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1. 
Abstract 

The EXP-6 pair potential has been incorporated 

into the cell theory of Lennard-Jones and Devonshire. 

The resulting EXP-6 cell model has been used in its 

quantum form to calculate :various solid state properties 

of neon, argon, krypton and xenon. The appropriate 

values of the adjustable parameters in the pair potential 

are derived solely from zero point solid state data. 

The solution of the radial wave equation is through the 

WKB approximation, which has been adapted so that 

second derivatives of the energy levels with respect 

to volume may be evaluated. Similar calculations 

have been performed using the LJ 12:6 cell model. 

When calculated values of such properties as specific 

heat and entropy, which are considered too model 

sensitive to yield useful information, are ignored, 

the EXP-6 function exhibits some superiority in 

describing the solid state of argon, krypton and 

xenon. For solid neon, however, the LJ 12:6 function 

seems more suitable. 

The effect of including triplet dispersion inter-

actions in the static lattice energy on both the EXP-6 

parameters and the EXP-6 solid state properties has 

also been investigated. For solid neon the effect of 

including triplet interactions is small. For the 

heavier inert gas solids, however, the values of the 

potential parameters and of the thermodynamic properties 

are changed appreciably by the inclusion of triplet 

interactions. Nevertheless, the conclusion that the 

EXP-6 function shows some superiority over the LJ 12:6 

function in describing the heavier inert gas solids is 
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not altered. For all the substances considered the 

EXP-6 parameters derived by including triplet effects 

are more in line with those calculated from second 

virial data than are those derived from "pairwise 

additive" solid state calculations. For neon, argon 

and krypton the "triplet" parameters give better 

predictions of the second virial coefficient than 

do the "pairwise additive" ones. 
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Chapter 1  

An Introduction to the Intermolecular Pair Potential  

The mutual potential energy of an isolated pair of 

molecules may be expressed as a function of their 

relative position and orientation with respect to one 

another. This function is called the intermolecular 

pair potential function. 

This thesis is concerned solely with inert gas 

molecules, which are monatomic (i.e. in this case, 

the words "atom" and "molecule" may be used inter-

changeably), spherical and electronically saturated 

and, for these, the question of orientational depend-

ence does not arise, so that the potential may be 

written as a function of only the centre to centre 

distance of the pair of molecules under consideration. 

Because of their simplicity, the inert gas molecules 

provide a useful testing ground for the fundamental 

theory of molecular interacti)ns uncomplicated by 

orientation, electrostatic charge and permanent di-

pole effects. 

There are two different lines of approach for 

the formulation of the pair potential. Either, with 

a knowledge of the physical properties of a macro-

scopic system we may attempt the inversion of the 

equations of statistical mechanics to give the pair 

function, or, by the consideration of an isolated 

pair of molecules we may attempt the derivation from 

first principles. 
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Let us consider first the interaction between an 

isolated pair of molecules. The mutual potential energy 

of a pair of inert gas molecules may be separated into 

two main parts: 

(1) short range repulsive forces, which dominate 

when electron overlap is large; 

(2) long range attractive forces, which dominate 

when electron overlap approaches zero. 

The short range forces arise from a first order 

perturbation and consist of Coulombic and exchange 

terms. They are less well understood than the long 

range forces and most information as to their nature 

comes from the quantum mechanical study of specific 

interactions between electronically simple molecules. 

For instance, the helium-helium interaction has been 

widely studied (see, for example, Slater 1928, Rosen 

1950, Griffing and Wehner 1955, Sakamoto and Ishiguiro 

1956, Phillipson 1962, Kestner and Sinanoglu 1966), 

but even in such a simple case as this, considerable 

approximations are needed to make the mathematics 

tractable. From calculations such as these, it seems 

that the short range potential energy varies in some 

exponential manner with distance, although, in general, 

the exact dependence is uncertain. For many purposes 

the repulsive energy is written in the highly simp-

lified form: 

O(r) be-ar 	(1.1) 

where r is the distance between molecular centres and 

a and b are constants. 
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The long range attractive forces are termed 

"dispersion" forces and arise from a second order 

perturbation. They were firsttreated theoretically 

by London (1930) who showed that the leading term in 

the dispersion energy varies as r 6 (r again being 

the intermolecular distance). This tern represents 

the attraction of the dipolemoments instant-.  

aneously induced in each molecule by the electronic 

motion in the other. Induced multipole interactions 

give rise to further terms varying as r 8 r-10  etc. 

(Margenau 1939a), but since these are small compared 

with the r 6  term, we may neglect them to a first 
approximation. London's expression for the induced 

dipole-induced dipole energy may be written as: 

di o(r) s AB 	-CAB/r
6 (1.2) 

where CAB  is a positive coefficient, invariant to 

permutation of the molecules A and B, which depends 

on the energies and dipole oscillator strengths for 

the excitation of the molecules from their ground 

states to excited states. London approximated this 

coefficient by writing some of its terns as ionisation 

energies, but other workers (1.1E.. Slater and Kirkwood 

1931, Margenau 1939b, Dalgarno and Kingston 1961, Bell 

and Kingston 1966) have calculated its value for 

various interactions from quantum mechanical first 

principles. 

The theory of dispersion forces is for zero 

electron overlap. If overlap is allowed for in the 

second order perturbation, additional attractive 

forces called "second order exchange forces" appear 
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(see Margenau 1939b, McWeeny 1959,1960, Murrell, Randic 

and Williams 1965, Salem 1965). Such interactions come 

into play at "intermediate" intermolecular separations 

and are most important for molecules without inner 

electron shells. As is the case with the short range 

repulsion, their evaluation is very difficult except 

for the simplest systems. From Margenauls calculations 

for helium, the second order exchange energy appears to 

show sone sort of exponential dependence on intermol-

ecular distance. For our purposes, however, second 

order exchange effects may be considered small and 

will not be discussed in any detail. 

Let us now consider the second line of investi-

gation, that of calculating the pair potential from 

the physical properties of a macroscopic system. To 

invert the equations of statistical mechanics to 

give the pair potential as an explicit function is an 

impracticable task and a very much simpler but more 

empirical approach is taken. 

A pair potential function containing two or more 

adjustable parameters is proposed. The potential is 

"characterised" for the molecules under consideration 

by evaluating the parameters from suitable experi-

mental data and tested by comparing values of physical 

properties predicted by the characterised function 

with experiment. 

We may write the potential function for the 

interaction of a pair of inert gas molecules as: 

p1(r) = gr)s.r.+ /(r)l.r. 	(1.3) 



0 r 

11. 

where 0(r) 	is the short range repulsive potential s.r. 
and gr), 	is the long range attractive potential. 

The function (1.3) has a minimum at some value of 

intermolecular distance, rm. 

Fig. 1. The mutual potentia energy of a pair of inert 

gas molecules as a function of intermolecular 
distance 

Fig. 1 is a sketch of the dependence of the pair poten-

tial on intermolecular distance given by an expression 

such as (1.3). 	Marked 	in the fugure are: 

(1)  cr,', the value of r when 0(r) is zero; 

(2)  rm, the value of r when /(r) is a minimum; 

(3)  E , the depth of the potential minimum below 

zero. 

A mathematical function suitable for the description 

of the inert gas pair interaction must give the gen-

eral form shown in Fig. 1. The function is usually 

written in such a way that and either Cr or rm  are 

two of its adjustable parameters. Which of cr and 

rm is chosen as a parameter is mainly a matter of 

convenience, since, for simple functions, there is 
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a mathematiega relationship between them. 

Many functions have been proposed for the inert 
gas pair potential. For examples of these the reader 

is referred to Hirschfelder, Curtiss and Bird 1954, 

p.31 et set. Some of the functions are more realistic 
than others and some (e.g. the square well and Suther-

land potentials) are gross approximations to what must 

be the true state of affairs. The reason for preferred 

use of one particular potential function rather than 

another is very often just mathematical expediency, 

especially if not too accurate results are required. 

For example, the Mie-Lennard-Jones bireciprocal 

potential (M.ie 1903, Lennard-Jones 19211-) has been 

widely used in inert gas intermolecular force calc-

ulations, mainly because of its mathematical simplicity. 

It may be written as: 

0(r) = Cj(cr-/r)m  - (o-/r)nl 

where C is a constant given by 
n 

JEZT 
C .1 ) ‘m-n, 

(1.4) 

and, in order to give the form required by (1.3), 

m)n. 

The attractive term in this potential is in 

accordance with London's treatment of dispersion 

forces provided that n=6, but the mathematical form 

of the repulsion has no theoretical fuundation what-

ever. Nevertheless, the function is very simple and 

lends itself to straightforward calculations of 
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macroscopic properties of assemblies of simple molecules. 

The value of m giving the best representation of 

the 14 m:6 potential for the inert gas pair inter-

action has been the subject of much discussion. For 

example, recent calculations by Zucker (1968 - but 

privately communicated to the author prior to pub-

lication) of solid state isotherms using solid state 

data alone to evaluate and o-  indicate that 12 is 

the best value of m for neon, argon and krypton 

and that m=11 is most suitable for xenon. Also, 

calculations by Walkley and co-workers (Hillier and 

Walkley 1965, Jenkins and Walkley 1965) show that 

the use of the LJ 12:6 function gives a good picture 

of the solid state properties of solid argon and 

solid neon. These results agree with earlier ones 

from calculations by Corner (1948) for neon and 

argon, in which the potential was characterised using 

solid state experimental data and the best value of 

m was determined by predicting second virial coeff-

icients and gas viscosities. However, they contra-

dict the results of Horton and Leech (1963), who per-

formed detailed calculations for the inert gas solids, 

neon, argon, krypton and xenon and found that 'no 

m=12 calculation comes near to experiment'. 

Other physical properties suggest other values 

for m. For example, Brown and Rowlinson (1960) using 

a thermodynamic discriminant satisfying a "Schwarz 

Inequality" suggest that m)13.3 for liquid argon 

near the triple point. This is in agreement with 

the suggestion by Rossi and Danon (1965) that a 

repulsion steeper than that given by m=12 is necess-

ary to account fully for the second virial coefficient 
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of the inert gases (see discussion of the Kihara core 

potential appearing on later pages of this chapter). 

On the other hand, the results of molecular scatter-

ing experiments performed by Amdur and Mason (1958) 

give repulsions considerably less steep than that 

given by m=12. Amdur's and Mason's values of m for 

the inert gases lie between 5 and 10, the "softest" 
repulsion being that of krypton (m=5.42) and the 

"hardest" that of neon (m=9.99). Since scattering 

experiments such as these are a direct measure of the 

repulsive energy at very small intermolecular distances 

where any attraction is negligible, insertion of these 

small m values in LJ m:6 potentials cannot be expected 

to give reliable predictions of, for example, the solid 

state properties at normal pressures, which are 

sensitive to the region of the potential around 

the minimum. Indeed, substitution of m=5.42 (the 

value for krypton) into an LJ n:6 potential would 

lead to nonsensical results, since this gives a pair 

potential with the repulsion as a longer range force 

than the attraction, in direct contradiction to the 

basic and justifiable assumption that the repulsion 

is very short range in nature and that the attraction 

is reasonably long range. It is interesting to note, 

however, that the results of Amdur and Mason indicate 

that the repulsion softens considerably as very small 

intermolecular separations are reached. 

We see therefore that the value of m giving 

the best representation of the inert gas pair inter-

action is not universal and, indeed, varies even for 

the prediction of different properties of the same 

substance. However, as we have seen, calculations 
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by Zucker point, in general, to a value of m=12 for the 

best description of the solid state of the inert gases 

and, with m=12 and n=6, (1.4) becomes: 

0(r)  = 46E(01,/,1012_ (d /r)6' 	(1.5) 

which is the LJ 12:6 potential, the most commonly 

encountered bireciprocal function. 

The LJ m:n function is a particular case of the 

Kihara core m:n potential (Kihara 1951,1953,1955). 

The Kihara core function is similar in form to the 

LJ 12:6 function, but involves a quantity 71, which 

is the diameter of a spherical hard core situated 

around the centre of each molecule. It may be written: 

Pi(r) = Ditor-.!51m  
gr-'4/ 

 

(1.6) 

  

where D is a constant depending only on m and n and 

m and n are usually assumed to be 12 and 6 respectively, 

as in the case of the LJ m:n function. IfE=0, (1.6) 

becomes the LJ m:n potential, (1.4). Each term in 

an expression such as (1.6) may be written as a sum 

of terms given by the binomial expansion. The expansion 

of (1.6) for m=12, n=6 is: 

= 781V2  + (r) =/o -j  1  .1 + 12/A 1+ 	. . •  

r / 	
/ 

 

rcr-.1.16 [ + . . . (1.7) 
1--. 

ri 	k r, 

The Kihara core function was originally proposed 

to describe the behaviour of spherocylindrical molecules, 
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but, of late, it has found favour in the description 

of the spherical inert gas molecules. The attractive 

term in the 12:6 form is somewhat more realistic than 

that of the LJ 12:6 potential, in that, on expansion 

(see (1.7)), it gives terms in r $, r--to  etc., in 

accordance with multipole considerations. It should 

be noted, however, that it also gives terms in r-71  

r-9 etc., for which there is less theoretical justi-

fication in the case of spherical molecules, although 

it is known that, if the distance between two molecules 

is so great that retardation effects come into play, 

the r 6 dependence breaks down and the attraction 

varies as r-7 (Casimir and Polder 1948). The re-

pulsion in the Kihara core 12:6 potential gives, on 

expansion (see (1.7)), a sum of terms varying as r
-12, 

-13 	-14 r 	, r 	etc. Therefore, at small intermolecular 

distances, the repulsion is steeper than that of the 
LJ 12:6 potential, but is no less empirical as far 

as its mathematical form is concerned. 

The hard core diameterI N, may be calculated 

in one of two ways. Either it may be considered as 
an adjustable parameter of the potential to be calc- 

ulated from suitable experimental data - in this case 

the potential is a three parameter one - or it may 

be calculated using a formula derived by Danon and 

Pitzer (1962) - in this case the function is a two 
parameter one, as is the LJ potential. 

Rossi and Danon (1965), using the latter pro- 

cedure, have found that the Kihara core 12:6 function 

kfar better than the LJ 12:6 function for the pre-

diction of the second virial coefficient of argon, 

krypton and xenon over the whole temperature range 
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of experimental measurements, in spite of the fact 

that no extra flexibility is introduced by the in- 

clusion of 	as a third parameter. This work seems 

to indicate that a repulsion steeper than that given 

by m=12 is required for an adequate description of the 

behaviour of the second virial coefficient, especially 

at low temperatures. Rossi and Danon also found that 

agreemert between the value of the coefficient of r-6 

calculated from quantum mechanical first principles 

and the value of the same coefficient given by the 

potential parameters evaluated by a consideration of 

the experimental second virial coefficient is far 

better for the Kihara core 12:6 than for the LJ 12:6 

function. The corresponding values of the r
8
coeff-

icient are also in fair agreement for the Kihara 12:6 

potential. 

On the other hand, work by Zucker (1968), which 

considers o as an adjustable parameter and which 

characterises the potential from solid state data 

only, shows that there is no significant improvement 

in the prediction of solid state isotherms when a 

Kihara core potential is used rather than a bireciprocal 

LJ form, in spite of the inclusion of the third param-

eter. 

A function which is capable of very good pre-

dictions of the solid state properties of argon is that 

originally proposed by Guggenheim and McGlashan (1960) 

and later studied more thoroughly by McGlashan (1965). 

These authors took the step of dividing the pair 

potential into three parts: 
(1) the long range part where it is known that, to 

a first approximation, the function varies as 

r-6 and that the coefficient of this term is 
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calculable from quantum mechanics; 

(2) the part near the minimum of the curve, where 

the potential may be represented as an an-

harmonic oscillator: 

0(r) . 
m 	m 	m 4- . • • 
;  \1/4  rm 	\rm 	m  

(1.8) 

(3) the short range part, of which the detailed 

mathematical form is uncertain. Guggenheim 

and McGlashan assumed that, since the potential 

in this range is very steep, it can be re-

presented by an infinite cutoff at some value 

of intermolecular distance, d. 

This "piece-wise" formulation of the potential is 

sensible from some points of view. The long range 

part of the function is in accordance with London's 

theory of dispersion forces and the formulation of the 

part near the minimum is perfectly general if 	(4 

p, etc. are all adjustable parameters. Guggenheim and 
McGlashan truncated the series after the four terms 

given in expression (1.8). This should give a good 

representation of the region of the curve near the 

minimum. 

However, the repulsion is again highly empirical. 

In this case the repulsion is an even more gross 

approximation than that of the LJ potential. Since 

Guggenheim and McGlashan proposed this potential in 

order to predict only normal pressure solid argon 

properties, which are most sensitive to the region 

of potential around the minimum and relatively in-

sensitive to the repulsion at small intermolecular 
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distances, the approximate form given by the infinite 

cutoff did not worry them unduly. Use of this potential 

for the prediction of properties sensitive to the re-

pulsion cannot be expected to give good results, how-

ever. Also since the potential is mathematically de-

fined only in three specific regions, parts of the 

potential lying outside these regions have to be guess-

ed and, if the function is to be constructed over the 

whole range of intermolecular distance, the undefined 

parts have to be drawn freehand. As well as these 

points, the characterisation of the Guggenheim-McGlashan 

potential function requires the evaluation of six 

parameters. Although the use of functions involving 

too few parameters may place artificial restraints 

on the potential, the use of as many as six to predict 

only solid state properties confers so much flexibility 

that the function becomes almost "tailor made" for a 

specific interaction (in this case the argon-argon 

interaction), and using a potential form such as this 

makes it very difficult to say anything about the 

mathematical form of the general interaction between 

a pair of inert gas molecules. 

Dymond, Rigby and Smith (1965) have forwarded 

the five term, two parameter function: 

, 
0(r) 	 c).331kr./r)28- 1.7584(rm/r)24 2.07151(rm/r)

18 

-1.74552(rm/r)8- 0.39959(rm/r)6] (1.9) 

as a representation of the inert gas pair interaction. 

This function is capable of giving a good description 

of the second virial coefficients and, if triplet 
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interactions are allowed for (see Chapter 5), of the 

crystal properties of neon, argon, krypton and xenon 

at 0°K. Once again, however, the repulsive terms in 

r-28 and r 18  are highly empirical. Also, Dymond, 

Rigby and Smith themselves admit that the five coeff-

icients of the powers of 1/r - obtained by a machine 

fit - have little physical meaning and that the r-24 

attractive term is included only to give the breadth 

of potential well required by experiment. Nevertheless, 

the function does not suffer from the disadvantage of 

involving discontinuities and, further, contains only 

two adjustable parameters, thus avoiding unreasonable 

flexibility. 

All the pair potential functions mentioned so 

far have the disadvantage of containing an unrealistic 

repulsive term. As we have seen, quantum mechanical 

calculations point to an exponential repulsion of some 

kind and, although the detailed nature of this repulsion 

is uncertain, it seems logical to cast it into an ex-

ponential form. With this in mind, perhaps the most 

realistic function which has been suggested to represent 

the inert gas interaction potential is that proposed by 

Buckingham and Corner (1947). This function may be 

written: 

0(r)=10expr-o1Kr/r 	- (cr-6+cil'
-8)exp 4(rm/r-1)3 r?r 

pgr)=bexp(-00r/rm)l- (cr
-6+ctr-8) 

where b=1-:,- (14)cr 
-61exTo6 -- 6( 	m I 	 i 

c= 6104r itm24
.4(11) - 6 - 813j 

el= t;rm  c 
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This is a two part potential with four parameters E, 
rm1 (X,I b and contains an exponential short range re- 

.' 
pulsive term in accordance with quantum mechanical 

indications. Also second order exchange forces are 

allowed for (somewhat arbitraril admittedly) in the 

term (cr 6+Or 8)exp(74(rm/r-1)
3 and the induced 

quadrupole-induced dipole 

(in the r
8 

term) as well 

dipole energy (in the r-6 

dispersion energy is included 

as induced dipole-induced 

term). However, the gain in 

realism over other potentials has been accompanied by 

a considerable loss in simplicity and the function 

(1,10) is mathematically rather unwieldy. 

Considerable simplification is effected by 

writing the potential as (see Kihara and Koba 1952): 

g((r) = 067.. I
L
6e exp(46/rm  ) -(rm  /r)6 	(1.11) 

which is the EXP-6 potential and involves three adjust- 

able parameters E, rm and Oe. 	and rm have their 
usual significance (see Fig. 1) and the value of 

is a measure of the steepness of the repulsive branch 

of the potential. This function contains an exponential 

repulsion and an r-6 attraction, both of which are 

quite realistic from a quantum mechanical point of 

view. Also the mathematical form of (1.11) is quite 

simple and the EXP-6 potential seems to offer the 

best compromise between realism and simplicity in the 

description of the inert gas pair interaction. 

Although both terms in (1.11) are reasonable 

in themselves, their mathematical interaction gives 

rise to the appearance in the function of a spurious 

maximum at a small value of intermolecular distance 

(rmax ). This is removed by writing the potential in 
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two parts, thus (see Hirschfelder, Curtiss and Bird 1954, 

P.35): 

% 6i 
X(r)=..1:6f6e exp(-4r/rM)-(rm/r) 	max 	(1.12a) 

07:76  

91(r)=6 	 r‘rm 	(1.12b) 

Generally the maximum occurs at such a small intermol-

ecular distance that the potential is high enough on 

the repulsive branch for the assumption of an infinite 

cutoff to be valid. Indeed, for many purposes the 

potential energy at rmax   is so high that the maximum 

may be ignored completely. When working with the EXP-6 

function, however, this anomaly should always be re-

membered and allowance made for it where necessary. 

A fuller discussion of the spurious maximum will be 

given in Chapter 4. 

In spite of its realism and simplicity, the use 

of the EXP-6 potential has been rather limited.  in the 

past, mainly because calculations by Mason and Rice (1954) 

seemed to indicate that an exponential repulsion term 

predicts inert gas properties only marginally better 

than an inverse twelfth power repulsion. 

Mason and Rice used measurements of zero point 

solid state properties, second virial coefficients 

and gas viscosities to characterise the EXP-6 function 

and they predicted only gas properties to test the 

potential. No test was made by performing detailed 

solid state calculations. Since the solid state data 

used has now been largely superseded and, for reasons 

which will become clear in later chapters, the use 
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of a mixture of solid state and gas properties to 

characterise and test a potential function must be 

viewed with some suspicion, their conclusions must 

be doubtful until further proof is available. 

Characterisation of the EXP-6 function for the 

inert gases argon, krypton and xenon by a consideration 

of the second virial coefficient alone shows that this 

potential gives far better predictions of this prop-

erty than does the LJ 12:6 potential (Sherwood and 

Prausnitz 1964). It should be pointed out, however, 

that the Kihara core 12:6 potential, assuming *Etc) be 

an adjustable parameter, is capable of predicting the 

second virial coefficients of these gases to the same 

accuracy as the EXP-6 function (Sherwood and Prausnitz 

1964) and, therefore, the better representation of the 

interaction may be due to the inclusion of three param-

eters rather than two. On the other hand, we should 

remember that Rossi's and Danon's work shows that the 

Kihara core potential, treated as a two parameter 

function, is also more capable of predicting the 

second virial coefficient of the heavier inert gases, 

than is the LJ 12:6. Whatever the reason for the 

markedly superior prediction of the second virial 

coefficient by these more complicated functions, there 

seems little doubt that a function so simple as the 

LJ 12:6 is not adequate for the description of this 

property. Nevertheless, we have seen that the LJ 

potential is capable of giving a fair picture of at 

least some of the solid state properties of some of 

the inert gases; and that comparison with the results 

given by the Kihara core shows that little improvement 

is apparent with this more complicated function, as 

far as the prediction of solid state isotherms is 
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concerned. However, detailed calculations of solid 

state properties based on the EXP-6 pair potential 

have not been performed and the LJ 12:6 function 

awaits comparison with the EXP-6 as far as its ability 

to predict the properties of the inert gas crystals is 

concerned. 

Detailed EXP-6 calculations of the solid state 

properties of neon, argon, krypton and xenon have 

therefore been undertaken. Some second virial coeff-

icient calculations have also been performed. Later 

chapters of this thesis describe these calculations, 

and present and attempt to interpret their results. 

Some comparison is made with results calculated from 

the LJ 12:6 pair function. 
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Chapter 2 

The Cell Theory as a Single Particle Model  

The many body problem 

If we consider any macroscopic system, we need to 

calculate the system partition function before the 

equations of statistical mechanics can be used to 

calculate the thermodynamic properties of the assembly. 

In the classical formulation of statistical 

mechanics the canonical partition function may be 

written: 

zNC1=  soN 
(217MkT 3N/2'..;'exp-IPI(R R 	. '-

R_ )/(kT)ARldR2  

N! 	h2  ) 	W J ..d.,13N  (2.1) 

where m is the mass of each molecule in the system, 

N is the number of molecules present, T is the 

temperature, w(rsi, ?,..,gN) is the potential energy 

of the configuration of the system represented by the 

position vectors R1, 42,21.., RN  of the molecules, k 

and h are the Boltzmann and Planck constants respect-

ively and the integration is carried out over all 

phase space. The expression: 

Y 
	 ) 

Q= 1 	..!exp:._-W(R4  ,R 	)/(kI)Jd l  dR ..dR rue 
fir (2.2) 

is called the configurational integral of the system. 
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Using quantum statistical mechanics, the partition 

function may be written as the sum over states expression: 

ZNQp.= 	xpr-E./(kT),] 
	

(2.3) 

where E., the jth energy state of the system, is given 

by the Schroedinger equation: 

. R 	R 	)+8if2  mI- Ej  -W(R R 

A032,..,4)=0 (2.4) 

It should be noted at this point that here and elsewhere 

in the this thesis, unless otherwise stated, the term "quan- 

tum statistical mechanics" refers to Boltzmann statistics, 

which takes account of the quantum mechanical concept 

of energy taking discrete values, but takes no account 

of molecular spin, as do Fermi-Dirac and Bose Einstein 

statistics. 

It is very difficult to elicit an real information 

from expressions (2.1) and (2.3) which depend on com-

plicated potential functions depending on the co-ordinates 

of all the molecules of the system. Therefore, con-

siderable simplifications have to be made before useful 

results can be obtained. A way of simplifying the 

expressions for a molecular assembly at high density 

is to use the cell theory of Lennard-Jones and Devonshire 

(1937, 1938). In its original form this theory 

was for classical systems interacting according 

to an LJ 12:6 potential. It is, however, straight-

forwardly extended to quantum systems (see Levelt 

and Hurst 1960, Hillier and Walkley 1964) and 
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to other potential functions, provided that they are 

not too complicated. In our work we extended it to 

the EXp-6 function. 

The cell theory of Lennard-Jones and Devonshire(LJD)  

The LJD cell theory formulates an equation of state 

and thermodynamic properties of molecular systems for 

which three assumptions are valid. These assumptions 

are: 

(1) that the volume available to the system may 

be divided into identical cells, each cell 

being occupied by one molecule; 

(2) that the centres of the cells lie on a regular 

lattice; 

(5) that each molecule moves independently of all 

others in the system. 

These assumptions mean that we may write the expression 

for the potential energy of a system of N mdecules at 

vector displacements 	pal. from their cell 

centres as a sum of term!, each of which depends on the 

vector displacement Ri  of a single molecule i from its 

cell centre. Thus: 

N 

11/1( 11 2""9J3N)  = W(°) 	.5771-7 
i=1 

(2.5) 

where 14(1117132,...,13N) is the total potential energy of 

the configuration, W(0) the potential energy when all 

molecules are at their cell centres and 777 the change 

in the potential field experienced by a molecule i when 

it is displaced from its cell centre by a vector 13i  with 

all other molecules remaining at their cell centres. 
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Substitution of the potential energy given by (2.5) 

in the configurational integral (2.2) gives an expression 

in terms of the co-ordinates of one particle only. The 

configurational integral may now be written: 

Q = exp r-W(0)/(kT)y vfN 
	(2.6) 

of is called the "free volume integral" of a molecule 

and is given by: 

of  = 	exp(-7TET/(kT)1d13 	(2.7) 

where i denotes integration over the interior of the 

cell occupied by the molecule. 

