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ABSTRACT 

The problems discussed in this thesis lie in the realm of geophysical 

fluid mechanics and concern periodic and transient fluid motions 

produced by kinematic or thermal perturbations from a basic isothermal 

state of steady rigid rotation. 	We consider either a semi-infinite expanse 

of fluid bounded by an infinite disk or the fluid between two parallel 

infinite disks when, initially, the whole system is rotating with constant 

angular velocity, 

For the semi-infinite case, the linearized initial-value problem 

associated with the disk performing non-torsional or torsional oscillations 

in its own plane is examined. 	Oscillatory boundary layer solutions are 

found except when the frequency of the imposed oscillations is twice 

the angular velocity of rotation. 	For this resonant case, a non-oscillator/ 

solution is obtained which penetrates through the fluid with time, 	When 

both disks are present, the corresponding linearized problems are examined 

and oscillatory solutions can always be found. 	Also, for the semi-

infinite problem, oscillatory solutions always exist when a length scale 

is introduced in the plane of the disk through the imposed oscillations, 



When two disks are present, we consider the linearized initial-

value problem connected with a spacially varying temperature distribution 

on the lower disk. 	A final steady state is obtained consisting of 

Ekman layers on the disks together with an inviscid interior thermal-wind 

flow. 	The effect on this steady solution of assuming a one-dimensional 

step-function or normal distribution for the temperature variations, and 

also the consequence of introducing a favourable or adverse temperature 

gradient in the initial flow, are discussed. 	The affect of the non-

linear convective terms is examined by seeking exact solutions of the 

inviscid equations. 
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CHAPTER 1 

INTRODUCTION 

In geophysical fluid mechanics of the oceans,Aahnosphere and 

even possibly the earth's interior, one is concerned with currents and 

circulations which are dominated by the Coriolis effect of the earth's 

rotation. Moreover, the effects of heating-whether regarded as steady 

or periodic (night/day cycle) are profound and surely lie at the root of 

phenomena such as hurricanes. For these reasons, a class of problems 

has been considered in this thesis which is concerned with periodic and 

transient fluid motions produced by small perturbations either in the 

velocity field or the temperature_ field from* basic isothermal_staady state 

of solid-body rotation. 

For any fluid system which is rotating with constant angular 

velocity, 	, and for which there exists typical length and velocity 

scales, 	respectively, the two dimensionless parameters 

V Ro 	 (1 I 1) 

2 
• (1.1.2) 



can be defined, where P is the kinematic viscosity. The parameter 
R0  

defined by (1.1.1), is the Ro,r4-: number and represents the ratio of 
ft lakt 

the convective acceleration to the Coriolis force and hence the\importance 

of the non-linear terms in the equations of motion. The parameter R, 

defined by (1.1.2), is the Reynolds number and represents the ratio of 

the Coriolis force to the viscous force. 	In this thesis, whenever the 

parameters (1.1.1), (1.1,2) can be defined, we will assume that 

Ro  << 1 , 	R >> 1 , 	 (1.1.3) 

which implies that the convective acceleration and therefore the non-

linear terms in the equations of motion, are negligible compared with the 

Coriolis force and that the effects of viscosity are only important in 

regions where there are discontinuities in the velocity profile or in the 

neighbourhood of confining boundaries. Therefore we are only concerned 

with a class of problems for which there is an interior inviscid core where 

the motion is dominated by the Coriolis force, viscous free shear layers 

in the neighbourhood of sharp or discontinuous velocity profiles, and 

viscous boundary layers on any confining walls where the Coriolis and 

viscous forces balance. 

For slow (R
o —) 0), steady, inviscid (R 	co) flow the momentum 

equations reduce to a balance between the Coriolis force and the pressure 



gradient, which is called the geostrophic balance, and can be used to 

describe the steady flow in an inviscid isothermal core. 	This geostrophic 

mode possesses circulation and only exists for containers having closed 
a fond; I ton 

contours of constant total height p6, p.433which is always satisfied 

for the geometries considered in this thesis. OM* ar other containers, 

an infinite number of low frequency Rossby waves [16, p.851 arise to 

replace geostrophy. When temperature variations also exist, then the 

relevant equations for steady flow in an inviscid core become the thermal-

wind equations 342 which relate the vertical shear of the horizontal 

velocity to the horizontal gradient of the temperature field. 

Proudman [273 showed theoretically and later Taylor [37, 38, 393 

confirmed experimentally that all slow, steady, inviscid motions in an 

incompressible rotating fluid are two dimensional in the sense that the 

motion is independent of the co-ordinate measured along the axis of rotation. 

This implies that the flow is identical in every plane normal to the axis 

of rotation. 	Then it follows that, wherever there is an obstacle present 

in the system, the fluid must flow around the obstacle in every plane normal 

to the axis of natation and hence around the circumscribing cylinder. A 

particular example of this phenomenon occurs when a sphere travels with 

a small velocity either along or normal to the axis of rotation because, 
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as the sphere moves along, it will carry with it the fluid inside the 

circumscribing cylinder which has generators parallel to the axis of 

rotation [34, p.146, 1491. 
"13 "9'" 

In the neighbourhood of any confining walls or inxthe interior where 

there are sharp or discontinuous velocity profiles, the effects of viscosity 

become significant and boundary or free shear layers are formed, 	These 

viscous layers may have dimensionless thicknesses of order R 2, R 	or 

R j4, depending upon their role in the flow field. 

One very important boundary layer present in a rotating system is the 

so-called Ekman layer Do, p.30] . 	It should be noticed that the 

expression (2.3.5) for 7C,  which is given by Greenspan Do] on page 31 

is incorrect and, in fact, it should be replaced by 

P2- 	rexp(-(20'ez) + F(z,t)1 . This boundary layer is formed 
az 

on an infinite plane disk which bounds a semi-infinite expanse of 

incompressible fluid, when both the fluid and the disk are in rigid 

rotation with constant angular velocity, Sa. , and then at some instant of 

time the rate of rotation of the disk is slightly altered. 	For the Ekman 

layer, the depth of penetration of vorticity is of order ( V/52 )1  or R4  
eel' 

in dimensionless variables. 	The.vorpase of the Ekman layer is to increase 

(decrease) the angular momentum of the fluid in the vicinity of the disk 



by impelling the fluid radially outwards (inwards). 	This fluid is replaced 

by an inflow (outflow) from the inviscid interior and is called the Ekman 

layer suction. 	The unsteady Ekman layer forms within a few revolutions 
;‘, 

and tends, eventually, to a steady state when it has finite thickness and 

the diffusion of voracity is balanced by the distortion of the vortex lines, 

For steady flow in the neighbourhood of confining walls parallel to the 

axis of rotation or around discontinuities in the velocity profiler a me 

complicated structure arises than that found for the Ekman layer. 	In fact 

two viscous layers are formed 06, p.97] 	The first layer has a depth 

-4 of penetration of voracity of order (1:2752. )Y4  or R 1/  in dimensionless 

quantities and is responsible for smoothing out any abrupt changes and 

discontinuities that occur in the azimuthal velocity component. 	The 

second layer has a depth of penetration of voracity of order (AV 51. )y3  

or R Y3  in dimensionless quantities and is responsible for vertical mass transfer 

usually between two Ekman layers and for matching the required condition 

cn a vertical wall, 

The structure of vertical free shear layers was discussed by Stewartson 

[35] for the system consisting of incompressible fluid bounded by two 

concentric infinite split disks when the inner finite disks rotate with a 

slightly different angular velocity from the fluid and the remainder of the 

disks. Stewartson found that when antIvymmetric boundary conditions 
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were imposed on the inner disks only the shear layer which had a thickness 

of order R
-Y3 
 was present, because the interior flow, which is the average 

of the imposed boundary conditions [16, p.93] , was zero and hence no 

adjustment in the azimuthal velocity was required. 	While both free 

shear layers were present when symmetric boundary conditions were imposed 

on the inner disks. 	The free shear layers formed when two concentric 

spheres rotate at slightly different speeds has been discussed by Proudman 

[261. 	He found that the same structure existed as in the Stewartson 

problem except in the neighbourhood of the equator of the inner sphere. 

This demonstrates that the basic physical processes are almost unaltered by 

variations in the geometry. 

In a rotating system containing incompressible fluid the Ekman 

boundary layers play an active role in the flow field and in fact, 

control the motion in the interior inviscid core, while the vertical boundary 

-Y4 
and free shear layers, the R

-Y3 
 and R 	layers, have only a passive 

role in the flow pattern and do not influence the motion in the interior 

core. 

We now consider the particular system consisting of two infinite 

plane disks with incompressible fluid between them when both the fluid 

and the disks are in rigid rotation with some constant angular velocity. 
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If the angular velocity of the two disks is altered slightly by equal and 

opposite amounts Vas Eknian layers are formed on the disks. 	The inflow 

into one Ekman layer is equal to the outflow from the other Ekman layer 

while the angular velocity of the interior is unchanged. Alternatively, 

if the angular velocity of the two concentric disks is varied by identical 

small amounts then the final steady state that persists after the transient 

effects have decayed is solid-body rotation at the new angular velocity. 

The time dependent process, the so-called spin-up process, has been 

discussed by Greenspan and Howard [17]. 

The initial impulsive change in the angular velocity of the disks causes 

a Rayleigh layer U?1 f  p.1361 which penetrates through the fluid 

in the standard diffusive manner, to be formed on each disk. 	Within 

a few revolutions, that is in a time scale of order one, the effect of lit clulte 

rotation is felt and quasi-steady Ekman layers develop on the disks. 

In addition, inertial oscillations at twice the frequency of rotation and 

with very small amplitude arise in the fluid. 	lf, initially, the angular 

velocity of the disks ,r1 increased, then, in the Ekman layers, there is 

a radial outflow which produces a corresponding inflow into the Ekman 

layer from the inviscid interior. 	In order to satisfy conservation of 

mass there must exist a radial inflow in the interior which increases the 
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angular momentum of the fluid. 	Hence by this process the interior 

fluid is spun-up to a new state of rigid rotation in a time of order 

li(,,52)) )2  f, or R - in dimensionless variables, which will be referred 

to as the spin-up time and agrees with the experimental results of 

Wedemeyer L441. Therefore the Ekman layers act as *sinks-for the 

low momentum fluid in the interior and this fluid is replaced by higher 

momentum fluid from larger radii. 	The inertial oscillations persist 

through the spin-up time and require the viscous diffusion time, which is 

of order R, to decay. 	This spin-up process also applies when, initially, 
is 

the anguldr velocity -decreased and for any arbitrary symmetric 

container. 

Veronis Fafl has shown for two dimensional problems that the 

theories for an incompressible, rotating, isothermal system where the 

motion is driven by velocity changes on horizontal boundaries and for a 

stably stratified, non-rotating system where the motion is driven by 

temperature variations on vertical boundaries are analogous, when the 

direction parallel to the constraining mechanisms are equated. 	This 

analogy is no laver applicable when a third dimension is introduced 

because, for the rotating system, the constraint of the vorticity of the 

basic rotation acts equally in both horizontal directions while for the 
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stratified system the constraint of stratification acts solely in the vertical 

direction and hence the third dimension introduces a degree of freedom. 

In a second paper Veronis [43] generalized these results to include 

stratification to the rotating system and rotation to the stratified system 

and again the analogy held for two dimensions but not for three. 

The introduction of stable stratification into a rotating system tends 

to destroy the novel phenomena produced by the Coriolis force. The 

buoyancy forces inhibit vertical motion in the fluid which implies that 

the Ekman layer suction is impeded and hence the control exercised by the 

Ekman layers over the inviscid interior is lessened. 	Also, in the interior, 

there is a tendency towards horizontal flow and the Proudman-Taylor 

theorem no longer applies. Depending upon the relative importance of 

the rotation and the stratification, vortex line stretching can be rendered 

ineffective and the flow can be controlled by viscous diffusion in a time 

scale of order (1.
2
A> ). 

Firstly, we will consider steady motions in a stably stratified rotating 

system for which we can define the dimensionless parameters 

O" = —9 	 Prandtl number, 

H = ag AT  , the thermal Rossby number, 
L 
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where K is the thermal diffusivity, g the acceleration due to gravity, 

a the coefficient of thermal expansion and 	T the bask vertical 

temperature difference. 	When cr-  <.< R-1 or H << el, the diffusion 

of heat is much more important than thermal convection and the effects 

of stratification are not profound. 	The problem can be resolved in terms 
1%, 	tkit PD,0 

of an inviscid interior coreAwhichNis a solution of the thermal-wind 

equations and viscous boundary layers. 	The secondary flow present in the 

interior is controlled by Ekman layer suction. 	Hence, when the diffusion 

of heat dominates over thermal convection, the resultant flow is comparable 

to that for a homogeneous fluid except that the Proudman-Taylor theorem is no 

longer satisfied in the interior. 

On the other hand, when cs-  >> 1 or H >> 1, no vertical motion 

is permitted and therefore all movement is confined to horizontal planes. 

The effects of viscosity are felt throughout the whole fluid. 	Hence 

for this particular case, there is little resemblance between the motions 
IA 

produced in a homogeneous andxa stratified fluid. 

When cs" = 0(1), H = 0(1), Barcilon and Pedlosky CIA showed 

that the solution was closely related to the case Cr' >> 1. 	The Ekman 

layers are absent to first order and although they exist at lower orders, 

-Y3 
they now assume a secondary and passive role. 	The vertical R , 
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-1/4  - layers no longer exist but are replaced by a new type of boundary 
1 

layer which has a thickness of order R z . 	The interior core is no longer 

controlled by vortex line stretching but by dissipative processes. 

In their second paper, Darcilon and Pedlosky L3-1 examined the 

transition from the case when the stratification is unimportant and the fluid 

behaves as if it were homogeneous fo the case when the stratification 
as 

van substantial, which they considered in their first paper [21 . 	From 

this analysis, a unified picture of the steady, linear dynamics of rotating 

fluids with given arbitrary stratification was obtained. 	They found that 

the parameter, cs-- H, determines the behaviour of the fluid, 	When 

H < R 	 , 

the fluid behaves as if it were homogeneous. 	Ekrnan layers are formed 

-  on the horizontal boundaries, Stewartson's R ‘, R- 4 - layers are 

present on the vertical boundaries and the motion in the interior is 

controlled by suction into the Ekman layers. 	When 

< tr- H < 	, 

that is when a weak stratification exists in the fluid, the buoyancy 

forces are no longer negligible. 	The Ekman layers still exist and control 

the interior motion. 	On the vertical boundaries, however, a triple 
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boundary layer structure is found which consists of layers having thicknesses 

4 	 -y  of order R 	, (e-HY, the hydrostatic layer, (o--H) 4R L , the buoyancy 

layer. When 

cr- H > 	2  

which corresponds to a strong stratification present in the fluid, the 

Ekman layers are absent to first order and the interior is controlled by 

viscous diffusion. 	On the vertical walls the R 	and (a-H)2  layers 

combine together and penetrate through the fluid leaving a single boundary 

- layer which has a depth of penetration of order (o-H) Y4  R 2. 	The 

special case of Barcilon and Pedlosky 	discussed above lies in this last 

range. 

For time dependent motions vortex line stretching is again present 

but the stratification renders this process less effective than it was for the 

homogeneous case. 	Holton 09] studied experimentally the problem of 

spin-up for a stratified fluid. 	He showed that the fluid adjusts in the 

spin-up time to a quasi-steady state in which the relative angular velocity 

is zero at the edge of the Ekman layer and increases exponentially away 

from the Ekman layer. 	The ultimate state of rigid rotation is accomplished 

in the viscous diffusion time. 	Pedlosky C25] showed theoretically that 
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the interior was spun-up by strictly diffusive processes in a time of order 

(L.2A.)), but Holton and Stone 2C51A noticed that, in fact, there was 

an error in the scalings employed by Pedlosky and they suggested that the 

three distinct time scales 

(L2/ 52 , 2
/1) 

VIM all present in the adjustment process. 

Wolin T47] assumed that the spin-up process in a stratified fluid 

required a time scale, 1-, which was large compared to the rotation time 

but small compared to the time taken for diffusion to penetrate through 

the interior of the system, 	Then by introducing a perturbation series in 

the parameter 

11  2 52 L2  1 - 

where 2L is the depth of the fluid, he obtained a solution of the 

linearized spin-up problem which was valid in the interior/  that is outside 

the diffusive regions in the neighbourhood of the boundaries. 	From this 

analysis, he deduced that the flow was characterised by the parameter 

B 

 

sz 

2sz 
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where fo is a constant density and Qs is the scale of the basic 

stratification, which represents the ratio of the stability frequency and 

the Coriolis parameter, 	Wolin found, for the case when no lateral 

boundaries were present, that the effect of velocity variations on horizontal 

boundaries penetrate"( a distance 13-1H into the fluid where H is the 

horizontal length scale. 	The time required for transient effects to decay 
is 
m equal to the spin-up time based on the real penetration depth instead 

of the total depth of the fluid. 	For a closed container of radius aL, 

Wolin deduced by considering the transport of fluid in the corner regions, 
-1 rs 

that, when B a << 1, the process ens essentially the same as the 

spin-up of a homogeneous fluid except in a region close to the vertical 

boundary of thickness al  while, when 	a >> 1, the spin-up process 

only penetrates to a dimensional height B 1al. 

An important phenomenon occurring in systems in rigid rotation with 

constant angular velocity, SZ , is the resonance effect which is 

experienced when oscillations are imposed on a boundary with a frequency 

2 SZ (n.k) , 	 (1.1.6) 

where k is a unit vector parallel to the axis of rotation and n is a unit 

vector normal to the boundary. 	'his frequency, (1.1.6), will be 
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referred to as the resonant frequency. 	This resonance effect occurs in 

Hunt and Johns' [21] problem which is concerned with the boundary 

layer produced on a smooth sea bed by tidal or gravity waves, since no 

periodic solution of the linearized equations existett at certain critical 

latitudes. 	Hunt and Johns gave no discussion of the behaviour at these 

critical latitudes. 

In chapter 2, the flow generated in a semi-infinite expanse of 

incompressible fluid bounded by an infinite plane disk is considered, when 

both the fluid and the disk are in rigid rotation with a constant angular 

velocity and, additionally, the disk performs non-torsional oscillations, 

u + iv = ae
int 

+ be
-int 	

(1.1.7) 

in its own plane, where u,v are the cartesian velocity components in the 

plane of the disk relative to the rigid rotation, n the frequency and a,b 

complex constants [40-1 . 	Periodic solutions are first sought and it is 

found that a modified Stokes layer is formed on the disk for all frequencies 

except the resonant frequency, which is twice the angular velocity of 

rotation. 	In the latter case there is no oscillatory solution which 

satisfies the boundary conditions. Rolf- c'13  t-9- 4̀ Q-16 17-41]  *4'd tit's  
croAk 	Qvrttir- 6.,sciAsston 

In order to seek a resolution of the difficulty associated with the 

resonant case, an initial-value problem is posed; in most cases the 
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oscillatory solutions are reached at large times. 	In the resonant case, 

however, the flow is found to be a linear combination of a modified 

Rayleigh layer, which penetrates outwards perpetually from the disk in the 

standard diffusive manner, and a layer confined to the disk which, at 

large times, becomes a modified Stokes layer. 	The shear oscillations 

continue to penetrate outwards indefinitely, unless the imposed oscillations 

are chosen so that the velocity vector of the disk rotates with constant 

magnitude in the same direction as the basic rotation, but with twice its 

angular speed; then the Rayleigh layer is absent. 	On the other hand, 

the presence of a second disk produces, at large times, in the resonant 

case, a modified plane Couette flow of oscillatory amplitude superimposed 

on the modified Stokes layer. 

For the special case n = 0, that is when the angular velocity of the 

disk is changed by a constant amount, the solution of the initial-value 

problem is not an analogue of the classical Rayleigh layer, that would be 

present in non-rotating systems, but is a steady Ekman layer. 

In chapter 3, the effect of replacing the non-torsional oscillations, 

(1.1.7), on the disk by torsional oscillations about the axis of rotation 

is examined. 	For the problem when only one disk is present, the fluid 

at infinity is unaffected by boundary movements and the linearized 
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problem is identical to the problem associated with non-torsional 

oscillations, 	The oscillatory solution, derivable for non-resonant 

frequencies, agrees with the solution of the linearized form of Benney's 

problem [5]. Bonney [5] also discusses, by using the method of 

multiple scales, the periodic solutions of the non-linear problem for 

oscillations near to the resonant frequency. 	However, this analysis is not 

valid at the resonant frequency. 

When a second disk is introduced parallel to and at a finite distance 

From the first, radial pressure gradients are required because a unique 

axis is defined about which torsional oscillations are performed; a new 

problem arises. , For certain frequency ranges, this new problem is of the 

type associated with spin-up to solid-body rotation of a cylindrical can 

of liquid, when the motion is driven by secondary circulations rather than 

molecular diffusion. 	The linearized initial-value problem is considered, 

for the more general case, when arbitrary torsional oscillations are imposed 
4:1; •Aral j 

on both disks and the Reynolds number,1(1.1.2), where 21 is the distance 

between the disks, is large. 	This is, in fact, a generalization of the 

problem considered by Greenspan and Howard D7]. For the four cases 

= 0 (steady), cr R2  << 1 (low frequency), 0-112  = 0(1) (inter-

mediate frequency), c5-R2  > 1 (high frequency), where Sac" is the 
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frequency of the oscillations imposed on a disk, the times taken for the 

transient terms to decay are found firstly from the solution of the initial-

value problem and then by employing the approximations used in N 
and the final states are discussed. 	Again, it should be noted, that 

the introduction of the second boundary produces Final states which are 

always oscillatory. 

Greenspan 15 examined the transient motion produced in a viscous 

fluid contained in a spherical shell rotating with a constant angular 

velocity, when an arbitrary initial state was resolved into rigid rotation. 

He found that there existed critical latitudes where the modal frequency 

of the inertial oscillations present in the fluid was equal to twice the 

component of the rotation vector normal to the boundary, (1.1.6). 	For 

the linearized problem, Greenspan found that, in the immediate vicinity 

of these critical latitudes, the boundary layer solution was composed of 

error functions of time while, elsewhere, the boundary layer solution 

consisted of a simple exponential function of time. 	This implies that a 
bow, ekt 

resonance effect is experienced,. At the critical latitudes, this ledierney 

layer solution has the same structure as the solution obtained in chapters 2 

are 
and 3 when either non-torsional or torsional resonant oscillations vftre 

imposed on an infinite disk which bounds a semi-infinite expanse of fluid. 
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When resonance occurs, these solutions are obtainable only because the 

time dependence n-vo retained, explicitly, in the analysis and not 

replaced by an assumption of periodicity. 	From Greenspan's results 

and the corresponding solutions in chapters 2 and 3 we deduce that, 

when resonance occurs, the acceleration balances the Coriolis and viscous 

forces separately and independently of each other. 

For the linearized problem, Greenspan obtained a solution for the 

fluid motion inside the sphere by an expansion procedure in which the 

general inviscid solution is corrected for viscous effects and is then made 

uniformly valid in time through the spin-up phase. 	In the interior, the 

depth average circulation about a contour of constant cylindrical radius 

is extracted from the fluid by the Ekman layer suction within the spin-up 

time, k v(5-2. v ) 	. 	The excess circulation is not eliminated in this 

way but excites inviscid inertial oscillations which again decay within 

the spin-up time due to the influence of the boundary layers. 	There are 

small residual effects which persist until the viscous diffusion time is 

reached but the essential processes require a much shorter time scale. 

Greenspan calculated the amplitude of the modal (resonant) oscillations 

present inside the sphere and he found that a very good agreement existed 

between his theoretical results and the experimental work of Aldridge 
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looms. 
and Toefflie 1_6, p.406] . 	From this agreement it is deduced that the 

non-linear convective terms are unimportant and that the linearized 

analysis of Greenspan gives a good description of the transient fluid 

motion inside the sphere. 

Roberts and Stewartson 1292 examined the stability of the Maclaurin 

spheroid which consists of incompressible fluid in the form of a spheroid 

of revolution under the effect of its own gravity, for infinitesimal 

perturbations when the fluid was assumed to have small viscosity. 

Normal mode solutions of the linearized problem in oblate spheroidal 

co-ordinates, ( 	€11  A, are sought. 	A solution which consists of 

an inviscid interior core surrounded by a viscous boundary layer, which 

1 
has a depth of penetration of order V 2 ( or R 2), is found except in 

two singular zones which occur when the frequency of the modal 

oscillations was 

2S2 cos V-- 

where the velocity vector is (sin y- , cos y_ , oeiid 
in the co-ordinate 

system, ( r, 0, d). 	These critical regions require a separate analysis 

and their existence shows that a resonance phenomenon is present in 

the problem. 	in order to obtain a boundary layer solution for the 

singular zones, lateral shear is included in the analysisjthat is both the 
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co-ordinates lc and r. cos 9 are stretched although again the most 

rapid changes occur in the 	- direction. 	From this analysis, a new 

boundary layer arises which has a depth of penetration of order 

2/5 (or R 
 5
).

+  
V Therefore for the critical zones the boundary layer 

is much thicker than elsewhere on the spheroid although the effect of 

these eruptions on the interior is negligible compared with the influence of 

the V boundary layer. 

Busse 1-11 considered the steady, laminar motion of a viscous 

incompressible fluid inside a precessing spheroidal shell. 	He retained 

the non-linear convective terms in his analysis and found that these 

terms were important for finite amplitude motion because, in the interior, 

there existed a differential rotation superimposed on the constant vorticity 

which is the solution obtainable by linear theory. 	Therefore the linear 

+
Greenspan L16, 13.6i1 states that "this change would appear as a 

singularity in the  linear theory  11 , but, in fact, Roberts and Stewartson 

only consider the linear theory and hence linear theory should be replaced 

by normal boundary layer theory. 
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solution was not approached in the limit of vanishing viscosity. 	Firstly 

Busse sought a series solution which consisted of an inviscid interior with 

linear boundary layers and found that there existed critical circles 

where the boundary layer thickness tended to infinity. Again an analysis 

of these singular regions would produce a new boundary layer which had 

a depth of penetration of order y
% 

(or R
-3/5

). 	Then Busse considered 

the problem when the non-linear terms were retained in the boundary 

layer equations and found that the critical circles cause the differential 

rotation, in the interior, to be divergent. 	Busse's theoretical prediction 

of the steady zonal flows which tend to form a zonal let at critical 

latitudes have been observed in experiments performed by Malkus [6, p.40/ 

Busse's analysis can also be used to describe the steady fluid flow due 

to a tidal bulge. 	Busse anticipated that the differential rotation would 

show a smooth profile in the interior when the effects of viscosity were 

included. 

Greenspan [46j showed that the non-linear interaction of inviscid 

inertial modes does not produce a resonant response in the steady 

geostrophic circulation. 	Therefore he anticipates, in agreement with 

Busse [7] , that the steady currents produced in a closed rotating 

container by oscillatory disturbances arise from a combination of viscous 

and non-linear effects within the boundary layers. 
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Stewartson and Rickard ci,63 investigated the free periods of oscillations 

in an incompressible inviscid fluid bounded by two rigid concentric spheres, 

a,b (a > b), when the whole system was rotating with angular velocity, 

52. , about a common diameter of the spheres. 	Firstly, oscillatory 

solutions were sought for the linearized problem in the form of an expansion 

in powers of 

= a b 
a 

which was assumed to be small, for small disturbances from the basic 

state of steady rigid rotation. 	It was found that the solution for the 

pressure became singular when the frequency was (1.1.6), which defined 

two critical circles where the characteristic cones of the governing 

equations touched the inner boundary. 	For these critical regions an 

inner expansion in powers of E was developed and it was found that 

in order to remove the singularity in the pressure, an integrable 

singularity in the velocity components must be introduced on the 

characteristic cone which touched the inner boundary. 	Further integrable 

singularities were introduced by repeated reflections at the shell 

boundaries and so, even outside the critical regions, the expressions 

for the velocity components contained a °pathological" term of order E 
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Stewartson and Rickard deduced that this phenomenon applied to a large 

class of rotating cavities provided the characteristic cones touched the 

inner boundary. 

In chapter 7, it is found, for an infinite disk bounding a semi-

infinite expanse of incompressible fluid when the fluid and the disk are 

in steady rigid rotation, that an oscillatory solution always exists, when 

a length scale is introduced in the plane of the disk either by imposing 

oscillations on the disk which ore sinusoidal in one of the co-ordinates in 

the plane of the disk, or by splitting the disk so that oscillations are 

imposed only on an inner finite region. 	For these problems, a resonance 

effect is still present and is shown by the fact that different oscillatory 

solutions exist for resonant and non-resonant frequencies. 

Also in chapter 4, section 4.13, we find when the above imposed 

oscillations on the disk are replaced by oscillatory temperature variations 

on the disk, which depend upon a length scale in the plane of the disk 

through the membrane equation, then an oscillatory solution always 

exists. Again a resonance phenomenon is present because different 

oscillatory solutions exist for resonant and non-resonant frequencies. 

Therefore, we deduce, for the cases considered in this thesis, that 

the introduction of a length scale into the problem either normal to or 
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in the plane of the disk always produces an oscillatory solution. 	This 

is also true for the problems discussed by Ibberts and Stewartson, L291\ 

and Busse [7]. 

The remaining chapters in this thesis, namely chapters 4, 5, 6, 8, 

are concerned with problems in which motion is generated in a fluid by 

temperature variations rather than velocity variations on the confining 

boundaries, 	In particular, the development of vorticity in the atmosphere 

due to temperature chances on the earth's surface is considered and it is 

hoped that strong circulatory motions will be developed which could 

describe the formation of a hurricane. 	The time Independent solutions 

of this problem closely resemble the solutions of the steady problems 

discussed by Duncan [101, Hunter [22], and Barcilan and Pedlosky 

Firstly, an idealized model of the atmosphere is considered which, 

for any given latitude, is composed of two infinite plane horizontal 

disks with viscous fluid between them when, initially, the fluid and 

the disks are in steady, isothermal rigid rotation about an axis normal to 

the disks. 

In chapter 4, the flow generated in the fluid is examined when, 

from t = 0, a steady heating is applied to the lower disk which depends 

upon the co-ordinates in the plane of the disk through a function 
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satisfying the membrane equation, while the temperature of the upper 

disk remains at its initi©l value. 	The linearized initial-value problem 

is solved for the component of vorticity perpendicular to the disk (the 

vertical component of vorticity) on the assumption that the Reynolds number, 

(1.1.2), is large. 	The Coriolis force and therefore the rotation is (VAS(' et 

responsible for the production of vorticity perpendicular to the disk 

because for the corresponding problem without rotation, the vertical 

vorticity is always zero. 	The time required for the transient effects 

to decay is discussed and the final steady state is shown to be composed 

of Ekman layers on the disks and an interior flow which is a particular 

solution of the thermal-wind equations. 

In chapter 5, the effect on the steady vertical vorticity which persists 

at large times,  after the transient effects have decayed, is examined, 

when different temperature distributions are imposed on the lower disk. 

Firstly, the linearized steady problem associated with an applied temperature 
talus 

distribution which taok the form of a one-dimensional step function in the 

rotating system, is considered. 	This implies that the temperature on an 

inner finite strip of the lower plane is increased or decreased by a finite 

amount while elsewhere on this plane the temperature remains at its 

initial-value. 	It is found that the steady state is composed of Ekman 
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layers on the disks, an interior flow which is a particular solution of 

the thermal-wind equations and free shear layers at the discontinuities, 

which have depths of penetration of order 
R-1/3 

 and R-/4. 	These layers 

are similar to the free shear layers discussed by Stewartson r35]. 
Secondly, the applied temperature variations on the lower disk are 

assumed to be a one-dimensional "normal distribution° of the form 

2 2 A 	 i exp -x 	, where A, a are real constants and p is positive. 

No general solution has been obtained for this case but, instead, the 

extreme cases, cr-- large and 	small, are considered for time-independent 

flows. 	It is found that, to the highest order, the case 0— large is 

equivalent to the steady problem discussed in chapter 4, while the case 

c 	small is equivalent to the problem associated with the step-function 

temperature distribution discussed in chapter 5. 

In chapters 4 and 5, the temperature field Ists assumed, initially, 

to be constant throughout the atmosphere. 	This approximation to the 

actual temperature field present in the atmosphere can be improved by 

assuming, for the initial flow, a constant adverse temperature gradient. 

Therefore in chapter 6, the problem considered in chapter 4 is extended 

to include, initially, either a favourable or an adverse temperature 

gradient. 	It is found, when a favourable temperature gradient is present, 
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initially, that the steady solution obtained from linear theory represents 

the final flow present in the fluid when all the transient effects have 

decayed. 	However, when an initial adverse temperature gradient is 

present in the fluid, the steady solution obtained from linear theory 

becomes singular when the Rayleigh number 

ga ATI.3  (1 . 1 .8) 

 

attains a critical value, and hence only represents the final flow for 

values of k, much less than this critical value. 	It is deduced Xwhen the 

Reynolds number, R, (1.1.2), tends to infinity ill* the asymptotic value 

of the minimum critical Rayleigh number is 

3 .-317riZ2 3 
	

(1.1.9) 

for both free/free and rigid/rigid boundaries. A comparison between 

these results and the results obtained by Chandrasekhar [91 is given. 

In chapters 4, 5, 6, only the linear problems have been considered 

and therefore, in chapter 8, the effect of the non-linear convective terms 

on the interior flow for the idealized model of the atmosphere is 

considered, when the upper disk is at infinity and the temperature of the 

lower disk is maintained at a constant value for all time. 	If 
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(vr, v9' vz) are the velocity components in the non-rotating cylindrical 

polar co-ordinates, (r, 9, z), then a class of inviscid solutions of the 

form 

f(r) 
r 	= 	- 	 V 

z 
 - r dEL if (r)} r 	V = r.a at t 0 , 

is found, where f(r) satisfies an ordinary non-linear differential equation. 

Also some exact solutions of the complete Navier-Stokes equations are 

derived which satisfy inviscid boundary conditions. 	These exact solutions 

represent possible interior flows which satisfy inviscid boundary conditions 

at the disk. 	However, in the neighbourhood of the disk, these interior 

solutions would have to be replaced by viscous boundary layer solutions 

which satisfy the non-slip condition at the disk and are matched with the 

interior solution, in order to obtain a solution of the non-linear equations 

valid throughout the whole fluid. 	No solutions for these viscous non-

linear boundary layers have been obtained. 
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CHAPTER 2 

ON STOKES AND RAYLEIGH LAYERS IN A ROTATING 

SYSTEM 

2.1 INTRODUCTION  

It is common knowledge that in fluid systems in solid-body rotation 

a resonance effect is found if an attempt is made to force oscillations with 

a frequency, n, which is twice the angular velocity of rotation. 	A 

notable example of this phenomenon occurs in unsteady Ekman layers, and 

it is with flows of this kind that we ore concerned in this chapter. 

Let us consider first a well-known prototype oscillatory boundary 

layer in the absence of rotation. 	This is the so-called Stokes layer ([31], 

page 381), in which the shear oscillations imposed by the movement of a 

plane decay exponentially with distance away from the surface; the 

characteristic distance, or depth of penetration of vorticity, is (yin)1/2 
1 

where n is the frequency and 	the kinematic viscosity. 	The Stokes 

layer is one of the simplest equilibrium boundary layers. 

If the whole system, plane plus fluid, is in a state of solid-body 

rotation, with angular velocity 52 , the corresponding depth of penetration 
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of the oscillations is ( V/In-2.12,► )1/2, n and 	being assumed positive. 

This tends to infinity if n tends to 2,51 	We may infer, therefore, 

that for the idealized situation of a semi-infinite body of fluid bounded by 

an infinite wall, no equilibrium boundary layers exist in the limit n 	2SZ, 

On the other hand, if another plane is placed parallel to and at some finite 

distance d away from the first plane, the penetration of vorticity will be 

limited to this distance. 	Then an equilibrium oscillatory flow between the 

planes can be expected. 

There remains the question of discovering a meaningful solution for 

the case (with n —0 2 cgs ) when d is very large or infinite, 	This we 

answer by posing an initial-value problem, in which the oscillatory motion 

of the plane commences at, and continues from,t = 0. 	In this case a 

depth of penetration is found, naalely ( y )1/2 	t being the time; this 

distance is the characteristic length associated with a Rayleigh (or impulsive) 

layer. 	Consequently the shear oscillations continue their penetration 

indefinitely, if no other boundary is present, or until some confining boundary 

is reached. 

One further comment can be made at this stage in anticipation of 

the analysis. 	Suppose the infinite disk (or plane) performs non-torsional 

oscillations defined as follows: if u and v are velocity components in the 
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plane of the disk, relative to the rigid body rotation, we specify 

q  = u + iv = mint + be-int  

at the disk surface, where a and b are complex constants and n is the 

frequencyi the latter can be assumed positive without loss of generality, 

This implies that every point in the disk performs elliptic harmonic motion 

relative to the basic rotation. 	If b = 0, so that the velocity vector has 

given magnitude and rotates with angular velocity, n, we shall see that 

the resonance case n = 2 a is avoided. This movement of the disk can 

general t contained oscillations. 

2.2 EQUATIONS OF MOTION  

An infinite disk at z = 0 bounds a semi-infinite) expanse (z > 0) 

of fluid which is assumed to be incompressible. 	Both the disk and the 

fluid rotate as a solid body with constant angular velocity, f. , about 

an axis normal to the disk, but the disk additionally performs oscillations, 

= u + iv = aunt + be
-int 	(2.2.1) 

in its own plane. 

Let us take cartesian axes (x,y,z) such that the v-axis is parallel to 

the common axis of rotation of the fluid and disk, and the x,y-axes lie 
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in the plane of the disk and rotate with it, 	The Navior-Stokes equations 

and the continuity equation in this rotating co-ordinate system are 

au 

at + (u.v )u + 262 k A  u + 

V2 u , 	 (2.2,2) 

div u = 0 	 (2.2.3) 

where u is the velocity vector, k a unit vector parallel to the z-axis, 

P the pressure and p the density. 

Suppose u = (u,v,w) where u, v, w are the velocity components in 

the x, y, z directions respectively. 	Following knowledge of the ordinary 

Stokes layer, we assume that the velocity field in the boundary layer is 

of the form, 

u = (u(z,t), v(z,t), w(z,t)) 	 (2,2.4) 

The boundary conditions to be satisfied are 

(a) w = 0, 	u + iv = aeint  + be-int on z = 0 , 

(b) u, v 	0 as z --? co , 

(c) we shall use, as required,an initial condition at 

t = 0, or an assumption of periodicity. 

(2.2.5) 



- 40 - 

From (2.2.3), (2.2.4) and (2.2.5) it follows immediately that 

w !_=.1 0. 

Using this result with (2.2.2) and (2,2.4), we have 

au - 	v 	Op* -t- a2u — 
at 	 ax  az 

+ 2 	u 
at  

-  ap* 	v  a2v 
aY az 

(2.2.6) 

0 ap* 

 

1 	r...% 	, 
where p* = P — - 04 2  tx2  + y2) is the effective kinematic pressure. 

We assume that there is no imposed pressure gradient and then 

ap* 
ax • 

Hence 

au 	 a
2u - 2 SZ v = Il at az  

aV 	e".•t. 	= u 	2 + 2 oc V  
at 	 --2* 

az 
• 

(2.2.7) 
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We note that these equations, although exact in formulation, are also 

boundary layer equations, since the terms usually neglected disappear 

exactly. 	With q = u + iv, (2.2.7) becomes 

0
2 

aq + 2 .52- iq = 	• at az 
(2.2.8) 

This equation must now be solved subject to the conditions (2,2.5), which 

become 

(a) q = aeint  + be-int on z = 0 

(b) q -) 0 as z 	co , 

(c) an initial condition at t = 0 or an assumption 

of periodicity. 

(
) 

2.2.9) 

2.3 OSCILLATORY SOLUTIONS  

As a preliminary step in this study and in order to expose certain 

difficulties, we consider periodic solutions which we assume to have the form 

int 	-int 
q 	qle 	q2e 	 (2.3.1) 

From (2.2.8), (2.2.9) and (2.3.1) we have for n # 2 -5/ the solution 

-int -A2z 
aeint e-X z 1 q  = 	 G 	e 	 (2.3.2) 

where _ 	i(n+2 St )11/2 	=[ 

L  

 

"011/2 (2.M) 
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The roots A1 ,X2  have positive real partS. The solution (2.3.2) satisfies 

the required boundary conditions, (2.2.9 (a), (b)). 	Therefore for n 	2:' 

the flow can always be determined and is a well-defined boundary layer on 

the disk having the same structure as a Stokes layer. 

For n = 2 	, however, a solution of (2.2.8) which has the form 

(2.3.1), is 

q 	= 	ae2YL it -Oz -2 57. it + be (2.3.4) 

where = 4 5..?. A
o L 	• (2,3.5) 

This solution satisfies the correct boundary condition, (2.2.9(a)1 on the disk 

and is finite but non-zero (b / 0) as z tends to infinity, contradicting 

(2.2.9(b)). 	A solution satisfying all the correct boundary conditions 

cannot be found except when b = 0. 

In this resonant case of n = 2 	, which will, henceforth, be 

referred to as the resonant frequency, although a solution can be found 

satisfying the boundary conditions on the disk, it is in general impossible to 

satisfy the correct conditions as z tends to infinity. 	The oscillations are 

not confined to a well-defined boundary layer. 	It is interesting to see 

that if another infinite disk is introduced at z = d, say, at rest relative to 

the rotating co-ordinate system, then all the boundary conditions can be 
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satisfied by 

q 
sink 1X  (d-z) o e2 5%. it +b tsl-zie

-257- it 

sinh X d L o 

• (2.3.6) 

The first term represents a modified Stokes layer and the second term an 

oscillatory plane Couette flow in which the shear is uniform in space, but 
0.4.1 

has W instantaneous time-dependent amplitude. 	The solution, and 

therefore the boundary layer, extends between the two disks, in accordance 

with the idea that, for one disk oscillating at the resonant frequency, the 

boundary layer extends throughout the whole fluid. 

2.4 THE INITIAL-VALUE PROBLEM 

We consider both (i) the case of one disk at z = 0 bounding a semi-
cAse 4 

infinite body of fluid and (ii)Xtwo disks at z = 0 and z = d with fluid 

between them. 	Suppose the fluid and disk(s) are initially in steady rigid 

rotation with angular velocity SI and then, from t = 0, the oscillations, 

q = mint  + be-int , are imposed on the disk, z = 0, relative to the 

initial motion. 	The flow will be given by (2.2.8) subject to the following 

conditions. 

