GASEOUS DIFFUSION

IN MOLECULAR SIEVES

A thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Fingineering of the University of Iondon by

Christopher John Whitford, B.Sce, A.C.G.I.

Department of Chemical Engineering and Chemical Technology,

Imperial College of Science and Technology, Iondon, S.W.7.

Abstract

The diffusion of carbon dioxide is studied in a Linde type 5A molecular sieve pellet over a range of temperatures and pressures about ambient. The work consists of two complementary parts. 1. Theoretioal calculations of molecular potentials are used to estimate equilibrium adsorption isotherms, heats of adsorption and crystal diffusivities from $573^{\circ} \mathrm{K}$ to $173^{\circ} \mathrm{K}$ for dilute systems, and the results are compared with published data. 2. A practical apparatus has been designed and used to measure breakthrough curves for the dynamic self diffusion of carbon dioxide in a 'one dimensional' sieve pellet bed from $-25^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, at atmospheric pressure. The diffusion process is modelled by considering both pore and crystal diffusion processes and estimates of diffusivities are obtained by fitting the model to the practioal results. The resulting practical crystal diffusivities are compared with the theoretical values obtained and the practioal pore diffusivities are compared with bulk gas diffusivities for carbon dioxide.

ACKNOWLERDGMENIS

The author wishes to express his gratitude to Professor R.W.H. Sargent for his encouragement, and sustained interest in this work, al.so to the Science Research Council, the Courtaulds Fund, and the I.B.M. Support Fund for financial support during the course of this work.

Thanks are due to the departmental glassblowers who were always willing to repair broken glassware at short notice and the departmental workshop staff, in particular Bert Iucas, who took great care in building parts of the apparatus. The author also wishes to thank his fellow postgraduates in the computing section for their help and advice.

CONTENTS

Page
CHAPTER 1-INTRODUCTION 10
CHAPTER 2 - THEORY
2.1 The Structure of Type 5A Molecular Sieve 14
2.2 Contributions to the Intermolecular Forces in the CO_{2} Linde 5A Sieve System 17
2.2.1 Dispersion Force 19
2.2.2 Induction force 20
2.2.3 Electrostatic Force 22
2.2.4 Repulsion Force 23
2.2.5 Final Potential Function for One CO_{2} Molecule 24
2.2.6 Interactions of two CO_{2} Molecules in the Linde 5A Sieve System 26
2.3 The Configuration Infegral 27
2.4 The Partition Function and Equilibrium Isotherm 30
2.5 Theoratical Heats of Adsorption 33
2.6 Theoretical Crystal Diffusivities 36
2.7 Mathematical Model of the Diffusion Process 37

- 6 -
Page
2.7.1 Description of Motel 37
2.7.2. Crystal Equations 39
2.7.3 Pellet Equations 40
2.7.4 Finite Difference Solution 42
CHAPTER 3 - COMPUTATIONAL METHODS
3.1 Generation of a Sieve Structura 48
3.1.1 Full lon Reflection 48
3.1.2 Half Plane Reflection 53
3.2 Carbon Dioxide-Ion Interaction 55
3.3 Point Reflections and Point Multiples within the Tetrahedral Grid 57
3.3.1 Reflections of Point (a) 58
3.3.2 Reflections of line (ab) 58
3.3.3 Reflections of Line (ad) 60
3.3.4 Reflections of Line (ac) 60
3.3.5 Reflections of Plane (abc) 60
3.3.6 Reflections of Plane (acd) 61
3.3.7 Reflections of Plane (abd) 63
3.3.8 Reflections of All Other Points 63
3.3.9 Point Multiple Recognition 65
3.3.10 The CO_{2}-Ion Interaction Program 65
- 7 -
3.4 The Equilibrium lsothermPage
3.4.1 The $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ Interaction Irogram 75
3.5 The Diffusion Modal 77
3.5.1 The Fraction of CO_{2} Desorbed from the Pellet 77
3.5.2 Finite Difference Increments 78
3.5.3 Least Squares Fitting of the Diffusion Model to the Practical Results 81
3.5.4 Discretization Error 81
CHAPTER 4-EXPERIMENTAL APPARATUS
4.1 The Vacuum System 89
4.1.1 Vacuum Production and Measurement 92
4.1.2 Active CO_{2} Storage and Volumetric Measuremens 92
4.1.3 Active CO_{2} Production 93
4.1.4 CO_{2} Storage and Flow System 93
Q.1.5 The Gas Manifold 95
4.1.6 Ancillary Equipment 95
4.2 The Cryostat 97
4.2.1 The Offfusion Cell 102
4.3 The Counting Apporctus 104
Page
CHAPTER 5-EXPERIMENTAL PROCEDURE
5.1 Preliminary Bed Regeneration 110
5.2 Active CO_{2} Preparation 111
5.3 Run Procedure 112
5.4 Counter Signal to Noise Ratio 117
5.5 Choice of Carrier Gas Flow Rate 118
5.6 Choice of Counter Volume 118
CHAPTER 6-RESULTS
6.1 Molecular Data for Potential Calculations 121
6.2 Computed CO_{2}-Linde 5A Sieve 122
6.3 The Linear Adsorption Isotherm Approximation 140
6.4 The vadratic Adsorption Isotherm Approximation 142
6.4.1 Bulk and Crystal Phase Second Virial Coefficients 151
6.5 Theorotical Heats of Adsorption 154
6.6 Theororical Crystal Diffusivities 158
6.7 Practical Results 162
Page
6.7.1 Estimation of the Run Start Time T_{0} 163
6.7.2 Background Correction 165
6.7.3 The Fraction of CO_{2} Desorbed From the Pellet 172
6.7.4 Practical Pellet Porosity 174
6.7.5 Practical K Values 176
6.8 The Diffusion Model 180
6.6.1 Definition of Pellet Diffusivity and Tortuosity 167
6.8.2 Practical Pellet and Crystal Diffusivities 188
CHAPTER 7 - CONCLUSIONS 193
Appendix A - Molecular Data and Sieve 198
Potentials
Appendix B - Practical Results at $25^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ 208
Appendix C - Computer Programs 217
Symbols Used in Text 253
References 258

CHAPTER 1 - INTRODUCTION

The diffusion of gases in molecular sieves has been of interest for many years and the use of molecular sieves in industrial adsorption processes is now widespread. Traditional design methods for adsorbers have tended to be 'rule of thumb' but with the advent of fairly cheap high speed digital computers more sophisticated approaches to the design problem can be made.

A great deal of work has been done on the basic structure and sorption properties of many commercial and naturally occurring sieves which gives some insight into the distinctive adsorption processes which characterise them. Recently work has been proceeding along two lines: model determination for fixed beds of sieves, and prediction of isotherm and heats of adsorption data in highly idealised systems using basic molecular data and statistical mechanical theory.

Chandraselcharan (1) tested several of the models reviewed by Vermeulen ${ }^{(19)}$ for predicting fixed bed behaviour, using experimental data on removing carbon dioxide from air in a fixed bed of Linde $4 A$ molecular sieve. He found that none of the models predicted breakthrough curves over a wide range of data but that Rosen's model ${ }^{(20)}$, which takes account of diffusion through the crystal matrix gove the best fit.

Wilson ${ }^{(3)}$ did further work over a wider range of variables and described a model for a fixed bed adsorber which was fitted to data for carbon dioxide removal from air in a fixed bed of Linde 5A sieve. He obtained estimates of arystal and pore diffusivities using several different isotherm approximations. Dworjanyn ${ }^{(2)}$ also calculated pore and cirystal diffusivities using Rosen's model on data for carbon dioxide self diffusion in Linde 4A sieves at ambient temperature and pressure, and outlined a method for calculating molecular potentials from basic molecular dara. He was unable to calculate theoretical crystal diffusivities from the molecular potentials due to the blocking effect of the exchangeable cations in the 4A sieve; which tend to prevent intercage translation.

The above work indicated that crystal diffusion played a role in the adsorption pracesses in molecular sieves and it was postulated that diffusion in the crystal matrix would become the controlling process at sub-ambient temperatures.

The work presented here wes evolved to study this problem by making measurements of breakthrough eurves in a practical diffusion system over a range of temperatures, and fitting a mathematical model describing the diffusion process to these results to obtain estimates of differivities. A theoretical approach was then used exiending Dworjanyn's ${ }^{(2)}$ work
on molecular potentials to obtain crystal diffusivities, isotherms ahd heats of adsorption which can be compared with the practical diffusivitios obtained here, and published practical data for isotherms and heats of adsorption. This permits an assessment of the role of 'crystal diffusion' in molecular sieves and investigates the feasibility of predicting adsorption data and diffusivities by a purely theorerical method based only on the molecular properties of the adsorbate and the sieve.

The systera studied in this work is the self diffusion of carbon dioxide in a linde 5A molecular sieve. The 5A sieve was chosen since it is known that the exchangeable cations do not block all of the interconnecting windows between cages and hence theoretical diffusivities can be calculared. Carbon dioxide was chosen as adsorbate as it is involved in many industrial adsorption processes and is readily available as $\mathrm{C}^{14} \mathrm{O}_{2}$. Hence tracer studies can be used in the proctical measurement of breakthrough curves. Carbon dioxide also exhibits a large quadrupolo moment and so the relative importance of the various potential interactions of the adsorbate with the sieve can be assessed by including repulsion, dispersion, induction and electrostatic effects in the potential model developed. A statistical mechanical approach is used to derive expressions fcr diffusivities, isotherms and heats of
adsorption from the molecular potentials.
A mathematical model is developed which describes the diffusion processes in the pores and crystals of a commercial sieve pellet. It was intended at the outset that this model should be kept as simple as possible by reducing the diffusion problem to a one dimensional diffusion process with a step change in concentration at the exchange surface at zero time. Also a self diffusion process excludes thermal effects and ensures there are no concentration changes as such occurring during the diffusion process. This excludes variable diffusion coefficients and permits the use of a single point on the adsorption isotherm to describe the equilibrium state.

An apparatus was built to measure breakthrough curves for a single 5A peller at ambient and sub-ambient temperatures under conditions comparible with the model, so that the diffusion processes occurring in a single pellet rather than a bed of pellets could be studied.

CHAPTER 2 - THEORY

2.1 The Structure of Type 5A Molecular Sieve

Broussard and Shcemaker ${ }^{(7)}$ describe the Linde 5A sieve structure based on the cubo-octahedral structural unit $2 \mathrm{AN}_{2} \mathrm{O} .4 \mathrm{CaO} .6 \mathrm{Al}_{2} \mathrm{O}_{3}, ~ 12 \mathrm{StO}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$.

This unit has a characteristic dimension $a_{0}=12.31 \pm 0.01 \AA$ and the following table gives the ion coordinate positions based on fractions of this parameter.

$$
\text { TABLE } 2.1
$$

Numbers and type of ion	Distance from centre of large cage			Distance from centre of small cage			
12	OI	0	0.2720	0.5	0	0.2280	0.5
12	OIII	0.2122	0.2122	0.5	0	0.2878	0.2878
24	OIII	0.1518	0.3882	0.3882	0.1118	0.1118	0.3482
24	Al, Si	(AS)	0.1273	0.3028	0.5	0	0.1972
8	Na, Ca	0.3050	0.3050	0.3050	0.1950	0.1950	0.1950

It is convenient to refer only to oxygen ions when discussing the spatial arrangement of this sieve as these are fairly large compared, with the other ions. Later it will be shown that the 48 oxygen ions in the unit cell
together with the exchangeable cotions contribute the most significont part to the potential structure of the system.

The spatial array of synthetic molecular sieves of the Linde ' A ' type have been described by several workers. $(4,5,6,9,27)$ It is well known that these sieves form regular three dimensional arrays of cages interconnected by windows formed by oxygen ions. In the Linde 5A sieve these cages are of two distinct types, differing both in size and mode of interconnection. The large cages are almost spherical and have a free diameter of about 11.4Ω. They are inscribed in the unit cube, side $12.31 \mathbb{A}$. The six faces of the cube contain the main oxygen windows which are formed by a ring of eight oxygen ions. These rings are about $4.3 \&$ free diameter. Thus the main system of cages consists of a regular three dimensional array in which each cage is linked to six others along rectangular axes by OB windows. The small cages have a free diameter of about $7 \AA$ and form the secondary system. They occur in the space formed when eight of the basic large cages are taken together as a composite cube. The geometric centre of this cube includes sight rings of oxygen ions, one from each of the eight large cage structures. These rings have a free diameter of about $2.6 \AA$ and are formed by six oxygen ions. These ions lie on two slightly displaced planes perpendicular to a (111) axis referred to the large cages. The small cages also form a regular three

SQMALL CAGE

dimensional array and are interstitially located with respect to the large eages. The small sages are eart! linked to eight large eages via $\mathbf{O} 6$ windows in (111) directians but have no direct connection one to another. It can be seen thet the large coges offer the greater number of choices of translation to an adsorbed gas molecule. It can jump to any of six large cages via an O8 window or any of eight small cages via an O6 window. Jumps from a small cage can be to any of eight large cages via an O 6 window but it should be noted that the exchangeable cations lie in (111) directions and block the 06 windows, so tending to present translation between large and small cages. The oxygen ions in table 2.1 are referred to as types 1, II and III. In figure 2.1. which shows the positions of the oxygen ions in part of a large and small cage, it can be seen that $O 8$ windows are formed by types 1 and 11 only and 06 windows and small sages by types II and III only.

2.2 Contributions to the Intermolecular Forces in the Carbon DioxideLinde 5A Sieve System

The following assumptions are made to help to decide which of the many intermolecular forces arising from molecule-molecule interactions are of importance in the $\mathrm{CO}_{2} \sqrt{3 A}$ system. These assumptions are modified in later chapters where the results obtmined show them to be incorrect, but are
necossary ot this stoge to define a potentiat function for the system.

1) Initially only one carbon diaxide moleoule is considered, it being situated in one particular large cage of a hypothetical molecular sieve erystal defined by (2), (3) and (4).
2) The empty sieve cages surrounding the one of importance extend to a sufficiently large distance in three dimensions such that the distant cages have a negligible potential effect on the carbon dioxide molecule.
3) The molecules forming the crystal structure are all present in their fully ionised states as $\mathrm{O}^{2-}, \mathrm{Si}^{4+}, \mathrm{Al}^{3+}, \mathrm{Ca}^{2+}, \mathrm{Na}^{+}$.
4) The lattice positions of these ions are as given by Broussard and Shoemaker. (7)
5) The ions are rigidly fixed in these positions.
6) No water of crystallisation is present in the sieve cages.
7) The carbon dioxide molecule is considered as being spherically symmetric.

Also use is made of the fact that the carbon dioxide molecule has a large polarisability and quadrupole moment and a negligible permanent dipole.

The following intermolecular force contributions are based on the above statements for a single carbon dioxide molecule free to move within the
free space of a large cage and interacting with the ions forming the sieve structure. When the interaction does not involve the charge on the ion, the ion is referred to as a molecule, in the following sections,
2.2.1 Dispersion Force

When two molecules interact, long range forces are set up.
These have been evaluated quantum-mechanically to give what is known as the London dispersion force between a pair of molecules (a) and (b). The potential is represented by:

$$
\phi_{\mathrm{db}}^{\mathrm{DIS}}=-\frac{B_{\mathrm{ab}}^{b}}{r_{a b}}\left(=\phi_{\mathrm{D}}\right)
$$

Here $r_{a b}$ is the separation between an ion (a) and the carbon dioxide molecule (b).

The constant $B_{a b}$ is given by:

$$
\begin{aligned}
& B_{a b}=-\frac{3}{2}\left(\frac{\gamma_{a} \gamma_{b}}{\gamma_{a}+\gamma_{b}}\right) a_{a} \alpha_{b} \quad \text { (London) } \\
& B_{a b}=-6 m c^{2}\left(\alpha_{a} \chi_{a}+a_{b} \chi_{b}\right) \quad \text { (Lennard-Jones) }
\end{aligned}
$$

$$
\begin{align*}
& B_{a b}=-\frac{3}{2} e^{2} \sqrt{ }{ }^{0}\left(\frac{a_{a} a_{b}}{\left.\sqrt{\left(a_{\sigma} / n_{a}^{0}\right)+\sqrt{\left(a_{b} / n_{b}^{0}\right)}}\right)} \quad\right. \text { (Slater-Kirkwood) } \\
& B_{a b}=-6 \mathrm{mc}^{2} \frac{a_{a} a_{b}}{a_{d} / X_{a}+a_{b} / X_{b}} \quad \text { (Kirkwood-M8ller) } \tag{Kirkwood-M8ller}
\end{align*}
$$

Barren ${ }^{(8)}$ has pointed out that these various expressions for B_{ab} are mainly empirical. Sample calculations show that the Kirkwood-MBller expression gives a value almost twice that for the London expression. The others give intermediate results. However, the Kirkwood-Muller expression is used since data for it is readily available, but it must be noted that it may over-estimate the dispersion force.

When considering a carbon dioxide molecule interacting with many ions, it is assumed that the total dispersion potential is the scalar sum of the individual pair potentials. Thus:

$$
\sum \phi_{D}=\sum_{r} \frac{B_{a b}}{r^{2}}
$$

2.2.2 Induction Force

When an ion interacts with a neutral molecule the ion induces a dipole in the molecule. This sets up an induced dipole moment $C_{a} a_{b} / r_{c b}^{2}$ in molecule (b). The potential can be represented by:

$$
\phi_{a b}^{N N D}=-\frac{c_{a b}^{2} \alpha_{a}}{2 r_{a b}^{4}} \quad\left(=\phi_{p}\right)
$$

This expression has the form,

$$
\phi_{p}=-\frac{\alpha_{b}}{2}(F)^{2}
$$

where the vector F represents the field at (b) due to the ion at (a). When many ions are interacting with the carbon dioxide molecule of (b) the total potential will be the vector sum of the individual pair interactions. If the field at (b) is resolved into its component parts in the three com ordinate directions this summation becomes:

$$
\sum \phi_{p}=-\frac{a_{b}}{2}\left(\left(\underset{r}{ } \frac{c_{a}}{2} \cdot \frac{x}{r}\right)^{2}+\left(\sum_{r} \frac{c_{a}}{r^{2}} \cdot \frac{y}{r}\right)^{2}+\left(\sum_{r} \frac{c_{a}}{r^{2}} \cdot \frac{z}{r}\right)^{2}\right) \quad 2.5
$$

where

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

and (x, y, z) is the position of ion (a) with respect to molecule (b).
It is known that the interaction force is directional since a molecule will align its induced charge distribution'so that it has maximum interaction with the field. A carbon dioxide molecule is essentially cylindrical in shape and will align but for simplicity it has been assumed spherical.

2.2.3 Electrostatic Force

Only since 1960 has much practical work been done in the field of multipole interactions. The interaction of a carbon dioxide molecule and an ion comes under this heading since carbon dioxide has a large permanent quadrupole moment. It is known that the interaction is directional and of the form:

$$
\phi_{a b}^{E L E C}=\frac{c_{a} C_{b}}{4 r_{a b}^{3}}\left(3 \cos ^{2} \Theta_{b}-1\right)
$$

This function can be averaged over all orientation angles θ_{b}, of the carbon dioxide molecule by the function ${ }^{(10)}$:

$$
\phi_{a b}^{E L E C}=\frac{\iint \phi_{a b} e^{\exp \left(-\frac{\phi_{a b}}{k T}\right) d w_{a} d w_{b}}}{\iint \exp \left(-\frac{\phi_{a b}}{k T}\right) d w_{a} d w_{b}}
$$

where $d w=\sin \Theta d \Theta d \phi$

FIGURE 2.2

This integration represents a transformation to a spherically symmetric potential function with the use of a Boltzmann weighting factor, and allows for the fact that the inferacting molecule spends most of its time in the orientation that gives the maximum interaction. Physically the function assumes $r_{a b}$ is constant whilst the molecule rotates.

The result of the integration is ${ }^{(1 \mathrm{O})}$:

$$
\bar{\phi}_{a b}^{\text {ELEC }}=-\frac{c_{a}^{2} Q_{b}^{2}}{20 k T} \cdot \frac{1}{r_{a b}^{6}}\left(=\phi_{Q}\right)
$$

It should be noted that the potential is now attractive and temperature dependent. It is assumed that when one carbon dioxide molecule interacts with many ions the resultant potential is the scalar sum of the individual pair interactions, i.e.

$$
\sum \phi Q=-\sum_{r} \frac{c_{a}^{2} Q_{b}^{2}}{2 O K T} \cdot \frac{1}{r}
$$

2.2.4 Repulsion Force

At small molecular separations approaching collision distances, a highly repulsive, short range force is set up. Little is known about the true nature of this force and it is customary to represent it by an inverse twelfth power term of the form:

$$
\phi_{d b}^{R E P}=\frac{A}{r_{d b}^{12}} \quad\left(=\phi_{R}\right) \quad 2.8
$$

The constant A is chosen to give the correct equilibrium separation and is therefore a function of the other potential contributions; it is evaluated later, by a similar procedure to that used in formulating the Lennard-Jones 12:6 potential function.

Again it is assumed that the total repulsion potential for many ions is the scalar sum of the individual pair interactions. Thus:

$$
\sum \phi_{R}=\sum_{r} \frac{A}{r_{r}^{12}} \quad 2.8 a
$$

2.2.5 Final Potential Function for one CO_{2} Molecule

The above contributions may be combined to obtain the total potential for a single carbon dioxide molecule at a particular point in space inside a large sieve cage. Thus the total potential can be written as:

$$
\begin{align*}
\phi= & \sum_{r} f\left(B, D_{r} E_{r} \rho_{e}\right) \cdot \frac{1}{r} \frac{12}{r}-\sum_{r} B \cdot \frac{1}{r} \\
& -D\left(\sum_{r} C_{a} \cdot \frac{1}{r^{2}}\right)^{2}-\sum_{r} E_{\cdot} \frac{1}{r^{6}}
\end{align*}
$$

where:

$$
B=-\frac{6 m c^{2} a_{a} a_{b}}{\frac{a_{a}}{x_{a}}+\frac{a_{b}}{x_{b}}} \quad D=\frac{a_{b}}{2} \quad E=\frac{c_{a}^{2} Q_{b}^{2}}{20 k T}
$$

The constants $f\left(B_{f}, D_{,} E_{i}\right)$ are obtained using the relation

$$
\left(\frac{d \phi}{d r}\right)_{r=\rho_{e}}=0
$$

Thus $f\left(B, D, E, p_{e}\right)=\frac{B \rho_{e}^{6}}{2}\left(1+\frac{a_{b} C_{a}^{2} \rho_{e}^{2}}{3 B}+\frac{C_{a}^{2} Q_{b}^{2}}{2 O k T B}\right)$

It is convenient to replace r using the dimensionless transformation $r=a_{0} R$ where a_{0} is the unit cell characteristic dimension. The final expression used then becomes:

$$
\begin{align*}
\phi= & \sum_{R} \frac{B p_{e}^{6}}{2 a_{0}^{12}}\left(1+\frac{a_{b} e^{2} c_{a}^{2} \rho_{e}^{2}}{3 B}+\frac{e^{2} C_{a}^{2} Q_{b}^{2}}{2 O k T B}\right) \cdot \frac{1}{R^{12}} \\
& -\sum_{R} \frac{B}{a_{0}^{6}} \frac{1}{R^{6}}-\sum_{R} \frac{e^{2} a_{b}}{2 a_{0}^{4}}\left(\frac{C_{a}}{R^{2}}\right)^{2}-\sum_{R} \frac{e^{2} Q_{b}^{2}}{2 O k T a_{0}^{6}} \cdot \frac{C_{a}^{2}}{R^{6}}
\end{align*}
$$

The summation \sum_{R} is for all ions having a significant potential effect on the CO_{2} molecule, and the charge on an ion is separated into the charge on an electron and a multiple C_{a}. It should be noted that
B, P_{e} and C_{a} vary according to the particular ion being considered in the summation, and X_{b}, α_{b} and Q_{b} are fixed constants for the carbon dioxide molecule.
2.2.6 Interactions of Two Carbon Dioxide Molecules in the Linde

5A Sieve System
The preceding section is easily extended to cover the case where two carbon dioxide molecules are free to move within the free space of a large cage. Here the two molecules interact with each other as well as with the ions forming the sieve crystal.

The carbon dioxide-carbon dioxide interaction consists of the following terms:

Dispersion Potential, $\quad E_{D}=+3 m c^{2} a_{b} X_{b} \cdot \frac{1}{r^{6}}=-\frac{B^{B}}{r^{6}}$
Induction Potential,

$$
E_{p}=0
$$

Electrostatic Potential, $\quad E_{Q}=-\frac{7}{40} \frac{Q_{b}^{4}}{k^{\prime}} \cdot \frac{1}{r^{10}}=-\frac{D^{1}}{r^{1 O}} \quad 2.13$ Repulsion Potential, $\quad E_{R}=f^{2}\left(B^{1}, D^{2}, \dot{p}_{e}^{1}\right) \frac{1}{r^{12}} \quad 2.14$

In equation 2.11 the Kirkwood Miller term for B^{\prime} is used as before. The induction potential is zero as there is no permanent charge on the carbon
dioxide molecule. Equation 2.13 is obtained after using a Boltzmann weighting factor as in section 2.2.3

The constant f^{\prime} is evaluated using the condition

$$
\left(\frac{d E}{d r}\right)_{r=\rho_{e}^{\prime}}=0 \text { where } E=E_{R}+E_{D}+E_{Q}
$$

and it is convenient to replace r by the dimensionless separation R^{\prime} where $R^{\prime}=r / b_{0}$ and $b_{0}=a_{\sigma} / 20$, the unit grid size (see section 3.2). Thus the interaction potential between two carbon dioxide molecules is given by:

$$
\begin{align*}
E= & \frac{B^{\prime} P_{e}^{\prime 6}}{2 b_{0}^{12}}\left(1+\frac{5}{3} \frac{D^{\prime}}{B^{\prime} P_{e}^{4}}\right) \frac{1}{R^{12}} \\
& -\frac{B^{\prime}}{b_{0}^{6}} \cdot \frac{1}{R^{16}}-\frac{D^{3}}{b_{0}^{I O}} \cdot \frac{1}{R^{1 O}}
\end{align*}
$$

It is assumed that the carbon dioxide-ion interaction is unaffected by the presence of the second carbon dioxide molecule so that equations 2.10 and 2.15 completely describe the interactions in the system.
2.3 The Configuration Integral

The configuration integral Q_{N} for N molecules is defined by:

$$
Q_{N}=\frac{1}{N!} \int_{V} \ldots \int \exp \left(-\phi_{T} / k T\right) d r-1 \cdots \frac{d r}{-N} \quad 2.16
$$

where ${\underset{r}{i}}^{i}$ is the position vector of the molecule i, V is the geometric volume containing the molecules and β_{T} the total potential energy, which for a gas in a solid adsorbent is given by:

$$
\phi_{T}=\sum_{i=1}^{N} \phi\left(r_{i}\right)+\sum_{i=1}^{N} \sum_{i>i} E\left(r_{i}, r_{i}\right)
$$

Here E represents the gas-gas interaction and \varnothing the gas-adsorbent interaction given by equations 2.15 and 2.10.

Write: $\quad f_{i j}=\exp \left(-E\left(r_{i}, r_{i}\right)\right)-1$
and using the fact that: $\exp \left(-\sum_{i} \alpha_{i}\right)=\prod_{i} \exp \left(-\alpha_{i}\right)$, it follows from equations 2.16, 2.17, and 2.18 that:

$$
\begin{align*}
Q_{N}= & \frac{1}{N_{k}} \int_{v} \ldots \int_{i=1} \prod_{i=1}^{N} \exp \left(-\phi\left(r_{i}\right) / k T\right) \\
& \times \prod_{i=1}^{N} \prod_{i>i}\left(f_{i i}+1\right) d_{-} 1 \ldots d_{-} N
\end{align*}
$$

Now $\mathbf{f}_{\mathbf{i} \boldsymbol{i}}$ is significantly different from zero only if molecules \mathbf{i} and \mathbf{i} are close together (ice. $\left\|r_{i}^{-r} r_{j}\right\|$ is small). Thus if the gas density is such that the probability of three or more molecules being close together is negligible then all the products of the $f_{i j}$ are approximately zero. Thus
expanding the integral in equation 2.19 and negiceting all such products gives:

$$
\begin{aligned}
Q_{N}=\frac{1}{N!} & \int_{v} \ldots \int_{n} \prod_{i=1}^{N} \exp \left(-\phi\left(r_{-i}\right) / k T\right) d r_{-i} \cdots d^{\prime} N \\
& +\frac{1}{N!} \int_{v} \cdots \int \sum_{i=1}^{N} \sum_{i>i} f_{i j} \prod_{i=1}^{N} \exp \left(-\phi\left(r_{i}\right) / k T\right) d r_{-1} \ldots d r-N
\end{aligned}
$$

Now the first integral factorises into a product of N integrals, which are all identical since the molecules are identical, and are given by:

$$
v_{0}=\int_{v} \exp ,(-\phi(r) / k T) \cdot d r
$$

The second integral factorises similarly so that we may write:

$$
\begin{aligned}
& \frac{1}{N!} \int_{v} \cdots \int \sum_{i=1}^{N} \sum_{i>i} f_{i i} \prod_{i=1}^{N} \exp \left(-\frac{\phi\left(r_{i}\right)}{k T}\right) d r-1 \cdots d r-N \\
& =\frac{1}{N!} v_{0}^{N-2} \frac{N^{2}}{2} \iint_{V} f_{i j} \exp \frac{\left(-\phi\left(r_{1}\right)-\phi\left(\underline{r}_{2}\right)\right)}{k T} d r_{1} d_{-2}
\end{aligned}
$$

This is obtained by integrating over all the molecules except for the two of interest. In the summations $\sum_{i=1}^{N} \sum_{i>i} f_{i j}$ there ore $\frac{1}{2} N(N+1)$ terms, ie. approximately $\frac{N^{2}}{2}$ terms, and for each $f_{i j}$ the integration is over all other ($\mathrm{N}-2$) identical molecules giving $\mathrm{V}_{0}^{\mathrm{N}-2}$ for the value of

$$
\int_{v} \ldots \int_{i=1}^{N-2} \exp \left(-\frac{\phi\left(r_{-i}\right)}{k T}\right) \frac{d r}{-1} \ldots d_{-N-2}
$$

Finally combining the factorised expressions for the two terms in equation 2.20 gives:

$$
Q_{N}=\frac{V_{0}^{N}}{N_{0}}\left(1-\frac{N^{2} B}{V_{0}}\right)
$$

where:

$$
B=-\frac{1}{2 V_{0}} \iint_{V} f_{12} \exp \left(-\frac{\phi\left(r_{-1}\right)+\beta\left(r_{-2}\right)}{k T}\right) d r_{-1} r_{-2}
$$

2.4 The Partition Function and Equilibrium Isotherm

The partition function Z_{N} for N molecules is defined by:

$$
Z_{N}=Q_{N} / \gamma^{3 N}
$$

where $\gamma=h / \sqrt{2} \mathrm{mkkT}$.
Using the theory of imperfect gases, the Helmholtz free energy F of the system is given by:

$$
F=-k T \log Z_{N}=-k T \log Q_{N}+3 N k T \log \gamma
$$

From equations 2.22 and 2.25:

$$
\begin{aligned}
F=-N k T & \log V_{0}+k T \log N_{0}-k T \log \left(1-\frac{N^{2} B}{V_{0}}\right) \\
& +3 N k T \log \gamma
\end{aligned}
$$

For large N we may use Stirling's approximation,

$$
\log N_{0}^{\prime}=N \log N-N
$$

and if $N^{2} B / N_{0}$ is small, equation 2.26 approstinates to

$$
F=-N k T \log \frac{V_{0}}{N}-N k T(1-3 \log \gamma)+\frac{N^{2} k T B}{V_{0}}
$$

$\because \quad$ Write: $\quad N=n N, \quad R=k \bar{N}, \quad B^{2}=B N$
then: $\quad F=-n R T \log \frac{V_{0}}{n T N}-\operatorname{RT}(1-3 \log \gamma)+\frac{n^{2} R T B^{\prime}}{V_{0}}$
hence: $\quad \mu=\frac{\partial F}{\partial n}=-R T \log \frac{V_{0}}{n \bar{N}}+3 R T \log \gamma+\frac{2 \Delta R T B^{B}}{V_{0}}$
For the gas phase with no adsorbent, the same equations hold with $E\left(r_{-j}\right)=O$ everywhere, since the development is quite general. Equation 2.21 then gives simply the geometric volume V, whilst equation 2.23 is replaced by:

$$
B_{g}=-\frac{1}{2 V_{g}} \int_{V} \int_{g} f_{12} \stackrel{d r}{-1 r_{-2}}
$$

The analogues of equations 2.28 and 2.29 are:

$$
F_{g}=-n_{g} R T \log \frac{V_{g}}{n_{g} N}-n_{g} R T(1-3 \log \gamma)+\frac{n_{g}^{2} R T B_{g}^{3}}{V_{g}}
$$

and $\mu_{g}=-R T \log \frac{V_{g}}{n_{g} \bar{N}}+3 R T \log \gamma+\frac{2 n_{g} R T B_{g}^{\prime}}{V_{g}} \quad 2.32$
Also the gas bulk pressure p is related to the bulk Hielmholtz free energy by:

$$
p=-\frac{\partial F_{g}}{\partial V_{g}}=\frac{n_{g} R T}{V_{g}}+\frac{n_{g}^{2} R T B^{\prime}}{g} V_{g}^{2}
$$

For equilibrium between the adsorbed and the gas phase $\mu_{\mathrm{g}}=\mu$, so from equations 2.32 and 2.29:

$$
\begin{array}{r}
R T \log \frac{V_{g}}{\frac{n}{n}} \cdot \frac{n}{V_{0}}=2 R T\left(B_{g}^{\prime} \cdot \frac{n_{g}}{V_{g}}-B^{\prime} \cdot \frac{n}{V_{0}}\right) \\
\text { i.e. } \quad \frac{n}{V_{0}} \simeq \frac{n_{g}}{V_{g}}\left(1+2\left(B_{g}^{\prime} \cdot \frac{n_{g}}{V_{g}}-B^{\prime} \cdot \frac{n}{V_{0}}\right)\right)
\end{array}
$$

Eliminating $\mathbf{n}_{\mathbf{g}}$ between equations $\mathbf{2 . 3 3}$ and $\mathbf{2 . 3 5}$ and neglecting higher powers of p and n_{g} gives:

$$
i n=\frac{p V_{o}}{R T}\left(1+\frac{P}{R T}\left(B_{g}^{\prime}-2 B^{1}\right)\right)
$$

Equation 2.36 relates the number of moles \boldsymbol{n} of gas adsorbed in volume V of the sieve, in this case the volume of the unit cube side a_{0} to the bulk gas pressure p at temperature T in terms of the molecular potentials
of the system as contained in the terms V_{0} and B^{\prime}. Thus an equilibrium isotherm may be obtained for the system under conditions sufficiently dilute for only two body interactions to be of importance which cortesponds at most to two to three carbon dioxide molecules per cage.

For the hypothetical case of a single adsorbed carbon dioxide molecule, $E\left(r_{i}, r_{-1}\right)=0$ and equation 2.36 reduces to,

$$
n=\frac{p V_{0}}{R T}
$$

2.37
and V_{0} may be approximated by

$$
v_{0}=\sum_{v} \exp \left(-\frac{\alpha(r)}{k T}\right) \delta V
$$

where δV is an element of cage volume per point.
For two adsorbed carbon dioxide molecules in the sieve cage
$E\left(r_{i}, r_{-1}\right) \neq O$ and B^{2} may be approximated by:

$$
B^{1}=-\frac{N}{2 V_{0}} \sum \sum_{v}\left(\exp \left(-\frac{E\left(r_{1}, r_{2}\right)}{k T}\right)-1\right) \cdot\left(\exp \left(-\frac{\beta\left(r_{1}\right)+\beta\left(r_{2}\right)}{k T}\right)\right) \delta V^{2}
$$

2.5 Theoretical Heats of Adsorption

Theoretical heats of adsorption for carbon diaxide adsorbed in a Linde
5A sieve as a function of temperature and pressure can be obtained from values of V_{0}, B^{\prime} and B_{g}^{3} over the range of validity of the theoretical
isotherm (equation 2.36). The heat of adsorption per mole of gas at bulk pressure p and temperature T is:

$$
-\delta H=\delta U+p \delta V
$$

where SV^{J} is the difference in internal energy per mole between gas in the bulk and sieve phases and p $8 V$ is the work done per mole in transferring the gas from one phase to the other.

The internal energy of the gas in the sieve phase is related to the partition function Z_{N} by:

$$
U=k T^{2} \frac{\partial}{\partial T}\left(\log Z_{N}\right)
$$

where

$$
F=-k T \log Z_{N}(10)
$$

Hence $\quad U=F-T\left(\frac{\partial F}{\partial T}\right)_{V}$
Now $F \simeq n R T \log \frac{V_{0}}{n \mathbb{N}}-n R T(1-3 \log \gamma)+\frac{n^{2} R T B^{\prime}}{V_{0}}$
(equation 2.28) where F is the Helmholtz free energy per cage. From equations 2.41 and 2.28 the internal energy per mole of gas in the sieve phase for n moles of gas adsorbed per cage is

$$
\frac{U}{n}=\frac{R T^{2}}{V_{0}} \frac{d V_{0}}{d T}+\frac{n R T^{2}}{V_{0}^{2}}\left(B^{\prime} \frac{d V_{0}}{d T}-V_{0} \frac{d B^{\prime}}{d T}\right)
$$

The analogue of equation 2.42 for the bulk phase can be written in terms of V_{g} / n_{g} giving:
$\frac{U_{g}}{n_{g}}=\frac{n_{g}}{V_{g}} R T^{2} \frac{\partial}{\partial T}\left(\frac{V_{g}}{n_{g}}\right)+\frac{n_{g}}{V_{g}} R T^{2}\left(B_{g}^{\prime} \frac{n_{g}}{V_{g}} \frac{\partial}{\partial T}\left(\frac{V_{g}}{n_{g}}\right)-\frac{d B_{g}^{\prime}}{d T}\right)$
where V_{g} / n_{g} is the volume per mole that n moles of gas per cage in the sieve phase would occupy at temperature T and pressure p in the bulk phase.

At some temperature T, and given a value of the bulk pressure p, then n for these conditions is fixed by equation 2,36 and V_{g} / n_{g} by equation 2.33. Since $V_{0} B^{\prime}$ and B_{g}^{\prime} are functions of temperature only then U / n and U_{f} / n_{g} can be obtained from equations 2.42 and 2.43. The value of $\frac{\partial}{\partial T} \frac{V_{g}}{n_{g}}$ is obtained from equation 2.33 giving:

$$
P \frac{\partial}{\partial T}\left(\frac{V_{g}}{n_{g}}\right)=R+\frac{n_{g}}{V_{g}} R B_{g}^{\prime}+\frac{n_{g}}{V_{g}} R T \frac{d B_{g}}{d T}
$$

The corresponding value to V_{g} / n_{g} in the sieve phase is a_{0}^{3} / n where a_{0}^{3} is the volume of a sieve cage. Hence from equation 2.40 the heat of adsorption per mole at temperature T and pressure p is:

$$
-\delta H=\frac{u_{g}}{n_{g}}-\frac{u}{n}+p\left(\frac{V_{g}}{n_{g}}-\frac{a_{0}^{3}}{n}\right)
$$

2.6 Theoretical Crystal Diffusivities

The crystal diffusivity D_{c} can be related to the transition probabilities for a gas molecule translating from one large cage to the next through an 08 window by a similar method to that used by Vineyord. ${ }^{(11)}$

The transition probability per unit time, G, can be written as:

$$
G=\sqrt{\frac{R T}{2 \pi M}} \times \frac{\int_{s} \exp \left(-\phi_{T} / k T\right) d S}{\int_{v} \exp \left(-\phi_{T} / k T\right) d V}
$$

and D_{c} is related to G by:

$$
D_{c}=\delta^{2} G \quad 2.47
$$

ε is the transition jump distance, and in the case for transition through an O 8 window δ may be replaced by a_{0}. Combining equations 2.46 and 2.47 gives:

$$
D_{c}=a_{o}^{2} \sqrt{\frac{R T}{2 x N}} \times \frac{\int_{s} \exp \left(-\phi_{T} / k T\right) d S}{\int_{V} \exp \left(-\phi_{T} / k T\right) d V} \quad 2.48
$$

where the volume for the integral in the denominator is the volume of the
cage of origin and the surface for the integral in the numerator is the area of the window through which the transition occurs.

In the case where the cage of origin contains a single carbon dioxide molecule, the total potential for the system $\phi_{\boldsymbol{\gamma}}$ reduces to ϕ (see equation 2.17) and equation 2.48 can be approximated by:

$$
D_{c}=a_{o}^{2} \frac{R T}{2 \pi M} \times \frac{\sum_{s} \exp (-\phi / k T) \delta S}{\sum_{v} \exp (-\phi / k T) \delta V}
$$

2.7 Mathematical Model of the Diffusion Process

2.7.1 Description of Model

The model describes the one dimensional diffusion of carbon dioxide in a cylindrical molecular sieve pellet, initially saturated with carbon dioxide labelled with carbon 14, which undergoes a dynamic self diffusion process with unlabelled carbon dioxide at constant temperature and pressure. The practical apparatus is arranged such that diffusion takes place only along the long axis of the pellet, and the exchange surface is at one of the flat ends of the pellet.

