AN INVESTIGATION INTO THE RELATIONSHTPS
 BETNEEN THE GEOMAGNETIC FIELD, COSMIC RAYS AND
 TRAPPED PARTICLES BY NEANS OF THE EARTH SATELLITE ARIEL I

THESIS
submitted by
ALASTAIR CHANTRY DURNEY
for the degree of
DOCTOR OF PHILOSOPHY
in tho
UNIVERSITY OF LONDON

April 1964

ABSTRACT

This thesis describes how the magnetic rigidity spectrum of primery cosmic rays with Z greater than or oqual to three in the rigidity interval between 2.5 and 16.0 GV . has been determined by means of a cerenkov counter carried in Ariel I. Thore is a clear change of slope in the spoctrum at 8.5 Gv and this is tentatively interpreted as the upper limit to the solar modulation at this time (Nay - June, 1962).

The characteristics of the detector allowed an analysis of tho effects of the 'Starfish' nucloar explosion. Evidenco has boen found for the redistribution of the goomagnetically trapped radiation in the region betweon $L=4.7$ and 3.2 oarth radii by an explosion-genorated hydromagnetic wave. After the explosion a shell of electrons was found centrod on $L=1.14$, continuously fed by the decay of fission fragments which remeined in the vicinity of the oxplosion. An artificial radiation belt was observed and electrons from fission fragment decay were found out as far as $L=5$ earth radii. At high I values the enorgy spoctrum of the artificial radiation bolt particles was softer than that of electrons from fission fragment decay. The 'swoeping' offect of the Earth's southern magnetic anomalies on tho lower edge of the artificial radiation belt is demonstrated and a short-lived docay mochanism was observed in action.

The arth satellite riel.
CONIENTS
Page
CHAPTER 1. Genoral Introduction. 6
CHAPTER 2. The Apparatus.
2.1 Experimentel Philosophy 11
2.2 Construction 17
2.3 Calibration 22
2.4 'In Flight' Porformance of the Apparatus 22
CHAPTER 3. The Environmental Testing.
3.1 Integration 30
3.2 Spin and Balance 31
3.3 Temporature Tests 31
3.4 Humidity Tost 31
3.5 Vibration Tests 32
3.6 Aceeleration Test 33
3.7 Shock Test 34
3.8 Thermal Vacuum Tests 34
3.9 Solar Aspect Test 35
3.10 Summary of the Prototype Tests 35
3.11 The Environmentel Testing of the Flight Units 36
CHAPTER 4. The Enorgy Spectrum of the Primary Cosmic Radiation.
4.1 Data Selection 39
4.2 Errors and Data Corrections 43
Page
CHAPTER 4. (continued)
4.3 Discussion of the Results 61
CHAFTER 5. The Geomagnotically Trapped Particles.
5.1 Introduction 65
5.2 The Exporimontal History 66
$5.3 \quad$ Origin 69
5.4 Artificial Radiation Belts 70
5.6 L-Values 72
CHAPTER 6. Tho Starfish Nuclaar Explosion and its Associatod
6.1 Introduction 78
6.2 A Sumary of the Explosion Quantitios 78
6.3 Outer Natural Radiation Belt Particles 80
6.4 The Johnston Island Sholl 91
6.5 The Artificial Radiation Belt 95
6.6 The Decay of the Artificial Radiation Bolt 100
6.7 Sumary 105
APPENDIX A. Corenkov Counter Saturation. 107
APPEIDIX B. Cerenkov Detector Geometry. 110
ACKNOWLEDGENENTS. 120
RJFERENCES. 122

CHAPTER 1

GENERAL INTRODUCTION

Work over the past two decades has shown that the sun exerts a profound influonce on both tho intensity and energy spectrum of the cosmic ray flux incident on the top of the earths' atmosphere. An eleven year cycle of intensity variation has been found and oorrelated with the sunspot cycle, sudden increases in the radiation intensity have been associated with solar flares, and many other examples of the sums' effects have been discovered. Models of the interplanetary fields and mechanisms whereby the cosmic ray intensities may be modulated by the sun have been propounded on the bssis of the experimental results. phe diversity of these models emphasize how little of this subject is known, but they do serve to illustrate that more information regarding the strengths and direotions of the magnetic fields in interplanetary space and accurate knowledge of the energy dependence of the modulation process are required before details of the true mechanisms can be exposed.

The technique of making messurements from probes and earth satellites has proved to be a very powerful tool for investigating the near envirorment of the earth in space. During the past six years an unexpected picture of the earths" magnetosphere and its assooiated phenomena has begun to be assembled from pieces of information gleaned by the se methods (eg. Parker 1962, Gold 1962.). It is to be expected that in the near future some information about limited parts of the interplanet-
ary magnetic and electric fields will be gained by direct moasurements made from space probes, indeed these have already begun (eg. Pioneer V and Mariner II). However the only method available at present for studym ing the large-soale configuration of the interplanetary field is to observe its offect on the numbers and energies of primary cosmic rays. For satisfactory results, these observations should be made over a long period of time.

At first sight, this condition would seem to be satisfied by ground-based detectors, numbers of which have been operated continuously for several years. Unfortunately these detectors can only measure the secondary particles produced by tho interaction of the primary radiation and the atmosphere. The yield of secondary partioles varies with the energy of the primary ray so ground-based detectors cannot measure the energy spectrum of the primary radiation without knowledge of the yield functions. The yield functions in turn cannot be calculated because of lack of knowledge of the interaction processes; yield functions obtained from empirical data have so far only achieved a limited accuracy (eg. Webber and Quenby 1959). For these reasons ground-based detectors are unsuitable for making accurate measurements of the primary cosmic ray spectrum.

The problem of yield functions may be overcome by using deteotors carried by balloons. The lifetime of these is only a few hours, but numerous individual measurements of the primary spectrum have been made using belloons flown at pressures of $10 \mathrm{gm} / \mathrm{cm}^{2}$ or less. However, statistical and experimental limitations have resulted in a low accuracy of
results and in an almost complete lack of empirical information concerning the time variations of nuclei heavier than alpha particles. These heavy nuclei are likely to provide the most accurate measurements of the primary spectrum since the proton and alpha particle flux measurements are contaminated by secondary processes and by particles thrown out of the sum.

All these difficulties may be overoome by using a heavy nuclei detector flown in a satellite. This instrument would be able to monitor the primary radiation directly, and would be expected to operate for several months. If another detector wes flown at aeroplane altitudes during the lifetime of this detector, the yield functions could be calculated and the measurements continued after the satellite instrument had ceased to function. Thus long-term changes in the spectrum could be detected. This extension of the experiment is besod on the assumption that the energy spectrum for primary protons and alpha particles is not different from that of the heavier nuclei.

It has been known for some time that the earth acts as a magnetic spectrometer; particles with lower rigidities are excluded from regions of the earths' surface nearer to the equator. Both the aeroplane and satellite instruments would use this effect to measure the different energies (rigidities) of the primary rays. The rigidity thresholds at different lattitudes and longitudes have been oalculated by several investigators. The most accurate, worldwide results available at present are the vertical, sea level threshold rigidities calculated by Quenby and Wenk (1962) for all lattitudes lower than 70 degrees. The aocuraoy of
of these threshold rigidities, when adjusted to satellite conditions, is the factor which limits the accuracy of the experiment at present. It is hoped in turn that the accuracy of the threshold rigidities may be improved by using the results of the satellite and aeroplane surveys.

In addition to its ability to monitor the primary radiation direct-ly over comparatively long periods of time, a satellite instrument has the potential to make fast measurements of the primery spectrum. This arises because a satellite scans its complete range of latitudes four times every orbit, and so the range of threshold rigidities is completely swept about every half hour. If the counting rates were large enough this would enable spectral time variations of only a few hours to be detected. Unfortunately, no such time variations were observed during the lifetime of our satellite instrument, also the counting rate was probably too low to have detected any changos other than extremely large ones.

The data from the instrument which was conceived on the basis of the above arguments and was flown in Ariel I are still being analysed. This thesis is concerned with a preliminary estimation of the quiet period cosmic ray primary speotrum and a detailed analysis of the Starfish high altitude nuclear explosion as seon by our instruments. As the cerenkov unit could detect the presence of large numbers of electrons with energies greater than about 2.5 MeV , and since our instrument package included a geiger counter, the examination of the artificial radiation has yielded more results than might be expected from a device designed to investigate only the heavy primary radiation. The estimation of the primary spectrum is more accurate then those previously obtained by
other experimenters in this field (Pomerantz and Witten, 1962; Kurnosova, Logaohev, Razorenov and Fradkin, 1962).

CHAPIER 2

THE APPaRATUS

2.1 Experimentol Philosophy:

The objest of this oxperiment was to measure the primery cosmic ray flux at difforent geomagnstic ladtitudes. The measurements wore to be conteminated with the least possible numbers of natural radiation belt particles, albedo particlos, and solar acceloratod particles.

In ordor to achievo this, a corenkov dotector was designed as is shown in figure 2. The cerenkov material (perspex was chosen for its low scintillation property) was in the form of a thin, hollow sphere, four inches in diameter and coated with a white diffusing paint on the outside so that it acted as its own light integrating sphere. Bursts of light produced by relativistic particles in the 3 mm . thick perspex were detected by a photomultiplier, type Vifl $11 / 44 \mathrm{R}$, made by 20 th Century Electronics Ltd. The photocathode of this photomultiplier fitted into a two inch diamoter holo in the side of the sphere. The olectrical pulses so produced at the photomultiplier anode wore passed through an impodance transformer and e variable attonuator into a discriminator (see figure 3). When one of these pulses was large enough to fire the discriminator, the latter passed a pulso through a gato into an 8 -binary store. The contents of this store were examined every 2.56 seconds by a 'high speod oncoder', the information then being telemetred diractly to the ground. Every 30.72 seconds tho store was examined by

Figure 2

Section Through the Cosmic Ray Analyzer

Fizure 3.

a. 'low speed encoder which transforred this information to a tape rocorder, For the duration of this lattor examination (1,92 seconds) the gate between the discriminetor and the store was closed in order to prevent the store contents changing. The tape recorder could be played back at 48 times the recording speed by a comand signal transmitted from the ground, Thus data obtained over a period of 100 minutes (the timo equivalent to the sapacity of the tape recorder) could be collected in just over two minutes by one trecking station. As this 100 minutos represented one complete orbit, this enabled the oxperimenters to recover 70% of the available data between the launch and July 12th. For some periods 90% data rocovery was achieved.

By using a cerenkov detoctor, it was hoped to eliminate all nonrelativistic radiation from the masuroments. The relativistic components of the natural radiation bolts and of albedo have negligible numbers of particles with chargos greator than two. Furthermore, the proportion of singly and doubly charged particles in the total flux of solar-accelerated particles is groater than for cosmic rays in goneral (Biswas et al., 1962). Sinco coronkov light produced by a particlo is proportional to Z^{2} where Z is tho charge on the particlo, it is possiblo to set the dicriminator level so that particlos with a charge of 2 or less are not detected. In this way contamination by albodo and radiation belt particles is climinated and that from solar-accelcrated particles considerably reduced. Therefore the genuine cosmic ray flux may be measured free from serious contamination if the roduction in counting rate can be tolorated. The detector was designed to have a
large area ($80 \mathrm{~cm}^{2}$) and to te sensitive to particles arriving from as large a solid angle es possible in order to counteract this disedvanto age, By means of the large solid angle it was hoped also to reduce counting rate variations due to the difforent oriontations of the dotoctm or with respect to the Earth. In practice, the limitations to the solid arglo were set by the positions of tho olectronic packeges in tho body of the satellito. The unit wes mounted on tho spin axis of the satellite so that the oriontation of its sensitive solid angle would be indepondent of the spin.

Instead of rojocting only all thoso particlos with chargos of two or less, the instrument was designed so that the discrimination level could be doubled from time to time, thus rojecting a. slightly larger range of particles. This was done simply by arranging that a ninth binary added on to the cerenkov store should vary the attonuation botwoen the photomultiplier and the discriminator. Thus the sensitivity changed every 256th count. This addition was made in order to provide some form of oheck on the system; if tho spoctra computed from the two different levels of sensitivity agroo, then it is reasonable to say that the spectrum does not depend on the gain of the apparatus.

On the unit flown, the ratio of the pulso heights required to fire the discriminator on the soperate sensitivities was 1.83 ∓ 0.05. However, owing to the poor geomotry of the system, the rejection of particles did not occur at single discreto levels. The problom of determining the efficiences of the system for various nuclei is extremely complex, but the table in figure 37 has been constructed from
the caliy ation data and the abundence spectrum of tho primary cosmic radiation (Waddington, 1961), and gives an approximato idea of the numbers involved, Figure 37 and details of the calculation are to be found in Appendix B.

Since tho particle populations in the radiation bolts are very high, it would have been optimistic indoed to expect them to have no effect whatsocver on tho cerenkov detector. For this reason a small geiger counter was included in the instrument package so that the rediation belts could be detected. By moans of an integrating dovico the goiger counter was arranged to cut off at counting ratos greator then about 80 counts per second. This was dono to safeguard the voltage applied to the photomultiplier which was operated from the same high tonsion supply as the geigor countor, and to prevent possiblo ambiguities arising because of the geiger store being filled more than once in between low speed encoder semples. The geiger counter used was an Anton 302 with 1 mm . of lead shielding. The minimum total shielding was as follows;

Aluminium	$1.01 \mathrm{gm} / \mathrm{cm}^{2}$,
Eccofoam	$0.73 \mathrm{gm} / \mathrm{cm}^{2}$,
Load	$1.13 \mathrm{gm} / \mathrm{cm}^{2}$,
Iron	$0.4 \mathrm{gm} / \mathrm{cm}^{2}$.

This gives a total of $3.27 \mathrm{gm} / \mathrm{cm}^{2}$ which allows a 10% probability of penetration for 7.4 MeV olectrons or a 50% penetration probability for 10.5 Mov electrons. By using a proton accelerator it has boon found that the ponotration threshold for protons is about 43 Mev . Tho geomot-
rical far:ur of the countor is 0.6 . it has an officiency of 0.3% for γ photons and an erficiency of 80% for fast olectrons and cosmic rays. For electrons detected by means of the bremsstrahlung thoy produce in the aluminizen singll of the unit, the overall efficiency has an upper limit of 0.001% (besed on figures given by 0^{\prime} Brion ot alii, 1961). From this it may be calculated that ono count per sampling intorval is equivelent to the following flux;

$$
0.08 \text { olectrons } / \mathrm{cm}^{2} / \text { second, (by direct penetration) }
$$

ur 20γ rays $/ \mathrm{cm}^{2} /$ second,
or 6×10^{3} electrons $/ \mathrm{cm}^{2} /$ second (bromsstrahlung, lower limit).

