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ABSTRACT 

The magnetic susceptibility of some dilute 

alloys has been measured between 2 and 300°K by a 

force method. 	The investigation has been concerned 

mainly with solid solutions of I at.% or less of the 

elements of the second half of the rare-earth series 

in silver or gold, in order to study local moments on 

the impurity ions. 	The observed departuvesof the 

susceptibility from a Curie-Weiss behaviour can be 

understood and fitted primarily in terms of crystal ,  

field effects. 	In some of the more concentrated 

alloys the effects of inter impurity interactions 

can be seen. 

Measurements have also been made on Pd ar4 Pd 

based alloys, in particular on some PdNi alloys in 

view of the recent theoretical and experiMental interest 

in this system. 
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INTRODUCTION 

Over the past decade much theoretical and experimental 

effort has been directed towards investigating the 

changes in electronic structure which occur when an 

impurity atom is introduced into a metallic host. 

Typically, in the case of dilute alloys of noble metals 

containing impurities from the 3d transition series, the 

bulk of the experimental evidence indicates that the 

inherent screening of the excess or defect charge of 

the impurity is accomplished by electrons in 'virtual' 

states. 	In spite of this, many theoretical approaches 

still regard the situation as being similar to that of 

a paramagnetic ion in an insulating matrix, where the 

impurity has a well defined magnetic moment associated 

with it. 	Such an approach is more likely to be appli- 

cable to the same solvents containing rare-earth 

impurities. 

For such a model, the most influential factor 

effecting the magnetic properties of the dilute  

alloy will be the cubic crystalline field of the noble 

metal host. 	This will raise the angular momentum 

degeneracy of the impurity f-electron terms, an 
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immediate consequence of which will be that the 

susceptibility associated with all non S-state impurities 

shoulfl exhibit departures from a Curie-law behaviour 

in some temperature range. 

Data showing such characteristics are preceuted 

in this thesis, the interpretation of which is indeed 

discussed primarily in terms of empirically fitted 

cubic crystal field parameters. 
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CHAPTER 1  

FACTORS CONTRIBUTING TO THE SUSCEPTIBILITY OF PARA 
AND DIAMAGNETIC MATERIALS. 

1. Magnetic susceptibility 

The most natural way to classify the magnetic properties of a 

material is by its response to an applied magnetic field. This 

response is characterised by the susceptibility X in the relation 

M = XH 
	

1.1 

where is the magnetisation and a the applied field. 	In 

general x can be a function of both H and the temperature T. 

If the material is magnetically isotropic, m and H are parallel 

and x is a scalar; for magnetically anisotropic materials X 

is a tensor. As equation (1.1) indicates, when the magnetisation 

is a linear function of the applied field the susceptibility will 

be independent of the field. 

The experimentally determined susceptibility of dia and 

paramagnetic materials is the result of several contributing factors, 

these are listed below:- 

(i) 	The alignment of permanent moments by the applied field. 

tii) 	The "Van-Vleck' term, arising from the perturbing effects 

of the applied field. 

(iii) Core diamagnetism. 

(iv) Pauli spin paramagnetism. 

(v) Conduction electron diamagnetism. 



2. The Hamiltonian for an  atomic system in a magnetic field 

On a simple basis, the Hamiltonian J-1  for a free atomic 

systeLl may be written, in the usual notation, as 

Jf = 
n 	

Z (-EL 2V 2  ) + V 1.2 1=1 	i 
electrons 2m1  

where V is some potential function. The application of a 

magnetic field to such a system can be taken into account by 

replacing the operator (-i V ) by 	eA/c), where A is the 

vector potential y. 	Using this, equation (1.2) becomes : 

= 
n 

Z 	
2,2 

Ji  2 v
;
2 
- i 21  (A V + V .A) + Pi-10-) + V 1.3 

- 	
i=1 	

ami + 	2Mic - i 	1- 	2.g.c- 

electrons 

',Ihen the applied field is along z, and with a suitable choice 

of vector potential, equation (1.3) becomes
2 

 

n 	h2 	ieih 	, . a _ . a __$ I  I: = 	Z E--
2mi 

v
1 	2mic 
. 2  - 	H kylaxi  X7 ayi/ + 

i=1 
electrons 	2 2 	.2 .2 

a_ (xi +yl )] + V 
8mic2  

Assuming that the extra terms in this Hamiltonian can be treated 

by perturbation theory, and that a series development of the field 

strength dependent energy En  is applicable, i.e. : 

2 E . = Eo 	+ HE(1)   + H E(2) in  na. 	rjin 	nom 	nom 
1.5 

Van Vleck2  has shown that the average magnetic moment, mHnjm, 

associated with a given stationary state, the average being defined 

1.4 
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.C•in 	= n , j 	I n,j 	> = Ham  Finjm 

is given by 

I < njm I 41 nij  'rn,  >I 2  mHnjm =<n j m I 	In j m> + 2H Z i , , 	H 	t ,  _., 
ntjt hil/nim 	

E
n'j'm' .-njm 

- 	< 	
s 

cZ (x1 
	

y )1 n 711 
 

tt 	 1.6 

The total magnetisation is the statistical mean over all eigenstates 

weighed according to the Boltzman factor e-Enjm/kT,  and multiplied 

by the number N of atoms per unit volume' (to give the volume 

magnetisation M, say ) 

N n, 
Z < n,j,m 1mH in,j,m>e 
:jm -------- 	 

-Enjm/kT -Enj mAcT 
	

1.7 
njm 

Considering only that part of the susceptibility which is 

independent of the field strength, the development of equations 

(1.6) and (1.7) lead, in Van Vleck's notation, to 

X= B z j<jm  I  mH jm>I2 
 e _Eonim/kT 

jm 

1<jullPHIPm1 >12e 
 
_E°njm/kT 

+ 2B 
j
z 	

E(r).0j,m, 	B°njm  

VuHi J + 23 	Z 	1<njrn °int.,n 1 i
2 e-Onjm/kT 	2 	- 

jmnljlni - 

(nqn) 	

0 E0 	6mc2  
nljtml 	njm 	

- 	Z(r2) 

1.8 
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The first term in equation (1.8) corresponds to (i) in 

the list of factors contributing to the susceptibility, the 

magnitude of its contribution will depend on the temperature and 

on the distribution of moments over the various states. The 

second and third terms in (1.8) correspond to (ii); again the 

magnitude of their contribution depends on the detailed nature of 

the system, however at sufficiently high temperature its contribution 

is zero. The final term in equation (1.8) corresponds to (iii) 

in the previous list; as this equation indicates the evaluation 

of the diamagnetic contribution from the core requires an estimate 

of (r2), the time averaged value of the square of the radius of the 

electronic orbit. A typical magnitude for this term is 107  e.m.uAlm. 

For later application it is instructive to consider the 

modification of equation (1.8) in situations where energy changes 

associated with changes in the quantum numbers n and j are very 

much larger than thermal energies (kT). 

terms this restriction reduces (1.8) to: 

21‹ jm1PHIjm>1 2 e nom/kT 
B = 
kT 

Neglecting the diamagnetic 

1 < njrnim°11  1 njm t >I
2
e
-e 

+ 213 

	

	
njm/kT 

z 

If the further restriction that energy changes associated with 

changes in the quantum number m are very small compared with kT 

m/Mt enje - enjm 
1,9 



is added, then the vrevious equation becomes: 

Mq22J(J+1) 
X -3 kT 

where g is the Lande factor, p the Bohr magneton and J the total 

angular momentum quantum number. 

This equation is often used to define an effective moment IAEA 

as: 
2 Nubp 

X - .------- 
3kT 

  

 

3k thus Ileff= 172. 

where C is the slope of the 4 vs T) plot in the high temperature 

region. If the susceptibility per mole is used, then 

ue:if= 2.839,7C Bohr magnetons. 	 1.11 

3, 	Pauli spin paramagnetism  

The application of a magnetic field to a free electron gas 

causes a redistribution of electrons between the spin up and 

spin down states, as a result of the energy difference of 

induced by the field between the two spin orientations. This 

redistribution results in an excess number of electrons being 

oriented parallel to the applied field, H, producing a magnetisation 

per unit volume, M, given by3: 

N = 2111 (T )3/2rF (a+ H) 
Tf  4  kT Fl(S=a11 4 2 kT )] 	

1.12 

where Tf is the "degeneracy temperature", a the chemical potential, 

N the number of electrons per unit volume and F(1) the 

15, 

1,10 



appropriate Fermi-Dirac integral. 

At low temperatures equation (1.12) reduces to : 

x 	are 
volume 	2kTf  

(this is roughly equivalent to 10
7
e.m.u/gm for the noble metals). 

While in the classical, high temperature, limit: 

EL
2 

Volume 	kT 

For the case of electrons in metals, obeying Fermi-Dirac 

statistics, the volume susceptibility at temperature T not too 

large compared with Tf  may be written: 

Xvolume M 
2(314(Ef)C1+T)2(I

d2 dE2 (log N(E)d 	1,15 
E:E, 

where N(E) is the generalised density of states per unit volume. 

Equation (1.15) reduces to (1.13) when N(E) is taken as the free 

electron density of states. 

4. 	Conduction electron diamagnetism  

If the conduction electrons are treated as a free electron 

gas, then application of classical mechanics indicates that the 

diamagnetic susceptibility is zero5. This result rests essentially 

on the fact that the magnetic forces do no work and hence the 

energy (or more generally the free energy F) must be field 

independent. Consequently the magnetic moment, which depends on 

1.13 

1.14 
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the derivative of F with respect to H, is zero. 	Indeed, en the 

classical basis the combined effects of the Curie-like paramagneism 

and the core diamagnetism can be shown to vanish at all field 

strength. 

On a quantum mechanical basis the situation is quite different. 

The application of a magnetic field to a free electron gas results 

in the electrons moving in quantized orbits about the field 

direction. Under these conditions, whether the electron gas is 

treated as degenerate or non-degenerate, the magnetic moment 71 

given by: 

C)T V • I 
1.16 

is non-vanishing. For the non-degenerate case, in the classical, 

high temperature limit, the volume susceptibility can be written6: 

volume 3 kT 1.17 

which is exactly one third of the Pauli spin contribution, 

equation (1.14), in the same limit. 

When the electron gas is regarded as degenerate, and consequently 

treated with Fermi-Dirac statistics, the volume susceptibility 

becomes: 

X 	- AER 0111/3 2 
volume 	3h2  9t ' 

where m is the electronic mass. This is the Landau formula; 

its magnitude is of the order of 10 7e.m.u/gm. 

1018 
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The type of modification likely tG be introduced by the 

periodic lattice field has been investigated by Peierls7;  using 

wave functions obtained from the tight binding approach this 

author has obtained an expression for the volume susceptibility 

which, when the electronic energy E can be written as: 

E = 	(ak.1.2  

has the form: 

% + c k
z
2  ) 1,19 

X 	771I  ( V)1/3c(2121
2 
 31/3 p2 

volume 3h 71  1.20 

For free electrons equation (1.20) reduces to (1.18). 

The above equation indicates that the conduction electron dia- 

magnetic susceptibility can depend strongly on the position of the 

Fermi surface relative to the zone boundaries. 

The diamagnetism of Bloch electrons has been considered in 

some detail by Hebborn et a18, who have considered a system of 

non interacting Bloch electrons subject to a magnetic field H 

given by: 

H = (01  0, H
o cos Ky) 

with an associated vector potential 

A = (- 22. sin Ky, 0, 0) 	 1.21 

Using this form of vector potential in equation (1.3) shows that 

the Hamiltonian for the probelm can be expressed in the form: 



where 	is the field free Bloch Hamiltonian, and) and ./4  
o 	 -1 	 2 

are the magnetic perturbing terms given by: 

= 2iPH0 
TT 
tY 

2m 
sin Ky 	and Pt 	-n 

-2 11'. 

J321402 

K2 sin2Ky 

Using Mervell-Boltmmann statistics the field independent susceptibility 

, 
is calculated by using the term inim

2 
 in the expansion of the 

energy-trace exp. (-14/kT) - in powers of 41 1 	- 2 and .14  9  
-  At the end 

of the calculation K is allowed to tend to infinity so that the 

response to a steady field is examined. In addition a transformation 

from classical to quantum statistics is employed. The resulting 

susceptibility has four contributing terms; one of these is the 

analogue of the Landau-Peierls diamagnetism, having a form 

similar to the expression given by Peierls; a second term 

corresponds to atomic diamagnetism (including a "Van Vledk" like 

term), while the remaining contributions are "mixed terms", 

numerical estimates of which have not been made. 

5. 	Effects of nuclear spin 

The effect of including nuclear spin, represented by the 

quantum number I and possessing an associated magnetic moment 

ILI  defined by: 

pa 	g
I 
IP; g - the "nuclear g factor" 
	

1.22 

is to introduce an additional contribution to the susceptibility. 

190 
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Provided that the width of the hyperfine rnultiplet is small 

compared with thermal energies (kT), then it can be shown, 

using arguments similar to those used by Van Vieck to discuss the 

breakdown of "LS" coupling and its attendant effects, that the 

form of the nuclear contribution to the susceptibility is the 

same in either case of .S and I remaining coupled or becoming 

decoup2ed, The inclusion of this contribution into equation.  

(1.10) modifies the latter to: 

2 % = EL E 2J 310, gj  (JI-1) g12I(I4-1)] 

A typical value of gI  defined in equation (1.22) is 10 3, and 

hence its contribution in this approximation is vanishingly 

small. 

In the opposite approximation, in which only the lowest 

hyperfine level is occupied, the contribution to the susceptibility 

depends to some extent on whether hyperfine coupling is valid. 

This situation will be discussed more fully later. 

6„ Saturation effects 

Within the frame work of the assumptions leading to equation 

(1.10), the general expression for the magnetisation, &Illation (1.7), 

becomes 	m  PH/kT 

T  MAPet j9  
M = 	N 	m jgpHA 	 4 T 	 1.2 

mj 
z e   

mj 

1.23 



This expression flay be evaluated in a closed form, giving
10  

Jg p 
M = NJgjB Bj  (70-- ) 

where B (y) is the well known Brillouin function defined by: 

(2J+1) 
B (y) 	coth

(2J+y1 
coth ( 2J 	2J 	2J 	2J) 

 

The saturation moment predicted by equation (1.26) is Jgx13. The 

Brillouin curve for Gd
+++
(
8S7/2) is drawn in figure (1.1), the 

exonole of an S-state ion has been choosen so that the effects 

of crystalline fields cane  for many practical considerations, be 

neglected. The curve departs from linearity at a value of HT
1 

equal to 1.93K oersted per 
o
K, i.e. at 4.2°K the magnetisation 

should become non linear in the magnetic field for fields of the 

order of 8K eersted. Such deviations are of some importance in 

connection with later discussion. 

21. 
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CHAPTER 2 

A coTmmIRY O1 THE PERTURBING POTENTIALS ASSOCIATED  wrTH, 

U) T1-;' CONDUCTION ELECTRON SCREENING OF IMPURITIES 

IN A DILUTE ALLOY. 

1 	Dilute alloys  

Impurity atoms dissolved in some matrix are said to form a 

dilute metallic solid solution when the binary system is homogeneous 

and retains the crystal structure of the host metal. Further, 

the concentration of impurity atoms should be such that their 

mutual interaction is weak. Under these conditions the properties 

of the alloy will depend on the original electronic structure o± 

the impurity and host materials, together with the modifications 

of these structures resulting from the interaction of the impurity 

with its nearest neighbour solvent atoms, caused by the overlap 

of their outer electronic wavefunctions. 

On entering the host, the impurity will donate its valence 

electrons to the conduction band. If the number of electrons 

donated by the impurity is different from the number donated 

by each individual atom of the host, then a charge singularity 

will exist at the impurity lattice site. The two most important 

aspects of this situation are:- 

Tha correct description of the perturbing potential 

associated with the impurity site. This arises due to the 

departure from periodicity of the lattice field due to the 

presence of the impurity, with a consequent scattering of Bloch electron 
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(ii) 	The redistribution of conduction electron charge 

density around the impurity so that the associated charge singularity 

is screened. 

2. 	The impurity potential  

A discussion of the impurity perturbing potential may be 

conveniently subdivided according to whether this potential 

constitutes a weak, strong or intermediate strength perturbation 

of the system. 

(a) Weak potential - The rigid band approximation  

Under these conditions the effect of the impurity can be 

ascertained by using perturbation theory11. This indicates that 

AE, the first order change in energy of Bloch conduction electrons, 

given by the expectation value of the perturbing potential Vp, 

is independent of the wave vector k labelling the conduction *lE(r) 
electron states, provided that the associated state function 

can be written as 

k(r) = ik.r 
* (r) e — 
o 

2.1 

with * (r) showing little dependence on k, and that Vp varies o 

slowly in distances of the order of k
1
. Under these conditions 

the energy of every state in the band is changed by the same 

amount. Consequently the relationship between the density of 

states in the alloy Na(E) and in the pure metal Nm(E) is 



Na(E) = N (E + AE) 
m 

(b) Strong potential  

The effecis of a strong impurity potential have been treated 

by Koster and Slater 
	These authors have investigated the case 

of a perturbation localised on one lattice site, and have calculated 

its effects on the wavefunctions of a single band in a simple cubic 

lattice using a Green's function technique. The energies of the 

unperturbed lattice were taken as : 

E = E(o) + 2E(1)[cos 110 + cos k
y
R + cos k

z
Rj 	2.3 

The results of the calculation indicated that a bound state is 

removed from the top or bottom of the band, depending on the sign 

of the perturbation, when the expectation value of the perturbing 

potential exceeds &Z(1). The state function of this bound state 

in the region outside the potential well of the impurity having the 

25. 

2.2 



form 

-ccr 	
2.4 

r  

26. 

where a is a parameter depending on the energy difference between 

the bound state and the bottom (or top) of the well. Equation 

(2.4) indicates that as the depth of the well increases the state 

function of the bound state becomes increasingly confined tc the 

well; falling off increasingly rapidly in the exponential region 

outside, Consequently, for an extremely deep well the state 

fun:tion becomes negligible outside the well while inside it becomes 

iaential with that of a true bound state of the impurity. 

!Then the impurity excess charge is positive with respect to 

the matrix, and the potential of sufficient strength, a bound state 

will be formed below the bottom of the conduction band. This 

state will be filled by an electron from the band. In the opposite 

situation, with a state pushed above the Fermi level, it becomes 

energetically unfavourable for an electron to remain in this state 

and this will consequently be donated to the band. In each case 

the charge difference between the impurity and the matrix will be 

reduced by one. 

This concept of the emptying of a bound state pushed above the 

Fermi level has been used by Friedel11 to explain the difference 

in average impurity moment of Cr and Mn in Ni. 
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(c) Intermediate strength potentials 

As the strength of the impurity potential, initially strong 

enough to remove a bound state below the conduction band, is 

reduced, the state rises in energy and, according to equation b./0 

becomes spacially more extended. If the impurity potential is 

sufficiently reduced in strength this state crosses the bottom 

of the conduction band and merges into the continuun of extended 

band states. Interaction can then take place between the state 

and the conduction band states of the same energy and appropriate 

symmetry, causing the former to become broadened in space and 

energy - it becomes what Friedel terms a virtual bound state. 

This situation is analogous to the virtual binding of a 

particle of energy E incident on a double potential barrier of 

height V
b
y E14. The situation is depicted in figure (2.2). 

The usual spatial variation of the state-function is shown in 

figure (2.2a), but for certain values of the incident energy the 

variation shown in figure (2.2b) can occur, which corresponds to 

the situation above. The oscillatory nature of the state-function 

over all space outside the well corresponds to the fact that in 

"real" situations, having entered the conduction band, the state 

can no longer be described as truly bound since it is characterised 

by positive kinetic energy throughout the whole lattice. 

In reality, potential barriers of the kind represented in 
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FIG( 2:2a) 

FIG( 2:2b) 

FIG(2:3) 

rr --REAL STATE 

	VIRTUAL STATE 
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figure (2.2) can arise from the modification of some attractive 

potential function V(r) by the centrifugal potential term appearing 

in the radial wave equation for a partial wave of angular momentum 

-&1i > 0. 

The finite lifetime of a virtual state, a consequence of its 

energy brogdeningi  implies a trapping and subsequent delayed 

scattering of conduction electrons. This effect is particularly 

strong for conduction electron states of the right energy and 

symmetry since these have a large amplitude in the vicinity of 

the impurity - figure (2.2b). The scattering can be investigated 

by examining the phase shift rke  of that component of the extended 

conduction band state of angular momentum vg. Figure (2.3) shows 

schematically the phase shift liZ(E) for a real and a virtual bound 

state, and typifies the numerical calculations of Blandin and 

Friedel15. The density of states in energy for the virtual state 

is obtained by differentiating equation (2.19) with respect to 

energy, giving : 

2 Z 	Ina (E) = dZ/dE = W 	(26+1)  dE 

thus showing that the maximum density of the virtual state,n(E), 

occurs at the point where the (%(E) - E) curve has a point of 

inflexion. E
oI  thus defined, can be taken as the centre of the 

state. Further, the width, in energy, can be defined as the 

difference E
1-E2 where 

2.5 
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(E1) = a r1 (La) 	: 	(E2) = 3/21(E0  ) 

The properties of the virtual states so defined may be summarised 

as follows:- 

(i) The symmetry is determined by that of the bound state 

from which it was derived. 

(ii) The large amplitude of the resonating conduction band 

states, when summed over the virtual state, is approximately equal 

to that of the original bound state, and is related to its excess 

charge. 

(iii) At a given energy Eo, the width of the state increases 

as the amount of conduction band state of the same energy and 

symmetry increases. Thus for a given Eo  the width decreases with 

increasing anoular momentum .4h. 

(iv) For a given value of 	the width is roughly proportional 

to the energy Eo, measured from the top of the 'well'. 

Figure (2.3) indicates that the variation of phase shift 

with electron energy near the centre of the virtual level is 

quite rapid. Thus the properties of an alloy having its Fermi 

level in this region is highly sensitive to electron concentration. 

