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1 
Abstract 

In principteihe most direct way of obtaining the experiment 

-tal heats of transport is by measuring the crystal thermo-

power. This is done for pure NaC1 single crystals using 

platinum electrodes in the temperature range of 870°K to 

1060°K. Howe-er, the results of the alkali-halides measure-

ments have not been succesfully analysed so far. This is 

because in the alkali-halides system irreversible electrodes 

(no common ion between electrodes and crystal) have to be 

used, and the existing theories for the irreversible 

electrode-crystal thernopower are unsatisfactory. The 

possibility that the heterogeneous therriopower might be 

caused by the electrons, which are transfered from the 

electrodes to the crystal, and which do not fall into any 

traps, is investigated. This model is also found to be 

unsatisfactory. 

The dynamics of the diffusion of a vacancy 

in a linear chain is studied. A simple relationship between 

the heat of transport,Q*,and the activation energy for 
, 

thermal diffusion,E, is found, namely, Q
* 
 = k2+q/T)Et  where 

q is related to the dynamics of the system. The subsequent 

calculations show that q is negative in agreement with the 

experimental data for AgBr and AgC1. 

In the course of calculating q to attempt to 

give theoretical heats of transport for the alkali-halides, 
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various force constants operating between the ions have to 

be evaluated. This is first done by evaluating the Schottky 

-pair formation energies by lattice calculations.This 

calculations, which prove. very successful,show that the 

basic Born-Mayer form of potential chosen here is realistic, 



CHAPTER I: INTRODUCTION 

Point defects exist in solids, and they are necessary to 

maintain thermodynamic equilibrium. In ionic crystals the 

point defects are charged and their movements account for a 

major portion of the conductivity of the crystals. ;,For a 

comprehensive account of ionic conductivity see Lidiard (1)j. 

The conductivity and other related phenomena (e.g. dielectric 

absorption and relaxation) of ionic crystals, especially of the 

alkali-halides, have been studied extensively. From these 

studies, the type of defects (Schottky or Frenkel type), their 

concentrations, and some of their properties (e.g. energies of 

formation, energies of activation, etc) have been found. 

In contrast to the phenomena which occur when the crystal 

is under an electric gradient, those phenomena which occur-when 

there is a concentration gradient, i.e. the Soret effect (see 

Reinhold(2), Reinhold and Schulz(3), Allnatt and Chadwick(4)), 

or when there is a temperature gradient, are not well under-

stood. 

I.1 THERMOELECTRIC POWER MEASUREMENTS  

The measurements of the thermoelectric power of the silver 

halides by Christy et. al (5) and Christy (6) show good re-

producibility. But the early measurements on the alkali 

halides by Nikitinshaya and Murin (7) show that the re-

producibility is far from satisfactory. Allnatt and Jacobs(8), 

working. on KC1, report various unexpected phenomena which 

they are not able to explain. Subsequent authors (9,10,11,12) 

have since confirmed the observations of these phenomena in 
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the other members of the alkali-halides. 

It has been suggested that the experimental difficulties, 

and the non-reproducible anomalous phenomena encounteiled in 

the measurements of the thermoelectric power of the alkali-

halides have in a large part been due to the necessity of 

using irreversible electrodes (i.e. no ions in common between 

the crystal and the electrode). Alkali metals are soluble in 

the salt and they arc extremely volatile at the temperatures at 
which the measurements are carried out. 

It is difficult to explain the results of the measure-

ments of the steady state thermoelectric power. The total 

thermopower, 0, is made up of the homogeneous, i.e. crystal, 

thermopower, 	and the heterogeneous, i.e. crystal-

electrode, thermopower, &het. The four theories explaining 

the heterogeneous thermopower, namely Howards's (13) surface 

formation of metal phase theory, Allnatt and Jacobs's (14) 

F-centre theory, Jacobs and Maycock's (ii)  surface charge 

theory, and Shimoji and Hoshino's (15) combination of the 

F-centre and Lehovec space charge theory all arrives at a 

significant magnitude of the heterogeneous thermopower. 

1.2 THE HOMOGDNEOUS THMMOBIECTRIC POWER 

The theoretical expression for the homogeneous thermo-

power, Ohm, is obtained by first writing down the flux of 

ions in the two sublattices of the binary ionic system when 



the crystal is in a temperature gradient. For the alkali—

halides, the flux of the cations (alkali ions), j+, is 

written as 

j+ = D+ [grad 
en(+) 

n(+) 	kT 
grad V — 0

+  n(1.) 
 
kTg 

grad T) 

where D+ is the diffusion co—efficient of the cation. 

n(+) is the concentration of the cation vacancies per 

unit volume, V is the potential developed across the 

crystal, and 0 is the heat of transport of the cations. 

For the derivation of Equation (II) see Chapter II 

There is a corresponding expression for the anion (halide 

ion) flux, j—. 

In the steady state, 

- j- = 0, 

and consequently, the homogeneous thermopower is 

n 	grad V 
11("1  — grad T 

kT grad n(_) 	i(hs — 4)g. + ISQ91/113 
en(_) grad T 	eT (n + an.  ) 

n  where id = 1)—/D+, z, = 
(+ 
/no, no  is the equilibrium cation 

vacancy of the pure crystal, and hs is the enthalpy of form—

ation of a Schottky pair. 



In order to analyse the experimental results of the 

thermopower measurements according to Equation (I.2) an 

adequate theory of the heats of transport is required. 

1.3 THE HEAT OF TRANSPORT 

The heat of transport of an ion, or atom, is defined as 

the heat, or energy, which is carried by a unit flux of the 

ions, or atoms, when the temperature is uniform throughout. 

The earliest theory of the heat of transport is done by 

Wirtz (16) who uses a simple kinetic argument. Wirtz pictures 

the jumping process as follows: An ion at temperature T is 

given a free energy LE):
1' 
 to make the jump. At the end of the 

jump it gives up a free energy,og3 at a temperature of T +/IT, 

to push the ions surrounding the vacancy apart. Midway, 

is given up at T + 6T/2  to let the ion through. On the basis 

of this analysis, Wirtz deduces that e = 4h3 + oh1 where 

6111 and 4h3 are the enthalpies corresponding to the free 

energies 6rY1 and og3  respectively. 

Assuming that 6111 and 4113 are roughly—the energies of 

activation and formation of a vacancy respectively, this theory 

deduces that for NaCl, 	= -1.01 + 0.69 eV = -0.32 eV and 

O,_ = -1.01 + 0.91 eV = -0.1 eV. These values are independent 

of temperature:„, Both the form and the magnitude of these 

results are contrary to the experimental evidence. 
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Since Wirtz's original theory, other authors have used 

both the kinetic approach (17,1809,20,21,22,23)2 and the 

transition-state, or activated complex, approach (24, 25, 26) 

towards the understanding of the heat of transport. Most of 

the results predict that the heat of transport is equal to the 

activation energy. Experimental observations have not proved 

this prediction correct ESee Chapter (VI)) 

1.4 THE RICE-SHOTTKY APPROACH  

Rice (27) evaluates the probability that an ion will move 

into a neighbouring vacant site under isothermal conditions. 

The probability is expressed as a function of a frequency factor 

and an activation energies factor. By using Slater's (29) 

results on the effects of the super—positions of various mole-

cular vibrational modes, Rice relates the frequency factor to 

the basic dynamics of a lattice. 

Schottky (30), following the Rice-Slater method, uses a 

linear chain model of the lattice to evaluate the rate that an 

ion will jump into a neighbouring vacancy under a thermal 

gradient. The thermal gradient causes an asymmetric dis-

tribution of the lattice phonons around the vacancy. This 

asymmetric distribution results in the use of the phonon 

relaxation time, t, Any temperature dependence of the heat of 

transport lies in the factor t, 



Schottky obtains the general result that 

e/B = 2 - 2tw1/a 	 *WOO (1.3) 

where E is the activation energy of the jump, 'a' is the 

lattice spacing and w1 is a factor which is expressible in 

terms of the dynamics of the lattice. 

Equation (X.3) is the modified form of Schottky's 

original general result. 

All the calculations are done in the harmonic approx-

imations and in the final result only QR/E is meaningful. 

1.5 THE PRESENT WORK 

Following the revised Schottky's general result on the 

heat of transport, as expressed in Equation (1.3), attempts 

are made to apply it to a simple, but realistic, model of a 

vacancy in the Neel type lattice. 

The dynamics of both a perfect lattice and a lattice 

with a point defect are studied. Special attention is paid 

to the scattering of the lattice phonons by a vacancy. 

In the course of the work on the dynamics of the 

lattice, various functions of the force constants have to be 

evaluated. Therefore a. study is made of the various types of 

forces operating between the ions in the alkali-halide crystals, 

Some lattice calculations are made on the energies of form- 

ation of a Schottky pair in the various alkali-halides. 



The various known models attemting to explain the 

irreversible electrode-crystal thermoelectric power are 

discussed. A new model is presented and its validity,-or 

otherwise, is tested by using it to analyse the experimental 

results. 
measurements 

The thermoelectric powerA of pure NaCi single crystals 

is made. A thorough observation of the various phenomena, 

which appear! during the course of the measurements, is 

reported. 

Finally, from the work on the heat of transport, the 

experimental results are accordingly analysed. 



Figure 1 Thermopower measurements set—up. The leads and 

electrodes pre of metal N. The crystal, EX, is in a 

thermal gradient. Potential difference measurements are 

token between A and F. The total thermopower is the sum 

of the homogeneous and heterogeneous thermopowers. 
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CHAPTER II  

THE THERMOELECTRIC POWER (THEORY)  

II,1 INTRODUCTION 

When an ionic crystal is placed in a thermal gradient 

and sufficient time is allowed to elapse for the steady state 

to be established, an electrical potential difference is 

observed between the ends of the crystal. 

Consider a crystal, MX, in a thermal gradient as in 

Figure (1). The total potential difference measured across 

A and F, say V(AF), is made up of several factors. 

It is given by 

V(AF) = V(F) 	V(A) 

= V(AB)+V(BC)+V(CD)+V(DE)+V(EF) 

where V(AB) and V(EF) are the potentials in the leads. 

They are small compared with the other factors and therefore 

can be neglected. 

V(BC) and V(DE) are the contact potentials between the 

electrodes, Ml , and the crystal, MX. 

V(CD) is the potential difference between the ends of 

the crystal, 

Neglecting V(AB) and. V(EF)„ the total thermoelectric 

power, °Total (T), defined as the potential difference divided 

by the thermal gradient between the electrodes, is given by 
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Total (T)  = 	
FV(BC

a
)+V(DE)1 	. 

4. 
 I 
L
V(CD)1  

T 	 T 
° 	L 	

ir 
 

	

(T) 	+ 01 (T) 
heterbgeneous 	homogeneoUs 

From a knowledge of the heterogeneous thermoelectric 

power, Chet'  the mechanism of the crystal-electrode contact 

potential can be determined. 

From the homogeneous thermoelectric power, 0horn' the 

basid dynamics of the ionic motions within the crystal lattice 

can be worked out. 

11.2 TEMMODYNAMICS OF IRREVERSIBLE PROCESSES 

This branch of thermodynamics extends the concepts of 

reversible - thermodynamics to the steady state irreversible 

processes under the assumption that the following three con-

ditions hold:- 

a) that throughout the fluctuations of the system the 

probability that the state variables, ai, are in the ranges 

	

ai to ai + dai where i = I, 	n, is 

	

exp(WIdal 	dan  
Pdaida2 	dan  - 

where AS is the change in entropy of the system from its 

initial value. 

b) that the microscopic processes are reversible. The 

average correlation between ai at a time t and aj at a time 

t later is the same as the average correlation between ai at 

exp(O.S/k ) dal dan  
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thetimetanda.3  at a time -t earlier. This time reversibility 

gives a normal sequence to the fluctuation. • 

c) that on the average, the decay of a fluctuation 

follows the ordinary phenomenological laws. The same laws 

apply to the microscopic as well as the macroscopic deviat-

ions. 

For a detailed account of the above see De Groot (31). 

Irreversible thermodynamics have been applied to fluids 

De Groot and Mazur 132)1 and also to solids [Bardeen and 

.Hearing (33)] 

It can be shown that in an irreversible process the 

entropy produced is given by 

TO-  = Jq . Xq 	Jk . Xk viscosity terms 
k=1 

. • • • 
	( 	. ) 

where T is the temperature, :T' is the rate of change of 

entropy with respect to time, Jk is the flux of the 'cll./ 

specit Measured w.:r. t. to the centre of mass, and Jci  is the 

heat flux measured w. r. t. the centre of mass. 

The forces Xt's and Xq's are defined as follows: 

Xk = Fk - T Grad (11) 

X
q 
 = 	1  Grad T 
	 (11.2) 

where Fk  is the external force, and 31k  is the chemical 

potential of the k specie,. 
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The fluxes and forces are related, and they can be 

written as 
n 

2k = Lkq Xq 	LkiXi 
1 	

( 	(11.3) 

L.q = Lqg X, -FT. LoiXi 

The main result of irreversible thermodynamics, indeed, 

the only new information that this approach can provide, is 

embodied in the Onsaw,er's Theorem, which states that in the 

absence of a magnetic field, 

Lik = Lki 	 (II.LA) 

In the presence of a magnetic field, B, however, this 

becomes 

Lik(B) = Lki (-B) 	 (11.4B) 

11.2.1. THE HEAT OF TRANSPORT 

The heat of transport, 4, expresses the inter-relation- 

ship between the co-efficients Lik and Lig, i.e. 

Lig 
 k=1 

Lik 4f 
	

(I1.5) 

Substituting this result into Equation (11.3), the 

fluxes are re-expressed as: 

11  
Jk = Lki (Xi + 	Xg) 

(11.6) 
N  (Lqg 	LiqQi) X /  
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From the second of Equations (11.6) a physical inter-

pretation is obtained for the heat of transport QT. It is the 

amount of heat which is carried by a unit flux of the ith 

specie, when there is no thermal gradient. 

If the fluxes and forces are represented by column 

matrices J and X respectively, and the fluxes are transformed, 

e.g. to represent a change of the coordinate system, to JI=AJ, 

then these new fluxes, along with the forces X1  =1-1  X will 

altisfy the Onsager relations. 

A physically useful transformation is:- 

Jk = Jk 
*4160 

J1 = J - 	hyak  -g 

where hk is the enthalphy of an atom of specie k. 

This implies that 

Xk = X k  + h q  = 	(Grad )-1k)T 

X1 = X 	
ern (11.8) 

in which (Grady.OT is that part of the gradient of uk  due to 

the pressure and concentration, but not the temperature. The 

flux J1  is called the reduced heat flow and the reduced heats 

of transport in the transformed system, Qi are  given by 

ifl 	if 
Qi  = Qi  - hi  .... 	(11.9) 
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II.2.2. THE HOMOGENEOUS THERMOELECTRIC POWER 

Following Howard and Lidiard (83), in the case of the 

Schottky defects in the ionic crystals, the four species taken 

explicity into account are: (I) cation vacancies, (2) anion 

vacancies, (3) cations on cation lattice sites and (4) anions 

on anion lattice sites. 

The forces in the "reduced heat flow" system are 

Xli 	= - ei V V - (V  )21)T 
	

• • • • (11.1o) 
X 	- 1 . 

q 	T 

There is no exchange disorder and e1  = e2  = 0, 

e3 = -e4 = e, the electronic charge. Since the cations and 

anions are restricted to their own sub-lattices, the fluxes are 

related by 

JI
I + 0-3 = 4  *, J2  = 	1 0 

Using Equations (II.6), and these relations, the fluxes 

become Ji l  = Lii(X11-X31+c1;11) + L12 (K21-X41+4Xcl1) 

where q = el  - Q*1  
1 	I 	3 
= el nm1 and 4 	2 - '4 

and they are the heats of transport of the cation and anion 

vacancies. 
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Keeping in mind that 

dui = gi + kTln 4 1) 

and ,112  = g2  + kTln 
N 

and putting the total electric current to be zero in the 

steady state, i.e. J1 4. J2  = 0, Oil=  is obtained, namely, 

kT 	(DiGrad ni-D2Grad n2) 
hom eGrad T 	(n1D1 + n2D2) 

(niDielE  - n2D24) 

eT (niDi + n2D2) 

where D1  and D2  are the mobilities. 

For a pure crystal, i.e. ni = n2 = no, and from the law 

of mass action for thermal vacancies vnl/n1 = 41?n2/n2 = 

h'iT/2kT2  

where h is the enthalpy of formation of a Schottky pair, the 

homogeneous power reduces to 

D1(4 4-11/2) - D2(4 h/2)  
whom 

eT (D1 + D2) 

For an impure crystal, i.e ni A n2, 
kTGrad ni  l_f(e21  + h)71 - 4g511/11?i  • • • • 	(11.14) 

eT 61, + 4/ri, 7-- 
where ,d = Di/D2  and 	= n2/no  = no/nr. 

Eauation (11.13) is first given by Patrick and Lawson(34? 

Equation (II.14) and its corresponding form for Frenkel 

defects are derived by Howard and Lidiard(35) and Haga(36). 

elhom = eniGrad T 
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11.3 REVIEW OF THE LITERATURE: .  

