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ABSTRACT

The problems discussed in this thesis lie in the realm of geophysical
fluid mechanics and concern periodic ond transient fluid motions
produced by kinematic or thermal perturbations from o basic isothermal
state of steady rigid rotation, We conside;‘ either ¢ semi~infinite expanse
of fluid bounded by an infinite disk or the fluid between two parallel
infinite disks when, initially, the whole system is rotating with constant
angular velocity,

For the semi~infinite case, the linearized initial-value problem
associated with the disk performing non-torsional or torsional oscillations
in its own plane is examined, Oscillatory boundary layer solutions are
found except when the frequency of the imposed oscillatians is twice
the angular veloci'ty‘of rofation,  For this resonant case, a non-oscillatory
sol‘ufion is obtained which penetrates through the fluid with time, When
both disks are present, the corresponding linearized problems are examined
and oscillatory solutions can achys be found, Also, for the semi-
infinite problem, oscillatory solutions always exist when a length scale

is introduced in the plane of the disk through the imposed oscillations,



When two disks are present, we consider the linearized initial=
value problem connected with o spacially varying temperature distribution
on the lower disk, A final steady state is obtained consisting of
Ekman layers on the disks together with an inviscid interior thermal-wind
flow, The effect on this steady solution of assuming a one=-dimensional
step-function or normal disiribution for the temperature variations, and
also the consequence of introducing a favourable or adverse temperature
gradient in the initial flow, are discussed, The effect of the non-
linear convective terms is examined by secking exact solutions of the

inviscid equations,
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CHAPTER 1

INTRODUCTION

the.
In geophysical fluid mechanics of the ocears, yatmosphere and

even possibly the earth’s interior, one is concerned with currents and
circulations which are dominated by the Coriolis effect of the earth's
rotation,  Moreover, - the effects of heating whether regarded as steady
or periodic (night/day cycle) are profound and surely lie at the root of
phenomena such as hurricanes,  For these reasons, a class of problems
has been considered in this thesis which is concerned with periodic and
transient fluid motions produced by small perturbations either in the
velocity field or the temperature. fieid from a basic isothermal staody state
of solid=body rotation,

For any fluid system which is rotaﬂﬁg with constant angular
velocity, 52, and for which there exista typical length and velocity

scales, L,V, respectively, the two dimensionless parometers

\4

% = T3 - (1.1
2

Roo= £t (1.1,2)




can be defined, where Y is the kinematic viscosity. The parameter
R

&i defined by (1,1.1), is the Rozh:+ number and represents H;e* ratio of
the convective acceleration fo the Coriolis force and hence t:eai‘:porhnce
of the non~linear ferms in the equations of motion, The parameter R,
defined by (1.1.2), is the Reynolds number and represents the ratio of

the Coriolis forge to the viscous force.  In this thesis, whenever the

parameters (1.1,1), (1.1,2) can be defined, we will assume thot

R K1, R>1,. (1.1,3)

which implies that the convective acceleration and therefore the non-
lineor ferms in the equations of motion, are negligible compared with the
Coriolis force and that the effects of viscosity are only important in
regions where there are discontinuities in the velociiy profile or in the
neighbourhood of confining boundaries,  Therefore we are only concerned
with a class of problems for which there is an interior inviscid core where
the motion is dominated by the Coriolis force, viscous free shear layers
in the neighbourhood of sharp or diséonﬁnuous velocity profiles, and
viscous boundary layers on any confining walls where the Coriolis and
viscous forces balance,

For slow (Ro —3 O), steady, inviscid (R ~3 o) flow the momentum

equations reduée to a balance between the Coriolis force and the pressure



gradient, which is called the geostrophic balance, and can be used fo
describe the steady flow in an inviscid isothermal core,  This geostrophic
mode possesses circulation and only exisfsafiu;ﬂgg?giners having closed |
contours of constant total height D6, p.43})‘which is always sobisfied

for the geometries considered in this thesis. \islle for other containers,
an infinite number of low frequency Rossby waves D6, p.851 arlse to
replace geostrophy, When temperature variations also exist, then the
relevant equations for steady flow in an inviscid core become the thermal-
wind equations \:30] which relate the vertical sheor of the horizontal
velocity to -fhe horizontal gradient of the temperature field,

Proudmean [27] showed theoretically and later Tqylor {_37, 33, 39]
confirmed experimentally that all slow, steady, inviscid motions in an
incompressible rotating fluid are two dimensional in the sense that thé
motion is independent of the co~ordinate measured along the axis of rotation,
This implies that the flow is identical in every plane normal to the axis
of rotation, Then it follows thof, wherever there is an obstacle present
in the system, the fluid must ﬂow‘oround the obsfac-e in every plane normal
fo the axis of retation and hence around the circumsecribing cylinder, A

particular example of this phenomenon occurs when a sphere travels with

a small velocity either along or normal to the axis of rotation because,
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as the sphere moves along, it will carry with it the fluid inside the
circumscribing cylinder which has generators parallel to the axis of
rotation [34, p.146, 145). |
oag 1agion i

In the neighbourhood of any confining walls or in\i‘he interior where
there are sharp or discontinuous velocity profiles, ihe effects of viscosity
become significant and boundary or free shear layers are formed, These
viscous layers may have dimensionless thicknesses of order R-%, ﬁ-},a';.or
R 4, depending upon their role in the flow field .,

One very important houndary layer present in o rotating system is fhe~
so=colled Ekman layer []6, p.30] o It should be noticed that the
expression (2,3,5) for A which is given by Greenspan Dé] on page 31

is incorrect and, in fact, it should be replaced by

1L
.g.é( = = Im exp(—(Zi)zEzz) + F(Z,f)] . This boundclry layer is formed

on an infinite plane disk which bounds a semi=infinite expanse of
incompressible fluid, when both the fluid and the disk are in rigid
rotation with constant angular velocity, SL, and then at some instant of
time the rate of rotation of the disk is slightly altered,  For the Ekman
layer, the depth of penetration of vorticity is of order (¥/ 52 )% or R-%
in dimensionless variables, Theﬁncpei of the Ekman layer is to increase

(decrease) the angular momentum of the fluid in the vicinity of the disk
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by impelling the fluid radially outwards (inwards),  This fluid .is replaced
by an inflow (outflow) from the inviscid interior and is called the Ekman
layer suction,  The unsteady Ekman layer forms wiihin a few revolutions
and tends, eventually, to a steady si'ci"e‘\ \i\;ad?f has fmli'e thickness and
the diffusion of vorticity is balanced by the dlsiorhon of the vortex lines,

For steady flow in the neighbourhood of confining walls parallel to the
axis of rotation or around discontinuities in the velocity profiles o more
complicated s&uct;:re arises than that found for the Ekman layer, In fact
two viscous layers are formed Dé, p.97] . The first layer has a depth

: - PRy /S / S

of penetration of vorticity of order L/ S2) or R in dimensionless
quantities and is responsible for smoothing out any abrupt changes and
discontinuities that occur in the azimuthal velocity component, The
second layer has o depth of penetration of vorticity of order (vl/ S€ )y3
or B3 in dimensionless quantities and is responsible for vertical mass transfor
usually befween two Ekman layers and for matching the required condition
cn a vertical WGH,

The structure of vertical free shear layers was discussed by Stewartson
[35] for the system cbnsisfing of inéompressible fluid bounded by two
concentric infinite split disks when the inner Ffinite disks rofate with a

slightly different angular velocity from the fluid and the remainder of the

disks,  Stewartson found that when antlsymmetric boundary conditions
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were imposed on the inner disks only the shear layer which had o thickness
of order R 3 was present, because the interior flow, which is the average
of the imposed boundary conditions (16, p.?S] s was zero and hence no
adjustment in the azimuthal velocity was required,  While both free
shear layers were present when symmetric boundary conditions were imposed
on the inner disks, The free shear layers formed when two concentric
spheres rotate at slightly different speeds has been discussed by Pr;:udman
[267]. He found that the same structure existed as in the Stewartson
problem excepi in the neighbourhood of the equai'dr of the inner sphere,
This demonstrates that the basic physical processss are almost unaltered by
variations in the geometry,

In o rotating system containing incompressible fluid the Ekman
boundary layers play an active role in the flow field and, in foct,
control the motion in the interior inviscid core; while the vertical boundary

_ . A
and free shear layers, the R °

qhd R™ “ layers, have only a passive
role in the flow pattern and do not influeﬁlce' the motion in the interior
core,

We now consider the particular system consisting of two inﬁnife

plane disks with incompressible fluid between them when both the fluid

and the disks are in rigid rotation with some constant angular velocity,



- 13 -

if the angular velocity of the two disks is altered slightly by equal and
opposite amounts #me Fkman layers are formed on the disks, The inflow
into one Ekman layer is equal to the outfiow from the other Ekman layer
while the angular velocity of the interior is unchanged.  Alternatively,
if the angular velocity of the two concentric disks is varied by identical
small amounts then the final steady state that persists after the transient
effects have decayed is solid=body rotation at the new angular velocity.
The time dependent process, the so~called spin-up process, has been
discussed by Greenspan and Howard Df].

The initial impulsive change in the angular velocity of the disks causes
a Rayleigh layer [31, p.1361, which penetrates through the fluid
in the standard diffusive manner, to be formed on each disk, Within
a few revolutions, that is in a time scale of order one, the offect of fhe clwﬁ‘l A
rotation is feli and quasi-steddy Ekman layers develop on the disks,
in addition, inertial oscillations ot twice the frequency of rotation and
with very small amplitude arise in the fluid, If, initially, fhé angular
velocity of the disks \& increased, then, in the Ekman layers, there is
a radial outflow which produces a corresponding inflow info the Ekman
layer from the inviscid inferior, In order fo satisfy conservation of

mass there must exist a radial inflow in the inferior which increases the
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angular momentum of the fluid. Hence by this process i'hg interior
fluid is spun-up to @ new state of.rigid rotation in a time of order

{l/ (Sey )% }, or Rﬁ’"— in dimensionless variables, which will be referred
to as the spin-up time and agrees with the experimental results of
Wedemeyer [44] « Therefore the Ekman layers act as # sinks for the
low momentum fluid }n the interior and this fluid is replaced by higher
momentum fluid from larger radii,  The inertial oscillations persist
through the spin-up time and require the viscous diffusion time, which is
of order R, to decay. This spin-up process also applies when, initially,
the énguldr véloéify v‘srdecreased and for any arbitrary symmetric
container,

Verohis E!?.] has shown for two dimensional problems that the
theories for an incompressible, rotating, isothermal system where the
motion is driven by velocity changes on horizontal boundaries and for a
stably stratified, non=rotating system where the motion is driven by
temperature variations on vertical boundaries are analogous, when the
direction parallel to the constraining mechanisms are equated,  This
analogy is no laager applicable when a third dimension Is infroduced
because, for the rotating sysi'ém, the constraint of rﬁe vorticity of the

basic rotation acts equally in both horizontal directions while for the
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stratified systein the constraint of stratification acts solely in the vertical
direction and hence the third dimension introduces a degree of freedom,
In a second paper Veronis (:43] generalized these resulis to include
stratification to the rofaiing system and rotation to the stratified system
and again the analogy held for two dimensions bui not for three,

The introduction of stoble stratification into a rotating system fends
to destroy the novel phenomena produced by the Coriolis force, The
buoyancy forces inhibit vertical motion in the fluid which implies that
the Ekman layer suction is impeded and hence the control exercised by the
Ekman layers over »i'he inviscid interior is lessened, Also, in the interior,
there is a tendency towards horizontal flow and the Proudman=Taylor
theorem no longer applies, Depending upon the relative importance of
the rotation and the stratification, vortex line stretching can be rendered
ineffective and the flow can be controlled by viscous diffusion in a time
scale of order (Lz/y ).

Firstly, we will consider steady motions in a stably stratified rotating

system for which we can define the dimensionless parameters

¢+ the Prandtl number, (1.1.4)

Fle

; the thermal Rossby number, (1.1.5)

-
I
U
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where K is the thermal diffusivity, g the acceleration due to gravity,
a the coefficient of thermal expansion and AT the basic vertical

], the diffusion

temperuture difference, When o <K R-] or H<KR™
of heat is much more important than thermal convection and the effects
of stratification are noi profound,  The problem can be resolved in terms
n te aow

of an inviscid inferior corewhichyis o solution of the thermal-wind
equations and viscous houndary layers.  The secondary flow present in the
interior is controlled by Ekman layer suction, Hence, when the diffusion
of heat dominates over ihermal convection, the resultant flow is coméqmble
to that for a homogensous fluid except that the Proudman=Taylor theorem is no
longer satisfied in the interior,

On the other hand, when &= 3> 1 or H >> i, no vertical motion
is permitied ond therefore all mbvement is confined to horizontal planes,
The effects of viscosity are féllr throughout the whole fluid, Hence
for this particular case, there is little resemblance between the motions
produced in a homogeneous ond';:o stratified fluid,

When & = O(1), H = O(1), Barcilon and Pedlosky [2] showed
that the solution w‘i% clos;ely related to the case & >> 1.  The Ekman
layers are absent to firsi order and ﬂthough they exist ot lower orders,

Y

they now assume o secondary and possive role,  The vertical R 7,



./

R °7 = layers no longer exist but are replaced by a new type of boundary
fayer which has a thickness of order Rui. The interior core is no longer
controlled by vortex line siretching but by dissipative processes,

In their second paper, Barcilon and Pedlosky ES] examined the
iransition from the case when the stratification is unimportant and the fluid
behaves as if it weré homogeneous fo the case when the stratification
wex substantial » which they considered in their first paper [2-3 . From
this anolysis, a unified picture of the steady, linear dynamics of roi‘aﬁné
fluids with given arbitrary stratificaiion wos obtained,  They found that

the parameter, - H, determines the behaviour of the fluid,  When

73

<H <77,
the fluid behaves as if it were homogeneous,  Ekman layers are formed
!

on the horizontal boundaries, Stewartson's R °, ~ layers are
Y

present on the vertical boundaries and the motion in the inferior is

P

confrolled by suction inio the Ekman layers, When

7

1
R < occH<R?,
that is when a weak siratification exists in the fluid, the buoyancy

forces are no longer negligible.,  The Ekman layers still exist and control

the interior motion, On the vertical boundaries, however, a triple
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boundary layer siructure is found which consists of layers having thicknesses

Yy 3 . 8/
of order R 7, (c~H)?, the hydrostatic layer, (o-H) R *, the buoyancy

layer, When

ocH > R-% )
which corresponds to a strong stratification present in the fluid, the
tkman layers are absent to first order and the interior is controlled by
viscous diffusion, On the vertical walls the R™ 4 and (U"H)?‘Z layers
combine together and penetrate through the fluid leaving a single boundary

N7
y4R 2, The

layer which has a depth of penetration of order (o-H)
special case of Barcilon and Pedlosky [2]di'scussed above lies in this last
range.,

For time dependent mpfions vorfex line siretching is again present
but the stratification renders this process less effective than it was for the
homogeneous case, Holion U?] studied experimentally the problem of
spin=up for a stratified fluid, .He showed that the fluid adjusts in the
spin=up fime to o quasi=sieady state in which the relative angular velocity
is zero af the edge of the Ekman layer and increases exponentially away

from the Ekman layer, The ultimate state of rigid rofation is accomplished

in the viscous diffusion time, Pedlosky EZS] showed theoretically that
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the interior was spun-up by strictly diffusive processes in a time of order
(LZ/ y ), but Holton and Stone EZO] noticed that, in fact, there was
an error in the scalings employed by Pediosky and they suggested that the

three distinet fime scales

-1 2 3 2
ST WY, (W),
i . .
wes= all present in the adjustment process,

Walin '\'_47] assurned that the spin=up process in a stratified fluid
required a time scale, v, which was large compared to the rotation time
but small compared to the time taken for diffusion to penetrate through
the interior of the system, Then by inftoducing a perturbation series in

the parameter

25]1"( ) <2 ;2 szz ’

where 2L is the depth of the fluid, he obiuined a solution of the
linearized spin-up problem which was valid in the interior, that is ouiside

the diffusive regions in the neighbourhood of the boundaries, From this

analysis, he deduced that the flow woas characterised by the parameter

Qe/ p L
252 ’
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where fo is a constant density and Qs is the scale of the basic
stratification, which represents the ratio of the siﬁbi’lii’y frequency and
the Coriolis parameter, Walin found, for the case when no lateral
boundaries were present, that the effect of velocity variations on horizontal
boundaries penefrafe:f a distance B™TH info the fluid where H is the
horizontal length scale, The time required for transient effects to decay
v::e equal to the spin-up time based on the real penctration depth instead
of the total depth of the fluid, For a closed container of radius al.,
Walin deduced by considering the transport of fluid in the corner regions,
that, when pla << 1 ; the process \i essentially the same as the
spin-up of a homogencous fluid except in a region close to i'iqe verticd
houndary of thickness BL, while, when B-]a >> 1, the spin-up process
only penetrates to a dimensional height B_]a!..

An imporfant phenomenon occurring in systems in rigid rotation with

constant angular velocity, 5S¢, is the resonance effect which is

experienced when oscillations are imposed on a boundary with a frequency

252 (nk) , (1.1.6)

where k is a unit vector parallel to the axis of rotation and n is a unit

vector normal to the boundary, ‘his frequency, (1.1.6), will be
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referred to as the resonant frequency,  This resonance effect occurs in
Hunt and Johns' EZ'I] problem which is concerned with the boundary
layer produced on a smooth sea bed by tidal or gravity waves, since no
periodic solution of the linearized equations exisi‘gd' at certain critical
latitudes,  Hunt and Johns gave no discussion of the behaviour af these
critical latitudes,

in chapter 2, the flow generated in o semi=infinite expanse of
incompressible fluid bounded by an infinite plane disk is considered, when
both the fluid and the disk are in rigid rotation with a constant angular

velocity and, additionally, the disk performs non=torsional oscillations,

u+tiv = aeim + be-inf . (1.1.7)

in its own plane, where u,v are the cartesian velocity components in the
plane of the disk relative to the rigid rofation, n the frequency and a,b
complex constants [40] o Periodic solufions are first sought and it is
found that a modified Stokes layer is formed on the disk for all frequencies
except the resonant frequency, which is twice the angular velocity of
rotation, In the laiter case there is no oscillafory‘ solution which
satisfies the boundary conditions, Roft od Lewelln [48] "°"A af Mo
bthaviowr bud qawe Ao Qurtie~ distussion

In order to seck o resolution of the difficulty associoted with the

resonant - case, an initial=value problem is posed; in most cases the
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oscillatory solutions are reached at large times, In the resonant case,
however, the flow is found to be a lincar combination of a modified
Rayleigh layer, which penctrates outwards perpetually from the disk in the
standard diffusive manner, and a layer confined fo the disk which, ot
large times, becomes a modified Stokes layer.  The shear oscillations
continue fo penetfrate outwards indefinitely, unless the imposed oscillations
are chosen so that the velocity vector of the disk rofates with constant
magnitude in the same direction as the basic rotation, but with twice its
angular speed; then the Rayleigh layer is absent, Cn the other hand,
the presence of o second disk produces, at large times, in the resonant
case, a modified plane Couette flow of oscillatory amplitude superimposed
on the modified Stokes layer,

For the special case n = C, that is when the angular velocity of the
disk is changed by a constant amount, the solution of the initial=value
problem is not an analogue of the classical Rayleigh layer, that would be
present in non-rofating systems, but is a steady Ekman layer,

In chapter 3, the effect of replacing-the non=torsional oscillations,
(1.1.7), on the disk by torsional oscillations chout the axis of rofation
is examined, For the problem when only one disk is present, the fluid

at infinity is unaffected by boundary movements and the linearized
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problem is identical to the problem associated with non-torsional
oscillations, The osciliatory solution, derivable for non=resonant
frequencies, agrees with the solution of the linearized form of Benney's
problem [5]. Benney [5] also discusses, by using the method of
multiple scales, the periodic solutions of the non=linear problem for
oscillations near to the resonant frequency, However, this analysis is not
valid at the resonant frequency, |

When a second disk is introduced parallel to and at a fiﬁife distance
from the first, radial pressure gradients are required because a unique
axis is defined about which torsional oscillations are performed; o new
problem arises, . For cerfain frequency ranges, this new problem is of the
type associated with spin=up to solid-body rotation of a cylindrical can
of liquid, when the motion is driven by secondary circulations rather than
molecular diffusion,  The linearized initial=value problem is considered,
for the more general case, when wbii'rczy torsional oscillations are imposed

1"
on both disks and the Reynolds num?:er,i\(!.l.Z), where 2L is the distance
between the disks, fs large,  This is, in fact, a generalization of the
problem considered by Greenspan and Howard [1'7]. For the four cases
S~ = O (steady), GR_"‘Z << I'(Iow frequency), «::"RJ"z = O(1) (inter-

X :
mediate frequency), c~R% >> 1 (high frequency), where St is the
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frequency of the oscillaiions imposed on a disk, the times taken for the
transient ferms to decay are found firstly from the solution of the initial-
value problem and then by employing the approximations used in [17] .
ond the final siates are discussed, Again, it should be noted, that

the introduction of the second boundary produces final states which are
always oscillatory,

Greenspan DS} examined the transient motion produced in a viscous
fluid contained in a spherical shell rotating with o constant angular
velocity, when an arbitrary initial state was resolved into rigid rotation,
He found that there existed critical lafitudes where the modal frequency
of the inertial oscillations present in the fluid was equal to twice the
component of the rofation vector normal to the boundary, (1,1.6), For
the linearized problem, Greenspan found that, in the immediate vicinity
of these eritical latitudes, the boundary layer solution was composed of
error functions of time while; elsewhere, the boundary layer solution
consisted of a simple exponential function of time,  This implies that a

: : e oty
resonance effect is experienced, At the critical latitudes, this huspaniey
layer solution has the same structure as the solution obtained in chapters 2
ancd 3 when either non=torsional or torsional resonant oscillations v::e

imposed on an infinite disk which bounds a semi=infinite expanse of fluid,



- 25 =

When resonance oceurs, these solutions are obtainable only because the

_ time dependence vgtremined, explicitly, in the analysis and not
replaced by dn‘ assumption of perif)dicity. From Greenspan's resulis
and the corresponding solutions in chapters 2 and 3 we deduce that,
when resonance occurs, the acceleration balances the Coriolis and viscous
forces separately and independently of each other,

For the linearized problém, Greenspan obtained a solution for the
fluid motion inside the sphere by an expansion procedure in which the
general inviscid solution is corrected for viscous effects and is then made
uniformly valid in time through the spin-up phase, In the inferior, the
depth average circulation about a contour of constant cylindrical radius
is extracted from the fluid by the Ekman layer suction within the spin-up
time, { V(3L y )%‘} « The excess circulation is not eliminated in this
way but excites inviscid inertial oscillations which again decay within
the spin-up time due to the influence of the boundary layers, There are
small residual effects which persist until the viscous diffusion time is
reached but the essential processes require @ much shorter time scale,
Greénspan calculated the amplitude of the modcl (resonant) oscillations
present inside the sphere and he found that a very good ﬁgreement existed

between his theoretical results and the experimental work of Aldridge
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Toomw

and Teerme [6, p.40é] . From this agreement it is deduced that the
non=-linear convective terms are unimporiant apd that the linearized
analysis of Greenspan gives a good description of the transient fluid
motion inside the sphere,

Roberts and Stewarison [29] examined the stability of the Maclaurin
spheroid, which consisis of incompressible fluid in the form of a spﬁe;oid
of revolution under the effect of its own gravity, for infinitesimal
perturbations when the fluid was assumed to have small viscosity,

Normal mode solutions of the linearized problem in oblate spheroidal
co-ordinates, (Y, @, £}, are sought. A solution which consists of
an inviscid interior core surrounded by a viscous boundary layer, which
has a depth of penetration bF order y%( or R&%), is found except in
two singular zones which occur when the frequency of the modal
oscillations was

252 cos )L R
where the velocity vector is (sin ¥, cos ¥, i)ew in the co~ordinate
system, (¥, ©, #). These critical regions require a sebcrafe analysis
and their existence shows that a resonance phenomenon is present in
the problem, In order to obtain a boundary layer solution for the

singular zones, lateral shear is included in the analysis,that is both the
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co-ordinates § and /u = cos © are siretched although again the most
rapid changes occur in fhe T - direction, From this analysis, a new
boundary layer arises which has a depth of penetration of order

25 (or R-%) *

Y Therefore for the critical zones the boundary layer
is much thicker than elsewhere on the spheroid althoughthe effect of

these eruptions on the interior is negligible compared with the influence of

3

the vy * boundary layer,

Busse {j?] considered the steady, laminar motion of a viscous
incompressible fluid inside a precessing spheroidal shell. He retained
the non=linear convective terms in his analysis and found that these
terms were important for {inite amplitude motion because, in the inferior,

there existed a differential rotation superimposed on the constant vorticity

which is the solution obtainable by linecar theory,  Therefore the linear

+Greenspan Dé, p.62} states that " this change would appear as o

singularity in the lincar theory *, but, in fact, Roberts and Stewartson

only consider the linear theory and hence linear theory should be replaced

by normal boundary layer theory,
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solution was not approached inthe limit of vanishing viscosity.  Firstly
Busse sought a series solution which consisted of an inviscid interior with
linear boundary layers and found that there existed critical circles

where the boundary layer thickness tended to infinity, Again an analysis
of these singular regions would produce a new boundary layer which had

% o,

a depth of penetration of order 1y~ (or R™),  Then Busse considered
the problem when the non-linear terms were retained in the boundary

layer equations and found that the critical circles cause the differential
rotation, ‘in the interior, to be divergent, Busse's theoretical prediction

of the steady zonal flows which tend to form a zohal jet at critical

latitudes have been observed in experimenis performed by Malkus ‘:6, p.40'/:]
Busse's analysis can also be used to describe the steady fluid flow due

to a tidal bulge, Busse anticipated that the differential rotation would
show a smooth profile in the interior when the effects of viscosity were
included,

Greenspan [46—] showed that the non-linear inferﬁcﬁon of inviécid
inertial modes does not produce a resonant response in the steady
geosfrophic circulation,  Therefore he anticipates, in agreerﬁent with
Busse [7] , that the steady currents produced in a closed rotating

container by oscillatory disturbances arise from a combination of viscous

and non=linear effects within the boundary layers,
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Stewartson and Rickard \:36] investigated the free periods of osciflations

in an incompressible inviscid fluid bounded by two rigid concentric spheres,
a,b {a >b), when the whole system was rotating with angular velocity,
S2, dbout a common diameter of the spheres,  Firstly, oscillatory
solutions were sought for the linearized problem in the form of an expansion

in powers of

which was assumed to be émoll , for smol.l disturbances from the basic
state of steady rigid rofation, It was found that the solution for the
pressure became singular when the frequency was (1,1.6), which defined
two critical cireles where the characteristic cones of the governing
equations touched the inner boundary, For these critical regions an

3

inner expansion in powers of € ° was developed and it was found that
in order to remove the singularity in the pressure, an integrable
singularity in the velociiy components must be introduced on the
characteristic cone which touched the inner boundary,  Further integrable
singularities were introduced by repeated. reflections at the shell
boundaries and so, even outside the criﬁcal regions, the expressions

L
for the velocity components contained a ® pathological® term of order € 4,
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Stewattson and Rickard deduced that this phenomenon applied to a large
class of rotating cavities provided the characteristic cones touched the
inner boundary,

In chapter 7, it is found, for an infinite disk bounding a semi=
infinite expanse of incompressible fluid when the fluid and the disk are
in steady rigid rotation, that an oscillatory solution always exists, when
a length scale is introduced in the plane of the disk either by imposing
oscillations on the disk which are sinusoidal in one of the co=ordinates in
the plane of the disk, or by splitting the disk so that oscillations are
imposed only on an inner finite region, For these problems, a resonance
effect is still present and is shown by the fact that different oscillatory
solutions exist for resonant and non=resonant frequencies.

Also in chapter 4, section 4,13, we find when the cbove imposed
oscillations on the disk are replaced by oscillatory temperature variations
on the disk, which depend upon a length scale in the plane of the disk
through the membrane equation, then an oscillatory solution always
exists, Again o resoncince phenomenon is present because different
oscillatory solutions exist for resonant and non=resonant frequencies,

Therefore, we deduce, for the cases considered in this thasis, that

the introduction of a length scale into the problem either normal to or
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in the plane of the disk always produces an oscillatory solution,  This
is also true for the problems discussed by Roberts and Stewartson, [29]
and Busse { 7],

The remaining chapters in this thesis, namely chapters 4, 5, 6, 8,
are concerned with problems in which motion is generated in a fluid by
temperature variations rather than velocity variations on the confining
boundaries,  In particular, the development of vorficity in the atmosphere
due to temperature changes on the earth's surface is considered and it is
hoped that strong circulatory motions will be developed which could
describe the formation of a hurricane. The time &ydgpendent solutions
of this problem closely resemble the solutions of the steady problems
discussed by Duncan DO] » Hunter {227, and Barcilan and Pedlosky E4].

Firstly, an idealized model of the atmosphere is considered which,
for any giveh latitude, is composed of two infinite plane horizontal
disks with viscous fluid between them when, initiclly, the fluid and
the disks are in steady, isothermal rigid rotation cbout an axis normal to
the disks,

In chapter 4, the flow generated in the fluid is examined when,
from t = C, a steady heating is applied to the lower disk which depends

upon the co=ordinates in the plane of the disk through a function
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satisfying the membrane equation, while the temperature of the upper
disk remains aof its initial value, The linecrized initial-value problem
is solved for the component of vorticity perpendicular to the disk (the
vertical component of vorticity) on the assumption that the Reynolds number,
(1.L2), is lorge, The Coriolis force and therefore the rotation i musk 62
responsible for the production of vorticity perpendicular fo the disk
because for the comresponding problem without roi'czﬁoﬁ, the vertical
vorticity is always zero,  The time required for the transient effects
to decay is discussed and the final steady state is shown to be composad
of Ekman layers on the disks and an inferior flow which is a particular
solution of the thermal=wind equations,

In chapter 5, the effect on the steady vertical vorticity which persists
at large ﬁrr;es,‘aﬂ'er the transient effects have decayed, is examined,
when different temperature distributions are imposed on the lower disk,
Firstly, the linearized steady problem associated with an applied temperature
distribution which I*::f the form of o one~dimensional step~function in the
rotating system, is considered,  This implies that the femperafﬁre on an
inner finite strip of the lower pfane is increased or decreased by a finite

amount while elsewhere on this planc the temperature remains at its

initial-value, It is found that the steady state is composed of Ekman
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layers on the disks, an interior flow which is a particular solution of

the thermal=wind equations and free shear layers at the discontinuities,
which have depths of penctration of order !2-"Ia and R-]4. These layers
are similar to the free shear layers discussed by Stewartson [35].
Secondly, the applied temperature variations on the lower disk are
assumed to be a one~dimensional ® normal distribution® of the form

A exp{-xz/@—z} ; Where A, o~ are recl constanis and o— is positive,
No general solution has been obtained for this case but, instead, the
extreme cases, < large and c— small, are considered for time=independent
flows, It is found that, to the highest order, the case o— large is
equivalent to the steady problem discussed in chapter 4, while the case
o~ small is equivalent to the problem ossociated with the step-function
temperature distribution discussed in chapter 5,

In chapters 4 and 5, the temperature field \; assumed, initially,
to be constant throughout the atmosphere,  This approximation to the
actual femperature field present in the atmosphere can be improved by
assuming, for the initial flow, a constant adverse temperature gradient,
Therefore in chapter 6, the problem considered in chapter 4 is extended

to include, initially, either a favourable or an adverse temperature

gradient, It is found, when a favourable temperature gradient is present,
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initially, thot the steady solution obtained from linear theory reprasenis
the final flow present in the fluid when all the transient effects have
decayed, However, when an initial adverse temperature gradient is
present in the fluid, the steady solution obtained from linear theory

becomes singular when the Rayleigh number

3
" ga ATL (
= Sl 1.1.8)
R = mAL
attains a critical value, and hence only represents the final flow for
Hhat
values of % much less than this critical value, It is deduced \when the
Reynolds number, R, (1,1.2), tends to infinity tet the asymptotic value

of the minimum critical Rayleigh number is

3 {4m’ }?/3 (1.1.9)

for both free/free and rigid/rigid boundaries, A comparison between
these results and the resulis obtained by Chandrasekhar [9] is given,

In chapters 4, 5, 6, only the linear problems have been considered
and therefore, in chapter 8, the effect of the non~linear convective terms
on the interior flow for the idealized model of the atmosphere is
considered, when the upper disk is at infinity and the temperature of the

lower disk is maintained aof o constant value for all time, If
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(vr, Vgr vz) are the velocity components in the non=rotating cylindrical
polar co-ordinates, (r, ©, z), then a class of inviscid solutions of the

form

-2 v, = 221}, = 2 att= 0,

r ! z Yo
is found, where f(r) satisfies an ordinary non=lincar differenticl equation,
Also some exact solutions of the complete Mavier-Stokes equations are
derived which satisfy inviscid boundary conditions, These exact solutions
represent possible interior flows which satisfy inviscid boundary conditions
at the disk, IHHowever, in the neighbourhood of i'hé disk, these interior
solutions would have to be replaced by viscous boundary layer solutions
which satisfy the non=slip condition ot the disk and are matched with the
interior solution, in order to obtain a solution of the non=linear equations

valid throughout the whole fluid, No solutions for these viscous non-

linear boundary layers have been obtained,
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CHAFTER 2

ON STOKES AND RAYLEIGH LAYERS IN A ROTATING

SYSTEM

2,1 INTRODUCTION

It is common knowledge that in fluid systems in solid=body rotation
a resonance effect is found if an attempt is made to force oscillations with
a frequency, n, which is twice the angular velocity of rotation, A
notable example of this phenomenoh occurs in unsteady Ethkman layers, and
it is withr flows of this kind that we are concerned in this chapter.

Let us consider first a well-known prototype oscillatory boundary
layer in the absence of rofation,  This is the so-called Stokes layer ([31],
page 381), in which the shear oscillations imposed by the movement of a
planc decay exponentially with distance away from the surface; the
characteristic distance, or depth of penetration of vorticity, is (V /n)]/ 2 ’
where n is the frequency and ¥ the kinematic viscosity, The Stokes
layer is one of the simplest equilibrium boundary layers,

If the whole system, plane plus fluid, is in a state of solid=body

rotafion, with angular velocity 52 , the corresponding depth of penetration
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of the oscillations is ( ¥/in=2J% | )]/2, nond S being assumed positive,
This tends to infinity if n fends to Zﬂ_ . We may infer, therefore,
that for the idealized situation of a semi-infinite body of fluid bounded by
an infinite wall, no cquilibrium boundary layers exist in the limit n — 250
On the other hand, if another plane is placed parallel to ond at some finite
distance d away from the first plane, the penetration of vorticity will be
limited to this distance, Then an equilibrium oscillatory flow between the
planes can be expectad,

There remains the question of discovering a meaningful solution for
the case (with n = 2 S ) when d is very large or infinite, This we
answer by posing an initial=value problem, in which the oscillatory motion
of the plane commences at, and continues from,t = O, In this cose a
depth of penetration is found, namely (‘yt),/2 ; t being the time; this
distance is the characteristic length associoted with a Rayleigh (or impulsive)
layer, Consequently the shear oscillations cqnﬁnue their penetration
indefinitely, if no other boundary is present, or until some confining boundary
is reached,

One further comment can be made at this stage in anticipation of
the analysis,  Suppose the infinite disk (or plane) performs non=torsional

oscillotions defined as follows: if u and v are velocity components in the
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plane of the disk, relative to ihe rigid body rotaiion, we specify

. int ~in
g = utiv = ae'™ + b

ai the disk surface, where a and b are complex constants and n is the
fiequency; the latter can be assumed positive without loss of generality,
This implies that every point in the disk performs elliptic harmonic motion
relative to the basic rofation, If b = O, so 'fhaf the velocity vector has
given magnitude and rotates with angular velocity, n, we shall see that
the resonance case n = 2 SU is avoided, This movement of the disk can

generafg contained oscillations,

2,2 EQUATIONS CF MCTION

An infinite disk at z = O Eounds a semi~infinita expanse (z > O)
of fluid which is assumed to be incompressible,  Both the disk and the
fluid rotate as a solid body with constant angt;lar velocity, J1 , about

an axis normal to the disk, but the disk additionally performs oscillations,

q = u+tiv = ae’™ + b ’ (2.2,1)

in its own plane,
Let us take cartesian axes (x,y,z) such that the z~oxis is parallel to

the common axis of rotation of the fluid and disk, and the x,y-axes lie
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in the plane of the disk and roicie with it,  The Mavier=Stokes equations

and the continuity equation in this rotating co=ordinate systom are

du

= t LT 25tk v+ V(g-% S22+ yH)
_ 2
- Y v _li 14 (2a2.2)
divu = O, (2.2,3)

where u is the velocity vector, k a unit vector porallel to the z-axis,
P the pressure and p the density,

Suppose u =.(u,v,w) where u, v, w are the velocity components in
the %, y, z directions respectively, Following knowledge of fhe ordinary
Stokes layer, we assume that the velocity field in the boundary layer is

of the form,

u = (U(Z,f), V(Zlf)l W(Z,‘l’» . (292-4)

The boundary conditions to be satisfied are

@@ w=0, u+ivs= a_emf -+ be-mf on z=0, \
b) v, v—>0 as z~—pow», !,.-"’? .
\ (2.2,5)

(c) we shall use, os required,an initial condition at

t = O, or an assumption of periodicity, J
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From (2.2.3), (2,2.4) and (2,2,5) it follows immediately that

o.

g
]

Using this result with (2,2.2) ond (2.2.4), we have

. 2 R
du _ D, = ., 0y \
e 2.JCv v + —'2'6 ‘ \
Z 1
2 {
v - .9 av (
-é-f- + 2 _Q U -a—)-;— + Vv —--2 ’ i (2-206)
o0z v :
C 0z ! /[

where p* = g - -;. ‘522()(2 + yz) is the effective kinematic pressure,

We assume that there is no imposed pressure gradient and then

dp* _ ep*t _
'a"';"’ W‘ O [
Hence
2
 _ 23 v = ¥ 9u ,
ot 3 2
“ (2.2.7)
2
av —~ _ dv
= + 23 u = Y — .

