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2. 

ABSTRACT 

Extremum seeking controllers have been widely studied 

in recent years, but mainly with regard to systems having . 

stationary optima, and when moving extrema have been 

considered the investigations have frequently been purely 

theoretical. The present study investigates both experi-

mentally and theoretically the possibility of improving the 

simple on-line optimizer which uses a sinusoidal pertur-

bation signal to deal more adequately with a system which 

is being disturbed. The system used was a small experimental 

water gas shift reacter and the disturbances ranged from 

random to second order integrated. 

The method was based on Box and Jenkins' technique 

which combines a stochastic model of the disturbances and 

a dynamic model of the system to formulate a predictor 

controller. Difficulties encountered in applying this method 

to optimization arise mainly from non-linearities in the 

dynamics which are introduced by the optimizer, and to a 

lesser extent by the non-quadratic nature of the objective 

function. 

Two parameters, the amplitude and the frequency of the 

perturbation signal, were studied by means of a two by two 

factorial design, while the other parameters were maintained 

at best values found by Price and Kisiel. Because of 

difficulties in operating the experimental apparatus the 
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practical results were not entirely satisfactory, although 

they did show the necessity of operating with the lower 

frequency perturbation signals. 

The simulation studies confirmed that better following 

was obtained with a slower perturbation signal, and in 

addition they showed that the ability of the predictor 

optimizer improved considerably over that of the simple 

optimizer as the frequency of the disturbances decreased. 
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LIST OF SYMBOLS 

Because of the large number of symbols required, it 

has been impossible to ensure that every symbol has only one 

meaning; however on all occasions the symbols are defined in 

the context in which they are used, so difficulties should 

not arise. However, in order to reduce still further the 

possibility of confusion arising, the symbols are listed 

separately for each chapter. 

Chapter 2 

A 	vector of random elements entering stochastic 
process 

A
c 	amplitude of correlating signal 

As 	amplitude of perturbation signal 

a 	vector defining amplitude of perturbation 
sinusoid 

a 	parameter defining parabola 

a 	random element entering stochastic process 
at instant p 

B 	backward shift operator 

b 	vector defining step change entering system 

b 	coefficient of cubic term in non-quadratic 
objective function 

C1, C2 	parameters in objective function 

nth . c. 	element of autocovariance matrix 

ep 	deviation from set point at instant p 

prediction of e 

g, 91, 92 	steady-state gains of system 
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k, kl, k2 	parameters defining first order transfer 
function 

L
4) 	

function describing autoregressive process 

L function describing moving average process 
IP 

m 	element of output at instant p due to 
P 	measurement noise 

n  
element of output at instant p due to 
combined noise 

Px 	
probability of operating between x _ dx  
and x f dx 	

2 

2 
nth . 

✓. 	 element of autocorrelation matrix 

S summing operator 

S o, St 	values of objective function 

S S 	statistics of auto- and partial xo, 	 auto- 
correlations 

T 	sampling interval or operating temperature 

transient used to define weighting 
coefficients 

X 	matrix of present and passed sampled values 
of stochastic process 

x 	defining initial mean operating position 

x 	vector defining position of optimum 

xt 	
output from dynamic system at instant t 

x* 	controlable variable input to dynamic system 

current value of profit function 

maximum value of profit function 

Yt 	
intermediate value in dynamic system 

Z 	column vector of elements of the stochastic 
series 

zp 	value of stochastic series at instant p 

A
p  
	prediction of n

p 



a 
p 

f3 

• YO, Y1 
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error at instant p through modelling mixed 
process with a pure AR series 

parameter defining parabola 

parameters of simple stochastic model 

A 	difference operator 

E
P 	

random term at instant p 

n output at instant p due to disturbances 
P 	 entering system 

..th e. 	7. 	coefficient of polynomial modelling 
dynamics 

A 	dead time of system 

u mean of Gaussian distributed disturbances 

attenuation due to high pass filter for 
angular velocity w  

attenuation due to plant dynamics for 
angular velocity w  

a 2 	variance of Gaussian distributed disturbances 

• a 2 	 variance of auto- and partial autocorrelations 

a
LOF 	phase shift due to high pass filter for 

angular velocity w 

awp 	 phase shift due to plant dynamics for 
angular velocity w  

time constant 

vector of parameters defining autoregressive 
process 

42 	ith coefficient of autoregressive process 

nth partial autocorrelation 

s.th 4)-1, 	
coefficient of moving average process 

.th w. 	weighting term 

u wF  

Pop 
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Chapter 3  

orifice reading 

y 
	total flow rate 

Chapter 4  

A 	parameter in kinetic constant 

A
K 	

parameter in equilibrium constant 

a 	cross-sectional area of reactor 

ak 	parameter in kinetic constant 

b0 
	j

th parameter being fitted 

D 	delaying operator 

EK 	energy term in equilibrium constant 

Ek 	activation energy 

Fa,( ) 	F statistic at a' level 

AH enthalpy 

h 	Plank's constant 

h 	integration step length 

h(t) 	impulse response function at time t 

K 	Boltzmann's constant 

K
e 	equilibrium constant of the reaction 

k 	kinetic constant 

k 	number of parameters in model 

n 	total number of data points 

Universal gas constant 

r 	moles of carbon monoxide produced per unit 
time and unit of volume of reactor 



As 	entropy 
18. 

standard error of the estimate of the 
minimum sum of squares 

nth diagonal element of the variance-
covariance matrix 

absolute temperature 

time constant of high pass filter 

time constants of infra-red analyser 

time constant on temperature side of reactor 

two tailed (1 - a') point of Student's 
t-distribution 

So 

,2 
C.. 

T 

THP 

T
IR1 

T
IR2 

T
TR 

t1-a' (n-k) 

u 	velocity of gases in reactor 

length along reactor 

xo 	total length of catalyst packed bed 

xt 	input to system 

Yn 	value of integral at nth stage 

Yt 	output from system 

signals to and from linear sequential filter Zin' Zout 

z -14-- (IRA reading) 
dt 

e(D) 	characteristic polynomial of linear 
sequential filter 

time 

time 

critical 

optimal 

4)xx (T  

sum of squared errors at the edge of the 
confidence region 

sum of squared errors at the point of 
optimal fit 

autocorrelation at delay T 
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(1)xy(r) 	cross-correlation at delay T 

(A) 	concentration of component A 

0 	modulo two adder 

Chapter 5 

a 	random element of stochastic disturbance 
at instant p 

N 	number of points used 

unbiased standard deviation 

8A 	unbiased standard deviation of difference 

mean difference in results between 
Controllers I and II 

sp 	pth sample of stochastic disturbance 
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CHAPTER 1  

INTRODUCTION AND LITERATURE SURVEY 

1.1. Introduction  

With the advent of cheap and reliable computing 

facilities, the chemical industry is beginning to view on-

line optimization of processes in a more favourable light. 

The need for such facilities frequently arises in situations 

where the optimum is moving, since otherwise off-line, 

steady-state optimization would be sufficient. However, 

before final decisions can be made regarding the economic 

feasibility of installing a form of direct computer optimizing 

control on a plant, an estimate of the expected increase in 

overall profits is essential. Such information can only be 

obtained with the use of realistic objective functions, which 

could depend on more than one variable. Should preliminary 

studies show that installation of on-line optimization is 

indeed economically sound, it is then necessary to decide 

upon the type of system to be used. Sometimes, an accurate 

dynamic model of the process being investigated is available, 

and, as a result, it may be possible to employ sophisticated 

techniques such as optimal control or dynamic programming. 

Frequently, however, it is found that knowledge of the system 

is limited, and so reliance is placed on more empirical 

methods. One such class, generally known as "extremism seeking", 

has received considerable attention recently. 
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Several methods have been developed for use in extremum 

seeking control, perhaps the most primitive being that of a 

straight-forward search on each parameter in tuln. In this, 

a slow ramp function or a series of steps is initiated in the 

chosen parameter, and maintained until the oijtirrajm  has just been 

passed; at this stage the process is reversed or another 

variable is examined. To improve the performance of this 

optimizer in the region of the optimum, limits, based on the 

last best value of the objective function, are specified, 

below (or, in the case of a minimum, above) which the output 

must go before a change of direction occurs. This is to 

prevent a change of direction due to some noisy disturbance 

in the system. The main limitations of this first method are 

that the movement towards the optimum should be slow enough for 

the resulting system output to be unaffected by its dynamics, 

and that optimization may only be carried out with respect to 

one variable at a time. Successful attempts have been made to 

deal with both these problems by obtaining an estimate of the 

gradient at the current operating point, and then taking a step 

towards the optimum proportional to the gradient; the same 

procedure is then repeated. Although time has to be allowed 

for settling, both when testing for the gradient and when moving 

towards the optimum, it is nevertheless faster than the straight 

forward search technique. In the multivariate case, the partial 

derivatives with respect to each parameter are found; they are 

then used to calculate the total gradient which may in turn 
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be acted upon in two possible ways. In the first, known as 

the "steepest ascent" (descent) method, movement is initiated 

along the gradient until the optimal point in this direction 

is reached, whereupon the gradient is recalculated and the 

procedure repeated. The other, referred to as the "gradient" 

method, allows a step of a given size to be made along the 

gradient, before repeating the procedure. The latter tech-

nique is extremely successful a long way from the optimum, 

but whenever hunting in the optimum's vicinity is taking 

place, it is best to use the former. An improvement on the 

gradient method is to make the stepwise movement in the direc-

tion of the optimum proportional to the magnitude of the 

gradient. 

The above methods do however still suffer from the 

disadvantage of being slow in their movement towards the 

optimum. This may be partially attributed to the way the 

gradients are measured; it is necessary both to measure the 

partial derivatives separately and also to have the system 

free from transients during their measurement. The simplest 

method so far used to measure gradients involves disturbing the 

paramx of interest a small distance to each side of its 

normal operating point; measurement of the steady-state out-

put at these two levels then yields sufficient information for 

the gradient to be calculated. Another method which has been 

used is to superimpose a perturbing signal, such as a square-

wave or a sinusoid on the parameter control signal; after 
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multiplying the original perturbing signal with the A.C. part 

of the output from the system, a signal is obtained which 

indicates the direction of the optimum. Moreover, integ-

ration of this same signal over a complete perturbing cycle 

gives a value proportional to the gradient. A great advantage 

of such a system is that, if perturbing signals of sufficiently 

differing frequencies are used, it is possible to measure 

partial derivatives of serveral parameters with a minimum of 

aliasing. When the latter method was first introduced, care 

still had to be taken to ensure that the transients caused by 

intiating the perturbing signal were allowed to die before 

starting optimization, and the frequency of perturbation had 

to be low enough for the phase shift, caused by the system 

dynamics, to be insignificant. Although the former limitation 

still holds, the frequency of perturbation, and therefore the 

rate at which information about the gradient is obtained, can 

be increases by introducing a compensating phase shift into the 

correlating signal by-passing the system. 

Apart from initially stating that extremum seeking 

controllers were useful for climbing optima which move slowly, 

it has been implicitly assumed that the systems being dealt 

with were free from noise. Unfortunately, this is not usually 

the case, so for a more realistic approach the influence of 

noisy disturbances should be considered. The types of noise 

that might be encountered are classifiable in four categories 
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(1) very low frequency noise, which is best treated by 

steady-state optimization at regular intervals; 

(2) low frequency noise in the presence of which extremum 

seeking controllers do show an improvement; 

(3) higher frequency disturbances which can be measured 

at their entry points and therefore their effects 

corrected with some form of feedforward control system; 

(4) noise which is of such high frequency that because of 

the dynamics it would die out in its passage through 

the system, or would be generated within the system as 

measurement noise. 

The categories of greatest interest, when dealing with 

extremum seeking controllers, are the second and fourth. The 

latter, generally being encountered whenever the extremum 

seeking controllers are used, requires that care be taken in 

measurement of the gradients to ensure that reasonable values 

are obtained for these. Therefore, it is necessary to have 

a perturbation signal of a high enough amplitude to drown any 

effects of the noise; also, because of the attenuating effect 

of the dynamics, a limitation, dependent on the time constants 

of the system, should be placed on the maximum possible fre-

quency of perturbation. Originally, continuous gradient 

measuring and optimizing systems were used, but in the presence 

of measurement noise there is the possibility of movement 

taking place away from the optimum. If, instead, a sample 

data scheme from the optimizer to the system is used, it is 
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possible for the error to average itself out over the inter-

vening period, thus reducing the likelihood of movement taking 

place away from the optimum. 

The main point of interest in this study is concerned 

with the second category, which defines more specifically 

the circumstances in which extremum seeking controllers may be 

used to counteract the effects of noisy disturbances. Although 

the type and power of noise that can be dealt with, using 

different conventional controllers has been studied, little 

attention has been paid to the development of a new control 

philosophy for use in conjunction with the same basic optimizer. 

In this study, techniques developed for the modelling and pre-

diction of discrete time series have been used to formulate a 

type of feedback predictor controller. The advantages of the 

method, together with its shortcomings, have been enumerated, 

and in addition to carrying out tests to a limited extent on 

a water gas shift pilot plant, further work has been done on 

an IBM 7090 computer with the use of a digital simulation 

model of the system. 

1.2. Literature Survey 

1.2.1. Gradient measurement by means of sampling steps. 

(a) 	Stability in the presence of disturbances. 

Perhaps the earliest study of the effects of noise on 

an extremum seeking controller was carried out experimentally 

by Stakhorskii (S1). This was in fact part of a programme to 
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assess the capabilities of a two variable optimizer that had 

been built. A small sampling step made to either side of the 

operating point was used in measuring the partial derivative 

with respect to a given parameter, combination of this with 

the other partial derivatives then yielding the gradient of 

the surface. Initially, both parameters were perturbed by 

sinusoidal signals of a given amplitude, the ability of the 

controller to follow the optimum which moved in a horizontal 

plane was then studied. Stakhorskii found that if the ampli-

tudes of the disturbing signals were maintained, constant, 

but the frequencies increased, then there was a point, depen-

dent on the size of the gradient sampling step dx, at which 

the controller became completely disorganized, and that this 

critical frequency could be raised by increasing the size of 

dx. He also discovered that there was an optimal value for 

movement towards the extremum when operating with a given 

sampling size and noise frequency. This study was further 

extended by feeding in white noise of up to a few cycles per 

second; here again it was found that for a given dx there was 

a maximum velocity of movement, the direction of which was 

dependent upon the direction of the last dx. Finally a study 

of stability in the presence of interference showed that, when 

systems which are continuous in time are involved, the opti-

mizer coped quite successfully; however, when dealing with 

discrete systems, it needed to repeat and average the measure-

ment of the gradient several times. 
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(b) Expected losses due to disturbances 

Initial, if somewhat unrealistic theoretical analysis 

was made by Fel'dbaum (F1) when he put forward a method for 

calculating the expected losses incurred when a system is 

subject to slowly drifting input noise and fairly high fre-

quency output noise. Because he chose a system having a 

modular characteristic 

i.e. y = lx1 

and no dynamics, it was possible to specify that at any instant 

the probability of making a false step was a constant p. In 

assessing the magnitude of p, a value for the test step signal 

Sx first had to be chosen. This was done, bearing in mind two 

criteria 

(i) too high a value of do: would cause large 

hunting losses, 

(ii) too low a value would cause Sx to be drowned 

by the noise. 

Having obtained a value for p, Fel.dbaum specified that the 

system could only adopt certain discrete states, which were 

also states in a Markov process. From this, it was then 

possible to evaluate the expected losses incurred by the 

extremal controller when operating under noisy conditions. 

The above work was slightly extended by Tovstukha (T1), 

who introduced a parabolic objective function. However, in 

this case, only measurement noise was considered. Thus it was 

reasonable for her to show that, over long periods of time, it 
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was best for the sampling step to be very close to zero, as 

this virtually eliminates errors due to factors other than the 

disturbances. 

Fel•'dbaum (F2) improved his own method when he considered 

a multichannel system with a quadratic characteristic. The 

analysis was performed for a case in which there was low 

frequency noise entering through each input channel, as well 

as high frequency noise being added at the output. When 

operating under steady-state conditions, it was found thatthe 

expected error was dependent solely upon the variance of the 

measurement noise, and not, as would also have been expected, 

on its statistical distribution. 

Paulauskas (P1) continued work on a multi-dimensional 

system with high frequency noise at the inputs and outputs, as 

well as drifts occurring in the input channels. He was able 

to show that the error got larger with either increasing 

variance of input and output noise or increasing drift. The 

minimum error was found for constant noise parameters and 

increasing number of channels and vice-versa. Further mini-

mization of this error was carried out by varying the operating 

and test steps. Finally, Paulauskas found that in the case 

of a system with a small number of channels and little drift, 

the output measurement noise had the greater influence on the 

magnitude of the error; however, this influence reverted to 

the input noise after the system had grown beyond a certain 

number of channels. 



29. 

Use was again made of the Markov process technique by 

Perel'man (P2), to obtain the statistical characteristic of 

simple extremal control systems under steady-state condition, 

in the presence of measurement noise and horizontal drift. 

After deciding that the overall operating error was a more 

important criterion of performance than speed of response, 

he developed a grapho-analytical method for calculating its 

expected value. Gorelick (G1) also developed a method for 

calculating the mathematical expectation of the deviations 

from the optimum for a system being disturbed by stationary 

random noise at its input and output, and by a slow drift at 

its input. Although he only developed the method for appli-

cation to a one channel system, it does have the advantage of 

being applicable to any case in which autocorrelation function 

of the input noise is known. 

(c) Effect of controller's structure 

So far reference has only been made to methods developed 

for assessing the performance of step-testing extremal control-

lers, with no mention of how the structure of the controller 

could be changed to improve this. Perel'man (P3) suggested 

using an extrapolating method of control, in which the shape 

of the system's characteristic would have to be known, and 

therefore the parameters describing this would have to be free 

from change. However, he did define the areas of input and 

measurement noise in which the method was applicable and found 
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that in them the system yielded a faster search and greater 

accuracy. Kutuzov and Tarasenko (K1) also made a contribution 

towards examining ways in which the controller structure could 

be changed. They stated that if measurement noise was the 

main disturbance, then it was better to average the estimates 

of the gradient over several time cycles, before carrying out 

a control step. However, if the hill itself were moving, then 

it would be better to reduce the number of storage states 

before taking control action. Similarly, if the operating 

point was at a large distance from the optimum, it would be 

better to use a longer control step, than if it were only a 

short distance away. Thus they proposed three alternative 

control structures: 

(i) fixed operating step and variable number of 

storage units, 

(ii) variable operating step and fixed number of 

storage units, 

(iii) variable operating step and variable number 

of storage units. 

The changes to the controllers being made on either the basis 

of trials being performed before each operating step or on the 

outcome of the analysis of results of several preceding steps. 

They analysed, for two different criteria, the relative per-

formance of all three systems when started from the same point 

and subject to disturbances having the same signal-to-noise 

ratio. The performance criteria specified were namely: mean 
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scanning time and steady-state error, the latter reducing to 

the determination of the steady-state probabilities. 

Van Nice (V1) was probably one of the first occidentals 

to make a contribution towards the study of extremal control-

lers under the influence of disturbances other than the 

measurement noise. Be considered a one-variable plant having 

a quadratic hill and no constraint on the controlled variable. 

The system was subject firstly to rapid drifts at the input 

which varied in a step-wise manner at random intervals and 

with random amplitude, and secondly to high frequency measure-

ment noise at the output. Again the method of step-wise 

sensing was used to find the gradient, and with knowledge of 

the parameter describing the parabola, it was possible to move 

directly to the optimum by means of an extrapolating method. 

After each controlled movement, time was allowed for transients 

to die out, hence the system was effectively simplified to 

one free from dynamics. Based on the premise that Van Nice 

could evaluate the probability of there being no change due 

to the bias in a given sampling interval, he was able, using 

the method of 'z' transforms,. to calculate the expected 

losses with and without adaptive control. Thus, for given 

system parameters, it was possible to specify bias-to-noise 

ratios beyond which adaptive control could show no improve-

ment. Besides measuring the gradient by taking a sample step 

to either side of the operating point and thus necessitating 

two time intervals between making control changes, Van Nice 
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also tried what he called the "alternate biasing" method, in 

which the sample step was taken in one direction, the gradient 

calculated and control action carried out, then the operation 

was repeated with the sample step being made in the opposite 

direction. This increased the rate of control, thus allowing 

faster drifts to be followed; unfortunately, it also meant 

that there was a greater likelihood of incorrect control 

action taking place in the presence of the same measurement 

noise. 

1.2.2. Gradient measurement lox means of perturbing signals. 
(a) Benefit of sampling control. 

So far, a description has been made of the work carried 

out in studying systems which use a test step to measure the 

gradient, with no reference to other more continuous types 

of adaptive controllers. Draper and Li (01) first put for-

ward the idea of using a continuous perturbation signal as a 

means of measuring the gradient. In their system the process 

was excited with a slowly moving sinusoid, as a result of 

which, since the system would be considered linear over the 

region of perturbation, a sinusoidal signal, attenuated by the 

slope of the objective function, was obtained at the output. 

After removing the D.C. level from the output signal by 

passing it through a high pass filter, it was correlated with 

the input sinusoid, by multiplying the two and integrating 

the result over a complete cycle. They studied the effects 
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of measurement noise and disturbances arising from the 

control action itself in a very empirical manner, and came 

to the conclusion that it was better to take control action 

at fixed intervals in a perturbation cycle rather than con-

tinuously throughout. This finding has since been confirmed 

by several other workers (D2, H1) and is explained by the 

fact that if more time is allowed for measurement, then the 

effects of the noise are able to average themselves out to 

zero and the previous control action can settle down. 

1b), InfluenCe_of measurement noise 

Recently Aris et al (S4) described some simulations 

that had been performed to investigate adaptive optimization 

systems of the type suggested by Draper and Li. The study was 

carried out on a reaction system of two stirred tanks in 

series in which an exothermic reaction was taking place. It 

was desired to adjust the temperatures of the reactors so that 

the total conversion would be maximised. In order to do this, 

the controllable variables were specified to be the input 

temperature of the reactants and the flow rate through the 

cooling coil placed in each reactor. The search for the 

maximum was carried out by perturbing the flow rate into each 

cooling coil by approximately 60% of its mean operating value, 

these perturbations being injected slowly enough for the 

dynamics of the system to have no influence on the results. 

A separate performance integral for each reactor, dependent 
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upon the gradient, was evaluated at the end of each cycle and 

after considering how they compared with their values at the 

end of the previous probing cycle, control action was taken, 

either on the reactants inlet temperature in the case of the 

first tank or on the coolant flow rate in the case of the 

second. The problem of starting the hill-climbing was over-

come by taking a standard step in the direction indicated for 

the first cycle, and excessive control action was curtailed 

by placing an upper limit on the change that could take place 

in one cycle. Finally, the optimizer was operated so that 

after each change, transients were allowed to die out before 

further action took place. 

Besides carrying out simulation runs in the absence of 

noise to test the ability of the extremum controller to seek 

out the optimum, Aris et al fed random noise signals of mean 

zero and variance 62  on to their performance integrals. They 

found the optimizer dealt adequately with errors of variance 

0.4, where the amplitude variation of the performance integral 

(PI) at the start of the hill-climb was 0.38, hence the errors 

covered a range twice the size of this. The performance of 

the system was also studied at higher noise levels and with 

different control policies such as taking two adjacent values 

of PI or doubling the number of sample points examined per cycle. 

Another more radical change was to place confidence limits 

around the performance integral and only to update when depar-

ture was made from this region. 
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In two further papers (S5, S6) Aris et al extended their 

simulation studies to cover truly two variable optimization 

systems in which they considered simultaneous and alternate 

questing together with the problems of aliasing which arise 

in the first case, and also to cover more realistic economic 

systems. Again disturbances were introduced on to the per-

formance integral to consider the possible effects of measure-

ment noise. The main shortcomings of their work is that the 

systems are only perturbed slowly to eliminate the effects of 

the dynamics and for the same reason time is allowed between 

each cycle used in calculating the performance integral. 

Finally, the disturbances fed in were not of a type to make the 

optimum move about directly. 

.(c) Experimental study of the effect of disturbances  

A certain amount of theoretical work has appeared in 

the Russian literature dealing with perturbed extremum seeking 

systems. Again, because of the extreme mathematical diffi-

culties involved in analysing such systems most of the publi-

cations have dealt with systems having either quadratic or 

modular inertialess characteristics with no associated time 

delays. 

Grishko (G2) described an experimental system in which 

a square wave was used as the perturbing signal. When the 

level changed in this, the objective function signal was 

switched from one integrator to another; thus by calculating 
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the difference between their outputs at the end of each cycle 

an estimate of the gradient was obtained. Comparison was made 

of two forms of control which were tested both in the steady-

state and under the influence of outside disturbances; they 

were basically: the use of either a step or ramp function to 

move to the new indicated position of the optimum. The noise 

injected was a slow sequence of triangular waves, used to 

shift the position of the hill in a horizontal direction, and 

random disturbances at the output which simulated measurement 

noise. Under these conditions Grishko found that when using 

the ramp control function, the optimizer was more able to 

follow the extremum. 

Subsequently, this work was extended theoretically (G3). 

The equations of motion for the extremal system were derived 

taking into account any external disturbances entering this; 

knowledge was required, however, of the statistics describing 

this noise. As a result of these, it was now possible to 

derive an expression capable of calculating the expected 

steady-state loss, which was found to depend not so much on 

the amplitude of the disturbances as on their rate of change. 

(d) Theoretical study of the effect of disturbances 

The solution to a more realistic problem was tried by 

Pervozvanskii (P4) who considered an inertialess characteristic 

embedded between two generalized linear transfer functions, 

and wished to account for two types of change: slow drifts and 
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high frequency disturbances. The former was treated as a 

useful signal, while the latter was mere interference which 

had to be filtered out. However, it was assumed that between 

the band spread of these there would be a free band width 

which could be used for the testing signal. The question was: 

how far should the square wave or sinusoidal signal be limited 

to this free band width? The testing signal and therefore the 

control action were taken to pass through the whole plant, 

whereas the noise only entered at two points: immediately 

before and after the inertialess characteristic. Using a 

Taylor series expansion, Pervozvanskii derived an implicit 

expression for the steady-state deviation of the system from 

its optimum. This expression was found to be difficult to 

solve, but after making the assumption that only low frequency 

noise entered before the characteristic, and high frequency 

after, it was possible to approximate terms in the expression 

which resulted in what was termed statistical linearization of 

this. Thus, in the end, he was able to define the variance 

of error if given the spectral density of the disturbances 

entering the system. 

More recently Roberts (R1) published some work in which 

he considered a fairly generalized system, very similar to 

Pervozvanskii's. Again there was noise being fed in 

immediately before and after the characteristic, which in this 

case was quadratic. However, measurement noise was also 

entering at the system output. In each instance, the 
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disturbances were taken to be white noise of specified power 

spectral density, operated on by a general linear transfer 

function, although for noise entering before the characteristic 

this function was specified. Thus Roberts was faced with a 

rather complicated system containing four general and one 

specific transfer function. Before proceeding further he 

found it necessary to reduce the system to one having a 

general transfer function which came after the characteristic. 

In order to accomplish this simplication, however, he had to 

ensure that certain limitations were placed on the transfer 

function E(p) situated in front of the inertialess module; 

namely that (1/p) E(p)-1  was realisable. Subsequently, with 

the help of an approximation, he replaces the problem dealing 

with a quadratic non-linearity having a randomly moving apex, 

to one involving a randomly fluctuating linear element: as a 

result of this, it became essentially a problem of "non-

stationary" linear filtering. With knowledge of the system's 

transition matrix, and using the method put forward by Kalman 

and Bucy (K2), it was possible to express the mean and co-

variance matrix for the "a posteriori" probability distri-

bution of the state variables. There still remained at this 

stage the problem of solving for the estimates of the state 

variables of interest, which was difficult because of the 

interdependence of theequdtions and in some cases the time 

dependency of the system matrix; nevertheless, Roberts 

specifies and illustrates with examples, situations where 
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this is reasonably easy to do. Criteria indicating when, and 

in that case how much improvement is to be expected from intro-

ducing a perturbation signal into a system are also given. 

