211 	

fa
o 	11a  21 11

+a  11a  22 12
+a 

 12
a 
 21
a 
 21 12 22

a 
 22 

air 

= 2ff r
0  f 

  
%-10.11S.0 	0-12 C2 

c121S2 
	

G22S.C)"  = (°'12-1a21)  7 
 

Similarly, we find 

<all>E = <cr22>E = i(17114.a22)  

1(  
<a12>E = -</21>E = 5‘11112-1°r21)  

<a33>E = a33 

<U13>  = <u31> = <c123> 
 = <a32> = 0 

The corresponding resistivity tensor is found by inverting <a> : 

<cy11>E 
<1311)E = <P22>E 	2 

<U11>e<U12>E 

 

Ea11+a22)  

 

- 	 (a +7 )
2 
 +-(7 -1721)

2 
4 11 22 4 12 

1 
< p 	> =  

33 E <a33>E 

1 
a33 

All others 
zero 

La12V 1-(a12-a21)  

<P21>E = -<P12>E 	.„2„. 	‘2 - 1 ( 	 2 

‘Cr  11 'E' (C71 2f  E 	 C̀r1 1 u  22 	4 '11 2-r-T21 

Referring to equation (5) for the single-crystal conductivity tensor 

under a magnetic field H = (010,H), we see that the average resistivity 

tensor reduces to : 
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0'11  
<P11>E = <P22>E 	2 

(711- "12 

<p > = 33 E 	0 33 

a21 
<P21>E = -<P12>E = 2, 2 

610:712 

teN 

all others zero 
	(8) 

- under the assumptions of a-axis directed magnetic field and uniform 

electric field. 

Now, we may carry through the same analysis under the assumption 

	

of uniform current density; <Ei> 	<pisy = <pij>Ji. This leads to 

an average resistivity tensor expressed in terms of the single-crystal 

components: 

P11"22  

	

<P11>J = <P22>J - 	2 

<P33>J = P33 

<P12>J = -<P21>J = 1-(P12 -P21)  

Finally, these may be expressed in terms of the single-crystal 

conductivity tensor components under the assumption of H = (010,H) : 
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<P11>3 = <P22>J = 2 
(711.'12 

<P11>J 

a12 

) 	all others zero (9) 
- 	v33  

<P21>3 = 	 <P12>3 = 	2 	2 
all+al2 

Comparing (8) and (9) we see the average tensor components are the 

same under both extreme assumptions with the additional one that the 

magnetic field is along the c-axis in each ease. 

In short, provided one does not destroy the high symmetry of this 

material about the c-axis by H1, 
H
2 
field components, the tensors des-

cribing the polycrystalline material have exactly the same components as 

the single crystal tensors under each of the assumptions; uniform 

current density and uniform electric field distribution. This does not 

prove the identity between the macroscopic descriptionsof the two types 

of graphite, but it certainly makes a common assumption more plausible 

and indicates that one should be even more wary when the magnetic field 

has components in the basal plane. 

2.243 The Boltzmann Transport Equation. 

It was shown in Appendix 1 that for some purposes electrons in a 

crystal can be treated as fictitious particles with mass given by 

2 
4). . 	aE 	moving classically under the influence of the 
'mili 	h2  Bk. ak 

j 
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external electric and magnetic fields. We now consider the average 

effect of the whole assembly of electrons on the transport processes; 

a statistical approach is necessary to condense the vast amount of 

information required for a complete description of the microscopic 

behaviour of the system. We define a distribution function X CE,r,t)dVica3  r 

giving the probability of finding a particle with position r and momentum 

K lying within d3r, dVk. The fundamental equation determining this 

distribution function is the Boltzmann equation, derived for instance in 

Wilson p.4. 

bf + V.V 
r  f + 	-U) collisions 

ot 	— 	bt 

The term on the right-hand-side of the Boltzmann equation represents 

the effect of certain terms in the crystal Hamiltonian (which have so far 

been neglected) leading to transitions between electron states. Whenever 

the principle of detailed balance applies, such transitions do not 

influence the equilibrium distribution function (the Fermi function) 

but they do establish it in the first place, and in the presence of 

disturbing external fields they have the effect of limiting the response 

of the system so that in the steady state there is a balance between the 

external fields and the effects of scattering. 

The change in f due to collisions can be written more explicitly 

in terms of the probability per unit time wos,v) that an electron will 

make the transition 	K1  induced by an aperiodic term in the crystal 
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Hamiltonian resulting from an irregularity in the lattice. Such 

irregularities can be lattice vibrations (phonons), leading to 

temperature-dependent scattering, isolated impurities, electron-electron 

scattering due to the screened Coulomb repulsion between electrons 

remaining after the usual one-electron treatment has taken care of the 

average potential, and other lattice disturbances such as vacancies, 

grain boundaries and dislocations. 

As an example, consider the scattering by a fixed impurity or 

grain boundary which are both massive compared to an electron. The 

energy change of such an irregularity is tiny because of the disparity 

in masses and we may regard the process as being one in which the 

electron energy is conserved; w(goo) is proportional to b(EK-EK1 ). 

Tie probability of a transition occurring from state K into any other 

state in time dt depends on the occupancy of the initial and final states 

and is given by 

dtrm  Wtal)fK(1-fici)dVK3  

Similarly, the probability of a transition into state K is 

dtfr W(12,K)fKI(1-fiddVKI  

Thus, the net increase in fK  due to collisions of this kind per unit 

time is 
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bl) 
coll = rBZ Ew(' 	(1-fic) 	W(x,K') fic(1-fic,)3d.VKi 	(1) 

A formally similar equation is obtained for processes which do 

change the electron energy with ritii,10) in place of W(ILIKI), where 

r is no longer proportional to b(Ex-E10). Because of the additivity 
of independent-event probabilities, the total expression for b-f" at/coil 

will be the sum of the appropriate integrals for the independent 

scattering processes. 

In uniform equilibrium, the left hand side of the Boltzmann 

Bf equation is zero which implies that at)coll must be zero for all 

scattering processes. This forces the intergrand in (1) to be zero, 

leading to 

W(KI,K) fo(EK„) (1-fo(EK)) = W(KIKI) fo(EK) (1-fo(EKI)) 

This is a consequence of the 'principle of detailed balancing'; every 

process and its inverse must occur with equal frequency in equilibrium. 

The equilibrium solution is the Fermi distribution function 

1  f - o 	e(E1-11)X74. 1 

where E is the total electron energy and is the electrochemical 

potential per electron or 'Fermi energy'. 
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Novi the electric current density J is given by 

J = 	 ry, dvic  
so our task is to solve the Boltzmann equation in the presenoe of 

electric and magnetic fields and then substitute in the above equation 

to obtain the conductivity. We note immediately that, since graphite 

obeys Ohms' law, we are only interested in functions f which lead to 

an integral proportional to electric field. 

2.2.4 me Relaxation Time Approximation. 
The solution of the Boltzmann equation is greatly simplified if 

it is assumed that disturbances die out with time with a time constant 

T L); 
of 
:t)coll 

f 
K 
 _fo  

IC 

1.K 
This is not always a valid assumption (e.g. for lattice scattering 

at low temperatures) but is e commonly used starting point for transport 

calculations. S. Ono and K. Sugihara (1966) show that it is a reason—

able assumption for graphite at least in the region 25°K to 400°K, where 

lattice scattering is dominant. When the approximation fails, it is 

necessary to solve the full integral equation for the distribution 

function as has been carried out by E.H. Sondheimer (1950) for some 

special cases. 

Substituting in, and using the effective mass approximation, 

the Boltzmann evAtion in the steady state becomes 
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"9" C.C.+ V AH) Ve +V .Vrf = - f-fo fl   

where 40 4101 T(s) must have the same symmetry as the crystal. 
For an isothermal, uniform conductor; 

(e)[e V A a ] .v f+ (f -f) /T  = 0 

This is the starting point for our discussion of McClurels method 

of solution for a general band structure in section 2.4., but we note 

here that Chambers (1952) has given a formal solution which is of use 

in high magnetic fields and can be expanded in low fields. However, 

the same low-field expansion can be obtained more simply by an iterative 

procedure presented by Jones and Zener (1934). 

2.2.5 IU10.9.4=Zalla§212iion. 

In the above-mentioned -caper, Jones and Zener obtained a solution 

by simple iteration. Let us define a vector operator 

cf 2 vicE /CK 
and assume a solution of the form f = fo 	aB . Then the 

Boltzmann equation can be written 

Bf 	bf 	Bf 
ge.V1 

o  - 
	yfli vlf4 	+ -9- VII vicf - 	E V —2  
BE 	h C 	BE 	h C-- --* 	h 	K E 

- 

bfp e e.Vo - t2c g V.Vic_ fs_ 
BE ft 	 E 

ft - 	C 	K 	o 

Bfo 

= 0 
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This reduces to the following equation when we neglect all 

powers of e higher than the first (to impose Ohm's law) and note 

that 

Bfo VAU.VKfo = bE VAH.VKE 0 0 since VKE . AV 

2 esvo+ H.SS 0 	= 0 

Putting H = 0 one obtains the zero-order solution 

00 = Z2ft  /*VICE  

Higher-order solutions are obtained by substituting back successively 

into 

r = 	"VO 114r-1' r  = 1'2'3  

Obviously, there is some critical value of magnetic field, HI  

above which the series no longer converges for a given band structure. 

The critical value is best found by actual computation as no general 

expression is available. Jones and Zener themselves point out that the 

Boltzmann equation is only meaningful for values of H such that 

<<1 	- this restricts the magnetic field to values below the quantum-

effect region so that electrons never have time to complete more than a 

small fraction of an orbit in the field before being scattered, We shall 

mean by a 'small magnetic field' a value which satisfies the above 

condition and which is also small enough to ensure convergence of the 

Jones -Zener expansion. 
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The development of this series solution is undertaken in Appendix 

2 where the conductivity tensor gij(g) is calculated from Ji  = aijEj  

J and .7 
dfodVK  . The Jones -Zener terms are compared with . 	eir  3 9;1E7   

the terms in the phenomenblagical expansion; 

crii  11) = aii  (0) 4- cskiiHK  n. -klij HKH1 + 

and integral expressions applicable to graphite are developed for the 

coefficients aij  .., akij„  aklij. These final expressions involve 

integrations over the Fermi surface and have been derived under certain 

conditions* Degeneracy of the carriers, magnetic field parallel to the 

0-axis, and y3  = 0. The final expressions are:- 

0 e2 
Tr) 	3 r ea), diCz  

• 

V -e3  cr3ii  g 	
04) 

0) 	r 7,2 P
dK)2 

 dK z 

= (T
( 

 a331J 0 
0

) 
 -e4  

Tr 

41
.32ft

6 

 

r r3  ()2 	dK aK K z 

 

It is interesting to note, in passing, that the analysis in 

Appendix 2 yields as a condition for a non-zero c -axis longitudinal 

magneto-resistance or conductivity that the expression (T(,1) if) 
must have some K or a-dependence; a KZ-dependence alone is insufficient. 

a - = (Tr  0 
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We are using here the cylindrical co—orainate system inntroduced in 

Section 2.1.3 	K is the distance from the zone edge. The angle 

a has gone out of our expressions because .,;he neglect of y3  leads to 

circular symmetry about a zone edge. 

To proceed, one needs to know T(Kz  ), 
PI! , IC(Kz,  ). The latter 

two functions can be obtained in a straightforward manner from the 

Sloncewski—Weiss band model with y3  = 0, but' is a very doubtful 

quantity. Perhaps the best one can do at present is to regard T 

as a parameter (varying with Kz  and temperature). K. Sugihara and 

H. Sato (1963) have calculated the relaxation time for two temperatures, 

25
o
K and 50

oK, where lattice scattering is dominant, but it could 

differ- considerably at lower temperatures. In a later paper, S. Ono 

and K. Sugihara (1968) show that the inclusion of 1/3  causes T to vary 

with position on the hodograph (with a), though the magnitudes at the 

two temperatures are maintained roughly at the same values of 

1.3 x 1012  sec (50°K) and 3 3.5 x 1812  sec (25°K). 

A computer programme has been written to evaluate the aboVe 

integrals for a given set of band parameters (yo, 	1/21 y41  Al  Ef). 

These parameters yield, through the equations of Sections 2.1.3, 

2.1.4, expressions for the factors K (from the cross—sectional areas 

BE 
in Section 2.1.4) and "SIZ in terms of the integration variable Kz. 

The range of Kz 
was split into three, corresponding to values of K

z 

between K and H, Di and H, and J and H of Figure 2.4 which parts of 
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the Fermi surface describe holes, electrons and minority electrons, 

respectively. 

It was found that to prevent computational difficulties the 

region of the electron surface near M had to be excluded from the 

range of integration. We recall that the expressions developed in 

Sections 2.1 are not valid for this difficult region in any case. 

The lower limit on Kz for this integration was increased away from 

the Kz value of M by some 0.5 to 1%. No such automatic adjustment 

occurred for the other two types of carrier although this was allowed 

by the programme. 

No absolute values are available for the magnetoconductivity 

tensor components at the present time, but using the Dresselhaus 

and Mavroides (1964) set of parameters (2.88, 0.39, 0.016, —0.2, 

0.012), the following ratios mi  s (minority electron/majority electron), 

hi s( 	hole 	/majority electron), 

for the contributions to the zero field conductivity (i = 1), Hall 

effect (i = 2) and magnetoconductivity (i = 3) were obtained; 

ml = 0.06, 	m2  = 0.3, 	m3  = 0.96 

hi  := 4.8 	h2 = 1.41 	h
3 
= 0.2 

showing the important influence of holes on the low field Hall effect 

and that of the minority electrons on the magnetoconductivity. 
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Changing the Fermi level from 0.012 to 0.019 resultod ins 

m1 	0.03, 	m
2  = 0.13, 
	m3  = 0.41 

h1  = 0.59 	h2 = 0.22,, 	 h3  = 0.57 

showing how sensitive electrical conduction is to changes in Fermi 

level, for the majority electrons now dominate completely. 

The band parameter set (2.851  0.3, 0.021, -0.2, -0.006, 

0.029) yieldss 

m1 = 0.14, 	m2 = 0.05, 	
m3  = 0.11 

h1  = 0.67, 
	h2 

= 0.30, 	h3  = 0.11 

The above calculations were performed with a constant 

rJlaxation time T  but the programme can accept any KZ  dependence

one wishes to attribute to T. 
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2.3 Quantum Oscillations. 

In degenerate conductors it is possible under certain con-

ditions to observe quantum effects in the electrical conductivity. 

The application of a magnetic field to an electronic system causes 

a quantisation of electron energy levels for motion perpendicular 

to the magnetic fields, such that the energy level spacing becomes 

ftw where the cyclotron frequency cd= m At sufficiently low -rc   
temperatures, where KT s  tico the thermal broadening of the levels 

is less than the level spacing and the effects of this quantisation 

can be observed provided other level broadening mechanisms are not 

dominant. For graphite, the above condition requires liquid helium 

temperatures and magnetic fields above about 6kgauss. 

This section illustrates the effect of magnetic condensation 

of energy levels in 2.3.1 by means of a semiclassical model, and goes 

on in 2.3.2 to present the 'generalised Landau' formula which is used 

for data analysis in Section 4.2.3. Literature cited below should be 

consulted for details. 

2.3.1 Motion of Wave Packets in a Magnetic Field. 

It was shown in Appendix 1 that, under conditions stated 

there, electrons in crystals may be regarded as classical particles 

with an effective mass m*  and with MC replacing the classical 

momentum. In particular, under the influence of a magnetic field 

H the representative point in K- space, K, is given by t = 	V Ali 

Where V is the velocity of the electron. Thus K is normal to both 
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H and V. The latter is normal to the Fermi surface, being given by 

1 w  grad KE. Thus K is confined to an orbit defined by the inter— 

section of a plane normal to the magnetic field with the Fermi surface. 

The electron makes one revolution in a period 

cfi 
eH (1) 

where dK is an element of the orbit and V is the electron velocity 

perpendicular to H in the plane of the orbit. For free electrons 

h21(2 
E = 	9 Amaa96.1. 

2m m 
V = 

	

	eH so that to) = — a It is convenient to define a 
me 

eH 'cyclotron effective mass' for other band shapes m*  = 	(2) 
UP 

From (1) above this obviously varies from orbit to orbit in general. 

We point out here that equation (1) leads usefully to the 

oh definition of a 'phase variable' 0 = 	
dK Wh:ch is equal to 

2a.  for a complete circuit. This is used in Section 2.4.1. to solve 

the Boltzmann transport equation. 

The periodic motion of an electron in a magnetic field leads, 

as one might expect by analogy with a simple harmonic oscillator, to 

a quantisation of the electron energy levels in units of koto motion 

perpendicular to the magnetic field. (See for instance Ziman, 1965). 
2 

It can be shown that (2) is equivalent to m* 	5g  

where A is the area of an orbit in K-space. Thus if OE a. !w, we have 
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m SA = ------ which indicates that the areas of orbits in K—space A 

are themselves quantised. In a crystal the area of an orbit on 

the nth energy level is An  = 	(nil') where y is — 2. 

As the magnetic field is increased the rreas of occupied 

cylindrical energy surfaces increase, but these cylinders depopulate 

as they pass through the Fermi surface. Consequently, the density 

of states jumps (discontinuously at 0°K) every time a magnetic energy 

level passes through the Fermi surface of area A. This happens as n 

changes by unity in intervals of reciprocal magnetic field of 

=242 
 

(n+141,)—(n+14) 	(3) 

For a more complicated Fermi surface the energy cylinders 

may cut the Fermi surface in several places and cannot be said to be 

'passing through' the Fermi surface at any given value of magnetic 

field; many values of AF  are involved. However, a more thorough 

analysis shows that the effects of all but the extremal cross sectional 

areas of the Fermi surface average out and the density of states changes 

periodically in (17) with (possibly superimposed) periods determined 

by the extremal cross sections. Electronic properties such as the 

electrical conductivity or Hall effect which depend directly on the 

density of states reflect the above changes in the form of oscillations 

superimposed on the classical background. The semiclassical model 

is presented in an interesting manner by Pippard (1965). 
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2.3.2 Thspeneralised Landau Formula. 

Equation (3) of the last section gives the relation of 

Onsager (1952) and Lifshitz (1957) for the period P (gauss 1)of 

oscillations in resistivity, known as the Shubnikov — de Haas effect 

(1930), and. Hall effect. All theories of the SDH effect agree on this 

period behaviour and also on the thermal damping factor D (Landau, 

1939) which describes the temperature dependence of the oscillation 
Pr2Tem 

amplitude, D = u/sinhu, where u = Tr  . T is the temperature, 

w = —4- and m* is an orbital effective mass. This factor is seen to m o 

reflect the condition mentioned in Section 2.3 above. 

Extensive references to the literature on theories of 

susceptibility—type oscillations are given in the paper by Soule et 

al (1964). This presents data on a graphite single crystal which proves 

that the electron and hole Fermi surfaces of graphite are closed and 

effectively resolves the controversy mentioned in Section 2.1.5 in favour 

of the overlap model. Roth and Argyres (1966) give a review of magnetic 

quantum effects with an extensive bibliography of direct interest in 

the present case. 

Imperfections affect the motion of the electrons in a variety 

of ways. Scattering is all—important for transport phenomena but 

another effect, the broadening of the unperturbed energy levels through 

collisions with imperfections, proves to be important in determining 

the amplitude of the oscillations. Dingle (1952) was the first to 
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derive the effect of a finite level width (- r) on the oscillations; 
_arrr  

the amplitude of the rth term is diminished by the factor exp(---) 
*co 

This goes quickly to zero as the broadening becomes comparable with 

the level separation. It is sometimes useful to express r as an 

equivalent temperature AT, the 'Dingle temperature' AT = 
h
/Ina where 

T is the collision time. In the relatively low field region where an 

exponential approximation can be made to the hyperbolic sine term 

mentioned above the collision damping term amounts to a simple 

additive correction to the measured temperature. 

Soule, McClure and Smith (1964) give a formula which can 

approximately reproduce most of the results of the various theories 

of the SDH effect. This gives for the oscillatory term due to one 

cazriert 

KUAT 	21TK 
G = Hn  E W sinhKU 

 exp 	cos(17 — thic) 

and AT is the effective temperature change due 

to collision broadening AT = 
hft10" where 7 is the collision time. 

Another similar term is added for the other carrier. 

The results of various theories can be represented by choosing 

specific values of n, w, th. The generalisation comes in allowing 

these to have arbitrary values. In Section 4.2.3 this expression is 

used to fit experimental data in order to derive values for m*  and P 

the effective mass and Period, respectively. 

K=1 

Where U = 211
2KTm*c 1 
he 	Ti 
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2.4 MAGNETO-CONDUCTIVITY TENSOR ANALYSIS  

We follow McClure, 1956, in deriving the form of the magneto-

resistance effect and Hall effect as f%notions of magnetic field 

strength. However, we shall not carry it through to the end with 

the generality of MoClurels paper as this would be unjustified in 

view of our subsequent application of the theory. 

2.4.1 	General Theory 

Wilson p.196, gives the Boltzmann equation in the presence of 

uniform electric and magnetic fields, assuming a relaxation time T 

(see section 2.2.4): 

(e/)Ce + V ALVOLVkf + (f0  f)/41  = 0 	(1) 

Writing the distribution function as 

f = f
o 
- 4% 6f0/aE 
	

(2) 

Where is proportional to electric field strength (leading to a 

solution satisfying Ohm's law) we find the Boltzmann equation reduces 

to: 

af 	of 
e/A e.Vk  f 	e/Ac o 	aE Y- ALL'vk 'di' BE)  - 0 

i.e. 	(eAc) v 	4/71+ e ca. = 0 	(3) 
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This is to first order in e. 

The first term represents the derivative of 0 along a curve 
called the hodograph, formed by the intersection of a plane perpen-. 

dioular to H with a constant energy surface. 

To describe the position of the representative wave vector of 

the electron on the hodograph we define a new variable S such that 
ak 

aS = (e/Wc) v AL H. Thus S represents the'time at which the 

representative point, moving in a magnetic field only, reaches the 

point k. Equation (3) now becomes; 

ach + 
	e e.v = 0 
	

(4) 

This is easily solved, to give; 

- r dS'ee.v(SI) exp [— f dS"(Stt)j 
	

(5) 
8' 

where r is to be determined by the boundary condition that 0 must 

be a periodic function of S and turns out to be — mb. 

If we now assume that 1 is constant on a given hodograph and 

use the periodicity of the velocity to write it as a Fourier expansion; 

co 
v = E v(m) exp(imuz) 	(6) 

where W is the cyclotron frequency for the hodograph„ given by 

,rt.2.d.11 
= 	eH 	; vp is the velocity component perpendicular to Hs  our 
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solution now becomes: 

co 
0 _ 	E eS.Y.(m) exP(ilaWs) 

-°D 

To find the conductivity tensor we must first write down the 

current. Fbr a single band this is: 

-af 
= — e/(2n)3  I d3kitf 	f diky_0(-3E2 ) 	(8) 

(2n)' BZ 

Now, since for a given band, the energy is a continuous function 

of k within the Brillouin zone, we may replace the integrand at any 

point k by the average over the hodograph through k. This does not 

change the value of the integral over the BZ. 

Thus, 	= e2/(2n)3  r (3.3.1c(— afopE)Isil 
BZ 

Where the vector 
	M - (2ner-11-)4' dS Ov 

Substituting for 0 from 7 we find 

m = 	E inUt dS [ E v(n)e 	js.v(m)elmws aneT 	+ jar 	— 

co 
i.e. E E.v(m)].tr(— m)/(1 + imcor ) _ 	_ 

(7) 
+ 
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We now define a tensor S by M = S.a, and choose H to be 

parallel to the z—axis. The components of S give rise to the compon— 

ents of the magnetoconductivity tensor, Using the fact that 

etc., it is easily shown that the components 

	

oa 	Ivx(m)12  
S 	= v2(0) + E 	  

1 + (mum )2  xx x m=1 

S = xy 
co 

m=1 

(vx(m)v (—m) + v (—m)v (m)) 
X 

y 	 (racol-)2) 
(vx(—m)vy(m) — X(m) y(—m))_ 

(13) 

  

:1 SXX = ex 
 Cy 

 = E
z 
= 0 

of aa are: 

M  

(12) 

szz 	v (0) + 
m=1 

Ivz (m)12  

+ (mum )2  (14) 

Similar expressions hold for the other components. In general, 

= Ski(—H). McClure shows that vx(0) = vy(0) = 0, but this 

is imposed by our more severe symmetry restrictions in any case. 

Thus, Szz  is the only component which approaches a finite limit as 

H 	W  . 

The conductivity follows: 

g = e2/(2n)3  r d3k c_afoiaor S 	(15) 
BZ 
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If degenerate statistics apply, afoiclE is only appreciable for 

energies near the Fermi energy so the integral can be transformed to 

one over the FS. If, in addition, T is constant over the FS the form 

ofg would be the same as that of S. 

So far we have been dealing with one band only and we note here 

that summing the contributions from several bands would lead to additive 

contributions to Cr from the different bands, each of the form derived 

above. 

It is now necessary to find the Fourier components of velocity for 

use in 12, 13, 14. The energy can be expressed in cylindrical 

coordinates, E = E(p, e, kz). A given hodograph can be described by 

k
z 	const., P = P (e). Since the energy is a single valued function of 

k for a given band, it must be periodic in 0: 

CO 

We can write, 	E 	En  (p, kz) exp(in 0) 	(16) 

The velocity is obtained by taking the gradients of E. 

1 clE v = x h akxe  

e.g. 

It is easy to show that the gradient operators required are: 

6 ak  = cos 13 	— P sin e 
x 

7c—  = sin e 	+ 1 p  ap 	cos e v-6  oe 
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Thus 

vx = 	E nhp cos 8 - i(n/p)EL. sin 8] exp [in 8] 

v = 1/A /ap sin 0 + i(n/P)En cos 0] exp [in 0] 

These can be written; 

vx = 1/)2 (g + g*) 

v = i/f2 (g - got) 

where 	g = E/5 1,, -ft [aEn,/ ap 	(n/p)En] exp(i(n + 1)e) 
n=-00 

Now we shall restrict ourselves to a band structure with rotational 

symmetry about the kz  axis. This implies that E is independent of 8 and 

so all Fourier coefficients, En, except E0  (p, kz) are zero. McClure 

considers less severe symmetry restrictions but as we intend to apply the 

Kramers-Kronig relations to our conductivity at a later stage, it is 

more convenient to impose one of the conditions for their validity, viz. 

cylindrical symmetry, at this point. (19) now becomes 

aE 0 	, 
g = 47-it a p  e xp(i8) (20) 
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But this must be expressed in terms of the time variable, S. In general, 

p is a function of 0 and 6 is a function of S (e = ws + periodic 

function of S). For our symmetry, p is independent of 0 and e = oos so 

we have: 

aEo g = 	 exp (icoS)= B exp (iceS) say. .1271" (21) 

Thus, the velocity components are 

vx 	4/2 = 	(B exp (icoS) 	B* exp ( — icoS)) 

i (B exp (icoS) — B* exp ( 
Ara 

Comparing this with (6), we see that 

vx(1) = B4/21 	vy(1) = iB/j2 

all other v(m)'s are zero. 
vx(-1) = B*Ati, 	vy(-1) = — i B*/J 

Hence we nave for the tensor S 

S= S = xx yy 
B2  

1 + (u. 2-)2  
(22) 

B2 Wr 
= 

Yx 	1+ (W11)2 
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The conductivity follows from (15): 

2 	—af 

+132(ctr)2 d3K  

= 	e 	r 	( 	0 ) 	 rrxx  yy 	J b (2n)3 BZ 

(23) 

cr 
e23 r

f0) 
;y. 	 E 	B2 cor 	3 

d K „ 
b 	(2n) 	BZ 	Z2 	(w? )2 

wnere summation b is over the bands. 

Now, for grapnite$  which is nignly degenerate below 200°K, 6f0AE 

localises the integrand to tne neignbournood of the FS. We nave thus 

reduced tne number of independent variables to one$  since tne integration 

is over a surface with circular symmetry. Fixing any one of the functions 

B, H (proportional to 4, kx  k y : or kz immediately fixes the values 

of tne otners (with tne reservation that some functions may be multi-

valued with respect to a given variable) and thus the value of tne 

integrand. 

Ugr 
McClure 1958$  chooses a variable S m (-11-) mai= is proportional to 

relaxation time. The fact tnat 7 nas been taken to be constant on a 

given nodograpn in tne above analysis is of no consequence, nor isT 

the possibility that parts of tne integrand may be multi-valued in tne 

new variable, as tnis is easily absorbed into the function g(S) with 

which we now replace all explicit references to T, k$  B or E. Bearing 

tnis last remark in minds  we can see tnat tne integration is merely 
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being taken over all complete nodograpns lying on tne FS, eacn one 

being labelled by its relaxation time and that the appropriate limits 

of integration are from 0 to w  

Thus, we have finally; 

• = E xx 
g(S) dS  

O 1 + (SH)2  
(24) 

CO  SH g(S)dS • = r r 
xY 	• 	+ (SH)2 

Where tne summation b is over tne bands. 

2.4.2 	Application to Graphite  

We snail now employ tne expressions obtained in tne last section 

to snow how tne carriers in graphite can be separated and tneir 

properties found from measurements of the conductivity and Hall effect. 

Dividing the carriers in grapnite into positive and negative carriers, 

we can write: 

	

dS €"p  (Se) 	r e° dS gn (S)  = 	+ 	= XX XX XX 0 1 	(SH)2 	I  0 1 	(SH)2  
( ) 

n 
a = aP 	a = xy xy xy 

r e°  dS(SH)gP(S) 	r -  dSOH)gn(S)  
0 1+ (j)2 	0  1+ (SH)2 

where OP, h could each possibly contain additive contributions from 

several carriers of differing mass, etc. We recall, too, that tnese 
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expreosions are based on circular orbits and a constant relaxation time 

on a given orbit. 

Kramers—Kronig Relations 

It can be shown, by contour integration, that 

P P c°  f(x)/(x — X) dx = f(X) 
in 	j —co 

where P means that the Cauchy principal part of the integral is to be 

taken. Now suppose f(X) is complex; f(X) = fi(X) + if "(X). Then we 

find: 

m  f"(x) dx fi(X) .-1 pr n 	J 	(X - X) 

fri(x)..l p r m  f' x) dx 
n 	j 	(X - x) 

By applying these to two functions of magnetic field 

f(H) = P(H) + io:y(11) 

and 
	

f(H) = 64
y 
 + la=  

x 
	. n 

we obtain relations between the diagonal and off—diagonal partial 

conductivities; 

(2) 
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dx -1 p off' 

CrPxx = 	P  

0F  dx 
aP  = P —Z—x----acy 

H - x H - x 

an  , 	
P 

XX It 

Cry 
an _ 1 p  p 

Cry
xy - n J H- x 

These can be reassembled to relate the partial conductivities to the 

total conductivities; 

P 	nP 	dH,  I 	}- r-_--rp  axx(H ) , xy -  xy n 

(3) 

- a?  a =  P r 	dH' a (H') 
3CX 30C n 	H H' xy 

It can now be seen that by simple addition and subtraction between 1 

and 3 the four partial conductivities can be obtained. We assume, of 

course, tnat a x  and  axy  can be written in tne form of the integral 
expressions in (1); tnis point is taken up later. 

Total Number of Electrons and of Holes 

Swanson (1955),  and Lifsnitz et al (1957), snow that the number 

of carriers of a given kind is given by pec = r 	p wnerep  
-0 

is the number of holes per unit volume (n for electrons), e is tne 

electronic charge and c is tne velocity of light. Thus we can obtain 

p and n from nign-field Hall data for obviously pec = 	and 

nec = (H03)1c5)H.... 	 (4) 
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Average mobilities of electrons and holla 

For a given carrier, we have the relation between conductivity and 

mobility i. i a = neg. Thus, using the zero-field partial conductivities 

W1  (0)x. 	0.13(0)x,, 
= 

"n = ne 	"p 	pe 

Where p and n are known from the above section. The mobilities so 

derived are obviously 'averaged' in the sense that they have been cal-

culated from a combination of high and low-field data. 

Finally, the difference in the zero-field conductivities can be 

shown to be given by: 

CO 

uP  (0) - an  (0) . f 	glcy  
0 

For 

- an  ] 	_ _ r AHL 	na 
xx 	xx H 0 - n 	-HI (Txy -̀t)  

Now, 

Hence, 

QED 

o (H) = - aYx  (-H) since a 	- a for graphite. 

	

xy 	xy 	Yx 

o 

	

LHS 	gaxy(H1) + 	0.xy(W) 

P ±aL 	 1 dH 
n Jo +HI axy(+112)  HI q  ) xy 

Z f 	a (HI) H xY 

(r) 

(8) 
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Total number of carriers  

As a check on 4 and a useful result in itself, we shall show 

that the total number of carriers, (n + p), is given by 

co 
(n + p)ec = 	S dH axx(H) 
	

(5) 

The RHS is, from 1, 

c°  

W (g + n  

n 	

) dS 

= 	S °la  111 - 9 g 2 11 
0 	0 	1 + (SH) 

Hence, as there are no discontinuities in the plane of integration, we 

may reverse the order of integration, to obtains 

co 	 co 
2- 	dS 1 tan -1  LI  °D 	r 	r„ 	, 1 a 

n Jo S 5̀13 5 11  2 

co 

	

which is the LHS by the relations pec = 	
dS gn(S) etc. 

