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ABSTRACT

The magnetic susceptibility of some dilute
alloys has been measured between 2 arnd 300°K by a
force method,. The investigation has been concerned
mainly with solid SOiutions of 1 at.?% or less of the
elements of the second half of the rare-earth series
in silver or gold, in order to study local moments on
the impurity ions. The observed departuvesof the
susceptibility from a éurie~Weiss behaviour can be
understoﬁd and fitted primarily in terms of crystal,
field effects. In some of the more concentrated
alloys the effects of inter impurity interactions

can be seen,

Measurements have also been made on Pd ard Pd
based alloys, in particular on some PdNi alloys in
view of the recent theoretical and experimental interest

in this system.
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INTRODUCTION

Over the past decade much theoretical and experimental
effort has been directed towards investigating the
changes in electrnnic structure which ocsur when an
impurity atom is introduced into a metallic host.
Typically, in the case of dilute alloys of noble metals
containing impurities from the 3d transition series, the
bulk of the experimenta: evidence indicates that the
inherent screening of the excess or defect charge of
the impurity is accomplished by electroms in ‘virtual!
states., In spite of this, many theoretical approaches
still regard the situation as being similar to that of
a paramagnetic ion in an insulating matrix, where the
impurity has a well defined magnetic moment associated
with it. Such an approach is more likely to be appli~
cable to the same solvents containing rare-earth -
impurities.

For such a2 model, the most influencial factor
effecting the magnetic properties of the dilute
alloy will be the cubic crystalline field of the noble
metal host. This will raise the angular momentum

degeneracy of the impurity f~electron terms, an
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immediate consequence of which will be that the
susceptibility associated with all non S-state impurities
should exhibit departuvres from a Curie-law behaviour
in some temperature range.

Data showing such characteristics are preceunted
in this thesis, the interpretation of which is indeed
discussed primarily in terms of empirically fitted

cubie crystal field parameters.
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CHAPTER 1

FACTORS CONTRIBUTING TO THE SUSCEPTIBILITY OF PARA
' AND DIAMAGNETIC MATERIALS.

1. Magnetic susceptibility

The mogt natural way to classify the magnetic prope;ties of a
material is by its response to an applied magnetic field, This
response is characterised by the susceptibility X in the relation

o=y & 1.2
where ;: is the magnetisation and il the applied field. In
general ¥ can be a function of both il and the temperature T,
If the material is magnetically isotropic, m and H are parallel
and ¥ is a scalar; for magnetically anisotropic materials Y
is a tensor., As equation (1.,1) indicates, when the magnetisation
is a linear function of the applied field the susceptibility will
be independent of the field,

The experimentally determined susceptibility of dia and
paramagnetic materials is the result of several contributing factors,
these are listed below:-

(i) The alignment of permanent moments by the applied field,

(ii} The "Van-Vleck' term, arising from the perturbing effects
of the appliad field.

{iii) Core diamagnetism,

{iv) Fauli spin paramagnetism.

(v Conduction electron diamagnetism,



2. The Hamiltonian for an atcmic system in a magnetic field

Or a simple basis, the Hamiltonian /f for a free atomic

systeu may be written, in the usual notation, as

i=3

n
H o= . X (-hﬂzv?)ﬂuv

electrons 2

where V is some potential function, The application of a

magnetic field to such a gystem can be taken into account by

replacing the operator (-iV ) by (-iV - eﬁ/c); vhere A iz the

p
. L1 . . .
vector pctential”, Using this, equation (1.2) beccmes :

n ha g2 i e 0 222

-H = La R . - el 7 V vV A e - r -

4 i ( By i Mzo AV, + iﬁ) + BMiéE) + V
elactrons

When the applied field is along z, and with a suitable choice

of vector potential, eguation (1.3) becomes®

n 1712. s o5
fle D [ 72 . d8i) Y- NP -
B - C Zmivl 2mic H (YI&xi xi ayi) +
3=
electrons e_sz (xi2+yi2)] .V 1ok
8mj c2

Assuming that the extra terms in this Hamiltonian can be treated

by perturbation theory, and tinat a series development of the field

strength dependent energy En is applicable, i.,e. :

i

E 2.+ up'?) . 2@

L . . . 1.5
njin njm njm njm

Van Vleck2 has shown that the average magnetic moment, Eﬂnjm,

associated with a given stationary state, the average being defined
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as 32 T
n = . : = v S1M
D g =<n,jym|m | n,jm> = - SEJ“
is given by ¢
o 2
< ni v ntitm! >
Mg =<n,j,m, ‘m;_ [ n,j,m>+ 24 2 I =7 ’EmHl = m?«‘ ]
S n'-j'm'#njm n'j'm’ ~ njm
?
Zoei” 2 2
- H < 3 ¥ --L— - > 1'
n,j,m | 1 lgnicz (xi + yi)r n,j,m 6

The total magnetisation is the statistical mean over ali eigenstates

~Enjm/kT

weighed according to the Boltzman factor e , and multiplied

by the number N of atoms per unit volume’' (to give the volume

magnetisation ¥, say )

. . -Enjm/ycT
o= N &< Mdem oy ndm>e 1,7
nja ——"
A o ~Enjm/KT
njm
Conzidering only that part of the susceptibility which is

independent of the field strength, the development of equations

(1,6) and (1,7) lead, in Van Vleck's notation, to

o .,
r=B 5 ',<jm| gy | jm>12 oE njm/jp
kT gm
2 -g°
l<mluylgrmr>]® ™% njm/kr
+ o]
jmr.gj'm: En!jlml - Eonjm

. . 2 -E’njm/kT 2 .,
+ 2B 5 | < njm lmHoln'JlnP I e _ Ne Z(I‘ )

- o o)

jantitnt  EC, ., . = EC. 6me 1.8
v nt'jtmt njm

(n'#n)
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The first term in equation (1.8) corresponds to (i) in
the list of factors contributing to the susceptibility, the
magnitude of its contribution will depend on the temperzture and
on the distribution of moments over the various states. The
second and third terms in (1.8) correspond to (ii); again the
magnitude of their contribution depends on the detailed nature of
the system, however at sufficiently high temperature its contribution
is zero, The final term in equation (1.8) corresponds to (iii}
in the previous listj; as this equation indicates the evaluation
of the diamagnetic contribution from the core requires an estimate
of (ré), the timg averaged value of the square of the radius of the
electronic orbit, A typical magnitude for this term is 16?e.m.u/gm.
For later application it is instructive to consider the
modification of equation (1.8) in situations where energy changes
associated with changes in the quantum numbers n and j are very
mucht: larger than thermal energies (kT). Neglecting the diamagnetic

terms this restriction reduces (1.8) to:

B . . -E%n;
% =wr &< Iy PHIJm>[2e njm/kT
m .

i I
i< njmjmoﬂlnjm'>{2e-E njm/kT

mZm!'  E°njm' - E°njm

+ 2B 1.9

If the further restriction that energy changes associated with

changes in the gquantum number m are very small compared with kT
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is added, then the previous equation becomes:

2.2 '
N J(J+1)
X = -“g'—%-l-gf—‘-— 1, 10

where g is the Lande factor, P the Bohr magneton and J the total
angular mnomentum guantum nunber.

This egquation is often used to define an effective moment neff

2 2  ———
N Ic
¥ = _p‘éf 8 thug peff= ’I\}%ﬁ c
3kT

where C is the slope of the (%'vs T) plot in the high temperature

as?

region, If the susceptibility per mole is used, then
neif= 2,839 /C Bohr magnetons, 1,11

B Pauli spin paramagnetism

The application of a magnetic field to a free electron gas
causeS a redistribution of electrons between the spin up and
spin down states, as a result of the energy difference of 2B8H
induced by the field between the two spin orientations,. This
redistribution results in an excess number of electrons being
oriented parallel to the applied field, H, producing a magnetisation

per unit volume, M, given by3:

(d+

_ 33 (T 3/2 Hy _ -
M= (Tf) (Fy %t ) F%(“—ﬁ—k,r“)] 1.12

where Tf is the "'degeneracy temperature", o the chemical potential,

N the number of electrons per unit volume and Fk(ﬂ) the
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appropriaie Fermi=Dirac integral,
At low temperatures equation (1.,12) reduces to :

X -1 1,13

volume 2kT,

(this is roughly equivalent to 10“7e.m.u/gm for the noble metals).

While in the classical, high temperature, limit:

2

Volume = KT 1.1k

For the case cf electrons in metals, obeying Fermi-Dirac

statistics, the volume susceptibility at temperature T nct too

large compared with Tf may be written4:
2y 2
UxT)%¢ 4
X ~  2BN(E )[1+ ~—=—) =_ (log N(E)) ] 1.15
volume £ 6 dEz B:E.

i
where N(E} is the generalised density of states per unit volume.
Equation (1,15) reduces to (1.,13) when N(E) is taken as the free

eleciron density of states.

Lo Conduction electron diamagnetism

If the conduction electrons are treated as a fres electron
gas, then application of classical mechanics indicates that the
diamagnetic susceptibility is zeros. This result rests essentiaily
on the fact that the magnetic forces do no work and hence the
energy for more generally the free energy F) must be field

independent, Consequently the magnetic moment, which depends on
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the derivative of F with respect to H, is zero. Indeed, cn the
clessical basis the combined effects of the Curie-like paramagnstism
ant. the core diamagnetism can be shown to vanish at all field
strength,

On a quantun mechanical basis the situation is quite different,
The application of a magnetic field to a free electron gas resuits
in the electrons moving in quantized orbits about the field
direction. Under these conditions, whether the electron gas is
treated as degenerate or non-degenerate, the magnetic moment
given by:

no= - (fib 1,16

is non-vanishings For the non-degenerate case, in the classical,
. - : 6
high temperature limit, the volume susceptibility can be written :
5 .
R - HL 1,17

X e
volume 3 kT

vhich is exactly one third of the Fauli spin contribution,
equation (1,14), in the same limit,

When the electron gas is regarded as degenerate, and conseguentliy
treated with Fermi-Dirac statistics, the volume susceptibility
becomeg:

.k 3N1/3 2 ;
X@olume 3hd (ﬂ ) B 1,18
where m is the electronic mass. This is the Landau formulaj

. . . -7
its magnitude is of the order of 20 'e.m.u/gm,
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The type of modification likely tc¢ be introduced by the
periodic lattice field has been investigated by Peierls7; using
wave functions obtained from the tight binding approach this
author has obtained an expression for the volume susceptibility

which, when the electronic energy E can be written as:

E =B (ak 2 4 b2 4 ¢k 2) 1,19
- xz b&y‘ z ®

has the form:

N .1/5(ab) 2 1/3 .2 |
?ﬁ“ﬁ(—ﬁ-) /)E%]/Bﬁ 1420

volume

For free electrons equation (1,20) reduces to (1,18),

The above equation indicates that the conduction electron dia-~
magnetic susceptibility can depend strongly on the position of the
Fermi surface relative to the zone boundaries.,

The diamagnetism of Bloch electrons has been considered in
sone detail by Hebborn et a18, who have considered a system of
non interacting Bloch electrons subject to a magnetic field H
given by:

H = (o, 0, Ho cos Ky)
with an associated vector potential

A = (- -:Hg- sin Ky, 0, 0) 1.21

Using this form of vector potential in equation (1,3) shows that

the Hamiltonian for the probelm can be expressed in the form:
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where ﬂb is the field free Bloch Hamiltonian, and# _ and E

1 2

are the magnetic perturbing terms given by:

2y 2
-2 BHo %y

. x - a—
4, = 21{3%_9 sin Ky gt and H =13 K2

Using Maxwell~Boltzmann statistics the field independent susceptibilitw
is calculated by using the term in_Boz in the expansion of the
energy~trace exp.{~*/kT) - in powers ofif1 and;Hzg. At the end

of the calculation X is allowed to tend to infinity so that the
respense to a steady field is examined, In addition a transformation
from classical to gquantum statistics is employed, The resulting
susceptibility has four contributing termsi one of these ig the
analogue of the Landau-~Feierls diamagnetism, having a form

similar to the expression given by Peierls; a second term

corresponds to atomic diamagnetism (including a '"Van Vlieck! like

term), while the remaining contributions are "mixed terms",

nunerical estimates of which have not been made.

e Effects of nuclear spin

The effect of including nuclear spin, represented by the
guantur number I and possessing an associated magnetic moment

py defined bys$

W, =93 I8s gy = the '"nuclear g factor! 1,22

is to introduce an additional contribution to the susceptibility,



Provided that the width of the hyperfine multiplet is small
compared with thermal energies (kT), then it can be shown,

uging arguments similar to those used by Van Vieck to discuss the
breakdown of PLS" coupling aﬁd its attendant effects, that the
form of the nuclear contribution to the susceptibility is the
same in either case of J and I remaining coupled or becoming
decouplied, The inclusion of this contribution into equaticn

{1,10) modifies the latter to:

2
N o2 2
X = e [o;°0(d+1) + g,"1(1+1)] 1,23

A typical value of g; defined in equation (1.22) is 10"3, and
hence its contribution in this approximation is vanishingly
small,

in the opposite approximation, in which only the lowest
hyﬁerfine level is occupied, the contribution to the susceptibility
depends to some extent on whether hyperfine coupling is valid,

This situation will be discussed more fully later,

6, Saturation effects

Within the frame work of the assumptions leading to equaﬁion'

(1,10}, the general expression for the magnetisation, equation {1.,7),

becomes mJgBH/kT
M= NZ Za%Pe SBH/RT 125
mj X em 9



This expression may be evaluated in a closed form, giving

3 JQJﬁH
M = NJgB By (~EE~— ) 1.25

where BJ(y) is the well known Brillouin function defined by:

_ (2J+1) (2J+1)y 1 X -
BJ(y) = 23 coth [ =3 1 - 57 coth ( 2J) 1,26

The saturation moment predicted by equation (1.26) is JggB. The

Brillouin curve for Gd+++(8

87/2) is drawn in figure (1,1), the
exemple of an S-state ion has been choosen so that the effects
of crystalline fields can, for many practical considerations, be
neglected.' The curve departs from linearity at a value of HT-%
equal to 1,93K oersted per OK, i,e. at 4.2°K the magnetisation
should become non linear in the magnetic field for fields of the

order of 8K eersted, Such deviations are of some importance in

connection with later discussion,
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FIG(11), BRILLOUIN' CURVE FOR Gd.
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CHAPTER 2

A SUMMARY Ov THE PERTURBING POTENTIALS ASSOCIATED WITH,
AND TPY_CONDUCTIOK ELECTRON SCREENING OF IMPURITIES
IN A DILUTE ALLOY.

1a Dilute alloys

Inpurity atoms dissolved in some matrix are said to form a
dilute metallic sclid solution when the binary system is homogeneous
and retains the crystal structure of the host metal, Further,
tha concentiration of impurity atoms should be such that their
mutval interaction is weak, Under these conditions the propexties
of the alloy will depend on the original electronic structure of
the impurity and host materials, together with the modificaticns
of these structures resulting from the interaction of the impurity
with its nearest neighbour solvent atoms, caused by the overlap
of their outer electronic wavefunctions.

Cn entering the host, the impurity will donate its valence
electrons to the conduction band, If the number of electrong
dopated by the impurity ig different from the number donated
by each individual atom of the host, then a charge singularity
will exist at the impurity lattice site. The two most important
aspacts of this situation are:~
{i) The correct d@scription of the perturbing potential
agsociated with the impurity site. This arises due to the
departure from periodicity of the lattice field due to the

presence of the impurity, with a consequent scattering of Bloch electro:c,



(1) The redistribution of conduction electron charge
density around the impurity so that the associated charge singularity

is screened,

2o The impurity potential

A discussion of the impurity perturbing potential may be
conveniently subdivided according to whether this potential
constitutes a wealy, strong or intermediate strength perturbation
of the sgysteun,

(a) Wealk notential -~ The rigid band approximation

Under these conditions the effect of the impurity can be
ascertained by using perturbation theoryll. This indicates that
AE, the first order change in energy of Bloch conduction electrons,

given by the expectation value of the perturbing potential Vp,
is independent of the wave vector k labelling the conduction IIJ“}Ls(r)
electron states, provided that the associated state function

can be written as

WE(_I:) = ﬂfo(g) otEE 2,1

with W;(g) showing little dependence on k, and that Vp varies
slowiy in distances of the order of k-i. linder these conditions
the energy of every state in the band is changed by the same
amount, Consequently the relationship between the density of

states in the alloy Na(E) and in the pure metal Nm(E) is
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Na(E) = N (2 + AE) Ze2

Fig.(2:1)

N, ()
1,(B)

From Ref, 12,
n_

The effecis of a strong impurity potential have been treated

{pb) Strong votential

d

by Koster and Slateri). These authors have investigated the casa
of a perturbation localised on one lattice site, and have calculated
its effects on the wavefunctions of a single band in a simple cubic
lattice using a Green's function technique. The energies of the
unperturbed lattice were taken as @

£ = E{o) + 2E(1)[cos ¥R + cos kyR + cos kZRJ 2.3

The results of the calculation indicated that a bound state is

removed from the top or bottom of the band, depending on the sign
of the perturbation, when the expectation value of the perturbing
potential exceeds LE(1), The state function of this bound state

in the region outside the potential well of the impurity having the
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e-ar - 2e l.&

where « is a pzrameter depending on the energy difference between
the bound state and the bottom (or top) of the well., Equation
(2.4) indicates that as the depth of the well increases the state
function of the bound state becomes increasingly confined t- the
welly falling off increasingly rapidly in the exponential region
outside, Consequently, for an extremely deep well thé state
funztion becomes negligible outside the well while inside it becomes
idential with that of a true bound state of the impurity,

When the impurity excess charge is positive with respect to
the matrix, and the potential of sufficient strength, a bound state
will be formed below the bottom of the conduction band, This
state will be filled by an electron from the band, In the opposite
situation, with a state pushed above the Fermi level, it becomes
energetically unfavourable for an electron to remain in this state
and this will consequently be donated to the band, In each case
the charge difﬁefence between the impurity and the matrix will be
reduced by one,

This concept of the emptying of a bound state pushed above the
Fermi ievel has been used by Fr:i.edel11 to explain the difference

in average impurity moment of Cr and Mn in Ni,
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(¢} Intermediate strength potentials

As the strength of the impurity potential, initially strong
enouch to remove a bound state below the conduction band, is
reduced, the state rises in energy and, according to equation @.1)
becoimes spacially more extended. If the impurity potential is
sufficiently reduced in strength, this state crosses the bottom
of the conduction band and merges into the continuwin of extended
band states, Interaction can then take place between the state
and the conduction band statéé éf the same energy and appropriate
symnetry, causing the former to become broadenéd in space and
energy - it becomes what Friedel terms a virtual bound state,

This situation is analogous to the virtual binding of a
particle of energy E incident on a double potential barrier of

gl

height V, > . The situation is depicted in figure (2.2).

b
The usual spatial variation of the state~function is shown in
figure (Z.Za), but for certain values of the incident energy the
variation shown in iigure (2,2b) can occur, which corresponds to
the situation above, The oscillatory nature of the state~function
over all space outside the well corresponds to the fact that ln
"real! situations, having entered the conduction band, the state
can no longer be described as truly bound since it is charactericed

by positive kinetic energy throughout the whole lattice,

In reality, potential barriers of the kind represented in
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‘

figure (2,2) can arise from the modification of some attractive
potential function V(r) by the centrifugal potential term appearing
in the radial wave equation for a partial wave of angular momentum
2L >0,

The finite lifetime of a virtual staté, a consequence of its
energy broadening, implies a trapping and subsequent delayed
scattering of conduction electrons. Thig effect is particularly
strong for conduction electron states of the right energy and
symmetry since these have a large amplitude in the wvicinity of
the impurity -~ figure (2.2b). The scattering can be investigated
by examining the phase shift My of that component of the extended
conduction band state of angular momentum &g. Figure (2,3) shows
schematically the phase shift £ (E) for a real and a virtual bound
state, and typifies the numerical calculations of Blandin and
Friede115. The density of states in energy for the virtual state
is obtained by differentiating equation (2,19) with respect to
encrgy, giving $

nv(E) = dZ/aE = %t % (2g+1) :—%ﬁ 2.5
thus showing that the maximum density of the virtual state,n(Eo),
occurs at the point where the @15(E) - E) curve has a point of
inflexion, Eo’ thus defined, can be taken as the centre of the
- state., Further, the width, in energy, can be defined as the

difference ni—E2 where
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Ly

(E1) = 4m (Eo) (Ea) = 3/2n (Eo)

The properties of the virtual states so defined may be summarised
as foliowsg:-
() The symmetry is determined by that of the bound state
from which it was derived,
(ii) The large amplitude of the resonating conduction band
states, when summed over the virtual state, is approximately equal
to that of the original bound state, and is related to its excess
charge.r
(:id) At a given energy E , the width of the state increases
as the amount of cqnduction bandrstate of the same energy and
symnetry increases, Thus for a given Eo the width decreases with
increasing angular momentum &h.
(iv) For a given value of ., the width is roughly proportional
to the energy Eo, measured from the top of the 'well!,

Figure (2,3) indicates that the variation of phase shift
with electron energy near the centre of the virtual level is
quite rapid, Thus the properties of an alloy having its Fermi
level in this region is highly sensitive to electron concentratione.
Indegd, a small change in average electron concentration can sweep
the Fermi level through the virtual state; this is precisely the
mechanism used by Friede116 to explain the variation in residual resistlivii:

of first row trangition impurities in Al, The broad peak around



Ci~ being attributed to resonant scattering of the Fermi electrons
of Al by the broadened d shell of the impurity as the level
crosses the Fermi level,

The concept of a virtual state split by exchange interaction
into spin up and spin down substates was qualitatively introduced
by Friede116, and has since received mathematical treatment by
severzl authors, Closely associated with this concept is that
cf a magnetised virtual state formed when one of the spin states
is fulil and the other, overlappiné the Fermi level, is partly

7 to this gituation is perhaps best

empiy., The approach of Wblff1
suited to normal metal impurities in other normal metals, while
that of Andersﬁn18 to transition metal impurities in normal metals,
As this thesis is primarily concerned with the magnetic
properiies of noble metals containing small amounts of rare earth
impurities, it seems appropriate, following the above discussion,
to formulate a preliminary description of the rare earth impurity
states in these matrices, Many properties of the rare earths =~
typically chemical bonding = indicate that the 4f shell, although
unfilled, is energetically low lying compared with the 5d and
6s shells, and its electronic wavefunctions are well localiged
within these shells, This suggests that in alloys of the above
type the Lf electrons would exist in real bound states below the

bottom of thez conduction band, in which case their associated

wavef-mctions would not be unlike atomic 4f wavefunctions, or
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in rather narrow virtual states near the bottom of the band,

This lagt conclusion ig indicated by the Anderson approach which
would seem particularly applicable in view of the well localised
nature of the ALf wavefunctions. In most chemical compounds the
rare carth's appear as tripositive ions, and in this configuration
the number of Lf electrons, for the later half of the series,

L

increaaes uniformly from 4f7 in G4 to qfl in Lu, Consequently
one would expect theseé real or virtual states to accommodate a
aumber of electrons consistent with these figures.

