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INTRODUCTION 

It is a famous theorem of Iversen that if f(z) be a non-constant 

meromorphic transcendental function in the plane which assumes a value 

'a' a finite number of times there, then there exists a path r tending 

to 03, such that f(z) ..--> a, as z --4. co along r . 	The value a 

is called asymptotic value and r is called an asymptotic path; 	If we  

take a = co, we obtain the theorem that every integral function tends to 

infinity along some path. 	We investigate whether ah analogue of this 

holds for a general subharmonic function u(z) in the plane. We answer 

in the affirmative by proving Theorem 1.2. 	The entire Chapter I is devoted 

to our proof of this theorem. 

In our investigations we were inevitably led to consider the sets 

{z Cu(z) > KJ. and {zlu(z) > K3 . It appeared that there may 

exist components of the set {z Ju(z) > Kj on which u(z) 3  K. We  

show that this is possible by constructing examples in Chapter II. 	Also 

such components may be non-countably infinite in number. The number 

of components is related to the order of the function u(z) in the case of 

integral functions. 	This is also discussed in Chapter IL 	In Chapter III 

we consider how quickly u(z) must tend to + co along an asymptotic 

path r . 



Chapter IV is devoted entirely to subharmonic functions in space. 

There is a marked difference in the behaviour of subhannonic functions 

in the plane and in space. 	A function non-constant and subharmonic in 

the plane cannot be bounded above. 	However, there exist subharmonic 

functions in space which are bounded above. An asymptotic path has 

to lie finally in a set in which a subharmonic function is large. 	The 

exact analogues of growth theorems like the Wiman-Heins theorem and the 

Milloux-Schmidt inequality are not valid in space. 	We first prove 

Theorem 4.2 which may be considered as an analogue in space of the 

Milloux-Schmidt inequality. We also prove Theorem 4.6 which is a 

spec* analogue of a theorem of Hayman on the infimum of u(P) on 

radial segments going outward from the origin. 	With the help of these 

theorems we are able to show the existence of an asymptotic path when 

(i) u(P) is a continuous subharmonic function, (ii) u(P) is a general sub- 

harmonic function which is bounded above in space. 	If u(P) is a general 

subharmonict which is not bounded in space, we are able to show the 

existence of a continuum on which u(P) 	+ co as P tends to infinity on 

the continuum. 	The problem of constructing a path in this case still 

remains open. 

Also in space we have investigated the relationship between the 

number of components of the set {Plu(P) > o} and the order of the 

function u(P). 
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CHAPTER 

AN EXTENSION OF IVERSEN'S THEOREM 

1.1 It was shown by Iversen (1) that if a non-constant meromorphic 

function f(z) has a Picard value a, then there exists a path r tending 

to a) in the z-plane such that, 

f(z) 	a, as z --> oo along 	• 
If we take a = co, we obtain that for every non-constant integral 

function, there exists a path P tending to co, such that 

t f(z) 	 co, as z —4 co along r 
It is natural to ask whether the analogue, that a non-constant 

subharmonic function u(z) in the plane tends to +co along a path r 
still holds. 	We answer this in an affirmative by proving Theorem 1.2. 

The arguments of the proof for the modulus of an integral function 

can be carried over to the case of continuous subharmonic functions. 	The 

proof is given below for the sake of completeness. 	Also the steps in the 

proof are clear in this simple case and become somewhat more complex in 

the case of a general subharmonic function. 
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Theorem 1.1, 	If u(z) is a continuous non-constant subharmonic function  

in the z-plane, then there exists a path r tending to co on which u(z)  

tends to + co .  

Since u(z) is continuous, the set G(K) of points for which u(z) is 

greater than K is open. 	Consequently G(K) consists of a sequence of 

domains (say) G(40)(K), 	(4 = 1,2,... 	 We now prove that (a) 

Every component G41)  (K) must extend to infinity. 

(b) 	u(z) is unbounded in each GM(K). 

We note that on account of continuity, u(z) =K on the boundary of 

G(41)(K), 	Therefore if G(v)(K) did not extend to infinity, weviould have 

u(z) < K, for z 6 GWOO by the Maximum-principle. 

This contradicts the definition of G04(K) and hence (a) follows. 

To prove (b), we make use of the following theorem which is the 

subharmonic form of the Phragmen-Lindekt, principle. A proof of the 

theorem in the form below is given by Heins (Heins (1), p.76). 

'Given u subharmonic in a domain D of the closed plane. Suppose that  

E is a countable subset of the frontier of D. 	Suppose that Sup u < + co  

and that there exists a real number M such that 

lim sup u(z) < M, 	5 eiVD - E. 
z4 

Suppose that there exists at least one non-exceptional boundary point, 

then u(z) < M in D, 
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Now suppose that (b) is false and u(z) is bounded in some G00)(K). 

Also on all the finite boundary points of G(41)(K), we have u(z) = K. 

Thus the hypothesis of the above theorem are satisfied and we have 

u(z) < K in G(1/(K). 

This contradicts the definition of G(111(K), hence the assumption that u(z) 

is bounded\  in G(v)(K) is false. 

Let GI: be a domain in which u(z) > K. 	Since u(z) is unbounded 

in G1, we can choose z
1 

and z
2 

in G
1 

such that: u(z
1
) > 1, and 

u(z2) > 2. 	We join z1  to z2  by a continuous curve (say) y1  lying in 

G1. 
	

This is possible since G
K)

being a domain
)

is arcwise connected. 

Also z
2 

lies in G2. 
	

We choose z
3 

in G
2 

such that u(z
3
) > 3. 

Join z2  to z3  by a path y2  lying in G2. 

Again z3  lies in G3  and with a step by step argument we can find a 

path= y1 + Y2 + y3 + 	 

u(z) ---> + co, as z --> co on r 
Thus in each domain G(v)(K), there exists a path r tending to 

co, such that 

u(z) 	+ co, as z —> co on r 

Theorem 1.2. 	The conclusion of theorem 1.1 still holds for a general  

subharmonic function. 
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1.2 We observe that in the proof of Theorem 1.1, the set z1 ( ) > 

plays an essential role. 	This set may be of considerable complexity in 

the case of a general subharmonic function, 	Therefore the assertions (a) 

and (h) and the subsequent construction of the path do not follow so easily. 

We prove first the analogue of the assertion (a), that any component 

of the set .1(ziu(z) > K} or {z1u(z) > K 	goes to the boundary 

i.e. in the case of the z-plane extends to infinity. 

Lemma 1.1. 	If u(z) is subharmonic in a disc izt S r , all the  

components of the sets 4 Iu(z) > K3 or 	u(z) 	go to the  

boundary 14 = 

Let f
n(z) be a decreasing sequence of continuous subharmonic functions 

with limit u(z). 	By considering fn  i
n 
 instead of f

n
, we can assume 

f
n(z) to be a strictly decreasing sequence of continuous subharmonic functions. 

Suppose that the set -I zju(z) > 11 is not void. 

Let z
o be a point inside Izi < r , such that 

u(zo) > K 

Then f
n

(z
o
) > K for each n, 

Let Gn(K) be the component of the set tzif
n

(z) > 	which contains z
o. 

By the assertion (a) in the proof of Theorem 1.1, Gn(K) goes to the 
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boundary j z 1 
	

r for each n. 

Hence TM: i.e. the closure of Gn(K) also goes to the boundary 

I z I = r. 

And fn(z) > K for z 6 077 for each n. 

Set Dn(K) = CTFY. 	 = r 

Then 8n(K) is not void for any n. 

Also 8n(K) is a compact set and it contracts as n increases. 

Since the intersection of a decreasing sequence of compact sets is a com- 

pact set, we claim that 

co 
E.,(K) = 	8n(K) is not void . 

n=1 
co 

Also 8(K) is a part of 0(K) = fG 	. 
n=1 

Now 0(K) is an intersection of a decreasing sequence of continua. 

And therefore 0(K) is a point or a continuum. 	Since 0(K) • 

contains zo, inside 1 z < r and 8(K) on Izi = r , obviously 

0(K) is a continuum containing zo  and extending to the boundary 1zI = r 

And on 0(K), u(z) > K. 

Since a subharmonic function is upper-semi-continuous, the set 

+(z) > K
3. 
 is closed. 
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The components of a bounded closed set are points or continua. 	Thus 

by what we have shown above, through every point inside I z I < r , 

{on which u(z) > K, there passes a component of 	z I u(z) > K 

stretching to the boundary I z I = r . 

Now we deduce a similar result about the components of the set 

izfu(z) > K I, . 

Let zo be a point such that u(zo) > K. 

Since u(z
o
) > K, u(z

o
) = K + 8 , where S > o . 

Hence there is a continuum containing z
o 

going to the boundary on which 

u(z) > K + 8. 

This continuum obviously lies in the component of u(z) > K containing 

zo, and hence this component goes to the boundary Izi = r . 

Since z
o 

is any point with the property u(z) > K, the same result 

holds for all z with the property u(z) > K. 	This completes the proof of 

Lemma 1.1. 

It follows immediately from Lemma 1.1 that for functions subharmonic 

in the whole plane, any component of the sets {z1u(z) > K 	or  

4CZI U(Z) > K 	extends to infinity. 

1.3. In the next few sections we prove the analogue of the assertion 

(b) for functions subharmonic in the whole plane. 
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We make use of the following lemma, which is the subharmonic 

form of the Milloux-Schmidt inequality (e.g. Nevanlinna (1), p.94). 

A proof of the lemma in the form below is given by Brelot (Brelot (1)). 

Lemma 1.2. 	Suppose that t4i (z) is subharmonic in I z < 1 and  

satisfies 14 (z) < 1 there, 	Suppose also that  

then 

inf 	Cia(z) < o 
zi = r 

o< r <1 	(3.1) 

   

sup 	CA) (z) < 	tan-14r 	< r < 1 	(3,2) 
i z i= r 

We deduce from Lemma 1.2 that if u(zo) > K, there exists a circle centre 

zo, such that u(z) > K on that circle. 	We shall call this assertion (c). 

The assertion (c) is obvious if zo is an interior point of a component 

of the set kziu(z) > 

Therefore we have only to consider the case when zo is a boundary 

point of C(K), the component of 	ziu(z) 	K 	. 

Then either for a small 8, on every circle c(zo, r ) with centre zo, 

radius r, such that o < r < 6, we have 

inf 	u(z) < K 
z C c(zo,r) 

or for some 8, 	inf 	u(z) > K. 
z e c(zo,$) 



If we can show that the First alternative does not hold, then the 

assertion (c) is proved. 	We show below that the first alternative implies 

the hypotheses of the Lemma 1.2, and consequently forces a restriction on 

sup u(z) on these circleic(zo,r), and this together with u(zo) > K, gives 

a contradiction. 

Let u(zj = K + 6 , where o < 6 < 

For if not consider v(z) = K + u(z) 	K  
2 6 

We assume without loss of generality that z
o = 0. 

Define g(z) = u(Rz) - u(o) + 

where 	is the radius of a circle with centre the origin such that 

u(z) < u(o) + 1 - £ inside this circle. 

(Since € < L by the. upper-semi-continuity of u(z), such a circle exists.) 

Then g(z) < 1 in 1 z 	< 1 , 

and also 	inf g(z) < o, 	o < r < 1 from the first alternative. 
1.zr = r 

Thus the hypotheses of the Lemma 1.2 are satisfied and we have 

-1 
sup g(z) < — tan vr , 	o < r < 1 . 

Izt=r 

This gives for the original function, 

sup 	u(z) < u(o) - 	— 4 tan-1/ 	, 	o < r < 1 rr zi = rR 
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And this gives a contradiction by the P.Aaximurn-principle if r is 

sufficiently small. 

By similar arguments it also follows that if u(zo) > K, then there 

exists a circle c(zo,6) such that u(z) > K on c(zo,6). 

We now prove a lemma which will help us to prove that u(z) is 

1 unbounded in each component of Cz ju(z) > K 	. 

Lemma 1, ,3. 	Suppose that u(z) is subharmonic in the plane, C(K) is  

a component of the set (zlu(z) 	, and define  

u(z) for z E. C(K) 
v(z) = 

K outside C(K) . 

Then v(z) is subkarrnpnic in the plane, 

Since the complement of C(K) is an opeh set and v(z) is constant 

in it, it is subharmonic there. 	Also v(z) is equal to u(z) in C(K) dnd 

so is subharmonic at the interior points of C(K). 

Thus we need to consider only the boundary points of C(K). 