Use of (2.5) also allows the sum over states ex-

pression (2.3) to be written in terms of the energy 

levels of a single particle of the system, thus: 

expo.-11(0)/(kT);,7 . gexP  y(kT)J N 	(2.8) 

where ki  the jth molecular energy level, has a de-

generacy. gJ and is given by the single particle 

Schroedinger equation: 

81 2114j 	7(75.7?1V P) =0 	(2.9) 
h2  

where ti{/.(R) falls to zero when the end of the vector 3,.2, . 3 
falls outside the boundary of the cell. 

Therefore, the LJD cell theory, in both its 

classical and quantum forms, requires the formulation 
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of the "cell potential'; 77, which depends only on 

the co-ordinates of a single molecule of the system. 

The 3N dimensional problem has now been reduced to one 

of 3 dimensions, but 7(7,7 is still a complicated function 

of all three co-ordinates of a particle in its cell and 

further simplification is necessary in order to make 

the evaluation of (2.7) and the solution of (2.9) 

possible. 

If the lattice occupied by the cell centres is 

face centred cubic (f.c.c.) - the structure under normal 

conditions of all the inert gas crystals except helium -

each molecule at its lattice point is surrounded by 

12 nearest neighbours at the vertices of a dodecahedron. 

Lennard-Jones and Devonshire approximated the potential 

in this dodecahedral cell by assuming the neighbours to 

be uniformly distributed over a sphere centred on the 

lattice site of the central molecule and of radius a1, 

the nearest neighbour distance. 

For a spherically symmetric environment the cell 

potential, 7g y, may be written as a function of IR! (=R) 
only, provided that "pairwise additivity" is assumed - i.e. 

that the potential field experienced by the central 

molecule is the sum of all pair interactions between it 

and all the molecules on the sphere. The "sphericalised" 

cell potential is given by: 

   

fgal)i (2.10) (1 	f 777.z1  -1-1 gr(s,f a1  4-1/-2Ra1cosAXsinGdO - t.-  

where 0'  is the pair potential function, R is the distance 

of the central molecule from its lattice point, a1  is the 

nearest neighbour distance and zi  is the number of near- 
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est neighbours. 

Consideration of further neighbours gives the 

expression: 

 

~;z. 	1 9;f(., a
i
2  +R2  -2Ra. co  sQ ) sin8d8 ggai)1 

 

(2.11) 
where ai  is the distance of the ith shell of neighbours 

from the central lattice site and z. is the number of 

neighbours in the ith shell. 

For the f.c.c. lattice structure: 

ai/a1 = 
	

(2.12) 

and values of :ni  have been tabulated by Kihara and 

Koba (1952) for 3=1,2,...,65. For this structure., the 

volume, V, of a system of N molecules is related to 

the nearest neighbour distance, a1, by: 

V = Na1  3/2 	 (2.13) 
and the length of the side of the crystallographic 

unit cell (the cell constant) is given by: 

ao = 2a1 
	 (2.14) 

The volume of a cell of the system is equal to the 

volume per molecule of the system. The cell radius, 

Rc, is the radius of the sphere whose volume is equal 

to the volume per molecule. By virtue of (2.13), Rc  

for a f.c.c. lattice is given as: 

Rc 	3 Val  
i 

J+722) 
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or 	R =0.55267a
1 
	 (2.15) 

Now that the cell potential depends only upon the 

displacement R, we may transform expression (2.7) 

for the tee volume and the single particle Schroedinger 

equation, (2.9), to spherical polar co-ordinates and 

separate out the angular dependence to give equations 

depending only on R. 

The classical free volume integral becomes: 

vf  = 	-expt-17NT/(kT)JR2dP 
	(2.16) 

The upper limit of integration is B=Pc because the 

cell theory requires that each molecule is confined to 

its cell and, therefore, the furthest distance that 

a molecule can move from its lattice site is Rc. 

This upper limit is more correct than P=0.5a1' 
which 

was used by Lennard-Jones and Devonshire in their 

original paper, although, at high densities, the 

integrand in (2.16) is effectively zero at distances 

greater than 0.5a1. 

In the quantum mechanical formulation, the energy 

levels are now given by the radial wave equation: 

2 	• 	r  	- • 
d Sltn  (P)+J8iT

2  m 

	

	-1(1+1)-06.7175s1 1 (R)=0 (2.17) I  l n 0 

dR2 	L
h2 R2 h2 j 

where S1n(R)=RU1 n(P) 1  U
lin(R) being the radial 

component of the wave function corresponding to 

quantum numbers 1 and n. Since Uln(R) must be 

finite everywhere and since each particle is confined 
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to its cell, the boundary conditions on (2.17) are: 

S1 n(0)=  S101(Rc) = 0 
	

(2.17a) 

n and 1 are the principal and azimuthal quantum numbers 

respectively for the eigenvalue in  and may independently 

take any integer value, 0,1,2,3,... etc. Each energy 

level is (21+1) degenerate by virtue of the magnetic 

quantum number m, which may take values -1, -(1-1), 

•.• „ 0, .• • g (1-1), 1 for each value of 1. Thus the 

sum over states expression (2.8) becomes: 

ZNu =15' (21+1)exp- ,n /(kT)1' expt-W(0)/(kTil --J  
(2.18) 

The calculation of the equation of state and 

thermodynamic properties of the system is now possible 

provided that the integration in (2.11) may be performed 

for the chosen pair potential pl. Both the integration 

required for the calculation of classical thermodynamic 

properties and the solution of the radial wave equation 

(2.17) in the quantum case can be carried out, but, 

even with the simplified cell potential, numerical 

and/or approximate methods need to be used. The 

evaluation of the W(0) term is effected by assuming 

pairwise additivity and performing a lattice sum over 

all pairs of particles in the system. W(0) may thus be 

written: 

W(0) = Nw(o)/2 
	

(2.19) 

where w(o) is given by: 

w(o) = .1 2ziggai) 
	

(2.20) 
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Reduced quantities  

Before we consider the cell model in more detail, 

it is convenient to introduce the concept of "reduced 

variables", the use of which considerably simplifies 

many of the expressions derived in the course of 

intermolecular force calculations. 

As we have seen in Chapter 1, the pair potential 

may be written in terms of a characteristic energy 

parameter, 	and a characteristic length parameter, 

d, which is usually one of the two quantities d and 

rm (see Fig. 1). The parameters t and d enable molecular 

quantities and bulk properties to be reduced to 

dimensionless form. 

By making the transformation, r*=r/d, the pair 

intermolecular distance r is reduced to the dimension-

less quantity r* and the pair potential (r) may be 

replaced by gr*), where the functional dependence is 

now upon r* rather than upon r. Similarly, w(R) may 

be replaced by wcR*), where R*=R/d. 

The pair potential can be written in dimensionless 

form, thus: 

p(*(r*) = 0(1.*)/s 
	 (2.21) 

so that the IJJ 12:6 ((1.5)) and the EXP-6 ((1.10a) 

and (1.10b)) functions may be written in terms of 

reduced variables as: 

X*(r*) 	4(r*-12_ r*-6) 	(2.22) 



and 

n r ,t 	-6 i 
fd*(r*) = ce i6e exp(-L:r*) - r* 	, 

i 77.7t6ioz. 	i 
L .., 

fi*(r*) = cg) 

314.. 

r r* (2.23a) 

r* > r* 	(2.23b) 

respectively, where d=6 in the case of the LJ 12:6 

function and d=rm in the case of the EXP-6 function. 

Expression (2.11) may be written in reduced form 

as: 
71r 

iti4S p(*(Val' +R* -2Rsal'cosOsinQd0 pf*(aq 

(2.24) 

where w*(R*)=17177TA and at=ai/d. 

Reduction of the free volume integral (2.16) gives: 

v* = 4.77 	pcp r*(R*)/T*1 *2dR* (2.25) 

where vi=vf/d3, 1,2=Ro/d and T*=kT/E . 

The sum over states expression may be written in 

terms of reduced variables, thus: 

N * 
ZNQu 	/' 1,n 	P =I 	(21+1)exp(- ` 	/T*. expkw*<o)A2T4,(2.26) 

l; n 

 Whare, *  )k,(kot 	 th/C0) if, 
'..\ 1,n  is given by the radial wave equation (2.17) 

expressed in reduced variables: 

2 87 2 )\101-1(1+1)-81t2w*(R*)-1SIIn(R*)=0 
.* 

dR*2 R*
2 
 

(2.27) 
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together with the boundary conditions: 

Silln(0) = SI,n(RV = 0 	(2.27a) 

N is called the quantum parameter and is given by: 

A* = 	h 
	

(2.28) 

(m4)id 

w*(o) is given by the reduced lattice sum: 

w*(o) =/ Xit(at) 
	

(2.29) 

which for the LJ 12:6 function may be written: 

w*(o) = 4 s(12) 	s(6) 

ai 	-1 .12  77,31 
	

(2.30) 

whore: 

S(n) 	z.(alla*)-n 
	

(2.31) 

and for the EXP-6 function: 

-1 

	

w*(o) = n< F5e
rW 
 R(0) - S(6)f 	(2.32) 

X. 	;717] 
where S(6) is given by (2.31) and R(0) by: 

R(n) 	xicavavnexp(-alai) 	(n=0) 	(2.33) 

As mentioned at the beginning of this section, bulk 
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properties may be expressed as reduced, dimension-

less quantities. Examples of commonly encountered 

bulk properties expressed as reduced quantities are 

given below. 

(1) Volume  

V*=V/(Nd3) 

(2) Helmholtz Free Energy  

F*=F/(Ne) 

(3) Internal Energy  

u*=u/(NZ) 

(4) locific heat at constant volume  
or constant pressure  

c*=c/(Nk) 

(5) Intro 

(6) Pressure  

p*=pd3bz 

(7) Volume expansivity  

C.;*=Z•gik 
Where J., =(1/V)(V,e)p  

(8) Isothermal compressibility  

(2.34a) 

(2.34b) 

(2.34c) 

(2.34d) 

(2.34e) 

(2.340 

(2.34g) 

xr/d3 
	

(2.34h) 

where X_=.7(1/V)GWAp),,, 
- 4 

(9) Second virial coefficient  

B*= .PANd:3  ) (2.34i) 

Reduced quantities will appear often in this 

thesis and will always be denoted by a superscripted 

star. 



ively, giving w*(R*) as: 

iT(10)12  - T(4)6 
11 	5 	2 

L. 

4S(12)  
12 a* 1 

4,5(6)  
a*6 

(2.35) 

w*(R*)= 1 
R*a* 

1 
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The sphericalised reduced cell potential, w*(R*)  

for the LJ 12:6 and EXP-6 functions  

Use of the reduced LJ 12:6 function (2.22) as 

the pair potential function $* in the expression for 

the reduced cell potential (2.24) leads to a straight-

forward integration if we make the transformation, 

x=(al'2  +R*...2  2R*al'cosG). With this transformation, the 

integrands in the cell potential corresponding to the 

attractive and repulsive terms in the pair potential 

are inverse 11th and inverse 5th powers of x respect- 

where 

T(n)F  

) is given by (2.31) and T(n)mby: 

—z(alla*)(n-m+1) r L(a:'-R*)-n-(al'+R*) 11  -:1 
i 2. 1 	1  

(2.36) 

Expressions (2.23a), (2.23b) and (2.24) give the 

reduced EXP-6 cell potential as: 

( w*(R*) = (:), t6e it 

I ,2 1 t 
i 

,* 0! -6 i_ (A, 	- 	 * 	' 	
1 

	

1 	... 

	

- T(4) - 6e°412(0) + S(6)1 R* 	R* 

8a*R* 	0 	a* 
----6 	--17m 

1 	max...0 (2.37h) 
/., 1 	1 4 

w*(R*) = 00, R*?,R*max  

where R(n) is given by (2.33), T(n)m  by (2.36), 

S(n) by (2.31) and A by: 

A = R(0)+R(-1) 

a*g„  - 

R* 	is the reduced distance from the cell centre of 
max 

the spurious maximum in the cell potential correspond-

ing to the one at r; in the EXP-6 pair potential. 

iAsinh(XR*) R(-1)cosh(R*)i 

(2.37b) 

(2.38) 
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As we shall see later (Chapter 4), inert gas densities 

for which the cell model is valid give a cell potential 

maximum well beyond the cell radius for physically 

reasonable values of oe, and therefore can generally be 
ignored. Nevertheless, the reduced EXP-6 potential 

should properly be expressed in terms of the two parts 

given by (2.37a) and (2.37b). 

The integration required to obtain the expression 

(2.37a) is more complicated than that required to derive 

the reduced LJ 12:6 cell potential (2.35), but is 

still readily effected by making the transformation, 

x=-(at42+R*2-2R*al'cosQ)-2., as before. Integration by 

parts gives the cell potential term corresponding to 

the repulsive term in the EXP-6 pair function and the 

integrand corresponding to the attractive term is an 

inverse fifth power of x, as in the case of the LJ 12:6 

treatment. The detailed derivation of the reduced 

EXP-6 cell potential is given in Appendix 1. 

For some purposes it is convenient to cast w*(R*) 

into open form by expanding it as an infinite Taylor 

series. Because of the sphericalisation procedure used 

in the derivation of w*(R*), only even powers of R* 

appear in the expansion, which may be written: 

w* (R*) = >.1c* R*2k 
k=i  2k 

(2.39) 

where the coefficients C*2k 
 (k=1,2,...) are functions 

only of nearest neighbour distance (and therefore of 

density) and of the pair potential parameters other 

than and d. Since the first term in the expansion 

of t! si*( al'2+12*2-2R*alcosA) sinQdQ is identically 
'10 
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equal to V*(at), no constant term appears in (2,39). 

(2.39) represents the potential experienced by an 

anharmonic oscillator. The first term in R*2 represents 

the harmonic contribution to the cell field and higher 

terms represent anharmonic contributions. 

The coefficients C* (k=1,2,...) for the LJ 12:6 2k 
and EXP-6 potentials are: 

1 
C*k-  -4  (2k+10):S(2k+12) 	-  (2k+4):S(2k+6)  1 (2.40) 2 

and 

c2* 
k-  
_0( 

- 	- 12(-1 )1- 	(2k+4)!S(21c-1,6) ----  
(2k)! 	i2k+1 	a* 	4:(2k+1)Ia*1(21c+6)  

(2.41) 

respectively, where S(n) is given by (2.31), R(n) by 

(2.33) and A by (2.38). 

The cell theory as a model of the solid state  

Having derived the simplified spherically symmetric 

cell potential for molecules interacting according to 

an LJ 12:6 pair potential, Lennard-Jones and Devonshire 

derived an equation of state by the use of classical 

statistical mechanics. They considered only nearest 

neighbour interactions in the formulation of the cell 

potential and for the static lattice energy term they 

used the expression given by Lennard-Jones and Ingham 

(1925), viz: 

w*(o) = 6(1.0109V*-4- 2.4090V*-2) 

1 01(2k+1):a*(2k+12) 4:(2k+1)1a*(2k46)1 
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As originally conceived, the cell theory was intended 

to formulate an equation of state and thermodyamic 

properties of the liquid and dense gas states of simple 

molecules. In support of this, Lennard-Jones and 

Devonshire found that the LJ 12:6 classical cell theory 

predicted the existence of both "condensed" and "gaseous" 

phases at low temperatures and also the existence of 

a critical isotherm. For substances whose intermolecular 

pair potential might be expected to follow a dependence 

such as the LJ 12:6 (e.g. the inert gases) the calculated 

densities and boiling points of the condensed phase 

were reasonably close to the experimental properties of 

the liquid. They were, however, even closer to the 

solid properties. The temperature of the critical iso-

therm was close to that given by experimental measure-

ments on suitable substances, but the critical density 

and pressure differed considerably from their experi-

mental values. 

Barker (1963, p.56 et seg.), by a detailed com-

parison of the experimental properties of solid and 

liquid argon at and around the triple point with those 

predicted by the LJ 12:6 classical cell model, has clear-

ly shown that the cell model is more properly a theory 

of the solid rather than of the liquid and gas states. 

He interprets the critical isotherm as pertaining to 

solid-expanded solid transition rather than to a liquid-

gas transition, as originally supposed by Lennard-Jones 

and Devonshire, and explains (p.75 et lea.) how the 

applicability of the model to the solid state follows 

directly from the assumptions on which it is based. 

The conclusion that the cell model is really a descrip-

tion of the solid state was in fact indicated by the 
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later work of Lennard-Jones and Devonshire 

(Lennard-Jones and Devonshire 1939a, b, Devonshire 

1940, Corner and Lennard-Jones 1941), who 

propounded an order-disorder theory of melting 

to explain the difference between the solid 

and liquid states. 

Briefly, the reason we cannot apply the cell 

theory, as presented in this chapter, to the 

liquid state is that the lattice concept inherent 

in the cell model gives long range order in the 

system, a property typical of the solid, but not 

of the liquid, in which we expect to find short 

range order but long range disorder around any 

representative molecule. To make the picture of 

the liquid state more clear, let us compare the 

molecular behaviour of an ideal gas with that of 

an ideal crystal. In an ideal gas the whole 

volume of the system is available to any molecule 

1i the system - the molecules are "delocalised" - 

and this leads to a "communal entropy" term of 

value Nk in the description of the assembly. 

In the ideal crystal, on the other hand, where 

the molecules are localised around their lattice 

sites (the situation given by cell theory), the 

communal entropy is zero, since the volume 

available to a molecule is equal to the volume 

per molecule. Somewhere between these extremes 

lies the liquid state. It has been suggested (Eyring 

1936) that multiplication of the partition function of 

a lattice by a factor e
N could give a better descrip- 

tion of the liquid state, but this gives the communal 
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entropy of an ideal gas and it is more likely that this 

term appears gradually as we move from the solid, through 

the liquid, to the gas state (Alder 1962). 

Various workers have attempted to account for the 

communal entropy, either by employing a cell model 

in which the cells are allocated in such a way that 

they may be occupied by more than one molecule (Janssens 

and Prigogine 1950, Pople 1951, Barker 1955:1956,1957), 

or by considering the behaviour of molecules in clusters 

of cells (de Boer 1954, Cohen, de Boer and Salsburg 

1955,1957, Salsburg, Cohen, Reithmeyer and de Boer 1957, 

Cohen and Reithmeyer 1958). Such treatments, however, 

involve many approximations and the problem of communal 

entropy in the liquid remains largely unsolved. 

The cell model, then, represents a system of 

molecules in restricted oscillatory motion about a set 

of lattice points and is therefore a model of the solid 

state. Further, it is a model which is capable of 

taking explicit account of anharmonicity in the molecular 

vibrations (see (2.39)). However, even as a description 

of the solid state, it is still an approximation by 

virtue of the assumption of independent molecular motion 

- the Einstein approximation (Einstein 1907, 1911a,b) -

and the sphericalisation procedure required to make the 

cell potential spherically symmetric. 

The error introduced by sphericalisation has 

been studied by Barker (1956). He calculated the class-

ical 12:6 free volume given by the correct three dimens-

ional cell potential *and compared it to that given by the 
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sphericalised cell potential. He found that the error 

passes through a maximum (vf(correct)/Vf(sphericalised)=1.4) 

in the region of the critical density and that, on 

proceeding to high densities, the sphericalisation 

procedure becomes progressively more exact, until, 

in the imit of high density, the correct and spherical-

ised cell potentials become identical. He therefore 

came to the conclusion that the error introduced,by 

sphericalisation is negligible at solid state densities. 

The Einstein approximation of independent mol-

ecular motion undoubtedly leads to some error in the 

calculation of thermodynamic properties. These would 

be expected to be most pronounced in such properties 

as specific heat and entropy, which are independent 

of the static lattice aiergy (see following chapter) 

and therefore particularly sensitive to the molecular 

motion in the solid. Correlation of molecular motion 

in classical statistics may be allowed for by the 

method of Barker (1955,1956), who considered binary 

and tenary correlations. A more rigorous approach 

is the lattice dynamical method pioneered by Born 

and von Karman (1912,1913), which considers the motion 

of the complete lattice in quantum statistics. The 

lattice dynamical method is, however, mathematically 

complicated, even in the simplest case of harmonic 

lattice vibrations (see Montroll 1942,1945, Montroll 

and Peaslee 1944). The complexity of the lattice 

dynamical treatment of an enharmonic crystal is greater 

still and, although there exists a formal framework for 

the treatment of anharmonic lattice vibrations to any 

degree of accuracy (Cowley 1963), the difficulties 

of the mathematics are so great that, to date, detailed 
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theory has been developed only for first order 

anharmonic effects (see Leibfried and Ludwigg1961). 

In consequence, even the most modern lattice 

dynamical calculations (see, for example, Feldman 

and Horton 1967) take account of only such effects. 

Further, lattice dynamical calculations usually 

consider only nearest ne4rbour interactions, although 

some workers (Wallace 1963, Reissland 1965) have 

attempted to allow for more distant neighbours. 

On the other hand, with the use of an Einstein 

model such as the cell model, it is comparatively 

simple to take explicit account of even high order 

anharmonic effects, as well as interactions between 

non-nearest neighbours. From the point of simplicity, 

then, the cell model has much to recommend it and it 

is felt that it can be used to good effect, so long 

as suitable care is taken not to stretch the theory 

beyond its limits. 
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Chapter 3 

The Quantum Cell Model and the Solution of the Radial Wave  
Equation  

Quantum effects in the inert gas solids  

Although classical statistics may serve as a 

convenient approximation at high temperatures, any 

model purporting to give a complete description of the 

solid state of any substance right down to absolute 

zero temperature must involve the use of quantum 

statistical methods. Indeed, it is well known that 

classical methods, no matter how refined, fail com-

pletely to give even qualitatively correct results 

for the low temperature values of such non-static 

lattice dependent properties as specific heat and 

entropy; and it was not until Einstein (1907, 1911a,b) 

used the concept of "quantised oscillators" to explain 

the experimentally observed decrease in the specific 

heat of solid substances from the classical Dulong-

Petit value of Cv=5R mole-1 at high temperature to 

Cv=0 in the limit of absolute zero temperature, that 

a realistic picture of the temperature variation of 

these properties could be obtained. It has been 

mentioned in Chapter 2 that such properties as specific 

heat and entropy would be expected to be particularly 

sensitive to the model used to represent the solid 

state and, indeed, Einstein's theory, with its assump-

tion of independent molecular motion, was found to lead 

to errors in the low temperature values of specific 

heat, Similar errors would be expected from the use 
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of the cell model, which is simply an Einstein model 

which makes allowance for anharmonic effects. They 

may be removed by allowing for correlated molecular 

motion (Debye 1912, Born and von Karman 1912A13). 

Properties expected to be less model sensitive 

are those, such as free energy and molar volume, dep- 

ending strongly on the static lattice energy, which 

is unaffected by the vibrational motion of the crystal. 

By virtue of the purely classical nature of the static 

lattice, these properties are also less sensitive to 

quantum effects and their low temperature behaviour 

can be described, at least qualitatively, in terms 

of classical statistics. 

Quantum effects in the static lattice dependent 

properties are governed by tho value of the'zero 

point vibrational energy, E0, and a simple and 

convenient way of judging their relative importance 

in the inert gas solids is to compare, for each 

substance, how much E0  contributes to Fol  the total 

free energy of the crystal at 0°K. 

A method of estimating the zero point energy of 

a crystal from experimental data is to use the relation: 

Eo= (9/8)R (.-), 	 (3.1) 

which is derived from a Debye model of the solid 

(Debye 1912) in which (I), is taken to be the limiting 

high temperature value, 	 . The use of (3.1) was ,v4v  

originally proposed by Domb and Salter (1952) who 

showed that, whereas the previously accepted 

expression involving the T=0 value of 6?, 
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led to a substantial error in the evaluation of Eo,  
the replacement of ;;-.31., by 9c win a Debye solid re-

produced exactly the second moment of the correct 

frequency distribution as given by the lattice 

dynamical methods of Born and von Karman (1912,1913) 

and, consequently, led to a value of Eo  in very close 

agreement with the correct one. For the f.c.c. lattice, 

which is the one pertinent to the present work, nearest 

neighbour considerations revealed the value of the zero 

point energy as given by (3.1) to be a mere 0.5% 

different from the correct value, while the use of 

the T=0 value of ad  leads to a result some 15% in 

error.The use of an Einstein model of the solid leads 

to a value of Eo s.,3% different from that given by (3.1). 

An objection that might be raised against the use 

of (3.1) in the context of the inert gas solids is that 

it is based on the assumption that the zero point 

vibrations of the crystal are harmonic. Now, while 

this may be assumed valid for the heavier inert gases, 

this is not the case for molecules as light as those 

of neon (see Reissland 1965). However, since at the 

moment we are not concerned with an evaluation of Eo 
for its own sake but wish only to demonstrate the 

effects of quantum behaviour, we take (3.1) to be a 

convenient approximation even when anharmonic effects 

are present and in such a situation assume that 

defines an effective harmonic lattice corresponding 

to the anharmonic one. 

An experimental value of 4,,;:  for any solid can 

be derived either from the temperature variation of 

the specific heat or from the elastic constants of 

the solid, and 40  is simply given by the negative of 
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the value of the sublimation energy extrapolated to 

absolute zero temperature. Using the data quoted by 

Pollack (1964) it is found that E0  expressed as a 

percentage of Fo  (paying no regard to positive and 

negative signs) has values of 34, 10, 5 and 3 for 
neon, argon, krypton and xenon respectively. It 

is clear that quantum deviations are apparent in the 

0oK free energies (and, by inference, in the 0oK values 

of other static lattice dependent properties) of all 

the inert gas solids. As expected from molecular weight 

considerations, they are most pronounced in solid neon 

and least in solid xenon. but even in the case of the 

latter substance the zero point energy is readily 

detectable in the total free energy. 

Another way of looking at quantum effects in the 

static lattice dependent properties of the inert gas 

solids is in terms of the quantum parameter, 	prev-

iously mentioned in Chapter 2 and given by expression 

(2.28). This quantity is the reduced de Broglie wave 

length corresponding to an energy of 	the depth below 

zero of the minimum in the pair potential, and, as its 

name implies, is directly related to quantum behaviour. 

It was first introduced into the theory of intermolecular 

forces by de Boer (1948) who considered the classical 

and quantum statistical behaviour of pairwise additive 

systems of molecules interacting according to a two 

parameter potential function of the type ri=1(r/d). He 

showed that, if classical statistics are obeyed, then 

the reduced thermodynamic properties of such systems 

may be expressed as universal functions of reduced 

volume V* and reduced temperature T. Thus for any 

property: 

X*classical = X*(V*,T*) 	(3.2) 
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and for the equation of state: 

	

classical = P*(V*1T*) 
	

( 3 3 ) 

If, on the other hand, quantum statistics are obeyed, 

the reduced thermodynamic properties are now universal 

functions of A* as well as of V* and T*, so that (3.2) 

and (3.3) become: 

	

Xquantum= X* (V*, T* A*) 
	(3.4) 

and 

quantum P* (V*, T*, A*) 	 (3.5) 

respectively. These revert to their classical analogues 

when A*=0. 

It is clear that values of the reduced thermodynamic 

properties at 0°K and zero pressure 0:17 systems for which 

(3.4) and (3.5) hold may be calculated as functions of 

m only. Such calculations have been widely undertaken 
(e.g.  by de Boer and Blaisse 1948, Salter 1954, Dugdale 
and MacDonald 1954, Bernardes 1960, Hurst and Levelt 1961, 

Zucker 1961) with particular reference to the inert 

gas solids. Calculations of this type generally make 

use of the LI 12:6 potential and a simple quantum model 

of the solid state to give plots of 0°K, zero pressure 

values of such properties as reduced free energy, re-

duced volume and reduced isothermal compressibility as 

functions of A*. Such plots give substantial agreement 

with experimental data (see Figs.2 and 3 below), but 
comparison of the experimental points with W=0 (i.e. 

classical) values of the properties shows that such agree-

ment is possible only if quantum behaviour is accounted 

for. This is the case even for xenon, which comes closest 
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to classical behaviour. 

Fig.2. Reduced equilibrium vol- Fig.3. Reduced crystal free 

ume at 0°K and zero pressure 	energy at 0°K and zero press- 

(V*) as a function of the quan- 	ure (F*) as a function of 

turn parameter (A*) for the LJ 	the quantum parameter (A*) 

12:6 pair potential (after 	for the LJ 12:6 pair poten- 

Zucker 1961). 	tial (after Zucker 1961). 
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It is quite clear then that the use of a quantum 

statistical model is essential, even from the point of 

view of the static lattice dependent properties, if a 

realistic pictue of the low temperature thermodynamics 

of the inert gas solids is to be obtained. The in-

corporation of quantum statistics into the LJD cell 

model has been covered in principle in Chapter 2. 

