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ABSTRACT  

Losses in the overall flexural and shear stiffness of plated 

grillages are studied with particular reference to the double-bottom 

structure. 	It is shown that in longitudinally framed ships, losses 

in flexural stiffness can be of the order of 15% in the longitudinal 

direction due primarily to shear lag, and can be in excess of 20% 

in the transverse direction due primarily to local panel bending. 

The latter effect is analysed by considering the large deflexion 

behaviour of initially deformed shell panels with restrained edges. 

Losses in shear stiffness due to perforations are shown to be of the 

order of 50% for hole sizes typical of the double-bottom structure. 

Finite difference solutions to the orthotropic plate equations 

including shear deformation are given to show the effect of shear 

deformation on the behaviour of rectangular plated grillages under 

transverse and in-plane load. 	Flexural boundary conditions varying 

from simple support to fully clamped are treated. 	Within the 

practical range of plate dimensions the effect of shear deformation on 

stresses and deflexions can be of the order of ±40% and +100% respectively. 

The above treatments are combined in order to analyse the results 

of tests conducted on a one-eighth scale steel model of a section of 

the double-bottom of a typical dry cargo ship. The agreement between 

measured and theoretical results for overall and local behaviour is 

satisfactory up to about 0.6 of the assumed working load. 	At this 

load non-linearity became evident in overall behaviour. 	Surface 

yielding of webs began at about 0.5 of the assumed working load and 

heart of plate yielding of the webs and surface yielding of shell 

panels began at about 0.75 of the assumed working load. 	The 

ultimate load for the model was 1.35 times the assumed working load. 
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NOTATION  

x, y, a 

w 

Cartesian co-ordinates - z normal to the plane of 

the plate, x and y parallel to principal axes of 

flexural symmetry 

Deflexions of middle surface of plate in z direction 

Initial deformation of local panels in the z direction 

Initial deformation to plate thickness ratio at 

centre of panels 

Intensity of lateral loading 

Combined transverse pressure and in-plane load 

parameter 

w Jh 

q 

Mx,
y  
M 	Bending moments per unit width of plate in x and y 

directions on y-z and x-z planes respectively 

xy 	
Twisting moment per unit width of plate 

Qx1  Qy 	
Shear force per unit width of plate in z direction 

on y-z and x-z planes respectively 

Tensile force per unit width of plate in x and y 

directions on y-z and x-z planes respectively 

(compression negative) 

Nxy Shear force per unit width of plate 

P
x 	Longitudinal in-plane thrust applied to double-bottom 

model expressed in tofts/ram (13 rams each end) 

Dx  , Dy 	Flexural stiffness of plate in x and y directions 

respectively; anticlastic bending unrestrained 

Eh -p
2
) 

3 
D - 

12 
Flexural stiffness of homogeneous isotropic plate 

with anticlastic bending restrained 

Dxy 	
Twisting stiffness of plate 



S , S 

E 

h 

a, b 

k
lx
, k

ly 

k
2x
, k

2y 

k
3x' 

k 

K 

A
lx
/bA

1y
/b
1 
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Shear stiffness of plate in x and y directions 

respectively 

Young's modulus for plate material 

Poisson's ratios associated with bending moments in 

x and y directions respectively 

Poisson's ratio for plate material 

Thickness of homogeneous isotropic plate 

Length and width of plate in x and y directions 

respectively 

Deflexion spring stiffnesses along x = ± a/2 and 

y = ± b/2 plate boundaries respectively 

Normal rotation spring stiffnesses along x = a/2 

and y = ± b/2 plate boundaries respectively 

Tangential rotation spring stiffnesses along 

x = ± a/2 and y = ± b/2 boundaries respectively 

External rotational restraint of local panels due to 

edge stiffeners 

Effective rotational restraint of local panels taking 

account of k and continuity 

Shell shear breadth factors in x and y directions 

respectively 

X2x ' 	yib 	
Shell buckling breadth factors in x and y directions 

respectively 

F
x 
 , F

y 	
Effective web area factors in x and y directions 

respectively 

xb' 
a
yb 	Outer shell panel bending stresses in x and y directions 

respectively 

a xm 
a 
 ym 	

Outer shell panel membrane stresses in x and y 

"directions respectively 

CC 	 Inner shell surface strains at shell-web intersections 
xi yi 

in x and y directions respectively 
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s C 
X0 yo 

a, T 

x $ Yy  

Outer shell surface strains at shell-web intersections 

in x and y directions respectively 

Theoretical applied web bending and shear stresses 

Shear strains in the x and y directions respectively 

NOTE; For definition of non-dimensional orthotropic plate parameters 

see page 73. 
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CHAPTER I  

INTRODUCTION  

1. GENERAL 

The basic structural elements in a doubly plated grillage are 

the plating or flanges and the grillage or web system. Depending 

on the particular design it may or may not be necessary to ensure 

the efficiency of these elements by local stiffening. The plating 

is usually continuous over the web system, except for isolated 

openings to allow access through or into the system. The webs 

may be solid or perforated and fabricated from sheet or rolled 

sections.. In the latter case the section flanges will contribute 

to the plating flexural stiffness. 

This form of construction is often dictated by the function of 

the structure. 	It has the advantage, as compared to single plating, 

of economy due to efficient material location but, where there is a 

choice, this must be weighed against difficulty of fabrication. 

The flange and web plating is subjected to a combined stress 

system which arises from local (discrete panel) deformation, 

deformation of the grillage and deformation of the whole structure. 

While it is theoretically possible to incorporate all these modes 

of deformation into a single solution this is not at present a 

practical proposition, mainly because of the computer storage and 

time which would be required. 	Even if it were possible at the 

present time any such facility would only be of use as an analytical 

tool since, for design purposes, the costs involved would be 
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prohibitive. 	For practical purposes some form of idealization is 

required to take account of the loss of effectiveness due to 

local deformation in an overall solution which must then be 

followed by a separate local stress analysis. 

This work is concerned with extending this practical approach 

to incorporate recent advances in the theoretical analysis of 

local behaviour in an extension to the orthotropic plate theory for 

overall behaviour, and to relate the results to the practical case 

of a ship's double-bottom structure. 

2. 	THE DOUBLE-BOTTOM STRUCTURE 

The double-bottom, which constitutes the bottom of the hull of 

many ships, including most dry cargo vessels, is made up of inner 

and outer shells the thicknesses of which can vary, depending on 

the overall size of the ship, from z  to 11 ins. 	The shells are 

separated by a web system which can be from 4 to 8 ft. deep and is 

usually of the order of 1 in. thick. 	The webs may be solid, or 

perforated for lightening and inspection purposes. Webs in the 

transverse direction, spanning between the sides of the ship, are 

called floors and are spaced at from 5 to 10 ft. centres. 	Webs 

in the longitudinal direction are referred to as intercostals, 

except for the centre web which is called the centre girder, and 

are spaced at from 10 to 15 ft. centres. 

Both shells and webs are usually stiffened. 	If the shell 

stiffening runs longitudinally the bottom is said to be longitudinally 

framed, if it runs transversely, transversely framed. Most modern 

ships of any size are longitudinally framed. 	The inner and outer 
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shell stiffeners_are usually connected by a strut between floors 

to maintain shell spacing. 	There are also local web brackets, 

between floors, to provide additional stiffness immediately 

adjacent to the sides of the ship and the centre girder. Bulkheads, 

which are transverse diaphragms subdividing the ships hull into 

compartments, are spaced at between one and two times the width of 

the ship. 

3. 	MODEL OF THE DOUBLE-BOTTOM 

Because of the evolutionary nature of the development of ship 

design criteria, some practices have arisen which, although proven 

safe under service conditions, have only a semi-rational basis. 

In order to clarify such issues with respect to the double-bottom, 

a program of research was initiated at Imperial College involVing 

both theoretical analysis and the fabrication and testing of a model 

of a section of a typical double-bottom. 	This model was based on 

the midship section of a single-deck dry-cargo ship, 400 ft. long, 

56 ft. wide and 33 ft. deep, designed to Lloyd's 1956 Rules by 

the staff of the British Ship Research Association. 	It was 

fabricated in steel to one-eighth scale and represents that 

section of the bottom bounded by the sides of the ship and two 

adjacent bulkheads. 	In order to finalise fabrication techniques, 

construction of the main model was preceded by a single-floor model 

to the same scale. 	This represented a transverse section 

incorporating one floor only and was tested as a simply supported 

beam for various loading conditions. 	The latter work was reported 

by Chapman, Ho and Taylor (1) 
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The external load, under service conditions, on sections of 

the double-bottom bounded by the sides of the ship and two adjacent 

bulkheads is primarily: 

(i) Transverse loading, due to water pressure from the outside, 

and cargo from the inside. 

(ii) Longitudinal end thrust due to overall bending of the ship. 

The model was tested under combinations of the above loading 

and also under local transverse load, such as would occur during 

• dry docking. 

The effective boundary conditions,at the sides and bulkheads of 

a section of the double-bottom of a real ship vary from ship to ship 

and with the cargo loading. At the sides, since the double-bottom 

is usually much stiffer than the hull sides, the condition may 

approach simple support. At the bulkheads the condition depends 

primarily on the cargo load distribution between holds. 	For all 

holds equally loaded the effective restraint will approach the fully 

clamped condition whereas for alternate holds loaded the effective 

restraint will be considerably relaxed. 

The model was supported on closely spaced pin ended rods on all 

edges. 	At the sides, which were free from any other restraint, 

this simulated simple support. 	At the bulkhead ends, which were 

stiffened beyond the line of the rods to ensure even distribution 

of the external in-plane load, the effective condition was partial 

rotational restraint. 
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• 4. ANALYSIS OF DOUBLY PLATED GRILLAGES 

4.1 Overall Analysis  

In the past, stresses due to transverse bending were evaluated 

using a beam or grillage approach. 	Only recently have attempts been 

made to allow for the substantial contribution to bending and 

torsional rigidities due to continuity of shell plating. 

For the particular case of the double-bottom Schade (2), (3), (4)  

approximated the structure as a homogenous orthotropic plate, the 

stiffnesses of which are the same as those of the actual double-bottom, 

assumed to be uniformly spread. By means of an energy method Schade 

obtained solutions for the orthotropic plate's differential equations 

and presented design curves and tables for double-bottom structures, 

from which deflections, bending stresses and shear stresses can be 

estimated; 	The boundary conditions of the orthotropic plates 

considered were, all edges simply supported, all edges clamped or 

MO opposite edges clamped and the others simply supported. Provision 

is made in the analysis to account for the variation in bending 

stiffness across the width of the plate for the cases when the centre 

girder section is stiffened by a keel plate. 

Orthotropic plate theory was later applied by Chapman (5) to 

the overall behaviour of doubly-plated grillages in order to 

investigate the influence of the distribution of material between 

the flanges and the webs. 	The theoretical results obtained were 

confirmed by a model test. 

More elaborate model tests were subsequently carried out and 

reported with reference to stiffened plates in ship structures in 
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(8) (7) (6) , 	, conjunction with theoretical analyses (1) , 	A 

survey of recent developments in the structural design of ships 

and a comprehensive list of references is given in Reference 9. 

The orthotropic plate approach gives realistic design criteria 

provided allowance is made for the influence of the non-homogeneity 

of the real structure. Non-homogeneity has two basic effects. 

Firstly, local stress systems developed in transferring load between 

adjacent structural elements result in local distortions which must 

be accounted for in the overall flexural stiffness parameters. These 

effects are discussed in the following section. 	Secondly, the 

relatively wide spacing of webs results in effective shear stiffness 

parameters which are small enough to induce significant transverse 

shear deformation. 	The latter aspect of stiffened plate behaviour 

has received very little attention. 

In this thesis, numerical solutions to the equations of Libove 

and Batdorf 
(10) 

 for the linearised small deflexion behaviour of flat 

sandwich plates, including shear deformation, are presented for a 

range of plate and boundary parameters and several loading conditions. 

This particular theory may be regarded as a natural extension of the 

approximate theory for incorporating shear deflexion in beams (11) 

A plated grillage can be idealised as a sandwich plate by considering 

the webs as corresponding to the sandwich core material. 

The consideration of deflexion due to shear requires the 

specification of one more boundary condition than in ordinary plate 

theory (12). 	Liboveand Batdorf derived the resultant three boundary 

equations for each edge in terms of an idealised discrete spring 

system. 	By appropriate specification of spring stiffnesses it is 

possible to approximate continuous plate systems and plates'supported 
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on edge beams. 

The plate equations are derived to allow for orthotropic plate 

properties, making it possible to consider plate structures with 

differing flexural and differing shear properties in the two 

orthogonal directions. 	In evaluating equivalent stiffnesses the 

loss of overall effectiveness due to local behaviour must be taken 

into account. 	Provided this is done on a rational basis .a wide 

range of structures can be analysed by the orthotropic plate approach. 

Existing solutions which take account of shear deflexion are 

confined mainly to the simply supported boundary condition which 

incorporates zero tangential edge slope. 	These include solutions 

for isotropic plates by Ericksen (13)  , who considered rectangular 

plates under uniform transverse load, and by Yen, Gunturkun and 

Pohle (14),  who considered square plates under uniform and concentrated 

transverse load. 	Reissner (15)  demonstrated that for the case of 

isotropic plates with simply supported edges, subjected to uniform 

transverse load, deflexions but not stresses are modified by the 

inclusion of shear deformation. 	For orthotropic plates, Raville (16)  

considered the effect of shear orthotropy in rectangular plates under 

uniform transverse load and Robinson (17)  gives solutions for combined 

transverse and in-plane load for a limited number of cases of flexural 

and shear orthotropy in rectangular plates. 	In the presence of 

orthotropy it is shown that both deflexions and stresses are affected 

by shear deformation. 

The simply supported edge condition incorporating zero tangential 

edge slope implies that edge twisting moments are fully developed. 

The zero edge twisting moment condition has been considered by Kromm (18) 
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for a uniformly loaded square plate and by Schafer (19)  for a 

sinusoidal heap on a rectangular plate. 	Carley and Langhaar (20) 

extended Schafer's solution to cover any symmetric load distribution. 

Numerical results given with these solutions are for relatively 

high values of shear stiffness and intermediate values of edge 

restraint against twist have not been considered. 

There are also isolated solutions for square isotropic clamped 

(22) plates under uniform transverse load (21), 	These show that 

the independence of edge slope due to shear deformation from normal 

rotational edge restraint results in significant modification to 

stresses as well as deflexions. 	Orthotropic plates with edge fixity 

have not been treated and intermediate values of normal rotational 

edge restraint have not been considered. 

Since analysis of plate behaviour is considerably more involved 

if shear deformation is considered, it is desirable to have a guide 

as to whether the additional work is justified. 	With this objective, 

solutions are now presented which show the influence of shear 

deformation on stresses and deflexions for a broader range of plate 

parameters and boundary conditions than have previously been treated. 

4.2 Local Analysis  

4.2.1 Shell Panels: 	The basic double-bottom shell element is 

bounded on two (transverse) sides by adjacent floors, and on two 

(longitudinal) sides by adjacent shell stiffeners or a shell 

stiffener and an intercostal. 	Typical dimensions are 40 in x 100 in 

with thickness varying from 1 to 14 ins. and the panel may have 

an initial lack of flatness of the order of ± 50% of the plate 

thickness,at mid-panel relative to the sides. 	These panels are 
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subjected to transverse load due to water pressure on the outer 

shell and cargo load on the inner shell and also biaxial and 

longitudinal in-plane loads due to transverse bending of the 

double-bottom and overall bending of the ship respectively. 

The local stresses in the panels can be derived from an analysis 

of the behaviour of a discrete initially deformed plate under combined 

load, provided the influence of continuity is accounted for in the 

boundary conditions. 	The type of plate theory to be used depends, 

for a given degree of accuracy, on the magnitude of the total 

deflexion relative to the plate thickness. 	Three categories of 

Solution can be defined: 

(i) Small deflexion solutions, which assume that the deflexions 

are so small that the transverse and in-plane load behaviour 

can be computed independently and superimposed. 

(ii) Linearised solutions, which assume that the deflexions are 

large enough for the interaction between in-plane load and 

transverse deflexion to be significant, but still small 

enough for second order terms to be ignored. 	This implies 

that membrane stresses remain constant during deformation 

and the behaviour is linear with increments of transverse 

load. 

(iii)Large deflexion solutions, which assume that the deflexions 

are large enough for second order terms to be significant 

in which case the membrane stresses do not remain constant 

throughout the plate and the behaviour is non-linear with 

increasing transverse load. 



22 

The historical development of plate analysis in general is 

well documented in the literature. 	In the field of ships plating 

in particular, one of the earlier workers was Conway 
(23) 

who 

derived linearised solutions for initially flat, simply supported 

rectangular panels subjected to uniform transverse pressure and 

uniaxial tension and compression. Lockwood (24)  extended the 

method to include clamped square plates. 	Bleich (25)  applied the 

more accurate large deflexion theory to solve cases of initially 

flat, square, simply supported panels subjected to similar loading. 

He concluded that in practice the deflexions were unlikely to be of 

sufficient magnitude to warrant the involved large deflexion analysis, 

and that linearised solutions could be used to giye results of 

acceptable accuracy. 

This conclusion was queried by Aalami 
(26) 

 who derived solutions 

for various combinations of side ratio, loading, boundary conditions 

and initial deformation. 	He concluded that while the linearised 

solution proposed by Bleich for simply supported plates yields 

reasonably accurate results when the plate is acted upon by a uniform 

edge compression with unloaded edges free from stress, this approach 

may be grossly in error for other boundary conditions. 	Also, as 

pointed out above, practical panels may have initial deformations of the 

order of half the plate thickness which automatically makes the 

solution sensitive to non-linear effects. 

While Aalami's work showed the necessity of considering large 

deflexion effects, practical application to double-bottom panels 

was dependent on an accurate assessment of the effective boundary 

conditions. Two flexural and two membrane conditions require 

definition. 	Of these four, the flexural condition for rotational 
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restraint is the most difficult to assess. 	This restraint 

depends on two factors, namely, the restraint afforded by continuity 

of plating having regard for total deflexion in adjacent panels, 

(28) 
and that given by the shell stiffening. 	Murray (27), 

	
considered 

this problem and produced a semi-emperical approach based on observed 

deformations for cases where the initial deformation was of the 

same sign in adjacent panels. 

In this thesis a more analytical approach to the assessment of 

effective rotational restraint is presented and the results are 

utilised in the computer program developed by Aalami, to analyse 

the non-linez:r transverse deformation behaviour of local panels in 

the double-bottom model. 	This analysis provided an estimate of 

the loss of shell effectiveness in resisting in-plane load to be 

used in the analysis of overall behaviour of the model. 

4.2.2 Web Panels: 	As part of the overall investigation into 

the behaviour of the double-bottom structure being carried out at 

Imperial College, of which Aalami's work was a part, the stress 

distribution, buckling and post buckling behaviour of perforated 

plates in shear was studied by Ho (29).  Historical development 

of analysis in this field is outlined in the latter reference. 

Finite difference solutions for stress distribution in square panels 

with central circular perforations of variable size were obtained 

for two limiting boundary conditions, namely, edges restrained to 

remain straight and uniform applied shear stress. 	Numerical values 

were also obtained for the classical solution for uniform shear 

applied to an infinite plate with a hole and for Wang's 
(30) 

 solution 

for uniform shear applied to a discrete square plate with a hole. 
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In practice, the double-bottom web's are not discrete square 

panels with,a single central hole but, as in the case of shell 

panels, a discrete panel analysis can give satisfactory results 

provided effective boundary conditions are realistically evaluated. 

It appeared possible, that the rigidity of the top and bottom shells 

and the web stiffening, could result in a condition approaching 

edges restrained to remain straight for discrete panel elements 

encompassing a single hole. 

An attempt was made to apply the theory to tests on the single 

floor model described previously. 	It was found that stresses 

measured at Cie circumference of the holes agreed quite well with 

a solution for a discrete plate with rigid edges but better still 

with the classical solution for a hole in an infinite plate subjected 

to uniform shear. It appeared that deflexion due to shear, which 

was a measure of the additional flexibility due to perforation, agreed 

best with a solution for a discrete plate with edges subjected to 

uniform shear stress. 

Although it was pointed out that the overall deflexions were 

influenced by loss of flange effectiveness no attempt was made to 

eliminate this effect before extracting deflexion due to shear. 

For this reason the value of the agreement noted as regards deflexions 

is suspect. 	Subject to further verification, it would seem that 

the infinite plate solution, which falls between the limiting cases 

mentioned, is the most realistic. 	It was noted that the comparison 

of theory and experiment must have been influenced by the fact that 

the depth of the floor panels was not equal to the hole spacing 

and that there were additional perforations to admit longitudinal 

stiffeners. 
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In order to clarify the above issues, a test on a beam 

incorporating the same web perforations and stiffening as the 

transverse floors, but with flanges such that loss of flange 

effectiveness was negligible, was carried out as part of the 

present work. 

4.2.3 Shell-Web Interaction: 	The web spacing to overall span 

ratios along lontidudinal and transverse axes of most double-bottom 

structures are such that shear lag causes significant loss of overall 

bending stiffness. 	This is not strictly a local effect since 	it 

depends partly on the overall transverse load distribution. Shade(31) 

considered the particular case of ship structures and derived 

design curves for several typical cases. 	Unfortunatley, these 

solutions are not sufficiently general for direct application to 

the double-bottom and therefore, as part of this work, Shade's 

theoretical approach has been used as the basis of a computer' program 

from which the required results were obtained. 

5. 	SUMJ4ARY OF OBJECTIVES OF THIS INVESTIGATION 

5.1 To integrate, and extend where necessary, existing work on 

the analysis of loss of overall stiffness in plated grillages due 

to local deformation, with particular reference to the double-bottom 

structure. 

5.2 To investigate the effect of shear deformation on the overall 

behaviour of plated grillages by obtaining numerical solutions to 

the orthotropic plate equations including this mode of deformation. 

5.3 To utilise the preceding work in the analysis of tests on a model 
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of a section of the double-bottom structure in order to gain a 

better insight into both the overall and the local behaviour. 



27 

CHAPTER 2  

MODEL AND TEST SET UP 

1. GENERAL 

Basic details of the double-bottom model are given in the 

Introduction. 	Work on the,  assembly of the model, which was done at 

Imperial College, started in 1959 under the supervision of P.F. Taylor. 

When construction was only partially completed B. Aalami took over the 

supervision and was responsible for strain gauging the model. Aalami 

also designed and supervised the construction of the transverse load 

rig. 	In 1965 when the model was in position and almost ready for 

testing it was handed over to the author who supervised all testing 

and was responsible for some modifications. 	The latter included 

the installation of tension links in the corners of the model to resist 

"lift-off" and the installation of the in-plane load and the local 

transverse load test arrangements. 

Although much of the theoretical work discussed in later Chapters,  

is of general application it was developed with the primary purpose 

of analysing the double-bottom model. 	This applies particularly to 

the analysis of local behaviour and for this reason it is desirable 

that the reader be familiar with the contents of this Chapter before 

proceeding to Chapter 3. 

2. DESCRIPTION OF THE MODEL 

Figure 1 shows the principal dimensions and some details of the 

model. 	Additional details (web perforations and local stiffening) 
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are given in Figure 2. 	The 0.064 in. and 0.080 in. plate thicknesses, 

which were determined by the availability of mild steel sheet, correspond 

closely to the correct scale thicknesses for the principal structural 

members. 

Figure 3 shows the model prior to attachment of the inner shell 

and gives an appreciation of the complexity of the double-bottom 

structure. 	Figures 4 and 5 show details of the shell and web 

stiffening. 	Figures 6 and 7 are'inner and outer shell views of the 

completed model. 	The inner shell view shows the margin and bulkhead 

brackets which stiffened the upstanding edge Tee section at inter-

sections with the main and bracket floors at the sides, and the 

longitudinal webs and shell stiffeners at the ends. 

3. FABRICATION OF THE MODEL 

The main problem in constructing the model was to attach the 

second skin after the remainder of the structure had been welded, 

since it was not possible to weld internally. 	Various spot-welding 

methods- were considered, but all suffered from the disadvantage that 

the web members would require to be flanged on their,faying edges, and 

also, that the connexions would be intermittent . 	Furthermore the 

jigging of components for welding would have been difficult. 

To achieve connexions as nearly continuous as possible, with 

access from outside the model only, a method was devised in which the 

faying edges of all members attached to the bottom shell and inner 

bottom (i.e. centre and intercostal girders, floors, bracket floors, 

and longitudinal stiffeners) had projecting teeth machined in their 

edges. 	These teeth fitted into corresponding slots machined in the 



29 

inner bottom and bottom shell plating. The depth of a tooth was 

equal to the thickness of the plate into which it fitted, so that 

when assembled the top of the tooth was flush with the outside of the 

plating. The plate was then welded in position by a run of weld along 

the top of the tooth on the outside of the plate, making a continuous 

connexion over the length of the tooth. 	In general the tooth length 

was about 3 in. and the space between teeth varied between 1 and 2 ins., 

the closer spacing being used where high shear stresses were expected. 

Consideration was given to attaching one skin by fillet welding, 

but it would have been difficult to manipulate an electrode in the 

cramped spaces inside the model, and some parts would have been completely 

inaccessible. 	Furthermore, the distortion of the plating would have 

been greater. 	Both skins were therefore slotted and welded externally. 

To facilitate correct alignment of the web members it was 

convenient to provide half-depth slots at their intersections, eggbox 

fashion. 	In this way the web structure was self-jigging and could be 

accurately assembled and welded before the plating was added. 	The 

longitudinal stiffeners and the channel struts were prefabricated with 

the web structure. 

Cooling was effected by applying a jet of compressed air to the 

welds after the slag had been chipped away. Each weld was individually 

cooled before proceeding with the next weld. A welding sequence was 

evolved, during construction, to compensate for the observed distortions. 
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4. LOADING ARRANGEMENTS 

4.1 Transverse Loading Frame  

Details of the transverse loading frame are shown in Figure 8. 

Transverse load was transmitted from the edge Tee brackets, via a 

system of vertical rods, to a stiff rectangular box section frame. 

This frame was tied to three transverse wide flanged beams which were 

friction bolted to six solid circular steel columns. 	These columns 

reacted against the "strong floor". 	The seating between the box 

section and the beams was packed to ensure a uniform distribution of load. 

Despite the rigidity of this arrangement, small but finite deflexions 

of the rig due to transverse load were recorded. 	Figure 9 shows the 

loading frame bolted in position for a transverse pressure test. 

4.2 Attachment of Model to Box Section Frame  

The vertical rods, which can be seen along the sides and ends of the 

model in Figure 9, were located on the edge Tee sections in line with 

each margin and bulkhead bracket. The rods were seated as shown in 

Figure 10. Rods at the centres of each edge were restrained against 

movement parallel to their respective edges. 	The model was therefore 

restrained in space along both horizontal axes but the edges were free 

to translate normal to themselves. 	The restrained rods were housed 

in the circular appendages visible on the underside of the box section 

frame. in Figure 11. 

The corners of the model were restrained vertically by links which 

could develop tension and therefore resist corner "lift-off" under 

transverse load. 	These links were articulated to minimise lateral 
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restraint at the corners, as shown in Figure 10. 

In the unloaded conditions the weight 'of the model was taken by 

20 adjustable coil springs spaced at intervals around the edge of the 

model and attached to the box section frame. 	These springs were 

tightened prior to testing so that the model was held firmly against 

the rods, which were themselves adjusted so that all rods were firmly 

seated. 	This minimised the effect of local slackness on the overall 

reaction distribution. 

4.3 Transverse Pressure Loading  

Transverse pressure was applied to the flat portion of the outer 

bottom by means of a pressure bag, fabricated from 1/16th. in. sheets 

of rubber and clamped between steel bars at the edges. 	The bag was 

operated by water. 	Figure 12 shows this bag in position on the 

floor prior to installation of the model. 	With the pressure bag 

in position the model was placed on top of the bag as shown in Figure 11. 

The loading frame beams were then lowered and clamped in position such 

that, when the model was attached to the box section frame there was 

a gap of 'about 0.75 ins. to be taken up before water pressure became 

effective. 	In the foreground of Figure 9, which shows the rig in 

readiness for a transverse load test, can be seen the arrangement used 

to regulate transverse pressure. 	This incorporated .a gravity operated 

safety valve by means of which, with the inlet valve open, the pressure 

automatically cut out at within about 0.1 p.s.i. of the required load. 

The final adjustment, made with reference to a water manometer and not 

the dial gauge shown in Figure 9, was achieved by hand operation of the 

inlet valve. 	Once any surge had damped out the pressure bag was 

sealed off and always remained stable within about 0.02 p.s.i. of the 

required load. 
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4.4 Longitudinal Thrust Loading 

Longitudinal thrust was applied, in combination with transverse 

pressure, by means of 26 - 20 ton capacity lapped rams, 13 at each 

end. 	They were located so as to distribute the load uniformly across 

the width and through the depth of the model. Final adjustment was 

achieved by means of the adjustable ram seatings shown in Figure 13. 

Figure 14 shows details of a ram in position. 	The rams reacted against 

concrete piers bolted to the strong floor. 	Figure 15 is a general 

view of the longitudinal thrust rig at one end of the model. The rams 

were operated by an Amsler loading cabinet with a piping system 

arranged to load both ends of the model simultaneously and thus minimise 

differential thrust. 	Ram pressure was adjusted and maintained to 

within 0.01 tons/ram. 

4.5 Local Transverse Load 

Local transverse load was applied along the centre girder, at 

points of intersection with the transverse floors, by means of 10 ton 

capacity lapped rams held vertically under the model. 	The transverse 

beams, box section frame and model had previously been raised and 

reclamped so that the underside of the model was 35 ins. clear of the 

strong floor. 	Figure 14 gives details of the ram set up. 	The pad, 

seated on top of the ram, was designed to distribute load sufficiently 

to avoid a premature local web failure. 	Figure 16 is a view of several 

rams in position under the model. 	Figure 17 is a general view of the 

first local transverse load case of 8 rams, one at each floor. 	Tests 

were conducted for four different cases, obtained by successively 

removing rams in pairs from the ends of the line. 	As in the case of 



33 

the longitudinal thrust load, the system was operated with an Amsler 

load cabinet reading to within 0.01 tons/ram and connected by a piping 

set up arranged to ensure, as nearly as possible, symmetrical load 

application. 

5. . INSTRUMENTATION 

5.1 Strain Measurement  

Strains were measured using electrical wire resistance gauges 

bonded to the model and the supporting rods with epoxy based adhesive. 

Figure 18 shows the location of web gauges. Figure 19 shows the 

location of gauges at intersections of the inner and outer shells with 

longitudinal and transverse webs. 	Figure 20 shows the locations of 

gauges on stringers and on centre lines of three outer shell panels. 

Figure 21 shows the rod numbering system and the location of the rods 

which were strain gauged to measure reactions. 

Strains were recorded automatically at the rate of 10 gauges per 

second by'a "Solartron" data-logger which had a specified sensitivity 

of 	2 microstrain. Temperature compensation was provided by dummy 

gauges bonded to steel plate. Output from the data-logger was of two 

forms. 	A printed output, which was used as a guide to critical 

behaviour during tests, and a punched tape output, which was sent 

directly to the computer for reduction. 

5.2 Deflexion Measurement  

Local deflexion was measured for three outer shell panels using 

inductive displacement transducers located as shown in Figure 22. 
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They were held in a frame resting on the inner shell of the model. 

Contact with the outer shell was provided by i in. diameter extension 

spindles attached to the transducers and passing through holes drilled 

in the inner shell. 	These spindles seated in moulded recepticles 

bonded to the inside of the outer shell. 	The transducers had a 

travel of 0.5 ins. and deflexions were measured on a meter which was 

read to a specified accuracy of ± 0.001 ins. 

