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ABSTRACT

Lésses iﬁ the overall flexural and shear stiffnéss of plated
grillages are studied with particular reference to the double—bottém
strﬁcturé. It is shown that in longitudinally framed ships, iosses
in f1éxura1>sfiffness can be of the order of 157 in the longitudinal
direction due primarily to shear lag, and can be in excess of 20%
in the traésverse directiop-dué primarily to local panel bending.
The lattef effeét-is analysed by considering the large deflexion
béhavioﬁr of initially deformed shell panels with restrained edges.
Losses in shear stiffness due to perforations are shown to be of the

order of 507 for hole sizes typical of the double-bottom structure.

Finite difference solutions to the‘orthotropickplate equations
‘including sheaf deformation are given to show the effect of shear
deformation on the behaviour of rectangular plated griliages under
transverse and in-plane load. Fléxural boundary conditions véfying
from éimple support to fully clamﬁed are treated. Within the
_practical range of plate dimenéions the effect of shear deformation on

stresses and deflexions can be of the order of *40% andv+1OOZ respectively.

The above treatments are combined in order to analyse the results
of tests conducted Qn a one-eighth scale steel model of a section of
the double-bottom of a typical dry cargo ship. ’ The agreement bECWGGD
’ measured,ahd theoretical results for oﬁerall and local béhaviourlis‘
satisfactory up to aBouf 0.6 of the assumed WOrKing load. At this
lﬁad non—linearity became evident in overall.Behaviour. Surface
yielding of webs began at about 0.5 of the assumed workihg load and
heart of pléte yielding of the webs and surface yielding of shell
panels began at about 0.75 of the assumed working load. The

~ ultimate load for the model was 1.35 times the assumed working load.
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NOTATION

Cartesian co-ordinates - z normal to the plane of

. the plate, x and y parallel to principal axes of

flexural symmetry
Deflexions  of middle Surfacé of plate in z direction

Initial deformation of local panels in the z direction

"Initial deformation to plate thickness ratio at

centre of panels

Intensity of lateral loading

Combined transverse pressure and in—plane load
parameter

Bending mqments per unit width of plate in x and y
directions on y-z and x~z planes respectively
Twisting moment per unit width of plate

Shear force per unit width of piate in z direction
on y-z and x~z planes respectively

Tensile force per—unit width ofrplate in x and y
directions on y;é and x-z planes respectively

(compression negative)

Shear force per unit width of plate

Longitudinal in-plane thrust applied to double-bottom

' model expressed in tons/ram (13 rams each end)

~ Flexural stiffness of plate in x and y directions

respectively; anticlastic bending unrestrained
Flexural stiffness of homogeneous isotropic plate
with anticlastic bending restrained

Twisting stiffness of plate
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S;, Sy o ' Shear stiffne;s;of platé.in x and y directions
respectively

E _ : _ Young's modulus for plate material

ﬁx,bﬁy : Poisson's ratios associated with bending moments in

x and y directions respectively

o : Poisson's ratio for plate material
°h . o : Thigkness'of homogeneousAisotropic platé
a,.b - Length and width of ﬁlate in x and y directions-
respecti&ely |
vkix’ kly f Deflexion spring stiffnesses along x = * a/2 and

y =+ b/2 platefboundaries respectively

9%’ k2y . Normal rotation spring stiffnesses along x = i.a/2v
) and j =+ b/2 plate boundaries respectively
kS;; ksyb v“ 7 Téngential rotation spring stiffnesses along
x =% af2 and y = + b/2 boundafieé respectively
‘ k* V o » External rotafional restraint of local panels due to
edge stiffeners
K ‘Effective rotational iestraintrof local pénels-taking
accounf of k* and continuity |
‘Alx/blfxly/bl | Shell shear breadth factors in x and y directions -
‘  respectively
. A2x/a,.l2y/b - Shell buckling breadth factors?in X andvy directions
_respectively
F_ Fy - . Effective web area factors in x and y directions
' -fespectively.
be’ be ' Outerrsheli panel bending Streéses in x and ¥y directions
respectively
. Uxm, oym ' Outer shell panel membrane stresses in x and y
'directions respectively
Exi’ Eyi Inner shell surface strains at shell-web intersections

in x and .y diiections fesPectively

3
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E 5 € Outer shell surface strains at shell-web intersections
in x and y directions respectively

Oy T , Theoretical applied web bending and shear stresses

Yy Y  Shear strains in the x and y directions respectively

NOTE: For definition of non~dimensional orthotropic plate parameters

" .- see page 73.
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CHAPTER I

INTRODUCTION

1. GENERAL

The basic structural elements in a doubly- plated grillage are
thg plating ér flanges and the-grillage or web system. Depeﬁding
on ﬁhe pafticular design it‘may or may.not bé necessary- to ensure
the efficiency of these eiements by local stiffening. The plating
is usually continuous over the web system, except for isolated
openings to ailow access through or into the system. The webs
may be solid or perforated:and fabricated from sheét or rolled
sections. In the latter case the section flanges will contribute

to the plating flexural stiffness.

This form of construction is often dictated by the function of
the structure. It has the advantage, as compared to single plating,

of economy due to efficient material location but, where there is a

choice, this must be wéighed against difficulty of fabrication.

Thé‘flange and web plating is subjected to a combined stress
system which arises from local (discrete panel) deformation,
deformation of the grillage and deformation of'thé wﬁole structure.
While it is theoretically bossiblé to incorporate all these médes
" of deformation into a-single solﬁtion this.is not at present a
practiéal proposition, mainly because of the computer Storagerand
time which would be required. Even if it were possible at the
present time any such facility would only be of use as an analytical

tool since, for design purposes, the costs involved would be
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prohibitive.  For practical purposes some form of idealization is
required to take account of the loss of effectiveness due to
local deformation in an overall solution which must then be

followed by a separate local stress analysis.

This work is concerned with extending this practical approach
to incorporate recent advances in the theoretical analysis of
local behaviour in an extension to the orthotropic plate theory for

overall behaviour, and to relate the results to the practical case

of a ship's double-bottom structure.

2. THE DOUBLE-BOTTOM STRUCTURE

" The double-bottom, which constitutes the bottom of the hull of
many ships, including most dry cargo vessels, 1s made up of inner
and outer shells the thicknesses of which can vary, depending'on
the overall size of the ship, from %‘fo 1! ins. ‘The shells afe
separated by a web system which can be from 4 to 8 ft.deeptand is
uéually of the order of ! in. tﬁick. ‘Tﬁe'webs may be solid, or
-perforétéd for lightening and inspecti§n purposes. Webs in the
transverse direction, spanning between the sides of the ship, are
calledlflqofs'and are spaced at from 5 to 10 ft. centres. Wébé
in the iongitudinal direction are feferredAto‘as intercostals, =

except for the centre web which is called the centre girder, and

are spaced at from 10 to 15 ft. centres.

Both shells and webs are usually stiffened. If the shell
stiffening runs longitudinally the bottom is said to be longitudinally
framed, if it runs ttansversely, transversely framed. Most modern

ships of any size are longitudinally framed. The inner and outer
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shell stiffeners. are usuaily connected by a strut betweén floofé

to maintain shell spacing. There are also 1océl web brackets,
between floors, to ptovid; additionai stiffness immediately
adjacent to the sides of the shiﬁ and the centre girder. Bulkheads,
which are trangverse diaphragms subdividing the shipg hull into
cogpartments, are spaced at between one and twb times the width of

the ship.

3. MODEL OF THE DOUBLE-BOTTOM

Because of the evolutionary nature of the development of ship
design criteria, some practices have arisen which, although proven
safe under service-con@itions, have only a sémi—rational basis.

Iﬁ order to clarify such issues with respect to the double-bottom,
a program of research was initiated at Impériél College invol%ing
both theoretical analysis and the fabrication and testing of a model
of a section of a typical double—botgém. This model was based on
the midshiﬁ section of absingle-deck dry—cargo ship, 400 ft. long,
56 ft. wide and 33 ft. deep, designed to Lloyd's 1956 Rules by

the staff of the British Ship Research Association. . It was
fabricated in steel to one-eighth scale and represénts that
section of the bott6m bounded by the si&es of the ship apd two
adjacent bulkheadé. In order to‘finalise.fabrication techniques;
construction of the main modei was preceded by a éingle-floor model
to the same scale. This represented-a transverse section
incorporating one floof only and was tested as a simply supported
beam for various loading conditions. The latter work was reported

‘by Chapman, Ho and Taylor (1).
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'The external load, under service conditions, on sections of
the double-bottom bounded by the sides of the ship and two adjacent

bulkheads is primarily:

(i) Transverse loading, due to water pressure from the outside,

and cargo from the inside.
(ii) Longitudinal end thrust due to overall bending of the ship.

The model was tested under combinations of the above loading
and also under local transverse load, such as would occur duriag

dry docking.

The effective boundary coﬁditions,at the sides aﬁd bulkheads of
a section of the double-bottom of a real ship,vary from ship to ship
and with the cargo loading. At the sides, since the doublefbottom
is usually much stiffer than the hgll sides, the condition may-
approach simple support. At the bulkheads the conditilon depénds
| primarily on the cargo load distribution between holds. For all
holds equally loaded the effective restraint will approach the fuliy
clamped condition whereas for alternate holds loaded the effective

restraint will be considerably relaxed.

The model wés supported on clésely spaced pin énded rods on all
edgeé.. At tﬁe sides, wﬁich.were f;eé from any other restraint,
this simulated simple support. Atvthe bulkhead ends, which weré
stiffened beyond the line of the rods to ensure even distribution
of the external in—plane load, the effective condition was partial

rotational restraint.
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4. ANATLYSIS OF DOUBLY PLATED GRILLAGES

4.1 Overall Analysis

In the past, stresses due to transverse bending were evaluated
using a beam or grillage approach. Only recently have attempts been
made to allow for the substantial contribution to bending and

" torsional rigidities due to continuity of shell plating.

For the particular case of the double-bottom Schade @, 3, &)

approximated the structure as a homogenous orthotropic plate, the
stiffnesses of which are the same as thOSe.of the -actual double-bottom,.
assumed to be uniformly spread. By means of an'energy metﬁod Schade
6b£ained solutions for the orthotropic plate's différential equations
and presented design curves and tables for double-bottom structures,
from which deflections, bending stfessesAand shear stresses can be
estimated. The boundary cbnditions of the orthotropic’plétés
éonéidered were, all edges simply supported,vail edges clamped or

two opposite'edges clamped and the others simply supported. Provisioﬁ
is made in the analysis to account for the variation in bending
stiffneéé across the width of the plate for the cases when the centre

girder section is stiffened by a keelvplate.

Orthotropic plate theory was later applied byVChapmén (5)

to
the overall behaviour of doubly-plated grillages in order to
investigate the influence of the distribution of material between

the flanges and the webs. The theoretical results obtained were

confirmed by a model test.

- More elaborate model tests were subsequently carried out and

‘reported with reference to stiffened plates in ship structures in
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W, ©, 0, &,

conjunction with theoretical analyses
survey of recent developments in the structural design of ships

and a comprehensive 1list of references is given in Reference 9.

The orthétropic plate approach gives realistic design criteria
provided allowance is made for the influence of the non;homogeneity
of thé real structure. Non;homoéeneity has two bagic effects.
Firstly, local stress systems developed_in‘transferring load between
adiacent structural elements result in local diétértions which must
be accounted for in the overall flexural stiffhess parameters; These
effects are digcussed in the following section. Secondly, the
relatively wide spacing of webs results in effective shear stiffness
parameters which are small enough to induce significant traﬁsverse
shear deformation. The latter-aspeét of stiffened plate behaviour

has received very little attention.

In this thesis, numerical solutions to the equations of Libove

£ (10) for the linearised small deflexidn behaviour of flat

and Batdor
sandwich plates, including sheér deformation, are presented for a
range of plate énd boundary parameters and severai loading ;onditions.
This pafticular theory may be fegarded as a natural extension of the
approximate theory for incorporating shear deflexion in beams (11).

A plated griliage can be idealised as é.sandwich plate by considering

the webs as corresponding to the sandwich core material.

The consideration of deflexion due to shear requires the
specification of one more boundary condition than in ordinary plate

theory (12)

. Libove and Batdorf derived the resultant three boundary
equations for each edge in terms of an idealised discrete spring

system. By appropriate épecification of spring stiffnesses it is

possible to approximate continuous plate systems and plates’ supported
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on edge beams.

The plate equations are derived to allow for orthotropic plate
propefties, making it possible to consider plate strﬁcturesvwith
differing flexural and differing shear properties in the twa-
orthogonal directions. In evaluating equivalgnt stiffnesses the
ioSs of overall effectiveness due to local behaviour musf be taken
ihtq account. Provided‘this is doné on a rational'basis,a ﬁide

range of structures can be analysed by the orﬁhotropic plate approach.

'

Existing solutions which take account of shear deflexion are
confined mainly to the simply_supported boundary condition which

incorporates zero tangential edge slope. These include solutions

(13)

for isotropic plates by Ericksen » Who considered rectangular

plates under uniform transverse load, and by Yen, Gunturkun and

(14)

s who considered square plates under uniform and concentrated

(15)

Pohle

transverse load. Reissner demonstrated that for the case of

isotropic plates with simply supported edges, subjected to uniform
transverse load, deflexions but not stresses are modified by the

inclusion of shear deformation. For orthotropic plates, Raville (16)

considered the effect of shear orthotropy in rectangular plates under

uniform transverse load and Robinson (17) gives solutions for combined

transverse and in-plane load for a limited number of cases of flexural
and shear orthotropy in'rectangular plates. . In the presence of
orthotropy it is shown that both deflexions and stresses are affected

1

by shear deformation.

The simply supported edge condition incorporating zero tangential

edge slope implies that edge twisting moments are fully developed.

' S .. . . . 8
The zero edge twisting moment condition has been considered by Kromm (18)
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for a

for a uniformly loaded square plate and by Schafer (19)

.sinusoidal heap on a rectangular plate. Carley and Langhaar (20)
extended Schafer's solution to cover any symmetric load distribution.
Numerical results given with these solutions are for relatively

high values of shear stiffness and intermediate values of edge

restraint against twist have not been consideréd.

There are also isolated solutions for square isotropic clamped

plates under uniform transverse 10ad,(21)’ (22)

. Thése'show fhét_.
thé independence of edge slope due to shear deformation ffom’normal
rotational edge restraint reSuits in significant modification to
stresses as well as deflexions. Orthotropic plates with edge fixity

have not been treated and intermediate values of normal rotational

.edge restraint have not been considered.

' Since analysis of plate behaviour is considerably more involved
ifbshear defo?mation is considered, it is desirable to have_a.guide
as to whether the additional work is justified. With this objective,
solutions are now presented which show the influence of shear
deformation on stresses and deflexions for a broader range of plate

parameters and'boundary conditions than have previously been treated.

4.2 Local Analysis

4.2.1 Shell Panels: The basic double—Botfom shell element is

.bounded on two (tranéverse) sides by adjacent floors;and on two
(longitudinal) sides by adjacent shell stiffeners or a shell
stiffener and an intercostal. Typical dimensions are 40 in x 100 in

with thickness varying from } to 1{ ins. and the panel may have

an initial lack of flatness of the order of ¥ 507 of the plate

thickness,at mid-panel relative to the sides. These panels are



21

subjected to transverse load due to water pressure on the outer
shell and cargo load on the inner shell and also biaxial and
longitudinal in-plane loads due to transverse bending of the

double~bottom and overall bending of the ship respectively.

The local stresses in the paneis can be derived from an analysis
of the behaviour of a.discrete initially deformed plate under combined
load, provided the influence‘of continuity is accoﬁﬁted for in the -
bogndary conditiéns. The type of plate theory to be used depends,
for a given degree of accﬁracy, on the magnitude of the total
deflexion relative to the plate thickness. Three categories of

solution can be defined:

(1) Small deflexion solutions, which assume that the deflexions
are so small that the transverse and in-plane load behaviour

-

can be computed independently and superimposed.

(ii) Linearised solutions, which assume that the defiexions are
large enough for the interaction between in-plane load and
transverse deflexion to be significant, but étill small
enough for second order terms to be ignored. This implies
that membrane stresses remain constant during deformation
and the.beﬁéviour,is 1inear‘with increments of'transverse

load.

(iii)Large déflexion salutions, which assumé that the deflekions
are large enough for second order terms to Be éignificant
vin which case the membrane stresses do not remain constant
throughout the plate and the behaviour is non-linear with

increasing transverse load.
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The historical development of plate analysis in general is

well documented in the literature. In the field of ships plating

in particular, one of the earlier workers was Conway (23) who

derived linearised solutions for initially flat, simply supported

rectangular panels subjected to uniform transverse pressure and

(24) extended the

(25)

uniaxial tension and compression.  Lockwood
metﬁod to include clamped square plates.  Bleich applied the
more accurate large deflexion theory to solve cases of initially

flat, square, simply supported panels subjeéte& to similar loading.
Hé concluded that in practice the deflexioﬁs were unlikely to be of
sufficient magnitude to warrant the involved large deflexion analysis,

and that linearised solutions could be used to give results of

acceptable accuracy.

(26)

This conclusion was queriéd by Aaiami who derivéd solutions
for various combinations of side  ratio, loading, boundary‘cond?tions
and initiéi deformation. _He concluded that while the 1ineérised
solution proposed by Bleich for simpiy supported plates yields
feasonabiy accurate fesults when the plate is acted upon by a uniform
edge compression with unloaded edges free from stress, this approach
may be grossly in error for other boundafy-condition§. Also, as
pointed out above, practical panéls mayAhave initial deformations of the

order of half the plate thickness which automatically makes the

solution sensitive to non-linear effects.

While Aalami's work showed the necessity of conéidering large
deflexion effects, practical applicationbto double-bottom panels
was dependent on an accurate assessment of the effective boundary
" conditions. Two flexural and two membrane conditions require

definition. Of these four, the flexural condition for rotational
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restraint is the most difficult to assess. This restraint
depends on two factors, namely, the restraint afforded by continuity
of plating having regard for total deflexion in adjacent panels,

and that given by the shell stiffening. Murray (27), (28)

considered
this problem and produced a semi-emperical approach based on observed
deformations for cases where the initial deformation was of the

same sign in adjacent panels.

In this thesis a more analytical approach‘to the-assessment_of
effective rotational restraint is presented and the results are
utilised,in the computer_pfogram developed by Aalami, to analyse
the non-linesr transverse deformation behaviour of local panels in
the do&ble*bottom model.  This analysis provided an estimate of
the loss of shell effectivéness iﬁ resisting in—plane load to be

used in the analysis of overall behaviour of the model.

4.2,2 Web Panels: As part of the overall investigation into
the behaviour of the double-bottom structure being carried out at
Imperial College, of which Aalami's work was a part, the stress
distribution, buckling and post buckling behaviour of perforated
plates in shear was studied by Ho (29). Historical development
of_analysis in this field is outlined in the latter reference.
Finite difference solutions for étress distribution in square panels
with cehtral circular perforations of variable size were obtained
for two limiting boundary cénditions, hamely,.edges festrainedrto
remain straight and uniform applied shear stress. Numerical values
were also obtained for the classical solutioﬁ for uniform shear

(30)

applied to an infinite plate with a hole and for Wang's solution

for uniform shear applied to a discrete square plate with a hole.
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In practice, the double~-bottom webs are not discrete square
panels with a single central holé but, as in the case of shell
panels, a discrete panel gnalysis can give satisfactory results
provided effective boundary conditions are realisticaliy evaluated.
It appeared possible, thét'the rigidity of the top and bottom shells
and the web stiffening, could result in a condition_approacﬁing ‘
edgés réstrainéd to remain straight for discrete‘panel elements

encompassing a single hole.

An attempt was made té apply the theory.td teéts on the singie
floor model described previously. It was found that stresses
.meésured at the circumference of the holes agreed quite well with
a soluéion for a discrete plate with rigid edges but better still
with the classical solution for a hole in an infinitg plate subjected
to uniform shear. It appeared thét deflexion dué to shear, which
" was a measure of the additional flexibilityidue to perforation, agreed
best with a solution for é discrete plate with'edgeé subjected to

uniform shear stress.

Although it was pointed out thaf the overall defiexions were
influenéed by loss of flange effectiveness.no attempt was made to
_eliminaﬁe this effect before extra;ting deflexion dué to shear.

For this‘réasbn the value of thg-agreement noted as»regards deflexions
is suspect. 'Subject to further verificagion, it would Seem that

the infinite plate éolution; which falls between the‘limiting cases
mentioned, isithe most realistic. It was noted that the comparison
of theory and experimeqt must have been influenced by the fact that
the depth of the floor panels was not equal to the hole spacing
.and that there were additional perf;rations to admit lohgitudinal

stiffeners.
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In order to clarify the above issues, a test on a beam
incorporating the same web perforations and stiffening as the
transveise floors, but with flaﬁges such that loss of flange
effectiveness was negligible, was carried out as part of the

present work.

4.2.3 Shell-Web Interaction:  The web spacing to overall span

ratios along lontidudinal and transverse axes of most doublé?bottpm
structures are such that shear lag causes significant loss of overall
beﬁding stiffness, This is not strictly é local éffect since it
depends partly on the overall transverse load distribution. Shade(Bl)
considered the particular case of ship structures and derived

design curves for Several typical cases. Unfortunatley, these
solutions are'not,sufficigntly genéral'for direct application to

the double-bottom and therefore, as par; of this work, Shade's

theoretical approach has been used as the basis of a computer program

from which the required results were obtained.

5. SUMMARY OF OBJECTIVES OF THIS INVESTIGATION

5.1 To integrate, and extend where necessary, existing work om
~the analysis of loss of overall stiffness in plated grillages due
to local deformation, with particular reference to the double-bottom

structure.

5.2 To investigate the effect of shear deformation on the overall
behaviour of plated grillages by obtaining numerical solutions to

the orthotropic plate equations including this mode of deformation.

5.3 To utilise the preceding work in the analysis of tests on a model
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of a section of the double-bottom structure in order to gain a

better insight into both the overall and the local behaviour.
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" CHAPTER 2

MODEL AND TEST SET UP

1. GENERAL

| Basic details of the double-bottom model are given.in the
Introductioﬁ. Work on the assembly of the model, which was done at
Impériai College, startedAin 1959 undér the supervision of P.F. Taylor.
When construction was only partially completed B. Aalami took over the
supervision and was responsible for strain gauging the model. Aalami
also désigned and supervised the construction of the t:ansverseAload
A rig; In 1965 when the model was in position and almost ready for
‘testing it was handed over to the author who éuperviséd all testiné
and>was responsible for éome modifications.b The latter included
the installation of tension links in the corners of the model to resist
l"lift--off" and ;he installation of thé in-plane load ané the local

transverse load test arrangements.

_Althbugh much of the theoretical work discussed in latér Chapters
is of general application it was developed with the primary purpose
of analysing ﬁhe double-bottom model. This applies‘particularly to
the analysié gf local’behéviour and for this reasoﬁ it is desirable
that the readef be familiar with the conteﬂts of this Chapter before

proceeding to Chapter 3.

2. DESCRIPTION OF THE MODEL

Figure 1 shows the principal dimensions and some details. of the

model. Additional.details (web perforations and local stiffening)

1
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are given in Figure 2. The 0.064 in. and 0.080 in. plate thicknesses,
‘which were determined by the availability of mild steel sheet, correspond
closely td the correct scale thicknesses for the principal structural

members.

Figure 3 showsbthe model prior to attachment of thé inner sﬁell
and gives an appreciation of the complexity of‘the‘double—bottom 7
strﬁcture. Figurés 4 and 5 show details of. the sﬁéli and web
stiffening. »Figufes 6 and 7 are inner and outer shell views 6f the
co&p}eted model.  The inner.sheil view shows the margin and bulkhead
bfackets_which stiffened the upstanding edge Tee section at inter—
sections with the main and bracket floors at the sides, and the

longitudinal webs and shell stiffeners at the ends.

3.  FABRICATION OF THE MODEL

The mainrproblem in constructing the model was to attéch the
second skin after the remainder of the structure had been welded,
since it was not possible to weld internally. Various spot-welding
methods - vere considered, but all suffered from the disadvantage that
the web members WOu;d require toAbe flanged onitheirvfaying edges, and
also, that the connexions would be intermitteht. Fﬁrthermore the

jigging of components for welding would have been difficult.

To achieve conﬁexions as nearly continuous as pgssible, with
access.from outside the model only, a method was devised in whicﬁ the
faying edges of all members attached to the bottom shelliand inner
bottom (i.e. centre and intercostal girders, floors, bracket‘floors,
aﬁd longitudinal stiffeners) had prbjecting teeth machined in their

edges. These teeth fitted dinto corresponding slots machined in the
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inner bottom and bottom shell plating.‘ Thé depth of a tooth was
'eqﬁal to thé thickness of the piate into whiéh it fitted, so that

when assembled the top of the tootg was flush with the outside of the
élafing;‘ The plate was then welded in position by a run of weld along
the top‘of the tooth»on the outside of the plate, making a continuous
connexion over the length of fhe tooth. ‘ In general the tooth length

was about 3 in. and the space between teeth varied between 1 and 2 ins.,

the closer spacing being used where high shear stresses were expected.

Consideration was given to attaching one skiniby fillet welding,

-but it would have been difficult to manipulate an electrode in the

cramped spaces inside the model, and some parts would have been completely
inaccessible. Furthermore, the distortion of the plating would have

been greater.' Both skins were therefore slotted and welded externally.

To facilitate correct alignment of the web members it was
convenient to provide half-depth slots at. their inﬁersections; eggbox
fashion, In this way the web structure was self-jigging and could be
accurately assembled and welded;before the.plating was added. The
longitudinél stiffeners and the channel étrﬁts were prefabricated with

the web structure.

Cooling was effected by applying a jet of compressed air to the
welds after the slag had been chipped away. Each weld was individually
cooled before proceeding with the next weld. A welding sequence was

evolved, during construction, to compensate for the observed distortions.
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4. LOADING ARRANGEMENTS

4.1 Transverse Loading Frame

Details of the transverse loading framé are shown in Figure 8.
Transverse load was transmiﬁtéd from the edée Tee braﬁkets, via a
system of vertical rods, to a stiff reqtangulaf box section frame.
This frame was tied to three transverse wide flaﬁged beams which were
friction bolted to six solid circular steel cdlumné. These columns
reacted against the "stroﬁg floox". - Tﬁe seating betweeﬁ the box
section and the beams was packed to ensure a uniform distribution of load.
Despite the.rigidity of this arrangement, small but finite deflexions
of thelrig due to transverse load were recorded. Figure.Q éhows the

loading frame bolted in position for a transverse pressure test.

4.2 Attachment of Model to Box Section Frame

The vertical rods, which can be seen along the sides aﬁ& ends of the
model in Figure 9, were located on tﬁé edge Tee sections in line with
each margin and bulkhead bracket; The rods were seafe& as‘showq.in
Figure 10. Rods at the centres of each edge were restrained égainst
movement parallel to their respective edges. The mé&el WaS‘therefo:e
restrained in_space;aléng both,horizontal axes but the edges were freé
to translate normal to themselves. The. restrained rods were housed
in the cixcuiar appendages visible on the uhdgrside'éf.thé box section

frame in Figure 11. : | j

The corners of the model were restrained vertically by links which
could develop tension and therefore resist corner "lift—off" under

transverse load. These links were articulated to minimise lateral
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restraint at the cormers, as shown in Figure 10.

in the unloaded conditions‘the weight of Fhe model was taken by
20 adjustable coil springs spaced at. intervals around thé edge of the .
model and attached to the box section frame. - These springs were
tightened prior to testing'SO'that tﬁe model was held firmly against
the rods, which were themselves adjusted so that all rods were firmly
fseafed.  This minimised the effect of local sléckness on the overall

reaction distribution.

4.3 Transverse Pressure Loading

Transverse pressure was applied to the‘flét portion of fhe oﬁter

bottom by means of a pressure bag, fabricated~from 1/16th. in. sheets
~of rubber and clamped between steel bars at the edges. The bag was
opérated by water; Figure 12 shows this bag in position on the

floor prior to installation of the model. With the preséure bag
in position the model was placed on top of the bag'as shown in Figure 11.
The 1oading frame beams were then 1o§efed and clamped in‘position such
that, when the model was attéched to the box section frame there was

a gap of ‘about 0.75 ins. to be taken up before water pressure became
effective. In the foreground of Figure 9, which shows the rig‘in
readiness for a transverse 1oad'£est, can be seen.thé arrangement gsed
to'regulate franSVerse pressure. AThis incorporated a gravity operated
safety valve by means of which, with the iﬁlet valve opeﬁ, the pressure
automatically cut out at within about 0.1 p.s.i. of the required load.
The final adjustment, made with reférence té a water manomefer and not
the dial gauge shown in Figﬁre 9, was achigved by hand operation of the
“inlet valve. Once any surge had damped out the pressure bag was
séaled off and always remained stable within about 0.02 p.s.i. of the

required load.
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4.4 Longitudinal Thrust Loading

Longitudinal thfust was applied, in éombination with transverse
pressure, by means of 26 = 20 ton capacity lapped.rams, 13 at each
end. - They were located so as to distribute the load uniformly across
the width and through the depth of the modgl. Final adjﬁstment was
achieved by means of fhe adjustable ram seatinés shown in Figure 13.
Figure 14 sﬁows details of a ram in position. The rams reacted against
concrete piers bolted to the strong floor. Figuré 15 1s a general
vie* of the,longitudinal thrust rig at one end of the model.  The rams
were operated by an Amsler loading cabinet With a piping system
arranged to load-both ends of the modéllsimultaneously and thus minimise
differential thrust. Ram pressure vas adjusted and maintained to

Witﬁin 0ﬁ01 tons/ram.

4.5 Local Transverse Load

Local transverse load was applied along the centre girder, at
points of intersection with the transverse floors, by means of 10 ton
capaéity lapped rams held vertically underrthe'model.’ iThe transverse
beams, box section frame and model had breviously been raised and
reclamped so that the underside of tﬁe»mgdel waé 35 ins. clear of the
strong floor. - Figure 14 gives details of the ram sef up.r_ The pad,
seated on top of the rém, was designed to distribute load sufficiently
to avoid a pfemature local web failure. Figure 16 is.; view of several
rams in position under the model. Figure 17 is a génefal view of the
first local transverse load case of 8 rams, one at each floof. Tesfs
Wére conducted for four different cases, obtained by successively

removing rams in pairs from the ends of the line. As in the case of
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the longitudinal thrust load, the system was operated with an AmsSler
load cabinet reading to within 0.0l tons/ram and connected by a piping
set up arranged to ensure, as nearly as possible, symmetrical load

application.

5. . INSTRUMENTATION

5.1 Strain Measurement

Strains were measured using electrical wire resistance gauges
Bonded to the model and the supporting rods ﬁith epoxy based adhesive.
Figure 18 shows the location éf web.gauges. Figure 19 shows the
location of gauges at intersections of the inner and outer shells with
longitudinalvand transverse webs. Figure 20 shows the locétions of
gauges on stringers and on centre lines 6f threé outér shell Panels.
Figufe 21 shows the rod numbering systemvand the location of the rods

which were strain gauged to measure reactions.

' 'Strains were recorded automatically at the rate bf 10 gauges per
second by a "Solartron" data-logger which had a specified semsitivity
of * 2 microstrain. Temperature compensation was provided by dummy
gauges bonded to steel plate. Output from the data-iogger waé of two
forms. A printed outpﬁt, which wés usé& as a guide to’criticai
behaviour during tests, and a punched tape-oufput, which was sent’

directly to the computer for reduction.

5.2 Deflexion Measurement

Local deflexion was measured for three outer shell panels using

inductive displacement transducers located as shown in Figure 22.
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They were held iﬁ a frame resting on the inner shell of the model.
Contact with the outer shell was provided by { in. diameter extension
spindles attached to the transducers and paésing through holes drilled
in the inner shell. These spindles seated in moulded recepticles
bonded to the inside of the outer shell. : The transducers had a
travei of 0.5 ins. and deflexions were measured on a meter which was

read to a specified accuracy of * 0.001 ins.

Overall deflexions, transverse to and in'the,plane‘of the model,
wege recorded at the locations shown on Figure 22. Gauges prefixed
R recorded the in-plane diSplaceﬁents. Gauges 20 and 21 recordéd
vertical displacement of ﬁhe box frame. Deflexions were measured
with 0.5 in. travel mechanical dial gauges, sensitive to 0.0001 ins.,
held in a rig resting directly on the strong floor. Because of the
complexity of the loading and deflexion rigs cdnsiderable care was

necessary to ensure that no fouling occurred.

6. TEST PROCEDURE

6.1 Combined Transverse Pressure and In-plane Load

A total of 10 combined load tests were condudted. ~ These were
for ten‘values of longitudinal thrust varying ffom 0 to 9 tons/ram.
In each case the transverse préssure ﬁas first brought up to>0.5 p.s.i.
and the‘longitudinal thrust then applied. The transverse pfessure
was then readjusted to 0.5 p.s.i., if required, and this became the
datum load for successive incremenfs, of 0.5 p.s.1i., in’the trénsverse
pressure. The réason for using é‘small value of transverse pressure

as-a datum rather than zero pressure was, firstly, to minimise the
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effects of any Siackness in the rig, and secondly, to stabilize the
mbdél égainst any longitudinal force arising out of unequal end

loads. The maximum value of transverse pressure in each test ﬁas
determined by the approach of yielding, indicated by the printed‘
strain record. For low values of loﬁgitudinal thrust the web strains
governed but as thrust was increased the shell panel strains became

the governing factor.

6.2 Local Transverse Load

.. As for the combined load tests a datum load, of 0.25 tons/ram, was
applied to eliminate any slackness in the rig. In each case the load
was increased in increments of 0.25 tons/ram, up to a load at which

local yielding was almost reached.



36

CHAPTER 3

ANALYSIS OF PLATING EFFECTIVENESS

1. CENERAL

The orthotropic plate approach to the analysis of plated grillages

follows the sequence below.