For problem (i), we have 
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(a) q = aeint + be-int on z = 0 for t > 0 , 

(b) q 	0 	as 7. -0 co for t > 0 , 

(c) q=0 at t = 0 for all z. 

For problem (ii), we have 

(a) q = ae
int + be-int on z = 0 for t > 	, 

(b) q=0 on z = d for t > 0 , 

(c) = 0 
	at t = 0 for all z. 

(2.4.1) 

(2.4.2) 

Applying the Laplace transform 

4 
	e-pt q dt , 

to equation (2.2.8) together with the conditions (2.4.1) and (2.4.2), 

we have 

2- 
(p + 2 ..C2- i):1" = . 3 q —2-  1 az 

which must be solved subject to the following conditions. 

For problem (i), we have 

(2.4.3) 

(a) 4  = a 	p-t-in on z = 0 , 

(b) 	(11 	0 	 as z 	co 
	

J 

(2.4.4) 
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For problem (ii), we have 

a 
p-in + p+m 	on z = 0 1 

(2.4.5) 
(b) 7:1 = 0 	 on z = d . 

The solution for problem (i), namely (2.4.3) subject to (2.4.4), is 

a - 
m  

••••••••rimar e
i (2,4.6) p-m p+m 

„ 1/2 
where 	m1 

- c  i P+27:  (2.4.7) 
- 

While for problem (ii), namely (2.4.3) subject to (2.4.5))we have 

b 	sinh 1.mi(d-z)is 
(p- a in + p+in) 	. 	(2,4.8) 

sinh jm1d 

We now need to evaluate the inverse Laplace transform, 

q = 

r+iso 
1 

NT 	q ept  dp , 

y-ioo 
(2.4.9) 

where y is chosen to lie to the right of all the singularities. 

We consider problem (ii) first since we shall show that, in the 

resonant case n = 2 SI , (2.3.6) can be derived, without difficulty, when 
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t 	cos 	In the case of problem (i), however, (2.3.4) which corresponds 

to the resonant case n = 2 	cannot be derived for t 	co; this more 

complex problem will be discussed later., 

Problem (ii)  

We now evaluate the integral (2.4.9) when El is given by (2,4,8). 

The singularities of (2.4.8) play an important role in the integration and 

are poles situated at 

in , 

22 
p = 	 where k = 1,2,3,„, 

d 

We can see from the structure of (2.4.8) that although p = - 2 5-2, i is 

a branch point of m1 , it is a zero of both the numerator and denominator 

and hence is not a singularity of (2,4.8). 	The inverse integral can be 

evaluated by transforming the path of integration into a closed contour 

and then applying the calculus of residues(Pn, page 75). 	Hence we 

have 
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q = ae 
int  sinh 5L X1 (ci-z) 

be
-int sinh X,(d-z) 

+  

sinh )t2d 

 

sinh SL...1)d 

a(-1)
k
2nky siniLkrt(1-z/c1)1 exp 	i+k2.2y /d2) 

k2
ff
2a + id2

(2S2 +n) 

co b(-0k2rrkv sin Lkn(1-z/d):1 exp 	i4442-r ir2  v/d2)} 

2 	2 - 	? - 	 (2.4.10) + 
Ic=1 	 k 	+ id (231 -n) 

For t -4 co this reduces to the oscillatory form 

q 
int  sinh 

sinh )id ? 

-int sinh {X,2(d-z). 
+ be. _ 	 & 

sinh 
• 

Then, if we allow n 4 2.I , we retrieve (2.3,6). 	If n 29? 

in(2.4.10), we have 

q 	ae2R it sinh A(d-z)1 z 
-) 

o  sinh Xd 

co 
+ 3-4  (-0k2rr 	kn. (1 „A)l exp 1,-t(22 	/d2) k=1' 

 

a  

+49 id2  k Tr y 

 

(2.4.11) 
Again, if we let t -0 co, we regain (2.3.6). 



y+ico 
a exp z(s/v )2 3 expc(s- V i) [- ids  

s 	i(n÷27. ) 

1 
9  - 

y-ioe 
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Hence the solution (2.3.6) obtained is independent of the order 

in which the limits t 	co, n -0 252 	are taken. 	We shall see that 

the same is not true for the unbounded case (problem OD, to which we now 

turn. 

Problem (0  

We now evaluate the integral (2.4.9) when q is given by (2.4.6). 

The singularities of (2,4.6) are poles at p = - in and a branch point at 

p = - 2 $ i. By writing s = p + 252 i we transfer the poles to 

s = 	n) and the branch point to s = 0. 	The integral (2.4.9) 

becomes 

y+ico 

	

1 	b expE-z(s/v )23 expr(s-2.10tids  

	

2rr 	 s — y-lco 	i(251 -n) 
(2.4.12) 

We rearrange (2.4.12) to give 
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y+ico 	 r  
1 	r a exp[-z(s/1) )23 expli(s-2.P.1)-1  x  

2rr i 2 i(n+2 	)11.  y-ico 

- x 1  
sl Li(n1+25-tiil. w1 

.1.  
' s - p(n+2.52.)111 ' 

y+ia) 	 1- 
1 	( 	b exp[-z(s/p )2•_1 exptt(s-2no]  + 2rr i  --- 	2 [i(2 St - 011  r.i a)   

ds 

x 

  

1 
(2.4.13) 

[i(22-110 

 

+ [1(2.5i 

  

    

By using the inversion formula 29.3.88 on page 1026 of the Handbook of 

Mathematical Functions, A.M.S.55 CO, we have that 

q = iceint( -zX1  erfcilz(Y t)-1  (4(231 +n))11 

exp 	erfc[izb)t)".  + (it(2.52+n))1] 

lbe-fnt  exp - 2  erfc Liz()) t)4  - (4(252 

	

eXp 	Z312  erfc 22.z( V t) 2 	(it(2 52 -0)2  

'122 

	

where erfc X = 	
j 

e did 

(2.4.14) 
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This agrees with the result obtained by using the inversion formula 805.3 

of Foster and Campbell [13). 

If we let t -4 co keeping n-252 fixed we retrieve (2.3.2), the 

oscillatory solution. 	If we now allow n 4 2$ 	we have (2.3.4) which 

does not satisfy the boundary conditions for large z, provided b 0. 

If, on the other hand, we let n 	keeping t fixed, we 

have 

 

1 	2 -9- it - yae  

 

q exp
o

erfc[lz( 	(4 3210 

  

+ exp zXo-t erfc (z( v t) + (4.), 4)2  

+ 	be-2 9 i terfc Li-z( t)41( . 

Now we note that 

erfcri:1-z(Vt) z  - (452 it)1  j —0 2 

and 	erfc-12( t)-7  + (451 it)2 	0 
L 

  

 

(2,4,15) 

as t • • o3. 	Then, if we allow t 	co in (2,4,15), we have 

 

= ae2R it exp -0+ 	be-29it q 	 erfcb 	 2.4.16) z(v 	(  

This is not an oscillatory solution. 	Therefore the order in which the 
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limits are taken becomes important when z = 	t)2  and the flow in the 

resonant case n = 2.51 is given by (2.4.15). 

2.5 UNIFORM IMPULSIVE MOTION (n = 0) 

A classical problem in non-rotating systems ( 	= 0) is the time- 

dependent boundary layer (the classical Rayleigh layer) associated with 

an impulsive velocity, U0  , of the plane ( {_31], page 136). 	This layer 

has the structure 

u = Uoerfc 	041 . 	 (2.5,1) 

In the present case 	/ 0, n = 0) we can show that the corresponding 

initial value problem leads not to an analogue of (2.5.1), but to a steady 

Ekrnan layer. 	This can be done as follows. 

Let us consider the solution of the initial value problem when n = 

In this case the imposed velocity (2.2.1) at the boundary becomes 

q = a+b = c, 

where c is some complex constant. 

Then from (2.4.14), we have 

q = 

	

eric 1-1z( v t)-2 	(2.9.4)1I + ezLLerfc11-z(v 	(2:--)2s  

	

1 	 1— r  

(2.5.2) 
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1 
where 1 23Zi r= 	 (2.5.3) w..mvmmmwe  

V j 

Letting t co, we have 

q 	= 	cei" 	 (2.5.4) 

This is a steady solution. 

2.6 DISCUS5ION 

Formula (2.3.2) justifies the remarks made in the introduction 
n  

concerning the existence of a depth of penetration [vA n-25;.'1.] 2 , and 

indicates the resonant phenomenon when n 	, in the sense that 

no oscillatory solution satisfying the condition as z 	co is possible 

(for b X 0). Moreover formula (2.3.6) shows how, in the case n -4 2)2 

a second 	boundary at z = d can convert that part of the flow proportional 

bent . to be 	into an oscillatory Couette flow with a shear uniform in z. 

Transient effects die out like exp 	t/d2  

The result derivable from (2.4.11) agrees exactly with the result 

(2.3.6). 	Hence the flow between the disks is not affected by the impulse 

after sufficient time has elapsed for the damped oscillations to become 

negligible, and is identical with the flow that would be present if the 

oscillations had been present for all times. 
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Still more novel is the result (2.4.15) which indicates, in the case 

n 	2.5-L , how the b part of the flow penetrates outwards from the disk 

in a standard diffusive manner, indeed as a Rayleigh layer with a time-

dependent velocity magnitude. Greenspan 051 hinted at this type of 

behaviour.' Formula (2.4.16) shows, in the case n 	2 5-2- and for times 

large enough for the impulsive effects to be negligible that, added to the 

Rayleigh layer, is a Stokes layer, confined to the disk and proportional to 

2 -7- it ae 	We have, therefore, at the resonant frequency, that for large 

times the disturbance be Slit  will be felt throughout a depth proportional 

to ( yt)2  , the depth of penetration of the Rayleigh layer, from the disk, 

while the disturbance ae251 it is only felt in a boundary layer of thickness 

(V/4501  on the disk. 

An oscillatory solution for the flow of the form u = (u(z,t), v(z,t), 0) 

can only be found, in the resonant case, if either a second boundary is 

present at rest relative to the rotating co-ordinate system or if the Rayleigh 

layer is absent, 

From (2.4.15) the Rayleigh layer will be absent if b = 0. 	The 

imposed oscillations on the disk would then have to be q = ae2 Slit, from 

which we have 
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U 
	tat cos 2 52. (t-to) 

v = 	la l sin f 2 .52- (t-to) = 	al cos 2 52. (t-to) - Tr/2 

where to  is given by a = ialexp 5L -257.- ito 	. 	Thus if v lags behind 

u by Tr/2 the Rayleigh layer is absent, and the problem can trivially be solved 

to give 

--, -Az 
q = ae

+2 it
e 

o 
(2.6.1) 

For the difficulty at the resonant frequency to be avoided the angular 

velocity of the velocity vector for the imposed oscillations must be 25/ 

i.e. twice the angular velocity of the basic rotation of the fluid/disk 

combination and in the same sense. 

From the formula (2.5.4) we see that, when n = 0, eventually a 

steady state is reached, that of a well-defined boundary layer on the disk; 

it is in fact an Ekman layer, which has a thickness of penetration of 

vorticity of order ( v/51) .  . 

By putting n = O in (2.3.2) we retrieve (2.5.4). 	We could 

therefore have looked for a time-independent solution of (2.2.8) satisfying 

the boundary conditions (2.2.9) with n = 0. 	This is basically the problem 

of finding the Ekman layer structure associated with steady motions of the 

disk. 



a2q* = 	P + v Pt —2-  a z 
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We now consider a co-ordinate transform for the case when there is 

a well-defined boundary layer confined to the disk and an inviscid region 

outside. 	This occurs when the imposed oscillations of the disk are 

q = aeint 
 + be-int 	when n / 2 S? , 

q = ae
int 	

when n = 2 	. 
	 (2.6.2) 

We transform the axes such that the disk is at rest relative to the co-

ordinate system rotating with angular velocity, ,$ , and the fluid in the 

inviscid region performs oscillations given by 

u + iv = q* = - (aeint 
+ be

-int
) 	when n X 2P- , 

(2.6.3) 
= rat ae 

 int 	
when n = 2 52, . 

From (2.2.2), (2.2.3) and (2.2.4) the governing boundary layer 

equations are (2.2.6). 	We write u + iv = q* and 	+ i aP*  = P and 

	

ax 	ay 
then (2.2.6) becomes 

(2.6.4) 

which we must solve subject to the conditions 

a) q* = 0 on z = 0 

b) q* is given by (2.6.3) as z -4 co . 
(2.6.5) 
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For the flow in the inviscid region to be consistent with the equations 

of motion we require 

aq*  + 2 Si  q* = -P at 

where q* is given by (2.6.3). 

Hence we have 

P = i(25/+n)aeint  + i(22 -n)be-int 
 

• 
	 (2.6.6) 

in particular at the resonant frequency, n = 2 2. 	leas ay 	„, 

*7  ap behind 73 —c  by n/2; similarly v lags behind u by tr/2 outside the boundary 

layer. 	Hence both the velocity vector of the oscillation and the pressure 

gradient vector have an angular velocity, 2 „52. 

The solution of (2.6.4), with P given by (2.6.6), satisfying the 

conditions (2.6,5) is 

-X z 	 X2z 1 	, 	, 	int 	
1 q* 	a te 	- 	e

int  + be 	e 	 n 22 , 

- 	 ) q* = a e 
Xz 

- 1 e
2 it 
	 n = 2 52- 

These solutions represent modified Stokes layers and could be obtained from 

(2.3.2) and (2.6.1) by writing 

q* 
	

= q 	
int 

be
-

be ae 
	

n / 2 A., , 

q* = q - ae
int 	

n = 2 57- . 



- 57 - 

CHAPTER 3 

TRANSIENT MOTIONS PRODUCED BY DISKS OSCILLATING 

TORSIONALLY ABOUT A STATE OF RIGID ROTATION 

3.1 INTRODUCTION  

In Chapter 2, the fluid motions produced in a system, which was 

initially in isothermal steady rigid rotation, were discussed, when, from 

some instant of time, non-torsional oscillations defined by (2.2.0 were 

imposed on a confining boundary. 	In this chapter we will examine the 

effect on these problems when the non-torsional oscillations are replaced by 

torsional oscillations about the axis of rotation, 

Firstly, we consider the flow generated in a semi-infinite expanse of 

incompressible fluid bounded by an infinite disk, when both the fluid and 

the disk are, initially, in steady solid-body rotation and, then, torsional 

oscillations about the common axis of rotation of the fluid and the disk, 

are applied at the disk. 	The fluid at infinity is unaffected by boundary 

movements and therefore no radial pressure gradients can exist, 	We will 

show that, provided it is valid to linearize the equations of motion, this 

problem can be reduced to the semi-infinite problem discussed in Chapter 2. 
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However, when a second disk is introduced parallel to and rotating 

with the first disk, then radial pressure gm:items can exist because a unique 

axis is defined about which the torsional oscillations are performed; a new 

problem arises. 	Thus the specification of horizontal velocity components 

proportional to r requires the pressure gradient to balance the internal 

flow when there are two boundaries present. 

When two disks are present, the linearized initial-value problem for 

the case when arbitrary, small amplitude, torsional oscillations are imposed 

on both disks is solved for large Reynolds numbers, R, defined by (1.1.2), 

where 2L is the distance between the disks. 	The parameter,d-e, 

where )(-e-  is the frequency of oscillation of a disk, emerges from the 

analysis and, in fact, characterises the behaviour of the fluid. 	On the 

assumption of large R, the times for the transient effects to decay and 

the final flow are discussed for the cases t5 R2 < 1 (low frequency), 

= 0(1) (intermediate frequency) and c- 2  >> 1 (high frequency). 

A comparison with the results of Greenspan and Howard L17 is given. 

3.2 EQUATIONS OF MOTION 

We consider either (i) an infinite plane disk, z = 0, bounding a 

semi-infinite expanse (z > 0) of incompressible fluid or (ii) two infinite 

parallel disks, z = 4.- I., with incompressible fluid between them. 	Both 



g(z,t)y U 
af(z,t) x  

ast 

= g(z,t)x + af(z,t) 
az Y (3.2.1) 
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the fluid and the disk(s) rotate with constant angular velocity, 	, about 

an axis normal to the disk(s) and, additionally, from t = 0, the disk(s) 

perform(s) arbitrary, small amplitude, torsional oscillations about the axis 

of rotation. 

We take cartesian axes (x,y,z) such that the z-axis is parallel to 

the common axis of rotation of the fluid and the disk(s) and the x,y-axes 

rotate with the disk(s) and lie in the disk for problem (i) and parallel to 

and midway between the disks for problem (ii). 	The Navier-Stokes 

equation and the continuity equation in this rotating co-ordinate system 

and (2.2.2), (2.2.3) respectively, 

Since the flow is axisymmetric and satisfies the continuity equation 

(2.2.3), we assume that the velocity components have the form ((-?4 p.356) 

w = -2f(z,t). 

These expressions, (3.2.1), correspond, in cylindrical polar co-ordinates 

(r, Q, z), to velocity components 

u = (r af(z,t) 
az 

rg(z,t), 	-2f(z,t) ) • 
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We assume that the imposed torsional oscillations are given by, for 

problem (i), 

, 
(a) g 	toe

int 
 + be-int) 

(b) g -4 0 

(c) g = 0 

on z = 0 for t > 0 , 

as z 	co for t > 0 , 

at t = 0 for all z, 

(3.2.2) 

   

and for problem (ii), 

(0) 	9  = 00 (aeinit+ be
-init) on z = L 

	
for t > 0 , 

(b) 9  = 	(ceinqt de-in2t 
	

on z = -L for t > 0 , 	(3.2,3) 

(c) g = 0 
	

at t = 0 	for all z 

In (3.2.2) and (3,2.3), n, n
1` 

n
2 

are the frequencies, (..0 is a real 

constant and a,b,c,d are complex constants of order one, chosen so that 

g is real on both disks. 	Hence we require a =1; and c = d , where 

a tilde denotes the complex conjugate. 	In the special case when a,b,c,d 

are real, this condition reduces to a = b and c = d. 

We assume 00/-1  << 1. It then appears that we may linearize 

the equations; and if the resulting equations and boundary conditions 

have a sensible solution, we may regard this linearization as valid, at 

least in a pragmatic sense,' 	(This is the case in the Greenspan and 
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Howard 117] spin-up problem). 	If, on the other hand, for some boundary 

conditions no solution of the linear problem can be found it may be 

necessary to re-examine the assumption of linearization afresh, 	Here we 

merely draw attention to this possibility but do not pursue it further. 

We take the curl of equation (2.2.2), omitting the non-linear terms, 

and then substitute (3.2.1) to give the equations 

89  + 2 52 af 	
2 

= 	g  at 	az 
az 

a3
f 	aa 
— - 25?.— 

az 
= = V 

• az at 	 az 

When we integrate (3.2.5), we find 

(3. 2 5) 

02f 	 n3c 
- 25) g = 	+ K(t) , 	(3.2.6) az at 

where K(t) is some arbitrary function of time. 

When only one disk is present, that is for problem (i), the required 

boundary conditions are, from (3,2.2) fi  

(a) f
= = 

Of 
(b) dz 

 , g 	0 

int 	 int 

as z -4 co fort > 	, 

g = 	(ae + e ) on z = 0 fort > 0, 

(c)  
of 
az = g = 0 at t = 0 for all z . 

(3.2.7) 

(3.2.4) 
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From the boundary conditions, (3.2.7), and the differential equation, 

(3.2.6), we infer that the function K(t) must be zero at infinity in order 

that the functions f,g decay decently to zero (exponentially) as z tends 

to infinity. 	This implies that K(t) s  0 and hence that there is no radial 

pressure gradient. 	If we write 

ef , 	_ 
'g q 

the equations (3.2.4) and (3.2.6) reduce to the equation (2.2.8) and the 

boundary conditions (3,2.7) to (2.4.1). 	Hence the solution to this 

problem has already been considered in section 2.4. 	The oscillatory result 

derivable for t 	co, when n X 2 	, agrees with the solution of the 

l inearized form of Bent' s problem ([5.j, p.336 ). 	But for n = 2 SZ 

we have Q non-oscillatory solution when t 	co. 

If a second disk is introduced, that is for problem (ii), then the 

appropriate boundary conditions together with the differential equation 

(3.2.6) no longer imply that K(t) a 0, 	Hence radial pressure gradients 

can exist and important changes may be produced in the interior by the 

spin-up mechanisms 1172 	Therefore it is necessary to solve the more 

complex problem, namely (3.2.4) and (3.2,5) subject to the appropriate 

boundary conditions. 	The remainder of this chapter is concerned with a 

i(oa = a, 	i(alo = b , 
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discussion of this problem. 

When the dimensionless variables (starred), 

z =Lz*, t = 	 g = uo g*, f = Lof* , 	(3.2.8) 

are introduced, the equations (3.2.4) and (3.2.5) become (upon dropping 

the asterisks) 

ag  + 2 af  = at 	az 

(3.2.9) 

- 2 —ag  = P-1 a
4 

 f 
az 	---"4 az 

where R is the Reynolds number defined by (1.1.2). 	The equations 

(3.2,9) must now be solved subject to the conditions 

of 	 i 	 t 
1 	1 (a) 	f = 	= 0 , g = ae 	+ be 	on z = 1 for t > 0 , 

az 

0
3
f 

ataz 

(b) 
of 	.e.‘ y = 	= 

t 	-I 	t 
g = ce 2 + de 2  on z = -1 for t > 0, 

(c) 	f = 
of 
— = = 0 	 at t = 0 for all z , 
az 

(3.2.10) 

where 
ni 	 n2  

= MOIONVO10 and 	= 
1 5-2. 	2 5-6  
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The equations (3.2.9) are identical to the equations (3.2) and (3„3) 

in Greenspan and Howard's paper T171 with V and )4 replaced by g and 

f respectively. 	Here we solve these equations with more general ' 

boundary conditions (3.2.10) than those employed by Greenspan and 

Howard, which, in fact, correspond to the special case 

6-
1 

= 6-  = 	, 
2 

a + b = 1, c+ = 1. 

3.3 THE SOLUTION OF THE INITIAL-VALUE PROBLEM 

In the following analysis we shall confine our attention to the case 

when the Reynolds number, R, is large. 

Applying the Laplace transform 

03, 4  
RZ,P) = 	 h(z,t)dt 

to the equations (3.2.9) and the boundary conditions (3.2.10), we have 

	

Kl 02 	
- 2 az 0 

az 

	

's" 1 02 	a27" 
• az 

a z 	 az 

(3.3.1) 

 

  

which must be solved subject to the conditions 



T 	= 0 az 
a g. p-1 on z = 1 , p+ C-7

1 

b 

9  1:
"

5-2 
on z = -1 . 

aT = 	, '51" 

(3.3.2) 

The solutions to equations (3.3.1) subject to the conditions (3.3.2) are 

( a 	
c 9 = ") 

1 p-16
'2 

+ 	_m E(m2)(coshfm1 z} - coshm
1 
 ) + m2E(mi)(coshtm2zi - cosh m2 1 

a 4.  
p-i 6-

1 	p+i 

    

sirth[mizT 	sinh im2z 
4sinhm 
	  + 	  

4sinhm
2 

  

2 P+1 

(3.3.3) 

a 	 d 
p-i 6-1 	p+i Gl 13-1E-2- 	P+1 ‘2 

Rpi r; 
2)(si himizi - z sinh m1 ) - E(mi)(sinhtra2zi 

''c + 
b _ 	c 	_ d 

---p-1:6 
1 p+1 4 5- 1 P-i 6-2 P7-i e‘2-  

zsinhm2  

{ i(cosh,Imiz3 - coshml) 	i(coshim2z I - coshm2) 
, 	(3.3.4) 4m

1
sinhm

1 	 4m2sinhm
2 

 

 



- 66 - 

1 
where m

1 
 = R2 (p + 21)2  , rn

2 
= le(p-202)  

E(m) = mcoshm sinhm , 

mi
3 

E(m2)cosh m1  + m23  E(m1 )cosh m2  . 

This agrees with the notation employed by Greenspan and Howard 	. 

The singularities of g and r play an important role in evaluating the 

inverse Laplace integral. 	We notice that although m
1 

and m
2 

have branch 

points at p = -2i and p = 2i respectively, these points are not singularities 

of the equations (3.3.3) and (3.3.4), 	The only singularities of the 

functions I and g are simple poles situated at 

p 
	6--  I 

p = 	6- 
2 

p 2i 
k2n2 

R k= 1,2,.,. 

(3.3.5) 

and at the zeros of A  other than p = -F  2i. 	For large R, the required 

zeros of P are given, approximately, by 

p = 

- 
p = 	-2i- 

 n 
2 R

1 ' 
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where 	n  are the positive roots of tan 	 (n + -2-1 )Tr) 

The inverse Laplace transform, 

1 h(z,t) = 271-4  

rFia) 

I Rz,t)ePtdp 
y-ico 

where y is chosen to lie 	to the right of all the singularities, can now 

be evaluated by a residue calculation to give 

i 	t 
g 	ae 

- 67, fr 
I + be 

'fit 
 

+ ce 	2 

-i 	t, 
+ de 	2

.L2 

+ 

[1. 2 

+ 

t<-1  A + Clp  

 A + C 

6-2A - 

62/1 - 

=• 

= - 

P = 

1 

1 	 i 
- 	-1-exp { -11-43 El - cos { R2(1-1z1)} exp { -R2(1- Iz 1)1 + 0(R { 

xf

a  
1 + i61R2  

     

6-R7 	1+i 2 	1 - it5-  R2  

P 

+ R -1 	-1(cosII nz 

!— n 	cos r n 

'pexp(-1 2el  t + 0 R 2) 



1 	2it 	2 - 1 x 	e (21 - 	) 2 -1 
nR +16-  

1 

- . 2i- nR -16- 	21- 12R-1-Fi 6-  2 

e-21t(2i +12R-1)  + 

-tit 	  e  
21+145-1  + k2

Ti
2R-1 

a 

6-2t 
+ ce 	[D-1(1 62

B1 

715 
+ de 2  E-D44R 62 	. B] 	62 

P 2 

-63- 

a  
1 	 -1 

L2i+ nR 

	

2i+ nR -1 cSi 2i+ i2R-1+i cs- 	2i+ snR -i C 1 	 2  

sin(krrz).(-1)k2rrk exp -k2Tr2tR-1(  
4R k=1 

b 
	c 	 d 

21-16-1 + k2  Tr2  R 1 	2i+i 6-  + k2Tr2R-1 
2 

 

+ k2Tr2R-1  

Zit 	a  + e 
2 -1 k Tr2  R 	21 + 1 51 	k2Tr2- R-1 - 21- i cs-1 	1<Zr:2R-4 -21+1.s-

2 

d 
(3.3.7) 

k2IT2R-1-2i-i tr• 
2 

f 	ae 1t
[D4R6_18] 	 1 

p = kr-1 

+ be 	ED-I4R B] 

t 

.1 	j_ 
+ 	R  2exp -11-2tf  4.41-01z - 	exp t-R,./(1+i)(1-1z1)11 + o(R-1) 



R 1 
+ Tr  

sin ilnzi)  
	 exp(- 2 1 R t) + O(R 2) sin -LI  

21+16-2 	n  + T 2R-1 
C 

21-1 6'2+ In R 11 

a C fe-21t 

2i- i+k2nR
- 

6- 	
1 2i+lc+k22  R -1 

2 6 21+6-11+k2n2R-1 

-69- 

x a 	b 

6-  le 1 	 - 1 	ia-1R2 

d 

1 + 18-
2
0 	1 - i 62 	.) 

21+16-1-

b 	 c  

T211 1 
2 21-i - 2

R
1 

zn 	 n 

a  

21-Hs-I+ L2  R-12H6- 14.v2R-1 

x e
2it(21 

21-1 6-  - 2R-1 
1 .3n 

a 

d  

21+16- R -11 2- n  

-21t 	2 -1 + e 	(2i+cR ) n  

ax 

( .k-1 2i 1) 	 k 	C .2 	-1 IR  (cos (k nz) - (-1) )exp -k n tR 	x 

C 

k2Tr2R-1+1 62̀-21 

d 
2 2R  1 k n 	-16-2  -21 

SOO } (3.3.8) 

a d 
IMO 

k2it2R-1-  i-2i 1 

21t 
- e 

21-16-  -1.1<  	2TR I 2 
2 2 - n R

1  +6-1 .-21 
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where 

A - 
m1E(m2) [cosh imizi - cosh m1] + m2E(mi) [cosh m2z- cosh m2] 

 

C 

D 

E(m2) [sinh imizi 	z sink - E(mi) 1sinh {rTi2z} - z sink m21 

sink1 
	ss  z-/ 	sink im

2
z1 

f(cosh {m2zl- cosh m2) 

4 sinh 	4 sinh m2 1 

i(cosh Imiz} - cosh m1) 

4m 	sinh m11   4 m2 sink i-n2 
• 

For each type of expression in (3.3.7) and (3.3.8) we will only be con-

cerned with the leading term and we will ignore ail terms of order n, 

compared with these, 	Therefore the terms ignored in the calculation of 

(3,3.7) and (3.3.8) are unimportant for our purposes. 	it should be 

remarked that for 	> tz, the above expressions do not apply since the 

power series (3.3.6) for these zeros of Q would not be valid. 

It is an interesting fact that 

sin 	nz 
sin 

n 

1 	cos nz 
and - 1) 

„f n 	cos 

form an orthonormal set in the interval (-1,1), and this information is 

required to satisfy the initial conditions. 
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We wil I now restrict our attention to a study of the azimuthal 

velocity, g, since the radial velocity, --:?- I  can be found directly from 

g. 	If we now let t 	co in (3.3.7) we have 

i 	t 
1 E, 

g = ae 	+ Ri 6-  A + CI 	+ be 1 
1 	p=i 	 - 	6--1 A + 

1 

5-  t 
-2 2 Ei 2 - + ce

i 	
+ -ARi 6-

2 
--c] p=i 6_ + de2 	 6-  A - C] = . 

2 	p-16--  
2 

(3.3.9) 

This is an oscillatory solution which is exact for all R and is identical to 

the solution that would be obtained by seeking an oscillatory solution 

I itSit 	-i 6 t 	i 	I" 6-t 
g(z,t) = gi(z)e 	+ g2(z)e 	1 

+ g3(z)e 2 
	

g4(z)e 	
2 

 I 

of the equation 

2 
km • 

az 

a )2 3g 	e 
INEMN.• 4 2  .10,... at - 	az  0 

derived from (3.2.9) by eliminating f , subject to the boundary conditions 

91  =a, 92 -i3, 93  = 01 94  0 	on = 1, 

9
1 

= 0, on z = -1 92  = or g3 = 	94  = d 

The properties of this oscillatory solution (3.'3.9) depend upon the 

values taken for the dimensionless frequencies, cr.  and 6- 
	

A discussion 

of this flow will be given, for large R, when the various cases for cs-1 



6-1R2 = 

c5 = 2 
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and Cr 2 are considered. 

3.4 DISCUSSION .  

We are now concerned with the times required for the transient terms 

to vanish and also the final structure of the flow when we assume that R 

is large. 

We suppose that the spin-up time 

Ts  

and the periods of the imposed oscillations 

Ti 	
2n 	 2n 

	

= MMENII 	 T2 = IMMO. 

n1 I n2  

Then 

Ts _ 	spin-uptime 2Tt

1 	2' oscillation period for disk, z = 1 iv 

T_ 
2n. 	= 2n 

2 

spin-up time 
cis"ar air="-"Mn pert for disk, z = -1 

We will now discuss the four cases 

A Steady, 6"-/  = et"2" = 0 , 

B 	Low frequency oscillations, T1 , 12  >> Ts  , 

C 	Intermediate frequency oscillations, Ti  = 0(Td, T2  = 0(Ts) , 

D 	High frequency oscillations T1, T2  << Ts  . 
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A 	The steady case (es/  = 6-2  = 0) 

We first consider the case when 61  = 6—  = 0. Then the 

angular velocity of the disks is impulsively charged, from t = 0, by 

and c-kl on z = -1. 

I 
sinh 31(2iR)2z 

4. 	 
2 	 A. +  

4 sinh (21R)2  

In this case (3.3.7) reduces to 

sinh (-2i11)2z1 

4 sinh(-2iR)2  

a+b on z =1 

g 
	a+b 

c  

sinh t(2112)2z 

4 sinh(2iR) 

sinh F(-2iR)2z 

4 sinh(-21R)2  
J 

- z  exp 	1- 1 - cos 1112(1-1z1 exp 	 (a+b+c+d) 

+ R l̀  sin(2t) V i cos 
 i t nzl  - 1 xp(- 2R-if}. L ,1e 	'n . a+b+c+d] 

2 	IFI--1  \ cos In 

1̀3 -1 sin(krtz)(-1)k2irk  exp  ..., 2Tr2--  + za_t 

	

	k K 1  t I (-sin i 2t1 ) &+b) - (c+d 4R k=1 

where terms of order R 2  compared with those written down have been 

omitted. By arguments identical to those employed by Greenspm and 

Howard [17, p.388], we find that the series 

 

(3,4.1) 

 

-1 R sinl2t1 
2 

cos  IT zI n  
( cos n 	n 

- 1 exp(-1.nrit), 	(3.4.2) 

1 apart from the first few terms which are of order iz , is bounded by 
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14 	1 
"rr • (3.4.3) 

where K =---1  1 	This bound, (3.4.3), for the amplitude of these 

inertial oscillations is important because, although the individual oscillations 

have small amplitudes, 0(R 1), we also require that collectively they 

should have small amplitude, for the oscillations to become negligible. 

Similarly, we see that for the inertial oscillations of the form 

sin(k itz)(-1)k2rrk exp -k2rr2R-it-s;,(01 

k=1 4R 	 2 (3,4.4) 

the amplitude of the individual oscillations is small, 0(R 1), while the 

collective amplitude is bounded by 

K' (3.4.5) 

 

where K' < 

a +b+c + d j 0  

When a+b+c+d 0 the term 

exp 	- 	 R2 	exp t-R2(1-1z1 )1] (a+b+c+d), 	(3.4.6) 

requires a dimensionless time of order R2  to decay. 	For this time scale, 
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t = R2r , the inertial oscillations of the form (3.4.2) and (3.4.4) make 

a contribution no larger than R4  and are therefore negligible compared 

with terms of order 1. 	Hence all the transient effects will become 

negligible within a time of order R 	-1 = Ts, the Greenspan and Howard 

[17] spin-up time, to leave the final state 

g = (am) 1  + sinh i'(2iR)Izi + sinh 1(-2iR)1z1 [ 

4 sinh(2iR)2 	4 sinh(-21RY 
no on • gm • no • gm • • IN • • • 

(c4t1)11 - 
, 

sinh 	(2i12)2-zi _ sinh i(-2iR)2z 
• (3.4.7) 

4 sinh(2iR)2.  
I 

4 sinh(-2iR? 

The expression (3.4.7) represents Ekman boundary layers on the 

disks at z = - 1, having a depth of penetration of order ())/52.)-2-  (or 

R2  in dimensionless quantities) and an interior flaw which is a solid-body 

rotation having a constant angular velocity, 

g = 1-(a + b + c + d). 

For the special case when a + b = c + d, that is when the angular 

velocity of the two disks is impulsively changed by the same amount, then 

the final state reduces to solid-body rotation with 

g = a + b 

and no Ekman layers are present on the disks. 	If a + b = c + d = 1, 
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then equation (3.4.1) reduces to equation (3.10) in Greenspan and 

Howard's paper [173. 	Similarly the expression for f would correspond 

to (3.9) in [17], 	it should be noticed that trivial errors occur in 

equations (3,9) and (3.10) in Greenspan and Howard's paper L17]. 

These should, in fact, read 

PS = IR2exp(-R 2t) 1 1 exp(-R2(1+i)(1-14))i• 

-12t 	sin 

sin IT zz 
R cos n  )exp(-rn2 R-1  t) 

'F 

, 
V = 1 - exp(-R40[1 coqR2(1-1z1)?exp t-R2:(1-1z1)11 

-1 	cos nz 2 -1 
+ R sin 2t ')exp(-InR t) . cos n 	In 

The manner in which the final state of solid-body rotation is established 

has been described in Chapter 1. 

a+b+c +d=0  

When a+ b + c + d = 0 the two disks are given, initially, equal 

and opposite changes in angular velocity. 	Then, from the equation 

(3.4.1), the only transient effects to influence the motion are the inertial 

oscillations of the form (3.4.4). 	By formula (3.4.5), these oscillations 

behave in a manner which decays at the worst like t-1, for t > O. 



If we suppose that the time taken for these inertial oscillations to decay 

is t = R a -r, where a > O, then, by (3.4,5), the collective amplitude 

is no greater than O(R-̀f). 	When we take a = 2 which is equivalent 

to the spin-up time, Ts, these oscillations become negligible. 	Therefore 

we may assume that a < 1. 	Hence the inertial oscillations will be very 

important, initially, but will decay in a finite time which is much less 

than the spin-up time. 	The final state of the fluid consists of Oman 

layers on the disks with no interior flow. 

B. 	Low frequency oscillations, T1' T2 >> Ts 
We have low frequency oscillations imposed on both disks when 

tsr, 6-2e:  << 1, which is equivalent to Ti , 12  >> Ts. Then 

equation (3.3.7) reduces to 

-i t 
ae 	1 i 6-t 	+ R is = 	 1A + C 1 	 + be 1 	- 	+ 

p=i (5) 	 p=- 45-1  

-I cs" I 
+ ce 2  + 1  6-  A C 2 Ri 014 ". 	 + de 	2 

P=1 6-2 

 

6-2A - 
62  

- 2 exp 	 (1-1z1)1 exp R2(1- I z1)1 [(a + b + c + d) 

+ 1  R2(bi-a) + i 6'2R2  (d-c}  
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Fos 	nzi 

n \ cos Tn 

exp(-T 2R-it) + b + c + d)sin(2t) 

+ 6- (a_b)  cos(2t) 	 cos(2t) 
1 	2 l i  

  

co sin(knz)(-0k2-ak exp1 -k2rr2tR-11  
L-k 
k=1 	 4R (c+d) - (a+b) sin(2t) 

(51(3-0) 	6.2(c_d)}  co2s1(2t) 

  

(3.4.8) 

    

where we have ignored terms of order R compared with those retained. 

The assumption of low frequency oscillations implies that all transient 

terms involving 61 or 62 can be neglected. 

a+b+c+d/0  

When a +b +c+d/0 we have, by the same arguments as we 

have employed previously for the steady case with a +b +c +d # 0, 

that the transient terms decay within a time of order R 	-1, the spin-up 

time, to leave the final state 

g = 
1 alt

(ae 	be 	1  ) 	sinh /(2iR)2z I  

4 sinh(2iR):' 
+ sinh I (-2 fR)2z

,  
nowlmmilawmtimm•mr.  Fn. 

4 sinh(-2iR)2  

cr t 	wi trt 2 	2 {1  + 	(ce 	+ 	) .  
, 	1  

sinh /(2i11)2z/  

4 sinh(2iR)2  

sinh (-2iR)
1 
2z) 

4 sinh(-2iR)2  

+ 	0(R2  6-1 ) + 0(R2  6-2) 
	

(3.4.9) 
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The assumption of low frequency oscillations implies that terms of order 

1126-1 or R262 are negligible to a first approximation. 	Then (3.4.9) 

represents boundary layers on the disks, z = - 1, of thickness 

( v/51,_ )2  (or R2  in dimensionless quantities). 	These are, in fact, Ekman 

layers having time-dependent amplitudes. Added to these boundary 

layers is the interior flow 

lest 	 tcrlt 	esot 
g = Rae 	+ be 	+ ce 	+ de 	) 

For the special case when identical oscillations are imposed on the 

two disks, the final state is a rigid rotation with 

i 6 t 1 t 
g 	 1 ae 	+ be • 

a+b+c+d=0  

When a +b +c + d = 0 we have, by the arguments used in the 

steady case with a + b + c + d = 0, that the time required for the 

transient effects to decay is a finite time which is very much less than 

the spin-up time. 	The final state is again given by (3.4.9). 	For the 

special case when the imposed oscillations have the same frequency and 

amplitude but have a phase difference of n then, the final state reduces 

to Ekman layers on the disks with no interior flow. 



a 
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Hence the cases or steady and low frequency oscillations are very 

closely connected and depend basically upon the spin-up mechanisms 

except when a +b+c+d= 0, the special case, when only the 

inertial oscillations affect the motion. 

C. 	Intermediate frequency oscillations, Ti  = 0(Ts), 12  = 0(Ts) 

For intermediate frequency oscillations, we have that terms 
1 	 T 
I involving R ts--1  and 8262  become comparable with one and must be 

retained while terms involving 6-1 or 6' 2 can be ignored, since 6-  << 1 1 

and 6-2  << 1. Then (3.3.7) reduces to 

= ae 1 El + 2 s-  c A + Ci 	+ be 	
t i 
	6-  - IR; A + 2 	 1 	 •tc-

1 
p= 	 _ 1 

-i t r, 	.72- 	 2 ri ce
1 	2 	Ri 6-A + de 	- RIC-  A 2 2 

i 

	

	 2 6-  2 	 6-2 

- z  exp 	fri 	cos [R2(1- Izt)/ exp 1-R2(1-tzl) 

11.1.1/11.1•110141.11••••••••71 

1 ". I 	R 	1 + i 1 	2 	1 - is R2  

R-1 

  

cos t nz 

( cos In  
')exp(- 2 1 t)(a + b + c + d)sin(2t) 
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sin(krrz)(-1)1(2ff k exp .4(2172R-1t  [(c4cit 	(a+b)isin(2t) , 4R 

(3.4.10) 

where terms of order R 2  compared with those written down, have been 

ignored. Again, by the same arguments as we applied to the steady 

case, when 

ab+ 	 + 	d 	/ 0 
1+ i isile 	1 	i c5R2 	1+ i 62R2 	1- i 2R2  

J. 
the transient terms decay in a time of order R2 S2. I the spin-up time, 

while for 

a + 	= 
1+ 'I 6-  R 	1- 2 	 1+ 	2 R2 	1-i cs-2  R2  1  

a finite time, which is always much less than the spin-up time, is required. 