()
N



= 4] =

\We note that these equations, although exact in formulation, are also
boundary layer equations, since the terms usually ncglected disappear

exactly, With q = v + iv, (2,2.7) becomes

2 .
9q g = 3y 29
P + 202 i0q Y -a-;-z . (2.2.8)

This equation must now be solved subject to the conditions (2,2.5), which

become
(@) q = c:e:iniL + beﬁini‘ on z=0, \\
I
b) ¢g—=C a z—> o, (
(2.2,9)
(c) an initial condition at t = C or an assumption {
of periodicity, J

2.3  OSCILLATCRY SOLUTIONS

As a preliminary step in this study and in order to expose certain

difficulties, we consider periodic solutions which we assume to have the form

int =~int

q = qe + qme . 2.3.1)

From (2.2.8), (2.2.9) and (2.3,1) we have for n # 2S¢ the solution

. . =Mz ,
q = aemf e':}\'z + be-mf e 2 ’ (2.3.2)
where A = I i(n+252')‘\]/ 2 )2 =l/—ig-2;2=—:-'l)-\]/2 . (2.3.3)
1 RS i v )

- [



- 42 -

The roots )\],)\2 have positive real parts, The solution (2,3.2) satisfies
the required boundary conditions, (2.2,9 (a), (b)). Thereiore for n # 252
the flow can always be determined and is a well-defined boundory layer on
the disk having the same structure os a Stokes layer,

For n =2 .2 , however, a solution of (2,2.8) which has the form

(2.3,1), is

Ty “A z - »
g = GEZJ- Ii’e % 4 be 2 st , (2.3.4)
ey
where >\° = [Li;.'._.'.évz . | (2.3.5)

This solution satisfies the correct boundary condition, (2,2,%9(a)) on the disk
and is finite but non=zero (b # O) as z tends to infinity, contradicting
(2,2.9(b)). A solution satisfying all the correct boundary conditions

cannot be found except when b = O,

]

In this resonant case of n = 2 '2 , which will, henceforth, be
referred to as the resonant frequency, although a solution can be found
satisfying the boundary conditions on the disk, it is in general impossible to
satisfy the correct conditions as z tends to infinity, The oscillotions are
not confined to a well-defined boundary loyer, It is interesting to see

that if another infinite disk is infroduced ot z = d, say, at rest relative to

the rotating co~ordinate syste, then all the boundary conditions can be



satisfied by

~ a sinh {Ao(d=z)§ 2 % it
q = e +

=252 it
sinh 1A d ¢
(o]

b

I ld=z]e (2.3.6)

The first term represents a modified Stokes layer and the second term an

oscillatory plane Couette flow in which the shear is uniform in space, but
on

has ¥ instantancous time-dependent amplitude,  The solution, and

therefore the boundary layer, exiends between the two disks, in accordance

with the idea that, for one disk oscillating at the resonant frequency, the

boundary layer exiends throughout the whole fluid,

2.4 THE INITIAL-VALUE PROBLEM

We consider both (i) the case of one disk ot z = O bounding a semi-
WL cacd ce

infinite body of fluid and (ii)\two disks at z = O and z = d with fluid
between them, Suppose the fluid and disk(s) are initially in steady rigid

rotation with angular velocity S2 and then, from t = O, the oscillations,

int =int

g =de +be , arc imposed on the disk, z = O, relative to the
initial motion.  The flow will be given by (2.2.8) subject fo the following

condifions,

For problem (i), we have



- 44 =

int ~int

(@) q = ae  +be onz=0 fort >0,

———”

b)) q=0C as z=p oo fort >0, (2.4,1)

() q=¢6C at t+ = C for all z, /

For problem (ii), we have

(@) gq= mint +be M o z=0 for t >0, }
b) gq=0C on z=d for t >0, (2.4,2)
&) g=0C6 at t=0C for all z, )

Applying the Laplace transform

©
= Senptqdi‘,

o

21
!

to equation (2,2.8) together with the conditions (2,4,1) and (2,4.2),

we have
62"
25207 =v 22, (2.4.3)
Jz

which must be solved subject to the following conditions,

For problem (i), we have

@ § = ——— + onz=0, 2
r (2.4,4)
by § =0 as z =y @ , '



For problem (ii), we have

b ~

(@ q = P'-C;n + Prr on z = C, ]
L (2.4.5)
k) g = O on z = d., J

- a b
q = (F:i—n- + p+in)e , (2.4.6)

: ey /2
where m, = “ p-l.i‘ \ . (2,4.7)

Vhile for problem (ii), namely (2.4.3) subject to (2.4.5))We have
. 7
sinh gm](d-z)s

. (2.4.8)

G+ =2 h

) e 4 -
Pt PR ginh Ymyd |
- We now need to evaluate the inverse Laplace transforin,

Yoo
L = pt
9 = z=r j g dp, (2.4.9)
y-~io
where y is chosen to lie to the right of all the singularities,
We consider problein (ii} first since we shall show that, in the

resonant case n = 2 51 , (2,3,6) can be derived, without difficulty, when
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t = ®©, In the case of problem (i}, however, (2,3.4) which corresponds
to the resonant case n = 2 352 cannot be derived for t ~» w3 this more

complex problem will be discussed later,

Problem (i)
We now evaluate the integral (2.4,9) when q is given by (2.4.8).
The singularities of (2.4.8) play an important role in the integration and

are poles situated at

+ -

v
i

o
Il

- 251; m-!\;—%—&- where k = ]]2,3100' e
d

We can see from the structure of (2.4.8) that, although p = - 252i is

a branch point of m, it is a zero of both the numerator and denominator
and hence is not a singularity of (2,4,8), The inverse integral can be
evaluated by transforming the path of integration into a closed contour
and then applying the calculus of residues([8), page 75), Hence we

hove
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nt sinh 2_)\2(09-2) %
sinh é Azd}

; sinh %A](d-z) z
ae'" - -
sinh § d !

a(-l)anky sin'i:kn(l-dcl)“j exp %-f(z ST i+k2n2v /d )}
Kon's + id2(250 +n)

-

TINAB

— &

b(-1)*2mky sin [ kn(1-3/d) | exp { ~H252 #k20? /d )}
C (2410

Kl y & ide250 -n)

+
(YRAL:

For t = @ 'i-his reduces to the oscillatory form
wint Sin {»(d-z){:
sinh § A,d{

_ nt sinh ?)\](d-z)zg
sinh {’\]d %

Then, if we allow n — 25 r we refrieve (2,3,6). If n = 250
in (2,4.10), we have
o 2 Si hr}‘ d"" ~oe
q = Oelef mn { Q( Z)} + beuz_)(_”'(] - :z’.)
sinh i z\od}
oo )k _1 i d2} b °
(-l 2rky sint kn(l—z/d) exp =221 + k ))/ )%7-2—————-4-*2-2—-_
k=1 Kifyp +4.32 id? K y 4
]
(2.4.11)

Again, if we let t = ©, we regain (2,3,6).



Hence the solution (2,3.6) obtained is independent of the order
in which the limits t = @, n —» 252  are taken, We shall see thot
the same is not true for the unbounded case (problem (i)}, to which we now
turn,
Probiem (i) |

We now evaluate the integral (2,4,9) when q is given by (2.4,6).
The singularities of (2,4.6) are pgles at p = : Ain and a branch point at
p==251i, Bywritings=p + 250i we transfer the poles to
s = i(25¢2 z n) and the branch point to s = O, The integral (2.4.9)

becomes

i 1 . -
a_expl-z(s/y ) | expi(s~2% i)Ids

s = i(n222)

oo

9 T 5T )
y~ico
ytico " |
( b_expl=z(s/» )| expl (-2 5% i)t1ds (2.4.12)
s = (258 =n)

1
o

-t
y=ico

We rearrange .(2.4.12) to give



- 49 -

o)

q = = f a_expl -z(s/y )%} expli(s-2.521) |
2ni : 2[i(mt2 50)]
y=io

X { Y __] o7 i = 1 =T ds
§2 = Li(n+237_)_]l s° + Li(n-l-ZZSZ)r"r _

A —d
yHoo
b 4
il
y—-ico

b exp|~z(s/y il expl Hs=252 i) |
2 [i(ZS?, - n)] 2

1 1
] w T " ds . (2.4.'3)
x{ 2 -lie-n ] +lieR -n}® } i

By using the inversion formula 29,3,88 on page 1C26 of the Handbook of

Mathematical Functions, A,M.S,55 D], we have that
q = %aeint:éexp{ -z)s& erfc@-z(yt)-% - (it(252 +n))%:l
o] 1
+ exp {z)«l z erfc] 3z(y1) > + (it(252+n))i] \;
+ %be—int % exp ]i -zkzi, erfc {%z(v i')-% - (i1(252 -n))% ]

+ exp%z)xzi erfc[%z(vi-)-% + (if(252—n))%] } ’ (2.4.14)

EsS 2
where erfc X = 2 j e-,‘ dé .

In
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This agrees with the result obtained by using the inversion formula 805,3
of Foster and Campbell {13:1‘.:

If we let t = o keeping n=252 fixed we refrieve (2,3,2), the
oscillatory solution. If we now allow n =3 252  we have (2,3.4) which
does not satisfy fhé boundary conditions for large z, provided b # C,

If, on the other hand, we let n — 250 keeping t fixed, we

have
q = e "{exp fm2n | orfe[ba( v ot - (452”)'%]

+ GXPEZ’:,K effC@'Z(vt)'% + (45?)31')% ] }

+ be 2 “'erfc@z(w)ﬂ i o 2.4.15)
Now we note that

erfe rlz( Vt)m“): - (452 ii')% ‘2 — 2

Lz

W=

1
and erfc[%z()/ t) 2+ (45rin)* ] — O
as t =» o, Then, if we allow t = o in (2,4,15), we have
. - - - L\
- aez’Q'texp i-z)\o% + be 252”erfc[%z(v ﬁz ( . (2,4,16)

This is not an oscillatory solution,  Therefore the order in which the
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. L
limits are taken becomes important when z = O(» t)* and the flow in the

resonant case n = 252 is given by (2,4,15),

2.5 UNIFORM IMPULSIVE MOTION (n = O)

A classical problem in non-rotating systems ( 57 = Q) is the time-
dependent boundary layer (the classical Rayleigh layer) associated with
an impulsive velocity, U , of the plane ( [_314, page 136), This layer

has the structure
v = errfc {:%z(v f)"%] . (2.5,1)

In the present cose (32 # O, n = O) we can show that the corresponding
initial value problem lcads not fo an analogue of (2.5,1), but to a steady
Ckman layer,  This can be done as follows,

Let us consider the solution of the initial value problem when n = C,

In this case the imposed velocity (2.2,1) at the boundary becomes
q = a+b = ¢,

where ¢ is some complex constant,

Then from (2.4,14), we have

q= %c,{e-z’“' erfc[%z( yf)-% - (29”% 1 ’%z(v t) x: + (232 ur)zl}’
2.5.2)
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1
_P2suil?
where ’/AJ. = ?.—)—)-—;‘ . (205-3)
Letting t —» o0, we have
q = ce ** (2.5.4)

This is a steady solution,

2,6 DISCUSSION

Formula (2.3,2) justifies the remarks made in the introduction
concerning the existence of o depth of penefrqfion [v /)ﬁn-Zﬁ!]% . c;nd
indicates the resonant phenomenon when n —» 232; , in the sense that
no oscillatory solution satisfying the condition as z —» o is possible
(for b # O).  Moreover formula (2,3.6) shows how, in the case n —» 232
a secondamp boundary af z = d can convert that part of the flow proportional
to be'™ into an oscillatory Couette flow with a shear uniform in z,
Transicnt effects die out like e)'cp {-nzy f/c!2 } .

The result derivable from (2.4,11) agrees exactly with the result
(2,3.6), Hence the flow between the disks is not affected by the impulse
after sufficient time has elapsed for the damped oscillations to become
negligible, and is identical with the flow that would be present if the

oscillations had been present for all times,
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Still more novel is the result (2.4,15) which indicates, in the case
n—»235% , how the b part of the flow penetrates outwards from the disk
in a standard diffusive manner, indezd as o Rayleigh layer with a time=
dependent velocity magnitude, Greenspon US] hinted at this type of
behaviour,  Formula (2,4,16) shows, in the case n = 272 and for times
large cnough for the impulsive effects to be negligible thot, added fo the
Rayleigh layer, is a Stokes layer, confined to the disk and proportional to

2 5Lt .
ac . We have, thercfore, at the resonant frequency, that for large

2 SLir will be felt throughout a depth proportional

times the disturbance be
to (yt)% » the depth of penetraiion of the Rayleigh layer, from the disk,
while the disturbance 06252 it is only felt in a boundary layer of thickness
(»’/451)% on the disk,

An oscillatory solution for the flow of the form u = (u(z,t), v(z,t), O)
can only be found, in the resonant case, if either a second boundary is
present aof rest relative to the rotating co-ordinate system or if the Rayleigh
layer is absent,

From (2,4.15) the Rayleigh layer will be dbsent it b = O, The

252t

imposed oscillations on the disk would then have to be g = ae , from

which we have
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u |al cos (2 52 (f-f }

\a) sm{ZSZ (t=t )7r= \al cos§252 (t-fo) - n/2§ ’

\'4

where t is given by a = ja\exp.SL =25t it 2{ . Thus if v lags behind
u by n/2 the Rayleigh layer is absent, and the problem can trivially be solved
to give

~ . =Nz
ae+2 Q Ife Q (2.6.])

For the difficulty at the resonant frequency to be avoided the angular
velocity of the velocity vector for the imposed oscillations must be 232 ,
i.e, twice the angular velocity of the basic rotation of the fluid/disk
combination and in the same sense,

From the formula (2.5,4) we see that, when n = G, eventually a
steady state is reached, that of a well=defined boundary Io)}er on the disk;
it is in fact an Ekman layer, which has a thickness of penetration of
vorticity of order (/S )% .

By putting n = O in (2,3.2) we retrieve (2.5.4). We could
therefore have looked for a time=independent solution of (2.2,8) satisfying
the boundary conditions (2,2.9) with n = O,  This is basically the problem
of finding the Ekman layer structure associated with steady motions of the

disk,



We now consider a co-ordinate transform for the case when there is
a well=defined boundary layer confined to the disk and an inviscid region

outside,  This occurs when the imposed oscillations of the disk are

q = ae™ o+ pe when n #2352 ,

int .
q = ae when n=2.<

(2.6,2)

We transform the axes such that the disk is at rest relative to the co~
ordinate system rotating with angular velocity, S, and the fluid in the

inviscid region performs oscillations given by

utiv=gqg*=- (aeim + be-im) when n #2522 ,
(2.6.3)

int <y
q* = = ae when n =224

From (2.2.2); (2.2,3) and (2.2.4) the governing boundary layer

° © L] — * ap* b4 ap* —
equations are (2,2.6), We write u + iv = q* and —=—— + i == = P and

ox dy
then (2,2,6) becomes
- 82 %
-?- +23q* = -P+v S, (2.6.4)
t E,.‘_,_,2

which we must solve subject to the conditions

a) q* =Conz=0 ,

(2.6.5)
b) q* is given by (2,6.3) as z -» © :

[y
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For the flow in the inviscid region to be consistent with the equations

of motion we require

where q* is given by (2.6,3),

Hence we have

P = i@tndae™ + i@SY -nlbe™ ", | (2.6.6)

in parﬁcular at the resonant frequency, n = 252, %—‘;’:«-lags
behmd by n/2; similarly v lags behind v by n/2 outside the boundary
layer, Hence both the velocity vector of the oscillation and the pressure
gradient vector have an angular velocity, 252 ,

The solufiqn of (2.6.4), with P given by (2.6,6), satisfying the

conditions (2.6 5) is

q*=u ']‘& it | mf -),\ZZ _ % n£25%,
-\ .
q*'—“a{e oZ_]ZeZﬂﬁ n=25,

These solutions represent modified Stokes layers and could be obtained from

(2.3.2) and (2,6.1) by writing

*

q - cemf N be-mf n 7! 25& ,

q

q* q - ae' n=25L



CHAPTER 3

TRANSIENT MOTIONS PRODUCED BY DISKS OSCILLATING

TORSIONALLY ABOUT A STATE OF RIGID RCTATION

3.1 INTRODUCTION

in Chapter 2, the fluid motions produced in a system, which was
initially in isothermal steady rigid rotation, were discussed, when, from
some instant of time, non=torsional oscillations defined by (2.2.1) were
imposed on a confining boundary,  In this chapfer we will examine the
effect on these problems when the non=torsional oscillations are replaced by
torsional oscillations about the axis of rotation,

Firstly, we consider the flow generated in a semi-infinite expanse of
incompressible fluid bounded by an infinite disk, when both the fluid and
the disk are, initially, in steady solid=body rotation and, then, torsional
oscillations about the common axis of rotation of the fluid and the disk,
are applied at the disk, The fluid at infinity is unaffected by boundary
movements and therefore no radial pressure gradients can exist, We will
show that, provided it is valid o linearize the equations of motion, this

problem can be reduced to the semi~infinite problem discussed in Chapter 2,
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However, when a second disk is introduced parallel to and rotating
with the first disk, then radial pressure gredients can exist because a unique
axis is defined about which the torsional oscillations are performed; a new
problem arises,  Thus the specification of horizontal velocity components
proportional to r requires the pressure gradient to balance the internal
flow when there are two boundaries present,

When two disks are present, the linearized initial-value problem for
the case when arbitrary, small amplitude, torsional oscillations are imposed
on both disks is solved for large Reynolds numbers, R, defined by (1.1.2),
where 2L is the distonce between the disks, The parameter,a—-R%,
where 31L& is the frequency of oscillation of a disk, emerges from the
analysis and, in fact, characterises the behaviour of the fluidi  On the
assumption of large R, the times for the transient effects fo decay and
the final flow are discussed for the cases < R% <L 1 (low frequency),

1

1
R® = O(1) (intermediate frequency) and = R*

<! >> 1 (high frequency).

A comparison with the results of Greenspan and Howard D?] is given,

3.2 EQUATIONS OF MOTION

We consider either (i) an infinite plane disk, z = O, bounding a
semi~infinite expanse (z > O) of incompressible fluid or (ii) two infinite

parallel disks, z = z L, with incompressfbl'e fluid between them, Both
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the fluid and the disk(s) rotate wifh constant angular velocity, 52 , about
an axis normal to the disk(s) and, additionally, from t = O, the disk(s)
perform(s) arbitrary, small amplitude, tborsional oscillations about the axis
of rotation,

We take cartesian axes (x,y,z) such that the z-cxisl is parallel to
the common axis of rotation of the fluid and the disk(s) and the x,y=-axes
rotate with the disk(s) and lic in the disk for problefﬁ (i) ond parallel to
and midway between the disks for problem (ii), The Navier~Siokes
equation and the continuity equation in this rotating co~ordinate system
and (2.2.2), (2.2.3) respectively,

Since the flow is axisymmetric and satisfies the continuity equation

(2,2,3), we assume that the velocity components have the form ( (_311, p.356)

Bf(z,t A
U = a(: )x - olz,tly , }
v = glz,t)x + -g%%!-t)-y ' _ (3.2,1)
w = =2f(z,t).

These expressions, (3,2,1), correspond, in cylindrical polar co-ordinates

(r, ©,2), to velocity components

6 = @ of(z,t)

u » 3= rg(z,t), “2f(z,t) ) «
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We assume that the imposed torsional oscillations are given by, for

problem (i),

t

(@ g= oo + be-mf) onz=Q fort>0,
by ¢g—=0O asz—pw® fort>0, (3.2,2)
) g=0C at t+ = O for all z ,

and for problem (ii),

(@ g= w (Oeinﬂ'*' be-in") onz=L fort >0,

inot
)

wo (cemzt +de 2 onz==L fort>C , \ (3:2.3)

?

~

«Q
1l

c) g=0 at t =0 for all z ,

In (3,2.2) and (3.2.3), n, nys ny are the frequencies, wo is a redl
constant and a,b,c,d are complex constants of order one, chosen so that
g is real on both disks, Hence we require a =% andc=4d , where
a tilde denotes the complex conjugate, In the special case when a,b,c,d
arc real, this condition reduces to a =b and ¢ = d,

We assume <2/ S5« 1. It then appears that we moy linearize
the equations; and if the resulting equations and boundary conditions
have o sensible solution, we may regard this linearization as valid, at

least in a pragmatic sense,” (This is the case in the Greenspan and
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Howard D?]‘ spin-up problem), If, on the other hand, for some boundary
conditions no solution of the linear problem can be found it may be
necessary to re~exomine the assumption of linearization afresh, Here we
merely draw attention to this possibility but do not pursue it further,

We take the curl oi; equation (2,2,2), omitting the non=linear terms,

and then substitute (3,2,1) to give the equations

2 . '
dg , oF - 2°g
oz
3 4
F o0y _ .y 0F
~5— 25262 Y —7 - _(3.2.5)
dz ot oz :
When we integrate (3,2,5), we find
2 3
28259 = v & ik, (3.2.6)
Dzat _ azm

where K(t) is some arbitrary function of time,
When only one disk is present, that is for problem (i), the required

boundary conditions are, from (3,2.2) ,

(a) f=-g£f=0 . g=co(ae'm+be-'m) onz=0fort >0,
¥

(b) -gfz-,g—?o . asz-p o fort >0,

(c) f=%=g=0 at t = QO for all z ,

(3.2.7)
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From the boundary conditions, (3,2.7), and the differential equation,
(3.2,6), we infer that the funciion K(t) must be zero at infinity in order
that the functions f,g decay decently to zero (exponenriall)'r) as z tends
to infinity,  This implies that K(t) 2 O and hence that there is no radial
pressure gradient, If we write

f . . .
‘3‘;*'9”" iwa = q, ivb=b,

the equations (3,2.4) and (5.2,6) reduce to the equation (2,2.8) and the
boundary conditions (3,2,7) to (2,4.,1). Hence the solution to this
problem has already been considered in section 2,4, The oscillatory result
derivable for t —» c, when n # 252 , agrees with the solution of the
linearized form of Ben/r%'s problem ([53, p.336 ). But for n =252 ,

we have a non=-oscillatory solution when t ~p o,

If o second disk is infrbduced, that is for probiem (ii), then the
éppropriafe boundary conditions together with the differential equation
(3.2.6) no longer imply that K(t) 2 O, Hence radial pressure gradients
can exist and important changes may be produced in the interior by the
spin-up mechanisms [17], Therefore it is necessary to solve the more
complex problem, nomely (3.2,4) and (3.2.5) subject to the appropriate

boundary conditions,  The remainder of this chopter is concerned with a
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discussion of this problem,

When the dimensionless variables (starred),

z=lz*, t= ST, g=wgt, f=Loft, (3.2.8)

are introduced, the equations (3,2.4) and (3.2.5) become (upon dropping

the asterisks)

gg. + 2 ..a_f.. = R-] azg
oF oz -7 I
oz
(3.2,9)
o ey o 10k
afaz;E oz 3.3

where R is the Reynolds number defined by (1,1.2). The equations

(3.2,9) must now be solved subject to the conditions

o _ i’:'?]i' -ic']f _
(a) f--Z—O, g = ae + be onz=1 fort >0,
i st -i & ,
(b) f=-g£—=0, g = ce 2+de 2 onz==1 fort >0,
(c) f=%§-=g=0 at t = O forall z,

(3.31C)
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The equations (3.2.9) are identical to the equations (3.2) and (3,3)

in Greenspan and Howard's paper [171 with V and £ replaced by g and

f respectively, Here we solve these equations with more general

boundary conditions (3,2,10) than those employed by Greenspan and

Howard, which, in fact, correspond to the special case

s, = & = O, a+b=1, c+d=1.

3,3 THE SOLUTION OF THE INITIAL-VALUE PROBLEM

In the following analysis we shall confine our aitention to the case

when the Reynolds number, R, is large,
Applying the Laplace transform
©
h(z,p) = je pt h{z,t)dt
o

to the equations (3,2,9) and the boundary conditions (3,2,10), we have

2
-139 — Foo
(R 5—-27-53)9-2-5-2; = o,
z (3.3.1)
2 2 -
-1 9 °F da _
-5 +25 =0,
0z Oz

which must be solved subject to the conditions
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Feg =0 somz=tpmey 2T, 2
(3.3.2)

- _ Of _ - C -

f—--a-z-—O, g'p_ies'z p+i6“2 onz=-l,

The solutions to equations (2,3.1) subject fo the conditions (3.3,2) are

(
-_Uz — + P+°bg~ + _?6_ + _’_,,'i_ }’
plé"i LB p-i 2 pt+ 2

X { &um]E(mz)(cosh{m]Z} - coshm]) + m2E(m‘)(cosh§Lmzz?‘ - cosh mz)] }

20"
q b . p | 'sinh{m z} sinhimzz}
¥ {P-i’@] ¥ pH &) B P-i€2 pHE }{%lnhm T Tstehm, !
1 2
(3.3.3)

T-={ @ _+.b__4 ., d
p=i 6“] pti G‘] p-ié"z pHi 6"'2

x{ %B(mz)(ﬁ"h%m]z} = z sinh m,) - E(m])(sinh{mzz} - zsinhmz?}}

+ { a4 b -
p-i'6"] pti 6‘] p-i 6‘2 p+| &%

, (3.3.4)

4m]sinhm - 4m, sinhm

. i(cosh{m]zg - coshm]) i(cosh{mzz} ~ coshmz)
1 2 2
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1

1 1 1
where m, = R%(p + 2i) , n, = Rj(p-Zi)z)

mcoshm ~ sinhm ,

E(m)
A = maE(m Jcosh m +m3E(m Jcosh m
1 2 1 2 1 2 °

This agrees with the notation employed by Greenspan and Howard [17:\ .

The singularities of g and ¥ play an important role in evaluating the
inverse Loplace integral, We notice that although m, and m, have branch
points at p = =2i ond p = 2i respectively, these points arc not singularitias
of the equofrions (3.3.3) and (3.3,4). The only singularities of the

functions T and g are simple poles situated at

+ ,
P = "'(f-l-l
p=1lis, (3.3.5)
22
p = i2i-=kR" , k=1,2,...,

+
and at the zeros of /\ other than p = = 2i, For large R, the required

zeros of /\ are given, approximately, by

J

1
= 7z
p = =R,

(3.3.5)

+ o, e 2.1
p=~2|-EnR '
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where § , are the positive roots of fang =¥ (F =+ l)rr) .

The inverse Laplace transform,

y+io
1 t
hiz,t) = Biz,eP'dp ,
y~ico
where y is chosen to lie to the right of all the singularities, can now

be evaluated by a residue calculation to give

|6'f
- [+2RI€'A+:,,L-.
P= IG"'.l
-|€]f
+ be 3 —1R16‘1A+L]‘) '
= —;G']
ie, t '
+ ce 2[ 2i\I6‘A C]
P= '0'"2
-|€2f
+ de Ll-ans‘A c:]
'°_2

- ‘{ Yexp { "R-%f} E ~ cos { R%(lﬂlz\)} exp{ -'R%(]-= lzl)}] + O(R-%)}

X I b —_— c - + d -
l+i6‘]R2 l-iST'RQ 1+ie~2R‘~’ 1-='.’6‘2R2

=1 <{(/cos z 1
£ . s e



+ Sg—)l sin(knz) (=1 )anrk exp «E-'kzrrsz-] % { =2it [
<4 4R e
k=1

4+

- 68 -

o .
X ( e2”(2l - EnR ‘)r ; ~ + g -
[2i- IR-isy  2i-3R S
= * c’i’ = e +§2R )
2i=- SnR -162 2i- EnR + 55

{‘ a + b + c + d }
Y R P e I NI e
| 2+ JR4S 2R S 2[R OHG IR -6,

a

22'!

2+61+k

b c _ d
2i-i’cs".' + l<2nr2R.:l 2i+ 2 + k I 2i=i 5‘2 + kzan-l

+
kZT -1 2i + i<’>"] kzﬁZRq - 2i-i<$"I (2 AR -2|+|6‘2

; _.
- (3.3.7)
Ko R 2imi J } ‘
2
i
ae

6.t ~“& ¢
"o 1{ \
[p 2Re~ls} ~ +be [odrep] _ -
p =10 1

2it [ a b c
e

il

21‘ . -|6“ t
[—D-%B 6‘28Jp e L -DHR s, B] pic,

+{ R"fexr}i"R-?f.( Im((]-i)[z - Tz-l- exp ;‘R'%(Him-;z‘)}] ) * O(R-') }
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X { e b r + C d rvz
° 2 - D2 - 2
1+|€!R ] IG'IR 1+|6‘2I\ 1 IS"ZR

=1 i 1
+ %_._ Z {(z - %i%fl) exp(-giR-]i‘) + C’(R-E)}

2:f =1 a b ' c
"1 - IR )[2._.. Iy e I S RS AT
Il6‘] §n n 1=t 2

‘e ; s 2
2i+i €2' EnR 2i+i 6‘.!+ ;;nR , 2'-,-' €]+EnR

d 2|i‘ a )
o 2-1} ‘2+§R’[ 7Tt 7

¢ d
+ +
ere 2. =1 R 2 -]]
2l+lo2+§nR 21 si+§nR

ﬁ_,'("‘)k laz—' (cos (knz) = (-1) )exp{-k 1R ]}

e-2:i‘ a + b - c
2ite AR 2 6“]i+k2n2R-] 2i+ 6‘2+k2r12R-]

_ d _ eZif a + b
2i-i 6‘2+k2ﬂ2R_‘ k2 2R ]+C‘ =2i kzan-]- G‘li-Zi

c d
- — ’ (3.3.8)
k2n2R ‘+| 6‘2 =2i kzan l--i SZ-ZE] }
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m, E(mz) [cosh {m]z} - cosh m]] + sz(mi) cosh {mzz}- cosh mZ]
FaN

E(mz) sinh {m]z} ~ z sinh mll - E(m]) Esi'nh {mzz} ~ z sinh mZ]
AN

sinh imlz} sinh Emzz}

4 sinn m.‘ + 4 sinh m, ’

z

r

i(cosh {m‘z} - cosh ml) i t (cosh {mzz}- cosh _mz)
4ml sinh iy 4 m,, sinh in,

For each type of expression in (3.3.7) and (3.3,8) we will only be con-

cerned with the leading term and we will ignore all ferms of order R

L
2

2]

compared with these, Therefore the terms ignored in the calculation of

(3.3.7) ond (3,3.8) are unimportant for our purposes, It should be

remarked that for §§ > R the dbove expressions do not apply since the

power series (3,3.6) for these zeros of /A would not be valid,

It is an inferesting foct that

sin{f nz} . 1 cos {}nz}

s {
sin §n E'n cos ?n

"})I

form an orthonormal set in the interval (~1,1), and this informotion is

required to satisfy the iniiial conditions,
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We will now restrict our attention to a study of the azimuthal

velocity, g, since the radial velocity, -g% » can be found directly from

g. If we now fet t = @ in (3.3.7) we have

i6‘1t =i st
= L 1ne ’
g ae [2 + 3Ri G‘IA + C]p=i6“
- &t
+de 2 [% - Ri A - c:]

i 6'2I'
1 LAR: o
+ ce [2 + 2AR| 6-2 C:} p‘=i 6_.2 2

p=-|€'2 .
(3.3.9)
This is an oscillatory solution which is exact for all R and is identical to

the solution that would be obtained by seeking an oscillatory sélution

i 5']? -i 6'.lf i Lt =i S-éf
glz,t) = g,(z)e + gplzle + gslzde + gylzle ’
of the equation

2

-1 & _ 3,209 °g _
(R -;7- Bt) o 4‘4"5; o,

derived from (3,2,9) by eliminating { , subject o the boundary conditions

g =@ gz=b, 93=O, gA=O onz=1,

i

—! .

9]=Ol 92=Ot 89 = ¢ 94=d on z

The properties of this oscillatory solution (3.3.9) depend upon the
values taken for the dimensionless frequenciss, SR and €, 9 A discussion

of this flow will be given, for large R, when the various cases for S

Vo _oap:
+ be [2 QRIS‘]A + C_Jp:_i -

1
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and 6‘2 are considered,

3.4 DISCUSSION

We are now concerned with the times required for the transient terms
to vanish and also the final structure of the flow when we assume that R
is large.

We suppose that the spin-up time
1 -]
o= RES52T
and the periods of the imposed oscillations

2%

T, = =, T, = .
1 ny 2 N,
Then
3 Ts spin=-up time
. 2 — — ;
SR = 2“7’7 = 2m oscillation period for disk, z = 1T *
% Ts spin=up fime
- 2 = = .
62R 2“7'2_ Zn oscillation period for disk, z = =1 °

We will now discuss the four cases

A Steady, '6“=6£= o,

B Low frequency oscillations, Tye Ty >T,

C Intermediate frequency oscillations, T1 = O(Ts), T2 = O(Ts) R

D High frequency oscillations T], T, << Ts .



A The steady case (<.“>‘.i =&, = Q)

2

We first consider the case when 6‘] =&, =0, Then the

angular velocity of the disks is impulsively charged, from t = O, by

ath onz =1 and ctd on z = =1, In this case (3,3.7) reduces to

sinh § (2iR)? inh § (<2iR)
g*(a-*b)[%-{-n{ z}+511§ z}}

4 sinh (ZiR)?‘L 4 sinh(-ZiR)zL .

4 sich(2iR)? 4 sinh(=2iR)?

sinh {(ZIR)%Z} sinh g(—ZiR)JZZE }
+  (cHd) [% -

-1 expf-*Rm%?}(T - cos{R‘Jfaqzy)}exp {-R%(i-lzo)};) (atbcrtd)
-1 |
+ _'5__.251'.‘.(2& Z‘( fffi.%'_‘f.}_ - %xp(- EiR-]i).[c%+c+d]
n ’ cOs

Z*m sin(knz)(-l)an'k 2 2 -1 . "
+ A -k R 't (- i 2* ) ( +b) = ( +d) 7 ( 0401)
k=1 4R exp i n } sin § 2t [C’ c :l 3

-
where terms of order R * compared with those written down have been

omitted, By arguments identical to those employed by Greenspon and

Howard [17, p.388], we find that the series

smm% Z( °°:o fi } - Dexp(.gia"‘f), (3.4.2)

apart from ihe first few terms which are of order Rﬂﬁ, is bounded by
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kK 1 .
-Zl'- . T 7 (30403)

where K = 1,  This bound, (3.4.3), for the amplitude of these

inertial oscillations is important because, although the individual oscillations
have small amplitudes, O(R-]), we also require thai collectively they

should have small omplitude, for the oscillations to become negligible,

Similarly, we see that for the inerfial oscillations of the form

d sin(krrz)(-l)k.?rrk exp § -kznzf{-lt}f-s;n(i’t)} 3.4.4)
k—‘ Z‘R-L 7 ( »Te

the amplitude of the individual oscillations is smail, O(R-I), while the'

collective amplitude is bounded by

K | '
m ’ 7 } (3 0405)

where K' < 1,

a+b+c+d# O

When a+b +c +d# O the term

-1 exp{-R.%i'}E - cos §R%(1-iz\)} exp {-R%(‘iﬂlzl )i’]‘ (atb+cid), (3.4.6)

1
requires a dimensionless time of order R* to decay. For this time scale,



Yt

t = R™r , the inerifal oscillations of the form (3.4.2) and (3.4.4) make
-t
a contribution no larger than R ? and are therefore negligible compared
with terms of order 1, Hence all the ironsient effects will become
3o~
negligible within a time of order R2S50 = Ts’ the Greenspan and Howard

D?] spin-up time, to leave the final state

1 1
o = (ath)] L 45000 ?(m)jz} , sinh E(-zm)zif
4 sinh{2iR)? 4 sinh(=2iR)*

L 1

+ (c+d)| & - sinh {(Ziﬂ)?z} _ sinh i(-ZiR)zz} (3.4.7)
4 sinh(2iR)? 4 sinh(=2iR)*

The expression (3,4.7) represents Ekman boundary layers on the

1
disks at z = = 1, having a depth of peneciration of order (/%52 ) (or
1

R* in dimensionless quantities) and an interior flow which is a solid-~body
rotation having a constant angular velocity,

g = 3la+b+c+d)
For the special case when @ + b = ¢ + d, that is when the angular
velocity of the two disks is impulsively changed by the same amount, fhen
the final state reduces io solid=body rotation with
g = a+b,

and no Ekmon layers are present on the disks, KFa+b=c+d=1,
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then equation (3.4,1) reduces to equation (3,10) in Greenspan and
Howard's paper []7]. | Similarly the expression for f would correspond
to (3.9) in [17]. It should be noticed that i'riyial errors occur in
equations (3,9) and (3,10) in Greenspan and Howard's paper [17].

These should, in fact, read

4 = exp(-R2H) I [ﬂ-a){z - 2 ok (1) (1- 12 ))H
-1 . sin {Enz} 9 -
+ R cos2t Zn.(Z - _S-I.F—g:-—)exP(-EnR t) ,
vV = 1= exp(-R—%?) [1 - cos{R%(l-izl)}exp {-R{’-(!-!z\)}]

4+

R Vsin 2 Z\(cosg “Z} - 1>exP(*§fR'it)
n

% &n

The manner in which the final state of solid=body rotation is established

has been described in Chapter 1,

a+b+c+d=0

When a+ b + ¢ + d = O the two disks are given, initially, equal
and opposite changes in angular veioci‘ty. Then, from the equation
(3.4.1), the only transient effects to inﬂuenée the motion are the inertial
oscillations of the form (3,4.4). By formula (3,4.5), these oscillations

behave in a manner which decays at the worst like i'-], for t > O,
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If we suppose that the fime taken for these inertial oscillations to decay
ist = RqT, where a > O, then, by (3.4.5), the colleciive amplitude

is no greater than O(R—a). When we take a = % which is equivalent

to the spin-up time, Ts’ these oscillations become negligible,  Therefore
we may assume that a < %, Hence the inertial oscillations will be very
important, initially, but will decay in a finite time which is much less
than the spin-up fime, The final state of the fluid consists of Ekman

layers on the disks with no interior flow,

B. Low frequency oscillations, Tir Ty 2> T

We have low frequency oscillations imposed on both disks when

1 1
s*laz, s-zkl’ << 1, which is equivalent to T,, T, > T,  Then

equation (3,3,7) reduces o

[ R6'A+C\ -z~bemi lt[%-%Rié'iA+C]
p=i

+ce'2%+-zlms;A-c + de 2[% {rR:é‘A-C-J
“ p=iG'2 p———|€

- 1 exp%-R-%f}D - cosiRjz-(lf;z\)} expi -R%(% lz\)}] [(a +b+c+d)

1 1
+ islkz(b-n) + FSZRZ(d-c)]
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=1 T peo z r
+ ?-‘-2— }__*(jig.ﬁ.) exp("}: ﬁR-]f)[(a + b + ¢ + d)sin(2t)

+ 6} (O-b) COf»I(Zf) + €Z(C-d) COSgZi’)

© k c ;22 =1
+ S sin(knz)(=1) 2itle_expy -k“m R } g: (ctd) = (ath) § sin(21)
kﬁ o R { c a Ss n

+ {ai(b-a) + Sz(c-d)} 5925,-(2-'-)-] ’ (3.4.8)

)
where we have ignored terms of order B> compared with those retained,
The assumption of low frequency oscillations implies that all transient
terms involving Sy or &, can be neglected,

u+b-l;c+d;£0

When a +b + ¢ +d # O we have, by the same arguments as we
have employed previously for the steady case with a +b + ¢ +d # O,
that the transient terms decay within a time of order R% 52_-], the spin-up

time, to leave the final state

g = (ae

ié‘ﬂ . be-i ﬂi') {% N sinh {(ZER)%LZS + sinh i(-Z'iR)iz} }
4 sinh(2iR)? 4 sinh(=2iR)?

+ (ce

. - _L =
1oyt ' Gét v _ sinh f(ZiR)Zz} sinh { (—2iR)L23
+de Mz~ T = T
4 sinh(2iR)* 4 sinh(=2iR)*

1 1
+ O(R.zs]) + O(R? s'?) . (3.4.9)
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The assumption of low frequency oscillations implies that terms of order
R%G 7 or R%SZ are negligible to a first approximation,  Then (3.,4.9)
represents boundary layers on the disks, z = z 1, of thickness

(v/se )% (or R—']Z in dimensionless quantities)s  These are, in fact, Ekman

layers having time~dependent amplitudes, Added fo these boundary

layers is the interior flow

g = %(ae

For the special case when identical oscillations are imposed on the

two disks, the final staie is a rigid rotation with

iS"]f -i:ﬁ‘.‘f
g = ae + be .

a+b+c+d=0

Whena + b + ¢ + d = O we have, by the arguments used in the
steady case with a +b + ¢ + d = O, that the time required for the
transient effecis to decay is a finite time which is very much less than
the spin-up time, The final stote is again given by (3.4.9). For the
special case when the imposed oscillations have the same frequency and
amplitude but have a phase difference of n then, the final state reduces

to Ekman layers on the disks with no interior flow,
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Hence the cases of sieady and low frequency oscillations are very
closely connected and depend basically upon the spin-up mechanisms
except when a +b + ¢ +d = O, the special cose, when only the

inertial oscillations offect the motion,

C. Intermediate frequency oscillations, T = O(Ts), T, = O(Ts)

For intermediate frequency oscillations, we have that terms
1 L
involving Rze‘l and R26'2 become comparable with one and must be
retained while terms involving &y or & g can be ignored, since 5]‘ K1

and €, <1, Then (3.3.7) reduces to

2
ié‘lt -ié'.li'
g = ae E}a—%ki’ef]Aa—C] + be [~-~P|6'A+C]
p=i & p==i S
] 1
lé‘f -|€f
+ ce ﬂ + RSA - c] 2 [+ - RieA = C
Sy - p=-is,

-1 exp{-R%f }ﬁ - COs {R%(l-\z\)} exp {V-R%(l-lz\ )a

a b d
X -+ + ’é‘ +
{1+161R2 1-—36"1R l-!-l'é*ﬁ‘k ]"ISZRZ}

_2__ Z(cos {:; nZ} )exp(* YeRT f)(a + b + ¢ + d)sin(2t)
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-1

o . Kk 22 _
+ Z: s|n(kn'z)(-]) fu“;k exp{nk m R i'f L(c-l-d\ - (0+b)—1$in(2f) ’
k=1 )

(3.4,10)
_ﬂ_"l_
where terms of order R ° compared with those written down, have been

ignored,  Again, by the same arguments as we applied to the steady

case, when
& s—b s w94  xo,
1 +i6]R2 1 —ié‘]RZ 1+ iszkz 1 - ié‘zxz

L
the transient terms decay in a time of order R 32 ], the spin-up time,

while for
o s i + b Ly + c I + d H = O F 4
° ?Z - ] —'Z . -'2- - . -2‘
‘I+|€>"]R 1 xs‘]R ]+|€2R 1 |G‘2R

a finite time, which is always much less than the spin-up time, is required,

The final state is given by

g = ae

. 3 . 1
Pyt ‘1 , sich {@RZ2E , sich {(-2iR)%2 ¢
2 pL X

4 sinh(2iR)? 4 sinh(=2iR)?