The theory of the homogeneous thermoelectric power of 

ionic crystals, applicable to crystals with either Schottky 

or Frenkel defects, has been derived by various authors 

LHoltan, Mazur and de Groot(37), Patrick and Lawson(34)„ 

Howard and Lidiard(35), Haga(36), Allnatt and Jacobs(14) and 

Shimoji and Heshino(15)3. They all agree in their final 

expressions. That is 

- 	ff 	ff Grad V 	kT Grad n(-) 	. 	
P 	

, 

hom(21/
/  

- Grad y - 	 e n(-)Grad T 	eT(11-1- //r11,) 

(II.15) 

where the notations are as in Chapter I. 

Shimoji and Hoshimo(15) claim that the interactions of 

the cation vacancy-anion vacancy (in the systems where the 

intrinsic defects are of the Schottky type) cannot be entirely 

neglected even at high temperatures and therefore their analysis 

	

of the factors entering into Equation (II.15) 	different. 

In view of the overwhelming evidence to the contrary provided 

by the ionic conductivity experiments [see Lidiard (1)j, the 

author sugp.ests that Shimoji and Hoshinot s claim is doubtful. 

11.3.1 THE HETEROGEFEOUS THERMOPOWER: REVERSIBLE ELECTRODES  

In the systems where the electrode is reversible (e.g. 

AgC1 crystal with Ag electrodes) Howard and Lidiard(35) 

aasume, that there is a transference of the common ions 
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between the crystal and the electrodes. A contact potential 

builds up to prevent further flow of the common ions. The 

contact potential, 	of a crystal MX, with electrodes M, is 

given by 

= 	fix - )3.(M* in MA 

whore ).1.1 is the chemical potential of the interstitial ion, 

and )a(ein M) is the chemical potential of the metal ion in 

the electrode H. 

Therefore the heterogeneous thermopowers  is given 

by: 

&het = 	 . 	 154 S(M+  in H)) 	(I1.16) 

where S(M+  in M) is the partial entropy of Pi+ in M. 

Howard and Lidiard obtain;, for the difference between 

the thermopowers of the doped and pure crystals which contain 

intrinsic Frenkel defects, the expression 

Acw 	d(r) y(1) = 012-1) 	 (QT+4 + h)  - k 

(42+4) (1  + 4) 	eT 	e lnrk_ 

(11.17) 

where rt is the vacancy concentration relative to its value in 

the pure crystal at that temperature. 

4 is the ratio of the interstitial mobility to the 

vacancy mobility 

Q . and 4v are respectively the interstitial and vacancy 

heats of transport. 



21 
3.2 IRREVERSIBLE ELECTRODES  

In cases where reversible electrodes are not used, as in 

the case of the alkali halides where the alkali metals are 

volatile and soluble in the salts, irreversible electrodes 

have to be resorted to. Theoretically the heterogeneous 

thermopower of the crystal-irreversible electrode is not 

clearly understood and various mechanisms have been proposed. 

Howard's Model  

Howard (26) suggests that, for the crystal MX in contact 

with electrodes M1 , electrons are transferred from M1  to the 

surface of MX and the metal M is formed at the surface. 

Equating the electrochemical potentials, the difference between 

the electrode potential VE and the surface potential, Vs, is 

	

1
- VE - Vs  = 	LAM4-9S 	 M9S1 
	

(II. 11 .8) 

where the 	are the chemical potentials and the subscripts 

are self-explanatory e.g. )41+9s  is the chemical potential of 

the M+  ion on the surface of the crystal. 

Using this model Allnatt and Jacobs (14) then consider:. 

the transfer of one cation from the surface, S, to the bulk,B, 

of the crystal. The potential of the surface V relative to 

the potential of the bulk, VB, of the crystal is then, 

	

VS - Vh = 	,(+),B  ,um+,$) 

where )1(.003  is just the chemical potential of the cation 

vacancy in the crystal. 
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From Equations (11.18) and (I1.19) the heterogeneous 

thermopower is found to be 

©het = 	T (VE 	VB) 	e (Sm,s+ 	+) 	Se ,E  — Su ia,B).  

(11.20) 

where the S's denotes the entropies. 

The heterogeneous power cannot be calculated from 

Equation (11.20) because the terms are not known. For example 

the surface chemistry is not well understood and Sm,s  is not 

known. The difference in the total thermopower between the 

doped and the pure crystal is given by 

6 EY (R) 	(11) - 	(1) 

= 

1 	4 	(12  — 1) 	- Q7 eT 
(1 +1i)  (12  + 4) 

El 	n MSR 
e 11 TT -1  

where /ASR  denotes the change in entropies of Equation (11.20) 

4 is the ratio of the anion to cation mobilities. 

is the ratio of the concentration of the cation 

vacancies to that of the pure crystal. 

Lidiard and Howard (38) suggest that ASR  = 0. 

Allnatt  and Jacobs Model  

Allnatt and Jacobs (14) assume; that the electrons are 

transferred between the electrodes and the crystal. Assuming 

that the electrochemical potentials of the electrons are the 

291rIP everywhere, they obtain 
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-eVE  - p.e,E 	- eVs +,ue,s  = - eVB Ae,B **" (11.22) 

The heterogeneous power:  therefore, becomes 

e6het = S
e, 
B - Se,E 	 ,... (11.23) 

To evaluate Se 9B Allnatt and Jacobs assume that the 

electrons in the crystal are distributed between the con-

duction electrons and the F-centers. The F-centers, they 

maintain, arise from the non-stoichiometry of the crystal. 

Kroger (39) points out that if the F-centers exist 

uniformly throughout the bulk of the crystal then there should 

be an electronic contribution to the thermoelectric power. 

Jacobs and Haycock (11)  show that Allnatt and Jacobs 

have left out a term in their final expression for ©het'  When 

this term is included, the number of non-stoichiometry electron 

becomes unreasonably high. 

Allnatt and Chadwick (12) suggests that the F-center 

theory could be modified in such a way that instead of an 

excess of electrons, there are an excess of holes in the 

crystal. The holes react with the cation vacancy to form a 

Vk centel-, There is then an equilibrium between the holes and 

the Vfc  center as well as the equilibriums between the holes and 

electrons, and the Vk center and the OD2  center. In view of 

the complexity of the processes involved and the lack of 

information about the Vx  centers in the alkali-halides, how-

ever, much work has to be done before this theory can be of 

any practical use. 
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Jacobs and haycock Model 

Jacobs and Maycock(11) suggest that the source of the 

heterogeneous thermopower lies in the temperature-dependent 

Frenkel-Lehovec(4°) space charge. They assume that there is 

an excess of cation vacancies near the surface of the crystal. 

The excess cation vacancies form a negative space charge which 

induces an equal but opposite charge on the surface of the 

electrode. The electrons are transferred from the metallic 

side of the interface to the crystal side. The electrons do 

not actually enter into the crystal and the electrodes are 

ideally polarised. The equation of equilibrium is: 

VMI - Via = 1 	- )11( ) 
	

.... (11.24) 

the calculations on this model gives the heterogeneous thermo- 

power as 

&het = kT 	In ni 
dT 	\+, .... (11.25) 

The total power becomes, for the doped crystal, 
ff 

S (r1) = 	Q+ 	 0000 (11026) 

eT 

and for the pure crystal, 

I 
eT 

(fgQ! h)  

4) 

3i 
+- .... (11.27) 

   

Shimoji and Hoshimol s Model  

Shimoji and Hoshino(15), again, starting from the concept 

of the Frenkel-Lehovc surface charge,suggest, that the electrum 
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are transferred across the interface. The electron._ can do 

two things. It can wander about in the interface or it can be 

drawn by the space charge into the crystal. Should the first 

happen the lack of knowledge about the interface prevents the 

chemical potential of the electrons to be expressed explicitly. 

The implication of this is that Jacobs and Maycock's starting 

point as expressed here in Fiquation (11.25) is incorrect. 

Therefore Shimoji and Hoshino suggest that the electrons 

actually enter into the crystal and, further, they are trapped 

by the anion vacancies to form F-centres. The heterogeneous 

thermopower is then divided into two parts, 

1 	n,11 
°het = 'het' 	'het 

e
het 
 is obtained by the electronic equilibrium between the 

metal electrode and the surface of the crystal. 0'11  is the 
het 

anion-vacancy equilibrium between the surface and the bulk of 

the crystal. The expression for 01 	is 
het 

0
11.et 

= (Seys 	Se,m)/e 

Se,s and  Se,H 
 are respectively the entropies of the 

electrons at the surface of the crystal and at the metal 

electrode. 

The derivation of G11 et goes as follows: The potential 
h 

between the surface and the bulk of the crystal is con-

centration-dependent. The presence of the electrons modifies 

the potential to a factor 111(09  where r is, as before, the 
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ratio of the concentration of the cation vacancies of the 

impure crystal relative to that of the pure crystal at that 

temperature. The total heterogeneous thermopower is, eventual] 

Chet (xi) = -16.T  riTln 2(211mkT/hs2)3/21.  EF-kT1n618(01/ 

(h(_)-h(4.))/2 	eEll(q) -kT2 	(11.28) 

where nS (q) is the concentration of the electrons at the 

surface and h( _) andh(+) 	ca are the enthphies of formation of 

anion- and catian-vacanoies respectively. 

There is one major difficulty with Shimoji and Hoshino!s 

theory, namely the uncertainties of the modified potential 

ll(n) appearing in Equation (11.28). For example neither the 
11 form nor the magnitude of the potential M (iv is known. 
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11.4 THE HETEROG:MEOUS THERMOPOWER WITH IRREVERSIBTP, 

ELECTRODES 

The only speciescommon to the electrode MI  and the salt 

W( is the electrons. Owing to the difference between the 

Fermi lovas of the electrode and the salt, the electrons are 

transferred from the electrodes to the crystal. Assume that 

the electrons are localised to a region in the crystal near 

the interface. An electrical double layer builds up across 

the interface to prevent any further transference of the 

electrons. Assume that the electrons do not get into traps, 

such as anion vacancies to form F—centres. 

The electrical potential of the electrode relative to 

the crystal, Vhet, is then given by 

Whet = 	(4a M1 —111°C) e F F  
.... (11.29) 

where F's are the Fermi levels. 

Therefore, the heterogeneous thermopower is 

— a 	 (s  MX 	M1  
Se  ) Chet — 	het — 	e 

where Se's are the entropies of the electrons. 

11.4.1 THE ELECTRONIC ENTROPY IN IZTALS  

The electronic entropy in metals is given by 
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MI 	rT 	dT1 	1  Se 	= 	where Cp is the molar specific 
01 T 

a- 

heat of the electrons at constant pressure in the metal 

and. Na  is the Avagadro's number. 

Experimentally the electronic specific heat at constant 

volume, Cv, is determined at low temperatures and it is found 

to be given by 

Cv = YT where, for platinum 	= 1.6 x 10-3  cal/mole-deg2  

(Daunt (41)). 

Assuming that the electrons in the metal is a perfect 

1 gas then the relation C1 - Cv  = R, the gas constant, holds. 

• • 

H1  
Se  r

' T 	RdT1 	dT1 i.,T„ 	NaT1 	N- AT--, 0 	a 

(R1nT + 6T)/Na 	 (II.31) 

Substituting the appropriate values in Equation (11.31) 

SMl  it is found that 	a 	at 1000°X is 0;322H1W°K. 

11.4.2 THE ELECTRONIC ENTROPY IN ALKALI HALIDES  

The Fermi level of the alkali-halides can be obtained 

from a simple model of an insulator [see e.g. Dekker (42)]. 

The alkali halides are very poor electronic conductors. 

This means that the valence band is completely full and the 

conduction band is practically empty. The number of electrons 

in the conduction per unit volume, nc, band is given by 



E. F is the Fermi level. ' 

Z(3) is the number of states per unit volume. As the 

Ec, t 
ne 	Z(E)R(E)dE  

Ec,b 

29 
.... (11.32) 

where Ect io  and cpt  are the energies at the bottom and the 

top of the conduction band and F(E) is the Fermi-Dirac dis-

tribution function and is given by 

F(E) = 	
1 + e(E- 6  FI)/kT1 
	

*SOO (11.33) 

energy, E, increases the probability of these states being 

occupied decreases extremely rapidly as can be seen in 

Equation (11.33). It is therefore only necessary to evaluate 

Z(E) at the bottom of the Conduction band. At the bottom of 

the conduction band 

Z(E) = ( 4n (24)3/2 (E-Ec) 1/2 
 

) 
p 

.... (11.34) 

,/ 	where hp  is 	Planck's constant and m: is the effective 

mass of the electrons. 

Equation (11.34) is obtained as a consequence of the 

periodicity of the lattice. The periodicity of the lattice 

causes the density of states in k-space to be uniform (k is 

the wave vector of the electron). At the bottom of the con-

duction band the electrons are nearly free and relation between 
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E and k is found by solving the SchrUdinger Equation. 

Putting Equations (11.33) and (11.34)  into the integrand 

in (11.32), and assuming that Ec9b-61, 	4kT, 

n 	E1 
nc = 2(2 Tim: kT/h')

3/2 
 e 

01,--E,)/kT 	

•••• (11.35) 

Similarly, the number of holes per unit volume in the valence 

band, nh, is given by 

ff / \3/2  (Ev„t"F)/kT nh  = 2( 2 if mh  kTf 	e .... (11.36) 

Since ne  = nh  

GF = (Ec Ev, t)/2 	3/4  kT lx (4/m:) 
	

• • • • (11.37) 

The electronic entropy of the alkali halides Sel‘ , is IX 

therefore -3/4  k 1h(14/4)• 

The effective masses of the holes and electrons are not known 

exactly, but it can be readily seen that Se
M e  

11.5 DISCUSSIONS,  

Neither the Allnatt and Jacobs's (14) F-centre theory 

nor Jacobs and Maycock's (11) surface charge theory have been 

successful in explaining the irreversible electrode-crystal 

thermopower. When these two theories are used to analyse the 

experimental results, they have not been able to produce a 

plausible value of the heat of transport. [See Allnatt and 

Chadwick (12)]. 

Howard's (13) theory assumes that the electrons are 

is negligible. 



31 

caught in traps the moment they enter the crystal at the 

crystal-electrode boundary, The model presented. in Section 

(II.4) discusses the effect on the heterogeneous thermopower 

should the electrons not be trapped when it gets into the 

crystal. 

These two models will be used to analyse the experimental 

results in Chapter (VII), The success, or otherwise, of these 

two theories to produce a plausible value of the heat of 

transport will determine whether or not the assumptions 

inherent in the respective theories are valid, 
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CHAPTER III 

THE 11".'3ATS OP TRANSPORT (I)  

III.1 INTRODUCTION 

The heat of transport, QN, of a specieshas been defined 

in Chapter (II). It is the heat carried by a unit flux of the 

specie when there is no thermal gradient in the system. 

Normally the heat of transport that is discussed in the 

literatures is the reduced heat of transport [See Chapter (I4. 

The relationship between the heat of transport, Qm  and its 

reduced form Qml is given by rc.f. Equation (II.9)) 

ml = 	h 

where h is the enthalphy of the atom. 

Hereafter the term the "heat of transport" will be taken 

to mean the reduced heat of transport and it will be referred 

to simply by the symbol QN. 

111,2 LITERATURE REVIEW.  

The theories of the heat of transport can be divided into 

two parts. The first computes the energy flux accompanying the 

atom flux under isothermal condition (transition state theory) 

and the second under non-isothermal condition (kinetic theory). 

111.2 1: THE TRANSITION STATE OR ACTIVATED COMPLEX 

THEORY 

Consider a reaction process, such as the jumping of an 

atom to a neighbouring vacant site in a lattice. In the 
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transition state theory, it is assumed that in the transit 

between the initial and final states of the jump, there 

exists a transition state whose life-time is long enough 

for its chemical potential to be defined explicitly. While 

the atom is at the saddle point which defines the transition 

State, the number passing through it in one direction under 

isothermal condition can be calculated by the use of stat-

istical mechanics. Wert (2L.)  suggests that the flux of atoms 

is determined by the fraction of time that the atom has 

sufficient energy to be in the activated state. He obtains 

the rate of jumping,r, in terms of the thermodynamic 

functions, namely 

= n1'exp C-'6G/kT3 	 (III.1) 

where n1  is the number of diffusive paths, ‘.1 is the 

frequency of vibration of the atom at the lattice site, and 

40 is the work done when an atom is moved isothermally from 

the lattice site to the transition state. 

Using Wert's formulation, Haga (25)  calculates the 

energy flux accompanying the ion flux. Physically when the 

ion moves from one lattice site to another, it is given an 

energy6H at the initial site to surmount the potential 

barrier. The heat transported is this energy plus the entropy 

contribution of the surrounding atoms when the atom comes 

down from the saddle point .to the final site. Thus 
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474* 	TaS(xl) 

=pG 	 • • • • 
	

(III.2) 

whereAS is the entropy contribution at the final site x1. 

In the Haga-Wert approach, the jumping process is 

thought of essentially as a one-bOdy process. Strictly 

speaking, this is not correct. The jumping of an atom 

involves the corporate motions of the surrounding atoms. It 

is essentially a many-bodies problem since the moving atom 

interacts with all the surrounding atoms. In the transition-

state approach of Vineyard(26)2 the flux of atoms across the 

saddle point is evaluated in the 3N configuration space of the 

crystal. Using Vineyard's approach, the energy flux accompany-

ing the matter flux can be evaluated. However, the heat of 

transport is again found to be just the activation energy. 