0 

In analogy to equations (4), a further expression for the total 

number of carriers is: 

	

(n + p)ec = (gaxy)H 
	 (6) 
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Representation of data as a function of magnetic field 

Our problem at this stage is to obtain the integrals in (1) which 

describe the experimental variations of the conductivity with field. We 

follow McClure in using a sum. of Lorentzians of the form 

cry,a 	n {An/(1 + (4/Hn)2)1 xy (9) 

where the An and Hn are constants to be used in fitting the experimental 

points. The justification for this is that very good fits can be obtained 

with two or three terms and that these expressions make it easy to apply 

the Kramers-Kronig relations. We regard this as a convenient way of 

representing the'data and do not at first make any identification between 

tile individual terms and the various carriers, though such might be 

justified if the carriers turned out to have very different character-

istics. The procedure used in fitting data to these expressions is 

described elsewhere (4.1.3). 

Let us now apply the K-K relations to these Lorentzians as required 

by (3). To evaluate the integrals (3) we use partial fractions 

co 
r 	(11-11  

H - Waxy(111)  = r . 
H 	d.x xdx 

H!+ 112  H - 	He+ le Hit + x2 

HI2  

	

1 	dx  
_2 2 2 

	

H,. + 	H,. + x 
1 
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1 

E 
i 

H log 

14 

	

2 	2 

	

H'. 	:x 

FP2  . 	H2  

HI2  1 

H2  - 2Hx + 

- 	H3. 	-m
tan-1 m i 

H'1 + H2 

Ht. 	n 

- 
H'2  i 

= - E 	1  

i 111  + 
i 

Similarly, 

co dHl 
H 	Uxx(H') = E  

i i+ 

This equations (3) become: 

A! H!3 
_ P 	n = - Z 1 1  
erxx akx 

i 1114.112 
1 

A.H. 
a p _ an = HE 1 1 
xy 	xy 	i 1? + H2  

Inaccordancewiththeviewthatthell.3_.,H.3.,..(0.0 1P.are merely 

fittingparametarso wsdonotexpecttnelLand H'1  to be the same 

in general. 

- 

(10) 
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By combining (1) and (10) we obtain the four partial conductivities. 

Summary of formulae 

ae now collect some of the above formulae for future convenience, 

using the fitting parameters to describe the magnetoconductivity 

tensor components. 

Carrier densities  

(nP.) ec = (Hcrxy)H  =I-EAT HI2  E A H. 

  

(n 	
2 

p) ec = rdHa. (H) = E A.H. xx 	z i  

P .rtial conductivities  

P  
n 	A.H.2 Atilt.' 

= i Crxx  

	

1. 1 	
1 E 	6  2 

i 	Hi+ H2 	j HI . + H2  
a _ 

	

2 	Al  H. 

xY 2 
Hj 	

a 
H.+ 2 2 

H 
+H2  3. 

A911 	3. 
Qom = 

 

	

azIc( 0) -( 0) - j H — 	= E Ani. J XX 	- Tr o 	xy 	J  

( 1 2) 

(13) 
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Mobilities 

a A. 4. E AHf) —  
(E Ag.Ht 2 + E A.H 

J 

(15) 
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CHAPTER 3 

EXPERIMENTAL 

3.1 MATERIALS — PREPARATION OF SAMPLES 

Sample Shag 

With materials which are known to be highly anisotropicj  it is 

essential to ensure that the current flow in principal directions is 

homogeneous. This makes the adoption of suitable sample shapes, 

electrode positions and application techniques more important than 

is perhaps the case with homogeneous isotropic media. Thus it is 

desirable to minimise the shorting effects of the current electrodes 

on the hall voltage and the perturbation of the potential probes on 

the uniform current distribution down the sample. Spain°7) used 

paper coated with a nearly uniform conductive layer to form a two—

dimensional analogue of the proposed sample configuration and verified 

that corrections were negligible provided that the ratio of sample 

length to width was greater than about four. The samples used in the 

present investigation were out with this finding in mind and a similar 

analogue technique was used to observe the actual current flow in the 

samples as fabricated. A photograph was taken of each sample and the 

outline traced onto the conductive paper from an enlarged print. 

Silver dag was then painted along the outlines of the plated contact 

areas and a current of about 10 mA was passed through the current 

electrodes from an accumulator. An ordinary pencil connected to a 

high impedance electronio voltmeter was used to plot the course of 
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the equipotential lines across the analogue. In particular, the 

positions of the three equipotential lines leaving the silver paint 

on the three potential arms were noted, and it was found that a slight 

correction was necessary to give the actual distance between these 

equipotentials (electrical separation). The correction was usually 

less than 1%. The three analogues obtained for the samples reported 

here are shown in Figure 3.1. 

Previous measurements of c-axis properties have depended upon 

having samples from 5 to 10 mm. thick in the c-axis direction. How-

ever, analogue experiments by M.L. Yeoman (unpublished) have shown that 

it is possible to perform useful measurements upon samples only 2 or 

3 mms. thick. The technique is to cut a rectangular piece out of a 

,leaved disc of the required thickness and to copper-plate all of the 

top and bottom faces except for small islands near the centre of each 

face. These regions are plated separately, leaving a narrow annulus 

of untouched graphite between the two areas on each face. Current is 

fed into the large areas and potential leads attached with silver dag 

in the usual manner to the central areas. It is doubtful whether 

accurate absolute values of resistivity can be obtained by this means 

because of the difficulty in measuring the thickness of the slab and 

in making the side faces perfectly parallel to the c-axis. Addition-

ally, corrections to the measured resistance of the order of a few 04 

must be applied. Probably an analogue investigation of samples as- 



W2 

W3 tam, 
L---1 

W1 

]-,R1-- 3°1 
PYROMIC GRAPHITE SIAMPLES, SNOWING THE 
EQUIPOTENT1AL LINES FROM ERN OF THE THREE 
PoTENTLRL PROBE ARMS. 
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made rather than as-desired would enable the correction to be estimated 

with sufficient accuracy, as is the case with basal plane samples. Extra 

care must be exercised during plating to prevent the formation of copper 

globules on the edge of the sample since these would have a disatrous 

effect on the current distribution. 

the samples 

The samples reported here were cut from four different preparations 

of pyrolytic graphite. Their properties are listed in the table following. 

W1 had beenprepared previously by SpaiP'73 with four potential arms, 

only three of which were in good enough condition to be used. Unfortunately, 

these were wrongly disposed relative to each other for simple Hall measure-

ments and it was necessary to reverse the magnetic field and subtract two 

sets of readings before a meaningful Hall voltage could be obtained. 

This considerably complicated the analysis of chart recordings for this 

sample. The other two basal plane samples were cut in the usual bridge 

pattern: starting with a cleaved disc in the case of W2 and a cleaved 

piece of inner-layer material in the case of W3 (the current path was 

parallel to the cylinder axis so this sample ended up with slightly 

curved potential probes), the pyrolytic graphite was fixed to a layer of 

tissue paper stretched over a hole in a brass plate. A suitable shaped 

mask, cut and filed from thin brass, was similarly fixed with a flexible 

red cement onto the upper face of the graphite and an air-carried jet of 

abrasive dust (alumina) was directed at the unprotected parts of the 

graphite. After a little practice it was possible to cut samples with 
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straight edgesp at right angles to the front face, in about 

20 minutes. A pencil brush was used to remove mask, tissue, 

and backing plate from the sample with the assembly immersed in 

acetone. 

Before plating, the contact areas were slightly abraded with 

the dust jet. A simple mask was employed to shield the main 

body of the sample and one or two quick passes with the jet were 

all that was required. The coloured cement was used to shield 

all areas of the sample except the tips which were to be plated, 

particular care being taken with the edges of the graphite where 

plating occurs very readily. A plating lead was attached with 

silver dag cement and the sample left to plate in a slightly 

acid 100 solution of copper sulphate with a current density of 

about 1mAlcm2. Once a continuous copper sheath sufficient to 

short all the graphite layers together had formed, the plating 

wire was removed with acetone and wires were attached to all 

other contact areas of the sample with the conducting silver 

paint. This final contact was then completed in a similar manner. 

The initial copper plating was considered to be essential to the 

success of this technique because analogue experiments have 

shown the extreme importance of electrically tying all the high 

conductance basal planes together. Finally, all contact areas 

were given another plating to form copper caps over the dried 



-93— 

silver cement. Great care was needed to prevent shorting the 

current and potential areas of c—axis samples, and for both 

types of sample there was a tendency for copper to be plated 

in globules along the "masked" edge of the graphite. Several 

carefully applied cement layers were needed to prevent this. 

The 40 swg copper wires used to make connection to the samples 

could be bent without fear of damaging the graphite but they 

were easily broken off at the sharp edges of the silver paint. 

Any short length of wire inadvertently sheathed in silver paint 

could not be safely bent at all. Contact resistances achieved 

by the above techniques were quite insignificant compared with the 

several ohms resistance of the wires leading out of the cryostat. 

Mounting of samples — alignment  

Basal—plane samples were stuck to tufnol frames for ease of 

manipulation, the current leads being soldered to electrically 

insulated heat posts attached by "Araldite" to the copper sample 

block. By gently bending these wires until a travelling micros—

cope indicated that the basal—planes were parallel to the axis of 

the copper block, the normal to the basal—planes was brought to 

within 0.2° of a position perpendicular to this axis. Once the 

copper block was screwed into position on the cryostat, the 

sample c—axis was within 0.2°  of the horizontal plane. Because 

of the effective planar isotropy within the layer planes it was 
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SAMPLES USED IN THIS STUDY 

W1 	Starting material IFP53 (Spain et al. 1967). Hot-

pressed at 2970001  annealed at 3500°C. Density 

2.266 gms/cm3. 

W2 	Starting material IFP64T. Hot-pressed at 2850°C, 

annealed at 3500°C. Density 2.26gms/cm3. 

W3 	Selected inner layer material (Section 1.2); annealed 

at a  3700°C. 
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not necessary to align the current axis accurately to the 

vertical so this was done by eye. A simple rotation of the 

magnet about its vertical axis now brought the magnetic field 

vector (B) parallel to the c—axis (position T1), or normal to it 

(position T2) see Figure 3.2. Coloured cement was used to fix 

the sample into position and to hold the wires firmly in contact 

with the copper block. Forces of the order of fractions of a 

gram—wt were expected on the wires when the magnetic field was 

near its maximum value so they were coated with the cement to 

stiffen them sufficiently to prevent movement. Tissue paper was 

used where electrical insulation was required. C—axis samples 

were aligned in a similar way and fixed with the cement. The 

thermocouple bead was attached to the sample face with a thin 

layer of tissue paper to isolate it electrically but not therm—

ally. Care was taken to prevent any wire from touching the outer 

copper cap which was slipped over the whole assembly to form the 

exchange gas space. 

3.2 FORM OF Thifl RESULTS — TAKING THE MEASUREMENTS 

Sample voltages were of the order from gV to hundreds of 

gV for the Hall effect and from gV up to mV for magnetoresistance. 

A Pye three—dial Vernier potentiometer, measuring to 1 gV on 

the last dial, was employed with a Tinsley galvanometer amplifier 

to enable voltages to be estimated to within 0.1 V. By means 
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of a switchbox described below this potentiometer was used for 

measuring sample resistive and Hall voltages, sample current 

as measured by the voltage developed across a Standard 0.1'n 

and the current supplying a Hall probe placed in the magnet 

pole gap. The Hall probe output could be switched to the potentio—

meter when required. Free inputs on the potentiometer itself were 

used for measuring the thermocouple output with respect to a 

liquid oxygen standard maintained in a dewar vessel. The Hall 

probe output and sample voltage were usually switched into the two 

axes of an X—Y chart recorder to produce a trace which was 

approximately a plot of sample voltage against magnetic field — 

approximately because, although the electronic system was veri—

fied to be linear in response to about 1/10th percent, the Hall 

probe output was quadratic in field. A slow—sweep unit was 

used to change the magnetic field at a low rate, generating a 

trace on the chart recorder. It was usual to generate two sets 

of charts for each temperature — one set over the whole field 

range available (up to nearly 18 kgauss) and the other, using 

expanded recorder scales, up to about 6 kgauss. Calibration 

points were put onto charts by stopping the field sweep as was 

convenient and measuring relevant voltages with the potentio—

meter. 
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Consider now a sample with the dimensions shown in the 

diagram, Figure 3.3 of width w, thickness t and with a uniform 

current flow down its length. 

The Hall coefficient Rx  and resistivity p(H) in transverse 

magnetic field H are related to the Hall voltage VH  across the 

width of the sample and the voltage Vs  down the length of the 

sample (between probes spaced a distance p apart) by 

VH/w v Ht 
RH = HI tvt = HI 

V 
= (§-) (1) 

Now suppose we make a series of measurements of Hall volt—

age,reversing magnetic field and current to give four measured 

voltages; 

V1 = VH 
+ RI + AV+ f(I)g(H) 

V2 	—VH — RI + AV+ f(—I)g(H) 

V
3 
= —VH + RI + AV+ f(I)g(—H) 

V4 = +VH 
 — RI + AV + f(—I)g(—H) 

where RI represents a resistive drop due to misalignment of the 

two effective Hall potential probes9  AV represents spurious 

current—independent thermal emf's in the copper leads, and 
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f(I)g(H) is a function of current I and field H representing mag—

netothermal effects. We see that the usual practice of taking 

the combination (V1  — V2  — V3  + VE1)14 gives VH + i(f(I)g(H) + 

f(-1)g(—H) — f(*I)g(H) — f(I)g(—H)) which is just equal to the 

Hall voltage VH  if the second term is zero. 

The second term is zero provided only that f(I)g(H) is not odd 

in both of the variables I or H. Now if we examine the consequences 

of the sample not being completely isothermal we see that there are 

three main sources of transverse voltage, stemming from combinations 

of magnetothermal and thermoelectric effects. Diagrammatically, we 

have 

The final effects, the transverse voltages, depend on heat 

flows and so take time to decay and re—establish themselves if the 

current is reversed. Ileasurements taken so quickly that thermal 

gradients do not have time to change appreciably are termed 'fast'. 

'Slow' measurements enable the thermal gradients to reverse 

completely. The effect of fast and slow reversals of I and H on 
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the transverse voltages produced by the Nernst (N), Righi-Leduc-

Peltier (RLP), and the Ettingshatsenm-Peltier (EP) combinations are 

Shown in the following table 3.7. 

We see that either of the two combinations formed by slow or 

by fast magnetic field reversal with fast current reversal leads to 

elimination of all these spurious effects but that the other two 

combinations, with slow current reversals  fail to eliminate either 

the Nernst (N) effect of any effect at all. 

Hall measurements on sample W1 were performed by reversing 

both current and field at leisure, since there was no hope of being 

able to take 'fast' current-reversed measurements because of the high 

layer-plane thermal conductivity. This procedure eliminated the 

appreciable misalignment voltage inevitable with this particular 

sample and also thermal voltages in the leads but it left in the 

above effects. However, c.f. Putley (1960) P. 86, estimates give 

about 0.1 111T at 5000 gauss for the dominant effect (Nernst) and 

orders of magnitude less for the others. Observation of these 

spurious voltages is possible with bismuth using an oscilloscope 

triggered by the current or field reversing switch but a high gain 

d.c. amplifier with sufficiently short response time was not 

available for checking in the present case. The other basal plane 

samples were measured by reversing the current. The field was not 

reversed partly because of the practically impossible task of 
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rotating the water—cooled magnet through 180°  in the confined 

space around the cryostat without endangering the long-tailed 

glass dewar which rested, with little lateral movement, in the pole 

gap. The alternative procedure of slowly decreasing the field to 

zero, shutting down the generator, reversing the magnet leads and 

then re—setting the field to its original value took too long to 

be practicable for the time—limited low temperature runs and 

introduced the risk of inducing temperature changes through eddy—

current heating. 'Slow' current reversal alone eliminated the 

(not negligible) thermal voltages in the sample leads but accurate 

zero field balancing was necessary to ensure that no resistive term 

(RI) appeared in the measured voltage. Two resistance boxes gave 

a total of about 30 ohms connected across the sample potential 

arms and the Hall voltage was measured between the junction of the 

boxes and the third potencial arm on the sample. In zero field, 

the measured voltage was set to zero by adjusting the box resistances 

to within 0.1 ohm. Thus, at worst, one third of one percent of the 

resistive voltage drop across the first two potential arms 

appeared added to or subtracted from the actual Hall voltage. This 

is most critical at magnetic fields near 3 kgauss where the Hall 

effect sometimes changes sign. Below this field the magnetoresistame 

voltage dropped rapidly to zero as H2  whilst the Hall voltage 

increased in magnitude before dropping to zero. Above 3 kgauss 
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the Hall voltage increased more rapidly than the magnetoresistance 

voltage (though it was always of smaller magnitude) so the 

fractional error decreased once more. We see that$  except for a 

slight shift in the position of zero Hall coefficient on the field 

axis)  this effect is less than the error involved in measuring 

sample thickness which appears explicitly in the calculation of 

the Hall coefficient. 

We define magnetoresistance by M = p 0) 0 In practice 
vs(H) — Vs(0) 

this reduced to M = 	vs(0) 	since negligible current change 

occurred during a run. Once more, spurious thermomagnetic potentials 

could have arisen to perturb the potential difference due to the 

sample resistance. No current was drawn through the contacts in 

the potentiometer balance position so only Seebeck emfs due to long- 

itudinal temperature gradients down the sample were likely to have 

an effect. 'Slow' current reversal does not eliminate these but 

the temperature gradient which can be established down the sample 

is held to low values by the high layer-plane thermal conductivity. 

3.3 APPARATUS  

The apparatus used in the present investigations may be 

divided into three parts for the purposes of description; the 

magnet2  the cryostat and its associated vacuum equipment, and the 

electrical measuring equipment. 
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3.3.1 	EAGNET 

This dictated the main dimensions of the cryostat. The 

magnet employed was a Newport Type D electromagnet fitted with 

high-power, water-cooled coils. Special conical pole-pieces 

made by Tewport to increase the maximum attainable field-strength 

at the expense of pole-gap. The working pole-gap with these pole-

pieces was 4.5 cms, giving a maximum field of about 18 kgauss. 

The magnet yoke was mounted on a turn-table inscribed in 

degrees and fitted with a vernier device reading to tenths of a 

degree. A trolley enabled the whole magnet assembly to be moved 

into position on a pair of rails. 

A Newport Type 905 C power supply was used in conjunction with 

the magnet. This consisted of a 25 kid motor-generator whose out-

put was controlled and stabilised from a bench consol. A slow-

sweep unit was used to vary the magnet current linearly with time, 

although this did not, of course, result in a linear variation of 

field-strength with time. 

	

3.3.2 	CRYOSTAT 

It was required to maintain the samples at temperatures 

ranging from room temperature down to below 1°K. Because of the 

fairly narrow magnet pole-gap and the requirement that it should 

be possible to rotate the magnet about a vertical axis passing 

through the sample, the cryostat had to be quite long and thin. 
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This severely restricted pumping speeds for tubes of reasonable 

diameter extending down to the sample, and it was apparent that the 

higher-vapour pressure liquid helium-3 would have to be used to attain 

temperatures below 1°K. 

A diagram of the cryostat appears in Figure 304. 

The sample was mounted on a copper block screwed into the 

copper helium-3 chamber. This was kept evacuated at all but the 

lowest temperatures, when helium-3 was condensed into it. 

Stainless-steel tubes with thin walls were used to suspend the 

copper sample block in vacuum and to provide lines for the evacua-

tion of the helium-3 chamber and connections to a vapour pressure 

manometer. The sample vacuum jacket, maintained within a removable 

copper cap, was produced by pumping through a further thin-walled 

stainless-steel tube. It was possible to fill thersample vacuum 

space with helium-A gas during initial cooling operations to 

thermally short-circuit the stainless-steel tubes and ensure rapid 

cooling of the sample. 

The above assembly was immersed in a bath of liquid helium-4 

contained in a metal dewar extending upwards to the thick brass 

base-plate, keeping the steel pumping tubes at very low temperatures 

(and hence considerably reducing their thermal conductivity) for 

most of their lengths. In particular, the copper radiation trap 

was as low down in the dewar as possible to ensure that 
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re-emitted energy at a low power to the sample block hanging 

immediately below it. Radiation shields consisting of foam 

plastic faced with aluminium foil were positioned at intervals 

along the pumping tubes. These helped to reduce room-temperature 

radiation reaching the liquid helium and gio boiling off large 

volumes of cold helium gas; the shields acted as heat exchangers 

which caused the radiation to warm the helium gas already boiled-

off by other thermal leakage currents. The helium dewar vacuum 

space was continuously pumped by means of an Edwards E02 oil 

diffusion pump - it was not sealed for fear that a leak of 

superfluid helium into this space might cause an explosion on 

warming up. 

To reduce radiation across the helium dewar vacuum space the 

standard procedure was adopted of surrounding the dewar by a 

jacket of liquid nitroger: a long-tailed glass dewar fitted over 

the metal helium dewar and was hung in a webbing harness from six 

stout springs attached to the base-plate. 

Different parts and systems making up the cryostat will now be 

described in greater detail. 

Sample Exchange-Gas Space  

This was filled with helium-4 gas to speed the initial cooling 

down process and, in fact, whenever a thermal tie was required 

between the copper sample block and the liquid in the metal dewar. 

For temperatureediffering from that in the metal dewar, and 
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especially for helium-3 work, the space was evacuated with an 

Edwards 102 oil diffusion pump backed by an ED 150 two-stage 

rotary pump. Exchange gas could be admitted from a small coiled 

copper tube reservoir (Figure 3.5), a Bourdon gauge enabling the 

pressure to be monitored up to 20 torr. 

Helium-4 Dewar  

Thin-walled stainless steel tubing was used for this dewar 

because of its low thermal conductivity and high mechanical 

strength. The limited width between the magnet pole-pieces precluded 

the use of a relatively thick-walled glass dewar. Flanges were 

machined from stainless steel plate and then the dewar was assembled 

and argon-arc welded commercially. Brass tubes were supplied to act 

as a thermal sink and spacing tube during the welding operations 

which were made more delicate by the thinness of the steel tubes. 

Six bolt-holes in the upper steel flange enable the dewar to be fixed 

to the brass base plate of the cryostat, using a plastic gasket to 

render the assembly vacuum-tight. The large outer tube of the 

vacuum jacket was constructed of 18 gauge brass for strength. It 

was hard-soldered into position. 

A type E02 oil diffusion pump was used to evacuate the helium 

dewar vacuum jacket through a liquid nitrogen vapour trap. The 

pressure, monitored on a Penning gauge, was usually 2.0 or 3.10-5  torr 

near the diffusion pump. However, because of space limitations, a 

/
4  
1" small v- diameter) pipe had to be used near to the dewar and this 
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constriction undoubtedly allowed the inner wall of 

the vacuum jacket to cryopump this space to a much lower pressure 

when the dewar was being used with liquid helium. • 

It was necessary to lower the temperature of the main bath to 

below 1.5°K to enable helium-3 to be condensed into its chamber 

at a reasonably low pressure. This meant lowering the pressure 

above the liquid helium-4 to below 3.6 torr. A large rotary pump, 

an Edwards ED450, was used through a 4" diameter line to effect this. 

Metal bellows were placed strategically in the line to isolate 

pump vibrations. Temperatures close to 0.9°K were achieved using 

this system alone. This seems to indicate that esoteric devices 

for limiting the rate of flow of the superfluid film below the 

lambda-point (2.2°K), such as minute pinholes in an otherwise 

blocked pumping line, are unnecessary unless the lowest temperatures 

attainable with single-stage helium-4 cooling are desired. 

In the event of a sudden energy input to the helium bath 

(through, for instance, failure of the vacuum jacket) considerable 

volumes of helium gas would have been boiled-off, because of the 

low latent heat of liquid helium. A flap valve was fitted on the 

pumping line at the top of the cryostat to prevent the internal 

pressure ever building up much above atmospheric pressure. 

The dewar pumping system enabled temperatures down to about 

50°K to be reached by pumping on liquid and solid nitrogen 
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contained in the metal dewar. A liquid nitrogen jacket in the glass 

outer dewar was not essential for this but did increase the length 

of runs at the lower temperatures. 

By using a small (15035) rotary pump plugged into the helium 

transfer port it was possible to pump at the slow rates necessary 

at higher temperatures. A butterfly valve in the large 4" line 

and small valves in the transfer-port line made it possible to vary 

the pressure continuously over the whole range attainable. 

Helium-3 System  

This was designed to enable helium-3 gas to be condensed into 

the small copper chamber on which the sample was mounted and then 

to pump on the liquid to lower its temperature. As the gas is 

expensive a closed system was necessary, (Figure 3.6). 

A mercury diffusion pump, type 2M4, was chosen to pump on the 

liquid helium-3 because it can work into backing pressures as high 

as 3.5 cms. Hg. This means that no rotary backing pump was required 

provided that the system was not filled to a pressure higher than 

3.5 cms. Hg. In fact, a mercury Toepler pump was included for 

several reasons: it was not known (during the design stage) what 

temperature could be reached in the main helium dewar (mainly 

because of the uncertain effect of superfluid film-flow) and a 

value of 1.4°K was assumed. It then appeared that the condensing 

pressure required was greater than 3.5 cms. Hg. which meant that 

either the system had to be filled to the higher pressure, implying 
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some form of backing pump for the 2M4, or it could lot filled to 

below 3.5 oms. Hg., implying some form of condensing lump. A 
Toepler pump could be switched to fulfill either of thk)e 

functions as needed. In addition, it is normal practice to 

return as much as possible of the helium-3 to the storage vessels 

to avoid loss by diffusion out through glass parts of the system 

or contamination with atmospheric helium-A diffusing into the system. 

From the diagram (Figure 3.6), it can be seen that suitable 

combinations of valve positions gave the following facilities: 

1. The system could be evacuated through a connection to the 

E02 diffusion pump prior to filling with helium-3 gas. 

2. Filling was accomplished through valve 1 and the storage-

cylinder valves. 

3. Once the sample chamber was below 1.40K, condensation of 

helium-3 could be achieved by using the Toepler pump to 

force gas through the small-bore condensing line via 

valve 4. During this operation the large volume of the 

diffusion pump was isolated by means of valves 5, 6 and 
that of the vapour-pressure manometers by valve 7. 

4. The liquid helium-3 could be pumped off rapidly through the 

diffusion pump and returned to storage via the path 

6, 5, 3, 1. In this mode, the needle valve, 8, was 
effectively across the diffusion pump, controlling its 

pumping speed and hence the temperature of the sample. 
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Thermalaggt of the Cryostat 

The main dimensions of the cryostat were dictated by the magnet. 

Thus, the largest diameter of the outer, nitrogen, dewar was 

fixed by the distance between the magnet current coils and the 

diameter of the tail was fixed by the pole gap. This, in turn, 

decided the diameters of the stainless steel tubes used in the 

construction of the helium dewar - since there is a limited 

choice of diameters of thin-walled cryogenic-quality tubing. 

It is proposed to examine the cryostat as constructed rather 

than report the design process which was affected by many outside 

influences. 

Helium-3 System  

The copper sample block was hung on two stainless steel tubes, 

1" 
A cms. long, T3  diameter, and of 0.006" wall thickness, within a 

vacuum space. These provide the thermal isolation necessary to 

maintain a temperature difference between the sample and the main 

helium bath. We shall consider the extreme case of the helium 

bath at 1.5°K and the sample at (about) 0.3°K (due to pumping on 

the helium-3)$  see (Figure 3.7). The actual sample temperature 

depends on the balance between pumping speed at the surface of 

the liquid helium-3 and the total heat flux into the helium-3 bath. 

Heat Leakage to the helium-3 Chamber  

a) Down the two steel tubes. Taking a mean thermal conduct-

ivity of 0.7 mW deg- icm71  this is easily calculated to be 

approximately < 0.007 mW. 
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b) Radiation from the copper cap at 1.5°K. Taking an 

area of 60 cms2  and using the Stefan-Boltzmann constant 

(5.67 10-9  mW cm72  deg 4) this is 1.7 10-6  mW -negligible. 

It is interesting to note here that if the radiation trap had 

been maintained at liquid nitrogen temperature then radiation 

1" down the two 8 - diameter tubes would have been 70,000 times this 

value. 

c) Joule heating of sample. A typical sample would have 

dimensions 1 x 0.1 x 0.05 cms. and resistivity 0.3 x 10 5  ohm-cm 

at these temperatures. Joule heating for the fairly high sample 

current of 200 mA is then 0.012 mW. 

d) Heat down copper leads. There were seven copper wires 

of 40 s.w.g. Using a mean thermal conductivity of 2 Watts deg
1cm-1 

this gives 0.5 mW. 

e) Joule heating of copper leads. Assuming all the heat 

generated flows into the helium-3 chamber, a resistivity of a' 10 9 

ohm-cm and a sample current of 200 mA, the heat input from the two 

current wires is - 0.001 mW. Calculation yields 46 gauge as the 

size of wire which minimises the sum of contributions (d) and (e), 

giving a value of 0.02 mW. However, such thin wire would overheat 

with reasonable currents for room temperature measurements. 

f) Heat down thermocouple wires. The gold wire had a 

diameter of 0.012" which gives a heat leak of 082 mW, We expect 

the chromel contribution to be negligible. • 
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g) Conduction through residual gas in the vacuum space. 

Assuming the abnormally high pressure of 104  torr this was 

estimated at less than 10 --1  th µW which is negligible. 

h) Eddy current heating due to changing the magnetic field. 

This was observed during the flyback of the magnetic field scanning 

system but was negligible during the slow measuring scan. 

Pumping Speed at the Surface of the helium-3  

Figure 3.7 shows the layout of the helium-3 pumping line. 

Assuming the temperature distribution indicated, the conductance of 

the line was estimated to be 0.008 litres/sec. Now under equilibrium 

conditions, the gas flow rate through the line is equal to the rate 

of boil—off due to heat leaks into the helium-3 chamber. This, 

together with the above value for the line conductance, enables us 

to calculate the pressure drop across the line. Neglecting the 

pressure at the throat of the 044 diffusion pump then leads directly 

to an estimate of the vapour pressure in the helium-3 chamber. 

Calculation shows that the gas flow rate (throughput) is 7.84 x 10-4  W 

litre—torr/sec where W is the heat leak input in milliwatte, giving 

a pressure drop of 0.98 x 10-4  W torr. Thus we expect the lowest 

vapour pressure to be (d = 0.7 mW) 0.07 torr, corresponding to a 

temperature of 0.45°K. This is the worst value for the lowest 

attainable temperature because the greatest values for heat leaks 

have been used throughout the calculation and we might expect some—

thing a little better in practice. The run duration, assuming 
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2 cm3  of liquid helium-3 and a heat leak of 0.7 mW, comes out at 

about 20 minutes. 

Helium-4 System 

The purpose of this system during a very low temperature run was 

to maintain the liquid helium-4 in the metal dewar at 1.40K or below 

for as long as possible. Figure 3.7 shows the essential features. 

The pumping system was shown in (Figure 3.5). 

Helium-4 System - Heat leaks into the helium-4 bath 

a) Down the wall of the dewar. Making the reasonable 

assumption that all heat from the top flange is dumped into the 

liquid nitrogen bath, we are left with a leak path from the nitrogen 

bath to the helium which grows longer as the helium level falls. 

With a full helium dewar (level at A Figure 3.7) this must 

completely dominate the situation and cause a rapid boil off of 

helium but as the level falls the low thermal conductivity of the 

wall quickly reduced the heat influx. With the level at B the heat 

leak is 0.076 watts. When the level has fallen to C the heat leak 

is reduced to 0.038 watts. 

b) Down the pumping tubes leading to the radiation trap and 

the sample block. There were two tubes of iffl diameter, 0.010" wall 

thickness and one of 1" diameter, 0.006" wall thickness. 
8 	

They 

conduct heat directly from the room-temperature base-plate of the 
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cryostat into the helium bath. Once again the length of the 

conduction path varies with the helium level. Calculations taking 

into account the variation with temperature of the thermal con-

ductivity (p. 57, Rose -Innes) give heat leaks of 0.20 watts for a 

helium level at B and 0.15 watts for the case C. 

c) Conduction down electrical leads. This is estimated at 

5 mW. 

d) Radiation. Shields were used in an attempt to stop direct 

room-temperature radiation. It was hoped that the cold helium gas 

would remove this heat from the shields and maintain the lower ones 

at least at nitrogen temperatures. We assume, then, that the lowest 

shield radiates at a temperature of 77°K, directly into the helium 

bath. This gives a heat influx of 6.3 mW. A surface maintained at 

room-temperature would radiate about 160 times as much power. 

The above heat leaks into the helium bath, total about 

B: 0.29 and C: 0.20 watts, cause the helium to boil-off and 

limit the duration of a run. 0.3 watts correspond to 415 cos of 

liquid helium per hour which is appreciable. However, the cold 

helium gas being driven off is capable of absorbing a lot of heat 

as it warms up to room-temperature. The enthalpy of the gas between 

a few degrees Kelvin and room-temperature is about 13 watts/mole. 