Let 5 be such a boundary point. 	1,\Wn show first , that v(z) is upper 

semi-continuous at z = 

Since u(z) is upper-semi-continuous at z = 	, these exists a neighbour-

hood 5(e) such that 

u(z) 	u(5) < 	for iz - SI < 6(Q) • 	(3.3) 
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We now show that (3.3) is also satisfied in the same neighbourhood 

by v instead of u. 

Since v(z) = u(z) for z 6 C(K), we note that (3.3) is obviously 

satisfied for the points z in the neighbourhood i z - 51 < 6(6) belonging 

to C(K). 

For z 	C(K), v(z) = K, and v(5) > K. 

Therefore, again (3.3) is satisfied by v for the remaining points of 

the neighbourhood 6(e). 

Thus v(z) is upper-semi-continuous at the boundary points of C(K). 

We show next that the mean value inequality is satisfied by v for 

such points 5 . 

If 5 is a boundary point and v(%) = K, then the mean value 

inequality is obviously satisfied as v(z) > K in the entire plane. 

However, if v(5) > K, then u( ) > K and we have by the assertion 

(c) which was proved in this section that there exists a circle c(; ,81), 

centre 5 , radius 8
1 

such that u(z) > K on c($ ,6
1). 

Then the circle c(5 ,S
1
) meets the component C(K) because its centre 

belongs to C(K) and C(K) is connected and extends to infinity. 

Thus C(K) contains this circle and so no other component of the set 

1 .C.z1u(z) a K 	meets the circle c(5,81). 



Now if we choose S < 81`  we observe that in a neighbourhood 

centre 5 , radius 8, (i) the set of z at which u(z) is greater than or 

equal to K, is the same set for which v(z) = u(z); (ii) the set of z for 

which v(z) is different from u(z) has the property u(z) < K and v(z) 	K. 

Since the mean value inequality is satisfied by u(z) and by (i) and 

(ii) the mean value of v(z) is not less than that for u(z), we see that the 

mean value inequality is also satisfied by v(z). 

This shows that v(z) is subharmonic at the boundary points of C(K) 

and thus completes the proof of Lemma 1.3. 

We note that by the arguments similar to those of Lemma 1.3 and 

the fact that if u(zo) > K, there exists a circle c(zo,6) such that 

u(z) > K on c(x0,8), we can prove that the modified function v1(z) is 

subharmonic in the plane when it is defined as follows: 

v (z) = u(z) 
	

for z E G(K), a component of {z(u(z) > 

= K 
	

for z outside G(K). 

1.4 Lemmas 1.2 and 1.3 enable us to prove the analogue of the assertion 

(b) that u(z) is unbounded in each component of 	zfu(z) > Kir and 

in those components of iztu(z) > Kis , in which u(z) > K somewhere. 

Let C(K) be a component of the set {zju(z) > K 

First suppose that there is only one component C(K). 
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By considering u(z) K instead of u(z) we may suppose K = O. 	Then 

either C(K) contains the whole plane so that u(z) is constant or unbounded 

in C(K). 

Otherwise u(z) is non-constant and hence unbounded in the plane and so 

unbounded in C(K). 

The unboundedness of such a non-constant u(z) in the plane follows 

from the fact that the maximum modulus B(r) = sup 	u(z) is positive for 
4z = r 

some j z I = r
o
. 	Also 13(r) is a convex increasing function of log r 

(Rado (1) p.18). 

Hence 	B(r) 	co, as r --> co. 

Since u(z) attains the value B(r) on Izj = r for some z, u(z) is 

unbounded as I z --1) a). 

Next suppose that the set where u(z) > K has at least two components 

C1(K) and C2(K). 

By Lemma 1.1 if I z I = ro  meets both C1(K) and C2(K), then 

lzf = r meets both C1(K) and C,(K) for all r > ro. 

Let A(r) = inf 	u(z) 
tzt = 

So we have A(r) < K for r > r
o 

 . 

If we replace u(z) in I z < r4its Poisson integral, we have u(z) 
o 
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harmonic and bounded in izi <ro  , and u(z) is 

To show the unboundedness of u(z) in C1(K) 

follows 

unchanged for 1 z I > r . o 

we first form v(z) as 

v(z) = u(z) 	for z E C1(K) , 

= K 	outside C1
(K) 

Then by Lemma 1.3, v(z) is subharmonic in the.plana. 

v(Rz) K  Set 	tik,i (z) = 	 for R > r . B(R) K 	 o  

Then we have lx) (z) < 1 	for I z i < 1 , and 

inf 	(z) < 0 	for 0 < p < 1 . 

Hence tit) (z) satisfies the hypotheses of the Lemma 1.2 and we have 

from (3.2), 

sup (A)(z) = sup 
I z  

v(Rz) - K 	4 
7ir TIT tan'' 

Put Rp = r . 

Then for 0 < r < R, 

-/7 8(r) 	K < (8(R) 	K)-4 	1 tan  TT 
K) p-. R 

4 

Therefore B(R) K.-> .  (B(r) K 
	 (4.1) 
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If u(z) > K somewhere on the component, then the right-hand side of 

(4.1) is positive, and as R —> co, we see that B(R) also tends to infinity. 

Since v(z) attains 13(R) somewhere on I z J = a, u(z) attains the same 

values on Izi = R and C1(K), and hence u(z) is unbounded in C1
(K). 

This completes the proof that u(z) is unbounded in each component C(K) 

in which u(z) is greater than 1 It can be shown by the same arguments 

}that u(z) is unbounded in each component of the set tzlu(z) > K 	. 

1.5 We now show that if there are a finite number of the components of 

tthe set 	ziu(z) > K 1 , then u(z) > K somewhere on each component. 

Consequently by Section 1.4, u(z) is unbounded in each such component. 

Suppose that the set 16z1u(z) > K} has a finite number of components. 

Then in the finite plane (say 1 z I < R), each component being a closed 
---....._-- 

set is at a positive distance 8 fro-n all the other components. 

Suppose that zo  is a boundary point of a component C(4/(K) and that 

u(zo) = K. 	For if u(zo) > K, there is nothing to prove. 	Then it 

follows contrapositively from the Maximum-principle that if u(zo) = K, 

then either there exist points in 1 z - zo  I <  such that u(z) > K or 

8 u(z) = K inside f z - zo 1  1 	7  . 

Since we suppose zo to be a boundary point of C(P)(K), we cannot 

6 have u(z) K inside jz-zo  i < 1  . 	Also since C( (K) and zo are 
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at a distance at least 5 fro..n the other co:-.1ponents of .{z ju(z) > K 

the only points in 1 z - z
o
1 < S- on which u(z) > K, lie in C(14(K)., 

-0.1) This is true For each or the co.aponents 	(K), i' they are finite in 

nul'ber. 

Thus u(z) > K so iewhere on each CCu)(K). 

Cn the other hand if there are an infinite 	of components 

of the set 	zju(z) > K)' , there r.:ay 	Iponents on which u(z) 	K. 

This will 'ae illustrated y an exa vie later on. 	It will !)e shown further 

that there can Se non-counta'Ay any such co aponents. 

However, in any neigh':ourhood or such a co Aponent, there are infinitely 

aany components of the set 	zju(z) > K r on which u(z) > some- 

where, and on which u(z) is consequently un':ounded. 

1.5 	have shown so far that for every non-constant subharaonic 

function, 

(1) 	the co:L:ponents of the sets iz}u(z) > 	, and (z1 u(z) > Kip 

extend to infinity. 

(ii) u(z) is un.'-ounded in each coiponent of t ziu(z) > K 	and in 

those co.lponents of 	zlu(z) > :1 	in which u(z) is not 

identically equal to K. 
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These are analogues of the assertions (a) and (b) of Theorem 1.1. 	The 

existence of an asymptotic path cannot follow easily as the general sub-

harmonic functions are not subject to any smoothness conditions. 

However by the arguments of Theorem 1.1, we prove: 

Lemma 1.4. 	There exists a continuum r going tom through each  

point z
o  such that u(z) --> + a) as z --> co on r  

Let C(1) be a component of the set .[z) u(z) > 11 with strict 

inequality somewhere. 	We have shown that such a C(1) exists, and 

extends to infinity, and u(z) is unbounded on each such C(1). 

Suppose z1  6 C(1) and u(zi) > 1. 	Find z2  e C(1), such that u(z2) > 2. 

There exists a continuum yl  joining z1  to z2  and lying in C(1). 	Now 

z9 lies in C(2) which is a sub-continuum of C(1). 

In C(2), find a point z3  such u(z3) > 3, and join z2  to z3  by a 

continuum y2  lying in C(2). 	Continuing in this way after n-steps we 

have u(zn-1 	 y,  ) > n-1, u(zn) > n and u(z) > n-1 for z onjoining 

z 
n-1 and zn. 

	

Thus there exists a continuum r= yi   going to 

infinity through each point zo  such that 

u(z) --> + cc',  as z 	co on r . 
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1.7 We now complete the proof of the Theorem 1.2, by proving: 

Lemma 1.5. 	Suppose that u(z) is subharmonic in a neighbourhood N  

of the continuum yK  and that u(z) > K for z € yK . 	Let z
1 
 and z,„ be 

••••••• 

two points on yK . 	Then there exist, a polygonal path joining z1  to z2 

in N such that u(z) > K 	1 on this path. 

In order to prove this, we shall need a theorem of Hayman (1). 

It is necessary to introduce his notation. 

u
+
(z) = max tu(z), of , u(z) = - min ju(z),o}  

2n 

T(r,u) = 
? 
1 	f u+(re )d . 

0 

u
1
(re

iG
) = sup u

-
(te

iG
) 

o<gr 

(1-t) log(1 +  4t  ) 
- t 

rdt log 

We now state the theorem of Hayman (1, Th.4, p.193), which we shall  
make use of. 

Lemma 1.6. 	If u(z) is subharmonic in I z # 4 R, then for o < r < R , 



2rr 

f-u1(relQ)dta > 11 "trid u(o) . (7.1) u(o) > 2
n 

1 
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9ff  

f ui(reie)d@ 	+ *i)) {T(R,u) u(o).} . 

It follows from this (as remarked by Hayman, p.194) that if u(z) 

is also non-positive in I zi < R, so that T(R,u) = 0, we have 

Now suppose that on a set of angular measure a of (;) , 

-u1(reiG) = inf u(teiG) < u(o) - c, where c > o . 
o<t<r 

Also on the complementary set of measure 2n - a, 

-u1(reiQ) < u(o) 

From the right hand inequality of (7.1), we have 

1 2 n  {a tu(o) - c} + (21r - a)u(o)) > [ + If (+1 u(o) . 

1 
2 n  [2rr u(o) - ac] > [I + ii(i)j u(o) . 

u(°) - 2n 
ac > u(0) + u(o) 4-1---R ) . 

ac - 	> u(0) *4-0 . 2 n — 
2 Tr iu(0)1  lor (4)  . a < 	 (7.2) — c 
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The above lemma thus gives us the quantitative estimate that for 

a non-positive subharmonic function in 	z I < R, the radial segments 

going outward from the origin and having length r, on which 

inf u(z) < u(o) c, have at most 

2*(0)1 if (4) 
angular measure 	  

We shall be using this result in the proof of Lemma 1.5. 

Proof of Lemma 1.5  

Since u(z) is subharmonic in a neighbourhood N of the continuum yK , 

there exists a number R such that u(z) is subharmonic For all z distant not 

more than 2R from yK. 

	

	Since yK  is a continuum, we can find a finite 

( 
chain of points 2

1 
= z(

1
o) 	

1 , z
1) 

 , 	 z
(n) 
 - z2, on yK  such that the 

maximum distance between two consecutive points z1
(k) 

 and 
(k+1) 

 

(k = a, 1,...,n-1) is less than or equal to R. 	Therefore for the proof 

of Lemma 1.5, it is sufficient to show that there exists a polygonal path 

joining z1  to za  in N on which u(z) ›ye- 1, when I zi  - z2  '6" R. 

Take M(R) = Max u(z) taken over all points z distant not more than R 

from yK. 

Define v(z) = u(z1  + z) - M(I). 

K- 
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Then v(z) is subharmonic and non-positive in I z, < R and thus satisfies 

the hypotheses of u(z) in Lemma 1.6. 

We take c = 1 in (7.2) and note that a, the angular measure of 

radial segments of length r on which the infimum v(z) < v(o) - 1 is at 

most 

2n iv(0)1 it(i) = 2niu(zi) 	M(R)I 	. 