The main disadvantages of the method are firstly that it is 

only relevant to systems having quadratic characteristics, 

although correction can be made in certain other cases, and 

secondly the need for a limitation on the transfer function 

coming before the hill. 

1.2.3. Stochastic prediction techniques. 

(a) Predictor-control systems 

So far, most of the literature has covered studies of 

how given plant and extremum seeking regulators operate 

together, and therefore has dealt with finding expected losses 

in the presence of noise. Although indications have been 

given regarding the design of conventional adaptive optimizers 

as put forward by Draper and Li, no suggestions have been seen 

concerning a logical approach to the derivation and design of 

regulator structures to deal with given types of system drift. 

As a logical sequel to their work on the design of feedback 

predictor controllers, Box and Jenkins (B2) put forward such 

a method at a meeting of the Royal Statistical Society. 

In the control problem, the object is to maintain a 

given parameter at, or close to a specified set point, the 

deviations from this, known as errors, are then used to decide 

the control action. In the event of there being disturbances 

enterin'tho system that affect the errors it may be found 
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necessary to redesign the controller. Box and Jenkins have 

shown how this can be done with a knowledge of the past history 

of the errors and control actions, together with a model of 

the system's dynamics. Firstly, a correction is made to the 

time series of the errors for the effects of the control 

action's past history, then analysis is carried out on the 

adjusted sequence to fit a stochastic model. This model 

defines how the adjusted sequence is obtained from a white 

noise source and hence can be used as a predictor of future 

values of the error, the discrepancies of prediction turning 

out to be the unpredictable output of the random generator. 

By using their stochastic predictor and compensating for 

the system's dynamics, Box and Jenkins were able to show 

that the effects of the disturbances could be reduced to a 

random series of errors between the operating and set points; 

they also show that this is equivalent to minimizing the mean 

squared error deviation. 

(b) Predictor-optimizing systems 

When dealing with an extremum seeking system, the 

objective may be to maintain the operating point as close as 

possible to the optimum; in this instance, therefore, the 

error is the distance between these two points. Again, 

account was taken of the system's dynamics in formulating a. 

stochastic predictor for the error, which in turn can be 

shown to be equivalent to predicting the movement of the 
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extremum. In a similar manner to the control problem, the 

stochastic and dynamic model of the system was then used to 

reformulate the extremum seeking regulator, the action of 

which was to reduce the deviations from the optimum to a 

random series. In their original publication, Box and 

Jenkins required that the dynamics of the system be known 

with reasonable accuracy; this is something that is not always 

available, nor is it necessarily possible to ascertain indep-

endently. However, they did suggest a method whereby para-

meters could be fitted to a combined dynamic stochastic model 

of known structure (B3), but because of the increased dimen-

sionality of the problem, this fitting is difficult and hence 

only fairly simple models can be developed. Nevertheless, 

they put forward the view, based on their experience, that a 

simplified model of each was generally sufficient to describe 

most systems. 

(c) Practical application ofyredictoroptitnization 

For some years now, twin projects studying the practical 

application of sinusoidal adaptive optimization techniques have 

been going on at the University of Wisconsin, USA (Al, A2, B4, 

D3) where a pilot scale natural gas conversion system has been 

used, and at Imperial College, London (K3, K4, P5, P6) on a 

pilot scale water gas shift pilot plant. Kotnour (B4) was 

the first to try the practical application of the Box and 

Jenkins method to this type of system; the fundamental 
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difference being that in Box and Jenkins' work an estimate 

of the deviation from the optimum set point was used, whereas 

Kotnour only had an estimate of the gradient; nevertheless, 

when dealing with plants having quadratic response surfaces, 

it may be shown that the two are proportional. Kotnour 

disturbed his system with two types of noise, both of which 

were non-stationary in nature, and in each case studied the 

effect of the frequency of sampling. In order to show the 

benefit of using predictor control, each block was made up 

of five runs, one of which was considered to be optimal, three 

sub-optimal, and the last merely the sampled estimate of 

gradient fed back to the process input. Kotnour found, how-

ever, that in two out of four of the cases studied, when using 

optimal controller settings, worse performance was obtained 

than with some of the sub-optimal settings. The possibility 

of this being due to a poorly defined performance criterion 

or experimental error was discounted, and therefore the only 

conclusion that could be drawn was that the estimates were in 

fact non-optimal. It was suggested that this non-optimality 

was probably due to the non-quadratic nature of the response 

curve. Thus the main failing of the Box and Jenkins method 

was shown up, since it is only fully applicable to systems 

having linear dynamics and a quadratic objective function. 

1.2.4. Conclusions 

In the preceding passages, a survey has been given of 
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the literature dealing with the influence of noise on adaptive 

optimizers. Although mention has been made of the work done 

in studying the effects of high frequency measurement noise, 

greater emphasis has been placed on investigations concerning 

noise which would cause the extremum of a system to move. 

Techniques used to analyse somewhat idealised systems have 

been reported, and in conclusion a method of designing an 

extremum seeking regulator for minimizing the effects of noise 

has been described, together with the account of a case where 

it has been applied experimentally. 
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CHAPTER 2  

Theoretical Background 

2.1. Introduction 

A short description of the method of optimization used 

in this project is followed by a brief outline of the techniques 

of modelling stochastic processes in the time domain. Methods 

are indicated for expressing the dynamic models of systems in a 

form compatible with the derived stochastic model of the dis-

turbances and it is shown how these should be combined to form 

an efficient predictor regulator. For cases where the dynamics 

of the system are unknown, a way of formulating and fitting a 

simplified stochastic-dynamic model is reported. The limi-

tations of transforming the methods available to ones useful for 

developing adaptive-predictor optimizers are outlined and illus-

trated with a computer simulation study. Finally, as the theory 

stands, it is shown to be applicable mainly to systems having 

symmetrical parabolic objective functions; however, a method is 

put forward for improving the performance of non-quadratic 

systems. 

2.2. Basic Optimization Method 

The objective function used in optimizing the system with 

respect to temperature depends solely on the percentage of carbon 

monoxide in the dry output gases, and is given by: 

So = C1  - C2  (C01) 	 (2.2.1) 



45. 

where 

S = value of objective function 

C1,C2 = cost parameters 

Perturbation of the mean reactor temperature with a sinusoidal 

signal results in a time dependent variation in the value of 

the objective function which can be approximated by the first 

two terms of the Taylor series expansion, namely 

S
t 

= So - A 	
d(CO%) sin(wt - a ) 	 (2.2.2) 

s wp 	wP dT 

where 

A
s 
= amplitude of perturbing signal 

wp = attenuation due to plant dynamics for angular 

velocity w 

a
wp 

= phase shift due to plant dynamics for angular 

velocity w 

In the vicinity of the optimum, however, it is found necessary 

to use further terms of the Taylor series which naturally 

introduces higher frequency harmonics. Fortunately these are 

Later eliminated in the correlating process. 

Before proceeding with the correlation, in order to 

minimize the magnitude of the signal being dealt with, the D.C. 

portion of the objective function output is removed by passing 

it through a high pass filter. 

d(C0%)  HP filter output = - A
swpwP

sin(wt-a 
wp 
-a

wr 
) 

dT 

where 
PwF = attenuation due to high pass filter for 

angular velocity w 

(2.2.3) 
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a 	= phase shift due to plant dynamics for 

angular velocity w 

Integrating the product of the filter output and sin(wt-a
wp-0wF) 

over a complete cycle yields: 

correlator output = -AAp p, m d(CO)  
wP wIr w dT 

where 	A
c 
= amplitude of correlating signal. 

(2.2.4) 

Should the phases shift of the correlating signal be wrong 

by an angle 8 (2.2.4) becomes 

d(C0%)  = As 	p Icose 
s c wp wF w 	dT 

(2.2,4a) 

Once parameters have been set for the perturbing and correlating 

signals (2.2.4) shows that the correlation output depends 

entirely on the derivative of the objective function. 

Further discussion of the one and two variable adaptive 

optimization techniques is given by Price (P6). 

2.3. Modelling Time Series 

The methods available for modelling time series fall into 

two general categories, namely analysis based on either the 

frequency or the time domain. Although the results obtained 

in one domain are interchangeable with the other, each gives a 

different insight into the stochastic process being studied. 

However, because in this work action is only taken at discrete 

intervals of time, only methods belonging to the second cate-

gory are described; furthermore, the analysis of processes in 
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which there are hidden periodicities, such as arise in seasonal 

time series, is not considered. 

2.3.1. Time domain approach  

A stationary time series may be described by an auto-

regressive process of the type: 

zP 
= y (pi  .p_i 	a 

i=1 
(2.3.1) 

in which cp's are weighting terms for the process and a's are 

random variables having mean zero and variance ac2z. On the 

other hand the given series may be described as a moving 

average process like 

= 	1p. a 	. + a 
i=1 

Using the backward shift operator B (2.3.1) becomes 
CO 

(2.3.2) 

- 	y 	(1)., Bi) L (z ) = a 	(2.3.3) 
Z=1 P 	P 

and (2.3.2) becomes: 

. = (1 + y tyi  Bi  )a = L (42 ) 	(2.3.4) 
P 	i=1 	P 	V P 

:6 L
(I) 
 = L

4/-1 
	 (2.3.5) 

Thus it has been shown that the two processes am• defined 

above are interchangeable. The apparent shortcoming of having 

to evaluate an infinite number of weighting functions does not 

generally arise, because most series 	met 	can be described 

by either a finite moving average (henceforth MA) process, a 

finite autoregressive (AR) process or a mixture of the two. 
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The above suggests that two stages must be undergone 

in modelling time series: firstly analysis has to be carried 

out to decide on a structure for the model, and secondly, 

parameters must be fitted to the chosen structure. A third 

stage also exists in which the fitted model is tested and 

improved if necessary. 

2.3.2. Analysis of moving average processes 

Consider the stationary series: 

z = I 	a 	. + a
P 	

(2.3.6) 

of which n terms are available. The.mean of the series, 

because of the stationarity assumptions, is zero and the 

autocovariance is given by: 

c 0 	,k 
C1 C o  (coy) = 	= 

C o  k - , 

  

C
o 

X 

1 	r1---- ri, 
'`' 

r1 	1  
N. 	t N. ... 

1 

rk  ____ __-'2:1 

  

(2.3.7) 

the second matrix, which is the dimensionless form, being 

called the autocorrelation matrix. Individual autocovariances 

are calculated by considering products of the type 

Average(z 
P
z 	= Average((a + tp la 

p-1 
....+ 

X (a
P-0 

• 	11,l ap-J-1 "°°+ qilap-j-1)) 	(2.38) 

which because there is no correlation in the a's reduces to 

P i=1 
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(2.3.9) 

As the lag j in the autocovariance increases it is seen that 

its magnitude will decrease and finally cut-off at the lag 

j > Z. Study of the autocorrelations therefore gives the order 

of the MA process that describes the series. Should the sto-

chastic process be AR in nature then inverting to an MA process 

produces an infinite series which clearly gives no cut-off 

point in the autocorrelations. 

Having decided on the order of the finite MA process 

required to model a series, the weighting terms are fitted by 

means of a non-linear hill-climbing technique. 

2,3.3. Analysis of autoregressive_processes 

In the process described by 

z=1(1)i2.  p—Z 4-cl  i=1 p 
(2.3.10) 

the autocorrelations are calculated from elements. of the form 

zp  zp_j  = Olzp_i  zp_j  ...+ 	p _a + ap  zp_i 	(2.3.11)  

Since the last term z. is measured before the random variable 
p-e 

a is produced, there can be no correlation between then, hence 

the last term in (2.3.11) goes to zero on averaging, and it 

follows that the autocorrelations are given by 

rj  = 	rj_i  0000+ (p i  rj_i 	(2.3.12) 

Should attempts be made to describe a time series by an AR 

process of order k, then the last weighting function cpk  is also 
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known as the kth partial autocorrelation k,k ' It is seen 

therefore that if a process of order k is modelled by one of 

order k + 1 then (pi.+1 
DK  ,4.1  will prove to be zero. Thus the 

K.  

order of an AR process is defined by evaluating successively 

the partial autocorrelations of the series and ascertaining 

the point where the cut-off occurs. On the other hand, if the 

process is MA then inversion to the AR scheme yields an infinite 

series which cannot give a cut-off in the partial autocor-

relations. A straightforward method of evaluating the partial 

autocorrelations is by making use of the linear relationship 

r 
k r k-1 	

..... 
rk-j 4)]. 

1 
i 

= i 
1 

1 
1 

x (2.3.13) 
I I 	I 

k-g-1 	__ 	rk-2j-1) Oj)  

Once the order of the AR process has been decided, the 

second stage of the modelling may be carried out by fitting the 

weighting terms 

        

in 

z
i  

 

n-1 	In-0 

....Z
o 

x 

 

a 
in 

a . 

(2.3.14) 

     

     

     

Rewriting this as 

= X0 + A 	 (2.3.15) 

The vector of weighting terms is obtained by means of a linear 

least squares fit. 

= 	xT x) -1  x z 
	 (2.3.16) 
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2.3.4. Mixed autoregressive, moving average processes 

Frequently it is found that neither the auto- or partial 

autocorrelations display any cutoff, in which case, assuming 

stationarity, the process may possibly be described by a mixture 

of the two. In this eventuality, Box and Jenkins (BI) propose 

using an iterative technique in which an MA process is fitted 

to the original data and an AR process to the residuals. 

2.3.5. Testing for cut-off 

Because of measurement and estimating errors it is 

frequently found difficult to see at what stage cut-off occurs 

in either the auto- or partial autocorrelation series, thus it 

is necessary to have a method available with which to test for 

these. Assuming a normal distribution of the errors it is 

possible to specify whether or not the estimated function lies 

within the 95% confidence region of the zero value. This is 

accomplished using the variance estimate of the given function 

and the statistics 

S , = ---A--- 	and 	Sr = r w ToT 	477 

Should either function be significantly non-zero the statistic 

S will prove to be greater than 1.96. 

The variance of the partial autocorrelation 
(1)kk is 

calculated on the assumption that the series of n terms is AR 

of order k 1, and is approximated (B1) by 

var( 6 /AR(k-1 0  1  	- al kk. 	n - k 	
(2.3.17) 



Whereas for the autocorrelations the variance is 

k-1 
var(rk) 	-1{1 + 2 y 	a 2  

i=1 
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(2.3.18) 

2.3.6. Constraints on coefficients 

Consider the autoregressive part of a mixed ARMA 

process 

z = 	2 	. + 
P i=1 P-1' 

ap  (2.3.19) 

using the backward shift operator this converts to 

(1 - X 	Bi) 
i=1 

zp  = a p  - (2.3.20) 

The roots of the polynomial (1 - y 	Bi) have to lie 
i=1 

outside the unit circle; should this not be the case it is 

found that on inversion to a MA scheme, greater weighting is 

given to values of the error a in the distant past, a fact 

which causes instability. 

In the case of the MA process, if the characteristic 

equation 

a = (1 + X 	Bt ) ap 	 p  
7=1 	7' 

(2.3.21) 

has roots which do not lie outside the unit circle, then on 

inversion it is found that the weightings increase with the age 

of the ass, which is again not reasonable and means that the 

series is not invertible. 



53. 

2.3.7. Non-stationary series 

In the previous section it was stated that should the 

characteristic polynomial of an AR process have a root lying 

within the unit circle, then the process would be unstable, 

i.e. non-stationary. This type of model gives a function which 

tends to rise or drop in an exponential manner and is therefore 

not of much use in describing most non-stationary series 

encountered. Generally, however, differencing of these series 

a number of times yields series which are Stationary mathe-

matically this can be shown to be equivalent to having a number 

of roots of the characteristic AR polynomial on the circum-

ference of the unit circle. Thus after obtaining, through 

differencing a series which is stationary, modelling of the 

same time series may be continued by the methods already 

outlined. 

2.3.8. Final checking of the model adequacy 

Having decided on a structure to represent the process 

and fitted coefficients to it, it is then necessary to check 

that the model obtained does indeed give an adequate repres-

entation of the series. This is accomplished by using the model 

as a one step ahead predictor, the autocorrelations of the 

residual errors are then calculated and examined for indications 

of non-randomness. Should it be found however that the residuals 

are not random, then further analysis on them will yield infor-

mation which can be used for improving the model of the original 

series. 
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2.4. Modelling of the System 

Here a brief description is given of the Box and Jenkins 

(B3) formulation of various elements necessary for describing 

a linear dynamic system. 

2.4.1. Transfer functions 

The output from a capacitive system can be represented 

as being dependent on the weighted sum of the past history of 

inputs. Thus 

xt  = g 	wi  X;_i 	 (2.4.1) 
i=1 

where g is the steady state gain of the system, and wi  one of 

the weighting coefficients which collectively make up the 

impulse response function of the system. In the special case 

of a first order transfer function, which has an exponentially 

falling impulse response, the system weighting terms are of 

the type given below. 

xt = g{v  xt-1 + V(1-0 tx* -2 .... + v(1-v)
i x

t-i-1 } 	(2.4.2) 

_T  /T 
where v = 1 - e 	,T being the sampling interval and T the 

time constant. Thus it follows that 

t+1 = g (v x;) + (1 - v) xt 
	(2.4.3) 

which after putting k = 1 v converts to 

(1 + kA) x*
t+1 = gxt 
	 (2.4.4) 

If a second order transfer function is to be described, it 
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could be built up from the first order units 

(1 + kiA)yt+1  = 
glx 
	

(2.4.5) 

(1 + k2 A)xt+2 = g2Jt+1 
	(2.4.6) 

On combining one obtains 

(1 + kiA) (1 + k2A)xt+2  = gf(x141,x1) 
	

(2.4.7) 

where g = gig2  and f(x.141 ,x1) is a function of the two 

previous sampled inputs to the system (Appendix 2.1). Equation 

(2.4.7) can be further generalized for considering oscillating 

systems which have complex time constants; however, limitations 

are placed on the development of the difference technique to 

higher order systems by the increasing complexity of the 

function on the right-hand side. 

 

(1 + 01 A + 02,6 2 )x
t+2 

= gf(x*
t+i lt x*) (2.4.8) 

2.4.2. Dead times 

  

    

The mathematical representation of a signal subject to 

a transport lag, or more generally to a dead time, is based 

on the assumption that the signal is continuous, and that its 

trajectory between adjacent sampling points can be described 

by a straight line. 

• 
. 	. 	y t  = (1 - X)x* + Ast_i 	(2.4.9) 

A being the dead time measured as a proportion of the sampling 

step. Should the dead time be larger than j but less than 

+ 1 sampling steps, then (2.4.9) is modified to 



56. 

y
t 
= (j 	1 - OX* 	j)03*  

t-j 	t-j1 
(2.4.10) 

2.4.3. Limitations 

Although the technique described for modelling linear 

transfer functions appears to be reasonably straightforward, 

it does suffer from the disadvantage that the right-hand side 

of (2.4.8) becomes more difficult to formulate as the order 

of the system increases. 

Secondly, when considering systems having discrete 

inputs, (2.4.10) could in no way be considered as giving a 

true picture of the delayed input signal; however this does 

describe adequately what is occurring to the output if used 

in conjunction with the system's transfer functions. 

2.5. Control Application 

The application to feedback predictor control of the 

techniques outlined in (2.3) and (2.4) is given here as a 

preliminary introduction to their use in the more complex 

situation of adaptive optimization. 

2.5.1. Deriving stochastic predictor 

The derivation of the equations necessary for designing 

a predictor controller is carried out for a general single 

controllable parameter system as illustrated in Figure (2.1). 

The process is acted upon by the control signal and the distur-

bances, thus the output signal is considered to be made up of 
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two components: X due to the former, and n due to the latter 

(the disturbances). There is also a further source of error 

m, because of the measurement instruments, which is taken to 

be random. The objective of the controller is to minimize 

the deviations of the output from a set point, hence knowledge 

of the resultant effects on the output due to the disturbances 

is helpful in obtaining the best possible controller design. 

Because the measurement errors have been assumed random they 

cannot have any correlation with the disturbances, so it is 

reasonable to consider the two jointly. 

n = np  + m 	 (2.5.1) 

It is now possible to specify the changes that take place in 

the measured deviations from the set point during the interval 

p to p + 1: 

e
p+1 	

e p  = np+1  + x19+1 
	 (2.5.2) 

Knowing the dynathics of the system and the history of control 

increments x*, the x's can be evaluated and therefore the 

series of n's isolated. 

np+1 = e291-1 - e p  - p+1 
	(2.5.3) 

The methods outlined in (2.3) can now be used for modelling the 

time series. 

Unfortunately the above algorithm for separating the 

disturbances depends on knowledge of the system's dynamics, 

a factor which is not always readily available. In such cases 

there are two alternatives: 
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(i) a dynamic model is assumed and used as above in generating 

a series of effects due to disturbances; this is analysed 

and the sum of squared random residuals generated. The 

dynamic model is now readjusted using a non-linear hill-

climber and the process repeated until the sum of the 

squared residuals is considered to be minimized; 

(ii) it is assumed that the dynamic and stochastic models have 

given structures which allow the residuals to be calcul-

ated directly. Once again however a hill-climbing 

programme is necessary to fit the parameters to the 

combined model which minimize the sum of squares of the 

errors. 

The advantage of the first method is that generally 

sufficient is known about the system for a reasonable initial 

dynamic model to be generated, and thus greater analysis of the 

stochastic process may be carried out. Box and Jenkins (B3) 

however proposed the latter method on the basis that in many 

instances very simplified structures are sufficient to describe 

both system and disturbance. It is this one which is used as 

the foundation of most work presented here. 

Assuming a first order transfer function the effects of 

the control action are given by: 

(1 + kA)xp+1 = gx* 	 (2.5.4) 

However, because there is also a dead time A this has to be 

modified to 



(1 + kA)Xp+1 = g((1 — A)x* + Ax* ) 
P-1  

1  
kx + g((1 — x* + Ax* 

xP+1  1+kfP 	
0 	p-1 

60. 
(2.5.5) 

(2.5.6) 

Taking the process to be of the type 

np+1 
= E

p+1 	(Y
-1

A+ yo + ilS)e 
	(2.5.7) 

where the e's are random terms and se = y  
P 	i= 0 P-1" 

Introducing the backward shift operator B converts (2.5.7) to 

(1 - B)n
P+1 

= 6
p+1 1-  (y_02+ yoA + (y1-1))eP 	

(2.5.8) 

Thus it is seen that the process is being modelled by an 

integrated MA process of order (1,3). 

Combining (2.5.3), (2.5.6) and (2.5.7) now yields 

ep+1 = ep+1 	e - xp+1 	(Y-1 A + Yo + Y1S)e6.5.9)  

The parameters A, g, k, %It YO r Y1 are now fitted to 

minimize the sum of squared c's. 

2.5.2. Using stochastic-dynamic model 

Assuming that no control action is being taken in the 

system, the one step ahead predictor of deviations from the 

set point is obtained from (2.5.2) 

p+1 = e p  + p+1 
	 (2.5.10) 

the error in the predictor being )0+1 (2.5.7). To minimize 

the deviations control action should be taken at the sampling 

time p so that 

ep  + 
fip+1 + x 	= 0 

P+1  
(2.5.11) 
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which means that the new deviation at the instant p + 1 will 

in fact be ep+1.  Therefore application of the combined optimal 

dynamic-stochastic model reduces the deviations of the system 

to a random sequence, a situation that cannot be improved 

upon. 

Developing (2.5.11), 

xp+1 = — e p — p+1 
	 (2.5.12) 

= ep  — (y_lA 	Yo 	Yis)cp 	 (2.5.13) 

which on combining with (2.5.6) gives 

g((1—A)x* + Ax*
p-1 

) 	(1 + kA)(y_lp + (1+y o ) 

(2.5.14) 

x* — 	
1  

P 	1 — A f
— Ax;—i+ 1 (ky_1 A2  +. {k(l+yo) + 

+ {ky1  + (1+y 0)} + yis)Epl 	(2.5.15) 

Should it be found necessary, further fitting can be carried 

out by the same method, after trying the new control scheme 

on the process. 

2.6. Application to Adaptive Optimization 

Under certain circumstances, because of the way the 

disturbances affect the system, the control and adaptive 

optimization problems can be considered similar. In the control 

case the output signal is required to be kept as close as possi-

ble to a set point, the sampled deviations from this being taken 

as the error terms; the method assumes, however, that the 

steady-state gain of the system is constant, i.e. there is a 
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proportional relationship between the input and output signals. 

Similarly, in the adaptive optimization problem treated here, 

the disturbances are considered to move the objective function 

in a horizontal plane without changing either its shape or 

the height of its peak. The estimates of the gradient bear a 

direct relationship with the distance of the current operating 

point from the optimal one and are therefore taken as the 

error terms; also, initially at least the steady-state gain 

is taken as constant. The latter point requires that the 

surface of the objective function should have a parabolic 

shape; this limitation is considered further in section (2.6.2) 

and a method is put forward for reducing errors arising from 

it. The most serious snag encountered in applying the theory 

described in (2.5), to questing optimization of the Draper and 

Li type, is the inability to represent the system dynamics 

successfully. 

2.6.1. Modelling dynamics 

Box and Jenkins (B3) showed how three models, namely 

the steady-state gain, impulse response and dead time were 

sufficient for modelling a linear dynamic system. Furthermore 

Kotnour (B4) states that the model obtained by this technique 

is suitable for describing the dynamics of the same system 

with an adaptive optimizer included, although he does state 

that difficulties are encountered when dealing with non-

parabolic objective functions. As it has already been stated, 
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this latter point is dealt with in (2.6.2), and from physical 

considerations it seems reasonable to assume that the dead 

time term is readily transferable between the two types of 

system, therefore they will not be considered further. How-

ever, it is not immediately apparent what the transient 

behaviour of the optimizing system would be to a given distur-

bance. For intance, if a step change took place in the middle 

of a perturbing cycle, it could unbalance the sinusoid quite 

seriously and cause a sharp change in the estimated gradient. 

Because the mathematics involved in carrying out analytically 

the equivalent of an impulse response analysis on a system of 

known modular composition was found to be very complex, it was 

decided to perform a simulation study instead. 

A flow diagram of the system chosen for the study is given 

in Figure (2.2). The process part is made up of a first order 

transfer function followed by a non-linear inertialess element 

representing a parabolic objective function. The optimizing 

section, seen at the end, consists of high pass filter, 

correlator and integrator. The process is then perturbed with 

a sinusoidal signal, the optimally delayed version of which is 

fed to the correlator. It is also assumed that the optimizer's 

integrator is sampled and reset once a cycle; this means that 

under steady-state conditions, the sampled value and the 

gradient of the objective function at the mean operating point 

differ only by a multiplying constant. Clearly for a given 

system, the value of this constant depends solely on the 
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amplitude and frequency of the perturbing signal. 

Analysis of the proposed system was carried out using 

Laplace transform techniques; this, however, introduced 

difficulties at points where non-linear operations had to be 

performed, namely in the objective function and correlator 

elements. To overcome this hurdle, it was necessary to invert 

the transforms, carry out the non-linear operation and refor-

mulate the Laplace transform. Having developed the analyt-

ical method for dealing with step functions (a detailed des-

cription of which is given in Appendix 2.2), a computer 

programme was written. 

Consider a step function entering a system in steady-

state; as a result of the dynamics a transient occurs before 

the new steady-state level is reached. If the system is also 

considered to be subject to a sinusoidal perturbation which 

estimates the slope, then at each steady-state condition the 

correlator will give a value proportional to the true slope, 

however between the steady-state conditions the transients 

will affect the value. The object of the simulation was to 

study the behaviour of this transient. 