+ % 3 {cosh(-Z:R)’ E’°5h {(2IR)2Z § - cosh(2|R)2J
+ cosh(ZiR)JZ. [cosh {l(-ZiR)%z} - cosh(-2iR)Jf] }]

{41 s R® cosh(ZIR)zcosn(-"lR)% - (2i)3/ 2sinh(--2?!'()%«351'1(ZiR)ij
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1
- (~2i)3/ zcosh(—BiR)zsinh(QiR)z }
+ 3 similar terms, (3.4.11)
This represents boundary layers on both disks and an interior flow which

is independent of =z,

D, High frequency oscillations, T],TZ <« Ts

For high frequency oscillations we require T‘i ‘ T2 < Ts and

1 1
therefore R2&,, RES, >> 1., We will first consider the contribution

i’ 2

from the term
- {% expi -R-Jif][l ~ cos {R%(l-\z\)?c exp {-R%(]"\Z\)}] + O(R-%) i{'

x { @+ b } . (3.4,12)

1+;s-.dR‘“" ‘i-i’é‘]f\’?

to the expression (3.3,7) for g, on the assumption of high frequency
oscillations, \When a =’E, we have (3.4.12) is O(R-%6‘]-l) except in
the special case when a and b are real when (3,4.12) is O(R-.l 6}_2) .
Similar contributions arise from the terms with a,b, oF replaced by c,d, Sy
respectively in (3.4.12); Hence the amplitude of these terms is always
either O(R.ZLS']-]) or O(R.% Gé-]) or less, and %hel;efore they can be

ignored when compared with terms of order one,
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In the problem discussed in chapter 2, o resonance phenomenon was
found when the frequency of oscillation was twice the angular velocity of
rotation,  Then, for large times, for oscillations at all frequencies excepi
the resonant frequency, the flow was cénfined to boundary layers on the
disks while, for oscillations at the resonant frequency, when two boundaries
were present, the motion penetrated throughout the whole fluid, We will
show thaf this type of behaviour also occurs in this problem, but first we
will consider the general non=resonant case,

The non-resonant case 6’{ ’ 05 #2

We will first consider the case when neither <~ j nor & is equal

to two, the resonant frequency. In this case (3,3,7) becomes

iS"i' - -=i0‘.‘§t
g = ae E&+—‘2-Ri6'/-\+c_\ + be Eg—%Rié"A+C1
1 A 1 _
FFI \S-i P—n 61.
= - SoF
+ ce 2@- ZE.HS‘A C] + de 2F}~%Ri<§§A=C]
65 - p=- 16'2
Z‘ / €08 3\5 2 \ 2 1. (ol a b
- - . Lucy + .
. — } l/) exp( EnR 1) 4 2ie (:(2_ G_i)i (2-!-0"])|

.

+ c + d - 2ie-2ii‘ a + b
T TS G D

c + d
[ S - cré)i

d
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N ’;i;‘ sm(ksrz)("?) 2nk e,‘pg“!\ m R lf}{e-zﬁ[m%'p'—

4]“)
+ b - c - d + eEif a - b
(2~ 0-1 i 2 c-zjix' (2- 0‘251 c—]-?. i ( c-.l+255

2~=r). = +2)._} }* (3.4.13)

-1
where terms of the type (3.4,12) and also terms of order R * compared

with those written down have been neglected. The infinite series in

(3.4.13) must be retained because, although each ferm has an amplitude

of order R-], collectively these terms are very important af small fimes,

Again we apply the argument used for the steady case when a +b + cl+ d=0C
to both infinite series and we find that the time required for the transient

terms to decay is always véry much less than the spin-up time, Ts. The

flow after the transient effects have decayed is given by

ae

Pyt [ sinh [ 2R ] sinh {REG(s,-202042) ] }

= T ——T + T T
’ 2 ( sinh {2&2(3( &2 | sinh 1 2R°(i( = -2)) §
b Csinh SRE G- ) (142) } sinh { R (=i( - 202 (142) |
+ : — T '
2 { sinh %2 (1(2- 5‘))2 } sinh 12R2(~i(6“.‘+2))2 } f
. o 2" (sinh ER%(S(6‘2+2))2(1»;)} | sk (s 2002
2 sinh {ZRE(B’( sy2)f f sinh § 20° (i(s,~2))° }

de-i 6- sinh %R"(x(z- 6'))2(1 -z) } sinh %R%('i( 6'2"”2))%(]"2) Z-
2 g sinh i2: (1(2- 2))2 % sinh iZRé_("i( 6”2"'2))% }
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+ CR 2) . (3.4.14)

-l
We are assuming that R is large and therefore terms of O@R ?) con
be ignored., Then (3.4,14) represents boundary layers on the disks having

depths of penetration of vorticity of order -

tof-
/

{W) on z=1,

2

v -r -
(_“‘-?—_)ngw ST on =z 1.

These well=defined boundary layers are, in fact, modified Stokes layers,

The resonant case, é‘i or 6‘2 = 2

We will assume first, without loss of generality, that for the
resonant case &y =2 and S 9 #2, Then, when terms of the type
(3.4.12) have been ignored (3,3.7) becomes

ics‘]t =i 6"]f -
g = ae (%+{;RE0'3A+C] + be G-%RM—IAJ'CJ
p=i o] p==iS,
st
To-misp-c]
p....

Pt | ~i
+ ce 2{:%+:}Rio'éA-C] + de
p=i<5:2' 15‘2“

-1 cos<? 2 . -
+ 34’.’" 1("5&1":3"}“ - l)eXP(“EiR-]?) EZi &2t [—%%— +o() |
1] 1]

“n
- 2 e'ZEf[.%% + O(l)}
an
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k=1 _ “a J

lj + O(])l p (3.4,15)

where terms of order R = compared with those refained have been ignored,

© I 22 =1 i i
in(knz)(-1) 2nk oxp(kTw R 1) | -2t bR
ST i e

We will first consider the term

20t , 20y Z( °°‘i§nz}

= (ae”

- Depl-5i0 L L @u6)

n cos

Then, by the arguments used by Greenspan and Howard Df_} ; we have

that except for the first few terms the series (3.4.16) is bounded by

+ 2ir ~2it 2 -1 1
jae™ + be exp(-\f R ")y =
| 3 ot 500 =

anii’ + be-zn-‘ Zexp(— ?iﬂnlf) ’
n

[

since :f; Zn+n, Similarly the series

f sin(k rrz)(-‘n')kexp(-kzﬂzﬂ-]f)(be-zn + Gezif) .
=1 - 28K

except for the first few ferms is bounded by



- 87 -

+ be-zr". % exp(—kzﬂzR-]i') .

From these bounds we see that the transient effects certainly dic out in
a time of order Rf)f] =T 4 the viscous diffusion fime, The final flow

is given by

21?( sinh L @R+ 28 32 o142 *g

2 sinh {2(4:R)2}

+ be

-thf sinh 5(—41R)‘(Hz)} N 322 -1+ 2z %
L 2 sinh§ 2(—4:R)2} 8

ce' 72 {snnh{Pé(.(é‘a@z))z(l—z)} sinh {RE(‘(Sz'Z)F(‘"z)}}
2 s.nh{zR2(<5~+2))2 ? sich { R°(i(,2)° |}

de~i sinh ? Rz( 2~ s ))2 (1 —z)z- smh iR%(-i( 5‘2+2))%('l =z) }}
+ 1 {
: { sinh { 2R (2 c~))2 ] " f2R¥ =iy 2))* ¢

+

+ OR™?) . (3.4.17)

. -1
Since R is large, we may neglect tferms of order R *, Hence (3.4.17)
represents modified Stokes layers on z = i 1, which have depths of pene=

fration of order

1
1 Z
(_Z\_;_Z_)‘z , ( F}:Ti)——l-) respecﬁveﬁy ’
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and also a flow between the plates which is quadraiic in z and has «
time dependent amplitude,

When both disks oscillate at the resonant frequency, 6‘., = 65. =2,
the time required for the transient effects to decay is again T g4t the

viscous diffusion time, The final state is given by

oo 2it { sinks ¥ (43;2)’-75(142)} 3271 + 2z
i 2sinh §2(4iR)7 | e

. % 2 '
+ be-Zli' sinh § (=4iR) (L+Z) 5‘ + "=1 + 2z
2sinh § 2(-4iR)?}

2sinh § 2(4in)? |

v o2 {sinh{(zz-m)"f(uz)} , 3o 2 }

% 2
+ dp-Zif sinh {(—4ER)"('I-2)} + 32" =1 = 22
{ 2sinh { 2(-4iR)? § 8

+ OR™). | (3.4,18)
For this case modified Stokes layers are formed on the disks, each
having a depth of penefration of vorticity of order (>/4 52)%. The
interfor flow is again quadratic in z with a time dependent amplitude,
VWhen both disks oscillate in the same manner thf iswhena=¢, b=4d,
the terms which are linear in z cancel, \When the imposed oscillations

on the two disks have the some amplitude and a phase difference of w,



that is a = =¢c, b = =d, then the interior flow reduces to a shear flow
uniform in z with a time~dependent amplitude,

interior flow
We now consider the structure of the inferior flow which persists
after the transient effects have vanished when both disks oscillate af the

resonant frequency, From (3,4.18) the interior azimuthal velocity is

given by

N
r gI - r(aezl* + be—ZIT)(SZ Si + ZZ )

or o B2 _ 1 o R
n r(ceZH + de 2”)(32 8] 2(.) + Q(R 2). (3.4_.]9)

Therefore, from (3,2,9), the interior radial velocity is given by

= ~ir(ae

. . 2
28t _ be-Zlf)(Sz -81 + 22)

.,
g,:l R

. . 2
2it - de-Zli')(Sz -1

- o
F—22) +OR®),  (3.4,20)

-ir(ce
and the interior vertical velocity is given by

2

-2f1 = Zl [(aezn - bemzn)(z3 +2° -z =1)

- . -]_
+ (2 - de BB L2 L 1)} + OR™) . (3.4.21)

-

in the following analysis we will neglect terms of order R “ compared

with one,



- 90 -

The particle paths for the interior motion are given by

dr rdg dz
= e = - = ot . (3.4'22)
o Cr
oz

in particular from (3.4,22), (3.4.20), (5.4.2Y), we find that

dr
r [(322 = 1 + 2z)\elsin ?2(?-#&)} + (322 =1 = 2z){cl sin{Z(i'-fc)}]

- dz
2[E" + 2 -z - ialsin{ 204 ) + -2t -z 4 i)xc\ssn{z(r—-:-c)}]

(3.4.23)
where ' and b, are the phases of a and ¢ respectively.  When
|ty - :-c| = dmn, m=0,1,2,..., (3.4.24)
the time dependence in (3,4.23) cancels and we can integrate this
equation to give
2,2 . o -
=10z [a + 31+ {a - ﬁ]) = constant, (3.4.25)

where o = {al and B = z lel « The particle paths lie on the steady

surfaces (3.4.25) which are shown in Fig.3.1.
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FIG,3.1:— Sketch of the steady surfaces,
rz(zz-?)(z [ + ﬁj + [d = 1) = constant,
Also, from (3,4,22), when b and ¢ are related by (3,4,24) we have

B2 o sinfaet)f . GG e - ), (3.4.26)

which we can infegrate by paris to give

I R T peagY
o fEn (S
g i(z&'i) go—-ﬂ') L—q_!_p] s + Y_O("B]

= 2sin tsin (2t =t }, (3.4.27)
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where z, is the position of a given particle ot t = O,  This represents

an oscillation vhich fakes the value z = z, at

+ +

t = C‘), -0, = 2“‘,...,
(2.4.28)
+ +
o= 21'0, ZTG = 1, 21'u = 2 eees
and which is frapped either between the planes z = 1 and z = %:% or

- B«

z = =1 cm;!A z = rol depending upon the value of z) .

We now consider the above results when we impose certain restrictions
on o and §,
(i) «=8

In this case the imposed oscillations are such that

‘a‘ = ‘C‘ and ‘fa“fck =Q, iy 2“’ oo .
Then, the steady surfaces, (3.4.25), reduce o
?
rzz(z"-]) = constant , __(3.4 29)

which are shown in Fig,2,2 and (3.4.27) become

(22-])202

log { ———s— } = 2sin t sin [2f0-f] . (3.4.30)

T -
(o]

The expression (3,4,3C) represenis an oscillation trapped between z = O

and z = 1 if z_ § = = =] if is negative
., is posiiive or z Cand z 11 z, is neg
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FIG.3.2: Sketch of the steady surfaces, r2z(z2-1) = constant,
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which takes the value z = z af the times (3.4,28), These oscillotions
are shown for various values of ?a in Fige3.3.
(i) =-B

The case « = =B corresponds to imposed oscillations which satisfy

7 3w 5

‘G\ = \C‘ and ifa"‘fc\ = ?,T,T’ sse o
Then the steady surfaces, (3.4.25), reduce to
rz(zz-l) = constant , (3.4.31)

which are shown in Fig,3.4, From (3.4.27) we have

I (z")'z°+] = 2q sin t sin [ 2t =t | (3.4.32)
og ;TE::T)‘_ o stn § sin a r oo

which represents oscillations frapped between z = 1 and z = =1 which
have the value z = z af the times (3.4.28)., These oscillations are shown
for various values of f in Fig.3.5.

(iii) either = O or = O

We may suppose without loss of generality that B = O, which
corresponds fo ¢ =d = O, By this assumption we derive the interior
flow when either the disk at z = =1 is oscillating at o frequency other

than the resonant frequency or is at rest,  The steady surfaces, (3.4.25),

reduce fo
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2 2
r (z=1)(z+1)" = constant , (2.4.33)

which are shown in Fig,3,6, For this case, the oscillations are obfained

by integrating (3,4,26) to give

2(z ~z)
Zo % {.(z-'ﬁ .—_1)} = 2« sin t sin t2f -f] (3.4.34)

(142)(14z )

which are shown in Fig,3,7 for various values of fa'
When aond ¢ have phases not connected by (3,4.24), no simple
discussion of this type of behaviour can he given,

E.Mixed frequencies

The cases which occur when one disk is oscillating ot o high
frequency and the other at a low frequency can be found by t#aking
a combination of the previous results,

The previous resul ts concerning the times required for transient

effects to decay are combined in Table 3,1,

3.5 AN APPRROXIMATE SOLUTION

We will now, by mdking various approximations, develop a
representation of the solution, g, which gives a more qualitative deseription
of the transient (time~dependent) state,  From this representation we will

confirm the remarks mace in section 3,4 concerning the times required
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: n DECAY
TYPE
CONDITICNS TIMES
STEADY  athted £ O Ts
athtetd = O <L TS
LCwW athtctd # C T
FREQUENCY s
atbtetd = O << Ts
INTERMEDIATE 9L . 7+
FREGUENCY l+ic'iR2 1=t O‘} R (+HexR T
d 5
—4 __#o0
1-io=R?
a o+ b o+ c .
o 2 . 2 .
1+HoR lﬂi(J"iR J+e R & T
d 5
a——— — o
1-i 67R?
HIGH Non=resonant (c".i s 95 # 2) KT
FREQUENCY {\ © ?
Resonant (d‘i‘ or o, = 2) T

d

TABLE 3.1
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for the transient effects fo decay.
In section 3.4, we found that, except for oscillations at the resonant
frequency (6—1 and/or S, = 2) which occurs in the high frequency

range, the simple poles at

M Tisy, RT, (3.5.1)

p = ?6’]‘,

were the important singularities,  The residue contribution from the simple

poles
22
+ A k o~
P = - 2| - Rﬁ ’ k = 1121'3!-" 4
-5 (3.5.2)
p = -: 2i - _‘%—n. r n= ‘,2,31‘.00 4

although imporiant initially, decayed at the worst like f-l , fort > 0O,
and has a magnitude no greater than R-% for a time of order R%.

Therefore it seems reasonable to use Greenspan and Howard's [17]
approximations fo obfain an inversion integral which can be readily
evaluated, retains the character and location of the important singularities,
(3.5.1), and replaces the remaining poles, (3.5.2), by branch poinis at
p = : 2i . ' |

For the resonant case, however, the poles, (3.5.2), become very

important and it would not be valid to replace them by branch points at
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+ » . .
p= = 2i. Hence we must treat this special case by a different method,

Non=-resonant oscillations

We consider oscillations at all frequencies except the resonant
frequency ( Sy S, # 2} and we will use the three approximations employed
by Greenspan and Howard [17] to obtain a representation for the solution,
g, as a linzar combination of an interior solution and «a - boundory layer

solution, which is valid for large R and for t <R,

: ,-__v____‘(-?'uoﬁl’
o ﬁ\\ o
PP o O.IY,,.' '
X . . . B VeNp
Csrvemax (2,6, 62). |

FIG.3.8: Transformed contour for the Lcapldcé inversion integral,
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We can fransform the Laplace inversion contour (y = i o, y + i o)
into the contour 8 shown in Fig.3.8, wherc ¢ = R-HG for some
&> VO:and P, P are situated at® i max @,s,, 62), because all the
singularities of 5 , (3.3.3), lic to the lefi of\@ and the contribution
from the broken lines hecomes negligible as they approach infinity,

Then along & , we have that, for t < O(R]—S), 1epf\ is
bounded and tends to zero exponentially as p tends to infinity for any
fixed t > C, and that my and m, have large positive real parts

17, p.387].

First approximation

In order to separate the terms in (3.3.3) responsible for the
boundary layer flow from those responsible for ihe interior flow we make

the approximations

cosh imz) = % exp(mi\z\), sinh (miz) = 3 -‘%- exp(m.l, iz\)' ’

E(mi\ = %(mi = 1) exp m. , i=1,2, (3.5.3)

which are valid, with exponentially small errors, along \@ . When
these approximations, (3,5.3), are substituted in (3.3.3) we find

© (e . b e L d ] Hmy-m
g prisy | PHoy  pio, PHay, j O
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i st iy g { T

o, + o, M= A M=~ = D)

, pmz(m.'-l)exp {m2(|21 ’7)}
2D(p)

Q b c d z o
* { Prisy o Sy B pri oy, B pric, }-412\ (exp g my(jz]-D§

+exp{my(iz1=N} ), (3.5.4)

where

D(p) = R-] [m? (n12-l) + m23(m]-l)]
{m] (mz-'l) + m2(m,|-l)-}p + ZF(mz—ml) , (3.5.5)

is an approximation valid along fg which satisfies the required boundary
conditions at z = z 1.

In (3,5.4),the simple poles, (3.5.1), are preserved while the poles,
(3.5.2), are replaced by branch cuts extending fo the left from p = T

and simple poles at

p=22 +% i (3.5.6)
These new poles, (3.5.6), give a residue confribution O(Rnlexp(tRnI))

which is small for + <R but becomes important for + >R,  The terms
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neglected would, in fact, nullify this growth, Hence here we must
restrict our atftention to + < R,

The first term in (3,5,4) represents the interior solution, 51 » Which
is independent of the z-co-ordinate, while the remaining two terms in
(3.5.4) represent the boundary layer solution, 'g.B o .

Second approximation

The choice of the ironsformed inversion contour, ¥ , is such that,
along @ , My and m,, always have large positive real parts and
therefore we may ignore the terms my, m, compared with the term mym,

in (3.5.4) and (3,5.5) to give

- _ a_ . b + S . d i(mz-m.‘) _
°r pricy  pHoy  pricy,  prioy { PFR)

(3.5.7)
- _ a b c d Py My ¢ |
9 = {p_;c_l + = = + =ER + p-l"io‘é}fb*(p) exp Lm](lz\ -I)?{

+ expg m2( iz =1) }]

a b c d z
' {p-iw{“L ey B, p+;o-2} Tyl im0

+ exp {mz(lz\ -I)}], (3.5.8)

where

D*p) = p2mymy + 2i(my=m,) . . (3.5.9)
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The expressions (3,5,8) and (3.5.9) satisfy the required boundary
conditions at z = z 1, retain the simple poles, (3.5.1), and branch

points, p = z 2i, and wove the extra simple poles (3.5,6) to

p o= Taie . (3.5.10)

The Laplace inversion integrals for the functions (3,5.7) and (3.5.8)
cannot be evaluated in ferms of known functions and therefore we must
introduce another opproximation,

Third approximation

The extra poles, (2.5.10), arise from the previous approximations
and are not a property of the original transform function, (3.3.3), For
t <R, they produce a negligible contribution to the transient motion of

the fluid and therefore we will assume that

D*(p) = Zm]mzp + 2i(m2-m])
-1
= 2 mylp + R4 3.5.10)
where
1
i(a=m.) ~ R ’m,;m

_%
mlmz(p + R <)

i ,(p-zi)—‘r}?‘ (?+2i)%_g - ( 2+4)% (3.5.12)
R (p +4)* (p+R *)
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The complex function B(p) #s small in magnitude clong the entire
contour ‘6 and therefore we may expand (1 + B(p))-], which appears
in the integrand of (3.5,7) and (3,5,.8) in powers of B(p) and retain
only the first ferm in the resulting series, Then the expressions (3,5.7)

and (3.5.8) become

— -1 21 -
= _(_a . b . ¢ . d i [p+20) 2 - (p-20)77 |
o1 picy  PHSy  Po,  PRo, | oy pd) '

_ (3.5.13)
g, = a_, _b_, e, _d [PEF {ml(‘z‘-”} -
°B p=i &y pH e p—io’é p+i'c"2 | 4(P+R=%)

- exp %mz(\z\-l)}]
d b c d z
' {P"‘io'] ' POy oy P“"Tz}“‘lzl o { my(1zl -] +

+ exp {mz(lz\-l)}] ) (3.5.14)

Hence by the above procedure we have retained the simple poles,
(3.5.1), and have replaced all the poles in the neighbourhood of p = 2
by branch poinis at p = L 21 . It should also be noticed that the small
and large p behaviour agree with‘ that found for the original function,
Therefore we may conclude that the expressions (3.5.1_3) and (3.5.14)
are valid approximations to the original transform "r'uncﬁonA along & ’

for t <R, The dbove method can be expected to give a reasonably
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correct description for all t since we have previously shown, in the
discussion, that for t > R the final state is controlicd by the poles’
-+

p=- io"i, - i 62“, alihough no rigorous justification will be given here.

The inverse Laplace transform

pi -
g -27 ( g dp ., (3.5.15)

can now be evaluated in f@rms of known functions,
The time dependent interior motion, g 1 is given by evaluating
(3.5.15) when g is given by (3,5,13). Then, from Foster and Campbell

[13] Mo.546 , we have

foyt N . E2
ai eld—l erf [(21 + 16'})21-2] i erf [(I 6‘]-21)51'23}

(S5

214 &%) @i+ is7) (e - u)
X bi e—ié‘ij erf [(21 - 16‘)2“L - erf [("ZI - IS‘); ]
2(1~i G;RE) @i - ;5-.')2 (=2i = ics*])
‘I'S-Zt ert [(2! iso. )Zi' ] ert l’("'?l + is )%le}
cie
+ Y T
2(1 + iS”ZRE) (2i + .6')2 (i s5 ~ 2i)° }
di e "sr ﬁerf [:(2|-|€)4f] erf (-2i-i6’2) t%]
+

2(1-i %) ( @i - is,) (21 = i )
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(7. -R 2)? (=2i = R )Z

111 L1
cT0r - 2R et (21 =~ R2PE ] )
-exp{_g 21- Jcr [_(? . ]_ er [ RL ] é{

X ci LN + ba LN + Ci 1 + di T [] (305016)
2(l+i6‘]R2) 2('5-‘|’6*]R2) 201+ e-éa?) 2(1=i &,R%)

=) , o BN
When we neglect R 2 in the terms (= 2i = R ?)° and use an asymptotic

expansion for the error function, (3.5.16) becomes for large times

1 ) :
ai e N 1 i
T " T alry—
200+ Gii’\z) (2i +i 6'1')2 (i’6“] - 2i)
- 6“31'
+ bi e . 1 - ] -
200 - isR?) 1 @i - i) (~isy = 2i)°
i oot
ci e 2 1 1
+ T - T = T F
201 + 1 9,R°) {(z + i) (i, - 21)° }‘
-lw f
+ di e 2 1 1
° 72 2o '6)—5 - 2n .6-)_'.5
2(1-.16‘2R) 2 =i 2 (=2i - i 2

PR -t 2
1=i 6}R ]+ac5’2R 1 |6’2R

-
_expi-R % a__,_b L _C . d
—2 —1 T T :

- 2 e 2 ] % 6—- 'é'
MR =gk THSR 1-i 2RJJ'

it
+ O el[" +~+ bL+ < PR W (2.5.17)
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For the special case with 6'i=‘5§=00nd0+b+c+d=l,

(3.5.17) reduces to

-l <
262”.

=1 -expi-R*;:t} + Oft ),

°1
which agrees with the result obtained for vy by Greenspan and Howard [}7]
at the bottom of page 391,

The time dependent boundary layer motion, I is given by
evaluating (3.5.15) when g is given by (3.5.14), Vhen we use the inversion

formula No,819 in Fosier and Campbell QB] , We obtain

N~

ge iR z N
9 = 5 +m2( exp?-j(2|+|6‘1)§ x

RN
41+ G.'Rz)

x erfe {é-‘fi'.% - E'(Zi + i’6‘])]%}+ exp {f(ZE + ié‘.i)%} x
x erfc {%\S’f.% + [i_'(Zi + ES‘I):}%§+ exp{-tf(-ZE + ié‘.‘ )%} x
x erfc {%ft'% - Ei'(ié"] - ZEBJZ; + exp{f(-Zi + is‘l)%} X

{'2"’3’?-% +[Hisy - Ziﬂ%}}

x erf

(4]

*L -L
a exp ¢ =R 2?} - - -5 R i--% 2
+ Py ]Ri) @cp[ @i -r2) ]erfc {53'? 2-[+(2i-R ﬂ }

11 1 %
+ exp{\f (2i - R"Z)E} erfe {%Tf‘j + [i'(Zi - R-'JZ)} }
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1
+ exp{-F(-2i - R} erfe (4347 - (2 - N
1
b oexp § 5 (2= R ferfe (1YY 4 (121 - SR
+ 3 similar terms, ' (3.5,18)
where ¥ = R—%('I -1zl ).

1

-t
%) and then using the

1
Again by neglecting R in the terms (i 2i = R
asymptotic expansion for the complementary emor function, (3.5,18})

becomes for large times

1
- . >
uc*!r, uis

—+ o (-Y@i + i )
414 &,R°) 4121 {expL ' ]

+ exp ET(-Z? + ‘is“])%]}

, 8 expi-R'ff} {exp [—T(Zi)%] + exp [-3 (=2i) ]}
A1+ 6‘1R‘£)
+ O(f_%exp -}:- %f2f~1 + 2??} )
+ 3 similar terms . (3.5.19)
The sum of fhe expressions (3,5,16) and (34.5.18) satisfies the initial
condifion and fends to the required final siate as t tends to infinity, We

must now show that it satisfies the required boundary conditions at the

disks, z=i1 .
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1
For high frequency oscillations, o‘iRz >1, i=1,2, we have from

‘ -
= O {:(s'iRg) ]Q\, which is negligible and, from

(3,5.18) that 91
3.5.18), that g, obviously satisfies the required boundary conditions,
B Y q
i Stlf =js,t i é'éf - 6’21‘
namely, g = ce + be onz=1, gg = ce + de on

1.
z = =1 , when terms of order (€#Rz) ! are ignored,

For steady, low and intermediate frequency oscillations we have

-
that Se oé's CR ?) and therefore, on z = i 1, (4.16) and (4,18)
become
. . % ° J2— 1 —
or = ai . erf(in‘L) - erf(-2:3) GXP{“S]*} - exp{-R'ifEJ
2(1+ &7 R?) (2i)° (=2i)° ‘
+ 3 similar terms, (3.5.20)
it 7, % v
_ ae ! Pk + a exp§-R?fi_
% = 7 L T
1+ syR” 2(1+ 5;!22)
+ 3 similar terms, (3.5.21)

-~ -5
When 1 >> max (6“]i~, R %1) = R %f, we may expand the exponential

terms in (3.5.20) and (3,5.21) to give

_ ai érf(Zif)% _ en‘(*Zif)% O(R-%f)
T 0+ claf)[ @i (=2iy* }{ )

+ 3 similar terms,



+ 3 similar terms,
iot

These expressions show that the term involving a in g = g+ gy is ce
on z = 1 (positive sign) and zero on z = =1 (negative sign), when terms
of order Rn%f have been ignored, since the error function is always less
than one in magnitude, Hence, for t << R%, the highest order terms
satisfy the required boundary conditions, On the other hand, when
i‘% >» 1, we can use the asymptotic expansions for the error functions in
(3.5.20) to give

g = — 2 {exp {icr‘if} - exp{—R..%i'}—l

2(1+i o’;RE) -

+ O [(fé {ma-laé})"] . (3.5.22)

The expression (3,5,22) together with (3,5,21) satisfies the required
boundary conditions when terms of order i'*;— are ignored, For the inter-
mediate range, 1 < t K R%, both the exponential tefms and the error
functions can be expanded and again the highest order terms satisfy the
boundary conditions,

Hence the highest order terms in (3,5.16) and (3.5.18), and
therefore the asymptotic expressions (3.5.17) and (2.5,19), always satisfy

the required boundary conditions on the disks, It is interesting to note
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that in agreement with Greenspan and Howard's D?] results for V the
expressions (3.5,16) and (3.5.18) fail to match the boundary conditions
by a small amount, Here we can ignore this discrepancy as we are only
concerned with the highest order terms,

In order to determine the time required for the tramsient effects to
vanish it is sufficient to consider the asymptotic expressions (3.5.17) and
(3.5.19), For steady (c':" =0y = 0), low frequency (o—]R% L1,

o R% << 1) and intermediaie frequency (c“]R% = Q(1), G—R% = O(1))

2 2
oscillations, (3,5.17) and (3.5.19) reduce to

t -ic—=t

2

is=t ~jot Ec-,—,
ae 1 be 1 ce de
= + + +

21+ o= R?) 2(1-;0—]@) 2(1+sc—égﬁ) 2(1-;0—2@)

91
1

l+ic"iR§ 1-ia—]R7 1+io-éR’2’ 1-io—2R‘°-‘

+ o2, (3.5.23)

- % exp i—R-%t} [ = + b + < + 9

% = %\}"P {-F@F} + e Y2 }] x

D

1
F o=t fioR? ; -iot 4 ~io3R
xice'/ 1L+ z)+be 1/ 1J+z)
L \'I+it3"]R2 2\ h-;o—igf \z\
3 %
oot /iochR =io—t; =ioR
2 ("2 z) . & 2( 2 z)
1

\1+i o-zR'é' 1= --icr‘,ZRé 1zl

+ ce
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+exp€-Rn§_?§/ e b T — d T
\1+r<siﬁz l~i<5iR2

+ O exp{- %Tgf“ +2it} ), (3.5.24)

Immediately, we see that if

a +b7L+cL+d £ O,
IﬁﬂR :4ﬂw lﬁﬁﬁ 14§w

=
=

N

which is equivalent to
a+b+c+d # O,
for steady and low frequency oscillations, then a time of order the spin-up

time, Ts’ is required for the fransient effecis to vanish, For the special

case when
- -~ + b ™ + z T+ d - = 0O,
. 2 ° 2 o -y - 2
1+ S.IR 1 lﬁiR 1-+H G“sz 1 IG‘ZR

(3.5.23) and (3,5,24) show that the transient effects decay in a time
which is less than Ts but large enough for O(t-%) terms to become
negligible,

For high m_s,;g?:.j\on-resonanf oscillations we have from (3,5.17)
that glwill be @ and therefore negligible and from (3.5.19) we
find that the transient effects decay in a ti’mé less than Ts but large enough

- -
for terms of order ¥ “exp i- -l-\g 21- ]} to become negligible,
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Hence these resulis agree with the predicted values given in
Table 2,1, section 3,4,

Resonant case ( & and/or S5 = 2)

We now consider the special case of oscillations at the resonant

AS o F PI‘CQ(
frequency which belongs o the high frequency range, Msch

cose. that
papesslity we may assume)both s and S o are equai fo two,

We can no longer use the previous approximations because the poles
near p = I 2i conirol the transient behaviour and large errors occur if
they are replaced by branch points at p = o . However, for small times,
which corresponds fo large p, the poles near p = £ 2i become unimportant
and we can use these approximations to give, from (3.5,18),

2it
ae

. 1, 2 ot e (1647 -
9 = B {4+ i 1o (Y@t ere [3erF - k]
+ exp Ef (4‘:’)712] erfe [5 ft.’% + (4i'i')%:‘[~ + 2 erfe E%]’ f~%—‘}

+ O(R-%) + 3 similar terms , | » (3.5.25)

which satisfies the required boundary conditions af the disks, In order to
evaluate the above expression, (3.5,25), from tables of transforms we
require the fact that the integral of the approximate function, valid for

large p, evaluated along ithe branch cut, ‘@], is o good approximation

o the exact integral,



FIG.3.9: Integration contours along the branch cut which
' extends from p = 2i .

| ‘&-\»;\;c.o
N © GDP“‘ f .
N R
@.s]t o '
p=-R" o |
, <3599= -2L
Y - Loo

) FIG.3.]O: Replacement of the contour (y - i o, y+ i o) for
the inverse Laplace transform by the circles @,@,

" enclosing the poles. -
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In Fig. 3.9, we have by Couchy's theorem that the integral of
the approximated function croqnd ‘@] is equal fo the integral of the
approximated function around @ 2 provided 5‘ and 52 are so small that
their contributions to the integral are negligible, Then provided the
contour \@ 2 is always a distance greater than R-] away from p = 2i
the integral of the approximated function around @ 2 will be a good
approximation fo the exact integral, Hence the integral of the
approximated funciion q!ongv \@‘ i; a good approximation to the exact
integral .

The expression (3,5,25) satisfies the initial condition and also the
required boundary condifions af z = z 1. The first two ferms represent
well-defined boundary layers on the disks which fend to modified Stokes
layers as t = o 3 the required boundary layer structure,  The third term
is a Rayleigh layer which penetrates out from the disks like (yt)% and
will, evenfualiy, produce the final quasi~steady state in the interior,

In order to calculate the general time dependent interior flow we
surround the points p = i 2i, p= -R%, by circles of radius R-HS,
where & is some positive number, and then use the calculus of residues,

1
For the circle () , in Fig.3.10, all the terms involving m, = (4iR)*

can be replaced by the approximations (3.5.3) while all terms involving
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m, must be retained, since m, is of order one, Hence the interior flow,

from (3,3.3) becomes

b m,(cosh tm z} ~cosh m,)
{ —2_ st oo =i p+2!}{z 4(m2cosh m, = sinh mz) }

c 4 } smh{mzz}

a b
G e A S T e (3.5.26)
The poles of (3,5.26) inside @ are
p = 2i,
kzﬂz
p = 23"‘T, k=],2,3,... ¢
2
p = 2i --\%2 , n=1,23,..,

and from o residue calculation we have that the contribution to the

interior flow from circle @ is

2it |
gl' = 'E'Q_ a(3z2 -1+ Zz) + c(3z2 -1 = ZZ)J

+ % (a=c)exp {(2: - k " R )f}( nk si;i:nz}

@  fecos {\gnz} ‘ | 2 -1 (a+c)
- | —— = 1) exp 1 (2i -
%’(cos 3 ) pi@i - IR )t}———-QZEn

+ or™ Y.
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By similar arguments we have that the contribution to the interior

flow from the circles @ and @ are

-2|t

9 = —g— [b(Sz -1 +2z) +d(3z —I-Zz)]

+ ;_% (b=d)exp { (21 - KPRt (- l)kﬂ%{kﬂ-z—g-

k=1

COS{E Z}

@ . 2,1
L e s

+ O(R-l) ,

-l
OoR %),

g
I

respectively,  From Cauchy's theorem we have that

gy = 97 t9y *tor
T 7o e e,
and hence the time dependent interior solution is

20t , -2ty (322 - 1 + 22)

= (ace” + be 5 + (ce

91

k sm{kn'z% [ Zlf

™8

expf-k 2R i'}( D)

x~
11
—r

n=1

cOs ?
n

2it +

- %71 .
+ S - <..._..§.:§.."_§. - |> Piz%; }[aez'f%

(b+d)
» 2

n

. 2
de-th) (3z

-1 = 22)

-2if

8

- 2l de-Ziﬂ
2it, _2it, de-zn-]
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+ OR™) . (3.5.27)

The expression (3,5.27) can be shown to satisfy the initial condition
by expanding (322 - 1) and z in Fourier series with respect to the

orthonormal seis

1 (“‘g nz§ \

T = gn - l) , sinknz) ,

respectively, in the intervai (~1,1), Also (3.5.27) together with the

Stokes layer terms from (3.5.25) satisfy the boundary conditions at z = : 1

We see immediately from (3,5.27) that a time of order the viscous diffusion
time, T g4’ is required for the transient effects to vanish which agrees
with the predicted resuli in Table 3.1. It should be noticed that

(3.5.27) is identical to the result obtained for the interior flow from

- (3.3.7).