Overall deflexions, transverse to and in the plane of the model, 

were recorded- at the locations shown on Figure 22. 	Gauges prefixed 

R recorded the in-plane displacements. 	Gauges 20 and 21 recorded 

vertical displacement of the box frame. 	Deflexions were measured 

with 0.5 in. travel mechanical dial gauges, sensitive to 0.0001 ins., 

held in a rig resting directly on the strong floor. 	Because of the 

complexity of the loading and deflexion rigs considerable care was 

necessary to ensure that no fouling occurred. 

6. 	TEST PROCEDURE 

6.1 Combined Transverse Pressure and In-plane Load 

A total of 10 combined load tests were conducted. 	These were 

for ten values of longitudinal thrust varying from 0 to 9 tons/ram. 

In each case the transverse pressure was first brought up to 0.5 p.s.i. 

and the longitudinal thrust then applied. 	The transverse pressure 

was then readjusted to 0.5 p.s.i., if required, and this became the 

datum load for successive increments, of 0.5 p.s.i., in the transverse 

pressure. 	The reason for using a small value of transverse pressure 

as a datum rather than zero pressure was, firstly, to minimise the 
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effects of any slackness in the rig, and secondly, to stabilize the 

model against any longitudinal force arising out of unequal end 

loads. 	The maximum value of transverse pressure in each test was 

determined by the approach of yielding, indicated by the printed 

strain record. 	For low values of longitudinal thrust the web strains 

governed but as thrust was increased the shell panel strains became 

the governing factor. 

6.2 Local Transverse Load  

As for the combined load tests a datum load, of 0.25 tons/ram, was 

applied to eliminate any slackness in the rig. 	In each case the load 

was increased in increments of 0.25 tons/ram, up to a load at which 

local yielding was almost reached. 
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CHAPTER 3  

ANALYSIS OF PLATING EFFECTIVENESS 

1. GENERAL 

The orthotropic plate approach to the analysis of plated grillages 

follows the sequence below. 

(i) An analysis of local element behaviour in order to determine 

the losses in overall effectiveness to be allowed in computation 

of orthotropic plate properties for use in; 

(ii) An analysis of overall behaviour to determine force distributions 

for use in; 

(iii) A local stress analysis 

At first sight it would seem that this approach must involve an 

iterative procedure because of the interdependence of the above steps. 

It will be shown however that, with certain limitations, it is possible 

to make a good estimate of losses in effectiveness from the geometry 

of the particular structure. 

This Chapter deals with an investigation into these losses with 

particular reference to the double-bottom model. Where possible 

existing theoretical work, mainly in relation to large deflexion 

plate behaviour, has been used but it has been necessary to develop 

some work, relating to the evaluation of realistic boundary conditions 

for plate panels. 
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The local stress systems considered in this respect are as 

follows: 

(i) 	In connection with flange effectiveness, two effects must be 

distinguished 

The first effect, commonly called shear lag, arises 

because load transfer across the flanges is dependent on a 

plane stress system. 	The associated shear distortion is 

reflected in the longitudinal stress distribution across the 

flange and results in an overall moment of resistance which is 

less than that given by the idealised assumption that stress 

is proportional to curvature. 	This effect is taken into 

account by using a reduced flange breadth in computing overall 

flexural stiffness where the ratio of reduced to fully 

effective flange breadth due to shear lag is termed the shear 

breadth factor in this thesis. 

Secondly, the longitudinal stress distribution is influenced 

by out of plane, flange deformation. 	Out of plane deformation 

is initiated by either local transverse pressure and/or initial 

lack of flatness and the resultant increase in in—plane 

flexibility must be reflected in the overall flexural stiffness. 

As with shear lag this effect is taken into account by using 

a reduced flange breadth in computing overall stiffness where 

the ratio of reduced to fully effective flange breadth due to 

transverse deformation is termed the buckling breadth factor 

in this thesis. 



38 

In connection with web effectiveness 

Perforations and local restraints must be accounted for 

in evaluating the effective web area to be used in computing 

the overall shear stiffness. 	The complexity of the floor 

(transverse web) perforations and stiffening make a theoretical 

analysis difficult but an attempt is made to rationalise an 

existing solution
(29) 

with the aid of experimental results 

from floor beam tests. 

2. 	SHEAR BREADTH FACTOR 

This factor is defined as follows: 

x axis: 	A
lx

/b
1 

y axis: 	A /b 
ly 1 

Where Alx and Aly 
are the effective flange dimensions and b 

1 

is the corresponding actual flange dimension, between webs, in 

the respective directions. 

Numerical values of this factor, for the double-bottom model, 

were obtained from a computer program, based on a solution by 

, Schade (31)  
, which was written as part of the present work. A brief 

account of Schade' solution is given in Appendix A. 

As noted by Schadethe shear breadth factor depends upon: 

(I) The boundary conditions along the sides of the flange. The 

program is written for full lateral restraint, a condition 
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approached in the case of multiple webs. 

(ii) The form of the bending moment distribution. This depends 

on the applied loading and the support conditions. 	In the 

case, of the double-bottom various loading conditions are 

examined and the boundaries are assumed simply supported. 

(iii) The geometrical properties of the section. 	The program 

is written for doubly flanged sections specified as follows 

(reference Figure 25); flange breadth (bl' 
equal top and 

bottom), flange thickness top and bottom (t1  and t2, not 

necessarily equal), web depth (s) and web thickness (t3). 

No account is taken at this stage of the effect of flange 

stiffeners, which is discussed later in this section. . 

Figures 23 and 24 show results from solutions for the overall 

behaviour of the double-bottom model. These were obtained to examine 

the moment CA , X
y 
 ) and shear (Q x, , Q y

) distribution in order to 
x  

determine if they had a form analogous to the corresponding beam 

distribution for similar applied loading conditions. 	It can be 

seen that inclusion of the effect of shear deformation causes some 

modification to the distributions in the loaded regions but for 

practical purposes the analogy is valid and beam solutions were assumed 

to be applicable. 	The reason for using stepped rather than constant 

load, as shown in the cross sections, was that the theoretical 

solution for plate behaviour including shear deformation is extremely 

sensitive to load discontinuities and the numerical limitations of 

the solution are minimised if the load is distributed in this manner. 

It might also be argued that the stepped load section is more 



40 

realistic. 	As can be seen from the deflection profiles the 

proportion of overall deflection due to shear is very significant. 

Solutions for the variation of shear breadth factor over the 

span for longitudinal and transverse beam sections of the double-bottom 

model, under various loading conditions, are shown in Figure 25. 

The loads correspond to cases actually applied to the model. 	Since 

the overall analysis of the model assumes constant stiffness along 

respective axes an equivalent shear breadth factor was calculated 

for each case on the basis of overall beam flexibility such that it 

gave the same central deflection as the corresponding beam with 

stiffness varying in proportion to the calculated shear breadth factor. 

It will be noted that it is possible for the shear breadth factor 

to exceed 1.0. 	This occurs for laterally restrained flanges only, 

where this restraint allows the biaxial strength of the plate to 

develop so that the maximum theoretical effectiveness is 11(1-II
2
) 

or 1.099 for p= 0.3. 	To avoid confusion with later work the 

equivalent shear breadth factor are quoted as a percentage of the 

maximum 1.099 in the following table. 	The same values apply to top 

and bottom flanges. 

Equivalent Percentage Shear Breadth:Factor 

H/L 1.0 0.667 0.444 0.222 0.092 

x axis 94.0 93.8 93.6 93.2 - 

y axis 94.0 - - - 93.0 
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The preceding analysis ignores the influence of stiffeners on 

flange effectiveness. 	Longitudinal stiffeners increase the overall 

flexural stiffness without contributing to the flange shear rigidity 

so that the flange shear distortion is greater compared to an 

unstiffened flange section of comparable flexural stiffness under 

the same applied load. 	A further reduction factor is required to 

take account of this behaviour. 	Ferahian (32) examined the influence 

of flange stiffeners in the case of single web beams (no lateral 

flange restraint) and produced the curve shown in Figure 26 (ii), 

which gives reduction factors (K1) to be applied to the corresponding 

unstiffened flange solution for shear breadth in simply supported 

beams under uniformly distributed load. 

Ideally, corresponding curves should be produced for the particular 

case of the double-bottom, incorporating the effect of multiple 

webs, but reduction factors of sufficient accuracy can be obtained 

directly from Figure 26 (ii). 	This is justified on the basis of the 

comparison between single and multiple web solutions for unstiffened 

flanges shown in Figure 26 (1). 	It can be seen that for beams with 

L/b
1 greater than about 4 the ratio of X1 

 /b
1 
 for single webs to 

Alibi  for multiple webs, for any given 1,/bi, is reasonably constant. 

Therefore for the double-bottom model (1,/bi  =6,both axes) the 

correction to shear breadth to allow for stiffeners was taken 

directly from Figure 26 (ii). 	For the model the two values of K
1 

shown in Figure 26 (ii) correspond to the inner and outer shell and 

take into account the linear stress distribution through the depth 

of the beam. 	Thus the percentages by which the corresponding shear 

breadth solutions must be multiplied to account for stiffeners are, 
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x axis only : 

Inner Shell : 91.0% 

Outer Shell : 92.5% 

3. BUCKLING BREADTH FACTOR 

3.1 Definition of the Typical Model Shell Panel  

The evaluation of loss of flange effectiveness due to transverse 

deflection of a typical double-bottom shell panel was carried out 

with the aid of a computer program giving solutions for the large 

deflection behaviour of rectangular orthotropic plates, developed 

by Aalami (26)
. 	The following factors had to be considered before 

this program could be utilised. 

3.1.1 Basic Panel Element: 	This was resolved in part by the 

limitations of the program since, there being no facility for the 

specification of interior restraint, the basic element could not 

surround an interior support such as a channel strut. 	The choice 

was thus reduced to several rectangular isotropic plate elements of 

different dimensions. 	From Figure 1 it can be seen that the 

141/2  in. x 4
3
/8  in. panel bounded by adjacent floors and adjacent 

shell stiffeners (or a shell stiffener and an intercostal) was the 

predominant element and hence this was chosen for more detailed 

analysis. 

3.1.2 Effective Panel Boundary Conditions: The plate equations 

required the definition of two flexural and two membrane boundary 
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conditions as follows: 

(i) Flexural:  

(a) Vertical deflexion restraint: 	The most flexible edges were 

those bounded by shell stiffeners which had an unsupported span 

equal to the distance between a floor and a channel strut. 

However, these stiffeners were sufficiently inflexible to make 

edge deflexions very small relative to deflexions in the interior 

of the panel and vertical deflexion restraint was taken as infinity. 

(b) Normal slope restraint: 	Evaluation of this restraint has been 

(28) considered by Murray (27) , 	The results are of limited 

application however and it was apparent that a more detailed 

analysis of the problem was required. 	This was done as part 

of the present investigation and is presented in detail in the 

next section of this Chapter. 	The conclusion reached is that, 

for the particular case of the double-bottom model, the edges of 

individual panels were restrained such as to develop about 75% 

of the fully clamped edge moment. 

Membrane: 

Normal in-plane restraint: 	Since the double-bottom model was 

effectively free in space there was no external restraint to be 

transmitted to individual interior panels. 	Compatible 

displacements at the edges of adjacent panels required however 

that the edges remain straight,resulting in a non-uniform 

distribution of membrane forces normal to the edges. 	Aalami's 

program has the facility for specifying that edges remain straight 

and the applied force is prescribed as the mean force on 

each edge. 	. The final distribution of the applied force is 
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determined by the solution, subject to satisfaction of the 

straight edge condition. 

(b) Tangential in-plane restraint: As with normal in-plane 

restraint the external restraint is zero and compatible panel 

edge shear displacements are assumed to correspond to zero 

tangential in-plane restraint of individual panels. 

3.1.3 Initial Lack of Flatness: 	This is of primary importance 

with respect to the behaviour of a panel as an isolated plate and as 

regards interaction with adjacent panels. 	Figure 27 is a contour 

plot of the initial lack of flatness over the central area of the 

bottom shell of the double-bottom model. 	It is of note that 

whereas in practice welding techniques lead to inward deformation 

for most panels, the model exhibited inward and outward initial 

deformations in approximately equal proportion. 	This antisymmetry 

was the primary factor which prevented the fully clamped edge condition 

for individual panels from developing. 	Some approximation as to the 

magnitude of the deformations was necessary and this was done by 

taking a mean of central deflexions between adjacent edges, giving 

values of +0.019 in. and -0.025 in. for inward and outward central 

deformation respectively. 	The plating was 0.080 in. thick and based 

on the above mean measurements a value of central initial deformation 

to plate thickness ratio (do/h) of ±0.25 was used in the calculation 

of effective rotational restraint to be applied to model panels.. In 

Aalami's program initial deformation may be defined as either a 

sinusoidal distribution along both axes for a given central value of 

w
o/h, or actual (axially symmetric) deformations can be prescribed 

at nodal points. 	The former method was utilised in the present 

analysis. 
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3.1.4 Loading: 	Figure 28 shows the various types of panel loading 

considered. 	The combinations of these loads to which a particular 

panel was subjected depended on its location in the shell. 	In the 

model, only the outer shell panels experienced transverse pressure 

(q), distributed evenly on panels over the flat section of the bottom. 

The in-plane load on each panel due to overall flexure of the model 

(N 
qx 

 , N 
qy) was proportional to the corresponding bending moment and 

of opposite sign in the inner and outer shells. 	The in-plane 

load due to externally applied forces (N
x
) was assumed to be constant 

across the breadth of the model. This corresponds to overall 

bending of the ship's hull and variation between inner and outer shells 

due to differences in section moduli was assumed to be negligible. 

Hence in the model test the in-plane load was applied at the neutral 

axis of the double-bottom. 

3.2 Evaluation of Effective Local Panel Rotational Restraint  

In isolating a panel from an array of panels, boundary conditions 

must be derived which reflect the restraint due to local stiffeners 

and the forces imposed by the surrounding system. 	Of the four 

boundary conditions required only the effective restraint against 

normal rotation is not imediately apparent. 	This problem would 

not arise for transversely loaded panels if there were no initial 

deformation or if the initial deformation was identical in all panels, 

in which case it would be reasonable to assume the interior panels 

were fully clamped. 	It is the variation of initial deformation in 

adjacent panels, interacting with the in-plane load which relaxes the 

fully clamped conditiOn. 
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The relatively large aspect ratio of the panels under consideration 

. 
(c- 

145
= 3.31) simplified the problem because for such cases 

the dominant behaviour is basically that of a beam spanning the short 

(y) direction. 	This led to a consideration of the idealised 

continuous beam-column shown in Figure 29 (1). 	The assumptions, 

apart from the initial assumption that the problem could be treated 

as a beam-column, are that the initial deformation was of the 

antisymmetric sinusoidal form shown, that the in-plane load was 

constant and that external rotational restraint (k ) was equal and 

vertical displacement zero, at all supports. 

The first problem, having made the above idealisation, was to 

assess the value of k , the external rotational restraint due to 

the longitudinal shell stiffeners.' Having done this the beam-column 

solution could be used to determine a value of effective rotational 

restraint such that when applied to a single span, it gave .the 

same solution for forces as the original continuous span solution. 

3.2.1 External Rotational Restraint:  

The required restraint is defined as follows: 

k = M/0 

Where: . 	M =torque applied to stiffener/unit length 

= total rotation at corresponding cross section 

Two alternative methods of evaluating this quantity were 

considered, both of which could be expected to give roughly the same 

value for k . 
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(i) Torque Solution:  

The total rotation (e) is assumed to be made up of 01 due to 

twisting as a thin walled section about an enforced centre of 

rotation to which must be added 82 
due to local bending. 

Defining: 	k 
 

We1 1 

k
2 	

M/8
2 

* 	* 
Then: 	M/(0

1 
+ 0

2
) = k

1 
k /(k

1  k2) 

(a) Solution for k : 
1 

Governing Equation: For the parameters defined in. Figure 30 (i) 

the governing equation for torque of an angle section about an 

enforced centre of rotation is: (Reference 33) 

d401 	GK 	d281 

dx4 	Dd
2 

dx
2 

Dd
2 
 

In the case of the double-bottom the enforced centre of rotation 

is at the stiffener-shell interface. 	Because of the channel 

strut restraint at the middle of the side of a panel the torque 

distribution cannot be predicted so for the purposes of this 

analysis a uniform distribution was assumed. 	This is shown 

to be conservative (give lower values of k
1'  
) compared to a 

parabolic distribution, for the limiting case of d = 0. 

Boundary Conditions: In the double-bottom model end restraints 

were provided by the channel strut at one end and the stiffened 

floor at the other. 	Two limiting cases were considered: 



Firstly, ends restrained against rotation but free to 

warp: 

0
1 
	0 

dx
2 

' Secondly, ends restrained against rotation and warping: 

1 

del  

dx 

Of these two cases the latter is more realistic for the model 

but both cases were analysed to show the influence of restraint 

against warping. 

Solution of Equations: The above equations were solved using 

first order finite difference approximations to the derivatives. 

The numerical values of the coefficients for the particular 

case of double-bottom model stiffeners are given in Figure 30 (i). 

Values of k
1 

= M/6
1 
were computed at each mesh point. The 

minimum value, which occurs at x = L/2 is denoted k
1
. Figure 31 

(i) shows the convergence behaviour of k 
1 as the number of 

finite difference mesh divisions per span is increased. 

Figure 31 (ii) shows the effect of span dimension on k
1. 	

The 

restraint due to the channel strut, which reduces the span 

* 
by a factor of 2, results in an increase in k

1 
by a multiple 

of the order of 2
4. 

Figure 32 shows the variation of k
1 
 across the span in 

the case of a stiffener restrained by a channel strut (L = 6") 



for the two alternative end conditions. 	It can be 

seen that .taking.ki  = 	at x = L/2 gives a conservative 

estimate of the external rotational restraint for the 

assumed torque distribution. 

Figure 30 (ii) shows the effect on k
1 
of varying the 

distance of the enforced centre of rotation from the shear 

centre (d). 	As d increases the flexural stiffness of the 

angle flange becomes more effective. 	This is more marked 

for ends restrained against warping such that, for d = 0.9" 

(restrained at the shell-stiffener interface) k
1 

is about 

3z times greater when the ends are restrained against warping. 

For d = 0 the solutions are independent of restraint-  

against warping since when torque is applied at the shear 

centre there is no tendency to warp. 	The pure torque 

solution for uniformly distributed applied torque gives ki  = 296 

which is less than the corresponding solution for sinusoidally 

distributed applied torque, k
1

= 364 (constant for all x). 

Although the true distribution is not known this indicates that 

the solution for k
1 
based on uniformly distributed torque is 

conservative. 

The value taken as the external rotational restraint 

associated with torque was (reference Figure 30 (ii) ): 

3 
k
1 	

i = 3.58 x 10 	n. lb./in. 

It is of note that taking account of:(i) the reduced 

span due to support at channel struts,(ii) the enforced centre 

of rotation and (iii) the restraint against warping, increases 

k
1 
relative to the pure torque value for full span between floors, 
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by a multiple of about 50. 

(b) Solution for k
2 
 (local bending):  

The preceding calculation takes no account of local 

deformation of the angle arm connected to the shell. 	The 

assumed conditions are illustrated in Figure 33 (i). 	This 

gives k
2 

= M/0
2 

= 3E1/ P.= 2.22 x 103  in.lb./in. 

Total Restraint:  

* 	* 
k = k1 

k
2
/(k

1 	
k
2
) 

= 
1.37 x 10

3 
in.lb./in. 

) Plate Solution:  

The alternative solution is to consider the angle as acting as 

plate simply supported along the connection with the shell, where the 

moment is applied, and elastically supported by the outstanding leg 

on the opposite edge. 	Because of the large aspect ratio (E›6) it 

was sufficient to treat this plate as :a beam as shown in Figure 33 

(ii). 

Assuming that the outstanding leg is clamped at the ends and 

that the transverse load (plate reaction) distribution is uniform, 

the vertical restraint is, approximately: 

384D 	3  
4 

	4.35 x 10 lb./in. 
L 

Because of its geometry, the rotational restraint of the 

outstanding leg is not greatly affected by having an enforced centre 

of rotation at the edge. 	Hence, for a uniform applied torque 
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distribution, the rotational restraint is, approximately: 

8GK 
3 - 0.1 x 10 in. lb. in. 

Where: 
	

GK
f 	=,torsional stiffness of outstanding leg 

Substituting these values into the following solution for the 

moment-slope relationship: 

n 
M 	_ 4E1 t- 	3E1 k

n 
 / 3 3E1 k /t k

1 
 k  

24 	n O 	1 	1 II / 
P2 	k 	12 (EI) 	12 EI k /Z-  4E1 k 	k k 

k 
L2 

 

Gives: 
M 

= 1.35 x 10
3  in.lb/in. 

This agrees closely with the torque solution. 

3.2.2 Effective Rotational Restraint (beam-column solution) 

The required restraint is defined as follows: 

K = M/0 

Where: 	M = beam-column moment at supports 

corresponding slope 

(i) Equations: 	The governing, equation for the continuous beam- 

column shown in Figure 29 (i) can be derived from a consideration 

of the equilibrium of forces acting on an element shown in Figure 29 (ii) 

and the small deflexion moment-curvature relationship. 

2 
This gives: 	d4w 	p d

2
w 	q 	p d wo  

2 
dy 	EI dy 	EI 	EI dy2 
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Where: 	w = deflexion due to applied load 

w
o 

= initial deflexion (sinusoidal 

distribution) 

The boundary conditions, which introduce the effect of external 

rotational restraint at the supports are as follows: 

End supports: 	w 

dw 

dy 

Interior supports: 	w = 

dO
B 	* 

EM = 0 ,(EI 	- EI ---- 	k 8C  = 0) 
dy 	dy 

e
A 

= 	BB,( = 8
c
) 

(ii) Solution of Equations: 	These equations were solved numerically 

using first order finite difference expressions for the derivatives. 

This required the solution for one fictitious point at each end and 

two fictitious points at each interior support as shown in Figure 29 (iii). 

A computer program (BEAMCOL) was written to solve the resulting 

simultaneous equations for N spans of equal length, M equal divisions 

per span. 	The total number of unknowns, including fictitious points, 

is therefore M(N + 2) 	1. 	The corresponding number of equations 

were solved directly, without partitioning, using a Gaussian reduction 

- routine.The possibility of round off error using this routine limited 

the number of unknowns to about 120. 
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(iii) Accuracy of Solution: 	The accuracy of the program was 

checked against several known solutions, some of which are shown 

in Figure 34. 	The convergence behaviour as the number of divisions 

per span was increased, for the case of a two span beam under uniform 

transverse load, is shown in Figure 35 (ii). 

It may be noted that the above equations are of the same form 

as those for the torque solution to determine external rotational 

restraint. 	By appropriate interchange of coefficients the BEAMCOL 

program duplicated solutions given by the torque program. 

(iv) Parameters for model:  

(a) Dimensions: 	Results are for model dimensions,given in 

Figure 36. 

(b) Number of Spans: 	The choice of the number of spans to be 

used in solutions to determine effective rotational restraint 

was based on the criteria that; the central span should behave 

the same as a single clamped span for uniform transverse load 

and zero initial deformation. 	Figure 35 (i) (a) shows that 

an eleven span solution meets the latter criteria. 	Eight 

divisions per span were used for all cases giving 111 unknowns 

for eleven spans. 

(c) Loading: 	The relationship between q, the transverse load, and 

P, the in-plane load, was based on a preliminary solution for 

the overall behaviour of the double-bottom model for uniform 

transverse pressure, simply supported edges and the shells 

assumed to be fully effective. 	At the centre of the model 

this gave, for a one inch strip (transverse, y axis) 

1 lb./in. 

P 	110 lb. 
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These loads increase proportionally, and the combination 

is denoted by q such that q = 1 corresponds to the above 

combined load. 

(d) Initial Deformation: 	As shown in Figure 29 (i) an anti-

symmetric profile, relative to each support, was assumed. 

This is not necessarily the case in practice but did occur 

in the model and was chosen as the worst condition. 	Several 

w
o/h ratios are examined, a value of 0.25 being used in the 

final analysis. 

(v) Results: 	Figure 36 shows the influence of external rotational 

*, 
restraint (k ) on the bending moment distribution for two loading 

cases. 	It can be seen that in the absence of k (Figure 36 (i) ) 

the effective restraint on a single span, as evidenced by the support 

moments, varies considerably, approaching zero for q = 5 lb/in., 

P = 550 lb. (q*  = 5). 	Such a variation in local restraint would 

cause, or at least magnify, any non-linearity in the overall behaviour. 

In fact the tests showed the overall behaviour to be almost linear 

up to the pressure corresponding to q = 5, indicating that effective 

restraint was relatively constant. 	Figure 36 (ii) shows that k = 1000 

is sufficient to maintain a large degree of local restraint. 

Figure 37 shows the effect of increasing load on K for three 

values of k and three values of central initial deformation ratio 

(wo/h). 	
The three solutions for k = 0 (external restraint zero) 

converged on K = 0 (effective restraint of individual spans zero-simple 

support), at about q" = 6 (P = 660 lb.). 	At just slightly above 

this load all three solutions degenerated. 	The simply supported 

2 	2 
column buckling load for a single span (Tr EI/L ) is 665 lb. 	This 
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shows that degeneration of the beam-column solution is an accurate 

indication of column buckling load. 	Since the buckling load of 

the typical simply supported plate panel corresponds to q = 7.7 

and the design pressure for the ship on which the model was based 

corresponds to q = 10, the importance of avoiding the simply supported 

edge condition is apparent. The specification of a minimum value 

of k , incorporating an adequate safety factor against approaching the 

simply supported condition within the working load range, seems a 

logical basis for design. 

Figure 38 gives solutions for support moment in single span 

beam-columns for varying end restraint. 	Solutions are given for two 

load cases and three values of initial deformation ratio. 	The purpose 

of these curves was to give a measure of the degree of clamping in 

continuous beam-columns as a percentage of the fully clamped moment. 

Figure 39 directly relates external rotational restraint (k ) 

and effective rotational restraint (K) for three cases of initial 

deformation and two values of load. 	As o/h increases the rate 

of increase in K as k is increased drops off and becomes less 

sensitive to transverse load. 	For the particular case of the 

double-bottom model: 

= 	1350 in. lb/in. 

wo/h = 0.25 

Giving: 
	

K 	= 2000 in.lb/in. at q = 1 

K 	= 1530 in.lb/in. at q = 5 
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The preceding solutions have been for the maximum value of P, 

relative to q, which occurs at the centre of the double-bottom. In 

fact, although q remains constant over the flat portion of the bottom, 

P reduces in proportion the overall bending moment.. This means that 

the relaxing effect on K of the interaction between P and w
o 
will 

reduce toward the sides of the model. 	Figure 40 gives a_-measure 

of this effect for k = 1350 in.lb/in. and w /h = 0.25. 	Half way 

between the sides and the centre of the model K will exceed the centre 

value by about 10%. 

As shown in Figure 37 all the preceding values of .K refer to a 

span with initial deformation in the same direction as the transverse 

load. 	It might be expected that adjacent spans, where the initial 

deformation opposes the transverse load, would experience considerably 

different effective rotational restraint. 	This is in fact the case 

but since the main criteria for the influence of membrane stresses on 

panel behaviour, which is the determining factor as regards buckling 

breadth, is the magnitude of deflexion relative to plate thickness 

the comparison shown in Figure 41 was made. 	This shows that 

deflexions in the direction of transverse load are significantly 

greater than those opposite transverse load in the adjacent span. 

Hence, the buckling breadth calculations were based on discrete panels 

with initial deformation in the direction of transverse load subjected 

to an effective rotational edge restraint of K = 1530 in.lb/in.  

3.3 Buckling Breadth Factor 

This factor is defined as follows: 	x axis: A /a 
• 2x 

y axis: A /b 
2y 

Where X
2x 

and A
2y 

are the effective and a and b are the corresponding 

actual panel dimensions in the x and y directions. 
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Figure 28 gives details of the shell panel for which Aalami's 

program was used to obtain solutions for buckling breadth factors. 

Two approaches were considered in determining buckling breadth 

factorS: 

(a) Buckling breadth based on deformation, given by the ratio of 

in-plane displacement with no transverse deflexion to in-plane 

displacement with actual transverse deflexion. 

(b) Buckling breadth based on stress, given by the ratio of the mean 

stress to the actual maximum stress. 	This definition is 

analogous to that used for shear breadth. 

Available analytical work on buckling breadth is for uniaxially 

loaded panels, whereas double-bottom shell panel in-plane loading 

is usually biaxial. 	The effect of biaxial as compared to uniaxial 

loading on buckling breadth for the panel shown in Figure 28 was 

therefore examined. 	Uniaxial solutions were derived by assuming 

that the biaxial in-plane loading due to transverse pressure could 

be separated so as to act independently along each axis. 

Tables 1, 2 and 3 give solutions for buckling breadth factor of 

a clamped panel 0:
r 	), for three values of initial deformation 

ratio. 	These results were obtained to compare the alternative 

definitions of the factor for various load combinationS. 

The limitations of the buckling breadth definition based on 

deformation (a) became apparent in X
2y
./b for the case of biaxial load 

because, for certain load combinations, the in-plane displacement without 
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transverse deflexion was of opposite sign to that when transverse 

deflexion was included. 	Therefore, although some of the biaxial 

solutions did not exhibit this behaviour, all values of X
2x 

 /a and 

2y/b given by definition (a) for biaxial load are omitted. The 

three remaining solutions for A
2y 

 /b (all w /h) agree very closely for 

N = O. 	The limitations of the uniaxial load solutions become 

apparent however, when the effect of increasing Nx  on the biaxial 

load solutions forzy  /b is observed. 	Also, biaxial load can be 

seen to have a significant effect on 2
x
/a for Nx 

= O. 

On the basis of these observations it was decided to use the 

solutions given by the stress definition (b) for biaxial load 

for both A2K/a and 2.y/b. 	Figure 42 shows solutions for the clamped 

edge case for w
o
/h = 0, 0.25, 0.5 and 1.0. 	It can be seen that for 

this boundary condition 
?x 

 /a is significantly affected by both 

loadingandinitialdeformationnatio,whereasA/b,which shows 2 

much more marked reductions ineffectiveness, is primarily dependent 

on initial deformation ratio. 

Figure 43 shows the corresponding solutions for simply supported 

edges. 	Some of the curves are incomplete because the program 

failed to converge for certain combinations of load and initial 

deformation. 	It can be seen that relaxation of rotational edge 

restraint causes the effectiveness to reduce drastically and to 

become much more dependent on loading. This condition, which would 

lead to much greater overall flexibility and non-linear behaviour, 

has been remarked upon previously in connection with beam-column 

solutions where the desirability of ensuring effective external 

rotational restraint was stressed. 
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The preceding cases represent limiting boundary conditions 

whereas in practice the effective rotational restraint will have 

some intermediate value. Solutions for K
r 
varied between these 

limits for the particular case of w /h = 0.25 and q = 5 are given 

in Figure 44. This initial deformation ratio corresponds to that 

assumed to have predominated in the double-bottom model and q  = 5 

corresponds to the maximum transverse load condition reached in 

elastic tests. 

The analysis of effective rotational restraint for the typical 

model panel gave a value of: 

K = 1530 in.lb./in. 

substituting in the following non-dimensional expression for rotational 

restraint: 

=Ka/D 

For: 	a = 14.5 in. 