In a system which is changing level, the transient is 

generally defined as a dimensionless quantity equal to the 

change that has taken place up to the time of measurement, 

divided by the difference between the two steady-state levels. 

By analogy, here the transient is taken to be the change in 
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slope measurements divided by the difference between the two 

steady-state values. Thus if the system were still at its 

first value, the ratio would be zero, and if at its second 

steady-state value it would be one. 

TABLE 2.1: Parameters describing system used in simulating 

transient of a step input. 

Parameter of parabola 

[ Distance of mean operating point from 
optimum 

Time constant of transfer function 

Periods of peturbing sinusoid 

= 

= 

= 

1 

4 

101 

300 

100 

= 10 

Time constants of H.P. filters = 300 

= 100 

10 

Amplitude of perturbing sinusoid 1 

Magnitude of step change 1 

Table 2.1 summarizes the system parameters used in the 

simulation. Figures (2.3) and (2.4) show the results 

obtained for a questing sinusoid of unit amplitude and a 

unit step change. The time along the abscissa defines the 
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age of the step change at the start of the sinusoid being 

examined, thus negative times refer to steps entering after 

the start of this particular sinusoidal cycle, and because 

this cycle is of only limited duration the curves end at the 

negative value which gives the magnitude of the sinusoid's 

period. A point on a graph at a given time t seconds is the 

transient value of the slope obtained from the interaction 

of the sinusoidal cycle used in the estimation of the slope 

and the step change taking place t seconds before the start 

of the cycle. The difference between (2.3) and (2.4) is 

that in the first case the araplitnde of the perturbing signal 

was 1 and in the second it was - 1. For the particular 

conditions set here, the magnitude of the steady-state slope 

at the initial operating point has a value of 4 when plotted 

on either (2.3) or (2.4). 

To understand better what is being illustrated by 

Figures (2.3) and (2.4), the components making up the trans-

ient for the sinusoid of period 300 seconds were plotted in 

Figure 2.5. It will be noted that, from Appendix 2.2, the 

response can be broken down into three components that 

depend on b2, bx and ba, 

where 	b = size of step change, 

a = amplitude of perturbing sinusoid, 

x = distance of mean operating point from 

the optimum. 
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It has already been stated that the transients are made 

dimensionless by dividing through by the final change, now 

it happens that this change depends solely on the "be 

component, thus it follows that this is the only component 

that does not return to zero and also in its dimensionless 

form it will always have the same sign. However, the "b2" 

component will change sign if either a or b change and 

similarly the "bx" component if either a or x change sign. 

Hence the conclusion reached is that a change in the sign 

of one variable must be accomponied by a change in the sign 

of the other two in order to obtain identical transients. 

In normal operation a will remain constant while b and 

x will be subject to change; these changes will control the 

relative magnitudes of the peaks of the "b2" and "bx" com-

ponents, and it will be noted that as b or x pass through 

zero so the relevant dependent component will flatten to zero 

before forming peaks on the other side of the abscissa. 

Therefore in modelling the transients due to the "b2" and "bx" 

components account must be made of the changes taking place in 

b and x. One possible method is to introduce a gain factor 

which varies depending on the value of the relevant para-

meter. Generally, the value of b will be known, but when 

using a predictor-optimizer as described in the first part of 

this section, values for x are only found indirectly from the 

estimates of the slope. 
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When describing the shape of the components, it would 

appear that the "ha" component could be modelled by the step 

response of a first order transfer function. In the case 

of the other two components the problem is more difficult, 

though for simplicity the impulse response of a second order 

transfer function would probably suffice, even though complete 

damping (as found in Figure 2.5) will not generally occur 

after the second peak. 

On the basis of the present analysis modelling of the 

transient would require the fitting of one parameter for the 

"ba" component, and for each of the other two: one parameter 

for the variable gain and two for the second order transfer 

function. This means that a total of seven parameters would 

have to be fitted, although further simplification could 

possibly be made, by ignoring the "b2"component,which would 

reduce the dimensionality to four. 

Thus to summarize: the errors encountered in obtaining 

the estimates of the gradient for a system subject to step 

changes, depend on the rate at which the changes are entering 

and the position at which the system is being operated. Also 

it is found that difficulties encountered in correcting for 

the errors are due to the large dimensionality of the model 

describing the dynamics and the need to know the mean operating 

point. 

Although this simulation does not offer an adequate 



dP
x 

= 	exp{- 	u)2/ 2a2}dx (2.6.2) 
Cr IF-if 
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method of modelling the transients encountered, it does show 

up the inadequacies of using the same dynamic equations for 

both the control and optimization problems. 

2.6.2. Asymmetric objective, functions 

Consider a quadratic symmetric objective function of 

the form: 

y = k 	a(x 	x)2 	(2.6.1) 

where: y = current profit 

E = maximum profit for parabolic objective function 

x = current operating point 

x = operating point for maximum profit on para- 

bolic objective function 

a = parameter of parabola. 

If the system is now assumed to be subject to random Gaussian 

distributed disturbances having mean p and variance a2, then 
x the probability of operag between the points x d

2 
— and 

and the resulting probability of the loss incurred through 

operating at that point is 

dP
loss 

= a(x 

Thus the total 

Eflospl = 

2 	 - u)2/ 

(x  

2021dx 

u)2/ 2a2}dx 

(2.6.3) 

(2.6.4) 

x) 	expt- 

ic*  

Cr r2- 

expected loss is 

a(x 	exp(_ 
a/ 
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Making the substitution 

z2 = (x 	/ 2a2 	(2.6.5) 

converts (2.6.4) to 

E{loss} = I .. _ {(p-x)2 + 2(11-x)airz  + 202z2) 	z2 
2 	 — e dz ., 

2 - 

Solving 

Moss} = a(p - x)2  + aa2 	(2.6.7) 

Thus the minimum expected loss for a parabolic surface is 

aa2, a result which confirms the findings of Fel'dbaum (F2). 

Introduction of a cubic asymmetry gives an objective 

which would look something like 

y = 	- a(x 	x)2  + b(x - x)3 	(2.6.8) 

which is sketched in Figure (2.6) using the parameters 

given in Table 2.2. 

TABLE 2.2: Parameters of asymmetric objective function 

E. x a b 

28.0 5.0 1.0 0.15 

00 
E{loss} 	I 62(x-x)2  - b(x-x)3) 1 	exp{- (x-u)2  / 2(72) dx 

(2.6.9) 
Substituting in (2.6.5) and integrating, 

E(loss) = a((u-x)2  + a2) - b((p-x)3  + 3(11-x)a2) 	(2.6.10) 
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2a (u 	x) 	3b((u 	x)2  + a2) 

d2E{lops} 
	 - 2a - 6b (1.1 	x) 
d(u-x)2  

dE{loss} 

d(u-x) 

From (2.6.11) the stationary values are shown to exist at 

2a as36b2a2  = x + 
6b 

Now it can be verified that the maximum point on the 

objective function is x. Hence it has been shown that on an 

asymmetrical surface the mean point of operation for minimum 

loss when disturbances are taking place does not coincide 

with the optimum point. 

Usually, however, an analytical description of the 

surface is not available, in which case an alternative pro-

cedure of finding the opt:L.7131 mean operating point is: 

(1) break the surface down into discrete sections, 

(2) choose a value for the mean operating point p, 

(3) calculate the probability p of being in a given section, 

and the loss I incurred through being there, 

(4) find the expected losses through operating at u by 

summing the product p1 over the whole surface, 

(5) repeat from (2) until the minimum value for the expected 

losses has been found. 

Finally, in order to use this method in conjunction 

(2.6.13) 
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with a predictor optimizer, the estimates of gradient 

obtained by the correlator must be converted into estimates 

of deviations of the controllable variable from the optimal 

operating point. The predictor regulator is then fitted and 

the variance of the random errors calculated. A bias term 

for operating away from the steep side of the response 

surface may then be evaluated using the algorithm given 

above. 
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CHAPTER 3  

THE EXPERIMENTAL APPARATUS 

3.1. Introduction 

In this chapter a description of the process used is 

given. Although most of the construction was originally done 

by Price (P6) and Kisiel (K4), and therefore reported by 

them, for the purpose of completeness a summary of the design 

and construction of the apparatus is made. Finally, a brief 

account of how the instruments were calibrated is also 

included. 

3.2. Overall Description of Process and Equipment 

The water gas shift reaction entails the combination 

of steam and carbon monoxide to give carbon dioxide and 

hydrogen as shown by equation 3.1.1. 

CO + H2O (gas) t H2 + CO2 - 9.83 Kcals 	(3.1.1) 

A flow diagram of the process together with the instrumen-

tation employed is given in Figure 3.1. 

Pure dry gases were fed from cylinders at a pressure 

of 15 psig, through rotameters where the flow was measured, 

to a mixer. So as to simplify the operation of the system, 

the total dry gas flow rate was always maintained constant. 

Although industrial dry gas compositions were simulated as 

far as possible, it was considered to be more important to 

operate at an average molecular weight equal to that of water. 
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The combination of flow rates used to give this were: 

Carbon monoxide 	9.0 1/hr 

Hydrogen 	20.8 1/hr 

Nitrogen 	23.2 1/hr 

Saturator 

After passing through the mixer, which was a cylin-

drical copper tube 1° long and 1" diameter packed with 550 

micron sand, the gases were split into two streams. One 

stream flowed through the saturator, a vessel 12n high and 

6" in diameter, filled with water and immersed in a constant 

temperature oil bath maintained at 100°C; the other went 

through a 650 cc empty vessel also immersed in the bath; this 

allows some time for the gases to heat up and because of the 

added capacity reduces any surging that might occur due to 

changes in the relative flow through each branch. The above 

arrangement is a novel technique for introducing accurately 

small quantities of steam, the ratio of dry gas flowing 

through each branch being varied by using the pneumatic 

control valve placed just upstream of the saturator; when 

this was half open the upstream pressure was adjusted to 4 

psig by a needle valve in the by-pass line. Unfortunately 

the upstream pressure would vary by as much as ± 2 psig 

over the range of operation of the pneumatic valve; however, 

the anticipated variations in rotameter and other flow meter 

calibrations were not as important as at first expected. 
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Beyond the saturator the two gas streams were reunited and 

heated to prevent condensation, before having their combined 

flow rate measured. 

Reactor 

The gases were now ready for feeding to the reactor 

(Figure 3.2) which was a 2° long, 1" diameter cylindrical 

copper tube vertically mounted. 6" from the bottom and at 

successive 2" intervals were pairs of thermowells placed 

diametrically opposite each other. Starting at the bottom 

there was first 69 cc of 1100 micron sand, followed by 40 cc 

of 650micron ICI CO shift catalyst sandwiched between two 

layers of 7.5 cc of sand also of 650 micron nominal diameter, 

and finally there was a top stratum of 72 cc of 1100 micron 

sand. The whole packing was kept in position by a stainless 

steel gauze at the bottom of the tube. 

In order to carry out isothermal operation of the 

reactor it was necessary to supply heat to the system. This 

was done by three heaters mounted in parallel. The first, 

which consisted of nichrome ribbon wound directly on to the 

tube, acted basically as a preheater getting the gases up to 

the reaction temperature. The next section was heated using 

the same element material wound separately onto two half-

cylinder formers which were clamped in position around the 

catalyst and connected in series. Finally the end effects 

heater was of the same design as the preheater. To ensure 
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an equal temperature throughout the catalyst bed, balancing 

of the power output of the heaters to obtain a constant 

longitudinal temperature was effected by incorporating rheo-

stats in the pre- and end effects heater circuits. 

Analyser 

On leaving the reactor the gases were cooled to approx-

imately room temperature by passing through an 8" long, 1" 

diameter water cooled condenser; final chemical drying was 

obtained by pushing them through a glass tube containing 

silica gel. The concentration of carbon monoxide in the dried 

exit gases was then measured continuously in an infra-red 

analyser from whence the gases were disposed of. 

3.3. Instrumentation 

Pressure upstream of the rotameters was measured and 

maintained at the cylinder reducing valves; downstream of the 

mixer this was measured with a straightforward Bourbon gauge; 

in no case was it possible to record these readings autom-

atically. 

Temperature was measured at the exit from the saturator, 

just after the orifice and in the reactor by chromel/alumel 

thermcouples. The reactor thermocouples were arranged so that 

at each level one read the temperature at the wall, and the 

other at the centre. An iron/constantan thermocouple placed on 

the wall of the reactor, but electrically insulated from it, 
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was used as a sensor for the temperature controller. 

The pneumatic control valve was an Audco Annin type 

supplied by Gloucester Controls. The initial voltage signal 

fed to the system was converted via an electro-pneumatic 

transducer to a pressure signal in the range 3 - 15 psig. 

The flow of steam and dry gas was measured before 

entering the reactor by throttling through an orifice plate; 

using a differential pressure transducer the pressure drop 

across the orifice was converted to an electrical signal. 

In order to get an approximately linear relationship with the 

flow rate being measured, the output signal was put through a 

square-rooting board before finally being recorded. 

Control of the reactor temperature was effected using 

a proportional controller designed and built in the depart-

mental electronic workshop. The error signal was provided by 

the difference between an input control signal, which could 

vary continuously, and the output from the iron/constantan 

sensor which had been suitably amplified. In this case of 

course, only the outside skin temperature of the reactor wall 

was controlled; however, measurements made later confirmed 

this to be sufficient for maintaining the same constant tem-

perature throughout. As a safety precaution, the bottom wall 

thermocouple was connected to an on-off circuit, which would 

not allow the temperature there to rise above 5100C. 

All electric outputs and control signals were such that 

they could be measured or generated on a PACE analogue 



85. 

computer. This required that the signal be a potential in 

the range 0 - 10 volts. Although it was possible to read 

thermocouple signals on the analogue computer, it was not 

advisable because of the errors introduced by the necessarily 

large magnifications. The PACE analogue equipment available 

was made up of a TR10, a TR20 and a HYBRID 48. 

In order to be able to record accurately the state of 

the system, in a form ready for data processing, facilities 

were made for the inclusion of an Electronic Associates MDP 

200 data logger in the recording equipment. Again, error was 

introduced in the reading of thermocouples; some was due to 

the system not having a high enough impedance and the rest, 

which only occurred sporadically, was because of bad common 

mode rejection in the case of low level signals. The former 

could be corrected for, because it was fairly constant through-

out the range of operation. In the latter case, although it 

could be recognised, correction after the event was not 

generally possible. Accurate thermocouple measurements were 

always carried out with a potentiometer. The remaining 

recording equipment consisted of a variable speed 4-channel 

strip chart recorder with an acceptable input signal of 0 - 10 

volts, and an Electronic Associates X-Y plotter. 

Generation of the sinusoidal perturbation signal was 

carried out using an adjustable constant speed motor, and a 

sine-cosine potentiometer. By providing the latter with 

constant references of + 10 V, - 10 V and earth, it was• 
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possible to obtain a sine and a cosine signal of amplitude 

10 volts and mean zero. The frequency of the sinusoid was of 

course determined by the speed of rotation of the motor. 

3.4. Calibration 

Although Price (P6) had already calibrated the intru-

mentation used, it was decided to repeat his work because 

in some cases the conditions were slightly altered, and in 

others there appeared to be some inconsistencies present. 

The rotameters were calibrated individually, with 

conditions being kept as close as possible to those at normal 

operation. The inlet pressure to the particular rotameter 

was set to 15 psig at the cylinder head. At the same time 

the gas was made to flow through the system as usual, with 

the pressure just before the saturator being maintained at 

4 psig. On exiting from the plant, the total volume of gas 

was measured with a wet-gas flow meter. In order to ensure 

that the calibrations were consistent at all times, correc-

tions had to be made for variations in atmospheric pressure 

and ambient temperature. Calibration runs were also carried 

out at pressures of 3.6 and 4.4 psig; they showed that an 

error of 3% was introduced per 2  psi deviation. Another 

inconsistency noted was that when there was more than one 

rotameter in operation the actual flow rate was higher than 

that predicted by the rotameter readings. This follows from 

the fact that a higher pressure differential is required 
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between the rotameter outlets and the point at which the 

pressure is being maintained at 4 psig; therefore the density 

is higher in the rotameters and the gases require a smaller 

area for flowing through. The simplifying assumption made for 

dealing with this case was that the increase in total flow 

rate over that predicted by the rotameter readings was due to 

equal proportional increases in the individual flow rates. 

In the measurement of flow rates, two other sets of 

instruments required to be calibrated. Firstly, the orifice 

and differential pressure transducer placed just after the 

saturator were calibrated using nitrogen. Again the normal 

operating conditions were reproduced as closely as possible, 

both in respect of pressure and temperature. In the latter 

case adjustment of the power input to the heating tape was 

made to maintain the orifice temperature at 190°C. The charac-

teristic curve then had to be converted for dealing with a gas 

of the same average molecular weight as steam. This was easy, 

since for a given pressure drop across an orifice the flowrate 

is inversely proportional to the square root of the density. 

For purposes of simplification Price (P6) assumed the calib-

ration curve to be linear throughout its range. Although this 

assumption is valid at the high end, it was felt to be erroneous 

in the lower part of the range, hence it was represented by 

the second order polynomial: 

y = 47.28 + 5.14x +.1.03x2  

where y = total flow rate; x = orifice reading. 
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Table 3.1: Total steam and dry gas flow rates for different 

input voltages to the pneumatic control valve. 

Signal to 
control 
valve 

volts 
r 

Total 
flow 
rate 

1/hr 

Signal to 
control 
valve 

volts 

Total 
flow 
rate 

1/hr 

.Signal to 
control 
valve 

volts 

Total 
flow 
rate 

1/hr 

9.58 71.64 5.27 50.61 3.75 30.45 
7.85 63.10 9.32 70.05 3.14 24.44 
5.73 51.99 3.11 21.82 7.38 68.21 
6.95 59.96 7.04 61.01 8,63 73.93 
4.97 44.41 4.98 46.61 6.46 61.62 
8.61 66.35 8.64 67.53 9.50 76.80 
4.93 44.43 6.39 57.25 4,86 49.26 
6.42 55.90 9.52 70.53 7.37 67.28 
9.51 67.28 3.77 27.82 5.97 57.41 
8.96 66.94 7.85 64.04 6.57 65.12 
9.35 68.14 5.62 52.07 9.56 79.71 
4.34 39.12 3.11 21.78 7.14 68.05 
7.58 60.47 8.33 67.09 3.39 29.74 
6.83 57.54 9.87 70.79 5.63 58.85 
3.16 21.52 3.74 27.21 8.92 76.90 
3.94 30.14 4.95 45.64 3.14 24.84 
5.75 52.71 9.72 71.41 4.29 43.71 

9.42 67.96 7.68 62.14 5.02 52.04 

4.18 36.24 7.04 60.22 7.01 68.59 

6.01 53.50 6.01 55.86 6.00 58.47 

7.82 64.12 5.16 52.39 
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Finally for use in a simulation model of the system, a 

knowledge of the relationship between the input signal to the 

pneumatic valve and the resulting output signal from the 

differential pressure transducer at the saturator orifice is 

needed. This characteristic was very dependent on the settings 

of the other valves in the by-pass and saturator lines. 

Because of this, once they were set the valves were never 

touched throughout the course of the experimental runs. 

The infra-red analyser was an instrument which needed 

constant checking. Although calibration curves were provided 

by the manufacturers, the zero and sensitivity settings had to 

be continuously updated. In the latter case a mechanical 

obstruction was used for short term calibration work; however, 

even this device had to be checked over longer intervals by 

using a sample gas with a known carbon monoxide concentration. 
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CHAPTER 4  

MODELLING THE SYSTEM 

4.1. Introduction  

In order to verify and extend any results obtained 

experimentally, it was found necessary to derive a dynamic 

simulation model of the plant together with its associated 

measurement and control instrumentation. Here the method in 

which it was done is described, and the differences arising 

between this and previous work are pointed out. 

Former experimenters (K4, P6) have shown that the system 

may be broken down into blocks that consist either of linear 

intertial elements or non-linear inertialess eleMentsas shown 

by Fig. 4.1. Thus the development of the simulation model-was 

carried out in three basic stages: 

(i) steady-state studies to investigate the non-linear 
elements, 

(ii) dynamic studies to obtain transfer function descrip-
tions of the intertial blocks, 

(iii) final assembly of the information produced to give 
the simulation model. 

4.2. Steady-State Modelling 

Figure 4.1 illustrates the fact that most of the non-

linear blocks are essentially characteristics of measurement 

or control equipment, hence their modelling has been dealt 

with in the preceding chapter. However, some sort of model 
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of the reactor itself was stn.l necessary for obtaining an 

overall steady-state description of the system. Kisiel (K4) 

and Price (P6) have already dealt extensively with this, but 

nevertheless the rebuilding of the system and replacement of 

the catalyst brought with them changes in conditions as a 

result of which re-evaluation of the parameters in the model 

was required. On this occasion the steady-state runs were 

also repeated at the end of the experimental programme to 

obtain a quantitative assessment of the change in catalyst 

activity. The section ends with a discussion on the objective 

function used in the later optimization work. 

4.2.1. Reactor 

Given an accurate description of the transport properties 

of the reactants, the structure and dimensions of the catalyst 

bed, both on the macro- and microscale, together with infor-

mation regarding the thermodynamic and kinetic aspects of the 

reaction, it is possible to develop an accurate, but highly 

complex, dynamic model of the reactor (H2, M1). In the 

present instance a lot of information was still unavailable or 

dubious, also the dynamics of the rest of the system consider-

ably outweighed those of the reactor, for which reason it was 

decided that a simpler steady-state model would suffice. 

The basic assumptions made in deriving such a steady-

state model were: 

(i) that the plug flow state existed, 
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(ii) that the conditions were isothermal. 

Although the first assumption is only valid for packed 

tubular reactors in which the particle to reactor diameters 

ratio is very small, it was felt to be adequate, providing a 

modification was made to account for the looser packing at 

the wall. The reactor was originally designed for isothermal 

operation, hence its small diameter and low mass of catalyst. 

However, apart from the thermocouples giving the same reading 

at different points in the bed, there is no other evidence 

to support the assumption of isothermal conditions; doubts 

arise here because of the possibility of heat conduction down 

the thermocouple sheaths from or to the wall of the reactor. 

Nevertheless, in the absence of concrete evidence to the 

contrary, the second assumption was also taken to be correct. 

4.2.2. Plus flow model 

{[CO] + d[CO]} [CO] 

1 

dx 

Figure 4.2: Longitudinal element of reactor 

Consider a longitudinal element of the reactor of 

length dx, with reactants entering at a velocity u. Since 
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there is no change in volume due to either the stochiometry 

of the reaction, or changes in temperature or pressures, the 
0 

velocity of the gases leaving should also be u. As shown in 

Figure 4.2, the difference in concentration of carbon monoxide 

entering and leaving the element is d[CO]. Carrying out a 

mass balance on theelemerit one obtains 

ua[CO] = uca[CO] + d[CO]} + ra.dx 	(4.2.1) 

where 

a = cross-sectional area of reactor, 

r = moles of carbon monoxide produced per unit time 

and unit volume of the reactor. 

d[CO]  = 
dx 

(4.2.2) 

At this stage a decision had to be made on how the 

rate constant was to be defined. Kisiel (K4) compared three 

models of the kinetics, namely a first order model by Mars 

(M2), a pseudo second order one put forward by Moe (M3), and 

finally a log kinetic model which lay somewhere between the 

first two. He found that the fits given by Mars' and Moe's 

kinetic models were considerably better than that of the log 

model, but not significantly different from each other. On 

the basis of these results and because of its slightly greater 

simplicity, Mars° model has since been used in describing the 

steady-state response surface of the reactor. 

4.2.3. Mars' kinetic model 

Mars assumed the shift reaction to have such an excess - 
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of steam present that the kinetics could be considered as 

being first order with respect to the concentration of carbon 

monoxide present. Because it is also a reversible reaction, 

the driving force is taken to be the difference between the 

actual concentration and that at equilibrium, the latter 

factor being calculated from the relationship 

Ke 

[CO]eq  [H2]eq  

[CO]eq  [H20]eq 
(4.2.3) 

where: 

Ke = equilibrium constant of the reaction, 

L43eq = concentration of component A at equilibrium. 
g. mole/cc. 

Therefore the rate equation may be re-stated as: 

dECO)  
dx = 

1(ECO) - [CO]eq} 

which after integrating gives 

where: 

-(x0 ) 
[CO]out = [CO]eq + {[CO]. - [CO]eq

le u  In 

k = kinetic constant, 

x = length of catalyst packed bed. 

(4.2.5) 

4.2.4. Correction to plug flow model 

It has already been stated that the plug flow assum-

ption is only really applicable in cases where the reactor 

diameter to particle diameter ratio is large. Schwartz and 

Smith (S3) discovered that the greatest fluid velocity, which 

(4.2.4) 
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was approximately twice that at the centre, was found at about 

one particle diameter from the wall, and this they considered 

to be due to the lower density of packing in that region. The 

model they suggested to describe this phenomenon, and which 

was used by both Kisiel and Price, involved breaking up the 

velocity profile into two regions; a central core and an 

annulus at the wall of about one particle thickness, the 

velocity in the annulus being taken as twice that in the 

central core. 

The outlet carbon monoxide concentration predicted by the 

new model is obtained by solving the two sections as if they 

were independent reactors, and then averaging the results 

arithmetically. 

4.2.5. Fitting model 

Before any modelling of the reactor could be done, it 

was necessary firstly to reduce the freshly introduced catalyst, 

by the ICI recommended method, and then to operate with it 

until such time as its activity was considered to lie on the 

flat section of the ageing curve. It was hoped that after this 

stage, the catalyst activity would not change appreciably 

during the period in which it was required. Nevertheless, in 

order to gain some idea of its deterioration, the steady-state 

model was refitted after the experimental programme had been 

completed. 

The system was now operated at different conditions of 
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constant temperature and flowrate, these being predetermined 

by a grid set up in the region of interest, i.e. 370 - 470°C 

and 20 - 80 1/hr of steam. After reaching equilibrium on each 

occasion, the outlet concentration of carbon monoxide together 

with other parameters describing the state of the system were 

recorded on the data logger. So as to reduce systematic error 

creeping int  the order in which experiments were carried out 

should have been randomized. However, because of the large 

time involved in allowing the system to come to equilibrium 

after changing the operating temperature, it was decided to 

carry out all runs at a given temperature sequentially. The 

order in which the temperatures were chosen and the setting of 

the steam flow rates was randomized however. 

The fitting of parameters to Mars° kinetic model was 

carried out using Powell's (P7) non-linear hill-climber without.  

derivatives, to minimize the sum of squared differences between 

values of outlet carbon monoxide concentration predicted by 

the model, and those obtained experimentally. A final check 

was made on the parameters fitted, using a hill-climber due to 

Marquardt (M4) and features present in this programme were used 

to generate both linear and non-linear confidence limits for the 

parameters. The variables that were thought reasonable to 

optimize were two defining the kinetic constant (4.2.6), two 

defining the thermodynamic constant (4.2.7), and possibly one 

specifying the thickness of the annulus in the reactor model: 

E 
k = exp ak  - 

	

	 (4.2.6) 
RT 
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TABLE 4.1: Values and confidence limits of _parameters for  

the four term model fitted to the first set of data 

Para- 

meters 

Best 
values ofjstd. para- 

Linear 
confidence limits 

Non-linear 
confidence limits 

lower upper lower lower upper upper 
meters error param. 

value 
param. 
value 

param. 
value 

s.s. param. 
value 

s.s. 