If we take any z E yK  as origin instead of z1, with the same values 

of r and R, we get 

a < 2n lu(z) - m(R)I 	 (11. 

Thus for every point z on yK, the angular measure a of the radial 

segments of length r on which the infimum differs from u(z) by an amount 

greater than or equal to one is at most, 

a < 2rr lu(z) - M(R), 
	

(7.3) 

Since M(R) is bounded for a fixed R and u(z) > K on yK, we have 

u(z) - M(R) < M(R) K . 

Set M(R) K = T. 

Then from (7.3) , a < 2n T 	) R • (7.4) 

Since 
8 

)1114-z) -4 as 4—> o, we take so small that 1/(7) < Tf:T. 
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Then from (7.4), a< 	. 	 (7.5) 

Since yK  is a continuum, we can find a finite chain of points 

zl 
= 

'0' ' 
< 	<
1' '2' ' 

 

5 n = z2  , on yK  such that the maximum 

 

distance between two consecutive points 5K  and ,K+1 (K = 0,1,...n-1) 

is less than or equal to 6. 

By elementary Plane Geometry, two 

circles of radii equal to (or greater 

than) the distance between their centres 

intersect and the angular measure of 

the radial segments going out from 

origin, on each side of the line 

joining their centres is equal to (or 

greater than) — 3 

We also note from the diagram that in the triangles A and B, each 

segment going out from the centre of one circle meets all segments going 

out from the centre of the other circle in that triangle. 

By (7.3) and (7.5), we can find radial segments of length 6 from 

each of 5 K  and 5 K+1  and making angles between 0 and , with 

this tine such that 

u(z) > K 	1 on these radial segments. 
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And by the above consideration of elementary geometry, these radial 

segments meet. 

Thus it is possible to go from 5 K  to 5K+, and hence from z
1 
 to 

z2  along a polygonal path on which u(z) > K - 1. 

This shows that there exists a polygonal path with properties similar 

to those of the continuum in lemma 1.4, and hence completes the proof 

of Theorem 1.2. 

1.8 In the proof of theorem 1.2, we discussed some properties of the 

components of the sets i[ziu(z)  K.} and {z4 u(z)> K} . We 

also raised the question whether a function u(z) can be identically constant 

in a component of tz'ju(z) > K 	without being identically constant in 

the plane. 	In the next chapter we give examples of such functions and 

discuss other properties of components of the sets { z lu(z) > K } and 

i,z1u(z) > K1 . 
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CHAPTER II  

SOME EXAMPLES  

2.1 It was remarked in Section 1.5, that if there are an infinite number 

of the components of the set tztu(z) > , there may be a component 

of the set on which u(z) S K. 

Example 1  

We illustrate this by constructing in the next four sections a function 

(4)(z) which is identically zero in the lower half plane and this is isolated 

from the other components of the set ,[z Ito(z) > 0 

_ 3 y - 3  

_ 2 
y -  3 

_ 3 

\\ 	 x=11\ 	/ W(z)-°//// / 
So5n.(x-1)i sn(5ny) 	el 1 ri(x-1)sin(5n.y) + ye 

1 
elOn(x-7 ). - v11(10711) - ye 

- Y 	io  

_ 1 
Y - 

S2 el 	tr(x-2)sin(1 0 Try) e21 ..(x-2)sino ono  

(x=2) 
+ ye 

S3 e2Orr(x-22)sin(2Orry) - ye 
3 

Y = 

cu (z) =0 I 
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We form strips S S o' 	S2," 
y = 3 in the following pattern. 

So 
= { 2 

3 < Y < 3 
3 

, 

S1  = {I  < y < 3  , 3 	2 

S2 = 5 < y < 110 ,  
3 

S3 
= ( 3  

° < y < 3 ' 

▪ 4.• 

And thus generally,  

parallel to the real axis starting from 

- co<x<co 

- co < x < co 

co < x < co 

- co<x< ae  

- apy 

 

r 
23 < y < 

5 5.1n 	.9n  - co < x < 	J. . (1.1) Stn = 

  

    

S2n+1 

We define (.4 (z) 

n = o,1,2... 

3  < y
< 

2 , -ao < x < co 
5.2n+1 	5.2n 

 

n = 0,1,2... 

(100z) for z 	SK. 

(1.2) 

C 	for z outside all the SK • 

For n = 0,1,2—, we define 

w2n(z)  = 

5.2nn(x-211)sin(5.2nn y), for x < 2n  

n+1 e 	 ri, e(5.2 +1)T0-2 isin(5.2%y) for x > 2n  

(1.3) 
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2n+1(z) 	
e5'2n+1 /4-2'1+1) si 	n+1 n(5,2 	• (1.4) 

We note that the width of these strips is gradually decreased and 

they are so defined as to lie in the upper half plane. 	(z) is 

identically zero in the lower half plane and on the real axis. (A) (z) 

is also identically zero on the part of the upper half plane above y = 3 . 

3 We also note that in the strips starting from y = -s, t,o(z) is 

continuous, alternately positive and negative and vanishes on the boundary. 

This is observed as follows. 

(,V (z) is always positive in S
2n 

because sin(5.2
n

rry) is positive as 

y in S2n  varies from 2  - to 	3  -. There are two different continuous 
5,2" 5,2" 

functions in S
2n for x > 2

n 
and x < 2" but each function tends to 

sin(5.2
n

try) as x tends to 2". 	Hence th)(z) is continuous and positive 

inside the strip S2n and vanishes on its boundary. 

Also W(z) is always negative in 
S2n.E1' 

because sin(5.2
n+I

rry) is 

2 negative as y in S7n+1  varies from - 3 	- to 	, and vanishes 
5.2

n+1  
5.2

" 

inside on the boundary. 	Also GO (z) is a harmonic function 402n+1(z)  

S2n+1 and therefore (A)(z) is continuous and negative inside 
S2n+1 

and 

vanishes on its boundary. 
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Thus Lej(z) is continuous in any two adjoining strips, and identically 

3 constant in the part of the upper half-plane above y = -g , and in the 

lower half-plane. 

In order to show that 4.0(z) is continuous in the z-plane, it remains 

to show that 441(z) is continuous on the real axis. 

This is so because the functions in the strips approach zero in the 

finite part of the plane as the strips approach the real axis. 	More precisely 

for any x on the real axis choose n such that xo  < 2n. 	Then for all z 

in a neighbourhood of radius 6 < , round this xo, it follows from 
5. 2n   

(1.1) and (1.2) that z E  Sk  where k > 2n + 1. 

From (1.3) and (1.4), we have in this neighbourhood, 

2k n(x..2k) 
I (A)  (z) 	< e5. 	 k > n+1 , 

where x < x
o + 1, 	x - 2k < x + 1 - 2.2n  < 1 - 2n  <a.1 if n > 1. 

< a-5. i.e. 	CA)(z) I 	2n+1IT 
 • (1.5) 

As 	Le.)(z) is identically zero on the real axis and in the lower 

half-plane, the continuity on any finite point of the real axis follows from 

(1.5). 
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2.2 	So far we have shown the continuity of LIU (z). 	Now we show 

that the mean value inequality is satisfied and hence that the function is 

subharmonic. 

.n  axs  We first observe that if h(z) = e I by, then the Laplacian 

Ah = (a2  b2)h(z). 

Thus h(z) is subharmonic if, 

a > b, when h(z) > 0, 	and 

a < b, when h(z) < 0 

Our (4(z) is of the form h(z) with different constants in different 

parts of the strips. 	We note that in all S9n where G.)(z) is positive 

we have a = b for x < 2n  and a > b for x > 2n. Also in all S 

where W(z) is negative, the coefficients of x and y i.e. a and b are 

the same. 	Thus W(z) is subharmonic inS2n+1'  and also in the two 

halves of Sin on the right and the left of the line x = 2n
. 

In order to show that W(z) is subharmonic on this line we note 

that we showed in. Section 2.1 that W(z) is continuous and positive on 

this line. 

2n+1 

Stn 
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For any point z
o 

on this line, let C
r 

be a circular neighbourhood of 

this point which lies in SIn. 	Let C1  and C2  be the halves of the boundary 

of Cr  in the two halves of the strip 
52n  on the right and the left respec-

tively. 

Let 0..)(z) = p(z) for z 6 C1  and 4.0(z) = q(z) for z e C2  , 

where 	
p(z) 	e(5.2n+1+011(x-2n)sin(5.2niry),  

q(z) 
	e5..f 	n  igx-2)sin(5.2nIty) . 

Then 1 
(.1.)(

zo + r eiQ)dG 	1 13( 	+ reiGkpa 
2 Tr 	 2 	' •zo 

C
l
+C

2 	 Cl 

+ 2ff ✓  q(zo 

C2 

 
+ re klg . 

Since q(z) < p(z) on C1 , we have 

f f... 	 1 	
. - 

_ Go  . -271 	Lu(zo  + reiG  )dG >-2—i-T 	q(zo  + reiG  MG - _ q(z0) 	(zo) 

C1+C2 	 C1+C2 

since q(z) is harmonic. 

Thus we have shown that (Ai(z) is subharmonic inside the strips. 

Since a constant is trivially subharmonic, it only remains to show that 

W(z) is subharrnonic on the boundaries of the strips and on the real axis. 

We propose to do this in the following sections, 
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2.3 There are two types of boundaries of these strips and we discuss them 

separately. 	The first is the boundary between S2n+1 and  S2n+2 and this 

is the line y = 	3 

.5.2n+1 • 

2 

5 2n+1n(x -2n+1) 	n+1 W(z) = e • 	 sin(2 	5Try) 2n+1; 

S 	• 2n+2* e5. n+1 n(x-2n+1) . n+1 51,1(2 5ny 
n 5.2 -+2 +1 )n(x-2n+1) 

n sin(2 +1  5ny) 

   

x = 2n+1 

5.2" 

3 

Y = 5.2a+1 

2 
Y = 5.2

n.  

It is clear from the above diagram that Liii(z) is subharmonic on 

3 
Y 5.2n+1 for x < 2n+1 as for this part, W(z) is the same function in 

the two strips S2n4.1 andS2n+2 and is harmonic inside them. 	Actually 

therefore the integral mean for the points on the line y = 3n+1to the 
5.2 

 

left of x = 2n+1
, and the value of (4.) (z) at these points are both equal to 

zero. 

3 	 
+1 For the points on the line y 	to the right of x = 2n+1 

5. 2a  
(A)(z) is again zero on the line. 	Moreover the function defined in the strip 

for x > 2n+1 . S2n+2 	 is positive and is not less than the harmonic extension 

n+1 (.1,4-(z) from x < 2 	Thus the integral mean is not less than that 



positive on a circle with centre x
o 

+ i n+1  and small positive radius 
5.2 

if x > 2n+1 . 
o - 

Hence the mean value inequality is satisfied 	consequently (40(z) is 

for this harmonic extension. 	And so the integral mean of 04(z) is 

3 
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3  
subharmonic on the line y - 

5.2n+1  

The second type of the boundary is the line between Stn and S
2n+1' 

and this is the line y = 	
2

n  . 
5.2 

1.4)(z) is zero on the boundary line and positive in S2n 
and negative in 

S2n+1* 

5 	
n+1

+1 )rt(x-2 n 
52 e 	 in n 	(52 .2

n
rt(x-2n) 

	
e . 	 . 	n 

)sin(5.2rty) 
n

• 
* 

2 	 + ve 
Y - 	r, 	 n+1 	n+1 	 - ve 

5.2n 
S 	

e5.2 
 
n+1 	)sin(5.2n+lny) 

2n+1'
•  

 

By the law of the mean for every x in S2n
, we have 

CA) (x,y+h) - GJ (x,y) = h 
2`y 

 (x,(x y+G4h) ay  

for 0 < G
1 
 <1 

• 

Similarly in 
S2n+1' 

(3.1) 

I, A 1 (x,y-h) - CO(x,y) = -h a
w   (x,y-G2h) 
	

(3.2) 

for 0 < G <1 
• 



Since (4)(x,y) = 0 on the line y = 2  , we have 
5.2n  
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for x < 2n
, y = 2 , from (3.1) and (3.2) , 

(AJ(x,y+h) + (A3 (x,y-h) = h t5.2nrre5'2nff(x-2n)cos .15.2nn(y+Gth)j• 

5.2n+1 ire5.2n+I
n(x-2n+1

) cos.{5.2n+in(y-02011 • 

.2nn(x-2n) iph  
4.4)(x,Y+h) + (.4.)(x,r-h) 	5.2nne 5   

t x 	 n(x-3.2n) .{5.2n+in(y-G2h3. 15.2nr04490)j. 	2e5.2n  cos 

(3.3) 

The maximum value of the second term in the second factor on the 
2n+1 

right hand side of the above expression (3.3) is at most 2e-5'2 	it < 2e-10n 
Wm. 