One final comment, Yb which occurs immediately before the end
of the series has the 4f13 configuration when it occurs as a
tripositive ion, In some circumstances it appears as a divalent
ion indicating that it is sometimes energetically more favourable
for it to complete its 4Lf shell, Effects of this type could

occur in the alloy system of interest here, and would be clearly

evident. from the magnetic properties of the alloy.

3. Screening

One approach to investigating the redistribution of conduction
elactron, charge dengity around an impurity so that its excess
- charge is screened is to examine the conduction electron response
to a time dependent perturbation, Anlr,t), of frequency w, wave

19,2
vector g, growing slowly with time constance a 9,20
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ig.r iwt at
e "=, e

Aulrp,t) = p . 2.6

ik.r

This perturbation causes the state |[ky,=¢e to becone mixed

with the state! k + g3, its wavefunction becoming:

L) = o o+ Skraldiie lx + @ 2.7
=~ B{k)~E(k+q ) +hw-itxx

The modification of the wavefunction results in a change in charge

density, Ap(r,t), given by:

AP (p,t) = G‘EE{ W}S(_{‘_,t”z -1} 2.8

occupied states
This approach can be generalised to cover real perturbations by
including the complex conjugate in equation (2.6), and further by
introducing the occupation function f£°(k), the Fermi-Dirac function,
which measures the probability of state [E”being occupied in the
unperturbed situation. The resulting Ap(r,t) has an associated
potential A® (r,t), to which it is related via Poisson's Equation.
Provided A% (r,t) has the same space and time variation asAp(r,t),
this equation can be solved for Aé(g,t) and hence, in analogy
with equation (2,6), for . However, this potential also
effects the conduction electrons, hence to make the calculation
self consistent the assumed perturbation A u(r,t) should contain
V3 (z,t) so that

A nlr,t) = A% (r,t) + AV(g,t), where & V(r,t) = Velgér.e1Wt.eat+ c.C,



igs the externally avpplied verturbation, With this modification

; 2 (k) - £°(k+a)
AN ) = q 4 ke £k Uta) 5 0
®(q,w) where € (g,w) =1+ 2 E(k)-E(k+g) Hw-i o

a alik

which indicates that the effective potential, u, acting on the
electrons is not the applied potential V, but the latter divided
by a dielectric function & (g,w).

Finally for the case of several Fourier components, such that

ig.r iwt

Avir,t) =/| Vigwle 2= ¢ dgdw

2,10

via,w) i
then A ulr,%) —/]- (a’z) eig°£e1Wtdgdw

L, Static screening

In the case of static potential w=0, Confining attention

to the region of small g, such that
| o o 3.£°
E(k-g}-E(k) ® g,V EE(Z_;) and f (k) - £ (k+gq) = -35‘-5—\7513(1_{_)
then the expression for £(g,0) becomes, on replacing the sum in
equation (2,9) first an integral over k, and then transforming to
=30

one over £ and approximating (“%g“ ) to a delta function at the
Fermi level:

€(g,0) —> 1+ 2= = n(Eg) 2,11
q .

where n{Ef) is the density of states at the Fermi level,
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Appiying these results to the problem of the screening of an
impurity of excess charge Ze yields the following expression for

the special dependence of the screened perturbation:

Zez
aAnlr) = = exp. (-ar) 2,12

. -3
where A= éﬂezn(Ef). This is the same result as obtained by Mottéqll’ZL

using the Thomas~Fermi approach, Equation (2,12) shows that
screening occurs in a distance of order M —1, hence indicating
that a high density of states at Ef is conducive to effective
screening,

Equation (2,11) is, of course, approximate, being confined to
swall values of q, i.e. to potentials that are spacially slowly
varying. To investigate the screening for all values of q it
is necessary to evaluate explicitly the sum in equation (2.9),
which would require a detailed knowledge of E(k), Within the
iree electron model, at OOK, the sum becomes an integral over

k and leads to:

. 2
€(g,0) =1 + ézgs-un(Ef)[% +

2~q2 2k _+q

.logl I] 2,13

2kf—q
where kf is the Fermi wave vector, When the screened potential

of a point charge Ze is calculated in this scheme, its spacial

dependence is given by

-

2

2
r -Q 21{ +q -7 N
o omwa2 ) 2 2 1, £ }f} ig.r 4l
wlz) = l_bm_‘e/{q +l e n(Ef)[2+ 8qu «log 5 -q jJ e dg 241l
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The singularity in £(g,0), given in equation (2,13), at
q=2k_., will show up as a comtribution to w{r) and will modify the
smooth exponen#ial decay of the screening charge density, given
by equation (2.12), into a form containing oscillations of wave

-

vector Zkfl?, which, at large distances will have the form

3

r ~cos akfr. This long range oscillation is a common feature of
different‘models set up to examine the problem of impurity
screening, Several of these models are digcussed below,
1o __F_‘g'iedel11

As indicated above, any approach to the problem of impurity
screening which is based on a Thomas-Fermi type of approximation
requires the perturbing potential Vp to vary slowly in a distance
of the order of an electron wavelength. Friedel has performed
a2 caiculation in which this restriction has been removed, and shows
that the introduction of a thin spherical potential well, of
denth Yo and radius b, into a free electron gas results in a
modification of electron density. Provided kf,b and b.(ZVo)%<<x

the change in electron density, 8p{r), as a function of the distance

r from the centre of the well can be written, in atomic units, ass

e

-16b3k bvo
Aplr) = ———I—  F(2xr) 2.15
3R t

where F(x) = X~4(xcos x -~ sin x),
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At large distances F(x) = x “cos ¥, which, although decreas’uag
-
28 x ~, oscillates in sign and indicates a comparatively long
range oscillatory behaviour. In addition to this the preceding

example shows that 'corrections' to the Thomag~Fermi approximatiou

should spread the screening charge somewhat.

Screening of a strong ;:'O’cen’ci.a.lj'j"22

The screening charge density éround a strong potential hag
been examined by Friedel by treating the conduction electrons as
free and being scattered only from the perturbing potential,

The latter is assumed to be spherically symmetric and, within the
framework of a partial wave analysis, manifests itself via a
phase shift ﬂa in the scattered partial wave component of angular
momentum <, The electron gas is pictured within a large sphere
of radius R, while the calculation shows that the number of

screening charges per unit k, N(k), is :

LR
2 _d (pp _2 aqyrdTe_ 1
N(k) :J bor” o (ap(r)ar = = % (20+1)[dk - i sin M,*®
cos (2kR+ Mg~ éx)] 2,16

The total number of screening charges, N, is given by:

kf k. a

2 z np sin Tl -

N = /N(k)dk = ’ (£ +1) f[ =" " ﬁcos(ZkR+n6 - )]
o J . o
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yielding:

N =7-t2- L (26+1) Mg(k_) + oscillating term 2,18
P f

The contribution of this oscillating term to N has been calculated
using a W,i,B, approximationzz, and shown to be negligible,

The screening problem canvbe made self consistent by equating N,
the total scrééhing charge introduced below the Fermillével by the
perturbation, te Z, the excess'cﬁarge on the impurity, This leads
to the Friedel Sum Rule:

2 2
& o= x & (2&'!'1) 'r]‘a (kf) 2,19

In the case of large r, equation (2,16) gives:

k

I

1 . . -
. Ap = = 3 {z+1) / s:.n'n651n(2kr+1’]e ox Jdk =
arge r r 4 3
& cos{2ker+@) 2,20
r3
where?

2%

2 ' 2 %
A =~?;7i{2;(26+1)(-sinn8 °°S(ﬂ6 —'zﬁ)} +[-2 (26+1)(*Sinneéin(nef%mg)]Pj

and N
5 - tan _1{:3 (2%#1)51n ﬂ&COS(ﬂﬁL‘ &) }
% (22+1) sin n@sin(n@ - &r)

o

<

Calculations of residual resistivities based on thig model are in
good agireement with experiment in situations where it is realistic

to consider the scattering potential as real i.e. non magnetic

. ces 23
impurities™,
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24

E_.in and Vosko

These auvthors extend the above approach by considering Bloch
electrong scattered by a real potential V (r) which is derived
from = self consistent calculation and includes the effects of
screening. In the asymptotic limit solutions ﬁ'k(;) of the
scattering problem are sought which correspond to an incident
Bloch wave and an outgoing scattered wave i.e.

4

p®) = A @) e, k) Bt () 2,21

Since the potential is real the seattering is elastic and

ig\;{:[.zi'l‘, consequently f(k,k') depends only on the magnitude of k,

and on the angle © between k and k', Hence>>
£, (6) = —2— (2¢+1) (21 B4 P _(coso) 2.22
k 2ik <

n
V=0

In this appromimation the excess electron density AP k(_r_‘_)

associated with If’k(g) is:

pp () { v, @ F - 19, 2}

and the total excess demsity at r, Ap(r), including the effect

k
2 f
aplx) = 25 8p () = 5 [ Ap \ (xlde
k o
which, the authors show, becomes in this.asymptotic limit:

2ik r '
Ap(g_) - =L {e £ fk(W) (uk (_:_:-_))zkf + c.c«} 2,23
T

L %3



u.. (r) being the periodic modulation of the plane wavestate e
indu:ed by including the effects of the lattice field.

In the case of plane waves equation (2.23) reduces to
equation (2,20), the Friedel result.

Kohn and Voske then evaluate the electric field gradient g
produced at a solute nucleus at rn by this excess charge density
and arrive at

q = a.8 A cos(Z?frn + @)

3 r 2

n

202L

where a is an enhancement factor which measures the increase of g
over its value in a plane wave theory without antishielding, the
latter ariging out of core polarization effectSZG. The resulting
expressions are finally applied to the problem of the broadening
of the nuclear magnetic resonance line in Cu due to the presence
of impurities which set up oscillating electric field gradients
with which the Cu nuciear quadrupole moment interacts. The
parameters A and ¢, which depend on the partial wave phase shifts
na y are estimated from the observed residual resistivities of
the particuler impurity in Cu, and from the sum rule, The
enhancement factor o, for Cu, is estimated to be about 206.

The field gradients obtained in this manner are in very good
agreemznt with those estimated by Rowlandsz7 as necessary to

produce his experimentally observed broadenings,
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28
Mereh and Murray

Rather than consider electronic wavefunctions, these authors
us¢ ithe mora general density matrix approachag, the diagonal
elements of which give the electron density. They show that the
full density matrix can be generated by perturbation theory to
infinite order and illustrate that for a slowly varying potential
the associated series can be summed, and yields the usual result
for the excess density, c.f. equation (2.12),

In situations where the potential is not varying slowly,
Marca and Mwray treat the case of a point charge in a free
electron gas, an exact self-consistent solution te first order
in peruurbation theory is given, The associated equations are
solved nunerically and the results indicate that the asymptotic
form of the excess electron density is accurately represented

by the eauation:

cos Zr 2.25

where Z is the excess point charge and A(k) is a slowly varying
function of X, The amplitude of the oscillations in excess
electron density associated with equation (2.25) are in excellent
agrecment with those obtained by Kohn and Vosko,

To sunrarise, the fact that a variety of approaches to the

problem of impurity screening all lead to oscillations in the
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long range electrohié screening charge density implies‘that these
oscillation are not a peculiarity of a particular model,
Experimentally, the worl of Rowlands provides strong evidence in
support of their existence, Perhaps the most important role
played by such oscillations is that they afford a mechanism by
which impurity atoms, separated by relatively large distances,
can couple w@th one another, This mechanism is discussed in the

next chapter,



CHAPTER 4 L.

INTERACTION EFFECTS BETWEEN MAGNETIC ATOMS.

le Molecular field model

The simplesy way of treating thg interaction between magnetic
atoms in some solid lies in considering only one such atom, and
replacing its interac?ion’with the_réﬁaining‘atoms‘in the system
by an effective field, Historically such an approach was first
introduced by Wéisssogwho also introduced the assumption that this
field was proportional to the avevragé“mégnetisationf M, of the
syste@. The field He acting on any atom is then @

He = H+ MM 321
where H is the applied field and ) the molecular field constant,
The magnetic carriers can be envisaged as capable of assuming
any orientation relative to the applied field, or these orientations
can be assumed to be gquantised, In either case this approach
predicts a cooperative transition below some characteristic
temperature, 6, the transition being characterised by a finite
value of the magnetisation in zero applied field,

Thz fitting of experimental data in the high temperature
region cnables an estimate of ‘ to be made, and in the ferromagnetic
elements (Fe, Ni, etc,) it is typically of the order of 103. This
value is far‘too high to be attributed to magnetic dipole inter-

actions, and, as is now well know, the interaction is quantum



31 has shown that in the special

mechanical in origin, Dirac
case of localised electrons in orthogonal orbits the effect of
the Pauli Exclusion Principle leads to a'spin dependent contribution

to the energy, which, for some purposes, may be regarded as

‘arising from two body spin - spin interactions of the form:

EH = w2 ZZJij 5
i

53 342

where Jij is the exchange energy between two electrons in states
i and j. Supposing that nearest neighbour interactions alone
are important, then for a single atom the "Héisenberg! term,
from equation (3,2), becomes:

n

J=1
vhere the sum is over the n nearest neighbours of the ith atom,
In a system in which the magnetic moment arises from spin alone,

and replacing the intgrgction represented in equation (3.3) by

an effective field, i.e,

HByg*= —gaﬁi.}j@ff Sek
thus
n
. 2J .
Bee = 55 2 S3 Fe3
J=1

Within the framework of the Weiss approach; each Sj is replaced
by its average value ‘<§j> . Assuming all magnetic atoms are
equivalent, <S5j> 1is related to the total magnetic moment of the

system by:
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4 = Ngb <G> , hence Hype= 2Ly 306
Ng B

On the basis of these equations the susceptibility , at high
temperatures, is

2.2

_ Ng™B"s(s+1) where & = 2nJS(S+1) 3.7
= 3R (T-8) 3k .

Clearly the sign of © and A (equation 3.6) depend on the sign
of J, which nmust be positive for ferromagnetism to exist below

€, the Curie teamperature,

2e Collective electron model

The above application of the molecular field approach has
been to localised magnetic carriers., Stoner32 has applied
this same approact to itinerant electrons, subject to Fermi-Dira:
statistics, Using equation (3.,1) the energy of a carrier becomes:
e+ B (H+M ) ‘ 348
Defining a relative magnetisationy = M/Mgat, equation (3,8)
becomes:
ex P H xPBNe Mgae 349
As B AMgat has the dimensions of energy per particle, it can be
replaced by k@', wvhere 9! is a measure of the interaction strength,

Using a parabolic density of states curve Stoner has shown that:
Fy (b v + Y1) = Fy(p= ¥ = v') ‘
= £ - i 3610
Fylput Y +¥Y') + Fg4- v - Y")
3w 3




Lie

whers Fk(u) are the appropriate Fermi-Dirac integrals, kT the ¢

chemical potential, Y = BH/KT and Y'=0%/T. Stoner's analysis

shows that the properties of such a system depend critically on
the interaction strength ke',

(1) For 3k@! < 2 g there is no ferromagnetiém.

(ii) For 2/3 < k©'/ef < 0.79 there is ferromagnetism below
some Curie temperature © (where ©=8' in the classical limit),
but the magnetisation at absolute zero, is not saturated,

(iii) For k&', 0,7%gr saturated ferromagnetism occurs.

Anove the Curie temperature (for all temperatures if
3k@' < 28), the inverse susceptibility is given by:

1 1 _ ke!
X - X (8'=0) NR2

3.11

Below the Curie temperature the temperature variation of the
spontaneous magnetisation is given by equation (3,10) with Y=0,
it is in reasonably good agreement with experiment except in the
low temperature region,

33 pas

Proceeding in the same manner as Stoner, Wolfarth
examined the situation_in which the density of states in energy
has a rectangular form, The most marked difference between
the predicted properties of the two models concerns the behaviour
of the spontaneous magnetisation as a function of €', the inter-

action strength, From such a comparison, Wolfarth however,

concludes that the thermal properties would be rather more sensitive



L8,

to the assumed band form than the magnetic properties, since the
former exhibitva dependence on this form even in the classical
limit, whereas the latter do not.

The collective electiron approach to antiferromagnetism, an
extension of the above example in the case of negative exchange
energy , has been examined by LidiardSQ.

A complete review of the various effective field models has -

35

been given by Smart”™”, the Previous exanples may be regarded as

iliustrating the concept,

3 Coupling mechanisms in dilute alloys

The interaction mechanism invoked in the above models to
explain the cooperative transitions was based on direct exchange
between the electrons concerned. On a localised model the
radial form of the direct exchange integral is similar to that for
the wavefunction of the participating electrons and hence decreases
exponentially with increasing separation of the interacting centres,
In a dilute alloy, containing less than say 1 At.% impurity, the
mean distance between impurities is much greater than the nearest
neighbour distance and consequently direct exchange can nc longer
be regarded as an active coupling mechanism, There is, however,
emple experimental evidence that cooperative phenomena occur in
dilute alloy systems and so some indirect coupling mechanism must

be operative,



Indirect interaction via ''s-d" exchange

1. Zener

Zener has suggested that the spin of an incomplete d shell
is strongly coupled to the spin of the conduction electrons via
sxchange. This results in a uniform polarization of the conducticn
band, This polarization can then cause indirect interaction
between two incomplete d shells wia their mutual coupling to the
conduction electron sping, and can result in a ferromagnetic
alignment of the d spins,

2. Yosida37
This qualitative suggestion of an indirect coupling via
g=d" exchange has been examined by Yosida using an ''s-d" inter-

39

action of the form discussed by Kasuya38 and by Mitchell””’,

The diagonal eclements of this interaction can be written:

-8 0)n ~n ) D s® 5.12
+ -~ n
where N is the number of lattice points in the system, J{(k-k')
the exchange integral between a conduction electron, with wave
vectors k and k', and an impurity spin, Sn being the impurity
spin operator at Rn, Equation (3,12) indicates that the energy
is reduced as (ﬁ. - n'_) increases, and tends therefore to
polarise the conduction electrons. Using (3.12) as a perturbation
from which the first order energies of spin up and spin down

electrons can be calculated, and assuming a spherical Fermi surface,
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Yosida shows:

n(+) =n=+ (3n/2E£ )N "3 (o) % Sn” 3.13

By being the umperturbed Fermi energy and 2n the total mumber of
electrons, The polarisation given by equation (3.13) is the same

as that given by Frﬁhlichép

and by Zener, However, Yosida has
pointed cut that the difference between the first order perturbed
wavefunctions for spin up and spin down electrons contributes a
comparable polarisation to that in equation (3.13), and its

inclusion leads to a density of spin up (or down) electrons at large

distances r from the impurity given by:

pi)) = B s g2 Zil@r@E [ (£-Bn)  ig. (-Ra)yg 2

301k
where g = k -~ k', V is the volume of the system, and
2 2
flo) =1 + H£_— 1 1ogl EEQ_:_S!
fq 2kf-q

The final form of P(i)(ﬁ) depends critically on J(g), if this is

assuaed to be independent of g, then:

n - 18n°% -1 3 z
Pi'(‘_".) (r) = V + VEf J{o)N n F(mcflg - Rnl)sn 3.15

F{x) being defined in equation (2,15)., However if J(g) is
taken to satisfy:

J(g)flg) = 2J3(o) for q <Zkf= = 0 for q >2kf,,then:
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e 2 _
p(i)(r) = 5‘; + ‘3/_?;; J(o)n"? En m;flE-gniF(zkfl_g-_f_{p.j)an 3,16

it large distances the density given by equation (3.15) decreases
as ,£~§El~3, vwhile that in equation (3,16) decreases as 15-331”2.
However, this latter eqguation is physically more acceptable since
it remains finite at r = Rn, whereas the other does not,

The interaction, via "s-d" exchange, of a second éﬁin'at Ba
with the modified conduction electron denéity produced by the fipst
spin at Bn results in an indirect coupling between the two spins,
Uging the spin density given in equation (3.15), the interaction

energy of the two spins, at large distances, is?