The final state is given by 

CO 

ki 

9 = ae 
i El  

r
2
i sinh , (2iR)2z 

4 sinh(2iR)2  

sinh t(-21R)2z  

4 sinh(-2iR)2  

iless--1 cosh(-2iR)2  cosh (2iR)-2-z f  - cosh(2iR)2  

cosh(2iR)2  [cosh (-2iR)2z 1 - cosh(-2iR)11 

1 
f 4i fs-1  R 	

1 	1 	 1 	1 
-:- 	.2cosh(2iR)7cosh(-2iR)-2-  - (203/2sinh(-2iWcosh(2iRf 
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(-203/2cosh(-2;R)2sinh(2;11)2  

+ 3 similar terms. 	 (3.4.11)  

This represents boundary layers on both disks and on interior flow which 

is independent of z. 

D. 	High frequency oscillations,  T T << Ts TI, T2  
For high frequency oscillations we require T1' T2  < Ts and 

therefore R2 a-1 , R2  6-2  >> 1. 	We will first consider the contribution 

from the term 

- 	exp -R-2-t I Cl - cos [0.(1-1z1) exp -R2(1-1z1)}] + 0(e) 

x 
La 

	b 
+ 	•••••••••••••••••••11110.10.1110 

1 	+ i CS'  R2 	 1 ... i E.

1 R 

2  
1  

(3.4. I 2) 

to the expression (3.3.7) for g, on the assumption of high frequency 

oscillations. When a = b, we have (3.4.12) is 0(R4  6-1) except in 

the special case when a and b are real when (3.4.12) is 0(R-1 6" -2) 

Similar contributions arise from the terms with a,b, 6-  replaced by6-  c id' 2 

respectively in (3.4.12). 	Hence the amplitude of these terms is always 

either 0(R 261  ) or 0(R 4  6"--1) or less, and therefore they can be 2 

ignored when compared with terms of order one, 
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In the problem discussed in chapter 2, a resonance phenomenon was 

found when the frequency of oscillation was twice the angular velocity of 

rotation. 	Then, for large times, for oscillations at all frequencies except 

the resonant frequency, the flow was confined to boundary layers on the 

disks while, for oscillations at the resonant frequency, when two boundaries 

were present, the motion penetrated throughout the whole fluid. 	We will 

show that this type of behaviour also occurs in this problem, but first we 

will consider the general non-resonant case. 

The non-resonant case 6-1 2  6-  / 2 1  
We will first consider the case when neither 4-1  nor 

to two, the resonant frequency. 	In this case (3.3.7) becomes 

-I 0—  i t 
g = ee 	+ R;6-0 + + be 	' 

1. 	
IR; 	+ 

P="4 6i 

+ ce 
it 2 [32_ 4.  crlt 

1Ri 6-2A — C] 	+ de 	 2 	C] 
p=i 2 	 2 

or c sa nz 1 	 2 - 	 a 	b 
cos 	

1) exp(- 	R t e2it 	 

	

(2- 6 )i 	(2+ cr )1 1 

d 	2ie-tit (2- cr2)i 	(2+ 6)1 
a  

(2+ cri)i 	(2- c-1  )i 

    

 

c 	ci  
i 	(2- 0-2)i 

  

   

    

6-2 is equal 

R-1 



+ (2-b cr)i 
c 	d 	+ e2it 

C44 win? - 1270-71- 
2 

  

  

    

T2- cr2r 	+2 ° 

Sgt 2 + ce 
2 

-i t 2 de 

e 
, I. 

sinh 1.2R2(-i( csi+2))2  1 
1 

Binh i 2(i( 62-4 R. 	(1-z) 

sink 2R2(i(.6-2-2))2  1 
1 	I 

sink R2(-i( 6-2+2))2(1-z) i• -'. 

sink 1 2R2(-i( 52+2))- 

1 	I 
sink { R2(i( d'i -2))2(1-12) I 

sink i:2R1(i(d-1-2)) i 

sink 1- 1132(-1( 6-1+2))1(1+z) 1 f 

sin(kaz)(-l)k2trk 	explC  -k22, 1 	-2itr a 	 
k=1 	

o e (2+ )1 

a 
(a-i+2)i 

(3.4.13) 

where terms of the type (3.4.12) and also terms of order R compared 

with those written down have been neglected. 	The infinite series in 

(3.4.13) must be retained because, although each term has an amplitude 

of order r(1, collectively these terms are very important at small times. 

Again we apply the argument used for the steady case when a + b + c  + d = 0 

to both infinite series and we find that the time required for the transient 

terms to decay is always very much less than the spin-up time, Ts. 	The 

flow after the transient effects have decayed is given by 

ae 	1 f sink R2(1(<5.-1  +2))7(1+z)1 
9 = .1•101.1. 

sink 	ts--1+2))1 

sink Ci:R1(1(2- 07100+4 

sink 2R2(i(2- 6))721  

sink {R2.(i(d-+2))20-2).-

sinh 2R:"(i( 5-2-1-2))1  

sink (Z4(1(2- ss-2))2(1-z) } 
sink 2P.2(i(2- 6-2))2  
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+ O(R 2 ) 
	

(3.4,14) 

We ore assuming that R is large and therefore terms of o(rz 2) can 

be ignored. 	Then (3.4.14) represents boundary layers on the disks having 

depths of penetration of vorticity of order 

1 
k2 

te 	  
." 2 5Z 

1 
\ 2 

(
0 
	9 

2-25701 

on z= 1 , 

on `--1 

These welt-defined boundary layers are, in fact, modified Stokes layers. 

The resonant case,  di or 	= 2 

We will assume first, without loss of generality, that for the 

resonant case 6' 1 	2= and 6-2  / 2. Then, when terms of the type 

(3.4.12) have been ignored (3.3.7) becomes 

i6 t 	 -i 	t 
g = ae 	E2_ 	(a—A + 1 	+ be 2 2 - 11Zi 6-A + CJ

p=i P=-I 671  1 
c9*- 	 -i (5-  t 2

t 
+ ce 	+ ii + de 	 cs2A - 

2 	
r ps Cr" 

	

P=i c5- 	 2 

cos 	lir z 
1)exp(-1 2R.-1 cos 1- n 

v e-tit {bRR + 0(1  ) 

R-1 

 

2i e2it 	Ra  - 	+ OW] 

n 
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X) sin(knz)(-1)27rk exp(-k22 1 R 	-2it bR - 
4p, 	 e  - + 0(1)%  

+ P 2it[ aR _ 	+ 0(1) 
k2r(' 

(3.4.15) 

where terms of order R-4  compared with those retained have been ignored. 

We will first consider the term 

cosi Inz fit 	..2it 2.(ae 	+ be ) 
n 	cos n 

- 1) exp(-12nelo 

n 

(3.4.16) 

Then, by the arguments used by Greenspan and Howard D71 , we have 

that except for the first few terms the series (3.4.16) is bounded by 

ke2it + be-2it 	exp(- )n 	n 

< 	2 
lae2it + be-2it 	exp(..  T2nR-lf  , 

since 	+ Dit . 	Similarly the series 

tc° 
	

sink rrz)(-1)kexp(-k2IT2R-  t)( e-2it + ae2it) 
Ff k k=1 

except for the first few terms is bounded by 

k=1 



ae2it sink (4101 +  
2 sink 2(4iR)2} 

3z2 - 1 + 2z 
8 9 = 

- 07 - 

co —f I 2it ae 	+ be 	z exp(-k2rt2R-lt) . 
k=i 

From these bounds we see that the transient effects certainly die out in 

a time of order RR.1  = ird, the viscous diffusion time. 	The final flow 

is given by 

+ be-titf  sinh (-10)7204z)  + 
2 sinh S  2(»4iR)2 1.  

+ 

	

	
) 

cei 6-2t sink e(i(64+2))2(1-z)1  —y— 

sink [ 2R2(i(2- (y)2  I  

3z2  - 1 + 2z  

sink R2(i( 6-2-2))2(I -z) 

sink .t 21: -20(6-2-2))L  I 

sink ie(-i(c52+2))2(1-z)/ 

sinh 121eHrs2+2))2  

(3.4.17) 

sink  2R2(°(.2+2))2  
t 	

} 
2 

de  2 	sink 	(i(2- 621)20• -z) 

Since R is large, we may neglect terms of order R ▪ 	Hence (3.4.17) 

represents modified Stokes layers on z = - 1, which have depths of pene-

tration of order 

v )2 	( 

 

	) 	respectively , 2 RI 



+ 	e-2it sink (-MY (1+-41.  + 3z
2-1 + 2z 

2sinh 12(-4i1:0.1 
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and also a flow between the plates which is quadratic in z and has a 

time dependent amplitude. 

When both disks oscillate at the resonant frequency, 671  = 6 ; = 2, 

the time required for the transient effects to decay is again Td, the 

viscous diffusion time. 	The final state is given by 

g 	ae 2it 	sink (4iR)2  (14z)  =  
2sinh 2(402 (3- 

▪ 3z--1 + 2z  
8 

+ ce2it 	sink I (4iR)2(1-z)  
2sink 2(4P)2  

3z2-1 - 2z  
3 

) 
+ de tit  sink {(-4iR)1:(1-z)1 	32 - 1 - 2z  

2sinh t2(-4iR)2 	 8 

• O(R(). 	 (3.4.18) 

For this case modified Stokes layers are formed on the disks, each 

having a depth of penetration of vorticity of order (1'/4 5 )1. 	The 

interior flow is again quadratic in z with a time dependent amplitude. 

When both disks oscillate in the same manner that is when a = c, b = d, 

the terms which are linear in z cancel. 	When the imposed oscillations 

on the two disks have the same amplitude and a phase difference of IT, 
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that is a = -c, b = -d, then the interior flow reduces to a shear flow 

uniform in z with a time-dependent amplitude, 

Interior flow  

We now consider the structure of the interior flow which persists 

after the transient effects have vanished when both disks oscillate at the 

	

resonant frequency, 	From (3.4.18) the interior azimuthal velocity is 

given by 

r g = r(ae2it + be-21it)(3z2 -
8
1 + 2z  ) 

+ r(ce2it + de-2it3z2 	- 2z) + 0(R 1). 	(3.4.19) 

Therefore, from (3.2.9), the interior radial velocity is given by 

r O, = -ir(ae - be 	3z2 

	

2it 	-2itX 	 - 1 + 2z ) oz 	 8 

-ir(ce2it )( 3z2 -
s
1 - 2z ) + 0(R 2 ) 	(3.4.20) 

and the interior vertical velocity is given by 

oe2it 	2 M 
it)(z3  + z -2f1  

- + (ce2it  - de 2it  )(z3  - z2  - z + 1)] + 0(R 2) , (3.4.21) 

In the following analysis we will neglect terms of order R 2  compared 

with one. 
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The particle paths for the interior motion are given by 

dr_rd/ 	dz 
afi 

	
rgi  = dt 	 (3.4.22) 

r  az 

In particular from (3.4.22), (3.4.20), (3.4.21), we find that 

dr 
r [(3z2  - 1 + 2z) la sin 2(t-t) + (3z2 - 1 - 2z) ici sin 2(t-t )1,j a 	 c 3 

dz 
-2 [(i")  + z2  — z — )10 sin 2(t-ta).} + (z 	zz  - z + 1)14 sin 2(t-tc)n 

(3.4.23) 

where to and tc are the phases of a and c respectively. When 

ta - tc I = Imre, 	m = 0,1,2,..., 	(3.4.24) 

fhe time dependence in (3.4.23) cancels and we can integrate this 

equation to give 

2 r2 (z -1)(z Co + 13-) + La - p]) = constant, (3,4.25) 

where q = !al and p= -1:10 	The particle paths lie on the steady 

surfaces (3.4.25) which are shown in Fig.3.1. 
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2=1 

	 r 

7 -=4211, 
/Si•cit 

FIG.3.1:— Sketch of the steady surfaces, 

r2(z2-1)(z Ec( + /3-3 + 	p] ) = constant. 

Also, from (3.4.22), when to  and tc  are related by (3.4,24) we have 

) 4 sin i2(t-t-o) . 	(a2-1)(z Ca + 	+5( - 	, 	(3.4.26) 

which we can integrate by parts to give 

1 	1 	 _ 

(F241:0-13( 	 
Lion z 	vc.{31/ 

= 2 sin t sin [2t -t], 
- a 

log 

(3.4.27) 
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where zo is the position of a given particle at t = 0. 	This represents 

an oscillation which takes the value z = zo at 

t = Or 	sr I  ••• 2n,,.., 
(3.4.28) 

+ t = 2t , 	- IT, z.t ••• a a a 

13-a and which is trapped either between the planes z = 1 and z = 13 or 

13-cit z = -1 and . z = — depending upon the value of zo  . ct+i3  

We now consider the above results when we impose certain restrictions 

on c( and 13. 

(0 	a =  

In this case the imposed oscillations are such that 

ial 	= ici 	and 	Ito 	= 0, 17, 2u, „„ • • 

Then, the steady surfaces, (3.4,25), reduce to 

r2z(z2-11 = constant , 	 (3.4.29) 

which are shown in Fi9.3,2 and (3.4.27) become 

log 
(7.2-1)z2 
(z-0z2  2c( sin t sin Dta....t1 (3.4.30) 

The expression (3,4.30) represents an oscillation trapped between z = 0 

and z = 1 if zo is positive or z = 0 and z = -1 if zo is negative 
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2.= 

FIG.3.2: Sketch of the steady surfaces, r2
z z - = constant. 

FIG. 3.3: 	Sketch of the oscillations (3.4.30) for to  = ff , TT 
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FIG.3.4: Sketch of the steady surfaces r2(z2- = constant. 

FIG.3.5: Sketch of the oscillations. (3.4.32) for to  = 0, 	I 7  • 
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which takes the value z = zo at the. times (3.4.28). 	These oscillations 

are shown for various values of to in Fig.3.3. 

(ii) d =  

The case c( -f3 corresponds to imposed oscillations which satisfy 

a = I and It a c 
Tr 	3rr 	5ir 

= 	-7-1-771  ••• • 

Then the steady surfaces, (3.4.25), reduce to 

2 r2 	-1) = constant , 

which are shown in Fig.3i4. From (3.4.27) we have 

z+1  log 1 o I = 2c( sin t sin C2ta-t] 

(3.4.31) 

(3.4.32) 

which represents oscillations trapped between z = 1 and z = -1 which 

have the value z = z at the times (3.4.28). 	These oscillations are shown 

for various values or to in Fig.3.5. 

(iii) either = 0 or 1 =  

We may suppose without loss of generality that (3 = 0, which 

corresponds to c = d = O. 	By this assumption we derive the interior 

flow when either the disk at z = -1 is oscillating at a frequency other 

than the resonant frequency or is at rest. 	The steady surfaces, (3.4.25), 

reduce to 
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FIG .3.6: Sketch of I•he steady surfaces r2(z-1)(z+1)2 = constant. 
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r2(z-1)(z4-1)2  = constant , 	 (3.4.33) 

which are shown in Fig.3.6. 	For this case, the oscillations are obtained 

by integrating (3.4.26) to give 

2(zo-z) 	 Z +1 
+ log t(fit)(1,27-) = 2c( sin t 

(1+z)(1+z0) 
sin E2ta-t] , (3.4.34) 

which are shown in Fig.3.7 for various values of fa. 

When a and c have phases not connected by (3.4.24), no simple 

discussion of this type of behaviour can be given. 

E.Mixed frequencies  

The cases which occur when one disk is oscillating at a high 

frequency and the other at a low frequency can be found by taking 

a combination of the previous results. 

The previous resul is concerning the times required for transient 

effects to decay are combined in Table 3.1. 

3.5 AN APPROXIMATE POLL/T[0N 

We will now, by making various approximations, develop a 

representation of the solution, g, which gives a more qualitative description 

of the transient (time-dependent) state. 	From this representation we will 

confirm the remarks made in section 3.4 concerning the times required 
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TYPE CONDITIONS DECAY  TIMES 

STEADY Cr-
1 	2 

= Cr".= 0 a+b+c-Fd / 0 

a+b+citi = 0 

Ts 
<< Ts 

LOW 
FREQUENCY 

cr-1R2<<1 
1 

a+b+c+d / C 

a+b+c+d = 0 

Ts 
<< Ts 0— R2<<1 

INTERMEDIATE 
FREQUENCY 

cr R2=C(1) 1 1 

a 	b 	+ 	c 	_,_ + 	 -r 
Ts 

<< T 
S  

 ............ 

1 +icr-R2 	1-i a-  P.2 	1+1 cr-112  
1 	1 	2 

d 
/ 0  

a-  R2=0(1) 2 

1-19R2  
a 	b 	c + 	+ 	+ 

1+1 cr-R2 	1-10-R2 	1 +1 cr-  R2  1 	1 	2 
d 	= 0 

1-i el-R7  2 

HIGH 
FREQUENCY 

Non-resonant (cr. , cr-  / 2) 

Resonant (c r-  or o— = 2) c2  R2»1 R2>>l 

<< Ts 
Td 

cr- R2>>1 1 1 

TABLE 3.1 
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for the transient effects to decay. 

In section 3.4, we found that, except for oscillations at the resonant 

frequency (csi and/or 9 = 2) which occurs in the high frequency 

range, the simple poles at 

p 
+ . 

-R-1- - 6- (3.5.1) 

were the important singularities. 	The residue contribution from the simple 

poles 

p 

p 

+ 	k2sr2 
- 21 R  , 

7 
- 2i e "7- 

k = 1,2,3,••• 

n = 1,2,3,.• 

(3,5.2) 

although important initially, decayed at the worst like t 1 , for t > 0, 

and has a magnitude no greater than 11-y  for a time of order RI. 

Therefore it seems reasonable to use Greenspan and Howard's [17J 

approximations to obtain an inversion integral which can be readily 

evaluated, retains the character and location of the important singularities, 

(3.5.1), and replaces the remaining poles, (3.5.2), by branch points at 

p = - 2i . 

For the resonant case, however, the poles, (3,5.2), become very 

important and it would not be valid to replace them by branch points at 
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p = ± 2i. 	Hence we must treat this special case by a different method. 

Non-resonant oscillations 

We consider oscillations at all frequencies except the resonant 

frequency (66, ci / 2) and we will use the three approximations employed 

by Greenspan and Howard [17] to obtain a representation for the solution, 

g, as a linear combination of an interior solution and a boundary layer 

solution, which is valid for large R and for t < R. 

OMNI ' Mom MEM, ../NO '1r 4- Ica 
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P, P I 	
• 

let max (2.,C, be% 
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.1•6 MOM OM. dm. 01110 

FIG.3.8: 	Transformed contour for the Laplace inversion integral. 
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We can transform the Laplace inversion contour (y i co, y + i co) 

into the contour 	shown in Fig.3.8, where,  a = R-1+6  for some 

> 0 and P, P' are situated ato.- i max (2, 6- ' 6"2) because all the l  

singularities of g , (3.3.3), lie to the left of G' and the contribution 

from the broken lines becomes negligible as they approach infinity. 

Then along 	we have that, for t < 0(R1-6), 	ePt i is 

bounded and tends to zero exponentially as p tends to infinity for any 

fixed t > C, and that mi  and m2  have large positive real parts 

p.3891 
First approximation  

In order to separate the terms in (3.3.3) responsible for the 

boundary layer flow from those responsible for the interior flow we make 

the approximations 

cosh (m.z ‘ = 	exp(m.1z1), sinh m.z) = 	z  exp(m. izk) , -• 	 zi 

E(m. = 1(m. - 1) exp m. , 	= 1,2 , 	 (3.5.3) 

which are valid, with exponentially small errors, along 	. 	When 

these approximations, (3.5.3), are substituted in (3.3.3) we find 

g = 

 

+ 	+ 
p-1 cr2  

 

i(m2  - m1) 

D(p) 	 

  

 

p+1 cr2  
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a-
1  

pm1 (m2-1)exp f a 	+ b 	+ 
p-i  
c+dit 	  

p+1 0-2 	2D(p) 

(14 -1)i 

  

pm2(m1-1)exp im2(1z1 -1)1 
2D(p) 

   

   

    

a 	 c 	d 	z 	fizvoi  

13-i  6-1 
+ 

P+i 	P-1(5-2 P+1cr2 Trzl— 

	

+ exp m2( 	) (3.5.4) 

where 

D(p) = R-1 [m3(ra2  -1) + m23(mi-id 

r n(m2-1)  m2(rn1-16) 21(mfm1)  J (3,5.5) 

is an approximation valid along 	which satisfies the required boundary 

conditions at z = a 1. 

In (3.5.4),the simple poles, (3.5.1), are preserved while the poles, 

(3.5.2), are replaced by branch cuts extending to the left from p = :I 2i 

and simple poles at 

p =+ 2i + 1 — 	 (3.5.6) 

These new poles, (3.5.6), give a residue contribution 0(12-lexp(tR 1)) 

which is small for t < R but becomes important for t > R. 	The terms 
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neglected would, in fact, nullify this growth. 	Hence here we must 

restrict our attention to t < R. 

The first term in (3.5.4) represents the interior solution, gi  , which 

is independent of the z-co-ordinate, while the remaining two terms in 

(3.5.4) represent the boundary layer solution, g
B 
. 

Second approximation  

The choice of the transformed inversion contour, n , is such that, 

along n  , m1  and m2  always have large positive real parts and 

therefore we may ignore the terms m
1, 

m
2 

compared with the term m
1

m
2 

in (3.5.4) and (3.5.5) to give 

a , b 	c 	d 
i(

m9-m1)  
p-1 77---  • gL  = 	 p+i 	P-10-2  P÷g_2 7  

a , 	 c 
gB 	 woommor••••••• 	kologanewwwa -r 

	

{ Fr" (3-1 	 c3-2 

+ 	exp m2( iz1-1)}.1  

(3.5.7) 

d 	pmi  m2  

cd 	2D*(p) [exp z m1 (lzt -1)  

a + b 	c 	d 1.  z 
+ 	wommalrmergeq. 	.../...r..~.0 ... ....Temismam. - •••••••11171•1.110.0 	M•AmMWA• 

t p-to-1 	p+to--7 	p-t 0-2 	p+t (32  4 izi 

+ exP rn2(1z1-1)fir 

where 

D*(p) = p mi  m2  24m2.-m1 ) . 

exp 	(14 -1)1 

(3.5.8) 

(3.5.9) 
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The expressions (3.5.8) and (3.5.9) satisfy the required boundary 

conditions at z = ± 1, retain the simple poles, (3.5.1), and branch 

points, p = - 2i, and move the extra simple poles (3.5.6) to 

p = 	2; + 	
• 
	 (3.5.10) 

The Laplace inversion integrals for the functions (3.5.7) and (3.5.8) 

cannot be evaluated in terms of known functions and therefore we must 

introduce another approximation. 

Third approximation  

The extra poles, (3.5,, 10), arise from the previous approximations 

and are not a property of the original transform function, (3.3.3). 	For 

t < R, they produce a negligible contribution to the transient motion of 

the fluid and therefore we will assume that 

B(p) - 

_1 
i(m

2
-m

1
) R 2rn1m

2 

m1  m2 
 + R 2) 

E(p-202  - (p+2i)2  

R2(p+4).2. (p+R 2) 

D*(p) = 2m1  m2p + 2i(m2-m1) 

= 2m1m
2
(p + R 2)(1+B(p)) , 	 (3.5.11) 

where 

- (p2+4)1  
(3.5.12) 
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The complex function B(p) h small in magnitude along the entire 

contour 	and therefore we may expand (1 + B(p))-1, which appears 

in the integrand of (3.5.7) and (3.5.8) in powers of I3(p) and retain 

only the first term in the resulting series. 	Then the expressions (3.5.7) 

and (3,5.8) become 

, 
a 	b 	c 	d 	i [(p+20 2  "• 

irar mare.••••• + ••••1••••0•10.••• 	imimiargar 

	

p—i cy- 	p+i 6--  

	

1 	1 	P-I  cr2 	p+ic-- 

	

2 	2R2(p + R k) 

- = 
piTT Imi (izi-1)f a + b c 	d 

P+i  c52. 	4(17141'4) 
-r p-i 	p+i cr 1 

	
1 

• exp im2(1z1-1)-1.1 

(3.5.13) 

a 

	

p-i7)+775- 	p•••1 1 	1 	2 
d 	z 	

Cx pf m1(1z1 —1 )1 + 

+ exp fn2(1z‘-1)11 	 (3.5.14) 

Hence by the above procedure we have retained the simple poles, 

(3.5.1), and have replaced all the poles in the neighbourhood of p = 1  2i 

by branch points at p = ± 2i 	It should also be noticed that the small 

and large p behaviour agree with that found for the original function. 

Therefore we may conclude that the expressions (3.5,13) and (3.5.14) 

are valid approximations to the original transform function along to 

for t < R. The above method can be expected to give a reasonably 

g • 



-I 69t 
bi e 

2(1-i 61R2 ) 
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correct description for all t since we have previously shown, in the 

discussion, that for t > R the final state is controlled by the poles 

p = + 	- + i 2, although no rigorous 

The inverse Laplace transform 

I 
9= rrf ept gdp, 

justification will be given here. 

(3.5.15) 

can now be evaluated in terms of known functions. 

The time dependent interior motion, gL, is given by evaluating 

	

(3.5.15) when is given by (3.5.13). 	Then, from Foster and Campbell 

[13] No.546 , we have 

.1_ 1 	 1 1 
6-i i esi t 	erf  r(2;  + i 6-7 )2i 

- 

	

1 	
erf Eci 	-21)2t23 

(i 6'1 ... 21)2 

	

1 1 
j 	

7 7 

	

"• I 6-1  )2  t2 	erf C(-2i-2i - i cs-d2 t2  j 

	

I 	 1 	 

	

(2i - i 6- )2 	(-2i - i 6-1)2  

{ erf [(21 

01 gi 	
2(1+1 6- 112) (21 + 16— )2  

i t 2 ci e 
2(1 + 16"  R2  

2 at e 

2(1-162R2) 

It 

erf [(2i  + i 62)2t2  
1 

(21 + i 6-  y 
2 

1 1 
erf 1 .2i - i 6-

2
12t24. -1 

--" - 
(21 - i 62  )2  

,.,. 

erf r(-21 + 

(1 9 - 2i)*  

erf [(-2i 	i 6-2)2t21 

(-21 i 6-f 2 



t 2 ci e 
2(1 + I Cr-  R2) 	(2i + 6,5)2  2 

1 
- 21)2  

1 
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exp 	2t 

.1 
(21 	R 2)142 ] erf E(-21 R4)-41] 

C2)2 	(-2i R 2 )2  

x 
Eai 	+ 	bi 	ci 	 di --------T.- + 	+ 	 • (3.5.16) 

2(1+i 6-11e) 	2(1-i 61 R2) 	2(1+1 6-21e) 	2(1-i 62R2) _ 

1 - 	• 	 2 )2 When we neglect R 7 • the terms (- 2i - Rand use an asymptotic 

expansion for the error function, (3.5.16) becomes for large times 

91 

r 
) 1 	1 
( (21 + i 611 	(16-  - 21)11  1 	1 

6-1t 
ai e 

2(1 +1 6i R2) 

• cs) t 
bi e  

2(1 - i 6' 112) 1  

1 	 1 
(21 - i 6~1  )2 	6-1  - 21)2  

-1t 2 di e 
ail 

2(1— 1 6282  • es- )2 
2 (-21 - i 6-12  2 

expl* -R  
2 

a 
lailaweiamillolamildrai 4 
1-a e-R2 	1-i 6—  R2  

    

    

1+1 (5-
2  RI  

 

1 	i 6 le 

 

     

      

Zit 
e 	a 	b 	c, 	d . (3.5.17) ••••••••111aniallallral 	 + lilla••••••1•11 0 -r 

t2 	 1+i6-1114 	1-1 6-1R2 	144 6-2 	
6.— 2 R2 	1'4 	R2 
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For the special case with 671  = 4:5-2  = 0 and a+ b. + c + d = 1, 

(3.5.17) reduces to 

gI  = 1 `• exp 1.414
11 + 0(t-32e21t) 

which agrees with the result obtained for VIP)), Greenspan and Howard D7] 

at the bottom of page 391. 

The time dependent boundary layer motion, 9B, is given by 

evaluating (3.5.15) when 6  is given by (3.5.14). 	When we use the inversion 

formula No.819 in Foster and Campbell 03.1, we obtain 

gB 

lt ae 16-1  R2  
+7  7- 	exp -S(2i + i 6-1)2 f 

4(1+1 6-  R2  ) 	I  

 

x erfc frSt4  [t(21 + i Gel+ exp 	(2ii + i 6'1)2 	x 

x erfc 	S t".1  + Et(21 	i 6-1)]1+ exp -1) 	+ i )21 x 

x 	
) 

erfc Olt-4  - [Wei - 2i.02  + exp 	(-2i + 16-1)21- x 

x erfc 	t2  + Et{i 45-1  - 20_12} 

a  exp 	1  

8(1 + 	RI) 
exp [-S(21 - R 2)2]  erfc t(2i-R4 

j) 

+ expDI  (21 - R 2)23.erfc 	+ Lt(2i R, 4)3 



a exp  

4(1+1 6-10 

+ 00-4exp 	2it}  ) 

exp 	(201] + exp [-S1 (-20-}  

- 109 - 

1 
1-1Y) 

+ exp 	(-2i - R 2)q erfc 4  3.  

• exp sS" (-21 R 	erfc 	+ 	- R4)32  

+ 3 similar terms, 	 (3.5,18) 

where `S)  = R2(1 - izi). 
I 

Again by neglecting R-4  in the terms (± 21 R 2)2  and then using the 

asymptotic expansion for the complementary error function, (3.5.18) 

becomes for large times 

= 	
Paz

i 1 t 	i 1  R 
grit  

4(1+1 6-1R2) 

+ exp 	(-21 + 6-1)1  E-S  

  

t exp E-T(2i + 

  

   

+ 3 similar terms . 	 (3.5.19) 

The sum of the expressions (3.5.16) and (3.5.18) satisfies the initial 

condition and tends to the required final state as t tends to infinity. 	We 

must now show that it satisfies the required boundary conditions at the 

disks, a=± 1 „ 
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For high frequency oscillations, a-:R2  > 1, i = 1,2, we have from 
1 ..1  

(3.5.16) that gi  = 0 [(a-ie.) 1, which is negligible and, from 

(3,5.18), that gB.obviously satisfies the required boundary conditions, 
1st 1 	

••I --.1 	 2 	2 t 	 i 6-  t 	".1 IS-  t 
namely, gB  = ae 	+ be 	on z = 1, gB  = ce 	+ de 	on 

:1-- - 
z = -1 , when terms of order (6.R2)

1 
 are ignored. 

For steady, low and intermediate frequency oscillations we have 

that 6-1' 	< 0(R2  ) and therefore, 2 — 

become 

on z = ± 1, (4.16) and (4.18) 

} 
ai 	erf(2it)2 	erf(-24)2  - expf 

	

2(1+i 6-1  R2) 	(202 	(-202  

• 3 similar terms, 	 (3.5.20) 

i6 t 
ae 

•••••••••=1. 

a exp 	t , 

2(1+i ese) 1 

+ 3 similar terms. 	 (3.5.21) 

When 1 >> max (6-1  t R 	= R L  t, we may expand the exponential 

terms in (3.5.20) and (3.5.21) to give 

ai 	erf(2it)2 	erf(-24)2  
•••••••••••norme•Malli1.1.140 •••••••••••••••riall.• 

2(1+i G1R2) L.  (202 	(-202  

+ 3 similar terms, 



+ 3 similar terms. 

ics— t 1 These expressions show that the term involving a in g = g + gB is ae  

on z = 1 (positive sign) and zero on z = -1 (negative sign), when terms 
.1 

of order R 2 t have been ignored, since the error function is always less 

than one in magnitude. 	Hence, for t << R2 , the highest order terms 

satisfy the required boundary conditions. 	On the other hand, when 

t >> 1, we can use the asymptotic expansions for the error functions in 

(3.5.20) to give 

gt 
a [exp_ 	cr i -t 	exp 

2(1+1 912.2) 	1  

+ C3 ktL (3.5.22) 

The expression (3.5.22) together with (3.5.21) satisiies the required 

boundary conditions when terms of order t4  ore ignored. 	For the inter-

mediate range, 1 << t << R2 , both the exponential terms and the error 

functions can be expanded and again the highest order terms satisfy the 

boundary conditions. 

Hence the highest order terms in (3.5.16) and (3.5.18), and 

therefore the asymptotic expressions (3.5.17) and (3.5.19), always satisfy 

the required boundary conditions on the disks. 	It is interesting to note 
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that in agreement with Greenspan and Howard's EV] results For V the 

expressions (3.5.16) and (3.5.18) fail to match the boundary conditions 

by a small amount. 	Here we can ignore this discrepancy as we are only 

concerned with the highest order terms. 

In order to determine the time required for the transient effects to 

vanish it is sufficient to consider the asymptotic expressions (3.5.17) and 

(3.5.19). 	For steady (c1 = 	= 0), low frequency (0-7 R2  << 1, 

a-2e << 1) and intermediate frequency (0'1 R2  = 	cr2R2  = OM) 

oscillations, (3.5.17) and (3.5.19) reduce to 

91  

cs-t 	-iv-t 	 -icr-t 1 	 1 	 2 ae 	+ 	 -r  be 	, ce 	▪ de 
2(1+i 0-1  R2 ) 	2(1-i 0-R2) 	2(1+i cr- 2  R2) 20 -i a-2  R2) 1  

• exp 2t1 

0(t4e2i)  

a 	b -r  
1+i 0-0 1-i 0-1  R2 	cr22  1-10-  R2  1  

(3.5.23) 

1 
98  = 	[axP 	 + exp-'(-2i)'- x 

1 
r 	icr- t i 0-1  R2  1 	

( 

a 	-i a- l t 	-i a--R2  
..,_ 	z x 	ae 	 •••11•111••••••••=6 , 0.111•140•MI) + be 

	

1+i cr- 	
...,_ 

R2 	I z t 	 ----"-----rl   

	

1 	
1 ."i 0—R7 	tzk 

1 
1 

is -t i 2 	a- R2 	 -io-t -icr-R2  2 	.....z_) 	2 	2 	z ... + ce 	.......- 	_ -1. 	+ de 
1+i 

	

1 z) 	 1.4cr. 
2R

2 	lz I cr-R2  2  
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+ exp 	2t
a  

•••1•011111•011/141.101110 + 	+ 
1+1 1R2 	1-16—R2 	1+i 6-2R2 	1-i 6-2R2  1 

00 1 	Zit} ) . 	 (3.5.24) 

Immediately, we see that if 

a 	b 	c 	d + -------r  +  
1+16-1  le 	1-i c5-  R--q 	1+1 6"- R2- 	1-i 62e 1 	2 

O, 

which is equivalent to 

a+b+c+d / 0 

for steady and low frequency oscillations, then a time of order the spin-up 

time, Ts, is required for the transient effects to vanish. 	For the special 

case when 

a 	b 	c 	d 
•••••••••••••ONMOMPITIO 	.....1.11.1.11MMIIMOT111 	••••••••••••••••,./Ir -r 

1+; 6.
1
R2 	6-.

1
R2 	1+; -.1Z2 	1""; 6-

2  R2  2  

(3.5.23) and (3.5.24) show that the transient effects decay in a time 
_1 

which is less than Ts but large enough for 0(t 2) terms to become 

negligible. 

For high f -rupncy
a-  

pon-resonant oscillations we have from (3.5.17) 
/1 

that g will be ISO) and therefore negligible and from (3.5.19) we 

find that the transient effects decay in a time less than Ts but large enough 

for terms of order t--2exp 	2:c2rilr to become negligible. 4- 

0 
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Hence these results agree with the predicted values given in 

Table 3.1, section 3.4. 

Resonant case (6- and/or 	= 2) 

We now consider the special case of oscillations at the resonant 

frequency which belongs to the high frequency range. 	
Asa(-  p;catf  

case_ 	 1-t.e 
gaimmelity- we may assumeAboth 6-7  and 6-2  are equal to two. 

We can no longer use the previous approximations because the poles 

near p = - 2i control the transient behaviour and large errors occur if 

they are replaced by branch points at p = + 21 . 	However, for small times, 

which corresponds to laroe p, the poles near p = ± 21 become unimportant 

and we can use these approximations to give, from (3.5.18), 

93  
Zit 

= 	q+ T77,.., 	exp T(401  ae 	
] erfc (44)9 

Fr  
+ exp 	(401 erfc 	+ (4it)21 + 2 erfc , 

	
4 

+ O(R 2) + 3 similar terms , 	 (3.5.25) 

which satisfies the required boundary conditions at the disks. 	In order 	to 

evaluate the above expression, (3.5.25), from tables of transforms we 

require the fact that the integral of the approximate function, valid for 

large p, evaluated along the branch cut, 	is a good approximation 

to the exact integral. 
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FIG .3.9: 	Integration contours along the branch cut which 
extends from p = 2i . 

',co 

F1G.3.10: 	Replacement of the contour (y - i a), y+ i co) for 

the inverse Laplace transform by the circles C),0)0 

enclosing the polei. 
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In Fig. 3,9, we have by Cauchy's theorem that the integral of 

the approximated function around 	1  is equal to the integral of the 

approximated function around 	2  provided 81  and 82  are so small that 

their contributions to the integral are negligible. 	Then provided the 

contour 	2  is always a distance greater than R
-1 
 away from p = 2i 

the integral of the approximated function around 	2 will be a good 

approximation to the exact integral. 	Hence the integral of the 

approximated function along 	1 is a good approximation to the exact 

integral. 

The expression (3.5.25) satisfies the initial condition and also the 

required boundary conditions at z = - 1. The first two terms represent 

well-defined boundary layers on the disks which tend to modified Stokes 

layers as t -4 co ; the required boundary layer structure. 	The third term 

is a Rayleigh layer which penetrates out from the disks like ( vt)2  and 

will, eventually, produce the final quasi-steady state in the interior. 

In order to calculate the general time dependent interior flow we 

surround the points p = ± 2i, p = -R 2 /  by circles of radius R
-1+6

, 

where S is some positive number, and then use the calculus of residues. 

For the circle 	, in Fig.3.10, all the terms involving m1  =-"*" WO' 

can be replaced by the approximations (3.5.3) while all terms involving 
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m2 must be retained, since m2 is of order one. 	Hence the interior flow, 

from (3,3.3) becomes 

{a 
	b 	c 

+ 	
d ) 	m2(cosh  

+- 	 scLZ+ 	

-cosh m2) 

17-727 721- 	p p- 	 4(m cosh m2 	2  - sinh m) 

+ 	+ 	- d 	
) 	sink fm2z1 

13+4 I 	F:71 1:04=1 I.  4 sink m2  • 

The poles of (3.5.26) inside 	are 

(3,5.26) 

P 

= 

P 

k 	 , 

n = 1,2,3,... 

and from a residue calculation we have that the contribution to the 

interior flow from circle f is 

e2it 2 = 	[1(3z 

 

- 2z) + c(3z2 - 1 - 2z) 

 

n k  -c)exp 	• k2n2R1)t (-1)k si
2k n

nzi  

ao (cosz 3 
" 	 -1 exp 	- 

7i= cos In 

(a+c) 
3n  21n 



k=1 

n=1 

exp i-k2r2elti (_1)1( sin lorzi 
2nk 

(cos nz 

cos 

1 e p 	9 - -11;'R J./ 	. [ne2a+be-2it+ce  

2 

be-tit 	2it ae 	+ 	ce - de 

it+de 
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By similar arguments we have that the contribution to the interior 

flow from the circles 0 and 0 are 

gi2 

-2it 
e  8 	[b(3z2  - 1 + 2z) + d(3z2  - 1 - 241 

- k n  22R-1)t (_ok  sin / kirzi  (b-d)exp 
k=1 	 2k ff 

CO (COS I 1nZ 
•e- - 2 (2i ex 	- - s R-1 

 >t 
(b+d) 
i 	2  

cos 	
n 

	

n 	 2 rn  

+ 0(R-1) , 

gI = 0(R 2) , 
3 

 

respectively. From Cauchy's theorem we have that 

g • 
= gel 

	

+ g 	+ 
1 g13 

and hence the time dependent interior solution is 

= (ae2it  + e-2it) (3z2  - 1 + 2z)  
8 	+ (ce

2it + de-24) (3z2 - 1 - 2z)  
8 



n 	
cos r 3  n 

( cos 11 nZ 

+ 	 + p+ibcri  

	

p-i 9 - p+i a- 	. 

	

2 	2 sinh m
l  

sinh C  miz 
(3.6.1) 
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+ 0(R-4) . 	 (3.5.27) 

The expression (3,5.27) can be shown to satisfy the initial condition 

by expanding (3z2 - 1) and z in Fourier series with respect to the 

orthonormal sets 

- 	sin(krrz) , 

respectively, in the interval (-1,1). 	Also (3.5.27) together with the 

Stokes layer terms from (3.5.25) satisfy the boundary conditions at z = -+ 1. 

We see immediately from (3.5.27) that a time of order the viscous diffusion 

time, Td , is required for the transient effects to vanish which agrees 

with the predicted result in Table 3.1. 	It should be noticed that 

(3.5.27) is identical to the result obtained for the interior flow from 

(3.3.7). 

3.6 THE CONNECTION WITH THE SINGLE DISK PROBLEM 

From (3.3.3) and (3.3.4) we have that 

a 	b 
p-i 	p+i c-- 	p-i 

 

 

Rpi 
E(m2)(cosh 	- cosh ml) 

Q. 



= f( •••••.g.••••• )exp m1(z-1 	, (3.6.2) 
r  

p+1 Cr 

, 

i( + 	) exp (3.6.3) m2( 	-1)1P-1(52 P+I cr2 

ai 
.57  4- 10 

while near z = -1 

of .-
Ti le  
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We will now consider the boundary layer solutions for small times which 

correspond to large p. 	From (3.6.1), we have, near z = 1 , 

The expressions (3.6.2) and (3.6.3) correspond to the equation (2.4.6) 

with a change in the origin of z. 	Hence, for small times, the boundary 

layers behave as if only one disk is present and hence are not influenced 

by radial pressure gradients. 	The motion is given by (2.4.14) which, 

for small times, represents Rayleigh layers penetrating through the fluid 

from the disks. 