E h
3 

D= 	= 14.18 x 10
2 

lb. in./in. 
12 (1-11

2
) 

Gives: 
1530 x 14.5  - 15.65 say 16 
14.18 x 10

2 

From Figure 44, this gives values of effeCtive breadth factor of the order 

of: 
	

X2y /b 
	= 	0.77 

X.2x/a = 0.99 

As compared to the fully clamped values: 

A
2y

/b 
	

0.92 

A
2x

/a 
	

0.99 
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Taking a mean (to allow for conservative approximations noted in 

preceding discussion):
2y

/b 	= 0.85 

A2x /a= 	0.99 

NOTEi Due to an oversight, a stiffness of EI, instead of the more correct 

• 
EI/(1 p

2  ), has been used'in preceding calculations involving beam 

idealization of long plate behaviour. 	The error involved is negligible, 

parti&darly in view of other approximations, and the conclusions 

regarding panel buckling load are still valid. 	For example, using 

EI/(1 - u2), instead of EI, increases the value taken for non-dimensional 

effective rotational restraint (K
r
) from 16 to 16.7. 	As can be seen 

from Figure 44 this increases X2y/b  by about 0.5%. 

4. 	EFFECTIVE WEB AREA 

4.1 Single Floor Test  

As part of Ho's work an attempt was made to relate theoretical 

solutions for the behaviour of web panels with perforations and tests on 

a single floor model. 	This model was a transverse section of the 

double-bottom, 141 inches wide, incorporating a single floor. 	The flange, 

stiffener, floor and bracket floor details were similar to the main 

model as shown in Figure 2. 

From a comparison of measured beam deflexions and a theoretical 

solution including shear deformation for .solid webs (no perforations), 

Ho arrived at a loss of shear stiffness due to perforations of about 

50%. 	This result was then compared with three theoretical solutions 

for perforated plates in shear. 	Two of these were for discrete 
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square panels, with a central circular hole for alternative boundary 

conditions of uniform edge shear and rigidly restrained edges. 	The 

third was based on the classical solution for a circular hole in an 

infinite plate subjected to pure shear. Agreement was best with the 

discrete panel solution for uniform edge shear. 

Ho also compared measured and theoretical stresses around the 

circumference of the holes. In this case agreement was best with the 

infinite plate solution. 	This solution corresponds to the case of 

a discrete panel with a high degree (although not fully rigid) of 

edge restraint. Ho attributed the agreement of measured deflexions 

and stresses with different theoretical solutions to the effect of the 

perforations in way of shell stiffeners which were considered to 

contribute significantly to shear deformation without greatly affecting 

stress concentration. 

4.2 	Thick Flange Beam Test  

A closer examination of Ho's results showed that two compensating 

errors had been made in computing shear deformation. These were the 

omission of loss of flange stiffness due to shear lag, which was 

partially compensated by an assumed value of Young's modulus which was 

about 4% low. 	In order to clarify the issue a test was done, as part 

of the present work, on a beam with flanges sufficiently narrow relative 

to beam span to eliminate loss of flange stiffness due to shear lag. 

The web corresponded to a floor between intercostals. 	Figure 45 

gives details of the beam and results of the test. 	Measured deflexions 

are compared to a theoretical solution incorporating web effectiveness 

(35) 
factors (F) based on an empirical relationship proposed by Kuhn 
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This relationship is as follows: 

Effective web area = Solid web area x F/100 

Where: 	F = 	(1-D/b)(1-(D/h)3) x. 100 % 

For: 	D = diameter Of perforation 

spacing between perforations 

= 	depth of web 

The variation in F across the span is due to the change in the 

diameter of holes immediately adjacent to the centre girder. Agreement 

was sufficiently close to justify using Kuhn's solution as a basis for 

the final calculation reductions in shear stiffness due to perforations. 

The results also confirm the experimental value derived by Ho. 	Back 

substitution into Hot s results for F = 50%, taking account of the 

bracket floors and using the correct value for E, gives a loss of 

flange stiffness due to shear lag in the single floor test of about 9%. 

This is quite close to the corresponding computed loss of stiffness due 

to shear lag, derived in previous sections, namely 7.5%. 

4.3 Web Effectiveness Factors (F) for Double-Bottom Model  

4.3.1 Floors (y axis): 	b = 4.375" 

h = 5.5" 

There were two different hole sizes to be considered, 

(a) D = 2.125", gives: 

(b) D = 1.875", gives: 

F
ya
= 49% 

F 	55% 
yh- 
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Now, since the orthotropic plate solution for overall behaviour 

assumes uniform shear stiffness along each axis, some-approximation 

was necessary to account for the above variation in F . 	Equating 

central deflexion for variable F , and central deflexion assuming 

uniform P for a triangular distribution of shear varying from zero 

at the centre to a maximum at the supports,gave a uniform F = 70%. 

The latter shear distribution corresponds approximately to uniformly 

distributed load on the model. 	Bracket floors were assumed to have the 

same stiffness over their length as the main floors. 	For point load 

F would be of the order of 65%. 
y 

4.3.2 Longitudinal webs (x axis): 	Two cases had to be considered, 

(a) Centre girder: 

(b) Intercostals: 

Gives: 

Fxa 
= 1 (no perforations) 

D 	1.875" 

b= 4.8125" 

5.5" 

Fxb = 60% 

To accommodate the uniform shear stiffness requirement an 

equivalent value was computed on the basis of the longitudinal webs 

taking load in proportion to a triangular transverse distribution of 

longitudinal shear varying from zero at the sides to a maximum at the 

centre. 	This gave a uniform Fx  = 80%. 
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5. MODEL PROPERTIES 

5.1 Summary of Effectiveness Calculations: 

5.1.1 Flange effectiveness expressed as a percentage of the full  

flange width:  

Source of loss 
Axis 

x y 

Shear lag 86%* 93.5% 

Local flexure  99% 85% 

Product 85% 79.5% 

(* This includes the effect of longitudinal stiffeners) 

5.1.2 Web effectiveness expressed as a percentage of the solid  

web area:  

x axis: 	80% 

y axis: 	70% 

5.2 Moments of Inertia and Web Areas for Double-Bottom Model  

Figures 46 and 47 give details of typical longitudinal and 

transverse sections and corresponding section properties taking the 

above losses of effectiveness into account. 	The values shown were 

rounded off to a more realistic number of significant figures prior 

to the final orthotropic plate analysis of the model. 	One additional 
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loss of effectiveness appears in these calculations, namely, loss 

web flexural effectiveness due to perforations. 	In the case of the 

intercostals this was based on mean reduced moment of inertia, whereas, 

in the more complex case of the floors a reduction based simply on 

solid web area was used. 	In both cases the effect is very small 

relative to the total moment of inertia of the corresponding section. 

One additional property, not shown on the above Figures, was 

required. 	This was the "product of inertia" which, for practical 

purposes is given by: 

- 	0.9112 in.
4  /in. 

A more accurate alternative calculation, using the, computed flange 

distances from the neutral axes and applying a mean correction for loss 

of flange effectiveness, gave I 	= 0.9111 in.4  /in. 

Summary of calculated values 

0.9390 in4/in x axis: I
fx 

wx 0.0415 

I sx 
= 0.1428 

Awx 0.0129 in
2 
 /in 

y axis: I
fy = 0.8834 in4/in 

wy 0.0511 

A = 0.0170 in2  /in 

"product of inertia": 

Ixy  0.9112 in4/in 

If 

I
fx  y 
2 

 

xy 
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5.3 Elastic Properties of the Double-Bottom Model Material  

. The model was fabricated from mild-steel sheet and tests to 

determine Young's modulus and Poisson's ratio gave the following 

results: 

5.3.1 Young's Modulus (E x 10-6  p.s.i.) 

Material Specimens 

1 2 3 4 

Outer shell (0.080") 29.61* 29.74* 31.00 30.52 

Inner shell (0.064") 30.58 30.10 29.88 30.42 

(* These specimens correspond to the longitudinal (x) axis. 

All the others were transverse (y) axis oriented). 

A mean value of E = 30.23 x 10
6 p.s.i. was assumed to govern for 

the purposes of analysis. 

5.3.2. Poisson's ratio (1.1)  

Material Specimens 

1 2 

Outer shell (0.080") 0.31 0.30 

Inner shell (0.064") 0.29 0.29 

Mean: 	= 0.30 
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5.4 Section Properties for use in the Orthotropic Plate Analysis  

of the Double-Bottom Model  

5.4.1 Flexural:  

Define: 

x 

i wx 

i ax 

i
x 

i 
fy 

Y 

fxy 

= 

= 

= 

..- 

I x/(1-11
2) 

I wx 

I 
sx 

ifx 	ice, + i 	+ isx 

I
fy

/(1-p2 

I 
wy 

i 	i 
fy 	

wy 

I
fxy

/(1-
11
.12) 

= 

= 

= 

= 

1.0319 in /in 

0.0415 

tl 0.1428 

'I 1.2162 

0.9708 

I' 0.0511 

1.0219 

1.0013 

Hence, equating corresponding coefficients in Shade's solution(2)  

for a stiffened cellular plate and Libove and Batdorf's solution 
(10)  

for an orthotropic plate, gives the following orthotropic plate 

idealizations for the double-bottom model flexural properties: 

(i fxyy  /i ) p 

(ifxy /i x) p 

E(1-pp )i 
x y x 

E(l-p P 
x y y 

0.294 

0.247 

34.082 x 10
6 in.lb 

28.637 x 106 

Dxy 
 

E(1-p)  ( 
_4 x+ i  y 	fxy --= +21 	) 	21.189 x 10

6 
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5.4.2 Shear:  

The orthotropic plate idealizations of the double—bottom model 

shear properties were taken to be: 

	

= A
wx
E/(2(1 	1)) = 1.50 x 10

5  lb/in. 

= AS 

	

E/(2(1 	p)) = 1.98 x 10 lb/in. 
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CHAPTER 4  

BEHAVIOUR OF RECTANGULAR ORTHOTROPIC PLATES INCLUDING TRANSVERSE  

SHEAR DEFORMATION 

1. .THEORY 

The governing equations and boundary conditions describing the 

small deflexion behaviour, including shear deformation, of flat 

rectangular orthotropie sandwich plates subjected to combined 

transverse and in-plane load as derived by Libove and Batdorf (10)  

are as follows. 	For an outline of the derivation of these equations 

see Appendix C. 

1.1 Governing Equations  

The following system of linear partial differential equations 

govern the plate behaviour for a given set of boundary conditions. 

The individual variables and coefficients are defined in the notation 

and the sign convention employed is shown in Figure 48. 

x y 	x y 

2S 	- p x y x 	y 	x
p
y y xY  

(b) 

a2Qx  

Dxay 

( c) 
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32w 	D2TW + N 	
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+ 2 N  x ox 	Y ;Y 	xy DxDy  

aQx 	aQ 

Dx 
+ 	+ 	= -q ay (a) 

pyDx 	D3w 	pyDx 	D3 w 	D D2Qx  

xy +(l-p p )/ Dxay2  (1-u u ) 	+2SxY  

Dx 	a2Q 	D 	a2Q 

-1.(1-pp)s 37t2— - Qx  -1-{ 2( 
+
(1-
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+ 	x  Y 	224 	xY 	Dw,I xy 	xy  

xy 	(1-P P ) 	(1-P p ) 	`2S 	p )S x y 	x y 	x y x 
a2Q 	D 	D2Q 

+-2-aY+  Y  
2Sy  ax 	(1-p 

x  p  y 
 )S 

 y  3y2 
	Qy  = 0 
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The terms involving shear stiffness (S 
x 
 , Sy) distinguish these 

equations from ordinary plate theory in which deflexions due to shear 

are neglected. 	The usual fourth-order equation for homogeneous 

isotropic plates (36) can be obtained from the above equations by 

writing: 

S
x 
 = S

y 
 = co, p x = p

y 
 = p, D

x 
 = D

y 
 = D (1-u 2),.Dxy  = D(1-p). 

Substitution into equations (1) and solving for w gives: 

a4w  a tiw 	a tiw 	1 r 	a2w 	a2w 	a2w  
+ 

2 - — lq N N 	2N — 1 	(2) 
a x 4 	 ax2 	Y ' ay2  ax2Dy2 	ayti. 	D 	 xy axay  

This equation does not involve derivatives of q. 

1.2 Boundary Conditions  

The boundary equations, incorporating the discrete spring system 

defined in the notation, are shown below. The reactive moments and 

shear forces are distinguished from the internal moments and shear 

forces by the bar placed above the corresponding symbol. The co-ordinate 

system used is shown in Figure 49. 	Syumietry about the two axes is 

assumed and it is sufficient, therefore, to consider only the edges 

x = a/2, y = b/2. 

At x a/2: 

aw &x  = - xw = Qx  .4- Nx  rx  -I-.  Nxy  ay 	 (a) 

iiX = k 
(ILT  ?Lc) . - Dx 	

. a2w  . 1  ;Qx 	a 2w 1 n.) } 13)  
- 2x ax S

x 	
(1-P x  py  ) 1-57 . §x 	

+ P
Y 
 ( ax 	ay 	-§

Y 
 -37  

'  

aQx  H 	= -k (L7- - -?2) . 	D2 xY. {2 2w 	• • 
S 
1 	1 	

aQy  } 	(c) 
Y 	

ax9y 
x 

ay xy 	3x ay S 	 Sy :‹ ; 
  

• At y = b/2: 

s-  = -k w = Q + N !1.7  4. N 	?sw  
Y 	ly 	y 	y ay . xy cox 	 (a) 

M 	
..D 	 ,aQ 

	

, a 2w 	1 	x, i  = k ( 	1 - Y 	
i a 2w  1 aQy 

-2y' ay - S '= 	(1-P P ) ay 2 	"§- 	ay  + P %---2- 	 "--/.1 	(b) x 	S x ax 
Y 	x Y 	Y 

Qx • 

	

-k ( aw _ 	)_ D
xy{2  a2w _ 71.  aQx 1 nj  

xy 	3y ax Sx 	2 	axay b
x 

ay Sy ax 	 (c) 

(3)  

(4)  



(a) 

A aQ 
Q 	_...x 	= 	 (b) 
x S Dy 

	

Y 	 -- 

4w  
B 	Q 
y ax 

(5) 

B D2Q Dm 
_x x xy 
A 	Dy2 	ay 0 
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The ordinary plate theory boundary conditions are obtained 

by setting Sx 
and S equal to infinity and eliminating one condition 

on each edge. 	For simply supported and clamped edges the condition 

on /I is omitted while for free edges the reduction to two conditions 
xy 

is achieved by the Kirchoff approximation of combining the shear 

force and derivatives of M along each edge. 
xy 

1.3 Limitations of the Discrete Spring Idealization  

The discrete spring idealization for edge restraints implies 

that reactive forces are mutually. independent. 	This type of 

support condition is usually only found in laboratory tests. An 

example is a plate supported on discrete vertical rods on all edges, 

for which k
2x 

= k
2y 

= k
3x 

= k
3y 

= 0 and k
lx 

and k
1y 
 are related to 

the compressibility (and extensibility, in the corner regions) of the 

rods. 	For most practical cases, continuity of support contravenes 

the assumption of independence of reactive forces. An example is a 

plate with integral edge beams in which the edge shears and twisting 

moments are coupled - the beam suffers a change of deflexion due to 

twisting moment as well as to .shear, and a change of slope due to 

shear as well as to twisting moment. 	This coupling is not recognised 

in the relationships for edge beams proposed by Frederick (37)  

For integral edge beams the following mixed variable equations 

can be derived to replace the equations involving the discrete spring 

idealizations for vertical and tangential rotational restraints. 

At x = a/2: 
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At y = b/2: 

B a2Q DM 

Bx ax  
--w Qy 

	A 	axe x 	Y 	ax = 0 (a) 

A
xx 

Q y 
S ax 

= 0 	(b) 

(6) 

B 
x 
 , By and Ax, 

Y  
, A are the beam flexural and shear stiffnesses. 

The other symbols are as previously defined. 	Solutions for these 

boundary conditions are not given in this thesis. 

It is possible however, to derive equivalent discrete spring 

stiffnesses for edge beams if assumptions are made regarding the 

relationship between edge shear and twisting moment. 	If, for 

example, on the basis of the standard solution for simply supported 

plates, it is assumed that the shear forces (Qx  along x = a/2, Q 

along y = b/2) are related everywhere to M by: 
VTT 

ari 
= 4 	xY  

ay 

And, assuming these forces are distributed sinusoidally between 

corners, then: 

klx = 	B /(5b ) 	k1 
	

= 47r4  Bx/(5a4) 

k3x = 	7r2 	,(5 2 B / 1) ) 	k3y 	u2 B  /(5a2) 

The normal rotational restraints (k
2x
,  k

2y
) can be found from 

the torsional stiffness of the beams and are independent of k
lx' 

k
3x 

and k
ly,  k3y

. 	The accuracy of solutions incorporating the 

above approximations has not yet been examined. 
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1.4 Non-Dimensionalization of Plate Parameters  

The generality of a single solution for the preceding equations 

was extended to include a set of dimensionally similar problems 

by making the following substitutions: 

x = aX, y = aY 

w = Wa4/Dx, Q = aV, 	= aV x 	x  y 	y 

The coefficients can then be conveniently grouped such that a 

problem is defined by the following set of non-dimensional parameters: 

Flexural stiffness parameter: 

Twisting stiffness parameter: 

Shear stiffness parameters: 

In-plane load parameters: 

Side ratio: 

Poisson's ratios: 

Edge restraint parameters: 

(a) vertical deflexion: , 

(b) normal rotation: 

(c) tangential rotation: 

a 	= 

= 

Yx 

N
x 	

= 

Klx 

K
2x =a  

K
3x 

D /D 
x 	y 

D 	/D 
xy 	x 

a2  yDx, yy  = b2  Sy/Dy  

a2  N /D , N 	= b 	N /D 

	

x 	x 	y 	Y 	y 

a/b 

1-1.„ 

a3k
lx
/D
x 	YD Y 

Kly= b3k 

k2x/Dx , K2y= b k  y/py 

a3xx 
/D 	, K 	= b k 	/D 

3y 	3y 	y 

1.5 Idealized Properties of Doubly Plated Grillages  

Based on the work of Schade 
(38)

and in conformity. with 

definitions given in the Notation, the following relationships were 

derived for the idealized flexural properties of plated grillages: 



74 

D
x = E(1 - lix  Uy){Ifx/ (1-112) + Isx  + I } wx 

Dy  = E(1-  Px  p y ) {Ify / (1-p2) + Isy + Iwy  1 

D xy = E(Ifx + I
fy  + 21fxy ) /(4(1 + 1-1)) 

11x =
fxy /(Ify + (1-p2) (Isy + I 

wy  
')) 

= fxy /(Ifx + (1- ) (I 
sx 

 + I wx)) 

Ifx, Isx and wx are the unit moments of inertia in the x 

direction, taken about the neutral plane of the plate, of the flanges, 

flange stiffeners and webs respectively. 	I
fy' 

I
sy 
 and I

wy 
 are the 

corresponding inertias in the y direction.
fxy 

is a biaxial 

(flange) moment of area and is approximately equal to (I
fx 

 + Ify  )/2 

in many practical cases. 	The flange inertias must take account of 

the loss of effectiveness due to shear lag and local out of plane 

bending. 

Shear properties: 

Sx  = A
wx  E/(2(1 +p)) 

= A
wy  E/(2(1 +p)) 

Ax 
and  A

wy  are the unit effective web areas in the x and y w  

directions. 
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2. SOLUTION OF EQUATIONS 

2.1 Check Solutions  

The equations given in the preceding section were solved by the 

finite difference method. 	This gave a system of simultaneous 

equations in three unknowns (W,- Vx  , Vy  ), the formulation and solution 

of which was programmed for the University of London Atlas Computer. 

This is describedin more detail in the following sub-section and also 

in Appendix C. 	In addition, two series and one alternative finite 

difference solution were programmed to give check results. 	These 

were for the particular case of simply supported edges. 	Details 

of the series solutions, one of which was based on Libove and Batdorf's 

equations and the other on Reissner's equations, are given in Appendix B. 

The alternative finite difference solution is described in Appendix D. 

This was based on Libove and Batdorf's equations but differed from 

the solution described below in that it was for a governing equation 

in w only, derived from Equation (1) by elimination of Q
x and Q . 

It has the limitation that only the simply supported boundary condition 

incorporating zero tangential edge slope is amenable to reduction to 

a single:variable and hence, elsewhere in this thesis, this solution 

is referred to as the "solution for simply supported edges only". 

The mixed variable solution does not have this limitation and hence 

is referred to as the "solution for generalized boundary conditions". 

2.2 Finite Difference Solution for Generalized Boundary Conditions  

2.2.1 Finite Difference Nets: 	In order to allow for sufficient mesh 

divisions to ensure that errors due to the finite difference 

approximation were insignificant and at the same time satisfy computer 
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storage and round-off error limitations, solutions are restricted 

to cases of symmetry about the two axes. 	It is therefore sufficient 

to consider only a quarter of the plate as shown in Figure 49. Uniform 

plate properties are implicit in equations (1) and restraint is 

constant along each edge. 

All derivatives are approximated as five point finite difference 

equations since it was found that three point equations, for first 

and second order derivatives, gave unsatisfactory results for certain 

boundary conditions. 	A single row of fictitious points are defined 

on each boundary requiring the governing and boundary equations to be 

formulated in off-centre form at each boundary node. 	Corresponding 

to the numbering shown in Figure 49, the total number of unknowns is 

3 (I 	2)(J 	2). 

In the corner of the plate (nodes A, B, C and D) there are 12 

unknowns but only 9 equations. Two methods of overcoming this 

deficiency were tried. 	Firstly node D was eliminated entirely by 

appropriate use of backward difference equations and secondly three 

additional equations were formulated by extrapolating the three 

variables independently along the diagonal. 	In all cases solutions 

for the variables at nodes away from the corner region were not 

significantly affected by the method used. 	Some differences occurred 

in the corner region for plates with low tangential rotational edge 

restraint but these diminished as mesh size was reduced. 	The diagonal 

extrapolation method converged more rapidly in such cases and all 

solutions involving low tangential rotational restraint used this method. 

In other cases the backward difference method was used since it involves 

three fewer variables and periodic checks against the alternative method 

agreed within less than 1%. 
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2.2.2 Matrix Operations: The finite difference operators give a 

set of simultaneous equations in three unknowns at each node which 

can be represented in matrix form as: 

AX = K 

Where: 	A is a square (pxp) coefficient matrix 

X is a column (pxl) unknown matrix 

K is a column (pxl) load matrix 

These matrices were formulated so that the three unknowns at 

any given node appeared in successive rows, resulting in a broad 

single band coefficient matrix. 	Because of the large number of 

unknowns in even a relatively coarse mesh the solution incorporated 

partitioning of tri-diagonal form. 	It was found in some cases that 

when the size of sub-matrices approached 100 x 100, the method of 

solution involved significant round-off error. 	This was due partly 

to the larger differences in magnitude of coefficients in such cases 

and to minimise the effect an iterative procedure was used giving a 

solution of the form: 

EX = 1 + X
2 
 4. X

3 
 + 

Where: X, 	
1 .= A K 

X
2
= A {K AX

1 
 A 1  K

2 

X3= A
-1 
 {K2 

 - AX
2
}= A

1 
K
3 etc. 

A limit on the number of cycles was set such that the residual 

solution was less than a specified percentage of the iterative solution. 
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2.2.3 Accuracy of Solutions: Table 4 shows a sample of checks made 

against numerical solutions from Reference 36. 	These correspond to 

the limiting case of infinite shear rigidity and agreement is quite 

satisfactory. 

Table 5 shows the convergence behaviour of solutions for the 

simply supported case in Table 4 for four different mesh sizes. 	On 

the basis of these results and bearing in mind computer time involved, 

an 8 x 8 mesh was chosen for all future calculations except for 

rectangular plates, where it was found to be desirable to keep the 

side ratio of mesh divisions less than 3:1. 

Table 6 shows comparisons with three alternative solutions for 

simply supported sandwich plates including shear deformation. 	Solutions 

based on References 17 and 39,which are series solutions for Libove and 

Batdorfs' and Reissners' equations respectively, were obtained from 

computer programs written specifically for the purpose of checking 

the finite difference solution. 	Values quoted from Reference 16 were 

taken directly from that source. 	The latter solution considers the 

facings and core as discrete elements whereas the other solutions are 

for an idealised homogeneous system. 	Bearing in mind this difference 

agreement can be considered quite satisfactory. 

A series solution for a clamped square isotropic plate under 

uniform transverse load, including shear deformation, is given in 

Reference 21. 	This incorporates the unrealistic third boundary 

condition Pixy = O. Table 7 shows a comparison between the series 

solution and solutions obtained from the finite difference program for 

two extreme values of tangential rotational edge restraint. 	The M
xy  = 0 

condition was approximated by low restraint - K 
x 

= K
3y 
 = 1, and the 
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more realistic condition of high restraint was given by specifying 

K
3x 

= K
3y 

= 104. 	Surprisingly, the moments agree better for the 

former condition but the differences are small in both cases. 

Although the K
3x 

= K
3y 

= 0 condition cannot be prescribed in 

the program in its present form (this reduces the number of 

independent equations by one and results in a singularity) a solution 

for K
3x 

 = K
3y 
 = 1 is shown in comparison with Kromm's solution in 

Figure 50. This is for a square homogeneous plate having a span/ 

thickness ratio of 20. 	The effective shear stiffness parameter 

used in the finite difference solution is multiplied by a factor of 

2/3 to allow for warping. 	The lack of exact agreement in the corner 

is attributed mainly to the fact that the M = 0 boundary condition 
xy 

is not fully satisfied. 	It is possible however that numerical 

limitations due to finite difference errors and corner definition 

could have contributed to this. 

All the preceding comparisons have been for uniform transverse 

load. 	Solutions for non-uniform transverse load was restricted to 

cases where the load varies continuously because this is implicit in 

equations(1). 	Discontinuities cause the results to oscillate about 

the true solution. 	The degree of - oscillation depends on the severity 

of the discontinuity and the magnitude of the shear stiffness. Figure 51 

shows the type of behaviour and the improvement obtained when the 

discontinuity is made less severe. 	As the shear stiffness is reduced 

the improved solution begins to degenerate and for this reason the 

solution for non-uniform transverse load given in the Results is for 

a triangular load distribution. 	This limitation could be overcome 

by solving a lower order form of the equations. 	Alternatively, the 

equations can be transformed into a single sixth order equation in one 

variable (w say) with derivatives of the load on the right hand side. 
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As already mentioned, a program was written to give solutions to 

the latter equation but it suffers from the limitation that only 

simply supported edges can be treated. 	This program was most 

useful, however, in the analyses of patch load test results, 

described in the next Chapter. 

3. RESULTS 

3.1 Presentation  

3.1.1 Plate Parameters: The effect on plate behaviour of shear 

stiffness (y 
x 
 ,y 
y
), flexural orthotropy (e), shear orthotropy 

(yy/yx), twisting stiffness (8) and side ratio (e) are examined for 

the case of a clamped plate under uniform transverse load. 	The 

effects of a, y 
y 
 /y 
x
03 ands are compared for yx  = 50, 250 and 500. 

For shear-isotropic plates y = ay /e
2
. 

Y 	x 
These values were chosen 

to cover a broad range of practical structures - for example, in a 

ship's double-bottom y and y may be of the order of 75 while for a 

dock gate y
x 

and y may be of the order of 350. 	Values of y
x 

or y
y 

of less than 50 may occur when webs are omitted along one axis - 

for example, in the case of bridge decks without diaphragms. 

3.1.2 Boundary Parameters: 	The effect on plate behaviour of normal 

and tangential rotational restraint are examined for a square isotropic 

plate under uniform transverse load. 	Again, comparisons are made for 

yx  = yy  = 50, 250 and 500. 	The following table gives the numerical 

values of non-dimensional restraint applied along edges unless other 

values are specified. 	The values corresponding to infinite restraint 

were established by tests for convergence of results for successively 

greater values of the respective parameters. 
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Condition K
lx 

, K
ly 

K
2x 

, K
2y 

K
3x ' 

K
3y 

Simple support 10
7 0 10

5 

Clamped 10
7 10

5 105 

Free 0 0 0 

3.2 Effect of Shear Stiffness Y = Yy) in Clamped Isotropic Plates — 

Figures 52, 53  

Figure 52 shows the variation of central deflexion and maximum edge 

moment and shear force for a clamped square isotropic plate under 

uniform load as both shear stiffness parameters are varied simultaneously 

from 10 to 104. 	It can be seen that stresses as well as deflexions 

are significantly affected — ignoring shear deflexions for yx 
= y = 50 

would result in values of Mx2 = MY3 
 which are about 15% too large. 

This relaxation of edge moment occurs because the edge clamping does 

not apply to the slope due to shear. 	Figure 53, which gives deflexion, 

moment and shear force distributions for y
x 
 = y

y 
 = 50, 250 and 500, shows 

the edge slope developing as shear stiffness is reduced. 	This results 

in a more even distribution of load as evidenced by the edge shear 

distribution (0y) and the bending moment distribution (Mx) across a 
' 

centre line. 	The edge twisting moment falls off as shear stiffness 

increases. When y = y is very large M approaches the zero value 
x y 	xy 

which is implicit in ordinary plate solutions for clamped edges. 
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3.3 Effect of Flexural Orthotropy (a) — Figures 54, 55, 56  

For the purposes of examining the effects of flexural orthotropy 

a doubly plated grillage with flanges of equal thickness, stiffened 

along the x axis only, is chosen. 	The webs are assumed to be plates 

of equal thickness and spacing in both directions. 	Based on the 

stiffened plate relationships given previously, the biaxial parameters 

for this type of structure are: 

Px   = P 

uy  = P/a 

= (1-11)/(a-p
2
) 

Figures 54 and 55 show the behaviour of a square, shear-isotropic 

plate under uniform transverse load as a varies from 1 (isotropic) to 2 

for simply supported and clamped edges respectively. 	Solutions are 

compared for three casds of shear stiffness - yx  = 50, 250 and 500. 

The relationship y = y
x
a is simply a feature of the non-dimensionalization 

and does not conflict with the shear-isotropic assumption. 	For the 

simply supported case, moments are unaffected by shear stiffness in the 

isotropic case (a= 1). 	As.ais increased some modification of the load 

distribution due to shear stiffness is reflected in'the divergence 

of central moments. Ata = 2 the maximum moment given by ordinary 

plate theory (Mx1) would be about 5% high for yx  = 50. There is a 

similar increase in the error for clamped edges asa is increased but 

in this case, as noted previously, the error in theisotropic case 

is about 15%, making a total error of about 20% at a= 2. 	In the 

clamped case the error in M
Y3 
 reduces up to about a = 1.7 at which 

point the error changes sign. 
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Figure 56 shows distributions of bending moment and shear force • 

for a= 1, 1.5 and 2 and yx  = 50 for the clamped edge condition. Both 

moments and shears illustrate the load transfer to the stiffer axis. 

MY3 at the edge, is least affected by the transfer. 	This is because, 

although the plate tends to flatten across the y axis as a increases, 

near the edges a local curvature is maintained by the rotational 

restraint. 

3.4 Effect of Shear Orthotropy (y 	 )  - Figures 57, 58  
y x 

Figure 57 shows the effect on central deflexion and maximum edge 

moment of the variation of transverse shear stiffness (y y) in a 

flexurally-isotropic clamped plate under uniform transverse load for 

three values of longitudinal shear stiffness -yx  = 50, 250 and 500. 

These results apply to cases of doubly plated grillages in which the 

web area and/or spacing is varied in the transverse direction. 	They 

do not cover the case of bridge decks without transverse diaphragms 

in which the plate properties must account for local deformation. 

