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Abstract

In fmnci?lz fhe most direct way of obtaining the experinment
~tal heats of transport is by measuring the crystal thermo-
power. This is done for pure NaCl single crystals using
platinum electrodes in the temperature range of 870°K to
IOGOOK. Howewer, the results of the alkali-halides measure-—
rents have not been succesfully analysed so far. This is
beéause in the alkali-halides systenm irreversible electrodes
(no comnon ion between electrodes and crystal) have to be
used, and the existing theories for the irreversible
electrode~crystal thermopower are unsatisfactory. The
possibility that the heterogeneous thermopower night be
caused by the electrons, which are transfered from the
electrodes to the cryétal, and which do ndt fall into any
traps, is inyestigated. This nodel is also found to be
unsatisfactory.

The. dynanics of the diffusion of a vacancy
in a linear chain is studied. A simple relationship between

the heat of tranSport,Q*,and the activation energy for
thernal diffusion,E, is found, nanely, Q' = (2+q/T)E, where

g is related to the dynamics of the system. The subsequent
calculatiﬁns show that q is negative in agreement with the
experinental data for AgBr and AgCl.

‘In the couree of calculating g to attempt to

give :. theoretical heats of transport for the alkali-halides



various force constants operating between the ions have to
be evalugted. This is first done by evaluating the Schottky
-pair formation energies by lattice calculations,.This
calculations, which prove. very successful,show that the

basic Born-Mayer form of potential chuosen here is resalistie,



CHAPTER I: TINTRODUCTION

Point defects exist in solids; and they are necessary to
maintain thermodynamic equilibrium. In ionic crystals the
point defects are charged and their movements account for a
major portion of the conductivity of the crystals. i For a
comprehensive account of ionic conductivity see Lidiard (1)}.
The conductivity and other related phenomena {(e.g., dielectric
absorption and relaxation) of ionic crystals, especially of the
alkali-halides; have been studied extensively. From these
studies, the type of defects (Schottky or Frenkel type), their
concentrations, and some of their properties (e.gp. enercies of
formation, energies of activation, etc) have been found.

In contrast to the phenomena which occur when the crystal
is under an electric gradient, those phenomena which occur when
there is a concentration gradient, i.e. the Soret effect (see
Reinhold(Q), Reinhold and Schulz(3), Allnatt and Chadwick(l)),
or when there is a temperature‘gradient, are not well under-
stood.

I.1 THERMOBIECTRIC POWER HMEASUREMUNTS

The measurcments of the thermoelectric power of the silver
halides by Christy et. al (5) and Christy (6) show good re-
producibility., But the early measurements on the alkali
halides by Fikitinshaya and Murin (7) show that the re-
producibility is far from satisfactory. Allnatt and Jacobs(g),
‘working on KC1l, report: various unexpected phenomena which
they are not able to explain., Subsequent suthors (9,10,11,12)

have since confirmed the observations of these phenomena in



the other members of the alkali-halides.

It has been suprested that the experimental difficulties,
and the non-reproducible anomalous phenomena cncountebed in
the measurcments of the thermoelectric power of the alkali-
halides have in a large part been due fo the necessity of
using irreversible elecctroces (i.e. no ions in common between
the crystal and the electrode;. Alkali metals mre soluble in
the salt and they arc extremely volatile at the temperatures ai'
which the measurements are carried out.

It is difficult to explain the resdits of the measure-~
ments of the steady state thermoelectric power. The total
thermopower, ©, is made up of the homogencous, i.e. crystal,
thermopower, Gngms and the heterosencous, i.e, crystal-
c¢lectrode, thermopower, Opo¢e The four theories exp1aining
the heterogeneous thermopower, namely Howards's (13) surface
formation of metal phase theory, Allnatt and Jacobs's (14)
F-centre theory, Jacobs and Maycock's (11) surface charge
theory, and Shimoji and Hoshino's (15) combination of the
F-centre and Lehovec space charge theory all arrives at a

significant magnitude of the heterogeneous thermopower.

I.2 THE HOMOGLNEQUS THERMOBIECTRIC POWER

The theoretical expression for the homogeneous thermo-
power, Opaye 1S obtained by first writing down the flux of

lons in the two sublattices 'of the binary ionic gsystem when
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the crystal is in a temperature gradient{ For the alkali-
halides, the flux of thc cations (alkali ions), j+, is

written as

#

- en Gl n -
J+ = D+ | grad n(+) - —E%il grad V - -iagiil grad T| eene (1)

where D is the diffusion co-cfficient of the cation.
n(,) is the concentration of the cation vacancies per
unit volume, V is the potential developed across the

crystal, and Gf is the heat of transport of the cations,

For the derivation of Equation (I1) see Chapter II
There is a corresponding expression for the anion (halide
ion) flux, J-.
" In the steady state,
J+ = J- = 0,

and consequently, the homogeneous thermopower is

Opom = grad V. _ _ kT grad n(_) iﬂhs - QM)n + ﬁQf/qj
om  grad T en(-) grad T oT (n + £/n )

eeee (I.2)
_ )/

where g = D"'/D_,_, n No, ny is the equilibrium cation
Vacancy of the pure crystal, and hs is the enthalpy of form-

ation of a Schottky pair,



In order to analyse the experimental results of the
thermopower measurements according to Bquation (I.2) an

adequate theory of the heats of transport is required.

1.3 THE HEAT OF TRANSPORT

The heat of transport of an ion, or atom, is defined as
the heat, or energy, which is carried by a unit flux of the
ions, or atoms, when the temperature is uniform throughout.

The earliest theory of the heat of transport is done by
wirtz (16) who uses a simple kinctic argument. Wirtz pictures
the jumping process as follows: An ion at temperature T is
given a free energy Aglsto make the jump, At the end of the
jump it gives up a free energy, 483 st a temperature of T + AT,
to push the ions surrounding the vacancy apart, HMidway, ago
is given up at T + 2T/2 to let the ion through, On the basis
of this analysis, Wirtz deduces that Q5€ = = s#hz + 4hq where
shy and nshz are the enthalples corresponding to the free
energies &gy and.f:-g3 respectively,

Assuming that oh4q and Ah3 are roughly  the energies of
activation and formation of a vacancy respectively, this theory
deduces that for NaCl, Q} = =1.01 + 0,69 eV = 0,32 eV and
Qf = =1,01 + 0.91 eV = -0,1 eV, These values are independent

of temperature.. Both the form and the magnitude of these

results are contrary to the experimental evidence.
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Since Wirtz's original theory, other authors have used
both the kinetic approach (17518519,20,21,22,23)  .pg the
transition-state, or activated complex, approach (24, 25, 26)
towards the understanding of the heat of transport. Most of
the results predict that the heat of transport is edual to the
activation energy. ¥xperimental observations have not proveé

this prediction correct [See Chapter (VI))

I,L THE RICE~-SHOTTKY APPROACH

Rice (27) evaluates the probability that an ion will move
into a neighbouring vacant site under isothermal conditions.

The probability is expressed as a function of a frequency factor
and an activation enerpgies factor. By using Slater's (29)
results on the effects of the super-positions of various mole~ ..
cular vibrational modes, Rice relates the frequency factor to

the basic dynamics of a lattice.

Scho t tky (30), following the Rice-Slater method, uses a
linear chain model of the lattice to evaluate the rate that an
ion will jump into a neighbouring vacancy under a thermal
gradients The thermal gradient causes an asymmetric dis~
tribution of the lattice phohons around the vacancy, This
asymmetric distribution results in the use of the phonon
relaxation time, t, Any temperature dependence of the heat of

transport lies in the factor t,



Schottky obtains the general result that
o*/B = 2 - 2t"1/4 eves (1.3)

where B is the activation energy of the Jjump, ia’ is the
lattice spacing and wq is a factor which is expressible in
terms of the dynamics of the lattice.

i Bquation (I+3) is the modified form of Schottky's
original general resultJ

All the calculations are done in the harmonic approx-

imations and in the final result only @ /E 1s meaningful,

I.5 THE __PRESENT WORK

Following the revised Schottky's general result on the
heat of transport, as expressed in Equation (I.3), attempts
" arc made to apply it to a simple, but realistic, model of a .
vacancy in the NaCl type lattice,

The dynamics of both a perfect lattice and a lattice
with a point defect are studied. Special attention is paid
to the scattering of the lattice phonons by a vacancy.

In the course of tﬁe work on the dynamics of the
lattice, various functions of the force constants have to be
evaluated, Therefore a study is made of the various types of
forces operating between the ions in the alkali-halide crystals.
Some lattice calculations are made on the energies of form-

ation of a Schottky pair in the various alkali-halides.



The various known models attempting to explain the
irreversible electrode-crystal thermoélectric pOWEYr are
discussed., A new model is presented and its validity, -or
otherwise, is tested by using it to analyse the experimental
results.

. measutements

The thermoelectric power,of pure NaCl single crystals
. is made. A thorough observation of the various phenomena;
which appear: during the course of the measurements, is
reported.

Finally, from the work on the heat of transport, the

experimental results are accordingly analysed.



Figure 1 Thermopower measurements set-up. The leads ~nd

clectrodesg =rc of metnl M1. The crystal, X, is in a

thcrmal gradient. Potential differcnce measurements are

taken between A and F., The total thermopower is the sum

of the homogeneous and heterogencous thermopowers.

10
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Figure.1.

THERMOEILECTRIC POWER MEASUREMENT
SET-UP )

MX




CHAPTER II

THE _THERMOELECTRIC POWER (THEORY)

II.1 _INTRODUCTION

When an ionic crystal is ﬁlaced in a thermal gradient
and sufficient time is allowed to elapse for the steady state
to be established, an electrical potential difference is
ocbserved between the ends of the crystal.

Consider a crystal, MX, in a thermal gradient as in
Figure (1). The total potential difference measured across
A and F, say V(AF), is made up of several factors.

It is given by
V(F) - v(a)
V(AB) +V(BC) +V(CD) +V(DE) +V(EF)

V{AF)

it

where V(AB) and V(EF) are the potentials in the leads.
They are small compared with the other factors and therefore
can be neglected,

V(BC) and V{DE) are the contact potentials between the
electrodes, M!, and the crystal, iX.

V(CD) is the potential difference between the ends of
the crystal,

Neglecting V(AB) and V(BF), the total thermoelectric
power, Opota1 (T), defined as the potential difference divided

by the thermal gradient between the electrodes, is given by



[ V(BC) +V(DE) | [ v(cD
Crota1 (T) L= a7 b | AT J
T T
= o(1) + @ (T)
heterogeneous homogeneous

From a knowledge of the heterogeneous thermoelectric
power, Ghet’ the mechanism of the crystal-clectrode contact
potential can be determined. |

From the homogeneous thermoelectric power, Ghom’ the
basic dynamics of the ionic motions within the crystal lattice

can be worked out.

11,2 THYRMODYNAMICS OF IRRIEVERSIBLE PROCESSES

This branch of thermodynamics extends the concepts of
reversible -thermodynamics to the steady state irreversible
processes under the assumption that the following three con-
ditions hold:~-

a) that throughout the fluctuations of the system the
probability that the state variables, aj, are in the ranges
aj to ay + daj where 1 ; 1y e«es N, 1s
exp(®8/¥X)day ou. dap

Pdaqday ees dap = = - !
53...$)exp(ﬁs4c)da1..dan

‘where jss is the change in entropy of the system from its
initial value.

'b) that the microscopic processes are reversible, The
average correlation between aj at a time t and aj at a time

t later is the same as the average correlation betwesen aji at
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the time t and aj at a time t earlier, This time reversibility
gives a normal sequence to the fluctuation, -

c) that on the average, the decay of a fluctuation
follows the ordinary phenomenological laws, The same laws
apply to the microscopic as well as the macroscopic deviat-
ions. |

For a detailed account of the asbove see De Groot (31),

Irreversible thermodynamics have been applied to fluids
[De Groot ana Mazur (32)} and also to solids [Bardeen and
Hec¢ring (33)]

It can be shown that in an irreversible process the
entropy produced is given by

T =dg . Xg +E§5 Jx « Xy + viscosity terms

cees  (II1)
where T is the temperature,? 1is the rate of change of
entropy with respect to time, Jx is the flux of the kil
specit measured w.r.t. to the centre of mass, and Jq is the

heat flux measured w.r.t, the centre of mass.

The forces Xg's and Xq's are defined as follows:
3

¢ cees  (II1.2)
Grad T }

X = Fx = T Grad (E%)

- =1
Xg =~ 4
where Ek is the external force, and ux is the chemical

potential of the k specie..
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The fluxes and forces are related, and they can be

written as

q
[}

dx = Lkg Xq + , LkiZi b
1 #
( veer (I1.3)
n \
Jq = Lgq Xq + 2 LgiXi /
1

The main result of irreversible thermecdynamics, indeed,
the only new information that this approach can provide, is
embodied in the Onsaper's Theorem,; which states that in the
absence of a magnetic field,

Lix = Lgi | ‘ veee  (II.hA)

In the presence of a magnetic field, B; however, this

becomes

Lix(B) = Ixi (-B) vees  (II.LB)

II,2,1. THE HEAT OF TRANSPORT

The heat of transport, Qi, expresses the inter-relation-

ship between the co-efficients Likx and Liq, i.e.

Mo

qu = I.lik Qali eae e (II. 5)

A

1
Substituting this result into Bquation (II.3), the

fluxes are re-expressed as:

Ixi (Xi + QF Xq)

Ik =2 !
1 ;
\( so e (II-6)
n D)
dq =2 f 41 + (Igg ’f§1Ltii) Xq
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From the second of Equations (II.6) a physical inter-
pretation is obtained for the heat of transport Q?. It is the
amount of heat which is carried by a unit flux of the ith
speclie, when there is no thermal gradient.

Iff the fluxes and forces are represented by column
matrices J and X respectively, and the fluxes are transformed,
€.2. to represent a change of the coordinate system, to g1=A{,
then these new fluxes, along with the forces 51 = F-1 X will
stisfy the Onsager relations.

A physically useful transformation is:-

Ik = Iy
N 2 eers (I1.7)
1.3 - 3n )

where hy is the enthalphy of an atom of specie k.,

This implies that

1 .
Xk = Xy + Mikq = Ex - (Grad s ) 16
X1 - Xq .} o » 0 .
x! = x

in which (®rad ux)p is that part of the gradient of ujp due to
the pressure and concentration, but not the temperature., The
flux g; is called the reduccd heat flow and the reduced heats

of transport in the transformed system, Qf1, are given by

3 3
i—hi s e (II‘9)
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I1.2.2, THE HOMOGENEOUS THERMOELECTRIC POWER

Following Howard and Lidiard (83), in the case of the
Schottky defects in the ionic crystals, the four species taken
explicity into account are: (1) cation vacancies, (2) anion
vacancies, (3) cations on cation latticé sites and (4) anions
on anion lattice sites.

The forces in the "reduced heat flow" system are

3
X1i = bl ei VV - (v}ll)T g X (II.10)
= =1 i
Xq = T g7
There is no exchange disorder and ¢y = &, = o,

€3 = -g), = @, the clectronic charse. Since the cations and
anions are restricted to their own sub-lattices, the fluxes are

related by
S P S SR S (R SN

Using Equations (II.6), and these relations, the fluxes

bebome J11

It

L11(X11"'X3 +Q1X 1) + Lgo (K2 -XLI. +q2Xq1) : )
s o 00 ILﬁ

g5 L21(X11—X31+q1xa ) + Lop (X5 --XLL 1rg¥xq")

where qf = Qf1 - Q§1

and a Q§1 - Qﬁ1

and they are the heats of transport of the cation and anion

vacancies,



Keeping in mind that

I

n1
Aq = gq + kTln ()

and p, = go + kTln (%1)

and putting the total electric current to be zero in the

steady state, i.e. Jq + J2 = 0, ghom is obtained, namely,

. _ kT (D4Grad nq4-DoGrad np)
hom ~ eGrad T (n1Dq1 + noD2)

¢ (p1D4a7 - PaDogp) “eves (II.12)
eT (n4Dy + npDp)
where Dy and Dy are thc mobilities.

For a pure crystal, i.e. n4 = np = ngyy; and from the law
of mass action for thermal vacanciesvn"/m = an/ng =
h9T/ 5y m2
where h is the enthalpy of formation of a Schottky pair, the

homogeneous power reduces to

¥ h/ ¥ h/
| D 2) - D 2
Onom = D131 T ) - Dolap + 72) vees (II.13)

eT (D4 + D2)

For an impure crystal, i.e nq # no,

hom - - K107ad nt (o + n)n - Aa¥/m} L. (mr.aw)
om enqGrad T eT (n + Am )

where 4 = D1/D, and n ="2/n, = nO/DI.