Thus, the gas boiled off by the above heat leaks is capable of 
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absorbing all and more of the unwanted heat influx, implying that 

if efficient heat transfer is arranged tetween the issuing gas and 

the leakage paths a very low nett boil off rate will results. 

The situation is complicated by the fact that liquid helium is 

in the superfluid state at temperatures below 2.2°K. The super- 

fluid film is extremely mobile and climbs up all surfaces kept 

below the transition temperature (lambda point), greatly increasing 

the surface area from which the liquid can evaporate. The upper 

limit of the film corresponds to the position of the 2.2°K isothermal 

in the cryostat, for above this the helium could only exist as ordinary 

helium - without any climbing abilities. A typical maximum film 

flow rate is 6 x 10 2ccs liquid/sec for a one cm film-width but a 

dirty wall surface or an air-film can increase this by an order of 

magnitude. Provided the pumping system can take care of this 

evaporation rate then temperatures below the lambda-point can be 

reached; at higher pumping rates the more distant parts of the film 

will become depleted and the evaporation area will be reduced once 

more. 

Considering conditions at the lambda point; the maximum 

evaporation rate is around 20 x 6 x 10 2ccs/sec, assuming the upper 

edge of the film to have a perimeter of about 20 cmS. This is easily 

converted into the gas flow rate and corresponds to a throughput of 

0.A liter—torr/sec. A vapour prepsure of 3 torr is assumed under 
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toe 
these conditions. Now, the emelmotommee of the pumping tube was 

made negligible and the main pressure drop will occur across the 

nitrogen trap in the line. This has a conductance of 601/sec. 

Hence the pressure drop is throughput/conductance or approximately 

0.01 torr. This means the pressure at the inlet of the rotary 

pump will be 3 torr and the pump speed required will be throughput/ 

pressure or 0.4/3 liters/sec. A pump, then of some 10 liters per 

minute is required. Even if the film flow were much higher due to 

surface contamination 100 liters per minute would suffice. It 

appears that the pump actually used, an Edwards ED450, had an 

adequate reserve of pumping speed and its full 450 liters per minute 

could be used to take the system down to temperatures below the 

lambda point. 

Estimates of durations of runs to be expected from one filling 

of the helium dewar are difficult to make because it is not known 

how much heat the cold gas takes up before reaching the top of the 

cryostat. However, assuming very poor heat exchange between the 

gas and the lower parts of the cryostat, the heat leaks calculated 

above lead to a boil off rate of 0.42 liters/hour for level B and 

0.28 liters/hour for level C. These are maximum rates expected for 

these levels. Since the volume of the dewar between these levels 

is about 0.4 liters, a run duration of about 1.2 hours is to be 

expected and was in fact exceeded in practice. 
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At lower temperatures, a large fraction of the liquid helium is 

used to cool the body of the rest of thf) liquid; approximately of 

the liquid is required to cool the helium bath from 4.2°K to the 

A-point. However, the liquid-level will quickly approach B and 

less will have been boiled off uselessly by the heat leak from the 

nitrogen bath. 

Procedure for Working at Chosen Temperatures up to Room Temperature  

There are few easily-available refrigerant liquids: liquid 

nitrogen is by far the most convenient for higher temperatures and 

can be employed usefully in the solid form below 63°K down to about 

50°K. Liquid oxygen has a boiling point of 90°K which is too close 

to that of nitrogen (77°K) to make it of considerable use but its 

high latent heat is an advantage in that long runs are possible. 

Helium-4 boils normally at 4.2°K and is convenient for temperatures 

down to about 1°K but below this very high pumping speeds are 

required and it is easier to use the higher vapour-pressure isotope, 

helium-3, for the very low temperatures down to 0.3°K, say. The 

large temperature gap between helium and nitrogen can be reached 

by heating the sample block with a small heater wound onto the 

helium-3 chamber. However, the extra power input resulted in 

considerably shorter runs. There are refrigerants with normal 

boiling points in the gap but they are expensive and sometimes 
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are only supplied on condition that the gas be returned to the 

suppliers — implying the possession of complete gas recovery 

unit. 

Below 1°K  

The nitrogen dewar was filled and about 2$ liters of liquid 

nitrogen poured into the metal dewar. Helium gas at about 20 torr 

was let into the exchange gas space to connect the sample thermally 

with the nitrogen in the metal dewar. The system was then allowed 

to cool to 77
oK. When this temperature was reached, the metal 

dewar was evacuated and refilled with helium gas from a cylinder. 

Any remaining liquid nitrogen would cause a drop in sample 

temperature at this stage and pumping was continued until the 

temperature started to rise again. Solid nitrogen has a low thermal 

conductivity and would prevent successful cooling down to helium 

temperatures if allowed to remain. With the dewar and contents at 

77°K in an atmosphere of helium gas the system was ready for helium 

transfer. 

Liquid helium was transferred through a vacuum—jacketed tube by 

squeezing on a rubber bladder attached to the supply dewar. It 

came over as gas until the transfer line had cooled to 4.2°K when 

liquid started to issue from the tube, accompanied by a character—

istic limpness in the rubber bladder. As liquid condensed in the 

metal—dewar tail the sample temperature decreased rapidly but it 
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took about half an hour for thermal gradients to die out. The 

transfer process was not-hurried unduly to avoid wasting the 

liquid helium; gas issuing from the top of the cryostat should 

have absorbed heat from the cryostat interior in warming up to room 

temperature and not from the top of the cryostat. A gas rotameter 

plugged into the flap-valve port enabled the helium flow rate to 

be monitored. It was found that an average rate of about 1.3 liters/ 

minute with 
	

occasional puffs of over 3 liters/minute gave a 

reasonably short cooling time with little wastage of the liquid 

helium. When the dewar was full, as indicated by a rapid increase 

in the rotameter reading, the transfer tube was removed and the 

transfer port was plugged. After closing the flap valve against 

its rubber sealing ring, pumping on the helium bath was started. 

Again, the cryostat top was not allowed to cool appreciably as 

this would have meant inefficient cooling of the cryostat interior. 

When the sample temperature had reached 1.4°K or below, helium-3 

was condensed into its chamber by means of the Toepler pump, as 

described earlier. Pumping on the liquid helium-3 with the 21i4 

diffusion pump then resulted in a further lowering of temperature, 

after evacuating the exchange gas space thoroughly by means of the 

102 diffusion pump. 

Temperatures between the lowest attainable and 1°K could be 

maintained either by adjusting the 244 pumping speed or by using 
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the sample block heater. The former method was preferable the 

point of view of run length. 

1.0°K to 4.2°K  

Temperatures below the normal boiling point of helium-4 were 

reached by pumping on the helium in the metal dewar, using helium 

gas in the exchange gas space. This gas condensed at about 1.9°K 

and its vapour-pressure provided a convenient indication of 

temperature at lower temperatures. Temperature control was 

effected by varying the pumping speed of a small rotary pump 

plugged into the helium transfer-port, leaving the butterfly valve 

to the large rotary pump cracked open a convenient amount. The 

small pump could be used alone down to the lambda point but it 

could make no impression on the large volumes of vapour produced 

by the evaporating superfluid film at lower temperatures. 

4.2°K to 50°K  

This was the most difficult region to work in as refrigerants 

with boiling points in the region were not available. The 

procedure used was to fill the metal dewar with helium-4, as des-

cribed.above, and with a suitable helium exchange gas pressure, to 

pass a current through the constantan heater winding on the sample 

block. Temperature was controlled by varying this current. 

At low temperatures a fairly high exchange gas pressure was 

required (10 to 20 torr) to reduce the sensitivity to small changes 
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in current. At the higher temperatures a lower pressure (below 1 torr) 

enabled these temperatures to be reached with a reasonably small 

power dissipation. 

50°X to 77°K 

By filling the metal dewar with liquid nitrogen and pumping on 
this liquid, temperatures below the normal boiling point (77°K) down 

to about 50°K could be reached. The nitrogen solidified at 63°K and 

this proved to be a convenient, stable, point provided it was 

approached from below to ensure that an appreciable volume of the 

solid had formed. Pumping on the solid nitrogen lowered the tempera-

ture further but, because of the low thermal conductivity of the 

solid, cooling of the sample was very slow in this range. 

77°K to Room Temperature  

A similar technique was employed in this range to that employed 

for working above the normal helium boiling point; a suitable 

exchange gas pressure was used and the sample block heater current 

was adjusted to maintain the desired temperature. The exchange gas 

pressure was reduced from about 10 torr to about 10 microns as the 

working temperature was increased to avoid an unmanageable sens-

itivity to current variation at low temperatures and to enable 

reasonably small power levels to be used at higher temperatures. 
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3.3.3 	ELECTRICAL MEASUREMENTS  

Voltages from the sample arms were presented to one axis of an 

X—Y chart recorder or, for calibration purposes, to a Pye 1 pV 

Vernier potentiometer with a Tinsley photocell galvanometer amplifier 

enabling voltages to be estimated to 0.1 µV. A Keithley Model 149 

milli—microvoltmeter was used to amplify sample voltages up to the 

millivolt level before they were presented to the Y—axis of the 

chart recorder. By this means)  a sensitivity of better than 0.1 µV 

per 1 chart width could be obtained but the maximum useable sens—

itivity was usually determined by noise—broadening of the trace. 

This originated mainly in the Keithley because of mains—frequency 

pickup but was kept to acceptable levels by the insertion of a 

low—pass filter in the input lead to this instrument. The main 

source of interference appeared to be from the mains transformers of 

the various electronic instruments since capacitive coupling to their 

chasses caused currents to flow between the chasses giving rise to 

potential differences between the ends of the signal wires carrying 

these currents. Thorough grounding with thick wire seemed to have 

a useful effect. The X—axis of the chart recorder was driven by a 

signal from a commercial hall probe AEI Mk III placed in the 

magnet pole gap and supplied with a constant current of about 10 mA 

from a 250 V supply through large dropping resistors* 
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The electrical measuring system was thus required to present 

either the sample hall voltage or the voltage across the sample 

potential probes to the chart recorder or to the potentiometer. 

In addition, the potentiometer was to be used to measure the sample 

and hall probe currents and it was necessary to ensure that the 

Keithley milli—microvoltmeter was never open—circuited for long 

because the ensuing drift of its output to the f.s.d. of 10 volts 

would have damaged the chart recorder. The fairly complicated 

switching arrangement dictated by these requirements is indicated 

in the block diagram, figure 3.8. 

High quality (Cropico) stud switches were used to switch these 

low—level voltages, an aluminium box being used for screening. 

Screened cables were used for interconnecting the various instruments 

and the wires from the sample to this box were confined inside a 

rigidly—mounted copper pipe to prevent movement (noticeable voltages 

were induced by movement of wires in the laboratory stray magnetic 

field). 

A 30 V Farnell constant voltage supply DSV 30/5 was available 

for the sample current. Two modes of operation were considered — 

the usual case where a large dropping resistor is used to convert 

voltage stability into current stability and the method actually 

employed: a 100 ohm constantan resistor was wound non—inductively 

on a long thin—walled stainless steel tube and was connected in 

series with the negative lead from the supply as shown (Figure 3.9). 
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The voltage developed across this stable resistor was taken back to 

the 'feedback' terminals of the supply which consequently varied 

the output voltage to keep this feedback voltage, and hence the 

sample current, constant. It is estimated that the current 

stability using this method was better than that given by the usual 

method by a factor of at least four. Sample current was varied by 

means of the feedback controls on the supply unit which did not carry 

any large currents and could be changed without fear of drifting 

whenever required. Previous trials using a switched set of resistors 

to vary the sample current led to long periods of drifting current 

values between measurements. In the interests of current stability, 

again, it was found necessary to employ the on-off switches 

available in an unusual manner because of their relatively unreliable 

operation. Had such a switch been connected in series with the 

sample, its varying contact resistance would have ruined any current 

stability achieved in the power supply so it was connected across 

the sample current leads as shown. The 6 ohm lead resistance between 

the sample and switching box ensured that the sample current fell to 

the tens of 4A level whenever the switch was closed ('off'). 

Magnetic Field Measurement  

A commercial AEI hall probe was used either to drive the X-axis 

of the chart recorder or to provide a magnetic field-dependent 
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voltage for the potentiometer as determined by the position of the 

mode switch, see Figure 3.8. Constant current of about 10 mA was 

provided by a 250 V stabilised Roband power supply through a 

25 kohm resistor. Calibration to tifo of the probe was effected 

using a Norma ballistic fluxmeter. It was found that the output 

voltage was related to the magnetic field through the relation 

V/I = 10-3B [(0.2346 f  0,001) - (0.496 e 0.025)10-6B] where V is 

the probe output (volts), I the probe current (amps) and B is the 

magnetic field (gauss). The current was measured by connecting the 

potentiometer across a 0.1 ohm Rivlin standard resistor. With the 

probe head used, it was necessary to draw current out of one of the 

potential leads in order to obtain a zero output in zero field - 

only two potential leads were provided on the hall plate. A simple 

variable resistor enabled the probe to be zeroed before each run, 

though this was only really neoesRary for low fields - it had very 

little effect on the high field readings. As with the Keithley 

voltmeter input, it was found necessary to use a low pass filter in 

the input circuit of the X-axis to prevent sluggish operation of the 

chart recorder induced by a.c.-mains pickup. 

Temperature Measurement  

A gold (plus 0.03% iron) alloy - Chromel P thermocouple was usccl 

for measuring temperatures against a liquid oxygen standard. The 

gold wire (0.012" diameter) was from the same Johnson-Mathay batch 

that Berman et al (1963-64) used in their thermoelectric power 
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measurements. Their emf - temperature data (private communication) 

was used for interpolation between calibration points$  but it was 

first necessary to reduce this data graphically to values against an 

oxygen reference. We employed this particular combination because it 

maintains a high thermoelectric power down to below 4°K (d., 1W/deg.) 

whilst having a reasonable value over the higher temperature range 

up to 300°K. 

It is convenient to mention here that oil and mercury manometers 

were connected to monitor pressures in the main helium-4 dewar and 

these provided a useful indication of temperature when pumping on the 

refrigerant in this dewar (whether helium or not). An aneroid-

type manometer (0-20 mm Hg) connected to the exchange-gas space 

proved very useful at temperatures below 4°K when it acted as a 

helium-4 vapour pressure thermometer, and an oil manometer and 

McLeod gauge were provided for the helium-3 system. 
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CHAPTER 4 

RESULTS - DATA 

The present chapter deals firstly with th-,  nature and the 

preliminary analysis of the non-oscillatory Hall effect R(H) and 

magnetoconductivity ,(H), and secondly with the treatment of data 

obtained on Shubnikov - de Haas oscillations, observed at magnetic 

fields above 5kgauss for temperatures of 4.2°K or below. Procedures 

adopted for data fitting, described at the end of each of these 

sections, lead on to the derived results contained in the next 

chapter. 

4.1 Non-Oscillatory Date. 

4.1.1. Chart Reading. 

It was described earlier ("experimental") how chart recordings 

were produced on which voltages proportional to the sample 'fall or 

magnetoresistive voltage and the output of a Hall probe placed in the 

magnet pole gap were automatically plotted on an X-Y recorder by 

slowly scanning the magnetic field. Calibration points were inked 

on to the chart at intervals during each run, using the potentiometer 

to obtain voltage co-ordinates of each point. 

The first stage in the chart reading process was to obtain the 

relationship between chart distances and voltage input for a particular 

channel (X or Y). This procedure was identi#cal for both channels. 
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A pencil line ruled on the chart parallel to one axis served as 

a datum, and the distances of the calibration points from this line 

were measured using the printed lines on the chart as units. An 

engraved glass scale was used for interpolation between chart lines 

when necessary. Preliminary measurements of this sort produced 

straight line plots (within ± 0.2%) of voltage against chart distance 

for between ten and twenty calibration points, so later runs usually 

employed only three to six calibration points. To avoid tedious 

graphical work, a simple least—squares fitting programme was written 

for use with an ac1E86s electronic desk calculator. One writes for 

the Hall probe (P) axis (X) and the sample (S) axis (Y):— 

VP  
• Qp  + Kpd 

VS  
• Q 	K d Is  S S 

where V and I are voltage and current respectively Q and K are the 

constants to be found and d is the chart distance. The programme 

reduced the problem of finding the best pair of coefficients in the 

linear law to a routine sequence of operations with the desk calculator 

on data for all samples and temperatures reduced to a common form in 

consistent units. 

The actual reading of the chart then followed. Sixty or more 

lines were ruled at intervals along the Hall probe (magnetic field, 

X) axis and the corresponding distances of the trace along the other 

axis (Y) measured. Later analysis required that the data from both 
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Hall and magnetoresistance charts, taken under a given set of 

conditions, be tabulated in pairs as functions of magnetic field, so 

it was necessary to derive the chart intervals corresponding to a 

given set of magnetic field values for each chart before laying off 

the construction lines along the Hall probe axis. A computer 

programme was written to generate chart distances for a batch of 

charts, corresponding to a standard set of magnetic field values con-

tained within the programme. For this purpose it was only necessary 

to read-in the coefficients of the linear law between Hall probe 

voltage and chart distance along that (X) axis for each chart, the 

(non-linear) Hall probe calibration being written into the programme 

in a suitable form. 

Conversion of the Y-axis chart distances into sample (voltage/ 

current) was performed either with the desk calculator or, later, as 

part of a larger computer programme. The latter went on to derive the 

actual values of Hall coefficient, R(H), and conductivity, cy(H), and 

also the magnetoconductivity tensor components, axx, axy. It required 

the input data to be in the form of pairs of chart distances (from the 

Y-axes of Hall and magnetoresistance charts) together with the 

corresponding values of magnetic field. A printed output was 

produced tabulating R, al a , a  and some intermediate products xx xy 

against magnetic field. Punched cards were also obtained as part of 

the output with the values of field a
xx' aXy coded on to them in a 
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form suitable for later analysis. 

The following Hall coefficient values, R(H)1  given in units 

of cm3/coulomb, are calculated from the expression R(H)=(VH/IS)(t/H) 

where 1711  is in volts?  I in amperes?  t in cmsr  and H is in gauss/14. 

4.1.2. Results, Hall coefficient and conductivitz 

We mention here that temperatures quoted on the following graphs 

should be regarded as labels; actual temperatures are given in the 

tables of Appendix 3 and in Table 5.1, which also contain data for 

temperatures other than the four selected for full presentation. 

The conductivity curves afford a close approximation to the desired 

Q curves since the correction from the Hall effect usually amounts 

to less than 10% when deriving o  . 

Graphs 4.1, 4.2, 4.3 display conductivity against magnetic field 

for the three samples Wl, W2, W3 at temperatures of 300°K and 77°K. 

Results for the three samples superimpose well at high magnetic fields 

but deviate markedly at low fields; successively higher zero-field 

values of a  are reached by W1, W2, W3 in that order. This high field 

behaviour provides a check on the reproducibility of our sample 

preparation technique, in particular the establishing of uniform 

current flow across the width of the samples. Similar superposition 

is evident at 63°K and 4°K (Graphs 4.41  4.5, 4.6) with the same 

trend in the low field deviations. Our extension of the range of 

measurement to magnetic fields above the 6kG used by Spain is fully 
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justified by the significant tail on the conductivity curve at 

higher fields. The present analysis is based on estimating the 

area beneath such curves and the tail obviously contributes greatly 

to this, at least above helium temperatures. The maximum available 

field of 18kG is reasonable for all temperatures except room 

temperature where at least double this value would have been desirable. 

At low fields, room temperature behaviour for samples W1 and 

W2 closely mirrors that shown by Soule's (1958) samples EP-14 and 

EP-7 respectively, in that one shows a downward trend towards zero 

magnetic field whilst the other has a pronounced positive—going ex—

cursion which leads to a positive Hall coefficient below a few hundred 

gauss. W3 shows an intermediate type of behaviour with a less—

pronounced rise starting at a lower field than W2. At higher fields 

W1 and W2 slowly converge but W3 shows a steeper, roughly linear, 

increase in the negative direction. Such characteristic behaviour 

(Graph 4.7) for sample W1 follows closely that reported for Spain's 

materials SA19/20/22/12/18 and places this sample outside the group 

of best materials used in their study. 

The insistent positive excursion at low fields of some of these 

Hall curves down to 63°K has not been detected before in pyrolytio 

graphite. At 77°K in particular the trend is most interesting; 

the peak at roughly 2kgauss appears to move to lower fields and less 

negative values with samples Wl, W2, W3 whilst the low field side 
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for the peak becomes more dominated by a positive—going tendency 

leading in the case of W3 to almost complete smoothing of the peak. 

It should be noted, however, that the exact details of the curves 

were markedly irreproducible at this temperature and appeared to 

change upon thermal cycling, an effect not present at other 

temperatures studied. 

The general shape, viz. large negative values on either side of 

a peak rising towards zero at a few kilogauss, is a familiar picture 

for pyrolytic graphite (Spain at al., 1967). For material of high 

perfection the peak actually crosses the zero axis, having a range of 

positive Hall coefficient for a few kilogauss at around 77°K. We 

note that none of our samples cvssed the axis in this region, 

al'llough W2 practically touches the axis at 77°K (Graph 4.7) whilst all 

samples approach very closely at 63°K (Graph 4.10). 

Graph 4.11 illustrates the result of fitting the magneto—

conductivity tensor components, derived from the data presented 

above, to Lorentzian curves as described in Section 4.13. The 

fitting parameters for axx, axy  have been used to regenerate Hall 

coefficient curves by means of the loop from raw data to tensor  

components to fitting parameters and thence back via regenerated  

tensor components, to Hall curves. The fits obtained for the conduc—

tivity are usually so good that little is gained by showing them, but 
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we will illustrate here extreme examples of good and of disappointing 

results one obtains for the more complicated nail curves. Thus, 

sample W2 at 300°K yields a very good fit provided four Lorentzians 

are used, whereas sample W3 at 63°K has not been satisfactorily 

fitted even by four terms. This is discussed further in Section 

5.1.1. 

4.1.3. Data Fitting. 

We now come to the fitting of the magnetoconductivity tensor 

components. It has been shown in Section 2.2.1 that only two 

independent components a 	aXY  need to be considered in the basal XX  

plane configuration and that these are given by 

axx(H) 	ff(H) 	a
xY 
(H) = RgH x a (R) 

2  1 + (RaH) 

- where R, o are the (field-dependent) Hall coefficient and con-

ductivity, respectively. Gaussian units are used throughout, various 

useful relationships being: 

R(gaussian) = R(cm3/coulomb) x 1/(9x10
19) 

a(gaussian) = a(ohm-cm)-1  x (9x1011) 

where the value 9 comes from the velocity of light squared and is 

more accurately 8.988. 

Calculated tensor components anc(H), axy(H) and the results 

of this fitting process are presented in chapter 5. 
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As indicated elsewhere, (Section 2.4o2)representation of the 

experimental data in the form 

 

Ai  

  

AI . 
a.. = 

 

E 
1 +(H/Hi)2  

is necessary before the partial conductivities due to electrons and 

holes can be found. The present section deals with the methods 

employed to fit data to the expressions; we use a as an example, 
xx 

but all remarks apply equally to a H. 

Were the data free from errors, it would be sufficient to take 

2i (1=1, 2, 3 ...) data points and solve the resulting equations for 
the A., Hi. This is not the case in practice, where random errors are 

superimposed on data. The calculated values of c, (H)would not pass 

through all the experimental values unless the number of fitting 

parameters (21) were equal to the number of data points, but our 

object is to represent the data to sufficient accuracy with as few terms 

as possible, preferably less than four, so some statistical criterion 

is necessary to decide upon the goodness of fit. We use the sum of 

the squares of residuals (the differences between experimental and 

calculated values) and employ the standard theory of linear least 

squares fitting where possible. 
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The ligthod of Least Squares. 

	

Suppose measured quantities y1, y2, 	yn are related to the 

quantitiesxij by the equations yl a1 + x12 a'2 + ...+ x 

	

= x11 	ma  m 

yn = xn1 a1 + 	4- X a nm m 

or, using matrix notation, Y = XA where the aj  are the parameters 

whioll it is required to find. Since, in practice, n > m there are 

more equations (n) than unlmowns (m), and we must determine a criterion 

for defining the 'best' set of parameters ai. The best set of ai  is 

usually taken to be that which minimises the sum of the squares of 

the residuals. That is, we want the ai  which make 

(Y1 	x. .a .) 
13 i=1 

a minimum. 

Differentiating: 

Bel( 
 (Y1 xlaj)2 (Yz x2jaj)

2  ...] 
	

0 

is kl  - xiiy x1K  + [y2  - x2jaj]x2K  + 	= 0 for each K(=1,27..m) 

ie E [Y—XA].xiK  0, 	1: Xii  (T-XA)i  = 0 for each K 

where x is transpose of X 

is [X (Y—XA))/c  = 0 

n 	 2 



-135- 

We want to find A : 

(1Y)K  = (IXA)K  for each K. 

is IY = 1XA 

and. so 
	

A 
XX 

Thus the procedure for finding the fitting parameters a.
1  is 

first to set up the matrices X, Y then calculate the products B = IY, 

C = IX. The matrix C is then inverted and post-multiplied by B. 

Stated in this way, the problem is seen to be ideally suited for 

computer solution espcially if FORTRAN language is used since this is 

well adapted to the handling of matrices. The Imperial College IBM 

7090 computer was used for all the data-fitting calculations - they 

would have been impossibly time-consuming without its use. It should 

be noted that the method depends upon the first set of equations 

(the 'observational equations') being linear in the parameters ai. 

In the present case this is only true for the parameters Al and not 

for theH1  so, unless the Lorentzian functions can be linearised by 

Taylor expansion for instance, one is only able to use the above 

matrixmethodtofindthebestsetof. 	Him  a given set of H. The Al 	
. 

best setof . Hi  will have to be found by another method, but at least 

the number of parameters to be varied has been reduced by a factor of 

two. 
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EgIMALLEmplimed in Fitting the Dates., 

Two-term fits. 

First attempts employed the method indicated above, viz. a 

setofHi was decided upon and the corresponding 'best' set of A. 

calculated by the matrix formulation of the method of least squares. 

Two terms were tried at first as it was known that graphite has two 

majority carriers, and it was hoped that the minority carriers would 

merely represent a small correction term. Values of H
1 
and H

2 were 

selected in turn so that all pairs of values within prescribed limits 

on H1 and H2 were tried. For each pair the corresponding values of 

A1, A2 were calculated by least squares and the function (ER2  

termed the sum of the squares of residuals) evaluated. Finally the 

computer sorted the 30 sets of parameters giving the lowest values of 

ER2 and printed them out for inspection. By plotting points repres-

enting these pairs of values of H1, H2 
and labelling each point with 

its ER2 value, it was possible to draw 'contour' lines of constant 

ER2  value, From such a diagram the next area in the H1  - H2  plane 

for exploration was selected. In favourable cases it was possible to 

select the area containing the lowest value of ER2 at the first 

attempt, in which case the contours took the form of closed loops and 

the position of the minimum could be estimated. An example of such 

a diagram is shown in Figure 4.1. 
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Unfortunately, the contours around the minimum were not simple 

circles or ellipses, but were shaped more like the kngitudinal cross—

section of a banana, so location of the minimum was not easy. A 

programme written to overcome this difficulty was based on a Taylor 

expansion of the Lorentzian expression about values of H1, H2 which 

were considered to be close to the true values at the minimum. This 

essentially linearised the observational equations in all the 

parameters Hil  H2, Al, A2  and enabled one calculation by the matrix 

method to find approximations to the best values of all parameters. 

Of course, the method depended upon discarding higher order terms in 

the expansion and so it was necessary to repeat the calculation 

several times, changing H1  H2  to the latest values before each 

c-.1culation in order to arrive at the best set of values. Five or so 

repetitions were usually sufficient to produce unchanging values of 

the parameters, but the calculation was only stable provided the 

distance between the starting point and the actual minimum in the 

H1 —H2  plane was less than about 20% of the values of H1 ,112. 

Stability also depended somewhat upon the direction in which the 

starting point lay from the minimum. 

After two—term fits to the data of each sample at each measured 

temperature had been produced by the above methods it was decided to 

extend the fits to three terms. 
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Three-Term Fits. 

With three terms to be fitted the problem became much more 

difficult. Although the linear parameters Al, A2, A3  could still 

be found by the linear least squares method for a given set of H1, 

H2, H3, it was extremely difficult to find the best set of the latter 

parameters since this involved drawing contour diagrams in three 

dimensions - or at least superimposing two-dimensional plots. Even 

with closed-loop contours in the two-term problem it was not easy UP 

decide where the minimum lay within the elongated contours, but with 

the contours of the three-term problem one could wander along the 

resulting narrow, curving tunnel without much indication as to the 

proximity of the minimum. It soon became evident that a new approach 

was needed and it was decided to try a gradient-following method: 

A computer programme was written to find a minimum of the 

function ER2 by, in effect, moving in Hi  space in such a direction 

that ER2  was always decreased. The principgi is best illustrated by 

considering the two-term problem where one has to find two parameters 

Hi, H2. (Perhaps it should be stressed that in all the methods des-

cribed for fitting data to Lorentziam the only problem was in finding 

thebestsetofH..TheAi were always calculated by the matrix 

formulation of the method of least squares described above). By 

plotting ER
2 against the two parameters H1, H2 in three dimensions 

one sees immediately that the problem is to find the lowest point of 



-139— 

the surface so defined. The computer programme was started at a 

point whose (H11H2) co—ordinates were expected to be reasonably 

close to those of the minimum. It then proceeded to decide in which 

direction lay the steepest gradient down the surface by taking two 

side—steps parallel to the H1, H2 axes and noting the resulting changes 

in height; a simple calculation then gave the direction and values of 

the steepest down—gradient at this starting point. A step was then 

taken in this direction, this step being much longer than the two 

exploratory side "shuffles", and the whole process of shuffle—and—

step was repeated until a particular step produced an increase in 

the 'height' of the surface (i.e. the value of ER2) when it was 

deduced that a minimum had just been traversed. Going back to the 

s=ari of this last step, (A) the programme then proceeded to take a 

series of steps (each from the same position) and in the same direction 

as the step (A), with the condition that each was half the length of 

the preceding step until one of them finally landed on the slope at 

a lower point than the commencement of step A. The usual process of 

shuffle—and—step was then resumed or the programme terminated itself 

according to criteria buiDtinto the programme concerning the accuracy 

with which the position of the minimum was desired. Of course, for 

a three—term fit the surface is plotted in four—dimensional space, but 

this makes little difference to the algebraic expressions for the 

gradient at any point — the programme could operate in either of these 

modes as required. 
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A further point embodied in the hill-descending programme was 

that an initial two-term fit was performed using only high-field 

data in the belief that the violent excursions of the data at low 

fields were caused by Lorentzians with low characteristic fields 

(Hi) and so would not unduly influence the main terms at high fields. 

The object in performing this two-term fit was to obtain a better 

estimate of the position of the minimum for three terms to save time 

on the three-term hill-descending. This was always desirable because 

the hill-descending programme was not very refined and tended to 

take a long time in reaching the minimum, especially if it were 

started on the side of a valley, when it would proceed to zig-zag  

across the valley, making only slow progress along the length. In 

wunimary, then, this method involved sorting the data into high and 

low-field then making a two-term hill-descent with the high-field data 

only and finally, after a rough scan with changing H
3 
values, a three - 

term hill-descent down a new hill defined by all the data. 

An extension to more terms soon became desirable, if only to 

check the effect of an extra term on the goodness of fit and, besides, 

the simple method of proceeding step by step downhill was time-

consuming. A more satisfactory way of reaching the minimum would be 

to try to predict its position from the local curvature and move each 

time to the predicted position. M.D. Powell has written several sub-

routines for minimising any function of several variables and one of 
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these (VAO&A; see Computer Journal 7 303, 3,964) was 

employed on a programme for fitting data to up to five Lorentzians. 

This proved to be extremely reliable and reasonably fast in operation 

though there is another subroutine (VA02A) which might prove faster 

in this application since it is specially designed to minimise a 

function composed of the sum of the squares of quantities, however, 

VA01A started working smoothly before VA02A and it was felt that the 

fault-finding time necessary to make the latter work was not available. 

Progrgama  to fit data to five or less Lorentzians. 

We now describe in outline the fitting programme employing 

VAOAA. A little knowledge of the FORTRAN computing language is assumed 

here but the essential points are that variables being manipulated 

must be given names of up to six letters (e.g. DATA, ESCALE, TEXT, 

etc.), that orders or 'statements' are obeyed sequentially in general; 

starting with the first and moving through to the last which is 

usually STOP, and that 'subroutines' are self-contained programmes 

which may be 'called' into operation by the main programme. Once a 

subroutine has been called, it performs its calculations until it 

reaches a statement within itself returning control to the main 

programme. The main programme, in effect, ties the separate sub-

routines together and may call a given subroutine as many times as 

necessary. Indeed one reason for writing a subroutine is to avoid 

having to write whole blocks of statements again and again. 
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The purpose of our main programme is to provide subroutine 

VAOAA with a suitable set of input numbers and to accept the output 

from it. In addition, experimental data must be read in and the 

final set of fitting parameters printed out at the end. The essential 

input to VAOAA is the array X(I) of parameters which it has to vary 

in order to minimise the function ER 2. Here X(1) s Hi, X(2) s H2, ... 

in previous notation. VAOAA returns execution to the main programme 

when it has found the minimum, in which case the array X will contain 

the set of best parameters H1'  H2, and a variable, F, equal to the 

latest value of the function ER2. Now, VAOAA is a subroutine for 

minimising a general function so our function (which is E (Resid)2) 

must be explicitly stated. In fact, we must provide our own subroutine 

called CALCFX to calculate the function F = ER 2  each time it is 

required; the latest values of H1, H2, .. are fed in and the corres-

ponding
2  

value of ER. must come out. So far no mention has been made 

of the linear parameters Al— As in previous fitting programmes, these 

arefoundforeachsetofH.1's by the matrix method described above. 