Also cos(5.2nTry) is 1 for y = — 2 -- and is greater than 	sufficiently 
5.2n  

near this value of y. 	So it is possible to choose h1 such that for all 

h < h1, and all GI  < 1, we have cos {5.2nn(y + Gih)} > 2e-10n, 

Thus we have from (3.3), that when x < 2n, 

(x,y+h) + CA)(x,y-h) > 0 , 	 (3,4) 

for all h < h1 • 

5.2n  
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By the same method we find that for 

x > 2n, y - 2  , we have : 
5.2n  

(A)(x,Y+h) + (4 (x ,y-h) .-,..- h[ 5.2nTre(5.2n+I  
+/ )ff(x-2n)cos 5 . 2nn(y+C;vh)/ 

5.2
n+1 Tre5

.
2n+1n(x-2n+1)COS  .15.2n+1 Tr(y_4g2h).1] 5 

= h .5.2nTre
5.2n+1 Tr(x-2n) I 

e

n(x-2n)cos .t5.2n(y+81h) 3,  - 2e 
5,22n+1 

 n 

ix cos 1,5.2n+1 n(y-G2h).}. 	. (3.5) 

Again the maximum value of the second term in the second factor on 

101T 
the right hand side of (3.5) is at most 2e 	as before. 	The first term 

is at least cos 5.2nu(y+91 h) 	for x > 2n. 

As before it is possible to choose h2  such that for all h < h2  and 

all +Pi< 1, the first term is greater than 32  and so greater than the second 

term of (3.5). 

Hence (3.4) holds also for x > 2n. 

Thus if z
o 

= x
o 

+ i 2n , and r < min(hi ,h2), we have from (3.4), 
5.2 

 

that 
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1 
2rr 

f(4) (zo + re
iG

)dG > C . (3.6) 2 Tr 

Since 4)(z) is zero and continuous on the line y = 2 	it 
5.2-  

follows from (3.6), that W(z) is subharmonic on the line. 

We have shown so far that tai (z) is subhan-nonic on the boundary 

lines between any two adjoining strips. 	It remains to show that 4.„) (z) 

is subharmonic on the two extremal boundary lines namely the upper 

We recall 

that (4)(z) is zero in the upper half plane above the line y = 3 , and is 

also zero on the line y = 	. 	In the strip So, Li..) (z) is positive and 

3 continuous. 	Thus for any zo  = xo  + — 5 and small radius r, we have 

2Yr 

fW(zo + reiG)dG > C , 

o 

and from this it folbws that W(z) is subharrr,)nic on the line y = 3„ 

The subharmonicity on the real axis will be shown in the next section. 

2.4 	It was shown in the last paragraph of Section 2.1 that iA.1(z) is 

continuous on the real axis, and it remains to show that the mean value 

boundary of the first strip So, which is the line y = 3 , and the real axis. 

It is easy to see that ti.) (z) is subharmonic on y = 3 . 

1 
2 1T 
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inequality is satisfied. 	For this purpose we compute the areal mean 

12 IPA) (z) dx dy taken over the disc 1 z - x
o
f < r . n r   

If x < 2n, we take r < 2 	and compute the areal mean of U.) (z) 
5.2" 

in the disc with centre x
o 

and radius r. 

The areal mean is zero for the lower 

semicircle as (4)(z) is identically zero 

in the lower half plane- 

We consider the portions of the 

strips S2k , S2k+i , etc., inside the 

upper semicircle and the contributions from them towards the areal mean. 

We observe the way the strips are formed and note that if the upper semi-

circle contains a portion D
n 

of Stn-1 (in which W(z) is negative), then 

it also contains the reflection i5
n 

of D
n 

in the line y = 3 
• 

5. 2
n 

Thus the total contribution to the areal mean from the pair of strips 

is always non-negative, since U) (z) > o in S 	, and 

1 
(z) dx dy = - 

1 1110(z) dx dy 

lin 
2 

nr 
2 

nr 

Thus the areal mean is positive for the upper semicircle and hence positive 
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for the whole disc. 

Since (o.)(z) is zero on the real axis, the mean value inequality is 

satisfied and the function 4.)..)(z) is subharmonic on the real axis. 

We have thus shown that the function 0.1(z) of our Example 1 is 

continuous and subharmonic in the whole plane. 	The components of 

)w(z) > 

the components of s[z 
3 
4)(z) > o 	are the closed strips Stn together 

with the half planes y < 0, y > - 
3 
5- 	and on these half planes (.J  (z) = 0. 

Also the lower half plane is isolated from all other components of 

the set { z 1 Co(z) > 030 	This shows that components of 

{,z 1 CA.)(z) > K} can exist on which W(z) 21- K even though 44)(z) 

is not identically constant in the plane. 

2.5 We note that it follows from Lemma 1.6 and subsequent deduction 

(7.2) that if u(zo) > K, then the intersection of the set {. z u(z) > 

with a small neighbourhood of z
o 

has a positive area. 	(5.1). 

We also have the assertion (c) of Section 1.3, that if u(z) > K at 

a point zo , there exists a circle c(z0,5) round this point such that 

u(z) > K on this circle. 	Since the components of {zi u(z) > KJ' 

extend to infinity by Lemma 1.1, the component of {zi u(z) > K} 

which contains z
o

, also contains the circle c(z co,S)  and has the positive 

are precisely the (open) strips Stn. 	On the other hand 
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area referred to in (5.1) inside this circle. 	Also there is no other 

component inside this circle. 	Thus each component of the set 

z1 u(z) > K 	has positive area. 	And also the components of 

kzir  u(z) > K} , on which u(z) > K somewhere on the component, have 

positive area. 

Consequently such components are at most countable in number. 

Thus we have: 

Theorem 2.1. The components of the set {zIu(z) > KJ and the  

components of (z I u(z) > K} on which u(z) , K, each have positive  

area and so their total number is at most countable. 

We also note that in Example 1, there are an infinite number of 

such components in any small neighbourhood of a point on the real axis. 

Thus the components of the set iziu(z) > K} in which u(z) K, 

can be at most countable in number and need not be locally finite. 

However, the components of {ziu(z) > 	on which u(z) is 

identically constant may have zero area. 	We show in the next example 

that the number of such components on which u(z) is identically constant 

may be non-countable. 

2.6 Example 2  

We now construct a subharmonic function u(z) for which the set 
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yu(z) > o 	has a number of components having the power of the 

continuum on each of which u(z) is identically zero. 

We first define CO
o(z) = bj(z) in the entire finite z-plane except 

the strip 	< y < 1, -cr. < x < aoJ , where 14)(z) h the function .{, 

defined in Example 1. 	In the strip 	
5 

< y < 1, -co < x < co Jr , 

we define 

0(x, y) = (A) (x,1-y) 

The function W (z) is thus defined in the whole plane and is 

symmetric about the line y = 1. 	Also LA) (2) is identically zero for 

3 y < 0 and y > 1. Again 61 (z) is subharmonic for y < 5 — and so in 

the whole plane by symmetry. 

Finally we note that the half planes y < o and y > 1 are components 

of the set 1(z Wo(z) > O 	. 

It can be easily proved (e.g. Talpur (1), Th.1.7, p.19) that if 

u(z) is subharmonic in D and z = f(5) maps 	,A(1,1) conforrnally into 

D, then u if(5)} 	is subharmonic in 

Let z = f
1,1

(5) = 35- i „ 

Then f
1,1(5)  maps the infinite strip 	3 < Im 5 < 2.19 3 

strip (0 < Im z < 

into the 
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Thus Li,  (z) = OJAfi  (5 )} is subharmonic in the i  -plane 

and is identically zero in the half planes 1m 5 > 2 and 1m 5 < 1 - . 

Similarly z = f2
1

1 (;)  = 32; - 1 
	

and 

z  

	

= 
T
r
2,2 	

- 2; -7i map the strips t 9 < 1m 	< ?-1 and 

	

< 1m 	< 7 	into the strip tO < 1m z < 1 j 

We also define W2,1(5) o2,1(5)} and 

(4,2( 	= (.00 	(511 , and note that (A)  (5 ) and (42,2(0 
2,1 

are subharmonic in the 5 -plane.. 

, 
We note that at the mth step, there are 2 	complementary 

intervals to Cantor's ternary set. 	Let (ak ,bk) be any complementary 

interval to Cantor's ternary set. 	Then z = f - fm  1- 	(1 -1%)  
bk 

maps the strip 4c... a < EIS< b 	into the stripQ < Im z < 

We thus define mth group of 2m-1 functions fm,l
,f

m,2 
„fm,2m_i , 

{so as to map the 2
m-1 strips of the m

th group into the strip 	< Em z <  

Set 	CA) ((;) o mk (A) if 
,(5)1  

where m = 1 to co and k = 1 to 2m-1 . 

(6.1) 



- 39 - 

co 
Finally we define (A) (5) = 

m=1 
6k cm k(;) 	(6.2) m, 

where 0 < 	
1" 	

sup 4611)n  k(5 
`` 154 <rn 

The series on the right hand side of (6.2) is clearly uniformly 

convergent for all 5 in the finite 	5-plane. 

Since 	
k > 0' 	m, k m 

(A) k(;) is subharmonic and (A) (r) m, , 

is thus defined as a uniformly convergent infinite sum of functions sub- 

harmonic in the finite plane. 	Thus (A) (5) is subharmonic in the 

finite 5-plane. 	(e.g. Rado (1) p.20). 

We note that at interior points of the strips formed by the middle 

thirds, only one function
m,k 

 is not identically zero. 	The function 

W(5) is equal to zero on the boundary of this strip. 	And these 

boundary lines do not belong to any component of the set .{5 tiat)(> 0 .., ,k 

because by construction as in Example 1, these boundary lines are isolated 

from other components of (A) k  . 	Also these boundary lines do not 
m, 

belong to any component of {s Ito k(5) > 0/ for different values 

of m and k. 	Therefore these boundary lines are components of 

(5 ) 01 
Now we consider the function (Ai (5) on the complementary set of 

these closed strips. 	This set consists of lines parallel to the x-axis 

4m  
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through the points of the Cantor ternary set on the y-axis, and the half 

planes Im 	< 0 and Im 5 > 1. 

It follows from the definition that W (;) is equal to zero on this 

complementary set as each (A.)
,k  is zero on this set, 	Also these lines 

and sets are isolated from components of 	{5 103( 	> 03. . 

Finally we note that the components of .151W (5) > 

include all the lines lm 7 = c where c is a number in Cantor's ternary 

set such that o < c < 1, and also the half planes Im 	< 0, Im 
	> 1. 

On all these components (.4 (5 ) = 0. 

In addition there are a countable set of strips of the type 

L <Ims 
	

9491 	on which t.A.)) > 0. And the closures of 

these strips are the remaining components of C4)(5) > 0. 

2.7 	In this section we discuss the relationship between the number of 

components G(K) of the set {4u(z) > K.1 and the order of u(z). 

We recall the definition of the order K and the lower order X of 

a subharmonic function, 

Let 	B(r) = max u(z) . 
=r 

g 
g  
B (

r
r)  K = Um sup 

	

lo
lo 	• r co 

X = lim inf log B(r)  
log r r 	co 
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We have shown earlier that u(z) is unbounded in each such 

component C(K). 	Therefore if K' > K, it follows that each component 

G(K) of the set {,z u(z) > Kir contains at least one component G(10) 

of the set kztu(z) > K'} 

Hence the number n(K) of these components G(K) is a positive non-

decreasing function of K which may be + op for some and hence for all 

sufficiently large values of K. 

We also observe that if the component C(K) of the set tz lu(z) > 

contains precisely one component C(K + 8) of the set {z }u(z)K + 8} 

where S > 0, then C(K) contains precisely one component G(K) of the 

set tzlu(z) > 

In the case of integral functions, it was shown by Hayman 

(Hayman (2)) that if the lower order X is finite, the number n(K) of the 

components G(K) of the set {z14 u(z) > K} is finite. 