(3h)

Equation (II.13) is first given by Patrick and Lawson
Equation (II.414) and its corresponding form for Frenkel

defects are derived by Howard and Lidiard(35) and Haga(36).
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II,5 REVIEW OF THE LITERATURE

The theory of the homogeneous thermoelectric power of
ionic crystals, applicable to crystals with either Schottky
or Frenkcl defects, hag. been derived by various authors
[Holtan, Mazur and de Groot(37>, Patrick and Lawson(3“),
Howard and Lidiard(35), Haga(36), Allnatt ana Jacobs(1h) ana
Shimoji end Hoshino(15)]. They all agree in their final

expressions., That is

_Grad V. _ _ kT grad n(~) . {(h-q¥ -
dhom(q) = Grad T © e n(—?Grad T §< e??;n;+5§n?)/ns

eees (II1.15)
where the notations are as in Chapter I. '

ShimoJji and Hoshimo(15) claim: that the interactions of
the cation wacancy-anion vacancy (in the systems where the
intrinsic defects are of the Schottky type) cannot be entirely
neclected even at high temperatures and therefore thew analysis
of the factors entering into Equation (II.15) &§¢ different.
In view of the overwhelming cvidence to the contrary provided
by the ionic conductivity experiments [see Lidiard (1)], the

author sugrests that Shimoji and Hoshino's claim is doubtful.

IT.5.1 THE HETEROGENEQUS THERMOPOWER : REVERSIBLE ELECTRODES

In the systems where the electrode is reversible (e.g.
AgCl crystal with Ag electrodes) Howard and Lidiard(35)

assume;. that there is a transfercnce of the common ions
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between the crystal and the electrodes. A contact potentisl
builds up to prevent further flow of the common ions. The
contact potential, @, of a crystal MX, with electrodes M, is
given by
B = % Lpi - p(u* in M)]

wherc i is the chemical potential of the interstitial ion,
and u(MTin ¥) is the chemical potential of the metal ion in
the electrode M, i

Therefore the heterogeneous thermopowef; Ophetr is given
by:

e'het=i5%=iéf:3§-%+s(m+ in M)} cees  (II.16)
where S(M'Y in M) is the partial entropy of M* in M.

Howard and Lidiard obtaini., for the difference between

the thermopowers of the dopcd and pure crystals which contain

intrinsic Frenkel defects, the expression

2 ¥
A9(n) = d(n) - @(1) = (n=-1) g (Qi+g + h) _ X
i A (n2+4) (1 + £) er ¢ R

cees (ILAT7)
where n is the vacancy concentration relative to its value in
the pure crystal at that temperature,
g is the ratio of the interstitial mobility to the
vacancy mobility
Q? and Q? are respectively the interstitial and vacancy

heats of transport,
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5.2 IRREVERSIBLE FIECTRODES

In cases where reversible electrodes are not used, as in
the case of the alkali halides where the alkali metals are
volatile and soluble in the salts, irreversible electrodes
have to be resorted to. Theoretically the heterogeneous
thermopower of the crystal-irreversible clectrode is not
clearly understood and various mechanisms have been proposed.

Howard's Wodel

Howard (26) suggests that, for the crystal MX in contact
with electrodes M1, electrons are transferred from M! to the
surface of MX and the metal M is formed at the surface.
Equating the electrochemical potentisls, the difference between

the electrode potential Vi and the surface potential, Vg, is

/

Vg = Vg = % ﬁum+,s thRe g~ Byog eees  (II,18)
where the u's are the chemical potentials and the subscripts
are self-explanatory e.g. gt g is the chemical potential of
the M ion on the surface of the crystal.

Using this model Allnatt and Jacobs (14) then consider:
the transfer of one cation from the surface, S, to the bulk,B,
of the crystal.,. The potential of the surface VS relative to

the potential of the bulk, Vg, of the crystal is then,

- =1 - -
Vs - VB =g (pM+,B P(+),B PM*,S) veee (I1.19)

where P(+),B is Jjust the chemical potential of the cation

vacancy in the crystal,
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From Tquations (II.418) and (II.19) the heterogeneous

thermopower is found to be

lu

’ 1 .
Chet = (VE - VB) - (Sm,s+ S(+) - Se,E - Sm*,B)A

vess (II.20)

]
3

where the S's denotes the entropies.

The heterogeneous power cannot be calculated from
BEquation (II.20) becsuse the terms are not known. For example
the surface chemistry is not well understood and Sm,s is not
. known. Theidifference in the total thermopower be tween the
doped and the pure crystal is given by

A€ () =0 (g) - o (1)

_ 1 (02 - 1) fn-g*-g¥
eT (1+4) 2+ 4 L * "i
kT 1, TAS ceee .
+ =2 o S n + TASR (II.21)

where 4Sp denotes the change in entropies of Equation (II.20)
g 1is the ratio of the anion to cation mobilities.
n 1is the ratio of the concentrstion of the cation
vacancies to that of the pure crystal.
Lidiard and Howard (38) suggest that aSy = O.

Allnatt and Jacobs liodel

Allnatt and Jacobs (14) assume;: that the electrons are
transferred between the electrodes and the crystal. Assuming
that the electrochemical potentials of the electrons are the

camer gverywhere, they obtain
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_GVE - PC,E = e eVS + ’ueb,s = - eVB +,}‘189B eno (II. 22)
The heterogeneous power, therefore, becomes
ee}het = Se,B b Se,E ¢o e (11023)

To evaluate S, 5 Allnatt and Jacobs assume that the
electrons in the crystal are distributed between the con-
duction electrons and the F~centers, The F-centers,; they
maintain, arise from the non-stoichiometry of the crystal,

Kroger (39) points out that if the F-centess exist
uniformly throughout the bulk of the crystal then there should
be an electronic contribution to the thermoelectric power,

Jacobs and Haycock (1) show. that Allnatt and Jacobs
have left out a term in their final expression for ehet' When
this term is included, the number of non-stoichiometry electron
becomes unreasonably high,

Allnatt and Chadwick (12) suggests that the F-centnr
theory could be modified in such a way that instead of an
excess of electrons, there are an excess of holes in the
crystals The holes react with the cation vacancy to form a
Vﬁ cente>», There is then an equilibrium between the holes and
the Vﬁ center as well as the equilibriums between the holes and
electrons, and the Vﬁ center and the (Vﬁ)2 center.,. In view of
the complexity of the processes involved and the lack of
information about the Vﬁ centers in the alksli-hslides, how-
ever, much work has to be done before this theory can be of

any practical use.
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Jacobs and kiaycock Model

Jacobs and Maycock(11) suggest that the source of the
heterogeneous thermopower lies in the temperature-dependent
Frenkel—Lehovéc(”O) space charge. They assume that there is
an excess of bation vacancies near the surface of the crystal.
The excess cation vacanciés form a negatlve space charge which
induces an equai but opposite charge on the surface of the
electrode, The electrons are transferred from the metallic
side of the interface to the crystal side. The electrons do
not actually enter into the crystal znd the electrodas are

ideally polarised. The eqguation of eqguilibrium is:

Vil ~ Vi =2 oy - R(y) eeee  (II.24)

the calculations on this model gives the heterogeneous thermo-
power as

d .
Ghet = = kT ‘a‘r-'_["' in Il(_i_) ses e (II-25)

The total power becomes, for the doped crystal,

e () = - 9_5; eoss  (II.26)
eT

and for the pure crystal,

o (1) = L (A - -af1 cees  (I1.27)

(1 + 2)

Shimoji and Hoshinmo's Model

Shimoji and Hoshino(15), again, starting from the concept

of the Frenkel-Lehovéc surface charge,suggest. that the electras

/
i
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are t:apsfenped across the interfape. The elgqtronu'cgn QO
two things. ;? 033 wander about in the in@éff?éé Qp iﬁicéﬁ be
drawn by the/gpace charge into the crjstéi. Shﬁuld‘ghé firsﬁ
happen? the lack of knowledge about the interfacémprefénfs tﬁe
chemical potential of the electrons to be expressed explicitly.
The implication of this is that Jacobs and Maycock's starting
point as expressed here in Bquation (IT.25) is incorrect,
Therefore Shimoji and Hoshino suggest that the clectrons
actually enter into the crystal and, further, they are trapped

by the anion vacancies to form F-centres, The heterogeneous

thermopower 1is then divided into two parts,

. 14
et = et * Fnet

e%et is obtained by the electronic equilibrium between the
metal electrode and the surface of the crystal, Oi;t is the
anion-vacancy equilibrium between the surface and the bulk of
the crystals The expression for Oiet is

oiet = (8g,s = Se,m)/e

S and Se‘ are respectively the entropies of the
~y

€,8 M

electrons at the surface of the crystal and at the metal
electrode.

The derivation of G;;t goes as follows: The potential
between the surface and the bulk of the crystal is con-

centration-dependent. The presence of the electrons modifies

the potential to a factor E11(q), where n is, as before, the
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ratio of the concentration of the cation vacancies of the

impure crystal relative to that of the pure crystal at that

temperature, The total heterogeneous thermopower is, eventuall

g 3/ 23

O op (B) = %,f, {KT1n }2(27 mkI/hs2)™ <! ~Bp-kT1n(ng(n))

+ (ne_y=hy)/2 + ed' ' (y) ~x1?z1n n | viss  (II.28)

where n3 (n) is the conccntration of the electrons at the
surface and h(_) and h(+) are the enthalphies of formation of
anion- and cabion~vacancies respectively,

There is one major difficulty with Shimoji and Hoshino's
theory, namely the uncertainties of the modified potential
&'7(n) sppearing in Equation (II.28). For example neither the

form nor the magnitude of the potential 511(q) is known,
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II.L, THE HETEROGEINEQUS THERMOPOWER WITH JRREVERSIBLE

SLECTRODES

The only speciescommon to the clectrode M1 and the salt
MX is the electrons, Owing to the difference betwecen the
Fermi levds of the electrode and the salt, the electrons are
transferred Irom the electrpdes to the crystal. Assume that
the electrons are localised to a region in the crystal near
the interface. An electrical double layer builds up across
the interface to prevent any further transference of the
. electrons, Assume that the electrons do not get into traps,
such as anion vacancies to form F-centres,
The electrical potential of the electrpde relative to

the crystal, Vhet, is then given by

1 ,
_ 1 M _ X 9
Vhet = ¢ Ep -—ep™) veve (II.29)

where-€F‘s are the Fermi levels.

Therefore, the heterogeneous thermopower is

1 wl
= 2 1 K
et = Z5 Vhet =5 (Se Se ) cees  (I1.30)

where Se’é are the entropies of the electrons.

II. 4.1 THR® ZIECTRONIC ENTROPY IN HETALS

The electronic entropy in mectals is given by
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ﬁ1 :"T 01 1
SeL = p_ dT where Gg is the molar specific
o .l

heat of the electrons at constant pressure in the metal H1,
and Na is the Avagadro's number.

Experimentally the electronic specific heat at constant
volume, Cy, is determined at low temperatures and it is found
to be given by

Cl = YT where, for platinum ¥ = 1.6 x 1073 cal/mole-deg?
Daunt (41)),

i

Assuming that the electrons in the metal is a perfect

gas then the relation Cg - 03 = R, the gas constant, holds.

-
. g T  gar! -T
. e e = '];T'—% 3 I\;'é: dT1
AT-> 0 8 AT 0 a
= (RInT + ¥T)/Na eees (II.31)

Substituting the apopropriaste values in Equé%ion (11.31)

i | |
it is found that S€  at 1000°X is 0,328 mV/CX.
[§] R

IT. L, 2 THZ IDTLECTRONIC TNTROPY IN ALKALI HALIDES

The Fermi level of the alkali-~halides can be obtained
from a simple model of an insulator [see €. 8s Dekker (h2)].

The alkall halides are very poor eclectronic conductors,
This means that the valence band is completely full and the
conduction band is practically empty. The number of electrons

in the conduction per unit volume; n,, band is given by
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neg = ’tz(E>R(E)dE vese (II.32)

where Ec,b and Ec,t are the energies at the bottom and the
top of the conduction bsnd and F(E) is the Permi-Dirac dis-

tribution function and is given by

1

e e g

vese (II.33)

€p is the Fermi level.

%(Z) is the number of states per unit volume, As the
energy, H, increases the probability of these states being
occupled decreases extremely rapidly as can be seen in
Equation (II,33). It is therefore only necessary to evaluate

Z(®) at the bottom of the ¢onduction band. At the bottom of

the conduction band

eees  (II.34)

where hp is '+ Planck's constant and mg is the effective

mass of the electrons.

Equation {II.3Y4) is obtained as a consegquence of the
periodicity of the lattice, The periodicity of the lattice
causes the density of states in k-space to be uniform (X is
the wave vector of the electron). At the bottom of the con-

duction band the electrons are nearly free and relation between
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E and k is found by solving the Schr8dinger Equation.
Putting Equations (II.33) and (II.34) into the integrand
in (II.32), end assuming that By p-Em 2 LKT,

3/2 (€n-B.)/KT
ng = 2(27m} xT/h%) e  © © eees (IT.35)
Similarly, the number of holes per unit volume in the valence

band, np, is given by

2 (Bv,t=ep)/xr

*
2(27Tmy KT/, 2) eese (IL.36)

np

Since ne

Dy
€p = (B, + Ev,t>/2 + 5ﬁ4lﬂ?ln (mﬁ/mz) cose (I;.B?)

The electronic entropy of the alkali halides Sg =, is

E2d
therefore —3/u k Jfl(mh/mg).
The effective masses of the holes and electrons are not known

exactly, but it can be readily seen that SeMX/e is negligible.

1I.5 DISCUSSIONS.

Neither the Allnatt and Jacobs's (14) F-centre theory
nor Jacobs and Maycock's (11) surface charge theory have been
sutcessful in explaining the irreversible electrode-crystal
thermopower, When these two theories are used to analyse the
experimental results, they have not been able to produce a
plausible value of the heat of transport. [_See Allnatt and
Chadwick (12 )] .

Howard's (13) theory assumes that the electrons are



caught in traps the moment they enter the crystal at the
crystal—-electrode boundary. The model presented in Section
(I1.L4) discusses the effect on the heterogeneous thermopower
should the electrons not be trapped when it gets into the
crystal.

These two models will be used to snalyse the experimental
results in Chapter (VII), The success, or otherwise, of these
two theories to produce a plsusible value of the heat of
transport will determine whether or not the assumptions

inherent in the respective theories are valid,



CHAPTER III

THE HIATS OF TRANSPORT (I)

"
II1.1 _INTRODUCTION | /

The heat of transport, QE, of a specieshas been defined
in Chapter (II). It is the heab carried by a unit flux of bhe
specie when there is no thermal gradient in the system.

Normally the heat of transport that is discussed in the
literatures is the reduced heat of transport | See Chapter (Ilﬂw
The relationship between the heat of transport, Q¥ and its
reduced form ¥ is given by [c.f, Bquation (II.9))

Qx1 - Q* - h
where h is the enthalphy of the atom,

Hereafter the term the "heat of transport" will be taken

to mean the reduced heat of transport and it will be referred

to simply by the symbol Q*,

1Il,2 LITERATURE REVIEW.

The theories of the heat of transport can be divided into
two parts, The first computes the energy flux accompanying the
atom flux under isothermal condition (transition state theory)

and the second under non-isothermal condition (kinetic theory),

11,2 1: THE TRANSITION STATE OR ACTIVATED COMPLEX

THEORY

Consider a reaction process, such as the jumping of an

atom td a neighbouring vacant site in a lattice. In the
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transition state theory, it is assumed that in the transit
between the initial and final states of the Jump, there
exists a transition state whose life-time is long enough

- for its chemical potential to be defined explicitly. While
the atom is at the saddle point which defines the transition
state, the number passing through it in one direction under
isothermal condition can be calculated by the use of stat-
istical mechanics. Wert (24) suggests that the flux of atoms
is determined by the fraction of time that the atom has
sufficient engrgy to be in the activated state, He obtains
the rate of jumping,}, in terms of the thermodynamic
funétiohs, namely

T = n'Wexp [ -8G/ 7] eees (III.A1)

where n! is the number of diffusive paths, v is the
frequency of vibration of the atom at the ;attice site, and
AG is the work done when an s tom is moved isothermally from
the lattice site to the transition state.