9% (@_T.J(o)a cos{(2kf| Rn -_I_%nj) S(S+1)Un. Un 5,17

where the U's are unit vectors in the spin direction. This
result has the same form as that obtained by Ruderman and Ifii‘t:‘t:ell’Ei
for the indirect coup;ing between nuclear spins via conduction
electron polarisation.l Equation (3.17) is often referred to
as the RKY interaction,

L2

As Freeman and atson™ have pointed out, Yosida's approach
is rather restricted since it deals entirely with linear response
i,e, in terms linear in the exchange, Further the expression
for the exchange matrix elements used by the same author is

appropriate only when the associated wavefunctions are orthogonzl,

To demonstrate with a practical example, Freeman and Watson used
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wavefunctions appropriate to a snherical,half filled
4f shell in Gd+++, representing the conduction
electrons by single plane waves orthogonalised to the
4f and closed shell Gd™" ion core. They calculated
the g (=k~k") dependence of J(i), with [§K=kf and a
varying k', and showed that far from being constant
J(q), although initially positive, exhibited an
oscillatory dependence on g. The resulting spin
density, calculated from equation (3.14) is typified
in figure (3.1) and has two features which are
characteristic of the RXY approach, Firstly, for
large values of r, the density displays "Friedel type"
oscillations. Secondly, the average spin density is
positive, reflecting the sign of J(o) (associated

with which is the Zener term). The difference lie

in the fact that the bulk of the induced positive spin
density is not centred at the nucleus, but some 2 a.u.
away, while p(o) can be positive or negative, smaller
or larger than the density at the nearest neighbour,
depending on k£, This is in complete contrast to

the RKY result where p{o) is always large and
positive. The behaviour of P (o) and the associated

outward shift of the region of net induced density is
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r(in a.u.)-
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Ap(r): not normalised.
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aiso reflectedin the increased radii for the onset
of Friedel type oscillation; this, coupled with the
reduced P{o)/P(n.n.) ratios greatly improve the
theory's qualitative position with regard to experiment%3.
One final comment, both the above approaches
assume that the conduction clectrons have an infinite
mean free path. De Gennes44 has pointed out that a
finite mean free path could affect this interaction
since it will modify the polarisation distribution
set up by a single spin. Further the temperature
dependence of the mean free path could similarly lead

to a temperature dependent RKY interaction.

Indirect interaction between virtual states

Blandin and Friede145 argue that when the spin
degeneracy of a virtual state is lifted, the phase
shifts for the‘spin up and spin down electrons,

n. and g ~, arc different. The result is that an
oscillating spin density is associated with the
"original™ oscillating charge density, figure (3.2).
Long range coupling can then occur since such an
excess or deficiency of:spin density at the site
of a second virtual state can, via "s~-d" exchange,

cause the spin on the latter to aligmn either parallel
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- FIG(3:2)
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or antiparallel to the first.
When the spin decoupling is complete, and such

that the spin down {say) stete lies above and the spin

up below the Fermi level, and assuming enly the &R

partial wave is significantly perturbed, then AR_&0=O

and Ap (r) is obtained from equation (2.20) with a

spin index. In the case of large r this gives:
‘(I ' 9 “
A (2v+1) . 3 sinTg, cos(Zkfr+TmT (kg))
p.(r) = 5 & 3
4 (k.x) -
: 3.18
The interaction of a gecond impurity spin § at R
with this spin density, via exchange, results in an
interaction energy of the form46 :-
_ 3(2;4+1) J _2n sinMg (k) cos(ZkfR+ n&ﬁkf))
E, . & ——— — K Su, o1t
int 3 S R )
4 1 (kfR)

3.19
This type of coupling is somewhat hybrid, being of
reseonance type on one atbm and exchange on the second.
The possibility also exists of interaction
through resonant coupling to the conduction clectrons
46

at both sites, According to Caroli ~, the interaction

energy between two identical (2 &1) fold degenerate
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virtual states at a large distance R from each other

has the form:

. cos(2k .R+2"g( k)
“int (2?+1)Ef ‘Sinzné (kg) - 3 s 2122 3.20
2% (I .R) .

The double resonance coupling would seem to be useful

in accounting for the strong coupling of pairs of

impurity atoms close to each other in the alloy.
Typically, tzking Ef=7ev’ J=0'1ev’ 2n/N=1,

§=2 and712=775 i.2. ©=2 partial waves only in CulMn, then:
E(int) (Yosida) = 10—2 cos ZkfRBI'BZ €.V,

R

E(int) (Blandin) ® 4.5x10 ‘cos(2k R+7/5)u, u, e.v.

(kfR)3

E{int) (Caroli) = 9 cos(2kfR+2ﬂ/5)Elp32 e.v,

(kR)>
thus, although each interaction seems roughly an order
of magnitude larger than the previous one, allowance
must be made for the fact that the sum of two phase
shifts is involved in the argument of the ccsine in
Caroli's approach, one phase is inveclved in Blandin's

approach, while no phase shift is involved in Yosida's
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double "s-d'" exchange coupling.

Treatment of interaction effects

Within the framework of the traditional molecular
field approach, the effective field expericnced by
egch "magnetic atom' was tazken to be the same, and
proportional to the bulk magnetisation of the system
The results derived in previous sections on coupling
mechanisms in dilute alloys indicate that a randonm
distribution of solute ztoms means an interaction of
varying strength and sign. This immediately precludes
the use of the usual Molecular Field method from a
realistic discussion of the properties of such a
system.

Sato48 has approached this problem by examining
the properties of a cluster of atoms, and makes some
attempt to take the effect of atoms outside the cluster
into consideration, However, nearest neighbour inter-
actions are still regarded as dominating and in this
respect the approach is rather restricted,

Blandin and Friedel45 have used the statistical
method of Opechowski49 to obtain a series expansion

for the susceptibility in terms of(%) in the high
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tenperature (T) iimit. Identifyving the Curie

temperature 8 with the coefficient of the (12) term
T

yields an expression which, in a dilute alloy where

double 's=d' coupling is operative, becomes:

o = s(s+1)9n{_2_n_72J(0)2 S F(2k_R .) 3.21
——;;~” NJ Ef ) o £ o1
impurities
o#i

. 50 s
Doniach has shown that on performing an ensemble average
over possible impurity positions, the above equation

becomes:

2 2
o SELEXIIAN W) . I p(arpR ) 3. 22
3k N j Eg all sites el
o#]
where ¢ is the impurity concentration,. Of particular

interest in this thesis are alloys of the noble metals

containing the heavier rare earths as impurities.

In the second half of the rare earth series Russell

Saunders snin-orbit coupling of total L to total S these

being determined by Hund's rule, is operative, and the

coupling, parallel, Thus:
(gR.E.-l)ZJ(J*‘l)-9“{2n}£-1(°)2c-

8 = RSN JI—

3k ) Ef
)

211 sites
o#j

F(ZkfROj) 3.23
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This equation predicts that in alloys centzining
the same small concentration of ryare earth, provided
J(o) remains constant, 9 should vary as (gR.E.-l)2
J(J+1)51.

Perhaps the most realistic approach yet made to
the problem of treating interactions in a dilute alloy
is to attempt to account for their varying magnitude and
sign by scme distribution of effective fields acting at
the lattice points. The concept of a probability
function P(H) for the magnitude of these fields was =a
natural consequence of the formalism of Overhauser's
spin density wave meodel for 2 dilute alloy, zlthough
Overhauser's approach has been criticised by Marsh31153,

This latter author has derived the general shape
for the P(H,T) distribution in a dilute alloy using
qualitative argunments. More recently Marshall's
conclusions have been confirmed by the more rigorous
approach of Klein and Brout54'55, the general form of
their conclusions about the P(H,T) curves are summarised
in figure (3.3). Although this approach has had some
success in predicting the correct gemeral trend of the

low temperature specific heat in alloys like CuMn, a

detailed treatment of interactions in dilute allovs is



lacking, particularly in its relation to such

el

properties as magnetic susceptibility.,
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CHAPTER 4

GROUP THEORETICAL BACKGROUND, AND IT'S APPLICATION TN THE

PRESENT FPROBLEM

BAGKGROUND SUINMARY

1., Pinite groups - Matrix representation

A representation is generally defined as any set
of elements obeying the multiplication table of the
group, they need not be distinct. Here it's form is
rather more restrictive, namely, a set of square matrices,
which, when placed in correspondence with the elements
of the group, obey it's multiplication table, T,
denotes such a matrix set obeying the multiplication
table of some finite group of order g. T LR) is the
particular matrix iu:qxwhichl'reprESents' the group
element R, whileIh,(R)ij dénotes the ijth element of
this'particular matrix; n is the dimensionality of
the matrices comprising

The character Xy (R) of a particular element R
in the o representétiﬁn is defined as:

Xo(R) = Trace Ty (R)
Since. the. trace of any matrix product is. invariant under

cyclic permutation of that product, then:



Trace S—lras = Trace SS—IPG = Trace [y
lence the character of all equivalent representations
are the same, the definition of the latter being

obvious. Similarly if A, X and B are members of sonme

group, and are related by:

A =X "BX’
then A and B are conjugate and form all or part of a
class. Clearly the character of each member of =
class is the same,
A reducible representation is one in which every

matrix can be put in the form:

Ty (R) 0

I (r)

0 I, (R)

where rl and rz are square, but not necessarily of the
same dimension, they are also representations since

they can be shown to obey the multiplication table.

A reducible representation thus 'contains' more than

one representatien, This process of generating new
representations can be continued until one is arrived at
which cannot be placed in the form of equation (4.1)

i.e. it cannot be expressed in terms of representations
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of lower dimensionality. The condition that a

representation be irreducible is:
Z !2 | ‘
R ‘ %X, (R) = g; where g = inq, 4,2

For unitary irreducible representations 'y and rﬁ
the following orthogonality relations hold:

xr

&
i=1  hix (Ci) x, (Ci) = g © 4.3a
classes G B op

n?

151 hix (C1)x_ (Ci)* = g Bij 4.3b
irreducible ¥reps,

hi is the number of clements in the class Ci.

From equations (4.3a,b) it can be shown that the
number 6f classes is equal to the number of irreducible
representations,

4 reducible unitary representation T with
character X(R) can be transformed into the reduced

form:

r = P1P1+P2P2+ toooi.-'l'pnrn 4.4

The right hand side of this equation has character
Z:Paxa , and since this is invariant under transformation:
* b

X(R) = & Pqg X (R), from which:

%
Pe= 1/8 5 X (R) KSR * 4.5



2. Application to quantum mechanics

Frequently in quantum mechanics the group of
intz2rest is the group of syumetry operators whieh .
leave the Hamiltotian invariant. Consider an ¥ fold
degenerate level of the Hamiltonian #, ofenergy En, with

which the orthonormal set of functionwi(n) is associated.

e, ™ -5 1™, 1oL s,
Clearly if an operator leaves # invariant it is immaterial
whether it appears to the left or right of ¥, i.ec. they
commutz., The set of all such operators are said to
form the group of the Schroedinger equation, If R is
a member of this group, and P{R) defined in ¥igner's

conventionss, then:
pR g% ) = g, ™ g pyy, )

This implies that P(R)¢i(n) is another function with
energy E , and thus may be expanded as a linear sombination
of thecomplete set of orthonormal functions associated

with the degenerate %Fvelz

P (m) . % p(n) (n) .
(R)Itrj 1=1 - Ryl 4.6
where.I'{n)(R).;j is an array of coefficients. In fact

2 * A ] n
the set of v degenerate cigen functions ?i( ) of energy
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E_ are the partners im a basis for an © dimensional

n
1&n) of the group of the

irreducible representation
Schroedinger equation. A knowledge of such representations
enables very useful theorems to be invoked doncerning

the matrix clements of the Yamiltonian, However,

mat¥ix elements coupling states often arisc from pertur-
bations haviag & symmetry different from that of the
Hamiltonian, Under these circumstances, labelling

the functions ¥nei where n is some series index, G

implying that the irreducible representation involved is

I, , and i labels partners, and noting that an arbitrary

perturbation M cen be deccomposed linearly into terus

, the latter transforming accroding to the jth row

"p3
of Tﬁ, an irreducible representation of the group

involved ia the states*n@i, then

'QpnqilMﬁj“’nraviv:’ = 0 4.7
L

unless P@:crﬁzzrag contains the trivial representation
Ty

3, Continuous groups

The continuous graup of rotations in two and three
dimensions are essential for the description of atoms,

both free and in crystalline surroundings, The axial
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rotation group tonsists of all rotations ¢ about come
fized axis. It i¢ obviously commutative and has only
one dimensional irreducible representations, i.8.
x (8) is both the character and the representatiosn,

x (8] x(#y) = x(B,+8,), and x (2r) = x(0) = 1
hence the representations ave:

X8y = o1, nso, +1, + 2 4.8

The irreducible representations of the three

dimenzional rotatien group, the votation symmetry group
of an atom in free space, can be obtained by counsidering
2 set of functionms which is invatisnt under this group.
The set of all rotations in three dimensions obviously
forms an infinite group, with an infinite number of
classes. All rotations through the same angle about
whatever axis belong to the same class because another
rotation of the group connects the two rotation axes.
Although finite rotations behave in quite a different
manner, infinitesimal rotations add vectorially, this
is reflected inthe fact that the infinitesimal rotation
operator about some k axis, spccificd by direction cosines
can be written:

e and o and <

1 2 3?
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where I?,Iy and I are the three infinitesimal Cartesian
rotation operators. It can be shown that a finite

rotationof angle < about some k axis can be written as:

» 2 2
Ra'k = 1 + ictvI]:, + (lqllk) + sre s = elc‘xk & 9
' 21 '
Defining stepping operators by: 1 + = I, * in 4,10
which obey the usual commutation relations:
I I+ = I+I = 4 I+ : I+ =~ I I+ = 21 4,11
% - —Tg - = - - z

then follewing the previous discussion, it is clear that
the irrecducible representations of the full rotation
group can be obtained by considering a set of functions
which is invariant under I+, I, since any rotation can
be built from them, Such a set offunctions are the
spherical harmonics, The angular part of the Laplacian
operator is invariant under rotatiom, hence it's eigen
functions ~ the spherical harmonics, form bases of
representations of the full rotation group. Operating
on these functions with the stepping operators, and using
their commutation relations, reveals that the dimension=-
ality of the representation thus obtained is (2<+1),
Further the (2 #1) dimensional space conmposed of

=1 -3
’Y-C o-'oo-Y{)'

f\) ¢a

¥



is invariant uander I+, Iz and heace urler all
rotations; 1t is also ivreducibdble. This confirms

that the sphetical harmonics form basés for che (20+1)

. f oy . . v
dimensionzl irreducible repreéseutations » ) of the
full rotation group. Thus, in analogy with eguation

(4.8), under a rotaticn R:

The characters ¢f the representations can be obtained
by the following argument. Cotisider & rotation @
about z, denoted by Pgz, in analogy with equation (4.9):

m .
Faz¥e (0,8) = ¢ T (0,0)

The representation of such a rotation is the diagenal

n

R
matrix D (&), where

p3(a) = ety 0
0 e .e~1b
,6 o) - .{} ' 2 6 .
and has the character X (q) = Trace Db(a) = e * CDZ &;ka
& k: 0 ’
hence X' (o) = sin (2+ })a 4.12

sin i a

It has been noted previously that all rotations by o
are in the same clasgs, regardless of axis, hence they

must all have the character calculated above for a
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simple casec.

The direct product of two representations of tha full
rotation group may be docomposed into - it's irreducible
ccmponents in a manner similar to equations (4.4),

(4.5), this yields:

(£;) €.o)  ggt, &)
b *¥D = < D 4.13
|01 |

which is nothing more than the familiar vector model
for the addition of angular momenta. Uging group
theoretical techniques it is possible to obtain the
partners in the irreducible representations contained

in the product representations as a linear ccmbination

of products of the original functions, IfY T'
“r ¥
: . (&) ~2)
transforms as a basis for D » and 1y for p ’

02

£

then the space of products '{!)’n.cl' l'fézg is invariant
|

under D(U') X vaz).

D (C), L= .c,+1;2, cee I,g,,-.@, 'I, of the products have,

The irreducible representations

as partners, the functions:

<

¥ ® = Wormalising Factor n1zn2('c’1 bnn, | tm) gﬁ.«_"r&%

4.14
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where the set of coefficients(&i&ﬁ 4

Clebseh=Gordon coefficiénts, and dare uniguely determined

0, vaz'-,: ZYare called

by the properties of the trotation group. Thay
vanish unless m,o4+om, = M.

Thus far, the developmeént of representations (1)
of the full rotation group has beewn indicated,  The
manner of this development implice that the representations
are odd dimensional since they cortréspond to integral

angular meomentun &WignerSU

has shown how ordinary group
theory techniques may be extended te account for spin,
Briefly, the resuits of this extension indicate that
systems .having sphericaliy symmetric Hamiltomnians and
total angular momentum j possess state functions which
can be classified, with respect to behaviour under
rotation, by representations p {3 wf the full rotation
group., The odd dimensional representations are those
which are associated with integral j and correspond
to the (2§ + 1) degcnerate states of the total angular
momentum, while the even dimensicnal representations
are asscciated with half integral j. When j is integral,
the spherical harmonics Y? are the basis functious for
D(j) (i)

s, when j is half integral j is not determined
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as to 2ign. In either case the expression for the
character, equaticon (4.12), rewmains unchanged, This

means that since

xICer 2m) = (1323 3¢ 4.15
then for half integrel ] the charvacter ie double wvalued,
i.e, a rotation of 2% ghould leave everything unchanged,

whereas above:

x o+ 28 = - I (),

However, tveén for half integral j:

x? (a 4n) = 3 (D)
Thus these representations act as if a rotation through
4 ® should be considered the identity operation, In

addition:

xj(vc+ 2x) =Xj(7c) = 0.
shcwing that the character of z tvo fold rotation is
gingle valued. This situation is dealt with. in
practise by introducing the "fiction' that the system
is taken intoc itself, not under a rotation cf 2% , but
one of 4%, Consaquently a new grcup element E is
introduced which represents a rotation of 2o , and hac

the property E # E, 72

= E, The resulting group
contains twice as many elements as the coriginal cne,

and is called the crymtal double group, This double group



ccwrbains more classes tham tho oxriginal ons,
but not neeessarily twice as many since xJ(Ecz) =

23(02) = 0, making it possible that ﬁcz and C, are
in the same class. Double groups will be referred to
later.

4. Point groups

A group of rotaticns {(both proper and improper)
and reflections which leave a point iavariant is termed
a point pgroup., Since all rotations and reflections
associated with a point group are contained in the group
of three dimensional rotations and reflections, the point
group is a subgroup of the full rotation group.