The practical application of the theory is described in 

the second section of the present chapter. 
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The thermodynamic properties of a quantum cell_ model 
63,717i and the solution of the  radial wave equation. 

As we have seen in Chapter 2, the quantum form 

of the cell theory of Lennard-Jones and Devonshire 

gives the partition function of an N particle, pair-

wise additive lattice, at a reduced temperature of 

T* (and an implied reduced volume of V*), as the sum 

over states expression (2.26): 

r ZNQu= 	(21+1) eXp (- " 	/T* )1 1\lexp I-Nw*(o)/(2T* 1‘ 1, n 1,n 

where w*(o) is the reduced potential energy ex- 

perienced by a representative particle in the static 
* 

lattice; and the quantities Al,n (1=0,11 2,...; 

n=0,11 2,...) are reduced single particle energy 

levels, corresponding to the sphericalised cell field, 

477, and determined by the radial wave equation 
(2.27): 

d2 
S1  (R*) ,n 

 

2.* 	2 
87C )*1,n - 1(1+1) - 8A

-  w*(a*)  

A*2 R*
2 	ir2 

X x)1 "* n(R*) = 0 , 

dR*
2 

 

  

under the conditions (2.27a): 

s*10
(0)=8*lln(R*c

)=0 

R* being the reduced cell radius. 

From the partition function, the bulk thermo-

dynamic properties follow directly by use of standard 

statistical mechanical relations. For example, the 

Helmholtz free energy, internal energy, specific heat 

at constant volume and entropy are given in reduced 
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form as: 

-I4 
(3.7a) 

ft, -= r2ALitt,2 	 ÷ I"( """(a) 
74 t. YT * /v. a 	2 	

(5.7b) 

CV 	. )Ui..z 	 r 2(  d2titZKa,A)  
N 	 N 	)-7-4eL 

:.-- 1  LE( t.."; A.1.04) 	 (3.7c) 
T4L L 	 » 	• 

Zo61.1.4. 	-14( etvallo,,t,) 
1•1 	N .31?-4( Al* 

3 

	

i-'(5";14-)1 

	

( 3.7d ) 

where 
	

(r,; b 	")) 	(.2 t tiYa bc 	
, 	

, lr 

In the same notation the reduced equation of state 

is given by: 

13t-- --.1*  IAA Zwi pt  

 

— w" (a)  (3.7e) 

     

   

and reduced isothermal compressibility and reduced 

volume expansivity by: 

(31P 
vxitapivT44 	 % 

)••44 -422...,40(corl 
CFA 	rit.-1:1.1)—  • voy. 	s 
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where a single prime denotes single differentiation 

and a double prime double differentiation with respect 

to V. The reduced specific heat at constant pressure 

is given by substituting expressions (3.7c), (3.7f) 

and (3.7g) into the reduced thermodynamic relation: 

C*p  = C* + v (3.7h) 

Although, in general, because of the complexity 

of the function, w*(R*), the radial wave equation 

(2.27) cannot be solved analytically, it can be solved 

"exactly" - in the sense that the eigenvalues can be 

evaluated to any prescribed degree of accuracy - by 

use of either a series expansion or finite difference 

technique. 

10 1 
U*1n(R*), the radial component of the 

function, by S*1In (R*)=R*U*1,n(R*), see 
as a power series in R*. On subdituting 

this function into the radial wave equation and 

equating terms involving like powers of R*, Levelt 

and Hurst found half the coefficients of the expansion 

to be identically zero and the others-to be related 

by simple recursion relations, involving the eigen-

value A, the quantum number 1 and the coefficients 
1 n , 

The former approach was adopted by Levelt and 

Hurst (1960) who wrote the functions S* 	(R*) 

(related to 

total wave 

Chapter 2), 
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C*2k (k=1,213,...) of the series expansion of 

w*(FT, (see (2.31) in Chapter 2). They determined 

the eigenvalues of energy iteratively, by causing 

S*
ln

(R*) to fall to zero at the cell radius in 

accordance with the boundary condition, S*
10

(R)=0. 

The other boundary condition , s*1ln(0)=0, is 

implicit in the method. 

Although this method proved reasonably successful 

in treating molecules of high /\*, e.g.  hydrogen and 

deuterium (which, in spite of their lack of spherical 

symmetry, may, for many purposes, be considered in 

the same context as the inert gas molecules), it is 

very cumbersome and time consuming for heavier 

molecules. In a later paper, Hurst and Levelt (1961) 

estimated that, for argon, over 1000 terms would be 

required in the series representation of the wave 

function for a reasonably accurate value of the 

lowest energy level to be obtained. 

The more versatile finite difference method 

given by Hillier, Islam and Walkley (1965) transforms 

the radial wave equation into four simultaneous, first 

order, linear differential equations which may be inte-

grated in a stepwise manner, using a Runge-Kutta 

numerical technique. Because of the behaviour of the 

term 1(1+1)/R*
2 at R*=0, the initial point of the 

integration is chosen as R*=10-512 and the initial 

values of the function S*
1n

(R*) and the various 

derivatives required by the method are calculated 

using the series expansion of Levelt and Hurst, which 

is rapidly convergent for such a smallIalue of P. 

The eigenvalues are calculated by iteration such that 
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the boundary condition at R*=R* is satisfied. 

Although this technique is of somewhat faster 

application than that of Levelt and Hurst, it still 

requires considerable computing time and suffers from 

a further defect common to both exact methods. This 

is that neither provides a direct way of determining 

the volume derivatives of the eigenvalues and, there-

fore, the evaluation of such properties as pressure, 

isothermal compressibility and volume expansivity 

(see (3.7e), (3.7f), (3.7g)) is not possible without 
recourse to numerical differentiation, either of the 

eigenvalues themselves or of the logarithm of the 

partition function. Now, of all mathematical operations, 

differentiation is perhaps the most awkward to treat 

by numerical methods, in that a single reasonable 

evaluation of a derivative requires highly accurate 

calculations of the quantity to be differentiated 

at many closely spaced values of the differentiating 

variable. Such a procedure is both cumbersome and 

very time consuming and, in the present context, must 

be considered unsuitable, especially when it is remem-

bered that the calculation of exact eigenvalues is in 

itself a slow process. 

Nevertheless, "exact" methods are useful in 

testing how well approximate methods evaluate the 

eigenvalues and the thermodynamic properties not 

dependent on volume derivatives and, since the finite 

difference technique has been used for this purpose 

in this work, a complete treatment of this method is 

given in Appendix 2. 
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In the majority of the solid state calculations 

described in this thesis, the solution of the radial 

wave equation has been effected through the semi-

classical Wentzel-Kramers-Brillouin (WKB) approx-

imation. This method allows rapid evaluation of a 

large number of energy levels and reasonably 

straightforward calculation of their volume 

derivatives. Its application to the quantum cell 

..model was developed in these laboratories by Hillier 

and Walkley (1964) and was later used by them and 

others (Hillier, Islam and Walkley 1965, Hillier and 

Walkley 1965, Jenkins and Walkley 1965) in detailed 

calculations based on the LJ 12:6 potential. A 

similar method has been used by Henderson and Reed 

(1964). The approach taken here is similar to that 

of Hillier and Walkley, but with modifications which 

make for greater numerical efficiency and also allow 

the second volume derivatives of the energy levels to 

be calculated. 

The full treatment of the WKB approximation is 

covered in most quantum mechanical texts (for example, 

see Schiff 1955, p.185 et E2 a.) and only an outline is 
given here. Briefly then, the WKB approximation, as 

applied to one dimensional systems, expands the 

exponential of i/h (h is Planck's constant) times 

the wave function as a power series in h. On 

neglecting terms beyond the second in this expansion, 

the solution of the Schroedinger equation gives 

eigenfunctions which are valid in regions of pos-

itive and negative kinetic energy far removed from 

classical turning points of the motion. Approximate 

solutions for the two regions are then found that are 
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reasonably accurate at a turning point and, at the 

same time, have the correct asymptotic behaviour. 

The turning point is assumed linear and the solutions 

connected across it. For a particle moving in a 

potential well, the asymptotic forms of the solutions 

arising from the two turning points of the motion are 

matched in the interior of the well to give a 

determining equation for the energy levels: 

1-4-4 

k, 	
2 

(i.tr.01)  2)  ..) 
where m and k are the mass and nth energy level 
respectively of the particle, V(x) is the potential 

field and x1and x2 (x2. ->x1  ) are the classical turning 

points of the motion (i.e. the points whereXn=V(x)). 

Equation (3.8) is straightforwardly extended to 

three dimensional radial systems by replacing 

)61a  by Xi ,n  and V(x) by V(r)+h2(14)
2/(2mr2). In our 

notation, the equation determining the reduced energy 

levels n corresponding to the reduced cell potential 

777 may be written: 

f 4  
"4' / 3t. 	l• LI, td, . 	k 

(3.8) 

x by r, 

(3.9) 

where 

(gAZ•  
/vcL 

and R; and RI' (R2 >R; 

equation: 

Q*(R*) = 0 

- A 	(3.9a) 
R.4 g 

e n 

are the positive roots of the 

(3.9b) 

q 
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The replacement of 1(1+1) by (114)2  in the cent- 

rifugal part of the kinetic energy of the three dimension- 

al system is necessary to fulfil the boundary condition 

S* n(0)=0 (Langer 1937), and is equivalent to causing 

the solution of the radial wave equation, written in 

terms of S1,21(R)' to behave in the same way at R=0 as 

does that of the one dimensional Schroedinger equation 

at x=-00. The other boundary condition, Si n  (R*)=0, , 	c 
is not fulfilled in the WKB approximation; instead 

S* (R*).50 as R*+,0..c.). This is in direct contrast 

with thelbxacti methods, in which the satisfaction of 

this condition is inherent in the solution of the 

wave equation. Nevertheless, as far as the substances 

considered here are concerned, the use of the WKB 

formula (3.9) is justified by virtue of RVs being 

sufficiently large in comparison with 	for the 

points R*=-1Z and R*=Nc to be considered equivalent. 

With this in mind, the use of (3.9) in calculating 

the low lying energy levels is justified by the sim-

ilarity between TCRT at small displacements and the 

harmonic potential V=C2R
2 (see the expansion (2.39) 

in Chapter 2), for which particular case the WKB 

approximation gives the energy levels exactly (Froman 
rr 

and Froman 1965, p.120 et Eta.). (3.9) is also valid 

for the high energy levels by virtue of the asymptotic 

natare of the approximation, which makes it generally 

applicable only when the classical turning points of 

the motion are well separated. 

The numerical accuracy with which the WKB method 

gives the energy levels of an IJJ 12:6 cell model system 

was initially studied by Hillier and Walkley (1964) who 

compared the WKB values of the energy levels with the 
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"exact" finite difference values for hydrogen and 

deuterium at various values of V*. The innaccuracies 

arising from the use of the WKB method were found to be 

small and, for the substances considered here, which, 

due to their higher molecular weight more nearly 

approach harmonic behaviour, the inaccuracies in the 

LJ 12:6 energy levels would be expected to be even 

smaller. Although there is no a priori reason to doubt 

that the WKB approximation is also applicable to EXP-6 

calculations, we felt it advisable to verify that this 

is indeed the case and this was done in the course of 

the calculations repaTted in the next chapter. 

Strictly speaking, the use of the WKB approach is 

preferable to methods which treat a particle in an 

Einstein lattice as a harmonic oscillator perturbed by 

anharmonic terms (Henkel 1955, Zucker 1964) because of 

its ability to take accurate account of all anharmonic 

terms in the evaluation of the high energy levels 

where molecular displacements are large. Perturbation 

methods, on the other hand, are accurate only in the 

evaluation of energy levels for which mean excursions 

of the molecules from their lattice points are small 

enough to render valid the truncation of the series 

expansion of the potential field after a small number 

of terms (two in the treatment of Henkel and three in 

that of Zucker). However, it should be pointed out that, 

even at the triple points of the substances considered 

here, the partition function should not be sensitive 

enough to the very high energy levels for the second 

order perturbation treatment of Zucker to lead to 

serious inaccuracies in the evaluation of the thermo-

dynamic properties and the author's preference for 
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the WKB approximation is only marginal, 

Since, for an f.c.c. lattice, V*=a*
13/24  (see 

Chapter 2), the first and second reduced volume deri-

vatives of ):
1n are given by: 

( 
d N* A,  1 n = nt 

dV* 	3a*2 	da* 1 	1 
and 

d2 N*  d2):*1 n 	2 A. 1,1 n 	2 	dA.1 n  
..•••••••••••••••••••••••••• 

dV*2 9a* (da*2 a* dad 

respectively. 

(3.10) 

(3.11) 

In the WKB approximation expressions for dk"1, 

1 	1 n 	1 	

n/ 

da* and d * /da*2 are given by differentiation, ,  
under certain conditions, of (3.9) with respect to 

a1' * 	Although both R* and R* are both dependent on 1 	2 
a1*' the fact that, by definition, Q* ( and therefore 

Q* ) is zero at these points allows the first 

derivatives to be obtained by straightforward 

differentiation under the integral sign. This gives: 

I
et 
)WtR4)Ce- alto. 7 Air 	 • (3.12) A 

dalk 
4 	 l4 	iv* 

Although this expression, somewhat rearranged, has 

been used to good effect in the calculations of 

Walkley and co-workers, in view of the fact that the 

,pnvolloc of Q*4  leads to infinities in the integrands 
at R*1  and R*2'  it is felt that further comment is 

required as to its validity. 
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Let us consider the behaviour of the function 

Q* 2  in the region of the turning points R; and P. 

&pansion of q* about each turning point shows that 
q704  varies as (R*-R*1) 2 

-1 
1 for R* near R* and as (R*2-R*)2  

for R* near I. (We note as an aside that, if this were 

not the case, the two turning points would not be linear 

and the WKB method would not be apliicable anyway). 

Aasq since the leading term in each of the expansions 

of al7TR77.7a; about R; and R* are .T  independent of R*1  

the variation of (dw*(R*)/aqQ* 7  with R* in the 

regions near the turning points is the same as that of 

Q*4. Since the integration of functions varying as 

(R*-R*).4  and (R*2-R*)-4  leads to ones varying accord-

ing to the corresponding positive powers, the con-

tribution of the parts of the integrals arising from 

the regions close to the turning points approach a 

limiting value of zero. Therefore, in spite of the 

presence of the infinities in the integrands, the 

integrals themselves are finite and the use of (3.12) 

is justified. 

However, even though (3.12) is valid in itself, the 

presence of the infinities in the integrands makes it 

impossible to obtain the second derivative d2,1 n  /da1
2 

,  
by straightforward differentiation of this expression. 

Differentiation of (3.12), as it stands, would require 

that we find: 
R* 2 

	

d 	I 	rallw*(R*)1  Q*-1dR* 

	

dad 	! 
- 
A.* 

L y1 J 
(3.13) 
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and 

d 
da* 

Q*4dR* (3.14) 

Let us consider the second of these quantities, (3.14). 

Carrying out the differentiation we should obtain: 
-e z 	 (0X/A Ira 1, 	tAtieft! dv-%4  a dx, 

70144,4, L-Fre -v.—A* -F. (111(  oel 
(3.15) (LP* f 4' -) 	4-  cLkz 	'J 	ct 

A 	e:7 7471-1 l° 

Since R*1  and R*2  are the zeros of Q*I  the second and 

third terms in this expression are immediately seen 

to be of infinite absolute value. The first term is 

also ill behaved, by virtue of the appearance of 
Q*-3/2 in the integral, which in contrast to integrals 

involving Q*4, has infinite rather than zero con-

tributions in the regions of the turning points. 

Similarly, formal differentiation in (3.14) leads to 

terms of infinite value and we conclude that the use 

of (3.12) must lead to an undefined value for 
2. d A!1 n1  /da*2. ,  

In view of this, we make use of a suggestion by 

Munn (private communication) that application of 

Gauss-Mehler quadrature (see Kopal 1955, p.381 et sela.) 
to the evaluation of the integrals appearing in (3.12) 

avoids consideration of infinities in the integrands. 

Accordingly we make the substitution: 

R*= (R2  * - R1) cos 	+ 	2 ) 	(R* + R*1) 
	

(3.16) 
2 	2 



(3.14) now becomes: 
-t,-i 
L..kog=iitt-05"1114"'944)  

"" 

(LCit 	
r 	1 

-.0 
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(3.17) 
where, for convenience, A* has been written for 

(R*2-R*1)/2, B* for (R*1+R*)/2 and c for cosQ. The 

first non-vanishing terms in the expansions about 

Q = 0 and 9 =rrof both the integrands in 0417) are 

independent of A and, therefore, both functions are 

finite at the limits of the integration. Further, 

the substitution (3.16) does not give rise to infinities 

at any other point in the range of integration. Now, 

differentiation of (3.17) with respect to a; gives a 

defined expression for d r\j'ln  /da*. This is: 

127t 	.r• 	 -- r 	, r 	 e .1 3 	, • . 4  • : 	 LILA, 	:elf it ' • 	1.,41- 
•-•4 	 . 	wit 4  	2 	 f.,.4 	7=44 CA' p_n tn) 	s 4 

gx. 	f 	• a r 
) 314' 

* 	 W )kKj L It-11 
74, 	sit :.y.14/i 06/9 

')C 	6tj 	..1e4.414(Ct8',' 

ti r 	4 1 	 uk,,6 s- 6 
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(3,18) 

where the quantities I vet(v•i)( A.  A and 
734 	R 

J.L. 1 	6zA01 
L 	et= AN,t1,84 are given by: 

be( e493 1);0'kTii)1 
= re L 	1 	1 5:rt-Pf6WArk.e.W 

C/A' 	
(:1 F* 10.18a) 

13N 



and 

-171.774--  e-A4c4-64̀  
3(g4cti2.  

a61401 
Since: 

b(A*Ci-I34) 	 tai .4.. d_ 4_ kx, 
i,k, * 	(Lai* d l° 	3;4k ail' 

we also require the formulation of dR;/da; and dRI/dall. 

Remembering that R; and RI are the solutions of: 

QAI  = 	 + 
z 	R  2. Aopc-i. 

the 	

ge 

derivatives are given by: 
 

ri 	I ‘4-14 	) 	4,4k  
Axz 

da.,x 
z(cf---1)4 	1-1/4"teR:4-)1 

TZZ-L )0e=k,t5 	(3.18c) 

In view of the substitution (3.16) required to 

give a usable expression for d2>*10  / a*1'  2  in the 

calculations described here, all the integrals required 

have been evaluated using the Gauss-Mehler quadrature 

formula: 

1- 'w*(R*)1 
L 	 (3.18b) 
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I
f(ttose.lie 

0 

4t 
1=2EE1.41XIS(iji)T1 

jr:i 
(3.19) 

where 2n is the number of intervals over which integ-

ration is performed. 

Since sing = (1-cos , the integrals appearing 

in (3.17) and (3.18) are clearly in the form required 

for the application of formula (3.19). To transform 

(3.9) to the correct form we again make use of the 
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substitution (3.16) to give: 
77 
tec 	k,A..04ht. 	SA,M,GOtt9 

	
2.J X ( 3 . 20 ) 

Now, numerical solution of this equation gives the value 

ofk10 
for the chosen pair potential ref and any given 

values of 1, n, 1  a* and /l*. Use of this value of 1:1,n 
in (3.17) leads to the value of 0.*1 n /da*1  and sub- 

stitution of the calculated quantities )1/4* 	and 
114  

dX.*ln1 /da* in (3.18) gives the value of d 1 n /4a1 
2  

Further details of the numerical procedure used are 

left until Chapter 4. 
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Chapter 4 

Pairwise Additive Cell Model Calculations for Solid Neon, 
Argon, Krypton and Xenon  

The evaluation of characteristic parameters  

Before we can perform detailed calculations of the 

physical properties of the inert gases, we require 

reliable values of the adjustable parameters appearing 

in the pair interaction, ci(r), for each gas. In the 

absence of a unique determination of 0(r) by the second 

virial coefficient of the gas alone (Keller and Zumino 

1959), it appears necessary to turn to a consideration 

of the solid state itself if unambiguous values of 

the parameters suitable for solid state investigations 

are to be obtained. This is especially the case if we 

wish to study, for example, the variation of the 

lattice constant of the solid with temperature, which 

is so small that the values of the parameters used 

become almost critical (Hillier and Walkley 1965, 

Jenkins and Walkley 1965, Jenkins 1966). 

In contrast to the second virial coefficient, 

which by definition represents the interaction of 

only two molecules outside the perturbing field of 

all others in the system, the properties of the solid 

state are multiparticle in nature and require some 

assumption as to the additivity of the potential in 

their calculation. The assumption generally made is 

that the total potential of the system can be taken 

as the sum of all pair interaction and it is on this 

basis that the cell model treatment described in 
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Chapter 2 is developed. For the purposes of the present 

chapter, we take this assumption to be valid, but recog- 

nise that its use in the evaluation of potential parameters 

probably leads to an effective g((r), which reflects the 

influence of non-additive effects in the solid, rather 

than a true pair function. Since we test this effective 

function by calculations performed under the same assump- 

tion, our approach is at least self consistent and, 

so long as multibody effects are not overbearing, the 

use of such an approach would be expected to provide 

a fair indication of how well a chosen potential function 

represents the true inert gas pair interaction. The 

test of whether this is the case or not comes in the 

following chapter, where the influence of many body 

effects in the inert gas solids is subjected to greater 

scrutiny. For the present, we remark only that, if 

solid state data is to be used at all for characteris- 

ation purposes, it is considered desirable that such 

data should be used on its own rather than in conjunc- 

tion with second virial and other gaseous data (for 

examples of such an approach, see Corner 1948, Mason 

and Rice 1954). In view of the comments made above, 

not only is the use of such a mixture of solid state 

and gaseous data inconsistent in itself, but also 

precludes the consideration of non-addtivity in the 

solid by comparing solid state parameters with second 

virial parameters (see Chapter 5). 

The solid state data most commonly used for charac-

terisation purposes are L0(0), the crystal sublimation 

energy at 0°K and effectively zero pressurel and a00(0), 

the lattice constant (or, equivalently, V0(0) the molar 

volume) of the crystal at the same temperature and pretlsure 

(Corner 1948, Mason and Rice 1954, Zucker 1956, Hillier, 
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Islam and Walkley 1965). For two parameter potentials, 

sunhat: the LJ 12:6, these suffice to determine the 

interaction completely, the two appropriate equations 

teing: 

-1,0(0)/(NE)=1)4,0  iw*(01.; 0  ..;( 0) 	(4.1) 

(4.1) is given by setting -Lo(0) equal to Fo, the 

crystal free energy at 0°K for ao  =a00(0) and trans-

forming to reduced vatiables. (4.2) is given by partial 

differentiation of Fo with respect to volume at 

temperature, followed by setting ()Fo/bV)T(=-po) 

for ao  =8.00(0), substituting Na13/24  for V (see  

constant 

to zero 

(2.13)) 

and transforming to reduced variables. It is remembered 

that ao is related to al' the nearest neighbaut 

For the EXP-6 function, with its three parameters, 

rm  and al  a third property is required in addition 

to Lo(0) and aoo  (0) for a complete characterisation. In 

the light of recent single crystal, X-ray determinations 

of the isothermal compressibility 4T=-(1/V)(d1//h)T) of 

solid neon, argon and krypton by Simmons and co-workers 

- in the first place these results were privately 

communicated to us, but have since been published 

(Peterson, Batchelder and Simmons 1966, Batchelder, 

Losee and Simmons 1967, Urvas, Losee and Simmons 1967) 

- it was decided to use r/ (0)'  the 0
oK, zero pressure 

value of this quantity, as the third property for these 

substances. Using Lo(0), aoo 	vT (0) andli-0  (0), to  rm 

distance in the crystal, by a0/24=a1  (see (2.14)). 



69. 

and c7lare given by (4.1) and (4.2), together with: 

3 i 1 1* rm 	=ir 2 id2  Xo to + 1 d2w*(o))1 	(4.3) 
• 

1---‘ 
2 ,, (0) 	19a*i da*2 2 da* .:a*=a* (0) —ao 	%, 1"- 	1 	1 	• o oo 

(4.3) is obtained by double differentiation of Fo  

with respect to volume at constant temperature, followed 

by multiplication by V and putting V( 2F0/V2) =-V(po  AV) T 	T 

=1/xTo(0)  for ao  =a00(0). The equation is written in 

1 terms of a* by substituting V=Na3/21  transforming to 1 
reduced variables and putting: 

zed
A*  
,ko,o + 1 dw*(o)  i= Porm

3 
 = 0 for a =a (0) 

3a*2 ) dal 	2 dad  

For xenon, we turned to the bulk density p-V 

measurements of Packard and Swenson (1963) for a 

suitable third property. This data allows a value 

of &(0) to be derived, but, owing to the lower 

accuracy of the experimental method and the fitting 

procedure used to obtain )410(0), this does not approach 
the accuracy of the single crystal values for neon, 

argon and krypton. Therefore, we used the zero point 

isotherm of xenon and chose, as the third property, 

a 
oo 

 (p 
o)2  the value of the lattice constant at 0oK 

and the highest pressure, p0(=20kbar), under which 

measurements were carried out. In this case the 

appropriate equations are (4.1), (4.2) and: 

(-porm3)/E=(24/3a;2)Ed)c'0,40/da; i(dw*(o)d )..a*=a* (p ) o oo o 

(4.4) 
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where po=20kbar. (4.4) is the non-zero pressure 

equivalent of (4.2). 

A complete list of the various experimental data 

which we used is given in Table 1. 

Table 1  

EXperimental zero joint data used for characterisation 
purposes  

Substance 	L (0) i  a (0) 	'Y.., (0) 
, 

a
oo(20kbar) - 	, (cal°mole-1) 1)  

(cedyne
;T
o.")x1011 	(1) 

Neon 448a)  4.4637c°  9.0d)  
Argon 1846b) 5.51110  3.75e)  - 
Krypton 2666b) 5.6459f) 2.91f)  - 
Xenon 3828c)  6.1510 - 5.658h)  

a) clusiusi  Flubacher, Piesbergen, Schleich and 
Sperandio (1960); 

b) Beaumont, Chihara and Morrison (1961); 

c) Whalley and Schneider (1955); 

d) Batchelder, Losee and Simmons (1967); 

e) Peterson, Batchelder and Simmons (1966); 

f) Urvas, Losee and Simmons (1967); 

g) quoted by Pollack, (1964) from the results 
of Sears and Klug (1962) and Bolz rend Mauer 
(unpublished work); 

h) Packard and Swenson (1963). 

The results in d), e) and f) were communicated to 

us prior to their publication. 
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For the solution of each appropriate set of 

simultaneous equations, we used the extended Newton-

Raphson technique described in Appendix 3. In con-

junction with the WKB approximation for the evaluation 

of 0 0 and its derivatives, this provides a simple , 1  
and rapid method of evaluating the parameters to any 

desired degree of accuracy, so long as reasonable 

first guesses at the values of the parameters are 

possible. It is eminently suitable for machine com-

putation and has been programmed by the author for the 

characterisation of both the LJ 12:6 function, using 

(4.1) and (4.2), and of the EXP-6 function, using 

either (4.1), (4.2) and (4.3) or (4.1), (4.2) and (4.4). 

A brief outline of the numerical procedure used 

by the programs is as follows. The values of the 

appropriate experimental zero point properties, the 

first guesses at the parameters and the molecular 

weight of the substance under investigation are input 

as data. This data is used to calculate the first 

approximation to the quantum parameter A* (see (2.28)) 

and the reduced nearest neighbour distance a; correspond- 

ing to the value of a00(0). From this value of a* 1' 
values of w*(o), dw*(o)/da; and, if necessary, 

d2w*(o)/da;2  are calculated. For the LJ 12:6 function, 

expression (2.30) is used for this purpose, together 

with the values of S(12) and S(6) given by Kihara and 

Koba (1952). For the EXP-6 function, the appropriate 

expression is (2.32), the terms corresponding to 

attraction in ci(r) being calculated using the same 

value of S(6) as that used for the LJ 12:6 function 

and those corresponding to repulsion by summing over 

sufficient shells of neighbours to give a specified 
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accuracy. 

The next step is the calculation of "),* 	d).* 	/da* olo 	olo 	1 
and, if necessary, d2 	

o o /da;2 for the value of a; 
l   

corresponding to ao= 
aoo  (0). In these calculations, 

w*(R*) and its derivatives are calculated for a number 

of shells of neighbours specified in the input data, 

the expressions used to give w*(R*) for the LJ 12:6 

and EXP-6 functions being (2.35) and (2.37a) respectively. 