Using Wert's formulation, Haga (25) calculates the
energy flux accompanying the ion flux. Pﬁysically when the
ion moves from one lattice site to another, it is given an
energy AH at the initial site to surmount ﬁhe potential
barrier. The heat transported is this energy plus the entropy
contribution of the surrounding atoms when the atom comes

down from the saddle point to the final site, Thus
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Q¥ =pH - Tas(x?)
= pG vese (III.2)
where AS is the entropy contribution at the final site xt,
In the Haga-Wert approach, the jumping process is
thought of essentially as a one-b0dy process. Strictly
speaking, this is not correct. The jumping of an atom
involves the corporate motions of the surrounding atoms: It
is essentially a many-bodies problem since the moving atom
interacts with all the surrounding atoms., In the transition-
state approach of Vineyard(Qé), the flux of atoms across the
saddle point is evaluated in the 3N configuration space of the
crystal. Using Vineyard's approach, the energy flux accompany-
ing the matter flux can be evaluated. However, the heat of
transport is again found to be just the activation energy.
The transition-state approach has not been very

.successful experimentally. There are several objections to
the theory. Rice (27) guestions the assumption underlying the
theory, that the life-time of the actifated state is long-
lived enough for its thermodynamic properties to be well-
defined. It is generally thought that the atom spends most
of its time on either side of the potential barrier. The
theory also assumes that the properties of the activated
state is the same as the unactivated state. However, .in

Equation (III.1),AG does not represent work in any simple
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process,. It is actually a ratio of the partition functions
with different degrees of freedom,
Lidiard (43) draws attention to a serious limitation

of the transition state approach. This approach depends on
the probability'of occurrence of the saddle~point configur-
ation, but it says nothing about the correlated . motions of
the surrounding atoms. To work out the heat of transport, a
knowledge of the energy which flows in and out of the region
before and after the transition state is achieved is necessary.
It is not within the trensition state theory to evaluate this

energy. .

IIT.2 2 THE KINETIC THEQORY

To evaluate the heat of transport under non-isothermal
conditions, the so-called kinetic theory is used, - First, the
expresgion of the atom flux, Jj, under a thermal gradient is
written down. This 1s given by

. '
j =3 D y(}rad n — 9;—-12]- G‘I'a.d T] eses (III. 3)
. kT

where D is the diffusion co-efficient, and n is the
vacancy (or interstitial) concentration.{;cf Tquation (I.1i]
Following Le Claire (17) and Brinkman (18), consider the
flow of atoms, via the vacancy mechanism, between plane 1 at
temperature T, and plane 2, at temperature T + AT. The flux

of atoms between planes 1 and 2 are given by
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§42 = (n + An) veBGW/KT Ceees  (ITI.N)
“where v is the freguency factor and Gm is the free
energy of motion of the astom.

Similarly, the reverse flux is

- AGW/h(T+4T)

j21 = Nueg ‘g eea (III.B)

The net flux, thersefore, is

J j12 - ja1

nahm
D G d - d [ I Y .
{Grad n " Grad T} (I11.6)

ft

where D = @Ax)2~ue‘AGm/hT, a result from the random walk
theory. A x is the distance between planes 1 and 2, and Ahm
is the enthalphy part of LGm. |
Comparing Equation (III.3) with Zguation (III.6), the
heat of transport, Q*, is equal to the activation energy, Ahm.
In contrast, Wirtz (16), divides the energy necessary
for the motion, into three parts, Agt, Ag2 and Ag}, local-
ized at plsnes 1, 2 and 3, which are at temperatures T,
T +-é% and T + AT, Using the same procedure as outlined above
Wirtz obtains
Q¥ = - Ahz + Ahy wees (III.7)
where Ahy and &hs are the enthalphy parts of Ag1 and ag3
respectively.
The failure of the kinetic approach lies 1n several
factors. First it assumes that the interaction energies of

the jumping atom is localized in the plane which the atom is ati
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waever, the motion of one atom involves the interactions of
many bodies, both perpendicular to, and along, the thermal
gradient. Secondly, the criticisms of the transition state
approach with regard to the life-time of the activated state
still apply to the kinetic approach.‘ This is seen in using
the results of the absolute rate theory implicit in ZEguation
(ITI.L).

A numberkof authors have attempted te break away from
some of the limitations implicit in both the transition state
approach and the kinetic approach.

Orani (L) defines a ‘co-ordination sphere' of matter
around the atom-vacancy pair. A diffusive jump is accompiished
when an excess energy wave packet sweeps across the co-ordinat-
ion sphere. Any‘energy flow across the reference flux plane,
which divides &the gtom—vacancy pair, is part of the heat of
transport.

Giri.falco (45) attempts to define a temperature gradient
by using the jump frequencies of the two isothermal systems.
This temperature gradient defines g distance coordinate Xg,
which is the distance between the peak of the excess energy
wéve and the reference flux plane. The distance coordinate,
Xey therefore, indicates where the maximum energy is located

during a jump.
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The Rice-Schottky spproach [Rice (27), schottky (30)]
relate the role of the lattice dynamics to the diffusion
process. It deduces an expression for Qi in terms of the
known fundamental parameters of the lattice, This can be
used to analyse the experimental results of the thermoelectric

power measurements,

ITI.3 TATTICE DYNAKMICAL CONCEPTS OF A JUMPING PROCESS.

Consider an atom Jjumping into a vacancy in the crystal
lattice. For this to happen, the amplitudes of the vibrat-
ions of the atom in the general direction of the vacancy must
be large enough. At the same time the a toms surrounding the
vacancy wust be undergoing an out-of-phase motion so that the
jumping atom can be accommodated. The vacancy must happen to
be next to the atom.

Thevfirst condition immediately implies that anharmonic
forces are important in a diffusive jump. However, anharmonic
forces make the problem very complex, and a reasonably simple
splution might not be possible., On the other hand, the use of
harmonic forces often gives results which are of the right
order of magnitude.

The second condition imposes only a small effect in any
subsequent calculation as the following argument of Rice (27)
shows. The frecuency that a jumping atom acquires enough

energy to make the Jjump is much smaller than the frequency
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that the out-of~-phase motions of the surrounding atoms would
occur., The latter motions will reguire much smaller amplit--
ude., Therefore the probability that a diffusive jump occurs
depends very much on the probability that the Jjumping atom has

enough energy.

IIT.3.1 THE RICE-SIATER MoDEL (27)

Consider a microgcopically large sphere of mgtter
surrounding the vacancy, in a large crystal with a low
density of vacancies, so that the rest of the crystal acts
as a heat bath for the sphere,

The digplacement of the atom next to the vacancy is
given by

gl = Zi"ﬁiéi% Cos [2T(vit + Si)] eess  (I1I.8)

where \Ji, €1 and §; are the frequency, energy and phase of
the il normal co-ordinate. €i's and &;'s only change when there
is an interaction between the heat bath and the volume element.
The total energy of the atom is u =f§ € v... (IIL.9)
The atom will only jump if its amplitude exceeds go,

that is

ol

Loy oe® >

The minimum energy, Jo, required for this to happen is

Il
Uo = go2/ ;,u1i2 eeee (IITI.10)
1
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The‘frequency of jump is the ensemble average of a con-
figuration such that @1 = go = O which is achieved from the
direction of g1 ~ go € O. It is assumed that the frequency of
fluctuations in energy between the volume element and the heat
bath 1s large compared with the freguency of a jump. This
implies that as far as the Jjumping process is concerned the
volume element is in thermal equilibrium, Thus the ensemble
aversge can be replaced by the long term average. The long
term average of the fregquency of up—zefos of the function

a1l - qo is found by Kac's (46) method to be

M =

LI-TTZ _;I'__Osgg.-—l'r iJD(“1i€iJix) - JO(“H[E':'.(X‘?"'

20,123 axay | veer  (IIT.44)
where Jo(x) is the Bessel function of zero order, and il is
antomatically zero when‘U<:Uo.

Under the condition that n is large and that the
energies of each mode ei‘s are roughly the same, Slater (29)
shows that, by taking f

Jo(x) = exp (~4x2) 1 - xu/6u} ;
and neglecting Xu/6u, Bguation (III.41) reduces to

].\.'Jr. = \)1 eXp (—qg/i%izei) e e (III.12)

2
where V1 7 =556%0,2/5 .2 cevs (IIT.13)
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Using Slater's approximation Rice obtains the rate at
which the atom reaches the criticsl amplitude, ', as the
product of thé probabllity that the system has a tofal energy
equal to or exceeding Up, and the long term average of zeros

corresponding to that total energy. Thus

— v b 1 n . d s ® ¢ dé
F1 —"YU7U0 M exp (- wr %'61) —%%TTﬁ_"E vees (III.1Y)
= '\)‘I exp - UO/kT

Slater's approximation holds at high temperatures., 1t
is a good enough gpproximation as most of the diffusion

experiments are carried out at relatively high temperatures.

IIT.3 2 SCHOTTKY'S APPLICATIONS

Schottky (30) applies the Rice-Slater‘g‘concept of én R
atomic jump to a linear chain., A very big Simplification is
immediately introduced by the linear chain model, There amre
no surrounding atoms to either hinder or encourage a diffusive
jump. Therefore in this wmodel, Uy begcomes the energy of
activation for the motion of the atom via the vacancy
mechanism,

Schottky introduces a further simplification. He
assumes that the jump freguency is Just the long term
average of zeros and that the system always have energy
exceeding the activation energy. This is reasonable if the

number of atoms in the chain is large and if the temperature



is high. 1In this model, then, the jump frecguency is
M= exp [-q02/ zlliuizei] vees  (III.15)

In a temperature gradient the energy of each mode is

€; = kgT - kptfiGrad T ceee (III.16)
a
2T oYy .
where £j = TVEE; » kn igs the wave-number and t is the

relaxation time,

Equation (III.16) is obtained by solving the Boltzman's
equation, By putting Beuation (III.16) into Equation (III.15)
the jump freguency is

11 B
M=vexp -B/xT {1 - 7 {(Eﬁ - %) W o+ 3 WQ] Grad T}

eeee (IIT.47)

where
x% = Zitxz W =S wlix?
i i
2 2 . .
Wy = %"(i fi/ﬂ'\ Wo = gmi2wl‘2fj_/((&2wz)
w = 2TV E = q02/0( 2.

By evaluating the agtomic fluxes up and down the temper-
ature gradient, and comparing the resultant flux with (III.3),
as in Section (III.2.2), the heat of transport, ¥, is found
to be given by the expression

/g = o - 2twWy/a ssee (ITI.48)
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Bouation (III.418) expresses the heat of transport in
terms of the activation energy, the phonon-phonon inter-
action relaxation time, the interatomic distance and a factor
Wy, which can be evaluated from lattice dynamical calculations
of a specific model of a vacancy in a linear chain. wyq is
expected to be temperature-independent, and any temperature-
dependence of the heat of transport lies in the phonon-phonon

interaction relaxation time.
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CHAPTER IV

MODEL. OF A VACANCY IN A TLINEAR CHAIN TLATTICE _AND
ITS _DYNAMICS,

A comprehensive discussion on the dynamics of lattice
vibrations is given by laradudin, Montroll snd Weiss (h7)‘
In the Tollowing account, the lattice dynamics of a

perfect one dimensional lattice are assumed to be known.

IV.1 GENERAL METHOD OF SQLVING THE PROBIEM OF A

DEFECT IN THE LATTICE.,

The effects of the introduction of a defect into the
lattice can be studied in the following way. Let M,(w) be a
matrix such that the solution of the determinantal equation,
}MD(W)i = 0, are the vibrational modes of the perfect lattice,
When a defect is introduced into the lattice, it perturbs the
motions of the other atoms. The corresponding matrix, M(w),
wlll then represent the perturbed motions., The matrix can be
represented by

M(w) = Mo(w) + Bl (w)

= Mo (w) [I + My~ (w) AMp(w)]
= M_(w) a(w) eoes  (IVL1)
where A(w) characterises the defect.

In this formulation, the elements of M, (w) represent
the coefficients of u's, the vibrational displacements of the

atoms in the perfect chain, in the time~independent equations
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of motions. The elements of the inverse matrix M;1(w) are the
Green's functions g(m) where m is the number of atomic spac-
ings from the origin. In the case of the scattering of waves
whose freqguencles lie between zero and the maximum'"allowed"
frequency (the maximum freguency which can be transmiltted
along the chain unattenuated) g(m) can be expressed in a

closed and explicit form [see(h?)]. This is given by

g(m) = - %% eggéf;m‘ﬁ) eees (III.2)

where ¥ is the force constant, g =}kalwhere k is the
guasimomentum and 'a' is the lattice spacing. The waves are
assumed to originate from atom '41'. TBquation (IV.2) applies
in the situation in which the forces are restricted to nearest
neighbours only.

When the defect is introduced at the position '0' the
vibrations of the mﬁlﬁl atom caused by this defect can be shown
to be given by

a(m) = D g(m) A coae  (IV.3)

where A characterises the defect as in Eguation (Iv.1),

and D is a factor depending on the lattice dynamics,

IV.2 THE VACANCY HNODEL

From the point of view of the vibrations, the simplest
model of a lattice is one in which the forces between the

atoms are central and are between nearest neighbours only.
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Only harmonic forces are considered. Therefore, in this model,
the atoms are coupled to their nearest neighbours by springs
of force constant 3.

In the next chapter on lattice calculations, the ions
are attracted to each other by the Coloumbic and Van der Waal
forces and repelled by the short rahge hard core repulsion,
This is a very much more realistic model than the one in which
the atoms are joined together by springs., When an atom is
removed so that a vacancy is formed, the hard core repulsive
and the Van der Waal attractive forces are removed, However
the Coloumbic attraction between the vacancy and the other
atoms still remains. Thereaw no additional forces between
atoms on' either side of thelvacancy.

In Schottky's (30) imodel of the vacancy in the linear
chain the atoms are coupled to their nearest neighbours with a
force constant ¥, and to their lattice positions with a force
constant g. The two atoms neighbouring the vacancy are
coupled to each other by a force constant Tﬁ. The final
expression withzj'1 A 0 is extremely complicated, and it only
reduces to a simple form when ¥1 is put equal to zero.

Putting 51 = 0 implies that the two parts of the chain are
independent of each other. The removal of the atom so form—
ing a vacancy removes the total coupling between the atom and
its neighbours instead of removing é partial, albeit majory

portion of the force.
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Figure 2 Defect in the linear chain. The perfect linear

chain consists of atoms of mass ki coupled to sach other

with force constants ¥ A defect of mass M1 is introduced

into the chain.

.
cons tants % ',

It is coupled to its neighbours by force

Pigure 3 Scattering of lattice phonons by defect. A
perfect lattice~phonon '4' travels from left to right., It
is unperturbed by the normal atom at '-1'. However it is
perturbed by the defect at position '0'. The phonon 'AY

then emerges to be scattered by atom at position '1°,
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Figure. 2. '

DEFECT AT O' IN THE LINEAR CHAIN.
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_Figure. 3.
SCATiERlNo OF LATTICE PHONON

BY DEFECT.
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In view of the more elaborate lattice calcﬁlations, a
model in which the atoms are coupled to each other with &
force constant 8, and the vacancy is coupled to its nearest
neighbours with a force qohstant?1, seems adequate. The

dynamics of such a model are discussed below,.

IV. 5 THE EQUATIONS OF MOTIONS.

Introduce a single defect into the linear chain at
position '0' as in Figure (2). ILet the defect be of mass M,
and the coupling constant between the defect and the two
neighbouring atoms be 51,

Put u! = (1 -€)M, and ¥~3! = ely, where M is the mass
of the atoms and ¥ the coupling constant between the atoms.

In the case of the defect being a vacancy € will eVentqally be
put equal to unity.

The time independent equation of motions for the atoms in
the linear chain is

WU, +y 8%U, = (M- w2U, s, o

+ ( X—?ﬂ)(Un+1-Un)(5n,o+ Sn,_1)'(5"Zﬂ)(Un’Un_1)(3n,o+gn,1)
coee  (IVLL)
where n is the position of the atom,£\2Un = Un+1+Un—1’2Un9
and dp,m is the delta function. When the R.H.8. of Equation
(IvV.L) is put equal to zero, the equation is the equation of
motion of the normal perfect lattice. The R.H.S. of the

Equation characterise the defect. For example when n = O,
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the Tguation becomes

i'w2uy + x 18y, = o,

IV.L4 THE SCATTERING OF TLATTICE PHONONS.

Let a lattice phonon, travelling from left to right in
Pigure (3), be scattered by the defect at position '0'. From
the general conclusion of Section (IV.1) {c.f Equation (1v.3)],
the solution to Equation (IV.l) is of the general form:

Up = e 4 cg(n) ceee (IV.5)

where g >0 [The phonon in the positive direction, from
left to right].

einﬁ represents a perfect lattice phonon and is the
solution of Equation (IV.l4) when the R.H.S. is put equal to
zero., C 1is a constant to be evaluated.