(i)  An analysis of local element behaviour in order to determine
the losses in overall effectiveness to be allowed in computation

of ‘orthotropic plate properties for use inj

(ii) An analysis of overall behaviour to determine force distributions
for use inj

(iii) A local stress analysis

At first:sight it would seem that this approach must‘involve an
"iterative procedure beéause of the interdependence of the aboﬁe steps.
It will be shown however that, with certain limitations, it is possible
to make a good estimate of losses in effectiveness from the geometry

of the particular structure.

This Chapter deals with an investigation into‘these losses with
particular reféréncé to the double~bottom mo&el. Whére possible
_existing theoretical work, maiﬁly in relation to large deflexion
plate behavipur, has been used but it has been necessary to develop
some work,vrelatiﬁg to the evalua#ién of realiétic boundary conditions

for plate panels.
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The local stress systems considered in this respect are as

follows:

(i) " In connection with flange effectiveness, two effects must be

distinguished

The first éffegt; commonly called shear lag, arises
‘because load transfer acréss the flanges is depéndent on a
plane étress system. The associatéd shear distortion is
refleéted in ﬁhe longitudinal stress distribution‘aéfosé the
flange and:re3u1ts in én overall moment of resistance which is
“less Fhan fhat given by the idealised assumption that stress
is proportional to éurvature. This effect is taken into
account by using a reduced flange breadth in computing overall
flexural stiffness where the ratio of reduced to fully
'effective flange breadth due to shear lag is termed thé shear

breadth factor in this thesis.

Secondiy, the longitudinal stress distribution is influenced
by out of plane, flange deformationm. OQut of plane deformation
is initiated by either local transverse pressure and/or initial

lack éf flatness and the resultant increase in in~plane
flexibility must be feflecte& in the overall flexural stiffness.
As with shear lag this effect is taken into account by using
a reduced flange breadth iﬁ computing overall stiffness where
the ratio of reduced to fully effective flange breadth due to
transverse deformation is termed the buckliﬁg breadth factﬁr

in this thesis.,
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(ii) In connection with web effectiveness

Perforations and local. restraints must be accounted for

in evaluating the effective web area to bé used in computing

the overall shear stiffness.  The complexity of theAfloor
(transverse web) perforations and stiffening make a theoretical

. analysis.difficult but an attempt is méde to’rationalise an

- (29)

existing -solution with the aid of experimental results

from floor beam tests,

2.  SHEAR BREADTH FACTOR
This factor is defined as follows:

% axis: ‘Alx/bl

7 y axis: A, /b

1y 1

Where Alx'ahd Al are the effective flange dimensions and b

is the corresponding actual flange dimension, between webs, in

1

the respective directions.

Numericai values of this factor, for the double-bottom model,
weré obtained from a computer progrém, based on a solution by
: thade;(312‘which was written as part of the present work. A brief

account of:Schéde'Sgolution is given in Appendix A, .
As noted by‘SchadeEhe shear breadth factor depends upon:

(i) The boundary conditions along the sides of the flange. The

program is written for full lateral restraint, a condition
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approached in the case of multiple webs.

(i1) The form of the bending moment distribution. This depends
on the applied loading and the support conditions. In the
case of the double-bottom various loading conditions are

examined and the boundaries are assumed simply supported.

(iii) The geometrical propertieé of the section. _Thé program
is written for doubly flanged sections sPecified as £0110ws
(reference Figgre 25); flange breadth_(bi, ééual_tép énd

| botfqm), flange thickness top and bottom (tlrand tos not
necessarily equal), web depth (s) and web thickneSS'(t3).
No account is taken at this stage of the effect of flange

stiffeners, which is discussed later in this section.

€

Figures 23 and 24 show results from solutions for the overall -
behavicur of the double-bottom model. These were obtained to examiné
- the moment (M;, My) and shegr (Qx, Q&) distribution in order to
determine if they haa a form analogous to the corresponding beam
distribution for similar applied loadiﬁg conditions. It can be
seen that inclusion of the effect of shear deformation causeé some
ﬁodificétion to the distributions in the loaded regions but for
practicél purposes the analogy is valid and beam solutions were assumed
to bé_appliéable. The.reason for using steppe& rather than constant'
load, as shown in the cross sections, was that the.theoretica1‘
solution for plate behaviour intiuding shear deformation is extremely
sensitive to load d15continui;ies'and the numerical limitations of
_ the solution are minimised if the load is distributed in this manner.

It might also be argued that the stepped load section is more
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realistic. As can be seen from the deflection profiles the

_.proportion of overall deflection due to shear is very significant.

Solutions for the variation of shear breadth factor over the
span for longitudinal and transvérse beém sections of the do;ble—bottom
model, under various ioading conditions, are shown in Figure 25.
The loads correspond to cases actually applied to the ﬁodel. Sinée
the overall'analysis of the model assumes constant stiffness along
respective axes an equivalent shear Breadth factor was calculated
for each case on the basis of overall beam‘flexibility such that it‘
gave the.same central deflection as the corresponding beam with
stiffness varying in proportion to the calculated shear breadth factor.,
_ Iﬁ will be noted that it is possible for the sheér_breédth factor
to exceed 1.0, This occurs for laterally #estrained flanges only,
where this restraint.allows the biaxial strength of the plate to
develop‘so that the maximum theoretical effectiveness 1is 1/(1—u2)
or 1.099 for up= 0.3. To avoid confusion with latervwork the
equivalent shear breadth factor are quoted as a percentage of the»
maximum 1.099 in the following table.

The same values apply to top

and bottom flanges.

Equivalent Percentage Shear Breadth Factor

H/L 1.0 | 0.667 0.444 | 0.222 | 0.092
x axis 94.0 |93.8 93,6 93.2 -
y axis - 94.0 - - - 93.0
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The preceding analysis ignores the influence of stifféners_on
flange effecﬁivenesS. Longitudinal.stiffeners increase the overall -
flexural stiffness without contributing to the fiange shear rigidity
so that the flahge shear distortion is greater compared to an
-unstiffened flange section of comparable flexural stiffness under
the same applied load. .A further reductioﬁ factor is required to
take account of this behaviour. Ferahian (39) examined the influgnce
ofvflange stiffeners in the case of single web beams (no lateral
vflange restraint) and produced the curve shéwn in Figure 26 (ii),
which gives reduction‘factors (Kl) to be applied to the corresponding

unstiffened flange solution for shear breadth in simply supported

beams under uniformly distributed load.

Ideally, corresponding curves should be produced for the partiqular
case of the double-bottom, incorporating the effect of multiple
webs, bﬁt reductidn factors of sufficient accuracy caﬁ be obtained
directly from Figure 26 (ii). This is justified on the basis of the
comparison between single and multiﬁle web solutions for unstiffened
_ flangés shown in Figure 26 (i). It can be seen that for beams with
L/b1 greater than aBout 4 fhe ratio of Al/Bl for single webs to
Allb1 for multiplé webs, for‘any-given L/bi’ is reasonably constant.
Therefore for tﬁe double~bottom model (L/b1 e 6,both.axes) the
'vcofrection to shear breadth to alléw for:stiffeners was taken
directly from Figure 26 (ii). For the>mbde1 thé two vélues of Kl
shown in Figure 26 (ii) correspond to the inner énd Outér shell and
take into aécount the linear stress distribution through the depth
of the beam. Thus the percentages by which .the corresponding shear

breadth solutions must be multiplied to account for stiffeners are,
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. x axis only :

Inner Shell : 91.07

Outer Shell : 92.57

3. BUCKLING BREADTH- FACTOR

3.1 Definition of the Typical Model Shell Panel

The evaluation of loss of flange effectiveness due to tranSVérsé
deflectién of a typical double-bottom shell panel was carried out
with tﬂe aid of a computer program giving solutions for the large
deflection behaviour of rectangular orthotropic plates, developed

(26)

by Aalami . The following factors had to be considered before

this program could be utilised.

3{1.1 Basic Panel Element: This was resolved in par£ by the
‘limitations of the program since, there being no facility for the
specifigation of interior restraint, the basic element could not
.surroﬁnd an interior support such as a channel strut. . The choice
was thus reduced to several rectangular isofrppic plate elements of
differeﬁt dimensions. From Figureii it cen be seen that the

141/2 in. x 4378 in. panel bounded by adjacent floors and adjacent
shell stiffeners (or a shell stiffener and an intercostal) was the
predominant elemént'aﬁd hence this was chosen fof more detailéd

analysis.,

3.1.2 Effective Panel Boundary Conditions: The plate equations

required the definition of two flexural and two membrane boundary
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conditions as follows:

(1)
(2)

- (b)

Flexural:

Vertical deflexion restraint: = The most fiexibie edges were

those boundéd by shell stiffenérs which had an unsupportéd span
equal to the disténce between a floor and a channel strut.

However, these stiffeners weré sufficiéntly_inflexible to make

edge deflexions very small relative to defle#ions in the intefior
of the panel and vertical defléxion.restraint'was taken‘as infinity.
Normal slope restraint: Evaluatioﬁ of this rgstfaint has been

considered by Murray @n , (28).

The results are of limited
application however and it was apparent that a more detailed

analysis of the problem was required. = This was done as part

. of the present investigation and is presented in detail in the

(ii)

next section of this Chapter. The conclusion reached is that,

for the particular case of the double-bottom model, the edges of

~individual panels were restrained such as to develop about 75%

of the fully clamped edge moment.
Membrane:

Normal in-plane restraint: Since the double-bottom model was

- effectively free in space there was no external restraint to be

transmitted to individual interior panels.  Compatible

displacements at the edges of adjacent panels required however

‘that the edges remain straight,resulting in a non-uniform

. distribution of membrane forces normal to the edges. Aalami's

'program has the facility for specifying that edges remain straight

and the applied force is prescribed as the mean force on

each edge. . The final distribution of the applied force is
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determined by the solution, suﬁjecﬁ tb>satisfaction.of thék
straight edge'conditioh.

(b) Tangential in-plane restfaint: As witﬁ normal in—plaﬁe
restraiﬁt the external restraint is zero and compatible panel
edge shear displaceﬁents are assumed to correspoﬁd to zerp'

tangential in-plane restraint of individual panels.

3.1.3 Initial Lack of Flatness:  This is of pfimary impoftanCe

wifh respect to the behaQiour of a panel as an- isolated plate and as
regards interaction with adjacent ﬁanels. Figure 27 is a contour
plot of the initial lack of flatness over the central area of the
bottom sheli of thé double-bottom modei. ' Iﬁ»is of note that-
whereas in practice welding techniquesAlead to inward deformation
fdr most panels, the model exhibited inward and outward initial
deformations in approximately equal proportion. This antisymmetry
was the primary factor which preventedvthé fully claméed edge condition
for individual panels from developing. | Some approximation as to the
magnétude of the deformatioms Qas necessary and this was done by
taking a meah of central deflexions between aajacent edges, giving
valueg of +0.019 in, and -0,025 in, for inward and outward central
deformation respectively. The plgting was 0.080 in. thick and based
on the above mean méasurements a value of central iﬁitial deformation
to plate thickness ratio (wo/h) of i0.25vwas used in the caiculation
of éffectivé rotational restraint to be aﬁpiied to'model panels.. In
Aalami's prbgram initial deformation may be defined as either a
sinusoidal distribution along both axes for a given centrai value of
wo/h, or actual (axially symmetric) deformations can be prescribed

at nodél points, The fofmer method was utilised in the present.

analysis,
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3.1.4 Loading; Figuré 28 shows the various types of panel loading
considered. The combinations of these loads to which'a pgrticular
panel was subjected depended on its 1ocati6£ invthe sheilgg In the
model, only the outer shell panels experienced transSverse pressure
(@, distribuﬁed evenly on panels ;ver the flat section of the bottom.
Tﬁe in;plaﬁé load on each'panel due to overail‘flexure éf the model
(qu,

of opposite sign in the inner and outer shells, - The in-plane

qu) was proportional to the corresponding Bending moment and

load due to externally applied forces (N;Slwas assumed to be constant
across the breaath of the model. This corresponds to overall

bending of fhe ship's hull and variation between inner and outer shells
due to differences'in section moduli was assumed fo be négligible.
Héhce in the model test the in-plane load was applied at the neutral

axis of the double-bdttbm.

3.2 Evaluation of Effective Local Panel Rotational Restraint

In isolating a panel from an array of panelé, boundary conditions -
must be derived which reflect the restraint due to local stiffeners
and thé‘forces imposed by the surrounding system, Of the four
boundary conditions reQuired only the effective restraint against
normal rotation is not'immediately apparent. rThis'problem would
not arise for transversély 1oaded panels if there were no initial
deforﬁation or if the initial deformation was identical in all panels,
in which case it would be reasonable to assume the iﬁteriqr panels
were fully clamped. It is the variation of initial deformation in
adjacent panels, interacting with.the in-plane load which relaxes the

fully clamped condition.
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The relatively large aspect ratio of the panels under consideration

4,375

the dominant behaviour is basically that of a beam spanning the short

= 3.31) simplified the probiem because for such cases

(y) direction., This led to a consideration of the idealised
continuous beam-éolumn shown in Figure 29 (i); The assumptions,
apart fme the initial assumption that the problem could be. treated
as a beam-column, are that the initial deformation was of the |
antisymmetric sinusﬁidal form shown, -that the infplane load was.
constant and that éxternal fotaﬁional restraint (k*) wés equal and

vertical displacement zero, at all supports,

:The‘fi£st problem; héving~made the aBove idealisation, was to
assééé the value of k*, the éxternal rotational restraint due to
thé ioﬁgitudinél shell stiffeners.” Having done this the beam~column
solution could be used to determine a value of effective rotational
restraint such that, when applied to a single span, it gave the

same solution for forces as the original continuous span solution.

3.2.1 External Rotational Restraint:

The required restraint is defined as follows:

%
k = M/8
Where: " M = torque applied to stiffener/unit length
@ = total rotation at corresponding cross section

Two alternative methods of evaluating this quantity were
considered, both of which could be expected to give roughly the same

. value for k .
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(i) Torque Soclution:

‘The total rotation (8) is assumed to be made up of 61 due to

twisting as a thin walled section about an enforced centre of

. rotatlon to which must be added 8

(a)

2Adue to local bending.

Defining:  k = M/8

1 1
k2. = M/e2
% ' % %
Then: k. = M/(el o+ 62) = kl 1§2/(kl+ k2) :

.
. Solution for k_:

1

Governing Equation: For the parameters defined in Figure 30 (i)

the governing equation for torque of an angle section about an.

enforced centre of rotation is: (Reference 33)

M

Dd2
In the case of the double-bottom the enforced centre of rotation
is.at ;he stiffener-shell interface; Because of the channel'
sfrut restraint at the middie of the side of a panel the torque
distribution cannot be predicted.so for the purposes of this
analysis a uniform distributioh was assumed. This is shown
to be consérvative (give lower vaiues-of ki); compared té a

parabolic distribution, for the limiting case of d = O.

Boundary Conditions: In the double-bottom model end restraints

were provided by the channel strut at one end and the stiffened

floor at the other. Two limiting cases were considered:
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Firstly, ends restrained against rotation but free to

warp:'
6 = 0
d29
L - o
i
dx”

" Secondly, ends restrained against rotation and warping:

61 o= | 0 _
de.

—L - 9
dx

Of these two cases the latter is more realistic for the model
but both cases were analysed to show the influence of restraint

.against warping.

Solution of Equations: The above equations were solved using

- first order finite difference épproximatioﬁs to the derivatives.
The numerical values of the coefficients for‘the particular

case of  double-bottom model stiffeners are given iniFigute 30 (1).
Values of kl = M/S1 were computed at each mesh point. The

1°

as the number of

minimum value, which'occurs at x ='L/2 is denoted k Figﬁre 31
%
1

finite difference mesh divisions per span is increased.

(i) shows the convergence behaviour of k

Figure 31 (ii) shows the effect of span dimension on kl. The
restraint due to the channel strut, which reduces the span

*

by a factor of 2, results in an increase in kl by a multiple

of the ordér of 24.

Figure 32 shows the variation of k. across the span in

1

the case of a stiffener restrained by a channel strut (L =6"
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for the two alternative end conditions. . It can be

- * . » L
seen that‘_taklng,k1 = M/e1 at x = L/2 gives a comservative
estimate of the external rotational restraint for the

assumed torque distribution.
’ *
1

distance of the enforced centre of rotation from the shear

Figure 30 (ii) shows the effect on k., of varying the

centre (d). Aéld increases_the flexural stiffness of the

angle flange becomes more effective. This is more marked

for ends restrained against warping such that, for d = 0.9"
‘ . .
1

- 3} times greater when the ends are restrained against warping.

(restrained at the shell-stiffener interface) k. is about

- TFor d = 0 the solufions are independént of restraint -
against warping since when torque is applied at the shear
centre tﬂere‘is no tendency to warp. The pﬁre torque
“solution for uniformly distributed applied torque gives ki = 296
Whiéh iskless than the correspohding solution for sinus;idally

o & .
distributed applied torque, k1‘= 364 (constant for all x).

Alﬁhough the true distribution is not known this indicates that
the solution for ki based on uniformly distributed torqﬁe is
conservative. |

| V'Thevvalde_taken as the external rotétionéi restraint

associated with torque was (reference Figure 30 (ii) ):
k.1 =/3,58 x 103 in.1b./in. "’

It is of note that taking account of:(i) the reduced
span due to support at channel struts,(ii) the enforced centre
of rotation and (iii) the restraint against warping, increases

* » A
k1 relative to the pure torque value for full span between floors,
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by a multiple of about 50.

J

(b) Solution for k., (local bending):
& .

The preceding calculation takes no account of local
deformation of the angle arm connected to the shell. The

assumed conditions'ére illustrated in Figure 33 (i). - This

3

gives k, = M/6, = 3ET/ &= 2.22 x 10> in.1b./in.

2

Total Restraint:

& & * 3 . )
k =k k2/(k1 + k2) = 1.37 x 107 in.1b./in.

1

(ii) Plate Solution:

The alternative solution is to c&nsider tbe angle as acting as
plate simply suéported along the connection with the shell, where the
moment is appliéd,_and elastically supported by the outstanding leg
on the opposite edge.  Because of the large aspect ratio (e>6) it
was.sufficient‘to treat this plate as:a beam as shown in Figure 33

(ii).

\
Assuming that the outstanding leg is clamped at the ends and
that the transverse load (plate reaction) distribution is uniform,

the vertical restraint is, approximately:

! 384D 3

k- =
L4 :

= 4.35 x 10 1b./in?

Because of its geometry, the rotational restraint of the
. outstanding leg is not greatly affected by having an enforced centre

of rotation at the edge. Hence, for a uniform applied torque
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distribution, the rotational restraint is, approximately:

n 8GK£7 3
k = 5 = 0.1 x 10~ in. 1b./in.
L
Where: GK . =: torsional stiffness of outstanding leg

Substituting these values into the following solution for the

moment-slope relationship:

T n 3 ' ew
M _ 4EI 3ET k / &7 + 3BT k foa+k k
- F P L "3 T T
B, & 12 (EI)° /27 + 12 EI k /2~ + 4EI k /% + k k
.- - T M ‘ 3 . .
Gives: k = — = 1.35 x 10" in.1b/in.
‘ 7]

2

This'agrees closely with the torque solution.

3.2.2 Effective Rotational Restraint (beam~column solution)

The required restraint is defined as follows:

K = M/6
Where: - M = beam column moment &t supports
§ = corresponding slope
(i) Equations: The governing equation for the continuous beam—

column shown in Figure 29 (i) can be derived from a consideration
of the equilibrium of forces acting on an element shown.in Figure 29 (ii)

and the small deflexion moment-curvature relationship.

L 2 %
This gives: d'w p dw q o
dy™ ET  dy> EI EI -dy?
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Where: ' . w = deflexion due to applied load
LA initial deflexion (sinusoidal
distribution)

The boundary conditions, which introduce the effect of external

rotational restraint at the supports are as follows:

End supports: W= 0
% v
M = Lk &y
Interior supports: w = 0
- de dse
*
M o= 0,8 —2 - BT —2 4+ g, =0)
dy dy
Sa = (=89
(i1) Solution of Equations: These equations were solved numerically

using first order finite difference expressions for the derivatives.
This required the solution for one.fictitious point at each end and
two fictirious points at each interior support as shown in Figure 29 (iii).
A computer program (BEAMCQL).was written to solve the resulting
fsimultaneous equations for N sPans of equal 1ength, M equal divisions
per span. The total number of unknowns, including fictitious points,
is therefore M(N + 2) + 1. 'The corresponding number of'equations
" were solﬁed directly, without partitioning, using a Gaussian reduction
routine.The poasibility of round off error using this routine limited

the number of unknowns to about 120.
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(iii) Accuracy of Solution: The accuracy of the program was

checked against several known solutions, some of which are shown

in Figure 34. The convergence behaviour as the number of divisions

per span was increased, for the case of a two span beam under uniform

transverse load, is shown in Figure 35 (ii).

It may be noted that the above equations are of the same form

as those for the torque solution to determine external rotational

restraint. By appropriate interchange of coefficients the BEAMCOL

program duplicated solutions given by the torque program.’

(iv)
(a)

(b)

~(e)

Parameters for model:

Dimensions: - Résults are for model dimensions,given in

Figﬁfé 36;‘M

Number of Spans:  The choice of the nuﬁber of spans tolbe

uéed invsdlutions to determine effective rotational restraint
was based on the griteria £hat; the central span shéuld‘behave
the same as a single clamped span for uniform transverse load
and zero initial deformation. Figure 35 (i) (a) shows that

an eleven span solution meets the latter criteria. Eight

‘divisions per span were used for all cases giving 111 unknowns -

for eleven spans;

Loading: The relationship between q, . the tfansverse~1dad, and
P, fhe in-plane load, Qas based on a preliminary solution for
the overall behaviour of the double-bottom model for uniform
transverse pressure, simply supported edges and the sﬁells
assumed to be fully effec;ive.. At the centre of the model

this gave, for a one inch strip (transverse, y axis)

q 1 1b./in.
P 110 1b.
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- These loads increése proportionally, and the combination
ié denoted by q* suph that q* = 1 corresponds to the above
combined load.
(D) Ini;ial Deformation:  As showﬁ in Figure 29 (i) an anti-
symmetric érofile; relative to each support, was assumed.
This is not necessarily the case in praétice but did occur
in the model and was chbseﬁ as the worét condition. Several
wolh ratiosvare examined, a value of 0.25 being used in the

final analysis;

(v). Results: »Figu?e 36 shows the influence of external rotational
restréint (k*) on the bending moment distribution for two loading
céses.' It can be seen that in the absence offk* (Figure 36 (i) )

the effective restraint on a single spén, as evidenced by the support
moments, varies considerably, approaching zero for q =5 1b/in.,

P = 550 1b. (q*'= 5). Such a variation in local restraint would

cause, or at least magnify, any non-linearity in the overall behaviour.
In fact the tests showed the overall behaviour to be almost linear

up to the pressure corresponding to q* = 5, indicating that effective
restraint was relatively constant. =~ Figure 36v(ii) shows that k* = 1000

is sufficient to maintain a large degree of local restraint.

Figure 37bshows the effect of increasing load on K for three
values of k* and thrée values of centrél iﬁiti#l deformétion‘ratio
(wolh). The three solutions for k* = 0 (external restraint zero)
converged on K = 0 (effective restraint of individual spans 2ero—simple _
support), at about q* =6 (P = 66b 1b.). At just slightly above
this load all three solutions degenerated. The simply supported

column buckling load for a single span (ﬂzEI/Lz) is 665 1b. This
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shows tﬂat degeneration of the beam—column solution is an accurate
indication of column buckling load. Since the buckling load of

the typicai simply supported plate panél corresponds to q* = 7.7

and the deéign pressure for the ship on which the model was based
correséonds to q* = 10, the importance of avoiding the simply supported
edge condition is apparené. The specificatibn of a minimum value

of k*, incorporating an-adequaté safety facﬁorvagainst approaching the
simply Suppofted coﬁdition within the workihg load range,Aseems a

1ogical basis for design.

Figure 38 gives solutions for support moment in single span
beam*gdlumns for varying end restraint. Solutions are given for two
load cases and three values of initial deformation ratio. The purpose
of these curves was to give a measure of the degree of clamping in

continuous beam~columns as a percentage of the fully clamped moment.

Figure 39 directly relates external rotational restraint (k#)
and effective rotational restraint (K) for three cases of initial
deformation and two values of load. As Wo/h increases the rate
of increase in K as k* is increased drops off and becomes less
sensitive to transverse load. For the particular case of the

double-bottom model:

k = 1350 in.1b/in.
WO/h = 0.25

4 * - ) ' - L *
Giving: : K = 2000 in.1b/in. at ¢

%
K = 1530 in.1b/in. at q

[
et

]
w
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The preceding solutions have been for the maximum value-of P,
relative to q, which occurs at the centre of the douﬁle—bottom. In
fact, although q remains constant over the flat portionAof the bottom,
P reduces in proportion the overall ﬁen&ing moment .. Tﬁis means that
the relaxing effect on K of the interaction between P and wo will
reduce toward the sides of the model. Figure 40 gives’a;measure
of this effect forvk* = 1350 in.1lb/in. and wb]h = 0.25.  Half way

between the sides and the centre of the model K will exceed the centre

value by about 107Z.

As éhown in Figure 37.a11 thé preceding valués of K refer to a
span with initial deformation in the same &ireétidn as the transverse
load. It might be expected that adjacent spans, where the initial
deformation opposes fhe transverse load,’woﬁld experience considerably
different effective rotational restraint. This is in fact the case
‘but since the main criteria for the influence of membrane stresses on
panel behaviour, which is the determining factor as regards buckling
breadth, is the maénitude of deflexion relative to plate thickness
the comparison shoﬁn in Figure 41 was made. This shows that
deflexions in the direction of transverse load are significantly
greater than those opposite transverse load in the adjacent span.
Hence} the buckling breédth calculations were based on discrete>panels
with initial deformatién in the direction of transverse load éuﬁjected

to.an effective rotational edge restraint of K = 1530 in.1lb/in.

3.3 Bﬁckligg Breadth Factor

This factor is defined as follows: x axis:' izx/a

y axis: Azylb

Where 12 and Azy,are the effective and a and b are the corresponding
) X ‘

actual panel dimensions in the x and y directions.
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Figure 28 gives details of the shell panel for which Aalami's

program was used to obtain solutions for buckling breadth factors.

Two approaches were considered in determining buckling breadth

factors:

(a) Buckling breadth based on deformation, given by the ratio of
in-plane displacement with no transverse deflexion to in—plane

displacement with actual transverse deflexion.

(b) Buckling breadth based on stress, given by the ratio of the mean
stress to the actual maximum. stress. This definition is

analogous to that used for shear breadth.

Available analytical work on buckling breadth is for uniaxially
loaded panels, whereas double-bottom shell panel in-plane lbading
is usually biaxial. The effect of biaxial as compared to uniakial
loading on Euckling bfeadth for the panel shown in Figure 28 was
therefore examined. Uniaxial solutioms were derived by assuming
that the biaxial in-plane loading due to transverse pressure could

bebseparated 80 as to act independently along each axis.

Tables 1, 2 and 3 give solutions for buckling breadth factor of
a clamped pénel (Kr + o ), for three values of initial‘deformation
~ratio. These results were obtained to compare the alternative

definitions of the factor for various load combinations.

The limitations of the buckling breadth definition based on
deformation (a)'became'appareﬁt in lzy/b for the case of biaxial load

because, for certain load combinations, the in-plane displacement without



58

transverse deflexion was of opposite sign to that when transverse
deflexion was included. Therefore, although some of the biaxial
solutibns did not exhibit this behaviour, all values of_12¥/a and
Azy/b_given by definition (a) for biaxial load are omitted; The _
three remaining solutions fér Azy/b (all.wo/h) agree very closely for

1 f . . .
NX = 0. The limitations of the uniaxial load solutions become

N .
apparent however, when the effect of increasing N# on the biaxial
load solutions forAkzy/b'is observed. Also,,biaxiél load can be

seen to have a significant effect on_RZX/a for N = 0.

On the basis of these observations.it was decided to use the

- solutions given by tﬁe stress definition (b) for biaxial load

for bé)fh xlea and Azy/b. Figure 42 shows solutiogs for the clamped
edge case for wO/h =0, 0.25, 0.5 and 1.0. It caﬁ be seen that for
this boundary gonditioﬁ. ﬁx/a is significantly éffected by both
loading aﬁd initial deformation ratioc, whereas jiy/b’ ﬁhich shbws
much more marked feductions in effectiveness, is primarily dependent

on initial deformation ratio.

Figure 43 shows the corresponding solutions for simply supported
edges.. Some pf:the curves are incomplete because the program
failed té converge for certain combinations ofvload and initial
deformation. It can be seen thét‘relaxation of rota£i0n31 edgé
restraint causes the effeCtivenesé to reduce'drastically and to
become much more dependent on loading.  This condition,VWhich would
lead to ‘much greater overall flexibility and non-linear behaviour,
has been remarked upon previously in connection with beam—column
solgtions where the desirability of ensuriﬁg effectivé external

rotational restraint was stressed.
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The preceding cases represent limiting boundary conditions
whereas in practice the effective rotational restraint will have
some intermediate value. Solutions for Kr varied between these

1limits for the particular case of wolh = 0.25 and q* = 5 are given
in Figure 44. This initial deforﬁation ratio cérresponds.to that
assumed to have predominated in the dguble—bottom model and q*v=v5'
corresponds to the'maxiﬁum transverse load condition rgached in

elastic tests.

The analysis of effective rotational restraint for the typical

model panel gave a value of:
K = 1530 in.1b./in.

substituting in the following non—dimensional expression for rotational

restraint:
' K. =X a/D
. For: - a = 14.5 in.
E no 2 .2,
D = — = 14,18 x 10~ 1b. in?/in.
12 (1-u%)

Gives: - K_ = gégg_g_gé;g = 15.65 say 16 = /
- o T 14.18 x 107 : '

From Figure 44, this gives values of effective breadth factor of the order

of: A, /b = 0.77

Azx/a = 0.99
As compared to the fully clamped values:
Azy/b = 0.92

;Azx/a = 0.99
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Taking a mean (to allow for conservative approximations noted in
preceding discussion): Azy/b = 0.85
A, la = 0.99

2x
NOTEi Due to an oversight, a stiffness of EI, instead of the more correct
EL/(1 “fﬁz); ﬁas been used'iﬁ preceding calculations involving beam
idealization of'long platevbehaviour. The error involved is negligible,
particularly in view of other approximatibné, and the conclusions
regarding panél'buckling load are s;ill'valid. : For exampie, using
EL/(1L - ﬁz), instead of EI, increases the value takenifor ﬁon—&imensional
effective rqtational restraint (Kr) from 16 to 16.7. As can be seen

from Figure 44 this increases Azy/b by about 0.5%.

4.  EFFECTIVE WEB AREA

4.1 Single Floor Test

As part of Ho's work an attempt was made to relate theoretical '
sintiqns for the behaviour of web panels with perforations and tests on
a single floor model. This model was a transverse section of the
double-bottom, 141 inches wide, ihcorporating a single floor. The flange,
'stiffeﬁer; floor and bracket floor details were similar to the main

model as shown in Figure 2.

From a comparison of measured béam deflexions and a theoretical
solution including shear defor&ation for solid webs (no perforations),
Ho arfived at a loss of shéar stiffness‘due to perforations of about
50Z. This result was then compared with three theoretical solutions

for perforated plates in shear. Two of these were for discrete
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square panels, with a central circular hole for alterﬁatiVe boun&ary
conditiops of uniform edgé shear and rigidly restrained edges. The
third ﬁas based on.the classical solution for a circular hole in an

infinite plate subjected to pure shear. Agreement was‘beét with the

discrete panel solution for uniform edge shear.

HO'aléo compared measured and theoretiéal stresses around the
circumfereﬁce of‘the.holes. In this case agréement.was best with the
infinite plate saiution. This solution corresponds to the case of
a discrete panel with a high degree (althoﬁgh not fully rigid) of
edge restréint. Ho.attributed the agreement of measured deflexions
and stresses with different.theoretical solutions to the effect of the
pérforations in way of shell stiffengré which weré considered to

contribute significantly to shear deformation without greatly affecting

stress concentration.

4.2 Thick Flange Beam Test

A .closer examination of Ho's results showed that tﬁo comﬁensating
errors had béén made in computing shear deformation. These were the
omission of loss of flange stiffness due to shear lag, which Qas
partially compensated by an assumed value of Young's modulus which was
abouﬁ 47 low. . In order‘to clafiff the issue a test was done, as part
of thé present work, on a beam with flanges sufficiently narrow relative
to beam span toveliminate loss of flange s;iffneSs due to shear lag.

The web corresponded to a floor between intercostals. Figure 45
gives details of the beém and results of the test. Measured defléxions
are compared to a theoretical solution incorpprating web effectiveness

factors (F) based on an empifical relationship proposed by Kuhn (35).
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"This relationship is as follows:

Effeéfive web areaflé Solid web area x F/lOC
Where: f = (1—D/b)(1-(D/h)3) x4100‘Z
For: D = diameter of perforation
b = spaciﬁg between perforations
A‘hf = depth 9f~web

Thé variation in F acfQSS'the span is dﬁe tb the change in the
diameter of holes immediately adjacent to the cenﬁre girder. Agreement
was sufficiently close to justify using Kuhn's solution as‘a basis for
the final calculation reductions in shear stiffness dﬁe to perforations.
The:results also confirm the experimental valug derived by Ho. Back
substitution into Ho's results for F = 507, taking account-of the
bracket floors and using thé correct value for E, gives‘a loss of
flange stiffness due to éheaf lag in the single floor teét of about 97.
This is quite close to the corresfonding cémputed loss of stiffness. due

to shear lag, derived in previous sections, namely 7.5%7.

4.3 Web Efféctiveness Factors (F) for Double-Bottom Model

4.3.1 Floors (y axis): b 4.375"

h = 5.5"

There were two different hole sizes to be considered,

2.125", gives: F = 497
. ya .