In fact CALCFX itself calls on a subroutine LSTSQR which takes the 

latest values of H1,H2,.. and sets up the matrices necessary to perform 

the least squares calculation. A final subroutine MATRIX is employed 

tocalculate(*)allandsofindthecoefficientsA.1.Once the 
XX 

bestAi  . are known for the given set of H., the function is calculated 

by LSTSQR and returned, via CALCFX, to VAOAA for examination. VAO/A 



L.S754)11. soll,rosrrr,it 
/443,,s 	it-st- 

1-ty cows riA-TRI X 

visit-mu( SQ6Rosrrine--  

C-‘c.,,,,,lotes A. 	
)i 

tlA 11-4 T'ISUCTK fl 1111E 

SoMkosirv-te 

v..L.A s 4 	of, 
crt 	 t 

, 

CAL-CF X SsAkvvitNE 

	

s 	4o-c 	of 

	

S.ft? 	Lcpcute. 

-Pe,...hs 
4 

u  
bLoctc 00NC,..121201 OF c ay^ iPuT6 	PRObl'IVIrli +:0R. PerriNC- 

-13A-ca -to -THE. tv in of uP 	Fly L-oftEl.n. ,An , 	• 



-143— 

calls for many (possibly over 300 on occasions) such calculations of 

ER 2 to be made with slightly different valu=.s of Hi  fore deciding 

on a change in one of the Hi. In operation, changes are made 

cyclically in the list H1 , H2, ... and so on until a minimum is 

reached. It then only remains to print out the latest values of 

H. A and ER2, as shown in the block diagram below Figure /1.2. 1,  i 

A photograph of the actual programme statements is included in 

Appendix 4. 

Whilst very good fits were obtained for a by this method, it 

was found that better fits could be obtained for a H by weighting 

the high-field data; the violent excursions in the data at low 

fields tended to make the sum of the squares of the residuals 

insensitive to the high field data points. More representative fits 

were obtained by making several copies of the high field data cards 

and including them with the data (the IBM 7090 accepts instructions 

and data coded on to punched cards). 

4.2 Oscillatory Data  

At temperatures below about 5
o
K and for magnetic fields greater 

than a few kilogauss oscillations in the Hall effect and magneto-

resistance (were observed) as the field was swept slowly upwards. 

These consequences of the quantisation of energy levels are reported 

here. We first describe how the oscillatory part of the data was 

separated from the monotonically varying background, since 
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theories of these quantum effects do not include the background 

terms quantitatively at the present time. 

4.2.1. at2,57=1.412Pj Oscillatoi Eflaglafr2EL-111913A214crousl.. 

An example of the charts obtained at low temperatures is 

shown below. It can be seen that there is a strong background to 

the oscillations in the form of a fairly simple curve which might 

possibly be fitted to a polynomial expression. However, the dif-

ficulties attending such an attempt especially when beats were 

present made it attractive to use a simpler method of fitting the 

midline by eye: Tangents were drawn between the adjacent 

maximum excursions of the curve as shown, and points were construc-

ted by taking mean Y-values from these straight-line segments. 

Finally a smooth curve was drawn to follow these points as closely 

,.7.s possible. 

Between 110 and 140 lines were then drawn on the chart 

Parallel to the Y-axis at intervals of 1 mm. along the X (field)-

axis. The lengths of these lines between the chart trace and the 

midline were found by taking them off with dividers and pricking 

on to graph paper. In this way, a plot of the oscillatory function 

was built up as measurements were noted down. The fact that this 

plotted curve appeared to oscillate equally above and below the 

axis indicated that a satisfactory midline had been used. The 

figure (4.3) illustrates the necessity of associating a sign, 	or 

with each measurement according as the trace lies above or below the 
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Showing effect of temperature on Hall (11) 
and mugnetoresistance (M-R) for different 
samples. 
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midline respective. By applying the chart calibration constants, 

found as described earlier (Section 4.1.1), it was possible to 

convert chart distances into magnetic—field values and sample 

(voltage/current). These pairs of values were then recorded on 

punched cards for later detailed analysis, described in Section 

4.2.3. Most charts were not treated in such detail, but were 

merely examined for the field values at which the trace crossed the 

midline. Resulting "Nodal Plots" are presented below in Section 

4.2.2. 

Figure 4.3 shows tracings of the chart recordings obtained at 

helium temperatures. The horizontal axis for each trace represents 

a magnetic field change from zero to nearly 18kG and is the same 

+3 within 2% for all curves whilst the vertical axis is propor—

tional to the sample voltage arising from the Hall effect (H) or 

magnetoresistance (M—R). 

Superposition of the two M—R curves for sample W1 shows 

clearly how the oscillatory magnetoresistance changes with temper—

ature. The oscillations deepen in the negative direction with a 

lowering of temperature, but the positive peaks and background are 

essentially unaltered. Sample W2 is used to illustrate the greater 

detail which is present in the Hall effect oscillations compared 

with magnetoresistance oscillations taken at the same temperature. 

It can be seen that the amplitude of the oscillatory part is a 
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greater fraction of the background in the former case. This is not 

all, however, for the W3 curves bring out very clearly the increased 

structure visible in the Hall effect oscillations. The effect of a 

lowered temperature is much more dramatic in the case of this sample. 

Data for three curves from which the background has been removed 

are included in appendix 3. One of these, the Hall effect at 1.2°K for 

sample W3, was intensively analysed in the manner reported in Section 

4.2.3. The results of this analysis appear in Section 5,2. 

4.2.2. Nodal Plots. 

Suppose one attached integer labels to corresponding points of 

successive oscillations of a single—period function f(x). Then a plot 

of integer against x would yield a straight line whose slope gives the 

frJquency of f(x). Such a procedure is not valid in general for a 

function containing more than one periodic element. It is interesting, 

however, in the absence of sufficient data to make the periodogram 

technique of astronomy (Whittaker and Robinson, 1956, p.344) worthwhile. 

to plot the midline—crossing points ("nodes", labelled by integers) 

against reciprocal magnetic field. We do not at first sight expect 

much information from such Nodal Plots since the oscillatory effects 

in graphite have contributions from two majority carriers with 

distinct periods. However, the plots (shown for W1, W2, W3 in Graphs 

4.12, 4.13, 4.14 respectively) turn out to be well represented by 

straight—line segments. 
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We attribute this to a rapid decline in the amplitude due to 

one carrier with decreasing magnetic field; at low fields only one 

carrier is contributing whereas at high fields both contribute. It 

should be pointed out that the slopes quoted on each curve (in units 

of 10-5  gauss 1) could be in error by as much as ± 0.1 x 10-5  gauss-1  

because it depends critically on the number of points chosen to be 

represented by the straight line. 

At 1 K the mean behaviour of W3 is to move from a slope of 1.38 

to 1.73 with increasing magnetic field. W2 has a constant slope of 

1.69 whilst W1 moves from 1.74 to 2.02 x 105  gauss 
1.  Since high 

fields must yield some sort of weighted mean of the separate periods 

one concludes that the more lightly damped carrier has an oscillation 

period around 1.4 x 1075 gauss
1 for W3 and this becomes mixed at 

higher fields with a period somewhat higher than 1.7 x 10 5  gauss 1. 

The single straight lines for W3 at 4.2°K most likely mean the 

observed behaviour is due to both carriers; the slope of two of these 

curves (1.74) bears this out but the third 4.2°K curve has a much lower 

slope. W2 yields single straight lines at both 4.2 and 1°K and moreover 

they have practically the same slope. This sample, like W1, showed no 

remarkable increase in structure when the temperature was lowered to 

1oK. 
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4.2.3 ZaallalE9aaorY Data to th.e 1gallalUnatWi°11 
It was described earlier (Section 2.3) how we expect the 

oscillatory data to follow the generalized Landau expression: 

e 	T cos norivp 

	

(tliti 	rlit'ee'biter"'eWrrit.Th 

vn,2 
where U = 	H = All  say (A and Uf P, 	n) can differ 

AT W 
for the other carriers. 

We attempted to fit our data to this expression by iteration. 

Powell's VA04A subroutine was again employed to minimise a function 

defined as the sume of the squares of the differences between calculated 

and experimental values, but the main programme was complicated by 

provisions for choosing the number of carriers to be fitted and the 

number of harmonics of each to be included. In addition, it was 

decided to hold various parameters (PERIOD, POWER, A, DTBT) constant 

when desired in order to have some control over the direction in which 

the minimum was approached and to prevent physically unrealistic 

swings during the initial stages. It should be borne in mind that 

for two carriers, with two terms each, a total of 16 parameters are 

being varied. This represents a major problem in data fitting and some 

control over the process was thought essential, even though it con-

siderably complicated the computer programme. 
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It is proposed to describe the fitting programme in outline, 

indicating the function of each subroutine in sufficient detail to 

enable an understanding to be gained of the FORTRAN listing (see 

photograph in appendix 4) if this is desired. 

Once more, the main task was to supply suoroutine VA04A with a 

list X(I) of independent variables to be changed in order to obtain a 

minimum in the function defined in the subroutine CALCFX to be the 

sum of the squares of residuals. The MAIN programme first reads the 

number of carriers, and 1armonics of each one it is desired to fit 

and a set of starting values for all the parameters: P a PERIOD, 

n = POWER, Al 	a DTBT,14,612 PSI. In addition, a matrix NHOLD(I,J) 

must be filled with 11 s or 0's depending on which of the parameters' 

PERIOD, POWER, A, DTBT it is desired to hold constant during this 

fitting attempt. For instance, if NHOLD(3,1)=1 and NHOLD(1,1),(2,1), 

(4.1) = 0 then A for carrier 1 will be held constant and PERIOD, 

POWER, DTBT for carrier 1 will be allowed to vary. Similarly, 

NHOLD(i,2) where i = 1,2,3,4, defines which parameters for carrier 2 

are to be allowed to vary. 

This facility introduces complications in the programme in the 

form of two subroutines ADJINL and ADJUST, which are necessary to fill 

the matrix X(I) with only those parameters which are to be varied 

during the run. In effect, ADJINL is a shunting yard, filling the 

siding X with only those trucks marked "to be fitted", and with 
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NHOLD controlling the switching of points. Once ADJINL has filled 

X with the appropriate parameters (these always include W,PSI for all 

harmonics of each carrier) then VAO4A is called upon to take control. 

VA04A periodically calls upon CALCFX to supply it with the 

value of the function E(Residuals)2, giving CALCFX the latest values 

of the fitting parameters in X(I). Before CALCFX can do this, 

however, it must change the values of PERIOD, POWER, A, etc. to the 

latest values in X, leaving unchanged the values of parameters not 

contained in X. To do this, CALCFX calls upon ADJUST which employs 

the array NHOLD as a translation key in unravelling X(I) and 

presents the latest values of all parameters to CALCFX. CALCFX next 

calls upon CALL to evaluate the value of the Landau expression G, 

given these parameters and the data points one at a time. As each 

value of G comes back from CALL, CALCFX subtracts from it the cor-

responding experimental value, squares this difference, and adds it 

to the current value of ER2. When all data points have been used 

CALCFX returns the final value of ER2  to VAO4A. This process 

is repeated each time VA04A calls for a new value of ER2 which 

might happen several hundred times before it decides upon a new 

approximation to the best set of parameters (one literation1). We 

see then, that ADJINL is called upon once only to perform the initial 

filling of X(I), while ADJUST is required each time VA04A calls upon 

CALCFX. 
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Usually the programme was terminated automatically, having 

exceeded the five or ten minutes running time it was allowed. The 

print out from VA04A was then examined to assess progress made in 

reducing Ell
2 

and the latest values were punched on to cards for 

the programme to be restarted, possibly with changes made in NHOLD 

(i,j). On occasions, however, probably under fairly restrictive 

conditions of NHOLD, VAO4A found a minimum in ER2 and returned 

control to the main programme, which then printed .out the complete 

list of parameters in easily readable form under appropriate headings. 

The fitting process was finally completed when this form of termination 

of the programme occurred under the conditions NHOLD(i,j).0 for all 

i,j. A block diagram is shown below in Figure 4.4. 

/1-3 

We briefly present here the variation of resistivity with 

temperature for the three samples W1,W2,W3. Graph 4.15 • skows that 

the curves run parallel to each other at temperatures above 80°K 

and indeed would coincide if each were normalized by its room 

temperature value. The much greater resistance ratio p295, P4.2 

for W3 should be noted; it is some four or five times the ratios 

for W2 and W1. This indicates a greater perfection in texture for 

sample W3 and probably explains the much greater amplitude of 

oscillatory effects observed with this material. 
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c- A IS Rz;SISTIVITY 

Illor the cake of completeness we present here some 

results and comments on c-a3cis conduction, that is, with 

current normal to the basal planes. 

The technique of sample preparation was described in 

chapter 3, p90. Graph's 3 shows the temperature-resistivity 

plot for one sample of hot-pressed annealed pyrolytic 

graphite (IIJCT 61/2/A(62)) the dimensions of which were 

0.065 x0.749 x 0.378 ems. Absolute values could be in error 

by as much as 10', because of (a) the error in the thickness 

measurement ±4(),C, (b) possible correction of 5 or so from 

the effect of non-uniform current flow near the electrodes 

(mentioned on p90). 

We have made use of c-axis results in the Discussion, 

p165, and shall now briefly present a few comments on this 

subject. 

Spain et al (1967) found that 11 was insensitive to 
sample perfection (as judged, for ins.tance, by basal 

plane resistivity) and concluded that the behaviour shown 

for a range of their hot-pressed and annealed material muft 

be close to that of ideal, graphite. Graph A3 agrees 

closely with their results for such material. 

It has been conclusively 	that s-orin of the 

e.-xis resistivity by 1,;isaliyi,ee. 	pluiics does not 

contribute sicuificantl:,-  to :.:ensured c-axis effects. Wile 

I 



t,-:o main arume:Its are based on (a) bss,11 nlnno and 

resistivity have oposite tempers turc coefficients ,.Jove 

60°L; comliare graphs A3 and ,;.15, and (b) ,.eutron 

incre;:zes basal plane but decreases c-axis resistivity. 

As the temperature is decreased Pram X00oh the c-axis 

resistivity rises because of the decrease in carrier 

concentration; it is thought that the mean free path in this 

region is limited to a few intorloyer spacings. A constant 

mean free path at high temperatures is consistent with a 

conductivity pressure coefficient (Yeoman and Young,1969) 

which closely follows the .:mown (Anderson et al, 1967) carrier 

concentration rressure coeffient. 

Below 50 - 60°K the scattering is dominated by the 

LA c-axis phonons which have the low Debye temperature of 

185°K and couple strongly to charge carriers because of the 

sensitivity of band parameters such as D2  to interlayer 

spacing. 

At the lowest temperatures we find A becomes constant 

with the mobility presumably dominated by some form of 

static obstacle scattering. We have seen some evidence for a 

minimum in the resistivity curve at around 4.5°K but the 

region appears to be structure-dependent and changes on thermal 

cycling. 

The description of c-axis conduction in terms of a band 

model is not yet satisfact6ry, particularly at higher temp- 

eratures. 
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CHAPTER 5 

DERTVED RESULTS 

We now present the tensor components o ald a derived as xx 	xy 

described in Section 4.1.3. This is followed by a derivation of 

hole and electron mobilities and densities. Section 5.2 is devoted to 

the Landau expression for Hall effect oscillations in W3 and its inter— 

pretation. 

5.1 Non—Oscillatory. 

5.1.1 Derived Conductivity Tensor Components. 

It has been described elsewhere (Section 4.1.3) how the Hall 

coefficient and conductivity curves were fitted to the sum of up to 

four Lorentzians in the form 

Ai  
oxx • E 	2 

"(H.)  

whereA, . and H. • are the fitting parameters. Sections 2.4 

show how this representation of the data can be used to separate out 

the effects of electrons and holes and derive partial conduotivities 

for these two types of carrier. These, in turn, lead to values for 

electron and hole densities and mobilities. We present here the 

results of such an. analysis, performed by a computer programme which 

accepted the fitting parameters for orxx  and 014/H  and then derived 
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densitities and mobilities for each type of carrier. In addition, 

tables of conductivity a and Hall coefficient R with corresponding 

magnetic field values were printed out for comparison with experimen—

tal curves, and total and partial conductivity tensor components 

P n 	P n 
C7XX CrXX CrXX CrX,Y axy erxy 

were tabulated against magnetic field. Appendix 3 contains these 

results for the four standard temperatures for 141,W21143. Table 5.1 

of Section 5.1.3. lists the carrier mobilities and densities. 

Referring to Graphs 5.1 and 5.2, we see that the axx  curves have 

the appearance of being single Lorentzians. However, any attempt to 

fit them to a single term yields disappointing results. The appearance 

is due to the simple fact that a sum of Lorentzians has the same form as 

a single Lorentzian at both high and low values of the argument (magnetic 

field). The constants of these equivalent single terms are different 

at the two extremes, however. In practice, it was found that up to 

four terms were required to achieve a satisfactory fit. In all graphs 

presented in this section the data points are discrete symbols whilst 

the solid cuxve is the final result of the fitting process; it has 

been regenerated from the fitting parameters (up to eight in number) 

which best describe that data. 

The axx  component presents little trouble, as the agreement 

between data and fitted curves in Graphs 5.1, 5.2 shows. The graphs 

are all arranged to facilitate comparison between samples. 
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Fitting a data proved more difficult as Graphs 5.3 to 5.6 
x3r 

demonstrate. Nevertheless, reasonable fits were achieved with the 

exception of curves having violent oscillations at low field. At 

77°K there is a striking contrast between the excellent fit for W3 

which shows no anomalous low field behaviour and those for W2 and 

W1. Both of the latter execute marked oscillations below 5kG. and we 

see that the fitted curves tend to smooth out such extremes. It is 

evident that more forceful application of the art of weighting the 

data points could have improved the fit in situations like this. 

Except at 4°K all a
xy 

 curves move towards positive values at 

very low fields and in some cases actually cross the zero line. This 

behaviour is not visible at 4°K presumably because it has moved to much 

lo-Ter fields. 

5.1.2 Average mobility and numbers, following Soule. 

For later comparison, we present here the result of applying a 

two—band model to conductivity and Hall data, as employed by Soule 

(1958) in his analysis of single crystal data. 

2 Using the expression p aj(7xx  + a, ,) and the representation 
of the tensor components below (c.f. Section 2.2.1). 

/ 	/ 2 
0' 	E a h1+H2  /H ) 	= E (n.e.CH/H2 )/(14-H2/H:) xx 	01 	Si 	xy 	i 1 	si 	i 

carriers 	carriers 

Soule derived an expression for the magnetoresistance 

AP/Po  at-  (P (H)-P (°) WPO) • 
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Cmif 

	

1 	C 
Using aoi  = niejµi  and Hsi  e e". sr 1 

	

01 	Pa 
mobility (assumed equal to the conductivity mobility) an expression 

for the low field magnetoresistance is obtaineds 

ab r14-bi2 2 
H2 	0

2 [a -bi 11.11 

where a = nh 	the ratio of carrier densities 
ne 
11  

b = .„„ 
	

the ratio of carrier mobilities. 

where µI is an average 

This reduces further to -42  
pH 

b 2 1 	1 1-N2 
= -62 4e4h = .82  "" if a_1 p 

which is a good approximation at the higher temperatures. 

Graph 5.8 was calculated from conductivities at zero field and 

at 3kgauss, using 

= rkr)/(14-'6Z) and 	= #52)4r x  108  (cm2voilse;1) 
Po 	6o 	go 	ro- 

Magnetic field values have been corrected by -4% because of a 

late discovery of a calibration error relating to our Norma fluxmeter. 

Tables of results in the appendices and graphs do not embody this 

correction, but it has been applied to all final derived values, in 

particular Table 5.1 and graphs arising from this. 

Included in Graph 5.8 is the slope of Soulels EP-14 (-1.2) for 

comparison with samples W1042,143 which give slopes of -0.94, 

-1.09 respectively. 
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A rough determination of the total carrier density, ne  + nh  can 

be made from the above mean mobility and zero field resistivity, for 

ne+nh = 1,/ep0 (e = 1.602 x 10
-19  coulombs, po is in ohm-cm). Graph 

5.9 presents the result of this calculation and shows that W1,W2 yield 

practically coincident straight lines against temperature down to about 

60°K whilst W3 has a slightly higher concentration. The analysis 

breaks down at lower temperatures as boundary and impurity scattering 

take over. 

5.1.3. Carrier densities and mobilities. 

This section contains the final stage of the magnetoconductivity 

tensor analysis. EXpressions were derived in Section 2.4.2 for carrier 

mobilities and densities in terms of the parameters used to fit 

Ge• $  rr data to Lorentzians as detailed in Section 4.1.3. A computer xy  

programme was written to perform the summations of equations 2.4.2 (11 to 15) 

and print out tables of mobilities and densities which are here 

presented as Table 5.1. 

The -4.0% magnetic field correction mentioned earlier (5.1.2) has 

been applied and thus is embodied in graphs based on the table. 

Table 5.1 is in three sections corresponding to the three samples 

W1, W2, W3. The six columns are as follows8 Column 1; the sample 

temperature in degrees Kelvin. Column 2 is a code giving the conditions 

under which the data were fitted to Lorentzians; W means the points 

were weighted in an effort to improve the fit, U means the data were 



DENSTIES 	AND 	AVERAGE 	N05ILITIES. 	SAMPLE 	W1 
N 	TERMS 	WEIGHTED 	'NW 
N 	TERMS 	UNwEI6HTEL) 	=N0 

M03ILITYb10.4 
TEMP. 	 HOLES 	ELECTRONS 

NUMBER*10-1 8  

HOLES 	ELECTRONS 
295.0 3U 0.90155 0.96987 7.25807 7.98818 

295.0 3W 0.0451 7  -0.03137 192.95218 -177.70593 

295.0 4ti 0.13165 -0.00952 35o.96486 "335.75671 
295.0 4W 0.03424 -0.01293 307.42439 -29 2.21623 
88.0 311 1.70446 ' 	1.79080 m102.10783 107.31364 
88'.0 3W 3. 83725 3.83675 0.00000 0.00000 

88.0 40 -4.5595 -4.95373 111.20354 "106.01037 

88.0 4W 2.35040 2.35179 0.00000 i'.00000 
77,0 30 3,93215 3,97473 2.40397 2.43490 
77.0 3W 3.95352 3.95363 e!.37906 2.45981 

77.0 40 3.96709 3.93194 2.38893 e.47668 

77.0 4W 3.95869 3.94687 e..39633 2.46928 
63.0 3U 3.06967 3.27026 3,21047 3.28602 
63.0 3W 0.00000 0.00000 3.21275 3.28375 
63.0 40 2.60968 2.77278 3.70786 3.74830 
63.0 4W 1,73068 2.65263 3,73994 3.71622 
15.0 3 0 0.00000 0.00000 4.25579 1.75090 

15.0 3W 0.00000 0.00000 3.24609 0.75859 
15.0 40 0.00000 u.00000 "2.40828 5.77645 
15.0 40 0.0u000 v.00000 u.00v00 0.00000 
4.5 30 17.91965 22.47239 1.26742 1.34091 

4,5 3W 17,82460 22.53929  1,26095 1.34738 

4.5 40 13,80276 31.35004 1.82466 0.76742 
4.5 4W 17.59695 21.07825 1.54899 1.04308 



DENSTIES 	AND 	AVERAGE 	MOBILITIES. 	SAMPLE 	W2 
N 	TERMS WEIGHTED 	=NW 
N 	TERMS 	UNWEIGHTE0 QNU 

MUBILITY*10,-4 
TEMP. 	 'HOLES 	ELECTRONS 

NUMBER*10..18 
HOLES 	ELECTRONS 

291.0 3U 1,04452 1.09858 7.31810 7.20997 
291.0 3W 1.06430 1.05922 7.02708 7.50099 
291,0 411 1,08283 1.06750 7.01050 7.46108 
291.0 4W 1.08345 1.06694 6.99806 7.47353 
77.0 3U 13.03430 ".4.967S0 2.42180 ?..40048 
7/.0 3W 10.73934 1°1.70812 2.41489 2.40739 
77.0 0.00000 0.00000 4.52909 4.73069 
77.0 few 0,00000 0,00000 4.57375 4.68603 
63.0 31.1 5.86269 5.01280 1.90685 2.36665 
63,0 3W 5.44456 5.37105 2.09830 2.21378 
63.0 4U 5,3027 5.38337 '2.15498 2.19944 
63.0 4W 9.96581 10.76914 2'1..35896 i'25.00299 
47,5 3U 6.34459 7.55588 ).92618 1.90479 
47,5 SW P.28.01360 44.31794 1.87227 1.89416 
47.5 
47.5 

4U 
4W 

-1.04187 
"'39.05044 

6.91015 
51.84171 

6.62482 
1.89584 

6.73242 
1.96297 

4.5 SU 0.00000 0.00000 rk.44075 1.51068 
3W 0.00000 u,00000 1.44077 1.51067 

4,5 40 0.00000 0.00000 1.45518 1.49188 
4.5 4W 0.00000 0.00000 1.46379 1.48326 
1.0 3U 0.00000 0.00000 0.00000 0.00000 
1,0 3W 0.00000 0.00000 0.00000 0.00000 
1.0 4U 0.00000 0.00000 9.00000 0.00000 .  
1.0 4W 0.00000 0.00000 0.00000 0.00000 



DENSTIES 	rtNO 	oVERAGE 	MOIOLITIES. 	SAMPLE 	W3 
N 	TERMS 	wEIGHTEP 	r.NW 
N 	TERMS UHwEIGHTED RNu 

MODILITY*10-4 
TEMP. 	 HOLES 	ELECTRONS 

NUmBER*10-18 
MULES 	ELECTRONS 

293.0 30 1.08731 1.12930 '1%13264 8.20793 
293.0 3W 1.08513 1.13132 7.15618 8.18439 
293.0 4U 1.08723 1,13087 7.12834 8.19381 
293.0 4W 0.04793 u,0.03267 217.32399 -202.00241 
77.5 311 6.08992 5,05112 2.41405 2.62113 
77.5 3W 6.09286 5,04892 2.41280 2.62238 
77.5 40 5.77998 5,03741 2.55420 2.62477 
63,2 30 11.02604 4,58333 2.00546 2..33811 
63.2 30 11,20319 4.36984 z.02652 2.31705 
63,2 40 0.04000 0.00000 4.07277 4.23760 
63.2 4W 0.00000 0.00000 4.07509 4.23528 
54.0 30 9.19685 9.29372 1.87581 2.02360 
54.0 3W 9 9.34843 1.88386 2.01556 
54,0 4U 9.5766A 9.49395 1.78968 1.98912 
54.0 4W 9.55334 9.51499 1.78788 1.99092 
4.2 30 1.06628 88,44487 1.71281 1.75974 
4.2 30 1.06860 88,48973 71376 1.75879 
4,2 4U 26.35945 40.78255 2.50907 2.30271 
4.2 40 '26.52297 39.82773 /..37465 2.43712 
1,5 30 23.69151 5,43289 2.71874 2.78293 
1,5 3W 43.81568 5.37372 i..70936 2.79230 
1.5 40 0.00000 0.00000 t'65.15516 74.81471 
1.5 4W 0.00000 0.00000 4.76858 4.89097 
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unweighted. The number preceeding U or W gives the number of 

Lorentzian terms employed to fit the data and hence used to 

generate the rest of that row of the table. Columns 3 and 4 give 

the carrier mobilities in units of 104cm2/volt—sec and the final 

two columns 5 and 6 give carrier densities in units of 1018/cm3. 

All zero entries in the table are to be ignored as they represent 

large numbers which are physically unrealistic and have been set to 

zero to avoid an untidy appearnace. Negative entries once more 

result from unrealistic fits. 

Graph 5.10 presents the mean carrier mobility as a function 

of temperature in the same way as Graph 5.8 which was based on simpler 

calculations. We see that the two approaches yield essentially the 

same results at high temperature but Graph 5.10 indicates a 

decreasing slope at lower temperatures. 

Carrier densities in Table 5.1 are a little higher (Graphs 5.11) 

than the values given by the simpler treatment (Graph 5.9) but the 

temperature dependence is essentially unaltered. 

The mobility ratio °e/ilia.  is extremely dependent on the 

data—fitting process but the expected shape (Spain et al, 1967) is 

obtained in Graph 5.12. 
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5.2 Oscillatory derived result.E. 

5.2.1 Result of thqLandaualtiag. 

In Graph 5.7 is shown the analysis of the oscillatory part of 

the Hall effect in W3 at 1.20K. The circles are data points, obtained 

by eliminating the monotonic background from a chart recording as 

detailed in Section 4.2.1. The generalized Landau fitting programme 

(FRIER, Section 4.2.3) chose the 'best' set of sixteen fitting 

parameters to generate the continuous line superimposed on the data 

points. This curve, labelled "total", is composed of contributions 

from both holes and electrons each of which, in turn, are split into 

fundamental and 1st harmonic terms. 

The function describing the electron term is (Section 2.5) 

sinhU e  

-2UAT
T  

11 
cos(!. ..7 — h W2 al2A1 e 	cos (H -02)1 

2i5 	
e
m C2  KT * 	1 	A 

where U 	x if E 	ay s 
h 

AT Thus, n, W1, W2, A, -ir , P, Al, '62  are adjustable parameters. A similar 
5 

expreion holds for the hole term. 

We report here the result of allowing FRIER to run until it was 

very close to the best fit as defined in Section 4.2.3. Under 

AT restrictions such as holding A,— etc. constant the run did terminate T 

itself (that is, it satisfied convergence criteria specifying 
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approximately 1% accuracy of parameters) but under conditions where 

all sixteen parameters were allowed to change during the fitting 

process it had a little way still to go. We believe, however, that 

values of P7 TT and n listed below are realistically close to their 

final values; errors were estimated by comparing an earlier run 

(where the sum of the squares of the residuals, ER 2I was 20.41) with 

the final run (ZR 2  = 17.3). 

7./0:4 

Electrons 

n 	Period 	A 	W 	t 

0.1346 0.5005 1.77x10-5  5303 	 3.301 

—0.1406 	17.90 

+ 0.5,% 	+ 2% 	+ 20% 	+ 1% 	-± 50% 	± 5% 

Holes 

n 

0.4995 

± 0.5% 

Period 

1.48x10-5  

± 10% 

A 

9654 

± 50% 

AT/T 

2.509 

± 20% 

W 

0.0188 ' 

0.1032 

± 200% 

6 

—0.496 

—2.245 

± 100% 

We see that the electron parameters are much more closely defined 

than those of the holes. A glance at Graph 5.7 will show that it is 

indeed the electron behaviour which dominates with the hole terms 

supplying detail and, of more importance, perturbing the zero—crossing 

points. 
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5.2.2. Effective masses, collision damping, Periods. 

Recalling the definition of the parameter A from Section 

4.2.3 and 2.5. ; 

A 2fT2lam*C  
he 

we can derive estimates for the effective masses. Calculation 

m* / 	
0.03 ,0.065 / gives 	mo 	for the electrons and holes respectively. 

These are to be compared with the values 0.030, 0.060 respectively 

found by Soule (1958) and 0.039, 0.057 respectively by Soule, 

McClure and Smith (1964) for single crystal graphite. 

The factors AT/T yield values for the so—called Dingle 

temperatures; the effective increase in temperature due to collisions. 

We calculate AT = 6.0, 3.0 for electrons and holes respectively. 

Our corrected periods for pyrolytic graphite are 1.84x10-5  and • 

1.54x10 5 gauss
1 for electrons and holes respectively. The electron 

period is much lower than values found in single crystal graphite 

(2.01, 1.57; Soule m02.07, 1.51; Soule, McClure and Smith), though 

the hole period is in satisfactory agreement. Later, unpublished, 

work by J.D. Cooper has suggested that the present electron period is 

uncharacteristically low even for pyrolytic graphite, for which he 

reports periods in the region of 2.1x10
75G-1. The reason for the 

discrepancy is not known at present. Other features of the present 

analysis are fully confirmed, however. 
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5.2.3. Estimation of y2 and EF 

The oscillation periods were used to calculate y2  and Er  

given the well-established values of yol  7,1  and A (y4=y3=y5=0.0) 

and the oscillation periods Pe, Ph. 

It is difficult to obtain analytic expressions for y2  and 

EF from the equations in Sections 2.1.3., 2.1.4, so a double 

iteration technique was used; assuming a value of KZ  for the point 

M of figure 2.4 y2  and Fr  were calculated and recalculated, in order, 

from starting values until a consistent pair of values was obtained. 