3.6 THE CONNECTION WITH THE SINGLE DISK PROBLEM

From (3.3.3) and (3.3.4) we have that

of | .- - a b ¢ d A
=z 9" { P10, * pricy * p—ic§+ p+i0";}{ 77

R_gi_ m]E(mz)(COSh {m]z} - cosh m])
a b c d i sinh {T.“ﬁf
{p-ic—J' pFios P el T . 3.6.1)
1 1 PTIen PYS3) 9k m,
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We will now consider the boundary layer solutions for smali times which

correspond to large p, From (3,6.1), we have, near z = 1 ,

f .~ _ . a b
&t = l{P"if"] + p!i_i,ﬁ_-l)c-:‘xp{m](z--'l).i' : (3.6.2)

while near z = -1 ,

Biig = S ) exp { myl=-} . (3.6.3)

A
p=icy, pti 0“2
The expressions {3.6,2) and (3,6,3) correspond to the equation (2.4.6)
with a change in the origin of z, Hence, for small ﬁmes, the boundary
layers behave as if only one disk is preseni and hence are not influenced
by radial pressure gradients, The motion is given by (2,4.14) which,
for small times, represenis Rayleigh layers penetrating through the fluid

from the disks,

3.7 CONCLUSION

In. section 3.4, we found that the important parameters for the

problem where

which related the spin-up time, Ts’ to the pericds of oscillation of the

imposed frequencies 'l'.l ,T2.
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We will first consider the case when the imposed oscillations are
steady, low frequency or intermediate frequency. When the oscillations

are such that

a4 b -+ c , + d - £ O,
l+i6“R7 1-36—]R2 1+i6~2n 1-?6‘2R2

then the spin-up mechanism plays a very importont role and we require
a time of order T for the transient effects to decay, The final state
consists of boundary layers on the disks and an interior flow which is

Independent of z.’ The resulis of Greenspan and Howard D?] can be

obtained as a special case.  When

°%+ bT,_+ °L+--——f§—--7,_-=0,
Y+Hi 6.‘IR 1=i GiRZ 1-+i G"ZRZ 1=i G'ZRA

a much shorter time is required for the transient effects to vanish although
the final state has the same structure,

When high frequency oscillations are imposed on the disks then
the spin-up mechanism associated with the simple pole, p = -R"%,
becomes unimportant compared with viscous diffusion, A resonant
phenomenon is found when either disk oscillates at o frequency which is
twice the angular velocity of the basic rotation, For the case when

the disks oscillate at non=resonant frequencies then a time much less
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than the spin-up time is required for the transient effects to vanish and
the final state consists of modified Stokes layers on the disks. When

a disk oscillates at the resonant frequency, the viscous diffusion time, T o4
is always required for transient effects to decay and the final state
consists of modified Stokes layers on the disk and an interior flow which

is quadratic in z with ¢ time dependent amplitude, These results

correspond closely to the solution for the problem discussed in Chapter 2,
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CHAPTER 4

TRANSIENT AND STEADY STATE VORTICITY CEMERATED

BY HCORIZOMNTAL TEMPERATURE GRADIENTS

PART 1: THE FUMDAMENTAL SCLUTION

4,1  INTROCRDUCTION

In the atmospherc and the oceans, the Coriolis force together with
the variations in the temperature field influence the development of
circulatory fluid motions and hence the vorticity which is present in the
fluid. In particular in the atmosphere, strong circulatory currents can
be produced by temperature varictions on the earth's surface,  These
currents could be connected with the evoluiion of hurricanes and this
provides the motivation for the problems that are considered in this chapter
- and in chapter 5,

It is assumed that the atmosphere can be represented by the idealized
situation of two infinite horizontal disks with fluid between them, when
the fluid and the disks are in steady isothermal rigid rotation about an

axis normal to the disls,  This assumption implies that, for any given
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latitude, it is valid to ignore the effects of the earth's curvature, to
suppose that the component of the earth's rotation normal to the surface
of the earth is constant, and to neglect the adverse temperature gradient
which exists in the atmosphere,

When o temperature distribution is imposed on the disks, density
variations in o horizontal plane can be produced in the fluid, For a
non-rotating system, these density variations produce circulations in vertical
planes since no hydrostatic pressure distribution can balance the horizontal
variation of the buoyancy forces, Then conduction and viscous effects
are, usually, only significant in the neighbourhood of the disks while,
in the interior, the heat is convected by the movement of the fluid
particles,  For a rotating system, however, the presence of the Coriolis
force has the primary offect of producing horizontal flow perpendicular
to the density gradient rather than circulation in vertical planes, In
particular, the idealized model of the atmosphere is axisymmetric and
hence the density gradients produce an azimuthal component of velocity
which cannot clter the temperature field by convective processes,

Hence for o rotating system, heat can only be convected by circulation
in an oxial plane and this flow may be inhibited fo such an extent that

conduction processes predominate everywhere,
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The conditions necessary for either conduction or convection
processes to predominate have been discussed by Duncon [1 O:\, when an
axisymmetric non-uniform temperature distribution with a minimum at the
point of intersection of the disk and the axis of rotction is imposed on
the upper disk and the lower disk is insulated, Duncan considered the
STEADY problem when the inertial accelerations were negligible in
comparison with the Coriolis acceleration (H{ << 1) and found that the
critical porameter was,

1
o HR? r
where o is the Prandil number, H the thermal Rossby number, (1.1.5),
and R the Reynolds number, (1.1,2),

When crHR% << 1, the conduction process fckes precedence
throughout the fluid and the steady state consists of Ekman layers on the
disks and an inferior region where there is an azimuthal flow and also
a lower order secondary circulation, a down=draught, which is driven by
the Ekman layers, On the other hand when o HR% >> 1, convection
predominates in the inferior but, in addition to the Ekman layers where
conduction again prevails, there are thermal boundary layers, which have

1,,-1

B S e A
a depth of penetration of order o H R ° , where the conduction and

convection processes balance,  These thermal layers are always much
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thicker than the Ekman layers, In order fo safisfy the physical situation,
Duncan found that only the lower thermol layer could exist, For the
case o~ HR% <K 1, this thermal layer .is much thicker than the distance
between the disks, which agrees with the above result that conduction

is the predominant mechanism for the transfer of heat,

Duncan also investigated the effect of replacing the temperature
minimum by a temperature maximum on the upper disk and of replacing
the upper disk by o sfress=free surface, He found that the above resulis
were also applicable to the case with o temperature moximum except
that, when 5‘HR% >> 1, an exact boundary condifion, say uniform
temperature, was required on the lower boundary, the thermal layer wos
present only on the upper disk, and, in the interior, there was on up-
draught and all the veléciﬁes were one order of magnitude smaller,

When the upper boundary was a stress=frea surface then Duncan showed
that conduction always predom'incfesd over convection when the inertiol
effects are ignored,

Duncan, in his anolysis, employed the similarity variobles introduced
by Von Kérmén [:243 but, in fact, the terms neglected vanish to first
order, Hence these results apply to any general axisymmetric flow

between horizontal planes when the effects of vertical boundaries can
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be neglected and aopplied temperature gradients do not change sign,
Vertical boundaries, which are at rest relative to the fluid and the
disks, are introduced inio the system so that their separation distonce is
much greater than the distance between the horizonial boundaries, The
STEADY, axisymmetric régime present in the fluid when the horizontal
boundaries are insulated and the vertical boundaries are maintained at
different constant temperaiures has been discussed by Hunter [22] .
Firstly, he considered the case when conduction is the predominani
mechanism for the transfer of heot and then modified this solution to
include small convective effecis by calculating successive corrections in
the formuof a power series in the parameter G-HR%‘-. This porameter fs
identical to the critical parameter found by Duncan _]:] CJ] . Hunter's
solution consisted of Fkman layers on the horizontal boundaries, o thermal

8
layer, OR 3), on the vertical boundaries when conduction predominated,

two thermal layers, O(R—.l/a), O(RJ/[‘), on the vertical boundaries when
convection predominated and an interior flow composed of a vertically
sheared azimuthal flow and o much wedker circulation in axial planes,
When the upper disk was replaced by a free surface, then only the
situation when conduction is predominant is covered by Hunter's analysis

o
and he finds that #e double boundary layer structure on the vertical

walls is now required,
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Barcilon and Pediosky [ 4] gove a discussion of the STEADY flow
that would be produced in the fluid, when the upper disk is heated
uniformly, the lower dislt is cooled uniformly and the vertical walls are
insulated,  Under these conditions a stable stratification is déveloped in
the fluid,  In perticular they considered the case when the fluid was
rotating rapidly ( S¢ large) which implies that the centrifugal effects are
important and that a buoyancy term is present in the radial momentum
equation,  The linear sofution, H 2 G, is composed of Ekman layers on
the disks, RJB - layers on the vertical walls and an interior flow which
is a solution of the thermal=-wind equations.  For this case conduction
predominates over conveciion and the resulis are equivalent to those
found by Duncan and Hunter, When o-"HRi = (1), that is when
~ conduction and convection are of equal importance, Barcilon and Pedlosky
found that the vertical boundary layers become important and influence
the motion,  When O”HR% >> 1, they found that ®thermal conduction
is importont throughout the fluid® because of the influence of the side
wall layers and that the Ekman layers were absent to first order,

From their resulis, Barcilon and Pedlosky conclude that, when a strong
stratification, c_\"HR% > O(1), is present, the vertical boundaries influence

the motion and the study of "flows which are unbounded laterally may



- 129 -

lead to solutions which are not the limit of any physically realizable
experiment® ,

Inthis chaprer, we will consider the following initial=-value problem
which, ot large times, reduces to a steady flow which is closely related
to the problems discussed by Duncan, Hunter and Barcilon and Pedlosky,
In particulor, we will be interested in the behaviour of the component
of vorticity parallel to the axis of rotation (vertical), For the idealized
model of the atmosphere in the absence of any veriical walls, from some
instant of time, a steady hetting is applied to the lower disk,  This
heating depends upon the co-ordinates in the plane of the disk through «
function which satisfies the membrane equation,  The temperature of the
upper disk is maintained at its initial constant vdlue.

It is found that a cellular flow is developed which is not influenced
by the introduction of insulating walls ot the boundaries of the cells
except for the additional boundary loyers which must be present in order
to satisfy the non=slip condition, The time required for the transient
effects to decay is discussed and it is found o depend, greatly, upoam the
horizontal wave number defined by the membrane equation, The final
steady state is composed of [kman layers on the disks and an interior

inviscid flow which is o particular solution of the thermal-wind equations,
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VWhere the temperature of the lower disk is increased, the vertical component
of vorticity for the fluid elose to this disk is also increased, while further
away from the disk it is decreased,  The reverse is frue when the
temperature of the lower disk is decreased, We deduce that the rotation
is responéible for the production of this vorticity perpendicular to the disks
because for the corresponding problem without rofation the vertical
vorticity is always zero,

In chapter 3, the steady problems ossociaied with different
temperature distributions on the lower disk, will be discussed,

As a corollary of this initial-value problem, we find, when we
allow the upper disk to ﬁfo infinity and impose an oscillatory heating,
dependent upon a solution of the membrane equation, on the remaining
disk, o resonance effect is experienced in the sense that different
oscillatory solutions are found for resonant and non=resonant frequencies,
The existence of this oscillatory solution, for the resonant case, is due to

the introduction of a length scale in the plane of the disk,

4.2 EQUATIONS OF MOTION

We consider a viscous fluid bounded by two infinite porallel plane

horizontal disks, z = : d, Initially, both the fluid and the disks are
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at somé constant femperdfure ’ To’ and are in rigid=hody rotation with
~ constant angular velocify,‘ S¢ , dbout an axis normal to the disks,  Then,
from t = O, a steady heating is applied to the lower c’isk , z = =d, which
is dependent upon the co-ordinates in the plane of the disk, while the
temperature of the upper disk, z = d, remains at its initial volue,

In the following analysis we make two i'mporfan? assurhpﬁons. Firstly
we apply the Boussinesq approximation [33, p.75%] which supposes i;hczf
the fluid is incompressible, thot the density variotions are small, thot they
depend only upon temperciure variations by o linear relationship and that
they can be ignqlnred extcept in the b;.'Joycncy force when ﬂ';ey are associated

with gravity.  Therefore, when we supposc that the density is given by

L= pP-®, (4.2.1)

the Boussinesq approximation implies ¢© << 1, where fo is the density
ot the temperature L & is the temperature variation from T ond a is
the coefficient of thermal axpansion,

The femperofure variations in this problem are due to the applied
heating at the lower boundary and therefore the dissipation of energy and
volume changes in the encrgy equation con always be neglected for liquids

and also for gases provided

(=% = M% < 8« 1, (4,2,2)
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where U] is a typicol velocity and oy is the speed of sound {3], p.126] .
in this problem, the velociiies will always be very small compared with
the speed of sound and itherefore (4,2.2) will always be sotisfied since
(aTo)al is greater than one for liquids and approximately one for gases,
The Boussinesq approximation also implies that the properties of the
namely
fluid) @, v the kinematic viscosity, W. the thermal diffusivity, ore
independent of femperature and therefore can be token as constants,
Secondly, we assume thot the femperature variations, ©, and hence
the velocity vector, u , remain small sothat it appears valid to linearize the
equations of motion and the energy equation,  Whether this linearization
is, in fact, valid, depends upon the solution derived from the Iinécxr
equations with suitable boundary conditions, [If we have found a sensible
solution to the problem then we assume that the linearization was valid,
otherwise we must re=examine the problem, In this particular problem

ot
the solutions for the velocities from the linearized equations were found

to depend upon the thermal Rossby number,

ag AT
d 502

where AT is o typical scale for the temperature variations and g the

H = (4-2 03)

acceleration due to gravity, This parameter, H, is always small and

therefore we may assuine that the linearization was valid,
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We consider carfesion oxes (x, y, z) such that the z~axis is
paraliel to the common exis of rotation of the fluid and the disks, while
the x,y=axes lie in a plane parallel to and midway beiween the disks and
rotate with constant angular velocity, S¢ .  The velocity components

in this rotating frame of reference are given by
u = (b, v, w) . (4.2,4)

The continuity equation and the linearized Navier-Stokes and
energy equations in this rotating frame of reference are, ofter the application

of the Doussinesq approximation,

div [ C, 4.2.5)
ou
= P 1 2 2 2
w 2525,\.‘.’ +V[7;; 2 (x +Y)l
= wek + T, (4,2.6)
0 _ 2
= K e . (4.2,7)

where k is a unit vector in the z-direction and {p -3 fo S‘Lz(x2+ yz)}
is the departure of the effective kinematic pressure from the hydrostatic
oressure that prevails when the fluid is at resi ot g uniform temperature,

T .
)
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We suppose that the imposed heating on the disk af z = ~d has the

form

hixey) B AT t>0, )
I (4.2.8)
= C t<QC,

where & is some constant and h(x,y) satisfies the membrane equation,

V2 htuy) + ohiey) = O, 4.2.9)

N

2 o . .
where v] 2 =yt i and a is the wave number in the x,y
oy
plane which can be assumed positive, without foss of generality., In

particular we can choose

h(x,y) = exp} ilyx + ‘ilzy% ’

where of = I.'2 + I; » Which represents an imposed heating which is

oscillatory in x and y,

When we write r2 = x2 + yz, we find that a solution of the membrane

equation (4,2,9) is
h() = A Jé(ai-) , (4.2,10)

for some arbitrary constant A,
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FIG,4.1: Sketch of the streamlines '}"= -m-]AJ](dr)w where

F =T fyres. oOcCUr af the zeros of J](dr) .

%
Then (4.2.1C) defines the sireamlines

#o= s A Jyarw (4.2.11)

which are shown, near z = G, in Fig,4.1. The cell boundaries

r=0, ros Fyress OCCUr at the zeros of J'(ar). The radial and

1

vertical velocity componenis are then given by

- 13X = -
v .l-'.az' \4

r 4

2%
-l

il L)

When the flow is two dimensional, that is independent of y, the solution
of (4,2.9) and the corresponding streamfunction are

xR 0\53!\3 (k.z. l8)
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h(x) = A cos{ax}
F =-Aa"w sin {ax{

where the x, z = velocity components are defined by

v = 2% y = 29X
X ez z ox °

The streamlines again form the cellular pattern shown in Fig.4,1 with the
1

. . + -
cell boundaries sifuated ot x = = nra ", n = C,1,2,40s
The boundory and initial conditions, from (4,2,8) are

i) & =% AThx,y on z=~d for +>0 ,

i) © = O on z=d for i'>0,$
(iii) v=v=w=0 on z=idfor t> 0, 4.2.12)
(iv) uv=v=w=8=0C at t=CQforall z.

We define the dimensionless (starred) variables

(4.2.13)
where r_is the position vector (x,y,z).
From (4.2;]3), it appears that the neglected non=linear terms would be
of the same order as the refained linear terms but, in fact, u* depends

upon H, the thermal Rossby number (4.2,3), which is always small and
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hence the linearization is valid, When we infroduce (4.2.13) into the
equations (4.2.5), (4.2,6), (4.2.7), we find (upon dropping the asterisks)

ou

stk u+ Vp=Hek + RTVA, @219

divu = O . (4.2.15)

& =1 =2

= = (R e, (4.2,16)
S d

where H is the thermal Rossby number defined by (4.2.2), R = R
the Reynolds number and o— = -‘i- , the Prandti number.

We define the component of vorticity in the z-direction (vertical)

to be
v
? - a ay . (4.2.'7)

We now seek a solution of the above problem of the form

e =  hixy¥ab ,
w = h(er)W] (z,1) , (4.2.18)
$ o= bty X,

Then (4,2.18) and (4,2,15) imply that



aw
1 { oh 1 dh
v = ;f(f'a'; ";‘*?a;fx} d

ow
_ 1 (_ o ah
v o= —zi x i1 7 '5)7‘5{}

When we substitute (4.2.;l8) into the equations (4.2,14), (4.2.15),
(4.2.18), eliminate the pressure from the momentum equations and use the

continuity equation, we have

¥ _ 112 _ 2
5 = (R LD a ];! . (4.2.19)
i
1 = 7l p2_ 2 -
- 5t ZDW.’ = =R LD c}\f] , (4,2,20)
2 20.~1,.2 2 2] _ 2
(P™= a")|R (D-a)-:-ﬁ-‘!w]-ZDf]—aHﬁ, (4.2.21)

where D = -gf o These equations (4,2,19), (4.2.20), (4.2.21) must be

solved subject to the conditions

M =23 onz=-1 for t>0, )
(i £
—n2e - . =t

(iii) f]-D‘f]-—w1=0 onz==1 for t>0,

1 for t>0, /

i

O on z

1

(M Y, =0 =w, =g=0 att=0 foraliz, (4.2,22)
The condition, (4.2.22(iv)) is correct because, initially, there was no

motion in the fluid relative to the basic rotation and hence it is valid

to assume that all the space differentials of the velocity components vanish

att = O,
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4,3 THE APPLICATION OF THE LAPLACE TRANSFORM TO THE

INITIAL-VALUE PROBLEM

The initial=value problem defined by the equations (4.2,19), (4.2.20),
(4.2,21) subject to the boundary conditions (4.2,22) will now be solved
on the assumption that the Reynolds numbér, R, is lqrgeg_,

Applying the Laplace transform,

Fz, p) = ff(zfg)e-mdf ’

o]

to (4.2.]9), (4.2.2C), (4,2.21) and (4,2,22), we have

B = R [0? -7, (4,3.1)
- P, + 20w, = <! (_’Dz - “2}-3?3 , " (4.3.2)
e*-A [ 0%h - 5|7, - 0F, = o HF, (4.3.3)

which must be solved subject to the conditions

2?]=W.i = O onz=il,

@ T, =

D |
3 s (4.3,4)
by 2 = O on z=1, 3=;—-onz=-l,\a

3
The transformed energy equation (4,2,1) can immediately be solved
subject to the appropriate boundary conditions, while the remaining

equations (4,3.2), (4.3.3) can be combined to give a sixth~order
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equation in \f] with a forcing term that depends upon the solution of the

energy equation,

The solution of (4,3,1) which satisfies (4,3.4(h)) is

7 - Lahixaal 4.3.5)
psinh{Q%{}

where ')ﬂ,z = Rpo~ + 02 . (4.3.6)

The singularities of (4,3,5) are simple poles at

p = O,
2 m2n2
<] = - T{.E: (G +T) P where m = ],2,...:

since the branch point associated with p = -iaZ/RO’T}' is a zero of both
the numerator and the denominator and is therefore not a singularity,

The inverse Laplace transform,

Y -l}_i'oo
] -
fz,f) = 5= J & Fz,p)dp » (4.3.7)
Yy~ i

where y lies to the right of all the singularities in the complex p=plane,
is evaluated by transforming the path of integration into a closed contour
and then applying the caleulus of residues [8,@3.75 to give

¢ sinh Sa(i-z) }
sinh§{ 2a}
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+

_ 4 1
0 -§:‘_ (—])mmn sin L Zmr(1 —-z)] exg::{-ﬂi'(cl2 +4 m2n2)/Rc'}
Z\' 2 K n * (403‘08)
m=1 2(c” + Zm )
Hence we see that, for the temperature perturbation (4.3.8), the
transient terms decay in a dimensionless time of order g Rcv“/(c:2 +% u!z)} .
which is always less than the thermal diffusion time, R 52-] , to leave

§ sinh { a(1 -2)73 , (4.3.9)
sinh i 20}

which is shown in Fig.4.2,

FIG.4.2: Sketch of 4 = §_ sinh iq(]-z)}
sinh iZa}

The decay time {Rc”/(ca2 +% nz)‘% —p O if either o~ —» O which
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corresponds to a large thermal diffusivity as in the sup or if a —> @
which implies a small length scale,

We now return to the equations (4.3,2) and (4,3,3) in order to find
fl' the z~component of v?rficify. From the equations (4.3.2), (4.3,3)

and (4.3.5), we have
0% o) [R"‘(Dz- a?) - ,3}2 T, + 00T,

26°H § Xeosh{ X1-2) }
= . (4,3.1C)

p sinh{2X,}

The general solution of the equation (4,3.10) consisis of the complementary
function together with a particular integral,  Immediately we see that a

particular integral of (4,3,10) is
I = A cosh { Xi-2) t , (4.3.11)
where |

e
2a°H & X
A B 5 ) [} (4.3.]2)
p sinh { 2%} { Re b (1) + dRpo- + 4"

Hence it only remains fo find the complementary function of (4,3.10),

which we will assume o have the form eh. This implies that

2
- AR A-p] + = oL w3
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4.4 THE RCOTS CF THE CUBIC EQUATION

We now wish to determine the roots of the cubic equation (4.3.'&3)‘};,_,\z
on the assumption of large R,  Therefore we may express the roots in

terms of a power series in R, namely

M
)\:= /*1R+/u2+ -R—+,,,,

where the highest term is faken to be O(R) in order that, in (4.3.13),
there exists terms comparchle in magnitude with the ferm involving the
: purses- |
highest denivatine, oad Ao 2070
13
We will assume that o << RQ,\ in order that the following exponsions
are always valid,

From (4.3.13) we see that the leading terms in the expansions for

the roofs are given by the solutions of the equations

ookt 18224+ H =0, (4,4
, |
4 + pz)P\“’ - 02p2 = G, (4.4.2)
which are
9 + 2 02 2
¥ o= R 2) or X = --2-3—- (4.4.3)
(p+4)

+ ..
When p —» = 2i, we see that the last of these roots tends to
infinity and therefore the chove expansions cease to be valid, Hence,
we must re=examine the equation (4.3.13) to obtain new expansions in

the neighbourhood of p = z 2i, These roots, (4.4.3), will be called
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the QUTER EXPANSION and when the next terms are calculated we find

2 2 4
2 a 32 1 1 -
¥ o= 9P 4 32pa 1, o( . (4.4.4)
) ey R 'R'Z:)

oo X = Rpia) + 38 *Lip 73] + 0(.-) . (4.4.5)
(ip #2]

For the special case p = C, we see from (4,4.4) that ?\2 =0 -JZ)

\R
and, from (4,3,13), we find that this root is
b
2 _ «a 1
Xo= z;z- + 0(';3-) .
Thus for the QUTER EXPANSIONS we define
‘ . 3,2 .3
= %, lea(pH) ol ") , N
IR ~5! 1 P%C ’
N (p“+4) ()R % (
‘ (40406)
a3 1
N =t o) P PO J
X X 2 -
N, = Rp + 20 42 a [ip=3] (p2i) O 72) . (4.4,7)
2] %
1 1 ¥ | % ;’
N = R(pe2i)? + SR 3120 |, o3 (4.4.8)

T
Ep + 2] 2R?
where the signs of the square roots are chosen so that }\.‘ P }2, 3\3 have

positive real parig,
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+
Wz will next consider the roots of (4,3,13) when p = ~ 2i, that
is when the inviscid form of the partial differential equation corresponding

to (4.3.10) namely
¢ 2 . - 2 2— _
Df![p +4} + p Vifi = O,
reduces to

V?"ﬂ =9

which is elliptic, We will refer to the expansions found for these roots
of (4.3.13) as the INNER EXPANSICNS, The leading terms in the

INNER EXPANSIONS, for large R, are given by the solution of the

equations
X oot = o, (4.4.9)
~2pR“]7~4 - a?'pz = O, (4.4.10)

where p = t 2i , From (4,4,9) and (4.4.10) we have, for the INNER

EXPANSIONS, when p = & ,

#

1 -t
(4iR)* + CRR %) ,

: Y

A o= R/ ot exp {-ni/8 +OR "), I (4.4.1)

)\I = Ryﬁ' cn% exp§3ni/87( + O(R-yA) ’
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and when p = ~2i ,

Ay = (-4m)';-‘ + O(R';: ), )
1 1

Ryé' a; exp{ -3ni/8} + O(R-%) y

}\]

where the appropriate choices for )\1, ?2, 33 will be justified later,
Thus we find that, for p = I , the depth of penetration of )\] is
decreased while that for ?\3 or )\2 is increased,
We now wish to consider the region in which the transition from

the inner expansion to the outer expansion occurs, We suppose that

+ 4. k
p="2l+-—a-,

R
where k is a constant and a a positive -recl number, Then we choose
a = & so that all the terms in (4.4.2) and (4,4,10) have the same order,
The equations which yield the leading terms fn the expeansion for the

roots of (4,3.13) are

X ¥ RN = 0, 2
4,4,13)
2 4 (4.4,
i 4|f~:“3\ _? Ai A + 402 = O ] J

RZ R
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Thus, for the TRANSITION REGICH, we have that

1 -1
A, = (iR +CR "),

2
1
2 19
2 = Bkt @ - whiyt + on) (4.4,14)
. ok
when p = 2i+— ,
RZ
and
& -
)\3 = (“4”{)2 + O(R 2) ’
1
z 1
oA = B et o+ 4k} + o) (4.4.15)
., k
when p = 2+ — .
RZ

These solutions of ihe subic equation (4,3.13) could have been
obtained by applying Cardan's method E!’J, p.‘H7] to find the general
solution and then making the appropriate approximations for eoch region,

We have found that three different regions occur, namely

. -;]_
«)  THE OUTER REGICN  when ‘{p : 21’ > G(R™?) where the roofs

are given by (4,4.6), (4.4.7), and (4,4,8);

i -
b)  THE INMER REGION  when ‘p : Zi' < O(R *) where the roofs

are given by (4.,4,11) and (4,4.12);



- 148 -

; -t
¢)  THE TRAMNSITION REGIOM  when |p 2] = OR™) where

the roots are given by (4,4.14) and (4.4.15),

We can see that to the highest order if !kz’ > 402 then the roofs
in the transition region (4.4.14), (4.4,15) tend to the roots in H1e outer
region (4,4.6), (4.4.7), (4.4.8), while if |K?] << 40% the roots in the
iransition region tend to the values calculated for the inner region
(4.4.11) and (4,4,12), This justifies the choice of suffixes for fﬁe
oot o8, 319 i e e reden. T8 ond G S6

Gr all valuey oQ £.
4,5 THE GENERAL SCLUTION CF THE TRANSFCRMED EQUATIONS

The solui'ior_\ of equoi"i'on (4.3,10) is

_f] = A cosh i)wz} + A2 cosh f)\zz} + A, cosh {)\Sz}
+ B, sinh {)\iz} + B, sinh {7\22} + B, sinh i?\az} (4.5.1)
+ A cosh{Ni-2) } ,
where )\] s Ny, 7\3 are the roots of (4,3,13) discussed above, A is given
by (4.3.12) ond /—\], A2, AS’ B], BZ’ B3 are constants which are
determined by the boundary conditions (4,3,4(a)),
The boundary e8ndifions (4,3.4(a)) yield the following two systems

of equations,
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Ay cosh N + A, cosh K, + A, cosh A+ dA(cosh {2KE+ 1) = C ,

){?A.'cosh 7\‘ + %AZ cosh %2 + )‘(23A3 cosh 7\‘3 + ;A}’g (cosh § 2)(’} +1)=0,

2 2
{a '+ Rp) . @™+ Rp) .
Ay L oy [ -y 3,
2 - 2
+ Ay [@—%R;’) - Xslsi’nh A, + A sinh {2%4 [-(-"—%R-P-)--%]=O.

(4.5.2)

By sinh Ay + B, sinh %, + By sinh Ay + A(1-cosh 26 = o,

X3, sinh A+ XB sinh A + XB sinh Ay + $4)C(1-cosh {2K1) = O,
2 ] 2
(U + Rp) J (G + Rp)
B - cosh A\, +B - A h
1 [:'"‘X—"" : N LIS D 2]"“ !
2 2
+ 33{-@-—;\—532- - As—'cosh )\3 + ZA sinh{Z)(«}{%-— '(E_;C-Rﬁ"j =0,

3

-

(4.5.3)

It should be noticed that when Wl is found by substituting (4,5,1)
in equation (4,3.2) another arbitrary constant arises which must be -
identically zero in order to satisfy the equation (4.3.3).

The above sysi‘éms of equations (4.5.2) and (4,5.3) can ke solved to

give
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B.‘ = %— {Rp('ﬂ-c")in-!?-;:z-&}— ()\22 - ?\:)?) sinh )‘2 sinh )\3
2
+ 02 - x'é)u - cosh {299}){(-"%5‘32_ - 7\2] cosh A, sinh A,
O 2
+ 08 -0 - coshim)l-“l%—“*’—’ - xS] cosh A, sinh 72}

< { [.@%Bf_)- - }\1“(:05!1 ?\1 sinh )b sinh )\3 ()% - )~§)

, _)\iZ)r(a-l-R

wym

)\2‘} sich N cosh ), sinh A,

b

+ ()\? - >"§) TE_;;—REL- )3] sinh X? sinh }\2 cosh )\3 } . (4.5.,4)

1 2 A ) ) ’
2 (>§ - x%)sinh M {0‘3 "76)"2'(1 = cosh (2K]) + (X5 = X)B,sinh AE)
b ’ (4.5.5)
BT T o» 05 = K5 (1 = cosh L243) + (- N0, sinw}
}‘3 = 7\2)smh 7\3 ‘ | " ;

A =5 {- Rp(1-o-) Sinh {23 ()2 X) cosh A, cosh X,

2
+ ()(,2- )\g)(l + cosh $2X1) sinh )\2 cosh %['(i.‘%'@l - )‘7‘]

2
+ (>§ - %)t + cosh {2K}) sinh A cosh 5[13-%5&’- - %}Z
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2
-:-i [LG—%RP-)-- }\!] (7\§f - :23) cosh )\2 cosh ?\3 sinh l‘
- B
2 2 . {¢"+ Rp)
+ (Ag - )\.l) cosh X, sinh cosh )3 L - )‘2
y sinh %) %

2 o
+ (7\2 - )‘g) cosh }\1 cosh )\2 sinh 7\3[-(2-%&3-)- - )\3 2

s

(4.5.7)
1 2 2. A 3 2 2
A, = - (X, = X)=(1 + cosh EZ,’&}) + (N = X)A, cosh Z,
2 (,‘g_g)mhﬁi"a 71 *eo NI eosh A |
{4.5.8)
1 N2 A 2 2
A, = f( -7@) (1 + cosh?_Z)(/}j) + (A = X))A, cosh } .
3 '(')"g_)g)mh%k"z 2z TR N
(4.5.9)

Then, from (4.5.4), we see that B]s’inh Y )\]z} has no branch points,
since for small )&i (or XZ’ or )\3) both the numerator and the denominator
have 7\.‘ (or :\2, or ?\3) as a common factor leaving only even powers of
7\.‘ (or XZ' or A3) in the expression B]sinh i?\.,z} . Similarly we find,
from (4.5.5), (4.5.6), (4.5.7), (4.5.8),{4.5.9), that Bosich {\z} ,
Bgsinh fksz} ' A.l cosh i)\]z} ’ Azcosh 5\,7\223» ’ Agcosh %Aaz} have no
branch points, Hence we see that -f] given by (4.5.1), as a function

of p, has no branch poinis,
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4,6 " NCRMAL MODE METHCD

Before we evaluate the inverse Laplace tfransform (4.3.7) we will
consider the results obtained by applying a normal mode argument o the
above problem,  This will defermine the frequencies, but not the amplitudes,
for all possible modes of oscillation,  The solution (4.3.8) for the
temperature variation, 4, shows that after a time of order
{R ‘:5'“57:1/(&2 + % 1r2)12 # @ttains a steady value, ;fs. Thus we will

seck o solution of the form

Tem = 3", @+ P'i(z) | (4.6.1)

of the equations {4,2,2C) and (4.2.21) when ¢ isreplaced by p’s, subject

to the boundary condiiions

T] = L}Zf] = w = O on z=+1. (4.6.2)
This problem is equivalent to solving the equations
22 213 2 2
R LD» - qJ .f’s + 4D f]s = «2q Hi?;fs , (4.6.3)
[ p2- az]LR" (% o] - g:jzf +40% = 0, (4.6.4)

subject to the homogeneous boundary conditions obtained from (4,56.2),
The equation (4.6,3) serves to determine the steady solution, which

will be discussed later, while (4.6,4) produces either amplifying or
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decaying modes, A soluiion of (4.6,4) is (4,5,1) with A identically zero
and the boundary conditions yield the two sysiems of equations (4.5,2) and
(4.5.3) with A equated to zero, For a -non=trivial solution we require

either

cosh }\1 cash )\2 cosh )\q

~

2

X cosh % X cosh ), A3 cosh ,

sinh )\] sinh )‘2 sinh )\3
xf sih A )\gsinh A ;gs;nh N
2 2 2+
ﬁ_"_’fxlf_‘ﬂ)_- )\Jcosh N 11."&&)_ - kg}cosh % (Lgﬁfl-;%mh;‘g

= O (4.6.6)

We find that (4,6.5) reduces to

02 - ;\g)[ﬁ%@. - AJ sinh A cosh X, cosh A,
- -
+ ()\g - 7\?)[—(9;%—{35)— - )\zjcosh )\ sinh )\2 cosh }\3
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) A
+ (Kf - )g) [-(1-%5&)— - 7\3} cosh A cosh XZ sinh oy = O, (4,6,7)

while (4,6.%) becomes

2
03+ R L5 < o, s oy o

2
+ ()\§ - Af)[i?—% - AZJ sinh )\' cosh )2 sinh AS
” i
+ ()\f - )‘g)[.gg_;_ff.). - )b] sinh A sinh A, cosh A, = O, (4.6.8)

3

We now _wish to evaluate the zeros of (4.6.7) and (4.6.8) on the
assumption that R is large, If we seek a zero of the form p = O(RP)
where B > O and use the outer expansions for }\] ’ AZ’ )\3 then the highest

order term in (4.6.7) is

O - %)‘%’; sich A, cosh A cosh X, (4.6.9)
ond in (4.6,8) is
(>§ - 7\3) %;3 cosh AT sinh )\z sinh }‘3 . (4.6.10)
For these highest order ferms to be zero we require B = O and for (4.6;9)

either p = O or sinh k] =Q or coﬁh }\2 = O or cosh )\3 = Q, while

for (4,6,10) either p = O or cosh ?\] = O or sinh )«3 = O or sinh }\2 = Q.
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Firstly, for the zero at p = O in (4,6,9), the next term in the

power series in R for this root of (4.6.7) is
. (4.6,11)

This represents a steadily decaying mode which will be referred to as the
spin=up mode because any coniribution to the flow, found from this term,
will decay within a time of order RJZ R—], the spin-up time,

For the zero ot p = O in (4.6.10), we find that the root of

(4,6.8) associated with this zero is

2 9
P = -S4 ORTY) .

5 (4.6,12)

This represents o steadily decaying mode which vanishes within a time of
order {R 524/02 }.
4 For sinh 7\? = C, we require that

N = Zim, m = 12,3,

which beeomes upon using the outer expansions

+ 2imyn
(02+ m%nz)_f )

P =

This term in the power series for p represents a pure oscillation and further
terms must be determined in order to discover whether this oscillation

is, in foct, amplified or damped,
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When the next term in the power series is calculated, we find that the

roots of (4.6.7) arc situaied at

) = (- —)
, 2imm ., 1" B
P =~ : » 46,19
(a +m]n) . R® (cz+m%n2
where
2 1 "Z
2, 22~
vy = {l+(?+a/m]rr)»2'. '
1
2, 22:-3) 2
B, = {1-0+dmiA?) .

These roots (4,6,13) represent two infinite series of decaying oscillations
which vanish within o time of order

L -

R? SU 1(02 + mlzn-z)

— 4 2 *
IR R ]

a -3;~ F :
"1 1

1 o =] i
This time increases like {Rzm]n St /ca} as a becomes small or m,

becomes large,
Similarly, for cosh >\’ = O, we find thot the roots of (4,6.8) are

situated aof



2 2 2
202[-( %2 +.E§..) 2 --5_2-)]
Pgt(2m2+'l)in . "Fz' Y2 N7 |
'(;! + ;;{(Zmzﬂ)!;; R"E (cl2 + {;?(Zmz +T)z) !
(4.6.14)
where
mz = o' 1' 21 sewyp
112
v, = {1+0+ 4, + ol

' 3
B, = {_l - (1 + 4::2/1:2(2m2 + 1)2)"}} .

These roots {4,6,14) represent another fwo saries of decaying gssillations
which vanish within a time of order

Y s + %nz_(Zmz + 19

21 7 2
a + —
[ 7N

When o = O ar ™, and m, = @ , in (446413) and 4,6,19)

*

%.fiw that p = : 2i , Hence, when
B o 2 < OR™, (446,15)

the outer. expansions for the M's cease to be valid and we must reconsider

the analysis using the expansions for either the transition or the inner
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region, Hence we have that (4,6,13) and (4.6,14) are roots of the
equations (4,6,7) and (4.6,8) provided we choose m, and m, 50 that
(4.6.15) is not satisfied, We will assume that M.', M2 are the maximum
values of my, m, respectively which render (4,6.15) false,

Also for sinh AZ' sinh 73, cosh 7\2, cosh )\3 to be zero we require
that p is near to L2 and again‘ we must revise the above analysis for
the highest order terms using the expansions for either the transition region
or the inner region, Then for p = 2i + O(R-%), the dominant terms

being equated to zero is equivalent to

){l tanh N = ;;3-1 tanh N, for (4,6.7) , (4.6.16)
)\] tanh 7\' = }\3 tanh )\3 for (4.6.9) « . (4.6.17)

We now wish to determine the solutions of (4.6,16) and (4,6,17) which

satisfy the additional condition

2 .2 2. | ' ‘
}\] )\3 =’ Q IR ’ (406018)

which is obtained from (4,4.10) or (4.4,13), [If we assume that
)\.()\3) is real or purely imaginary then, from (4,6,16) and (4.6.17), we

require X' tanh A, (X1 tanh A) and A, ranh A ( tanh N) to be
real, which implies that 3\3()\') must be real or purely imﬁginary and
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hence contradicis ﬂ'_le condition (4'.6.18). Therefore the only solutions
of (4.6.16) una (4.6.,17) which ﬁafisfy (456.18) occur when )\1 and 1\3' are
complex numbers with positive real part and are given by
N ot N e

provided a > O(R'%). It should be r;:oﬁced that ')"l’ ?\3 are very small
when a < O(R-%) and other solutions of (4,6,16) can exist, The special
case a = O will be considered later,

The particular case that arises whén )\] = AS will now be considered,
We see, from l(4.4.l4),:fhcai- 7\] = }\3 when

_ -

2_,2 g Wi’

k® = 4a%i and p = 2i = - - (4.6.19)
The cOmplemeni'ory funcﬂon used in (445:1)-is not applicable.- when
7‘] = )3 becouse this would introduce only four arbfi'rary consfaﬁfs,
Instead, for this specific value of Pr (4.6,]9), we replace (4,5,1) by

TT = | C,' cosh ()\‘z} + C2 cosh ikzz} + zC3 oosh {}‘]z}

+ D‘ sinh {hlz} + D2 sinh {Kzz‘g + zDé sinh {K'z} (4&,_20)

+ Acosh{')((l-z)} ’

vyher_e C‘, ¢2’ C3, D.“ D2’ D_3 are arbifrgry constants which are
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determined by the boundary conditions (4,3.4(a)), A is given by (4,3.12)

and

i, 1
)2 = (4;R)%l }\I = R/4 a® exp{i’n/S} or Rmu%expﬁeni/B} ,  (4.6.21)

depending on whether the positive or negative sign is chosen in (4.6,19).
When we apply the normal mode argument to (4.6.20), we find that

the determinants (4.6,5) and (4.6.6) are replaced by

cosh )\] cosh )\2 sinh )\|

2 _och 2 2 .