The transition-state approach has not been very 

successful experimentally. There are several objections to 

the theory. Rice (27)  questions the assumption underlying the 

theory, that the life-time of the activated state is long-

lived enough for its thermodynamic properties to be well-

defined. It is generally thought that the atom spends most 

of its time on either side of the potential barrier. The 

theory also assumes that the properties of the activated 

state is the same as the unactivated state. However, .in 

Equation (III.1),ZSG does not represent work in any simple 



35 
process,- It is actually a ratio of the partition functions 

with different degrees of freedom. 

Lidiard (43)  draws attention to a serious limitation 

of the transition state approach. This approach depends on 

the probability of occurrence of the saddle-point configur-

ation, but it says nothing about the correlated. motions of 

the surrounding atoms. To work out the heat of transport, a 

knowledge of the energy which flows in and out of the region 

before and after the transition state is achieved is necessary. 

It is not within the transition state theory to evaluate this 

energy.. 

III.2 2 THE KINETIC THEORY 

To evaluate the heat of transport under non-isothermal 

conditions, the so-called kinetic theory is used. First, the 

expression of the atom flux, j, under a thermal gradient is 

written down. This is given by 

j = D rGrad n 414cn Grad T1 
kT2  

where D is the diffusion co-efficient, and n is the 
1  

vacancy (or interstitial) concentration.f- cf Equation (I.1 )i 

Following Le Claire (17)  and Brinkman (18), consider the 

flow of atoms, via the vacancy mechanism, between plane 1 at 

temperature T, and plane 2, at temperature T 	AT. The flux 

of atoms between planes 1 and 2 are given by 
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(III.4) (n on)  e-tsGmAT •••• j12 =  

where v is the frequency factor and. Gm is the free 

energy of motion of the atom. 

Similarly, the reverse flux is 
6.Gm/h(Ti-AT) j21 = nye- 	 , 	(III. 5) 

The net flux, therefore, is 

j = j12 - j21 
m nAh 

= D (Grad n - 
kT2 
	Grad T] 	.... (III. 6) 

where D = (Ax)2e- AGM/hT
si a result from the random walk 

theory. LI x is the distance between planes 1 and 2, and Ahm 

is the enthalphy part of A.Gm. 

Comparing Equation (III.3) with Equation (III. 6) y the 

heat of transport, QH, is equal to the activation energy,Ahm. 

In contrast, Wirtz ( 1 6)  divides the energy necessary 

for the motion, into three parts, Agi t .e.g2 and 6g3, local-

ized at planes 1, 2 and 3, which are at temperatures T, 

T 
	
4 	L-2  and T + T. Using the same procedure as outlined above 

Wirtz obtains 

Qff  = 6h3 	Lh1 	 (III.7) 

where Ah1  and 4.11.3 are the enthalphy parts of itIgl and 6.g3 

respectively. 

The failure of the kinetic approach lies in several 

factors. First it assumes that the interaction energies of 

the jumping atom is localized in the plane which the atom is at. 
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However, the motion of one atom involves the interactions of 

many bodies, both perpendicular to, and along, the thermal 

gradient. Secondly, the criticisms of the transition state 

approach with regard to the life-time of the activated state 

still apply to the kinetic approach. This is seen in using 

the results of the absolute rate theory implicit in 3quation 

A number of authors have attempted to break away from 

some of the limitations implicit in both the transition state 

approach and the kinetic approach. 

Orani (44)  defines a "co-ordination sphere" of matter 

around the atom-vacancy pair. A diffusive jump is accompliShed 

when an excess energy wave packet sweeps across the co-ordinat-

ion sphere. Any energy flow across the reference flux plane, 

which divides the atom-vacancy pair, is part of the heat of 

transport. 

/Th 

	

	Girifalco (45)  attempts to define a temperature gradient 

rby using the jump frequencies of the two isothermal systems. 

This temperature gradient defines a distance coordinate xe, 

which is the distance between the peak of the excess energy 

wave and the reference flux plane. The distance coordinate, 

xe, therefore, indicates where the maximum energy is located 

during a jump. 
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The Rice-Schottky approach [Rice (27), Schottky (30)] 

relate the role of the lattice dynamics to the diffusion 

process. It deduces an expression for C  in terms of the 

known fundamental parameters of the lattice. This can be 

used to analyse the experimental results of the thermoelectric 

power measurements. 

111.3 LATTICE DYNAMICAL  CONCEPTS OF A JUMPING PROCESS.  

Consider an atom jumping into a vacancy in the crystal 

latticS. For this to happen, the amplitudes of the vibrat-

ions of the atom in the general direction of the vacancy must 

be large enough. At the same time the atoms surrounding the 

vacancy must be undergoing an out-of-phase motion so that the 

jumping atom can be accommodated. The vacancy must happen to 

be next to the atom. 

The first condition immediately implies that anharmonic 

forces are important in a diffusive jump. However, anharmonic 

forces make the problem very complex, and a reasonably simple 

solution might not be possible. On the other hand, the use of 

harmonic forces often gives results which are of the right 

order of magnitude. 

The second condition imposes only a small effect in any 

subsequent calculation as the following argument of Rice (27) 

shows. The freuency that a jumping atom acquires enough 

energy to make the jump is much smaller than the frequency 
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that the out-of-phase motions of the surrounding atoms would 

occur. The latter motions will require much smaller amplit-

ude. Therefore the probability that a diffusive jump occurs 

depends very much on the probability that the jumping atom has 

enough energy. 

III.3.1 THE RICE-SLATER MODEL  (27)  

Consider a microscopically large sphere of matter 

surrounding the vacancy, in a large crystal with a low 

density of vacancies, so that the rest of the crystal acts 

as a heat bath for the sphere. 

The displacement of the atom next to the vacancy is 

given by 

Sql = Eat, 1 
	

Cos [211(\):.t + i)] 
1 1   

where ‘)i, Ci and Si are the frequency, energy and phase of 

the ith  normal co-ordinate. Cis and Si's only change when there 

is an interaction between the heat bath and the volume element; 

The total energy of the atom is u = iEi 1110111. 

The atom will only jump if its amplitude exceeds go, 

that is 

E loci 	e 2  
i 	I 	

> CIO 

The minimum energy, Up, required for this to happen is 

pro 
 = qo2/ 1  1 

.2 

i  
....(iII. 1o) 
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The frequency of jump is the ensemble average of a con- 

figuration such that ql 	qo = 0 which is achieved from the 

direction of q1 - go < 0. It is assumed that the frequency of 

fluctuations in energy between the volume element and the heat 

bath is large compared with the frequency of a jump. This 

implies that as far as the jumping process is concerned the 

volume element is in thermal equilibrium. Thus the ensemble 

average can be replaced by the long term average. The long 

term average of the frequency of up-zeros of the function 

gl - go is found by Kact s (46) method to be 

m 	1 j 	CosceigEl_R vo(041ile1 
2 
x) jo(ot11[ei(x2+  412 	y2 	j=i 

01-2y20i2)1 ) dxdy 	 (III.11) 

where Jo(x) is the Bessel function of zero order, and M is 

automatically zero when U4U0. 

Under the condition that n is large and that the 

energies of each mode eit s are roughly the same, Slater 

shows that, by taking 

Jo(x) = exp (-11;x2) 	1 - . 4/641 

and neglecting x4/64, Equation (III.11) reduces to 

M = v1  exp (-g?)/20ci2ei) 	.... (111.12) 

12 r-  2 2 where U1  =2.5‹. \). //zolL 2 (111.13) 

(29) 
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Using Slater's approximation Rice obtains the rate at 

which the atom reaches the critical amplitudeprip as the 

prodUct of the probability that the system has a total energy 

equal to or exceeding U0, and the long term average of zeros 

corresponding to that total energy. Thus 

(III.14) 
( 1 n 	c 

I_ 	U>U0  M exp 	RP 	1 	 (kT)n 

vl exp  Uo/kT 

Slater's approximation holds at high temperatures. It 

is a good enough approximation as most of the diffusion 

experiments are carried out at relatively high temperatures. 

111.3  2 SCHOTTKY'S  APPLICATIONS 

Schottky (30) applies the Rice—Slater' S;  concept of an 

atomic jump to a linear chain. A very big simplification is 

immediately introduced by the linear chain model. There are 

no surrounding atoms to either hinder or encourage a diffusive 

jump. Therefore in this model, U0  becomes the energy of 

activation for the motion of the atom via the vacancy 

mechanism. 

Schottky introduces a further simplification. He 

assumes that the jump frequency is just the long term 

average of zeros and that the system always have energy 

exceeding the activation energy. This is reasonable if the 

number of atoms in the chain is large and if the temperature 
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is high. In this model, then, the jump frequency is 

r  = V1 exp 
	 (111.15) 

In a temperature gradient the energy of each mode is 

= kBT kBtfiGrad T 	 (III.16) 

where f -
21 a  

1 = 	dkn  P  Ian is the wave-number and t is the 

relaxation time. 

Equation (III.16) is obtained by solving the Bolt2man s 

equation. By putting Equation (III.16) into Equation (II1.15) 

the jump frequency is 

r=9exp _E/kT t1 	1(11T - 4) wi + I w2] Grad T1 

SOO. (IIIO17) 

where 2 eg, = a2  w2 	w2 0( 2 

'fir1 = L
<,  2 ±, 40,2 

w = 211..\.1 

= AKI.2wi2f1/(0t2w2) 

= 	04, 2/_. 2,  

By evaluating the atomic fluxes up and down the temper-

ature gradient, and comparing the resultant flux with (III.3), 

as in Section III.2.2), the heat of transport, Q5i1  is found 

to be given by the expression 

QN/E = 2 	2tw1/a 	(III.18) 
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Equation (I1I.18) expresses the heat of transport in 

terms of the activation energy, the phonon-phonon inter-

action relaxation time, the interatomic distance and a factor 

w1, which can be evaluated from lattice dynamical calculations 

of a specific model of a vacancy in a linear chain. w1  is 

expected to be temperature-independent, and any temperature-

dependence of the heat of transport lies in the phonon-phonon 

interaction relaxation time. 
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CHAPTER IV 

MODEL OF A VACANCY IN A LINEAR CHAIN LATTICE AND  

ITS DYNAMICS.  

A comprehensive discussion on the dynamics of lattice 

vibrations is given by Maradudin, Montroll and Weiss (47)  

In the following account, the lattice dynamics of a 

perfect one dimensional lattice are assumed to be known. 

IV.1 GENERAL METHOD OF SOLVING THE PROBLEM OF A  

DEFECT IN THE LATTICE.  

The effects of the introduction of a defect into the 

lattice can be studied in the following way. Let Mo(w) be a 

matrix such that the solution of the determinantal equation, 

ilio(w)t = 0, are the vibrational modes of the perfect lattice. 

When a defect is introduced into the lattice, it perturbs the 

motions of the other atoms. The corresponding matrix, M(w), 

will then represent the perturbed motions. The matrix can be 

represented by 

M(w) = Mo(w) +4M0(w) 

= Mo(w) EI + M0-1  (w) bio(w)] 

Mo(w) 4(w) 	 ( IV. 1 ) — — 

where d(w) characterises the defect. 

In this formulation, the elements of M0  (w) represent 

the coefficients of u' s, the vibrational displacements of the 

atoms in the perfect chain, in the time-independent equations 
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of motions. The elements of the inverse matrix M

0
1 
 (w) are the 

Green's functions g(m) where m is the number of atomic spac-

ings from the origin. In the case of the scattering of waves 

whose frequencies lie between zero and the maximum "allowed" 

frequency (the maximum frequency which can be transmitted 

along the chain unattenuated) g(m) can be expressed in a 

closed and explicit form Esee(47)1. This is given by 

g(m)  = - 1_ exp(ilmi/)  (III.2) 
2W Sind 

where '5 is the force constant, 	=Ikalwhere k is the 

quasimomentum and 'a' is the lattice spacing. The waves are 

assumed to originate from atom '11. Equation (IV.2) applies 

in the situation in which the forces are restricted to nearest 

neighbours only. 

When the defect is introduced at the position '0' the 

vibrations of the m--
th  atom caused by this defect can be shown 

to be given by 

u(m) = D g(m) L, 	 (IV.3) 

where 6 characterises the defect as in Equation (IV.'!), 

and D is a factor depending on the lattice dynamics. 

IV.2 THE VACANCY MODEL 

From the point of view of the vibrations, the simplest 

model of a lattice is one in which the forces between the 

atoms are central and are between nearest neighbours only. 
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Only harmonic forces are considered. Therefore, in this model, 

the atoms are coupled to their nearest neighbours by springs 

of force constant )5. 

In the next chapter on lattice calculations, the ions 

are attracted to each other by the Coloumbic and Van der Waal 

forces and repelled by the short range hard core repulsion. 

This is a very much more realistic model than the one in which 

the atoms are joined together by springs. When an atom is 

removed so that a vacancy is formed, the hard core repulsive 

and the Van der Waal attractive forces are removed. However 

the Coloumbic attraction between the vacancy and the other 

atoms still remains. There are no additional forces between 

atoms on' either side of the vacancy. 

In Schottky's (30)  model of the vacancy in the linear 

chain the atoms are coupled to their nearest neighbours with a 

force constant 1, and to their lattice positions with a force 

constant g. The two atoms neighbouring the vacancy are 

coupled to each other by a force constant /O. The final 

expression with '1 	0 is extremely complicated, and it only 

reduces to a simple form when .61  is put equal to zero. 

Putting /(1 = 0 implies that the two parts of the chain are 

independent of each other. The removal of the atom so form—

ing a vacancy removes the total coupling between the atom and 

its neighbours instead of removing a partial, albeit major, 

portion of the force. 
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Figure 2 Defect in the linear chain. The perfect linear 

chain consists of atoms of mass E coupled to each other 

with force constants 	A defect of mass 0 is introduced 

into the chain. It is coupled to its neighbours by force 

constants .1 
• 

Figure 3 Scattering of lattice phonons by defect. A 

perfect lattice—phonon '4' travels from loft to right. It 

is unperturbed by the normal atom at '-1'. However it is 

perturbed by the defect at position '0'. The phonon 'A 

then emerges to be scattered by atom at position '1'. 



O 	+ 1 

1 

-2 +2 

48 
Figure. 2. 

DEFECT AT 0' IN THE LINEAR CHAIN.  

Figure. 3.  

SCATTERING OF LATTICE PHONON  
BY DEFECT.  
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In view of the more elaborate lattice calculations, a 

model in which the atoms are coupled to each other with a 

force constant 5, and the vacancy is coupled to its nearest 

neighbours with a force constant'il , seems adequate. The 

dynamics of such a model are discussed below. 

IV.3 THE EQUATIONS OF MOTIONS.  

Introduce a single defect into the linear chain at 

position '0' as in Figure (2). Let the defect be of mass Ml , 

and the coupling constant between the defect and the two 

neighbouring atoms be 20. 

Put M1  = (1 -OM, and ?f•-;61  = clif f  where M is the mass 

of the atoms and ?f the coupling constant between the atoms. 

In the case of the defect being a vacancy E will eventually be 

put equal to unity. 

The time independent equation of motions for the atoms in 

the linear chain is 

mw2un +irgun  = (M-U1)w2Un  51190  

S'-'1)(un+1-un)(gn,o+  Sn,-1)-( 11-7C1- )(un-un-1)( 6n,o+gno) 
**GS 	(IV.4) 

where n is the position of the atom,/- 2Un  = Un+1+Un_1-2Un, 

and 811,m is the delta function. When the R.H.S. of Equation 

(iV.4) is put equal to zero, the equation is the equation of 

motion of the normal perfect lattice. The R.H.S. of the 

Equation characterise the defect. For example when n = 0, 
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the Equation becomes 

M1 w2110  + 'z512170  = O. 

Iv: 4 THE SCATTERING OF LATTICE PHONONS.  

Let a lattice phonon, travelling from left to right in 

Figure (3)', be scattered by the defect at position '0'. From 

the general conclusion of Section (IV.1) (9.f Equation (IV.3)j, 

the solution to Equation (IV.4) is of the general form: 

Un = ein/ + Cg(n) 	 .... (IV. 5) 

where 4 >0 [The phonon in the positive direction, from 

left to right. 

e
in4 represents a perfect lattice phonon and is the 

solution of Equation (IV.0 when the R.H.S. is put equal to 

zero. C is a constant to be evaluated. 

To evaluate C, substitute Equation (IV.5) into Equation 

(IV. L.) and put n = O. Thus, 

(1-C)Mw2  [1 + cg(0)]  +(I-El  ) 15 [pid6+e-1-4-2+C ig( 1 ) C,,...0-2g (OD 

= 0 	• .•. 	(IV. 6) 

From Equation (IV.2) 

g(-1) = g(1) = exp(i4) . 

exp(i4) g(0) 	000 	( IV. 7) 

Equation (IV.7) expresses the symmetry of the dis-

tribution of phonon round the defect. Also from the result 

of the equations of motions of a perfect lattice, 
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Mw2  = /41 Sint.'/2 	 (IV. 8) 

Thus Equation (IV.6) can be further reduced. to 

4WSin2//2(e l  -E) + cg(0)1  0_05(4E 1  -‘)Sin2//2 + 2i(1-€1 )?j-Sin 	= 0 

C = 	 -[44Sin24/2  (0-1)]  
-1)g(0) [4-6Sin24/2 	2± ?c-  sin /51 

4fifSin24/2  Cos 4/2  

[- Sin 4/2  + i Cos 4/2 ] 

LOCSin24/2  Cos 4/2. exp [-lie/21 	(IV.9) 

where = 1, in the case of a vacancy, and g(0) = (::1) 
2 y Sin 4 

have been substituted. 