Indeed, a small change in average electron concentration can sweep 

the Fermi level through the virtual state; this is precisely the 

mechanism used by Friedel
16 

to explain the variation in residual resist..73...,  

of first row transition impurities in Al. The broad peak around 
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being attributed to resonant scattering of the Fermi electrons 

of Al by the broadened d shell of the impurity as the level 

crosses the Fermi level. 

The concept of a virtual state split by exchange interaction 

into spin up and spin down substates was qualitatively introduced 

by Friedel
16

, and has since received mathematical treatment by 

several authors. Closely associated with this concept is that 

of a magnetised virtual state formed when one of the spin states 

is full and the other, overlapping the Fermi level, is partly 

empty, The approach of Wolff
17 

to this situation is perhaps best 

suited to normal metal impurities in other normal metals, while 

that of Anderson18 to transition metal impurities in normal metals. 

As this thesis is primarily concerned with the magnetic 

properties of noble metals containing small amounts of rare earth 

impurities, it seems appropriate, following the above discussion, 

to formulate a preliminary description of the rare earth impurity 

states in these matrices. Many properties of the rare earths - 

typically chemical bonding - indicate that the 41 shell, although 

unfilled, is energetically low lying compared with the 5d and 

6s shells, and its electronic wavefunctions are well localised 

within these shells. This suggests that in alloys of the above 

type the 41 electrons would exist in real bound states below the 

bottom of the conduction band, in which case their associated 

wavennctions would not be unlike atomic 41 wavefunctions, or 
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in rather narrow virtual states near the bottom of the band. 

This last conclusion is indicated by the Anderson approach which 

would seem particularly applicable in view of the well localised 

nature of the Lit wavefunctions. In most chemical compounds the 

rare earths appear as tripositive ions, and in this configuration 

the number of 4f electrons, for the later half of the series, 

increases uniformly from 4f7  in Gd to 4f14  in Lu. Consequently 

one would exeect these real or virtual states to accommodate a 

number of electrons consistent with these figures. 

One final ccument, Yb which occurs immediately before the end 

of the series has the4f
13 

configuration when it occurs as a 

tripositive ion. In some circumstances it appears as a divalent 

ion indicating that it is sometimes energetically more favourable 

for it to complete its 4f shell. Effects of this type could 

occur in the alloy system of interest here, and would be clearly 

evident from the magnetic properties of the alloy. 

3. 	Screening  

One approach to investigating the redistribution of conduction 

electron charge density around an impurity so that its excess 

charge is screened is to examine the conduction electron response 

to a time dependent perturbation, 4p.(r,t), of frequency w, wave 

vector 9, growing slowly with time constance a
19,20 

• 
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This perturbation causes the statelk>= 
eik.r— 

 to become mixed 

with the state k + a 
	

its wavefunction becoming: 

t(r,t) = I lc> <h + al 	y›  
E(1-)-E(k+a)+11w-ifTX 

k 	2.7  

The modification of the wavefunction results in a change in charge 

density, Ap(r,t), given by: 
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2.6 

 

=kZ [ k I* (r 012  -1 

occupied staTes 

 

AP (r,t) 2.8 

  

This approach can be generalised to cover real perturbations by 

including the complex conjugate in equation (2.6), and further by 

introducing the occupation function f°(k)„ the Fermi-Dirac function, 

which measures the probability of state lk>being occupied in the 

unperturbed situation. The resulting Ap(r,t) has an associated 

potential ,N (r,t), to which it is related via Poisson's Equation. 

Provided bk(r,t) has the same space and time variation asAp(r1t), 

this equation can be solved for .0(r,t) and hence, in analogy 

with equation (2.6), for 	However, this potential also 

effects the conduction electrons, hence to make the calculation 

self consistent the assumed perturbation A 11(r,t) should contain 

(r,t) so that 

A p(rlt) = A§ (r,t) AV(r,t), where A V(r,t) = Veia'r .eiwt.eat c.c. 



is the externally applied perturbation. With this modification 

where e (2,1,7) = 
= €glw)  	E(k)-

k
E(kia)+

(
ftw-i m 

2.9 
 

q 	alik 

which indicates that the effective potential, It, acting on the 

electrons is not the applied potential V, but the latter divided 

by a dielectric function e (sow). 

Finally for the case of several Fourier 

V(slow)eiqmr eiwt dadw 

i if  - 
(
(a1

wc, ) )  
then A 11(r,t) --. 	

,1 	
e
ig.r eiwt dadw 

.....3 

L. Static screening 

In the case of static potential w=0. Confining attention 

to the region of small a, such that 
.po 

E(k-a)-Elk) 	0(k) and f°(k) e(kts) = -9.4t-VkE(Lc) 

then the expression for e(goo) becomes, on replacing the sum in 

equation (2.9) first an integral over k, and then transforming to 
-.3fo 

one over E and approximating 	) to a delta function at the 

Fermi level: 

4 e % 
2 

e(soo) —> 1 	n(E f) 
q  

where n(Ef) is the density of states at the Fermi level*  

A V(r,t) =.1 

components, such that 

2.10 

2.11 
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Applying these results to the problem of the screening of an 

impurity of excess charge Ze yields the following expression for 

the special dependence of the screened perturbation: 

2 Ze 
A 11(r) = — exp. (-),r) 	 2.12 

where V= 1 te2n(Ef). This is the same result as obtained by Mott4911,21 

using the Thomas-Fermi approach. Equation (2.12) shows that 

screening occurs in a distance of order X--1'  hence indicating 

that a high density of states at Ef is conducive to effective 

screening. 

Equation (2.11) is, of course, approximate, being confined to 

small values of q, i.e. to potentials that are spacially slowly 

varying. To investigate the screening for all values of q it 

is necessary to evaluate explicitly the sum in equation (2.9), 

which would require a detailed knowledge of E(k). Within the 

free electron model, at O°K, the sum becomes an integral over 

k and leads to: 2 2 2 
e(a,o) = 1 + 46;11..-n(Ef)a 	

4k -q 	2k +q 

cid 	 8k
f
q .1°912kf-q0  

When the screened potential 

of a point charge Ze is calculated in this scheme, its spacial 

dependence is given by 

2 4k 	-q 
2+4 	) 

2 2kf+ql  -1 	. 
ela'rtla 2.14 1.1.(r) = 4 nZe2ff.g. 	ne2n(Ea-1. 8k q 2k -q 

2.13 

where kf is the Fermi wave vector. 
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The singularity in a(cuo), given in equation (2.13), at 

q=2k,, will show up as a contribution to }z(r) and will modify the 

smooth exponential decay of the screening charge density, given 

by equation (2.12), 

1
9
/ vector 2k 	which, at large distances will have the form 

.  

r -3cos 2k
f
r. This long range oscillation is a common feature of 

different models set up to examine the problem of impurity 

screening. Several of these models are discussed below. 

1, Friedel
11 

As indicated above, any approach to the problem of impurity 

screening which is based on a Thomas-Fermi type of approximation 

requires the perturbing potential Vp to vary slowly in a distance 

of the order of an electron wavelength. Friedel has performed 

a calculation in which this restriction has been removed, and shows 

that the introduction of a thin spherical potential well, of 

depth Vo and radius b, into a free electron gas results in a 
1 

modification of electron density. Provided kf.b and b.(2Vo)2<<n 

the change in electron density, Ap(r)„ as a function of the distance 

r from the centre of the well can be written, in atomic units, as: 

into a form containing oscillations of wave 

p (r) - 
-16b3k 4Vo 

f 
 
. F(2k

f
r) 

3%
2 2.15 

where F(x) = X-4(xcos x - sin x). 
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At large distances F(x) = -3cos ie., which, although decreaeng 

as x 3, oscillates in sign and indicates a comparatively long 

range oscillatory behaviour. 	In addition to this the preceding 

example shows that 'corrections' to the Thomas-Fermi approximatIon 

should spread the screening charge somewhat. 

Screening of a strong potential11'22 

The screening charge density around a strong potential has 

been examined by Friedel by treating the conduction electrons as 

free and being scattered only from the perturbing potential. 

The latter is assumed to be spherically symmetric and, within the 

framework of a partial wave analysis, manifests itself via a 

phase shift Ile  in the scattered partial wave component of angular 

momentum Z. The electron gas is pictured within a large sphere 

of radius 2, while the calculation shows that the number of 

screening charges per unit k, N(k), is : 

(-4  

N(k) 
0 

7tr2 	 2 	1 
k (AP(r)dr = 	Z (24+1)[---  - 	sin -11.  dk  

cos (2kR+ 2.16 

The total number of screening charges, N, is given by: 

kf  

J r
d  

N = 	fN(k)dk =.- 
2 v 

Li (2L-1-1) 	-6 s9  cos (2a+ 1141  

	

7G 	 dk 	k 
o ) 	Z 	o 

2.17 



yielding: 

N .3 E (241)71c(kf) + oscillating term 

The contribution of this oscillating term to N has been calculated 

using a U.K.B. approximation22  and shown to be negligible. 

The screening problem can be made self consistent by equating N, 

the total screening charge introduced below the Fermi level by the 

perturbation, to Z, the excess charge on the impurity. This leads 

to the Friedel Sum Rule: 

2 E Z =- 	(2Z +1) TIZ (kf ) 7Z 

In the case of large r, equation (2.16) gives: 

1 
6'13  = ix2 2 Z (4.1)  j sin n sin(2kr+ T) eiX )dk = 

large r 	r 

A cos(2kfr+0) 

r3 

where: 
2  

A = 	1 R (26+1) (-slim cos(71 -..07c)] 	"- (24+1)(-sini-sin(11 	) 
2% 'a 1. 

and 

-1 (r4 (?.;;+1) sin 	cos (.q  - ft) 
X, 	.6  

Z (2.3+1) sin izsin(Tiz  - .070] 

good agreement with experiment in situations where it is realistic 

to consider the scattering potential as real i.e. non magnetic 

impurities 
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2.18 

0 

r
k
f 

2.19 

2.20 

• 

Calculations of residual resistiviUes based on this model are in 

0 ---- tan 



Kjin and Vosko
24 

i-ese authors extend the above approach by considering Bloch 

electrons scattered by a real potential V (r) which is derived 

from a self consistent calculation and includes the effects of 

screening. 	In the asymptotic limit solutions tk(r) of the 

scattering problem are sought which correspond to an incident 

Bloch wave and an outgoing scattered wave i.e. 

v-k(E) = 	 okt 
	 2.21 

Since the potential is real the scattering is elastic and 

1
k1=-M, consequently f(k,k') depends only on the magnitude of k, 

and on the angle A between k and k'. Hence
25 

f 	
Z (2Z+1)(e2i% (k)-1) P (cos()) k(G)  - 2ik ,  -L.-.-0 

In this approximation the excess electron density 	 k Anr  (r) 

2.22 

associated with sk(z) is: 

k(E) 	l*k(E) 12  - 1 9fk(E)1 2] 

and the total excess density at r, Ap(r), including the effect 

of spin is: 

Ap(E) = 2z Ap k(r) 
k
f 

2 
(3-03 f AP k(1.-.)dk  

0 

which, the authors show, becomes in this-asymptotic limit: 

AP(r) - 
1::r2r3{ 

e f  f
k
(n) 	(r))2k 	c.ce] 

2ik r 

k 	f f 
	2.23 



1k 
(r) being the periodic modulation of the plane wavestate e —f. 

induced by including the effects of the lattice field. 

In the case of plane waves equation (2.23) reduces to 

equation (2.20), the Friedel result. 

Kohn and Vosko then evaluate the electric field gradient q 

produced at a solute nucleus at En  by this excess charge density 

and arrive at 

A cos(2kfrn  0)  q = a.8 
3 	rn3  

2.21+ 

where a is an enhancement factor which measures the increase of q 

over its value in a plane wave theory without antishielding, the 

latter arising out of core polarization effects
26
. The resulting 

expressions are finally applied to the problem of the broadening 

of the nuclear magnetic resonance line in Cu due to the presence 

of impurities which set up oscillating electric field gradients 

with which the Cu nuclear quadrupole moment interacts. The 

parameters A and 0, which depend on the partial wave phase shifts 

7 	are estimated from the observed residual resistivities of 

the particular impurity in Cu, and from the sum rules The 

enhancement factor a, for Cu, is estimated to be about 26. 

The field gradients obtained in this manner are in very good 

agreement with those estimated by Rowlands
27 

as necessary to 

produce his experimentally observed broadenings. 
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and Murray
28 

Rather than consider electronic wavefunctions, these authors 

use the more general density matrix approach
29 

the diagonal 

elements of which give the electron density. They show that the 

full density matrix can be generated by perturbation theory to 

infinite order and illustrate that for a slowly varying potential 

the associated series can be summed, and yields the usual result 

for theexcess density, c.f. equation (2.12). 

Li situations where the potential is not varying slowly, 

March and Murray treat the case of a point charge in a free 

electron gas, an exact self-consistent solution to first order 

in perturbation theory is given. The associated equations are 

solved numerically and the results indicate that the asymptotic 

form of the excess electron density is accurately represented 

by the eauation: 

Z.A(k) P (r) 	TI 

where Z is the excess point charge and A(k) is a slowly varying 

function of k. The amplitude of the oscillations in excess 

electron density associated with equation (2.25) are in excellent 

agreement with those obtained by Kohn and Vosko. 

To summarise, the fact that a variety of approaches to the 

problem of impurity screening all lead to oscillations in the 

cos 2kr 

r
3 2.25 
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long range electronic screening charge density implies that these 

oscillation are not a peculiarity of a particular model. 

Experimentally, the work of Rowlands provides strong evidence in 

support of their existence. Perhaps the most important role 

played by such oscillations is that they afford a mechanism by 

which impurity atoms, separated by relatively large distances, 

can couple with one another. This mechanism is discussed in the 

next chapter. 



CHAPTER 4 

INTERACTION EFFECTS BETWEEN MAGNETIC ATOMS. 

1. Molecular field model  

The simplest way of treating the interaction between magnetic 

atoms in some solid lies in considering only one such atom, and 

replacing its interaction with the remaining atoms in the system 

by an effective field. Historically such an approach was first 

introduced by 7eiss30,who also introduced the assumption that this 

field was proportional to the average magnetisation, MI  of the 

system. The field He acting on any atom is then 

He = H XM 	 321 

where H is the applied field and ,.the molecular field constant. 

The magnetic carriers can be envisaged as capable of assuming 

any orientation relative to the applied field, or these orientations 

can be assumed to be quantised. In either case this approach 

predicts a cooperative transition below some characteristic 

temperature, 9, the transition being characterised by a finite 

value of the magnetisation in zero applied field. 

The fitting of experimental data in the high temperature 

region enables an estimate of to be made, and in the ferromagnetic 

elements (Fe, Ni, etc.) it is typically of the order of 103. 	This 

value is far too high to be attributed to magnetic dipole inter-

actions, and, as is now well know, the interaction is quantum 



mechanical in origin. Dirac31 has shown that in the special 

case of localised electrons in orthogonal orbits the effect of 

the Pauli Exclusion Principle leads to a spin dependent contribution 

to the energy, which, for some purposes, may be regarded as 

arising from two body spin - spin interactions of the form: 

LEH 	= -2 Z 3i j Si.. Si 
i4j 

3.2 

where Jij is the exchange energy between two electrons in states 

i and j. Sunposinc that nearest neighbour interactions alone 

are important, then for a single atom the qieisenbergt term, 

from equation (3.2), becomes: 

M 	= -23 Si 7  Sj 	 3.5 

where the sum is over the n nearest neighbours of the ith atom. 

In a system in which the magnetic moment arises from spin alone, 

and replacing the interaction represented in equation (3.3) by 

an effective field, i.e. 

H -gPai  

thus 
n 

2J x. 
lbff = gRSj 

j=1  

Within the framework of the Weiss approach, each Sj is replaced 

by its average value <SI'.  . Assuming all magnetic atoms are 

equivalent, <Sj> is related to the total magnetic moment of the 

system by: 

3.11 

3.5 



M = NO <Si> , hence Haff= 
2nJ 

Ng (3 
2 2 - 
	3.6 

On the basis of these equations the susceptibility 	at high 

temperatures, is 

Ng2p2S(S1-1)  where 0 = 2nJS(S+1)  
3k 

Clearly the sign of 0 and X (equation 3.6) depend on the sign 

of J, which must be positive for ferromagnetism to exist below 

0, the Curie temperature. 

2. 	Collective electron model 

The above application of the molecular field approach has 

been to localised magnetic carriers. Stoner32 has applied 

this same approach to itinerant electrons, subject to Fermi-Dirac 

statistics. Using equation (3.1) the energy of a carrier becomes: 

e 	H 	) 	 3.8 

Defining a relative magnetisation = M/Msat, equation (3.8) 

becomes: 

e+ H 	P1.4° Msat 	 3.9 
As 3 Xlvisat has the dimensions of energy per particle, it can be 

replaced by kOT, where At is a measure of the interaction strength. 

Using a parabolic density of states curve Stoner has shown that: 

F1  (N+ Y + Yt) - 	Y - Yt) 
3.10 

Flt(p+ Y + yt ) + F i - Y - y') 

X- 3k(T-0) 3.7 
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where Fk(11) are the appropriate Fermi-Dirac integrals, kT the 

chemical potential, Y = PH/kT and V=GVT. Stoner's analysis 

shows that the pronerties of such a system depend critically on 

the interaction strength k0'. 

(i) For 3k9' < 2 Cl'  there is no ferromagnetism. 

(ii) For 2/3 < kriP/ef < 0.79 there is ferromagnetism below 

some Curie temperature 9 (where 9=9' in the classical limit), 

but the magnetisation at absolute zero, is not saturated. 

(iii) For 1:0'). 0.79 ex  saturated ferromagnetism occurs. 

Above the Curie temperature (for all temperatures if 

3k01 < 2cf), the ihverse susceptibility is given by: 

1 	1  
x = x(gf=o) 

k9' 
3.11 Np2 

Below the Curie temperature the temperature variation of the 

spontaneous magnetisation is given by equation (3.10) with Y=0, 

it is in reasonably good agreement with experiment except in the 

low temperature region. 

Proceeding in the same manner as Stoner, Wolfarth
33 has 

examined the situation in which the density of states in energy 

has a rectangular form. The most marked difference between 

the predicted properties of the two models concerns the behaviour 

of the spontaneous magnetisation as a function of 91 , the inter- 

action strength. From such a comparison, Wolfarth however, 

concludes that the thermal properties would be rather more sensitive 
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to the assumed band form than the magnetic properties, since the 

former exhibit a dependence on this form even in the classical 

limit, whereas the latter do not. 

The collective electron approach to antiferromagnetism, an 

extension of the above example in the case of negative exchange 

energy, has been examined by Lidiard34  . 

A complete review of the various effective field models has 

been given by Smart351  the previous examples may be regarded as 

illustrating the concept. 

3o  Coupling mechanisms in dilute alloys 

The interaction mechanism invoked in the above models to 

explain the cooperative transitions was based on direct exchange 

between the electrons concerned. On a localised model the 

radial form of the direct exchange integral is similar to that for 

the wavefunction of the participating electrons and hence decreases 

exponentially with increasing separation of the interacting centres. 

In a dilute alloy, containing less than say 1 At.% impurity, the 

mean distance between impurities is much greater than the nearest 

neighbour distance and consequently direct exchange can no longer 

be regarded as an active coupling mechanism. There is, however 

ample experimental evidence that cooperative phenomena occur in 

dilute alloy systems and so some indirect coupling mechanism must 

be operative. 
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incirect interaction via "s-d" exchange 

1. Zenar36 

Zener has suggested that the spin of an incomplete d shell 

is strongly coupled to the spin of the conduction electrons via 

exchange. This results in a uniform polarization of the conducticn 

band. This polarization can then cause indirect interaction 

between two incomplete d shells via their mutual coupling to the 

conduction electron spins, and can result in a ferromagnetic 

alignment of the d spins. 

2. Yosida37 

This qualitative suggestion of an indirect coupling via 

"s-d" exchange has been examined by Yosida using an "s-d" inter-

action of the form discussed by Kasuya38 and by Mitchell39. 

The diagonal elements of this interaction can be written: 

N 1J(o)(n 	n ) Z SnZ  
-- n 

where N is the number of lattice points in the system, J(k-k0 

the exchange integral between a conduction electron, with wave 

vectors k and k', and an impurity spin, Sn being the impurity 

spin operator at Rn. Equation (3.12) indicates that the energy 

is reduced as (n 	n ) increases, and tends therefore to 

polarise the conduction electrons. Using (3.12) as a perturbation 

from which the first order energies of spin up and spin down 

electrons can be calculated, and assuming a spherical Fermi surface, 

3.12 



Yosida shows: 

n(±) = n + (3n/2Ef)N 1J(o) Z Sn 

Ef being the unoerturbed Fermi energy and 2n the total number of 

electrons. The polarisation given by equation (3.13) is the same 

as that given by Frdhlich4°  and by Zener. However, Yosida has 

pointed out that the difference between the first order perturbed 

wavefunctions for spin up and spin down electrons contributes a 

comparable polarisation to that in equation (3.13), and its 

inclusion leads to a density of spin up (or dawn) electrons at large 

distances r from the impurity given by: 

Z- V 	J(2.)f (a) Z Ceia*  - 4- e 
(r-1ln) -a.(r-Rn)3s  Z 

td.VN q 

3.14 

where 01, = k - kt, V is the volume of the system, and 

2 2 
f (0 ) = 1 +fq  

4cfq 
log I 2kf q  

2kf-q 

The final form of p(+)(r) depends critically on J(9.), if this is 

assumed to be independent of q, then: 

50„ 

3.13 

fy,(z)  (r) = 
18n27c 	 1 Z J(o)N 	F(2kffr - Rn )S

n  V Z  Ef   3.15 

F(x) being defined in equation (2.15). 	However if J(e) is 

taken to satisfy: 

J(a)f(q) = 2J(o) for q <2kf: = 0 for q >2kf, then: 
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, 2 
p(+)tri ! = 	3un  J(0)N 1  n  2cTIE-2/11F(2kfIE-Ea()Snz 3.16 V VEf 

At large distances the density given by equation (3.13) decreases 

as Ir-Rni-3 7 • while that in equation (3.16) decreases as Ir-Rnr
2
. I ... --I 

However, this latter equation is physically more acceptable since 

it remains finite at r = Rn, whereas the other does not. 