As y 
y 
 /y
x 
 is increased, more of the load is transferred along the 

stronger (y) axis and M
Y3 
 and M

x2 diverge. 
	In the shear-isotropic 

case (y 
y 
 /y
x 
 = 1) for y

x 
= 50, ordinary plate theory overestimates the 

maximum stress by about 15% but at y / y = 4.5 ordinary theory 
y x 

underestimates this stress by about 15%. 	The reversal takes place 

at y/ y of the order of 1.5. 	Load transfer to the stronger 
y x 

direction is evidenced in the centre line bending moment and edge 

shear force distributions, for the case of y
x 

= 50, shown in Figure 58. 
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3.5 Effect of Twisting Stiffness (8) - Figures 59, 60 

To show the effect of twisting stiffness, an isotropic multi-

cellular plate with similar flange stiffeners along both axes is 

considered. 	The twisting stiffness parameter (8) is varied by 

changing the stiffener size and/or spacing. 	For this case, the 

relationship between the expressions for the biaxial plate parameters 

given previously is: 

. 
x 	y 

Where: 	k = 1-P)/ I3P 

Figure 59 shows the variation of central deflexion and maximum 

edge moment, for the case of a clamped plate under uniform transverse 

load, as f; is varied from 0.1 to the value corresponding to no stiffeners 

1/(1 	= 0.769 for P= 0.3. 	Solutions for three values of shear 

stiffness are compared - Yx  = Y = 50, 250 and 500. 	The decrease 

in moment and deflexion as increases is accentuated by a reduction 

in shear stiffness. 	For Y = Y = 50 the error in stresses given 
x y 

by ordinary plate theory increases from about 10% at 8= 0.1 to about 

15% at 8= 0.769. 

Figure 60 compares moment and shear force distributions in the 

Y
x 
 = Y

y 
 = 50 case for 8= 0.1, 0.4 and 0.769. 	These show that the 

shear distribution to the boundaries is practically unaffected by 8 

while edge bending moment exhibits a reduction associated with the 

increase in twisting moment as 8 is increased. 	The central bending 

moment remains constant for increasing 8 because the effect of the 

corresponding decrease in central curvature is offset by the increase 
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3.6 Effect of Side Ratio (c) — Figures 61, 62  

Figure 61 shows the influence of side ratio on central deflexion 

and central edge moments in an isotropic clamped plate under uniform 

transverse load for y = yy  = 50, 250 and 500. 	The solutions become 

insensitive to side ratio at about b/a = 3. 	Above this value the 

plate behaviour away from the short sides is essentially that of a beam 

of stiffness D spanning the x direction and the edge reaction is almost 

uniform. 	In the region of the short sides behaviour reverts to that 

of a plate with corresponding variation of reaction distribution. 

These distributions are shown in Figure 62 for the case of b/a = 3, 

for Y
x 

= 50 and 500. 	This distinction between reaction distributions 

is reflected in the effect on central edge moments of shear stiffness. 

The long edge moment (M
x2  ) becomes insensitive to shear stiffness because 

the relaxing effect on load distribution is lost as beam action begins 

to predominate. 	This is not the case along the short edges where 

biaxial behaviour remains significant. 	For b/a > = 2 a mesh division 

of 6 (x axis) by 12 (y axis) was used. 

3.7 	Effect of Tangential Rotational Edge Restraint (K3 x, K3y1 

Figures 63, 64  

Although variation of tangential rotational edge restraint cannot 

be treated directly in plate solutions which exclude shear deformation, 

the Kirchoff equation for edge shears along simply supported boundaries 

attempts to determine the effect on edge reaction of zero 

tangential rotational edge restraint (M
xy 
 = 0) using the reactions 
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obtained from a solution which gives non-zero values of M at 
xY 

the boundaries. 	Thus the standard solution for simply supported 

plates gives two alternative distributions of edge reaction, depending 

on whether or not the Kirchoff condition is employed. The reaction 

corresponding to the deflected shape of the plate, without discrete 

corner forces, is correct if K
3x 

= K
3y 

= °D; the modified reaction 

obtained from the Kirchoff equation, which gives point corner forces, 

is correct (within the limitations of .a solution which neglects shear 

deformation) if K
3x 

= K
3y 

= 0. 

As shown by Kromm (18) , who included shear deformation in the case 

of a square isotropic plate having a relatively high shear stiffness 

(a/h = 20) for the zero edge twisting moment condition, the Kirchoff 

equation gives accurate values of edge reaction except near the 

corners. 	In the latter regions the discrete point forces predicted 

by Kirchoff are distributed over a short distance either side of the 

corner. 	For plates having shear stiffnesses of the order 

investigated by Kromm (Yx = Y = 1230) only the forces in the immediate 

vicinity of the edges are sensitive to the degree of tangential 

rotational edge restraint. 	This is not so for plates having shear 

stiffnesses of less than about Y = Y = 500. x y 

In the following discussion of the influence of tangential 

rotational edge restraint on plate behaviour, this restraint is 

assumed to be independent of vertical deflexion restraint (Klx and 

, 
K
ly 

kept constant at 10
7
). 	As discussed previouSly this is not 

representative of many practical cases, such as plates supported on 

integral edge beams, where these restraints are coupled. 
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The effect of varying tangential rotational edge restraint on 

moment and shear force distributions in a simply supported square 

isotropic plate under uniform transverse load is shown in Figure 63 

for y = y
y 
 = 50. As K

3x 
= K

3y 
 is increased greater edge twisting 

moments can develop and hence the equilibrating shear forces, 

IQ at x = ± a/2 and Q at y = ± b/2, decrease. When K
3x 

 = K
3y 

= 10
3
, 

MxY approaches a limiting value and the above shear forces approach 

zero. 	At the same time the reversal in reactive shear distributions 

near the corners becomes less severe. 	Also, as K
3x 

= K
3y 

and hence 

xY
increases the internal bending moments reduce as a greater 

proportion of the load is transmitted to the edges by twisting moment. 

When K
3x 

= K
3y 

= 103 the moments and shear forces, but not deflexions, 

throughout the plate approach those given by ordinary plate theory. 

Figure 64 shows the effect of varying shear stiffness in the 

presence of low tangential rotational edge restraint. 	For 

K
3x 

= K
3y = 1 bending moments and shear forces are compared for 

Yx  = Yy 
 = 50, 250 and 500. As shear stiffness increases the edge 

shears (Q
x 

and Qy) becomes more pronounced. The increase in corner 

forces is reflected in the decrease in bending moments in the interior 

of the plate. 	For large shear stiffness the interior forces become 

the same as given by ordinary plate theory showing that the influence 

of K
3x 

and K
3y 

is restricted to the edge region in cases where shear 

deformation is insignificant. 
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3.8 Effect of Normal Rotational Edge Restraint K 	K ) 

Figures 65, 66, 67, 68, 69, 70  

An example of a case where the normal rotational restraint on 

an individual plate panel due to the surrounding system, can be 

idealised as a spring is a panel within an array of panels continuous 

over vertical supports. 	In a 3 x 3 array of identical square 

isotropic panels in which only the centre panel is loaded (transversely), 

the outer panels may be replaced by normal rotational springs with 

non-dimensional restraint stiffnesses (K2x, K2y) of the order of 3 

or 4 depending on whether the outer edges of the array are simply 

supported or clamped. 

Another typical case is that of a plate supported on edge beams. 

If the edge moment is assumed to act at the shear centre of the edge 

beam and to have a sinusoidal distribution along the edge between 

corners, then the normal rotational edge restraints for a square 

isotropic plate due to identical edge beams of torsional rigidity 

C are given by: 

K
2x 

= K
2y 

= a(71-2  C/a
2 
 )/1)

x 

Three combinations of rotational edge restraint along adjacent 

boundaries, sylalletrical about the two centre lines, are examined 

for the case of a square isotropic plate under uniform transverse 

load. 	The behaviour is compared for three values of shear stiffness; 

y 	= y 	= 50, 250, 500. 

Figure 65 gives solutions for central deflexion and central 

edge moments for a plate with all edges equally restrained by springs 
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the stiffnesses of which are varied from zero, which corresponds 

to simple support, to 105, which approximates to the fully clamped 

condition. 	The influence of shear stiffness on central edge 

moment becomes evident at about K
2x = K2y 

= 5 which is of the order 

of the effective restraint due to unloaded panels in an array. 

Figure 66 shows distributions of deflexion, shear force and bending 

and twisting moment for three values of K
2x 

 = K
2y 

 

Figure 67 gives solutions for the case of two edges (x = ± a/2) 

simply supported 
(I(2x = 0) while along the other edges (y = ± b/2) 

K
2y is varied from 0 to 10

5
. 	For y

x 	y
y  

= 	= 50 the relaxing 

effect of shear deformation in the clamped edge case (K2y  = 105) 

results in a maximum edge moment which is about 20% less than would 

be given if shear deformation were ignored. 	The more pronounced 

significance of shear deformation in this case, as compared to the 

case of both edges equally restrained, is due to the restrained edge 

reacting a greater proportion of the applied load. 	Figure 68 illustrates 

the load transfer to the restrained boundaries as restraint is 

increased. 

Figure 69 gives solutions for two edges (y = ± b/2) clamped 

(K
2y 

= 105) while along the other edges (x = ± a/2) K.2x  is increased 

from 0 to 105 This causes the influence of shear stiffness on 

central edge moment at the fully clamped edge CM ) to decrease 
Y3  

as the load distribution between• adjacent sides becomes more even. 

For lower values of shear stiffness this redistribution is accentuated 

and M
x2 is greater up to about K2x = 20 at which point the relaxing 

effect of the improved load distribution along the x = ± a/2 

boundaries becomes apparent. 	Figure 70 illustrates the effect of 

equalization of load distribution as K2x  approaches the fully 

clamped condition. 
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3.9 Effect of In-Plane Load (N
x
) - Figure 71 

Figure 71 shows the effect of uniaxial in-plane compressive 

load on central deflexion and central edge moment in a square 

clamped isotropic plate subjected to a constant uniform transverse 

load. 	Solutions are compared for three values of shear stiffness 

Y = y = 50, 250 and 500. 	The results for N greater than about x y 

60% of the respective buckling loads, are shown as broken lines 

because there were signs that the numerical solution degenerated 

above this point. 

Since N
x operates on the total (flexural and shear) curvature, 

stresses increase more rapidly with N
x 
for lower values of shear 

stiffness. 	The latter effect and the reduction in edge stress - due 

to shear deformation along the clamped edge nullify one another at 

about N = -10. Above this value solutions which ignore shear 

deformation underestimate the maximum stress. 	The critical in-plane 
1 

loads for y = y = 50, 250 and 500 are about N = 40, 80 and 90 
x y 	 x  
(40) respectively 	. N

x 
critical = 109 in the case of negligible 

shear deformation. 

3.10 Effect of Non-Uniform Transverse Load - Figure 72  

Figure 72 gives centre line bending moment and edge shear 

distributions in a square clamped isotropic plate under a non-uniform 

transverse load distribution for two values of shear stiffness 

Yx  = yy 
 = 50, 500. 	The load distribution is of triangular form 

in the y direction and constant in the x direction. 	The apex of 

the y distribution has been smoothed because of the sensitivity of 

the numerical solution to loading discontinuities. 	Ignoring shear 
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deformation would result in an overestimate of maximum edge moment 

by about 20% for y
x  = yy 

 = 50. The corresponding error for 

uniform load was 15%. 

4. 	CONCLUSIONS 

4.1 The results show that the effects of transverse shear deformation 

may be of such a magnitude that an analysis which disregards this 

deformation gives values of deflexions and stresses which are 

appreciably in error. 	This error depends on plate properties, 

boundary conditions and type of loading. Particular combinations 

of these factors have been studied and the results can be seen in 

the graphs. 	Some features of the analysis are indicated below. 

4.2 Isotropic homogeneous plates: 	In uniformly loaded rectangular 

plates with simply supported edges incorporating zero tangential 

edge slope (M
xy 
 0) deflexions but not stresses are affected by 

shear stiffness. 	Stresses are influenced however for any other 

boundary condition or loading. 	In a square uniformly loaded plate 

with clamped edges for example, a shear stiffness parameter of 

Yx  = Yy 
 = 50 reduces the maximum stress by about 15%. 

4.3 Flexurally orthotropic plates: 	In a square uniformly loaded 

plate with a shear stiffness parameter of Y
x 

= Y = 50 and flexural 

stiffness ratio of 2, the maximum stress is reduced by about 5% in 

the case of simply supported edges (M
xy 
 0), and about 20% for clamped 

edges. 
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4.4 Shear orthotropic plates: 	In square uniformly loaded clamped 

plates increasing shear orthotropy increases the maximum stress. 

Thus, for yx  = 50 the effect of shear deformation on maximum stress 

varies from a reduction of about 15% at y = 50 to an increase of 

about 15% at y = 225. 

4.5 Plates with reduced twisting stiffness:. The effect of shear 

deformation on stresses reduces as the twisting stiffness parameter 

(8) decreases. 	For a square uniformly loaded clamped plate the 

15% reduction in maximum stress associated withYx = Yy = 50 is for 

a homogeneous plate for which = 0.769 and this decreases to about 

10% at R= 0,1. 

4.6 Rectangular plates: 	The effect of shear stiffness on the 

maximum stress in uniformly loaded clamped plates decreases as side 

ratio (b/a) increases, becoming negligible at about b/a 3.  

4.7 Elastically restrained plates 

(a) Tangential rotational edge restraint: The development of corner 

forces in simply supported plates is associated with a reduction 

in tangential rotational edge restraint (K3x, K3y). 	For 

K
3x 

= K
3y 

approaching zero in a square uniformly loaded plate, 

the intensity of the force at the corner is reduced by about 

85% due to shear deformation for yx  = yy  = 50. 	This decrease 

is reflected in an increase in central stresses of about 10%. 

(b) Normal rotational restraint: 	It has been noted that in a 

square uniformly loaded clamped plate the edge stresses are 

reduced by 15% for y
x 

= y = 50. 	This effect is magnified 
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when adjacent boundaries are unequally restrained. 	For 

two opposite edges simply supported and the other two 

clamped, the effect of y
x = y = 50 on the maximum stress, 

at the clamped edge, is a reduction of about 20%. 

4.8 In-plane load: 	The increase in stresses due to in-plane load 

is accentuated by shear deformation. 	For a square clamped plate 

with combined transverse and uniaxial in-plane load the reduction 

in maximum stress due to shear deformation is reversed at about 10% 

of the critical load. 	At 20% of the critical load the maximum stress 

is increased by more than 30% for yx  = yy  = 50. 

4.9 Non-uniform transverse load: 	For a clamped square plate 

subjected to a triangular load distribution across one axis, central 

deflexion increases by 135% for y
x 

= 50 as compared to 110% for a 

uniform distribution. 	The corresponding reduction in maximum 

stress is about 20% as compared to 15% in the uniformly loaded case. 

4.10 Certain combinations of plate properties, boundary conditions 

and loading may lead to larger discrepancies between the simple and 

more exact theories than those noted above. 	For a particular ship's 

bottom structure for example, shear deformation increases the central 

deflexion by 70% and reduces the maximum stress by 30%. 
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CHAPTER 5  

ANALYSIS OR DOUBLE-BOTTOM•NODEL.TESTS  

1. INTRODUCTION 

The model test results are used to verify the applicability of 

the various theoretical solutions for overall and local behaviour of 

the double-bottom structure. 	Overall behaviour (reactions, deflexions 

and shell strains at shell-web intersections) is examined with 

reference to the orthotropic plate solution including shear deformation 

described in Chapter 4. Local behaviour of shell and web panels is 

analysed using Aalami's (26) solution for large deflexion of panels 

under combined transverse and in-plane load, and Ho's (29)  work on the 

behaviour of perforated webs. 

Details of the model and the various load cases are given in 

Chapter 2. 	The overall stiffness properties of the model, taking 

account of local behaviour, are computed in Chapter 3. 	Before analysis 

could proceed it was necessary to establish the effective boundary 

conditions appropriate to the method of support of the model described 

in Chapter 2.- 	The coordinate axis orientation used in the analysis 

is as follows - x axis longitudinal, bisecting the bulkheads, y axis 

transverse, bisecting the sides of the ship. . 

2. OVERALL BOUNDARY CONDITIONS 

The overall analysis, because it includes shear deformation, requires 

the specification of three boundary conditions on each edge and not two 
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as in ordinary plate theory. 	These were computed theoretically as 

follows, but as the discussion shows, all the required conditions were 

not immediately apparent. 

2.1 Vertical Deflexion Restraint  

Assuming that vertical edge flexibility was confined to the 

lengthening or shortening of the rod supports the corresponding restraint 

is given by: 

k
1 
 = EA/dh 

Where: 

= rod area 

= rod length, including. vertical adjustment 
correction 

h = rod spacing 

This gives: 

klx = 0.21 x 10
6 
lb/in

2 

kly = 0.26 x 106 lb/in2 

It was anticipated, and the experimental results confirmed, that 

the above values overestimated the vertical edge restraint. This was 

most evident at the bulkhead ends due to deflexion of the box section 

frame against which the rods reacted. 	The final values used, and 

the effect on overall behaviour of vertical edge flexibility, are 

discussed with reference to the analysis of the combined load tests. 
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2.2 Normal Rotational Restraint  

At longitudinal (side of ship) edges it is apparent that there 

was no restraint against normal rotation (k
2y  = 0). At transverse 

(bulkhead) edges the condition is not so clearly defined. 	It appeared 

possible that the torsional rigidity of the end extensions could have 

constituted some degree of normal rotational edge restraint. 	As 

discussed in Chapter 4, the magnitude of this restraint, if it was 

developed in conjunction with reactive end torques, is given by: 

k2x =r2 CJb2  = 1.64 x 106 1 

Where: 

torsional rigidity of end extensions 

(1250 x 106  lb. in2) 

width of model 

The experimental results do not confirm the effectiveness of this 

restraint and the value finally used was k
2x = 

0. 	The basis of this 

conclusion is discussed with reference to the analysis of the combined 

load tests. 

2.3 Tangential Rotational Restraint  

The situation regarding theoretical evaluation of this restraint 

is similar to that for normal rotational edge restraint. 	At longitudinal 

edges it was negligible (l{3y = 1) while at transverse edges the flexural 

stiffness of the end extension may have constituted some degree of 

tangential rotational restraint. 	Since, as discussed in Chapter 4, 

any approximation is complicated in the case of edge beams by the 

limitations of the discrete spring idealization, it was decided to vary 
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k
3x 

and by comparison with experimental results for combined load 

behaviour establish the most appropriate value. 

3. ANALYSIS FOR COMBINED TRANSVERSE AND IN-PLANE LOAD 

Detailed comparisons between theory and experiment are made for a 

transverse pressure, only, of 1 p.s.i. 	Particular results are then 

studied for increments of transverse pressure up to 5 p.s.i. in the 

presence of constant in-plane thrust. 	This is done for four values 

of thrust, namely P
x 

= 0, 3, 6 and 9 tons/ram which correspond to 

average in-plane stresses of 0, -2.31, -4.62 and -6.93 tons/in2. The 

average stress was computed as the total in-plane load divided by the 

total transverse cross-sectional area of the model. 	In all tests, 

transverse pressure was incremented from a datum of 0.5 p.s.i. 	This 

was done to eliminate slackness from the rig and thereby ensure constant 

datum strains. 	The results are given, however, for load incremented 

from a datum of zero p.s.i., by extrapolating backwards. 	In all cases 

the initial behaviour was practically linear and hence no significant 

error was incurred. 

3.1 Overall Behaviour 

Figure 73 gives details of the 1 p.s.i. transverse load distribution 

and the boundary conditions used in orthotropic plate solutions for 

overall behaviour. 	An 8 x 8 mesh was used for all solutions. 	The 

double step approximation to the discontinuity in the pressure in the 

transverse (y) direction was necessary because of a limitation in the 

theoretical solution. 	This is discussed in Chapter 4. 	The total load 

was computed on the assumption that full pressure operated over the area 
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covered by the water bag. 	In practice it is likely that the pressure 

tapered off at the edges and hence the total load was probably slightly 

less than the assumed value. 	This is confirmed in discussion on the 

equilibrium between applied load and measured reaction which follows. 

Overall reaction and deflexions are compared to solutions for boundary 

conditions 1, la, 2, 3, 3a and 4. 	By this means it was possible 

to clarify the uncertainties raised in the preceding section and 

establish one set of conditions on which all later analysis of behaviour 

under combined transverse and in-plane load could be based. 

3.1.1 Reactions: 

Figure 74 (i) shows theoretical distributions of edge shear for 

boundary conditions 1, 2, 3 and 4. 	Condition 3a is not included 

because it developed from an analysis of overall deflexions which is 

discussed in the next section. 	There was no significant difference 

in the distributions for conditions 1 and la, which correspond to 

conventional simple support. The same distributions would be given by 

a solution which does not include shear deformation and hence cannot 

develop tension in the corner regions. 	Condition 2 differs from 1 in 

that the tangential rotational restraint at the sides of the model is 
L 

very low. 	This causes tension forces to develop in the corner regions. 

In condition 3 the tangential rotational restraint is low on all edges 

and the corner tension becomes more pronounced. 	The preceding 

conditions have zero normal rotational restraint on all edges. 	In 

condition 4 a degree of normal rotational restraint is introduced at 

the bulkhead ends on the assumption that the torsional rigidity of 

the end box extension is fully effective. 
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As a first attempt to determine the most appropriate combination 

of boundary conditions,theoretical and experimental edge reactions 

were compared on the basis of proportion of load taken by adjacent 

edges. 	This is shown in Table 8. 	The following couuuents take 

no account of errors in the theory due to assumptions and 

approximations made in computing flexural and shear stiffnesses of 

the orthotropic plate. 

Boundary 
Condition 

Edge 	Reaction Total 
Reaction 

 EQ lb. 

EQ 
EP EQx  lb. EQx/ZQ EQy  lb. EQy/EQ 

1 (la) °51 0.416 1336 0.584 2287 1.001 

2 805 0.352 1483 0.648 2288 1.002 

3 (3a) 930 0.406 1358 - 	0.594 2288 1.002 

4 1187 0.519 1099 0.481 2286 1.001 

Test 684 0.316 1481 0.684 2165 0.948 

Table 8 

The total test reaction (EQ) is about 5% less than the applied load 

(EP) assuming that full pressure was achieved over the whole bag area. 

This lack of equilibrium is attributed mainly to the fact that it is 

likely that the applied pressure tapered off at the edges of the bag. 

It can be seen in Figure 74 (ii) however, that negligible reaction 

was recorded by the rod located at the centre of the side of the model. 

This, and the corresponding rod on the opposite side, jammed in their 

guide blocks due to in-plane rigid body displacement of the model and 
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it is possible that some load was transferred to the rig by friction 

and not recorded, because the gauges were positioned above the guide 

blocks. 	Half of the discrepancy could have been due to this, but. 

the adjacent peak in the distribution of rod loading indicates that 

in fact the jammed rod took no vertical load. 	Finally, it is possible 

that the load was not evenly distributed to all quadrants but checks 

on symmetry of deflexions, strains and reactions agreed remarkably 

well and tend to discount this. 	All the following theoretical 

solutions assume full EP so that stresses may be slightly overestimated 

although any effects will be small since the tapering off in load is 

adjacent to the edges. 

From Table 8 it can be seen that the best agreement, between the 

alternative theoretical solutions and the test results on the 

proportion of load taken by adjacent edges,is for condition 2. 	The 

next best agreement is for condition 3 while condition 4 shows a 

disproportionate amount of load taken by the bulkhead ends. 	This 

indicates that the normal rotational restraint due to torsional rigidity 

of the end extensions was not developed. 

Figure 74 (ii) shows a comparison between the measured reactions 

and the corresponding rod forces given by the edge shear distributions 

for conditions 2 and 3. 	It can be seen that the measured corner 

tension is bounded by these two solutions. 	From these observations 

it appears that some degree of tangential rotational restraint was 

achieved at the bulkhead end although not perhaps as high as specified 

in condition 3. 

3.1.2 Deflexions  

In Figure 75 (i) the measured overall deflexions are compared 

with theoretical solutions for boundary conditions 1, la, 2, 3 and 4. 
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The experimental values show much larger edge deflexions than 

predicted by theory. 	This is due partly to edge flexibility not 

accounted for in the rod calculations and partly to rigid body uplift 

of the model and rig. 	The latter effect is confirmed by the fact 

that whereas tension in the corners implies a downward displacement 

relative to the rig, an upward displacement relative to the floor was 

recorded by a dial gauge adjacent to the corner. 	The additional 

flexibility is attributed mainly to the bending of the box section 

frame against which the rods reacted. 	This is confirmed by the fact 

that the displacement was greatest at the bulkhead ends where the box 

frame spans over the full width of the model. 

Theoretical edge deflexions of the right order of magnitude can 

be obtained by rational adjustment of vertical deflexion edge restraints. 

The question of the most appropriate condition as regards k
3x 

remains 

however. 	It is of note that whereas the difference in deflexions for 

conditions 1 and 2 is about 8%, the difference for conditions 2 and 3 is 

only 11%. 	This is reflected in the stresses. 	Hence, since the 

difference between solutions 2 and 3 is small and since condition 3 

behaves better numerically because the corner conditions are more 

compatible (all rotational restraints low) it was decided to incorporate 

an empirical adjustment in vertical deflexion edge restraint in condition 3. 

This was done by subtracting a vertical rigid body displacement at the 

corner and the centres of the two edges, so that the resultant 

deflexions were of an order compatible with the corresponding rod 

stresses. 	The originally computed vertical edge restraints were then 

adjusted to correspond to these deflexions giving a condition, denoted 

3a, solutions for which are shown in Figure 75 (ii). 
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The proportion of reaction taken by adjacent sides remains the 

same as for condition 3 although there is a slight redistribution 

resulting in very good agreement with the measured corner tension. 

Incorporation of the reduced vertical restraints in condition 2 

would have increased the divergence from measured corner tension. 

The difference in central moments between conditions 3 and 3a is less 

than 1%. 	The measured central deflexion is within less than 5% 

of that given by condition 3a. This is remarkably good agreement 

considering the limitations of the orthotropic plate idealization. 

The lack of more exact agreement as regards proportion of reaction 

does however indicate that there may be some error in the relative 

effective overall stiffnesses. 	This is discussed further with 

regard to shell strains. 	Shear deformation accounts for 32% of the 

calculated total deflexion. 

3.1.3 Shell Strains at Shell-Web Intersections  

Figures 76 and 77 show a comparison between measured and theoretical 

shell strains at shell-web intersections for inner and outer shells 

respectively. 	The following discussion is with reference to the 

solution denoted 3a, solution la was included to show the effect on 

strains of allowing for shear deformation. 	The assumption made in 

the local panel analysis that vertical edge deflexion was zero, implied 

that tangential edge strains due to bending were zero and hence 

theoretically, the discrepancy between measured and theoretical values 

is due to variation in membrane stress across the panels. 

(a) Inner Shell: 	Near the centre of the model the overall solution 

underestimatese.by about 28% and overestimates e 
i 
 by about 37%. xi 	 y 

Corrections based on the losses of shell effectiveness used in computing 

overall stiffnesses reduces the error in 
xi to about 5% and increases 
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the error in 1E C.  slightly, to about 38%. 	The measured 
Yl 

distributions of strain follow the form of theoretical solutions 

reasonably well except for C . 
in the x direction. 	This may be 

due to a variation in effective plate properties or an error in the 

overall boundary conditions. 

(b) 	Outer. Shell: 	After correction, the errors in outer shell 

strains near the centre of the model are an underestimate of about 

38% for c 	and an overestimate of about 13% for e 
xo 	 yo 

The degree of agreement noted above is considered good in view 

of the-complexity of the system. 	The differences are due mainly 

to local deformation and errors in the computation of loss of 

effectiveness. 	The errors due to local deformation are most 

apparent in e 
XO 

The corresponding results for patch load cases, 

where the local panels were not subjected to transverse load, do not 

show the same large and distributed error. 	The errors in computation 

of loss of effectiveness appear to be most severe in the y direction 

as evidenced by the discrepancies in c .. 	This indicates that the 
Y1 

computed location of the neutral axis was too close to the outer shell 

and is attributed to failure to distinguish between losses in the 

inner and outer shells. 	Calculations were based on an analysis for 

outer shell panels and it is apparent that the loss of effectiveness 

was less for the inner shell. Allowance for this would have given an 

increased flexural stiffness in the y direction which is consistent 

with the discrepancies observed in overall deflexion and proportion of 

reaction taken by adjacent edges. 
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3.1:4 Combined In-Plane Thrust and Increasing Transverse Pressure  

(a) Shell Stress and Strain at Shell-Web Intersections: 	Figures 78 

and 79 show longitudinal shell stresses at points across the model, 

midway between floors D and C and between floors A and A' respectively, 

for increasing in-plane load. 	The experimental stresses were computed 

on the assumption of uniaxial stress (no overall bending). 	The in- 

plane loads were applied after a settling load of 0.5 p.s.i. transverse 

pressure had been applied. The measured values are compared with a 

theoretical average stress given by dividing the total in-plane load 

by the total transverse cross sectional area of the model. 	The 

model had a built-in overall outward deformation which was partially 

but no entirely compensated by the 0.5 p.s.i. transverse pressure. 

This is evident in the divergence of measured inner and outer shell 

stresses which is most apparent toward the centre of the model. 	The 

mean stress given by gauges 170, 171, 172 and 173, which was least 

affected by the assumption of uniaxial stress, agrees very closely with 

the calculated average stress. 	This verifies that in-plane load was 

applied at, or very near, the longitudinal neutral axis of the model. 

Some inconsistencies are evident for in-plane loads of P = 7, 8 

and 9 tons/ram. 	The patch load tests were conducted in between the 

Px = 6 and 7 tons/ram tests. 	This was necessary because many of the 

outer shell surface gauges had begun to malfunction due to condensed 

water which had accumulated between the pressure bag and the model. It 

was decided that since replacement of these gauges involved raising the 

model, the patch load tests should be conducted while the model was 

in the raised position. When these were completed the model was 

restored to the combined load position. 	The inconsistencies are 

evidence that the original conditions were not exactly reproduced. 
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Figure 80 shows the behaviour of typical longitudinal (i) and 

transverse (ii) strains for increasing transverse pressure. 	Four 

cases of constant in-plane load are shown - Px  = 0, 3, 6 and 9 tons/ram. 

There is a small degree of non-linearity with increasing transverse load, 

most noticeable for outer shell strains in the y direction due to a 

greater sensitivity to local non-linear behaviour. 	The initial overall 

outward deformation of the model is evidenced by the non-coincidence of 

datum strains for P > 0. 
x 

(b) Deflexions: Figure 81 (i) shows measured central deflexion for the 

four load cases considered above. 	The slight degree of non-linearity 

with increasiqg transverse pressure, most noticeable for P = 3 and 

6 tons/ram, is attributed to in-plane rigid body displacement of the model. 

This caused the dial gauge spindle to move transversely until further 

movement of the model was prevented by stops. The effect was most 

noticeable for dial gauges with long spindles which included gauge number 1. 

Interaction between in-plane and transverse load effects is evident in 

the slope of the curves. 	The non-coincidence of datum load deflexions 

is due to initial overall outward deformation of the model. The good 

agreement of corresponding deflexions in opposite quadrants, shown in 

Figure 81 (ii), is typical of the high degree of symmetry attained in 

all tests. 

(c) Reactions: Figure 82 shows typical compression rod (i) and tension 

link (ii) strain measurements for increasing transverse load (P = 0). 

The difference in strains in each case is a measure of the bending 

of the rods. 	Mean strains, from which reactive forces were 

computed, can be seen to be reasonably linear. 	In the presence 
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of in-plane load reactive forces increased. 	For a transverse 

pressure of 1.p.s.i. and an in-plane load of P
x = 9 tons/ram the 

measured increase/quadrant was 55 lbs compared to a theoretical 

value, for boundary condition 3a, of 59 lbs. 