The displacements of the atoms are therefore completely 

determined in terms of the quasimomentum, k = 1S/a = LI; and the 

force constant,Y. 

From Iquation (IV.5) the displacements are given by 

Un  = ein4  + 1.1'Sin*J/2 Co4Y2 exp 	g(n) 

For n 	the displacement of an atom, to the right of the 

vacancy, due to a perfect lattice phonon, travelling from left 

to right, and 'scattered at the vacancy at position '0', is 

Un  = ein4 	iSin ,6/2  exp [i(n:1,7),6] 

= fl - iSin 4/2  exp (-AO exp(in4) 	(IV.10) 

For n 	and 	is' 	 • 

Un 	iSin 4/2  exp 	 j exp(146) 	(IV.11) 
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Equation (IV.11) can be alternatively interpreted as 

follows. It is the displacements of the atoms to the right 

of the vacancy (n;0) due to the phonons travelling from 

right to left (“,0). 

Specifically the displacement of the atom '1' [See 

Figure (3)3 due to the scattering of all the phonons is 

= 
rya  

k=rija 
A 	exp(ikx) exp -i(w++Sk) 	(IV.12) 

where from equations 

= 1 - iSin kg. 
2 

Ak_ = 1 -V- iSin 

(III, 10) and (III.11) 

exp (-y) 

exp (-12k2) 

• • * • 
	(1\1..13) 

IV.5 APPLICATIONS TO SCHOTTKY'S ATOMISTIC THEORY. 

From Chapter III the heat of transport is expressed in 

terms of a lattice dynamical factor w1, which is defined as 

wi  = Xo(k2 fk/21 fk  = dmr/dk to<  2 = lak2 

and o(k  is defined in the expression for the displacement of 

the atom next to the vacancy: 

Ul = okk /c Cos (wkt Sk) (IIT.14) 

where Ek is the energy of the k--
th  vibrational mode, and 

is -211Mwk2 where N is the number of atoms in the chain. 

Comparing Equations (IV.12) and (IV.14), 
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64k = I NM 
	_ 

wk Akio 

In view of Equation (IV.8), 

wk  = 0/M Sin ka/2  , fk = afCos It 

Therefore 

°`• = 2N 
2 	I 	T1Ak±12/Sin2 I( 

1 Si 
2N 

a 	Cos  ka 
	

A 	2  'ft  

	

2N /147sin2 ka 	
it.± 4 

2 
	 S 
2N 	

2 
 

From Equation (IV.13): 

1 21k+12  = 1.1 - Sin2(1F-12 )1 + Sin2(-1) Cost  

lAk_12  = 	sin(2a)Sin(J1).1 2  + Sin2(112)Cos2(J__ ka) 
2 

As the number of atoms in the chain becomes very large, 

the number of normal modes becomes correspondingly large, and 

the interval between the discrete modes becomes small. In the 

limit the sums SI  and S2 can be expressed as integrals. From 

the results of the dynamics of the perfect lattice, the 

density of modes of the linear chain is Na. 

Thus Si and S2  becomes 

a 



are 

S1 = 

Therefore w = 

= -aArM 
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kji/a A  12 	k- •Na 	Ak_ )2 S1 = Na S 	
I 
-1c+1 	dk 	I  Na S   dk 

k=1 	Sint ka 	k= 	Sin=ka 
Na 	2 	a 	2 

S2  = Na 
=117alAk+12Coali2  

k-1  ra  sin2 ka 
7- 

dk 
k=;t1- 	2 ka Nas 	lAk_i Cosw-dk 

k=-11/a Sin2 ka 

Si and S2  are evaluated in Appendix (1) and the results 

From Equation (11.27) the heat of transport is given by 

3 it 	 6) 

This is a very lucid expression. For most alkali-

halides everything on the R.H.S. is known experimentally 

except for I, the force constant. In this model, the force 

constant cannot be related in any simple way to the bulk 

properties of the crystal. For example, bulk properties like 

the elastic constants depend on certain average sums of the 

vatious force constants of the ions. However, the jump 

process of the ion is very sensitive to the local strains 

around the vacancy. In this model the force constant, ', can 
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be taken to be that which binds the vacancy's neighbour to the 

next ion on the other side to the vacancy along the chain. 

See Figure[(2) J. 

To evaluate -zr, the forces acting between the ions in 

the alkali—halides will have to be known. To arrive at a 

realistic model of the forces, the procedure adopted here is 

as follows. First a plausible model of a vacancy is chosen. 

Then a form of the potential of the ion in the lattice is 

postulated. From then onwards, the sublimation energy of a 

pair of ions and the formation energy of a Schottky pair are 

calculated. These last two can be directly compared with the 

corresponding experimental values. The agreement between the 

theoretical and experimental values of the sublimation energy 

and the formation energy will be taken as the justification for 

both the model and the form of the potential chosen. With the 

form of the potential energy established, the force constants 

can then be determined. 



Figure 4  ,4110> type linear chain in the NaC1 lattice. 

The Na}  vacancy is at 0,0,0 and a typical <110> type 

linear chain is shown. 
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Figure. 4. 
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CHAPTER V 

LATTICE CALCULATIONS.  

V.1 INTRODUCTION 

In the early Born theory of the ionic crystals, the ions 

are assumed to be point charges and the lattice is assumed to 

be static. The early models of the Frenkel and Schottky 

defects [Frenkel (48); Schottky and Wagner (49)] meet a 

theoretical difficulty in that the calculated formation 

energy is too high. Jost (50) shows that, letting the lattice 

relax, and the ions polarise round the point defect, the 

formation energies are brought down to reasonable values. 

For example, the Madel:ung energy required to remove a Fa+ 

ion from its normal lattice site in the Fan lattice is around 

4 eV. The polarisation energy gained, however, is around 3 eV, 

and therefore the formation energy of the defect is around 

1 eV, which is roughly the experimental value. 

V.2 THE SHORT RANGE FORCES  

Schottky (51) introduces the short range closed shell 

repulsion of the ions and he gives an interaction of l/rn 

for the ions with n 	9. 

However, by Xray methods, it is known that on the 

periphery of the ions, the electron density decreases exponent-

ially with increasing distance from the centre. Therefore, it 

is plausible that the potential should have an exponential form. 
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The Co/Ail of the repulsive potential adopted in this work is 

basically the Born-Eayer form [hereafter referred to as BM 

form; Born and Mayer (52) , also see Tosi and Fumi(53),1 

and it has an inverse exponential form, i.e. 

4(r) = Al2 exP (-r/P) 	 9400 	(v.1) 

Al 2  depends on the interacting ion and p depends on the 

crystal. When only the nearest neighbour interactions are 

considered, Al2  is eliminated in the subsequent analysis. 

However, in the present work, both the nearest neighbour and 

the next nearest neighbours are considered. 

An expression f or  Al2 is given by Born and Mayer ( 52) 

Al2  = b C12  exp ftri + ryp] e0** (V.2) 

where r1 and r2  are the GoldsciM4Atradii, and Pauling (63) 

gives the formula for 012  as 

012 = 	Z1/n1 + Z2/112 	• • • (v.3) 

where Z1 and Z2  are the valencies, and ni and n2  are the 

number of electrons in the outer shell of the ions. 

Certain authors ERittner (54), Versani (55), Baughan(56g 

find that when the ions move much closer than the interatomic 

distance, a much harder potential is needed, namely the Verwey 

potential. This has the form 

4(r) = A + B/r12  where r<ro , the interionic distance. 

(V.4) 
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When the constants A and B are fixed by imposing the 

condition that the potential and its first derivative are 

continuous at r = ro  with the BM. form, then the combined 

potential is called the Born-Mayer-Verwey.form (hereafter 

known as the BMV potential). This potential has been used 

by Guccione, Tosi and Asdente (57), Tharmalingam (58) and (59) 

and Boswarva and Lidiard (60). 

In addition to the short range hard core repulsive 

forces, there exist short range Van der Waal forces. The 

Van der Waal forces arise from the correlated movements of the 

electrons in the ions, which ifiduce dipoles and quadrupole's 

in the other ions. The dipole-dipole and quadrupole-dipole 

interactions are attractive and are represented by the 

expression 

- [012/r6  Di 2/r81 	 (v.4) 

where C12 and D12  depend on the interacting ions. 

The ions in the lattice are then described by their 

positions, their electrostatic interactions, their polar-

isibilities and their short range forces. 

V.3. THE MOTT-LITTLETON APPROXIMATIONS.  

In principle the energy of a point defect can be cal-

culated to any degree of accuracy. Scholz (61) has cal-

culated the energy of a small crystallite of 256 ions. 
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However, since the Coloumbic forces are long-range, even this 

amount of ions is not sufficient. What is more commonly done 

is to arbitrarily consider the neighbours of the defect in the 

first shell, second shell, third shell and so on, as lying in 

a discrete lattice; the rest of the crystal is taken as a 

continuum. This method is called the Fiott-Littleton ( 64) 

approximation. The liott-Littleton approximation, and various 

modifications of it, has been used by various authors 
(62) 9 	 ( 60j [Brauer 	Boswarva and Lidiard  

In the zero approximation, the discrete part of the 

lattice consists of the ions to be removed; all the other 

ions are assumed to lie in a continuum. This approximation, 

in itself, is not of interest to the aim of this work, as it 

does not reveal the force constant binding the vacancy to the 

second nearest neighbour. The second nearest neighbour is the 

next element in the linear chain in the <110? direction. 

The first order approximation takes the central ion, 

which is to be removed, and the nearest neighbour as the 

discrete Dart of the lattice. 

The second order approximation takes, in addition to 

this the second nearest neighbour as the discrete part of the 

lattice. With the second order approximation, the binding on 

either side of the second nearest neighbour along the <110> 

direction can be studied in sufficient detail. 
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The Mott-Littleton description of the continuum part of 

the lattice (regionII) goes as follows. 

In ionic crystals, when the vacancy is created in region 

I (the discrete part) it acts as a charge singularity. At a 

distance r away, the polarisation is given by 

p = 	0 ... 

- • Tr 

where e is the dielectric constant. 
The displacement dipole moments, rand the electronic 

dipole moments, A, are then given by 

x 2r03  x P 

p 

cA.0-0L4-2a) cx±  
x 2r03  x P 

where cq, are the electronic polarisibilities, 

and % is the displacement palarisibility. 

(Xis given by the expression 

oc 	= 
e
2 // f, where f is the force constant. 

V.4. THE ELASTIC STRENGTH OF THE VACANCY 

Brauer (62)  points out that the vacancy is also an 

elastic as well as an electrical singularity. The displacement 

of an ion at a distance r from the singularity is given by 

= kro3/r2 where k is a constant. 
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If the displacement of the nearest neighbour ion to the 

vacancy is aro, Brauer assumes that, in the first order Mott-

Littleton approximation, k is given by the eouation 

k = 

In the second order approximation, the corresponding 

Braur assumption will be 

k = z (A'+ 2V v) 	 • • fik • 
	(v. 6) 

where ,12vro  is the displacement of the second nearest 

neighbour along the line joining the vacancy to the ion. Here 

the region II ions are affected by both the elastic strength 

of the first and second nearest neighbous ions. 

Boswarva and Lidiard (60) suggestr, that the Brauer 

assumption overemphasises the importance of the elastic term 

in the displacement of the more distant ions. They therefore 

suggest that the elastic displacements of the region II ions 

should join smoothly with those of the region I ions at the 

boundaries. Thus, in the first order Mott-Littleton approx- 

imation, 

k = ?.-1111  

where 	= 	X 2  

q 

In the second order approximation Boswarva 04) suggests 

that the elastic displacements should arise from an average 

effect of the first and second nearest neighboursi i.e. 



Figure 5 	Relaxations of first and second nearest 

neighbours of the vacancy. The figure shows a typical 

(100) plane containing the vacancy. The 1,0,0 type ions 

relax a distance 1\r0  along the T1001 direction. The 

1,1,0 type ions relax P. distance rov ir2 along the 0110,1 

direction. 	
( s  .:.„) 

64 
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k= 2  (7‘ - M1) + 	(2/2v + M1) 

= 	+ 2/v) 	 • • • • 
	(v.7) 

The Brauer and the Boswarva-Lidiard assumptions give 

identical results in the second order approximation. 

Boswarva and Lidiard (60)  have made a systematic study of the 

alkali-halides, using the first order approximation. In 

particular they have developed a set of equations which is 

simple to work with, and which can be extended for any higher 

order approximation. The work in this line being undertaken 

here extends their approximation and, at the same time some of 

their conclusions are examined. 

V.5 THE BASIC EQUATIONS.  

When the ion is removed, its neighbours relax until the 

energy of that configuration is the minimum. Owing to the 

symmetry of the vacancy, the relaxations of the neighbours 

will be along the line joining the ions to the vacancy. For 

example, in the second order approximation, when the central 

ion is removed [as in Figure (5)] , the 1,0,0 ions will all be 

displaced a distance Aro, say, along the [100] direction, and 

the 1,1,0 ions a distance „/-vrt, say, along the 01103 

direction. All the other ions in the continuum will relax 

according to the Mott-Littleton approximations. The energy 

of the formation of a vacancy is then a function of A, and W. 
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It is then minimised with respect to these two parameters. 

The energy needed to remove the ion from a normal lattice 

site to infinity is given by 

W = Wi + W2(x; m) + W3(x,m; 9  u) + w4  (3, p.) 	(v.8) 

where x, 4 are the displacements of the ions in region I 

[the discrete latticel and region II Ithe continuumirespect-

ively. 

m and p are their respective electronic moments. 

W
1 is the energy of the defect in a rigid, unpolarised 

lattice. The lattice is then allowed to relax. W2(x; m) is 

the relaxation energy in region I only. W3(x, m93 y ,u) is the 

interaction energy between regions I and II due to the re- 

laxations. W4( 
	

p.) is the relaxation energy of regions II 

only. The energy can be re-distributed between W3  and w4  so 

that w4  represents the energy of a distorted polarised region 

II filled with a perfect region I. The perfect lattice is 

referred to as the lattice of zero energy. 

By expanding the terms 142, W3 and 

and imposing the equilibrium conditions 

am 	p 	b3 

Equation (v.5) is reduced to 

W = Wi + W2(x,0) - (I  - )  mi  

+ W3  (x 9 09 5.90) - O'N) W-3  (x90; ? ,01, 

W4 
 in Equation (V.5) 

II - o F 9 

(v.9) 
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I and 0 refer to regions I and II respectively. 

Md.  and 7.w are the equilibrium electronic moments. 

F.(1) and FP) are the monopole fields due to the charges 

at the lattice points and the relaxed positions. 

are the equilibrium relaxations of region II. 

IF1.3(x,0:3,0) Both W3(x,0; ,O) and 57 	contain electrostatic 

as well as short-range force terms. Separating the two types 

of potentials and introducing Flo as the equilibrium dis-

placement dipoles, i.e. 40 = q\):10., the energy expression 

becomes 

W = W1 	W2(x,O) 	 crio + i71)F.0(1)  

+ vti 	(x . I 0) - 	El: 	w 	(x 3,R 0 g 	g 	a34 	3,R 	, 	9o) j_ (v.lo) 

where W39R  is the energy due to short range potential part 

of Wiz. The derivation of Equation (V.7) Wa4 first done by 

Boswarva and Lidiard (60) 
	— rivti,14 

V.6. APPLICATIONS TO THE IONIC MODEL.  

The simplest ionic model is one in which the central, 

two bodies forces consist of only the long range electro-

static monopole and dipole interactions and the short range 

hard core and Van der Waal interactions only. Thus the 

potential, /5„ can be divided into the Coloumb potential, 40P 

and the short range forces, 4R. The explicit expressions for 
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W1 , W2s  W3  and w4 can then be written explicitly as follows: 

.... 	(v.11) .1 r.°) - 	(1'()) 

which is the work needed to create a vacancy in a rigid non- 

polarisable lattice. Tic)  and r are respectively the perfect 

lattice and the relaxed positions. 

I I 
W 2 	2 	ZrZi gR(ri-rk)  - 4R (re - rk°)I 

jAk 

I I 
1/c(rj-rk) 	/c ( ri-ric9-/c( ri° 	rk)4c(ri° 	rk91 

jA k 

- 
J 

I, 
(-r 'rn.)+1. 7 	w(rj-rk;mismk) 

j 

(v.12) 

which is the change in the energies of the region I ions when 

they relax. The region II lattice A.1., assumed for the time 

being to be rigid and unpolarisable. The first term is the 

short range interactionl The second and third term are the 

electrostatic monopole interactions. The fourth and fifth 

terms are respectively the monopole-dipole and the dipole-

dipole interactions. All other terms which are negligible 

in magnitude, e.g. the dipole self-interaction or the change 

in the Liadelung energy as the ions relax, are ignored. This 

will be the case for the following two expressions. 
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w3  ij the interaction energy of the region I and II 

ions, their effective charges and their dipoles, plus the 

interaction energy of the effective charge of the vacancy 

with the monopoles and dipoles of region II. 