Noto that tho actual timo available for counting during a 30.72 second intorval was only 26.88 seconds owing to the 3.84 socond gating pulse of the goigor channel.
2.2 Construction.

McMichael Radio Ltd. of Slough built two prototype units and three flight units to our specifications. The mechanical construction of the unit and its position in tho satollite may bo understood by examining figures 4, 5, 6 and 7. The mass of the completed units including the eccofoem was $2,410 \mathrm{gm}$. The powor consumption was ll milliamperes at -6.6 volts and 18 milliampores at -9 volts. The operating temperaturo limits were $60^{\circ} \mathrm{C}$ and $-15^{\circ} \mathrm{C}$.

Details of the olectronic circuits wero given by Elliot, Quenby, Mayne and Durney, 1961.

n xploned Ther of the comic ay trit.

INTERNATIONAL IONOSPHERE SATELLITE

A. 1 -mesor scintillator telescope was used to measure the rosponse of the corenkov cetector to singly-charged particles passing through tho photorivitipiior face and through the centre portion of the sphere. The discriminator was then set so that about 5% or less of the doublym chargod particles passing normally through the glass face would be detected. The apparatus was tomperature cycled to determine its over-all change of sonsitivity with tomporaturo and a thermistor was insertod in the discriminator to eliminate tho first order term of this.

Calibration of the geiger countor consistod of first setting the maximum counting rate of tho device to be about 100 per second, then its response to standara sources placed in certain set positions around the unit was noted. This laboratory calibration has beon combined with an 'in flight' calibration to give the curve in figure 8. The 'in flight' calibration was derivod from the ratio of goiger to coronkov counting ratos, making tho assumption that tho coronkov counting rato was linoarily proportional to tho radiation intensity at the geigor counter. This assumption is reasonable so long as tho energy spectrum of the particles remains approximatoly constant.
2.4 The 'In Flight' Porformanco of the Apparatus.

The original intention was to test the dosign of the corenkov detoctor by mounting pre-prototype units on Black Knight rockets to be firod on ballistic trajectories at Woomara, Australia. However, owing to telemetry and vehicle malfunctions no usoful data were obtained from

Figure 8
Geiger Counter Characteristic
on July 90. 1962 .

tho firs: two fights. Tho third flight was made after the launching of the satellito and so the basic physics of the design wore first tostod by the satellite smit itsolf. Thero was therefore no possibility of making modifisow to the satollite unit to correct any faults which might have bion disccvored on tho proving flights. Fortunatoly the instrument behaved mueh as oxpectind.

At 1800.00 KNes UT. on the 26th of April 1962, Ariol I was launchod into an orbit with an inclination of 54 degroes, a perigee of 395 km . and an apogec of 1215 kr . The launch was not perfoct as the following paragraphs will explain.

The spin rates of tho satellite were monitored during injection so that any mishaps which occured at this crucial phase of tho launch could be detected. This was done by placing an aspoct sensor (designod by the University Collego team) on the dutchman connocting the spacecraft to tho Bell X 248 third stage motor, and stationing a ship underneath tho point of injection to pick up tho directly telometred signals from this.

The injoction procedure should have been as follows: release of the 'stretch yoyo' to roduce the spin rate, reloaso of the booms to allow their eroction by contrifugal force, release of the solar paddles to allow their orection, and finally soperation of the spacocraft from the third stage motor. The booms and solar paddles of the spacecraft were strappod down to the body of the motor prior to thoir release. Analysis of the signals picked up by the ship gave spin rates
that were only possible if the booms and paddes were reloased before the stretch yoyo, presumeably because of the burning of the straps or premature explosion of their catches caused by the heat of the burning solid fuel on the other side of the fiberglass motor case. Fortunately none of the booms or soler paddles appoar to have been snapped off by the groater centrifugal forces and the final spin rate was very noar the design figure. Whethor the yoyo bocame ontanglod with any of the booms or paddles is a matter for speculation. Howover this haplazard orection did cause the attitude of the spacecraft after injection to be difforent from the intonded one. This in turn upset the carefully calculated hoat balance of the satellite, but the offects of this woro not immodiatoly obvious.

Soon aftor launch it was apparent that the cerenkov detector was slightly sensitivo to inner bolt particlos. By oporating a sparo Cosmic Ray unit in the beam of the proton accelerator at Harwoll, Berkshire, it was proved that this wes due to scintillation light produced by protons travelling sideways through the glass face of the photomultiplier. Otherwise, the cerenkov unit behaved corroctly until May l8th when the satellito moved into a 100% sunlight orbit. The combination of the wrong attitude and the one hundred percent sunlight orbit probably raisod the temperaturo of the Cosmic Ray unit above the design maximum of $60^{\circ} \mathrm{C}$. Migration of tho photomultiplier photocathode was greatly spooded up, with a consequent docrease in gain. This phenomonon was also observed during pre-prototype tosts above $60^{\circ} \mathrm{C}$. The effect of this is shown in figure 9 whore the gain is represented by tho avorage

Figure. 9

daily counting rate of the cerenkov detoctor for regions where tho cutof rigidity is less than 5 GV . The correlation of these curves with the temporature curve and the curve roprosenting tho porcontago of sunlight per orbit is illustratod in figure 10. It should be notod that the temperatures shown are those of tho centre of the satellite. Tho actual tomperatures of tho Cosmic Rey unit would be different from these, although the directions of tho tomperature changes would bo the seme. The gain changes were small after June 4th and the counter worked normally until 0800 hours UT. on July 9th when the 'Starfish' nuclear explosion took placo. This decroaso in gain has been used in the correction of the counting rates necossary because of tho variation in the intensity of the coronkov light for particles with volocitios closo to tho relativistic limit in the porspox (section 4.2.1.) .

A large amount of fission electrons wore reloasod by tho Starfish nuclear explosion. Considorable numbers of those were able to ponetrate tho wall of the corenkov detoctor. Although tho light from thom could not triggor the discriminator, in somo regions the particle flux was large onough to be able to inereaso the photomultiplier dark curront to such an extent that the high tension voltage supply was ovorloadod. Thus the gain was roduced occasionally and somotimes the counting rate bocamo negligible. This effect was not observed before the Starfish explosion. It has been possible to use this phenomenon (soe sections 5.2 .1 to 5.2.5 inclusive) since estimates of the reduction in gain give some idoa of the numbers of electrons prosent with sufficient onergy to ponotrate tho dotector. Assuming that the minimum onorgy olectrons

Figure. 10

which have any effect are those which produce light in only one side of the sphore, then the shiolding is offectivoly a minimum of;

$0.4 \mathrm{gm} / \mathrm{cm}^{2}$	aluminium,
$0.1 \mathrm{gm} / \mathrm{cm}^{2}$	occofoam,
$0.3 \mathrm{gm} / \mathrm{cm}^{2}$	perspex.

This gives a total of $0.8 \mathrm{gm} / \mathrm{cm}^{2}$ which has a 50% probability of being penetrated by a 2.4 Mev electron. An estimato has been made in Appendix A of tho numbers of electrons roquired to roduce the gain by an ordor of magnitude.

From April 26 th until July 12th the geiger countor operetod correctly, but with a slowly decreasing upper limit to the counting rate. After July l2th the oporation of Ariel I bocame intermittont owing to the detorioration of tho solar batteries, and as a rosult the satellite tape recorder failed in mid-August. At the beginning of Soptombor tho goigor countor coascd to function, presumaably due to a transistor failure; tho ceronkov detoctor coasod to operato in mid-December.

CHAPTER 3

THE ENVIRONMENTAL TESTING

In addition to the design considerations sot by the physics of the experiment, several severe practicel requirements wero necessary for apparatus which was to bo flown in a satollite. The unit had to bo oconomical in its use of power, it had to be light, compact, capable of operating for a yoar without failure, and finally it had to bo oapablo of withstanding the prototype satollite onvironmental tests without damage. Those environmental tests were dosignod to show whothor tho satellito was capable of surviving the promlaunch, launch and orbiting strains. Any of the prototype parts which failod any of these tosts were modified until they could pass thom, and those modifications were incorporatod in the flight units. The tosts were carriod out at the Goddard Space Flight Centor, Meryland. Tho procoduro and specifications are shown below and are the normal ones for apparatus to be launchod by a multistago rockot from Capo Canavoral, the last stago being a Boll X 248 solid fuol motor.

3.1 Intogration.

The prototype sub-assemblios wero first mechanically integrated to oliminato fitting probloms. They wero then olectrically integrated to ensure electrical compatability between units and absence of intorforence. The electrical intogration included temporature cycling betweon
$-15^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ to saarch for design problems that may havo occurrod at tomporatures othor than ambiont.
3.2 Spin and Balanco Test.

Tha spacecraft wes belanced both statically and dynamicelly about its spin axisa It was then operatod whilst spinning for:

1 minuto et 225 rpm , 30 minutes at 150 rpm .

3.3 Temperature Tests.

These tests were as follows:

1. The payload (non-operating) was subjected to $-30^{\circ} \mathrm{C}$ for 6 hours.
2. Tho payload (non-oporating) was subjectod to $60^{\circ} \mathrm{C}$ for 6 hours.
3. Tho tomporaturo was stabilisod at $5^{\circ} \mathrm{C}$, the payload was thon switchod on and tostod.
4. The tomporature was stabilised at $-10^{\circ} \mathrm{C}$, the payload was then switchod on and tested.
5. The temperature was stabilisod at $50^{\circ} \mathrm{C}$, the payload was then switohed on and tested.

Betweon each of the above tosts the payload was tosted at room tompterature.
3.4 Humidity Test.

Tho payload was oxposed to 95% relative humidity at a temparature of $30^{\circ} \mathrm{C}$ for 24 hours and was switchod on and tostod whilst still under
thoso conditions. It was then allowed to dry out whilst the porformanco was carefully monitored. Finally the spacocraft wes testod at room tomperature.

This tost was intended to check whothor permanent damago would bo done to tho satollite if it was stored undor those conditions at any time.
3.5 Vibration Tests.

Thesc were carriod out in the following order:
Thrust Axis Test (tall fixture).

1. $10-50 \mathrm{cps}$ at 2.3 g $50-250$ cps at 21 g
2. Random, $20-250 \mathrm{cps}$ at $11.5 \mathrm{~g}(0.07 \mathrm{~g} / \mathrm{cps})$ for 4 minutos. Thrust Axis Test (short fixturo).
3. $250-500 \mathrm{cps}$ at 10.7 g

500-2000 cps at 21 g
2000-3000 ops at 54 g
4. Random, $250-2000 \mathrm{cps}$ at $11.5 \mathrm{~g}\left(0.07 \mathrm{~g}^{2} / \mathrm{cps}\right)$ for 4 minutos. Transverso Axis Test (tall fixturo) X - X diroction.
5. $10-50 \mathrm{cps}$ at 0.9 g , also $50-150 \mathrm{ops}$ at 2.1 g .
6. Random, $20-150 \mathrm{cps}$ at $11.5 \mathrm{~g}(0.07 \mathrm{~g} / \mathrm{ops})$ for 4 minutos.
7. Resonance dwoll, $\frac{7}{3}$ minute swoep, $550-650$ cps at 4.2 g . Transverse Axis Test, Y - Y direction (tall fixture).
8. $10-50 \mathrm{cps}$ at 0.9 g 50-150 ops at 2.1 g
9. Random, $20-150 \mathrm{cps}$ at $11.5 \mathrm{~g}\left(0.07 \mathrm{~g}^{2} / \mathrm{cps}\right)$ for 4 minutos.
10. Resonence dwell, $\frac{7}{2}$ minute sweep, $550-650$ cps at 4.2 g Transverse Axis Test, Y - Y direction (short fixture).
11. $150-500 \mathrm{cps}$ at 2.1 g $500-2000 \mathrm{cps}$ at 4.2 g
12. Random, $150-2000 \mathrm{cps}$ at $11.5 \mathrm{~g}(0.07 \mathrm{~g} / \mathrm{cps})$ for 4 minutos.
13. Resonance dwoll, $\frac{1}{2}$ minute sweep, $550-650$ ops at 4.2 g . Transverse Axis Test, X - X direction (short fixturo).
14. $150-500 \mathrm{cps}$ at 2.1 g
$500-2000 \mathrm{cps}$ at 4.2 g
15. Random, $150-2000 \mathrm{cps}$ at $11.5 \mathrm{~g}(0.07 \mathrm{~g} / \mathrm{cps})$ for 4 minutes.
16. Resonance dwell, 妾 minute swoep, 550-650 ops at 4.2 g .

All frequency sroeps wore logerithmic.
All frequency swoops except tho rosonance dwells were at the rate of two octaves per minute

The tall fixture was used to simulate the third stage rocket motor and allow the various booms and paddles to bo attachod in thoir foldod positions.

The short fixture was used at higher frequencies bocause of the attonuation in tho tall fixture at the so froquancios.

The acceloration valuas shown horo wore those applied by the machines at tho baso of the fixturos.

[^0]Tho space craft was subjectod to a stoady thrust axis acceloration of 25 g for 5 minutes.

3.7 Shock Test.

The spacecraft was subjectod to a half sine wave pulse of 30 g peak amplitudo and ll milliseconds duration. This was intended to simulate tho shock duo to the lighting of the boostor.

3.8 Thermal Vacuum Tosts.

The programe for thoso was as follows:

Vacuum oporation.

Tho spacecraft was operated as pressuro in tho test chamber was reduced to $3 \times 10^{-6} \mathrm{~mm} H \mathrm{~g}$, tho limit of the capability of the systom. This oporation took about 12 hours for complotion.

Cold Vacuum Soak.

The chamber was evacuatod, stabilisod at a temperature of $-10^{\circ} \mathrm{C}$, then the spacecraft was switchod on and operatod at this tomperature for 7 days, a complete check of the systom being porformod evory 12 hours.

Hot Vecuum Soak.

The chamber was ovacuated, stabilised at a temporature of $55^{\circ} \mathrm{C}$, thon the spacceraft was switchod on and oparated at this tomporature for 3 days, completo tests being performod evory 12 hours.