To evaluate C, substitute Bquation (IV.5) into Equation
(Iv.L4) and put n = O, Thus,

(1-€)1w2 [1 + cg(0)] +(1-€1)g[eiﬁ5+e’i/d—2+c {g(1)+g(.-..1r)-2g(0)}]
=0 eeee  (IV,6)

From mguation (IV.2)

g(-1) = g(1) = exp(if) . —5-%) s—l;'r‘z

it

e}fp(lﬁ{) g(O) e e s (IVC—,)
Zguation (IV,7) expresses the symmetry of the dis-

tribution of phonon round the defect. Also from the result

of the eguations of motions of a perfect lattice,



o1

I\’IWZ - L].’XSinzﬁ/Z LB (IV.B)
Thus Equation (IV.6) can be further reduced to
Lysin?8/2(€" -€) + cg(o)[byle? -€)51n28/2 + 2i(1-eV)ysin 4 = ©

-[uxsinf/o (e1-1)]
(€'-1)g(0) [bgsin28/2 - 24 ysin £}

C =

uiwrs;nzﬁ{/z Cos B/2
[- sin /2 + 1 cos 8/2]
LY¥sin?A/2 Cos B/2. exp [—iﬁ/zj cees (IV.9)

it

where €= 1, in the .case of a vacancy, and g(0) = (=1) _1

have been substituted.

The displacements of the atoms are therefore completely
determined in terms of the quasimomentum, k = B/a = %%E and the
force constant, ¥ .

From Zquation (IV.5) the displacements are given by

Up = ging +-hnfSin2wy2 coddV o exp [-in2] g(n)

Por n20, the displacement of an atom, to the right of the
vacancy, due to a perfect lattice phonon, travelling from left
to right, and 'scattered at the vacancy at position '0', is

Up = eit8 _ igin 5/2 exp [i(n - £)4]

= {1 - iSin /5/2 exp ('.'1.224)} exp(ing) eess (IV.10)

For n 20, and p%;p,~itei8'

3

Up = [} +1iS8in 5/2 exp {—i(2n—%)ﬁ}] exp(ingd) ... (IV.11)
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Bouation (IV.41) can be alternatively interpreted as
follows. It is the displacements of the atoms to the right
of the vacancy (n 20) due to the phonons travelling from
right to left (4<0).

Specifically the displacement of the atom '1! { see
Figure (3)] due to the scattering of all the phonons is

T

Uy =j£/a Apy exp(ikx) exp ~i(whdy) cees  (IVe12)
k1o
where from Zguations (IIT.10) and (III.41)

Ag, = 1 - iSin -12‘2.@ exp (‘ilg_%)
sese (IV.13)

A

cms. Ko —i;ka
1 4+ iSin =2 EXp :
k- ol 2 ( 2 )

IV,5 APPLICATIONS TO SCHOTTKY'S ATOMISTIC THEORY.

From Chapter III the heat of transport is expressed in
terms of a lattice dynamical factor Wy s which 1s defined as

wy = }E“ong fk/o@, £, = dw/ dk’o(2 =§o<k2

and xk is defined in the expression for the displacement of

the atom next to the vacancy:

T/ a '
U = A Cos Wi b + 8 "R IV.1
1 k;_ilwa ki Cos (Wb + 8y) (IV.1L)
where ék is the energy of the kﬁﬁ vibraticnal mode, and
is %N.ka2 where N is the number of atoms in the chain,

Comparing Bquations (IV.42) and (IV.14),
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—
LRV T R T

In view of Equation (IV.8),

Wy = 2 ¥/l Sin ka/Z s Ty = an;?Oos E%
Therefore
1 2 /s
®? = Ny %{Akﬂ /8in? -15—9-
2N Y
ka 2

2 _ a Cog ==
X, £ = e— ¥ 2 _ | Art
kK 'k o/ ¥ T
Y Sin2 ka
2

R - S

oN/YH  °

From Equation (IV.13):

lﬁk+12 (1 - Sinz(%é)]z + Sinz(gﬁ) Cos? %é

|42 = [1 4 sin(E)sin(Ze)] 2 4 3in°(k2)Cos?(2ka)

As the number of atoms in the chain becomes very large,
the number of normal modes becomes correspondingly large, and
the interwval between the discrete modes becomes small. In the
limit the sums 54 and S2 can be expressed as integrals. From

the results of the dynamics of the perfect lattice, the
density of modes of the linear chain is Na.

Thus 54 and 82 becomes
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k=ﬂ7 2 k:—1 2
Sq = Na Sl 4l ok 4+ wa { a | Ap-1" ax
K=1 Sin? X8 k= -] Sin=ka
Na 2 5 2
.o (TVB)
T -1
k="7a 2. ka k=20 2
Sy = Na S ; {Ak+]7C085™ gx . 1Ta5-‘Na ‘Ak-{ cos'g'gdk
— - 1 ——
“mg sin® 2 k="T/a “5in? =
S4 and S, are evaluated in Appendix (1) and the results
are

a/t/’lbl_' 32/81‘

i AT

11

Therefore Wy

i

From Equation {(II.27) the heat of transport is given by

Q¥ =Lz—7;.§’_~é_ /S’?EE]E y svie  (IV.16)

This is a very lucid expression. For most alkali-
halides everything on the R.,H.S. is known experimentally
eerpt for Y, the force constant. In this model, the force
constant cannot be related in any simple way to the bulk
properties of the crystal. For example, bulk ?roperties like
the elastic constants depend on certain average sums of the
vabious force constants of the ions. However, the jump
process of the ion is very sensitive to the local strains

around the vacancy. In this model the force constant, X, can
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be taken to bce that which binds the vacancy's ncighbour to thc
ncxt ion on the othcer side to the vacancy along the chain.

Scc Figuro[(Z) ].

To evaluate ¥, thc forces acting betwecn the ions in

thc alkali-halides will havc to be known. To arrive at a
realistic model of the forces,; the proccdure adopted here is
as follows. First a plausiblec model of a vacancy im chosen.
Then a form of the potential of the ion in the lattice 1is
postulated. From then onwards, the sublimation cnergy of a
pair of ions and thc formation encrgy of a Schottky pair are
calculated. These last two can be directly compared with the
corresponding experimental values. The agrecment between the
theoretical and expcrimental values of the sublimation energy
and the formation energy will be taken as the Jjustification for
both the model and the form of the potcntial chosen. With the
form of the potential cnergy established, the force constants

can then be determined.



Figure L4 1107 type linear chain in the NaCl lattice.
The Nat vacancy is =2t 0,0,0 and a typical <110> type

linear chain is shown,

56
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LATTICE GCALGULATIONS.

V.1 INTRODUCTION

In the early Born theory of the ionic crystals, the ions
are assumed to be point charges and the lattice is assumed to
| be statics The early models of the Frenkel and Schottky
defects [Frenkel (48); gchottky and Wagner (49)] meet a
theoretical difficulty in that the calculated formation
energy is too high. Jost (5C) shows that, letting the lattice
relaXxs and the ions polarise round the point defect, the
formation energies are brought down Lo reasonable values.

For example, the Madelung energy required to remove a Fat

ion from its normal lattice sibe in the MaCl lattice is arodnd
L, eV. The polarisaticn energy gained, however, is around 3 eV,
and therefore the formation energy of the defect is around

1 eV, which ié roughly the experimental value.

Ve2 THE SHORT RANGE FORCES

Schottky (51) introduces the short range closed shell
repulsion of the ions and he gives an interaction of 1/rn
for the ions with n ~ S.

However, by Xray methods, it is known that on the
periphery of the ions, the electron density decreases exponent-
ially with increasing distance from the centre. Therefore; 1t

is plausible that the potential should have an exponential form.
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The form of the repudsive potential adopted in this work is
basically the Born~liayer form [hereafter referred fto as BH
form; Born and leyer (52) , aleo see Tosi and Fumi(53);]
and it hss an inverse exponential form, i.e.
g(r) = Ay, exp (-T/p) cone (V1)
A12 depends on the interacting lon and p depends on the
crystal. When only the nearcst neighbour interactions are
considered, A12 is eliminated in the subseguent analysis.
However, in the present work, both the nearest neighbour and
the next nearest neighbours are considered.
An expression for A4o 1is given by Born and liayer (52)
Ay = b Cyp exp Hrq + ry/p] ceee (V.2)
where r4 and r, are the Goldschmidt radii, and Pauling (63)
gives the formula for C1émés

012 = 1 + Z1/n1 -+ ZZ/]_']2 sene (V.3)

where Z4 and Zy, are the valencies, and nq and no, are the
number of electrons in the outer shell of the ions.

Certain authors [Rittner (54), Versani (55), Baughan(56ﬂ
find that when the ions move much closer than the interattmic
distance, a much harder potential is needed, namely the Verwey
potentials This has the form

2(r) = A + B/r12 where r ¢ rps the interionic distance.

ceee  (Vol)
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When the constants A and B are fixed by lmposing the
condition that the potential and its first derivative are
continuous at r = r, with the BM, form, then the combined
potential is called the Born-Mayer-Verwey. form (hereafter
known as the BV potential). This potential has been used
by Guccione, Tosi and Asdente (57), Tharmalingam (58) and (59)
and Boswarva and Lidiard (60).

In addition to the short range hard core repulsive
forces,; there exist short range Van der Waal forces. The
Van der Waal forces arise from the correlated movements of the
electrons in the lons, which ifduce dipoles and guadruppiles
in the other ions. The dipole~dipole and quadrupole~dipole
interactions are attractive and are represented by the
expression

- [012/1-6 + D12/I.81 ‘ eves (VoLI-)

where C4o and Dyo depend‘on the interacting ions.
The icons in the lattice are then described by their
positions, their electrostatic interactions, their polar-

isibilities and their short range forces.

Vo 3. THE MOTT-LITTLETON APPROXIMATIONS,

In principle the energy of a point defect can be cal-
culated to any degree of accuracy. Scholz (61) has cal-

culated the energy of a small crystallite of 256 ions,
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However, since the Coloumbic forces are long-range, even this
amount of ions is not sufficient. What is inore comwonly done
is to arbitrarily consider the neighbours of thedefect in the
first shell, second shell, third shell and so on,; as lying in
a discrete lattice; the rest of the crystal is taken as a
continuum. This method is called the Mott-Littleton (6L)
approximation. The liott-Littleton approximation, and various
modifications of it, has been used by various authors

[5rauer (62), Boswarva and Lidiard (60)].

In the zero approximation, the discrete part of the
lattice consists of the ions to be remﬁved; all the other
ions are assumed to lie in a continuums This approximation,
in itself, is not of interest to the aim of this work, as it
does not reveal the force constant binding the vacancy tovthe
second nearest neighbour. The second nearest neighbour is the
next element in the linear chain in the ¢110» direction.

The first order approximation takes the central ion,
which is to be removed, and the nearest neighbour as the
discrete part of the lattice.

The second order approximation takes, in addition to
this the second nearest neighbour as the discrete part of the
lattice. With the second order approximation, the binding on
either side of the second nearest neighbour along the (110}

direction can be studied in sufficient detail.
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The Mott~Littleton description of the continuum part of

the lattice (regionII) goes as follows.
In ionic crystals, when the vacancy is created in region
I (the discrete part) it acts as a charge singularity. At a
distance r away, the polarisstion is given by
P=-t(1-1) & »
LT €’ r
where € 1s the dielectric constant.

The displacement dipole moments, 1 ,and the electronic

dipole moments, u, are then given by

* .\ x2rdxpP
IL <0L++C£__+2ﬁ(> © -
senre (V. 5)
o L
+ e 3
s (M++d_+2m X 2ro” X E

where x, are the electronic polarisibilities,
and ® is the displacement polarisibility.
® is given by the expression

X = e‘?'/f‘, where f is the force constant.

Veli, THE ELASTIC STRENGTH OF THE VACANCY
Bféuer (62) points out that the vacancy is also an
elastic as well as an electrical singularity. The displacement

of an ion at a distance r from the singularity is given by

‘% = kPOB/PQ where k is a constant.
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If the diéplacement of the nearest neighbour ion to the
vacancy is A Ty, Brauer assumes that, in the first order Mott-
Littleton approximation, k is given by the eguatiocn
k = A
In the second order approximation, the corresponding

Braur assumption will be

k =% (A + 2v2 v) cies (V.6)
where k/évro is the displacement of the second nearest
neighbour along the line Jjoining the vacancy &0 the ion. Here
the region II ions asre affected by both the elastic strength
of the first and second nearest neighbous ions.

Boswarva and Lidiard (60) suggestr that the Brauer
assumption overemphasises the importance of the elastic term
in the displacement of the more distant ions. They therefore
suggest that the elastic displacements of the region II iomns
should jpin smoothly with those of the region I ions at the

boundaries. Thus, in the first order Mott-Littleton approx-

imation,
k = A-M1
where pl = Qs X re
aq

In the second order approximation Boswarva (8L4) suggests
that the elastic displacements should drise from an average

effect of the first and second nearest neighbours; i.e.
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Figure 5 Relaxations of first and second nearest
ncighbours of the vacancy. The figure shows a typicel

(100) plane containing the vacancy. The 1,0,0 type ions

relax a distonce A r, along the 31007 direction. The é
/ H .

1,1,0 type ions relax = distance r,v /2 along the {1101

(e
direction. L \J

A
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(A + 2/2v) cees (V.7)

{
(MBS

The Brauer and the Boswarva-Lidiard assumptions give
identical results in the second order approximation.
Boswarva and Lidiard (60) hawve nade a systematic study of the
alkali-halides, using the first order approximation. In
particular they have developed a set of equations which is
simple to work with, and which can be extended for any higher
order approxXximation., The work in this line being undertaken
here extends their approximation and, at the same time some of

their conclusions are examined.

V.5 THE BASIC EQUATIONS.

When the ion is removed, its neighbours relax until the
energy of that configuration is the minimum, Owing to the
symmetry of the vacancy, the relaxations of the neighbours
will be along the line joining the ions to the vacancy. For
example; in the second order approximation, when the central
ion is removed [as in Figure (5)] > the 1,0,0 1ions will all be
displaced a distance Arg, say, along the [100] direction, and
the 1,1,0 ions a distance ,/2vry, say, along the [110]
direction. All the other ions in the confinuum will relax
according to the Mott-Littleton approximations. The enérgy

of the formation of a vacancy is then a function of A, and ¥.

]
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It is then minimised with respect to these two parameters.
The energy neceded to rewove the ion from a normal lattice
site to infinity is given by

W= Wy + Wo(x; m) + WB(x,m;§ s J1) + vy, Gs 1) evee (V.8)

where x, ¥ are the displacements of the ions in region I
[the discrete lattice} and region II [the continuum]resPect-
ively.

m and a are their respective electronic moments.

W1 is the energy of the defect in a rigid, unpolarised
lattice. The lattice is then allowed to relax. W,(x; m) is
the relaxation energy in region I only. W3(x, m; 3, p) is the
interaction energy between regions I and II due to the re-
laxations. Wh(§ ’ p) is the relaxation energy of regions II
only. The energy can be re-distributed between W3 and Wh S0
that Wh represents the energy of a distorted polarised region
II filled with a perfect region I. The perfect lattice 1s
referred to as the lattice of zero energy.

By expending the terms W,, W3 and W), in Equation (V.5)

and imposing the equilibrium conditions

o - 2 - W - 0
am a M b3

Bquation (V.5) is reduced to

- 1 II - {4
W = W1 + W2(X,O) - ‘12' é 4 Fi( ) - ‘12’ g /U\)Ig\))

- i '
-+ ‘.‘V-B(X,O; ;,O) ‘-' JQ_ 5\)1 3 (X O O)j%- soee (VQ 9)
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& and Vv refer to regions I and II respectively.

My and gy are the equilibrium electronic moments.

Fi(1) andAF0(1> are the monopole fields due to the charges
at the lattice points and the relaxed positiocns.

3o are the eguilibrium relaxations of region II.
2W3(x,0:3,0)
23

as well as short-range force terms. Separating the two types

Both W3(x,0;3‘,oj and contain electrostatic
of potentials and introducing 7V as the equilibrium dis-
placement dipoles, i.e. ﬁg = qo_go, the'energy gexpression

becomes

(1) (1)

I —
W= Wy + wz(x,o) - 53 m3Fy -

nf-

II . .
> (o + QU)FY

I _ |
+ W3 p(x,05 §,0) - £2 3, W3 5(x,0;3 ,0) s e (V. 10)

D

330
where WBsR is the energy due to short range potential part

of WR. The derivation of Equation (V.7) wW&s first done by

.»:t':—“\_\\v - L /v%[/;;
Boswarva and Lidiard (60). ’

V, 6. APPLICATIONS TO THE TIONIC MODEL.