‘13 
I I  II 

R(rj-rk))  

9 
- ,r31:z(r jcj-r.)} 

II 
1/c(r j-r,)) - /c(r j-ND ) 

,0 	• 

Alc( r;°-r,91 

- /c(rio-r\) ) 

II 
i/(rN) ) - /(r00 ) 

II 
- L  (-r,); 

II 
+ 	 (r.

J
-rte;AA) -t(r jo-N;.,1‘ )1 

j  

I II 
m j ) 	(r:-rj; mj)I 

N) 

	

.... 	(v.13) 

The first term represents the change in the short range 

potential when the region I ions relax and the region II ions 

are in their relaxed position. The second term is the inter-

actions of the real and effective changes of the regions I 

and II. The third and fourth terms are respectively the 

interactions of the vacancy and the monopoles and dipoles of 

region II. The fifth and sixth terms are respectively the 
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interactions of monopoles of region I and the dipoles of reg-

ion II and the interactions of the dipoles of region I and the 

monopoles of region II. 

W4  is the energy of a relaxed and polarised region II 

when region I has no defect and the ions are in their 

perfect lattice position and they are not polarised. 

I 	II 
1114 = 	/Ii(ri°7r0 ) -4 (r jo_rs)o)/ 

II II 
+ 2 	y 

k 	
) 	( r;`)-rnc))1 

Tr  

II II 
+; A-11d - 

• • • • (v.14) 
The energy of formation of a Schottky pair is defined 

as the energy required to take a pair of positive and 

negative ions to the surface of the crystal. Thus the 

Schottky formation energy is 

WS = W+ "I" W- 	2  (W1+ 1- WI-)  

and WA- = W14. + W2± 
+ W
3±4t 

V.7. THE CALCULATIONS  

On the basis of Equations (V.11) to (V.14), the energy 

needed to extract an ion from the NaC1 lattice to infinity, 
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Tables 1 and 2  Calculated Schottky pair formation energies 

of NaCl. Mayer's (66) data of Van der Waal co-efficients are 

used in Table 1 and Haffls (67) in Table 2. The notations 
h. , V pee* ET±, Ws  are rs in Appendix CEO. 

Tables 3 and Li. Calculated formation energies of nine other 
alkali-halide. Mat'er's data are used throughout. Table 3 
uses the Accurate Field terms (see SectionIV1) and Table 4 
the Approximate Field terms. 

Table 	Comparisons of Calculated and Experimental values. 
All the calculated values are from Table (1) and Table (3) 
whore Mayer's data and Accurate Field terms are used. The 
calculated sublimation energies for all salts and the cal-

culated formation pair energy for NaBr, NaC1, KCl, RbC1 and 
LiI are excellent. 



TABLE 1. NaC1 FORIKAT ION ENERGI gS (MAMR)  

BM M1.0.042 	Al2=0.04972 	p=0.32/-1 .R 	E1+=7.9125 eV 	E4+=-2. 11 FE) eV 
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EC1 

KBr 

RbC1 
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TABLE 5 

COMPARISONS OF CALCULATED AND EXPERIMENTAL VALUES 

Energy Schottky Pair Energy 

iElastic 

Sublimation 

Calculated Experimental Calculated Experi—
mental 

Non 
Elastic 1.88 

10.729 2.42 
Mastic 
Bos/Lid (85)  

Non 
Elastic 1.97 

7.632 7.627 1.68 
Elastic 
Bos/Lid (90) 1.56 (86)  

Non 
Elastic 2.06 

7. 983 8.009 2.12 
Elastic 
Bos/Lid (90) 2.17 (70) 

Non 
Elastic 

7.256 7.276 2.22 
Elastic 

pos/Lid (90) 2.12 (70) 

Non 
Elastic 2.014 

7.011 6.990 2.53  
Elastic 
Bos/Lid (90) 2.05 	(87) 

Yon 
Elastic 2.33 

7.035 7,054 2.25 
Elastic 
Bps/Lid (90) 	2.28 	(88) 
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R 	1 	
2.20 

6.755 	6.851 

TABLE 5 Continued.  

Sublimation Energy 1-  Schottky Pair Energy 
, 	t 

Crystal! elastic Calculated xperimental! Calculated xperiment& 
. 	. 	 _ 

 

i Non 
I Isaao tic 

bBr  
lastic 

i Bps/Lid 	(90) 
4- 	. 	

2.20 
t on 

1Elastic 	 1.48 
Li01 	 8.815 

Elas tic 
Bos/Lid 

2.12 

(89) 1.49 
Non 
Elastic 

iBr 	 8.336 
Elastic 
Bos/Lid 

1.35 

1.35 
1.80 

(89) 

LII 1.314 
1.17 

8.737 

8.303 

(90) 

7.805 
(90) 

Yon 
Elastic 

Elastic 
Bos/Lid (89) 

7.811 
1.17 
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W, is expressed in terms of the two unknowns, namely the 

relaxations of the nearest ion to the vacancyd‘ro, and the 

next nearest neighbour 	vro. ESee Figure (5)3. The energy 

W is minimised with regard to these two variables using com- 

putational methods. The 	7090/7094 computer is used. 

The BM and BMV potentials are used, The constants b 

and p are deduced from lattice stability and compressibility 

of each individual alkali halide crystal. 

The Mott-Littleton approximation and the Brauer and 

Boswarva-Lidiard modifications are used. The non-elastic 

form is the form where the elastic constant, k, equals zero; 

the Boswarva-Lidiard modification is when k equals 

EX+ 2/ v). 

The Van der Waal potentials are used explicitly. 

The lattice calculations are done for various alkali 

halide crystals namely, LIP, NaCl, NaBr, K01, KB r, RbC1 and 

RbBr, Li01, LiBr and LiI. 

The calculated energy of the Schottky defect and the sub-

limation energy of each crystal are compared with the 

experimental values. The agreement in the comparison 

justifies the use of the form of the potential and the Mott-

Littleton approximation or its modification. 

After these calculations the equations for the force 

constant of the motion of the next nearest neighbour 
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constrained to move in the <110> direction is written down. 

This is done by first separating out one ion, say the 1,1,0, 

from all the eleven other next nearest neighbours Its dis-

placement is represented by vl whereas the displacements of 

the other eleven ions is represented by v. The energy, W, 

written in this new form, is differentiated with respect to 

vi. When vl = v the force acting on the particular 1,1,0 

ion should vanish. The force constants are then obtained. 

This method makes the plausible assumption that the form of 

the potential is produced by the surrounding ions in their 

relaxed equilibrium position.. The actual jump of the ion is 

fast enough so that the surrounding ions have no time to re-

arrange their positions in an energetically more favourable 

position. 

By an extension of the method outlined above the saddle-

point configuration in the transition state theory of the 

heat of transport can be obtained. 

V.7. 1 DATA USED IN THE CALCULATIONS. 

The interatomic distances, ionic radii and the com-

pressibility are from Fumi and Tosi (65). The Van der Waal 

coefficients are from Mayer (66) and Haff (67). The 

electronic polarisibilities are from Tessman, Khan and 

Schokkhl (68) and the static dielectric constants are from 

Haiissuhl (69). 
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IV. 8 RESULTS AND DISCUSSIONS.  

The results of the lattice calculations are given in 

Tables (1) to (5). The Pauling ( 63) form of the pre-

exponential term in the repulsive potential is used throughout. 

(c.f V.3). In the results of NaC1 in Tables 1 and 2 both the 

BM and the BMV potentials are used. As expected, with the 

harder BMV potential the relaxations of the ions are more 

restricted, and the Schottky pair formation energies are 

higher. For Nan, the B1,51 potential gives excellent agreement 

with the experimental value [2.12 eV (70)) whereas the BMV 

potential gives markedly higher values (ry 0.3 to 0.4 eV more)._ 

The inclusion of the elastic term makes very little difference 

in the final results. Table 1 shows the results with the use 

of Mayer' s (66)  data on the Van der litraal co-efficients and 

Table 2 with Haff's (67) more recent data. There is very 

little difference in the sublimation and formation energies 

although the Mayer's version gives slightly higher values 

( x+0.05 eV in the sublimation energy and —0. 06 eV in the 

formation energy). 

From the evidence of the NaC1 results, there is no 

justification in resorting to the use of the BMV potential. 

The subsequent calculations for the nine salts, i.e. LIP, 

LiC1, LiBr, LiI, NaBr, KC1, KBr, RbC1 and RbBr, involve the 

use of only the BM potential. The inclusion of the elastic 
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strength is again found to have little effect on the form-

ation energy (Tables 3 and 4). The calculated sublimation 

energies compare favourably with the experimental data in 
NaBr, Rb01, 

all cases (Table 5), and in EraC1,1sKC1 and LiI the agreement 

between the experimental and calculated values of the form-

ation energies is excellent. The reason why the LiF, LiBr 

and LiC1 results should be in poor agreement with experiment, 

has been attributed by Boswarva and Lidiard (60) to the  

breakdown of the point dipole approximation. The breakdown 

occurs when the small Li+ ion approaches close to the 01-

ion and when this happens it is no longer valid to assume 

that the electronic dipoles of the ions are point dipoles. 

[Note the LiI exception]. 

The relaxations of the second nearest neighbours towards 

the vacancy (i.e. v is negative) is as expected. The removal 

of the ion removes both the repulsive Coloumb interactions 

&+ or -- interactions] and the repulsive short range inter-

actions of the second nearest neighbours and itself. This 

causes the second nearest neighbour to relax towards the 

vacancy. The relaxations outwards of the first nearest 

neighbours are due to the removal of the attractive Coloumb 

force. 

In all cases the extraction of a negative ion from the 

lattice requires more energy than that of a positive ion. 
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Also the relaxations of the neighbour due to the extraction 

of the negative ion is more pronounced than the relaxations 

due to a positive ion vacancy. These two related effects 

are obviously caused by the fact that generally the radii of 

the negative ions are larger than that of the positive ions. 

V.8 1 CONCLUSIONS.  

The objects of undertaking the lattice calculations hav 

been to produce a suitable model of the lattice around the 

Vacancy and to find a suitable form of short range potential 

between the ions. From there on, the force constant of the 

second nearest neighbours at their equilibrium relaxed 

positions is determined realistically. 

From the comparisons which are made between the lattice 

calculations and experimental data, it is found that the 

vacancy model chosen, with the use of the BM and the 

explicit Van der Waal short range potentials, is sound. 

It is then concluded that the force constant of the 

second nearest neighbour obtained from the use of this model 

and the form of the short range potential is realistic. 
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CHAPTER VI  

THE HEAT OF TRANSPORT (II)  

VI. 1. THE ANALYSIS AND CALCUIATIOYSJ  

The equilibrium relaxations of the nearest neighbour, 

711ro, and the next nearest neighbour, ,/ v Two, to the vacancy 

has been found in Chapter (V). 

Let the relaxation of the ion at 1,1,0 be /2 Oro  and 

the relaxations of the other eleven 1,1,0 type ions remain at 

Ivro. By differentiating the vacancy formation energy 

expression, E(A,v,v1), with respect to vl, as is shown in 

Appendix III, the force on the 1,1,0 ion is found. By com-

puting the change of this force with respect to a change in 

vi around equilibrium value v, the force constant is found. 

This is done with the help of the IBM 7090/7094 computer and 

the results for NaC1 and KC1 are summarised in the Graphs in 

Figures (6) and (7). The Born-Mayer potential and the un-

modified Mott-Littleton Approximation are used. 

From.Equation (A III.12), it can be seen that the exact 

solution for the dipole fields,lit s, involves the solution of 

a 8 x 8 x 3 matrix equation. This is an extremely difficult 

problem to solves  However, by putting the FI terms in the RHS 

of Equation (A 111.12) to be zero, the solution becomes 

simple. Correspondingly, the FI terms in Equations (A II.10) 

and (A II.11) have to be put equal to zero. The Schottky pair 
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formation energy found by the use of this approximation 

[the Approximate Field approximation" are shown in Table 

(4) and included in Tables (1) and (2) for comparison 

with the energy found without resorting to this approximation. 

[Note that the F1 fields can be solved exactly when they 

appear in the expression for the formation energy in Appendix 

(II) since their solution, as is seen in Equations (A 11.10) 

and (A 1I.11), only involves the solution of a 2 x 2 matrix 

equation]. It is seen that neither the formation energies, 

nor the relaxations, differ drastically between those found 

with, and those found without, the use of the field approx-

imation. This justifies the use of the field approximation. 

From Equation (IV.16) the heat of transport 

= [2 + 0i/T]E 	 (V1.1) 

where q T 	t.  /VII;  t is expected to vary inversely 
3 11 • 

proportionally with T, and therefore q is independent of 

temperature. 

t can be expressed in terms of the thermal conductivity, 

x 

1. e. 

• • • 
	(V1.2) 

[See Klemens (71)] 

where re  is the interionic distance of the crystal kB is 

r 3  t 	o  
k 2  B 	- v  s 
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Figures 6 and  7 Graphs of the force exerted on the second 

nearest neighbour against the distance. (v1—v) is in units 

of fractions of the interionic distance ro. The force 

constant 	= —gradient/ro - 	eV4 2  

)< is used to calculate the heats of transports Qm  and the 

results are summarised in Table 6. 
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Table 6 The Calculated Heats of Transport of JThC1 and KC': 

The heats of transport are calculated for 1000a1c. The force 

constants, Y , are obtained from the graphs in Figures (6) and 

(7). w is the frequency of vibrations of the lattice in the 

'..110:> direction. 



+11.95 
2.832$J   L3 (, 
x10   

o2i 	0°K 
wryirAl 	1?.1  eV 

eV/A see-1 	at 1000°K 

- 2. 15 x2.1  L0 03  -all 

+ 1.59 1•J 3  -32,5 
x101  

2.08 1.35.2 - 1 .58 

(72) 

cal/cm/sec/DC 

y 0  

cal/c;]/sec 

4.1494 

5.097 

-1- 

19D90) 

°K 

281 

230 

1. 	 x10-2a t 3/45°K x1013! 

fe 	t see 

°K sec 	at 1 

0 
8.37x101  8.37x1& -, 

1 . )47x10-2  a t :)08°K 

i.30x102at 543°K 

1 . 56x10-2a t A3°K 
15.87x115 15.87x 1(713  

Crys tall 

1 
NaC1 

XC' 

TABLE 6. THE CA LC ULATIM HEATS  OF TRANSPORT 

ktitY0.+:0T, 	1"14  C.1?2,) 



93 
the Boltzman's Constant and vs  is the velocity of sound in 

the crystal. vs  is related to the Debye temperature, GD, 

i.e. 

v = kBeD.2m S 	—7-- 11 km  

where h is 	Planck's Gonstant,km  is the maximum value 

of the wave vector 4k1, and for the alkali halides it is 

TO' • 
at) 	

AP/T 	[See Klemens (71)] 

and the experimental values for ;for NaC1 and KC1 are tab—

ulated in Table (6), and they are from data obtained by 

Ballard, MacCathy, Davis (72). 

Therefore from Equation (IV.2) 

t = 
fc/T 

3 +312_ 
where fc = 

4kB3  GD2  

VI. 6 RESULTS AND DISCUSSIONS.  

The results of the computer calculations pee Figures 

(6) and (7)] show that the force constant W 1  binding the 

vacancy to its neighbouring ion is practically the same as 

the force constant,W, binding that ion to the other neighbourt,  

ing ion in the linear chain [See Figure (2)] 

Table (6) summarises the results of the heats of transport 
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calculations. For the temperatures at which diffusion 

experiments are generally carried out, that is about 900°K 

to about 1100°K for Kan and KC1, the heats of transport for 

each type of ion (Na,+ Cl-, or 10')ate about one and a halYto 

-tvs.,o:. times the corresponding activation energy for diffusion. 

So far, the VtimmobAtralues of the heats of transport for the 

alkali halides are not known. This is due to a lack of 

knowledge of the irreversible electrode-crystal thermopower. 

However the thermopower of AgC1 and AgBr with Ag electrodes 

have been found [see Christy (6), Susuki, Endo and Haga (73)] 

and the heat of transport plus an entropy term for the Ag 

'vacancies in both crystals are known. At 623°K 4+ Tsv, 

where sv is the entropy of formation of a Ag vacancy, 

is -0.39 eV for AgC1 and -0.40 eV for AgBr (6). The act-

ivation energy for the diffusion of Ag vacancy is 0.36 eV 

for both crystals. L(7L)  and (75) . The contribution from 

the entropy term is not known exactly, but it can be readily 

seen that the heat of transport is more than the corresponding 

activation energy. 

Some of the assumptions which are implicit in the linear 

chain model are quite drastic [See Section (II1.3)] . The 

most notable being:- 

(i) The harmonic potential approximation is used. 

(ii) The assumption that the area purrounding the vacancy 
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is always in thermal equilibrium. 

(iii) The interaction potentials of the surrounding 

ions with the jumping ion is assumed to be directed not from 

the surrounding ions themselves, but from the vacancy. 