The spacocraft was tostod at ambient temporature and prossuro boforo and after oach of tho above oporations.

3.9 Solar Aspoct Tost.

This consisted of operating the spececraft in vacum, illuminated by a ring of tungsten filament hoat lamps with the walls of the chamber maintained at a tomperature of $-60^{\circ} \mathrm{C}$. The lamps were first operated in a ring reprosenting an angle of 30 degrees betweon tho forward spin axis and the satollite-sun line, thon in a ring represonting an anglo of 135 degrees betweon the same two linos. Tho rings of lamps were intonded to simulate tho sun as soen from a rovolving satellito. Tho tomporaturos of tho various units wore monitored during those tests. This was a fairly crude attompt to produco tho tomperaturo gradients that would actually be exporioncod in tho satollito during oporation in orbit.
3.10 Summary of the Prototypo Tests.

Owing to the amount of trouble that is generally experioncod during those tests, only very rough ostimates can be made of tho time required to complete thom. The tests on Ariel I lasted six months. A list of the problems experienced in the se six months is given below.

Tomperature and Humidity Tosts.
Sub-assembly dosign probloms1

Componont failures (oxcluding connectors) I
Wiring harness failures (including connectors) 0
Faulty assombly failures 3
Test equipmont failures 4
Total: 9
Vibration, Accoleration and Shock Tests.
Sub-assembly design problems 5
Component failures (oxcluding connoctors) 6
Wiring harness failures (including connectors) 5
Faulty assembly failures 1
Test equipment failures 1
Total: $\overline{78}$
Thermal Vacuum and Aspect Tests.
Sub-assombly design problems 8
Componont failures (excluding connoctors) 13
Wiring harness failures (including connectors) $3+$
Faulty assombly failuros 6
Tost equipmont failures 7
Total: $\overline{37}$

Components which failed due to design problems have not been
included in these lists. Note the largo number of component failuras
which occurrod during the thermal vacuum tests. Owing to the rolatively
large amount of trouble causod by the prototype wiring harness, this
was redosigned for the flight units.

3.11 Environmental Testing of the Flight Units.

These tosts wero not so severo as those carriod out on tho prototypo, nor were the humidity or solar aspect tosts made.

The temperature test consistod of 24 hours at $35^{\circ} \mathrm{C}$, and another 24 hours at $-10^{\circ} \mathrm{C}$.

Tho samo frequency ranges wore used as in the prototype vibration tosts, but the accolerations wero reducod to $2 / 3$ of tho prototype levels.

The hot and cold thermal vacuum tosts ware limited to two days oach, the temperatures being $35^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ respoctively.

The estimated time for the environmental testing of the flight units was built up as shown below. Time for trouble shooting has been allowed in these figures.

Component collection	1 day
Spacecraft assembly and turn-on	3 days
Spacecraft testing and initial removal of troubles 4 days	
Calibration of analog experiments	5 days
Setting up for temperature test	3 days
Temperature test	1 day
Preperation for vibration ('loctiting' etc.)	3 days
Initial balancing of the payload	4 days
Vibration tests	5 days
Setting up for thermal vacuum test	1 day
Thermal vacuum test	9 days
Antennae pattern measurement	5 days
Final calibration of analog experiments	6 days

Final belancing of the payload

6 days
Total: 56 days

In practice, difficulties were experienced with each payload which added on about half as many days again to the total given above. After the vibration tests only minor modifications could be made to the spacecraft, for dismantling and re-assembly would have made revibration necessary. This was undesireable, since each vibration test increases the chance of the tested structure failing due to fatigue.

The flight units were transferred to Cape Canaveral by road when they were completely ready. There they were tested to ensure they were still in perfect operating condition, Flight unit I was attached to the third stage motor, then the complete assembly was spun and balanced to align the centres of gravity and inertia with the spin axis. This operation required five days. The third stage assembly was then hoisted up the launching gantry and placed on top of the second stage. In order that the vehicle preparations could be made in time, the latest this could be done was 4 days before launch. A complete practice countdown was performod the day before launch.

The first launch attempt was abortive owing to a faulty second stage which started to show signs of trouble at T - 6 minutes (April 10th). The satellite was not operated between this date and the next count-down practice which was performed on April 25th.

The satellite was successfully launched on April 26th, 1962.

CHAPTER 4

THE ENERGY SPECTRUM OF THH PRMARY COSMIC RADIATION

The information from the cerenkov detector in the satellite was received in the form of store samples, ie. the number of counts contained in the store at intervals of 30.72 seconds. These numbers have been differenced to give counting rates, and were correlated with the real time of the sample, the geographic position of the satellite, QuenbyWenk vertical threshold rigidities, the scalar magnitude of the magnetic field and L values. This work was done with the aid of an IBM 7090 computer. The important quantities in the following discussion in addition to the counting rates, are the altitudes and the Quenby-Wenk figures.

4.1 Data Selection.

This first analysis was carried out on the results for about 600 orbits which were available for the period between the 26th April and the 9th July, 1962. Twenty-four percent of these data were unuseable because they were collected betweon May l8th and June 4th during which time the sensitivity of the cerenkov counter was changing.

By using the geiger counter results, cerenkov data oollected in the inner belt were picked out and rejected because of the sensitivity of the latter counter to the inner radiation belt protons. The maximum geiger counting rates which may be expected from the cosmic radiation are shown by the curve in figure 11. Counting rates greater than these

Figure. 11

indicate that the satellite was passing through a region containing trapped particles. From figure ll, it can be seen that the absolute maximum geiger counting rate which will be tolerated without rejection of the data is 150 counts per interval. In figure 12 is shown the area occupied by cosmic ray counts in a geiger-cerenkov ratio diagram and also part of the curve on which the points for the counting rates lie when the instrument is passing through the inner belt (cosmio ray counts have been subtracted from the data to make this curve). It should be clear that even if all 150 geiger counts per interval are due to radiation belt particles, then the conteminated cerenkov rate cannot exceed 1.5 counts per interval, which is small when compared with the average cosmic ray counting rate. In practice no radiation belt peaks were observed in the geiger counting rates in regions where the threshold rigidity is less than 5 GV , so this means the geiger counting rate caused by radiation belt partioles could not have exceeded 90 counts por interval. This places an even tighter restriction on the possible contamination of the cerenkov counting rates. Thus this method of detecting trapping regions is sensitive to radiation intensities well below those at which the trapped particle contribution to the cerenkov counting rates becomes appreciable.

For the time during which data were collected, the attitude of the satellite was such that the shadowing effect of the Earth on the cerenkov detector was greator at increased altitudes (see section 4.2 .3). The data fall naturally into two homogenoous groups; that collected by the satellite at altitudes greater than 800 km where the average

Figure. 12

Earth's shadowing effect is large, and that collected at altitudes less than 800 km where the average Earth's shadowing effect is relatively small. Both groups contain results which extend over the entire range of the threshold rigidities scanned by the satellite. Only the group containing data obtained below 800 km has been used in this preliminary analysis in order to keep the Barth's shadowing effect to a minimum and because of the groater uncertainty in the threshold rigidities as the Quenby-Wenk figures are extended to greater altitudes. This restriction of the data also minimises the altitude effect on the counting rates and reduced the work necessary to remove the Van Allen radiation contribution to the counting rate. The percentage of this contribution was larger above 800 km .

4.2 Errors and Data Corrections.

The chosen group of results was used to plot the ourves in figure 13. The open circles represent the mean counting rates between April 26th and May 18th, the filled circles represent the mean counting rates between June 4th and July 9th. It so happened that the gain of the unattenuated level after the change in sensitivity was nearly equal to the gain of the attenuated lovel before the change. By making use of this it is possible to draw the gain versus counting rate curves as in figure 14. The corrections considered for these results are listed below in the order of their importence.
4.2.1 The Fall-Off in Cerenkov Light for Slow Particlos.

From Frank and Tamn's classical theory of the ceronkov radiation

Figure. 13

Figure . It

(1937):

$$
N=2 \pi a d\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) \quad\left(1-1 / \beta^{2} n^{2}\right)
$$

where $N=$ number of photons yielded in the spectral range λ_{1} to λ_{2},

$$
\begin{aligned}
& a=\text { fins structure constant }=\theta^{2} / \text { he }=1 / 137, \\
& \beta=v / e \text { where } v \text { is the particle velocity, } \\
& n=\text { refrective index of the substance traversed by the }
\end{aligned}
$$

particle,

$$
\mathrm{d}=\text { path length of the particle. }
$$

From this it can be seen that N is proportional to (1-1/ $\beta^{2} n^{2}$). Thus particles near to the cerenkov limit of the perspex will produce less light than the faster ones, for which $\beta \rightarrow$. Since the velocity of a particle increases monotonically with its rigidity, this moans that the gain of the detector is effectively less for particles of lower rigidity. Obviously this will introduce a systematic error which could lead to an underestimation of the counting rates at low rigidities. This error may be eliminated if it is possible to find the value of the factor $\left(1-1 / n^{2}\right) /\left(1-1 / \beta^{2} n^{2}\right)$ by which the gain must be multiplied to bring it to the value for which $\beta \rightarrow 1$, and from the counting rate versus gain curves, obtain the equivalent counting rate for the corrected gain. To do this we must know β for the various rigidities.

Now the rigidity of a relativistic particle is defined by the expression:

$$
R=m c^{2} \beta / 2 \theta\left(1-\beta^{2}\right)^{\frac{1}{2}}
$$

where m is the rest mass of the particle and $Z \theta$ is its charge. For
primary coomic rays other then protons, the specific charges are closo to two, therefore the torm $\mathrm{me}^{2} / \mathrm{Ze}$ is approximately constant and equal to 1.9 Gv. Thus the value of β for each rigidity may be found from this expression and the gain factor calculated. In figure 14 the counting rate - gain curves are shown for rigidities which have valuos of $\left(1-1 / n^{2}\right) /\left(1-1 / n^{2} \beta^{2}\right)$ greater than 1.05. The corrected counting rates may be read directly from these curves except for rigidities of 1.8 Gv and less for which the correction factors were equal to 7 or greater, and so are outside the range of the curves.

When this correction is completed, the probable error in the counting rate depends on the deviation of the actual counting rate gain curves from the straight lines which have been fitted to the available experimental points. This is hard to estimate, but the error is certainly less than the orrors produced by the effects which are discussed in the following soction.

4.2.2 Threshold Rigidity Corrections

The Quenby-Wenk threshold rigidities are calculated for vertically incident particles at soa level. The satellite results which wore usod were obtained at a mean height of 600 km , using a detector with a wide solid angle of acceptance. At low lattitudes the effective threshold rigidities for a wide angle detotor must be different to the vertical threshold rigidities since there is a large variation in threshold rigidity with zenith angle. At higher lattitudes the vertical thresholde will be closer to the effective threshold rigidities for the detector
since according to Stormer theory this east-west effect is not so marked; When the verticel threshold rigidity falls to zero the effective threshold for our detootor must be the same (Lemaitre and Vallarta, 1933). Now the effective threshold rigidity of the detector may be defined as the rigidity value at that sharp cut-off in the primary cosmic ray spectrum which would produce the same counting rate in the detector as that actually observed. When the blocking of the sensitive solid angle of the detector by the earth is a minimu, particles will be received from a solid angle of roughly 2π. This is almost the same situation as that of an observer on the Earth's surface, assuming there is no atmosphere. Thus if we cen discover the effective threshold for the observer on the Earth's surfece, it is only necessary to adjust this to 600 km . above ssa level to find the effective threshold for our detector. In calculating this effective threshold rigidity, the allowed and forbidden directions of the particles inoident on the Earth must be taken into account. It is found that particles can arrive from a cone of angles, outside of which all directions are forbidden. This is known as the Stormer cone. The Stormer cone may be divided into three sections, the main cone, the shadow cone and the penumbra. Particles can arrive from all directions inside the main cone, they cannot arrive from any direction inside the shadow cone because their curving trajectories intersect the Earth's surface before they reach the observer. The penumbra is a region where some directions are allowed and some are forbidden. The calculation of the Stormer cone is fainly simple, the calculation of the main, shadow and penumbral cones is complex. Since a large error
arises in adjusting the effective threshold rigidity to the satellite altitude, it is not worthwhile to calculate the effectivo thresholds accurately for the Earthis surface at this stage. As a first approximation, therefore, the effective threshold at the equator may be calculated and those for other geomagnotic lattitudes obtained by using the expression:

$$
\begin{aligned}
& R_{e f f} \text { (sea level) }=R_{q}+R_{q}^{2}\left(R_{1}-R_{2}\right) / R_{2}^{2} \\
& R_{\text {eff }} \text { (sea level) }=\text { the effective threshold rigidity at sea level, } \\
& R_{q}=\text { the Quenby-Wenk threshold rigidity, } \\
& R_{1}=\text { the effective threshold rigidity at the equator, } \\
& R_{2}=\text { the Quenbymenk threshold rigidity at the }
\end{aligned}
$$

equator.
This expression gives the correction from vertical to effective threshold rigidity as a second order term, ensuring that the correction falls off quickly as we move away from the equator. This is necessary since the difference between the rigidities of the highest energy particle and the lowest enorgy particle to reach the obsorvor falls quickly with increasing lattitude, and in some way this difference must be proportional to the correction factor.

At the equator the penumbral effect is negligible. Thus the Stormer cone consists of only the main and shadow cones. Kasper (1958) has shown thet the shadow cones are small. We may make, therefore, a further approximation and say that all directions inside the Stormer cone are allowed. The rigidity threshold for any direction in the sky
is then given by Stormer's expression:

$$
R=\text { ZoM } \cos ^{4} \lambda / \operatorname{cr}^{2}\left(1+\sqrt{\left.1-\cos \alpha \cos \beta \cos ^{3} \lambda\right)^{2}}\right.
$$

where $\mathbb{M}=$ the dipole moment,
$\mathrm{Zo}=$ the charge of the particle,
$r=$ the radial distance from the dipole centre,
$\theta M / \mathrm{er}^{2}=59.6 \mathrm{GV}$ for the Earth's surface,
$\lambda=$ lattitude,
$a=$ ozimuthal anglo,
$\beta=$ zenith angle.
This equation treats the Earth as a dipole and takes no account of the eccentricity of the real Earth's dipole field or of the magnetic anomalios.