These were then used to obtain a better estimate of the position of IL 

The whole process was repeated until a consistent set of three values 

was obtained. In practice, convergence was extremely rapid and was 

chacked by calculating Pe  and Ph  from the final set of band parameters 

for comparison with the values supplied. 

Using our corrected periods; Pe  = 1.84x10 51  Ph  = 1.54x10-5  

gauss and yo  = 2.88, y1  = 0.395, 'Y4  = y3 = y5  = 0.0, we obtained for 

various values of A the values of y2  and EF  shown below: 

Y2 EF 

-0.006 0.0162 0.0227 

-0.01 0.0162 0.0225 

-0.02 0.016 0.0221 

-0.05 0.0156 0.0209 
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An extension to this computer programme accepted the complete 

set of band parameters and by perturbing these by ± 10% produced 

estimates of the partial differential coefficients of the oscillation 

BP periods bb — where b is a band parameter. It was found that for all 

BP BP the combinations above 	were one or two orders of magnitude 

greater than the others. Their values were (for A = 0.006): 

biDe 

bY2 

BPh= 

—0.53x10-3  

0.35x10 2 

BP 
0.12x10 2  

0.17x10 2 

= dEp  

BPh  
= 

The largest of the other differential coefficients was BPe = —0.46x10 4— 
BA 

Finally, we mention that using Anderson et alts values 

ye = 2.85, y1  = 0.30, A = 0.006, Pe  = 2.088 105, Ph  = 1.502 10 5, 

we obtained y2  = 0.0194 and Eiv  = 0.0256 which compare well with their 

quoted values of 0.02 and 0.26 respectively, Once more, their periods 

were more sensitive to y2  and F, than to other parameters by one or 

two orders of magnitude. 
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CliAPTUR 6.  

DISCUSSION AND comuwpas.  

6.1 Classical Results  

For the first time for pyrolytic graphite (PG) the present work 

provides a complete set of parameters whereby the zero field conduc-

tivity can be related to the electronic band structure in the sense 

that relaxation times and carrier densities are defined as a function 

of temperature. There is essentially nothing in the present 

analysis to identify physical restrictions on the mean free paths; 

one cannot discern the origins of scattering from these results alone. 

However, at the lowest temperatures it is reasonable to assume that 

carrier-phonon scattering is absent, the relaxation times being deter-

mined in the main by crystalline imperfections, whereas at high 

temperatures one supposes that scattering originating in thermal 

effects outweighs static obstacle scattering. At intermediate tem-

peratures a mixed scattering regime evidently occurs. 

In the past (of Young 1968) the specific scattering mechanisms 

invoked have been high-angle scattering at basal plane crystallite 

boundaries and stacking faults for the lowest temperatures, with 

electron-acoustic phonon interactions at high temperatures in the 

spirit of the theoretical work of Sugihara and Sato (1963), Ono and 

Sugihara (1966) and McClure and Smith (1961). An apparently self-

consistent account of both basal plane and c -axis conduction could 
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be obtained by considering out-of-plane vibrations associated with 

a deformation potential of N 18 eV and in-plane vibrations with a 

deformation potential of - 5 6V, with various assumptions involving 

the role of the trigonal warping parameter y3. For present purposes 

a less sophisticated model is required. Thus we note that a mean 

mobility 	can be defined and that for the best single 

crystals (Soule's EP11) its temperature dependence can be represented 

between 4.2 and 295°K as ca 1.24. Following Klein (1962) and Hooker 

(1963), Spain et al (1967) assumed a dependence 

( —1 ( 	4. .1 
1) = 

ex107 X X carrier-phonon)  

to explain why ill. for PG always falls below Soule's limiting relation-

ship particularly at low temperatures. X' represents the effects of 

static obstacle scattering which, it was held, dominates the basal 

plane resistivity at the lowest temperatures. As the temperature is 

increased, interaction with the longitudinal acoustic c -axis mode 

(933  = 185°K, Dolling and Brockhouse 1962), which couples strongly to 

the charge carriers via 1/27  dominates c -axis resistivity up to 60°K 

and basal plane resistivity up to 170°K, above which the c -axis mean 

free-path is limited to - 3A, leading to a decreasing resistivity with 

increasing temperatures. The basal plane resistivity continues to 

increase, whereby acoustic in-plane modes with high characteristic 

temperatures are invoked. 
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However, Yeoman and Young have recently indicated (May 1969) 

that the source of charge carrier scattering has hitherto been 

completely misrepresented. They have measured the pressure coefficient 

of conductivity at temperatures in the range room to 4.2°K using 

pressures up to - 400 bar and find that conductivity always increases 

on application of pressure but the increase is always less than 

that expected from the known (Anderson et al 1967) pressure coefficient 

of carrier density, d ln n 
	-6 

37.5 x 10 bar
-1 
 . Thus, they write 

for the pressure coefficient of conductivity 

12 a 

	

	d 	+ 	La = constant + dl' 	dP— dP 

The mean free path A is given by 1 — = E— 1 where i stands for all 

vossible scattering mechanisms. Now, carrier-obstacle and carrier-

charged acceptor scattering are expected to be pressure independent 

provided non-parabolicity is disregarded and carrier-phonon scattering 

would lead to the opposite pressure dependence, for increase in 

pressure would raise the characteristic temperature leading to a 

greater mean free path. One is left with carrier-carrier scattering of 

which Yeoman and Young only consider electron (e) - hole (h) inter-

actionss e-e and h-h collisions would only affect conductivity via 

a randomisation of carrier energies which would be reflected by 

energy-dependent relaxation times were the electron and hole 

masses single valued. The known range of electron masses in graphite 
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will, it is true allow light electrons to be scattered by heavier 

carriers leading to the well-known anomalous iow-field behaviour in 

the Hall effect (see Section 6.3), but not much change in the zero-field 

conductivity will thereby result since the partial conductivity of 

light electrons is only a few percent of the whole. 

In the c -axis direction the fixed mean free path at high 

temperatures leads to a pressure dependence of conductivity which is 

nearly independent of temperature and close to that of the carrier 

density. The basal plane pressure coefficient, however, falls rapidly 

as the temperature is increased from 4°K, the carrier density change 

being almost completely compensated at room temperature. Yeoman and 

Young attribute this temperature dependence to e-h scattering which 

will increase in importance in the same way as does the carrier density. 

Neutron irradiation doses which are small enough not to affect the 

Fermi level as judged by electron and hole periods, nevertheless 

el 	 d l nn 
increased the pressure coefficient 	Ina towards --- 	because dP 	dP 

the e-h scattering can be no longer dominate in the presence of charged 

traps, even at room temperature. 

For electron-hole scattering, A
1 is approximately proportional 
e-h 

to carrier density and thus to temperature, accounting for the observed 

mobility-temperature relationship. A corresponding relationship has 

Cr been found to apply to
aP 	

by Young and Howell. It may be 

written 	[111-14 	- 1 = 	x T. BP Bin, conat 
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We accordingly conclude with Yeoman and Young that carrier— 

carrier scattering is of the foremost importance in graphite. In 

— 
good PG samples at all temperatures 	T1 	

1 
in bad PG it is T 

at high temperatures becoming independent of temperature at low 

temperatures. Typically A'(PG) = 17000A. Good and bad single crystals 

show the same behaviour as PG except that here the exponent is closer 

to —1.2. In graphites which have not been irradiated there is an 

element of carrier—carrier scattering even at 0°K which reduces 

BlnA 
BP 
— 	by some 20% of 	. At this temperature, carrier—carrier 

BP 

scattering is only made completely unimportant by the introduction 

of at least 10
12 

charged traps per cm.3  . It is reasonable to assume 

that any fixed mean free path, however introduced, will make carrier—

cz-xrier scattering less important. 

The experimental work which led to these conclusions became 

available after the bulk of this thesis was written. Accordingly, the 

analysis of low temperature data is put into a completely new 

perspective but the data itself exists, where it did not before, ready 

for analysis in the light of the latest interpretation. 

6.2 Oscillatory Results. 

With the oscillatory phenomena the key point is the question:—

"Can one replicate single crystal properties if one makes a mosaic 

well—oriented pyrolytic graphite or are the band parameters of single 

crystal and pyrolytic graphite intrinsically different?" 
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It was argued that if one could observe oscillations at all 

the analysis of these would highlight any differences. At the start 

of this investigation no such oscillations had been observed, though 

they are now commonplace. One single crystal (SP14) had given a hole 

period of 1.5x10-5 gauss 1 and an electron period of 2.07x10-581
. 

It was evident that the Dingle temperature for the electrons was 

higher than that for the holes, but no quantitative analysis for 

these had ever been attempted. Our aim was to determine both periods 

and Dingle temperatures for PG to answer the question whether PG is the 

same sort of material as single crystal graphite or whether the high 

basal dislocation content and mosaic structure measurably affects 

the band parameters. 

The best sample, W3, at 1°K produced a sufficient number of 

oscillations for analysis though with only about 1/5th of the single 

crystal amplitudes. There is evidence of structure in the oscillatory 

pattern indicating that both electron and hole effects were being 

observed. The analysis described in the text (Section 5.2.2) leads to 

a hole period of 1.52x10-5g 1, in general agreement with that found in 

other work, but the electron period is somewhat less than is found 

elsewhere. The Dingle temperatures bear the correct relationship to the 

effective masses of the carriers involved. Later work by J.D. Cooper 

at Imperial College on other pyrolytic graphites suggests that the 

periods might be higher (1.63, 2.15x10-5g-1  respectively), but the 
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Dingle temperatures are wholly confirmed. Accordingly the present 

results are used to compute values of y2  and the Fermi energy, Ef, 

which are not well determined by the magnetoreflection experiments of 

Dresselhauss and Mavroides (1964). 

We conclude that apart from uncertainty in the electron period 

the electronic structure of pyrolytic graphite is essentially com-

parable to that of single crystal graphite, the differences lying 

partly in scattering introduced by the microcrystalline nature of 

the former. At the lowest temperatures in single crystal graphite 

the mean free paths and thus the Dingle temperatures, are determined 

in the main by carrier-carrier scattering, whereas in PG high-

angle scattering events at grain boundaries are necessarily 

dominant. We therefore suppose that for our better graphites (W3) 

the Dingle temperatures will be smaller than for the less perfect 

materials (W1, W2) not merely because XI  is larger but also because 

low angle scattering on other carriers will play a part. 

6.3 2.4.912xg-fildHallcoefficienA 

One outstanding problem is the sign of the Hall coefficient 

below 2kG. Spain et al (1967) using a range of PG always found a 

negative zero-field Hall coefficient at 77oK with a positive slope 

against magnetic field, indicating that the light electrons are 

exerting their proper Hall effect with a mean free path limited by 

static obstacle scattering. Soule, with good single crystal material 
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observed a positive zero-field Hall coefficient at 77°K with a 

negative initial slope which he took to indicate the presence of minority 

holes. Now, it is true that in the electronic band structure of 

graphite as known there is a pocket for minority holes contained by 

the band E2 
below A near to the hexagonal zone faces at H. This 

pocket might just be accessible by thermal spread of the electron 

energy distribution 	kT) above 77°K, but Soule continues to observe 

this hole-like behaviour even at 4°K. Spain, with his more imperfect 

material consistently observed a negative Hall coefficient at 4o  K in 

agreement with Sugihara's calculations (1966), but the present work 

shows clearly a tendency to more positive low field values for samples 

W11  W2, W3 in that order of increasing perfection. We conclude that 

Soule's attribution of the zero-field Hall coefficient to minority 

holes is incorrect. Following McLean and Paige (1960), Sugihara 

(1966) attributes a positive Hall coefficient (for the best material) 

to drag on light electrons by carrier-carrier interactions. -Evidently, 

only when X is controlled by carrier-carrier scattering can such a 

drag effect be of importance. Yeoman and Young confirmed that this 

is so in the best material. The effect can be suppressed by 

increasing the static obstacle scattering, permitting the light electrons 

to contribute their normal negative Hall coefficient. Pre-irradiation 

with light doses of fast neutrons has shown that this is so. 
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APPENDIX 1  

Wave Mechanics of Conduction Electrons 

In using the Pippard-type geometrical approach to visualise electron 

processes we are applying a model which, at first sight, is extremely 

unlikely. One would suspect the presence of many pitfalls in an unwary 

application of the model and we accordingly propose to outline the main 

quantum-mechanical arguments leading to a justification for our some-

times regarding electrons in a lattice as discrete particles obeying 

classical laws of motion. 

The quantum-mechanical treatment is mainly due to Bloch, 1928 

whose work was based on Schrodingeres early work. Bornts theory of 

lattice vibrations is also of great importance in this field and an 

excellent accounts are given by Blount and Lewis 1962, 1958 respectively. 

We start with Schrodingerts time-dependent wave equation 

(H i  . .1.) -0= 0 at ) 

Por an electron in a magnetic field H described by a vector 

potential A and an electric field E described by a scalar potential V, 

we have the hamiltonian 

	

2  9 igmA 	e2 
PI 	 • 	A + ieh 	 2 + 

= - 2m 	MC 	2M0 	2M04  
(2) 



where curl. 	A VAA = H, 

and, by Maxwell's laws, s = VV 1 U. 
	

(3) 

0 is the potential energy of the electron, = eV. (See Schiff 1955, 

equation 23.4). 

Now, by identifying 444 alas the time-averaged density of matter 

and in particular for charged matter, dr 4 = .1.3  (where p is the charge 

/ density and e is the electronic charge), we can relate at  00 	to 

current flow I through the conservation equation -= V.I. t  

Thus 	yb-  (dP) = 	(3) = - 
a 

a 
a f 01P 4 can be obtained from the Schr8dinger equation (1) and the t 

hamiltonian (2) to give a relation between current I and the quantities 

La the hamiltonian. Finally, identifying jidT with el5 where v is the 

velocity of a wave packet described by t., we have 

E = t3-1  9 	iflt V cD 	o a'r A 	(I) 	(4) 

In the absence of a magnetic field, the Shrodinger equation 

simplifies to 

(5) 



and if 45 is zero at infinity or periodic boundary conditions are 

applied then (Dean be split into time dependent and time independent 

parts 

= gy 	 (6) 

is a solution of (5) where 0 does not depend on time and satisfies 

the time independent Sohrodinger equation 

2 
E 	Ot) 	= 0 
	

(7) 

The application of Born-Karman bouncTh.ry conditions then leads to 

discrete eigenfunctions On  and eigenvalues En, distinguished by the 

set of quantum numbers, n. 

Linear combinations of solutions of type (6) can be constructed 

'o describe any type of charge distribution. In general 

C
n One -iEnt/h 
	

(8) 

whereo  by normalisation, 	2 = 1. 

Now let us assume we have the solutions to the above problem for 

a potential 00  aria we apply small electric, and magnetic fields. Thus, 

we require solutions of 

2 
.4.1° = 	• 00 + 	.(1.? 

j'm  bt 	2m " (9) 



= 
jet  A V ieh  V A —P 2 A2 

. 	. 	
eV me — 	2mc 	2mc 

Then, for a small enough perturbation, the new solutions will still 

have the form (8), but the coefficients Cn  will be time dependent. 

The Cn(t) satisfy 

Cn = (i*) E Cn  Htntnei(En2 En)t/h  
n 

(10) 

where the matrix element HInto  = MII IPIOndr 

(H' can be simplified for small H; HI = ma A,V + eV) 
	

(wA) 

Motion in a  periodic potential 

Blochls theorem states that solutions of (7), when 0 is periodic, 

a:e of the form 

= C eiic.r tric(r) 

where Uk(z) has the same periodicity as the lattice. Substituting 

into the Schrodinger equation, (7), gives 

4,242 
21k.VU 	(E 0 — i=7t)U m 0 

h .̀  

Solving this equation for a given value of k leads to a discrete set 

of eigenfunctions, 1114n(r) and eigenvalues Ejc,n  characterised by pare— 
.01 	 ONO 

(9A) 



meters k and n. 

However, as things stand, we have some ambiguity in the wave 

function 0, for we can add to k some vector le leaving 0 unchanged 

ik r 
= e 	U(r) = ei(k kf)-1' ( -ilcf.r 

Uk(r)) 

This expression for is still a solution of (7) provided 

e Ilhg4:11k(r) has the required periodicity. If R is a lattice 

translation vector then we must have e-iic-f.E Uk(r) = e-laf'(r+26(r+.11) 

erg i.e. 	= 1, as Uk(r) is periodic. 

For a cubic lattice of primitive translation a the components 

of k have to satisfy kx 
a = 2a x integer, etc. Thus we can change 

the components of vector k by integral multiples of a — without affect- 

ing 0, provided the phase of the periodic function Uk(r) is Ghanged 

at the same time. 

In general, it is possible to make the k vector describing any 

state lie within the first Brillouin zone ( 
TT  k. < - for a cubic 

	

a 	a 
TT 

lattice). The resulting vector is called the "reduced wave vector". 

ik 
By substituting 0k  = ce

.r  - Uk(r) into the Schrodinger equation 

(7) and imposing Bern -Farman periodic boundary conditions 0k  (r + NR 

= Ok  (r) whereli is an integer, we find that k can only take values 

such that k.NR = 2Un where n is an integer and R is a translation 

vector of the lattice. For a cubic lattice, this means that compon- 



211.  ents of adjacent k vectors are separated by —' This is a very small aN 

quantity compared with the width of the Brillouin Zone and we can 

usually regard k as being continuous. 

The sets of eigenfunctions 01_ for differentvalues of the 
n 

quantum number n usually have widely separated sets of eigenvalues 

Almost all conduction processes involve much smaller energies 
Ek,n' 

than these gaps and n will not usually change for these processes. 

At most, we are concerned with a few such n values, corresponding 

to the "valence" and "conduction" bands and we shall omit the band 

index in what follows. 

Velocity of electron packets 

Let us construct a wave packet from Bloch states with wave 

vectors 1 localised near 1 = k: 

-E 	piElt/h  Cl 

By ). and 12 the velocity of the packet is 

vk  = 	r 	1 (E c* 4)*1 e iE t/* V £ C1 01 a -4E1° di ) - "n-i7  A a  r 	• - dT im 	 Ctic 1 	 1 

This can be reduced to 

vk 	im i  = - E l  ic 12  s1 1 zr V2P1  (35" 	tk C dr ic  

Now, if Ili is localised near 1 = k and. also 2 Icil a  = 1 by 

normalisation of 0 then 

ONO 

(12) 



evok ar 	lk ar  k 
43.1. 	4.0 

(13) 

which relates the velocity of a wave packet jJo the wave vector of the 

eigenfunction which contributes most strongly to the wave packet. 

k is the "representative wave vector". The shape of the wave packet 

enters through the second term. 

Now we must digress to point out that the magnetic field H is 

still described by a vector potential A when this latter is changed 

by a ddition of the gradiant of any scalar field, f. 

For v A(A + vf) = v AA + v Avf = v AA = H 

(since curl (grad f) se 0). 

But this "gauge t ransforwation" changes the potential V. 

Thus, for constant magnetic field H and electric field e we have 

A= 	H Ar.  + Vf and V = Loz - C 
 af 
	(from( 3) ) . 

Thus, (13) can be reduced t(.. a single term if we add of = - 2  H A 

to c H A E, where r = 4ft r 	ars  for the second term is easily 

shown to be zero. 

Then 	V = (14) im I4)1‹: VOk ar 

This simpler expression is thus valid provided we use a vector 

potential whose mean value is zero. This is known as the "Jones -• 

Zener condition". 

h
2 

2 Now the tid
k 

have the Bloch form, and satisfy —m 
 V Ok  (Ek  0)0k  = 0 2 

where 0 is the periodic potential. By operating with .51-c-- multiplying 
x 



by 4 and integrating, we find h*, = 	E. Thus, combining sirrnar 

equations for the other components, we have for the velocity of the 

wave packet: 

hV = V1E k 	k 

Acceleration of the electron  

Taking Vic  formally as a function of k and r we have 
ONO 

a • 
Iic 	= 	]; + 21- ]; 	bI  .1; 	bi 4. 

dt 
•-•• x 	x 	••••-•-x  X "k 	"NI= --z) 	— + 	\ 

u y 	z 	°Iix 	BY 	bz I 

or 	V =hTkth Tt V k 	= 	ISM —k 

where the tensors have elements: 

bYki _ 	B2Ek  T.. = 1J 	F7517—  — w2 Bk.bk. 
J 

a40 
2 Bk.ax. 

Rigorous justification for letting the eigenvalues 	vary with 

position in this way is not easy. It is as if the conductor were made 

of adjoining pieces, each having slightly different sets ofeigen—

values. 

(15)  

(16)  

(17)  



We must find an expression for k. From (10) we have 

o(1) = ticy E 0(1) Htlrlexp(i(Eit - El) .) 	(18) 

Now, using the vector potential satisfying the Jones -Zener con- 

dition, 
bf -F = :L2 A h.;  ± (11 AVk) .r 2  

Hence the new potential V = E.r 70-(Y:k A  LI) 
	

(19) 

So, using (18), (10A), (19) and A= .*HA (r 	we have for 

small values of H, t and (Elt - E
l): 

	

f 	H ti,(r - 17)  V - 	ei "*)41)3.dr  60.0 = E c(3.) 	471i 	2m0 •-• 

This must be evaluated for the Bloch waves ;b1  = oeil.r Ul(E). After 

some involved calculation we find (Ehrenberg, P.99 ) 

ie 
S
lt 

= - 	4-V)ILIDV 

	

2oh -lt -k 	k 1 	2ch 1 - 	lt 

	

max 	••• 

For the representative vector, lt= k, this can be written 

1 0  12 - kl - 
(0 ÷ Vk  A H).vk lok12  



which is satisfied by 

lc 1
2 = function of (hk — eet 	r 

For k to continue to denote the representative wave vector as the 

wave packet moves, k must change with time to keep the argument constant. 

Thus the rate of change of the representative wave vector of the wave 

packet, k, is given by 

Pik = ee 	 Vi  A H 
	

(20) 

But the RHS is the Lorentz force F acting on a particle with 

charge e. Thus, 1k changes under the force F just as does mV for a 

charged particle outside the lattice. 

Equation (16) now reduces to 

Vk  = T — 	= 

• 
k 
"la 

Ttyk  = T 1' + —k 

For a homogeneous material V = 0 and 

V = T F 
—k =— 

Comparing this with Newtonts relation V = —,F we see that T-1 is 
• i  

m 

analogous to a mass tensor. This discovery is subject to the approxi— 

(21) 



mations we have made, viz, that the material is homogeneous and. that 

the field H is small enough to neglect A2 in(9A), leading to (10A). 

Jones and Zener have given the condition fcr the validity of neglect- 

ing A2 as (011/2mo)t << 1, where t is the time over which Pik eet 	r A H 

= constant is valid ,essentially the relaxatior time. For exaphite, 

taking m = 0.02 mo, t = 5 x 10-13 secs, this gives H << 250 kgauss. 

A further condition is that the ca,Tiers can be described by 

Bloch waves taken from single bands i.e. no band degeneracy is allowed. 

or the effective mass approximation will break down. Of course, our 

picture suffers from the fundamental drawbacks of the independent- 

particle model; correlation effects are entirely neglected.. "Electrons" 

and "holes" strictly exist,respectively, well above and. below, the 

Fermi energy. Close to the Fermi energy neither particle is well- 

Leaned and there exists the possibility of strongly correlated states. 

However, for a semimetal like graphite we put our faith in the low 

density of carriers compared with the density of available states and. 

hope that correlation effects are reasonably small. 



Application of the Jones-Zgau..apza.qion to Graphite 

The object of this appendix is to reduce the Jones-Zener 

solution of the Boltzmann equation to a form where comparison can 

be made between Jones-Zener terms and terms in the phenomenological 

expansionofthemagneto-conductivitytensorp. '713V. These tensor 

components are then reduced to fairly simple integrals over the 

Fermi surface which enable one to relate the low field magnetoconduot— 

ivity tensor directly to the Slonczewski-Weiss band parameters. 
61o  

We recall the solution of the Boltzmann equation f = fo-057 

where 0 is given by 10  .2 c . V w H . D ey = 0 and 0.= 2  V EAV 
T h 	 ch2 K 'K 

This can be solved for 0 to any order by iteration; for instance, 

the zeroth order solution is 00  = 	c . VKE. Substituting back, 

one obtains higher order solutions. Jones and Zener first obtained 

the series solution in 1934g- 

0 	-91:Te • VICE T 	• ve) + 7E- a (111.1. (T.§..vo)) ...] 

- where e is positive for electrons. 

Now, bearing in mind the definition of J, el  and 0, particularly 

in respect of their signs, one can write the current density J in 

terms of the above expansion 

I  0  civic 
J = 



2 Of°  
-Hence J. 	r— v .DresV 	Ci(rs.V) + TH. C'4 (TH. Q(m.y.) ) civic  3. al- zin" 

- where we have used V = Vo 	=(1i10)277i3  ) 

It is easily shown that any function of energy alone commutes 

with the operator 1: 	Of(E(K)) = f(E(K)) Q so one may bring out 

the electric field components from within 	g 

2 Bf, 

03 aE vi[•JjT- 	j 

The conductivity tensor follows immediately 

2 bfo  
Crij  (H) = 4--  il--- i  v[1 31.-Tilk(Wi) + TE. WTH. 17: (Tv j)) joiVic  40 'BE  

Comparing this with phenomenological expansion 

a1,3 . .(1) = a.. + aKi j HK  + ij  

where 
alai;01) 

ij a 	= aij(0) 
a
Kij 

= 
BHK  11 '.0 ' CrKlij = 2 aHKaHl  11=0 

one can identify the coefficients in the two expansions g-

2 af 
• • 	- 	ft° aij  V TV dV 

2 	df 
.....e 	(1-.2 „ 	1„ vir c( p, .) dV 	e2  r6  fo  

K  = 	3  aE  vir r6KGrvi  )dVic  4Tr_, u K  „„ 	
4ff 

4Tr3,  BE 	. 	. 	K 

a Kij 



a 	= Klij 

2 	2 
^ / 	p, 

03 	2 H 
Kw  
aH1 P laE 	

r H.  1Ll71• UMW .) ) jaV K 

One can remove the product of the D- operator from the last 

expression by using c(AB) = ADB BSA with A E (rVi) , 

B s (Tg.n(Tyj)). Then 

2 	2 
a 	= - 	3-- A-- 	r-- (A. eCryi  (TR. cl,ervi ))-iii- (Tv • )E•r) (Tv. ))clAry 
K ij 	453 - E.- 	BE 	 - 

1 

We now show that the first integral is zeros Operate on any 

scalar field A with Ca.Ver). By writing the scalar triple product 

in determinantal form it can be seen that this operation results in 

= - CE14.720A A(R.viev) 

However, the last expression is zero, for its terms cancel in 

pairs. Taking the pair associated with the Hx component as an 

example, we see 

i2aV 
AH ("--" x BIC2 	

5c 

3 	
0 

 

a 
since V. = 	/ i 	1, 2, 3. Thus, we are left with BK. 

(LI.r)A = -(H.EKfV)A = -(K• )A = divic(-A(LAII)) 

- which means that any scalar field can be transformed into the 

divergence of a vector field by application of the operator (a.2.). 



The above integral has thus been transformed into the 

integral over volume of the divergence of a vector field 

of  o 
[1i" 	TR.Q(TVdanino 

By Gauss' theorem, this can be written as a surface integral of the 

vector field which immediately reduces to zero because ECK) has the 

same values on opposite faces of the Brillouin zone. 

One is left withs 

e?
2 	6f  

Ilij 	2 	3 	aHK3H1  raE TH.C=(rvi)E.D,  (
Tv j)av 

K 

i.e. 
2 6f 

01C1ij = aff3 ,aE 1.0 racr,i) ni(rvi )+01(71,j)&-k(rvi )JdvK  

To go further, we look for simplifications resulting from the 

symmetry of the graphite crystal and impose the condition that the 

magnetic field vector lie parallel to the c-axis, H a (020,H). It' 

was shown in section 2.2.1. that the only tensor elements contributing 

to a..j(V) with the magnetic field along the z-axis are J  

(111' (122=1711°  (133' a312' °321-  312' (73311' 13.3322=a3311/ e3333' 

so one can work with K = 3, 1 = 3 from now on. 

Taking a3ii. first, one requires an expression for 	By 

expanding CAK 
 one obtains 

2 	of 
U 	-2— -9-  11--- 112.T- (v 	v 	Tvj

)dv 

	

3ii = 3 Ch 3E 	a K2 	2 	
( 	K 4E1 



.. follows simply: The reduction of aKlij  to 331J 

2 afn  
itaorsz 

	

C733ii = 	
io 

3 aE 1"43(irv i)C3(*j)d/jK 

__, e2 	e 2 	o Tv, 	V 	ust10 	V 	1,  "41" 	 C111 
""'" ( 	) 	r 	1 aK2 	2 aicl' (— 1)  (- aK2 2 bK ' (' j' K 

	

= 	Ch ' 	18E 	 1 
4113  

Now, since the enErgy -band structure of graphite is not known over 

the whole Brillouin zone, we must introduce an approximation here to 

change the volume integral to an integral over the Fermi surface. 

Using the well-known expansion for an integral I(EF).r fo fo(E)dE 
o aE 

where G(E) is a ..known function of energy; I(EF)=G(EF) -G(0) 
hry.„.mN 2 	2G 	

11.004,001 

6 aE2  
one can verify, by integrating by parts, the following relation for any 

function g(E) of energy: 

af, 0000 rgo 	g(E) -a- dE = g(al 01
6 
 2 4,51  

aEl2  

We use the lowest order approximation, obtaining: 

2  
crij

3 J  1 
V. 
 TVO 

• dS 
w_Ef. 	I VKE 

{since - since dVK 

 

where dS is an element of Fermi surface area. 

 



3 
a3ij 	r 	r 	- v2  -a-  ) r"  40Ch 1911. 1/4111 -Sc 1 	r7 E  

_e4. 
(7331j = 	3-5 2 471 C 

T (v1 V -A-  )(-v 1(t -A-  v2 aK ' ) 2 aK 	a,K:-  1  

k vji vo!  

Our task is now to perform these integrations ove'the Fermi 

surface of graphite, and so relate the band parameters to the low- 

field conductivity tensor. To do this, we recognise that one can - 

not obtain an analytic expession for the Fermi surface from the secular 

equation of Sloncewski-Weissgs band model for 1/3  / O. We 

Accordingly assume 1),3  = 0 throughout and make great use of the 

resulting circular symmetry about the Ks-axis. 

In view of the circular symmetry, let us transform to the cylin- 

drical co-ordinates Ko  a, KZ  as defined in section 2.1.3 . In what 

follows we make use of the relations 

sina ?' -a-- sina aK 
 + cosa 3 -- 3K = cos a - K 	as ' aK 2 	K 	as 

and the resulting expressions for the Fermi velocities: 

= lcawcosa)  

	

". 	all 	V 1  

	

1 	h 	1  ; ( v2
) 	

(aK)  (sina ) 



The expression r 	 A ./ 
kV1 aK 	v ax vkg jvi reduces as follows: 2  

2 	1- 

1 	a Pf coca 04 	_ since?  
rcOsakaKjoi ac + 	- sinc- ax

)(com 
 

6K 	K ' a a)]  

a)(cosa l 
BKivSinai  

fl

-sina 
-  k cosa

) 

where where one takes the (-sina) if j = 1 and (cosa) if j = 2. In 

deriving this, we have used the key fact that as = 0 fcr our band 

model with n = 0. An additional assumption is that r  is constant 

on an orbit round the Fermi surface in a plane perpendicular to 

the 0-axis; T = pr(E0Ki). 

The element of surface area is given by 

AK .2 dS = KdadKz(14-qi ) )4  . 

Because of the circular symmetry, one may integrate with respect to 

a immediately. 

For i,j = 1,2 :- 

,21T 
Vi•ry .da = 

r 
211"

1 7 2  icosa N tcosa 	1 6E 2  
o 	AK' 'r`sina)  sina)da 	7T(7(1T  0  43 0 	 TO 

which shows that rr21 = (712 = °I (711 = u
22  as we have already seen 

-  

from other symmetry considerations, in Section 2.2.1. 



rar 
- V "2-  ) ( V )da = r211. 

 2 
taB)2 BB\ (COW \ (-sir= 

0 	1 1 aic
da  

2 	2 alc o Kh2 kalc,  kh axiksinalk cosmi 

2 
Le` (()3(0 ITN  

kav .1:Tr of 

showing a - 0, a312  = a321 -311 = (T322 

r

2ff 

T( 	- --a-)( )( --a- - v2 -A- )(TvH)da 0 	v OK2 
v2  wc1  Tvi  vl  BK

2 	
BK1 	j 

2r 

	

2 	2 2  -sina 
= l o 	a-) (-sctifdl-e)  ( coca )da  

	

h K 	h K 

(AE)T)  '110) 

(1c)2  aK  

showing a33..11  = 43322 ' Cr3312 = (r3321 = °' 

For i,j = 3 we see that for 0.33  

211 
ro ✓3TV3da =2 aK (33  )2  ar 

h'z  

Since TV = 	has no K or a dependence we see that our 
3 	aK z  

assumption of y3 = 0 has imposed (3333 0, whereas it is not 

necessarily zero from the symmetry of the crystal structure. One 



deduces that a K or a - dependence of Al is essential to explain 

c—axis magneto-resistance or conductivity, both of which are 

proportional to 0.3333. 