3.7 CONCLUSION  

In section 3.4, we found that the important parameters for the 

problem where 
1 
2

2
R7  

which related the spin-up time, Ts, to the periods of oscillation of the 

imposed frequencies T
l'

T
2* 
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We wilt first consider the case when the imposed oscillations are 

steady, low frequency or intermediate frequency. 	When the oscillations 

are such that 

a 

1 +1 CS .  fe. 	1 - es R72 	1 +i 6' 2 	1 	
2

R2  
1 	 R  

then the spin-up mechanism plays a very important role and we require 

a time of order I
s 

for the transient effects to decay. 	The final state 

consists of boundary layers on the disks and an interior flow which is 

Independent of a. The results of Greenspan and Howard [17] can be 

obtained as a special case. When 

a. + 
1-i <5-. R2  

= 0 
1+i cs2R2 	1-i 6'2R2  

a much shorter time is required for the transient effects to vanish although 

the final state has the same structure. 

When high frequency oscillations are imposed on the disks then 

the spin-up mechanism associated with the simple pole, p = -R 21  

becomes unimportant compared with viscous diffusion. A resonant 

phenomenon is found when either disk oscillates at a frequency which is 

twice the angular velocity of the basic rotation. 	For the case when 

the disks oscillate at non-resonant frequencies then a time much less 
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than the spin-up time is required for the transient effects to vanish and 

the final state consists of modified Stokes layers on the disks. 	When 

a disk oscillates at the resonant frequency, the viscous diffusion time, Td, 

is always required for transient effects to decay and the final state 

consists of modified Stokes layers on the disk and an interior flow which 

is quadratic in z with a time dependent amplitude. 	These results 

correspond closely to the solution for the problem discussed in Chapter 2. 
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CHAPTER 4 

TRANSIENT AND STEADY STATE VORTICITY GENERATED 

BY HORIZONTAL TEMPERATURE GRADIENTS 

PART 1: 	THE FUNDAMENTAL SOLUTION 

4.1 INTRODUCTION  

In the atmosphere and the oceans, the Coriolis force together with 

the variations in the temperature field influence the development of 

circulatory fluid motions and hence the voracity which is present in the 

Fluid. 	In particular in the atmosphere, strong circulatory currents can 

be produced by temperature variations on the earth's surface. 	These 

currents could be connected with the evolution of hurricanes and this 

provides the motivation For the problems that are considered in this chapter 

and in chapter 5. 

It is assumed that the atmosphere can be represented by the idealized 

situation of two infinite horizontal disks with fluid between them, when 

the fluid and the disks are in steady isothermal rigid rotation about an 

axis normal to the disks. 	This assumption implies that, for any given 
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latitude, it is valid to ignore the effects of the earth's curvature, to 

suppose that the component of the earth's rotation normal to the surface 

of the earth is constant, and to neglect the adverse temperature gradient 

which exists in the atmosphere. 

When a temperature distribution is imposed on the disks, density 

variations in a horizontal plane can be produced in the fluid. 	For a 

non-rotating system, these density variations produce circulations in vertical 

planes since no hydrostatic pressure distribution can balance the horizontal 

variation of the buoyancy forces. 	Then conduction and viscous effects 

are, ,usually, only significant in the neighbourhood of the disks while, 

in the interior, the heat is convected by the movement of the fluid 

particles. 	For a rotating system, however, the presence of the Coriolis 

force has the primary effect of producing horizontal flow perpendicular 

to the density gradient rather than circulation in vertical planes. 	In 

particular, the idealized model of the atmosphere is axisymmetric and 

hence the density gradients produce an azimuthal component of velocity 

which cannot alter the temperature field by convective processes. 

Hence for a rotating system, heat can only be convected by circulation 

in an axial plane and this flow may be inhibited to such an extent that 

conduction processes predominate everywhere. 
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The conditions necessary for either conduction or convection 

processes to predominate have been discussed by Duncan 1161, when an L. 	-3 

axisymmetric non-uniform temperature distribution with a minimum at the 

point of intersection of the disk and the axis of rotation is imposed on 

the upper disk and the lower disk is insulated. 	Duncan considered the 

STEADY problem when the inertial accelerations were negligible in 

comparison with the Coriolis acceleration (H < 1) and found that the 

c ritical parameter was, 

0— HR2  

where 0- is the Prandtl number, H the thermal Rossby number, (1.1.5), 

and R the Reynolds number, (1.1.2). 

When ci-HR2  << 1, the conduction process takes precedence 

throughout the fluid and the steady state consists of Ekman layers on the 

disks and an interior region where there is an azimuthal flow and also 

a lower order secondary circulation, a down-draught, which is driven by 

the Ekman layers. On the other hand when c HR2  >> 1, convection 

predominates in the interior but, in addition to the Ekman layers where 

conduction again prevails, there are thermal boundary layers, which have 

a depth of penetration of order c-1H-1R-7} where the conduction and 

convection processes balance. 	These thermal layers are always much 
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thicker than the Ekman layers. 	In order to satisfy the physical situation, 

Duncan found that only the lower thermal layer could exist. 	For the 

case o Hie << 1, this thermal layer -is much thicker than the distance 

between the disks, which agrees with the above result that conduction 

is the predominant mechanism for the transfer of heat. 

Duncan also investigated the effect of replacing the temperature 

minimum by a temperature maximum on the upper disk and of replacing 

the upper disk by a stress-free surface. 	He found that the above results 

were also applicable to the case with a temperature maximum except 

that, when cs-HR2  >> 1, an exact boundary condition, say uniform 

temperature, was required on the lower boundary, the thermal layer was 

present only on the upper disk, and, in the interior, there was an up-

draught and all the velocities were one order of magnitude smaller. 

When the upper boundary was a stress-free surface then Duncan showed 

S 
that conduction always predominate). over convection when the inertial 

effects are ignored. 

Duncan, in his analysis, employed the similarity variables introduced 

by Von K6rm6n P43 but, in fact, the terms neglected vanish to first 

order. 	Hence these results apply to any general axisymmetric flow 

between horizontal planes when the effects of vertical boundaries can 
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be neglected and applied temperature gradients do not change sign. 

Vertical boundaries, which are at rest relative to the fluid and the 

disks, are introduced into the system so that their separation distance is 

much greater than the distance between the horizontal boundaries, 	The 

STEADY, axisymmetric r6girne present in the fluid when the horizontal 

boundaries are insulated and the vertical boundaries are maintained at 

different constant temperatures has been discussed by Hunt er r223 

Firstly, he considered the case when conduction is the predominant 

mechanism for the transfer of heat and then modified this solution to 

include small convective effects by calculating successive corrections in 

the form of a power series in the parameter -H'. 	This parameter is 

identical to the critical parameter found by Duncan n 	Hunter's 

solution consisted of Elan layers on the horizontal boundaries, a thermal 

layer, 0(R
..1/3 

 ), on the vertical boundaries when conduction predominated, 

two thermal layers, O(1 3), 0(R-1/4), on the vertical boundaries when 

convection predominated and an interior flow composed of a vertically 

sheared azimuthal flow and a much weaker circulation in axial planes. 

When the upper disk was replaced by a free surface, then only the 

situation when conduction is predominant is covered by Hunter's analysis 
0 

and he finds that iimie double boundary layer structure on the vertical 

walls is now required. 



- 128 - 

Barcilon and Pedlosky [4J gave a discussion of the STEADY flow 

that would be produced in the fluid, when the upper disk is heated 

uniformly, the lower disk h cooled uniformly and the vertical walls are 

insulated. 	Under these conditions a stable stratification is developed in 

the fluid. 	in particular they considered the case when the fluid was 

rotating rapidly ( SZ large) which implies that the centrifugal effects are 

important and that a buoyancy term is present in the radial momentum 

equation. 	The linear solution, H = 0, is composed of Ekman layers on 
13  

the disks, R 	- layers on the vertical walls and an interior flow which 

is a solution of the thermal-wind equations. 	For this case conduction 

predominates over convection and the results are equivalent to those 

found by Duncan and Hunter. When cr-H112  = 00), that is when 

conduction and convection are of equal importance, riarcilon and Pedlosky 

found that the vertical boundary layers become important and influence 

the motion. When cr'lle > 1, they found that ° thermal conduction 

is important throughout the fluids because of the influence of the side 

wall layers and that the Ekman layers were absent to first order. 

From their results, 6arcilon and Pedlosky conclude that, when a strong 

stratification, cam' HR > 0(1), is present, the vertical boundaries influence 

the motion and the study of "flows which are unbounded laterally may 
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lead to solutions which are not the limit of any physically realizable 

experiment* „ 

In this chapter, we will consider the following initial-value problem 

which, at large times, reduces to a steady flow which is closely related 

to the problems discussed by Duncan, Hunter and Darcilon and Pedlosky. 

In particular, we will be interested in the behaviour of the component 

of vorticity parallel to the axis of rotation (vertical), 	For the idealized 

model of the atmosphere in the absence of any vertical walls, from some 

instant of time, a steady heating is applied to the lower disk. 	This 

heating depends upon the co-ordinates in the plane of the disk through a 

function which satisfies the membrane equation. 	The temperature of 	the 

upper disk is maintained at its initial constant value, 

It is found that a cellular flow is developed which is not influenced 

by the introduction of insulating walls at the boundaries of the cells 

except for the additional boundary layers which must be present in order 

to satisfy the non-slip condition. 	The time required for the transient 

effects to decay is discussed and it is found to depend, greatly, upon the 

horizontal wave number defined by the membrane equation. The find 

steady state is composed of Ekman layer* on the disks and an interior 

inviscid flow which is a particular solution of the thermal-wind equations. 
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V./here the temperature of the lower disk is increased, the vertical component 

of vorticity for the fluid close to this disk is also increased, while further 

away from the disk it is decreased. 	The reverse is true when the 

temperature of the lower disk is decreased. 	We deduce that the rotation 

is responsible for the production of this vorticity perpendicular to the disks 

because for the corresponding problem without rotation the vertical 

vorticity is always zero. 

In chapter 5, the steady problems associated with different 

temperature distributions on the lower disk, will be discussed. 

As a corollary of this initial-value problem, we find, when we 
Mou.P_ 

allow the upper disk to tamer to infinity and impose an oscillatory heating, 

dependent upon a solution of the membrane equation, on the remaining 

disk, a resonance effect is experienced in the sense that different 

oscillatory solutions are found for resonant and non-resonant frequencies. 

The existence of this oscillatory solution, for the resonant case, is due to 

the introduction of a length scale in the plane of the disk. 

4.2 EQUATIONS OF MOTION  

We consider a viscous fluid bounded by two infinite parallel plane 

horizontal disks, z = ± d. 	Initially, both the fluid and the disks are 
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at some constant temperature, To, and are in rigid-body rotation with 

constant angular velocity, 	, about an axis normal to the disks. 	Then, 

from t = 0, a steady heating is applied to the lower disk, z = -d which 

is dependent upon the co-ordinates in the plane of the disk, while the 

temperature of the upper disk, z = d, remains at its initial value. 

In the following analysis we make two important assumptions. Firstly 

we apply the Boussinesq approximation L33, p.75-93 which supposes that 

the fluid is incompressible, that the density variations are small, that they 

depend only upon temperature variations by a linear relationship and that 

they can be ignored except in the buoyancy force when they are associated 

with gravity. 	Therefore, when we suppose that the density is given by 

= foo a9) 	 (4.2.1) 

the Boussinesq approximation implies a9 << 1, where fo  is the density 

at the temperature To, 9 is the temperature variation from To and a is 

the coefficient of thermal expansion. 

The temperature variations in this problem are due to the applied 

heating at the lower boundary and therefore the dissipation of energy and 

volume changes in the energy equation can always be neglected for liquids 

and also for gases provided 

(4,2.2) 
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where U1  is a typical velocity and al  is the speed of sound [31, p.12 6j 

In this problem, the velocities will always be very small compared with 

the speed of sound and therefore (4.2.2) will always be satisfied since 

- 1 (aTo) 	is greater than one for liquids and approximately one for gases. 

The Boussinesq approximation also implies that the properties of the 
Act#43 

fluid), a, y the kinematic viscosity, We the thermal diffusivity, are 

independent of temperature and therefore can be taken as constants. 

Secondly, we assume that the temperature variations, 49, and hence 

the velocity vector, u , remain small so that it appears valid to linearize the 

equations of motion and the energy equation. 	Whether this linearization 

is, in fact, valid, depends upon the solution derived from the linear 

equations with suitable boundary conditions, 	If we have found a sensible 

solution to the problem then we assume that the linearization was valid, 

otherwise we must re-examine the problem. 	In this particular problem 

the solutions for the velocities from the linearized equations were found 

to depend upon the thermal Rossby number, 

H = 
ag LT 

d Se 2 (4.2.3) 

where 	AT is a typical scale for the temperature variations and g the 

acceleration due to gravity. 	This parameter, H, is always small and 

therefore we may assume that the linearization was valid. 
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We consider cartesian axes (x, y, z) such that the z-axis is 

parallel to the common axis of rotation of the fluid and the disks, while 

the x,y-axes lie in a plane parallel to and midway between the disks and 

rotate with constant angular velocity, 52- . 	The velocity components 

in this rotating, frame of reference are given by 

u = (u, v, w) . 	 (4.2.4) 

The continuity equation and the linearized Nkivier-Stokes and 

energy equations in this rotating frame of reference are, after the application 

of the Boussinesq approximation, 

div u 
	0 
	

(4.2.5) 

+ 2 52 k A  u + 	— !- - 21  5?,_ 2(x2  + y2) 

2 u , 
IN
_ (4.2.6) 

(4.2.7) 

where k is a unit vectorin the z-direction and ci: p - di 	i 	to 22(x2+ y2)} 

is the departure of the effective kinematic pressure from the hydrostatic 

pressure that prevails when the fluid is at rest at a uniform temperature, 

To . 

au 

goik + 

ci2 e  
at 	K 

2 
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We suppose that the imposed heating on the disk at z = -d has the 

`corm 

G = h(x,y) 	zN,,T 	t > 0 , 

= 0 	 t < 0 , 
(4,2,8) 

  

where 	is some constant and h(x,y) satisfies the membrane equation, 

7721  NxtY) 	a211(x 	= 
	

(4.2.9) 

where 2 - 	02 

= 
OY 

and a is the wave number in the x,y 

plane which can be assumed positive, without loss of generality. 	In 

particular we can choose 

h( y) = exp ilix + il2y1 , 

where a2 = 12 + 12 which represents an imposed heating which is 1 	2 

oscillatory in x and y. 

When we write r2  = x2  + y2, we find that a solution of the membrane 

equation (4.2.9) is 

h(r) = A J0(ar) , 	 (4.2.10) 

for some arbitrary constant A. 
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F1G.4.1: Sketch of the streamlines 	= -ra 1(ar)w where 

r = ro„r1 	occur at the zeros of J1(ar) . 

Then (4.2.1C) defines the streamlines 

	

= -ra-1A J1(ar)w 
	 (4.2.11) 

which are shown, near z = 0, in Fig.4.1. 	The cell boundaries 

r = 0, ro' r1"•• occur at the zeros of 1(or). 	The radial and 

vertical velocity components are then given by 

1 	a$- 	 1 a y- sir 	—vz r az 	 r ar 

When the flow is two dimensional, that is independent of y, the solution 

of (4.2.9) and the corresponding streamfunction are 

tksi 	(4. 2, IS) 
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h(x) = A cos 1axi 

=-Aa-lw sin tax-k 

where the x, z - velocity components are defined by 

_ a ) 
az  4

. 	a x- vx 	z  — ax 

The streamlines again form the cellular pattern shown in Fig.4.1 with the 

cell boundaries situated at x = ±nrta-1, n = 0,1,2,... . 

The boundary and initial conditions, From (4.2.8) are 

(0 	C = 	T h(x,y) 	on z = -d for t > 0 , 

(ii) 9 = 0 	 on z = d for t > 0 , 

(iii) u = v = w = 0 	on z 	d for t> 0, 

(iv) u=v=w=9=0 	at t=Oforallz. 

(4.2.12) 

We define the dimensionless (starred) variables 

r = dr*, 	t = 52..1t*, 	u = d 	u*, 	= 	•Te* , 

a = 2 	 2 ,* 
 

o 	

1 

2 	(x2 + y2) = d 	, 

(4.2.13) 

where r is the position vector (x,y,z). 

From (4.2.13), it appears that the neglected non-linear terms would be 

of the same order as the retained linear terms but, in fact, u* depends 

upon H, the thermal Rossby number (4.2.3), which is always small and 
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hence the linearization is valid. 	When we introduce (4.2.13) into the 

equations (4.2,5), (4,2.6), (4.2.7), we find (upon dropping the asterisks) 

au 
+ 2k nu + V p = Hek + R-11  72u 	(4.2.14) 

div u = 0 	 (4.2.15) 

ae = 	0-172G , 	 (4.2.16) at 

where H is the thermal Rossby number defined by (4,2.3), R = -5R  d2  
y 

the Reynolds number and 	= 	, the Prandti number. 
14 

We define the component of vorticity in the z-direction (vertical) 

to be 

J ac = 
au 
ay • (4.2.17) 

We now seek a solution of the above problem of the form 

h(x I Y)((Z t) 

h(xtOwi (zit) 
	

(4.2.18) 

h(x,y) (z.f). 

Then (4.2.18) and (4,2.15) imply that 
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1 	ah awl 	ah To.  lc  
Tx -5;" 	1 a 

1 	ah 	ah à "1 

v 	"J>7 3  1 + .57 171 •  - 
a 

When we substitute (4.2.18) into the equations (4.2.14), (4.2.15), 

(4.2.16), eliminate the pressure from the momentum equations and use the 

continuity equation, we have 

afl  = (o-R)-1  \D2  - a 	 (4.2.19) 

3

at 
i  y 

- _.... + 2ow = -R-ic_ u2 0 - a2-A` ,1 1 ' i 	_.... (4,2.20) 

(D2- 02)LR-1(D2_ al - 41.1w1 	1  
)) 	- 2D S = a21-116 , 	(4.2.21) 

_ a where D = -a-z- . 	These equations. (4.2.19), (4.2.20), (4.2.21) must be 

solved subject to the conditions 

(1) 	16 = 
	 on z = -1 	for 	t > 	, 

(ii) 5l = 0 
	

on z = 1 	for t > 	, 

(iii) 1 = D2 T7  = w1  = 0 	on z = - 1 for t > 0 , 

(iv) T1  = D2w1  = w1  = ,S= 0 at t = 0 	for all z (4.2.22) 

 

The condition, (4.2.22(iv)) is correct because, initially, there was no 

motion in the fluid relative to the basic rotation and hence it is valid 

to assume that all the space differentials of the velocity components vanish 

at t = 0. 
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4.3 THE APPLICATION OF THE IAP1ACE TRANSFORM TO THE  

INITIAL-VALUE PROBLEM  

The initial-value problem defined by the equations (4.2.19), (4.2.20), 

(4.2.21) subject to the boundary conditions (4.2.22) will now be solved 

on the assumption that the Reynolds number, R, is large. 

Applying the Laplace transform, 

r(zt t -pt qz,p)e dt , 

to (4.2.19), (4.2.20), (4.2.21) and (4.2.22), we have 

p7 = (cr-R) l  [D2  — 621 7 , 	.(4.3.1) 

1  p I) + 2DI-Ni  = -R-1  [ 2  - a2:12 s, i 	(4.3.2) 

(D2_02)[R-1(D2_a2) - pl 7.11 - 2D S1 = a2H7 , 	(4.3.3) 
J 

which must be solved subject to the conditions 

(a) T1 

(b) 7 

2— D 	1 = w1  = 0 	on z = 1 , 

4.3.4)  0 	on z = 1, = — on z = -1  

The transformed energy equation (4.3.1) can immediately be solved 

subject to the appropriate boundary conditions, while the remaining 

equations (4.3.2), (4.3.3) can be combined to give a sixth-order 
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equation in T1  with a forcing term that depends upon the solution of the 

energy equation. 

The solution of (4.S.1) which satisfies (4.3.4(b)) is 

7 	= 	sinh ?c(1 -z)  (4.3.5) 
p sinh i2X1,  

where g = Rptr- + 02  . 	(4.3.6) 

The singularities of (4.3.5) are simple poles at 

p = 0 , 

1 2 m2fr2  
P = 117 	+ where m = 1,2,...,  

c 	h, since the branch point associated with p = - t a 2 /11(571 is a zero of both 

the numerator and the denominator and is therefore not a singularity. 

The inverse Laplace transform, 

f(z,t) 

y + ico 
r 

E3P. 7( z/P)dP 
y - ico 

(4.3.7) 

where y lies to the right of all the singularities in the complex p-plane, 

is evaluated by transforming the path of integration into a closed contour 

and then applying the calculus of residues [8,13.75-1 to give 

sinh a(1-01  

sinh 2a} 
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co► 	(-1 	)m
1 iTisr sin 12mn(1-z)) exp[-t(  a2 mz.....0„  

+ > 	 0.3.0 
m=1 1   2(a2  + 7 m2 2 ) 

Hence we see that, for the temperature perturbation (4.3.8), the 
1 2 / transient terms decay in a dimensionless time of order Rcr/(a2  +71r )3 

which is always less than the thermal diffusion time, Rcs-  5271  , to leave 

 

sinh a(1-z)?  
sinh 1.201 

(4.3.9) 

 

which is shown in Fig.4.2. 

FIG.4.2: Sketch of jg sinh a(1-z)1  
sinh 2a1 

1 2 ir  The decay time l'Rcs--/(a2  + z  ) 	0 if either cr-  —4 0 which 
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corresponds to a large thermal diffusivity as in the sun or if a 	or) 

which implies a small length scale. 

We now return to the equations (4.3.2) and (4.3.3) in order to find 

Tv  the z-component of vorticity. From the equations (4.3.2), (4.3.3) 

and (4.3.5), we have 

(D2_ a2)  [R-1()2_ a2) 	r 	4D2  

— 202  11 	2(/ cosh .A1-z) 

 

(4.3.10) 
p sinh 22(,I 

The general solution of the equation (4.3.10) consists of the complementary 

function together with a particular integral. 	Immediately we see that a 

particular integral of (4.3.10) is 

1 	= A cosh 	-z) ls , 	 (4.3.11) 

where 

2a`ti  
p sink VC} [Rp3c-(cs-- )2 Jr 4Rpo-  + 4a 2 

Hence it only remains to find the complementary function of (4.3.10), 

which we will assume to have the form e/a. 	This implies that 

2 

2 	2 [- a ) 	R-1  (A2  -a2) - pi + 4N2  = 	(4.3.13) 



there exists terms comparable in magnitude with the term involving the 
pot-, 

highest dam®. ancbAz erp 

We will assume that a << Rid in order that the following expansions 
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4.4 THE ROOTS OF THE CUBIC EQUATION  

We now wish to determine the roots of the cubic equation (4.3.13)Par ,f 

on the assumption of large R. 	Therefore we may express the roots in 

terms of a power series in R, namely 

itC)  = 	+ 1%,2  + + ••• 

where the highest term is taken to be 0(R) in order that, in (4.3.13), 

are always valid. 

From (4.303) we see that the leading terms in the expansions for 

the roots are given by the solutions of the equations 

X6 - 2pRX4 + R2A2(4 + p2) = 	, 	(4,4.1) 

(4 + p2):A2 a2p2 	0  , 	(4.4.2) 

which are 

22 
= R(p - 2i) or 	= 	(4.4.3) 

(p2+4) 

When p —4 1:21, we see that the last of these roots tends to 

infinity and therefore the above expansions cease to be valid. 	Hence, 

we must re-examine the equation (4.3.13) to obtain new expansions in 

the neighbourhood of p = ±2i. 	These roots, (4.4.3), will be called 
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the OUTER EXPANSION and when the next terms are calculated we find 

2 	a2p2 	32 pa4  1 	1 + 0(-2) 2 3 (+p ) 	(4+ p) R 
(4.4.4) 

or 	
: 

X2 = R(p 	
a2r-ip  F. 3-1 

21) + 	 + O(--) . 	(4.4.5) 

For the special case p = 0, we see from (4.4.4) that X2 = 
iR 

and, from (4.3.13), we find that this root is 

X2 = 	+ 0(4.-) 

Thus for the OUTER EXPANSIONS we define 

ap 	16a3(p2+4) 	1 
(p +4)7 	(p2  +4)3  R 

P C 

(4.4.6) 
3 

= O( a- v 2R 	 `a3' I p= .  

R2(p + 20 +  a rip-33 (p+2i) 2-  
2R2 0(R-912) 1\2  = 	2  

tly"2] 

1 	1 
R2(p-21)2 	a np +  + 0(R-2) 

+ 2] 2R2  

(4.4.7) 

(4.4.8) 

where the signs of the square roots are chosen so that X1 , X2, X3  have 

positive real party.. 
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We will next consider the roots of( 4.3.13) when p = ±- 2i, that 

is when the inviscid form of the partial differential equation corresponding 

to (4.3.10) namely 

2— D21'1 [P2  + 	P2 V1 r 1 	
0 

 

reduces to 

c-7 2-- 
v  1 

which is elliptic. 	We will refer to the expansions found for these roots 

of (4.3.13) as the INNER EXPANSIONS. 	The leading terms in the 

INNER EXPANSIONS, for large R, are given by the solution of the 

equations 

X6 - 2pRX4  = 0, 

- 4 	2 2 -2pR 	- p = 0 

(4.4.9) 

(4.4.10) 

where p = 
+ 21 . from (4.4.9) and (4.4.10) we have, for the INNER 

EXPANSIONS, when p = , 

)s.1 

i 	1 
= (41R)2  + 0(R 2) , 

-Y4 = RY4  al  exp i,-ni/81 + 0(R 1) , 

4 	 -Y)  RY  al  exp 3ff Vel + 0(R 	, 
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and when p = -2i , 

a2  exp in/81 + 0(R41/ ) , = 

4 = RY 	expf -3rri/81 + 0(R-/4) 

X
3 	

= (-4i R)? + 0(R 2 ), 

(4.4.12) 

where the appropriate choices for X1 , 	X3  will be justified later. 

Thus we find that, for p = - 2i , the depth of penetration of Xi  is 

decreased while that for 	or X,2  is increased. 

We now wish to consider the region in which the transition from 

the inner expansion to the outer expansion occurs. 	We suppose that 

+ 
p 	- 2i + 

k 

Ra 

where k is a constant and a a positive-real number. 	Then we choose 

a = -& so that all the terms in (4.4.2) and (4.4.10) have the same order.. 

The equations which yield the leading terms in the expansion for the 

roots of (4.3.13) are 

x6  -7- 4iRx4  = 0 , 

+ 4ik x2  - 4i-A4  _, 	2 + 
Rz 	R 	

.7. 4a  

(4.4.13) 
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Thus, for the TRANSITION REGION, we have that 

X
2 

= (41R)2  + C(R 	, 

132, al  = 	k 	(1:2 402011, + 0(1) 

when 	p = 2i + 71.7  , 
R2 

and 

= (-4iR)2  + O(R 	, 

A22, 2 
	tk fe 	± (k2  + 4a 2i)2 2.)1  s 2 + 0(1) 

(4.4,14) 

(4.4.15) 

when 	p = -21 + —r  

These solutions of the cubic equation (4.2.13) could have been 

obtained by applying Gordan's method ph p.117 to find the general 

solution and then making the appropriate approximations for eoch region. 

We have found that three different regions occur, namely 

a) THE OUTER REGION when 1p ± 2i # > 0(R 2) where the roots 

are given by (4.4.6), (4.4,7), and (4.4.84 

b) THE INNER REGION  when 1p :4" 2i f < 0(R 2) where the roots 

are given by (4.4.11) and (4.4.12); 
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c) 	THE TRANSITION REION when I p 2i = 0(R4  G 	 ) where 

the roots are given by (4.4.14) and (4.4.15). 

We can see that to the highest order if k2 I > 4,32  then the roots 

in the transition region (4.4.14), (4.4.15) tend to the roots in the outer 
9 

region (4.4.6), (4.4.7), (4.4.8), while if I k21 << 4a-  the roots in the 

transition region tend to the values calculated for the inner region 

(4.4.11) and (4.4.12). 	This justifies the choice of suffixes for the 

roots of (4.3.13) in the inner region. It- sl,ouicl ("7- Ao 
0. 	Tito rocA'S a- (4.3.13) °Az 	61  -f 	 ,v+.11.8) 
.
`or a.LP volu.0.1 of 

4.5 THE GENERAL SOLUTION OF THE TRANSFORMED EQUATIONS  

The solution of equation (4.3.10) is 

Al  cosh Xiz] + A2  cosh iX,z1 + A3  cosh kA3zi 

+ B1  sinh 	+ B2  sinh 1.:N2z1 
	

B3  sinh 	(4.5.1)  
+A cosh k'1-z) }  

where Xi  3\21 	are the roots of (4.3.13) discussed above, A is given 

by (4.3.12) and A1 , A2, A3, Bi, B2, B3  are constants which are 

determined by the boundary conditions (4.3.4(a)). 

The boundary anditions (4.3.4(a)) yield the following two systems 

of equations. 
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Al  cosh Al  + A2 cosh A2  + A, cosh A3  + M(cosh .2.)5.,} + 1) = C , 

2 	 2 y2 	2icosh Xi  + ?A2  cosh A2  + X3A3  cosh X3  + pl, (cosh i 2x,i + 1) = 0 , 

A 	
r,a2+ 

Rp) 
	

+ A inh s 	(a2+ " 
 , 

 PI 
1 

1 	 AlLi ' 	 - i] 	Xi  2 	A2 	 .21 sink X2  

ra2+ Rp) 	
2 + A3 	X3 	- X3  sink X.3  + M sink t225.1i Pcs ARP)  Al= 0. 

(4.5.2) 

B1  sinh Al  + 82  sink )% + 83  sink A3  + MO-cosh k.2%,}) = o , 

A2B
1  sinh Al+ A.2132  sink X2  + AB3  sink x3  4- 1-43(1-cosh -5:,27,3) = 0, 

2 	2 

B 1 	
(02+ Rp) 	

.... 
2.,.. 0....1  

[—it— - Al  cosh k + B 
2  r

3  . iv,/  x2 
 l

oos!) 1  
h2 	 12 

+ 8 [(a2+ Rp) 3  --T---- - X31 cosh N + M sink i 27,1riA - 
3 	

—....— (a2+ Rp) — 
= 0 . 

(4.5.3) 

It should be noticed that when -v7;1 is found by substituting (4.5.1) 

in equation (4.3.2) another arbitrary constant arises which must be 

identically zero in order to satisfy the equation (4.3.3). 

The above systems of equation (4.5.2) and (4.5.3) can be solved to 

give 



+ (X32  

+ (Xi2  

)2)  pa2+ Rp)  

(c12,  Rp) 
 

)%) .  
A3 

X,21 sinh Xi  cosh A„)  sinh 

sinh 	sinh X2  cosh N_ - x3 (4..5„11) 

1 
2 2 2 0\2  - ))sinh 

1 

x3 
2 - ysinh x3 
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131  
sinh 2 7,}  2 

= -2 
A 

 tRP(1-01 
 s 	(X,2 	A;) sinh N2  sinh X3  

+ 	2  - A2)(1  - cosh {2)Ci )1(a
2
+  Rp)  - N2-) cosh A sinh 

(A2 
2 	 vc 	

, 
3e)(1  - cosh 	3 ) 72  + Rp)  

x3 
01 cosh N3  sinh A2). 

. [2  (S. 	0+ Rp) - 2 N1-1 cosh NiNi  sinh A2  sinh X3  ( 	- X) 

- 	)4(1 - cosh ..2.2(1) + (X A q)Bisinh A.) 

(4.5,5) 

[() - 264 (1 — cosh i2m ) („ q)8., sinh  

(4.5.6) 
A 

	Rp( 1-a-) 	12 	2 A
l 

= 	 ) 	
)6 

 (N2 - A2) cosh N2  cosh A3 

+ (X2- A)(1 + cosh 2)(,1 sinh N2  cos 
r (a2+ Rp)  

)\2 

   

(a2+ Rp)  
)%3 

)(NI + cosh ,2(,1) sinh 	cosh x,2  
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[
(2+ Rp) 

••••7•1••••••=. 

 

2 	2 (1 - N3) cosh N2  coshX., sinh 

  

2 + (X3  - 312) cosh XI  sinh X, cosh 
r 2 

h2 

 

x2i 

 

2 	2 	 (a2+ Rp)  + (Xi  - X cosh Xi  cosh 32  sinh 3 	 X [ X3 	- 31  

(4.5.7) 

A2 	- 	2 	12  	(X,23  - 26)4 (1 + cosh 272.v ) + (X,23- X.)Ai  cosh 
(N2  - N)cosh 3,2  

(4.5.8) 

A3  = 	2 	12 	h2-2e) 4(1 + cosh 	) (A.22- x2i)A, cosh 

	

0,3 	 )cosh 
(4,5.9) 

Then, from (4.5.4), we see that Bisinh t aiz 1 has no branch points, 

since for small Xi  (or k, or 33) both the numerator and the denominator 

have Xi  (or ' 2'  or 33) as a common factor leaving only even powers of 

Xi  (or 32, or ?) in the expression Bisinh ikiz} . 	Similarly we find, 

from (4,5,5), (4.5.6), (4,5,7), (4.5.8),(4.5.9), that B2sinh X.z3 , 

B3sinh X3z1 , Al  cosh A1z , A2cosh $)%z -ls  , A3cosh V‘3zi have no 

branch points. 	Hence we see that ri  given by (4.5.1), as a function 

of p, has no branch points. 

Ai} 
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4.6 • NORMAL MODE METHOD  

Before we evaluate the inverse Laplace transform (4.3.7) we will 

consider the results obtained by applying a normal mode argument to the 

above problem. 	This will determine the frequencies, but not the amplitudes, 

for all possible modes of vacillation. 	The solution (4.3.8) for the 

temperature variation, 	shows that after a time of order 

R a-  R-1/(2 1 r2) 	4ittains a steady value, /Cs. Thus we will 

seek a solution of the form 

1 (z 	r(z) ePtfu, 
	

(4.6.1) 

of the equations (4.2.20) and (4.2.21) when 	isreplaced by /is, subject 

to the boundary conditions 

2 y1 = 	= 
1 	1 on 	z = - 1 . (4.6.2) 

This problem is equivalent to solving the equations 

R-2 r:2 .13.37,s 	4D21., s = -2a2H Dads  , 	(4.6.3) 

 

-1 2 	1 [D 	a2  - p 2f + 4D2f = 0 , 

 

[D (4.6.4) 

  

subject to the homogeneous boundary conditions obtained from (4.6.2). 

The equation (4.6.3) serves to determine the steady solution, which 

will be discussed later, while (4.6.4) produces either omplifying or 
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decaying modes. 	A solution of (4.6.4) is (4.5.1) with A identically zero 

and the boundary conditions yield the two systems of equations (4.5.2) and 

(4.5.3) with A equated to zero. 	For a •non-trivial solution we require 

either 

cosh Al 
 

2 
cosh 

cosh )\2 	 cosh X..4  

2 h2  cosh X2 	 X.3
2  

cosh A3  

   

[(a2+ Rp)  2:311 sinh  (e+ Rp)  
1\1 

sinh Al  sinh 

    

= 0 , 	(4.6.5) 

or 

       

         

   

sinh 

2 
sinh Al 

 

Rp)  

 

sinh A2  

)sinh 

 

sinh A3  

A3
sinh A3  

(a
2+ Rp)  

cosh 

= 0 	(4.6.6) 

   

Xi]cosh 
(02+  -p- 

R )  

 

   

cosh 

     

       

       

        

We find that (4.6.5) reduces to 

sinh Al  cosh X2  cash N 

cosh Xi  sinh N2  cosh A3 



- 154 - 

2 
+ 	- N2 )  

2 	2 [(a+ Rp) 	cosh Al  cosh N sinh 	= O, 	(4,6.7) 

while (4.6.6) becomes 

2 (4 	
A.23) [(a +Rp) 	cosh Al  sinh X. sinh X.. 

2 	2)  [(a
2+ Rp)  + ()ea  — Ai 	)2 	A21 sinh Al  cosh A2  sinh A.3  

2  
+ 2 - h2 

2
) 
 pa+ Rp) -  X3] sinh 	sinh h.2  cosh )1 /43 	 (4.6.8)  

3 

We now wish to evaluate the zeros of (4.6.7) and (4.6.8) on the 

assumption that R is large. 	If we seek a zero of the form p = 0(0) 

where 13 > 0 and use the outer expansions for Xi , X2, A3  then the highest 

order term in (4.6.7) is 

- 
 A3

Rp  ) 	sinh Xi  cosh h 	 (4.6.9) 

and in (4.6.8) is 

2 	2 Rp 
(N - A3) 	cosh Xi  sinh 	sinh )1/43  . (4.6.10) 

For these highest order terms to be zero we require II = 0 and for (4.6.9) 

either p = 0 or sinh Al  = 0 or cosh A2  = 0 or cosh )1 /43  = 0, while 

for (4.6.10) either p 0 or cosh hi  = 0 or sinh 	= 0 or sinh 	=0. 
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Firstly, for the zero at p = 0 in (4,6.9), the next term in the 

power series in 1 for this root of (4.6.7) is 

p = 	+ 0(R 1). 
RTI  

(4,6,11) 

This represents a steadily decaying mode which will be referred to as the 

spin-up mode because any contribution to the flow, found from this term, 

will decay within a time of order R2  5Z-1 , the spin-up time. 

For the zero at p = 0 in (4.6.10), we find that the root of 

(4.6.8) associated with this zero is 

P = 	
a2

4- 0(R 572) 
	

(4.6.12) 

This represents a steadily decaying mode which vanishes within a time of 

order f R 5Z -1/02  1. 

For sinh Al  = 0, we require that 

X1 	-im1 , 	m1  = 11,2,3,... , 

which becomes upon using the outer expansions 

+ 
(a24.m211.2)2 

1 

This term in the power series for p represents a pure oscillation and further 

terms must be determined in order to discover whether this oscillation 

is, in fact, amplified or damped. 
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When the next tern in the power series is calculated, we find that the 

roots of (4.6.7) are situated at 

p 
2im1 IT 

- 
2 	2 2 

(C1 +M
i
rr) 

	

2 2 	2 
a1

2 
Yi 	 Y1 v  

2a
2 

- 	+ 	+ (-7- - ---) 
Pi 	Y1 	 J 

, (4.6,13) 

R2  
(a2 + m1 ~2)  

where 

2 + a+ e..2/m2112)-4- 
1 

2 	2 2 -;yi. 2 - 0 + a /m1 ) 3 

These roots (4.6.13) represent two infinite series of decaying oscillations 

which vanish within a time of order 

-1 	2 R2 SI (a + 	2 2) 
1 

t a -A-- 

-2 
Y1 

P1 
+ 

A.2 • 

Y1 _ 

. 
This time increases like t RR -m

1
tr 	1/a as a becomes small or m 

1 

becomes large. 

Similarly, for cosh >1 = 0, we find that the roots of (4.6,8) are 

situated at 

p1 • 



(2m2  + 1)in 
2 + z f 2 (2m2+1)2  )*  

p = 
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where 

2 02 	2 2 
Y2 + ) i( Y2 1:1)] 
7 Y2 12 Y2 

12* 	2 + 7;1  n1(2m2  + 1?) 
(4.6.14) 

S 

m2 = 0, 1, 2, 

Y2 = 
2 + (1 + 4a /(2m2  + 1)2rt2) r 

(1 + 4o2/n2(2m2  + 1)2)41 • 

These roots (4.6.14) represent another two series of decaying giaillation, 

which vanish within a time of order 

R  sz-1(2 'ff2(21112 4. 02)  

a [ 	-4 2 
Y2 

When 	0_ or rni  and m2 	co , in (4,6,13) and (4.604) 

we find that p 	± 21 . Hence, when 

,32 or 	0(R4) 
	

(4.6.15) 

the outer; expansions for the Nis cease to be valid and we must reconsider 

the analysis using the expansions for either the transition or the inner 
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region. Hence we have that (4.6.13) and (4.6.14) are roots of the 

equations (4.6.7) and (4.6.8) provided we choose m1  and m2  so that 

(4.6.15) is not satisfied. We will assume that M1 , M2  are the maximum 

values of inl' m2 
respectively which render (4.6.15) false. 

Also for sinh N2, sink N, cosh N2, cosh 	to be zero we require 

that p is near to 1- 21 and again we must revise the above analysis for 

the highest order terms using the expansions for either the transition region 

or the inner region. Then for p = 2i + 0(R4), the dominant terms 

being equated to zero is equivalent to 

- 
Xi

1  tank Al  = N1741  tanh N. for (4.6.7) , 	(4.6.16) 

tanh 	= 	tanh 7, 	for (4.6.8) . 	(4.6.17) 

We now wish to determine the solutions of (4.6.16) and (4.6.17) which 

satisfy the additional condition 

2 2 A,3 	= a
2 
 iR , 	 (4.6.18) 

which is obtained from (4.4.10) or (4.4.13). 	If we assume that 

x)(yis real or purely imaginary then, from (4.6.16) and (4.6.17), we 

require N31  tank x.3  (NV tanh Xi) and 	tanh 1 (NI  tank NI ) to be 

real, which implies that hz,(N) must be real or purely imaginary and 
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hence contradicts the condition (4.6.18). 	Therefore the only solutions 

of (4.6.16) and (4.6.17) which satisfy (4464 18) occur when Xi  and )b are 

complex numbers with positive real part and are given by 

= 

provided a > 0(R 2 ). 	it should be noticed that X1 , 	are very small 

when a < 0(R 2) and other solutions of (4.6.16) can exist. The special 

case a = 0 will be considered later. 

The particular case that arises when Xi  = ).1  will now be considered, 

We see, from (4.4.14), that Xi  = N3  when 

k2 = 4a2i and 	p = 2i 1: (4.6.19) 

The complementary function used in (445J)- is not applicnbia-- when 

)1/4/ 	A3  because this would introduce only four arbitrary constants, 

Instead for this specific value of p, (4.6,19), we replace (4.5.1) by 

C1  cosh . Aiz -} + C2  cosh 	z 	+ zC3  cosh Pte.] 

sinh Ptz} + D2  sinh tN2z1 + zD3  sinh 

A cosh kA1-z)1 , 

(416.20) 

where C1 , 	C3, D1 ,  D2, D
3 

are arbitrary constants which are 
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determined by the boundary conditions (4.3.4(a)), A is given by (4.3.12) 

and 

= (4iR), 	= R1/4  a expinig} 1/4  or 	R a exrr3n i/8 , (4.6.21) 

depending on whether the positive or negative sign is chosen in (4.6.19). 