Ek  26927. 2387. 22154. 31700. 26394. 1.42 26974. 1.46 
ak  30.4 1.86 26.7 34.1 30.4 1.34 30.5 1.87 
EK 10459. 867. 8724. 12194. 10398. 1.44 10557. 1.60 
AK 5.31 0.61 4.09 6.52 5.22 1.75 5.36 1.52 

min s.s. = 1.33 	variance = 0.021 

TABLE 4.2: Values and confidence limits of parameters for the 

four term model fitted to the second set of data 

Para-

meters 

Best 
values of 
para-
meters 

Linear 
confidence limits 

Non-linear 
confidence limits 

std. 
error 

lower 
param. 
value 

upper 
param. 
value 

lower 
param. 
value 

lower 
s.s. 

upper 
param. 
value 

upper 
s.s. 

Ek 
ak 
E
K 

A
K 

6600. 

14.7 
12110. 

6.02 

831. 

0.61 

1279. 
0.89 

4938. 

13.5 
9552. 

4.24 

8263. 
15.9 

14668. 

7.80 

6420. 
14.7 

12032. 

5.88 

3.66 

2.06 
2.13 

2.83 

6663. 

14.7 
12260. 

6.10 

2.28 
2.48 

2.44 
2.28 

min s.s. = 2.00 	variance = 0.033 

variance of experimental error = 0.0055 
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TABLE 4.3: Values and confidence limits of parameters for the 

five term model fitted to the first set of data 

Para- 

meters 

Best 
values of 
para- 

Linear 
confidence limits 

Non-linear 
confidence limits 

std. lower upper lower lower upper upper 
meters error param. 

value 
param. 
value 

param. 
value 

s.s. param. 
value 

s.s. 

Ek 26889. 3414. 20061. 33716. 25750. 1.81 26948. 1.49 

ak  30.4 2.50 25.4 35.4 30.4 1.31 30.5 1.85 

EK 
10561. 1002. 8558. 12564. 10496. 1.42 10671 1.63 

AK 
5.38 0.70 3.98 6.78 5.28 1.86 5.44 1.53 

Annulus 2.38 8.50 0.00 21.4 2.38 1.29 8.28 1.57 

min. s.s. = 1.24 	variance = 0.021 

TABLE 4.4: Values and confidence limits of parameters for the 

five term model fitted to the second set of data 

Para- 

meters 

Best 
values of 
para- 

Linear 
confidence limits 

Non-linear 
confidence limits 

std. lower upper lower lower upper• upper 
meters error param. 

value 
param. 
value 

param. 
value 

s.s. param. 
value 

s.s. 

Ek 6566. 1170. 4226. 8906. 6263. 2.83 6642. 2.38 

ak  14.7 1.23 12.2 17.2 14.7 2,00 14.8 2.81 

EK 
12116. 1536. 9044. 15188. 12038. 2.10 12287. 2.53 

AK 
6.02 1.08 3.85 8.19 5.83 2.24 6.11 2.32 

Annulus 1.81 1.21 0.00 26.2 1.81 1.97 8.10 2.42 

min. s.s. = 1.97 	variance = 0.032 
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TABLE 4.5: Experimental data used in fitting first model  

together, with CO concentration predicted by 4 and 

5 parapeter fits  

Temp. of 
reaction 
oc 

Steam 
flow rate 
1/hr 

Measured 
% conc. 
of CO 

Predicted 
% CO by 4 
term 
model 

Error 
in 
predi- 
ction 

Predicted 
% CO by 5 
term 
model 

Error 
in 
predi-
ction 

373.75 77.4 2.06 2.37 - 0.31 2.34 - 0.29 
373.75 54.6 1.87 1.89 - 0.02 1.89 - 0.02 
374.00 40.4 1.89 1.71 0.18 1.72 0.17 
374.25 68.9 1.98 2.11 - 0.13 2.10 • - 0.12 
374.00 51.8 1.90 1.82 0.08 1.83 - 0.07 
374.00 63.5 1.97 2.03 - 0.07 2.02 - 0.06 ,  

373.75 60.8 1.96 1.99 - 0.03 1.98 - 0.02 
373.50 37.0 1.91 1.72 0.18 1.74 0.17 
373.50 30.9 2.11 1.77 0.33 1.78 0.32 
373.00 46.1 1.96 	, 1.81 0.14 1.82 0.14 
468.25 50.9 1.67 1.46 0.21 1.46 0.21 
468.25 	' 73.0 1.32 1.01 0.31 1.01 0.31 
468.50 41.1 1.95 1.83 0.12 1.83 0.12 
469.25 64.4  1.36 1.16 0.20 1.16 0.20 
469.50 69.7 1.35 1.07 ' 0.28 1.07 0.28 
469.00 35.25 2.09 2.16 - 0.07 .2.16 - 0.07 
470.00 47.2 1.67 1.61 0.06 1.61 0.06 
470.50 44.3 1.79 1.72 0.06 1.72 0.06 
470.50 62.5 1.43 1.21 0.22 1.21 0.22 
408.00 60.7 0.82 0.76 0.06 0.76 0.06 
408.25 32.0 1.33 1.43 - 0.10 1.42 - 0.10 
408.25 35.8 1.17 .1.26 - 0.09 1.26 - 0.08 
408.25 50.4 	, 0.92 0.90 0.02 0.89 0.03 
408.25 40.6 1.08 1.11 - 0.03 1.10 - 0.02 
408.50 	1 55.0 0.86 0.83 0.04 0.82 0.04 
408.50 46.4 0.99 0.97 0.02 0.96 0.02 
409.00 64.4 0.77 0.73 0.04 0.73 0.05 
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409.00 76.4 0.72 0.66 0.06 0.66 0.06 
409.25 71.3 0.73 0.68 0.05 0.68 0.05 
429.00 76.3 0.83 0.68 0.16 0.67 0.16 
433.40 56.1 1.01 0.97 0.04 0.97 0.04 
433.75 46.4 1.17 1.19 - 0.02 1.19 - 0.02 
430.75 60.4 0.94 0.87 0.06 0.87 0.07 
430.50 65.5 0.89 0.80 0.09 0.80 0.09 
430.50 31.7 1.49 1.75 - 0.26 1.75 - 0.26 
430.25 28.1 1.72 2.00 - 0.28 2.00 - 0.28 
430.50 41.0 1.21 1.32 - 	0.11 1.32 - 0.10 
430.50 71.2 0.85 0.73 0.12 0.73 0.12 
430.75 36.3 1.32 1.51 - 	0.19 1.51 - 	0.19' 
430.75 51.7 1.06 1.03 0.03 1.03 0.03 
431.00 74.2 0.85 0.71 0.14 0.70 0.15 
431.00 55.6 1.01 0.95 0.05 0.95 0.05 
431.00 47.1 1.15 1.14 0.01 1.14 0.02 
452.75 55.7 1.14 1.16 - 0.02 1.16 - 	0.02 ,  

454.50 30.4 1.82 2.24 - 0.42 2.24 - 0.42 
455.50 45.3 1.36 1.48 - 0.13 1.48 - 0.13 
455.50 41.2 1.43 1.64 - 0.21 1.64 - 0.21 
454.50 49.9 1.26 1.33 - 0.06 1.33 - 0.06 
455 00 76.0 1.01 0.86 0.15 0.86 0.15 
453.50 61.7 1.12 1.04 0.08 1.04 0.08 
451.75 66.6 1.05 0.96 0.09 0.96 0.09 
452.00 70.7 1.02 0.90 0.12 0.90 0.12 
451.75 36.3 1.63 1.82 - 0.20 1.82 - 0.19 
393.00 59.7 0.89 0.93 - 0.05 0.95 - 0.06 
392.75 51.3 0.95 0.97 - 0.02 0.98 - 0.03 
392.75 32.2 	i 1.41 1.33 0.08 1.33 0.08 
393.00 70.2 0.87 0.94 - 0.07 0.96 - 0.09 
393.00 64.9 0.89 0.93 - 0.03 0.94 - 0.05 
393.00 74.7 0.88 0.96 - 0.08 0.98 - 0.10 
392.75 35.6 1.27 1.22 0.05 1.22 - 0.05 
392.75 54.2 0.98 0.95 0.03 0.96 - 0.02 
392.60 40.1 1.11 1.11 0.00 1.11 0.00 
392.75 44.9 1.06 1.03 0.03 1.04 0.03 
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TABLE 4.6: Experimental data used in fitting secondmodel  
with CO concentration predicted by 4 and 5 
parameter fits  

Temp. of 
reaction 

oC 

Steam 
flow rate 
1/hr 

Measured 
% conc. 
of CO 

Predicted 
% CO by 4 
term 
model 

Error 
in 
predi- 
ction 

Predicted 
% CO by 
5 term 
model 

Error 
in 
predi-
ction 

r 
491.25 71.6 1.33 1.19 0.14 1.19 0.13 
491.50 63.1 1.39 1.25 0.14 1.26 0.13 
492.00 52.0 1.59 1.42 0.17 1.42 0.18 
492.25 60.0 1.42 1.29 0.13 1.30 0.13 
491.50 44.1 1.73 1.61 0.12 1.61 f 	0.12 
491.25 66.4 1.35 1.22 0.12 1.23 0.12 
481.75 	' 44.4 1.72 1.50 0.22 1.49 0.23 
491.25 55.9 1.50 1.35 0.16 1.34 0.16 
492.00 67.3 1.35 1.22 0.12 1.22 0.12 
434.50 66.9 0.96 1.13 - 0.17 1.14 - 	0.18 
434.50 68.1 0.97 1.14 - 0.17 1.14 - 0.18 
434.50 39.1 1.33 1.23 0.10 1.24 0.09 
434.50 60.5 1.01 1.10 - 0.09 1.11 - 0.10 
434.50 57.5 1.06 1.10 - 0.04 1.11 - 0.04 
434.50 21.5 1.90 2.09 	'- 0.19 2.08 - 	0.19 
434.50 30.1 1.55  1.49 0.06 1.49 - 0.06 
434.25 52.7 , 	1.11 1.10 0.00  1.11 0.00 
434.25 68.0 0.96 1.14 - 0.18 1.14 - 0.19 

1 	434.25 36.2 1.38 1.29 0.09 1.29 0.09 
443.75 53.5 1.20 1.11 0.08 1.12 0.08 

[ 	407.00 64.1 1.01 1.24 	,- 0.23 1.24 - 0.23 
407.25 50.6 1.08 1.13 - 0.04 1.13 - 0.05 
408.25 70.1 0.99 1.30 - 0.31 1.30  - 0.31 
409.75 21.8 1 1.59 1.71 - 0.12 1.70 - 0.12 
410.00 A  61.0 0.98 i  1.19 - 	0.21 1.19 , - 0.22 

' 	410.75 46.6 1.09 7 1.11 - 0.02 1.12 4  - 0.03 
411.50 67.5 0.93 1.25 - 0.31 1.25 - 0.31 
411.50 • 57.3 1.01 1.15 0.14 1.15 0.141 
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Table 4.6 (continued) 

412.00 70.5 0.94 1.28 - 0.34 1.28 - 0.34 
410.00 27.8 1.39 1.37 0.02 1.37 0.02 
455.50 64.0 1.10 1.11 - 0.01 1.12 - 	0.02,  

456.25 52.1 1.23 1.17 0.06 1.18 0.06 
456.00 21.8 2.07 2.44 - 0.37 2.43 - 0.36 
457.00 67.1 1.07 1.11 - 0.04 1.12 - 
460.25 70.8 1.05 1.11 - 0.06 1.12 - 0.07 
461.50 27.2 1.81 2.01 - 0.21 2.01 - 0.20 
461.25 45.6 1.34 1.29 0.06 1.29 - 	0.05' 
461.75 71.4 1.04 1.12 - 0.08 1.12 - 0.08 
462.50 62.1 1.13 1.13 0.00 1.14 - 0.01 
461.75 60.2 1.14 1,14 0.00 1.14 0.00 
444.25 55.9 1.06 1.11 - 0.05 1.12 - 0.06, 
475.75 52.4 1.40 1.28 0.12 1.28 0.12 
476.00 30.5 1.86 2.02 - 	0.16 2.01 - 0.15 
475.75 24.4 2.12 2.52 - 0.40 2.50 - 0.38 
465.25 68.2 1.21 1.12 0.09 1.13 0.08 
476.00 73.9 1.16 1.13 0.03 1.14 0.02 
476.50 61.6 1.29 1.19 0.10 1.19 0.10 
477.00 76.8 1.15 1.13 0.01 1.14 0.01 
476.75 49.3 1.49 1.34 0.15 1.34 1.48 
476.50 67.3 1.23 1.15 0.08 1.16 0.01 
477.00 57.4 1.36 1.23 0.13 1.23 0.13 
393.00 65.1 1.59 1.38 0.21 1.37 0.22 
392.50 79.7 1.59 1.64 - 0.05 1.62 - 0.03 
392.75 68.1 1.62 1.43 0.19 1.42 0.20 
393.00 29.7 1.72 1.23 0.50 1.23 0.49 
393.75 58.9 1.51 1.28 0.23 1.28 0.23 
396.50 76.9 1.46 1.54 - 0.08 1.52 - 0.06 
397.00 24.8 1.74 1.40 0.34 1.40 0.34 
395.75 43.7 1.49 1.14 0.35 1.14 0.34 
395.50 52.0 1.49 1.19 0.30 1.19 0.29 
395.75 68.6 1.44 1.41 0.04 1.40 0.04 
444.75 58.5 1.14 1.10 0.03 1.11 0.03 
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(4.2.7) 

Price, however, showed that the latter parameter gave no 

improvement in the closeness of fit, a fact which has also 

been verified here. In Tables 4.1 and 4.3 are given the 

parameters fitted to the four term models, while those fitted 

to the other models are given in 4.2 and 4.4. Tables 4.5 and 

4.6 give the experimental data used in the fitting of the models 

together with the outlet concentrations predicted by the models, 

and the difference between these and the observed results. 

Contour maps of the steady-state reactor response surfaces are 

given in Figures 4.3 and 4.4. 

4.2.6 Statistical confidence limits 

If it is assumed that one is dealing with a linear model 

in which the random errors are independent and normally distri-

buted, then Scheff6 (S7) states that the confidence region may 

be defined as a k-dimensional ellipsoid, where k is the number 

of parameters in the model. Under these conditions, one para-

meter confidence limits are evaluated in Marquardt's programme 

using the following expression: 

b. ± (t1...ar  (n - k)) soie7; 

where b. = the jth  parameter. 

n = total number of data points, 

(1-a') = confidence probability 

(t1  _a  ,(n 	k)) = two-tailed (1-a') point of Student's t 
distribution, 
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S = standard error of the estimate of the minimum sum 
of squares, 

So 
c..  = jth diagonal element of the variance-covariance 0 je matrix. 

Should the parameters prove to be not uncorrelated, then the 

abomeexpression will be an underestimate of the interval in 

which the parameter j may lie and still remain within the 

ellipsoid. 

The Marquardt hill-climber assumes that the nonlinear 

model may be replaced by a linear form in the region surrounding 

the best parameter values; it is therefore reasonable to expect 

this to break down outside a given space surrounding the mini-

mum. Thus the non-linear confidence limits of the parameters 

are an indication of the extent of non-linearity in the con-

fidence regions. Assuming the non-linear model is correct and 

the deviations of the parameters from their correct values are 

due to normally distributed experimental errors, Beale (B6) 

states that the most natural confidence region is the set of 

parameter values for which 

critical - optimum = k 
 
S
o Fa,(k,n-k) 
	

(4.2.9) 

where 'optimum = sum of squared errors at the optimal fit, 

(I) critical = sum of squared errors at the edge of the 
confidence region. 

Using (4.2.9) Marquardt calculates the non-linear confidence 

limits for a given parameter by varying it until two evaluations 

of 0 straddle 4)c and then carrying out a quadratic interpolation; 

the inefficiency of this latter technique is shown up by the 



110. 
variations in the sum of squares at the calculated limits. 

4.2.7. Adequacy of model 

Three times throughout the second set of steady-state 

runs tests were repeated at the same conditions of temperature 

and steam flow-rate to check the reproducibility of the 

results. The operating conditions themselves were not repro-

ducible enough to obtain the same observations of outlet carbon 

monoxide concentration; they were however close enough together 

to expect the same difference between predicted and observed 

outlet concentrations. Assuming this inference to be correct, 

variations in the error will be due solely to lack of experi-

mental reproducibility. The unbiased estimate of variance for 

the differences calculated on these points (bottom of Table 

4.3) is considerably smaller than those calculated for the total 

set of experimental observations. At first sight this would 

suggest that the model proposed did not quite fit the data; 

however, an alternative explanation is that a proportional bias 

existed in one or more of the measuring instruments. Corre-

lation analysis between the errors and measured variables was 

therefore carried out to check for this. Jackson (J3) had 

already found that a correlation did exist between the error 

and the steam flowrate in the case of Price's results; this has 

since been confirmed, but it was also found that a higher 

correlation existed between the observed carbon monoxide con-

centration and the error (Appendix 4.1). In the case of data 



presented here, the correlation between the outlet CO concen-

tration and the error was only noted after breaking the latter 

down into smaller groups, the division taking place at those 

points where the infra-red analyser had been recalibrated for 

its zero and sensitivity settings. The conclusion drawn was 

that the sensitivity setting on the analyser did not quite 

correspond with that required for using the provided calibration 

curve, and as a result errors proportional to the observed 

carbon monoxide concentration were being introduced. Removal 

of the error due to incorrect IRA sensitivity could be carried 

out to reduce the variance of Price's differences from 0.0134 

to 0.0061 and for the first group of data in Table 4.1 from 

0.0388 to 0.0036. However, this is a remedy which can only be 

obtained with quite a lot of data, and is therefore only useful 

to prove the adequacy of the model employed and not for making 

corrections during the main experimental programme. 

Finally, a quantitative test of adequacy was made on the 

basis that should the model describe accurately the actual 

conversion taking place, then the variance of the residual 

errors would equal the variance of the experimental errors, 

hence leading to the conclusion that their ratios would be 

distributed as the F-statistic. 
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Table 4.7a Analysis of variance for the steady-state model. 

Models 

Differences between 
observed and 
predicted results 

Experimental 
error Statistic 

Variance 

S2  
o 

No. of 
degrees 
of 
freedom 

Variance 

S2  1 

No. of 
degrees 
of 
freedom 

2 
1, = !p. 

S2 1 

1st data, 
4 parameter 

2nd data, 
4 parameter 

.021 

.033 

59 

58 

.0055 

.0055 

2 

2 

3.82 

6.0 

F0.95(60,2) 	= 	19.48 	F0.99(60,2) 	= 	99.48 

Since in each case F < 170.95 the differences are not found to 

be significant at the 5% level, thus the hypothesis put forward 

is accepted and the models are considered to be adequate. 

4.2.8. Objective function 

For purposes of this study it was desired to have an 

objective function which would have both an optimum and be 

subject to reasonably large changes within the operating range 

of the parameter being varied. Price found that in the case 

of optimization with respect to temperature a suitable function 

was provided using the IRA reading in the form: 

Objective function = cl - c2  x (IRA reading) 	(4.2.10) 
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A glance at Figures 4.3 and 4.4 confirms the fact that at most 

steam flow rates this is indeed the case, hence the same type 

of objective function is used here. On the basis of the first 

steady state data it was therefore decided to operate the 

system at a mixed dry gas-steam flow rate of 115 1/hr and to 

use parameters of value: 

el  = 18.0 

c2  = 52.5 

This gave an objective function having the characteristic 

shown in Figure 4.5, and for the case of the spent catalyst 

that shown in Figure 4.6. 

4.2.9, Performance criterion 

In order to assess the effectiveness of the optimization 

procedure some form of performance criterion requires to be 

evaluated as the experiments proceed. The simplest one possible 

is to track the losses incurred through not operating at the 

optimum point all the time; this was used effectively both by 

Price and Kisiel and, since thre is no reason for doing other-

wise, it is also used in this work. The criterion consists in 

integrating continuously the difference between the actual 

value of the objective function and some constant greater than 

the optimal value of the objective function. 

Performance criterion = (constant - objective function)dt 

  

0 	 (4.2.11) 
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In this case the constant was taken to have a value of 9. 

4.2.10. Comments on changes in catalyst activity 

In order to put forward possible explanations for the 

changes that occurred in catalyst activity, it is first neces-

sary to have some understanding of the mechanism whereby 

catalysts influence a reaction. It is generally thought that 

in heterogeneous systems gaseous reactants are adsorbed on 

the surface of the catalyst. This adsorption may take place 

either as a monolayer or as a relatively thick film. In the 

first case the bonding between the catalyst and adsorbate is 

chemical in nature, while with multimolecular layer adsorption 

the bonding is probably physical of the van der Waal type. 

In most cases physical adsorption is not involved in 

catalysis, but can provide a low energy path to chemisorption. 

Though chemisorption appears to take place all over the surface, 

it is found that there are centres where a greater amount of 

reaction occurs. These centres, known as active sites, vary 

relative to each other and it is found that they are in con-

stant flux of being created and destroyed. 

The temperature dependence of the reaction rate is 

explained by the concept of activation energy and is repres-

ented by a variation of equation (4.2.6), namely, 

{ 
k = A exp - 

	

	 (4.2.12) 
R
5- 

Changes in catalyst activity will frequency indicate changes 
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in the activation energy. However, it is found that these 

changes of activation energy can be partially or fully com-

pensated for by accompanying changes in the pre-exponential 

term A. This phenomena, normally referred to as the "compen-

sating effect", although as yet not fully understood, has been 

explained in a number of ways. The most likely interpretation 

due to Kemball (K5) is now given. 

According to Eyring's absolute rate theory (4.2.12) 

may be expressed as 

k 	{I<T) exp V_LS  tl exp 
R

11 
(4.2.13) 

where 	K = Boltzmann's constant 

h = Plank's constant 

ASt = entropy 

AHt = enthalpy 

= E
k 
for single reactions, 

Kemball suggested that the enthalpy and entropy terms 

were related and thus changes occurring in one could be com- 

pensated for by accompanying changes in the other. 

Comparison of the kinetic constants for the used and 

unused catalyst does suggest the occurrence of compensating 

effects, although within the limits of the investigation this 

was difficult to prove. Since examination of the catalyst 

had shown no obvious changes of the particle size on the macro-- 

scale, it was decided to examine the surface by taking electron 

micrographs and electron diffraction pattern analysis. 
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tSurface replicas of the original samples were made by 

evaporating carbon on to them and then etching away the body 

with hydrochloric acid. Plates 1 and 2 show the pictures 

obtained of the surface replicas using a magnification of 

16 000. It is noticed that there is no real difference bet-

ween the two apart from the slightly smoother appearance of 

the used catalyst, and this could be due entirely to differ-

ences in chemistry between the new and reduced catalyst. The 

electron diffraction studies were equally disappointing in 

their results, although they did confirm the presence of 

chromium oxides in both cases. 

fi•Measurement of the specific surface of the catalyst 

was also made using the BET method. This technique estimates 

the area by measuring the quantity of gas (in this case 

nitrogen) required to cover the surface with a monolayer; 

its advantage is that it also corrects for errors introduced 

by the formation of additional layers. Comparison with data 

supplied by ICI showed that the catalyst had a surface area 

of 6.5 m2/g where it should have been 13.0 m2/g, i.e. a total 

drop of 50%. 

Another possible cause of catalyst decay could have 

been due to poisoning. Dowden (D5) suggested that likely 

poisons were H2S or CO. The first was never present so can 

be discounted immediately while precautions were always taken 

Carried out by electron microscope service. 

Carried out at Catalyst Research Labs, Johnson Matthey & Co. 
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PLATE 'h Micrograph of fresh catalyst 

Wagnification x 16 000) 
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PLATE 2 < Micrograph of used catalyst 

(Magnification x 16 000) 



120. 

to prevent CO entering 

never have arisen. Had 

would have been reduced 

have caused sintering. 

break down in particle 

occurred. 

Thus 

took place 

without steam so the second should 

CO poisoning taken place the catalyst 

to iron, which on re-oxidising would 

This would have been shown up as a 

size which did not appear to have 

in conclusion it is surmised that the changes that 

to compensation effects occurring as the result 

in the specific surface of the catalyst, rather 

poisoning. 

in the activity of the catalyst were probably due 

of a reduction 

than to 

4.2.11. Conclusions  

According to Mars' (M2) the equilibrium constant, 

derived from free energy data, is well described in the range 

being operated in, by 

Ke = exp
[9220 - 4.45) 
RT 	

(4.2.14) 

where T is the temperature in oK and R the universal gas 

constant. Price obtained values for E
K 

and A
K 
of the order 

of 2000 and - 0.2, thus in comparison it is seen that in all 

cases the results presented in 

the equilibrium parameters lie 

Tables 4.1 - 4.4 show that 

very close to Mars' prediction. 

At the same time the kinetic constants-  fitted for the fresh 

catalyst showed good agreement with those values estimated by 

Price and Kisiel. 
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The present work also confirmed Price's findings that 

a one particle thickness for the annulus used in the correc-

tion to the plug flow model was reasonable. 

Finally it was pointed out that the main remaining 

source of error was due to the sensitivity setting of the 

infra red analyser. 

4.3. Dynamic Modelling 

Although sometimes a general description of a system 

will yield sufficient information for deriving an adequate 

dynamic model, more frequently this is not enough, and direct 

experimentation has to be resorted to. In the present ins-

tance, since accurate knowledge was required regarding the 

influence of the dynamics, an experimental programme was 

necessary. 

There are a large number of methods available for 

experimental dynamic analysis; all involve comparison of 

system inputs and outputs, but unfortunately not all may be 

applied in a given situation. Hougen (H3) has written a very 

good critique on the majority of methods available, and since 

most of these are well tried no more need be said. 

Price (P6) originally carried out a frequency response 

analysis of the system and formulated a dynamic model. How-

ever, in certain instances it was found that the model did 

not represent the dynamics; also the technique proved to be 
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very slow. It was therefore hoped that by using a pseudo-

random binary noise signal to excite the system, an improved 

model might be obtained reasonably quickly. A direct com-

parison has in fact been made between the two methods, and 

the results reported at the 5th AICA Congress (W1). A summary 

of Price's work, followed by a description of the method 

using pseudo-random binary noise, and a comparison of the 

two is given in the rest of this section. 

4.3.1. Sinusoidal forcing 

The system was perturbed continuously about a mean point 

by a low amplitude sinusoidal signal; assuming its linearity, 

the output of the system would be expected to oscillate at 

the same frequency sinusoidally, and because of the dynamics, 

the degree of attenuation and the phase differences between 

these signals would vary with their frequency. These two 

factors were used to derive the dynamic model. After trans-

ients had died out the constant peak to peak height was 

measured. It was also necessary to record the constant peak 

to peak height for zero frequency which corresponded to the 

steady-state values of the outputs at the upper and lower 

limits of the perturbing signal. The ratio Gw/Gw=0  repres-

ented a dimensionless evaluation of the gain of the system 

at the particular frequency. For each frequency the gain 

was determined and the overall phase shift between input and 

output sinusoids noted. The latter measurement represented 
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the summation of the distance velocity lag or dead time and 

the phase shift associated with the assumed first, second or 

third order lag. 

Initial analysis of the ensuing results was carried out 

by means of Bode plots. From a graph of gain against fre-

quency on log-log paper not only was the approximate order of 

the system determined but also estimates of the corresponding 

time constants were made (El). Final fitting of the time 

constants of a particular transfer function were carried out 

by hill-climbing to minimize the sum of squared differences 

between the predicted and observed gain. 

At each frequency, the phase shift due to the fitted 

transfer function was evaluated, and from differences between 

this and the observed phase shift an estimate of the dead time 

was obtained. 

Recordings of the 

on a four-channel chart  

input and output sinusoids were made 

recorder. When measuring the phase 

lag between two signals, it was found necessary to run the 

chart at a very high speed for several cycles. This latter 

method of measuring the phase lag, although the best one 

available, does introduce considerable error on the results. 

The sinusoidal forcing method does however suffer from 

a number of disadvantages. It is slow as for each frequency 

the transients caused by initiating the sinusoids have to be 

allowed to die out; this generally takes several cycles. In 

addition, because of limitation in hardware, it is not always 
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always possible to introduce a sinusoidal disturbance into 

a process. 