1.875", gives: Eop= 557

(a) D

() b
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"Now, since the orthotropic plaﬁé solution for overall behaviour
assumés uniform shear stiffness.along each axis, some:approximation
was necessary to account for the above_variation iany. ‘Equating
central deflexion for variable Fy, and central deflexion assuming
ﬁnierm Fy, for a triangular distribution of shear varying from zero
at the centre to a maximuﬁ at the Supports,gAQe a uniform Fy = 707,
The 1étter.éhear distfibution corresponds approximétely to uniformly
distributed.load on the model. - Bracket floors were assumed to have the
same stiffness over fheir length as the main floors. For point load

Fy would be of the order of 657Z.

4.3.2- Longitudinal webs (x axis): Two cases had to berconsidered,

(a) Centre girder: F ., = 1 (no perforations)
(b) Intercostals: D = 1.875"
b = 4.8125"
h = 5.5"
Gives: F = 607
, xb

To accommodate the uniform shear stiffness requirement an
equivalent yalue was computed on the basis of the longitudinal webs
taking load inrproportion to a-triangular transverse distribution of
longitudinal shear varying from zero at the sidés to a maximum_at the

centre. ~ This gave a uniform FX = 80Z.
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5. MODEL PROPERTIES

5.1 Summary of Effectiveness Calculations:

5.1.1 Flange effectiveness expressed as a percentage 6f ﬁhe full

flange width:

Source of loss Axis

x y
Shear 1ag‘ 86%% 93.5%
Local flexure ; 997 . 857%
Product  85% 79.5%

(* This includes the effect of longitudinal stiffeners)

5.1.2 Web effectivéness expréssed as a percehtage of the solid

web area:

X axis: 807

y axis:  70%

5.2 Moments of Inertia and Web Areas for Double-Bottom Model

Figures 46 and 47 give detai1§ of typiéalblongitudinal and
transverse sections and corresponding section properﬁiés taking the
. above losses of effectiveness into account. The values shown were
rounded off to a more realistic number of significant figures prior

to the final orthotropic plate analysis of the model.  One additional
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1éss of effectiveness‘appears in these calculations, namely; loss
_ web flexural effectiveness due to perforations. In the case of the
intercostals this was based on mean reduced moment of inertia, whereas,
in the more complex case of the floors a reduction based simply on
solid web area was used. In both cases the effect is very small

relative to the total moment of inertia of the corresponding sectionm.

One additional property, not shown on the above Figures, was
required. This was the "product of inertia" which, for practical

purposes is given by:
' . 4.
= 0.9112 in./in.

A more accurate alternative calculation, using the computed flange
distances from the neutral axes and applying a mean correction for loss
of flange effectiveness, gave T

- Y
fxy = Q.9111 in./in.

Summary of calculated values

x ‘axis: If = 0.9390 iﬁ4/in
x
- ' "
wa =  0.0415
I 0.1428 "
Tsx .
A 0.0129 in2/in
WX .
y axis: I 0.8834 in"/in
B fy o
11
Iwy 0.0511 |
A 0.0170 inzlin
wy

"product of inertia":

I = 0.9112 in4/in'

Xy
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5.3 Elastic Properties of the Double~Bottom Model Material

The model was fabricated from mild-steel sheet and tests to
determine Young's modulus and Poisson's ratio gave the following

results:

5.3.1 Young's Modulus (E x 10--6 p.S.1.)

. Specimens

1 2 3 4
Outer shell (0.080")| 29.61% | 29.74%| 31.00 | 30.52
Inner shell (0.064")| 30.58 30.10 29.88 | 30.42

Material

(*# These specimens correspond to the longitudinal (x) axis.

A1l the others were transverse (y) axis oriented).

A mean value of E = 30.23 x 106 p-s.i. was assumed to govern for

‘the purposes of analysis.

5.3.2" Poisson's ratio (p)

Material Specimens
- 1 2
Outer shell (0.080") | 0.31 - 0.30
Inner shell (0.064") 0.29 - 0.29

Mean: 'y = 0.30°
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5.4 Section Properties for use in the Orthotropic Plate Analysis

of the Double—Bottom Model

'5.4.1 Flexural:

Define:
i - 10D - 1.0319 in*/in
fx fx , .
i = I = 0.0415 "
wx WX : _
i R | | = 0.1428 "
sx SX .
i = i+ 1 +1 L= 1.2162 "
X £x WX SX
i = I, /0D - 0.9708 "
fy fy ;
i = I | = . o0.0511 "
wy wy
i = i, +i | = 1.0219 "
y fy = Twy ~
i = I, /(D) = 1.0013 "
fxy - fxy '
Hence, equating corresponding coefficients in Shade's solution(z)
.for a stiffened cellular plate and Libove and Batdorf's solution (10)
for an orthotropic plate, gives the following orthotropic plate
idealizations for the double-bottom model flexural properties:
= 3 1 = 0-2 4
Mo (1fxy/ly) u 94
= i Py W = . 0.24
u.y | (lf'xy/lX) u 247
D = EQw, )i - 34.082 x 10° in.1b
x
D =  EQ7_ul)i = 28.637 x 100 "
y x Yy _
) e 6 .
=  EQ-w)- (i ¢+ Alfy+2?’- ) = 21.189 x 10

xy>‘ - = ‘ fxy
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5.4.2 Sheai‘:

~The orthotropic plate idealizations of the doubie-bottom model

shear properties were-taken to be:

w
]

A, E/2(1 + W) 1.50 x 10° 1b/in.

w
i

Awa/(Z(l + u)) 1.98 x 105 1b/in.
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CHAPTER 4

BEHAVIOUR OF RECTANGULAR ORTHOTROPIC PLATES INCLUDING TRANSVERSE
SHEAR DEFORMATION

1. THEORY

The goVerning equations and boundary conditions déscribing tﬁe
small‘defléxion behaviour, including shear deformation, of flat
rectangular érthotropib séndwich plates subjected to combined
transversé and in-plane 1oad.as derived by Libove and Batdoff (10"

are as follows. - For an outline of the derivation of these equations

see Appendix C.

1.1 Governing Equations

The following system of linear partial differential equations
 govern the plate behaviour for a given set of boundary'conditions;
The individual variables and coefficients are defined in the notation

and the'éign convention employed is shown in Figure 48.

32w 32w a2y . 90 Q. o ‘
N + + 1 X Y - . E
x 8% Ny oy 2 2 ny Ixdy + 9x * ay - ”q : (a)
A T 5. uwD_ .3 D_ 320
“{p +-YXX °w . Ty'x 0% w Xy X
Xy (1~-uX uy)} axay2 (1—uxuy) x93 +28X 3y?2
Dx 82QX M sz usz ' BZQX
+ . -Q +{ + ) =0 () | (D
1- S ox* S -
( uxuy)-x % x 2 y (1 uxuy)Sy x93y
u.b D ' D D . 92
O 5 By A S s ) o
y MMy x“0y M Mg) 3y 25, (1 w8 3x0y
D 82Qy Dy a2Qy ‘
[ A AN ' -Q =0 ’ (c)
28 9x? 1- S ay?
y _( uxuy),y y y :
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The terms involving shear stiffness (Sx, Sy) distinguish these

equations from ordinary plate theory in which deflexions due to shear

are neglected. The usual fourth-order equation for homogeneous

isotfopié plates (36) can be obtained from the above.equations by
writing:

= = o | = = =v = -2y, = - .
S, SY My T Mg Wy D DY D(lu),.ny D(1-u)

Substitution into equations (1) and solving for w gives:

u u A 82 2 2
3 i + D 9w + W _ l_{q N 78 LA oW + N oW }
ox ox?ay? y%t D *oax2 Y oay? % axoy

This equation does not involve derivatives of q.

1.2 Boundary Conditions

(2)

The boundary equations, incorporating the discrete spring system

defined in the notation, are shown below. The reactive moments and

shear forces are distinguished from the internal moments and shear

forces by the bar placed above the corresponding symbol. The co—ordinate

system used is shown in Figure 49, Symmetry about the two axes is

assumed and it is sufficient, therefore, to consider only the edges

x = af2, y = b/2.

At x‘=.a/2$

5 - _ w W
Q = kv =0 f Newx * ny dy (2)
_ - Q D 2. 3Q 2 3Q,. .
ow p:3 X cp0tw 1 X °cw _ 1 Y)
M o= k, G050 =-F=  (EF-% s+ (75-% b ()
x 2x " 3x Sx (1 uxuy) 9% Sx 9% y = 9y° SY 3y
- S Q b__ 2 . oQ aQ
H o= -k ¥ - ¥y - Xy 3%w _ 1 x _ 1 y } (c)
Xy 3x'3y S 2 9x0y Sx 3y Sy 9x
At v = b/2:

A oW oW

=~k w = + N — N —
Qy 1 Qy y oy Xy ox (a)
' Q. D, 2 3Q a2 3Q
= LA y Q9w _ 1 o‘w _ 1 .S
M = k (Z- D= - - AR Clu AP S
y 2y< 3y Sy) (1-u uy){ay?- SY 3y ux(ax S ax)} (b)
_ 5y Q D .2 3Q 3Q
M = -k (éﬂ_-..’.‘.): { ofw 1 " x _ 1 - (c)
Xy 3y 8x SX 2 9x3y  S_ 3y Sy 9x

(3)

(4)
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The ordinary plate theory boundary conditibns are obtained
by Seﬁting Sx and Sy equal to infinity and eliminating.one coﬁdition
on each edge. For simply supported and ciamped edges the condition
on M&y is omitted whi;e for free edges the reduction to two conditions
is achieved by the Kirchoff apfroximation of combining the shear

force and derivatives of Mxy along_each edge;

1.3 Limitations of the Discrete Spring Idealization

The discrete spring idealization for edge restraints implies
that reactive forces are mutually. independent. This type of
support condition is usually only found in laboratory tests. An

example is a plate supported on discrete vertical rods on all edges,

) 1 = = = Kk = k
for which k2X ka k3x k3y 0 and 1x

the compressibility (and extensibility, in the corner regions) of the

and k are related to
ly ,

rods. For moét practical,casaé, continuity of Suppoft contravenes
‘the assumption of independence of reactive fofces. An exémple ié a
plate with integral edge beams in which the edge shears and twisting
moments are coupled - the beam suffers a change of deflexion due to
twisting momgnt as well as to shear, and a change of slope due to

shear as well as to twisting moment. .This coupiing is not recognised

in the relationships for edge beams proposed by Frederick (37);

For integral edge beams the following mixed variable equations
‘can be derived to replace the equations involving the discrete spring

idealizations for vertical and tangential rotational restraints.

At x = af2:
| 2y _
3y B 24Q oM ‘ _
B L - A X Xy . .
y e &t B, oy Ty 0 , | (a)
A . 80 ‘ (5)
R AR 4 = '
QX + Sy 5y 0 C (b)
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At y =b/2:
. 3ty -Bx b, - EgEZ = B
B ad T~ QY * K; '—EE% T —_ 0 - : (2)
' | | (6)
o +ox Dk Lo : ™ |
v S

Bx’ By and Ax’ A.y are the beam flexural and sﬁear stiffnesses.
The other symbols are as previously  -defined. ‘Solutions for these‘

boundary conditions are not given in this thesis.

It is possible howa&er, to derive equivalent discrete'spriﬁg
étiffnesses for edge beams if aséumptions are médg régarding the
relationéhip between edge shear and twiéting moment, If, for
example, on the basis of the gténdard solutidn fof éimply suppofted
plates, it is asSumed that the shear forces (QX along x = a/2, Qy

along y

=1b/2) are related everywhere to MXy by:
R M | M.
Qx =4 3y : _ Qy =4 9x

And, assuming these forces are distributed sinusoidally between

corners, then:

klx

4 By/(Sb“) o, ks 4 B_/(5a")

-

k3x = 7 By/(sb) R k

2 Bx/(Saz)

The normal rotational restraints (k2x’ k2y) can be found from

the torsional stiffness of the beams and are independent of le,

k, and k

3% ky o The accuracy of solutions incorporating the

1y’ T3y

above approximations has not yet been examined.
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1.4 Non-Dimensionalization of Plate Parameters

The generality of a single solution for the preceding equations
was extended to include a set of dimensionally similar problems

by.making the following substitutions:

T M
u

aX, y = ay

£
It

4 - o
Wa /Dx’ Qx aVX, Qy aVy

The coefficients can then be conveniently grouped such that a

problem is defined by the following set of non-dimensional parameters:

Flexural stiffness parameter: o o= Dx/Dy
Twisting stiffness parameter: B = ny/Dx
Shear stiffness parameters: Y, = a2 Sk/Dx’ Yy = b2 Sy/Dy
. . B | R | .

In-plane load parameters: N = a2N /D, N =bD2N /D

X x'"x’ Ty Yy
Side ratio: E = a/b
Poisson's ratios: LI “y
Edge restraint parameters:

. fon: K. = 3 - B3

(a) vertical deflexion g Ix a klx/Dx , K1y b kly/Dy
(b) normal rotation: » ‘ K, = @ k2x/Dx s h2y= b,k2y/Dy

(c) tangential rotgtlon: K a k3X‘/DX R K3y=,b k /Dy

3y

1.5 Idealized Properties of Doubly Plated Grillages

Based on the work of Schade (38)‘and in conformity-with
: ] ’ V4

definitions given in the Notation, the following relationships were

derived for the idealized flexural properties of plated grillages:
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EQL - u uy){IfX/ (1-u2) +1I__ +_IWX},

by = E(1~ w w){I./ (1-u?) + I, * Tyt
D= ECTpy # Tgy + 21 ) /(4(1 + 1)

Hx - “If;:y/(lfy " (1_“2)‘ (ISY " IWS;_))

u ='.u1fxy((1fx‘+ (1-u?) (1, + Tnd)

I I and IWx are the unit moments of inertia in the x

fx® Tsx

direction, taken about the neutral plane of the plate, of the flanges,
flange stlffeners and webs respectively., Ify’ ISy and IWy are the
corresponding inertias in the y direction. Ifxy is a biaxial
(flange) moment of area and is approximately equal to (Ifx + Ify)/2
in many practical cases, The flange inertias must take account of

the loss of effectiveness due to shear lag and local out of piane

bending.

Shear properties:

Sy = Ay BE/(2Q1 +1)
Sy = A, B/(2(1 +1)

wa and Awy are the unit effective web areas in the x and y

directiomns.
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2. SOLUTION OF EQUATIONS

" 2.1 Check Solutions

The equations given in the preceding section were solved by the
finite difference method." This gave a system of simul taneous
equations in three unknowns (W,'VX, Vy), the formgiation and solution
of which was frogrammed for the.University of London Atlas Computer.
This is describedin more detail in the following sub-section and also
in Appendix C. In addition, two series and one altérpative finite
difference solution were programmed'to give check resﬁlts. These
- were fo: the particular case of simply supported edges. » Details
of thé series splutions, one of which was Based on Libove and Batdorf's
equations and the other on Reissner'é equations, are giﬁen in Appendix B.
The alternative finite difference solution is described in Appendix D.
This was basédvon Libove and Batdorf's eduations but differed from
the solqtion deséribed below in that it was for é governing equation
in w only, derived from Equation (1) by elimination of QX and Qy‘

It has the limitation that only the simply‘5upported boundary condition
incorporating zero tangential edge slope is amenable to reduction to

a single variable and hence, elsewhere in this thesis, this solution

is referred to as the "soluﬁion for simply SUpported edges only".

The mixed variable solution does not have Lhis limitation énd hence

is referred to as the "solution for generalized boundary conditions".
g .

2,2 Finite Difference Solution for Generalized Boundary Conditions

2.2,1 Finite Difference Nets: In order to allow for sufficient mesh

divisions to ensure that errors due to the finite difference

approximation were insignificant and at the same time satisfy computer
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storage and round~off errér limitations, solutions are restricted’

to cases of symmetry about the two axes. It is thérefore éufficient

to consider only a quarter of the plate as shown.in Figure 49. Uniform
plate properties are implicit in equations (1) and restraint is

constant along each edge.

Ali derivatives are approximated as five point finite difference
equations since it was found that three poiﬁt equations, for first
and second order &erivatives, gave unsatisfactory results for certain
boundary conditions., A single row of fiétitious points are defined
on each boundary requiring the governing and boundary equations to be
formulated in off-centre form at each boundary node. Corresponding
to the numbering’shOWn in Figure 49, the total number of unknowns is

3@ +2)T +2).

In the corner of the plate (nodes A, B, C and D) there are 12
unknowns but only 9 equations, Two methods of overcoming this
deficiency were tried. Firstly node D was eliminated entifely by
appropriate use of backward difference equations and secondly three
~additional equations were formulated by extrapolating the three
variables independently along the diagonal. In all cases solutions
for the variabiés at nodes away from thée corner region were not
significéntly affected by thé method used. Some_differénées occurred
in the corner region for plates with low tahgential_rotational‘edge
restraint but these diminished as mesh éize‘was reduced. The diagonal
extrépolation method converged more rapidly‘in such cases and all
solﬁtions involving low tangential rotational restraint used this method.
- In other cases the backward difference method was used since it involves
three fewer variables and periodic checks against the alternative method

agreed within less than 1%,
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2.2,2 Matrix Operations: The finite difference 6perators give a -
set of simultaneous equations in three unknowns at each node which

can be represented in matrix form as:
AX = K

Where: - A is a square (pxp) coefficient matrix
X is a column (px1) unknown matrix

K 1s a column (pkl) load matrix

These matrices were formulated so that the three unknowns at
any given node appeared in successive rows, resulting in a broad
singie band coefficient matrix. Because of the large number of
unknowns in even a relatively coarse mesh thebsolution incorporated
partitioﬁing of tri-diagonal fofm. It was found in some cases that
when the size of sub-matrices approached 100 x 100, the method of
solution involved éignificanf round-off error. This was dué partly
to the larger differences in magnitude of coefficients in such cases
an& to minimise the effeét an iterative procedure waé usgd giving a

solution of the form:

IX = X, 4+ X + X+ vans

1745 1%
| -1
Where: Xiz A K |
X.= ALYk -ax.)=Atk
2 1 2
xo= AV K. - AX. 1= AL K. ete
3 2 2 3 .

A limit on the number of cycles was set such that the residual

solution was less than a specified percentage of the iterative solution.
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-

2.2.3 Accuracy of Solutions: Table 4 shows a sample of checks made

against numerical solutions from Reference 36. These correspond to
the limiting case of infinite shear rigidity and agreement is quite

.satisfactory.

Table 5 shows the convergence behaviour of solutions for the
simply supported case in Table 4 for four different mesh sizes. On
the basis of these results and beafing in mind coméuter time involved,
an 8 x 8 meéh was chosen for.allbfuture calculations ekcept'fof
rectangular plates, where it was found to be desirable to keep the

side ratio of mesh divisions less than 3:1. -

*Table 6 shows comparisons with three alternative solutions for
simply supported sandwich plates including shear deformation. Solutions
based on Refergnces»17 and 39,which are series solutiéné for Libove and
Batddrfsf and Reissners' equations respectively, were obtained from -
ﬁomputei programs written spécifically for the purpose of chécking
the finite difference solution. Values quoted from Reference 16 were
takénvdirectly from that soﬁrce. The latter solution considers the
facings . and core as discrete elements whereas the other solutions are
for an‘idealised homogeneous systemn, Bearing in mind this differeﬁce

" agreement can be considered quite satisfactory.

A series solution for a clamped square isotropic plate un&er
uniform transverse load, including shear deforﬁation; is given in
Réference 21. This incorpérates the unrealistic third boundary
condition Mxy = 0; Table 7 shows a comparisoﬁ betﬁeen the series
solution and solutions obtained from the finite difference program for

two extreme values of tangential rotational edge restraint, The Mxy =0

‘condition was approximated by low restraint =~ K3x = K3i =1, and the
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more realistic condition of high restraint was given by specifying

st = K3y = 104. : Sufprisingly; the moments agree better for the

former condition but the differences are small in both cases.

Although the st = K3y_= 0 condition cannot be prescribed in
the program in its present form (this reduces the number of
independent equations by one and results in a singularity) a sélution
for K3X = Kéy = 1 is shown in comparison with Kr?ﬁm'é solution in
Figure 50,  This ié.for a square homogeneous plate having a span/
thickness ratio of 20. The effective'she;r‘stiffness parameter

used in the finite difference solution is multiplied by a factor of
2/3 to allow for warping. The laék of exact agreement in the corner
is attributed mainly to the fact that the M%y = 0 boundary condition
is not fully satisfied. It is possible however that numerical

limitations due to finite difference errors and corner definition

could have contributed to this.

All the preceding comparisons have been for uniform t:ansverée
‘load. = Solutions for non-uniform tfansverse load was restricted to
cases where tﬁe load varies cdntinuously.ﬁecause this is implicit in
equations(l). Discontinuities cause the results to oscillate about
the true solﬁtion. The degree of'oscillation depends on the severity
of the discontinuity an& the magnitude of the shear stiffness. Figure 51
shows the type of behaviour and the improvement obtained when the
discontinuity is made less severe. . As the shear stiffness is reduced
the improved solqtion begins to degenerate and for this reason the
solution for non—unifbrm transvefse load given in the Results is for
a triangular load distributign. This limitation could be overcome
by solving a lower order form of the equations. - Alternatively, the
equations can be transformed into a singie sixth order equation in one

variable (w séy) with derivatives of the load on the right Band side.



80

As already mentioned, a program was &ritten to givg solutions to -
the latter equation but it suffers from the limitation that only
Simply supported edges.can be treated. This program was most
uséful, however, in the analyses of patch load test-results,

described in the next Chapter.

3. RESULTS

3.1 Presentation

3.1.1 Plate Parameters: The effect on plate behaviour of shear

stiffness (Yx,yy), flexural orthotropy (o), sheér orthotropy
(Ylex?’ twisting stiffness (B) and side ratio () are examined for
the case of a‘clamped plate under uniform transverse load. The
effects:of O, Yy/YX,B and € are éomﬁaréd for Yy = 50, 250 and 500.
For shear—isotrbpic plates Yy = an/sz. These values were chosen
to cover a broad range of practical -structures — for example, in a
ship's double-bottom Y, and Yy may be of the order of 75 while for a
dock ggte Yy and Yy may be of the order of 350. Values of Y, ©of Yy

of less than 50 may occur when webs are omitted along one axis -

for example, in the case of bridge decks without diaphragms.

3.1.2 Boundary Parameters: The effect on plate behaviour of normalb
and tangéntial rotational.reétraint are examined for a square isotropic
plate under uﬁiform transverse load. Again, comparisons are made for
Y, = Yy = 50, 250 and 500. The following table gives the numerical
values of non-dimensional restraint'apﬁlied‘along edges unless other
values are specified., The values corresponding tb infinite restraint

were established by tests for convergence of results for successively

greater values of the respective parameters.

il
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Condition - | Ry Ky Kbi,KE - Kay » Ky
Simpleksupport i 107- ‘ 0 N 105
Clamped 107 10° 10°
Free ' 0 0 0

3,2 Effect of Shear Stiffness (Y£'= Y ) in Clamped Isotropic Plates -
Y .

‘Figures 52, 53

Figure 52 shows the variation of central deflexion and maximum edge
moment and shear force for a clamped square isotropic plate ﬁnder
uniform load as both shear stiffness parameters are varied simultaneously
from 10 t0'104{- It can be seén thaf stresses as well as deflexions
are sighificantly affected - ignoring shear deflexions for Y, =Yy = 50

y
would result in values of MX2 = M . which are about 15% too large.

y3

This relaxation of edge moment occurs because the edge clamping does

not apply to the slope dﬁe to shear.  Figure 53, which gives deflexion,
Zmoment and shear force distributions for Ty = Yy = §0, 250 and 500, shows
the edge slope déveloping as shear stiffness is reduced. This results
in a more even distribution of ioad as evidenced by the edge shear
&iétribution (Qy) and the bending moment'disfribution (Mx) across a
centre line, The edge twisting moment falls off as shear stiffness.

increases,  When Y# = Yy is very large Mxy approaches the zero value

which is implicit in ordinary plate solutions for clamped edges.
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3.3 Effect of Flexural Orthotropy () - Figures 54, 55, 56

For the purposes of e#amining the effects of fléxural_orthofropy
a doubly plated grillage with flanges of equal thiékness, stiffened
along the x axis 6n1y, is chosen, The webs are assumed to be plates
of equal thickness and spacing in both directions.  Based on the
stiffened plate relationships given previously, the biaxial parameters

for this type of structure are:

u/a

=
|

(1) / Camp2)

oW
fl

Figures 54 and 55 show the behaviour of a square, shear—isotropic
plate under uniform transvérse load as q varies from'1 (isotropic) to 2
for simply Supported‘and clamped edges respectively, Solutions are
comparéd for three casés of shear stiffness — Yy © 50, 250 aﬁd 500.

" The relationship Yy = yxd is simbly a feature of the non—dimensionalization
~and doe$ not conflict with the shear-isotropic assumption. For the
simply supported case, moments are unaffected by shear stiffness in the
isotropic case (a= 1). Asﬁ is increased some modification of the load
. distribution due to shear stiffness’is reflected in'the divergence

of central moments. Até =‘2 the maximum moment given by ordinary

pléte theory (Mil) would be about 5% high.fo;'yx = 50, ?here is a
similar iﬁcrease in the error for clamped edges as& is increased but

in this case, as noted previously, the error in the'iéotropic case

is about 152, making a total error of aﬁout 207 at &= 2. In the
clamped case the error in My3 reduces up to about d = 1,7 at which

point the error changes sign.
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Figure 56 shows distributions of bending moment and shear force
for o= 1, 1.5 and 2 and Y, = 50 for the clamped edge condition. Both
moments and shears illustrate the load transfer to the stiffer axis.
Myé, at the edge, is least affected by the transfer. This is'because,
although the plate tends to flatten across the y axis as o increases,
near the edges a local curvature is maintained by the rotational

restraint.

3.4 Effect of Shear Orthotropy Cryolt,) - Figures 57, 58

Figure 57 shows the effect on central deflexion and maximum edée
momeﬁt of the vgriation of transverse shéar stiffness-(yy) in a |
‘flexurally-isotropic clamped plate under uniform tranéverse load for
fhree values of longitudinal shear stiffness Y, = 50, 250 and 500,
These results apply to cases of doubly plated grillages in which the
web area and/or spacing is variéd in the transverse direction.,  They
do not cover the case of bridge decks without transverse diaphragms

in which the plate properties must account for local deformation.

As Yy/Yx is increésed, more of the load i1s transferred along the
strongef (y) axis and My3 and MX2 diverge., In the shear—isotropic
caser(Yy/YX = ;) for Y, = 50, ordinary plate theory overestimates the
maximum stress by about 152 but'atyyy/ Y, = 4.5 ordinarﬁ theory
ﬁndéréstimates this stress by about 15%Z. - The feversai takes Place
at Yy/ Y, of the order of 1.5. Load transfer to the stronger
direction is evidenced‘in the centre line bending moment and edge -

shear force distributions, for the case of Y, = 50, shown in Figure 58.
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3.5 Effect of Twisting Stiffness (B) - Figures 59, 60

Tb show the effect of twisting stiffness, an isotropic multi-
cellular plate with similar flange stiffeners along both axes is
considered. The twisting stiffness parameter (B) is varied by
changing.the stiffener size and/or spacing. b'For tﬁis case, the
relationship between the expressions for the biéxial plate parameters

given previously is:

- - -k kyooL
e TR o= Tyt &) 1
Where: ko= (l‘ﬁ)/ Bﬂ

Figure 59 shows the variation of central deflexién and maximum
edge moment, for the case of a clamped plate under uniform transverse
load, as g 1s varied from O.i to the value corresponding to no stiffeners -
1/(1 +;) = 0,769 for u= 0,3, Solutions for three values of shear
stiffness are comparéﬁ i Yy =50, 250 and 500. The decrease
in moment and deflexion as Bincreases is accentuated by a reduction
in shegr stiffness.  For Yx = Yy = 50 the error‘in stresses given
.by ordinary plate theory increases from about 107 at B= 0.1 to about

157 at B= 0.769. - S S

Figufe 60 compares moment and shear forcé-distributions in the
Y= Yy = 50 case for B= 0.1, 0.4 and 0.769. ‘These show that the
shear distribution to the boundaries is practically unaffected by B
while edge bending moment exhibits a reduction aésociated with the
increase in twisting moment as P is increased. The central bending

moment remains constant for increasing B because the effect of the

corresponding decrease in central curvature is offset by the increase
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in . = .
M T H

3.6 Effect of Side Ratio (¢) — Figures 61, 62

Figure 61 shows the influence of side ratioc on éentral deflexion
and central edge moments in an isotropic clamped plate under uniform
transverse load for Y# = Yy = 50, 250 and 500. ‘The solutions become
insensitive to side ratio at about b/a = 3. Above this value the
- plate behaviour away from the short sides is éssentially that of a beam
ofiétiffness D spanning the x directidn and tﬁe edge réaction is almosf
uni form. In the region of the short sides behaviour reverts to that
of a plate with corresponding variation of reaction distribution.
"These distributions are shown ih Figure 62 for the case of b/a = 3,
for-Yx = 50 and 500. This distinEtion between reaction distributions
is reflected in the effect on cehtral edge momenté of shear stiffness.
The long edge moment (sz) becomes insensitiye to shear stiffness because

the re1axing effect on load distribufion is lost as beam actiﬁn begins
to predominate. This is ndt the case along the short edges where
biaxialAbehaviour remains significant. For b/a > = 2 a mesh division

of 6 (x axis) by 12 (y axis) was used.

3.7 Effect of Tangential Rotational Edge Restraint (st, K3yl

Figures 63, 64

Altﬁough»%ariation of fangential rotational edge restraint cannot
be treated directly in plate solutions which exclude shear deformation,
the Kirchoff equation for edge shears along simply §upported boundaries
attempts to determine the effect on eage,reaction of zero

tangential rotational edge restraint (MXy = 0) using the reactions
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obtained from a solution which gives non—-zero values of Mxy at

tﬁe boundaries. Thus the standard solution fof simply supported
plates gives two alternative distributions of edge reaction, depending ‘
on whether or not the Kirchoff condition is employed. The reaction
corresponding to the deflected shape of the plate, without discrete
corner fbrces, is correct 1if K3x = Kéy = @ vthe modified rea;tion
obtained from the Kirchoff equation, which gives point corner forces,

is correct (within the limitations of.a solution which neglects shear

dgformatlon) if K3x = K3y = 0,

(18)

As shown by Kromm , who included shear deformation in ihe case
of a square isotropic plate having a relatively high éhear stiffness
(a/h - 20) for the zero edge twisting moment condition, thg Kirchoff
eq;ation gives accurate values of edge reaction excepﬁ near the
corners., In the latter regions the discrete poin£ forces predicted
‘by‘Kirchoff are distributed over a short distance either side of the
corner. For‘plates having shear stiffnesses ofvthe ofder
investigated by Kromm (Y# = Yy = 1230) only the forces in Ehe immediate
vicinity of the edges are sensitive to the degree of tangential

rotational edge restraint. This is not so for plates having shear

stiffnesses of less than about . Y# = Yy = 500,

In the following discussion of the influence of tangential
rétatidnal edgg restraint on plate behaﬁiour, this restraint is
assumed to be independent of yertical deflexibn restralnt (le and
K1y kept constant at 107). As discussed previouélf this is not

representative of many practical cases, such as plates supported on

integral edge beams, where these restraints are coupled.
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The eéffect of varying tangential rotational edge restraint on
moment and shear force distributions in a simply supported square
isotropic plate under uniform transverse load is shown in Figure 63

-for Y, = Yy = 50, As K3X = h3y is increased greater edge twisting

moments can develop and hence the equilibrating shear forces,

. ) _ 3
Qy gt x = * a/2 and Q aty =% b/2, decrease. When h3x = K3y = 107,

Mﬁy approaches a limiting value and the above shear forces approach
zero., At the same time the reversal in reactive shear distributions

near the corners becomes less severe. Also, -as K3X = K3y and hence

Mky increases the internal bending moments reduce as a. greater

proportion of the load is transmitted to the edges by twisting moment.,

, _ - 3
When K3x = K3y 10

throughout the plate .approach those given by ordinary plate theory.

the moments and shear forces, but not deflexions,

Figure 64 shows the effect of varying shear stiffness iﬁ'the
presence of low taﬁgential rotational edge restraint. For
K3x = K3y = 1 bending moments and shear forces aré compared for
Y ='Yy'= Sd, 25Q and- 500. As shear stiffness increases the edge
shears (QX and Qy) becomes more pronounced. The increase in corner
forces. is reflected in the decrease in bending moments in the interior
of the plate. For large shear stiffness the interior forcés become
the same as given by ordiﬁary platé theory shbwing thét the influenceb
of K3x and K3y is restricted to the edge region in cases whe?e shear

deformation is insignificant.
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3.8 Effect of Normal Rotational Edge Restraint7(K2XJ sz)

Figures 65, 66, 67, 68, 69, 70

An example of a case where the normal rotational restraint on
an individual plate panel, due to the surrounding s&stem, can be
idealised as a spring is a panel within an array of panels continuous
over vertical supports. In 2 3 x 3 array ofridentical square
isatropic panels in which only the centre pénel ié loaded (transVersely),
the outer panels may be replaced by'normaivrotationallspriﬁgs with
non-dimensional restraint stiffnesses (KZX, sz) of the drder of 3
or 4'depending on whether the outer edges of the array are simply

supported or clamped._

Another typical case is that of a plate supported on edge beams,
If the edge moment is assumed to act at the shear centre of the edge
‘beam and to have a sinusoidal qistribution along the edge between
corners, then the normal rotational edge restraints for a sduare
iéotropic plate due to identical edge beams of torsional rigidity

C are given by:

2 2
sz —szy = a(n"C/a )/Dx

Three combinations of rotational edge restraint along adjacent
boundaries, symmetrical about the two centre lines, are examined
for the case of a square isotropic plate under uniform transverse

load. - The behaviour is compared for three values of shear stiffness;

Y y. = 50, 250, 500.

X v
. Figure 65 gives solutions for central deflexion and central

edge moments for a plate with all edges equally restrained by springs
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the sfiffneséeg of whicﬁ are varied from zero, which corresponds

tb simple support, to 105, which approiimates to the fully clamped
condition. = The influence of shear stiffness on céntral edge
momenf becomes e#ident»aﬁ about sz = sz = 5 which is of fhe order
of the effective restraint &ue to unloaded paﬁels in an érray.