Using a first approximation to X,o o, either read in as 

data or calculated in the program through the harmonic 

approximation, the turning points R; and RI are roughly 

located by scanning the function Q* (see (3.9a) and 

(3.9b)), noting where it changes sign and applying 

the method of "similar triangles". The values of R* 

and R* are then refined to a specified accuracy by 

applying a Newton-Raphson iterative technique to the 

solution of equation (3.9b). Using the refined values 

of the turning points, a better value of )* is 

calculated by the application of a Newton-Raphson 

technique to equation (3.20). The necessary integrations 

are carried out using the Gauss-Nehler quadrature 

formula (3.19) for some specified number of intervals. 

The values of the turning points appropriate to the new 

value of k* are calculated from the old values of 
olo 

R* and R*2 
 by again applying a Newton-Raphson technique 

to equation (3.9b). The new values of R1* and R* are 

then employed in the calculation of an even better 

value of 	, o
. The procedure is repeated until X* 

10 	 olo 
is iterated to some specified accuracy. dl* /da* -loop 1 
is then calculated using (3.17)and, if required, 

d2j‘* olo1  /da*2 using (3.18), the necessary integrations 

being performed in the same manner as those in the 
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calculation of \,!(:)(3. In the case of the character-

isation of the EXP-6 function for xenon, dw*(o)/da* 1 
and c:1*o o1  /da* are then calculated in the same way 

as before, but for the value of a* corresponding to 

a 
o  =a  oo  (p o=20kbar). 

Now - making use of the notation used in Appendix 3 
- the quantities Fi'.( Plo"."Pno)  (i=19 ...,n) are 
calculated for the appropriate set of equations. By 

adjusting in turn the first guess at each parameter 

and repeating the calculations, the difference quotients 

(6F./0. )o  (i=1,...,n; j=1,...,n) are evaluated and, 

thence, by the solution of equations (A.3.4), better 

values of the parameters obtained. The whole procedure 

is repeated until the parameters have been iterated to 

a specified accuracy. 

In our calculations the parameters were iterated 

such that each one was accurate to at least 10-2%. 

The iteration accuracy for the evaluation of the turning 

points R12 * and R* was 10-3% and that for the evaluation 
of \* 	, 10-2%. The integrals required were calculated 

using 10 Gauss-Mehler quadrature intervals, which 

proved capable of giving \* 
 

to an accuracy of 10-3%.  

The calculation of w*(R*) was for three shells of 

neighbours, it being found that the use of "three 

shell" parameters in the "three shell" calculation of 

thermodynamic properties (see following section but one) 

leads to results insignificantly different from calcul-

ations involving more distant neighbours. In the 

characterisation of the EXP-6 function, the repulsive 
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parts of the static lattice terms were calculated to 
.an accuracy of not less than 10-2  %. 

The results of the calculations for the EXP-6 

function are given in Table 2 and those for the 

LJ 12:6 function in Table 3. 

Table 2  

EXP-6 parameters derived from the pairwise additive  
consideration of the solid state at 0°K  

Substance 6(ergbc1015  rma) ,V=h/((m,03rd, 

Neon 5.462 3.090 16.13 0.5012 

Argon 17.14 3.808 14.23 0.1632 
Krypton 23,89 4.062 14.84 0.08946 

Xenon 32.77 4.444 13.55. 0.05578 

Table 3 

LJ 12:6 parameters derived from the pairwis8 additive  
consideration of the solid state at 0 K  

Substance r "i-,(erg)x1015  0-(51) A*=h/I.S I 1 cr.! 
Neon 5.015 2.774 0.5826 

Argon 16.50 3.401 0.1862 

Krypton 22.75 3.636 0.1024 

Xenon 31.98 3.960 0,06337 

The EXP-6 and LJ 12:6 potentials given by these 
parameters are plotted as the full and dashed curves 

respectively in Figures 4, 5, 6, 7. 
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Fig. 7. Xenon pair potential energy, ci, divided by Boltzmann! 

constant, k, as a function of intermolecular 
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It is seen that, in the case of each of the sub-

stances considered here, the pair potential given 

by the EXP-6 function characterised by solid state 

data has a somewhat lower, slightly narrower bowl 

than that given by the corresponding LJ 12:6 function. 

The spurious maximum in the EXP-6 potential  

In Chapter 2 it was pointed out that, due to the 

spurious maximum in the EXP-6 pair potential at r*=r ax,  

there is a similar anomaly in the reduced cell potential, 

w*(R*), at some reduced distance, R*=RIax. For this 

reason, 17777 is written in two parts given by (2.37a) 

and (2.37b), in direct analogy with the description of 

91*(r*) by (2.23a) and (2.23b). 

For any given value of (, rMax is given by the smaller 

root of the transcendental equation: 

-dex10(-dr*) + r*-7  = 0 	(4.5) 

the larger root, r*=1, being the position of the 

minimum of 9;*(r*). (4.5) is straightforwardly solved 

by numerical methods and values of rl'ax  and 91*(q.lx), 

the reduced pair energy at the maximum, have been 

tabulated for physically realistic values of cle. by 

Hirschfelder, Curtiss and Bird (1954), p.34. Their 

results are reproduced in Table 4. 
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Table 4 

The position and energy of the spurious maximum in the  
EXP-6 potential  

0<, r* max fi*(r* 	) max 

12.0 0.30247 1705 
12.5 0.27304 3518 
13.0 0.24697 7110 
13.5 0.22382 14115 
14.0 0.20319 27585 
14.5 0.18476 53170 
15.0 0.16825 101222 

From this table we see that r* 	decreases and g(*(r* ) max 	max 
increases with increasing o‹, but that, even at the 

lowest value ()fa, quoted (i.e. 12), the value of r* x  

represents an intermolecular distance much less than 

the equilibrium separation and the maximum appears 

well up on the repulsive branch of the potential. 

Consequently we should expect that the presence of 

the maximum in ;777, if it is to have any effect at 

all, would influence the calculation of only the higher 

lying energy levels. For this reason the zero point 

calculations described in the previous section were 

performed under the assumption that the maximum could 

be ignored. 

The value of R*max  is given by the largest root of: 

6,,,*(R*)  = opc 	rA cosh(e(R*)-sinh(ccR*)1 

0<-6  1....oe IR* 	 R* 
T(4)6 	T' (5)6 =0 ..dR(-1)sinhXR*) 

a* 	8a1R*2 2a*1R* (4.6) 
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where (4.6) is given by differentiation of (2.37a), 

A being defined by (2.38), R(n) by (2.33), T(4)6  

by (2.36) and T'(5)6  by: 

T'(5)6= 
'1 I 
z.(a!/a!)-1  !:(611-R*)-5-(at+R*)-51 	(4.7) 

The value of R*max  depends on two variables, 0( and 

However, for any fixed value of a;, we should ex-

pect, from the results in Table 4, that the values of 

R*m 	and w*(R ax * 	) would increase with increasing 0( and, ax 	m 
consequently, we restrict our attention to the lowest 

value ofA: relevant to the present work. Using(-13.55 

(see Table 2), the rough solution of (4.6) for a;=0.8 

gives R 	"-'0.61 and w*(R* )'5x103 and, for a1*=1.15, max— 	max  
R* Z ,̂  0.98 and w*(R* )3x103. Since all the solid max max 
state densities appropriate to the present calculations 

lie between those represented by a; values of 0.8 -and 

1.15 and since, for fixed Ce, both RIax  and w*(R* ) max 
prove to be monotonic functions of a*1'  these values 

may be considered as extreme limits. We see that 

in both cases the value of R*ax  is well beyond the 

reduced cell radius, Mc (=0.55267a; - see Chapter 2), 

and the energy at the maximum is so high as to be 

well above the highest energy level that sould ever 

be required for an accurate evaluation of the partition 

function, ZNQu. In view of this we felt it quite safe 

to ignore the maximum in w*(R*) altogether and all our 

solid state calculations have been performed regarding 

w*(R*) to be given solely by (2.37a). 

The only problem that this approach introduced 

was the purely numerical one of correctly locating 

the turning points R; and RI by scanning the function 
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Q*. For the EXP-6 function, Q*, instead of changing 

sign only 'twice as it should do, has a further zero 

beyond RI caused by the maximum in 7;757. Now, it 

is possible, if the choice of the scanning interval 

is too large, that the first turning point RI' can 

be missed altogether and the turning points taken to 

be R*
2  and the position of the anomalous zero.. This 

possibility was ruled out by programming the scanning 

sequence in such a way that the zeros of Q* obtained 

are taken to be R*1  and R*2  only if the changes of sign 

across them are correct, i.e. a change from negative to 

positive across R*1  and from positive to negative across 

R. If this is not the case, the interval is automatic-

ally increased in the program and the scanning process 

repeated until the correct turning points are obtained. 

In the static lattice terms, there is no possibility 

of the spurious maximum affecting the calculations. 

For the densities appropriate to our calculations, the 

nearest neighbour distance in the crystal is always 

sufficiently large for the maximum to be ignored com-

pletely. 

The thermodynamic properties  

Having calculated the values of the parameters 

appearing in the LJ 12:6 and EXP-6 pair interactions 

and having assured ourselves that the spurious maximum 

in the EXP-6 function may be safely ignored in solid 

state calculations, the thermodynamic properties of 

solid neon, argon, krypton and xenon were calculated 

through the expressions (3.7a) - (3.7h). 
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Since the expressions (3.7a) - (3.7h), as they 

stand, assume volume and temperature to be the independ-

ent variables, whereas experimental measurements are 

invariably made at fixed pressure and temperature, 

comparison between theory and experiment requires the 

solution of (3.7e) for V* at fixed p* and T*. Use of 

this value of V* together with the appropriate value 

of T* then gives other thermodynamic properties. The 

solution of (3.7e) for V* may be performed graphically 

(Hillier and Walkley 1965, Jenkins 1966), but in the 

work described here use was made of a Newton-Raphson 

iterative technique. This allows the calculations to 

be peformed completely by machine and to any desired 

degree of accuracy. The iteration formula may be 

written: 

Vk*+1 =V*  L 	T Pk(V*IT*)ip*-p*(VI,T*)13 IL  (4.8) 

where V* and V* are, respectively, kth and (k+1)th k+1 
approximations to the reduced volume V* corresponding 

to a reduced pressure p* and a reduced temperature T*, 

and p*(VI,T*) and>44(VIIT*) are calculated through 

(3.7e) and (3.7f) for a reduced volume VI and reduced 

temperature T*. 

The numerical procedure for the calculation of 

the thermodynamic properties was incorporated in the 

same computer programs as were used for the determination 

of the potential parameters. It is briefly summarised 

below. 

The values of p* and T* for which calculationS 

are to be performed are input as datum numbers, together 
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with an approximate value of V*, the value of the quantum 

parameter A* and, in the case of EXP-6 calculations, the 

value of the parameter a. After calculating the value 

of a
1* corresponding to the input value of V*, the static 

lattice terms, w*(o), dw*(o)/da; and d2w*(o)/da;2 are 

evaluated from whichever of (2.30) and (2.32) is approp-

riate, using a similar approach to that employed for the 

calculation of the static lattice terms in the character-

isation procedure. Following this, the derivatives of 

w*(o) with respect to a; are converted to those with 

respect to V* by use of relations of the same form 

as (3.10) and (3.11). 

Now the reduced energy levels \* ,v1In 
n=0,1,2,...) and their first and second derivatives 

with respect to V* are calculated for the value of 

a* corresponding to the input value of V*, using 

whichever of (2.35) and (2.37a) is appropriate for the 

evaluation of w*(R*), this quantity being calculated 

for a number of shells of neighbours specified in the 

input data. For any (11n), the values of 0_i  , ln 
d)k!lln /da*1  and d2)1*1 n1  /da*2  are calculated through 

the WKB relations (3.20), (3.17) and (3.18), using the 

same iteration procedure for the solution of (3.20) and 

the same method of quadrature as was employed for the 

calculation of the 1=0, n=0 energy level terms in 

the determination of the potential parameters. The 

derivatives of 1* 	with respect to a* are transformed 

to the corresponding ones with respect to V* by use of 

(3.10) and (3.11). 

The organisation of the computation of the energy 

level terms is such that calculations are performed 
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for n=01 1,2,...etc. keeping 1 constant at 0,1,2,...etc. 

in turn. An approximate value of1:1`o o  is either 

input as a datum number or calculated in the program 

using the harmonic approximation. The first approx-

imation to i*1 o  is calculated by multiplying the •-, 
previously iterated value of X'o 

o  by a constant •  
specified in the input data. For 1>1, the first 

approximation to 	 0.ia  given by linear extrapo- 

lation of the values of • \*1-2 o and  A"1-1o° The 1  
approximate values of the turning points, R; and RI' 

corresponding to ):1 o foreach value of 1 are calculated. 

by scanning the function Q* (see (3.9a)), noting where 

it changes sign and applying the *method of similar 

triangles". For *01  the approximate value of A:0  / lln 
is taken as the previously iterated value of N! 1,n-1 
and the approximate values of R; and -J.R as those 

corresponding to ):,!'1 n-1 	For each 1 value, the 

increase of n is terminated when, for some value of 

n, ,*1,n is greater than.or equal to a qtantity, "max' 
input as a datum number. When this is the case, the 

eigenvalues and their volume derivatives corresponding 

to the current value of 1 are stored, n reset to zero, 

1 increased by unity, and the calculations continued. 

The complete termination of eigenvalue calculations 

occurs when, for some value of 1' " \* 1 o •-•*. max'  
Following this, the values of -!1,n'  d)1 1 n/dV* and 
2 . 	2 , 
d 1n/dV* 	

n=0,1,2„...) are removed l  

from store, the appropriate sums over 1 and n formed 

and checked to be accurate to a specified accuracy limit 

and the iteration formula (4.8) applied to give a better 
value of V*. 
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The above procedure is repeated until V* is 

iterated to an accuracy specified in the input data, 

the first approximation too 
o  for the kth value 

of reduced volume, V;, being taken as the value of 

appropriate to the (k-1)th value, Vl*c_i. Using 
the values of 	__/dV* and d2  n' Ns

* 
 1 xi/ dr-2 

 

(1=0,1,2,...; n=0,1 1213,...) appropriate to the final 

value of V*, other thermodynamic properties are 

evaluated by forming the appropriate sums over 1 and 

n and using expressions (3.7a) to (3.7h). 

The results of the calculations for the EXP-6 

and LJ 12:6 potential functions are tabulated in 

Appendix 4 and plotted as the full and dashed curves 
respectively in Figu. 8a-8:; for neon, 9i,..92 for 

argon, 10a-10g for krypton and 11a-11g for xenon. 

In each case, the figures labelled a-f give plots 

of the zero pressure values of the lattice constant, 

3.0, isothermal compressibility, )41,(=-(1/V) ()V/4)1,), 

volume expansivity, 0(=1/V)()V/)T) ), isochoric 

specific heat, Cv, isobaric specific heat, C , and 

entropy, S, respectively as functions of temperature, 

T. Those labelled g give the variation of molar 

volume, V, normalised by the zero pressure value, V(0), 

with pressure, p, at a specified temperature - 4°K for 

neon, 77°K for argon and krypton and 150°K for xenon. 
The reason a plot of V/V(0) versus p is given rather 

than one of V versus p,is that the removal of temper-

ature dependence at zero pressure by normalisation 

with respect to V(0) gives a clearer picture of the 

effect of pressure. 
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The results were obtained by determining sufficient 

eigenvalues to cause the required sums over 1 and n to 

converge to an accuracy of at least 10-3%and using an 

iteration accuracy of 10-2% for the evaluation of V. 

They are consistent with the results of the character-

isation calculations in that the parts in the EXP-6 

static lattice terms corresponding to repulsion were 

calculated over sufficient shells of neighbours to 

give an accuracy of 10-2% and the reduced eigenvalues 

were iterated to an accuracy of 10
-2
% using values of 

the turning points iterated to 10-3%. Again 10 Gauss-

Mehler quadrature intervals proved sufficient for the 

accurate evaluation of the integrals required and the 

results are for three shells of neighbours included in 

the calculation of 77P777, whichl as mentioned before, 

is sufficient to lead to results insignificanly diff-

erent from those given by calculations involving more 

distant neighbours. 

Before detailed calculations of thermodynamic 

properties were undertaken, the accuracy of the WKB 

solution of the EXP-6 radial equation was verified 

by comparison with the results given by the "exact" 

finite difference technique given by Hillier, Islam 

and Walkley (1965) and fullrdescribed in Appendix 2. 

The comparison was made for solid neon at the triple 

point, the finite difference calculations being 

performed by use of the parameters given in Table 1 

and the value of V* given by WKB calculations. It was 

found that agreement between the WKB and finite 

difference eigenvalues was close for all 1 and n 

values considered (1=0-12, n=0-6) and that the 

accuracy of the WKB approximation, as expected from 
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its asymptotic nature (see Chapter 3), increased with 

increasing 1 and n. For 1=00=0 the difference between 

the two results was 1%, for 1=001=6, 0.1% and for 

1=12,n=0, 0.06%. Differences of this order in the 

eigenvalues lead to insignificant changes in the 

values of thermodynamic properties which are not 

dependent on volume derivatives, the difference 

between the results of the two calculations for U,  

S and Cv being only 0.5%, 0.25% andA0.1% respectively. 

Since the effect of anharmonicity is most pronounced 

in solid neon at its triple point and it is known that 

the WKB method becomes progressively more exact as the 

vibrations become more harmonic (see Chapter 3), we 

may be sure that the results from our other WKB 

calculations are accurate within the limits of the 

cell theory. As mentioned in Chapter 3, the 

accuracy of the WKB approximation in LJ 12:6 calcul-

ations has been established by Hillier and Walkley 

(1964). 

The experimental data plotted in Figures 8a-llg 

are tabulated in Appendix 5 and are, in the author's 
opinion, the most reliable at present available. For 

the sources from which they are taken, the reader is 

referred either to the figures themselves or to 

Appendix 5. The experimental points in graphs of 

Cv 
and S versus T do not come directly from experi-

mental measurements but are calculated through the 

thermodynamic relations: 

and 

Cp  =C v 
 + 12 TV/y,„T 

S= 	(C /T)dT 
j0 P  
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respectively, using experimental values of Cp,p, V 

and y. Since it was felt that, in the case of krypton 

and xenon, the experimental data available are not 

sufficiently accurate for a reasonable estimate of 

12TV/'/)4,T to be made, no experimental points are given 

in the Cv versus T plots for these substances. Experi-

mental error limits have been indicated where these are 

quoted and appreciable on the scale of the figures. 

For the moment, the reader is asked to ignore the 

dashed-dotted curves in Figs. 8a-11g. 
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Fig. 8a. 	Solid neon - lattice constant, ao, as a function 

- 	of temperature, T, at zero pressure 

4.51- 

4.53 

4.527 

Full curve - EXP-6 cell model assuming pairwise 7 
additivity.  

Dashed curve - LJ 12:6 cell model assuming 	/ 
pairwise additivity. yi 

Dashed-dotted curve - EXP-6 cell model with 

7 static lattice. / 
triplet dispersion energy included in the 

0- Experimental data of Batchelder, Losee / 
and Simmons (1967). /j/ 
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Fig.8b. Solid neon - isothermal compressibility,XT, as a function 
of temperature, T, at zero pressure 

Full curve 	EXP-6 cell model assuming 
pairwise additivity. 

1.7 - Dashed curve - LJ 12:6 cell model assuming 
pairwise additivity. 

Dashed-dotted curve - EXP-6 cell model 
with triplet dispersion energy included 

in the static lattice. 
0- Experimental data of Batchelder, 

Losee and Simmons (1967). 
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Fig.8c.Solid neon - volume expansivity, p, as a function 
of temperature, T, at zero pressure 

Full curve - EXP-6 cell model assuming pairwise 
additivity. 

Dashed curve - LJ 12:6 cell model assuming 
pairwise additivity. 6 /i, 

Dashed-dotted curve - EXP-6 cell model 
with triplet dispersion energy included 	

./ in the static lattice. 
/ 

	

0 - Experimental data of Batchelder, 	/  

	

Losee and Simmons (1967). 	/0/ 
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Fig.8 . Solid neon - isochoric'specific heat, - Cvl'as a function 
. 	of temperatures .T, at zero pressure 

Full curve - EXP-6 cell model assuming pairwise 
additivity. 

Dashed curve - LJ 12:6 cell model • 	' C) 

	

assuming pairwise additivity. 	//// 
Dashed-dotted curve - EXP-6 cell 	- / / 

/ 

model with triplet dispersion 
energy included in the static 

' 	lattice. 	/ . 

() - Calculated by Batchelder, 	
7 

 
Losee and Simmons (1967) using 	/ 
the experimental C data of 	

// 12- Fenichel and SerinP(1966) and 
 

Fagerstroem -and Hallet (1965) 	 // 
together with their own exper- 	/ / imental values of 13, y,2  and V. // 

1/ 

8 	12 	lb 
	

20 	24 
T(°K.) 

14_ 



0 

Full curve - EXP-6 cell model assuming pairwise 
additivity. 

Dashed,  curve - LJ 12:6 cell model assuming 
pairwise additivity. 

Dashed-dotted curve - EXP-6 cell model 	/ 
with triplet dispersion energy included 	////' 

• in the static lattice. 
0 - Experimental ej data of Fenichel and 	ii  
Serin (1966) and Fagerstroem and Hallet 
(1965) quoted by Batchelder, Losee and 	4. 

Simmons (1967). 	// 
0/1 

O // 

c) // 
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T( K.) 
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Fig.8e0 Solid neon - isobaric specific heat, C 	as a function 
of temperature, T, at Lro pressure 
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Full curve - EXP-6 cell model assuming pairwise 
additivity. 

0 Dashed curve - LJ 12:6 cell model assuming 
pairwise additivity. 

Dashed-dotted curve - EXP-6 cell model 	0 
with triplet dispersion energy included 

in the static lattice. 
E) - Calculated from the experimental 
C data of Fenichel and Serin (1966) 	/f! 
aid Fagerstroem and Ballet (1965) quot-- 
ed by Batchelder, Losee and Simmons 

(1967). 
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Fig.'8f. Solid neon - entropy,.S, as a function of temperature, 

T, at zero pressure 
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Fig.8~ Solid neon - molar volume t V, normalised by the zero 

pressure molar volume, veo), as a function 
of at 4o

K. 
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'Full curve - EXP-5 colI model assuming pairwise 
additivity. 

\ 
Dashed curve - LJ 12:6 cell model assuming pairwise 

additivity. 
\ Dashed-dotted curve - Exp-6 cell model ~dth triplet 
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dispersion energy included in the static lattice. 
-0- Experimental da~a of Stevlart (1956). 
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Full curve - EXP-6 cell model 
assuming pairwise additivity. 

Dashed curve - LJ 12:6 cell model/ 
.assuming pairwise additivity. 

Dashed-dotted curve - EXP-6 cell / 
model with triplet dispersion 
energy included in the static 

lattice. 
E) - Experimental data of 

Simmons (1966). / 
Peterson, Batchelder and 

if  
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Fig.9a. Solid argon - lattice constant, ao, as a function 
of temperature, T, at zero pressure 
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Fig. 9b. Solid argon - isothermal compressibility,X2, as a func-
tion of temperature, Ti  at zero pressure 

Full curve - EXP-6 cell model 
assuming pairwise additivity. 

Dashed curve - LJ 12:6 cell model 
assuming pairwise additivity. 

Dashed-dotted curve - EXP-6 cell 
model with triplet dispersion 	/ 
energy included in the static 

lattice. q 
- Experimental data from 

Peterson, Batchelder and 
Simmons (1967). 	if/ 
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Fig.9c. 
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Solid argon - volume expar.sivity, J, as a function 
of temperature, T, at zero pressure 

22 
Full curve - EXP-6 cell model 
assuming pairwise.additivity. 

Dashed curve - LJ 12:6 cell model,  
assuming pairwise additivity./ 

Dashed-dotted curve - EXP-6 cell/ 
model with triplet dispersion / 
energy included in the static Vvv 

lattice./ 
0- Experimental data of / 
Peterson, Batchelder and 	d 

Simmons (1966). 1/ 
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Full curve - EXP-6 cell model assuming 
pairwise additivity. 

Dashed curve LJ 12:6 cell model assuming 
pairwise addi ivity. 
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Fig. 9d,Solid argon - isochoric Specific heatl 'e, as a func-
tion of temperature, T, at

v 
 zero pressure. 

28 
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Dashed-dotted curve - EXP-6 cell 
model with triplet dispersion 
energy included in the static 

lattice. 
-CD- Calculated by Peterson Bat-
chelder and Simmons (1966) using 
the experimental C data of Flu-
bacher, LeadbetterPand Morrison 
(1961) together with their own 
experimental values of p and V 

' and their quoted values of XT. 
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Fig.9e. Solid argon - isobaric specific heat, C , as a function 
of temperature, T, at Eero pressure 
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Full .curve 	EXP-6 cell model 
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Dashed curve - LJ 12:6 cell model 0 
assuming pairwise additivity. 

Dashed-dotted curve - EXP-6 	E) // 
cell model with triplet dis-
persion energy included in 

the static lattice. nv  

-()- Experimental data of 
Flubacher, Leadbetter and 
Morrison (1961) quoted by 
Peterson, Batchelder and 
Simmons (1966). 
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-0-- Calculated from the exp- 
erimental C data of Fluhacher, 
Leadbetter Rad Morrison (1961) 
quoted by Peterson, Batchel- 

der and Simmons (1966). 
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Fig. 9f. Solid argon - entropy, S, as a function of temperature,. 
T, at zero pressure 

Full curve - EXP-6 cell model 
assuming pairwise additivity. 

Dashed curve - LJ 12:6 cell 
model assuming pairwise add- 

itivitv. 	./1 
Dashed-dotted curve - EXP-6 0// 
cell model with triplet dis-  
persion energy included in 0. 

the static lattice. / 
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'-

Fig. 9g. Solid argon - molar volume, V, normalised by the zero 
pressure molar volume, V(O), as a funotion o 

of pressure, p, at 77 K. 
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FigjO~Solid krypton - lattice co~sta~t, a , as a fu~ction o 

of tewperature, T, at zero presGure 
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F3. 43.10b. Solid krypton - isothermal co=ressibility,;4 as a T' 
function of temperature, T, at zero 

pressure 

7( 
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(cm"dyne-1) 

x1011  

Pull curve - EXP-6 cell model assuming pairwise 
additivity. / 

Dashed curve - LJ 12:6 cell model assliming 
pairwise additivity.,/ 

Dashed-dotted curve - EX?-6 cell model with /i 
triplet dispersion energy included in the 	/ / 

static lattice. // 
0 - Experimental data of Urvas, Losee and 

Simmons (1967). /./ 
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Fig.10c. Solid krypton - volume expansivity, pi  as a function 	• 
of temperature, T, at zero pressure 

Full curve - EXP-6 cell model assuming pairwise 
additivity. 

Dashed curve - LJ 12:6 cell model assuming 
pairwise aaaitivity. 

Dashed-dotted curve - EXP-6 cell model with 
triplet dispersion energy included in the ir 

static lattice.'" 
E)- Experimental data of Figgins and e 

Smith (1960). 
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Fig.iod.. Solid i•crn- isochoric. specific heat, Cv
, as a 

function of temperature, T, at zero 
pressure 

Cv 
(cal mole 

) 

Full curve - EXP-6 cell model assuming 
pairwise additivity. 

Dashed _curve - 1,1 12:6 cell model 
assuming pairwise additivity. 

Dashed-dotted curve - EXP-6 cell model 
with triplet dispersion energy included 

in the static lattice. 
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Fig.10e. Solid krypton - isobaric specific heat, C, as a n  

function of temperature,T-, at 
.zero pressure 

11- 

Pun curve - EXP-6 cell model assuming pairwise 
additivity. 