He showed that X > IN, where 

N = lim 	n(K). 
K --> ao 

This is a consequence of the Denjoy-Ahlfors theorem. 

The situation for general subharmonic functions is different as the 

{,components G(K) of the set 	+(z) > K} may not be domains. 

The result however follows from the following theorem of the Denjoy-Ahlfors 
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type proved by Heins (Heins (2), Th.5.1, p.74). 

Lemma 2.1 

 

Let 
ul'"'un denote (n > 2) non-constant non-negative 

  

   

subharmonic functions in the finite plane which satisfy that min (u.,uk  ) = 

0 for 1 	k. 

 

fo [uk(reiQ?.] 
k=1 

2 
d8 Let 	q(r) = 

  

  

    

then 	lim inf 	2q(r) > 0 
r --> co 

We now prove a consequence of this theorem about the components 

G(K) of a general subharmonic function. 

Suppose that u(z) is subharmonic in the z-plane and let N = lim n(K) 
K—>co 

where as before n(K) is the number of the components G(K) of the set 

tzl u(z) > 	. 

Take n finite and such that n < N. 
Choose n components G1(K), 02(K),....Gn(K). 

Consider the function u(z) - K. 

It is positive inside these n components. 

We now define u
1' u2'•'• un 

 as follows: 
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u (z) = u(z) - K 	in G. (K), 

0 	outside 	G4, (K) 

for 	11= 1,2,...n • 

Then, as observed at the end of Section 1.3, it can be easily 

seen that by the arguments similar to those of Lemma 1.3, it follows that 

the functions 01 ,02,...un  are subharmonic in the whole plane. 

The functions ui ,u2,...un  are also non-negative in the entire 

plane. 

Also, it follows from the construction of these functions that if one 

of uv  (z) is non-zero, at a point, the others are necessarily zero. 

Thus the condition min iiuk(z), ui(z),} = 0, k 	j is satisfied. 

Hence the functions u1 ,...up 	satisfy the hypotheses of 

Lemma 2.1. 

Therefore 

Since B(r), the maximum modulus for the original function u(z) is obviously 

greater than or equal to q(r), we have 

n 
lirn B(r) > 0. 

r —> co 

n  
lim 	- 

r 	co  r 	q(r) > 0 „ 
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Hence by the definition of A, we have 

X > 2 

If N = oz., we may take n arbitrarily large and hence X = co. 

Therefore we have the following conclusion; 

If u(z) has a finite lower order X, the number of the components 

3. G(K) is at most max 12),1 . 	In particular an infinite number of 

components 0(K) is only possible in the case of a function of infinite 

lower order. 
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CHAPTER III 

SOME FURTHER RESULTS 

3.1 In this chapter v consider how quickly does u(z) tend to + 

along an asymptotic path. 

u(z) is a non-constant subharmonic function in the plane and as 

before B(r) = max u(z) , it follows from the Phragmen-Lindellif Principle 
izt=r 

that 

B(r) ---> a where o < a < co 

If a is finite, the problem has been settled by Hayman (Hayman (3)). 	He 

has shown that ' If u(z) is subharmonic and not constant in the plane and 

B(r) = O(log r) 	as r -> co , 

then u(reia) = B(r) + o(1), uniformly as rein 	03 outside a set of 

circles subtending angles at the origin, whose sum is finite.' 

He has also shown in the same paper that if 

-,(r) = O(Iog r)2  cs r 	co , 

in 
then u(re ) rfta B(r) as r ---> a for almost every fixed G. 	The 

logy 
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relation also holds uniformly in Q as r 	co outside a set of finite 

logarithmic measure. 

However, even when f(z) is a rapidly growing integral function, 

such general results are not easy to prove. 

There is an unpublished result of Boas, that if f(z) is an integral 

function which is not a polynomial, then there exists a path 	r such 
co 

that for every n, 

f(z) 
--> co, as z --> co along 

I 
z
n rico . 

This, of course, only shows that on the asymptotic path 	r0:, 
co more rapidly than every polynomial. 	We shall prove an 

analogue of this result of Boas for a general subharmonic function for 

which B(r) y O(log r). 

3.2 

Theorem 3.1. 	If u(z) is a non-constant subharmonic function such that  

B(r) 	O(log r), then there exists a path 	rt such that  

u(z) 
o —> + oa, as z —> co on r 

The function u
n
(2) = u(z) n log I zi must be unbounded in the 

plane for every finite n, because otherwise B(r) = O(log r) and this 
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contradicts the hypothesis. 

Consider the components of the set I,zJu(z) > K}  

If there is only one such component then the function un(z) is unbounded 

in this component for every finite n. 	If there are more than one of such 

components, then it follows from the \Allman-Heins theorem (Heins (3)) 

that B(r) grows at least like r2  in each such component. 	Consequently 

un(z) is unbounded in each component for finite n. 

Also un(z) is subharmonic in the plane except for the origin. 

It follows from Lemma 1.1, that if un(z) is subharmonic in a disc 

- zo I < R, all the components of the set tzlun(z) > K} go to the 

boundary lz zol = r. 

Consider a component G(n) of the set I z I > 1 on which 

un(z) = u(z) 	n log I 	> B(1) + n. 	This is a component of the set 

on which 

u(z) > n + n log I z I + B(1) . 

Such a component exists and stretches to infinity and um(z) is unbounded 

in it for every finite m. 	Therefore G(n) contains G(n+1) i.e, a 	0:0 

component 	(in zJ > 1) on which u(z) (n+1) log 14 > B(1) + 

Suppose that z1  is a point in 14 > 1 such that u(zi ) - log z1  I 

> B(1) + 1. 



Then zi  E 0(1). 

Also by (2.1), G(1) contains a component 0(2). 

Let z2  E 0(7), then u(z2)- 2 log 1z21 > B(1) + 2 . 

Since z
1 
 and z

2 
both belong to 0(1), there exists a continuum 

joining z1  to z2  and lying in the closure of 0(1). 

Also as before by (2.1), 0(2) contains a component G(3). 

Let z
3 

€ G(3), then 

u(z3) - 3 log z31 > B(1) + 3 

Since z2  and z3  both belong to G(2), there exists a continuum y2  joining 

z
2 

to z
3 

and lying in closure of 0(2). 

Continuing in this way we have after n steps, 

u(zn) - n log Izni > B(1) + n 	 and 

u(z) - (n-1) log lz 1 > B(1) + (n-1) on 

joining the points zn..1 and z
n
. 

Also from the construction it is obvious that u(zn
) > n + n log h 4 + B(1). 

Thus z
n 

will tend to infinity with n, as u(z) is bounded near 1z1 = 1 

Thus we have a continuum r = yl  + y2  + 	that goes to 

infinity through all of these G(n) and on this continuum 

u(z) 
-135-171- 

 

cc) , 	as z 	co . 
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By applying Lemma 1.5 to un(z), it follows that there exists a polygonal 

path with similar properties. 

3.3 We now discuss whether we can improve the conclusion of Theorem 

3.1 by restricting somewhat the growth of the function. 	We consider 

subharmonic functions of order less than 1. 

Let u(z) be a non-constant function subharmonic in the finite z-

plane and as before A(r) and B(r) denote inf u(z) and max u(z) on 1z1 = r 

respectively. 	Let K and X denote the order and the lower order of 

u(z) as defined in Section 2.7. 

We now introduce some notation regarding measure and density of 

sets. 

Given any set E on the part r > 1 of the positive r-axis we define 

the measure mE of E and the logarithmic measure Im E of E by 

mE = fdr, 	Im E = 	
dr

(3.1) 

E 

Let E(r) denote the part of E in the interval El X.] , and we 

define the upper and lower densities of E, by the equations: 

mE(r) 	 mE(r1 
dens E = iim 	 dens E = Urn 

r-1 	 "7:1--  • 
r->o, 

(3.2) 
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altsaarmodi .  

We also define the upper and lower logarithmic densities log dens E , 

and log dens E, by 

Icg dons E 	= lirn 	hin E(r)  
r_>co  log r 	log dens E = lim Im E(r) r 	(3.3) 

It can be ec:.;ily proved (e.g. Barry (1) p.447) that 

0 < dens E < log dens E < log dens E < dens E < 1 

and 	0 < Im E < mE 

In 1927, Besicovitch proved that if u(z) = log I f(z) I where f(z) 

is an integral function of order K, 0 < K < 1, and K < a < 1, then 

j" dens .ciriA(r) > cos rra B(r) > 1 - — K 
. a (3.4) 

He also gave an example of an integral function for which the 

lower density of the set in (3.4) is zero. 

In 1952, Huber extended (3.4) to the class of general subharmonic 

functions of order K, (0 < K < 1). 

In 1963, (3.4) was strengthened further by Barry, who proved the 

following theorem in 3crry (2). 
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Lemma 3.1. 	Let u(z) be a non-constant function subharmonic in the  

finite z-plane and of order K, C < K < 1, and let K < a < 1. 	Then 

log dens E 	r 
J 
 A(r) > cos TraB(r) 	> 1 - a 	 (3.5) 

Thus if the order K of u(z) is less than 1, we choose a between K 

and 2.  	Then by (3.5), on a set of positive lower logarithmic density 

c we have, 

A(r) > cos Ira 130 	 (3.6) 

3.4 We now proove the following lemma which we will use to prove a 

theorem about lower growth on suitable paths. 

Lemma 3.2. 	Suppose that a set E has positive lower logarithmic 

density at least c. 	Then there exist r
a 

 such that for all r >  r
o

, there 

1+6 

are points belonging to E in  (r, r c 	),  where E 	is any positive  

number. 

The set E has lower logarithmic density at least c. 	We assume 

without loss in generality that 0 < E. < 1. 

There exists r
o 

such that for all r > r
o

, the logarithmic measure of 

E(r) is at least 	I  	clog r. 
1 + E

2 
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1+6 
Im E(r c 	) > 	1  	c log r 

1 + E2  

1+E 

   

  

1 1 +E .c. 	log r 

  

1 +E 

1 + E  	 log r 
1 + 

Now Im E(r) is of most log r. 

1+E 

The logarithmic measure of the part of E in the interval (r, r 

is at least 

1 + 	 + (--- 2  log r log r) - 	 - 1) log r 
1+E 	 + E 

On simplification this is equal to ) 	  log r > 	. 
1 + e 2  

1+ e 

    

There exist points belonging to E in (r, r c  

This completes the proof of Lemma 3.2. 

We now prove a result about the lower growth which is a consequence of 

Lemma 3.1. 

Theorem 3.2. 	Let u(z) be a non-constant function subharmonic in the  

finite plane of order  K, 0 < K < 1, and let K < a < 	Then on 

a suitable asymptotic path, 

(1 - —)/ 
u(z) > cos rraB Er 	a / (1 + (4.1) 

where 	iz J = r 
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Since u(z) is of order less than a half there exists a sequence r
n 

of r, tending to co, such that , 

A(r
n

) > cos na B(r
n). 	 (4.2) 

Since A(r
n
) = inf u(z), we have that for all z on I z = r

n
, 

zt=r
n 

u(z) > cos na. B(r
n
). 	 (4.3) 

We now use Lemmas 3,1 and 3.2 about the density of the set of rial  which 

satisfy (4.2). 

If r is sufficiently large we deduce from Lemmas 3.1 and 3,2 that 
1+6 

the set E of (3.5) has points in the interval (r, r c ), where c is the 

lower logarithmic density in (3.5). 

Also c > 1 — 
a 

If the sequence is suitably chosen, then for large r, the interval 

1+€ 
1-717cT 

(r, r 	) contains members of the sequence in (4.2). 

Thus from the above sequence we can choose r
n 

satisfying 

1-1(4 

(rn 1+ 6 ) < rn-1 • 

Also it follows from (4.2) and (4.3) that for z on these r
n
, 

u(z) > cos n a B(rn) 
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The set cn which u(z) A(r1) > 0 contains 1z1 = r1  and by Lemma 1.1, 

stretches to infinity. 	We choose r2, as above and it follows from our 

earlier results that there is a continuum extending from j zt = rf  to 

1z1 = r2, on which 

u(z) > A(r1) > cos ira B(r1) 

Thus we crn join the points z
1 

and z
2
%here u(z

1
) = B(r

1
) and u(z

2
) = B(r

2
) 

respectively by a continuum on which u(z) > cos rra B(r1)
. 