Figure 66 shows distributions of deflexion, shear force and bending

and twisting moment for three values of K, =K, .
2x 2y -

Figure 67 gives solutions for the case of two_edges (x = a/2)>

I+

simply supported (sz = 0) while along the other edges (y = % b/2)

K2 is varied from O to 105. For y_ = y_ = 50 the relaxing

y . X y

effect of shear deformation in the clamped edge case (sz = 105)

results in a maximum edgé moment which is about 207 less than would
bé‘given if shear deformation were ignored.  The more pronounced
significance of shear deformation in this case, as compared to the

case of both edges equally restrained, is due to the restrained edge
reacting a greater proportion of the applied load. Figure 68 illustrates

the load transfer to the restrained boundaries as restraint is

increased.

Figﬁre 69 gives solutions for two edges (y = % b/2) clamped
(sz = 105) while along the other edges (x = % a/2).K2X is increased .
from 0 to 105. This causes the influence of shear stiffness on

central edge moment at the fully clamped eage (M .) to decrease

y3

as the load distribution between. adjacent sides becomes more even.
For lower values of shear stiffness this redistribution is accentuated

and'MX2 is greater up to about K, = 20 at which point the relaxing

2x
effect of the improved load distribution along the x = * a/2

boundaries becomes apparent. Figure 70 illustrates the effect of

approaches the fu11y~

equalization of load distribution as sz

clamped condition,

-
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_ _ - .
3.9, Effect of In-Plane Load (Ny) - Figure 71

Figure 71 shows the effect of uniaxial in—piane compréssivé_
load on central deflexion and central edge moment in a square
;1émped isotropic plate subjected to a con;tant uniform transverse
load.  Solutions are coﬁbared for three values of shear stiffness»—

Yy = yy’= 50, 250 and 500. The results for Ny greater than about
607 of the respective buckling loads, are shown as broken lines
because there were signs that the numerical solution degenerated

above this point.

' ' .
Since Nx operates on the total (flexural and shear) curvature,

stresses increase more rapidly with N; for lower values of shear
stiffness, The latter effect and the reduction in edge stress due
tb shear deformation along the clamped edge nullify one another at
about’N;'= -10.  Above this value solutions which‘ignore shear»
deformation underestimate the maximum stress. The critical in-plane
loads for Y, T vi = 50, 250 and 500 are about N; % 40, 80 and 90 -

4oy - '

respectively Nx critical = 109 in the case of negligible

shear deformation.

3.10 Effect of Non-Uniform Transverse Load — Figure 72

Figure 72 gives centre line beﬁding moment and edgehshear
distributions in a squafe clampéd'iéotropic plate under a non—uniform .
‘transverse load distribution for two values of shear stiffness -
Yx = Yy = 50, 500, The load distribution is of-triangular form
in the v direction and constant in the x direction. The apex of

the y distribution has been smoothed because of the sensitivity of

the numerical solution to loading discontinuities. - Ignoring shear
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deformation would result in an overestimate of maximum edge moment
by about 20% for Y, = Yy = 50. The corresponding error for

uniform load was 157.

4.  CONCLUSIONS

4,1 The-results show that the effects of transverée_sheér deformation
‘may be of such a magnitude that an analysis which disfegards this
deformation gives values of deflexions and stresses which aré
appreciably in error. This error depends on plate properties,
boundary conditions and type of loading. Particular combinations

of these factors have been studied and the.results can be segﬁ in

the graphs. - Some features of the analysis are indicated below.

4,2 TIsotropic homogeneous plates: In uniformly loaded rectangular
plates.with simply supported edges incorporating zero tangential
edge slope (Mﬁxy # 0) deflexions but‘notvstreSSgs'are affected ﬁy
shear stiffness. Stresses are influenced however for any other
boundary condition or loading., In a sqﬁare unifdrmly loaded plate
with clamped edges for example, a shear stiffness parameter of

Yx = Yy =50 réduces the maXimum stress by about 15Z.

4.3 TFlexurally orthotropic plates: In a square uniformly loaded
platé with a shear stiffness paraﬁeterﬁof Yx. = Yy = 50 and flexural
'stiffness ratio of 2, the maximum stressuis reduced by about 57 in

the case of simply sﬁpported edges (Mixy # 0), and about 20% for clamped

edges.
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4,4 Shear orthotropic plates: In square uniformly ioaded claﬁped
plates iﬁcreasing'sheéf orthotropy incféaées the maximum Stress. -
Thus,ifor Yy = 50 the effect of shear deformationron maxiﬁum stress:
varies from a reduction of about 15% at Yy = 50 to an increase of

about 157 at'yy = 225,

4.5 Plates with reduced twisting stiffness: | The effect‘éf shear
deformation on stresses reduceé as the twisting stiffness paraméter
b(é) decreases. For a square uniformly loaded clamped plate the
157 reduction in maximum stress associated with Yo T Yy = 50 is for
a homogeneous plate for which g= 0.769 and this decreases. to about

10% -at g= 0.1,

4,6 -Rectangular plates: - The effect of shear stiffness on the
maximum stress in uniformly loaded clamped plates decreases as side

ratio (b/a) increases, becoming negligible at about b/a = 3,

4.7 Elastically restrained plates

(a) Tangential rotational edge restraint: The development of corner

forces in simply supported plates is associated with a reduction

in tangential rotational edge restraint (K3 ). For

x? K3y

K3x = K3y approaching zero in a square uniformly loaded plate,

the intensity of the force at the corner is reduced by about

85% due to shear deformation for Y, = Yy = 50. This decrease

is reflected in an increase in central stresses of about 10%.

{(b) YNormal rotational restraint: It has been noted that in a
square uniformly loaded clamped pléte the edge stresses are

reduced by 157 for Yx = Yy = 50, This effect is magnified
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when adjacent boundaries‘aré unequally restrained.  For .
two opposite edges simply supported and the other two
clamped, the effect of Y, = Yy = 50 on the maximum stress,

at the clamped edge, is a reductlion of about 20%.

4.8 In-plane load: The increase in stresses due to in-plane load

is accentuated by shear déformation. . For a square clamped plate
with éombinéd transverse and uniaxial.in—plane load the reduction

in maximum stfess due to éheaf deformation is reversed at abdut 107

éf the critical load. At 20% of the critical load the ﬁaximum stfess

is increased by more than 307 for YTy = 50,

4.9 Noﬁ—uniférm trénsverse load: Fof a clamped square plate
subjeéted to a triangular load distribution across one axis, central
deflexion increases by 135% for ¥, = 50 as compared to 110% for a
uniform distribution. The corresponding reduction in maximum

stress is about 207 as compared to ISZ.in the uniformly loaded case.

4,10 Certain combinations of plate pfoperties, boundary conditions
and’loaaing may lead to larger discrepancies between the simple and
more exact theories than those noted ébove. For a particular ship's
bottom'séructure for example, shear deformation increases the central

deflexion by 70% and reduces the maximum stress by 307.
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CHAPTER 5

ANALYSIS OF DOUBLE-BOTTOM MODEL TESTS

~

1. INTRODUCTION

The model test results are used to verify-the applicability of
the various theoretical solutions for overall ﬁnd 15cai behaviour'ofv
the double;bottom structure. Overall behaviour (feactions, deflexions
ahd shell.strains at shell-web intersections) is examined with
reference to the orthotropic plate solution including shear deformation
described in Chapter 4. Local behaviour of shell aﬁd web panels is

(26) solution for large deflexion of panels

(29)

: analyséd using Aalami's
under combined transverse and in-plane load, and Ho's work on the

behaviour of perforated webs.

Details of the model and éhe various load cases are giveﬁ in
Chapter 2. The ovérali stiffness properties of the model, taking
account of local behavioﬁf, are computed in Chapter 3. Before analysis
could proceed it was necessary to establish the effective boundary |
conditiOné appfopriate to the method of Suéport of the model described
in Chapter 2. - The coofdinaté axis orientation used in the analysis
is as . follows - x axis 1ongitudina1, bisecting the bulkheads, y axis

transverse, bisecting the sides of the ship. .

2. OVERALL BOUNDARY CONDITIONS

The overall analysis, because it includes shear deformation, requires

the specification of three boundary conditions on each edge and not two
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as in ordinary plate theory. "These were computed theoretically as
follows, but as the discussion shows, all the required conditions were

not immediately apparent.

2.1 Vertical Deflexion Restraint

Assuming that vertical edge flexibility was confined to the
lengthening or shortening of the rod supports the cbrresponding restraint

is given by:

k. = EA/dn
1
Where:
A = rod area
d = rod length, including vertical adjustment
correction ‘
h = rod spacing
This gives:
k= 0.21 x 10° 1b/in’
1 _ _
k. = 0.26 x 10° 1b/in’

1y

It was anticipatéd, and the experimental results confirméd, that
the above values overestimated the vertical edge restraint. Thié was
most evident at the bulkhead ends due to deflexion of the box»section
"frame against which the rods reacted. The final values used, and
the effect on overall behaviour of vertical edge flexibility, are

discussed with reference to the analysis of the combined load tests.
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2.2 Normal Rotational Restraint

At longitudinal (side of ship) edges it is appafent that there
was no festrainf against normal rotation (k2yv= 0). At transverse
(bulkhead) edges the condition is not so clearly defined. It appeared
possible that the torsional rigidity of the end extensions could have
constituted some degrée of normal rotationai edge restraint. As
discussed in Chapter 4, the magni;ude of this restraint, if it was
developéd in conjunction with reactive end torques,‘is givenrby:

2 6

k., =% ¢/b% = 1.64 x 10° 1b
2% , _ ‘
Where: -
c = torsional rigidity of end extensions
(1250 x 10° 1b. in?)
b- = . width of model

The experimental results do not confirm the effectiveness of this
restraint and the value finally used was k, =0. The basis of this
conclusion is discussed with reference to the analysis of the combined

load tests.

2.3 Tangential Rotational Restraint

‘The éituation regarding theoreti§a1 évaluation 6f this restraint
is similar to that for normal rotational edge restraint. At longitudinal
edges it was negligible U{Sy = 1) while at transverse edges the flexural
stiffness of the end extension may have constituted éome degree oﬁ
tangential rotational restraiﬁt. Since, as discusse& in Chapter 4,
any approximation is comélicatedtin the case of edge beams‘by the

limitations of the discrete spring idealization, it was decided to vary



97

k3x and by comparison with experimental results for combined load

behaviour establish the most appropriate value.

3. ANALYSIS FOR COMBINED TRANSVERSE AND IN-PLANE LOAD

Deﬁailed-comparisons between theory and experiment are made for a
transverse pressﬁre, only, of 1 p.s.i. _Particulaf results are then
studied for increments of traﬁsverse,presSurevup to 5bp.§.i. in the.
presence of constant in—piane thrust. This is done‘for four values‘
of thrust, namely fx =0, 3, 6 and 9 tons/ram which correspond to
average in-plane stresses of 0, -2.31, ~4.62 and —-6.93 tons/inz. The
averagé stress ﬁas computed as the total in-plane load divided by the
totél transverse cross—seétional area of the model. In all tests,
transverse pressure was incremented from a datum of 0.5 p.s.i.  This
ﬁas done to eliminate slackness from the rig and thereby ensure constant
datum strains. The results are given, however, for load incremented
from a datum of zero p.s.i., by extrapolating backwards. In all cases
the initial behaviour was practically linear and hence no significant

error was incurred.

3.1 Overall Behaviour

‘Figure 73 gives détails of the 1 p.s.1i. tranéverse load distribution
and the boundary conditions uséd in orthotropic plate solutioﬁs for
overall behaviour. An 8 x 8 mesh was used for all solutions. The
double‘step approximation to the diScontinui£y in the pressure in the
transverse (y) direction was necessary because of a-limitation in the
Eheoretical solution. Tﬁis is discussed in Chapter 4.7 The total load

was computed on the assumption that full pressure operated over the area
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covered by the water bag. In practice it is likely that the préSSure

' tépered off at the edges and hence the total load was probébly,slightly
less than the assumed value. This is confirmed in discussion on the
equilibrium between applied 1oad and measured reaction which follows.
Overall reaction and deflexions are compared to solutions for boundary
conditions - 1, la, 2, 3, 3a and 4. By this mgans‘it was possiblé

to clarify the uncertainties raisediin the préceding section aﬁd
establish one set of conditions on which all 1ater'ana1ysis of behaviour

-under combined transverse and in-plane load could be based.

3.1.1 Reactions:

Figure 74.(i) shows theoretical distributions of edge shear for
boundary conditions 1, 2, 3 and 4. vandition 3a is not included
because it developed from an analysis of overall deflexions which is
discussed in the next section. There was no,signifi;ant difference
in the distributiops for conditions 1 and la, which corréspon& to
conventional.simfle support. The same distributions WAuld be given by
a solution which does not'includg shear deformation and hence-cannot
develop tension in the cofner regions. Condition 2 differs from 1 in
that the tangential rotational restraint at the sides of the model 1is
very 10&1 This causes tensionbforcesAto dévelop in the corner rggions.
In condition 3 the tangential rotétionél reétraint is low on all edges
and the corner tension becomes more pronounced. . The precéding
. conditions have zero normal rotational restraint on all edges. In
gondition 4 a degree of normal rotétional restraint is introduced at

the bulkhead ends on the assumption that the torsional rigidity of

the end box extension 1s fully effective.
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As a first attempt to determine the most appropriate combination

of boundary conditions,theoretical and experimental edge reactions

were compared on the basis of proportion of load taken by édjacent

edges.

This is shown in Table 8.

The following comments take

.no account of errors in the theory due to assumptions and

approximations made in computing flexural and shear stiffnesses of

the orthotropic plate.

Boundéry Edge - Reaction gotal' £Q
Condition | ¥ . . eaction =
Qx 1b ZQX/XQ ZQy lb XQY/ZQ £Q 1b. P
1 (1a) o5l 0.416 1336 0.584 2287 1.001
2 805 | 0.352 1483 0.648 2288 1.002
3 (3a) 930 0.406 1358 0.594 2288 1.002
4 1187 0.519 1099 0.481 2286 1.001
Test 684 0.316 1481 '0.684 2165 0.948
Table 8

The total test reaction (ZQ) is about 52 1ess

thén the applied load

&Pp) aSSumlng that full pressure was achieved over the whole bag area.

This 1ack of equlllbrlum is attributed malnly to the fact that it is

. likely that the applled preSSure tapered off at the edges of the bag.

It can be seen in Figure 74 (ii) however, that negligible reaction

was recorded by the rod located at the centre of the side of the model.
This, and the corresponding rod on the opposite side, jammed in thelr

gulde blocks due to 1n—plane rlgld body displacement of the model and
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it is possible that some load was transferred to the rig by friction
and not recorded, because the gauges were positioned above the guide
blocks. Half of the discrepancy could have been due to this,_bﬁt.
the adjacent peak in the distribufion of rod ioading indicates that

in fact the jammed rod took no vertical load. Finally, it is possible
that.the lqad was not evenly distributeq to all quadrants buf checks

on symmetry of deflexions, strains and reactions agreed remarkably

well and tend-t§ discount this. All the following theoretical
solutions aSSume‘full ZP so that gtresses may be slightly o?erestimated
alfhdugh any effects will be small since.the tapering off in load is -

adjacent to the edges.

From Table 8 it can be seen that ‘thé'best agreement, between the
alternative theoretical solutions and the test results on the
proportion of load taken by adjacent edges,is for condition 2. The
next best agreement is for condition 3 while condition 4 shows a
disproportionate amount of load taken by the bulkhead ends. This
indicates that the normal rotational restraint due to torsional rigidity

of the end extensions was not developed.

Figﬁre 74 (ii) shows a comparison between the measured reactions
and the corresponding rod forces given by the edge shear distributions
for conditions 2 and 3. It can be seen ﬁhét the meQSured_corner
tension is bounded by these two solutions. From these observations
it ‘appears that some degree of ﬁangential fotational resfraint was
achieved at the bulkhead end although not perhaps asﬂhigh as specified

‘in condition 3.

3.1.2 Deflexions

In Figure 75 (i) the measured overall deflexions are compared
’ : U}

with theoretical solutions for boundary conditions 1, la, 2, 3 and 4.

1
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The exﬁerimental values show much larger edge deflexions thén
predicted by theory. This is due partly to edge flexibility not
accountéd for in the rod calculations and partly to rigid body uplift
of the model and rig. The latter effect is confirmed by thé fact .
that whereas tension in the cornmers implies a downward displacement
relative to the rig, an upward displacement relative_tq the floor was
recorded by a dial gauge adjacent to fhe corner. The additional
flexibility is attributed mainly to the bending of the box secti@n
frame against which the rods reacted. This is confirmed by the fact
that the displacement was greatest at the bulkhead ends whére the box

frame spans over the full width of the model.

Tgeoretical edge deflexions of the right order of magnitude can
be obtained by rational adjustment of vertical deflexionAedge restraints,
The question of the most appropriate condition as regards k3x remains
however. It -is of note that whereas the differénce in deflexions for
conditions 1>and 2 is about 8%; the diffefence for conditions 2 and 3 is
only 1%2. This is reflected invthe'streéses. Hence, since the
difference between solutions 2 and 3 is small and since éondition 3
behaves better numerically because the corner conditions are more

compatible (all rotational restraints low) it was decided to incorporate

an empirical adjustment in vertical deflexion edge restraint in condition 3.

This was done by subtracting a vertical rigid body displacement at the
corner and the centres of the two edges, so that the rgsultant
deflexions were of an order compatible with the corrésponding rod
stresses. The originally cowﬁuted vertical edge restraints were.then
adjusted to correspond to these deflexions giving a condition, Aenoted

3a, solutions for which are shown in Figure 75 (ii).
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Ihe proportion of reaction taken By adjacent si&es remains the’
same as for condition 3 although there is a siight redistribution
resulting in ver§ good agreement with the measured corner tensiom.
Incorporation of the reduced vertical restraints in condition 2
would have increased the divergence from measured corner tension.
The difference in central moments between conditions 3 and 3a is less
than 17. The measured central deflexion is within less than 5%
of that given by condition 3a. This is remarkably‘good agreement>
- considering the iimitations of the orthotropic plaﬁe idealization.
The: lack of more exact agreement as regards proportion of reaction
does however indicate that there may be some error in the relative
effective overall stiffnesses. This is discussed further with
regard to shell.strains. Shear deformation accounts for 32% of the

_calculated total deflexion.

3.1.3 Shell Strains at Shell-Web Intersections

Figures 76 and 77 show a éomparison between measured‘and theoretical
sheli streins at shell-web intersections for inmer and oﬁter shells
respectively. The following discussion is with reference to the
solutioﬁ denoted 3a, solution la was included to show the effect on .
strains of allowing-for'shéar deformation. The assumption-ﬁade in
the lbcal panel analysis ﬁhét verticai edge deflexion was zero,.implied
that taﬁgeﬁtial edge strains due to bending were zero and hence
theoretically; the discrepancy between measured and tﬁeoretical values

is due to variation in membrane stress across the panels.

(2) Inner Shelil: Near the centre of the model the overall solution

underestimates €. by about 287 and overestimates Eyi by about 37Z.
Corrections based on the losses of shell effectiveness used in computing

overall stiffnesses reduces the error in Exi to about 57 and increases
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the error in Syi slightly, to about 38%Z.  The measured
distributions of strain follow the form of theoretical solutions
reasonably well except for € i in tﬁe X éirection. Thié may be
due to a variation in effective plate properties or an error in the

overall boundary conditions. .

(b) Outex Shell: After correction, the errors in outer shell
strains near the centre of the model are an underestimate of about

387 for €  and an overestimate of about 13% fore .
X0 v yo

The degree of‘agreemenﬁ noted above is considered good in view
of the.complexity of the system. The differences are due.mainly
to local deformation an& errors in the computation of loss of
effectiveness. ’The‘érrors due to local deformation are most
apparent in E#o . . The corre5ponding results for patch load cases,
where the local panels were not éubjected.to transverse load, do not
show the same largevand distributed error. | The errors in cqmputation
of loss of effectiveness appear to be most severe in the y directién
as evidenced bj the‘discrepancies‘in‘syi. This indicates that the
computed lo;ation of the neutral axis was too close to the outer shell
énd is aﬁtribufed to failure to distinguish between losses in the
inner and outer shells. Calculations were based on an analysis for -
outer shelllpanéls and it is apparent that the loss of effectiveness
was 1ess‘f6r‘the inner sheli. ‘ Allowaﬁce‘fop this'would have given an
increased flexural sﬁiffness in the y direction which is consistent
.with the discrepancies observed in overall deflexion and proportion of

reaction taken by adjacent edges.
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3.1:4 Combined In-Plane Thrust and Increasing Transverse Pressure

(a) Shell Stress and Strain at Shell-Web Intersections: 4Figures 78
and 79 show longitudinal shell stresses at points across‘the model,
midway between floors D and C and between floors A and A' réspectively,
for increasing in—plane 1oad; The experimental stresses were computed
on the‘assumption of uniaxial stress (no overail bending). | The in-
plane loads were applieq after a settling load of 0.5 p.s.if transverse
vpréssure had been applied. The measufe& values'are compared with a
'theoretical-average stress given by'dividing the total in-plane load
by .the total fransverse cross sectional area of the model. The.
m&del had a built—in overéll outward deformation which was partially
but no entirely compensated by the 0.5 p.s.i; transverse.pressure.

This is evident in the divergence of meaSured inner and outer shell
strésses which is most apparent toward the centre of the model. The
mean stress given by gauges 170, 171, 172 and 173, which was least
affected by the assumption of.uniaxial étress, agrees very closely with
the calculated average stress. This verifies that in-plane load was

applied at, or very near, the longitudinal neutral axis of the model.

Some inconsistencies are evident for in-plane loads of P% =7, 8
and 9 tons/ram. The patch load tests were conducted in between the
'f¥ = 6 and 7 tons/ram tests. | This was necessary because~ményiqf the
outer‘shell surface gauges had begun to malfﬁnction due to coﬁdensed
water which had accumulated between the pressure bag and the model. It
Was.decided that since replacement‘of these gauges involved raising the
model, the patch load tests should be conducted while the model was
in the raised position. When these were completed the model was

restored to the combined load position. The inconsistencies are

evidence that the original conditions were not exactly reproduced.
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'FigﬁreISO shows the behaviour of t&pipal 1ongitudina1‘(i) and
transverse Cii) straips for iﬁcreasing transversé preééure.v>JFour”
cases of constant in-plane load are shown - PX.= o, 3, 6 énd 9 tbns/ramr
'There is a small degree of non-linearity with'increasihgftransverse load,
most noticeable for outer shell stréins in the y directidn‘duevto a
. greater sensitivity to local non-linear behaviour. | The initial overall
‘outward deformation of the model is évidehced by the'non-Coincidence of

datum strains forFPx> 0.

(b)‘ Deflexions: Figure 81 (i) shows measﬁréd,ééntral deflexion for the
fdur'load cases considered above. The slight degreé of non-linearity
with increasing transverse pressure; most noticeable for Px =3 an@

6 tons/fam, is attributed to in-plane rigid body displacement of the model.
ThigrcauSed the dial gauge.spindle to move transversély until further
movement of the model was prevented by sto?s. The effect wés>most
noticeable for dial géuges with long spindles'which ipcluded gﬁuge number 1.
Interaction betwaeﬁ in-plane and transverée load effects 1is evidéﬁt in

the siope of the curves. The non—céincidence of datum load deflexions

is due to initial overail outward deformation of the model. The‘good
agreement of corresponding deflexioms in opposite quadrants, shown in
Figure 81 (ii), is-typical of the high degree of symmetry attained in

all'tests;

(c)'fReactions:' Figure 82 sﬁowsAfypiéal compféééién rodb(i) and tgnsion

11nk (ii). strain measurements for 1ncrea51ng transverse 1oad (P = 0).
The difference in strains in each case is a measure of the bending

of the rods. " Mean strains; from which reactive forces were

computed, can be seen to be reasonably linear. - In the preSenée
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of in-plane load reactive forces increased: For a transverse
pressure of 1.p.s.i. and an in—plane load of Px = 9 tons/ranm the
measured increase/quadrant was 55 1lbs compared to a theoretical

value, for boundary condition 3a, of 59 1bs.

3.2 Local Behaviour.

3.2.1 Webs

(29)

In the analysis of the single fioor model Ho obtained good
agreement between theoretical and experimental tangential stresses
around lightening holes by superimposing the effects of shear and
bending. The same approach is used here for distributions of shear

force and bending moment given by the orthotropic plate solution

including shear deformation for boundary condition 3a.

Ho shéwed that a reasonable approximation torthe shear behaviour
is oBtained from a solution féf a hole iﬁ an infinite plate subjected .
to uniform shear. Figure 83 (i) - shows the diéfribution of tangential
stress computed_in this way for an applied shear stress of 1 ton/inz.
The theoretical applied shear stress was taken as the shear forpe'per
web at éhe particular séction divided'by.the éolid web érea. The
contribution due to bendiné is based on Howland and Stevenson's theory(4l)
- for an infinitely long strip with a éingle'hole on its centre line.
Figure 83 (ii) shows the_distribﬁtion of tangentiai stress c&mputed
in this way for an applied bending stress of 1 ton/inz. The applied

bending stress was taken as the mean shell-web interface stress at the

particular section.

Experimental heart of plate tangential stresses around holes were
derived by subtracting the bending component from strains recorded on

-opposite surfaces. Any bending was due to initial out of plane
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deformation which the results showed to be considerable in some
cases. Where stresses were deived at symmetric locatioms the

mean value is plotted.

Figure 84 shows the results for the holes in floors A‘(A;), B,
C and D at bay 7-8 (7'-8'). In all cases the experiméntal values
conform»remafkably well to the theoreticalrdisﬁributions around the
circumference. The peakvvalues’are low, due maini& to the fact that
strains wé?e recorded 0.10 inches from the edge of the hole at which .
distance Ho's solution predicts a fall off in stress concéntration of
about 20%. At 0° and 180° the theoretical tangential stress is due
to bending only and agreemént wifh measured stresses 1s not good;
This is not surprising considering that no éccount was taﬁen of cut

outs in way of stiffeners or of lack of symﬁetry.

Figure 85 (i) compares measured stresses around holes in floor A

and side bracket A, at bay 8-9 with two theoretical solutions which

1
differ in intensity. of theoretical applied shear stress. In one,
floor A is assumed.to take all the ghear force between the centre lines
sepérating floor A and the adjacent.floors and in‘the other this force
is distributed equally between floor A and three side brackets. The.
experimental values for floor A indicate that the-shear force was

shared with the side brackets, although not in the assumed ratio.

but this may

This is not confirmed in the results for side bracket A1

have been due to local effects.

Figure 85 (ii) compares measured and theoretical stresses around the
hole in centre bracket Al; bay 0-1. 'This case differs significantly
from all others in that the primary source of theoretical applied

stress is bending. Thevexperimental results do. not confirm the
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existence of tangential stresses due to bending and'ﬁhis is probably
a realistic result, rather than the influence of local effects as

was suggested for side bracket A These conclusions are confirmed

1
by the results for patch load tests.
Figure 85 (iii) compares meaSured-strésses around the intercostal
hoies-immediately adjacent to bulkheads with a theoretical solution
assuming that the intercostals resisted the shear fsrce distributed.
from midway between the intercostals and centre girder to midway
between the intercostals and fhe sides of fhe mbdel. The effect of
measuring strains a small distance from the edge of the hole is
apparent in the peak stress. The discrepancy noted at 180° in the
floor ﬁole stresses at bay 7-8 is not so apparent because the bending

stress is much lower.

‘Centre'girder shear stress was measured near the bulkhead ends.
The recorded value was 0;75 tbns/in2 forq=1 p.s.i: which’ié within
97 of thé theoretical value of 0.83 tons/inz. In the theoretical
calculation it was aSSumed‘that the shear stress, due to shear‘force
distributed between the centre lines separating the centre girder and

the intercostals, varied uniformly through the depth of the web.

' The behaviour underrcoﬁbined loading of typical web strains is
shown in Figure 86. The effect of initial putIOf plane deformation
ié very apparent in (i) but deépite the slight non—liﬁearity in:
recorded strains the.heart of plate strain is reasonably linear and,

as would be expected, relatively insensitive to in-plane load.

3.2.2 Shell Panels

(a) Overall Transverse Load Only — q = i ﬁ.sﬁi.

Three outer shell panels were examiﬁed‘in detail. Figure 87
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shows. these panels and the initial deformation and in-plane loads
which were used in theoretical solutions based on Aalami's(26)

computer program for.the large deflexion behaviour of rectangular

orthotropic plates.

The‘initial deformation was based on contours measured prior
to any testing. These are plotted in Figure 27 where it can be seen
that there was some lack of symmetry within éach panel. No account
can be taken of this in the program and hence sinﬁsoidal approximations
were used with central deflexions equal to the maximum measured

deflexions relative to the respective panel boundaries.

The program requires that applied in-plane load be spegified as
the‘avefage value in the x and y directionms. These are the values
shown and they were derived frdm the'ovéréli solution by applying
reductibn factors based on the analysis for loss of shell effectiveness
used:in the computétion of overall flexural stiffnesses. Some
averaéing was also necessary to aécouﬁg for variation of moment in
* the y direction. . It will be noted éhat the‘applied éverage in-plane
edge stress in the y direction was éomputed to be less for panel 1
than panél 2 despite the fact that panel 1 was closer to the dentre
of the model. This arose because it was assumed‘that the centre
bracket floors had negligible influence on the meﬁbfane sfress \
distribution between floors. Hence,.gince fhe membrane stress varies
between_maximum:values at the floors, the mean stress between.intermediate

centre brackets was considerably less than the mean stress between

floors.

Boundary conditions were assumed to be the same as used in the

transverse bending loss of effectiveness analysis except for the case
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of rotational edge restraint in panel 1.- This restraint was

redﬁ&ed to allow for the greater flexibility of the wéb panels,

'whigﬁ bound panel 1 on threé‘sides, as compared to the'ang1e stiffener
which bounds the fourth side. Assuming that the webs ﬁere solid and
fixed at the inner shell side, the rotational restrainf is of the order
qf'480 ih.lb/in. as compared to gbout 1530 in.1b/in. for angle stiffeners.
‘The lower value was used on all sides for pangl 1 and the higher value

on all sides for panels’2 and 3. it should be noted that the computation
of the restraint due to angle stiffeners involved the assumption of

antisymmetric initial deformation in adjacent panels in the y direction,

a condition not ideally satisfied across panels 1, 2 and 3.

Measured values of deflexion, bending stress and membrane stress
~are compared with corresponding theoretical distributions in Figures 88,
89 and 90 respectively. The resulﬁs cannot be viewed independently
hovever because it is quite feasible, With the number of.varigbles
involved, to contrive a theoretical solution which accurately predicts
deflexions say, but bears little relatioﬂ #o the true stress system.
Despite apparent discrepancies, the theoretical solution, considefing
its limitations, predicted the experimental results remarkably well
and thé results for all three variables aré feasonably'consistent. A
detailed diécussion of the discrepancies Woul& be difficult to justify
.but it is possible to comment oh several possible édurces of error

in the theoretical solutions.’

The most significant factor is the lack of antisymmetry in the
initial deformation of adjacent panels. This is most apparent in

the behaviour of panel 2 where the effects of the much larger deformations

in panel 3 have swamped the flexural behaviour of panel 2 to such an
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extent that the theoretical soiutions for deflexiéns and bending
strésses are of the wrong sign.' This factor also-probably contriguted
to the lower measﬁred values ofoym in panels 2 and 1. In the latter‘
case the'panél oﬁ»the opposite side of the centre girder had‘suffered

significantly greater initial deformation.

A Second'majbr source of error was the restriction in the
theqretical solution as regards symmetry of initial deformation within
a panel. This applies mainly to panel 3 in which the effect of
cgncentration 6f initial deformation toward the floor A' end, which
can be seen iﬁ thé contours, was réflected in the lower measured membrane

stresses in this region.

(b) - Combined Load Behaviour

The analysis of shell panel test results is now extended to include
overall trénsﬁerse pressures (g*) up fq 5 p.s.i, for four cases of
in-plane load - P# =0, 3, 6 aﬁd 9 tons/ram. As deflexions increase
the non-linearity associated with large deflexion behaviour becomes more
apparent and the limitations of thevtheoretical solution are accentuated,
Nevertheless, there is sufficient agreement between theory and experiment

to justify extending the analysis.

Figure 91 gives deflexions for.panels_l, 2 and 3. Figures 92 and
93 give bending and ﬁembrane stresses at the centres‘of‘panéls 1 and 2
respectively. Figures 94, 95 and 96 give these stresses for panel 3
;t points a, b and c (see Figure 89) respectively. Results are plotted
from datum loads of P =0, 3, 6and9 tons/ram and ¢ = 0 ﬁ.s.i. The
lack of agreement.between theory aﬁd experiment at theée datum logds

is due partly to effects of the initial overall sag of the model, noted
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previously in connection with analysis of overall behaviour. Also,
as noted previously, the experimental results for Px = 9 tons/ram
exhibiﬁ differences from the other three cases which are attributed to

deformation caused during the patch load tests.

Panel 1: The inconsistehcy between results fof P# = 9 tons/ram and
the other cases is particularly évident in the datum 16ad results for

" Panel 1, whiéh show a marked increase. in deflexioné and streSses. ~ This
is attfibuted to a modification, mainly locél buf also poséibly overall,
sustained during thg patch load tests, For increasing transverse

1pad (q*) the most marked divergence between theory and experimént is
‘for Gyb although deflexioh, O and Uym show similar effecés. This

is attfibuted partly to underestimééion of the influence of a higher
deéree of rotational restraint on the edge bounded by angle stiffener
numbef 1, and partly to the infiuence of the significantly higher
negative initial deformation of adjacent panels in the y direction.

The relafively good agréement for Uym substantiétes the observation

regarding the overall flexural ineffectiveness of bracket floors, made

in reference to tangential hole stresses.