4.3.2. Random noise forcing  

The output y(t) from a linear system may be described 

in terms of a weighting function h(v) and the past history 

of inputs x(t 	v): 
03 

y(t) = h(v) x(t - v) dv 	(4.3.1) 

0 

Cross-correlation of the input and output signals automat- 

ically leads to the Weiner-Hopf equation: 
03 

( xy(T)  = "I)  Sxx(v  
J 

- T) dv 	(4.3.2) 

0 

To obtain the weighting function of the system from 

knowledge of the input and output signals by solving this 

integral equation is difficult, although Goodman and Reswick 

(G4) did a considerable amount of work on this problem. If 

white noise however is used as the input signal, then because 

its auto-correlation function is one at a lag of zero and 

zero elsewhere, the problem simplifies considerably and 

equation (4.3.2) reduces to: 

(Pxy (T) = h(T) 
	

(4.3.3) 

Unfortunately, it is not always possible to guarantee that a 

particular length of random signal is white noise, so it is 

necessary to run an experiment for much longer than the 

minimum time required to generate the weighting function. 
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Hoffman (H4) has given a comprehensive description of 

a class of binary sequential filters which, by their nature, 

may be transformed to generate long strings of binary digits 

possessing quasi-random properties. Such generators are made 

up from memory units, which may be shift registers, and 

modulo two adders. Also required is a synchronous driving 

source, usually a clock pulse. Modulo two addition is a binary 

operation in which two equal inputs give an output of 0 and 

two different inputs give an output of 1, as shown below. 

0 1 

0 0 1 (4.3.4) 

1 1 0 

Because the networks are sequential, the output from 

a filter may be considered as the modulo two addition of a 

number of delayed inputs and the present input. Therefore, 

defining D as that operator which delays a signal by one 

discrete interval of time, it is possible to describe the out-

put as a polynomial of D operating on the input; this is known 

as the characteristic polynomial of the system (B5) 

Zout = e(D) Z. in (4.3.5) 

By judiciously choosing the characteristic polynomial 

of a shift register generator, it is possible to have a system 

of N shift registers switch through 2N - 1 of its 2N  different 

states before repeating the sequence. It is under these 

conditions that the output of any of the shift registers is 
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found to approximate to a white noise signal. Such an output 

is normally referred to as a maximal length null sequence or 

briefly an m-sequence. Those characteristic polynomials 

which describe this type of network are called primitive and 

possess two necessary properties: 

(i) they must be irreducible, 

(ii) they must not be divisors of any polynomial 

Dk 	I, where k < 2N - 1. 

Peterson (P8) gives a list of primitive polynomials up to 

degree 34. 

The main property of interest associated with m- 

sequences is that if the two states are + 1 and - 1, then the 

auto-correlation of the sequence is of the form shown in 

Figure 4.7 and is periodic with the same period as the sequence. 

Thus it is seen that the auto-correlation of m-sequences 

approximates very closely to that of white noise, hence it 

should be possible to use them in dynamic analysis. One 

serious disadvantage arises from the fact that in any sequence 

there are more + I's than - 1's, thus biasing the weighting 

function. A method of correcting for this is to average the 

tail (usually the last third) of the weighting function after 

it has settled out and to subtract this over the whole length 

of the function (G5). 

In the analysis of the results obtained, the weighting 

function not only gives a good indication of the order of the 

system together with estimates of the time constants, but also 
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fixes directly the distance-velocity lag. Final fitting of 

parameters is carried out using a hill-climbing routine to 

minimize the sum of squares of the differences between the 

experimentally obtained and predicted weighting functions. 

4.3.3. Auxilliary equipment 

The auxilliary equipment required for carrying out the 

m-sequence tests is shown in Figure 4.8n The m-sequence was 

generated in the logic section of the PACE HYBRID 48, the 

last of the shift registers being used to switch the pertur-

bing signal from positive to negative and vice-versa. All 

important inputs and outputs of the system could be controlled 

or measured from the PACE TRIO analogue computers when 

necessary recording of the signals on the paper was made with 

the EAL MDP 200 data logger. In order to ensure that the 

logger always made the same number of scans per bit of the 

m-sequence, it was found necessary to use the same clock to 

drive the noise generator and the logger. 

4.3.4. Experimental investigations 

The dynamic characteristics of the process which were 

of interest are shown schematically in Figure 4.9. 

Frequency response measurements with respect to temper-

ature were made by Price using about 30 different sinusoidal 

perturbations of amplitude 1 volt, ranging in period from 20 

to 2000 sec. On the steam side the pneumatic control valve 

was perturbed also by about 30 different sinusoids, but the 
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amplitude was only 1 volt and the total range covered was of 

periods 20 to 210 sec. In each case the runs were randomized 

to reduce any biasing which could have arisen. 

An eight-stage shift register was used to generate the 

m-sequence which was adjusted to give an amplitude of 1 volt 

on all occasions. When studying the temperature side the bit 

period was 1.92' sec and the logger was driven at a rate of 4 

scans per bit period. In the case of steam side dynamics, 

however, the bit period was reduced to 0.48 sec and because 

of limitations in the logger this could only do 2 complete 

scans per bit period. For each dynamics experiment four runs 

of the m-sequence were recorded to reduce experimental error. 

Fitting the 1st, 2nd and in some cases 3rd order transfer 

functions was carried out as described in section 4.3.2. The 

hill-climbing routines used were again Powell's (P7) and 

Marquardt's (M4). 

When it was found necessary to decide between two models 

which were not apparently equivalent, then the statistical test 

of significance known as the general linear hypothesis was 

applied. This is discussed by Mandel (M5) and Davies (D4). 

Finally, having obtained the best possible model to 

describe the system dynamics, it was necessary to ascertain 

whether this was adequate. In the cases of Price's frequency 

response experiments three near frequencies in each set of 

runs were taken as being the same and used to evaluate the 

variance of experimental error; for the case of-the m-sequence 
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tests, this variance was calculated from the tail of the 

weighting function which should have been zero. 

4.3.5. Results of dynamic modelling 

The results obtained by the two methods are summarized 

in Tables 4.8 - 4.12. Plots of the experimental impulse res-

ponses . found, together with curves generated from the best 

fitted transfer functions, were shown in Figures 4.10 - 4.12. 

Also plotted on each figure is a dotted curve obtained from 

the transfer function produced by Price's method. 

It is clear from Table 4.8 - 4.10 that both methods 

give constants of the same order of magnitude. In most cases, 

however, not even the confidence limits of the time constants 

obtained overlap. Hence it is necessary to decide which 

method gives the more reliable information. In the case of 

temperature dynamics, a first order model, because it gave a 

smaller sum of squared deviations, was found to adequately fit 

the data obtained by sinusoidal forcing; the m-sequence data, 

however, called for a second order transfer function. On 

considering the apparatus it was reasonable to assume that the 

latter would be the truer result. In cases that could be 

compared the sinusoidal forcing method produced narrower 

confidence regions for time constants, therefore greater 

weighting should be given to results produced by it. However, 

in Figures 4.10 and 4.12 there is little scatter of the experi-

mental points on the leading edge of the weighting function 
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TABLE 4.8: Time colts_t__Vi-tancr,lats 	 for -thq_teaPe- Vassesort=sc•rat 	a s 

rttture einamics_ 

Temperature controller to outlet concentration CO, 
sinucoidai forcing method 

transfer 

function 

fitted 

fitted time 
constants resi- 

dna/ 
sum of 
squares 

stan- 
dard 
error 

dead tiMe 

, tsecs) standard 
deviation T3 -1 T2 

/ 
58.72 0.157 0.0724 

........-- 
7.23 6.82 (1+n.) 

1 
101.20 0.06 0.158 0.0739 6.6 - (1+ T1) 	(1+15T2) 

Confidence 

transfer 

function 

limits for the transfer 
adequate 

one parameter 
confidence 
intervals 

• 

function giving sn 
fit 

non-linear confidence 
intervals 

stare- 
dard 
error 

lower 
value 
T 

upper 
value 

T  

lower 
'value 

T 

lower 
residual 

B.S. 

r 
;upper 
value 
 T 

upper 
resi- 	. ' 
dual 
S.S. 

/ 
(14-pT1) 	

T
1 

4.95 88.8/ 108.62 83.53 0.179 	1110.26 0.179 

critical sum of squares SS (critical)m-- 0.178 
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TABLE 4.8 	(continued) 

Temperature controller 

------. 	-______ 

to outlet concentration CO*  
m-sequence method 

..E.s.....wee,,a•rinrcemwomo .. 

transfer 	'fitted time 
constants resi- standard dead steady 

function 
dualerror time state 

fitted sum of (secs) gain 
TI T2 squares 

1 0.4447 .1329 
76.33 - x 10'3  x 10'2  32.3 .951 (1pTi) 

1 
(1-ITT1) 	(1+PT2) 50.73 15.39 0.2374 .9725 24.13 .928 

x 10'3  x 10'3  
• 

Confidence limits for the transfer function giving an 	- 
adequate fit 

one parameter non-linear confidence confidence 
intervals limits 

transfer 
function star= lower upper lover lower upper upper 

dard value value value resi- value resi- 
error T T T dual T dual 

T1 3,78 43.44 58.27 46.64 .247 55.59 .247 
1 x10"3 i, x10"3  

14pT1 ) (I- ,T2  
T2  2,07 11.25 1936 1316 .247 17.71 .247 1  

x10"3  x10-3  

critical sum or squares SS 	(critical) 	.247 x10-3  
-.4 
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TABLE 4.9: Time constant fitting results for the control 

valve to steam flowrate dynamics  

Valve to steam measurement, sinusoidal forcing method 

. 

transfer 

function 

fitted 

fitted time 

constants resi- 
dual,  
sum of 

.squares 

stan-
dard 
error 

dead time 

T1 T 2 
, 

(secs) ,standard deviation 

1 
13.22 0.0696 0.0490 

- 	. 
0.80 1.96 (1 + py 

1 
13.19 0.48 

t 
0.0695 J 	0.0499' 

t 

0.35 - (1+pT1)(1+pT2) 

Confidence limits for transfer function giving an 

adequate fit 

transfer 

function 

one parameter 
confidence 
intervals 

non-linear confidence 
limits 

stan- 
dard 
error 

lower 
value 
T 

upper 
value 
T 

lower 
value 
T 

lower 
resi- 
dual 
S.S. 

upper 
value 
T 

upper, 
resi-
dual 
S.S. 

0.38 12.46 13.98 12.47, 0.0794 14.01 0.0791 (1+pTi) 

Critical sum of squares SS
(critical) = 0.0792 
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TABLE 4.9 (continued) 

Valve to steam measurement, m-sequence method 

transfer 

function 

fitted 

-, 

fitted time 
constants resi- 

dual 
sum of 
squares 

stan- 
dard 
error 

dead 
time 

(secs) 

steady 
state 
gain T1  T2 

1 
9.20 0.4100 x 10-3  

0.1276 x 10-2 0.04 0.1016 (1+pT1) 

1 
12.57 0.10 0.4642 

x 10-3 
0.1360 x 10-2  0.0  0.1175 (1+pT1)(1+pT2) 

Confidence .limits for transfer function giving an 
adequate fit 

function 

transfer  

one parameter 
confidence 
intervals 

non-linear confidence 
limits 

stan- 
dard 
error 

lower 
value 
T 

upper 
value 
T 

-a 

lower 
value 
T 

lower 
resi- 
dual 
S.S. 
. 

upper 
value 
T 	, 

upper 
resi-
dual 
S.S. 

0.498 8.33 10.28 8.67 4138 0.10_3 x  10.07 .419 x1033 (1+pT1) 	T1  

critical sum of squares SS
(critical) = 0.4138 x 10

-3 
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TABLE 4.10: Time constant fitting results for the control  

valve to CO concentration measurement dynamics 

Valve to outlet CO concentration measurement 

sinusoidal forcing method 

transfer 

function 

fitted 

fitted time 

constants resi-
dual 
sum of 
squares 

$. stan- 
dard 
error 

dead time 

(secs) standard 
deviation 

T1 T2 

1 
13.49 0.789 0.0522 25.96 (1 + py 

1 
• 

11.98 3.54 0.0630 0.0474 

. 

23.31 	' 2.0 
(1+pT1)(1+pT2) 

Confidence limits for the transfer function giving an 

adequate fit 

transfer 

one parameter 
confidence 
intervals  

non-linear confidence 
limits 

function 

stan- 
dard 
error 

lower 
value 
T 

upper 
value 
T 

lower 
value 
T 

lower 
resi- 
dual 
S.S. 

upper 
value 
T 

upper 
resi-
dual 
S.S. 

T1 1 
1.14 1.27 5.81 2.13 0.0807 4.82 0.0809 

(1+pTi)(1+pT,) 
'1!., 0.90 10.19 13.78 10.96,0.0810 13.07 	' 0.0811 

Critical sum of squares SS (critical) = 0.810 
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TABLE 4.10 (continued) 

Valve to outlet concentration Co measurement 
m-sequence method 

transfer 

function 

fitted time 
constants reel- 

dual 
sum of 
squares 

stan- 
dard 
error 

dead 
time 

(secs) 

steady 
state 
gain 

fitted T 1 2 

' 	1 
18.97 .8499 

x 10-4  
.5807 
x /0-3  

21.83 .055 
(14-pTi) 

1 8.47 4.6 .5638 
x 10-4  

.4739
3  x /0-  

20.66 .053 
(1.1-pT/)(liTT2) 

Confidence limits for the transfer function giving an 
adequate fit 

• 

transfer 

function 

one parameter 
confidence 
intervals 

non-linear confidence 
intervals 

stan- 
dard 
error 

lower 
value 
T 

upper 
value 
T 

lower 
value 
T 

• lower 
resi- 
dual 
S.S. 

upper 
value 
T A 

upper 
resi-
dual 
S.S. 

I 	T1 1,05 

1,31 

6.39 

2.01 

10.55 

7.2 

6.28 

2.97 

.5892 
x 10-  

.5890 
n 10-4  

9.70 

6.24 

.5893 
x 10-4  

.5892 
x 10-4  

(14-pTI) (14-pT2) 
T2 

Critical sum of squares SS 	= .5893 x 10-4  (critical) 
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and these agree well with the predicted results. It is 

therefore assumed that a better estimate of the dead time is 

obtained, especially as the frequency response method did not 

yield this directly in the fitting. If 95% confidence limits 

are evaluated for the dead times obtained from sinusoidal 

forcing, it is found that all the dead times calculated by 

the m-sequence method lie within or very close to these 

limits. 

Table 4.11 summarises the cases in which it is shown 

that a second order transfer function represents the dynamics 

significantly better than a first order one. The null hypo-

thesis assumed that first order dynamics fitting was the 

correct one. After generating F19 2 (M5) a comparison was made 

with the F-distribution. 1719 2 was found to lie outside the 

95% and 99% levels in all cases except one, and then it was 

almost significant at the 99% level. Hence in these cases 

the null hypothesis was considered to be unacceptable and the 

second order dynamics assumed to give the better fit. 

In Table 4.12 adequacy of each model is analysed by 

means of the F-test. In the case of temperature dynamics by 

the frequency response method and steam to steam flowrate 

dynamics by the m-sequence method, an inadequate fit of the 

data has been made. 

Finally, in assessing the methods, notice should also he 

taken of the presence of an extra peak in Figure 4.10. This 

would be a reasonable occurrence if there were feedback in the 
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TABLE...4.11: Analvsis of vnriancc.4 to choose betleon alter- 
Ont-S,V.AWI 

native models 

Temperature 

No,, of 
parameters 

controller to outlet concentration CO 
m-sequence method 	** 

Remaining 
degrees 
of freedom 

Sum of 
squares of 
residuals 

Moan 
square 

F 	
D11,,, 

1,2
- 
	m2  

3 

4 

1 

E 	252 
• - 

251 

1 

SS1 = 
.4447 :,-: 10' 

SS2 = 
.2374 m 10 3  

SS1-t7 	:7-* 
.2073 m 10' 

Mg.  
.1765 ‘' 10'55.  

V 	= 
.9458 m 10' G  

M1-2 = 	' 
.2073 m 10' 

.212 m 703  

. 	• 	. 

Va/ve to outlet concentration CO 
sinusoidal forcing method 

No. of 
parameters 

Remaining 
degrees 
of freedom 

Sum of 
squares of 
residuals 

Mean 
square 	. 

M1-2 
F1,2= 	M2 

1 

2 
1 

29 

28 

1 

v•wray.w.•...1 

SS]. 	=0.079 

SS2 = 0.053 

SSi.2=0.,01G 

M1= .00273 

lL 	.00225 

L.11_2= .016 

7.1 

F0.95(1,28) 	= 4.2 

. 	F0. 990 -,25) 	r-,  7.6 

---- 
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TABLE 4.11 (continued) 

No 	
ofers paramet 

R emaining 
degrees of 
freedom 

Sum of 
squares of 
residuals 

Venn 
square 

1.11..2  
-E. 	=- 
1,2 	t 	

..
in  

3 252 SS1 
.8499 x 10'' 

r41  
.3373 x 10-6  

4 251 Sg2 = 142 = 126.5 
.5638 x 10-  .2246 x 10-6  

1 1 SS1_2 = = 
A - 1 -2 	. 

.2861 X 10-4-92861 x 10-  

• . 	. 

** 	F0.95(1,251) 	3.92  

F0.99(1,251) = 6.85 
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TABLE 4.12: Analvsis of veriance for the terlperature dvnamics 

oolaparison of the estimated variance for the 
temperature dynamics 

.seft..4..aerWea.e.ftrameno. 

Dynamics 

Differences 
between observed 
and predicted 

results 

Standard 
deviation 

So  

No. of 
degrees 
of 

freedom 
No 

--- 

.mm.m...wm 

En 	rimental  pe 

error 

Standard 
deviation 

SI 

-1Z=2Z• 

0.47 
x 10-2  

0.1175 
x  102 

..............E,---------.-4 

No 	of 
degrees 

of 
freedom 
N1 

s02 	' 
117= s12 . 

Outlet 
concentration 
sinusoidal 

Outlet 
concentration 
m-sequence 

0.072 	' 

.9725 
10 3 x 	- - 

30 

251 

2 

84 

230.5 

.685 

170.95 30.2) 	= 19.46 	F0Q95(251,84) 	1.25 

F0.99(300 2) 	99.47 	F0.99051084) = 1.38 
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TABLE 4.12 	(continued) 

Comparison of the estimated variances for the 	. 
steam dynamics 

Differences 
between obtherved 
and predicted 

- 	results 

- 
.Standard 
deviation 

So 

*lesa•INAM........Na.......Lmaooiwooesoosv.go.....•••••••• ....0 

No. of 
degrees 

of 
freedom 
No 

Enperimental 

error 

Standard 
deviation 

S1 

No. of 
degree's 
of 

freedom 
N1  

So2  

S12 
Dynamics 

Steam 
measurement 
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system or two parallel branches between input and output, but 

neither of these appeared to be present in the system so it is 

questionable how it arose. 

4.3.6. Conclusions 

From the experiments carried out it has been found that 

the sinusoidal forcing method is probably more reliable for 

generating the time constants. Although possibly if a shorter 

m-sequence were to be run for the same time, a lot of scatter 

obtained would be reduced and therefore this method improved. 

However, it is felt that dead times are more accurate when 

found by the use of pseudo-random binary sequence perturbation. 

Both methods are easy to implement using commercially 

available equipment although care has to be taken in the case 

of m-sequence forcing to synchronize the recording equipment 

and the noise generator. The amount of on-line experi-

mental work is considerably greater for the sinusoidal forcing 

which means the plant is being disturbed for longer periods, 

resulting in equivalently greater operating losses. The 

relative time required for off-line analysis is approximately 

proportional to the number of data points available. In each 

case a hill-climber is used to fit the transfer function, but 

in one the cross-correlation function over all lags must first 

be prepared and in the other the dead time has to be calculated 

separately. For the case of m-sequence forcing the steady 

state gain of the system is also fitted, which naturally 
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increases the time required in hill-climbing. Hence for this 

particular case about ten times more off-line computing was 

requiredin the analysis of the m-sequence forcing results. 

Therefore in making an estimate of the relative costs 

involved, the loss in operating efficiency associated with 

the sinusoidal method must be balanced against the requirements 

of more sophisticated equipment and greater data processing 

of the other method. 

4.4. Simulation Model 

Figure 4.13 shows how the non-linear inertialess blocks 

and the linear inertial blocks combine together to describe 

the system. Dealing with the inertialess elements is rel-

atively simple as, provided the input parameters to an 

element are known, the output ones can be calculated by one 

of the algebraic manipulations given in either Chapter 3 or 

Section 4.2. In the case of the inertial elements, however, 

the modelling is complicated by the differential equation 

relationship between inputs and outputs, which necessitate 

continuous solution in order to describe the changing state 

of the system. Although dead times are comparatively easily 

dealt with in the digital simulation by storing, care still 

has to be taken to ensure that the signals maintain the same 

relative position with respect to each other as they had in 

the system being modelled. Also because what is essentially 

a sampled data system is being dealt with, the required value 



VALVE 
CHARACTERIS-
TIC 

INPUT 
SIGNAL 

TO 
VALVE 

2ND 	ORDER 
TRANSFER 
FUNCTION 

I. R. A. 
CHARAC- 
TERISTIC 

--• H.P. 

FILTER 
PURE 
DELAY 

PURE 
DELAY 

REACTOR 

MODEL 

PURE 
DELAY 

ORIFICE 

CHARACTERISTIC 

1ST 	ORDER 
TRANSFER 
FUNCTION 

ORIFICE 

READING 
, 

PHASE 
SHIFTER 1 

1ST ORDER 
TRANSFER 
FUNCTION 

1  INPUT SIGNAL 
TO TEMPERATURE 

ESTIMATE 
OF 

SLOPE 
CORRELATOR 

CONTROLLER 

FIGURE 4.13 	BLOCK DIAGRAM OF SYSTEM FOR OPTIMIZATION 
WITH RESPECT TO TEMPERATURE 



149. 

is not always readily available and therefore a method of 

interpolating is needed. 

4.4.1. Differential equations  

The differential equations necessary for describing 

what occurs when optimization with respect to temperature is 

carried out are given below. In some cases equations of 

higher degree are reorganized into two or more first order 

equations. 

Reactor temperature: 

(temperature) = 1 	(temperature specified by con- 
T
TR 	troller - actual temperature) 

(4.4.1) 

Output from IRA: 

d 2  (IRA reading) = 	1 	(reading specified by non- 
dt2 	T

IR1 	
linear characteristic - IRA 
reading) 

d 
Tf 

1 	d 

T
IR2 

dt 
(IRA reading) 

(4.4.2) 

which after substituting 

Z = 
	

(IRA reading) 
dt 

converts to 

(reading specified by non-linear charac- 
dt 	T

IR1 
T
IR2 	

teristic IRA reading) 

jZ 
T
IR1 	

T
IR2 

 

(4.4.2a) 

 

1  
=  
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and 

d 	(IRl reading) 	= Z 	(4.4.2b) 
dt 

High pass filter: 

	

d 	
(output) = —d   (input) - 	(output) 

	

dt 	dt 	THP 

Correlator: 

(4.4.3) 

d 

dt 
(correlated signal) = H.P. filter output 

x phase shifted 
sinusoid 	(4.4.4) 

Penalty function: 

(total loss) = constant - value of objective 
dt 	 function (4.4.5) 

The numerical integration of these equations on a 

digital computer requires the breaking down of the problem 

into finite steps, solutions at the boundaries of which are 

obtained by the use of a variety of formulae. By their nature 

these step-wise calculations are open to two sources of error. 

Firstly the formulae are based on the assumption that the state 

at a certain point in the step prevails throughout the step. 

The error arising from this is normally referred to as 'trun-

cation error' and can usually be reduced by decreasing the step 

size. The other, known as a round-off' error, generally arises 

after operations like multiplication, division, etc., where 

the results are always rounded off to a constant number of 

digits; this is a non-systematic type of error which should 

not magnify if the programme formulation is a good one; if it 
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does influence the results however, improvement can be obtained 

by increasing the step length and therefore decreasing the 

number of calculations. Thus it is noted that since these 

two errors work against each other, a balance would have to 

be struck in choosing the step length. 

The integration method used in the simulation model is 

Merson's (1,1) modification of the classical fourth order Runge-

Kutta algorithm; like the latter, this also uses the first 

four terms of a Taylor series expansion to approximate the 

integration over one step. 

Yn+1 = yn 
+ hy °  ''' A11  V 

2! - 

h 3  + y n, 
3:  n 4! 

u rn, 
n + 0(h5) 	(4.4.6) 

where: yn  = value of integral at nth stage, 

h = step length. 

Merson's modification dces, however, have the advantage over 

the original Runge-Kutta method in that it is very much easier 

to estimate the 5th order error term 0(h5) thus making it 

possible to keep a record of the truncation error. In the 

routine used accumulation was carried out in double precision 

thus resulting in, virtually, the complete elimination of 

'round-off' error. Because of these two factors it was 

possible to reduce the step-length choosing procedure to one 

of running a typical problem with a given step-length and then 

halving this and re-running until such a stage that the differ-

ence between two successive final results was of no engineering 

consequence. A final check was made by ensuring that the 
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truncation errors were reasonable. 

4.4.2. Programme 

The programme for the simulation model wao written in 

FORTRAN IV for running on the Imperial College IBM 7090 

Computer. The flow diagram in Figure 4.14 illustrates how the 

magnetic tape facilities have been used for storing data 

either for safe keeping or further processing. The diagram 

shows the care taken to simulate dynamic conditions existing 

in the real system before initiating optimization and the 

inputting of noise. It is also seen how correlation is started 

before optimization so as to account for the dead time; for 

the same reason sampling of the correlator output is made at 

this same time interval before the end of each cycle. 
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FIGURE 4.14: Flow diagram of digital simulation 
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FIGURE 4.14 (continued) 
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CHAPTER 5. 

Application of the Predictor Regulator 

5.1. Introduction  

This chapter gives a description of the experiments 

carried out on the temperature side of the process to assess 

the feasibility of combining a Box and Jenkins predictor reg-

ulator with the Draper and Li adaptive optimizer; statistical 

analysis of the results suggest that improvements can indeed be 

obtained for cases where the rate of noise change is not too 

great. The second part of the chapter deals with a number of 

computer experiments that were carried out using the digital 

simulation model described in Chapter 4; the programme was 

partly a repeat of the experiments performed on the pilot plant 

and partly an extension of this work. The results obtained 

confirmed that improvements were possible but showed that 

difficulties which arise in fitting the parameters to the con-

troller could lead to worse rather than better control. 

5.2. Experimental Investigation 

Optimization with respect to temperature was carried out 

for two reasons: firstly the system was found to behave better 

and more consistently on this side, hence greater reproduci-

bility would be possible; and secondly the objective function 

that could be used was simple, involving only one measurement, 

and therefore avoiding the necessity of having to make phase 

compensations for measurements made at different points in the 

system. 
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5.2.1. Experimental programme 

Kisiel and Price considered in their investigations 

into one variable optimization five parameters which influence 

the performance of the optimizer, namely: the amplitude and 

frequency of the perturbation, the phase shift of the corre-

lating signal, the time constant of the high pass filter and 

the gain of the feedback loop. In this investigation only two 

of these were studied: the arqplittidleand frequency of the 

perturbing signal, while the remaining parameters were main-

tained either constant or at what Price had found to be their 

optimal values. A set of factorial e::periments, designed to 

study the influence of the parameters on the optimizer when 

working in the presence of disturbances, was carried out for 

each of three noise signals. The required runs per factorial 

experiment were: 

Period: 	180 sec 	180 sec 
Amplitude: 	50c 	1 0°C 

120 sec 

7.5°C 

	

60 sec 	60 sec 
5°C 
	

1 0°C 

The middle point was included so as to obtain information 

about the curvature of the surface. Each individual experiment 

was run for a period of 11/2  hrs; in the case of experiments 

which used the Draper and Li controller, the estimates of slope 

that were produced at the end of each questing cycle were 
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employed in designing the Box and Jenkins predictor regulator 

required for the re-run. Thus it was hoped that, by comparing 

the last half hour of each run, the new controller could still 

maintain an improvement in the presence of noise that had not 

influenced its design. 