Dashed curve - LJ 12:6 cell model assumin17- 
pairwise additivity. () 

Dashed-dotted curve - EX?-6 cell model with 	
24 triplet dispersion energy included in the 

static lattice. 
0- Experimental data 	Beaumont, 

Chihara and Morrison (1961)..„2  
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Fig. 10f.Solid krypton - entropy, S, as a function of temperature, 
T, at zero pressure 

14 
Full curve - EXP-6 cell model assuming pairwise 

additivity. 
Dashed curve - LJ 12:6 cell model assuming 

• pairwise additivity. 
Dashed-dotted curve - EXP-6 cell model with 
triplet dispersion energy included in the 0,4% 

static lattice .,17  
/4/ 0- Calculated from the experiment- 

1 C data of Beaumont, Chihara 
and Morrison (1961). 04% 
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Fig.10g.Solid krypton - molar volume, V, normalised by the zero 
pressure molar volume, V(0), asoa function 

of pressure, p, at 77 K. 
1.0 

Full curve - EXP-6 cell model assuming 
pairwise additivity. 

Dashed curve - 1,..5 12:6 cell model assum-
ing pairwise additivity. 

Dashed-dotted curve - EXP-6 cell model 
with triplet dispersion energy inclu-

ded in t;-le static lattice. 
\(b\ -0- Experimental data of Stewart 
\ 	 (1955). 
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Fig.11a.Solid xenon - lattice constant, ao, as a function 
of temperature, T, at zero pressure 

6.38 
Full curve .7. EXP-6 cell model assuming 

pairwise- additivity. 
Dashed curve - ZJ 12:6 cell model assuming 
pairwise additivity or EXP-6 cell model 
with triplet dispersion energy included 

in the static lattice. 
0- Experimental data of Sears and 

Klug (1962). 

A- 	of Packard and / 
Swenson (19,S3). / 

data of Eatwell 
and Smith (1961). / 

Where ambiguous, the error bars 
refer to the data of Packard and 

Swenson. 
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- Fig.11b. Solid xenon 	isothermal comtressibility1 %,rli as a 
function of temperature, T,. at, zero 

pressure 

Full curve - EXP-6 cell model assuming 
pairwise additivity. 

Dashed curve - LJ 12:6 cell model assuming 
pairwise additivity. 

Dashed-dotted curve - EXP-6 cell model 
with triplet dispersion energy included 

in the static lattice. 
E)- Experimental data of Packard and 

Swenson (1963). 
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Fig.110  SOlid xenon - volume excansivity, p, as a function 
of temperature, T, at zero pressure 

12 
Full curve - EXP-6 cell model assuming.  

pairwise additivity. 
Dashed curve - LJ 12:6 cell model 

assuming pairwise additivity. 
Dashed-dotted curve - EXP-6 cell model 
with triplet dispersion energy in-

cluded in the static lattice. // 
() - Experimental data of Sears 

and Klug (1962). // 
- Experimental data of 	4/ 

,/' Packard and Swenson (196)).// 
iv  

10 

-0- Experimental data of 
Eatwell and Smith (1961). 
Where ambiguous, the error 
bars refer to the data of 

Packard and Swenson 
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Fig.11d.Solid xenon - icochoric specific heat, Cv, as a 
function of temperature, T, at zero 

pressure 

Zull curve - EX:P-6 cell model assum- 

i 	ing pair wise additivity. 
Dashed curve 	LJ 12:6 coil model 

assuming pairwise additivity. 
I Dashed-dotted curve - EXP-6 cell' 

11 model with triplet dispersion energy 
included in the static lattice. 
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Fig.11eSolid xenon - isobaric'specific heat, etaS a 115. 

function of temperature,T~ at zero 
pressure 
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Full curve - Exp-6 cell model assuming ~ 
pairwise additivity_ 

Dashed curve - LJ 12:6'coll model ~ 
assuming pairwise additivity. ~. 

Dashed-dotted curve - Exp-6 cell ~ ~. 
model ~dth tr~plet dispersion ~. 
energy included in the static ..£: . 
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Fig.11fosolid xenon - entropy, S, as a fU:lction of tcnpcraturo, 
T, at zero pressure 
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Fig.11g. Solid xenon - molar volume, V, normalised by the zero 
pressure molar volume, V(0), as a function 

of pressure, p, at 130°i;. 
1.00 .

0 	 

  

Tull curve -- EXP-6 cell model assuming pairwise 
additiVity. 

Dashed curve 	LJ 12:6 cell model assuming pairwise 
additivity. 

Dashed-dotted curve - EXP-6 cell model with triplet 
dispersion energy included in the static lattice. 

-07 Experimental data of Packard and Swenson 
(1963). 
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Discussion of results  

Solid neon: 

In Fig. 8a it is seen that the results given by 

the Li' 12:6 cell model for the variation of the lattice 

constant of solid neon with temperature are in good 

agreement with experiment. On the other hand, the 

EXP-6 results are appreciably too low at temperatures 

above 8°K. Below this temperature, the agreement 

between both theoretical curves and the experimental 

results is good, but this is not surprising since the 

T=0 value of the lattice constant was one of the 

properties used to characterise the potential functions 

in the first place. 

Fig. 8b shows that, in the range of temperature 

from 0°K to 16°K, the EXP-6 model gives results for the 

isothermal compressibility of solid neon in agreement 

with experiment. 	The InT 12:6 results are too large in 

this region. This is in direct contrast to the lattice 

constant results, but is not entirely unexpected when 

it is remembered that the T=0 value of;ICT  was used as 

the third property in the determination of the EXP-6 

parameters, whereas characterisation of the two para-

meter ICJ 12:6 function did not require the use of such 

a property. At higher temperatures than 16°K the 

experimental XT  increases more rapidly with temperature 

than the EXP-6 values and at 18°K the error bar 

associated with the experimental result spans both 

theoretical curves. At 20°K the experimental', 

is higher than both of the theoretical values but 

nearer to the Lj 12:6 result. 
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Referring to Fig. 8c, it is clear that the values 

of the volume expansivity of solid neon predicted by 

the LJ 12:6 model are in better agreement with experiment 

than the EXP-6 results. This is a direct consepquence 

of the much better irediction by the LJ 12:6 model of the 

a
o versus T curve. 

Fig. 8d shows that, although the LJ 12:6 results 

are in better agreement with experiment than the EXP-6 

results, both models predict too small a value of Cv  

over the whole temperature range (excluding of course 

T=0 where C
v=0). Such behaviour must be attributed, 

at least in part, to the use of an Einstein model of 

the solid, the defects of which, as pointed out in 

earlier chapterA are expected to be most apparent in 

non static lattice dependent properties such as Cv. 

For harmonic systems, the errors given by the Einstein 

assumption of independent motion are such that predicted 

values of Cv are lower than the experimental values. 

It is evident that this is the case with our results. 

However, the harmonic Einstein values of Cv  are in 

appreciable error only in the low temperature region 

and rapidly become very accurate at temperatures 

greater than 44D/4 (.1t16°K for neon, see Pollack 1964), 

whereas neither o f the theoretical curves in Fig. 8d 

shows appreciably better agreement with experiment in 

the higher temperature range. While this discrepancy 

could possibly be attributed to the nature of the 

pair interaction, it seems likely that it can largely 

be put down to an inability of the Einstein approximation 

to take adequate account of anharmonicity, which is 

particularly large for solid neon, in such a property 

as C.  Although a direct comparison between our results 
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and those of lattice dynamical calculations is not 

possible - our calculations take account of all an-

harmonic terms and are for three shells of neighbours, 

whereas lattice dynamical calculations performed to 

date consider only first order anharmonic contributions 

and usually only nearest neighbour interactions - Barron 

(1965) has pointed out that the Einstein and lattice 

dynamical expressions for the first order anharmonic 

contribution to C
v are markedly different in the limit 

of high temperature. 

Turning to the temperature variation of C given 

in Fig.8e, it is again seen that the LJ 12:6 curve is 

closer to the experimental results, but that both sets 

of theoretical results are considerably too low. This 

is only to be expected from the results predicted for 

Qv' which is related to C by the thermodynamic relation 

(4.9). 

C is thermodynamically related to entropy by 

(4.10) and any discrepancy between the experimental 

values of C and the theoretical results is automat-

ically carried over into S. In consequence,_the dis-

agreement between the theoretical and experimental 

entropy values for solid neon shown in Fig.8f is not 

surprising. Yet again the LJ 12:6 curve is closer to 

the experimental results but both sets of theoretical 

results are too low. 

In fact, S is sensitive to the defects of the 

Einstein approximation at all temperatures, even if it 

may be assumed that predicted values of specific 

heat are in error only in the low temperature region, 

as is known to be the case for harmonic systems. This 

is because of the integral appearing in (4.10), which 
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means that, at any temperature, S is not only dependent 

on the value of C at that particular temperature, but 

also on the values at lower temperatures. Further, by 

virtue of the reciprocal temperature in the integrand, 

low temperature contributions to the integral are 

significant even at considerable temperatures. 

Finally for solid neon, Fig. 8g shows that, with 

the exception of the value at 2000 kg cm-2  the LJ 12:6 

cell model gives a V/V(0) versus p curve which agrees 

with the experimental points within their quoted un-

certainties. The EXP-6 results are not in such good 

overall agreement with experiment. In the pressure 

range from 6000 to 12000 kg cm
-2 the EXP-6 values of 

V/V(0) are just within the upper experimental accuracy 

limit, but, for pressures outside this range,(except at 

p=0 where agreement is automatic), they are slightly too 

large. 

Solid aron: 

Fig. 9a shows that, in the case of solid argon, 

it is the EXP-6 ao versus T curve which is in close 

agreement with experiment over the whole temperature 

range. The LJ 12:6 results, after their automatic 

good agreement with experiment at low temperature, 

become rapidly too large at temperatures above 20°K. 

In contrast with; versus T plots relevant to 

the other inert gas solids, in which experimental 

accuracy limits are shown over the whole temperature 

range, it is only for the experimental; value at 
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83°K that an error bar has been included in Fig. 9b for 

argon. This is the only value of 1(1, for which an explicit 

experimental uncertainty is quoted, and the absence of 

error bars on the other% values should not be taken 

to imply high experimental precision. It is seen that 

the error limits (+ 10%) on the 83°K value span both the 

LJ 12:6 and EXP-6 curves and it is almost certain that 

such behaviour would be general if experimental in-

accuracies were allowed for at the low temperatures. 

In view of this, it appears that the existing experi-

mental data for the isothermal compressibility of solid 

argon in the range from 10°K to 83°K is not sufficiently 

accurate to distinguish between the LJ 12:6 and EXP-6 

results, even though these are significantly different 

over the whole temperature range. 

The experimental value of ;used for characterising 

the EXP-6 function was that at 4°K, (T=0 and T=4°K may 

be considered as equivalent as far as)"1  is concerned), 

obtained by Simmons and co-workers using a single 

crystal X-ray technique. This value is of much greater 

accuracy - the quoted error is about 1.5% - than those 

at higher temperatures which come from sound velocity, 

light scattering and torsional vibration measurements 

in polycrystalline samples. It is not plotted in Fig. 9b, 

since the corresponding EXP-6 result is automatically in 

agreement with it, but it is worth noting that even the 

use of the LJ 12:6 function, which required no )1, data 

for its characterisation, gives a value of ;161, at this 

point which is only marginally outside the quoted 

experimental uncertainty limits. 

In Fig. 9c, the experimental versus T results for 
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solid argon are seen to be reasonably well predicted 

by the EXP-6 cell model for temperatures up to 70°K. 

Above 70°K the experimental Prises more rapidly with 

-temperature than the EXP-6 value. The LJ 12:6 results 

are, (not suprisingly, when the ao  versus T results are 

considered), appreciably larger than those given by 

the EXP-6 calculations at all temperatures and, at 

temperatures approaching the triple point (i.e. 80°K 

to 83°K), the LJ 12:6 curve is the one which shows 

better agreement with experiment. 

Turning to a consideration of the temperature 

variation of Cv 
for solid argon, it is seen that the 

scale of Fig. 9d is not large enough to distinguish 

between the LJ 12:6 and EXP-6 curves in the temperature 

range from 0°K to 40°K, where the value of Cv is most 

rapidly varying. Similarly any discrepancy between 

theory and experiment is considerably masked in this 

region. Reference to Appendix 4 shows that the LJ 12:6 
results are in fact slightly larger than the EXP-6 

results in this range of temperature. Also, careful 

examination of the figure or direct numerical comparison 

of the tabulated data in the Appendices 4 and 5 reveals 
that the relevant theoretical 	values are appreciably 

lower than the corresponding experimental values. Further, 

the discrepancy between theory and experiment is signif-

icantly larger than the difference between the theoret-

ical results themselves. 

In the temperature range from 0°K to 35°K the 

disagreement between the theoretical and experimental 

Cv 
is largest at very low temperatures (141. 10°K) 

and becomes much less pronounced at higher temperatures. 
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Although not perfect, the agreement is undoubtedly 

better between 20°K and 35°K than it is at lower 

temperatures. Taking the value of 610/4 for argon 

to be ".•23°K (as quoted by Pollack 1964), such behaviour 

is a typical result of the use of an Einstein model to 

represent a harmonic crystal (see the discussion for 

solid neon), of which solid argon and the heavier inert 

gas solids may be taken as fair examples at low temperature. 

At 40°K the theoretical Cv results are once again 

substantially lower than the value given by experiment 

and remain so as the temperature rises to the triple 

point. The theoretical curves in Fig. 9d do not remain 

identical in the high temperature region, however. At 

about 40°K the EXP-6 and LJ 12:6 results cross and then 

diverge with increasing temperature. At temperatures 

near the triple point the EXP-6 curve is significantly 

higher than the LJ 12:6 curve and is closer to, though 

by no means in good agreement with, the experimental 

results. 

Although it is not obvious in Fig. lid, both of 

the theoretical curves pass through a shallow maximum 

value of about Cv=2.61:2 mole
-1 at some temperature between 

60°K and 83°K. Beyond this temperature the theoretical 

Cv falls very slowly as the triple point is approached. 

No such behaviour is shown by the experimental results, 

which, in contrast, show a marked upward trend as the 

triple point is approached. 

This type of behaviour in the the high temperature 

theoretical Cv is clearly the result of anharmonicity, 

for it is known that the Cv versus T curve given by a 
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harmonic model is monotonically increasing and approaches 

Cv=3R mole-1  in the classical limit of high temperature. 

It has been pointed out in connection with solid neon 

that the Einstein approximation of independent molecular 

motion probably does not take adequate account of the 

effects of anharmonicity on the value of a static lattice 

independent property such as Cv. Nevertheless, since 

lattice dynamical calculations agree with ours in 

predicting a downward trend in the high temperature 

values of Cv (see for example Feldman and Horton 1967), 

the discrepancy between the theoretical curves and 

the rising experimental results at temperatures approach-

ing the triple point cannot be entirely attributed to 

errors introduced by the Einstein assumption. Anomalies 

in the high temperature specific heats of the heavier 

inert gas solids are discussed later. 

As mentioned earlier, any errors in the theoretical 

values of Cv are automatically carried over into C 

by virtue of (4.9). It is not surprising thereforg that 

Fig. 9.0 shows both sets of theoretical results for the 

Cp  versus T variation of solid argon to be lower than 

the corresponding experimental values at all temperatures. 

In the case of C , however, the influence of the 4)2  TV/1L r-T 
term causes the LJ 12:6 values to be higher than the 

EXP-6 results over the whole temperature range and not 

just up to 40°K as was the case with Cv. The discrep-

ancy between theory and experiment is again seen to be 

most pronounced at low temperatures (0-20°K) and at 

temperatures approaching the triple point (70-83°K). 

Between these two regions the LJ 12:6 results are in 

fairly good agreement with experiment and the EXP-6 
results somewhat too low. However, fair agreement 
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between theoretical and experimental values of Cir  for 

solid argon was apparent only in a much more restricted 

temperature range (20-35°K) and, further, the agreement 

between experiment and both sets of theoretical results 

was about equally good in this region. Consequently 

the reasonable agreement between the LJ 12:6 and ex-

perimental C over such a large temperature range must 

be due to a concellation of errors in the theoretical 

values ofp2TV/ T  and C
. and is therefore regarded as 

somewhat fortuitous. 

Fig. 9f shows that both models give an identical 

S versus T curve up to 40°K but that at higher temp-

eratures the LJ 12:6 curve is slightly higher than the 

EXP-6 one. As expected from the C results and the 

large model sensitivity of calculated values of S, 

(see discussion for solid neon), both theoretical S 

versus T curves are appreciably lower than the experi-

mental results over the whole temperature range. 

From. Fig.9g it is apparent that both the EXP-6 

and LJ 12:6 models give predictions of V/V(0) versus 

p for solid argon at 77°K within the quoted experimental 

uncertainty limits at pressures above 8000 kg cm-2. 

From 4000-8000 kg cm 2  the LJ 12:6 results are still 

inside the experimental uncertainty, whereas the EXP-6 

valuer of V/V(0) are somewhat too high. Even so, the 

EXP-6 results in this region are only marginally outside 

the appropriate error bars. At lower pressures the 

theoretical curves become identical and in slight 

disagreement with experiment (except of course at p=0, 

where agreement is automatic). 
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Solid krxpton: 

In contrast with the experimental lattice constant 

data of solid neon and solid argon, which came solely 

from the very accurate and systematic X-ray work of 

Simmons and co-workers on single crystals, those plotted 

in Fig. 10a for solid krypton are taken from a number 

of sources. Apart from the few values of a0  given by 

the Simmons group in their study of the isothermal 

compressibility of solid krypton, these data were 

obtained from X-ray measurements on polycrystalline 

samples or from bulk density measurements and do not 

approach the accuracy of the argon and neon results, 

which are qp,otable to six significant figures. Consequent-
ly the experimental points in Fig. 10a show some scatter. 

However, if the earliest X-ray data of Cheeseman and 

Soane and the bulk density value of Clusius and Weigand 

are ignored, it is cloar that the EXP-6 ao  versus T 

curve is in better agreement with the remaining (X-ray) 

data than is the LJ 12:6 curve, which is appreciably 

too high at temperatures above 20°K. The agreement 

between the EXP-6 results and the most accurate experi-

mental values of Simmons et. al. is strikingly good. 

Owing to the lack of reliable experimental data no 

comparison can be made for temperatures above 90°K. 

Fig. 10b shows that, as in the case of solid neon 

and solid argon, the 	versus T curve given by the 

EXP-6 cell model is above that derived from LJ 12:6 

calculations. The EXP-6 values of )42  are within the 

uncertainties in the experimental data over the whole 

temperature range of measurement (0-91°K). On the 

other hand, the LJ 12:6 results are within the quoted 

error limits only at 17°K and 91°K. As before, it 



128. 

should be remembered that the good agreement between 

the EXP-6 and the experimental results at very low 

temperature is automatic by virtue of the characterisation 

procedure. 

For the temperature variation of the volume ex-

pansivity, Fig.10c shows the LJ 12:6 curve to be 

appreciably higher than the EXP-6 curve at all temp-

eratures above 10°K. Probably the only ao data sufficient-

ly accurate for a reliable derivation of experimental 

values of Aare those of the Simmons group and, for 

solid neon and argon, these workers' values of have 

been used for comparison with the theoretical results. 

However, for solid krypton the only experimentalj3 data 

radily available are those of Figgins and Smith and 

these show considerable scatter in Fig. 10c. Con-

sequently, although the EXP-6 curve appears to show 

overall better agreement with experiment, (such would 

be expected from the ao  versus T results anyway), a 

detailed comparison of theoretical and experimental 

values offi is not possible. 

Referring to Fig. 10d, it is seen that the general 

features of the LJ 12:6 and EXP-6 Cv versus T curves 

for solid krypton are similar to those shown by the 

corresponding curves for solid argon. At 10°K the 

two theoretical values of Cv are identical on the 

scale of the figure, but between this temperature 

and about 35°K the LJ 12:6 results are slightly larger 

than the corresponding EXP-6 values. In the range 

from 35°K to 60°K the two curves are again identical 

on the scale of the figure. In this region the theoret- 

ical results cross and beyond 60°K the two curves di- 

verge. As for solid argon, the LJ 12:6 curve is 
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appreciably lower than the EXP-6 curve at temperatures 

approaching the triple point. Also, each set of theor-

etical results again pass through a shallow maximum and, 

in this case, such behaviour is immediately apparent 

from the figure. The maximum value of Cv  given by both 

curves is about 2.7R mole-1 and occurs at a temperature 

betwee 60°K and 100°K. As mentioned before, this type 

of behaviour is a direct consequence of anharmonic 

effects, the influence of which on Cv  is probably not 

adequately accounted for by the cell model. 

On the scale of Fig. 10e, the LJ 12:6 and EXP-6 

C versus T curves for solid krypton are identical up 

to 15°K. As expected from the Einstein nature of the 

cell model, the experimental C is higher than the 

theoretical results in thes region, (6)D/44218°K for 

krypton (Pollack 1964), see discussion for solid neon). 

From 15°K to the triple point the LJ 12:6 results 

are slightly larger than the EXP-6 values of C and in 

correspondingly closer agreement with experiment. 

From 20°K to 80°K the agreement between the LJ 12:6 

and the experimental results is particularly good. 

However, in view of the indications by the theoretical 

Cv curves that anharmonic effects may be appreciable 

at temperatures as low as 50°K and the doubts as to the 

accuracy of the Einstein anharmonic contribution to the 

specific heat, this good agreement may be to some extent 

fortuitous. Also, it has been noted in connection with 

solid argon that cancellation of errors in the theoretical 

values of Cv and f;
2T1/40CT 

may lead to spurious good 

agreement between calculated and experimental values of 

C 	Above 80°K the experimental C rises much more 

rapidly with temperature than either of the theoretical 
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values. Such behaviour was also apparent in the high 

temperature specific heat of solid argon and, as remark-

ed previously, will be discussed later. 

In Fig. 10f, both the theoretical S veruus T curves 

for solid krypton are seen to be below the experimental 

values at all temperatures above 10°K. As expected from 

the C results, of the two,the In).  12:6 curve is the 

closer to experiment. As pointed out previously, a 

discrepancy between theory and experiment is expected 

from the large model sensitivity of calculated values 

of entropy. 

Fig. 10g shows that the IAT 12:6 model predicts the 

V/V(0) versus p curve of solid krypton at 77°K within 

experimental error over the whole range of pressure 

considered. On the other hand, the EXP-6 results for 

V/V(0) become progressively larger than the experimental 

values with increasing pressure. However, in the case 

of solid krypton the pressure range over which measure-

ments of the variation of volume have been carried out 

is considerably smaller than that for the other inert 

gas solids and the scale of Fig. 10g tends to exaggerate 

the relative disagreement between the EXP-6 values and 

the experimental results. In fact, the discrepancy given 

by the EXP-6 cell model even at 4000 kg cm-2  is not much 

more than that for solid argon at the same pressure. 

Solid xenon: 

Similar to the corresponding data for solid krypton, 

the experimental lattice constant data for solid xenon 

plotted in Fig. 11a acre drawn from a number of sources 
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and are of varying accuracy. None of the data approaches 

the accuracy of those of Simmons and co-workers for the 

lighter inert gas solids. However, if Packard's and 

Swenson's bulk density values of ao  are excluded from 

the comparison, the agreement between the EXP-6 curve 

and the remaining (X-ray) data is seen to be good, where-

as the LJ 12:6 results are somewhat too large above 40°K. 

Fig.11b shows that both the EXP-6 and LJ 12:6 cell 

models predict the experimental (in this case, bulk den-

sity) values of y-T  within the quoted accuracy limits 

at all temperatures except 50°K where the experimental 

error bar spans only the LJ 12:6 curve. In contrast 

with those for the other inert gases, the theoretical 

)CT  versus T curves for solid xenon cross at about 

120°K. Below this temperature the EXP-6 results are 

larger than the LJ 12:6 values and above it the reverse 

is true. It is remembered that, in the case of xenon, 

)61, data was not used in the characterisation of the 
EXP -6 function. 

As expected from the ao  versus T results, it is 

seen in Figlic that the EXP-6:versus T curve is higher 

than the LJ 12:6 results at all temperatures above 

about 10°K. The large scatter of the experimental_ 

data available does not allow a detailed comparison 

between theory and experiment. 

In Fig.40d,the EXP-6 Cv  versus T curve for solid 

xenon is seen to be higher than that given by the LJ 12.:6 

cell model over the whole temperature range. In the low 

temperature region the difference between the curves is 

small but at temperatures approaching the triple point it 
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is appreciable. Both curves again pass through a 

shallow maximum in the high temperature region and 

then fall with temperature as the triple point is 

approached. In this case the maximum value of C
v 

given by both curves is about 2.8R mole-1  and occurs 

at a temperature between 80°K and 115°K. The position 

of the maximum is quite clearly shown up by the figure 

and the fall of specific heat beyond it appears to be 

linear. Anharmonic lattice dynamical calculations 

also give a linear fall in Cv  at high temperature 

(see Feldman and Horton 1967). As remarked previously, 

however, the Einstein approximation probably does not 

give quantitatively correct values of C
v 
at high 

temperatures when anharmonic effects are of import-

ance. 

The scale of Fig. 11e is insufficiently large to 

distinguish between the LJ 12:6 and EXP-6 C versus T 

curves for solid xenon at temperatures below 40°K. 

Reference to Appendix 4 shows that the EXP-6 results 

are in fact slightly larger in this region. The 

theoretical values of C are appreciably lower than 

the corresponding experimental results at 10°K, but at 

20
oK the agreement is better, as would be expected from 

the Einstein nature of the cell model ( (i3 /4:1'..14°K for 

xenon (Pollack 1964), see discussion for solid neon). 

At 40°K the theoretical results cross and at temper-

atures above this the LJ 12:6 results become signifi-

cantly larger than the EXP-6 values and in corres-

pondingly better agreement with experiment. Between 

50°K and 100°K this agreement is good, but, in view of 

earlier remarks, it is probably to some extent fortuit-

ous. Once again, at temperatures approaching the triple 

point the experimental C rises much more rapidly than 
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both theoretical curves. 

As expected from the use of the cell model, both 

theoretical S versus T curves for solid xenon are lower 

than the corresponding experimental results plotted in 

Fig.11f. In contrast with the other inert gas solids, 

however, the EXP-6 results are above the LJ 12:6 values 

in this case at all temperatures above 0°K. This dem-

onstrates the already noted sensitivity of S at high 

temperature to the values of C in the low temper-

ature region, for we have seen that, for solid xenon, 

the EXP-6 value of C is higher than the LJ 12:6 value 

only at temperatures up to 40°K. 

In Fig.11g it is clear that the EXP-6 V/V(0) 

versus p curve for solid xenon at 150°K is in good 

agreement with the experimental results over the 

whole pressure range. On the other hand the LJ 12:6 

values of V/V(0) are appreciably larger than the 

experimental ones for pressures above 6kbar. 

************************************ 

It is clearly difficult to draw from the above 

discussion any hard and fast conclusion as to whether 

the EXP-6 function gives a better general represent-

ation of the inert gas pair interaction than the more 

commonly used LJ 12:6 function. Not only does the 

relative predictive ability of the two potential 

functions vary from substance to substance, but also, 

to some extent, from property to property. 
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However, predicted values of such properties as 

specific heat and entropy are probably too sensitive 

to the defects of the model to yield anything but 

spurious information as to the nature of the pair 

interaction and it seems sensible to make use of only 

predicted values of the remaining strondy lattice 

dependent properties for this purpose. When only 

such properties are considered it is possible to draw 

some tentative conclusions, although inevitable incon-

sistencies still exist. It should be pointed out, 

however, that, even if the static lattice dependent 

properties are not too sensitive to the Einstein 

nature of the model, any conclusions that we make must 

be viewed in the framework of the assumption of pair-

wise additivity on which the theory is based. Some 

investigations of the validity of this assumption 

are reported in the following chapter. 

For solid neon, the overall agreement between 

experiment and the EXP-6 predictions of the static 

lattice dependent properties is not good. The use 

of the LJ 12:6 cell model leads to considerably better 

agreement in the case of all static lattice dependent 

properties except isothermal compressibility, for 

which the EXP-6 calculations give the better results. 

However, a comparison between the LJ 12:6 and EXP-6 

values of )4,T is not strictly consistent, since the 

better agreement between theory and experiment in 

the EXP-6 case is almost certainly due to the use of 

the T=0oK value of X.,1  in the original characterisation 

of the potential. Where YT  data has been used for 

characterisation purposes, it seemsensible to con-

sider better prediction of XI, as evidence in favour 
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of the EXP-6 function only if it is supported by other 

results. With this in mind, our calculations would 

appear to indicate that the EXP-6 function is not as 

good a respresentation of the neon-neon interaction 

as the more commonly used and mathematically simpler 

LJ 12:6 function. 