Continuiro in this way we have a continuum extending to infinity 

on which, 

1-K/a 

u(z) > cos rra.B(r 
1+6  ) , where I z = r 

By Lemma 1.5,there exists a polygonal path on which 

(1-Kid 
u(z) > cos na.B(r 1 	 ) 	1 , 	where j zi = r 

3,5 We note that in the case of functions of order zero, a can be 

1 
E chosen arbitrarily near zero. 	Thus both cos na and 1 + 	

can be near 

one. 	Therefore we have that for functions of zero order we can find 

suitable paths on which 

u(z) > (I- 6 )B(ri-E  ), 	where r = zf . 
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CHAPTER IV 

SUSHARMONIC FUNCTIONS IN SPACE  

4.1 Introduction  

The definition of a subharmonic function in the plane can be carried 

over to Euclidean space of three or more dimensions. 	Let u(P) be a 

function in a domain D such that - co < u < co. 	Then it is subharmonic 

if it satisfies the following three conditions: 

(i) u is not identically equal to -co in D. 

(ii) u is upper-semi-continuous in D. 

u(P) is less than or equal to Au(P,6), the mean of u on 

any spherical surface of centre P and radius 6 for all 

sufficiently small 8, depending on P. 

We introduce the following notation. 

D(P,r) = tQl PQ < r} 
	

, an open ball centre P, radius r; 

C(P,r) = 	kg1PCt 
	, a closed ball centre P, radius r; 

D
r 

= D(0,r), 	Cr 
= C(O,r) ; 

S(P,r) = 	{, Cti PQ, = ri 
	

S
r 

= S(C,r), the spherical surface. 



u(P) < A
u  (P 6) —  

4'3
2 

u(Q) dSQ  , 

S(P,6) 

1 
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Thus the condition (iii) implies that, 

where dSc, is the element of area around 	on S(P,6) . 

Also, if au(P,6) denotes the volume average of u over an open 

ball D(P,S), it can be easily seen that 

au(P,6) = 
3

f Au(P,r) Cdr . 

0 
(1.2) 

Also in the condition (iii), the mean may be considered on a 

spherical volume instead of a spherical surface. 

It follows easily from the above definition that 

1. If u
1 

and u
2 

are subharmonic, then max ru
l 

u2  J and u
1 

+ u
2 

are subharmonic. 

2. If u is subharmonic so is Ku for any constant K > 0 . 

As in the plane case we deduce the following version of the rAaximum 

principle from the above definition. 

Theorem 4.1. 	Suppose that V(P) is harmonic in a bounded domain D, 

of space and continuous in the closure of 1), and that u(P) is subharmonic  
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in D and upper-semi-continuous in the closure of D and u(P) < v(P) on 

aD, the boundary of D.  Then 

u(P) < v(P) in  D or u(P) = v(P) in D. 

Let GAWP) = u(P) - v(P). 

Then 6)(P) is subharrnonic in D and upper-semi-continuous in the 

closure of D and W(P) < C on ap, 

Let M = sup CO (P). 
P E D 

Suppose that P1 ,..„Pn,... is a sequence of points in 	such that 

(A)(Pn) ---> M. 

Then a subsequence of 413
n 
I say P

n 	
converges to a point Po  

belonging to the closure of D. 

Suppose that P C 8D. 	Then for large q, by upper-semi-continuity, we 

deduce that 

w(Pn ) < 
q 

Consequently :7A < LA) (13) +E< 0. 

Therefore M < C as required unless M = C and in this case 

(A)(P) = 0 for some point in T. 	 2 

If P
o 

E D, then again by upper-semi-continuity, W(P
o 

 ) > lien sup t.,t)(P
n 

) = 
q --> co 

= A. 
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Since by definition 4)(P) < M for P E D, we hove ()(o) = M. 

We now show that if this happens, we have 

(A) (P) = M for P E D. 

The set F = 	 PIP E D, 	(P) = MJ. is closed by the upper- 

semi-continuity. 

If F is not the whole domain D, there exists a point r?, e 

Let a(T) be a path joining 	Po  to R in D. 	Since Po belongs to a 

closed subset F of D and R is outside F, the path a(T) must have an 

extremal point on the set F when it leave F and enters D.114. F. 

Let this point be T, and T 6 F. 

For arbitrary small 8, 

	

M = tA) (T) <1 	 (0) dS • 4 rr 82 
S(T,8) 

Thus 1 

  

"[COM) iA)(T)1 dS > 0 	(1.3) 

   

4rr82 ✓  
S(T,8) 

If (A)(Q) = 	,g,e < im for some 0 = 00, then by the upper- 

semi-continuity (h)(0) < '4 E 	in a neighbourhood of 00  of area 

821 say. 	Thus the integral in (1.3) is at most 
1 	4:  . , . 

Orr 

This gives a contradiction. 	Therefore for all 0 on S(T,8) we 
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have (&)(0) = "%A. 	But this surface meets the path joining Po  to R. 

Thus the point of intersection belongs to F and contradicts the 

definition of T. 

Since W(P) < 0 on al), we must have 1\A < 0. 

Thus CO(P) < C in all cases and equality holds if and only if 

LA)(P) ;:- 0 in D. 	This proves the theorem. 

4.2 Thus we observe that the definition h the same for two or more 

dimensions and some properties like the Maximum-principle and others also 

hold both in the case of the plane and space. 	However, in some ways 

the behaviour of subharmonic functions in space is quite different from that 

in the plane. 	For example in the plane we have an analogue of 

Liouville's theorem that a function which is subharmonic and boundod above 

in the entire finite plane is constant. 	But in space we have non-constant 

subharmonic functions which are bounded above. 

For example, consider 

u(P) = u(x,y,z) ( 
	 , for (x,y,z) 
[(x-o)2 + (ry0)2 (z-zo  (X0  Yof Zo) 

- co 	for (x,y,z) = x0,y0,z0).. 

Then u(P) is bounded above in space. 
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u(P) is also upper-semi-continuous at (x
o  ,yo  ,z o

) and continuous elsewhere. 

Also the Laplacian of u(P) is zero except at (x0,y0,z0). 	This implies 

the condition (iii) of the definition of a subharmonic function. [ e.g. 

Kellogg (1), p.3161 . 	Hence u(P) is subharrnonic in the entire space. 

Thus we see that some properties which hold in the plane may not 

hold in space. 	In general we cannot expect an asymptotic path on which 

a subharmonic function u(P) tends to + co. 	The natural extension of 

Iversen's theorem would be to show the existence of a path on which u(P) 

tends to •\A where M is the upper bound of u(P) in space. 

We are able to do this in the case of a continuous subharmonic 

function, and in the case of a general subharmonic function when M is 

As the analogues in space of some theorems in the plane are not valid, 

it is not possible to get results as strong as those in the plane. 	The 

question of finding an asymptotic path on which a general subharmonic 

function tends to + a), is still open. 

4.3 In this section we state and prove some lemmas which will be useful 

to us in further investigations. 

Lemma 4.1 	If u(P) is a subharmonic function in a complete neighbourhood 

of the closed ball CiO,r), then all the components of the sets 
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iLliu(P) > K or {11u(P) > 14 in C(0,r) go to the boundary S(Q,r). 

This is an analogue of Lemma 1.1 and can be proved by the arguments 

similar to those given for the plane in Chapter I. 

Lemma 4.2 	Suppose that u(P) is subharmonic in the neighbourhood of  

the closure La of a bounded domain 	 Let Fo be a component of  

> 0j. in 4111 and define 

u(P) , for P 6 F
o 

, 

v( P) = 

0 , for P outside Fo. 

Then v(P) is subharmonic in 1,121  

This lemma is the space analogue of Lemma 1.3 in the plane. 	In 

the plane we made use of the Milloux-Schmidt inequality. 	We now give 

a proof which applies in K-dimensions and does not need the application 

of the Milloux-Schmidt inequality. 

Let un be a sequence of continuous functions decreasing to u in trL 
..1101•1. 

and subharmonic in a neighbourhood of 1-C2/ 	Let Po be a point of F
o 

and let Fn be the component of 	 i:luo(P) > 01 in ta which contains 

P. 

Then Fn+1C  Fn and the F
n 

are continua. 
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co 
Let F = irt  F . 

n=1 n  

We show that F = F 0 

We remark that F
o 

is a component of a bounded closed set 

tPlu(P) > C> 	and is therefore a point or a continuum. 

	

If it is a point, it ties on the boundary of di by Lemma 4.1, 	In 

that case v(P) is identically zero in Lai 

We therefore consider the case when F
o 

is a continuum. 

	

We note that u > u > C in F, and F
o 

is a continuum in 	- 
rt— 

Thus F
n 

contains F
o

. 

Since this is true for every n, F
o 

C F 

Conversely, u
n 
 > 0 in Fn for every n. 

u > CinF 
n— 

Thus u > 0 in F, and since F is a continuum which contains 

(3.1) 

P
o

, 	F G F
o
. 	 (3.2) 

From (3.1) and (3.2), we have F = F0. 

Now set VP) = j
. uo(P), for P E, F

n, 

0 , 	for P outside F
n 
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Then it is evident from the continuity of u
n
(P), that v (P) is continuous 

and subharmonic in ta 

Also we note that vn(P) decreases with n. 

For if P E Fn+1 , then P 	Fn, and so 

vn(P) vn+1 (P) 	un(P) 	un+1 (P)  > 0.  

And if P is outside 
Fn+1' 

then v
n+1

(P) = 0 < vn(P). 

Since the limb of a decreasing sequence of subharmonic functions is 

a subharmonic function, (Rado (1), p.14) we have that v(P) = lim vn(P) 
n—ko 

is subharmonic in La . 

Now if P E F
o' 

then P E Fn  for every n, and v(P) = lim v
n(

P) = 
n—ko 

= lim
n
(P) = u(P). 

If P is outside F
o

, then P is outside F
n 

for large n, and v
n
(P) = 0 for 

n > n
o

(P)„ 

Therefore v(P) = 0 . 

This shows that the limit function is the original function defined in 

the lemma and what is required is proved. 



Lemma 4.3 	If u(P) is subharmonic in
ct,  

domain D and E is a compact  

subset of D, then there exists a sequence  v
6
(P) of functions defined for  

all points in D distant not more than 36 from the boundary of D such that  

(i) v5(P) is subharmonic in E  

(ii) v5(P) € 

(iii) v5(P) increases with increasing S 

(iv) v5(P) 	u(P) as 6-4 0 . 

Consider v(P) = 	u(0)K(P,Q)d0 , where dQ is a volume 

element and K(P,Q) ELEci";. 

Assume that P = (x,y,z), Q = 	and K(P,Q) can be written in 

the form K(x 	, y - , z -5 ), and K = 0 when 

)2 	(y 	)2 (z $ )21 > S. 

We shall set 

1 	g. )2 + (y..7 )2 + 	)21 
lyx-1 , y-11 , z-5 	exp ) = C(6) 	- 1 

for 	(x- )2 4. 
 (y-1)2 

 + (z-$, )21 	< 8  , 

K8(xi , y-7! , 	) = 0, 	(x-f )2 + (y-1 )2 + (z-5 )2 	> 6 , 
1 

, and C is defined so that 4nC where C(S) is a constant 	 s2ds  = 1.  

0 
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Suppose that P c E and that u(P) is subharmonic in a 36- 

neighbourhood of E. 	Then u(P) has a finite integral in a 6- 
neighbourhood E' of E and 

I v(P) 1 < M in E'. 

Also for P e E, v(0) K(P,Q) = 0 except when 0 is at a distance not 

more than 6 from E. 

We note that the partial derivatives of v can be obtained by formal 

differentiation under the integral 

v(x,y,z) = iff u( 	,5) K(x-J 	,z-5 )did d5" . 

Thus v(x+h, y,z) - v(x,y,z) = 

, y-7 , z-5) 	 ) cifd 7d5, 

= hiff 	 --a-c(c x-§+ Gh, 	,z-g) dfc17  d5, 
aK 

where 0 < G < 1 , 

and 9 = G(x,y,z,f 

ax 
Also 	is continuous and therefore uniformly continuous in a sphere of 

ax 

radius 8 and so in the whole space. 

= fff u(l 
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Thus given S > 0, 3 6' >1:5 such that for all 1 hs J < 6' we have, 

fj5 (x- ,y-'/ ,z-5) - a'-r-3(c  (x+1-11-1,y-1 ,z--5 )1 < 	, for all (x,y,z). 