Consider a2 point group G containing improper rotations,
this may be decomposed into the direct product of a
point group H, containing only proper rotations, and
the group C; which consists of the identity E and
inversion J. This implies that for every clags C in
H, there will- be two classes, € and JC, in G. In

particular the inversion BJY = J will be irn a class by

e
o

self. If I, (A) denotes an irreducible representation

h

of H, A being a typical element, then those of G can
be generated simply by allowing A to assume the values
A or JA, then since the number of classes in G is twice

that in H, all ths irreducible representations of G

have been generated,
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Denoting those representations which are even

under inversion by TE, 1.86. ¢
~E E N
T (a) = T (34) = T (a)
and those which are odd by T °, such that :
o o o )
Io(a) = - B2(IA) = T4
then the entire character table for & can be written:

G H JH

E () (X)

4,16
° (X (-x)

where (%) is the entire character table for H.
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Crystal fields

When an ion is located, not in free space, but in a
crystal, it is subject to various inhomogencous electric
fields which do not possess full rotational symmetry.
Thus the symmetry group of the ion is reduced from
that of the three dimensional rotation group (plus
inversion) to some finite group of rotatioms and
reflections., This reduced group allows the originally
irreducible representations of the full rotation group
(and hence of the ion in free space) to be reduced
with respect to the subgroup characterising the
crystalline electric field, This reduction in
dimensionality of the irreducible representations
causes the degemneracy associated with complete rotational
symmetry to be lifted. Hence the free ion energy
levels are split by the crystalline field. The degree
of residual degeneracy is determined, as Be‘.:hesz
originally pointed out, from symmetry by group theory,

with ultimate accuracy since no perturbative approximation

is involved.
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In treating the cffects of the crystal fields it
is first necessary to decide how its strength compares
with the various terms in the ionic Hamiltonian,

Three distinct cases are normally distinguishedsez

1., Strong fields

In this situation, theory seems to indicate that
interactions between the e¢lectrons and their surroundings
is large compared with the Coloumb interaction between
electrons (iéi e?/rij), but less than the interaction
of the electrons with the nucleus. The iron group
cyanides typify this situation.

2. Intermediate fields

This case is characterised by a crystalline field
which is large compared with spin~orbit coupling, but
small compared with the Coloumb interaction. This
situation is believed to occur in salts of the iron
group and is treated by first characterising the system
by its total orbital angular momentum L, which is then
'coupled' to the crystal field. Finally the effects
of spin are considered,

3. Weak fields

Here the crystal field is less than the strength

of spin orbit coupling., This occurs in salts of the
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rare earths. In this case the 'finished' atom,
described by quantum number J is studied.

In the system of interest in this thesis, rare
eerth impurities in noble metails, the cffects of the
crystal field of the matrix on the impurity is sought.
Translational symmetry of the lattice is, thus, unimportant,
The symmetry of the field experienced by the impurity
is assumed to be charactexisced by the point group of
thke host lattice. Following the previous discussion
tiie first question to be c¢considered is what irreducible
representations of this point group are contained in the
(now reducible) representations D<Jgf the full rotation
group associated with angular momentum J.

a. Integral J

The point group for the f.c.c. lattice of Ag and
Au is, in Schoenflies notation, Oh, This is the full
symmetry group of a cube or octahedron, including
imp;oper rotations and reflections. It is the direct
product of 0 and Ci, where 0 is the group of proper
rotations of 2 cube, and Ci is defined previously,

The decomposition of the various (2J+1) dimensional

()

representations, , is accomplished by using equations
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(4.5) and (4.12). In addition, the result of
equation (4.16) implies that in ceanjunction with these
equations, all splitting can be worked out cimply

by considering the group of proper rotaticms, in this
case 0, which has 24 elements (g) and five irreducible
representations, The character table for 0 isg
reproduced in Appendix 1,together with the associated
character table for the’D(J)'s, and the decompositicn
of the latter into irreducible representatious of the
former,

b, Half integral J

As mentioned previously, the difficulties
encountered in this case can be overcome by introducing
the artiface that the identity operation consists
of a rotation of 4w . Consequently it is necessary
to introducé another group element E corresponding to
a rotation of 2%« . For the case discussed here, the
double group O' is obtained by combining the 24 elements
in O with 24 new elements obtained by combining each
element with E, Again, as previously mentioned, ihe
nunber of classes in 0' need not be twice that in O,.
ian fact, Opechowski63 has shown that C, and ECZ are

in the seme class since there is another twofold axis
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perpendicular to the one ia question, Thus, in addition
te the five ¢lasses of O, three mew classas are
introduced, E, ECB and Ecs {notation as in Appéndix
. Hence 24 elements and three classes have been
added, and mey be consistently accounted for by Laeping
the five ofdinary representations of 0, and, to
satisfy equatien (4,2), adding three new ones, PG,Iﬁ
and Ié » of dimensionalicy 2, 2 and 4.

Within the framework of the double group method,
the half integral J's can be handied by the sane
procedure as used in {(a). The results are summarised
in Appendiz 1.

Having obtained the residual degeneracies, the
problem remains of finding the energy separation
between the wvarious crystal field split levels, In
the classical electrostatic approximation the electric
field is assumed to be produced by some charge distribution
located outside the ion, and the potential is eéxpanded

in spherical harmonics, thus:

-
=

@mo  m
Veystal ;if& ry, (8,4 4.17

the aeé being coefficients which, in this context, are

regarded as adjustable parameters, The crystal
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potential must transform according to it's own identity
representstion; in this case thaé of Q, . Hence the
expansion ¢f thd pétential in the above terms neéd

only contain those ¥ ™ for which D(”) contains the

2
identity representation of Gy, - Prom Appendix 1,

is contained in ﬂé) for ¢ = 0,4,6 and 8, honce oanly
these terms in equation (44.17) need be retained,

The <=0 term in the potential hae full spherical
syunetry and to first order produces 2 uniform shift
of all levels., It is consequently disregarded.

According to equation (4.13), the product of two

*f? functions transforms like:

3 221)(*3) o 56 teeseseo o0 418
This implies, when used in conjuncticn with equation
(4.7), that matrix elements of terme in the potential
for which <£>6 do not give any contribution. Thus
the expansion of the potential reduces to:
v = r4.}§: J(. n m} 66 .

crystal 7' (4, ¥, 0+ %Evé{;6 :6} 4.19
As shown in Appendix 2, a consideration of the
symmetry operations of O; further reduces this expansion

h

to:
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-4

0.0 4
fﬁ(84?4 + aa(yz ¥, +

Vcrysta1=
rs(aZyz @'agiyg * ygé) 4 .70
The problem of Finding the #plitting between the various
levels Has thug been reduced 2d evaluatioz matrix
elements of the potentials, given in equation (4.20)
between states, ift representations in which these
states arc elgenstates of the Total angular momentum
J. This proccees can be sometwhat simplified by making
use of the Wigner~EBckart thearemgﬂ which inpiies that
matrix elements diagonal in J dre proportional to matriw
elements in whick J is used as a replatement operator

for other operators. As Stevéﬁ'sﬁ

2 peints out, within
a mapifold of constant J, matrix elements of the
potential operators are proportional to those of a
suitably choosen combination of angular momentum
cperators. However, for such an equivalence to hold,
the equivalent must transform in exactly the same way
as the potential operator. Herice it becomes necessary
to determine an angular womentum expression which has

this property, due allowance being made for the nen-

commutaticon of Jx, Jy and J=z.
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Once these equivalezts have been determined, the
evaluation of their matvix elements within some constant
J manifold is quite straightforward. The mannex
in which the operator equivalents of the potential
described by equation (4.20) are derived is
illustrated in Appendix 2. In the notation used there,

equation (4.20) becomes:

a2 o 4 o _ 4 B
vcrystal Ba(oa + 504) + 56(06 2106) 4.21

The coefficients BA and B, depend, in part, on the
proporticnality factor between the matrix element of
the operator equivalent and that of the potential
operstor., It can be evaluated by calculating some
suitable matrix element in either scheme, an example
is provided in Appendix 2. One of the points tc
note about the above form of the crystal potential is
that it couples states with my differing by four.
Using equation (4.21) in conjunction with the expanded
form ofthe operator equivalents given in Appeudix 2
enables all matrix elements within a given manifold
to be written down in terms of B, and B.. When the
values of these coefficients are specified, the

crystal field Hamiltonian formed by the array of such



eglements can be written down explicitly. The eigen
vectors and eigen values ~ and hence the energy separations

can be obtained by diagonalising the atray.
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CHAPTER 5

A REVIEW OF THE PREVIOUS WORK ON RARE FEARTH IMPURITIES

IN STILVER AND GOLD

hTﬁe low temperatures electric and magnetic properties
of dilute alloys of transgition metals in non magnetic
host metals have received a great deal of experimental
and theoretical investigation. The behaviour of such
valloys in the low temperature ré¢gion has fraquently
been interpreted in terms of indirect interaction
between localised moments 559@#ia;ed with solute atoms,
via the polarisation induced by ;ﬁch momenés:iﬁ the
conduction band, The situation is, however, often
complicated by the extended nature of the magnetic
state of the solute atom, which arises from the inter-
action of‘the energy levels of the latter with the
conduction band states. In this gonnection, the
situation in dilute alloys of the rare earths in non
magnetic hosts should be clearer, since they can
be described either by narrow virtual states or by real
bound states below the bottom of the conduction band,
Such alloys had received practically no investigation

until the recent results of Rider64 showed tkat the
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solubility of the rare earthe in non magnetic hosts

such as gold and silver was, in fact, not négligibles
Measurements by Sugawaraas et al on the temperature

dependence of the electrical resistivity of AgGd alloys

indicated a resistance minimum, followed by a maximum

at lower temperatures. The temperatures at which

thege maxima occurred scaled almost linearly with

temperature (roughly 7°K per atomic 2 6d). These

authors attributed such maxima to the onset of magnetic

ordering, since the magnetic susceptibility of the

same alloys exhibited a marked change in slope at the

temperature of the maxima. In contrast with these

results, a rather more careful investigation by

Bijvoet et a166, in which the electrical resistivity

in the range 1 to 4.2°K wes measured, revesled no maxima

for similar alloys. Within the temperature range of

their experiments, these authors find that the electrical

resistivity of a Ag=-o.1At7Z Gd alloy decreases slowly

with decreasing temperature; A similar behaviour

is observed in a Ag=-o.3At% Gd alloy, with the slight

modification of a gradually incrcasing slope of the

resistivity curve as the temperature is decrzased.

This e¢ffect becomes more pronounced as the Gd



]
0
.

concentration is incressed, and is a warked effect in
a Ag-0.8At% Gd alloy at.1.5°K.

For the rare earth impurity Ho, the same authors
find 4h almost linear decreaseé in résistivity with
dét;easiﬁg-ﬁeﬁpérature for alloye of Ag cdntaining
1.4 and 1.2AtZ Ho. However, for Ag containing 6.4
{0.§‘aﬁd 0.15At.7 Ho, a minimum in the resistivity
tenperature curve was fouﬁd (there was, however, no
maximum observed in these alloys abave 1°%). The
temperature at which these minima occurred increased
with decreasing concentration, but as the measurements
extend up to 4.,2°K only, the temperature of the
minima in the two more dilute alloys was not determined.
From similar measurements, supplemented by magneto-
resistance investigations, Bijvoet concluded that
¥d in Ag acts as a non-magnetic impurity,while from the
observed resistivity and solubility of Yb in the same
solvent it was concluded that the valence state of
this rare earth in Ag was two.

Arajs and Dunmyre67 have measured the electrical
resistivity éf Au containing 0.05, 0.23, 0.60, 0.88,

1.17, 1.88 and 2,35 At.Z% Er. Their measurements
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covered the tempernture rangée 1 to 20 K, and no

anomalous behaviour wac abgerved, Over the whole

range of alloy compositions investigated it was found
that (Palioy“pAu) at 4.2°K was lifiear in Er concentration,
and had the value 6,22 ,ems./at.7 Er. This is quite
close to the walue of 6.0 ,cms/at.% Er quoted by

Bijvoet for Er in Ag.

Receftt measurements in this 1aboratary68 on the
electrical resistivity of AgGd, AgEr and Agllo alloys
essentially confirm Bijvoet's results, They also
emphasize the need to avoid‘any'transition metal
contamination. These measurements exgend to a much
higher temperature than those of Bijvoet, and preli-

minary analysis indicates that (P —PAg) has a very

alloy
marked temperature dependence.,

Bijvoet69 has also examined the magneﬁgigesistance
at 4.2 and 1.2°k, of AgGd and AgHo alioys on wﬁiéh the
electrical resistivity measurements were made, The
results are reproduced in fiéﬁre (5.1}.

The specific heat, C, of dilute alloys of Ag with
the rare earths Nd, Gd, Tb, Dy, Ho and Er, ﬁés been

mezsured below 4.2°K by Zimmerman et a170. The
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results on alloys containing Gd received the most
detailed analysis. The alloys containing 0.3 and
0.5At,Z Gd showed a rapid increase of C/T below

2°k, while the 0.1 At.Z alloy exhibited a similar
increase below 1°K. The experimental data on

this last sample could be fitted reasonably well from
4.2°% to 0,2°k by

3

C = 0.91T + 0.177° + 1.557 %

5.1
Estimating the magnetic oentropy from this equation
suggests that about a half of the impurity spins are
ordered at 0.2°K. It is, perhaps, significant to
note, in the light of estimates of rare earth
solubilities in Ag made by Bijvoet, that these authors
find, on fitting their results for the Apg-IAt.Z Gd alloy,
that the coefficient of the lattice term (T3) in
this alloy differs significantly from that in the
less concentrated alloys and in pure Ag.

The results obtained by the same authors on a

.

Ag~0,5At.7%7 Ho alloy indiczted, after subtracting the
appreciable nuclear contribution71, that (C/T vs.T)

plot had the same general nature as the AgGd alloys

increésing rapidly below 3°k.
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‘Thg’obsefQéd-béha;iéut of tﬁe remaining z2lloys was
ratﬁer’éiféerénf from the above systems. Measurements
were madé on Ag-0.1, 0.19 and 0.57 At.¥% Dy, in each
case C/T“decreaéed-smcothly with temperature and
finally became flat below 2°K, The 0.19At.Z Dy glloy
was also ékamined betwéen c.2 5#& 0.8°% and ciearly
showed the effects of the hyperfine term; the curves
in the two temperature regions investigated (0.2 to’

0.8, 1.5 to 4.2°K) do not, however, seem to join on to
one another smoothly. Alloys of Ag containing 0.13At.7%
Nd, 0.5At.%Z Er and 0.57At.Z%Z Tb, were also measured
between 1.5 and 4.2°K. The (C/T vs.T) plet for the
former decreased smoothly with temperature; the Er
alloy turned up quite sharply below 2°k and also exhibited
a slight pump around 3.2°% which, along with a more
pronounced Bump around 2.2°% in the Tb alley, the
authors attribute to an oxide.

Measurements of the specific heat of Ag containing
0.41 and 0.69At.Z Gd have been carried out by Pickett72
The general form ofthe (C/T vs T) plots given by this
author agree with those of Zimmerman, but show the

opposite dependence on concentration.
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The thermopower, S, of Ag and Au containing
about 0.5At.Z of rare earths has been measured at
5,3°K by Gainon et 3173. They find that the value
of this parameter is displaced towards positive values
on passing from Au to Ag (except in ¥b). Apart from
this, the variation across the whole rare earth series
is similar in both hosts. The general tendency in
'S is negative for the light rare earths and positive
for the heavier ones, with 'giant' values occurring

in Eu and Ce, The auvthors have suggested that this

overall trend may reflect the change ian sign of (g-1)

. . . 74
cn crossing the rare earth series since, as Kondo

has pointed out, the sign of S is given by the sign of
(g=1)JV, where J is the exchange integral and V the
static perturbing potential.

The same authors have also measured the magne:zic
susceptibility, between 4.2 and 300°K, of both Au and
Ag containing Eu aud Yb, Their results, in agreement
with the data included in this thesis which was obtainad
prior te their publication, confirm the conclusious
of Bijvoet that Yb is divalent in Ag {(but trivalent

in Au), and also indicate that Eu is divalent iu botn



hosts, The reciprocal susceptibility versus temperature
for AuYb, AgEu and éEEu‘showed,devig;ions from Curi
Weiss behaviour around 40°K, while the extrapovlated
high temperature line iﬁ the last tgo alloyshad a
positive intercept on the temperatdfe axis, The
authors claoimed that a more careful examination
indicated a ferrcomagnetic Curie temperature of around
7% for these alloys, and measurements of S above these
Curie temperatures revealed nc significant decrease

in this quantity. This, the authors claim, implies
that theories which rely on the existence of polarisg
-3ation of the impurity spins in order to explain

giant thermopowers75 cannot be retained,

Recent measurements?6, at 4.2°K, of the thermo-
powers of Ag containing thg>héavier rare earths as
impurities are in general agreeméﬁf ﬁith thoéé of
Gainon.

As originally indicated, allofs éf the aBove‘type
have been subjected to a relatively swmall amcunt of
investigation. However, even at this stage, the
experimental résults seem to possess many inconsis-—
tencies, indeed in several cases where different

authors have investigated the same properties, the
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resulte are in total disagrecment. As will be
demonstrated in Chapter 8, much cenfusion cdn, and has,
arisen from inferior alloy preperation. This

chapter also contains a more detailed discussion of

the results prescnted above.



CHAPTER 6

EXPERIMENTAL DETAILS, INCLUDING THE SERVO MECHANISH

1. General

The force (in the z direction) exerted on a magnetic~-

ally isotropic sample placed in an inhomogeneous magnetic
field can, under certain approximations (Appendix 3) be
wvritten:-

F¢=Mx06 HK’B"J AR 5,1

and holds vhatever dependence the magnetisation M might
have on the applied field H. When the mégnetisation is
proportional to the applied field then equation (6.1)
becomes, in the usual notation:-

= « H a e v e av e e -«
F, m X H, . Hx/az 6.2

These equations form the basis for the measurements

carried out in the present investigationm, since they imply

that the susceptibility per unit mass can be evaluated
by measuring the force on a sample of known mass, when

the latter is placed in a magnetitc field of known



2, The magnetic balance

Aithough this has been describéﬁ in some detaii
elsewhere77, it is worth while, in view of later discus-
sion, to describe briefly its mode of operation.

The balence consists of a2 helical elinvar. apring
suspended from it's upper end, as indicated in figure
(6.1} . The loaded arms, indicated in this figure, at
the bottom of the spiral, serve tc increase its
rotational period so that it becomes very different
from its vertical vibrational period. Consequently
the system acts as a mechanical noise integrator. A
small scale pan is attached beneath these arms, and a
small coil hangs from the underside of the pan. Thisg
cnoil is situated in the radial field of a loudspeaker
magnet. As figure (6.1) indicates, a long quartz rod
hangs beneath this coil, the specimen being attached to
the lower end of this rod by means of the arrangement
shown in figure (6.2).

The application of an inhomogeneous magnetic
field to the sample produces a (time) steady force,
which>éxtends or compresses the spring, depending on
the magnetic nature of the sample. Such a time steady

extension causes the bottom of the spiral to rotate,
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~and a llght bean 1ﬂc1dent on a galvanometer mirror
located at thc hcttom 0f the spiral, to be deflected.
This deflection is detécted by observing the changing
outpﬁt from a dlfferentlal selenium nhotOcell, on which
the 11ght ‘beam shlnes. The .aystem is null &etéct:.ng
since the specimen can be restored to its initial position
by passing a current through the restoring coil until the
photocell output returns to its original value. The
magnitude of this restoring current gives a wmeasure of
the extra force exerted on the sample by the applied
field. The system is calibrated by using 2 known load
(a Pt, rider of 105,48 mgms.).

The loud8peaker magnet, which surrounds ‘the restering
coii, rasts on & brass plate, the link to the quartz
rod passing through a hole in the centre of this plate.
The upper section of the system is housed in a glass
Dell Jhr which rests on 2 '0' ring seated in a2 groove
in Lhe brass plate, while the lower part of the system
is surrounded by a German silver tube attached to the
underside of the plate and ending in the copper cone
arrangement 1nd1cated in figure (6, 1) This provides
access to the lower end of the quartz iod and specimen.

The cone joint is sealed with Edward's high vacuum grease,
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and remains leak tight below the X -point of helium.
Suchk an arrangement enables the whole system to be
evacuated and provides reasonably quick access to the
specimen. Ig_is acﬁéméiisheé;ih a very compact
manne?,lén'impc¥£ant consider;tion éince ghg region
surrounding the specimen must pass into é magnet pole
gap of 31 mms.

3. Temperature measurement

With the type of experimental arrangement described
above, it is not possible to measure the specimen
temperature directly since this would involve attaching
sensors directly to the suspension, drastically reducing
its sensitivity,. Instecad, theé temperature of the copwer
cap is measured, thespecimen being maintained in
thermal contact with this by admitting a m.m. of helium
exchenge gas into the region surrounding the specimen.

In the range 1.9 to 30°K the temperature of the cap
is measured by a 29 ohm (nominal) Allen-Bradley resistor,
From ZOOKVto room temperature a Ag normal versus Au-

2% Co thermocouple is used, the 10° overlap providing 2
valuable check on the calibration of both sensors.
The arrangement of thermocoupié and carbon resistor

relative to the sample is indicated in figure (6.1).
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Two 40 gauge insuleted copper wires are soldered across
the resistor, one of these and one lead of the resistor
are soldered directly to the base ofthe copper cap.