A simple approximation to the interior of the pellet is used in which it is assumed there is a uniform distribution of single sized spherical crystals

FIGURE 2.3

SCHEFAIC CORCENRETIOIN PROFIIES IN
 PORES AND CRYSTALS

CONCENTRATION

without any significant contact between one another. Each crystal is surrounded by a gas of uniform composition and the gas just inside the crystal is in thermodynamic equilibrium with the gas just outside. The diffusion processes inside the crystal and in the pore structure of the pellet are governed by Fick's law. Since the exchange process is between labelled and unlabelled carbon dioxide there is no concentration change as such as diffusion proceeds and so a single point on the equilibrium isotherm establishes the equilibrium relationship between gas in the arystal and gas in the pore. At zero time the labelled carbon dioxide concentration of the exchange surface is reduced to zero and maintained at this till the diffusion process is complete. (see figure 2.3).

2.7.2 Crystal Equations

The assumptions that the crystals are single sized, spherical and surrounded by gas of uniform composition gives spherical symmetry. Thus:

$$
\frac{\partial w}{\partial t}=D_{c} \nabla^{2} w=D_{c}\left(\frac{\partial^{2} w}{\partial r^{2}}+\frac{2}{r} \frac{\partial w}{\partial r}\right)
$$

describes the intromerystalline diffusion.
The rate of accumulation of adsorbate Q_{c} per unit valume of crystal is given by:

$$
V_{c} Q_{c}=\int_{\underline{s}}\left(N_{c}\right)_{r=R} d \underline{S}=\int_{\underline{S}} D_{c}\left(\frac{\partial w}{\partial r}\right)_{r=R} \cdot d \underline{S}
$$

Hence, $\quad Q_{c}=\frac{3}{R} D_{c}\left(\frac{\partial w}{\partial r}\right)_{r=R}$

The thermodynamic equilibrium at the surface of the crystal is represented by:

$$
(w)_{r=R}=K v
$$

2.7.3 Pellet Equations

A material balance over an arbitrary volume V in the pellet enclosed by some boundary s gives:

$$
-\int_{\underline{s}}{\underset{\sim}{N}}_{p} \cdot d S=\int_{V}\left(E_{p} \frac{\partial V}{\partial r}+\left(1-E_{p}\right) Q_{c}\right) d V
$$

where ${\underset{\sim}{N}}^{\sim}$ is the mass flux in the pores given by ${\underset{p}{N}}^{N_{p}}=-D_{p} \partial v / \partial x$. By Green's Theorem,

$$
\int_{\underline{s}} N_{-} \cdot d \underline{S}=\int \nabla \cdot{\underset{-}{p}} d V
$$

Now since the material balance is over an arbitrary volume of pellet the integrands may be equated. 'A posteriori' calculation shows that the pore accumulation $E_{p} \partial v / \partial t$ can be neglected. Thus:

$$
D_{p} \frac{\partial^{2} v}{\partial x^{2}}=\left(1-E_{p}\right) Q_{c}
$$

The boundary conditions for these equations are:

$$
\begin{array}{ll}
\text { At } \quad 1=0, & 0 \leq x \leq L ; \quad v=v_{0} \\
& 0 \leq r \leq R ; \quad w=w_{0}=K v_{0} \\
\text { For } t>0, & \text { at } x=L ; \quad v / \partial x=0 \\
& \text { at } x=0 ; \quad v=0 \\
& \text { at } r=0,0 \leq x \leq L ; \quad \partial w / \partial r=0
\end{array}
$$

It is convenient to express these equations in dimensionless form by defining the dimensionless variables:

$$
\begin{array}{ll}
x^{i}=\frac{x}{L} & r^{2}=\frac{r}{R} \quad v^{s}=\frac{v}{v_{0}} \\
w^{2}=\frac{w}{v_{0}} & t^{i}=\frac{t D_{p}}{L^{2}}
\end{array}
$$

Hence from equations :2.52 and 2.56

$$
\frac{\partial^{2} v^{2}}{\partial x^{\prime^{2}}}=3\left(1-E_{p}\right) \frac{D_{c} L^{2}}{R^{2} D_{p}}\left(\frac{\partial w^{\prime}}{\partial r^{r}}\right)_{r^{\prime}=1}
$$

and write $P=D_{P} R^{2} / D_{c} L^{2}$

From equation 2.50

$$
p \frac{\partial w^{\prime}}{\partial r}=\frac{\partial^{2} w^{\prime}}{\partial r^{\prime}}+\frac{2}{r^{\prime}} \frac{\partial w^{\prime}}{\partial r^{\prime}}
$$

From equation 2.57 :

$$
\begin{aligned}
\text { At } \quad t^{\prime}=0, & 0 \leq r^{\prime} \leq 1 ; \quad v^{\prime}=1 \quad \text { and } \quad w^{\prime}=K \\
& 0 \leq x^{\prime} \leq 1 ;
\end{aligned}
$$

For $t^{\prime}>0, \quad$ at $x^{\prime}=1 ; \quad \partial v^{\prime} / \partial x^{1}=0$

$$
\begin{array}{ll}
\text { at } x^{\prime}=0 ; & v^{\prime}=0 \\
\text { at } r^{\prime}=0 ; & 0 \leq x^{\prime} \leq 1 ; \\
\partial w^{\prime} / \partial r^{\prime}=0
\end{array}
$$

and from equation 2.53

$$
\text { at } r^{\prime}=1, \quad 0 \leq x^{\prime} \leq 1 ; \quad w^{\prime}=K v^{\prime} \quad \text { 2.60a }
$$

Equations $2.58,2.59$ and 2.60 now define the model with $w^{\prime}=w^{\prime \prime}\left(x^{\prime}, r^{\prime}, t^{\prime}\right)$ and $v^{1}=v^{3}\left(x^{1}, t^{1}\right)$.

2.7.4 Finite Difference Solution

Equations 2.58 and 2.59 are solved by an implicit method to obviate stability problems, ${ }^{(12)}$ using the following finite difference approximations,

Time increment,

$$
t^{\prime}=i \delta t^{\prime} \quad i=0,1,2 \ldots .
$$

Space increment in pellet,

$$
x^{\prime}=j \delta x^{\prime} \quad i=0,1,2 \ldots m \xi m E x^{\prime}=1
$$

$$
r^{\prime}=k \boldsymbol{q}^{\prime}
$$

$$
k=0,1,2 \ldots n ; n \delta r^{1}=1
$$

In the crystal, since time is explicitly involved, six values of $w^{\mathbf{1}}$ will
be needed to write an approximation to equation 2.59, and in the pellet since time is implicit, three values of \mathbf{v} will be needed to write an approximation to equation 2,58. The approximations used for say space dimension $\mathbf{r}^{\mathbf{\prime}}$ are:

$$
\begin{aligned}
& \frac{\partial w^{1}}{\partial r^{\prime}}=\frac{w_{k+1}^{1}-w_{k-1}^{1}}{2 \varepsilon^{\prime}} \\
& \frac{\partial^{2} w^{\prime}}{\partial r^{\prime 2}}=\frac{w_{k+1}^{1}-2 w_{k}^{1}+w_{k-1}^{1}}{\left(\delta r^{1}\right)^{2}}
\end{aligned}
$$

and for time : $\quad\left(\frac{\partial w^{1}}{\partial r^{r}}\right)_{i+\frac{1}{2}}=\frac{w_{i+1}^{1}-w_{i}}{8 r^{1}}$

To keep consistency with an implicit solution, in the erystal the LHS of equation 2.59 is evaluated at time $\mathbf{i}+\frac{1}{2}$ and the RHS at the average of the values at times i and $i+1$. The pellet equation (2.58) is evaluated at time i.

Thus from equation 2.58 :

$$
\begin{gather*}
\left(\frac{\partial w^{\prime}}{\partial r^{\prime}}\right)_{r^{\prime}=1}=Q_{i, i}=Q\left(v_{i, i-1}^{\prime}-2 v_{i, i}^{\prime}+v_{i, i+1}^{\prime}\right) \\
\text { with } \quad 1 \leq i \leq(m-1)
\end{gather*}
$$

and using equation 2.61 :

$$
G_{i, m}=2 Q\left(v_{i, m-1}^{!}-v_{i, m}^{1}\right)
$$

where $\quad Q=P / 3\left(1-E_{p}\right)\left(\delta x^{1}\right)^{2}=P_{m}^{2} / 3\left(1-E_{p}\right)$
and $\quad v_{i, 0}^{1}=0$
From equation 2.59 :

$$
\begin{gather*}
-\frac{k+1}{k} w_{i+1, i, k+1}^{1}+(\beta+2) w_{i+1, i, k}^{i}-\frac{k-1}{k} w_{i+1, i, k-1}^{i}= \\
=\frac{k+1}{k} w_{i, i, k+1}^{i}+(\beta-2) w_{i, i, k}^{1}+\frac{k-1}{k} w_{i, i, k-1}^{1} \\
\text { with } \quad 1 \leq k \leq n
\end{gather*}
$$

where $\beta=2 P\left(\delta \sigma^{1}\right)^{2} / \delta t^{8}=2 P / n^{2} \delta t^{\prime}$.
Note that values of w^{1} for $k=O$ do not appear in the equation; values for $k=n+1$ are given by :

$$
w_{i, i, n+1}^{\prime}=w_{i, i, n-1}^{1}+\frac{2}{n} \cdot G_{i, i}
$$

Equation 2.62 may be written in the form:

$$
a_{k, k-1} w_{i+1, i, k-1}^{1}+a_{k, k} w_{i+1, i, k}^{!}+a_{k, k+1} w_{i+1, i, k+1}^{i}=b_{k}
$$

with $\quad 1 \leq k \leq n$
where $\quad a_{k, k-1}=-\frac{k-1}{k}$

$$
\begin{aligned}
& a_{k, k}=\beta+2 \\
& a_{k, k+1}=-\frac{k+1}{k} \\
& b_{k}=-a_{k, k-1} w_{i, i, k-1}^{1}+(i-2) w_{i, i, k}^{i}-a_{k, k+1} w_{i, i, k+1}^{1}
\end{aligned}
$$

$$
\text { with } \quad 1 \leq k<n
$$

and for $k=n:$

$$
\begin{aligned}
& a_{n, n-1}=-2 ; \quad a_{n, n}=\beta+2 ; \quad a_{n, n+1}=0 \\
& b_{n}=2 w_{i, i, n-1}^{1}+(\beta-2) w_{i, i, n}^{1}+\frac{2(n+1)}{n^{2}}\left(G_{i+1, i}+G_{i, i}\right) \quad 2.64 a
\end{aligned}
$$

The algorithm used to solve the equations 2.61, 2.67a, 2.63, 2.64 and 2.64a is:

For one time step, given all $v_{i, i}^{i}, w_{i, i, k}^{i}, G_{i, i}$

1) Estimate $v_{i+1, i}^{\mathbf{i}}$ for $1 \leq i \leq m$
2) Compute $G_{i+1, i}$ for $1 \leq i \leq m$ using equations 2,61 and 2.61 a .
3) Compute $a_{k, k-1}, a_{k, k}, a_{k, k+1}, b_{k}$ for
$1 \leq k \leq n$ using equations 2.63 and 2.63a.
4) Solve the resulting set of linear equations for the $w_{i+1, i, k}^{i}$ for $1 \leq k \leq n$.
5) Compute $v_{i+1, i}^{n}=w_{i+1, i, n}^{\mathrm{i}} / K$
6) If the change in any $v_{i+1, i}^{l}$ over the step exceeds the permitted error, repeat from step 2 with new estimates for $v_{i+1, i}$ where:

$$
\text { New } v_{i+1, i}^{\prime}=\left(1-\beta^{\prime}\right) v_{i+1, i}^{1}+\beta^{\prime} v_{i+1, i}^{\prime \prime}
$$

where β^{r} is a given relaxation parameter $O<\beta^{r}<2$.

For the case where $P=O$ (i.e. D_{c} is infinite) and thus pure diffusion is the controlling process the pellet equation is:

$$
\frac{\partial^{2} v^{\prime}}{\partial x^{\prime}}=\frac{\partial}{\partial t^{\prime}}\left(E_{p} v^{\prime}+\left(1-E_{p}\right) K v^{\prime}\right)
$$

with the boundary conditions:

$$
\begin{array}{ll}
\text { At } t^{\prime}=0, & 0 \leq x^{\prime} \leq 1 ; \quad v^{\prime}=1 \\
\text { For } t^{\prime}>0, & x^{\prime}=0 ; \quad v^{\prime}=0 \\
& x^{\prime}=1 ; \quad 2,65 a \\
& 2 v^{\prime} / \partial x^{1}=0
\end{array}
$$

whence $v_{i, 0}^{i}=0$ for all $i>0$.
The finite difference approximation is:

$$
\begin{gathered}
-v_{i+1, i-1}^{1}+(X+2) v_{i+1, i}^{2}-v_{i+1, i+1}^{1}= \\
=v_{i, i-1}^{1}+(X-2) v_{i, i}^{1}+v_{i, i+1}^{1}
\end{gathered}
$$

with $1 \leq i \leq(m-1)$
2.66
and for $\mathbf{i}=\mathbf{m}$

$$
-2 v_{i+1, m-1}^{\prime}+(X+2) v_{i+1, m}^{1}=2 v_{i, m-1}^{1}+(X-2) v_{i, m}^{1}
$$

where $X=2\left(E_{p}+\left(1-E_{p}\right) K\right) / m^{2} \partial r^{1}$.
The algorithm used in this case is for each time step the $v_{i+1, i}^{1}$ with $1 \leq i \leq m$ are obtained from the $v_{i, i}^{i}$ with $1 \leq i \leq m$ by solving the set of linear equations 2.66 and $2.66 a$.

CHAPTER 3 - COMPUTATIONAL METHODS

3.1 Generation of a Sieve Structure

Equation 2.10 describes the inferaction between a single carbon dioxide molecule and the ionic framework of the Linde 5A sieve. Before this equation can be used a sieve structure must be generated using the ion positions given in table 2.1. This table can be expanded in terms of the Oxygen, Sodium and Calcium ion positions to give table 3.1, which fully describes the positions of the ions in the positive quadrant (X, Y, Z). The Aluminium and Silicon ions have been omitted as it is shown in Chapter 6 that their potential effect is negligible.

3.1.1 Full Ion Reflection

The ions in table 3.1 have to be reflected out to generate a three dimensional network of sieve cages, each cage formed by a unit cell, which itself is formed by 56 ions (48 oxygen and 8 NaCa ions). There are two separate ways in which the data ions can be reflected. One maintains 56 ions per cage throughout the generated structure and as a result of this leaves the resulting composite cube devoid of ions on
three faces. The ether fills these faces with axygen ions, forming $\mathrm{O8}$ windows, and maintains a symmetric structure.

TABLE 3.1

ION	X	Y	Z
OI	0	0.2720	0.5
OI	0	0.5	0.2720
OI	0.2720	0	0.5
OI	0.2720	0.5	0
OI	0.5	0	0.2720
OI	0.5	0.2720	0
OII	0.2122	0.2122	0.5
OII	0.2122	0.5	0.2122
OII	0.5	0.2122	0.2122
OIII	0.1518	0.3882	0.3882
OIII	0.3882	0.1518	0.3882
OIII	0.3882	0.3882	0.1518
NaCa	0.3050	0.3050	0.3050

In a composite cube formed by $(2 n-1)^{3}$ unit cells, $n=1,2,3 \ldots \ldots$ there will be $56 \times(2 n-1)^{3}$ ions in the first structure and $56 \times(2 n-1)^{3}+8 \times 3 \times(2 n-1)^{2}$ ions in the second structure.

The term $8 \times 3 \times(2 n-1)^{2}$ represents the surface oxygen ions in the three faces that were unfilled in the first case. Each unfilled face includes ($2 \mathrm{n}-1)^{2}$ faces of unit cells, each of which includes eight oxygen ions. The number of ions expected to be generated for compesite cubes of increasing size is given in table '3.2.

If the six AS ions are included in the data table there will be $80 \times(2 n-1)^{3}+3 \times 16 \times(2 n-1)^{2}$ ions in o composite cube containing ($2 \mathrm{n}-1)^{3}$ unit cells. The number of ions expected to be generated for various volues of \mathbf{n} is given in table 3.3 .

TABLE 3.2

n	RMAX $=$ $(2 n-1) / 2$	$56 \times(2 n-1)^{3}$	$24 \times(2 n-1)^{2}$	TOTAL NO. OF IONS	NO. OF UNIT CELLS $=(2 n-1)^{3}$
1	0.5	56	24	80	1
2	1.5	1512	216	1728	27
3	2.5	7000	600	7600	125
4	3.5	19208	1176	20384	343
5	4.5	40824	1944	42768	729
6	5.5	74536	2904	77440	1331

TABLE 3.3

n	1	2	3	4	5	6
TOTAL NUMBER OF IONS	128	2592	11200	29792	62208	112288
NUMBER OF UNIT CELLS	1	27	125	343	729	1331

The method by which the ions in table 3.1 are reflected to give the number of ions in table 3,2 is best seen by analysing the procedure for a single cage. Six OI ions, three Oll ions, three OIII ions and a single NaCa ion form the data table. Designating the co-ordinates of these ions as $\mathrm{Al}, \mathrm{BI}, \mathrm{Cl} ; \mathrm{I}=0,1,2, \ldots . .12$, then these co-ordinates have to be reflected to form all combinations of $\pm \mathrm{AI}, \pm{ }^{+} \mathrm{BI}, \pm \mathrm{Cl}$. In general any co-ordinate can have two values, i.e. \pm GI, so there will be $\mathbf{2}^{\mathbf{3}}$ positions generated per line of data. To avoid repeating ion positions, the procedure is subject to the condition that if any co-ordinate $\mathrm{GI}=\mathrm{O}$ then $\mathrm{GI} \cong-\mathrm{GI}$. This only occurs in data for Ol ions so only 2^{2} positions are generated for the first six lines of data. This is summarised in table '3.4'.

TABLE 3.4

1	NO. OF VALUES FOR CO-ORDINATE	LINES OF	POINTS		
	DIATA OF				
GENERATED					
THIS TYPE					
$0-5$	1	2	CI	2	6
$6-8$	2	2	2	3	24
$9-11$	2	2	2	3	24
12	2	2	2	1	8

The procedure is readily extended to $n=2$, etc. The ion corordinates are in units of a_{0}, the unit cell characteristic dimension, so the data ions have only to be expanded in the form $\pm(m \pm$ GI)
$m=0,1,2 \ldots m^{8}$ to simulate ions in all regions outside the range of the data table. The value assigned to m^{\prime} is such that $\pm\left(m^{\prime} \pm G 1\right)<R M A X$ for the value of n being considered, i.e. $m^{\prime}=n-1$.

For $\mathbf{n}=\mathbf{2}$ the general co-ordinate GI can take six values. These are \pm GI, $\pm(1-G I)$ and $\pm(1+G 1)$. To avoid repetition of points, if
 values only. Also if $\mathrm{GI}=0.5$ then $\mathrm{GI}=1-\mathrm{GI}$ and $-1+\mathrm{GI}=-\mathrm{Gl}$ giving four values only. This will then generate the following numbers of ions.

- 53 -

TABLE 3.5

1	NO. OF VAlues for co-ordinate			LINES OF DATA OF THIS TYPE	POINTS GENERATED
	Al	BI	Cl		
O-5	3	6	4	6	27×16
6-8	6	6	4	3	27×16
9-11	6	6	6	3	27×24
12	6	6	6	1	27×8
					$=1728$

3.1.2 Holf Plane Reflection

The preceding ion projection method maps out the positions of all ions in a cubic space which contains as many unit cells as required. For computation purposes it is more convenient to use a method which maps out all ions in the region $x \geq 0$ and to generate the ions in the region $x<0$ later in the program.

TABLE 3.6

1	No. of values of co-ordinate			LINES OF DATE OF THIS TYPE	$\begin{aligned} & \text { LATER } \\ & \text { REFLEC- } \\ & \text { TION } \end{aligned}$	POINTS GENERATED
	AI	BI	Cl			
$\left(\begin{array}{c} 0-1 \\ (A \mid=0) \end{array}\right.$	1	6	4	2	1	16×3
$\begin{gathered} 0-1 \\ (A \nexists=0 \end{gathered}$	1	6	4	2	2	16×6
2-3	3	3	4	2	2	16×9
4-5	2	3	6	2	2	16×9
6-7	3	6	4	2	2	16×18
8	2	6	6	1	2	16×9
9-12	3	6	6	4	2	16×54
						$=1728$

For $\mathbf{n}=\mathbf{2}$ in this method, the comordinate Al will now take three values. These are $A I, 1+A \mid$ and $I-A I$, i.e. those co-ordinates which lie between O and RMAX for $\boldsymbol{n}=2$. The co-ordinates BI and CI can take six values as before. To avoid repetition of points, if $\mathrm{AI}=\mathrm{O}$ there is only this one value and the point is not reflected later in the program. Also $1+A|\equiv 1-A|$ giving one other value which will be reflected later. If BI or $\mathrm{Cl}=\mathbf{O}$ there will be three values of this co-ordinate and if Bl or $\mathrm{Cl}=0.5$ there will
be four values, all of which will be reflected later. This procedure, in the main analogous to the preceding one, will generate the number of ions given in table 3.6.

3.2 Carbon Dioxide-Ion Interaction

Having outlined the method by which the data ions are projected, a procedure is required that will evaluate the interaction between a carbon dioxide molecule situated inside a large cage and these ions. If a model of a perfect crystal of the Linde 5A molecular sieve is examined, it can be seen that the region bounded by a cube side a_{0} centred on a large cage contains four points of structural symmetry. These are the centre of a large cage, the centre of a small cage, the centre of an O 8 window and the centre of an O 4 bridge. ${ }^{\text {(9) }}$ If these four points, all of which are included in the unit cell structure, are joined, one obtains a tetrahedron. Because of the existing symmetry this tetrahedron is the smallest region of space within the unit cell from which the whole structure can be generated both spatially and potentially by appropriate reflections and rotations.

Figure 3.1

A set of rectangular co-ordinate axes as shown in figure 3.1 are used to contain the tetrahedron, with the origin at the centre of the large cage of interest.

A is the centre of the large cage
B is the centre of the OB window
C is the centre of the O 4 bridge
D is the centre of the small cage

Here 2AB is the unit cell dimension $a_{0}=12.31 \AA$. The ion positions given by Broussard and Shoemaker and quoted in table: $\mathbf{3 . 1}$ are also in units of a_{0} and all lie in the quadrant (X, Y, Z), bounded by the tetrahedron. This shape represents $\bar{V}_{48 \text { th }}$, of the total volume of the unit
cube, and suitable reflection of the ion positions in (X, Y, Z) will create for computation purposes as many inferconnected cages in three dimensions as necessary. When the potentials have been determined in (X, Y, Z), suitable reflection of the values will give the potentials throughout the region of the unit cube.

To simplify computation further the Si^{4+} and Al^{3+} ions are considered as a hypothetical $A S^{3 \frac{1}{2}+}$ ion. The properties of this are obtained from the geometric mean polarisability and arithmetic mean susceptibility and ionic radius of the separate aluminium and silicon ions. Similarly a hypothetical $\mathrm{NaCa}^{1 \frac{1}{2}+}$ or $\mathrm{Ca}^{1 \frac{1}{2}+}$ ion is used. This permits one of these ions to be located in each of the eight 06 windows bordering the large cage, which fits in better with the basic symmetry.

For computation within the tetrahedron it was decided to use a three dimensional grid with a grid line separation of a $/ 20$. This gives a convenient labelling system to locate the particular point of computation which will lie in the range $10 \geq X \geq Y \geq Z \geq 0$ and also a maximum of 286 points at which the potential can be evaluated.

3.3 Pofnt Reflections and Point Multiples within the Tetrahedral Grid

When the interaction potential has been computed inside the tetrahedron using equation 2.10, the results obtained can be reflected to fill the
whole of the region inside the large cage. As far as equation 2.37 is concerned, all that is required at this stage is to be able to evaluate.'the point multiple for these results since equation 2.38 depends only on the value of the potential. However, a complete potential map will be required later and so the reflected positions are given in full, together with the point multiple.

The points inside the tetrahedron fall into eight groups, which can be recognised by the algebraic relationship between the co-ordinates of each grid point.
3.3.1 Point (a)

$$
X=Y=Z=0
$$

This is a unique point.
3.3.2 Line (ab)

$$
x=J \text { and } Y=Z=0 \text { with } 0<J \leq 10
$$

These points can be reflected six times onto the points represented by:-

$$
\begin{array}{ll}
X= \pm J & \text { and } \\
Y= \pm J & \text { and } \\
Y=X=O \\
Z= \pm J & \text { and } \\
X=Y=0 \\
\text { with } O<J \leq 10 &
\end{array}
$$

IINES OF SYMERRY TH THE UNIT CUBE

FIGURE 3.2

FTGURE 3.3

FIGURE 3.4

-60-

These are lines that join the mid points of the six faces of the unit cube to its centre. (See figure 3.2).
3.3.3 Line (ad)

$$
X=Y=Z=J \text { with } 0<J \leq 10
$$

These points can be reflected eight times onto the points given by

$$
X=Y=Z= \pm J \text { with } 0<J \leq 10
$$

These are lines joining the corners of the unit cube to its centre. (See figure 3.3).
3.3.4 Line (ac)

$$
X=Y=J \text { and } Z=0 \text { with } 0<1 \leq 10
$$

These points can be reflected twelve times onto the points given by:

$$
\begin{aligned}
& X=Y= \pm J \text { and } Z=0 \\
& X=Z= \pm J \text { and } Y=0 \\
& Y=Z= \pm J \text { and } X=0 \\
& \text { with } O<J \leq 10
\end{aligned}
$$

These are lines that join the mid points of the edges of the unit cube to its centre. (See figure 3.4).
3.3.5 Plane (abc)

$$
\begin{aligned}
& Z=0 \text { and } X=J, \quad Y=K \text { with } 0<J \leq 10 \\
& \text { and } 0<K<10
\end{aligned}
$$

These points can be reflected twenty-four times onto the points given by:

$$
\begin{array}{lll}
Z=0, & X= \pm J, & Y= \pm K \\
Z=0, & X= \pm K, & Y= \pm J \\
Y=0, & Z= \pm J, & X= \pm K \\
Y=0, & Z= \pm K, & X= \pm J \\
X=0, & Y= \pm J, & Z= \pm K \\
X=O, & Y= \pm K, & Z= \pm J
\end{array}
$$

$$
\text { with } 0<J \leq 10 \text { and } 0<K<10
$$

These points lie on three planes in the direction of the coordinate axes. (See figure 3.5).
3.3.6 Plane (ocd)

$$
\begin{aligned}
& X=Y=J \text { and } Z=K \text { with } 0<J<10 \\
& \text { and } O<K \leq 10
\end{aligned}
$$

These points can be reflected twenty-four times onto the points given by:

$$
\begin{aligned}
& X=Y= \pm J \text { and } Z= \pm K \\
& X=Z= \pm J \text { and } Y= \pm K \\
& Y=Z= \pm J \text { and } X= \pm K \\
& \text { with } O<J<1 O \text { and } O<K<10
\end{aligned}
$$

PLANES OF SYMMETrY IF THE UNIT CUBE

FIGURE 3.5

FIGURE 3.6

FIGURE 3.7

(Only two planes shown for the sake of clarity)

These points lie on six planes formed by the six pairs of diagonally opposite edges of the cube and the diagonals joining their ends through the centre of the cube. (See figure 3.6).
3.3.7 Plane (abd)

$$
\begin{aligned}
& K=J \quad \text { and } \quad Y=Z=K \quad \text { with } 0<J<10 \\
& \text { and } O<K<10
\end{aligned}
$$

These points can be reflected twenty-four times onto the points given by:

$$
\begin{array}{ll}
X= \pm J & \text { and } \\
Y= \pm J & \text { and } \\
Y=X= \pm K \\
Z= \pm J & \text { and } \\
X=Y= \pm K \\
\text { with } O<J<10 & \text { and } O<K<10
\end{array}
$$

These points lie on six planes formed by the six pairs of diagonally opposite edges of the cube and the diagonals joining their ends through the mid points of the faces of the cube. (See figure 3,7).
3.3.8 All other points

$$
\begin{aligned}
& X=J, \quad Y=K, \quad Z=L \quad \text { with } \quad O<J \leq 10, \\
& O<K<1 O \quad \text { and } O<L<10
\end{aligned}
$$

These points can be reflested forty-eight times onto the points given

$$
\begin{array}{lll}
X= \pm J, & Y= \pm K, & Z= \pm L \\
X= \pm J, & Y= \pm L, & Z= \pm K \\
X= \pm K, & Y= \pm J, & Z= \pm L \\
X= \pm K, & Y= \pm L, & Z= \pm J \\
X= \pm L, & Y= \pm J, & Z= \pm K \\
X= \pm L, & Y= \pm K, & Z= \pm J
\end{array}
$$

with $0<J \leq 10,0<K<10$ and $0<L<10$
These eight types of reflection contain all the information required to map out the porentials obtained for the 286 points within the tetrahedron onto the 9261 points within the unit cube.

TABLE 3.7

REGION	INCLUDES	POINTS IN REGION	POINT MULTIPLE	REFLECTION TYPE
Point a	-	1	1	1
Line ab	Point b	10	6	2
ad				
ac	d	10	8	3
Plane abc	c	10	12	4
acd abd	Line bc	cd	45	24
Tetrahedron abcd	blane bcd	45	24	5

It may be noted that \sum (points \times point multiple $)=9261=(21)^{3}$ which checks that all points have been reflected correctly.

3.3.9 Point Multiple Recognition

Sections 3.3.1-3 contain the algebraic relationships between the co-ordinates of any grid point ($\mathrm{J}, \mathrm{K}, \mathrm{L}$) for it to have some particular point multiple. The flow diagram in figure 3.8 shows the procedure used to recognise these multiples.

3.3.10 The Carben Dioxide-Ion Interaction Program

A program was written in EXCHLF Autocode which evaluated the carbon dioxide-ion potentials using the theoretical relationships outlined in section 2.2 and the preceding computational methods. The flow diagrams are given in figures 3.9: and 3.10. A listing of the program is given in Appendix . C

3.4. The Equilibrium Isotherm

Equation 2.39 is programmed as follows. Having obtained a set of potentials in the region $10 \geq X \geq Y \geq Z \geq 0$, it is convenient to redefine the origin of these as a corner of the cube containing the unit cell.

Using the same grid separation, the potentials will then lie in the region $20 \geq X \geq Y \geq Z \geq 10$.

Equations 3.1 to 3.8 are in terms of the old grid co-ordinates (J, K, L). With the new origin, for example, the first line in equation 3.8 becomes:

$$
\begin{array}{lll}
X=J, & Y=K, & Z=L \\
X=20-J, & Y=20-K, & Z=20-L
\end{array}
$$

with $10<J \leq 20,10<K<20$ and $10<L<20 \quad 3.9$ i.e. the points are now reflected about $(10,10,10)$ instead of $(0,0,0)$.

If the forty-eight points in equation $3.8 j$ are reordered and written in the form of equation 3.9, the procedure for reflecting any particular value in the set of potentials is greatly simplified. Firstly the value has to be recognised as belonging to a particular reflection type. (These are numbered 1 to 8 in table 3.7) Then all the raflected positions of this value can be found using table 3.8: This table shows how the forty-eight possible reflected values are ordered, and the sequence in which the program generates each according to the reflection type.

In the unit cube containing 9261 grid points it would be possible to compute $9260+9259+\ldots+2+1=42,878,430$ different pair interactions between two carbon dioxide moleoules free to be placed at any of the grid points except the one occupied by the other.

LABEL	$x=J$	$\mathrm{Y}=\mathrm{X}$	$\mathrm{z}=\mathrm{L}$	REFLECTION TYPE						
				2	3	4	5	6	7	8
1	J	K	1.	1	1	1	1	1	1	1
2	J	K	20-L		2			2	2	2
3	J	20-K	1		3		2	3	3	3
4	J	20-K	20-5		4	5		4	4	4
5	J	L	K				3	5		5
6	J	20-L	K					6		6
7	J	L	20-K				4	7		7
8	J	20-L	20-K					8		8
9	K	L	J	2		2	5		5	9
10	K	20-L -	J						6	10
11	K	20-L	20-J				6		7	11
12	K	20-L	20-J			6			8	12
13	K	J	L				7			13
14	K	J	20-L							14
15	K	20-J	1				8			15
16	K	20-J	20-L							16
17	20-J	K	1.	3	5	3	9	9	9	17
18	20-J	K	20-5		6			10	10	18
19	20-J	20-K	L.		7		10	11	11	19
20	20-J	20-K	20-L		8	7		12	12	20
21	20-J	L	K				11	13		21
22	20-J	20-L	K					14		22
23	20-J	L	20-K				12	15		23
24	20-J	20-L	20-K					16		24
25	20-K	L	J			4	13		13	25
26	20-K	20-L	J						14	26
27	20-K	L	20-J	4			14		15	
28	20-K	20-L	20-J			8			16	28
29	20-K	J	L				15			29
30	20-K	J	20-L							30
31	20-K	20-J	L				16			31
32	20-K	20-J	20-L							32
33	L	J	K			9	17	17	17	33
34	L	20-J	K				18	18	18	34
35	20-L	J	20-K	5			19	19.	19	35
36	20-L	20-J	20-K				20	20.	20	36
	L	K	J				21			37
38	20-L	K	20-J			10	22			38
39	L	20-K	J				23			39
40	20-L	20-K	20-J				24			40
41	20-L	J	K					21	21	41
42	1	J	20-K					22	22	42
43	20-L	20-J	K	6		11		23	23	43
44	L	20-5	20-K					24	24	44
45	20-L	K	J							45
46	\pm		20-3							46
47	20-L	20-K	J							
4^{8}	L	20-K	20-J			12				4^{8}

Using the basic symmetry of the system it is not nocessary to compute all these interactions, and many of them can bo inferred using the reflection table 3.8 and the polnt multiple values. The way this is dene be seen by analysing a simple two dimensional case using a square grid containing 25 points.

Figure 3.11

04	14	24	34	44
03	13	23	33	43
02	12	22	32	42
01	11	21	31	41
00	10	20	30	40

The grid points lie at the centre of the small squares, labelled as shown in figure 3.11. The shaded region is treated as the input points and these are used to generate all the ether grid positions using table 3.9°.

TABLE 3.9

POINT	POINT MULTIPLE	REFLECTED POINTS
22	1	
32	4	$23,12,21$
33	4	$13,11,31$
42	4	$24,02,20$
43	0	$34,14,03,01,10,30,41$
44	4	$04,00,40$

The first carbon dioxide molecule is placed at (22) and the second successively at (22), (32), (33), (42), (43) and (44). If the pair interaction is calculated between these six second points and the first point, then multiplying each value in turn by the point multiples in table (3.9), will give the total interaction for all the twenty-four possible pairs. When the second melecule is at (22) it is coincident with the first so the interaction is neglected.

The first carbon dioxide molecule is next placed at (32) and the second successively at (32), (33) (44). The pair interaction must now be calculated for all possible reflections of both points. The second molecule is constrained such that it cannot be at (22) as this interaction has already been included in the first sot as (22-32).

When both molecules are at (32) the interaction is neglected as the molecules are coincident. However, the first molecule of (32) has throe reflected positions and all interactions of these reflected first molecules with all second and reflected second molecules must be included. The way these interactions can be systematically generated is as follows.

The first molecule is at (32) which has a point multiple of 4. Thus all summations of interactions with the second molecule and its reflections will be multiplied by 4 except when the second molecule is at (32). In
this case the first point multiple must be reduced as the coincidence at (32) will also occur in throe other reflected positions, eliminating some interm actions. There will be only 6 possible different interactions obtainable after reflection of both molecules at (32). These are (32-23), (32-12), (32-21), (23-12), (23-21) and (12-21).

When the second molecule is at (33) which has a point multiple of 4 , there will be 4×4 interactions generated, of which 4 must actually be calculated. The second molecule then moves to the remaining points which in turn generates a further $4 \times 4+4 \times 8+4 \times 4$ inferactions, of which only the $4+3+4$ different interactions are calculated. Hoving moved the second molecule through its range of positions, the first is moved to (33) and the process repeated. Finally, both molecules arrive af (44) which has a point multiple of 4 . Both molecules can be reflected onto (O4), (OO) and (40) so the following interactions are possible: (44-04), $(44-00),(44-40),(04-00),(04-40)$ and $(00-40)$. Table 3.10 summarises the foregoing intoractions.

TABLE 3.10

FIRST POINT	$\begin{array}{\|c\|} \text { MULTI- } \\ \text { PLE } \end{array}$	SECOND POINT AND MULTIPLE						NUMBER OF POINTS GENERATED		SUM
		1	4	4	4	8	4			
22	1	22	32	33	42	43	44		$(4+4+4+8+4)$	24
32	4		32	33	42	43	44	2x(3)	$4 \times(4+4+8+4)$	86
33	4			33	42	43	44	2x(3)	$4 \times(4+8+4)$	70
42	4				42	43	44	2x(3)	$+4 x(0+4)$	54
43	8					43	44	$4 \times(7)$	$+6 x(4)$	60
44	4						44	$2 \times(3)$		6

In table 3.10 the bracketed terms represent the number of pair calculations that must be done, and the summations the total number of interactions inferred from these by suitable multiplication. The table generates 300 pairs as is expected since $24 * 23+\ldots 3+2+1=300$.

The general rule deduced from table 3.10 is to mova both molecules systematically through all their possible positions such that if the positions were numbered 1,i, k^{1} for the first and 1,.....if.....m m^{4} for the second, then the second molecule must take all possible values of \mathbf{i} before \mathbf{i} is increased with $\mathbf{i} \geq \mathbf{i}$. If the point multiple associated with position \mathbf{i} is k and with \mathbf{i} is \dot{m} then when $\mathbf{i}=\mathfrak{j},(n-1) \times k / 2$ pairs are generated and $(m-1)$ are calculated. When $\mathbf{i}>\boldsymbol{i}$ then $m \times k$ pairs are generated but only m are calculated.

This procedure is readily applied to the case when the grid points are distributed throughout a tetrahedron. The ordering of the grid points is immaterial so long as the list is exhausted systematically. The above general rule gives the method of calculating all possible pair interactions where the carbon dioxide molecules are constrained to be at grid points at which the carbon dioxide ion potential gives a value of $\operatorname{Kexp}(-\beta / k T)>1$, where K is the point multiple for the grid point. This means that about 200 of the 286 possible grid points are automatically discarded when evaluating equation 2.39 .

When each molecule-molecule interaction is calculated the molecule-ion term

$$
\left.\exp \left(-6\left(\underline{r}_{1}\right)+\phi\left(\underline{(}_{2}\right)\right) / k T\right)
$$

is generated by assigning the value of the potential at the first point to $\beta\left(r_{1}\right)$ and that at the second point to $\beta\left(r_{2}\right)$ irrespective of the actual reflected positions of the molecules.

$$
\text { 3.4.1 The } \mathrm{CO}_{2}-\mathrm{CO}_{2} \text { Interaction Program }
$$

A program was written in EXCHLF Autocode which evaluated equation 2,39. given the results for the carbon dioxide-ion potentials at some temperature using the computational methods described above. The flow diagram for this program is given in figure :3,12; and a listing in Appendix ${ }^{\circ}$ C. .

3.5 The Diffusion Model

3.5.1 The Fraction of Carbon Dioxide Desorbed from the Pellet

The two algorithms in section 2.7.4 result in sets of crystal and pore concentrations at each time interval for which the finite difference approximations ore solved. These concentrations need to be converfed into pellet accumulations so that the model gives the fraction of carbon dioxide desorbed from the pellet at time t.

Using the same notation as in sections 2.7.2 and 2.7.3 the accumulation in the pellet at time t is given by

$$
A C C U=A \int_{0}^{L}\left(E_{P} v+\frac{\left(1-E_{P}\right)}{\frac{4 \pi R^{3}}{3}} \int_{0}^{R} 4 \pi r^{2} w d r\right) d x \quad 3.10
$$

This equation con be written in dimensionless form using the substitutions:

$$
\begin{align*}
A C C U & =\frac{A C C U}{A_{0} L_{0} v_{0}} & x^{\prime}=\frac{x}{L} \quad r^{\prime}=\frac{r}{R} \\
v^{\prime} & =\frac{v}{v_{0}} & w^{\prime}=\frac{w}{v_{0}}
\end{align*}
$$

Hence from equations 3.10 and 3.11

$$
A C C U^{\prime}=\int_{0}^{1}\left(E_{p} v^{\prime}+3\left(1-E_{p}\right) \int_{0}^{1} r^{2} w^{\prime} d r^{\prime}\right) d x^{\prime} \quad 3.12
$$

For the initial accumulation $\left(t^{\prime}=0\right)$ we have $v^{\prime}=1$ and $w^{\prime}=K$ for $0 \leq x^{\prime} \leq 1$ and $O \leq r^{\prime} \leq 1$.