When we apply the normal mode argument to (4.6.20), we find that 

the determinants (4.6.5) and (4.6.6) are replaced by 

cosh Ni  

cosh Xi  

(a2  
lsinh 

cosh N2 	 sinh A1  

2 N2  cosh N2 	 2Ni  cosh Xi  + Al2  sinh 

2 
(41 +R)\2P)   - qsinh ) {sinh X1[71- 4111 

xl 

     

     

     

(a
2 p) 

xi —7--  Al 

(4.6.22) 

+ cosh 

= 0 , 

sinh Al  

2 sinh 

cosh Xi  

sinh )‘,2  

sinh )‘2  

pa2+Ro  

cash xl 

xi cash xi+2Al sinh xl  

c,,sh x cosh NE 1 - (2.---2224"j 

+ sinh Al
Pa2 , 

(4.6.23) 



(02+Rp) 	,A2% 
1 	1 	1‘2 1  sinh 

0...FR2 - p  sink Vyf  
2 	 (Al 

1 
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We find that (4.6.22) and (4.6.23) reduce to 

cosh (± (a  2+ 

 "1 sinh t2X

1

I 

	

p...02+Rp) 	

) 

xi] 

N2t 	k:14i 	2 ()t )2) 	 A  
1 

2 
sinh 2Xitlx1441P) 	 (c12 +RP) + sink N2  —7.-- A2  (-V) cosh2 Xi ) 

= 0 , 	(4.6.24) 

+ [ciI 
2.r„ 
")  - 
xi 	

sinh + cosh h2 2.„0 Pi  - 

 

2Xisinh2 Ai ) 

  

=4 . 	(4.6.25) 

When we use (4.6.21) we find that the highest order terms in (4.6.24) 

and (4,6.25) are 

 

Rp sink  2)kil  
x2 2 

Rp  sink .2)kii 
2 

Rp 

1 

 

(cosh (4.6.26) 

   

(sinh Rp 

 

(4.6.27) 

respectively. For the expressions (4.6.26) and (4.6.27) to be zero we 

require 
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sinh 2X1  = -21 
	

(4.6.28) 

When we write Vki  = X + iY we find from (4.6.21) and (4.6.28) that 

$Tr 
X > C, 	= tan g or tan(- 	, (4.6.29) 

sinh X cos Y = ±X , 	 (4.6.30) 

cosh X sin Y = ± Y . 	 (4.6.31) 

Hence we have three equations (4.6.29), (4.6.30), (4.6.31), for the two 

unknown quantities X and Y and therefore, in general, there is no solution. 

We will now demonstrate that the only solution of (4.6.28) is a el- 0 

when (4.6.29) is not applicable. We will now assume a / 0. 

If we write 

= iZ = i(x + 

where x,y are real, then (4.6.28) and (4.6.29) become 

y 

sin Z = ±Z , 

rr — = 	tan(u) or -tan(-3u/8) 

(4.6.32) 

= M .4142 or 2.4142 	 (4,6,33) 

Then Hillman and Scher [18] have tabulated the first ten roots of 

sin Z = Z, and Robbins and Smith 0283 have tabulated the first ten roots 

of sin Z = -Z, From these tabulated results, which are shown in 
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TABLE 4.1 

n x y ,yy 

1 2.7687 2.7078 7.4977 
2 13.9000 3.3522 4,1466 
3 20.2385 3.7168 5.445() 
4 26.5546 3.9831 6.6681 
5 32.8597 4.1933 7.8379 
6 39.1588 4.3668 8.9682 
7 45.4541 4.5146 10.067 
8 51.7468 4.6434 11.146 
9 58.G377 4.7575 12.198 

10 64.3272 4.8599 13.238 

(a) 	The first ten roots of 

sin Z = Z as given by Hillman and 

Saizer to four decimal places. 

n x y 
xiy 

0 4.2124 2.2507 1.8711 
1 10.7125 3.1032 3.4514 
2 17.0734 3.5511 4.8073 
3 23.3984 3,8588 6.0632 
4 29.7081 4.0937 7.2579 
5 36.0099 4.2838 8.4062 
6 42.3068 4.4435 9.5212 
7 48.6007 4.5811 10.610 
8 54.8924 4.7021 11.673 
9 61.1826 4.8100 12.721 

The first ten roots of 

sin z = -Z as given by Robbins and 

Smith to four decimal places, 



- 164 - 

Table 4.1, we can see that the ratio (4.6.33) is never satisfied and 

hence for X < 4.8, which is the range covered by the tabulated results, 

we have no roots of (4.6.32) which satisfy (4.6.33). 

Then for X > 4.8 we can replace sink X and cosh X in (4.6.30) 

and (4.6.31) by leX  to give 

eX cos Y = - 2X , 

X . e san Y = -2Y. 

(4.6.34) 

(4.6.35) 

Then we see immediately from (4.6.29), (4.6.34) and (4.6.35) that 

and hence 

or 

tan Y 

Y= 

Y = 

= X = 	tan 8  - 

+ 	nir , zl. sr 

.) - .41. — + nu , 8 

or tan(- 	), -a- 

( 	(4.6.36) 

+ 
where 	n = 0, + 1, - 2, 

When we substitute (4.6.36) into the equations(4.6.29) and (4.6.34) we 

find 

X - 
	Tr + nu 	

and 
	+  2X(-1)n 	(4.6.37) 

tan 	 cos - 
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3sr 
-r nn 	

and 8 eX 	+ 2X(-1)n  

tan(- T ) cos 
(4.6.38) 

FIG.4.3: Sketch to show the position of the roots of 

(a) e = X 2X , 	(b) = eX  = 2X 
I 'SFr 

cos g 	 cos ir  

Hence we see, from Fi9.4.3(a), that (4.6.37) is never satisfied, while, 

from Fig.4.3(b), that (4.8.38) is not satisfied for X > 3 	Therefore 

for X > 4.8 there are no roots of (4.6.28) which satisfy (4.6.21). 
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+ (4a2i)1  Hence there are no normal modes produced when p = 21 - 

a y  0. 	Similarly we can show that no normal modes are produced 

p = -21 H2iY1i  when 	 e , a / 0, which occurs when A1 = 
R2  

Thus from the above analysis we find that apart from the steady 

solution all the possible modes decay with time and consist of two steadily 

decaying modes (4.6.11) and (4.6.12) and four series of damped oscillations 

(4.6.13) and (4.6.14), provided a > 0(0). 	It should be noticed that 

none of these modes involve the Prandtl number o— . 	For all other 

values of p, f(z) is identically zero. 

4.7:' THE SPECIAL CASE a :4,  0 

When a is identically zero we see from (4.3.13) and (4.3.12) that 

3\2= le(p+202 , 	A
3 

= 0(p-202 , 

A m-  0. 
	

S
(4.7.1) 

Then we must replace the solution (4.5.1) by 

Al  + A2  cosh .t )\2z1 + A3  cosh V3zi 

+ Biz + B2  sinh ty-1- + 83  sinh P%3z1., (4.7.2) 
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and the determinants (4.6.5) and (4.6.6) by 

1 	cosh N,2  

0 	)cosh X2  

Rp 	 1y2-1 sinh  

cosh X3  

X.3  cosh N.3  

[k)  

= 0 (4.7,3) 

1 	sinh 	 sinh X3 

)%3 

= 0 (4.7.4) 
2 0 	X2  sinh '‘22 sinh X3  

(Rp 
2 

[Rp X cosh X2  cosh X.3  

These determinants (4.7.3) and (4,7.4) may be written 

  

)3k3 

 

RP-
)3 sinh 13  cosh X2  sinh X.)  cosh 

   

    

2 + (X3  X22  )Rp cosh X2  cosh X3  = 0 , 

r - 
2[Rp cosh 	sinh 3 X3 A3 	 )42 .")'; 1.114 	)%2 cosh 	sinh X,3  

2 Rp (A. - 	1) sinh 	sinh X3  = 0 , 2 

.I•••• 

(4,7.5) 

(4.7.6) 

When p = RP),• where i> 0, the dominant terms in (4,7.5) and 
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(4.7.6) are 

2 (N3  - A2)Rp cosh h2  cosh h3  , 

2 	Rp (X,3  - )) 	sinh 	sinh 	, 

(4.7.7) 

respectively, which implies #3 = 0 and p = 0 or cosh 	= 0 or 

sinh )42  = 0 or cosh N., =C or sinh 	= 0 for (4.7.7) to vanish. 

Firstly, for the zero of (4,7,7) at p = 0, the next term in the 

power series in R for this root of (4,7.5) is again (4.6.11), and of 

(4.7,6) is 

2 p = 	—r  + 0(R-1) • R2  
(4.7.8) 

For the roots in the neighbourhood of p = 2i, we have that the 

dominant terms in (4.7.5) and (4.7.6) being equated to zero is equivalent 

to 

1 tanh 

tanh ;1 

= 

= 

1 

1 

(4.7.9) 

(4.7.10) 

respectively. 	The equation (4.7.9) can be satisfied by 	= 0, but, 

for this case, we must replace (4.7.2) by 

= Al  + Biz + A3.2  B3z3  + A2  cosh )%2z1 + B2  sinh .iN2z 	(4.7.11) 
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and then the new determinants calculated From (4.7.11), corresponding 

to (4.7.3) and (4.7.4), are always found to be non-zero. 	Hence there 

is no normal mode solution when A3  = 0. 

Similar results apply in the neighbourhood of p = -2i with A3  

replaced by A2. 

Hence from the terms involving A1,  A2, A3 we have a steadily 

decaying mode (4.6.11) and two infinite series of decaying oscillations, 

+ 	n 2i 

where "‘" n  are the positive roots of 	= tani . These results 

are equivalent to the poles (3.7) and (3.8) found by Greenspan and 

Howard 07] and could have been obtained by letting a tend to zero in 

the previous analysis. 	Mile, from the terms involving B1, 132' B3 we 

have the steadily decaying mode (4.7.8) and also two series of decaying 

oscillations, 

where 1/7 n  are the positive roots of 7 tan 7 	-1. This case cannot 

be obtained by letting a tend to zero in the previous analysis. 

When a =-4  0 the steady solutions found from (4.6.3) and (4.3.9) 

are 

P R 
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s 	0 and)6 = ._(1-z) 
2 

Hence, when a uniform temperature is applied to the disk z = 

the steady solution is a stable uniform temperature gradient. 

4.8 THE LOCATION OF THE SINGULARITIES OF T,  REQUIRED FOR  

THE EVALUATION OF THE INVERSE LAPLACE TRANSFORM  

We now return to the evaluation of the inverse Laplace transform 

(4.3.7) on the assumption of large R when Ti  is given by equation (4.5.1). 

The singularities of 71 play an important role in the evaluation of the 

inverse integral and hence we begin by locating them. 	We see that, 

since A, (4.3.12), appears in all the coefficients A1 , A7, A3,  B1 ,  B2,  V 3' 1' 2' 

B3, B3, 5.1  has simple poles at 

P = 0  , 

2 2 
1 	2 	m tr = 	(-a  - 

R C 	4 

The poles of A given by the roots of 

(4.8.1) 

m = 1,2,3,... 	(4.8.2) 

Rp a-(cr--0
2 

+ 4Rpcs-+ &2 = 0 , 	(4,8.3) 

are, in fact, regular points of 	because this equation (4.8,3) for p 

is equivalent to 	being a root of (4.3.13). 	Hence 9(4( must be equal 
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to either NI  or X2  or N. when cr-  / 0. 	There are no roots of (4.8,3) 

when cr-  = 0. 	If we suppose that %= Xi , i = 1,2,3, then the 

particular integral (4.3.11) must be replaced by 

= A*z sinh 1 Xi  (1-z) 	(4.8.4) 

2a2H 
where A* - p sinh(2X

i) -6122(X2-a2)2 8pa 1 (x2ro2) 2(p2.14 * 

(4.8.5) 

It can easily be shown that the denominator of (4.8,5) is non-zero when 

9'= 	p = (-2/R01; X= >, p 	21/(c --1)1 ,cr 1; 9('' 
p = 	-200--1)1 ,a—/ 1, When cr-= 1 vie see, from (4.8.3), that 

p = (-a2/R), which corresponds to A= Xi , is the only root and hence 

%= h2  and %,,= X.3  are not applicable. Hence we find, when 24= Xi, 

that A* is always regular and therefore there is no residue contribution 

from the roots of (4.8.3). 

The other singularities occur at the zeros of the denominator of 

A1, (4.5.7), and B1 (4.5.4)/ which are identical to (4.6.7) and (4.6.8), 

and have already been calculated. 	Also it seems that for B2, (4.5.5), 

there are poles at sinh 1\ = 0 but these values for p also render the 

numerator zero and hence they are regular points. A similar argument 

applies for A2, (4.5.8), B2, (4.5.5), A3, (4.5.9), 83, (4,5.6). 
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To summarize, therefore, we have a pole at p = 0, (4.8.i), 

which produces the steady solution, two steadily decaying modes, (4.6.11), 

(4.6.12), an infinite set of steadily decaying modes, (4.8.2) and four 

series of decaying oscillations (4.6.13) and (4.6.14), provided a > 0(R4). 

The inversion integral can now be evaluated using the calculus of 

residues [8, p.75] but before doing this we will consider the steady 

solution that persists after all the transient effects have decayed. 

4.9 THE STEADY SOLUTION  

The steady solution for the z-component of vorticity, Sts, arises 

hem the ample pole at p = 0, (4.8.1), in equation (4.5.1) for 77 1  or 

alternatively from the equation (4.6.3). When p r--  0, we have, from 

(4.4.6), (4.4.7) and (4.4.8), that 

3 
= (2iR)2 , 	3 (-2iR)2  , 	 (4.9.1) 

when only the highest order terms are retained. 	When Xi , )s, 

are given by (4.9.1) and ilv= a, we see that the residue at the pole, 

p = 0, gives 

Hal 

t Is 	2 sinh t2a3 	cosh ta(1-  
1-cosh Ual )[. a . 3 

smh(a OR) 
2 

2R2  

, 	 3_ 
+ sinh ,(2iR)2z} exp 	 sinh (-2iR)2z exp -(-2ift)2} 



(1 + cosh 2a1 )  
2 

2 	 j_ 
- -

ar cosh (-2iR)2z exp 

OM. 

a2 
cosh(o3z/2R) -,- cosh (2iR)Izi exp5 -(2iR)2  

(4.9.2) 
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where terms of order R 2  compared with those written down have been 

neglected a > 0(R 2) and a << R 	It should be noticed that (4.9.2) 

satisfies all the boundary conditions to the highest order. 	If only the 

highest order terms in (4.9.2) are kept then 

- 	  
Ha 	{ 

cosh all-z)1 	(l+cosh f2ai )  
is 	2 sink £2c  2 

Ha 	(1-cosh i. 2a} ) 

4 sinh 1,2q} 

+ sinh i(-2iR)2zi exp 	 (4.9.3) 

Then the actual steady vertical component of vorticity is from (4.2.1) 

= h(x,y)lis  

The second term in (4.9.3) represents Ekman layers on both disks, 

z = ± 1, which have a depth of penetration of vorticity of order (Y'/y-2 )2  

while the first term represents the distribution of vorticity in the interior 

and is shown in Fig.4.4. 

sinh (2i1t)lzi exp 	1 
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FIG .4.4: 	Sketch of the steady z-component of vorticity, 	, 

where 	 represents- 	h(x,y) > 0 and — 	 represents 	h(x,y) < 0 . 

EKMAIV 
• I. AVER 

FIG.4.5: 	Sketch of the steady z-component of vorticity, 	
Is 
 , in 

the boundary layer on the disk, z = -1. 
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The steady z-component of vorticity will vanish in the interior 

when 

cosh a(1-z)1 = cosh2
0 . 	 (4.9.4) 

When a -9 co and a 9 0 the zeros of (4.9.4) occur at 

z = -1 + a 1  log 2 , 

z = 1 -J2, 

respectively. 	Hence, in the interior, the zero of T.  is always on the 

negative z-axis and tends from 1 - i2 to -1 + a-f log 2 as a increases. 

We now wish to examine in more detail the flow in the boundary 

layers on the disks, z = 	1. 	The equation (4.9.3) may be written in 

the form 

(1 + cosh 1.201 )  
is _ 
	

Ha 
 2 sink (2a) 	cosh [a(1-z)] 2  

(1- 	 [cosh 1,2at )  exp t-R1(1+z)1 cos I.:71(14z)i 2 

- exp ...112(1-z)1 cos' R2(1-1 	(4.9.5) 

We will now concentrate on the boundary layer near the disk, z = -1, 

When we write 

z = - 1 + 6 , 
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where e is a small red number, we find (4.9.5) becomes 

[(cosh t 2a1 	- a sinh 
R2 

which is always positive because we have assumed a << R2  in order that 

the calculated roots of equation (4,3.13) are always valid. 	Hence in 

the Ekman layer, on z = -1, the steady z-component of vorticity is always 

positive. 

From (4.9.5) we find that 

ails _ 
az 

Hat 

2 sinh 2ai a sink a(1-z)} 

- cosh .2ca ) (-R-2) [exp -111(1+z)1 (coskR1(144 + sin R(1+z)3') 2 

exp .  -R2  (1-z)1 (cos R2(1-41 + sin k_R2(1-41.) 

which becomes near z = 

HaIE 

is 	2 sink ,201 

	

a  Zs 	Ha 

az 2 sinh 201 

I t.  

1 

	

R2 	 1 
(1 'Cosh 2a} )exp -'R (1+z)} cos D.2(1+z) 

42 

a sink 	(1-z)) 

Hence the gradient of the steady z-component of vorticity changes sign 

with cos ER2(14z) - .1 and the flow in the boundary layer near z = -1 

is shown in Fig.4.5. 
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A similar argument gives the flow in the boundary layer on 

z = +1. 

We will now examine the previous steady flow on the assumption 

that a is large but is always very much less than R y4 so that the expression 

(4.9.2) is valid. Also we choose I so that a 	is of order one. 

Then, from (4.3.9) and (4.9.3), we find 

exp -a(z+1) , 

Ha I 
= 	[exp 1.-a(1+z)} - 

Ha  
+ 4 [ sink 1(21R)2z 1 exp -(21R)I, 

+ sinh t(-21102zi 	 {-(-2iiR)11]  
Hence for large a, but a << R , we have a second boundary layer on 

	

the disk, z = 	having a depth of penetration of order 0-1, and a 

constant interior flow. 

From (4.9.3), we find that the steady z-component of velocity is 

	

Ha 	/ 
w1s - 4 sinh t2a1 • K.  

. 	2 + 	(-2iR)2cosh (-2102.4 exp [-(-2;11) 	+ sinh(a)R 	+ 0(R-1  ), (4.9.6) 

sfs  

Yls 

{- sinh2a [(2iR) cosh (2iR)Iz1 exp 



= H GI ' -57 
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The first two terms in (4.9.6) represent the Ekman layers on the disks 

while the last term shows that the z-component of velocity is constant 

in the interior. 

The interior flow described above is often referred to as the 

thermal wind [30,p.504] because, as we will now show, it is a particular 

solution of the equations 

api  
2vi  + ax  - C 

3pi. 	= 2u1 0 ay  

9 = ta,`"iei 
I- 

aui ay.  
-a—x  + 	+ ay 

= 0 

(a) .'\\ 

(b)  

(c) (4.9.7) 

(d)  

(e)  

where the subscript I denotes the solution for the interior, 	The 

equations (4.9.7(a), (b)) represent a geostrophic balance, that is a balance 

between the pressure gradients and the Coriolis force. 	The solution of 

(4.9.7(d)) which satisfies the boundary conditions on the two disks is 

sinh .a(1-z)}  h(x,y) L 	sinh i2a1 
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which agrees with the solution (4.3.9). 	Then we have, from (4.9.7(c)), 

cosh a(1-z)3  ,y a h(x) 	sinh 2a} 	+ 9(x/Y), 

where g(x,y) is an arbitraky function of x and y. 	From (4.9.7(a),(b)), 

the general solution 

avI  au1  

fes)I 	ax 

cosh ,a(1-z)-1 = 	h(x,y)  sinh 2a} 	+ 1(9 + 9 ) • xx  yy 

If we now suppose that g satisfies the membrane equation (4.2.9) and then 

take 

	

Q 	
H 

(cosh 2a'i + 1)h(x,y).--2  
9  - 2 sink t2a} a 

(s)= reduces to the first term in equation, (4.9.3). 	Hence the interior 

flow is a particular solution of the equations (4.9.7). 

Alternatively, from (4.9.7(a),(b)), we find that 

( )." 

and, from (4.9.7(c),(d)), 

V1 
p  

that 

a2497. 3 2 az(Vipi) = H VG = 

ay 

• 
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Hence we find that 

1  pt = 	H  
az 	

G(x,y) 

where G(x,y) is an arbitrary function of x and y and 

's)r  = 

ae, 
- z H 	+ 1G(x,y), 	 (4,9.8) 

Therefore from (4.9.8) we see that the contribution to the interior vorticity 

produced by the inviscid terms is always positive provided / h(x,y) > 0. 

The term involving G(x,y) cannot be determined by inviscid considerations 

alone and, in fact, comes from the boundary layers. 

The horizontal components of vorticity, in the interior, are 

aur 	awl. 	a G 

( = 
I 	az 	- 2  --LH 

ay • 

awl  avx  
aY 	

„.4 = 	ax  

Hence the steady solution consists of Ekman layers on both disks 

having thicknesses of order ( 9/.2. )2  and an interior flow which is a 

special solution of the thermal-wind relationships. 	These thermal-wind 

relationships relate, for variable density, the vertical shear of the 

horizontal velocities to the horizontal gradient of the temperature field 

and are also such that the horizontal temperature gradient and the shear 
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of the horizontal velocity vector are orthogonal. 	It is also interesting 

to note that the interior flow does not satisfy the inviscid boundary 

conditions at the disk. 

The sign of the interior steady vertical vorticity 

h(x,y)( fis)i  

is shown at the cell boundaries for given z and / > 0 in 

Fig.4.6(a),(b), when 

h(x,y) = 	Ji  (ar) , 

and 	h(x,y) = cos ax , 

respectively. 

Hence if the temperature of the lower disk is increased from t = 0, 

then positive vorticity is produced in the region near the lower disk 

and negative vorticity further away, while the reverse is true if the 

temperature of the lower disk is initially decreased. 	The region between 

the disks is divided into cells and a consideration of a volume integral for 

the vorticity over a large area shows that over the whole region no nett 

vorticity is produced. 
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4.1 0 THE INVERSE LA PLACE TRANSFORM  

The residues calculated at the poles discussed in section 4.8 give, 

for large R and R 4  > a > 0(R2) , 

Ha  
2 sinh 2a 	cosh ,a(1-z)l• 	(1 + cash 	) 

) 	 2 

(1-cosh 2a})  [ sinh  (2iR)2z1 exp 2 

+ sinh k(-2112)2z1 exp 

+ 0(R 2) 
	

(4.10.1) 

a 	(-1)m  exp 	2 + 1/4  in2sr2)/Rcs--1- 

4a2 +rn2rr2 - (1(-1)m) 
  

+ 2 cos ilmni1-z)1 + (1-(-1)m) [sinh (2iR)2zi. exp „-(2iR)2  

- sinh (-2iR)2z } exp $-(-2i1111 	+ 0(R 2) 
	

(4.10.2) 

  

f 	 1  a21-1 (1+cos 12R/40—  2  

4 cy-±  sin t2R/40-21 

 

 

rwm. 

 

exp  
R1/4 

 

- cash (-) 
2t 2  

    

    

+ cosh I(2iR)2z 1 exp 	+ cosh i(-2iR)2z) exp 

+ 0(R -) 	 (4.10.3) 
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exp j -a2  t/K f  
R 2  

— 
H a2(1-cosh t2a(1-a--)2  ) 
8(1-a`)2  sinh 20(1-a-M 

a3z 

 

   

1 a3  + [ sinh i(21R)2z} exp F-(21R)21 

   

+ sinh f(-2iR)221 exp 

0(R-2) 

  

(4.10.4) 

11A 

exp 	y./+XIR-7) 
mi=1 

A* 1 [cos(minz) R 

in1 (91-2i) ,, 	1 	1 	1 
+ (-1) 	cosh t R2( y1  + 202.z} exp t-R2( yi+21)21 

( V1+2i) 	 J. 

2i 	cosh E R2( v - 2 02  zi expl-e( vi-2021 

  

0(R 2) 
	 (4.10.5) 

M1  
+ expf t(7.1  

mi=1 

mi  G1-20 
+ (-1)  

Bt 70 2)) 3 	[cos(m trz) 

cosh TR2(7/1  +202z S exp 	+202  

m1  (71+20 	1_ 	1 	 1 	1 "." ▪ (-1) -27-- cosh .R2(71-2i)2z1  exp &R2(y1-2)2  

 

+ 0(R ) (4.10.6) 
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r 

	

exp 	y2+X2R 	i sin Cliz  (2m2  + 
m2=0  

m ( y -20 	 1 1 -? 

	

2 2 	c 	%2 - sin') t P.."( y2-Fzirz exp 	,_R2( y2+202  

m2  ( y2  +21) . 	.- - 	(-1) —2—mil 	( y2-21)1  zi exp -R.2()/2-202  

-31  + 0(t1 2) 

 

(4,10,7) 

Eil* 
exp t(-1;2+572R 7)} --t- 	. sin 55.-1  (2m2  + 1).1 

r-71i4=0 	
, 

 

m2 (72-21) 	1 	1 
(-1) 	sinh i 2(y2+2i)2z-I exp -R2(72+20-2.1 

m
2 
 ( y2+2i) 	t — (-1) — r— sinh R2(y2-20 zi exp-R2(y2-202  

+ 0(R 2) 

 

 

(4.10.8) 

where the poles (4.6.13) and (4.6.14) are written 

P = 
Xi + MN= 

R2  
P = 

X2 
2 4.  "7- 

and the bar denotes the complex conjugate. Also 
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A* 1 

 

2a2H Ev1cs-52 § 

 

cr 2 yi sinh 2(R y1cs)2 1[4 v1 + y130--I )2J 

  

4 yi i(1- 
sinh f2(R Y16 )2 X 

 

012 

+ [21 + yi(0--1)] VI  ( Y1 +21)1 (1 + cosh {2(R Yo--)71 ) 
(3/1  + 21)1 

  

on. 

+ [21 + Yi(1-cr)] 
[ vj 

Yr201 	+ cosh f2(lt yio-)1.1 ).1 
yi-20 

+ m2Tr2) 2 	yi(-1)m1 (a 1 	 x1 
2a/ 	m IT 1 	+ 2( y1+21)Y 	2( y1- 21)2 

vI
~

- 2i 	21 	+ 21 2 	2i 

21/ 	VI -2i 	‘V1 + 2i 

mi 
+ 21(-1) 

1.4 

 

m1 
Ai is identical to A; with m1, 	, Xi, pi, sinhf2(Ro-Vi 

(1 + cosh 2(R cs- Y1)1) replaced by /(2m2+1), i(•.1) n12, X2r Y2r 

-sinht 2(R cr v2̀)11 	- cosh -2(R0-Y2)11 ), respectively and B*1 and 

8*2 are identical to Al and A*2 when Yi, y2, Xur X2 are replaced 

by their complex conjugates. 	 It should be 
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noticed that A* 	
' l 

A*
2  B*' 2  

B* are constants of order one. 

We see that in the above expression for Si , the first term (4.10.1) 

is the steady solution which has already been discussed in section 4.9. 

The second term (4.10.2) is an infinite series of steadily decaying modes 

which have an amplitude of order one and require a time of order 

5
t1Rai(a2 	ff2).1 , which is always less than or equal to the 

thermal diffusion time, Rcs-5E1 , to decay. 	The contribution, from this 

term (4.10.2), to the vorticity in the interior is 

72_1) 	
h(x,y) a

2H(-1)
m 	

c 	2 	
m

2 2 

m4 	402 + m2n, 2 exP x 

x [ _o  + 	+ 2 cos Fi(1-01] I 	 (4.10.9) 

which represents an oscillation in z with an amplitude that decreases as 

m increases for any given time. Hence the modes associated with the 

smallest values of m characterise the behaviour of (4.10.9). 

From Fig,4.7, which shows the variation of the modes m = 1,2,3,4,5 

of (4.10.9) with z, for fixed time, when I h(x,y) > 0, we see that 

the even modes always make a negative contribution to the interior flow while 

the odd modes produce positive vorticity near z = -1 and negative vorticity 

near z = 1. 	Hence the term (4.10.2) represents negative vorticity in the 
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FIG .4.7: The variation of the modes m = 1,2,3,4,5 of (4.10.9) 

with z, for fixed time, when 1 h(x,y) > 0. 

interior except in the neighbourhood of the disk z = -1. 	On the other 

hand, when 	h(x,y) < 0, the term (4.10.2) represents positive vorticity 

in the interior except in the neighbourhood of the disk z = -1. 	From 

(4.10.2), we see that the only contributions to the vorticity in the 

boundary layer arises from the odd modes. 

The term (4.10.3) represents a steadily decaying mode which has 

-y4 an amplitude of order R 	cot (R 4a-1) and requires the spin-up time, 

51 1  R , to decay. 	The contribution to the interior vorticity from this 
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term (4.10.3) is 

h(x,y)exp -t1141 
r 1/4  11 a2H cot LIZ  c5- _1 

4Rncr-i- 
f

- cosh(- 5 )  2 
(4;10.10) 

I 
Since R is assumed to be large, cosh -az/2R2 1 may be approximated by 

one and hence we see that at any instant of time the vorticity (4.10.10) is 

independent of z and takes a constant value for any prescribed x and y. 

Therefore the term (4.10.10) represents constant vorticity in the interior 

for any fixed x and y with the sign of this vorticity given by the sign of 

- 	h(x,y) cot [RY4c53]. 

The term (4.10.4) is a steadily decaying mode which has an 

amplitude of order 

tank [a(1-ii  cr]  
R(1-al 

and decays in a time of order 	sV R/02 
▪ When cr < 1, this term 

(4.10.4) can be neglected on account of its small amplitude. From 

(4.10.4) the contribution to the vorticity in the interior is 

[  
- Hh(x,y)a5z exp %-ta2/R1 

tanha(1-  

16R 2(1-al 

(4.10.11) 
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which, for any fixed time, has a sign given by 

h(x,y)z. 
tanh [a(1-o-)1] 

(1 - 

The remaining terms (4.10.5), (4,,10.6), (4.10.7) and (4.10.8) 

represent four series of damped oscillations with each oscillation having an 

amplitude of order R
1 and decaying in a time of order 

sgn • 

R 
1 2+ 

rner  
2 2 

for (4.10.5) and (4.10.6) , 

	

2 	ti2 

aiY1 — + 

	

P1 	Y1 

and 

1 R 	1 (a2  + n2  (2m2  + 1)
2
) 

	

2f Y2 	f3; a 	--- 	72- 
132 

for 	(4.10.7) and (4.10.8). 

Although, for these oscillations, the individual amplitudes are small, they 

may combine to give a non-negligible contribution and therefore must be 

retained. 	From (4.10.5) the contribution to the interior vorticity behaves 

like 

m
1 h(x,y) cos(mirrz) , (4.10.12) 



sgn( 

m„, 
`11(x y) sin [(2m2+1)-422-] 

2 
1 	(4.10.13) 
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where 	is independent of z, dependent upon t and is of order R-1. 
1 

The sign of each mode in (4.10.12) is given by 

mi  
1 h(x,y)) = sgn((-1) A* h(x y)) 

1 
at z = ± 1 and by sgn (A*1  h(x,y)) at z = 0. Hence each mode is 

symmetrical about the axis z = 0. 	A similar result applies for (4.10.6). 

From (4.10.7), the contribution to the interior vorticity behaves like 

mr°  

where is independent 
2 

The sign of each mode in (4. 

on z = ± 1 and (4.10.13) is 

of z, dependent 

10.13) is given 

identically zero 

1 - upon t and is of order R 

m  by sgn[ 	(- 1 ) 1. 	2h (x , 

on z = 0. Therefore 

each mode is antisymmetrical about the axis z = 0. A similar result 

holds for (4.10.8). 

From the above results it follows that all the transient effects will 

become negligible in a time of order 

r- 
1  

max R2  SZ , 
1 R 	 SC-1R 

 

-I 2 	2 2 112 	(a + m 	) 1 
2 

1n) 
	a2 (a + 
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1 2 

	

- 	1 

	

R 5?, 	+ vr 2 (2m2  + 1)2) 

a
2 Y2 '2 

2 421 

which depends upon the value chosen for a, to leave, as a final state, 

the steady solution (4.10,1). 

4.11 	VERTICAL BOUNDARIES  

We will now examine the effect of introducing vertical walls at the 

zeros of J1(ar), that is at the cellular boundaries. 	Then from (4.2.10) 

and (4.3.9), we find that the steady temperature distribution is given 

by 

9 	= 	
A j o " 

(arl ' 
	s 
 sinh  

inh ia(2a 
1- 	, zit  (4.11.1) }  

which implies that, if a vertical boundary is situated at r = r.
1 , where 

Ji(ari) = 0, the imposed temperature distribution on this boundary must 

be 

Binh k.a(1-z)}  9 = A Jo(art) 	sinh 2a) (4.11.2) 

in order that the inviscid flow in the interior is not affected by the 

introduction of the vertical wall. 	Also, from (4.11.1), we find that 

2 + Y2 
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ae 
ar vanishes at the cellular boundaries, which implies that the intro- 

duction of insulating walls at the boundaries of the cells will not affect 

the interior inviscid flow. 

The velocity components for the inviscid interior calculated from 

(4.2.11) are 

v
z 

= A
o

(ar)w, 

aw vr 	= -Aa
-1  J (ar) 

1 	az 

and therefore we find that the radial component of velocity will always 

vanish on the vertical boundaries. 

When the effects of viscosity are included, we would expect shear 

_ 1/3  
layers, which have a depth of penetration of order R 	and R 4, to 

exist on the vertical boundaries, although no justification of this statement 

will be given here. 

Hence, if insulating vertical boundaries are introduced at the 

zeros of J1 030 with a temperature distribution (4.11.2), then the interior 

flow will remain unchanged and is a solution of the thermal-wind 

equations. 

1 
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4.12 NO BASIC ROTATION  (52. 14  0) 

We consider the effect on the previous problem when there is no 

initial basic rotation, that is when the angular velocity of rotation, 

, is identically zero. 	For this special case, we cannot use the 

dimensionless variables (4.2.13), 

(starred) variables 

Instead we define the new dimensionless 

= 
CI2 

t = 	t* I r = dr* , u= d u*, 

p a = T • (4.12.1) 
fo 

When these 

(4.2.5), (4.2.6), 

asterisks) that 

new variables (4.12.1) are introduced into the equations 

(4.2.7), with -,5- g 0, we find (upon dropping the 

div u = 0, 

au 2 + 	= 	9 k + 	u cr 

= — 26 , 
ag 
at 

(4.12.2) 

where go We  
Xly is the Rayleigh number for the flow. 

When we assume (4.2.9), (4.2.10 and eliminate the pressure, we 
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find that (4.12.2) becomes 

eiS 7 2 01-  - a 	 (4.12.3) 

a yi 
= 0— (1)2 - .11 	 0.12.4) at 

(D2  a2) [(D2  - 02) - 	 = 02% 
	

(4.12.5) 

We see that the equation (4.12.3) is of the same structure as the equation 

(4.2.19) and can immediately be solved to give the temperature 

distribution throughout the fluid. 	The equation (4.12.4) is independent 

of the equations (4.12.3) and (4.12.5) and determines the z-component 

of vorticity, 	The equation (4.12.5) is a fourth order equation with a 

forcing term dependent upon the solution of (4.12.3) and determines the 

z-component of velocity, w1. 

Hence we have, for this special case, that 1'1 and w1 are solutions 

of the equations (4.12.4) and (4.12.5) respectively while, in the previous 

problem, 11 or w1 is the solution of the sixth order equation obtained 

from the equations (4.2.20) and (4.2.21). 	The equation (4.12.4) is the 

diffusion equation which must have the solution 

, 	 (4.12.6) 

in order to satisfy the boundary conditions 



w 1 	= C isinh W1-z)1 - sinh 
sinh f2' 

sinh {13} 
4 

.2 R,  
(4.12.10) C , sinh .22 	p3(1- ci-1) 
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= D2y, _ 0  on z = 1, for all time. 

Then (4.12.6) shows that there is no vorticity introduced into the flew In 

the z-direction. 	Hence in the previous analysis when 37?.. / 0, 

it was the basic rotation that was responsible for the introduction of 

vorticity in the z-direction. 

\Mien we apply the Laplace transform to (4,12.3), (4.12.5), we 

find that the solutions of the resulting equations which satisfy the 

boundary conditions (4.3.4) are 

p sine i2 	 it (4.12.7) 

C1  sinh 	 sinh 	si
sir
nh  

—777a 
(4.12.8) 

 

cosh irtzi - cosh 1azi cosh /4  I. 

where 

  

= (a2 + p) - I , 	1j ko + 	/- (4.12.9) 
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sinh aXl+cosh 	) + a cosh a sinh 

a saiucosh a -)u. cosh,,&& sinh a 

2Cf(cosh 40-cosh i2f ) + a sinh a sinh 

psinhp.cosh a - a sinh a coshp- _ 

ci 
	C. 

4.12.11) 

,(4.12.12) 

The singularities of (4.12.7), (4.12;8), are required in order to 

evaluate the inverse Laplace transform and we will now locate them,'  

The expression (4.12.7) has simple poles at 

p = 	, 

= 	2 	1 2 2 p 	-a - 	m , rn 1,2,3,... (4.12.13) 

The branch point associated with p = -a2  is a zero of both the numerator 

and the denominator of (4.12.7) and hence is not a singularity. 	The 

expression (4.12.8) has simple poles at (4.12.13) and at the roots of 

a sinhfcosh a = x- cos sinh a, 	 (4.12.14) 

./Asinhfcosh a = a sinh a coshr, 	 (4.12. i5) 

/A, y 0, provided the numerators of C1  and Di  remain non-zero. 

It appears, from (4.12.10), that the expression (4.12.8) has a triple pole 

at p = 0 but, in fact, p = 0 is a double zero of the numerator in 

(4.12.8) and, therefore, we only retain a simple pole at p = 0. 	The 

2 
branch points associated with p = -a and p = -a2a— render the numerator 
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and the denominator of (4.12.8) zero and hence are not singularities. 

From (4.12.14) and (4.12.15), we see that, if pA- is real and 

non-zero, the only root occurs when 7- = a, but this value also renders 

the numerators of C1 and D1 zero and hence is not a singularity of 

(4.12.8). 	If we assume that 	is purely imaginary, that is /-= 

where "xi is real and non-zero, then (4.12.14) and (4.12.15) become 

a cosh a sin t..- 1 = I'Ll cos 	1 
c 	P- Binh a , 	0.12.16) 

/  
/%1  sint cosh a = cos/'1  a_ sinh a._. 	(4.12.17) 

The roots of (4.12.16) and (4.12.17) are shown in Fig.4.8 and Fig.4.9 

respectively and we will assume that they are situated at 

- - 
+ 

ix. j = 1,2,3,... 
(4.12.18) 

1.1 '= 

	iy. j 	1,2,3,... 

respectively, where x., y. are positive real numbers. 	The actual 

position of these roots depends upon the value taken for a and is 

unimportant for the following discussion. 	If we assume that tA- is 

complex, that is 7,  = x iy where x,y are real and x 0, y 0, 

then we can rewrite (4,12.14) and (4.12.15) as 

a coth a = 	cothr- , 	a tanh a =tx. tanhf (4.12.19) 
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FIG.4:8: 	Sketch of 	-- y = a coth a sin AA., 
/ 1 ' 

y = /A-.1  cosul  , 

where 0 denotes the roots of a coth a sinixi  = •ti  cosp.i , ri / 0 

FIG.4.9: 	Sketch o 

 

y = a tanh a cos" , 

y = 	11, 

  

where. 0 denotes the roots of a tanh a cosm-
1 
 = - 	

f S
in AL 

l 	
• 
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and we require 

y sinhi2x3 = ± x sin141, 	 (4.12.20) 

in order that the imaginary parts of (4.12.19) should vanish. 	The only 

solution of (4.12.20) is x = y = 0 which is not a singularity of 

(4.12.8). Hence there are no complex roots of (4.12.14) and (4.12.15). 

Therefore the only roots of (4.12.14) and (4.12.15) which are 

singularities of (4.12.8) are purely imaginary and we assume that these 

are situated at (4.1208). 

We now calculate the inverse Laplace transform (4.3.7) for (4.12.7) 

and (4.12.8). 	From (4.12.7), we have that 

1 sinh i.a(1-z)1  
sinh 2a } 

co 	(-1)mmrr sin 
+ 	— 	 

m=1 

[n-F, (1-z exp E-t(a2  + m2Tr2  
• (4.12.21) 

 

2 1 2 \ 
20 + 4  m / 

 

  

This solution (4.12.21) corresponds to (4.3.8) and consists of a steady 

term identical to (4.3.9) and an infinite series of steadily decaying modes 

1 	- which vanish within a dimensionless time of order (a2  + z m 2 ) 1  

For the z-component of velocity / 1 w1, the steady solution can be 

found either by calculating the residue contribution from the simple pole 

at p = 0 in (4.12.8) or from the steady terms in (4.12.5). 	When the 
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inverse Laplace transform is calculated for (4.12.8), we find 

	

99 	 sinh a(1 	-z)}  w 	 (z2  1) 	 cosh a  
1 

	

8 	 sinh 1201 	a+ sinh a cosh a 

sinh a cosh az}- sinh a  
cosh a sinh a - a z  cosh 	- sinh ccra  cosh  a 

a 

co a21.  
+ 

1 

 

m n (-1)mexp E-t(a2  + m2n2)] 

2 	1 2 2 3 	-1 2(a + 	if ) "" 0—  ) 
[sin. (1-z)} 

 

+ i{sinh 9,J*z) - sinh (az sinh /4*} -1--m Tr (sinh 41+(-1)m)  
;TrirTa 	a sinhtcosh a -trsinh a cosh )21  / 

cosh p-* 	n (h 	-(-1)m) 

/ 
+ 	cosh (i.t.*z) - cosh (az) --c7sh- *sinh

cos 
 *cosh a - a sinh acosh/ 

._J 

[sin (x.z) - sinh ( az) stnn a 

sin x. a2i 	2xj  exp E-ta--(a2 4.  xj 

2 	23 2 	-1 sinhl2A:s (a + x. ) r5- (1- cr-  ) 
J 

— 2 (sinh 	+ cash t2X1 ) + a cosh a sinh122(,1  

L a cos x.
J 
 cosh a - cos x(  sinh a + x. sin x. sinh a 

-a
2- 

oit 2yjexp E-ta-(a2  + yj2)] 

sinh 17)e (0'2  4. y.2)30-20_ art]) 
J 

f

7C- (cosh a)(1-cosh 21  ) + a sinh a sink .22(+ii'  
y.
J 
 cos y. cosh a + sin y.