The simplest ionic model is one in which the central,
two bodies forces consist of only the long range electro-
static monopole and dipole interactions and the short range
hard core and Van der Waal interactions only., Thus the
potential, 4, can be divided into the Coloumb potential, Le,

and the short range forces, AR. The explicit exXpressions for
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W1, Wé, W3 and Wh can then be written explicitly as follows:

W1 = = }:I’,Zf (I‘jo) -
J

OM:

B (ry®) ceee  (V.11)

which is the work needed to create a vacancy in a rigid non-

polarisable lattice, r° and r are regpectively the perfect

lattice and the relaxed positions,

o}

I1
WQ = 3 Zj;%'{ﬁﬂ(fj"r‘k) - ,Z<R (Pjo - Pko)}

\
4

I
Zﬁ gﬁc(rj“rk) - B, (r

3 “r OV A2 0 = r )b (ry° = 1,0

J

uMI—I

! 1

[N ‘
e ™ME

I
}f w(rj-rk;mj,mk)

I
-1
J i £k

ERCHENCS Dg

c¢Pﬂ|ﬂ

){(-rj,mJ +
cees  (Vi12)

which is the change in the energies of the region I ions when
% they relax. The region II lattice & assumed for the time
being to be rigid and unpolarisable. The first term is the
short range interactiorm The second and third term are the
electrostatic monopole interactions. The fourth and fifth
terms are respectively the monopole-dipole and the dipole-
dipole interactions. All other terms which are negligible

in magnitude, e.g. the dipole self-interaction or the change

in the kiadelung energy as the ions relax, are ignored. This

will be the case for the following two expressions,
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ius the interaction energy of the region I and II

ions, their efrfective charges and their dipoles, plus the

interaction energy of the effective charge of the vacancy

with the monopoles and dipoles of region II.

W3 =

M
<M

aViH e

+—
+—

u.{‘/_‘.l-i rZng!

c_:.‘\’LH

<MH

{Apirymrg) = dplryP-ry)]

;éc(rj—r\)) - /dc(r'j'l"\)o) - ﬂ{c(rjo'r\))

ls

+ ﬁc(pjo_r\)ﬂ)}

gxf(r\ﬂ-zf(r\)o) - 5 o (ros M)

=

1T

g’f {){ (rj—r\) Ay ) —V‘L(Pjo-r\)s,ﬂ\))}

o trgerg; mg) - % (o mp)

vees  (V.13)

The first term represcnts the change in the short range

potecntial when the region I ions relax and the region II ions

are in their relaxed position. The second term is the inter-

actions of the resal and effective changes of the regions I

and II.

The third and fourth terms are respectively the

interactions of the vacancy and the monopoles and dipoles of

region II.

The fifth and sixth terms are respectively the
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interactions of monopoles of region I and the dipoles of reg-
ion II and the interactions of the dipoles of region I and the
monopoles of region II. |

Wh is the energy of a relaxed and polarised region II
when region I has no defect and the ions are in their

perfect lattice position and they are not polarlsed,

W oe 3 S o 0-r )
b= % % PEEm) <F (ngPory?)
. II II o o
vE Yy flgrg) - 8 (n Py )}
II 1l o N
+ %,4 % gﬁ(r\)—rﬂ. s M) =R (ry —rﬂ;uﬂ)s

eose  {(V.1L)
The energy of formation of a Schottky pair is defined
as the energy recuired to take a pair of posiﬁive and
negative ions to the surface of the crystal. Thus the
Schottky formation energy is
Wg =W, + W_ - % (W, + W)

and W, = W1+ + W2+ + W + F 1)

3 L

Ve 7. THE CALCULATIONS

On the basis of Zquations (V.41) to (V.1L), the energy

needed to extract an ion from the NaCl lattice to infinity,
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Tables 1 and 2 Calculated Schottky pair formation energies
of NaCl,

Moyer's (66) data of Van der Waal co-efficients are

used in Table 1 and Haff's (67) in Table 2. The notations

A3 ¥V sees Eqg, Wy are =s in Appendix (I).

Tables 3 and L Calculated formation energies of nine other

alkali-~halide. Mayer's data arc used throughout, Table 3

uses the Accurate Field terms (see SectionIV1) and Tablc L

the Approximate Field terus,

Table 5 Comparisons of Calculated and EZxperimental values.
A1l the calculsted values are from Table (1) and Table (3)
where Mayer's data and Accurate Field terms are used. The
calculated sublimation energies for all salts and the cal-

culated formation pair energy for NaBr, NaCl, KCl, RbC1 and
LiI are excellent.
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TABIE 1. NaCl FORMATION RENERGIIS (HMAYER)
By 11=0. 042 A12=0, 04572 p=0. 32k & By,=7.9125 eV Bl 4=-2. 1186 &V
BV =0.0386  B12=0.13120  6=0.15C eV By.=8.0518 oV F)_=1.1899 eV
; : ; : - - S p—
' ZLASTIC| FORCH FIELD ' VAGANCY A v E3pv | uuef EfcV hmiev
AcCUFats” + Ton 10,0033 | =0,02251| =0.52211 =1.2201 | 1,2098 1 L. I52.
- Field - lom 10,0507271 =0,08952 | =1, 0L22| =1, 4278 | 1. 1577 | 5auh3 |
. Fon ApDroxi- ; - '
| Blastic mate | *t.iom 0.0h72h | -0.02440; -0,94L0] -1.2116 1.L261 5:95%*
g Field - don ;0.09419 | -0.03056! -1.L608] —-1.1254 | 1.2379 | 5.506 |
f Accurate] + ion }0,05933 | -0,025211 -1,0825| =1.1936 | 1.3086 | L. 820
Non Ficld ="ion 10,06979 170, 03528 | "=1.7275] =1. <05 | 1.2283 | 5.230
g App roxi- :
i Blastic mate +.ion :10,06468 ! -0,02737| -1.1012} -1.1942 | 1.4002 ! I}, 902
i Field |- iom |0.07403 | =0,03U59 1 -1, 7424 | =1.72L0 1 2759 [ 5.265 |
i Accurate] + ion |0.0LO4Y4 | =0.02384 ! -0.9519| -1.1986 305u1 L. S4S
' Elastic Field *_fon |0, 04877 1 =0, 030381 =1. 11600 =7.7055 1 509 | B Ilb
i Approxi-| -
' Bos/Lid mate -+ 1on_ 0, 0ulh2 | -0,02631 | =0,9797| —=1.1887 | 1.4338 | 5.059 |
L Rield ="16n"10.05230 | =0.031681 -1, L778| =1, 100k | 1.235L i 5,509
Accurate| + ion ;0,05363 | -0.02889 | -1,1492] -1.17518 1. 3LL7 | L, 87
| Blastic Field - ion ‘o 06L75 | =0,03665 | =1, 7703| —1.7036 | 1.24716 | 5.223
J Approxi- _
BossLid mate + ion -0.05793 -0,031861 -1.1789] —-1.16l1 | 1.0429 | L.893
Pield - ion i0,06933 -0.03768 | -1.782L| -1.1037 | 1.2897 ! £.25¢




74

i
t

TABLE 2 NaCl TFORMATION ENEZRGIES (HAFF)
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TABLE 3 FORMATION ENERGIZS (ACCURATE FIZID)
)t R 1 T
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TABIE 3 CONTINUED
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TABLE 5
COMPARISQONS OF CALCULATED AND EXPERILENTAL VALUES
Sublimation Energy Schottky Pair Energy
Crystal | Elastic [Calculated | Expcrimental| Calculated|Bxperi~-
Non
. HWlastic 1. 88
LiF Srm——— 10. 729 2.42
Xlastic
Bos/Lid 1,43 (85)
? . et « ————
Non
Blastic 1.97
NeBr 7.032 7.627 ' - 1,68
Hlastic
Bos/Lid (90) 1.96 (86)
Non
Blastic 2.06
NaCl - 70 5383 8. 009 2. 12
Blastic l v
Bos/Lid ($0) P2.17 (70)
Non
HBlastic ce 12
¥C1 7.256 7.276 2.22
Elastic , .
Bos/Lid (90) 2.12 (70
Non } 7
Blastic P 2,04 ;
KBr — ——i 74 011 6,920 st 2053
{BElastic | :
| Bos/Lid (90) 2,05 | (87)
i — e e om0 s mn e e ® o ;w»—--»w s e mon
Fon ?
: Elastic 2. 33 §
Zlastic |
Bos/Lid (90) 2,28 i (88)
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W, is expressed in terms of the two unknowns, namely the
relaxations of the nearest ion to the vacancy, Arg, and the
next nearest neighbour /2 vr_ . [See Figure (5)}. The energy
W is minimised with regard to these two variables using com-
putational methods. The I.B.li. 7090/70¢gy computer is used.

The BM and BMV potentials are useds, The consbtants b
and p are deduced from lattice stability dnd compressibility
of each individual alkali halide crystal,

The Mott-Littleton approximation and the Brauer and
Boswarva~Lidiard modifications are useds The non-elastic
form is the form where the elastic constant, k, equals zero;
the Boswarva~Lidiard modification is when k equals
(X+ 2/2 v).

The Van der Waal potentials are used explicitly.,

The lattice calculations are done for various alkall
halide crystals namely, LiF, NaCl, NaBr, KCl, KBr, RbCl and
RbBr, LiCl, LiBr and LiI.

The calculated energy of the Schottky defect and the sub-
limation energy of each crystal are compared with the
gxperimental values. The agreement in the comparison
justifies the use of the form of the potential and the Mott-
Littleton approximation or its modification.

After these calculations the equations for the force

constant of the motion of the next nearest neighbour
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constrained to move in the <110 direction is written down.
This is done by first separating out one ion, say the 1,1,0,
from all the eleven other next nearest neighbours: Its dis-
prlacement is represented by vl whereas the displacements of
the other eleven ions is represented by ¥s The energy, W,
written in this new form; is differentiated with respect to
vl, When vl = v the force acting on the particular 1,1,0
ion should vanish. The force constants are then obtained,
This method makes the plausible assumption that the form of
the potential is produced by the surrounding ions in their
relaxed equilibrium position.. The actual jump of the ion is
fagt enough so that the surrounding ions have no time to re-
arrange their positions in an energetically more favourable
position,

By an extension of the method outlined above the saddle-
point configuration in the transition state theory of the

heat of transport can be obtained.

Ve7. 1 DATA USED IN THE CALCULATIONS.

The interatomic distances, ionic radii and the com-
pressibility are from Fumi and Tosi (65). The Van der Waal
coefficients are from Mayer (66) and Haff (67). The
electronic polarisibilities are from Tessman, Khan and
chﬂkkh@ (68) and the static dielectric constants are from
Haiissunl (69),
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IV, 8 RESULTS AND DISCUSSIONS.

The results of the lattice calculations are given 1in
Tables (1) &o (5). The Pauling (63) form of the pre-
exponential term in the repulsive potential is used throughout.
(cef V.3). 1In the results of NaCl in Tables 1 and 2 both the
BM and the BMV potentials are usecds A5 6xpescted, with the
harder BNV potential the relaxations of the ions are more
restricted, and the Schottky pair formation energies are
higher, For NaCl, the Bi potential gives excellent agreement
with the experimental value [2.412 eV (70{] whereas the BHV
potential gives markedly higher values (~ 0.3 to O.4 €V more),
The inclusion of the elastic term makes very little difference
in the final results. Table 41 shows the results with the use
of Mayer's (66) gata on the Van der Waal co-efficients and
Table 2 with Haff's (67) more recent data. There is very
little difference in the sublimation and formation energies
although the Mayer's version gives slightly higher values
(~0,05 eV in the sublimation energy and ~0.06 eV in the
formation energy).

From the evidence of the NaCl results, there is no
justification in resorting to the use of the BMV potential.
The subsequent calculations for the nine salts, i.e. Lip,
.iCcl, LiBr, LiI, NaBr, KCl, KBr, RbC1l and RbBr, involve the

use of only the BM potential. The inclusion of the elastic
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strength is again found to have little effect on the form-
ation energy (Tables 3 and 4). The calculated sublimation
energies compare favourably with the experimental data in
all cases (Table 5), and ighﬁggliﬁﬁﬁﬁ’and LiI the agreement
between the exXperimental and calculated values of the form—
ation energies is exXecellent. The reason why the LiF, LiBr
and LiCl results should be in poor agreement with experiment,
has been attributed by Boswarva and Lidiard (60) to the
breakdown of the point dipole approximation. The breakdown
occurs when the small Lit ion approaches close to the o1
ion and when this happens i1t is no longer valid to assume - -
that the electronic dipoles of the ions are point dipoles.
[Note the Lil exception].

The relaxations of the second nearest neighbours towards
the vacancy (i.e. Vv is negative) is as expected. The removal
of the ion removes both the repulsive Coloumb interactions
{++ or —- interactions] and the repulsive short range inter-
actions of the second nearest neighbours and itself. This
causes the second nearest neighbour to relax towards the
vacancy. The relsxations outwards of the first nearest
neighbours are due to the removal of the attractive Coloumb
force,

In all cases the extraction of a negative ion from the

lattice requires more energy than that of a positive ion.
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Also the relaxations of the neighbour due to the extraction
of the negative ion is more pronounced than the relaxations
due to a positive ion vacancy. These two related effects
are obvipusly caused by the fact that generally the radii of

the negative ions are larger than that of the positive ions.

V.8 1 CONCLUS IONS.

The objects of undertasking the lattice calculations hav
been to produce a suitable model of the lattice around the
vacancy and to find a suitable form of short range potential
be tween the ions. From there on, the force constant of the
second nearest neighbours at their equilibrium relaxed
positions is determined realistically.

From the comparisons which are made between the lattice
calculations and experimental data, it is found that the
vacancy model chosen, with the use of the BM and the
explicit Van der Waal short range potentials, is sound.

It is then concluded that the force constant of the
second nearest neighbour obtained from the use of this model

and the form of the short range potential is realistic.
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CHAPTER VI

THEZ HEAT OF TRANSPORT (II)

VI. 1. THE ANAIYSIS AND CAILCULATIONS

The equilibrium relaxations of the nearest neighbour,
Ar,, and the next nearest neighbour, /2 v ry, to the vacancy
has been found in Chapter (V).

Let the relaxation of the ion at 1,1,0 be /2 v1r0 and
the relaxations of the other eleven 1,1,0 type ions remain at
JEvro. By differentiating the vacancy formation energy
expression, B(A,v,v!), with respect to vl, as is shown in
Appendix III, the force on the 1,1,0 ion is found. By com~
puting the change of this force with respect to a change in
vl around equilibrium value v, the force constant is found.
This is done with the help of the IBM 7090/7094 computer and
the results for NaCl and XCl are summarised in the Graphs in
Pigures (6) and (7). The Born-Mayer potential and the un-
mpdified Mott-Littleton Approximation are used,

From BEquation (A III.12), it can be seen that the exact
solution for the dipole fields, g;iﬁa.involves the solution of
a 8 x8 x 3 matrix equation, This is an exbtremely difficult
problem to splve, However, by putting the PI terms in the RHS
of Equation (A III.412) to be zero, the solution becomes

simple. Correspondingly, the FI terms in BEquations (4 II.10)
and (A II.11) have to be put equal to zero, The Schottky pair
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formaéion energy found by the use of this approximatioh

{ the Approximate Field approximationj_ are shown in Table

(4) and included in Tables (1) and (2) for comparison

with the energy found without resorting to this spproximation,
fNote that the PI fields can be solved exactly when they
appear in the expression for the formetion energy in Appendix
(II) since their solution, as is seen in Equations (A II.10)
and (A II.11), only involves the solution of a 2 x 2 matrix
equation]. It is seen that neither the formation energies,
nor the relaxastions, differ drastically between those found
with, and those found without, the use of the field approx-
imation. This justifies the use of the field approximation.

From Equation (IV.16) the heat of transport

@ = [2+ Y]E ceee (VIL)
where q = 1—-§—E, M ; t is expected to vary inversely

proportionally with T, and therefore g is independent of

temperature,

t can be expressed in terms of the thermal conductivity,

Xy
i.e. 5
r
t -kBovs 1 cee. (VI.2)
[ See Klemens (71)]
where r, is the interionic distance of the crystal kp is

()
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Figures 6 and 7 Graphs of the force cxerted on the second

nearest neighbour against the distance. (v'-v) is in units
of fractions of the interionic distance ry. The force
constant 3 = -gradient/r, /2 ev/8 2.

¥ is used to calculate the heats of transports Q¥ and the

results are summarised in Table 6,
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Table 6 The Calculsted Heats of Transport of NaCl and XC1,

The heats of transport are calculcoted for 1000°K, The force

constants, ¥ , are obtrincd from the graphs in Figures (6) and

(7)e w is the frequency of vibrations of the lrttice in the

<110>» dircction.
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TABLE 6.