3.2 Local Behaviour  

3.2.1 Webs 

In the analysis of the single floor model Ho(29) obtained good 

agreement between theoretical and experimental tangential stresses 

around lightening holes by superimposing the effects of shear and 

bending. 	The same approach is used here for distributions of shear 

force and bending moment given by the orthotropic plate solution 

including shear deformation for boundary condition 3a. 

Ho showed that a reasonable approximation to the shear behaviour 

is obtained from a solution for a hole in an infinite plate subjected 

to uniform shear. 	Figure 83 (0-shows the distribution of tangential 

stress computed in this way for an applied shear stress of 1 ton/in2. 

The theoretical applied shear stress was taken as the shear force per 

web at the particular section divided by the solid web area. 	The 

contribution due to bending is based on Howland and Stevenson's theory(41) 

for an infinitely long strip with a single hole on its centre line. 

Figure 83 (ii) shows the distribution of tangential stress computed 

in this way for an applied bending stress of 1 ton/in2  . 	The applied 

bending stress was taken as the mean shell-web interface stress at the 

particular section. 

Experimental heart of plate tangential stresses around holes were 

derived by subtracting the bending component from strains recorded on 

opposite surfaces. 	Any bending was due to initial out of plane 
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deformation which the results showed to be considerable in some 

cases. 	Where stresses were delved at symmetric locations the 

mean value is plotted. 

Figure 84 shows the results for the holes in floors A (A'), B, 

C and D at bay 7-8 (7'-8'). 	In all cases the experimental values 

conform remarkably well to the theoretical distributions around the 

circumference. 	The peak values are low, due mainly to the fact that 

strains were recorded 0.10 inches from the edge of the hole at which 

distance Ho's solution predicts a fall off in stress concentration of 

about 20%. 	At 0°  and 180°  the theoretical tangential stress is due 

to bending only and agreement with measured stresses is not good. 

This is not surprising considering that no account was taken of cut 

outs in way of stiffeners or of lack of symmetry. 

Figure 85 (i) compares measured stresses around holes in floor A 

and side bracket Al  at bay 8-9 with two theoretical solutions which 

differ in intensity of theoretical applied shear stress. 	In one, 

floor A is assumed,to take all the shear force between the centre lines 

separating floor A and the adjacent floors and in the other this force 

is distributed equally between floor A and three side brackets. The 

experimental values for floor A indicate that the shear force was 

shared with the side brackets, although not in the assumed ratio. 

This is not confirmed in the results for side bracket A
l 
but this may 

have been due to local effects. 

Figure 85 (ii) compares measured and theoretical stresses around the 

hole in centre bracket A
1, 

bay 0-1. 	This case differs significantly 

from all others in that the primary source of theoretical applied 

stress is bending. 	The experimental results do not confirm the 
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existence of tangential stresses due to bending and this is probably 

a realistic result, rather than the influence of local effects as 

was suggested for side bracket Al. 	These conclusions are confirmed 

by the results for patch load tests. 

Figure 85 (iii) compares measured.stresses around the intercostal 

holes immediately adjacent to bulkheads with a theoretical solution 

assuming that the intercostals resisted the shear force distributed 

from midway between the intercostals and centre girder to midway 

between the intercostals and the sides of the model. 	The effect of 

measuring strains a small distance from the edge of the hole is 

apparent in the peak stress. The discrepancy noted at 180°  in the 

floor hole stresses at bay 7-8 is not so apparent because the bending 

stress is much lower. 

Centre girder shear stress was measured near the bulkhead ends. 

The recorded value was 0.75 tons/in
2 for q = 1 p.s.i. which is within 

9% of the theoretical value of 0.83 tons/in
2 

 . 	In the theoretical 

calculation it was assumed that the shear stress, due to shear force 

distributed between the centre lines separating the centre girder and 

the intercostals, varied uniformly through the depth of the web. 

The behaviour under combined loading of typical web strains is 

shown in Figure 86. 	The effect of initial out of plane deformation 

is very apparent in (i) but despite the slight non-linearity in 

recorded strains the heart of plate strain is reasonably linear and, 

as would be expected, relatively insensitive to in-plane load. 

3.2.2 Shell Panels 

(a) 	Overall Transverse Load. Only - q = 1 p.s:i.  

Three outer shell panels were examined in detail. 	Figure 87 
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shows these panels and the initial deformation and in-plane loads 

which were used in theoretical solutions based on Aalami's(26) 

computer program for the large deflexion behaviour of rectangular 

orthotropic plates. 

The initial deformation was based on contours measured prior 

to any testing. 	These are plotted in Figure 27 where it can be seen 

that there was some lack of symmetry within each panel. No account 

can be taken of this in the program and hence sinusoidal approximations 

were used with central deflexions equal to the maximum measured 

deflexions relative to the respective panel boundaries. 

The program requires that applied in-plane load be specified as 

the average value in the x and y directions. These are the values 

shown and they were derived from the overall solution by applying 

reduction factors based on the analysis for loss of shell effectiveness 

used in the computation of overall flexural stiffnesses. 	SOme 

averaging was also necessary to account for variation of moment in 

the y direction. 	It will be noted that the applied average in-plane 

edge stress in the y direction was computed to be less for panel 1 

than panel 2 despite the fact that panel 1 was closer to the centre 

of the model. 	This arose because it was assumed that the centre 

bracket floors had negligible influence on the membrane stress 

distribution between floors. 	Hence, since the membrane stress varies 

between maximum values at the floors, the mean stress between intermediate 

centre brackets was considerably less than the mean stress between 

floors. 

Boundary conditions were assumed to be the same as used in the 

transverse bending loss of effectiveness analysis except for the case 
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of rotational edge restraint in panel 1. 	This restraint was 

reduced to allow for the greater flexibility of the web panels, 

which bound panel 1 on three sides, as compared to the angle stiffener 

which bounds the fourth side. 	Assuming that the webs were solid and 

fixed at the inner shell side, the rotational restraint is of the order 

of 480 in.lb/in. as compared to about 1530 in.lb/in. for angle stiffeners. 

The lower value was used on all sides for panel 1 and the higher value 

on all sides for panels 2 and 3. 	It should be noted that the computation 

of the restraint due to angle stiffeners involved the assumption of 

antisyuuuetric initial deformation in adjacent panels in the y direction, 

a condition not ideally satisfied across panels 1, 2 and 3. 

Measured values of deflexion, bending stress and membrane stress 

are compared with corresponding theoretical distributions in Figures 88, 

89 and 90 respectively. 	The results cannot be viewed independently 

however because it is quite feasible, with the number of variables 

involved,.to contrive a theoretical solution which accurately predicts 

deflexions say, but bears little relation to the true stress system. 

Despite apparent discrepancies, the theoretical solution, considering 

its limitations, predicted the experimental results remarkably well 

and the results for all three variables are reasonably consistent. 	A 

detailed discussion of the discrepancies would be difficult to justify 

but it is possible to comment on several possible sources of error 

in the theoretical solutions. 

The most significant factor is the lack of antisymmetry in the 

initial deformation of adjacent panels. 	This is most apparent in 

the behaviour of panel 2 where the effects of the much larger deformations 

in panel 3 have swamped the flexural behaviour of panel 2 to such an 
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extent that the theoretical solutions for deflexions and bending 

stresses are of the wrong sign. 	This factor also probably contributed 

to the lower measured values of c in panels 2 and 1. 	In the latter 
ym 

case the panel on the opposite side of the centre girder had suffered 

significantly greater initial deformation. 

A second major source of error was the restriction in the 

theoretical solution as regards symmetry of initial deformation within 

a panel. 	This applies mainly to panel 3 in which the effect of 

concentration of initial deformation toward the floor A' end, which 

can be seen in the contours, was reflected in the lower measured membrane 

stresses in this region. 

(b)--Cotbined. Laad Behaviour  

The analysis of shell panel test results is now extended to include 

overall transverse pressures .(q*) up to 5 p.s.i. for four cases of 

in-plane load - P
x 
= 0, 3, 6 and 9 tons/ram. 	As deflexions increase 

the non-linearity associated with large deflexion behaviour becomes more 

apparent and the limitations of the theoretical solution are accentuated. 

Nevertheless, there is sufficient agreement between theory and experiment 

to justify extending the analysis. 

Figure 91 gives deflexions for panels 1, 2 and 3. 	Figures 92 and 

93 give bending and membrane stresses at the centres of panels 1 and 2 

respectively. 	Figures 94, 95 and 96 give these stresses for panel 3 

at points a, b and c (see Figure 89) respectively. 	Results are plotted 

from datum loads of P
x 

= 0, 3, 6 and 9 tons/ram and q = 0 p.s.i. 	The 

lack of agreement between theory and experiment at these datum loads 

is due partly to effects of the initial overall sag of the model, noted 
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previously in connection with analysis of overall behaviour. 	Also, 

as noted previously, the experimental results for P
x 

= 9 tons/ram 

exhibit differences from the other three cases which are attributed to 

deformation caused during the patch load tests. 

Panel 1: 	The inconsistency between results for PX = 9 tons/ram and 

the other cases is particularly evident in the datum load results for 

panel 1, which show a marked increase in deflexions and stresses. 	This 

is attributed to a modification, mainly local but also possibly overall, 

sustained during the patch load tests. 	For increasing transverse 

load (q*) the most marked divergence between theory and experiment is 

for ayb although deflexion, a
xb and aym 

show similar effects. 	This 

is attributed partly to underestimation of the influence of a higher 

degree of rotational restraint on the edge bounded by angle stiffener 

number 1, and partly to the influence of the significantly higher 

negative initial deformation of adjacent panels in the y direction.  

The relatively good agreement for o substantiates the observation 
Ym 

regarding the overall flexural ineffectiveness of bracket floors, made 

in reference to tangential hole stresses. 

Panel 2: As for comparisons made for q* = 1, agreement is poor and 

gets worse under increasing load for all measured quantities except 

ate. 	This confirms the dominant role played, particularly on y axis 

behaviour, by the much larger deformation in adjacent panel 3. 	From 

the design point of view however, this is not very significant because 

the stresses affected are small relative to a 	in the presence of P
x
, 

xm 

and agreement is excellent for a 
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Panel 3: 	These results (and also those for panel 2) do not show, 

to the same degree, the inconsistency discussed previously in regard 

to the load case involving Px 
= 9 tons/ram. This indicates that the 

effect was primarily due to local deformation in the vicinity of the 

point of application of the patch loads. 	The erratic behaviour of 

stresses at point a for P
x 
 = 9 tons/ram is not attributed to the 

•  

effects of patch load tests apart from the possibility that the gauge 

may have been damaged. The limitations of the theory when initial 

deformation is not symmetric within the panel are emphasised by these 

results. At points b and c, which are closer to the peak in the 

actual initial deformation profile, the effects on stresses of membrane 

effects is more apparent. 	The pronounced variation of membrane stress 

in the x direction, resulting in very high stresses at the shell-web 

interfaces, emphasises the necessity of allowing for a realistic amount 

of initial deformation in computing loss of shell effectiveness for design 

purposes. 

3.2.3 Shell Stiffeners and Channel Struts  

The. shell stiffeners are subjected to axial forces due to overall 

bending and in-plane load and to transverse load and torque due to local 

deformation of adjacent shell panels. 	The load distribution is non- 

uniform. 	The stiffeners are restrained at floors and channel struts 

and the stiffener-shell interface constitutes an enforced centre of 

rotation. 	The complexity of this system does not lend itself to 

theoretical analysis at the present time. 

Figures 97 and 98 give the experimental results for inner and 

outer shell stiffeners 3 and 8 between floors A and A' for the four 

combined load cases considered previously. 	Figure 99 gives experimental 
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stresses for channel struts X, X and Z for the same four in-plane 

load cases for q = 1 p.s.i. only. 	The strut stresses are not plotted 

for increasing transverse load because they behaved linearly in nearly 

all cases. 

Some non-linearity is apparent. in the stiffener stresses for 

increasing transverse load, mainly for outer shell stiffener number 3 

at cross sections b (e) and c (d). 	There is a significant variation 

in stiffener stresses between end restraints in all cases and for outer 

shell stiffener number 3 the stresses at section a, b and c show good 

agreement with stresses at sylualetric sections f, e and d. 	For this 

stiffener the axial stresses due to overall bending for q = 1 f3.s.i. are 

about -0.39 tons/in
2 

at the outer surface and -0.24 tons/in
2 
at the 

free leg. 	It can be seen that local deformations give rise to stresses 

of the same order. 	The combined stresses can be seen to reach high 

levels which emphasises the necessity of adequate safety margins since 

the behaviour of the panels and hence overall effectiveness is very 

sensitive to the degree of restraint afforded by the shell stiffeners. 

Little can be said about the channel struts. 	They perform an 

important function not only in maintaining the separation of inner and 

outer shells but also in restraining the stiffeners, and thereby, 

greatly increasing the rotational edge restraint of the shell panels. 

This restraining influence is evident in the strut bending stresses 

which, despite some degree of non-symmetry, are consistent with 

deformation predictable from the antisymmetry of shell panels. 
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. 4. ANALYSIS FOR TRANSVERSE PATCH LOADING 

Details of the patch load tests are given in Chapter 2. 	Four 

tests were conducted with load applied by 8, 6, 4 and 2 rams respectively, 

located symmetrically about the transverse centre line, along the centre 

girder at intersections with the transverse floors. 	Results are 

compared with theoretical solutions for a load of 1 ton/ram. 	Discussion 

of behaviour common to these tests and the combined distributed transverse 

and in-plane load tests, already covered in preceding sections will not 

be repeated in this section. 

4.1 Overall Behaviour  

Figure 100 shows the ram locations for the four patch load tests 

and the corresponding distributions used in theoretical solutions for 

overall behaviour. 	The theoretical distributions had the stepped form 

shown in order to minimise errors arising from discrete discontinuities. 

This limitation is due to the fact that when shear deformation is taken 

into account, the equations involve differentiation of the transverse 

load distribution. 

The theoretical solution for simply supported edges only, described 

in Appendix D, was used because the solution for generalised boundary 

conditions, used to analyse the combined load tests, is even more 

sensitive to non-uniform transverse load. 	Zero vertical edge 

deflexion and zero tangential rotational edge slope are implicit in the 

solution for simply supported edges. 	These correspond to infinite 

vertical deflexion restraint and infinite tangential rotational restraint 

in the generalised boundary condition solution. 	In the analysis to 

determine the most appropriate boundary conditions it was found that 
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inclusion of appropriate vertical and tangential rotational edge 

• flexibility resulted in an increase in central deflexion and central 

moments of the order of 10%. 	In addition, the shear force 

distribution was modified, as shown by the reversals of edge reaction 

in the corner regions. 	In the following analysis of the patch load 

tests these limitations to the theoretical solution should be borne in 

mind. 

4.1.1 Reactions  

Theoretical and experimental reaction distributions are compared in 

Figures 101 and 102. The inclusion of shear deformation has very 

little effect on the theoretical edge reaction distribution for simply 

supported edges with zero vertical displacement. 	The hump in the 

fheoretical distribution, adjacent to the corner at the bulkhead end 

is due to the unequal rod spacing in this region., Two limitations 

in the theoretical solution are apparent.. The first follows from the 

above discussions on boundary conditions wherein the development of 

large corner tension forces cannot be directly accounted for. 	The 

second relates to the idealization of discrete webs as a homogeneous 

medium. 	This is very pronounced for load cases P8 and P6 where the 

experimental reaction distribution shows a distinct increase in the 

vicinity of the centre girder. 	As for the combined load case, there 

are also peaks in the side of ship distributions at the floors. 	The 

equilibrium between measured reaction and applied load is excellent 

for load cases P2 and P4. 	For load cases P6 and P8 the discrepancies 

are 5% and 4% respectively although in the former case the failure of 

two rods to record load, possibly due to equipment malfunction, may 

have caused this. 
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4.1.2 Deflexions  

Theoretical and experimental overall deflexions are compared in 

Figures 103 and 104. The theoretical solution including shear deformation 

underestimates the measured central deflexion by 9%, 7%, 6% and 8% for 

cases P8, P6, P4 and P2. 	Assuming a +10% correction to account for 

edge flexibilities makes agreement remarkably good. 	Of the total 

theoretical central deflexions, shear deformation accounts for 26%, 

28%, 32% and 37% for cases P8, P6, P4 and P2 respectively. 	The 

theoretical and experimental distributions of deflexion agree remarkably 

well even for cases P2 and P4, where a distinct hump develops under 

the load. 	The variation in curvature at the edge of the patch in the x 

direction becomes very apparent in theoretical strains. 

4.1.3 Shell Strains at Shell-Web Intersections  

The total theoretical corrections to the strains given by the overall 

solution, to account for local deformation and incorrect boundary 

conditions, are of the order of +30% and +10% in the x and y directions 

respectively. 	Applying these corrections to the solutions shown in 

Figures 105 and 106 for inner and outer shell strains - load case P8, 

gives errors relative to measured central region strains of the order of 

+45%, +45%, -25% and +15% in Exi, Eyi, Exa  and Ey 0  respectively. 	These 

errors confirm the conclusion made in reference to combined loading, 

that the computed neutral axes were too close to the outer shell. 	This 

was because the loss of effectiveness, which was assumed to be equal in 

both shells, was in fact more severe in the outer, compression shell. 

The measured strains conform remarkably well to the theoretical 

distributions considering the limitations due to the effects of local 

. 	behaviour. 	It was noted with reference to combined load results that 
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these limitations were less severe in patch load cases because of 

the absence of local transverse panel loading. 	Results for inner 

and outer shell strain for load cases P6, P4 and P2 are given in 

Figures 107 and 108, 109 and 110, and 111 and 112 respectively. 	The 

theory shows how the effect of shear deformation on bending strains 

under the load becomes more severe as the patch size diminishes. 

4.2 Local Behaviour  

4.2.1 Webs 

As for the combined load analysis, theoretical solutions for 

tangential web hole stresses were computed by the summation of the 

effects of shear and bending. Particular cases were obtained by 

taking multiples of the two distributions given in Figure 83. 

Figures 113, 114, 115 and 116 compare measured and theoretical 

tangential stresses for the holes located at bay 7-8 (71-81) in floors 

A (A'), B, C and D respectively. 	All four load cases are shown on 

each Figure. 	As for the combined load results the experimental values 

fit the theoretical distributions remarkably well although the maximum 

values are again predictably low. 

Figure 117 gives results for holes located at bay 8-9, in floor A 

and side bracket Al,for the four load cases. 	Two theoretical 

distributions are shown, one in which all the shear force is taken by 

floor A and one in which this force is shared with the side brackets. 

Again, as for the combined load results, the floor A stresses indicate 

that the.shear was shared with the side brackets to some degree but this 

is not confirmed by the results for side bracket Al. 



119. 

Figure 118 gives results for centre bracket Al  for the four load 

cases. 	In this case there is a significant difference from the 

combined load results. 	Whereas in the latter case there was 

insignificant shear force so close to the centre of the model, in the 

patch load cases the shear distribution rises rapidly and contributes 

significantly to the applied web loading at bay 0-1. 	It was noted 

that the lack of stress recorded in the combined load test indicated 

that the centre brackets contribution to overall flexural stiffness 

was insignificant. 	This was confirmed by the shell panel analysis of 

cr 	for panel 1. 	The patch load results show that the centre brackets 
ym 

do contribute significantly to shear stiffness since the measured 

stress at 135°  is, theoretically, entirely due to applied shear stress. 

This justifies the inclusion of centre and side brackets in the analysis 

to determine overall shear stiffness. 

Figure 119 gives results for the intercostal holes immediately 

adjacent to bulkhead ends. 	Agreement is comparable with the 

combined load results. 

The measured -centre girder shear stresses adjacent to the bulkheads 

were 2.56, 1.36, 0.73 and 0.32 tons/in
2 for load cases P8, P6, P4 and 

P2 respectively. 	The corresponding theoretical values are 2.08, 1.10, 

0.60 and 0.28 tons/in2.giving errors of 19%, 19%, 18% and 13%. 	The 

decrease in percentage error corresponds to an improvement in load 

distribution as the distance from the applied load increases. 

4.2.2 Shell Panels 

Figures 120, 121, 122 and 123 compare two theoretical solutions for 

deflexions of outer shell panels 1, 2 and 3 with experimental results 
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for load cases P8, P6, P4 and P2 respectively. 	The corresponding 

results for bending stresses are given in Figures 124, 125, 126 

and 127 and fo'r membrane stresses in Figures 128, 129, 130 and 131. 

The theoretical solutions are for two cases of elastic rotational edge 

restraint:--one for the same values used in the combined load analysis, 

and the other for zero rotational edge restraint which corresponds to 

simply supported edges. An analysis using the beam-column solution 

described in Chapter 3 showed that, in the absence of distributed 

transverse pressure, the effective rotational restraint for an 

antisymmetric distribution of initial deformation (wo/h=0.25) reduced 

the effective rotational restraint by about a half. 	However, it was 

decided to use the zero restraint condition and discuss differences 

between theory and experiment with reference to the preceding calculation. 

Loading was entirely in-plane. 	The theoretical values for average 

in-plane stress were taken from corresponding solutions for overall 

behaviour, including shear deformation, with adjustments for loss of 

effectiveness and non-uniform distribution. 

Measured deflexions in panels 2 and 3 fall about midway between 

the two theoretical distributions which indicates the theoretical 

estimate of loss of elastic restraint in the absence of transverse load 

was quite accurate. 	This observation must however be examined with 

reference to stresses. 	It is of note that, in the absence of transverse 

load, the high relative initial deformation of panel 3 does not appear 

to have exerted the marked influence on flexural behaviour of panel .2 

observed in the combined load tests. 	The measured deflexion in panel 1 

is considerably greater than both theoretical solutions. 	There is 

little difference between the latter solutions because the effective 

rotational restraint assumed for panel 1 was relatively low. 	The greater 
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measured deflexion is attributed to an increase in the initial 

deformation of panel 1. 	This has already been discussed with 

reference to the inconsistencies between combined load results for 

P
x = 0, 3, 6 tons/ram and Px = 9 tons/ram where the patch load tests 

were conducted in the interim between the 6 and 9 tons/ram tests. 

Measured bending stresses in all panels agree more closely with 

solutions for simply supported edges but considering the approximation 

involved agreement is remarkably good. 

Measured membrane stresses show the same effects noted in the 

combined load tests. 	In some cases the difference between theoretical 

membrane stresses for the two boundary conditions was insignificant 

and only the restrained edge results are given.. Agreement in the x 

direction is good allowing for the effect of non-symmetry in panel 3. 

In the y direction the theoretical values are high, probably due to an 

overestimate of applied edge stress. 

4.2.3 Shell Stiffeners and Channel Struts  

Figures 132, 133, 134 and 135 give inner and outer shell stiffener 

stresses in stiffeners numbered 3 and 8, between floors A and A', 

for load cases P8, P6, P4 and P2 respectively. 	The overall stresses 

at the shell-stiffener intersection for outer shell stiffener number 3 

are of the order of -1.1, -1.1, -1.0 and -0.7 tons/in2  for the four 

load cases. 	Comparing these values to the measured stresses emphasises 

the very significant influence of local deformation. This is even more 

apparent in stiffener number 8 in which stresses are higher than in 
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number 3 in some cases, despite the much greater distance from the 

centre line. 	Figure 136 gives channel strut stresses. 

4.3 Non-Linearity with Increasing Load  

The various measured values exhibited about the same degree of 

non-linearity under increasing load as observed in the combined load 

tests. 

5. FAILURE TEST 

5.1 Preliminary Local Failure 

It was decided to precede the final failure test with one additional 

elastic test. 	This was for the model subjected to a constant transverse 

pressure of 5 p.s.i. and increments of in-plane thrust in excess of the 

previous maximum (P
x 

= 9 tons/ram). The purpose was to give more 

extensive experimental data on the large deflexion behaviour of loCal 

shell panels under combined thurst. 

As the in-plane load was being incremented from P
x 

= 15 tons/ram to 

P
x
= 16 tons/ram, (which was to be the maximum) there was an unexpected 

outer shell buckling failure at one end. 	Figure 137 is a view of the 

underside of the model after this failure. Although it cannot be 

seen very clearly, there was also evidence that a similar failure was 

imminent at the other end and elsewhere the permanent outer shell 

deformation was in excess of the original initial deformation. 

The maximum thrust was about P
x 

= 151 tons/ram corresponding to an 

average compressive stress of 12 tons/in2. 	The lowest theoretical 

2 
panel buckling load under longitudinal compression is-17.1 tons/in , 
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for simply supported edges. 	This would correspond to a three half 

wave buckle but as can be seen in Figure 138 the actual buckle was 

of a local nature and this premature failure is attributed to two main 

factors. 	Firstly, the shell stiffeners were not continuously welded 

around their section at the ends and hence they only become effective 

in sharing the thrust at some distance from the ends. 	Secondly, the 

intermittent welding of the stiffeners and webs to the shell constituted 

a local weakness at gaps in the weld in so far as the restraint against 

antisymmetric buckling of adjacent panels was reduced. 	As can be seen 

in Figure 138 it was across a line of gaps in the welding that the buckle 

occurred. 	These factors were obviated in the inner shell by the 

margin brackets. 

Because of the local nature of the failure and since it was not in 

the region of the expected critical area so far as the final failure 

test was concerned, it was decided to repair the model by cutting out 

the buckles and welding additional shell plating at both ends. 	This 

additional plating was 1 in. thick and extended one floor spacing from 

the ends, except at the centre, where it extended as far as the second 

bracket floor. 	It was welded in panels.across the whole width of the 

buckled end and on every second panel at the other end. 	Some 

realignment of the end extension was necessary at the buckled end. 

After repair the model was realigned in the rig and elastic tests under 

combined load showed virtually no difference from the pre-failure tests. 

5.2 Final Failure Test  

The repaired model was failed under combined transverse pressure 

and in-plane thrust, incremented simultaneously at the rate of 

q = 1 p.s.i. and P = 1 ton/ram. 	These corresponded to theoretical 



124 

overall central longitudinal outer bottom stresses of about -0.45 

and -0.77 tons/in
2 
 respectively. Working load was assumed, for the 

purposes of defining an overall safety factor against collapse, to 

-be q = 10 p.s.i. (full draft, empty hold condition) and Px  = 10 tons/ram 

(approximately maximum hogging condition), corresponding to maximum 

theoretical overall longidudinal outer bottom stresses of -4.5 tons/in
2 

and -7.7-tons/in
2 

respectively. 	Thus the elastic analysis, for the 

assumed losses in plating effectiveness, gave a combined overall maximum 

longitudinal compressive stress at the assumed working load, of -12.2 

tons/in
2. 	The corresponding theoretical transverse stress was 

tons/in2. 	The yield stress for the material was about 15 tons/in2. 

At about q = 13.5 p.s.i. and Px  = 13.5 tons/ram the loading could 

no longer be sustained. 	This corresponds to a nominal double-bottom 

safety factor of 1.35. 	In practice it may be slightly higher due 

to rotational restraint at the sides. 	Subject to a more detailed 

analysis it appeared that failure was due to degeneration in outer 

shell transverse panel effectiveness, combined with extensive local 

yielding. 	At the failure load the theoretical maximum combined overall 

central longitudinal outer shell stress was of the order of 161 tons/in
2
. 

The corresponding transverse stress was in excess of-11 tons/in
2 
 . The 

theoretical local bending stresses in some panels were of the same 

order of magnitude. 	Even allowing for the fact that overall and 

local maximum stresses do not occur at the same locations, the combined 

elastic stresses were in excess of yield at the assumed working load 

indicating that at failure the yielded areas must have been extensive. 

Figure 139 is an overall view of the bottom of the model after 

failure. 	Figure 140 shows details of local deformation in the centre 

region. 	Figure 141 shows details of a buckle which extends roughly 
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diagonally toward the corners at one end. 	This buckling is thought 

to have precipitated the final collapse. 

To test the central shell panel ultimate load hypothesis, additional 

solutions were obtained from the BEANCOL program (described in Chapter 3) 

for a transverse outer shell section subjected to combined load. 

Rotational restraint at supports due to stiffeners (k ) was taken as 

1350 in. lb/in. and the central initial deformation was taken as a quarter 

of the plate thickness (wo/h = 0.25). 	The solution degenerated, which 

has been shown in Chapter 3 to be a good measure of the column buckling 

load, at slightly above 10.25 p.s.i. transverse pressure and 1127.5 lb. 

in-plane load. 	For zero rotational restraint the column buckling load 

was found to be 665 lb. compared to 850 lb. for the corresponding panel. 

Increasing the restrained beam-column buckling load in the same proportion 

gives a restrained panel buckling load of about 1435 lb. which corresponds 

to about 13 p.s.i. transverse pressure or 1.3 times the assumed working 

load. 	It would seem possible therefore, that panel buckling combined 

with extensive yielding due to overall and local bending, could relate 

directly to the observed collapse load. 

Figure 142 is a plot of overall central deflexion, and local 

deflexions in panels 1 and 3, for the failure test. 	The beam-column 

solution for effective rotational restraint and corresponding central 

deflexion is also shown. 	Non-linearity becomes apparent in the overall 

deflexion at about 0.6 of the assumed working load. 	The overall 

stiffness decreased rapidly beyond the assumed working load which is 

very close to the beam-column buckling load. 
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CHAPTER 6  

CONCLUSIONS  

1. LOSSES IN PLATING EFFECTIVENESS 

1.1 Shell Plating  

An elastic analysis of overall behaviour of plated grillages using 

the orthotropic plate approach should take account of loss of shell 

plating effectiveness caused by shear lag and local panel bending. For 

the model, which was typical of many dry cargo ships, shear lag 

dominated the longitudinal losses and local panel bending dominated the 

transverse losses. 	The span to flange width ratio was about 6 in 

both directions for which the unstiffened flange shear lag loss would 

be about 71% but due to longitudinal framing this was doubled in the 

longitudinal direction. 	The 3:1 side ratio of shell panels (3 longitudinal) 

resulted in negligible longitudinal and about 15% transverse loss of flange 

effectiveness due to local panel bending. 

Losses due to shear lag depend on section geometry, boundary conditions 

and the distribution (but not the magnitude) of applied transverse load. 

Losses due to panel bending are sensitive to magnitude of loading (in-plane 

and transverse) in addition to the other factors. However, provided 

the rotational edge restraint is sufficiently high, which was the case 

in the model for transverse loads up to 5 p.s.i., the magnitude of the 

load is of secondary importance compared to the effect of initial 

deformation. 	Hence, it appears that local panel as well as shear lag 

effectiveness calculations may be made, in certain cases, without 

reference to actual stress levels. 
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In the case of the model, 'calculation of panel bending 

effectiveness was based on a measured mean central initial 

deformation to plate thickness ratio (w
0 
/h) of 0.25. 	For clamped 

or nearly clamped edges loss of effectiveness due to panel bending 

increases in almost direct proportion to w/h where it is possible 

that w
o/h may exceed 0.5 in practice. 

The combined losses used in the overall analyses of the model were 

15% in the x direction and 20% in the y direction. 	These were 

assumed to be the same in top and bottom shells and to be constant 

throughout the model. 	Losses of this order must significantly affect 

overall behaviour and the degree of agreement between theory and 

experiment indicates that they represent a reasonable assessment. 

Agreement would have been better if a distinction had been made between 

inner and outer shell panel bending losses. 

The preceding conclusions must be qualified for external load in 

excess of that applied during the elastic tests, in which load was 

restricted such that no local yielding was recorded by any of the strain 

gauges. 	In the case of distributed transverse pressure only, this 

meant that loading had to be stopped at 5 p.s.i., half the full draft 

pressure, because yielding was imminent in several perforated floors. 