J 
 cosh a- a sin y. sinh a 

cos l! z) - cosh (az) 
cos y. 

ariFjci 

, (402.22) 
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where 2 cr-102 ..m21.(2))2  
/-* = 

= [0  2 - 	)0-02 + x.2 
2 

2 	(3_02 + y2.02  = [a  
J 

The first term in (4.12.22) is the steady term, which becomes, at 

z = 0, 

V/
1  

 

Binh a 	(sinh 201 - 2a)  
sinT (2ai (2a + sinh 	2a) ) ' (4.12.23) 8 

Hence we see, from (4.2.18) and (4.12.23), that, at z = 0, the steady 

vertical velocity is positive when 	h(x,y) > 0 and negative when 

h(x,y) < O. 	The second, third and fourth terms in (4.12.22) 

represent infinite series of steadily decaying modes which vanish in a 

dimensionless time of order 

(a + 2 	1 m2 I2)-1.  2,-1 [0_102 + x.211-1  , [0_ 02 + y.2)-1-1  
1-1 	 J 

respectively. 	Therefore after a time of order 

max (a 	 ,2 + IT
2)-1, 0--(a2 + x2.) 	0—(a2  + y?) 

-1 -1 

all the transient effects will have decayed and (4.12.22) will reduce to 

the steady term. 
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The solution obtained for this problem is exact unlike the previous 

results involving rotation, when a large parameter, the Reynolds number, 

was introduced and small terms were neglected. 

4.13 A RESONANCE EFFECT IN OSCILLATORY HEATING  

In chapters 2 and 0 we considered the problem of either an 

infinite plane disk bounding a semi-infinite expanse of incompressible 

fluid or two infinite disks with incompressible fluid between them, when 

the fluid and the disk(s) were in rigid rotation and additionally, one of 

the disk(s) was performing torsional or non-torsional oscillations in its 

own plane. A resonance effect was found when the frequency of 

oscillation was twice the angular frequency of the basic rotation. 	This 

effect became apparent when only one disk was present because no oscillatory 

solution satisfying all the boundary conditions could be found, while when 

two disks were present an interior flow depending on z was developed; 

provided a linearization was valid when torsional oscillations were imposed. 

We now wish to examine whether or not a similar effect will occur 

when we replace the imposedoscillations by some imposed oscillatory 

heating, 

= 14,0 AT t  eint 	(4.13.1) 
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where n is the frequency which can be assumed positive without loss of 

generality. 

When we have two infinite plane disks, z = ± d, with fluid 

between them, then, by using the previous notation and analysis, we 

find, when the heating is applied to z = -d, that there always exists a 

solution for the z-component of voracity of the form 

Al  cosh Pkizl + A2  cosh {.A,2zi + A3  cosh )t3zi 

B1  sink {Xlz1 + B2  sinh f?‘,2zi + 83  sinh 	(4.13.2) 

A cosh { 2A(1-z) 	, 

where A1 , A2, A3, B1" '2' 133  are constants determined by the 

boundary conditions, 	is given by (4,3.6), A is given by (4.3.12) 

and the 	s are the roots of (4.3.13) with p = 	A similar result 

applies when the disk z = d is heated. 

On the other hand, when we have one infinite plane disk, z = 0, 

bounding a semi-infinite expanse of fluid, we have no geometric length 

scale, d, from which to form the Reynolds number, R. 	Instead we use 
-1 

a 	as a length scale and define a new Reynolds number 

Ro 

 

(4.13.3) 
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which we will assume to be large. 	Then we can always find a solution 

for the z-component of vorticity of the form 

X -'`2z 	- 
r= Al e 	+ A2e 	+ A3e 3z + A*e-9(z 	(4.13.4) 

where Al'  A2, A3 are constants determined by the boundary conditions 

on the disk, 9C is given by (4.3.6), A* = A sinh /2/1 where A is given 

by (4.3.12) and the A's are the roots of (4.3.13) with p = i n, a = 1 

R = Rs:). 

We see, from the inviscid form of the partial differential equation 

corresponding to (4.3.10) with p = 	, namely 

2 D2T  [4 n2/ 	 .7  1c7 21 	
=0 

that we can divide the frequency range into the two regions 

(i) Elliptic 	n > 2 5?- 

(ii) Hyperbolic 	n < 2 S-2. • 

From the results of section 4.4, we see that we can further divide the 

frequency range into the ELLIPTIC OUTER REGION when — - 2 > 

f;) e  HYPERBOLIC OUTER REGION when 2 - 5Z  > 0(R4), the INNER 

REGION when I-25z— - 2 I < 0(R02 ) and the TRANSITION REGION 

when I 	- 21 = 0(R:2). 



- 206 - 

REGION The thickness of 
with 1  

-1 

the boundary 

2 

sayers associated 
) 

ELLIPTIC    
OUTER 

, 2 	2 1.  
ln 	- 4 ..51 ) 

; 
Ro 2  

; 
Ro 

n ( n  + 2)j  (-n - - W 
SZ.. SZ 

INNER -1/4 Ro 
1 

R o 2-   
-Y4 

Ro 

HYPERBOLIC 
OUTER 

n2  
R (4- ----w) 

Ro 2 
1 

-11  Ro 
sa z 	o ( 	+ 2)2  

5Z 

'' (.... 	RI 	4.  2)
2 

SZ 

(a) Dimensionless 

REGION The thickness of 
with 

"Al 

the boundary layers 

"2 

associated 

x3 
 

ELLIPTIC 
OUTER 

(n2 - 457- ) 1 I 	9 	1; ( 	V 	f 
no ' n + 2.1-Z. n - 25/- 

INNER V 	}X ( 
; 

9 	72 ( —.....Y.....—)1/4 
sz a2 

‘ 
s-a 

. 
sa a2 

HYPERBOLIC 
OUTER 

(4 a2  - n2 % ) 1 
( V 	) 2  ( 	

V
)1  4 	3 _51.  y a n + 2sz 2.52.- -n 

(b) Dimensional 

TABLE 4.2: 	The (a) dimensionless, (b) dimensional thickness of the 

boundary layers associated with X1 , A, 73'  for the 

case when one disk bounds a semi-infinite expanse of fluid. 
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When only one disk is present, the dimensionless and dimensional 

thicknesses of the boundary layers corresponding to 	X2, X3  are found 

from (4.13.4) and are shown in Table 4.2. 	The boundary layer 

thicknesses associated with 	for the outer elliptic and hyperbolic 

regions differ because, for the elliptic outer region, it is the first term 

in (4.4.6) that gives the decay distance while, for the hyperbolic outer 

region, the first term in (4.4.6) is purely imaginary and it is the second 

term that yields the decay distance. 

For the elliptic and hyperbolic outer regions, we see that the 

boundary layer having the deepest penetration is that associated with 

This layer penetrates a depth of 0(a-1) for the elliptic outer region 

and 0( a /v a3
) , which is much greater than 0(a-1

), for the hyperbolic 

outer region, 	Hence we see that the influence of the heating is felt 

through a much greater depth of fluid for the hyperbolic outer region 

than for the elliptic outer region. 	The boundary layer thicknesses 

associated with X2  and X.., are identical for both the elliptic and hyperbolic 

outer regions. 

For the inner region, the boundary layers having the greatest 

penetration are those associated with 	and N and have a thickness of 

2 1/ 0(v/3e. a) 4 , which is always much thinner than the boundary layer 
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associated with Al , for both the elliptic and hyperbolic outer regions. 

The thickness of the boundary layer associated with )‘2  is the same order 

for the inner region and the elliptic and hyperbolic outer regions. 

Hence we see that as n 	252. the thickness of the boundary layer 

associated with Xi  decreases while the thickness of the boundary layer 

associated with A3  increases and the thickness of the boundary layer 

associated with A2 remains unchanged. 

The transition from the inner region to either the elliptic or 

hyperbolic outer region occurs when 

52n 	2 = 0 (R0-72  

For the boundary layer associated with A2, the depth of penetration is 

again 0( Y/$2 ) y , while for the boundary layers associated with 	and 

A3  the depths of penetration are 

0 
 {

()314 
52 

  

  

2  
+ 2 k 	(k -4i) 

• when — in = 2i + 	, 
R 
0 

   

   

+ 2 	1 )7i. 
provided k..k - (k -Or is not purely imaginary. Men 

tk -+ (k2-401  } 2 	is purely imaginary then the next term io the series 

expansions (4.4.14) determines the boundary layer thickness. 
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Also, from (403.4), we see that there is a fourth boundary layer 

having a depth of penetration of order ( Y/n cr-  )2  which is always much 

thinner than the boundary layer associated with X. 

For the special case when a S 0, the solutions of (4.2.7), (4.2.5), 

(4.2.6) are 

= 	exp 	 = w = 0, 	(4.13.5) 

since the x,y-momentum equations and the continuity equation are 

sufficient to determine 	and w and contain no forcing term involving 

G. 	The solutions, (4.13.5), agree with the results that would be 

obtained by letting a tend to zero in (4.13.4) since the particular integral 

would vanish and hence A
l 

a A
2 

:a A
3 

m- 0 in order to satisfy the 

boundary conditions on the disk. 

Hence, there is a resonance effect present in the sense that a 

different solution exists in the neighbourhood of n = 2 S2. 	 Then 

provided that the Reynolds number, R
o

, remains large, we have shown that 

the introduction of the, horizontal length scale, a-1 , guarantees that an 

oscillatory solution always exists. 	When only one disk is present this 

oscillatory solution consists of well-defined boundary layers confined to the 

disk. 
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Also, by the same arguments as we employed above, we can show 

that oscillatory solutions, which satisfy imposed boundary conditions, 

can always be found, for both the cases when one and two disks are 

present, when, instead of imposing an oscillatory heating on the disk, 

the disk h made to oscillate in the z-direction with a velocity, 

w = E tqx,Y)e
int 

 

We must assume that the amplitude, E , is very small so that we may 

consider the disk to be at z = O for all time, while it is, in fact, 

moving in a wave-like manner, Again, we have introduced a new length 

-1  scale, a , into the problem. 
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CHAPTER 5  

STEADY STATE VORT1CITY GENERATED BY HORIZONTAL 

TEMPERATURE GRADIENTS 

PART 2: SOME OTHER SOLUTIONS  

5.1 INTRODUCTION 

In this chapter we will examine the effect on the steady vertical 

vorticity discussed in section 4.9, when the additional heating imposed 

on the lower disk, 

= 	PT I h(x,y) , 

is replaced by either 

G = ,PT -1 	Ix‘ < da 

= 0 	x > da 

or 

(5,1.1) 

6T exp 	2 , 	(5.1.2) 

where a, a are positive real constants. Hence we are assuming an 

imposed temperature distribution which depends solely on one of the co-

ordinates in the plane of the disks and takes the form of either a step-

function, (5.1.1), where a non-zero temperature is present only on a 
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finite strip ix < < da or a normal distribution, (5.1.2). 

When the imposed temperature distribution is the step-function 

(5.1.1), the steady solution is composed of an inviscid interior flow 

which satisfies the thermal-wind equations, Ekman layers on the disks, 

which have a depth of penetration of order R-2  and free shear layers 

at the discontinuities, which are similar to the layers found by Stewartson 

[35J and have thicknesses of order R-1/3 
 and R Y44, When x is 

considered constant, the variation of the interior vertical vorticity takes 

the same form as in section 4.9. 

When the applied temperature distribution is the normal distribution 

(5.1.2), a solution has only been obtained for the two extreme cases, 

0—  large and a— small. 	For both these cases, the solution consists 

of Ekman layers on the disks and an interior flow which is a particular 

solution of the thermal-wind equations. 	It is found, for large a- , 

that this problem reduces to the two dimensional problem associated with 

an applied cosine temperature distribution, with a small wave number, a, 

which has been discussed in section 4.9, provided 

1 _ a2 
(5.1.3) 

     

and terms of order a---4  are negligible,. 	On the other hand, when c-

is small, this problem is identical to the problem connected with (50 t1) 
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when a tends to zero, provided 

2 a cr- 
4a. 

(5.1.4) 

and terms of order cr-3 are. negligible. 	It should he noticed that in 

formula, (5.1,3), a is a wavenumber, while in formula, (5.1.4), a is 

a length scale and therefore the two formulae are unrelated. 

5.2 EQUATIONS OF MOTION 

We consider two infinite plane disks, z = ± d, bounding a viscous 

fluid, when the fluid and the disks are rotating with constant angular 

velocity, 52 , and, additionally, a heating of the form 

9 = 	LS T e(x). 	 (5.2.1) 

where 	T 	60 is defined by (5.1.1) or (5.1.2), is applied to 

the disk z = 

Again we assume that it is valid to apply the Boussinesq 

approximation and to linearize the basic equations. 	Also, since the 

required boundary conditions 

(a) u=v=w=0 	on z = - d, 

(b) 9 = 0 on z = d, 9= 	T 3(x) on z = -d 

(c) 9, v tend to zero exponentially as ix\ 	co , 

(5.2.2) 

I 



-2 	v = a 
ax fo 

2 52 u 
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are independent of y, we may assume that the flow is independent of y. 

Hence the bask equations (4.2.5), (4.2.6), (4.2.7) become, for time-

independent motions, 

- 2 5Z 2(x2+y2) 

O = - a  [ap 	52 2(x2+y2)] + gaG + 
J0  

 

a2 

a 2 
a2 

ez 

a2 

Oz 

 

+ y 

 

 

Ha  2 
ax 

a2 
—7 3x 

 

  

)./ 

 

    

2 	') 
, a 	a& , 
t—ff -- 90 = 0, 

ax az 

au aw + ax az 	0 . 
 

(5.2.3) 

When we introduce the dimensionless variables (starred) 

z = dz*, x = dx*, (u,v,w) = 52 d(V,v*,w"))  

p  

fo 
.e. 

2 2 2 	d2 	2(x +y ) = 52 p*, G = ATE)* , 
(5.2.4) 

into the equations (5.2.3) and the boundary conditions (5.2.2), we find, 

when we eliminate u, w, p from the resulting equations and drop the 

asterisks, 



- 215 - 

3
9 

	

R-2 [ 8 	a2 	a2v 	r,9 + 4 —7  = 2H + —7  v &az 

	

ax 	az 	az 

	

2 	 2  
ax as 

(5.2.5) 

(5.2.6) 

where R, H are again the Reynolds number, .5- d2/)), and the thermal 

Rossby number, (4.2.3), respectively. 	We will again assume that the 

Reynolds number, R, is large. 	The equations (5.2.5) and (5.2.6) must 

now be solved subject to the conditions that 

(a) u=v=w=0 	on z = 1 , 

(b) 6=0 on z = 1, 	G = 0(x) on z = -1 , 	(5.2.7) 

(c) 6, v tend to zero exponentially as Ix\ —4 ao 

Then the Fourier transform 

acs 

2.Tr 
	f eisx f dx , 	(5.2.8) 

"'OD 

1 f 	 emisx f ds 
42a -CO 

(5.2.9) 

is applied to the equations (5.2.5) (5.2.6) and the boundary conditions 

(5.2.7) and we find that we must solve the equations 
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v + 4D2v = -211isD9 , (5.2.10) 

ED2  - s2  I4 = 0 , 	 (5.2.11) 

where D = - a az  , subject to the conditions 

(a) u = v = w = 

(b) J = 0 on z = 

on z = 1 , 

= 

  

on z = -1 
(5.2.12) 

    

When 4,T 0(x) is defined by (5.1.1) and (5,1.2) we find that 

..1-1 sin 	as  C) (s) = 	f 	 (5.2.13) tri  

0(s) = 	exp 	 (5.2.14) 

respectively. 

The solution of the equation (5.2.11) which satisfies the required 

boundary condition (5.2.12(b)) is 

(77s)
sinh .7.s(1-z)}  
sinh 1.2s 	 (5.2.15) 

which, when we apply the inverse Fourier transform (5.2.9), becomes 

co 

e-isx ' e(s)  sinh i s(1-z) }  sinh { 2s} 	ds . 	(5.2.16) 
-co 

1 

42rr 
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When 	is given by (5.2,15), we see that a particular integral 

of (5.2.10) is 

.11M111.1•16 

 

e(s) cosh 's(I-z)4  
4 sinh t 2s) . 	(5.2.17) 

 

If we seek a complementary function of (5.2.10) of the form eXz, we 

find that 

R-2(X2-s2)3 + 4X2 = 0 , 

which, provided s << R2, has the roots X = - Xi, i = 1,2,3, where 

	

3 	7 
A 
1 	2 R 

= (2iR)2  + 0(R 2s), 

9 
= (-2iR)2  + 0(f' 2s-) , 

(5.2.18) 

and the signs of the square roots are chosen so that the A's have positive 

real part. 	Then, for s << R2, the solution of (5.2.10) which satisfies 

the boundary conditions (5.2.12(a)) to the highest order is 

Hi 	(s) 	tanh s v 	- 	 sinh X. zi 4 sinh 	+ 2R2s cosh N. 

2R2 s-1 cosh ysinli X2z1 e- X2  + sinh 	e 
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coth s 

 

cosh 	z + 2R2
5

-* sinh N./(cosh yi 
cosh Xi  + Des sinh 

 

  

-N 
+ cosh py} e 3) 2 cosh s(1-z)1  

sinh 12s1 • (5.2.19) 

    

When we restrict our attention to the range s << R , the dominant 

terms in (5.2.19) are 

v =84) 	
-X 

1-(tanh iksinh A2z} e 	+ sinh .)\3z e 
3
) 

coth s 2 cosh s(1-.z)} 
sinh (2s) (5.2,20) 

since, for the range of interest, 	<< 1. 	In the equation (5.2.20) the 

First term which we will refer to as vB' determines the boundary layer 

motion while the remaining two terms, v , determine the motion in the 

interior. 	When we apply the inverse Fourier transform (5.2.9) to 

(5.2.20), we find 

1 
v = 

112a 7 e-isx Hi 4 O(s) [ tanh s (sinh 1Az 
-X

2 

cosh s(1 -z)1 + sinh iX
3  e ) + cotes 2 si nh i2si 	ds , 	(5.2.21) 

which gives a valid representation of the y-component of velocity 

provided the contribution to the integral is negligible for s outside the 
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range s < R1/4. 	From the expression (5.2.21), we can calculate 

the z-component of vorticity 

= (5.2.22) 

in order to obtain a comparison with the results obtained in chapter 4, 

section 4.9. 

We will now consider the general solutions (5.2.16) and (5.2.21) 

when OW takes the particular forms (5.2.13) and (5.2.14). 

5.3 A STEP-FUNCTION TEMPERATURE DISTRIBUTION  

When the imposed temperature distribution on the lower disk, 

z = -d, is the step-function (5.1.1), the temperature distribution (5.2.16) 

and the y-component of velocity (5.2.21) in the fluid become, when 

CD(s) is given by (5.2.13) , 

co 
2 f  sin fast sinh s(1-z)}  

rr 	 12s cos &xi ds , 	(5.3.1) 

co 
[ 	H 2 	

-X3 2T1 	f -(tcmh sXsinh 	e 	+ sinh Pbz3 e ) 

0 

2 cosh 	£s(1—z)  + coth s — 	 sin sx sink 2s} 
sin Zas1- 

1 ds. (5.3.2) 
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Firstly, we will evaluate the integral (5.3.1), for the temperature 

distribution, which can be rewritten as 

co 

f sinh /.s(1-01  
sinh t 2s) [ f cos f(a+x)si dx 

x 

- f cos 1(a-x)s} dx ds . 	 (5.3.3) 

+a 

When z /-1, the integrals in (5.3.3) converge for large s and therefore 

we may interchange the order of integration to give 

 

CO 

f sinh q.s(1-z)}  
sinh 2s} 

0 

cos i(a+x)s} ds dx IT 
..a  

x co 
f 	sent, 	

2s 
,s(1-z)}  

sinh cos 1(ag-x)s ds d], 	(5.3.4) (} 
*0 0 

When we apply the results given by Edwards [2, p.274], (5.3.4) becomes 

9 = 

-a 	cos D IT(1-zri 
	  dx 

+ cosh grr(a+41 

7( 

f+a 

IT 
o 	 -a 

sin E2Tr(1-4 

sin C'-z)] 

cos' 	)J + coshEiTr(a-xD 
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tan 	
sin 

exp Djrr (a-fxrj + cos nrr(1-zil  
;in Orr (1 -z)..3 

- tan  1 
	exp C1-rr (x-afl + cos [2rr(1-z)]  

sin [ 	-z)1 
(5.3,5) 

  

provided z /-1, when we use Dwight El 1] page 38, formula 160.01 

The expression (5.3.5) represents the temperature variation in the fluid 

and we require the additional condition 

G =§ ix` <a, 	0=0 	 onz=-1 , 

in order to give a solution valid for all z. 

We will now return to the evaluation of the integral (5.3.2) for the 

rcomponent of velocity, v, from which the z-component of vorticity, 

, may be calculated by using the relation (5.2.22). 	The expression 

(5.3.2) will yield a valid representation for v since the integrand is 

oscillatory and negligibly small C(R ) when s > R
Y4

. 	Also the 

integral (5.3.2) is converjent, since for large s the integrand behaves like 

sin f sx1 sin as I  

and hence the actual value of the upper limit is unimportant and we can 
OD 

replace r by  

lira 
n-.)co 

, except in the neighbourhood of x = -a , 

rr 
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(2n-1-1 )n 
2(a7Tc 

or 	lim 	f 	except in the neighbourhood of x = a 

0 (5.3.6) 

Since the boundary conditions are discontinuous at x = ± a, we expect 

free shear layers to exist parallel to the axis at these points and hence 

the above approximations, (5.3.6), will be valid outside the shear layers. 

Then, from (5.3.2), we have 

co 

H 2n f [Hanh ssinh 	e 	+ sinh 
3
2f, e 

3
) 

x 
2 cosh s(1 	-z)}  

+ coth s 

	

	 sinh .asi 	cos isx} dx ds , 
sinh 1.2s} 

- 

	co 	

(tanh s)(sinh)‘2z1- 	+ sinh A3zi e
-)"3) 

0 

O 

  

x 

fo 

 

coth s 	2 cosh s(1-z)}  
sinh 2s  

 

sin 1(a-tx)s dx 

    

    



sinh -1rr (a+x 

1 	 1 	 (sinhe 
sink [2yr(a-x 
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When we interchange the order of integration and use the approximations 

(5.3.6), we find that 

(2n+1)rr 

	

x 	2717-x 
H 

	

v = f 	tim f [(- tanhgsinh 	e o  
(n-3t13  

cosh Is(1-0 1 + sink Pyi e ) + coth s 2  
sinh 2s1 	sin i(a+x)q ds 

(2n+l)rr 
2(c77-07.  

+ urn 
r1-.)a) 

(- tankgsinh 	z e 	+ sink kNii. e 

 

+ coth s 2 cosh 
stn 

 

 

Then the first integration can be performed by employing exactly the same 

method as used by Edwards 2J page 274 56 1105, to give 

'4'3 + sinh N.z e 	) + sinh Eirr(a+x)] 	1  
cos ri-rr (1-z)] + cosh r ±rr (a+x)] 	taratlif (a+xn 

  

  

sinh r-Irr(a-x)] 	1  
cos Cirr (1-0] + cosh [;12-rr (a-x)] 	tank [-Irr (a -x)J (5.3.7) 

  

H 



- 224 - 

It should be noticed that the method used by Edwards [12] is not valid 
a) 

when p = q (in his notation) because fo sin 	dx does not converge 

whereas Edwards assumed this integral to be equal to (1/m). 	If, however, 

we alter the upper limit to [(2n + 1)nl2m] , where n is large, then 

the method is valid. 	Hence the results given by Edwards for when 

p = q, page 277 f 1106, are only valid if the upper limit is defined 

in this special way, namely 

i -...  
= lira 

n co o 	 0 

Then, from (5.3.7), we find that 

(sinh X2zi e 	+ sinh [AA e 3) x 

- 	 [ l  cosh  og 	B rr(a+xii + 1 	+ to cosh 
cosh Elsr(a+x).3 - 1 	g 	[z sr (a-x)]-j +  

cosh [2ir(a-x)] -1 

+H 	f-  log cos  Da (1-41 + cosh 1-11r(a+xj3  

- log cos Ely (1-z)] + cosh tIrr (a-x)3  
sinh[ (a-x)] 

  

(2n+1)rr co 2m  
• 

V 
H 
8rr 

  

sinh Dn. (a+x) 

+ 0(R-1). (5.3.8) 
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When we substitute the solution (5.3.8) into the equation (5.2.5) with 

given by (5.3.5), we find that the error involved for the first term, which 

represents the boundary layer, is of order R-1 and the error involved in the 

second term, which represents the interior flow, is of order (2. Then, 

since (5.3.8) satisfies the required boundary conditions for the y-component 

of velocity and since we have assumed that R is large, the solution (5.3.8) 

gives a valid representation of the flow involving a negligibly small error, 

0(R ). Therefore we may deduce that the above approximations were valid. 

When the a-component of vorticity is calculated from (5.3.8) by 

using (5.2.22) we find that 

[H 	Isinh f 2z.1 -1  
es.N2  + sinh the! e 	 1 	 

sinh [n(a4x) 

1  

sinh {in(a-x)] 

  

   

+ 	sinh [1-it(a+x2 	_ 	i  
I cos 	 + cosh [In(a4x1 	tanh Dff(a-hc)) 

sinh atr(a-x)] 	1  

	

cos Bn(1-4 + cosh por(a-xj] 	tanh Dtr(a-x 

(5.3.9) 

The expression (5.3.9) satisfies the required boundary condition 

)'? = 
	on z = - 1 , 
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with a negligibly small error, 0(11-1). 	The first term in (5.3.9), rB, 

represents Ekman layers on the disks, z = - 1, which have a depth of 

penetration of order R z. 	The remaining term, Ti  , represents the 

interior flow which, as in section 4.9, is a particular solution of the 

thermal wind equation, 

029 2 	1-1-2-  • ax 

it should be emphasized that the solution (5.3.9) is only valid outside the 

shear layers which occur around x = ± a. The presence of these free 

shear layers is demonstrated by the singularities of (5.3.9) at x = a. 

Before we examine the behaviour of the fluid in the shear layers we will 

discuss the equation (5,3.9). 

The sign of Ti  , the steady, interior, vertical vorticity, at z = 0, 

1, when 	> 0, is shown in Fig.5.1. 	The opposite signs occur 

when 	< 0. When we compare Fig.5,1 with Fig.4.6(b), we see 

that, near the axis of rotation, "f I behaves in the same manner for 

both temperature distributions. 	Also, from (5.3.9), for any x, we see 

that Y)  behaves like )2 in Fig.4.4 and the value of z such that 

g- 0 always occurs on the negative axis, 
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nZ 

ve 

- 0 

••• 0,0 	x 20 	x= 

	

FIG. 5.1: 	The sign of the steady interior vertical vorticity, 

when  I > 0 , for z = 0, 1, -1. 

We will now return to the equation (5.2.19) in order to calculate the 

y-component of velocity in the shear layers by the method employed by 

	

Stewartson [351 	We will consider only the part of the shear layers 

which lies outside the EI:rnan layers, that is where I z -+ 1 I > 0(R 2). 

Then, from (5.2.19) with 3  (s) given by (5.2.13), we find that the 

y-component of velocity for the shear layers in the interior is 
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vI - —47 

co 

f [cos (a-x)si - cos i(a+x)sn x 
0 

x 
- tanh s sinh 1X1  

s sinh 	+ 2R2cosh  

coth s cosh .Nizt 

s cosh Xi  + 2R2sinh 

2 cosh.s(1-z)}  
s sinh 2s1 

ds. 	 (5.3.10) 

We will now restrict our attention to the shear layer in the neighbourhood 

of x = a. 	Then from (5.3.10), we see that the term involving 

cos .(a+x)s? can be evaluated by retaining only the dominant terms for 

s 	R14 and by employing the same method os for the flow outside the shear 

layers, to give 

11 I 	t - 	cos 13. (1 -z)) + cosh fir (a+x)]  Tr to g 
sinh Irr(a+x)] 

• 

This agrees with the appropriate term in (5.3.8), namely the term for the 

interior which is non-singular in the neighbourhood of x = a. 	The 

remaining term in (5.3.10),which we will refer to as I, may be written 

co  
tanh s sinh I Xizi 

I . - 11 I Re f eita-xs - 

-co 	-.  s sinh X1 + 2R2cosh Xi 
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coth s cosh P\zi 2 cosh i.s(1-z)li  
s sinh t2s ds 	(5.3.11) 

s cosh 	+ 2R2sinh 

   

FIG.5.2: Path of integration in the complex s-plane for the 

integral (5.3.11). 

We now wish to show that the contribution to the integral (5.3.11) 

from the contour which is shown in Fig.5.2 by a broken line, is negligibly 

small. 	Along the line 	which is defined by 

s = s1  + iT 	-S < s1  <S 

we find, from (5.3.11), after some detailed arguments, that 

< 	1-1  -rT e-TIa-x l 2S 

 

1 

  

    

(cos 1Thin CT3/2R] - 2e) 

 



I(sin 14,(Tcos [T3/2R] - 20) 

 

2  
T sin(2T) 

 

(5.3.12) 

  

    

    

    

    

1 
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which, for S < T, tends to zero as T tends to infinity with S fixed. 

Along the line c 	, which is defined by 

s = S + is
2 
	0 < s

2 
 < T 

we find, from (5.3.11), after some detailed arguments, that 

I < 	:s- ,  exp 	-1)f 1-1 - sgn zJ _2 exp -S(1+-411 , 

(5.3.13) 

where lie  is the minimum value of Ai  along this contour and will always 

have a large positive real part. 	This contribution,(5.3.13), to the 

integral vanishes cis S tends to infinity. 	Similarly we can show that the 

contribution to the integral from the line 	also vanishes as S tends to 

infinity. 

Therefore we have shown that the contribution to the integral 

(5.3.11) vanishes around the large contour (broken line) in Fig.5.2 . 

The integral, Z, defined by (5.3.11), is equal to the sum of the residues 

calculated at the poles of the integrand which are situated in the upper 

half-plane. 	The poles of the integrand of (5.3.1.1) in the upper half-

plane are 



1,2,3,... 

y1  = 

n = 

m 

where 1  Y2 = P:2nirR [(2n-l)nRj Y3 

1,2,3,... 

— 	log 
cos 1.2n(1-4 + cosh iirc (04-9]  

sinh 	(a+x)] 

4_ 

n=1 {tan viexp 
(-1 )n-l.sin 2n-1)Trz/21 

[(2n-1)„-1 3/3  

) 
43 sin yi  cos(-- Y►x-a1 

2 exp 14 yi  tx-ci 

cosh [43 YiI + cos Yi  

43 + 1, , (-r  7 /y, 

43 	i y2 	± Y)))2 • 

. y4 , 

i(2m-1)n 
r  

imir -r imn , 

It should be noticed that the double zero of the denominator in (5.3.11)a s 0 

is also a double zero of the numerator and hence is not a singularity of 

the integrand of (5.3.11). 

When I is found by calculating the residues at the poles (5.3.14), 

we find, from (5.3.10), that, near x = a and outside the Ekman layer, 

(5.3.14) 



H 
110 

4 
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sinh 	cos( 43. yi tx.cit +-47.)] 

H 	>1-r -c k' 	cos Uirrij (-1)"  
—1;7 n=i Prisr-j2/3 fcot y2 exp 	V2 lx-a 

2 exp L 2 1)21 x-a 

   

 

43 - sin y2 cos(-- lx-al !!) 
3 cosh &3 V2i - cos Y2 

 

    

sinh f.I3 1/2 cos( 11 21x-a 	 ) sr 

8 	cot 1214 exp f-11)4 	- ail 

co  
exp 1-(2m-1)1x-01 rr/2} sin [(2m-1)3IT

32/160  
Itr(2m-1)sin B2m-1)3rr3/16P] + 2tecosB2m-4)3r(3/16ig 

} 

exp -m Tr 1x-a 	cos-G-1311'300 
m=1 m rr cos [m /2k] ..2FZ1SinCM3sr3/2R-A 

co  2(-1)m  
m=1  	m n cos erni(1-z)/21 exp 	x-aj] (5.3.15) 

Then, from (5.2.22) and (5.3.15), we find that for the shear layer 

around x = a , outside the Ekman layers, the z-component of vorticity is 

H sinh 	 (a+x)]  

 

1  
tanh rr (a+xi 

 

cosEbr(1-z~1 + cosh a+x) 
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/ HR 6  
12 

co  
sgn(x-a) 

n= 
1)

n-1 
isin [(2n-1)srz/2]  -tan y1exp 	Y1  lx-al} 

  

2 exp 

 

- sinh CLA/3 1  cos(-2-43  Y 1 lx-al 

 

C OS h 113 	+ cos Y 

 

   

- sin yi  cos (-- 1 	3 1x-a1 + 1-1) 

HRI 31.'5 
+ 	sgn(x-a ONO cot exp — Y2ix -all 

2 exp 	V2  ix-a 43 - sin Y2  cos(-2— ))21x-a 1 + ) 
cosh 11/3 Y21 - cos >J2  

+ sinh b/3 Y21 c 

c -e• - R 	 t sgn(x-a) cot R exp -R 

( 

H .t • - 	sen(x-a) exp -(2m-1)1x-ak sr/2} sin [(2m-1)3Tr3z/16fi] 

 

sin [(2m-1)3n3/16ii] + 401T 1(2m-1)-1cos2m-1)3173/1621 

Ec 	exp 	Tr lx-a 13. cos km3iT3z/2R  
mji cos r_ril3Tr3/24I'.L..20(m 	Tr3/2R] 

00 

+  	exp 	nIx-a 1/23 cos 	n (1 -z)/21 (-1)m  
m=1 • (5.3.16) 
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Then, from the second and third terms in (5.3.15) and (5,3.16), 

we see that there is a free shear layer around 	which has a depth 

Y.) - 
of penetration of order R 

v, 	This layer permits vertical mass flow from 

one Ekman layer to the other. 	From the fourth terms in (5.3.15) and 

(5.336), we see that there is a second free shear layer which has a 

depth of penetration of order R-/4  and hence always contains the R
-31 

 3- 

layer. 	This second free shear layer is responsible for smoothing out the 

discontinuities in the y-cotaponent of velocity which were introduced by 

the boundary conditions. 	These free shear layers correspond to the 

layers found by Stewartson E353 

From (5.3.16)f  we see that the contribution to the z-component 

of vorticity from the shear layer terms is of order R
Y4 

cot R
Y4 

from the 

1/4  
R 	-layer and the sum of the two infinite series of terms which 

Y6 individually are of order 	from the R
-Y3 

 -layer. 	The remaining terms 

in (5.3,16) are the first term which corresponds exactly to the interior 

term in (5.3,9) and is regular at x = a and the last term which consists 

of three infinite series. 

At the edge of the shear layers which occurs when 

= 0(R Y4) 

we require the solution (5.3.16) to match the interior terms in (5.3.9). 
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When we write 

A x a = -r- 

where A is sufficiently lame for exp(-A) to become negligible, the 

solution (5.3,9) for the inferior reduces to 

4mTramb  H 	sinh trral  
cos [Irr(1-z)1 + cosh fira 	tanh . rra 

H 	2R 14/  

when z -I, and (5.3.16) reduces to  

Trai 
cos [In (1-z)J + cosh 

(5.3.17) 

1  
tanh Taal 

H 	
co exp,-(2m-l)rrA/2R 47 	c I sin t(2m-1)37r3z/16121 Y 

1 3 3 	-)  m=1 sin (2m-1) it /16R + 4R IT
-1   (2m-1) cos .(2m-1)3rr3/16R 

? exp 1-m 	rtA/R 4  r cos Im3rr37/2R1 
cos irrirr3/2R1 - 20(m 	rn3Ir3/2  

co  
m=1 exp i-mrrA/2R f  } cos r.r1 sr (1 -z)/2 1 (-1)m 

	
(5.3.18) 

M= 
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The first term in (5.3.17) is identical to the first term in (5.3.18) and 

hence we must now show that the sum of the three infinite series in 

(5.3.18) corresponds to the second term in (5.3.17). 

Since there is a negligible contribution from the terms in the 

infinite series in (5.3.18) when m > 00 	we may simplify (5.3.18) 

to give 

 

H 

  

sink  
{ cos [z jr+ cosh in al 

, 	4 
exp -(2m-1)A TrA y4 R 	

(2  _1)4 z 

64872  

>"-!:14' exP 	n A/RY4  

1 - rn2n2R--1-  

tanhsra 
1  

H 	M I 

> 1 m=1 

Olt 

exp 	Tr APRY4 i. cos lm rr -z)/2} (-1)1 , 	(5.3.19 ) 

where M with the choice 0 < E < 1 . 

In (5.3.19) the first series makes a contribution which is always less than 
-Y4)  0(R 	and hence may be neglected, Also, when z / -1, which is 

always satisfied for the part of the shear layer which lies outside the Ekman 

layers, the third series in (5.3,19) is always oscillatory and has a sum of 

order one since it may be written 

M 

m=1 
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exp 	-relITA/2R1/41 cos m sr (3-z)/2 

= Re 

1  exci- 	+ 
m nA 	imn 

(3-z) 
ri. 	4 

1  = 2R ---  
=i 

t exp i IT (3-4/21  
1 -exp t i a (3-z)/21 

= 	• 

when only the highest order terms are retained. 	Therefore the third 

series makes no contribution of order RY4 

Therefore we wish to show that 

4 H 	exp nA/RY  
2 

M=1 	1-m n2  R 2  
(5.3.20) 

corresponds to the second term in (5.3.17), when only the highest order 

terms are considered. 	Since the largest contribution to (5,3,20) arises 

when m is small, we may assume that it is valid to write the series as 

H 	 -4- 	) 	+ m 2  IT 2  R "  + m n R 
-1 

÷ • • • )exp -mrt yr A/R/4 /. 
I 

and when we sum each tern independently over m, this series becomes 

 

2 2 	4 D4  

A 	 A 
. • 

) 
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a where a = nAR Y4, D — and exp -ctikA } is assumed negligible. 9a 

A better form of this result is 

r Y4 H 	R 	 2: 	 (20: + 
—4- (77 ' 	

+
) t 

1 	•.--T  -T.  4411.0 -r 	 ••• 

A 	A 	 A6.1 
 

(5.3.21) 

Y23, 
where only the terms 0(R ) are retained and also exp(-A) and exp(- €A) 

are assumed negligible. 

In order to show that the series (5.3.21) is a valid asymptotic series 

for the series (5.3.20), it is necessary to estimate the error which is 

introduced when we equate (5.3.20} and (5.3.21). 	Firstly, we notice 

that the function 

-ax 

1 - x
2a2A-2 

is always a strictly decreasing function of x provided 

A(1 - E2) > 2 e . 	(5.3.22) 

Then, provided A, E are chosen so that (5.3.22) is satisfied, the sum 

(5.3.20) will always be bounded above by 

M,-1 
H 	 e-°Y 

1 y2a2A 
0 

(5.3.23) 
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and below by 

H e-a ' dy 	 (5.3.24) 

  

 

1 - y2a"A-2 

Then the integral (5.3.23) may be written as 

M-1 (  H 	 e ay •- 	 dy + 8 
io 1 +e

-y 
ayA-1  fa  1 - ayA 1  

" 

H 	A [1 	] 
A A 

2 (-1)n-101-1A  
-7 • 7T - 	—5"  An  

H 	A r+ , + 2 + 	+(n-1). +S 

	

' 7 7 	3 	*•"' 	An A A 

	

n' 	 n'. where Rn  < 	 Sn < 	  
A 	 An."  (1- E )n+1  

Hence when the integral (5.3.23) is assumed equal to the series (5.3.20, 

the error involved will always be less than the last term retained provided 

(2n + 1) < A (1 e E)2n+2 	 (5.3.25) 

Similarly, we find that the integral (5.3.24) is always greater than 

H 	A ( 1 	2 +  (201 -r- 	+ 75- 

dy 

a 
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when only the highest order terms are retained and we use the fact that 

a << 1 and A = 0(1). 

Hence we see that it is valid to assume that the series (5,3.20) can 

be expressed in the form (5.3.21) with an error always less than the last 

term retained, provided (5.3.22) and (5.3.25) are satisfied. 	In fact, 

the condition (5.3.25), with n > 0, is sufficient, since this condition 

automatically implies that (5.3.22) is satisfied. 	Hence we deduce that 

(5.3.20) is equal to 

(5.3.26) 

with an error always less than (H 	1/41/Tr A3) provided 

3 < A(1- E)4 	 (5.3.27) 

The ratio of the error to (5.3.26) is (4/A2) which is always small when 

A satisfies (5.3.27). 	Therefore we see that the sum of the series 

(5.3.18) agrees with the second term in (5.3.17) to the highest order. 

Hence we have shown that the interior solution in (5.3.9) and the 

interior shear layer solution (5.3.16) match at the edge of the free shear 

layers, that is when 

1/4, 
0(R ). 
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The a-component of vorticity for the shear layers around x = -a 

could be found by employing the same arguments as we used above and will, 

in fact, be given by (5.3,16) with 

a + x, 	 x I, 	sen(x-a) 

replaced by 

a 	x, 	l a + x 1, 	sgn(x+a) 

respectively. 

The solution For the part of the shear layers which lies inside the 

Ekman layers could be found by an analysis similar to that employed 

above but no discussion of this problem will be given here. 