For the equator $\lambda=0$, and the curve shown in figure 15 may be obtained by integrating the allowed directions for the various particle rigiditios. The relative intensities aro given as percentages of the intonsities to be found at infinity (using Liouville's theorem). The total primary cosmic ray intensity seon by an observer at the equator on the Earth's surface can be found by multiplying this curve by the differential primary rigidity spectrum. The effectivo equatorial threshold rigidity at sea level is then simply the rigidity which corresponds to this intensity in the integral primary cosmic roy spectrum. The last two stops were taken by graphical moans, assuming the integral primary spectrum to have an exponent of 1.5 (MeDonald and Mebber, 1959). This gave an effective throshold rigidity of 15.9 Gv at sea level.

This number is mainly sensitive to tho slope of tho curve in figure

Figure. 15

15 for threshold rigidities below 30 Gv . It is insensitive to the shape at higher rigidities where the Earth's shadow cone has most effect. It is also insensitive to the slope which is assumed for the primary cosmic ray spectrum. For these reasons, this number is probably a fairly acourate estimate of the mean, equatorial, effective threshold rigidity. From the Stormer equation shown above, the vertical (or QuenbyWenk) threshold rigidity at the equator is 14.9 GV . So, by substitution we have:

$$
R_{\text {eff }} \text { (sea level) }=R_{q}+4.5 \times 10^{-3} R_{q}{ }^{2}
$$

The results obtained by the satellite above 800 km can be used to correct these effective threshold rigidities to a mean height of 600 km above sea level. The uncorrected data from above 800 km have been averaged to obtain curves similar to those shown in figure 13. There are differences between these two sets of curves which must be due to the different circumstances in which the two sets of data were collected, in other words the difference in altitudes and in the Earth's shadowing effect. The altitude has an effect (I) because of the change in effective threshold rigidity as the satellite moves away from the Earth and (II) because of the smaller solid angle subtended by the Earth at the detector for greater altitudes. The latter causes the counting rate to increase since particles can arrive from more directions. This effect is discussed in section 4.2.4.

Since the Earth shadowing effect (see section 4.2.3) and altitude effect (II) alter the counting rate by relatively simple geometrical means, then to a first approximation the differences they intro-
duce between the two sets of curves are eliminated if the counting rates are normalised to make the plateaux of the curves co-incide. The result of this operation is shown in figure 16. The remaining difference between the two sets of curves must now be due mainly to altitude effect (I) which indirectly changes the counting rate by changing the effective threshold rigidity. The two sets of curves in figure 16 are the same shape within the limits of the errors, but the threshold rigidity values of the highor altitude curve are 25% higher than those for the lower altitude curve. Thus in moving from a mean altitude of 600 km to a mean altitude of 1000 km , the true effective threshold rigidities are decreased by a factor of $100 / 125=0.8$ 。

Assume the threshold rigidity (R) is proportional to $1 / r^{x}$, where x is unknown, then:

$$
R_{600} / R_{1000}=125 / 100=(7370 / 6970)^{x}
$$

(The mean diameter of the Earth is taken to be equal to 6370 km .)

$$
\text { Thus } x=4
$$

$$
\text { and } \begin{aligned}
R_{600} / R_{\text {sea level }} & =(6370 / 6970)^{4} \\
R_{600} & =0.7 \mathrm{R}_{\text {see }} \text { level }
\end{aligned}
$$

Stormer theory predicts that R will be proportional to I / r^{2}, in which case the correction factor would have been 0.84 instead of 0.7 . The difference between the Stormer prediction and the experimental results is almost certainly caused by the increasing transparancy of the penumbra at greater altitudes. The works of Hutner, Vallarta (1948) , and Koenig permit some qualitative remarks about the penumbra, and it would seem that above 35 degrees of geomagnetic latitude the penumbra

Figure. 16

is almost completely transparont at sea level. Therefore we would expect it to have little effect above 35°, and that the correction factor at Quenby-Wenk values less than about 8 Gv wouid be proportional to $1 / r^{2}$. Despite this prediction there is no firm evidence of this if figure 16 is examined. Therefore a correction factor of 0.7 (ie. R proportional to $1 / r^{4}$) has been assumed for rigidity values down to 2 Gv .

It is hoped eventually to use the model exporiment which is in operation at Imperial College to improve the acouracy of these threshold rigidity corrections by increasing our understanding of the problem, but for the present, as a first approximation it may be assumed that the effective threshold rigidity at an altitude of 600 km is given by:

$$
R_{\theta f f}=0.7 R_{q}+3.1 \cdot 10^{-3} R_{q}^{2} \quad(\mp 8 \%)
$$

The error hore is a combination of the empirical error arising from the altitude adjustment and an error which is harder to determine since it depends on how far the true state of affairs differs from the assumption that the correction factor needed for each laftitude is given by the expression for $R_{\text {eff (sea level) }}$ on page 52.

The size of the empirical error may be deduced from figure 16 and is $\overline{+} 4 \%$ 。

The error due to applying tho expression for $R_{\text {eff (sea lovel) will }}$ probably be greatest in the 12 Gv threshold rigidity region, where large changes in the penumbra and shadow cones are occuring. It is estimated that the crror here will not be larger than the size of the correction factor itself, or $\mp 7 \%$. Above 30° of lattitude (at threshold rigidities lower than 10 Gv) where the factors influencing the rigidity values
become less complex, and also at the equator, the expected error would be much less. Thus the error shown in the above result is a possible maximum.

4.2.3 Earth Shadowing Effect.

As the spacecraft moves in its orbit, wo would expoct a variation in the counting rate owing to the varying portion of the sensitive solid angle of the detector that is blocked by the Earth. This may be called the Earth shadowing effect. Figure 17 illustrates the aspect of the satellite on two days, day 120 and day 130. The shape of the curve changes slowly from the day 120 shape to the day 130 shape in the intervening period. The hatched portion represents the area covered by these intervening ourves where the altitude was less than 800 km . In other words this hatched portion represents the aspects of the satellite for the results from this period that were used in this preliminary calculation of the primary spectrum. For these results it can be seen immediately that tho Earthisphadowing effect is much greater in the northern hemisphere than in the southorn. The contrast between tho effects in the two hemispheres is greater during this period than at any other before the Starfish explosion. If the average counting rates for the various throshold rigidities in tho northern and southern homispheres aro comparod for this poriod, it is found that the greatost differences (south - north) for any throshold rigidity aro given by:

$$
\begin{aligned}
\text { attenuated lavel difference } & =(1.5+2.5) \% \\
\text { unattenuated level difference } & =(-3.3 \mp 2.5) \%
\end{aligned}
$$

Figure 17

Thus, by empirical means, it may be concludod that tho orror introduced by this aspect effect is negligible compared with the orror in the corrected throshold rigidities, and so no correction has been attempted.

In addition to the above, another type of counting rate variation will arise from the variation of threshold rigidity over the different parts of the sky. If the sensitive solid angle of the detector is blocked by the Earth so that only part of the sky is visible, then due to this variation of throshold rigidity, the portion of sky seen by the detector does not necessarily have the same effective threshold rigidity as does the whole of the sky. This effect will be most marked in the equatorial plane

The data were examined for such an effect. Counting rate variations caused by the first Earth shadowing offect wore romoved by considering only those parts of tho orbit where the angle botwoen the spin axis of tho satellite and the satellite-Earth line was 90°. This occurred at tho equator only in the rogion of days 145 and 190. The region around day 145 was chosen for inspection bocause of tho bettor statistics (the counting rate was higher) and because the hoights at the equatorial crossings (the nodes) wero almost the same. The counting rates for tho asconding node and the descending node respectivoly wore avoragod using data takon botween 10° north and 10° south of the goomagnetic equator for days 145 to 150 inclusivo. Tho daily means were weighted to take into account the varying gain of the detector at this time. It
was found that the ascending nodes had a mean counting rate 18% greater than the descending nodos, but this differonce disappeared when the slight disparity in moan heights was taken into account, using $1 / r^{4}$ for correction. The two values wore thon 5.26 and 5.46 in arbitrary units. Theso agreed within their statistical orrors which wore 4% and 3% rospectivoly. Thus if wo oxamino tho most likely lattitudes with the bost satollite aspect for this effect wo find it must bo less than \mp 5%. This orror will bo greatly reduced when the rosults are avoraged over long pariods with varying aspects, and so again it is less than that for the threshold rigidities and no correction has been attomptod.

4.2.4 Altitude Considerations.

Apart from tho corroction to tho threshold rigiditios for altitude as is outlined in section 4.2 .2 there must bo a difforent typo of altitude correction. This arises from the inarease in counting rate caused by the increase in the solid angle from which particles can arrive at the detector as the spacecraft moves away from the Barth and tho solid angle subtendod by the lattor at the satollito decreasos.

Now in the period botweon about day 155 and day 165 the apogeo and porigee occur at the northorn and southern oxtremities of the orbit (figuro 18). If tho high lattitudo, averago counting ratos in the northern and southorn homispheros aro compared for this poriod (thoro is no offoct duo to chango in tho offoctive threshold rigidity with altitude at high laftitudes owing to tho platoau in tho rigidity - counting rate curve) then it is foumd:

Figure. 18

$$
\begin{aligned}
\text { attenuated level difference } & =(5.8 \mp 2.5) \% \\
\text { unattenuated level difference } & =(10.7 \mp 2.2) \%
\end{aligned}
$$

There is an approciable difforence. Howevor the averaging process roduces the error considerably since the altitudo at each threshold rigidity varios as the orbit precesses. Over tho completo period from which the data were taken, the moan altitudes for tho difforent rigidities were all found to lio within $\mp 25 \mathrm{~km}$. Again this means thoro is a negligible error and correction was unnocessary.

4.3 Discussion of tho Results.

The integral rigidity spectrum obtained from thase rosults is shown in figure 19. There is a clear chenge of slope of the spectrum in the region of 8.5 Gv , and this is tentatively interpreted as the upper limit to the solar modulation process at this time (May - June 1962). The results for this spectrum wero obtainod at a relativoly quiet period in the solar cycle as is illustrated by figure 20 , which shows there were no large disturbances of the cosmic ray flux between April 26th and July 9th. Tho Mount Washington neutron monitor (grom magnotic lattitudo $=570 \mathrm{~N}$, altitude $=1909$ motros above soa lovol) had returned to a counting rate betwoen 8 and 10% lowor than its provious sunspot minimum at this poriod.

To dotormino the offect of tho solar modulation process on the primary rigidity spectrum it is necessary to know the unnodulatod shape of the spoctrum. This is inaccurately known for tho heavy nuclei, but in August 1956 (near solar minimum) tho slope of the rigidity spectrum

Figure. 19

Deep River Neutrons.

for alpha particles was found to have an oxponont; of -1.5 in the rigidity range from 2 to 5 GV (MoDonald and Wobber, 1959) © This agroes with an extrapolation of the slopo of the high rieidity ond of our spactrum. From the moasured difference in those slopos betweon 2 and 8.5 GV , the rigidity dopondence of tho solar modulation in May and Juno 1962 may bo ropresented by

$$
I_{0}=I\left(R / R_{0}\right)^{0.370 .15} \quad \text { for } 2.5 R
$$

where $I_{0}=$ intensity of primary cosmic rays with rigidities greator than R at tho Earth,

$$
\begin{aligned}
& I=\text { intonsity of cosmic rays at infinity, } \\
& R_{o}=8.5 \mathrm{Gv} .
\end{aligned}
$$

From figure 19, tho unmodulatod primary cosmic ray rigidity spectrum for particlos heavior than alpha particles above 8.5 Gv has en exponent of -1.5 ∓ 0.15.

The results of two experiments similar to ours havo boen publishod by Pomerantz and Witten, also by Kurnosova, Logachov, Razorenov and Fradkin, 1962. The Russian results are based on the data from corenkov instrumonts flown in Sputniks V and $V I$, the Amorican experiment consistod basically of an ion chambor carried by Exploror VII. Those exporimonts wore conductod at various poriods during 1960, a timo of high solar activity. Tho results aro too statistically inaccurate and disturbod by timo variations to allow any conclusions to be drawn whon comparod with the Ariol I rosults.

CHAPITER 5

THE GEQMAGNETTCALLY TRAPPED PARITCLEAS

5.1 Introduction.

At 9 soconds past 09.00 hours U.T. on July 9th 1962, a nucloar bomb oquivalont to l.4 mogatons of T.N.T. was exploded at a hoight of 400 km above sea level in tho vicinity of Johnston Island in tho contral Pacific Ocean. A large amount of radiation was reloesed by this oxplosion. Our instruments on Ariel I wore able to detect some of this radiation and occasionally were ablo to indicato tho typo of particlos which were prosent. The satellito was almost at its most southorly lattitudo and noar the geomagnotic longitude of tho explosion at the time of detonation, and so was woll positionod for obsorving tho impact of the burst on normal conditions. Owing to tho good data covorage, the distribution of tho artificial radiation around the Earth and somo oarly docay modos could be closoly followed. Ariol I had boon oporating for $2 \frac{1}{2}$ months at this timo so the aroas apparently accupiod by tho natural radiation had already beon mappod out. Bocauso of this the artificial and natural radiations could bo distinguished, and in this rospoct wo had an advantago ovor following satollitos, daspite thoir bottor moasuring ability. For these reasons an analysis has boon mado of the results obtained betwo $\begin{gathered}\text { on the timo of the explosion and tho timo }\end{gathered}$ whon the setollite first went into undervoltege. In order to understand fully this analysis and its implications, somo knowlodgo of tho goomagnotically trappod radiation is nocossary, and thoreforo a briof rósumó
is given in tho rest of this chaptor.
5.2 Exporimontal Historyo

Tho oxistonce of the natural goomagnetically trappod radiation was discovered by J.A. Van Allon's rosoarch group, working at Iowa, who found that goiger countors launched in the earth satellitos Explorer I and Exploror III wero jammod by an unoxpoctodly high flux of radiation (Van Allon, 1958, also Van Allon ot al. 1958). Tho 'prosenco of those high intonsities of onorgatic particlos was quickly confirmed by data from Sputnik III*

The obsorvations from Sputnik III (Vernov and Chudakov 1960), Exploror IV (Van Allon, MeIlwain and Ludwig, 1959) and Pioneor III (Van Allon and Frank 1959) showed rogions of onhancod counting rates from L valuas of about 1.5 earth radii to values of about 10 oarth radii with a rogion of low counting rates at about $L=2$ oarth radii. Thus the radiation appearod to bo soparatod into two zonos. The region for I. 2 oarth radii was callad the innor zone, and that for $L\rangle 2$ oarth radil was called tho outer zono. L valuos are discussed in section 5.6 .