)\‘ cos )\] >‘Z gqsh )\2 2)\] cosh )\, + )\I sinh )\'

+ cosh A'[.E’ZT"RQ - )‘11}

= 0, (4.6.22)
sinh )\I sinh )\2 cosh )\
smh A' )\gsinh }‘2 ?\%cosh )\ + 2)\' sinh )\'

[(a Rp) _ K,‘Jcosh \ ‘(o +Rp) %mb 2 feos )\l[ ]
+ sinh N[E'_%.Rﬂ)_- )\]]} |

(4.6.23)

= 0

»
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We find that (4,6.22) and (4.6.23) reduce fo

cosh 5{[ (o :]Rp)- 5'"h2 LI 02 - L(a #p) _ 'J 02 -

+ N sinh {_nﬁ%ﬁﬂ’- .\]} sivh A{“’ i#p) 5](-2)\ cosh?N)

=0, (4.6.24)

sirh ’2& +E%°L]w OF - %) + [-‘Ei';i‘fl -A&(Af - %)

[:(L}Te_ )1] smh {2}{&} + cosh ,\Z ( -I-Rp) )\z]( 2?\,smh 7\])

O. = (46,25

When we use (4,6,21) we find that the highest ordar terms in (4.6,24)

and (4,6,25) are

cosh }‘2)}% { Rp sinh 52)\‘} + %P- 7} , (4.6.26)

ROE
(sinh X 2 {- %M - %‘i % . (4.6.27)

respectively,  For the expressions (4.6.26) and (4.6,27) to be zero we

require
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sich 2N = i’zh, . (4.6.28)

When we write 27\1 =X + iY we find from (4.6.21) and (4.6.28) that -

X>¢, -Y)—(- = fcxn-g or tan(=- %E) R (4.6.29)
sinh X cos Y = b X, (4.6.30)
COSh X Sin Y = i. Y . (40603]) ‘

Hence we have three equations (4,6.29), (4.6,3C), (4.6.31), for the two
unknown quantities X and Y and therefore, in general, there is no solution,
We will now demonsirate that the only solution of (4,6,28)is a = O
when (4,6.29) is not applicable, We will now assume a # O,
If we write

27\] =1iZ = i{x + iy) ,

where x,y are real, then (4.6.28) ond (4,6.29) become

sihZ==22 p - (4.6.32)
-;- = - fan(-g-) or =tan(=3w/8)

= = 4142 or 2.4142 , (4.6,33)

Then Hillman and Salzer [18] have tabulated the first ten roots of
sin Z = Z, and Robbins and Smith [28] have tabulated the first ten:n roots

of sin Z = =Z, From these tabulated results, which are shown in
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TABLE 4.1
n X b4 ,y)'
1 7,4977 2.7687 2,7078
2 13,9000 3,3522 4,1456
3 20,2385 3.7168 5.,4450
4 26,5546 3,9831 6,6681
5 32.8597 4,1923 7.8379
6 39,1588 4,3668 38,9682
7 45,4541 4,5146 10,067
8 51,7468 4,6434 11,146
9 58,0377 4,7575 12,198
10 64,3272 4.8599 13,238
(@) The first ten roofs of
sin Z = Z as given by Hillman and
Salzer to four decimal places,
n x y Wy
O 4,2124 2.2507 1.8711
1 10.7125 3.1032 3.4514
2 17,0734 3.5511 4,8073
3 23,3984 3.8588 46,0632
4 29,7081 4,C937 7,2579
- 5 36,0099 4,2838 8.4062
6 42,3068 4,4435 92.5212
7 48,60C7 4.5811 10,610
8 54,8924 4,7C21 11,673
9 61.1826 4,8100 12,721

b)  The first fen roots of

Smith to four decimal places,

sin Z = =Z as given by Robbins and
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Table 4.1, we can see that the ratio (4.6,33) is never satisfied and
hence for X < 4,8, which is the range covered by the tabulated results,
we have no roots of (4,6.,32) which satisfy (4,6,33),

Then for X > 4.8 we con replace sinh X and cosh X in (4.6,30)

and (4.6.31) by —;-ex to give

K eosY = Lax, (4.6.34)
eX sinY = toay. (4.6,35)

Then we see immediately from (4.6.29), (4.6.34) and (4.6,35) that

tan Y = —;1(,- = ton-g- or tan(~ -355),

and hence
Y = g— + nw, 3
, oan (4.6.36)
or Y = = 5 +nmw, )

Where n=o,tlfi21 ves .

When we substitute (4.6.36) into the equations(4.6.29) and (4.6.34) we

find
g+ nm X+ 2X(-1)"
X = —-—-—T- and e = - r (4.6.37)
_fan g cos % .
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= e + QT n
X =2 amd o = TN, (4.6,38)
tan(- -g) cos '§]I

= 2axX .
b cos(3w/g)

e 2
cos(w/g)

4

.
[4

X T2 3 X

FIG.4.3: Sketch to show the position of the roots of

X_ 2X _ X _ 2X
@ =0, b)) == o
cos§ COS-Q'

Hence we see, from Fig,4.3(c), that (4.6.37) is never satisfied, while,
from Fig.4.3(b), that (4.8.38) is not satisfied for X >3 ,  Therefore

for X > 4,8 there are no roots of (4,6,28) which satisfy (4.6,21),
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+ ()
=,

Hence there are no normal modes produced when p = 2i -

R
a # 0O, Similarly we can show that no normal modes are produced
when p = +-(:i4-9-,—'-2—- , a # C, which occurs when )\ = )\2.

R®
Thus from the above analysis we find thot apart from the steady
solution all the possible modes decay with time and consist of two steadily
decaying modes (4.6.11) and (4.6.12) and four series of damped oscillations
(4,6.13) and (4.6,14), provided a > O(ﬁ%). it should be noticed that
none of these modes involve the Prandtl number o— .  For all other

values of p, f(z) is identically zero,..

4,7 THE SPECIAL CASE o = C

When a is identically zero we see from (4.3.13) and (4.3,12) that

1 1 1
= = 2 - 2 -3} 2
N =0, ) R (i), N, = R*(p-2i) ,.)
i/' (4.7.1)
A = O, -
Then we must replace the solution (4.5.1) by

Fi = Ap +tA,cosh {Azl + A, cosh §\z}

+ Blz + 82 sinh {)\zz} + 53 sinh i)\gz}, 4.7.2)
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and the determinants (4.&.5) and (4.6.6) by

I cosh , cosh
c X cosh A, X cosh A, = 0, @4.7.3
Rp {%P . Az] sinh , [% - /\3] sinh X,
] sinh 3, sinh ),
c X sinh 3, X sinh A, = 0. (47.4
@ -1 [%42— - )\;Jcosh , [% - ?\;jcosh A
These determinants (4.7.3) and (4,7.4) may be written
’}5 "3] sith Ay cosh A, = )%FXZ_- 7\,_,] sith A, cosh A,
+ (- XoRp cosh &, cosh A = O, (4.7.5)
:\‘ZZ[RP "3] cosh A, sinh X, - )‘3@' cosh %, sinh Xy
+ (>~3 %2 ( = D sinh X, sich A, = O, (4.7.6)

When p = G(Rﬁ),' where B> O, the dominant terms in (4,7,5) and
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(4.7 .6) cre

(7\:2_; - )\E)Rp cosh ;\2 cosh )\3 ’
(4.7.7)

(?\g - )ng) %zsinh )\Z sinh 7\3 ’
respectively, which implies 8 = O and p = O or cosh >2 =Q or
sinh )2 = O or cosh A, = C or sinh 7\3 = O for (4,7.7) to vanish,
v
Firstly, for the zero of (4.7.7) at p = O, the next term in the
power series in R for this root of (4,7.5) is agein (4,6.11), and of

(4.7 .6) is

p = ~2+0R™") | (4.7.8)

RZ
For the roots in the neighbourhood of p = 2i, we have that the
dominant terms in (4.7.5) and (4.7.6) being equated to zero is equivalent

to

(4.7.9)

Il
—t
-

)\;] tanh }\3
)\3 tanh 1\3 =1, ’ (4.7.10)

respectively,  The equation (4.7.9) can be satisfied by )\3 = O, but,

for this case, we must replace (4.7.2) by

2 3 .
T=A + Byz + ASZ + BSZ + A2 cosh i)\zz} + B2 sinh {)\zzgl (4.7.11)

1
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and then the new determinants calculated from (4,7.11), corresponding
to (4.7.3) and (4.7.4), are always found fo be non-zero, Hence there
is no normal mode solution when ?\3 =0,

Similar results apply in the neighbourhdod of p = =2i with )\3
replaced by )\2.

Hence from the terms involving A‘ ’ A2’ A3 we have a steadily
decaying mode (4.6.11) and two inf'inﬁ'e series of decaying oscillafi;ans,
e 2
3n

+
- A ‘

2i -

p =
where f , are the positive roots of ? = tang » These resulis
are equivalent o the poles (3.7) and (3.8) found by Greenspan and
Howard D?j and could have been obtained by letting a tend to zero in
the previous analysis, ~ While, from the terms involving Bys 82, By we
have the steadily decaying mode (4.7.8) and also two series of decaying
oscillations,

2
n

i25\-- 7

R /

P =
where Y Ore the positive roots of n? tan 7 = =1, This case cannot

be obtained by lefting o tend to zero in the previous analysis,

When a = G the steady solutions found from (4,6.3) and (4.3.9)

are



jo.‘ E C and g = §_(l;z)

s , 5

Hence, when a uniform temperature is applied to the disk z = ~d,

the steady solution is o stable uniform temperature gradient,

4.8 THE LOCATION OF THE SINGULARITIES OF # REQUIRED FOR

THE EVALUATION OF THE INVERSE LAPLACE TRANSFORM

We now return to the evaluation of the inverse Laplace transform
(4.3.7) on the assumption of large R when _f] is given by equation (4.5.1),
The singularities of —5"—] play an important role in the evaluation of the
inverse integral and hence we begin by locating them, We see that,
since A, (4,3.12), af:pears in all the coefficients A], AZ’ A3, B', BZ'

B3, 3’7’ has simple poles af

p = O, (4.8.1)

1 2 m2n'2
p Ro- ("G - 4 ), m = ],2,31000 . (40802)

The poles of A given by the roots of

2

Rps—(o=1)% + MRpo—+ 4a> = O ,  (4.8.3)

are, in fact, regular poinis of _f] because this equation (4.8.3) for p

is equivalent to X, being a root of (4.3,13). Hence 'A, must be equal
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to either }\.' or Kz or )\3 when ¢~ # O, There are no roots of (4,8,3)
when 6= O, K we suppose that K = Ai’ i=1,2,3, then the

particular integral (4.3,11) must be replaced by

Ty = Atzsih (NG}, @.8.9)
2a2H 2‘;
where A* = —
p sinh(2A) { 6% (7\2-02)2 + 8pR™ (=) = 2”4}

(4.8.5)

It can easily be shown thai the denominator of (4,8,5) is non=zero when
=N, p= (- /re)y o= MNep={2/le D}, 1 K=,
p= {—Zi/(cr-!)} ;O # 1, When 6= 1 we see, from (4,8.3), that
p = (—qz/R), which corresponds to ‘X = 7\.‘, is the only root and hence
K= )2 and X = )\3 are not applicable, Hence we find, when X = )\l,
that A* is always regular and therefore there is no residue contribution
from the roots of (4,8,3),

The other singularities occur at the zeros of the denominator of
A], (4.5.7), and B'E’ (445.4), which are identical to (4,6,7) and (4.6.8),
and have already been calculated,  Also it seems that for BZ’ (4,5.5),
there are poles at sinh ?\2 = O but these values for P also render the
numerator zero and hence they are regular points, A similar argument

applies for AZ; (4,5.8), By 4.5.5), Agr (4.5.9), B, (4.5.6).
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To summarize, therefore, we hove o poie at p = O, (4.8.'i),
which produces the steady solution, #wo steadily decaying modes,v' (4.6.11),
(4.6.12), an infinite set of steadily de.caying modes, (4.8.2) and four
series of decaying oscillations (4.6.13) and (4.6.14), provided a > CJ(R-.%).
The inversion integral can now be evaluated using the calculus of
- residues [8, p.75] but before doing this we will consider the steady

solution that persists after all the transient effects have decayed,

4,9 THE STEADY SOLUTION

The steady solution for the z~component of vorticity, Tls’ arises
from the simplo pole at p = O, (4.8,1), in equation (4,5,1) for ?] or
alternatively from the equation (4.6.3), When p= O, we have, from
(4.4,6), (4.4,7) and (4,4.8), that

3 , 1
N = %- ;M= (2iR)?, Ay = (~2m)5 , (4.9.1)

when only the highest order terms are retained,  When 7\] , )\2, 7\3

are given by (4,9,1) and ‘A= a, we see that the residue at the pole,

p = 0O, gives

Ha
Tls - ;‘%ﬂ} {cos"‘ fa( _z)} - ..(1-cosg {2a} ){ZZE sinh(aaz/ZR)

+ sinh {(2iR)¥z} exp §-(2RIT + sinh £ (=2iR)%2 } exp { ~(-2iR) } }
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—

., +Losih 12a})

2 L, 1
- % cosh { (~2iR)*z } exp {"("2”{)2 }] p (4.9.2)
R2

2 1. 1
- cosh(032/2R) - 2—@;_- cosh { (2iR)Qz} expi-(ZiR)zg

N

where terms of order R 2 compared with those written down have been

i
1
neglected a > OR *) and a << R/A. It should be noticed that (4,9,2)

satisfies all the boundary conditions to the highest order,  If only the
highest order terms in (4,9,2) are kept then
, Hc}i ' -
_ _ (1+cosh {2a} )
)Ols ~ 2 sinh{2c} {th {eti-2)§ )
Ha§ (1=cosh §2a} )

. ° % : ° —"!E
- sinh § (2iR)°z ~(2iR)
4 sinh {2&} [ " { } = { l }

1 1
+ sinh {(-Zi'R)zz} exp {--(—Zik)2 }:’. 4,9.3)
Then the actual steady vertical component of vorticity is from (4.2.18)

L. = hen 8, .
The second term in (4.9.3) represents Ekman layers on both disks,
z=2 1, which have a depth of penetration of vorticity of order (¥/S2 )%
while the first term represents the distribution of vorticity in the interior

and is shown in Fig.4.4.
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The steady z=component of vorticity will vanish in the interior

when
1 2
cosh {q('l-z)} = cosh“a, (4.9.4)

When a = ® and a ~» O the zeros of (4.9.4) occur at

z = =1 +c|-] log 2 ,
z = 1= '\/2 ’
respectively, Hence, in the interior, the zero of j’s is always on the
negative z=axis and tends from 1 - ¥2 to -1 + a-llog 2 as a increases,
We now wish to examine in more &etail the flow in the boundary
layers on the disks, z = ) I The equation (4,9.3) may be written in

the form

\f ‘ Ha§

Is 2 sinh (2q) k°°5" La(1-2) )

(1 + cosh £2a} )
2

L Q- cosZiZc"'s ) [exp i-R%(Hz)} cos iR%(Hz)}

- exp i—vR%(] -z)} cos i R%(l-z)}]} . (4.9.5)

We will now concentrate on the boundary layer near the disk, z = =1,

When we write

z = -1+ €&,
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where € is a small real number, we find (4.9.5) becomes

Hode 2
j;s = TR il [:(cosh {2q} - 1) =~ - a sinh {2::}] .
which is always positive because we have assumed a << P.% in order that
the calculated roots of equation (4,3.13) are always valid,  Hence in
the Ekman layer, on z = =1, the steady z-component of vorticity is always
positive,

From (4.9.5) we find that

d Ha :
.__I:'i = —————-—i—-—- {- a sinh {m(]-—z)}

9z 2 sinh { 2a3

p Qocohi2ad) (o [exp R} Eos§ KB40} + sin CREI2I})

+ expl RX1-2} (eor R} + sin aa’i‘u-zﬂx)J :

which becomes near z = ~1

2 3" Ha ‘
als - —2—5_;55%—26}- {-— a sinh io(l'Z)}

1
R? ; 3 v 7]
- -J—(l-cosh {20} )exp{-R (Hz)} cos [R (14z) ~ Z".\ .
2
Hence the gradient of the steady z~component of vorficity changes sign

1 -
with cos [Rz(!-*z) - -g- J and the flow in the boundary layer fear z = =1

is shown in Fig,4.5.
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A similar argument gives the flow in the boundary layer on
z = 4,

We will now examine the previous steady flow on the assumption
that a is large but is always very much less than R 4 so thot the expression
(4.9.2) is valid., Also we choose ?'15 so that o§ is of order one,

Then, from (4.3.9) and (4.9.3), we find

£ = & expf-alz)i,

S
H
¥ = __"Ti_ exp {-a(i+)} - %}

. Ha sinh {(ZER)%Z} exp § -(2iR)'5‘}

=

1 *
+ sinh {(—-ZiR)""z}exp«i_-(-«Z‘iR)a }] .
1
Hence for large a, but a << R 4 » we have a second boundary layer on

the disk, z = =1, having a depth of penetration of order a-], ond o
constant interior flow,

From (4,9.3), we find that the steady z~component of velocity is
Ha @ ] 1 i
. ] L3 2 a = L 3 i ° P
T TRkl {-' sinh“a [:(ZIR)2 cosh f(ZlR)?‘z} exp {"(ZIR)'Z}

+ (-2iRPcosh {(-ZIR)%z} exp {-(-Z‘iR)% }] + stnhTo) R’;?} + OR™).  (4.9.6)



- 178 -
The first two terms in (4,9,6) represent the Ekman layers on the disks
while the last term shows that the z-component of velocity is constant
in the interior,
The interior flow described above is offen referred to as the

thermal wind [3@,9.50{' because, as we will now show, it is a particular

solution of the equations

apI _
- 2VI + T(- = C ’ (G)
P
PP S
ZUI + -—5)’—- = O, (b)
BpI
= = HGI , {c) (4.9.7)
2
o = e, @
ou ov ow. |
I X I _
= oy T T ©. (e) )

where the subscript T denotes the solution for the interior, The
equations (4.9.7(ct), (b)) represent a geostrophic balance, that is a balance
between the pressure gradiemts and the Coriolis force,  The solution of

(4.9.7(d)) which satisfies the boundary conditions on the two disks is

- inh {a(1-2)}
or = htxy) § = sinl?(§2§} ’
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which agrees with the soluiion (4.3.9). Then we have, from (4.9.7(c)),

< B § R L gy,

Py

where g(x,y) is an arbitrary function of x and y,  From (4.9.7(c), (b)),

the general solution

ov du
_ I I
(\fs).‘[ T T&x T oy

ZaH §h(x ) coz?nfi\(’{(;;?)} + %(gxx + QW ) .

it

IF we now suppose that g safisfies the membrane equation (4,2.9) and then

take

a § H :
¢ T Tomh {201 (cosh {20} + Uh(x,y),;i ,

(T)I reduces to the first term in equation, (4,9.3). Hence the interior

flow is a particular solution of the equations (4,9.7).

Alternatively, from (4,9.7(a),b)), we find that
- 172
( \fS)I = 3 V, PI ’
and, from (4,9.7(c),{d)), thai

9 o2 a2
= (Viep = HV (8 = -H—F
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Hence we find that

oS
2 .
Vipr = -H =+ Gk,

where G(x,y) is an arbitrary function of x and y and

SQI
(X)p = -3 —= + 3Gk (4.9.8)

Therefore from (4,9.8) we see that the contribution fo the interior vorticity
produced by the inviscid terms is always positive provided é hix,y) > O,

The term involving G(x,y) cannot be determined by inviscid considerations

alone and, in fact, comes from the boundary layers,

The horizonial components of vorticity, inthe interior, are

= Ei‘—r - a“,I = -J-H _.__.aeI
471 oz % “ gy

= E.WE -~ ..(?..v.:..[.: = -J—H _ail.:
55 = ey el

Hence the steady solution consisis of Lkman layers on both disks
having thicknesses of order ( ¥/S2 ):;: and an inferior flow which is a
special solution of the thermal~wind relationships,  These thermal=wind
relationships relote, for variable density, the vertical shear of the
horizontal velocities to the horizontal gradient of the temperature field

and are also such that the horizontal temperature gradient and the shear
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of the horizontal veldci'i*y vector are orthogonal, It is also interesting
fo note that the interior flow does not satisfy the inviscid boundary

conditions at the disk.

The sign of the interior steody vertical vorticity

(YD1 = heuy( §)1 -

is shown at the cell boundaries for given z and § >0 in
Fig.4.6(a),(b), when

hix,y) = J](cr) p

]

Ond h(x(),)

cos ax ,
respectively,

Hence if the temperature of the lower disk is increased from t = O,
then positive vorticity is produced in the region near the lower disk
and negative vorticity further away, while the reverse is true if the
temperature of the lower disk is initially decreased, The region between
the disks is divided info cells and a considerafion of a volume integral for
the vorticity over a large area shows that over the whole region no nett

vorticity is produced.
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4,10 THE INVERSE LAPLACE TRANSFORM

The residues calculated at the poles discussed in section 4,8 give,

1
for lorge R and R%’ >>a > 0OR?),

("'“52" 12} ) [sinh { @R} exp -iR §

+ sinh {(‘ZFR)%Z} exp {-(—-ZER)%}‘J

+ OR™Y 4.10.1)

22

+ i °2H§ =1)" exp {"f(ez + Y4 mz"z)/RO_} - (]' + =10
preey 402 +mn

+ 2 cos i%mn‘(! -z)} + (i ~(=1)™ .sinh {(ZfR)%Z} exp i—(ZiR)%}

~,
i

~ sinh {(=2iR)%z}exp {-(-ZiR)%}] f + O(R-%) 4.10,2)

a
~ cosh (--—z-_,_-

2R*

R4 4(3:';: sin {2Ry4c"%}

. 1 ] 1
L e 1Rt [OZH ® (1+cos iZR/4o“"§} )] {

+ cosh {(ZER)%z} exp {-(ZiR)JZ} + cosh {(—ZFR)%z} exp {-(-2"’\)% g}

+ OR™) | (4.10.3)
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L expd ~*1/R} [_ H® o2 (1~cosh {2a(i-0F }) J {" E;Z'

72 81~ sinh § 2a(i-0)°}

3 . N . |
+ g [ sinh { @Rz} exp {-(2iRF} + sinh {(-2iRVz} exp {-(-zm)%}]}
+ Or™ (4.10.4)

M A*

+ Zf exp it( y.l+X R ‘)} [cos(m]rrz)
m,= =]

m, (VI-Z'I’) 1 1 1 1
+ (-1) -_fi—.. Cosh {Rz( v‘ + ZE)EZ} exp {-:.Rz( )).{*‘2;)2} .

m

. ( v]+2|)

72

+ OR %) (4.10,5)

M,

| B¥
: exp{f(;"] +-)_(']R"2)} -Rl [cos(m]ﬂz)
m.|=l

()’ =2i) ]
(-1) " ---—L-——- cosh {RZ(V +2|)zz}exp {-R%(-\:']‘+2i)§}

+

+

m, (v,+2|)
(1) | coth (RE(5,-20)5} exp {-RE(7, 2]
7

+ OR %) (4.10,6)
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M2 *

Mo
m, ( V,=2i)

+ (_'I) ___2?_____5"1!1 f? ( y2+2p)22}enp {—R (y2+'3|)2

( Vo +21)

-5}’2)

+ OC(R

+

m, (V,=2i)

+
-
L]
-—nd
Sau®

(y +2)

-

+ OR"°7) ,

where the poles (4,6,13) and (4,.6.14) are wriiten

* %2
P = )).ﬁ e P = Yz o,
R? R*

and the bor denotes the complex conjugate, Also

1 A2 r
+ 2 exp {i’( y2+){2R z)iT Li sin {-"; (Zm2 + I)}

§

(-]) —T--sm {R‘q( )12-2|) z} exp % "?()J -2:)2}]

" ‘
B*

Zf exp {i'(v +X R 2)}—-—-—- [i sm{-;y (Zm + l)}

——-522-——— sinh {i?\%(‘;z-!ﬁi)%z} exp {-R%(;zi-.?i)%}

(..1) —T- sinh {Rd(yz-Zs) z} expi-Rz(yz‘Zl)z }‘!

(4,10,7)

(4.10,8)
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2 1
A = 22°H o

—0‘2 ¥ sinh { 2(R y]c")% }Ei Yyt V]3(°' -1 )T]

4 yﬁ(l-d“) " {Z(R )1} .
D e Y« )
X (¥ ) !

, ~——_ Y1 . 3
+ [2, + y‘(o'“-])_] m - (Y] +23)J (1 + cosh § 2(R V,c')} )

B " '

4! ol 3
+ | 2i + Y (1~07) - = (V. =2if | (1 + cosh {2(R V,0-)°¢ )
[+ oerd]| 2+ % ] D)

. |
(c_x2 + m2ﬂ2)9'2 4 Y (=1) l. X . X1
% l . . - {1+ L -+ iy
2q° mym Avp2F 2y 2

o) 1y -2 yo F 2N\ gy o+ 207 PR
e {{1 ‘_w)_ll )_/1 A\ +(V1 )
2 nral \vpanl \axn/  \y iy

™
+ 2i(-1) .

m 1 .
A; is identical to A’i‘ with M., (=1) ‘, Xye Vyr sinh { 2(R 0"')’])2} ’

1
(1 + cosh {2R & VI)Z} ) replaced by %(Zm?_-f-l), i(-l)mz, XZ’ Yor
1
-sinh{Z(Rc"))z)zf , (1= cosh{Z(Ro"vz)%} ), respectively and B*‘ and
B’f.z are identical to A".'I and A’é when Vl, ))2, X] . X2 are replaced
by their complex conjugates, ' . It should be
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noticed that A’I', Ai, B’I' ’ Bé‘ are constants of order one,
We see that in the above expression for Tl' the first term (4,10,1)
is the steady solution which has already been discussed in section 4,9,
The second term (4.10,2) is an infinite series of steadily decaying modes
which have an amplitude of order one and require4 a time of order
{St]RO‘/(OZ + %nz)} , which is always less than or equal to the
thermal diffusion time, Ro’jzl, to decoy. The coniribution, from this
term (4.10.2), fo the vorticity in the interior is

e ) 2 m
; § h(x,y) % exp i-—t(c:2 + %-mznz)/Rcr} x
m= 4a

+man

x [ (1 + (1)) + 2 cos {5'25'-(1-:)}] , (4.,10.9)

which represents an oscillafion in z with an amplitude thot decreases as
m increases for any given time. Hence the modes associated with the
smallest values of m characterise the behaviour of (4,10.9).

From Fig.4.7, which shows the variation of the modes m = 1,2,3,4,5
of (4.10,9) with z, for fixed time, when § h(x,y) > O, we see that
the even modes always make a negative contribution to»the interior flow while
the odd modes produce positive vorticity near z = =1 and negative vorticity

near z = 1, Hence the term (4.10,2) represents negative vorticity in the
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FIG.4.7: The variation of the modes m = 1,2,3,4,5 of (4.10,9)

with z, for fixed time, when -é hix,y) > O,

interior except in the neighbourhood of the disk z = -i. Cn the other
hand, when § hix,y) < O,b the term (4.10,2) represents positive vorticity
in the interior except in the neighbourhood of the disk z = =1,  From
(4.10.2), we see that the only contributions to the vorticity in the
boundary layer arises from the odd modes, |

The term (4.10,3) represents a steadily decaying mode which has

Y Va 3

an omplitude of order R~ cot (R""c2) and requires the spin~up time,

R .
Se ]R§, to decay, The contribution to the interior vorticity from this
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term (4,10,3) is

2 738
. =) a"H cot [R G‘fj _ _ az .
§ h(x,y)exp i-l’R } 4RV4O—% { COSh( ;R?-) . (4. 1 O.]'O)

1
Since R is assumed to be large, cosh {-0z/2R>} may be approximated by

one and hence we see that at any instant of time the vorticity (4.10,10) is
independent of z and takes a constant value for any prescribed x and y,
Therefore the term (4.10.10) represents constant vorticity in the interior

for any fixed x and y with the sign of this vorticity given by the sign of

- 1
- § h(x,y) cot [Ry4c"2] .
The term (4.10.4) is a steadily decaying mode which has an

amplitude of order

tanh [-a(l -0“')% ]
R 2(1-cy

and decays in a time of order {SEIR/QZ} . When <1, this term
(4.10.4) can be neglected on account of its small amplitude, From

(4,10.4) the coniribution to the vorticity in the interior is

- 3
- Q Hh(x,y)asz exp i-taz/ﬁ} fanh [0(1-0")1 ] R (4.10,11)

%

16R 2(1- )
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which, for any fixed time, has a sign given by

sgn [- %h(x,y)z. tanh [a(]-r)7] ] .

(- 0*)%

The remaining terms (4.10.5), (4.10.6), (4.10.7) and (4.10,8)
represent four series of damped oscillations with each oscillation having an

amplitude of order R-] and decaying in a time of order

R% S5 (az . mfnz)
—s ,  for (4.10.5) and (4.10.6) ,
2{”1 Bl}
q { e b —
i N
Pl 2 1 2 2 |
RESC @™ + 70 @my + 1) ¢ (4.10.7) and (4.10.8).
and 5 3

az{zg. + ?2.}
By 7

Although, for these oscillations, the individual amplitudes are small, they
may combine to give a non-negligible contribution and therefore must be

retained,  From (4,10.5), the contribution to the interior vorticity behaves

like

Ml ~ m‘
): SA( (=1) " hix,y) cos(m.gnz) , (4.10.12)
m=1 ™
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where ;éin is independent of z, dependent upon t and is of order R-].
1
The sign of each mode in (4,10,12) is given by

m
sgn )A;n’h(x,y» = sgal((=1) 'Athix,y))

at z = : 1 and by sgn (A‘;l" hix,y)) ot z = O, Hence each mode is
symmetrical cbout the axis =z = O, A similar result applies for (4.10,6),

From (4.10C,7), the contribution to the interior vorticity behaves like

‘Ef A’ =
{=1) “h{x,y) sin { (2m,+1) , (4,10,13)
m2=O y [ "2

where ?A(n is independeni of z, dependent upon t and is of order R-].
2 ' + g

The sign of each mode in (4,10,13) is given by sgn[- Ag(—l) h(x,y-)J

on z = : 1 and (4.1C,13) is identically zero on z = O,  Therefore

each mode is antisymmetrical about the axis z = O, A similar result

hoids for (4.10,8),

From the above resulis it follows that all the transient effects will

become negligible in o time of order

2 2

[ 4

mm[R%ﬁ_l' Rcs'*"li ’ S“L;R ’ R* 5271 (a? +miw
O 43 e {rl 5 |
| B
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—

which depends upon the value chosen for a, to leave, as a final state,

the steady solution (4,1C,1).

4.1 VERTICAL BOUNDARIES

We will now examine the effect of introducing vertical walls at the
zeros of J](cr), that is at the cellular boundaries,  then from (4.2.10)
and (4,3.9), we find that the steady temperature disiribution is given
by

e = A Jo(ar)' ‘é SES};E{O%}Z)} ’ (401101)

which implies that, if o vertical boundary is situated at r = s where

J](ur;) = O, the imposed temperature distribution on this boundary must

be

e = A Jo(art) @ Si:?nfi.‘}(%)} ! - wna

in order that the inviscid flow in the interior is not affected by the

introduction of the vertical wall,  Also, from (4,11,1), we find that
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23?- vanishes at the cellular boundaries, which implies that the intro-

duction of insulating walls at the boundaries of the cells will not affect
the interior inviscid flow.

The velocity components for the inviscid interior calculated from
(4,2,11) are

v, = A Jo(ar)w,
= an-] ow
v, Aq J] (or) =

and therefore we find that the radial component of velocity will always
vanish on the vertical boundaries,

When the effects of viscﬁsify are included, we would expect shear

N /!

layers, which have a depth of penetration of order R "~ and R "7, to
exist on the vertical boundories, although no justification of this statement
will be given here,

Hence, if insulating vertical boundaries are infroduced at the
zeros of J](ur) with a temperature distribution (4,11,2), then the interior

flow will remain unchanged and is a solution of the thermal=wind

equations,
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4,12 NG BASIC ROTATICN ( S22 0)

We consider the effect on )’rhe previous broblem whe;'\ there is no
initial basic rotation, that is when fhé angular velocity o? rotation,
S, s idénfi’colly zero,  For this special case, we cannot use the
dimensionless variablés (4,2,13), Instead we define the new dimensionless

(starred) variables

_ 2 _
e = ANTe*r,. f=éﬁ-f*, de...*' _I;J_=-*§-2*,
2 ) :
p. - K =
Sm— -TP*' a la-' (4.12.])

When these new variables (4,12,1) are introduced into the equations
(4.2.5), (4.2.6), (4.2.7}, with Se= C, we find (upon dropping the -

asterisks) that

dive = O,
ou
v 2
5 t UP=U"@JGE+@~UEI (4.12,2)

s 2
- AV AR

o
where q%, = -EEE%}-E-— is the Rayleigh number for the flow,

When we assume (4,2.9), (4.2.18) and eliminate the pressure, we
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find that (4,12,2) becomes

_ng_ = % - i, (4.12.3)

2

_aTﬁ_ = 0% -dd)f , (4.12.4)
(D2 - od) [(02 - a2) - o—"‘gﬂ w = dRof. 4.12.5)

We see that the equation (4,12,3) is of the same structure as the equation
(4.2.19) and can immediately be solved to give the temperature
distribution throughout the fluid, The equation (4,12,.4) is independent
of the equations (4,12.3) and (4,12.5) and determines the z-component
of vorticity, ja!.. . The equation.{4,12,5) is a fourth order equation with «
forcing term dependent upon the solution of (4,12,3) and determines the
z=component of velocity, Wi

Hence we have, for this special case, that Tl and w, are solutions
of the equations (4,12.4) and (4.12.5) respectively while, in the previous
problem, f 1 oW is the solution of the sixth order equation obtained
from the equations (4.2.20) ond (4.2.21), The equation (4,12,4) is the
diffusion equation which must have the solution

Y, = o, (4.12:6)

in order to satisfy the boundary conditions
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\f] = Dz‘f’] =0 ongz==+ 1, for all time,

Then (4,12.6) shows that there is no vorticity introduced inte the flew In

the z=direction, Hence in the previous analysis when Se # O,
it was the basic rotation that was responsible for the introduction of
vorticity in the z=direciien,

When we apply the laplace transform to (4,12,3), (4.12,5), we
find that the solutions of the resulting equations which satisfy the
boundary conditions (4,3,4) are

§ sinh{ ’)(] (1 -z)}

A= TR Ry “12.7)

W, - C SLsanh VKa-2)} = sinh fa(-2)} —prrer }

+ C.' {si’nh {/\Az} - sinh {uzs %:%/%}
(4.12.8)

+ D, {cosh {/uz} ~ cosh {az% E%—sfﬁ%} ;

where
_ 2 > .2 -1.%
7(i = (& +p)° , /U-- @ + ps ), (4,12.9)

) |
< @”gi — (4.12,10)
sinh iZ}ﬁg p (1~ c‘j;
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c f"-?‘t,(sinh a(1+cosh '{2}%} ) + a cosh a sinh iZ?(ﬂ- 1
C'l -7 a si’nh/ucosh a=pu COSh/.}.Sinh a k r (432.11)
L N " R .
c B %(cosh(é(l-cglsh {27(13— ) + @ sinh a sinh 527%} ]
Dl -7 ] /usi’nh/u.cosh a -~ a_i‘iqb a cosh/u i - (4.12.12)

The singularities of (4:12.7), (4.12,8), are required in order fo
evaluate the inverse Loplace transform and we will now locate them,

The expression (4,12,7) has simple poles at
p = O,

p = =t - zlfnzmz, m=1,2,3000 o (4.12.13)

The branch point associated with p = -02 is a zero of both the numerator
and the denominator of (4,12,7) and hence is not a singularity. The

expression (4,12,8) has simple poles af (4,12,13) and af the roots of

a sin}}u.cos’n a = Vs cosh/). sinh a, (4.12.14)
/(,Lsi’nh/uvcosh a = asinha cosh/u, (4.12,15)

/M # O, provided the numerators of C] and D] remain non~zero,

It appears, from (4,12,10), that the expression (4,12,8) has a iriple pole
at p = O but, in fact, p = C is a double zero of the numerator in
(4.12.8) and, therefore, we only retain a simple pole ot p = O, The

branch points associated with p = -02 and p= -ozcr" render the numerator
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and the denominator of (4,12.8) zero and hence are not singularities,
From (4.12,14) and (4,12.15), we see that, if A« is real and
non-zero, the only root occurs when = but this value also renders

the numerators of < and D, zero and hence is not a singularity of

1
(4.12.8), If we assume that 2 is purely imaginary, that is = /I:i

where /"Ll is real and non=-zero, then (4,12.14) and (4.12,15) become

a cosh a sin /w] = /"Ll cos/*"] siph a , (4.12,16)
-/.»] sin 1 cosha = cos/\ﬂ] a sinh a_, (4.12.17)

The roots of (4,12,16) and (4,12,17) are shown in Fig.4.8 and Fig.4,9

respactively and we will assume that they are situated at

/A:: = ixj j = ]’2’3'..‘ V4
(4.12.18)
+ . .
/},: = le J = ‘I2I3I¢on L4

respectively, where x‘i ’ )fj are positive real numbers, The actual
position of these roots depends upon the value taken for a and is
unimportant for the following discussion. If we assume that /-A- is
complex, that is /w = x + iy where x,y are real and x # O, y # O’,

then we can rewrite (4,12,14) and (4,12,15) as

acotha = ).».coi'h)h P a tanh @ =/u.fanly~h , (4.12,19)



o -
’ AN .
\‘ Co ".; / “ . I 2
-2y -an/ _3nf. '
}w ‘\J'a! a’ 9 WV‘ I’ "
\ 4
o . ‘-I
- FIG.4:8:

Sketch of emee y = a coth a sin/w] ’
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and we require
y sinh§2x} = < x sinf2y}, (4.12.20)

in order that the imaginary parts of (4.12,19) should vanish, The only
solution of (4,12,20) is xx = y = O which is not a singularity of
(4.12.8). Hence there are no complex roots of (4,12,14) and (4.12,15).
Therefore the only roots of (4,12.14) and (4,12,15) which are
singularities of (4,12.8) are purely imaginary and we assume that these
are situated at (4.12.18);
We now calculate the inverse Laplace transform (4.3,7) for (4.12.7)

and (4,12,8), From (4.12.7), we have that

4 = § sinh fa('i-z);f

sinh § 2a}
© $ (-1)"mn sin |t (1=-z) | exp ---f(c:z2 + ] mznz)
el [Zi ] ]22 i . (4.12,21)
m=1 2(a tgmow ) '

This solution (4.]2,21) corresponds to (4,3,8) and consists of a steady
term identical to (4.3,9) and an infinite series of steadily decaying modes
which vanish within o dimensionless time of order (c:2 + 'I!I m2"2)-l .