THE CAICULATED HUEATS OF TRANSPORT
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the Boltzman's Constant and Vg is the velocity of sound in

the crystsal. Vg is related to the Debye temperature, ©p,

i.e.
Xglp am
E Ky,
where h is i.< Plaunck's Constant,ky is the maximum value

of the wave vector [k|, and for the alkali halides it is

3

8p

A = Ae/p {See Klemens (71)]

and the experimental values for % for NaCl and KCl are tab-
ulated in Table (6), and they are from data obtained by
Ballard, MécCathy, Davis (72),

Therefore from Equation (IV.2)

g = ¢/
2 .
where fc = 3h 8g'
3.5 M

Vi. 6 RESULTS AND DISGUSSIONS.

The results of the computer calculations [?ee Figures
(6) and (7i] show that the force constant ¥' binding the
vacancy to its neighbouring ion is practically the same as
the force constant, ¥ , binding that ion to the other neighbourw
ing ion in the linear chain {See Figure (2)]

Table (6) summarises the results of the heats of transport
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calculations. For the temperatures at which diffusion
experiments are generally carried out, that is about 9OOOK
to ébout'1100°K for NaCl and KCl, the heats of transport for
each type of ion (Na*, C17, or K+)afe gbout pne and a halfto
twq. times the corresponding activation energy for diffusion,
S50 far, the experpetnvalues of the heats of transport for the
alkali halides are not known. This is due to a lack of
knowledge of the irreversible electrode-crystal thermopower,
However the thermopower of AgCl and AgBr with Ag electirodes
have been found [see Christy (6), Susuki, Endo and Haga (73)]
and the heat of transport plus an entropy term for the Ag
'vacancies in both crystals are known, At 623°K Qﬁ + TSy
where sy is the entropy of formation of a Ag vacancy,

is =0.39 eV for AgCl and -0.40 eV for AgBr (6). The act-
ivation energy for the diffusion of Ag vacancy 1ls 0.36 eV
for both crystals. | (74) and (75)]. The contribution from
the entropy term is not known exactly, but it can be readily
seen that the heat of transport is more than the corresponding
activation energy.

Some of the assumptions which are implicit in‘the linear
chain model asre quite drastic [See Seétion (III.B)J + The
most notable being:- |

(i) The harmoniclpotential spproximation is used.

(ii) The assumption that the area surrounding the vacancy
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is always in thermal eguilibrium.

(iii) The interaction potentials of the sufrounding
ions with the jumping ion is assumed to be directed not from
the surrounding ions themselves, but from the vacancy.

When the actual jump process occurs, the vibrational
amplitude of the Jjumplng ion is necessarlly large. However
Assumption (i) stipulates that the amplitude should be small.

For the jump to ocecur the jumping ion must collect the
extra energy from the surrounding. This causes an imbalance
of energy distribution, contrary to Assumption (1i).

In view of the drastic nature of these assumptions, the
agreement between the general results of the calculétions and

the experiments on AgBr and AgCl are surprisingly good.



96

CHAPTER VII

THE TXPERIMENTS,

VII.1 LITERATURE REVIEW.

Thermpelectric power messurements in ionic crystals have
been most thoroughly and successfully carried out in systems
where reversible electrodes can be used, B¢g. Christy,
Fukushima and Li (5) on AgBr, Christy (6) on AgBr and AgCl,
Susuki, %ndo and Haga (73) on AgCl and Hsueh and Christy (76)
on CuCl. The results are sﬁccessfully analysed using Howard
and Lidiard's formula [FBquation (II.17)].

However, in the alkali halides the experiments that are
done [Nikitinskaya and Murin (7) on NaCl and KCl, Allnatt and
Jacobs (8) on XC1, Christy Hsueh and liueller (9) on poly-
crystalline NaCl, Jacobs and Maycock (11) on XC1, Hoshimo
and Shimoji (10) on NaBr, and Allnatt and Chadwick (4) on
single crystal NaCl; all the authors use platinum electrodeé}
suggest that the experimental difficulties involved are gquite
considerable, and that all the phenomena observed are by no

means easily explained,

VII.41. 1 Nikitinskaya and lLurin

Nikitinskaya and dMurin's (7) results are very scattered,
and their reproducibility is poor. They observe a potential

of uncertain magnitude when the temperature'is uniform,



97

VII. 1.2 Allnatt and Jacobs.

Allnatt and Jacobs's (8) results are much more re-
producible. They measure the thermoelectric power of pure
KC1l and KC1 containing 107 x 105 mole fraction of SrCl,
with platinum electrodes in the temperature range 834°K to
266°X. -

They observe large fluctuating voltages across the
crystals when they are annealed at temperatures less than
about 670°C. Their crystals are under mild compression for
good electrode contact and they attribute this spurious

potential to some form of plastic deformation of the crystal.

VII. 1.3 Christy, Hseuh and iiueller

Christy, Hsueh and liueller's (%) results on the measure-—
ments on pure and doped polycrystalline NaCl are very
scattered., They also see the spurious potentials which
Allnatt and Jacobs reported. They attribute this potential
to the presence of HOH contamination in the salts In their
individual plots of the voltage differences, AV, caused by
the temperature differences,; AT, there is a maximum intercept
of about 30 mV on the[XV axis., In their analysis they give a
thermopower of pure IaCl as ~0.95 mV/°C from 5500C to 780°C.

VII., 1. Jacobs and liaycock

Jacobs and I:Ia:;_rcock(J’1)9 measure the thermopower of pure
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KC1 and XCl doped with SrCl, and AgCl in the temperature
range between 6000X and 9500K, At about 820°%K they observe
a so-called inverted —\- point in their plot of © against T.-
Theif results for the thermopower of pure KCl are that it
varies between -1.35 mV/°C and -1.93 mV/0C at high temper-
aturee, snd for KC1 with 100 x 1072 mole fraction of 8rClo

VII. 1.5 Hoshino and Shimoji

Hoshino and Shimoji‘s(1o) measurements on MaBr, both
pure and doped with 28.8 x 107° mole fraction of BaBro, are
done between 5800C and 7209C. They attribute the time-
depehdent spurious potential to the influence of the Frenkel-

Lebovec(h0> space charge at the surface of the crystal,

VII. 1.6 Allnatt and Chadwick

Allnatt and Chadwick (L) measure the thermopower of the
pure and SrClo~doped single crystals of NaCl in the temper-
ature range of 550°C to 755°C. They find that the reproduc-
ibility on different crystals vary as much as 30% In con-
trast to Jacobs and aycock (11) and in agreement with Christy
et éi (9), they find that the intercepts on the ﬁW'axis in the
individual plots of AV against AT are finite, In addition
they7plot a straight line graph of the intercepts against

the temperatures. Their results are summarised in Figure (12).
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Allnatt and Chadwick see the fluctuating voltages even
though they take most carc to avoid water contamination.
They suggest that the cause of the fluctuating voltages is

due to the mechanical state of the crystal.
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CHAPTER _VII

THEZ EXPERIMEINTS

THORMOEIECTRIC POWER

VII, 1. SPECIMEN PREPARATIONS

A modified version of Czochreeki's method (77) for the
growing of single ;;ystals is used. The Jig and the actual
operations have been extensively described by Newey (78).

The starting material is the Hopkins and Williams ansglar
grade NaCl. This is held molten in a fused silica beaker for
approximately fourteen hourss A single crystal seed is then
lowered into the molten surface and slowly withdrawn at an
approximate speed of gbout 1 inch per three hours. The bouls
g0 obtained varies in diameter as the temperature of thenmﬂbxé
surface, the lower the temperature, the larger the diameter.

A typical boule is about 1% inches in diameter and 4 inches
long. The crystal grows in the <100 axis, and immediately
after growth, it is transferred to the annealing furnace.

This furnace is held at about 65OOC Tor sixteen hours, after
which the temperature is brought down to room temperatures evec
a period of thirty-six to forty hours.

NaCl single crystal cleaves along the %100} plane. XHach
specimen is carefully cleaved by sharp ragor blades into

rectangular cubes of linear dimensions of between 0,5 to 1.0

cm. Thegecimens are then examined under the microscope to
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Figure 8 The tube furnaces. The outer tube is wound
uniformly to provide a uniform tcmperature. The bottom
is closed for temperaturc stability. The inner tube is
wound uniformly in two sections. When the current is
passcd through I and D the top cnd of the crystal is at
a higher temperature. The temperature gradient is

reversed when the current passes between 2 and C,

Figure $ The crystal in position in the silica jig. The
8ilica Jjilg is air-tight. It is first evacuated and then
filled with high purity argon. The crystal sits between
the platinum clectrodes at the bottom of the tube., The
middle stem 1s made of silica, and it can slide up and down
through the rubber bung. The whole of the middle stem
including the platinum electrodes and the crystal can be

taken out in one piecc.
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detect surface damage. With good specimens damage is done
only at the corner where the razor blade has been in contact.
The satisfactory svecimen is then transferred to the jig ready

for the experiment,

VII. 2 THE APPARATUS

A vertical tube furnace is used, The outer tube is of
fused alumina, and it is about 70 inches long with an inside
diameter of 3 inches. About 55 inches of the wmiddle section i
wound by gauge 20 michrome wires. The total resistance of the
heating clement is about 60.% , Within this tube is an inner
tube of fused alumina. The inner tube is wound in two equal
sections, as is shown in Figure (8). Eaéh section has a
resistance of about 40.'v, The crystal sits in between these
two scctions and it is found by trial and error that the
separation between the cnds of the two sections should not be
more than 1 inch apart to produce the required maximum temper-
ature gradient of 10°C per em. By passing a current through
cither the top or the bottom windings, a thermal gradient can
be established in one direction or its reverse. The maximum
current allowed through the sebtions is aﬁout 1 ampere, This
is to ensure that the thermal gradient can be altered fast
enough.

The outer tube is surrounded by laggings contained in a

box 40 inches scuare and 60 inchcs high. Thisllarge amount of
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laggings is needed to maintain tempersture stability,
especially as the experiments have to be carried out through
the night and the temperature drop in the room is quite
significant.

Both alternating currents and dircct currents are used
to drive the furnace. The over—all temperature is controlled
by an "Bther" type anticipator controller, which only controls
the current of the outer tube, An additional circuit is
introduced in parallel to the windings for better control.
The average fluctuation is controlled to i%OC in a period of
half an hour. The current passing through this outer tube
varies from 2 ampcres to L amperes when the temperature is
between 600°C to 800°C,

The jig is made of clear silica and is constructed as
shown in Figure (9). The middle stem holds the crystal and
it can be s1id in and out of the silica tube, The electrodes
are platinum foils of roughly 1 mm. thick.‘ They are backed
onto silica discs, Platinum-platinum 13% rhodium thermocouples
are used both to measure both ends of the crystal and to act as
leads to measurc the potential developed across the crystal.

The silica tube is surrounded by an earthed stainless-
steel pipe., All the lcads outside are screened.

Temperatures are taken with respecct to a water-ice
mixture at 0°C., A high impedance digital valve-voltmeter is

used, The input impcdance of the veltmeter is more than 50 M,



105

and it is capable of reading to within X 0, 0025 nV,

The Tinsley potentiometcr is uscd to memsure the voltage
developed across the crystal. It is capable of detecting a
voltage of 0.1 uV. It has a reversing switch which eliminstes
the thermal potentials of the measuring instrument; The
potential differonce set up in the potentiometer wirc is
maintained by an A.C, mains-opcerated device which employs a
Zcner diode to maintain voltage stability.

The current from the crystal to offset the null detector
must necessarily be small, Thcrefore a Tinsley-made D.C.

amplifier is used to amplify the current going through the

galvanometer,

VII. EXPERIMENTAL PROCEDURES AND OBSERVATIONS,

The pure NaCl single crystal is placed in between the
clectrodes, and they are lowered into the silica jige The air
in the jig is evacuated with a rotary pump. The pressure in
the jig is reduced to about 10~ 2mm Hg, or lower, It is then
filled with high purity, water vapour-free argon. This pro-
cedure is carried out on the average six times,

The temperature of the crystal is brought up over a
period of four or five hours from room temperatures to 6000°C,
It is then maintained st this temperature for twelve to
fifteen hours. After this time it is raised to over 7300C

and maintained at this temperature for four or five hours.
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Then it is brought down to about 620°C at a rate of about
5°GC pcr minute and maintained at this tcmperature for two
to three hours before rcadings are taken.

The digital valve voltmeter is used to give an indication
of the voltage developcd across the crystal. The approximate
position on the potenti&mcter is then sct, and the actual
rcadings are taken., It is ensured that no currents flow from
the crystal,

) If the temperature of the specimen is brought up from
room temperature to 600°C and readings are immediatcly taken,
it is found that, without any thermal gradient on, the potent-
ial diffcrence betwesn the ends of the crystal varices between
20 to 80 mV. This potential fluctuastes violently. After
annealing at about 600°C for asbout twelve to fifteen hours,
the thermopower is found to have an unsteady value of betwecen
2 to 3 mV/°C., This drops fairly rapidly at a rate of about
0.03 mV/°C/minute. After about twenty-four hours at 6000C,
the thermopower is betwecen 0.6 to 0.8 mV/°C; the readings
still fluctuate, All this time, there is a potential at zero
gradicent.

Consistent reproducible rcadings are obtained by the
following procedure, After an overnight anneal at 600°C the
tempcrature is brought up to about 730°C and held for four or
five hours. It is then brought down rapidly to about 620°C,

and recedings are tsken after two or three hours.
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At each temperature, the thermal gradient is varied from
0°C/cm to % 6°C/cm. Tho potential differences are then plottéd
against the temperature differences., Within this range of
thermal gredients the plot of thelpotential differences against
the tcmperature differences are extremely good linear plot}
Only four points are needed for each plot. [Soe Figure (10)] ‘
At more than about * ﬁooq/ém the linearity of the plots is
losts After a large gradient has becen imposed on to the cry-
stal, there is no deviation from linearity when smsll grad-
ients are once again usecd.

As reported by Christy et al (9) and Allnatt and
Chadwick (4), there is a finite 7 - %.. intercept: ad the
individual plots of potential difference against tempersture
difference. |See Figure (10)}. However, unlike Allnatt and
Chadwick (4) the plot of the intercept against the btemper-—
atures does not correspond to any good straight line.

Below about 600°C the purc NaCl specimen has a resistance
of about 102 ... This resistance is too high for thc potent-
ial to be measured with the use of the potentiometer.l‘Below
a temperature of about 620°C the recadings are not considered
seriously for thc final analysis, .Readings arec taken at an
interval of between 10°C to 15°C from about 600°C to about
790°C, Altogcther aboutseven runs are done to complete the

whole temperature range.
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Figure 10 Graph of AV against 4#T. This is a typical plot
of the measured potentinl difference against the tempcrature
difference acrogs the NaCl crystal. Only five points are
needed, The points lie on a very good straisht line, Note
that the straight line does not pass through the origin.

The total thermopower is equal to the gradient.

Figure 11 Graph of thermopower of ﬁure NaCl vs temperature,.
The specimens for different runs are different, although they
are all cleaved from thec same boule., The low values at
bectween 870°K‘to 900%K are probably due to the difficulties
encountered in thec mcasurements since at these temperaturecs
the rcsistance of the crystal becomes very large. The size

of the points indicate the crror in the values of the thermo-

power,

Figure 12 Graph of thermopower of NaCl against temperature,
The measurements of the pure NaCl is done by the author. The

two dotted straight line graphs are from Allnatt and Chadwick
(L),
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VII.L RESULTS AND ANALYSIS.

‘The thermoelectric power of pure NaCl crystal in the
temperature range of about 870°K and 1050°X is summarised in
the graph in Figure (11). Between 900°K and 1060°% the

measured thermopower is -1.15 % 0,05 mV/OK,

VII.4.1 THE NO-TRAP MODEL ANALYSIS,

The no~trap model of Section (II.L4) predicts that the
heterogeneous thermopower is zero and therefore the measured
thermopower is just the homogeneous thermopower, which is,

from Equation (II.1L4), for a pure crystal:

( 7
- by, f(hs-al)+ £ QF] 4

o6 = veve  (VIILA)
2T (1 + 4) T
where for a pure crystal n(+) = n(_) and Grad n{(-, _
2(-)
+ hg Grad T

2kT2
: oo -1
has been substituted, -and SeM is defined in ®&quation (II.31).
From the results of Chapter (VI) the heats of transport

afe: given by

a
z , -t - -
af = (@ /) B4 ‘ ees (VIL2)

Substituting Equation (VII.2) into Equation (VII.1) and
re-arranging the resultant eguation, g+ and g- are found to be

given by:
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o= =  LF(T1)-F(rp) ) ?
(A -4(T2)] B_R
/) eeee  (VII,3)
a+ = B(Tq) - _y= R(Ty)

where T, and T, are the temperatures,
4 = 4(T), the mobilitics of the anion vacancy over the
cation vacancy,
A(T) = T {(e6,T : Bs/2). [1+4(T)] + [2E(*>22E(;)d(T)—ﬁ51} .
and 6, = © + SeM /e
Analysing the experimental results, as summarised in
the graph in Figure (12), and using the following dta:
#(T) is obtained from Tubandt's(79) measurements of the
transport numbers and is given by
A(T) = 4275 = 6,76 x 105/T + 2.68 x 108/72
hg = 2,12 €V from Dreyfus and Nowick (70)
E(4+), the cation activation energy = 0. 69 eV from
Xirk and Pratt (80)
B(.) = 0.91 eV from Barr and Morrison (81),
The results of the analysis are summarised in Table (7).