Panel 2} As for comparisons made for g* = 1, agreement is poor‘and
gets worse under ihcreasinglload for all measured quéntities except
O This confirms the'domipant role played,'particularly.on y‘axis
behaviour, by the much larger deformation in adjacent pané1v3.' From
the design point of vieﬁ however, this is not vefy éignificant because
thg stresses affected are smail relative to U%m iﬁithe presence of Px’

and agreement 1s excellent for S » .
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-Panel 3: These résuits-(and also those for panei 2) do not show,

to the same degree, the inconsistency discussed previously ip regard

to the load case involving PX = 9 tons/ram. This indicates that the
effect was priﬁarily due to 1oc§1 deformation in the viecinity of the
point of application of the patch loads. The erratic behaviouf of
streésas at point a for Px = 9.tons/ramvis not attributed to the
effecfs of patch 1oad tests apart from the possibility that the gauge
may have been damaged. The limitations of the theor& when ipitial.
deformatiﬁn is not symmetric within the panel afe‘emphasised'by these
results, At ﬁoints b and ¢, which are closer to the péakrin the
actual initial deformation profile, the effeéts on Stfesses.of membrane
effects is more apparent., The pronounced variation of membrane stress
in the x direction, resulting in very high stresses at the shell~web"
interfaces, emphasises the necessity of allowing for a realistic amount
of initial deformation in compufing 1§Ss of shell effegtiveness for design

purposes.,

3.2.3 Shell Stiffeners and Channel Struts

The- shell stiffeners are-subjectea to axiai forces due‘to overall
bending and in-plane 1§ad and to transverse load and torque due to local
deformation of adjacent shell pamnels. The load distribution is non-
ﬁniform. - The stiffeneré are restrained at floors and channel struts
and the stiffener-shell interface constituteé aﬁ enforced centre of
rotation. The compiexity of this system does not lend itself_to

theoretical analysis at the present time.

Figures 97 and 98 give the experimental results for inner and
outer shell stiffeners 3 and 8 between floors A and A' for the four

combined load cases considered'previously. Figure 99 gives experimental
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stresses for channel struts X, Y and Z for the same four in-plane
load cases for q = 1 p.s.i. only.  The strut stresses are not plotted
for increasing transverse load because they behaved linearly in nearly

all cases.

Some non—~linearity is apparent' in the stiffenerkstresses for

increasiﬁg transverse load, mainl& for outer sheli stiffener number 3
-at cross sections b (e) and ¢ (d).  There is. a éiénificaut variation
in'gfiffener stresses between end restraints in all cases and for outer
shell sfiffener number 3 thg stresses at section a, b and ¢ show good
agreement with stresses at symmetric sections f, e aﬁd d. For this
stiffenef the axial stresses due to overall bending for q = 1 p.s.i. are
‘about ;0;39 t0ns/in2 at the outer surface and -0.24 tons/in2 at the .
free leg., It can be seen that local deformations give rise to stresses
of the same order. = The combined stresses can 5e seen to reach high
levels which emphasises ﬁheAnecessity of adequaté safety margins since
the behaviour of the panels and hence overall effectiveness is very

sensitive_to the degree of restraint afforded by the shell stiffeners.

Little can be said about the channel struts.  They perform anv
importént function not only in maintaining the separation of inner and
outer shells but also in restraining the stiffeneré; and thereby,
'greatly increasing the rotational edge restraint of the shell panels,
This restraining influence 1is evident in the strut behdigg stresses
which, despite some degree of non-symmetry, are consistent Qith

deformation predictable from the antisymmetry of shell panels,
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. 4, - ANALYSIS FOR TRANSVERSE PATCH LOADING

Details of the patch load testsvaré givén in Chapter 2, | Four
tests were conducted with load applied‘by 8,_6; 4 and 2 fams respectiQély,
- located symmetrically about the transverse centre line, along the centre
girdér at intersections with the transverse floors. Results are
compared wiéﬁ theoretical -solutions for a 1oad-df 1 ton/ram. Discussion
- of behaviour cémmdn to these tests and the';ombined’distributed transverse

and in-plane load tests, already covered in preceding sections will not

be repeated in this section.

4.1 Overall Behaviour

Figure 100 shows the ram locétions for the four patch load tests
and the corresponding distributions used in theoretical solutions for.
~overall behaviour. - The theoretical distributiqns had the stepped form’
shown in order to—minimise'errors arising from discrete discontinuities.
This limitation is due to the fact that when shear deformation is taken
into account, the equations involve differentiation of the transverse

load distribution,

The theoretical solution for simply Suppo¥ted edges only, described
in Appendi# D, was used because the sclution for genérélised boundary
conditions, uéed to analyse the combipedrload tests, is even more

"sensitive to non—unifoim transverse load. 'vZero vertical edge

deflexion and zero'tangentiai rotational edge slope ére implicit in the
solution for simply supported edges. These correspond to infinite
vertical deflexion restraint and infinite taﬁgential rotational restraint
“in the generalised boundary condition solution. in the analysis to

determine the most appropriate boundary conditions it was found that
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inclusion of appropriate vertical aﬁd ﬁangential rotational edge

- flexibility resulted in_an increasevin central deflexion and cenfral
moments of the order of 10%. In addition, the shear férce
distribution was modified, as shbwn by the fgversals of gdgé reaction
in the corner regions. In the foilowipg analysis of:the patch load
tests these limitations to the theoretical solgtion should be borne in

mindo 3 . ’ - .

4,1.1 Reactions

Theoretical and experimenﬁal reaction distributions:are compared in
_Figures 101 and 102.  The inclusion of shear'deformaﬁion Hasuvery”>
liptle effect on the theoretical edge reaction distriﬁution for simply
supported edges with zero vertical di3p1acement. Thé hﬁmp in the
theoretical disttibutiéh, adjacent to the corner at the bulkhead en&;
is due to the unequél‘rod spacing'in thisrregion., Two'limitaﬁions
in the theoretiéal solﬁtion are apﬁarent.4 The,first follows from.the'
above discgssions on bOundary conditionsbwhereiq ghe deveiopment of
large corner tension forces cannot be diréctly accoupted fot.'c The
second relates to the idealization of diSc?ete webs as a homogeneéus
medium.r This is very pronouﬁced for load cases P8Eand P6 where the .
experimental reaction distribution shows a distinct incrégse,ih the
vicinity of the centre girder. As for the combine&vload case, there
are also peaks in the side of ship diétribhtions at the floofs. :The
equilibrium between measured reaction and applied load-is.excellenf
for load cases P2 and f&. For load cases P6 and P8 the discrepancies
are 5% and 4% respectively although in the former case the failure of
tﬁo rods to record load, possibly due to équipment malfunction, may

have .caused this;
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4,1.2 Deflexions

Theoreﬁiéal.and experimental overall dgflexiohs are compared in

- Figures 103 and 104. The theoretical solﬁtion including shear deformaﬁion
underestimates the measured central deflexion By 9%Z, 7%, 6% and 8% for
cases P8, P6, P4 and P2, Assﬁming a +10Z correction to accoun£ for

edge flexibiliﬁies'makes aéreement remaikably‘good; Of the total
‘theoretical central deflexions, shear dgformation accounts for 262,

287, 32% a-nd 37% for cases Ps, P6, P4 and P2 respectivély. The
theoretical and experimental distributions of deflexidn agree remarkably
weli even for cases P2 and P4, where a distinct hump.develops under
;thé4load. The variation iﬁ curvature at the edgé of the patch in the x

direction becomes very apparent in theoretical strains. .

4.1.3 8hell Strains at Shell-Web Intersections

The total theoreﬁical corrections to the strains given by thé o&erall
solution, to account for local deformation and inqonféct boﬁndary
conditions, are of the order of +30% and +10% iq‘the x and'y éirections
respectively. Applying thése corrections to thé solutions shown in
Figures IQSHand 106 for inner and outer shell strains--'load case P8,
gives egrors relative to measured central region strains 6£ the order of
+457, +457, -ZSZ-and +157 1in Bei’ &i® Exo and 0 respectively. These
errors confirm fhe conclusion made in referénce to_combined loading,
that the computed neutral axes were too clésé'to the outer shell. This
was bebausebthe loss of effectiveness, which was aSSuméd to be equél in
both shells, was in fact more severe in the outer, compressidn shell.
The measured strains conform remarkably well to the theéretical |
distributions considering the limitations due to the effects of local

behaviour. It was noted with reference to combined load results that
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these limitations were.less severe in patch load tages because of

the absence of local transverse panel loading. Results for inner
and outer shell strain for load cases P6, P4 and P2 are given in
Figures 107 and 108, 109 and 110, and 111 and 112 respéctively; The

theory shows how the effect of shear deformation on bending strains

under the load becomes more severe as the patch size diminishes.

4.2 Local Behaviour

4.2,1 Webs

As for the combined. load analysis, theoretical solutions for
tangential web hole stresses were computéd-by the summation of the
effects of shear and bending.  Particular cases were obtained by

taking multiples of the two distributions given in Figure 83.

‘Figures 113, 114, 115 and 116 compare measured and theétetical
tangential stresses for the héles located at béy'7—8 (7'—8')‘in floors
AF(A'), B, Cand D resPeétively. All four load cases are shbwn on
each Figure. As for the combined load régults the experimental values
fit tﬁg theoretical distributions remarkably yell although the maximum

values are again predictably low.

_Figure;117 gives results for holes located at bay 8-9, in floor A

and side bracket A., for the four load cases. Two theoretical

.
distributions are shown, one in which all thé shear force is taken by
fioor A and one in which this force is shared with the side brackets.,

Again, as for the combined load results, tHe floor A stresses indicate

that the.shear was shared with the side brackets to some degree but this:

is not confirmed by the results for side bracket Al.
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Figure 118 gives results for centre brgcket A1 for tﬂe fdurvload
cases., In this case there is a significant differénce from the
combined load reSults. _ Whefeas in‘thevlatter case there was
insignificant shear force so close to the centre of the model, in the
patch load cases the shear distribution rises rapialy éﬁd contributes
significantly to the appiied web loading at bay 0-1. It was hoted
that the lack of stress régérded in the combined load test indicéted
that the centre brackets contribution to overall flexural stiffness
was insignificant.f This was confirmed Bj the shell panel‘analysis of
'U&ﬁ fqripanel 1. The patch léad results show that the centre brackets
do contribute significantly to shear stiffness since the measured
stress at 135° iS,‘theoretically, entirely due to appiied shear stress.

This justifies the inclusion of centre and side brackets in the analysis

to determine overall shear stiffness.

Figure 119 gives results for the intercostal holes immediately
adjacent to bulkhead ends. -Agreement is comparable with the

combined load results.

The measured centre girder sheér sﬁresses adjacent to the bulkheads
were 2.56, 1.36, 0.73 and 0.32 tons/in2 for load casés P8, P6, P4 and
P2 respectiyely. The corresponding theoretical values are 2.08, 1.10,
0.60-and 0.28vtons/in2.giving errors of 197, 197, 187 and i3Z. The

decrease in percentage error corresponds to an improvement in load

distribution as the distance from the applied load increases.

4,2,2 Shell Panels .

Figures 120,'12i, 122 and 123 compare two theoretical solutions for

deflexions of outer shell panels 1, 2 and 3 with experimental results
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for 1053 cases ?8, P6, P4 and P2 resﬁectively. Thg corresponding
results for bending stresses are given in Figures 124, 125, 126

and 127Iand for membrane stresses.in Figures 128, 129, 130 and 131.
The theoretiéal solutions are for two cases of elastic rotational edge

restraint:— one for the same values used in the combined load analysis,

and the other for zero rotational edge restraipt which corresponds to
simply Subported edges.. An analysis using the beam—column Ssolution
described in Chapter 3 showed fhat, in the absencé of distriﬁuted
transverse pressure, the effective rotational restraint for an
aﬁtisymmetric distributién of initial deformation (wé/h=6725) réduced
the effe;tive rotational restraiﬁ; by about a half, However,»it was
decided to use the zero.restraint condition and discuss differences
.between theory andvexﬁeriment with reference to the preééding calculation.
Loading'Qas.ehtirely in—plane. The theoretical values for avefage
in—piane stress were taken from corresponding solutions/for-overall
behaviour, including shear deformation, with adjustments for loss of

" effectiveness and non—uniform distribution.

Measured deflexions in parnels 2 and 3 fall about midway between
the two theoretical distributions which‘indicates the theoretical
estimate of loss of elastic restraint in the absence of transverse load
" was quite accurate. : -This. observation must however be examined with
reference to stresses.: It is of note that, in the absence of transverse
load, the high relétive inifiai deformatioﬁ of panel 3 does not appear
to have exerted the marked influence on flexural behaviour of panel. 2
observed in the cbmbinéd léad tests, The-meaéured deflexion in panel 1
is considerably greater than both pheoreticai séluﬁions. There_is

little difference between the latter solutions because the effective

rotational restraint assumed for panel 1 was relatively low. - The greater
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measured deflexioﬁ is attributed to an increase in the initial
deformation of panél 1. This has airéady bgen discussed_with
reference to the inconsistencies Be;ween combined load results for
Pg =0, 3, 6 tons/ram and.P; = 9 tons/ram where the patch load tests

were conducted in the interim between the 6 and 9 toﬁs/ram tests,

Measured bending stresses in all paﬁels agree more closely with
solutions for simply supported edges but considering the approximation

involved agréement is remarkably good.

Measured membrane streséés show:thé same effects noted in the
combined loathésts. In some cases the difference between theoretical
‘membrane stresses for the two boundary conditions was insignificant
" and only the restfained edge results are given.. Agreement in the x
direction is good allowing fbr the effect of non—-symmetry in panel 3.

In the y direction the theoretical values are high, probébly due to an

overestimate of applied edge stress.

4,2,3 S8hell Stiffeners and Channel Struts 

Figures 132; 133, 134 and 135vgive iﬁner and outer shell stiffener
stresses in stiffeners numbered 3 and 8, between fléors A and AT,
fdr load caseé P8, P6, P4 and Pé respectively. Tﬁe overéll stresses
" at the shell-stiffener intersection for outer shéll stiffener nﬁmber 3
are of the order of —1.1,‘—1.1, =-1.0 and -0.7 tons/in2 for the four
load cases. Comparing these vaiues to the:meaSured_stresées emphasises
the very signific;nt influence of local deformaﬁion. This is even more.

apparent in stiffener number 8 in which stresses are higher than in
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number 3 in some cases, despite the much greater distance from the

centre line, Figure 136 gives channel strut stresses,

4,3 Non-Linearity with Increasing Load

The various measured values exhibited about the same degree of
non~linearity under increasing load as observed in the combined load .

tests,

5. FAILURE TEST

£l

5.1 Preliminary Local Failure

I£ was decided to precede the final failure tést with one additional
“elastic test. This was for the model subjected to a constant transverse
pressure of 5 p.s.i. and increments of in-plane thrust in excess of the
previous.maximum (Px =9 tons[rauD; The purpose was to give.more
extensive'expefimental data oﬁ the large deflexion behaviour of local

shell panels under combined thurst.

As the in-plane load was being incremented from PX = 15 tons/ram to
Px= 16 tans/ram, (which was to be the maximum) there was an unexpected
outer shell bucklihg failure af one end. Figure 137 is-g View of the
undérside of the model_aftei this failure. Although'it cannot be
seen very clearly, there was also e§idence thatia similar failure wés
imminent at the other end and elsewhere the permanent outer shell

deformation was in excess of the original initial deformation.

The maximum thrust was about Px = 15} tons/ram corresponding to an
average compressive stress of-12 tdns/inz. The. lowest theoretical

panel buckling load under longitudinal compression is-17.1 tons/inz,
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for simply supported edges. This would correspondbto a three half

wave buckle but as can be seen In Figure 138 the actual buckle was

of a local nature and this premature failure is attributed.to two main
factors. Firstly, the shell stiffeners were not coﬁtinuously welded
around their section at the ends and hence they only become effective

in sharing the thrust at éome diétance from the éndé. Secondly, the
ihtermittent welding of the stiffeners and wébs to the shell coﬁstituted
allocai weakness at gaés‘in the weld in so far as the restraint against
antisymﬁetiic_buckling of édjacent panels was reduced. As can be seen
in Figure 138 it was across é line Qf gapé in the welding that the buckle
oééurred. These factorSIWere obviated in the inner shell by the

margin brackets.

Because of the local nature of tﬁe failure and since it was not in-
the region of the expected criticai area so far as the final failufe
test‘was concerned, it was decided to repaii'the model by cutting out
the buckles and welding additional shell plating at both ends. This
additional plating was ! in. thick and extended one floor spécing from
the ends, except at the centre? where iﬁ extended as far as the sécond
bracket floor. It was welded in panels .across the whole width of the
buckled end and on evéry seéona panel at the -other ehd; Some
realignment of the end extension was necessary at ;hé buckled end.

After repair the model was realigned in the rig and elastic tests undex

combined load showed virtually no difference from the pre-failure tests.

5.2 Final Failure Test

The repaired model was failed under combined transverse pressure
and in-plane thrust, incremented simultaneously at the rate of

9 =1p.s.i. and P =1 ton/ram. These corresponded to theoretical
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overall central longitudinal outer bottom stresses of about -0.45
and -0.77 tons/in2 respectively. Working load was assﬁﬁed, for the
purposes of definihg an overall safety factor against collepse, to
-be ¢ = 10 p.s.i. (full draft, empty hold condition) and P%‘= 10 tons/ram
(approximately maximum hogging eon&ition),corresponding to maximum
‘theoreticai overall 1ongidedina1 outer bottom stresses of -4.5 tons/in2
‘and~~7.7'tons/in2 respectively. = Thus the elastie‘analysis, for the
‘assumed losses in plating effectiveness, gave a combined overell maximum
longitudinal compressive stress at the assumed working load, of -12.2
'tons/inZ, The corresponding theoretical transverse sfressewas

-8.3 toné/inz. The yield stress for the material was about 15 tons/inz.

At aﬁout d = 13.5 p.s.i., and PX =“13.5v'vt.ens/rz-,un the loading Fould
no longer be sustained.  This corrésponds to a nominal double-bottom
safety factor of 1.35. inrpractice it may be 51igﬁt1y higherrdue

- to roeational restraint at the sides, Subject to a more deteiled
analysis it appeared that failure was due to degeneration in outer
shell transverse penel effectiveness, combined with extensive local
yielding. At the failure load the theoretical maximum combined overall
central longitudinal outer shell stress was of fhe order of -16} tons/inz.
The cbrsesponding transverse stress was in excess of-l1 tons/inz. The
theeretical local bending stresses ie some panels weie of the same
order of magnitude. Even allowing for the fact theﬁ.overailvand
local maximum stresses.do not occur at the same 1ocations, the combined
elastic stresses were in excess of yield at the assumed workiné.lqad |

indicating thet at failure the yielded areas must have been extensive.

Figure 139 is an overall view of the bottom of the model after
failure. Figure 140 shows details of local deformation in the centre

region., Figure 141 shows details of a buckle which extends roughly
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diagonally toWard the corners at one end.  This buckiing is thought

to have precipitated the final collapse.

To test the centrél shell panel ultimate ioad hypothesis; additional
solutions were obtained from the BEAMCOL program (described in Chapter 3)
for a transverse outer shell section subjected to combined load. |
Royational restraint at supports due to stiffenefs (k*) wasltaken as
1350 in. 1b/in. and theygéntral initial'deformatioﬁ was faken as é quarter -
of the plate thickness (wolh = 0.25). - The solﬁtion'degenerafed, which
ha; been shown in Chapter 3’to.be a good measure of the column buckling
load, at sligﬁtly above 10.25 p.s.i. transverse pressure and 1127.5 1b.
in—plane load. Fof zero rotational restraint the column buckling load
was fdﬁnd‘to be 665 1b. compared to 850 1b. for the correspondiﬁg panel.
Inéreasing the restrained beam-column buckling load in the same proportion
. gives a restrained panel buckling 1oadvof-ébout 1435 1b. which corresponds
to about 13 p.s.i. transverse pressure or 1.3 times ﬁhe assumed working
load. It would seem possible therefore, that panel buckling‘combined
with extensive yielding due to overall and local bending, could felate

directly to the observed collapse load.

Figﬁre 142 is a.plot of overall central deflexion, and local
deflexions in panels'lyand 3, for the failure test. ' The beam—column
solution for effective rotational restraint aﬁd~corrésponding‘central
deflexion is also shown. Noﬁ—linearity becomes apparent in the overall
&eflexion at aboﬁt 0.6 of the assumed working load. Tﬁe Qvgrall
‘stiffness decreased rapidly beyond the assumed working load which is

very close to the beam-column buckling load.



126

CHAPTER 6

CONCLUSIONS

1. LOSSES IN PLATING EFFECTIVENESS

1.1 Shell Plating

An elastic analysis of overall behaviour of plated grillages using
the orthotropic piate approach shOuld take account of loss of shell
piating effectiveness caused by shear lag and iocal panel bending. For
. the model, which was typical of many dry cargo ships, shear lag
- dominated the longitudinal losses and local panel bending dominated the
transverse losses. | The span to flange width raeio was about 6 in
.both directions for which the unstiffened flange sheer lag 1oss‘wou1&
be.abOut 717 but due to longitudinal framingrthis was doubled in the
longitudinal directian. The 3:1 side ratio of shell panels (3Alongitudina1)
resulted in negligibie longitudinal and about 157 transverse loss of flange

effectiveness due to local panel bending.

Losses due to shear lag depend on section geometry, boundary conditions
and the distribution (but not ‘the magnitude) of applied transrerse load.
Losses due to panel bending are sensitive to magnltude of loading (in-plane
and transverse) in addltlon to the other factors. However,_prov1ded
the rotational edge restraint is sufficiently high, which was the case
in the model for transverse loads up to 5 p.s.i., the maOnltude of the
1oad is of secondary 1mportance compared to the effect of 1n1t1a1
deformation. Hence, it appears that local panel as well as shear lag
effectiveness calculations may be made, in certain cases, without

reference to actual stress levels.
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In ﬁhe case of the modei,'calculation of panel bending
effectiveness was based on a measured mean central initial
deformation to plate thickness ratio (wblh) of 0.25. For clamped
or nearly clamped edges loss of effectiveness due to panél bending
increases in almost direct proportion to Wblh where it is possible

that “B/h may exceed 0.5 in practice.

The combined losses used iﬁ tﬁe‘ovefall analyses of the model were
157 in the x- difection and 207 in ﬁhe y directioﬁ. These were
assumed to be the same in top and botfom shells and to be constant
throughout the modei. Losses of this order must significantly affect
overall behaviour and the degree of agreement between theory and
experiment indicates that they represent a reasonable assessment.
© Agreement would have.been better if a distinction had been made between

inner and outer shell panel bending losses.

The preceding conclusions must be qualified for external -load in
excess of that applied during the elastic tests, in which load was
restricted such that no local yielding was‘recorded Ey any of the strain -
gauges. In the case of distributed transverselPreSSureronly, this
meant that loading had to be stopped at 5 p.s.i., half the‘full draft
pressure, because yielding was imminent in several perforated floors.

In the case of coﬁbined distributed transverse load and longitudinal-
thrust, loading had to be étopped at,4 p.s.i. and-6.93 tOnS/inz(g tons/ram)
because yielding was imminent in qentral bottom shell panels. In the

. final failure test, combined load was épplied in’increments of 1 p.s.i;
and-0;77 tons/inz(l ton/ram) and non-lineérity became evident in the |
overall central deflexion at about 6 p.s.i. and-4.62 tons/inz(6 tons/ram) . |
By 10 p.s.1i. (full draft pressure) and-7.7 tons/in2 (10 tons/ram) the

measured central deflexion had diverged from the linear solution by
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about 157, oflwhichvonly.Z%Z couid be'accountea'for by elastic
interaction between in-plane 1oaa and overall transverse defoimation.
This indicates a significant fall off in flange effectiveness which |
is attributed to inelastic deformation and a reduction in effective
panel restraint below a value at whicﬁ panel effectiveness could be

computed without reference to stress levels.

1.2 Web Plating

Accounting for sﬁear deformation ip tﬁe orthotropic plate approach
to piated grillage analysis requires the idealization of discrete webs
"as a continuous media. In the double-bottom structure, where shear
deformation can account for more than 50% of the total deflexion, this
idealization requires an accurate assessment of loss of web shear
stiffneés due to perforatioms. In the model, perforations reduced
the shear stiffﬁess by about 50%. It has been shown by Ho that the
theqretical éolution for a hole in an igfinite plate subjected to pure
sheaf gives good agreement with test results for loss of web shear
stiffness although for design pﬁrposes an empirical equation proposed

by Kuhn has been shown to give satisfactory results.

The form of_the orthotropic plate equations solved as part of
this in&eétigation precluded consideration of non-uniform section
properties and hence local variati&ns were accounted for by. taking
equivalent uniform properties. In the doﬁble—bottom model, equivalent
shear properties had to take account of the fact that the longitudinal
centre giraer, with no pefforations, Qas almost twice as stiff as the
) intefcostals and that the bracket flooré gave local increases in
transverse stiffness near the centre girder and the sides of the model.

The equivalent losses of shear_stiffness were 207 longitudinally-and 30%
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transversely. Agreément between overall theoretical and experimental

-deflexions indicates that this was a reasonable assessment.

No account was taken of loss of shea¥ effectiveness due to out of
plané web deformation. That considerable out of plane deformation
did take place, due to initial deformation of the webs, was evidenced
by the measured strains on opposiﬁe surfaces. | At some locations this
effect was severe enough to result in local surface'fielding at half
fdll draft pressure.  The agreement noted between measuréd and
theoretical overall deflexions up to 5 p.s.i., indicates that the error
incﬁrred by omitting this factor was not very significant but it is
possible that it bécame significant at higher 1Qéds and contributed

to the observed decrease in overall stiffness.

2. EFFECT OF WEB SHEAR DEFORMATION ON MODEL BEHAVIOUR

2.1 General

The foilowing observafions are made with respect to the‘dOuble-bottom
model. - fractical cases will arise where the significance of shear
deformation is of greater importance than observed in the model and these
are remarked upon in passiﬁg. More general cbnclusionsbrelating to
‘the influence of shéa£ deformation qnvorthotropic plate behaviour, for

a broad range of plate and boundary parameters, are given in Chapter 4.

2.2 Deflexions

Measured and theoretical overall deflexions agreed within 57. For
distributed transverse loading the theoretical solution showed that shear

deformation accounted for 327 of the total deflexion. For patch loads
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the contribution due  to sﬁear was abOut'26Z; 28%;:322 and 377 for
‘the P8, P6, P4 and P2 cases respectiveiﬁ. Tﬁe patcﬁ load results ‘
were obtained, 6f necessity, from a solution restricted to cases of
sinmply supported, undeflecting edges. The distributedrtran5versé
load casé wvas, however, amenable to énalysis by a solution for
elastically restrained deflecting edges and the actual boundary
conditions could therefore be more:accurately simulgted. The reason
for this distinction was_the relative sensitiﬁity of the two soluﬁions
to variation in traﬁsverse load distribution.  The more general

| soiution was unsatisfactory for the patch load caseé because the
effect of variatién appeared in the variable coefficient matrix (left
hand side), whereas in the simply supported edge condition soluﬁion
this effect appeared in tﬁe loading matrix (right hand side) and
provided the load was stepped, rathef than cut off abruptly at

discontinuities, the results were satisfactory.

' For other boundary conditions, such as clamped ends and elastically
restrained sides, shear deformation could account for more than 503
of the total deflexion. An effect of this magnitude might be important

when, for example, propeller shaft distortion is a consideration.

2.3 Reactions

As discussed in Chapter 4, the iﬁclusion.of shear deformation in
the plate equations obviates the neceésity of‘resérting.to the Kirchoff
equation to compute cornér foreces. These forces arise when tangential
rotational restraint is low, which was the case in the double-bottom

model. '
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Totai measured and‘theorEtical reactions'égreed within less
than 57 in all cases. The disﬁribution of méaSured reaction was
used as a basis for determining the effective boundary conditions
because there was some doubt as to the influence of the in-plane
loading beams welded at the ends of gﬁe model. It was concluded
that restraint due to the loading beams had negligible effect on the

overall behaviour of the model.

.The limitatiomns of the orthotfopic plate approaéh to analysié of>
the double—bottoﬁ‘waé mos t evidént in the end reaction distributions
for patch loads where a peak, in line with the centre girder, was quite
pronounced in the measured values. - The tﬁeoretical solution predicts
a smooth distribution. \ Much 1less significént peaks were apparent in
line with other continuous webs in all tests. Despite this limitation,
the orthotropic plate approach gave satisfactory results for other

variables, for patch load as well as distributed transverse load cases.

2.4 Stresses

For distributed transverse load the theoretical effect of shear
deformation on overall stresses in the model was of the order of 107%.
This was dué primarily to the influence of reduced tangential rotational
édge restraint ét the sides, an effect which‘can only,be_accounﬁed for
in the orthotropic plate solution when shear,defbrmation_is included.
As already menﬁioned, this reduced restréint could mnot be accoﬁntedrfor in
the solutions for patch loads, but the solutionm uséd did give localised

increases of the same order under the loaded areas.

Theoretical shell panel in-plane edge forces due to tramsverse load

were derived from overall solutions including shear deformation. The
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agreement between measured and theoretical centre panel stresses
showed that these edge forces were of reasonable accuracy for both

the distributed and the local transverse load cases.

Sqlutions for the double-bottom model subjected ﬁo combined in-plane
"'and transverse load showed that, for loading of practical interest,
interaction between in*plaﬂe 1oad and overall fransverse deflexion due

to 16ad (including shear deflexion) is negligibie. " The results
confirmed this, although measurable deflexions_did occur due to inter-
action between the in-plane load and the initial overall outward
deférmation of the model. Thus, for practical purposes, direct
superposition ;an be used to evaluate the combined overall stresses

and the combined panel in-plane edge forces.

Practical cases do arise,wﬁere accounting for shear deformation
can have a more significant effect on stresses. For example, for
clamped ends and elastically restrained sides the maximum end stresses
may be reduced by more than 302; Shear—orthotropy may.result in

increases in maximum stress of the same order of magnitude.

3. LOCAL ELASTIC BEHAVIOUR

3.1 Shell Panels

Good agreement between theory and experiment has justified the
analysis of shell panels as discrete, initially deformed, isotropic
plates subjected‘to transverse pressure and edge loads. The following
conclusions relate to behaviour for 10a&s of the order applied iﬁ the
elastic tests and are qualified in the later discussion on behaviOur

observed during the failure test.
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The énalysis is dePEndént on an aécurate assessment of local
béundary conditions whicﬁ mﬁst take account of continuity.. This
was done by analysing tﬁe'moment-slope"characte?istics of 'a transverse
outer shell section idealised_as an initially deformed beam—column.
The effect of stiffeners was accounted for by applying rotational
restraint at‘each support. This restraint was derived from a
torque analysis for angle Sections restrained»agaigst warping at
end’supports and cqnstrained to‘rotate about aﬁ enforced centre of
rotation at the shell-stiffener interface. It waé shown that this
restraint can be considerable and it is in fact»esséntial, if preméfure
bﬁckling of outer shell panels is to be prevented. The latter analysis
was foy angle:section stiffeners. For bulb section stiffeners the
restraint would be considerably reduced. The channel struts, which
~ comnected top and bottom shell stiffeners midway-betweeh floors, had a
considerable effect on shell panel behaviour, since, by halving the
stiffener span between restraints tﬁey'increased the effective panel

rotational restraint by a factor of about 16.

Initial deformation of shell panels in the model was of sufficient
magnitude, relative‘to plafe thickness, to induce large deflexion
behavioﬁr. Although.there is very.little quantitative data available
it appears likely that in ships in service the centre panel deformation

‘ﬁovplate thickness ratio will be in excess of that observed in the
" model. ‘Heneg, design data base& on linearised solutionS‘for local
panel behaviour cannot be assumed to be‘sufficiently accurate for

practical purposes.

3.2 Web Panels

The distribution of measured heart of plate tangential stresses

around web lightening holes conformed very well to a theoretical solution



134

~based on superposition of bending and shear effects. The maximum
theoretical tangential stress, due to the shear compoﬁent of applied
web 1oad; was derived from a solution based on the equations for a
hole in an infinite plate subjected to pure shear. Previous work
has shown that this solution corresponds to the case of a discrete .
- perforated panel with edges partially restrained. Actual measured

maximum stresses were about 20% lower than the theoretical values

because they were recorded at 0.1 inches in from the edges of the holes.

A fall off in stress concentration of this ordéf‘waskpredicted by the theory.

Applied shear.forces used in the theoretical solutions were derived
from the overall orthogrdpic plate solutions by lumping the distributed
'shear ét the webs. At cross sections including discontinuocus webs
(bracket floors), measured stresses weré compared to two solutions,
one. in which all the shear'wasbfaken by the continuous web énd another
where the shear was shared equally between éll.webs.’ The éxperimentai
results showed that the discontinuous webs were sharing the load
aithough not apparently on an equal basis. This indicates fhat a lower
- shear effectiveness factor shOuld.be applied to discontinuoﬁs webs.,  Due
to intial  deformation there was considerable out of plane bendiné of
perférated web panels. In some.locatiohs this waslsufficient to give
local: surface stresses approaching yield at ﬁalf full draft pressure
(5 p.s.i.). The corresponding maximum heért of plate tangential streés
a£ this 1oéd_was of the order of 10 tons/iﬂz. Althodgh’the surface
yielding may not in itself be a critical factor the qorreSpbnding
deformation may contribute to 1oss/of veb effectiveness at higher loads.
If necessary, additional stiffness could be achieved, without
necessitating additional material, by bending the circumference at 45°

to give a flanged effect as is presently done in aircraft construction.
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- Measured and theéretical centre girder web shear stﬁesses agreed
_within 97 for the distributed.transverse load case. For local
trahsvefse load the efror varied from 197 to 13Z. ' The increase
in error is indicative of limitations in the orthotropic plate
approachbto analysis of plated grillages when webs are widely spaced.
Even so, for practical purﬁoses the method aﬁpears satisfacfory for

spacings characteristic of the double-bottom structure.

3.3 Shell Stiffeners and Channel Struts

The shell pan%i rptational edge restraint.function of the she11
stiffeners énd channel struts has airéady been commented upon. |
Althbugh no quantitative analysis ﬁas attem#ted, the observed stresses
in these members were consistent with this function. - The shell
stiffener stresses due to local deformation exceeded the stresses due

" to ovérali bending at some points, indicating that design for 1o§a1

buckling may be desirable since this could initiate overall failure of

the double-bot torh.