The two 40 gauge wires were wrapped a few times around

the cap and bound to it with G.E. varnish,. They wvere
then loosely coiled around the German silver tube (to
reduce temperature gradients) and emerge from the cryvoctat
via an Araldite seal. The varying resistance of this
sernsor is observed using the circuit indicated in

figure (6.3).

The two thermocouple leads were joined in a small
mound of solder on the 1lip of the cone joint. They were
then wrapped several times around the base of the éerman
gilver tube, being electrically insulated frow it and
from each other by thirn layers of condenser paper bound
in G.E. varnish, The wires then passed into systoflex
tubes loosely wrapped around the down tube, leaving the
top of the cryostat via the Araidite seal, This seal
alsc carried 40 gauge insulated copper leads to two
eepth gauges which monmitored the heliuw level, this being
concealed within a brass nitrogen dewar and a silvered
glass helium dewar., These gauges were soldered directly

to the German silver tube at suitable intervals, the
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tube being used as a return path for both. Ordinary

32 ohm {(noninal) carbon resistors were used as gauges.

They were wrapped in cotton wool held around them with
masking tape, this arrangement resulted in a relatively
large chenge in the observed resistance as the gauges
passed below the helium level. The changing resistance
was observed using the simple wheatstone bridge arrangement
drawvn in figure (6.4).

4, Calibrations

(a) Magnet

The required inhomogeneous magnetic fiecld was
produced by a Hewport Type A magnet fitted with conical
pole tips, having a 31 m.m. pole gap. The energizing
current for the magnet was produced by 2 Warehanm 1 K.V,
power supply, controlled externally with the circuit
indicated in Appendix 4. This current was resad on a
Crvompton-Parkinson moving coil mcter which was examined
for reproducibility at regular intervals,

Fquations (6.1) and {6.2) imply that the quantities
2 33432 and HxaHxlaz must be known so that the magnetisation
and susceptibility can be calculated from the force
acting on the sample. These quantities can be evaluated

; dg ¢
bty measuring Hx and Hx Hx‘az'
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The variation of the magnetic field perpendicular

to the plane of the pole faces, H_, aleng the vertical

b

(z) direction, was investigated using a flip coil and

flux meter. A correction was employed for the finite
size of the flip coil (Appendix 5). These measurcments
indicated that this variation followed an almost universal
curve for all values of the energiszing curreat up to the
maximum used, 6.5 anps. Rather than calibrate the flux
meter 50 that the absolute field value could be determined,
the central field was measured, as a function of

magnet current, with 2 Hall probe of small cross sectional
area ( 6m.m. square). The variation in field zecross the
probe’ Dbeing about 0.3%. Combining these two sets

of results enabled Hx(z) tec be tobulated as a function

of magnet current.

A rough estimate of Hxaﬁxlaz could be made from the
above results. However, a more careful study of this
quantity, in the region of the estimated maximum, was
mede using a Pd sample of known susceptibility (5.2Z3 x

10-6 c.m.u./gm at29§3'78

). The results indicated that
the position of this maximum did not 2lter on changing
the magnet current. The calibration of Hxaﬁxlaz at the

maximum, as a function of cenergizing current, was done
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with both Pd and Ta ( X= 0.849x 10-6e.m.u/gm at.ZQfK)Tg,

the two sets of results were in very good agreement,

(b) Temperature

| bThé’carbon resistor was calibrated by measuring
its'résistance as a function of helium vapour pressure
below 4.2°K, the temperature was obtained using standard
tableng. Thirty such points were taken between 1.9
and 4.2°K, and fitted by the method of least squares to
the equationSI:
| log R + K(log R) % = BT™! + & | 6.3
Measureﬁeﬁié of the resistance at 77 and 293°K were also
included in the fit.

The thermocouple was normally used with one junction
at ice point. It was calibrated simply by comparing the
measured output at 4.2 and 77°K with those tabulated by
Powell82 and employing a linear interpolation on the
difference, This procedure was sufficiently accurate
in this context since the arrangement of temperature
sensors relative to the sample made it meaningless to
neasure the temperature to better than 0.5%x during
warm up above 4,2°k. Measurements taken during warm

up indicated that carbon resistor and thermocouple agree

to within 0.5° in the region of overlap (20 to 30°K).



this, coupled with the agreement obtained between the
.8 ; . . P
tabulated® and 'measured' melting point of isopentane

Q,
(113X), encouraged confidence in both calibrations.

5. Experimeﬁtal_procedure

The force exerted on the quartz rod and elinvar
spiral by the magnetic field made it necessary to perform
two sets of measurements to obtain the force on the sample,
i.e. one set on the sample and system, the other with
the sample removed,

Before each complete set, the end of the quartz cod
and the bucket were cleaned inm dilute HC1l, washed in
distilled water, immersed for a short time in CCl4 and
finally allowed to dry. The specimen, usually in the
form of a cylinder of diameter 2.5 mms, and a few mms
long, was 'placed in the bucket and attached to the
quartz rod, Following this the position of the damping
discs relative to the button magnets was adjusted for
mazximum damping. The magnet was then wheeled intn
pesition, and its height arranged, using adjustable
screws under the magnet bed, so that the centre of the
specimen lay at the position of maximum Hx Hx/ =z. This

position was checked with a traveliling microscore,
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which was also used to check that the specimén lay
equidistant from either pole face. The cone joint was
then sealed with FEdwayrd%s high vacuum grease, and the
system evacuated.

After several hours pumping lmm of helium exchange
gas was admitted. Following this, the response of the
system to a small restoring force indicated whether it
wag swinging freely, while the cone joint could be leak
tesited by surrounding it with liquid nitrogen. Any leak
significantly increased the noise level. Provided both
tests were satisfactory, the dewars were fitted around
the down tube in such a2 position that the balance remained
unhampered and the dewar tail passed freely intc the
magnet pole gap. Some adjustment was initially required
to satisfy both conditions, bu*t once established, the
dewar locating device described in reference €4 ensured
that subsequent dewar fittings could be accomplished with
minimum efforts

The inherent drift in a system of this type umecant
that zero photocell output usually necessitated a finite
restoring current, The latter was measured by recording
the voltage it produced across some suitable resistor

using a two dial Tingley potentiometer. The series of
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obsevvationa,required to evaluate the force exerted by

the field on the sample,followed the pattezn:

(i) Measurement of zero field restoring voltage.
(ii) Measurement of some finite field restoring
voltage.,

(iii) Estimating the zero field drift by noting the
'finsl' photocell output.

The actual force was obtained by correcting (i)
for (iii), provided (iii) was not too large, and
subtracting the result from (ii). Calibration of the
system wag achieved in the manner indicated previously.
In this way the force on the sample at room temperaturs
wags measured at nine field values, The inner space of
the helium dewar was then filled with an atwosphere of
exchange gas, and the interspace of the same dewar
evacuated by an oil diffusion pump backed by a spring-~
mounted rotary rump, and connected to the dewar by some
15" of PVC tubing. This arrangement aliowed continuous
pumping, yet produced no significant increase in Lack-
ground noise. Liquid nitrogen was then poured into
the outer dewar. The temperature of the specimen was
lowered in 10° intervals by monitoring the interspace

vacuum using 2 valve at the head of the pump. At each
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temnperature the force on the sample at 2 suitable field
was measured, the temperature being estimated from the
thermocouple voltage measured on a portable Tinsley
potentiometer. In this way the temperature was lowered
to 7?°K, vhen once zgain the specimen force was measured
at nine field values.,

Liquid helium was then transferred intothe inner
dewar, and when this had settled the force,as a function
of field, was measured, Temperatures below 4.2°K
were produced by pumping on the helium bath, It was
found that stable temperatures could be produced simply
by controlling the pumping rate with a meedle wvalve,
while at each temperature the specimen force was measured
at a suitable field velue, In this manner temperatures
down to 1.9°K could be attained. At the lowest
temperature the force was once again measured as a
function of field.,

Temperatures in the range 4.2 to 77°K were obtaiued
by allowing the system to warm up naturally, The force
was measured at a single field value in this range.

The rate of warm up in this region (1° per ninute)
was somewhat improved by continually pumping the heliun

devar interspace (1° in 90 seconds).



Measurémante on the emphy system were carried out

«©

in an analogous manner, Howevar, it was usually
necessary, on removing the eample, to readjust the system
so that the quartz rod remained in the same position

in the applied field.

6. Errors in mecasurenent

Under ideal conditions the balance can resolve
2 x 10"'3 dynes, however background noise and zero £icld
drift tend to reduce this figure. Above 77°K the
experimental arrangement allows temperatures to be
maintained at a reasonably constant value, consequently
the zero field drifts are small, The sensicivity
limitation is then the bactkground noise which is
typically 10'-2 dynes, Below 77°K zero fiald drift tends
to reduce this figure typically to about 5 x 10“2 dynes,
The errors arising from such sources can be reduced
by using samples of such a size that theforce exerted
on them by the field is several orders of magnitude
larger than the figures quoted above. However in
many cases the ('f)"1 dependcnce of the susceptibility
meant that large specimen forces (50 to 100 dynes)

in the liquid helium range were considerably reduced on



warming up to liquid nitrogen temperatures. Consequently
where poseible, samples used below 77°% were replaced by
larger ones for higher temperature measurements.

As mentioned previously, the arrangement of carbon
resistor and thermocoupie make it meaningless to measure
the temperature to better than 0.5°K during warm up.
Below 4.2°K however, this is not the case, Provided
sufficient time is allowed for the temperature *o
stabilise {(typically 5 minutes), the accuracy of the
temperature measurement is better than 0.02°K, One
disadvantage of the present arrangement is that the
balance does not distinguish between a 'direct pull'
and a couple. Consequently errors in measuring the
sample force could arise from sample misalizument.
These, however, have been roughly ecstimated (Appendix 6)
and are typically less than 0.57 of the vertical sanple
force.

7. A servo~mechanism for the balance

As indicated previcusly,the warm up rate between
4.2 and 77° (1° in 90 seconds) is such, compared with
the time taken to make a single measurement (45 seconds
for éhe actual‘ﬁéiancing, 2 minutes after all readings

h~vz been taken), that in this temperature range readings
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can be takenm at one field value only,and in addition
must be taken continuously to obtain a reasonable number
of experimental points.

An attempt has been made to improve on this situation
by making the balance setrvo=restoring. At the outset it
was realised that any automated arrangement could not
simultaneously be null detecting system sinre, having
initially set the_ photocell output and the restoring
current to zero, the application of a magnetic field to
the sample requires an additional restoring force for
null deteetion,. The initial conditiong however, imply
that an additional force requires an out of balance
signal for its production, Such an out of balance
signal can be made quite small provided sufficient
amplification is used. Automation can be accomplisled
by feeding the restoring coil with a suitably amplified
nhotocell output, This suggests a dvc. amplifying
system, but in order to overcome the drift problems
inherent in such an arrangement, it was decided to convert
the photocell ocutput from d.c., to a.c. before amplification,
reversing the process before féeding the final signal

into the restoring coil,
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Several methods of conversion were tried, including
mechanically chopping the light beam with a fan, but
the most suitable system was found to be the electronic
chopper-amplifier drawa in Figura (6.6). Basically
the circuit consists of 2 apir of transistors which
consititute a balanced chopper. The chopping action is
produced by driving these transistors alternatively on
and off by applying square waves from a multivibrator to
their bases; these square waves are 180° out of phace.
In this way the input signal, fed into one of the
transistors, is sampled at the chopping frequency
(1.7 Xe/s). The chopper is condensor coupled to an
amplifying section, from which the signal is synchronously
cdetected, giving on output ia phase with the input.
The smoothing action of the resistor-capacitor
arrangement in the detector ensures & reproduction of
the now amplified input signal. The output from this
system is a2djusted to zero, for zero input, using the
variahle resistor in the chopper circuit, while thermally
anchofing the EHOPper transistors helped maintain this
condition by reducing zero drifts to typically 28&v/%c.
the output from the chopper-amplifier was fed into another

> e ® L] 1 * . - » . . L . g
amoltylngpectlumyla 2 zero set circuit, and finally into
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a White followecr=figure {(06.7),. The signal from this
passes directly into the restoring coil via a variable
protective resistor.

While the button magnets and copper discs introduce
sufficient danmping when uging manual restoration, it has
been found necessary to provide a zreater degree of
stabilisation for use with the serve mechanism, In the
autonated condition, relatively rapid damping can be
obtained using a velocity damping technique in which
the restoring coil is provided with a signal proportional
to the rate of change of the actual servo-restoring signal,
Paradoxically,some difficulty arose from that property
of the balance which makes it so attractivefor use in the
2resent context, i.,e., mechanical decoupling of the
vibrational and rotational modes. Both specimen and
restoring forces act in a vertical direction, but manifest
themselves via a rotation in the torsional nmode. Anvy
velocity signal should be fed back into the system at the
point at which it is appropriate, however, this was
initially found to be rather difficult to accomplish
owing to the attenuation that exists between the two
operative modes. This difficulty has been partly

overcome by using a differentiating circuit which
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incorporates a transitional phase amplifier which was
used to optimise the phase lead of the velocity signal inm
the appropriate frequency reagion. This circuit is
drawn in figure (6.8), The signal from this circuit
was fed into the coil via a series protecting resistor,
the ¢oil being shunted by a 13500uFd condenser which
offered an easy ground gath for relatively high
frequency s$ignals which would otherwise have set the
balanee into vertical vibration. The smoothing action
of this condenser coupled with the coil series ‘resistors
enabled the feedback voltage to be read directly on a
"Digitec' voltmeter connected across these series
resisgtors.,

8. Servomechanism performance

During operation, it has been found that the servo-
restoring current, for a given mechanical load, can be
raised to some $2 or 937 of the restoring current
necessary to maintain a null condition. Increasing the
servo gain beyond this figure induces a strong tendancy
for the system to oscillate, The servo-system can be
calibrated by comparing its output (i.e. the feedback
voltage across a suitable resistor in series with the

restoring coil) with that obtained using manual restoration.
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These calibrations were carried out at nine different
field values at varioua fixed temperatures (1.9, 4.2,
77 and 295°K). A linear interpolation between
differing fixed point célibraticns was used, these
differences being typically 1 to 2%. In addition to
the normal zero field drift in the balance, which was
reflected in the changing zerc field servo~restoring
output, there alsc existed a background noisc of
typically + .05 dyne. This is due to imperfect
stabilisation of the system and is a manifestation of
the attenuation menticned previously,

A comparison of the results obtained for a Pd sample
using manual and servo-restoration is made in figure

(6.%).
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CHAPTER 7

PRESENTATION OF EXPERIMENTAL RESULTS

The results for each specimen will be presented
as Magnectisation versus Field plots at four fixed
temperatures, together with a single fieid inverse
susceptibility versus temperature plot. The history
of the sample, and, where applicable, the metallographic
analysis on the sample will be presented.

The alloy susceptibility wase ‘corrected' for that
of the host'using the data in Reference 86,

The source of each alloy is indicated.

General:

Many of the alloys were obtained in button form,
These were machined into cylinders of diameter 2Z.5mm,
from which a suitable length specimen was cut using a
fine toothed hacksaw. Any burring of the =dges of this
specimen was removed with a small file. The Speéimens
were ctched féf.an'hdﬁflinra solution of 1:2 HCleZO
to remove any iron corntamination of the surface, and
finally washed in distilled water,

The miérostructufe of ihe dilute Ag rarecearth

alloys was examined by etching then in a solution of
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approximately 2:2:5, H O:H?O sNH, OH, Photographs of

2 2 4
this structure were taken with cquipment loaned by
the Department of Metallurgy.

Ag - 0,8AtZGd (Bijvoet, Ansterdam)

The alloy was cast forged and then anmnecaled.
Examination of its microstructure revealed a recrystal-
lised, fairly fine grained f.c.c. 80lid solution, with
some twinning and quite large amounts of second phase
in the grain boundaries (and possibly im the body of
the grains) - figure (7:1p).

Figures (7:1) to (7:4) summarise the cxperimental
results.,

Ag - 0.45At.7%6Gd (Bijvoet, Amsterdam)

This sample was cast, forged and then annealed.
Metallographic analysis = figure (7:2p) =~ revealed a
very similar microstructure to the more concentrated
alloy, but with much less second phase. The experimental
results appear in figures (7:5) to (7:8).

Ag = 0,1At.7Gd (Bijvoet, Amsterdam)

-—

This alloy was cast, forged and then annealed at
650°C, and as figure (7.3p) indicates, formed a well
crystallised single phase f.c.c. solid solution with

much twinning.
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The experimental data taken on this alloy is repro-
duced in figures (7.9) to 7.12). No measurements
above 77°K were taken since the susceptibility difference
between alloy and pure host decreases very rapidly
with increasing temperature, reflecting the small
concentration of rare-earth impurity.

Ag3Gd(Harris, Birmingham)

A small lump, suitable for susceﬁiié&iizyfméaéﬁre-
nents,,weighing about 5 milligms, was broken off a
rather brittle original sample. This was etched for
about 30 seconds in a 1:5 solution of HC1:H,0, and thenx
washed innaistiliéd wate;.-

Figures (7.13) to (7.15) sunmarise the experimental

data.
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Ag - 0,86At.%Dy (Bijvoet, Amsterdan)

This sample was cast, forged and annealed, and
constituted a single phase, recrystallised.solid sclution,
The "crow's foot" structure at grain boundary interseccticns,
figure (7.5p), indicates some incipient melting in these
regions during annealing. Figures (7.20) to (7.23)
summarise the measurements on this systen,

Ag - 0.51At.7Dy (Bijvoet, Amsterdam)

This alloy had been subjected to the same treatment
during manufacture as the more concentrated alloy from
the same source. The button supplied was rather small
and had to be cold worked into a suitably shaped
susceptibility sample. Consequently the sample was
given a strain releaving annealat 700°¢C for 15 minutes,
from which it was quenched. The surface of this
annealed specimen was cleaned in a 1:1 solution of
HZO:HN03 before etching in the usual manner.

Owing to the lack of material, this sample could
not be microanalysed. However, similar conditions
of manufacture, combined with the similarity between
the results obtained for this alloy and the more
concentrated sample, suggests that confidence can be

placed in the results, summarised in figures (7.24)
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Ag - 0.35At.7 Ho (Bijvoet, Amsterdam)

The original sample was rather small, and had to
be cold worked into a suitably shaped specimen. The
final specimen was given a 20 minute strain releaving
anneal at 300°C.

Lack of material prevented microstructure analysis
from being carried oput, but the ekperimental results,
figures {(7,28) to (7.32) have the same general charzcter

as those reported for the less concentrated alloy.,

4Ag - 0.25At,.7 Ho (Johnson Matthey and Co.)

"his alloy was provided in button form, having been
homogenised at 550°C for 24 hours.

Examination of the microstructure - figure (7.6p)
indicated a single phase, fairly large grained f.c.c.
solid solution with some cored character, suggesting
poséible concenfration grééiénts:in the sample.

Thé experimeﬁtal data is reproduced'in figures

(7.32) to (7.35).
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Ag = 0.28At.7 Er (Johnson Matthey & Co.)

The“sﬁsceptibility sample was obtained from an
arc melted button which had been homogéﬁisedlat465000.
’ﬁétallégraphié analysis revealéd'large c¢1umnér crystals,
with no evidence of recrystallisation or twinning,
figure (7.7p). The experimental data appears in

figures (7.36) to (7.39).

Ag = 1,0At.7 Er (Johnson Matthey and Co.)

This alloy was manufactured in the same way as
the more dilute sample, and as figure (7.8p) shows,
had a similar microstructure.

As figures (7.40) to (7.43) indicate, thé
experimental results have the same genefal character

as those for the more dilute sample,
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None of the dilute gold rafe;eﬁrth alloys were
subjected to metallcgraphic"anélysis since the rare-
earth solubilities in gbl& are almost double those for
the corresponding silver alloys. (8ee, for example

RiderGA.)

Au = 1.0At.Z Er (Harris, Birmingham)

The susceptibility sample was machined from a
button of this alloy which had been homogenised for one
week at 900°C. The experiméﬁtal data appears in

figures (7.51) to (7.54).
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Au = 0.3At.7 Tm (Harwell)

This alloy was supplied in the form of an arc
melted button, which Lad not been homogenised, The
button was cold colled before homogenising for 30
hours at 675°cC, quenching the sample into iced water,
A sample suitable for susceptibility measurements
was made in the usual manner.

Figures (7.55) to (7.58) reproduced the

experimental data.
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Au - 0,9At,.Z ¥b

The specimen was obtained from an arc nelted
button which had been forged and then annealed at
800°C for several days. The specimen was given a
strain releaving anneal at 450°C for 20 minutes.