VII.L.2 HOWARD'S MODEL ANATIYSIS

The results of the measurements of the thermopower of
pure NaCl conducted by the author compare favourably with
those of Allnatt and Chadwick (4), However, Allnatt and

Chadwick aslso measure the thermopower of NaCl doped with
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2.35 x 10~Y4 ana 3,08 x 104 mole fraction of 8rCl,. Using
their results of the doped specimens and the author's pure
specimens, an analysis is carried out using Howard's model of
the irreversible electrode-crystal thermopower. Howard's wmodel
predicts that the difference between the thermopower of the

doped and pure crystal, Ale(q), 1s given by t?rom Tguation
(11.21)]
Aeln) = %—T-W (22:3% [h-Q3-0Z] 4 XL . '1115@" n  eeee (VIDD
where ASy of Equation (II.21) has been put equal to zero
as suggested by Lidiard and Howard (38),
Substituting Bqguation (VII.2) into Bguation (VII.Y4), and

rearranging the terms, the following ecuation is obtained

B(y) o+ + By a= = T[(hs ~2B () -2*3(_)) - W ....(VII.L)
where W = Egiliél (n2 ﬁé)[be(n) 1 gg]

At high temperatures, when the anion vacancy-cation

vacancy association can be neglected,

n = Eg._ £ A+(%2c0)2 [see Liaiara (1)]
- A

C is the impurity concentration
and C, = e"Ag/gaﬂp - eAS/ng e~ s/2KkT

For NaCl A8/} is 6,20 ox~1 [From Dreyfus and Nowick (7OU
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Table 7 Thc No=-Trap Analysis., Using the No-Trap theory,
the zraph in Figure (11) is snalysed to produce the heats
of transport, Q* = (2 + Q/T)E. The voalues of g+ and g-

are shown.

Table 8 Howard's iiodel Annlysis. Using Howard's theory,

the graph in Figure (12) is analyscd.



TABLZ

7

THZ  NO _TRAP ANALYSIS

e | wx | e | e

; 900 920 ~72,1 ~2029.7

§ 920 SLO ~12448 ~1845,2

| o0 9260 ~-185.4 ~1629.6
G60 ©80 -256 .6 ~-2107.9
980 fOOO -319.7 ~1636.5
1000 1020 -399.5 -1751.2
1020 10L0 -486.5 -2152.2
10uo 1060 -548.2 | -23%69.9

117
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TABLE 8
HOWARD'S MODEL ANALYSIS.

e R ) Gy
| 23.5 x 107 Mole~fraction| 30.8 x 1072 Mole-fraction i
f i
of S'I’Cl2 of SrCls §
|
; T°K mV/ 0K : q_+E(+)+q__E(_) mV/ 9K q+E(+)+g__E(__)
evog evoxK
i i :
; ! *
L 900 0.13 | —{(.5 <10 | =0.050 | -{4.a ,10°
- I R

SLo 0s17 | - 10 .4« 103 ‘ -0.005: =10.3 4 l03
80 0,21 ! 3 | ! >

’ 21 -93, 10 G0k .3, 10 |

: e e Ir Bt N | . ;

1000 G2l | = g.5,010° 0.05 | -T.5,10°
1040 0. 26 1.8 . 1O° 0.09
- 1. . 3 i

* -§L.6 x 10
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VIIi4.3 DISCUSSIONS

The results of the analysis using the No Trap theory
Are summarised in Table (7). The analysis covers the measure-
ments of pure FaCl between S00°K and 1050°K. At each temper-
ature, a temperature range, (T, —_T1)DK, of 20°K is used.

Both g+ and g— are negative in agreenentsiwith both
the prediction of the hest of transport theory of Chapter
(VI), and the results of the measurements on AgBr and
AgCl [(6) and See Chapter (VI)] }.IOW%E% g+ and g- show astrong
temperature-dependence.

Table (8) summarises the results of the analysis using
Howard's kodel. Howard's Model only predicts the value of
E(+) g+ + E(_) g-. No further breakdown of the quantity is
possible. Table (8) shows that E(4) QF + E(_) g- is negative,

agreeing with the results of Chapter (VI). It is also temper—
ature- and impurity concentration-dependent.

On the basis that the theory of the heats of transport
developed in Chapters (III), (IV) and (VI) is correct, the
analyses summarised in Tables (7) and (8) suggest that the
irreversible electrode~crystal thermopower is both temperature-
and impurity concentration-dependents The failure of the No-
Trap analysis suggests further that should the electrons be

actually transferred across the electrode~crystal interface,

they will be captured by some form of traps in the crystal.
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CHAPTER VIII

DISCUSSIONS, CONCIUSIONS AND SUGGESTIONS FOR

FUTURE  WORK

VIII.1 DISCUSSIONS

VIIT.1.1 THE THERMOBLECTRIC POWER

The successful analysis of the alkali-halides' thermo-
power measurements depends on both an adequate knowledge of the
irreversible electrode-crystal thermopower, and an adeguate
theory of the heats of transport.

All the theories of the irreversible electrode-crystal
thermopower assume that the electrons are responsible for the
heterogeneous thermopower. Jacobs and liaycock (11) suggest
that the electrons wsnder about the crystal-electrode inter-
face, Howard (13) suggests that the electrons are trapped at
the crystal surface by the formation of the metal phase.
Allnatt and Jacobs (14) assume that the electrons are trapped
by the anion vacancies in the crystal to form F-centres. The
No Trap theory studied in Chapter (II) explores the possibility
that the electrons way enter into the crystal and not fall into
any traps at all. All these theories have been found to be
unsétisfactory.

It is not possible, at present to explain definitely the

behaviour of the electrical potential developed across the
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crystal when a temperature difference is first imposed. This
ig because it is not known whether the phenomenon observed is

a crystal-electrode, or a purely crystal, effect.

VLII. 1,2 THE HEATS OF TRANSPORT

The work on the heats of transport done here uses a
vastly different approach from that used by Wirtz (16) in his
original kinetic theory. A simple linear chain model is used,
and by studying the jumping process in this model, the heats
of transport are successfully related to the dynaﬁics of the
lattice. Quantitative values are obtained by studying the
forces operating between the alkali halide ions.

The results of the lattice calculations are most
satisfying in terms of the agreement between the cglculated
and the experimental sublimation energies and the Schottky
pair formation energies. From the lattice calculations, the
forces operating between the ions and some of the physical
properties of the vacancy; e.g. the relaxations of the surround;
ing ions, are known. .

By an extension of the lattice calculations, the force
constants binding the ion to its neighbours in the linear
chain, is found. This is done specifically for NaCl and XCl.
Subsequently, guantitative values for the anion and cation
heats of transport of these two crystals are found, Unfort-

unately, these values cannot be compared with the results of
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the alkali halide thermopower messurements as it is not
possible to analyse these results since no sdecuate
irreversible electrode-crystal theory is available., However,
comparing the predicted relationship between the heats of
transport and the activation energies of the alkali halides,
and the experimental values of the Ag vacancies in AgCl and
AgBr, the general sgreement is good. Butbt it is not possible
to make a detailed direct comparison as in the final analysis
of the experiments on AgCl and AgBr, an entropy term is
present which cannot be eliminated since there is no data on

the entropy of formation of a vacancy.

VIII.2 CONCLUSIONS

The total thermopower of single crystal, pure NaCl 1is
~1.15 ¥ 0.05 mV/°C in the temperature range of 900°K and
1060°K,

o adequate theory of the irreversible electrode-crystal
thermopower is known.

The theoretical heats of transport for an ion in the
alkali-halide crystal is about oneand a half to two times the
correéponding activation energies at normal temperatures for
which diffusion experiments are carried out.

For NaCl, the heat of transport is
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(2 - .25.7/T)EN3C1 )

for Na™* ions,
" Nat

and (2 ~21'7/T) gl acl for C1” ions.
c1l-
For XKCl, it is

. K
(2 = 325/7) 3£31 for K* ions,

and (2 - 39:2/1) 2XCl £op o1- ions,
Cc1~
where the E's are thec respective activation energies for

diffusion,

VIII.Z SUGGESTIONS FOR FUTURZ WORKS,

An adeguate theory for the irreversible electrode-crystal
thermopower need to be developed. It might be possible to
develop a reversible electrode for the alkali-halides, e.g. a
chlorine electrode for NaCl. This might be done by saturating
a porous carbon electrode with a strecam of chlorine gas.

Quantitative values for the heats of transport for Ag+
vacancy in AgCl and AgBr can be calculated. Lattice calcul-
ations for these two salts will have to be done. It is then
possible to find the entropy of vacancy formation guantitatively
from a study of the vibrational modes of thé crys tals,

From the knowledge of the relaxations of the ions
surroundihg the vacancies, it should be possible to compare
the theoretical values with that found by density measure-

ments,
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It is interesting to investigate whether the saddle-
point configuration of the transition state theory exists.
If so, 1t should be possible to determine the life~time of
the Jjumping ion in this configuration. This can be done by

an extension of the method used for calculating the force

cons tan t.



125

APPENDIX T

At e P ot e e

EVALUATION OF THE INTEGRALS Sl AND 32

P

5. = N\M Cosec?y 11 ag

.

% Cosec g + 2 5in 34

""!..

s\-....» 'y

Cosec 4 + l' ag

- 2N;° %?lkﬂ ag
T

4
&

N
LT D , oy 2
S,= Njo LCos # Cosec“d - Cos dj agd th%ioosec 4 Cos o
aY
+ Cos 4 + 2Cos ¢ Sin 34 Cosec d; ag

= Il - 2N

oyl OF Cos ﬁ Sin 2¢
I,= ZNz%iCos g Cos 28 + ozt 7 ag

_ 21\]'/3 + 81‘1/3

«-/

_ 4w
Sp= /3
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APPENDIX IT

ENERGY OF A SCHOTTKY PAIR

The energy of a Schottky pair, Zg, is defined in the

following equations as

S)
where Bpis = 2 EBys
1=

and  Ey;3 are defined as follows.

the ion from
E4+ This is the energy needed to extracththe rigid non-

polarisable lattice, This term comes from Equation (V.11)

4 2
pm i) 6 R (n) - 12 A2 (v /D)

Ts

&

eoes  (A.ITI.1)

where for the Bl form

ﬁii(r) = b(1 + A/n+ - #/0_) exp [(P++P')/p] exp (7F/p)
- C4-/p6 o Dym /8 ceed (ALIIL2)
Similar expressions exist for ﬂf_(r) and ﬁﬁ_(r).

For the BMV form Equation (A.II.2) holds only for

r=>ro; for P<(PD it becomes
£ (r) = B, + Bz/p12 _ C4/p6 _ Dyuy B
+—

X, is the Hadelyng Constant and is 1.7476 for the NaCl

structure,
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|
r
H+

|

This is the polarisation energy of region I due to the

effective charge on the vacancy. It comes from the third

term of Bquation (V.10).

2 Y
By = - 6 (4e) - 12 (Ag) " cees  (AJII3)

arpt  F o(ve p)l

where the «'s are the polarisabilities.

This term can be divided into three parts, i.e.

Bz = B B ko
3 3¢ * Par t H3p
where B, = wzc(x,o). It is the Coloumb interactions of

the real and effective charges and the vacancy of region I

comes from the second and third term in Hgquation (V.412).

B g = 6(Ae)2 [(/2 + ) L - 1
” To (1 +2) [(1-(1+n)2] % D+
+ .__H’_____‘ -+ L" 4 + Ll- 1 + 5J2/L]-+1 +L|'/f6
(1+42) 2 [2+(4+A)2]2  T+(2+n)2 1z (14V)

- 8 - b
[1+V24(14v) 2] z [V2+(24V)2] 2
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8 _ /D

- __ 8 L + L P 3
Ug+2e(2e)2]z  (24v)  [v24(14v)2]2  [122(147)2%

L - 4 -1
[(1+0)2e(2e0)2 2 [(1+1)2:@-1)2]2 [(1en)Ze2(14n) T £

- L , 4845/ 1223, 75-0/ 13U/ 15/ 76 | ue(ALTIL L)
BZwazﬁiﬂqﬁ.b 7 ' ]

B, =Wpg (%,0) #ll35(x,05%,0)-4F 43,

[3N3R(x305'§ so).]}

23 -

3=3
WZR(X’O) comes from the first term of Squation (V.12)
and W3R(X,O;’,O) represents the short range interactions of
regions I and II and is given by the first term of TEguation

(V.13).

WR =12 g__ [(1+)72) - 12 4__ (2]
++ ++
ven g [(wv)ve] - 24 (V2]
v2h 4 [/a-v)2e(1e0)Z) - 2h g, (1] evee (AIIL5)
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Wip(x,0; 5,0) = 6 4, _ [“%bf A)- 6 4, [1+3]

- +2h /5__.[/{33/J3"7‘))2+2(1+35/J3)2] -21;}5__{\/%32/3.,.2(1.,.553/6)ZJ
raes

++

+204,_ [%1 +-2—j,§ N2 (14%5/ 15)2] _oug [/@ +;2J;§§)2+(1+§5/J5)é}

3 T 52 3
+2u;6+_[./2(§3//'3—v)2+(1+'3/J3)2J ~2L;;5+_[/2_;_;3_ +(1EJ_%)2]

+2u,diif,/(ﬁ+§l:v)2+(1+v)2] ~2Ug [/(1+§u)2+1 ]

+128 4, [(1438/72 -v)i2) -124_, [(1+§8/J2) vz)

- PE = g
HiBA L/uiﬁ -V>2+(i~—§ ~v) 2 (1+ §6/16)21

-U8g [/1+2 %/ 16)2 . 5%1-5 +(1§6/\f6)2 ]

+12;d+_[/{1+3% 2 .35/ r5-v)2 ) -12ﬁ+_[%£%)2+552-'/5]

El i =z .""1 = wi]
where 33 = M /3, §b, = =t /LH §5 _ M /5

z W/, = !/
§ 6 - - 6, §8 = - 8.
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EB,P is caused by the relaxation of the polarisable

ions of region I due to the effective charge at the vacancy.

B3,p = ~3m:v[tF 1)(A)l 2. Ev§1) (0)12]

“6w 112t (0 ] 2 - 12,42 (@17

where the Fy's are the fields due to the vacancy.

Ef,l) A) = The %
r02(1+h)2
- A A
w3 (v) = Fle 2+ 3
2ry2(14v) 2 72

A A .
where X and y are the unit vectors from the vacancy along

the positive <1007 and<010) respectively.

e
i+

|

This term comes from the vacancy and the displacement

dipoles of region I being in the fieclds caused by the

electronic dipoles of region I1II, The fields at different

positions have been calculated by Mott and Littleton(g4).

Bl = éii) (41977, + 34 33464 ]

520)° 5 (o, 3881 - 0,323 )
2P

) .
- 12(Ag) v/2 |0.730M_ + O.2M7M+]
2r + - -
) se e e (A.II-?)

!

+
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2

where M+= Pi? r ,and‘uiis the electronic dipole caused by

——

the effective charge of the vacancy.

The electionic dipoles of region II and the real and
effective charges and the vasancy of region I collectively
produce a field at each lattice point in region I. The energy
of the induced dipoles is given by E5+. Some of these energy
terms have already been dealt with in_EB,P’ and E5+contains

the remaining terms,
By, =6 x 2z { (2100 25 0, Ml @l ()
+F(1>(x,vn—(gwo-.))?}
-12 x 3z} @) @i o, maid) o)) ()

232)(2)) - (22 ()?}

_Eé})(K,V) is the field at the relaxed 1,0,0 site in
the €100>direction caused by the real and effective charges

of region I.

(1)(K V) is the field at the relaxed 1,0,0 site in

the 100> direction caused by the induced electronic dipoles

regions I and II.
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2 2 L. .
Eé+) (A, V) and.gii)(h,v) are similarly defined as the

field at the relaxed (110) position in the <110> direction.