Hence:

$$
\begin{align*}
A C C O= & \int_{0}^{1}\left(E_{p}+3\left(1-E_{p}\right) \int_{0}^{1} K r^{2} d r^{i}\right) d x^{2} \\
= & E_{p}+\left(1-E_{p}\right) K
\end{align*}
$$

ACCO is the dimensionless zero time accumulation in the pellet and so the fraction of earbon dioxide desorbed at time $t(t>0)$ is given by:

$$
F R A C=1-\frac{A C C U}{A C C O}
$$

3.5.2 Finite Difference Increments

The time and space intervals chosen were $\delta \boldsymbol{t}=1$ second for $t \leq 100$ and $\mathrm{G}=10$ seconds for $100<t \leq 10,000 ; \quad$ ôr $=R / 6$ and $\delta x=1 / 6$

The practical values for the fraction of carbon dioxide desorbed from the pellet were measured at unit increments of $\sqrt{ }+$ in the range
$0 \leq \sqrt{t} \leq 10$, and increments of 5 units in the range $10 \leq \sqrt{t} \leq 100$. The computed values of FRAC need to be evaluated at values of $\sqrt{ }$ which correspond as closely as possible to these values so that a direct comparison of results can be made. The model time increments were chosen using this criterion since the stability of the finite difference solution permits a wide choice in the time increment values. The end time of 10,000 secs, was chosen since the practical runs terminated at this time.

The space intervals chosen give a reasonably refined model of the pore and crystal siructure without having a.large number of iterations at each time step to get convergence of the pore concentration to within the specified limit. This limit was such that the error in dimensionless pore concentration was less than 0.01% at each time step.

A value of the relaxation parameter BETA' was chosen which gave the most rapid convergence of the error in pore concentration at each time step. Table 3.11 shows the results obtained for this error at three times for various values of BETA' . The value of 0.88 was chosen as the best.

TABLE 3.11

CHOICE OF RELAXATION PARAMETER BETA'

BETA	ERROR IN PORE CONCENTRRATION		
	TIME $=10$ SEC.	TIME $=20$ SEC.	TIME $=30$ SEC.
0.85	$2.531,-5$	$-7.280,-5$	$6.7 .41,-5$
0.86	$1.793,-5$	$5.837,-5$	$5.315,-5$
0.87	$1.301,-5$	$4.870,-5$	$1.268,-5$
0.88	$1.067,-5$	$4.385,-5$	$3.620,-5$
0.89	$1.096,-5$	$4.393,-5$	$3.360,-5$
0.90	$1.401,-5$	$4.913,-5$	$3.47 .3,-5$
0.91	$1.991,-5$	$5.943,-5$	$3.980,-5$

NOTE: In this and many subsequent tables, numbers normally written with an exponent in powers of ten have been written with a comma' to denote the use of an exponent. 1.e. 1.234 $\times 10^{-3}$ is written $1.234,-3$ etc.

3.5.3 Least Squares Fitting of the Diffusion Model to the Practical Results

A program was written in FORTRAN IV based on the flow diagram shown in figures $3.13,3.14$ and 3.15. This program computes the fraction of carbon dioxide desorbed from the pellet (FRAC) at valuas of \sqrt{t}^{t} given values for the pore and crystal diffusivities, pellet porosity and other parameters defining the system (see table 6.21). The program was controlled by a minimisation routine due to Powell ${ }^{(13)}$ which finds the minimum of a function of several variables without using derivatives. The function used was:

$$
F=\sum_{i}\left(f_{T_{i}}\left(D_{p}, D_{c}\right)-f_{P_{i}}\left(D_{p}, D_{c}\right)\right)^{2} \quad 3.15
$$

where $f_{T_{i}}$ and $\delta_{P_{i}}$ are the theoretical and practical values of FRAC at time t. The summation is over all values of time for which FRAC is computed for $100 \leq t \leq 10,000$ secs.

3.5.4 Discretization Error

In a pore diffusion process governed by Fick's law diffusion, the analytical solution for the fraction of gas desorbed from a slab initially at concentration C_{0} with the surface concentration maintained

at zero for $t>0$ is ${ }^{(14)}$:

FRAC $=\frac{C_{t}}{C_{0}}=1-\frac{3}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \exp \frac{\left(-D_{p}(2 n+1)^{2} \pi^{2} t\right)}{4 L^{2}}$
This expression gives a straight line plot for FRAC versus initial values of \sqrt{t} which passes through the origin and characterises pore diffusion processes.

It was found that the present model with \mathbf{P} set to zero, which means pore diffusion is controlling, gave initial values for FRAC that were significantly greater than the expected values for a straight line plot through the origin. However, this difference decreased at later times and becane negligible for $t>100$ sec.

A test case was investigated without using the minimisation routine and values of FRAC were computed for an initial time step which was repeatedly reduced in value. When $\delta t=0.001$ seconds was reached, the initial value of FRAC obtained was O.O556. Further reduction of st did not reduce this value whereas it was to be expected that FRAC would tend to zero as of tended to zero.

The value of FRAC is obtained by a Simpson integration over the six increments into which the pellet is divided. As St tends to zero
the results for the first set of pore concentrations will not change significantly from their initial values of unity. Since $P=0$, (or $D_{c}=\infty$) the crystal concentrations in the six crystal increments used will all be identical and equal to the local crystal surface concentration. This is given by equation 2.60a, and as $v^{\prime}=1$ then all $w^{\prime}=K$ in the crystals.

The second integral in equation 3.12 represents the crystal accumulation. When this is numerically integrated the following result is obtained:

$$
\begin{aligned}
& K \int_{0}^{1} r^{\prime 2} d r^{2}= \\
& =\frac{K}{3 \times 6}\left(1 \times 0+4 \times\left(\frac{1}{6}\right)^{2}+2 \times\left(\frac{2}{6}\right)^{2}+4 \times\left(\frac{3}{6}\right)^{2}+\right. \\
& \left.2 \times\left(\frac{1}{6}\right)^{2}+4 \times\left(\frac{5}{6}\right)^{2}+1\right) \\
& =K / 3 \text { as expected. }
\end{aligned}
$$

The first integral becomes:

$$
\int_{0}^{1}\left(E_{p}+\left(1-E_{p}\right) K\right) d x^{\prime}=
$$

$$
\begin{aligned}
& =\frac{E_{p}+\left(1-E_{p}\right) K}{3 \times 6} \times(1+4+2+4+2+4+1) \\
& =\left(E_{p}+\left(1-E_{p}\right) K\right) \times \frac{18}{18}
\end{aligned}
$$

which is equal to the zero time accumulation as given by equation 3.13. However, one of the boundary conditions for the pellet is for $t^{\prime}>$ Oand $x^{2}=0$ then $v^{\prime}=0$. This means that the leading term in the summation for the first integral is forced to zero giving a pore accumulation of $\left(E_{p}+\left(1-E_{p}\right) K\right) \times 17 / 16_{\text {. }}$. Thus this boundary condition means that the integration method used to find ACCU' always gives a value of $1 / 18$ for FRAC, instead of zero, for the initial time step, no matter how small this is made. At later times the pore concentrations in the increments closest to the exchange surface of the pellet are tending towards zero and so this source of error reduces and becomes insignificant. It requires at least 34 space increments in the pellet to reduce the value of FRAC to loss than 1% of ACCO in the first time step. Such a refined model for the pore structure is unwarranted so the model was used without modification to the integration method, and values of FRAC up to $t=100$ sees, were discarded. After this time the rest of the eurve of FRAC versus $\sqrt{ }$ t could be extrapolated back through the origin
with $P=O$ which showed the model was giving correct results at later tin.es. The computed values of FRAC were compared with the practical values in the range $100 \leq+\leq 10,000$ using equation 3.15.

CHAPTER 4 - EXPERIMENTAL APPARATUS

The apparatus was designed to study the diffusion of carbon dioxide in a one dimensional molecular sieve pellet bed at temperatures ranging from ambient down to $-100^{\circ} \mathrm{C}$. It was housed in a flame proof laboratory suitable for radio active work in class S of the imperial College Regulations on Radiation Hazards, and consisted of three main parts.
a) A vacuum system. This incorporated units for vacuum production and measurement; active carbon diaxide production, storago, and volumetric measurement; and a carbon dioxide storage and flow system.
b) A cryostat. This housed the diffusion cell in which the diffusion process occurred.
c) A scintillation flow counter and counting set.

General views of the vacuum system, the cryostat and the counting set are given in plates 4.1 and 4.2 and figure 5.1.

4.1 The Vacuum System

This was housed in a fume cupboard and constructed mainly from pyrex glass.
4.1.1 Vacuum Production and Measurement

A vacuum ring main was made from three centimetre bore tubing. One side was connected to a two stage oil diffusion pump and the other to a McLeod gauge. The diffusion pump, backed by a rotary vacuurn pump and a liquid nitrogen trap produced vacua down to $2 \times 10^{-5} \mathrm{mna}_{\text {。 }}$ mercury absolute. Vacua down to $10^{-3} \mathrm{~mm}_{\text {. }}$ mercury absolute were measured by a Pirani gauge and gauge head, and down to $10^{-5} \mathrm{~mm}$. mercury absolute by a McLeod gauge.

4.1.2 Active Carbon Dioxide Storage and Volumetric Measurement

The vacuum ring main was isolated into two sections by stop cocks, one side being used for active carbon dioxide transfer and the other for vacuum application. Five storage flasks and cold traps for active gas storage were connected to the active side of the ring main. The other side was provided with a vacuum link to the active metering section. This incorporated two gas burettes with a total ealibrated volume of $257 \mathrm{c}_{\text {. }} \mathrm{c}_{\text {. }}$ at $25^{\circ} \mathrm{C}$. enclosed in thermostatically controlled
water jackets. A mercury manometer mada from one centimetre bore Viridia tubing, and two cold legs to facilitate gas transfer completed the system. One of these legs was located on the line between the burettes and the active side of the ring main. The other was attached close to the gas manifold. This permitted active carbon dioxide transfer as required from the storage flasks to the burettes, and subsequent transfer to and from the cryostat. All connection lines in this part of the system were one millimetre bore capillary tubing to improve the accuracy of volumetric mecsurement.

4.1.3 Active Canbon Dioxide Production

This section comprised of a generating bottle and several cooling coils connected to the active side of the ring main. Active carbon dioxide was prepared by the action of concentrated sulphuric acid in vacuo on solid labelled Barium Carbonate in one milli-curie lots. The aetive carbon dioxide generated could be dried and separated from any acid mist by alternate transfer between cooling coils immersed in acetone solid CO_{2} and liquid nitrogen baths, before transfer to the storage flasks.

4.1.4 Carbon Dioxide Storage and Flow System

Commercial carbon dioxide in 28 lb . cylinders was used throughout as Orsat gas analysis could not detect any significant contaminants.

RIGURE 4.1 CARRTER CO2 FLO IINES

This gas was passed once through a bed of $1 / 16$ inch diameter type 5A molecular sieve pellets to remove any traces of water before it reached the gas manifold. The bed was wound with a heater to enable it to be regenerated from time to time, and a thermocouple was used to neasure the regeneration temperature.

A constant flow rate of carbon dioxide carrier gas was essential whilst counting. A needle valve used as an orifice, and in conjunction with a gas relief bubbling leg, provided the necessary degree of control. This arrangement enabled constant flow rates of carrier gas to be maintained indefinitely whilst counting.(see figure 4.1)

4.1.5 The Gas Manifold

The gas nanifold was an assembly of lines and stop cocks whereby several successive operations could be carried out via a single line connecting the vacuum system to the eryostat. These operations were the evacuation of the molecular sieve bed in the cryostat, the passage and return of active carbon dioxide to the molecular sieve bed and finally the passage of carrier carbon dioxide.(see figure 4.2)

4.1.6 Ancillary Equipment

The thermostats which maintained the sieve regeneration temperature used 5\%-2O\% Rhodium-Platinum thermocouples, connected by screened

FIGURE 4.2
 THE GAS MANIFOLD

leads to a Philips Recorder. This had a controlling mode and was used to limit the heater temperatures. Mains A.C. power was used through a Variac controller.

The water jacketed burettes were mainfained at $25^{\circ} \mathrm{C}$ using a Sunvie controller and a tolvene switch. The water was circulated by a centrifugal pump.

The mercury levels in the gas burettes were raised and lowered by compressed nitrogen and low grade vacuum respectively, supplied to the mercury reservoirs. The low grade vacuum was produced by a small rotary pump separate from the main vacuum bocking pump.

4.2 The Cryostat

The cryostat shown in figure 4.3 and plate 4.2 was encased in an air-tight steel drum, fitted with a stout wooden lid bolted to the top of the drum and sealed with a rubber gasket. A second drum was mounted inside the first and suspended on wires, passing over pulleys, which were atrached to counter balance weights outside the main drunn. The inner drum could be raised or lowered six inches by handles fitted to the counter balance weights. The pulloys mounted in the outer drum were housed inside airutight metal boxes and the wires leading from these

FIGURE 4.3

SCHEMARIC ARRANGEMENT OF THE CRYOSTAT

to the weights were encased in expanding rubber hoses to keep the cryostat container air-tight.

A twenty centimetre diameter dewar flask was placed inside the inner drum and insulated from it by granular cork. This dewar housed all the ancillary equipment associated with the diffusion cell, and was filled with acetone which acted as the cryostatic liquid. Carbon dioxide car rier gas was passed in through the wooden lid via a copper line wound into a six inch diameter spiral which was mounted inside the dewar. This coil terminated at a Rollaston vacuum valve fitted with a special neoprene rubber diaphragm and seat so that it would operate at temperatures down to $-100^{\circ} \mathrm{C}$. The diffusion cell was ottached to the Rollaston valve by a glass to metal seal and the carrier carbon dioxide line continued back through the cryostat lid to a two-way stop cock.

The acetone was stirred by a high speed centrifugal pump. The stirrer motor was housed on top of the lid and encased in an air-tight polythene cover. The acetone was cooled by manually pouring liquid nitrogen into a massive copper tube sealed at its lower end and projecting well into the cryostat. An alcohol in glass thermometer encased in a glass thimble filled with acetone, and projecting into the cryostatic liquid, allowed the temperature of the diffusion cell to be measured.

FIGURE 4.4

SCHEMATIC ARRANGEMENT OF TEE CRYOSTAT FLOW LINES

The thimble permitted the thermometer bulb to be positioned at the same level as the molecular sieve pellets in the diffusion cell, yet easily removable when the molecular sieve was regenerated. Access to the diffusion cell was via a perspex inspection hatch let into the cryostat lid. This hatch was nade easily removable to facilitate replacement of the diffusion cell when necessary.

A rotameter was used to measure the carrier carbon dioxide gas flow rate, and was connected between the link line from the vacuurn equipment and the copper cooling coil, using a glass to metal seal. A mercury manometer constructed from one centimetre bore Viridia tubing and a Pirani gauge head were usad to measure the prassure inside the diffusion cell. These and a system of capillaries, used to limit the pumping rate when evacuating the diffusion cell, were connected between the link line and the two-way stopcock (20), as shown in figure 4.4.

This arrangement allowed the copper cooling coil to be filled with carrier carbon dioxide so that the carbon dioxide in it was brought to the same temperature as the diffusion cell before the start of a run. It also allowed the diffusion cell to be evacuated and charged with active carbon dioxide without disturbing the carrier gas in the cooling coil, since this could be isolated between the Rollaston valve and cock (19).

- 102 -

The cryostat was fitted with a nitrogen purge to flush out all traces of atmospheric oxygen before the diffusion cell heater was switched on. The exit purge gas was bubbled through an oil trap which ensured that the outer cryostat drum was pressurised slightly obove ambient. It also provided a simple visual check that the purge was on, to minimise explosion risk.

The whole apparatus was mounted on a stout base fitted with four screw jacks so that it could be raised off the castors fitted, and on which it was normally moved. Thus the cryostat could be rigidly positioned in relation to the vacuum apparatus and this gave some protection to the fragile link line. The length of this line was kept to a mininum as the dead space between the gas burettes and the diffusion cell, when this was being charged with active carbon dioxide, had to be kept well under the total burette volume.

4.2.1 The Diffusion Cell

The outer jacket of this was made from H26X glass which will withstand heating up to $400^{\circ} \mathrm{C}$ under high vacuum without deforming. O. 120 inch bore Viridia tube was chosen such that it was a close sliding fit inside the H26K glass, together with glass rod of the same

FIGURE 4.5

SCHETAIIC ARRLNGETENT OF THE DIFFUSION CELL

diameter. The H26X glass was made up into the shape illustrated in figure 4.5. The nominal size of the molecular sieve pellets used was 1/8 inch and several pellets were selectively chosen, from a batch, that were a tight push fit in the Viridia bore. A one centimetre long, one dimensional pellet bed was assembled by squaring off the ends of the chosen pellets and pushing them into a one centimetre length of the Viridia tubing sealed at one end. This bed was positioned on top of the glass rod cut to length so that the open end of the bed was just inside the cross tube carrying the carrier carbon dioxide. The cell was fitted with a removable cap so that the bed could be replaced by a similar piece of glass rod to permit trial runs to be made.

The H26ㅇ glass jacket was wound with a heater incorporating a $\mathbf{5 \% - 2 O} \%$ Rhodium-Platinum thermocouple. The cell was attached to the carrier carbon dioxide flow line in the cryostat by BlO cone and socket joints, and a standard union to the Rollaston valve.

4. 2 The Counting Apparatus

Flowing carbon dioxide labelled with C^{14} moy be counted using three typos of defectors. Geiger Meller counters are not very satisfactory since the detected count rate needs correcting for the long dead time
(about 200 micro seconds) of the tubes. Proportional counters have a faster response with a dead time of about 2 micro seconds. However, both systems when counting $\mathrm{C}^{14} \mathrm{O}_{2}$ have limired count lives of up to 10^{9} counts as the tubes are halogen quenched.

Scintillation detectors provide simple counting systems. An investigation of the scintillating materials used for detecting labelled carbon dioxide (weak beta radiation, abour O .15 MeV peak energy) showed that the most suitable were plastic sheets and tubing incorporating anthracene erystals in the plastic matrix, and pure anthracene crystals mounted on suitable holders. These scinfillation materials have a response time of 1.3 nano seconds. During a series of experiments using anthracene crystals embedded in plastic as a detector, it was found that the plastic absorbed active carbon dioxide and this completely masked the decay rate that was being investigated. It was found that pure anthracene erystals mounted on glass discs did not absorb carbon dioxide and so gave a true indication of the decay rate in the diffusion cell.

When counting in flow systems with rapidly changing rates of activity Dworjanyn ${ }^{(2)}$ suggested that it was advantageous to use two counters. One has a small counting volume to detect high decay rates, and the other a large counting volume to detect low decay rates.

FIGURE 4.6

SCINTILLATION COUNTER

This idea was incorporated into a single counter with a variable counting volume, using a piston and cylinder arrangement, as shown in figure 4.6. A iwo inch diameter nylon piston was mounted in a brass cylinder and provided with a micrometer adjustment which gave it about half an inch of travel. The piston was backed by a spring to eliminate backlash in the adjustment. A second brass cylinder housed a photomultiplier and was bolted to the first. Two sheets of scintillation material were used. One was attached to the piston facing the photomultiplier and the other to the window of the photomultiplier. The two sheets of scintillation material thus bounded a variable counting volume given by the micrometer reading, which ranged from zero to fifteen cubic centimetres in just over a quarter of an inch of piston travel. Carbon dioxide inlet and outlet ports were provided in the plane of the fixed scintillation sheet.

A suitable photomultiplier tube was obtained to detect the low intensity light emifted by the anthracene crystals activated by beta radiation. Final selection was made by the manufacturers who provided a tube with low noise and high amplification characteristics.

The photomultiplier output pulses were passed to a pulse counting set shown in figure 4.7. The scaler-timer gave a continuous record of

FIGURE 4.7

THE COUNTING SET

counts against a time base in multiples of 0.1 seconds. A permanent record of this output was obtained by photographing the scaler-timer using a sixteen millimetre cine-camera running at sixteen frames per second. A philips chart and pen recorder gave a continuous output of the count rate versus time. This was used to check that the start and end count rates for each series of runs were matching, togother with the maximum count rate attained just after the start of oach run.

CHAPTER 5 - EXPERIMENTAL PROCEDURE

5.1 Preliminary Bed Regeneration

Firstly the one sixteenth inch pellet bed had to be regenerated to remove moisture and other gases. This was done by slow evacuation and heating to three hundred degrees centigrade. After a period of ten hours the best vacuum obtained was $10^{-3} \mathrm{~mm}$. mercury absolute compared with $2 \times 10^{-5} \mathrm{~mm}$, mercury absolute on outgassing the glassware. All subsequent regenerations of this bed were taken as being complete after this pressurc had been maintained for three hours at three hundred degrees centigrade. On allowing the bed to cool under constant pumping the pressure naturally fell to the lowest measurable with the Mcleod gauge. (10^{-5} mm. mercury absolute).

The carbon dioxide line from the supply cylinder was purged during this regeneration. Carbon dioxide was admitted through the capillary bypass after isolating the bed from the vacuum pumps. This prevented the pressure wave formed from expelling the sieve pellets into the vacuum lines. Finally carbon dioxide was passed freely through the bed to allow the system to settle.

5.2 Active CO_{2} Preparation

Active carbon dioxide labelled with C^{14} was prepared in vacuo by the action of concentrated sulphuric acid on a one milli-curie lot of labelled Barium Carbonate. The reaction flask was gently warmed to liberate all the gas formed. The evolved gas was transferred to the drying tubes using a liquid nitrogen bath, and freed from any traces of acid mist and water by alternate transfer between cooling sections immersed in liquid nitrogen and acetone-solid CO_{2} baths. The active carbon dioxide was then iransferred to a storage flask which had been previously evacuated.

The burette system was evacuated and then filled with carrier carbon dioxide. An amount of this was added to the active carbon dioxide sufficient to dilute it to an activity of about 20,000 counts per cubic centimetre per second. The burettes were then evacuated again and the mixture of active and carrier carbon dioxide passed back and forth between them and the storage flask by liquid nitrogen transfer to aid mixing. The system was left for several days to allow diffusion to complete the mixing process.

5.3 Run Procedure

The eryostat was cooled to the required temperature using liquid nitrogen and maintained at this throughout the run. Because of the large thermal capacity of the system, temperatures down to $-25^{\circ} \mathrm{C}$ could be maintained with little effort to better than $\pm 0.5^{\circ} \mathrm{C}$. The nitrogen purge was turned on to sweep out all traces of atmospheric axygen from inside the cryostat. The carrier carbon dioxide flow was started anci the flow rate set to 100 c.cafnin. This was best done by presetting the low pressure stage of the carbon dioxide cylinder valve to 1 psig. and the relief leg to two inches of water pressure above ambient. Then the needle valve was adjusted, in conjunction with a pinch clip positioned close to the counter on the upstream flow side, till the flow rate was $100 \mathrm{c}_{0} \mathrm{c}_{9} / \mathrm{min}_{.,}$, with the excess carbon dioxide bubbling through the relief leg at a reasonable rate. A reference datum for the pressure inside the diffusion cell was made by locating the cross hair in a cathetometer telescope on the mercury meniscus in the cryostat manometer. The pressure inside the cell was measured using the same manometer.

After the flow system had settled, the carrier carbon dioxide flow wos stopped successively at cock (20), the Rollaston valve and cocks

(19), (17) and (13). (Refer to figure 5.1) The carbon dioxide was allowed to streamfreely from the relief leg. Thus at any later time the flow could be restarted and it would immediately rise to its present value. This procedure also ensured that the carrier gas precooling coil in the cryostat contained carbon dioxide at a known temperature and pressure.

The aryostat inner drum was fully lowered so that the acetone level dropped below the level of the diffusion cell heater and the thermometer was removed from its thimble. The diffusion cell was slowly heated so that the temperature rise was not greater than $10^{\circ} \mathrm{C}$ per minute. When the cell had reached about $140^{\circ} \mathrm{C}$ it was slowly evacuated using the capillaries to limit the pumping rate so that the pressure change was not greater than two centimetzes of mercury per minute. These conditions ensured that the pellets in the one centimetre bed were outgassed slowly so as to prevent them from being expelled from the Viridia tube. It usually took thirty minutes to reach conditions of $300^{\circ} \mathrm{C}$ and $10^{-3} \mathrm{~mm}$. mercury absolute in the diffusion cell and these conditions were maintained for one hour as a standard diffusion cell regeneration procedure.

The system was then isolated at cock (2O) and active carbon
dioxide admitted from the burettes by reversing the two-way cock (17). The pressure was allowed to rise till it was one millimetre of mercury above the carrier carbon dioxide pressure datum. The burette readings were noted and active carbon dioxide was carefully admitted to the diffusion cell via cock (2O). The cell was allowed to cool to the run temperature, after switching the heater off, by raising the inner drum in the cryostat so that the diffusion cell was re-immersed in the acotone. The gas pressure was adjusted as necessary to keep it up to the new datum level as the cell cooled and the bed became saturated with active carbon dioxide. Saturation was assumed to be reached when the pressure remained constant for a period of af least thirty minutes.

At this stage the new burette readings gave the amount of active carbon dioxide admitted to the diffusion cell at ambient pressure and the run temperature. The cell was isolated at cock (2O) and the excess active carbon dioxide in the transfer lines was returned to the burettes by liquid nitrogen transfer. The link line was evacuated to remove the last traces of active gas. The manifold was isolated from the vacoum pumps and carrier carbon dioxide readmitted. When the pressure had reached its datum leval cock (19) was opened.

During this procedure the counting set was switched on and the counter background level measured. The scaler-timer was reset to zero and on opening the Rollaston valve and cock (2O) carrier gas flow commenced and counting started. The excess pressure of one millimetre of mercury between the active gas in the diffusion cell and the carrier gas in the precooling coil ensured that the former was not diluted by carrier gas during the short period elapsing between opening the Rollaston valve and cock (20). Thus the initial concentration level measured in the diffusion cell was the same as that in the burettes.

The output of the scalermimer was photographed continuously until the initial step change in concentration had passed through the counter. Then batches of fifty frames were taken at subsequent time intervals chosen such that the square root of time measured in seconds increased linearly.

At $25^{\circ} \mathrm{C}$ it was found that the gas activity in the counter had decayed almost tothe background level after 10,000 secands. This time was taken as the running time for lower temperatures. The total amount of active carbon dioxide adsorbed by the bed was obtained by reheating the diffusion cell to $300^{\circ} \mathrm{C}$ after 10,000 seconds without flow interruption. This desorbed all the active carbon dioxide in the
bed and the count was continued till the background level was reached. The dead space gas in the diffusion cell was counted by replacing the one centimetre bed by an identical glass blank and repeating the run, such runs boing designated 'trial' runs as distinct from 'pellet' runs. Differencing the accumulated count at any time gave the amount of active carbon dioxide that had diffused out of the bed. The total amount of active gas diffused was obtained from the difference in accumulated count at infinite time, which for the purposes of these runs was any time at which both the pellet run and the trial run had reached background level, as measured by the counter. A comparison of this value with that for any earlier time gave the fraction of active carbon dioxide that had diffused out of the bed up till that time.

5.4 Counter Signal to Noise Ratio

The best signal to noise ratio for counting was obtained by setting the amplifier infegration and differentiation time constants to O .32 mic ro seconds and comparing the background and a test count rate over a range of photomultiplier voltage and amplifier aftenuation settings. This was done by first finding the variation in background over the range of settings and then filling the counter with a batch of active gas and
finding the variation in count rate over the same range. The working conditions chosen from the tests were $20 d B$ attenuation at the amplifier and 1175 volts supplied to the photomultiplier.

5.5 Choice of Carrier Gas Flow Rate

A separate series of trial runs were done at ambient temperature and pressure in which the integral count was measured over a fixed time interval and at several different flow rates, (see figure 5.2). The amount of active gas counted is proportional to the product of the integral count and the flow rate and this was plotted in figure 5.3. It ean be seen that the amount of gas counted becomes constant above a flow rate of $100 \mathrm{c}_{\mathrm{o}} \mathrm{c}_{0} / \mathrm{min}_{\boldsymbol{*}}$, indicating essentially zero concentration at the pellet surface. This flow rate was chosen for all subsequent work as it represents the minimum flow rate at which the amount of gas counted becomes independent of flow rate and at the same time minimises the gas mixing in the flow line between the diffusion cell and the counter.

5.6 Choice of Counter Volume

Since the counter volume had been designed to have a variable counting volume it was hoped to find optimum values of this for both the initial high decay rate and the subsequent low decay rate near the end

FIGURE 5.2
VARIATION OF IC AT 2500 SECS WITH CO2 FLOW PATE

FIGURE 5.3
VARIATION OF ICXFLON FATE WITH CO2 FLOW RATE .

ICXFLON RATE (ARBITRARY UNITS)

of a run. Static tests showed that the count rate increased almost linearly with counter volume but under flow conditions counting at say $4 \mathrm{c} / \mathrm{s}$ no increase in count rate was obtained by increasing the counter volume.

In view of this a fixed counting volume was chosen that was suitable for detecring the initial high decay rate since most counting errors were expected here. A series of trial runs were done at ambient temperature and pressure to determine the maximum count rate at start over a range of counter volumes. No criterion was available to choose a working point on the curve obrained so a value of 2.7 c.c. was arbitrarily selected. This value ensured that the accumulated count at 10,000 seconds was as large as possible compared with the accumulated background count at the same time, and yet still within the range of the maximum count store of the scaler-timer, this being 999,999 counts.

```
CHAPTER 6 - RESULTS
```


6.1 Molecular Dafa for Potential Calculations

The literature data given in Appendix A shows that other workers have based their potential calculations for systems similar to the one studied here on constants which exhibit a wide variation in values according to their source. It will be seen later that the results obtained in this work are sensitive to changes in the clata used and as wide as possible choice was made from these to assess the full range of theoretical results.

Theoretical polarisabilities, susceptibilities and equilibrium radii for the structural ions in the sieve were calculated using screening constants, and these values were compared with the literature values. It was not possible to calculate these constants for the partially ionised states finally used for the oxygen ions because the relationships used only permit integral degrees of ionisation in units of the charge on an electron.

The theoretical values obtained show that the literature values for jodium, calcium and oxygen are based on fully ionised states, though this is not always explicitly stated. The values finally used are given in table A6together with the potential constants used in equation $\mathbf{2 . 1 0}$
for the various combinations of the constants for carbon dioxide, oxysen and the exchangeable cations.

6.2 Computed Carbon Dioxide - Linde 5A Sieve Potentials

The first set of programs was run using data taken from Appendix A to test the rate of convergence of the four terms in equation 2.10 as potential contributions from ions at increasing distances from the carbon dioxide molecule were included in the summations. A 12-6 potential function was included in these and subsequent test runs as it was to be expected that equation 2.10 and a 12-6 potential would give approxim mately comparable results.

Potentials wore initially computed along a line between the centre of the large cage containing the carbon dioxide molecule and the centre of an O 8 window. The ion positions in the data table were reflected to simulate composite cubes containing from 27 to 1331 unit cages. This permitted contributions from ions at increasing separations to be computed sequentially. A check was made on the data reflection procedure to ensure that the correct total number of ions were being generated in agreement with table 3.3.

The results given in table 6.1 were obtained using the ion projection method described in section 3.1.1 neglecting ions with a greater separation from the carbon dioxide molecule than was specified by the program. (This separation is in terms of the distance squared.)

The repulsion potential for the three grid points quoted in table 6.1 has converged for RMAX $^{2}=2.25$ and the dispersion and quadrupole potentials have almest converged when $\operatorname{RMAX}^{2}=6.25$. The polarisation potential varies in a random fashion and including ions at large distances from the carbon dioxide molecule does not improve the convergence. Finally, the quadrupole potential dominates the total potential, which differs greatly from the 12:6 potential.

The convergence of the polarisation potential was improved by modifying the procedure for projecting the data ions as described in section 3.1.2. Instead of generating all the ions and then testing each against a separation criterion, the program was rewritten to generate all ions in the region $X \geq 0$ for all Y and Z. Then the interaction for pairs of ions with the carbon dioxide molecule was calculated. The first ion in a pair is at point (X, Y, Z) in the region $X \geq O$ with $R^{2}<\operatorname{RMAX}^{2}$ and the second is the ion at the point $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ such

TABLE 6.1
CONVERGENCE OF POTENTIALS FOR NON-SYMMETRIC ION
REFLECTION. FULLY IONISED STATES. RUNS 16-20

that $X^{\prime}=-X, Y^{\prime}=-Y$ and $Z^{\prime}=-Z$ irrespective of the value of R^{2}. This gave a more symmetric summation procedure and improved the convergence of the polarisation potential as more ions were included in the calculation. A check was again made that the same total number of ions was generated as in the previous set of runs.

Referring to table 6.2, at the grid point $(5,0,0)$, the value of the polarisation potential now settles to a reasonably constant value which is not significantly affected by the number of ions included in the summation. The values for the other potentials remain the same as in the previous set of runs, as is to be expected if the ion projection procedure is correct.

Turning to the quadrupole potential contribution, it is obvious that the values dotained are far too large, since it is known that the quadrupole potential is similar in magnitude to the dispersion potential, at least in regions within the sieve cage which are not close to the ionic framework. If equation 2.10 is examined, it is seen that the only parameter that can be adjusted is the apparent charge residing on each ion. Originally it was stated in section 2.2 that all the ions were assumed to be fully ionised, but if partial ionisation is assumed the quadrupole potential and the quadrupole contribution in PHIR2 is reduced.

REFLECTION. FULLY IONISED STATES. RUNS 33-37

RMAX SQ. TOTAL NO. OF IONS PROJECTED	2.25 2592	$\begin{aligned} & 6.25 \\ & 11200 \end{aligned}$	12.25 29792	$\begin{aligned} & 20.25 \\ & 62208 \end{aligned}$	$\begin{aligned} & 30.25 \\ & 112288 \end{aligned}$
GRID POINT $(0,0,0)$					
IONS IN SUMMATION	1072	5088	14264	30208	55728
PHI R	3.615,-4	3.615,-4	3.615,-4	3.615,-4	3.615,-4
-PHI D	1.469,-3	1.496, -3	1.501,-3	1.502,-3	1.503,-3
-PHI P	4.096,-24	1.097,-24	1.067,-24	5.019,-24	2.535,-23
-PHI Q298	3.589, -2	3.655,-2	3.667,-2	3.671,-2	3.672, -2
-PHI T298	3.699,-2	3.769,-2	3.781, -2	3.785,-2	3.786, -2
-PHI 12-6	1.451, -3	1.478,-3	1.483,-3	1.484,-3	1.485,-3
GRID POINT ($5,0,0)$					
IONS IN SUMMATION	1312	5856	15776	32728	59256
PHI R	6.644,-3	6.644,-3	6.644,-3	6.644, -3	6.644, -3
-PHI D	3.217,-3	3.241, -3	3.245,-3	3.247,-3	3.247,-3
-PHI P	5.041,-10	1.266, -4	1.842,-4	1.258,-4	1.963,-4
-PHI Q298	7.654,-2	7.716,-2	7.727.-2	7.730,-2	7.731, -2
-PHI T298	7.312,-2	7.388,-2	7.405,-2	7.403,-2	7.411,-2
-PHI 12-6	2.875,-3	2.899,-3	2.904,-3	2.905,-3	2.905,-3
GRID POINT ($10,0,0$)					
IONS IN SUMMATION	1496	6488	17080	35056	62456
PHI R	1.790, -1	1.790, -1	1.790,-1	1.790,-1	1.790, -1
-PHI D	$1.055,-2$	1.058,-2	1.058,-2	1.058,-2	1.059,-2
-PHI P	1.160, -3	5.843,-5	2.455, -5	5.873,-5	5.740, -6
-PHI Q298	2.273,-1	2.280, -1	2.281,-1	2.281,-1	2.281,-1
-PHI T298	6.001,-2	5.959,-2	5.967,-2	5.974,-2	5.970, -2
-PHI 12-6	9.604,-4	9.874,-4	9.916,-4	9.928,-4	9.933,-4

Barrer and Gibbons ${ }^{(15)}$ found that using partially ionised states for a single sieve cage gave results for the relative importance of potential contributions which were comparable with practical values based on heats of adsorption data for the sieve ${ }^{(16)}$.

Parrial ionisation was also assumed in the present work but since Na^{+}and Ca^{++}ions are freely exchangeable, it is assumed that these are always present in their fully ionised states. The Al^{3+} and Si^{4+} ions are relatively small and surrounded by tetrahedra of oxygen ions, so as far as the carbon dioxide molecule is concemed it is assumed that their apparent ionic charge is zero. It then remains to allocate a charge of $-12 e$, to baiance that residing on the exchangeable cations, amongst the fortyeight oxygen ions constituting the ionic framework of a unit cage. There is no 'a priori' reason to differentiate between the oxygen ions, so the simplest allocation is to assume a charge of $-1 / 4 \mathrm{e}$ on each. ${ }^{(17)}$

This mode of charge allocation will fail at the surface of the generated crystal using the symmetric ion projection method. In effect the crystal will be assigned a net negative charge, caused by overpopulation of the crystal surface, but as the surface ions are distant

TABIE 6.3
CONVERGENCE OF POTENTIALS FOR SYMMETRIC ION
REFLECTION. PARTIALLY IONISED STATES. RUNS 40-44

RMAX SQ. TOTAL NO. OF IONS PROJECTED	$\begin{aligned} & 2.25 \\ & 2592 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 11200 \end{aligned}$	$\begin{aligned} & 12.25 \\ & 29792 \end{aligned}$	$\begin{aligned} & 20.25 \\ & 62208 \end{aligned}$	$\begin{aligned} & 30.25 \\ & 112288 \end{aligned}$
GRID POINT ($0,0,0$)					
IOUNS IN SUMMATION	1072	5088	14264	30208	55728
PHI R	3.789,-5	3.790,-5	3.790,-5	3.790,-5	3.790,-5
-PHI D	1. $469,-3$	1.496, -3	1.501,-3	1.502, -3	1.503,-3
-PHI P	4.736, -25	5.017,-25	3.380, -25	$6.470,-25$	1.233, -24
-PHI Q298	1.661,-3	1. $696,-3$	1.701, -3	1.702,-3	1.703, -3
-PHI T298	3.092,-3	3.154, -3	3.164,-3	3.167,-3	3.168, -3
-PHI 12-6	1.451,-3	1.478,-3	1.483,-3	1. $484,-3$	1.485, -3
GRID POINT ($5,0,0)$					
IONS IN SUMMATION	1312	5856	15776	32728	59256
PHI R	5.105,-4	5.105,-4	5.105,-4	5.105,-4	5.105,-4
-PHI D	3.217,-3	3.241,-3	3.245,-3	3.247, -3	3.247,-3
-PHI P	3.711,-4	3.293,-4	2.658,-4	2.625,-4	2.752,-4
-PHI Q298	2.885,-3	2.909, -3	2.913,-3	2.914, -3	2.915,-3
-PHI T298	5.963,-3	5.968,-3	5.914, -3	5.913, -3	$5.927 .-3$
-PHI 12-6	2.875,-3	2.899,-3	2.904,-3	2.905,-3	2.905,-3
GRID POINT ($10,0,0$)					
IONS IN SUMMATICN	1496	6488	17080	35056	62456
PHI R	1.219,-2	1.219,-2	1.219,-2	1.219,-2	1.219;-2
-PHI D	1.055,-2	1.058,-2	1.058, -2	1.058,-2	1.059,-2
-PHI \mathbf{P}	2.290, -4	2.298,-5	1.441, -7	9.329,-7	1.284, -6
-PHI Q298	$4.116,-3$	4.142, -3	$4.147,-3$	$4.148,-3$	4.148, -3
$\begin{array}{ll}\text {-PHI } & \text { T298 } \\ \text {-PHI } & 12-6\end{array}$	$2.711,-3$ $9.604,-4$	$2.559,-3$ $9.874,-4$	$2.544,-3$ $0.916,-4$	$2.548,-3$ $9.928,-4$	$2.549,-3$ $9.933,-4$
-PHI 12-6	9.604, -4	9.874,-4	9.916,-4	9.928,-4	9.933,-4

from the carbon dioxide molecule their potential effect will be small and the error can be neglected. Actually, all surface oxygen ions should be allocated a charge of $-1 / 8 \mathrm{e}$ to get an overall charge balance for any generated cubic crystal. Barrer ${ }^{(15)}$ used a similar method, incorm porating a charge clistribution of $10 / 48$ e for internal oxygen ions and 5/48e for surface oxygen ions in a cube containing a single unit cell.

Table 6.3 shows that this modified charge distribution does not affect the results for the dispersion porential. In general the change in the polarisation potential is small, and since this potential is always less than 10% of the dispersion potential the effect of the charge distribution is trivial. At grid point $(10,0,0)$ which is at the centre of an 08 window, the polarisation potential is much reduced. From the point of view of structural symmetry of the sieve the polarisation potential here is expected to be zero, and it would be so if the data ions were referred to an origin at $(10,0,0)$ instead of $(0,0,0)$. The difference in the polarisation potential at these points indicates the slight loss of structural symmetry engendered in moving between the centre of a large cage and the centre of an O 8 window, without redefining a new origin for the ion data table. This effect is also encountered in the value for the polarisation porential at $(10,10,10)$ which is the centre of a small cage.

Changing the charge distribution has as expected a large effect on the quadrupole poiential, and using the ionisation states $0^{-1 / 4}, A S^{\circ}$, $\mathrm{NaCa}^{1 \frac{1}{2}+}$ gives results of the correct order. Barrer's practical work on Linde X sieves ${ }^{(16)}$ suggested that the ratio of the dispersion to quadrupole potentials was $3: 5$ at $30^{\circ} \mathrm{C}$. The results obtained at this juncture do not bear this out quantitatively but at least they give a similar figure.