4. ~ FAILURE

In the final failure test‘tranévérse preSSure‘an& in-plane thrust
ﬁere inéreased simultanéousiy at the rate,of 1 p.s:i. and 1 ton/ram
(-0.77 tons/in2) respective1y. Working load was assuméd to occur. at
10 p.s.i. and 10 tons/ram (~7.7 tons/inz) where 10 p.s.i. corresponded
to the full draft empty hold dpndition. The theoretical maximum
overall iongitudinél compreséive stresses at this load were —-4.5 tons/in

. 2 . -
and =7.7 tons/in”~ due to transverse pressure and in-plane thrust



136

respectively. Failure occurred at about 1.35 times this assumed
working load and appeared to have been initiated by collapse of the

central outer shell panels.

According to the orthotropic platebtheory (including shear
‘deformation'and-loss of shell effectiveness) the load required
to cause compressive yieléing of the outer sﬂell at the centre 'of
the model was 1.25 times the-assumed working 1oéd: If loss of
effectiveness is ignored this factor becomes 1.56, increasing to
1.741if, in additipn, sﬁear déformation is ignored{ Local surface
yielding of central.shell panels, and heart of plate web hole
circumference yielding, began at about-0;75 of the assumed working
load. An‘approximate calculation of the buckling load of a typical
shell panel gave a central panel buckling load which corresponded to

about 1.3 times the assumed working load.

In the single floor test (L

the failure appeared to have

resulted from a combination of shell and floor Buckling at a solid

floor shear stress; in way of the buckle, of about 7.3 tons/inz. The
corresponding theoretical maximum solid floor shear stress at failure

of thé»éoub1e~bottom modei was about 6.75 tons/inz. The corresponding.
average solid floor shear stress was about 5.4 tons/inz. The theoretical
solid intercosﬁal shear stress in way of the holes immediately adjacent

.to #he ends was about 8.1 tons/in2 at failure. There was no externgl

evidence of a shear failure in the double-bottom model but this remains

to be confirmed when the model is cut.open.

~ An approximate yield line analysis, taking the in~plane thrust
as fixed at 13.5 tons/ram (~10.4 tons/inz), gives an ultimate transverse

pressure of about 19 p.s.i. This solution is outlined in Appendix E.
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These observations indicate that a reasonable esfimate of
ultimate.loéd may be obtained from the orthotropic plate sélution,
'based oﬁ-compressive yielding of fhe outer shell at the centré of
the double-bottom, provided loss of shell effectiveness and shear
deformation are taken into account. This would have to be viewed

in conjunction with'a'panel'buckling and web shear stress analysis.
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APPENDIX A

OUTLINE OF SHADE'S SOLUTION FOR COMPUTATION

OF SHEAR BREADTH FACTORCY

Any function describing the plane stress behaviour of the flanges of a

beam must satisfy the LaGrange equation:

Where: ~ F = Airey stress function defining stresses : :
2
0°F

O‘ = —
X 8y2
2
O - i_g
4 ox
2
_ _O°F
T-= Oxdy

The solution for a pérﬁcular beam depends on the boundary conditions,
the loading distribution and the section geometry,  The case of inferest to
this investigation (mulﬁple webs ) is shown in Figuré 143.

| Two series solutions solutions, representing alternative enci condi\ﬁons

(x = O,L), were considered:

(i) F

= f sin Wx
n n
Where:
W = /L,

n = _ any integer
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Q
]

-.U)zf sin- Wx = Q)

T = W & cos Wi # O

dy at x = O,L

This corresponds to free ends except for T # O .

(i) Fn = fncqs Wx
Gives:
‘ ,azf ,
- O = ~—cosx # O
X _ 2
| - 9y
Oy = - w cos Wx # O
T = -wdiwwx =0
R dy

at x = O,L

This corresponds to clamped ends,

Satisfaction of the LaGrange equation gives (for both series)

Fn = (An + C.n Wy)cosh Wy + (B,n + any)sinh (A).y

Three of the four coefficients can be directly defined from safisfaction

of the independent boundary conditions:

v

T

normal displacement . =

O
shear stress = O

v = O.', aty=b, x=0— L..
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Substituting the stress function into the relevant stress-strain and

strain~displacement equations for the above boundary conditions gives:

B = C =0
-A tanh Wb _
D = L. = AK
n (Wb - j tanh Wb) nn

(-p)/0+1) :

-Gives:

foo= An(cosh Wy + K Wy sinh Wy)

The remaining boundary condition is:

O‘x B Z
X
Where:
Mx =  beam bending moment at a particular section
. =  beam section modulus af that section,

This; is the simple beam stress for the reduced flange bread_fh and is
dependent on ’rhe_flqnge effectiveness, yet to be evaluated.  One way of
solviﬁg for this would be to use an viferoﬁve procedure: sfdrﬁné from an
- assumed Zx distribution along the spdn (L). | Shade év&ds the necessity of
iteration by defining a ®boundary function® - the effective breadth for any
given n, which he shows to be independent of x, i.e. independent of
long?fudinoil stress distribution, This‘eliminofes A .ond‘ Shade then derives

the actual effective breadth by o summation involving the -b—_x boundary
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- condition, for Mx defined in harmonic form (gives n series) and taking

account of the "boundary functions" in Zx.

 Thus, for a given n, the loss of effectiveness based on web stress is

(see Figure 143(ii)):

b
: . of
i} Lgxndy W,
o= =2 . = >
n — _ _ .
Oxn a—%+p.w2

Substituting for fn gives:

>\n o _ 4 (cos a - 1)

B E_ 3+ )sinh a = (1+)a
" Where :

a = 2Whb

This is the required ®boundary furiction® for the particular se.ction, A
“has cancelled out and the expression is independent of x.

Now, if the moment distribution is defined as a harmonic function

(Fourier series):

M = S M sinWx
X 'n

" Then for a particular n:

M = M sin Wx
nx _ n
—_ Mnx
an = Z
nx
b
an = O’nx = -X-n Onx
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Finally, the actual effective breadth is:

)\] 5 > ansin, Wwx
* S 0, sin Wx
Or; Shear Breadth Factor:
}\n Mnx
X 2 (’b—")(—z—-)
A o
b - ' Mnx
S (52
nx

Shqdé gives‘ values qf shear breadth factor for a limited number of beam
sections and load distributions.  In order to obtain the factors required 05
part of this investigation, the preceding expressions were programmed for
solution on rP;e University of London Atlas Computer.  The generality of the
solution is defined in Chapter 3,  The resulis confirmed Shade's suggestion
thf although section geometry does significantly influence local loss of |
“effectiveness in the case of patch Ioads; the overq” (beam) loss of effectiveness
can Ee based oﬁ uniform load and is independent of secfior; geometry for
practical -purposes;

The double-bottom model analysis required solutions for the distribution
of stress across the flange so that stresses could be es;rivmqfed at points removed
l;'rom the flange-web interface. = These were obtained by ex'fending Shade's
solufion for the simply supporfed end case ds follows:

We require:

o°F 2 |
0, - 7 > w?A_ [ (1+2K)cosh Wy +K Wy sinh Wy] sinh tox
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To evaluate An' consider:

a2 9 Mnxsin Wx
= (5 + MW sin Wx =
d

l

il

f
2

Y - DX

nx’

Gives::

i ( nx

nx
" WA
n

L

n

(1 + 2K +H)cosh Wb + (1+H)K wb sinh Wb

Hence Ox distributions were derived by summation of the above

expressions,
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APPENDIX B

SERIES SOLUTIONS FOR PLATE EQUATIONS INCLUDING

' SHEAR DEFORMATION

(17)

Two alternative series solutions, based on the work of Robinson

(39

and Salerno and Goldberg ), were programmed for the purposes of establishing
the practical significance of shear deformation in rélofion to deflexions in
fhg double-bottom model, and also to givé check values for the finite
difference solutions, bThis Appendix outlines the derivation of the series,
the p;'ograms for the solution of which were written for the University of
London ‘Atlas Computer as part of the present work.

- The basic difference between the two solutions is that Salerno and
" Goldberg attempt a more rigorous satisfaction of the simply supported boundary
condition,  The results in Table 6 show that the effect is 'insignificahf.

Except where noted otherwise, the notation used conforms o that in

the main text. In both solutions the origin of the co-ordinate axes is faken

at the corner of the plate and not at the cenfre as shown in Figure 49.

1.  ROBINSON'S SOLUTION

This is a solution for Libove and Bafdorf‘s(] ) equations for rectangular
orthotropic sandwich plates under combined fransverse and in-plane load,

The plate properties are implicitly constant throughout the plate.



148

The pdrﬁcular loading considered is uniform in-plane load in the x
direction, Nx' and uniform transverse load, defined by the following double

Fourier series :

nmy
. n
sin ——%
b

£
]
iMs
M
0
S

3,5... n=1,3,5...
Where : R = 16g/( 2 )
. qmn q T mn

 The followi ng series were assumed to describe the three variables, w, Qx-

and Qy, in the governing equations (1), given in Chapter 4.

& 2 ' mm X nmwy
v m=123 5 n=1235 A $17 =5 S0
' i 2 mmx nmy
Q = E E B cos sin
X m=1.3,5... n=1,3,5 mn a b
2 ZCD mmx nwy
QY: m=1%5 n=1,3,5 Con $1" 75 €7

These implicitly satisfy the following simply supported .boundary conditions.

At ' x = O, a : w = O

i
O
‘O'
3
1
O

Aty

ow X _ _
> T - 0> Q =0

Infinite tangential rotational restraint is implicit in the above equations
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(K. =K, = o)., The constants A_ , B and C__ can be obtained by
3% 3y _ mn’ “mn mn

" substituting the above series into equations (1) and solving term by term, to

give:
A _ wmn B - an C =- Ymn
mn 9mn Z ! mn 9n 7 ! mn 9mn"Z
_ mn mn mn
Where:
Wmn = alm4 + a2m2 + a3m2n2 + q4n2 + 05n4 -1
_ 5 3 32 2
an = b]m + b2_m + b3m n + b4mn + b5mn
_ 4 2 23 3
Ymn T oemn + c2m n + cgm n + c,qn »+ csn
Defining:
2 2
. P = 4w D /(b (1-
, D, /6201~ i, 1))

‘ r. = P)/(4SY)

k = D)/Dy

E = S)/Sy
| N - VD'x Dy. : S \
. [3 _ "

b= W

= M D/Dx' (from Maxwell's reciprocal law)

"‘Then:
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@ = kY

L A e
ay = =alk-nu/s

a = - r(1+n(k-)u2)/(2ke))

a5 = -a]n/z' |

2 .

ay = P-paye

b, = akn/26"

by = /P’

by = ayk-np)p?

by = oy =Wk + 1)
by = 0(3T‘]/2> |

a4 = P },“/ (4bﬁ)
a = azrb(k-)uz)/k

e, = -ag kn/2p"

ey = (M- LA/ KED) + 1/pY)
)

C3 = _5(k—n}")/ﬁ

¢, = 9y
¢5 = ~%T1/2
ay = Pyn/(4b)

Q
|

s = ay kg )

Hence -deflexions and shears were computed by the evaluation of the
preceding coefficients and summation of respective series, In addition,

moments were computed from the following relationships, derived by



I51

substituting the series expressions into equations (41) given in Appendix C. ‘

Q@

I ‘ '
M= >, > (i’]m6 + f2m4 + F3m4n2 + f4m2n2
% m=1,3,5... n=1,3,5...
2 4 4 6 2 2. %n . mmx nmy
+ fsm n + Fén + F7n + F8m + f9n ) vi sin — sin—
. : . mn ‘
- (] (2] ' - '
B 6 4 42 22
M = > > (f]Om + f”m + F]2m n~ + f]3m n"

Y m=1,3,5... n=1,3,5...

2 4 4 6, . 2 2. %mn . mmx . nmy
+ men +f]5n +f]6n +f]7m +F]8n)Zrnn sin — san

® ® ' _
M = >, > (f]9m5ni + f20m3n + f2]m3n3 + F22mn3
¥ m=1,3,5... n1,3,5...
+ f mn5 + f,, ,mn) Jran cvos X cos nmy
23 24 Z a b
mn
Where:

f.l = elc] + e3b]
f2 = ea, + e3b2
ffg = 9, + e2cl]+ e3b3 + €40
f4 = e]<:14+e2<:12+e3b4+e4c2
f = eqog+eydy F ey +eycy R R
fé. = ey + e4c4
f7 = e2c5 + e4c5

g = &
f. = -e
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L= -1 2

°1 6%7

e, = -a 2,

2 6% M

€3 T 9%/S,

ey = aéagp/sy

o = D /1-ud)

6 = DO~
S = w/a

ag = /b

f e‘cx + e b

10° %% T e

Cf1 T egug tegh,

f]2 = aesq] + e6cx3 + e7c] + e8b3

gt egly T eyey Feghy

fl4 = e593 T egl5 T escy +oeghy

f.. = e.a

13 5

L

| ]5- v;-.5a4+e:7c4
f6 = 505+ escs
F]7 =» -e6 .
F]8 = --e5

= - [+ 2
°s T "M0%

_ 2
6 = 0% P

e, = a]OGB/Sy'

°g = oYK/,
. 2
a]O - D)/('I-,U )

flog = ey * egoey +eygb,

FZO = e9cx2 + e]OCZ ‘+ e”b2 :
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21 0% T eypc3 + e ybg

fap = &gty +eqocy Tegiby

fs = 9% T °10% * e11bs
f24 = -e'9
% T "9%0.y

o G7Dx/(25y)

ey = gD, /25)

Solutions for deflexion, shears and momehfs were checked qéqinst
isotropic plate solutions for -negligirble shear deformation from Reference 36,
an;l al.so against solutions for shear-orthotropic plates includilug shear
deformation from Reference ]6f Agreement was quite satisfactory,

For plate properties of the order of those for the double-bottom moaél
it was found that sﬁear deformation accounted for about 30% of the total
deflexion,  This showed the practical significance of shear deforrﬁation
and indicated the desirability of further investigation info the effect of shear

deformation on plate behaviour, for alternative boundary conditions.

2.  SALERNO AND GOLDBERG'S SOLUTION

(12) |

This i; o Levy l‘fype solution of Reissner's equations forrfhe case
of simply supporfed rectangular homogeneous isotropic plates under transverse
load.  These equations are the same as Libove an& Batdorf's if the terms.
relating to stress and strain normal to the plane of the plate are removed.
In the follqwing presentation Salerno and Goldberg's solution is modified

for the case of non-homogeneous plates and the notation is modified to
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conform to the preceding theory,
Assuming infinite flexual stiffness normal to the plane of the plate,
Reissner's equations are as follows:

Governing equations:

an aQy | ,
e | 0
_(-u)D 2 _ 0V w _ (1+U)D 8q
Qx 2Cs \Y Qx, _‘ A D ox 2Cs ox (8)
o JJ-Mp 20 avRw 0D 3
y - 2C5 _ Y dy 2CS. dy
Where':. C = 8§ =5
s X y
2 _ 92 @2
v = ._.....2_ + .._._
ox oy
: Morr_ients.i
2 2 oQ
- g 0w dw ., , (1-y)D "Tx _uD
M = Dl + U —5) + == ~—a (10)
ox oy s 5
. 2 2 e
L " w 9w (1-J)D "y D
M = -D(—x + U ) + - q (11)
y a)’2 . ax2 CS oy CS |
| 2 Q. Q. |
= (1- 0w (1-1)D X y
Mxy = -(-4)p oxdy * 2C5 ( dy * ax) ‘,(]2)

Eliminating Qx and Q)’ from equations (7,8,9) gives:

pVh = q- —CQ-V?q o (13)

s .
Where: v4 = Vz v2

Salerno and Goldberg separate the solution into two main parts.
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Firstly they use a stress function approach to derive solutions for Q and Q

satisfying equations (7,8,9) in terms of w, q and four constants, Secondly
they déﬁne a deflexion funcfion,b w = f(x,y), undetermined in y and
satisfying the boundary conditions on x =.0,a. -They use equation (13)

to derive an expression for the y Func’rioﬁ which i.nvc_alves; two coefficients
which, together with the coefﬁcien-fs in fhé shear solutions, are then

eliminated using conditions of symmetry and bounddry conditions,

Shear Solution:

Particular integrals (satisfying equd’rions (7,8,9)) are given by:

5 |
_ ~noVw D 29_

-Qxl D ox CS ox (14)
Q, = -D ov’w _ D 9q | - (15)
yl dy CS dy :
Where: Qx. = Q pt sz | (16)

= Q. + ' 17
y y! Qy2 (17)

In which sz and Qy2 are the complementary functions which, in order to
satisfy the hdmogeneous parts of equations (7,8,9), are given by a stress

" function, g, such that: » - 7 |

Qs = % o | (18)

| _ ¥ 8 oy

Qy2‘ T T S (19
Where: g - k2V2,6 = O ' (20)-

In which: k2 = >(1-)J)D/(2CS)
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The solution of (20) is:

g = (C] sin px +4C2 cos px). cosh Ny

+ (C3 sin px + C4 cos px) sinh T}y | (21)‘
Where: Y]z = ]ﬂ(z + PZV
Hence:
avzw D 9q
Qx - B D ox B Cs ox
+ ) [(C]" sin px + C2 cos px) sinh My
, + (C3 sin px + C4 cos px) cosh T} y] (22)
2
o - pw _ D a
y , oy Cs oy

+p [(C] €05 px = C2 sin px) cosh My

+ (C3 cos px4 -Gy sin px) sinh T]y] (23)

Deflexion Séluﬁon: |

In addition to the simply supported boundary conditions satisfied by
Robinson's solution, Salerno and Goldberg attempt to satisfy a curvature
condition which reflects the effect of shear deformation, namely, normal

curvature # O,

For this purpose they choose a deflexion function of the form:

v = As S [ sin v (- D]
1,3,5... av 3

Where: v = mi/a, m=1,3,5......
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Satisfaction of the non-homogeneous governing equation (13) defines

the y function.  Substituting (24) into (13) gives:

4 2 |

dY _ 24, Ay = 4 (25)
1 2

dy dy

The solution for which is:

Y = C5 cosh vy + C6 vy sinh vy + 1. (26)

. Hence the deflected shape is given by (26) and (24) and the shear

forces by (26), (24), (22) and (23) thus:
| 2

_ les] ’
QX = - %Cl > __}[_‘_J___Y“ - v2Y] cos vx
1,3,5... v " dy _
B > n C4 cos px cosh Y]y (2?)
Q = _f’ﬂ_ z -]g[d—g—-vz-%—Y-]sinvx
Y . C’],3,5... v dy 4
(28)

+ ZPC4sin pxsinhY]y

Where ¢ = C, = Cy = O from symmetry,  The remaining constants can

" now be eliminated from sdﬁsfccﬁon of the boundary conditions.

On x = O, a: w o= (29)
| Mx = (30)
v -_(_Q_Y_ = 0 | (31)

oy C

(29) and (30 are aufomaficclly satisfied,

(31) gives:



(32) gives:

C5 cosh a

Where:

| (33) gives:

Cé,'

(34) gives:

‘ cv2 nb |
2>C6 cosh a. --ZP- C4T‘[ cosh (-—-2--) -1

158

O, b
M =
Y
aw _ "x
ox Cs

6

a = vb/Z

= 142 ¢

osh am)

Substituting (36) into (35) gives:

G =

2
+Dv-

s

Substifu'ﬁng (36) into (37) gives:

A 4

Hence:
= 4?) > ¥% (1+ C
Y 1,3,5... v
.l<
C v3
‘ s
2
Where: (x~ - ax)

C4=O

5

] sin vx

+C, a sinha + 1+
m m

6

=t a tanh an/Z)/cogh a

cosh vy + C, vy sinh vy)

sin vx

(32)

(33)

(34)

(36)

@)

(38)

(39)
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Q = -= > —5 1 2C, cosh vy -~ 1| cos vx

x @55, vET© )

v oo
_ 1 ’

Q = -4 > =% |2C, sinh vy| sin vx

Y 9,850 % ]

49 3 1 | |

M = = > [_§ a1+ Cs cosh vy.+ Cévy sinh vy)

g ¢ 1,850 v

- }-;13- (C5 cosh vy + 2C, cosh vy + Cy vy sinh vy)
v N

6

+-(-]-:E-)-D- (2C6 cosh vy)] sin vx

v C
S.
. o ' ‘
M = %q_ > [!-‘% a+ Cs cosh vy + Ce VY sinh vy)
Y CT1,3,5... v
‘- :/-lg (C5 ‘cosh vy +2C, cosh vy + C, vy sinh vy)
(1-4)D 1w
-—T-E:—;)-— (2C6‘cosh vy)] sin vx
Mxy : ) (] G)J)4'q ] 325: [,___. ((C + C ) slnh vy -+ Cé vy COSh V)’)
o+ —g-g: C6 sinh vy] cos VX

Hence def[exions, shears and moments could be computed at various
points fhroughéuf a plate by édlculdfing C5 cmd‘ C6 and: summing the respecﬁ\}e
serfes to any desired degree of accuracy. It Wcs found that Salerno and
GoldberAg's and Robinson's solutions differéd only slighfly,. near the boundaries,

and agreed almost exactly at the centre of the plafe, as shown in Table 6,
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Salerno and Goldberg's solution exhibited o slight lack of Symmefry in

problems where the behaviour was implicitly symmetrical,
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APPENDIX C

DETAILS OF FINITE DIFFERENCE SOLUTION OF MIXED VARIABLE

~ ORTHOTROPIC PLATE EQUATIONS INCLUDING TRANSVERSE SHEAR

'DEFORMATION

- (GENERALISED BOUNDARY CONDITIONS)

1. OUTLINE OF DERIVATION OF EQUATIONS{T®)

1.1 Displacement Equations

Shear deformation is accounted for by defining the shear confribution

to slope of the middle surface of the plate along the x and y axes as

follows:
..?.\.N.; = ! =>..(.2.2<...
ox Yx 7S
: X
..a.y.. = Y' ::..Q._x
) S
)’v Y y

These expressions give additional terms to-be added to the ordinary
“plate theory expressions for curvature and twist in ferms of forces for an

internal plate element (Figure 48) thus:

20 M M ]

= - + + (a) ‘
8x2 Dx y D Sx ox
2, M Mo 2Q

7 TR et e 40)
dy y x Y
9 3

Py - My 1 B
dxay D 25 dy 2 S ox
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Solving in terms of moments gives:

D Q Q. ]

d ,ow X 0, 0w
M= e [ - ou 2 ] @
S X 1 ux’uy ox ' dy Sx y dy ' dy Sy
D Q Q.
: d ,ow 9, 0w X :
M= - Gy TR et T &) | @)
y ,] “x“y dy ' ay SY X O0X ' Ox Sx | :
Q- Q 4
o 9w, Ty 9 ,0w _ x ]
: Mxy b ny [ax - '—s-—')."‘ '5;('5‘;("' ‘—s"") (c)
1.2 Eqﬁilibrium Equations
As for ordinary plate theory (Reference 36)
Equilibrium of vertical forces requires:
oM, oM oM 2 2 2 7

AR S . AP Ry SR N A A N A N AL S
ax2 oxay ayZ» | X 8x2 | y ayZ Xy axa))

Equilibrium of moments about y and x axes requires:

aMxy oM, |

Qx T Ty T . - R (b)
aMxy BMY

Qy T T T * dy (c) _

1.3 Governing Differential Equations

The governing equations, (1), are given in full in Section 1.1 of
Chapter 4.  Equation (1), (a) was derived by substituting for derivatives.

of moments in (42), (a) from (42), (b) and (c).  Equations (1), (b) and (c)

(42)



163

p—

were derived by substituting for derivatives of moments in (42), (b) and {c)
from (41), (@), (b) and (c), This gave three independent mixed variable
(w, Qx' Qy) equations. s possible to reduce these equations to three
independent single variable equations but this places restrictions on the
boundary conditions which can be treated, because only the simply supported
'gqndiﬁon is amenable to reduction to a single vcr-riable. Solution of this

single va_riable form of the equation is discussed further in Appendix D..

],.4 Boundary Conditions

For a sysfe.m of edge forces denoted by _Mx’ _N_\Y and .@_x along those
boundaries parallel to the y axis;, and T\Ky, T\ny and —Q—y along those
boundaries parallel to the x axis, Libove and Bcfdorf(]o) derived the

expression for the total potential energy of the system.  Minimisation of

this expression gave the following boundary conditions relating internal and

external edge forces:

Atx = T%: @ + NN - B (c:)-1
: X oxox xy dy x
M =M (b) | (43)
X X
M = M (c)
xy xy . i
' aw oW e B
Ay = T% QN e Nm -9 @
M =M b) 44
y y ( ( ‘)
Mxy =. Mxy (C)—l

Substituting for moments from equations (41) and relating the
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external forces to a discrete spring system gives equations (3) and (4)

(Chapter . 4).

1.5 Equations in Non=-Dimensional Form

By making the substitutions given in section 1.4 of Chapter 4, the
equations become:

Governing equations:

2. .2 2 av.- aV--

a W 6 W 6 W X y - T
Al — + YZ 3uvy * Ay + A5 —o AO @)
ax ) .
a3w a3w azv~ ; 92\, . oAy
Ab + A7 X 1+ A9 2" + A0V, + Al axa(fﬁo (b)
aan2 Yz ax .
3w a3w azvX 92y Y
A2 2 s A3 LY A s 3%Y + Al5 —2- 2>’ + Al6—L + A17 V =0 (c)
aY° ax? oY ax Y2 y
Boundary conditions:
At x = % -
oW i\ ‘ B ]
A21 W + A22 oo ax + A23 =7 A24V = O | (@)
2 | ’ v
A25 _a__vy + A6 2 W &’ aw aa\; ZY
Y : ,
2 8V, o v,
BN ALY SN L SNV v, + A3l = O ©)

axayY Y aY ax

(45)
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At y = b/2 :
oW aw | _
Adl W + Ad2 —— X MSW +A44vy = QO
2 52 BV, oV,
A458W+ .._._+A473W+A48 + A9V ASO )
avz x aY
2 aVv 3V
_ aw oW X Y o=
(AS) g + AS2 oo + ASB Y+ ASAmt 4+ ASS Y = O
~Where:
AO = -q
Al = N!
X
A2 = szN;/q
A3 = 2N!
AL = 1
A5 =1
A6 = -1/(1~pxu)) |
A7 = - B - 1-
| B M /0-H 1)
A8 = B/(2y)
A9 = /G- )
AlO = -1
' 2 2
All = af/(2 £ + o £ 1-
ey ) +a b /ledy 01 1)

—

(a)

=0 (b)

()

-

(47)



Al12
Al3
Al4

Al5

Alé

Al7

A21

A22

©A23

A24 -

- A25

A26

A27

A28

A29

A30

A3l

A32

A33

A34

A35
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A/GI-H I
- B M- 0
B/ 2+ A S1= 1 JA))
af/(2 527),)

2
ESy (1= M)
] |

By

Ky 0-H Uy) |

-sz(] - ux “y)/yx

"VYX

yo 2
-.a,U)/(E, yy)

P

K3x

-ﬁ/(ZYx5
-stq/( £ 2 YY)
-o/2 %)
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A4l = K, €a

ly
A42 = N
: Xy - .
A3 = ¢ ZN;/a
Add =
A5 = M Ja
Adb = 1/a
A47 = sz Q-1 )U),)/a
A48 = -;U,/(agx)
A49_ 4 = -sz(l -l }Jy)/(e yy)
A0 = -1 ezyy)
A51 = B
A52 = K3y6 /a
A53 = -Ksye May,)
As4 = -B/(2y))
A55 .= -aB/2€ 27),)

'2.  FINITE DIFFERENCE APPROXIMATIONS TO THE DERIVATIVES

The computer program incorporated o subr-o‘u’rine for the derivation
of finite difference coefficients based on the LaGrangian polynomial for
- five points.  This gave the facility for using @ graded mesh which it was
proposed to use for cases of patch Iboding. It was found, however, that’
this aid not overcome problems associated with discontinuities in load
distribution and all solu’ri'ons given in this thesis were fdr Qn_iform ‘mesh

along each axis.



168

" For the curve shown in Figure 144 the LaGrangian polynomial is as follows:

Denote:
00 = X< - Xc>
C!.IA = X = X.l
02 = X = VX2
03 = X - X'3
a 4 = X = X 4
And: \
ko T gyl gl gl )
ko= (xl-”‘o)(’ﬁ“"2)("1""3)("1""4)~
ky = by )iy xg) by
ky = (rgmx g Mixgmxp)xgmx,)
kg = Gexdbomx doxymeg)ox o)
Then

w = .(c10203q4/k )w + (a czqsclk])\v
' ‘ (a JCRLI 4/l<2)w + (a JCHOS 4/kB)w
+ lagayayag/lvy

Hence, general expressions for the required derivatives:

| Denote:
bo _‘= N9 b5. T 993y
b] = a,0193 / ' b6 = a40,0,
b, = ago,s b, = aon,
b3 = 8983 s b8 = dya,0,
b b =

4 T 9% P9 9293%



‘ ';1.6.9
Then: |
-g-x“i = ((b9+b8+b7+b 6)/l<|)w§ + ((byth Hhetbo)/k Y
+ ((b]+l;2+b5+bg)/k2)w2 + ((bo%b2+b 4+b7)/k3)w3

S+ ((bo+b]+b3+b6)/k4)w4

Denote:
co = qoo], c5 = : '0103
< = Gl <4 = iy
¢ T 9% ¢, T 93
€3 T 9%y | €g T %%
¢y = Y <o = g,
'Then:
62w
axz = (2(c 4+c 5+c 6+c7+c 8+c 9) /ko)wo
+ (2(01 +c2"+c3+c7+c8+c9)ﬂ<] )w]
+ (2(c0+c2+c3+§ 5+c 6+c9)/k2)w2
+ (2(co+c] tegte phe e 8)/l<3)w3
+ (2(c0+c] te te gt 5+c7)/k 4)w 4
And:
3., | S |
ax3 = (6(a]+c12+a 3+c 4)/]<0)w0 + (6(00+c2+a3+a 4)/1<])w]

+ (6(qo+a]+c3+a 4)/]<2)w2 + (6(ao+al+a2+cr 4)/k3 )w3

+ (6((:10+0|.l +c|2+c:|3)/k4_)w4
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For the particular case of even mesh divisions the preceding

expressions give the following solutions for difference coefficients (5 point),

FOF:.
a"‘w‘ 1 : . A '
o = pE (AW, A F Agwy F Agwg + Agwy)
n | :
Wheré:
m = order of the derivative
n = node at which derivative taken
h = length of mesh division
%
m n D Ao A] A2 A3 A4
o) 12h | -25 48 | -36 16 -3
1 12 h -3 -10 18 -6 1
] 2 12 h ] -8 O 8 -1
3 12 h -1 6 | -18 10 3
4 12 h 3 -16 36 -48 25
o |12n |3 [-104 [114 | -6 1
1 |2 | -0 | s 4 -1
2 2 |12K2 | 4 16 |-30 | 16 -1
3 12 h2 | - 4 6 -20 1
4 || | -s6 |14 |-104 | 35
o 4h3 | -10 36 | -48 28 -6
1 4’ | -6 | 20 |24 | 12 -2
3 2 and | - 4 | o -4
3 413 -12 24 | -20 6
4 413 6 | -28 48 | .-36 10
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The derivative coefficient notation used in the program is given in
Figure 146.  Thus, for example, the coefficients for the central difference

- approximation to -—2;— and —?—— for even mesh would be as follows:
. oX oY :

9 | | 9
X | T
EO = 1/(12 hx), E15 = 1/12 hy)
Fl = -8/(12 hx), E16 = 98/(12' hy)
E2 = o, E17 = O
" E3 = 8/(12 hx), | E]S = 8/(12 hy)
“E4 = -1/(12 hx), E19 = =1/012 hy)
Where:
hx = 1/21)
hy = 1/(2¢€ J)

3. LOCATION OF SPECIFIC. FORMS OF DERIVATIVES

Figure 147 shows the forms éf derivatives used at various nodes in a
plate quadrant,  The two alférnaﬁvé treatments ‘of .thé corner deficienc;y
(one more unknown fhar; there are equations) are shown.  The exfrapolqﬁon
mefh‘od was based on the assump’rién that t!“ae fourth deri:vafi\}és of the variables
(w, VX, Vy) along the diagonal were independently zero, i.e. a cubic

extrapolation,
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For the mesh. notation shown in Figure 145 this gives:

—% = 24(wo/l<o+w]/k] +w2/k2 +~.w3/k3+w4/k4) = O~

| ko, = (ro-r])(ro—rz)(ro-rg)(ro-r 4)
ko= (ryrdlry=r)) (’vl “rglry 71y

ky - (ryr Mgy )ryra)inyr )
kg = rgro)rgmry)legr)legry)
g T oyl

Vro | B © 1
r.I = [(X]—xo)z + ()’] ')’0)2]2
v = r %[(X4X)2+(y-y)2~§'
2 1 27 277
o = » ry + [(x3-x2)2 + .()'3')'2)2 |
T [ e A

For the case of even mesh along each axis the extrapolation equations
reduce to the form:

WOA'4W]'?6W2.‘4W3'+W4 = O.

4,  PLATE EQUATIONS IN FINITE DIFFERENCE FORM

Figure 148 shows the general form of the governing equations and

boundary conditions.  The coefficients were given by the product of the
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appropriate plate constants and derivative coefficients.  As two typical
examples of the governing equations and boundary conditions, -expressions
for the coefficients in regions A and B (Figure 147) respectively are given

below.

4.1 Governing equations (A - all central differences)

Equation (45) ,(Q)

d. = FAL + E22A2 + FOA3,  d,. = E9Al + F9A3
d, = EBAI + FIA3, d|§ ' = E24A2 + FIOA3
Cdyt = E23A2 + P23, 4y, = ESAL + FIIA3
dy = E6Al + F3A3, ~d, = E20A2 + F12A3
rest: d = F A3
- n n
e = E2A4, e = . E4A4
o 9 .
e, = E3A4, . e, = EOA4
ey = E1A4,
rest: e = 0O
n
f, = E7As, flo = FE1945
£, = EleAs, | . f, = EI5AS
fy = EI6AS,
rest: f = . 0O



Equation (45),(b):

Equation
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E12A6 + HOA7,
E13A6 + H1A7,
E11A6 + H3A7

rest: d | =
n

E22A8 + E7A? + A10,

EBA?,

. E23A8,

E6AY,

E21A8,

-rest: e =
n

F AN,
n .