Thus v(x+h,y,z) v(x,y,z) 	IffaaxK (x_ 	,z- )u(i, ,,c)d)dld 

E 	u( i,1 , 	d d3' < i\A-E 

av Therefore 	exists, 	Also like aK 	it is uniformly continuous ax 	 ax 
in space. 

Similarly it follows that V 	Cc°  . 

Now we show that v(P) is subharmonic in E. 

v(x+h1,y+h2,z+h3) = iffu(0,5)K(x+hi-y,y+1121,z+h3-5)df d 

= fir u( '+hi, +h2, 5'+h3)K(x-  ,y- 	5')d§s d 	5. 

= 	u( 	1 ,7 42 , 5 4 ,3 )mx- f ,y-7 ,z-5 )d.f d y.d5 (3.3) 

is the area element of the spherical surface radius r, 

Av(P,r) = 1 2 	dSr 	► u( 	;7/ 	5-Fh3)K(xl, y-7 1z-5)d c d141.51  
4Trr 

We now operate on both sides of (3.3) by 1  2 
• 
ff dSr  where dSr 4nr 
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We change the order of integration on the right hand side as the 

integrand is bounded above. 

Av(P,r) =fifK(xl ,y-711 ,z- 5)1 9  d; . -471-r7  ifu( 	42, ;-fh3)dSr  

We subtract v(P) from both the sides and recall that 

v(P) =N. 	mx-c 	mpidc . 
Thus Av(P,r) - v(P) = fig K(x.i ,y-1 ,z-; 	dl d; 

 

4nr---2fiu(+61,742,543) u(,1 ,5 ms] 

 

x • 

    

The integrand on the right hand side is positive as u(P) is subharmonic in 

V and K > 0. 

Therefore Av(P,r) > v(P) and v(P) is subharmonic in E. 

Finally, we note that if we take P as the origin we have in 

spherical polar form 

2n n 5 

u(r,G,Ar2  sinG diadIfdr . 
0 0 0 

6 	1 
= 	C(S) e 1-r2/62  Au(P,r).4n.r2dr . 

v6(P) = f f f C(6)e 

-1 

1-r2/S2  
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Since we take C(6) = —c we have 
3 

1 
vs(p)  = 4C 

83  

1 -r2/82  Au(p, Or2d r 

 

Put r = s8 

1 

 

s
2 

Thus vs(P) = 4nC 	e 	 Au(P,s8) s2ds 1 
 

(3.4) 

0 

   

It can be shown by arguments analogous to those in the plane 

(e.g. Th.1.8, Talpur (1)) that Au(P,r) is an increasing function of r. 

Take 81  < 82 . 

Then 

1 	 1 

vs  (P) vs  (P) = 4nC le- 1-s  
2 	1 

Au(P, s 52) - Au(P, s SI) s2ds 

0 

> 

Therefore v(P) is an increasing function of 8 . 

1 

Also as 6 --> 0, vs(P) --> 4nC u(P) f e 

1 

 

1 - s2 
s2ds . 

1 

li2 
 

As the constant C was defined so that 4nC 	e 1-s s2ds = 1 , 
o 

we have that v6(P) 	u(P) as 8 	0 . 
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Thus by choosing a sequence of 8 tending to 0, we obtain 

V (P) € Cm, subharmonic in E, and decreasing to u(P) in E as S 	0 „ 

4.4 It was remarked in Section 4.2 that a function subharmonic in space, 

may be bounded above in space. We note that the theorems about the 

growth of subharmonic functions do not have the exact analogues in space. 

For example in the plane we have the Wiman-Heins theorem which can be 

stated as: 

If u(P) is a non-negative subharmonic function in the entire plane  

and if A = 	Plu(P) = 	, S
r 
= {.P1oI3  = 

,MA(r) = Max u(P) 
P S r 

and if the intersection  A AS
r 

is not null for all sufficiently large r, 

then either u 0, or lim 	rM(r) > O.' 
r --> co 

Huber()) has studied the extension of this theorem to space. 	He 

has shown that by making suitably general assumptions about the set A, 

one can make some assertions about the growth of u(P) in space. 

Following Huber, if G is a set in space, we define the solid angle 

/4(r) subtended by the set G f Sr  at the origin as the Lebesgue area of 

A Si. divided by r
2
. 
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As before, let A denote the set {PIu(P) = 

Huber has proved: 

Let u(P) be a non-negative subharmonic function in space.  

Suppose that for all sufficiently large values of r, the solid angle '(r)  

subtended by the set  A A S
r 

at the origin is not less than a positive  

number 	 Then there exists a positive number 13 depending on
o

, 

such that either u e- 0 or lim 	r".13  Pvi(r) > 0.' 
r—> co 

Since an asymptotic path has to De inside a component of 

Plu(P) > OJ. , we have to show that (0 there is at least one 

component of {PI u(P) > 0.} in which an unbounded function u(P) is 

unbounded, (ii) there is at least one component in which u(P) has the 

same upper bound as it has in space. 

However, we cannot use the above theorem directly as we cannot say in 

general that such a ?do  exists. 

We recall that in the plane we showed that u(P) is unbounded or 

identically constant in a component of tPlu(P)C)J by applying 

the Milloux-Schmidt inequality. 

We shall devote the next few sections to prove the following theorem 

which may be considered as an analogue of the Milloux-Schmidt inequality. 
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Theorem 4.2. 	Suppose that u(P) is subharmonic in  Da  (0 < R < cx)), 

and that u > 0 on a set D, meeting each spherical surface Sr in a set  

D(r) subtending a solid angle at most J4  (r) < 4n, at the origin for  

ro < r < R. 

Let 	m2(r) 1 	f 
2 	

u2 ds  r  
4nr  

D(r) 

where dS denote  an element of area on Sr 
„ 

Then for ro < r < R, we have  

m2(r ) 	r 

rn2 	 o(r) > 	f r 	exp {2 Pa( 	 ri )d log, d 
 1 r 	 r o 	 o 

	

where a() > [
14 4.1.1 

2 and j = 2.4048 	 is 

the first positive zero for the Bessel function  J0  . 

4.5 Our proof of Theorem 4.2 is long, and Sections 4.5 to 4.8 will be 

occupied with it. 

The method of measuring the growth of analytic functions (in the 

plane) subject to aeries) boundary conditions in terms of a quadratic 

integral norm was first introduced by Carleman (1). 	Later Dinghas (1) 
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showed that the method could be extended to the smooth functions in 

n-dimensions. 	However, the general subharmonic functions are not 

subject to any smoothness conditions. 	In the plane, Heins (Heins (2)) 

obtained the correct lower estimate of growth for general subharmonic 

functions by replacing the differential inequality of Carleman by a con- 

vexity condition. 	Huber (1) used a more direct method of approximating 

a general subharmonic function by smooth functions. 

We first prove a definite inequality about the growth of smooth 

subharmonic functions and later as in Lemma 4.3, approximate a general 

subharmonic function by smooth ones. 

Suppose that Po  E D, let u(P0) > 2 E > 0. 

Consider v(P) = ue  (P) = u(P) - E • 

Then the set v(P) > 0 is the set u(P) > 6 which is closed subset 

of u > 0. 	Therefore the solid angle .)-(r) subtended at the origin by 

ti,tv(P) 	ASr  is not more than fis (r) 

Thus ri(r) < 	(r) < 4ff 	for ro < r<R 

Also v(P) is negative in an open set La 	say, and the solid angle 

(4ir ft.(r)) subtended at the origin by alt A Sr satisfies the inequality 

4re 	 (r) > 4rr - F1/4 (r) > 0 for ro < 	< R. 	Thus the set rid 

extends to R and Sr meets La for all r > ro. 
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Let ro,ri,r2,...irny••• 	R be a sequence of values of ra  

Let An  be a compact set lying inside Clii Dr 
and approximatiog 

n 
 

St A Dr . We assume further that An is the union of a finite 

number of closed spheres. 

sequence of compact sets converging to di such that 

A <A2 <  	 . 1 —  

Let the distance between the sets An  and the boundary of 1•12 

be denoted by Sn. 	
8 

We define v
n(P) as v

6
(P) of Lemma 4.3 where S = 

6—n  and 

instead of u(P), we have as integrand 

v±(P) = Max rv(P),0j = Max [u(P), 	- € • 

i.e. 	vn(P) = vsn (P) = 	v+(Q)K(P,O)d0 , 

76 	 C
R 

defined over the closed ball C
r .n  

Clearly the v
n
(P) are C°3  functions which are zero in An  and 

approximate the function v
+

(P) from above. 

We define 

1 m2(r) = 
4nr

2 (5.0 

It is thus possible to construct a monotonic 
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m 2  (r) = 4v1r2 i
s
i vn2dSr  

We note that as n —> co, 6 	0 and by Lemma 4.3, vn4v+  

and mn(r),m(r) 	 (5.2) 

Let Dn(r) be the intersection of Sr with the complement of A. 

Let ,4:1(r) be the solid angle subtended at the origin by Dn(r). 

We note that as n t co, 	.vn(r) Ft(r) 
	

(5.3) 

We define n(r) for the domain Dn(r) as follows: 

r 2ffigradient f 1 2  dS 
Sr 	r 

Dn(r) 
inf (5.4) 

 

 

if f2  dSr 
Dn(r) 

 

where f ranges over all four times continuously differentiable functions 

which vanish continuously on the boundary of Dn(r), and are not identically 

zero in Dn(r). 	In (5.4), gradient f is considered on the spherical 
r 

surface Sr of Dr. 
	It is the tangential component on Sr of the three- 

dimensional gradient of F. 	e.g. If t1'  t2, t be the unit vectors at - -3 
an arbitrary point (r,G,IS) pointing in the directions of the respective 
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coordinate lines, then 

af gradient f = 	t + 	af  t +  1 	af 
ar 	r aG —2 r sin Q (5.5) 

= fr  t1  +g t2  + h 	 (5.6) 

Now in (5.6), f
r  t1 

is the component of the gradient perpendicular 

to Dr, while gt
2  +ht is the component of the gradient on the 3 

spherical surface Sr , 	Clearly from (5.4), n(r) is a non-decreasing 
A% 

function of n, as n I co 

We define a
n(r) to be the positive solution of 

x(x+1) = An(r) 	 (5.7) 

If Dn(r) = Sr, we define an(r) = 

Clearly from (5.7), an(r) increases as n(r) increases. 

Thus an(r) Ta(r) as n 	co 
	

(5.8) 

With the above notation, following Huber, we prove the folbwing 

analogue of a differential inequality due to Carleman, namely: 

d 
r 	log 	

ddr (rnin2(r)) ). > 2a n(r) + 1. (5.9) 

Let On be the complement of An with respect to D
rn
. Gn can 
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be considered to be a regular domain for the purposes of Green's formula 

and we note that 

Gn  A Sr  = Dn(r). 

Since vn vanishes identically in An, we have 

1 	 1 Iff 2 
Orr 	

j 	vn dSr 4Trr 	
(5'10) n m2(r) = 	isf vri r 2dS = 2 

Gr 	 nASr  

Suppose that r < rn. 

We have by 'differentiation, 

av 
mn(r) mn(r) = 	1 2 	vn 	dS r 4 Tr r Gn  ASr  

We recall that by Green's formula 

(5.11) 

fi(uxvx  + uyvy  + uzvz)cIG +Iffy u dG = if au v dS 

From (5.11),we have 

mn(r) mn(r) 	1  
4rrr2 

 

(Igradient  vn)2  + vn  8vn)dGn)  

 

Gn Apr 
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where gradient vn and /A. vn are the three-dimensional gradient and the 

Laplacian of vn. 

Therefore (r2mn(r)rn:1(r)) = 	Iff ('gradient vni2  + vni:svn)dGn. (5.12) 

Gn ADr 

Differentiating (5.12) again we have, 

1  (rmn(r)mni(r)) =-47-T1 	(gradient vnl2 + vn6vn)dSr  . 

GASr  

Thus (r2mn(r)mni(r)) > 417 
 ff gradient vn  12  dSr , 	(5.13) 

GnASr 

since vn vn  > 0 in GnA Sr . 

As observed in (5.5) and (5.6), we have 

avn 1 gradient vn1 2 	 )2  + !gradient vn-12  
Sr   

(5.14) 

where gradient v is the tangential component of the gradient of vn on Sr Sr  n 

Also from (5.4) and (5.7), we have, 
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r2  ff igradienstr  vn  2  dSr  

Dn(r) 
> an(r) (an(r) + 1) . 