The repulsion potential also decreases as a result of the change in charge distribution, the effect being caused by the term designated PHIR2. This term

$$
1+\frac{a_{b} e^{2} C_{a}^{2} \rho_{e}^{2}}{3 B}+\frac{e^{2} C_{a}^{2} Q_{b}^{2}}{20 k T B}
$$

adiusts the repulsion constant to maintain the minimum $(d / d r)=0$ at $r=\rho_{e}$ as other types of potential interactions are included in the total potential. (For a $12: 6$ potential PHIR2 $=1$, and including a polarisation interaction results in PHILL2 $=1+\frac{a_{b} e^{2} C a^{2} \rho_{e}{ }^{2}}{3 B}$, etc. The repulsion constant is then given by the product PHIR1. PHIR2 where PHIRI $=\frac{B_{e} e^{6}}{2}$). Although the overall polarisation contribution is small, the factor $\dot{q}_{\mathrm{b}}{ }^{2} \mathrm{Ca}^{2} \rho_{e}^{2} / 3 B$ must be included for the oxygen and
sodium-calcium ions (see Appendix A, table A6). The charge on the AS ion is taken as zero ond as the contribution to the repulsion term from these ions is less than 1% of that for the other ions, this can be neglected in the summation. This can be seen by comparing the values of the repulsion constant for the various ions in table 6.4.

TABLE 6.4

Repulsion Constants PHIR1. PHIR2 for Various Ionisation States

PHIR1 x PHIR2 10^{-10} ergs	36.4	0^{2-}	$O^{1 / 4}$	$\mathrm{As}^{3 \frac{1}{2}+}$	$A S^{\circ}$
$\mathrm{NaCa}^{1 \frac{1}{2}+}$					

A fourth set of programs was run based on a reduced set of data ions which neglected the $A S^{\circ}$ ions. Table 6.5 shows that neglecting these ions results in only a small reduction in the repulsion and polarisation potentials and has the added effect of reducing the computation time as can be seen by the figures for both the total number of projected ions and the ions included in each summation.

In view of these results, production programs were run based on runs 50-54 (see table 6.6) which evaluated the repulsion potential for

TABLE 6.5 CONVERGENCE OF POTENTIALS FOR SXMMETRIC ION
REFLECTION. PARTIALLY IONISED STATES. RUNS 50-54

RMAX SQ. TUTAL ND. OF IONS PROJECTED	2.25 1728	$\begin{aligned} & 6.25 \\ & 7600 \end{aligned}$	12.25 20384	20.25 42768	$\begin{aligned} & 30.25 \\ & 77440 \end{aligned}$
GRID POINT ($0,0,0$)					
IONS IN SUMMATION	736	3600	9992	21184	39024
PHI R	3.783,-5	3.783, -5	3.783,-5	3.783,-5	3.783,-5
-PHI D	1.439, -3	1.466, -3	1.471, -3	1.472,-3	1.473,-3
-PHI p	4.736,-25	5.017, -25	3.380, -25	$6.470,-25$	1.233, -24
-PHI Q298	1.661,-3	1.696, -3	1.701,-3	1.702,-3	1.703, -3
-PHI T298	3.062,-3	3.124, -3	3.134,-3	3.137,-3	3.138, -3
-PHI 12-6	1.421, -3	1. $448,-3$	1.453, -3	1.454, -3	1.455,-3
GRID POINT ($5,0,0)$					
IONS IN SUMMATION	928	4112	11040	22920	41464
PHI R	5.096,-4	5.096,-4	5.096,-4	5.096,-4	5.096,-4
-PHI D	3.155,-3	3.179,-3	3.183,-3	3.184, -3	3.184, -3
-PHI P	3.711,-4	3.293,-4	2.658,-4	2.625,-4	2.752,-4
-PHI Q298	2.885,-3	2.909,-3	2.913,-3	2.914, -3	2.915,-3
-PHI T298	5.902,-3	5.907,-3	5.852,-3	5.851,-3	5.865,-3
-PHI 12-6	$2.814,-3$	2.838,-3	2.842,-3	2.843,-3	2.844, -3
GRID POINT ($10,0,0$)					
IONS IN SUMMATION	1048	4536	11928	24528	43704
PHI R	1.217,-2	1.217,-2	1.217,-2	1.217,-2	1.217,-2
-PHI D	1.038,-2	1.040, -2	1.041,-2	1.041,-2	1.041,-2
-PHI P	2.290, -4	2.298, -5	1.441,-7	9.329,-7	$1.284,-6$
-PHI Q298	4.116,-3	$4.142,-3$	4.147, -3	$4.148,-3$	4.148, -3
-PHI T298	2.551,-3	2.398,-3	$2.384,-3$	$2.387,-3$	2.388, -3
-PHI 12-6.	8.001,-4	$8.265,-4$	8.306,-4	8.318,-4	8.323,-4

all ions with $\operatorname{RMAX}^{2}<2.25$, the dispersion and quadrupole potentials for all ions with RNAS $^{2}<6.25$, and the polarisation potential for all ions with RMAX $^{2}<12.25$. This choice of values for RMAX 2 was intended as a good compromise between computing time and the accuracy of the results obtained compared with the possible accuracy with $\mathrm{RMAX}^{2}=30.25$. Barrer ${ }^{(16)}$ has done some potential calculations for carbon dioxide adsorbed in a Linde X sieve, and provides an alternative value for the polarisability of asygen. This value is smaller than the one normally used but since it is based on measurements of oxygen in a potash felspar it should represent a more realistic value for oxygen present in a sieve structure. (See Appendix A.) It was decided to run eight programmes (runs 60-67) to evaluate equations 2.10 and 2.38 in full throughout the accessible regions of the large and small cages. These programmes represented the four cases where the molecular constants for the carbon dioxide molecule were used in conjunction with the two different oxygen polarisabilities and two types of exchangeable cations, namely all calcium and a combination of sodium and calcium. These four cases were repeated using the kinetic radius for the carbon dioxide molecule.

The results for runs 61 and 63 for a calcium sieve with $\rho_{\mathrm{e}} \mathrm{CO}_{2}=$ $5.12 \times 10^{-6} \mathrm{~cm}$ and the high and low values for the oxygen polarisability are analysed in detail in the following sections. Run 63 using

TABLE 6.6

LIST OF COMPUTER RUNS FOR POTENTIAL CALCULATIONS

RUNS	PURPOSE			
16-20	CONVERGENCE OF POTENTIAIS USING NON-SYMAETRTC ION PROJECTION FULIY ionised states for 0 , NaCa, as, at 298 deg. k ,			
33-37	CONVERGENCE OF POTENTIALS USING SYIMETRTC ION PROJECTION. FULLY IONISED STATES FOR D, NeCe, AS, AT 208 dFG. K			
40-44	CONVERGENCE OF POTENTIALS USING SYMAETRIC ION PROJECTION. PARTIALEY IONISED STATES FOR O, NaCa, AS, AT 2.98 DEG. K			
50-54	CONVERGENCE OF POTENTIALS USING SYMMETRIC ION PROJFCTION. PARTIALLY IONISED STATES FOR O, NACe, (AS NEGLECTED) AT $298 \mathrm{DEC} . \mathrm{K}$			
$60-67$	FIUL COMPUTATION OF POTENTIALS IN BOTH IARGE AND SMALL CAGES BASED ON RUNS 50-5A, AT TWELVE TEMPERATURES FROM 59? TO 173 DEG. K (DETAILS BELOW)			
$71-82$	COMPUTATION OF B' at twfllve temperatures from 573 TV 173 deg. K using potentials taken from run go			
$83-94$	COMPUTATION OF !' AT THELVE TEMPERATURES FROM 573 TO 173 DEG. K USING POTENTIALS TAKFN FROM RINN 61			
	$\begin{aligned} & \text { SIGMA1 } \\ & \text { AT } 273 \mathrm{~K} \end{aligned}$	$\begin{gathered} c \cos \\ \times 1.0,-8 \mathrm{~cm} \end{gathered}$	$\begin{aligned} & \text { POT. } 0-1 / 4 \\ & \times 1 . n,-25 \mathrm{CN} 3 \end{aligned}$	FXCHANGABLE CATION
60	3.083 .12	5.12	39.0	NaCe $1.5+$
61	2.128,11	5.12	39.0	Cn 1.5+
62	3.107,10	5.12	16.5	NeCa $1.5+$
63	2.477.9	5.12	16.5	Ca $1.5+$
64	2.783 .38	$3 \cdot 30$	16.5	
65	5.113,32	3.30	16.5	1 Ca $1.5+$
66	9,256,36	3.30	39.0	Ca 1.54
67	6.417.37	3.30	39.0	NaCa $1.5+$

$\alpha 0^{-1 / 4}=16.5 \times 10^{-25} \mathrm{~cm}^{3}$ gave the lowest potentials whilst runs $640-67$ using the kinetic radius for the carbon dioxide molecule gave excessively high values. Sample calculations showed that SIGMAI $=\sum_{V} \exp (-6 / k t)$ needed to be less than $10^{\prime \prime}$ at $273^{\circ} \mathrm{K}$ to give theoretical predictions for adsorption isotherms which would be in any way comparable with practical curves. In view of this, results for the programs using the kinetic radius for carbon dioxide given in table 6.6 were not processed further.

Each run was programmed over a range of temperatures from $573^{\circ} \mathrm{K}$ down to $173^{\circ} \mathrm{K}$ and the values of the potentials for all grid points in the large and small cages with $\phi<500 \times 10^{-15}$ ergs are given in full in tables $A 3$ and $A 9$ for runs 61 and 63 .

The way in which the potentials vary in the open region of the large cage is shown in figures 6.1-3. The potentials are in units of 10^{-15} ergs per carbon dioxide molecule at $298^{\circ} \mathrm{K}$ and the surrounding structural ions have been omitted. The contours were obtained from data given in table A9 using linear interpolation between grid points, and summarise the main results for run 63. Figure 6.1 shows the potentials in three of the bounding faces of the tetrahedral grid. The contours are unsmoothed and have been matched along the edges of the grid.

POTENTIALS IN UNITS OF 1.OE-15 ERGS PER CO2 MOLECULE AT 298 DEG. K

FIGURE 6.2

SIEVE POTENTIALS IN THE $Z=0$ PLANE

POTENTIALS IN UNITS OF 1.CE-15 ERGS PER CO2

FIGURE 6.3

SIEVE POTENTIALS IN THE Y=Z PLANE

POTENTIALS IN UNITS OF. 1.OE-15 ERGS PER CO2 mOLECULE AT 298 DEG. K

Due to symmetry, the contours in the three planes in the coordinate directions are identical and are obtained from the contours in the face ($a b c$). These contours are drawn for a complete large cage in figure 6.2 and show how the potentials behave through an 08 window. The potentials in the six planes at $\pm 45^{\circ}$ to these are obtained from the contours in faces ($a \operatorname{c} d$) and ($a b d$) and are also identical to one another. The confours are drawn for a complete large cage in figure 6.3 and show how the potentials vary through an C8 window, and also in the (III) direction along which the small cages and O 6 windows blocked by exchangeable cations are found. The contours in figures 6.2 and 6.3 have been smoothed and thus differ slightly from those given in the relevant parts of figure 6.1. The contours in the small cages are of little interest and have been omitted.

Figures 6.1-3 show that the region of highest interaction between the carbon dioxide molecule and the ionic framework of the sieve occurs in a spherical shell about 7.5 \& diameter, with major sites of interaction at E and F. At $573^{\circ} \mathrm{K}$ when the interaction is weaker, these sites are situated in the axial directions at G. The carbon dioxide molecule 5.12 \& diameter is much larger than these regions of high inferaction, but it may be noted that if six molecules are located with their centres
approximated at \mathcal{C}, i.e. on the coordinate directions of the grid, they completely fill the large cage and lie almost wholly in the region of highest inferaction. Also six molecules per cage represent $16 \mathrm{wt} \%$ adsorption, compared with the Linde value for saturation of $18.9 \mathrm{wt} \%$ at $298^{\circ} \mathrm{K}$ and 1 atmosphere pressure.

6.3 The Linear Adsorption Isotherm Approximation

Equation 2.33 relates the sieve potentials to the linear isotherm approximation given by equation 2.37. Combining these two equations gives:

$$
n=\frac{p}{R T} \sum_{V} \exp \left(-\frac{\phi(r)}{k T}\right) \delta V
$$

In equation 6.1 the summation is over the large cage volume V. The exponential ferm approximates to zero in all regions where $\phi>500 \times 10^{-15}$ ergs/molecule for the range of temperatures considered, and all such points lie in the regions shown in figures 6.7-3. The grid separation used was $a_{\delta} / 2 O$ and hence $\delta V=\left(a_{\sigma} / 2 O\right)^{3}=$ 2.32×10^{-28} lifres. Expressing p in millimetres of mercury, T in ${ }^{\circ} \mathrm{K}$ and using the value for the gas constant $R=62.4$ litre.mm $\mathrm{Hg} /{ }^{\circ} \mathrm{K}$, mole enables equation 6.1 to be written as

$$
n=3.72 \times 10^{-30} \cdot \frac{P}{T} \times \sum_{V} \exp (-\phi / k T)
$$

where n is the number of moles of carbon dioxide adsorbed per cage of the sieve.

It is conveniont to express this in terms of the weight percent of carbon dioxide adsorbed as is usual in adsorption isotherm plots. The molecular weight of the Linde 5A calcium sieve is 1668 (neglecting all water) so there are theoretically \bar{N} unit cages in 1668 grams of sieve where \bar{N} is Avogadro's number. The molecular woight of carbon dioxide is 44 so n moles of carbon dioxide is equivalent to

$$
q=\frac{n N \times 44 \times 100}{1668} \quad \text { grams of carbon dioxide per }
$$

100 grams of sieve. Rewriting equation 6.2 in terms of q gives

$$
q=5.9 \times 10^{-6} \times p \times\left(\sum_{v} \exp (-\phi / k T)\right) / T
$$

Table 6.7 gives the results from runs 61 and 63 for the summation as a function of temperature, and plots of equation 6.3 using this data are given in figures 6.4 and 6.5. Linde data ${ }^{(18)}$ is plotted for comparison.
6.4 The Quadratic Adsorption Isotherm Approximation

Equations 2.36, 2.38 and 2.39 relate the molecule-ion and molecule-molecule interactions to the amount of carbon dioxide adsorbed in the sieve when two molecules are present in a large cage.

Combining these equations and writing n in terms of q, the weight percent of adsorbed carbon dioxide gives:

$$
\begin{aligned}
& q=100 \frac{p}{R T} b_{0}^{3} N \frac{M_{2}}{M_{\text {sieve }}} \sum 1+100\left(\frac{p}{R T}\right)^{2} b_{0}^{3} N \frac{M_{2}}{M_{\text {sieve }}} B_{g}^{1} \sum_{1} \\
& +100\left(\frac{p}{R T}\right)^{2} b_{0}^{6} \frac{N^{2}}{M_{\text {sieve }}} \frac{\mathrm{M}_{2}}{2} \\
& \text { where } \sum_{1}=\sum_{v} \exp (-\phi / k T) \\
& \text { and } \sum_{2}=\sum_{v}\left(\exp \left(-E\left(r_{i}, r_{i}\right) / k T\right)-1\right) x \\
& \times \quad \exp \frac{\left(-\phi\left(r_{-i}\right)-\phi\left(r_{-j}\right)\right)}{k T}
\end{aligned}
$$

Substituting the values of the constants in equation 6.4 gives q in terms of $\mathrm{p} \mathrm{mm} \mathrm{m}_{\mathrm{e}} \mathrm{Hg}$ and the parameters:

$$
\sum_{1} / T, B_{g^{\prime}} \sum_{V} / T^{2} \text { and } \sum_{2} / T^{2}
$$

Thus for:

$$
\begin{aligned}
R & =62.4 \text { litre.mm Hg/ }{ }^{\circ} \mathrm{K} . \text { mole } \\
b_{0} & =6.155 \times 10^{-8} \mathrm{~cm} \\
\bar{N} & =6.02 \times 10^{23} \\
M_{\mathrm{CO}_{2}} & =44 \\
M_{\text {sieve }} & =1668
\end{aligned}
$$

$$
q=5.93 \times 10^{-6} p \frac{\sum_{1}}{T}+9.51 \times 10^{-8} \mathrm{~B}_{\mathrm{g}} \mathrm{p}^{2} \frac{\sum_{1}^{2}}{\mathrm{~T}^{2}}
$$

$$
+1.33 \times 10^{-11} p^{2} \frac{\sum_{2}}{T^{2}}
$$

B_{g}^{\prime} is the bulk second virial coefficient for carbon dioxide and values of this as a function of temperature were obtained from Lennard-Jones 12-6 potential data. (1O) These are given in table 6.8 .

The double summation \sum_{2} discussed in section 3.4 was programmed for twelve temperatures (runs 71-94) using the potentials from runs 61 and 63. The results obtained are given in table 6.7 and a listing of the programme at $323^{\circ} \mathrm{C}$ in Appendix C .

Figures 6.4 and 6.5 sumanarise the resulis in table 6.7 and compare the theoretical linear and quadratic isotherms with Linde

TABLE 6.7

TEMPERATURE VARIATION OF THE SUMMATIONS FOR VO AND B'
USING POTENTIALS FROM RUNS 63 AND 61

TEMP	PGTS. FROM RUN 63		POTS, FROM RUN 61	
	SIGMA1	-SIGMA2	SIGMA1	-SIGMA2
573	$2.897,4$	$1.588,8$	$2.146,5$	$7.843,9$
473	$1.233,5$	$2.693,9$	1.469 .6	$3.483,11$
423	$3.926,5$	$2.626,10$	$6.472,6$	6.599 .12
373	$2.136,6$	$7 . .488,11$	$5.312,7$	$4.385,14$
348	$6.825,6$	$7.529,12$	$2.175,8$	$7.336,15$
323	$2.884,7$	$1.329,14$	$1.216,9$	$2.296,17$
298	$1.969,8$	$6.092,15$	$1.154,10$	$2.069,10$
273	$2.477,9$	$9.450,17$	$2.128,11$	$6.966,21$
248	$8.646,10$	$1.113,21$	$1.192,13$	2.13 .25
223	$1.314,13$	$2.461,25$	$3.287,15$	$1.544,30$
198	$2.338,16$	$7.470,31$	$1.269,19$	$2.212,37$
173	$2.138,21$	$6.018,41$	$3.288,24$	$1.454,48$

TABLE 6.8

BULK AND CRYSTAL PHASE SECOND VIRIAL COEFFICIENTS

$\begin{gathered} \text { TEMP } \\ \text { DEG. K } \end{gathered}$	$\begin{gathered} B^{\prime} g(E Q 2.15) \\ \text { LITRES/MOLE } \end{gathered}$	$B^{\prime} \mathrm{g}$ (PHI L-J) LITRES/MOLE	$\begin{aligned} & \mathrm{B}^{\prime}(\text { EQ 2.10) } \\ & \text { (PHI L-J) } \\ & \text { LITRES/MOLE } \end{aligned}$	$\begin{aligned} & \mathrm{B}^{\prime} \text { (EQ 2.10) } \\ & \text { (EQ 2.15) } \\ & \text { LITRES/MOLE } \end{aligned}$
573	0.0605	-0.012	3.267,-1	3.849,-1
473	0.0580	-0.035	6.791,-1	1.533
423	0.0560	-0.052	3.080	4.955
373	0.0533	-0.074	1.362, 1	2.461, 1
348	0.0515	-0.088	3.824, 1	7.743. 1
323	0.0494	-0.104	1.385, 2	3.234. 2
298	0.0 .466	-0.124	7.627, 2	2.172. 3
273	0.0435	-0.1.8	6.869, 3	2.678, 5
248	0.0394	-0.178		
223	0.0343	-0.216		
198	0.0276	-0.266		
173	0.0185	-0.338		

FIGURE 6.4

THEORETICAL EQUILIBRIUM ADSORPTION ISOTHERMS - RUN 63

FIGURE 6. 1 THEORETTCAL EOUTHTBRIUM ADSTRPTTON TSTTHERMS - RUN 63

146.

FIGURE 6.5

THEORETICAL EQUILIBRIUM ADSORPTION ISOTHERMS - RUN 61

adsorption isotherms for the carbon dioxide - 5A sieve system. The theoretical curves obtained apply to dilute systems so they can only be compared with Linde isotherms at high temperatures. These in general are above the range of temperatures ar which practical work was done. No Linde data is available at temperatures below $298^{\circ} \mathrm{K}$ at pressures sufficiently low ro give carbon dioxide concentrations in the sieve comparable with that required for the theoretical analysis.

If it is assumed that the adsorbed carbon dioxide disperses itself evenly throughout the crystals comprising the sieve pellet, then x weight percent adsorption is equivalent to $1668 \times \times / 44 \times 100$ carbon dioxide molecules per sieve cage, there being \mathbb{N} cages per mole (1668 grams) of sieve. Thus two molecules in every cage is equivalent to $5.3 \mathrm{wr} \%$ adsorption. This value represents an optimistic upper limit for the carbon dioxide concentration in the sieve if the theory is to be applicable. It may be noted that equation 6.5 exhibits a maximum value for q of about $4 \mathrm{wt} \%$ adsorption over the twelve temperatures considered.

In general the agreement with the Linde isotherms is poor except over a narrow range of temperatures about $323^{\circ} \mathrm{K}$. A review of the basic concepts used in Chopter 2 to define the sieve potentials (equation 2.10) and the quadratic isotherm (equation 2.36) shows that some of the simplifications used are not strictly valid.

As for as the sieve structure is concerned the aluminium and silicon ions have been treated as a single hypothetical AS ion with zero charge and the exchangeable cations shared equally among the O 6 windows. The potential contribution from the $A S$ ion has been found to be small so the choice between a single composite ion, or two separote ones, or completely neglecting these ions does not significantly offect the results, Distributing the exchangeable eations equally between the O 6 windows is a large departure from reality and for the calcium sieve involves considering 'fractions' of ions. Also the positions of the exchangeable cations are not really known since although they lie in the plane of the 06 windows, in the calcium sieve there are fewer ions than available locations which leaves at least two O 6 windows unblocked at any instant in time.

It is necessary to assume partially ionised states for the oxygen ions before realistic values for the quadrupole interaction are obtained. The overall ionisation scheme used for the sieve is somewhat arbitrary although its choice has little or no effect on the three other interactions considered, but the molecular data used is based on fully ionised states as indicated earlier. Also the lower of the two ovailable values for
the polarisability of oxygen gives the only set of theoretical isotherms which are in any way comparable with the Linde data.

The potential function used is based on rigidly fixed ions in the cage structure. If is expected that some degree of relaxation of the structure will occur especially during translation of an adsorbed molecule through an 08 window, since molecules larger than the windows free diameter can pass through it.

Finally all free water normally present in the sieve was neglected, including that associated with structural stability, since nothing is known about the locations of the hydroxyl ions necessary to bind the (21) structure.

A more realistic scheme taking all these factors into consideration would be very complex whereas the present simplifications used permit calculation of the potentials in both large and small cages including the interactions from distant ions.

The way in which the carbon dioxide molecule has been treated also gives rise to sources of error. Throughout this work the carbon dioxide molecule has been assumed to be spherically symmetric, and the potentials obtained from $573^{\circ} \mathrm{K}$ down to ambient give conditions under which this assumption is substantially valid. The potentials become
-150 -
unreliable at lower temperatures where the energetics of the system permit molecule alignment, and anisotropy must be considered. Of the possible sizes for the carbon dioxide molecule the value $P_{e}=5.12 \AA$ has been strictly adhered to and the molecule assumed to rotate freely with this affective diameter whilst interacting with the sieve matrix. (This value, $P_{e}=5.12 \AA$, is based on the bond length of a carbon monoxide molecule of $1.16 \AA$ and the diameter of on oxygen ion taken as 2.8 A. Thus $O=C=O$ has the rod length $1.4+1.36+1.16+$ $1.4=5.12 \AA_{\text {. }}$) Thus the potentials obtained are not strictly valid when the adsorbed molecule is in regions close to the structural ions.

A simplified approach has been used to define the various potential interactions, and of these only the polarisation potential is not compatible with a freely rotating molecule, though the results obtained show that ϕ_{p} is small everywhere compared with the total potential. Barrer ${ }^{(\$ 6)}$ suggests that in similar systems the polarisation potential can contribute up to 10% of the total potential and hence it may be underestimated here.

Guadratic expressions were fitted to the available Linde adsorption isotherm data over the range $\mathrm{O}-4 \mathrm{wt} \% \mathrm{CO}_{2}$ adsorption using a least squares criterion. This showed it was necessary to use an expression of
the form:

$$
\begin{aligned}
& q=A+B p+C p^{2} \quad \text { rather than } \\
& q=B p+C p^{2}
\end{aligned}
$$

as predicted theoretically. Linde data for the $5 \mathrm{~A}^{2} / \mathrm{CO}_{2}$ systern exists mainly above $273^{\circ} \mathrm{K}$ and at pressures above 4 mm . Hg . in the range O-4 wt\% adsorption. Without lower pressure data it is difficult to decide if the theoretical expression really fits Linde data. With the available information it can only be stated that if the Linde data plotred in figures 6.4 and 6.5 is represented by a quadratic expression, this expression is different from the one developed theoretically and that if the Linde data is accepted, the theoretical expression is incarrectly formulated.

6.4.1 Bulk and Crystal Phase Second Virial Coefficients

A check was made to see if the potential constants for carbon dioxide given in Appendix A, and using its bond length size, would predict bulk gas second virial coefficients using equations 2.15, 2.13 and 2.30. The results obtained, given in table 6.8 , are quite different from the values of B_{g} obtained from equation 2.30 using the Lennard Jones potential and constants for CO_{2} to evaluate $f_{12^{*}}$ If equations 2.15, 2.18 and 2.30 are fitted to Lennard Jones $\mathrm{B}_{9}^{2}(\mathrm{~T})$ data ${ }^{(10)}$ by adjusting the size of the CO_{2} molecule, good agreement is obtained over the
range $573^{\circ} \mathrm{K}$ to $173^{\circ} \mathrm{K}$ using a CO_{2} diamater $\rho=3.63 \AA$. However, this value as shown earlier, being close to the kinetic diameter of CO_{2} gives unrealistically high potentials, in the sieve and hence high values for B^{\prime}.

The problem arises that in the crystal both $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ and CO_{2}-ion interactions have to be considered together (equation 2.39). The Lennard Jones potential ${ }^{(10)}$ using $4.12 \&$ for the diameter of CO_{2} and a potential well depth of $\mathrm{E} / \mathrm{K}=189^{\circ} \mathrm{K}$ accurately describes the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction, but cannot describe the CO_{2}-ion interaction. This needs to be described by equation 2.10 , but the analogue of this equation in gas phase (equation 2.15) fails to describe the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction unless it is assumed that the CO_{2} diameter is $3.63 \AA$. The use of this value in equation 2,10 then fails to predict the CO_{2}-ion interaction.

Crystal phase second virial coefficients were recalculated from the potentials from runs 63 and 61 using the Lennard Jones expression and CO_{2} parameters for the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction. The results are given in table 6.8 and are compared with the original values for $\mathbf{B}^{\mathbf{t}}$. Adsorption isotherms were recalculated from equation 2.36 using both available expressions for the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction in the bulk phase and the
two different values for B^{\prime} in the crystal phase. The four resulting isotherms utilising the interactions

showed that the choice of models for the bulk phase contribution to the adsorption isotherm was of no importance as this contribution is very small compared with the crystal phase contribution. However, the crystal phase contribution B^{\prime} has a large effect on the resulting isotherms. These isotherms are plotted for comparison in figures 6.4 and 6.5. This shows that the use of the Lennard Jones potential for the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction in the erystal phase causes a deterioration in the agreement first obtained with the Linde data, and the turning points for the theoretical curves are widely scattered compared with the average of $4 \mathrm{wt} \% \mathrm{CO}_{2}$ previously found. This indicates that equation 2.15 represents the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction in the crystal phase, better than the Lennard Jones exprossion.

6.5 Theoretical Heats of Adsorption

Heats of adsorption can be calculated over the upper end of the range of temperatures for which potentials are available. The data required to evaluate equations 2.42 and 2.43 are given in tables 6.9 and 6.10 below. These give the values of V_{0} and B^{\prime} taken from runs 63 and 61 respectively. The values of B^{\prime} in equation 2.39 are based on equation 2.15 whereas $\mathrm{B}_{\mathrm{g}}^{\prime}$ is based on the Lennard-Jones potential. Using this potential for the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction in the sieve to evaluate B^{\prime} reduces the values at shown in table 6.6 but has no discernible effect on the final heats of adsorption obtained.
V_{0} and E^{1} both exhibit large temperature variations so the gradients $\mathrm{dV} / \mathrm{dT}, \mathrm{dB} / \mathrm{dT}$ and $\mathrm{dB}_{9}^{\prime} / \mathrm{dT}$ were obtained by fitting the dato to the relationship

$$
\ln Y=A+B \ln T
$$

and obtaining the gradients using $\mathrm{dY} / \mathrm{dT}=\mathrm{BY} / \mathrm{T}$. The range of temperatures chosen were those over which the theoretical isotherms were known to be in approximate agreement with Linde data. Heats of adsorption were evaluated at each temperature over a range of pressures for which the quadratic isotherm was applicable. The results at $298^{\circ} \mathrm{K}$ are given in full in table 6.11 for data taken from run 63 based on

TABLE 6.9

HEATS OF ADSORPTION DATA DERIVED FROM RUN 63

TEMP DEG. K	Vo LITRES	B^{\prime} LITRES/MDLE	$\frac{-d V o}{d T}$	$\frac{-d B}{d T}$	$\frac{d B \cdot g}{d T}$
573	$6.755,-24$	$3.849,-1$	$1.768,-25$	$9.890,-3$	$6.775,-5$
473	$2.876,-23$	1.533	$9.119,-25$	$4.772,-2$	$2.394,-4$
423	$9.156,-23$	4.695	$3.247,-24$	$1.634,-1$	$3.977,-4$
373	$4.980,-22$	$2.461,1$	$2.003,-23$	$9.716,-1$	$6.418,-4$
348	$1.592,-21$	$7.743,1$	$6.860,-23$	3.276	$8.181,-4$
323	$6.725,-21$	$3.234,2$	$3.123,-22$	$1.474,1$	$1.042,-3$
298	$4.592,-20$	$2.172,3$	$2.311,-21$	$1.073,2$	$1.346,-3$
273	$5.777,-19$	$2.678,5$	$3.174,-20$	$1.444,3$	$1.754,-3$

TABLE 6.10

HEATS OF ADSORPTION DATA DERIVED FROM RUN 61

TEMP					
DEG. K	VO LITRES	B^{\prime} LITRES/MOLE	$\frac{-d V O}{d T}$	$\frac{-d B^{\prime}}{d T}$	$\cdot \frac{d B^{\prime} g}{d T}$
573	$5.005,-23$	2.565	$1.598,-24$	$8.140,-2$	$6.775,-5$
473	$3.427,-22$	$1.641,1$	$1.350,-23$	$6.396,-1$	$2.394,-4$
423	$1.509,-22$	$7.157,1$	$6.529,-23$	3.077	$3.977,-4$
373	$1.239,-20$	$5.794,2$	$6.078,-22$	$2.825,1$	$6.418,-4$
348	$5.071,-20$	$2.368,3$	$2.667,-21$	$1.237,2$	$8.181,-4$
323	$2.836,-19$	$1.325,4$	$1.607,-20$	$7.461,2$	$1.042,-3$
298	$2.692,-18$	$1.258,5$	$1.653,-19$	$7.677,3$	$1.346,-3$
273	$4.963,-17$	$2.298,6$	$3.326,-18$	$1.531,5$	$1.754,-3$

Lennard-Jones potentials in the gas phase, and values for $-\delta H$ over the full temperature range for both runs are given in table 6.12.

The results for $-\delta H$ at each temperature follow the same pattern as that given in table 6.11 in which the heat of adsorption is independent of the pressure over the range studied. Values of $n N_{0}$ and $n_{g} N_{g}$ are included as a check. These two terms, both being a function of pressure, should always be equal, since if $n=n_{g}$ then $V_{0}=V_{g}$, as V_{0} can be interpreted as the volume that n moles of gas in the sieve phase would occupy if present in the bulk phase at the same temperature and pressure. The differences at higher pressures are reduced when $\mathrm{B}_{\mathrm{g}}{ }_{\mathrm{g}}$ is calculated using equation 2.15 to describe the $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ interaction in the bulk phase.

The results obtained for the heats of adsorption agree well with practical values given in the literature ${ }^{(23,17 .)}$ for $\mathrm{CO}_{2} / 5 \mathrm{~A}$ adsorption at $25^{\circ} \mathrm{C}$. These workers found that $-\delta \mathrm{H}$ was a function of pressure when studied over a wider range of pressures than was possible in this work. Their values ranged from 12 to $10 \mathrm{kcal} / \mathrm{mole}$ for concentrations from zero up to 2 mmole CO_{2} /gram adsorbent. These values may be compared with the theoretical values of 12.03 and $10.08 \mathrm{kcal} / \mathrm{mole}$ at $25^{\circ} \mathrm{C}$ given in table 6.12 . These values are constant over the

TABLE 6.11

CONTRIBUTIONS TO THE HEAT OF ADSORPTION AT 298 DEG. K
(DATA TAKEN FROM RUN 63)

	$\begin{gathered} n \\ \frac{\mathrm{MOLES}}{\mathrm{CAGE}} \end{gathered}$	$\begin{gathered} n / \mathrm{VO} \\ \text { MOTES } \\ \text { LITRE } \end{gathered}$	$\begin{aligned} & \mathrm{ng} / \mathrm{Vg} \\ & \frac{\text { MOLES }}{\mathrm{LITRE}} \end{aligned}$	$\begin{gathered} \text { SU } \\ \frac{\mathrm{KCAL}}{\mathrm{MOLE}} \end{gathered}$	$\begin{aligned} & \text { psV } \\ & \frac{\mathrm{KCAL}}{\mathrm{MOLE}} \end{aligned}$	$\begin{aligned} & -8 \mathrm{H} \\ & \frac{\mathrm{KCAL}}{\mathrm{MOLE}} \end{aligned}$
0.01	2.463.-26	5.365, -7	5.378,-7	9.48	0.59	10.07
0.02	4.915. -26	1.071,-6	1.076, -6	9.48	0.59	10.07
0.04	9.785,-26	2.131,-6	2.151, -6	9.48	0.59	10.07
0.06	1.461, -25	3.181,-6	3.227, -6	9.48	0.59	10.07
0.08	1.938, -25	4.222,-6	4.302,-6	9.48	0.59	10.07
0.1	2.412,-25	5.252,-6	$5.378,-6$	9.48	0.59	10.07
0.2	4.708,-25	1.025,-5	1.076,-5	9.49	0.59	10.08
0.4	8.954,-25	1.950,-5	2.151,-5	9.49	0.59	10.08
0.6	1.274.-24	2.774, -5	3.227,-5	9.49	0.59	10.08
0.8	1. $606,-24$	3.498, -5	4.302,-5	9.49	0.59	10.08
1.0	1.892,-24	4.122,-5	5.378,-5	9.49	0.59	10.08
2.0	2.631,-24	5.371, -5	1.076,-4	9.50	0.59	10.09
4.0	$6.482,-25$	1. $112,-5$	1.614, -4	9.49	0.59	10.08
5.0	-2.074, -24					

TABLE 6.12

TEMPERATURE VARIATION OF THE HEAT OF ADSORPTION

$\begin{aligned} & \text { TEMP } \\ & \text { DEG. K } \end{aligned}$	-SH KCAL/MOTE		$\begin{gathered} \text { TEMP } \\ \text { DEG. K } \end{gathered}$	-8H KCAL/MOLE	
	RUN 61	RUN 63		RUN 61	RUN 63
573 =	23.08	19.05	348	1.1 .05	11.77
473	19.42	15.93	323	13.04	10.93
423	17.08	1.4 .29	298	12.03	10.08
373	15.06	12.62	273	11.02	9.24

range 0.05 to 0.5 mole CO_{2} /gram adsorbent over which the isotherm is valid at $25^{\circ} \mathrm{C}$.

It can be seen from table 6.11 that the $\mathrm{p} E \mathrm{~V}^{\prime}$ term in the theoretical expression for - 84 is small compared with the internal energy term, which in turn is dominated by $R \mathrm{~T}^{2} \frac{d}{d T} \ln \mathrm{~V}_{0}$. This indicates that the heat of adsorption is almost entirely derived from the internal energy of the sorbed carbon dioxide molecules, and is hence independent of the bulk pressure at a given temperature which shows why the results are not affected by the formulation of the gas-gas interaction.

6.6 Theoretical Crystal Diffusivities

Equation 2.49 relates the theoretical crystal diffusivity to the ratio of two partition functions when a single carbon dioxide molecule is adsorbed in a sieve cage and translates through an O 8 window. Values for the partition functions were taken from runs 60-63. Thus in equation 2.49:
δS is an element of window surface for one point $=\left(a_{0} / 2 O\right)^{2}$ $S V$ is an element of cage volume for one point $=\left(a_{\sigma} / 20\right)^{3}$ $R=8.31 \times 10^{7}$ ergs. dag ${ }^{-1} \cdot$ mole $^{-1}$ $M=44$, molecular weight of carbon dioxide.

Using these values gives:

$$
D_{c}=1.35 \times 10^{-3} \sqrt{T} \times \frac{\sum_{3} \mathrm{~cm}^{2} / \mathrm{sec} .}{\sum_{1}}
$$

where $\Sigma_{3}=\sum_{S} \exp (-\phi / k T)$

$$
\Sigma_{1}=\Sigma_{V} \exp (-\phi / k T)
$$

Values of T, \sum_{1} and \sum_{3} and the corresponding values of D_{c} are given in table 6.13 which covers the full range of variables permitted by the data. Practical work was done on a calcium sieve and the sodium -calcium sieve results are included for comparison.

There is no good agreement between the practical and theoretical diffusivities for the calcium sieve at the three temperatures which they can be compared (see table 6.22). This is not surprising as the theoretical results are based on a very dilute system in which one CO_{2} molecule is situated in isolation in a group of sieve cages whereas the practical diffusivities are based on a fully saturated sieve in which up to eight CO_{2} molecules can be contained in adjacent cages. Furthermore the comparison is made at temperatures where the molecular potentials are becoming unreliable. The theoretical crystal diffusivities compare better with Wilson's ${ }^{(3)}$ estimate which is of the order of $10^{-8} \mathrm{~cm}^{2} / \mathrm{sec}$

TABLE 1.13
THFORETICAL CRYSTAL DIFFUSIVITIFE TASED ON SIEVE POTENTIALS

$\begin{aligned} & \text { RUN } 60 \text { USES NaCa } 1.5+\text { ION AND } \\ & \text { OXYGEN pOL. }=30.0,-25 \mathrm{CM} . \end{aligned}$				$\begin{aligned} & \text { RUN 62 USES NaCa } 1,5+\text { ION AND } \\ & \text { OXYGFN POI. }=16.5,-25 \mathrm{CM} 3 . \end{aligned}$		
$\begin{gathered} \text { TEMP. } \\ \text { DEG. } \mathrm{K} \end{gathered}$	SIGMA1	SIGMA3	$\begin{gathered} \text { DC } \\ \mathrm{CM} 2 / \mathrm{SEC} \end{gathered}$	stcmal	stgma	$\begin{gathered} \mathrm{De} \\ \mathrm{CM} 2 / \mathrm{SEC} \end{gathered}$
573	3.101.5	9.812	1.025, 66	4.103.t	5.927	+. $6758,-6$
473	2.493,6	2.170,1	2.566, -7	2.0.4, 3	1.181 .1	1.701,-6
423	1.28.4.7	4.307.1	9.311,-8	7.782,5	2.170,1	7.08n,-7
373	1.396,8	1.203,2	2.217,-8	5.403.6	5.552 .1	2.679,-7
34^{8}	7.197.8	2.457,2	8.610, -9	2.14 .7	1.072 .2	1.257, -7
323	5.557.9	5.043 .2	2.595,-0	1.25t, 8	2. 13:,2	1.655,-8
298	8.51.4,10	1.020, 3	5. $255,-10$	1.3n6. 0	7.288,2	1.300.-8
273	3.083.12	8.797 .3	$6.365,-11$	3.107,10	3.050 .3	2.106, -0
2.48	4.539.14	7.0.12.4	?.208, -12	2.820 .12	2.201.4	1.651,-10
223	$4.785,17$	1.22n,6	+1.731,-14	1.790,1=	3.317 .5	$3 \cdot 387,-12$
198	1.964.22	7.610.7	$7.360,-17$	6.299. 19	1.775 .7	5.353, -15
173	3.965,29	3.380,10	$1.511 .-21$	$8.12 n, 26$	$6.376,9$	1.392,-10

RUN 61 USES Ca $1.5+$ ION AND OXYGEN POL. $=39.0,-25 \mathrm{CM} 3$.				RUN 63 USES CA $1.5+$ ION AND OXYGEN POL. $=16.5,-25$ CM3.		
TEMP. DEG. K	SI GMA1	SIGMA3	nc $\mathrm{CM} / \mathrm{SEC}$	Sigmal	Stgma	$\begin{gathered} \mathrm{De} \\ \mathrm{CM2} / \mathrm{SEC} \end{gathered}$
573	2.1.45.5	0.665	1.155, -6-	2.807.4	5.837	$6.511 .-6$
473	1. 169.6	2.13n,1	1.2.75, -7	1.23.3. 7	1.15?. 1	$2.760,-6$
423	$6.172,6$	+.22n, 1	1.81n, -7	3.026.5	2.135,1	1.560, -6
373	5.312,7	1.175,2	5.767,-8	2.136	5.124,1	6.621,-7
34^{8}	2.175,8	2.396,2	2.771, -8	6.825,6	1.n.4f), 2	3.860, -7
323	1.216.9	5.785,2	1.15 $1,-8$	2.891 .7	2.350 .2	1. $093,-7$
298	1.15.7,10	1.865 .3	3.766. - ?	1.969.8	7.079,2	8.379,-8
273	2.128,11	8.521.3	8.932,-10	2. +77.9	2.961 .3	2.6fin, -8
248	1.192,13	6.80n. 4	1..313, -10	8.6.65;10	2.125 .7	5.225, -9
223	3.287.15	1.173,6	7.10.4, -12	1.311 .13	3.210 .5	+.937, -10
19^{8}	1.260, 19	7.2n2,7	1.072, -13	2.339,16	1. 4×10.7	1. $3^{80},-11$
173	3.289,2.7	3.215,10	1. $736,-16$?.13R.21	$6.064,9$	5.036,-14

under similar conditions; As his work is based on the average of a large batch of 5A pellets, the values obtained here based on a single pellet should be more accurate.