O

E27A12 + GOAI13,

E28A12 + G2A13,

E26A12 + G4A13,

rest: d =
n

F A14 ,
'n

E7A15 + E22A16 + A17,

EBA1S5,
E23A16,

E6A15,

E21A16,

11

H A7

n

e =

9
e,,

10

e =

11

e =

12

E14A6 + H9A7

E10A6 + HI11A7

E9A9
E24A8
E5A9

E20A8 .

O —> 24

E29A12 + G10A13

E25A12 + G12A13

!

O - 24

= E9AI5
= E24A16
= E5A15

= E20A16
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4.2 Boundary conditions (B - x derivatives backward, y central)

Equation (46),(d):

d = BA2, C o dy = EAZ2

o Q
d = A2l + E3A22 + EI7A23, d”' = EOA22
dy = E1A22, Cody = E19A23
ds = EI8A23, | djo =  EI5A23
dg =  E16A23,

v rests d = O

. n

e = A24 ; ’ rest: e = O

1 . n
fn = 0, n=0-> 24

K = O

E.quafipn (46),(b):

d = E7A25 + E2A77,, d, = . E9A25 + E4AZ7

o Q
| di =  EBA2S + E2A26 + E3AZ7, di, = E5A25 + EOA27
dy = = E6A25 + E1A27, d, = E24A26
ds =  E23A26, djg = 202
dg =  E21A26,

rest: d = QO
n



Equation
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= E2A29,

= A28 + E3A29,

= E1A29,
| re_s‘f: e
= E17A30,
- E18A30,
= EI6A30,
| rests fn =
= O
(46), (c):
= F1A31 + E17A32(
= F5A31 + E18A32,
= FBA31 + E16A32,
resfs dn
= E17A33,
= A3,
= EI6A33,
rest: e |
= E2A35,
= A34 + E3A35,
= E1A35,
| rest: fn =
= O

14

19

dig =

dig =

F_A31
n

E4A29

EOA29

E19A30

E15A30

FI4A31 + E19A32

F19A31 + E15A32 -

E19A33

E15A33

E4A35

EOQA35
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APPENDIX D

DETAILS OF FINITE DIFFERENCE SOLUTION OF SINGLE

VARIABLE ORTHOTROPIC PLATE EQUATIONS INCLUDING

TRANSVERSE SHEAR DEFORMATION

(SIMPLY SUPPORTED EDGES ONLY)

1. INTRODUCTION

It is possible fd separate the vqrial:;»les in equations (1) (Chapter 4)
to gi;e three independent sixth order equations for the respective variables
m terms of q.  Any one of these equations can then be solved provided
the boundary condiﬁoﬁs are expressible in terms of the corresponding
variable. - Libove and Bafdorf(].o) derived the 'sirrllgle variable form of the
governing equations but ﬁof the boundary conditions,  In order to attempt
a single varicble solution it was therefore necessary‘ to reduce the mixed
boundary conditions to equations in the correspondiﬁg variable and it was
found that only the simply supported condition Wcs amenable to such freatment.

Having established the required boundary equations, a finite difference
solutﬁﬁ of the sixth order equation for w was obtained. = The shear forces
were ’rheﬁ obtained by the solution of fourth order equations for Qx and VQ
respectively, 'in terms of w, These equations were derived from equations
(1),(b) »anrd (1),(c).  An clternative approach to the shear soluﬁons would
have been to -solve the second order equations given by equafions (1), (@)

‘and (1),(b), and (1),(c) and (1),(c) for Qx and Qy respectively, in terms
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'of'q and w. AlfhougH the latter approach \;vould have been simpler to
formulate numerically, it was thoughf to be desirable to keep differential
terms on q to m.inimum.v THis was later justified when the sensitivity of
solution to discontinuities in fransvérse loading became evident.  Having
solved for w, Qx and Qy the moments were obtained by direct substitution

into- equations (41) (Appendix C)

2. EQUATIONS IN TERMS OF w

2.1 Governing equation

The three equations (1) can be solved to obtain a differential equation
for w alone in terms of g.  This separation is accomplished most- easily,
for the case ikn wbich Nx’ Ny and ny are constant throughout ﬂ‘1e plate,
by treating the three differential equqﬁons as though they were algebraic:
equcfior?s and solving for w, Qx and Qy by means of determinants, Thg
terms in the defermir;cnfs are the aiFFerenficl-operator coefficients of w,
Qx and Qy appearing in the three quctiOns. In’ expanding these c’efermincxnfs,

the rule for multiplication of linear operators must be used.  For example:

2 2 LA

L
ayz X3y oy’

As a result of such a solution, the following differential equation is obtained
for w:
[Dlw = - [M]q - (48)

The differential operators are:
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6 6 6 6 6

' 0 0 0 0 0
Al + A2 + A3 —— + A4 + A5 e
‘ 8x6 8x56y 8x48y2 6x36y3 ;?ay4
6 6 4 4 4
A6 65+A7—§-5+A8-§Z + A9 g +A10-.2-_7
oxady oy . ox ax ady ox dy
4 4 2 2 2
All 83+A]2 -—a-Z+A]3 -?7 +A]4§—3§—+A]5 -3-7
oxady dy ox 7 ay
4 4 4 2 2
Bl—a—Z+BZ 22+83~?-4-+B4~a-2-+35'—a-2-+86
ox - 9x oy oy ox ay

Wherc?:

Al
A2
A3

A4

A5

Aé

A8
A9

A1O

All
Al2
Al3

Al4

Al5

i

D, .0, xus/(zsy)

nyDx Nx )/(bxsy)

D,.,, X17/(25 ) + X18 xus/sy
2 X18 N_ )/(sty) |

D D X16/(25) + X18 X17/5
DD X16/(25) + X18 XI7/5,

nyDy Nx )/(SXS)’)

DD, X17/(25, )

-D X16 - ny(l— M, BN /(25),)

-2 ny(ny(]~uxuy)/(25y) +D /5 )
2D, (1= K4 {1+ N /4 S )+ N /4 S,)
-Dx( ,uy + N /Sx) - D‘y( M+ N /S))

-2N_ (D (1- L py)/(zsx) +D )/Sy)'

Xy X

-DyX']7 - ny(]-}Jx ,U)’)N)/(ZSX)

(- M N

x"y X

2“",“x }Jy)ny

(=K N,
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Where:

xw. = THN/S |

X17 .= NS

X18 = DD -DD /2-MDD /2
And: |

Bl = D,.D./25,5)

B2 = Xl 8/(sty)

B3 = D.D/2SS)

B = (=B uD /25 + D /S)
85 = ={(-M LD, /25) +D/5)
B = 1-p

2.2 Boundary Conditions

For the co-ordinate system shown in Figure 49 the simply supported

boundary conditions are:

+

At x = - a/2: w = O (49)
M- = 0O (50)
o Q- | _
3 s - © G1
Y
Aty = = b/2: w = (52)
M = O 53
. (=)
ox Sx _

As part of the present work these equations were reduced to functions

of the single dependent variable, w, as follows:
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At x = i_c:/Z:

H . . -+
- Since the boundary equations are continuous between y = - b/2,

(49) gives: 8\: = O - (55)
oy

(5 1) gives: Qy. = O (56)
a"Q
—r = 0 (57)
n
oy ,

x - 5 O ~ (59)

Substituting into equation (1),(a) for (58) gives one of the required

equations:
2 2
al¥ 4 Y = 3 (59)
X
Where: Cl = Xlé .
cC2 = ZNX)/Sx
c3 = —q/sx
Also‘:
. azQx a3w
(58) gives: way SX 5 (60)
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Substituting for (55), (56), (57) and (60) in Equation (1. (c)

gives:

2

2 Qy' 3, -
= S (61)
| a2 Y alay
32+nQ'Y a3+nw v ,_‘ v
= s 2w _ N )
6x2 ayn y ax2 ay'l +n.

Hence, the remaining equation on x = = a/2 is given by eliminating

Qx from (1),(a) and (1),(b) and substituting for (57) and (62), thus:

64w 4w 84w 34w
D1 ———Z- + D2 + D3 —5— + D4
8x38y ox 8)/2. axay3'
2 2 2 2
v 52 4 ope-t¥ - p7 89 4ps9 ypyg (63)
2 axay 2 2
x - ox oy
‘Where:
DI = -D XI&/(1-H 1)
D2 = - N /G-, P
03 = -nyxlé/g - D5, + Ny)/({lf P s)
D4 = DN /5,
D5 = N
D6 = 2N
4

b7 = D/((] -M, “y)sx)
D8 = D )/(2s>$)
D? = |
Thus (49), (59) and (63) constitute the requred three boundqry conditions

at x = = 0/2 in terms of the single var:dble w.
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Similarly, the required boundary equations at y = ! b/2 are as

follows:
w = O. (52)
L2 2. j
oY g2 - g3 (64)
2 oxdy ,
ay :
4 4 4 4
F]____a‘£’1V+F2 oY _ 1 F3 62W2+F4avé
oy dy ox 9y ox dydx
2 2 2 . 2
+F5£_2!V_+|:6_a;.f:53’."_ F7—a—g-+F8-a—-%+F9q
dy 4 9y ox ,
Where:
= X7
E2 = 2N_/S
Sy
E3 = -q/Sy
Fi. = -D X17/1- ‘
| , X17/0- 1)
"F2 = -2D. N_/(1- S
- y X/« M by y).
F3 =_‘ -nyx17/2 - Dy(sx + NAG-H Uy)Sy) |
F5 = N
y
F6 = 2N
7 = D Ax- 5.)
/(( /UXUY) y)
F8» =» ny/xz sy)
9 = -

(65)
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3. FINITE DIFFERENCE APPROXIMATIONS TO THE DERIVATIVES

Thg simplest possible finite difference approximations wére used for
all derivatives, thus:

(i)  Central differences

(i)  First érder (no error terms)

(iii) Even mesh divisions

(iv). Minimum nurﬁber of points consistent with the order of the

derivaﬁve.
This gi.ves the following coefficients, for uniaxial derivatives of’fhe

form

m q-1 -
Where:
. m = order of derivatives‘\
n = po.inf at which derivaﬁvé taken
" q =  number of points |
h = . length of mesh division

m|on o | DAL A A Ay A | A | A
11 s Jye] 1] o 1

2 1|3 | 1| -2 i

3| 205 |yd 1 2| of =2 |1

a | 2|5 |t | 4 s -4 |0

5 | 37 |y o 4] 5| ofs |-4 ]
6 | 37 | m] 1| -6 | 15]20 |15 |-6]1

Table 10
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The required mixed derivatives were obtained by }qking the product

of the appropriate uniaxial derivatives.

4, - PLATE EQUATIONS IN FINITE DIFFERENCE FORM

Figures 149 and ’]570 show the gener;al form oFﬁ the finite difference
 nets: formulated for the governing equations and boundary condiﬁéns.
The coefficients, given by the product of derivative coefficfenfs and their
~ respective éonsfqnfs are given below.  The constanis incorporate the

appropriate mesh factors:
. = m,_ n
D ]/(hx hy )

4,1 Governing equation

a = 20 Al =12 A3 -12 A5 <20 A7 + 6 AB + 4 AlO + 6 A12
S2AIB-2 A5 o

aj =ag = 15 Al + B A3 + 6 A5 - 4 AB - 2 ATO + AI3

ay=a, = 6A3+8A5+15A7 -2 AIO - 4 A2 -

as = a, = 5A2—4A3+4A4—.4.A5+5_A6—2A9+A]Q-:2AH+A]4
",a'6=-08'='-5A2-4A3-4A4-4A5-5A6+2’A9+A10+2'An—A14

dg = ayy = = 6 Al - 2 A3 + A8 |

arg = Ay == 2 A5 - 6 A7 + Al2

G T ey T AA2EA3 -2 AL A9

q]4=q]8=~2A4+A5-4A6+AH

a5 = a = 2 AA+ A5 44 A6 - Al

19
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020=4A2+A3+2A4—A9
ayy = Al |

= a,, = A7
“30 = %31 7 36 A2

= mayg = Ggy T ~dgs = Ad

T mUyg T O3y T Gy = AS

6Bl +48B2+6B3~-2B4-2B5+B6

= by = 4Bl -2B2+B4
= b, = -2 B2 - 4B3+8B5
= bé = » b7 = b8 = B2
= b” = | Bl

= e, =-4D1 ~-2D3+D5, e =

Boundary conditions

At x =2 q/2, Aty =2 b/2
N | oL
(o]
= d,=4d, =0, d, = d;=d;=0
= d,=Cl, d, = d,=F
= —dé ES d7 = -.d8 = C2’ d5 = —dé = d7 = d8 = E2
= 3,
= ey Te TenTep=0 e, = e Te3=eg=0

3 2 ey ‘-4 F1 -2 F3+F5
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1]
]
(6]
11

5 7
cg = ©g=2D2+D3+2D4- D5,
ey = € = DI,

137 %16~ %17 T "0 = D%
e.‘4= -e]5=e]8=~e]9=D4,

f = =207 -2D8+D9,

o= =07,

fp = f4=0D8

-2 D2 + D3 - 2 DA+ D6,

5. SOLUTION FOR SHEAR FORCES - Q

509

Equations-

Governing Equation

2 F2+F3-2F4+F6

e

7
g = 2F2+F3 +2 Fd-F6
& T Fl
o6 = )7 = "0 = F4
—e = e = _e]9 - F2

15 18

-2 F7 -2 F8 + F9

The governing equation for Qx, given by eliminating Qy from equations

' (1),(b) and (1),(c) is as follows:

o'q, o’Q o'q o’Q o'a,
G]-———-Z—— + G2 -+ G355 + G4 ——m + G5 —u
Coox _ axz , 8x28y2 ay . 8y4
X P 3>
+G6Q = G7IL +c8lX
X 5 -3
ox ox
| 5 3 5
+G9_..g_.‘ivé__~+elo dW_ 4611 (66)
ox oy ox oy oxdy :
For Sx = Sy = o and isotropic plate properties this reduces to:
3 3
J w J w
= ~D
Q, (= + 2)

ox . oxdy
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Where:

Gl = D.D, /(2(1— MM Y)sxsy)'

G2 = -D_/25) - D /(1= M)S)

G3 = XIB/((1-M AL)SS) |

G4 = -D_/(25) - D /(L M )S,)
G5 = DYDX)/(z(lfuqu)sxsy) o

G6 = 1

| G7 = DD /@0 px S
G8 - = -D/(T-px},ly)
GY = XIB/(-f )S)
G0 = -D '+ M D/ 1)
D D, /(2(1 o uy)sy)

it

Gl

Boundary Equations »

As noted previoﬁsly, it is possible to derive a second order form of
the governing equation for Qx in terms of q and w,  This implies that

there is only one boundary condition on each edge as follows:

At x = = a/2: ‘ (os previously derived)
BQX : 82w . S
Hl = = H2—5 ' : . (58)
: ox ' .
Where:
H1 = ]
H2 = S
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At y = t b/2:

n

= 0O

. (52) gives
ax"

Substituting with (54) gives

Q = o | (67)

Since the solution of (66) requires two indepénden’r'equcfions on each
edge o second equation, which is in fact a general equation and applicable

to both edges, was obtained by eliminaﬁng Qy from (1),(a) and (1),(b),

thuss
3°Q ’Q 3 3
N + 2™ + 13 Q= M4 4 U5
ox dy % O - oy
5° B
+ J6 W2 + J7 5% (68)
oxaoy :
Where:
N = D/((l—px py)sx) - X20
2 = D /(2$x)_
JjB3 = - :
J = D )/(1- My }Jy) + X20 N
J5 = 2X20 ny
b = D + D./(1- + X20 N
Xy M y / (= M y) - y

J7 = X20
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Where:

X20 = D,/25) + LD /C-H L) S )

5.2 Finite Difference Approximations to Equations

Figure 151 shows the general form of the hni’ré difference approxi-
mations to the governing equation and boundary condit(ions for the solution
of Qx' Substituting for the cen'tral d‘ifference defivaﬂvg ;qgfficients
based on Table 10 gives‘ the expressions for the node points below,  The
equation constants incorporate the apbropriofe mesh _factors (D*) in their
denomn‘nﬁfors. |

Governing equation  (66)

6 Gl -2GC2+4C3-2GC4+6GC5+G6

g, = ,

g, = g3=-4G1+G2-203

9y = g4=-2.GS+G4-‘4GS

95 = 9’6=97=‘98=G3

%9 T o ¢

910 T 92 = O3

hy = hy=hy=hy=h,=0 v

hy = hy=5G7-2G8+4G9-2GI0 +6 Gl
he = -h, = ~h, =hg=-2 G9 + G10 - 4 G11
hg = -hj =-4G7+G8-269

Chig = chyg = chyy = hy g =GO

Py T hys = g =hyg = G
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Boundary conditions

At x = f a/2 (58): -

i = O ’ . . . k

-2 H2

= HI, k., = k H2

_i3
+ .
Aty =tb (67):

L= 1

General boundary equation (68):

moo= -20-2 32 + J3
m.I = m3 = J1
m2 = m4=J2
n = O
o
"n.l | = -ng ==2J4 -2 J6
ny = ny =,-2 J5
n5" = -n7=J5 »+ Jé
n6 = V-n8‘~f—‘ J5 = ..1.6
ng = -n” = J4
p, = ©
B 2 T i /4

Similarly, the corresponding equations for the solution of Qy were

] éxpressed in finite difference form. -



192

6. SPECIAL NOTE ON CORNER TREATMENT

6.1 w solution

In the corner region there are nine nodes, eight fictitious cnjd the
corner node, bounded by the two axes pa;siné through the -corner. The
finite differénéé equations were formulated so that, of these, all -excepf fhé
corner node and the two chﬁﬁous nodes immediately adjacent to the corner
were eliminated,  Hence only three boundary eokuqﬁons we.re required in

the corner, thus:

w = O _ . (69)
2. '
&y = o (70)
Ox :
a2

v o o 71)
oy . ~

- (70)»qnd (71) follow from the conditions applying along y = ¥ b/2
and x = : a/2 respectively. This‘ implies discontinuities since immediately
odiace'nf to the corner along x = 0/2, and y = b/2, (70) and {71) revert
to (59) and (64) respectively, Thereffecfs of this approximation do not appear
to significantly influence the resulfsv'.’ -
The twisting rﬁomenf calculation for the corner poinf required.fhe
definition of the fictitious value for w on a diagonal line through the corner,

Since this was not evaluated in the solution for w, a value was obtained

‘using a cubic extrapolation along the diagonal,



193

6.2 Qx solution (similarly for Qy)

The Qx solution was formulated so that all three corner fictitious
nodes were eliminated.  Thus only a single corner equation was required

and this was taken as Qx = Q,
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APPENDIX E

APPROXIMATE YIELD LINE ANALYSIS OF MODEL FAILURE#2)

A very approximate yield line analysis was used to determine a value
for the ultimate pressure which the double-bottom model could sustain in
‘the presence of a constant in-plane thrust,  This thrust was taken as the
' . ‘ 2
value at failure, namely -10.4 tons/in”,

Assuming that yield lines  developed as shown below and that the
ultimate mcment pér unit length was equal for all lines, the geometry of

the lines for minimum load is given by:

tan g = 7% — *3

N
.p'/>\ d / |
\ ya .
AN /
X 130.5

= N
- e “ = e 15
5 / ‘ \\ . o
| // N ;Hence: ’dmin = 50
| d = 27in
130.5 in

The ultimate moment. was computed for the diagonal yield lines as

follows:

M o= t0 |

outer shell thickness = O,08 in

i

Where: t

Q
H

| (yield stress) - (component of applied thrust

across yield line)
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_ N 2
= (15 - 10.4 cos }gmin) tons/in
= 6.7 fons/in2 .

i = lever arm = 5,573in

Giving: M= 8,300 in.lIb/in

U

In the above calculation for Mu , the effect of the stiffeners appears
in the value for the component of in-plane thrust but is ignored so far as
transverse pressure is concerned,

- The expression for ultimate pressure is as follows:

M s gy M
Pmin 2 (~ - tan 2/3) 475
Gives: |
8300

pmin' = .7 = ]8.7 pP.s.i.

"If it is assumed that fhevplating used to repair the end buckles which
occurred in the preliminar); failure, forced the diagonal yield lines to
develdp. from the first floor in from the buikheads, then a yield line solution
“similar to the above gives a value of Prin equql to about 23 p.s.i.

These values do not appear to bear any relation to the observed fcﬂure
pressure despite the occurrence c;f buckieé, in the outer shell, along lines
which bore «a resemblance to the assumed yield line pattern, It is possiblé,

however, that a less approximate yield line solution may give better agreement,
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Instrumentation (2) - Location of Shell Strain Gauges at Intersections with Webs

Fig.19 :
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(i) Ferahians salution Por the effect of Longitudinal stiffeners on
shear breadth of single web sections.

FIG.26:CURVES USED TO EVALUATE THE LOSS OF
|EFFECTIVENESS DUE TO LONGITUDINAL STIFFENERS
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Fig.27: Double Bottom Model - Contours of Initial Lack of Flatness over
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— ' , 3) S
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- : < 39 :

N q/‘dHHH}iHiHLHIT‘HHHHHH | Kn

: W ‘ - X oxié: 7\2)&!0
NOTATION : Buckling Breadth Factor { y axis : 7\2be

panel dirnensions : .a = 145in.
b= 4375in.
h = 0080 in.

initial deformation : sinusoidal distribution -
: : about both axis
) maximum , W at X=y=0
boundary conditions : ,
(i)  flexural éo) zero vertical displacement
) © (b) restrained against rotation (Kp.)
(i) membrane (a) edges remain straight
' (b) zero shear stress

loading (i) transverse pressure - q p.s.i.
(ii) in-plane  load A ‘ :
(a) due to flexure of double bottom
~ where

q = 1p.s.i. — {qu =-765 p.s.i. -
) N)'k =-1385 p.s.I.

NOTE : the symbol q* denotes transverse
' and - corresponding in-plane lcad
(b) externally applied

Ny = 1T = 1765 p.s.i.

Fig. 28 .  Details of Outer Shell Panel
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: qib./infin,
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antisymmetric sinusocidal initial deformation profile
Plb./m./..-(\ . ) :

~ ° = J = w
4 = X X L% x!
. e d x ”

(n+1) equal rotational restrants (k*in.Ib./in.) -

n-equal spans of Lin. and constant . X
“stiffness (EI Ib.in2fin.) , .

(i) Generq'l details of bearﬁ-’cdumn idealization.

ra ' , & O x |
I 2 o - x <o N
. ;c ;c;c; e [t ;C;c ;c
: —
P

h . :
- e — - I
(% fictitious) &:/spring stiffness k* .
(ii) Forces acting on a Lo - (iii) Finite difference points at an
beam-col. element. , N

interior support. (deflexion due to
applied load) i

Fig. 29:Definition of Terms Relevant to Beam-Column Solution. -
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= 0:064” ‘D =EIl = E;b = 14-6 x 103 1b.in?.
(i) . Angle propertn_es and loading
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-5 End rastrcint /
:é 08 (i) 9, )
o (“)d a
ff dx?
° (can_warp) End restraint
v 5 / (iYe=0
€ 506 inde, o
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w
o
corresponds to pure
§ torque - for M uniform
o
N
B

7| K5 =828 <206 inib./in.
2 " c

l:D

L

0] w1 _ 2 3 4
K3 = —rg—(x‘.o3) inlb./in. at x= L/2
’ 1
(ii) Effect of eniorced centre of rotation

Fig. 30 : External Rotational Restraint of Shell Panels Due to
' Torsional Rigidity of Angle Stiffeners
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divisions [ span

(i) Convergence Behaviour - No Warping

‘Note: Refer Fig.30 for definition of k4 and angle dimensions.

4
| ]
| solution for model with
channel strut

3

2.
K]
inlb. fin.

i

: \ solution for model without
. . x’/\'channel strut
0 | |
0 10 20 30 ‘40 50
’ Span- L ins. ‘

(ii) Effect of Span — No warping

Fig. 31 : Solutions for Torque of Do‘uble Bottom Angle Section
' Shell Stiffener



- 227

24 i ’
:kl - "M‘
o ’
cE M L
k.' = e‘,qt X=3
16

1 . -
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Fig. 32 Variation of Ky Across Spon
Lo 09 .
& |
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%;i&‘f%
_ (i) Torque Solution - local deflexion ’ /Shell
bending moment per : o } i '
M= 4 unit length at sheli- . connectcd/’H:J ~
stiffener interface. i A leg \outstunding
- : - ‘ S ' leg
L - 0-9(4) L
M S *'62 K“| springs stiffnesses

— -.corresponding to
'ni’,/kl outstanding leg
; - over span L

(ii) Plate Solution- deflexion profile

Fig.33: Beam ‘Idcalizdtion of Connected Lég Used .to Establish
External Rotational Restraint.:
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‘lOlb/m\_%
Lt?i?i@ﬁiffi???#ﬁ

b c

P -——p---ﬁ—- = = =" 4 P
T A \~-~---_:;\7v_—-f——-’ F .
_ (o]
30" 1. 30" | 30"
120" ,,_l .
ET = 6x107 Ib. in?
i | Divisions | Deflzction  due Load Bendihg Moment
Case | Solution | or cpan [ wpin | wg T | Myin b, | Mg in.:
a3, I Nurnark 4 0:624 | 0878 [2600x104|3552x104
P=20x10"1 4| 0690 | 0971 |2730x10%[3742x10%
w, =0 |B ' ' Lo e
o MO ™ e [ 0627 | 0883 |2604x104|3566x10%
b e300 L Numark 4 0-142 0-197 1815x10% |7-60%103
w. 015" |BEAMCOL 4 0-143 0-198 |5-86x103|7:33x103
°- 16 0141 0126 |6-:07x103{7-59%103
Note :- For details . of Numark solution see Ref. 34
(i) Simply Supported Span Under Combined Load

With and Without Initial

Defovrmction

Exact soln. shown ()
BEAMCOL. soln. for
- 16 div / span

M = Coefft. x Wx L

(L =span , W = load /span)
(i) Bending Moment Distribution For 3. Span Beam
“ Under Uniform Transverse Load Only
Fig. 34 Accuracy Checks -~ BEAMCOL Program
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. ibfin/in.
K= 10 inlb.fin. l:l:]:]:}
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Bending Moment x 103 inJb. / in.
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Bending Moment x 102 inb.fin. '

(b) 11 Span Beam with Initial Deformation Under Axial' Load.

(i) Comparison of Equivalent Multiple and- Single Span  Sclutions,

013
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£ P nial i o
-5'0-12 ./® :
g i T [ 2WIpJin.
_: ; CCTIITTITIN
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z B L5L 5
X ! :
o 011
fl
3
010 .
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dlwsxons/spcn

(u)Convergence ‘B ehaviour of Centml Support Moment for 2Spcn Beam
Under UDL.

Fig. 35: Accuracy Checks — BEAMCOL ‘Program.
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Fig.36 : Double Bottom Shell Idealised as Continuous Beam-Column:

Effect of Loading on Moment Distribution.
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Fig. 37 : Double Bottom Shell Idezalised As Continuous Beam - Column
Effective Rotational Restraint for Single Span. s '
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' Effective Rotational Restraint — Kx10 2 intb./in.

Fig. 39: Pelatlonshlp between External and Effective Rotat:onal
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tho——————

K*=1350in. Ib/in.
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- Effective Rotational Restraint — K x 102 in Ib/in.

. Fig>. 40 : ' Increase in Effective Rotational Restraint Away
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F’ig. 41
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Co_mpcr‘ison' of Defiexions ' in " Adjacent Spans
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T ABL.E

1

Buckling Breadth Factors for Typical Double—Bbttom Panel

Wolh =0
C(4) N'X‘= ot
g Aoyl L MylP
~p.s.id uniaxial load| biaxial load| uniaxial load| biaxial load
- a b a b a b a b
0 - - - - - - - -
1 1 1 - 1. 1 1 - 1
2 1 1 - - 1 1. 1 - 1
3 1 1 - 1 1 1 - 1
4 1 1 - 1 1 1 - 1
5 1 1 - 1 0.9 1 - 1
(ii) N'X = ST'
qk | sz/a‘ . | sz/b
p.s.id uniaxial load| biaxial load| uniaxial load| biaxial load
' a b a b a b a b
0 1 1 - 1 - - - -
1 1 1 - 1 - - - 1
.2 1 1 - i - = - ~
3 1 1 - 1 - - - i
4 1 1 - 1 - - - 1. ]
5 1 1 - 1 - - - 0.99
T
(111? Nt =10
q hlea lzy/b |
p.s.i. uniaxial load | biaxial load | uniaxial load| biaxial load
a b a b a b a b
0 L 1 - 1 - - - -
1 1 1 B 1. - - - 1
2 1 1 - 1 - - - i
3 1 1 - 1 - - - 1
4 1 1 B 1 - - - 1
5 1 1 - 1 - - - 0.99

 Note: Refer Figure 28 for

details of panel and loading




Buckling Breadth Factors for Typical Double-Bottom Panel
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TABLE 2

Wo/h = 0.5.
. (1) le = OT ’
* A,
< 2x/a 7\2y/b
r_
p-s.i.luniaxial load| biaxial load |uniaxial load |biaxial load
) a - b a b a b a b
0 - - - - - N .
-1 0.99 0.99 - 0.98 | 0.90 0.89 - 0.89
.2 0.99 0.99 - 0.97 | 0.84 0.85 - 0.84
3 0.99 0.99 - 0.97 | 0.83 0.84 - 0.83
4 0.99 0.99 - 0.97 | 0.82 0.83 - 0.82
5 0.99 0.99 - 0.96 | 0.81 0.82 - 0.81
. _ T
(ii) N'x = 5.
& | 7\2x/a 7\2y/b
| pes.i.] uniaxial load]| biaxial load juniaxial load | biaxial load
a b a b a b a b
0 1 1 - 1 - - - -
1 1 1 - 1 - - - 0.84
2 1 1 - 1 - - - 0.84
3 1 1 - 0.99 - - - 0.81
4 1 1 - 0.99 - - - 0.81
5 1 1 - 0.99 - - - 0.80
fass IR
(iii) N‘x = 10
q‘k 7\2X/a ?\Zy/b
p.s.i.juniaxial load| biaxial load |uniaxial load| biaxial load
‘ a b a b a b a b
0 1 1 - 1 - - - -
1 1 1 - 1 - - - 0.80
2 1 1 - 1 - - - 0.81
3 1 1 - 1 - - - 0.80
4 1 1 - 0.99 - - - 0.79
5 1 1 - 0.99 - - - 0.79

Note: Refer Figure 28 for

details of panel and loading
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TABLE 3

. Buckling Breadth Factors for Typical Double~Bottom Panel

wo/h = 1.0
W =0
q‘k 7\.2X/a _ 7\.2y/b
'p.s.i. uniaxial load | biaxial load |uniaxial load | biaxial load
N a b “a b a b a b
0 - - _ - - - _ -
1 0.98 0.97 - 0.93 0.69 0.70 - 0.69
2 0.98 0.97 - 0.91 0.65 0.67 - 0.66
3 0.98 0.97 - 0.91 | 0.64 0.66 Z 0.65
4 0.98 0.97 - 0.91 | 0.63 0.65 . 0.64
5 0.98 0.97 - 0.90 0.62 0.64 - 0.63
@ = s
qk ' 7\.2X/a - 7\.2y/b
p:s.i.juniaxial load | biaxial load [uniaxial load | biaxial load
o a b a b a b a b
0 1 1 - 0.99 - - - -
1 1 1 - 0099 - - - 0060
i 2 1 0.99 - 0.99 - - - _0.62
3 0.99 0.99 3 0.98 - - - 0.62
4 0.99 0.99 - 0.97 - - - 0.61
5 0.99 0.99 - -0.96 - - - 0.61
T
(iii) N'X 10
q'k 7\.2x/a » - 7\.2y/b
p.s.i.|unizxial load { biaxial load |uniaxial load| biaxial load
a. b a . b a b a b
0 1 J1 - 10.99 - - - |-
1 1 1 - - 0,99 - - - 0.53
2 i1 1 - 0.99 - - - 0. 58
3 *1 0.99 - 0.98 - - - 0.59
4 0.99 0.99 - 0.98 - - - 0.59
5 0.99 0.99 - 0.98 - - - 0.59

Note: Refer Figure 28‘for details of panel and loading
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r Two. T :
Ny=0 ;=9= 05 N,=0!;29 =025
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T
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— | fig.(ii) below: AgX 5=0-99 . XKN' = 107 W
' . Ta Ng= 57 + =2 =10
h
090
1_
q* _ ]
(i) X oxis

‘Refer Fig.  for definition of symbols

1.0 . I
“NL=0tsT10T; ¥o.0
. . ' N;(.__ OT
08| — — |
N
A Nx= O W,
2y : Ne=5T L Z2.0.5
‘b - 'N,=1OT
07 %
06 — \\
. N \\
. N;(= OT
| A Ny= 57 t 5. 1.0
t_aml
05 Ny=10 !
' 1 2 3 4 5
qﬂ
(ii)y axis

t

Fig. 42 : Loss of Shell Effectiveness Due to local Bending
" Panels Clamped :
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‘ . B t .l —=0
1-0 Mx= 0 "
]
— =
L — 77 =
| \Nx: 5T Wo 0.5 '
Ao2x Ny=O" [~ I
a
- 06
(\N'-' T 407
x> 91001 Woq0g
Nx= OT ) h
|
1 2 3 . 4 5 k
q*
- (i) X axis
Refer Fig. for definition of symbols '

(i) y axis

Fig.43:Loss of Shell Effectiveness Due to Local Bending
' Panels Simply Supported
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1.0 . ' e

Y Ny= OF | i
W .
0-9 Ny = 5T L 22-025,¢%5 -
_ Ny = 107 -
Mox |
a .
08 ‘
~— Simply Supported _ o _ Clamped
o 20 40 60 80 100 — 10° (c0)
Non-dimensional " rotational restraint  Kp=Ka
: : D
(i) X axis
Refer Fig. for definition of symbols’
1:0
) 5%—_—,&%&1
I =z
08 ,%""’“
s
\N' =100
N\ L aT 10, 0.25, ¢*= 5
0-6 N X h
Nig= of
b ! ' :
' !
0-4 |J
——— Simply Sgpported A o -~ Clamped »
0-2
0 20 40 60 80 100 —10° (c0)
Non-dimensional rotational restraint Kp=Ka '
. _ D
(ii) y axis

Fig. 44 : Loss of Shell Effectiveness Due to local Bending
: Effect of Elastic Restraint
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7-98" _
5 effective flange width  (b) R
. 2 _es . ea 1,18
© ele |, a8 | &% 5" 45" ) 5(8
S HER - IR
Ol o= __1__inner sheli, | A=
L Ik He b f —Sil 1 Jl -
o I 045;‘] !_f‘\) 14 0’064' i c o))
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5 ' 1 ~_ neutral aXiS~, _ - o
llg ——71_—-—_%'&— l— 0.45" 3 } o t .0 l ﬁ b :
RS 22 |‘°§ . [ _centre girder | 4,7 =
f o " . : s .
.- [ w{e_E0084 51 i i Fi @[ g a
=8{ outer shelt—" !
8 Section of Longitudinal (centre girder) Beam
[ intercostal beams similar]
%, . M |3u. E
() -=QQ-64 L. 416 lightening holes
1 b~ — —_—— - ‘.—--
ey | _
1 Y @ Zu
- 18 . .
Detail of Intercostal Perforations
[centre girder solid]
Notes : (i) loss of flange effectiveness due to shear lag
' - and out plane flange bending taken as 15%
gives : b = 21875x0-85= 18:594 in
(ii) loss of web flexural effectiyeness due to perforations
centre girder - nil | t ™ taken as 0064 in
. , intercostal ~ 1% ' : o :
(iii) the position of the neutral axis computed for these
- effective dimensions shown above _
(ilv) ‘the corresponding 2nd moments of area are :
' flanges : T = 20-1880 in%= 0-9390 inYin.
webs i L= 09081 in%: 00415 in% in.
stiffeners : I = 31237 'in%= 01428 in% in.
(v) solid web cross sectional areq 5
A,y 0352 in? = 00161 inlin.
(vi) effective web area (20°% loss due perforotions)..