The interaction, via "s-d" exchange, of a second spin at Ian 

with the modified conduction electron density produced by the first 

spin at Rn results in an indirect coupling between the two spins. 

Using the spin density given in equation (3.15), the interaction 

energy of the two spins, at large distances, is: 

2 7C (2n ,J(o)2  cos(2kfl :2n -RMqN 
S(S+1)Un.UM 	3.17 

16 	N.Ef 	(cidRn-Rmi)3  

where the Uts are unit vectors in the spin direction. This 

result has the same form as that obtained by Ruderman and Kittel 

for the indirect coupling between nuclear spins via conduction 

electron polarisation. Equation (3.17) is often referred to 

as the RKY interaction. 

As Freeman and Watson42  have pointed out, Yosidats approach 

is rather restricted since it deals entirely with linear response 

i.e. in terms linear in the exchange. Further the expression 

for the exchange matrix elements used by the same author is 

appropriate only when the associated wavefunctions are orthogonal. 

To demonstrate with a practical example, Freeman and Watson used 
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wavefunctions appropriate to a snherical,half fined 

4f shell in Gd 	, representing the conduction 

electrons by single plane waves orthogonalised to the 

4f and closed shell Gd 
	

ion core. 	They calculated 

the a  (=k-k') dependence of J(R), with / krkf and a 

varying k', and showed that far from being constant 

3(q), although initially positive, exhibited an 

oscillatory dependence on q. 	The resulting spin 

density, calculated from equation (3.14) is typified 

in figure (3.1) and has two features which are 

characteristic of the RKY approach. 	Firstly, for 

large values of r, the density displays "Friedel type" 

oscillations. 	Secondly, the average spin density is 

positive, reflecting the sign of 3(0) (associated 

with which is the Zener term). 	The difference lie 

in the fact that the bulk of the induced positive spin 

density is not centred at the nucleus, but some 2 a.u. 

away, while p(o) can be positive or negative, smaller 

or larger than the density at the nearest neighbour, 

depending on kf. 	This is in complete contrast to 

the RKY result where p(o) is always large and 

positive. 	The behaviour of p(o) and the associated 

outward shift of the region of net induced density is 
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A
p(r): not norm

alised. 
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also reflectedin the increased radii for the onset 

of Friedel type oscillation; this, coupled with the 

reduced 	P(o)/P(n.n.) ratios greatly improve the 

theory's qualitative position with regard to experiment43  . 

One final comment, both the above approaches 

assume that the conduction electrons have an infinite 

mean free path. 	De Gennes
44 

has pointed out that a 

finite mean free path could affect this interaction 

since it will modify the polarisation distribution 

set up by a single spin. 	Further the temperature 

dependence of the mean free path could similarly lead 

to a tennerature dependent RKY interaction. 

Indirect interaction between virtual states  

Blandin and Friedel
45 argue that when the spin 

degeneracy of a virtual state is lifted, the phase 

shifts for the spin up and spin down electrons, 

and l 	, are different. 	The result is that an 

oscillating spin density is associated with the 

"original" oscillating charge density, figure (3.2). 

Long range coupling can then occur since such an 

excess or deficiency of:spin density at the site 

of a second virtual state can, via "s-d" exchange, 

cause the spin on the latter to align either parallel 
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or antiparallel to the first. 

When the spin decoupling is complete, and such 

that the spin down (say) state lies above and the spin 

up below the Fermi level, and assuming only the AL, 
,t h 

 

partial wave is significantly perturbed, then 4...(r)=°  

and 	(r) is obtained from equation (2.20) with a 

spin index. 	In the case of large r this gives: 

The interaction of a second impurity spin S at R 

with this spin density, via exchange, results in an 

interaction energy of the form46 

E. 
int 

cos (2k
fR+1-1,,A.

(k
f
)) 

-u 013. 2 

3 (2,c,4-1) J [2n] sin114  (kf) 

4 	Z3 	 (k f R) 3 

3.19 

This type of coupling is somewhat hybrid, being of 

resonance type on one atom and exchange on the second. 

The possibility also exists of interaction 

through resonant coupling to the conduction electrons 

at both sites. 	According to Caron.", the interaction 

energy between two identical (2404) fold degenerate 
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virtual states at a large distance R from each other 

has the form: 

(2-1-1 	2 	cos(2kfR+21Q(k4) 
E. .- 	

)_, 
E .sin lz(kf) 	' ul*H2 int 27); 	(k

fR)3 
3.20 

The double resonance coupling would seem to be useful 

in accounting for the strong coupling of pairs of 

impurity atoms close to each other in the alloy. 

Typically, taking Ef=7ev' .1=0.1ev, 2n/N=1, 

S=2 and 71 9.1y5 i.c. w=2 partial waves only in CuMn,then: 

E(int)(Yosida) 	10-2  cos 2k Ru .11 e.v. f 1 2 

(kfR)
3 

E(int)(Blandin) 	4.5x10-1cos(2kf
R+ Tc/5)u1.  u2  e.v. 

(kER)3  

e.v. 

(kfR)
3 

thus, although each interaction seems roughly an order 

of magnitude larger than the previous one, allowance 

must be made for the fact that the sum of two phase 

shifts is involved in the argument of the cosine in 

Caroli's approach, one phase is involved in Blandin's 

approach, while no phase shift is involved in Yosida's 

• E(int)(Caroli) 9 cos(2k
f
R+.2%/5)u ,u  

1 	-- 
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double "s-d" exchange coupling. 

Treatment of interaction effects  

Nithin the framework of the traditional molecular 

field approach, the effective field experienced by 

each 'magnetic atom' was taken to be the same, and 

proportional to the bulk magnetisation of the system 

The results derived in previous sections on coupling 

mechanisms in dilute alloys indicate that a random 

distribution of solute atoms means an interaction of 

varying strength and sign. 	This immediately precludes 

the use of the usual Molecular Field method from a 

realistic discussion of the properties of such a 

system. 

Sato48  has approached this problem by examining 

the properties of a cluster of atoms, and makes some 

attempt to take the effect of atoms outside the cluster 

into consideration. 	However, nearest neighbour inter- 

actions are still regarded as dominating and in this 

respect the approach is rather restricted. 

Blandin and Friedel
45 have used the statistical 

method of Opechowski"  to obtain a series expansion 

for 	the susceptibility in terms of( T) in the high 
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temperature (T) limit. 	Identifying the Curie 

temperature 9 with the coefficient of the 1  ) term 
T2' 

yields an expression which, in a dilute alloy where 

double 's-d i  coupling is operative, becomes: 

S(S4.1) 	2n12J(o)2  F(2kfRoi) 3.21 
3k 	NJ Ef impurities 

o0i 

Doniach50 has shown that on performing an ensemble average 

over possible impurity positions, the above equation 

becomes: 
2 „2 2cS(S+1)9[2n To)  8  	c 	F(2kfRop 	3. 22 

3k 	N 	E
f 	all sites 

005 

where c is the impurity concentration. 	Of particular 

interest in this thesis are alloys of the noble metals 

containing the heavier rare earths as impurities. 

In the second half of the rare earth series Russell 

Saunders spin-orbit coupling of total L to total S these 

being determined by Hund's rule, is operative, and the 

coupling, parallel. 	Thus: 

(ga.E.-1)
2
J(J+1)..91t42n]J(o)

2 
C. 

3k N Ef 
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This equation predicts that in alloys containing 

the same small concentration of rare earth, provided 

J(o) remains constant, e should vary as (gR.E.-1)2 

J(J+1)
51
. 

Perhaps the most realistic approach yet made to 

the problem of treating interactions in a dilute alloy 

is to attempt to account for their varying magnitude and 

sign by some distribution of effective fields acting at 

the lattice points. 	The concept of a probability 

function p(H) for the magnitude of these fields was a 

natural consequence of the formalism of Overhauser's
52 

spin density wave model for a dilute alloy, although 

Overhauser's approach has been criticised by Marshall". 

This latter author has derived the general shape 

for the p(H,T) distribution in a dilute alloy using 

qualitative arguments. 	More recently Marshall's 

conclusions have been confirmed by the more rigorous 

approach of Klein and Brout
54
'
55 the general form of 

their conclusions about the P(H,T) curves are summarised 

in figure (3.3). 	Although this approach has had some 

success in predicting the correct general trend of the 

low temperature specific heat in alloys like CuMn, a 

detailed treatment of interactions in dilute alloys is 



lacking, particularly in its relation to such 

properties as magnetic susceptibility. 

61. 
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CHAPTER 4  

GROUP THEORETICAL BACKGROUND, AND IT'S APPLICATION TO THE 

PRESENT PROBLEM  

BACKGROUND SUNMARY 

1. Finite groups - Matrix representation  

A representation is generally defined as any set 

of elements obeying the multiplication table of the 

group, they need not be distinct. 	Here it's form is 

rather more restrictive, namely, a set of square matrices, 

which, when placed in correspondence with the elements 

of the group, obey it's multiplication table. rm  

denotes such a matrix set obeying the multiplication 

table of some finite group of order g. r 0) is the 
particular matrix in r  which 'represents' the group 

a 
element R, while 11% (R)ij  denotes the ijth  element of 

this particular matrix; n is the dimensionality of 

the matrices comprising 

The character Xr,,(R) of a particular element R 

in the c. representation is defined as: 

Xm(R) = Trace rm(R) 

Since the trace of any matrix product is, invariant under 

cyclic permutation of that product, then: 
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Trace S-1PGS r,  Trace SS-1r" = Trace P. 

Hence the character of all equivalent representations 

are the same, the definition of the latter being 

obvious. 	Similarly if A, X and B are members of some 

group, and are related by; 

A = X-1 BX 

then A and B are conjugate and form all or part of a 

class. 	Clearly the character of each member of a 

class is the same. 

A reducible representation is one in which every 

matrix can be i'ut in the form: 

r (IQ = 4.1 
0 	ra  (R) 

where r1 and r, are square, but not necessarily of the 

same dimension, they are also representations since 

they can be shown to obey the multiplication table. 

A reducible representation thus 'contains' more than 

one representation. 	This process of generating new 

representations can be continued until one is arrived at 

which cannot be placed in the form of equation (4.1) 

i.e. it cannot be expressed in terms of representations 



of lower dimensionality. 	The condition that a 

representation be irreducible is: 

Z Ii2 	 Z x3,2  R  I )(a.  R 	= g; where g = 

1=1 	hix (Ci) 	= g 8ap 
a 	 4.3a 

classes 

ri 

i=1 	hi (Ci)x (Cj)* = g tii 4.3h 

irreducible reps. 

hi is the number of elements in the class Ci. 

prom equations (4.3a,b) it can be shown that the 

number of classes is equal to the number of irreducible 

representations. 

A reducible unitary representation r with 

character 	X(R) can be transformed into the reduced 

form: 

r 	= p1r1+p2r2+ 	 pnrn 	 4 . 4 

The right hand side of this equation has character 

Z Para  
	

and since this is invariant under transformation: 
m  

X(R) = a Pa Xc.,(R), from which: 

Pa 	lig p  x(R) x(R)* 	4.5 

64. 

4.2 

For unitary irreducible representations ra and rp 

the following orthogonality relations hold: 

z 
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2. Application to quantum mechanics  

Frequently in quantum mechanics the group of 

interest is the group of symmetry operators which , 

leave the Hamiltonian invariant. 	Consider an 	fold 

degenerate level of the rtamiltonian 	ofenergy En, with 

whichthuorthonormalsetoffunction*. (n)  is associated. 

E 	(n) = 1 	 n 
C1F.arly if an operator leaves J invariant it is immaterial 

whether it appears to the left or right of J, i.e. they 

commute. 	The set of all such operators are said to 

form the group of the Schroedinger equation. 	If R is 

a member of this group, and P(R) defined in Wigner's 
. conventton56  , then: 

P(H).1/41 (n)  =J#1(R) Ili (n)  = EnP(R)Si (n)  

This implies that P(R)*i (n)  is another function with 

energy En , and thus may be expanded as a linear sombination 

of thecomplete set of orthonormal functions associated 

with the degenerate level: 

P(R)*i  (n) 	r (n) (R)  ..i3(n) 

j wherer(n) (R).i  is an array of coefficients. 	In fact 

thesetofZdegeneratecigenfunetionsi (n)  of energy 

4.6 
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E are the partners in a basis for an 6dimensional 

irreducible representation 	 n) of the group of the 

Schroedinger equation. 	A knowledge of such representations 

enables very useful theorems to be invoked Concerning 

the mdtrix elements of the liamiltonian. 	However, 

mat'ix elements coupling states often arise from pertur—

bations having a symmetry different from that of the 

Hamiltonian. 	Under these circumstances, labelling 

the functions Sucd. where n is some series index, a 

implying that the irreducible representation involved is 

r , and i labels partners, and noting that an arbitrary a 

perturbation ti can be decomposed linearly into terms 

, the latter transforming accroding to the jth row mpi  
of 	an irreducible representation of the group 

involved in the states igna,i, then 

4aIr ri 	I 14pil*n'a,i ii 

unless l'a  xr 13 

3, Continuous groups  

> 	0 	 4.7 

contains the trivial representation 

The continuous group of rotations in two and three 

dimensions are essential for the description of atoms, 

both free and in crystalline surroundings. 	The axial 
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rotation group consists of all rotations 0 about some 

fixed axis. 	It is obvioetly co-muatatiVe and has only 

one ditensiotal irreducible representations, i.e. 

x(0) is both the charatttt and the representatibt. 

x(01 %(02) ft X(01+02), and x(2%) ft X(0) ft I 

hence the representations are: 

X(0) * elm 	m ft 0, + 1, + 2 
	

4.8 

The irreducible representations of the three 

dimensional rotation group, the rotation symmetry group 

of an atom it free spate, tan be obtained by considering 

a set of functions which is invariant under this group. 

The set of all rotations in three dimensions obviously 

forms an infinite group, with an infinite number of 

classes. 	All rotations through the same angle about 

whatever axis belong to the same class because another 

rotation of the group connects the two rotation axes. 

Although finite rotations behave in quite a different 

manner, infinitesimal rotations add vectorially, this 

is reflected inthe fact that the infinitesimal rotation 

operator about some k axis, specified by direction cosines 

a1 and ct 2  and cc3' can be written: 

Ik = m11x + a2Iy + a3iz 



r 8C 

where I ,/ and Iz  are the three infinitesimal Cartesian y 

rotation operators. 	It can be shown that a finite 

rotationof angle u about some k axis can be written as: 

r 

Rak 	
jai

k 
+ (Ilk)2+ 	= eia 

4.9 
2! 

Defining stepping operators by: I += 	+ iI Ix 	y 

which obey the usual commutation relations: 

I 1+ - t+Iz  = + I+ : t+I - 	t = 21z 

4.10 

4.11 

then following the previous discussion, it is clear that 

the irreducible representations of the full rotation 

group can be obtained by considering a set of functions 

which is invariant under I+, Iz, since any rotation can 

be built from them. 	Such a set offunctions are the 

spherical harmonics. 	The angular part of the Laplacian 

operator is invariant under rotation, hence it's eigen 

functions - the spherical harmonics, form bases of 

representations of the full rotation group. 	Operating 

on these functions with the stepping operators, and using 

thir commutation relations, reveals that the dimension-

ality of the representation thus obtained is (244-1). 

Further the (2 a-1) dimensional space composed of 

,C ,C-1 
IC 	 C 
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is invariant *ender I+, Iz and hence miler all 

r'-Cations; 
	

t is also irreducible. 	This confirms 

that the spherical harmonics form bases for the (2.41) 

dimensional irreducible representations -.0 )  of the 

full rotation group. 	Thus, it analogy with equation 

(4.6), under a rotation 11: 

D (4;) v- m' RY 	m1 m m 

The characters of the representations can be obtained 

by the following argument. 	Consider a rotation cc 

about z, denoted by Rczz, in analogy with equation (4.9): 

Ym R (17. 	(e, o) = e im0 m Y, (e,03) 

The representation of such a rotation is the diagonal 

matrix D (c;), where 

D--1(a) = e 1 0 
• 0 

e
-iv 

0 

and has the character X4;  (a,) = Trace D'' (c) = e 

hence 	X.  (c) = sin (-2.4+ Oa 

- iL2 a 	• 

kr.4 0 

4.12 

   

sin a 

It has been noted previously that all rotations by a 

are in the same class, regardless of axis, hence they 

must all have the character calculated above for a 
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simple case. 

The direct product of two representations of tha full 

rotation group may be decomposed into it's irreducible 

components in a manner similar to equations (4.4), 

(4.5), this yields: 

D 
 

D 	= 	D 

1.61'. 621 

4.13 

which is nothing more than the familiar vector model 

for the addition of angular momenta. 	Using group 

theoretical techniques it is possible to obtain the 

partners in the irreducible representations contained 

in the product representations as a linear combination 

of products of the original functions. 	If* ' 
#of 

(Z')
, and 

m2 
 for 

(,;2) transforms as a basis for D * 	
D 

4;2 	9 

then the space of products 1:51f
t 
 *.est  is invariant f2 

under D07'0  x D'12) 	The irreducible representations 

D (z), 	= 	 lz,- A% 1 of the products hava, 

as partners, the functions: 

* m  = Normalising Factor riI 2 (Z± •en m/  m 2 	
4% Fri ) 

ti 

4.14 
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where the set of coefficients(6:Z,,  n z• 0%)are called 

• Clebtch-Gordon coefficients, atii are uniquely determined 

by the properties of the rotation group. 	They 

vanish unless m 	m2 	M4 

Thus far, the development of representations 
	(1) 

of the full rotation group has been indicated. 	The 

manner of this development implies that the representations 

are odd dimensional since they correspond to integral 

angular momentum 4Wigner56 hes shown how ordinary group 

theory techniques may be extended to account for spin. 

Briefly, the results of this extension indicate that 

systems .having spherically symmetric aamiltonians and 

total angular momentum j possess state functions which 

can be classified, with respect to behaviour under 

rotation, by representations D 	of the full rotation 

group. 	The odd dimensional representations are those 

which are associated with integral j and correspond 

to the (23 	1) degenerate states of the total angular 

momentum, while the even dimensional representations 

are associated with half integral 3. 	When j is integral, 

Y7thesphericalharmoniosTare the basis functions for 

D(J), when 3 is half integral D(j) is not determined 
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as to sign. 	In either case the expression for the 

character, equation (4.12), remains unchanged. 	This 

means that since 

	

xJ(c* 2%) = (-1)2j 	 (a) 	4.15 

then for half integral j the character it double valued, 

i.e. a rotation of 2% should leave everything unchanged, 

whereas above: 

X 0+ 2 0 	X3(0,  

However, even for half integral j: 

X
j
(a+ 4%) = x3  (r) 

Thus these representations act as if a rotation through 

4 % should be considered the identity operation. 	In 

addition: 

xi  ( + 2%) = X j  (%) = 0. 

showing that the character of a two fold rotation is 

single valued. 	This situation is dealt with. in 

practise by introducing the 'fiction' that the system 

is taken into itself, not under a rotation of 2% , but 

cane of 4vt . 	Consequently a new group element E is 

introd-Jced which represents a rotation of 2,c , and hac 

the property E 0 
	

E2  = E. 	The resulting group 

contains twice as many elements as the original one, 

and is called the crystal doul/le. group. This double group 
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mesa-ins more classes than the crigiusa one, 

but not necessarily twice as many since X
i (C2)  

x3 (C%2)= 0, making it possible that EC2  and C are 

in the same class. 	Double groups will be referred to 

later. 

4. Point croups  

A group of rotations (both proper and improper) 

and reflections which leave a point invariant is termed 

a point group. 	Since all rotations and reflections 

associated with a point group are contained in the group 

of three dimensional rotations and reflections, the point 

group is a subgroup of the full rotation group. 

Consider a point group G containing improper rotations, 

this may be decomposed into the direct product of a 

point group H, containing only proper rotations, and 

the group Ci  which consists of the identity E and 

inversion 3. 	This implies that for every class C in 

H, there will be two classes, C and JC, in G. 	In 

particular the inversion E3 = J will be in a class by 

itself. 	If lic,(A) denotes an irreducible representation 

of H, A being a typical element, then those of G can 

be generated simply by allowing A to assume the values 

A or JA, then since the number of classes in G is twice 

that in H, all the irreducible representations of G 

have been generated. 
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Denoting those representations which are even 

. under inversion by rE  , i.e. : 

(A) = 	rm(JA) 	r(A) 

and those which are odd by P °, such that : 

ra'(A) 	rcilD0A) 

then the entire character table for G can be written: 

C H JH 

E 	(x) 

4.16 
o 	 x) 

where (x) is the entire character table for H. 
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Crystal fields  

when an ion is located, not in free space, but in a 

crystal, it is subject to various inhomogeneous electric 

fields which do not pOssess full rotational symmetry. 

Thus the symmetry group of the ion is reduced from 

that of the three dimensional rotation group (plus 

inversion) to some finite group of rotations and 

reflections. 	This reduced group allows the originally 

irreducible representations of the full rotation group 

(and hence of the ion in free space) to be reduced 

with respect to the subgroup characterising the 

crystalline electric field. 	This reduction in 

dimensionality of the irreducible representations 

causes the degeneracy associated with complete rotational 

symmetry to be lifted. 	Hence the free ion energy 

levels are split by the crystalline field. 	The degree 

of residual degeneracy is determined, as Bethe57 

originally pointed out, from symmetry by group theory, 

with ultimate accuracy since no perturbative approximation 

is involved. 
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In treating the effects of the crystal fields it 

is first necessary to decide how its strength compares 

with the various terms in the ionic Hamiltonian. 