It can be seen that the theoretical diffusivities are sensitive to the value of the partition function in the O 8 window, since only one grid point has a negative potential here compared with the many in the large age which give the value of SIGAA 1. Thus any changes in the molecular constants significantly affect the values of the crystal diffusivities. As noted earlier, relaxation of the ion positions is not considered. It seems likely that relaxation of these positions such that the O 8 window enlarges during translation would always result in larger values of the window partition function without significantly affecting the large cage partition function. The highest value would be obtained when the ring's free diameter was equal to the value of ρ_{e} for a carbon dioxide molecule i.e. $5.12 \mathbb{R}$. Since the carbon dioxide molecule is larger than the O 8 window, which has a free diameter of 3.9 \AA between OI oxygen ions and $4.7 \&$ between Oll oxygen ions, relaxation will result in larger values of the arystal diffusivity than those obtained.

6.7 Practical Results

The diffusion of carbon dioxide in a one centimetre Linde 5A molecular sieve bed as described in Chapter 5, was studied at three temperatures. These were ambient, $\left(25^{\circ} \mathrm{C}\right), 0^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. The results obtained were a record of accumulated count (Integral count, IC) over the range of times O to 10,000 seconds, together with end point values of the integral count after the pellet had been desorbed by heating.

The runs at each of the three temperatures, designated series ' A ', ' B ' and ' C ' respectively, each consisted of trial runs to measure the amount of deadspace gas in the diffusion cell in the absence of the pellet bed, and then pellet runs to measure the amount of carbon dioxide desorbed from a saturated pellet together with this dead space gas. Ir was only necessary to do two trial runs at each temperature as the results for these gove good reproducibility. The pellet runs showed more variation, this being up to 4% of the averaged values over several runs given in table 6.13 used for further analysis.

The method of processing the basic practical results to obtain curves of the fraction of carbon dioxide deserbad from the pellet versus square root time is conveniently illustrated by giving the results and derived data in some detail. The following figures and tables are
all for runs series B at $0^{\circ} \mathrm{C}$. Corresponding
tables at other temperatures are given in Appendix B_{4}

6.7.1 Estimation of the Run Shart Time T_{0}

The times recorded by the camera and at later times by the fimerscaler had to be adjusted to allow for the interval elapsing between starting the timer-scaler and the front of the initial pulse of active gas entering the counter. A run procedure was adopted whereby this time was always about ten seconds. This permitted measurements of the integral count to be made at suitable times such that the recorded values of film time gave deduced values of run time $\mathrm{T}_{\mathbf{r}}$, close to the experimental points required. These as explained in earlier chapters were required at values of T_{r} such that $\sqrt{ } T_{p}$ increased linearly.

The initial part of each run which was filmed continuously, was plotted as integral count against film time on linear scales (figure 6.6). The straight line obtained represents the pulse of dead space gas at constant activity passing through the counter. This line can be extrapolated back to the time oxis, and the intersection gives the value of T_{0}. This time represents the time the pulse would reach the counter in plugg flow. The initial tail to the curve is caused by mixing in the flow line between the diffusion cell and the counter. The gradients of the

FIGURE 6.6

G'IRT RIMES FOR RUNS SBRIES 'B' AT O DEG.C

lines should be constant in each series of runs as they represent the initial activity of the gas in the pellet and dead space. The measured values of time T_{f} can now be converted into run times T_{r} by subtracting the value T_{0} from ecch one.

6.7.2 Background Correction

The background count rate was measured bafore the start and again at the termirution of each run. A check was made that all of the carbon dioxide had been desorbed at the end of a run by comparing the two values obtained, which obviously should not be signifieantly different. The background count rate was taken to be the average of the two values, The measured values of integral count were corrected for background by subtracting the accumulated background count at time T_{f} giving the values $1 C_{r}$. Tables 6.14-17 give all the measured and deduced results for the four runs reported at $0^{\circ} \mathrm{C}$. Plots of $1 C_{r}$ versus $\sqrt{ } T_{r}$ are given in figures 6.7 and 6.8 which clearly show the variation in results from run to run.

The results in tables 6.14-17 and in Appendix B for $I C_{r}$ in the pellet runs were only reproducible to within 4%. The main reason for this was caused by the carrier gas flow rate failing to rise exactly to

TABLE 6.14
PRACTICAL RESULTS
TRIAL RUN (1B) AT O DEG. C $\mathrm{TO}=14.2 \mathrm{SECS}$
BACKGROIND $=1.513 \mathrm{c} / \mathrm{s}$

TABIE 6.15
PRACTICAL RESULTS
TRIAL RUN (2B) AT O DEG. C
TO = 11.6 SECS
BACKGROUND $=1.553 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & (\operatorname{SECS}) \end{aligned}$	INTEGRAL COWNT	$\sqrt{T r}$	1 Cb
14.5	10900		
15.2	20900	1	20876
15.5	25700		
16.0	34600		
16.6	45.300		
17.0	53100		
17.5	62900		
18.2	76900	2	76871
18.5	82200		
21.0	123700	2.5	12.3667
22.0	133000	2.8	132965
23.2	$13^{87} 700$	3	138664
24.4	141600	3.2	111562
25.8	143350	3.1	143309
27.2	14.4237	3.6	14.4280
28.6)	1.44905	3.8	14.4860
30.2	1.154 .57	4	145409
33.6	146130	4.1	146077
36.2	146477	1.8	146240
46.2	1.77 .324	5.7	147249
59.2	1.77963	6.7	147^{879}
74.2	1.485 .32	7.8	1.4841 .4
91.2	1.49074	8.8	1.48930
$110 . ?$	1.49540	0.8	1.49367
235.2	151723	1.1 .9	151453
410.2	15.3347	19.9	152702
635.2	154516	25	153516
910.2	15.5382	30	1.53950
1235.2	1.56104	35	15.4159
1610.2	156770	40	15.1235
2035.2	157562	45	1.54362
2510.2	$15^{8} 323$	50	154373
3035.2	159190	55	$15+430$
361 n .2	1.60123	60	154443
1235.2	16110.4	65	1544.4
4010	$1621+3$	70	154,13
5635	163290	75	154500
6.110	164495	80	154115
7235	16.5752	85	154372
8110	167094	90	154244
7035	168570	05	15.350
10010	170112	100	154362

$\begin{aligned} & \text { FIMM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTFGRAL COUNT	$\sqrt{T r}$	1 Cb
12.0	11900		
12.6	20.400	1	20380
13.0	27200		
13.5	36500		
1\%.0	45200		
1.1 .5	55200		
15.0	65.300		
1.96	76700	2	76676
16.0	84700		
18.1	123500	2.6	123471
10.1	132800	2.8	132770
20.6	$13^{8} 500$	3	1.38468
21.8	1.11 .400	3.2	1.11 .366
23.2	143260	3.1	143224
2.16	144240	3.6	14.4202
26.1	1.14940	3.8	1.44899
27.6	145437	4	145394
31.8	1.46311	1.5	14625.2
36.6	1.46864	5	1.46807
46.6	147599	5.9	1.47527
59.6	148250	6.9	1.48547
74.6	148759	7.9	1.4864 .3
99.6	149460	7.3	149305
111.6	1.19764	10	149591
235.6	151875	15	151509
410.6	153.542	20	152749
635.6	154732	25	15.3717
925.6	15.5585	30.2	15414^{8}
1235.6	1562.46	35	154327
1625.6	156988	40.1	1.54463
2035.6	157663	45	154502
2510.6	$15^{8} 4.47$	50	$1.5454{ }^{8}$
$303+6$	159316	55	15.603
3600.6	160230	60	15.4523
1235.6	161240	65	154662
4910.6	162307	70	1.54680
5635.6	163457	75	1.51704
0410	16456	80	1.54701
7235	165915	85	154679
8120	167231	30	154620
0035	168654	95	154623
10010	170139	100	154593

TABLE 6.16

PRACTICAL RESULTS
PELIET RUN ($3 B$) AT O DEG. C
TO $=11.2 \mathrm{SECS}$
BACKGROUND $=1.583 \mathrm{c} / \mathrm{s}$

FILM TIME (SECS $)$	INTEGRAL COUNT	$\sqrt{\text { Tr }}$	ICr
11.5	10200		
12.2	20200	1	20181
12.5	24900		
13.0	34100		
13.6	45000		
14.1	55100		
14.6	64400		
15.2	77100	2	77076
15.5	83200		
16.1	94600		
18.0	123100	2.6	123072
19.0	132800	2.8	132770
20.2	139200	3	139168
21.4	142550	3.2	1.12516
22.8	144480	3.4	114419
24.2	145620	3.6	145582
25.6	146470	3.8	1.46429
27.2	147130	4	147087
31.4	148380	4.5	148330
36.2	149380	5	149323
46.2	150984	5.9	150911
59.2	152725	6.9	152631
74.2	154510	7.9	154393
91.2	156307	8.9	156163

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTEGRAL COUNT	$\sqrt{T r}$	ICr
$110 . ?$	158057.	0.0	157883
235.2	167111	15	166730
410.2	175.524	20	17.4875
635.2	18.3162	25	182156
910.2	190179	30	$18873{ }^{8}$
1235.2	196896	35	194941
1621.2	201951	40.1	199400
2035.2	209673	45	206451
2530.2	216057	50.1	21.2052
3051.2	221848	55.1	217018
3610.2	2272.17	60	2215.32
4235.2	232391	65	225687
4910.2	237179	70	229.406
5635.2	29562	75	232641
6.900 .2	246020	80.3	2357.45
7235	249220	85	237767
8110	252436	90	239598
0035	255390	95	241088
10010	258046	100	242200
10510	260000	102.4	24.3362
111050	264300	105	246808
11.570	265419	107.6	247103
12110	266249	110	247079
13210	267965	11.4 .9	247054

$:$.

TABLE 6.17

PRACTICAL RESULTS
PELLET RUN (4B) AT O DEG. C
TO $=9.7$ SECS
BACKGROUND $=1.555 \mathrm{c} / \mathrm{s}$

FILM TIME (SECS $)$	INTEGRAL COUNT	$\sqrt{\text { Tr }}$	ICr
10.0	10200		
10.7	20000	1	19983
11.1	26300		
11.5	33200		
12.0	42200		
12.6	53000		
13.0	60500		
13.7	73500	2	73479
14.1	81200		
14.5	88600		
16.5	123900	2.6	123874
17.5	133900	2.8	133873
18.7	140500	3	1.40 .771
19.9	143300	3.2	143269
21.3	1.45000	3.4	144967
22.7	146020	3.6	145985
24.1	146740	3.8	1.46703
25.7	147300	4	147260
29.9	148600	4.5	148554
34.7	149560	5	1.49506
45.7	151270	6	1511999
59.7	152968	7.1	152875
73.7	154455	8	154340
90.7	156030	9	155889

FILM TIME (SECS)	INTEGRAL COUNT	$\sqrt{\text { Tr }}$	ICr
109.7	1576.40	10	157.469
234.7	165684	15	165319
409.7	173421	20	17278.4
634.7	180648	25	179661
909.7	187324	30	185909
1234.7	193769	35	191849
1609.7	199975	40	197472
2034.7	206332	45	203168
2509.7	212510	50	208607
3204.7	218327	55	213623
3609.7	223796	60	218183
4234.7	228976	65	222391
4909.7	233591	70	225956
5634.7	237808	75	229046
6409.7	241799	80	231832
7235	245387	85	234137
8110	248556	90	235945
9035	251517	95	237468
10010	254130	100	238564
10610	255880	102.5	239537
11010	260170	104.9	243049
11510	261622	107.2	243724
12120	262603	110	243756
13210	$26+282$	11.4 .9	243740

FIGURE 6.1

VARIARION OF ICb AND ICr WITH $\sqrt{T r}$ AT O DEGO C

VARIATION OP ICb AKD IGB MITH $\sqrt{T r} A T O$ DEG. O

its preset value of $100 \mathrm{cc} / \mathrm{min}$ at the start of counting, and a drift of up to 5% about this value at later times which was corrected when noticed. Premixing of carrier gas in the cooling coil and active gas in the diffusion cell dead space at the start of counting was unpredictable and also affected reproducibility. These two sources of error have opposite effects on the final values of $I C_{r}$, the first giving higher values and the second lower values than would be obtained in the absence of these errors. No control could be exercised over the carrier gas flow rate from the time if had been preset, up till the end of the continuous filming stage of the scaler output, and runs were discarded which failed to start with the correct flow rate. This occurred most often in the pellet runs since af least one hour elapsed between presetting the carrier gas flow rate and saturating the peller with active gas, as compared with about ten minutes in the trial run.

As explained in Chapter 5, every effort was made to reduce carrier gas - active gas premixing in the diffusion cell. When this did occur as shown by a low initial dead space activity, then the runs were discarded. The runs reported may still be subject to this error in a small degree as shown by the variation in the initial gas activity, (figure 6.6), but there is no simple means of quantitatively estimating the
resulting error in IC_{r}.
The trial runs were reproducible to within 1%. This improvement over the pellet runs was expected bocause the carrier gas flow rate alvays tended to rise to its correct preset value on the runs and little premixing of active and carrier gas occurred in the diffusion cell.

6.7.3 The Fraction of Carbon Dioxide Desorbed from the Pellet

The results for $I C_{r}$ were averaged for each value of $\sqrt{ } T_{r}$ for the trial and pellet runs to give two sets of results at each temperature studied. In cases where the values of $\sqrt{ } \boldsymbol{T}_{r}$ did not coincide with the values required for further analysis, linear interpolation was ased to obtain an intermediate result. The average values of I_{r} given in table 6.10 were converted to the fraction of carbon dioxide desorbed at time $\sqrt{ } \tau_{r}$ using the relationship:

$$
\text { FRAC }=\frac{I C_{r t}-I C_{b t}}{I C_{r \infty}-I C_{b \infty}}
$$

where $I C_{r t}$ and $I C_{b t}$ are the values of the integral count at time t for the pellet and trial runs respectively, and $I C_{\text {roo }}$ and $I C_{\text {boo }}$ are the corresponding values at the end point. The three unsmoothed curves obtained are given in figure 6.9. The differencing method used to obtain values of FRAC tends to cancel out any systematic errors in each

TABLE 6.18

AVERAGED VALUES OF ICb AND ICT FOR GIVEN VALUES OF $\sqrt{T r}$

$\sqrt{T r}$	RUNS SERIES A (25 DEG. C)		RUNS SERIES B (O DEG. C)		runs series c$(-25 \text { DEG. C })$	
	ICb	1 Cr	ICb	ICr	ICb	ICr
1	25879	26712	20628	20082	18932	19682
2	100375	99840	76774	75278	74827	72744
3	175267	177232	138566	139820	137669	138286
4	181932	185802	1.45402	147174	145456	146872
5	183454	189162	146709	1.49415	1.46992	140012
6	184311	191831	147526	151124	148061	150488
7	184987	194283	1.48114	152820	1.48331	151844
8	185665	196612	148612	154422	148780	15.3506
9	186252	198744°	149120	156124	149225	154277
10	186833	201020	149523	157604	149696	155576
15.2	189358	211088	151500	166236	15.4533	162325
20	191.315	219681	152815	17.3830	152853	169169
25.1	192298	228496	1.53600	181038	153874	176502
30	192595	236364	154092	187324	154405	183406
35.1	192803	2143330	154305	193456	154557	190633
40	192872	251759	154366	198391	154776	197070
45	192938	25924^{8}	15.4432	20.4810	154828	203.396
50	192068	266272	154461	210230	154849	208941
55	192974	272700	$15: 517$	215070	154844	214460
60	192960	278572	154533	219858	154835	219640
65	193073	283767	15.45 .53	224039	154856 154892	224274 228848
70	193077	288338	15.547	227681 230844	154892 15495.4	228848 232921
75	193098	292031	154647	230844	15495.4	232021 236107
80	193120	295178	151558	233735	154044	236107
85	193151	297676	15.4526	2.35952	154981	238919.
90	19320.4	299627	154432	237772	154947	2.11277
95	193203	301171	1544^{87}	239278	15.492 .4	2.43232
100	193190	302367	154478	240382	154923	244781
INF	1,93204	307168	154.77	245400	15.4950	252700

set of runs, so long as the initial part of each curve representing the dead space activity is constant. The runs analysed are those with as similar initial curve shape as possible.

Discrepancies such as the value of $I C_{r}$ decreasing towards the end of a run were caused by using the average of the background count rates measured before and after each run. Thus it is possible that the mean background rate exceeds the final measured rate. The reason for the differences in measured background rates was not resolved, since the final rate tended to be smaller than the initial rate, not greater as would occur if the pellet had not been complerely desorbed. The difference could have been caused by a drift in the counter settings. In any event the diffference in background rates was less than 1\% and is equivalent to 150 counts accumulated after 10,000 seconds, or 0.06% of the final values of $1 C_{r}$. This error is less than the variation of count rate during runs which causes the long term fluctuations in the practical breakthrough curves as compared with the smooth theoretical curves given in figures 6.10-14.

6.7.4 Practical Pellet Porosity

If it is assumed that the Linde 5 A sieve comprises 80% crystals by weight, density 1.56 grams/cc., bound together with 20% by weight

FIGURE 6.9

PRACTICAL RESULTS FOR CO2 DIFFUSION IN A ONE DIMENSIONAL LINDE 5A SIEVE PELLET

MERN RESULTS FOR RUNS GT 25.0 DEGFEES CELSIUS

(1)
mern resllts fer rlins fit o.0 degrees celsius a
mean results for runs at -25.0 cegrees cel.sius +

of an inert clay binder, density $2.6 \mathrm{grams} / \mathrm{cc}^{(2)}$ and adsorbs 27.5 waighf per cent of water at $25^{\circ} \mathrm{C}$ and 1 atm. ${ }^{(18)}$ then it is possible to estimate the pellet porosity from the measured density of the sieve used in the experiment. Using the above figures the theoretical wet density of the sieve assuming zero porosity is 2,07 grams/cc. The measured wot density is 1.29 grams/cc. Thus the apparent porosity of the sieve is:

$$
E_{p}=1-\frac{1.29}{2.07}=0.375
$$

6.7.5 Practical K Values

A value for the equilibrium isotherm constant K can be calculated at each of the three temperatures studied from the volume of carbon dioxide in the diffusion cell dead space and the values of $\mathcal{I C}_{\infty}$ for the trial and pellet runs.

Table 6.19 shows the volumes of carbon dioxide at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$. admitted to the diffusion cell in each run, together with the corresponding values of $I C_{\infty}$ and the average values at each temperature.

At $0^{\circ} \mathrm{C}$ the ratio $I C_{\text {roo }} / \mathrm{IC}_{b \infty}$ is 1.59 (table 6.20). Since the average volume of carbon dioxide admitted in the trial runs was 14.6cc. then the average volume of carbon dioxide adsorbed by the sieve in the pellet runs at $0^{\circ} \mathrm{C}$ is $(1.59 \times 14.6)-14.6=8.55 \mathrm{cc}$. The burotfe readings indicate that 8.3 ce were admitted which checks with the derived
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { RUN } & \begin{array}{l}\text { VOLUME OF } \\ \text { CO2 IN CELL }\end{array} & \begin{array}{c}\text { IC AT } \\ \text { INFINITE } \\ \text { TIME }\end{array} & \begin{array}{c}\text { AVERAGE } \\ \text { VOLUME OF } \\ \text { CO2 IN CELL }\end{array} & \text { AVERAGE } \\ \text { CC AT 25 C. } \\ \text { AND 1 ATM. }\end{array} \quad \begin{array}{c}\text { IC. }\end{array}\right]$

TABLE 6.20
PRACTICAL K VALUES AND COMPARISON WITH LINDE DATA

RUN TEMPERATURE (DEG. C)	25	0	-25
VOLUME OF CO2 IN CELL			
(TRIAL RUNS)			
CC. AT 25 C AND 1 ATM.	1.2 .2	14.6	16.2
ICb $_{\infty} /$ ICr $_{\infty}$	1.59	1.59	1.63
VOLUME OF CO2 ADSORBED BY THE SIEVE PELILET CC. AT 25 C AND 1 ATM.	7.8	8.55	10.2
WEIGHT PERCENT CO2 ADSORBED	18.5	20.25	23.7
PRACTI CAL K VALUES	166.3	167.2	181.8
WEIGHT PERCENT CO2 ADSORBED (LINDE DATA)	18.9	19.6	

value. The former is taken to be more accurate since the practical method used subjocts the burette readings in the pellet runs to more sources of error than in the trial runs.

Now 8.55 ec of carbon dioxide measured at $25^{\circ} \mathrm{C}$ and 1 atm is equivalent to

$$
\frac{44 \times 8.55 \times 273}{22.4 \times 298}=15.38 \mathrm{mg} . \mathrm{CO}_{2}
$$

Assuming that the 5 A sieve adsorbs 27.5 weight per cent of warer at $25^{\circ} \mathrm{C}$ and 1 atm. ${ }^{(13)}$ and given the mass of wet sieve used as 97 mg and its volume as 0.075 cc . then the dry sieve mass is 76 mg . Hence 76 mg . of 5 A sieve adsorb 15.38 mg of carbon dioxide, or 20.25 weight per cent at $0^{\circ} \mathrm{C}$ and 1 atm . For comparison, the Linde data sheets give a value of $19.6 \mathrm{wt} \%$ adsorption under the same conditions.

The carbon dioxide concentration in the crystals is

$$
\frac{3.55 \times 273}{22400 \times 298 \times 0.075 \times 0.625}=7.46 \times 10^{-3} \text { gram mole/cc. }
$$

which assumes that all of the carbon dioxide resides inside the crystals, whose volume is $0.075 \times\left(1-E_{p}\right) c c_{\text {. }}$

The gas concentration in the pores surrounding the crystals is the same as in the free gas and is

$$
\frac{1}{22400}=4.46 \times 10^{-5} \text { gram moles } / \mathrm{cc}
$$

at $0^{\circ} \mathrm{C} 1 \mathrm{~atm}$.
Hence the equilibrium isotherm constant K is given by

$$
K=\frac{\text { Solid concentration }}{\text { Gas concentration }}=167.2 \text { at } 0^{\circ} \mathrm{C} 1 \mathrm{~atm} .
$$

The results obtained at the three temperatures studied are given in table 6.20 together with Lind adsorption isotherm data for comparison.

Another source of error is shown by the variation in the amount of carbon dioxide adsorbed by the pellet before each run as shown in table 6.19. This could be caused by fluctuations in the cryostat temperature or more likely by a progressive change in the pellet sorption capacity caused by overheating the pellet in the regeneration procedure used to desorb the pellet. If any severe overheating occurs the sieve structure changes, and in any event the initial regeneration of the sieve even at $300^{\circ} \mathrm{C}$ as used in this work causes a permanent change in structure which then determines the sorption properties of the sieve.

These properties then remain constant so long as the initial regeneration temperature is net exceeded in subsequent regenerations.

6.8 The Diffusion Model

The effect of the pore and crystal diffusivities were investigated before the diffusion model described in section 2.7 was fitted to the practical breakthrough eurves. Table 6.21 gives the values of the parameters used in the dimensionless groups and the equations defining the model.

Firstly the model was used to predict curves for a pore diffusion process by setting D_{c} to infinity; hence from equation 2.58a $P=0$. The pore diffusivity was varied from $0.02 \mathrm{~cm}^{2} /$ sec. down to $0.005 \mathrm{~cm}^{2}$, sec. and a set of breakthrough curves obtained, shown in figure 6.10. All the curves are initially straight line plots of the form predicted by equation 3.16 with a suitably chosen diffusiviry. It ean be seen that the pore diffusivity affects only the slope of each successive curve.

The effect of the erystal diffusion process was then studied by varying P from O to 200 with the pore diffusivity held of $0.015 \mathrm{~cm}^{2} / \mathrm{sec}$, and a new set of breakthrough curres obtained, shown in figure 6.11. This shows that increasing the controlling effect of the crystal diffusion process does not significantly affect the slope of the breakthrough curve, but successively displaces it so that the curve becomes more sigmoid as D_{c} decreases. However, the gaussian elimination used to solve the matrix of crystal concentrations over one time step was subject to large

TABLE 6.21

DATA FOR THE THEORETICAL DIFFUSION MODEL

PELIET LENGTH	L	$=1.03 \mathrm{cM}$.
PELLET PORRSITY	Ep	$=0.375$
MEAN CRYSTAL RADIUS	R	$=0.0001 \mathrm{CM}$.
TIME INCREMENTS	6 t	$=1$ AND 10 SECS.
END TIME FOR RUNS	TIMAX	$=10000 \mathrm{SECS}$.
NUMBER OF PELIET INCREMENTS		$=6$
NUMBER OF CRYSTAL INCREMENTS		$=6$
RELATIVE ERROR IN PORE CONCENTRATION		$=0.0001$
RELAXATION PARAMETER	BETA'	$=0.88$

PELAET LENGTH
$\mathrm{L}=1.03 \mathrm{~cm}$.
PELLET POROSITY
MEAN CRYSTAL RADIUS
$\mathrm{R}=0.0001 \mathrm{CM}$.
TIME INCREMENTS
END TIME FOR RUNS
NUMBER OF PELLET INCREMENTS
$=6$
NUMBER OF CRYSTAL INCREMENTS

BETA $^{\prime}=0.88$

TABLE 6.22

PORE AND CRYSTAL DIFFUSIVITIES OBTAINED FROM PRACTICAL WORK
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { TEMP } \\
\text { DEG. C }\end{array}
$$ $$
\begin{array}{c}\text { FITTED DP } \\
\text { CM2/SEC }\end{array}
$$ \quad \begin{array}{c}FITTED Dc

CM2/SEC\end{array}\right]\)| MEAN SQUARE |
| :---: |
| ERROR |$|$

THEORETICAL SOLUTION FOR COZ DIFFUSION IN A UNE DIMENSIONAL LINDE SA SIEVE PEl.LET

RESULTS GT 0.0 DEGREE EELSTUS
--INEINETE CRYSTG' DIFFUSTVITY
VFRIFEIE DERE GIFFUSTVITY

THEORETICAL SOLUTION FOR CO2 DIFFUSION IN A ONE DIMENSIONAL LINDE 5A SIEVE PELLET

RESULTS AT D. 0 DEGREES CELSIUS
PORE DIFFUSIVITY $=0.015$ CM2/SEC
VRRIABLE CRYSTAL DIFFUSIVITY

FIGURE 6.12
THEORETICAL SOLUTION FOR CO2 DIFFUSION In A.ONE DIMENSIUNAL LINDE 5A SIEVE PELLET
practical results at 25.0 degrees cel.sius (1) theoreticfl- results at 25.0 degrees cel. sius

WITH PORE DIFFUSIVITY $=0.0148 \mathrm{CM} 2 / \mathrm{sEC}$.
AND CRYSTAL DIFFUSIVITY $=0.883 E-11$ CM2;SEC.

THEORETICAL SOLUTION FOR COZ DIFFUSION

 IN A ONE DIMENSIONAL LINDE 5A SIEVE PELLETPRACTICRL RESULTS AT 0.0 DEGREES CELSIUS
THEGRETICAL RESULTS AT 0.0 DEGREES CELSIUS
WITH PORE DIFFUSIVITY $=0.0138 \mathrm{~cm} 2 / \mathrm{SEC}$.
AND CRYSTAL OIFFUSIVITY $=0.396 E-12 \mathrm{CM} 2 / \mathrm{SEC}$.

THEORETICAL SOLUTION FOR CO2 DIFFUSİON IN A ONE DIMENSIONAL LINDE 5A sieve pellet
prgctical resjlts at -25.0 degrees cel.sius \times
theoretical results at -25.a degrees cel.sius
WITH PORE DIFFUSIVITY $=0.0145 \mathrm{CM} 2 / \mathrm{sec}$.
and CRystal diffusivity $=0.354 \mathrm{E}-12 \mathrm{CM} 2 / \mathrm{JEC}$.

rounding errors when P was close to zero, corresponding to a large sut non infinite crystal diffusivity. This rounding error disoppeared when P was larger than about 20.

Comparing these results with the shape of the practical curves enabled initial guesses to be made for the diffusivities which would give the approximate slope and displacement required. The model was fitted to the practical resulis using the techniques described in sections 2.7 and 3.5 and the 'best fifting' diffusivities obtained. These are given in table 6.22 and the practical and theoretical curves at each temperature are compared in figures (6.12-14).

6.3.1 Definition of Pellet Diffusivities and Tortuosity

In a pore diffusion process the diffusion coefficient can be defined in several ways. A pore diffusivity D_{p} can be defined by:

$$
D_{p} \frac{\partial^{2} v}{\partial x^{2}}=E_{p} \frac{\partial v}{\partial t}+\left(1-E_{p}\right) K \frac{\partial v}{\partial t}
$$

An overall diffusivity D_{T} can be defined by:

$$
D_{T} \frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial v}{\partial w}+\left(\frac{1-E_{P}}{E_{P}}\right) K \frac{\partial v}{\partial r}
$$

and an effective dififusivity by:

$$
D_{e} \frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial v}{\partial t}
$$

From equations 6.7-9 it follows that:

$$
D_{e}=\frac{D_{P}}{E_{P}+\left(1-E_{P}\right) K}=\frac{E_{P} D_{T}}{E_{P}+\left(1-E_{P}\right) K} \quad 6.10
$$

The bulk gas diffusivity D_{g} is related to D_{T} by

$$
D_{g}=T D_{T} \quad 6.11
$$

where T is the ioriuosity of the system.

6.0.2 Practical Peilet and Crystal Diffusivities

The diffusivitios
and tortuosities based on equations 6.7-11 given in table 6.23 were calculated from the pore diffusivities in table 6.22.

Equation 3.16 which is a solution of equation 6.9 was also
fitted to the practical results to see how well they could be approximated by a pore diffusion process, and also to the theoretical eurves at $0^{\circ} \mathrm{C}$ for pore diffusion, as a cross check on the model. Tables 6.24 and 6.25 give the diffusivities obtained.

TABLE 6.23

PELLET DIFFUSIVITIES DERIVED FROM PRACTICAL RESULTS

TEMP DEG. C	Dp CM2/SEC	De CM2/SEC	DT CM2/SEC	Dg CM2/SEC	TORTUOSITY T
25	0.0148	$1.42,-4$	0.0395	0.0729	1.85
0	0.0138	$1.32,-4$	0.0368	0.0675	1.83
-25	0.0146	$1.28,-4$	0.0389	0.0617	1.39

1
TABLE 6.24

EFFECTIVE DIFFUSIVITIES USING A PORE DIFFUSION
MODEL FITTED TO PRACTICAL RESULTS

TEMP DEG. C	De (EQ 3.16) CM2/SEC	MEAN SQUARE ERROR
25	$1.38,-4$	$4.15,-5$
0	$1.2 .,-4$	$1.56,-4$
-25	$1.00,-4$	$6.33,-4$

TABLE 6.25

COMPARISON OF EFFECTIVE DIFFUSIVITIES FOR A
PORE DIFFUSION PROCESS FITTED TO FIGURE 6.10

De (MODEL) CM2/SEC	De (EQ 3.16) CM2/SEC	MEAN SQUARE ERROR
$2.38,-4$	$2.38,-4$	$5.77,-5$
$1.91,-4$	$1.91,-4$	$2.12,-6$
$1.43,-4$	$1.43,-4$	$1.29,-5$
$9.50,-5$	$9.60,-5$	$2.17,-5$
$4.80,-5$	$4.80,-5$	$4.53,-5$

The values of the practical diffusivities given in table 6.22 depend to a large extent on the value of the porosity factor used. A value of 0.375 was calculated for the pellet used in this work, whereas Dworianyn calculated a value of 0.29 based on a batch of $4 A$ pellets and Wilson ${ }^{(3)}$ used the value of 0.35 for 5 A pellets. The other ' unknown' which only affects the values of the crystal diffusivity is the mean crystal radius. This was assumed to be one micron, and electron microscope photographs of 5A pellet replicas and pure crystals showed that this was substantially true. These photographs also showed that crystal agglomeration which occurs to a large extent in the pure crystals also appears to occur in the pellets, and may invalidate the assumption that each crystal in the pellet is isolated from its neighbours.

The effective diffusivities given in.table 6.23 were calculated using practical K values rather than those inferred from the Linde data sheets. The practical values apply strictly to the pellet bed used rather than to the average value of a batch of pellets, though the differences as indicated by the practical and Linde adsorption figures at one atmosphere given in table 6.20 are not large. The toriuosity factors resulting from the pore diffusivities are reasonably constant and realistic. Dworjanyn ${ }^{(2)}$ also calculated an effective diffusivity for a long peilet bed which was a factor
of ten greater than those given here. His calculation of D_{T} is in error and reworking the results from his value of D_{e} gives $D_{T}=0.48 \mathrm{~cm}^{2} / \mathrm{sec}$. A check was made to see if the practical breakthrough eurves, which do not appear to differ much from curves for a pore diffusion process only, could be fitted using equation 6.9. Table 6.24 clearly shows that they are not adequately fitted by such a simple model because the degree of fit, measured by a sum of squares deviation, deteriorates faster as the temperature decreases than in table 6.22 which is for the two diffusivity model. This shows that intra-crystalline diffusion becomes increasingly significant at sub-ambient temperatures and should be included in a model describing the diffusion processes in a 5A sieve. However, tortuosities based on equations $6.9-11$ range from 1.9 at $25^{\circ} \mathrm{C}$ to 2.0 at $-25^{\circ} \mathrm{C}$ for the pore diffusion model which is less variation than obtained with the more sophisticated model indicating that the tortuosity is not simply geometric as assumed in equation 6.11.

Finally all the theoretical and practical breakthrough curves obtained were plotied on logarithmic probability paper but none of them gave the change in slope reported by Dworjanyn ${ }^{(2)}$ at about $90 \% \mathrm{CO}_{2}$ exchanged. He interpreted the change in slope as an indication that the diffusion mechanism in the crystals had switched from large eage-
large cage transitions to small cage-large cage transitions. If such a change of mechanism does imply a significant change of slope then this further indicates that the small cages in the 5A sieve play little or no part in the crystal diffusion process.

CHAPTER 7 - CONCLUSIONS

This work has demonstrated the possibility that adsorption isotherms, heats of adsorption and intra-crystalline diffusivities in the Linde 5A molecular sieve $/ \mathrm{CO}_{2}$ system can be predicted theoretically using only basic molecular data. In the system studied, pore diffusion is the controlling process at high temperatures, but at sub-ambient temperatures intra-crystalline diffusion becomes significant. Therefore in a mathemarical model describing the system both processes must be included. In the intra-crystalline regime it has been inferred that small cage transitions are negligible and the large cage to large cage transitions dominate the diffusion process.

The molecular potentials calculated for an idealised model of a Linde 5A molecular sieve crystal have resulted in reasonable predictions for adsorption isotherms, heats of adsorption and crystal diffusivities for a range of temperatures about ambient and for less than $4 \mathrm{wr}_{4} \% \mathrm{CO}_{2}$ adsorbed by the sieve. Comporison of the range of theoretical resulis presented here and liferature data shows that the former are significantly dependent on the values of the molecular constants used. In particular it has been necessary to assume partially ionised states for the sieve
structural ions, a carbon dioxide molecule size based on bond lengths of carbon monoxide rather than $\mathrm{P}-\mathrm{V}-\mathrm{T}$ data, and an oxygen polarisability based on measurements of oxygen in a potash felspar. Most of these factors have tended to reduce the molecular potentials and their corresponding temperature coefficients. Even so, both the molecular potentials and the temperature coefficients appear to be overestimated especially below $248^{\circ} \mathrm{K}$.

The statistical mechanical theory developed in Chapter 2 to predict adsorption isoiherms in terms of the large cage potentials is similar to the method described by Barker and Everett. ${ }^{\text {(22) }}$ The quadratic expression obtcined for the adsorption isotherm should be valid for $\mathrm{p}<\mathrm{RT} / 2 \mathrm{~B}^{1}$ but results in agreement with the Linde adsorption data at about $323^{\circ} \mathrm{K}$ only. Both the theorerical curve shape and temperature variation differ from the Linde curves when compared over a fairly wide range of temperature and pressure, though fair local agreement has been obtained.

The theoretical heats of adsorption agree well with literature data over a wide range of temperature and are virtually independent of pressure over the range for which they are valid. This suggests that the theoretical isotherms rather than the molecular potentials are incorrectly predicted.

The theoretical crystal diffusivities failed to give close agroement with the crystal diffusiviries obtained from the practical work. This was expected because the theoretical expression is only a first order approximation and is used at sub-ambient temperatures where the inolecular potentials are least reliable. Also the theorefical expression is based on a single CO_{2} molecule in one cage of a large group of empty cages whereas the practical values are for full cages containing up to seven or eight CO_{2} molecules.

The practical work has served its purpose in providing reproducible breakthrough curves for the self diffusion of CO_{2} in a sieve pellet between $25^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ at atmospheric pressure. These curves exhibited a significant temperature dependence and permitted pore and crystal diffusivities to be fitted with reasonable reliability. The radio tracing technique used to follow the transfer of labelled CO_{2} from the pellet utilising a scintillation counter with an extremely fast response, has provided basic data which gives breakthrough curves which are not subject to large cumulative errors. Unfortunately the apparatus failed to give results at $-50^{\circ} \mathrm{C}$ and below due to insufficient temperature control of the cryostat and subsequent fluctuations in the carrier CO_{2} flow rate.

The mathematical model used to describe the diffusion of carbon dioxide in the sievo pellet incorporating transfer in both pore and crystal regimes has provided a relatively simple method of fitting diffusivities to the practical breakitrough curves. The model is not subject to the usual mathematical instabilities encountered in integrating sets of partial differential equations. This enabled a free choice of finite difference parameters to be made and so carbon dioxide accumulations in the pellet could be calculated at chosen times without having to use extremely small space and time increments. Even so rounding error was encountered when the crystal diffusivity was chosen to be large, but not infinite. However, the final crystal diffusivities found to fit the practical curves were small enough to obviate these errors in the numerical techniques usad.

This work has answered most of the problems posed by Dworjanym ${ }^{(2)}$, but further difficultios have arisen. Molecular potentials can be calculated with confidence, but the temperaturo dependence of derived properties involving the use of the theoretical isotherm are net adequately described by the theory used here. Even with the advent of yet another generation of computers the calculation of properties based on three or more molecules is still lengthy so that predictions cannot be made for large amounts of CO_{2} in the crystal. Although theoretical crystal diffusivities
have been obtained, the theory needs to be extended to enable a second order approximation to be made and this is by no means simple. It would be of interest to measure practical breakthrough curves for single spherical pellets of differing sizes now commercially available, and this would also provide a more realistic approach to conditions pertaining in industrial applications of sieves. Any apparatus used to do this would need a more sophisticated temperature and CO_{2} flow control than used here. It would benefit from some form of automatic data collection, though it appears that little improvement is necessary in the scintillation counting methods used. The apparatus and techniques deseribed here could be used th make low temperature studies on binary mixtures using counter diffusion techniques in which the sieve is saturated with one species of labelled gas and exchanged with another unlabelled species. It could be expected that simple combination rules would then emerge for the prediction of binary diffusion coefficien's from the self diffusion coefficients of the constituents.

APPENDIX A - MOLECULAR DATA AND SIEVE POTIENTIALS

The first five tables contain the polarisability, susceptibility and equilibrium radius for sodium, calcium, oxygen, aluminium, silicon and carbon, dioxide obtained both from screening constants ${ }^{(10)}$ and the literature. The final entries in these tables are the values used in table A6 which gives the potential constants used in equation 2. 10 for the various combinations of the molecular data used in runs 60-67. Table A7 gives the potential constants used in equation 2.15. A detailed breakdown of potential results obtained from runs 61 and 63 are given in tables A8 and A9 at $298^{\circ} \mathrm{K}$. Results at other temperatures used in runs $71-94$ can be obtained by scaling PHI- Q to allow for its temperature variation. Table AlO gives the values of the summation SIGMAI $=$ $\sum \exp (-\varnothing / \mathrm{kT})$ in the small cages.