At each frequency the phase shift of the correlating 

sinusoid was adjusted so that this signal would be in phase 

with the high pass filter output, while the time constant of 

the latter was set to the period of the questing signal. The 

proportion of feedback was maintained constant at a value at 

which there would not be an uncontrollably large change in the 

set point when operating on the steep side of the hill, This 

was found to give ample feedback when climbing on the flat side 

of the hill at low frequencies, although it proved to be less 

satisfactory at the higher frequencies. 

5.2.2. Analogue circuit 

Figure 5.1 shows the analogue circuit used in the first 

part of the experimental work, where the straight forward Draper 

and Li optimizer was applied, and Figure 5.2 shows the addit-

ional circuit used when the predictor regulator was incorporated. 

The components are shown as numbered in two parts, the first 

number indicates which computer the component is from while 

the second specifies the actual location on the computer. Each 

multiplier'has numbers on it specifying the module used and 

the amplifier associated with it. To aid in the understanding 
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of the circuits broken lines have been used to box individual 

pieces of circuitry and a list of the amplifier employed to-

gether with a description of their purpose is given below. 

Finally the potentiometers used are listed in two sections, one 

in which the settings remain constant throughout all the experi-

ments and the other in which the settings are those used when 

the amplitude of perturbation was 1 volt (10°C) and the period 

3 minutes. 

When operating the computers care had to be taken to 

ensure that all three chassis were connected with copper wire, 

and that their mains supplies came from the same source. If 

these precautions were not taken, it was found that amplifiers 

could go into a high state of oscillation or overload. 

The source of the sinusoidal signals entering amplifiers 

2.11 and 2.12 was from a sine-cosine potentiometer mounted on 

an adjustable constant speed motor. Also on the shaft of the 

motor was attached a magnetic switch which every cycle made and 

broke a circuit for a period ranging from 1 to 5 seconds; it 

was this signal fed to a comparator which was used to control 

the sample and hold circuit. The remaining integrators in 

the circuit were operated in one of two ways, either continuously 

like 2.5 in the high pass filter, or from the operate button 

as was the case with the others. Arrangements were made with 

comparator II so that whenever integrator 2.1 reached the 

overload point of 10 volts it could be reset to 1 volt; thus 

at any one time,reading the value of the performance criterion 
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involved counting the number of times amplifier 2.1 had over-

loaded and taking the current value of the amplifier. 

In Figure 5.2 it is seen that some additional sample 

and hold circuits have been incorporated to allow calculation 

of terms needed for the Box and Jenkins predictor regulator. 

List of amplifiers used: 

Amplifier 	Purpose 

	

1.1 	Signal to e/p transducer which drives pneumatic 
valve 

	

1.3 	Receives signal from steam orifice 

	

1.4 	Inverter 

	

1.5 	Amplifies signal from I.R.A. 

	

1.6 	Forms objective function 

	

1.7 	Forms penalty function 

	

1.8 	Inverter 

	

1.15 	Prepares sinusoid for recording on chart 

	

1.19 	Limits the combined noise and control signal 

	

1.20 	Feeds signal to temperature controller 

	

2.1 	Integrator for performance criterion 

	

2.2 	Inverter 

	

2.3 	Integrator for correlating circuit 

	

2.4 	Prepares H.P. filter output for recording 

	

2.5 	Integrator in H.P. filter 

	

2.6 	Summer in H.P. filter 

	

2.7 	Sampling integrator 

	

2.8 	Holding integrator 
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Amplifier 	Purpose 

	

2.9 	Inverter 

	

2.10 	Inverter 

	

2.11 	Inverter 

	

2.12 	Inverter 

	

2.13 	Inverter 

	

2.14 	Inverter 

	

2.19 	Inverter 

	

2.20 	Inverter 

	

2.22 	Inverter 

	

2.23 	Amplifier for servo-multiplier SM1 

	

2.24 	Summer for phase shifting the perturbing signal 

	

3.20 	Summer for terms in EE and 6 

	

3.21 	Summer to calculate x* 

	

3.24 	Sampling integrator 

	

3.26 	Summer to calculate e 

	

3.27 	Summer to calculate cN 

	

3.28 	Summer to calculate A26 

	

3.29 	Summer for terms in AE and A2c 

	

3.30 	Sampling integrator 

	

3.31 	Sampling integrator 

	

3.32 	Sampling integrator 

	

3.33 	Sampling integrator 

	

3,34 	Summer to calculate Ex* 

	

3.36 	Holding integrator 

	

3.42 	Holding integrator 
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Amplifier 	Purpose 

3043 	Holding integrator 

3.44 	Holding integrator 

3.45 	Holding integrator 

3.82 	Inverter 

3.93 	Inverter 

3.94 	Inverter 

3.97 	Inverter 

3.98 	Inverter 

Potentiometer with fixed settings: 

Potentiometer Purpose 

	

1.1 	Control signal to e/p transducer 
which drives pneumatic valve 

	

1.5 	Multiplying parameter for objective 
function 

Setting 

.500 

.525 

1.6 	D.C. term of objective function 	.180 

1.7 	D.C. term of penalty function 	.090 

1.8 	Multiplying parameter for penalty 
function 	 .100 

1.14 	Sets level at which switch operates .700 

1.15 	Changes mean level of oscillation 	.500 

1.16 	Attenuates correlating sinusoid 	.500 

1.18 	Sets limit beyond which control plus 
noise signal must not go 	.150 

1.19 	Sets initial mean operating level 
of temperature controller 	.300 

1.20 	Sets limit beyond which control 
plus noise signal must not go 	.550 
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Potentiometer Puryose 	 Setting  

	

2.4 	Changes mean operating level of 
signal from H.P. filter 	.500 

	

2.13 	Attenuates signal to correlating 
integrator 	 .200 

	

2.14 	Attenuates signal to multiplier 	.020 

Potentiometers which are set specifically for perturbing 
signal of 1 volt (100C) amplitude and 3 minutes period:  

Potentiometer Purpose 	 Setting 

	

2.5 	Feedback gain on H.P. filter 	.006 

	

2.8 	Sets amplitude of perturbing signal .100 

	

2.11 	Attenuates sinusoid for phase- 
shifting 	 1.000 

	

2.12 	Attenuates cosinusoid for phase- 
shifting 	 0.000 

Potentiometers used in implementing Box and Jenkins 
predictor; no settings are given. 

Potentiometer Purpose 

	

3.35 	Multiplies Ee by gjlx)  

	

3.36 	Multiplies c by 	1 + YO  
g(1-0 

	

3.37 	Multiplies Ae by 	+ k(1+10)  
g(1-X) 

	

3.38 	Multiplies Ate by k y_  g(1-X) 

	

3.39 	Multiplies x* by 	A  1 - 

ky1 
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5.2.3. Description of noise 

At first, the disturbance signals used in the exp6ri-

ment were generated automatically. A ten stage shift reg-

ister, patched as an m-sequence generator, was cycled at a 

rate of 10 bits/sec., the last stage was sampled and put 

through a linear filter. Once every 90 seconds the signal 

from the filter was sampled and held; gaussian distributed 

random noise, from which a stochastic signal of given structure 

could be built up, was now available (E2). It was decided to 

use three different types of noise, namely; 

(a) zp  = ap  

(b)- 	= a zp  zp_i P 

(c) z - 2z 	+ z 	= a 
P 	P-1 	P-2 	P 

(0,0,0) 

(1,0,0) 

(2,0,0) 

A list of the three noise signals used is given in Table 5.10 

It will be noted that (a) only varies by t 3 volts whereas 

the other two go up to i 5 volts. 

Originally these noise signals were to be generated on 

the Hybrid 48 (Figure 5.3), but it was found that although (a) 

and (b) were fairly reproducible, small errors were propagated 

into (c) causing large variations between successive runs. As 

a result of this, and because the analogue equipment was 

required for other purposes, the noise signal was introduced 

by hand (Figure 504). 

. Operation of the circuit shown in Figure 5.4 is controlled 

by the B timer, which switches the shift register block SRO 
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TABLE 501: Disturbances used to move the optimal operating 

point 0 

Time Series Series Series Time Series Series Series 
I II III I II III 

mins volts volts volts ~ins volts volts volts 

000 000 000 000 4605 - 2 .. 034 + 20318 00924 

105 - 2.6tl8 00930 00466 48 00 2.390 10564 1 .. 303 

300 00872 00683 00776 49.5 1 0512 10103 10438 

405 - 20087 1 .. 405 1 0441 51 .0 20925 0.170 1 .. 088 

600 10558 00933 1 0850 ' 5205 - 20280 0 0 955 1 II 126 

705 - 20027 10634 20604 5400 - 10Ll66 1 0471 1 0412 

900 2.480 0 0861 20951 ' 5505 - 2 0 284 20259 20084 

1005 - 20114 1 .. 590 30656 5700 10630 10750 2~490 

1200 00907 10332 4.,220 5805 - 10226 20192 30111 
1305 1 .. 641 0.833 40515 6000 1 0041 1 0182 30564 
15 .. 0 00885 00582 40671 61 .. 5 - 20235 2.652 40395 
16.5 20773 - 00291 40371 6300 20358 10906 40838 
18.0 2 II 321 - 1 0013 3.,694 6405 1 0019 10602 50120 
1905 20484 - 1.708 2.614 66.,0 20919 00661 4 .. 914 
2100 2.384 - 20534 1 ,,144 6705 20717 - 00211 40260 
2205 - 00727 - 2 .. 258 - 00199 6900 - 2 .. 055 00504 30954 
2400 - 20826 - 1 0293 - 10065 7005 - 20345 1 II 309 40045 
2505 - 10294 - 00832 - 10712 7200 00899 10045 3.992 
2700 20795 - 10709 - 20820 7305 1 .123 0 0706 30753 
28.5 - 20303 - 00922 - 3.536 75 00 0 .. 840 0.461 30385 
3000 - 00974 - 00567 - 40080 7605 - 20277 10250 30404 
3105 - 20320 + 0.232 - 40236 78 00 1 0550 00767 3., 171 
33 .. 0 - 00803 + 0.530 - 40252 7905 2.440 - 0.015 2.533 
3405 - 20349 + 10333 - 30875 81 <> 0 20669 - 0.872 10453 
3600 1.038 + 10028 - 3 II 6'67 82.,5 1 0493 - 1 .. 326 0 .. 126 
37.5 - 20534 + 10893 - 30035 8400 - 2 .. 606 - 00437 - 00756 
3900 - 20613 + 20787 - 10963 8505 - 1 0204 - 00006 - 10433 
40.5 00851 + 2 .. 542 - 1 0028 87 .. 0 0.,899 - 00273 - 2 .. 254 
4200 20947 + 1 0610 - 00577 8805 00896 - 00058 - 20924 
4305 00959 + 1 .. 329 - 0 0280 9000 - - -
4500 - 00 56 + ft 611 o 1 Cin 
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once every 90 secs. The latter in turn changes the position 

of relay 22. Thus after the relay has for instance switched 

to the downward position, there is a 90 second interval, during 

which the next value of the stochastic disturbance may be set 

up by means of FSW 3.1 and pot 3.55. 

5.2.4. Experimental technique 

The plant was started with a steady flow of dry hydrogen 

and nitrogen passing through the reactor, part of the stream 

was then diverted to the saturator where moisture was picked 

up. After operating like this for ten or fifteen minutes the 

arms on each side of the orifice plate were bled to remove 

any condensed water present. Carbon monoxide was then intro-

docued slowly, and the rotameters were adjusted to give the 

required readings. Lastly a fine adjustment was made to the 

level of the control valve (pot. 1.1) so that the total stream 

and dry gas flow was 115 1/hr. 

The system,which was now ready for operation, had its 

mean operating temperature set on the left hand side of the 

optimum (Figure 4.5) and the potentiometer in the high pass 

1 filter adjusted to 7, where T was the period of the perturbing 

signal. Perturbation was then initiated with the signal of 

required amplitude and frequency by closing function switch 

1.2, and the optimality of the phase shifted sinusoid was 

checked by closing function switch 2.1 and putting integrator 

2.3 into the operate mode; at this stage function switch 2.2 

was of course kept open. If the phase shift were correct the 
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slope of the integrator output would always be greater than 

or equal to zero. 

Having checked the phase shift of the correlating 

signal, integrators 2.1 and 2.3 were reset, the mean operating 

point of the temperature controller moved to the optimal 

operating point, and the system was allowed to reach steady 

state conditions. The point in the perturbing cycle at which 

the magnetic switch closed was taken as a reference with which 

to start all experiments; at this stage the function switch 

was closed, integrators 2.1 and 2.3 put into the operate mode, 

and the clock and noise inputting started. At the end of 

each cycle the output from the correlating integrator was 

sampled and the control signal updated; in the case of the 

straight Draper and Li optimizer these two values were the 

same. The signal from the magnetic switch which indicated 

the end of the cycle was also used to initiate a scan by the 

MDP 200 data logger; thus a complete recording of all para-

meters necessary to define the state of the system was made 

once a cycle. The outputs from amplifiers 1.8, 2.1, 2.3 and 

2.4 were also plotted continuously on the four channel 

recorder. At times 30, 60 and 90 minutes after starting each 

experiment the value of the performance criterion was read 

off the chart recorder; subsequent to the last reading the 

experiment was stopped. 
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5.2.5. Results 

After each experiment of the factorial design for a 

given type of noise, the series of estimates of slope was 

used to calculate the more sophisticated Box-Jenkins regulator. 

A list of the parameters fitted to the dynamic-stochastic 

optimizer, and the reduction obtained in the sum of squared 

errors which was used as the basis of the fitting, is given 

for each experiment in Tables 5.2 - 5.4, Figures 5,5 - 5.10 

show graphically the action of the first and second types of 

noise on the system as well as the combined effects of noise 

and control action for the two controllers and for different 

perturbation signals. In Tables 5.5 - 5.13 the penalties 

incurred for the three series are summarized, both for the 

simple and sophisticated optimizers. It was noted that for 

Series III, as shown in Tables 5.11 - 5.13, no improvement 

was obtained at all, in fact there were greater losses. From•the 

comparably less random nature of the noise series these results 

were somewhat unexpected it is thought that they could be due 

to there being too low a signal to noise power ratio for 

optimization to take place, although the simulation studies 

reported at the end of the chapter throw light on other possible 

reasons. In the other two cases there was some apparent 

improvement, which however required considerable statistical 

analysis for conclusive proof. This analysis of the results 

was broken down into four stages: 



TABLE 5.2: Parameters fitted to the predictor controller for  operating in 

the presence of Series I noise. 

Run 
No. 

Period 
sec. 

Amplitude 
volts 

Eel 0th 
iteration 

ze2 last 
iteration 

% of 0th 
iteration 

Parameters fitted  
X 

. g k Y.I Yo Y1 ...... 

ST77 180 1.0 1.12 1.09 97.5 0 0.971 0.316 - 	0.05 0.178 - 	0.01 

ST79 180 0.5 1.41 1.37 97.2 0.014 1.02 0.204 0.024 - 0.024 0.001 

ST89 120 0.75 1.24 1.04 84.0 0.036 0.993 0.002 0.215 - 0.307 0.002 
ST52 '60 1.0 0.49 0.24 49.0 0.101 0.763 0.071 0.046 0.205 0.102 

ST54 60 0.5 0.21 0.13 62.0 0.003 0.658 0.135 - 0.024 0.186 0.092 

TABLE 5.3: Parameters fitted to the predictor controller for operating in 

the presence of Series II noise  

Run 
No. 

- 

Period 
sec. 

Amplitude 
volts 

Eel 0th 
iteration 

Eel last 
iteration 

, 
% of 0th 
iteration 

Parameters fitted 
A g k Y-1  Yo YI 

. 

ST81 180 1.0 1.75 1.40 80.0 0.89 0.78 0.004 0.049 - 0.130 - 0.048 
ST83 .180 0.5 0.894 0.473 53.0 0.093 1.33 0.123 0.727 - 0.723 - 	0.071 
ST91 120 0.75 0.451 0.121 26.8 0.007 0.655 0;161 0.063 0.606 - 	0.101 
ST58 60 1.0 0.235 0.098 41.7 0.056 0.447 0.083 0.237 0.384 0.079 
ST56 60 0.5 0.196 0.077 39.3 0.150 0.539 0.142 - 0.060 0.215 0.044 

1 



TABLE 5.4: Parameters fitted to the predictor controller for operating in 

the presence of Series III noise 

Run 
No. 

Period 
sec. 

Amplitude 
volts 

. 

Ee2  0th 
iteration 

E2 last 
iteration 

% of 0th Paiameters fitted 	1 

iteration A g k y-1 Yo Yi 

ST101 180 1.0 1.54 0.934 60.5 0.017 0.237 0.064 0.156 - 0.720 0.001 

ST105 180 0.5 0.712 0.587 82.5 0.034 0.906 0.027 0.158 - 0.274 0.002 

ST109 120 0.75 0.673 0.579 86.0 0.009 0.957 0.003 0.431 - 0.186 - 0.013 

ST69 60 1.0 0.201 0.086 42.8 0.002 0.502 0.106 0.401 0.207 0.005 

ST71 60 0.5 0.135 0.096 71.0 0 0.461 0.039 0.201 - 0.193 - 0.010 
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TABLE 5.5: Losses incurred during the first halfhour through 

not operating at the optimum when system is  

disturbed by Series I  

Period 

sec. 

Amplitude 

°C 

Cont-
roller I 
Run No. 

tCont- 
 roller I 

Perf. 
criterion 

p- 

 roller II 
Run No. 

Cont-
roller II 
Perf. 
criterion 

< 
180 10.0 ST7 136.9 ST77 87.4 
180 10.0 ST99 117.6 
180 5.0 ST9 102.6 ST79 87.6 
120 7.5 ST16 108.6 
120 7.5 ST19 120.4 ST89 62.0 
120 7.5 ST50 66.2 

60 10.0 ST12 205.7 ST52 59.1 
60 10.0 ST67 168.9 
60 5.0 ST14 138.9 ST54 181.3 
60 5.0 ST28 165.5 

TABLE 5.6: Losses incurred during the first hour through  

not operating at optimum when system is disturbed 

by Series I 

Period 

sec. 
Amplitude 

oc 

Cont- 
roller I 
Run No. 

Cont- 
roller I 
Perf. 
criterion 

Cont- 
roller II 
Run No. 

Cont-
roller II 
Perf. 
criterion 

180 10.0 ST7 283.6 ST77 170.0 
180 10.0 ST99 278.0 
180 5,0 ST9 350.0 ST79 158.0 
120 7.5 ST16 272.1 
120 7.5 ST19 248.1 ST89 149.0 
120 7.5 ST50 132.1 

60 10.0 ST12 397.8 ST52 135.7 
60 10.0 ST67 331.0 
60 5.0 ST14 398.0 ST54 351.3 
60 c_n ST28 "Mg q 



176. 

TABLE 5.7: Losses incurred during 1?4 hours of run through 

not operating at optimum when system is disturbed 
by Series I. 

Period 

secs 

Amplitude 
oC  

Cont:- 
roller I 
Run No. 

Cont- 
roller I 
Perf. 
Criterion 

Cont- 	' 
roller II 
Run No. 

Cont-
roller II 
Perf. 
Criterion 

180 10.0 ST7 636.5 ST77 372.6 
180 10.0 ST99 382.6 
180 5.0 ST9 639.4 ST79 191.2 
120 7.5 ST16 552.8 

120 7.5 ST19 463.4 ST89 253.5 
120 7.5 ST50 337.0 
60 10.0 ST12 776.0 ST52 284.6 
60 10.0 ST67 700.8 

60 5.0 ST14 777.5 ST54 813.0 
60 5.0 ST28 791.3 

TABLE 5.8: Losses incurred in the first halfhour through not 

operating at optimum when system is disturbed by 
Series II 

Period 
secs 

Amplitude 
0C 

Cont- 
roller I 
Run No. 

Cont- 
roller I 
Perf. 
Criterion 

Cont- 
roller II 
Run No. 

Cont-
roller II 
Perf. 
Criterion 

180 10.0 ST30 96.0 ST81 23.0 

180 5.0 ST32 93.5 ST83 66.8 

120 7.5 ST20 23.7 ST91 46.4 

120 7.5 ST23 46.8 ST97 53.0 

120 7.5 ST48 , 	65.8 
60 10.0 ST24 147.2 ST58 42.0 
60 5.0 ST26 77.8 ST56 151.8 
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TABLE 5.9: Losses incurred during the first hour through  
not operating at optimum when system is disturbed 
by Series II. 

Period 
secs 

Amplitude 
oc 

Cont- 
roller I 
Run No. 

Cont- 
roller I 
Perf. 
Criterion 

Cont- 
roller II 
Run No. 

Cont-
roller II 
Perf. 
Criterion 

180 10.0 ST30 541.3 ST81 96.8 
180 5.0 ST32 337.9 ST83 136.8 
120 7.5 ST20 263.7 ST91 236.0 
120 7.5 ST23 283.1 ST97 110.0 
120 7.5 ST48 350.8 

60 10.0 ST24 522.0 ST58 287.4 
60 5.0 ST26 396.8 ST56 593.4 

TABLE 5.10: Losses incurred during 11/2  hours through not 

operating at optimum when system is disturbed 

by Series II. 

Period 
secs 

Amplitude 
0C 

Cont-' 
roller I 
Run No. 

Cont- 
roller I 
Perf. 
Criterion 

Cont- 
roller II 
Run No. 

Cent-
roller II 
Perf. 
Criterion 

180 10.0 ST30 617.6 ST81 145.7 
180 5.0 ST32 472.0 ST83 180.7 
120 7.5 ST20 317.7 ST91 363.5 
120 7.5 ST23 358.2 ST97 134.6 
120 7.5 ST48 486.8 
60 10.0 ST24 906.0 ST58 520.6 
60 5.0 ST26 754.1 ST56 1097.9 
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TABLE 5.11: Losses incurred during the first halfhour through 

not operating at optimum when system is disturbed 
by Series III, 

Period Amplitude Cont- Cont- Cont- Cont- 
secs oc roller I roller I Roller II roller II 

Run No. Perf. Run No. Perf. 
Criterion Criterion 

180 10.0 ST84 344.8 ST101 543.8 
180 5.0 ST87 220.4 ST105 546.0 
120 7.5 ST93 335.4 ST109 531.2 

60 10.0 ST62 520.4 ST69 782.1 
60 5.0 ST60 642.7 ST71 899.5 

TABLE 5.12: Losses incurred during the first hour through  

not operating at the optimum when the system is 

disturbed by Series III. 

Period Amplitude Cont- Cont- Cont- Cont- 
secs 0C roller I roller I roller II roller II 

Run No. Perf. Run No. Perf. 
Criterion Criterion 

180 10.0 ST84 820.6 ST101 1498.6 
180 5.0 ST87 668.0 ST105 1168.0 
120 7.5 ST93 85E4 ST109 1298.0 

60 10.0 ST62 1108.3 ST69 1317.0 
60 5.0 ST60 1230.0 ST71 1506.1 
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TABLE 5.13: Losses incurred during the 	hours through not 
operating at the optimum when the system is  
disturbed by Series III  

Period Amplitude Cont- Cont- Cont- Cont- 
secs oc roller I roller I roller II roller II 

Run No. Perf. Run No. Perf. 
Criterion Criterion 

180 10.0 ST84 1355.4 ST101 2302.2 
180 5.0  ST87 1066.4 ST105 2594.1 
120 7.5 ST93 1308.8 ST109 2678.0 
60 10.0 ST62 2397.2 ST69 2703.3 
60 5.0 ST60 2546.1 ST71 2916.1 
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(i) it was shown that the errors incurred were not 

systematic, 

(ii) the standard deviation of the experimental error 

was estimated, 

(iii) the statistical t-test was used to show that the 

improvements were significant, 

(iv) a quantitative estimate was made of the improvements 

obtained. 

(i) Randomization of the experimental runs was not 

possible, to the extent that would have been desirable, for 

two reasons. Firstly, in all cases, experiments using the 

simple Draper and Li controller (henceforth referred to as 

Controller I) had to be run before the Box and Jenkins 

controller (Controller II) could be designed. Secondly, 

considerable time was required to set the motor driving the 

sine-wave generator to a particular speed, therefore it was 

very much more convenient to run experiments at a given 

frequency consecutively. 

Examination of runs ST16, 19 and 50 suggested that there 

was a definite improvement of ST50 on the other two. However, 

ST20, 23 and 48 indicated that the system had got worse in 

about the same period of time. These two examples, which if 

taken individually would indicate that systematic trends had 

occurred in the system, jointly show that this was probably not 

the case. Also, during this series of experiments, no downward 

movement of the optimum value of the objective function that 
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could be associated with the catalyst decay reported in 

Chapter 4 was noted. Hence it was concluded that these effects 

were due solely to experimental error. 

(ii) The experimental error present in the results was 

taken to be independent of both the series and the controller 

used. If this assumption was correct, then it was reasonable 

to use runs that had been repeated to calculate the overall 

standard deviation of the error. Hence the runs used were: 

ST16, 19 and 50 

ST20, 23 and 48 

ST14 and 28 

ST12 and 67 

ST77 and 99 

ST91 and 97 

Because of the complications introduced by having the infor- 

mation broken down into groups of two or three runs, the method 

used in calculating the standard deviation is given below as 

a series of steps: 

(a) the mean of each group was calculated, 

(b) for each group the sum of squared deviations from 

the mean was calculated, 

(c) these were summed over all groups to give the total 

sum of squared deviations, 

(d) the number of degrees of freedom was calculated by 

subtracting the total number of groups used from the 

total number of runs, 



184. 

(e) the unbiased variance of the errors was calculated 

by dividing the total sum of squared deviations by 

the number of degrees of freedom, 

(f) square-rooting the variance gave the unbiased 

standard deviation of the errors. 

The resulting calculated values for the standard devi-

ations of the error in the Performance Criterion at times 30, 

60 and 90 minutes after the start of each experiment are given 

below in Table 5.14. 

TABLE 5.14: Unbiased estimates of the standard deviations 

of the error in the Performance Criterion. 

Time 
interval 
in hours 

Total sum 
of squared 
deviations 
from mean 

No. of 
degrees of 
freedom  

Unbiased 
variance 

Unbiased 
standard 
deviation 

S 

1/2  3806 8 475.8 21.8 
1 25521 8 3190.1 56.5 
1 1/2  56876 8 7109.5 84.4 

(iii) Because of the large variance of the experimental 

error, no useful information could be obtained from comparing 

individual runs of the factorial experiments carried out. Thus 

the whole of the factorial experiment for a given type of noise 

was used in assessing the significance of improvements caused 

by Controller II. However, for both Series I and II, experi-

ments at the period of 60 secs and 5°C amplitude showed 

apparent worsening of the situation with Controller II. It 

was thought that here again the effective signal to noise power 
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ratio was too small for satisfactory optimization and therefore 

analysis for each series was carried out with and without the 

inclusion of these runs. 

The null hypothesis H o, assumes that there was no improve-

ment between Controller I and II. Therefore the effective mean 

difference in Performance Criterion between I and II should be 

zero. If, however, the difference was effectively greater than 

zero, the null hypothesis is disproved and there was some 

improvement. The hypothesis was tested using the Student 

t-statistic: 

t = 7  : 	/W 	 (5.2.1) 
SA 

where T = mean difference between I and II, 

A = standard deviation of difference, 

N = number of points used. 