In the case of solid argon, the EXP-6 calculations 

do lead to results in reasonable agreement with experi-

mental values of the static lattice dependent properties. 

The good prediction of the ao  versus T variation up to 

the triple point and the related ,11 versus T dependence 

up to 70°K argues especially strongly in favour of the 

use of the EXP-6 function to represent the argon-argon 

interaction. This is supported by the good agreement 

by the EXP-6 )0/...T  versus T curve with experiment, but 

it is remembered that the LJ 12:6 model also determines 

this property within experimental error, even though 

the characterisation of the LJ 12:6 function required 

the use of no XT data. The EXP-6 model also predicts 

the V/V(0) versus p curve for solid argon at 77°K 

reasonably well, although not quite as well as the 

LJ 12:6 model. 

Where the available experimental data are accu-

rate enough for a comparison to be made, the use of 

the EXP-6 function is in better accord with the 

experimental results for solid krypton as far as the 

temperature dependent properties are concerned. In 

the case of the solid krypton V/V(0) versus p variation 

at 77°K the EXP-6 predictions are not as good as those 

given by the LJ 12:6 model, but even so, are still in 

fair agreement with experiment. 
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Where a comparison can be made, our results for 

the static lattice dependent properties of solid xenon 

unquestionably favour the EXP-6 representation of the 

pair interaction. 

Thermal vacancies in the heavier inert gas solids  

It has been noted that, for solid argon, krypton 

and xenon, the experimental C shows a marked upward 

trend at temperatures approaching the triple point 

and, in this region, the discrepancy between the 

experimental points and the cell model curves is 

much more marked than at lower temperatures, (see 

Figs. 9d, 10d, 11d). 

Such behaviour in the experimental high temper-

ature specific heat has been taken by several workers 

(e.g. Lidiard 1957, Beaumont, Chihara and Morrison 1961, 

Foreman and Lidiard 1963, Hillier and Walkley 1965, 

Kuebler and Tosi 1965) to be the result of the form-

ation of thermal vacancies in the solid lattice and, 

by considering the temperature dependence of the 

difference, 	, between the experimental specific 

heat and that of an assumed "no vacancy" system, 

various estimates of hs, the enthalpy of vacancy 

formation, have been derived. 

Now, while the vacancy theory cannot be dismissed 

out of hand, some of the methods used to calculate hs 
are decidedly open to question. In particular, Hillier 

and Walkley, in their calculations for solid argon, 

took the "no vacancy" values of C to be the LJ 12:6 

cell model ones, the accuracy of which, even ii we 
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assume the LJ 12:6 function to be a good representation 

of the inert gas pair interaction, must be open to 

question (see previous section). Further, any errors 

in the no vacancy values of C are greatly magnified in 

AC p, which is a small difference between two relatively 

large quantities. It is true that Beaumont and co-

workers (see below) have pointed out that hs  is not 

too sensitive to 6C but there is clearly something 

dubious about Hillier's and Walkley's approach, in that 

further calculations using their results lead to the 

anomaly of an entropy of vacancy formation, Ss, of 

opposite sign to hs. 

More consistent results are obtained from the 

earlier approach of Beaumont, Chihara and Morrison, 

who derived "no vacancy" values of C for solid argon 

and krypton by extrapolating low temperature experi-

mental data. Having calculated hs  these workers then 

derived a value of ss of the same sign as ha 
and 

finally an expression for ns, the concentration of 

vacancies as a function of temperature. For argon, 

the value of ns at the triple point given by these 

results is of the order of 1% mole fraction. Later 

analyses of the specific heat by Foreman and Lidiard 

and Kuebler and Tosi lead to a similar result. How-

ever, as well as being inconsistent with theoretical 

estimates of vacancy free energy (Nardelli and 

Chiarotti 1960), such a vacancy content in solid 

argon requires a large relaxation around the vacancy 

Beaumont and co-workers estimate that a vacancy of 

23% of the atomic volume is necessary - to be con-
sistent with the observed thermal expansion of solid 

argon. On the other hand, calculations by Hall (1957), 
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Kanzaki (1957) and Gallina and Omini (1964) indicate 

only small relaxation effects. 

Recently other objections have been lodged against 

the appreciable formation of lattice vacancies in solid 

argon. McGlashan (1965) using the Guggenheim-McGlashan 

piecewise potential (Guggenheim and McGlashan 1960, see 

Chapter 1 of this thesis) has shown that it is possible 

to reproduce the experimental values of C for solid 

argon without invoking vacancy phenomena. However, 

these results must be viewed with suspicion since 

McGlashan relied heavily upon specific heat data 

together with an Einstein model of the crystal to 

characterise his potential function. This forces 

correct values of specific heat on a model which 

cannot really cope with them ( see the previous 

section of this thesis). 

A much more convincing objection to the vacancy 

theory for argon is that of Batchelder, Peterson and 

Simmons (1965) who, by comparing the results of their 

experimental X-ray measurements of the interatomic 

distances in a rather perfect single crystal with 

those given by bulk density measurements, conclude 

that, if vacancies are present at all in solid argon, 

their concentration even at the triple point is less 

than 0.2% of a mole fraction. This concentration is 

much less than that given by specific heat analysis. 

More recently, Losee and Simmons (1967) have 

crystallographically measured the concentration of 

vacancies in solid krypton. While their results 

lead to a value of hs 
in good agreement with that 
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obtained by Beaumont and co-workers from a consid-

eration of the specific heat, they again give a much 

smaller value of n (0.3% compared with 1.5% of a mole 

fraction at the triple point) than that given by a 

specific heat analysis. 

The purely experimental evidence of Simnons and 

co-workers cannot be disregarded and casts considerable 

doubt on the wisdom of estimating vacancy effects from 

the high temperature specific heat of the inert gas 

solids. In view of this and the fundamental incon-

sistency given by the assumption of Hillier and 

Walkley that a cell model system can be taken as a 

"no vacancy" system, it was felt that our specific 
heat calculations can throw no real light on the 

importance of vacancy effects and no such investi-

gations were attempted in the present work. 
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Chapter 5  

Triplet Interactions in the Inert Gas Solids and Some  
Considerations of the Second Virial Coefficient  

Triplet interactions in the solid state of the inert gases  

All the calculations described to date were per-

formed under the commonly made assumption of pairwise 

additivity in the solid state. We now describe EXP-6 

solid state calculations which make some attempt to 

allow for non-central many-body interactions - in par-

ticular triplet interactions. 

The first calculation of many-body interactions 

was by Axilrod and Teller (1943) who, by means of 

third order perturbation theory, considered the inter-

action of three instantaneous dipoles. Their approach 

was analogous with London's use of second order per-

turbation theory to give the r
6 attraction between 

two instantaneous dipoles (see Chapter 1) and, in 

addition to the three pair interactions, led to an 

expression for the triplet energy of the three particles. 

This was: 

9;ABC . u  _ABC (3cosQAcos()B
cosQ

C 	1) (5.1) 

 

r 3r  3r  3 AB BC CA 

  

where QA' QB' PC 
are the interior angles and rAB' rBC' 

rCA 
the sides of the triangle formed by the three 

particles A, B and C. Axilrod (1949) later estimated 

the proportionality constant CABC in terms of the 



ionisation energies and polarisabilities of A, B and C. 

For three identical atoms, A, the appropriate expression 

is: 

cAAA (9/16)I.A(.4 	 (5.2) 

where TA is the ionisation energy and(N: the polaris-

ability of A. CABC may also be evaluated from quantum 

mechanical first principles and such calculations have 

been performed for the inert gases by Kihara (1958) and, 

more recently, by Bell and Kingston (1966). The values 

of CABC given by Bell and Kingston are quoted to an 

accuracy of 10% and agree with those given by Axilrod's 

expression, but are in disagreement with those of 

Kihara. 

Similar to London's dipole-dipole pair interaction 

energy, the energy given by (5.1) is in fact the first 

of a series of terms constituting the triplet dispersion 

energy of the three particles. Higher terms in the 

series, such as the dipole-dipole-quadrupole interaction, 

have been derived by Ayres and Tredgold (1956). However, 

such terms are small and, in the present work, the use 

of the expression "triplet dispersion energy" refers 

only to the triple dipole interaction given by (5.1). 

The triplet dispersion energy takes no account of 

electron overlap and represents only the long range 

interaction. Jansen and co-workers (see Jansen and 

Lombardi 1965 and the references quoted therein) have 

made several investigations of the short range exchange 

triplet interaction, using a Gaussian effective electron 

model. However, such an approach does not lead to 
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explicit expressions and, moreover, Swenberg (1967) has 

recently cast doubt on the validity of one of the 

approximations made in Jansen's calculations. Con-

sequently, the detailed nature of short range triplet 

effects must, as yet, be considered uncertain. As was 

pointed out in Chapter 1, such is also the case with 

the short range pair interaction. 

Recent investigations of triplet interactions in 

the solid state of the inert gases have been concerned 

with their effect on such properties as stacking fault 

energy (Pliskin and Greenberg 1965, Bullough, Glyde 

and Venables 1966), elastic constant (Glitze and Schmidt 

1966), vacancy formation energy (Jansen 1965) and 

lattice relaxation around a vacancy (Foreman 1963). 

However, such interactions have been of interest 

mainly because of the possibility of their explaining 

why neon, argon, krypton and xenon crystallise with a 

face centred cubic (f.c.c.) rather than a hexagonal 

close packed (h.c.p.) structure. 

Kihara and Koba (1952) and Kihara (1953) showed 

that pairwise additive LJ m:6 and EXP-6 calculations of 

the static energies of f.c.c. and h.c.p. lattices 

invariably favour the h.c.p. structure. The relative 

difference in pair energy is only small - of the order 

of 0.01% - but is nevertheless constant for different 

pair potentials. This conclusion is unaltered by the 

consideration of zero point energy (Barron and Damb 

1955, Jansen and Dawson 1955, Wallace 1960. Axilrod 

(1951) had previously calculated the static triplet 

dispersion energy in the f.c.c. and h.c.p. structures 

by summing over a large (but finite) cylindrical lattice. 
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In both cases he found the energy to be repulsive 

(i.e. of positive sign) and such that the f.c.c. 

structure is favoured. The difference, however, is 

not enough to overcome the stability of the h.c.p. 

lattice predicted by pairwise additive calculations. 

The work of Jansen and co-workers on the short range 

interaction predicts the correct f.c.c. structure, 

but, as mentioned previously, this work has been 

questioned. 

Although many-body interactions have been gener-

ally recognised as probably decisive in determining 

the stable structure of the inert gas solids, the very 

small difference between the energies of the two poss-

ible lattices has been taken by some (e.g. Pollack 

1964) to show that many-body effects may be neglected 

in the calculation of thermodynamic properties. Such 

a conclusion, however, ignores an important result of 

Axilrod's work. Taking the f.c.c. structure as read, 

the expression derived by Axilrod for the contribution 

of triplets to the static energy of a lattice of N atoms 

of type A may be written: 

W(0)triplets = (N/3)56.7G
AAA

/a
19 
	

(5.3) 

and, using (5.2) to evaluate CAAA, Axilrod showed 

that this onergy is by no means negligible, at least 

in the case of the heavier inert gas solids. For 

solid xenon, he found the magnitude of W(0)
triplets 

given by (5.3) to be of the order of 10% of the total 

energy of the crystal at 0°K. Bell and Kingston's 

values of CAAA lead to similar results. 
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The values of W(0)triplets for solid neon, argon, 

krypton and xenon at 0°K and zero pressure, calculated 

from (5.3) using the values of Bell and Kingston for 

C AAA and the values of a1 corresponding to those of 

a oo(0)  given in Table 1 (p.70), are given i Table 4. 
They are compared with the corresponding 0°K, zero 

pressure values of the sublimation energy, Lo(0) (which 

is the negative of the free energy of the crystal at 

0oK and zero pressure), given in Table 1. 

Table 4 

The static lattice triplet dispersion energy of the inert  

gas solids at 0°K and zero pressure  

Substance 

(A) 

AI"  C 

(erg 	9)x1012  

w(0)triplets 

(cal mole-1) 

L0(0) 

(cal mole-1) 

Neon 1.68 15 448 

Argon 74.5 136 1846 

Krypton 224 236 2666 

Xenon 750 377 3828 

(5.3) may be written in a reduced form analogous 

to that corresponding to the pair static lattice energy, 

thus: 

w*(0)tripletS_Aw*(0)tripletS=4(56.7c*AAA/a;9) 
-3 

(5.4) 
., 

where W*(0)
triplets=14(

0)triplets  /kNo 

w*(o)triplets.w(o)triplets. 

c.AAA=cAAA/(,d9)  

a*=a /d 1 
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9 and d being the characteristic energy and length 

parameters in the pair potential function and w(o) the 

potential energy experienced by a representative particle 

in the lattice due to all pairs of other particles in 

the lattice. 

The direct experimental measurement of many-body 

contributions to the potential energy of a crystal is 

very difficult, since it is difficult to isolate many-

body from two-body effects. From their measurements of 

of vacancy concentrations, Losee and Simmons (196?) 

have obtained a rather imprecise value of 650+300 cal 

mole-1 for the many-body interactions in solid krypton, 

but, to the author's knowledge, this is the only ex-

perimental result as yet available. The result of 

Losee and Simmons does not distinguish between triplet 

and higher order interactions, but it does lend support 

to the importance of many-body effects in the inert 

gas solids and it is reasonable to assume that triplet 

effects are by far the largest of these. 

In view of theabove,it seemed worthwhile to in-

vestigate how the results of our solid state calculations 

would be affected by allowing for triplet interactions. 

The approach taken was that of Zucker (1968 - but 

communicated to the author prior to publication), who 

made use of (5.3% together with Bell and Kingston's 
_AAA values of u 	to evaluate the contribution of triplets 

to the total energy of the crystal. 

This approach involves two major approximations. 

The first is that triplet effects in the vibrational 

energy of the crystal are ignored. At the time that 
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that the work described here was undertaken there was 

little information as to the nature of such effects. 

More recently, however, Chell and Zucker (1968) have 

explicitly evaluated the harmonic contribution of trip-

let dispersion interactions to the zero point energy 

of the inert gas solids using an Einstein model of 

the crystal. They found that triplet interactions 

lowered the zero point energy by amounts ranging from 

less than 1% in the case of neon to about 2% in the 

case of xenon. Such changes in the zero point energy 

lead to changes in the total crystal free energy which 

are minimal in comparison with the effect of the 

triplet dispersion energy in the static lattice. 

The second approximation is that short range 

triplet effects are completely neglected and this is 

undoubtedly more serious. However, until more detailed 

information as to the nature of such effects is avail-

able, there seems no alternative but to ignore them 

and trust that their inclusion would not drastically 

alter any conslusions which we might draw. In any case 

the use of (5.3) should serve as a first approximation 

for the evaluation of triplet effects. 

Zucker investigated the effect of the triplet 

dispersion interactions in the static lattice on ZJ 

pairpotentb14 characterised from 0°K solid state 

data, which gave the best fit with experimental solid 

state isotherms, and also the effect on the predicted 

isotherms thermselves. The appropriate I,J functions 

were the 12:6 for neon, argon and krypton and the 

11:6 for xenon. He found that the pair parameters for 
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neon were only slightly affected by the inclusion of 
W(0) triplets but that those of the heavier gases were 

substantially changed. On the other hand, none of the 

predicted isotherms was appreciably affected. 

In our work we investigated the influence of 
w(o)triplets given by (5.3) on the EXP-6 pair potential 

parameters determined from solid state data at 0°K and 

the subsequent EXP-6 prediction of all the solid state 

properties calculated in the previous chapter. The 

experimental data used for the characterisation were 

those used in the pairwise additive calculations 

(see Table 1). The numerical precedure employed in 

the characterisation and the subsequent calculation 

of the thermodynamjc properties was also the same as 
iw*(0)+4w,(0)triplets was  before except that 	 used in 

place of jw*(o). 

The parameters obtained are given in Table 5 

below and the corresponding potential functions are 

plotted as the dashed-dotted curves in Figs.4, 5, 6 

and 7 (pp. 75-78) for neon, argon, krypton and xenon 

respectively. The results of the calculations of the 

thermodynamic properties are tabulated in Appendix 6 

and plotted as the dashed-dotted curves in Figs.8a-11g 

(pp.90-117). (The reader is asked to note that, on 

the scale of Fig.11a, the ao  versus T curve for xenon 

derived by including triplet dispersion interactions 

in the static lattice is identical to the correspond-

ing "pairwise additive" IJJ 12:6 curve over the whole 

temperature range.) 
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Table 5  

EXP-6 parameters derived from solid state data at 0°K.  
with triplet dispersion energy included in the static  

lattice  

Substance e,(erg)x1015  rm(R) A*=h/r(moir 1 

Neon 5.642 3.077 16.27 0.4952 
Argon 18.37 3.774 14.13 0.1590 
Krypton 26.07 4.020 14.87 0.03654 

Xenon 36.10 4.387 13.47 0.05384 

Comparison of the values of the parameters in 

Table 5 with those in Table 2 (p. 74), or of the 
full curves with the dashed-dotted ones in Figs.415, 

6 and 7, shows that the inclusion of triplet disper-

sion interactions in the static lattice lowers the 

depth of the EXP-6 well (i.e. increases E.) and moves 

it to a slightly smaller intermolecular separation 

(i.e. decreases rm). Such is in agreement with 

Zucker's results for the best fit LJ potentials. 

Similarly the effect on and rm is only small for 
neon, but is appreciable for argon, krypton and 

xenon. In all cases the value of06 is not signifi-

cantly altered. 

From comparison of the full and dashed-dotted 

curves in Figs.8a-c, 9a-c, 10a-c and 11a-c, it is 
triplets 

clear that the effect of the inclusion of W(0) 

evaluated from (5.3), on the EXP-6 prediction of the 

temperature variation of lattice constant, isothermal 

compressibility and Volume expansiVity of the inert 
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gas solids, is to increase the values of these properties 

at temperatures above 0°K. 

In the case of solid neon this has the effect of 

bringing the predicted values of ao  and jj (see Figs. 8a, 

8c) marginally closer to the corresponding experimental 

values, but by no means into good agreement with them. 

The EXP-6 values ors.
T for solid neon (see Fig.8b) 

predicted by the inclusion of W(0)triplets  in the  

static lattice energy are, like the corresponding pair-

wise additive values, in agreement with experiment 

within the quoted error limits over the whole temp-

erature range. 

For the heavier inert gas solids the inclusion of 
W(0)triplets given by (5.3) removes the good agreement 

between the EXP-6 and experimental etc.  versus T curves 

(see Figs. 9a, 10a, 11a). In these cases the discrep- 
triplets,  ancy between the EXP-6+W(0) 	curves and the 

experimental results is approximately the same as that 

between the pairwise additive IJJ 12:6 curves and ex-

periment. A similar discrepancy is also shown by the 

.fiversus T plot for solid argon up to 70°K (see Fig. 9c). 

As mentioned in Chapter 4, the volume expansivity data 
for solid krypton and xenon is not accurate enough for 

a detailed comparison between theoretical and experi-

mental values of this property to be carried out, but 

for these substances too the EXP-6+W(0)
triplets f3 versus 

T curves are similar to the corresponding pairwise 

additive U.  12:6 curves (see Figs. 10c, 11c). Both the 

EXP-6 pairwise additive and EXP-6+W(0)
triplets models 

predict the available)62  versus T data for solid argon, 

krypton and xenon within the experimental uncertainties 
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quoted (see Figs. 9b, 10b, 11b). 

Owing to the independence of Cv  of the static 

lattice energy, the new EXP-6 Cv  versus T curves differ 

from the old only by virtue of the difference between 

the two sets of parameters in Tables 2 and 5. The 

small difference between these sets of parameters in 

the case of neon leads to a small increase in the pre- 

dicted Cv at the higher temperatures, but does not 

significantly improve agreement with experiment (see 

Fig. 8d). The new Cv  versus T curves for the heavier 

inert gas solids show the same general features as 

those derived from the "pairwise additive" parameters, 

but are considerably different from a quantitative 

point of view (see Figs. 9d, 10d, 11d). It appears 

that the use of the new parameters leads to an increase 

in C
v in the low temperature region and a decrease at 

temperatures approaching the triple point. Also the 

fall of the Cv versus T curves in the high temperature 

region appears to be slightly more rapid. In the case 

of solid argon, which is the only one of the heavier 

inert gas solids for which experimental Cv  data are given, 

Fig. 9d shows that the new EXP-6 Cv  versus T curve 

is in better agreement with experiment at the lower 

temperatures and in worse agreement at the higher 

temperatures than is the corresponding "pairwise 

additivw curve. However, for reasons given in Chapter 

4, a detailed comparison between experimental and cell 

model values of Cv is probably not meaningful. 

In analogy with the corresponding Cv  versus T 

results, the Exp-6144(o)triplets C versus T curve for 

solid neon is slightly above that given by pairwise 
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additive calculations and, therefore, slightly closer to 

(but by no means in agreement with) the experimental 

results (see Fig. 8e). 	The new EXP-6 C versus T 

curves for the heavier inert gas solids are considerably 

higher than the corresponding pairwise additive ones at 

all appreciable temperatures (see Figs.9e, 10e, 11e). 

In all cases the agreement between theory and experiment 

is better over the whole temperature range, and is 

remarkably good at the lower temperatures. However, 

in view of remarks made in Chapter 4, such agreement 

is probably to some extent fortuitous. 

The increased values of Cp  given by the inclusion 

of W(0)triplets automatically lead to increased values 

of the entropy and, consequently, the appropriate S 

versus T curves in Figs. 8f, 9f, 10f and 11f are closer 

to the experimental results than those derived from 

pairwise additive calculations. In the case of solid 

xenon the agreement between the new S values and ex- 

periment is reasonably -good, but, once again, owing to 

the previously mentioned (see Chapter 4) model sensitivity 

of the entropy, this is almost certainly fortuitous. 

The effect of the static lattice triplet dispersion 

energy on the predicted V/V(0) versus p curves is once 

again small in the case of solid neon (see Fig. 8g), 

but more marked in the case of argon, krypton and 

xenon (see Figs. 9g, 10g, 11g). For solid neon the 

effect of W(0)
triplets is to slightly increase the 

values of V/V(0) at high pressure. On the other hand, 

the values of V/V(0) predicted for the heavier inert 

gas solids are lowered. The agreement with experiment 

is somewhat improved in the case of solid argon and solid 
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krypton. For solid xenon both EXP-6 models predict the 

experimental V/V(0) versus p data within the appropriate 

experimental uncertainties. 

It is clear then that the inclusion of W(0)triplets 

given by (5.3) does lead to changes both in the pair 

potentials and in the predicted values of the thermo-

dynamic properties of the inert gas solids. 

For solid neon these changes are not large enough 

either to seriously question the assumption of pairwise 

additivity or to alter the conclusion arrived at in 

Chapter 4 that the EXP-6 function does not give a 
good representation of the pair interaction, which 

appears to be better described by the LJ 12:6 function. 

In the case of solid argon, krypton and xenon, 

however, the effect of W(0)triplets is significant 

and, for these substance the speculation in Chapter 

that solid state, "pairwise additive" parameters 

can be regarded as defining an "effective" pair inter-

'action,which, in turn, may be used in the pairwise 

additive calculation of the thermodynaiic properties, 

appears to be contradicted. 

Once again we draw no conclusions from a consid-

eration of C,,Cp 
 and S versus T plots, since, as pointed 

out in Chapter 4, the calculated values of these prop-
erties are probably too sensitive to the Einstein nature 

of the cell model for a meaningful comparibon with 

experiment to be made. Leaving such properties aside 

then, we have seen that the inclusion of W(0)triplets  

in the EXP-6 cell model does lead to somewhat better 
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predictions of the V/V(0) versus p data of solid argon 

and krypton. However, taking account of experimental 

error, this improvement is not substantial. For solid 

xenon the two EXP-6 models predict the V/V(0) versus 

p data equally well within the quoted experimental 

error limits. The rather imprecise yv  data for all the 

heavier inert gas solids is also predicted within ex-

perimental error by both models. On the other hand, 

the good agreement between the EXP-6 ao  versus T curves 

and experiment, which was taken to argue so strongly 

for the use of the EXP-6 function for argon, krypton 

and xenon in the pairwise additive case, is destroyed 
W(0)triplets. This, in turn, is by the inclusion of W(0) 

also the case for the versus T curve of solid argon, 

which is the only one of the heavier inert gas solids 

for which the volume expansivity data is accurate enough 

for a reliable comparison between theory and experiment 

to be made. Such a
o versus T and 13 versus T results, 

however, do not alter the conclusion drawn in Chapter 

4 that the E3T-6 function gives a better description 

of these properties of the heavier inert gases than does 

the LJ 12:6 function, for the inclusion of the value of 

W(0)triplets given by (5.3) in the LJ 12:6 calculations 

would lead to results even further removed from ex-

periment. Nevertheless, if the use of (5.3) is a valid 

way of allowing for the effect of triplet interactions, 

these results would appear to indicate that the EXP-6 

function is not such a good representation of the 

argon-argon, krypton-krypton and xenon-xenon interactions 

as would be supposed from pairwise additive calculations. 
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Some considerations  of the second virial coefficient  

It is well known that the equation of state of a 

non-ideal gas may be written as the virial expansion: 

pV 	1 + B(T) + C(T) + D(T)  	(5.4) 

NkT 	V 	V2 	V3  

where p, V, N, k and T have their usual significance 

and B(T), C(T), D(T) 	are called the second, third, 

fourth 	virial coefficients of the gas. The term 

B(T)/V represents the contribution of interacting 

pairs of molecules, outside the perturbing field of 

others in the system, to the compressibility factor 

of the gas. Higher terms represent contributions 

from groups of three, four 	molecules and involve 

triplet, quadruplet 	interactions as well as the 

pair interaction. The study of B(T), therefore, 

provides a means of obtaining information as to the 

nature of the pair interaction itself, without having 

to consider many-body effects. In consequence, it is 

of interest to compare pair potentials derived from a 

consideration of B(T) with those given by a consider-

ation of a multiparticle system such as the solid state. 

The second virial coefficient, B(T), in quantum 

statistical mechanics may be written as: 

A 
B(T) -N 

Q.'
12/1

r  
2(FA 	- 1 dr dr (5.4) 

2V Jj 

where.d2 (r1/  r2 
 ) is the Slater sum for two molecules 

with position vectorszi  and L2  and is given by: 



and 

BII(T) = 	-2 'N 

1920x4k4T4  
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rql 4. 1 r2  ) = 2:( h2 	 3  Eti(ri,r2)expir-i91&i,r2) 
2ilmkT 	i 	1/4.kT 

(5.4a) 

In (5.4a)10i(i=1,20,...) is a complete set of ortho-

normal wave functions„4l?(i=1,20,...) is the corres-

ponding complex conjugate set ands-'., is the quantum 

mechanical Hamiltonian operator for the two particles. 

On choosing%(i=1,201...) to be the momentum wave 

functions, (5.4) may be expanded in even powers of 

(h2/m) to give: 

B(T) = BCl(T) +(h2)BI(T)   +(h2)4BII  (T) + 7,7   (5.5) 

where Bc1  (T) is the classical value of the second 
virial coefficient and is given in terms of the pair 

interaction, 9'(r), by: 
00 

Bel(T) = -24'N t,  Eexp (4(0)  - 1 r2dr 	(5.5a) 
kT 0 o 

Higher terms in the series represent quantum corr- 

ections, B/(T) and B/1(T) being given by: 

.?u 
c rex ( 0( )\1  idygr)1  2r2dr BI(T) T ) = 	217N 	p 	r 

48r2k3T' o- 	kT 	C. dr j (5.5b) 

r()°  
exp Clg(r)),  

kT 	1! dr  2 	r2 
C 'efe((r)1 2+2 	(r)1

2  

dr j 
J 0 

10 	 dsgril 3  — 	5 	d9C(014  r2dr 

9kTr ..., dr j 	36k2T2  dr f 
(5.5c) 

(see Hirschfelder„ Curtiss and Bird 1954, p.420). 
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A further term (h2/m)3/2Bo(T) (Bo(T)=-5/2(2AkT)-3/2) 

must be included in this series to account for Bose-

Einstein (B.E.) or Fermi-Dirac (F.D.) statistics 

(de Boer and Michels 1938). The sign of this term 

is negative for B.E. statistics (i.e. for systems of 

molecules consisting of an even number of nucleons 

and electrons) and positive for F.D. statistics (i.e. 

for systems of molecules consisting of an odd number 

of nucleons and electrons). The final expression may 

be written in reduced form as an expansion in powers 

of the quantum parameterl iV(see (2.28) in Chapter 2), 

thus (Hirschfelder, Curtiss and Bird 1954, p.420): 

B*(T*) =tph(v) 	Ai4'
2
B*(T*) +

4BI,(T*) +...1 

TA*3B;(T*) 	(5.6) 

where B*(T*)=B0/(-7-Alld3), d being the characteristic 

length parameter of the pair potential. B*Cl  (T*), 

B*(T*)1 II  B*_(T*), B;(T*) are given by: 

C' r 
B*l  (T*)=-3 

	;exp (-0*(r*))  - 1 Ir*2dr* C 
o 	T* I. 

rod 

= 	1 	! 	exp (...$*(r )) idli*(r*)1  2r*
2dr* 

16/r2T*3Jo 	T* 	L dr* 

x.) 