For the z~component of velocity, Wi, the steacdy solution can be

found either by calculating the residue contribution from the simple pole

ai p = O in (4,12,8) or from the steady terms in (4,12,5), When the
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inverse laplace transform is calculated for (4,12,8), we find

_ @’si ’.(22_]) sinh {a(i-z)} - cosh « {z sinh § az}

sinh {20} a + sinh a cosh &

: sinh & sinh a . cosh a /l
- cosh §az} cosh c} + cosh ¢ sinh a = a {z cosh {az} = sinh 30 ?‘smh G}J

a §% ma (1) exp [—f(o + %m 2)] ST
sin ~z
=1 2a” + gm’ 2= ) [ {T }

1 (. o sinh M* -%m.rr(sinh AI+H=-1)"™
,+ Z{S'nh (/“*Z) sinh ( az) sinh a }{c si’nﬁ/.v""cosh o -/.l*sih‘h a cosh/&*}

1 * . cosh pa* +mm(cosh a(l-(-1 )m)
T {cosh(/;. 2) cosh (az) cosh a } i/&*sinh/,.*cosh a - g sinh acosh//*“‘
' - ||
-

Z‘ @@gzx exp E—fcr(c * %, )] [{s bsmx }

in (xz) -smh(az}-——ﬁ-—
j sinh {Zﬁ*} (a +x )cs‘“(l cr‘) fn a

. § = Ginh o1 + cosh 12§67 ) + a cosh a sinh {20 (

L o cos xd.' cosh a - cos xj sinh a + xj sin xj sinn Q

-a 2y.ex -!'cr(a + ) co :
T R yzp[_m 7 ][{m%z) o o) ]

sinh {2 } (a )c"(l )
x{?(/(cosh of1=cosh §2K,"}) + a sinh a sinh iz;(f} % ,  (4.12.22)

cos cosh o + sin cosh o = a sin sinh o
Yj ° Y i i
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1
3
2 ﬂz)) ’

where /u.* = (az - d"-](':z2 + %m
1
A . 2,71°

%'f —Lu G'_(a +xj )]‘ 14
_r.2 2, .27

x = [Cl -'U_(O +Yj)_l .

The first term in (4,12,22) is the steady term, which becomes, at

z =0,
= Q:. é sinh a (sinh 320} - 2a)
"o 8 sinh {20} (20 + sinh {2a)) ° (4.12,23)

Hence we see, from (4.2,18) and (4.12.23), that, at z = C, the steady
vertical velocity is positive when é h(x,y) > © and negative when

§ h(x,y) < C, The second, third and fourth terms in (4.12.22)
represent infinite series of steadily decaying modes which vanish in a

dimensionless time of order
2 1224 N 2 277
(« + vl ) ., ES"(G + XJ. )J ‘ [G‘(a + YJ- )] ’

respectively, - Therefore after a time of order

-] -1
, rﬁ+@ ],

all the transient effects will have decayed and (4.12,22) will reduce to

max ‘Eaz + %mZRZ)-'I’ o“(ﬁ2 + ij)

the steady term,
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The solution obtained for this problem is exact unlike the previous
results involving rofation, when a large parometer, the Reynolds number,

was infroduced and small ierms were neglected,

4.13 A RESONAMCE EFFECT IN OSCILLATORY HEATING

In chapters 2 and & we considered the problem of either an
infinite plane disk bounding a semi=infinite expanse of incompressible
fluid or two infinite disks with incompressible fluid between them, when
the fluid and the disk(s) were in rigid rotation and additionally, one of
the disk(s) was performing torsional or non=torsional oscillations in its
own plane, A resonance effect was found when the frequency of
oscillation was twice the angulc;r frequency of the basic rotation,  This
effect became apparent when only one disk was present because no oscitlatory
solﬁﬁon satisfying all the boundary conditions could be found, while when
two disks were present an inferiér flow depending on z was developed;
provided a linearization was valid when torsional oscillations were imposed,
We now wish to examine whether or not o similar effect will occur
when we replace the imposedoscillations by some imposed oscillatory

heating,

& = hixq,y) AT§ eim R (4.13,1)
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where n is the frequency which can be assumed posiitve without loss of
generality, |

When we have two infinite plane disks, z = : d, with fluid
between them, then, by using the previous notation and analysis, we
find, when the heating is applied to z = =d, that there always exists a

solution for the z=component of vorticity of the form

T = A cosh INz} +A, cosh {hz} + Ay cosh TAzZ)

4

B.I sinh {)\]z} -l-‘B2 sinh {7\223 + 83 sinh {)\32} (4.13.2)

4

A cosh { X1~} ,

where A] r Ay, /—\3, Bl’ 82, 83 are constants determined by the
boundary conditions, ‘A is given by (4,3,6), A is given by (4.3.12)
and the N's are the roots of (4,3,13) with p =-i§i- « A similar result
applies when the disk z = d is heated,
Cn the other hand, when we have one infinite plane disk, z = O,

bounding a semi=infinite exponse of fluid, we have no geometric length
scale, d, from which to form the Reynolds number, ®, Instead we use
o as a length scale and define a new Reynolds number

o - '_—? ? (4-‘303)
Y a



- 205 -

which we will assume o be large.  Then we con always find a solution

for the z-component of vorticity of the form

-2 z ~p 7 -A z
= Ae ! thAe T +Age LAYV (4.13.4)

where A] ’ AZ’ A3 are constants determined by the boundary conditions
on the disk, A is given by (4,3,6), A* = A sinh {2}'\} where A is given

by (4.3.12) and the N's are the roots of (4,3.13) with p =j-5_'—1-a- ,a=1,

We see, from the inviscid form of the partial differential equation

corresponding to (4,3,10) with p = in/S2 , namely

2
2 2 2 2
D°f {4~/ U |- =5 Vi¥ =0,
YA
that we can divide the frequency range into the itwo regions
()  Elliptic n>252
(if) Hyperbolic n<23%2 .,
From the results of section 4.4, we see that we can further divide the
)
frequency range into the ELLIPTIC OUTER REGICN when —= = 2 > OR ?) ,
-l
the HYPERBOLIC OUTER REGION when 2 = ";‘z’ > OR_?), the INNER

-t
REGION when }-5'1&- -2 |< O(R ) and the TRANSITION REGION

when| - 2| = d(Rf).

n
Ayd
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REG IOM The thickness of lthe boundary Payers associated
) with .
N M A
7 P T
ELLIPTIC (a2 - 4.5 R R_
OUTER . PP (22 e
_'f -1 -
INNER 2 /A % o~
(o] [o) o
5 "*]Z "f
HYPERBOLIC | /). i )/"R Ro R,
U R B
]
(@) Dimensionless
REGION The thickness of [the boundary layers|associated
' with
'\, 1\2 )\3
2, o2’ | ,
ELLIPTIC (n" - 4509 Ly Y )i
OUTER m (oo —
ININER ( ) ( Yy ()
S o2 52 32 g2
HyPERBOLIC | (42 - nz)% e ¢ |
OUTER ‘QA’@ N 03 n + 25-2' 251 o
(b) Dimensional

TABLE 4,2: The (a) dimensionless, (b) dimensional thickness of the
boundary layers associated with }‘I’ )\2 , )\3, for the

case when one disk bounds a semi-infinite expanse of fluid,



- 207 -

When only one disk is present, the d‘imensionless and dimensional
thicknesses of the boundary layers corresponding to :\l, ?\Z ’ 7\3 are found
from (4.13.4) and e shown in Table 4,2, The boundary layer
thicknesses associated with R.‘ for the outer elliptic and hyperbolic
regions differ because, for the elliptic outer region, it is the first terin
in (4.4,6) that gives the decay distance while, for the hyperbolic outer
region, the first term in (4.4.6) is purely imaginary and it is the second
term that yields the decay distance,

For tha elliptic and hyperbolic outer regions, we see that the
boundary layer having the deepest penetration is that associated with }\].
This layer penei’rc:fe:s a depth of O(a-]) for the elliptic outer region
and O( 52 /v 03) , which is much greater than O(c:-]), for the hyperbolic
.oui'er region, Hence we see that the influence of the heating is felt
through a much greater depth of fluid for the hyperbolic outer region
than for the elliptic outer region,  The boundary layer thicknesses
associated with )\Z and /\3 are identical for both the elliptic and hyperbolic
outer regions,

For the inner region, the boundary layers having the greatest
penetration are those associated with A‘l and %3 ond have a thickness of

C(v/ 5S¢ 02)y4 » Which is always much thinner than the boundary layer
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associated with Al ¢ Yor both the elliptic and hyperbolic outer regions,
The thickness of the boundary layer associated with )\2 is the same order
for the inner region and the elliptic and hyperbolic outer regions,
Hence we see thai as n —» 232  the thickness of the boundary layer
associoted with KI decreases while the thickness of the boundary layer
associated with )\‘3 increases and the thickness of the boundary layer
associated with .\2 remains unchanged,

The transition from the inner region to either the elliptic or

hyperbolic outer region occurs when

For the boundary layer associated with )?, the depth of penetration is
1
again O(»/S2 ), while for the boundary layers associated with )\ and

;\3 the depths of peneiration are

O ( 4 )]/4 ) 2 RE r When ----—In = 2i + '—r"k 4
o |k F (P-4 s R ?

g

provided {k : (k2-4i)2} is not purely imaginary, When
- 1

Wl

172
{k : (l<2-4i)2} is purely imaginary then the nexi term im the series

expansions (4,4,14) determines the boundary loyer thickness,



- 209 -

Also, from (4,13,4), we see that there is 6 fourth boundary layer
having a depth of penetraiion of order (.V/no“)% which is always much
thinner than the boundary layer. associated with )W’

For the specicl case when o £ O, the solutions of (4,2.7), (4.2,5),

(4.2.6) are

e = § exp {-—z(in/\.b)%} , T=w = O, (4.13.5)

since the x,y-momentum equations and the continuity equation are
sufficient to determine ' and w and contain no forcing term involving
S, The solutions, (4.,13,5), agree with the resulis that would be
obtained by letting a tend fo zero in (4.13.4) since the particular integral
would vanish and hence /-\] = A2 = A, = O in order to satisfy the
boundary conditions on the disk,

Hence, there is ¢ resonance effect present in the sense that a
different solution exists in the neighbourhood of n = 252 ., Then
provided that the Reynolds number, Ro’ remains large, we have shown that
the infroduction of the. horizontal length scale, q-], guarantees that an
oscillatory solution clways exists, When only one disk is present this
oscillatory solution consisis of well=defined boundary layers confined to the

disk,
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Also, by the same arguments as we employed above, we can show
that oscillatory solutions, which satisfy imposed boundary conditions,
can always be found, for both the cases when one and two disks are
present, when, instead of imposing an oscillotory heating on the disk,

the disk is made to oscillate in the z-direction with o velocity,

w= ghbyem™.

We must assume that the amplitude, € , is very small so that we may
consider the disk to be at z = G for all time, while it is, in fact,
moving in a wave=like manner, Again, we have introduced a new length

scale, a-], into the problem,.
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CHAPTER 5

STEADY STATE VORTICITY GENERATED BY HCRIZONTAL

TEMPERATURE GRADIENTS

PART 2¢  SOME OTHER SOLUTIONS

5.1 INTRCBUCTION

In this chapter we will examine the cffect on the steady vertical
vorticity discussed in section 4,9, when the additionsl hecting imposed
on the lower disk,

6 = AT § hix,y) ,
is replaced by either

& = ANT¢ x| <da,
- (5.1.1)

@] %} >da,
or

& = AT@_ expi-xz/o"—z} r (5.1.2)

where a, o~ are positive real constants, Hence we are ossuming an
imposed temperature distribution which depends solely on one of the co-~
ordinates in the plane of the disks and takes the form of either a step~

function, (5.1.1), where a non=zero temperature is present only on a
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finite strip {x\ <da ora normal distribution, (5.1.2).
When the finposed temperature distribution is the step~function
(5.1.1), the stcady soluiion is composed of an inviscid inferior flow

which satisfies the thermal-wind equations, Ekman layers on the disks,

N

which have a depth of penctration of order R 2 and free shear layers

at the discontinuities, which are similar to the layers found by Stewartson

‘ Y

ESS] and have thicknesses of order R"/3 and R ', When x is
considered constant, the variation of the interior vertical vorticity takes
the same form as in sectian 4.9.

When the applied temperature distribution is the normal distribution
(5.1.2), a solution has only been obtained for the iwo extreme cases,
o large and o— small,  For both these cases, the solution consists
of Ekman layers on the disks and an interior flow which is a particular
solution of the thermal-wind equations, It is found, for large o—,
that this problem reduces to the two_dimensional problem associated with

an applied cosine temperature distribution, with o small wave number, a,

which has been discussed in section 4,9, provided

=9, (5.1.3)

and terms of order c':40re negligible, On the other hand, when o~

is small, this problem is identical to the prol:»lem connected with (5,1,1)
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when a tends to zero, provided

o = 24 , (5.1.4)
7

and terms of order 0‘3 are negligible, It should be noticed that in

formula, (5.1.3), o is a wavenumber, while in formula, (5.1.4), a is

a length scale and therefore the two formulae are unrelated,

5.2 EQUATIONS OF MCTION

° e e o - + - °
We consider two infinite plane disks, z = = d, bounding a viscous
fluid, when the fluid and the disks are rotating with constant angular

velocity, Y- , and, additionally, a heating of the form

e = AT @K, (5.2.1)

where AT (B (%) is defined by (5.1.1) or (5.1.2), is applied to
the disk z = -d,

Again we assume that it is valid to apply the Boussinesa
approximation and to lincarize the basic equations,  Also, since the
required boundary conditions |

ta) u=v=w=0 onz=i-d,

b) ©=0C on z=d, ©= AT (D) onz=-~d,

(c) ©, v tend to zero exponentially as x| —» o ,

(5.2.2)
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are independent of y, we may assume that the flow is independent of y,
Hence the basic equations (4,2.5), (4.2.6), (4.2.7) become, for time-

independent motions,

2 2
alp 2,2 2 9 2
=2 STV = = =] =) 52 (x"Hy7) + Y + u,
ax. So -5;2- 322
2 2 |
252 v = bV + v,
Y
"2 2 |
3P 42,2 2 Gl
0= -2[2-1 R%PA|+ge + v|[L s+ L |w,
di rar
a2 2
(= + ) = 0,
.a—x? 9z
du _ ow _
=t o.
(5.2,3)
When we introduce the dimensionless variables (starred)
z=dz*, x=dx*, (uv,w)= 52d(u*,v*,w*))
(5.2.4)

o
L -y %504 = L%, e= aTer,

fo
into the equations (5,2,3) and the boundary conditions (5.2.2), we find,
when we eliminate u, w, p from the resulting equations and drop the

asterisks,
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2| & P73 oy e
R _§ + -—-2- v 4+ 4-7 = ZH '&,‘?&- 7 (50205)
ox 9z
82 62
( + )e = O ¥ 4 (5-206)
2w

where R, H are again the Reynolds number, SZdz/ ¥, and the thermal
Rossby number, (4,2,3), respectively, We will again assume that the

Reynolds number, R, is large, The equations (5.2,5) .cmd (5.2,6) must
now be solved subject to the conditions that

@) u=sv=w=0Q onz=i'l,

k) =0 onz=1, @=®(x) onz =-=1, (5.2.7)

(c) ©, v tend to zero exponentially as |x\ —» o ,
P Yy

Then the Fourier transform

=}
]
- ’
I 38 R
=
\ g
(D—'
R
b
o
~

(5.2.8)
-0
° |
fom /e"'s"‘f'ds , (5.2.9)
1/’2.7 ‘
)

is applied to the equations (5.2,5), (5.2.6) and the boundary conditions

(5.2.7) and we find that we must solve the equations
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3
R20%-F v+ % = 2niDe (5.2.10)

[p? -8 = o, (5.2.11)

where D = 2 s subject fo the conditions
gz

@ uv=v=w=0 onz=il, :
_ = (5.2.12)
b) 8 = O onz=1, = 6 onz=-1,

When AT @)(x) is defined by (5.1.1) and (5.1.2) we find that
L
F (2 snfes} 5.2.13

-\%—-G" exp{-szc—z/ll} ' (5.2,14)
2

@
©®

respectively,

]

The solution of the equation (5.2.11) which saiisfies the required

boundary condition (5.2,12(b))is

— av— ° < - '
g = ®@6 Z';f;%s'f)} , (5.2.15)

which, when we apply the inverse Fourier transform (5,2.9), becomes

a
1 ~isx = sinh §s(1 )}
9 = . [ e @) sinhs{?:?} ds . (5.2.16)

-0
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When & is given by (5.2.15), we see that a particular integral
of (5.2.10) is

24 @ (5) cosh § s(1-2)}
4 sinh { 2% *

(5.2.17)

If we seek a complementary function of (5,2,10) of the form ekz, we

find that

20828 & -0,

-

1
which, provided s << R*, has the roots A = Ai" i=1,2,3, where

3 7
s

_ 3
! ﬁ*o‘?‘)'

24
|

1 L '
@iRE + OR™%9), (5.2.18)

Ny.
|

It

“2RE + OR7%Y)

N

and the signs of the square roofs are chosen so that the Ns have positive
I .
real part, Then, for s << R?, the solution of (5,2.10) which satisfies

the boundary conditions (5,2,12(0)) to the highest order is

” Hi i@(s) { = fonh s - | sk {22}
sinh A + 2R%s "cosh A,

ot ol o !

+ 2R" s cosh 7\](smh \Zz} e £ +sinh i?\32§ e
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. coth s t:cosh § )\] z} + ZR%sﬂsinh }wl(cosh {>‘Zz} e

cosh A + 2725 L sink N
Y

+ cosh {%z} e- 3) - 2 Z?;:: ?28;2)} } . | (5.2.,19)

When we resfrict our aitention to the range s << R 4, the dominant
ferms in (5.2,19) are

= - X\
v = - &-2@-(2— g-(fanh s(sinh {Kzz} e "2 + sinh i7\3z}e 3)

+ coths - 2% :{21(}"’")} } , (5.2,20)
since, for the range of inierest, )\] K1, In the equation (5.2.2C) the
first term, which we will refer to as ;B’ determines the boundary layer
motion while the remaining two terms, ;I , deterinine the motion in the
interior, When we apply the inverse Fourier transform (5.2,9) to
(5.2.20), we find

2 Y -\
v = J;n f e '™ {-t’.'__?_(ﬂ ’:-— tanh s_(s'in%r {)\22} e 2

=0

+sih Azl e ) +coths - 2 ;:;hg;s(;"z)} J} ds,  (5.2,21)

which gives a valid representation of the y~component of velocity

provided the coniribution to the integral is negligible for s outside the

M
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|71

range s <K R"7,  From the expression (5,2,21), we con calculate

the z-component of vorticity

v '
= = (5.2.22)

in order to obtain a comparison with the results obtained in chapter 4,
section 4,9,

We will now consider the general solutions (5,2.16) and (5.2.21)

when @@ (s) takes the particular forms (5.2,13) and (5.2.14),

5.3 A STEP=-FUNCTION TEMPERATURE DISTRIBUTION

When the imposad femperature distribution on the lower disk,
z = =d, is the step=function (5,1.1), the temperature distribution (5,2,16)
and the y=component of velocity (5,2,21) in the fluid become, when

@(s) is given by (5,2,13) ,

o)
_ 2 § sin fas} sinh {s(1 )}
& = = '[o - si‘nhs {Z}_, cos {sx} ds , (5.3.1)

@ Y =X\
= - 2} /[-(h:mh sfsinh {Azz} e 2 + sinb {)32} e 3)
o

+ coths = 2 c::f;] %SZ(:;Z)F :’ sin{sx} . s_ir,'sios. ds. (5.3.2)
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Firstly, we will evaluate the integral (5.3.1), for the temperature

distribution, which can be rewritten as

© X
inh {s{1~
S = % [smsirf.hS({Z:;} [/cos {(a+x)s} dx
)

-d

X

- [ cos {(a-x)s} dx|ds . (5.3.3)

+a
When z #-1, the integrals in (5.3,3) converge for large s and therefore

we may interchange the order of integration to give

‘ X o
e = —%— ,( fsmh is(i-z)}‘ - €05 {(a-l-x)s} ds dx
-a ‘o

sinh § 25}
x |
/ / s"t:risg%:;} cos-{(a-x)s}ds dx] . " (5.3.4)
a0

When we apply the resulis given by Edwards 02, p.274] , (5.3.4) becomes

sin L4n(1 -z)Jl dx

&S = .éi_ f
4 g S [%n('l-z)] + cosh E%ﬂ(a‘**-);]

- sin E%n(l-z)lﬁ dx
g ©O5 E}ﬂ(l-z.)] + cosh[-}‘n(c-le
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- § Eon—l {exp [ n(asd)) + cos E%n.(l-z)—] %

po sin [z (1-2z)]
ot (mlsheetual ] e

provided z #-1, when we use Dwight D 1] poge 38, formula 160,01,
The expre#sion (5.3.5) represents the temperature variation in the fluid
ond we require the additional condition

e=§}x\f_a, =0 x{>a onz=-1,
in order to give a solution valid for all z,

We will now return to the evaluation of the integral (5.3.2) for the
y=component of velocity, v, from which the z-component of vorticity,
\f , may be calculated by using the relation (5,2.22). The expressibn
(5.3.2) will yield a volid representation for v since the integr.and is
oscillatory and negligibly small, C(R~y4) when s 2 R}4. Also the
integral (5.3.2) is convergent, since for large s the integrand behaves like

sin §sx} sin Last
5

and hence the actual value of the upper limit is unimportant ond we can

®
replace by
J o
(2041 )
2(a+x)
lim [ , except in the neighbourhood of x = ~a ,
s To')
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(2n+)m
2(a=x)
or lim , except in the neighbourhood of x = a ,
n—co

) (5.3.8)
Since the boundary conditions are discontinuous at x = Ia . We éxpecf
free shear layers to exist parallel to the axis at these points and hence
the above approximations, (5.3.6), will be valid ouiside the shear layers.

Then, from (5.3.2), we have

© ’ - =\
H2§ / [(—fcmh sfsinh {7\22} e }‘2 + sinh %]‘32} € 3)

+ .

| x
coth s = zsg:;h{g:g .-Z)}} sinh {ost f cos §sx} dx ds ,
' o

= - _P%_ [[-(fonb sfsinh {?\Zz} enk2 + sinh {?\3?} e-}b)

+

' x
coth s = 2 :;‘s: E ;ﬁ'l}-z)} ] [ sin '{(G+x)s}dx‘
o

X

+ [sin{(o-x)s} dx | ds ,

o
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When we interchange the order of integration and use the approximations

(5.3.6), we find that
(2n+1)n

2ahx) ,\2

_ _HJ fx . / [ , -
v - fm (= tanhgsinh {2z} e
o \"® 4% | E

+ sinh {)\32} e-)\3) + coth s = 2 s?z;h{‘%ss(;-z)}] sin {(a+x)s} ds

(2n+1)n
Z(a=x) A

+ lim (~ tanhglsinh {A\ z{ e- 2 4 sivh Wzt e-
0 [ [ L &

A
)

+coths = 2 sc‘;:;h;Zi?.'Z) }.] sin {(a-x)s} dsz dita

Then the first integration can be performed by employing exactly the some

method as used by Edwards (12 |page 274 ¢ 1105, 1o give

X - _
H \ 1 1 - . M
v o= - -+ ( 1 h
/o ( sinh Llfr (a*x):} sinh [%ﬂ(cl-x)J | * {)\ZZ} ©

t ot et V| R T R TIER] T I GR]

- [ sinh [3n (c-lx)] ' 1

{ sinh [im(o=x)] - ! } dx . (5.3.7)

cos [ Fm(1-z)] + cosh [ Zm(a-x)]  tanh [ Im(a—x))
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I should be noticed that the method used by Edwards {12 is not valid
when p = q (in his notation) because [ msi’n {mx} dx does not converge
whereas Edwards assumed this integral to ge equal to (1/m). I, however,
we alter the upper limit fo [ (2n + 1)n/2m7] , where n is large, then

the method is valid.  Hence the results given by Edwards for when

P = q, page 277 ?SHOé, are only valid if the upper limit is defined

in this special way, namely

o 2n+)n
e
= lim .
[ N~ /o

Then, from (5.3.,7), we find that

"‘/\ '-}\
v = H8§ [(si‘nh { 1\22} e 2 + sinh {haz} e 3) X
_ cosh [—%n(d-bc)] + 1 cosh (o=x)] +1
x % ‘09[ cosn [éﬁ(cﬁx)_]- 1] + log cosh éf;r(a-x)] -1
+

HE { log cos J: i ('I-z)] + cosh E%n(a+x)]
K2 L sinh i:%sr(cwx) ]

- log | S°8 [4n@ -z):! + cosh { 4n(a=x)
. sinh [ in (cs-=-x)]

or™). (5.3.8)

+
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When we substitute the solution (5.3.8) into the equation (5,2.5) with ©
given by (5,3.5), we find that the error involved for the first term, which
represents the boundary layer, is of order R and the error involved in the
second term, which represenis the interior flow, is of order R-z. Then,
since (5.3.8) satisfies the required boundary conditions for the y-com;;onenf

of velocity and since we have assumed that R is large, the solution (5,3.8)
gives a valid representation of the flow involving a nagligibly small error,
O(R-').— Therefore we may deduce that the above approximations were valid.

When the z-component of vorticity is caleulated from (5.3,8) by

using (5.2.'.22) we find that

+

111
sinh [%n(a-x)]} |

+ ﬂai | B sinh I_-’-n(a-hc):lA 1 }
cos [%n(l-z)] + cosh [%n(o’rxj tcmh B-n(a-l'x)]

. - s'inh [nfa-x)] - 1
i cos By(%z] + cosh -[%u(a-x)] tanh [%ﬂ(ﬂ‘xﬂ }

+ OR™ Y . (5.3.9)

The expression (5,3,9) satisfies the required boundary condition

X=O on z=il,
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with a negligibly small error, O(R-]). The first term in (5,3,9), ]D .

represents Ekman layers on the disks, z = I 1, which have a depth of

-y

=z
.

penetration of order R The remaining term, TI , represents the

interior flow which, as in section 4,9, is a particular solution of the

thermal wind equation,

g 9%

—— S H——Z-,
oz ox

Qs

2

Ir should be emphasized that the solution (5,3,9) is only valid outside the
shear layers which occur around x = Ta. The presence of these free
shear layers is demonstrated by the singularities of (5.3.9) dt x = : G
Before we examine the behaviour of the fluid in the shear layers we will
discuss the equation (5,3.9).

The sign of \fI ¢ the steady, interior, vertical vorticity, at z = Q,
z 1, when i > Q, is shown in Fig;5.1. Ti'ne opposite signs occur
when § <Q, When we compare Fig.5.1 with Fig.4.6(), wé see
that, near the axis of rotafion, ¥ T behdves in the same manner for
both temperature distributions,  Also, from (5,3,9), for any x, we see
that j" behaves like‘ \fs in Fig.4.4 and the value of z such that

:FI 2 C always occurs on the negative axis,
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+ Ve - | - ve I~ Ve 2=\
| ( :
| |
" Ve, , - e ! - Ve,
' T 1 2=0
l 3
o I
=V | 4+ lve. [ —e
Y= -0Ow =0 X= Ow . 2z -\

FIG. 5.1: The sign of the steady interior vertical vorticity,

\fI,when §>Q,forz=0, 1, -1.

We will now refurn io the equotion (5.2.19) in order to calculate the
y=component of velocity in the shear layers by the method employed by
Stewartson {35), We will consider only the part of the shear layers
which lies outside the Eltman layers, that is where l z I | > O(R-%).
Then, from(5.2,19) with @-—;—_(s) given by (5,2,13), we find that the

y-component of velocity for the shear layers in the interior is
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©
. _H$ - -
Vi T ot / Lcos {(a—x)s} - cos {(a+x)s}_| X
o

- tanh s sinh {7‘12} coth s cosh \'_)ﬁzi
+

s éinh 7\] + ZR%cosh )\’ s cosh )\] + 2R%sinh 7\]

2 cosh Ls(1=2)} ds. (5.3.10)
s sinh iZs} :

We will now resirict our attention to the shear laysr in the neighbourhood
of x =a, Then from (5,3.10), we sec that the term involving
cos -}:(a+x)s} can be evaluated by retaining only the dominant terms for
s <<R 4 and by employing the same method os for the flow outside the shear

layers, to give

Hé fog cos jt%n (1 -z)] + cosh [Lwr(a+x)]
£ sinh {: %rr(cﬁx)]

This agrees with the appropriate term in (5.3.8), nomely the term for the
interior which is non=singular in the neighbourhood of x = a, The

remaining term in (5,3,1C), which we will refer to as T°, may be written

® .
HE y [ eﬂC!"XKS _ tanh ssmh{&lz}

T . 3
- s sinh )\] + 2R*cosh ?\]
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coth s cosh{\ z
, N } 2 cos:hhis(z'l"z)} ds . (5.3.11)
s cosh )\] + ZR%sinh 7\] s sinh 125
- 'l.T . [ » .
, *F-"‘ T et - 'é®_ - - —15*:‘.
I !
|
v > . |
| |
. |
=S © S

FIG,5,2: Path of integration in the complex s~plane for the

integral (5.3.11).

We now wish to show that the contribution to the integral (5.3.11)
from the contour which is shown in Fig.5.2 by o broken line, is negligibly

small,  Along the line @, which is defined by
s=s]+iT, s <s <S§,

we find, from (5.3.11), ofter some detailed arguments, thot

]
(cos T(Tsin [T/2R] - 2R2)

T

x| < ‘_*g—i g~Tiox! 28{
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+ ' + 2 , (5.3.12)

(sin T Tcos [T3/2R] - ZR*) sin

which, for S < T, tends to zero as T tends to infinity with S fixed,

Along the line @ » which is defined by

s=S+i52, Of_szf'l’,

we find, from (5.3.11), after some detailed arguments, that

I\ < ﬂé‘?— '§I exp {7\’;“2! -l)j- ['l = sgn ;:J - 2 exp E-S(Hz)}‘ R
(5.3.13)
where ?\; is the minimum value of 7\! along this confour and will always
have a large positive real part, This coniribution,(5,3.13), to the
integral vanishes as S tends to infinity,  Similarly we can show that the
contribution to the integral from the line @ also vanishes as S tends to
infinity, |
Therefore we have shown that the contribution to the integral
(5.3.11) vanishes around the large contour (broken line) in Fig,5.2 .
The integral, I, defined by (5.3.11), is equal to the sum of the residues
calculated at the poles of the integrand which are situated in the upper
half=plane,  The poles of the integrand of (5,3,11) in the upper half=-

plane are
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i')}], ("123—"'%)))11 ("}/’2'3-'*'%)), ’

vy Bahy,, e3ily, (5.3.14)
m% ,
i2m=1)n , imr .i_g.".'l , )

1
[(Zn-])nR]y?’ . Y, = [zmmjé .

where )).i =
n = 1,2,3,40ee &
m= 1,2,3,... &

It should be noticed that the double zero of the denominator in (5.3,11)ak s:=0O
is also a double zero of the numerator and hence is not a singularity of
the integrand of (5.3,11).

When I is found by calculating the residues at the poles (5.3,14),

we find, from (5,3.10), that, near x = a and outside the Ekman layer,

v

_ H& log [cos Bn(i=z)) + cosh[in(atx))
T o sinh [.%;n’ (a+x)]
D ()™ sin[Cn=1)nz/2
H 3 z:i ' ;n[( n-1)nz/. ]
]2R36 n= [(Zn-'i)ﬂ] 7

{fcm ¥,exp 1= v.'\x-a\k

2ep{dyixof ¢ 35 ikt = 1)
- - : sin Y., cos Yolx-al ~ =
cosh {s/3 V% + cos Yy L e 3
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- sinh {\/3)),} cos(-‘2/—3— )ll\x"ﬁ\ + 'g')]

H 4-3 D4 cos [sz:[ -1

+ cof ¥, exp 9=~ Y, Ix-a|
RA H )R Sa kIl
2 exp § =3 Y,\x=~a|

+ i 2 } ~ sin ))2 cos(-‘/??’- )lz‘x-a! - -;:7)
cosh {JB VZ} - cos )’2

~ sinh 143 V,§ cos(%g- Yyix=al + g)j’

cot Ry4 exp {-vR 4 \x = o\}

o

H

o)

_H i {_ 2 exp %—(Zm-'l)\x-o\n/Z} sin E(Zm-'()gnsz/]éR]__
4 -l " 33 i 33
=1 n(2e=1sin [@m=11"n/16%] + 20%cos[(@2m=1)"n/16R |

expl=mnr \x=al} cosEn3n32/2Rj :
m=1 mnm cos Em3n3/25a ~2R§si’ntm3n3/2R-_\

f: 2(-])m 1
- ——— cos Emrr(]-'z)/Z] exp [-zmn lx-aa . (5.3.15)

4

m=]

Then, from (5.2,22) and (5.3.15), we find that for the shear layer

around x = a , outside the Ekman layers, the z=component of vorticity is

j?[ _ H8§ {  sinh B—n(a-bc)] i 1 }

cos %n(’i-z)], + cosh En(a-!x)] tanh [%u (a+x)]
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+

12

2 exp {1 ¥ |\ §
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n= [-(Zn-l)rr] '/3

}/6 © n=1 o
HeR son(x=a) (~1)" sin E(Zn-l)ﬂZ/_Zl { -tan Vyexp {- yT \x-a\}

cosh i\/3 )).‘} + cos ))]

T2

2 exp {-% Vz\x-al} |

]:- sinh 5;1/3 V-& COS(}'/; b ]\X'C" - g)

© = sin y] cos (:‘/-23— y, \x=a\ + %)] }

[2na)

yé | @ n '
HPR sgn(x~a) : (=1) cos{nrz) { ~ cot ¥, exp §- yzlx-c\}
=

cosh i\/S )’2 - cos )’2

Yo

H®
KN

@©

>

- sin Y, cos(-‘-/2-3- g Ix~a | +§ )

+ sinh §43 ¥, § eos(’-{; ix=a| - g)J
Ya W Z

R 7 sgn{x=a) cot R expi-k 4&-61\}

, 33
san(x=a) F‘i exp § ~2m=1)Ix=a\ n/2} s:n_[(zm-n nz/168 | -
1 sin ((Zm_-l )3,-,3 /1 6R] + 4R’z ’f.-] (2m=1 )-l cos Bzm_] )Sﬁ.j % 6.’3!

expi-m_n'\x-a\} cos {m3n3z/2R i -

1

m=]

m=1 cos Eﬁansﬂﬁj e 'ZR’}(m n)-ls'in tmsrrﬁ;ZR]

exp {-mn\x-a 1/2} cos fmn(]-z)/Z} (~-l)m } . (5.3.16)
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- Then, from the second and third terms in (5,3,15) and (5,3.16),
we see that there is a free shear layer around x=a which hos o depth
of penetration ef order R 3. This layer permits veriical mass flow from
one Fkman layer to the other, From the fourth terms in (5.3,15) and
(5.3.16), we see that there is a sééoﬁd free As,hea_,‘r _quer which has @
depth of penetration of order R-y and hence always contains the R-y3-
layer,  This second free shear Iayerzyv_iAs' responsible.for smoothing out the
disconﬁnuviﬁes in the y-component of Vélq;i.fy which were introduced by
the boundary conditions,  These free shear layers cotrespond to the
layers found by Sfeyvan;fsor}":%:\ . |

From (5..3.16)_, we sze that fh'e coniribution to the z~-component
of vorticity from fhé shear layer fe.rrlns is'of order R 4 cot R}4 from the
R-'/4-Iuyer and the sum of the two infinite series of terms which
individually are of order R 6,v from the R-. 3-|c1‘yer. The remaining terms
in (5.3,16) are the first term which corresponds exactly fé- the inferibr
ferm in‘(5.‘_.3,9) and is regular at x=a and the ldsf term which éonsi’sfs
of three infinite serics,

At the edge of thc shear layers, which occurs when

Ix-a| = ORY,

we require the solution (5.3.16) to match the interior terms in (5,3,9),
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When we write

A

X=a = ’

RV

where A is sufficiently large for exp(=A) to become negligible, the

solution (5.3,9) for the interior reduces to

j} - %i { i, sinh izc'(— . 1 }

cos | 3w(i=z) | + cosh {ma}  tanh {na}

Ya

» B2 R (5.3.17)

when z # =1, and (5.3.16) reduces to

T _H® sinh {ma} . 1 }
T cos[ tn(1=2) | + cosh §ma}  tonh §wa}

_ H $ exp {=(2m=1)nA/2R } sin {(Zm-]) ) z/léR}
o sin {@m=1 R /16R b+ 4R (2m-1) Tcos {(2m-1)3n3/uéa}

w:—:o ‘exp 1=m srA/Rk?'; cos im3rrsz/2Rl
m=] cos imgn?/ZR} - 2R%(m rr)qsin {mSTrB/ZR ks

@* k@, m
+ Z:‘ exp 3~mwA/2R }cos %mn('ﬂ-z)/?}(ﬂl) . (5.3.18)
m=1
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The first term in (5.3,17) is identical to the first term in (5.3.18) and
hence we must now show that the sum of the three infinite series in
(5.3.18) corresponds fo the second term i'n (5.3.17).

Since there is a negligible contribution from the terms in the
infinite series in (5,3,18) when m > O(R%z), we may simplify (5.3,18)

fo give

on - H8§ { ‘ sich $na} _ 1 }

cos [%ﬁ(ir-'z)] + cosh Lira} tanh {ma}

Hg | M %y om=1)r
- = | 3 epi-@uDAYR }—T
[m=, expf m ” ;

- ;M\ exp i-mnA/Ryd'}

m=1 1 =mnR?2

M
+ Z exp §-mwNZR%} cos {mn(]-z)/?}(-'l)m] ,  (5.3.19)
m=1

.’
where M € R with the choice O< & 1.

w

i

In (5.3.19) the first series makes a coniribution which is always less than
O(R-yl}) and hence may be neglected; Also, when z # =1, which is
always satisfied for the part of the shear layer which lies outside the Elman
layers, the third series in (5.3,19) is alwoys oscillotory and has a sum of

order one since it may be written
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M A
exp {=mwA/2R""] cos {m n(3-z)/2 }
m=
M
= Re g exp{— i ":\ im 3-'2)%
= Z

2R

= Re {exp{iﬁ(3-z)/2} }

1=exp $ i (5-2)/2? :

"%l

when only the highest order terms are retained,  Therefore the third
series makes no cantribution of order R

Therefore we wish o show that

M Y
ﬂl§' 2 exp i-mnA/R § , (5.3.20)

' 4
=1 ]-mznZR

corresponds to the second ferm in (5.3.17), when only the highest order
terms are considered, Since the largest contribution to (5,3,20) arises

when m is small, we may cssume that it is valid to write the series as

M ]
HE 2. R m4n4R-' + ...)expf-mnA/RA@} ’
m=1

and when we sum each ferm independently over m, this series becomes

tEa

+ azD . a404 + ) i )
A2 A &%l
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N7

where a = gAR  ~, D= 'é% ond exp {—QM} is assumed negligible,

A better form of this resuli is

(T){] + 2' .. XXX +"(‘?'2'n)_'- XX } z

(5.3.21)
where only the terms O(R 4) are retained and also exp(~A) and exp(~ £A)
are assumed negligible,

In order tc show that the series (5.2.21) is o valid asymptotic series
for the series (5,3,20), it is necessary to estimate the error which is
introduced when we equate (5.3,20) aond (5,3.,21), Firstly, we notice
that the function

Y = ——a5

1=-x"ah
is always o strictly decreasing function of x provided
Al -¢% > 2¢ . (5.3.22)

Then, provided A, & are chosen so that (5,3,22) is satisfied, the sum
(5.3.2C) will always be bounded above by

g M~1 ~ay ‘
H & / e2 — dy (5.3.23)
T =-yaA

o
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and below by

H
He { T“Tﬁ""’ dy . (5.2.24)
- y o4 ./\\

Then the integral (5,.3,23) may be written as

Mi=1 ~ciy Me=1 -y
A 1 + ayA ° 1 - ayA
A
a

2 L e, R’Z]

A A A"

1 ] 2 (n-1)%
-2:'*‘—-2- +—--3-+....+—-———+SnJ -

n' < n

where R < ’ S
n n+ n n+'l (1-€)

ntl ¢

Hence when the infegrcu! (5.3.23) is assumed equal fo the series (5,3,21),

the error involved will always be less than the last term retained provided

@n+ 1) <A -£)22 (5.3.25)

Similarly, we find that the integral (5,3,24) is always greater than

HE A (1,2 ., )
T T AT et |
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when only the highest order terms are retained and we use the fact that
a<<1and A = G(1).