The full expressions for the fields are

Eél)(A,v) =7 éﬁ [ 1,662 _ 1 ~ L{1+)

0” (1+73)2 (2+A)2 L1+(1+7))2] 2

_ L(-v) =3/, + LA - L{142) 5/
[(A—V)2+(1+V)2J [1+7¢] %2 [(1+7)')2+2(1+V)2] 2

+ hlaan) 3/, - L{24+24V) L o+ (o) .
[2+(1+3)2] /2 [(2+2+ +V)2+(1+V)2Jj 2 f(2+%)2+13~3/é} P
eees  (A.11.8)
(2) _Ae/2 [ 1+2V=2\ 3/ - 12V _.
By O0¥) =3 L0 | T 2e(an)2] 2 [v2r(147)2 Jj/z
+ —2(2V+1) 5/5 + —2L12V) 3+2V+ D

[V2+(1+V)2+1] [V2+(2+V)2]3/2 * L(1+V)2+(2+V+h)2]3/2

342V 5/, 2(3+2V) 5/ 1 - 1.4538
[(1+0)24(247)2] 72 [(24M)24(147)244) 72 2/2(247)2 (q47)2

p—2014) 5/ - _2(44V) AL Ay A
(210218 ° Trwe(ran@”2 &+ D7 oo (2109
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2 0,0 = 55 e (22 )+ 22 ()

+ E§§>(hyV)J &—(1+6/r [?<1) h)+F(1)(h V) +F(1) Vj]
MP 1+k)3

=] - as
.—-2 [O‘ 388 MI - 0.323 l\ii_]} § e e v e (A. II.10)

(2) $ -4q/2 (1) 1)
Ly OV) T?;,T‘ ) (2 (02l D el 0,v)]

- 200wy 102 0042 (2 01,02 1, ] £ Ao

P03(1+V) r,2
Lo.730 za.-'z; + O.2L7 I-.'Ii])} (& +3) 15 eoes  (A.TIL1Y)
6(1+V) (147) 3(3+1+2V) (24247) = (1 +vP-ladiP
h s V) = =
wnare £(n,V) [(1+A)2+2(1+v)?]5/2 +[(2+x+v)2 + (14v)2]5/2

L (1) 24 (Z-V) 243(1+2V=-7) (A=V)
[O-v)2 4 (14v)2] Y2

THE ELASTIC CONTRIBUTIONS.

The elastic strength of the vacancy modifies the dis-

placement dipoles of region II as follows:
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(a) 1In B3 g the displacements %'s are modified so that
’ A

s - 5 A T A
2 _ - M 4K — k-l _ k4l _ k-H
T _ ki
8

(b) 1In B, the clectronic dipoles are modified so that H-

becomes M_+k and M, becomes K -k.

(q) In By, the dipole fields, Fii's, which contains i,

and k_ are similarly modified.
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APPENDIX III

FORCE _ON THE NEXT NBAREST _NEIGHBOUR.

Take the ion at
displacement from 1t0}
The other eleven second
/5 V rye As usual, the
placed a distance Arg.

3 =3 (A
Then = — 2Z
rofé IV

positive {110% directio

110" as the specimen ion. Let its

in the ¢110) direction be/2 Vir,,
neighbour ions have digplacements

six first neighbour ions are dis-

The energy, B, of the vacancy is then

v, V1),
is the force on the .410! ion in the

n [from the vacancy to the 110 ioﬁ].

The relevant energy terms [i.e. those which are functions

of V1] corresponding to

4 and B, [of Appendix

=

{6

i

- Ae

those of Appendix (II) are given below.

II ] contain no terms of present interest.

2 - 2

2 C:
& ry2 [[QA—V1

2

L 1
)2e(14v)2)T Tyt 2(4,y1)2)2

2 2

+ ~<.

a2 (1avh2)E  frea(iay] 2 B ()2

2 -
£(1+V1)2+(2+V1)2]%

L
1) 24(14v7) 24 (147 )2)2
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L - 2 2
7 T + 1
Tv'e (a2l z rvi-m)24(2vtan)2]® - [v124(24v)2]2

Ly L
- . .
L) 2oty 20 (14027 T [(1avh) 2u(oavt) 2]

ml»«‘

1 1 1
(2+v+vT) 1o * (2+v1) /2 * (1+v")/2]

Wy g = 28, [/O-11) 24 (1477 18]+ ug,, LAVI-Y) 2 (1) 24 (1+) 2]

W3 g = 2p’+_[/é(v1—§3/'f3)2+21+ 35 2]

w2hy L Aei) 2 (o) P Jead [ 1250 Ly 2u(v 35/ 5)2 ]

By [+ 38/ 13 =v)VE] +hd,, [ﬂ*l 2 33f—\r")?-}(éo/ o—v1)2+(1§6/16)2]

cees (BJITI.A)

A , A - 1
=z \‘-ij- E I‘:‘. -]y w
where §3=1 /3, 5,4:“/4, 35= /5, §6_‘ /6 §8=“/8
2
7 — e
T3P e AT | Eyqzx
A N
Wher‘e F + = - '—ig—"""— <'}'S + z) L] (Aq III. 2)
2 ()2 |
A - .
b3 - € . an
= - Oo 0 I'\'I 002 M EER A.‘III.\ﬁ
W T v LO-730 Ho + 0.247 ¥, ] ( )
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Eg

Owing to the difference in the displacement of the 1ﬂp}
ion from the displacements of the other .10 type ions, the
respective region I fields arc no longer symmetric, For
example, at the 100" ion site the field, EDi(%,V), which is
caused by the real and effective charges of region I, is no
longer effectively in the (100> direction. In the same way,
the magnitude of the similar field at :799: is different from
that at (100 . The asymmetry of the P fields are reflected

D
in the 2., fields. (F; fields are caused by the induced
dipoles of the region I ions).

The region I ions can be divided into eight groups such
that within each group the equivalent ficlds bear some sort of
simple relation at different ion sites. The ions in each
group are:

Groups 1: 110 the specimen ion.

2: 101 , 191, oA, 0T,
3 10, 19
L QTTY, of),
5 .110'

6: PP}, OAP
70PN, L0p],
8: 100}, .00

See Figure (6) eeee  (A.IIILL)
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The fields at different ion sites are then represented
by the Tollowing revised symbols:

Fv<a;ng}, FD(aabsx)y FI(a;bsx)

LIPS |

where 'a' represents the group which the ion belongs to,
'o!' represents the particular ion in the group, and 'x' |
renresent the directional component of the fields.

For example the y component of the ¥Fp field at the (011)
ion site [the third ion in group 2; see Hxpression (A.III.MH
is represented by Fy (2,3,y).

The relationship between the Fp fields at different ion
sites of group 2 is given by the following eguatipns:

Fp (2,2,x)

It

ED (2,1,x%)

f

Fp (2,2,¥)
Fp (2:2,2z) = =Fp (2,1,2);

Fp (2,1,¥)s Fp (2,3,7)
Fp (2;1,2); Fp (2,4,%)

ED (2919X)9 ED (29h32)

ED (2319Y)

i

Pp {2:1,%),
Fp (2,1,7)5
-Fp(2, 1, 2).
ceee  (A.IIL,5)

ED (2;39X)
ED (23593)

Fp (2,4,3)

H
i

1l
il

Similar relationships hold between the Fy and F1 fields

of the ions in the other groups.

The expreésions for the fields are:
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Fp (1,1,%) = Fp(1,1,y)

- - de 1+2v1- 7 - sy
ro?  [(-h2ar2 P2 [ 2 (qam 2] e

1 1
b 202 ) L - _2(1xV) 3/, + —(Be2vlen)
[2(1+V1)2+(1+7\)2])/2 [1+2(1+V1)2J 2 [(1+V1)2 2+V1+7a)2‘13é

. (3e2v) - 2(tsavioy) + —2ls2r)
gnfﬁqmﬁﬁ}étwtw+wn¥4wﬂ2 [1+v! 4wﬁﬂ?

- 20447 5 2(1+71) 5" (3+2V1+V)
[V1-v)24(2+v147)2] 2 [V (0.2] %2 (17D 2 (arvhuPiaaP] 72

2(342v] ) - Moz V/ovE

[(1+vT) 2+( 24V ) 2+1J 3/2 [2+v1 +V}2 C 2+V11 2

" eees (AJIII.G)

Fp(1,1,2) = O

Define FA as the expression within the large sguare
brackets in Zquation (A.III.6) with V1=V, [c.f Equation
(A. II. .9)]. Define FAS as the expression within the large

square brackets in Bquation (A.II .8).
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Fg(2,1,%) = ~2¢ |FA - - (r=v') 3/ 5]
r2 L Lv=v1)20(14v7) 2 (14v) 2] J

S 1 |
F(2,1,7) = ==2 (1+7 ) 3/ - .._..1_______]

I‘02[(:(V---V1)2+(‘I+V1)‘2+(‘I+V)2] 2 2[2(1+V)2
B2t 2 Ton e (127) _ Al

ro2 2/2(1+7) 2 [ (v=-v1)2:(14v1)2,(147) 2] 2]

1
2 (3,1,%)= - é-e- FA + - ALL)
& ry2 [ [(v-v1)24(24v4v1)2] 3/2}
1
F5(3,1,y) = - e [-Fa- __1 (24V4V ) 3
D — L
r 2 [ B(1+V)2  (v-v) 2 (pavev!) 2 32]
E;(39192) =0
1
By (Ust,x) = - Ae { (1+v) z-__ 1
r,2 [(1+V1)2+(1+V)2+(2+V+V1)2J/2 (1+V)26J6]

R il,1,y)= -2e [-Fa- 1 _ (24v+v 1)
D! v r02[ (1+V) 2376 [(1+V¢)§+(1+V)2+(2+V+V1)QF%J
)¢ _ _Ae J_ma. 1 (1+V)
By(ls1,2) = =28 -FA- —o 4 _ ;

1’02 L (1+V) 2676 F(1+v) 2+ (1 +v! ) 2+(2-!-'\7-1'VJl ) 2] 3/2]

=-§.§[-FA"‘ 12 + L 7 ]
o2 (14V)28v2  2(2+vav!)2/n

35(5,112) =0



F-B(G,‘I,X)

F(651,¥)
Fp(65152)

FQ(?M,X)
B (751,¥)
F5(751,2)
B (8,1,%)

F5~(8,1,y)

Fj",'(891sz)

it
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f\_g : Orv) | Oy M
[FA +[(7\-V)2+(1+v)21 % v )2+(1+v1 2] /27

1+V) | (1+V)
[[(h-v1 +(1+V)2];/ [O-v)2+(14v)2 ] /2}

Ag (1+v7) - (1+V) 3
?' [[(1+>1 +2(1+V1)2_] 72 L) 24201472 2]
[[kjl;v 12(1+§1 ?]é/ ) [(1%”;12?:+V)2J'i%]
%fz EEAg ' [(1i1;;zzg1+v)2]'é ] (1+§;;2;(1+V1)€f:1
'Arf?-’ [- FAg—[(zigi:; 2-(1+V 2]32+ \Zzii:?f;g+21+v1 )2)3}
%2 [(2+§1;¥;g+(1+v1)2] A [(2+>~i\1r;2(1+v)2] 2]

(A.III.7)
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The field produced by the dipole gzat the dipole glis, in
general, given by -
F = _(Ep-f sg3. 3(2p.0) (ﬁl'i)/d5)§1 (A, TII.8)
where 4 is the line joining dipoles o4 and O, and ﬁl is
the unit dipole. |
Define co-efficients C's such that the dipole fields
Fg's are, in general, given by

B3 = &, C,3 (Fg+E+Fg) + W ... (4.III.9)

Wherec(+ is the ionic polarisibility and W is the field

contribution from region II. Numerically for ions in Groups

1 to 5 W is Ae/vzqf (0.730 M_ + 0.247 M+) and for ions in
+ —

Groups 6 to 8 it is 4°/rS (0.388 My - 0.323°M,).

From Equation (A.III.8) C is given by

N N N
¢ = (gz'gl/d3 - B(EQ'Q)Cél'i)/dS) e {A.III.10)

Taking specifically the dipole o4 at 1,1,0 ,
C = Cla;b,x,y)
where 'a' speeifies the Group which o, belongs to,
'b' specifies the particular ion iA the Group

which 1, belongs to.
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'x' specifies the component of QZ which is producing
the field
and 'y' specifies the direction of the field produced at
B |
For example C(2,1,x,y) is the field co-efficient with
A : . . . N ..
B, at (101) [first ion in group 2] and K4 at (110). This is
the field coefficient produced by the 'x' component of ﬁg in

the 'y' direction at ﬁ1.

The expressions for the C's are

1 1_vyy2 , 12
C(2;1,x,x) 53 - B(Vd V) s C(2:1,¥,¥) = %3 - é£i+V )

2 2 2 dg

H

1 3(1+7)° o 3v1-v) (14vh)

0(2919292) dg _EB—_~— 9 6(2919X9y)

5
2 d2
! S (v
C(2,1,5,2) = SV IAV) | o(2,4,x,2) = 2 =V)(1+V)
d5 d5
2 2
. 1
and d, = [((VI-V)2 + (1472 & (147)2] %
1 2 142
0(3s1,:,%) = 13 - 3V 63, 1,5,y) = 13 - 3(2+vavh) T,
d as a a5
3 3 3 3
1 1
0(3,1,2,2) = L, 0(3.1,x,y) = - SV =V)(24VaVD)
a2 35
2 3

0(391’X92) 0(3919Y9Z) =0,
8= [(v1-1)2 4 (24vav)2] F



| e o . L |
C(ls1,%,x) = = = VDT oy, 1,y,5)= 1 - B2xvav!)2

5 5
o du dﬁ
C(u’1929Z) = 1_ - éﬁlizlf ] O<u919X9Y) = - 5(2+V+V1)(1+V1)
a2 @ = _
L i 0
Cll,1,%,2) = 30U (1av) » C{Lo1,5,2) = = 3(14V) (24Vav)
a? 45
Yy Y

dy, = [(1+v1)2 c(2+ v+ Y2, (1+v)2] ¥ ;

1)2 1y2
C(5,1,x,%) = Ao = 2028V )T o(5,4,5,5) = 1 - 3(2+V+V)

a’ d5 d3
5 5 5

1.2
0(5919X9Y) = = éigIYiy—l— 9 0(5919392) = 13
\ 35 a
5 5

0(5919.’)792) =0

V2

C(5919X92)
= L 24V+V

-

dg

, 1,2
N 1 , z
C(6,1;X9X) = -j— - 3(V "A)z B 0(69193{9&-) =_1___ - —)&1+V )

a2 ao d3
6 6 7
C(651,2,2) = d_ , C(6,1,x,y) = = 3(v-pn) (14v1)
3 5
d6 d6
C(6,15x,2) = C(6,1,y,2) = O,
dg = [(V1-n)2 + (14v1)2]7 ; 1o
C(7515%,%) = C{7:1:¥>7) = 13 - éiléy;l“ ’
%7 %
0(7,1,2,2) = 1 - 3(1+n)°
' d? a2



1
C(7,1,X,y)=—é£1iz;l_ 5C(Ts99%,2)=C(T751,¥,2) = 5(14V] )(1+A)

d_? d‘?
1.2 o %
= [201+7 )+ (1eM) =] *
1,2 1,2
0(89193(95’:) = '13" 3(2+%+V ) 0(8 193’93’) d3 2—&—:&%\-{—-2—:0(8:19292)
a3 g 5 U8
. 1
as
8
3(2e NV ) (1471
C(8919X9y) = d5 90(8919Xyz)=c(8919y’z) =0
&8
- E i
ag = [(2+mv))2 4 (14v1)2] 2 ceee (A TII 1Y)

Similéfly A{asbyx,y) are defined as numerically equal to
C(‘angX’y) ‘lvith V1 = V-
From Dquation (A.III.S)

F§(1,1,x) = Fz(1,1,¥)

5

- {7(+ L/ s .

= C b I V)i (8,b
e >;1 Sy z o (002D [ (a0, m) s (2, b )

+

Fi(a,b,wﬂ 4-W(aﬁ

+ L Y s -—= {C(apbpwafx’) [F\y(a9bvw) + F‘B’(aﬂb9w)
~a=b b=1 W"nya r

+

)
Fi(a,b,w) ] + W(a)

Fi (1,1,2) =0
’ eses (AITI.12)

The expressions for the Fi fields of the other groups

are similarly given, with the co-efficeints A's substituted
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for C's where appropriate. The energy, ES, due to the field

terms is then given by

8
B = bk, 1 E (e bm)Es(a, b, m)em(a,b,w)
- a=l, W=X,y,2

(25 (a,0,w)+FV(a,b,w)) - (a0, ‘) 2}
2 4

—%d+ Z b:lz i(asbsw)+F33’(a9bsw)+FV(aab9"7)> X
8=6, W=X,V,2

(F‘g(a’byw)-FF{‘i(a,b,W)) - (F{;(a,b,w)) 2}

Ceeeennnes (A.TTT.1%)
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