Before collecting our results, we present another simplification 

which leads to considerable reduction in the computational difficul-

ties ahead. 

We note simply that, since the integrations are being taken over 

the Fermi surface whose energy is, by definition, constant, the 

following relation must hold : 

dE = *3 	a 
BIC 

dK
z 

0 

(AN = 0 since 1,3  
ba 

0) 

This leads to 

4,3 
dKz 	bKzi

aK 

  

dK 
Now, the integrals all contain a factor 	

2 
[1-1*(Kz)  I  and. it 

  

I v KE 1 

 

is this which we simplify by realizing that 

 

Ivo!= jet (tit)2 

 

and using the above results 

  



	

C1+(-  )21i 	1 

NEI 

The integrals may now be collected, in preparation for the final 

integration over Kz 

A 0, 2 r (11  

	

cr • = (0 TT) 	. T 	) K dK 
ij 32 

 
411 fi 

- 	(11 n) -- e3 — I r I-  -2  CU) 2  d.K -31j- -1 0 

	

	bK 	z  
4if3Ch4 

	

AT 0, 	4 	r  3 

	

(733' • = 1/40 Tr) 	-e  - 	1' tar K ' 	dKz vbK/  
4n'
3
C
2
h
6 

To proceed further we must find the functions K(Kz), ffc(Kz) 

and assume some KZ--dependence for .1(Kz
), but these expressions 

represent a remarkable simplification of the original Jonee-Zener 

expressions. 



APPENDIX 3  

DATA. 

The following tables of data are in three sections. First 

there is raw data on the variation of conductivity and Hall 

coefficient with magnetic field at stated temperatures for each of 

the three samples. This makes up the bulk of Appendix 3. 

After this comes a short section detailing the results of 

fitting the raw data to Lorentzians. The solid curves of the graphs 

in Chapter 5 were plotted from the total conductivities a , a xx xy 

listed here. However, the tables also contain partial conductivities 

e.g. an aP y  from which the contribution of negative (n) and xy x 

pJsitive (P) carriers can be ascertained. Gaussian units are used. 

Magnetic field values are in gauss. 

The last section presents raw data on the oscillations observed 

on W3 in three experiments at 1.2°K, two on the Hall effect and one on 

the magnetoresistance oscillations. The columns are magnetic field B 

(gauss), reciprocal field 
1/B (gauss-1x106), and sample voltage V, 

arbitrary units. One of these experiments was subjected to the detailed 

analysis of Section 5.2. 



Errors. 

Errors were introduced mainly in the chart reading process. 

Chart calibration, involving measurement of chart distances (<1%), 

sample current (<0.1%) and sample voltages (1% for low field Hall 

voltage at 1°K, though greater for values of magnetic field giving 

near-zero Hall coefficient) introduced a slightly smaller error. 

Total errors from these sources to be expected at 1°K vary from 10% 

at 200 gauss for magnetoresistance and 30% for Hall effect. This 

quickly drops to 3% for both effects at 2000 gauss and 2% or less 

above 4000 gauss. At 300°K errors are similar in magnitude for both 

effects, being about 10% at 200 gauss and less than 2% above 5000 gauss. 

The magnetic field values must be corrected by the factor 

0.960 because of a late-discovered calibration error in our fluxmeter. 

Final derived values in Chapter 5, in particular Table 5.1 embody this 

-4% correction. Calibration of the Hall probe was accomplished to 

within 2%. It should be remembered chat the magnetic field appears 

explicitly in the definition of Hall coefficient. 



, 	_ 	. 

VM 295°K 
!, w 

B 
gauss 

_ RH  

(c0/0) 
0- 

(cl-cm)-1x10 3  

647 a .06365 22.8 

1093 .067529 22.56 

1602 1 .05993 22.17 

2128  .05969 21.71 

2644 :, .05447 	3 21.15 	, 

3758 .05841 19.75 

4335 .05696 18.99 
1 

4860 . .05983 18.25 
i 

5470 '' .06069 17.42 
. 	. 

6560 .06064 15.95 

764.0 .06284 14.55 

8790' .06398 13.13 

9705 ..06587 12.11 

10710 .06789 11.10 

11660 .07014. 10.22 

12550 '-.07168 9.4.7 

13620 .07394 8.65 

14550 .07616 8.00 

15830 a .07695 7.23 

r 

WI 295°K 
0 	 I 

B 
gauss 

i , 

-1-1 
(cm3/c 

cr 
(a -cm) -1  xi 03  

, 

17080 	..07919 6.51 

174.20 :.07876 6.40 

205 .07031 22,819 

205 .07408 22.936 

214. , .06736 22.918 

218 .08176 22.914. 

229  .06294 22.827 

273 .06529 22.897 
1 

319 .0823 22.883 

365 .07546 22.859 

4.56 	' .054.16 22.764 

54.8 ' .06611 22.831 

683 .06916 22.772 

914. '.05886 . 22.575 

1003 ,.06281 22.595..  

1139 .0576 22.526 

1253 .06111 22.44.9 

1364. .06133 22.283 

4 	1459 -.06087 22.288 



WI 295°K 

B 
gauss 

-2/, 

(cm3/0 
a 

(C1-0m) i xle' 
o 

1595 .06132 22.168 

1713 .06161 22.052 

.1822 .06039 21.905 

1916 .05877 21.851 

2056 .06197 21.715 

2278 .06017 21.453 

2374 .05828 21.380 

2516 .05831 21.219 

2630 .05823 21.090 

2736 .05805 20.936 

2836 .05784 20.852 

2976 .05804 20.676 

3090 .05885 20.525 



ym 	88°K 
, r 

B 
gauss 

-RH 
(cm3/0) 

a 

(CI -cm) -1  x104  

3480 .0465 11.759 

4436 .0637 8.831 

5395 .0825 6.847 

6360 .1012 5.3916 

7330 .1197 4.3203 

8300 .137 3.5679 

9280 .1525 2.9792 

10260 .1666 2.521 

11245 .1792 2.1453 

12240 .191 1.8612 

13225 .2015 1.6350 

14220 .2117 1.4385 

15225 .2213 1.2719 

16225 .2297 1.1325 

16230 .2298 1.1314 

221 .282 28.661 

410 .1775 28.163 

598 .13327.062 1  
. J 

wi 	88°K 

B 
gauss 

li 
(cm3/0) 

a 

(cl _cm)-ix1p-3 

786 .1055 26.044 

974 .0837 25.036 

1163 .0707 23.867 

1352 .061 22.432 

1537 .0536 21.350 

1541 .0535 21.252 

1731 .0482 20.271+ 

1920 .0442 19.004 

2110 .0416 17.948 

2298 .0403 16.887 

2)1/1-5 .04.02 15.838 

2680 .0412 14.913 

2682 .0412 14.870 

2908 .0425 14.0495 

3059 .0437 13.261 

3251 .0202 12.445 

3421 .0468 11.766 

3632 .0492 11.094 



WI 	88°K 
. 	. 	_. 

B - RH a 
gauss (cm.3/C) (CI -cm) r1  x 10-'3  

3832 .0517 10.494 

4.208 .0562 9.377 

/4.780 .0632 7.967 
4 . 



WI 	77,91c 
, r 

gauss (0m1c) (0.415;) -4 x10 3 

- - 31.020 

206 .0.0156 30.328 

278 0.02546 30.043 

370 0.06087 29.516 

463 0.06532 28.947 

695 0.06342 27.311 

926 0.05865 25.471 

1158 0.0469 23.627 

1391 0.03807 21.748 

1624 0.03344 19.9896 

1857 0.03289 18.422 

2092 0.02888 16.948 

2324 0.03295 15.570 

2558 0.03446 14.331  

2790 0.03852 13.367 

3022 0.043/4 12.178 

326o 0.04737 11.244 

3730 0.06193 9.6309 

4200 0.07155 8.3080 

4670 0.08833 7.2106 

5615 0.10796 5.5612 

. 7515 . 0.1517 3.5422 

. 	_ 

m/ 
	77°K 

B 
gauss 

. 

- Ril  
(cm3/C) 

a 
($D-cm)-1  x103 

, 

9435 0.1891 2.4349 

11370 0.2238 1.7732 

13320 0.25112 1.3486 

15290 0.27381 1.0613 

16790 0.28802 0,9030 

610 - 28.0097 

1551 - 20.986 

2498 0.03 14.714 

3446 0.0502 10.477 

4400 	' 0.0737 7.758 

5355 0.0975 5.8986 

6315 0.1233 4.601 

8250 0.1697 3.0116 

9225 0.189 2.510 

10200 0.207 2.114. 

1 1185 0.223 1.8041 

13160 0,252 1.3588 

14150 0.2648 1.1975 

15150 0.277 1.0622 

7300 0.1485 3.6675 

12140 0.2377 1.5634 

16180 0.289 0.94761 



V11 	63°K 

B 
gauss 

RH 

(cm3/c) 
a 

(0-04"l xicr3  

- _ 33.100 

204 0.2495 32.222 

372 0.2975 30.947 

699 0.1703 27.761 

1400 0.09358 20.685 

2808 0.0834 11.335 

3750 0.1082 7.9227 

9520 0.2772 1.8549 

16885 0.4128 0.6951 

250 0.254 31.88 

400 0.219 30.85 

500 0.1945 30.0 

600 0.1718 28.88 

700 0.154 27.5 

800 0.140 26.24 

900 0.1278 25.0 

1000 0.1189 23.75 

1100 0.111 22.73 

1200 0.104 21.8 
. _ 

TI 	63°K 

B 
gauss 

-111/ 
( cra3ic  ) 

a 
-414  1  xi o-3  (n 	. - 

1300 0.0972 20.86 

1400 0.0905 20.02 

1500 0.0855 19.28 

1600 0.0808 18.51 

1700 0.0768 17.8 

1800 0.0748 17.1 

1900 0.074 16.4 

2000 0.074 15.74 

2100 0.0744 15.13 

2200 0.0753 14.55 

2300 0.0759 14.0 

2400 0.0772 13.48 

2500 0.0788 12.96 

2600 0.0803 12.44 

2700 0.082 11.97 

2800 0.0838 11.5 

2900 0.0856 11.04 

3000 0.0875 10.6 

4000 0.1262 7.25 



W1 	63°K 

R  B  II 47 
gauss (0m3./c) cl—e4-1  x10-3  

5000 0.1517 5.095 

6000 0.1839 3.94 

7000 0.2128 3,10 

8000 0.239 2.44 

9000 0.2643 2.28 

10000 0.2879 1.685 

11000 0.3098 1,422 

'AN 	63°K 

B --Rfl a 
gauss (cm/C) (CI—onrix10-3  

. 

12000 0.3304. 1.23 

13000 0.35 1.075 

14000 0.368 0.94. 

15000 0.3852 0.84. 

16000 0.4008 0.755 

17000 , 0.415 0.698 

3500 0.1002 8.75 
1 I 



. 	- 

VM 	15°K 
4 4 	 4 

B 
gauss 

i 

 RH 
(cm3/0  

a 
_ (0.04 .. lxio  3  

r A 

220 2.75 144,46 

350 1.8 104.0 

4.00 1.61 83.0 

500 1.36 67.0 

600 1.19 48.0 

700 1.05 38.0 

800 0.94 32.0 

900 0.86 27.0 

1000 0.79 23.2 

1100 0.74 20.0 

1200 0.70 17.4 

1300 0.655 15.4 

1400 0.64 14.0 

1500 0.6181 12.8 

1600 0.62 11.7 

1700 0.623 10.7 

1800 0.626 9.9 

1900 0.629  9.1 

_ 	_ 	 . 

Wi 15°K 

B 

gauss  
, 

H 

(01113/0 

a 

(a.3nrix10-3  
.. 

2000 0.632 8.45 

2100 0.636 7.8  

2200 0.640 7.28 

2300 0.645 6.76 

2400 0.650 6.26 

2500 0.656 5.82 

2600 0.662 5.44 

2700 0.670 5.12 

2800 0.677 4.84 

2900 0.685 4.58 

3000 0.694 4.32 

3500 0.740 3.42 

4000 0.789 2.78 

4500 0.8335 2.27 

5000 0.879 1.92 

5500 0.925 1.64 

6000 0.970 1.44 

6500 1.0115 1.27 
. 	. A 



.6 	.. 	 - 

W1. 	15°K 
p L.- 	0 

B 
•"'R 
H 

a 
gauss 

(cm3/C) (0-04 -1  x103  
.a P 

7000 1.053 1.14 

7500 1.08 1.052 

8000 1.113 0.944 

8500 1.14.2 0.860 

9000 1.168 0.794 

9500 1.1895 0.733 

10000 1.208 0.682 

10500 1.224 0.638 

11000 1.239 ' 	0.601 

11500 1.2515 0.568 

4 1 t 

. 	. 

W1 	1 5°K 

B -131I 
gauss (0m3/0 - 

(0.04 "1  x.10 - 3  

12000 1.264 0.538 

12500 1.275 0.510 

13000 1.285 0.485 

15500 1,295 0.467 

14000 1.3055 0.438 

14500 1.315 0.417 

15000 1.323 0.399 

15500 1.331 0.382  

16000 1,34 0.366.  
i 

16500 1.349 0.352 

17000 1.357 0.340 
a 



171 	4.5°K 
. . 

B 
gauss 

L 

RH 

( cm3,/C ) 
w 

a 

(n-cmri  =1 0-.3  
, 

200 0.882 64.4 

300 0.81 51.2 

400 0.778 40.9 

500 0.754 32.0 

600 0.733 26.0 

700 0.715 21.8 

800 0.699 19.56 

900 0.683 17.5 

1000 0.67 16.0 

1100 0.66 14.6 

1200 0.651 13.43 

1300 (LOA 12.4 

100 	, 13.605 11.38 

1500 0.64.3 10.44 

1600 0.65 9.8 

1700 0.658 8.83 

1800 0.667 8.15 	i 

1900 0,6765 7.5 

2000 0.6865 7.0 
.. 

¶1 	4.5°K 
. 

B 
gauss 

-R.E1 

( cm3/C ) 

a 

(0-om) -1  x`. 0-3  

2100 0.697 6.58 

2200 0.702 5.88 

2300 0.717 5.4 

2400 0.728 5.0 

2500 0.739 4.70 

2600 0.751 4.45 

2700 0.765 4.22 

2800 0.778 4.01 

2900 0.792 3.83 

3000 0.806 3.661 

3100 0.820 3.518 

3200 0.834 3.372 

3300 0.849 3.24. 

3400 0.864. 3.115 

3500 0.878 2.99 

3600 0.892 2.875 

3700 0.905 2.76 

3800 0.918 2.648 

3900 1 0.935 2.542 
. , 



VIM 	4.5°K 
4 

-R 

B 
H  

a 
gauss 

(cm3/C) (n-cm) -1x1 0-3  
. 

4000 0.948 2.442 

4100 0.912 2.35 

4200 0.925 2,26 

4300 0.936 2.18 

4400 0.996 2.103 

4500 1,005 2.035 

4600 1.014 1.962 
. . 1 

Wi 	4..5°K 

gauss 

, 

B 

(cm3/C) (C -cm)-1x10 

4700 1.023 i 	1.90 

4800 1.032 1.84 

4900 1.043 1.78 

5000 1.053 1.725 

51.00 1.069 1.68 

5200 1.081 1.63 

5300 1.095 1.583 



_ 	. 	. 

W2 	291°K 

B 
gauss 

1 	—RII 

( om3/C ) 

Cr 

( re* -̀1  x10-3  
. 

0 - 25.006 

100 - - 

200 - 0.2472 24.967 

300 - - 

400 - 0.0978 24.928 

500 - - 

600 	' - 0.0482 4.791 

700 - - 

800 - 0.0218 24.791 

900 - - 

1000 - 0.00715 24.637 

1100 - - 

1200 + 0.00472 24.485 

1300 - - 

1400 + 0.01229 24.316 

1500 - - 

1600 0.01796 24.168 

1700 - - 

1800 0.02095 23.931 

1900 - - 

. 

W2 	291 QK 

gauss 
RH 

( cm3/C ) 

a 
(n-om) -1  x10-3  

2000 0.02526 23.628 

2100 - 

2200 0.02879 23.249 

2300 - 

2400 0.03176 23.060 

2500 - 

2600 0.03373 22.746 

2700 - 

2800 0.03453 22.440 

2900 - 

3000 0.03564 22.081 

3100 - 

3200 0.03582 21.733 

3300 - 

3400 0.03597 21.483 

3500 - 

3600 0.03682 21,153 

3700 - 

3800 0,03556 20,724 

3900 - 



W2 	291°K 
. 	, 

B - RH a 

gauss (0=3/0 0:11_04-lxicr3  
. 

4000 0.03634. 20.339 

4.500 0.03686 19.597 

5000 0,0585 18.773 

5500 0.03948 17.635 

6000 0.04046  16.965 

6500 0.04.149 16.202 

7000 0.04.274. 15.445 

7500 0.04.348 14.693 

8000 0.0)1)15 13.962 

8500 0.04530 13.312 

9000 0.04649 12.699 

9500 0.04741 12.107 

• 

W2 	291°K 

B 
gaups 

-RE 

(cm3/C) 
* 

a 

(1-cm)-43E10-.3  

10000 0.04.863 11.501 

10500 0.04.936 10.983 

11000 0.05061 10.4.82 

11500 0.05.165 9.987 

12000 0.05270 9.582 

12500 0.05377 9.119 

13000 0.054.75 8.752 

13500 0.05587 8.373 

14.000 0.05691 8.011 

14.500 0.05783 7.67 

15000 0.05909 7.314 

15500 0.05989 7.029 

16000 0.06084 6.74-1 

16500 0.06210 6.464 

17000 0.06290 6.205 
. , 	. 



W2 	7°K 

B 
gauss 

H 

cm3/C) 

a 

(r6.0m)-1x10-Y  

0 35.547 

100 -0.264 34.998 

200 -0.087 34.205 

300 -0.0283 33.840 

400  -0.00422 33.098 

500 +0.00648 32.257 

600 0.01321 31.363 

700 0.01483 30.314 

800 0.01451 29.305 

900 0.01318 28.489 

1000 0.00965 27.524 

1100 0.00475 26.468 

1200 0.00190 25.286 

130o 0.001375 24.205 

1400 0.000573 23.332 

1500 0.000687 22.393 

1600 0.001269 21.410 

1700 0.002206, 20.510 

1800 0.003448 19.658 

W2 	77°K 
P••••••111.1•MOW 

B 
gauss 

-all 

(cm3/C) 

a 

(r(cm)-1x1  

1900 0.004559 18.885 

2000 0.005805 18.160 

2150 0.007167 17.422 

2200 0.008853 16.645 

2300 0.01071 16.079 

2400 0.01262 15.422 

2500 0.01447 14.789 

2600 0.01675 14.232 

2700 0.01904 13.650 

2g00 0.02152 13.076 

2900 0.02391 12.528 

3000 0.02640 , 	12.093 

3100 0.02909 11.670 

3200 0.03202 11.177 

3300 0.03553 10.778 

3400 0.03881 10.403 

3500 0.04192 10.021 

3600 0.04580 9.688 

3700 0.04961 9.345 



W2 77°K 

B 
gauss 

—R 
H 

(cm3/C) 

cr 
(07cmr1x103  

3800 0.05322 9.036 

3900 0.05615 8.723 

4000 0.05940 8.444 

4500 0.0778o — 

7000 0.1623 3.672 

7500 0.1788 3.258 

8000 0.1913 2.907 

8500 0.2052 2.642 

9000 0.2192 2.391 

9500 0.2301 2.184 

10000 0.2435 2.010 

10500 1 0.2538 1.853 

11000 0.2651 1.711 

11500 0.2783 1.578 

12000 0.2869 1.475 

12500 0.2941 1.391 

13000 0.3051 1.299 

13500 	1 0.3147 1.220 

W2 77°K 

B 
gauss 

—R 
H 

(cm3/C) 

a 
(0-cm)-1x10 3  

, 

14000 0.3264 1.139 

14500 0.3362 1.074 

15000 0.3449 1.009 

15500 '0.3545 0.9557 

16000 i 0.3388 0.9032 
4 

16500 	'0.3736 0.8647 

17000 “0.3820 0.8118 

1 

• 



A • 

W2 	63°K „ . . 

B 
gauss 

-R 
H 

(cm3/C) 
a 

(0-cm)-ix10-3  

4000 0.0823 7.028 

4500 0.1102 5.776 

5000 0.1255 4.931 

5500 0.1447 4.280 

6000 0.1673 3.698 

6500 0.1855 3.205 

7000 0.2029 2.8618 

7500 0.2191 2.551 

8000 0.2339 2.293 

8500 0.2506 2.077 

9000 0.2658 1.891 

9500 0.2772 1.728 

10000 0.2931 1.587 

10500 0.3050 1.462 

11000 0.3174 1.349 

11500 0.3288 1.258 

12000 0.3450 1.164 

12500 0.3565 1.088 

13000 0.3704 1.017 

.lairlallea/OINORIPM1•4101411.10••••••••CatiNit ,.............2 

W2 	63°K 
3.-- 

B 
gauss 

-R 
H 

(cm3/c) 
a 

(r-cm)-1x10 "3 

13500 0.3826 0.954 

14000 0.3952 0.8982 

14500 0.4076 0.8462 

15000 0.4191 0.7987 

15500 0.4321 0.7546  

16000 0.4427 0.7150 

16500 0.4546  0.6793 

0 37.348 

100 0.01214 37.086 

200 0.06274 36.657 

300 0.07578 35.991 

400  0.07943 34.692 

500 0.07933 33.447 

boo 0.06802 32.224 

700 0.0502 30.785 

800 0.03685 29.441 

900 0.02961 28.085 

1000 0.02611 26.735 

1100 0.02422 25.633 



W2 	63°K 

B 
gauss 

— R 
H 

(cm3/C) 

a 
(p-cm)

-1
x10

3 

1200 0.02412 24.113 

1300 0.02486 22.944 

140o 0.02510 21.959 

1500 0.02532 20.833 

1600 0.02551 19.695 

1700 0.02567 18.762 

1800 0.02519 17.814 

1900 0.02507 1 6.974 

2000 0.02607 16.169 

2100 0.02673 15.355 

2200 0.02809 14.626 

2300 0.02883 13.993 

2400 0.03069 13.351 

2500 0.03241 12.729 

2600 0.03464 12.158 

2700 0.03650 11.619 

2800 0.03925 11.102 

2900 0.04238 10.623 

. 

W2 	63°K 

B 
gauss 

_
R  
H 

(cm3/C) 

a 
(n-cmjix10-3  

3000 0.04567 10.182 

3100 0.04968 9.744 

3200 0.05256 9.342 

3300 0.05438 8.980 

3400 0.05978 8.633 

3500 0.06405 8.272 

3600 0.06793, 7.971 

3700 0.07222 7.672 

3800 0.07627  7.395 

3900 0.08069,  7.141 

4000 0.12660 6.887 

4500 0.1084 5.762 

.2______a..........-.1 



" W2 	47.5°K 

B 
gauss 

- RH  

cro3/C) 

a 

in-enrix10-3  

0 - 45.168 

100 0.1727 43.856 

200 0.05768 42.053 

300 0.1172 40.341 

400 0.1262 37.838 

500 0.1198 35.631 

600 0.1078 33.307 

700 0.09733 31.55 

800 0.09276 29.414 

900 0.08920 27.814 

1000 0.08567 25.695 

1100 0.08218 24.26 

1200 0.07870 22.633 

1300 0.07524 21.069 

1400 0.07228 19.707 

1500 0.07286 18.510 

1600 0.07505 17,299 	, 

1700 0.08056 16.277 

1800 0.08507 15.259 

W2 47.5°K 

B 
gauss 

- RH  

(cm3,/,,\ 
v) 

a 
n-04-1x10-3  

1900 0.09054 14.322 

2000 0.09613 13.499 

2100 0.1,028 12.709 

2200 0.1095 12.006 

2300 0.1144 11.292 

2400 0.1209 10.734 

2500 0.1255 10.212 

2600 0.1279 9.617 

2700 0.1312 9.154 

2800 0.1344 8.659 

2900 0.1400 8.281 

3000 0.1466 7.884 

3100 0.1530 7.514 

3200 0.1612 7.169 

3300 0.1674 6.816 

3400 r  0.1736 6.523 

3500 0.1736 6.2615 

3600 0.1868 6.0019 

3700 0.1914 5.7474 
. 



W2 	47.5Q.K 

B 
gauss 

1 	 a 

( crINC ) 

a 

(C1-cmiri  x10 3  

3800 0.1981 5.5366 

3900 0.2058 5.2971 

4000 0.214.0 5.1011 

4.500 0.2414 4.2408 

5000 0.2941 3.596 

5500 0.3161 3.130 

6000 0.3424 2.679 

6500 0.3646 2.330 

7000 0.6714 2.071 

7500 0.4107 1.856 

8000 0)1)110 1.670 

8500 0.4, . 1.496 

9000 0.4913 1.375 

9500 0.5119 1.257 

10000 0.5368 1.1497 

10500 0.5623 1.0637 
i . 	. 

172 	47.5°!K 

ii 
gauss 

, 

RH 

(ora3/C) 
. 

a 

((2-cm) -1x10-3  
. 

11000 0.5856 0.98534 

11500 0.6095 0.91642 

12000 0.6275 0.8563 

12500 0.6492 0.8029 

13000 0.6704 0.7535 

13500 0.6936 0.7060 

14000 0.7093 0.6689 

14500 0.7295 ' 0.6323 

15000 0.7493 0.6008 

15500  0.7721 0.5696 

16000 0.7872 ' 0.5449 

16500 0.8034 0.5185 

17000 0.8218 0.4942 

17500 0.8342 

i _ 



. 	_ 	. 

V12 	4.5°K 
. 

B 
gauss 

. 

-RH 

( ora3/C) 

a 

(n-cm)-1x10  
. 

1500 0.9566 9.223 

2000 0.9060 6.397 

2500 1.0448 4.564. 

3000 1.1374 3.315 

3500 1.2708 2.744 

4.000 1.3708 2.2536 

4.500 1.4696 	. 1.8885 

5000 1.5583 1.6244 

5500 1.6387 1.4289 

6000 1.7067 1.2755 

6500 1.7706 1.159 

7000 1.805 1.0427 

7500 1.8700 0.9508 

8000 1.8973 0.8689 	. 

8500 1.9301  0.8151 

9000 1.9586 0.7580 

9500 1.9840 0.7117 

10000 2.0096 0.6706 

10500 2.0354 0.6315 

V12 	4..5°K 

B 
gauss 

RH  

(cm3/C) 

CT 

f) 	nrix10-3  

1100 2.0477 0.5978 

11500 2.0707 0.5675 

0 . 100.342 

100 3.609 94.651 

200 1.99 77.907 

300 1.475 62.541 

4.00 1.2278 49.236 

500 1.0497 39.685 

600 0.9737 33.272 

700 0.8982 27.937 

800 0.8517 23.592 

900 0.8230 20.171 

1000 0.7967 17.355 

1100 0.7819 15.237 

1200 0.7662 13.47 

1300 0.7701 11.983 

14.00 0.7768 10.796 

1500 0.7821 9.715 

1600 0.7960 8.827 



. 	. 

¶2 4.5aK 

R 
gauss 

RH  

( 01113/C ) 

Cr 

(00-o4 -1  x10-3  
w A i• 

1700 0.8083 8.015 

1800 0.8211 7.403 	... 

1900 0.8447 6.783 

2000 0.8658 6.3051 

2100 0.8921 5.899 

2200 0.9156 5.473 

2300 0.9406 5.104 

2400 0.9728 4.8086 

2500 0.9906 4.486 

2600 1.0155 4.2148 

2700 1.0441 3.9839 

2800 1.0733 3.7766 

2900 1.1005 3.5715 

3000 1.1234 3.3876 
• • A 

. 	. 

W2 	4.5°K 

B .H 
a 

gauss ( cm3/c) (.f3-cm) "4  x1 0-3  
, s . 

3100 1.152 3.2243 

3200 1.1837 3.0875 

3300 . 1.2088 2.9414 

3400 1.2323 	' 2.8085 

3500 1.2609 2.6871 

3600 1.2797 2.5758 	1 , 
3700 1,3036 2.4695 	' 

3800  1.3242 2.3787 

3900 1.3475 2.2927 	i  

4000 1.3659 2.2020 

4500 ',„ 1.4691 1.8630 

. . I 



W2 	1°K 

B 
gauss 

-.R 

(cm /C) 

a 

(41-om)-1x 0 	i  

3500 1.2172 2.602 

4000 1.3295 2.1688 

4500 1.4489 1.8392 

5000 1.554 1.5966 

5500 	, 1.6485 1.4018 

6000 1.728 1.2314 

6500 1.780 1.1212 

0 - 115.469 

100 - 82.789 

200 : 1.845 67.464 

300  1.266 52.015 

400 • 1,056 )4.409 

500 	. 0.9714 	: 37.164. 

600 0.9860 30.875 

700 	, 0.9502 26.579 

800 0.9242 	1  22.205 

900 0.8920 19.276 
sa 

1000 0.8669 	► 17.020 

1100 0.8261 14.572 

	

_ 	. 

W2 	laK 
_ . 

B 
gauss 

• 

H 

(0m3/C) 
0 

a 

n nO-lxi 03  
, 

1200 0.8191 13.011 

1300 0.8132 11.752 

1400 0,8307 10.591  

1500 0.8459 9.4398 

1600 0.8559 8.5930 

1700 0.8833 7.9211 

1800 ' 0.9047 7.2575 

1900  0.9238 6.6488 

2000 :.- 0.9411 60966 

2100  0.9746 5.783 

2200 0.9999 5.398 

2300 1- 1.0254 5.0259 

2400 1.0532 4.6712 

• 2500 : 1.0831 4.4522 
i 

2600 1.1107 4-1738 

2700 t 
1 

1.1206 3.9262 

s 

2800 1.1447 3.7436 

2900 10636 3.5)1)01)1 

3000 1.1848 3.3426 	1 



W2 	1a1C. 
. 

B 
gauss 

. 

—R 
H 

(cm3/C) ' 

a 

(ca —cm) —lacio-3  
. 

3100 1.2149 3.1765 

3200 1.2398 3.040 

3300 1.2535 2.8957 

3400 1.2788 2.7596 

3500 1.3027 2.6490 

3600 1.329+ 2.5407 

3700 1.3410 	. 2.4391 

3800 1.3655 2.3540 

3900  1.3943 . 	2.2714 	. 

4000 1.3966  2.1974 

4500 1.4954 1.8586 

.s. 



t 	 . 

w3 	293°K 
, 

B 
gauss 

E 

(cm3/C) 

a 

(61..00-1x13-3 

200 0.0333 27.2668  

300 0.0345 27.2223 

400 0.0320 27.1780  

500 0.0554 27.1338  

600 0.0377 27.0897  

700 0.0428 27.0897  

800 0.0436 27.0020  

900 0.0415 26.9149 

4 	1000 0.1423 26.8284 

1 
1200 0.0454 26.6569  

1500 0.0495 26.3205  

2000 0.0506 25.6726  

2500 0.0523 4.8320  

3000 0.0534 24.0102  

3500 0.0549 

0.0554. 

23.0484

4000 22.1607 

4500 0.0574 21.2302  

5000 0.0590 20.2511  

5500 0.0613 19,2911  
. 

....., 	. 	r-- 

113 	293°K 

B 
- H a 

gauss 
(cm3/C) (El-m) -1x10-3  

'p r 
6000 0.0635 18.3775 

6500 0.0662 17.4547 

7000 0.0685 16.6867 

7500 0.0705 15.8618 

8000 0.0731 15.0601 

8500 0.0763 14.3109 

9000 0.0789 13.6105 

9500 0.0810 12,9353 

10000 0.0835 12.3056 

10500 0.0863 11.6852 

11000 0.0887 , 11.1540 

11500 	1 0.0916 10.6418 

12000 1 0.0940 10.1870 

12500 0.0963 9.6788 

13000 0.0990 9.2291 

13500 0.1015 8.7915 

14000 0.1040 • 8.4189 

1450o 0.1062 8.0610 

1500o 0.1081 7.7323 



., 	. 