Pigures (7.59) to (7.62) summarise the experimental

data.
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CHAPTER 8

DISCUSSION OF THE EXPERIMENTAL RESULTS

S-State impurities; fﬁ%ﬂﬁgéa éyé%em

Typical theoretical cstimates give the ground
state splitting in Gd, due to configurational mixing,

&7

as 0.1°K, a figure which has been shown to be of the

right order of magnitude at least by the experimental
data on gadolinium ethyl sulphatega. It would seem
reasonable to assume that this figure is not significantly
changed for Gd ia a Ag host, but the experimental data
already presented for the Ag-0.8 and 0.45At.% Gd alloys
~seems to refute this idea. The inverse suéceptibility
versug temperature curves for these alloys show
deviations fromCurie-Weies behaviour at temperatures
which are at least an order of magnitude larger than
expected. Metallographic analysis reveals that this
anomalous behaviour can be attributed to the effects of
an intermetaliic second phase compound in these alloys.,
For simplicity, if this compound is assumed not to
contribute to the observed low temperature susceptibility

of the alloy, then its susceptibility-temperature

variation can easily be obtained ~ figure (8.1).
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From thiz the estimated iransition temperature of the
compound is 369K,

An excmination of the-{AgﬁCdQ»phase-diagramag
suggests that this intermetallic compound is likely to
be Ag3G&, Consequently the temperature variation of
the susceptibility of this compound was measured and,
as figure (7.13) indicates, it is a ‘typical metallic
antiferromagnet with a transition temperature of 36°K.
~THiS”figufé‘hasfbeen*ccnfirmed by -@.ps¥r. measurements.
-Théiﬁresdnce of a similar intermetallic compound could
certainly explain ‘the anonalous temperature dependence
of the susceptibility of dilute AgEu and AuEu, in which
the rare-earth impurity is divalent (S~state ion).

The published ( %‘vs. T) plots of Gainon for these
systems bear a close resemblence to those presented here
for the Ag-0.8At.7 Gd alloy, including an extrapolated
high temperature line which has a positive intercept

Un «ne remperature axis. The effect of such a

compound on (H/ gvs, ”2)/Dlptsghas nct been investigated,
but its presence would scem to throw doubt on the other—
wise znomalously high Curie temperature obscrved by

these authors, and from this pnint of view, would

consequently modify some of .their conclusions. In
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addition to the work of Gainon, it waﬁld seem reasonable
to explain the unuvenunl concentrstion dependence of
Pickett's specific heat data on mctallurgical grounds.
Metallography carried out on the Ag~0,12At.% Gd
alloy did not reveal any sccond phase, This alloy has
a well behaved (1/y vs.T) variation, except for the
rather large '@' value (-2 + 0.5°%), 0f course, the
relatively small susceptibility of thkis szmple coupled
with the accuracy of the temperature measurements,
discussed previously, makes such an extrapolation rather
inaccurate, Susceptibility measurements on the S-state
ioa Mn, in Cugo, indicate that the intercept on thé
temperature axis of the extrapolated high temperature
data is between +5 and + 10°K/At.Y% . Specific heat

Q
1,92 ;dicate that

measurements on the same -system9
(AC/T vs.T) curves have peaks occurring at about ldoK/
At.%Z Mn, in good agrecment with the susceptibility data.
Using the appropriate expressions for the interaction
energy (Chapter III) in the Ag Gd and Cu Mn systens,
suggests that similar peaks in (AC/T ve.T) should occur
in the former at about 1°K/At.z Gd. This figure is,

of course, just an estimate since the equations used to

obtain it represent a rather extreme approach, the figure
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is however in gcod agreement with the publiebed specific
heat curves of Zimmerman et al for the Ag Gd system.

The general character of the (M~H) plots in AgGd
is similar to that observed for EEMnQB. The high
field non-linearity is consistent with Brillouin function
curvature, while the curved low field region indicates
interaction effects, although a quantitative approach

to these in such systems is still lacking,

Non S-state impurities

Introduction

As already mentioned in Chapter 5, the picture
of a dilute alloy in which the impurity states closely
resemble those of the free solute ion, is likely to be
applicable to the case of rarc-earth solutes in noble
metal hosts., It is well known that spin-orbit coupling
is strong in the rare-earths, consequently in the
dilute, well isolated 1limit, the ground state of the
solute will be characterised by a well defined total
angular momentum (Jh). The (2J+1) fold degeneracy in
zero magnetic field associated with the ground state
will, however, be partially lifted by the cubic crystal
ficld of the host. Indeed, the susceptibilities of

these alloys, as previously presented, can, in some cases,
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be understood directly in terms of the arrangement and
residual degeneracies of these crystal field split
levels. Typically in Au ¥Yb, the well isolated Iﬁ
ground state (already identified by e.p.r.gé) clearly
dominates the obscrved low temperature susceptibility
while in Ag Tm the prescnce of a well isolated Ty
non~magnetic singlet ground state is secen to have a
dramatic effect, In alloys containing most of the
other heavier rare-ecarths however, the existence of
Curie~Weiss behaviour does not facilitate a straight-
forward analysis in the above manner.

At the lowest temperature it is ecxpected that the
above picture will be complicated by inter-impurity
cffects arising from indirect spin-sﬁin coupling via
the conduction electrons, This idea is strongly
supported by the low field non~linear character of the
(M-H) plots presented in the previous chapter, Such
effects are enhanced by increasing rare-carth concen-
tration, which produces additional impurity - impurity
effects via mutual distortion of the crystal field by
neighbouring rare-carth impurities, As previously
emphasized, quantitative estimates of the effects of

the former are still lacking, in addition a precise
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treatment of lncal distortions of the crystal field in
a random alloy would be difficult, Qualitatively
however, it seems reasonable to assume that both would

tend to average out the effect of the crystal field,

Fitting the experimental data

Chapter 4 of this thesis concentrated on demonstra-
ting the manner in which the Hamiltonian matrix for
rare=-earth ions in a cubic crystal field was obtained,
In that chapter the approach was confined to a single
manifold of constant J. This seems 2 reasonable
assunption for the heavier rare-carths at least, in

0
25 which indicates that different

view of optical data

constant J manifolds are well separated (about IO,OOOOK)@
When values of the coefficients (C4,C6) (see Appendix

2) have been specified, the Hamiltonian can be written

down explicitly. The effect of an externally applied

magnetic field can be taken into account simply by

adding diagonal Zeeman eclements to this matrix. A

modified library sub-routine (for an I.B.M.7090 computer)

has becn used to diagonalise this Hamiltonian and fing

its eigenvalues and eigenvectors. Using the latter it

is quite straightforward to evaluate thé susceptibility

at any temperature using equation (1,9).
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For é crystallince field produced by an array of point
charges located 'outside' the rare-carth ion, G, and

CG would be proportional to <ré> and <r6> s the mean
fourth and sixth powers of the radii of the magnetic (4f)
electronsgs. These coefficients would thus depend on
the detailed nature of the wave~function of the magnetic
ion, and, to the extent that the 4f wave-functions are
the same, would be the same for all the rare-earths as
impurities, In a metal, however, the potential to

which such electrons are subjected is almost certainly

not purely electrostatic in origin, and on this basis

the above conéldéiégs would seem invalid, though to
assume that the signs of C4 and C6 remain the same for
all the rare-earths as impurities in a given host seems
reasonable, If, in addition, the sign of these
coefficients is assumed to be the same in both Ag and
Au hosts, then the e.p.r. identification of the BT
doublet ground state in Er and Yb requires that C4
be positive and C6 negative, These are, incidentally,
the signs predicted by a simple point-charge model,
Initial computations swaeping over a wide range of
the coecfficients (04,06} have shown that the calculated

susceptibilities in cubic symmetry aré generally much



192 1 ]

nuch moreé Curie-Weiss like than those calculated for
a magnetic rare—earth iom in an environment of lower
symmetry97, This means that for cubic symmetry the
absence of strong deviations from Curie-Weiss behaviour
does not mnecessarily indicate that the crystal field
splitting is small, Of course, in such circumstances
the calculated susceptibility is rather insensitive
to changes in the overall splitting, conscquently
alloys which exhibit a Curie-Weiss temperature dependence
of the susceptibility are not very useful for accurate
determinations of (04, CG)'

With this in mind 2n attempt has been made to
fit the experimental data for the dilute Ag-Rare earth
alloy systen étarting with AgEr, since the temperature
variation of the susceptibility of this alloy has rather
more 'character', E.?P.R., has been absecrved at low
temperatures in a powder sample of this z2lloy at

= 6,73 + 0.194, which corresponds to a g value of

24
6.80 expected for the E7 eigenstate of Exr*** in a cubic
crystal field. That this observation identifies the
doublet as the ground statc follows from the fact that
the other possibility for the ground state, the I§

eigenstate, has non-vanishing matrix elements of the
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stepping coperator (Jx + in)gs, and an expected g

value, in cubic symmetry, of 6.00. Indeed the fact
that only the T% resonance was observed up to 20°K
(when the line became too broad for accurate observation)
suggests that this state is well isolated, although
with line widths of about 100 Oe it is perhaps
unreasonable to assume that a resonance would be
observed if the Ib state were populated thermally.

In any case this observation merely limits the C4,CG
ratio .and does not assign a specific value to these
parameters since the '"composition' (and hence g value)
of this F? eigenstate is not affected by changing
crystal fields. The best fit to the experimental
susceptibility data has been obtained using crystal
field coefficients(cé, 06) of (=70, 13)°K, figure (8.2).
In fact these values give the calculated susceptibility
the maximum deviation from Curie's law.

The effects of interactions in this alloy system
can be seen by comparing the low temperature behaviour
of the Ag-0.28 and 1.0 At.7 Er alloys. In addition
to increased low field curvature in the (M-H) plots,
the influence of the I‘7 ground state is nuch less

apparent in the concentrated alloy, in agreement with
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the previous qualitative suggestion.

The experimental data for the AgTh, AgDy and
AgHo alloy systems, figures (7,16), (7.20) and (7.28),
indicate that their susceptibilities do not deviate
strongly from Curie-~Weiss behaviour. The experimental
curves can be fitted using several values of the
coefficients (C,, C), including the (~70,13)°K used
to fit the AgEr data, Admittedly for this value
the theoretical and experimental curves tend to separate
below about 7°K, and an improved fit can be obtained
by increasing the overall splitting, but as the (M=-H)
plots for these zlloys indicate that interaction
effects are operative, such a procedure is not without
objection. In AgHo at least, specific heat measurements7p
have shown the importance of hyperfine effects, and it
was felt that a breakdown of hyperfine coupling might
be contributing to the observed low field (M-H)
curvature, A consideration of such effects, in
Appendix 8, in the very low temperature limit shows
that this is certainly not the case.

Within the limits imposed by the accuracy of
fitting,the data thus far presented are consistent with

the supposition that, in a given host, (04’06) are the
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sane for all the rare-carth solutes, In the case of
AgTm hewever, the susceptibility computed with the
(Cé’CG) used to fit the AgEr data approaches a constant
value at too high a temperature. This arises, in
spite of the fact that these crystal field coefficients
indicate a well isolated ground state singlet, L,
which gives no 1/T term in the susceptibility, from the
finite low temperature contribution of Van Vleck terms
within the same constant J manifold, i.e, a mixing of
higher crystal field eigenstates induced by the etermnal
magnetic field. If the previous supposition about the
effect of interactions is correct, then they will tend
to increase the low temperature slope by decreasing('%)
However, it scems unrcasonable to assume that in an

0.5 At.Z% alloy these effects will be of sufficient
strength to account for the observed discrepancy.

On this basis then, it must be concluded that the
magnitudes of (CA’ 06> are changing for the various
rare-earth solutes, the values (~30, 5.5)°K giving a
good fit to the AgTm data. Another intcresting feature
of this alloy system is provided by the lincar, low
field (M-H) variation at low tcmperature. If the low

field curvature obscrved at low temperature in the (M=H)
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plots for other alloys originates in indirect coupling
of the impurity spins via thé ecnduction electrons, then
the well isolated singlet ground state in Agfﬁ should
experience no such coupling, This idea is clearly
supported by the experimental data.

Following the conciuded vari;tion in magnitude
of (C,,C¢), it is particularly uﬁfﬁrtﬁhéte that Yb is
divalent in Ag., For trivalent Yb, both sets of values
cf (CA’ 06) used to obtain the previous fits give a
distinctive (1/ ¢ vs.T) variation, consequently
experiments on this system would provide useful data
for ascertaining whether any systematic variation in
these coefficients occurred. Indeed, from the point
of view of theory this ion is one of&he simplest to
treat since all matrix elements occurring in equation
(1.9) are independent of the crystal fiecld coefficients,

the susceptibility therefore depending only on the

energy separation of the three eigenstate (r6’r7 and PB)

4+, . . . . . .
of Yb in a cubic field. ‘This situation occurs in
AuYb. The low temperature e,p.r. observed at g =

3.30 + 0‘194 in powder samples of this alloy clearly
identifies the P7 eigenstate as the ground state

(expected g value in cubic symmetry, 3.43), while a
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very good fit to the susceptibility data is obtained
with (=27,4.5)°K. The susceptibility data on Aulr is
rather less dramatic than that for AgEr, and in this
respect is rather more difficult to fit uniquely,
although e.p.r. again-idénfifiég r ; as the gréund
state, It is clear however, that the (C4,C6) values
of (=30, 6.5)°K give a2 considerably better fit than

do the AuYb values of (-27, A.S)OK, thus supporting
the view of changing crystal field parameters across
the rare-earth series, As with AgTm, the AuTm data
requires that (C4’C6)’ for a good fit, be considerably
less than the values used to fit the experimental

data on other rare-earth impurities in the same host.
In this alloy the values (~17, Z)OK were required.
These parameters indicate that the Tz singlet eigen-
state lies lowest, being separated by about 7°K from the
next eigenstate (IB). Unlike AgTm, the (M-H) plots
for this alloy, at both&.Zoﬁmd 1.95°K, exhibit some
low field curvature, this is, howcver, consistent with
a singlet ground state since its isolation 1is such that
both the calculated and meaaured susceptibilities have

not reached a constant value at 2°K.
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Table (8.1), below, summaries the data obtained

from the fits descfibed above:-

Alloy C4(°K) Cﬁ(oK) Overall split- Ground state
ting ( K) isolation

Ag Tb =70 13 117 <1°x —

Ag Dy -70 13 157 1°x -

Ag Ho =70 13 182 <1°K —

Ag Er =70 13 207 35°K

Ag Tm =30 5.5 95 21°g

Au Er -33 6.5 105 19°K

Au Tm  -17 2 47 7°x

Au Yb -27 4.5 83 79°k

The bulk of the experimental data presented scems
to support the original supposition that, in alloys of
this type, the localised impurity states closely
resemble those of the free ion, in so far as a theoretical
approach based on such an idea yield results which are
in good agrcement with experiment, In addition, in
those alloys in which the rare—-carth concentration was

chemically analysed, the effective moment derived from

the high. tenmperature susceptibility was close to the free
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ion mcment (9.8“B for the Ag-0.28 At.7% Er alloy).

An interesting general characteristic of this high
temperature data, for most of the alloy systems
examined, is that it extrapolates to give a negative
intercept on the temperature axis. A power scries
expansion of the susceptibility at high temperatures,
using equation (1.9), indicates (Appendix 7) that the
thermal population of such a2 set of levels does not
give rise to a (1/T2) term with which such an intercept
would be associated, but exanination of the\computed
susceptibility indicates that the high temperature
susceptibility approaches on asynmptotic Curie law
variation ~ equation (1.10) - as (1/T). Unfortunately
in the high temperature region the experimental data

is not sufficiently accurate to distinguish between
these two variations, consequently it seems to cxtra-
polate in the above manner,

Concluding remarks

FTollowing the discussion in the preceding sections,
it seems that the experimental susceptibility data is
well explained on the basis of a model in which the
free ion-like localised rare-earth impurity states are

‘subject to the cubic crystal field of the noble metal
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host. The experimental data suggests that the
coefficicnts (C4! CG) characterising this crystal field,
change in magnitude forthe various rare-earth solutes,
although they are assumed to retain the same signs.
This variation seems quite plausgible in view of the
variation of such properties as the solubilities of the
rare-ecarths in the various hosts, The assumption that
(04, 06) retain the same signs in Au and Ag is only
seen to be plausible when the character of all the data
presented is reviewed. Certainly the e.p.r.
observations for the rare-ecarths in Au,provide definite
evidence that 84 is positive and C6 negative, but the
single observation on Er3+ in Ag only indicates that
T, is the ground state and does not fix the signs of
(04, 66). Indeed, the susceptibility data on Ag Er
and ApTm is not inconsistent with the signs of ¢, and
C6 being the same, The degeneracy scheme for the
former is certainly not drastically changed, while the
latter would still retain a reasonably well isolated
singlet ground state (P1 o ?2, depending on the CA:CE
ratio). The calculated susceptibilities for the AgTb
and AgHo systems howvever, provided that the overall

splittings remained at roughly the same magnitude, would
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be rather different fronm those observed experimentally.
Whatever C,:Cg ratio is choosen, the former would have

a2 reasonably well isolated singlet ground state, which
would cause the theoretical low temperature inverse-
susceptibility tec flatten, whereas that observed
experimentally still decreases roughly as T at the lowest
temperature, Similar effects should occur for Aglo,
though for the same overall splitting they would be

less pronounceds Thus, although the experimental data
on AgTb, AgDy and AgHo is of little use for accurate
determinations of (CA’CG)’ it does provide convincing
cvidence that the signs of (CA’C6) are the same in

Ag and Au. In the latter, of course, the signs are
established, and an extrapolation of the AuEr parameters
to AuTb, AuDy and AuHo revecals that little is to be
gained from susceptibility measurements on them,

The results presented in this thesis, rather than
investisating in detail the properties of a single alloy,
form a general survey of the propertics of the heavier
rare-carths in Ag and Au. They demonstrate that
although general characteristics can be understood,
detailed effects, particularly interactions, are still

not well understood. In this respect a thorough
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investigation of alloys of the noble metals containing
initially about ©.1 at.% rare-earth seems desirable.
These alloys should establish the behaviour in the
dilute limit, and should provide a useful basis on which
the effects of increasing impurity concentration could
be studied. In addition, the effects of mutual
distortions of the crystal field by near neighbour
impurities could be studied using a fixed concentration
of "magnetic" rare-earth (initially say, 0.1 At.Z%) and
a variable concentration of Lu., In this way, initially,
the complicating effects of indirect spin-spin coupling
via the conduction electrons would be avoided. An
attempt has been made along thase lines using Ag=5 At.7
Au alloys as hosts, however the metallurgical difficulties
were rather serious.

By using the crystal field coefficients
determined from the susceptibility data, a reasonable
understanding of the e.p.r. data can be obtained.