In the case of combined distributed transverse load and longitudinal 

thrust, loading had to be stopped at 4 p.s.i. and-6.93 tons/in2(9 tons/ram) 

because yielding was imminent in central bottom shell panels. 	In the 

final failure test, combined load was applied in increments of 1 p.s.i. 

and-0.77 tons/in2(1 ton/ram) and non-linearity became evident in the 

overall central deflexion at about 6 p.s.i. and-4.62 tons/in2  (6 tons/ram).  

By 10 p.s.i. (full draft pressure) and-7.7 tons/in2  (10 tons/ram) the 

measured central deflexion had diverged from the linear solution by 
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about 15%, of which only 21% could be accounted for by elastic 

interaction between in-plane load and overall transverse deformation. 

This indicates a significant fall off in flange effectiveness which 

is attributed to inelastic deformation and a reduction in effective 

panel restraint below a value at which panel effectiveness could be 

computed without reference to stress levels. 

1.2 Web Plating 

Accounting for shear deformation in the orthotropic plate approach 

to plated grillage analysis requires the idealization of discrete webs 

as a continuous media. 	In the double-bottom structure, where shear 

deformation can account for more than 50% of the total deflexion, this 

idealization requires an accurate assessment of loss of web shear 

stiffness due to perforations. 	In the model, perforations reduced 

the shear stiffness by about 50%. 	It has been shown by Ho that the 

theoretical solution for a hole in an infinite plate subjected to pure 

shear gives good agreement with test results for loss of web shear 

stiffness although for design purposes an empirical equation proposed 

by Kuhn has been shown to give satisfactory results. 

The form of the orthotropic plate equations solved as part of 

this investigation precluded consideration of non-uniform section 

properties and hence local variations were accounted for by taking 

equivalent uniform properties. 	In the double-bottom model, equivalent 

shear properties had to take account of the fact that the longitudinal 

centre girder, with no perforations, was almost twice as stiff as the 

intercostals and that the bracket floors gave local increases in 

transverse stiffness near the centre girder and the sides of the model. 

The equivalent losses of shear stiffness were 20% longitudinally and 30% 
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transversely. Agreement between overall theoretical and experimental 

deflexions indicates that this was a reasonable assessment. 

No account was taken of loss of shear effectiveness due to out of 

plane web deformation. That considerable out of plane deformation 

did take place, due to initial deformation of the webs, was evidenced 

by the measured strains on opposite surfaces. 	At some locations this 

effect was severe enough to result in local surface yielding at half 

full draft pressure. 	The agreement noted between measured and 

theoretical overall deflexions up to 5 p.s.i., indicates that the error 

incurred by omitting this factor was not very significant but it is 

possible that it became significant at higher loads and contributed 

to the observed decrease in overall stiffness. 

2. 	EFFECT OF WEB SHEAR DEFORMATION ON MODEL BEHAVIOUR 

2.1 General  

The following observations are made with respect to the double-bottom 

model. - Practical cases will arise where the significance of shear 

deformation is of greater importance than observed in the model and these 

are remarked upon in passing. More general conclusions relating to 

the influence of shear deformation on orthotropic plate behaviour, for 

a broad range of plate and boundary parameters, are given in Chapter 4. 

2.2 Deflexions  

Measured and theoretical overall deflexions agreed within 5%. 	For 

distributed transverse loading the theoretical solution showed that shear 

deformation accounted for 32% of the total deflexion. 	For patch loads 
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the contribution due to shear was about 26%, 28%, 32% and 37% for 

the P8, P6, P4 and P2 cases respectively. 	The patch load results 

were obtained, of necessity, from a solution restricted to cases of 

simply supported, undeflecting edges. 	The distributed transverse 

load case was, however, amenable to analysis by a solution for 

elastically restrained deflecting edges and the actual boundary 

conditions could therefore be more accurately simulated. 	The reason 

for this distinction was the relative sensitivity of the two solutions 

to variation in transverse load distribution. 	The more general 

solution was unsatisfactory for the patch load cases because the 

effect of variation appeared in the variable coefficient matrix (left 

hand side), whereas in the simply supported edge condition solution 

this effect appeared in the loading matrix (right hand side) and 

provided the load was stepped, rather than cut off abruptly at 

discontinuities, the results were satisfactory. 

For other boundary conditions, such as clamped ends and elastically 

restrained sides, shear deformation could account for more than 50% 

of the total deflexion. 	An effect of this magnitude might be important 

when, for example, propeller shaft distortion is a consideration. 

2.3 Reactions  

As discussed in Chapter 4, the inclusion of shear deformation in 

the plate equations obviates the necessity of resorting to the Kirchoff 

equation to compute corner forces. 	These forces arise when tangential 

rotational restraint is low, which was the case in the double-bottom 

model. 
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Total measured and theoretical reactions agreed within less 

than 5% in all cases. 	The distribution of measured reaction was 

used as a basis for determining fhe effective boundary conditions 

because there was some doubt as to the influence of the in-plane 

loading beams welded at the ends of the model. 	It was concluded 

that restraint due to the loading beams had negligible effect on the 

overall behaviour of the model. 

The limitations of the orthotropic plate approach to analysis of 

the double-bottom was most evident in the end reaction distributions 

for patch loads where a peak, in line with the centre girder, was quite 

pronounced in the measured values. 	The theoretical solution predicts 

a smooth distribution. 	Much less significant peaks were apparent in 

line with other continuous webs in all tests. 	Despite this limitation, 

the orthotropic plate approach gave satisfactory results for other 

variables, for patch load as well as distributed transverse load cases. 

2.4 Stresses  

For distributed transverse load the theoretical effect of shear 

deformation on overall stresses in the model was of the order of 10%. 

This was due primarily to the influence of reduced tangential rotational 

edge restraint at the sides, an effect which can only be accounted for 

in the orthotropic plate solution when shear deformation is included. 

As already mentioned, this reduced restraint could not be accounted for in 

the solutions for patch loads, but the solution used did give localised 

increases of the same order under the loaded areas. 

Theoretical shell panel in-plane edge forces due to transverse load 

were derived from overall solutions including shear deformation. 	The 
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agreement between measured and theoretical centre panel stresses 

showed that these edge forces were of reasonable accuracy for both 

the distributed and the local transverse load cases. 

Solutions for the double-bottom model subjected to combined in-plane 

and transverse load showed that, for loading of practical interest, 

interaction between in-plane load and overall transverse deflexion due 

to load (including shear deflexion) is negligible. 	The results 

confirmed this, although measurable deflexions did occur due to inter-

action between the in-plane load and the initial overall outward 

deformation of the model. 	Thus, for practical purposes, direct 

superposition can be used to evaluate the combined overall stresses 

and the combined panel in-plane edge forces. 

Practical cases do arise where accounting for shear deformation 

can have amore significant effect on stresses. 	For example, for 

clamped ends and elastically restrained sides the maximum end stresses 

may be reduced by more than 30%. 	Shear-orthotropy may result in 

increases in maximum stress of the same order of magnitude. 

3. 	LOCAL ELASTIC BEHAVIOUR 

3.1 Shell Panels  

Good agreement between theory and experiment has justified the 

analysis of shell panels as discrete, initially deformed, isotropic 

plates subjected to transverse pressure and edge loads. 	The following 

conclusions relate to behaviour for loads of the order applied in the 

elastic tests and are qualified in the later discussion on behaviour 

observed during the failure test. 
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The analysis is dependent on an accurate assessment of local 

boundary conditions which must take account of continuity. 	This 

was done by analysing the moment-slope characteristics of a transverse 

outer shell section idealised as an initially deformed beam-column. 

The effect of stiffeners was accounted for by applying rotational 

restraint at each support. 	This restraint was derived from a 

torque analysis for angle sections restrained against warping at 

end supports and constrained to rotate about an enforced centre of 

rotation at the shell-stiffener interface. 	It was shown that this 

restraint can be considerable and it is in fact essential, if premature 

buckling of outer shell panels is to be prevented. 	The latter analysis 

was for angle section stiffeners. 	For bulb section stiffeners the 

restraint would be considerably reduced. 	The channel struts, which 

connected top and bottom shell stiffeners midway between floors, had a 

considerable effect on shell panel behaviour, since, by halving the 

stiffener span between restraints they increased the effective panel 

rotational restraint by a factor of about 16. 

Initial deformation of shell panels in the model was of sufficient 

magnitude, relative to plate thickness, to induce large deflexion 

behaviour. Although there is very little quantitative data available 

it appears likely that in ships in service the centre panel deformation 

to plate thickness ratio will be in excess of that observed in the 

model. 	Hence, design data based on linearised solutions for local 

panel behaviour cannot be assumed to be sufficiently accurate for 

practical purposes. 

3.2 Web Panels  

The distribution of measured heart of plate tangential stresses 

around web lightening holes conformed very well to a theoretical solution 



134 

based on superposition of bending and shear effects. 	The maximum 

theoretical tangential stress, due to the shear component of applied 

web load, was derived from a solution based on the equations for a 

hole in an infinite plate subjected to pure shear. 	Previous work 

has shown that this solution corresponds to the case of a discrete 

perforated panel with edges partially restrained. 	Actual measured 

maximum stresses were about 20% lower than the theoretical values 

because they were recorded at 0.1 inches in from the edges of the holes. 

A fall off in stress concentration of- this order was predicted by the theory. 

Applied shear forces used in the theoretical solutions were derived 

from the overall orthotropic plate solutions by lumping the distributed 

shear at the webs. 	At cross sections including discontinuous webs 

(bracket floors), measured stresses were compared to two solutions, 

one in which all the shear was taken by the continuous web and another 

where the shear was shared equally between all webs. 	The experimental 

results showed that the discontinuous webs were sharing the load 

although not apparently on an equal basis. 	This indicates that a lower 

shear effectiveness factor should be applied to discontinuous webs. 	Due 

to intial deformation there was considerable out of plane bending of 

perforated web panels. 	In some locations this was sufficient to give 

stresses approaching yield at half full draft pressure 

The corresponding maximum heart of plate tangential stress 

at this load was of the order of 10 tons/in
?
. 	Although the surface 

yielding may not in itself be a critical factor the corresponding 

deformation may contribute to loss of web effectiveness at higher loads. 

If necessary, additional stiffness could be achieved, without 

necessitating additional material, by bending the circumference at 450  

to give a flanged effect as is presently done in aircraft construction. 

local surface 

(5 p.s.i.) 
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Measured and theoretical centre girder web shear stresses agreed 

within 9% for the distributed transverse load case. 	For local 

transverse load the error varied from 19% to 13%. 	The increase 

in error is indicative of limitations in the orthotropic plate 

approach to analysis of plated grillages when webs are widely spaced. 

Even so, for practical purposes the method appears satisfactory for 

spacings characteristic of the double-bottom structure. 

3.3 Shell Stiffeners and Channel Struts  

The shell panel rotational edge restraint function of the shell 

stiffeners and channel struts has already been commented upon. 

Although no quantitative analysis was attempted, the observed stresses 

in these members were consistent with this function. 	The shell 

stiffener stresses due to local deformation exceeded the stresses due 

to overall bending at some points, indicating that design for local 

buckling may be desirable since this could initiate overall failure of 

the double-bottom. 

4. FAILURE 

In the final failure test transverse pressure and in-plane thrust 

were increased simultaneously at the rate of 1 p.s.i. and 1 ton/ram 

(-0.77 tons/in2) respectively. 	Working load was assumed to occur. at 

10 p.s.i. and 10 tons/ram (-7.7 tons/in
2
) where 10 p.s.i. corresponded 

to the full draft empty hold condition. 	The theoretical maximum 

overall longitudinal compressive stresses at this load were -4.5 tons/in
2 

fin due and -7.7 tons/in due to transverse pressure and in-plane thrust 
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respectively. 	Failure occurred at about 1.35 times this assumed 

working load and appeared to have been initiated by collapse of the 

central outer shell panels. 

According to the orthotropic plate theory (including shear 

deformation and loss of shell effectiveness) the load required 

to cause compressive yielding of the outer shell at the centre of 

the model was 1.25 times the assumed working load. 	If loss of 

effectiveness is ignored this factor becomes 1.56, increasing to 

1.74 if, in addition, shear deformation is ignored. 	Local surface 

yielding of central shell panels, and heart of plate web hole 

circumference yielding, began at about 0.75 of the assumed working 

load. An approximate calculation of the buckling load of a typical 

shell panel gave a central panel buckling load which corresponded to 

about 1.3 times the assumed working load. 

In the single floor test (1) the failure appeared to have 

resulted from a combination of shell and floor buckling at a solid 

floor shear stress, in way of the buckle, of about 7.3 tons/in
2
. 	The 

corresponding theoretical maximum solid floor shear stress at failure 

of the double-bottom model was about 6.75 tons/in2. 	The corresponding 

average solid floor shear stress was about 5.4 tons/in2. 	The theoretical 

solid intercostal shear stress in way of the holes 	 ediately adjacent 

to the ends was about 8.1 tons/in2 at failure. 	There was no external 

evidence of a shear failure in the double-bottom model but this remains 

to be confirmed when the model is cut. open. 

An approximate yield line analysis, taking the in-plane thrust 

as fixed at 13.5 tons/ram (-10.4 tons/in
2 
 ), gives an ultimate transverse 

pressure of about 19 p.s.i. 	This solution is outlined in Appendix E. 
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These observations indicate that a reasonable estimate of 

ultimate load may be obtained from the orthotropic plate solution, 

based on compressive yielding of the outer shell at the centre of 

the double-bottom, provided loss of shell effectiveness and shear 

deformation are taken into account. This would have to be viewed 

in conjunction with a panel buckling and web shear stress analysis. 
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APPENDIX A 

OUTLINE OF SHADE'S SOLUTION FOR COMPUTATION 

OF SHEAR BREADTH FACTOR(31)  

Any function describing the plane stress behaviour of the flanges of a 

beam must satisfy the LaGrange equation: 

V
4
F 

Where: Airey stress function defining stresses : : 
a2F  

ay
2 

a2F  

ax2 

a2
F 

axay 

The solution for a particular beam depends on the boundary conditions, 

the loading distribution and the section geometry. 	The case of interest to 

this investigation (multiple webs ) is shown in Figure 143. 

Two series solutions solutions, representing alternative end conditions 

(x = OM, were considered: 

(i) 	Fn 	fn sin LUx 

Where: 

W 	nrr/L , 

any integer 



Gives: 

ii x 
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a2f . 
2 sin  

ay 
Wx = 0 

-
2
f sin Wx = 0 

wayco cos Wx / 0 ay at x = 0,L 

This corresponds to free ends except for "t / 0 

f
ncos Wx 

Gives: 
2 

Crx  = af2 cos Wx / 0 
ay  

2 
- W f cos Wx / 0 

at x = 0,L 
-Way   sin Wx = 0 

This corresponds to clamped ends. 

Satisfaction of the LaGrange equation gives (for both series) 

f
n = (A + Cn  Ocosh 	+ (B + Dn6)y)sinh Wy n 

Three of the four coefficients can be directly defined from satisfaction 

of the independent boundary conditions: 

v = 	normal displacement = 0 

= 	shear stress = 0 at y = 0, x = 0 L 

v = 	0; 	at y = b, 	x = 0 --> L 	. 
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Substituting the stress function into the relevant stress-strain and 

strain-displacement equations for the above boundary conditions gives: 

Bn = Cn = 0 

-An
tanh Wb 

- AnK
n (IA) b 	ta nh Wb) 

=(1-JJ )/(i+Id)  

Gives: 

f
n 	An(cosh Wy + KnW y sinh Wy) 

The remaining boundary condition is: 

Mx 

Where: 

M
x 	beam bending moment at a particular section 

Z
x 	

beam section modulus at that section. 

This is the simple beam stress for the reduced flange breadth and is 

dependent on the flange effectiveness, yet to be evaluated. 	One way of 

solving for this would be to use an iterative procedure starting from an 

assumed Z
x 

distribution along the span (L). 	Shade avoids the necessity of 

iteration by defining a "boundary function" - the effective breadth for any 

given n, which he shows to be independent of x, i.e. independent of 

longitudinal stress distribution. 	This eliminates A and Shade then derives 

the actual effective breadth by a summation involving the CT boundary 

5x 
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• condition, for M
x 

defined in harmonic form (gives n series) and taking 

account of the "boundary functions" in Z. 

Thus, for a given n, the loss of effectiveness based on web stress is 

(see Figure 143(1i)): 

rb of 
0  gxndY 	 ay 

a2f 
2 + 	W 2f 

ay .  

Substituting for f
n 

gives : 

n  
4 	(cos a - I)  
a 3 p)sinh a - (1+P)a 

Where : 

a 	= 	2 LO b 

This is the required 'boundary function' for the particular section, A 

has cancelled out and the expression is independent of x. 

Now, if the moment distribution is defined as a harmonic function 

(Fourier series): 

M 
x 	

= 2 Mn sin W x 

Then for a particular n : 

M
nx 	

= Mn sin Lox 

o-nx 	Znx 

1xn 

b 

yb 

Mnx 

b 

Jo 

X nx o-nx 
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Finally, the actual effective breadth is: 

X sin. Wx 
nx 

2 anx
sin Lix 

Or; 	Shear Breadth Factor: 

2 (f)(-211x) 
nx 

 

nx,1  
Z

nx
i  

Shade gives values of shear breadth factor for a limited number of beam 

sections and load distributions. 	In order to obtain the factors required as 

part of this investigation, the preceding expressions were programmed for 

solution on the University of London Atlas Computer. 	The generality of the 

solution is defined in Chapter 3. 	The results confirm,=.d Shade's suggestion 

that although section geometry does significantly influence local loss of 

effectiveness in the case of patch loads, the overall (beam) loss of effectiveness 

can be based on uniform load and is independent of section geometry for 

practical purposes. 

The double-bottom model analysis required solutions for the distribution 

of stress across the flange so that stresses could be estimated at points removed 

from the flange-web interface. 	These were obtained by extending Shade's 

solution for the simply supported end case as follows: 

We require: 

a2F 

ay2  

  

n 
[(1+2K)cosh Wy +K

n
Wy sinh W sinh Cox 

 



146 

To evaluate A
n' 

consider: 

a2f 
Mersin Wx 

2 
(-- + p W2f) sin Wx — 	 Grnx 	 Z ay 	 nx 

Gives: 

An 
W

2
Ln 

(1 + 2Kn
+Thcosh Wb + (1+P)K

n
Wb sinh WI) 

Hence Crx distributions were derived by summation of the above 

expressions. 
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APPENDIX 

SERIES SOLUTIONS FOR PLATE EQUATIONS INCLUDING 

SHEAR DEFORMATION 

Two alternative series solutions, based on the work of Robinson(17) 

and Salerno and Goldberg
(39)

, were programmed for the purposes of establishing 

the practical significance of shear deformation in relation to deflexions in 

the double-bottom model, and also to give check values for the finite 

difference solutions. 	This Appendix outlines the derivation of the series, 

the programs for the solution of which were written for the University of 

London Atlas Computer as part of the present work. 

The basic difference between the two solutions is that Salerno and 

Goldberg attempt a more rigorous satisfaction of the simply supported boundary 

condition. 	The results in Table 6 show that the effect is insignificant. 

Except where noted otherwise, the notation used conforms to that in 

the main text. 	In both solutions the origin of the co-ordinate axes is taken 

at the corner of the plate and not at the centre as shown in Figure 49. 

1. 	ROBINSON'S SOLUTION 

This is a solution for Libove and Battlorf's(10) 
equations for rectangular 

orthotropic sandwich plates under combined transverse and in-plane load. 

The plate properties are implicitly constant throughout the plate. 
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The particular loading considered is uniform in-plane load in the x 

direction, N
x
, and uniform transverse load, defined by the following double 

Fourier series : 

co 	co 
= 7 

m=1,3,5... n=1,3,5... 

Where:cimn = 16q/(Tr2mn) 

q
mn

sin —mux  sin nTr Y ab 
 

The following series were assumed to describe the three variables, w, Qx 

and Q
r' 

 in the governing equations (1), given in Chapter 4. 

W = A 
co 

E 	Z
. 

sin 
 mrrx sin  nn y --  mn 	a 	b 

m=1,3,5... n=1, 3,5 , , . 

co 	cc 

E B 	cos  mux, sin nu  Y 
m=1,3,5.., n=1,3,5... mn 	a  

co 	co 
Q 	= 	 C 	sin 'flux  cos nu 

y.  
m=1,3,5.. , n=1,3/5... mm 	a 

These implicitly satisfy the following simply supported boundary conditions. 

= 

Q 

0 

0 

Y = o> Q = 0 

= 0 

= 0 

0--> Q = 0 
S
x 

At c x = 0, a : 	w 

M
x 

aw _ 
ay 

At y = 0, b 	w 

M 
y 

aw 
ax 

Infinite tangential rotational restraint is implicit in the above equations 
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(K
3x 

= K
3y 

= co). 	The constants Amn
,  Bmn and  Cmn 

can be obtained by 

substituting the above series into equations (1) and solving term by term, to 

give: 

	

Wmn 	
X 	 Ymn 

cirnn Z 	 Z 
mn 

Amn 

	

	 Bmn 	qmn 	
C = - q 

- 

	

mn 	 mn 	mn 	mn Zmn 

Where: 

Wmn = 

Xmn = 

Ymn = 

4 	 4 
a m + a2

m2  + a
3

m2n2 + a n2 + a5n - 1 
4 

b2m3
, 4 

bm5  + 	+b
3

m3n2 +b4
mn2 + D mn 

1 	 5 

c
l
m4  n + c

2
m n + c

3
m2n3 + c n3  + c

5
n5  

Defining: 

4rr
2 

 D 

Then: 

r 
	

P/(4Sy) 

k 
	

D 
Y 

S 
Y 

Dx/Dy  

a/b 

ii x 
	Ii 

p D_/DX 
	

(from Maxwell's reciprocal law) 
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• -al  1:11A2134) 

a2 	
• 	r(k/E n(k- p2)/ (2k))//2  

03 	= -a/  (k- YpA)/132  

04 	
• - r(l+n(k- iu2)/(2k 6 )) 

05  = -a/n/2 

al  = r2 'ill
2 
 AVE 

a3kY1/(2134) 

b2  = a2k/132  

b3 	= a3(k- flp )/i32  

b4  = a2(11 (k-P2)/k p 

• 03 fl /2 

a
2 	

= P 
Y
Tr/(414) 

= a2r(k-p2)/k 

ci  = -05  11/(2(3
4
) 

c2 	• -04( (k-  P2)/(k P2) + P/(32) 

c3 	-a5(k->1).,1)/132  

-04 

• a511 /2 

04 

05 
= a4 r(k-p2)/(E k) 

Hence•deflexions and shears were computed by the evaluation of the 

preceding coefficients and summation of respective series. 	In addition, 

moments were computed from the following relationships, derived by 



151 

substituting the series expressions into equations (41) given in Appendix C. 

co 	a) 
(f m6 + f m

4 + f m4n2 fAell2n2 

m=1,3,5... n=1,3,5..
1. 	2 

2 	2 gm 	max  
+ f

5
m2 n4  + f

6
n4 + f

7
n6 + f

8
m + f n ) 	sin 	sin nny 

9 Zmn 

2 	1 O
m6 + fm + fl 

m
4n

2 + m2  n 2 
1 

m=1,3,5... n=1,3,5 

2 clmn 	mnx 
+ fi4m2n4 fi5n4 + fi6n6  + furn2  + f18n )-z--- sin a  sin nny 

mn 

	

03 a,  
M 	= 	E 	 m5n + 	m3n + f21  m

3n3  + f22mn3  
xy m=1,3,5... n=1,3,5... 

5 	, clmn 	M Tr X 	nny 
+ f23mn  + f mn) 	cos— cos 

a 24 -2—mn 

Where: 

fl = elal • e3b1 

f 	= e
1
a
2 

+ 

	

2 	e3b2 

f .  = ea +ea+eb +ec 

	

3 	1 3 	2 1 	3 3 	4 1 

	

f
4 	

= e
1  a4 

 + e2a2 + e3b4 + e4c2 

	

f
5 	

eia5 +e
2
a
3 
 + e3b5  +ec 

4 3 

f6 
=+ 

e2a4 e4c4 

f
7 
	

e2a
5 + e4

c
5 

f8 = -el  

	

f9 
	

-e2 
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-a6a7 
2 
 
2 

e2 
• -a6a8  1,;

( 

• -a6a7/sx 

a6a8 P/Sy 

a6 	= Dx/(1- p2) 

a7 = n/a 

as • n/b 

flO = e6a1 	e8b1 

f
11 

= 
e6a2 e8b2 

f12 = e5a1 	e6a3 e7c1 + e8b3  

f
l3 
	e5a2  + e6a4  + e7c2  + 

e8b4 
= e  f 	5-a  3 + -6-5 + - 

e 
7c3 • e8b5 

f15 = e5a4  + e7c4  

f16 	e5a5  + e7c5  

fl7 	-e6 

118 	-e5  

2 e5 	
-al 0% 

2 
010°7 )J 

e7 	
al 0a8/Sy 

-al 0°7P/Sx 

al 0 = D/(1 -P2)  

f19 = e9a1 	el0c1 	e  lbl 

f20 = 20 	e9a2 + el 0c2 + el 1b2 



153 

f
21 

= e
9
a
3 

+ e c + 
10 3 	e11 b3 

f 	= 	
94 + e 

22 	
ea 	

10
c 
 4 +  e11b4 

f
23 

= e
9
a
5 

+ e1 oc5  + ei 1135  

f
24 = -e9  

e, = -a7a$Dxy  

e
10 = a7Dx/(2Sy) 

ell 	-a8Dx/(2Sx) 

Solutions for deflexion, shears and moments were checked against 

isotropic plate solutions for negligible shear c'eformation from Reference 36, 

and also against solutions for shear-orthotropic plates including shear 

deformation from Reference 16. 	Agreement was quite satisfactory. 

For plate properties of the order of those for the double-bottom model 

it was found that shear deformation accounted for about 30% of the total 

deflexion. 	This showed the practical significance of shear deformation 

and indicated the desirability of further investigation into the effect of shear 

deformation on plate behaviour, for alternative boundary conditions. 

2. 	SALERNO AND GOLDBERG'S SOLUTION 

This is a Levy type solution of Reissner's equations(12)  for the case 

of simply supported rectangular homogeneous isotropic plates under transverse 

load. 	These equations are the same as Libove and Batdorf's if the terms 

relating to stress - and strain normal to the plane of the plate are removed. 

In the following presentation Salerno and Goldberg's solution is modified 

for the case of non-homogeneous plates and the notation is modified to 



(9) ay 2Cs ay (1-'u)°
(1-,D  

y 2C 
-D  a02w 	(1-F,L)D aq 

2 
w  Mx 	-D ( a  2  + (1—p )D aQx _,U D 

C 	(10)  C 	ax 
a2w 

ay
2 

ax 
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conform to the preceding theory. 

Assuming infinite flexual stiffness normal to the plane of the plate, 

Reissner's equations are as follows: 

Governing equations: 

aQ 	ac) x Y _ + 
ax 	ay 

Q -  (1-)i)D 	2Q = -D 
av2 -  0 w 	+,u)D aq  

V x 2C 	x 	ax 2C ax 
s 	 s 

(7) 

(8). 

Where: = S = S 
x y 

V2 a282  ax2 ay2 

Moments: 

a22 	a2
2 	(1 	)° 	,Y - 	D 

(11) M = 	P 	
ac) 

s 	
ay 	c s ay 	ax 

c) 	aa 
y 

	

a2w 
	(1-1  )D 	x Mx 	-(1-,U)D z  + 2C 	ay 	ax x 

Eliminating Q and Q from equations (7,8,9) gives: 
x 	y 

D 
D V 

4
w = — V 

2 
q C q  

Where: 
	

V
4 

= V
2 
V

2 
 

Salerno and Goldberg separate the solution into two main parts. 

(12)  

(13)  
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Firstly they use a stress function approach to derive solutions for Q and Q 
x 	y 

satisfying equations (7,8,9) in terms of w, q and four constants. 	Secondly 

they define a deflexion function, w = f(x,y), undetermined in y and 

satisfying the boundary conditions on x = 0,a. 	They use equation (13) 

to derive an expression for the y function which involves two coefficients 

which, together with the coefficients in the shear solutions, are then 

eliminated using conditions of symmetry and boundary conditions. 

Shear Solution: 

Particular integrals (satisfying equations (7,8,9)) are given by: 

Qx 
-D 

 a v2w 	D aq 
ax 	C

s 
ax 

Q 	
— 
	r, a7

2
w 	D a 

•••••••"'"-- 
Y1 	 ay 	C

s 
ay 

Where: 
Qx Qx2 	 (16)  

Qy1 + Qy2 	
(17) 

In which Q
x2  and Q

y2 
 are the complementary functions which, in order to 

satisfy the homogeneous parts of equations (7,8,9), are given by a stress 

function, if, such that: 

(1 8) 

Qy2 = - 
ax 	

(19) 

Where: 	- k2V2tS = 0 	 (20) 

2 
In which: 	k 	= (1-iti)D/(2Cs) 

(14)  

(15)  

ass Q = x2 	ay 



156 

The solution of (20) is: 

(Ci  sin px + C2  cos px) cosh 1-1 y 

+ (C3 sin px + C4  cos px) sinh Yi y 	 (21) 

Where: 
	 2 

+ P
2 

Hence: 

Qx 
-paVw 	D aq 

ax 	Cs  ax 

+ 	[ (C1  sin px + C2  cos px) sinh 	y 

+ (C3  sin px + C4  cos px) cosh y (22) 

2 aV w 	D aq 
-D ay 	C

s 
ay 

+ p [ (C1  cos px — C2  sin px) cosh 1 y 

+ (C3  cos px — C4  sin px) sinh 	(23) 

Deflexion Solution: 

In addition to the simply supported boundary conditions satisfied by 

Robinson's solution, Salerno and Goldberg attempt to satisfy a curvature 

condition which reflects the effect of shear deformation, namely, normal 

curvature / 0. 

For this purpose they choose a deflexion function of the form: 

w 
co r 96 

24D 	. 	L —2- Y(y) 
1,3,5... av 

sin vx 12D (ax - x2)] (24) 

Where: 	v = mirja, 	m = 1,3,5 	 
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Satisfaction of the non-homogeneous governing equation (13) defines 

the y function. 	Substituting (24) into (13) gives: 

d4Y - 2v2 d
2Y —4- - 2v —2  + v4  Y = 

dy 	dy 

The solution for which is: 

Y 	C5  cosh vy + C6  vy sinh vy + 1 

Hence the deflected shape is given by (26) and (24) and the shear 

forces by (26), (24), (22) and (23) thus: 

co 	2 
_ 4c1 	 r  d Y 

a 
1,3,5... v4  dy2 v2Y] cos vx 

E 	C4  cos px cosh y 	 (27) 

op 
_ 	z 	1 [d3

Y 2 dYi 

	

a 	
7 	3  v --d-y- sin vx 

1,3,5... v dy 

	 p 4  sin px sinh Y1 y 	 (28) 

	

Where C
1 = C2 = C3 = 0 from symmetry. 	The remaining constants can 

now be eliminated from satisfaction of the boundary conditions. 

	

On x 	a: 	w = 0 	 (29) 

M = 0 	 (30) 

aw _ 
ay Cs 

= 0 	 (31) 

(29) and (30 are automatically satisfied. 

(31) gives: 

MIT 
p 

 

a 

(25)  

(26)  
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On y = 0, b: 	w = O 	 (32) 

MY  

aw Qx 
ax Cs 

(32) gives:.  