5.4 A NORMAL TEMPERATURE DISTRIBUTION!  

We will now consider the second special case which occurs when 

a temperature distribution of the form (5.1.2) is applied at the disk z = - 

For this particular case 	(s) is given by (5.2.14) and the equations 

(5.2,16) and (5.2.21) become 

0—  exp (-120.2/4 	sink 5(1-4  G = sink E 2s] 	
cos sx1 ds, 	(5.4.1) 

rr 
 

H  f exp  f_s2,2/4  3 
44Tr 

0 
1
.--(tanh sXsinh i_A2z1 e 
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+ sinh 	e 3) + coth $ 	2 cosh s(1-z)t 	sin 	ds. 	(5.4.2) sinh 2s 

The expression (5.4.2) will give a valid description of the y-component 

of velocity provided there is a negligibly small contribution from the 

integral outside the range s < R 4. 	This will always be true provided 

s 	>> 0(1), 	 (5.4.3) 

outside the range s < R114, which implies that 

RY40—  >> 0(1) 

must always be satisfied. 	The condition (5.4.3) can always be satisfied 

for c— large and provides a lower bound on 0-- for the case cr- 

No discussion of the integrals (5.4.1) and (5.4.2) has been obtained 

for general a— 	instead we will consider the two extreme cases, a` 

large and 	small. 

cr-  large  

When we write 

2 s = 

(5.4.1) and (5.4.2) become 

 

co 

f c 	2) 
exP 1,712  s e:r` 

sinh 	f)2(1-z)  

sinh 
cos i(2)0)14 

(2)0)2  

(5.4.4) 

Ain 
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co 	
ZZ 0--- H  f exp 

4.1n 

  

 

-tanh (2,10  )21 (sinh 	e )‘2 

  

    

, 
+ sinh f 	e 	+ coth 1(2f) 	2 cosh (2f )2(1-z)t  

sinh t 2(2f )2 / 

1, 	di' 
x sin (2r  Yx —r- 

(2f )2  

x 

(5.4.5) 

Since, for large)), the integrands in (5.4.4) and (5,4.5) behave like 
e 	2 exp 	I we see that the major contribution to the integrals 

(5.4.4) and (5.4.5) arises from f small. Hence we may use WATSON'S 

LEMMA L23, p.5O1-J to obtain the following asymptotic formulae. 

_ 	(1-z) { 1 -r 	s  , 1 [1 z  2 2z x2 2 

3 [(1-z)4 x4 56 	4(1-z)2 	4x2  x2( 1-z)2 -11 
4 30 6 + 	---r---  + 3 

C3—  

(5.4.6) 

v = H i { x 	3 2x 	3 .4'2 	-'- 
2 	2 - ----4 (-7' + )15d [sinh )2z} e 	+ sinh i X3z} e ' 

a-- 	 — 

H I - x , 	.2 	3 
_ --4.- 	 2. t2 - 0 --2) - --:=-4  1 )-c-a- (2 - (1-z)2) 

Am. 

6  + 	(4 -1('t-z)4  - 4(1-42)1] 	0(r-  ) , (5.4.7) 

where terms of order R-1 have been neglected. 	The expressions (5.4.6) 
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and (5.4.7) have been obtained for fixed x and large 0— and therefore 

these expressions are not expected to give a valid description of the flow 

when x tends to infinity. 

Then, from (5.2.22) and (5,4,7), we find that the z-component of 

vorticity is given by 

	

= 11.,i, [ 1 

cry ` 
	( 3 2 2 c._ - + x )] [sinh th2zi e-  z X2  3 

- H / (2 - (1-z)2)  ... 3 4  r x2(2  _ 0-02)  

0— 	0—  

3 	
+ -1-(1-04  - 4(1-42) I ] 	O( 0— 6) . 	 (5.4.8) + -1 (4  

Then the first terms in (5.4.7) and (5.4.8) represent Ekman layers on the 

disks, z = ± 1, which have a depth of penetration of order P.-  while 

the second terms give the interior flow which again satisfies the thermal- 

wind equation 

2avi_ H 	=- 

	

ax 	az 

when B is given by (5.4.6), 

When we retain only the highest order terms in (5.4.6) and (5,4.8), 

we find 

- 	(1-z)  
2 

(5.4.9) 

+ sinh 	e 
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H 
- ---- . 	[sinh 	 2 e 	+ sinh 	e 

cr" 	

- 	
-X3 -X 

/ [2 - (1-z)2  
2 

(5.4.10) 

The results (5.4,9) and (5,4.10) are independent of x and agree with the 

results (4.3.9) and (4,9.3), in chapter 4, when we allow a in h(x) to 

tend to zero with x fixed and assume that 

a2 

= 
1 (5.4.11) 

The temperature distribution (5.4.9) and the distribution of the z-component 

of vorticity (5.4.10) are shown in Fig,4,2 and Fig.4.4 respectively. 

The vorticity (5.4.10) vanishes in the interior when 

z = 1 - 1/2 . 

If we expand the results (4.3.9) and (4.9.3) for small a and assume 

a two dimensional flow, that is h(x,y) = cos lax} , we find 

f1 + c42.. pi? _ 4 x2i}. + 0(a4) , 

{S*. 1 + sinh 	 + sinh 	e 

0(a4) 

2 

H a2  
4 

(1-z) 

(5.4.12) 

The results (5.4.12) agree with the expressions (5.4,6) and (5.4.8) when 
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terms of order o---  are neglected, provided the condition (5.4.11) is 

satisfied. 	If, however, the terms of order a
4 

in (5.4.12) were 

calculated explicitly, no agreement would be found, since when we 

eland 	cos ,ax.1 , 	exp £-x2/0- S for small a and large a--  , 

we find that 

cos iaxi 
a2x 

2 
 _,_ a 4 4 x 

2 	41 • • • 

exp -x2/0I 
x2 x

4 

2 0- 0
-2 

and when (5.4.11) is assumed valid only the first two terms in the above 

series are identical. 

Hence, when 0-  is large, the problem of applying a normal 

temperature distribution to z = -1 is equivalent to applying a sinusoidal 

heating, provided terms oF order a- 
4  are negligible. 

cr-- small 

We will now consider the remaining extreme case, that is o- small 

but 

0(R ) -1/4 , >> 	, 

from (5.4,3) in order that the expression (5.4.2) for v is always small. 

If we write s0-= t, then the integrals (5.4.1) and (5.4.2) become 
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1 4.27.  sinh i(1-z)t/a-}  
217 	sinh Otfir-} cos .xtics-.}. d(<4-_) , 

(5.4.13) 

 

f 
v 	=  	 - .4t2  } sin ext/c- 	coth( cr_t  ) 

44 	
exp 	

1-r 0  

2 cosh £(1-z)t/o--1  
sinh t 2f/o- 

tanh (4= ) sinh i)\z3 -X2  + sinh tX3z1 e 	 . 	(5.4.14) 

Men z y  - 1, the terms involving 

cos 1.xtio--1 
sinh (1-zytitcr-1 

sinh Ot/c3-1 
cosh (1-

/
z)t/a-4  sin fxt/0-1 sinh i2to— 

make a negligibly small contribution when t > 0(a- ) and hence we may 

assume, for these terms, that the major contribution to the integral 

arises from the neighbourhood of t = 0. Therefore we may expand 

exp -t2/41 for small t to give 

exp •-t2/41 
	 t2 	

• • • . 

When we introduce the results given by Edwards c12, j  1105, p.274] 

we find that (5.4.13) and (5.4,14) become 

-I  c rr 	sin El-v(1-4]  d 	 
4 	cos D-S(1-z)] + cosh 01-srx3 

(5.4,15) 
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v = 	 H 	
exp 	s2  02-1 [-(tanh sXsinh 	z e 

2 

4Airr 0 

 

sinh 	e 	+ coth sj sin {sx} ds 

	

0-  Parr 	sinh  
+ 0(c5-3) • 	(5.4.16) 8 	cos 	t1-z)3+ cosh CA-Texl 

It now remains to evaluate 

1 	 21 exp 	2: s
2 
 cr 	sin t,sxj,  coth s ds , 

0 

a) 

fand 

	

	exp - s20-21 sin Isxl tanh s ds . 

o 

	

1 	2) Since exp c-  s2 cr-1 may be approximated by one when s < 0( 1) 

and tanh s, coth s may he approximated by one when s > 10, we choose 

n so that 

io  < (2n + 1)rr < 0( cri-1 )  
2x 

(5.4.17) 

which can always be satisfied except in the neighbourhood of x = 0. 

Then away from x = 0, we have that 

co 

0-2s9 sin tsxf coth s ds 

co 
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2n+1 

/-27-)1T 	 co 
= f sin fsxj coth s ds + 	exp f— 4 

1 s2er-s sm 27 . — 	tsx3ds 
o 

 
2n+1 (—)7r  

2x 
(2n+1
Tr )'' 

= 1 , , sin c:L sx1 coth s ds + Oko- 2) . 	(5.4.18) 
o 

Then the integral on the right hand side of equation (5.4.18) can now be 

evaluated by the method employed by Edwards D2 p.274 1105], 

namely 
2n+1 ()Tr  
2x 

I 
	

sin (sx1 coth s ds 

2n+1 
( Tr )n  

ao 

	 [exp (-2s(r+1)} + exp 1-2rsil sin ,sx} ds 
r--c; 

(2n+1
-2-rk 

CO 

[exp i.-2s(r+1)} + exp ,-2rs1-3 sin isx1 ds 
r=0 

    

x 

   

    

(2r+2)2 + x2 

 

(202 + x2 

 

     

2 coth [lux.) . 	 (5.4.19) 
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Hence, from (5.4.18) and (5.4.19), we deduce 

co 
1 2 2') . exp - 7  s a- s sin Isxl coth s ds = 2  •-•IT  Cal D n;c3 + 0(c:r2) • 

o 
(5.4.20) 

By a similar argument we can also derive 

co 
exp{- 1  icy- 2 2 sin isxj tanh s ds 1 

0 

= 2 cosech Dux3 + 0(d) . 

(5.4.21) 

It should be noticed that the integrals 861.65, 861.66 given by Dwight 

[1.1j and the corresponding results in Edwards {12-j are only valid in 

the sense 

2n+1 
( 27 )1T  

= urn 
n-,./Nco 

Hence, from (5.4.16), (5.4.2C) and (5.4.21), we find that 

v = 	114 cr--   	 (sinh iA2z1 e-*  + sinh iy} e 2\3) 
sinh G-Trxi 

 

sinh aux.] cosh 	r xj  
sinh Efrrx:i 

3 
+ 0(0-) , (5.4.22) 

 

cos Eirr(1-z)3 + cosh Elinxj 

    

where terms of order R-1 are assumed negligible compared with those 
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retained. 	Also, by applying the above arguments to (5.4.13) and 

(5.4.14) when z = 	1, we find that the results (5.4.15) and (5.4.22) 

are valid for all z and x not in the neighbourhood of x = 0. 

The first term in (5.4.22) again represents Ekman layers on the 

disks, z = ± 1, which have a depth of penetration of order R 2  while 

the second term gives the interior flow which again satisfies the thermal-

wind equation, 

av 
2 	= H ax  az 	ax 

when 8 is given by (5.4,15). 	The singularities that appear in (5.4.22) 

when x = 0, show that free shear layers are to be anticipated around 

this point. 

When the z-component of vorticity is calculated from (5.2.22), 

we find that 

Cr-  H ST412  

16 
cosh [lux]  (sinh 

	

-X2 	 -X3 + sinh X__71 e 	) - 
sinh2 Dux.] 	1‘z1 e  

cos -2-Tr(1-z)] cosh Flirx1 + 1  +0(0-'). (5.4.23) 
(cos Eitr(1-z)] + cosh [lax] )2 sinh2  Blika 

The presence of the singularity at x = 0 implies that free shear layers 

exist in this region and therefore we should anticipate a connection between 
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this case and the problem in section 5.3 with a tending to zero. 

When we allow a to tend to zero in (5.3.9) and retain only the 

highest order terms, we have that 

r -  H I Ira 	cosh FL-Trxi  
8 	. 2 

[tux] 

i N2z} e- 2 + sinh Nz 
i S141 	X1 	

3 
 

) cos EI  i , 0  -zil cosh Rim] + 1 + 	1  
i 2 	1  

	

(cos tilir (1-z)] + cosh Dux j. ) 	sinh2  Cy roc 
• (5.4.24) 

which agrees with the resuli. (5.4.23), provided 

Orr = a. 	 (5.4.25) 

Hence we see that, for x away from x = 0, the case when a normal 

temperature distribution with small cr---is applied to the lower disk, z = -1, 

is equivalent, to the highest order, to the case when a non-zero 

temperature is imposed only on the finite strip Ix(< L'a-ihr on the disk 

z = -1 . 
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CHAPTER 6 

THE EFFECT OF AN INITIAL TEMPERATURE GRADIENT 

ON THE DEVELOPMENT OF VORTICITY 

6.1 INTRODUCTION  

In the problem considered in Chapter 4, the effect of rotation and 

steady heating on the development of vorticity normal to the confining 

boundaries was found, when the initial temperature throughout the fluid 

was assumed constant. 	This first approximation to the actual temperature 

field present in the atmosphere can be improved by assuming, for the 

initial flow, a constant adverse temperature gradient, 

T = T
o 

- 	, 	 (6.1.1) 

where To, (3  are constants and (3 is positive. 

In this chapter we will examine the effect on the vertical vorticity 

when, initially, either an adverse (13 > 0) or a favourable 03 < 0) 

temperature gradient is present in the fluid. 	When there is an initial 

favourable temperature gradient, a valid expression for the steady vertical 

vorticity can always be found and will represent the final steady state 
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which exists in the fluid after all the transient effects have decayed. 

On the other hand, when an adverse temperature gradient exists, 

initially, the solution obtained for the steady vertical vorticity will only 

represent the final flow for values of the Rayleigh number, 

9.1  = agod4 	
(6.1.2) 

much less than a critical value 	c  which depends on the horizontal 

wave-number, a, defined by the membrane equation, (4.2.9). Any 

discussion of the behaviour of the fluid in the neighbourhood of this 

critical Rayleigh number, 	
c

, would require the inclusion of the non- 

linear terms in the analysis and will not be considered. 

As the Reynolds number, 

R = 	d2 

Y 
(6,1,3) 

tends to infinity, the asymptotic behaviour of the minimum critical 

Rayleigh number is found to be 

33 
3 Nrr 2  

This result agrees exactly with the expression for, the asymptotic behaviour 

of the minimum critical Rayleigh number for free/free boundaries 

calculated by Chandraselthar [93 . We therefore deduce, contrary to 
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the assertions made by Chandrasekhar, that the type of boundary does 

not influence the asymptotic behaviour of the minimum critical Rayleigh 

number. A comparison with the numerical results of Chandrasekhar is 

given, from which we deduce that the range of Reynolds numbers considered 

by Chandrasekhar does not go to high enough values for the asymptotic 

formula to be applicable. 

6!2 EQUATIONS OF MOTION  

We will consider the effect on the z-component of vorticity, when 

we replace the assumption that, initially, the temperature field is a 

constant, To, by the initial condition (6.1.1) where I > o, 1 < 0 

correspond to adverse and favourable temperature gradients respectively. 

Then, after the application of the Boussinesq approximation, the continuity 

equation and the linearized Navier-Stokes equations are again (4.2.5), 

(4.2.6) while the linearized energy equation becomes 

 

V2G . (6.2.1) at 

When we introduce the dimensionless variables (starred), (4.2.13), 

with the typical temperature scale 	&I replaced by (id, substitute 

(4.2.18), eliminate the pressure and use the continuity equation, we find 

that (upon dropping the asterisks) , 



= ( 

[ a  7: 
R- 	a2)] (02 - a2)w1  

where H* = gca 
.52 

a2)fic 

(6.2.2) 

1 	2Dw1  = 0 , (6.2.3) 

+ 2D 	
1 

= -H*02X, (6.2.4)  

(6.2.5) 

- 020 
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The equations (6.2.2), (6.2.3), (6.2.4) have the same structure as 

the equations (4.2.19), (4,2.20), (4.2.21) except for the convective 

term which appears in (6.2.2). 	This additional term couples the equation 

(6.2.2) with the equations (6.2.3) and (6.2,4) to yield an eighth order 

partial differential equation for either jef or w1  or r .,. 	Hence we see 

that the introduction of an initial temperature gradient yields a more 

complicated problem and that the solution for the temperature field is 

no longer trivial. 

From the equations (6.2.2), (6.2.3), (6.2.4) we find that 

D2-02) - R
2 
[D2-a2) - ] 2 R.— 	(D -a2  ) at 

4R2 D2_02) -0_l) 
	

.D2_02) 
- Rat 
 ] -1,1  

ati 

where 	is the Rayleigh number, (6.1.2). 

(6.2.0 
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Now, from (6.2.5) and (6.1.2), we have that 

= H*R
2
a— 

Also, from (6.2.5), we have H* << 1, which is a necessary condition 

for the linearization of the Navier-Stokes and energy equations to be 

valid. 	Then, if we assume that a = 0(1), we find that 

<< R2  , 	 (6.2.7) 

The solution of the equation (6.2.6) must now be solved subject to the 

boundary conditions (4.2.22). 	No discussion of the general time 

dependent solution of (6.2.6) will be given but instead we will consider 

the steady problem. 

6.3 THE STEADY SOLUTION  

The time independent solution of the equation (6.2.6) is equivalent 

to the solution of the equation 

(D2-a2) [D2-a2)3 4. 4R2D2 + 02 ctilv  1 	
(6.3.1) 

If we seek a solution of (6.3.1) of the form efrtz  , then we find that 

2 2 	2 	 a2  Q] ) 	
2 )3 + 4R2 2 

 + 	 = 0 , 

which, provided a << R2 , has the solutions 

(6.3.2) 
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i = 1,2,3,4, 

where 

JA.1 = 
a  

j-0-2  = (2iR)2  + C)(R 2) , 

 

(6.3.3) 

 

= (-2iR)2 ()(R , 

6 	2 0.) (a - 	)  
2R 	+ 0(R-3) • 

The signs of the square roots. in (6.3.3) are chosen such that the p's 

have positive real partsand 
	

remains on the same branch when 

a2 	> a6.  

Then we find that the terms in the solution of (6.3.1) which 

satisfy the boundary conditions, (4.2.22), to the highest order are 

Jj = 
Ha2i sisnlinihiaza is _ ('  sinh 7-4  + (t4  

2 	cosh ,4  

//u4 RI  

 

a2 	cosh joi, 
111•11.01•011110rMON... 

    

(P4 sinh I e t".  2 	 73] + sinh i 3zr e + sinh  

     

{.

4a coth a -sinh p4  + (p4  - 
2 	cosh r4  

•1•1411•M•NDIr•••••••• 

fa R2  

  

c -2 	 1 2 	2 1  + cosh/o4  R IN (7.4  - a + 4r4  
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+ Ha2f 
2 	sinh74  ] 

— cosht4  + ( hi  _ a 1 •—a— / 

cosh ii.)-2zi e-r2  + cosh V-3zi e-161-3  [ 

+ cosh Zi-L4z1} 

 

02 	sinh 

74 122.  

• 4a tanh a [-cosh4  
2 	sinh 

- 7.4' R2 

4 

 

  

   

+ sinh 	R2/4-1(f`-42 
02)3 +4'I„,4 	• 	(6.3,4) 

This solution (6.3.4) is meaningful provided 

[- sinhr + (ix4  - 
a2 	cosh j. 

) INIM1MO.M..7.••••••] 

74 	RZ  
coth a 

	

D 2 -1 	2%3 A  + cosh /0.4 	 (ip64  ^ a 	 (6.3.5) 

2 sinhii-4  

	

- cosh/A-4  + (p_4 	 4a tanh a 
/ r4 R2  

+ sinhiu4 	2 	1 2 
( 	a2)3  + 4r4 	 (6.3.6) 

are non-zero. 	The smallest value of 	, for a given a, which renders 

(6.3.5) or (6.3.6) zero defines a critical region where the transition from 

the stable (subcritical) region, with values of V, less than this 
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predicted value of Ro for the given a, to the unstable (supercritical) 

region occurs. 

For the subcritical region, the solution (6.3.4) gives a valid 

representation of the flow at large times, provided the amplitude remains 

small enough to justify the linearization, since, in this region, any small 

perturbations will decay with time. 

For the supercritical region, however, unstable modes must be added 

to the steady solution (6.3,4) in order to give a complete description of 

the flow at large times. 

For the critical region, the linear solution (6.3.4) becomes infinite 

and the non-linear terms must be included in the analysis. 

Hence the steady solution (6.3.4) gives a valid description of the 

final state, which occurs at large times, only in the stable region and 

provided the amplitude remains small. 	Therefore the region of validity 

of the solution (6.3.4) is restricted to the region which is well sub-

critical. 

The position of the zeros of (6.3.5) and (6.3.6) and hence the 

critical Rayleigh number depends upon the value chosen for a and we will 

now consider the special cases, a = 0(1), a = 0(R 4), a = 0(R113) 
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a = 0(1) 

When a = 0(1), we see, from (6.3.3), that f4  << 1 and we find 

that the dominant terms in (6.3.5) and (6.3.6) are 

a
2 

-coth a + 47.4  , 
A.R2 
4 

- 4a ianh a , 

respectively. 	Then, provided a / 0, we see immediately that (6.3.8) 

is never zero and (6.3.7) is zero only if 

2 	a3coth a  ,  

R2 (a coth a - 1) 

which corresponds to a critical Rayleigh number 

4a coth R 	
(6.3.9) 

(a coth a - 1) 

when only the highest order term is retained. 

Therefore, when a is of order one and non-zero, the critical 

Rayleigh number is given by (6.3,9) and is always positive. 	This implies 

that, when a favourable temperature gradient ((3 < o) is present, 

(6.3.4) gives a valid representation of the flow at large times. 



/4)-124  
a  4a1 	L.  R 4 	coshr4  - —L sinh7-4  + 4 sinh 4  . (6.3.11) 
tLat 

2 
c 4a1R 	airshi)4  - 	tseshr4  + 47.4  cosh p4  , 	(6.3.10) 
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a = 0(RY4) 

When we assume a = RY4  ai,where al 
is of order one, we find that 

p4- « R Y4 and the dominant terms in (6.3.5) and (6.3.6) are 

When g)  < 0(R) we have, from (6.3.3), that P4 	
Y- = 0(R 4) which /  

implies that the highest order terms in (6.3.10) and (6.3.11) are non-zero. 

When 	> 0(R) and j3 < 0 then, from (6.3.3), we see that the highest 

order term in the expansion for jo-4  is real and 	 A. 4 << R1/4 which 

implies that (6.3.10) and (6.3.11) are always non-zero. 	However, when 

414,9 > 0(R) and (3 > 0, we find, from (6.3.3), that the highest order 

term in the expansion for 7.4  is purely imaginary. Hence, when we 

retain only the highest order term in this expansion for u-4, we can 

write 

4 

where -)f4 in )&4  is real, Y4  = 0(R 	,teG z) and V4  << R3'4. Then the 

expressions (6.3.10) and (6.3.11) reduce to 

4a R - sin y + — 	cos V i' + Y 4 	2 
4 	1,4 	4 	Y4  cos ))4  , 

a21  
---1-- sin y4

))4  
4a1  R 	- cos Y4 

+ 4 Y4 sin Y4 
(6.3.12) 
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For the highest order terms in (6.3.12) to vanish we require 	= 0(1)  
and hence the critical Rayleigh number 

qt2 = 0(R9i2) • 

Therefore, when a = 0(RY4), the critical Rayleigh number is of 

order R 2  and positive. Hence, when 13 < 0, (6.3.4) always describes 

the flow which will exist in the fluid, at large times. 

a = 0(R1/3) 

When we assume that a = R a2, where 02  is of order one, we find 

that the dominant terms in (6.3.5) and (6.3,6) are 

09211316 
4a2 Rh 

L 	4 
I.- sinhl - --- cosht4  3 + 4/,21.  coshiii , 	(6.3.13) 

P4 
? y6 

A _ r,Y3 	a -R 2 	,_ .10,21: i- cosh y4  --- sinni- 1 + 4 	4A.- sinhp4  . 	(6.3.14) 
t4 

Men Ry < 0(12%) we find, from (6.3.3), that P.- 4  - 0(1) which - 

implies that the dominant terms in (6.3.13) and (6.3.14) are 

   

cosh 

sinh 4 

   

   



ipm_i)27T2 22 2 
"MIT, 

4 	r P-4 
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respectively. 

These expressions, (6.3.15) and (6.3.16), are zero when 

	

respectively. 	Hence the first zero occurs when 

	

2 	1T2 	a6  - 	a2 

4R2 

which implies that 

_ (rr2R2  a6 

a 
, when a = 0(R

Y3
). (6.3.17) 

The equation (6.3.17) can never be satisfied when a favourable temperature 

gradient (p < 0) is applied and defines the critical Rayleigh number 

when an adverse temperature gradient (f3 > 0) is present. 	Since we 

define 	to be the smallest value of 	, for any given a, which 

renders (6.3.5) or (6.3.6) zero, we see that any roots of (6.3.13) and 

(6.3.14) that exist for 9, > 0(Rt3) will not influence the critical 

Rayleigh number, RD , given by (6.3.17), when f3 > 0 

When < 0 and (ft > 0(11 3), we see, from (6.3.3), that r4  

is always real and 1 << /-4  << R Y3  which implies that (6.3.13) and 
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(6.3.14) are never zero. 

Therefore, when a = 0(R 
1/3

) , the critical Rayleigh number is given 

by (6.3.17) which is always positive. 	VVhen (3 < 0, the solution, 

(6.3.4), is always non-singular and hence describes the motion in the 

fluid, at large times. 

The minimum value of (6.3.17), as a function of a, occurs when 

2 Y. 
(aadn-iin 	an R2)  6 

Rdmin = 3  iir2R2  

(6.3.18) 

Hence the formula (6.3.18) gives the asymptotic behaviour of the minimum 

critical Rayleigh number and the minimum critical wavenumber for very 

large Reynolds numbers, R, in the range a = 0(RY3). 

In order to obtain a comparison between the above results and the 

results given by Chandrasekhar r_93 , we must first notice that the length 

scale, d, used in the above analysis is half the distance between the 

disks while the length scale, d, employed by Chandrasekhar is the total 

distance between the disks. 	Therefore, we find that the Taylor number, 

T, used by Chandrasekhar, [9, p.90] Is equal to 64R2, the minimum critical 

wavenumber, a
c 

, used by Chandrasekhar corresponds to 2(a
c

)
min 

in the 

above analysis and the minimum critical Rayleigh number, 	, used by 
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Chandrasekhar corresponds to 16(1
%c)min in the above analysis. 

Then, we find that the asymptotic forms (6.3.13) may be written 

2(a)= (111'23)3'6 , c min 

(6.3.19) 

2 16( olk,c)min  = 3(br T) 	, 

for large T, which are identical to the asymptotic laws found by 

Chandrasekhar c9] page 95 formula 133, for the case when both bounding 

surfaces were free. 

Chandrasekhar, on page 104, states, for the case when both the 

bounding surfaces are rigid, that "it appears that the same power laws 

hold" as for the case when the bounding surfaces were free, that is 

2(a c  ) min  —4 constant T1/6 , 

2/3  
16( 	min --”) constant T 

for large T, 'though the constants of proportionality seem to depend 

slightly, but definitely, on the boundary conditions°. 	Whereas, from 

the above analysis, we have shown that not only the power laws but also 

the constants of proportionality are identical for the cases of free-free 

and rigid-rigid bounding surfaces. 	Therefore we may deduce that the 

minimum critical Rayleigh number for the case of rigid boundaries can 
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be found from inviscid considerations alone. 

From (6.3.4), when a = 0(RY3), we see that the steady solution, 

101 , consists of two boundary layers which have depths of penetration of 

order R 2  and 0
-1 

and an interior solution. 	Hence, since we have 

shown that the minimum critical Rayleigh number can be found solely 

From inviscid considerations, which corresponds to the interior solution, 

we can deduce that the boundary layers play only a passive role in the 

determination of the critical Rayleigh number. 

This fact can also be seen from the equation (6.3.4) because, when 

we assume a = 0(RY3) and retain only the highest order terms in the 

denominators namely (6.3,15) and (6.3.16), we find that 

H 	2 	2i  sinh Zaz1 	 - 1 	 siA a 	(sinh tr2zi e 	+ sinh 

cosh 1.0Z1 4.  (cash 	e." 7  + coshy-54;r3)/ 

H (p).).4112.  
sinh taz)  (-sinh id + sinh ite + 	

4a cosh 4 	sinh a 

PaR72-1 	cosh tazI
oshiv21) + cosh if4z} .-  4a sinhit 	cosh a 	 • (6.3.20) 

Then from (6.3,20), we see that, in the region which is well subcritical, 

the first expression gives the highest order contribution and consists 

entirely of boundary layer terms which are always regular. 	While, as 
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the critical region is approached, the remaining terms become increasingly 

more important and, in fact, determine the critical Rayleigh number. 

However, the structure of •the second and third terms in (6.3.20) are such 

that the critical Rayleigh number may be determined from the interior 

solution alone, which agrees with the above deductions. 

From the above results, we deduce that the critical Rayleigh number, 

(6.3.17), could have been calculated from 

41222w1  = - a6)wi  , (6.3.21) 

instead of the steady equation obtained by eliminating, T.1, from 

(6.2.2), (6.2.3) and (6.2.4), by seeking a solution of the form 

w1 	= Am  cos [275.1krz 
	

+ D
msin(m trz) 

where Am, Dm are constants and m is an integer. Hence, when we 

compare the above result with the result given by Chandrasekhar (9.3 p.104, 

we deduce that (6.3.21) determines the critical Rayleigh number for both 

Free/free and rigid/rigid boundaries. 

From the tables 6.1 and 6.2, we see that the results calculated from the 

asymptotic formula (6.3.19) are always high compared with the results 

given by Chandrasekhar D3, in Table VT page 102. This discrepancy 

may be accounted for by the fact that, in the present analysis, we have 
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T 2(adm in  16( c min 
- 105  8.89 1.873 x 104 

106  13.05 8.696 x 104 

108 28.11 1.873 x 106 

1010  60.56 4.037 x 107 

TABLE 6.1: The values of the minimum critical wavenumber and 
Rayleigh number calculated from the asymptotic forms (6.3.19). 

T ac Rc 

105  7,20 1.672 x 104 

106 10.80 7.113 x 104  
108 24.5 1.531 x 106 

1010  55.5 3.457 x 107 

TABLE 6.2: The values of the minimum critical wavenumber and 
Rayleigh number given by Chandraselchar page 102 Table VW.  

T 2(ac)min 16( (gdmin  

105 6.061 1.078 x 104 

106 9.622 5.650 x 104  
108 23.08 1.426 x 106  
1010  53.176 3.381 x 107 

TABLE 6.3: The values of the minimum critical wavenumber and 
Rayleigh number calculated from the first two terms in 
the series (6.3,22). 
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assumed terms of order R-1/6  are negligible compared with the terms 

retained, while for the values of T used in table 6.1, RY6  is of order 

one. 	Hence the asymptotic forms (6.3;19) are only valid for values of 

T much larger than 1010. 

When the first correction term is calculated by retaining 
2R J16 

4a2R Y3(- sink 	(12  
4 	cosh 4) 

a 2R 
 Y6 

2  
f4 

for the dominant terms in (6.3.13) and (6.3.14), we find that 

1/6 	-1/6  
(ac)min 	

(n2R2) - e.(zrr2R2) 	0(1)  

302.72R2)% 
4Riaff2R2)Y3 4. 0(R)  

When we compare the results calculated from (6.3.22), which are given in 

Table 6.3, with the results given by Chandrasekhar, which are shown in 

Table 6.2, we find a better agreement for the cases T = 1C.78 and T = 1010, 

although this time the calculated results are always low. 

Hence it appears that, for the values of I used by Chandrasekhar, 

the asymptotic formula (6.3.19) is not valid. 	Instead (admin  and 

(  (R2 )must be expressed in the series (6.3.22) and provided sufficient c min 

terms were calculated, we would expect agreement with the results given 

by Chandrasekhar. 

4a2  R '(- cosh 7.4  

(c)min 
(6.3.22) 
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CHAPTER 7  

THE INFLUENCE Cf NON-UNIFORM CONDITIONS ON  

A PLANE BOUNDARY 

7.1 	INTRODUCTION  

In chapters 2 and 3, we considered the flow generated in d semi-

infinite expanse of incompressible fluid bounded by an infinite disk when 

both the fluid and the disk were in steady rigid rotation and, additionally, 

from some instant or time, non-torsional oscillations, (2.2.1), or torsional 

oscillations were imposed on the disk. 	It was found that no oscillatory 

solutions of the linearized equations which satisfied all the required 

boundary conditions existed when the frequency of the imposed oscillations 

was twice the angular velocity of the basic rotation. 	If, however, a 

second disk was introduced parallel to and at a finite distance away from 

the first disk, then an oscillatory solution could always be found. 	The 

presence of this second disk introduced a length scale, namely the distance 

between the disks, into the problem. 

In chapter 4, secfion 4.13, it was found that an oscillatory 

solution which satisfied the required boundary conditions always existed 

when the imposed oscillations of the disk were replaced by an oscillatory 
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heating of the form (4.2.8). 	The introduction of a length scale in the 

plane of the disk through the membrane equation, provided, at the 

resonant frequency, a second boundary layer thickness and therefore an 

oscillatory solution which, however, differed from the oscillatory solution 

obtained for non-resonant frequencies. 

Roberts and Stewartson [2] and Busse [7J considered problems in 

which a length scale can be defined and they found that an oscillatory 

solution for the boundary layers always existed. 	This boundary layer had 

a depth of penetration of order R 	at the critical latitudes and R 2  

elsewhere, and therefore a resonance effect was present in the sense that 

different oscillatory solutions existed for critical and non-critical latitudes. 

In this chapter, by considering two specific exanples, we will 

determine whether or not an oscillatory solution always exists when a 

length scale in the plane of the disk is introduced into the problem through 

the imposed oscillations on the boundary. 

7.2 EQUATIONS OF MOTION  

We consider an infinite disk, z = 0, bounding a semi-infinite 

expanse, z > 0, of incompressible fluid when both the fluid and the 

disk are in solid-body rotation with constant angular velocity, -Sa • 
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The cartesian axes (x,y,z) are taken so that the z-axis is perpendicular 

to the disk and parallel to the common axis of rotation of the fluid/disk 

combination and the x,y-.axes lie in the plane of the disk and rotate with 

it. 	The velocity vector in this rotating co-ordinate system is u.-4(u,v,w). 

We assume that the imposed oscillations on the disk are in the 

7-direction and depend only on x and t, which implies that 

u = w = 0, 	v Fooe
int at a = 0, 	 (7.2.1) 

where n is the frequency and F(x) is some function of x which will be 

prescribed later. 

We will suppose that the velocity of the fluid is always small so 

that it is valid to linearize the equations of motion. 	Also since the 

imposed oscillations are inclependen:- of y, we will assume that the motion 

of the fluid is independent of y. 	Then the equations of motion (2.2.2) 

and the continuity equation (2.2.3) become 

at - 2 SI v = - 	p 2- - Sa 2  (x22  )) y 77
2
u , 

+ 2 52. u = 	 y 2v , 

2 
5-z  2 (x2472))  + 1.v  2w  

0-77'z I  

(7.2.2) 



ax 

2 	 av 

	

712) >4. •• 2 SZ, 	= 0 

+ 	2 52. a az 
	0 

(7.2.6) 

a 
(at a t 

a a 
(at 
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au 	aw 
ax 	az 0 (7.2.3) 

where 2 	a2 a2 
- —7 ÷ 	• ax 	az 

From (7,2.3), we define a streamfunction, y•-• , by 

(7.2.4) 

(7.2.5) 

u= az • 

and then the y-component of vorticity is 

auaw 	2 
= -a-z- 	 )4,  • 

When the pressure is eliminated from the equations, (7.2.2), and 

the streamfunction, (7.2.4), is introduced, we find that 

which we must solve subiect to the conditions 

(a) =a 	= 0  
17 v = F(x)eint  on z = 0, 

(b) 
a )4  
az v 	0 	as z 	co , (7.2.7) 

(c) 	an assumption of periodicity in 
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We will now solve the problems that arise when we assume that 

F(x) is given by 

(i) 
	a sinusoidal function, 

or 	(ii) F(x) = constant 	for ixt <a 

and F(x) = 	for Ix > a 

7,3 SINUSOIDAL X-DEPENDENCE  

We suppose that the imposed oscillations, (7.2.1), take the form 

u = w = , -1 	int . v=€ a _2 e sm(ax + p  at z= O, 	(7.3.1) 

where n is the frequency, gx the wavenumber, IS the phase angle and E 

a constant. 	In order to ensure the validity of the linearization, we 

require that 	<< 1. 

When we introduce the dimensionless quantities (starred), 

x= a-Ix*, z = a-1  z.,a.. , v= 	, 	 . = Eyza-2 

t = 	5 -1t* 
	

(7.3.2) 

into the equations, (7.2.6), we have (upon dropping the asterisks) 

a 	-1 V2  2  ( ag. 	R ) 	-2-    = 0 , 

(7.3.3) 
a -1 2 

t—at R 	+ 2a=    
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where R = (5I/d2y ) is the Reynolds number, (1.1.2), with a length 

scale equal to a-1. 	The equations, (7.3.3), must now be solved subject 

to the boundary conditions 

(a) ti-= tz)'= 0,
itcr 

v = e str4 + 	on z = 0, 

(b) Y, -gTa  , v 	0 	as z 	co , 	 (7.3.4) 

(c) an assumption of periodicity in t , 

where a- = (n/552 ). 

In the following analysis we will assume that the Reynolds number, 

R, is large. 	When we substitute a solution of the form 

v = v1(0eicrt  sin(x + X), 

= >t, 1 (z)eia-tcos(x + j)  , 

into (7.3.3) and eliminate Yyz), we find 

(D
2
-1) [icr- -R (D2-1)1 2v1  + 4D2v1  = 0 , 	(7.3.5) 

where D 	
a
a , which must be solved subject to the conditions 

a y.-.1  
(a) = ez =0, 	v1  = 1 	on z = 

(7.3.6) 
a 

(b)  '1 	 1/1 	0 as z 
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When we seek a solution of (7.3.5) of the •Form exp 	we find 

that 

( ,2.1) 	_R 1 (N2-1)   2 + 	= 0 	 (7.3.7) 

The equation (7.3.7) is identical to the equation (4.3.13) in chapter 4 

with a = 1 and p = icr-„ 	The roots of (7.3.7) have been discussed 

in section 4.4 and a summary of the highest order terms in the power 

series for the roots, N, which have positive real part, are shown in 

Table 7.1. 

For the outer range, the solution is 

_ 
v = 	sin(x + j‘ exp L-R2 (ia-  +202zi + exp C-R2 (i 0- -2i)7z] 

+ 0(,0) , 	 (7.3.8) 

4 
because the terms involving X1  produce a contribution of order 11 

Hence, for frequencies of oscillation away from the resonant frequency, 

the solution, (7.3.8)„ represents two boundary layers, confined to the 

disk, having depths of penetration of vorticity of order 

( 	+1)  —) . 
In - 2 521 

These are, in fact, modified Stokes layers with an x-dependent amplitude, 
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RANGE OF 
FREQUENCY  

.1.--  

OUTER er.(02-4)4 

+ 16R-1(4- 02)-912  

I  R (icr-+202  i  R 00--20 

21 > 0(R4) 

INNER 

R1/4exp £3n i/8, 

R Y4exp i.-3n i/81 

(4iR)l  

R Y4exp in V81 

R 4exp t-n v81 
(-4004  

10---2 1 < 0(R-4) 

icr+2 I < 0(R.4) 

TRANSITION 

R Y4  

--icr 

R Y4[4-K  

1 

li 

(4iR)1  

R Y4"/A.  

f 

R 4[4-  + 
i 

a--=2 + 7  -  

}  ? 

ti4 - 

' AL 	o - i (-4111)-2  

Zi- 

frk, 	real 

7-= OW 

4-  ic-r 	o - 

TABLE 7.1 
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We see that as n approaches the resonant frequency the thickness of one 

of these boundary layers increases rapidly. 

The solution for the inner and transition ranges in the neighbourhood 

of a-  = 2 is 

{ X 	 X
3 2 	 crt 	 "xiz 0- z = 	ei  sm(x Is) xi 2,3   e 	 7-3e 

(0-  -1- 

0(e1/4) , 	(7.3.9) 

and in the neighbourhood of 	= -2 is 

2 A+ 	e-41 z  v = rfra-e sin(x 

 

2 

+ 0(R-Y  4) 	(1.3.10) 

At the resonant frequency, which corresponds to the inner range, 

the solutions (1.3.9) and (7.3.10) represent boundary layers, confined 

to the disks, having depths of penetration of vorticity of order 

2 
	 1/4  

) and (- 	. 	(7.3.11) 
o452. 

The boundary layer of thickness (y/4 say is again a modified Stokes 

layer while the other boundary layer depends on the imposed length scale, 

a-1. 	For the transition range the boundary layer thicknesses are again 
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of order (7.3.11). 	The ratio of these boundary layer thicknesses, (7.3.11), 

is 

Y A (),/a2  52.  

( y/4 52. )2  
= 2RY4 > 1 , 

since R > 1. 	Hence the boundai7 layer dependent on the length scale, 

a-1, is always much thicker than the modified Stokes layer. 
.. 

Therefore we see that the introduction of a length scale, a , 

in the plane of the disk provides a second boundary layer thickness near 

the resonant frequency and an oscillatory solution always exists. 	When 

we allow a to tend to zero, the second boundary layer thickness in 

(7.3.11) tends to infinity and hence, near the resonant frequency, no 

oscillatory solution can be found which satisfies all the required boundary 

conditions. 	This special case (a 	0) corresponds to the problem 

considered in chapter 2. 

7.4 SPLIT DISK 

We assume that the disk is split at Ix = a and that the imposed 

oscillations, (7.2.1), take the form 

u = w = 0, v= £a Se int lx1 <0  
(7.4.1) 

v=0 'xi >a 



(a) )2" = -V—z44  = 0, 

(b) I  4L  

v = 	t 1 x <1, v = 0 	> 1, on z = 0, 

as z --? CO I v 
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where n is the frequency and E a constant. 	We again suppose that 

E << 1 in order to ensure that the linearization is valid. 

When we introduce the dimensionless (starred) variables 

x = ax*, z = az*, 2  v = € a5 v*, y.,  E a 3C So* , t = 52. t*, 

(7.4.2) 

into the equations (7.2.6), we have (upon dropping the asterisks) 

a -1 2 2 
cat 	Ro V ) V )4  

av 2  z = 0 , 
(7.4.3) 

a 1 2 (7-t- Ro  )v Y- 
+2 a — = 0 az 

where Ro = (52 a2/y) is the Reynolds number, (1,1 .2), with a length 

scale equal to a. 	We will assume that this Reynolds number, Ro is large. 