Three distinct cases are normally distinguished: 

1. Strong fields  

In this situation, theory seems to indicate that 

interactions between the electrons and their surroundings 

is large compared with the Coloumb interaction between 

electrons (4. eF/rij), but less than the interaction 

of the electrons with the nucleus. 	The iron group 

cyanides typify this situation. 

2. Intermediate fields  

This case is characterised by a crystalline field 

which is large compared with spin-orbit coupling, but 

small compared with the Coloumb interaction. 	This 

situation is believed to occur in salts of the iron 

group and is treated by first characterising the system 

by its total orbital angular momentum L, which is then 

'coupled' to the crystal field. 	Finally the effects 

of spin are considered. 

3. Weak fields  

Here the crystal field is less than the strength 

of spin orbit coupling. 	This occurs in salts of the 



rare earths. 	In this case the 'finished' atom, 

described by quantum number .1 is studied. 

In the system of interest in this thesis, rare 

earth impurities in noble metals, the affects of the 

crystal field of the matrix on the impurity is sought. 

Translational symmetry of the lattice is, thus, unimportant. 

The symmetry of the field experienced by the impurity 

is assumed to be characterised by the point group of 

the host lattice. 	Following the previous discussion 

the first question to be considered is what irreducible 

representations of this point group are contained in the 

(now reducible) representations D(JAf the full rotation 

group associated with angular momentum S. 

a. Integral  

The point group for the f.c.c. lattice of Ag and 

Au is, in Schoenflies notation, Oh. 	This is the full 

symmetry group of a cube or octahedron, including 

improper rotations and reflections. 	It is the direct 

product of 0 and Ci, where 0 is the group of proper 

rotations of a cube, and Ci is defined previously. 

The decomposition of the various (25+1) dimensional 

representations, D(.1),  is accomplished by using equations 
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(4.5) and (4.12). 	In addition, the result of - 

equation (4.16) implies that in conjunction with these 

equations, all splitting can be worked out simply 

by considering the group of proper rotations, in this 

case 0, which has 24 elements (g) and five irreducible 

representations. 	The character table for 0 is 

reproduced in Appendix ',together with the associated 

character table for the D M,s, and the decomposition 

of the latter into irreducible representations of the 

former. 

b. Half integral J  

As mentioned previously, the difficulties 

encountered in this case can be overcome by introducing 

the artiface that the identity operation consists 

of a rotation of 4t . 	Consequently it is necessary 

to introduce another group element E corresponding to 

a rotation of 2n . 	For the case discussed here, the 

double group 0' is obtained by combining the 24 elements 

in 0 with 24 new elements obtained by combining each 

element with E. 	Again, as previously mentioned, the 

number of classes in 0' need not be twice that in 0, 

in fact, Opechowski63 has shown that C and C2 are 

in the same class since there is another twofold axis 
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perpendicular to the one in question. 	Thus, in addition 

to the five classes of 0, three new classes are 

introduced, E, Ec3 and EC5  (notation as in Appendix 

1). 	Hence 24 elements and three classes have been 

added, and may be consistently accounted for by keeping 

the five ordinary representations of 0, and, to 

satisfy equation (4.2), adding three near ones, r6 r7  

and I' , of dimensionality 2, 2 and 4. 

Within the framewerk of the double group method, 

the half integral J a s can be handled by the same 

'procedure as used in (a). 	The results are summarised 

in Appendix 1. 

Having obtained the residual degeneracies, the 

problem remains of finding the energy separation 

between the various crystal field split levels. 	In 

the classical electrostatic approximation the electric 

field is assumed to be produced by some charge distribution 

located outside the ion, and the potential is expanded 

in spherical harmonics,thus: 

vcystal 
am 

(8, 0) .. r   4.17 

the a,m being coefficients which, in this context, are 

regarded as adjustable parameters. 	The crystal 
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pbtentia/ must transform according to it's own identity 

tepreSeniatiOni in thiS case thnt of 0h ' 	hence the 

expansion 61 the-  pCitenttal in the above terMS reed 

only contain those Y 
Am 

for which D contains the 

identity representation of Oil. 	From Appendix 1, 

is contained it 11 )  for 	= 0,4,6 and 8, hence only 

these terms in equation (4.17) need he retained. 

The v=0 term in the potential has full spherical 

symmetry and to first order produces a uniform shift 

o all levels. 	It is consequently disregaided. 

According to equation (4.13), the product of two 

'f' functions transforms like: 

(3) 	(3) 	
6 

) 	6 + 
D 	x D 	0  LL D 	D "••"" D 4.18 

This implies, when used in conjunction with equation 

(4.7), that matrix elements of terms in the potential 

for which 42,>6 do not give any contribution. 	Thus 

the expansion of the potential reduces to: 

r 
V 	m crystal= r4 ram. .414. L 414 

Vi 
 

r:]+ rm-6[a6m 
	4.19 

As shown in Appendix 2, a consideration of the 

symmetry operations of Oil  further reduces this expansion 

to 



4 00 4 4 -4 Vcrystal r (a y4 4 4 	'54 (Y4 + Y4 ) 
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r (a6y6 	,6(y6 + y6 ) 

 

4.20 

The problem of finJing the Iplitting between the Various 

levels has thus been reduced to evaluatiug matrix 

elements of the potentia/, giVen in equation (4.20) 

between atates, in representationS in wLich these 

states are eigenstatea of the total angular momentum 

J. 	This protesEf can be somewhat siraplified by taking 

use of the Wigner-Eckart theorem
ul 

which irri0.1es that 

matrix elements diagonal in. 3 ere proportional to matrix 

elements in which J is used as a replacement operator 

for other operators. 	As StevenT s62  points out, within 

a manifold of constant J, matrix elements of the 

potential operators are proportional to those of a 

suitably choosen combination of angular momentum 

operators. 	However, far such an equivalence to hold, 

the equivalent must transform in exactly the same way 

as the potential operator. 	Hence it becomes necessary 

to determine an angular momentum expression which has 

this property, due allowance being made for the non-

commutation of Jx, Jy and Jz. 
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Once these equivalats have been detervitied, the 

evaluation of their matrix elements  within some constant 

.1" manifold is quite straightforward. 	The manner 

in which the operator equivalents of the potential 

described by equation (4.20) are derived is 

illustrated in Appendix 2. 	In the notation used there, 

equation (4.20) becomes: 

cryStal 44 
(0°  4,  504

4) 
	B
66  
(0°  - 214) 	4,21 

V   

The coefficients B4 
and B6 

depend, in part, on the 

proportionality factor between the matrix element of 

the operator equivalent and that of the potential 

operator. 	It can be evaluated by calculating some 

suitable matrix element in either scheme, an example 

is provided in Appendix 2. 	One of the points tc 

note about the above form of the crystal potential is 

that it couples states with in3  differing by four. 

Using equation (4.21) in conjunction with the expanded 

form ofthe operator equivalents given in Appendix 2 

enables all matrix elements within a given manifold 

to be written down in terms of B4 
and B6. 	

When the 

values of these coefficients are specified, the 

crystal field Hamiltonian formed by the array of sub 
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elements can be written down explicitly. 	The eigen 

vectors and eigen values , and hence the energy separations 

can be obtained by diagonalising the stray. 



CHAPTER 5  

A REVIEW OF THE PREVIOUS WORM  ON RARE EAPTH IMPURITIES 

IN sImg AND COLD 

The low temperature electric mid magnetic properties 

of dilute alloys of transition metals in non magnetic 

host metals have received a great deal of experimental 

and theoretical investigation. 	The behaviour of such 

alloys in the low temperature region has frequently 

been interpreted in terms of indirect interaction 

between localised moments associated with solute atoms, 

via the polarisation induced by such moments in the 

conduction band. 	The situation 18, however, often 

complicated by the extended nature of the magnetic 

state of the solute atom, which arises from the inter-

action of the energy levels of the latter with the 

conduction band states. 	In this connection, the 

situation in dilute alloys of the rare earths in non 

magnetic hosts should be clearer, since they can 

be described either by narrow virtual states or by real 

bound states below the bottom of the conduction band. 

Such alloys had received practically no investigation 

until the recent results of Rider
64 showed that the 
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solubility of the rare earths in non magnetic hosts 

such as gold and silver was, in fact, not negligible* 

Measurements by Sugawara65  et al on the temperature 

dependence of the electrical resistivity of AgGd  alloys 

indicated a resistance minimum, followed by a maximum 

at lower temperatures. 	The temperatures at which 

these maxima occurred scaled almost linearly with 

temperature (roughly 7°K per atomic % Gd). 	These 

authors attributed such maxima to the onset of magnetic 

ordering, since the magnetic susceptibility of the 

same alloys exhibited a marked change in slope at the 

temperature of the maxima. 	In contrast with these 

results, a rather more careful investigation by 

Bijvoet et al66, in which the electrical resistivity 

in the range 1 to 4.2°K was measured, revealed no maxima 

for similar alloys. 	Within the temperature range 	of 

their experiments, these authors find that the electrical 

resistivity of a Ag-o.lAt% Gd alloy decreases slowly 

with decreasing temperature. 	A similar behaviour 

is observed in a Ag-o.3At% Gd alloy, with the slight 

modification of a gradually increasing slope of the 

resistivity curve as the temperature is decreased. 

This effect becomes more pronounced as the Gd 
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concentration is increased, and is a warked effect in 

a Ag-0.8At% Gd alloy at ,1.5°K. 

For the rare' earth impurity Ho, the same authors 

find an almost linear decrease in resistivity with 

detreasing temperature for alloys of Ag containing 

1.4 and 1.2At% Ho. 	However, for Ag containing 6.4 

0.3 and 0.15At.% Ho, a minimum in the resistivity 

temperature curve was found (there was, however, no 

maximum observed in these alloys above 1°K). 	The 

temperature at which these minima occurred increased 

with decreasing concentration, but as the measurements 

extend up to 4.2°K only, the temperature of the 

minima in the two more dilute alloys was not determined. 

From similar measurements, supplemented by magneto-

resistance investigations, Bijvoet concluded that 

tad in Ag acts as a non-magnetic impurity,while from the 

observed resistivity and solubility of Yb in the same 

solvent it was concluded that the valence state of 

this rare earth in Ag was two. 

Arajs and Dunmyre
67 have measured the electrical 

resistivity of Au containing 0.05, 0.23, 0.60, 0.88, 

1.17, 1.88 and 2.35 At.% Er. 	Their measurements 



covere4 the tempuInture range 1 to 20 f1/4., .11-td no 

anomalous behaviour W 	observed. 	Over the whole 

range of alloy compositions investigated it was found 

that(o
alloy"'PAu) at 4.2bK was linearE in r concentration, ''  

and had the value 6..41) ,cms./nt.% Er. 	This is quite 

close to the value of 6.1g),cms/at % Er quoted by 

Bijvoet for Er in Ag. 

Recent measurements in this laboratory68 on the 

electrical resistivity of led, Agr and Agile alloys 

essentially confirm Bijvoet's results. 	They also 

emphasize the need to avoid any transition metal 

contamination. 	These measurements extend to a much 

higher temperature than those of Bijvoet, and preli-

minary analysis indicates that (Palloy Ag) has a very 

marked temperature dependence. 

Bijvoet69  has also examined the magneto-resistance 

at 4.2 and 1.2°K, of Alca and AAHo alloys on which the 

electrical resistivity measurements were made. 	The 

results are reproduced in figure (5.1). 

The specific heat, C, of dilute alloys of Ag with 

the rare earths Nd, Gd, Tb, Dy, Ho and Er, has been 

measured below 4.20K by Zimmerman et al70. 	The 
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results on alloys containing Gd received the most 

detailed analysis. 	The alloys containing 0.3 and 

0.5At.% Gd showed a rapid increase of C/T below 

2°K, while the 0.1 At.% alloy exhibited a similar 

increase below 1 K. 	The experimental data on 

this last sample could be fitted reasonably well from 

4.2°K to 0.2°K by 

C = 0.9IT + 0.17T
3 

+ 1.55T
-1 	

5.1 

Estimating the magnetic entropy from this equation 

suggests that about a half of the impurity spins are 

ordered at 0.2°K. 	It is, perhaps, significant to 

note, in the light of estimates of rare earth 

solubilities in Ag made by Bijvoet, that these authors 

find, on fitting their results for the Ag-lAt.% Gd alloy, 

that the coefficient of the lattice term (T3) in 

this alloy differs significantly from that in the 

less concentrated alloys and in pure Ag. 

The results obtained by the same authors on a 

Ag-0.5At.% Ho alloy indicated, after subtracting the 

appreciable nuclear contribution71, that (C/T vs.T) 

plot had the same general nature as the AgGd alloys 

increasing rapidly below 3°K. 
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The observed behaviour of the remaining alloys was 

rather different from the above systems. 	Measuretents 

were made on Ag-0.1, 0.19 and 0.57 At.% ny, in each 

case C/T decreased smoothly Vith temperature and 

finally became flat below 2 K. 	The 0.19At.% by alloy 

was also examined between 0.2 and 0.8°K and clearly 

showed the effects of the hyperfine term; the curves 

in the two temperature regions investigated (0.2 to 

0.8, 1.5 to 4.2°K) do not, however, seem to join on to 

one another smoothly. 	Alloys of Ag containing 0.13At.% 

Nd, 0.5At.2 Er and 0.57At.% Tb, were also measured 

between 1.5 and 4.2°K. 	The (C/T vs.T) plot for the 

former decreased smoothly with temperature; the Er 

alloy turned up quite sharply below 2°K and also exhibi te0 

a slight hump around 3.2°K which, along with a more 

pronounced Bump around 2.2°K in the Tb alloy, the 

authors attribute to an oxide. 

Measurements of the specific heat of Ag containing 

0.41 and 0.69At.% Gd have been carried out by Pickett72 

The general form ofthe (C/T vs T) plots given by this 

author agree with those of Zimmerman, but show the 

opposite dependence on concentration. 
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The thermopower, S, of Ag and Au containing 

about 0.5At.% of rare earths has been measured at 

5.5°K by Gainon et a173. 	They find that the value 

of this parameter is displaced towards positive values 

on passing from Au to Ag (except in Yb). 	Apart from 

this, the variation across the whole rare earth series 

is similar in both hosts. 	The general tendency in 

S is negative for the light rare earths and positive 

fog: the heavier ones, with 'giant' values occvrring 

in Eu and Ce. 	The authors have suggested that this 

overall trend may reflect the change in sign of (g-l) 

on crossing the rare earth series since, as Kondo'4  

has pointed out, the sign of S is given by the sign of 

(g-l)JV, where J is the exchange integral and V the 

static perturbing potential. 

The same authors have also measured the magnezic 

susceptibility, between 4.2 and 3000K, of both Au and 

Ag containing Eu and Yb. 	Their results, in nIzreemeat 

with the data included in this thesis which was obtainee 

prior to their publication, confirm the conclusions 

of Bijvoet that Yb is divalent in Ag (but trivalent 

in Au), and also indicate that Eu is divalent iu botn 
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hosts. 	The reciprocal susceptibility versus temperature 

for AuYb, AgEu and AuEu showed deviations from Curi 

Weiss behaviour around 40°K, while the extrapolated 

high temperature line in the last two alloyshad a 

positive intercept on the temperature axis. 	The 

authors claimed that a more careful examination 

indicated a ferromagnetic Curie temperature of around 

7°K for these alloys, and measurements of S above these 

Curie temperatures revealed no significant decrease 

in this quantity. 	This, the authors claim, implies 

that theories which rely on the existence of polariT 

--nation of the impurity spins in order to explain 

giant thermopowers
75 

cannot be retained. 

Recent measurements76 at 4.2°K, of the thermo—

powers of Ag containing the heavier rare earths as 

impurities are in general agreement with those of 

Gainon. 

As originally indicated, alloys of the above type 

have been subjected to a relatively small amcuut of 

investigation. 	However, even at this stage, the 

experimental results seem to possess many inconsis—

tencies, indeed in several cases where different 

authors have investigated the same properties, the 



results are in total disagreement. 	As vi1l be 

demonstrated in Chapter 8, much confusion can, and has, 

arisen from inferior alloy preparation. 	This 

chapter also contains a more detailed discussion of 

the results presented above. 
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CHAPTER 6.  

EXPERIMENTAL DETAILS, INCLUDING THE SERVO MECUANISN 

1. 	General 

The force (in the z direction) exerted on a magnetic-

ally isotropic sample placed in an inhomogeneous magnetic 

field can, under certain approximations (Appendix 3) be 

written:- 

F2  = Mx•13 x/ 

and holds whatever dependence the magnetisation M might 

have on the applied field H. 	When the magnetisation is 

proportional to the applied field then equation (6.1) 

becomes, in the usual notation:- 

Fz  = mX• x•a Rx/a z 	6.2 
 

These equations form the basis for the measurements 

carried out in the present investigation, since they imply 

that the susceptibility per unit mass can be evaluated 

by measuring the force on a sample of known mass, when 

the latter is placed in a magnetic field of known 

6.1 

a 	112  VG 

a z [ 
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2. 	The ma&netic balance  

Although this has beer described in some detail 

elsewhere77, it is worth while, in view of later discus-

sion, to describe briefly its mode of operation. 

The balance consists of a helical elinvar spring 

suspended from it's upper end, as indicated in figure 

(6.1). 	The loaded arms, indicated in this figure, at 

the bottom of the spiral, serve to increase its 

rotational period so that it becomes very different 

from its Vertical vibrational period. 	Consequently 

the system acts as a mechanical noise integrator. 	A 

small scale pan is attached beneath these erns, and a 

small coil hangs from the underOide of the pan. 	This 

coil is situated in the radial field of a loudspeaker 

magnet. 	As figure (6.1) indicates, a long quartz rod 

hangs beneath this coil, the specimen being attached to 

the lower end of this rod by means of the arrangement 

shown in figure (6.2). 

The application of an inhomogeneous magnetic 

field to the sample produces a (time) steady force, 

which extends or compresses the spring, depending on 

the magnetic nature of the sample. 	Such a time steady 

extension causes the bottom of the spiral to rotate, 
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and a light beam incident. on a galvanometer mirror 

located at the bottom of the spiral, to be deflected. 

This deflection is detected by observing the changing 

output from a differential selenium photocell, on which 

the light beam shines. 	The system is null detecting 

since the specimen can be restored to its initial position 

by passing a current through the restoring coil until the 

photocell output returns to its original value. The 

magnitude of this restoring current gives a -measure of 

the extra force exerted on the sample by the applied 

field. 	The system is calibrated by using a known load 

(a Pt. rider of 105.48 mgms.). 

The loudspeaker magnet, which surrounds the restoring 

coil, rests on a brass plate, the link to the quartz 

rod passing through a hole in the centre of this plate. 

The upper section of the system is housed in a glass 

bell jar which rests on a '0' ring seated in a groove 

in the brass plate, while the lower part of the system 

is surrounded by a German silver tube attached to the 

underside of the plate and ending in the copper cone 

arrangement indicated in figure (6.1). 	This provides 

access to the lower end of the quartz rod and specimen. 

The cone joint is sealed with Edward's high vacuum grease, 
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and remains leak tight below the h -point of helium. 

Such an arrangement enables the whole system to be 

evacuated and provides reasonably quick access to the 

specimen. 	It is accomplished in a very compact 

:canner, an important consideration since the region 

surrounding the specimen must pass into a magnet pole 

gap of 31 rams. 

3. 	Temperature measurement  

With the type of experimental arrangement described 

above, it is not possible to measure the specimen 

temperature directly since this would involve attaching 

sensors directly to the suspension, drastically reducing 

its sensitivity. 	Instead, the temperature of the cop)er 

cap is measured, thespecimen being maintained in 

thermal contact with this by admitting a m.m. of helium 

exchange gas into the region surrounding the specimen. 

In the range 1.9 to 30°K the temperature of the cap 

is measured by a 39 ohm (nominal) Allen-Bradley resistor. 

From 20°K to room temperature a Ag normal versus At" 

2% Co thermocouple is used, the 10°  overlap providing 

valuable check on the calibration of both sensors. 

The arrangement of thermocouple and carbon resistor 

relative to the sample is indicated in figure (6.1). 
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Two 40 gauge insulated copper wires are soldered across 

the resistor, one of these and one lead of the resistor 

are soldered directly to the base ofthe copper cap. 

The two 40 gauge wires were wrapped a few times around 

the cap and bound to it with G.E. varnish. 	They were 

then loosely coiled around the German silver tube (to 

reduce temperature gradients) and emerge from the cryciotat 

via an Araldite seal. 	The varying resistance of this 

sensor is observed using the circuit indicated in 

figure (6.3). 

The two thermocouple leads were joined in a small 

mound of solder on the lip of the cone joint. 	They were 

then wrapped several times around the base of the German 

silver tube, being electrically insulated from it and 

from each other by thin layers of condenser paper bound 

in G.E. varnish. 	The wires then passed into systoflex 

tubes loosely wrapped around the down tube, leaving the 

top of the cryostat via the Araldite seal. 	This seal 

aloo carried 40 gauge insulated copper leads to two 

ar-pth gauges which monitored the heliuA level, this being 

concealed within a brass nitrogen dewar and a silvered 

glass helium dewar. 	These gauges were soldered directly 

to the German silver tube at suitable intervals, the 
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tube being used as a return path for both. 	Ordinary 

39 ohm (nominal) carbon resistors were used as gauges. 

They were wrapped in cotton wool held around them with 

masking tape, this arrangement resulted in a relatively 

large change in the observed resistance as the gauges 

passed below the helium level. 	The changing resistance 

was observed using the simple wheatstone bridge arrangement 

drawn in figure (6.4). 