When the actual jump process occurs, the vibrational 

amplitude of the jumping ion is necessarily large. However 

Assumption (i) stipulates that the amplitude should be small. 

For the jump to occur the jumping ion must collect the 

extra energy from the surrounding. This causes an imbalance 

of energy distribution, contrary to Assumption (ii). 

In view of the drastic nature of these assumptions, the 

agreement between the general results of the calculations and 

the experiments on AgBr and AgC1 are surprisingly good. 
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CHAPTER VII  

THE EXPERIMENTS. 

VII.1 LITERATURE REVIEW.  

Thermoelectric power measurements in ionic crystals have 

been most thoroughly and successfully carried out in systems 

where reversible electrodes can be used, e.g. Christy, 

Fukushima and Li (5) on AgBr, Christy (6) on AgBr and AgC1, 

Susuki, '=undo and Haga (73) on AgC1 and Hsueh and Christy (76) 

on CuCl. The results are successfully analysed using Howard 

and Lidiard's formula [Equation (II.17)]. 

However, in the alkali halides the experiments that are 

done [Nikitinskaya and Murin (7) on NaC1 and KC12. Allnatt and 

Jacobs (8) on KCl, Christy Hsueh and Mueller (9) on poly—

crystalline NaC1, Jacobs and Maycock (11) on KC1, Hoshimo 

and Shimoji (10) on NaBr„ and Allnatt and Chadwick (4) on 

single crystal NaCl; all the authors use platinum electrodes] 

suggest that the experimental difficulties involved are quite 

considerable, and that all the phenomena observed are by no 

means easily explained. 

VII.1. 1 Nikitinskaya and Murin  

Nikitinskaya and Murin's (7) results are very scattered, 

and their reproducibility is poor. They observe a potential 

of uncertain magnitude when the temperature is uniform. 
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VII. 1.2 Allnatt and Jacobs.  

Allnatt and Jacobst s (8) results are much more re-

producible. They measure the thermoelectric power of pure 

KC1 and KC1 containing 107 x 10-5  mole fraction of SrC12  

with platinum electrodes in the temperature range 83)#°K to 

966°K. 

They observe large fluctuating voltages across the 

crystals when they are annealed at temperatures less than 

about 670°C. Their' crystals are under mild compression for 

good electrode contact and they attribute thisTurious 

potential to some form of plastic deformation of the crystal. 

VII. 1.3  Chrism Hseuh and iflueller 

Christy, Hsueh.  and Mueller's (9) results on the measure-

ments on pure and doped polycrystalline NaC1 are very 

scattered. They also see the spurious potentials which 

Allnatt and Jacobs reported. They attribute this potential 

to the presence of HOH contamination in the salt. In their 

individual plots of the voltage differences;  W, caused by 

the temperature differencess ZT, there is a maximum intercept 

of about 30 mV on the AV axis. In their analysis they give a 

thermopower of pure NaCl as -0.95 mV/0C from 550°C to 780°C. 

VII. 1.4 Jacobs and Laycock 

Jacobs and ilaycock(11)9  measure the thermopower of pure 
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KC1 and KCl doped with SrC12 and AgCl in the temperature 

range between 6000K and 950°K. At about 820°K they observe 

.a so-called inverted -A- point in their plot of G against T. 

Their results for the thermopower of pure KC1 are that it 

varies between -1.35 mV/°C and -1,93 mV/°C at high temper- 

atures, and for KC1 with 100 x 10-5  mole fraction of SrC12 

it is -1.40 mV/°C. 

VII. 1.5 Hoshino and Shimoji 

Hoshino and Shimoji's(1°) measurements on NaBr, both 

pure and doped with 28.8 x 10-5  mole fraction of BaBr2, are 

done between 580°C and 720°C. They attribute the time-

dependent spurious potential to the influence of the Frenkel-

Lehovec(40) space charge at the surface of the crystal. 

VII. 1.6 Allnatt and Chadwick 

Allnatt and Chadwick (4) measure the thermopower of the 

pure and SrC12-doped single crystals of NaC1 in the temper-

ature range of 550°C to 755°C. They find that the reproduc-

ibility on different crystals vary as much as 30%. In con-

trast to Jacobs and F.aycock (ii) and in agreement with Christy 

et al (9), they find that the intercepts on the AV axis in the 
individual plots of 6V against AT are finite. In addition 

they plot a straight line graph of the intercepts against 

the temperatures. Their results are summarised in Figure (12). 
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Allnatt and Chadwick see the fluctuating voltages even 

though they take most care to avoid water contamination. 

They suggest that the cause of the fluctuating voltages is 

due to the mechanical state of the crystal. 
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CHAPTER VII 

THE EXPERIMENTS 

THERMOELECTRIC POWER 

VII. 1. SPECIMEN PREPARATIONS  

A modified version of Czochralskil s method (77) for the 
-44 

growing of single crystals is used. The jig and the actual 

operations have been extensively described by Newey (78). 

The starting material is the Hopkins and Williams analar 

grade NaC1. This is held molten in a fused silica beaker for 

approximately fourteen hours: A single crystal seed is then 

lowered into the molten surface and slowly withdrawn at an 

approximate speed of about 1 inch per three hours.. The boule 

so obtained varies in diameter as the temperature of the rnettiiva! 

surface, the lower the temperature, the larger the diameter. 

A typical boule is about 11 inches in diameter and L. inches 

long. The crystal grows in the <100> axis, and immediately 

after growth, it is transferred to the annealing furnace. 

This furnace is held at about 65000 for sixteen hours, after 

which the temperature is brought down to room temperatures ow 

a period of thirty-six to forty hours. 

NaC1 single crystal cleaves along the H001 plane. Each 

specimen is carefully cleaved by sharp razor blades into 

rectangular cubes of linear dimensions of between 0.5 to 1.0 

cm. 	The specimens are then examined under the microscope to 
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Figure 8  The tube furnaces. The outer tube is wound 

uniformly to provide a uniform temperature. The bottom 

is closed for temperature stability. The inner tube is 

wound uniformly in two sections. When the current is 

passed through 12 and D the top end of the crystal is at 

a higher temperature. The temperature gradient is 

reversed when the current passes between 	and C. 

Figure 9 The crystal in position in the silica jig. The 

silica jig is air—tight. It is first evacuated and then 

filled with high purity argon. The crystal sits between 

the platinum electrodes at the bottom of the tube. The 

middle stem is made of silica, and it can slide up and down 

through the rubber bung. The whole of the middle stem 

including the platinum electrodes and the crystal can be 

taken out in one piece. 
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detect surface damage. With good specimens damage is done 

only at the corner where the razor blade has been in contact. 

The satisfactory specimen is then transferred to the jig ready 

for the experiment. 

VII. 2 THE APPARATUS 

A vertical tube furnace is used. The outer tube is of 

fused alumina, and it is about 70 inches long with an inside 

diameter of 3 inches. About 55 inches of the middle section i 

wound by gauge 20 michrome wires. The total resistance of the 

heating element is about 60-.. . Within this tube is an inner 

tube of fused alumina. The inner tube is wound in two equal 

sections, as is shown in Figure (8). Each section has a 

resistance of about L.0.." . The crystal sits in between these 

two sections and it is found by trial and error that the 

separation between the ends of the two sections should not be 

more than 1 inch apart to produce the required maximum temper—

ature gradient of 10°C per cm. By passing a current through 

either the top or the bottom windings, a thermal gradient can 

be established in one direction or its reverse. The maximum 

current allowed through the sections is about 1 ampere. This 

is to ensure that the thermal gradient can be altered fast 

enough, 

The outer tube is surrounded by laggings contained in a 

box 40 inches square and 60 inches high. This large amount of 
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leggings is needed to maintain temperature stability, 

especially as the experiments have to be carried out through 

the night and the temperature drop in the room is quite 

significant. 

Both alternating currents and direct currents are used 

to drive the furnace. The over—all temperature is controlled 

by an "Ether" type anticipator controller, which only controls 

the current of the outer tube. An additional circuit is 

introduced in parallel to the windings for better control. 

The average fluctuation is controlled to -14°C in a period of 

half an hour. The current passing through this outer tube 

varies from 2 amperes to 4 amperes when the temperature is 

between 600°C to 80000. 

The jig is made of clear silica and is constructed as 

shown in Figure (9). The middle stem holds the crystal and 

it can be slid in and out of the silica tube. The electrodes 

are platinum foils of roughly 1 mm. thick. They are backed 

onto silica discs. Platinum—platinum 13% rhodium thermocouples 

are used both to measure both ends of the crystal and to act as 

leads to measure the potential developed across the crystal. 

The silica tube is surrounded by an earthed stainless—

steel pipe. All the leads outside are screened. 

Temperatures are taken with respect to a water—ice 

mixture at 0°C. A high impedance digital valve—voltmeter is 

used. The input impedance of the voltmeter is more than 50 Mn, 
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and it is capable of reading to within ± 060025 my. 

The Tinsley potentiometer is used to measure the voltage 

developed across the crystal. It is capable of detecting a 

voltage of 0.1 uV. It has a reversing switch which eliminates 

the thermal potentials of the measuring instrument, The 

potential difference set up in the potentiometer wire is 

maintained by an A.C. mains-operated device which employs a 

Zener diode to maintain voltage stability. 

The current from the crystal to offset the null detector 

must necessarily be small. Therefore a Tinsley-made D.C. 

amplifier is used to amplify the current going through the 

galvanometer. 

VII. ,3 EXPERIE2NTAL PROCEDURES AND  OBSERVATIONS.  

The pure NaCl single crystal is placed in between the 

electrodes, and they are lowered into the silica jig. The air 

in the jig is evacuated with a rotary pump. The pressure in 

the jig is reduced to about 10-2mm Hg, or lower. It is then 

filled with high purity, water vapour-free argon. This pro-

cedure is carried out on the average six times. 

The temperature of the crystal is brought up over a 

period of four or five hours from room temperatures to 60000. 

It is then maintained at this temperature for twelve to 

fifteen hours. After this time it is raised to over 7300C 

and maintained at this temperature for four or five hours: 
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Then it is brought down to about 620°0 at a rate of about 

500 per minute and maintained at this temperature for two 

to three hours before readings arc taken. 

The digital valve voltmeter is used to give an indication 

of the voltage developed across the crystal. The approximate 

position on the potentiometer is then act, and the actual 

readings are taken. It is ensured that no currents flow from 

the crystal. 

If the temperature of the specimen is brought up from 

room temperature to 600°C and readings are immediately taken, 

it is found that, without any thermal gradient on, the potent—

ial difference between the ends of the crystal varies between 

20 to 80 mV. This potential fluctuates violently. After 

annealing at about 600°C for about twelve to fifteen hours, 

the thermopower is found to have an unsteady value of between 

2 to 3 mV/°C. This drops fairly rapidly at a rate of about 

0.03 mV/°C/minute. After about twenty—four hours at 600°C, 

the thermopower is between 0.6 to 0.8 mV/°C; the readings 

still fluctuate. All this time, there is a potential at zero 

gradient. 

Consistent reproducible readings are obtained by the 

following procedure. After an overnight anneal at 600°C. the 

temperature is brought up to about 730°C and held for four or 

five hours. It is then brought down rapidly to about 6200, 

and readings are taken after two or three hours. 
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At each temperature, the thermal gradient is varied from 

0°C/cm to ± 6°C/cm. The potential differences are then plotted 

against the temperature differences. Within this range of 

thermal gradients the plot of the potential differences against 

the temperature differences are extremely good linear plot. 

Only four points are needed for each plot. [See Figure (10)] 

At more than about t 10°C/cm the linearity of the plots is 

lost. After a large gradient has been imposed on to the cry-

stal, there is no deviation from linearity when small grad-

ients are once again used. 

As reported by Christy et al (9) and Allnatt and 

Chadwick (4), there is a finite 	intercept ar the 

individual plots of potential difference against temperature 

difference. 	See Figure (10). However, unlike Allnatt and 

Chadwick (4) the plot of the intercept against the temper-

atures does not correspond to any good straight line. 

Below about 600°C the pure NaC1 specimen has a resistance 

of about 105 	This resistance is too high for the potent-

ial to be measured with the use of the potentiometer. Below 

a temperature of about 6200C the readings are not considered 

seriously for the final analysis. Readings are taken at an 

interval of between 10°C to 15°C from about 600°C to about 

790°C. Altogether about seven runs are done to complete the 

whole temperature range. 
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Figure 10 Graph of AV against T. This is a typical plot 

of the measured potential difference against the temperature 

difference across the NaCl crystal. Only five points are 

needed. The points lie on a very good straight line. Note 

that the straight line does not pass through the origin. 

The total thermopower is equal to the gradient. 

Figure 11 Graph of thermopower of pure NaC1 vs temperature. 

The specimens for different runs are different, although they 

are all cleaved from the same boule. The low values at 

between 870°K to 900°K are probably due to the difficulties 

encountered in the measurements since at these temperatures 

the resistance of the crystal becomes very large. The size 

of the points indicate the error in the values of the thermo—

power. 

Figure 12 Graph of thermopower of NaC1 against temperature. 

The measurements of the pure NaC1 is done by the author. The 

two dotted straight line graphs are from Allnatt and Chadwick 

(4), 
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VII.4  RESULTS  AND ANALYSIS.  

The thermoelectric power of pure NaC1 crystal in the 

temperature range of about 870°K and 1060°K is summarised in 

the graph in Figure (11). Between 900°K and 1060°K the 

measured thermopower is -1.15 ± 0.05 mV/°K. 

VII.4.1  THE NO-TRAP MODEL ANALYSIS.  

The no-trap model of Section (II.4) predicts that the 

heterogeneous thermopower is zero and therefore the measured 

thermopower is just the homogeneous thermopower, which is, 

from Equation (11.14), for a pure crystal: 

	

(h -can + 4  Q eG = hs 	4 	s 1 e  

	

2T 	(1 + 4) T 
(V1I.1) 

Grad n(-;  
where for.a pure crystal n(+) = n(-) and 

n(_) 

hs 	Grad T 

2kT2  

has been ,substituted, -and Se1/11  is defined in Equation (II.31). 
Froth the results of Chapter (VI) the heats of transport 

drift, given by 

e 	= 
	

(2  + a-/T) ( ) 
	 (VII.2 ) 

Substituting Equation (VII.2) into Ecuation (VII.1) and 

re-arranging the resultant equation, q+ and q- are found to be 

given by: 
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q- = 	f F(T10 -F(T2 )  

C/(111)-/(T2)1 	) 	 .... (v11.3) 
q+ = 4(T1 ) q--E(-) - F(T1) 

where T1 and T2 are the temperatures, 

=4(T), the mobilities of the anion vacancy over the 

cation vacancy, 

= T t(eGoT + hs/2).[14(T)] + 2E ,2F  

and Go = G e 
1,7
-  /e 

Analysing the exoerimental results, as summarised in 

the graph in Figure (12)9  and using the following dta: 

ii(T) is obtained from Tubandt's(79) measurements of the 

transport numbers and is given by 

/(T) = 4.275 - 6.76 x 103/T + 2.68 x 106/T2  

hs  = 2.12 eV from Dreyfus and Nowick (70) 

E(+), the cation activation energy = 0.69 eV from 

Kirk and Pratt (80) 

E(_.) = 0.91 eV from Barr and Morrison (81). 

The results of the analysis are summarised in Table (7). 

V11.4.2 HOWARD'S MODEL ANALYSIS  

The results of the measurements of the thermopower of 

pure NaC1 conducted by the author compare favourably with 

those of Allnatt and Chadwick (4). However, Allnatt and 

Chadwick also measure the thermopower of NaC1 doped with 
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2.35 x 10-4  and 3.08 x 10-4  mole fraction of SrCl2. Using 

their results of the doped specimens and the author's pure 

specimens, an analysis is carried out using Howard's model of 

the irreversible electrode-crystal thermopower. Howard's model 

predicts that the difference between the thermopower of the 

doped and pure crystal,Le(R), is given by from :Equation 

(II. 21)] 

(e71)  eT T7-771. 44) 
kT • 1 a 
e 	7r 11- 

whereASR of Equation (11.21) has been put equal to zero 

as suggested by Lidiard and Howard (38). 

Substituting Equation (VII.2) into Equation (VII.4), and 

rearranging the terms, the following equation is obtained 

E(4.) q+ + E(_.) q- = TE(he  -2E(.0 -2E(..)) - lid ....(VII.4) 

where W = eT(1+/) (n2-1.4)Eyy(q) - 11 1 1.121 
01F-1) 	e r, bT-1 

At high temperatures, when the anion vacancy-cation 

vacancy association can be neglected, 

n  = _2_ ± )44.(C/2c0)2 
2C0  

[See Lidiard (1)1 

C is the impurity concentration 

and Co  = e-Ag/2-kT = e6s/2kT e-hs/2kT 

For NaC1 AS/k is 6.20 °K-1  {From Dreyfus and Nowick (70)] 
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Table 7 The No-Trap Analysis. Using the No-Trap theory, 

the TJ,aph in Figure (11) is analysed to produce the heats 

of transport, e = (2 + cl/T)E. The values of q+ and q-

are shown. 