C5  cosh am  + C6  am  sinh am + 1 + --c— v2 = 

Where: 

= vb/2 

(33) gives: 

C6  = 1/(2 cosh am) 

(34) gives: 

2 av 2C6  cosh am 	C4T1 cosh (2) 

Substituting (36) into (35) gives: 

(36) 

= o 	(37) 

2 
—(1 + Dv 

C 
+ a

m tanh am/2)/cosh am 
s 

Substituting (36) into (37) gives: 

C4  = 0 

Hence: 

co 
2(1+   C5  cosh vy + C6  vy sink vy) 

1,3,5... 

D3 j  sin vx 
Cs v 

Where: (x2 	ax) = — a — 	j. sin vx 
b3,5... v 

O 
	

(33) 

0 
	

(34) 

(38)  

(39)  

W 
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OD 

Qx = 	- a 	2 	2 [2C
6 

cosh vy 1] cos vx 
1,3,5... v 

- 2. _1 	z 2 [2C sinh vy] sin vx 
a 

1,3,5...v 	
6 

3 
1 M 	—41 	(1 + C5  cosh vy + 

x a  
1,3,5... v 

vy sinh vy) 

cosh vy + 2C6  cosh vy + C6  vy sinh vy) 

(1-P)D  (2C6 cosh vy)] sin vx 
v C 

4 
OD 

'1  
L 

v
3 a 	••`-' cosh vy + C6  vy sinh vy) 

- 3 (C5  cosh vy + 2C6  cosh vy + C6  vy sinh vy) 

()D  
(2C6  cosh vy)] sin vx 

v Cs 

xy 
(1-)- )4q 	((C5 a  

sinh vy + C6  vy cosh vy) 
1,3,5... v 

D 
+ 	C 	C6 

sinh vy] cos vx 
s  

Hence deflexions, shears and moments could be computed at various 

points throughout a plate by calculating C5 and C6 
and summing the respective 

	

series to any desired degree of accuracy. 	It was found that Salerno and 

Goldberg's and Robinson's solutions differed only slightly, near the boundaries, 

and agreed almost exactly at the centre of the plate, as shown in Table 6. 
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Salerno and Goldberg's solution exhibited a slight lack of symmetry in 

problems where the behaviour was implicitly symmetrical. 
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APPENDIX C 

DETAILS OF FINITE DIFFERENCE SOLUTION OF MIXED VARIABLE 

ORTHOTROPIC PLATE EQUATIONS INCLUDING TRANSVERSE SHEAR 

DEFORMATION  

(GENERALISED BOUNDARY CONDITIONS) 

1. OUTLINE OF DERIVATION OF EQUATIONS(10) 

1.1 	Displacement Equations  

Shear deformation is accounted for by defining the shear contribution 

to slope of the middle surface of the plate along the x and y axes as 

follows: 

aw, Qx = 
ax 	Y = Sx 

aw 
— Y` _  Q2 ay Y Sy 

These expressions give additional terms to be added to the ordinary 

plate theory expressions for curvature and twist in terms of forces for an 

internal plate element (Figure 48) thus: 

S 

My  , aQ 

- 
a2w 	

m 
 x 	y 	i 

1 	—D---  ' y 	-1-  ----- 
ax 	x , 

	
D y 	x a> 

2 	M 	M 	aa 
1  v w2 — '13 	iLl  x 75 + S 	ay 

x 	1 
	

y 
(b) 

ay 	Y 	x 	y 

a2w = 
mxy .1_ 1 1 

aQ
x + 1 1 

aQ 
Y  (c) 

axay 	D
xy  -

2-  S
x 

ay 	2 Sy ax 

(a) 

(40) 
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Solving in terms of moments gives: 

D
x  r a taw _ QX ) 4- t I if aW  - Y) 

	

Lax 	ay Sx 	ay ‘ ay 5
Y  

_ 	
D
r 	a ( aw a aw 	x Y) 	 ) 
x,U [ay ay 	S 	x ax ax 	S

x y 

xy 	r a (aw 	Y) 	
x 

—(*F 
aw 

T )-I -  D y L 57( afy 	sy 	ay x 

1.2 Equilibrium Equations 

As for ordinary plate theory (Reference 36) 

Equilibrium of vertical forces requires: 

a2
M

x 	a2M 	a2M 	 n2 W 
	

n2 

ax
2 2  axay 

" + 	— (q 	u
x ax2 

N
y ay 2 

+ 2N
xy axay (a) 

aY 
2  

Equilibrium of moments about y and x axes requires: 

   

 

(a)  

 

   

 

(b)  (41) 

 

(c)  

 

   

am am xy + x 
ay 	ax 

am am _ 	xy + 	y 
ax 	ay 

(42) 

1.3 Governing Differential Equations 

The governing equations, (1), are given in full in Section 1.1 of 

Chapter 4. 	Equation (1), (a) was derived by substituting for derivatives 

of moments in (42), (a) from (42), (b) and (c). 	Equations (1), (b) and (c) 



163 

were derived by substituting for derivatives of moments in (42), (b) and (c) 

from (41), (a), (b) and (c). 	This gave three independent mixed variable 

(w, 	Q 
x 
 , 0 

y
) equations. 	It is possible to reduce these equations to three 

independent single variable equations but this places restrictions on the 

boundary conditions which can be treated, because only the simply supported 

condition is amenable to reduction to a single variable. 	Solution of this 

single variable form of the equation is discussed further in Appendix D. 

1.4 Boundary Conditions  

For a system of edge forces denoted by M , M and Q along those 
x y 

boundaries parallel to the y axis, and M
y' 

M
xy 

and Q
y 

along those 

boundaries parallel to the x axis, Libove and Batdorf(10)  derived the 

expression for the total potential energy of the system. 	Minimisation of 

this expression gave the following boundary conditions relating internal and 

external edge forces: 

At x 

At y 

= 

= 

+a/2: 

b/2:  

aw 	a = 

= 

TT 
xy 

— TO. 
y 

= My  

= • "FiC
xy  

(a)  

(b)  

(c)  

(a)  

(b)  

(c)  

(43)  

(44)  

Q + Nx 
	

+ N
xy a

w  
y x 	ax  

Mx  

M= 
xy 

aw 	aw  + N Qy 	Ny ay 	xy ax 

My  

Mxy 

Substituting for moments from equations (41) and relating the 
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external forces to a discrete spring system gives equations (3) and (4) 

(Chapter .4). 

1.5 Equations in Non-Dimensional Form 

By making the substitutions given in section 1.4 of Chapter 4 th e 

equations become: 

Governing equations: 

2 	av - 	8V- - 
a 	82W 	a w 	x 

Al 	 + ----,--Y - AO 	 tl) + A2 
ay2 

+ A3 
axaY 

 + A4 8X 	a T 
a 

a w 	a3W 	
2 

	

a2 V 	a- v- - 	 a
2
v 

A6 	+ A7 	,) +A8 	
x  + A9 	x  +A10 V + Al 1 	Y = 0 (b) (45) 

ax3 axar 	aY2 	ax2 	x 	axaY 

n3w 	Ow  a2v  

Al2 v  ",4 	
ax2aY 	 ax2 

	

+ A13  v  " + A14 	x 	

a2v 	a2v  

+ Al5 	Y + Al6 	Y +A17 V =0 (c) 
ar axay 	 aY2 	y  - 

Boundary conditions: 

At x = a/2  : 

A21 W + A22 aW 	aY ax  
+ A23 	+ A24 V = 0 aW 	

(a) 

2 	-2 	 av 	av 
a w 	a 	ax x 	8X A25 	+ A26 	+ A27 	+ A28 V + A29 	+ A30  ayY - 0 (b) 

ax ax2 

A31 axaY 	aY 
+ A32 aw 	

aY 
+ A33 —x + A34 VY 

	ax + A35 	- - 0 a 2W 	 av 	 av  --I 
	 (c) 

(46) 



Where: 

AO = 

Al = 

A2 = 

A3 = 

A4 = 

A5 = 

A6 

A7 

A8 = 

A9 = 

N' 

£ 2 NI/a 

2N' xy 

1 
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At y = b/2 : 

A41 W + A42 aw + A43 aw + A44 V = 0 ax 	ay y (q) 

av 	 av a2W 	a2W 	. a W A45 	 2 + A46 ----, + A47 	+ A48 x  + A49 V + A50 Y - 0 (b) 
ar 	ay 	ax 	Y 	a Y ax 

a 82W 	aw 	 vx 	av  A51 axay 	ax + A52 	+ A53 Vx 	8Y 	ax + A54 	+ A55 Y - 0 	(c) 

(47) 

Al 0 = 

All = af3/(2 2yy) + a )-1)7( 6 2Yy(1-  Px  )-1y))  
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Al2 	= 	-1/(a(1-Px  )-1y)) 

Al 3 	= 	- 	Px/(3(l - 	Py)) 

Al 4 	= 	P/(2Y) :E• ilixAaK0 - Px  Py)) 

A15 	= 	ap/(2 2yy) 

Al 6 	E 2yy(l - px)y) 

Al 7 	• = 	1 

A21 	= 	Klx 

A22 = N' x 

A23 = N' xy 

A24 

A25 = 1 

A26 

A27 	= 	K2x(1- /.fix  
Y 

A28 	= -K2x(1- px jjy)/Yx 

A29 = -1/Yx 

A30 •= 	- a/( E 2yy) 

A31 	= 

A32 = K 3x 

A33 	= 	-PA2  yx) 

A34 	. 	-K3xa/( & 2 yy) 

A35 	= 	-af3/(2 E2yy) 
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A41 	= 	K
ly 

A42 	= 	1\1' xy 

M3 	= E 2NVa 

A44 = 1 

A45 	= 	/U /a 

A46 = 1/a 

A47 	= 	K2y  6 (1- Px  Py)/a 

A48 = -Jux/(aYx) 

A49 	-K2y(1-  Py)/( Yy  ) 

A50 	= 	-17( 6 2yy) 

A51 	= 	13  

A52 	= 	K3y  6 /a 

A53 	= 	-K3y 6 /(ayx) 

A54 	= 	-P/(2;!() 

A55 	= 	-4/(2 6 2Y y) Y 

2. 	FINITE DIFFERENCE APPROXIMATIONS TO THE DERIVATIVES 

The computer program incorporated a subroutine for the derivation 

of finite difference coefficients based on the LaGrangian polynomial for 

five points. 	This gave the facility for using a graded mesh which it was 

proposed to use for cases of patch loading. 	It was found, however, that 

this did not overcome problems associated with discontinuities in load 

distribution and all solutions given in this thesis were for uniform mesh 

along each axis. 
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For the curve shown in Figure 144 the LaGrangian polynomial is as follows: 

Denote: 

And: 

a  

a
2 

03  

04 

X X 
0 

X - xl 

x x2 

x x3 

x - x4 

ko  = (x0-x1 )(xo-x2)(xo-x3)(x0-x4) 

k 
1 	(x1  -x0)(x 1  -x2)(xi  -x3)(x1  -x4) 

k
2 = (x2-xo)(x2-x1)(x2-x3)(x2-x4) 

k
3 = (x3-x0)(x3-x1 )(x3-x2)(x3-x4) 

k
4 = (x4-xo)(x4-x1)(x4-x2)(x4-x3) 

Then: 

a a2a3a4/ko)wo  + (a0a2a3a4/k
1  )wi  

(aoal a3a4/k2)w2 (aoa  1 a2a4/k3)w3 

+ (aoa a2a 34:4) w4  

Hence, general expressions for the required derivatives: 

Denote: 

bo 

b2 

63 

b
4 

ael a2 1  

0001 031  

000104 ' 

a oa2a
3 ' 

0
°02

0
4 ' 

b
7  

b8 

b9 

a a a o 3 4 

a a a 
1 2 3 

.0
1
0
2
0
4 

a I a3a4 

a2a
3
a
4 



aw 
ax 

a2w 
ax

2 

a3w 
ax3 
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Then: 

= ((b9+b8+1)7+b6)/ywo  + ((b3+ 4+ +b )/k )w1  

+ ((b +b +b +b )/k )w + ((b +b 	+b )/k )w 2 5 8 	2 	0 2 4 7 3 3 

+ 	((bo+b1  +63+b6)/k4)w4  

Denote: 

aoal, 	c5 	0103  

Cl 	0002, 	 • 	ala4 

0003, 	c7 	
0203 

0004, 	 a2a4 

c4 
	

01 132' 
	 0304  

Then: 

= 	(2 (c4+c5+c6+c7+c 8+c 9)/ko)wo  

+ (2(c1  +c2+c3+5+c8+c9)/k 1 )wi  

+ (2 (co+c2+c3+c +c6+c9)/k2)w2  

+ (2 (co+c +c 3+c4+c 6+c 8)/k3)w3  

+ (2 (co+c +c2+c4+c5+c7)/k4)w4  

And: 

(6 (a +a2+0 3+a4)/ko)wo  + (6(ao+0 2+a 3+a4)/k 1  )w1  

(6(ao+a 1  +a3+a4)/1 2)w2  + (6(ao+a 1  +132+04)A3  )w3  

+ 	(6 (a o+a +a2+a3)/k4)w4 
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For the particular case of even mesh divisions the preceding 

expressions give the following solutions for difference coefficients (5 point). 

For: 

amw (Aw +Aw +Aw +Aw +Aw) 
axm  D* o o 	1 1 	2 2 	3 3 	4 4 

Where: 

order of the derivative 

n 	 node at which derivative taken 

h 
	

length of mesh division 

m n D* A o Al  A2   A3 A4 

0 12 h -25 48 -36 16 -3 

1 12 h -3 -10 18 -6 1 

1 2 12 h 1 -8 0 8 -1 

3 12 h -1 6 -18 10 3 

4 12 h 3 -16 36 -48 25 

0 12 h2 35 -104 114 -56 11 

- 	. 1 12 h2 11 -20 6 4 -1 

2 2 12 h2 -1 16 -30 16 -1 

3 12 h2 -1 4 6 -20 11 

4 12 h2 
11 -56 114 -104 35 

0 4 h3  -10 36 -48 28 -6 

1 4 h3 -6 20 -24 12 -2 

3 2 4 h3 -2 4 o -4 2 

3 4 h3 2 -12 24 -20 6 

4 4 h3  6 -28 48 - -36 10 

Table 9 
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The derivative coefficient notation used in the program is given in 

Figure 146. 	Thus, for example, the coefficients for the central difference 

a 	a approximation to -6-5?:  and 	for even mesh would be as follows: aY 

a 	 a 
ax 	 aY 

EO = 1/(12 hx), E15 = 1/(12 hy) 

El = -8/(12 hx), E16 = -8/(12 hy) 

E2 = 0, E17 = 0 

E3 = 8/(12 hx), E18 = 8/(12 by) 

E4 = -1/(12 hx), E19 = -1/(12 hy) 

Where: 

hx 	= 	1/(2I) 

hy 	= 	1/(2 E J) 

3. 	LOCATION OF SPECIFIC FORMS OF DERIVATIVES 

Figure 147 shows the forms of derivatives used at various nodes in a 

plate quadrant. 	The two alternative treatments of the corner deficiency 

(one more unknown than there are equations) are shown. 	The extrapolation 

method was based on the assumption that the fourth derivatives of the variables 

(W, Vx' Vy) along the diagonal were independently zero, i.e. a cubic 

extrapolation. 
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For the mesh. notation shown in Figure 145 this gives: 

84w 
- 24(wc/ko  + w1/k1  +w - 	 /1<3 w/k4)  = ar

4 

Where: 

ko 	= 	(ro-r1 )(ro-r2)(ro-r3)(ro-r4) 

k1 
	(r1 -ro)(r1 -r2)(rl-r3)(r1  -r4) 

k
2 
	

(r2"-ro)(r2-1.1 )(r2-r3)(r2-r4)  

k
3 	(r3-ro)(r3-r1 )(r3-r2)(r3-r4) 

k
4 	= 	(r4-ro)(rer1)(r4-12)(r4-r3) 

0 

r1 
	

[(xi-x0)2  + (yry0)2  

1 + 	
2 

r2 	r 	
[ (x2-x ) 	

,2 1 2  
(Y2-71) J 

r3 	 [ (x3-x2)2 	( `Y 	
2 

r2 	 3-72` 

r4 	 [ (x4-x3)2  + (y4-73)2  

For the case of even mesh along each axis the extrapolation eqUations 

reduce to the form: 

wo - 4w + 6 w 	w + w 

	

1 	2 	3 	4 

4. 	PLATE EQUATIONS IN FINITE DIFFERENCE FORM 

Figure 148 shows the general form of the governing equations and 

boundary conditions. 	The coefficients were given by the product of the 
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appropriate plate constants and derivative coefficients. 	As two typical 

examples of the governing equations and boundary conditions, expressions 

for the coefficients in regions A and B (Figure 147) respectively are given 

below. 

4.1 Governing equations (A - all central differences) 

Equation (45),(a) 

do 
	E7A1 + E22A2 + FOA3, 	 = E9A1 + F9A3 

d l 
	= 	E8A1 + F1A3, 	 d1 0 = E24A2 + Fl 0A3 

d2 
	E23A2 + F2A3, 	 d11 	= E5A1 + F11A3 

d3 
	E6A1 + F3A3, 	 d12 	= E20A2 + F12A3 

= FnA3 

E2A4, 	 e9  = E4A4 

E3A4, ei  .1 	= EOA4 

e3 	E1A4, 

	

rest: 	en 

E17A5, f10 	= El 9A5 

f2 
	E18A5, 	 f12 = E15A5 

f4 
	El6A5, 

	

rest: 	 0 

AO 



Equation (45),(b): 

d
o 

= 

d
1 

= 

d
3 

= 

E12A6 + HOA7, 	d9 = 	E14A6 + H9A7 

E13A6 + H1A7, 	d
11 

= 	El0A6 + H11A7 

El 1A6 + H3A7 , 

rest: 	d 	= HA7 . n 	n  
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E22A8 + E7A9 + A10, e9  = E9A9 

= 	E8A9,
e
10 = E24A8 

= 	E23A8, 	 ell  = E5A9 

E6A9, E20A8 
e12 7--  : ' 

= -- 	 E21A8, 

rest: e
n = 0 

:7- FnAll, 

0 

0 a 24 

Equation  (45),(c) 

do 	E27Al2 + GOA13, d
10 

= 	E29Al2 + G1OA13 - 

d
2 	E28Al2 + G2A13, 	d

12 	E25Al2 + Gl2A13 

d
4 	E26Al2 + G4A13, 

rest: 	dn 	= 	GnA13 

F Al4 	, 	 n 0 —> 24 

f
o  E7A15 + E22A16 + A17, f9  = E9A15 

f
1 

= E8A15, f
10 

= E24A16 

f2 = E23A16, 
-
f
11 = E5A15 

f3 

f
4 

= 

= 

E6A15, 

E21A16, 

f
12 

= E20A16 

el  

e2 



d1  1 

d3 14 

d5 

d8 

E8A25 + E22A26 + E3A27, 

E6A25 + E1A27, 

E23A26, 	 d19 

E21A26, 

rest: d = 0 

d 	= 	E7A25 + E2A27,,  E9A25 + E4A27 

E5A25 + E0A27 

E24A26 

E20A26 
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rest: 	fn 	0 

0 

4.2 Boundary conditions (B - x derivatives backward, y central) 

Equation (46), (a): 

E2A22, 

dl 
	A21 + E3A22 + El 7A23, 

d3 	ElA22  

d9  = E4A22 

dll = E0A22 

d14 	= 	El 9A23 

El 8A23, 	 d19 = 	El 5A23 

= 	El 6A23, 

rest: 	dn 	0 

= 	A24 ; n 	0 rest: 	e  

fn 	0 , 	n = 0 —> 24 

0 

Equation (46), (b): 
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eo = E2A29, 	e9  = E4A29 

= 	A28 + E3A29, el 1  = 	E0A29 

e3 	= 	El A29, 

rest: en = 0 

El 7A30, 	f14 	El 9A30 

f5 
	El 8A30, 	f19 = 	El 5A30 

El 6A30, 

rest: 	fn 	0 

0 

Equation (46),(c): 

• Fl A31 + El 7A32, 

F5A31 + El 8A32, 

• F8A31 + El 6A32, 

rest: 	dn 	= 	F A31 n 

d1  

d5 

d8 

d14 	= 	Fl 4A31 + El 9A32 

d19 	= 	Fl 9A31 + El 5A32 

e8 

El 7A33, 

• El 8A33, 

• El 6A33, 

rest: 

E el 4 = 	E1 9A33  

e19 	= 	El 5A33 

fl  

E2A35, 	 f9 
	E4A35 

A34 + E3A35, 	fll  = 	E0A35 

El A35, 

rest: 	fn 

0 
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APPENDIX D 

DETAILS OF FINITE DIFFERENCE SOLUTION OF SINGLE  

VARIABLE ORTHOTROPIC PLATE EQUATIONS INCLUDING 

TRANSVERSE SHEAR DEFORMATION 

(SIMPLY SUPPORTED EDGES ONLY)  

1. 	INTRODUCTION 

It is possible to separate the variables in equations (1) (Chapter 4) 

to give three independent sixth order equations for the respective variables 

in terms of q. 	Any one of these equations can then be solved provided 

the boundary conditions are expressible in terms of the corresponding 

variable. 	Libove and Batdorf(10)  derived the 'single variable form of the 

governing equations but not the boundary conditions. 	In order to attempt 

a single variable solution it was therefore necessary to reduce the mixed 

boundary conditions to equations in the corresponding variable and it was 

found that only the simply supported condition was amenable to such treatment. 

Having established the required boundary equations, a finite difference 

solution of the sixth order equation for w was obtained. 	The shear forces 

were then obtained by the solution of fourth order equations for 0
x and Q 

respectively, in terms of w. 	These equations were derived from equations 

(1),(b) and (1),(c). 	An alternative approach to the shear solutions would 

have been to solve the second order equations given by equations (1),(a) 

and (1),(b), and (1),(a) and (1),(c) for Q
x 

and Q respectively, in terms 
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of q and w. 	Although the latter approach would have been simpler to 

formulate numerically, it was thought to be desirable to keep differential 

terms on q to a minimum. 	This was later justified when the sensitivity of 

solution to discontinuities in transverse loading became evident. 	Having 

solved for w, Qx 
and Q the moments were obtained by direct substitution 

into equations (41) (Appendix C) 

• EQUATIONS IN TERMS OF w 

2.1 Governing equation 

The three equations (1) can be solved to obtain a differential equation 

for w alone in terms of q. 	This separation is accomplished most easily, 

for the case in which NN and N 	are constant throughout the plate, 
x' y 	xy 

by treating the three differential equations as though they were algebraic 

equations and solving for w, Q
x 

and Q by means of determinants. 	The 

terms in the determinants are the differential-operator coefficients of w, 

Qx and Qy  appea ring in the three equations. 	In expanding these determinants, 

the rule for multiplication of linear operators must be used. 	For example: 

a2   a2 a4 
 

ay2 axay axay
3 

As a result of such a solution, the following differential equation is obtained 

for w: 

[D]w = 	[M]ci 	 (48) 

The differential operators are: 
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a 8
6 

6 
a6  + A3  a

6 a 	
3 

6 	6 

	

1 	+ A2 	 + A4 	+A5 --4 ax ax ay ay 	ax4 2 ay ax ay ax ay 

a6 

	

a
6 	—4 

6 	a 	
3 

4 a4 	 a4 

	

A6 	 + A8 	+ A9 	 + A10 —2 2 axay5 ax 	ax ay 	ax ay 

a2 
* All  a

4 

3 	
a4 	 2 + Al 2 — a4 + A13 a2 	

a + Al4 axay + Al 5 
ay2 axay 	ay4 	ax  

a4 	 a4 	
2 	a2 

2 
M = B1 	+ B2 	2 +B3 —4 + B4 	+ 	+ B6 4 	2  ax 	8x ay 	ay 	ax ay 

Where: 

Al 	= 	Dxy  D x  X16/(2S ) 

A2 = 	D D N / x  tSSy) xy x x 

A3 	= 	DX  D x  X17/(2Sx) + X18 X16/Sy  y  

A4 = 	2 X18 Nx/(Sxsy) 

A5 	= 	D xy  Dy  X16/(2S ) + X18 X17/S x  

A6 	DxyDy  Nx/(SxSy) 

A7 	Dxy  Dy  X17/(2Sx  ) - 

A8 	-DxX16 - Dxy(1- px  py)N/(2Sy) 

A9 	= 	-2 Nxy(Dxy(1-px  py)/(2Sy) + Dx/Sx) 

A10 = 	-2D y(1- )x  py)(1+ N/(4 Sy) + N/(4 Sx)) 

- Dx( jJ + N/Sx) Dy( px  + N/Sy) 

All 	= 	-2 Nxy(Dxy(1 - px  py)/(2Sx) + D/Sy) 

A 1 2 = 	-DyX17 - Dxy(1- ,Ux dtly)N/(25x) 

Al 3 = 	(1- Px aUy)Nx  

A14 = 	2(1- Px  )Uy)Nxy  

A15 	= 	(1- px  ,Uy)Ny 
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Where: 

X16 = 	1 + Nx/Sx  

X17 	1 + N /S 
Y Y 

X18 	= 	DxDy  -DD
x  2 - ,UxDyDx  /2 

And: 

B1 	= 	D 
xy  D  x 

 /(25
xy  
S ) 

B2 	= 	X18/(S x 
 S 
y
) 

B3 	= 	DxyD/(2 SxSy) 

84 	= 	-((1  - px  Py)Dx/(2 Sy) + DiSx) 

B5 	= 	-((1 -Pxl-ly)Dx/(2 Sx) + D/Sy) 

B6 	= 	
1 -pxpy 

2.2 	Boundary Conditions 

For the co-ordinate system shown in Figure 49 the simply supported 

boundary conditions are: 

At x = ± a/2: 	w = 0 	(49) 

M
x 

aw _ Qy 
ay S 

(50)  

(51)  

At y = 	b/2: (52) 

My  

aw Qx 
ax s x 

As part of the present work these equations were reduced to functions 

of the single dependent variable, w, as follows: 

(53) 

0 
	

(54) 
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At x = ± a/2: 

Since the boundary equations are continuous between y = ± b/2, 

(49) gives: 
anw  

ayn = 0 	(55) 

(51) gives: 	Q 	= 0 	 (56) 

anQ  

 

(57)  
an 

Substituting into equation (41),(a) for (50), (55) and (57) gives: 

ac/
xs  a

2w 
ax 	x axe (58)  

Substituting into equation (1),(a) for (58) gives one of the required 

equations: 

8 
2 

2w 	2 
Cl 	Nay 

C2 	= C3 	(59) 
ax  

Where: 
	Cl = X16 

C2 = 2Nx/Sx  

C3 = -q/Sx  

Also: 

(58) gives: 
82Qx _ S  8

3w  
axe), — x ax2  ay 

(60) 
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Substituting for (55), (56), (57) and (60) in Equation (1),(c) 

gives: 

a2Q a3w 
ax2 

Y ax2ay 

32+nQ  

2 Y - s a
3+n

w  

ax ayn 	y ax2ay
l+n 

Hence, the remaining equation on x = :1; a/2 is given by eliminating 

0x from (1), (a) and (1),(b) and substituting for (57) and (62), thus: 

	

a4w 	a4 	
a
4 

 DI 	 - 	D2 	+ D3 	D4 	3  
ax 	ax ay 

a4 

ay 	ax2w 2 ay  
axay 

2 

	

a2w r,  2 	a2a 
_ _ 	-I- 7 —I. + D8 	+ D9q 	(63) 

	

+ D5 2 	axay 	 2 ax 	 ax2 
ay 

(61)  

(62)  

Where: 

DI = 

D2 = 

D3 = 

D4 

D5 = 

D6 = 

D7 = 

D8 = 

D9 = 

-D X16/(1-)U ) 
x 

-2DxNxy/((I-px  py)Sx) 

-DxyX16/2  - Dx(Sy  + Ny)/((1- px  Dy)Sx) 

-DxyNx/Sx  

N 

2N 
xy 

Dx/((1 px  Py)Sx) 

Dxi(2Sx) 

-1 

Thus (49), (59) and (63) constitute the required three boundary conditions 

at x = ± a/2 in terms of the single variable w. 
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Similarly, the required boundary equations at y = 	b/2 are as 

follows: 

	

= O 	 (52) 

2  a 	a 2 w 	
axay 

 El 	+ E2 	= 	E3 	 (64) 
ay2 

4 a w 4 	a 	w 
4 	

a
4 

Fl 	+ F2 	+ F3 	w  + F4 	w  
ay4 	ay3ax 	ay2 x2 ayax3  

2 	 n2 
F5 w cL 82w I 1..) 	 F7 —`—" 	+ F8 	+ F9a axay 	 2 	' ay2 	 ay2 	ax 

Where: 

El = X17 

E2 	= 2 Nx/Sy  

E3 = -q/Sy  

Fl 	= -D X17/(1 -px  Py) 

F2 	= -2Dy  Nx/((1- px  py)Sy) 

F3 	-DxyX17/2  - Dy(S x  Nx)/((1 Px  Py)Sy) 

F4 	= -Dxy  Nx/Sy  

F5 

F6 = 2N xy 

F7 	= Dy/((1-Px  Py)Sy) 

F8 	= Dxy/(2 Sy) 

F9 = -1 

(65) 
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3. 	FINITE DIFFERENCE APPROXIMATIONS TO THE DERIVATIVES 

The simplest possible finite difference approximations were used for 

all derivatives, thus: 

(i) 	Central differences 

( ) 	First order (no error terms) 

(iii) Even mesh divisions 

(iv) Minimum number of points consistent with the order of the 

derivative. 

This gives the following coefficients, for uniaxial derivatives of the 

form 

q-1 
A w 
r r 

r=o 

Where: 

order of derivatives 

• point at which derivative taken 

q 
	• 	number of points 

- length of mesh division 

m n q D* A0  Al  A2  A3  A4  A5  A6  

1 1 3 1/2h -1 0 1 

2 1 3 1/11
2 

1 -2 1 

3 2 5 1/2h3  -1 2 0 -2 1 

4 2 5 1/11
4 1 -4 6 -4 1 

5 3 7 1/2h
5 

-1 4 -5 0 5 -4 1 

6 3 • 7 1/h
6 

1 -6 15 -20 15 -6 1 

Table 10 

a w 

axm 

 

1 

n D* 
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The required mixed derivatives were obtained by taking the product 

of the appropriate uniaxial derivatives. 

4. 	PLATE EQUATIONS IN FINITE DIFFERENCE FORM 

Figures 149 and 150 show the general form of the finite difference 

nets formulated for the governing equations and boundary conditions. 