4. 	Calibrations  

(a) Magnet 

The required inhomogeneous magnetic field was 

produced by a Newport Type A magnet fitted with conical 

pole tips, having a 31 m.m.. pole gap. 	The energizing 

current for the magnet was produced by a Uarehaft 1 'C.V. 

power supply, controlled externally with the circuit 

indicated in Appendix 4. 	This current was r ad on a 

Crompton-Parkinson moving coil meter which was examined 

for reproducibility at regular intervals. 

Equations (6.1) and (6.2) imply that the quantities 

al; /a z  and  Exx/az must be known so that the magnetisation x  
and susceptibility can be calculated from the force 

acting on the sample. 	These quantities can be evaluated 

by measuring Ex  and Exalliaz. 
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The variation of the magnetic field perpendicular 

to the plane of the pole faces, H,, along the vertical 

(z) direction, was investigated using a flip coil and 

flux meter. 	A correction was employed for the finite 

size of the flip coil (Appendix 5). 	These measurements 

indicated that this variation followed an almost universal 

curve for all values of the energizing current up to the 

maximum used, 6.5 amps. 	Rather than calibrate the flux 

meter so that the absolute field value could be determined, 

the central field was measured, as a function of 

magnet current, with a Rail probe of small cross sectional 

area ( 6m.m. square). 	The variation in field across the 

probe being about 0.3%. 	Combining these two sets 

of results enabled H
x
(z) to be tabulated as a function 

of magnet current. 

A rough estimate of H x  au x z /a could be made from the 

above results. 	However, a more careful study of this 

quantity, in the region of the estimated maximum, was 

mere using a Pd sample of known susceptibility (5.23 x 

10-6 e.m.u./gm at 2'55
n 
K
78 

 ). 	The results indicated that 

the position of this maximum did not alter on changing 

the magnet current. 	The calibration of HxaHxaz at the 

maximum, as a function of energizing current, was done 
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with both Pd and Ta ( X= 0.849x 10-6e.m.u/gm at 295°K)79, 

the two sets of results were in very good agreement. 

(b) Temperature  

The carbon resistor was calibrated by measuring 

its resistance as a function of helium vapour pressure 

below 4.2°K, the temperature was obtained using standard 

tables80. 	Thirty such points were taken between 1.9 

and 4.2°K, and fitted by the method of least squares to 

the equation81  : 

log R 	K(log R)-1  = BT + A 	 6.3 

Measurements of the resistance at 77 and 293°K were also 

included in the fit. 

The thermocouple was normally used with one junction 

at ice point. 	It was calibrated simply by comparing the 

measured output at 4.2 and 77°K with those tabulated by 

Powell 	and employing a linear interpolation on the 

difference. 	This procedure was sufficiently accurate 

in this context since the arrangement of temperature 

sensors relative to the sample made it meaningless to 

measure the temperature to better than 0.5°K during 

warm up above 4.2°K. 	Measurements taken during warm 

up indicated that carbon resistor and thermocouple agree 

to within 0.
5o 

in the region of overlap (20 to 30°K). 



This, coupled with the agreement obtained between the 

tabulated
83 

and 'measured•  melting point of isopentane 
0 

(1131), encouraged confidence in both calibrations, 

5. Experimental procedure  

The force exerted on the quartz rod and elinvar 

spiral by the magnetic field made it necessary to perform 

two sets of measurements to obtain the force on the sample, 

i.e. one set on the sample and system, the other with 

the sample removed. 

Before each complete set, the end of the quartz rod 

and the bucket were cleaned in dilute 11C1, washed in 

distilled water, immersed for a short time in CC14 and 

finally allowed to dry. 	The specimen, usually in the 

form of a cylinder of diameter 2.5 mans, and a few mms 

long, was placed in the bucket and attached to the 

quartz rod. 	Following this the position of the damping 

discs relative to the button magnets was adjusted for 

maximum damping. 	The magnet was then wheeled into 

position, and its height arranged, using adjustable 

screws under the magnet bed, so that the centre of the 

specimen lay at the position of maximum Ex Ex/ z. 	This  

position was checked with a travelling microscope, 
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which ,:~ ors also uses to check•: thot the specimen lay 

eqtddistant from either pole face. 	The cone joint was 

then sealed with E'Lluer-rfefs high vacuum grease, and the 

system evacuated. 

After several hours pumping 1mm of helium exchange 

gas was admitted. 	Following this, the response of the 

system to a small restoring force indicated whether it 

was swinging freely, while the cone joint could be leak 

tested by surrounding it with liquid nitrogen. Any leak 

significantly increased the noise level. 	Provided both 

tests were satisfactory, the dewars were fitted around 

the down tube in such a position that the balance remained 

unhampered and the dewar tail passed freely into the 

magnet pole gap. 	Some adjustment was initially required 

to satisfy both conditions, but once establi.shed, the 

dewar locating device described in reference C4 ensured 

that subsequent dewar fittings could be accomplished with 

minimum efforts 

The inherent drift in a system of this type meant 

that zero photocell output usually necessitated a finite 

restoring current. 	The latter was measured by recording 

the voltage it produced across some suitable resistor 

using a two dial Tinsley potentiometer. 	The series of 
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obser•vations,required td evaluate the force exerted by 

the field on the sample,followed the patte..:n: 

(1) 	Measurement of zero field restoring voltage. 

(ii) Measurement of some finite field restoring 

voltage. 

(iii) Estimating the zero field drift by noting the 

'final,' photocell output. 

The actual force was obtained by correcting (i) 

for (iii), provided (iii) was not too large, and 

subtracting the result from (ii). 	Calibration of the 

system was achieved in the manner indicated previously. 

In this way the force on the sample at room temperature 

was measured at nine field values. 	The inner space of 

the helium dewar was then filled with an atmosphere of 

exchange gas, and the interspace of the same dewar 

evacuated by an oil diffusion pump backed by a spring-

mounted rotary pump, and connected to the ddwar by some 

15" of PVC tubing, 	This arrangement allowed continuous 

pumping, yet produced no significant increase in tack- 

ground noise. 	Liquid nitrogen was then poured into 

the outer dewar. 	The temperature of the specimen was 

lowered in 100  intervals by monitoring the interspace 

vacuum using a valve at the head of the pump. 	At each 



103. 

temperature the force on the sample at a suitable field 

was measured, the temperature being estimated from the 

thermocouple voltage measured en a portable Tinsley 

potentiometer. 	In this way the temperature was lowered 

to 77oK, when once again the specimen force was measured 

at nine field values. 

Liquid helium was then transferred intothe inner 

dewar, and when this had settled the force,as a function 

of field, was measured* 	Temperatures below 4.2°K 

were produced by pumping on the helium bath. 	It was 

found that stable temperatures could be produced simply 

by controlling the pumping rate with a needle valve, 

while at each temperature the specimen force was measured 

at a suitable field value. 	In this manner temperatures 

down to 1.9°K could be attained. 	At the lowest 

temperature the force was once again measured as a 

function of field. 

Temperatures in the range 4.2 to 77°K were obtained 

by allowing the system to warm up naturally. 	The force 

was measured at a single field value in this range. 

The rate of warm up in this region (1°  per minute) 

was somewhat improved by continually pumping the helium 

dewar interspace (1°  in 90 seconds). 



Measurements on the empty system were carried out 

Hovever, it wris usually in an analogous manner. 

necessary, on removing the sample, to readjust the system 

so that the quartz rod remained it the same position 

in the applied field. 

6. 	Errors in measurement 

Under ideal conditions the balance can resolve 

2 x 10-3 dynes, however background noise and zero field 

drift tend to reduce this figure. 	Above 77°K the 

experimental arrangement allows temperatures to be 

maintained at a reasonably constant value, consequently 

the zero field drifts are small. 	The sensitivity 

limitation is then the background noise which is 

typically 10-2  dynes. 	Below 77°K zero field drift tends 

to reduce this figure typically to about 5 x 10-2  dynes. 

The errors arising from such sources can be reduced 

by using samples of such a size that theforce exerted 

on them by the field is several orders of magnitude 

larger than the figures quoted above. 	However in 

many cases the (T)
-1 dependence of the susceptibility 

meant that large specimen forces (50 to 100 dynes) 

in the liquid helium range were considerably reduced on 



110, 

warming up to liquid nitrogen temperatures. 	Consequently 

where possible, samples used below 77°K were replaced by 

larger ones for higher temperature measurements. 

As mentioned previously, the arrangement of carbon 

resistor and thermocouple make it meaningless to measure 

the temperature to better than 0.5°K during warm up. 

Below 4.2°K however, this is not the case. 	Provided 

sufficient time is allowed for the temperature to 

stabilise (typically 5 minutes), the accuracy of the 

temperature measurement is better than 0.02°K. 	One 

disadvantage of the present arrangement is that the 

balance does not distinguish between a 'direct pull' 

ar.1 a couple. 	Consequently errors in measuring the 

sample force could arise from sample misaliahment. 

These, however, have been roughly estimated (Appendix 6) 

and are typically less than 0.5% of the vertical sample 

force. 

7. A  servo—mechanism for the balance  

As indicated previously,the warm up rate between 

4.2 and 77°K (1°  in 90 seconds) is such, compared with 

the time taken to make a single measurement (45 seconds 

for the actual balancing, 2 minutes after all readings 

hPv.; been taken), that in this temperature range readings 



cau be taken at one field value only,and in addition 

must be taken continuously to obtain a reasonable number 

of experimental points* 

An attempt has been made to improve on this situation 

by making the balance servo-restoring. 	At the outset it 

was realised that any automated arrangement could not 

simultaneously be null detecting system since, having 

initially set the_photocell output and the restoring 

current to zero, the application of a magnetic field to 

the sample requires an additional restoring force for 

null detection. 	The initial conditions however, imply 

that an additional force requires an out of balance 

signal for its production. 	Such an out of balance 

signal can be made quite small provided sufficient 

amplification is used. 	Automation can be accomplished 

by feeding the restoring coil with a suitably amplified 

photocell output. 	This suggests a doc, amplifying 

system, but in order to overcome the drift problems 

inherent in such an arrangement, it was decided to convert 

the photocell output from d.c. to a.c. before amplification, 

reversing the process before feeding the final signal 

into the restoring coil. 
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Several methods of conversion were tried, including 

mechanically chopping the light beam with a fan, but 

the most suitable system was found to be the electronic 

chopper-amplifier drawn in figure (6.6). 	Basically 

the circuit oonsist3 of a apir of transistors which 

consititute a balanced chopper. 	The chopping action is 

produced by driving these transistors alternatively on 

and off by applying square waves from a multivibrator to 

their bases; these square waves are 1800 out of phase. 

In this way the input signal, fed into one of the 

transistors, is sampled at the chopping frequency 

(1.7 Kc/s). 	The chopper is condenser coupled to an 

amplifying section, from which the signal is synchronously 

detected, giving an output in phase with the input. 

The smoothing action of the resistor-capacitor 

arrangement in the detector ensures a reproduction of 

the now amplified input signal. 	The output from this 

system is adjusted to zero, for zero input, using the 

variable resistor in the chopper circuit, while thermally 

anchoring the chopper transistors helped maintain this 

condition by reducing zero drifts to typically 2Mv/°C. 

The output from the chopper-amplifier was fed into another 

amolinOtctib4ia a zero set circuit, and finally into 
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a White follower-figure (6.). 	The signal from this 

passes directly into the restoring coil via a variable 

protective resistor. 

While the button magnets and copper discs introduce 

sufficient damping when using manual restoration, it has 

been found necessary to provide a greater degree of 

stabilisation for use with the servo mechanism. 	In tile 

automated condition, relatively rapid damping can be 

obtained using a velocity damping technique in which 

the restoring coil is provided with a signal proportional 

to the rate of change of the actual servo-restoring signal. 

Paradoxically,some difficulty arose from that property 

of the balance which makes it so attractivefor use in the 

?resent context, i.e. mechanical decoupling of the 

vibrational and rotational modes. 	Both specimen and 

restoring forces act in a vertical direction, but manifest 

themselves via a rotation in the torsional mode. 	Any 

velocity signal should be fed back into the system at the 

point at which it is appropriate, however, this was 

i:Jtially found to be rather difficult to accomplish 

owing to the attenuation that exists between the two 

operative modes. 	This difficulty has been partly 

overcome by using a differentiating circuit which 
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incorporates a transitional phase amplifier which was 

used to optimise the phase lead of the velocity signal in 

the appropriate frequency region. 	This circuit is 

drawn in figure (6.8). 	The signal from this circuit 

eas fed into the coil via a series protecting resistor, 

the toil being shunted by a 13500pFd condenser which 

offered an easy ground path for relatively high 

frequency signals which would otherwise have set the 

balance into vertical vibration. 	The smoothing action 

of this condenser coupled with the coil series resistors 

enabled the feedback voltage to be read directly on a 

°Digitec t  voltmeter connected across these series 

resistors. 

S. 	Servomechanism performance  

During operation, it has been found that the servo-

restoring current, for a given mechanical load, can be 

raised to some 92 or 93% of the restoring current 

necessary to maintain a null condition. 	Increasing the 

servo gain beyond this figure induces a strong tendency 

for the system to oscillate. 	The servo-system can be 

calibrated by comparing its output (i.e. the feedback 

voltage across a suitable resistor in series with the 

restoring coil) with that obtained using manual restoration. 
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These calibrations were carried out at nine different 

field values at various fixed temperatures (l.9, 4.2, 

77 and 295°K). 	A linear interpolation between 

differing fixed point calibrations was used, these 

differences being typically 1 to 2Z. 	In addition to 

the normal zero field drift in the balance, which was 

reflected in the changing zero field servo-restoring 

output, there also existed a background noise of 

typically 4. .05 dyne. 	This is due to imperfect 

stabilisation of the system and is a manifestation of 

the attenuation mentioned previously. 

A comparison of the results obtained for a Pd sample 

using manual and servo-restoration is made in figure 

(6.1)). 
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CHAPTER 7 

PRESENTATION OF EXPERIMENTAL RESULTS  

The results for each specimen will be presented 

as Magnetisation versus Field plots at four fixed 

temperatures, together with a single field inverse 

susceptibility versus temperature plot. 	The history 

of the sample, and, where applicable, the metallographic 

analysis on the sample will be presented. 

The alloy susceptibility was 'corrected' for that 

of the host 'using the data in Reference 86, 

The source of each alloy is indicated. 

General: 

Many of the alloys were obtained in button form. 

These were machined into cylinders of diameter 2.5mm, 

from which a suitable length specimen was cut using a 

fine toothed hacksaw. 	Any burring of the edges of this 

specimen was removed with a small file. 	The specimens 

were etched for an hour in a solution of 1:2 iiC111,0 

to remove any iron contamination of the surface, and 

finally washed in distilled water. 

'The microstructure of the dilute Aa rare earth 

alloys was examined by etching then in a solution of 



121. 

approximately 2:2:5, H20:11202:NH4OH. 	Photographs of 

this structure were taken with equipment loaned by 

the Department of Metallurgy. 

Ag - O.8At%Gd (Bijvoet, Amsterdam) 

The alloy was cast forged and then annealed. 

Examination of its microstructure revealed a recrystal-

lised, fairly fine grained f.c.c. solid solution, with 

some twinning and quite large amounts of second phase 

in the grain boundaries (and possibly in the body of 

the grains) - figure (7:1p). 

Figures (7:1) to (7:4) summarise the experimental 

results. 

Ag 	0.45At.%Gd (Bijvoet, Amsterdam) 

This sample was cast, forged and then annealed. 

Metallographic analysis - figure (7:2p) - revealed a 

very similar microstructure to the more concentrated 

alloy, but with much less second phase. 	The experimental 

results appear in figures (7:5) to (7:8). 

Ag W 0.1At.7Gd (Bijvoet, Amsterdam)  

This alloy was cast, forged and then annealed at 

650°C, and as figure (7.3p) indicates, formed a well 

crystallised single phase f.c.c. solid solution with 

much twinning. 
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The experimental data taken on this alloy is repro- 

duced in figures (7.9) to 7.12). 	No measurements 

above 77°K were taken since the susceptibility difference 

between alloy and pure host decreases very rapidly 

with increasing temperature, reflecting the small 

concentration of rare-earth impurity. 

Ag3Gd(Harris, Birmingham) 

A small lump, suitable for susceptibility measure-

ments,weighing about 5 milligms, was broken off a 

rather brittle original sample. 	This was etched for 

about 30 seconds in a 1:5 solution of HC1:1120' and the.t 

washed in distilled water. 

Figures (7.13) to (7.15) summarise the experimental 

data. 
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- 0.55At.ZTb (Johnson Matthey & Co.) 

This sample had originally been homogenised for 

24 hours at 420°C. 	Metgllographic analysis revealed 

dendritic structure with interdendritic second phase. 

The sample was reannealed for 5 hours at 700°C and 

quenched, this, however, produced little change in the 

microstructure. 	Consequently the sample was cold rolled 

prior to another reanneal, this time for 5 hours at 

750°C, and again quenched. 	Metallographic analysis 

indicated, figure (7.4p), recrystallisation into a fine 

grained, single phase f.c.c. solid solution. 

The experimental data appears in figures (7.16) to 

(7.19). 
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Ag - 0.86At.ny (Bijvoet, Amsterdam) 

This sample was cast, forged and annealed, and 

constituted a single phase, recrystallised solid solution. 

The "crow's foot" structure at grain boundary intersections, 

figure (7.5p), indicates some incipient melting in these 

regions during annealing. 	Figures (7.20) to (7.23) 

summarise the measurements on this system. 

Ag 	0.51At.ny (Bijvoet, Amsterdam)  

This alloy had been subjected to the same treatment 

during manufacture as the more concentrated alloy from 

the same source. 	The button supplied was rather small 

and had to be cold worked into a suitably shaped 

susceptibility sample. 	Consequently the sample was 

given a strain releaving annealat 700°C for 15 minutes, 

from which it was quenched. 	The surface of this 

annealed specimen was cleaned in a 1:1 solution of 

H20:HNO3 before etching in the usual manner. 

Owing to the lack of material, this sample could 

not be microanalysed. 	However, similar conditions 

of manufacture, combined with the similarity between 

the results obtained for this alloy and the more 

concentrated sample, suggests that confidence can be 

placed in the results, summarised in figures (7.24) 
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Ag 	0.35At.% Ho (Bijvoet, Amsterdam) 

The original sample was rather small, and had to 

be cold worked into a suitably shaped specimen. 	The 

final specimen was given a 20 minute strain releaving 

anneal at 300°C. 

Lack of material prevented microstructure analysis 

from being carried out, but the ekperimental results, 

figures (7.28) to (7.32) have the same general character 

as those reported for the less concentrated alloy. 

A§ - 0.25At.% Ho (Johnson Matthey and Co.) 

This alloy was provided in button form, having been 

homogenised at 550°C for 24 hours. 

Examination of the microstructure - figure (7.6p) 

indicated a single phase, fairly large grained f.c.c. 

solid solution with some cored character, suggesting 

possible concentration gradients in the sample. 

The experimental data is reproduced in figures 

(7.32) to (7.35). 
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Ag 	0.28At.% Er (Johnson Matthey & Co.) 

The susceptibility sample was obtained from an 

arc melted button which had been homogenised at 650°C. 

Metallographic analysis revealed large columnor crystals, 

with no evidence of recrystallisation or twinning, 

figure (7.7p). 	The experimental data appears in 

figures (7.36) to (7.39). 

Ag 	1.0At.7. Er (Johnson Matthey and Co.) 

This alloy was manufactured in the same way as 

the more dilute sample, and as figure (7.8p) shows, 

had a similar microstructure. 

As figures (7.40) to (7.43) indicate, the 

experimental results have the same general character 

as those for the more dilute sample. 
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Ag 	0.5At.% Tm  (Johnson Matthey and Co.) 

The sample provided was in the form of an arc 

melted button which had been homogenised for 24 hours 

at 420°C. 	Metallographic analysis revealed a cored 

structure indicating possible concentration gradients. 

The sample was consequently cold rolled, reanner,led 

for 5 hours at 650-C and finally quenched into iced 

water. 	As figure. (7.9p) shows, this produced a 

recrystallised, fine grained, f.c.c. solid solution with 

much twinning. 

The experimental data appears in figures (7.44) 

to (7.47). 

Fig. (7.9p) 
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Ag 	0.5At.% Yb (Johnson Matthey and  Co.) 

The susceptibility sample was machined from an 

arc cast button which had been homogenised at 550°C for 

2 nays. 

Examination of the microstructure showed large 

columnar or grains of dendritic character, with small 

amouLts of interdendritic second phase, see figure 

(7.10p). 

Figures (7.48) to (7.50) reproduce the experimeLtal 

data. 
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None-  of the dilute gold rare-eaIth alloys were 

subjected' to Metallographic analysis since the rare-

earth solubilities in gold are almost double those for 

the corresponding silver alloys. 	(See, for example 

Rider64.) 

Au - 1.0At.% Er (Harris, Birmingham) 

The susceptibility sample was machined from a 

button of this alloy which had been homogenised for one 

tee's at 900°C. 	The experimental data appears in 

figures (7.51) to (7.!4). 
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Au — 0.3At.% Tm (Harwell) 

This alloy was supplied in the form of an arc 

melted button, which had not been homogenised. 	The 

button was cold coiled before homogenising for 30 

hours at 675°C, quenching the sample into iced water. 

A sample suitable for susceptibility measurements 

was made in the usual manner. 

Figures (7.55) to (7.58) reproduced the 

experimental data. 
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Au - 0.5At.% Yb  

The specimen was obtained from an arc melted 

button which had been forged and then annealed at 

800°C for several days. 	The specimen was given a 

strain releaving anneal at 450°C for 20 minutes. 