Table 8 Howard's Lodel Analysis. Using Howard's theory, 

the graph in Figure (12) is analysed. 
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TABLE 7 

THE , NO TRAP ANALYSIS 

T °K 1 

900 

T.2°K 

920 

ci+oK 

—72.1 

q2K 

—2029.7 

920 940 —12110 —1845.2 

940 960 —185.4 —1629.6 

960 980 —256.6 —2107.9 

980 1000 —319.7 —1636.5 

1000 1020 —399.5 —1751.2 

1020 1040 —486.5 —2152.2 

1040 	
f 

1060 —548.2 —2369.9 



TABLE 8 

HOWARD'S MODEL ANALYSIS.  

• 23.5 x 10-5  Mole-fraction 

of Sr012  

30.8 x 10-5  Mole-fraction 

of S rC12  

q+E(.01-9_EH 
eV°K 

900 	0.13 —16.6 A fo4  

940 	0.17 	- 10 -if 103  

m1/1°K. 	 EH  
eV°K 

-0.050 - t4- x 1p3  

-0.005 -10 .3 x 103  
980 

1000 	i 	0.21 	x  103  

C. 04 	—SI x 	

3 

0.05 	5 ,e 

0.21 	- 9.3x 103  

1040 0.26 0.09 
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VII.4.3 DISCUSSIONS  

The results of the analysis using the No Trap theory 

are summarised in Table (7). The analysis covers the measure-

ments of pure NaCl between 900°K and 1050°K. At each temper-

ature, a temperature range, (T2  - T1)°K, of 20°K is used. 

Both g+ and o- are negative in agreenent;iwath both 

the prediction of the heat of transport theory of Chapter 

(VI), and the results of the measurements on AgBr and 
However 

AgC1 [(6) and See Chapter (VI)]. both q+ and q- show astrong 

temperature-dependence. 

Table (8) summarises the results of the analysis using 

Howard's Model. Howard's Model only predicts the value of 

7 q+ + E(..)  q-. No further breakdown of the quantity is 

possible. Table (8) shows that E0.) q+ + E(..)  q- is negative, 

agreeina, wirththe results of Chapter (VI). It is also temper-

ature- and impurity concentration-dependent. 

On the basis that the theory of the heats of transport 

developed in Chapters (III), (IV) and (VI) is correct, the 

analyses summarised in Tables (7) and (8) suggest that the 

irreversible electrode-crystal thermopower is both temperature-

and impurity concentration-dependent. The failure of the No-

Trap analysis suggests further that should the electrons be 

actually transferred across the electrode-crystal interface, 

they will be captured by some form of traps in the crystal. 
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CHAPTER VIII 

DISCUSSIONS, CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

VIII.1 DISCUSSIONS 

VIII.1.1 THE THERMOELECTRIC POWER 

The successful analysis of the alkali-halides' thermo-

power measurements depends on both an adequate knowledge of the 

irreversible electrode-crystal thermopower, and an adequate 

theory of the heats of transport. 

All the theories of the irreversible electrode-crystal 

thermopower assume that the electrons are responsible for the 

heterogeneous thermopower. Jacobs and Maycock (11) suggest 

that the electrons wander about the crystal-electrode inter-

face, Howard (13) suggests that the electrons are trapped at 

the crystal surface by the formation of the metal phase. 

Allnatt and Jacobs (14) assume that the electrons are trapped 

by the anion vacancies in the crystal to form F-centres. The 

No Trap theory studied in Chapter (II) explores the possibility 

that the electrons may enter into the crystal and not fall into 

any traps at all. All these theories have been found to be 

unsatisfactory. 

It is not possible, at present to explain definitely the 

behaviour of the electrical potential developed across the 
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crystal when a temperature difference is first imposed. This 

is because it is not known whether the phenomenon observed is 

a crystal-electrode, or a purely crystal, effect. 

A/II.1.2 THE HEATS OF TRANSPORT  

The work on the heats of transport done here uses a 

vastly different approach from that used by Wirtz (16) in his 

original kinetic theory. A simple linear chain model is used, 

and by studying the jumping process in this model, the heats 

of transport are successfully related to the dynamics of the 

lattice. Quantitative values are obtained by studying the 

forces operating between the alkali halide ions. 

The results of the lattice calculations are most 

satisfying in terms of the agreement between the calculated 

and the experimental sublimation energies and the Schottky 

pair formation energies. From the lattice calculations, the 

forces operating between the ions and some of the physical 

properties of the vacancy, e.g. the relaxations of the surround-

ing ions, are known. 

By an extension of the lattice calculations, the force 

constants binding the ion to its neighbours in the linear 

chain, is found. This is done specifically for NaCl and 701. 

Subsequently, quantitative values for the anion and cation 

heats of transport of these two crystals are found. Unfort-

unately, these values cannot be compared with the results of 
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the alkali halide thermopower measurements as it is not 

possible to analyse these results since no adequate 

irreversible electrode-crystal theory is available.' However, 

comparing the predicted relationship between the heats of 

transport and the activation. energies of the alkali halides, 

end the experimental values of the As vacancies in Age' and 

AgBr, the general agreement is good. But it is not possible 

to make a detailed direct comparison as in the final analysis 

of the experiments on AgCl and AgBr, an entropy term is 

present which cannot be eliminated since there is no data on 

the entropy of formation of a vacancy. 

VIII.2 CONCLUSIONS 

The total thermopower of single crystal, pure Ya01 is 

-1.15 t 0.05 mV,/°C in the temperature range of 9000K and 

1060°K. 

No adequate theory of the irreversible electrode-crystal 

thermopower is known. 

The theoretical heats of transport for an ion in the 

alkali-halide crystal is about one and a half to two times the 

corresponding activation energies at normal temperatures for 

which diffusion experiments are carried out. 

For NaCl, the heat of transport is 
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(2 	.25.7/T)IsNaC1 for Na /.  ions, 

Nal" 

and (2 -21. /T) sraC1 for Cl-  ions. 
Cl- 

For KC1, it is 

(2 	 32t:5/T) 	for K4-  ions, 
lc+  

	

and (2 ... ' 3"2/T) 	for Cl-  ions, 
Cl- 

where the E's are the respective activation energies for 

diffusion. 

VIII.3 SUGGESTIONS FOR FUTURE  WORKS. 

An adeauate theory for the irreversible electrode-crystal 

thermopower need to be developed. It might be possible to 

develop a reversible electrode for the alkali-halides, e.g. a 

chlorine electrode for NaCl. This might be done by saturating 

a porous carbon electrode with a stream of chlorine gas. 

Quantitative values for the heats of transport for Ag+  

Vacancy in AgC1 and AgBr can be calculated. Lattice calcul-

ations for these two salts will have to be done. It is then 

possible to find the entropy of vacancy formation quantitatively 

from a study of the vibrational modes of the crystals. 

From the knowledge of the relaxations of the ions 

surrounding the vacancies, it should be possible to compare 

the theoretical values with that found by density measure-

ments. 
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It is interesting to investigate whether the saddle-

point configuration of the transition state theory exists. 

If so, it should be possible to determine the life-time of 

the jumping ion in this configuration. This can be done by 

an extension of the method used for calculating the force 

cons tan t. 
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APPENDIX I 

EVALUATION OF THE INTEGRALS S1 AN S2 

c;/tr 
1 	o 

= NI 1 Cosec20 — 11,  d/ + 
3 	j 

Cosec + d/ 

, o Sin 
= 2111 S—in  --- 

d. 

NI t  ) Cosec
2 
/ + 2 Sin 3/ 

= Nlr 

011f •0% '• I 	 2 
S2= NA0 

 Cos 0' Cosec
2 	(
0 — Cos cz“ dp +i-5 Cosec 0'  Cos 

.1 	t. 	t 

	

.... 	Jy,,  
A 

	

Cos 	+ 2Cos / Sin V Cosec fd 
j 
d/ 

= I1  — 2N 

G.  I1= 2N!?Oos / Cos 2/ + 	
Sin Sin 2/::. drd  Cos 

= 2N/3  8N/3  

'2= 4N/3 

0' 
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APPENDIX II 

ENERGY OF A SCHOTTKY PAIR 

The energy of a Schottky pair, Es, is defined in the 

following equations as 

2.s  . ET± 	(Ei± + 1,17.) 

5 
where ET+  = 	• E*+ 

1=1 

and 	E1±  are defined as follows. 

the ion from Ef t This is the energy needed to extractA the rigid non--. 
polarisable lattice. This term comes from Equation (v.11) 

= M  e  
(A)2 

7 - 6 	(r ) - 12 /R  (ro  ‘,/r5) -1± r  4.- 	0 	 - 

(A.II.1) 

0 

where for the Bi;.d form 

,z5 R ( r) = b(1 + A/n+ +- exp L( r++r,,..)/1) ] axp. (-r/p) 

C+-/r6 - D+_/r8 
	

(A.II.2) 

Similar expressions exist for /R  (r) and ,'R  (r). 

For the the 	form Eauation (A.II.2) holds only for 

r 3 r0  • for r <ro it becomes ) 

R 0"1 	 C+_/r6 / 	) = B + B2/r12  
+"" 

o( ni  is the Madelung Constant and is 1.7476 for the Fan 
structure. 
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E2+ 

This is the polarisation energy of region i due to the 

effective charge on the vacancy. It comes from the third 

term of Equation (V.10)s 

6 (Ae)2 	12 (Ae)2  
-"2± — — 
	

0(-4- 
2r04 	+ 	2(x/2 r0)14 

where the ms's are the polarisabilities. 

E3+ 

This term can be divided into three parts, i.e. 

'3 E3c • 4. 1
3R 

7
3P 

where 
E3C = 1712c

( x o ) 	It is the Coloumb interactions of 

the real and effective charges and the vacancy of region I 

comes from the second and third term in Equation (V.12). 

= 	 
, 

6(Ae) 1(1/ 4/2 + 5/4) — 4 , 	- '10 	L (1 -00 	C1—(1.002] 2 	(2+)0 

+ 	 + 4 	4 4 	+ 5 2/4+1 +4/ 
(1+,;)) 	[2-1-(1+0) 4,jV 	C1+(2-P1) 2  J 1; 	(1+V) 

8 

[1+v2+(1+v) 2] 
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8 	 4  
Clii+v)2+(z+v) 21i 	(2+v) 	fi v2+( +v)23 i 4-  f 14+2(1+v)232 

— 4-  

	

+ 	4  	 
[(1+v)2+(2+v)2.1i 	[(1+v)2+(_ v)2 2  [( 1+A) 2+2(1+v)2] 

4  +8. 5/12-3.75-V 13-V J5+4/ J6] 
[(2+A+v) 	7) 21 1  • • (A. 11.4-) 

E32p=w2R(x20)+133R(x20;20 ) ijiv3R(x 2 0 ;   9
0 )1 

. 
as 

3 = 

VV2R(x,0) comes from the first term of Equation (V.12) 

and W3R(x9 0;-,0) represents the short range interactions of 

regions I and II and is given by the first term of Equation 

(v.13). 

1,112R = 12 	[(1+4 J23 - 12 
++ 	 ++ 

[/2] 

+ 24 /++ [( 1+V)12] - 24 4++  1/2] 
1•••••• 

+ 24 4+...  110-V)2+(1+V)23 - 24 /4._ [1] 	..•. (A.II•5) 
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W3R  ( x, 0 ; 	0) = 6 Ai__ [1 +%.- .21] - 6 44._ [141] 

+24 4__f_7(1303-2)) 2+2 ( 1 +S3/ /3) 21 -24,FS__ P3  /3+2( .1-13/1:5) 

 

2?; 2 	/ 27 
14-15 5  ,\) 4.(1+ 	J5) - -2/44 +- L.  

    

+2441._ g 2 	 5/ 21 +215 +(i+ ,i5) j 

    

 

( 3/  /3-V) 2+(1 -F.-3/  /3) 2  j -244+  

 

1 i) 2 

   

+24,25+if ix1+ 4-7,2+---(1+v)2] _24.,d++  {A1+,1/4 )2+1 

+124++  [ (1 i8/12 -V) 12] -124+÷  [( 1 +38/ /2) V2] 

+2  6/ \ 2 n 	1  -40++  [ 	io) -1- 	+(1+6/ J6)2  

[(1 + 5  -1T) 2  +05/15-1/) 2  -12,6+1 ' 75 

   

/51 

where 3 	g4 -  
/14.  -*7 	pr 

= - 1  / 9 	 41/5 

(A. II. 6) 

1 
6 -- „

8 
 = - /8. 



130 

E3,10  is caused by the relaxation of the polarisable 

ions of region I due to the effective charge at the vacancy. 

72391, = -30(_ 
i L 
rEv(V(,) 1 2  - / F141) (0)12] 

+ 	
vw 

... 60(± {12142)(v)  2 	I pv 2) (0)12] 

where the Fv's are the fields due to the vacancy. 

F(1)  M) = 	Ae 	
A 
X 

—V+ 	r
o
204N2 

A A 
F
(2 

) (v) = 	Ae 	X 

2ro2(1+V)

2 

J2 

A 
where x and 	are the unit vectors from the vacancy along 

the positive <100) and<010> respectively. 

This term comes from the vacancy and the displacement 

dipoles of region I being in the fields caused by the 

electronic dipoles of region II. The fields at different 

positions have been calculated by Mott and Littleton(64). 

4± = -(Ae)2 [4.1977MT 2r0  

+ 6(Ae)2 .388E_ - 0.3231141 4. 2/20  

- 12(Ae)2 V12 [0.730M_ + 0.247M+] 
2/10 	+ 

+ 3.3346MA 

A. 11.7) 
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where M+= +x r
2,and iu+is the electronic dipole caused by 

the effective charge of the vacancy. 

E5+ 
The electionic dipoles of region II and the real and 

effective charges and the vacancy of region I collectively 

produce a field at each lattice point in region I. The energy 

of the induced dipoles is given by E5+. Some of these energy 

terms have already been dealt with in E3,1,1  and E5+contains 
the remaining terms. 

E
5+=-6 x i.(;11(4.1 )N 4-11/T(x, v)+FT (7‘,V))x(F/(r )W 

+F 	IT))-(p D+ ' V+ 

x 	11.(Fg)(V)tfg)(A,V)+Eg)(N,v))x(4V(V) 

+F(2),,2
N\ 	IT,1(2)117.\ N 2  3. 

'LV+ 	 i i  

F(I)O.. V) is the field at the relaxed 1,0,0 site in ' 

the '400>direction caused by the real and effective charges 

of region I. 

) F-(+  (X,V) is the field at the relaxed 1,0,0 site in 

the KlOd>direction caused by the induced electronic dipoles 

regions I and II. 

-12 



132 

F(2
10+

) (A 	
±

,V) and F(2)(T‘ 2 V) are similarly defined as the 
- 	 -I 

field at the relaxed (110) position in the <110> direction. 

The full expressions for the fields are 

p(1) (A,v) = - ±2 	1.6642 _ 	 4(1+10  -D± 	 r
°
2 L 

( 1+2) 2 	
(2-1- ) 2 	111+(1+)2.-) 3/2  

_ 4(71-V)  
3/2 	4.71 	

40-01)  
[()-V)2+( 1 +V) 2  j [1-1-] 3/2 	(4  ),\ 

‘'.4 v 2+2(1+V)2132  

• 4(1-0) A ) 

	

3/ -  4(2+21+V) 	 4(2  
[21-(14-i) 2] 2 	[(2+?1+ +V) 2+(1+V) 21 2 	[(2+) 2+13 3/2] 

(A.II.8) 

(2) 	Ae/-2 F  1+2V-1)  
FD= (A9V) = 	ro2 	[() -V) 2+( 1 +V) 

1+2V  
SIV2+ ( 1+V) 2  13/2  

V2+(1 
• 22(2( vi++v)2+1  1) 	_3/2  + 	 4. 	.3+2v+ i) 

C-V2-1-(2+V)2J-- 2 	- L(1+V)2+(2+V.1.11)2
j

3/2 

3+2V 	+ 	2(3+2V)
+  	 - 1.4538  

r, 	2 1( I +V) 2+(2+V)2]  
3/2 	Lk 2+V) -+( 1 +V) 9 

	
2  2/2( 2+V) 2  ( 1+V) 2  

▪ 2(1+v)  
[2(1+V) 2+0+70 2  2 

[1+2 ( 1+V) 213/2  (2  + 2)71 
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(1) (7),v) 

( 	./2 
1-27 *1 f(719V)IF(2) 	+ F(2)  (71,V) V 	-D+ 

+ F(2)0,14] 
-I+ -+  a-(1+6/2- ) 

14.03(t+)03  
F(1)(21)+F(1)(,V)+F(1)(7,V)-] 

Ae 2 	m
T 
- 0.323 m4.1 ,0  

A 
X (A.II.10) 

F(2)(719V) -S---CT12-  f(),V) EF(1)()+F(1)(91!)+F(1) (h7V)] + 	1  roJ 	V+ 	Dt 	It 

2.7071 	0,,.I.D,)0)+F(2)(,V)+F(2)( 
ro3  ( +V) 3  

Ae 
rot 

[0.730 1 	0.247 	( 	2) i2 	• • • • 
	(A.II.11) 

where f(I,V) 	6(1+V)(1+?) 3(3+))+2v 
[(2+?t+v) O-N2-1-2(1+v)23 2 5/ 	

)(2-01+v)- 
(1+v) (2171;%:41114  L  

(1+V)2+th-V)2+3(1+2V-7)0\-V)  

	

[()1v)2 	(i+v)23 5/2  

THE ELASTIC CONTRIBUTIONS.  