TABLE A1

MOLECULAR DATA FOR SODIUM
\%

POLARISABILITY $\alpha \times 1.0 .-25 \mathrm{CM} 3$	SUSCEPTIBILITY $-\chi \times 1.0,-30 \mathrm{CM} 3$	EQUILIBRIUM RADIUS reX1.0, -8 cm
$9.25(\mathrm{Na})$	$7.9(\mathrm{Na})$	$0.77(\mathrm{Na})$
2.16 (Na+)	$3.6(\mathrm{Na}+)$	$0.70(\mathrm{Na}+)$
$1.8(24)$	$6.95(2)$,	$0.98(21)$
$1.9(16)$	$7.0(16)$	$0.95(25)$

TABLE A2

MOLECULAR DATA FOR CALCIUM

POLARISABILITY $\alpha \times 1.0,-25 \mathrm{CM} 3$	SUSCEPTIBILITY $-\chi \times 1.0,-30 \mathrm{CM} 3$	EQUILIBRIUM RADIUS reX1.0, -8 CM
1.47 (Ca)	92.6 (Ca)	2.54 (Ca)
14.3 (Ca2+)	18.5 (Ca2+)	0.55 (Ca2+)
4.92 (2)		
4.7 (24)	$22.1(24)$	$0.99(24,2 @)$

TABLE A3

MOLECULAR DATA FOR OXYGEN

POLARISABILITY $\alpha \times 1.0,-25 \mathrm{CM} 3$	SUSCEPTIBILITY $-X \times 1.0,-30 \mathrm{CM} 3$	EQUILIBRIUM RADIUS roX1.0, -8 cM
$8.3(0)$	$11.6(0)$	$0.47(0)$
$16.5(02-)$	$16.2(02-)$	$0.55(02-)$
$38.9(2,16)$	$20.9(2,15$,	$1.4(2,24$,
$16.5(16)$	$16,24)$	$25)$

MOLECULAR DATA FOR ALUMINIUM AND SILICON

POLARISABILITY $\alpha \times 1.0,-25$ CM3		SUSCEPTIBILITY $-X \times 1.0,-30$ СМ3		EQUILIBRIUM RADIUS rex1. $0,-8 \mathrm{CM}$	
210 (A1) $0.77(A 13+)$	$\begin{array}{ll}140 & (S i) \\ 0.51 & (S i 4+)\end{array}$	$\begin{aligned} 44.5 & (\text { Al) } \\ 4.1 & \text { (A13+) }\end{aligned}$	$41.5(\mathrm{Si})$ $3.3 \mathrm{Si} 4+)$	1.36 0.24 (A1)	$\begin{aligned} & 1.15(\mathrm{Si}) \\ & 0.22(\mathrm{SiA}) \end{aligned}$
HYPOTHETICAL AS $3.5+$		HYPOTHETICAL AS $3.5+$		HYPOTHETICAL AS $3.5+$	
0.66		3.76		0.48	

TABLE A5

MOLECULAR DATA FOR CARBON DIOXIDE

POLARISABILITY $\alpha \times 1.0,-25 \mathrm{CM} 3$	SUSCEPTIBILITY $-X \times 1.0,-30 \text { см3 }$	EQUILIBRIUM RADIUS rex $1,0,-8 \mathrm{~cm}$
26.3 (16)	34.5 (2)	2.26 (2)
4.1 TO AXIS (16)		2.56 TO AXIS (76)
19.5 TO AXIS (16)		1.1 TO AXIS (16)
26.5 AVERAGE (J6)	30.9 (16)	1.65 KINETIC (16)
ROTATING QUADRUPGLE MOMENT $\mathrm{Qb}=4.1,-26$ esu. (26)		

TABLE A6

POTENTIAL CONSTANTS AT 298 DEG. K

TERM	UNITS	$\begin{aligned} & \mathrm{CO} 2 \\ & (\mathrm{a}) \end{aligned}$	$0-1 / 4$ (b)		AS 3.5+ (b)	$\begin{array}{r} 3 / 4 \mathrm{Ca} \\ 1.5+(\mathrm{b}) \end{array}$	$\begin{gathered} \mathrm{NaCa} \\ 1.5+(b) \end{gathered}$
POLARISABILITY α	$\begin{aligned} & 1.0,-25 \\ & \text { CM3 } \end{aligned}$	26.5	39.0	16.5	0.65	3.5	2.84
$\begin{aligned} & \text { SUSCEPTIBILITY } \\ & -\chi \end{aligned}$	$\begin{gathered} 1.0,-30 \\ \mathrm{~cm} 3 \end{gathered}$	30.9	20.9		3.76	16.6	14.5
EQUILIBRIUM dianeter Pe	$1.0,-8$	$\begin{aligned} & 5.12 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 3.96 \\ & 3.05 \end{aligned}$		$\begin{aligned} & 3.04 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 3.55 \\ & 2.64 \end{aligned}$	3.53 2.62
$B=-\frac{6 m c^{2} \alpha a \alpha b}{\alpha a / x a+\alpha b / x b}$	$\begin{aligned} & 1.0,-60 \\ & \text { ERG.CM6 } \end{aligned}$	201	186	80.0	8.3	42.6	35
B / a_{0}^{6}	$\begin{gathered} 1.0,-10 \\ \text { ERGS } \end{gathered}$	5.77,-7	5.35.-7	2.32.-7	2.38, -8	1.22.-7	1.01,-7
$p e^{6} / 2 \mathrm{~B}$	$\begin{gathered} 1.0,10 \\ \text { ERGS } \end{gathered}$	$\begin{array}{r} 4490 \\ 321 \end{array}$	$\begin{array}{r} 1036 \\ 216 \end{array}$	$\begin{array}{r} 2394 \\ 497 \end{array}$	$\begin{array}{r} 4760 \\ 562 \end{array}$	$\begin{array}{r} 2350 \\ 397 \end{array}$	$\begin{array}{r} 2760 \\ 462 \end{array}$
$C 1=\frac{e^{2} \mathrm{Ci}^{2} \alpha_{b \rho}{ }^{2}}{3 \mathrm{~B}}$			$\begin{aligned} & 0.107 \\ & 0.064 \end{aligned}$	$\begin{aligned} & 0.246 \\ & 0.1 .46 \end{aligned}$	$\begin{aligned} & 277 \\ & 136 \end{aligned}$	$\begin{gathered} 1.3 .5 \\ 7.46 \end{gathered}$	$\begin{array}{r} 16.3 \\ 9.0 \end{array}$
$\mathrm{C} 2=\frac{\theta^{2} \mathrm{Ci}^{2} \mathrm{Qb}^{2}}{20 \mathrm{KTB}}$			0.1 .58	0.363	231	24.8	15.1
PHIR2 $=1+\mathrm{C} 1+\mathrm{C} 2$.	$\begin{aligned} & 1.265 \\ & 1.222 \end{aligned}$	1.609 1.509	$\begin{aligned} & 509 \\ & 486 \end{aligned}$	$\begin{aligned} & 39 \cdot 3 \\ & 33 \cdot 3 \end{aligned}$	$\begin{aligned} & 32.4 \\ & 25.1 \end{aligned}$

TABLE AT

POTENTIAL CONSTANTS FOR THE CO2-CO2 INTERACTION

TEMP				
DEG. K	A' X1.0,-10 ERGS	B^{\prime} X1.0, -10 ERGS	C^{\prime} X1.0, -10 ERGS	X1.0,10 ERGS
573	$6.164,6$	37	799	1265
473	$6.174,6$	37	968	1530
423	$6.180,6$	37	1083	1710
373	$6.189,6$	37	1228	19.40
348	$6.194,6$	37	1316	2080
323	$6.200,6$	37	1.118	2240
298	$6.207,6$	37	1537	2430
273	$6.215,6$	37	1677	2650
248	$6.224,6$	37	1846	2918
223	$6.237,6$	37	2053	3245
198	$6.251,6$	37	2313	3655
173	$6.271,6$	37	2647	4185

WHERE:

$$
\begin{aligned}
& A^{\prime}=\frac{B^{\prime} P_{e}^{6}}{2 b_{e}^{12}}\left(1+5 C^{\prime} / 3 B^{\prime} P_{e}^{4}\right) \\
& B^{\prime}=\frac{-3 m_{c}^{2} \alpha_{a} K_{B}}{b_{0}^{6}} \\
& C^{\prime}=7 Q^{4} / 40 \mathrm{kTb} b_{e}^{10} \\
& E=10^{-10} / \mathrm{kT}
\end{aligned}
$$

TABLE A8

LARGE CAGE POTENTIALS AT 298 ABSOLUTE - RUN 61

(POTENTIALS IN UNITS OF $1.0,-10$ ERGS/CO2 MOLFCULE)

GRID	PO	INT	PHI-R	PHI -D	PHI-P	PHI - Q	PHI-TOT
0	0	0	3.783,-5	$-1.466,-3$	$-3.380,-25$	-1.606, -3	$-3.12,7,-3$
1	0	0	4.478, -5	-1.515, -3	-8.734, -8	-1.759, -3	-3.230, -3
1	1	0	5.371.-5	-1.568,-3	-5.197,-9	-1.830, 3	-3.3.t. -3
1	1	1	$6.550,-5$	-1.623.-3	-2.845, -7	$-1.013,-3$	-3.471, -3
2	0	0	6.880,-5	-1.671, - ?	-1.824, -6	-1.940, -3	-3.551,-3
2	1	0	8.483,-5	-1.734, -3	-1.392,-6	-2.038, -3	-3.688, -3
2	1	1	1.072,-4	-1.799, -3	-3.472,-67	-2.157, -3	-3.852,-3
2	2	0	1.121,-4	-1.034, -3	-2.721, -7	-2.327, -3	-4.118, -3
2	2	1	1.895,-4	-2.010, -3	-1.265, -5	-2.51., -3	-4.3.7, -3
2	2	2	3.759,-4	-2.257.-3	-4. $620,-5$	-3.091, -3	-5.091,-3
3	0	0	1.219,-4	-1.690, -3	-1.793,-5	-2.217, -3	-4.073. -3
3	1	0	1.547, - 4	-2.0.1. -3	-1.661, -5	-2.350, -3	-4.265.-3
3	1	1	2.020, -4	-2.131.-3	-2.335,-5	-2.539,-3	-4. 102, -3
3	2	0	2.755,-4	-2.315,-3	-1.029,-5	$-2.7^{8} 1,-3$	-4.834, -3
3	2	1	3.846,-4	-2.11. $1,-3$	-4.051,-5	-3.001, -3	-5.161, -3
3	2	2	8.560, -. 4	-2.736, -3	-1.434.-. 4	-4.086, -3	-6.110, -3
3	3	0	5.712,-4	-2.840, -3	-1.28, -6	-3.474,-3	-5.744, -3
3	3	1	8.507,-4	-2.965, -3	-8.410, -5	- $4.025 .-3$	-6.223, -3
3	3	2	2.249,-3	-3.373,-3	-3.817,-4	-5.937, -3	-7.442,-3
3	3	3	7.147,-3	$-4.102,-3$	-1.080, -3	$-9.060,-3$	-7.787,-3
4	0	0	2.375.-4	-2.434, -3	-8.845, -5	-2.556, -3	-4.8.11, -3
4	1	0	3.103, -4	-2.561, -3	-8.820, -5	-2.753, -3	-5.002,-3
4	1	1	1.121,-4	-2.601, -3	-1.0.46, -4	-3.012,-3	-5.395, -3
4	2	0	5.904,-4	-2.972,-3	-8.254.-5	-3.354, -3	-5.818, -3
4	2	1	8.260, -. 4	-3.115,-3	-1.452, -4	-3.827, -3	-6.262.-3
4	2	2	1.9.40, -3	-3.587,-3	-3.530,-4	-5.131,-3	$-7 \cdot 132,-3$
4	3	0	1.314, -3	$-3.778,-3$	-5.092,-5	-4.357, -3	-6.871, -3
4	3	1	1.972, -3	-3.955,-3	$-2.138,-4$	$-5.267,-3$	$-7.461,-3$
4	3	2	5.754, -3	-4.539,-3	-8.609,-4	-8.695.-3	-8.311, -3
4	3	3	2.378,-2	-5.735, -3	-2.481, -3	$-1.66,4$	-1.272, -3
4	4	0	3.219, -3	-5.243, -3	-0.300, -5	-5.680, -3	-7.797,-3
4	4	1	5.021,-3	-5.508,-3	-4.16.t, -4	-7.285.-3	-8.188, -3
4	4	2	1.721,-2	-6. $358,-3$	$-1.858,-3$	$-1.393 .-2$	$-4.939,-3$
5	0	0	5.096, -4	-3.178, -3	-2.658,-4	-2.008, -3	-5.842, -3
5	1	0	7.014, - 4	-3.393, -3	-2,688, -4	$-3.163,-3$	-6.123,-3
5	1	1	0.390,-4	-3.611, -3	-2.071,-1	$-3.503 .-3$	- $6.171,-3$
5	2	0	1.509, -3	-4.102,-3	-2.095.-4	-3.051, -3	-6.844, -3
5	2	1	1.974, -3	-4.335, -3	-3.971,-4	$-4.591,-3$	$-7.353,-3$
5	2	2	4.341,-3	-5.117, -3	-7.621,-4	-6.850, -3	-8.389,-3

TABLE A8 (CONTINUED)

LARGE CAGF POTENTIALS AT 298 ABSOLUTE - RUN 61
(POTENTIALS IN UNITS OF $1,0,-10$ ERGS/CO2 MOLECULF)

GRID POINT	PHI-R	PHI-D	PHI-P	PHI-Q	PHI-TOT
$5 \quad 30$	3.815,-3	$-5.515,-3$	-3.080, -4	-5.301, -3	-7.309, -3
5 5	5.066, -3	$-5.704,-3$	$-5.703,-4$	-6.592,-3	-7.80n, -3
$\begin{array}{lll}5 & 3 & 2\end{array}$	1.322,-2	-6.735,-3	-1.6:7, -3	-1.170.-3	-6. $601,-3$
$5 \quad 4 \quad 0$	9.056, -3	$-8.06 .4,-3$	-4.00:, -4	-7.1.10, -3	-5.61R,-3
$\begin{array}{lll}5 & 1 & 1\end{array}$	1. $128,-2$	$-8.526,-3$	-n.511, - 4	$-7.526,-3$	-4.726, -3
$5 \quad 50$	2.921,-2	$-1.283 .-2$	-8.911,-4	$-9.250,-3$	-6. $219,-3$
$6 \quad 0 \quad 0$	1.100,-3	-1.306, -3	-4.90.4, -1	-3.239,-3	$-6.845,-3$
610	1.928, -3	-1.71., -3	-5.127, -4	$-2.747,-3$	-6.0.4., -3
$\begin{array}{lll}6 & 1 & 1\end{array}$	2.510, -3	-5.123, -3	-5.880, - 4	-3.758, -3	-7.14\}, -3
620	-.172, -3	-6.132,-3	-6.67.5,-1	-1.510, -3	-6.116, -3
$6 \quad 21$	$6.062,-3$	-6.546, -3	-7.952,-4	-5.270, -3	-6, $550,-3$
$6 \quad 2 \quad 2$	1.182,-2	-8.0.11,-3	-1.320, -3	-7.752, -3	$-5.701,-3$
630	1.798,-2	-0.1 19, -3	$-6.683,-1$	-6, 251, -3	$+1.713,-3$
$\begin{array}{lll}6 & 3 & 1\end{array}$	1.868, -2	-0. $562,-3$	-1.216, -3	-7.753, -3	-1. 56, -1
632	3.334, -2	-1.126, -2	-2.6.f(1), -3	$-1.3^{88},-2$	$+5.560,-3$
700	2.816,-3	-5.905, -3	-5.060, -4	-3.5.41, -3	$-7.227 \cdot-3$
$\begin{array}{lll}7 & 1 & 0\end{array}$	5.179,-3	-6.726.-3	-6.027,-4	-3.009, -3	-6. $11^{8},-3$
71	7.536, -3	-7.5.fn, -3	-7.940, - 1	$-4 \cdot 365,-3$	-5.16, 3
$\begin{array}{lll}7 & 2 & 0\end{array}$	2.311, -2	$-0.023,-3$	-1.036, -3	-5.142, -3	$+1.091,-3$ $+6, ~ 17,-3$
$\begin{array}{lll}7 & 2 & 1\end{array}$	2.131,-2	-1.069, -2	-1.158, -3	-5, $000,-3$	+1. $517,-3$
800	5.993, -3	-7.867, -3	-5.253,-4	-3.821, -3	-6.223, -2
810	1.374,-2	-0. 111, -3	-6.017,-4	-4.282,-3	-5.83, - 1
$8 \quad 11$	2.111,-2	-1.099, -2	-7.02n, -4	$-4.80 n,-3$	$+1.112,-3$
900	1.010,-2	-0.65.5, -3	-1, 973,-4	-4.019, -3	$-3.801,-3$
$9 \quad 10$	$2.805,-2$	-1.21.7, -2	-2.7.55,-4	-4.631,-3	i $1.008,=$
1000	1.217,-2	-1.0.40, -2	-1. $+1,1,-7$	-4.1.4, -3	$-2.371,-3$
SMALL CAGT: POTENTIALS AT 208 ABSOLUTE - RUN 61					
101010	A. $63,-3$	-6,000, -3	-1.1ic, -5	-1. 7^{6}	$\because 010,-2$
1010	5. 596 f, -3	-7, $772,-3$	-5.015, -6	-1.94, -2	-2.035, ${ }^{-2}$
$1010 \quad 8$	1.467,-2	-1.587, -3	-2.182,-4	-2.42, -2	-1.912,-2
$1010 \quad 7$	3.043,-2	-1.193, -2	-2.313, -3	-2.070, -2	$-7.513,-3$
1099	1.060, -2	-8.093, -3	$-1.825,-5$	-2.202,-2	-1.952,-2
1098	-2.601,-2	-1.0.10, -2	-2.288,-4	-2,801, -2	-1.353, -2
1097	6.954,-2	$-1.638 .-2$	-2. $111 .,-3$	-3, $713,-2$	$+1.3651,-2$
999	2.031,-2	-8.780, -3	-1.188, -1	-2.599,-2	-1.458, -2
$9 \quad 98$	$6.317,-2$	$-1.13 .,-2$	-6.327,-4	-3.746, -2	+1.37.1, -2

LARGE CAGE POTENTIALS AT 298 ABSOLUTE - RUN 63
(POTENTIALS IN UNITS OF $1.0,-10$ ERGS/CO2 MOLECULE)

GRID POINT			PHI-R	PHI-D	PHI-P	PHI -Q	PHI-TOT
0	0	0	$3.585,-5$	$-6.737,-4$	$-3 \cdot 3^{80},-25$	$-1.696,-3$	$-2.331,-3$.
1	0	0	4.263, -5	$-6.06 .1,-4$	-8.73:, -8	-1.750, -3	-2, 11. $3,-3$
1	1	0	5.169,-5	-7.207,-4	-5.107,-0	-1.820, -3	-2. $100,-3$
1	1	1	$6.436,-5$	$-7 \cdot 167,-4$	$-2.846,-7$	$-1.913,-3$	-2.506, -3
2	0	0	6.790,-5	-7.680,-4	-1.82., -6	-1.0.40, -3	$-2.64,-3$
2.	1	0	$8.180,-5$	-7.974, -1	-1.320, -6	$-2.03^{8},-3$	-2.755.-3
2	1	1	1.076.-4	-8.288, -	-3.472, -6	$-2.157,-3$	-2.881,-3
2	2	0	1, 105,-.	-8.00n,-4	-2.721,-7	-2.327.-3	-3.077,-3
2	2	1	1.0n5, -	-9.286, -4	-1.265.-5	-2.513, -3	$-3.251,-3$
2	2	2	+.371,-. 9	-1.050,-3	-4.620, -5	-3.001, -3	-3.750, -3
3		0	1.0n2,-4	$-8.993 \cdot-4$	-1.793,-5	-2.217, -3	-3.026. -3
3	1	0	1.130, -1	-0.301, -4	-1. 66 (1, , -5	-2.359.-3	-3.172,-3
3	1	1	1.077,-4	-0.813,-4	-2.335.-5	-2.539, -3	$-3 \cdot 346,-3$
3	2	0	2.648.-4	-1.0f, $5,-3$	-1.029.-5	-2.78.4.-3	-3.506, -3
3	2	1	4.075,-4	$-1.117,-3$	-4.051,-5	-3.001, -3	-3.811.-3
3	2	2	1.034,-3	-1,281, -3	-1.13, $1 .-4$	$-4.086,-3$	-4.477,-3
3	3	0	5.309.-4	-1.301, -3	$-1.28,-6$	-3.474. -3	$-4.245,-3$
3	3	1	0.215,-4	-1.378, -3	-8. $110,-5$	-4.025. -3	$-4.565,-3$
3	3	2	2.887,-3	-1.602, -3	-3.817,-4	$-5.937,-3$	$-5.03+-3$
3	3	3	1.033,-2	-2.05n, -3	$-1.080,-3$	$-9.060,-3$	$-2.765,-3$
4	0	0	1.916,-4	-1.112, -3	-8.8.4.5, -5	-2.556, -3	-3.564, -3
+	1	0	2.586,-4	-1.171,-3	-8.820,-5	-2.753,-3	$-3.754 .-3$
4	1	1	3.672,-4	$-1.23 .4,-3$	-1.046.-4	-3.012,-3	$-3.983,-3$
4	2	0	5.190.-1	-1.363,-3	-8.25:, 5	$-3 \cdot 35+,-3$	$-4.280 .-3$
4	2	1	$8.106,-1$	$-1.437,-3$	-1. $452,-4$	$-3.827,-3$	-4.599.-3
4	2	2	2.268,-3	-1.6, $8_{1},-3$	-3.530,-4	-5. $131,-3$	$-5.198,-3$
4	3	0	1.123, -3	-1.735, -3	-5.092,-5	-4.357, -3	-5.020, -3
$+$	3	1	2.009,-3	-1.835, -3	-2.13 ${ }^{8},-4$	$-5.267 .-3$	-5.308, -3
4	3	2	7.3.19,-3	-2.17., -3	-8.600, -4	-8.665, -3	$-4 \cdot 351,-3$
4	4	0	2.527,-3	-2.399, -3	-0.309,-5	-5.680, -3	$-5.645,-3$
4	4	1	4.852,-3	-2.554, -3	$-1.16 .4,-4$	-7.285, -3	-5.403, -3
4	4	2	2.210,-2	-3.n92,-3	$-1.858,-3$	$-1.393,-2$	$+3.227,-3$
5	0	0	3.58. ${ }^{\text {a }}$-4	$-1.440,-3$	-2.658,-7	-2.908, -3	-4.256. -3
5	1	0	5.022,-4	-1.5.30, -3	-2.688, -4	-3.163,-3	$-4.460,-3$
5	1	1	7.121, -4	-1.6.42,-3	-2.971,-4	$-3.503,-3$	$-4.730,-3$
5	2	0	1.090, -3	$-1.865,-3$	$-2.995,-4$	-3.951, -3	$-5.025,-3$
5	2	1	1.621, -3	-1. ${ }^{2} 81,-3$	$-3.971,-4$	-4.594, -3	$-5.351,-3$

PATIFA9 (COMTMUT)

large cage potentials at 298 absolute - run 63
(POTENTIALS IN UNITS OF $1.0,-10$ ERGS/CO2 MOLECULE)

GRID POINT	PHI-R	PIII -D	PHI -P	PHI - Q	PHI-TOT
$\begin{array}{lll}5 & 2 & 2\end{array}$	$4 \cdot 416,-3$	$-2.376,-3$	$-7.621,-4$	-6.850, -3	$-5.572,-3$
$\begin{array}{lll}5 & 3 & 0\end{array}$	2.687,-3	-2.506, -3	$-3.080,-4$	$-5.301,-3$	$-5.128,-3$
$\begin{array}{llll}5 & 3 & 1\end{array}$	4.294, -3	-2.659, -3	$-5.703,-4$	-6.592,-3	-5.528, -3
$5 \quad 32$	$1.534,-2$	-3.196, -3	-1.647, -3	-1.170, -2	-1.208,-3
$5 \quad 4 \quad 0$	6.643,-3	-3.6.90,-3	-4.001, -4	$-7.140,-3$	$-4.5 \cdot 16,-3$
$\begin{array}{lll}5 & 4 & 1\end{array}$	1.155,-2	-3.007, -3	$-9.51+-4$	-0.526, -3	-2.838,-3
$5 \quad 50$	1.793,-2	-5.7.50, -3	$-8.911,-4$	-9.250, -3	$+2.038,-3$
6 - 0	7..416, 4	-1.033,-3	-4.004,-4	-3.239,-3	-4.921, -3
610	1.137,-3	-2.117, -3	-5.12.7,-4	-3.547,-3	$-5.040,-3$
6111	1.609, -3	-2.303, -3	$-5.880 .-4$	-3.952, -3	-5.233, -3
$6 \quad 20$	3.1.4. -3	-2.751, -3	-6.675.-4	-4.517, -3	-4.70.4, -3
$\begin{array}{lll}6 & 2 & 1\end{array}$	3.906, -3	-2.948, -3	-7.952,-4	-5.270, -3	-5.270, -3
$\begin{array}{lll}6 & 2 & 2\end{array}$	9.006, -3	-3.660, -3	-1.320. -3	-7.052,-3	-3.934, -3
630	1.058.-2	-4.092, -3	-8.683.-4	-6.251.-3	-6.287, -4
$\begin{array}{llll}6 & 3 & 1\end{array}$	1.211.-2	-4.308, -3	-1.216, -3	-7.753.-3	-1.165.-3
632	2.887,-2	$-5.195 .-2$	-2.6.46. -3	-1.288, -2	$+7.150,-3$
700	1.633, -3	-2.628, -3	$-5.960,-4$	-3.541.-3	-5.132, -3
$7 \begin{array}{lll}7 & 1\end{array}$	2.075, -3	-2.990,-3	-6.927,-4	-3.009, -3	-4.617,-3
$\begin{array}{lll}7 & 1 & 1\end{array}$	4.35\%, -3	-3.352,-3	-7.940,-4	$-4 \cdot 355,-3$	$-4.156,-3$
$\begin{array}{lll}7 & 2 & 0\end{array}$	1.299,-2	-4. $400,-3$	$-1.036,-3$	-5.1.12,-3	+2. $117,-3$
$\begin{array}{lll}7 & 2 & 1\end{array}$	1.395,-2	$-4.746,-3$	$-1.158,-3$	-5.909, -3	+2.136, -3
8 0 0	3.371,-3	$-3 \cdot .17^{8},-3$	-5.253.-4	-3.821,-3	-4.454,-3
810	7.666,-3	-6.0.1, -3	-6.017,-4	-4.282, -3	$-1.3^{83},-3$
811	1,178,-2	$-4.8+4,-3$	-7.029.-4	-4.809. -3	+1.127,-3
900	5.617.-3	-1.252, -3	-1.973,-4	-4.049,-3	-2.881, -3
310	1.5.52,-2	$-5.34^{8,-3}$	-2.75.5.-4	-4.631, -3	$+5.2 .70,-3$
1000	$6.75 .5 .-3$	-4.576.-3	-1.4.11, 7	$-4.142,-3$	-1.963, -3
SMALL CAGE POTENTIALS AT 298 ABSOLUTE - RUN 63					
101010	5. $62.4,-3$	-3.121,-3	-1.150, -5	-1.765,-2	-1.546, -2
$\begin{array}{llll}10 & 10 & 9\end{array}$	8.351, -3	-3.714, -3	-5.015,-6	-1.947.-2	-1.484, -2
10108	1.7.45,-2	$-4.7 .45,-3$	-2.482,-4	-2.122,-2	-1.177, -2
10107°	3.718, -2	$-7.182,-3$	-2, 313,-3	-2.070, -2	-2.020, -3
1097	1.379, -2	-1.0.17, -3	-4.825,-6	-2.202, -2	-1.228, -2
1098	3.323, -2	-5.214, -3	-2.288, - 4	-2.891,-2	-1.12. ${ }^{\text {d, }}$ -
1097	7.371.-2	-7.070, -3	$-2.416,-3$	-3.713.-2	+2.616, -2
$9 \quad 9 \quad 9$	2.770,-2	$-4.414,-3$	$-1.1^{89},-4$	-2.599.-2	$-2.8+5,-3$

$\begin{gathered} \text { TEMP } \\ \text { (DEG. K) } \end{gathered}$	RUN 60	RUM 61	Run 62	RUN 63
573	4.959 .7	18111,6	7.680, 5	$8.170,4$
473	2.272,10	1.118, ${ }^{\text {a }}$	1.0.2. 8	9.810,6
423	2.776 .12	0.325,10	1.351,10	$\therefore 585.8$
373	2.67,15	S.285.13	6.343.12	$1.30 n .11$
3.48	2.675.17	3.716,15	+105,14	5.012 .12
323	7.102,19	6. 179.17	6.7.19,16	6,25.1.1:
298	1.02 +, 23	5.180,20	5.467.10	2.75.1.17
273	1.106,27	2.522.24	3.282.23	5,602,20
248	3.682.32	2.257,29	6.25:28	2.549,25 ${ }^{\text {a }}$
223	2.008.40	1.135.36	1.875.36	4.503 .31
198	5.339,51	4.503,45	1.676.47	5.027 .10
173	2.069,68	0. ${ }^{86,59}$	2.118,63	$\cdots \cdot 562,54$

APPENDIX B - PRACTICAL RESUTRS

This section contains the practical results obtained at $25^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ used to derive table 6.18 and subsequent results. Run start times, To, and the average background counts are included for each mun, together with the derived values of $\sqrt{T_{r}}, I C_{b}$ and $I C_{r}$.

PRACTICAL RESULTS
TRIAI, RUN (1A) AT 25 DFG. C TO $=11.6$ SECS
BACKGROUND $=1.528 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & \text { (SFCS) } \end{aligned}$	INTEGRAL count	$\sqrt{T r}$	ICb
12.0	14200		
12.6	25700	1	25681
13.0	3.400		
13.5	46100		
1!.1	60200		
14.5	70300		
15.0	83600		
17.6	99800	2	99776
18.1	158200	2.6	1.58172
10.1	168500	2.8	168.170
20.6	175200	3	175160
21.8	1780no	3.2	177967
22.2	179650	$\therefore .7$	179617
24.6	18086	3.6	180822
26.0	$18152 n$	3.8	18189
27.6	182050	4	182008
35.?	183.320	1.9	183264
45	181127	5.8	18.105^{8}
75	185717	8	185602
12.5	187325	10.6	187131
200	188008	1.1	1.88692
400	101584	10.7	190973
900	193913	20.8	17253^{8}
12.50	10.4654	35.2	10274.1
1600	19.5239	39.8	102884
2109	106076	4.4 .7	192867
2500	196653	40.0	192833
3025	197457	54.9	102 R 34
3600	1.98330	57.0	102838
1225	109310	61.9	1928613
970	200375	70	192857
5750	201608	75.7	102822
8100	20.5253	80.9	102876
10 non	20818	00.0	192887

TABLE B2.

PRACTICAL RESULTS
TRTAL RUN (2A) AT 25 DEC. C TO $=13.4$ SECS
BACKGROUND $=1.505 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FILM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	I NTEGRAL COIJNT	$\sqrt{T r}$	1 Cb
13.5	12300		
$1.1 . n$	17.500		
1.1 .4	26100	1	26078
15.1	44000		
15.5	55000		
16.0	6gonn		
16. ${ }^{\text {a }}$	82500		
17.4	101000	2	10007
20.2	159900	2.6	150870
21.2	160400	2.8	160368
22.4	17.400	3	17536
23.6	178350	3.2	$17^{8} 31.4$
25.0	1790%	3.1	179022
27.2	181.350	3.7	181300
35.7	183123	4.7	183100
A ${ }^{\text {a }}$	181287	5.7	18.4298
60.1	185033	6.8	18.40 .43
75.4	185757	7.9	1856.44
91.7	1863.4	8.8	186206
110	186973	9.8	186807
235	180760	14.9	180106
410.4	191837	10.0	101219
635	103165	2.4 .9	102200
960	19.4165	30.8	102702
1235	19.472 .4	35	102865
1610.	195362	40	192938
2031.1	106077	45	193015
2510	106865	50	193087
3035	197670	55	193102
3610	108520	60	193087
4235	109638	65	19.3264
4910	200688	70	193208
$5{ }^{6} 35$	201819	75	193368
6.410	203060	80	193413
7235	20.1331	85	$193+12$
8110	205663	90	193457
no35	20711.5	05	193517
10010	208556	100	193191

TABIE B3

PRACTTCAI, RFSULTS
PEILLET RUN (3A) AT 25 DEG. C
$T O=12.8 \mathrm{SECS}$
BACKGROUND $=1.547 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FILM } \\ & \text { TYME } \\ & \text { (SECS) } \end{aligned}$	INTEGRAL COUNT	$\sqrt{T r}$	ICr	$\begin{gathered} \text { FILM } \\ \text { TIME } \\ \text { (SECS) } \end{gathered}$	INTETRAT COUNT	$\sqrt{T r}$	ICr
13.0	9200			109.8	109886	9.9	100716
13.5	19100			231.8	208980	11.9	200620
13.8	26100	1	26079	409.8	210.461	10.9	2.18827
1.4 .0	31.400			638.4	228252	25	227270
14.6	44100			900.8	236703	30	235296
15.0	53300			1234.8	245112	35	2.43202
15.5	65.500			1608.8	25.3240	+0	250751
16.0	78200			2035	261.465	45	258317
16.8	99800	2	99774	2510	269297	50	$26541+$
18.8	157600	2.6	157571	3035	276688	59	271993
20.6	157800	2.8	167768	3610	283491	60	277006
21.8	177100	3	177066	4235	289677	67	2831.25
23.0	180100	3.2	179964	4910	295.325	70	287729
24.4	182700	3.4	182662	5635	300207	75	291490
25.8	184030	3.6	183090	6.410	30.4547	80	294731
27.2	185020	3.8	184978	7235	308.184	85	297291
28.8	185800	4	185755	8110	311880	90	299334
33.0	187560	4.5	187509	0035	314900	95	300923
35.8	188440	4.8	$188_{3} 84$	- 010	317-9n	100	302225
- 5	90908;	5.7	10 nolo	10510	302106	102.5	305937
58.8	193470	6.8	193359	11010	32376.4	105	306732
73.8	195710	7.8	195596	11010	324724	107.2	306918
92.8	19801.8	9	197937	12010	325.480	109.2	306901

TABLE B4

PRACTICAL RESULTS
PELLET RUN (4A) AT 25 DEG. C
TO $=13.5$ SECS
BACKGROUND $=1.585 \mathrm{c} / \mathrm{s}$

FILM TIME (SECS)	INTEGRAL COUNT	$\sqrt{\text { Tr }}$	ICr
14.0	16000		
14.5	26800	1	26777
15.0	37800		
15.5	50100		
16.1	64700		
16.5	76300		
17.0	89500		100472
17.5	100500	2	
20.3	160700	2.6	160668
21.3	170900	2.8	170866
22.5	177500	3	177464
23.7	181000	3.2	180962
25.1	182750	3.4	182710
26.5	183950	3.6	183008
35.5	188077	4.7	188021
46.5	190900	5.8	100826
65.5	194341	7.2	194237
74.5	195659	7.8	1957.41
91.5	197857	8.8	107712
110.5	199917	9.9	199741
235.5	209596	14.9	200228

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTEGRAI COUNT	$\sqrt{T r}$	ICr
410.5	218876	10.9	218225
635.5	227382	25	226375
010.5	235465	30	234022
1235	243246	35	241468
1610	251358	40	248805
20.40	259368	45	256134
2510	266729	50	262750
3035	273509	55	268698
3010	279839	60	274116
4235	285781	65	27.9068
4910	291061	70	283279
5635	295677	75	286746
6410	299913	80	289753
7235	303582	85	292115
8110	306880	90	293976
9035	309744	95	205424
10010	312426	100	296560
10510	316775	102.4	. 3001.17
11010	318230	10.9.9	300779
11510	319080	107.2	300845
12010	310862	109.5	300826

TABLE B5

PRACTICAL RESULTS
PELIET RUN (5A) AT 25 DEG. C
$\mathrm{TO}=12.4 \mathrm{SECS}$
BACKGROUND $=1.584 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTEGRAL COUNT	$\sqrt{\mathrm{Tr}}$	ICr
12.5	9700		
13.1	19400		
13.4	27300	1	27279
1.4.0	40300		
1.4 .5	51.400		
15.0	64100		
15.6	178500		
16.0	88800		
15.4	99300	2	99274
19.2	159.400	2.6	159370
20.2	170200	2.8	170168
21.4	177200	3	177166
22.6	180700	3.2	180664
24.0	182700	3.4	182662
25.4	18.1260	3.6	18.4220
26.8	185.320	3.8	18527^{8}
28.4	186265	4	186220
35.7	180176	4.8	189120
46.7	102100	5.8	192127
50.4	195001	6.9	194907
74.7	197.455	7.9	197437
01.1	199971	8.9	199726
110.4	202217	9.9	2020.42

FIIM TINE (SECS)	INTEGRAL COUNT	$\sqrt{\text { Tr }}$	ICr
$235 \cdot 4$	213179	14.9	212806
410.4	223207	20	222557
$635 \cdot 4$	232365	25	231359
910.4	241216	30	239774
1235	249819	35	247862
1610	258273	40	255722
2035	266518	45	263294
2510	274627	50	270651
3035	282217	55	277409
3610	289413	60	283694
4235	295816	65	289107
4960	302013	70.2	294156
5635	306783	75	207857
6410	311203	80	301050
7235	315082	85	303622
8110	318426	90	307580
9035	321.478	95	307167
10010	324174	100	308318
10510	329262	102.4	312614
11010	331100	104.9	313660
11510	331945	107.2	313713
12010	332757	109.8	313733
12610	333751	112.2	313777

TABLE BG

PRACTICAL RESULTS
TRIAL RIN (1C) AT -25 DFC. C TO - 11.3 SECS
BACKCROUND $=1.408 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FILM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTEGPAL COUNT	$\sqrt{T r}$	TCb
12.3	18600	1	18582
12.5	21800		
13.1	32500		
13.5	40000		
14.1	51200		
1.5	58200		
15.n	67000		
15.3	73800	2	73777
15.6	78700		
18.1	119700	2.5	111793
19.1	129700	2.8	129671
20.3	137100	3	1.37070
21.5	140770	3.2	110738
22.0	143050	3.7	$143^{n 16}$
2.4 .3	1.14180	3.6	11.11 .11
25.7	1.4900	3.8	1.44962
27.3	1.4 .5 .516	4	145.175
31.5	1.46 .460	4.5	1.46113
36.3	1.47071	5	147020
46.3	147841	5.9	1.17772
59.3	$14^{8} 425$	6.0	1.48336
74.3	148886	7.9	1.48775
01.3	149321	9	14918.
11 n .3	1.19735	10	149570
235.3	1.51722	15	171.370
410.3	153301	20	1.52686
635.3	1.54567	25	153615
92 n .3	1.55 .526	30.1	15.41 .47
1235.3	1562.58	35	151408
1610.3	1.56956	40	154543
2035	157653	45	1.54601
2512	158.110	50	15.46.47
3035	159187	55	154640
3620	160031	60	154608
4235	160060	65	151589
4910	162014	70	15.4688
5635	163191	75	1.54749
6410	16.4378	80	154755
7235	165647	85	15.4809
8110	166072	90	154823
9035	168360	95	154826
10010	169823	100	1.54828

PRACTICAL RFSULTS
TRTAL RUN (2C) AT -25 DEG. C $\mathrm{TO}=11.2 \mathrm{SECS}$
BACKGROUM $=1.586 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	I NTEGRAI, count	$\sqrt{T r}$	ICb
11.5	7200		
12.2	193 m	1	10281
12.5	23000		
13.0	34000		
13.5	12700		
1.1 .0	31800		
11.5	62200		
15.2	75000	2	75876
15.5	81700		
18.0	123000	2.6	122971
10.0	132100	2.8	132070
20.2	13^{8300}	3	138268
21.4	141250	3.2	1.4121)
22.8	1.4210n	3.1	1430fi
24.2	141230	3.6	1.14102
25.6	14.4910	3.8	14.850
27.2	145480	1	145.97
31.4	$14643 n$	1. 5	1.4080
36.2	1.47021	5	146069
$4^{\text {f) }} 2$	147782	5.9	147700
50.2	1.18355	6.9	148250
74.2	1.188 .49	8	1.18731
01.2	149362	9	1.49217
110.2	1.40840	10	149665
235.2	151977	1.5	1.51571
110.2	153671	20	$15.302 n$
636.2	155118	2.5	15.1100
010.2	156104	30	15.4650
1235	156861	35	15.1902
1610	157563	40	15.5000
2035	1.58279	45	1.550 .51
2510	1.59032	50	155051
. 3120	159997	55.7	15.504^{8}
3610	160788	60	153062
4235	161839	65	155122
4910	162882	70	1.53 nm
5635	161095	75	1551=
6.420	155297	80	15-112
7235	166629	85	153154
8110	167933	00	155020
9035	169352	95	152022
10010	170894	100	15.501^{8}

TABLE B8
PRACTICAL RESUITS
PELLET RUN (3C) AT - 25 DEG. C
$\mathrm{TO}=1.1 .5 \mathrm{SECS}$
BACKGROUND $=1.499 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FILM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTEGRAL COUNT	$\sqrt{\mathrm{Tr}}$	ICr
12.5	20100	1	20081
13.1	29300		
13.5	36200		
14.0	45300		
1.4 .5	53^{800}		
15.0	63100		
15.5	71000	2	71877
16.1	83700		
18.3	110600	2.6	119573
19.3	130100	2.8	130071
20.5	137000	3	137869
21.7	1.11700	3.2	$1+1657$
23.1	1 $4+1$ 150	3.4	14.4115
2.1 .5	1.45480	3.6	$1.45+4.3$
25.9	1.46290	$\bigcirc .8$	1.46251
27.5	1.46050	4	1.46000
31.7	148280	4.5	1.482 .32
36.5	$14922 n$	5	1.40165
4.5	150 n \%?	ㄹ.?	152337
$5 \cdot 5$	15198 rs	\because	1518 it
74.5	153215	8	153103
91.5	1545.55	9	15.418
110.5	155857	9.0	1.55091

$\begin{aligned} & \text { FILM } \\ & \text { TIRE } \\ & (\text { SECS }) \end{aligned}$	INTEGRAI. COUNT	$\sqrt{\mathrm{Tr}}$, ICr
235.5	162833	15	162479
410.5	170072	20	160157
635	177193	25	1765.11
910.5	18.4885	30	183.525
1235	102204	35	100485
1620	190.773	. 0.1	197043
2035	206108	45	203056
2.510	212673	50	208013
3035	218895	55	214345
3613	22.4996	60	219580
$\underline{+235}$	230642	65	224207
4923	236202	70.1	228812
5635	241038	75	232598
6.410	245672	80	236062
72.55	2.19828	85	$23^{89} 94^{8}$
8110	253535	90	241.385
0035	256922	95	242922
10010	259967	100	244967
1n510	2623.35	10\%.4	246605
11:10	268521	105	25:871
31510	27012	107.8	2.52726
12110	271930	110	252890
13220	272580	115	252779

TABIE BG

PRACTICAL RESULTS
PELIET RUN (4C) AT -25 DEG. C
TO = 10.2 SECS
BACKGROUND $=1.548 \mathrm{c} / \mathrm{s}$
..