The coefficients, given by the product of derivative coefficients and their 

respective constants are given below. 	The constants incorporate the 

appropriate mesh factors: 

D* = 1/(hxmhyn) 

4.1 Governing  equation 

a 	= 	-20 Al - 12 A3 - 12 A5 - 20 A7 + 6 A8 + 4 A10 + 6 Al2 0 

- 2 Al3 - 2 Al5 

al  = a3.  = 15 Al + 8 A3 + 6 A5 - 4 A8 - 2 A10 + Al3 

2 	a4 
	6 A3 + 8 A5 + 15 A7 - 2 Al0 - 4 Al2 

a5  = a7  = 5 A2 - 4 A3 + 4 A4 - 4 A5 + 5 A6 - 2 A9 + A10 - 2 All + Al4 

a6  = a8  = - 5 A2 - 4 A3 - 4 A4 - 4 A5 - 5 A6 + 2 A9 + A 10 + 2 All - Al4 

= all  =-6 Al - 2 A3 + A8 

al0 al2 = 2 A5 - 6 A7 + Al2 

-a17  =- 4 A2 + A3 - 2 A4 + A9 

am  = 018  = - 2 A4 + A5 - 4 A6 + All 

a i5  = 	= 2 A4 + A5 + 4 A6 - All 



= 

b10 = 
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°16 a20 = 4 A2 + A3 + 2 A4 - A9 

021 	°23 = Al 

a22 024 = A7  

025 -a30 a31  = -036  = A2 

a26 -°29 a32 = -035  = A4 

027  = -028  = 033  = -a34  = A6 

6 61 + 4 62 + 6 B3 - 2 B4 - 2 85 + 66 

b3 -4 B1 - 2 B2 + B4 

b4 -2 B2 - 4 B3 + B5 

b6 137 	= 	b8 	= 	62 

b11 B1 

b12 B3 

4.2 Boundary conditions  

At x = -4: a/2, At y = - b/2  

   

co 
	1 
	

1 

d2  = d4  = 0, 	do - 	d1 = d3 = 0 

• d3  = Cl, 	 d2 • 	d4 = El 

• -d6  = c17  = -d8  = C2, 	• 	-d6 d7 = d8 = E2 

d9 • C3, 

•eo 
	

• e2 e4 = el0= el2=  °' eo 	= e3  = e9  = 0 

el 	= e3  = -4 D1 - 2 D3 + D5, e2  = 	e4  = -4 Fl - 2 F3 + F5 
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=. e7 =-2 D2 + D3 - 2 D4 + D6, e5  = e7 =-2 F2 + F3 - 2 F4 + F6 

e8  = 2 D2 + D3 + 2 D4 D6, 	e6  = e8  = 2 F2 + F3 + 2 F4 - F6 

e9  • 	e11  = D1, 	 e10 	e12 	Fl 

D2, 	 F4 el3 	-e16 = e17 -e20 	 e13 	-e16 e• 17 = -• e20 

e14 	-e15 e
i8  = -e19  = D4, 	

e14 
	

-e15 - e• 18 = -• e19 = F2  

= 	-2 D7 - 2 D8 + D9, 	fo  = -2 F7 - 2 F8 + F9 

• 13  = D7, 	 f
1 
 = f

3 
 = F8 

• f4 = D8' 	 f2 = 14 = F7 

5. 	SOLUTION FOR SHEAR FORCES - Q 
x 

5.1 Equations 

Governing Equation 

The governing equation for Qx, given by eliminating Q from equations 

(1),(b) and (1),(c) is as follows: 

a
4
Q 	8

2
Q 	a4Qa2Q 	a4Q 

G1 	
4x + G2 

2x  + G3 	x  + G4 	x 	c G - 4 ax ax 	ax ay 2ay ay 	ay 

5 	3 
w 	w 

ax 
+ G6 Q = G7 a  + G8 a

3 5 	
ax  

a5w 	aw
2 

3 	 5 
a w  +G9 	 + G10 	 + Gll 

ax
3
ay2 	ax ay axay

4 (66) 

For S
x = 	= co and isotropic plate properties this reduces to: 

Q 	D(  a
3
w 4.  a

3w  
x 

	) 

ax
3. axay2 



Where: 

G1 	= DxDx/(2(1- /ix  ,t-iy)SxSy) 

G2 	= -Dx/(2Sy) - Dx/((1 - px,Uy)Sx) 

G3 	= X18/((1-,U ,U y 
 )5  x  S y) 

G4 	= -Dx/(2Sx) - D/(( 1 - px  ,Lly)Sy) 

G5 = DyDx/(2(1-,Ux,Ciy)SxSy) 

G6 = 1 

G7 	= Dx  Dx/(2 (1 - jiy)Sy) 

G8 	= -D/(1 - px  py) 

G9 	= X18/((1-Px  Py) Sy) 

G10 = -D
xy 	y 

+ p Dx/(1-px,u) 

G 11 = DyDxy/(2(1-px  ,Uy)Sy) 

Boundary Equations 

As noted previously, it is possible to derive a second order form of 

the governing equation for Qx  in terms of q and w. 	This implies that 

there is only one boundary condition on each edge as follows: 

At x = ± a/2: 
	(as previously derived) 

14  eQX 
= H2. a2   

• ""'"'""" ax 	ax  2 
	 (58) 

Where: 

H1 = 1 

H2 = 

188 



3 
J6 a 

2  
w 	aq  + J7  ax axay 

(68) 
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At y = - b/2: 

(52) gives -aff- = 0 
axn  

Substituting with (54) gives 

0 	 (67) 

Since the solution of (66) requires two independent equations on each 

edge a second equation, which is in fact a general equation and applicable 

to both edges, was obtained by eliminating Qy  from (1),(a) and (1),(b), 

thus: 

Q 	 3 	3 
J1 	+J2 	x  + J3 Q 	J4 a w +J5  a w  

ax
3 	

axay ax2 ay2 

Where: 

+ 

J1 = 

J2 = 

J3 = 

J4 = 

J5 = 

J6 = 

J7 = 

D/((1- px  p)Sx) - X20 

Dx/(2Sx) 

-1 

D/(1-)-ix  Jay) + X20 Nx  

2 X20 Nxy  

Dxy  + pyD01-1,1x ,uy  + X20 N 

X20 



Where: 

X20 = Dx/(2Sy) + p yD)/((1-px)jy) y) 

5.2 Finite Difference Approximations to Equations  

Figure 151 shows the general form of the finite difference approxi-

mations to the governing equation and boundary conditions for the solution 

of Qx. 	Substituting for the central difference derivative coefficients 

based on Table 10 gives the expressions for the node points below. 	The 

equation constants incorporate the appropriate mesh factors (D*) in their 

denominators. 

Governing equation 	(66) 

go = 6 G1 - 2 G2 + 4 G3 - 2 G4 + 6 G5 + G6 

gi 
 = 93  = - 4 G1 + G2 - 2 G3 

92 =  94 = - 2 G3 + G4 - 4 G5 

g5 

= 99 	gll = G1 

910 = g12 = G5 

ho 	= h
2  =h4 

=h10 =h12 =0 

h1 	= -h3 = 5 G7 - 2 G8 + 4 G9 - 2 G10 + 6 G11 

h5 	= -h6 = -h7 = h8 = -2 G9 + G10 - 4 G11 

h9 	= -h1  = - 4 G7 + G8 - 2 G9 

h13 	-h16 	1 = h20  = G9 

. h14 	-h 	= -h18  = h19  = Gil 15  

190 

6 = 97 = g8 = G3 
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Boundary conditions 

At x = +- a/2 (58): 

it) 
	= 0, 	 -2 H2 

= 	k3 = H2 • -j3  = F11, 

At y = ± b/2 (67): 

• 1 

General boundary equation (68): 

• -2 J1.  - 2 J2 + J3 

m3  = J1 

▪ m4 j2  

= 0 

-n3 = -2 J4 - 2 J6 

• -n4  = -2 J5 

• -n7  = J5 + J6 

n6 
	-n8  ,= J5 J6 

n9 	-nil = J4 

p1 	• -p3 = .17 

Similarly, the corresponding equations for the solution of Qy  were 

expressed in finite difference form. 
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6. SPECIAL NOTE ON CORNER TREATMENT 

6.1 	w solution 

In the corner region there are nine nodes, eight fictitious and the 

corner node, bounded by the two axes passing through the corner. 	The 

finite difference equations were formulated so that, of these, all except the 

corner node and the two fictitious nodes immediately adjacent to the corner 

were eliminated. 	Hence only three boundary equations were required in 

the corner, thus: 

- w 	= 	O 	 (69) 

2 a w O 	 (70) 
ax2  

2 w 
(71) 

ay2  

(70) and (71) follow from the conditions applying along y = ±b/2 

and x = ± a/2 respectively. 	This implies discontinuities since immediately 

adjacent to the corner along x = a/2, and y = b/2, (70) and (71) revert 

to (59) and (64) respectively. 	The effects of this approximation do not appear 

to significantly influence the results. 

The twisting moment calculation for the corner point required the 

definition of the fictitious value for w on a diagonal line through the corner. 

Since this was not evaluated in the solution for w, a value was obtained 

using a cubic extrapolation along the diagonal. 
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6.2 Q
x 

solution (similarly for Q ) 
Y. 

The Qx solution was formulated so that all three corner fictitious 

nodes were eliminated. 	Thus only a single corner equation was required 

and this was taken as Qx = 0. 
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APPENDIX E 

APPROXIMATE YIELD LINE ANALYSIS OF MODEL FAILURE(42)  

A very approximate yield line analysis was used to determine a value 

for the ultimate pressure which the double-bottom model could sustain in 

the presence of a constant in-plane thrust. 	This thrust was taken as the 

value at failure, namely -10.4 tonsAn
2. 

Assuming that yield lines developed as shown below and that the 

ultimate mcment per unit length was equal for all lines, the geometry of 

the lines for minimum load is given by: 

1 + tan, 
mm 

130.5 in  

X - 
130.5 - 1.5 

87 

Hence: 	= 500  
mm 

d 	 27in 

+3 

co 

The ultimate moment was computed for the diagonal yield lines as 

follows: 

t CY j 

Where: t outer shell thickness = 0.08 in 

= 	(yield stress) - (component of applied thrust 

across yield line) 
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(15 - 10.4 .cos min)  to ns in2  

6.7 tons/in2 

lever arm = 5.573 in 

Giving: 
	

8,300 in. lb/in 

In the above calculation for M
u , the effect of the stiffeners appears 

in the value for the component of in-plane thrust but is ignored so far as 

transverse pressure is concerned. 

The expression for ultimate pressure is as follows: 

8 Mu 
	(1/tan izS + X) 	_ 

Pmin
1
2 	(X - tan p5/3) 	446 

Gives: 

8300  
Pmin 	446 

= 18.7 p.s.i. 

"If it is assumed that the plating used to repair the end buckles which 

occurred in the preliminary failure, forced the diagonal yield lines to 

develop from the first floor in from the bulkheads, then a yield line solution 

similar to the above gives a value of Amin equal to about 23 p.s.i. 

These values do not appear to bear any relation to the observed failure 

pressure despite the occurrence of buckles, in the outer shell, along lines 

which bore a resemblance to the assumed yield line pattern. 	It is possible, 

however, that a less approximate yield line solution may give better agreement. 
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Stiffeners :5Vx 078.X 5 Lightening Holes 1' dia 

Inner  

4.-o5461  41.6. Shell 
2"- 5" 534 (2),_1716, 

N 
N 

N N 

v" 

	 5°- 514" 

Transverse 
Centre Line`-,,,C  

2.4  

14.1/2" 1411°  11Ax 	111.  tee 

Bulkhead Bracket 

EndpExtension  

1h.." 

Transverse Floors 
CO 0 

a 

NOTE: Centre Girder similar except omit lightening 
holes and bracket floors replace stiffeners 

DETAIL OF INTERCOSTALS AND END EXTENSION 

NOTE: Centre girder and side bracket 
floors similar to main floors over 
corresponding frame spacing with 
1/2" flange on free edges 

Am. 

1/2x1I2 x tee 
144 1437 

	dia 
7V 	I 	71/4' 

Sntnet  }1.x 0.47x 0-061: 6.x078x close.  Inner 
Shell 

Inner Shell 
Stiffener 

48 3,- 	,  
I 	1 

 
Intercostal 

Inner Shell,  07 	
Floor Stiffeners )8 x0.45 x 064 .  Stiffeners 

Floor I Floor tist 
)3 dia ter Shell 

Stiffener 
Outer 	Floor Stiffeners 
Shell 

Centre Girder 

✓Outer Shell St'ffeners: 0.9.x 0.45X0•06/: 

6 
	

694 1046 	3512_ f- 7IAF 2'-011 2*-47(6" f-81 6 3.-136" •  

NOTE: All lightening holes 21/8"  dia except as shown 

DETAIL OF TRANSVERSE FLOORS (See also Fig. 1 ) 

DETAIL OF CHANNEL STRUTS 

Figure. 2 	: Details of Model 
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Fig. 3: Model Prior to Fixing Inner Bottom and End Extensions 
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Fig. 5: Detail of Intercostal Stiffening 
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40. 

Fig. 6: Completed Model - Inner Shell View 



Fig. 7: Completed Model - Outer Shell View 



End-extension 

Lopped Rams /Fax 5'x 2x1' ConcretePlers at each end 
to take Horizontal Reaction 

0" 4'- 0" 4'-0" 
STRONG FLOOR Pressure Bag 

4'-0" 	4' -0" 
24'- 0" 

O 
0 Lapped Rams 

—/Conrete Piers 

ELEVATION 

Fig. 8 : 	General 	Details of Combined, Load Test 	Arrangement 
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12"x20" Beam 
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DOUBLE BOTTOM 
MODEL 
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Fig. 9: General View Showing Loading Frame and Model in Position for 
Combined Load Test 



.04  

6/ V. 0 x 11/: B.S.E 
Allen screws 

3 ybocknut 
B.S.E nut welded 

to tee section at each 
corner model 

5/32 radius 	Countersunk rod 
xi  	:7/,./seating 

54 diameter 

11 Dia. phosphor 
bronze sphere tapped 
343 dia. and-  chamfered 
as shown 

543 diameter 

B.S.F nut 

13i. Diameter 
cavity 

// /(///// 
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34"  B.S.F nut welded to 
f plate on underside of 
box section frame 	l 	11 

gro "  
Locknut 	

ra . BS F 
• in.  bolt giving 

x 	
„. 

vertical 
adjustment 

a 
cs 

L __  

Lockscrew 
Rod seating 

J 	.--attatchment 
independent 
of bolt 

Countersunk rqd 
seating 

\ 
r  	 

112 x1Vx1/84' tee section 
welded to the model 

r 
DETAIL OF ROD SUPPORT 

Located at Bulkhead and 
Margin Brackets 

DETAIL OF TENSION LINK SUPPORT 
Located at Each Corner 

Figure. 10 	Support of Model 



Fig. 11: Model in Position Prior to Lowering Loading Frame Beams 
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Fig. 12: Pressure Bag in Position in Loading Frame 
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Fig. 13: Detail of End Extension and Adjustable Ram Seatings 



End extension Inner shell 

/// ////".\\\\\\Nc7/ 

Plywood backing board dge frame for 
clamping pressure 
bag 

Height of Ram above floor varies to accomadate 
change of model section toward sides 

outer sheU 

Lf1 

Centre girder Inner shell 

8"x EtwxY Square cruciform bonded to model at each floor 
If Thick steel plate resting on rubber pad 

Thick rubber pad bonded to spreader 
Steel toad spreader seated on ram 
21'2 I.D. tube to stabalise pad on ram 

12"x 8"x 34 Box section 

7"x 1" Plate welded 
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Rod adjustment 

10 ton capacity 
lapped ram Reaction block 

bolted to strong 

Backing plate bolted 
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• •-A - 
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Tranverse pressure 
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Ram extension 
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Ram seating 
frame bolted to 
strong floor 

Strong Floor 

NOTE: 

O 
(0 

Strong 	Floor 

DETAIL OF VERTICAL RAM SET UP 
	

DETAIL OF MID — SECTION LONGITUDINAL RAM SET UP 

Figure . 14 	: 	Details of Ram Loading Arrangements 



ongitudinal  Rams  in  Position  at  Bulkhead El.  
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Fig. 16: Vertical Rams in Position Under the Model 
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Fig. 17: General View of Local Transverse Load Test 	(8 rams) 
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Restraint for Model. Shell Panels 
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1 0.00334 000160 
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4 0.01945. 0.01144 

5 0.02905 0.01851 
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TABLE 

Buckling Breadth Factors for Typical Double-Bottom Panel 

Wo/h = 
(i) NIx  = OT  

* 
q 

p.s.i., 

X2x/a 
, 	17s.- 	/1) ' 	2 .. 	Y 

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

0 - - - - - - - - 
1 1 1 - 1 1 1 - 1 
21 1 - 1 1  1 f --- 3 

1 1 - 1 1 1 - 1 
4 1 1 . 	- 1 1 1 
5 1 1 - 1 0.99 1 1 

N' = 5 

q 

p.s.i. 

X2x 
2\
2y

/b 

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

0 1 1 - 

1 
- - - - 

1 1 1 - - 
2 1 1 - - - 
3 1 1 - 1 - 1 
4 1 1 - - - - 1 
5 1 1 - - - - 0.99 

(iii) N'
x = 10T 

q 

p.s.i. 

X2x/a X 	/b 
2y 

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

0 1 1 - 
 - - - 

1 1 - 1 - - - 
2 1 1 - - - 1 

1 - - - 1 
4 1 1 

- 
1 - - - 1 

5 1 1 1 - - - 0.99 

Note: Refer Figu're 25 for details of panel and loading 
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TABLE2 

Buckling Breadth Factors for TyplEal Double-Bottom Panel 

W lb = 0.5. 

(i) N'x  = OT  

-* 
q. 

p.s.i. 

7.
'2x/a '2y

/b  

uniaxial load biaxial load uniaxial load biaxial load 
a 	' b a b a b a b 	- 

0 - - - - __ 
1 0.99 0.99 - 0.98 0.90 0.89 - 0.89 
2 0.99 0.99 - 0.97 0.84 0.85 _ 0.84 
3 0.99 0.99 - 0.97 0.83 0.84 - 0.83 
4 0.99 0.99 - 0.97 0.82 0.83 _ 0.82 
5 0.99 0.99 - 0.96 0.81 0.82 _ 0.81 

qx 

p.s.i. 

X2x/a  
N
2y

/b  

uniaxial load! biaxial load uniaxial load biaxial load 
a b a b a b 

0 1 1 - 1 - - - - 
1 1 1 _ - - 0.84 
2 1 1 - 1 - - - 0.84 
3 1 1 - 0.99 - - - 0.81 
4 I 1 _ 0.99 - - 0.81 
5 11 _ 0.99 - - 0.80 

(iii) N' = 10
T 

* 
q 

p.s.i. 

N
2x/a  

N
2y

/b  

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

0 1 1 - 1 - - - 
1 1 1 - 1 - - - 0.80 
2 1 1 - 1 - - - 0.81 
3 1 1 - 1 - - 0.80 
4 1 1 - 0.99 - - - 0.79 
5 1 1 - 0.99 - - -- 0'.79 

Note: Refer Figure28 for details of panel and loading 
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TABLE3 

Buckling- Breadth Factors for Typical Double-Bottom Panel 

W /h = 1.0 

(i) NIx  = OT  

p.s.i. 
q* '2x

/a  %2y /b 

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

- - - - - - 
1 0.98 0.97 0.93 0.69 0.70 0.69 
2 0.98 0.97 - 0.91 0.65 0.67- 0.66 
3 0.98 0.97 - 0.91 0.64 0.66_ 0.65 
4 0.98 0.97 0.91 0.63 0.65 - 0.64 
5  0.98 - 0.97 - 0.90 0.62 0.64 - 0.63 

(ii)N'x 	5T 

*' q 

p.s.i. 

X2x/a X 	/b 2y 

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

0 1 1 - 0.99 - - - - 
1 1 1 0.99 - 0.60 
2 1 0.99 - 0.99 - - - 0.62 
3 0.99 0.99 0.98 - - - 0.62 
4  
5 

0.99 
0.99 

0.99 - 0.97 - 0.61 
0.99 - 0.96 - - 0.61 

(iii) N' X.= l0T 

* 
q 

p.s.i. 

X'2x/a % 	/b 2y 

uniaxial load biaxial load uniaxial load biaxial load 
a b a b a b a b 

0 ,1 _1 - 0.99 - - 
1 1 1 - 0.99 - - - 0.53 
2 1 1 - 0.99 - - - 0.58 
3 .11 0.90 - 0.98 - - - 0.59 
4 0.99 0.99 - 0.98 - 0.59 
5 0.99 0.99 - 0.98 - - - 0.59 

Note: Refer Figure28 for details of painel and loading 
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Refer Fig 	for definition of symbols 
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Case 

Boundary 
Condition 

w1
4 c„,ki  .g_ q  ) 

• ki 

w 3 „4 (:..k _6.  q ) 

k2  

M x1 
(13a2  q ) 

k3 

My1 
(,....k.,4, 2 q ) 

k4  

Mx2 
(essa2 q  ) 

k5  

My3 
(:: k6 a  2 q  ) 

k6  

s co u rc e  

xr..t.-  a/2 y.t b / 2 

1 simple 
support 

simple 
support 

0-00402 0 0.0472 0.0472 0 0 
000406 0 0.0479 0.0479 0 0 Ref.35 

2 n mpe cla 	d 0.00190 .0 0.0241 0.0330 0 - 0.0687 
0.00192 0 0.0244 0.0332 0 -0.0697 Re f.35 

3 li free 
001308 0.01500 0.1230 0.0290 0 0 .t: 
0.01309 0.01509 0.1225 00271 0 0 Ref.36 

4 clamped clamped 0-00124 0 0.0227 0.0227 -0.0501 -0.0501 i` 
0.00126 0 0.0231 0.0231 -0.0513 -0.0513 Ref.36 

04 = 1 ( D = Dx /(11.1.2) ) 

N = 0.769 
= ,Vy= 104  

P-x = P-y 	0.3 
£ = 1 

Table 4 

Comparison With Ordinary Plate Theory Solutions 
For Uniform Transverse Load 

* .4-r 
I  , y 

W1 
(.ki  ciD4 q  ) 

ki 

MX1=VS1 
(,.. it2a2c1  ) 

k2 

Myy4 
(...k3a2q)  

k3 

2  Q  =Qy3 
(r...k4 a q 	) 

Equm. 
zChEeczek 0  

k  47...Load 
4 0-00395 0.0453 0.0324 -0.3335 100.78% 
6 0.00400 0.0467 0.0321 -0.3362 100.39°/0 
8 000402 0.0472 0.0322 -0.3369 100.22°/0 
10 	000404 0.0475 0.0322 -0.3372 100.14°/0  

Ref.3510.00406 0.0479 0.0325 -0.338 - 

(1

13 = number of mesh divisions in quarter 
of plate along x and y axis respectively 

Table 5 

Convergence Behaviour of Case 1 - Table 4 
For Decreasing Mesh Size 
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b 
in. 

S x 
lb/in. 

S Y 
lb/in. 

w 1 
in. 

M x1 
in.lb/in. 

Myl 
n. lb / in. 

C 
in. lb/in. 

Scource 	- 

100 

_ 

3.39 
(X104) 

3.39 
(x104) 

0.0293 473.8 473.8 331.7 A 
0.0292 478.6 478.6 335.0 based on Ref.17 
0.0292 478.9 478.9 335.2 based on Ref.39 
0.0282 - - 326.8 Ref.16 

200 3.394  
(x10 ) 

. 

3-39 
4 

(x10  ) 

0.0523 1009 463.0 870.1 LI 
0.0523 1017 463.2 878.0 based on Ref.17 
0.0523 1017 463.5 878.0 based on Ref.39 
0.0507 - - 856.4 Ref. 15 

100 8475  
(X104) 

- 
3.39  
(x104) 

0.0215 620.8 339.5 519.0  
00215.  621 .2 336.0 520.4 based on Ref.17 
0.0209 - 503.4 Ref. 16 

200 8.475 
(x104) 

3.39 
(x104) 

0.0346 1090 392.1 972.4 
0.0346 1094 385.9 978.2 based on Ref. 7 
0.0338 - 951.3 Ref. 16 

a  

C = (Mx1 - My 

Dx 	Dy  = 49'2 x106  in. lb. 
D xy 37.9 x 106  in. lb. 
a 	. 100 in. 
1-1,x  = 	0.3 
q 	= 	1 lb / in? 

Table 6 

Comparison With Solutions for Shear - Weak Simply Supported 
Plate Under Uniform Transverse Load 
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Torsional 
Edge 

Restraint 

w 1 4  
(-kety q) 

it, 

m 	,,K4 xl - y 1 
=k2a2q ) 

k2  

m 	k4 —x2,-  y3 
(=<3  a2q ) 

k3  

Scource 

high 0.00319 0.0233 -0.0437 •?.'' 
low 0.00321 0.0235 -00443 ir'k 
zero 0.00325 - -0.0410 Re f. 21 

e

1 	( D = Dx /(1--11
2 

)) 
= 0769 

x  = ey  43.4 

0•3  
E 

 

 

 

 

  

Table 7 
Comparison With Solutions for Shear - Weak 
Clamped Plate Under Uniform Transverse Load 

0.4 

-0-2  
U 

--boundary 	 0 

Kromrn ( ref.18 ) 
aJh= 20 	 0.2  

Mxy 	0 on x.±a/2, y.±b/ 2 
0.4  - 

Finite. difference solution 
using 10 x 10 mesh 	 0.6 

= 1 
=0.769 

plate 	
0.8 

}i =123 x103 

parameters 	1.0 I.tx  P.y  0-3 
E . 1 

K
ix K1y  107 

2x.  K2y.' 0 
K3x  = K3y  = 1 

Fig. 50 : Comparison. With Kromrn's Solution of Edge Reaction 
For Homogeneous ,Simply Supported Plate Under 
Uniform Transverse Load 
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Fig. 61 : Clamped Plate Under Uniform Transverse Load 
Effect of Side Ratio 
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- Fig. 72 : 	Clamped Plate 
Effect of Non-Uniform Transverse Load 
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(1) Transverse load distribution 

Boundary 
Condition 

Non 	Dimensional 	Restraint 
Remarks vertical normal 

rotational 
tangential 
rotational 

No. plotted Kix  Kiy  Kp_ K2y  Ksx Kay 

1a 	 107 7 
10 	• 0 0 10

5 5 
10 

 - ordinary 	simple 	support 
shear stiffness -4-- 	ao 

1 
3 

1376x10 5•86x10  
3  

0 0 105  105 as for 1a ;with 	shear 
deformation 

2 -- — 3 1376;10 
3 

5.86x10 0 0 
5 

105 1 
as for 1 , 	with 
low 	Kay  

3 —• 	 1376x10 
3 3 

5.86x10 0 - 0 1 1 as for 2 , with 
low K3x  

3a 	 2•06x10 
3 

2•52x10 0 0 1 1 as for 3 , 	with reduced 
Kix  and 	Key 

4 	1376x10 
3 3 

5•86x10 6.26 0 1 1 as for 3 , with normal 
restraint 	, K21,, 

NOTE : There was very little difference between results for 

K1x 	= K1y  'L• 107  and K
1x7. 	, 13.76x103 Kly  - 5•86x103  and - 

Therefore only the latter are given for cases including 
shear deformation. 

(ii) Definition of boundary conditions 

. 73 	Double Bottom Analysis - Transverse Loading and 
Boundary Conditions Used in Theoretical Solutions 
For Overall Behaviour 
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(i) Overall deflexions in inches x 103  y 

NOTE (i) Experimental values shown o 
(ii) For details of theoretical solutions , indicated 

see Fig. 73 
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Fig. 75 : Double Bottom Analysis - Deflexions and Reactions For Distributed 
Transverse Load : q = 1p.s.i 
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Fig. 78 : Double Bottom Analysis - Longitudinal Shell. Stresses (0;rn) 
Between Floors-  D and C Due to In - Plane Load. 
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Fig. 79 : Double Bottom Analysis - Longitudinal Shell Stresses (6m1) 
Between Floors A and A Due to In - Plane Load 
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Fig. 137: 	Outer Shell After Local Failure 



Fig. 138: Detail at Bulkhead End of Outer Shell After Local Failure 



lig. 19: Outer Shell After Overall Failure 



Fig. 140: Detail of Central Region of Outer Shell After Overall Failure 





O 
2 Effective rotational 

restraint given by 
BEAMCOL:K=051C x163-  in. lb/in. 

( e=1350 in. lb/in. ) 
Vio/h 0 • 25 ) 

a 
O 

	o— 

C1  
Overall central 
deflexion : 
C x 10-1  in. 	-al  a of  

a 
01 

Qi  

oo 4 
	

6 
	

10 
	

12 
	

14 

Centre span deflexion 
given by BEAMCOL 
C x162  in. 

Panel 3-3 
point deflexion: 
C x 102in. 

Panel 1- central 
2 i deflexion : C x 10 n. 

LOAD : Transverse pressure in p. s. i . combined with thrust in tons/ram 
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Fig. 142 : Double Bottom Analysis : Overall and Local Deflexions 
Compared to BEAMCOL Analysis for Failure Test 
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Note: End (x=O,L) boundary conditions implicit in stress function. 

(i) Detail showing boundary conditions 

actual breadth 	shear breadth 
b  

longitudinal flange 
stress: distribution 

Crx 
x itX 

1b b 

/  7 iL  .7 	/ 

	

Ln 	o 

	

IA 	tri 
V 0 L.. 

	

L. 	+.. 

	

+4 	vl 0 
t) -CI 

	

d p) 	tn, 	outer shell 
la 	

c 0 u 
w-- 

U
. 	 c.1 +-/ ",....,,.,,, 

/---- 4., 	 load applied at webs only 
(ii) Detail of section and flange stress distribution. 

.143 : Boundary. Conditions and Beam Section and Stress 
Distribution for Shear Lag Solution. 

inner shell t 



x1  - x0 _ x2  - x1 	x3  - x2 	4 x..- x3  
- Yi - yo_ Y2- Y1 	Y3 - Y2 - y4 - Y3 

Fig. 145 	Diagonal Extrapolation for Corner Fictitious Point (4) 

O. 	1. 	
X
2 x  

( bounda6/ 

	

7 	 

X • X 

	

3 / 	4 

0 
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Fig. 144 
	

Continuous Curve Defined by 5 Points 
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Similarly : 
3 
W and -63W 

"aXY 	bXbY2  

denoted by G ( ) 
and H ( ) respectively 

Fig. 146 	Mixed Variable Solution — Finite Difference 
Nets For Derivatives 
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boundary-,%.  

O 

centre 
of plate (0) 	(1) 

1(1+1) mesh divisions 

IF 
G 

c 
•••••••• 	 ••••% 

m
es
h
 di
vi

si
on

s  

kYt- 

(I-1) 	(I) 	(I+ 1) 
incl. fictitious mesh] 

Location Solution • 

	

Uniaxial 	Derivatives 
• x 	• - Y 

Mixed 	Derivatives 
x y 

A 1 central central central central 
2 as 	for 	A(1) 

• B 
1 • backward (1) central backward (1) central 
2 as 	for 	B(1) 

C 1 central central backward (1) backward (1) 
2 as 	for A(1) 

D 
1 - backward (1) central backward (1) backward (1) 
2 as 	for B (1) 

E 
1 central backward (1) central backward (1) 
2 • as 	for 	E(1) 

F 
1 central backward (1) backward (1) backward (1) 
2 as 	for 	E (1) 

G 
1 backward (1) backward (1) backward (2) backward (2) 
2 backward 1 backward 1 backward (1) backward (1) 

NOTE : C) Solution 1 - H eliminated by choice of derivatives 
2 - H defined by diagonal extrapolation 

(ii) )Backward (1) and (2) refer to derivatives with respect to nodes 
once and twice removed from the central node respectively 

Fig. 147 	Mixed Variable Solution - Location of Finite Difference Nets 
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Fig. 148 	Mixed Variable Solution - Finite Difference Nets 
For Governing and Boundary Equations 



I 	X 

Fig. 149 	Single Variable Solution for w - Finite Difference Nets for 
Governing. Equation 



d5  

d. 
1 

d8  

  

1 
f w = 

(63) 
(65) 

co w = 0 (49) 
(52) 

w = E3 
(64) 
(59) 

NOTE ; (49),(59) and (63) on x 	.4: a / 2 
(52), (64) and (65) on y = ± b 1 2 

Fig. 150 	•. Single Variable Solution for w — Finite Differences 
Nets for Boundary Equations 



w 	(66) Qx 911 2 

(67) QX =0 

(68) 

w 	(58) 

W 

10 k, k0  k1. 
 

( ) Governing Equation 

(ii) Boundary Equations 

Fig. 151 : Single Variable Solution for Qx  - Finite Difference Nets 
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