3+ 3+
o

The non-Kramers ions Tb™ , H and Tm3+ have non-

magnetic ground states ( r3, T3(2> and 1'2 respectively),
although the (04’C6) coefficients used in the AgEr fit
indicate that the first two of these have triplet states

(2 p (2)
5 4

and respectively) energetically close to
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the grcocund state. However, the rather large line-
widths in this type of alloy scems to preclude e.p.r.
observations in these tripléts due to thermal population.
If the parameters used to fit the Er3¢ data can be
extrapolated to the Kramérs ion Dy3+, then the sitwations
predicted are rather ih%éféétihé. For AuDy, the

(~33, 6.5)°K values indicate that the 1‘7 eigenstate
will be the ground state, which, in cubic symmetry,

has an expected g value of 7,55, In AgDy however,

the (=70, 13)°K values predict that the P7 doublet

and T8 quartet lie roughly with one degreec of cach
other. The latter, although of cubic symmetry, cannot
be characterised by an isotropic g valuagg. In both
alloys attempts are being made to observe resonances;

for the latter, of course, a single crystal is being
used, although the proximity of the two eigenstates

will undoubtedly complicate matters,

For the susceptibility and e.p.r. then, this model
of a free—-ion like, localised, rare-carth impurity state
acted on by the cubic crystal field of the noble metal
host, yields a good description of the alloy in the
dilute limit, It is interesting, therefore, to

speculate about other propertics of such alloye on the
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basis of this model. The coupling of the different
crystal firld ecigenstates to the conduction electrons
could result in a distinctive temperature variation of
the electrical resistivity. This quantity has recently
been measured in this laboratory, and the form of its
temperature dependence suggested initially that it might
indeed be explained by different scattering cross-
sections for the various crystal field split levels,
However, the observation of é similar behaviour in the
AgGd alloy system indicated that deviations from
Matthiessen's rule are important, and could account for
some, or all, of the observed anomalies in the other
alloy systems. In addition, a recent paper by Hirst100
has shown that spin-flip scattering contributes a vefy
small amount to the obsecrved resistivities (roughly

0.02 40 ecms /At.% rare-carths), an estimate which has
been coﬁfirmed by pfeliﬁinary aﬁalysis of the magneto-
resistance data of Bijvoet et al, For this lattef
property, when the lowest éubic crystal ficld éigenstate
is ﬁagnetic, the applicatidn of é magnetic field at

low temperatures causcs a "freezing out" of spin-flié

scattering on angular momentum conservation grounds,

However, when, in zero magnetic field, a singlet state
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lies leowest, there is no spin-flip scattering. The
effect of applying 4 small magnetic ficld is to parturb
this ground state and, in general, mix into it some
higher, magnetic states. This mixing is coherent,
and the associated moment is consequently "frozen",
and in this sense cannot give rise to spin-flip
scattering, however since the induced moment is not
well defined, normal conservation laws would not seen
to apply to the.situation. 1In either case, the practical
effects would be very small,

The thermal population of such a set a crystal
ficld split levels should, if one eigenstate is well
isolated, give rise to a Schottky type anomaly in the
specific heat, Preliminary calculations of this
quantity have alrecady been made, concentrating mainly on
the region above 4°K where the complications of
hyperfine and interaction effects should be absent.
More systematic calculations are being made, but those
already available indicate that a Schottky anomaly should
be observable even in an 0.5 At.Z alloy against a
background of the increasing lattice term (Ag should be
much more favourable than Au in this respect, owing

te the latters low Debye temperature). Typically,
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in Ag Er, using the (—70,13)°K value, this anomaly is
béaked aréuha IOOK: In general the shape of the
"bump" is changed by using different crystal field
parameters, consequently specific heat data in this
temperature region should be of some help in determining
these coefficients. It is hoped that measurements of
this property will be forthcoming in the near future.
The arrangement and residual degeneracy of the
crystal field eigenstates should have an interesting
effect on the properties of superconductors such as
Lag In containing rare—-earth impurities, The inter-
pretation of their effects is more readily accomplished
in those alloys for which the lowest cigenstate is
well isolated (compared with kTc). Under these conditions
the depression of Tc, the superconducting transition
temperature, in the alloy will depend on the character
of this lowest eigenstate, When the latter is non-
magnetic, the depression of Tc should be governed by

01 . . .
relation, since, in these

the Markowitz-Kadanoff1
circumstances, the effect of the impurity is simply
to reduce the electronic mean free path. For a magnetic

ground state the appropriate expression

for the depression of Tc would be that given by
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Abrikosov and Gorkovloz. In addition, the

variation in the depression cf Tec for, typically,
different rare-earth impurities, as given by the

de Gennes factor, (g--l)2 J(J+1), would be valid only
in those alloys in which the overall crystal field
splitting is less than kTec.

Finally, returning from general considerations to
the more specific question of the e.p.r. linewidth in
these alloys. For powder samples, the observed deri-
vative e.p.r. lines had a Dysonian shape (the amplitude
of the first to the seéond peak being about 2.5103).

In the temperature range in which the non-s state
resonances were observable (below about 20°K) the line
width, AH, could be represented by:

AH = A + BT seseee 8.1
For the dilute Ag Er, A had the value 59 ocersteds, and
B was 9.5 oersteds per degree; while for Au Yb, A was
measured at 370 oersteds and B at 12 ocersteds per degree?
The T_1 dependence of AH could have its origin in
KorringalO4 or direct phonon processeslos. The
description of the coupling between a magnetic ion of
effective spin Seff,at site Rn, and the electronic

spin density 9(x), atx, by the phenomenologival exchange-
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L (83-1)
= n‘¢g,_ 4 geff O (3 -
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where no is the number of lattice sites per unit volume,

Jey a parameter with the dimension of an encrgy, and

g; the Lande factor, leads, in the case of a "free

electron™ solvent, to an icnic 'g shift', A g., given by
1

A8 - 3In(gy-1) 2.3
Bagf 2EgB5my

where n is the number 6f conduction electrons per unit

volume, This coupling affords a possible relaxation

. . . . . 107
mechanism, with an associated reclaxation rate given by

2

1 Oy [ Sefr. 2
e = e b2 4 W) 1 .
1 16mnd e, :l 2 secs 8.4

ol
thofed

Assuming that the corresponding (Korrvinga) broadening

accounts for all of the cobserved temperature dependence

of the line widths leads to the following conclusiomns:
. . . -3

For AgEr : lch‘ e O L8 ev and Agl/{,eff o 7,10

7 Iv H j o O‘ 5 ¢ .:. 24 o “

For AuYb ich‘ o315 ev and Agi/3 . 10

An cxact evaluation of the sum of the various matrix

elements which occur in the ecxpression for the relaxation
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rate asscciated with direct phonon processes (sce,
for example, Reference 105) is a lengthy task. owever,
a rough estimate of the magnitude of this effect can be

obtained from the measured relaxation rate of Yb3+

in cubic sites in CaF2 (at X~band frequencies)log.
For an order of magnitude calculation, the form of the
dependence of this relaxation rate on the crystal field
parameters suggests that changing hosts has no effect
in this respect. Correcting for the appropriate demsity
and mean phonon velocity yeilds a temperature dependence
of the line width which is less that 1072 ocrsted per
degree in Ag.

Orbach and Raman processcs105 become increasingly
important as the temperature is raised. As in the
above case, rough estimates of their effects on the
linewidths can be obtained from the experimental data
on trivalent rare-earths in cubic sites in Canlos.
For Raman processcs, the relaxation rate should be roughly
unchanged on changing hosts, except for the modified
density and phonon velocity, and in this approximation
yield appreciable line widths (s 40 ocersteds) in Ag

at about 35°K. The relaxation rate associated with

Orbach processes in addition to the modifications



218,

mentioned above, needs to scaled for different crystal
field ﬁaraﬁeters. These paramesters are roughly ten
times bigger in Can ﬁhan in Ag, and with these modifi-
cations, temperatures of about 100°K are needed for
these processes to give rise to linewidths of the order
of 50 oersteds.

The AgEr allecy system is, as yet, the only one in
which e.,p.r. measurements have been made for different
rare-carth concentrations (0.28 and 1 at %). The
effect of increased concentration manifests itself in 2
sharply differing temperature dependence offthe e.p.r.

amplitude in the two alloys below about 7°K.
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CHAPTER 9

RESULTS AND DISCUSSION ON Pd AND Pd=-BASED ALLOYS

General

The various samples examined were provided
either in button form, from which susceptibility samples
were machined, or in wire form out of which specimens
were made in the manner indicated in figure (9.12)
In either case the samplé was left for an hour in a
solution of 1:2 HCl:HZO, washed in distilled water,
then etched for a few minutes in a solution of concen-
trated nitric acid containing a few drops of hydrogen
peroxide, and finally washed again in distilled water.
After drying the samples were heated to 150°C at a
pressure of 10-6mm Hg for about 24 hours to remove
hydrogen contamination, (For this same recason Silicon
702 o0il was used as a lubricant during machining.)

Dilute Pd-rare carth alloys

Tentative measurements have been carried out on
these alloys to investigate any modifications introduced
by using Pd as a host, in view of its partially filled
4d band.

112

Crangle and Layng have examined the Pd~-rare

earth alloy system, but their investigations have been
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concerned primarily with more concentrated alloys,
containing more than 1 At.Z r.e. This investigation
has shown that it is desirable to work with rather

more dilute ailoys if the complication of a tramsition
to the férfo;hégﬁetié state in the low temperature
region (about ZOK)is to be avcided: With this in mind
measurements were made on Pd containing }At.7 (nominal)
of the rare earths G4 and Er,.

Pd=-0.5At.7% Gd (International ¥Wickel)

The experimental results are summarised in figures
(9.1) to (9.4).

Pd~0.5 At.Z Er (Naval Research Labs., Washington)

Figures (9.5) to (9.8) reproduce the experimental
results, Neither sample was subjected to metallographic
analysis since the intended alloy compositions were
well within the maximum solubilitiesll3.

It was hoped that by doing measurements on these
twe systems, any crystal field effects would result in
a general difference in the character of the temperature
variation of their respective susceptibilities

provided, of course, that the rare earth ions are in

their normal valence states,
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Precise comparison of the experimental results is
hampered by ignorance of the exnct composition of either
system, and inability to proceed with measurements on
suitable Pd Lu alloys (thesec would have provided
information about the modifications of the host
susceptibility by the valence electrons of the rare-earth
impurities). An attempt has bcen made to extrapolate

114 for a Pd-4 At,7 Lu

from the results of Shaltiel
alloy, but this procedure was found to be rather
unreliable owing to the 'sensitivity' of the expression

1

at the compositions used.

'( b4 % Pd (corrected))

alloy- ‘
Examination of the experimental results show, as found

by Crangle, that deviations from a Curie-Weiss behaviour
in the higher temperature region become more pronounced

as the rare earth concentration is reduced, and the

role played by the susceptibility of the Pd host

becomes more important. In very general terms, the
character of the inverse susceptibility versus temperature
variation is similar for both systems, though the
(presumably) more concentrated Pd Gd alloy exhibits a

more marked temperature dependence,

At the lowest temperature, the curvature of the

magnetisation-field plots at high field values are
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consistent with Brillouin function curvature, while
departures from linearity in the low field region are
indicative of interactions between the rare-—ecarth

ions. The more marked curvature in the case of the Pd
Gd alloy can be attributed to a higher impurity concen-
tration, to the high 'effective spin' on the impurity
[(g~1) /3(J+1)] , or to both effects.

In principle, the question of crystalline field
effects could have been resolved by e.p.r. data on the
rare—earth, non S state ions,. However, experiments
carried out in this laboratory have failed to detect
a resonance in Pd Er. Thisresult, however, is still
not decisive, since it could merely reflect the difficul;y
of observing a resonance for some impurity which has a

'e' value different from that of the matrix in which

it is dissolved, when the matrix is nearly ferro-
magnetic. In addition, the large polarizibility of
the Pd matrix means that at any appreciable rare-earth
concentration the internal ficlds to which the latter

would be subjected could be sufficient to cause

breakdown of any crystal field effects.
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Pd and Pd~Ni alloy systemn

The measurements réported here form part of a more
extensive examination of the properties of this systen,
and include electrical resistivity115 and thermopower
measurements.116

Interest in this system has been aroused by the
recent theoretical investigations into the properties
of nearly ferromagnetic transition metalsll7. Briefly,
on the basis of a model in which the electronic transport
processes are dominated by electrons in the s-band, Rice
has examined the contribution to the electrical and
thermal resistivitiesarisiné?rom s to s transitions
induced by scattering from spin density fluctuations
in the itinerant d band. This author finds that for
temperatures T << ©, where @ is a cut-off temperature
and is regarded as a disposable parameter, the
contribution pg to the electrical resistivity from the
above process has the form:

p, = a1’ - BT 9.1

{(while the contribution Ws to the thermal resistance

has the form:

Ws e aT = bT2 + terms 0(T4) 2,2
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Explicit expressioms for the various coefficients have

been given by Rice, howevef¥, for the present purpose it

is sufficient to note that in the low temperature

regime this author predicts that A should be proportional

to the square of the observed enhancement of the Pauli

susceptibility, The coefficient B should increase as

the enhancement increases, while under the same conditions

9 should decrease, Thus, as the ferromagnetic state

is approached, the negative T5 term from the Ps contri=-

bution to the total resistivity should eventually

suppress the low temperature T5 term arising from the

electron-phonon scattering contribution, and the T2

term should dominate, However, as the enhancenent

increases the low temperature coefficient of TZ should

increase, but © is lowered in magnitude and so the range

of the region in which this T2 law is valid deminishes,

The author draws similar conclusions about the range

of validity of the linear T law found for the thermopower.
Some of the results predicted by Rice have been

tested by investigating the propertics of Pd and the

Pd~Ni system, since the additions of small amounts of

Ni te Pd may be considered to increase the magnitude

of the exchange enhancement. The results are summarised

below.
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Pd (Naval Research Labs., Washington)

The susceptibility specimen was obtainad by turning
down a button which had been annealed for 24 hours at
1100°C under a purified argon atmosphere. The
resistivity ratio of this sample was better than 1500,

Figures (9.9) to (941l) summarise the experimental
data.

Pd-Ni system (Naval Research Labs., Washington)

These alloys were prepared by induction melting
5N nickel and palladium in quartz lined, stabalised
zirconia crucibles under a purified argon atmosphere,
They were supplied in the form of 0,01" diameter wires
which had been annealed for 20 hours at 1200°C. The
susceptibility samples were made from these by winding
a suitable length of the wire around a length of 20
gauge Cu wire to form a tight helix, with an external

diameter of about 2,5 mnm
Fig. (9.12)

7/ 20 Gauge Cu wire
J——

-—”’“___’_—ﬂ,_uelix of Pd=-Ni, which was
slipped off the Cu wire before
insersion in the quartz

bucket.
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Measurements on the sample were carried out at 4,2
and 77°R, the former to obtain the low temperature
enhanced susceptibility, the latter to check against
any ferromagnetic inclusion. Figure (9.13) shows the
data on Pd-0.5 At.Z Wi, figure (9.14) that for Pd-1.0
At.Z Ni and figure (9.15) for Pd,~-1.67 At.% WNi.

The experimental results on the resistivity of these
alloys are reproduced in figure (9.16) (Ref.,115), and
indicate that at the lowest temperature the resistivity
is proporticnal to T2 for all the samples, as predicted
by equation (%2.1). As the temperature is inecreased
deviations fronm this 72 behaviour are observed, which,
the authors claim, reflects the TS contribution in
equation (9.1) and from the electron=-phonon interaction,
Figure (9.16) alsa illustrates the predicted increasing
importance of the TS term in equation (9.1) as the Ni
concentration is increased, assuming, for pure Pd, that:

2

Ps = AT 9.3

over the entire range investigated (8_, >> 30°K), then

‘ Pd
the contribution from electron-phecnon scattering to
the total resistivity can be evaiuated, and provided

Matthiessen's rule is fairly well cheyed, then as a
¥

first approximation the authors suggest that this
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contribution is the same in all the alloys measured.
Figure (9.17) shows the temperature variation of the
estimated spin demsity fluctuation contribution to the
resistivity, and indiéétés tﬁgf the femﬁéféture région
fcr whieh equotion (9.3) is valid extends to 14°Kk in

Pd-0.5 At,% Wi, to 10°K for Pd-1,0 At.Z% Ni, and only

to 3°K for Pd-1.67 At.% Ni, This verifies the prediction

that the range of validity of the previous equations
decreascs as the enhancement increases, The full

lines in figure (2,17) are the calculated variation of

ps('l‘) on the basis that P e ocT2 for 10T 5_6 i.e. so that

8 can be estimated,

Fipure (9.18) shows A, the coefficient of the T2
term in equation (9.1) plotted apainst the measured
value of the susceptibility %, at 4.,2°%, Small
additions of Hi are regarded as not affecting the value
of unenhanced Paull susceptibility, consequently theory
predicts that A should vary as xz. llowever, figure
(9.18) shows that this is not so. Rice has suggested
that this may reflect the rather restricted spectral
density of spin density fluctuations employed in his
caleculation, Indeed, initial results available from

a calculation employing a less approximate form fcr
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Aq(w) . the spectral density function, are in much

better agreement with experiment.

Pd~1 At.% Pt (Naval Research Labs., quhington)

The alloy was prepared By(indﬁcti;ﬁ melting Pé
with Pd in a quartz lined crucible under an atmosphere
of purified argon. It was then cold forged into a
i" diameter cylinder, from which a susceptibility
sample was machined. The final specimen was etched
in the usual manner and then annealed at 600°C for 5
hours at 10«5 mm Hg.

The experimental data appears in figures (9.19)
to (9.21).,

The susceptibility temperature variation for this
alloy bears a close resemblence to that for pure Pd,
although closer inspection reveals that the susceptibility
variation in the alloy is rather smoother thanm that
in the pure material, The room temperature depression
of the susceptibility, on alloying,‘supplied conclusive
evidence that these are band effects, i.e. on a simple
model of alloying, a depression of about 0.03 x 10«6
e.m.u./gn/At.Z Pt would be expected, while that observed
is about 0.39 x 10~° e.m,u./gn/At.% Pt. The latter

is, incidentally, in quite good agreement with the early
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data of Vogt118 for this systen. Further, the

difference in the temperature variation of the suscep=~
tibility of the alloy and pure material can be qualita~
tively understood in terms of a band model. In a
disordercd systed, the effect of alloying is to
introduce a 'blurring' of the Fermi limitllg, which
would tend to smooth the susceptibility-temperature
variation. In addition to this, the introduction

of Pt should, owing to its relatively large spin-orbit

2 .
effectsl“o with consequent distortion and shift of the

bands121, in itself give rise to a modified susceptibility
temperature variation,

The low temperature experimental data on this
alloy is immediately understandable in terms of the
previous discussion on the Pd Ni system. As a
small amount of Ni added to Pd was regarded as
increasing the exchange enhancement of the susceptibility
so a small amount of Pt can be regarded as supressing
this quantity. This indeed, is observed. It would
also scem desirable to have resistivity-temperature
dataz on this system since it would provide another
interesting test of Rice's theory. In addition it
would be revealing to try and see how the resistivity-

susceptibility relationship fits into this author's

scheme.



APPENDIX 1

- ~(Bethe,59)

Character table for O
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CLASSES
0 E 302 603 604 SCSW
£, 1 1 1 1 1
r, 1 1 -1 -1 1
r3 2 2 0 0 -1
P4 3 -1 1 -1 0
o 3 -1 -1 1 0
For D(J) Irreducible
Reps.,of O
J=0 1 1 1 1 1 T
1 3 -1 1 -1 0 T,
2 5 1 ~1 1 -1 |
3 7 -1 -1 -1 1 T4T, 4T,
4 9 1 1 1 0 Illﬁp3+124-%
5 11 -1 1 -1 -1 Byt 2 I, 4T
6 | 13 1 -1 1 1 1;+P2+P3¢1i+gr
7 15 -1 -1 -1 0 r2+r3+2r4+213
8 17 1 1 1 -1 31+2r3+2rd+2

Kt

*5

5
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C,: the class of rotations of % about the 3 cubic 100 axe.
C3 . 11) n 11] 1"t " +9t/2 111 t " 111 n 11
Cpt " w " " n xn " 6 twofold axes 11l¢
CS . " " 1} n " +2'Jt/3 " t 4 threefold

axes 111

Character table for 0!

In setting up the table for 0', the characters of
all normal single valued representations Tyese Ty are
cbtained simply by taking x(ER) = «(R) where R is
any group element, which assues satisfaction of the
requirement on orthonormality between the rcws, while
in the double valued representations yx (ER) = - y (R)
with x(Cz,é) = x(§02,4) = 0, so that the E column is
orthonormal to the E colunmn. With these, and the
various orthonormality relations, equations (4.3a

and 4.3b), the character table of O' can be derived.



e

~2[‘1‘8-

ol E E 3c3EC 6C, 6EC, 6C.6EC, 8C. 8EC
Tl 11 1 11
G| 1 1 1 -1 -1 ~] 1 1
Rl 2 2 2 o 0 o o A
nl3 3 4 1 g o 0
ol 3 3 a4 a4 1 o ©
nle 2 o 2 47 o 1
nl2 =2 o -z /2 o 4 1
5|4 -4 0 o0 o 1 4
Ve £ 3c.3EC, 6C, 6EC, 6C.:6EC, BCe BECtosty
Sle2 o Jz 4B o 1 a4 |k
Bla-4 o o o 0 A 1 &

" Hle-e 0 2T /2 O 0 O |Gl
%l8-8 0 0O O 0 1 [
9%l1040 0O > /2 0 4 1 |g+2f
M2 o 0o O 0 O 0 [+h+2g
Y%l1a4a o /2 /2 . 0O 11 feren
646 0 o0 0 O 1 [RE43;
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This last table indicates that for all half integral

J, the residual degeneracies are at least twofoldy

this result can be proved in geéneral for half integrzal

angular momentum (odd number of electrons) for an

electric field of any symmetry since it is a consequence
61

of time reversal symmetry . It is known as Kramer's

theorem.



APPENDIX 2

1. Reduction of the crystal field Hamiltonian under

the symmetry operations of Oh

+4
4 mom. 6 % @ m
VcrySral r m=§4 3, Y4 T T n=-¢ % Yo
A rotation of x/2 about the 2z axis shows that only
YZ, Y%4; Yg and Y%4 remain unchanged. Reflection

in the xz plane leaves YZ and Yg unchanged and sends

L ~4 . 4. ~4 ~4
Y 4 into Y4 and 1 lDto Y6 , hence a, = a, and
3;4 = aé s, and

b, oo . b, th . =4
Verystal™ T (8%, + 8, (¥,  + Y, 7)) +

+r6(az v?°

4 ,,~4 4
6 + a6(Y6 +Y6))

Finally a rotation of 2%/3 about a threefold axis

reveals that, on transforming to the cartesian form:

: _ o 5 4 q0 _ 21 o4
Verystal = 4V * 5 V4) + G (Vg 7 V)
where Vz = 3524~3022r2 - 3r4

Vps v it e (xo-oip)®
ve = 23128 - 315r22% + 1050%22 - 5.5
and Vg = (llz2 - rz){:hc + iy)4 + (x - iy)%]

C4 and C6 are numerical coefficients.
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. . 52
2. Operator cquivalents for the above potentlafStevens’D )

o . .
Take for example V4, Stevens points out that in
order to account for the non commutation of Jx, Jy and
el s 2,2 , . . 2
Jz, it is incorrect to replace X"Z" (appéaring in r

ngz, but an expression consisting of all

zz) by Jx
possible different combinations of Jx, Jy,Jz and Jz
should be used; i.e.