The required boundary conditions are 

(c) an assumption of periodicity in 

(d) yr , v tend to zero exponentially as J xi --0 co , 

(7.4.4) 

where cr. = 	52 . 
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When we substitute 

v 	= 	v2 (z x)eia-t  
= t2( 	

io-t
zix)a 

into the equations, (7.4.3), apply the Fourier transform 

OD 

= -I, 	eiaxf dx 	f , 
1/2rr 	I  -co 

e 	r do , 	(7.4.5) 

and eliminate y.-2, we have that 

	

-- 	- 	2 - (D2-a2) [i.  cr-Ko11  (u2_ a2)] 2 v2  + 4D v2 = 0 I' 	 (7.4.6) 

a where D =.- 

	

--- az • 	This equation, (7.4.6), must now be solved subject 

to the conditions 

a --a Y• 2 	 2 
(a) = 	= 	, 	= (...)2 sin a 

n
z = 0 , y-2  

(7.4.7) 

— a — (b) ̀62 • azY- 2 • v2 —4  ° OS 	Op .; 

When we seek a solution of (7.4.6) of the form exp 	, we find 

that 

a2)  Ci 0_ _
Ro

1(x2 02)1 2 4.4x2 0 , 	(7.4.8) 

which is identical to the equation (4.3.13) in chapter 4, when we write 



•203 

RANGE OF 
FREQUENCY  

0 UTER I alcr (c 2 4)4 
..% 

+mei icy 13(4-A o 

I . 	1  R s cr+202  o 

, 

0  R1(ia- -WI  

, 

ler ±-2 1>O(R4) 

r
INNER 

lal iRoir4(acp pa i/8} 

lallA0  estp• 	173a V81 

(4M))1 Y4 

740  la llexp n V13} 

i Ro  la I wept-id/8i 

(-4iR0)1  
_ 

10=-2 10:(,R4)  

l
cr+2 1(0%41 

TRANSITION 

Ai, . 	2 + 7....f,.. 	. 1 
(4iR 

A4 

0) 

+ 

Y 
R

4 

(-4IRo)4. 

_1  
i 	1 5  i 

	4-4—+a2 r)2  

, 

, a--4+--r, 
le 

fr• • -7. cr =3-2+ 
R-2  

/u real 

p. 2= C(T) 

A 
T 
i /A- i /1 	2. 1 4  0  (-4.--a -2.-- 	1) 0  _ 

2 2- 
+ i(4. 

. 

TABLE 7.2 
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io--= p, a = a, Ro  = R. 	The roots of (Z4.8) have been discussed in 

section 4.4 and a summary of the highest order terms in the power series 

for the roots, X, which have positive real part, for the case 1at << fzo72-  

are shown in Table 7.2. 

The restriction la 1 << Roe  appears valid because if I a i = 0(R02), 

the boundary condition, (7.4.7(a)), becomes 

°az 
)I'2 v

2 
= 0(Ro 4  

2 	
) on z = 0 

and hence, since Ro>> 
1, there will be a negligible contribution to the 

inversion integral. 

In the outer range, that is for frequencies of oscillation away from 

the resonant frequency, we have 

v
2 

= /211 sin 
a 

a 	
exp 020 cr.+ 202z 	exp  i_Ro2ocr _202zi 

0( Ial R0- ), 	 (7.4.9) 

because the terms involving Xi  only produce a contribution of order 

1 R . Since we are assuming tat << R
:

, we can neglect terms 

of order 1a1 R
o 

2 * 	Hence, when we apply the Fourier inversion integral, 

(7.4.5), we have 

v =-1e4T-1.  exp -R02  (i o- +21)2z.} 	exp 2(icr- 
o 

for lx1 < 1 , 
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1_ 1 1 io-t  
V = z  e 	exp 	+Li z + exp o2(i 0--  -242Z I 

for (x1 = 1 , 

v 	= 0 
	

for I x I > 1 , 	 (7.4.10) 

which satisfies ail the boundary conditions to order one. 

The expression, (7.4.10), represents two modified Stokes layers in 

the region Ix t < 1 which have depths of penetration of vorticity of 

order (Y/In - 2 521 )7, no flow in the region Ix 1 > 1 and shear layers 

in the neighbourhood of I x I = 1 . 

The solution in the neighbourhood of the resonant frequency, that 

is for the transition and inner ranges, is 

2ei°-t 	
-X1z 

-77.,  • e 	e 	 sin a 
07 7--E2) 	 2 	Y1‘3 	a -co 

(7.4.11) 

for a— in the neighbourhood of 2 and 

v=  irkr-+2) 	X -X., 
2ele-t 	Xl  

e  1 A 	
- xic4s2  e h2 	„c  341.  sin a e-icos 

a 	da ; 
-co 

(7,4.12) 

for Q-- in the neighbourhood of -2, when terms of order IceRo
Y4  have 

been ignored. 	The second term in (7.4.11) and the third term in (7.4.12) 

a , 
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can immediately be integrated to give 

  

io-t e 	exp t-(4i110)' z 	and 04:7- erg  texp -(2iiR0)2z 

 

  

1 

respectively on Ix I < 1 and zero elsewhere. 	Therefore these terms 

represent modified Stokes layers on the disk having a depth of penetration 

of order ( Y/4 a )2 • 	The remaining terms in (7.4.11) and (7.4.12) 

are of the form 

co 

A  f 4 exp 	2z R cs O a 
[sin a e 	da , (7.4.13) 

where A, c are complex constants of -order one and c has positive real 

part. 	We have been unable to evaluate the integral (7.4.13) exactly 

but instead when zR
o 
Y4 

>> 1, we see that the dominant contribution 

-1 arises from the neighbourhood of a = 0. 	Then by expanding a sin ae-icct 

- Y4 which has an algebraic decay for z > Ro 	and which produces a 

negligibly small contribution, 0(1204), when z = 0(1). 

Therefore the expressions (7.4.11) and (7.4.12) satisfy all the 

required boundary conditions to the highest order and make a non-negligible 

contribution to the flow only within a distance z = 0(1) from the disk. 

in a Taylor series about a = 0 we find that to the highest order (7.4.13) 

behaves like (Ro z2) 1. 	Hence these remaining terms represent a solution 
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Hence the introduction of a Length scale, a, in the plane of the disk 

implies that an oscillatory solution exists for all possible frequencies of 

oscillation. 	The case a —.0 co corresponds to the problem considered 

in chapter 2 and the above analysis is not valid because the condition, 

(7.4.4(d)), cannot be satisfied. 

7.5 CONCLUSIONS  

For the two special cases considered in sections 7.3 and 7.4, 

we find that, even when oscillations are imposed at the resonant frequency, 

an oscillatory solution which satisfies the required boundary conditions 

always exists and takes the form of well-defined boundary layers con- 

fined to the disk. 	For the non-resonant case, these boundary layers 

are again modified Stokes layers which have a depth of penetration 

of order ( Y/ 1  n - 2 	I 	while for oscillations of a frequency 

within a neighbourhood of radius R 2  (or Ro2) of the resonant frequency, 

a new solution exists which consists of one modified Stokes layer and 

a second, much thicker, boundary layer on the disk. 	The depth of 

penetration of this second layer depends upon the length scale which 

has been introduced into Trhe problem by the imposed oscillations and tends 

to infinity as this length scale tends to infinity. 	This agrees with the 
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results obtained for the semi-infinite problem in chapters 2 and 3. 

Hence, For these two special cases, the introduction of a length 

scale in the plane of the disk provides a second boundary layer thickness 

for resonant oscillations and therefore an oscillatory solution satisfying 

all the boundary conditions always exists. 	However/  a resonance effect 

is still present since different oscillatory solutions are found for resonant 

and non-resonant oscillations. 

7.6 SINUSOIDAL STRESS APPLIED AT THE SURF-ACE OF A SEMI-

INFINITE OCEAN  

We can use the results of section 7.3 to discuss the more realistic 

problem of the flow generated in a semi-infinite ocean (z < 0) with a 

free surface (z = 0) which always remains planar, when a stress 

Ell 5Z eint  sin(ax + 

(7.6.1) 

"a7 0 , 

 

   

is imposed at the surface. 

For the outer range, that is for oscillations at frequencies away 

from the resonant frequency, we have 



	 e 
2-a) 

2 	2 2 (1‘i  -y 

3 001 4,  

sin(x 

(7.6.3) 

2 	a- 1 
(5— +2 
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V = 1 	
1 	 1 	1 

	

2 	•""`_17"'"'"'"-"""1" exp R2(i 0- +2i)2z  
R20 +202 

-'94)eicrt 

	

1 	exp 1R2(icr-  -202z} 	sin(x  
R*(i a-  -202  

+ 	0(R-1  ) , (7.6.2) 

in the dimensionless variables defined by (7.3.2). 	This solution, (7.6.2), 

represents stress boundary layers attached to the surface which penetrate 

downwards through distance of order (y/in - 2.2-1 )1. 

For frequencies of oscillation at or near the resonant frequency, 

that is for the inner or transition ranges, the solution in the dimensionless 

variables, (7.3.2), is 

near cr--  = 2 and 

{ 0- 1
e  + 
	

e A3z 	NIz 	ei'2z ,.,sinottoek- ' v = 	- 2-  73' 	()?,. 	(4 ..- ;\2)  

94. 
+ 0(R 	, 	(7.6.4) 
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near 	= -2, where the A's are given in halaie 7.1. 	The expressions 

(7.6.3) and (7.6.4) represent layers having thicknesses 

Y/4 52. )2  and ())/f2252 )Y4  

attached to the surface. 

Hence the effect of a sinusoidal surface stress, which introduces a 

horizontal length scale, a , into the problem is confined to the upper 

fluid and never penetrates a distance more than 

())/in-252,1)", 	(Y/a2S ) 
1/4  

for non-resonant and resonant oscillations respectively. 
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CHAPTER 8 

SOME EXACT SOLUTIONS OF THE NAVIER-STOKES 

EQUATIONS 

8.1 INTRODUCTION  

In chapters 4, 5 and 6, the vertical vorticity produced in a fluid by 

the Coriolis force together with temperature variations has been discussed 

for the case when the non-linear convective terms were assumed negligible. 

In this chapter we will investigate the effect of these non-linear convective 

terms on the development of the vertical component of vorticity in a 

rotating fluid system whicsa is heated from below. 	Exact solutions of the 

inviscid Navier-Stokes equations, the continuity equation and the inviscid 

energy equation, in non-rotating cylindrical polar co-ordinates (r, 0, z), 

are sought for the flow in a semi-infinite expanse of fluid bounded by an 

infinite plane disk, z = 0, when initially, the fluid and the disk are 

in steady, isothermal rigid rotation. 	If (y
r
, v.

0,  vz) 
are the velocity 

components in this co-ordinate system, then a class of solutions of the 

form 

_ f(r) 	 ar v =--if(r)j, 	v = r SZ att=0, 
r eir 
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is found, where f(r) satisfies an ordinary non-linear differential equation. 

In particular we are interested in any solutions which are non-singular 

and which exhibit a growth or decay, with time, of the vertical 

component of vorticity near the axis of rotation and could therefore 

describe the formation of a hurricane. 

Also some exact solutions of the complete Navier-Stokes equations 

are derived which satisfy the inviscid boundary condition at the disk. 

These solutions represent possible interior flows which satisfy the 

inviscid boundary condition at the disk. 	In order to obtain a solution 

of the non-linear equations valid throughout the whole fluid, we see 

that, in the neighbourhood of the disk, these interior solutions must be 

replaced by viscous boundary layers which satisfy the non-slip condition at 

the disk and also match the interior flow. 	No possible solutions for these 

viscous non-linear boundary layers have, as yet, been obtained. 

8.2 EQUATIONS OF MOTION  

We consider an infinite plane horizontal disk, z = 0, bounding a 

semi-infinite expanse of fluid, z > 0, when, initially, the fluid and the 

disk are in solid-body rotation with constant angular velocity, 5/ 

about an axis normal to the disk. Also we assume that the disk is 
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maintained at a constant temperature, To, For all time. 

We take a cylindrical polar co-ordinate system (r,G,z) such that the 

z-axis is parallel to the common axis of rotation of the disk and the Fluid 

and the r,G-axes lie in the plane of the disk and are at rest. 	The 

velocity components for this co-ordinate system are assumed to be
r,v,v2). 

Three basic assumptions are now made. 	Namely, we assume that 

the motion is axisymmetric and is therefore independent of G, 

(ii) it is always valid to apply the Boussinesq approximation [33, p.759.3 

and therefore we may suppose that the. density 

= to(1 aT), 

where Po 
 is the density at To

, a the coefficient of thermal 

expansion and 7 is the variation in temperature from To  

(iii) any temperature variations are independent of time, and dissipation 

and volume changes can be ignored. 

Then the Navier-Stokes equations, the continuity equation and the 

energy equation become 

avr 	avr 	avr 
at + vr -57' + vz 7"-z r 

- 

av G 	OvQ 	avG v v r G 
at + 

vr ar 
+ v 	+ 

z Oz 	r 

MO 
1 ap 
fo  ar 
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avz , 
avz , 	avz v 	v at 	r ar 	z az 

1 
ar 

avz a — 	ry + az 
	

0 , 
r 	r  

01 	01 2, 
vr 	vz 8z = IfioV •  

aP + gaT + pc
2vz  , az  

(8.2.1) 

1 
•••• 

ro 

where v2  _ 	
+ 1 

a 	a2 
—7 	 + 7 7- ar 	az 

p is the departure of the effective 

kinematic pressure from the hydrostatic pressure, which prevails when the 

Fluid is at rest at a uniform temperature, To 
; g is the acceleration due 

to gravity and 1.6 is the thermal diffusivity. 

We now wish to solve the above equations (8.2.1) when we specify 

certain conditions at the disk, z = C. 	However, no restrictions will be 

placed on the behaviour of the fluid at, infinity. 	Firstly, we will consider 

some inviscid solutions. 

8,3 INVISCID SOLUTIOHS  

We will now seek solutions of the equations, (8.2.1), when the 

terms representing viscous and thermal diffusion are ignored, namely the 

equations 
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,.. avr avr avr v8 =  l 1•••10.11•0 	
ap 

••••••••••• ...I 
+ V 	.......... + 	

6.1 

	

at 	r ar 	V  z az 	r 	
11. 
 Po  ar I 

aye 	av 	av 
+ vr ar • + vz 

• yr 
az 	

49= 0 
at 

	

avz 	 av z 	 aP 	T + v 	v 

	

at 	r ar
avz , 

z az 	- 1 
T Tnz ga  

Ov 
i a 

	

(ryr)  + az 	 = 	 , 

(8.3.1) 

Vr  0 . z -a; 

The solution of these equations, (8.3.1), corresponds to a possible interior 

solution when the kinematic viscosity, y , and the thermal diffusivity, 16 

are suitably small. 	The order of the equations (8.3.1) is less than the 

order of the equations (8.2.11 and, therefore, in order to satisfy the non- 

slip condition at the disk, a boundary layer solution must be added to the 

Following interior solutions. 

We now wish to solve the equations, (8.3.1), subject to the conditions 

(a) vz =0 	 z = 0 	for all rit, 

(b) ve  = 5L r 	at t = 0 	for all z, 	(8.3.2) 

(c) T = 0 	on z = 0 	for all r,t. 

Also, whenever possible, we would like to obtain a solution which also 

satisfies the additional conditions 
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(a) vr —> 0 as r 	 for all t,z, 

(b) v 
r 
 , v

z 
 are always regular. 

We now CHOOSE 

f(r) 	v - zf'(r) 
r 	r 	• r 
v - 	

z  

(8.3.3) 

(8.3.4) 

where f(r) is some arbitrary function of r which will be determined later 

and prime represents differentiation with respect to r. 	This choice, 

(8.3.4), for v
r and v

z ensures that the continuity equation and the 

inviscid boundary condition, (8.3.2(a)), are satisfied. 

When we substitute (8.3.4) into the equations (3.3.1), we find 

that 
z v 

	

f d f 	 ..1 	ap 
r 
_ 

	

dr r 	r 
O 

• (8.3.5) 

 

f ave zr aye fvG -r ••••••••• 

r ar 	 - 2
r  

0 

 

(8.3.6) 

 

• 

fz d 	 f' 2 	1 a z(r dr  ( --) = 	gal .t  
az  o 

aT 	zfs aT 
WYNN/= 

r Fir 	r Zi`z 	
• 

 

(8.3.7) 

(8.3.8) 

In order to obtain the general solution for the equation (8.3.6), 

we must consider the characteristic equations 04], 
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dt _ dr 	dz _ 
1 	(--f/r) 	(zfl/r) 

which have solutions 

dvc, 

(fv&/r2) 
 

zf(r) = a, 	ry = b , 	t + f T(-.dr = c , 

where a, b, c are arbitrary constants. 	Then the general solution of 

(3.3.6) is 

rv€  = F zf(r) 

r 

t + f TT  dr (8.3.9) 

  

where F is some arbitrary function. 	In order that (8.3.9) satisfies the 

initial condition, (8.3.2(b)), we require 

zf(r), 

r 
f rr  (8,3.10) 

   

Similarly, for the equation (8.3.8), we must first consider the characteristic 

equations 

dr _ dz _ 
(-fir) 	(zi3/r) 	0 

from which we find that the general solution is 

= G(zf(r)) , 	 (8.3.11) 

where G is some arbitrary function. 
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When the pressure Is eliminated from the equations (8.3.5) and 

(8.3.7), we find that 

2 
a e 	d 	f d 2' 	f' 2 
.64z 7 ) z —dr - —dr (7) +( r ) ga  7: . 

(8.3.12) 

When (8.3.12) is integrated with respect to z, we find that 

2 
ai 	 d r 

	
f' } - H(r,t) = ga 	.dz 	2 d 	

-fr dr 	+ (—)2  
ar  

(8.3.13) 

where 1-1(r,t) is some arbitrary function. 	At t = 0, 	= 	r and 

the left hand side of (8.3.13) is a function of r only. 	Therefore, since 

the right hand side of (8.3.13) is independent of time and a function of 

z and r, we require that 

z 
1z 	t_ 	' ga 1"  .dz - 22 d 

d  
r 	—r 

d 
—dr (—rf' ) + r 

f )2 
	=0 , a r (8.3,14) 

so that (8.3.13) is always satisfied. 	For both the terms in (8.3.14) to 

have the same z-dependence we require, from (8.3.11), that 

T = yzf(r) r 	(8.3.15) 

which satisfies the condition (8.3.2(c)) for any constant, y. 
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When we substitute (8.3,15) into the equations (8.3.12) and (8.3.14), 

we find that 

2 
+ z  

az r 

  

{ f d 	, 
- 	(7)  + (f 

 
7) 	garP  0 

   

d 	fd 	 ‘ 
Y9aft  - 	r 6r r 

j_ fs 
/
2 -r ft 	= 0 . (8.3.16) 

From (8.3.16), we see immediately that vG is independent of z and hence, 

from (8.3.9) and (8.3.10, we have that 

rvG = F t + 

 

r 

.dr 

(8.3.17) 

where r2  .5Z 

 

   

Therefore we have found a whole class of solutions of the equations, 

(8.3.1), subject to the conditions, (8.3.2), of the form 

f(r) yr 	 v r 	z 
zf' (r) 

r = yzf(r) 

rve  = F t + 	dr ;TT where r2 F 	, 

(8.3.18) 

where f(r) must be chosen to satisfy 
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f(r) d P() ( 	)$ 	gayf(r) = K , r dr r (8.3.19) 

ao where K is a constant cleaned 	1 by K = - 	. 
Z to  aZ 

We will now consider some special cases of the above class of 

solutions by assuming different values for y and K. 	The most interesting 

case occurs when y 0, K C, which is discussed in Section 8.5, case 2. 

However, before considering this case, ye will discuss some problems that 

arise when y and/or K are identically zero. 

8.4 	INCOMPRESSIBLE SOLUTIONS  

We will first consider some solutions when the fluid is incompressible, 

that is when 

and T 	0 . 

This is equivalent to assuming that y e 0 . 	Then the equation (8.3,19) 

becomes 

f(r) d fi (r 	(r)2 
magnan (••••••••••• 	 ) 	= 	K 

r dr r 	r (8.4.1) 

Case 1: 

For this case, the equation (8.4.1) reduces to 
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which can immediately be integrated to give 

= 2Arf , 	 (8.4.2) 

where A is a constant. 	This equation (€3.4.2) can again be integrated 

to give 

f(r) = B exp f. Ar23.- , 	 (8.4.3) 

where B is another arbitrary constant. 

Hence for the special case when the fluid is incompressible and 

K = 0, all the solutions of (8.3.19) are of the form (8.4.3) and, from 

(8.3.18), we find immediately that 

< vr = - B exptAr2/ vM  = 2ABz exp tAr21 =0, (8.4.4) 

rve  = F It - -24. exp Ar21} 	where 
9
52 = F MB exp 1-Ar2}3- 

(8.4.5) 

If we assume that 

1 = 	-TAT  exp 1-Ar21  s 

SZ then - —27-log(-2ABX) = 52. r2  , 

and hence, from (8,4.5), we have that 

rye 	- 52 log -21-` Bt+ exp Z-Ar2}] 	 (8.4.6) 
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In order that (8.4.4) and (8.4.6) are the solution of a physical problem, 

we will restrict A,R to beim.) real numbers, which implies that the 

velocity components must always be real. 

We define a streamfunction, y- , by 

a Y- 	 1 a * 
yr 	r vz ar (8.4.7) 

and the components of vorticity,' 	G f 	 ), by 

ave 	 av av 
tor = - 	0.) 	r 	z 

az dz 	ar 	tA) = 1  a ( z 	.rvd• (8.4.8) 

Then, from (8.4.4) and (8.4.6), we find that 

Bz exp Ar27  3 , 	(ar Is 0 , 	u) = -4A2Brz exp 

z 
2R  

(1 - 2ABt exp iAri) 
(8.4.9) 

The solution for v in (3,4.4) is always singular at r = 0, which 

corresponds to a sink or a source on the z-axis depending whether B is 

positive or negative and, therefore, the extra condition, (8.3.3(b)), is 

never satisfied. 	The remaining condition, (8.3.3(a)), is satisfied only 

if A is negative. 

For the case A > ( and B > 0, which implies a sink on the z-

axis, we see, from (8,4.6) and (8.4.9), that rvG and u  have a 
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singularity at 

s t = 	1 	exp -L-Ar21 	 (8.4.10) 

which moves towards the origin, r = 0, as t tends to infinity. 	When 

A > 0, B < 0, which corresponds to a source on the z-axis, we find, 

from (8.4.6) and (8.4.9), that rve  and co z are always regular. 	For 

the case A < 0, B < 0, which implies a source on the z-axis, rve  

and 	Loz have a singularity when t is given by (8.4.10), which moves 

away from the z-axis as t increases. When A < 0, B > 0, which 

corresponds to a sink on the z-axis, rve  and Loz  are always regular. 

The variations of t 	 with r, for fixed t, for these four cases are shown 

in Fig.8.1. 

When A ;1 0, we have, from (8.4.4), (8.4.6) and (8.4.9) 

vr = 	vz = 0 / r I 0, rye  r2 

(8.4.11) 

)/- = Bz, oar = G = 0 	z=252 

This is a very special case with a sink, B > 0, or a source, B < 	, 

on the z-axis, with the streamlines given by z = constant and with the 

z-component of vorticity and the azimuthal velocity unchanged from their 

initial values. 



8.1(b) 

iAcCer.o.50.5 
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8.1(c) 

8.1(d) 



to < t1 < t
2 ' 

(d) 	A < 0, B > 0, for fixed t . 

Airc >0 

rx <0 
imam ••••• 

FIG.8.1: 	Sketch of the vertical vorticity, 

 

  

2S"?.. 

  

Z 7  (1-2ABt exp Ar21) 

  

when 

(a) A > 0, B > 0, ti  = (2AB) 1 exp i-Ar2i  i = 0,1,2 where 

t < t < t o 	1 	2 

(b) A > 0, B < 0, for fixed t , 

(c) A < 0, B < 0, t. = (2AB)-1  exp S -Ar. 	i = 0,1,2, where 

t 	• 

FIG.8.2: Sketch of the vertical vorticity 60z  = 251 exp 
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When B :4  0, we see that the initial state of solid-body rotation 

is maintained. 

Case 2: 	y = 0, K / 0  

We must now consider the solutions of the equation (8.4.1), which 

becomes 

d2f (de )2 
(d )  dx-  x (8.4.12) 

when we write r2 = x , 

A solution of (8.4.12) is 

x1(2  
2 • (8.4.13) 

When we sukttitute (6.4.13) into (6.3.18), we find that 
1 

y rK2  
r 

=
z = z 	, 	T •-• 0 , 	 (8.4,14) 2 

F tt + 2K llog r where r 	=F 	rj- , 

and hence 

	

rv€1  = 52 r2  exp th/K1 	(8.4.15) 

We will assume that K is a positive real number in order that the velocity 

components are the solution of a physical problem. 	Then, from (84,7), 

(8,4,8), (8,4;14) and (8.4.15), we find that 



V= •••(.•••--- 	 V = K 	, {(r A 
r 	2 
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1 2 r zK2  Yi = 	, 	r 	LoG  :4 , z = 2 St exp i,t414 

(8.4.16) 

The above solution, (3.4.14), always satisfies the additional boundary 

condition, (8.3.3(b)), but never the condition, (8.3.3(a)). 	From (8.4.14), 

(8.4.15) and (8.4.16), we see that all the functions are regular and that 

the only vorticity produced in the flow is in the z-direction. 	This axial 

component of vorticity increases or decreases with time depending upon the 

sign chosen for 4K and is independent of r and z. 	The variation of u z 

with time is shown in Fig.8.2. 

A second solution of (8,4.12) is 

f 	xK (8,4.17) 

where A is an arbitrary constant. Then, from 0.4.14 (8.3.18), (8.4.7) 

and (8.4.8), we find 

T 0 , 

52 r2  exp bi/K I + 2 5/ AK.4(exp if-A/K-1 

IN 
2

" z(---- + A), 	(..0 at 0 , 

z = 	2 5/ exp t h/K 
	

(3.4.18) 
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We will again assume that 	is a positive real number and that A is real, 

The effect of introducing this extra constant is that neither of the additional 

conditions, (8.3.3(a)) and (8.3.3(b)), are satisfied, while the vorticity 

generated remains unchanged. Also we have introduced a source or a 

sink on the z-axis depending whether A is negative or positive. 	The axial 

component of vorticity, W z, is again shown in Fig.3.2. 

VARIABLE DENSITY SOLUTIONS 

We will now assume that y 0 in the equation (8.3.19). 

Case 1: 	y 0, K  

When we assume that K = 0 and write r2 = x, the equation 

(8.3.19) becomes 

f  
d2f ( df

) 
 2 gayf 

dx 
, 	 (8,5.1) 

A solution of this equation, (8.5,1 
	

is 

gay x2 . 	 Q3.5.2) 

Then, from (8,5.2) and (8.3.18), we have 

2 
T gclY 4  - 	 - zr , gay 3 	 2 

	

-v = 	r 	v = . zr 

4 .9 r2 

	

rya) 	4 - gaytr2 • (8.5,3) 
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Then, from (8.4.7), (8.4.8) and (8.5.3), we find that 

	

= - g8Y r4.z 	to a 0 , 	03, = -zrgay , 

32  
CA2 	 . z 	(gaytr2-4)  (8,5.4) 

The solution (8.5.3) always satisfies the additional boundary condition, 

(8.3.3(b)), but not the condition, (8.3.3(a)). 	When y > 0, the 

functions rvG and 	LA,z have a singularity at 

t 	4 --2- , 
gayr 

(8.5.5) 

which moves towards the z-axis as time increases. 	On the other hand, 

when y < 0, the functions rvG and uaz are always regular. 	It should 

be noticed that the temperature variation, T, is always positive. 	The 

variation of coz with r for fixed z is shown in Fig.8.3. 

Case 2: 	y 0, K 0  

When both y and K are non-zero there exists a solution of (8.3.19) 

of the form 

f = C(1 - exp 	2 ) , 	(8.5.6) 

2 
where K = - gayC and y = 4Ck , which is negative if C > 0 and ag 

positive if C < 0, for real lc. 	Moreover, yC, which appears in I below, 
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8.3(b) 

FIG.8.3: 	Sketch of the vertical vorticity, 

32S 
(oz 	(gatyr2 - 4)2 

when 

(a) y > 0, 4(9aYr2 
-1 

 = 1,2, and t < t 

(b) .y < 0 for fixed t,  



8.4(b) 

Sketch of the streamlines FIG .8.4: 

k < 0 

- 

)L = -C t1-exp i-kr2n 

When (a) k > 0, (b) k < 0, where -14— C < 0 and 	C > 0 . 



- 313 - 

is always negative, while K is always positive. 

Then, with the value (8.5.6) for f, (8.2.18) becomes 

C [1 - exp -kr2}]  yr 
.  
z 	 v = 2Ckz expz  

2 

c T= yC [1 exp t-kr2  f l z, 

rvca  = SZ log [exp 	(exp kr21 -1) + (8.5.7) 

We will assume that y, K and therefore k, C are real numberE in order 

that the above solution (8.5.7) represents some physical problem. 

Then, from (8.4.7), (8.4.8) and (8,5.7), we find that 

- c [1-exp t-kr211 z , 	c.A.yr  1-1-* 0 , 

0-1) = 4Ck2zr exp -kr2  (8.5.8) 

2 52. exp t Icr2}  
exp /,Icr j -1 + exp -2kCt} 

The streamlines are shown in Fig.8.4. 

When k < 0, we see that the solution, (8,5.7), always satisfies 

the additional condition, (8.3.3(b)), but never the condition, (8.3.3(a)), 

and that rye and ci-7z have a singularity at 

1 
t *=. 7E7  log L- expkr2Fi 
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when C < 0, which moves towards the z-axis as time increases, but are 

always regular when C > 0. 	The variation of I and coz with r For 

fixed z,t are shown in Fig.8.5(a) and Fig.8.6(a),(b), respectively. 

When k > 0, we have the most interesting case since the solution, 

(8.5.7), satisfies both the additional conditions, (8.3.3). 	For this 

case, all the functions (8.5.7) and (8.5.8) are regular and the fluid at 

a large distance away from the axis of rotation (r 	co) has a non-zero 

velocity component in the azimuthal direction only. 	These properties 

demonstrate that this particular solution is the most useful solution that has 

been discussed. 	The variations of T and tA,Dz with r for fixed z,t are 

shown in Fig.8.5(b) and Fig.8.6(c),(1), respectively. 

Hence, when k > 0, the temperature distribution, T, is independent 

of time and, from Fig.8.5(b), we see that at any given radius the 

temperature decreases and therefore the density increases as z increases. 

Therefore there exists lighter fluid in the neighbourhood of the disk with 

heavier fluid above it. 	This situation produces convection currents 

which alter the vertical vorticity present in the fluid. 	Hence we see, 

From Fig.8.6, that, when lc > 0, the vertical vorticity in the neighbourhood 

of the axis of rotation (the z-axis) is increased or decreased with time 

while the vertical vorticity at infinity is unchanged from its initial value. 



8.5(a) 

ixte-re.o.SeS 

8.5(b) 

FIG.8.5: 	Sketch of the temperature variation T = 

for fixed z, when (a) k < 0, (b) k > 0 . 

-exp (-kr2  z , 



8.6(a) 

8.6(b) 



ibiam.r41.640.$ 
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c .  8.6(d) 

FIG.8.6: 	Sketch of the vertical vorticity, 

1 
= 2 St exp kr21 [exp kr21 1 + exp f-2kctil 

when 	(a) k < 0, C > 0, for -fixed t 

• (b) k < 0, C < 0,- and t. = -(2kC)-1  log [1-exp kr2 }J 

i = 1,2, where to  < t1  , 

(c) k > 0, C > 0, for fixed t, 

(d) k > 0, C < 0, for fixed t . 



that 

2 	v•G 	1 ap 

J 
o  ar 
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r 
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8.6 SOME SOLUTIONS INCLUDING VISCOSITY  

We will now derive some solutions of the full Navier-Stokes 

equations, (8.2.1), when the temperature, and therefore the density, of 

the fluid remain constant, which satisfy the condition that the vertical 

velocity vanishes on the boundary, z = 0. 	We will not impose the initial 

condition that the fluid and the disk were, initially, in solid-body rotation 

with constant angular velocity, 52 . 	However, instead of specifying 

an initial condition, we see what possibilities the solutions allow. 	These 

solutions represent possible interior solutions to which boundary layers 

must be added in order to satisfy the non-slip condition at the boundary. 

We assume that 

r 
= -Ar 	 v

z 
= 2Az , 	 (8.6.1) 

where A is a red constant. 	This choice, (8.6.1), satisfies the continuity 

equation and also the required boundary condition at z = 0 for the 

interior solution, 	From (8.6.1) and (8.4.7), we find that the streamlines 

are 

= 	Ar2  z 

When we substitute (8.6.1) into (8.2.1) with I :41  0, we find 
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a V in 	 aVeN, 

	

tr 	A A r 	• + 2Az 	/AV at 	ar 	t>z 
02 	1 a 	32 	"' 

—7+  77)7 + - ar 	az r 
VCL: • 

   

(8.6.3) 

A A 2 	ap 4w-1, z =  
fo az  

(8.6,4) 

The equations (8.6.2) and (8.6.4) are identical to the inviscid equations 

(8.3.5) and (8.3.7) with f = Ar2, T 14  0, because the viscous stress 

terms are identically zero. 	When we eliminate the pressure between the 

equations (8.6.2) and (R.6.4), we find that 
9 

V 4:4 

C Z 	r 
	= C 

Hence ye is independent of z and the equation (8.6.3) reduces to 

- 	(ry ) = 	a 	a 
at 	A

ar 	 -a7 7 -al: (rve)  • (8.6.5) 

When we write 

rvQ  = U, 

the equation (8.6.5) becomes 

2 r = x , 

. 	(9.6.6) 

Before we discuss the general solution of equation (8.6.6), we 

will consider three special cases. 

au a aU [2A 	--x = x a--; Ot u + 4Y 
] 
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Case 1: 	Extension of Burger's solution  

We will now discuss the solution of (8.6.6) which was derived by 

Rott [32, p.403] 	We seek a solution of the form 

	

U = K D - exp t-AxF(t)/21, 	 (8.6.7) 

where K is a red constant and F(t) a function of time. 	When we substitute 

(8.6.7) into the equation (8.6.6), we find 

(t) 	= A [F(t) - F2(03 , 	 (8.6.8) 

where prime represents differentiation with respect to t. 	The equation, 

(8.6.8), can be integrated to give 

(1 + B exp 	)-1  = F(t) , 	 (8.6.9) 

where B is a constant of integration. 

Hence we have, from (8.6.9) and (8.6.7), that 

U = K [1 exp -Ax/2 v (1 B exp -2At 3.  )31 

or alternatively 

ry 	= K 	exp i-Ar72 y (1 +8 exp -2At 
	

(8.6.10) 

Hence we see, from (8.6.10), that v satisfies the following conditions. 

(I) 	--.) 0 as r --.)oa, for all t such that A(1+B expt-2Ati ) > 0 

(ii) 	v
49 = 0 on r = 0 for all t except when 1 + B expl-2Atl = 0 , 
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(iii) When 1 + B exp {-2Aq = 0, then ve  = K/r which represents 

a potential vortex, 

(iv) rye  = K [1 exp i-Ar2/2  v (1-1-031 	at t = 0 

(v) near the z-axis, at t = 0 , 

2y (i+s)  and AK  rve  = 2770BAKr2 = Se r2 , provided 

B / -1 

(vi) when B = -1, the singularity discussed in (iii) occurs at t = 

The vorticity components are 

IA r s 
mi. 0 I  KA exp €-Ar2/2  Y (14-13 exp £.-2At} )  

(1+B exp -2At} ) 

(8.6,11) 

When A > 0, B < -1 or A < 0, -1 < B < 0, we see, from 

(8.6.10) and (8,6,11), that toz  and rve  have a singularity at 

t = — log (-B) . 2A 

For the remaining ranges A > 0, B > -1, A < 0, B > 0 and A < 0, 

< -1, we see that wz  and rve  are always regular. The variation 

of Loz with r for fixed t is shown in Fig.8.7 for K > 0, which we may 

assume without loss of generality. 

\A/hen we allow t 	- a, in (8.6,1C) and (8.6.11) for A > 0, 

we find that ry --? 0 and e.A.Dz 	0. Therefore when A > 0, the 



t 
I cot A70, is;Pc:3 

	>r 

8.7(b) 

1 
 t Inc emo-SeS 
.rcre A >0 ,0"+ a>"4  
of 	06.<0 , G < .-.1 

1.  b i.iNct.tozes 
'for A<O, 8>0 
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8.7(c) 

FIG.8.7: 	Sketch of the vertical vorticity, 

KA exp -Ar2/21) (1+B exp I 	)  

Y (1+B exp t-2Atj ) 

for fixed t, when 

(a)  A > 0, B > 0; A > 0, 0 > B > -1; 	A < 0, B < - 	, 

(b)  A < 0, B < 0 

1 (c)  A > 0, B < -1; A < 0, -1 < B.< 0 where to 1°9(-B)' 7-61/4  
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vertical vorticity, (8.6.11), is identically zero when t 	- co and 

becomes 

= KA exp i-Ar2/2  Y 

when t 	co. 	Hence, at large times, a concentration of vertical vorticity 

is developed in the neighbourhood of the axis of rotation while at large 

radii the vertical vorticity is unchanged from its initial value (t 	- co). 

Case 2 

When we seek a solution of (8,6.6) of the form 

U = 	x exp At , 	 (8,6,12) 

we find that A = 2A and that the viscous stress terms are identically 

zero. 	This solution, (8.6.12), is identical to (8.4.15). 	Hence the 

inviscid solution discussed in section 8.4 when F is given by (3,4.13), is 

also a solution of the full Navier-Stokes equations because the viscous 

stress terms are all identically zero. 

Case 3 

When we seek a separable solution of (8.6.6) of the form 

U = x exp 	G(t) , 	 (8.6.13) 
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we find that the function 0(t) must satisfy the equation 

G' (t) = (2A - 8 v X)G(t) + xG(t)A -2A), + 4y X2  

From (8.6.14),we see that 

2›),% = A 	and 	G(t) 
Gt(t)  _ 	x  

) 

When we integrate (8.6.15), we find that 

G(t) = B exp 5,,.-2Ati• 

(8,6.14) 

(8.6.15) 

(8.6.16) 

where B is an arbitrary constant. 	Hence, from 18.6.13) and (8.6.16), 

we have that 

ry 	= Br2exp -2At - (Ar2/2  1))1 . 	 (8.6,17) 

The vorticity components are 

LO :4 	 r exp -2At - (Ar2/2
2 

CO 	 0 	= 2B [1 - y) 	. G 	
A 
2 31 	7-  

(8.6.18) 

The solution, (8.6.17), satisfies the following conditions 

ve  -4 0 as r 	co when A > 0, for all t, 

(ii) v = 0 on r = 0 for all t, 

(iii) ye  = Br exp i-Ar /2,-,1 	when t = 0, which becomes JZ. r 

near the z-axis provided that B '1152 



8.8(a) 

8.8(b) 

FIG.8.8: 	Sketch of the vertical vorticity, 

= 2B(1-Art/2y )exp -A(r
2 
 4y t)/2 y 

when (a) A > 0, (b) A < 0, for B > 0 and for fixed values of t. 
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The variation of o 
	with r for fixed time is shown in Fig.8.8 for 

B > 0, which we may assume without loss of generality. 

THE GENERAL SOLUTION;  

We now return to a consideration of the general solution of (8.6.6). 

When we apply the Laplace transform, 

co 

= f1J e-Ptdt , 

to (8,6.6) and use the fact that 

co f au -pt , 
e a = U

o 
+ pri , 

where U
o is the value of -ry at t = 0, we find that 

pli + U = x 	?Ali + 'iv —a.°  I , 	 (8.6,19) o ax - 	 ax 

If we write U = uv, where u,v are some functions of r and t, the equation 

(8,6.19) becomes 

U
o 	= -puv + x 2A(uv` + u' v) + 4 y (uv" + 2u' v' + u" 	, 	(8.6.20) 

where prime represents differentiation with respect to x. 	In order that the 

terms involving v' wail we require that 

0 
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u = exp 	 . 	 (8.6.21) 

When we substitute (8.6.21) into (8.6.20), we find that 

V II , 	p 	A2 

" 	4 v x ""."---21] 
16 v 

0 (8.6.22) 
4vux 

IF we write 7 = (A./2v), (8.6.22) becomes 

p 
Uoexp .11 71 

1 v7,7  + v 	- 	 - 	
A. 

where U
o 

is, in general, a function of 

For the special case when U is zero, we have 

v 	+ v  -4-27  ir] = 0 , 

(8.6.23) 

(8,6.24) 

which is Whittaker's equation 05, p.337-1 	This equation, (8.6.24), 

has volutions 

v 	= 	exp -Ax,/4))} U,_
K m 

 (x,p) , 

where 	k = (-p/2A), m = . 

Hence the general solution of (8.6.19) for the case when Uo  G 

is 

= exp t-Ax/2 	
iM 

(4_
K 
 (x,p) . 	 (8,6.25) 

These solutions are, in general, very complicated and we will not pursue 

the discussion of this general solution. 



- 329 - 

We see, from (8.6.12) and (8.6.17) that for the special cases 2 

and 3, U is - 52- x and -Bx exp ..-Ac/2 v1* respectively, which are 

non-zero. 	We will now show that these special cases can be derived 

from the solutions of the equation (8.6.23). 

Firstly, we seek a solution of (3.6.23), with U
o = - 5Z x, of the 

form C7exp '7 ,  where C is a constant. Then we find that 

2  

A - 2A1 

and hence 

2v52 47  o 
A 	- 2A1 

which yields (8.6.12) when the inversion integral is evaluated. 

Secondly, we seek a solution of (8.6.23), with -00  = -Bx exp t-Ax/2),1 

of the form C..7 exp 14 73 , where C is a constant. Then we find that 

))  
C 	

2B  
A p+2A 

and hence 

Tj- _ 2B 	exp  

Atp + 2Ai 

which yields (8.6.17) when the inversion integral is evaluated. 	Hence we 

have shown that the special cases 2 and 3 can easily he derived from the 

general solution. 
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