B* (T*)=- 	1 	
4 4 	

I exp 	id29(*(r*)1  2  
-. 640 A T* t 	T* 	dr*2  j 

+ 2 	I 0*(r*)12  + 10 [0*(r*)13  

r*2 dr* J 	9T*r* . 	dr* j 

- 	5 	de(r  1 41 r*2dr*  

36T*2  dr* I ( v 

(5.6c) 

(5.6a) 

B*(T*) 

(5.6b) 



B,;(T*) 3 	:) T* -3/2  

32N.  

157. 

(5.6d) 

For fuller details of the formulation and the range of 

its validity the reader is referred to Hirschfelder, 

Curtiss and Bird (1954, p.419 et.ata.) and de Boer and 
Michels (1938). For the calculation of high temper-

ature values of the second virial coefficient, terms 

beyond the classical one may be neglected, but at low 

temperatures higher terms may become significant, 

especially for light substances. In our work we took 
A 

account of terms up to and including that in n*
4  

using the expressions given below. 

Experimental measurements of the second virial 

coefficient have been widely used in the character-

isation of empirical pair potential functions. Typical 

of such work is that of Nicholson and Schneider (1955), 

Sherwood and Prausnitz (1964), Dymond, Rigby and Smith 

(1965) and Weir, Wynne Jones, Rowlinson and Saville 

(1967). Nicholson and Schneider characterised the 

LJ 12:6 and EXP-6 potentials for neon by calculating 

the parameters which gave the best fit with their own 

and earlier B(T) data. They found that each function 

predicted the B(T) data equally well, but that the 

EXP-6 function gave a slightly deeper potential well. 

Sherwood and Prausnitz made use of all the relevant 

B(T) data available at the time to determine the best 

fit parameters of, among others, the LJ12:6, EXP-6 

and Kihara 12:6 potential fmnctions for argon, krypton 

and xenon. They found that, in each case, the EXP-6 

• and Kihara 12:6 potentials gave a better overall fit 

with experiment, a deeper well and smaller equilibrium 
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separation than the LJ 12:6 function. The use of 

the five term empirical function proposed by Dymond, 

Rigby and Smith leads to results similar to those 

given by the EXP-6 and Kihara 12:6 functions. The 

results of Weir, Wynne Jones, Rowlinson and Saville, 

who used their own recent measurements of B(T) and 

those of others to characterise the LJ 12:6 and Kihara 

12:6 functions for argon and krypton, are in agreement 

with those given by the corresponding calculations of 

Sherwood and Prausnitz, but give a deeper well for 

the Kihara potential. 

In our work we decided to recharacterise the 

EXP-6 function for neon, argon, krypton and xenon 

using the most modern B(T) data available and to 

compare the pair interactions obtained with those 
N given by solid state data with and without W(0)triplets  

included. In contrast to the second virial coeff-

icients corresponding to the LJ 12:6 and Kihara 12:6 

potentials, which may be evaluated analytically in 

terms of gamma functions, the calculation of those 

corresponding to the EXP-6 potential requires the 

use of numerical integration. In view of this, it 

seemed sensible to study the nature of the integrals 

in (5.6a), (5.6b) and (5.6c) as a prelipinary to more 

detailed calculations. 

First it should be remembered that the spurious 

maximum in the EXP-6 pair potential requires the 

imposition of an infinite cutoff at a reduced inter- 

molecular separation of r* 	. For distances between 
max 

r*=0 and r*=r* I therefore, the value of exp-g(*(r*)/T*1 
ma.x 
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is zero and the contribution to B*
l  (T*) in this region C 

is: 

* r 
max 

-3 (-r*2)dr* = r*3  

o 
max (5.7) 

The corresponding contributions to B*(T*) and B* (T*) 

are zero. The value of r* is easily obtained for max 
any value of O by the numerical solution of the trans-

cendental equation (4.5) in Chapter 4. 

It is relevant to note the r* dependence of the 

integmnds, I*I
I  and I* appearing in the expressions C1'  

(5.6a), (5.6b) and (5.6c). The r* dependence of I61  is 

such that this quantity passes through a negative min-

imum followed by a positive maximum in the region of 

r*=1. The behaviour of II with r* is such that Iz 

is always positive and passes through two positive 

maxima on either side of a minimum value of zero at 

r*=-1. The r* dependence of III  is of a similar form 

to that of ICl. All three functions approach zero at 

small and large values of r*. The values of r* at 

which the various maxima and minima appear are virtu-

ally independent of the values of O(and T*, bath of 

which affect only the values of I l' I 	II ' I and III  at u  
these points. The values of r* corresponding to 

the minimum and maximum in I* are about 0.8 and 1 Cl 
respectively, those corresponding to the two maxima 

in I* are about 0.9 and 1.1 and those corresponding 

to the minimum and maximum values of I* are about 

0.85 and 0.9 respectively. 

The major contributions to the various integrals 

clearly come from the restricted regions around the 
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various maxima and minima in I*Cl,  I I and I* and it 

is wise to consider these regions separately from 

those where the integrands are approaching zero. 

This is especially the case in the evaluation of 

B*(T*) and B* (T*) for which the relevant maxima 

and minima are so sharp that, if the range of inte-

gration is divided without regard to the behaviour of 

the integrands, the major contributions may be missed 

altogether. With this in mind, we divided the range 

of integration for r*.e., qax  into five separate sub-

ranges for each integral. In each case the first 

four of these sub-ranges covered intermolecular 

distances from r*=r*max 	C to r*=3. For B*l  (T*) they 

were rm  * -1;r*tE-0.6; 0.64:r*;0.9; 0.9$,I•r*:61.2; ax 
1.2.-r*.5,3: for BI(T*),ri7lax‘r *1::-0.7; 0.7 4r*‘1; 

1$;r*41.3; 1.3;,r*4,,, 3: and for BII(T*), r ax r*.‘ 0.6; 
0.6‘rq., 0.9; 0.9‘r*$,; 1.1; 1.14.r*4:3. 
In each case the integration in the four sub-ranges 

was by 8, 12, 12 and 8 point Gaussian quadrature 
formulae, (see Kopal 1955 p.367 et 22.2..), respectively. 

For all three integrals the fifth sub-range of inte-

gration was from r*=3 to r*=00. For r*:;1.3, the rep-

ulsive energy in the pair interaction was found to be 

negligible and, retaining only the r*
6 attractive 

term, the contributions of this region to the three 

integrals were simply evaluated by expanding the 

integrands as series in inverse powers of r* and 

integrating term by term. 

The EXP-6 potential parameters for neon, argon, 

krypton and xenon giving the optimum fit with the 

experimental B(T) data were calculated using the 

least squares refinement technique described in 
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Appendix 7. The relevant experimental data are given 

in Appendix 8, together with sources. All experimental 
data were given equal weight in the calculations, but 

the very accurate results of Michels and co-workers and 

of Weir, Wynne Jones, Rowlinson and Saville were taken 

in preference to those measured by other workers in 

corresponding temperature ranges. 

The parameters obtained are shown in Table 6, 
together with the root mean square deviation of the 

experimental B(T) values from the calculated values. 

The experimental and calculated values of B(T) are 

compared in Appendix 8. 

Table 6  

EXP-6 parameters derived from a consideration of the  
second virial coefficient  

Substance ';;(erg)x101.5 	rm(R) 	0( 	rms devn. 

(cm3 mole-1) 

Neon 5.800 2.980 17100 0.13 

Argon 23.29 3.539 20168 1:23 
Krypton 32.42 3.787 20.49 1.95 
Xenon 43.70 4.203 20.87 0.93 

The potential curves corresponding to the parameters 

in Table 6 are plotted as the dashed-double dotted 
curves in Figs.4,5,6 and 7 (pp.75-78)* 

From Tables 2 (p.74), 5 (p.148) and 6 and Figs. 
4,5,6 and 7 it is seen that the use of second virial 
data leads to EXP-6 potential functions for neon, 
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argon, krypton and xenon which have deeper wells 

(i.e. larger F., valu3s) and smaller equilibrium 

separations (i.e. smaller rm  values) than those 

given by solid state calculations either with or 

f(0)triplets   without W( 	included. The values of ot 

given by second virial calculations are larger 

than those given by the solid state calculations 

and this leads to narrower potential wells. The 

differences between the solid state and second 

virial potential functions is small in the case of 

neon but considerable in the case of argon, krypton 

and xenon. Of the two sets of potential functions 

derived from solid state data, the well depths and 

equilibrium separations of those calculated by 

including W(0)triplets are, in all cases, more 

in line with the results of the second virial 

calculations. As pointed out earlier, both sets 

of Q values given by solid state calculations are 

virtually the same and, therefore, neither set is 

nearer the second virial values. 

We have pointed out earlier that the LJ 12:6 

potential leads to worse predictions of the second 

virial coefficients of argon, krypton and xenon 

than the EXP-6 function. There is also another 

point worth noting in connection with the appli-

cation of the LJ 12:6 function to these substances. 

This is that, in contrast to the EXP-6 case, the 

LJ 12:6 parameters derived ftom pairwise additive 

solid state calculations are similar to those given 

by second virial data (compare the LJ 12:6 values of 

and 0-  obtained by Sherwood and Prausnitz with 

those in Table 3, p. 74). In the absence of many- 
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body effects in the solid state this could be taken 

to indicate the LJ 12:6 fUnction to be a good rep-

resentation of the pair interaction of these sub-

stances. .However, if triplet effects are adequately 

evaluated by (5.3), this is not so, because the 

inclusion of W(0)triplets, by increasing .and de-

creasing or , pushes the solid state parameters away 

from the second virial ones. The contrasting behaviour 

of the EXP-6 solid state parameters of argon, krypton 

and xenon is another indication that the EXP-6 

function is a better representation of the pair 

interactions of the heavier inert gases. 

Since the use of second virial coefficient data 

does not always determine a unique pair interaction 

(Keller and Zumino 1959), we also tested how well 

the two sets of EXP-6 solid state parameters them-

selves (see Table 2, p.74, and Table 5, p.148) pre-

dicted the experimental values of B(T) for neon, 

argon, krypton and xenon. The evaluation of B(T) 

was carried out in precisely the same way as in the 

characterisation procedure. For neon, argon and 

krypton it was found that the parameters obtained 

by the inclusion of W(0)triplets lead to values of 

B(T) in better overall agreement with experiment 

than do those given by pairwise additive solid state 

calculations. For xenon, on the other hand, it is 

the pairwise additive solid state parameters which 

lead to the better predictions of B(T). The rms 

deviations from experiment given by the pairwise 

additive solid state parameters for neon, argon, 

krypton and xenon are 0.94, 10.31, 25.5 and 2.52 

cm3 mole-1 respectively, whereas those given by the 
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triplets" wW(0) 	parameters are 0.76, 3.42, 8.19, 

2.52 cm3 mole-1 respectively. The values of B(T) 

calculated using both sets of solid state parameters 
are compared with the corresponding experimental 
values in Appendix 8. In no case, does dither set 

of solid state parameters predict the experimental 

B(T) data with an accuracy even approaching that 

given by the second virial parameters themselves. 
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Chapter 6  

Conclusion 

The solid state calculations described in this 

thesis are rather crude and any conclusion drawn from 

their results must be viewed in this light. 

The approximation common to them all is the 

Einstein assumption of independent motion and we 

have taken some regard of this by not putting any 

weight at all on how well calculated values of spec-

ific heat and entropy agree with experiment. Instead, 

we have drawn definite conclusions only from predic-

tions of solid state properties, such as lattice 

constant, which, in contrast to the specific heat 

and entropy, are strongly dependent on the static 

lattice energy and, therefore, should be less sensi-

tive to the vibrational motion of the crystal. It 

is possible that even these properties are not ade.. 

quately predicted by an Einstein model of the solid, 

but, in view of the fact that we used potential para-

meters calculated from solid state data using the 

same assumption as that used in the subsequent cal-

culation of the thermodynamic properties, we felt 

that such an approach is justified. 

However, to be sure of the results of solid state 

calculations it is necessary to make use of lattice 

dynadcal 'techniques, in spite of the considerable 

computational difficulties involved. We have mentioned 

that, to date, only first order anharmonic effects have 
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been taken into account in lattice dynamical calcul-

ations and, usually, only nearest neighbour inter-

actions are considered. Nevertheless, this is in 

spite of the widely held opinion of only a few years 

ago, that the difficulties in taking account of even 

low order anharmonic effects by lattice dynamical 

methods were formidable. With the continual develop-

ment of the theory and the advent of ever larger and 

faster electronic computers it is well within the 

bounds of possibility that many of the remaining 

problems will be overcome in the not too far distant 

future. In view of the rigour of lattice dynamics 

it would seem more sensible to concentrate on this 

approach to the solid state rather than persevering 

with models based on the Einstein assumption. On 

the other hand, the mastery of lattice dynamical 

techniques requires considerable mathematical fac-

ility on the part of the researcher, whereas use of 

an Einstein approach involves comparatively easy and 

rapid calculations. In view of this, such an approach 

has much to recommend it in situations where the 

absolute accuracy of the results is not criticala 

Another approximation that is commonly made in 

solid state calculations is that of assuming pair-

wise additivity of the potential. We have attempted 

to overcome this in our later EXP-6 solid state calcul-

ations by making some allowance for triplet effects. 

This does not substantially alter the indications of 

the pairwise additive calculations as to the relative 

ability of the EXP-6 and LJ 12:6 functions to describe 

the solid state of neon, argon, krypton and xenon, but 

it does lead to appreciably different quantitative 
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results in the case of the heavier inert gases. It is 

interesting that the values of the EXP-6 pair parameters 

obtained by allowing for triplet effects in the solid 

state are more in line with those given by a consider-

ation of the second virial coefficient than are the 

corresponding values derived from pairwise additive 

solid state calculations. However, the method by which 

we allowed for triplet effects was, of necessity, app-

roximate and took account of only dispersion inter-

actions in the static lattice energy. To be sure of 

the precise effect of triplets in the solid state, 

more information is required as to the nature of the 

short range triplet interaction. 

Finally we come to the pair potential itself. 

We have pointed out in Chapter 1 that the r
-6 depend-

ence of the long range part of the pair interaction 

of the inert gases is well established, but that the 

nature of the short range interaction is still subject 

to considerable uncertainty. Our reason for investi-

gating the EXP.-6 potential was that the use of an 

exponential repulsion of some sort seemed more in 

accord with the results of fundamental quantum mech-

anical considerations of simple systems, than did the 

Use of the inverse power repulsions typical of Lennard-

Jones functions. The calculations in this thesis do in 

fact indicate, to some extent, a superiority of the 

EXP-6 function over the LJ 12:6 function in the overall 

description of the solid state of at least the heavier 

inert gases. It should be remembered, however, that 

the EXP-6 function is still empirical in nature and the 

use of the LJ 12:6 potential can lead to better predict-

ions of some properties even of systems for which the 
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EXP-6 gives an overall better description. To obtain 

a truly rigorous picture of the nature of the inert gas 

pair interaction it is necessary to undertake a funda-

mental study of a pair of isolated molecules, but, as 

we have pointed out, the mathematical obstacles to such 

an approach are formidable except for the simplest 

systems. Nevertheless, with the large electronic 

computers at present available, some progress could 

probably be made in this direction. 
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Appendix 1  

The Derivation of the Spherically Symmetric Cell  
Potential for the EXP-6 Potential  

The reduced spherically symmetric cell potential 

is given by: 

If we make the transformation, x=(a?2-1-11*2-2R*W!cos0)1, 

expression (A.1.1.) becomes: 

1/4!) 	 (A41.2) 

For the EXP-6 pair potential, which may be written in 

reduced form as: 

4)(y 4t) a1 6  4cp(-2 r9 — 
oe — L C JG - 

I, 	Cie.) becomes : 

( 

6 e, 77-, . 
L 	- O6 

)7, bc,bel 
(A•1•3) 
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Now: 
recti.44-e.) 	 ).41.16 

5-eb( 
L 4 

“ 	
(A.1,4) 

t it  
and the integration 

F6 A244-04,) 

X e 
g,1(.) 

may be performed by parts, thus:/' 	
/.0-itf-0 r(C).L*4.k2a  v i.,(..1304)61 v .2_.  c_..)( 	(-14)5) 1 1-1-1 11,X,P000th< 

JO :*—itt.49 ‘---r 	1‘ 	1 	(X 	.42.4.*- 1() a j0,',.*-- re) 

*+ref0  

I 	a_ 	..10.;,., re.:(9  04.4  ,..... 

On substitution of the limits and suitable grouping 

of terms, this expression becomes: 

(
,-(cete.9 

xc  yiy=2.0v-vd3roz+4)Atikkke,) 
-r+La)1,16<eol. 

(A.1.5) 
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Substitution of (A.1.5) and (A.1.3) and again suitable 

grouping of terms, gives: 

WI( OK) .6.g- A takiALot 	D.tosiA.(coek)i.:7-6)1  
a-6 042 	ki 	ovt* 	rviNic 

„, G 

S(424) = 	z,L(ocet/a lAT 4' 

7(4044 = 	(ccti*fiti 	44t  ')1:14-re )  -621%6 

A k(0) 

where 
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Appendix 2  

The "Exact" Finite Difference Solution of the Radial  
Wave Equation., (Hillier, Islam and Walkley 1965)  

The radial Schroedinger equation corresponding to 

the cell potential, w*(R*), may be written in reduced 

variables as: 

(A.2.1) 

where 

* 2*) 	xtt(.0-1).... A-2'1  W) 1 

A4  2 	kle2- 	W.4(2.  
and primes denote differentiation with respect to R*4  

Assuming a first approximation to )(1,n to be ( /1,n) 

and a better approximation to be ( )4a,n) +5):1,n, 

the boundary condition at R*=R is written: 

S'Lloi, Cx-*1.134),-t- 	14 )  kl.11 
which gives: 

dk.-k)t 
0 A4.114. 

Putting: 

(A.2.3) 

)1 -= 	/.).Lsvt, 

0  ) 

LIANAL,40)k• 171tC., 
(A.2.2) 
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(A.2.1) and (A.2.2) become: 

YZI 4  j(i)g 	R-4)Y LI K) 	I (A.2.4) 

01A 11  1.k, (-YitY3)xl4t,t= (A ill 	et 	(A.2.5) 

Differentiation of (A.2.4) with respect to ):10 and 

putting: 

Yt4- 2"-"̂.  Y3I 
	

(A.2.6) 

gives: 

+ 	(Y‘t,,(4.)  kn13 'ft 0 
	

(A.27) 

(A.2.3), (A.2.4), (A.2.5), (A.2.6) 
the basis for the determination of 

degree of accuracy. For any value 

and (A.2.7) provide 

A.101 to any desired 
,* 

of kl,n, (A.2.3), 

(A:2:4), (A.2.6) and (A.2.7) may be integrated in a 

stepwise manner using the Runge-Kutta technique, Due 

to the singularity in the radial equation at R*=01  the 

integration has to be started at some value of R*=R* 

close to R*=0, rather than at R*=0 itself. The initial 

values of Y1,  Y2, Y3 and Y4 are calculated from the 

Levelt and Hurst (1960) series expansion: 

f. 	71, aro..1( X Li vt. 
. 	) .7ix ;,4- 

where a1 has an arbitrary value determined by normal- 
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isationI  a3  is given by: 

• a.b,vL ai 
ti-sXt.+4- (W 01 

and the other coefficients by the recursion relations 

a2,4,04 = gx2- 
 
6 I.-IA...Z.1  "Lqj 	AtIPIL.4`AIA4."1 

n 	ft* 

L+ 2VVL-HIL+.2)14) 	1) /11  
(m= 

where C*k  (k=1,2,31...) are the coefficients in the 2 
series expansion of ;707: 

Using the initial values of Y Y2 Y3, Y4  calculated 

in this manner for XlIn=( )wl,n).0  the equations 

(A.2.3), (A.2.4), (A.2.6) and (A.2.7) are integrable 

step by step from R*=R*o  to R*=R*c. By correcting the 

eigenvalue by the amount 00 10 given by (A.2.5) and 

repeating the procedure, X10 can be calculated to 

any desired accuracy. 
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Appendix 3 

The Numerical Characterisation of an n Parameter  

Potential Function from Zero Point Solid State Data  

Let the n parameters appearing in the potential 

function be Pi(j=1,22...0) and the n appropriate zero 

point equations be: 

" *, PAA,)= ° .,4) (A.3.1) 

Taking a first approximation to the solution of these 

equations to be 'Pjo (j=1,...,n) and a better solution 

to be (Pio+Ty (j=1,...,n) we write: 

F•t(Pia+-Efi)o) ...,640+6)IT:o (t,:=1,...,,A) (A.3.2) 

Expanding the equations (A.3.2) as Taylor series and 

truncating after terms linear int;P.
3
(j=1,...2n) we 

obtain: 

go' • • ) Po/ 	 7:- k. L;:r: I) • 	eti) (A.3.3) 
44. 

P \ 	rl 

which rewritten in terms of difference quotients become: 

fGt. 
FT•010,- .,efAx;)÷2. PAS FLA Pi.)? 0  6t: ). 4A • •)(A 3 4) 

where 

P \ 

( i f• 	= FL (Pr 0 1  - - , Po+Yjo ),  - ,P4,10) - PP , 0,. • .m0,..-,,),.:o, 
6P 1 	 &if )  
and APj  .o 

 is chosen to be some small increment in 

Pio, 21E. tsPi0=0.01Pie 
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Calculation of F.(P 1-- lo"'"Pno)  (i=1 ,...,n) and 
( 6Fi/ APJ)0  (i=1,...1n; j=1,...1n) allows the 
equations (A.3.4) to be solved for NPj(j=1,...111). 
Addition of 31P3(j=1,...,n) to the first approx-
imation Pjo(j=1....,n) then gives a better approx-
imation. Continued application of this procedure 

gives the parameters to any specified degree of 

accuracy. 
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Appendix 4  

Results of Pairwise Additive EXP-6 and LJ 12:6 Cell Model  

Calculations for Solid Neon, Ammon, Krypton and Xenon.  

In the following tables T, a , 	C 	C 	S, p o T1  v' p' 
and V/V(0) stand for temperature, lattice constant, 

isothermal compressibility, volume expansivity, isochoric 

specific heat, isobaric specific heat, entropy, pressure 

and molar volume at a specified temperature, respectively. 

In all cases, T is expressed in oK, a in a, T  in 
2 11 	1 104. ° cm x10 dyne-1 and in °K x  	Cv,  , C. and S are 

Solid neon  

(i) Zero pressure EXP-6 values of aol y,T, 	C 	C v p 
and S as functions of T. 

T 	ao 	YdT Cy 

o 4.4637 9.00 0 

8 4.4641 9,06 2.39 1.18 1,18 0.20 

12 4.4679 9.51 11,42 5.37 5.60 1.43 

16 4.4782 10.51 23.32 10.01 11.12 3.79 

20 4.496o 12.21 36.10 13.55 16.47 6.86 

23.5 4.5132 14.49 48.54 15.66 20.96 9.86 

(ii) EXP-6 values of V/V(0) as a function of p at 4°K. 

p 2043 4000 6000 8000 10000 12000 16000 20000 

v/v(0) 0.894 o.843 0.807 0.780 0.759 0.741 0.712 0.690 

expressed in J mole-1 oK-1 for solid neon and solid argon 

and in cal mole-1 oK for solid krypton and solid xenon. 

p is expressed in kg cm-2 for solid neon, solid argon 

and solid krypton and in Mbar for solid xenon. 
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(iii) Zero prossure LJ 12:6 values of ao, )CTIJ3, Co  

C and S as functions of T. 

T a Cy 

0 4.4637 10.32 0 0 0 0 
8 4.4642 10.42 3.48 1.60 1.61 0.29 

12 4.4694 11.02 14.55 6.36 6.67 1.83 

16 4.4820 12.28 27.91 11.06 12.44 4.54 

20 4.5029 14.34 41.64 14.42 17.75 7.89 

23.5 4.5281 17.04 54.7o 16.33 22.10 11.10 

(iv) LJ 12:6 values of V/V(0) as a function of p at 4°K. 

p 2043 4000 6000 8000 10000 1200o 16000 20000 

v/v(o) 0.882 0.828 0.790 0.762 0.740 0.722 0.693 0.670 

Solid argon 

(i) Zero pressure EXP-6 values of ao  

T 

C 	and S as functions of T. 

ao 	/LT Cy 
0 5.3111 3.75 0 0 0 0 

10 5.3113 3.76 0.76 1.63 1.63 0.30 

20 5.3167 3.92 5.41 11.13 11.47 4.39 

30 5.3296 4.24 8.85 17.01 18.28 10.47 

4o 5.3473 4.65 11.11 19.72 22.16 16.30 

50  5.3689 5.17 12.95 20.98 24.75 21.54 

59.88 5.3934 5.82 14.71 21.54 26.79 26.19 

7o 5.422o 6.68 16.68 21.74 28.74 30.51 

83 5.4650 8.22 19.86 21.69 31.48 55.64 
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(ii) EXP-6 values of V/V(0) as a function of p at 77°K. 

p 2043 6000 8000 12000 16000 19000 
v/v(o) 0.909 0.830 0.804 0.766 0.738 0.721 

(iii) Zero pressure LJ 12:6 values of a ,1,1e., 	c o TJ 2  v 
C and S as functions of T. 

T 	ao 	1)1T J3 	
Cv 	Cp 

0 5.3111 3.81 0 0 0 0 
10 5.3113 3.82 0.83 1.68 1.68 0.31 
20 5.3171 4.00 5.83 11.23 11.62 4.47 
30 5.3310 4.35 9.50 17.03 18.45 10.61 
40 5.3502 4.81 11.93 19.65 22.38 16.50 
50 5.3732 5.39 13.90 20.83 25.02 21.80 
60 543998 6.12 15.81 21.33 27415 26.55 
70 5.4304 7.07 17.94 21.47 29.15 30.88 
83 5.4765 8.79 21.36 21.34 32.00 36.08 

(iv) LJ 12:6 values of V/V(0) as a function of p at 77°K. 

p 2043 6000 800o 12000 16000 19000 
V/V(0) 0.906 0.827 0.802 0.765 0.738 0.722 



0 

1.21 
4.81 

7.78 
9.32 
10.85 
12.75 
14.81 

ao )4r 
0 5.6459 2.91 
10 5.6463 2.92 
20 5.6522 3.04 
4o 5.6770 3.44 
6o 5.7096 3.99 
8o 5.7480 4.75 
100 5.7932 5.82 
11578 5.8352 7.06 

0 0 0 

0.913 0.916 0.21 

3.498 3.597 1,74 
5.089 5.551 4.99 
5.381 6.255 7.39 
5.410 6.765 9.26 
5.353 7.308 10.83 
5.275 7.846 11,94 

Solid krypton  

(i) Zero pressure EXP-6 values of aco  
Cv and S as functions of T. 

C 
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(ii) EXP-6 values of V/V(0) as a function of p at 77°K 

p 200 400 600 1000 moo 3000 4000 
v/v(0) 0.991 0.983 0.976 0.963 0.935 0.914 0.895 

(iii) Zero pressure LJ 12:6 values of ao,Y,T  

C and S as functions of Ti 

T ao 
	 C

p  
 S 

0 5.6459 3.11 0 0 0 0 

10 5.6464 3.12 1.43 0.998 1.002 0.24 

20 5.6531 3.26 5.34 3.592 3.705 1.85 
4o 5.6803 3.72 8.48 5.104 5.613 5.15 
60 5.7157 4.35 10.12 5.361 6.'310 7.57 
8o 5.7573 5.2o 11.74 5.370 6.824 9.46 
100 5.8063 6.42 13.76 5.296 7.375 11.04 
11578 5.8518 7.81 15.93 5.208 7.918 12.16 
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(iv) LJ 12:6 values of V/V(0) as a function of p at 77°K 

p 200 400 600 1000 2000 3000 4000 
V/V(0) 0.991 0.982 0.974 0.960 0.931 0.908 0.889 

Solid xenon 

(i) Zero pressure EXP-6 values of ao, 
and S as functions of T. 