3524 e 35Jz4

but 30x222 becomes
30 %(JxeJsz + IxJzlxJz + IxJzJzdx + JzJIxJzJx
+ JzJxJIxJz + JzJzJxJIX) +

+ 324

(x replacad by y)

o\l

Using the usual commutation relations for Jx, Jy and Jz

this reduces to:

IJxIxJzJz + JyJyJzJz + izt = J(I+1) 322
IxJzJIxJz + JyJzJyJz + Jz4 = J(J+1)Jz2 - JZZ.
JzIxJzJx + JzJyJzJy + J34 = J(J+1)Jz2 - Jz2
JzIxJIxJz + JzJyJyJez + Jz4 = J(J+1)Jz2
IJxJzJzJx + JyJzJzJy + Jz4 = J(J+1)Jz2 + J(J+1)-3Jz2
JzJzJxJIx + Jz2JeJyJy + Jz4 = J(J+1)Jz2
thus 30v22% — & (307 (J+1)=25)T22=53(3+1)

In a similar manner: Brk A J(J+1)(3J2+J-1)
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Thus V) —>35Jz°~ 300(3+1)3:°RU2*~61(I+1) +

3J2(J+1)2. Similarly (from Stevens)

4

v — (Jﬁ + J°)

6;—
A
+29432 ~552(3+1) 344032 (3+1)2-60T (J+1)

vV, ~——2 231J 105(3J(J+1)-7)Jza+(105J2(J+1)2-525J(J+1)

oo &N

/
Ve (1132723 (3+1)-38) (32 +3h) e 0atesh) (113275 (341) - 38)

[ W~

o]
4
equal to one half that of VZ’

equal to one half that of Vg,

Finally putting 0, equal to the angular momentum expression

) o
for V4, 0 06 equal to

and O4 then

6

4
4
o
that of V6

Vcrystal = BA(OZ * 502) * 36(02 - 2102)

The coefficients B4 and 36 are parameters which are
usually determined experimentally, their relation to
C, and C, is considered below, the term connecting the
coefficients is, in fact, the proportionality constant
between the matrix element of the potential operator
and that of the operator equivalent: ?his factor

is evaluated by making use of the spin independence

of the potential functions, which implies that similar
operator equivalent hold in manifolds of cohstant
orbital angular momentum L. A convenient state in

L, 8, J, Jz quantization is choosen and the value of



the matrix element cf rcome potentialiunction is
written down using the operator equivalent of the

st . +++ 4 ;
funciion i.e., for the case of Er ’ 115/2 for which

_I;=6,§=3/2,_{=-2-ansz=15/2

o o 15 _ 15
< |V ]> = a0)lfor J==3; Jz = =5) = 16380«

This state is then expressed in L, S, L

L, S 29 Sz quantization

thus:

. - i P i .1 _
i L,;8,J,Jzy = Zai!E,E,LZ,SZ - subject to Lz+Sz Jz

where the ai's are Clebsch Gordon coefficients, for the

examwmple choosen

=6, S=2, =3 =13 > = a]L=6,S=3, L=6,§ =2 >
EI:’ =6, ..S..“"z's J Jz 2 - 3{_]'_-'_ 6,8 5 ]'7:. 6,Sz—-2 >

where a=1; the termination of the expansion after a
single term 1s due to the parallel coupling of Lz and
S_ which ocecurs in the second half of the rare earth

£

series. Within 2 manifold of constant L;

0, . o .
o EV4ﬂ B 304 Eor L, inside L=6, Lz=9

= 5946 p

The state i1s now exprecssed in lzs” quantization thus:

e

e T S T 3 -
| L=6,8=3/2,L_=6,5_=3/2, ={ 3,2,1,0,~1,~2,-3,3,2,
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again the passage from one type of quantization to the
other is straightforward since the rare earth ions adhere

to Hund's rules, From this last expansion

o . - o g oo

s i V4 ! e = 594OB == {§ veee O }(V&) {é s e v e O}
this last matrix element cam again be evaluated using
an operator equivalent method since inside a manifold

of constant 1(1l=3 for f electrons)

4 ~ o f o o o -
{3 * s 08 G} (Va){.) ) 0}=Y[O4(f0r }._=3,)+ 04.1= ,lz=2)}-

+eool

= Y{180~420+60+360+60~420+180+180~420+60+360)
= 1807Y
Finally consider the element {3}(VZ){3} = 180Y, this is,

of course, equal to ,1=3, 1_=3 35_2.4-30r222+3r4 1=3,1 =3 4
<= z I ; i~ z -

Using the fact that ]l=3, lz=3 > = Normalizing
Factor x £(r) Pg (cos 9)e31¢,
4 2 2 4 8 =4
<" - = - - = == T e
1=3,1,=335 "-30r"~z"+3r"|1=3,1 =3 5 = 53 r

Thus making use of all the relaticns derived:

-y

4
156380 o = 5940 B= 180Y = 8/11° giving

"x= .. 8F" . _2FC
1. 16380 11.15:273
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heunce for this particular example 34”34-f4(2/11-15-273)
For the ground state of rare earth ions, Stevens

has tabulated all such relations, Dne final comment,
in the previous discussion it has been assumed the
multiplying factors associated with VZ(VZ) and

VZ(Vg) are thé same, as Stevens points out, these factors,

for same Vlm, depend only on 1 and are independent of m;,

a consequance of the Wigner—Eckart theorem.
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APPERDIX 3

. 8 R '
As Wilson 3 has pointed out, the energy cf some
sample placed in a magnetic field is obtained from the
relation:

TdS = dg + Al da.
1 1

Ai being the generalised force exerted by the sample
on its surroundings, corresponding to the generalised
coordinate, ai. For a magnetically isotropic sample
placed in a magnetic field Hx, the above equation
in the usual notation, becomes, neglecting demagnetising
effects:

AU = Tds + HxdMx
This leads to a free energy G given by:

G = U - TS - MxHx
from which the force exerted on the sample by the field
in some z direction is given by

Fz = 0G/ 0z = Mx 3 Hx/ d z
This holds whatever dependence the magnetisation has
on the applied field. The experimental arrangement

is



N3
[#,3
-d

Clearly then, Hx >> Hy or "z, Consequently if the
tody is not strictly isotropic it is still reasonable
to assume that MxHx > MyHy or MzHz. Neglect of
demagnetising effects is not serious, as Appendix 6

denonstrates.



ATVENDIR 4

A

The Wareham pewer vrit used %o sunpiy th2 waguet

¢

current can be controliad ‘inteafnally' by a ten
turn 10K halipot, and also has provision for an external
control. In this case one was used which switched
svitalble regsistors in place of the helipot.

When using the intermal conirxol the current must
be manually swept up to or down from some valuye,
Particularly during warm up, continually sweeping the
current is a rather laborious and time consuming
operation. Using the controller drawn below, the current
can be reset from zero at practically the same value in

less than five seconds.

O COPPER SWITCH
//AND CONTACTS
@)
/,,:’ To
7  SUPPLY
o i
@) @ O—
Re

S
R? _Rb R5 R‘P R3 RZ / R|




™3
(94}
(L]
.

A unit of this type has the advantage that the
supply is not even momeantarily open cirxcuited, since
Rg is always connected, In addition the current can
enly be reduced to zero from the lowest curvent settiag

ilecoe Rl and RG in parallel,
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L correction to the measured variation of the
magnetic field due to the finite size of the £lip coil
can be made on the basi$§ of an approximation in which
the field gradient is assumed to be comstant over the

areca of the flip coil.

Z ¥lux through the coil
dz H.(z ) Zo*b (z~2 )2
- X o - o)

D - 2b 1 H_(Z)dz

j b2 X :
halb 4
Z =b

o

Expanding HK(Z) in a Taylox Series about Zo

2
B () = B (Z) + (22 )Lz + (Z;Zo) HY(z) +

and noting that since H;(Zo) is assumed constant ovar lhe

ragion of integration then the contribution to the



ivzegrand from the terwm containing tuis quantity will

be smaro since (Z—ZO) is aun odd fucction . Tunces

o . 7 +b // (Z_zo)z
1 (2. ) = e 7 2b [J1- "
b

b2 v/ b2
z

-
CH (2 ) + (z""""e)2 n"(z ) | a
{( X0 ﬂ-—-*i-r--* x' o &

the first term simply gives HK(ZO) nultiplied by the

avea of the coll, hence

2 (Z-Z )%

= - . bf (2-2 ) "oy - < .

hx(zo) = HX(ZO) ,-'JC —— (2) H x(Zo) 1 —-;'"2 [*3
“O ’ L

Tne final term above can be evaluated simply by putting

L]

b sin @ = (Z—Zo) etc, and the above equation becomes
e, b2
X = 17
B (2)) = 8,(2)) + 5= HI(Z)

2

—~

e 3 1 > = h - o e "
thus giving E_(Z)) B (z)) H"_(z.)

~
¢



APPTNDIX 6

Estimates of the couples produwced by sample misalign-

ment.

Consider 2z sample in the form of a dise of thicknessg
23 and arca 9Cb2, oriented with vespect to the field in
the manner indicated above, i.e. (x,v,2z) are fixed axes
in the field direction, (x",y",2z") refer to axes fixed
in the sample. Perform a small rotation @ about z,

followed by o about x', such that

(x,y,z) —gs(XY,Y',Z' = z) ‘___g__>(x",'= x’sy"’z")

with:

HX" = H_ cos ¢ + Hy sin @ = H_ cos ¢ since H >> Hy o H_
Hy“ = Hycos-¢cosa“Hx sin @ cosx - H, sinoc‘*--Hx sin @ cosc
Hz" = H, cos ¢ + Hy cos @ sina - H  sin @ sinax ® 0, since

o and ¢ are small:

The contribution to the free cenergy (assuming M =% H) is:



o)
(o]
[#5)
L]

= b4 j/ "2 2
q * H; +H

over sample

N/ —

samnle

2) dx"dy"dz"

o8

2
11} dx"d‘ "dzn
By ) Y

Experimentally the dominant terms in the force come from
the variation of H_ in z, hence expanding HX" and Hy"

in a power series about the centre of the sample thus:

a B 1
"ez) = B " o P

Then the above equation hecomes:-

I_u
f[[ [ "(0) +2H "(0) (T")z + (a_'i'.%'")zz

sample *+ similar

terms in HY" ]dx"dy"dz "=

. ' " ag " =
'f-b%c/ 2[? (0)+2H_"(0) ()2 + (—sir) 222000 [dg
-a -

the integration over dx" and dy" giving the area.

3 BE" "
s ? w2 "2 2a”¢C 0 "x 2 y 2)
=%h X[?a{%x +Hy } + 3 ("TTE“) + ( ) J:]

the second term in the previous expression vanishing
since it is an odd function: Hence contribution to

tte free energy
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-

~ ‘
2 2 2 ., 2 2 ]
~Hx cos ¢ + Hx sin“f@cos +

“’Volume%ﬁ

3 H 3H ,
+ % [}17%)2c082¢+(~3§)2sinz¢sin%:B

Thus the torque due to misalignment =<3 (Free cnergy)

o g

2 . 2 2a Hx 2
= VolumeX | H "2 cos @ sin @¢(l-cos®a)+ Z2(~~2)%cosfsing
X 3

z
(lncosza )-1

4
Using the tabulated data for the balance (D.Griffiths,
Thesis)77 a couple of one dyne cm is roughly equivaient
in effect to a direct force of one dyne, thus:
oH
X

Tortional force = 2cos¢sin¢(1—cosza)(ﬂx3:,a/3(——;)6
thaz

Direct force Hx BHx/az

. 3 2
Using H =5 x 107 gauss;y Hxé , = 9 x 10 gauss/cm;
« =@ =5° and a = ,05 cms, the ratio = 3 x 10_3,
giving a 1/37% effect.

Deragnetizing effects

Following the above scheme, and using

6o ; . .
Mx Mx cos ¥ + My sin @

L1 B - P - 1
My = MY cos @ cos & Mx sin @ cos ¢ Mz sin g
MZ" = Mzcosa + My cos ¢ sing - Mx sin @ sinc

Writivg the contribution, via demagnetising effects,

of these magnetisation to the free energy as :
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w vy w2, N "™ w2 . ¥ O™ n2
v z 'z

P v

where the N's zre the appropriate demaguetising factors
and

u " oL :
Nx + Ny + Nz 4 o

For a thin disc arranged as indicated in the previous

er

figure
it " . "
NX 2 Ny e O Nz e A
Hence Torque due to demagnetising fields “SﬂMx sink e

sinflcosP and the ratio

Torque™ % +8 Hxsinza sinfcos@
Force BHX/aZ

which is clearly vanishingly small,
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APPENDIX SEVEN

Using equaticn 1.,0)

9 «Ei/kT
""E:/kT < i u i'> e
x = N Bjcifn fispe o 2m ml 2 BIER
TR . 2 B . ‘
1 1’1 Ei - Ei'
- - i#i’
Z —Ai/]’*
where B = 4 e
i
=%, /kT B, ,
Expand alil exnonentials thus: e 7 = 1 = Ei/kT + %CFT}
The first term in the abhove expression for becomes:
BX] < i>12¢1-x, /1
= i! ily | i>1%-r, /um )
(27+1)(1 - 1 ¥ Fi/kT)
(2.0+1) .
i
S N U TS Al ¢ B JU T DL 2E femy”?
ET(2J+1) i z i - (ZJ+1y4 i

N . ey 2 12 . .o ]2
- m—mﬂ{zl < v lio] - g mgl<ilw 1ix 1"

T
1
. 1 LE.. I<i|y [i>12:§

CGIi+DET i * i z ‘

; 1 .
and to terms of 0(%3), this becomes:-

o N Ici|hlid? - m .
kT(2J+1) i k2T2(2J+1)2 '
{<2J+1)2, v l<ifne liv]? - 23, Zl“:i!unli?’lzf:}
1 1 A 1 i <&

The second term in the expression for X becomes:
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S R L Ll By ,Ei)Z)
(Z.T'Pi) it Ej_ —- Ei' PR 5 TE.T‘_' .
i,if ,
3 E. L B, .
1+ TrEseD )
(LTYT(2J+1)
> s 1 Lo
= = il (Y’l N liuzll>1 (1i- :3 +!'-(E£)2 -
(2J+151f:i, E, =~ E;y °7 KT 27kT
- 1+Fi' }qfi' 2 5Es EE .
KT T ZET DD O iy ert TR D 2)
J
N =il wlit]
T (Z3FD)  i#i? T
)
. . Y.
- N (23+1) (E;+E; 4] <i| B [ 1% |
2 7
e it 2 7 E. + terms O(l )
. 24 T E < ‘ zl v l . =i 3
(23+1) 2 (kT) 2 i

i#i?

thus to terms of 0O(% 2)

. L’.“lu}l»}?
(23+1) 44 T
B . 2
~ E. ] '> -
{F2J+1)i#i' Jdeiln firs] =

N
(2J+1)2(kT)2

T og, 2 <l li'>F2}
. 2t 1. . ot z
igi 141
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Combining the two sets of terms:

.2
o e _N z,l“:‘lqulf"I . X .
:T(2T+1 i, (2J+1}2(RT)2
Z . o2 X b3 . ) K
{(2‘”1) P A I UL P UPT LS R
_C c _ ¢
For = 1A 7 5 .+ then
T
o . 2 2 2 . y]
A 2.% {(2J+l) i’l,hi]<1fuz]1'>l _(1 ) (1 1'1<1!TEI%5" }

(23+1) iz"]“-ll R ERN! 2

. Ny -5 : cv 2
howcver'ulllgll. «1IJ&]1 *, and i’i,]<1]J2[1 >] E

I

= .“. ~1t32]1'> T, 103
i, i 1
hence
2, 2 >

L+ E. <] Jg'gi';,.

iyit Ei)<i]uzfi'>]“ i

and for cubic symmetry at least-

2 ™ . 25 _ 1 3 e 2 2 ,2 -
i.i7 hiﬁlljzll = 3 . .in-llJX+ Jy+“2 ]1 >
. ) . RO §
_1 2 . . -?] . 3 J(J+1)
= 3 .'ui.,:llJ 1y = LE
1,1

Clearly then, for cubic symmetry, A is zero.
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APPENDTY ETGHT

A discussion of hyperfine effects. Neglecting
the contribution associated with the nuclear term, i.e.
since 81 10—3.

In (I, J, F, MF) ré;resentatiéﬁ the efféctive

moment is found (in the approximation in which nuclear

effects are neglected) by projecting J onto F :

Thus:
peff= - ngB(i'z)g(unit vector) = = RN (J.E) F
F F(F+1)

then

2 (J.E)F.F _ (guB(J.F))?

(Eefﬂz = pelf, peff= gzuB
N 5 .
(F(F+1))"~ F(F+1)

In (I, J, HI, MJ) representation, i.e. when the hyper=-

fine coupling is broken, then:

pefi= - g ;ipd and (Eeﬂ)z = gzuBzJ(J+1)
-4 2
et KF) (J.%)
Hence N S
B et i) J(I+1)F (F+1)

The form of hyperfine coupling is usually represented

as a l'-‘-].'
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1. Trositive 'a'

pu

In the low temperature limit, this situation favours
an anti-parallel I and J

()  |3) s |1

In the Jowest energy counfiguration:

>}
I

~y
!

|

ther 2(J.F) = (B)24(N2=(1)2 = P(F+1)+I(I+1)~TI(T+1)

2 2 2

= (J-I)(J=I+1)+J(IJ+1)=T(I+1) = J=2JI+TI +T1=1+J

+ 3-1%-1 = 25%-251425-21 = 20 J(I-1)+(J-1)}

2(J+1)(J-1I) = 2(J+1)F

hence teif{F) Z/QJ+1)2F2 o [L3+1). F -

nef f{J) - J(IJ+1)F (F+1) J  (F+1)

e

since 'J>F, in view of antiparallel coupling, then 1/¥ :

1/3 2. ueE(F) < udf£(JI)

)y Izl = 13l

In the lowvest energy configuration:
F = 1«7
then Zg.g = (InJ)(I-J+1)+T(J+1)=T(I+1) = =2JF

hence udff(F) =/ 1%r? _ 1
pER(I) J(J+1)F(F+l)/ (tr 1)(1+1)
J

F

e VEL(T) < R £(T)




271,

2. Hegative 'al!
Implies parallel coupling at the lowest temperature, and
whether l il:4ll or the other way

F = J+1I

2J.F = (J+I)(J+I+1) + J(I+1) = I(I+1) = 2J(¥F+1)

f S
then _ peff(F) i/JJZ(Fu)Z 1+ 1/F
ref{JI) J J(IJ+1)F(F+1) v 1+ 1/3

Parallel coupling implies that F »J, hence 1/J > 1/F

e PefHF) < peff{J)

These results imply that the breakdown of hyperfine
coupling should give rise to (M=l) curvature of the
opposite sense to that observed.

Estimating the effect in YMolmiunm

+4 111

For To~ , J=8, I=7/2 , and 'a' is positive .
Then, in the above approximation :
|Fl = J=I = 9/2 and pef«F)/ peffJ) = 9/ /83

- about a 47 effect.
flowever such an effect would have little chance of
being observed due to the complicating effects of nuclear

~-4f electric quadrupole interaction.
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~EFFECTIVE MOMENTS DERIVED FROM NOMINAL COMPOSITIONS
The compositions quoted in Ch"’épfer 7 are nominal. The effective moments
derived from the high temperature Slope- of the inverse susceptibility versus

temperature plots, using these compositions, are given below.

ALLOY : Effective Moment (in Bohr Magnetons)

Ag - 0.8 At % Gd o 8.0
Ag - 0.45 At.% Gd 7.6
Ag-0.1At.% Gd 8.0

Ag -0.55At. % Tb 9.5
. o B X
Ag - 0.86 At.% Dy : ‘ . 10.8
Ag - 0.51 At.% Dy ' 10.9
Ag - 0.35 At % Ho | . 10.
Ag - 0.25 At.% Ho | | 1.3
Ag - 0.28 At % Er 9.8
Ag - 1.0 At.% Er - 9.8
Ag - 0.5 At.% Tm | 7.6
Ag - 0.5 At.% Yb - diamagnetic
Au - 1.0 At % Er : T 9.2
Au-0.3 At.% Tm ' ' 7.7

Au - 1.0 At.% Yb ] 4.3
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