Hence we see that it is valid to assume that the series (5.2.20) can
be expressed in the form (5,3.21) with an error always less than the last
term retained, provided (5,3.22) and (5,3.25) cre satisfied, In fact,
the condition (5,3,25), with n > O, is sufficient, since this condition
avtomatically implies that (5,3.22) is satisfied, HMence we deduce that

(5.3.20) is equal to

2
H$ R -
T(W) ’ ; (0.3.26)

7]
with an error always less than (H R//T?AS) provided

3 < All-¢)? (5.3.27)

The ratio of the e;rror to (5.3.20) is (4/A2) which is always small when

A satisfies (5.3.27). Therefore we see that the sum of the series

(5.3.18) agrees with the second term in (5,3,17) to the highest order,
Hence we have shown that the interior solution in (5.3.9) and the

interior shear layer solution (5.3.16) match ai the edge of the free shear

layers, that is when

]
]x -qa | = O(R-/a).
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The z-component of vorticity for the shear layers around x = ~a
could be found by employing the same argumenis as we used above and will,
in fact, be given by (5.3,16) with
a + x, ta ~ x|, sgn(x=a) ,
replaced by
o - x, la + x}, sgn(x+a) ,
respectively.
The solution for the part of the sheor layers which lies inside the
Ekman layers could be found by an analysis similar fo that employed

above but no discussion of this problem will be given here,

5.4 A NORMAL TEMPERATURE DISTRIBUTION

We will now consider the second special case which occurs when
a tempercture distribution of the form (5,1,2) is applied at the disk z = ~d,
For this particular case @(s) is given by (5.2,14) ond the equations

(5.2.16) and (5.2.21) become

®
° = i;/c—. [eXP{"SZG—Z/‘@}. Si::’:thf[_(%_;':z')] cos{sx} ds, (5.4.1)
n
o

»
4\/1\'

v = = E.E:_ﬂ [ exp {-520—-2/4} {--(fcnh Slsinh {)\Zz} e-
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-\

+ sjnh g'>\32} e 3) + cofh s = 2 cosh is('l-z)}

sinh {751 sin {sx} ds.  (5.4.2)

The expression (5.4.2) will give o valid description of the y=component
of velocity provided there is a negligibly small contribution from the
integral outside the range s << R 4. This will always be true provided

so— >> O, (5.4.3)

Ya
outside the range s <K R" 7, which implies that

R%!'r' > O(1)

must always be satisfied, The condition (5.4.3) con always be satisfied
for o large and provides o lower bound on o— for the case o— small.
No discussion of the integrals (5.4.1) and (5.4.2) has been obtained
for general o— ,  Instead we will consider the two extreme cases, &
large and o— small,
o large
When we write

2

s=f,

(5.4.1) and (5.4.2) become

Do

(9]

¢ o [exp {“l?fo‘z}' sinh{(Zf’)E(L'l-z)}
Vn sinh ¥2(2/9 ¥f

cos {(Zf)zx} -'——-r' ,
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>

- %TT_H exp {-%fo“Z} [-ranh {(2/9 )‘Lf (sinh {)\22} é

2 cosh { (2 F(1-2)¢

+ sinh {)\32} e-AS) + coth {(Zf)%} -

. e
sinh 122)°}
x sin 2PV x Px -Zz-j{-);- (5.4.5)

Since, for Iarge}), the integrands in (5.4.4) and (5,4.5) behave like
exp {-% f’o‘z‘} » we see that the mojor contribution to the integrals
(5.4.4) and (5.4.5) arises from /0 small, Hence we may use WATSON'S

LEMMA |:23, p.SQ!-?] to obtain the following asymptotic formulae,

- B b b
2 2 2. 2
3 | (1-2) 56  A1-z)" . 4 (1-z)
+6_4[3c§ "'?5"’713' s J%
+ o™, (5.4.6)
34 - -
v = %i[%--g-z(% +§-:! l:sinhszz}e}\2+sinh {Aaz}exg:]
o
H$ X 2 3 x3 2
- 2~ (1=2)°) - 2 ~ (1=z))
7| = "‘z{'s' “z
+ g + 302" -4(1-2))] + o), 5.4.7)

where terms of order R ' have been neglected,  The expressions (5.4,6)
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and (5.4,7) have been okiained for fixed x and large &— and therefore
these expressions are not expecied to give a valid description of the flow
when x tends to infinity,

Then, from (5.2,22) and (5.4.7), we find that the z~component of

vorticity is given by

:f=H§[]2' ?ﬂ%h&}&ﬁ@§4gﬁ+ﬁm@¥};g\

< o
HE [@-0-2h 3 (2 2
- - (2 - (1-z)")
N L 2 . ] “
+ 24+ 30-2)" - 4(1-2)2)}] + 0(c7%. (5.4.8)

Then the first terms in (5.4,7) ond (5.4.8) represent Ekman layers on the
i -t

disks, z = : 1, which have a depth of penetration of order R 2,‘whi'le

the second terms give the interior flow which again satisfies the thermal-

wind equation

when © is given by (5.4,6),
When we retain only the highest order terms in (5.4,6) and (5.4.8),

we find

e = —T—§ (1-‘2) ’ (5.4.9)

.
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A A

= - 2 ';_lf [S‘"h Izt e 24 sinh Wyt . 3}

HP .2--(1-)2
- = { 22 } . (5.4,10)

o

—

The results (5.4.9) and (5,4.10) are independent of x and agree with the
results (4.3.9) and (4,9.3), in chapter 4, when we allow a in h(x) to
tend to zero with x fixed and assume that

93 = 1 5.4.11)
3 2 |

The temperature distribution (5.4.9) and the distribution of the z-component
of vorticity (5.4.10) are shown in Fig,4,2 and Fig.4.4 respectively,

The vorticity (5.4.10) vanishes in the interior when
z = 1-42,

- If we expand the results (4,3,9) and (4.9.3) Yor small a and assume

a two dimensional flow, that is h(x,y) = cos icx} , we find

———

2 2
o - 2 -2 {I+%—[:“-§) _g-}]%w@"),

—~—

j"s - H f o ZU;Z)Z = 1 + sinh {KZZ} e.->\Z + sinh %)\32} e-)\sf (5.4.12}

+ O(a4) .

The results (5.4,12) agree with the expressions (5.4,6) and (5.4.8) when



- 246 =

terms of order cr':4 are naglected, provided the condition (5.4.11) is
satisfied,  If, however, the terms of order 04 in (5.4.12) were
calculated explicitly, no agreement would be found, since when we
expand i cos Jax? , -C]_éexp{—xz/o—zf for small o ond large o— ,
we find that

4 4

icosfox} = §{ x coe } ’
§exp{-x2/o—2}=§{w-;2 + x44+...} ,

2 c—

and when (5.4,11) is assumed valid only the first two terms in the above
series are identical,

Hence, when o is large, the problem of applying a normal
temperature distribution fo z = =1 is equivalent to applying a sinusoidal

heating, provided terms of order o":4 are negligible,

o— small

We will now consider the remaining extreme case, that is o smoll
but
o > O(RJ/ 4),
from (5.4.3) in order that the expression (5.4,2) for v is always small,

if we write so—=t, then the integrals (5.4.1) and (5.4.2) become
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Q
¢ o 1 .27 sinh $(1-2) ;
- An f o {- 7 F 2 {2fz/cr/—o;} cos §xt/a=f diz=)
© (5.4.13)

@®
v = - %‘Z‘H / exp {~ %fz} sin { xt/c— ¢ ':coﬂm(-g—,_-) - 25;7‘52 ;‘:‘.(}:);‘/0'}
o

tarh . N N t
~ tan (-6:-) sinh {7\22} e © +sinh {’\32} e di=) . (5.4,14)

+ y o 1 e
When z # - 1, the terms involving

o sy AL, o gyt S

make a negligibly small contribution when t > C(c™ ) ond hence we may
assume, for these terms, that the major contribution to the integral
arises from the neighbourthood of t = O,  Therefore we may expand

exp {-fz/tl} for small t to give

2 tz
exp $~1/4Y =1 - Tt oees s

When we infroduce the resulis given by Edwards CIZ, # 105, p.274]

we find that (5.4.13) and (5.4.14) become

_ don sin Dzn(l-z)] 3
e = 4 cosm + cosh [v}nxT + Ole™) , (5'4']5)
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@ o H /’ op - 14 621 [(fanh Joinh Pl o

-)\3
+ sinh i)hz} e °) + coth s] sin {sx} ds

i‘i o~ H'r sinh L—%nx:{

3
8 cos[—zr—ﬁ(]_z)],,_ cosh [%ﬁx] + O(c™) . (5.4.16)

It now remains to evaluate

®
fexp {- -5 o—}' sin §sx} coth s ds ,

and exp %_— % 520___2} sin {sx} tanh s ds ,

o8

Since exp f- el- 52 o—g'} moy be approximated by one when s < Of )
and tanh s, coth s may be approximated by one when s > 1C, we choose

n so that

(2n +

= < olsh,  (5.4.17)

10 <

which can always be soiisfied except in the neighbourhood of x = O,
Then away from x = C, we have that

(o]

[exp i— %0_252} sin {sx} coth s ds

o
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2n+1
(Hm o
= [ sin{sx{ cothsds + f exp {- %szo’g} sin{sxjds ,
o 2n+1
¢ 2x I
2n+l,y
( 2x i
= [ sin {sx} coth s ds + O(a"'z) . (5.4.18)

(]

Then the integral on the right hand side of equation (5.4.18) can now be

evaluated by the method employed by Edwards [12 p.274 95”05],

namely

2n+]
( 2)( )ﬂ

sin {sx} coth s ds

(o]

2n+1
( 2x In

[ i [exp {'25("*'”} + exp 1-2rs }] sin '{_sx} ds

r=o

il

Il
ms
Mo
X
]
[nadid
]
0]
(7.
=
+
ot
o’
Lmgnd
+
®
X
]
v
N
a
b~
o
Q.
=
w
X
[
Q.
w

- zi—. X + X
r=o (2r+2)2 43 (2r)2 + x2

= % coth [%nx] . (5.4.19)
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Hence, from (5.4.18) and (5.4.19), we deduce

@
fexp i- -]1: szc'g} sin$sx} coth s ds = -g- coth [% m;] + O(G‘Z) .
o

(5.4.20)
By a similar argument we can also derive
©
[exp {- ?1,-520'2} sin {sx} tanh s ds = gcosech %nx} + 0(0"2) .
)
(5.4.21)

It should be noticed that the integrals 861,85, 861.66 given by Dwight

EIJ ond the corresponding results in Edwards [12) are only valid in

the sense
2n+]
@ ¢ 2x y
= lim / .
o R—po o

Hence, from (5.4.18), (5.4.2C) and (5.4.21), we find that

h E}-ﬂx:l

sich [mx] cosh {nx] 3
cos [_'%n(1~273 T cosh [ZaX] s [;Lnxj’ + O™), (5.4.22)

v = E?H\/ﬁ { - ! (sinh {?\zz} e-AZ + sinh 57\32} e—}b)

where terms of order R-'I are assumed negligible compared with those
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retained,  Also, by applying the above arguments io (5.4.13) and
(5.4.14) when z = = 1, we find that the results (5.4,15) and (5.4.22)
are valid for all z and x not in the neighbourhood of x = O,

The first ferm in (5.4.22) again represenis Ckman layers on the
+ -
disks, z = = 1, which have o depth of penetration of order R *, while
the second term gives the interior flow which again sotisfies the thermal-

wind equation,

when © is given by (5.4,15).  The singularities thot appear in (5.4,22)
when x = G, show that free shear layers are to be anticipated around
this polnt,

When the z=component of vorticity is calculated from (5.2.22),

we find thot

-

72
\f _ &c"Hﬂ {_ cosh f‘zlrrx—J (sinh {}ézg o AZ + sinh E}‘gz} . )‘3)

16 sinh:Z [%rrx]

cos [-%rr(l-z)] cosh E%ﬁx—l + 1
(cos [%rr(l-z)] + cosh an] )2

1 3
e + O(c™), (5.4.23)
sinh Bmﬂ f <

The presence of the singularity at x = O implies that free shear layers

exist in this region and therefore we should anticipate o connection between
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this case and the problem in section 5.3 with a tending to zero.
When we allow a to tend to zero in (5.3.9) and retain only the

highest order terms, we have that

jp _ l_;i_% sa § _ cosh B‘nx] (sinh {)\22} e-)b + sinh i}‘gz} e~}‘3)

L si’nhz [%n x]

4 Sos E%ﬂ(l-z)] cosh D;zrx—_l +1 + 1 , (5.4.24)
(cos [ 4m (1=z)] + cosh [ 4nx]) 2 sinh® QLITX] ‘

which agrees with the resuli (5.4.23), provided

°_721Z1‘. = aq, (5.4.25)

Hence we see that, for x away from x = O, the case when a normal
temperature distribution with small o—is applied to the lower disk, z = -1,
is equivalent, fo the highest order, to the case when a non-zero
temperoture is imposed ﬁnEy on the finite strip|x|< 2o~ Vi on the disk

z=-=1,
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CHAPTER &

THE EFFECT OF AN INITIAL TEMPERATURE (GRADIENT

ON THE DEVELOPMENT OF VORTICITY

6.1 INTRODUCTION

In the problem considered in Chapter 4, the effect of rotation and
steady heating on the development of vorticity normc‘l to the confining
boundaries was found, when the initial temperature throughout the fluid
was assumed constant,  This first opproximation to the actual temperature
field present in the otmosphere can be improved by assuming, for the

initial flow, a constant adverse temperature gradient,

T = To - Bz ’ (6.].])

where To, B are constants and B is positive,

In this chapter we will examine the effect on the vertical vorticity
when, initiclly, either an adverse (8 > O) or a favourable (B < O)
temperature gradient is present in the fluid, When there is an initial
fovourable temperature gradient, a valid expression for the steady vertical

vorticity can always be found and will represent the final steady state
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which exists in the fluid after oll the transient effects have decayed,
On the other hand, when an adverse temperature gradient exists,
initially, the solution obtained for the steady vertical vorticity will only

represent the final flow for values of the Rayleigh number,

4
% = SI?’E;?'— ’ (63102)

much less than a critical volue Q, c which depends on the horizontal
wave-number, a, defined by the membrone equation, (4.2,9). Any
discussion of the behaviour of the fluid in the neighbourhood of this
critical Rayleigh number, @; o would require the inclusian of the non-
linear terms in the analysis and will not be considered.
As the Reynolds number,
42

R = =, 6.1.3
> (6.1.3)

tends to infinity, the asymptotic behaviour of the minimum critical

Rayleigh number is found to be

3 {%WRZ }% o

This result agrees exactly with the expression for the asymptotic behaviour
of the minimum critical Rayleigh number for free/free boundaries

calculated by Chandraselkhar E?] . We therefore deduce, contrary to
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the assertions made by Chandrasekhar, that the type of boundary does

not influence the asymptotic behaviour of the minimum critical Royleigh
number, A comparison with the numerical results of Chandrasekhar is
given, from which we deduce that the range of Reynolds numbers considered
by Chandrasekhar does not go to high enough values for the asymptotic

formula to be applicable,

6.2 EQUATIONS OF MOTION

We will consider the effect on the z~component of vorticity, when
we replace the assumption that, initially, the temperature field is a
constant, To' by the initial condition (6,1.1) where B > O, B<O
correspond to adverse and favourable fempefature gradients respectively,
Then, after the application of the Boussinesq approximation, the continuity
equation and the linearized Navier-Stokes equations are again (4.2.5),

(4.2,6) while the linearized energy equation becomes

B o= ge. (6.2.1)
When we ir;froduce the dimensionless variables (starred), (4.2,13),
with the typical temperafure scale AT replaced by Bd, substitute
(4.2.18), eliminate the pressure and use thev conﬁnuii;y equation, we find

that (upon dropping the asterisks) ,
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¥ -v = (w0 -, (6.2.2)

[ k0% -A]F, -ow, = 0, (2.3

[.a%- R“"(D2 - az)] (02 - uz)w] + 2D f] = -H*czﬁ . (6.2.4)

where H* =-—$F'-'%- . | (6.2,5)

w4

The equations (6.2,2), (6.2.3), (6.2.4) have the some structure as
the equations (4.2,19), (4,2.20), (4.2.21) except for the convective
term which appeors in (6,2,2), This additional term couples the equation
(6.2.2) with the equations (6.2.3) and (6;2.4) to yield an eighth order
partial differential equation for either ¢ or wy or j"]. Hence we see
that the introduction of an initial temperature gradient yields o more
complicated problem ond that fhé solution for the %amperature field is

no longer trivial,

From the equations (6.2.2), (6.2,3), (6.2.4) we find that

[0%? - R-%-]z (02D - 2] %A
+ 4% [(Dz-az) - Ro—-éa-f-]Dz ]"] = ? @, Baz-az) - R-ég-] T, r (6.2,6)

where @9 is the Rayleigh number, (6.1.2).
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Now, from (6.2.5) and (6.1.2), we have that

Ro = wile .

Also, from (6.2,5), we have H* << 1, which is necessary condition
for the linearization of the Navier-Stokes and energy equations to be

valid, Then, if we assume that o = O(1), we find that

R « g?, (6.2.7)

The solution of the equation (6.2.6) must now be solved subject to the
boundary conditions (4,2,22), No discussion of the general time
dependent solution of (6,2.6) will be given but instead we will consider

the steady problem,

6.3 THE STEADY SOLUTION

The time independent solution of the equation (6.2,8) is equivalent

to the solution of the equation

(D%=c?) [(02-(:2)3 + 2%+ 2R | ¥, = o. 6.3.1)

If we seek a solution of (6.3.1) of the form e*% , then we find that

( /-3-02) [( /3-02) + 482 f +a? Qa] , (6.3.2)

1

which, provided a << R?, has the solutions
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M= I, i=1,2,3,4,

where
Sa = e
!

(zm)'% + O(R-%) ,

(6.3.3)
M o= 2rF + OR)
6 2@
L= (a "2‘;@")7 + OR™)

The signs of the square rootfs:in (6.3.3) are chosen such that the Pis
have positive real parisand /;4 remains on the some branch when
o Ro

Then we find that the terms in the solution of (6.3.1) which

satisfy the boundary conditions, (4.2,22), to the highest order are

2 cosh
B R [ a0 0 |

V' I
2 cosh

- (/4»4 -}4) R%/Z [sinh i/ﬁz} e /2 + sinh 3 32} e_/,é] + sinh %z}f

osh
{40 Cthc[-SInh/Z+(M } c Lﬁ‘i :‘ +
4 R?

+ cosh/ua {R-Z}z—l(/_;.z - 02)3( + 4/«"-1}}
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2 sh Saz} 2 smh/z
+ Ha i {COCOSEG: I:" COSh/tl * (/21 /.»4 RZ

02 sinh/-z ~ P9 “/3
- ( /.»4 - /*4) T [cosh {/}Zz} e + cosh § )’-az} e
+ cosh ‘{/Uaz}}
smh)""1 :I

4a tanh a [—cosh + /.r
{ 4 4 /&4 Rz
+ sinhﬁ{R-z /..4"(/;‘; P s /;;}} . (6.3.4)

This solution (6.3.4) is meaningful provided

q2 cosh/z
I:-smh/va+(/—~4-/u’4 R2 ]%cotha

+ cosh/¢4 {R-z/.\a-] (/A.i - 02)3 + 4/-"4} P (6.3.5)
smh/.;?l
‘:—COSh/'z+(4 4g tanh o
/"‘4 R

. -2 -1, 2 23 :
+ sinh s {r P (/.‘4 - a9’ + 4/«2} , (6.3.6)
are non-zero, The smallest value of Qo » for a given a, which renders

(643.5) or (6.3.6) zero defines a critical region where the transition from

the stable (subcritical) region, with values of R less than this
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predicted value of q;"_,, for the given a, to the unstable (supercritical)
region occurs,

For the subcritical region, the solution (6.3,4) gives a valid
representation of the flow at large times, provided the amplitude remains
small enough to justify the linearization, since, in this region, any small
perturbations will decay with time,

For the supercritical region, however, unstable modes must be added
to the steady solution (6,3,4) in order fo give a complete description of
the flow at large times,

For the critical region, the lineor solution (6,3.4) becomes infinite
and the nondinear terms must be included in the cmlﬁis.

Hence the steady solution (6.3.4) gives a valid description of the
final state, which occurs at large times, only in the stable region and
provided the amplitude remains small,  Therefore the region of validity
of the solution (6.3.4) is restricted to the region which Is well sub~
critical,

The position of the zeros of (6,3.5) and (46.2.6) and hence the
critical Rayleigh number depends upon the value chosen for a and we will
Y %y

now consider the special cases, a = O(1), a = OR 7), e = OR
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a = 0O(1)
When a = O(1), we see, from (6,3.3), that /&4 <K 1 and we find

that the dominant terms in (6.3.3) and (6.3.6) are

2
a

(-/4.4 - —-—‘-23-)-40 coth a + 4 1, , (6.3.7)
/%

- 4g tanh a , (6.3.8)

respectively,  Then, provided a # O, we see immediately that (6.3.8)

is never zero and (6,3,7) is zero only if

2 ascoth a

/).4 R%(a coth g - 1)

which corresponds to a critical Rayleigh number

%
@9 - 4a coth a R , (6.3.9)
¢ (@ coth a = 1)

when only the highest order term is retained,

Therefore, when a is of order one and non=zero, the critical
Royleigh number is given by (6.3.9) and is always positive,  This implies
that, when a favourcble temperature gradient ( B < O) is present,

(6.3.4) gives a valid representation of the flow at large times.
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}’4)

a = O(R

When we assume a = R %l,where ay is of order one, we find that

/“- <L R and the dominant terms in (6.3.5) and (6.3.6) are
2

a
4a R 4% sinh g1 - 7‘; /4} +4 oy cosh oy (6.3.10)
o2

4a, Y 4- cosh iy - smh/)z} + 4 py sinh py (6.3.11)

When Qg < OR) we have, from (6.3.3), that /'Z = O(R-y4) which
implies that the highest order terms in (6.3.10) and (6.3.11) are non=zero,
When @9 > OR) and B < O then, from (6.3.3), we see that the highest
order ferm in the expansion for /U» 4 is real and /LL 4 108 R]/4 which
implies that (6.3.10) and (6.3.11) are always non=zero,  However, when
% > OR) and B > O, we find, from (6,3,3), thai the highest order
term fn the expansion for /u. 4 is purely imaginary, Hence, when we

retain only the highest order term in this expansion for Jrgr We can

write

Var SRR
- z
where y4 is real, y4 = O(R 9{4 @o ) and ))4 < Ry4. Then the

expressions (6,3,10) and (6.3.11) reduce to

2 N

! cos ¥ } + 4 Y, cos y
4 4 4.*

Yy
a2

a

Y
ék:‘R 4{- sin ))4 +

%IR% i- cos V4 - sin Y4} + 4 ))4 sin )J4 . (6.3.12)

Ya
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For the highest order terms in (6.3.12) to vanish we require ))4 = Of1)

and hence the critical Rayleigh number
@% = OR™7) .

Therefore, when a = O(RV 4), the critical Rayleigh number is of
order R 2 and positive, Hence, when 8 < O, (6,3.4) olways describes

the flow which will exist in the fluid, ot large times,

]
= O(R/S)

1
When we assume that a = R Y where a, is of order one, we find

that the dominant terms in (4.3.5) and (6.3.8) are

2 ¥
40Rl/3f-'h 2t h + 4 o cost 6.3.13)
9 Lsmﬂ /&4 co/\z} ﬂc 'aﬁ: 6.3.
A azzkyé

3 RN .
402R {- cosh/z - /“4 smlyuz }+ 4/2 smh/\* . (6.3.14)
When @, < O(R%) we find, from (6,3.3), that /UZL = O(1) which
implies that the dominant terms in (6.3.13) ond (6.3.14) are
de 32

- 2 cosh pn , C(6.3.15)

oy

;L
I

4

sinh 2 (6.3.16)
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respectively,

These expressions, (6.3.15) and (6.3.18), are zero when

2 (@m=1)%: 2 2 2

foa T T T gy T Ty

m = 1,2,3,3.0 I 4

respectively,  Hence the first zero occurs when

2 _rrg = 06- Qacz
[
Vet Z B2

which implies that

@3 R 4 o Y3
G, = (-——;2—-—) , when a = OR V), (6.3.17)

The equation (6.3,17) can never be satisfied when o favourable temperature
gradient (B <‘O) is applied and defines the critical Rayleigh number

when an adverse temperature gradient (B > O) is present, Since we
define @a c to be the smallest value of @9 , for any given a, which
renders (6,3,5) or (6.3.6) zero, we see that any roofs of (6,3.13) and
(6,3.14) that exist for % > O(R%) will not influence the critical
Rayleigh number, @Dc' given by (6.3.17), when 8 > O ,

| When B8 < O and % > O(R%), we see, from (6,3,3), that /*4

is always real and 1 << /.L4 << Ry3 which implies that (6,3,13) and
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(6.3.14) are never zero,

Therefore, when a = O(R]3), the critical Rayleigh number is given
by (6.3.17) which is always positive. When < O, the solution,
(6.3.4), is always non=singular and hence describes the m;ation in the

flvid, at large tiimes,

The minimum value of (6,3.17), as a function of a, occurs when

(a) = (%2 yé ’

cmin

% ' (6.3.18)
( %c min %’Tta ? } ’ J

Hence the formula (6,3.18) gives the asymptotic behaviour of the minimum
critical Rayleigh number and thz minimum critical wavenumber for very
large Reynolds numbers, R, in the range a = O(R 3).',

In order to obtain a comparison between the ahove results and the
results given by Chandrasckhar [_9] » we must first notice that the length
scale, d, used in the above analysis is half the distance between the
disks while the length scale, d, employed by Chandrasekhar is the total
distance between the disks, Therefore, we find that the Taylor number,

T, used by Chandrasekhar, [9, p.90:| is equal fo MRZ, the minimum critical
wavenumber, o used by Chandrasekhar corresponds fo 2(ac)min in the

above analysis and the minimum eriticol Rayleigh number, %c' used by
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Chandrasekhar corresponds 1o 16( %c)mi’n in the above analysis,

Then, we find that the asymptotic forms (6,3,18) may be written

2o = 4",

min
(6.3.19)

16(®,) . = 3w 2%,

for large T, which are identical to the asymptotic laws found by
Chandrasekhor {9] page 95 formula 133, for the case when both bounding
surfaces were free,

Chandrasekhar, on page 104, states, for the case when both the
bounding surfaces are rigid, that " it appears that the some power laws
hold* as for the case when the bounding surfaces were free, that is

]/
' 6
2(°c)mi’n ~> constent T ,

7
—~3 constant T = ,

16( R .

mmn

for large T, "though the constants of proportionality seem to depend
slightly, but definitely, on the boundary conditions®, Whereas,‘ from
the above analysis, we have shown that not only the power laws but also
the constants of proportionality are identical for the cases of free=free
and rigid-rigid bounding surfaces.  Therefore we may deduce that the

minimum critical Rayleigh number for the case of rigid boundaries can
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be found from inviscid considerations alone,

From (6.3.4), when a = O(R 3), we see that the steady solution,
]o'l’ consists of two boundary layers which have depths of penetration of
order R-% and c-] ond an interior solution, Hence, since we have
shown that the minimum critical Rayleigh number can be found solely
from inviscid considerations, which corre,'sponds to the inferior solution,
we can deduce that the boundary layers play only a passive role in the
determinatian of the critical Rayleigh number,

This fact can ]ulso be szen from the equation (6.3.4) because, when

we assume a = O(R 3) and retain only the highest order terms in the

denominators namely (6,3,15) and (6'.3.16), we find that

T = - -TJ- /Uzl i s;?‘i‘ fozf _ (sinh i/kzz% e 2, sinh %z} e /"‘q

- —-F——-cz: i:Z} + (cosh %z} e /2 + cosh?;\az}e /3 )}

H $ﬁ4 inh {a . .
My~ cOSh/,n {ssinh dz} ("smh/ﬁ) + sinh %ZE }

HE \
- s{iﬂ {c":ﬁsgf} (~cosh /’21) + cosh § /uzz}} . (6.3.20)

Then from (6.3,20), we see that, in the region which is well subcritical,

the first expression gives the highest order contribution and consists

entirely of boundary layer terms which are always regular,  While, as
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the critical region is approached, the remaining terms become increasingly
more imporfant and, in faci, determine the critical Rayleigh number,
However, the structure of ihe second and third terms in (6,3.20) are such
that the critical Rayleigh number may be defermined from the interior
solution alone, which agrees with the above deductions,

From the above resulis, we deduce that the critical Rayleigh number,

(6.3.17), could have been calculated from

zmznzw, = (Rl - aé)w' , (6.3.21)

instead of the steady equation obtained by eliminating, f], £ from

(6,2,2), (6.2.3) and (6,2,4), by seeking o solution of the form

w, = A cos [ﬁ"%&} + B_sin(mnz) ,
where Am’ Bm are constanis and m is an infeger, Hence, when we
compare the cbove result with the result given by Chandrasekhar [9] p.104,
we deduce that (6.2,21) determines the critical Rayleigh number for both
free/free and rigid/rigid boundaries.

From the tables 6,1 and 6.2, we see that the results caleulated from the
asymptotic formula (6.3.19) are always high compared with the resulfs

given by Chandrasekhar [9) in Table VIl page 102,  This discrepancy

may be accounted for by the fact thot, in the present analysis, we have
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T 2(aca)i‘-‘lin 16( <Q’c)min
10° 8,89 1.873 x 107
10° 13.05 8,696 x 107
108 26,11 1.873 x 10°
101C 60.56 4,037 x 107

TABLE 6,1:  The values of the minimum critical wavenumber and

Rayleigh number calculated from the asymptotic forms (6.3.19).

T a Rc

10 7.20 1,672 x 107
1c° 10.80 7.113 x 107
108 24,5 | 1521 x10°
10'° 55.5 | 3.7 x10

TABLE 6,2: The values of the minimum critical wavenumber and

Rayleigh number given by Chandrasekhar page 102 Table Vili.

T 2(C'c:)min 16( q%c)min
10° 6.061 1.078 x 107
1c 9,622 5.650 x 10°
108 23,08 1.426 % 10°
101° 52,176 2,381 x 107

TABLE 6,3: The values of the minimum critical wavenumber and
Rayleigh number caleulated from the first two terms in
the series (6,3.22).
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assumed terms of order R 6 are negligible compared with the terms
retained, while for the values of T used in table 6.1, R 6 is of order

one, Hence ithe asymptotic forms (6.3.19) are only valid for values of

T much larger than !O] O.

When the first correction term is calculated by retaining

Y dzzRyé
402R (- smh/ua - /*-'*4 cosh/'-4) .
V a ZRyé

40,8 cosh , - 2 inha),
4

for the dominant terms in (6.3.13) and (6.3.14), we find that

I
@cdin = @nRY) - QR+ o,
7 |
(R = agesy - wa2d? + ow . (6.3.22)

When we compare the resulis calculated from (6.3.122), which are given in
Table 6,3, with the results given by Chandraselhar, which are shown in
Table 6,2, we find a better agreemerﬁ for the cases T = 108 and T = ]O]O,
although this time the cclculated results are always low,

Hence it appears that, for the values of T used by Chandrasekhar,
the asymptotic Tformula (6,3,19) is not valid, Instead (c:c)min and
( %c)min must be expressed in the series (6,3.22) and provided sufficient

terms were calculated, we would expect agreement with the results given

by Chandrasclkhar,
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CHAPTER 7

THE INFLUENCE GF NON=-UNIFORM CONDBITICNS CN

A PLANE BOUNDARY

7.1 INTRODUCTION

In chapters 2 and 3, we considered the flow generated in a semi~
infinite ;xpome of incompressible fluid bounded by an infinite disk when
both the fluid and the disk were in steady rigid rotation and, additionally,
from some instant of time, non=torsional oscillations, (2,2.1), or torsional
oscillations were imposed on the disk. It was found that no oscillatory
solutions of the linearized equations which satisfied all the required
boundary conditions existed when the frequency of the imposed oscillations
was twice the angular velocity of the basic rotation,  If, however, a
second disk was introduced parallel to and at a finite distance away from
the first disk, then an oscillafqry solution could clways be found, The
presence of this second disk introduced o length scale, namely the distance
between the disks, into the problem,

in chapter 4, section 4.13, it was found that an oscillatory
solution which sotisfied the required boundary conditions always existed

when the imposed oscillations of the disk were replaced by an oscillatory
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heating of the form (4.2,8), The introduction of a length scale in the
plane of the disk through the membrane equation, provided, at the
resonant frequency, a second boundary layer thickness and therefore an
oscillatory solution which, howéver, differed from the oscillatory solution
obtained for non=resonani frequencies.

Roberts and Stewartson [29] and Busse {7] considered problems in
which a length scale can be defined and they found that an oscillatory

solution for the boundary layers clways existed,  This boundary layer had
1

=z

a depth of penetration of order R~ > at the critical latitudes and R
elsewhere, ond therefore a resonance effeci wos present in the sense thaot
different oscillatory solutions exis.ted for critical and non=critical latitudes,
In this chapter, by considering two specific examnples, we will
determine whether or not an osc;illatory solution always exists when a
length scale in the plone of the disk is introduced info the problem through

the imposed oscillations on the boundary,

7.2 EQUATIONS OF MOTION

rs 8

We consider an infinite disk, z = O, bounding a semi=infinite
expanse, z > G, of incompressible fluid when both the fluid and the

disk are in solid-body rotation with constant angular velocity, 52 .
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The cartesion axes (x,y,z) are taken so that the z-oxis is perpendicular
to the disk and parallel to the common axis of rofation of the fluid/disk
combination and the x,y~axtes lic in the plane of the disk ond rotate with
ite.  The velocity vector in this rotating co-ordinate system is u=(u,v,w).
We assume that the imposed oscillations on the disk are in the

v~direction and depend only on x and t, which implies that

v=w=0, v = F(x)einf at z=0, (7.2.1)

where n is the frequency and F(x) is some function of x which will be
prescribed later,

We will suppose that the velocity of the fluid is always small so
that it is valid to linearize the equations of motion,  Also since the
imposed oscillations are independen’ of y, we will assume that the motion
of the fluid is independent of y,  Then the equations of motion (2,2,2)

and the continuity equation (2.2.3) becoma

-g-;-’- -252v = - %(ﬁn%ﬁzz(x2+y2))+ yvzu,
-gv-i-_- +252u = yvzv ’ 7.2.2)
gfﬁ = - L2 1522620 P) + vvzw ,

=



du ow  _

x T T © ¢.2.3)
where 2 & -—2-az * _8_2__

v ax 322 )

From (7,2.3), we define a streamfunciion, yﬂ . by

u=aa": R w=-ia—x>f— . (7.2.4)

and then the y=componeni of vorticity is

.7 = g_; - %(‘V:. = ‘72%,, 7.2.5)

When the pressure is eliminated from the equofions, (7,2.2), and

the streamfunction, (7.2,4}, is introduced, we find that

3 2 ov
(-a-i: - vvz)v)p “25255 = O,

(7.2.6)
(T?F ')’VZ)V + ZQ%= o,
which we must solve subject to the conditions
@ ¥ =28 =0, ver™ omz=0,
(b) ¥, -a--z}-‘-, ve 0O asz—>o, (7.2.7)

(c) an assumption of pericdicity in t,
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We will now solve the problems that arise when we assume that
F(x) is given by

(i) o sinusoidal function,
or (ii) F(x) = constant for {x|<a

and F(x) = O for [x|{ >a,

7,3 SINUSOIDAL X-DEPENDENCE

We suppose that the imposed oscillations, (7,2,1), take the form

v =w=0, v = Ea-jz einfsin(o;x+;{) atz=0C, (7.3.1)

where n is the frequency, o the wavenumber, £ the phase angle and €
a constant, In order to ensure the validity of the linearization, we
require that ¢ <1,

When we introduce the dimensionless quantities (starred),

X = a-'x*, z = cs-]z*, v= & G-' 52 v*, )‘= 552“-2)’_* ’
b= S, (7.3.2)

into the equations, (7.2.6), we have (upon dropping the asterisks)
2 -1 .2 2 v _
("a'i:"'R V)V%'Z-a—z-"ol
(7.3.3)
d =1 .2, L 9% _
(-5‘-_- - R v )V v 2 —a—z- = QO ’
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where R = (3¢ /s:xzy) is the Reynolds number, (1,1,2), with a length
scale equal to a-]. The equations, (7,3,3), must now be solved subject

to the boundary conditions

@ }F= %—iﬁ = Q, v= ei(ﬂsin(x +4) onz=0,

(b)y-a—% v—3O0 sz o (7.3.4)
F 4 oz —? I'4 oV

(c) an assumption of periodicity in t ,

where o = (/.52 ).
In the following analysis we will assume thot the Reynolds number,

R, is large, When we substitute a solution of the form

v = v](Z)e'ﬂsin(x + £),

= y«.'(z)em—i'cos(x + 4,
into (7.3.3) and eliminate )L](z), we find

021 [:icr -R-](DZ-I)] Zv] + 4p2 L =0, 7.3.5)

where D 2 -;Z- » which must be solved subject to the conditions

2 ¢
(G) }L.':_éZ_J—:O’ V]=1 Onz=o,
(7'3‘6)

G
(b) }".',-—5-\?-, vi=—>0 &z,
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When we seek a solution of (7.3.5) of the form exp i-k} , we find

that

Rety = =122+ 0% = 0, 7.3.7)

The equation (7,3.7) is identical to the equation (4,3,13) in chapter 4
witha =1 and p=ic—, The roots of (7,3.7) have been discussed
in section 4.4 ond a summary of the highest order terms in the power
series for the roots, A, which have positive real part, are shown in
Table 7.1,

For the outer range, the solution is
: ' -1 1 1 )
v =o' Tlsin(x + #){exp L=R2(ia- +2i)zz_l + exp [-Rz(ia" -2i)§z]}
1
+ OR7), 7.3.8)

because the terms involving ?\1 produce a coniribution of order R-%.
Hence, for frequencies of oscillation away from the resonant frequency,
the solution, (7.3.8), represents two boundary layers, confined to the
disk, having depths of penetration of vorticity of order

_;_
(—2—)
'niZSZl

These are, in fagt, modified Stokes layers with an x=dependent amplitude,



RANGE OF

FREQUENCY A » A
OUTER (o4t o2t | Rlio-20
| a-i'z] > O(R'%) + 16R"(4- ::rg)';,2
INNER 1 y
|o~=2 | < O(R-%) R/4exp {3ni/8} (4iR)% R 4exp {-n |/8}
jo~+2 l < O(R-%) Ry4exp $-3ni/8} Ry4exp {wi/8 (-4iR)i
TRANSITION :
S Yali g co\E 3’4\:%
c-—_-_-z + R - 4iR R
T ["22‘ B T
- i+ :)ﬂ : + i+ i)?]
M V4[i S i
o ==2 + R* 7| e = R +
& /é 3 /_g 3% 3
- ;(.z. - .)%] + i(T- i)] (-4iR)*
P real
/ﬁ= o(1)

TABLE 7.1
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We see that as n approachas the resonant frequency the thickness of one
of these boundary layers increases rapidly.
The solution for the inner and transition ranges in the neighbourhood

of o==2is

v = 2 eic_?s'in(x + 4) { A] e-)\lz + I e-)\zz - )\3 e-h‘.}z}v
(o + ) N Z Nh

]
oY, 7.3.9

and in the neighbourhood of o= = =2 is

e e LB V]
A v sin(x + #4) We We S-e

-}/4)

+ OC(R . (7.3.10)
At the resonant frequency, which corresponds to the inner range,

the solutions (7,3.9) onc! (7,3,10) represent boundary layers, confined

to the disks, having depths of penetration of vorticity of order

y Vs

() and () . 7.3.11)
1353 an 252

L
The boundary layer of thickness ( V/4 52)* is again @ modified Stokes
layer while the other boundary layer depends on the imposed length scale,

a"]. For the transition range the boundary layer thicknesses are again
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of order (7.3.11).  The ratio of these boundary layer thicknesses, (7.3.11),

2 Vi 1
(y/"jz)i 2R/4 > 1,
(»/4 32 ¥

since R >> 1,  Hence the boundaiy layer dependent on the length scale,

-1

a , is always much thicker than the modified Stokes layer,

Thercfore we see that the introduction of a length scale, a ',
in the plane of the disk provides a second boundary layer thickness near
the resonant frequency and an oscillatory solution always exists,  When
we allow a to tend to zero, the second boundary layer thickness in
(7.3.11) tends to infinity and hence, near the resonant frequency, no
oscillatory solution can be found which satisfies all the required boundary

conditions,  This special case {a —» O) corresponds to the problem

considered in chapter 2,

7.4 SPLIT DISK

We assume that the disk is split at | x| = a and thot the imposed

oscillations, (7.2.1), tcke the form

ﬁaSZeinf |2\ <a,
} 7.4
O ixy >a,’

il

u=w=0, v

ii

A4
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where n is the frequency and € o constant, We again suppose that
£ 1 in order to ensure that the linearization is valid.