Figures (7.59) to 0.62) summarise the experimental 

data. 
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CHAPTER 8 

DISCUSSION OF THE EXPERIMENTAL RESULTS  

S-State impurities; The AzGd system 

Typical theoretical eetiraatee give the ground 

state splitting in Gd, due to configurational mixing, 

as 0.1oK,87 a figure which has been shown to be of the 

right order of magnitude at least by the experimental 

data on gadolinium ethyl sulphate88. 	It would seem 

reasonable to assume that this figure is not significantly 

changed for Gd in a Ag host, but the experimental data 

already presented for the Ag-0.8 and 0.45At.7 Gd alloys 

seems to refute this idea. 	The inverse susceptibility 

versus temperature curves for these alloys show 

deviations fromCurie-Weiss behaviour at temperatures 

which are at least an order of magnitude larger than 

expected. 	Metallographic analysis reveals that this 

anomalous behaviour can be attributed to the effects of 

an intermetallic second phase compound in these alloys. 

For simplicity, if this compound is assumed not to 

contribute to the observed low temperature susceptibility 

of the alloy, then its susceptibility-temperature 

variation can easily be obtained - figure (8.1). 
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rrom this the estimated transition temperature of the 

compound is 36°K. 

An examination of the (Ag-Cd) phase diagram"  

suggests that this intermetallit compound is likely to 

be Ag3Cd. 	Consequently the temperature variation of 

the susceptibility .of this compound was measured and, 

as figure (7.13) indicates, it is a typical metallic 

antiferromngnet with a transition temperature of 36°K. 

This figure has been confirmed by e.p.r. measurements. 

The presence of a similar intermetallic compound could 

certainly explain the anomalous temperature dependence 

of the susceptibility of dilute AgEu and AuEu, in which 

the rate-earth impurity is divalent (S-state ion). 

The published( % vs. T) plots of Gainon for these 

systems bear a close --reaeMbl:ence to those presented here 

for the Ag-0.8At.%. Cd alloy, including an - extrapolated 

high temperature line which. h35 a positive intercept 

L'emDerature axis. 	The effect of such a 

compound on (H/(r.vts. 	plots has nec been investigated, 

but its presence woulds.00m.:to throw doubt on the other-

wise nnomalously - highCurie.•remperature observed by 

these authors, and from this pint o-f view, would 

comsequent7.y modify some -pl,thail. conclusions. 	In 
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addition to the work of Gainon, it would seem reasonable 

to explain the unucual concentretioe dependence of 

Pickett's specific heat data on metallurgical grounds. 

Metallography carried out on the Ag-0.12At.% Gd 

alloy did not reveal any second phase. 	This alloy has 

a well behaved (l/x vs.T) variation, except for the 

rather large '0' value (-2 + 0.50K), 	Of course, the 

relatively snail susceptibility of this sample coupled 

with the accuracy of the temperature measurements, 

discussed previously, makes such an extrapolation rather 

inaccurate. 	Susceptibility measurements on the S-state 

ion Mn, in Cu90 indicate that the intercept on the 

temperature axis of the extrapolated high temperature 

data is between +5 and + 10°K/At.% Mn. 	Specific heat 

measurements on the same system91'92  indicate that 

(,6C/T vs.T) curves have peaks occurring at about 10°K/ 

At.% Mn, in good agreement with the susceptibility data. 

Using the appropriate expressions for the interaction 

energy (Chapter III) in the Ag Gd and Cu Mn systems, 

suggests that similar peaks in (OCPI vs.T) should occur 

in the former at about 1°K/At.% Gd. 	This figure is, 

of course, just an estimate since the equations used to 

obtain it represent a rather extreme approach, the figure 
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is however in good agreement with the published specific 

heat curves of Zimmerman et al for the Ag Gd system. 

The general character of the (M-11) plots in AgGd 

is similar to that observed for CuMn93 	The high 

field non-linearity is consistent with Brillouin function 

curvature, while the curved low field region indicates 

interaction effects, although a quantitative approach 

to these in such systems is still lacking. 

Non S-state impurities  

Introduction  

As already mentioned in Chapter 5, the picture 

of a dilute alloy in which the impurity states closely 

resemble those of the free solute ion, is likely to be 

applicable to the case of rare-earth solutes in noble 

metal hosts. 	It is well known that spin-orbit coupling 

is strong in the rare-earths, consequently in the 

dilute, well isolated limit, the ground state of the 

solute will be characterised by a well defined total 

angular momentum (Ji). 	The (2J+1) fold degeneracy in 

zero magnetic field associated with the ground state 

will, however, be partially lifted by the cubic crystal 

field of the host. 	Indeed, the susceptibilities of 

these alloys, as previously presented, can, in some cases, 
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be understood directly in terms of the arrangement and 

residual degeneracies of these crystal field split 

levels. 	Typically in Au Yb, the well isolated r7  

ground state (already identified by e.p.r.94) clearly 

dominates the observed low temperature susceptibility 

while in Ag Tm the presence of a well isolated 	r2 

non-magnetic singlet ground state is seen to have a 

dramatic effect. 	In alloys containing most of the 

other heavier rare-earths however, the existence of 

Curie-Weiss behaviour does not facilitate a straight-

forward analysis in the above manner. 

At the lowest temperature it is expected that the 

above picture will be complicated by inter-impurity 

effects arising from indirect spin-spin coupling via 

the conduction electrons. 	This idea is strongly 

supported by the low field non-linear character of the 

(M-H) plots presented in the previous chapter. 	Such 

effects are enhanced by increasing rare-earth concen-

tration, which produces additional impurity - impurity 

effects via mutual distortion of the crystal field by 

neighbouring rare-earth impurities. 	As previously 

emphasized, quantitative estimates of the effects of 

the former are still lacking, in addition a precise 
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treatment of local distortions of the crystal field in 

a random alloy would be difficult. 	Qualitatively 

however, it seems reasonable to assume that both would 

tend to average out the effect of the crystal field. 

Fitting the experimental data  

Chapter 4 of this thesis concentrated on demonstra-

ting the manner in which the Hamiltonian matrix for 

rare-earth ions in a cubic crystal field was obtained. 

In that chapter the approach was confined to a single 

manifold of constant J. 	This seems a reasonable 

assumption for the heavier rare earths at least, in 

view of optical data95 which indicates that different 

constant J manifolds are well separated (about 10,000°K). 

When values of the coefficients (C4,C6) (see Appendix 

2) have been specified, the Hamiltonian can be written 

down explicitly. 	The effect of an externally applied 

magnetic field can be taken into account simply by 

adding diagonal Zeeman elements to this matrix. 	A 

modified library sub-routine (for an I.B.M.7090 computer) 

has been used to diagonalise this Hamiltonian and find 

its eigenvalues and eigenvectors. 	Using the latter it 

is quite straightforward to evaluate the susceptibility 

at any temperature using equation (1.9). 
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For A crystalline field produced by an array of point 

charges located 'outside' the rarc-earth ion, C
4 and 

4 C6 would be proportional to <r > and <rc , the mean 

fourth and sixth powers of the radii of the magnetic (40 

electrons
96
. 	These coefficients would thus depend on 

the detailed nature of the wave-function of the magnetic 

ion, and, to the extent that the 4f wave-functions are 

the same, would be the same for all the rare-earths as 

impurities. 	In a metal, however, the potential to 

which such electrons are subjected is almost certainly 

not purely electrostatic in origin, and on this basis 

the above conclusions would seem invalid, though to 

assume that the signs of C4  and C6 remain the same for 

all the rare-earths as impurities in a given host seems 

reasonable. 	If, in addition, the sign of these 

coefficients is assumed to be the same in both Ag and 

Au hosts, then the e.p.r. identification of the r7  

doublet ground state in Er and Yb requires that C4  

be positive and C6  negative. 	These are, incidentally, 

the signs predicted by a simple point-charge model. 

Initial computations sweeping over a wide range of 

the coefficients (C4,C6) have shown that the calculated 

susceptibilities in cubic symmetry are generally much 
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much more Curie-Weiss like than those calculated for 

a magnetic rare-earth ion in an environment of lower 

symmetry97  . 	This means that for cubic symmetry the 

absence of strong deviations from Curie-Weiss behaviour 

does not necessarily indicate that the crystal field 

splitting is small. 	Of course, in such circumstances 

the calculated susceptibility is rather insensitive 

to changes in the overall splitting, consequently 

alloys which exhibit a Curie-Weiss temperature dependence 

of the susceptibility are not very useful for accurate 

determinations of (C4, C6). 

With this in mind an attempt has been made to 

fit the experimental data for the dilute Ag-tare earth 

alloy system starting with AgEr, since the temperature 

variation of the susceptibility of this alloy has rather 

more 'character'. 	E.P.R. has been observed at low 

temperatures in a powder sample of this alloy at 

g = 6.73 	0.194, which corresponds to a g value of 

6.80 expected for the 1'7  eigenstate of Er++4.  in a cubic 

crystal field. 	That this observation identifies the 

doublet as the ground state follows from the fact that 

the other possibility for the ground state, the r6 

eigenstate, has non-vanishing matrix elements of the 
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. stepping operator („Tx 	iJv)98  , and an expected g 

value, in cubic symmetry, of 6.00. 	Indeed the fact 

that only the r7  resonance was observed up to 20°K 

(when the line became too broad for accurate- observation) 

suggests that this state is well isolated, although 

with line widths of about 100 Oe it is perhaps 

unreasonable to assume that a resonance would be 

observed if the r6  state were populated thermally. 

In any case this observation merely limits the C
4/C6 

ratio and does not assign a specific value to these 

parameters since the 'composition' (and hence g value) 

of this r7  eigenstate is not affected by changing 

crystal fields. 	The best fit to the experimental 

susceptibility data has been obtained using crystal 

field coefficients(C4' C6) of (-70, 13)°K, figure (8.2). 

In fact these values give the calculated susceptibility 

the maximum deviation from Curie's law. 

The effects of interactions in this alloy system 

can be seen by comparing the low temperature behaviour 

of the Ag-0.28 and 1.0 At.% Er alloys. 	In addition 

to increased low field curvature in the (M-H) plots, 

the influence of the 27 ground state is muc:: less 

apparent in the concentrated alloy, in agreement with 
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tha previous qualitative suggestion, 

The eN:perimontAl data for the AgTb, ARDy and 

AgHo alloy systems, figures (7.16), (7.20) and (7.28), 

indicate that their susceptibilities do not deviate 

strongly from Curie-Weiss behaviour. 	The experimental 

curves can be fitted using several values of the 

coefficients (C4, C6), including the (-70,13)°K used 

to fit the AgEr data. 	Admittedly for this value 

the theoretical and experimental curves tend to separate 

below about 7°K, and an improved fit can be obtained 

by increasing the overall splitting, but as the (M--H) 

plots for these alloys indicate that interaction 

effects are operative, such a procedure is not without 

objection. 	In AgHo at least, specific heat measurements70 

have shown the importance of hyperfine effects, and it 

was felt that a breakdown of hyperfine coupling might 

be contributing to the observed low field (M-H) 

curvature. 	A consideration of such effects, in 

Appendix 8, in the very low temperature limit shows 

that this is certainly not the case. 

Within the limits imposed by the accuracy of 

fitting,the data thus far presented are consistent with 

the supposition that, in a given host, (C4,C6) are the 
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same for all the rare-earth solutes. 	In the case of 

Agim ho,,ever, the susceptibility computed with the 

(C4,C6) used to fit the AgEr data approaches a constant  

value at too high a temperature. 	This arises, in 

spite of the fact that these crystal field coefficients 

indicate a well isolated ground state singlet, 	r2 s 
which gives no 1/T term in the susceptibility, from the 

finite low temperature contribution of Van Vleck terms 

within the same constant J manifold, i.e. a mixing of 

higher crystal field eigenstates induced by the eternal 

magnetic field. 	If the previous supposition about the 

effect of interactions is correct, then they will tend 

to increase the low temperature slope by decreasing(1) 
X 

However, it seems unreasonable to assume that in an 

0.5 At.% alloy these effects will be of sufficient 

strength to account for the observed discrepancy. 

On this basis then, it must be concluded that the 

magnitudes of (C4, C6) are changing for the various 

rare-earth solutes, the values (-30, 5.5)°K giving a 

good fit to the Arm data. 	Another interesting feature 

of this alloy system is provided by the linear, low 

field (M-H) variation at low temperature. 	If the low 

field curvature observed at low temperature in the (M-H) 
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plots for other alloys originates in indirect coupling 

of the impurity spins via the conduction electrons, then 

the well isolated singlet ground state in AgTm should 

experience no such coupling. 	This idea is clearly 

supported by the experimental data. 

Following the concluded variation in magnitude 

of (C4,06), it is particularly unfortunate that Yb is 

divalent in Ag. 	For trivalent Yb, both sets of values 

of (C4,  C6) used to obtain the previous fits give a 

distinctive (1/ x vs.T) variation, consequently 

experiments on this system would provide useful data 

for ascertaining whether any systematic variation in 

these coefficients occurred. 	Indeed, from the point 

of view of theory this ion is one ofithe simplest to 

treat since all matrix elements occurring in equation 

(1.9) are independent of the crystal field coefficients, 

the susceptibility therefore depending only on the 

energy separation of the three eigenstate 6'17 and I' 8) 

of 
Yb++4- 

in a cubic field. 	This situation occurs in 

AuYb. 	The low temperature e.p.r. observed at g = 

3.30 	0.194  in powder samples of this alloy clearly 

identifies the r 7  eigenstate as the ground state 

(expected g value in cubic symmetry, 3.43), while a 
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very good fit to the susceptibility data is obtained 

with (-27,4.5)°K. 	The susceptibility data on AuEr is 

rather less dramatic than that for Agtr, and in this 

respect is rather more difficult to fit uniquely, 

although 0.p.r. again identifies 	7 as the ground 

state. 	It is clear however, that the (C4,C6) values 

of (-30, 6.5)°K give a considerably better fit than 

do the AuYb values of (-27, 4.5)°K, thus supporting 

the view of changing crystal field parameters across 

the rare-earth series. 	As with AgTm, the AuTm data 

requires that (C4,C6), for a good fit, be considerably 

less than the values used to fit the experimental 

data on other rare-earth impurities in the same host. 

In this alloy the values (-17, 2)°K were required. 

These parameters indicate that the r 2  singlet eigen- 
state lies lowest, being separated by about 7°K from the 

next eigenstate (y. 	Unlike AgTm, the (M-ii) plots 

for this alloy, at both 4.2°!ihnd 1.95°K, exhibit some 

low field curvature, this is, however, consistent with 

a singlet ground state since its isolation is such that 

both the calculated and meaaured susceptibilities have 

not reached a constant value at 2°K. 
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Table (8.1), below, summaries the data obtained 

from the fits described above:- 

Alloy C4  (°Y) (°K) 	Overall split- 	Ground state 
ting 	( K) 	isolation 

At  Tb -70 13 117 <1°K 

Ag Dy -70 13 157 oK  1 

Ag Bo -70 13 182 <1°K 

Ag Er -70 13 207 35oK 

Ag Tm -30 5.5 95 21°K 

Au Er -33 6.5 105 19°K 

Au Tm -17 2 47 7°K 

Au Yb -27 4.5 83 79°K 

The bulk of the experimental data presented seems 

to support the original supposition that, in alloys of 

this type, the localised impurity states closely 

resemble those of the free ion, in so far as a theoretical 

approach based on such an idea yield results which are 

in good agreement with experiment. 	In addition, in 

those alloys in which the rare-earth concentration was 

chemically analysed, the effective moment derived from 

the high temperature susceptibility was close to the free 
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ion mcment (9.8 11B  for the Ag-0.28 At. Er alloy). 

An interesting general characteristic of this high 

temperature data, for most of the alloy systems 

examined, is that it extrapolates to give a negative 

intercept on the temperature axis. 	A power series 

expansion of the susceptibility at high temperatures, 

using equation (1.9), indicates (Appendix 7) that the 

thermal population of such a set of levels does not 

give rise to a (l/T
2) term with which such an intercept 

would be associated, but examination of the computed 

susceptibility indicates that the high temperature 

susceptibility approaches on asymptotic Curie law 

variation - equation (1.10) - as (1/T). 	Unfortunately 

in the high temperature region the experimental data 

is not sufficiently accurate to distinguish between 

these two variations, consequently it seems to extra-

polate in the above manner. 

Concluding remarks 

Following the discussion in the preceding sections, 

it seems that the experimental susceptibility data is 

well explained on the basis of a model in which the 

free ion-like localised rare-earth impurity states are 

subject to the cubic crystal field of the noble metal 
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host. 	The experimental data suggests that the 

coefficients (C4, C6) charaeterisinrr, this crystal field, 

change in magnitude forthe various rare—earth solutes, 

although they are assumed to retain the same signs. 

This variation seems quite plausible in view of the 

variation of such properties as the solubilities of the 

rare—earths in the various hosts. 	The assumption that 

(C4, C6) retain the same signs in Au and Ag is only 

seen to be plausible when the character of all the data 

presented is reviewed. 	Certainly the e.p.r. 

observations for the rare—earths in Au,provide definite 

evidence that C4  is positive and C6  negative, but the 

single observation on Er3+  in Ag only indicates that 

r is the ground state and does not fix the signs of 

(C4, 06). 	Indeed, the susceptibility data on AP Er 

and AgTm is not inconsistent with the signs of C4  and 

C6 being the same. 	The degeneracy scheme for the 

former is certainly not drastically changed, while the 

latter would still retain a reasonably well isolated 

singlet ground state (r1  0. 22, depending on the C4:C6  

ratio). 	The calculated susceptibilities for the ALTb 

and Agno systems however, provided that the overall 

splittings remained at roughly the same magnitude, would 



209. 

be rather different from those observed experimentally. 

Whatever C4:C6 ratio is choosen, the former would have 

a reasonably well isolated singlet ground state, which 

would cause the theoretical low temperature inverse-

susceptibility to flatten, whereas that observed 

experimentally still decreases roughly as T at the lowest 

temperature, 	Similar effects should occur for 21a,110, 

though for the same overall splitting they would be 

less pronounced, 	Thus, although the experimental data 

on AgTb, AgDy and AAHo is of little use for accurate 

determinations of (C4,C6), it does provide convincing 

evidence that the signs of (C4,C6) are the same in 

Ag and Au. 	In the latter, of course, the signs are 

established, and an extrapolation of the AuEr parameters 

to AuTb, AuDy and AuHo reveals that little is to be 

gained from susceptibility measurements on them. 

The results presented in this thesis, rather than 

investigating in detail the properties of a single alloy, 

form a general survey of the properties of the heavier 

rare-earths in Ag and Au. 	They demonstrate that 

although general characteristics can be understood, 

detailed effects, particularly interactions, are still 

not well understood. 	In this respect a thorough 
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investigation of alloys of the noble metals containing 

initially about 0.1 at.% rare-earth seems desirable. 

These alloys should establish the behaviour in the 

dilute limit, and should provide a useful basis on which 

the effects of increasing impurity concentration could 

be studied. 	In addition, the effects of mutual 

distortions of the crystal field by near neighbour 

impurities could be studied using a fixed concentration 

of "magnetic" rare-earth (initially say, 0.1 At.%) and 

a variable concentration of Lu. 	In this way, initially, 

the complicating effects of indirect spin-spin coupling 

via the conduction electrons would be avoided. 	An 

attempt has been made along these lines using Ag-5 At.% 

Au alloys as hosts, however the metallurgical difficulties 

were rather serious. 

By using the crystal field coefficients 

determined from the susceptibility data, a reasonable 

understanding of the e.p.r. data can be obtained. 

The non-Kramers ions Tb3+, Ho
3+ 

and Tm
3+ 

have non-

magnetic ground states ( r3, r3
(2) and r 2  respectively), 

although the (C4,C6) coefficients used in the AgEr fit 

indicate that the first two of these have triplet states 

( T5(2)  and r4(2)  respectively) energetically close to 
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the ground state. 	However, the rather large line- 

widths in this typo of alloy seems to preclude e.p.r. 

observations in these triplets due to thermal population. 

3+ If the parameters used to fit the Er 	data can be 

extrapolated to the Kramers ion Dy
3+ 

 , then the situations 

predicted are rather interesting. 	For AuDy, the 

(-33, 6.5)°K values indicate that the r 7  eigenstate 

will be the ground state, which, in cubic symmetry, 

has an expected g value of 7.55. 	In AgDy however, 

the (-70, 13)°K values predict that the 	r7  doublet 

and 	r8 quartet lie roughly with one degree of each 

other. 	The latter, although of cubic symmetry, cannot 

be characterised by an isotropic g value99. 	In both 

alloys attempts are being made to observe resonances; 

for the latter, of course, a single crystal is being 

used, although the proximity of the two eigenstates 

will undoubtedly complicate matters. 

For the susceptibility and e.p.r. then, this model 

of a free-ion like, localised, rare-earth impurity state 

acted on by the cubic crystal field of the noble metal 

host, yields a good description of the alloy in the 

dilute limit. 	It is interesting, therefore, to 

speculate about other properties of such alloys on the 
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basis of this model. 	The coupling of the different 

crystal firld cigenstates to the conduction electrons 

could result in a distinctive temperature variation of 

the electrical resistivity. 	This quantity has recently 

been measured in this laboratory, and the form of its 

temperature dependence suggested 

indeed be explained by different 

sections for the various crystal 

initially that it might 

scattering cross- 

field split levels. 

However, the observation of a similar behaviour in the 

AgGd alloy system indicated that deviations from 

Matthiessen's rule are important, and could account for 

some, or all, of the observed anomalies in the other 

alloy systems. 	In addition, a recent paper by Hirst
100 

 

has shown that spin-flip scattering contributes a very 

small amount to the observed resistivities (roughly 

0.02 µf2 cms /At.% rare-earths), an estimate which has 

been confirmed by preliminary analysis of the magneto- 

resistance data of Bijvoet et al. 	For this latter 

property, when the lowest cubic crystal field eigenstate 

is magnetic, the application of a magnetic field at 

low temperatures causes a "freezing out" of spin-flip 

scattering on angular momentum conservation grounds. 

However, when, in zero magnetic field, a singlet state 
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lies lowest, there is no spin-flip scattering. 	The 

effect of applying a small magnetic f4c1:! is t.0 perturb 

this ground state and, in general, mix into it some 

higher, magnetic states. 	This mixing is coherent, 

and the associated moment is consequently "frozen", 

and in this sense cannot give rise to spin-flip 

scattering, however since the induced moment is not 

well defined, normal conservation laws would not seem 

to apply to the.situation. In either case, the practical 

effects would be very small. 