$\begin{aligned} & \text { FIIM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	INTEGRAL COUNT	$\sqrt{T r}$	ICr
11.2	19900	1	19883
11.5	25100		
12.1	34900		
12.5	43500		
h			
13.0	52800		
13.5	63100		
14.2	74200	2	74178
1.4 .6	82100		
17.0	120100	2.6	120074
18.0	130700	2.8	130672
19.2	138750	3	138720
20.4	141000	3.2	141868
21.8	144360	3.4	144326
23.2	145540	3.6	145.504
24.6	146380	3.8	1.463 .12
26.2	147010	4	146960
20.6	147950	+.?	1.77004
35.2	149250	5	149196
47.2	150725	6	150653
59.2	152125	7	152033
74.2	153368	8	153253
91.2	154565	9	154424
11.0 .2	1.55933	10	1557 f/2

FILM TIME (SECS)	INTEGRAL COUNT	$\sqrt{\text { Tr }}$	ICr
235.2	162897	15	162533
410.2	170613	20	169978
635.2	178303	25	177320
910.2	186346	30	184937
1235	194080	35	192168
1610	201501	40	199009
2035	208623	45	205473
2510	214871	50	210984
3045	221538	55.1	216824
3610	227479	60	221891
4235	232879	65	226323
4910	238659	70	231058
5635	241500	75	233777
6410	248105	80	238992
7235	252761	85	241561
8110	255999	90	243445
0035	259353	95	245367
10010	262367	100	246872
10510	265855	102.5	249586
11110	271388	105.4	254189
11610	273200	107.7	255228
12110	274035	110	255289
13220	275743	115	255278

TABLE B1O
PRACTICAI RESULTS
PELLET RUN (5C) AT - 25 DEG. C
$\mathrm{TO}=10.8 \mathrm{SECS}$
BACKGROUND $=1.535 \mathrm{c} / \mathrm{s}$

$\begin{aligned} & \text { FILM } \\ & \text { TINE } \\ & \text { (SECS) } \end{aligned}$	INTEGRAL COUNT	$\sqrt{T r}$	ICr	$\begin{aligned} & \text { FILM } \\ & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	I NTEGRAI. COUNT	$\sqrt{T r}$	ICr
11.0	9100			109.8	1.55356	10	155187
11.6	15600			234.8	151003	15	161543
1.1 .8	10000	1	18982	400.8	168701	20	168072
12.0	22100			634.8	176192	25	175218
12.5	30100			000.8	18.3428	30	182031
13.0	40000			1235	190881	35	188986
13.6	51800			1610	107748	15	19.5277
14.0	59100			2035	204781	45	201658
1.1 .8	72200	2	72177	2510	210782	50	2060320
15.0	76800			3035	216071	55	212313
17.6	121000	2.6	121873	3610	223020	60	217.479
18.6	131500	2.8	131.471	4235	228627	65	222127
19.8	138300	3	138270	4921	23.365	70.1	226812
21.0	179800	3.2	1.41768	5635	2390.45	75	230397
22.4	141100	3.4	1.44066	$6+10$	24.3827	80	233988
23.8	1.45350	3.6	14.5313	7235.	2473.51	85	236245
25.2	1.4130	3.8	146039	8110	2515.45	90	239007
26.8	1.46780	4	146739	0035	25.4820	95	240951
31.0	1.47800	4.5	1.47752	1001.0	257603	100	242238
35.8	1.48730	5	1.48675	10510	2 (00215	102.5	2.44082
45.8	1.50080	5.7	1.50010	11110	265764	105.4	2.48110
58.8	1.51 .170	6.6	151380	11610	267584	107.7	247763
73.8	152835	7.9	152722	12110	268643	110	250054
90.8	154058	9	153910	13220	270340	115	250047

APPENDIX C - COMPUTER PROGRAMMES

Programme Notes for Sieve Potentiol Calculations - Run 63

Data Input This consists of the coordinates $A(I), B(I), C(I)$ of the twelve oxygen ions and the single calcium ion in the (X, Y, Z) quadrant of the unit cell, in units of a_{0}. GO to GI2 are the disperision constants B / a_{0}^{6}. HO to $H 12$ are the constants $\rho_{e}^{6 / 2 B}$ such that $H(I)$. $G(I)$. $G(I) . Y(I)$ generates the repulsion constants where Y O to YIL are the correction terms $1+C 1+C 2$. The temperature coefficient of the $Y(I)$ is negligible and the value at $298^{\circ} \mathrm{K}$ is used throughout. $\pi 0$ to $\pi 12$ are the clarges residing on the structural ions in units of the charge on on electron. $Z(I)$ contains the remaining constants. $Z 0$ to $Z 5$ are the gric. point. reflection factors. $Z 6$ to $Z 17$ are the quadmuple constants e $e^{2} Q_{b}^{2} / 20 \mathrm{kla}_{0}^{6}$. Z 18 to Z 29 are the conversion factors $10^{-10} \mathrm{krl}$ for the twelve temperatures Z30 to $Z 41$ used. $Z 42$ is the polaribation constant $e^{2} \alpha b / 2 a_{0}^{4}$.

Organisation Potentials are calculated for a single C_{D} molecule using a tetrahedral grid with a gridline separation $b_{0}=a_{0} / 20$. This gives a possible 284 points at which \emptyset may be calculated, but only those with $\phi_{(\mathbb{I}=173)}<0.005 \times 10^{-10}$ ergs. are considered. The three cycles J, K and I select the next grid point, starting at the centre of the large cage. The CO_{2} molecule's position is calculated from these, followed by the grid point reflection factor Z. The cycle $I=O(1) 12$ after label 17)
selects an fon from the data table and generates all the positions of ions obtainable by reflection and rotation of the data lon inside a cube, side $7 a_{0}$ centred on the grid point $(0,0,0)$. The cycles P, Q and R select in tum all these positions in the region $X \geq 0$. The separation distance squared from the gridpoint is calculated and if this distance is suitable the repulsion, dispersion, quadruple and polarisation contributions are calculated. If any of these potentials are calculated a test is made at label 29) to, see if the ion position in $X<0$, if this exists, has been considered. If not, the programme goes to label 27) and generates this ion position and calculates the relevant potentials before continuing with the calculations for the next generated ion position.

When all the date ions have been dealt with the polarisation potential is calculated from its resolved parts and the quadruple potential at various temperatures is calculated from the value at $298^{\circ} \mathrm{K}$. The total potential is stored in VO to V1I and the resulting exponential sums in $X 0$ to Xll . After obtaining the results for a grid point a decision is made as to the status of the last one or two grid points at which potentials were calculated. If $\varnothing_{173}{ }^{2} 0.005$ units at the last point only, the programme moves on to the next grid value of K, not I, and if the last two calculated were both greater then 0.005 units the programe moves to the next grid value of J, not K. This ensures that a minimum number of grid points with significantly positive
potentials are considered without missing any negative points.

Programme Output This includes the coordinates of all the grid pointe considered with a breakdown of the potential contributions and the numbers of ions involved in their calculation. Then follows the total potential, the quadruple potential, the partition exponential, and the continued sum of the partition exponential at each of the twelve . temperatures programmed. The potentials are in units of 10^{-10} ergs. per CO_{2} molecule. Finally the resolved components of the polarisation contribution are given.

Flow diagrams for this programme are given in Figures 3.8-10.

TITLE
CARBON DIOXIDE POTENTIALS IN LJNDE MOLFCULAR SIEVE 5A. ,

TITIE
PROGRAMME LT, P, Q/20384 RMAX SOIIARED $=3.2 .25 \mathrm{MK} 5$. QXYGEN AND CA NNTY.
TITIE
HIGY COZ RADIUS, LOW OXYGFN POTAMTSABILITY.
TITIE
PARTIALLY IONISED STATES. $3 / 1$ CA $1.5 \div$

Clapter o

$A \rightarrow 25$
$3 * 25$
$C \rightarrow 1 ?$
$\mathrm{r}_{\mathrm{r}} \rightarrow 12$
$\mathrm{H}>12$
$\pi \rightarrow 12$
$\mathrm{Y}-12$
7-42
$\mathrm{V} \rightarrow 3 \mathrm{a}$
$E-1.3$
$W \rightarrow 10$
$n \rightarrow 1$
$F \rightarrow 11$
$V>11$
$\mathrm{X} \rightarrow 11$.
$\mathrm{I}=\mathrm{n}(1) 12$
$\operatorname{READ}(A(I))$
$\operatorname{RFAD}(B(I))$
1 RFAD DATA IN
$\operatorname{READ}(\mathrm{C}(\mathrm{I}))$
(Compinate or lon(1)
$\operatorname{RFAD}(G(I))$
I 7 COORDINATE OF $\operatorname{ION}(\mathrm{I})$
$\operatorname{RFAD}(H(I))$
$\operatorname{RFAD}(\pi(I))$
$\operatorname{READ}(\mathrm{Y}(\mathrm{I}))$
$\operatorname{RFAD}(Z(I))$
| DISPERSION CONSTANTS
1 PHI R! CONSTANTS

REPFAT
$T=13$ (1) 42
PFAD $(Z(I)) \quad \mid$ QUADRUPOTE CONSTANTS CONTTNTED, $1 / \mathrm{kT}$ CONSTANTS
1 TRMPERATURFS, POLARJSATION CONSTANT
RFPEAT

```
>>IIITITS LARGE CAGE.
    NEWLINE 48
    CAPTTON
    CO2 POTENTIALS AND PAPTITION FUNCTIONS IN LARGE CAGF.
    NEMLINE 4
    I'=0
    J'=10
    K'=0
    M=0
    O=1 | cycte Step length
    S'0
    A18=3
    TUMP }
>>IIMTTS SNALI CAGT .
1) }1=0(1)11
    XT=O I CLEARS EXPONENTIAL SUM
    REPEAT
    NEMLINE,4
    CAPTION
    TGTAL NuMbER OF POINTS CAICUIATED IN LARGE cAGE =
    PRINT(W',?,0)
    CIECK(A18,3,0.01,9)
    NFWTINE 18
    A18=3
    JUM 10
0)NEWLISE 43
10)CAPTION
    CO2 POTENTIALS AND PAPTITTION FINCTIONS IN S:MATL CAGF.
    NEWTINE A
    I'=10
    T'=7
    L'=0
    N=0
    O=-1 | CYCLE, STEP LENGTH
    S'=1
>>SET TETRAHEDPAI, GRID CYCLES.
2) }\mp@subsup{W}{}{\prime}=
    J=T'(0)J" | START OF J GRID CYCLE
    X'=0.05.I I X COORDINATF. OF CO2 MOLECULE
    JUNP 3, s*=n
    TUMP 4, S'=1
3)工"=J
    JUMP 5
4)K'=J
5)K=K'(0)I.' | START OF K GRID CYCIE
```

```
        Y'=n.05K I Y COORNINATE OF CO2 MOMECULF
    JuRP 6, S'=n
    JUMP 7, S*=1
G)N=K
    IMMP 8
7)}M=
8)L=M(O)N I START OF L, GRID CYCIE
    7*=O.OSL I Z COORDINATE OF CO? MOLECUTEE
    W*=W'+1 I COUNTS GRTD POTNTS
    JUMP 38, W'>10n
>>CALCULATE GRID POTNT REFTECTINN FACTOR.
    .JUMP 1.5, J=0
    JUMP 11. J=K
    JUMP 1.f. K=L
    ,TUMP 13, I=O
    Z=75 1 REFTECTEON FACTOR TYDE 8 4 % VALUES
    JUMP 17
11),TUMP 12, L\not=O
    Z=Z3 I REFLECTION FACTOR TYPF. & 12 VATJES
    JUMP 17
12.)JUMP 13,K7L
    Z=7.2 I REETFCTION FACTOR TYDE 3 & VINES
    TUMP }1
13)7:=21 | REFIECTION FACTOR TYPF 5,6,7 2; VALTFSS
    JTMP 17
14)JW!p 1f,k=0
    T14P 1?
15)7=70 | RFFIFCTION FACTMP TTYPE 1 1 VAIIFE
    JIMMP 17
16)Z=Z1
    >>SFILECT NEXT ION AND RFELECT.
17)v=0
    Yこの
    F'=0
    C'=0
    A21=0
    A22=0
    W8-0
    MO=O
    W1n=0
    F1?=0
    I=O(1)1? I START OF PFTINCTION CYCLE
    UO = AT
    |1=AT+1
    U2 = AT+2
    U3 = AT+3
```

```
    U4 =-AT+1
    U5 =-AT+2
    UK=-AI+3
    M' = 0
    CHECK(AT,0,0.01,18)
    CHECK(AT,O.2.0.01,18)
    N'=6
    TMMP}2
18)N'=3
20)U7 = BI
    U8 = RI-1
    UQ = BI+1
    U1\cap= BI-2
    U11= RI+2
    U1?= RI-3
    |13= RI+3
    11.!=-BI
    U15=-BI+1
    U1К=-BI-1
    U17=-BI+2
    U18=-BI-2
    U1O=-RI+3
    V20=-BT-3
    pe = 20
    CHECK(RI,0,0.01,21)
    CHECK(R1,n.う,0.n1,22)
    O'=7
    JIMP 23
21)0' = 1.f
    JUMP }2
22)0' = 13
23)}421= C1
    U22= CI-1
    U23= CI+1
    124= CI-2
    U25=CT+2
    U2f= CI-3
    U27= CI+3
    1128=-C!
    V2O=-CT+1
    U3\cap--CI-1
    U31=-CT+2
    U32=-CT-2
    U33=-CT+3
    U2 1=-CI-3
    R' = 34
    CHECK(CT.0,0.01,2!)
    cитск(с!,n.5,o,n1,25)
```

$Q^{\prime}=21$
Tump 26
24) $Q^{\prime \prime}=28$

JTMP 25
25) $Q^{\prime}=27$
>>CAICULATE RADIUS VECTGR SOUARFED. 2(1)P=M"(1)N" | START OF P CYCIE
$A=U P-X^{*}$
W2:A
A13=AA
$A^{\prime}=A-2 I P$
W؟ - A.
$A_{1}=A^{\prime} A^{\prime}$
$Q=O^{\prime}(1) P^{\prime} \quad \mid \quad$ START OF Q CvCLE
$\mathrm{B}=\mathrm{UQ}-\mathrm{Y}^{\prime}$
$\mathrm{W}_{3}=\mathrm{B}$
$\mathrm{B1} 3=\mathrm{BB}$
$\mathrm{B}^{\circ}=\mathrm{B}-2 \cup \mathrm{Q}$
W6-n'
B1. $1=\mathrm{R}^{\prime} \mathrm{B}^{\prime}$
$R=0^{\prime}(1) R$ | START OF P CVCIF

- $\mathrm{S}=0$

C=UR-Z.'
$W_{4}=C$
$\mathrm{n}=\mathrm{CC} \div \mathrm{A} 13+\mathrm{B13}$
JUMP 31, D>12.25 \mid OMITS IF SEPARATION TOO LARGF.
$G^{\prime}=G^{\prime}+1 \quad \mid$ COUNTS pOSITIVF REFIECTION
$F^{\prime}=0$
TUMP 28
27) $5=3$

「. $=$ r-2UR
W\% ${ }^{\circ}{ }^{\circ}$

$F^{\prime}=F^{\prime}+1 \quad \mid$ CONTS SEGATIVF REFIECTITN
$F^{\prime}=2$
>>CAICITLATE 12-6 AND QUADRUPOTE CONTRIBUTION. 28) $\mathrm{E}=1 / \mathrm{D}$

IUMP 83, D>6. 25 | OMITS DISPERSION PGTENTIAL IF SEPARATION TOO J.ARGE
G=GIEEE 1 DISPERSTO: POTENTIAL
JUMP 82, D>2.25 | OMITS REPULISION POTENTIAL IF SEPARATTON TOO LARGF
y=HTGGYI
1 REPULISION POTFNTIAL
$\mathrm{V}=\mathrm{V}+\mathrm{H}$
$\mathrm{A} 21=\mathrm{A} 21+1 \quad 1$ SUMS NUMBER OF IONS CONTRIBUTING TO PHI R
82) $Y=Y 4 \cdot G$

F12 $=\pi \mathrm{I} \pi$ IFFE
1 QUADRUPOLF POTENTTAI,
F13=F13+F12
$\mathrm{A} 22=\mathrm{A} 22+1$
1 SUMS NUMBER OF IONS CONTRTBUTING TO PHT D AND PHT Q

```
    >>CALCULATE POIAARISATION CONTRIBUTJON.
    83)WO=*SQRT(E)
    W1=\piIWOF
    W8-W8+w(S+?)w1 I sun:S x compmmert
```



```
    Mn-w1n+W(S+j)W! | surs ze coniONENT
20)JUMP 30, I<? | JUQPS IF ON FTRST TWO IINES OF DATA
    JUMP 27, 1>E' | PICKS UP NEGATIVF REFLECTION IF NOT DONE
    JUMP 31
30),TUMP 31, P=0 I CHECKS FOR X COORDINATE = ZERO
    JUMP 27, 1>E* | PICKS UP NEGATI YE REFIECTION IF NOT DONE
31)REPEAT
    REPFAT | Q CYCLE
    REPEAT I P CYCIE
    REPEAT | REFIECTION CYCLE
    W=WSW8+WOWO+W1OW1n
    \Gamma=WZ.{2 | POLARTSATION POTENTIAL
    >>CAT,CUIATF FXPONFNTMATS.
        I=O(1)11
```



```
    VI=V-Y-F-F(I) | TOTAL, POTENTIAI, AT VARIOUS TEMPERATURES
    UEVI
    JUMP 32, U>O.005 1 JUMPS IF POTENTIAL SIGNIFICANTLY POSITIVE
    DI=7, (I+18)
    EI=*EXP(-VTDT) | SIMPLIF PARTITTION FUNCTION
    EI=EIZ
    XI=XI+EI | SUMS FXPONENTTAIS
    IUMP 33
32)ET=0 1 EXPONFNTIAL IS ZERO FOR POSITIVE POTENTIALS
33)REPEAT
```

 \(\Rightarrow\) PRRINT RFSULTSS.
 CAPTION
 GRID POINT =
 PRINT(J,2,0)
 PRANT(K,2,0)
 PRINT(L,2,0)
 NEWLINE
 CAPTION
 REPULSION =
 $: \quad \operatorname{print}(V, 0,3)$
CAPTION
NUMBFR OF IONS =
PRINT(A21,5,0)
NFWLINE
CAPTION
DISPERSION =
PRINT($-\mathrm{Y}, 0,3$)

```
    CAPTION
        NUMEER DF IONS =
    PRINT(A22,5,n)
    NEWLTNT:
    CAPTrON
    POLARISATTON =
    PRTNT(-F,0,3)
    CADTION
        MMMEER OF IONS =
    PRINT(F'+C',5,0)
    NEWT,T:SE
    CAPTION
        QUADRIPOTFF :
    PRINT(-F13Z12,0.?)
    CAPTION
        NUMBER OF IONS =
    PRINT(A22,5,0)
    CAPTION
T=25 C
    NEWLINE. 2
    CAPTTON
                POTENTIAI. OIMADRIPOIE FXPONFNTTAL
    CAPTION
EXPONFMTIAL SUM
    NEWLITE
    I=O(1)11
    NEWTINE
    CAPTIDN
        T =
    \because4=30%T
    PRINT(ZM",.,n)
    PRINT(VT,0,5)
    SPACE
    PRINT(-FT,n,3)
    PRINT(EI,O,३)
    SPACE
    PRINT(XY,n,ti)
    REPEAT
    NF,WLJNE 2
    CAPTION
            pOLARISATION COMPONENTS
                        X DIRECTION =
    PRINT(W8,O,9)
    NEWL,TME
    CAPTION
                                    Y DIRECTION =
PRTMT(W%,n,0)
NFWT,INE
CAPTION

CHECK (A18, \(2,0,01, \ldots 0) \mid\) ORGANISES OUTPUT SPACING
A1. \(8=2\)
TUMP 41
4ก) \(A 18=3\)
(1) NEWLINE 2
\(\operatorname{cIECK}(A 18,2,0,01,12)\)
NEWTITNE
12) \(\mathrm{U}=\mathrm{V} 19\) JuTP 3.f, U>0.005 \(\mathrm{T}=\mathrm{n}\) .TUNP 35
34)T \(=\mathrm{T}+1\)

IUNP \(36, \mathrm{~T}=1\)
JUMP 37, T=2
35) REPFAT 1 GRID 1, CYCLE
36)REPFAT 1 GRID K CYCLE
37) T=0

PEREAT 1 ORID I CYCIE
A17ニS'
JUMP 1, \(0.5>A 17 \quad \mid\) JUPS TO SMALL CAGE IF NOT DONE
38)NEWLINE 4

CAPTION
total number of points caiculated in small cage =

FND
CIOSF
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0 & 0.2720 & 0.5 & 2.32,-7 & \(23^{8} 4\) & -0.25 & 1.609 & 1 \\
\hline 0 & 0.5 & 0.2720 & 2.32,-7 & \(23^{8} 4\) & -0.25 & 1.600 & 6 \\
\hline 0.2720 & 0 & 0.5 & 2.32,-7 & \(23^{8} 4\) & -0.25 & 1.60) & 8 \\
\hline 0.2720 & 0.5 & \(\bigcirc\) & 2.32,-7 & 238.1 & -0.25 & 1.609 & 12 \\
\hline 0.5 & 0 & 0.2720 & 2.32,-7 & \(23^{8} 4\) & -0.25 & 1.fron & 24 \\
\hline 0.5 & 0.2720 & 0 & 2.32,-7 & 238 - & -0.25 & 1. Fon & \(4^{8}\) \\
\hline 0.2122 & 0.2122 & 0.5 & 2.32,-7 & 2384 & -0.25 & 1.609 & 7.030,-7 \\
\hline 0.2122 & 0.5 & \(0.212 ?\) & 2.32, \({ }^{2} 7\) & 2384 & -0.25 & 1.609 & 8.510,-7 \\
\hline 0.5 & 0.2122 & 0.2122 & 2.32,-7 & \(23^{8} 4\) & -0.25 & 1.609 & 9.520,-7 \\
\hline n. 151.8 & 0.38882 & 0.3888 & 2.32,-7 & 2384 & -0.25 & 1. 60 & 1.080, -6 \\
\hline 0.3882 & 0.1518 & 0.3882 & 2.32,-7 & 238.1 & -0.25 & 1.6009 & 1.158, -6 \\
\hline 0.3882 & 0.3882 & 0.1518 & 2.3,2,-7 & \(23^{84}\) & -0.25 & 1.600 & 1.245, -6 \\
\hline 0.3050 & 0.3050 & 0.3050 & 1.22,-7 & 2350 & 1.5 & 39.39 & 1.350, -6 \\
\hline 1.173, & & 1.623, -6 & 1.80 & & 2.035 & & 2.325, -6 \\
\hline 1265 & 15.30 & \(1710 \quad 10\) & - 2080 & 2240 & & & \\
\hline 2.430 & 2650 & 2918 . 32 & 3655 & \(+185\) & & & \\
\hline 573 & . 173 & 193 & 3 348 & 323 & & & \\
\hline 208 & 273 & \(24^{8}\) & 3198 & 1.73 & & & \\
\hline
\end{tabular}
1.511,-5

\section*{Programme Notes for the Virial Programme - Run 74}

Data Input This consists of the number of grid points \(P^{1}\) to be processed, the reflection factors \(V O\) to \(V 5\), the coordinates \(A(I), B(I)\), \(c(I)\) of the grid points with potential \(D(I)\) in unite of \(10^{-10}\) ergs \(/ \mathrm{CO}_{2}\) molecule taken from run 63. The grid points are referred to a different origin from those in mun 63. \(A^{\prime}, B^{\prime}, C^{\prime}\) and \(D O\) are the potential constants for the \(\mathrm{CO}_{2}-\mathrm{CO}_{2}\). interaction and the temperature coefficient at \(323^{\circ} \mathrm{K}\). (See table A7).

Onganisation The cycle \(P=O(I) P^{i}\) selects a grid point as the position of the first \(\mathrm{CO}_{2}\) molecule and the corresponding reflection factor for this point is calculated and stored in \(V\). The second point is selected at \(Q=P(1) P^{\prime}\) and a multiple V6is set such that if the two molecule positions are coincident, \(\mathrm{V} 6=1 / 2\) to, prevent duplication of later inferred reflections. Otherwise V6 \(=1\). The second point coordinates are converted to integers \(J, K\) and \(L\) at label 81) and the properties of these integers are used to decide which of the positions given by labels 1) to 48) are the correct reflected and rotated positions of the second molecule within the sieve cage. When these have been selected in turn the separation between the first and second molecule positions is calculated at label 71) in units of \(b_{0}\), and the resulting \(\mathrm{CO}_{2}-\mathrm{CO}_{2}\) interaction based on this distance is stored in \(\mathrm{Gl}^{1}\), omitting coincident molecules when they occur. The contributions to the double summation SIGMA 2 are divided into three parts determined by the value
of \(G 1\). These are the contributions from \(F(I, J)>0,-I<F(I, J) \leqslant 0\) and \(F(I, J)=-1\). These contributions are stored in HO to \(H 2\) and the programme returns via the variable jump, \(\operatorname{JMMP}(S)\) to the next reflected position of the second molecule. When all these have been done the next position for the first molecule is considered.

Output This includes the contributions to the double summation in the above ranges of \(F(I, J)\) together with the number of calculated inter-. actions and inferred interactions for every first molecule considered. At the end of computation final results for all the summations considered together with the number of computed and inferred interactions is given.

A flow diagram for this programme is given in Figure 3.12.

\section*{TITLE}
C. J. WHITFORD, CHEM ENG, ICST.

\section*{TITTE}

SECOND VIRIAL COEFFICIENT IN LINDF 5A-CO2 SYSTEM.
TITLE
potentials from rin 63 at 323 negrees absolute.

CHAPTER O
\(A \rightarrow 00\)
Bm) 0
\(\mathrm{C} \rightarrow 70\)
D -90
E. 3
\(\mathrm{H}+4\)
U \(\rightarrow 9\)
\(v \rightarrow 6\)
\(\pi=2\)
\(\operatorname{READ}\left(\mathrm{P}^{\text { }}\right.\) )
\(\mathrm{P}=0\) (1) 5
READ(V(P)) | REFLECTION FACTORS
REPEAT
\(P=O(1) P^{\prime}\)
\(\operatorname{RFAD}(A(P)) \quad \mid \quad X\) COORDINATE OF CO2 MOLECULE
\(\operatorname{READ}(B(P)) \quad \mid \quad Y\) COORDINATE OF CO2 MOLECULE
\(\operatorname{READ}(\mathrm{C}(\mathrm{P}))\) | Z COORDINATE OF CO2 MOLECULE
\(\operatorname{READ}(\mathrm{D}(\mathrm{P})) \quad\) I CO2 POTENTIAL AT ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) )
REPEAT
\(\operatorname{READ}\left(A^{\circ}\right) \quad \mid\) REPILSION CONSTANT
\(\operatorname{READ}\left(B^{\prime}\right)\)
\(\operatorname{READ}\left(\mathrm{C}^{*}\right)\)
1 DISPERSION CONSTANT
READ(E(o))
1 QUADRUPOLE CONSTANT
\(\mathrm{H} 3=0\)
\(\mathrm{H}_{4}=0\)
U3=0
\(\mathrm{U}_{4}=0\)
U8=0
U9 \(=0\)
NEWLIINE
CAPTION
\(G P\), \(F(I J)=-1\) Uo \(0>F(I J)>-1\) U1 \(F(I J)>0\) U2
```

 CAPTION
 F(IJ) U012 US67 F(IJ)>0 U2 U7
 NEWLINE 4
 >>FIRST POINT CYCLE.
P=O(1)P' / START OF P CYCle
NEWLINE
X'=AP I X COORDINATE OF FIRST CO2 MOLECULE
Y'=BP I Y COORDINATE OF FIRST CO2 MOLECULE
Z'=CP I Z COORDINATE OF FIRST CO2 MOLECULE
>>DETERMINE POINT MULTIPLE FOR FIRST POINT.
JUMP 77, X'=10
JUMP 73, X'=Y`
JUMP 76, Y* =Z'
JUMP 75, Z'=10
V=V5 I REFLECTION TYPE 8 POINT MULTIPLE = 48
JUMP }7
73)JUMP 74, Z*710
V=V3 | REFLECTION TYPE 4 POINT MULTIPLE = 12
JUMP }7
74)JUMP 75, Y'ZZ"
V=V2 | REFLECTION TYPE 3 POINT MULTIPLE = 8
JUMP }7
75)V=V4 | REFLECTION TYPE 5,6,7 POINT MULTIPLE = 24
JUMP }7
76) JUMP 78, Y= =10
JUMP 75
77)V=VO I REFLECTION TYPE 1 POINT MULTIPLE = 1
JUMP 79 1 REFLECTION TYPE 2 POINT MULTIPLE = 6
>>SECOND POINT CYCLE.
79)Q=P(1)P' | START OF Q CYCLE
E2=DP-DQ
\pi=*SIGN(E2)
E3=E2\pi
JUMP 80, 0,00000001>E3 | CHECKS FOR COINCIDENCE OF MOLECULES
VO=1 I FULL VALUE FOR FIRST POINT MULTIPLE
JUMP 81
80)VG=0.5 1 HALF VALUE FOR FIRST POINT MULTIPLE
81)J=*INTPT(AQ+0.01)
K=*INTPT(BQ+0.01)
L=*INTPT(CQ+O.01)
>>SELECT REFLECTION PROCEDURE FOR SECOND POINT.
JUMP 60, J=10
JUMP 51, J=K
JUMP 61, K=L
JUMP 63, L=10

```
```

 S=L50 | REFLECTION TYPE 8 48 VALUFS
 I=1(1)48
 T)=I)
 JUMP(T)
 50)REPEAT
JUMP 72
51).JUP 55, L\not=10 | REFLECTION TYPE 4 12 VALUES
S=L52
I=1(8)25
T)=1)
JUMP(T)
52)rEPEAT
S=L53
I=4(8)28
T)=1)
JUMP(T)
53)REPEAT
S=L54
I=3.3(5)48

- T)=1)
JUMP(T)
51)REPEAT
JUMP 72
55)JUNP 58, KFL I REFLECTION TYPE 3 8 VALUES
s=L,56
I=1(1)4
T)=1)
JUMP(T)
5() REPEAT
S=L57
I=17(1)20
T)=T)
JUMP(T)
57)REPEAT
JUMP 72
58)S=L59 (1 REFLECTION TYPE 6 24 VALUES

```
```

 N=I(1)M
 T)=N)
 Jump(T)
 60)REPEAT
REPEAT
JUMP 72
61)JUMP 66, K=10 | REFLECTION TYPE 7 24 values
S=L62
I=1(8).41
M=I+3
N=I(1)M
T)=N)
JUMP(T)
62)REPEAT
REPEAT
JUMP 72
63)S=164
I=1(2)}3
T)=1)
JUMP (T)
64)REPEAT
S=L65
I=3.3(1)40
T)=T)
JUMP(T)
65) REPEAT
JUMP 72
66)}s=26
I=1(S)17
T)=T)
JUMP(T)
67)REPEAT
S=L,68
I=27(8)43
T)=T)
JUMP(T)
68)REPEAT
JUMP 72
69)}S=L7
JUMP 1
70) JUMP 72

```
> 3 REFLECT SECOND POINT.
1) \(X=J\)
\(\mathrm{Y}=\mathrm{K}\) \(\mathrm{Z}=\mathrm{L}\) JUMP 71
2) \(Z=20-L\)

JUMP 71
3) \(Y=20-K\)
\(\mathrm{Z}=\mathrm{L}\) JUMP 71
4) \(x=5\) \(\mathrm{Y}=20-\mathrm{K}\) \(Z=20-L\) JUMP 71
5) \(\mathrm{Y}=\mathrm{L}\)

Z二K JUMP 71
6) \(\mathrm{Y}=20-\mathrm{L}\)

JUMP 71
7) \(\mathrm{Y}=\mathrm{L}\)
\(Z=20-k\) JUMP 71
8) \(Y=20-L\)

JUMP 71
9) \(\mathrm{X}=\mathrm{K}\)
\(\mathrm{Y}=\mathrm{L}\)
\(Z=J\)
JUMP 71
10) \(Y=20-L\)

JUMP 71
11) \(\mathrm{Y}=\mathrm{L}\)
\(Z=20-J\)
JUMP 71
12) \(X=K\)
\(\mathrm{Y}=20-\mathrm{L}\)
\(Z=20-J\)
JUMP 71
13) \(Y=J\)
\(\mathrm{Z}=\mathrm{L}\)
JUMP 71
14) \(\mathrm{Z}=20-\mathrm{L}\)

JUMP 71
15) \(Y=20-J\)
\(\mathrm{Z}=\mathrm{L}\)
JUMP 71
16) \(Z=20-L\) JUMP 71
17) \(\mathrm{X}=20-\mathrm{J}\)
\(\mathrm{Y}=\mathrm{K}\)
\(Z=L\)
JUMP 71
18) \(Z=20-L\) JUMP 71
19) \(\mathrm{Y}=20-\mathrm{K}\)
\(\mathrm{Z}=\mathrm{L}\)
JUMP 71
20) \(\mathrm{x}=20-\mathrm{J}\) \(Y=20-K\) \(Z=20-L\) JUNP 71
21) \(\mathrm{Y}=\mathrm{L}\)
\(\mathrm{Z}=\mathrm{K}\)
JUMP 71
22) \(\mathrm{Y}=20-\mathrm{L}\)
JUMP 71
23) \(\mathrm{Y}=\mathrm{L}\)
\(Z=20-K\)
Jump 71
21) \(\mathrm{Y}=20-1\),
JURP 71
25) \(x=20-K\)
\(\mathrm{Y}=\mathrm{L}\)
\(\mathrm{Z}=\mathrm{J}\)
JUTP 71
2() \(Y=20-L\)
JUMP 71
27) \(\mathrm{X}=20-\mathrm{K}\)
\(Y=\mathrm{L}\)
\(\mathrm{Z}=20-\mathrm{J}\)
JUMP 71
28) \(\mathrm{x}=20-\mathrm{K}\)
\(\mathrm{Y}=20-\mathrm{L}\)
\(Z=20-J\)
JUMP 71
29) \(\mathrm{Y}=\mathrm{I}\)
\(z=L\)
JUMP 71
30) \(Z=20-L\) JUMP 71
31) \(\mathrm{Y}=20-\mathrm{J}\)
\(Z=L\)
JUTP 71
32) \(Z=20-L\)
JUMP 71
33) \(\mathrm{X}=\mathrm{L}\)
\(\mathrm{Y}=\mathrm{J}\)
\(\mathrm{Z}=\mathrm{K}\)
JUMP 71
34) \(\mathrm{Y}=20-\mathrm{J}\)
JUMP 71
35) \(\mathrm{X}=20-\mathrm{L}\)\(Y=J\)
\[
\mathrm{Z}=20-\mathrm{K}
\]
\[
\text { JUNP } 71
\]
\[
36) y=20-J
\]
\[
\text { JUMP } 71
\]
\[
\text { 37) } \mathrm{X}=\mathrm{L}
\]
\[
Y=K
\]
\[
\mathrm{Z}=\mathrm{T}
\]
\[
\text { JUMP } 71
\]
\[
3^{8)} x=20-L
\]
\[
\mathrm{Y}=\mathrm{K}
\]
\[
\mathrm{Z}=20-\mathrm{J}
\]
\[
\text { JUMP } 71
\]
\[
\text { 39) } x=L
\]
\[
Y=20-K
\]
\[
\mathrm{Z}=\mathrm{J}
\]
\[
\text { JUMP } 71
\]
\[
40) X=20-L
\]
\[
\mathrm{Z}=20-\mathrm{J}
\]
\[
\text { JUMP } 71
\]
\[
\text { 41) } X=20-L
\]
\[
\mathrm{Y}=\mathrm{J}
\]
\[
z=K
\]
\[
\text { JUMP } 71
\]
42) \(\mathrm{X}=\mathrm{L}\)
\(\mathrm{Z}=20-\mathrm{K}\)
JUMP 71
43) \(\mathrm{X}=20-\mathrm{L}\)
\(\mathrm{Y}=20-\mathrm{J}\)
\(\mathrm{Z}=\mathrm{K}\)
Jund 71
4A) \(\mathrm{X}=\mathrm{L}\)
\(Z=20-K\)
JUMP 71
4.5) \(\mathrm{X}=20-\mathrm{L}\)
\(\mathrm{Y}=\mathrm{K}\)
\(\mathrm{Z}=\mathrm{J}\)
JUMP 71
4(b) \(x=L\)
\(Z=20-J\)
JUMP 71
47) \(\mathrm{X}=20-\mathrm{L}\)
\(Y=20-K\)
\(\mathrm{Z}=\mathrm{J}\)
JUMP 71
48) \(\mathrm{x}=\mathrm{L}\)
\(Y=20-K\)
\(Z=20-J\)
```

>>CALCULATE EXPONENTIALS.
71) U'=X'-X

```

```

 W=Y'-Y | Y SFPARATION BETWEEN CO2 MOLECULES
 W' -WW
 F'=Z'-Z
 H'=F'F'+}+\mp@subsup{V}{}{\prime\prime}+\mp@subsup{W}{}{\prime
 Jump 84, 0.5>H' I OMITS IF MONECULES COINCIDENT
 F=1/H'
 D=FEE
 G'=A'DD-B'D-C'DEE | MOLECULE - MOLECULE INTERACTION
 JUMP 82, G'<0.005 | JUMPS IF POTENTIAL SIGNIFICANTLY POSITIVE
 F=*EXP(-G'EO)
 C=F-1
 E'=DPEO+DQEO I MOLECULE - ION INTERACTION
 G=*EXP(-E')
 JUMP 83, G"रO
 U2=U2+1
 \pi2=GCVV6
 [12=H2+\pi2
 U7=U7+VV6
 JUMP }8
 82)c=-1
UO=UO+1 I SUMS NUMBER OF CALCULATIONS
E'=DPEO+DQEO
G=*EXP(-E')
\piO=GCVV6
HO=HO}+\pi\textrm{O
U5= U5+VV6
JUMP 85
83) U1=U1+1
\pi1=GCVV6
H1=H1+\pi1
U6=U6+vv6
JUMP 85
84)O=P
0'=Q
85)JUMP(S) I JUMPS TO PRESET LABEL S
72)REPEAT
| Q CYCLE
>>PRINT RESULTS.
PRINT(0,2,0)
| OUTPUT CHECK FOR COINCIDENCE
SPACE
H3=H3+HO+H1+H2 I SUMS ALL CONTRIBUTIONS
H4=H4+H2 I SUMS ALL CONTRIBUTIONS FROM F(I,J)>0

```
```