Nuclear cmulsions flown in rockots by Froden and White (1959) showed that the innor zone contained large numbors of ponotrating protons. The 1959 rockat flights of Holly and Johnson (published 1960) showed olectrons to bo the most numorous particles in the inner zono. Reports of othor invostigations into the composition of tho inner zono using rocket-borno apparatus may be found in Fredon and Whito 1960, Nauglo and Kniffon 1961, Armstrong ot al. 1961, and Hockman and Armstrong
1962. The iast referonoe cortains a moasuremont of the proton spectrum of the imner zono for the rockot trajociory of this paiticular oxporimont. Naugle and Kniffen wore the inest ton hrive that the proton spoctrum bocomos softer with increasing L velue in tho energy range betweon 10 and 100 Mev .

Cladis ot al. (1961) domonstrated conclusively that the outor zono containod oloctrons. They moasurod tho energy spectrum and pitch anglo distribution of eloctrons near the lower edgo of the outor radiation zone using apparatus flown in a Javelin rocket.

A comprehensive assault on the unknown aspects of tho trappod radiation was carriod out by instrumonts flown in Exploror XII. Data from this satellite showed that there wero not two distinct zonos, but instoad the whole of tho trapping rogion was fillod with protons (Davis and Williamson, 1962) and oloctrons (O'Brien and Laughlin 1962, Rossor ot al. 1962) whose onorgy spoctre variod with distance from tho Earth. Howover tho uso of tho terms 'innor zono' and 'outer zone' will be continued in this thesis for convenience. Protons of roughly 100 kev energy and olectrons with about 40 kev onorgy woro found in crudoly comparable intensitios out as far as tho boundary between the gomagnotic and intorplanetary fields, which was at variable radial distancos of botwoen 8 and 11 oarth radii on the daylight side of tho oarth at this timo (August to Decomber 1961, soo Cahil and Amazoen 1962). Moasuremonts of tho aloctron spectra in tho enorgy rango of 40 to 110 kov wore also mado in tho oquatorial plano (O'Brion and Laughlin 1962).

Large variations of tho particlo flux have boen observod (o.g.

Arnoldy ot el. 1960, Pizzolle ot al, 1962) o Those variations appoar to incroaso in amplitude with incraasing distaneo from the Farth. They also appoar to bo rolatod to solen flaros in scmo way which is not cloarm ly understood at prosento Tho goographic pusition of Xaray bursts at balloon altitudes and tho timing of aurora havo bson obsorvad to coincido with roductions of counting ratos in the outer zono. This is rather tonuous ovidence for the dumping of outor zone eloctrons into the atmosphore. More recontly, $0^{\prime} B r i e n ~(1962) ~ u s i n g ~ a ~ d i r o c t i o n ~ s e n s i t i v o ~ c o u n t e r ~$ In Injun I has observed large numbers of olectrons ontoring the atmosphero at high lattitudos. Thus thoro is convincing ovidenco that at cortain times the lifetimes of electrons in the outor zono may be only a few hours long. Tho timo variations of the trappod radiation are of intorest sinco thoy can give somo indications of trappod particlo lifetimos. Thoso in turn can load to conclusions concorning tho origins of tho trappod radiation; for examplo a woak source of trappod particles may supply tho nocessary flux if tho trappod lifetimo is long onough.

Tho experimental invostigations of the trapped particlos may bo summarised by saying that tho spatial axtont of this radiation is roughly known, somo proliminary work has boen dono on the study of the constitum onts, and time variations have boon obsorved and assooiatod with somo goomagnotic phonomena. Tho origin of the trappad radiation and its oxact operation in the mechanics linking solar explosions with magnotic storms and auroral activity on the Earth aro still subjocts for spoculation.

It has been pointed out that the decay of the neutron albedo produced by the interaction of cosmic rays with the Earth's atmosphere should lead to the trapping of both electrons and protons in the geomagnetic field (Singer 1958, Vernov et al. 1959, Kellogg 1959). Alternatively, it has been proposed (Gold 1959) that the trapped particles originate in the solar atmosphere and are transferred from the solar to the terrestial magnetic fields by the megnetohydrodynamio effects occuring at the boundary between these fields during magnetic storms.

It seems possible that an appreciable number of the trapped protons have their origin in neutron albedo produced by solar flare generated protons (Lenchek 1962). Some discussion hes taken place as to whether a sizeable contribution to the trapped protons is also due to albedo arising from the normal cosmic ray flux. There appear to be two schools of thought on this matter (Lenchok and Singer 1962; Pizzella ot al. 1962). However, the neutron albedo theory cannot account for the large numbers of trapped electrons which are observed. The solar origin theory has been discarded since the probe Pioneer V failed to find the large amounts of interplanetary radiation necessary to make this theory workable. It seems more likely that a large number of the trapped electrons are accelerated in situ by hydrodynamic waves generated at the magnetosphere surface by impitngeing solar plasma. This was suggested by Dessler in 1958. The exact mechanics of this process are still obscure.

5.4 Artificial Radiation Belts.

Following a suggestion by Christofilos (1959) artificial radiation belts were produced at I values of $1.72,2.12$ and 2.16 earth radii by a series of high altitude nuclear explosions during August and September of 1958. This operation wes given the code name 'Areus'. The objects of these tests were to demonstrate that particles could be trapped in the Earth's magnetic field, to check calculations of the trajectories of these particles and to study the effects of the explosions at the points of the bursts and at the magnetic conjugates. Aurora and magnetic disturbances were seen at these positions (Newman 1959, Peterson 1959). The artificial radiation belts were found by Explorer IV which was launched for the purpose of detecting then. They were sufficiently stable for Van Allen et al. (1959) to be able to say that the radial diffiusion rate of the particles could not be groater than 2 km . per day at a height of 1500 lm . above the surface of the Earth. On the day of a magnetic storm some evidence was found for a decrease in the intensity of the two artificial belts then existing.

Effects of the Starfish nuclear explosion are discussed in Chapter 6.
5.5 Inotion of Charged Particles in a Dipole Field.

The compexities of this problem may be reduced by using an an approximation the concept of the "guiding centre" of a particle. This concept wes introduced by Alfven (1960). The particle motion here is described in terms of:
a. A rapid gyration about a field line with a cyclotron period T_{c} and radius R_{c}. The centre of this gyration is the guiding centre.
b. Motion of the guiding centre of the particle along the line of force. This motion is periodic also; the particle is reflected by the converging magnetic field noar the Earth and bounces back and forth in the exosphere with a bounce period T_{b} *
c. A drift in longitude around the Earth with a period of revolution T_{r} 。

Assuming the Earth's field may be approximated by a dipole field, the following table has been calculated for particles at 2000 km . altitude near the equator ($L=a b o u t 1.3$ earth radii) and gives a useful idea of the quantities involved (Hess 1962).

	R_{c}		T_{c}	T_{b}
50 kev. electron	50 m.	2.5 miorosec.	0.25 sec.	11.5 hrs
1 Mev. electron	320 m.	7 microsec.	0.1 sec.	53 min.
1 Mev. proton	10 km.	4 millisec.	2.2 sec.	32 min.
10 Mev. proton	30 km.	4.2 millisec.	0.65 sec.	3.2 min.
500 Mev. proton	250 km.	6 millisec.	0.11 sec.	5.04 sec

For a comprehensive mathematical discussion of the Stormer, Alfven and ficIlwain calculations of the motions of charged particles in dipole and near-dipole fields see H. Elliot (1963).
5.6 L-Vales.

As extensive use is made of this concept in the next chapter, a brief attempt at a physical explanation is given here * The mathematical basis will be found in articles by MoIlwain (1961) and Elliot (1963).

A charged particle, drifting in the Farth's magnetic field, can be shown to cling approximately to a surface constructed of magnetic lines of force (McIlwain 1961). These lines of force are definod by McIlwains' so-called longitudinal invariant. The surface may be called a magnetic shell and is labelled by a quantity L. The definition of L is such that if the magnetic field of the Barth was a perfect dipole field centred on the centre of the Earth, then tho distance between the latter and any L sholl in the equatorial plano, when stated in earth radii, would give the I valuo of that shell.

Now as the trapped particle spirals towards the Earth along a lino of force, its rate of approach is slowed down by the increasing magnitude of the scalar magnetic field (B), and it is eventually turned back at the maximum value of B which tho particle can reach. For any one particle this value of B is the same at each of these reflection points, which are known as 'mirror points'.

Thus the orbit of any trapped particle can be complotely definod by two quantities: tho valuo of L for the shell to which the particle is tiod and the value of B at tho mirror points. Therefore each point on a graph where B is plottod against L will roprosent a particular particle orbit, and so tho B - L diagram is a convoniont (because it is two dimensional (mothod of classifying trapped particle orbits.

As an example of this, trapped particle populations can be representod by contour lines on these graphs.

Care must be exercised when using this system to analyse satellite results since a particle observed by the detector has not necessarily reachod its maximum B value.

To assist in the physical interpretation of B-L diagrams the Earth's surfaco has been transposed into B-L coordinates and this process is described below. Although an idealised Earth' s surfaco has been used, this is useful in giving some indication of those parts of a B-I diagram which must lie bolow soa level and therefore cannot be occupied by trapped particles.

In magnetic coordinates, the Earth's surface may bo looated by the scalar magnitude of the magnetic field at sea level and by the magnotic sholl which intorsects any particular goographic point. If, again, the Earth's magnotism was reprosontod by a perfoct dipolo located at the Earth: s centre, its axis being the spin axis of the Earth, then the systom would bo ontirely symotrical about the dipole axis and the field on the Earth's surface would be constant with longitudo. Thus for any given L shell at the Earth's surface there would be a unique value of B, and the Earth's surface would be ropresented by a single curve in a B-L diagram Howover, as a first approximation, the Earthrs magnotic field is represented by a perfect dipole displace 430 km . from tho Earth s centre. Figuro 21 shows the Earth's surface in a magnotic coordinato system, in this case polar geomagnetic coordinates. Two particular longitudes have beon suporimposed in this diagram. The innor curve

Figuer 21

shows the longitude with the largost B values at the Earth's surface and tho outer curve represents tho longitudo with the smallest B values. Ail other longitudes with intermediato values of B must be roprosented by curves which lie betwoen the se two. The angles shown are geomagnetic laftitudes. This diagram demonstrates that the Earth's surface cennot be drawn as a single lino whon a magnotic systom of coordinates is used. In figure 22 these two longitudes are shown in anothor magnotic coordinate system, B - L coordinates this time. The 'distortion' from figure 21 is ovidont. Tho angles shown aro again geomagnetic lattitudos.

In actual fact, superimposed on tho eccentric dipolo field of tho Earth are magnetic anomalies which will distort those curves evon more by varying the quantity B. It is useful to know in $B-L$ coordinates the position of tho lino roprosonting tho Earths surface whero the mirror points of trappod particles aro at thoir lowest altitudes. This 'Iowost mirror points lino' is shown in figure 22. Particles which are observed above this lino in B - L coordinatos cannot drift completoly around the Barth sinco thoir theorotical mirror points must be bolow soa level for some longitudos. The broken line in figuro 26 shows the geographic position of the lowost mirror point lino.

Figuro 23 shows various hoights above the "arth's surface on tho lowost mirror point line. The B and L values from which these curves were constructod were calculated by Hess (private commonication) using Jensen and Cain coofficionts.

Figure. 22

Fiure. 23

CHAPTER 6

THE STARFISH NUGLEAR EXPLOSION

6.1 Introduction.

As stated previously, the explosion ocourred at 9 seconds pest 09.00 hours U.T. on July 9th, 1962 at a height of 400 km . above sea level. The position was $16.7^{\circ} \mathrm{N}, 169,5^{\circ} \mathrm{W}$ in geographic coordinates, or $B=0.29$ gauss and $L=1.12$ earth radii in trapped particle coordinates (Van Allen et al. 1962). Aurora were seen immediately at the magnetio conjugate and as far south as New Zealand (30 geomagnetic degrees below the conjugate, Gabites and Rowles, 1962), widespread magnetio disturbances were reported, for example by Casaverde et al. 1963, or Gill 1962, and synchrotron radiation was found to spread into a belt encircling the Earth and extending 25 degrees on either side of the geom magnetic equator. The latter was reported by Dyce and Horowitz, 1963.

Before discussing the picture which may be built up from the Ariel results, it is desireable to have some idea of the quantities involved in this explosion so that these can form a background for any calculations which are necessary. A thearetical summary of these quantities is made below.
6.2 A Summary of the Explosion Quantities:

An unspecified fraction of the explosive power was due to fusion. This means that in celculations of the effects caused by fission, upper limits can be established if it is assumed that the whole explosion was
due to fission.
The energy released by a 1.4 megaton fission explosion equals 6×10^{22} ergs, $=3.5 \times 10^{28} \mathrm{Mev}($ Singer, 1962$)$. If each fission releases about 200 Mev , then the total number of fissions could be about 2×10^{26}. This would yield some 10^{27} electrons from decey of fission products (Latter, Herbst and Watson 1961) with a differential energy spectrum probably approximated by $3.86 \exp \left(-0.575 \mathrm{E}-0.055 \mathrm{E}^{2}\right)$ for the range 1 (E (7 Mev , where E is the kinetic energy of the electron in Mev and the spectral expression is in units of eleotrons per fission per Mev (Carter, Raines, Wagner and Wyman, 1959).

According to Latter, Herbst and Watson about one neutron per fission escapes from a nuolear burst, thus an upper limit of about 2×10^{26} fission neutrons could be released from the Starfish explosion. These neutrons would have a most probable energy of 0.8 Mev and a mean energy of about 2 Mev (Atomic Energy Commission, 1955). They would decay into electrons of about 780 kev energy and protons mostly with energies of 1 Mev . In the first 10^{-7} seconds after a fission explosion, a burst of prompt γ rays is emitted, the total flux being given by the nominal expression:

$$
F=Y_{f} 10^{10} / R^{2} \quad \gamma \text { rays per } \mathrm{cm}^{2} . \quad(\text { Singer })
$$

where $Y_{f}=f i s s i o n ~ y i e l d ~ o f ~ t h e ~ e x p l o s i o n ~ i n ~ k i l o t o n s, ~$
$F=f l u x$, distance $R \mathrm{~km}$. from the explosion.
Following this, delayed γ rays are emitted from the fission fragments as they decay. The total flux for the first second after the explosion is roughly constant and 100 times greater than the total flux
of prompt γ rays. After this first second the flux falls off according to $t^{-1.2}$ so we may write:

$$
\begin{array}{r}
T=Y_{f} 10^{12} t^{-1.2} / R^{2} \quad \gamma \text { rays per } \mathrm{cm}^{2} \text { for } \\
t \geqslant 1 \mathrm{soc} .
\end{array}
$$

The mean energy of these fission fragment deal γ rays is about 1.5 Nav (Petrov, 1960).