The thermal population of such a set a crystal 

field split levels should, if one eigenstate is well 

isolated, give rise to a Schottky type anomaly in the 

specific heat. 	Preliminary calculations of this 

quantity have already been made, concentrating mainly on 

the region above 4°K where the complications of 

hyperfine and interaction effects should be absent. 

More systematic calculations are being made, but those 

already available indicate that a Schottky anomaly should 

be observable even in an 0.5 At.% alloy against a 

background of the increasing lattice term (Ag should be 

much more favourable than Au in this respect, owing 

to the letters low Debye temperature). 	Typically, 
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in In Er, using the (-70,13)°R value, this anomaly is 

peaked around 10
o
K. 	In general the shape of the 

"bump" is changed by using different crystal field 

parameters, consequently specific heat data in this 

temperature region should be of some help in determining 

these coefficients. 	It is hoped that measurements of 

this property will be forthcoming in the near future. 

The arrangement and residual degeneracy of the 

crystal field eigenstates should have an interesting 

effect on the properties of superconductors such as 

La3 
In containing rare-earth impurities. 	The inter-

pretation of their effects is more readily accomplished 

in those alloys for which the lowest eigenstate is 

well isolated (compared with kTc). 	Under these conditions 

the depression of Tc, the superconducting transition 

temperature, in the alloy will depend on the character 

of this lowest eigenstate. 	When the latter is non-

magnetic, the depression of Tc should be governed by 

the Markowitz-Kadanoff
101 relation, since, in these 

circumstances, the effect of the impurity is simply 

to reduce the electronic mean free path. 	For a magnetic 

ground state the appropriate expression 

for the depression of Tc would be that given by 
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Abrikosov and Gorkov102 
	

In addition, the 

variation in the depression of Tc for, typically, 

different rare-earth impurities, as given by the 

de Gennes factor, (g-1)2  J(J+1), would be valid only 

in those alloys in which the overall crystal field 

splitting is less than kTc. 

Finally, returning from general considerations to 

the more specific question of the e.p.r. linewidth in 

these alloys. 	For powder samples, the observed deri- 

vative e.p.r. lines had a Dysonian shape (the amplitude 

of the first to the second peak being about 2.5103). 

In the temperature range in which the non-s state 

resonances were observable (below about 20°K) the line 

width, AH, could be represented by: 

A H = A 4- BT  	8.1 

For the dilute A.%  Er, A had the value 59 oersteds, and 

B was 9.5 oersteds per degree; while for Au Yb, A was 

measured at 370 oersteds and B at 12 oersteds per degree, 

The T-I dependence of AH could have its origin in 

Korringa
104 or direct phonon processes105 

	
The 

description of the coupling between a magnetic ion of 

effective spin Seff,at site in, and the electronic 

spin density T(x), atx, by the phenomenologival exchange- 
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gJ--4 
II 	

n 	
.(ge” 	0-(x)8 (Rn-x) 

•ex 	no 	x * G.J 	eff 	\- 	- 

where no is the number of lattice sites per unit volume, 

Jex 
a parameter with the dimension of an energy, and 

gj  the Lande factor, leads, in the case of a "free 

electron" solvent, to an ionic 	shift', A g1, given by 

A gi  

gtff 

3Jri(ga- 
2E

f
gJno 

8.3 

where n is the number of conduction electrons per unit 

volume. 	This coupling affords a possible relaxation 

mechanism, with an associated relaxation rate given by
107 

9itn
2 

cc q 

17.,.OMMUMV = 

	

2 	)eLL ‘3.  k  

	

16Eno 	j  
e 	

As, 	secs 8.4 

Assuming that the corresponding (Korringa) broadening 

accounts for all of the observed temperature dependence 

of the line widths leads to the following conclusions: 

For AgEr 	ex 0,1/45 ev and A gi iteff  ft 7010-3 

For AuYb :IJ 	00315 ev and AgiP3off 	10
-2 

An exact evaluation of the sum of the various matrix 

elements which occur in the expression for the relaxation 

216 

8.2 
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rate associated with direct phonon processes (see, 

for example, Reference 105) is a lengthy task. 	However, 

a rough estimate of the magnitude of this effect can be 

obtained from the measured relaxation rate of Yb3+ 

in cubic sites in CaF2 (at X-band frequencies)
108 

For an order of magnitude calculation, the form of the 

dependence of this relaxation rate on the crystal field 

parameters suggests that changing hosts has no effect 

in this respect. 	Correcting for the appropriate density 

and mean phonon velocity yeilds a temperature dependence 

of the line width which is less that 10
-2 

oersted per 

degree in Ag. 

Orbach and Raman processes
105 

become increasingly 

important as the temperature is raised. 	As in the 

above case, rough estimates of their effects on the 

2 

For Raman processes, the relaxation rate should be roughly 

unchanged on changing hosts, except for the modified 

density and phonon velocity, and in this approximation 

yield appreciable line widths ( 40 oersteds) in Ag 

at about 35°K. 	The relaxation rate associated with 

Orbach processes in addition to the modifications 

linewidths can be obtained from the experimental data 

on trivalent rare-earths in cubic sites in CaF 105  
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mentioned above, needs to scaled for different crystal 

field parameters. 	These parameters are roughly ten 

times bigger in CaF2  than in Ag, and with these modifi-

cations, temperatures of about 100°K are needed for 

these processes to give rise to linewidths of the order 

of 50 oersteds. 

The AgEr alloy system is, as yet, the only one in 

which e.p.r. measurements have been made for different 

rare-earth concentrations (0.28 and 1 at %). 	The 

effect of increased concentration manifests itself in a 

sharply differing temperature dependence ofithe e.p.r. 

amplitude in the two alloys below about 7°K. 
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CHAPTER 9  

RESULTS AND DISCUSSION ON Pd AND Pd-BASED ALLOYS  

General 

The various samples examined were provided 

either in button form, from which susceptibility samples 

were machined, or in wire form out of which specimens 

were made in the manner indicated in figure (9.12) 

In either case the sample was left for an hour in a 

solution of 1:2 HC1:H20 washed in distilled water, 

then etched for a few minutes in a solution of concen-

trated nitric acid containing a few drops of hydrogen 

peroxide, and finally washed again in distilled water. 

After drying the samples were heated to 150°C at a 

pressure of 10-6mm Hg for about 24 hours to remove 

hydrogen contamination. 	(For this same reason Silicon 

702 oil was used as a lubricant during machining.) 

Dilute Pd-rare earth alloys  

Tentative measurements have been carried out on 

these alloys to investigate any modifications introduced 

by using Pd as a host, in view of its partially filled 

4d band. 

Crangle and Layng 112 have examined the Pd-rare 

earth alloy system, but their investigations have been 
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concerned primarily with more concentrated alloys, 

containing more than 1 At.% r.e. 	This investigation 

has shown that it is desirable to work with rather 

more dilute alloys if the complication of a transition 

to the ferro-magnetic state in the low temperature 

region (about 2°K)is to be avoided. 	With this in mind 

measurements were made on Pd containing iAt.% (nominal) 

of the rare earths Gd and Er. 

Pd-0.5At.% Gd (International Nickel) 

The experimental results are summarised in figures 

(9.1) to (9.4). 

Pd-0.5 At.% Er (Naval Research Labs., Washington) 

Figures (9.5) to (9.8) reproduce the experimental 

results. 	Neither sample was subjected to metallographic 

analysis since the intended alloy compositions were 

well within the maximum solubilities113 
 
• 

It was hoped that by doing measurements on these 

two systems, any crystal field effects would result in 

a general difference in the character of the temperature 

variation of their respective susceptibilities 

provided, of course, that the rare earth ions are in 

their normal valence states. 
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Precise comparison of the experimental results is 

hampered by ignorance of the exact composition of either 

system, and inability to proceed with measurements on 

suitable Pd Lu alloys (these would have provided 

information about the modifications of the host 

susceptibility by the valence electrons of the rare-earth 

impurities). 	An attempt has been made to extrapolate 

from the results of Shaltiel114  for a Pd-4 At.% Lu 

alloy, but this procedure was found to be rather 

unreliable owing to the 'sensitivity' of the expression 

( Xalloy-  XPd (corrected))
-1 at the compositions used. 

Examination of the experimental results show, as found 

by Crangle, that deviations from a Curie-Weiss behaviour 

in the higher temperature region become more pronounced 

as the rare earth concentration is reduced, and the 

role played by the susceptibility of the Pd host 

becomes more important. 	In very general terms, the 

character of the inverse susceptibility versus temperature 

variation is similar for both systems, though the 

(presumably) more concentrated Pd Cd alloy exhibits a 

more marked temperature dependence. 

At the lowest temperature, the curvature of the 

magnetisation-field plots at high field values are 
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consistent with Brillouin function curvature, while 

departures from linearity in the low field region are 

indicative of interactions between the rare-earth 

ions. 	The more marked curvature in the case of the 	Pd 

Gd alloy can be attributed to a higher impurity concen-

tration, to the high 'effective spin' on the impurity 

[(g-l) /J(J+1)] , or to both effects. 

In principle, the question of crystalline field 

effects could have been resolved by e.p.r. data on the 

rare-earth, non S state ions. 	However, experiments 

carried out in this laboratory have failed to detect 

a resonance in Pd Er. 	Thisresult, however, is still 

not decisive, since it could merely reflect the difficulty 

of observing a resonance for some impurity which has a 

'g' value different from that of the matrix in which 

it is dissolved, when the matrix is nearly ferro- 

magnetic. 	In addition, the large polarizibility of 

the Pd matrix means that at any appreciable rare-earth 

concentration the internal fields to which the latter 

would be subjected could be sufficient to cause 

breakdown of any crystal field effects. 
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Pd and Pd-Ni alloy system 

The measurements reported 12-..re form part of a more 

extensive examination of the properties of this system, 

and include electrical resistivity115  and thermopower 

measurements.116 

Interest in this system has been aroused by the 

recent theoretical investigations into the properties 

of nearly ferromagnetic transition metals117 Briefly, 

on the basis of a model in which the electronic transport 

processes are dominated by electrons in the s-band, Rice 

has examined the contribution to the electrical and 

thermal resistivitiesarisinglrom s to s transitions 

induced by scattering from spin density fluctuations 

in the itinerant d band. 	This author finds that for 

temperatures T<<O, where e is a cut-off temperature 

and is regarded as a disposable parameter, the 

contribution p, to the electrical resistivity from the 

above process has the form: 

ps  = AT2  - BT
5 	 9.1 

(while the contribution Ws to the thermal resistance 

has the form: 

Ws 	aT 	bT2 + terms 0(T4) 
	

9.2 
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Explicit expressions for the various coefficients have 

been given by Rice, however, for the present purpose it 

is sufficient to note that in the low temperature 

regime this author predicts that A should be proportional 

to the square of the observed enhancement of the Pauli 

susceptibility. 	The coefficient B should increase as 

the enhancement increases, while under the same conditions 

9 should decrease. 	Thus, as the ferromagnetic state 

is approached, the negative T5 term from the Ps contri-

bution to the total resistivity should eventually 

suppress the low temperature T5 term arising from the 

electron-phonon scattering contribution, and the T2 

term should dominate. 	However, as the enhancement 

increases the low temperature coefficient of T2 should 

increase, but 9 is lowered in magnitude and so the range 

of the region in which this T2 law is valid deminishes. 

The author draws similar conclusions about the range 

of validity of the linear T law found for the thermopower. 

Some of the results predicted by Rice have been 

tested by investigating the properties of Pd and the 

Pd-Ni system, since the additions of small amounts of 

Ni to Pd may be considered to increase the magnitude 

of the exchange enhancement. 	The results are summarised 

below. 
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Pd (Naval Research Labs., Washington) 

The susceptibility specimen was obtained by turning 

down a button which had been annealed for 24 hours at 

1100°C under a purified argon atmosphere. 	The 

resistivity ratio of this sample s•yas better than 1500. 

Figures (9.9) to (9.11) summarise the experimental 

data. 

Pd-Ni system (Naval Research Labs., Washington) 

These alloys were prepared by induction melting 

5N nickel and palladium in quartz lined, stabilised 

zirconia crucibles under a purified argon atmosphere. 

]hey were supplied in the form of 0.01" diameter wires 

which had been annealed for 20 hours at 1200°C. 	The 

susceptibility samples were made from these by winding 

a suitable length of the wire around a length of 20 

gauge Cu wire to form a tight helix, with an external 

diameter of about 2.5 mm 

Fig. (9.12) 

20 Gauge Cu wire 

helix of Pd-Ni, which was 

slipped off the Cu wire before 

insersion in the quartz 

bucket. 
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Measurements on the sample were carried out At 4.2 

and 77°R, the former to obtain the 1ev temperature 

enhanced susceptibility, the latter to check against 

any ferromagnetic inclusion. 	Figure (9.13) shows the 

data on Pd-0.5 At.% Ni, figure (9.14) that for Pd-1.0 

At.% Ni and figure (9.15) for Pd.-1.67 At.% Ni. 

The experimental results on the resistivity of these 

alloys are reproduced in figure (9.16) (Ref.115), and 

indicate that at the lowest temperature the resistivity 

is proportional to T2 for all the samples, as predicted 

by equation (9.1). 	As the temperature is increased 

deviations from this T2 behaviour are observed, which, 

the authors claim, reflects the T5 contribution in 

equation (9.1) and from the electron-phonon interaction. 

Figure (9.16) also illustrates the predicted increasing 

importance of the T5 term in equation (9.1) as the Ni 

concentration is increased, assuming, for pure Pd, that: 

Ps = AT2 
	

9.3 

over the entire range investigated (bpd  >> 30°K), then 

the contribution from electron-phonon scattering to 

the total resistivity can be evaluated, and provided 

Matthiessen's rule is fairly well obeyed, then as 

first approximation the authors suggest that this 
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contribution is the same in all the alloys measured. 

Figure (9.17) shows the temperature variation of the 

estimated spin density fluctuation contribution to the 

resistivity, and indicates that the temperature region 

for which equation (9.3) is valid extends to 140K in 

Pd-0.5 At.% Ni, to 10°K for Pd-1.0 At.% Ni, and only 

to 3°K for Pd-1.67 At.% Ni. 	This verifies the prediction 

that the range of validity of the previous equations 

decreases as the enhancement increases. 	The full 

lines in figure (9.17) are the calculated variation of 

ps(T) on the basis that p s  ccT
2 
for 10T <6 i.e. so that 

9 can be estimated. 

Figure (9.18) shows A, the coefficient of the T2 

term in equation (9.1) plotted against the measured 

value of the susceptibility X, at 4.2°K. 	Small 

additions of Ni are regarded as not affecting the value 

of unenhanced Pauli susceptibility, consequently theory 

predicts that A should vary as X
2. 	However, figure 

(9.18) shows that this is not so. 	Rice has suggested 

that this may reflect the rather restricted spectral 

density of spin density fluctuations employed in his 

calculation. 	Indeed, initial results available from 

a calculation employing a less approximate form fcr 
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Aq(w). the spectral density function, are in much 

better agreement with experiment. 

Pd-1 At.% Pt (Naval Research Labs., Washington) 

The alloy was prepared by induction melting Pt 

with Pd in a quartz lined crucible under an atmosphere 

of purified argon. 	It was then cold forged into a 

in  diameter cylinder, from which a susceptibility 

sample was machined. 	The final specimen was etched 

in the usual manner and then annealed at 600°C for 5 

hours at 10-5 mm Hg. 

The experimental data appears in figures (9.19) 

to (9.21). 

The susceptibility temperature variation for this 

alloy bears a close resemblence to that for pure Pd, 

although closer inspection reveals that the susceptibility 

variation in the alloy is rather smoother than that 

in the pure material. 	The room temperature depression 

of the susceptibility, on alloying, supplied conclusive 

evidence that these are band effects, i.e. on a simple 

model of alloying, a depression of about 0.03 x 10
-6 

e.m.u./gm/At.% Pt would be expected, while that observed 

is about 0.39 x 10
-6 e.m.u./gm/At.% Pt. 	The latter 

is, incidentally, in quite good agreement with the early 
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data of Vogt
118 

for this system. 	Further, the 

difference in the temperature variation of the suscep-

tibility of the alloy and pure material can be qualita- 

tively understood in terms of a band model. 	In a 

disordered systed, the effect of alloying is to 

introduce a 'blurring' of the Fermi limit119, which 

would tend to smooth the susceptibility-temperature 

variation. 	In addition to this, the introduction 

of Pt should, owing to its relatively large spin-orbit 

effects120  with consequent distortion and shift of the 

bands121, in itself give rise to a modified susceptibility 

temperature variation. 

The low temperature experimental data on this 

alloy is immediately understandable in terms of the 

previous discussion on the Pd Ni system. 	As a 

small amount of Ni added to Pd was regarded as 

increasing the exchange enhancement of the susceptibility 

so a small amount of Pt can be regarded as supressing 

this quantity. 	This indeed, is observed. 	It would 

also seem desirable to have resistivity-temperature 

data on this system since it would provide another 

interesting test of Rice's theory. 	In addition it 

would be revealing to try and see how the resistivity-

susceptibility relationship fits into this author's 

scheme. 
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APPENDIX 1 

Character table for 0(Bethe,59) 

CLASSES 

0 	E 	3C,) 	6C
3 	

6C
4 	

8C5 

1 	1 	1 	1 	1 

1 	1 	-1 	-1 	1 

2 	2 	0 	0 	-1 

3 	1 	1 	-1 	0 

3 	-1 	-1 	1 	0 

r 2 
1'3  

r4 

5 

For D Irreducible 
Reps.of 0 

J=0 	1 	1 	1 	1 	1 1 
1 	3 	-1 	1 	-1 	o 	r 4  
2 	5 	1 	-1 	1 	-1 	r 3+ 25  
3 	7 	-1 	-1 	-1 	1 	r 

2
4

4 
+r
5 

4 	9 	1 	1 	1 	0 	r i+r 3+r4+ 15' 
5 	11 	-1 	1 	-1 	-1 	r3+ 2 r4  +r 5  
6 	13 	1 	-1 	1 	1 	4.1. 4. r * l': 4.27 

1 2 3 4 5 

7 	15 	-1 	-1 	-1 	0 	r 24113+2r4+2  r5 
8 	17 	1 	1 	1 	1 	p 1+21,3+21,4+225 
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C2: the class of rotations of % about the 3 cubic 100 axe 

C3: 

If 	 It 	 If 	 ft  +%/2 ft 	tl II  

C4: 

ft 	 6 twofold axes llo 

C5: 

rt 
	

it 	ft 	 tt 
	

" +2%/3 " 
	

IT 4 threefold 

axes 	111 

Character table for 0'  

In setting up the table for 0', the characters of 

all normal single valued representations ri... r5  are 

obtained simply by taking x(ER) = x(R) where R is 

any group element, which assues satisfaction of the 

requirement on orthonormality between the rows, while 

in the double valued representations x(ER) = - x (R) 

with x(C2,4) = x(EC2,4) = 0, so that the E column is 

orthonormal to the E column. 	With these, and the 

various orthonormality relations, equations (4.3a 

and 4.3b), the character table of 0' can be derived. 



2 4.8.. 
E 	E 	3C:3-EC.a  6C3  6EC3  6C4_: 6-E-C,_ 8C, 8-E-C, 

1 	1 	1 	1 	1 	1 	1 	1 
1 	1 	1 	-1 	-1 	-1 	1 	1 

2 2 2 0 0 0 -1 -I 

3 3 -1 1 1 -1 0 0 

	

3 3 -1 -1 -1 	1 	0 0 

2 -2 0 	J2 If 	0 , 1 -1 

2 -2 0 —fff ff 	0 	-1 	1 

4 -4 0 0 0 	0 	1 1 

Irreduc. 
E E 3C.2:3EC2. 6C 6EC3 6C :6EC 8C5  8EC Rees. 

2 -2 	0 	f-2- --,r2 	0 	1 -1 	rb 

4 4 	0 	0 0 	0 	-1 1 5 

6 -6 	0 	--/-2-  ,/--- 	0 	0 0 r+5 

8 -8 	0 	0 	0 	0 	1 	-1 	fa r--;4.  re 

10 -10 	0,  i  -12- 	0 	-1 	1 	 +21; 

12 -12 	0 	0 	0 	0 	0 	o r;+ 1-7.+2r8 

14 -14 0 	--ff ff 	0 	1 -1 r-6--F2c+2r; 

16 16 	0 	0 	0 	0 	-1 	1 1 	Ii-,÷1.-/  +31; 

C  

r2 

I; 
r4  

re, 

1; 
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This last table indicates that for all half integral 

3, the residual degeneracies are at least twofold; 

this result can be proved in general for half integral 

angular momentum (odd number of electrons) for an 

it electric field of any symmetry since 	is a consequence 

of time reversal symmetry61  . 	It is known as Kramer's 

theorem. 
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APPENDIX 2  

1. Reduction of the crystal field Hamiltonian under  

the symmetry operations of Oh  

4+4 m m 6imm V 	Z r 
m=-4 cryaral a4 Y4 	r  m=-6 a6  y6  

A rotation of %/2 about the z axis shows that only 

Y4,  ' +4 ' ,Z, o  and Y— +4 Y
4 
 Y-

4  • 
	remain unchanged. 

Y 	o in the xz plane leaves 	and Y6 unchanged and sends 

-4 	4 	-
0
4 	-4 = 4 and Y r

1,. 
 4 intoY4 andl6 intoY,,Ilence a4  	a4  

-4 	4 
d6 = a6 , and 

o o 	4 + vcrystal= r
4 (a4Y4 + a4(Y44 	4

))  

6 	o 4 -4 4 +r (a6  Y6  + a6(Y6  +Y6)) 

Finally a rotation of 2%/3 about a threefold axis 

reveals that, on transforming to the cartesian form: 

5 	1 
= C4  (V4  ° + .f  V44 
	2) + C6(V: - 7  v64  ) vcrystal  

where V4  = 35z4-30z
2r2 - 3r4 

V4
4  = (x + iy)4  + (x 	iy)4 

V6 V6  = 231z
6 

- 315r
2z4 + 105r

4
z
2 
- 5r

6 

and 	V4 = (11z
2 - r2) 6 

 

4 iy) 	(x  (x + 	iy) 

 

   

C
4 

and C6 are numerical coefficients. 