 Fig. 46

A

Aywx . = 00161 x 0-80 = 0-0129 in?/in.

Details of Longitudinal Beéam Element ( x = axis)
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0064"
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L, 48
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) Detail of Floor  Perforations

loss of flange effectiveness due to shear lag
and out of plane flange bending taken as 20°%

gives 1 b =
loss of floor flexu

145x08 = 116

in.

ral effectiveness due to perforations
accounted for by taking reduced floor thickness

where :. area perforation / solid area = 019
gives : effective t% a 0064 x 0-81=0.052in.

the position of the neutral axis cornputed for these
" effective dimensions is shown above :

the corresponding 2nd moments of area are:
= 12:8095 in* = 08834 int/in.

flanges : I"c
floors

: 0352 in® =

| Tyys 07415 in%: 0051 in%in.

solid flor cross'sectioncl area
A

- Ny

00243 irffin.

effective web area (30°%: loss due perforations) '

Awy

=0-0243 x 0-70 = 0-0170 in2/ in.

Fig- 47 : Details- of Transverse Beam | Elément‘ (y axis)
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'_Table 4

Comparison  With Ordinary Plate Theory Solutions

For Uniform Transverse

Load

My1=My1
(=kya2q)

ka

M):y4-
(kzaq)
k3

Qs st

(=k40q )
‘4

Equm.

Check
ZEdge Q

=Load

000395

0.0453

0.0324

-0.3336
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O.00400

0.0467

0.0321

-0.3362

100.399/,

000402

Q.0472

0.0222
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relied{a] £

Q00404
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of plate along X and y axis respectively

Table S

Convergence Behaviour of Case 1 - Table 4
For Decreasing Mesh Size
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b Sy Sy Wy M. M4 C | scource
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o ‘ 34 4 f
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Table 6

Comparison With Solutions for Shear - Weak Simply Supported :

Plate  Under Uniform Transverse Load
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" Table: 7
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Clamped Plate Under Uniform Transverse Load
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Fig. 50 :

Comparison. With .Kromm's Solution of Edge Reaction
For Homogeneous,Simply Supported Plate Under

Uniform Transverse Load
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Fig. 52 :
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Effect of Orthotropic Flexural Properties
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Effect of Non-Uniform Transverse Load
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P \ _ \ |
3 3
£ \ : G
E \ )
* | I
\ o
A1 y |
" side of ship# ‘

(i) Exi in,/in..xjo6

‘Note: (i) Experimental values shown thus: o

(i) For details of theoretical solutions, indicated d,
see Fig.73 ' '

X < R S
L——&) __:_go_
-XF
. hy’
) 2 40
7 -&0
d 4=
O
b .
< b
'
5 .
0
side of ship # ¢

(i)Ey; in fin. x 108

Fig. 76 : Double Boitom Analysis — In&ner She” Strains For Distributed
o _Transverse Load: q=1p.s.i. ' '
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Note:. (i) 'Ekpzfimentcl values shown thus: o

| (i) For details of theoretical solutions,indicctzd_d,
see Fig.73 ' '

bulkhead~

side of ship 4

(i) €yo in.fin. x 108

Fig. 77 : Double Bottom Analysis — Outer Shell Strains For Distributed
' ' ' ~Transverse load: g=1p.s.i. )
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Between Floors: D and C Due to

In - Plane Load.

° T T v
8 total in-plane load 4'/ // . //
‘ cross sectional area’ | [~ L7 - '
x| : e 7
E ey '
-~ ¥y -
“5 // .
. N\ 47
g 4 ’ //ﬁ//
- . //’/’ o
v3 245 —
c /-'/,'./ Gauge No.| Plotted - Location
E, o /é/ 168 e---—----0 | outer shell , side (2
£ s 169 |e— — — Jouter shell , side (9)
) //L/»-/. 174 e—-.—-—o [outer shell, centre girder (O)
// 175 —--—-— |inner shell, centre girder (O)
ol | l | | l
0] -1 -2 -3 -4 =5 -6 -7 -8
‘ _ stress - tons/in? '
© 1 | Y
g total in-plane load iy
cross sectional area f//f/
aX 3 -
-7 =
E
£6
5
N =
25
]
ke
o4
S .
3 1
£ 47" |Gauge No. | Plotted Location
0; o 4% 170 o — |outer shell, intercostd (5"
£ ‘-,/:" 171 s————= inner shell, intercostal (5')
1 A 172 s—-———0 | outer shell, intercostal (5)
173 O 2 e - |inner shell, intercostal (5)
% = 2 3 4 5 -6 7 8
Stress - tons/in2 h '
NOTE For gauge locations  see Fig. 19
Fig. 78 Double Bot'com . Anql_ys:s - Long:tudmcl Shell Stresses (O;m)
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T

In-Plane Load - tons/;"arﬁ (P

Between Floors A and A Due to In - Plane Load

) " - ) /'/ P
~g total in-plane load e %
X cross ‘sectional area -~V = e
\,<>//,/ o
7 }/ Pt - P
’//’é’/ /"/”
6 R W =
5 A AR
, T
. ,// /
4 - ; el
3r 2 Plotted - Location
o A% 178 o-————=siouter shell , side (9
,f/fw/' ' 179 . |*=——*|outer shell , side (9)
1 ’/;,’//" : - 184 s—-—-=—3 |outer shell, centre girder (O)
// L o l‘185 R —|inner shell centre girder (O)
% -1 -2 -3 -4 -5 6 7 -8
' " Stress - ‘tv::nslin.2 ' '
: s -~
’;‘8 total in-plane load 1.7 T
= cross sectional area e R
g 7 7('/ /'/*/
: ////,/ //‘//
26 e
S R/ i
“; A
L] 5 //A/ ,/;
o P A'/
34 N7 &
A P
s e
o3 252, :
o , /;,y/Gcmg;e No.| Plotted Location
": o /’// 180 o - louter shell, intercostal  (58')
- : ,,7 / 181 — ~—— linner shell, intercostal (5"
1 1 182 | e—-—-—louter shell , intercostal (5)
e 183 —~~-——+—linner shell , intercostal - (5)
o | 1 ] I
0 -1 -2 -3 -4 -5 -6 -7
 Stress . - tons/in® -
~ NOTE : For gauge locations see Fig. 19
Fig. 79 Double Bottomn Analysis - Longitudinal Shell Stresses (G ..}
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Transverse Load - q p.s.i.

Transverse and In - Plone  Load

/
Rl
SR
1 | \Y\
0 — v'-/—& , 4/ ‘9\: = £ N
o -100 200 -300 400 -500 600 =700
‘ Strain - in/in x 10-6 ~
S i) gy
5 n\ /__
i "\i ’% LEGEND
L - ' \ Gauge Number
—Q—* R - Symbol
_4 &) 1\ \\T | () £ [Gi) Ey ymbo
:n' \3(\“}( .\X\ i\ 180 124 +
o \ \\ e - 181 185 x
- ua—-—‘rzﬁz\—% 182 196 .
' AN L 183 197 o
o X &
8 \\ ‘\ : ‘ .
~ o \. See Fig. 19 for gauge locations
-k In - Plane  Load
a . P)( e SLress Plotted
‘gn tons/ram ovigf‘% Jin zm
& 0 0 —
' .3 -2-31 ——
I 6 -4-62 —_—
o) , { : _a- ——————
300 200 100 0 - -100 - =200 ° 693
. - Strain - in/in x 10 :
(i) &y '
Fig. 8O : Double Bottom Analysis - Typical Shell Strains For. cornbined .
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a .
. 7
g :/
g 7
| r/‘
: a7 |
2 55 LEGEND
§ _ In- Plane  Load
o P | Plotted
> X - pverage stress "
a tons/ram tons/in2 ,
[=
el - O - 0 -
| 3 -2:31  |——
6 ~4.-62 —r—
, 9 693 |-
o) o I I
20 0 20 .40 60 _ 80 100~
o ' Defiexion - inches x 10 '
. (i) Effect of comined  load - on central deflexion (gaugé No. 1)
S
4 __gouge’ No.12 <,
e gauge No. 15~ NOTE
" : _
e See Fig. 22 for
3 gauge locations
P gauge No.'7 '
§_. "\gauge No.2
) :
B
el
|5
.
¥
C
[+}
In- Plane Load Zero
0F—
(o} 20 = 40 60 80 100
o ’ Deflexion - inches x 103
(1) Symmetry of ‘deforrmation for increasing transverse load
_Fig. 81 : Double’ Bottom - Analysis - Overall Deflexions  For

Increasing  Transverse and In-Plane- Load.
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rod No. 23
QrpnmaneG
_ - bulkhead at
e intercostal
g3 -
o rod No. 11
o side of ship at
t floor C
o
0 ,, :
L - - . )
L For rod locations see Fig. 21
21
g
=
-0 - -10 20 .. 30 40" -50 - -60
SRR : . Strain - inJin.x 100 ‘
i) Typical _compression rods
5 — . : I —C1>
e tension link 19 o .
. © ‘tension link 73 | '
4l _For locations see Fig. 21 i )
o ——0—f
t
.9 o /
22 e %
&) . / i
a
8
@
c
g
1.
s
20 30 40 . 50 60 70

»Str:qin -in.Jin. % 106 7

(i) Tension links

Fig. 82

Transverse Load

Double Bottom Analysis - Linearity of Strains With Distributed
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tons [ in®

(i) Due to an applied shear stress :

& _
o /\"O _A . / \og )
B - \ ol /o S D
e} @ ~ §
0

o

1 i".Ot'_Lliﬂ.2

Note : See Fig..18 for orientation of 0O° datum

||

180

360

.

N

%

{ii) Due to an dpplied' bending stress : ¢°

Fig. 83

= 1 ton.lmz

Double Bottom Analysis - Theoretical .Tangential
Stresses  Around ' Circumference of Lightening Holes
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| B "Theor;et'co| { gRosr
2 S //' .
A (o) £~
1° ’ 5 (OIS . N OO‘
°0) : ,
o~ O/ ' \ Q / ' _ %%
glo |~ , o ' /]
al  floor A,bay 7-8 | / .-
2la only . :
_ o floor A,bay 7-8
-0 A v _ ) onl_y o
' (i) Floors A and A , Bays 7-8 and 7.8
) ‘ _/The_orﬁi'cai %:: 82‘3’ o
S /\.9 D
1 o S o - SN
o\ Ve :
< 0 , : © ' /
v , \ : 4 . , /
3| -/ -
-2 S ' '
4 (i) Floor B , Bay 7-8
- / | : " o = -0‘37
Y /Thcore"ucol { T - 039
|, /\</ o P /" N0 9
vl o/ \0‘ 8 / R 7
—10 . /
2 / / -
S \O_// NS
_2 ‘ :
_ (ii) Floor C ch 7-8
‘ Theoretical o= 026
2 T= 018
» / © o) ol 0
K —3 2 g 3
o . (@) L N m
£ G ,
B‘“"Q“ - i
5
« -1 o4
-2
(iv) Floor D , Bay 7-8
NOTE: (i) Experimental valuzs shown @ .

@) Flexural (o tonslin.z)' and shear (T tonslin.z) stresses shown for
theoretical solutions were obtained from results for boundary
condition’ 3a - see Fig. 73 o

(i) For hole locations and orientation of ©° dotum see Fig. 18

" Fig. -84: 3 Double Bottom Analysis - Web Hole Stresses For

Distributed Transverse Load : q =1p.s.i.



282

_Theoretical . % _:ggg ( full shear taken by floor)
Theoretical %'f 8?2 | (shear shared by side brackets and fioor)

o

e
O
]

N
o ] °
oo ' e \g

tonslm2
O O
. O
}
180

| N—"/

-1 » o e
-2 \ / ' /
- (i) Floor A (0) and Side Bracket A{, (%), Bay 8--9- ‘
‘ _Theoretical {0"20'86 (shear shared by centre brackets and fioor)

}. o L y %o
. - : - ° © ©
: ‘ ]

1

tons. [in?
o |
o)
o0
| 180
>
270

-2

Bay 0O-1

(i) Centre» BFacke'& A‘l .

 Theoretical {%’Z 992

‘8 | ' °

1360

tons/in’

1%

\zgl - /\&

v(iii‘) ,

NOTE (i) -
(i)

Intercostals (5 and 5'). Holes Adjacent {o_Eond £

Experimental values. shown o and + _
Flexural (o tons/in?‘) and shear (7T tonslinz) stresses shown for

theoretical solutions were obtained from results for boundary

Gy

Fig. 8S

condition 3a - see. Fig. 73
For hole locations and orientation of O datum see Fig. 18

: Double Bottom Analysis - Web Hole Stresses For

Distributed Transverse Load : q =1p.s.i,

4 e



Transverse Load=gq p.s.i.

heart of
plate strains

gauge No.3

_ LEGEND
In-Plane Load

: . Plotted
. tong/ram javerege stress

x| tons/in
o e :

3 -2-31 ———
6 -4-62 —
g

693 |=----—-
] ]

, 400  -600.  -800 4000 1200
Strain - in/in. x 106 '

(i) Floor A'_— de 7.8 .135°

' . heart of / ) / _ :
- o & d pate strain :
7 S |
WAVE N 1 nNoTE
, / /, | See Fig.18 for
//_,,’ ' gauge locations

'[Seev LEGE‘ND obova

200 0 -200 -400 -600- -800 -1000
Strain - in./in. X 1(56

(ii) IAntercostol 5 _— Hole adjacent to E - 135° -

Fig. 86 : Double Bottom Ahclysis-Typicol.Web Hole Strains. For
: - Combined Transverse and ln-Plcme:_ Load
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|-25' . L

' :
X {Centre  Girder : ‘
. -3} : _
. Ii' -. ) g : - ‘ - ) - - - 7-" A .
- |y initial - /
5 L | A‘,}deformat»'on - =
_8 + /;:l P A N|E L 1‘ E I 9
‘i —5- [ S I : 15 O & L
i . . . (o] . . o Q
Stiffener 1~ QL -0-51 L
' -062
. ] -1
initial : _ o o -
. deformation ‘ : .
o - _ . . ‘\m ) N : 0
T ———— ‘
, Y RS
0 ) ’ B '
o P A N
Stiffener 2 N - 1100
7S
~+50
_1+25
.. 0
S initial : ) =
8 deformation P E L 3 fzo'i
Stiffener 3 ~ 060
' L | L ]
» m !
8ﬁ830ﬂ§
by TR U it

NOTE : (1) Initial deformation in inches x 10 (positive inwards),
o based on measured contours shown in Fig. 27

(ii) Mean in- plane edge stresses , shown , i tons/in
- computed from overall solution for boundary condition 3a
and q-1ps:~see Fig. 73.

. (if) For analysis of panel behaviour with increasing lood
in-plane stresses increased. lineally with q.

Fig. 87 : Double Bottom Andlysis - Initial Deformation . and Loading Used
- In. Outer Shell Panel Analysis For Distributed Transverse Load
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Qe Centre Girder s, |
theoxfetlcol 120
110 /]
. / - i . —_ Q “d
. < AN .
B ! '+’/ 1 -E [
B [ 3] [3] o]
gt Xy P ANIEL 1 1 ]
e 89 g9 i
L R 2o
~Stiffener 1w @ L. 0 L
‘ theoretical ,
| ) / eoretic 1
— .. o - - (0]
- N N N 7Y
4 : 3 2
' P A Nl E L.
o : U theoretscal
Stiffener .2 / 140
130
_ 120
_110
- - - e 0
6 N P A N
-
Stiffener 3~ l
» ‘y .
NCTE : (i) baﬂexiohs in inches x 104 (posntwe qurds)
' (ii) Experimental values shown o o
. (iii). For details of initial deformation and Iooding (g =1)
- .- see Fig. 87 : E
"F‘ig. 88  : Double Bottom Analysis - Deflexions. of Outer Shell Panels

- For

Distributed

Transverse Load.: q = 1
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Floor A-a_

Stiffener 1.

A

<

) £
S5 o
¢ o i

Stiffener _ 2~a

/b _

 theoretical

P A NVE L 3"

Stiffener 3\;,_

-1-0

Q -05
0

xb

NOTE (i)
(ii)
, (1ii)

Stresses in. tons/in2 ‘

Experlmengcl values showh o :
For details of initial detormatlon cmd loadmg (q 1)
see Flg 87 : :

Fig. 89  :Double. Bottom " Analysis - Bending Stresses at Outer Surface
‘ _of Outer Shell Panels For Distributed Transverse Load : g~ = 1
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(q .
3 . -

For

Distributed Transverse Load

%
| o
e Centre Gi.rder\ ’ :
theoretical ,
i os0 1
/ ' (0] _1)2.5_ o '-<
< 1 oL 0
-k P TR Y sf
o <5 2. ik
i e U5 L
. _ : £ 0 Do
. < G & ic
Stiffener 1% :
- theoretical ( _O75 -
._ l --0:50
? {o2s%m
- - S S - - =
P A |N IE L
: S ' -125
. StiffeneriQ\ } el -1:00
tl'ieor'etlcol / __0:50 m
: : 1-025
- o . d o)
e X
N|lE L '3 N
Stiffener 3%/ .
l&! '®) 8 O 8 N O
C.)] N || 1 ; ) 9 Tl
Oxrn Oxm Oxm.
NOTE : (i) Stresses in tons/in? o
. (il) Experimental values shown . o .
(ii) For detdils of initial doformatlon and loading (g% =
. see Fig. 87
Fig. 90 : Double Bottom Analysis - Membrane Stresses in Outer Shell Panels
2%
=1
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Transverse Load-q
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8 12 ®B 2
Deflexion - inches»10°

P

B 4
Deflexion -inches * 10°  Deflexion —inches » 10°

T T LG,
A L L \\\\;;3' .5
LI A A
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Deflexion -inches 10>
Transducer No2

" LEGEND

Transducer No.l Transducer No.&4° Transducer No.3
(i) Panel 1 (ilPanel 2
[ > 5 ‘
i 1 P
5 4 P “’ /
‘o, /) Rt ‘o /,'//’//j,/
'g ) / ////*,/z; - 'Cll ///// // /
S3 A L _8J3 ,.’/'/7'///
" % . 1 Ax7
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S | - ,//%" =1 “/'/ 7
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Deflexion - inches  10° ‘ Detiexion —inches 103
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(iilPane! 3

28

In Plane Lood
mﬁ“ av;ﬂ:,t';?a Theory |Experiment
=] [e] ———— ——
3 223l |eremcan | e o —
[ ~4.62  |---w--- ——
9 =693 |—w—mf —o—
NOTES -

(i’ See Fig §8for tramducer locations
t? The troraverse lood ¢ Incorpocctes the

local prastuce noemal to the panel ond the
corresponding ln-plane streses dur to
overall bending of the double bottom.For

‘detalis see Fig 87,

ng. S1 : Double Bottom Analysis— Deflexion of Outer Shell Panels For Combined Transverse -

and In-Plane Loading.
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and In-Plane Loading.
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details see Fig 87,
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Fig.92 : Double Bottom Analysis - Stresses at Centre of Panel 1 For Combined Transverse
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Fig. 93 : Double Bottom Analysis —Stresses at Centre of Panel 2 For Combined Transverse
and In-Plane Loading. ‘ :
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for theoretical sclutions were obtained from the solutions
including shear deformation for the load cases oeuned in Fuj 100

Gil) For hole locations and orientation of O datum see qu 18

qu 18 : Double Bottom Anaclysis — Web Hole Stresses For Parch Loaox
Centre Bracketr ‘A, Bay O-1 ‘
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(ii} Patch Loagd P6.
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(iv) Patch Load P 2.

NOTE: (i) Experimental vo!ues shown &~ :
(i) Flexural (o tons/in?) and shear (T tons/in® ) stresses shown

for theoretical solutions were obtained from the solutions ]
including shear deformation for the load cases defined in Fig. 1CO

(iit) For hole locations and orienmrion. of O datum see Fig.18

Fig. 119 : Double Bottom .Ano!ysv - Web Hole Stresses For Patch Locds
Intercostal 5 (5), Holes Adjacent to E (E)
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NOTE (i) Deflexions in inches xlO (posmve mwords)
(i)  Experimental values shown o

(i) Theoretical solutions
: rotational eloshc restraint

. —— —— simple support
(iv) Patch iond P8 defined in Flg 100

Fig. 120 : Double Bottom Analysis - De flcwons of Outer Shell Panels

For Pqtch Lood PB.
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NOTE (i) Deflex:orus in mches x 10* (positive mwords)
(i) Experimental values shown o - :

(iii) Theoretical solutions : v :
: ‘rotational elastic restraint

— — — simple support .
(iv) Patch load Pb6 defined in Fig. 100

Fig- 121 : Double Botfom Anolysus - Deflexlons of Ourer Shell Panels
' " For Patch Load Pb :
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NOTE: (i) Dedc,\lons in inches % 107 (posmve mworczs)
(i Experimental values shown o
(i) Thcorehcol solutions ‘
rotational eloshc restraint
: - —— — simple support
(iv) Paich load P4 defined in Fig. 100

»Eiq.122' : Double Bottom Ano[ysrs - Deflexions of Ou:er Shell Panels
For Patch Load P4 o -
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- NOTE: (i)
R

i)

)

Deflexions in inches % IO—é(po'sii‘ive inwards)

Experimental values shown o s

Thecretical solutions

‘ rotciional elastic restraint
——— simple support R

Paich load P2 defined in Fig. 100 -

Fig. 123 : Double Botfom “Analysis - Deflexions of Outer Shell Panels.
-+ For Patch Lload P2 R | |
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) . - S o B Oyb
A NI By SO I [ A
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S g pPaNbEL 1 |2 5
— 8 o U o e)
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' Stiffener 1 O pralvn
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Qxbv - Oxb

NOTE (i) Stresses in fons/in

(ii) Experimental values shown e

(i) Theorehcal solutions ,
rotational elastic resfrcmf
—— —- simple supporr :

(iv) Patch load P8 deflned. in Fig. 100 -~

Fig. 124 Double Boffom ADCII\/SIS — Bending Sfresses af Outer Surfoce'

of OQuter Shell Panels For Potch Load P&’
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L NOTE (1) Stresses in- tons/ in®
o (ii)  Experimental values shown o
(ii) Theoretical solutions
: ’ —— rotational elashc restraint

—— - simple supporf
() Potch load P6 defined in Flg 100

.Fiq_. 125 . Double B.oﬂ'om' Analysis — Bendin.g -S’rressves at Outer Surface

of Outer Shell _Pcne'!s For Patch Load Pb6
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(ii) Experimental values showno
(i)  Theoretical solutions -
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: - —— — simple supporf
(iv) Patch load P4 defined in Fig. 100

Fig. 126 : Double BoHom Anolysus .~ Bending Sfresses ot Outer Surface
‘ of Outer SheH Panels For Pa ch Load P4
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NOTE: (i) Stresses in tons/in®
' (ii) Experimental values showne
(i) Theorerical sclutions _
S rofational elastic restraint
— — — simple -support
(iv) Patch laad P2 defined in Fig. 100

Fig. 127 : Double Bottom Analysis — Bending Stresses at Outer  Surface

of Outer Shell Panels For Patch Load P2
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NOTE: (i) Stresses in’tons/in2 ,
' (it) . Experimenial volues shown o
(i Theoretical solutions
A rotatfional elasiic restraint
— - — simple support o
(iv) Pafch load P8 . defined in Fig. 100

Fig. 128 : D'o_u.b!e Bottom Analysis — Membrane Sfrgs;es in ‘Outer Shell

Panels For Patch Load P8
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: . — —— simple support -
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00 -035 . 148 01t +035-038
cross section a cross section b cross section ¢
-023. -0-65
059 -051 o 135 4015 +061 -0.42
. cross section f cross sectione cross section d
i) Outer shell stiffener No. 3
+0.36 . -~ W0.46 - L4162
: : -
~ +095 I o -0’51 ’ 001
2401 4026 -036 «0.62 -0.09 4013
cross sac‘tion a cross section b cross section ¢
{ii) Inner shell stiffener No. 3

-129 ' -0.41 o -030

-

+30 .
45 498 -087 123 00 105

cross section a cross section b cross section ¢

(lii)  Outer shell stiffener No. 8

+1-09 ' +053 +0.39
0% ! . 008 || Y X
- 405455 +043 +125 +057 4112 .
cross section a ~ cross section b cross section ¢ . -

{ivi  Inner shell stiffener 'No‘._8'
" NOTE : (i) Stresses in tons/in.

(i) See Fig. 100 for definition of load
(i) See Fig. 20 for location of cross sections.

Fig. 132 :Double Bottom Analysis‘- Shell Stiffener Stresses. for Patch Load

P8
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.(i-) Outer . shell stiffener No. 3.
+038 +051 161
090 - w008 '
oo.‘e"s +0.30 -0 -005 +0M4
cross section ¢

0.
cross section a cross section b

(ii) Inner shell stiffener No. 3.

P

-120 -043 -0 ,
w7 I : -031 ! 400 ! '
4138 +178 . . ) -063 13 . -0.94 -0.98
cross section b cross section ¢

cross section a

~(ili) Outer }shell stiffener No. 8‘.

A 4052 : © 4038
-066 I } +009 || : +0-53 l )
-093 140 S +042 +15 . +053 +105
cross section b cross.section ¢ -

cross sectiona

(o]

(iv) Inner  shell “stiffener  No.

“NOTE: (i) Stressés in  tons/in’

i) See Fig.lOO for definition of load
(iif) See Fig.20 for location of cross sections:

Fig.133 : Double Bottom Analysis‘—She_ll Stiffener Stresses for Patch l:qad

P6
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cross section a cross section b cross _ section ¢
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cross section a cross section b cross section ¢
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cross section a cross section b . cross section ¢

(iii) Outer shell stiffener‘ No. 8.

+084 ce «043 i +0:34

-053 008 I +043
-07% 110 032 4092 - 04k +0.84 -
cross section a . cross section b , cross seclion ¢

_{iv) Inner shell _stiffener No. . 8.
'NOTE : (i) Stresses in tons/in?

(i) See Fig.lOOfor definition of load
(iii). See . Fig.20 for location of cross seclions

Fig.134 : Double Bottom Analysis ~ Shell Stiffener Stresses for Patch lLoad P4
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cross section a cross section b . cross section ¢

{iii) Outer shell stiffener No. 8.

+0.49 +026 . 022

030 +005 ' - «02% I
-043 063 " «018 4053 026 4048

cross section a cross section b cross section ¢

{iv{ -lnner shell stiffenerr No. 8.
 NOTE : (i) Stresses in -tons /in?

li) See Fig.100 for definition of load
liii)- See Fig: 20 for location of cross sections

Fig.135 : Double Bottom Analysis - Shell Stiffener Stresses for Patch Load

P2
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(i) Patch Load P8
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' (i) Patch Load PGB '
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(iii) Patch Load P4
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(iv) Patch Load P2

NOTE (i} Stress in tons/in? o )
' (i) See Fig. 10O for definition of load cases
(i) See Fig. 20 for strut locations '

Fig.136 : Double  Bottorn  Analysis - Strut Stresses For Patch

Loads
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7
Centre span deflexion
1 given by BEAMCOL .
. c x10% in. S -
6 ; I .
Panel 3-3 / , o
point deflexion: :
C x 10%in. /
o) |
.5 Effective rotational % B
_restraint given by j
| BEAMCOL :K=05' € x10%n. Ib/in. | @
. : ( K*=1350in. Ib/in. ) R . 3
4>~K(W°/h=o-25) ' . S , S |
\ o .
S » ) : R - R [
3 ~A o Pl
: E’ Overall central
. _ §, deflexion:
ol— e = 3 cx10" in. o
. - | | = 5 .
5 ;& 5
' 35
, ~/)<Pcnel 1- central <
‘ ~ deflexion: C x 102 in. :
1 1 |
4 6 - - 8- ,10 12 A 14

VLOAD': 'Trcmsversa; pressufe in p.s.i. combined with thrust in tons/ram

'Fig. 142 : Double Bottom Andlysis: Overall and Local Deflexions
- Compared to BEAMCOL Analysis for Failure Test
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Note: End (x=0,L) boundary conditio_ns implicit in stress func_tion.

‘_,/ | webs

A —
)

(i) Detall showing boundary conditions

actual breadth. " shear breadth
\
b b :
longitudinal flange
o : stress. distribution
: 1 g r-c-x
X X :
|b b }
i
! d
v L L ya ya Z.
" " / inner shell'/./ , . t
0 u bd - w d
S £ ’, M : o 4
€1 Wl . —web AT
;; o g} 1 R : 2 -
| U outer shell
Y3 3 A !
t‘ — Z : 2 A ARV A ;" "/ A4 ok Ll ¥ 7 *
Y] T ? : : o .
+ ) . . . o
- load applied at webs only

(ii) Detail of'secAtion and flange stress distribution.

Fig; 143 : Boundary Ccndntaons cnd Beam Section and -Stress
< Distribution for Shear Lag Solution. :
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Fig. 145 : Diagonal Extmpoldtion for Corner Fictitious Point (4)



Nets For Derivatives

%—‘;—(V' = |Eof—E1|HE2 E3 HEA
"
%3("!2 z E5 [ E6 [ E7 [ E8 —{ E9
Bw .
3x3 ° EI0EN [EREIB [ E1%
E19 £24] E29
E18 . |e2s3 E28 y -
aw — _..V.!. - w - x
E16 E21 E26
E15 E20 E25
F22 —{Fi5 (— FI0 [ F14 (—{ F21
F16 |— F6 |— F2 | F5 [—|F13 Similarly :
- , : 3 3
o R G I B (A 1
. ' . aX T XY
oW . JenHrs Hro e Hro .
oX oY - - denoted by G ( )
‘ l I L L | and H( ) respectively
Fi7 F—| F7 —{F4 | F8 |—F20 ‘
F23— F18 [ F12 [—{ F19 [— F24.
Fig. 146 : . Mixed - Variable Solution ;', Finite Difference
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—_~ © o ¢ -
: - 7 | I
) h ‘A IJ!\ ca f‘ £ Ve '
=2 /c I (S - S 7]
centre l '
of plate (0) m _ - (I-1)
[(T+1) mesh divisions incl. fictitious mesh]
Location | Solution 'Uniq;@ial Derivct?ves Mixed  Derivatives
X Yy X b
A 1 central central central central
: 2 as- for A(1) . .
B 1 " backward (1) | central | backward (1) | central
' 2 as for B(1) '
. 1 . centiral |  central | backward (1) | baskward (1)
C
2 as for A(1)
R 1 -backward (1) |  central | backward (1) | backward (1)
’ 2 as for B(1) '
e 1 ~_central | backward (1) | central ] backward (1)
g 2 ' ~as  for E£(1)
o 1 central | buckwurd (1) I backward (1) | backward (1)
F -
2 as for E(1) ' , .
= 1 backward (1) | backward (1) | backward (2) | backward (2)
2 backward 1 backward 1 backward (1) | backward (1)
NOTE : (i) Solution 1 - H eliminated by choice of derivatives

- Fig. 147

2 - H defined by dicgonal extrapolation :
(i1 )Backward (1) and (2) refer to derivatives with respact to nodes

once and

: Mixed Variable

twice

removed from the central’

Solution - Location of Finite

node respectively

Difference 'Nets
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. 148 :  Mixed Variable Solution - Finite Difference Nets
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149 :  Single Variable Solution for w - Finite Difference Nets for

- Fig.

‘Governing. Equation

q

. (48)
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Co w —= 0 (52)
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| 1 ] e
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| NOTE :(49),(59) and (63) on x
(52),(64)and (65) on vy
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1
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“Fig. 150 :  _-_Single‘vrm‘*.iable Solution .for w - Finite . Differences |
: Nets for Boundary Equations : '



(i) Boundary Equations

Fig. 151

Single Variable
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