In the case of a fusion explosion, the reactions give rise to 14 Mev neutrons. Assuming all these neutrons escape, this gives an extreme upper limit of about 3×10^{27} for fusion neutrons if a completely fusion explosion is assumed.

Bearing the above figures in mind, the following analysis was performed using data from the 4 th June to about 2100 hours on the $12 t h$ July when the satellite went into undervoltage for the first time. The analysis assumes that there was negligible disturbance to the radiation around the Earth from natural causes between the 9 th and the lith July. This assumption is supported by the information shown in figure 24. Class one flares were found from previous data to have undetectable effects on the particle densities at the energies seen and in the regions scanned by our deteotars in Ariel.

6.3 Outer Natural Radiation Belt Particles.

6.3.A Figure 25 illustrates the counting rates recorded by the geiger and cerenkov detectors immediately before and after the explosion. From the counting rates recorded by the geiger it is apparent that the satellite encountered two distinct bursts of particles, labelled burst A

Deep River Neutron Data - Hourly Total.
Counting
Rate
The largest flares observed during this period were class I bursts seen at:

Figure. 25

and burst B for convenience, Burst A comenced within 20 ∓ 10 seconds of the explosion (the satellite was at an altitude of 819 km , latitude $52^{\circ} \mathrm{S}$, longitude $163^{\circ} \mathrm{W}$). The cerenkow detector, however, saw only burst B, it was unaffected by the particles in burst A. This is illustrated by figure 26 in which the group of points from burst A lies in a difforent area to those from burst B and in such a position that they show the cerenkov detector was counting at the normal cosmic ray rate during this burst.

Now protons released by the explosion would not be energetic enough to penetrate either of the detectors. The L velues of the satellite position during burst $A(L=4.7$ to 3.5 earth radii) ensured that no inner belt protons ($L=2.4$ earth radii, see figure 27) were present. Thus from the discussion of cerenkov detector saturation in section 2.4, page 27 we may say immodiately that in burst \mathbb{A} the geiger was mainly counting either γ radiation or bremsstrahlung from electrons of energies less than about 2 Mev .

Ifultiplying the geiger saturation rate of 2,300 counts per interval by the geometric factors of the geiger counter from section 2.1 for bremsstrahlung and γ rays respectively it is found that the flux was at least:

$$
\begin{aligned}
& 10^{7} \text { electrons per } \mathrm{cm}^{2} \text { per second, } \\
& \text { or } 5 \times 10^{4} \mathrm{\gamma} \text { rays per } \mathrm{cm}^{2} \text { per second. }
\end{aligned}
$$

6.3.B Since the satellite was underneath the outer radiation belt at this time, it is tempting to say at once that burst A must be the

Figure 26

Figure. 27

observation of the dumping of outer belt electrons into the atmosphere as a result of the magnetio agitation caused by the explosion. However as the satellite was fairly close to the explosion, it is clear that some, or all of burst A could be due to radiation arriving at the satellite as a result of more direct processes. The processes which appear to be possible are examined in the following.

1. The particles could be electrons from the decay of fission fragments. This requires that the fission fragments should decay near to the line of force passing through the satellite at that time.

The energy spectrum of β particles from fission fragments is known (page 79) and large numbers of these electrons have energies greater than 2 Mev. Since no response of the cerenkov detector to burst A particles was observed, the flux of particles with energies greater than 2 Mev was below 10^{4} per cm^{2} per second, or loss than 0.1% of the electrons observed by the geiger counter, if they were electrons. Thus the energy spectrum was not that to be expected from fission fragmont decay β particles, so we mey reject this mechanism for causing the rediation observed as burst A.
2. Burst A could be caused by γ rays given out by fission fragments rising above the satellite horizon. The actual explosion occurred below the satellite horizon, so γ rays from the burst itself would not be detected. We have seen that at a time t seconds after the explosion, a satellite distance R km from it encounters a flux given by the expression:

$$
F=a Y_{f} 10^{12} t^{-1.2} / R^{2} \quad \gamma \text { rays per } \mathrm{cm}^{2} \text { per second, }
$$

where $a=$ the frection of the fireball visible to the satellite,

$$
Y_{f}=\text { the fission yield in kilotons, }
$$

If we ignore the horizon effects, an upper limit calculation oan be made as follows:
$\mathrm{Y}_{\mathrm{f}}=1,400 \mathrm{kilotons}$, assuming the completo explosion is caused by fission,
$R=8,300 \mathrm{~km}$,
$a=0.5$, since half of the fission fragments must go down into the atmosphere.

So the flux at Ariel could be a maximum of $2 \times 10^{7} \gamma$ rays per cm^{2} per second.

Novi $5 \times 10^{4} \gamma$ rays per cm^{2} por socond is the minimum flux which may saturate the geiger counter, so it would appear that the saturation could easily be caused by this γ radiation. Howover, owing to tho decay of the γ ray flux with time, saturation of the geigor counter would be expected to stop a maximum of T seconds after the explosion where:

$$
F=5 \times 10^{4}=2 \times 10^{7} \mathrm{~T}^{-1.2}
$$

This gives $T=150$ soconds.
In fact the geiger saturation was observed to last until 210 ∓ 10 seconds after the explosion, so a hard upper limit of $T=150$ seconds makes it doubtful that γ rays from fission fragments could be the mechanism to explain burst A.

Further doubt is cast on this mechanism if the onset time of the burst is examined. Fenton (Edwards et al. 1962) flow a balloon from

Hobart ($43^{\circ} \mathrm{S}, 147^{\circ} \mathrm{E}, \mathrm{L}=3$ earth radii) at this time. The explosion occurred when the balloon had reached a depth of 80 gm per cm^{2} (about 18 km . above sea level). A burst similar to Ariels: burst A was observed by tho instruments with an onset time 15 ∓ 7 seconds after the explosion. As the explosion ocurred $4,500 \mathrm{~km}$. bolow the horizon of the balloon, the fission fragments would have to travol with a volocity of $300 \mp 80 \mathrm{~km}$. per second to ceuse this onset. Section 6.5 indicates that the neutral fission fragments travelled with a velocity of $15 \mp 5 \mathrm{~km}$. per second, so this velocity would soem to be an order of megnitude too high. However, continuing to assume that burst A is due to this mechanism, the explosion ocurred 1500 km . below the horizon of Ariel, whose geiger counter first showed an increase 20710 seconds after the explosion, indicating fission fragment velocities of $100 \mp 50 \mathrm{~km}$. per second. This will be observed to disagree with the fission fragment velocities calculated from tho balloon results.

Thus the timing of the onset and decay of burst A renders γ rays from neutral fission fragment decay a doubtful means for oxplaining this radiation entirely, although there is a possibility that some contribution was made by these rays.
3. The particles counted could be electrons from either fission or fusion neutrons reloasod by the explosion which decay noar to the lino of force containing the satellito. In this case we would expect an immodiate response from the geiger in Ariel since the velocities of both the neutrons and their decay electrons are relativistic. However a delay
of at least 10 seconds was observed. This fact alone is sufficient to make this mechanism unlikely. The calculations below also show that the flux is insufficient.

We may heve a maximum of 2×10^{26} noutrons with a most probable energy of 0.8 Mev thrown out of a 1.4 magaton fission explosion. The shortest distance to the $\mathrm{L}=4.5$ shell for these neutrons is about 6,700 km . Consider l cc. of the $\mathrm{L}=4.5$ shell at this point.

A noutron of 0.8 Mov has a speod of $1.5 \times 10^{9} \mathrm{~cm}$. per second. Tho decay probability is 9×10^{4} per second and is therefore 6×10^{-13} per cm . at this velooity. 'Thus the numbor of noutrons which dooay inside tho distance of $6.7 \times 10^{8} \mathrm{~cm}$. is negligible.

We may then state that the total number of neutrons passing through the one cc. of $L=4.5$ shell is $2 \times 10^{26} / 4 \pi\left(6.7 \times 10^{8}\right)^{2}$,

$$
=3.5 \times 10^{7}
$$

Thus the number of electrons injected into this one cc. by the explosion will be 2.1×10^{-5}. If we assume this to be the intensity all over the shell and nogleot the atmospheric absorption, we find that Ariel may have oncountered a maximum flux of 2×10^{-5} c oloctrons $/ \mathrm{cm}^{2} / \mathrm{second}$,

$$
=6 \times 10^{5} \text { electrons } / \mathrm{cm}^{2} / \text { second } .
$$

This is an order of magnitude too small to saturate the counter.

Let us exemine the flux of electrons which could be provided by fusion noutrons. The fusion burst can release a maximum of 3×10^{27} noutrons with an initial energy of 14 Mev , and after passing through the matter of the firaball, this energy is probably reduced to about 10 Mov .

For a relativistic particle the docay probability por centimotre is given by:

$$
p=\Gamma / \beta \gamma c
$$

where Γ is the decay constant $=9 \times 10^{-4}$ per second for neutrons, γ is tho dilation factor $=\left(1-\beta^{2}\right)^{-0.5}$.
Thus $p=2 \times 10^{-13}$.
Making the samo assumption as for the fission noutrons, we find the maximu possible value of the flux encountered by Ariol is 3×10^{6} eloctrons per om ${ }^{2}$ per second. This crude calculation gives a hard upper limit whioh is nevertheless only about 30% of the 'just saturation' flux for the geiger counter. On these grounds therofore we may rejeot fusion noutrons as providing tho main flux of particles for burst A.
4. By a process of elimination, one possibility is left. This is that the trapped electrons in the outer belt were scattered by the hydromagretic wave generated by the explosion, and many had their mirror points lowered so thet they were scattered by the atmosphere.

Parker (1962) has made calculations of the Alfven wave velocities for altitudes up to $50,000 \mathrm{~km}$. These calculations indicate that the Alfven wave from the explosion would reach the $L=4.5$ shell, which conteined Ariel at the onset of burst A, between 15 and 20 seconds after its initiation. This agrees with the delay of 20 ∓ 10 seconds which was observed by Ariel. The delay of 13 ∓ 7 seconds observed by Fenton's balloon at the $L=3$ shell is also in good agreement with Parker s calculations. The maintenance of the apparent mirror point lowering
after the hydromagnetic wave has passed through the outer radiation belt is possibly caused by the eastward drift of these electrons, whose mirror points are normally dropping closer to the atmosphere as they cross the Pacific Ooean.

This conclusion demonstrates that the outer belt electrons are semsitive to artificially produced hyaronagnetis disturbances. This in turn lends support to Dessler's theory of the in situ acceleration of the electrons which form the outer radiation belt.
6.4 The Johnston Island Shell.

Burst B was the first sign of a different phenomenon. On five successive orbits after the explosion, a region of very high particle intensities was observed by our instruments at heights of about 400 km . over the Pacific Ocean. The intensity was high enough, and the particles were sufficiently energetic to saturate both the geiger and the cerenkov detectors. The shape of this high intensity region is crudely represented in figure 29 by those parts of the satellite track where the cerenkov counter was completely saturated.

The interesting thing about these particles is demonstrated by figure 28 where some counting rate contours are drawn from geiger data for the last three of the five observations. These last three observations were chosen in order to allow some of the time dependance of the intensities to disappear (the first datum point was measured about three hours after the explosion). It can be seen that these particles would mirror below sea level if they reached the longitudes of the lowest mirror points. They evidently drift eastwards from approximately the

Figure 28

and burst B for convenience, Burst A comenced within 20 ∓ 10 seconds of the explosion (the satellite was at an altitude of 819 km , latitude $52^{\circ} \mathrm{S}$, longitude $163^{\circ} \mathrm{W}$). The cerenkov detector, however, saw only burst B, it was unaffected by the particles in burst A. This is illustrm ated by figure 26 in which the group of points from burst A lios in a different erea to those from burst B and in such a position that they show the cerenkov detector was counting at the normal cosmic ray rate during this burst.

Now protons released by the explosion would not be energetic enough to penetrate either of the detectors. Tho L values of the satelite position during burst $A(L=4.7$ to 3.5 earth radii) ensured that no inner belt protons ($L=2.4$ earth radii, see figure 27) were present. Thus from the discussion of cerenkov detector saturation in section 2.4, page 27 we may say immediately that in burst A the geiger was mainly counting either γ radiation or bremsstrahlung from electrons of energies less than about 2 Mev.

Multiplying the geiger saturation rate of 2,300 counts per interval by the geometric factors of the geiger counter from section 2.1 for bromsstrahlung and γ rays respectively it is found that the flux was at least:
10^{7} electrons per om^{2} per second,
or $5 \times 10^{4} \mathrm{\gamma}$ rays per cm^{2} per second.
6.3.B Since the satellite was underneath the outer radiation belt at this time, it is tempting to say at onco that burst A must be the

Johnston Island longitude and fall into the atmosphore somewhere before they reach the lowest mirror point line (figure 29).

The eastward drift means that these partioles must be eleotrons, and since the cerenkov detector responds to them, there must be a large flux with energies greater than 2.5 Mev .

From Welch and Whitaker (1959) it is found that the time required for electrons with energies greater than 2 Mev to drift completely round the Ferth must be less than 33 minutes. However Ariel observed this shell for over six hours on the 9th July, and found traces of it on the loth, llth.and l2th July. This requires some form of injection mechanism for these particles.

The explanation of this eleotron shell must be that a number of charged fission products from the explosion were trapped in the Earth's magnetic field to form an arc in the Johnston Island longitude. These fission products decayed continuously to form fission electrons which were then swept oastwards by the magnetic field until they were soattered by the atmosphere over South Amerioa. The drift velocities for heavy ions similar to the fission fragments are very low, so that the western edge of this shell would be expected to creep westwards only very slowly. Alternatively, a group of slowly diffusing, neutral fission fragments would produce the seme result. Similar effects were observed during the Argus explosions (Van Allen et alii 1959). It is interesting to notice that since these electrons are produced by the decay of fission fragments, they must have an energy spectrum given by the expression on page 79.