W3 	293°K 

B 
—RH 

a 
gauss 

( ona3/C) (E2—omr.1  x10-3  
4 

15500 0011) 7.3767 

16000 0.1139 7.0525 

16500 0.1160  6.7555 

17000 0.1183 , 	6.4775 



W3 	77.5°K 

B 
gauss 

-RH 

(om/C) 

a 

(n-cm)-1x10'3 

4500 0.2437 6.6547  

5000 0.2953 5.6915  

5500 0.3513 4.8812  

6000 0.4000 4.2593 

6500 0.4452 3.7048  

7000 0.4929 3.2383  

7500 0.5309 2.8886  

8000 0.5879 2.6020  

8500 0.6322 20422  

9000 0.6786 2.1550  

9500 0.7228 1.9299  

10000 0.7702 1,7621  

10500 0.8058 1.6172  

11000 0.8566 1.4910  

11500 0.8964 1.3802  

12000 0.9350 1.2774  

12500 0.9725 1.1930  

13000 1.0168 1.1080  

13500 1.0560 1.0343  

W3 	77.5°K 

B 
gauss (cm3/0 

a 
CZ 	4-1x10-3  

14000 1.0979 0.9698 

14500 1,1351 0.9116 

15000 1.1731 0.8557 

15500 1.2088 0.8071 

k 
r 16000 1.2453 0.7612 

16500 1.2804 0.7202 

17000 1.3135 0.6834 

200 -0.0667 43.8892 

300 -0.0355 42.8163 

400 -0.0253 41.7945 

500 -0.0267 40.3502 

600 -0.0222 58.8941 

700 -0.0210 57.5394 

800 -0.0200 35.8124 

900 
/ 

-0.0148 34,2373 

1000 -0.0066 32.4907 

1100 -0.0060 30.9136 

1200 -0.0078 29.6072 

1300 -o.0.351 28.0653 



W3 	77.4°K 

B 
gauss 

-RH 

(cm3/C) 

rr 

(a-cm)-1x10 3  

4500 0.2030 6.6521 

5000 0.2478 5.6993 

5500  0.2940 ' 4.8634 

6000 0.3395 4.2114 

6500 0.3812 3.6792 

7000 0.4290 3.2487 

7500 0.4732 2.9013 

8000 0.5198 2.5869 

8500 0.5608 2.3340 '. 

9000 0.5973 2.1111 

9500  0.6322 1.9086 

10000 0.6783 1.7569 

10500 0.7120 1.6100 

11000 0.7512 1.4766 
t 

11500 0.7907 1,3667 

12000 0.8242 1.2680' 

12500 0.8618 1.1756 

13000 0.8981 1.1018 

13500 0.9333 	' 1.0278 

14000 0.9690 	, 0.9600 

W3 	77.4°K 

B 
gauss 

-RH 

(cm3/ ) 

CY 

(6`-cm)
-7x10 

14500 1  1.0022 0.9006 

15000 ' 1.0332 0.8470 

15500
. 

 1.0676 0.8004 

16000.), 1.0940 0.7568 

1 6500 1.1276 0.7142 

r  17000 1 	1.1599 0.6792 

200 '-0.3171 44.0033 

300 i-0.1989 42.6506 

k 	400 ' -0.1515 41.7179 

500 -0.1240 40.3929 

0, 	600 -0.1073 38.7519 

700 -0.0940 37.0581 

t 	800 -0.0852 35.4238 

900 -0.0809 34.0791 

1000 -0.0747 32.4143 

1100 -0.0769 31.2848 

1200 -0.0728 29.5866 

1300 -0.0676 28.1668 

1400 -0.0621 26.8299 

1500 
I 
-0.0564 25.3587 



W3 	77.4°K 

B 
gauss 

H 

(cm3/C) 

a 

(0-omrx103  

1600 -0.0496 24.1547 

1700 -0.0423 22.9212 

1800 -0.0365 21.7455 

1900 -0.0302 20.5730 

2000 -0.0235 19.7222 

2100 -0.0159 18.6611 

2200 -0.0085 17.7910 

2300 -0.0008 16.9230 

2400 0.0065 16.2042 

2500 0.0145 15.4184 

2600 0.0228 14.6489 

2700 0.0293 14.0037 

2800 0,0368 13.4129 

2900 0.0451 12.8052 

3000 0.0538 12.2403 

3100 0.0623 11.7593 

32000 0.0695 ' 	11.2729 

3300 0.0775 10.7641 

3400 0.0875 10.3692 

3500 0.0990 9.9241 



W3 	63.2°K 

B 
gauss 

-RH  

(cm3/C) 

CT 

(-cm)-1x103  

3500 0.2996 7.5794 

4000 0.3592 6.0285 

4500  0.4291 4.9803 

5000 0.5062 4.1739 

5500 0.5757 3.5429 

6000 0.6513 3.0413 

65oo 0.7153 2.6641 

7000 0.7852 2.3274 

7500 0.8505 2.0745 

8000 0.9165 1.8379 

8500 0.9872 1.6657 

9000 1.0461 ' 	1.5052 

9500 1.1025 1.3657 

10000 1.1744 1.2483 

10500 	1  1.2328 1.1393 

11000 1.2955 1.0619 

11500 	, 1.3589 0.9737 

12000 1.4214 0.9021 

12500 1.4761 0.8417 

13000 1.5279 0.7841 

W3 	63.2°K 

B 
gauss; 

-RH 
, 

(cmJ/C) 

CT 

D-cm)
_
.1x1 -  

13500 1.5838 0.7318 

14000 1.6381 0.6842 

14500 1.7009 0.6424 

15000 1.7501 0.6062 

15500 1.7962 0.5694 

16000 1.8525 0.5447 

16500 1.9055 0.5153 

200 -0.1162 48.4404 

30o 0.0239 46.0864 

400 0.0433 44.1781 

500 . 	0.0549 42.2118 

600 0.0345' 39.8470 

700 0.0247 37.7332 

800 0.0216 35.5340 

900 0.0230 33.5770 

1000 0.0241 31.5887 

1100 0.0249 29.4117 

1200 0.0229 27.6940 

1300 0.0263 26.0064 

1400 0.0341 24.3727 



W3 	63.2°K 

B 
-RH a 

gauss (om3/C) fl-cm)-1x10 

1500 0.0386 22.8095 

1600 0.0488 21.3811 

1700 0.0559 = 19.9797 

1800 0.0659 18.9590 

1900 0.0767 17.7746  

2000 0.0864 16.7294 

2100 0.0967 15.8591 

2200 0.1077 14.9691 

2300 0.1162 14.0801 

2400 0.1269 13.2908 

2500 , 	0.1353 12.5483 

2600 0.1496 11.8514 ' 

2700 0.1591 11.2574 

2800 0.1751 10.7471 

113 	63.2°K 

B 
-RH  a 

gauss (cm3/C) (C,cm)-1x10r3  
, 

2900 0.1900 10.2073 

3000 0.2051 	. 9.7192 

3100 0.2181 9.2354 

3200 0.2345 8.7976 

3300 0.24e9  8.4159 

3400 0.2645 8.0205 

3500 0.2752 , 7.6743 

3600 0.2892 7.3568 

3700 0.3033 7.0412 

3800 0.3184 it  6.7623 

3900 0.3336  f 6.4800 

4000 • 0.3473 ; 6.2293 

4500 0.4190 
1  
Z, 5.1104 

5000 0.4988 4.2887 
. 



W3 	54°K 

B 
-RH  a 

gauss (0m3/0 (0-01,2)-1x 0 

3500 0.6920 5.4802  

4000 0.8193 4.2490 

4500  0.9514 3.4515 

5000 1.0645 2.8558 

5500  1.1942 2.4002 

6000 1.3209 2.0571 

6500 1.4195 1.7901 

7000 1.5571 1.5620 

750o 1.6764 1.3913 

8000 1.7901 1.2448 

8500 1.8948 1.1111 

9000 1.9961 1.0063 

9500 2.1181 0.9222 

10000 2.2055 0.8489 

10500 2.3130 0.7699 

11000 2.4107 0.7142 

11500 2.5225 0.6581 

12000 2.5971 0.6119 

112500 2.6866 0.5747 

- p 

W3 	54°K 

-RH  a 
B 

gauss (cm3/C) (0-cm)-1x10 

13000 2.7663 0.5374 

200 0.0827 55.1862 

300 0.1379 52.4828 

400 0.1656 49.2650 

500 0.1738 45.1158 

600 0.1794 41.6112 

700 0.2011 38.1535 

800 0.1863 34.8444 

900 0.1886 31.4363 

1000 0.1904 28.8929 

1100 0.1994 26.0796 

1200 0.2001 23.9425 

1300 0.2038 22.1292 

1400 0.1981 20.3112 

1500 0.2235 18.7146  

1600 0.2303 . 17.1654 

1700 0.2508 15.9316 

1800 0.2668 14.8290 

1900 1 0.2920 I 	13.7212 



W3 	54°K 

B 
gauss 

-RH 

(cm3/C) 
a 

(n-cm)-1x10-3  

2000 0.3125  12.7927 

2100 0.3391  11.8933 

2200 0.3594 11.0738 

2300 0.3762 10.3934 

2400 0.3933 9.7325 

2500 0.4189 9.0988 

2600 0.4331 8.6228 

2700 0.4600 8.1319 

2800 0.4849 7.6487 

2900 0.5125 7.2349 

3000 0.5382 6.8204 

3100 0.5609 6.4508 

3200 0.5873 6.1899 

3300 0.6072 1 	5.8732 

3400 0.6295 5.5776 

3500 0.6588 5.3104 

3600 0.6831 5.0756 

3700 0.7093 4.8314 

3800 0.7299 4.6363 

3900 0.7515 4.4317 

4000 0.7700 4.267o 

4500 0.8822 3.4737 



W3 	4.2°K 

gauss 

_R
B 	-  

(cm3/C) (p-cm)-1x10  

3500 3.9411 107602 

4000 , 4.3071 1.4627 

4500 ; 4.5667 1.2271 

5000 4.7407 1.0569 

5500  4.9854 0.9471 

6000 5.1142 0.8424 

200 0.6590 126.8895 

300 	.; 0.5364 78.8938 

400 0.5478 52.0479 

500 0.6129 39.5022 

600 0.6684 28.2968 

700 0.7081 22.4756  

80o 0.7833 18.3428 

900 0.8418 15.2873 

1000 0.9177 13.0300 

1100 0.9798 11.0794 

1200 1.0195 9.5965 

1300 1.1314 8.4950 

1400 1.2065 7.4959 

W3 	4.2°K 

B 
gauss 

-RH 

(cm3/0 (0,-cm)-1x10 3  

1500 1.2910 6.6680 

1600 1.3741 6.0206 

1700 1.4473 5.4358 

1800 1.5044 4.9760 

1900 1.5975 4.5515 

2000 1.6632 4.1861 

2100 1.7399 3.8948 

2200 1.8196 3.6070 

2300 1.8861 3.3441 

2400 1.9469 3.1255 

2500. 2.0146 2.9262 

2600 2.1107 2.7640 

2700 2.1672 2.6011 

2800 2.2406  2.4563 

2900 2.3089 2.3315 

3000 2.3823 2.2017 

3100 2.4322 2.0971 

3200 2.4926  2.0019 

3300 2.5494 1.9055 



W3 	4.2°K 

B -RH  a 

gauss 
(cm3/C) 4  (0...CM) -1X10 3  

f i 
3400 2.6028 : 1.8295 

3500 2.6657 	1 1.7540 
k 

3600 2.7170 1.6820 

V 

3700 2.7694 1.6134 	, 
i 

3800 2.8191 - 1.5501 	' 

3900 2.8625 : 1.4956 

4000 2.9146 1.4429 



W3 	1.5°K 

B 
gauss 

_ H  
(01,13/0  

CT 
(a..04-1x10-3,--; 

1500 1.9933 6.3412 

2000 2.4426 3.9935 

2500 2.8754 2.8528 

3000 3.2987 2.1655 

3500 3.6207 1.7229 

4000 3.9132 1.4305 

4500 4.1066 1,2119 

200 1.9790 101.2501 

300 -1.1109 67,0239 

400 -0.5875 47.1155 

500 -0.3270 33.2772 

600 -0.1236 26.5845 

700 0.1238 21.5322 

800 0,2870 17.5595 

goo 0.4338 14.7326 

1000 0.6049 12,5557 

1100 0.7773 10.7418 

1200 0.8641 9.4982 

N3 	1.5°K 

B 
gauss  

-RH  
(cm3/C) 

Q 

(0.ottr-1  x10-3  

1300 1.0288 8.3338 

1400 	f1.1404 7.3097 

150o 1.2610 6.5817 

1600 1.3943 5.9408 

1700 1.5015 5.3891  

1800 1.6266 4.9007 

1900 1.7385 4.5277 

2000 1.8347 4,1487 

2100 1.9601 3.8407 

2200 	' 2.0537 3.5752  

2300 2.1742 3.3069 

2400 2.2548 3.0920 

2500 2.3433 2.9069 

2600 2.4594 2.7301 

2700 2,5635 2.5820 

2800 2.6347 2.4.391 

2900 2.7164 2.3338 

3000 2.8284 2,1818 
4. 



W3 1.5°K 

B 	, ; 	RH 
gauss i (0n13/C 

a 

t. al -em) ixi0-3  
.., 

i 
3100 	i 

3200 	i 

3300 	?i,  
1 

3400 	1 

2.8985 

) 2.9755 

3.0478 

3,1368 

2.0862 

1.9902 

1.9012 

1.8225 
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A 
CTXX 

149.951•01 
0-17( X 

1400154 
Cprxx 

21411,4w10 
field 

0, 
Gxy &xy Gxy 

1st). +985 139.6671 749.9641 100.0 -7.6519 6,31079 -0.7641 
949.91+6 I 130.0450 297.91441 71000 -(6.9703 13.4447 -1.4754 
14/.430)S 1?7.0541. 2144.4844 30003 -26.5335 20.5566 -5.0770 
157 ,4055 144.4510 777,5555 400.0 -15.0633 28.0050 -6.0664 
131.1/40 11, 	t /59 258.4000 500.0 -42.7355 35.1530  -6.933 
• 4,7365 1 25.51 76 757.7401  400o 47,6645 4).1458 -6.511111 
115.3361 421.4164 746.6574 700.n -52.0149 45.9747 -6.740' 
'10,4444 35.7105 400.1 -55.3339 40,7574 -5,5065 
1'1.'7533 111.15.31 415.2154  900.0 -57.9940 57.7915 -5.7068 
• 09,41 9.4  105.4476 7fs.4135 1007.0 -50.0307 55.1 736 -4. 4631 
I/34,44135 104.0,69 205.9404 1100,0 -61.6464 57.0799 -4.5665 
99.49.4 97.7099 199.9947 1700.0 -67.9! 70 59.616" -4,300' 
"5.1449 41.5695 1.118.01 4 4  1100.0 -143.9709  50.9599 -4.0509 
91.1401 40,44 P9 1 41,0700  40001 -54./074 60.4677 -3.8457 
47.4495 96.1 441 1/4,641/ 1500.0 -65.3120 61.61,22 -7 .5405 
44.145.1 4/.7770 1.55.5111  1607.0 -65.7590 57.20116 -1.471 
40.4717 19.4074  150.4351  '700.0 -66.0705 67.76)3 -3.3007 
/7,,651 /6.7798  154.4040  1 100.0 -66.3504 53.1000 -7.1531 6 

13,300 3 1.47./670  1000.0 -66.3193 67.3185 -".0278 
.14,101 70.4097 141.10" 2000.0 -65.3211  43.4174 -3,8037 

64.249 I 17.5341 135.7340  2.700 -66.2145 63.43(4 -2.7261 
65.4,01 64.4747 140.40 /1 ? 	,0 -66.0205 63,1614 -7.6671 
1/ . 4474 5.4.4351 1 /5,1740  '309.0 -55.7711 53.7057 -7.5440  
611.461? 50.9051 130.3663  '410.0 -65.4500 57.9798  -2.4715 
.313.00304 51.5/99 (15.6/57 7500.0 -65.0720 67.6084 -2.3836 
11 .111t-31 55.'4567 )15.1 941 56110.0 -64.6437 67.1474 -7.301 1 
54.6100  51.3111 106.0111  7700.0 -64.3713 61.0471 -2.7242 

.A?m,  st.?0/1 107.0711 7900.0 ••93.5501 41.5094 -7.'519 
49.6'353 44.7614 33.91 411 2070.0 -60.1)60 61.0319 -7.0841 
41.1( 0 1 4/.41Ln 3/.3.1311 Anoo.o -62.5410 60.4230 -2.2271 

. ,toon 45.6544 91.634. 1100.0 -61.4459 54,0550 -1.9599 
(.4.1974 49.4550 99.:343  000.0 -61.3114 4 59.4754 -4.0070 
47.65.4 41.1463 94.'399.1 3 100.0 -66.6942 59.4551 -1.4591 
41 ,4444 40.9040 81,4070  3400,0 -60.0449 54.7411 5 -3.7903 
49,4111 19.3416 19.9579 3500.0 -59.38147 57.6311 8 -1 .7499 
131.3111 3 47,06,3 16.1474 3600.0 -51,7219 57.01811  -1 .7041 
313./1531 36.5044 1.1.46.1 4700.0 -58.05)6 55.3911 -1.1605 
43..336'14 45.1797. (9.9909 4800.0 -57.3770 55.7579 -1,6501 
'14. 1 414  44.1018 69.447S 1470.0 -50.1005 55.1213 -1.5706 
'4).1796 31.9467 55,1040 4070.0 -55.02413 54,4829 -1.5470 
/4 ,1111 I If.95t1 18.14915 4500.0 -52.6423 51.1149 -10773 

71.'951 47.7119  5000.0 -49,5173 48,2713 -1 .24+9 
10.67q1 70.5144 41.1445 5500.0 -40.5575 45.4237 -1.1'339 
Ifortm 17.14456 45./674 5300.0 -43.8314 47.7900 -1.041 
15.19.'5 15.5643 1,.+91,11 6500.0 -41.3366 40.1715 -0.9579 
11,041 15 14.9368 11,/440 70140.0 -19.0602 39.1 650 -0.09,2 
1 7.'741 .5111 /4.69 /4 7500.0 -36,9841 35.14131 -0.9364 
11.0471 
4.4446 

( 1 .0176 
0 .4503 

. 1 zo, 
19.94140 

7000.0 
8500.4 

-35.0945 
-13.3673 

14.40313' 
32.6232 

-0.78414 
-0.7391 

9.04'1 ..wno 5.04/r 90000 -31.7570 31.001 -0.69114 
4.1574 4.1146 46.4750 9500.1 -30,3291 29.6670 -0.5620 
7.5540 7.5240 15.1550 '0000.0 -20.0055 24.1663 -009292 
6.4500 h..4)314 4 3.4641 10500.0 -27.7669 21.3675 -0.8994 
6.4'1? 6.4973 11.0018 (1005.n -26.6124 26.0600 -0.5773 
5.4450 5.4194 11.4141 11500.0 -25.5527 25.0346 -0.5476 
1.4'195 5,5(157 11.0147 12000.0 -24.6030 24.01411 -0.5249 
S • / 50? 5.1.769 10,2950 17500.0 -73.7022 23.195) -0.5041. 
4.4796 4.13075 0.6164 1 1000.0 -22.5542 22.3734 -0.4847 
4.5(17 4.5139 9,0451 13500.0 -22.0701 21.o032 -0.4669 
4.1655 4.7 4 /6 0.13 4  41 1 4000.0 -21 .3129 20.4026 -0,4503 
5.0249 4.0041 8.0375 14500.0 -20.6419 10.7071 -0.4348 
14.9(41,7 '4 .7.411 1.84714 15000.0 -19.9911 1 0.5777 -0.4704 
4,6046 1.5940 7.702 6 15500.0 -L".9829 18.9760 -0.4069 
3.4141 3.4.144 6.943/, 16000.0 -114.5070  111.4117 -0.3942 
3,1613 3.'504 6.5) 37 16570.0 -3.11.2654 17.13533 -0.1572 
1.4113 3.1 001 5.71 14 170000 -11.7577 17.1817 -0.1711 

field 
0. 

100,0 

203UnU0 
400.0 
500.9 
600.0 
700.'0 
800.0 
006.7 

1006.3 
1100. 
1202 1  .14  
1300.0 
1400.0 

Conductivily"-,  1 ` IOUV . 
100.0 

x1o114 	 16100(.1.7i 
1200.•.) 
210 ,-0 
[100.0 
1300.0 

11 
4141,3): 1 5 

1469(40,3)3.0 0,3 .. c  ,) 

4800. L* 

30400 9 13,  

1200.0 
3300.7 
3400.0 
350).0  
56013.0 

/00.0 
3500.0  

40  43110043.01  
4500.1 
5000.0 
55419.0 
640,101t1.14..14 

49( 
	

/000 .0 
/5110.3; 
5000.0 
3507.0  
000.0 

455011.0 
10000.0 
105043.1) 
11000.12 
11500.0 
110000 
1/503.1. 
13000.0  
13530.0 
14000.0 
14500.1 
15000,0 
155130.0 

1
0 

16613°1,1%". 
110110.0 

Gx x Gxx Cax field Gxy Gxy Gxy 
439.61/1 321.2521 140. 3651 o . -0. 0. -o. 
348, '651 303.1151 101.8694 00.0 -121.9160 70.4202 -51.495E1 
413.2/55 161.0/85 5 /4.434 / 200.) -la / ./051 119.7069 -6).9952 
2 56.4 139 213.0544 449,5394 301.7 -202.1261 147.52613 -().1193 
101.5309 137.3441 853.41543 433.0 -195.3550 14 7.3647 -47.9903 
144.3045 141.51u 185. 43)1 50C.0 -1131.3973 143.5511 -31.8396 
118.301 / (18.1441 211.5578 600.0 -166.9554 136.5649 -.30.3904 
11'7.!342 191.1E29 101.53/1 130.0 -153.9310 128.9051 -25.025,4 
81.4205 88.90911 104.3113 500.0 -142.6975 121.51919 -21.1107 
11.2245 13.1079 156.0/54 103.0 -133.13 /1 114.9/49 -15.1341 
09.) 3114 10.6131 139. 8110 - 1073.0 -114.9231 1013.4841 -15.9391 
6e.5233 63.3644 136.4.411 1133.3 -111.516/ 103./034 -14.1133 
55,455/ 59.3053 115.1410 1233.0 -111.1505 98.9933 -11.1512 
53.34(4 143.4930 105. 9.116 1300.7 -11.16.30311 94,7616 -11.5961 
48.1106 49.2019 9/. 41 / 5  14)3 .0 -131.5766 90.9462 -10.6303 
44.3653 40 9264 1530.0 -91.2114 84.4631 -9.11143 
41.272 1 41.1210 43.347 1600.0 -03.3812 54.2646 -9.1106 
314,3054+ 19,1361 1(.434 1 1(00.0 -31.1321 5 81.30/7 -5.5120 
35. 6 715 15.419/ /1.043 4 1800.0 -56.5434 76.5575 -7.9559 
33.3 411 33.90 39 31.3456 191)43.0 -83.5081 (5. 1013 -7.5214 
31.1/14 31.1313 53.4191 2000.0 -83.6534 71.5/43 -7.1006 
341.1 Oaf 19.5339 53. 1935 -(4.C,415 /1.3020 -6./395 
11.3 410 31.3 (22 55.0042 1100.3 -15.5572 69.1541 -6.4001 
25.1,041 10.3941 '71.0941 3311.0 -(3.2105 67.12)‘. -6.1015 
/5.0609 14,5143 44.5 4400.0 -(1.0155 55.11198 -5.5359 
22 .64 III It. 3605 45.644/ 1500 .1 -33.'0419 63.354 1 -5.5811 
11.5/65 21.1194; 43.0454 2600.0 -660665 61.3477 -5.1591 
10.1137 /0.5001 40. 5954 371-0.0 -65.031ti 5).9426 -5.1434 
18.4410 19. 13114 35. 3/64 2900.0 -03.1006 50. 3541 -4.9555 
11.9531' 14.21 19 36./161 19°0,0 -61.0131 56.536 1 -4,7(65 
16.5196 II, 190 34.2 8,11 3000.0 -59.99343 55. 3866 -4.609!  
15417952 16.3182 31.4134 3101.0 -59.4544 53.9997 -4.4541 
15.2639 15.5305 30.1944 3210.0 -53.9015 52.6 72 4 -4.3094 
14,4905 14.1410 24.3534 3+)4..0 -55.5/41 51. 5111C -4.1139 
13, HO 1 14.3011 11.1118 3490.0 -54.2291 50.1824 -4.0461 
13.109115 13.3135 35.4114 3533.3 49.1.141 -3.,7267 
12.4(11 12.6444 /5.155) 3600.1 -51.1014 47.0935 -3.8130 
11.8431." 11.0881 /3.9141 3/00.0 -54..3250 55.0174 -3.1011, 
11.3187 11.5301 21.8683 31133.0 -41.3911 45. /841 -3.6010 
13.8251 11.1,0/9 11.8333 3/0:.0 -45.3330 44. /909 -3.5110 
I!. 3449 10,5153 20.5611 40193.0 -41.15432 43.0363 -3.4219 
5.4433 8,4816 16. 41 56 4570,0  -41.64443 39. 5/1 -3.1331 
6.4549 6.961.3 (3.011) 5070.0 -14. 1400 36.0159 -2.7241 
5.3221 5,8159 11.550,1 5506.3 -35.44305 33,1150 -1.4727 
5.11434 4.9221 9.15.36 6400.0 -32.7/15 30.4574 -2.2641 
4.9494 4.41613 4.306/ 0500.0 -33.3416 15.253 1  -2.0800 
3.592 3.5503 (.2435 1000.0 -20.7156 45.3352 -1.0374 
1.1390 3.1095 6.319 15E0.0 -16.461.1 24.6595 -1.0372 
1. 6466 1.4111 5.01 ill 5033.1 -24.8113 23.1779 -1.6934 
1.4551 2.'•973 4,950 5503.0 -13.453 41.80(6 -1.5')31 
2.1940 /./394 4. 42 34 9007.0 -21.1869 20.6826 -1.5042 
1.9/19 2.1035 3.9/5) 9503,3 -11.1419 1.1.14/33 -1.4246 
1.1816 1.1103 3.51111 IC 300.0 1843 18.6653 -1.353G 
1.61/5 1.6430 3.2611 11530.; -10.4.04 11. 1964 -1.28133 
1.4151 1.4984 /.9/34 11030.0 -115.1314 17.0034 -1.7295 
1.35135 1.3 / 3 4 3.111( 11503.0 -17.4534 15.2774 -1.1(59 
1.1411 1.2510 3.5241 12300.0 -15.1372 15.6104 -1.1268 
1.1455 1.1621 1.3 .̂I1 12500.0 -16.0//0 14. /954 -1.0916 
1.0555 1.0/55 2.1349 131300.0 -15.4666 14.4267 -1.0390 
0.95/0 0,991/ 101/47 13523.') -14.9006 13.8994 -1.0013 
1..9134 0.9251 1.43415 14005.0 -14.3743 13.4090 -C.9654 
0.5518 1.4654 1. /1 71 14500.0 -13.1638 11.9511 -3.13,20 
0. 196 1 11.4059 1. 6051 15000.0 -13.4254 12.5445 -0.9009 
0.1458 0.1313 1.7 ,116 15500.'3 -11.9961 12.1144 -0.8115 
0./001 0./113 1.4114  16000.2 -12.5935 11.7490 -0.8445 
0.14884 0.5693 1. 31 (4_ 16303.0 -12.2145 11.3159 -0.41.88 
43.6204 0.6303 1.2701 1(000.0 -11.)3552 11.0614 

Derived 

W1 

63® 



0797'67 1061.04-0'000114447'1 946(.7 3646.1,  0.00111 

0914'04 4447.14-0'00491 187Q.1 0694°1 9447'4 6'00491 
6E7014 0974'74-0'CC09I 8490.9 499/67 V6I7'4 con0091 

1410.04 R111'04-0.00441 8674"9 11700.4 0774'4 0.0044'1 
4496'44 0041'44-0'00041 /400.6 7647'4 0997'4 0°00041 
9940'54 7979.94-0•074410104•6 7714°4 9710'4 G•0041,1 
1/04'74 9961'94-0"0004I 7'61'01 971704 467;1'4 0.00141 
4970'64 70.19.64-0.00491 1449'01 5171'5 4661'4 0'00411 
0990%4 1119'16-0.00171 9404°11 4614'S 1111'9 0'00091 

9160'74 7709'75-0' 16471 0460.71 4799'4 4714'S 0'00471 
79971644 6709°44-0'00011 0467'(1 7/67'9 1166'9 o.o0071 
6601.14 [076•74-0'CC411 6967'41 61009 1414.7 0.,70411 
4745°64 9990.09-0.000II 01 14'51 6476., 616(,.0 u'Ou011 

0691'79 9415'09-0°00501 4099'91 4616') 60909 0,10471 
1810.49 6406'49-0•000C1 6.131,01 7419'9 1114'6 o'00001 

0447'99 7710069-0'0C46 	4461'61 )1474'6 /40001 n • 0046 
91701! 0444'17- 	0'0006 	4464'17 7677'01 C447'11 0•0006 
7405'4/ 7404'91- 	0".0040 	0141'97 7(67'11 8641.71 0 	ri 

/999'6/ 71119,09- 	wcocp 	4767'97 44166'71 6919'41 0•0(109 
/949.40 4744.49- 	0'0051 	4941'67 4140.41 6467'41 0'0047 
7170'06 7ZI9.06- 	0.006/ 	6345.77 7.4.1'41 9049'91 0•000) 

1960'96 97/9606- 	0.0059 	7769.97 .1011'11 7416'41 0'0059 
Z410'4 01 141/1101- 	0'0)09 	7979°14 1777'07 9./)4.11 0'0009 
0946'011 /969'111- 0.0044 	1479'14 11461.77. 9)/4'41 n'0044 
0941.07.1 94/11"171- 	0'0304 	/966'44 7796.97. 491-1.81 0.0004 
00126"uf1 9479°101- 	0'1054 	6941.59 9414'17 9991'76 
4/30141 7197•441- 	0'0004 	0749•40 6041'17 1114'06 a.""  

n 71004 

0444'941 6077'741- 	0'7C67 	476747 9944•Hf 9969.61 0•0061 

6714'641 9/11'141- 	0.0096 	1490.1R 4117'67 7977'14 0.0071 

6044'74/ 7647.751- o'cur 	71/6.19 197/7.14 0469'ia n"n140 
in60441 4944'941- 	0•0090 	4710•71. 6900'74 6;17.44 1'01)90 
7471'641 47/0641- 	0•0047 	947/.06. 9704'44 0779'64 0.3041 
4409'74/ 1747'491- 	0'0040 	5694'76 9090'94 6904./4 0.0040 
6977°991 0090.991- 	0.0004 	9771'16 1746.74 4097'64 D*0077 
0443'1/1 7479'3/1- 	0' 7C7( 	766tt'all 11169.64 1141'14 0.007f 
61/0'417 1049'41i- 	0.0010 	8(71"4411 4/14'14 1-967'4 0.0019 

1791'9/I 
4494.'191 
99/1'701 

99111.7111- 	0.0010 	1169'001 
746T 'FM- 	0'0067 	9/61'111 
1409'791- 	0' 0067 	6 199 

6099'14 
40716'44 
6497'64 

1041.44 
91131./c 

0•0009 
3'0067 
0'0017 

4743.761 9999'761- 	0" C017 	1414'771 :1444.09 1646'19 a•nn/ 7 

POP1'761 77171.761- 	0' CC97 	7604'171 0/46"79 1/94'49 0'0097 

9049'707 9997'107- 0' 0057 	4449'/9 1 4194'49 7160")9 q'0047 

7944.907 6990.601- 	3' 004/ 	4/91'77 1 1146'69 060047 

6049'417 4197'417- 	0' C077 	if 46 '741 1461'1) 7641'71 0'3067 

7717.177 9960°177- 	0' )077 	//00'!141 7017.41 009/'4) 3.0071 

9114.977 4940'677- 	0' 0017 	4490'941 4691"/I 0916.10 cOnnI7 

6671'917 1140917- 	0'0007 	7470'191 4010'09 6416'79 6•0107 

4174.44Z 0741'447-  0•006T 	1466.641 14(11.49 9hDR'41,  o'001,1 

7731'747 0170'447- 	3'OCPI 	/617'// 1 19114./0 9794'69 3.6m 

4/10'797 47.54.497- 	0•00/1 	4109.401 4409'1h U9/7'76 D.00/1 

0140'4/7 4069.417- 	0'0091 	9009'761 o145•46 9067' //. 0.0791 
7449.791 4767.91,7- 0'0041 	70011 "Ira /659'66 4391'101 6,7041 

0706•107 7494.707- 	0'0041-7/44007  7467'101 6799'4,0 0.0041 
4647 •017 9416.0TE- 0'1091 	/647007 06/7'6101 7407'011 060011 

0577°7E0 4406'110- 	0.0071 	4154"/?? 1/91'711 7419.411 060011 

1779'644 0117-09E- 	0.0071 	4679'477 9047'/I1 147117'611 0.0011 

610.5.990 9077.7 11E- 	0'1001 	6796 4.97 9496'171 4966'071 0.0001 

0494'614 07/7'074- 	0'006 	4/47•447 9179.971 449)'071 0.006 
L702•194 11/1i'194- 	0'1105 	1979,447 9161'111 0414'611 0.7109 

4647'574 16011.414- 	O'CO/ 	9349"1/7 6119.4fi 6177•991 1'00/ 

1147°904 9467'904- 0'039 	44)07A? Cb6i.h11 7434'74T ,"009 
77L6'169 9917'769- 0'005 	F401•04,7 47179'541 A9)4'941 0.004 

1/79.649 7740640- O'CO4 	77/10/.7 4410•141 1/01'141 0.004 
4799'0111 9090.4111-0'00f 	1300.707 0046'641 4671'741 0007 
0794'9591 46704497-0'007 	4790060 9479'741 9904.441 0'107 
1109•6871 4969'9074.-0'001 	911614'474 9074'94T R140.947 6.(161 