The standard deviation of the difference was obtained 

from (5.2.2) 

A = 2S2 	 (5.2.2) 

S
A  = 11 g 	 (5.2.3) 

The results obtained are given below in Tables 5.15 and 5.16. 

The influence of the fifth point in the factorial design 

shows up on comparing the results for the first half hour as 

given in Tables 5.15 and 5.16. It is noted that in the first 

case no significant improvement took place, while in the other 

it did. For other times of running, the Box and Jenkins 

controller does show improvement to the 95% level in the case 

of both series, and on occasions the significance even increases 
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TABLE 5.15: Test of significance carried out on results of the 

whole factorial design for operation with noise 

Series I and II. 

Noise 
series Time 

E 
(differences) 

Mean of 
differences 

,-- 
A 

No. of pts 
considered 

, 
` 

I kh 184.5 36.9 30.9 

In
  
i

f )
 to

 t
o

 1-11  1
.11  

2.68 

I 1h 575.0 115.0 80.0 3.22 

I 1 1/2h. 1351.2 270.2 119.7 5.10 

II kh 126.3 25.3 30.9 1.83 

II lh 810.0 162.0 80.0 4.53 

II 1kh 942.5 188.5 119.7 3.52 

t0.975 (4) = 2.78 	to.995  (4) 	= 4.6 

TABLE 5.16: Test of significance carried out on results of the 

whole factorial design minus the point at 60 sec, 

11  volt perturbation for operation with noise 

Series I and II. 

Noise 
series Time 

E 
(differences) 

Mean of 
differences 

,-- 
A 

No. of pts 
considered 

t  

I 2 
_I- h 213.9 53.5 30.9 4 3.46 

I 1h 551.0 137.7 80.0 4 3.44 

I 12h 1358.2 339.5 119.7 4 5.67 

II kh 205.0 51.0 30.9 4 3.30 

II 1h 1006.0 251.0 80.0 4 6.28 

II 1kh 1286.0 321.0 119.7 4 5.36 

t0.975(3) = 3.18 	t0.995(3) 	= 5.84 
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to the 99% level. Therefore, from the experiments run, it 

has been proved conclusively that improvement can be obtained 

by using a form of predictor controller when certain types 

of noise are disturbing the system. 

(iv) A conservative estimate of the percentage Improve-

ment obtained by using the more sophisticated optimizer was 

now made. Again, because of the large experimental error, 

analysis was carried out on the whole factorial designs. The 

significant part of the average change between two sets of 

experiments was obtained by subtracting the 95% confidence 

intervals of the difference from the evaluated difference. 

95% confidence interval of the change 
gA  

= t0.975 (N 	1) —9- 	(5.2.4) 

Significant change = average change - 95% confidence 

interval of the change 	(5.2.5) 

The percentage improvement on the average losses incurred 

through not operating at the optimum was now calculated by 

dividing the significant difference by the average losses 

incurred with Control I plus its 95% confidence interval. 

Percentage average improvement 

= {significant change}/{average losses + 95% 

confidence interval of losses} 

x 100% 	(5.2.6) 
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TABLE 5.17; Estimates of the quantitative improvements  

obtained from the whole factorial experiments  

by introducing predictor optimizers for operation 

in the presence of Series I and II types of 

disturbance. 

Noise 
Series 

Time 
hr. 

Ave. 
Change 

95% cf. 
its. of 
Change 

Signif. 
Change 

Ave. 
Loss 
with 
Cont.I 

95% cf. 
Its. of 
- 	Loss 

Max. 
Poss, 
Loss 

Min.Sig. 
% 	- 

improve-
ment 

I 1/2  36.9 38.4 - 135.4 27.0 162.4 - 
I 1 115.0 99.4 15.6 317.4 70.2 387.6 4.0 
I 1 1/2  270.2 148.5 121.7 650.0 105.0 755.0 16.2 

II k 25.3 38.4 - 92.0 27.0 119.0 - 
II 1 162.0 99.4 62.6 419.4 70.2 489.6 12.8 
II 1 1/2  188.5 148.5 40.0 627.5 105.0 732.0 5.5 

TABLE 5.18; Estimates of the quantitative improvements  

obtained from four points of the factorial  

experiments by introducing predictor opti-

mizers for operation in the presence of Series I 

and II types of disturbance. 

Noise 
Series 

Time 
hr. 

Ave. 
Change 

95% cf. 
its. of 
Change 

Signif. 
Change 

Ave. 
Loss 
with 
Cont.I 

95% cf. 
its. of 
Loss 

Max. 
Poss. 
Loss 

Min.Sig. 
% 

improve- 
ment 

I 1/2  53.5 49.1 - 131.4 31.5 162.9 - 
I 1 137.7 127.2 10.5 303.8 90.0 393.8 2.7 
I 1 1/2  339.5 190.0 149.5 616.3 134.0 750.3 19.9 
II k 51.0 49.1 1.9 95.5 31.5 127.0 1.5 
II 1 251.0 127.2 123.8 425.1 90.0 515.1 24.0 
II 1 1i 321.0 190.0 131.0 595.8 134.0 729.8 18.0 
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Since this is the analysis of the worst case there is a 

95% certainty that the average percentage improvements will 

not be smaller than those calculated. The results of this 

analysis are shown in Tables 5.17 and 5.18. 

5.3. Investigations made with Digital Simulator 

Although statistical analysis had clarified a lot, 

there still remained some doubt as to the validity of any 

conclusions that could be drawn from the experimental 

investigations; for instance, it was not immediately clear 

why the method had shown improvements in the case of the 

random series of disturbances (Series I), while none had 

been shown for the second order integrated series (Series III). 

The large experimental error encountered had made it imposs-

ible to perceive small changes taking place between indivi-

dual runs, by direct comparison of these runs. Hence it was 

decided that in the digital simulation model, a system was 

available, which by its nature would behave in more or less 

the same manner as the plant had done, and not being subject 

to experimental error, any results it yielded would be com-

pletely reproducible. This not only allowed the experimental 

runs to be repeated, but also made it possible to extend the 

investigations and to obtain better quantitative estimates 

of the improvements that were possible. 
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5.3.1. Simulating experimental runs  

In order to make the digital runs simulate the runs 

encountered as closely as possible, a number of precautions 

were taken: parameters that could be varied were given 

values used on the actual plant runs, also where practicable 

operations were performed in the same manner; for instance 

the sinusoidal perturbations were started and allowed to 

settle down before initiating optimization and noise 

inputting. As in the experimental runs the correlating 

integrator was sampled once a cycle, at which stage the 

control signal was updated; the value of the Performance 

Criterion was also noted every thirty minutes. 

Again the estimates of slope obtained from runs 

employing the simple Draper and Li optimizer were used in 

fitting the more sophisticated predictor optimizer. At 

times during the practical programme it had been found that, 

at this the fitting stage, one or more of the dynamic para-

meters took up physically unrealistic values, e.g. assuming 

a negative dead time or time constant. The way the problem 

was by-passed was by introducing constraints which caused 

the objective function being minimized to become very large 

if any were broken; this was inefficient programming because 

it meant that although a certain amount of minimization could 

take place, it did not necessarily follow that the best 

minimum available was being found. For this reason it was 
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decided to use a method of constrained optimization developed 

by Murtagh and Sargent (M6), which combines an unconstrained 

method aimed at quadratic convergence with Rosen's (R2) 

method of gradient projection. The resulting changes in the 

value of the objective function due to the new method were 

marked, but they in turn gave rise to difficulties which 

are reported further on. 

After fitting the new predictor optimizer to the 

system, the experiments were repeated as on the previous 

occasion. Besides re-running the three factorial experi-

ments of the practical investigation, two further noise 

disturbances were studied. In the first instance the power 

of Series III was reduced by attenuating each value by a 

half, and in the second case the frequency of Series III was 

reduced by making a step change due to the disturbance once 

every 180 seconds rather than once every 90 seconds. 

5.3.2. Results 

Table 5.19 shows for each run carried out with Con-

troller I the resulting parameters fitted to the Box and 

Jenkins optimizer after specified numbers of iterations. 

The constraints placed on the parameters were: 

0 	X s 1 

0 4 g 

0 	k 4  1 

where X = dead time, g = steady-stage gain of system, 
k = parameter of first order transfer function. 



TABLE 5.19 
Parameters fitted to the predictor-controllers on the basis of the estimates of slope obtained 
with Controller I. 

Noise 
Series 

Run 
No. 

Amplit 
of 
pert 
volts 

Period 
of 
pert 
secs 

No. of 
itera- 
tion 

Sum of 
sq. of 
error 

% of 
ss at 
0th 
itera- 

Parameters fitted  

A g 
. k 

Y-1 -1 'o 0 Y1 1 

I I SII.1 1. 180 0 1.81 100. .0401 .9798 O. .0195 .0199 -0.0079 
I SII.2. 1. 180 1 1.73 95.5 .0954 .9479 O. .0721 .0736 .1277 
I SII.3 1. 180 2 1.57. 86.7 .2206 .8527 O. -0.1885 .3309 .0476 

I SII.4 0.5 180 0 1.20 100. .0503 .9748 O. .0295 .0250 -0.0056 
I SII.5 0.5 180 1 1.14 95. .1087 .9677 .0419 .0984 .0760 .0863 
I SII.6 0.5 180 2 1.02 85. .2033 .9080 .0615 .0271 .2162 -0.0201 

I SII.7 0.75 120 0 .806 100. O. 1.0104 .0216 -0.0198 -0.0108 .0072 
I SII.8 0.75 120 1 .792 98.4. O. 1.0285 .0305 -0.0313 -0.0167 -0.0073 
I SII.9 0.75 120 2 .678 84. O. 1.2188 .1117 -0.0897 -0.0150 .0382 

I SII.10 1. 60 0 .0767 100. .0212 .9975 .0160 .0014 .0027 .0441 
I ' SII.11 1. 60 1 .0757 98.7 .0354 .9836 O. .0201 .0198 .0425 
I SII.12 1. 60 2 .0754 98.4 .0398 .9805 O. .0328 .0265 .0421 

I SII.13 0.5 60 0 .0565 100. .0207 .9992 .0185 .0017 .0015 .0930 
I SII.14 0.5 60 1 .0562 99.5 .0209 1.0036 .0265 .0039 -0.0016 .0918 
I SII.15 0.5 60 	. 2 .0554 98.1 .0221 1.0248 .0611 .0182 -0.0114 .0842 



TABLE 5.19 
continued 

Noise 
Series 

Run 
No. 

Amplit 
of 
pert. 

volts 

Period 
of 
pert. 
sec. 

No. of 
itera- 
tion 

Sum of 
sq. of 
error 

% of 
ss at 
0th 
itera-
tion 

Parameters fitted 

X g k -1 YO Y1 

II SII.16 1. 180 0 1.71 100. .033 .9833 O. .0127 .0165 -0.0102 
II SII.17 1. 180 1 1.64 96. .0599 .9776 .0096 .0490 .0223 -0.0603 
II SII.18 1. 180 2 1.46 83. .1272 .9454 O. .1394 .0539 -0.0369 

II SII.19 0.5 180 0 .64.7 100. .0302 .9846 O. .0099 .0150 -0.0101 
II SII.20 0.5 180 1 .635 98.1 .0282 .9433 O. -0.0016 .0474 -0.0592 
II SII.21 0.5 180 ' 	2 .604 93.4 .0323 .7874 O. -0.0261 .1796 -0.0238 

II SII.22 0.75 120 0 .416 100. .0281 .9857 O. .0080 .0141 -0.0054 
II SII.23 0.75 120 1 .297 71.4 .1706 .8388 O. .1812 .1553 -0.0489 
II SII.24 0.75 120 2 .291 70. .1808 .8144 O. .1852 .1709 -0.0297 

II SII.25 1. 66 0 .0281 100. .0211 .9892 O. .0010 .0107 .0070 
II SII.26 1. .60 1 .0113 40.2 .0485 .7223 O. .0226 .2692 .0975 
II SII.27 1. .60 2 .0111 39.5 .0488 .7152 O. .0217 .2748 .1017 

II SII.28 0.5 60 0 .0084 100. .0208 .9894 O. .0007 .0105 .0114 
II SII.29 0.5 60 1 .0048 57.2 .0362- .7481 O. .0102 .2463 .1702 
II SII.30 0.5 60 2 .0048 57.2 .0347 .7535 O. .0065 .2396 .1671 



TABLE 5.19 
continued 

Noise 
Series 

Run 
No. 

Amplit 
of 
pert. 
volts 

Period 
of 
pert. 
secs. 

No. of 
itera- 
tion 

Sum of 
sq. of 
error 

% of 
ss at 
0th 

itera- 
tion 

Parameters fitted 

x g k -1 YO 1 
III SII.31 1. 180 0 3.12 100. .0245 .9875 O. .0045 .0123 .0066 
III SII.32 1. 180 1 2.94 94.3 .0542 .9483 O. .0258 .0522 -0.0605 
III SII.33 1. 180 2 1.51 48.4 .0528 .7190 O. .2082 .1645 .0068 

III SII.34 0.5 180 0 1.32 100. .0234 .9881 O. .0034 .0118 .0111 
III SII.35 0.5 180 1 1.22 92.4 .0559 .8930 O. .0254 .1026 -0.0702 III SII.36 0.5 180 2 1.02 77.3 O. .7456 O. -0.0080 .1819 -0.0745 

III.  SII.37 0.75 120 0 .622 100. .0235 .9880 O. .0034 .0119 .0087 
III SII.38 0.75 120 1 .519 83.4 .0833 .8658 O. .0561 .1243 -0.0903 
III SII.39 0.75 120 2 .188 30.2 .2897 .5542 O. .2498 .3699 -0.0421 
III SII.40 1. 60 0 .0600 100. .0205 .9895 0. .0005 .0105 .0367 III SII.41 1. 60 1 .0067 11.2 .0275 .3673 0. .0064 .5374 .1660 III SII.42 1. 	i 60 2 .0066 11.0 .0775 .3584 O. .0049 .5415 .1675 

III SII.43 0.5 60 0 .0148 100. 	.0205 .9895 O. .0006 .0105 .0420 III SII.44 0.5 60 1 .0026 17.6 	.0480 .6744 O. .0078 .2822 .3915 



TABLE 5.19 
continued 

Noise 
Series 

Run 
No. 

Amplit 
of 
pert 

volts 

Period 
of 
pert 
secs 

No. of 
itera- 
tion 

Sum c( 
sq. of 
errot 

% of 
ss at 
0th 
itera- 
tion 

Parameters fitted 
 

X g k Y -1 YO 0 Y1 

IV SII.45 1. 180 0 2.01 100. .0280 .9858 0. .0078 .0140 .0024 
IV SII.46 1. 180 1 1.91 95. .0657 .9751 .0029 .0424 .0357 -0.0573 
IV SII.47 1. 180 2 1.08 53.8 .4570 .9290 .1327 .4161 .2334 .0352 

IV SII.48 0.5 180 0 .652 100. .027 .9862 0. .0069 .0135 .0073 
IV SII.49 0.5 180 1 .544 83.4 .104 .9056 0. .0744 .1034 -0.0916 
IV SII.50 0.5 180 2 .202 31.0 .391 .7190 0. .3013 .3738 -0.0073 

IV SII.51 0.75 120 0 .397 100. .0234 .9881 0. .0034 .0118 .0082 
IV SII.52 0.75 120 1 .324 81.5- .0695. .8737 0. .0396 .1229 -0.0690 
IV SII.53 0.75 120 2 .0769 19.3 .2717 .4983 0. .1518 .4640 -0.0125 

IV SII.54 1. 60 0 .335 100. .0204 .9896 0. .0004 .0104 .0377 
IV SII.55 1. 60 1 .0078 23.3 .0379 .7049 0. 	' -0.0024 .2610 .1492 
IV SII.56 1. 60 2 .0076 23.0 .0383 .6972 0. -0.0026 .2666 .1512 

IV SII.57 0:5 60 0 .0088 100. .0203 .9896 0. .0003 .0103 .0467 
IV SII.58 0.5 60 1 .0017 19.3 .0309:  .7659 0. -0.0023 .2071 .3671 



TABLE 5.19 
continued 

Noise 
Series 

Run 
No. 

Amplit 
of 
pert 

volts 

Period 
of 

secs 
perttion 

No. of 
itera- 

Sum of 
sq. of 
error 

% of 

0th 
itera-
tion 

ss at  
Parameters fitted 

A g k Y..1 YO Y1 

V SII.59 1.00 180 0 1.87 100. .0282 .9857 O. .0080 .0141 -0.0056 V SII.60 1.00 180 1 1.16 61.5 .0474 .9499 O. .0365 .0442 -0.1587 V SII.61 1.00 180 2 1.05 56.2 O. .8583 O. .0542 .0847 70.1231 
V SII.62 0.50 180 0 .360 100. .0358 .9820 O. .0154 .0179 -0.0169 V SII.63 0.50 180 1 .210 58.4 .1453 .8579 O. .1231 .1416 -0.1437 V SII.64 0.50 180 2 .134 37.2 .0666 .6830 O. .2957 .3200 -0.1265 
V SII.65 0.75 120 0 .341 100. 	.0240 .9877 O. .0040 .0121 -0.0039 
V SII.66 0.75 120 1 .227 66.5 .0492 .9028 O. .0277 .0888 -0.1216 
V SII.67 0.75 120 2 .122 35.6 .0608 .5546 O. .0486 .4336 .1418 

• 
V SII.68 1.00 60 0 .040 100. .0209 .9893 O. .0009 .0106 .0008 
V SII.69 1.00 60 1 .007 17.5 .0261.  .9088 0. .0034 .0691 .2447 
V 5II.70 1.00 60 2 .003 7.5 .0360 .7734 O. .0096 .1790 .5614 
V SII.71 0.50 60 0 .009 100. 	i 	.0209 .9893 O. .0010 .0107 -0.0023 
V SII.72 0.50 60 1 .005 55.5 	i O. 1.2320 O. -0.0216 -0.2253 .1779 
V SII.73 0.50 60 2 .004 44.4 	O. 1.7540 O. -0.0669 -0.7226 .4221 



197. 

Because of the need for starting the hill climbing routine 

used in fitting the new control parameters some distance 

away from the constraints, it was not possible to use the 

parameter value of the first controller as the starting point. 

Hence no evaluation was generally available of the sum of 

squared errors due to the simple optimizer, though it is 

assumed that the values given at the end of the zeroth 

iteration are a good approximation. Values of the sum of 

squared errors are also given in the table for each con-

troller fitted, together with a term specifying them as a 

percentage of the sum of squared error at the starting point. 

It is noted from this last factor that the proportional 

reduction obtained in the sum of squared errors at specific 

iterations increases with decreasing period of perturbation 

and with decreasing randomness of the disturbance. It is 

thought that the first is true because greater amounts of 

information are available, while the second factor follows 

because the disturbance being modelled is smoother. 

The values of the Performance Criterion obtained during 

the simulations are listed in Table 5.20; they are broken 

down into groups which depend on the noise series used, the 

frequency of perturbation and the amplitude of perturbation. 

The run numbers define whether Controller I or II was used; 

also given for each type of noise are the results obtained 

from simulations in which the system was disturbed, but no 



Table 5.20:- 

Values of the Performance Criterion obtained for different runs 

Noise 
Series 

Run 
No. 

Performance Criterion Improvement % Improvement 

1/2h lh 11/2h 1/2h lh lkh kh lh 11/2h 

I ' 	No 163.3 453.7 605.7 
Control 

I SI.l 215.7 424.4 615.5 
I SII.1 
I SII.2 249.2 452.9 657.0 
I SII.3 281.2 659.4 860.7 

I SI.2 193.9 386.8 566.6 
I SII.4 
I SII.5 216.6 393.7 586.4 
I SII.6 216.1 481.8 679.3 

I SI.3 168.4 378.7 538. 
I SII.7 
I SII.8 168. 394.3 547.9 0.4 0.2 
I SII.9 167.5 378.7 564.2 0.9 0.5 

I SI.4 165.1 389.1 541. 
I SII.10 
I SII.11 166.1 344.4 555.7 44.7 11.5 
I SII.12 166.1 343.9 555.7 45.2 11.6 

I' SI.5 164.2 409. 556.4 
I SII.13 
I SII.14 165.4 338. 578.7 71. 17.4 
I SII.15 , 
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Noise 
Series 

Run 
No. 

Performance Criterion Improvement % Improvement 

1/2h lh 11/2h 1/2h lh 11/2h 3/411. lh 11/2h 

II . No 237.7 343.6 426.2 
Control 

II 51.6 199.3 466.2 577.9 
II SII.16 198.1 468.2 577.9 0.8 0.4 
II SII.17 196.9 396.7 524.2 2.4 69.5 53.7 1.2. 14.9 9.3 
II SII.18 195.4 478.6 590.6 3.9 2.0 

II SI.7 206.2 396.5 496.6 
II SII.19 
II SII.20 205.0 361.0 465.2 1.2 35.5 31.4 0.6 9.0 6.3 
II SII.21 197.1 432.1 537.6 9.1 4.4 

II 	' SI.8 208.1 389.7 481.8 . 
II SII.22 
II SII.23 193.6 366.3 489.6 14.5 23.4 7.5 6.0 
II SII.24 • 

II SI.9 216. 353.3 437.0 
II SII.25 214.6 361.1 446.4 1.4 0.7 
II SII.26 197.6 517.3 717.2 18.4. 8.5 
II SII.27 197.1 526.2 733.1 18.9 8.8 

II SI.10 225.1 346.5 428.2 
II SII.28 224.1 352.4 433.8 1.0 0.4.  
II SII.29 211.8 484.3 708.8 13.3 6.0 
II SII.30 

1 
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Noise 
Series 

Run 
No. 

Performance Criterion Improvement % Improvement 

1/2h lh 11/2h 1/211 lh 11/2h 1/2h lh 11/2h 

III , 	No 
Control 

329.3, 791.6 1257.5 

III SI.11 352.0 939.4 1609.6 
III SII.31 
III SII.32 350. 881.1 1462.6 2.0 58.3' 147. 0.6 6.2 9.1 
III SII.33 420.4 1311.3 2269.4 

III SI.12 336.8 867.2 1490.8°  
III SII.34 
III SII.35 334.8 831.6 1383. 2.0 35.6 107.8 0.6 4.1 7.2 
III SII.36 335.9 836.1 1391.8 0.9 31.1 99. 0.3 3.6 6.6 
III SI.13 338.7 825.9 1405.9 
III SII.37 
III SII.38 334. 752.6 1197.5 4.7 73.3 208.4 1.4 8.9 14.8 
III SII.39 341.1 981.3 1584.1 

III SI.14 336.4 798.2 1336.9 
III SII.40 341.4 838.7 1479.0 
III SII.41 369.6 1153.1 2110.8 
III SII.42 

III SI.15 332.6 787.2 1293.9 
III SII.43 335.1 804.9 1365.4 
III SII.44 357.0 1112.7 2070.4 
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Noise 
Series 

Run 
No. 

Performance Criterion Improvement % Improvement 

1/2h lh 11/2 h 1/2h lh 11/2h 1/2h lh 11/2h 

IV No 
Control 	, 118.7 459.5 606.6 

IV SI.16 151.3 455.2 726.3 
IV SII.45 : 
IV .SII.46 150.1 393.1 622.2 1.2 62.1. 104.1 0.8 13.6 14.4 
IV SII.47 276. 1140.7 2048.9 

IV SI.17 132. 436.2 671.4 
IV SII.48 
IV SII.49 132.9 392.1 619.8 44.1 51.6 10.1 7.7 IV SII.50 202.5 1018.4 1565.3 

IV SI.18 132.7 404.9 623.5 
IV SII.51 
IV SII.52 131.7 338.5 557.7 1.0' 66.4 65.8 0.8 16.4 10.5'.  IV SII.53 191.7 351.7 822.2 

IV SI.19 123.9 408.5 595.4 
IV SII.54 
IV S11.55 145.7 557.2 1354.2 • 
IV SII.56 

IV SI.20 121.2 431.3 599.4 
IV SII.57 
IV SII.58 143.2 618.1 1510. 

I 
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Noise 
Series 

Run 
No. 

Performance Criterion Improvement % Improvement 

1/2h lh 11/2h 1/2h lh 11/2h 1/211P lh 11/2h 

V No 224.1 722.2 1532.7 
Control 

V SI.21 193.3 770.7 1136.1 
V SII.59 
V SII.60 196.3 579.3 .  758.8 191.4.  377.3 24.8 32.2 
V SII.61 192.7 636.3 805.9 0.6 134.4 330.2 0.3 17.4 29.1 

V SI.22 205.6 741.2 1319.8 
V SII.62 
V SII.63 190.9 739.1. 1156. 14.7 2.1 163.8 7.2 0.3 12.4 
V SII.64 184.8 666.9 ,  846.2 20.8 74.3 473.6 10.1 10. 35.9 

V SI23 209.5 755.9 1393.0 
V SII.65 
V SII.66, 207.7 654.5 1072.9 1.8 110.3 320.1 0.9 14.6 23.0 
V SII.67 172.0 730.2 1218.4 37.5 25.6 174.6 17.9 3.4 12.5 

V SI.24 215.9 737.6 1381.8 
V SII.68 
V SII.69 206.6 823.5 1533.7 9.3 4.1 
V SII.70 S 

V 81.25 219.6 720.8 1435.0 
V SII71 
V SII.72 219.8 775.6 1466.0 
V SII.73 

_., 



203. 

control action taken. In cases where new controllers were 

fitted but the runs were not performed blanks appear in the 

table. Where Controller II has shown an improvement over I, 

the actual and percentage improvements are shown. 

In the case of the first four series, it is noted 

that the simple optimizer which uses perturbations of 180 

secs and 1 volt gave worse results than if no control had 

been used; however, it is also seen that improvement 

occurred with increasing frequency and decreasing amplitude. 

In the case of Series II and III the optimal perturbing 

signal is never reached, although for Series I and IV it 

does appear to lie within the factorial design. There are 

three possible reasons for incurring greater losses than 

when operating with no control: should the power of the 

perturbing signal be large compared to the noise, then the 

extra losses could be due to movement introduced by this 

signal; alternatively the disturbance could be moving too 

fast for the control action to be effective, or because of 

the non-parabolic shape of the objective function too high 

a control action on the steep side may lead to a continual 

trailing of the controller on the other side. The effect 

of this latter factor is amply illustrated in the first part 

of Figure 5.8. In the case of Series V disturbances enter 

at a slower rate which results in the simple optimizer 

giving a better performance than if the system were operated 
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with no control. 

The application of the predictor controller did not 

always give improved performance; frequently the first iter-

ation in the fitting of the parameters yielded a better 

controller while the second gave a worse one. The reasons 

for this are not straightforward: it could be due to errors 

in the series arising from the stepping nature of the 

disturbances and the control action. It follows that because 

of this occurrence, the possibility of successful predictor 

optimizers existing for cases where none have been fitted 

cannot be discounted. 

In order to search for suitable predictor-optimizers 

in cases where none had been found, a slightly altered 

fitting routine was used. Previously the Murtagh hill-

climber had moved in a straight line towards the point where 

measurement had shown the optimum to be situated; this 

movement continued until such a time as either a constraint 

or a minimum was reached, then the gradient was re-estimated 

and information about the state of the minimization printed 

out. The modified routine,however, only moved a fixed dis-

tance proportional to the gradient before this was re-

estimated and information printed out. This new routine, by 

reducing the interval at which new controllers were produced, 

was used quite successfully on data which had not previously 

yielded an improved predictor-optimizer. 
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Table 5.21 shows values of the Performance Criterion 

obtained after 90 minutes of operation with a number of 

successfully updated controllers. It is seen that whenever 

the original minimizing routine has failed to produce an 

improved optimizer the stepping routine has been tried. In 

certain cases for Series II and III a third controller has 

been fitted on the basis of data produced by Controller II, 

while for Series V as much as a fourth controller has been 

fitted. Table 5.22 gives for each element of the factorial 

experiments the best controller that has been found together 

with the percentage improvement each controller gave over the 

basic Draper and Li optimizer. 