T 	ao 	X., 	6 	Cv V 

P 
T, 	C 

c
P  

, 	C v 	p 

S 

0 6.1310 2.89 0 0 0 0 
10 6.1316 2.91 1.42 1.504 1.510 0.42 
20 6.1574 3.00 3.95 4.073 4.160 2.42 
4o 6.1576 3.25 5.55 5.330 5.648 .5.89 
8o 6.2091 3.95 6.85 5.589 6.4o8 10.08 

115 6.2630 4.85 8.05 5.529 6.888 12.49 

15o 6.3280 6.23 9.74 5.412 7.495 14.39 
160 6.3492 6.77 10.38 5.371 7.715 14.88 

(ii) EXP-6 values of V/V(0) as a function of p at 150°K 

p 2 5 8 14 20 

V/V(0) 0.918 0.855 0.815 0.762 0.726 



(iii) Zero pressure LJ 12:6 values of ao,̂)(2, 

C v  , Cp  and S as functions of T. 

T 	ao 	XT 	A 	
Cv 	Cp 	S 

0 6.1310 2.75 0 0 0 0 

10 6.1316 2.76 1.41 1.417 1.423 0.39 
20 6.1375 2.85 4.08 3.996 4.093 2.32 
40 6.1585 3.13 5.82 5.282 5.647 5.77 

80 6.2129 3.87 7.25 5.526 6.463 9.98 
115 6.2703 4.84 8.57 5.442 6.991 12.41 

15o 6.3397 6.36 10.44 5.30o 7.658 14.32 

16o 6.3625 6.96 11.15 5.252 7.901 14.81 

(iv) LJ 12:6 values of V/V(0) as a function of p at 150°K 

p 2 5 8 14 20 

v/v(0) 0.919 0.857 0.819 0.769 0.735 

188. 

a , 
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Appendix 5  

Experimental Data far Solid Neon, Argon, Krypton and 
Xenon 

The symbols used in this appendix represent the 

same properties as they do in Appendix 4, The properties 

are expressed in the same units as are the corresponding 

ones in Appendix 4. 

Solid neon  

(i) Zero pressure'vilus of No  
functions of T. 

Cp  and S as 

T 

4 

6 

8 

10 

12 

14 

16 

18 

20 

23.5 

a a)  xla) a) b) c  c) sd) 

4.4637 9.0+0.2 0.60+0.05 0.347 0.347 0.133 

4.4642 9.1+0.4 2.46+0.05 1.350 1.355 0.439 
46 4654 9.2+0.6 5.73+0.06 3.10 3.14 1.05 

4.4677 9.4+0.6 10.17+0.07 5.36 5.51 200 

4.4815 9.6+0.8 15.39+0.08 7.89 8.29 3.25 

4.4769 10.0+1.0 21.09+0.10 10.10 10.95 4473 

464841 10.7+1.1 27.00+0.10 12:0 13.5 6.36 

4.4930 12.4+162 33.12+0.12 13.9 16.1 8.10 

4.5040 16.2+145 40.11+0414 15.9 18.9 9.94 

445287 51.54+0.14 

a) Data of Batchelder, Losee and Simmons (1967) 

b) Calculated by Batchelder,2Losee and Simmons (1967) 
from the relation C =Cv+( “V/xT. Error due toithe 
uncertainties inpand -KT  rises to +0.7J mole- °Y-1  
at 20°K. 	

r. 

c) Smoothed data of Fenichel and Serin (1966) and 
Fagerstroem and Ballet (1965) as given by Batchelder, 
Losee and Simmons (1967). Fenichel and Serin 
estimate their error in C to be +2%. 

d) Calculated from the relation S = 	(C /T)dT. 
Jo P 
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(ii) Values of V/V(0) as a function of p at OK, 
(Stewart 1956). 

p v/v(o) p v/v(0) 
1000 0.927+0.004 Bow 0.770+0.012 
2043 0.882+0.006 10000 0.747+0.013 
3000 0.858+0.007 12000 0.728+0.014 
4000 0.832+0.008 16000 0.696+0.015 
60000 0.797+0.010 20000 0.669+0.017 

Solid  argon 

(i) Zero pressure values of a 
functions of T. 

0 
CV  Cp  and S as 

T a a)  ;b) fla) c c) 
v 

 d) 
p 

s0) 

10 5.3117 3.77 1.38 3.294 3,305 1.096 
15 5.3138 3.83 3.48 8.01 8.12 3.320 
20 5.3179 3.93 5.55 12.16 12.51 6.278 
25 5.3235 4.05 

74  
15.30 16.02 9.46o 

30 5.3305 4.21 8:154 17449 13.67 12.62 
35 5.3386 4.38 9.69 19.13 10.85 15.67 
4o 5.3477 4.59 10.68 20.25 22.54 18.56 
45 5.3576 4.83 11.64 20.95 23.87 21.30 

50 5.3684 5.10 12.54 21.54 25.13 23.87 
55 5.3801 5.42 13.49 21.94 26.27 26.31 
6o 5.3926 5.81 14.50 22.19 17.31 28.63 
65 5.4062 6.27 15.63 22.34 28.36 30.84 
70 5.4209 6.82 16.99 22.60 29.71 32.98 
75 5.4369 7.46 18.55 22.94 31.33 35.05 
Bo 5.4546 3.24 20.31 23.34 33.17 37.09 
83 5.4660 8.76 21.47 24.02 34.84 38.31 
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a) Data of Peterson, Batchelder and Simmons (1966). 

b) Data quoted by Peterson, Batchelder and Simmons 

(1966). Error rises to +10% at the higher temper-

atures. 

c) Calculated from the relation Cp=C174,2TV/101, by 

Peterson, Batchelder and Simmons (1966). 

Error due to the uncertainty inyT  rises to 

+1.1J mole-1 oK-1 at 83oK.  
d) Data of Flubacher, Leadbetter and Morrison (1961) 

as quoted by Peterson, Batchelder and Simmons 

(1967). Flubacher, Leadbetter and Morrison 

estimate their error in C to be +2% at the 

lowest temperatures, decreasing to +0.2% for 

T 20°K but increasing to +0.5% at the highest 

temperatures. 	,T 
e) Calculated from the relation S = 	(C /T)dT. 

Jo 13  

(ii) Values of V/V(0) as a function of p at 77°K 
(Stewart.  1956). 

p 	V/V(0) p V/V(0) 

1000 0.939+0.003 8000 0.795+0,010 

2043 0.901+0.005 12000 0.758+0.012 

4000 0.853+0.007 16000 0.730+0.013 

6000 0.820+0.009 20000 0.714+0.014 
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Solid krypton  

(i) 	Zero pressure values of a042, p, Cp  and S as 
functions of T. 

ao 	
,b) 	e) 	f) T 

)=T 	)5 	c 	s 

4.25 

5  
10 

10.3 

15 

17.5 

20 

25 

30 

31.7 

39.2 
40 

45.9 

50 

5363 

60 

671 

68 

7o 

74.0 

77.3 
80 

90 

90.8 

100 

110 

115 

58 c)  

5.6459a)  

- 
- 

5.6470a)  

- 

5.65513)  

- 

- 

- 

- 

5.678b)  

5.686e)  

- 
- 

54710 

547111b)  

5.734c)  
- 

5.7345a)  

5.7409a)  
b) 5.751 

56773
b) 

- 
- 

- 

5.7986) 

_ 

2.91 

- 
- 

2.90.015a)  
- 

2.84+0.42a)  
- 

2.77+0.40a)  

- 

3.17+0.27a) 

3.37+0.25a)  

_ 

5.47+0.20)  

- 
3.66+0.31A)  

- 

3679+0646a) 

a) 4.25+0.33 
. 

- 

4.46+o.25a)  

4.82+0.15a)  
- 

- 

5.52+0.48 

- 

- 
- 

v 
- 

- 
- 

dn. 

- 

4.8 
- 

- 

• 111 

7.7 

- 

- 

- 

9.7 
- 

_ 

- 

- 
- 

11.0 

11.2 

- 
- 

- 

- 

P 
- 

0.3721 

1.418 
MO 

2.798 

3.817 

4.516 

4.990 
IMO 

ea 

5.612 
MM. 

5,978 
- 

- 

6.296 
- 

- 
6.569 

_ 
- 

6.824 

7.146 

- 
7.585 

8.139 

8.552 

- 

0.07 
o.54 

•••11 

1.38 
II•111 

2.32 

3.25 
4.11 
••• 

5.65 
ORR 

6.94 
- 

- 

8406 

- 
_ 

9.05 
- 
- 

9.95 

10.77 
-

11.55 
12.29 

12.66 
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a) Data of Urvas, Losee and Simmons (1967). 
b) Data of Figgins and Smith (1960). 
c) Data of Cheeseman and Soane (1957). 
d) Data of Clusius and Weigand (1960). 
c) Data of Beaumont, Chihara and Morrlpon (1961). 
f) Calculated from the relation S = f(C /T)dT. 

-1(s p 
(ii) Values of V/V(0) as a function of p at 77°K(5tewart 

p v/v(o) p v/v(o) 	1955) 
200 0.990+0.001 2000 0.928+0.004 
400 0.981+0.001 3000 0.905+0.005 
600 0.972+0.001 4000 0.887+0.006 
1000 0.958+0.002 

Solid xenon 

(i) Zero pressure values of ao 	C and S as 

functions of T. 

	

fi
T 	ao 	)T 	C P 

	
Sf)  

10 	6.133a) 	- 	• 1 d.) 	1.87d)  

20 6.136a) 	2,85+0.206,) 2.8a) 4.22d) 2.88 
— 6.137b) 3.0b)  

64137+0.004 )  

30 6.145a) 	- 	4.4a)  

40 6.154a) 	_ 	5.5a) 

	

6.157b) 	5.
8b)  

50 6.166a) 

	

3.10+0.20c) 6.3a) 	6.00e) 	7.60 
6.167+9 006c)  

60 6.180 	- 	6.9a) 

6.5b)  6.1831p)  
70 6.195a) 	- 	7.5a) 

75 6.202a) 6.39.) 10.11 3.75+0.30c)7.7EL)  

6.203+0.007c) 

ONO 

rot 

SIM 

NW. 
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Solid xenon (Cont.)  

T 	ao 	 C 
P 	

S
f) 

	

80 6.210b) 	_ 	6.7b)  

	

100 6.238b) 	- 	6.8b) 	6.74°)  12.00 
6.243+0.009c) 	7.0+0.7c)  

	

120 6.268E) 	- 	6.8E)  
125 6.287+0.006c) 5.25+0.50°8.4+0.8c)  7.30e)  13.57 
150 6.331+0.007c)  6.55+0.90°10.3+1.0c)  8.02 	14.97 

a) Data of Sears and Klug (1962). 

b) Data of Eatwell and Smith (1961). 
c) Data of Packard and Swenson (1963). 

d) Data of Fenichel and Serin (1966). 

e) Smoothed data of Clusius and Riccoboni (1938) 

as quoted by Packard and Swenson (1963). 
A f) Calculated from the relation S =. j T  (C /T)dT 
n P 

by Packard and Swenson (1963) using-the 

C data of Clusius and Riccoboni (1938). 

(ii) Values of V/V(0) as a function of p at 1500K 
(Packard and Swenson 1963), 

	

P 	V/V(0) 	p 	V/V(0) 

	

1 	0.952 	12 	0.775 

	

2 	0.919 	14 	0.760 

	

4 	0.873 	16 	0.747 

	

6 	0.840 	18 	0.736 

	

8 	0.814 	20 	0.726 

	

10 	0.794 

The error in V/V(0) is +0.005 at all pressures. 
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Appendix 6  

Results of EXP-6 Cell Model Calculations with Triplet 
Dispersion Interactions Included in the Static Lattice  

for Solid Neon, Argon, Krypton and Xenon  

The symbols used in this appendix represent the 

same properties as they do in Appendix 4. The properties 

are expressed in the same units as are the corresponding 

ones in Appendix 4. 

Solid neon  

(i) Zero pressure values of a0,16,, 13, Cv i 

 Cp  and 

S as functions of T. 

T 	ao x 	 S ii 	r) 	T Cv 	CP 

0 4.4637 9.00 0. 0 0 0 

8 4.4640 9.07 2.53 1.25 1.26 0.22 

12 4.4682 9.55 12.05 5.56 5.30 1.51 

16 4.4790 10.61 24.38 10.21 11.42 3.93 

20 4.4975 12.41 37.62 13.70 16.83 7.08 

23.5 4.5207 14.85 50.66 15.76 21.41 10.15 

(ii)  Values of V/V(0) as a function of p at 4°K 

p 2043 4000 6000 8000 10000 12000 16000 20000 

v/v(o) 0.894 0.843 0.807 0.781 0.759 0.742 0.713 0.691 
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Solid argon 
(i) Zero pressure values of ao,/tr p, Cv, Cp  and S 

T 

as functions of T. 

ao Cy p 
0 5.3111 3.75 
10 5.3113 3.8o 0.93 1.93 1.93 0;36 
20 5.3174 3.99 5.93 11.76 12.16 4.84 
30 5.3313 4.33 9.43 17.42 18.83 11.17 
4o 5.3503 4.78 11.75 19.93 22.60 17.15 
50 5.3729 5.34 13.66 21.05 25.12 22.48 
6o 5.3991 6.07 15.54 21.52 27.18 27.24 
70 5.4290 7.00 17.66 21.64 29.15 31.58 
83 5.4748 8.75 21.19 21.50 32.03 36,78 

(ii) Values of V/V(0) as a function of p at 770K. 

p 2043 6000 8000 12000 16000 1900o 
v/v(o) 0.906 0.826 0.800 0.762 0.734 0.717 
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Solid krypton 

(i) Zero pressure values of aco 	Cp  and S 
as functions of Ti 

T 	ao 	)61 
J3 	

Cv 	C
P 	

S 

0 5.459 2.91 0 0 0 0 
10 56464 2.93 1.42 1.033 1.037 0.25 
20 5.6530 3;06 5.20 3.629 3:744 1.89 
40 5.6793 3.50 8.21 5.118 5.626 5.21 
6o 5.7136 4.10 9.83 5.367 6.317 7.64 
8o 5.7543 4.93 11.49 5.371 6.84o 9.53 
100 5.8025 6.14 13.63 5.292 7.419 11.11 
11578 5.8476 7.58 15.99 5.198 8,010 12.24 

(ii) Values of V/V(0) as a function of p at 77°K. 

p 200 400 600 1000 2000 3000 4000 
V/V(0) 0.991  0.983 0.975 0.962 0.934 0.912 0.894 

Solid xenon  

(i) Zero pressure values of a o 
"T 
Ot_l p CV  Cp  and S 

as functions of T. 

T 	ao 	
'
AT 	8 

0 
1.66 
4.26 
5.84 
7.21 
8.51 
10.41 
11.13 

0 6,1310 2.90 
10 641318 2.92 
20 6.1381 3.02 
40 6.1595 3.30 
80 6.2137 4.06 
115 6.2707 5.05 
150 6.3397 6.61 
160 6.3624 7.23 

CV  C
P  

S 

0 0 0 
1.691 1.699 0.50 
4.210 4.310 2.63 
5.360 5.708 6.17 
5.563 6.446 10.39 
5.477 6.943 12.81 
5.338 7.593 14.74 
5.292 7,834 15.23 



(ii) Values of V/V(0) as a function of p at 150°K. 

p 2 5 8 14 20 
V/V(o) 0.916 0.852 0.811 0.758 0.722 

198. 
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Appendix  

The Characterisation of an n Parameter Potential  

Function from Second Virial Data by Least Squares  

Refinement  

Let us suppose that the potential function to be 

characterised contains n adjustable parameters 

P(i=1,...0) and that there are k different experi-

mental values of the second virial coefficient 

available, where 10.n. If the experimental values 

of the second virial coefficient are BexPt(j=1,...,k) I 
then the parameters which give the optimum least 

squares fit with experiment are those which minimise 

the quantity: 

, 	- 	) 
Jrzt 

(A.70) 

where B
calc are the calculated second virial coeff- 
j 

icients. Let us assume a first approximation to 

Pi(i=1,.."n)tobel)io  (i=1, ..61n) and that a better 

fit with experiment is given by Pio+ Fpi  

On expanding B.calc   as a Taylor series in 0P.(i=1,...,n) 

and truncating after linear terms, we obtain: 

ntate, 4&,-9 
j 	it-- 5. 	4. 	

(()13! f aRL)0  61-.2:1? —11() (A.7.2) JO 
1:11. 
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where a zero subscript on a quantity denotes that 

quantity evaluated for Pi=Pio(i=1,...,n). On sub-

stituting (A.7.2) into (A.7.1) and minimising with 

respect to the quantities NPi(i=1,...,n) we obtain 
the so called normal equations, which may be written 

in matrix notation thus: 

A= BP 
	

(A.7.3) 

where A is a column vector with elements: 
ki 

— E / 	Q t°10/11/Aliti 

AV: I 
B is a rmetric nxn matrix with elements: 

-i!--)1 	. -62tt.t., 
4 ' i i = 21, 08,,,,. Vap,)006,14. Api) (i.-1,...,,,t;  

/ 	Aic.1 J...,... I, ., 	) 
and n) is a column vector with elements :SPi(i=1,...0). 

Replacing the partial derivatives by difference 

quotients evaluated by making a small (24E. 1%) change 

in the differentiating variable, the set of equations 

(A,7.3) are straightforwardly solved for Slpi(i=1,...,n). 

On adding these quantities to Pio(i=1,...,n), we obtain 

a better set of parameters, which, in turn, may be used 

to obtain an even better set. The procedure may be 

cycled until the shifts in the parameters are minimalt 
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Appendix 8  

Experimental and EXP-6 Calculated Values of the Second 

Virial Coefficients of Neon, Arson, Krypton and Xenon 

In this appendix T stands for temperature and B(T) 

for the second virial ceofficient at temperature T. T is 
expressed in °K and B(T) in cm3  mole-1. 
Neon 

T B(T)d)  B(T)b)  B(T)c)  B(T)d) 

123.16 1.233e)  1.265 1.847 1.303 
131.94 2.915f)  2.549 3.194 2.687 
170.15 6.302f)  6.408 7.23794  6.841 
173.16 6.750e)  6.629 7.468 7.079 
223.16 9.374e)  9.310 10.026 9.958 
273.16 10.767g)  10.860 11.869 11.617 
293.16 11.389g)  11.400 12.425 12.193 
323.16 11.8220  11.835 12.872 12.656 
348.16 12.188g)  12.190 13.234 13.033 
373.16 12.481g)  12.483 13.531 13.343 
393.16 12.824g)  12.725 13.776 13.599 
423.16 13.079g)  12.927 13.979 13.813 
473.16 13.426h)  13.241 14.289 14.141 
573.16 13.695h)  13.624 14.657 14.536 
673.16 13.776h)  13.317 14.829 14.728 
773.16 13.736h)  13.903 14.893 14.808 
873.16 13.886h)  13.928 14.895 14.822 

973.16 13.982h)  13.914 14.859 14.797 

a) Experimental values 
b) EXP-6 values calculated from the 

parameters in Table 6 (p.161) 

c) EXP-6 values calculated from the 
pPrameters in Table 2 (p.74) 

second virial 

"pairwise additive" 
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d) EXP-6 values calculated from the "triple-F parameters 
in Table 5 (p.148) 

e) Holborn and Otto (1925) 
f) Kamerlingh Onnes and Crommelin (1915); 

Kamerlingh Onnes, Crommelin and Martinez (1919) 
g) Michels, Wassenaar and Louwerse (1960) 
h) Nicholson and Schneider (1955). 

Ars2E.  

T 	B(T)a)  B(T)b) 	B(T)c)  B(T)d)  

81.948 
87.120 
92.777 
97.655 
102.081 
105.885 
108.073 
115.227 
119.997 
129.556 
133.16 
158.16 
145.16 

146.047 
148.16 
150,66 
153.16 
157.411 
163.16 
173.16 
188.16 
190.519 

144.599 -94.00 

-272.9° 
-245.0 
-216.9

e) 

-194.85°  
-179.10e)  

-167.82e) 

-161.54e) 

-144.85e) 

-134.25e) 

-114.93e) 
nf) -107.90 

-100.88f) 

- 94.43f) 

-93.18e) 

-92.08e)  
f) -88.45 

-85.65f)  

f) -82.97 
-80.34e) 

-73.25f) 
f) -65.21 

-.54.83f)  

-52.85e)  

-277.7 
-245.8 
-217.4 
-197.0 
-181.1 
-168.96 
-162.58 
-144.14 
-133.60 
-115.72 
-109.89 
-102.50 
- 95.81 

-92.23 
-89.72 
-86.88 
-84.16 
-79.80 
-74.37 
-66.03 
-55.61 
-54.16 

-239.0 
-214.5 
-191.8 
-175.32 
-162.22 
-152.15 
-146.30 
-131.16 
-122.10 
-106.52 
-101.38 
- 94.82 
-88.84 
-87.21 
-85.62 
-83.37 
44..60 
-78.34 
-74.37 
-69.41 
-61.74 
-52.06 
-50.71 

-264.9 
-237.3 
-212.2 
-193.83 
-179.31 
-168.18 
-162.27 
-145.06 
-135.11 
-118.05 
-112.45 
-105.30 
-98.79 
-97.02 
-95.29 
-92.83 
-90.04 
-87.37 
-83.07 
-77.69 
-69.39 
-58.94 
-57.48 
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Argon (Cont.) 

B(T)
b) B(T)c)  B(T)

d)  T B(T)a)  

203.16 -46.52f)  -47.10 -44.08 -50,34 
223.16 -37.43f)  -37.92 -35.4o -41.00 
248.16 -28.57f)  -28.94 -26.84 -31.8o 
273.16 -21.27g)  -21.89 -20.08 -24.56 
298,16 -15.766)  -16.24 -14.62 -18.71 
323.16 -11.24g)  -11.59 -10.13 43.90 
348.16 - 7.249g)  -7.721 -6.382 -9.886 
373.16 -3.999g)  -4.446 -3.205 -6.485 
398.16 -1.181° -1.643 -0.484 -3.574 
423.16 1.3840  0.782 1.867 -1,056 
473.16 4.99h)  4.76 5.72 3.07 
573.16 10.77h)  10.37 11.12 8,87 

9.8i)  

673.16 15.74h)  14.10 14.60 12.70 
13.11)  

773.16 17.76h)  16.74 17.16 15.37 
16.0 i)  

873.16 19.48h)  18.68 18.96 17.32 
923.16 18.91)  19.47 19.68 18.10 
1073 19.91)  21.31 21.13 19,89 
1223.16 21,11)  22.60 22.43 21.13 

a) Experimental values 

b) EXP-6 values calculated from the second virial 
parameters in Table 6 (p.161) 

c) EXP-6 values calculated from the "pairwise additive" 
solid state parameters in Table 2 (p.74) 

d) EXP-6 values calculated from the "triplet" solid 
state parameters in Table 5 (p.148) 

e) Weir, Wynne Jones, Rowlinson and Saville (1967 -
but communicated to the author prior to publication) 
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f) Michels, Levelt and de Graaf (1958) 
g) Michels, Wijker and Wijker (1949) 
h) Whalley and Schneider (1955) 
i) Lecocq (1960). 

Krypton 

B(T)a) B(T)b)  B(T)c)  B(T)d) T 

110.639 -370.5 le)  -368.2 -300.3 -341.1 
112.417 -354.4 e)  -356.3 -291.7 -331.3 
115.153 -334.1 	e)  -339.4 -279.3 -316.9 
118.138 -315.9 e)  -322,3 -266.8 -302.4 
120.243 -307,4 e)  -311.2 -258.5 -292.8 
127.788 -273.6 e)  -276.0 -231.9 -262.3 
133.105 -251.44e)  -255.01 -215.69 -243.84 
142.810 -220.07e)  -222.83 -190.41 -215.11 
155.086 -188.73e)  -190.63 -164.63 -185.85 
168.550 -162.88e)  -163.02 -141.76 -160.33 
180.752 -142.84e)  -142.96 -124.92 -141.52 
200.590 -116.56e)  -117.38 -103.04 -117.19 
224.193 - 95.46e)  - 94.66 - 83,20 - 95.26 
273.16 - 62.95f)  - 63.13 - 55.03 - 64.30 

- 62.70g)  
298.16 - 52.35f) - 51.94 - 44.85 -53.16 
323.16 -42.77f)  -42.84 -36.51 -44.05 

-42.78g)  
348.16 -35.21 f) -35.32 -29.57 -36.48 
373.16 -28.86f)  -28.99 -23.70 -30.10 

-29.280 
398.16 -23.47f)  -23.60 -18.68 -24.64 
423.16 -18.81f)  -18 96 -14.35 -19.93 

-18,.13g) 
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Krypton (Cont.).  

T 	B(T)a) 	B(T)b)  B(T)c)  B(T)d)  

448.16 

473.16 
-14.73f)  
-11.11f) 

-14.92 

-11.37 
-10.57 
-7.25 

-15.82 
-12.22 

-10.75g)  
498.16 - 8.402f)  -8.239 -4.313 -9.030 
523.16 -5.693f)  -5.451 -1.698 -6.190 
548.16 -3.167f)  -2.957 0.644 -3.648 
573.16 f) -1.115 -0.712 2.751 -1.360 

0.420g)  
673.16 7.240g)  6.377 9.395 5.858 
773.16 12.70 g)  11.4o 14.08 10.96 
873.16 17.19 g)  15.12 17.53 14.71 

a) Experimental values 
b) EXP-6 values calculated from the second virial 

parameters in Table 6 (p.161) 
c) EXP-6 values calculated from the "pairwise additive" 

solid state parameters in Table 2 (p.74) 
d) EXP-6 values calculated from the "triplet" solid 

state parameters in Table 5 (p.148) 
e) Weir, Wynne Jones, Rowlinson and Saville (1967) 
f) Beattie, Barriault and Brierly (1952) 
g) Whalley and Schneider (1955). 

Xenon 

T 	B(T)a) 	B(T)b) 	B(i)c)  B(T)d)  

273.16 	-154.74e)  -155.82 -149.18 	-171.48 
298.16 	-130.27e)  -131.44 -127.08 	-146.72 
323.16 	-110.98e)  -111.93 -109.15 	-126.73 
348.16 	- 95.10e) 	-95.97 	-94.34 	-110.26 

373.16 	-81.89e)  -82.67 .81.90 	-96.47 

39416 	4o...62e)  =71:44 .71431 	.84.76 



206. 

Xenon (Cont.) 

B(T)b)  B(T)c)  B(T)d)  T B(T)a)  

423.16 -61.02e)  -61.83 -62.20 -74.70  
448i20 -52.64f)  -53.50 -54.27 -65.96 
473e16 -47.368)  -46.25 -47.34 -58.33 
473.21 -45.37f)  -46.24 -47.33 -58.31 
498.23 -39.05f)  -39.84 -41.19 -51.57  
523.25 -33.21f)  -34.17 -35.74 -45.57 
548.26 -28.02f)  -29.11 -30.87 -40.22 
573.16 -25.076)  -24.59 -26.50 -35.43 
573.28 -23.55f) -24.57 -26.48 
673.16 -10.786)  -10.31 -12,66 :3250:4216 
773.16 - 1.34°  - 0.22 - 2.89 - 9.54 
873.16 7.956)  7.24 4.35 - 1.61 
973.16 14.218) 12.97 9.88 4.47 

a) Experimental values 
b) EXP-6 values calculated from the second virial 

parameters in Table 6 (p.161) 
c) EXP-6 values calculated from the mpairwise additive" 

solid state parameters in Table 2 (p474) 
d) EXP-6 values calculated from the "triplet" solid 

state parameters in Table 5 (p.148) 
e) Michels, Wassenaar and Louwerse (1954) 
f) Beattie, Barriault and Brierly (1951) 
g) Whalley, Lupien and Schneider (1955) 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207