From figure 28 the core of the shell is found to lie at $L=1.14 \overline{+}$ 0.02 earth radii. The explosion took place at $L=1.12$ earth radi1. This agreement supports the theory put forward above since the fission products whether charged or neutral (and therefore the eleotrons), would be expected to be tied to the magnetic shell in which the explosion ocurred.
6.5 The Artificial Radiation Belt.

After the explosion, apart from the regions mentioned above, the setellite ran into other large regions with particle intensities high enough to saturate both the geiger counter and the oerenkov detector. These regions were part of the artificial radiation belt. Figure 27 shows the natural radiation belts as seen by Ariel before the 9th July explosion, figure 30 shows the additional radiation contours observed between longitudes $40^{\circ} \mathrm{E}$ and 160° E on July 9th. Natural radiation belt intensities have been subtracted from this graph under the assumption that any disturbanoe of these natural intensities by the explosion was small. The broken line represents the position of sea level below the lowest mirror point line, and it can be seen that none of the particles observed in the radiation oontours need have their mirror points below sea level in their drift around the Earth. Indeed, because this radiation was observed between longitudes $40^{\circ} \mathrm{E}$ and $160^{\circ} \mathrm{E}$, in order for these electrons to have reached the point of observation they must have drifted eastwards from the explosion longitude, and so have already orossed at least onoe the line where they are most likely to mirror in the atmosphere and thus be scattered. This radiation therefore is truly trapped

Figure. 30

in the sense that it may drift around the Earth at least once without being scattered and lost.

Additional radiation is observed out to values of $L=5$ earth radii. It is not known how electrons from an explosion at $L=1.12$ earth radii become trapped at such high L values; there are probably contributions from fission fragment decay electrons, neutron decay electrons, and disturbed outer belt particles. The presence of the fission fragment decay electrons was detected by the saturation of the cerenkov detector.

Figure 31 is intended to show crudely how the energy spectrum of the artificial electrons varies with L value. The vertioal axis shows the counting ratos of the geiger counter at instents when the cerenkov detector just saturated. This saturation will ocour when a certain number of electrons per second, say N, is producing dark current in the photomultiplier. For a steeply exponential spectrum similar to the fission eleotron spectrum (page 79) most of these electrons will have energies near to the energy threshold, which is the energy at which electrons are just able to penetrate the wall of this counter. If we assume that the electrons we s.re considering have this type of energy spectrum, then as an approximation we can say that saturation of the cerenkov counter occurs when N electrons per second, heving energios between 2 and 3 Mev, pass into the perspex sphere.

Now the threshold of the geiger counter for electrons is about 7 Mev. For a fission-like spectrum in the range $1 \mathrm{Mev} / \mathrm{E} / 10 \mathrm{Mev}$ the majority of geiger counts will be caused by olectrons with energies just above the threshold, assuming tho bremsstrahlung efficiency is less

Figure 31

than 0.001% As a second approximation wo may say that the geiger counter is only sensitive to electrons with energies greater than 7 Mev .

Thus the counting rates of the two detoctors are sensitive to two different portions of the electron energy spectrum. By considering only the instants when the cerenkov deteotor just saturates, we fix the intensity of electrons in the $2-3$ mev energy ranges, and higher or lower counting rates of tho geiger at those instants correspond to more or less electrons with energies greater than 7 Mev for a given number of olectrons between 2 and 3 Mev. If, for example, tho geiger counting rate is comparatively low at cerenkov saturation, then the slope of the energy spectrum must be relatively steep and there will be larger numbers of electrons with low enargics. In this way the vertical axis of figuro 31 gives a crude fidea of the slope of the electron energy spectrum, so long as this spectrum is similar to tho energy spectrum of electrons produced by the decay of fission fragments. Lower numbers on this axis indicato that tho spectrum has a stoopor slope.

The open circles reprosent points obtained in the artificial radia-. tion belt, the filled circles represont data from tho Johnston Island sholl. This shell is known to have a fission spectrum as a result of the process by which it is formed, and it can be seen that at higher L values the slope of the energy spectrum of the artificial radiation belt electrons is steeper than the slope for a fission electron spectrum. This is evidence for the presonce of soft elcctrons at high L values in addition to the fission spoctrum.

It is interesting to notice that there was a six minute delay
between the explosion and the first detection of fission docay β partioles (burst B, figure 25). This time lag cennot be explained by longitudin al electron drifts. A more likely explanation is that this is the time required by noutral fission fragmonts to travol to the $L=3$ earth radii sholl at the satellite longitude ($163^{\circ} \mathrm{W}$ at this time). The distance betweon this point and the explosion is roughly a minimum of $5,500 \mathrm{~km}$, which gives these fission fragments velocitios of $15 \mp 5 \mathrm{~km}$. per second. This is equivalent to a temperature of about 10^{6} dogrees absolute, which is a reasonable figure for a maximum temperature of the order of 10^{7} degrees in the explosion. This decay of noutral fission fragmonts is a possible mechanism for the injection of fission β particles at high L values.

Tho artificial radiation belt created by starfish is also discussed in papers by 0^{2} Brien, Laughlin and Van Allon, 1962; Brown, Hess and Van Allen, 1963.
6.6 Decay of the Artificial Radiation Belt.

It has been explained how figure 30 illustrates the intensity contours of the additional radiation after it has crossed the Southern Anomalies. Figure 32 is takon from data collectod between longitudes $180^{\circ} \mathrm{W}$ and $50^{\circ} \mathrm{W}$, and shows the intensity contours of tho additional radiation before it reaches the Southern Anomalies. The data for figure 32 were collected between 1400 hours and midnight on the 9th July, during which period the self-consistency of the data points indicates there was no large time variation of the contours shown.

Figure 32

We can imediately say that the difference in the intensity contours between figures 30 and 32 is a result of eloctrons being lost into the atmosphoro over South Amorica. Notice that the Johnston Island shell disappears, as was montioned oarlier. Similarly tho lobes of radiation between $L=2$ and $L=5$ earth radii in figure 32 shrink approoiably. The cerenkov dotoctor indicated that tho part of these lobos which disappearod into the atmosphore consisted of olectrons with a flux of less than 10^{4} particles per cm^{2} por second with energies greator than 2.5 Mov . The se regions thorefore containod mainly soft olectrons. Traces of this soft radiation were observed for more than 50 hours after tho explosion. Tho most westerly point at which it was observed by the satellite was at longitude 170° E. From thence the radiation was seen to stretch over Alaska and North Amorica to the Atlantic. Prosumoably thoro was also a southorly belt of this radiation which our satollite was not in a position to see. As the times of flight of the olectrons observed in this radiation are Ioss than about one hour, they must be injected inte those altitudes by some means. There appoar to be two possible explanations.
a These are natural outer belt particles whose mirror points ara being continuously disturbed by some unknown mechanism which lasts at least 50 hours. Tho L shells on which the soft radiation is observod do not coincide woll with tho shells containing tho outer belt particles.
b These aro artificial radiation belt particles which havo thoir mirror points disturbod and thoir onorgy roducod by coulomb scattoring in tho atmosphere noar their mirror points.

If (\underline{b}) is accoptod as being tho most likoly explanation, then
this process is part of tho decay mochanism of the artificial radiation belt. At first sight wo would axpoct this typo of deay process to affoct only those particles with mirror points near to the atmosphoro, and to produce roughly the same amount of scattor at all L values. However it is avidant from the B-L diagram that the amount of scatter increases with increasing L. For example the soatter at L values of less then 2 earth radii produces a very low flux in the non-trapping region. This may be because the amount of time per orbit that a particle spends alose to the atmosphere increases with increasing L value or it could be caused by slight hydromagnetic disturbances of the partioles, the amount of disturbance increasing with distance from the Earthis surface. At present this experiment cannot distinguish between these two effects.

In figure 33 the shape of the " 300 counts per interval contour of the artificial radiation belt is plotted for the 9th - 12th July. No change is detectable between the contours for loth - 12th July. It is reasonable to suppose that the difference between the contours is due to the decay described above, and that this mechenism has little effect after the first 24 hours

The data points for the 10th, llth, and 12th July on this diagram were not selected for longitude; there appears to be little chenge in the flux contours as the radiation passes over the Southern Anomalies. Some structure is observeable near $L=2$ earth radii which could not be resolved. The possibility of timing errors has been eliminated; it may be that the B and L values are inacourate in this region.

6.7 Sumary.

The most interesting piece of physics to emerge from this analysis is the evidence for the mirror point redistribution of the geomagneticelly trapped radiation in the region between $L=4.7$ and 3.2 earth radii by an explosion-generated, hydromagnetic wave. The observed velocity of the hydromagnetic wave agrees with Parker's calculated velocities within the limit of the experimentel error. This provides experimental evidence to support the speculations that tho trapped particle populations are affeoted by hydromagnetic waves, and lends additional weight to the theory of the 'in situ' acceleration of outer belt particles by hydromagnetic waves generated at the surface of the magnetosphere*

An intense belt of electrons, presumeably generated by an arc of oharged fission fragments, or a slowly diffusing group of neutral fission fragments was observed streaming eastwards towards South America. The core of this shell was found to lie at $L=1.14 \mp 0.02$ earth radii. The explosion is reported to have taken place on the $L=1.12$ shell. Traces of this shell still remained 3 days after the explosion.

An artifioial radiation belt was observed; fission fragment electrons were detected out as far es $L=5$ earth radii. From the Ariel results it seems likely that these were injected into these shell by neutral fission fragments. Noto that the alternative theory of a bubble of charged fission fragments rising through the exosphere under the influence of magnetic pressure would be expected to have extended the core of the Johnston Island shell to much higher L values than were observed. Evidence was also found to show that the energy spectrum of
the electrons has a steeper slope at higher L values for the altitudes scannod by Ariel.

The 'sweeping' effect of the Southern Anomalies on the lower edge of the artificial radiation belt has been clearly demonstrated by comparing diagrams 30 and 32. A short-lived form of decay mechanism has also been observed in operation. This could possibly be caused by small hydromagnetic disturbances lowering tho mirror points of some particles in the newly-formed artificial radiation belt and allowing them to fall into the atmosphere over the Southern Anomelies.

This analysis does not exhaust the artificial radiation data collected by Ariel I. Further facts may be gleaned by closer examination of the records, in particuler those collected after July 12th, which have not been used in this thesis.

APPEMDIX A

GERENKOV COUNIER SATURATION

Under conditions where the only current flowing from the anode of the photomultiplier is the dark current, about 15 microamps are taken by the corona stabiliaer. If these 15 microamps are used by an increase of anode current caused by a large rate of small pulses, the corona stabiliser will just be switched off. In this condition, the anode of the photomultiplier is at a potential which is lower than in the first named condition by about 18 volts. It can be shown empirically that a reduction of about 50 volts at the anode of a photomultiplier which is being operated at 1000 volts, halvos the gain. Thus an 18 volt reduction will bring about a negligible decrease in the gain. However, after the corona stabiliser is switched off, every extra microamp taken by the photomaltiplier will reduce the anode potential by at least 10 volts. A background counting rate which produces 25 microemps at the anode will therefore be sufficient to reduce the gain to less than ono quarter of
its original value and will thus be able to 'turn off' the cerenkov detector.

But the gain of the photomultiplier flown was about 10^{6} at 1000 volts (manufacturer's rating) and from the calibration curves in Appendix B, one relativistic electron passing through the centre of the sphere will release an average of one photo-e lectron from the photocathode. Allowing for the decrease in gain, this means one electron through the detector is equivelent to 10^{5} electrons at the photomultiplier anode.

But 10^{5} oleotrons per second equals approximately 10^{-8} mioroamps. Thus the number of electrons which must pass through the detector to produce saturation is:

$$
2 \times 10^{7} \text { per second. }
$$

As the area of the detector is $80 \mathrm{~cm}^{2}$, the flux required for saturation is a minimum of:

$$
3 \times 10^{5} \text { electrons/second/cm }{ }^{2}
$$

Alternatively.

We have shown that a drain of about 25 microomps is required from the anode of the photomultiplier for saturation of the cerenkov detector. The triggering level of the discriminator in the unit flown was set at 1000 milli-volts. Now consider the pulses produced at the anode by electrons passing through the perspex to be 100 mv high normally, or 10 mv high efter the decrease in gain. The capacity in the anode cirouit of the photomultiplier was about 25 picomfarads.

$$
\begin{aligned}
Q & =C . V \\
& =2.5 \times 10^{-13} \text { coulombs/pulse. }
\end{aligned}
$$

Therefore we require about 10^{8} pulses per second of the type considered above to keep the photomaltiplier turned off. This is equivalent to a flux of:

$$
10^{6} \text { electrons/second/cm }
$$

This figure does not disagree with that obtained in the previous calculation.

APPENDIX B

```
GERENKOV DETECTOR GEOMETRY
```

Sphere Geometry.
Tho path length of a perticlo passing through the perspex sphere will vary with the distance of the particle from the centre of the sphere. Let x be the total path length in the sphere, y the perpendicular distance of the path from the sphere centre, $2 r_{1}$ the outside diameter of the sphere and $2 r_{2}$ the inside diametor. By simple geometry it may bo shown that:

$$
x=2\left(r_{1}^{2}-y^{2}\right)^{\frac{1}{2}}-2\left(r_{2}^{2}-y^{2}\right)^{\frac{1}{2}}
$$

The real part of this curve is shown in figure $34,50 \mathrm{~mm}$ being substituted for r_{1} and 47 mm for r_{2}. As a first approximation the broken lines in this diegram may be taken to represent this curve. For convenience the two seperate sections of this approximation will be called the sphere 'centro' and the sphere 'edge' respectively.

Thus a particle may produce different amounts of light and therefore different pulse heights at the photomultiplier anode according to which part of the sphere it pesses through.

Calibration Curves.

Apart from the variations in pulse height produced as explained above, the only other important geomotrical effect considered here is whether the particle passes through the photomultiplier face or not. It is assumed that variations caused by different light collection

Figure 34

efficiencios from different parts of tho sphere are negligiblo (tests to detoct this effect found no pulse height variations outside the experimental orror of 15%, all particles passing through the photomultiplier face are treated as if they were incident normally, and effects due to relativistic and non-relativistic particlos passing sideways through the glass face are ignored. For the last-named effect the solid antle is small, approximately $\pi / 3$ and the area is only $2.5 \mathrm{~cm}^{2}$.