Series I and II do not show the same success as would 

have been expected from the experimental work, for the first 

series improvements were only noted during the first hour 

of the 60 sec perturbation runs; the gains made then were 

subsequently turned into losses during the last half hour. 

The second series does show slight improvement for the 

shorter period perturbation but again, losses were made 

during the last half hour. For the longer period pertur-

bations it is found that improvements were made when oper-

ating with Series II - V; in fact it will be noticed from 

5.22 that almost 70% improvement was obtained in one of the 

experiments with Series V. 

On the whole, the first four series studied indicate 



TABLE 5.21 

Best values of performance criterion obtained after 1 hours of operation 

SYSTEM Controller I Controller II 1 	Controller III 
1 

Controller IV 

Noise Period 
sec. 

Amp. Draper 
volts  

Min. Step 	Min. Step Min. 	Step 

I 180 1.00 615.5 657.0 698.2 . 
I 180 0.50 566.6 586.4 621.6 
± 120 0.75 538.0 547.9 549.9 
I 60 1.00 541.0 555.7 565.1 
I 60 0.50 556.4 578.7 559.2 

II 180 1.00 577.9 524.2 529.6 529.6 
II 180 0.50 496.6 465.2 498.2 509.5 
II 120 0.75 481.8 489.6 465.6 501.7 475.4 
II 60 1.00 437.0 446.4 430.4 489.5 426.5 
II 60 0.50 428.2 433.8 426.6 

. . 
III 180 1.00 1609.6 1462.6 1968.0 1454.0 
III 180 0.50 1490.8 1383.0 1711.0 1242.6 
III 120 0.75 1405.9 1197.5 1078.0 • 
III 60 1.00 1336.9 1479.0 1510.2 
III 60 0.50 1239.9 1365.4 1312.5  

IV 180 1.00 726.3 622.2 
IV 180 0.50 671.4 619.8 
IV 120 0.75 623.5 557.7 
IV 60 1.00 595.4 1354.2 671.5 
IV 60 0.50 599.4 1510.0 608.6 

O 



TABLE 5.21 

continued 

SYSTEM 1 	Controller 	Controller II i  Controller III = 	Controller IV 

Noise Period 
sec. 

Amp. 
volts 

1 Draper Min. 	Step i Min. 	Step. Min. Step. 

1 
V 180 1.00 11136.1 	i 	758.8 617.6 637.0 394.6 
V 180 0.50 11319.8 	846.2 520.4 604.8 40.2.8 
V 120 0.75 11293.0 	11072.9 682.6 661.5 
V 60.  1.00 1381.8 1533.7 	1165.6 
V 60 0.50 1435.0 1466.0 	1312.6 



Table 5.22:- 
Shows controller that gave best results for each set of conditions together with 
the percentage improvement obtained over the Draperski controller 

System Best Controller 

Noise prd 
sec, 

Amp 
volts g k IS-1 ir o 1  1 Improvement 

I 180 1.00 0. 1. 

t.0 
O
l
 	

cs1 
0

 	
0

  
0

 	
0

  

• 

•
 .
 

•
 • 	

.
 
.
 •  •

 • 	
•

 •
 • •

 . 	
•

 •
 • •

 . 
0

0
0

0
0

  0
0

0
0

0
  
0

0
0

0
0

  
0

0
0

0
0

 

0. 1. 0. 0.0.  

I 180 0.50 0. 1. 0. 1. 0. 0.0 
I 120 0.75 0. 1. 0. 1. 0. 0.0 
I 60 1.00 0. 1. 0. 1. 0. 0.0 
I 60 0.50 0. 1. 0. 1. 0. 0.0 

II 180 1.00 0.0599 0.9776 0.0490 0.0223 -0.0603 9.3 
II 180 0.50 0.0282 0.9433 -0.0016 0.0474 -0.0592 6.3 
II 120 0.75 0.0336 0.9448 0.0336 0.0552 -0.0234 3.4 
II 60, 1.00 0. 0.3451 -0.1402 0.0359 -0.0177 2.4 
II 60 0.50 0.0028. 0.9647 0.0020 0.0344 -0.0070 0.4 

III 180 1.00 0.0773 0.8313 0.0546 0.0925 -0.0737 9.7 
III 180 0.50 0.0391 0.3738 -0.0741 0.2904 -0.1455 16.7 
III 120 0.75 0.1980.  0.3185 0.1860 0.5155 -0.2325 23.3 
III 60 1.00 0. 1. 0. 1. 0. 0.0 
III 60 0.50 0. 1. 0. 1. 0. 0.0 

IV 180 1.00 0.0657 0.9751 0.0424 0.0357 -0.0573 14.3 
IV 180 0.50 0.1037 0.9056 0.0744 0.1034 -0.0916 7.7 
IV 120 0.75 0.0695 0.8737 0.0396 0.1229 -0.0690 10.6 
IV 60 1.00 0. 1. 0. 1. 0. 0.0 
IV 60 0.50 0. 1. 0. 1. 0. 0.0 



Table 5.22:- 	 Continued 	 

System 	 Best controller.  

prd. Amp % Noise sec volts A g k (....1 10 1(1 Improvement 

V 180 1.00 0.1775 0.0861 0. 0.2109 0.3523 -0.1954 65.3  
V 180-  0.50 0.2299 0.0635 0. 0.2327 0.2368 -0.1852 69.5 
V 120 0.751 0. 0.6226 0. -0.0826 0.2341 -0.1931 48.8 
V 60. 1.001 0. 0.4016 0. 0.1257 0.2646 0.0162 16.4 
V 60 0.50 0.2040 0.6839 0. 0.0279 0.2785 -0.0125. 8.5 
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the benefit of using a form of predictor regulator rather 

than the simple adaptive optimizer, but the results also 

suggest that in many cases it is better not to use any con-

trol at all. Series V consists of a set of disturbances 

which move widely but much more slowly than the other four, 

and with this it is found that improvements made with the 

simple optimizer could be increased still further with the 

predictor-optimizer. 

5.4. Comparison of Experimental and Simulation Results 

When Controller T was used to correct for disturbances 

of the first three series, it was found that the values of 

the Performance Criterion were of the same order, whether 

obtained experimentally or by simulation. This would con-

firm, within the limits of the experimental error, the 

correctness of using the digital simulation model for veri-

fying and extending the experimental work. 

Although it was shown experimentally that improvement 

could be obtained by introducing a predictor-controller when 

the system was subject to either random or first order inte-

grated disturbances, it was not confirmed by the simulations. 

However, a statistical analysis has shown that the former is 

correct, and a glance at Figures 5.8 - 5.10 illustrates, 

that in these cases at least, improvements had taken place 

over the first hour which were probably increased or main-

tained for the remainder of each run. Figure 5.11 shows 
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the simulation results for Series II with a 1 volt, 180 sec 

perturbing signal; this being equivalent to the runs gener-

ating Figure 5.8, the two may be compared directly. It is 

noted immediately that there is a large change in the tra-

jectory of Controller I (figure 5.8) after 27 minutes, 

although it cannot be 

large combined change of the 

place in the previous cycle. 

runs with Series II (Figures 

negative side of the optimum 

about 16 minutes, but little  

noise and control action taking 

It is also noted that in all 

5.8 - 5.11), movement to the 

started taking place after 

or no countering control action 

confirmed this is probably due to the 

occurred until 8 minutes later when the trend of the noise 

changed direction. Both of these phenomena could be due to 

the way the Draper and Li optimizer is influenced by step 

changes (Section 2.6). In addition trajectories for Con-

troller II in Figures 5.8 and 5.11 suggest that the experi-

mentally obtained controller had probably made smaller losses 

than the simulation one, a fact which again emphasise's-the 

difficulty of fitting the best control parameter. Because 

Series I is random, it is reasonable to assume that no 

optimizer control action could make an improvement. However 

it was found that in some cases the simple Controller I can 

do better than no control, therefore for this particular 

series of disturbances further improvement should have been 

possible with a predictor optimizer, also the simulation 
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studies showed success in correcting for Series III where 

the experimental ones had not. In conclusion it is suggested 

that these failures are probably due to the weakness of the 

parameter fitting method, although another possible expla-

nation of the differences between the experimental and 

simulation results is that in the simulations the noise 

steps were always entering at the same part of the pertur-

bation cycle whereas in the other case this could not be 

guaranteed. 

5.5. Conclusions  

Because of poor reproducibility, the experimental 

programme did not yield as much information as had originally 

been hoped for; however, in the light of the results obtained, 

a clearer picture of the predictor-optimizer's performance 

would only have been obtained with considerably more work. 

Nevertheless, it was shown that the method of predictor-

optimization was successful, and over the whole factorial 

design, gave, for both Series I and II, an average improvement 

of about 10%. Unfortunately no improvement was obtained 

with the highest frequency perturbation signals or in the 

case of Series III. The former was due to other distur-

bances drowning the highly attenuated signal, while the 

latter, in the light of the simulation studies, was probably 

because of the fitting technique. 
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The simulation studies of the optimization method were 

carried out using a digital dynamic model of the plant and 

peripheral equipment. It was felt that within the limits of 

experimental error the simulation runs had reproduced the 

performance of the system well enough for information 

obtained to be considered indicative of the system's behav-

iour. The method employed in fitting the predictor-optimizer 

was found to have a weakness in that minimization of the 

objective function obtained generally led to the best con-

troller settings being passed, hence frequently worse perfor-

mance was obtained when using the controller settings at the 

minimum. 

The simulation results were not consistent with the 

experimental ones in the case of Series I, although in fact 

they were more reasonable. Failure of the three longer 

period experiments to show improvement was because random 

noise, which was changing at a faster rate, was being dealt 

with, while success of the two faster period ones was due to 

the absence of system noise masking the attenuated output 

signal. All other signals were better controlled for with 

the predictor-optimizer. Finally this method of extremum 

seeking was shown to be very much better when dealing with 

noise which varied at half the rate of the original noise; 

it was found here that improvements of up to 70% were made 

over the original Draper and Li optimizer. 



215. 

CHAPTER 6  

Conclusions and Suggestions for Further Work 

6.1. Introduction 

The chapter summarizes the main conclusions reached 

in the present study. The subject matter is dealt with in 

the same order as in the preceding chapters, but the last 

section gives suggestions for further work. 

6.2. Conclusions 

6.2.1. Feasibility of predictor-optimization 

The theoretical backgrounds of the Draper and Li 

extremum seeking controller, and the Box and Jenkins predictor 

controller, were given together with a simplified method of 

modelling the system's dynamics. It was reported that Box 

and Jenkins had proposed the union of their predicting method 

with Draper and Li's adaptive optimization method, so that 

moving extrema could be followed. Although this was shown 

to be feasible, warning was given regarding the difficulties 

that could be encountered. The discrete manner in which 

estimates of the slope were obtained was shown, by means of 

simulations  to be the main cause of trouble in studying the 

dynamics of extremum seekers. Even though the systemls 

dynamics might be linear, the example showed that introduc-

tion of the optimalizing loop caused the total system to 
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become so non-linear that the change in the estimate of 

slope could give a wholly wrong indication of the direction 

in which the mean operating poiht had moved. The Second 

danger pointed out was from having a non-quadratic objective 

function; it was illustrated with an example how the best 

mean operating point was some distance from the optimum, on 

the shallow side of the hill. Finally, an algorithm was 

given for finding this point in the case of a real system 

being operated in the presence of noise. 

6.2.2. Steady-State Model of Reactor 

The plant was operated at different conditions of 

temperature and steam flow to obtain steady-state data 

describing the performance of the reactor. Subsequent 

fitting of a model to this data confirmed Price's findings 

that a four-parameter model gave an adequate picture of the 

system. The Arrhenious parameter and activation energy 

obtained to describe the rate constant agreed well with 

results obtained by Price (P6) and Kisiel (K4), but the 

parameters describing the thermodynamic equilibrium constant 

showed much better agreement with parameters calculated 

theoretically by Mars (M2) from free energy data, than with 

those yielded by Price and Kisiel's data. 

After fitting the optimal parameter values to the 

model, linear and non-linear confidence limits at the 95% 

level were evaluated. Because of the large disagreement 
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between the two regions it was concluded that the model was 

highly non-linear; also, on the basis of this and Beale's 

(B6) work, it was realized that the confidence limits eval-

uated gave no more than an indication of the true confidence 

region, althoqgh it was safe to assume that there is a greater 

than 95% certainty that the true model lies within the 

ellipsoid of the linear confidence limits. 

Comparison of the error variance for the model and the 

experimental error variance showed that although the former 

was about three times as large as the latter, the model had 

represented the date adequately. Further investigation indi-

cated that the main remaining source of error was the sensi-

tivity setting on the Infra Red Analyser; if corrections were 

made for this then the error variance of the model could be 

reduced to the same magnitude as the experimental error 

variance. 

During the experimental programme reported here there 

was no indication of changes occurring in the catalyst 

activity, although after a further programme deterioration 

was noted. Because of this it was decided to perform another 

set of steady-state experiments to remodel the reactor. The 

resulting values of the parameters fitted showed little 

change in the thermodynamic equilibrium constant, although a 

surprising drop had taken place in the values of both the 

rate constant parameters. Reasons for the differences were 
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at first sought on the macro-scale by examining for changes 

in the paricle size due to sintering, but as this was dis-

counted smaller changes in the surface were considered by 

comparing micrographs of the catalyst before and after use; 

again no teal difference was noted. At the same time 

electron diffraction pattern analysis carried out confirmed 

the presence of iron and chromium oxides but revealed no 

other compound which could possibly have acted as a poison. 

However meausrements carried out on the spent catalyst showed 

that the mean surface area was 50% lower than would normally 

be expected. Hence it was thought that the loss in activity 

and accompanying "compensating effects" was probably due to 

this. 

6.2.3. Dynamic modelling of system 

Price (P6) had obtained a dynamic model of the system 

by means of frequency response techniques; although this 

had proved adequate, the method of fitting the parameters had 

led to very large uncertainties in the values of the dead 

times estimated, also the method was considered to take up a 

lot of experimental time which would not always be available 

in industrial situations. Hence it was decided to model the 

dynamics using a pseudo-random binary signal to excite the 

system. 

Implementation of the method was carried out by 

generating the PRBS on an eight-stage shift register mounted 
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on a hybrid computer, and the outputs were recorded on paper 

tape by a data logging system. Generation of the system's 

impulse response fucntions and the fitting of parameters to 

models of given structure was carried out off-line on a 

digital computer. Again as in the case of steady-state 

modelling of the reactor, both linear and non-linear confi-

dence limits were calculated, and from the way they compare 

it is seen that the degree of non-linearity in the system's 

dynamics was considerably smaller. 

Comparison of the results obtained with the two methods 

showed that greater credibility could probably be given to 

dead times evaluated bytEing PRBS's, although it was felt 

that the time constants fitted were not as reliable. How-

ever, it was thought that exciting the system at a slower 

rate with a shorter PRBS might improve the estimates of the 

latter. 

Finally, a comparison was made of the relative amounts 

of experimental and computational time required by each 

method, and it was concluded that whereas the PRBS method 

needed about a tenth of the experimental time required by 

the other, about ten times more computing was necessary. 

Hence in deciding between one and the other the total experi-

mental and computing costs have to be considered. 
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6.2.4. Experimental implementation of the predictor-optimizer 

The method of predictor-optimization was tried out 

experimentally on the temperature side of the pilot plant 

system. While maintaining constant steam and dry gas flow 

rates, different types of disturbances were introduced via 

the temperature controller, to effectively move the objective 

function's optimum relative to the currently known operating 

temperature without changing the value of this optimum. 

Correction for the action of these disturbances was attempted 

by using the simple adaptive optimization technique on the 

temperature side. The data obtained during these runs was 

then used to design the more sophisticated predictor-optimizer. 

The original experiments were then repeated to compare the 

relative performance of the controllers. The influence of 

the amplitude and period of the perturbing signal was also 

investigated by means of two-dimensional, five point factorial 

experiments. 

Unfortunately, because of the large amounts of experi-

mental error present in the work, it was not possible to gain 

as much information from the experimental programme as had 

at first been hoped. However, it was shown that the predictor-

optimizer gave a significant improvement when dealing with 

what were assumed to be random and first order integrated 

series. It was also possible to estimate that an average 

Improvement of about 10% had taken place over the whole 
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factorial design. Although it was not possible to assess 

quantitatively the effects of period and amplitude, it was 

nevertheless found that, at higher frequencies of pertur-

bation, the large attenuation of the signal through the 

system together with the internally generated noise, led to 

a negligible correction being produced. Hence it was decided 

that the longer period signals were better. Complete fail-

ure of the predictor-optimizer occuned when dealing with a 

second order integrated noise series; this was thought to 

be due to failure of the routine fitting the predictor-

optimizer rather than to any excessive power of the distur-

bances. 

6.2.5. Simulation studies of the predictor-optimizer 

A digital simulation model of the plant and peripheral 

equipment which had been written on the basis of information 

collected during the steady-state and dynamic modelling of 

the system, was used to repeat and extend the experimental 

investigations. Although the results of the simulation 

work did not entirely agree with the experimental ones, it 

was useful in that it showed up an inherent weakness in the 

fitting routine; namely, that after setting up the objective 

function for fitting parameters to the predictor-optimizer, 

too much movement towards the minimum resulted in the best 

optimizer being. missed. It was also shown that improvement 

of up to 70% could be obtained if the rate of noise input 
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were slowed down by a factor of two. 

6.3. Suggestions for Further Work 

Since the pilot plant is readily available, it would 

be interesting to try out, and compare with results already 

obtained, the use of a continuous sensitivity method to 

estimate the parameters of the plant's dynamic model. This 

uses no special excitation signal other than disturbances 

occurring naturally in the plant and operates via an on-line 

analogue dynamic model of predetermined structure. 

The most obvious problem that arises out of the 

present work is the development of a more realistic model 

of the adaptive system's dynamics. Such work at this stage 

would appear to necessitate accurate knowledge of the system's 

actual mean operating point, which if available would of 

course tend to eliminate the problem of following the moving 

hill. 

However, in the absence of further clarification of 

the dynamics it would nevertheless seem logical to study the 

use of the Box and Jenkins predictor-optimizer in following 

the optimum of a more complicated objective function, for 

instance one requiring measurements from different points 

in the plant. Kisiel (K4) and Price (P6) have already shown 

that compensation has to be made for the differing dynamics 

of the paths from the measuring points. Using the analogue 

set up which is available at present, it is possible to 
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compensate for linear transfer functions, but unfortunately 

dead times can only at best be reproduced by Pad delays, 

and these have the disadvantage of being frequency limited. 

One possible way of circumventing the latter problem is the 

introduction of a small digital computer into the system 

so that its memory can be used in generating the necessary 

dead times. There still remain of course the difficulties 

encountered due to the dynamics, but once again the limits 

of the predicting method could be ascertained. 

Apart from the study of Wiener and Mazani (W2, W3) 

very little has been done towards the development of a 

method for analysing and modelling multivariate stochastic 

processes. When working in the time domain they suggest 

using a method which involves matrix inversion and is there-

fore unsuitable unless the size of the matrix is small; this 

means a low dimensionality series requiring little history 

and tolerating high prediction errors. However, it may be 

possible to develop this for following the moving optimum of 

a multidimensional objective function. 

Another interesting study would be the use of an 

analogue model of the system in a feedforward capacity. Again 

the effect of disturbances on the system could be investi-

gated, although initially it would be more convenient to use 

low frequency noise in order to reduce the effect of plant 

dynamics, as further information is obtained so the frequency 
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could be increased and compensation for the dynamics intro-

duced. A further refinement would be the introduction of the 

sensitivity method to update parameters in the analogue model. 



Ti 	 T2 
p 	1/T2J 1/Ti  fp 	 p 	TI  - T2 
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APPENDIX 2.1. 

Derivation of the difference equation for representing a 

second order transfer function of the type shown in equation 

2.4.7. 
1 

Transfer function =  	(A2.1.1) 
(Tip + 1)(T2p + 1) 

1 	1 
Response to step change = 	 (A2.1.2) 

p 	(Tip + 1)(T2p + 1) 

Breaking (A2.1.2) down into partial fractions 

Finding the inverse 

= 1 	1 	iTie-t/T1 	T2e-t/1 
T1  - T2 I. 

from which the generalized weighting term is obtained: 

- T2e
-(i-1)T/T2(4 _ e -T/T2)) 

where T is the sampling interval. 	(A2.1.5) 

By definition the output from the system at time nT is 
00 

= 1 1. . x 	. 	 (A2.1.6) 

Using (A2.1.5) and 02.1.6) we can obtain 

Y n+1 
	wixn  Ynie—T/T

i 	e—T/T2) _ 	—T/T1  e-T/T2) 

1 	(Ti(1 
— e—T/T1)e—T/T2 

Ti — T2  

— T2(1 — e—T/T2)e—T/Tlx
n-1  

Putting oi  = 	e  T/Te7 ), 
(A2.1.7) is found to convert to 

(A2.1.4) 

Wi 	Ti - T2 I

—(i-1)T/T1 Tie 	(1 —e—T/T1 ) 

(A2.1.7) 



226. 

Yn+1 
	

Yn((1 	81) 	(I - 8 2)) - Yn-1 	- 	- 82)) 

	 f(T101 	T202)xn  
T1 - 

/3, 	- 	- T2 02  3.))xn-1} 
which in turn converts to 

(01 	+ 	(1 	- 	01)L) (52 	+ 	(1 

1 
ii (T101 

- B2)e)yro.1  

T202)xn  

(1 	- 	82) 

f 

- T2132(1  

i - 

81))xn-il 

x 
n 

T2ki)xn _11 

(A2.1.8) 

(A2.1.9) 

TI - T2 

- 	(T181 

Finally 

(1 	+ kl6)(1 	+ k2A)yri+1  
T i - T2 	tt

r  
02 	81 	j 

(Tik2  - 
(1 - 0.) 

where k
j si  

APPENDIX 2.2. 

(N2.1.10) 

   

The output signal from the correlator is derived 

analytically for the system illustrated in Figure 2.2 in 

which a first order transfer function is followed by a 

quadratic objective function and the optimizer. The input 

signal to the system is made up of a sinusoid and D.C. signal 

which have achieved steady-state and a step change which has 

occurred recently enough for its transients to influence 

the output. 
1 

Tip + 
1st order transfer function = 



2nd component = sin (wt 

1/4 1 	w2T1 2 

- ) (A2.2.3) a 

sin (wt-0) + bH(t-a) 
w2T

1 
 2 

{1 	9- (t -a ) MI} (A2.2.5) 

Complete signal = x + a 

/1 + 
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Input signal = x + a sinwt + blgt - a) 

where x = mean operating point 

a = amplitude of sinusoid 

w = angular velocity of sinusoid 

b = magnitude of step change 

H(t-a) = Heaviside function, step of + 1 occurring at 

time t =a 

Because the transfer function is linear each component of 

the signal may be considered separately. 

0 . output from transfer function 

1st component = x
(( 	

(A2.2.1 

/ 1 	1 2nd component = a{e-t  -T- + 	sinwt - coswt) 	(0711  

Tiw 	1 + w2T12 
(A2.2.2) 

However because the sinusoid has been established for a 

long time the transient term is ignored. 

where (1) = sin-1 { 	

+ w2T1 2  

3rd component = bH(t - a) fl - e-(t-a)/T9.  (A2.2,4) 

w T 

The quadratic function is taken to have a maximum and is 

described by By2, where y is the 'operating point. 
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. output from non-linear element 

	

a2 	2xa 	sin (wt - 0) = 0{x2  + 	sine (wt 	0) +  	
1 + w2T12 	✓1 + w2T12  

)+ b2H(t - (1)[ 1 - 2e-(t-a)/T1 	e-2(t-a)/T1  

+ 2x2711(t - a)I 1 - e-(t-a)/T1) 

2ab  
	 H(t 	a)( 1 - e-(t-4)/T1  Jsin(wt 	0)} 

	

1 + w2T12 	 (A2.2.6) 

The transfer function of the high pass filter 

TFP 
(A2.2.7) 

 

T
F
p + 1 

Considering each component separately 

1st component = 13x2e-t/TF 	= 0 	(A2.2.8) 

2nd component = 	sa
e
-t/TF 

1 + w2T1 2  2 

1  [(cos20 2wT
F
sin20)e-t/TF  

1 + 4w2TF2  

- 2wT
F
sin(2wt - 

+ 4w2T2cos(2wt 	20))). 

4w2T;cos(2wt - 240} 	(A2.2.9) 

3rd component = {- (wT cos+ sinoe 
Zraa 	1 	 -t/TF  

/1 4. 432T12 1 + w2TI, 

2 	+ w2T12 	+ 4w2T
F
2{ 	,sin(2wt - 20) 

a2 	1 	1  2(021,,  

+ coT cos(wt - 0) - w2T2sin(wt -.0)} 
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- 	2,a8 	1  foapcos(wt - 	+ w2Tp2sin(wt - 
1 + W2T 2  

W 2T12 	 (A2.2.10) 

In the above three equations, the simplifications were 

possible because the signals had long been established, 

and so the transients could be ignored. 

4th component= Ob2g(t - 

+ 

2  

a) 
f 
e-(t-a)/Tp 

(Tpe-(t-a)/T1  - Tle-(t-4)/TF) 

-2(t-a)/Ti 	_ 11.1. 	-1t-a)/TF)} 

TF  TI 

1 

- 	
271 e {-"

m 
 Fe 	.2 TF ): 	(A2.2.11) 

5th component = 2bxH(t - 1 [TEe-(t-a)/T1 a)fe-(t-a)/TF 
TF - TI 

- Tie-(t-a)/TF)}(A2.2.12) 

6th component - H (t -a) {e-(t-a)/TF / 2ab  

1 + w 22,1 2 

1 	
1 - TF/Ti 

+ 	)sin(wa - 0) 
1 	+ w2T 

F 
 2 (TF/T1 _ 1)24. w2T2 

[ 	

F  + 	F 

1 wT 

	wT 
,  

+ w2T 2 	(TF/Ti _ 1)2 + w2T2) COSNO - 0 ] 
F 	F 

F  

	

wT 	w2T  2 
+ 	cos (wt 	0) + 	F 

	sin (wt - 0 
1 + w2TF  2  1 + w2T 2  F  

wT
F 	 _ e-(t-a)/Ti 	cos(wt - 0) 

t(T /T1  - 1)2  + w2T2  F 	F 

T 2/T2  - T /T + w2T2  
F  sin(cot F 	1 	F 1 	

- (P )11 
+ 

(rE/T1 _ 1)2 .1. w2T  2 
F 	(A2.2.13) 
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Each of these components now has to be multiplied by the 

correlating signal sin(wt - 0 and integrated from 0 to 2n, 

or a to 27r if a is greater than zero. Addition of the 

outputs from the integration then gives the estimates of 

gradient being sought. 
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APPENDIX 4.1  

Correlation Analysis 

So as to assess the dependence of the steady-state 

model's error on the parameters being measured a correlation 

analysis was carried out on both Price's (P6) data and the 

data contained in Chapter 4. 

Some examples are given below: 

Price's data 

Normalized variance-covariance matrices before correcting 

for sensitivity: 

% CO v error 	steam flow v error 	temp v error 

1.0 0.852 'P1.0 0.750 1.0 - 	0.264' 

0.852 1.0 0.750 1.0 - 0,264 1.0 

after correcting for sensitivty: 

% CO v error 	steam flow v error 	temp v error 

1.0 0.0003 1.0 - 0.388 1.0 0.169 

0.0003 1.0 - 	0.388 1.0 0.169 1.0 

1st section of 1st data 

Normalized variance-covariance matrix before correcting for 

sensitivity; 	% CO v error 

[

1.0 	0.724 

0.724 1.0 

after correcting for sensitivity: 

% CO v error 

1.0 	0.024 

0.024 7.0 
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