When we infroduce the dimensionless (starred) variables

X = Gx*, 2= GZ*’ v = e a& V*' }D = g Gzﬁ }L*' f =‘&~]f*r

7.4.2)

info the equations (7.2,6), we have (upon dropping the asterisks)

0 -1 2 2 ov _
(7 =f VIVY ~2x% = ©.
- 7.4.3)
] -1 2 ¥ _
G "R VN tig T O

where Ro = (52 uz/ v ) is the Reynolds number, (1,1.2), with a length
scale equal to a, We will assume that this Reynolds number, R, is farge.

The required boundary conditionsare

(b) }L,%-E)-L, v -2 O as z —3 ® ,

(c) an assumption of periedicity in i,
(d) y/ , v tend to zerc exponentially as [x] —» @ ,
(7.4.4)

where o= n/S52 .
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When we substitute

v = vz(z,x)e'r?, Y = }1,2(2’,()9“"7 ,

into the equations, (7.4,3), apply the Fourier transforn

«©

(2 9]
! [ ™ dx , F= — [ ST de,  (7.4.5)
\/211' 1/21r
-0 =0

and eliminate }ZZ' we have that

-]

(0%-a?) [o* T (p2- - w?y v, = O, 7.4.6)

where D = 'BE « This equation, (7,4.6), must now be solved subject

to the conditions
1

- 3)0 - 7
(o) )02 22 =Q, v2=(%)-§-'%-2- onz=0,

7.4.7)
G w2 )‘*2 ;2-->O gs Z == 0 ,

When we seck a solution of (7,4,6) of the form exp {-?z} , we find

that

2 -Afie-02-A) v al=0, .48

which is identical to the equation (4,3.13) in chapter 4, when we write
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RANGE OF

FREQUENCY N % A
| ourer e @t et ezt
£ lsor™ 2| ° °

22 [>0r™) A& jaPu-oh
INNER
o=-2 |.<0(R’*) |al *Rx’up §3ni/8¢ (Atao)_* Ry o Fexp-ni/8}
lc—+2 «mz‘*i gaa*k}, §-3ni/8% Ry 1«\5exp /g (-4iao)*
TRANSITION

. 2 . 1
c*==2+f£- r};"E;—"---i(-ﬁ‘—+c:2i)%’it (4iR°)%' RZM +i({;+a25)§]
cr=-2+f£ éﬁ%—u-i(-z’é-azi){l% R}f[%ﬁ+

2 g‘i 3

/u o
weao

TABLE 7,2
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ic-=p, a=a, Ro =R, The roots of ({4,8) have been discussed in

saction 4,4 and ¢ summary of the highest order terms in the power serics
1

for the roots, A, which have positive real part, for the case (a\ < Roﬁ '

are shown in Table 7.2,
3 3
The restriction la} << Ro?‘ appears volid because if lal = O(Roz),

the boundary condition, (7.4.7(a)), becomes

| Ty,
—_— 2 - -
w2 T T O 7= O0RH enz=0,

and hence, since R°>> 1, there will be a negligible contribution fo the
inversion integral,
In the outer range, that is for frequencies of oscillation away from

the resonant frequency, we have
- 2% si . o 3. W2
vy = (_E)%_s_l%_g_ E expinﬂoz(l o+ 2:)2z} + % exp E-Roz(lr.-ZI)zz}:I
-
+ O( faf ROZ): (7.4.9)

because the terms involving ?\] only produce a contribution of order

- 1
la | Ro 2,  Since we are assuming lal K Roz, we can neglect ferms

=z

of order \a Ro 2. Hence, when we apply the Fourier inversion integral,

(7.4.5), we have \

ia—f % ° . % ) % ° H 7L
v = %e expd =R 2(io-+2i)*z ] + exp §~R *(io- ~2i)’z
o o

for |x} <1,
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__1 io'-f _R%a +2-)% 4 R%' 2'%
v=ge expg o(ec" ; z} exp?_no(lc‘- l)z§
for |xt =1,

v = O for Ix| >1, (7.4.10)

which satisfies all the boundary conditions to order one,

The expression, (7,4.10), represents two modified Stokes layers in
the region |x| < 1 which have depths of penctration of vorticity of
order (¥/|n : 252} )%, no flow in the region |x\| > 1 and shear loyers
in the neighbourhood of {x} =1,

The solution in the neighbourhood of‘fhe resonant frequency, that

is for the transition and ianer ranges, is

. ® . i - ‘
v = Zem‘wiL '\l o ?\]z + o= )222 _ )\3 )‘322 sina —iaxd
= S 5 © TX;’,_" e J ——e a,
l-m
7.4.11)

for o in the neighbourhood of 2 and

- Zeic»iL 7 }\I ‘—k]z' )\2 -322‘_ ‘)531 sin a _=fox

v m _fm{w e We ~UFQ } p e aa
(7.4.12)

a

1
for o in the neighbourhood of =2, when terms of order |a'1§Ro have

heen ignored, The second term in (7.4,11) and the third term in (7.4,12)
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can immediately be integraied to give

_&% eia-texp {-(4iRo)""" z} aﬁd -5-_—;‘——:2- eio- fexp i-(iliRo)%z % ’
respectively on |xt < 1 and zero elsewhere,  Therefore these ferms
represent modified Stokes layers on the disk having o depth of penetration
of order (/4 32 )%. The remaining terms in (7.4,11) and (7.4.12)
are of the form

©

LY, o
A [ exp%-—toﬂzz Ro4c} [su;a e lax:\ da , (7.4.,13)

-

where A, ¢ are complex constants of -order one and ¢ has positive real

- part,  We have been unable to evaluate the integral (7.4.13) exactly
but instead when zRo “ >> 1, we see that the dominant contribution
arises from the neighbourhood of @ = O,  Then by expanding an]si’n ae 1
in a Taylor series about & = C we find that to the highest order (7.4,13)

R, I
behaves like (Rozzz) '. Hence these remaining terms represent a solution

which has an algebraic decay for z >> Ro- 4 and which produces o

-

negligibly small contribution, C)(RD ), when z = O(1),
Therefore the expressions (7,4.11) and (7.4.12) satisfy all the
required boundary conditions to the highest order and make o non-negligible

contribution to the flow only within a distance z = O(1) from the disk,
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Hence the introduction of a length scale, o, in the plane of the disk

implies that an oscillatory solution exists for all possibie frequencies of
oscillation, The cose o —» o corresponds o the problem considered
in chapter 2 and the above analysis is not valid because the condition,

(7 .4.4(d)), cannot be satisfied,

7.5  CONCLUSIONS

For the two special cases considered in sections 7,2 and 7,4,
we find that, even when oscillations are imposed at fhe resonant frequency,
an oscillatory solution which satisfies the required boundary conditions
olways exists and tokes the form of well=defined boundary layers con-
fined to the disk, For the non-resonant case, thesa boundary layers
are agein modified Stokes layers which have a depth of penetration
of order ( ¥/ {n Tas )%, while for oscillations of a frequency
within a neighbourhood of radius R-% (or R;%) of the resonant frequency,
a new solution exists which consists of one modified Stokes layer and
a second, much thicker, boundary layer on the disk, The depth of
penetration of this second ldyer depends upon the lengih scale which

has been introduced into the problem by the imposed oscillations and tends

to infinity os this length scale tends to infinity,  This agrees with the
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results obtainad for fhe szrai=infinite problem in chapters 2 and 3,
Hence, for these two special cases, the iniroduction of a length
scale in the plane of the disk provides a second boundary layer thickness
for resonant oscillations and therefore an oscillatory solution satisfying
all the boundary conditions always exists, iowever, a resonance effect
is still present since different oscillatory solutions are found for resonant

and non-resonant oscillations.

7.6 SINUSOIDAL STRESS APPLIED AT JTHE SURFACE CF A SEMI-

INFINITE OCEAN

We can use the resulis of section 7.3 to discuss the more realistic
oroblem of the flow generated in a semi-infinite ocean (z < O) with a

free surface (z = O) which always remains planar, when a stress

ov 5/52 eint sin(ect + g4) ,

=z

I

7,6.1)
au -
= - O

is imposed at the surface,

For the outer range, that is for oscillations at frequencies away

from the resonant frequency, we have
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1 3 2
v o= | op (Rl )2}
R%(i o~ +2i)?

1 1 .
+ —r__l__.—r exp {Rz(‘icr‘ -Zi’)zz} si’n(x-i—yf)em_f
R*(io— =2i)°

+ OR™, (7.6.2)

in the dimensionless variakles defined by (7,3.2).  This solution, (7.6.2),
represents stress boundary layers attached to the surface which penetrate
downwards through disiance of order ( ¥/)n : 232\ )71)_.

For frequencies of oscillation at or near the resonant frequency,

that is for the inner or transition ranges, the solution in the dimensionless

variables, (7,3.2), is

near G = 2 and
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near o— = =2, where the Ns are given in Tabiz 7,1, The expressions

(7.6.3) and (7,6,4) reprosent layers having thicknessas

V4

N}t

(V/4S2Y  and (v/~52)

attached to the surface,
Hence the effect of o sinusoidal surface stress, which introduces a
. . -1 . . e
horizontal length scale, « *, into the problem is confined to the upper

fluid and never penctrates a distance more than

(V/gn-zﬂ\)"‘i (v/a2S2 )/4

for non=resonant and resonant oscillations respectively,
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CHAPTER 8

SOME EXACT SOLUTIONS OF THE NAVIER=-STOKES

EQUATIONS

8.1 INTRCDUCZTION

In chapters 4, 5 and 6, the vertical vorticity produced in a fluid by
the Coriolis force together with temperature variations has been discussed
for the case when the non~linear convective terms were assumed negligible,
In this chapter we will investigate the effect of these non~lincar convective
terms on the development of the vertical component of vorticity in a
rotaffng fluid system which is heated from below, Exact solutions of the
inviscid Navier~Stokes equations, the confinuity equation and the inviscid
energy equation, in non=rotating cylindrical polar co~ordinates (r, ©, 2),
are sought for the flow in a semi-infinite expanse of fluid bounded by an
infinite plane disk, z = O, when, initially, the fluid ond the disk are
in steady, isothermal rigid rotation, If (Vr' V! vz) are the velocity
components in this co=ordinate system, then a class of solutions of the

Fform

f .
-_-__.5_'2, v =;z..5ra...[f(r)_], Vg =S att=0,

F r
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is found, where f(r) sotisties an ordinary non-linecar differential equation,
In particular we are infercsied in any solutions which are non-singular
and which exhibit a growth or decay, with time, of the vertical
component of vorticity near the axis of rotaiion and could therefore

describe the formation of a hurricane,

Also some exact solutions of the complete Navier-Stokes equations
are derived which satisfy the inviscid boundary condition at the disk,
These solutions represent possible inferior flows which satisfy the
inviscid boundary condition ot the disk, In order fo obtain a solution
of the non=linear equations valid throughout the whole fluid, we see
that, in the neighbourhood of the disk, these interior solutions must be
replaced by viscous boundary layers which sotisfy the non-slip condition at
the disk and also match the interior flow, No passible solutions for these

viscous non-linear boundary layers have, as yet, been obtained,

8,2 FEQUATIONS GF MOTION

We consider an infinite plane horizontal disk, z = O, bounding a
semi-infinite expanse of fluid, z > O, when, initially, the fluid and the
disk are in solid-body rotation with constant angular velocity, St ,

about an axis normal to the disk, Also we assume that the disk is
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maintained at a constant temperature, To' for all fime,

We take a cylindrical polar co-ordinate system (r,©,z) such that the
z=axis is parallel to the common axis of rotation of the disk and the fluid
and the r,@-axes lie in the plane of the disk and are af rest, The
velocity components for this co-ordinate sysiem are assumed fo be (v Varv, ).

Three basic assumptions are now made, Namely, we assume that
(i) the motion is axisymmetric and is therefore independent of ©,

(i) it is always valid fo apply the Boussinesq approximation E33, p.7593

and therefore we may suppose that the density

ﬁ’(] - GT),

where Fo is the density at To, a the coefficient of thermal
expansion and 7 is the variation in temperature from To ’
(iif) ony temperature variations are independent of time, and dissipation
and volume changes can be ignored,
Then the Navier=Siokes equations, the continuity equation and the
energy equation become

ov ov ov
r r




.alz.-l-v..a.:’z.-l-v -a\.iz_ = -.'._.a;P.-i- al + 2
ot ror z Oz /oo 3z © Y Vo !
ov
1 © z _
e T 9
v§j-+v -E-)z = 2T (8.2.1)
r or z 0z Kov d =T

where vz Syt v, P is the departure of the effective
kinematic pressure ‘;rom tha hydros?:ﬁc pressure, which prevails when the
fluid is at rest at o uniform temperature, To 3 g is ibe acceleration due
to gravity and Ko is the thermal diffusiviiy,

We now wish to solve the above equations (8,2.1) when we specify
certain conditions at the disk, z = C, However, no restrictions will be
placed on the behaviour of the fluid af infinity, Firstly, we will consider

some inviscid solutions,

8.3 INVISCID SOLUTICHS

We will now seek solutions of the equations, (8,2,1), when the
ferms representing viscous and thermal diffusion are ignored, namely the

equations



2
8vr v avr Vg _ 1 %
7 v TEw VT T
o
E)ve+v Bve-'_v ave-"_vrve - o
ot r or z oz @ r '
aVz awz sz 1 3
wotem— m———— \ —— = e —— i
7 +vr 3 + Iz 5 - az+ge!T ? (8.u.])
ov
1 ¢ z =
ra )t ©.
oT ol _
e o +"z'a‘z' - C. /

The solution of these equations, (8.3.1), comresponds to a possible interior
solution when the kinematic viscosity, ) , and the thermal diffusivity, Ko,
are suitably small,  The order of the equations (8.3,1) is less than the
order of the equations (8,2,1) and, therefore, in order to satisfy the non-
slip condition at the disk, a b.oundary layer solution must be added to the

following interior solutions.

We now wish to solve the equations, (8.3,1), subject to the conditions

(o) v, = C onz =0 for all r,i,
(b) Vg © Str at t =0 for all z, 8.3.2)
(c) T = C© onz=0 for all r,t,

Also, whenever possible, we would like to obtain @ solution which also

satisfies the additional conditions
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(o) v —2 O a5 =y for all t,z,
(8.3.3)
(b) Vv, are always regular,
We now CHOOSE
(9] _ zf'(r)
r - -_;,—' 4 vz - __r- r (80304)

where f(r) is some arbitrary function of r which will be determined later
ond prime represents differentiation with respect fo r, This choice,.
(8.3.4), for v, and v_ ensures that the continuity equation and the
inviscid boundary condition, (8.3.2(a)), are satisfied,

When we substitute (8,3.4) into the equations (3,3,1), we find

that
VZ
fd f. Yo _ 1 o
FE T T w (8.3.9)
% 1% P Mo _ (£.3.6)
oF r or r oz r2 ’ U
fz 4, .2 _ 1 dp
-F--d?(-;—-) + Zer—-) - ™ —--; ‘5; + gQT 2’ (8.307)
f o7 zf* o _
rEtTE O 8.3.9)

In order to obtain the general solution for the equation (8,3.4),

we must consider the characteristic equations El«'»l] R
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dt _  dr _ dz dvg

TOEA TR G

which have solutions

;
- zf(r) = aq, rve=b, i-+[-ﬂ:;)—.dr=c,

vhere a, b, ¢ are arbitrary constants,  Then the general solution of
(8.3.6) is

.
p
vg = F zzf(r) , Hf—i%r dr} , (8.3.9)

where F is some arbitrary function, In order that (8,3.9) satisfies the

initial condition, (8.3.2(b)}, we require

"252 = F{zf(r), [-m-':)- dr} . (8.3.10)

Similarly, for the equation (3.3.8), we must first consider the characteristic

equations

from which we findthat the general solution is
T = C@f() , (8,3.11)

where G is some arbitrary function,
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When the pressure fs eliminated from the equations (8.3,5) and

(8.3.7), we find that

2
\'4 .
0, d f d ' \2 _ o1
St g mr g v 6 } =g . (632

Vihen (8,3.12) is integrated with respect to z, we find that

2 z
2 e = gaf R N Y A
(8.3.13)
where H(r,t) is some arbiirary function, Aft =0, Vg © S2r ond
the left hand side of (8,3,13) is a function of r only, Therefore, since

the right hand side of (8.3.13) is independent of time and a function of

z and r, we require that

f__ dz - 328 {-_T(-H(—Z} . (8.3.14)

so that (8,3,13) is always sotisfied.  For both the ferms in (8,3.14) to

have the same z~dependence we require, from (8,3,11), that
T = yzf(r) , (8,3.15)

which satisfies the condition (8.3.2(c)) for any constant, y.
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When we substituie (8,3,15) into the equations (8,3,12) and (8.3.14),

we find that

2 ;
v
£d f. . P2 . !
=) g {‘?3?""‘;‘“‘?’ } mowf | = O,
l
ygef' ~ -‘j; --?-g—r- )+ (—-—) l = O. (8.3.16)

From (8.3.16), we see immediately thot Ve is independent of z and hence,

from (8,3.9) and (8,3.1C), we have that

r
- r
I'Ve = r{f + [-m-_)—.dr} ’

o
where r252 = Fif?&)-.dr [ -

Therefore we have found a whole class of solutions of the equations,

(6.3.17)

(8.3.1), subject to the conditions, (8,3.2), of the form

§ f
v - "'l(,-rz ’ Vz = "Z‘T@ ’ T = yzf(r) ’
r r
v = Fat+ re dF where St r2 = F e dr
e | Yy KON d

(8.3.13)

where f(r) niusf be chosen fo satisfy
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0/(r) 'L_ fr) d UL ayf(r) = K (8.3.19)
v r dr'r S ! o
where K is a constant defined by K = - LI .

4 f f)z

We will now Fonsider some special cases of the ahove class of
solutions by assuming different values for y and K,  The most interesting
case occurs when y # C, K # O, which is discussed in Section 8,5, cuse 2.
However, before considering this case, we will discuss some problems that

arise when y and/or K are identically zero,

8,4  INCOMPRESSIBLE SGLUTIONS

We will first consider some solutions when the fluid is incompressible,

that is when

f = f and T = C .
)
This is equivalent to assuming that y 2 O,  Then the equation (£,2,19)

becomes

_f d F'(r)) (f_'r_(r_)_,z = K (8.4.1)

r ~oe

Case 1: y2Q, KEO

For this case, the equation (8.4,!) reduces fo

r ., _ 7
i

L
T ar 'y
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which can immediately be integrated to give

po= 2A0F (8.4.2)
where A is a constant, This equetion (8.4.2) can again be integrated
to give

) = B oxp AL, (8.4.2)

where B is another arbitrary constant,
Hence for ihe special case when the fluid is incompressible and
K 2 C, all the solutions of (8,3.1%9) are of the form (8,4.3) and, from

(8.3.18), we find immediately that

y 2 -
vo==ZeplAlt , v =2aBzep At} , TE2O, (6.4

1 2
TR OXP 1-Ar }} .

(8.4.5)

?
Vg = F{i‘ - ?-g\-g—exp i-,ﬁ.rz}} , Where r"32 = Fi-

if we assume that
1 2
X ="-2TB§EXP§_"AF } ’
then = —S%-—-log(-ZABX) = 52 r2 ’
and hence, from (8.4.5), we have that

Vg = - ..'%.2_. log [-2/4\5? + exp {-Arz}} . (8.4.6)
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In order that (8.4.4) ond (8,4.68) are the solution of a physical problem,
we will restrict A,B to being real numbers, which implies that the
velocity components must always be real,

We define a sireamfunction, Y, by

Cha - 122 (8.4.7)

Then, from (8.4.4) and (8,4,6), we find that

¥ = - Bz exp {Arz} , w C, wg = 48z exp iArz} ,

r

w = 27¢ — (8.4.9)
z (1 - 2ARt exp {Ar"})

The solution for v in (8,4,4) is always singular at r = G, which
corresponds fo o sink or a source on the z=axis depending whether B is
positive or negative and, therefore, the extra condition, (8,3,3()), is
never satisfied, The remaining condition, (8,3.3(a)), is satisfied oniy
if A is negative,

For the case A > G and B > O, which implies a sink on the z~

axis, we sce, from (8.4.68) and (8.4.9), that Vg, and w9, have a



- 3C3 -

singularity at

1 2 o \
t = e oD {-a”}t (8.4.10)

which moves towards the origin, r = O, as t tends to infinity, When
A>OC, B <O, which corresponds to a source on the z-axis, we find,
from (8.4.6) and (8.4.9), that Ve and uDz are always regular,  for
the case A < O, B < O, which implies a source on ihe z-oxis, Vg

and w, have a singularity when t is given by (8.4_.]0), which moves
away from the z~axis as t increases. When A < C, B > O, which
corresponds fo a sink on the z~axis, Vg and w,_ are always regular,
The variations of w with r, for fixed ¢, for these four cases are shown
in Fig.8.1.

When A = O, we have, from (8.4.4), (8.4.6) and (8,4,9)

B . - 2
vr=~;-, vz=(), T=0, rvg= S?,r,

(8.4.11)
Y= = Bz, Ly = W =0, w =252
This is a very special case with a sink, B > O, or a source, B < C ,
on the z=axis, with the streamlines given by z = constant and with the

z=component of vorticity and the.azimuthal velocity unchanged from their

initial values,
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8.1(a)
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1
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8.1(b)



8.1(c)

2

8.1(d)
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- FIG.8,1: Sketch of the vertical vorticity,

=
0z T AR 21y
1- exp-f_Ar })

when
@@ A>0, B>O0, | b, = (ZAB)-.]exp i-;Arizs, i=0,1,2 where

f <\;‘f1 < fy

‘b)) A>O0, B<O, for fixed t ,
, (c)" A<O, B<O, b= (2AB)-]exp i-Ariz} , i =0,1,2, where
bt <ty
d A<O, B>O, for fixed t .
/sz

~

252

L J¥ <0

g
‘ﬁ—u____, .

o t
FIG.8.2: Sketch of the vertical vorticity w, = 252 exp{f\/K} .
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When B = C, we see that the initial state of solid-body rotation

is maintained,

Case 2: y20,K#CQC

We must now consicder the solutions of the equation (8.4.1), which

hecormes
dzf 2 _ 1,
] P (-c-:-‘z) = ..—‘3-.( ’ (8.4. ]2)
dx” ;

; . 2
wnen we write r = x ,

A solution of (8,4,12) is

1
12
f = ..._"‘2< . (8.4.13)

VWhen we sukgtitute (8,4,12) into (8.3.18), we find thot

rK% % -
Vr = "'-—2-, 'VZ=ZK ’ T'—-U, (8.4,‘4)

.-

- 2 -3
Vg = F{f+2K %log r} where rrjl =F§2K ®log f}:

and hence

Ve = 52 2 exp (HKE . (8.4.15)

We will assume that K is a positive real number in order that the velocity
components are the solution of a physical problem,  Then, from (64.7),

(8.4.8), (8.4.14) and (8,4,15), we find thai



¥=-T0—, w = W20, w=22 apink},
(8.4.16)

The dbove solution, (8.4.14), always satisfies the additional boundary
condition, (8.3,3(b)), but never the condition, (8,3.3(a)). From (8.4.14),
(8.4,15) and (8.,4.14), we see that all the functions are regular and that
the only vorticity produced in the flow is in the z~direction,  This axial
component of vorticity increases or decreases with time depending upon the
sign chosen for VK and is independent of r and z,  The variation of W

with time is shown in Fig,8.2,

A second soluiion of (8.4.12) is

1
KZ
N SN (8.4.17)

where A is on arbitrary consiant, Then, from (8,4,17, (8.2.18), (8.4.7)

and (3.4.8}, we find

KEr A o5 -
2 1
Vg = 582 cp ikl + 252 A2 (exp KT - 1),
1
¥ = -z(’<2’2+;.~) w = W = Q
2 e r S !

w = 252 oxp Sk § . (3.4.18)
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We will again assume that X is a positive real number and that A is real,
The effect of introducing this extra constant is that neither of the additional
conditions, (8.3.3(a)) and (5,3.3(b)), are satisfied, while the vorticity
generated remains unchanged,  Also we have introduced a source or a

sink on the z-oxis depending whether A is negative or positive,  The axial
component of vorticity, L2 w is again shown in fig,3.2,

o

8,5  VARIABLE BENSITY SCLUTIONS

We will now assume that y # O in the equaiion (8,2.19).

Case 1t yZGC, KEO

When we assume that K = O and write r2 = x, the equation

(8.3,19) bocomes

2
Lk A2 gyt _
f;:g + (a)—() -:?;L o. (8.5.1)

.

A solution of this equation, (8,5,.1), is

¢ = ﬂégxz. | (£.5.2)

Then, from (8,5.2) and (8,3,18), we have

v ==-92 v.= ‘% ar? T= gqyz -
r 8 7 z ’ 8 ’
2
P -2 1 (6.5.2)

4 - gayir
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Then, from (2.4.7), (8.4.8} and (8,5.3), we find that

A -
¥’=-g-g~y-r'z, Lor=0, L.Og=-zrgcty,

32
w = ———m—s . (8.5.4)
z (gayfrz—4-)

The solution (8,5,3) always sotisfies the additional boundary condition,
(8.3.‘3(!3)), but not the condition, (8.3.3(a)). When y > O, the

functions Vg and w, have a singularity at

§o= '—47' ¥i (8.5.5)
gayr
which moves towards the z-axis as time increases, Cn the other hand,
when y < O, the functions Vg, and w_ are always regular, It should

be noticed that the temperature variation, T, is always positive. The

variation of ooz with r for fixed z is shown in Fig.8.3,

Case 2: y#Q, K#Q

When both y and K are non~zerothere exists a solution of (8,3,19)

of the form

f = C(1 - exp Sk}, (8.5.6)

2
where K = = gayC and y = -1-1%-2— , Which is negative if C > O and

positive if C < O, for real k,  Moreover, yC, which appears in T below,
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_FIG.8,3: . Sketch of the vertical ‘voffiéify,
3232
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"wHen ‘
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@ y>0O, t=4ay) , i=1,2, andt <t

(b) 'y <O for fixed f. .
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R

FIG.8.4: Sketch of the sfreamlines .

)Q = -lC [] -exp i-krzfl z,

when (a) k > O, (b) k <O, where 3%~ C< O and —Yp— c>0.,
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is always negative, while K is always positive,

Then, with the value (8,5.6) for f, (8.2.18) becomes

' 2
=L D - c:xpi-l\r }] R v, = 2Ckz exp {-krz} ’

T =yC [‘I - exp %-—krz}] Z ,

Vg = ——'SE—- iog [exp {Zka}(exp {krz}-'ﬁ) + T] . (8.5,7)
We will assume that y, K and therefore k, C are real numbers in order

that the above solution (2,5.7) represents some physical problem,

Then, from (8.4.7), (8.4.8) and (8,5.7), we find that

¥=-C [l-exp f_"krz}] z, wr £0,
L-.‘Jé = 4Ckzzr exp i-krz} p (8.5.8)

2352 exp ikrzi’
exp ikrz} =1 + exp {~2kCt}

The streamlines are shown in [ig.8,4.
When k < O, we see that the solution, (8,5,7), always satisfies
the additional condition, (8,3.3(b)), but never the condition, (8,3.3(a)),

and that Vg and w3, have a singularity of

t = - ?iz- log [’l - exp{krz}] ’
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when C < O, which moves iowards the z~axis as fime increases, hut are
always regular when € > O,  The variation of T and 0 with r {or
fixed z,t are shown in Fig.B.5(a) and Fig.8.6(a),(5), respectively.

When k > O, we have the most inferesting case since the solution,
(8.5.7), satisfies both the additional conditions, (6.3,3). For this
case, all the functions (8,5,7) and (8,5.3) are regular and the fluid ot
a large distance away from the axis of rotation (r —=» ) has a non-zero
velocity component in the azimuthal direction only,  These properfies
demonstrate that this particular solution is the most useful solution that has
been discussed, The variations of T and w, with r for fixed z,t are
shown in Fig,8.5(b) and Fig,8.6(c),{), respectively. |

Hence, when k > O, the temperature disiribution, T, is independent
of time and, from Fig.8.5(hb), we see that of any given radius the
temperature decreases and therefore the density increases as z increases,
Therefore there exists lighter fluid in the neighbourhood of the disk with
heavier fluid dbove it,  This situation produces convection currents
which alter the vertical vorficity present in the fluids Hence we see,
from Fig,8,6, that, when k > O, the vertical vorticity in the neighbourhood
of the axis of rotation (the z=axis) is increased or decreased with time

while the vertical vorticity at infinity is unchanged from its initial value,
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tnereases
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tnerasSes

. e
 8.6(d) | | S

FIG.8.6: . Skefch of the vertical vorhcnfy, |

2T

“when

= Z&exp{kr } [exp{kr -"I + exp {-Zka}]

(a) k< O, C>0, for flxed t

' -1
\ (l?) k<O, C€C<O0O, and fi = =(2kC) Iog% [1--exp‘{kr’;Z }]

i=1,2, where to <‘t],,

() k>0, C>0, for fixed t,

d) k>0, C<O, for fixed t .
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8.6  SOME SCLUTIONS INCLUDING VISCOSITY

We will now derive some solutions of the full MNavier=Stokes
equations, (8.2,1), when the temperature, and therefore the density, of
the fluid remain constant, which satisfy the condition that the vertical
velocity venishes on the boundary, z = O, We will not impose the initial
condition fhaf the fluid and the disk were, initfally, in solid~body rotation
with constant angular velocity, S . However, insiead of specifying
an initial condifion, we see what possibilities the soluiions allow,  These
solutions represent possible interior solutions fo which houndary layers
must be added in order io scai'isfy the non=slip condition at the boundary,

We assume that

V.= ~Ar , v, = 2Az , (8.6.1)

where A is a real constani,  This choice, (8,6.1), safisfies the continuity
equation and also the required boundary condition ai z = O for the
interior solution,  From (5,6,1) and (8.4.7), we find that the streamlines

dare

¥ o= ~Arzz.

When we substitute (2.6,1) into (8,2.1) with T £ O, we find

that

2
v
A2 B . L (8.6.2)

r /oo or '



v ov v 2 2
o o & _ 2 1@, 0 1
ai’ - /\r - ZAJ - /’\Ve =y -—7"" ;_--:3? +——2 —Z V%
or 0z r
(80603)
ey = L% (8.6.4)

The equations (8,5.2) and (3,6.4) are identical to the inviscid equations
(8,3.5) and (8,3.7) with = Arz, T 2 G, because the viscous sfress
terms are identically zero,  When we eliminate the pressure between the

equations (8.6.2) and (8.6.4), we find thai

2
A~
L%} " __'s;
T‘;(r)—(“'

Hence v, is independent of z and the equaiion (8.5,3) reduces to

ov

s o U N - "
o TAFve) = Y g ). (8.6.5)
When we write

N@ = 7 r2 =X,
the equation (8.6.5) Lecomes
U _ 9 au o
-5?- = X—a-;; [ZAU + 4)/—0-;-] . (0.6.6)

Before we discuss the general solution of equation (8,6.6), we

will consider three special cases,
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Case 1: Extension of Burger's solution

We will now discuss the solution of (3.4.5) which was derived by

Roit [32 , p.408] . We seck a solution of the form

U = K[1-exptmxftil/2y §) (6.6.7)
whare K is a real constant and F(t) o function of time, When we substiiute

(8.6.7) into the equation (£.56,6), we find
wo o= AR - Fz(f)] ’ (8.6.9)

where prime represents differentiation with respect to t,  The equation,

(546.8), can be iniegrated fo give

(1+Bexp{28}) = £, (6.6.9)

where B is a constani of infegration,
Hence we have, from (5,8,9) and (6,6.7), that
U=K |1 ~-expi~-Ax/2»(1 +B exp{-zl-\i-})a ;
or alternatively
Vg = K [‘n’ - exp f-Ar2/2y(1+B exp $-241% )}] . (8.6.1C)
Hence we see, from (8,6,1C), that Ve satisfies the following conditions,
3 Ve —> Q0 as r ~—> oo, for all ¢ sucH that A(1+B exp £-2At} ) >0,

(i7) Ve = C onr =0 for all t except when 1 + B exp i-ZAf} =0,
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(ii])  When 1 + B exp § =24t = O, then Vo K/r which represenis
a potential vortex,
(iv) Vg = K D - exp i-Arz/Zv ('I+B)}] a t=0,

v) near the z=axis, at + = O,

_ AKE o 2 ., __AK
rve—m-S?r ,prowded R—m and

(vi)  when B = =1, the singularity discussed in (iii) occurs aft t = C ,

The vorticity components are

g 2
WE LL=0, W = KA e&i-Ar /2y (148 exp i-2Af})} .

d e z Y (1+B exp{ “2A: 1)

(8.6.11)
When A > G, B<=T or A<Q, =1 <B< G, we see, from

(6.6,10) and (8.6,11), ihat w, and Vg have a singularity at

- ] -
T = EA—-IOQ(E').

For the remaining ranges A > O, B ><-1, A< G, B> G and A O,
B < =1, we see that w, and Vg are always regular.  The variation:
of uoz with r for fixed ¢ is shown in Fig,8,7 for K > C, which we may
assume without loss of generality,

When we allow + = = @ in (8.6,10) and (8,6.11) for A > O,

we find that Vg =9 C and uoz'-—-a O, Therefore when A > O, the



t tncrtoses
$or A7O,B>o

t uncreoses
for A0 07071
oc a<ko, 6<-\

e
8.7(a)
Az
>

t s'.ncr@.o..ses-.
for A<O, B0



E \ncreoses

from £y to ©

- 8.7(c)
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for fixed t, when |
@ ~A>0, B>O; A>0, O>B>-1; A<O, B<-1,
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- 324 -

vertical vorticity, (8,6,11), is identically zero when t —» - o and

becomes

W o= % exp i-—ArZ/z y} )

z
when f —» o, Hence, ai large times, a concentration of vertical voriicity
is developed in the neighbourhood of the axis of rofaiion while af large

radii the vertical vorficity is unchanged from its initial value (t = ~ o).

Case 2

When we seck a solution of (8,6.6) of the form

U = 52 xexp Ixt, (8.6,12)

we find that A = 2A and ihat the viscous stress terms are identically
zero, This solution, (8,6,12), is identical to (8.4.15)., Hence the
inviscid solution discussed in section 8,4 when f is given by (3,4,13), is
also a solution of the full MNavier=Stokes equations because the viscous

siress terms are all identically zero,

Case 3

When we seck a separable solution of (8.6.8) of the form

U = xexpi=-kt. G, (8.6.13)
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we find that the function (i) must satisfy the equation

Gl = 2%

G'(1) = (2A - BYNG(N + xG().Y -2AN + 4 X° § | (8.6.14)
From (8.6.14),we see that

 §
2vX = A and %g} = -4y, (8.6.15)

When we integrate (8,6.15), we find that
G(t) = B exp{-2AtT , A (8.6.16)

where B is an arbitrary consiant.  Hence, from [8,54,13) and (8,6,16),

we have that

2
Vg = Briexp §=2At - (Arz/Z)')} . (8.6.17)

The vorticity components are

2
- Ar 2
w2 == = : - Cu -
g w@ o, L»Dz ZB['I 5 ]exp $=2A1 = (Ar /ZV)g .

(8.6.18)
The solution, (8.6.17), satisfies the following conditions
) vg——)O as r —3 0 when A > C, for all ¢,
(ii) ve = O onr=0 forallt,
(iii) ve = Br exp %-Arz/zv} when t = C, which becomes Scr

near the z-axis provided that B 252 .,
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W2 Ce
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FIG.8.8: . Sketch of the vertical vorticity,
_ 2 : 2
W, = 2B(1-Ar”/2v Yexp {-A(r + 4y t)/2 _V}

s

whenb (a). A > O, (b) .A <0, forB >0 and for fixed values of t.
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The variation of wo_ with r for fixed time is shown in Fig,8,8 for

B > C, which we may assume without loss of generality,

THE GENERAL SCLUTICHN

We now return fo a consideration of the gencral solution of (8.6.6).
When we apply the Laplace iransform,

(o8]

U = f 8 e_pfdl' ’

o

to (8.6.6) and use the faci that

[ o]
ou =-pt, _ —
—-é-i;-e df = Uo-l-pU,
o

where Uo is the value of —ivg at t = O, we find that

pU + U_= x% {2AU + 4y U } . (8.6.19)

ox

if we write U = uv, where u,v are some functions of r and t, the equotion

(8.,6,19) becomes

Uo = -puv + X ZZA(uv' +utv) + 4y (uv'' + 20tV + u"v)} p (8.6.20)

where prime represents differentiation with respect to x,  In order that the

terms involving v'vaalsh we require that
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U = exp i-Ax/llv} . (8.6.21)
When we substitute (8.6.21} into (8.6.20), we find that
v"+v[— P - ”‘2] - (8.6.22)
4yx 16 y2 4yux ° *Ue

If we write '? = (Ax/2y), (8.6.22) becomes

© U exp{—‘z-"ﬂ
1 p _ o
Vg TV “r%‘/‘] T T . (B.6.29)

where Uo is, in general, a function of NZ .

For the special case when Uo is zero, we have

LA I
V,yqf + V[ E —ZK,—‘?—] O ’ (8;6.24)
which is Whittaker's equation {45, p.337] . This eguation, (8.6.24),

has solutions

<
Il

exp {-Ax/d-v} Uk’m(x,P) p

where k (-p/2A), m=7%,

Hence the general solution of (8,6.19) for the case when Uo =0
is
U = exp {~Ax/2 V} Uk’m(x,p) . (8.6.25)

These solutions are, in general, very complicated and we will not pursue

the discussion of this general solution,
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We see, from (8.6.12) and (8.6.17) that for the special cases 2
and 3, Uo is = 52 x and -Bx exp {-Ax/2v} respectively, which are
non-zero, We will now show that these special cases can be derived
from the solutions of the equation (8.6.23),

Firstly, we seek a solution of (8,6,23), with Uo =~ S22 x, of the

form Cr?exp &%7} , where C is a constant, Then we find that

2y 52

c = 2222
| A fp - 2A}

and hence

2vRY
Afp - 2A}

T =

which yields (8.6,12) when the inversion integral is evaluated,
Secondly, we seck o solution of (8,6.23), with -Go = =Bx exp $~Ax/2 v} ’

of the form C./? exp {-—'2*47} , where C is a constant, Then we find that

c = 2By
Aip+2AE
ond hence
T = 287 exp 3~}

Alp +2A%
which yields (6.6,17) when the inversion integral is evaluated, Hence we
have shown that the special cases 2 and 3 can easily be derived from the

general solution,
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