U3=U3+UO+U1+U2
U4=U4+U2
u8=08+u5+u6+47
U9=U%+U7
I=0(1)2
PRINT(H(I),0,4)
print(U(I),3,0)
repeat
SPACE 2
PRINT(H3,0,4)
PRINT(UO+U1+U2,4,0)
PRINT(U5+U6+U7,5,0)
PRINT(H4,0,4)
PRINT(U2,4,0)
PRINT(U7,5,0) I NUMBER OF MOLECULES FROM F(I,J)>0 IN
last value of P done
I=O(1)2
ui=0 | clears contribution and calculation counters
HI=O I IN LAST value of P DONE
REPEAT
I=5(1)7
ui=0 | Clears molecule counters
REPEAT
REPEAT I P CYCLE
NEWLINE }
CAPTION
FINAL RESULT FOR THE DOUBLE SUMMATION FOR ALL F(IJ) is
PRINT(H3,O,9)
NEWLINE 2
CAPTION
NUMBER OF INTERACTING PAIRS OF CO2 MOLECULES =
PRINT(U8,7,0)
CAPTION/
NUMBER CALCULATED =
PRINT(U3,5,0)
NEWLINE }
CAPTION
FINAL RESULT FOR THE DOUBLE SUMMATION FOR ALL F(IJ)>O IS
PRINT(H4,0,8)
NEWLINE 2
CAPTION
Number of interacting patrs of co2 molecules =
PRINT(U9,7,0)
CAPTION
NUMBER CALCULATED =
PRINT(U.4,5,o)
END
CLOSE

```

61
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & & 6 & & 8 & 12 & & & & 48 \\
\hline 10 & 10 & 10 & -2.20201, & & 11 & 10 & 10 & -2.27583, & -3 \\
\hline 11 & 11 & 10 & -2.35675, & & 11 & 11 & 11 & -2.44694, & -3 \\
\hline 12 & 10 & 10 & -2. 49358. & & 12 & 11 & 10 & -2.5060.4. & \\
\hline 12 & 11 & 11 & -2.7134 \({ }^{\text {6, }}\) & & 12 & 12 & 10 & -2.89656 , & -3 \\
\hline 12 & 12 & 11 & -3.05847, & & 12 & 12 & 12 & -3.50930, & -3 \\
\hline 13 & 10 & 10 & -2.85313. & & 13 & 11 & 10 & -2.98853, & -3 \\
\hline 13 & 11 & 11 & -3.14868. & & 13 & 12 & 10 & -3.37967, & -3 \\
\hline 13 & 12 & 11 & -3.60073, & & 13 & 12 & 12 & -4.15908 , & -3 \\
\hline 13 & 13 & 10 & -3.07524, & & 13 & 13 & 11 & -4.25183, & \\
\hline 13 & 13 & 12 & -4.57201. & & 13 & 13 & 13 & -1.08992, & -3 \\
\hline 14 & 10 & 10 & -3.36552, & & 14 & 11 & 10 & -3.53072, & \\
\hline 14 & 11 & 11 & -3.74899, & & 14 & 12 & 10 & -4.02814, & \\
\hline 14 & 12 & 11 & -4.30127. & & 14 & 12 & 12 & -4.77543. & \\
\hline 14 & 13 & 10 & -4.6812 \({ }^{\text {, }}\) & & 1.4 & 13 & 11 & -.1.80817. & \\
\hline 14 & 13 & 12 & -3.67721, & & 14 & 1.4 & 10 & -5.20331, & \\
\hline 14 & 1.4 & 1.1 & -4.83638, & & 1.4 & 1.4 & 12 & +4.31021. & \\
\hline 15 & 10 & 10 & -4.02948. & & 15 & 11 & 10 & -4.22292, & \\
\hline 15 & 11 & 11 & -.1.45735, & & 15 & 12 & 10 & -4.71747. & \\
\hline 15 & 12 & 11 & -4.99738. & & 15 & 12 & 12 & -5.03890, & \\
\hline 15 & 13 & 10 & -5.01543, & & 15 & 13 & 11 & -5.01517. & \\
\hline 15 & 1.3 & 12 & -2.981.18. & & 1.5 & 14 & 10 & -3.09114. & \\
\hline 15 & 14 & 11 & -2.09698, & & 15 & 15 & 10 & +2.75740, & \\
\hline 16 & 10 & 10 & -4.66014, & & 16 & 11 & 10 & -4.76384 , & \\
\hline 16 & 11 & 11 & -.1.02581, & & 16 & 12 & 10 & -4.41243, & \\
\hline 16 & 12 & 11 & -4.63781, & & 16 & 12 & 12 & -3.31.792, & \\
\hline 16 & 13 & 10 & -1. \(1251+\), & & 16 & 13 & 11 & -5.62380 , & \\
\hline 17 & 10 & 10 & -4.85660, & & 17 & 11 & 10 & -4.31319, & \\
\hline 17 & 11 & 11 & -3.81590, & & 17 & 12 & 10 & +2.81680, & \\
\hline 17 & 12 & 11 & +2.59574, & & 18 & 10 & 10 & -4.15687, & \\
\hline 18 & 11 & 10 & -1.05069, & & 18 & 11 & 11 & +1.80115, & \\
\hline 19 & 10 & 10 & -2.56568, & & 20 & 10 & 10 & -1.6.1105, & \\
\hline \multicolumn{4}{|l|}{6.200, +6} & 37 & \multicolumn{2}{|l|}{1418} & & \multicolumn{2}{|l|}{2240} \\
\hline
\end{tabular}

\section*{Progranme Notes for the Diffusion Model}
Input This consists of the parameters describing the model,
finite difference increments and estimates of diffusivities, followed by
practical breakthrough curves and the accuracy parameters for the.
desired degree of fit between the theoretical and practical curves.

Organisation The programe adjusts the pore and crystal diffusivities until the theoretical breakthrough curves generated by the algorithms in Section 2.7 best fit the practical curves. The information describing the two curves are stored in arrays \(Y 1\) and \(Y 2\) and comparison is made at the temperature specified on input.

Output This includes intermediate tabulated results for the theoretical breakthrough curves for the diffusivities currently set by the programme and a graphical plot of the final theoretical curve chosen compared with the practical curve.

Flow diagrams for this programme are given in Figures 3.13-15.

\section*{}
C**** MATN PROGRAMRT.
intrger RUNDIMENSION A(3,10), C(10), D(10), G1(10), V1(10), M1(10,10)DIMENSION X2(20n).Y2(20n), X1(25n), Y1(25n), X(2),F(2),w(10)COMMON V1, W1, TMAX, K?IAX /COMII// AS, AK, Q, PHI, BETA, ITMEY
1 /COMN2/ FRAC.PELPOR,ACCD,P /CDMN3/ TY: \(1 /\) /COMN / / PSI.A
2 /COMS5/ ITFR, FRROR,AIPLIA, GY, FQTCON /COMNG/ \(\mathrm{C}, \mathrm{D}\)\(3 / \mathrm{COMF} / \mathrm{X} 2, \mathrm{Y} 2, \mathrm{KGRAPH,XC1,YC1,X1,Y3}\),\&/COMMK/ TIME TIRAX, ALPTLTT, RADCRY, PFLDTE
C**** READ AND PRINT DATA.READ(5,1000) PEIDIF, CRYDTF, EQICON,TEMP, RIN, DTAM, ATPFLT, RADCRY,
1 PELPOR, JMAX, KMAX, ITRAX, BFTA, ALPHA, TIMT, TIMAX

2 F1O.i.F1O.?,F15. 1,F1O.,
3 316,/
AF1n.2,E15.1.
5 F1O. (F1n. ()
WRITT(h, 2000) RIN, TENT, EOICON, TFMP, NIAR, ALPEIT, PEIPOR, PELDIF,
1 RADCRY, CRYDIF,TEMP, TYM, TTMAY
200N FORHAT (12JH1 CO2 A SORPTION ..... I N ..... A
SIEVE \(10 \mathrm{NF} \quad \mathrm{D}\) TMENSTONAX. ..... 5 A
P E21, J. F T /////
\(32 . H I O A D S O P P T I D N\) TRIAL, NUMRER, T3.//
937HOGAS TEMMERATURE ..... 
fis!us ,'
 
5 DEGREES CELSTUS /G37MOPELIET DIARETER
7.7ll PFLTET LENGTY83-H PETLET POROSIT:- F12.
037I! PEITITT NTFF!STYITY127 Ho:tas orystat. RadTUS? 2 品 CDYSTAT, DTPFUSTVITY- E17.1. 11 リMo/SFRAT,
2 F\%.1,16: DFGPEFS CELSIUS
337 HOREAI, TIME INCREMENT ..... - Fi?.1. XX .5 II SFRS /
4.37 ..... - Fin.1. TY, 5 IH sECS / )
WRITF(G, ?5nO) TYAX, MPAX, ALPIIA, RTTTA, ITMAX
2500 EORMAT (3)! NIMBER OF PEILET INCPRMENTS ..... /
137H יUMOF CF RPYSTAT TNCRFTEMTS \(=18\). ..... /
 ..... /
 ..... ,
 ..... IR
```

C**** COMPUTE DIMENSTONLESS PARAMETFRS FOR OUTPUT.
X(1) = PFTDDIF
AT = JMAX
AY - KMAX
DT = TImP*X(1)/ALPELT**2
DX = 1./ AJ
DR = 1./ AK
P = PELDITFRADCRY**2 / (CRYDTF*ALPEITT**2)
X(2) = P
Q = X(2)*NT**2/(3.*(1,-PFLPOR))
PIII = 2.*X(2)/(AK**2*DT)
PSI = 2.*(PELPOR \& (1. -PFIPOR)*FOICON) / (A.I**2NT)
ACCO = (PFLPOR + (1. - PEIPOR)*EOICON)
TMAX = (TIMAX / TIME) + 0.5
C**** PRINT DIMTNSIONLFSS PARAMETERS.
WRITE(6,300N) DT,DX,DR,P,O,PHI,PSI, ACCO. R:AX
3000 FORMAT(25H1DIMENSIOMLESS PARAMETERS,/
16HODT =,E15.1.15X,6H DX =, F15.4.15X,6H DR =, E15.4.,

```

```

 3E15.4,/GHOACCO=,F15.!,/6HOIMAX=,11n////)
 C**** CALCUTATE SIMPSONS RULE COEFFICIENTS FOR THE CRYSTAL.
C**** THESE ARE STORED IN ARRAY C(K).
MAX = MMAX + +1
DO 1 K=1, MAX,2
IF(K.EQ,MAX-2) GO TO 2
BK=K
C(K) = ..*(BK/AK)**2
C(K+1) = 2.*((BK+1.)/AK)**2
1 continue
2 BK=KNMAX-1
C(FMAX-1) = 1.*(BK/AK)**2
C(MAAX) = 1.
C**** CATCULATE SIMPSONS RITE COEFFICTENTS FOR THE PORES.
C**** THESF: ARE STORED IN ARPAY D(J).
MAX=TMAX+1
DO 3 J=1,MAX,2
TF(J.EO.MAX-2) CO TO !
D(J) = +.
D(J+1) =2.
3 CONTINUE
+D(JMAX-1) = 4.
D(JMAX) = 1.

```
```

C**** VAO.f^ papaneters.
N=2
ICON-1
IPRTNT-1.
MaXIT:18
MAXFUN=500
READ(5,f0חn) F(1), E(?), FSCATE
4000 FORMAT(2F10.f),F10.0)
WPTTE(6,5000) E(1),r(2), ESCAIF
5000 FORMAT(10M F(1) -,F1ח.1,10H F(2) =.F1O.G.10H ESCALE =,
1 F1n.2)
CALL PRACG
N3N=N*(N+3)
EXTFRNAL CALCFX
CATL, VAO\&A(X,F,N,F,ESCAILE,IPRINT,IOON,MAXIT,CALCFX,W,N3N, MAXFUN)
WRITE(6, fono) X(1),X(2),F
6000 FORMAT(1OH X(1) =,F1O.6,1OH X(2) =,F1O.2.7H F =,F15.8)
CALJ, DRAWS
STOP
FND

```
    SUBROUTINE CALCFX (N, \(\mathrm{F}, \mathrm{X}\) )
    Dimerston \(\mathrm{X}(2)\)
    CALL : MAIN \((X, F)\)
    RETUPN
    END
    subroutine main(x,F)
    INTEGER RUN
    Dikensin: \(A(3,10), C(10), D(10), G 1(10), V 1(1 n), W 1(10,10)\)
    DIMENSION \(\mathrm{X} 2(200), Y 2(200), \mathrm{X} 1(250), \mathrm{Y} 1(250), \mathrm{X}(2), \mathrm{F}(2)\)
    COMNON V1, W1, TMAY, KMAX /COMN1/ AJ, AF, Q, PHI, BFTA, ITMAX
    1 /COMN2/ FRAC, PELPOR, ACCO,P/COMN3/TIM, I /COMRY/ PSI,A
    \(2 / C O M N 5 /\) ITER, FRROR,ALPHA,G1,FOTCON /COMNS/ C,D
    \(3 /\) COMN7/ X2,Y2, KGRAPH, XC1,YC1, X1, Y1, LIGRAPH
    \(4 / C O M N 8 /\) TIME TIMAX, ALPFIJT, RADCRY, PFLDDIF
        CRYDIF \(=\mathrm{X}(1) *\) PADCRY**2 \(/(\mathrm{X}(2) *\) AIPEIT \(* * 2)\)
        WRITE ( \(6,9 \mathrm{gOg}) \mathrm{X}(1), \mathrm{X}(2)\), CRYDIF

    1., fx, 8hcrymif -, E.18.8)
C**** SETS START VALUE FOR PRACTICAL RESULTS AT O CELSIUS.
    KGRAPH \(=58\)
```

C**** OUTPUT COUNTEPS.
COUNTY = 3.
COUNT2 = 15.
c**** compute dmm:sidnfss parameters.
101 IF(COUNT1.LT.2.) GO TO 1N2
I = 1n
TME = 10.*TMM
GO TO 103
102 TIME = TIME/10.
103 AT = JmAX
AK = mmAX
DT F TIME*X(1)/ALPELT**2
DX = 1./AJ
DR = 1./AK
p. = x(2)
O = P*A.T**2/(?.*(1.-PEIPOR))
: PHI = 2.*P/(AK**2*DT)
PSI = 2.*(PEIPOR+(1.-PFIPOR)*EQICO*)/(A,T***DT)
ACCO = (PELPOR+(1,-PELPOT)*FQICNN)
IMAX = (TIMAX/TIMT)+n.=
IF(COUNT1.gT.`.) co то 16
C**** SET INITTAL PFliET COMDITIONS.
DO 9 K=1, kMAX
no 9 J-1,JmAx
Y1(T,!:) = FQICON
9 CONTINIT:
DO 1.3 J=1,TMAX
G1(J) = n.
v1(J) = 1.
13 CONTINUF.
FRROR = 0.
TIM=0.
FRAC = n.
I = 0
ITER = 0
F}=0
16 if(itfr.lt.itmax) GO to 20
C**** itmax excreded - ERror message and stop.
WRITF(6,4ONO) P,I,TTER
m00 FORMAT(54M1 NUMBER OF ITERATIONS HAS EXCEEDED THE MAXIMUM ALIDWED,/
1////5X,4mP =.F10.2,10X, HHI -.I10,10X,7HITER =,16)
STOP

```
```

 *
 C**** START OF TIPE ITERATION.
2n I = I + 1
IF(I.,GT. IMAX) CC TO OG
IF(P.EG.O.) GR TO 25
CAIL COMP
G\ TO +G
2\# CALL POCOPT

```

```

 | TF(TTMF.GT. .) CO TO 50
 KDINT : COUNTI**?/TIMP & :.'
 IF('.IT. MONNT) GO TO 1G
 COUNS1 = COUNT1 + 1.
 80 T0 60
 50 KOUNT = COUNT2**2/TTMF + n.5
 IF(I.TST.KOINT) GO TO 1H
 COUNT2 = COUNT2 + =.
 6O CALL FRACT
 TIM = FIMAT(I)*TIME
 KGRAPH = KGRAPH + 1
 YZ(KGRAPH) = FRAC
 C**** SUM OF SQUARES FRROT?.
IF(KGRAPH,CT. З'I) F-F+(Y2(KGRAPH)-Y1(KGRAPH))**2
WRTTT(G,5OOO) Y2(KGRAPY), Y1(KGRAMH),F,FRAC,TTM
5000 FORMAT(GH , F1\cap.6.10X,F11.G.10X,F1S.8,10X,F1n.,F,10X,F10.2)
C**** GO TO NTXT STFP IN TTMF.
IF(I,FQ.10O.AND. KOINNT.FQ.10OO) GO TO 101
GO TO 16
96 CONTTNUE
RETURN
F.ND
C**** SUBROUTINE FOR P NOT EQUAL TO ZERO.
C**** COMPUTES ONE TIME STFP.
SUBROUTINE COMP
DIMENSION G1(10),G2(1n),V1(10),V2(10),W1(10,10),W2(10,10),A3(10),
1 B(10),V.3(10)
COMMON V1,W1,JMAX,KTAX /CONN1/ AJ, AK,Q,PHI,BETA,ITMAX
1/CONN3/ TIM,I /COMN// PSI,A /COMN?/ ITER,FRROR,ALPHA,G1,EQTCON
ITEP=0
10 ERROR = 0.

```
```

C**** COMPUTE ADSORPTION RATTS USING THF MOST RECENT VALUE OF, VI(J).
DO 56 J=1,JMAX
TF(J.EQ.1) CO TO 15
TF(J.OT.1.AND.T.JT.JMAX) कO TO 1.G
IF(.T.EQ.JMAX) CO TO 17
1.5 G2(J)=Q*(V1(J+1)-2.*V1(J)) ,
GO TO 20
16 G2(J)=Q*(V1(J-1)+V1(J+1)-2.*V1(J))
CO TO 20
17 G2(J)=2.*Q*(V1(JMAX-1)-V1(JMAX))
C**** PUT RATES INTO ARRAY B(K) USING VALUES OF W1(.J,K) AND
C**** G1(J) FROM TIF PREVIOUS TINEE STEP.
20 B(1) = 2.*(W1 (J,2)-W1 (J,1)) + PHI *W1(IT,1)
MAX = KMAX-1
DO 21 K=2,MAX
CK = K
B(K) = (CK-1.)*W1(J,K-1)/CK + (CK+1.)*W1(.I,K+1)/CK
1-2.W1 (J,K) + PHI*W1 (.J,K)
21 CONTINUE
B(KMAX) = 2.*(W1 (J,MAX)-W1(J,KMAX)) + PHI *W1(J,KMAX) + 2.*(AK+1.)*
1 (G2(J)+G1(J))/AK**2
C**** FORM THF ARRAY A(I,K) FOR TLINEQ.
S = PHI+2.
A(1,1) = 0.
A(2,1) = S
A(3,1) = -2.
MAX = KMAX-1
DO 22 K=2,MAX
A(1,K) = -FLOAT(K-1)/FLOAT(K)
A(2,K)=S
A(3,K) = -FJOAT(K+1)/FIOAT(K)
22. CONTINUE
A(1,K) = -2.
A(2,K) = S
A(3,K) = n.
CALL TLINEQ(KMAX,A,B)
C**** PUT ARRAY B(K) JNTO ARRAY W2(J,K).
DO 50 K=1, KMAX
W2(J,K)=B(K)
50 CONTINUE
C**** NFW VALUE OF V2(J).
V2(J) = B(KMAX)/FQICON
IF(VZ(J).GT.1.) Va(J)=1.

```
```

C**** STORE THE MAXIMUM DTVERGFNCE BETWEEN V2 AND V1. IN ERROR.
IF(ABS(V1(J)-V2(J)).CTT.ERROR) ERROR = ARS(V1(J)-V2(J))
C**** RELAXATION STEP GIVES THE NEW PORE CONCENTRATTON, V3(J).
V3(J) = BETA*V2(J) + (1.-BETA)*V1(J)
IF(V3(J).CT.1.) V3(T) = 1.
56 CONTINUE
C**** CHECK tIE MAXIMUM ERROR AGAINST TTE PERMITTED ERPOR ATPHA.
ITER = ITTR + 1
TF(ERROR.TT.AIPIIA) CO TO (x)
m 58 J=1, JMAX
V1(J) = V_(T)
58 CONTINIE
C**** ClEECK TTMAX NOT FXCREDFD.
IF(ITER.LT.ITMAX) GO TO 10
C**** STMRE THE APRAY W2(J,K) IN W1(T,K).
Go DO 61 K=1, KMAX
DO 61 J=1,JM.AX
W1(J,K) = W2(J.K)
IF(W1(J,K).GT.EQICON) W1(.T,K)= EQICON
61 CONTINUE
C**** STORF: THF ARRAY G2(J) IN G1(J) AND V3(J) IN V1(J).
DO 70 J=1,IMAX
G1(J) = G2(J)
V1(J) = Y3(J)
70 CONTINUE
9 9 ~ R E T U R N
END
C**** SUBROUTINE FOR P EQUAI TO ZERO.
C**** COMPUTES ONE TIME STEP.
SUBROUTINE POCOMP
DIMENSION V1(10),A(3,10),B(10),W1(10,10)
COMMON V1,W1,JMAX,KMAX /COMN3/ TTM,T /COMN.// PST,A
C**** CONPUTE THE ARRAY B(J) FOR TLINEQ USING Vi(J).
IF(I.EQ.1) GO TO 15
B(1) = (PSI-2.)*V1(1)+V1(2)
MAX = NAX-1
DO 10 J=2,MAX
B(J) = V1(J-1)+(PSI-2.)*V1(T)+V1(T+1)
10 CONTINUE

```
```

 B(.JMAX) = 2.*V1(NAX) +.(PSYm2.)*V1(.JMLAX)
 GO TO 25
 15 DO 20 J=1.,JMAX
 B(J) = PST
 20 CONTINIE
 C**** FORM THT: ARRAY A(T,T) FOR TIIMTQ.
25 S = PSI+2.
A(1,1) = 0.
A(2,1)=S
A(?,1) = -1
MAX = JMAX-1
DO 22.T=2,MAX
A(1,.J) = -1.
A(2,T) = S
A(3,J) = -1.
22 CDNTINUE
A(1,JMAX)=-2.
A(2,TMAX) = S
A(?,.JNAX) = 0.
CALL TT,INEQ(.JMAX, A,B)
DO 30 J=1,JMEAX
V1(J)= R(J)
30 CONTTNUE.
RETURN
END

```
C**** SOLVES SET OF I.INEAR EQUATTONS WTTH TRTDTAGDNAL MATRTX.
    SUBROITTINE TI,TNFQ(N,A,R)
    DINENSIDN \(A(3,1 n), R(10)\)
    DOUTIE PRECTSION V1, V2
    \(A(1, I)=0\).
    \(A(3, N)=0\).
C**** ELIMINATJON.
    DO 2, \(\mathrm{I}=2, \mathrm{~N}\)
    \(V 1=A(2, T-1)\)
    \(\operatorname{IF}(\operatorname{AES}(A(1, I))\), rTT. \(A B S(A(2, T-1)))\) GO TD 1
    \(\operatorname{IF}(A(2, I-1), F Q, n.) \operatorname{CO} T O 4\)
    \(V 1=A(1, I) / V 1\)
    \(A(2, I) \neq A(2, I)-V 1 * A(3, I-1)\)
    \(B(I)=B(I) \quad-V I * B(I-1)\)
    GO TO 2
```

C**** ELIMINATION WTTH ROW INTTRCHANGE.
1 IF(A(1,I).FQ.O.) GO TO 4
V1 = V1/A(1,I)
V2 = A(3,I-1)
A(1,I-1) = A(3,I)
A(2,I-1) = A(1,n)
A(3,I-1) = A(2,1)
A(2,I) = V2-V1*A(2,T)
A(3,I) = -V1*A/3,T)
Y2 = B(I-1)
B(I-1) = B(I)
B(I) = V2-V1*B(I)
2A(1,I) = 0,
C**** BACK SUESTITMTITN.
Y1 - A(?,N)
R(N)=E(N)/V1
V1 = B(N)
B(N-1) = (B(N-1)-V1*A(3,N-1))/A(2,N-1)
DO 3 I=1,N
I = N-T+1
V1 = O.
V2 = n.
IF(J.EQ.N) GO TO 3
V1 = R(T+1)
V2 = B(J;2)
3 B(J) = (B(.T)-V1*A(3,T)-V2*A(1,J))/A(2,J)
RFTURN
Wmite(6.100n) I
10ON FORMAT(37HOSTNGIRAR MATRIX-ZERO PIVTTT IN COLUMN.I3//)
RETITRN
END

```
C**** SUBROUTTNE TO FVALUATE FRACTION DESDRBED FROM THE PELLET.
        SURROUTINE FRACT
        DIMENSION VS(10),V1(10),W1(10,10),T(10),C(10), D(10),G1(10)
        COMMON V1, W1, JMAX, KMAX /COMN2/ FRAC, PELPOR, ACCO, P
    \(2 /\) COMN5/ ITER,ERROR, ALPHA,G1,EOICON, /CONNG/ C,D
C**** INTEGRATE CRYSTAL CONCENTRATIONS USING SIMPSONS RULE.
        DO \(24 \mathrm{~J}=1\), JMAX
        DO \(23 \mathrm{~K}=1, \mathrm{KMAX}\)
        IF(R.EQ.O.) CO TO 22
        \(T(K)=W 1(J, K)\)
        CO TO 23
        \(22 T(K)=V 1(J) * E Q I C O N\)
        23 CONTINUE
        SISUM \(=0\).
        CALI, SIMPS (KMAX,C,T,SISUM)
        SIMSUM \(=\) SISUM*3.*(1.-PELPOR)
```

C**** VALUE FOR PORE ACCUMULATION.
VS(J) = V1(J)*PEIPOR + SIMSUM
24 CONTINTE
C**** INTEGRATE PORT: ACCUMUT,ATION USING SIMPSONS RULE.
SISTM = 0.
CALL SIMPS(JMAX,D,VS,SISUM)
C**** CALCULATE FRACTION DESORBED FROM THE PELLET.
FRAC = 1.-SISUM/ACCO
RETURN
END

```
```

C**** SUBROUTINE TO INTEGRATE USING SIMPSONS RULF.
SUBROUTINE SIMPS(M,A,B,SISUM)
DIMENSION A(M),B(M)
DO }10\textrm{I}=1,\textrm{M
SUM = A(I)*B(I)/(3.*FLOAT(M))
SISUM = SISUM+SUM
10 CONTINUE
RETURN
END

```
C**** SUBRDUTINE TO CALCULATE PRACTICAS FRAC VAI,UES.
    SUBROUTINE PRACG
    DTMENSION X2(200), Y2(200), X1(250),Y1(25n), Y3(200)
    COMTON /COMN7/ X2,Y2,KGRAPH,XC1,YC1,X1,Y1,LGRAPH
    \(\operatorname{PEAD}(5,1000)(X 1(1), \mathrm{r}=1,29)\)
1000 FORMAT(12F6.1)
    DO \(10 \mathrm{I}=1,29\)
    DO \(10 \mathrm{~J}-1,50,20\)
    LGPAPH \(=T+J+28\)
    X1(IGRAPY) \(=\mathrm{y} 1(\mathrm{~J})\)
    10 COTTNUE

תOOO TORHAT (9F8.0)
        LORADH \(=29\)
        DO \(20 \mathrm{~J}=60,180,60\)
        KSET \(=J-60\)
        DO \(20 \mathrm{~K}=1,29\)
        LGRAPH = LGRAPH +1
        KK = K+KSET
        \(\mathrm{Y} 1(\mathrm{LGRAPH})=\left(\mathrm{Y} 3(\mathrm{KK}+30)-\mathrm{Y}_{3}(\mathrm{KK})\right) /(\mathrm{Y} 3(\mathrm{KSET}+60)-\mathrm{Y} 3(\mathrm{KSET}+30))\)
        20 CONTINUE

WRITE (6.300n)
```

3000 FORMAT(12H1 PRACTICAL RESULTS. FIRST SET IS DUMMY. ///)
DO 30 I=1,116
WRITE(r),1000) X1(I),Y1(I),I
4OOO FORMAT(21H SQUARE ROOT TIMF =.F1O.1.6X,6HFRAC =.F1O.6,I1O)
30 CONTINUE
RETURN
END

```
C**** CALLS PLOTTING ROUTINES.
        SUbroutine draws
        DIMENSION X2(200), Y2(200), X1(250), Y1 (250), Y3(300)
        COMMON /COMAT/ X2,Y2,KGRARH,XC1,YC1,X1,Y1, IGRAPH
        IDRAW=2
        CAIL START
        CAIL, PIOT \((0, \cap, 18, n,-3)\)
    \(64 \operatorname{TF}(M O D(I D R A H, ?) . F Q, O)\) CO TO 65
        \(\mathrm{XC} 1=-2\).
        \(Y C 1=11\).
        GO TO 66
    \(65 \times c 1=6\).
        YC1 \(=-15\).
    66 IDRAW \(=\) TDRAW \(\div 1\)
        CALL AXFS
        IF (IDRAW. TT, 5) CO TO 64
        CAILL ENPICOT (15.)
        RETURN
        END
C**** DRAWS AXES, LABELS AND PIDTS GRAPHS.
    SURROUTTNE AXFS
    DIRENSION \(\mathrm{X}(200), \mathrm{Y}(200), \mathrm{X} 1(250), \mathrm{Y} 1(250), \mathrm{X} 2(20 n), Y 2(200)\)
    COMRON / COMCT// X2,Y2,KGRAPH,XC1,YC1,X1,Y1,ICRAPH
C**** NEW PAGE ORIGIN.
    CALL PIOT (XC1, YC1, -3)
C**** RESET PIOT CONNTER FOR THEOPFTTICAL, RESUITS.
    KTOT \(=\) KGRAPH
    \(\mathrm{KCRAPH}=5^{8}\)
    KALCO: \(=1\)
    1 KAJCO: = KALCOM +1
    DO \(2 \mathrm{I}=1.29\)
    KGRADH \(=\mathrm{KGRAPH}+1\)
    \(\mathrm{X}(\mathrm{I})=\mathrm{XI}\) (KGRAPH)
    \(Y(I)=Y 2(K G P A P I)\)
    2 continte
        IF (KALCOM.NE.2) GO TO 3
```

C**** AXES A:T! IANFTS.
CALI, AXIS(?,n,?.n.1%, `.n,n,n,n.n,2n.n) CATAL SYMOOL(`.?,1.%,n.12.,214 SQRT TIBTE (SECS 1/2),0.0.21)

```


```

 1ON,0.0.38)
    ```

```

 120)
 CAIN, SYMBOL(3.71,n,ON,n.2O,12YISTFVF PFLLET, n.n,12)
    ```

```

 1TSTUS,N.0,12)
    ```

```

 1CEI.STI'S,n.n,!.;)
 CATX SY:TOT,O.A.2.75,r.1r,11MWITH PORF DIFFUSIVITY = 0.013R CM2/
 1SFC., \cap, O,11)
    ```

```

 1M?/SFC.,n,(n,1!)
 CAY,L PIOT(0.35, (.1n,?)
 CATI, PTOT(7.3=, X.1n,:%)
    ```

```

C**** NEW GRAPY! OPTGT?:
CALL PIOT(n, n,2,n, ?)
C**** PTתT THEORPTTCAT. AS CONTTNUNUS LINE.
3 CALI, PLOT(Y(1)/2n.,Y1(1)*\&.,3)
DO + KK=1,2O
4 CAIT, PIOT(X(KK)/2n.,Y(KK)* |.,2.)
TF(KGRAPH. MT. KTOT) GO TO 1
KTOT = LGRAPH
C**** RESET PIGT COUNTER FOR PRACTICAL..
TGRAPH = 58
KAI,COM = 1
GKATCOM = KALCOM + 1
DO 6 T=1,2O
IGRAPH = IGPAPH + 1
X1(I) = X1(IGRAPH)
Y1(I) = Y1(IGRAPM)
6 CONTTNUF
C**** PLOT PRACTICAL AS SYMBOLS.
CAIL SYMROL{X1(1)/20.,Y1(1)* i.,0,10,2,0.n,-1)
CALL, SYMBOL(X1(6)/20.,Y1(G)* f.,0.10,n,0.\cap,-1)
DO 8 I=11,20
CALI, SYMBOI,(X1(I)/2N.,Y1(J)*.q.,n.10,2,n.o,-1)
8 CONTJNUE
IF(IGRAPH.LT. 8%) कि TO 5
RETURN
END

```

\section*{Symbols Used in Text}

Potential Theory

A Repulsion constent
\(a_{0} \quad\) Sieve characteristic dimension
\(\mathrm{B}, \mathrm{B}_{\mathrm{ab}}, \mathrm{Br}^{1} \quad\) Dispersion constant

B
\(B^{\prime}\)
Bg
\(B^{\prime} g\)
b。
\(\mathrm{C}_{\mathrm{a}}\)
C
D Polarisation constant
D' Quadruple constant
E Quadruple constant
\(\mathrm{E}, \mathrm{E}_{\mathrm{M}}, \mathrm{E}_{\mathrm{Lf}} \quad\) Total \(\mathrm{CO}_{2}-\mathrm{CO}_{2}\) potential
\(\mathrm{E}_{\mathrm{D}} \quad\) Dispersion potential
\(\mathrm{E}_{\mathrm{P}} \quad\) Polarisation potential
\(\mathrm{F}_{\mathrm{Q}} \quad\) Quadruple potential
\(E_{R} \quad\) Repulsion potential
\begin{tabular}{|c|c|}
\hline E/k & Depth of Lennard Jones potentigl well \\
\hline e & Charge on the electron \\
\hline \(F\) & Helmholtz free energy in sieve phase \\
\hline Fg & Helmholtz free energy in gas phase \\
\hline G & Transition probability per unit time \\
\hline H & Heat of adsorption per mole \\
\hline h & Planck's constant \\
\hline k & Boltzmann constant \\
\hline M & Molecular weight \\
\hline \(m\) & Mass of the electron \\
\hline N & Total number of molecules \\
\hline \(\overline{\mathrm{N}}\) & Avogadro number \\
\hline n & Number of moles of \(\mathrm{CO}_{2}\) in sieve phase per cage \\
\hline ng & Number of moles of \(\mathrm{CO}_{2}\) in gas phase \\
\hline \(p\) & Bulk pressure \\
\hline \(Q_{b}\) & Quadruple moment of \(\mathrm{CO}_{2}\) molecille \\
\hline QN & Configuration Integral for N molecules \\
\hline q & Grams of \(\omega_{2}\) per 100 grams of sieve \\
\hline R & Dimensionless separation \(=r / a_{0}\) \\
\hline R & Gas constant \(=\mathrm{k} \overline{\mathrm{N}}\) \\
\hline \(\mathrm{R}^{\prime}\) & Dimensionless separation \(=r / b_{0}\) \\
\hline \(s\) & Surface area of 08 window \\
\hline \(r, r_{a b}\) & Distance between \(\mathrm{CO}_{2}\) molecule and ion \\
\hline \(\underline{r}_{i}\) & Position vector of species i \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline T & Absolute temperature \\
\hline U & Internal energy in sieve phase \\
\hline Ug & Internal energy in gas phase \\
\hline V & Volume of sieve phase \\
\hline Vg & Volume of gas in bulk phase \\
\hline \(\mathrm{V}_{0}\) & Potential function in sieve phase \\
\hline \(\mathrm{Z}_{\mathrm{N}}\) & Partition function for N molecules \\
\hline \(\alpha, \mu_{i}\) & Polarisability of species i \\
\hline \(\boldsymbol{\gamma}\) & Frequency or Quantum Mechanical constant \\
\hline \(x_{2} x_{i}\) & Susceptibility of species i \\
\hline \[
\phi_{\mathrm{ab}}^{\mathrm{DIS}}, \phi_{\mathrm{D}}
\] & Dispersion potential \\
\hline \[
\phi_{\mathrm{ab}}^{\mathrm{REP}}, \varnothing_{\mathrm{R}}
\] & Repulsion potential \\
\hline \[
\phi_{\mathrm{ab}}^{\mathrm{IND}}, \varnothing_{\mathrm{p}}
\] & Polarisation potential \\
\hline \[
\varnothing_{a b}^{E E L E C}, \varnothing_{Q}
\] & Quadruple potential \\
\hline \[
p_{e}, p_{i} p_{e}^{\prime}
\] & Equilibrium separation \\
\hline \(\varnothing\) & Total molecule ion potential \\
\hline \(\phi_{T}\) & Moleculemion plus mozeculemolecule potential \\
\hline \(\mu\) & Chemical potential in sieve phase \\
\hline \(\mu \mathrm{g}\) & Chemical potential in gas phase \\
\hline
\end{tabular}

\section*{Diffusion Model}
\begin{tabular}{ll}
\(C_{o}\) & Initial concentration \\
\(C_{t}\) & Concentration at time \(t\) \\
\(D_{c}\) & Crystal Diffusivity \\
\(D_{p}, D_{e}, D_{T}\) & Pore Diffusivities \\
\(D_{g}\) & Bulk gas diffusivity \\
\(E_{p}\) & Pellet porosity \\
\(G_{i j}\) & Concentration gradients in pellet \\
\(i\) & Finite difference subscripts - time \\
\(j\) &
\end{tabular}

K Equilibrium adsorption isotherm constant
I. Pellet length
\(\mathrm{Np} \quad\) Mass flux in pellet
\(P, Q \quad\) Dimensionless groups
Qc Crystal accumalation
R
Crystal radius
\(r\) Distence in crystal.
r1 Dimensionless distance in crystal
\(T\) Tortuosity
t Time
t' Dimensionless time
V Volume of sieve
\(V_{c} \quad\) Volume of crystal

\section*{Gas concentration in pores}

Dimensionless gas concentration in pores
Initial gas concentration in pores
Gas concentration in crystal.Dimensionless gas concentration in crystal
Initial gas concentration in crystal
Distance in pellet
Dimensionless distance in pellet

\section*{REFFERENCES}
1. CHANDRASEKHARM, K. Ph.D. Thesis, Imperial College, University of Iondon (1962).. .
2. DWORJANY, I.O. Ph。D. Thesis, Imperial College, University of Iondon (1962):.
3. WIISON, \(\mathrm{K}_{0} \mathrm{~B}\). Ph.D. Thesis, Imperial College, University of London (1966): .
4. BRECK, D.W., FVERSOLF, W.G。, MITION, R.M., REEED, T.B. and THOMAS, T.T. Jownel. of the American Chemical Society, 78, 5963 (1956).
5. REFD, T.B. and BRECK, DoW. Journal of the American Chemical Society, 78, 5972 (1956).
6. BARRER, R.M. and METER, W.M. Transactions of the Faraday Society, 54, 1074 (7958).
7. BROUSSARD, I. and SHOFMAKKiR, D.P. Journal of the American Chemical Society, 82, 1041 (1960).
8. BARRFR, R.M. Iécture, Imperial College Chemistry Department; Iondon, (1964).
9. BRECK, D.W. and SMITH, J.V. Scịentific Americạn (January 1959).
10. HIRSHFETDER, J.O., CURTISS, C.F. and BIRD, R.B. Molecular Theory of Gases and Iriquids, Wiley and Sons. N.I. (1954).
11. VINEXARD, G.H. Journal of the Physics and Chemistry of Solids, 3, 121 (1957).
12. FORSYTHE, G.E. and WASOW, W.R. Finite Difference Methods for the Solution of Partial Differential Equations, Wiley and Sons. N.Y. (1960).
13. POWETL, MoJ.D. The Computer Journal, 1. 303 (1964).
14. CARLSIOW, H.S. and JABGFiR, J.C. Conduction of Heat in Solids, Clarendon Press (1959).

\section*{REFERENCES (continued)}
15. BARRER, R•M. and GIBBONS, \(\dot{R}_{0} M_{\text {. Transactions of the Faraday }}\) Saplety, 52, 2575 (1963).
16. Ibid. 6 61, 948 (1965)。
17. KLSELEV, A.Vo and LOPASKTN, A.A. Bymposium on Molecular Sieves, Society of Chemicel. Industry (1.968).
18. IINDE COMPANY。 Adsurntion Equilibrium Data Sheets No. 22 and 24. N.Y. (1959:-
19. VERMENLEN, To Advalcers 'in Chemicai Engineering, Vol. 2, pp. 147208, Academic Eress, NoY. (1958).
20. ROSEN, J.B. Journal of Chemical Physics, 20, 387 (1952) and Industrial. Engineering Chemistry, 46, 1590. (1954).
21. SZYMANSKI, H.A., STAMIRES, D.N. and LXNCH, G.R. Journal of the Optical. Society of America, 50, (12), 1323 (1960).
22. BARKER, J.A. and EVEREETP, D.H. Transactions of the Faraday Society, 58, 1608 (1962). .
23. BARRER, R.M. and COUGHLAN, B. Symposium on Molecular Sieves, Society, of Chemical Industry (1968).
24. BARRER, R.M. and SITUART, W.I. Proceedings of the Royal Society, 249, 464, (1959).
25. PAUIDNG, \(L_{\text {. }}\) The Nature of the Chemical Bond, Cornell University Press (1960): .
26. BUCKHINGHAM, A.D. and DISCH, R.I. Proceedings of the Royal Society, 273, 275 (1963).
27. METER, WoM. Symposium on Molecular Sieves, Society of Chemical Industry (1968).```