The elastic strength of the vacancy modifies the dis- 

placement dipoles of region II as follows: 
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(a) In E3,p  the displacementsl t s are modified so that 

5 = I_  +k 1 _ k-E1 	k+0 	? 	k-M1  3 	-77-  , 4 - 	/ 5 = 	9 '6 24 
	 5 	6 	9  

7 - 
k-ml 

8 	8  

(b) In E49  the electronic dipoles are modified so that 1.1-- 

becomes 1...-1-1c and 	becomes 14-k. 

(c) In E59  the dipole fields, Fi±t s, which contains 4 

and M_ are similarly modified. 
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APPENDIX III 

FORCE ON THE NMCT  NEAREST NEIGHBOUR.  

Take the ion at 1910'7 	as the specimen ion. Let its 

displacement from 19190 in the <110> direction be r2 -Oro. 
The other eleven second neighbour ions have displacements 

/2 V ro• As usual, the six first neighbour ions are dis—

placed a distanceAro. The energy, E, of the vacancy is then 

= 	(Ay v, V1 ). 

Then — 1 	d E is the force on the .vp,) ion in the 
rof Z/V1  

positive <110> direction [from the vacancy to the c19110,; ionJ. 

The relevant energy terms [i.e. those which are functions 
1 of V*1 j corresponding to those of Appendix (II) are given below. 

E1 and E2  [Of Appendix II] contain no terms of present interest. 

E3  

Ae 	2 	2  -th3,C 	— 
ro2 	—V1 )2+( +V1)2:i' 	LV1  ..(1+-‘11 ) 2  J2 

2 	 2 	 2 

.r(1 -01) 2+(l+V1 )2Yk /1+2(1+V1 ) 2 	/2+Vf+X)2+(1+V1 )2  

2 4 

 

E(1+v1)2÷(2+v1)211. 	C(v1_v)2÷( +vi )2+(1 	)2-11 



X36 

2 	2  
[v12+( +vi ) 2+13 i15: 	i(V1-V)2+(2+V1  +V) 2“ 	[V12+( 2+V1  ) 2]i 

4 	 4  
[(1-Fv1 ) 2+(24.v1+v) 2+0+v)2P Ul+Ar1 ) 2+(2+v1 )2+4 

1 	+ 	 + 	 
( 2+V+V1  )72 	(2+y-1  )f-2 	(1+V1  ).7" 

W2,R = 2/4._ V(\-vi )2+(1 ÷v1) 2] 

1328  = 	[/21  (V1- ''3/  /5) 2+ ( 1+  

V++  1./(v1- ) (11-v1 ) 2+(1:Ar)21 

3/ /3-) 21 

+2,d + [ 	) 1 2+( 1+V1  ) 1+2/54_ LA 1 15 --v-1 )2+00)5/ /5)2] 

[(1_, 8/ i2 -V1) V21 -04/++  ••• 
fA+L  

2 	6-v  1) 2+  ( 6/ ,;--g_v 1 ) 24(.1,64A 
7g  

.... 	(A. III. 1) 

1 	1 	-1 	1 
where 13  = 	4 m  /4, 5 = 	/5, 6 -L /6'e =-m  /8 

2 
QYI-  I EV1+ I 

where Ev1  = Ae 

 

72 

(x+2) . . . . 	(A. III. 2 ) 
2r02(1+V1 ) 2 

E i4 2 
7

4± = 	

(A 
Ae )  LO. 730 M + 0: 214.7 ± -1  - 

/2 ro  
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E5 

Owing to the difference in the displacement of the 1,10) 

ion from the displacements of the other .10p type ions, the 

respective region I fields are no longer symmetric. For 

example, at the 1,0,0' ion site the field, PD4.(,,V), which is 

caused by the real and effective charges of region I, is no 

longer effectively in the <100> direction. In the same way, 

the magnitude of the similar field at ,ipp. is different from 

that at ;ipp. . The asymmetry of the FD  fields are reflected 

in the "LI+  fields. (F/  fields are caused by the induced 

dipoles of the region I ions). 

The region I ions can be divided into eight groups such 

that within each group the eQuivalent fields bear some sort of 

simple relation at different ion sites. The ions in each 

group are: 

Groups 1: 	. 1,1p the specimen ion. 

2: .1,011 2 1019 410.9 .0;17; 
3:1,x,D

, 

4: .0;17), 0,1 91 12 :790,71 

5:  
6: lipp) 2 'lox) 

7: :0PO.D 

8: ) 	.0;:i0 

See Figure (6) 
	

(A.111.4) 
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The fields at different ion sites are then represented 

by the following revised symbols: 

Fv(a,b,x), FD(a,b,x), Fi(a,b,x) 

where 'at  represents the group which the ion belongs to, 

'b' represents the particular ion in the group, and 'x' 

represent the directional component of the fields. 

For example the y component of the FID field at the (011) 

ion site [the third ion in group 23 see Expression (A. 

is represented by FD  (2,3,y). 

The relationship between the FD fields at different ion 

sites of groun 2 is given by the following equatibns; 

FD (2,2,x) = FD (2,1,x) 

FD (2,2,y) = FD (2,1,y) 

FD (2,2,z) = —FD (2,1 2z); 

FD (2,39x) . FD (29 1,y)9  FD (2,3,y) = FD (2,1,x), 

FD (2,3,z) = FD (221,z); FD (2949x) = FD (2919y), 

FD (224,Y) = FD (2,1,x)9 FD (294,2) = —FD(2,1,z). 

(A.III.5) 

Similar relationships hold between the Fv and Fi fields 

of the ions in the other groups. 

. 	. 
The expressions for the fields are: 



[ 2+v-112 	
.... (A.111.6) 
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Fis (1,1 9 x) = Eb(1,19y) 

= - -Ae 
rot 

1 +2V1- 1  - 	1+2V  
L(A-V1 )2+( 1 +V1 ) 2j3/ 2 	vi 2+  ( 1 41) 21 3/2  

2(  - 	2(1 +V1) 	3/ + 	3+21/1  +71)  

C(1 +V/ ) 2+( 2+V1  +i,) 

+ 	(3+2V1 )  

E.(14-v1 ) 24.(2+v1 ) 2 ] 
2 ( 1 +2V1  -V)  

1 	2 	 113/ + 	2 ( 1 +2V1 )  
-kV -v) +( 1 +1/1)241+VT"' 2  r 	

1 2  [1 +( 1 +1/-1)21 

2 ( 1 +V1  )  
UV-1 -V) 2+( 2+1T1+v) 2J3' 

2(1+V1 )  
1:024; (2+v) 213/2-  

2 ( 3+2V1  +V)  
[( 1 +V1  ) 2+ ( 2+Vi+V)241+V)2] 3/2  

[2( 1+V1 ) 2+(1 .i..)2j3/2 E1+2(1+V1 ) 21 2  

1/2V7  +  2( ) 	- 
3/2 	E2+V1  +V.12  L( +v1)  2+  ( 21.v1 ) 2+ij 

Fi3(1 2 1 9 2) = 0 

Define FA as the expression within the large square 

brackets in Equation (A. 111. 6) with V1=V. Ec. f Equation 

(A. II.. 9 . Define FA9 as the expression within the large 

square brackets in Equation (A. II .8). 
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FB( 2 91 ,x) = 

(2,1  ,Y) = 

FA 	  kv_vi)2+(i+vi)2+0+v)213/g r02 L 

e 	(1+V1) 	
3/ 	1 	 

	

ro2 -1(V-V1 ) 2+(l+V1 ) 2+(l+V) 2] 2 	2/2(1+V)2  

s(20,z). 	[FA 
ro2 I 

+ 	 (i+v)  
[(V--V1  ) 2+(1+V1 ) 2+ ( ÷v1 ) 2+ +v) 3/ 212( I +V) 2 	 21 ,  

F4,(391,x).— L. [FA + 	tV —  

rot E(V-1/1 ) 2-1-(2+V+V1  ) 2] 3/21 

V391  ,Y) = Ae r-FA 	- 
r  2 L 4(1+V) 2  

(2+V-FV1 )  
3/2] 

(V-V1 ) 2+(2+V+Vi  ) 2  

0 

F(1.19 1,x) 

11,(4919Y)= — 

F-(4,19z) = 

Ae 	(1+V1 )  
213/ 	I 	 

1-'02 U1 +vi)2+(2+V+V .  )-j'2 	(1+V)`
0  
6/6 

Ae r-FA- 	 (2-1-V+V1 )  
r02 	(1+16 2316 	(1 -FVI)2+(1 +V) 2+(2+V+V1 )213 ] 1- 

-J12 FA-  1 	 (1+V)  
ro  2 L 	-1-v) 26v6 	+v) 24-( 4-v1  ) 2+( 2-1-v+vi )1 3/21 

FD(5919Y) 

= Ae 
(1 +V) '8 /2 	2 ( 24-V+Vi  )21-2 ro2 

F ( 5 	= 1 z) 0 D  
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F( 6,1,x) = 	[F,A9+ ()—V) 	 
rot 	(c11-V) 2+(1 +V) 2 	3  

— 	(N—v1 )  
E(t1_v1)24(.14.v1)21/21 

F;b(691,Y) 	A [ 	(1+V1 ) 	 (1+V)  
ro2 r, _1\2 	1 27  1.0—v )+(1+V ) 	ER)—V) 2+(l+V)2 3/2 j 

E6(69 1,z) = 0 

W7,1,x) 	Ae 
rot 

r 	(14.v1 )  
[ (1+))) 2+2( i +v1 )2i 3/2  - (14-v)  

[(1+,1)2+20+v)2] 23/ 

Ei(7,1,Y) 	 (_1 	+V1  ) — Ae 	 3/ — 	(1+V) 	3/ 
2 

	

ro 	[ i+A) 2+20 4.v1 )2] 2 [(1.0) +2(i+v) 2j 21 

Ei5(7,1,z) 	Ae  
rot 

:Diico 	( 14
-11 

 [o+n2+2(1+v)21 
(1+)i 	.3/1 

(11-)2+2(1-i-v1 ) 2J 

(8,1,.) .A,
o2 FA9—   

, (2+.v) 	3/2+  (2+?1+1/1 )  
,213/6j C(2+ +V) 2+(i+V) 21 r( 2-1-iN+v) 2+0 +vi  r 

Fi(8,1,y) = _ .Ae 	0,1) 	_ 	(i+v)  
ro2L [(2+A+V1  )2+(1+0 )2.] 2 	[( 2+7N+V) 2+( 1 +V) 2) 2] 

($9 1  9z) - '-' o 

(A. III. 7) 
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The field produced by the dipole m2at the dipole mlis, in 

general, given by 

F = -012421/d3- 3(322'2)(1%_*1)/d5)ni „(A.III.8) 
A 

where d is the line joining dipoles ml  and n2, and Li, is 

the unit dipole. 

Define co-efficients C's such that the dipole fields 

Ft's are, in general, given by 

F 	c/r3 (Ei+Eita) + w 

wherecc is the ionic polarisibility and W is the field 

contribution from region II. Numerically for ions in Groups 

1 to 5 W is Ae//2 	(0.730 M + 0.247 Mi..) and for ions in 

Groups 6 to 8 it is Ae/r2 (0.388 MT  - 0.323*M+). 

From Equation (A.III.8) C is given by 
A I\ 7 	dk 

o = (1142 .21/d/ - 3°2.1 .1.1//d5 ) ...(A.III.10) 

Taking specifically the dipole ml  at 1,1,0 

C = C(a,b,x,y) 

where 'a' spe6ifies the Group which 322  belongs to, 

'b' specifies the particular ion in the Group 

which la2  belongs to. 
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'x' specifies the component of n2  which is producing 
the field 

and y l specifies the direction of the field produced at 

1 1 . 
For example C(2,1,x,y) is the field co-efficient with 

at (101) [first ion in group 2] and ni at (110). This is 

the field coefficient produced by the 'x' component of f/12 in 

the 'yl  direction at Ai. 

The expressions for the C's are 

C(2„1,x,x) 3(Vi-V)2 	\ 	3(1+V)
2 

= 	d5 	9 C(2919Y9Y) = —7 

	

2 	
d5 
2 

0(2,1,z,z) 
I 	3(1+V)2  = — - 
d 	d5 
2 	2 

= 3(1+V1)(1-1-V)  9  c(291,x,z) 
d5  
2 

= 3(V1LV)(1-1-V1 ) p  

d5  2 

3(v1-V)(1+V)  
d5  
2 

C(2,1 Y9 Z) 

C(2,1„x,y) 

and d2  = [(V1-V)2  + (1+V1)2  + (1+V)211 1  ; 

= 1_ _ 3(V1-v)2 	c(3,19y9y) = 1_ _ 3(2-1-V+V1 )2  

	

d3 	d
3  
5 	d3  

	

3 	d
3 

= I
7 9 

 co 
9 
1 

9  x 9  y) = - 3(11-V)(2+VI-V1)  

d5  

	

3 	 3 

C(3,1,x,z) = C(31 1 9 y,z) = 0 , 

d = [(V1-1T) 2  + (2+V+V1)21 2 ; 

c(3,19x9x) 

0(3„1,z,z) 9 

9 



= 	3(2-1-V-1-V1 ) 2 	(p, 	= I C(509X,Y;   9 
n 
s.Jk.-1 9 1

A 
 9ZYZI 

d3  d5  a5 
5 
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C(491,x,x) = 

  

3(1+V1)2  

4 

9 C(491 9Y9Y 
3(2+v+V1)2  

a3  
4 

  

c(40,z,z) 

C(4,1,x,z)  

1 _ 3(1+v)2  

	

a3 	a5  

	

4 	4 

9 C(49 1 9)C9Y) = 
5(24-v+v1)(1+v1)  

d5  
4 

3(1+V)(2+V+V1) 

d5  
4 

15(1+V1)(1+V) 	C(491,y9z) 
d5  4 

d14 	
[( 11.v1)2 

	

(2 + V + V1)2  + (1+V)2]  

... 3(2+V-I-V1 ) 2  9  c(5, 1 9y9y) = ... _ 3(2+V+V1) 2  C(50,X2X) = 1  

	

0 	d.5 	a3 	d5  

	

5 	5 	5 	5 

 = C(591 , ,z) = 0 

d5 = 112+v+v1 1/ 

c(6,x2x) = 1- - 3(v1-)2 	 1 9 C(6,1,y,y) 	I 	3(1+V)2 0 

	

d3  d5 	d3  d5  6 	6 	6 	6 

C(691„z,z) - I 	, C(691,x,y) 
d3  
6 

3(V1-W1l-V1) 

d5  
6 

C(6,1,x,z) = C(6,1,y,z) = 
d6 = [(V1-1\)2 	(1+V1)2] 
C(7„1 9 x,x) = C(7,1,y,y) = 

10(7919Z9Z) 

0, 

1 _ 3(1+V1)2  

	

d3 	d5  

	

7 	7 

I _ 3(1+IO2  

	

d3 	d5  

	

7 	7 

9 



(A.III.12) 

The expressions for the Fi fields of the other groups 

are similarly given, with the co-efficeints A's substituted 

	

8 2 	A 

	

F 	
_
7 

0(a,b,w,y)LEIV(a,b,w) + F;(a,b,w) 
a=6 b=1 r,!...=x,y,z re 

Fi(a,b,w)1 	W(a) 

F1 (1,1,z) = 0 

14 5 

C(7,1,7,y) =-3(1+V1)2 	I 3  . 	pCk791,xyz 45 	 ) -C(70 

1  = [2(1+V1 )2.+(1+ 2] 2  d
7 

C(8,1,x,x) = 1 _ 3(2+A+V1  

d 	(185  8 

9 y,z)- 1.1±1r1 )( 1 4.A)  
2 

d5  
7 

) 2 ,c(80  ,y,_\_1_3(1+V1 )2  

	

y) d3 	d5  	,C(8,1,z,z) 

	

8 	8 

1 \ 	1 
C(8,1,x,y) _ 

3(2+1\+V )(1+V
,C(8,1,x,z)=C(8,1,y,z) = 0 

d5  8 
(i.i.v1)23 

Similarly A(a,b,x,y) are defined as numerically equal to 

C(a,b,x,y) with V1  = V. 

From Enuation (A. III.9) 

Fi(1,1,x) = Fi(1,1,y) 

5 4 
_±,1c(a,b,w,y) [FV(a,b,w)+F(a,b,w) 

a=1 b=1 w=x,y,z rO
) 

+ Fi(a,bA 	W(a)i 

[(2+40-1 ) 2  (A.III.11) 



14 

for C's where appropriate. The energy, E5, due to the field 

terms is then given by 

5 4 
E5  - i-c)(

1- 	1"-- Z 1 (a,b,w)+F.,;(a,b,w)+Fl(.a,b,w).) x - - - -- a=
1, 
6 

(Ei(a,b,w)+FV(a,b,w)) 

5 4 a , 
Z 11.0.1716(a,b,w)+FD(a,b,w)+F;,;(a,b,w)) x 
▪ a=6, w=x,y,z 

1 

(Eli'(a,b,w)+14'(a,b,w)) - (F;,( a, b,w) ) 2  

  

	(A.III .13 ) 

8 

- (10;;(a,b,w))2] 
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