The curves in figure 35 wore plotted using a two inoh diameter scintillation telescope in conjunction with the cerenkov unit. The way in which the tolescope and the unit were arranged is shown in the skotoh by eaoh curve. Curve A data are for partioles passing wholly through the sphare 'cuntre', using the name given in the provious section, and curve B was plotted for particles passing through one thickness of perspex and the photomultiplier face. Since the light collocted by the photomultipliar from that released in tho perspex is an ordor of magnitude less then the light released in the photomultiplier face, the formor will be ignored in this investigation.

Tho shape of curve B is determined mainly by the varying photocathode efficiency ovor the face, and by the varying probabilities of arriving at the first dynode for electrons released from different parts of the photo-cathode. These factors in turn depend on the method of depositing the photo-cathode and on the configuration of the electrodes. The shape of curve B was not found to diffor approciably for the types of E.M.I. and 20th Century tubes actually used, although an R.C.A. phototube of a different type of construction gave a markedly differont curve.

The shape of curve A deponded mainly on statistics. The light from the perspex will fall evenly ovor the whole of the photo-cathode, so the geometry of the photomultiplier can have no effect on this curve. Since the telescope constrained us to examine only that part of the sphere where the path lengths are roughly the same, tho geometry of the sphere can have little effect on this curve either. In figure 36 the distribution of points on curve A for one photomultiplier is compared with the shape of the normalised poissonian curve calculated for one particle. There is fairly good agreement. On these grounds we may state that the passage of one relativistic particle through the sphere 'oentre' causes approximately one photo-electron to fall on the first dynode of the photomultiplier. Since the pulse heights for curve A were well submerged in the photomultiplier noise, which presumeably is mainly caused by single thermal electrons leaving the photo-cathode, this soems to bo a reasonable statement.

The pulso heights which would be oaused by multiply charged particles passing through the photomultiplier face may be found simply by multiplying the pulse heights of curvo B by Z^{2}. For the passage of these particles through the sphere tho problem is complicated by the better statistics as Z increases. As a further approximation, curve A has been assumed to be a sharp out-off for values of z^{2} equal to or greater then 25.

Since the effective discrimination levels for the attenuated and un-attenuated sensitivities are known for the flight unit, its theoretical officienoios may be calculatod for particles of different charge passing

Figure. 36

through the three seporate portions of the geometry. Those efficionces are given as percentages in the column labelled 1% in figure 37.

The charge spectrum of the primary cosmic radiation according to Waddington (1961) is shown by the relative numbers listed below.

H 6600
He 953
Li 3.9
Be 1.7
B II. 6
C 26
N 12.4
$0 \quad 17.9$
F 2.6
z) $10 \quad 23.9$

The se have been normalised by taking $z \geqslant 3$ as 100. If the officiencies of the detector are multipliod by these abundance figures, the relative amounts of response will be found for differently charged particles passing through the throe different parts of the detector. These numbers are shown in the 'Rol. No.' colum of figure 37. In order to find the different contributions of those throo parts of the geomotry to the total counting rate of the detector it is necessary to take the area and solid angle of each of the seperate parts into account.

From the table it is calculated that the ratio of the counting rates in the attenuated and un-attenuated states at high lattitudes betwoen April 26th and May 18 th is 2.0 ∓ 0.7. The orror given here arises from

Figure 37

A table of the theoretical relative effects of the hoavy particles In the three portions of the detoctor geometry using the calibration of the instrument and the primary abundance spectrum given by Waddington (1961), This teble was calculated for the poriod between April 27th and May 18th. 1962.

	SPHERE CENTRE$\begin{aligned} & \text { Area }=60 \mathrm{~cm}^{2} \\ & \text { Solid angle }=4 \pi \end{aligned}$				SPHERE EDGE$\begin{aligned} & \text { Area }=18 \mathrm{~cm}^{2} \\ & \text { Solid anglo }=4 \pi \end{aligned}$				$\begin{aligned} & \text { PHOTO-TUBE FACE } \\ & \text { Area }=20 \mathrm{om}^{2} \\ & \text { Solid angle }=\pi \end{aligned}$			
	Attin.		Un-Attn.		Attn.		Un-Attn.		Attn.		Un-Attn.	
	$\%$	Rel. No.	\%	Rol. No.	\%	Rel. No.						
- H											0.1	6.6
Ho									0.9	8.5	5	48
Li									10	0.4	50	1.9
Bo									45	0.8	80	1.4
B									76	8.8	100	11.6
C							100	26	85	22.1	100	26
N							100	12.4	100	12.4	100	12,4
0					100	17.9	100	17.9	100	17.9	100	17.9
F	. .		.		100	2.6	100	2.6	100	2.6	100	$2 \cdot 6$
$z \geqslant 10$	$100 . \%$ for $z \geqslant 14$?	100	23.9	100	23.9	100	23.9	100	23.9	100	23.9

tho unknown quantity in the second column of the table. In practice, this ratio was 2.7. There is surprising agreement betwoen the se two figures in view of the crudity of the calculation.

Light-collecting Efficioncies.
The amount of light released inside the sphere from a typical μ meson passing through it may be calculated using tho equation quoted on page 46:

$$
N=2 \pi \operatorname{ad}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)\left(1-1 / \beta^{2} n^{2}\right) .
$$

Now the total energy, E, of a particle is given by:

$$
E=\gamma \mathrm{mc}=\mathrm{mc} /\left(1-\beta^{2}\right)^{\frac{1}{2}}
$$

For a μ-moson at sea level (200 Mov , say) we find:

$$
\begin{aligned}
\mathrm{m}^{c} \mathrm{c} & =106 \mathrm{MeV} \\
\text { So } \quad 1-\beta^{2} & =0.25, \\
\text { or } \quad \beta & =0.86
\end{aligned}
$$

For a caesium-antimony cathode the wavelength range of the sensitivity is roughly from 3,500 A.u. to $5,500 \mathrm{~A} . \mathrm{u}$. . A typical path lengththrough the sphere 'centre' is 6 mm . The refractive index for porspex is 1.54 (transmission range 3,400 A.u. to 20,000 A.u.). By substitution we find:

$$
N=200 \text { photons. }
$$

Now the overall efficiency of a fairly good photocathode is about 10%. Thus to cause one photo-electron to fall on the first dynode, 10 photons must fall on the photomeathode. Since the $\mu-m e s o n$ originally produced 200 photons in the perspox, the efficiency of the photomultiplier
for collecting light produced in the sphere is of the order of 5% This is lower than might be expectod, and may be associated with the fact that more than 50% of the light produced in the perspex is totally internally reflected, thus raising the number of times the light has to be diffused by the white paint before it is intercepted by the photomultiplior.

ACKNOMLEDGEMENTS

Much of the work which formod tho basis for this thesis was performed in the Physics Dopartmont of the Imperial College of Science and Technology, and I would like to thank Professor PaM.S.Blackett for the oxcellent facilitios provided.

I would also like to express my sincere gratitude to Professor H. Elliot, my supervisor, for his suggestion of this project, for much advice, encouragoment and many ideas. I am dooply indobted to Dr. J.J. Quonby for his romarkable liason work in the initial stages of the oxperiment and for many holpful suggestions during the preparation of this thesis. The programing of the computer was arranged by Dr. ReJ. Hynds, who also assisted in the proparation of the apparatus and performed much of the preliminary data analysis in conjunction with Professor Elliot and Dr. Quenby. My thanks are due to him for this work and for many pleasant and helpful discussions.

I am especially grateful for the cooperation of Mr . Cail and Mr . Mayne of McMichael Radio Ltd, to Saunders-Roe Ltd who provided the faoilities for proving tho pilot experiment, and to Mr. ReC. Baumann and his toam of the National Aeronautics and Space Administration for their enthusiastic assistance and guidance during the integration of the apparatus with tho spacooraft. Unfortunately thore is not room hore for me to thank individually the many other persons and organisations without whose help this work would have been impossible, but to those of thom who read this thesis I oxtond $m y$ sincore thanks.

Finally, I would liko to thank the Department of Scientific and Industrial Research, the Royal Society and the United States Governmont who providod the large amount s of money necessary for the fruition of this project.

Alfven H. 1950, Cosmical Electrodynamics (Oxford; Marendon Press). Alphor 1950, J Gaophys Ros, 55, 437

Armstrong A.H., Harrison Feckman and Rosen, 1961, J. Goophys. Res., 66, 351 .

Arnoldy R.L., Hoffman and Wincklor, 1960, J. Geophys Res., 65, 1361. Atomic Energy Commission (U.S.), 1955, Reactor Handbook; Physios. Biswas So, Fichtel and Guss, 1962, Phys. Rev., 128, 2756. Brown, Hess, and Van Allon, 1963, J. Goophys. Res., 68, 6.05. Cahill Le and Amazeon, 1962, Univ. of New Fampshiro Publications. Carter, Reines, Wagner and Wyman, 1959, Phys. Rove, 113, 280. Casaverde M., Giesocke ond Cohen, 1963, J. Geophys. Res. 68, 2603. Christofilos MeC., 1959, J. Geophys. Res., 64, 869.

Cladis J.B., Chase, Imhof and Knocht, 1961, J. Goophys. Res., 66, 2297.
Devis and Williamson, 1962, seo Hoffman R. A., Davis and Williamson, 1962 J. Geophys. Res., 67 5001.

Dessler A.J., 1958, Phys. Rev. Lett., 1 68.
Durney A.C., Elliot, Hynds and Quenby, 1962, Nature 195, 1245.
Dyce and Horowitz, 1963, J. Geophys. Res. 68, 713.
Edwards P.J., Fonton, Fonton and Groonhill, 1962, Nature, 196, 367.
Elliot H., Quonby, Mayno and Durney, 1961, J. Brit. I. R.E. 22, 251. Elliot H., 1963, Progress in Cosmic Ray Physics, XXVI, 145.

Engel A.Ras 1964, Thesis, Univ. of London, Phd.
Frank and Tamm, 1937, Dokl. Akad. Nauk., 14, 100.

Freden and White, 1959, Phys. Rov. Lett., 3, 9.
Freden and White, 1960, J. Geophys. Res., 65, 1377.
Gabites and Rowles, 1962, Now Zeal. J. of Geol. and Geophys., 5, 920.
Gill PoJ., 1963, New Zoal. J. of Geol. and Geophys., 5943.
Gold T., 1959 Nature, 183, 355.
Gold Ta, 1962, Space Science Review, 1, 100.
Heckman H. A., and Armstrong, 1962, J. Goophys. Res., 67, 1255.
Hoss W.M. 1962, Space Scienco Review, 1279.
Holly and Johnson, 1960, J. Geophys. Res. 65, 771.
Hutnor RoA. 1939, Phys. Rov. 55 15, 109, 614.
Johnson T. H., Rev. Mod. Phys., 10, 194.
Kaspor J.T., 1958, Il Nuovo Gim. Suppl., 11,.1.
Katcoff Se, 1958, Nucloonios, 16, ro.
Kollogg PeJ., 1959, I1 Nuovo Cim., 11, 48.
Koenig H.P., 1940, Phys. Rev., 58, 385.
Kurnosova L.V., Logachov, Razorenov and Fradkin, 1962, Plan. Space Science, 11, 193.

Latter, Horbst and Watson, 1961, Annual Rev. Nuo. Sci., 11, 371.
Lemaitre G. and Vallarta, 1933, Phys. Rev. 43, 87.
Lenoheck A.M. 1962, J. Geophys. Res., 67. 2145.
Lenchock A.l. and Singor, 1962, J. Geophys. Res., 67. 1263.
Motz H.T. and Cartor, 1963, J. Goophys. Ros., 68, 657.
McDonald and Wobbor, 1959, Phys. Rov., 115, 194.
McDonald and Webbor, 1961, J. Phys. Soc. Japan, 17 Supp. A-II, 428.
MoIlwain, 1961, J. Goophys. Ros., 66, 3681.

Naugle and Kniffen, 1961, Phys. Rev. Lott., 7, 3. Newman P., 1959, J. Geophys. Res., 64, 923.

Northrupp and Teller, 1960, Phys, Reve, 117, 215.
OBrion B.J., 1962, J. Geophys. Res. 67, 1227.
O'Brien B.J, and Laughlin, 1962, J. Geophys. Res., 67, 2667.
O'Brion B.Jo, Laughlin end Van Allen, 1962, lvature, 195, 939.
OPBrien B.J., Van Allen, Laughlin and Frank, 1961, State Univ. Iowa publication SUI-61-23.

Parkor, 1962, Spaco Scionco Review, 1, 62.
Petorson A.M., 1959, J. Geophys. Res., 64, 933.
Potrov Y.I. 1960, Reactor Sci., 12, 129.
Pizzella Ge, McIlwain and Van Allen, 1962, J. Geophys. Rese. 67, 1235.
Pomorantz and Witton 1962, J. of Phys. Soc. Japan, 17, Suppl. A-III, 40.
Quonby and Wonk, 1962, Phil. Mag., 7, 1457.
Rosser Vf., 0^{\dagger} Brien, Van Allen, Frank and Laughlin, 1962, J. Goophys. Res.a 67, 4533.

Stormer C., 1955, The Polar Aurora, Oxford University Press.
Singer S.F., 1958, Phys. Rev. Lott., 1, 171 and 181.
Singer S.F., 1962, Nature, 196, 307.
Vallarta M.S., 1948, Phys. Rev., 74, 1837.
Van Allen J.A., 1958, I.G.Y. Satellite Report 13, (1961).
Van Allon J.A., Ludvig, Ray and McIlwain, 1958, Jot Propulsion 28, 588.
Van Allon ot al. 1959, I.G.Y. Satollite Roport 9, 1152.
Van Allen J.A. and Frank, 1959, Nature 183, 430.
Van Allen JaA., McIlwain and Ludwig, 1959, J. Goophys. Ros. 64, 877.

Van Allon JoAr, ot alo, 1962, State Univ. of Iowa publioation SUI-62-26. Vernov S.N., 1958, Fifth Gen. Assembly of G.S.A.G.I., Moscow.

Vernov S.N. and Chudakov, 1960, Space Rosoarch I, North Hollend Pub.
Co., Amsterdam.
Waddington. 1961, 'is. Phys. Soc. Japan I7s-Suppl. A-III, 14.
Webber W., 1957, Il Nuovo Gim. 4, 1285.
We bber W. and Quonby, 1959, Phil. Mag. 4, 654.
Welch J.A. and Whitakor, 1959, I.G.Y. Satellite Report 9, 1190. Willmoro A.P., 1962, Private Communication.

[^0]: 3.6 Acceleration Test