Reflection 



JxJzJxJz 

JzJxJzJx 

JzJxJxJz 

JxJzJzJx 

JzJzJxJx 

+ JyJzJyJz 

+ JzJyJzJy 

+ JzJyJyJz 

+ JyJzJzJy 

+ JzJzJyJy 
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2. 	Operator equivalents for the above potenti afStevens,62) 

Take for example V4 , Stevens points out that in 

order to account for the non commutation of Jx, Jy and 

Jz, it is incorrect to replace X2Z2 (appearing in r2 

z2) by Jx2Jz
2, but an expression consisting of all 

possible different combinations of Jx, Jy,Jz and Jz 

should be used; i.e. 

35z
4 

 

35Jz
4 

 

but 30x22
2 becomes 

1 30 6—(JxJxJzJz + JxJzJxJz + JxJzJzJx + JzJxJzJx 

+ JzJxJxJz + JzJzJxJx) + 1 (x replaced by y) 

+ Jz 4 

Using the usual commutation relations for Jx, Jy and Jz 

this reduces to: 

JxJxJzJz + JyJyJzJz + Jz4 	= J(J+1)Jz2  

+ Jz4 

+ Jz 4  

+ Jz4  

+ Jz4 

+ Jz4  

= J(J+1)Jz2 	Jz 2 

= J(J+1)Jz2  - Jz2 

= J(J+1)Jz2 

= J(J+1)Jz 2  + J(J+1)-3Jz2 

= J(J+1)Jz2 

thus 30r2z2 	(30J(J+1)-25)Jz2-5J(J+1) 

In a 'similar manner: 3r4  --4J(J+1)(3J2+J-1) 
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Thus 11°4  ---->35Jz4- 30.1(J+1)37,2  +25jz2-6J(J+1) + 

332(3+1)2. 	Similarly (from Stevens) 

V4 	(J4 + J
4
) 

V° 	231J
6
-105(3J(J+1)-7)Jz

4+(105J2(J+1)
2
-525J(J+1) 

+294)30 -5J3(3+1)3+4032(J+1)2-60J(J+1) 

V6  
4 	1 

2 
---Zs —(113z

9 
 -J(J+1)-38)(j4+34)+i(J

4
+3
4
)(113z

2
-J(J+1)-38) - 	- 

Finally putting 0°
4 
 equal to the angular momentum expression 

for V6
' 4 	 4 
0
4 

equal to one half that of V4
'

o 
equal to 

that of V6  and 064  equal to one half that of V6, then 

Vcrystal = B4  (0
to 
+ 5044) + B6  (0°  - 2104) 4 	6 	6 

The coefficients B4 and B6 are parameters which are 

usually determined experimentally, their relation to 

C4 and C6 is considered below, the term connecting the 

coefficients is, in fact, the proportionality constant 

between the matrix element of the potential operator 

and that of the operator equivalent. 	This factor 

is evaluated by making use of the spin independence 

of the potential functions, which implies that similar 

operator equivalent hold in manifolds of constant 

orbital angular momentum L. 	A convenient state in 

L, S, J, Jz quantization is choosen and the value of 
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the matri-c element of come potentialcnnction is 

written down using the operator equivalent of the 

function i.e. for the case of Er++4- , 4115/2  for which 
15 

L = 6, S = 3/2, J = 	and Jz = 15/2 2 

<led> = m 04(for J=21.; Jz =
2  = 16380m 

This state is then expressed in L, S, L
2'  Sz  quantization 

thus: 

1,1,J,Jz > = i 
	

> subject to Li+Si  = J
z z z 

where the ails are Clebsch Gordon coefficients, for the 

example choosen 

15 > L =6, S=-3 ' J=J z 2 =-- 	= a4L=6,S=-3 ' z L=6 S z 2 =- 3 
2  	2  

where a=1; the termination of the expansion after a 

single term is due to the parallel coupling of L
z 

and 

S which occurs in the second half of the rare earth 

series. 	Within a manifold of constant L; 

o (tor PO
4 
 or L, inside L=6 L

z
=6) 

4.  

= 5940 p 

The state is now expressed in 1 s quantization thus: 
z z 

J. 

11. 	 + 

IL=6,S=3/2,Lz=6,Sz=3/2 >  = 
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again the passage from one type of quantization to the 

other is straightforward since the rare earth ions adhere 

to Hund's rules. 	From this last expansion 

" (V;)N [t 	id Vo I 	= 5940P 	, < ) 	4 	
[5. 	• • • 1J 

4 

this last matrix element can again be evaluated using 

an operator equivalent method since inside a manifold 

of constant 1(1=3 for f electrons) 

o 4.  0 	(V
4
)[ 	0] = T[0°4(for 1=3, )+0°4..1=23,1 z=2)} 

+0 • • • 

= Y(180-•420+60+360+60-420+180+180-420+60+360) 

180Y 

Finally consider the element 133(VN33 = 180 Y , this is, 

of course, eqtal to <1=3, 1z=3135p4-30r2z 2+3r 4 i1=3,1z=3 

Using the fact that 11=3, 1
z
=3 > = 	Normalizing 

Factor x f(r) P3 (cos (3)e3i0, 

-"4 < 1=3,1 z  =3135 Z
4-30r2-z24,3r411=3,1z =3 	8 = TT  r 

Thus making use of all the relations derived: 

4 
16380 a = 5940 13= 1801 = 8/11r  giving 

= 	8 1-  •  

16380 
2  

1:1:1502,3 

3 • • • • 
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hence for this particular example 1316. ---C,7,.r4(2/11.15.273) 

For the ground state of rare earth ions, Stevens 

has tabulated all such relations. 	One final comment, 

in the previous discussion it has been assumed the 

0, multiplying factors associated with V4
, 0j and 

4 V(V
6
4) are the same, as Stevens points out, these factors, 

for same Vim , depend only on 1 and are independent -of m, 
a consequence of the Wigner-Eckart theorem. 
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APPENDIX 3  

As Wilson85 has pointed out, the energy of some 

sample placed in a magnetic field is obtained from the 

relation: 

- TdS = dU + 	Al dd. 

Ai being the generalised force exerted by the Sample 

on its surroundings, corresponding to the generalised 

coordinate, ai. 	For a magnetically isotropic sample 

placed in a magnetic field Hx, the above equation 

in the usual notation, becomes, neglecting demagnetising 

effects: 

dU = Tds + HxdMx 

This leads to a free energy G given by: 

G = U - TS - MxHx 

from which the force exerted on the sample by the field 

in some z direction is given by 

Fz 	a  G/ az = mx 3 }ix/ a z 

This holds whatever dependence the magnetisation has 

on the applied field. 	The experimental arrangement 

is 



7c7 

Clearly then, Hx >> Hy or Hz. 	Consequently if the 

body is not strictly isotropic it is still reasonable 

to assume that MxHx >> MyHy or MzHz. 	Neglect of 

demagnetising effects is not serious, as Appendix 6 

demonstrates. 



	 TO 
• SUPPLY 

'.11. ENDIX 4 

The Jarehati power orit used :*o soDply the wagaeL 

current can be eontrolieu 'intzrzally 1  by a tan 

turn 10K helipot, and also has provision for an external 

control. 	In this case one was used which switched 

suitable resistors in place of the helipot. 

When using the internal control the current must 

be manually swept up to or down from some value. 

Particularly during warm up, continually sweeping the 

current is a rather laborious and time consuming 

operation. 	Using the controller drawn below, the current 

can be reset from zero at practically the same value in 

less than five seconds. 

COPPER SWI TCH 

AND    CONTACTS 
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A unit of this type has the advantage that the 

supply is not even momentarily open circuited, since 

R8 is always connected. 	In addition the current can 

only be reduced to zero from the lowest current setting 

i.e• R and R in parallel. 8 



2b 

2 
o
+b 

Z o
-b 

(Z-20)2  

--2-- Hx(Z)d;  

Flux through the coil 
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AP.I'EUDIK 5 

A correction to the measured variation of the 

magnetic field due to the finite size of the flip coil 

can be made on the basis of an approximation in which 

the field gradient is assume6 to be constant over the 

area of the flip coil. 

which is equated to the area of the coil multiplied by 

an average field E (y.) x 0 

1 Z
o+b i (Z-Zo )2 ...—  

7 2 
II 
x 
 (Z 

 0  ) 
	--. 

:41) 	
f 	2b fl. 	Hx

(Z)dz 
/ 	b2 

Z
o
-b V 

Expanding Hx(Z) in a Taylor Series about Z
0 

2 
Hx(Z) = Hx(Z0) + (2-20)11;c(20) + (Z-Z0) IVZ0) + 

2 

and noting that since HT (Z0) is assumed constant ci7:.; 

region of integration_ then the contribution to the 



H 	(Z 
o
) = Hx(20) + x  

b 	(2-2 ) 2 	. 
.f 

Z +b 

0 	1, 

o 

, 	 
o H ) 
2 	x 0 

(Z-Z)* 
, 

2- c,,t, 

in.:7. ,,Igrand from the 	containing tIliq onatt°.ty will 

be r;ero since (Z-2o) Is an odd fuilf:tion 
	

Vence: 

Z +b 
I  
b2 

/ 
(2-20)4  

2b / 	b2 
1 ----- 

 

Zo-b 

  

(z-z0)2  
) H

:t 
(Z 0  )] 

  

the first term simply gives Hx(20) multiplied by the 

area of the coil, hence 

The final term above can be evaluated simply by putting 

b sin 0 = (2-2o) etc, and the above equation becomes 

b2 H 	(Z o) = ftx(2o) + 8 H(Zo) 

  

2 	 1 
H" (Z ) I,: 	0 thus giving Hx(20) o ) 
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AP.i?ENDIX 6 

Estimates of the couples produced by sample misalisn- 

meat. 

Consider a sample in the form of a disc of thickness 

2a and area %132, oriented with respect to the field in 

the manner indicated above, i.e. (x,y,z) are fixed axes 

in the field direction, (x",y",z") refer to axes fixed 

in the sample. 	Perform a small rotation 0 about z 

followed by a  about x', such that 

(x,y,z) —!,;(x',y1 ,z1  = z) 	',= x',y",z") 

with: 

H"= H cos 0+ H sin 0 	Hx cos 0 since Hx >> H or H 
x 	x 	 z 

Hy" = H coo Ouosa-Ilx sin 0 cosa - Hz sina"-Hx sin 0 coso: 

H  lf 
z = Hz 

cos 0 + H
y 

cos 0 sina Hx sin 0 sina 	0, since 

a 	and 0 are small: 

The contribution to the free energy (assuming M =x H) is: 
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fr( 
x (Hx"2 

Hy"2+Hz"2) d "d7"dz" over sample 

X III 	"2 	"2 ""z" sample x +H 	)dx dy d 

Experimentally the dominant terms in the force come from 

the variation of Hx in z, hence expanding Hx" and Hy" 

in a power series about the centre of the sample thus: 

[ a H" }ix " (Z)= Hx" (0) + Z a z" 

Then the above equation becomes:- 

X iff E;),"(0)2 +21.1x 	aHlt" 	aH" 
sample 	

OM-770 Z + (--T-70 2 2 Z Z similar 

terms in H " dedy"dz" 
Y 1 

" 	3 H " ,.2 x ' (0) +2Hx" (0) iTZ~~—)Z + ( sz 2 2 	-1 ) Z ..• 

the integration over dx" and dy" giving the area. 

2a3r,a 
x X 	

Hx 	2 	, a Hy 
= S't a 2 	[ll„2+11 "2] + a 	1: a z oi 

the second term in the previous expression vanishing 

since it is an odd function: Hence contribution to 

the free energy 
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r - 
4".  Volume%L H

x2cos
2
0 + H

x
2
sin2Ocos2  

a 	,3H  , 2 	2 	aH + -j- , 
2 k-a-211,0 4:013 10+(—.T.=)sin200sin2a 2 	o2 

Thus the torque due to misalignment =-Z(Free energy) 

3 0 

2a H 2 e' Volume% • H 22 cos 0 sin 0(1-cos2a.)+ --(- x
) cos0sin0 x 	 3 6 z  

(1-cos2a 

Using the tabulated data for the balance (D.tIriffiths, 

Thesis)77  a couple of one dyne cm is roughly equivalent 

in effect to a direct force of one dyne, thus: 

Tortional force  2 / 2 	
811 

2cosOsin0(1-cos a)kli
x  + a/3(--21)-) 

 

Direct force 

Using Hx = 5 x 10
3 
gauss;a 	z = 9 x 102 gauss/cm; 

a = 0 = 5
o 

and a = .05 ems, the ratio u 3 x 10-3, 

giving a 1/3% effect. 

Demagnetizing effects  

Following the above scheme, and using 

Mx" = Mx cos 0 + My  sin 0 

My" = M cos 0 cos a- M.4  sin 0 cos a - Mz  sin a 

z" = mzcosm f m cos 0 sina - Mx sin. 0 sin a 

Writ,g the contribution, via demagnetising effects, 

of these magnetisation to the free energy as : 
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yi 	V m Iv2 + .44  ,,m  „ 2 
y yz z 

where the N's ate the appropriate demagnetising factors 

d 

Nx" + N " + Nz" = 4 7; 

For a thin nice arranged as indicated in the previous 

figure 

N 	" et N 
y
" 	0: Nz" 	4% 

Hence Torque due to demagnetising fields 	8ItM 2  sin 2a 0 

isinOcosO and the ratio 

Torque 	x .8 Hxsin
2 
 a sinOces0 

Force 	 alix /a z  

which is clearly vanishingly small. 
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APPENDIX SEVEN 

Using equation (7 .9) : 

X= N ZI< - 111
z  li  >Fe 	- '" kTT1 	1  

2 	i 
Z 	< 	I> I e  

E - E. 1' iVi' 	
. 

 

where B= 	e 

-E./kT 
Expand all exponentials thus: 	= 1 	E1/kT + ;(Ei 2 --kT 

The first term in the above expression for 	becomes: 

N Z I 
kT 1- 

<ii 1.171 i>I 2  (1-Fi  /1"-T) 

 

• 00011111. 

 

   

(2J+1)(1 - 1 	I Ei/kT) 
(2j+1) 

kT(2J+1) 	411121 i> 12  (1-Ei/hT) . (1- 
	/ 	-1 

(2J+1)i Ei/kT) 

N1 .  	I < it i-L z 1 i.)-1 2  - 3:7-r Z  E 
i
I <ii 1-tzli >1 2  + 

hT(2J+1)[ . E 
1 	k̀  i  

1-  
1 	Z. E.. El< 1111z 

li>1 23 
(2J+1)kT i  i 	' 

I 
and to terms of 042), this becomes:- 

N 	Zki 11-1z1i >1 2  - 	N 	. - kT(2J+1) i 	h2T2(2.1+1)2  

 

(2,7+1) 1t z  

 

The second term in the expression for X becomes: 



= — 	N 
(2,M.4-1 • 
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12 E. 
1  

kT 
1 

E. 

kT(2J+1) 

E. 2 
) 

E.2 

( 1+ 

 

(kT)2  (2J+1) 

< 	z  1 i '› 12 	1.71E ; 	
1 (-- 
E. 2 

E. — E. , 	2 (kT)  1 	1 

1 
E 

2 kT )2) 

2 E. 	ZE. 

(1f.(2J+1)kT(2J+1) (k11)2! 

• 
T, 	'<id 101

I 
>1 

2 

(2J+1) 	ET 

 

• 2 

 

Zy 

 

(2J+1)(Ei+Eil )I 

     

(23+1)2(kT)` 2 
ilsi 

  

• 
Z E. + terms 0(;.1  ) 

T  

(2J+1)2 (kT)2 

1 
thus to terms of 0(y2): 

   

(2J+1) 

  

 

(23+1)2(kT)
2 

 

kT 

 

(23+1). I  E .1 < 1v. 	i 1).1 c . 	1 
2 	EE. 	Z 1< i Iv. 1 j,>12  

i0i' 



2 
I uz I i 	

1 .7 

kT(2J+1) 1,1' 	(2J+1) 2  (kT) 2  

For _ C C _ CA 
T+A T2  

then 

[(23+1) 
i 	1 9  

A . 
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Combiaing tb two sets of terms: 

1 
[ (23+1) 	E 	iluzi i v >,2  - 	E. . 1.19 1 

2; 	Z i,ii).( i,i  kiktz11..) , 	• 

(23+1) 1  . 	
ii.. 

z 
I1>i  2 

1  
2; 	 q 

however .-:i 	i s> a .1:11JJ i ' >, and i i  , I <i 1J21 i'>1`Ei  

Zi 	2! . 1  , = 	. 	. 1<i 1 J2I 	1`. E.109  1,1 	1 

hence 
Z 	 Z 	, 

1,1' 	E.I<i luzi >1 - 1 iT 1 	 a 	i,i  , E. < ii J22  i 

and for cubic symmetry at least 

	

1 J21 . 	. 1 Z E. 	J.24. J2+,2 i 1>  
1," 	2 1. 	. • 1 	x 	y u2 

1 Zf 	3  (J+1))  
3 = 	. 3) > - 3 14  • - 1,1 

Clearly then, for cubic symmetry, A is zero. 



:eff= - g, % (J. —F) F(unit vector) --- F 
(J.F) F P  'J B- F(10+1) 
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APPENDIX EIGHT 

A discussion of hyperfine effects. 	Neglecting 

the contribution associated with the nuclear term, i.e. 

since gI  10-3. 

In (I, J, F, NF ) representation the effective 

moment is found (in the approximation in which nuclear 

effects are neglected) by projecting J onto F : 

Thus: 

then 

(Ilefl)2 = neff,lleff= g21111 2 	(J.F)2F.F = 	(g1LE(J.F)) 2 

(F(F+l))2 	F(F+l) 

In (I, J, HI, HJ) representation, i.e. when the hyper- 

fine coupling is broken, then: 

g jlIBJ and (ne11)2  = g2uB2J(3+1) 

	

ileff(F) 	(.1.F)2 
Hence 

	

efgJ) 	J(J41)F (F4-1) 

The form of hyperfine coupling is usually represented 

as a I.J. 
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1. Positive 'a'  

In the low temperature limit, this situation favours 

an anti-parallel I and J 

(a) 

In the lowest energy configuration: 

F = J I 

then 2(J.F) = (F)24.(J)2.:(,)2 = 	 _ p(F.1.1)+J(.34.. 1) I(I+1) 

(J-I)(J-I+1)+J(J+1)-I(I+1) = J2-2JI+I2+J-I+J2 

+ J-12-I = 2J2-2J1+2J-21 = 2(J(J-I)+(J-Ifl 

= 2(J+1)(3-I) = 2(J+1)F 

hence 1-leff(F) 

ileff(J) 

(J4.1)2F 2 

J(J+1)F(F+1) 
+1). F 

1  

1 + 1/J 
+ 1/F J (F+1) 

since ,J > F, it. view of antiparallel coupling, then 1/F 

1/3 	1-Lef(F) < licff(J) 

(b) 	III > IJI 

In the lowest energy configuration: 

F = I - J 

then 23.F = (I-J)(I-J4.1)+J(3+1)-I(I44) - -2JF 

hence ncf.f(F) .32F2 1 

p,e'lf(J) 	J(.1+1)F(F+1) 	(I.:- 1)(1+1) 

•°• 
	1f(F) < 1-tiff(r)  
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2. pegative t a l  

Implies parallel coupling at the lowest temperature, and 

whether 
j J J 41.1 or the other way 

F = 

2J.F = (J+I)(J+1+1) + J(J+1) 	1(1+1) - 2J(F+1) 

7 
then 	Ileff(F) 	rJJ2(F4.1)2 	4  1 	1/F 

liefi(J) 	J(J+1)F(F+1) J  1 	1/J 

Parallel coupling implies that F >3, hence 1/3 > 1/F 

Pef 1XF ) 	< Ileff(J) 

These results imply that the breakdown of hyperfine 

coupling should give rise to (M-II) curvature of the 

opposite sense to that observed. 

Estimating the effect  in Holmium 

For Po J=e, 1=7/2110, and  a is positive111 

Then, in the above approximation : 

IFt = J-I = 9/2 and Ilefl(F)/ ilefgJ) = 9/ 

- about a 4% effect. 

However such an efl:ect would have little chance of 

being observed due to the complicating effects of nuclear 

-4f electric quadrupole interaction. 
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EFFECTIVE MOMENTS DERIVED FROM NOMINAL COMPOSITIONS 

The compositions quoted in Chapter 7 are nominal . The effective moments 

derived from the high temperature slope of the inverse susceptibility versus 

temperature plots, using these compositions, are given below. 

ALLOY 	 Effective Moment (in Bohr Magnetons) 

Ag - 0.8 At .% Gd 
Ag - 0.45 At .% Gd 
Ag - OA At . % Gd 

Ag - 0.55 At . % Tb 

Ag - 0.86 At .% Dy 
Ag 	0.51 At .% Dy 

Ag - 0.35 At .% Ho 
Ag - 0.25 At .% Ho 

8.0 
7.6 
8.0 

9.5 

10.8 
10.9 

10.2 
11.3 

Ag - 0.28 At .% Er 	 9.8 
Ag - 1.0 At .% Er 	 9.8 

Ag - 0.5 At.% Tm 	 7.6 

Ag - 0.5 At .% Yb 	 diamagnetic 

Au - 1.0 At .% Er 	 9.2 

Au - 0.3 At .% Tm 	 7.7 

Au - 1.0 At .% Yb 	 4.3 
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