.0 	04e1.010794,19.4/0490047•4(409 '11 

AX.0 	I 	pLayt xxD 	xxr) 	xxD 	al; 
al 

79401-
94400-
64503-
04900-
6701•0-
41000-
9690G-
7161'0-
0400.0-
7019'0-
Z910'0-
9078'0-
4479'0-
4979'3-
9170*0-
4970'0-
9E70'0-
6619'0-
07111'0-
1209'0-
01600-
1941'0-
66500-
1044'0-
56100-
9469.0-
10/9'J-
Z699'0-
/499'0-
0099'0-
0949'0-
P149'3-
51/49.0-
6449'0-
7049.1-
0979'0-
97E9'0-
/3E1'0-
77179.3-
1979'0-
4479'3-
7E79'0-
Q7e9"0-
9779'0-
FF79'0-
0479'0-
ZaP*0-
4319'0-
14E9'0-
1049'0-
5949,0-
0449'0-
4799'0-
4179'0-
FIR9"0-
6/R9'0-
0169'0-
0909'0-
7999'0-
7619'0-
7.415.0-
7404'0-
4460'0 
LI011.0 
SEWI 
1406'7 

'0 
ICXS) 

No00C 

t71-01.X 
AMAR311PUO3 

POAP 00 

2444'7- 
OiE8'0- 
4376.4- 
0600'4- 

cloce,- 
1444.4- 
6794'4- 
I805'4- 
94004- 
7418•4- 
5540"4- 
000.'5- 
1/77'5- 
9974'S- 
1414'4- 
6094,6- 
9287'4- 
000.4- 
68,U'4- 
8401.9- 

28111,4‘. 
/491'9- 
4840'4- 

1974'S- 
1.444.6- 
0504- 
P190S- 
10904- 
9140"4- 
76E6'4- 
7716•4- 
0664'4- 
6445.4- 
5460.4-  
98E0,- 
14/0'4- 
4706./- 
661L'E- 

60E4'4- 
4/207- 
4906'0- 
6669'1- 
6454'2- 
0.114.7- 
CSLO'r-  
5927",- 
44L4.6- 
677-e6- 
6976'0-. 
14,7'0- 
0944'0- 
c357'0.. 
FM*0- 
.001'0 
1664"0 
62.9'0 
16..76.0 
4047'1 
77901 
77901 
611/4.7 
4E9.'4 

'0 

7016'74 
4105'74 
6780'44 
01.29'91 
wws, 
4484'1.4 
1701'94 
1LL9.94 
0941.L4 
1494'4.4 
1456'14 
0/47'94 
9184.94 
4708'84 
1446.94 
6166'04 
7266'81 
414L'84 
L414.84 
1026'/, 
97177'74 
L417,Py. 

v14L'04 
26[0'74 
k066'ist 
4016'11 
5040.Lt 
4115.97. 
9756'St 
1184'47 
51604E 
588..41 
4594'77 
7876'77 
91/Vit. 
7/64.10 
4506.07 
6461.01 
5119,"bZ 
oLIL.12 
(0ho'LL 
6651.77 
1457.97 
1474'42 
90/9'47 
156007 
8666.74. 
11L6.17 
41.70"17 
9560'0Z 
6450'61 
4/00'01 
4196'9, 
0480'51 
05904. 
7079'61 
tt,'"Zi 
9647'11 
0/70.01 
4.579•8 
4549'L 
6164'9 
5404.4 
4012'4 
lE64.2 

'0 

4E71'94-
4894'7h-
4410'04-
7449•84-
0467'64-
7E76'64-
8045.05-
60,014-
6611.16-
1017'75-
6891'29-
4797'74-
9109'44-
46E0'45-
161045-
0905'44-
4705.46-
00f5.45-
7120'44-
64E6'04-
4.706•75-
Ito/*ZS-
5/90(4.. 
9906'64-
7810'84-
6420'44-
4701'74-
8464'04-
1790'14-
7410'14-
0144'04-
100'67-
7471.64-
87/1'94-
1.609"/4-
97171.97- 
9166'40-
044)•50-
7017'40-
6694.77-
8744.21-
06/4'14-
0064'0E-
6714.67-
4004'87-
6541.17-
0042'47-
kii1'47-
9746'47-
644077-
647497-
1E97'07-
0403'61-
4464'71-
0017'91-
0010'01-
0744.41-
1847'21-
6679.01-
0464.6-
1660"/-
0154'9-
9447'4-
4.40'7-
4174'1-
7074'0- 

'0- 

0'000/1 4090'45 
0.001.41 4984'14 
0'00091 44E6'64 
0.0uSS. 1711.7°Z4 
0.0004I 1640.49 
0"u0Sii 	6661014 
0'00040 	1169'01 
0004E1 4740'41 
0'00071 4114.11 
0'00477 7.846'06 
0'00071 117048 
0"0..41. 97.0086 
0°000.1 0916.76 
0'00401 1617°16 
0'00001 	UV/).701 
u.0046 	64v0"/01 
0'0006 
0'0048 	6199.111 
0'0008 	1869'121 
000081 	75111'671 
0'0007 	cr47.567 U•0045 	9176"7.41 
0'0004 	4469'641 
O'OGSS 	9940.141 
0'0005 	4194.947 
0'0044 	.0.6"1/1 
0'0004 8.74.611 
0'0060 	6440.81 
0'0096 	6.0/4'781 
u'OUL7 	uedvtwi 
U.0044 	6164'491 
0'00sE 	9600196 
0'004/ 	4409°6111 
O'UOtts 	41.00061 
0'0070 	1/66.101 
000.7 
0'000E 	

0480761 
/455.467 

0..1416/ 	klia°961 
5084'761 
62676'961 
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847308 118.009 
8573.2 116643 .4 
6672.4 	115.308 
9771.7 	114.003 

8970.5 	111•477 
9069.9 110.254 

8871.1 	112.726 

9169.4 109.058 
9269.0 107.867 
9368.5 106.740 

956769 I04•517 
9468.2 105.617 

966745 103.439 
9767.3 102.383 
9867.1 	101•347 

-5.960 
0. 
6.394 

12.137 
17.122 
21.565 
22.065 
24.491 
25.033 
25.900 
25.583 
25.249 
24.708 
23.(1.41 
23.191 
21.996 
?1•565 
20.481 
19.'506 
1/1.42? 
16.905 
15.910 
14.196 
13.004 
11.487 
9•861 
8.453 

.6.719 
5.418 
3.901 
2.276 

	

7661416 130.180 0.390 13CITIZ:01 754842 0.247 	
2974.5 77.074 13.979 18605.2 

13.112 

73.033 	-0.975 

74•694 	.-0•364 
74.132 	..0.598 
73.979 	4..0•780 	

,Noti 	VI- Fl 	 3271301 	75.312 	1 .="c2.  

:::::: 	77::::: 
3460.7 	74.160 	

12.787 440.065
3075.6 	;:::z7  

75.264 	-0.130 	 3176.8 

i...iiii 72.496 	-1.157 	 3663.6 	73•080 
3.251 71.966 	-1.326 

71.443 	1.521 	
378640 72.541 

70.928 	-1.716 	
3886.6 	72.01? 	1.951 

O• 
704.420 	-1.924 	

3968.2 	71.489 
4069.8 	70.973 	441•300 

69.918 	-2.093  

68.936 	2.249 

	

68.455 4-2.223 	 W3 	1.2° 	4293.2 69.963 
4191.5 70.465 4-2.601 

-4.118 
4395.0 	69.469 	-5.635 

69.424 	2•210 

4496.8 	68.981 	.7.1.261 
67.981 	-1.937  
67.513 	-1•660 	

4598.6 	6/3•500 	-8.686 
4700.5 68.025 4-106637 

67.051 	.40.793  

	

66.145 0.546 	

4802.5 674556 .412.679 
4904.5 67.094 -13.979 66.595 	-0.286 
5006.5 66.638 -*5.388 

65.701 	14.378 

	

65.262. 2.080 	
5105.6 66.187 -16.255 

15•280 
644.829 	2.496 	

s2to.a 	65.743  
531240 	65.304 	.114•088 

13286.6 
.0.112 13388.0 
..0•481 13489.4 

43.416 13599.0 
-0.377 13692.4 
-0.065 13793.9 

04.156 13895.5 
0.468 13997.2 
0.520 14099.9 
0.416 14200.6 
0.260 14302.4 
0.078 14404.?

1  -0.078 14505. 
-0.260 14608.40 
4.0.390 14710.0 
.404.520 14812.0 
-0.650 14914.1 
-0.754 15016.2 
-0.663 15118.4 
.66.351 15220.6 

0.169 153224.8 
0.520 15425.1 

57.926 
57459? 
67.241 
56.905 
56.571 
56.244 
55.919 
55.597 
55.279 
54.964 
54.663 
54.345 
54.041 
53.4740 



OSCILLATIONS 

•
 

1
1
,0

0
4
0
0
P

.O
T

IN
O

0
0
g
o
rs

,O
rld

r .4
0

4
0

0
1

!1
0

0
0

..0
.0

7
4

4
  

0
0
0
4
0
1
M

M
..M

4
O

O
N

N
M

P
C

IN
N

t ..4
4
1
.-0

0
0
0
M

M
M

O
..0

N
n

  

;
p
.
0
0

I
 

0
)0

J
-.0

0
M

0
..O

N
O

...4
0
0
F

IN
O

N
N

P
.
N

N
4
0
0
0
f.M

O
N

..  

A
F
2
V
9
.
"

1"
2
"

N
e
T
A
ni
g
g

n
-071

1
'
;I
A

'0n
U
a
I
T
I
A
 

1
 t 
7
 llll 1

1
1
1
1
1
1
1
1
1
 

C
O
,
 
94

  9
pe
  slt....VP,s2plieSV,pli' 10-3V.i2P,PgV,T,P°Pa - 3FP' 

—
..,„.. 

0
0
0
N

r .
..0

  1
0
  0

0
0
 0

 0
0
0
.
0
..1

. -
V

3
V

i
ly

*
r
2
 

Ir--
7
1
r
:
f
P
1
4
P
A
A
P
P
P
F
:
g
a
i
i
i
i
V
Z
7D
i
i
M
I
t
2
2
%1
  

C
0
1
-0

C
M

W
IT

N
0
...0

. -.1 .-
0
...

0
0

0
n

N
N

N
M

4
0
1
E

0
0
0
0
  

M
4
1
1
1
0
,0

0
0
^
M

0
O

N
M

O
N

0
r
0
^

1.10
f -0

...
M

O
O

O
N

O
r
-O

N
  

1
..F

V
F

-r
-r

-M
O

C
O

O
M

q
C

,0
0
 0

0
0
0
0
0
.........N

N
N

A
J
M

n
 

0
h

0
3
0
0
.-,N

n
0
1
1
1
0
N

0
.0

0
.- n

4
0
r
-0

0
,0

N
0
Ig

n
*
IN

G
7
0
0
 

N
N

N
.0

1
,1

M
n

rIM
M

IIM
n

0
 4

4
4

4
4

4
4

4
 O

N
M

O
O

M
O

O
M

0
0

 

•CM
 

C
O

 

0
0
 	

1
1
0
M

I
N

0
0
0
 

.
7
,
”
A
P
F
0
,
0
2
A
 

. 	I 	
1
1
1
1
 

N
g
v
1
6
0
0
0
0
0
0
t
-M

M
O

r
0
0
2
0
i1

M
 

.1,,.AP;7.:Ag17,
;
1
2
L-M

V
:N

!!::1
  

0
0
0

0
0

^
M

q
M

0
0
M

-.
M

C
M

^
0
r-

O
n

.. 
0M

11.-.0
0
0
0
1
,

0
4

,0
0
0
r
M

0
0
  4

4
4

4
4

  

ft. 	
:4 C 	

O' 2 2 	
2 2 2 2,  2 

...0
0
..0

0
0
M

N
0
0
.-N

N
M

4
0
0
r
-M

0
0
 

F
h

C
0
0
0
7
4
M

0
0
4
0
0
0
0
0
0
0
0
0
,.. 

e
V

a
l) 

i
r •
  E
M

I 

0m
0oN

ii 
0
2
0
=2

0
 

1:211 

 

';821374
M
I
V

I.g
2
1
t
4
S
A
=
4
"
2
P
i
4
2
g
=
4
.
1
3
2
1
7
V
:
=
1
;2:

A
M
e
g
e
)
;
!
:
2
'
0
4
g
"
"
-
"
 

0
0
N

..M
0
0
0
0
N

N
w

0
0
0
N

4
0
.-1

0
.1

,0
0
0
+
4
M

f1
4
M

0
.-1

0
0
0
0
0
J
M

N
O

M
,-...0

1..0
1
0
0
0
0
W

N
 

•
•
 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 
•
 	

4
4
4
4
4
4
 
•
 
•
 
•
 
•
 
O

O
O

O
O

O
 
•
 
O

O
O

O
O

O
O

O
O

O
O

 
•
 
•
 
O

 
•
 
O

O
O

O
O

O
O

 
M

o
N

N
M

M
O

4
M

0
0
M

0
0
..M

0
..0

M
0
0
..M

0
0
....P

.M
...0

1
1
0
M

0
f-0

.*N
n

N
N

M
F

1
1
0
0
 

1
1
1
1

I 1
 I 	

1
1
.....N

N
N

N
N

..1
*
N

N
F

IM
P
I 

 

ro
a
r 

S
O
'
S
g
;)-

g
V

4
F

V
.
1
3
8
2

,7
1
P
Z
a
g
g
g
V

O
C

T
4
V

g
g
g
it

g
g
g
t
2
1
.62
07
g
;
r
1
;
P
a
l
g
V

g
g
A

t
j
g
 

-.r
1
0
0
0
M

6
0

,1
0
,1

0
4
0
0
n

0
I'O

n
..0

f.w
0
4
4
M

M
M

4
4
1
0
0
0
r -

0
0
N

M
In

t- 
N

4
t-

V
N

0
0
-0

M
^

O
 

0
4

,1
;A

:Z
llu

;A
4

8
;llu

;4
4

:O
S

.4
Z

 1
1

 .7
t4

4
:O

o
c
S

r
Z

in
;n

4
4

o
c
7

4
;g

4
Z

A
;;

O
c
ii 

M
IIM

M
IIM

N
N

N
M

N
4
 	

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C

M
C

O
M

M
O

....0
 0

0
.,0

0
, 

0
N

0
C

e
N

o
0
0
M

6
C

0
-1.1

0
C

.-0
0

0
,0

0
0
4
.-0

0
0
0
.-M

o
r-0

m
1
.....0

..0
N

0
0
0
1
0
0
0
0
.0

 
•
 
•
 
-

O
 

 
•
 
•
 
•
 
O

O
O

O
O

O
O

O
 
•
 
•
 
•
 
•
 
•
 •

 •
 •

 O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
 •

 •
 •

 •
 •

 O
O

O
O

O
 

L
v
i
 
fe

l.-
0
0
0
1.-

0
0
0
%

N
.-

0
0
0
0
1

..
P.

411,
0,

0
0
0
1
0
,
M

N
N

O
/
N

N
W

N
N

N
A

IN
N

N
M

M
,1

0
/
1
0
M

0
0
1
..M

0
0
0
.-.N

 
C

W
O

W
P

F
P

.
I.

P
1,

0
4

0
0
0

0
0
0

0
0
0
4
1
0
0
0
0
0
0
0
0
0
0
1
0
M

0
g
g
.1
1
/
g
2
g
g
O
l
i
A
l
i
l..
 

N
n

w
O

O
P

-M
4

7
.0

N
n

m
0

.0
P

-
O

P
O

-N
n

w
p

,01,
0

q
0

N
r
1

4
,0

.Q
, 

1...
...1,

1,
1,

0
0
0
0
Q

0
0
0
0
5
0
0
0
0
M

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 	

N
N

N
N

N
N

 



APPENDIX 4 

COMPUTER PROGRAMMES.  

Only the two most important programmes are listed 

here. 

The Lorentzian fitting programme is in the form of a main 

programme followed by three subroutines. 

The more complicated programme PRIER, for fitting data to 

the generalised Landau expression, is in the form of a fairly long 

main programme followed by four subroutines and, finally, M.D. 

PowelPs long subroutine VA04A. This last subroutine is also essential 

to the working of the above Lorentzian fitting programme, of course. 



Lorentzion 
fitting 

program e. 

0 DIMENSION 0sTsx(1001,0ATAY11001.x01,E151,W(401, 
1 TEXTI13) , COEFF8151 

COMMON DATAX.DATAINCOEFF8.NOATA 
READ15.1001 NSETS 

100 FORMATII51 
DO 99 N5E1 - 1. NSETS 
REA0i5.110/ ITEX1111. 1.1,13) 

110 FORMATII3A61 
REA0(5.120/ ICON. NOATA. JXXYY 

120 FURMATII1114.11.14.F10.4 I 
IFtICON.E0.0/ ICON . 1 
DO 1 1.1.M 

1 READ15.1251 XII). E( I/ 
125 FURMATI2F10.11 

WRITEI6.1151 ITEX111/01.1.131 
115 +ORMATI1H1g1X.13A6 ///1 	 - 

IFIJXXY/ 11,11.12 
12 00 2 I. 1. NDATA 

REA015,130) DATAX(II. DATAYII/ 
130 FORMATIF10.41,10X.F10.41 

2 DATAY11). DATAYIII/DATAXIII 
WRITE16.1401 

140 FORMATI1H0,912HXY.10X/ //II 
GO TO 4 

11 DO 3 I. 1. NDATA 
3 READI5.150/ DATAXI11. DATA1111 

1)0 FORMAT42F10.41 
WRITE10.148) 

148 fORMAT(11-10.012H11010/) ///) 
4 CUNTINUE 

MAXI1 . 200 
NMI • 40 
IPRINT - 1 
EXTERNAL CALCFX 
CALL IA04ACX.E.MpF.ESCALE.IPRINTy1CONgMAXITyCALCFX,W.N3N1 
WRITEI6.1601 	 ITEXT(11. 101.131 	_ 

160 FORMATI1H1.1X. 13A6 //I) 
IFIJXXYI 13.13.14 

14 WRITEI6.170/ 
170 FORMATI1H0. 912HXY,10X1 	///I 

SO TO 15 
WRITE16.1801 

180 FORMA111H0, 912HXX,10X1' 
CONTINUE 	 -  
WRITE16.1901 

-190 FORMAII1H0013HFINAL-VALUES.--1-...--- 
DO 6 1.1, M 
WRITE 116,2001,-1, COEFF0111.,1111(111 

200 FORMATI1H0.21-61.12.2HI.Al2.5.13X02HH1012.2H1..E12.5; //I 
WRITEI6.2101 F 

- 210 FORMAIIIH0.9X.15HSUM SO RESIDS.. 0E20.8 ///30X.8151*-1 f-
ARITEI6.220) NDATA, JXXY, My ESCALE. MAW -o ICON 

2200FORMATI1H0,15HDATA INPUT WAS- /1H0.2X.5HNDATAr1X+4HJXXY.3X0 
1 6HNTERMS.3X.6HESCALEy3X.SHMAXIT /1H0o2X,13.6X.11.6X.11,__ 
2 110.3.1X.15 f 1HOOHICON= • 12 I 

99 CONTINUE 
- 	STOP 	- 	 ' 

_ - END 

SUBROLITINEcALCFXIM.X.F1 
DIMENSION X15).DATAX1100),DATAY11001 1COEFFB151  - 
COMMON DATAX.OATAY.COEFF8.NDATA - 
CALL LSTSORMATAX.OATAYODATA.M.X.COEFF8IFF/ 
RETURN 
END 

SUBROUTINE tsisCAtx,404,  m,N,Ei.sumi21 
,_ 0 DIMENSION A110.10101101,Clio.looliy1100Irxtiool, 

-11- - 1 RES101100/1H15/.8115/ 
TOME pmECIsioN A.B.0 

C 	SET UP CIII,J1, WHERE OBS. EQU IS T = ITRANSPOSECI*8. 
DO 6 	1, M 

- 	DO 7 J. 1. N 
C11.51 • 0.0 

- 7 CIIgn = 1.0/1 IXIJI/H1111.1XIJI/H1111 +1.0 1 
A CONTINUE 

- 	SET UP A. C.ITRANSPOSECI AND 8-DASH C*Y. 
00 8 I. 104  
DO 9 J. 1, 
AII,J1 - 0.0 _ 
Alt) - 0.0 

• DO 10 K. 1, m 
10 stl,J1 • C112K1 * CIJAI + A11.J1 

I CONTINUE 
- 	DO 11 K. 10 

- /1 8111 - CIIIKI * YIK/ • 811) 
8 CONTINUE 

RUM • 10 
C 

CALL MATRIXIAOSIMONUMOETERI 

SUMR2 
DO 12 I. 104 - 
Resims 
00 13 J. 1, m 

13 81510111 • RES1011/ 	CIJ./1.81J1 
12 SUMR2 • SUMR2 • RESIDIIPARESID(1/ 

CO 14 1.1. 5 
14 81(11 - 1111) 

RETURN 
ENO 



Lorentzion 

f itting. 

30 00 550 I.1,N 
C 
C 	SEARCH FOR PIVOT ELEMENT 
C 

40 AMAX -0.0 
45 DU 105 J.104 
50 IF IIPIVOTIJI-1I 60.105,60 
60 DU 100 K*1.N 
70 lh IIPIVOTIK)1) 80,100,740 80 IF IABSIAMAXIABSIMIJI,K111 85,100,100 
85 IR01.1.,1 
90 ICULUM.K 
95 AMAX.AIJAI 

100 CONTINUE 
105 CONTINUE 
110 IPIVUTIICULUN),IPIVUTIICOLUMM 

C 
C 	INTERCHANGE ROMS TO PUT PIVOT ELEMENT ON DIAGONAL 
C 

SUBROUTINE MATRIX  (41,80N.M.DETER) 
C 
C 	THIS DECK REPLACES MATRX1 
C 
C 	THIS SOLVES THE SET OF LINEAR EQUATIONS ' 

A(1.11X11)4A11,2/X(2) • • • • • 	 811) 
C 	TU 	AIN.1)X11)44012)X12) 	 AIN,N)XINI . BIN) 
C 
C 	M IS THE DIMENSION UF 80TH AIM041 AND BIMI ANO MUST BE SET EQUAL 
C 	TO THAT OF THE MATRICES IN THE MAIN PROGRAMME. M MUST BE GREATER 
C 	THAN OR EQUAL TO N. 
C 
C 	AFTER COMPUTATION 
C 	A CONTAINS THE INVERSE OF THE ORIGINAL MATRIX. 
• B CONTAINS THE VALUES OF XII) TO XIN) IN ORDER. 
C 	OETER CONTAINS THE VALUE OF THE DETERMINANT OF A. 
C 
C 	ENTRY LINEQN GIVES THE SOLUTIONS OF THE EQUATIONS ANO THE 
C 	INVERSE OF A ONLY. 
C 
C 	ENTRY DETERM GIVES THE VALUE Of THE DETERMINANT Of A AND ITS 
• INVERSE ONLY. 
C 
• THE MAXIMUM NUMBER OF EQUATIONS IS 100. 
C 

DIMENSION IPIVOT11001, INoex1100,21 
DIMENSION AO4010041 
EQUIVALENCE IAMAX.T.SWAPI 
DOUBLE PRECISION A,B,AMAX,SWAP,PIVOT,T 

130 IF IIROW-ICOLUN/ 140.260,/40 
140 UETER • —DETER 
150 00 200 I.-1.N 
160 SWAP .A11140141) 
170 AIIROW,LI.AIICULUMeLl 
200 AIICOLLONgLI.SWAP 

IF IIND .10.21 GU TO 260 
' 220 SWAP461IROWI 

230 DIIROWI4ENICOLUMI 
250 BIICOLUMI•SWAP 
260 INDEXII. 11 - IKON 
270 INDEATI,21 4  [MUM 
310 PIYOT4A(ICOLU4.1COAuMI 
320 DETER - DETER 'PIVOT 
330 AIICULUM.ICULUM)1.0 

C 
C 	DIVIDE PIVOT ROW BY PIVOT ELEMENT 
C 

340 DU 350 L.I.A1 
350 AlICOLUMAI.AIICOLUM.11/PIVOT 

IF IINU .10.2) GU TO 380 
370 BlICULUM1.811CULUMIZPIVOT 

C 
REDUCE NUN PIVOT ROWS 

C 
380 DO 550 L1.1,N 
390 IF (11-1COLUN) 400.550,400 
400 T4A(1.1,1CUIUMI 
420 ATLI,IC0110140.0 
430 OD 450 1.41,N 
450 A11.1,11 AAILI.L)—AlICOLUM.LIAT 

IF ILK) .10.2) GU TO 550 

ENTRY LINEON (A 1,804141 
IND 	• 1 
GU TO 10 

500 8(111.841/1.81/COLUMM 
550 CONTINUE 

C 	INTERCHANGE COLUMNS 

ENTRY OETERM IAIN.M.DETERI 600 00 710 1.111N 
ENO 	. 2 610 14144.1—I 

620 IF 	(INDEX(L.11—INOEXIL,21) 630,710,630 
INITIALIZATION 630 JKOWAINOEXIL,11 

640 JLOLUN.INDEX(102) 
IF (N.LT.101) GO TO 10 650 00 105 KA1,N 
WRITE 	16,5) 	N 660 SWAPAAIR,JR0WI 

5 FORMAT (19H TOO MANY EQUATIONS, 
STOP 

16) 610 AtA,JR01414A1K,JCOLUNI 
700 AIK.JCOLGHI.SWAP 
705 LONT1NUE 

DETER 	• 1,0.. 710 CONTINUE 
15 CO 20 	1,N 740 RETURN 

- 	20 1RIVOT131-0 750 END 

C 
C 

C 

C 
C 
C 

C 



- 	DMAG.AMIN 1 1 CANAG. 0.1*UMA X) 
UMAG.AMAX1( DMAG. 20.*UACC I  
ULIMAX.10•*131AG 

_ GU TO 1111. 10.11/v I TUNE 
70 CL.o. 

D•rti _ 

GU IU 25_,  

IF (t 087-0/ .1 D-11C / _ 14 	 _8.1.4 
15.3 	

- . 

ra TO 
1 F.E1 

!PRIM I-11511 50. 51 	• 	- r 	- 	- _ 
.50 .WR 11E( 6. 521 	 IIERCoNFLL.F-r(X1.1).1./sNI _ 

/114 SM1 T ERA 1 JUN.150110.184  FUICT1 ON VALUES 
• 3111- 	621.8 f I 52 24.8 /1 

---_---__=   -$0174 T 0  ( 101 531 ; . 35381; 1  P1011 tI 	-  1 7,  

it UC-08 )1,1 DC-DA1*(11*-1311 / /I A•5I 

_ 	21-AN .11!XI;14-D*Wt 101+91 	 - 
_811U1RN1.OUFHIJUITN I - _ 

:,_10189.101101•1 	_ _ - 	 _ - 

t IL MEI /MI 
I11116. IL Ilt•I 

S 

54816JUIINE  VA040 X.E.NrIF.ESLALE•/ PHINT.ICIIN, MAXI T.CALCI-X.IT,N3)1} 
REAL XIN1, UN/ 
REM. MIN3N/ 
A1551-(XY1 123).At151 XT21131 
II-1 	N• 3/ 1 8000.8002.8002 

8000 WRIT El 6. IWO I I 
8001 HIKMAT 26.1 OMENS 104 OF M 1UU SMALL I 

SI LIP 	 UA-U5 
8002 cUtilINUE 	 GU Ta 29 
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SW:MOUT INF Cal,tfAl Ili XIII-  I __ 
C 	- 
C 

	

- 	0D1P(tN:t ION PLICUII/12 /tP159t111 21 •4121.01131121.913•21 oPS111.21 
_ _1. NHRMCS(21.Nll1LUl4.2L.X1 LO 1 IUATAXI.2001 aUAIATAL001 

	

_ 	COMMA 	 ItiEft.A sUlt11•11.r519NCAKA5,NliftFC5•UATA XtDAIAV,NUAT Av. 
Nall 	 _ 	- - - 

- SIJK112 • 0.0 	 :7_' 	 -7-7'  
L 	 _ - - 

. _0.. --CALL A0.1 IJS I IP ER 1UU gPLII1t14aA sU 115 I s M. PS1. sPICAKICS • PitiRMES-  • NHULUa Ms=  
1 X} 
_ - _ 	 - 	•: • 	- 

MO. to MATA 
_ 111(0 • VAIAXIND/ 

- _ 	CALL CALE( P luDosuo trt A .0H11 	P t IELD.E.riCARRI.NHRACS 1  
C  

	

. 	_ 
C 

Itt510 • F - 0- ATA44ND 	I  
CtrIr 5 I. 0 	Tit et 	KAN V.? 

	

- 	SU•04.2 • 50432 + 13tX1J.At U 
F • 50113 2 
1111TU101 
END 



FRIER 

C - 
DSUBROUTINt ADUIN‘IPERIUUsPUMLK/A2UTUTO6P51,NCARRSOURMCSIINHOLU.N. 
1 XI 

C 	. 

c _ 	INITIAL FILLING OF •X-• 
C 

OUINeNS ION PkR(UUT!),POWER12/gA(211U111112101131,2),P5164,2),  

_ OSU MULTI INE 013/.11(PER IUU•PUlittteAsUltilelloPSI eNCARKSaNNTINCSOTHOLUs • 

1 x )  
C__ 
C 

001)1ENS IUN FERVID! 11.PITWER 21.Al2) sUID112),10$121.1531(3 •21. 
I ABIR•ICS1 2/INNULITI4.2).X120/ 

C 
I • 	1 
Ull 5 X = 	1. MARRS 
IFINNULUI1•K/oE44•14 CU 
PtRIUUllI I 	• 	X( II 

10 	I 

I 	• 	1 	• 	1 
_ 	1 111NNU1D1 2.1(1.tii.1) GU IU 2 

POWER(10 	• Xi ll  
1 • 	I 	+ 

2 II-1 NITOLUI ./oK I•EO. 11 GO 111 
AIX) 	• XIII 
I 	1 	• 

3 11- 1 NNULUI 401 j.t1/•11 1.0 IU 
- 	DTBTIK / • XI I/ 

1 • I. • 1 
4 CUNT INUE 

WI 1.K1 • XI 1 I 
1 • 1 • 1 
55111.11) • _XI II 
1 • I • 1 
IF( NHILK.51 K ) .10.1) GO 11) 

.- 	2•KI • Xt I ) 
I • I • 1 
P5112,1(1 • XIII 
1 • I • 1_ 
IF NHRMC SI K 1 •EQ • 2 / GO TO 5 
WI 3.1() • X11) 

-- 	- I • 1 
51113.1(1 • XIII 
1 • I • 

_. 5 CUNT INUE 

RETURN -- 
-END 

SUBROUTINE cal.S1 PER IONPOTIETteAr0T111.11.531,FIELUrF ,PICARRS,NNRICSI 

C 
LK CUL ATES FUNCTION GIVEN PARA/1E1E115 ANU PI ECU. 

C 

_ 	_ 	DIME/451DM PER 1001 t 1,ruwiat 2) 01121,01111121 0/(3,21 tPSI 13 P2/ WU/ • 
NHBRCSI 21  „ 	 . 

F• 0.0 

CO 1 I • I, NCARR S  
01 11. Al I)/FIELD 
ARGEX • Ul I I*DIBI 1 II 
ARGC0 • I 2.0*3:14159)/11.1ELU•PERIL10111) 
NNRIC • NFIRIICSI 11 
G • GO 

DU 2 K• 1, NI1RMC 
ARGEXP • —1.0*ARGEX•FL(IA 11K1 
ARGLUS • ARGCO*FLOATIK / 	P11 1 Kel) 
UK • 111 I /*KUNIO( I 	. 

2 G • WK. 11,11P1/51NHIUK/1*EXPIATIGEXPI*COSIARGC051 
_C 

INN • PURER( T)  
IF • G*t F 1EL Do* INN I 
F • F • G 

END 	 i 

	

— 	1 NWINCSI Z/ 0414/LUI 4, 21•X(201 

I • 1 
CO 5 K • I. NCARR S 

NFILILU4 I.K I.E1)•11 GU TU 
X1 I) • PERIUUIK) 
I • I *1 

1 'WOULD( K )•EQ• GU TU 

	

_ 	_ XIII • PUWERIK / 
I • I • 1 

. _ ,2 ItINNOLUI3tiffotUo1/ GU TU 
KIII 
I • I • 1 

3 IFINHULUI4OLI•C461) W IU 4 
XI 1 / • 0111111LI 

-0- 1 
.4 CUNI 1NUt 

XII/ • MilsK/ 
1 • I •_ 1 . 	_ 
Xi I) • Pllt IOL) 
I • I 6  1 
1FINFIRMCSIKI.E0•11 GU TO 5 

1) • 14121K I 	_ 
• 1 • I 

X111_ • P511 2.1() 
- 	I • I + 
_ _ 1FINHRMCSI X 1.t1).21 GU TU 5 _ 

X(1) • 4413.K I 

I I • P5113,111 
• 1 * 1 

	

_ 	CUNT 1NUE 
C 	 

RETURN 
• -- 
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