11 v
n

2  dS
r 

D
n
(r) 

Therefore ff 2 a n 	(r)(a  n  (r) +1 	2 ff 
Igradient v 

n 
 1' dSr 
	

r
2 

> 	 v
n S 	

dS
r 

r i 	 • 
Dn(r) 	 Dn(r) 

=
n 

 (r)(a n(r) + 1).4n mn(r)2 
	

(5.15) 

From (5.13), (5.14) and (5.15), we have 

(r
2
mn(r)mns(r)) > 4n.  Ii 

GnASr  

ay 2 
) dSr + a(a+1)mn2(r) , 	(5.16) as r 

where for the sake of brevity in (5.16), we suppress n, r from an(r). 

We estimate the first integral on the right hand side of (5.16), by 

means of Schwarz's inequality as follows: 

(m n(Om' (0)
2 

= 

2 

If vn avn  ar 
dS

r 
GnA Sr  

av 
▪ ( 

1
2 if vn2dSr)(- 12  if (E11 )

2 
dSr  ) 

- 4nr
G 	 4nr G  As  

n
/lSr 	 n r 
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m  2(0.  1 	If 
4rrr2  Gnr 

(avn 
8r ) dSr 

f av 2 
Thus dS > 4 Tr 	a r) 	r 

2 
min(r)} (5.17) 

Gn  Sr  

Substituting (5.17) in (5.16),we have 

(r2m nn  (r)ms(r)) 	> r2(mi(r))2 + a(a+1)mn
2(r) „ — 	n 

Hence r2(mi (r))2 + r2mn(r)m"(r) + 2rm (r)mI(r) > r2(OW)2 + a(a+1)m 2(r) 4, n n — n 	 n  

r2mn(r)m"(r) + 2rm n(r)m'(r) > a(a+1)mn2(r) 
	

(5.18) 

Since mn(r) > 0, we can divide (5.18) by mn(r), and have, 

2 r ma 5(r) + 2n-rii(r) > a(a+Omn(r) . (5.19) 

We now wish to simplify (5.19) and to put it in a suitable form to 

be integrated later. 

We make the transformation: 

t= log r, 	CO = log mn
2(r) 
	

(5.20) 

d ce.) 	
dr 
43 dr _ 

dt 	 • dt 

m' (r) 
2. ----Tin 	. mn(r  r 
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Also CA)" d 	- 
mn(r) {_rm"(r) + mn'01 

dt 	 2 mn(r) 

r(mi(r))2  

 

m"(r) 2 	m' (r) 	r201'0)2 
n 	n 	n Thus (A)" = 2(-67 - r + r 2 	

) c6   
mn(r)  

Again, dividing (5.19) by mn(r) we have 

m"(r) 	m' (r) 
2n 	+ zr n > a(a+1) . 7 

rn" 
1 	— r-r  

mn t"  - 

.1 	, 

	

i.e. y (A)" + 1 w 	Log 2 > a(a+i) (5.21) 

2 w" + 2 f 	tij 2  > 4a(a+1) 

2w" + (1 + 	)2 > (2a + 1)2 

cs.)  • 2 
(1 + 	

LOH +  +  to,  )2  > (2a + 1)
2 
 + 	2   > (2a + 1)2 . 

+ Ws) 

Either 1 C.0" + GO' + 	> 2a + 1,  or 1 + 	+ 
tiati 

1+' - 	 < -(20+1) . 

(5.22) 

Now 	+ + 4)92  = 	+ 1 + 2 	+ Co'2  

= GO" + 	+ t.d 2  + 1 + to' +.i(4'2 

2a(a+1) + (1+4-1492 > 0 by (5.21) . 
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ton 
Since 1 + 	> 0, 2a + 1 > 0, we have

1 	
+ 1 + 	> 0 

idt This shows that in (5.22), only the alternative 1 + (Y 	1 + 	> 2a + 1, + - 

is possible. 

Therefore we have 

(4' + 1
dt [log (1 + /A)1 )},  > 2a + 1 

dt d 	+— 	log (1 + {A,') . > 2a + 1 dt 

d . log 	
e(.4+ t

(1 + (i)j- > 2a + 1 dt 

d d 
log 	

e63+1 
dt ( > 2a + 1 dt 

From (5.20), e")."  = rmn
2(r) and since dt 	r  dr we have 

r— 	
r4.  mn  r {1,09 { 	2041 > 2a n(r) + 1 . (5.23) 

which is the required inequality. 

We now integrate this inequality twice to get an inequality for the 

growth of mn(r). 	So far we have shown that (5.23) holds for 

ro < r < rn, n= 1,2,... 

2a (r) 	1 
Thus c-F.-  11°g {r 	mn2(rd 	

+ - 
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Integrating both sides co.r.t.r, we have 

1 

log 	 d  (r m
2
(r)) 	> 	2a n() d log • + log 7  

r   dr 	n 	r n ) 	 ro o r 
0 

ElciE--.1,0m0207J  log 2 r0(rmn  (1"Dr_r  
log r0 	2an( ) d logy 

r0  

 

1 h 	mn2c,  
r0(rtnn2(r )r_i  r  

0 

> 	r - exp.{ 21an(f ) d logq , 
o ro 

11  (r rnn2  (r))r_r  exp 2.fan() d log.o    

r  

Thus 

 

 

Integrating both sides t.O.r.t. rl we have, 

n2 ()] 	(rn (0) 
n2 1'; 	

exp11.2 	an( d logq 

rmn2(r) - romn
2

(ro) _> (171'1 200)1,r  f exp 	fan( 
o r o ro 

ro 	r 

d 
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2 
where (rm.(r))

.r=ro 
= r (m 

2
(r); 	+ m 2(r ) > m2(r) > 0 , 

n o n r=r
o 	

n o —  

9 
m (r 

o
) 

Thus m 
2(r) > 

n 	 r f exp.{ 2 
ro 

111  an(_) d lag 

0 

(5.25) 

Thus we have the inequality (5.25) for the growth of mn(r). 	We 

now obtain a lower bouhd .for an(r)  in terms of the solid angle subtended 

at the origin by the domains D
n
(r). 	We shall need two Lemmas for this 

which will be proved in the next two sections. 

4.6 

Lemma 4.4 	Suppose that D is a domain on a spherical surface S
r
, 

whose boundary consists of a finite number of polygons whose sides are 

circular arcs, 	The Rayleigh's quotient X of the domain D is defined as  

jI gradient fits 
Sr 	r 

inf 

 

where 
f2dS

r 

f ranges over all four times continuously differentiable functions in D 

which vanish continuously on the boundary aD of D, and are not 

identically zero in D. 	Then X is the lowest eigenvalue for the eigenvalue  
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problem: 

f + >f = 0 in D 

f = 0 on at) 
	 (6.1) 

where 	is the spherical part of the Laplace operator of Sr . 

This result is well-known and is frequently used in Applied 

t'Vlathematics. 	The result has been proved rigorously by Garabedian (1) 

when D is a plane domain. 	Following Garabedian we shall give a 

proof when D is a domain on the spherical surface Sr. 

We show that (i) the equation (6.1) has a discrete spectrum of 

positive eigenvalues 	 ---> + co and a corresponding set of 

eigenfunctions. 	(ii) the lowest eigenvalue X1  is equal to the Rayleigh's 

quotient X as defined above for the domain. 

We show first from the form of the equation (6.1) that the eigen- 

values are all positive. 	An eigenfunction which is a solution of (6.1) 

vanishes on aD, and so must have in D either a positive maximum or a 

negative minimum. 	Since A F would be non-positive and non-negative 

respectively at the maxima and minima, the negative values of X would 

contradict (6.1), 

Also X = C is not an eigenvalue of (6.1), because in that case L f = 0 

in D, f = 0 on aD, and thus the eigenfunction would be identically zero 
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in D. 	Thus the eigenvalues are all positive. 

We note that D is a (multiply connected) domain whose boundary 

consists of circular arcs and the Green's function G(P,Q) for Laplace's 

equation exists in D. 	Also the solution u of Dirichiet problem for 

u + ?u = 0 in D, can be represented in the form 

u - X f GudS = U , 

where U stands for the known harmonic function in D which assumes the 

boundary values prescribed for u. (Garabedian (1) p.342, Courant and 

Hifbert, Vol.2, p.262). 

Conversely we have that if G(P,Q) is the Green's function for a 

bounded domain D then for piecewise differentiable f, the expression 

V 

	

I
G(P,Q) f(Q) dSQ  , 

represents a solution of the Poisson equation Ay = 4, continuous in 

D + r and vanishing on 	 (Courant and Hilbert, Vol.2, p.263, 

P.D. E. Duff, p.159). 

Thus we see that the equation (6.1) is completely equivalent to the 

homogeneous integral equation, 
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u(P) = X f G(P,Q) u(Q) d50 	 (6.2) 

Since (6.2) is an integral equation with real symmetric kernel, we 

use the following well known properties of integral equations. 

(a) A symmetric kernel always has at least one eigenvalue. 

(b) The eigenvalues of a real symmetric kernel are real. 

(c) The eigenfunctions corresponding to distinct eigenvalues of (6.2) 

are orthogonal. 

These properties are proved in standard treatises e.g. Garabedian 

((1), p.370-371), Tricorn; ((1), p.102), in case of integral equations 

of the form (6.2) in the plane. 	However, as remarked in Tricomi 

((1), p.153), this theory can be easily extended to integral equations of 

the form (6.2) where P :4  (x1 ,x2,...xd, and Q = (yi,y2,.„.yn) are two 

points of a fixed n-dimensional manifold En 
whose volume element around 

CI is designated by dS0. 

These results make it possible to find an expression for the symmetric 

kernel in terms of eigenvalues and eigenfunctions. 

Let x, be such an eigenvalue whose existence is asserted in (a) for 

(6.2). 	Let u1 (P) be its corresponding eigenfunction which is normalized 

so that its square integral over D is unity. 



(6.3) 

We now form Gi(P10) = G(P,Q) 
u (P) ui(0) 

1 
(6.4) 

Then Gi(P,O) is again a real symmetric kernel. 	If Gi(P,0) ©, 

it has an eigenvalue A2  and an eigenfunction u2(P) . 

4,r P1 
u (0)u2 • (0)dS0 
	1 ru (0) dSQ 

	z 	G1  (0 P)u2 
 (P)dS 

D 

By (6.4), the right-hand side is equal to A2  ful(P)dSp br{u7 (0)G(P,O) - 

D 

u2(0)u
1  (P) 1  dS • 

X1 

And by (6.2) and (6.3), this is 

N2 
ui(P) 	ui(P) 

u2(P) r 
	

= 	(6.5) 
A1 

Thus ui(0) and 
u2(Q) 

 
are orthogonal and so must be distinct. 

We also have u2(P) = 
X2 	G1(15' (7))°2" dSC • 
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Au (P)(P) 

Z 
u2(P) = 	f G(P,O)u-(0)dS0 	A' - 	Su

1
(0)u

2
(0)dS

0 
D 	 1 fa 

And by (6.5), u2(P) = X2 	G(P,O)u2(0)60  . 	 (6.6) 

Hence A2  and u2(Q) are an eigenvalue and an eigenfunction of the 

original kernel G(P,Q). 

This process can be repeated and we obtain 

n 	u.(P) u.(0) 
G(P,Q) = 

i=1 
	A. 
	  + Gn(P,0) , 	 (6,7) 

where Gn(P,0) is a 'remainder' after n steps. 

In the present case the remainder cannot vanish after a finite number 

of steps, 	If it did, we should have 

u.(P)u.(0) 
G(P,Q) 	r  " 	(6.8) 

i=1 

where u.(0) are orthonorrnal functions, 

The formula (6.a) is valid for all P and Q as the right-hand side 

of (6.8) is continuous. 	But if P --> Q we have as is well known 

G(P,Q) --> co , and the formula (6.8) would not be correct. 
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It follows that the number of eigenfunctions u
n 

must be infinite. 

We show now that to no single eigenvalue can correspond more than a 

finite number of linearly independent eigenfunctions. 	We then conclude 

that the number of eigenvalues is infinite and that the set of eigenvalues 

can only accumuldte at infinity. 

cou.(P)u0) 
We now suppose that 

E 	I  

i=i 
denotes an expansion (as 

above)of G(P,Q) corresponding to an orthonormal system. 

Then we have u.(P) = 	41G(P,01) ui(0)clSo 	(6.9) 

u.(0(.1(QMSr. =  sip 
	 (6.10) 

Obviously, 

0 < f[G(P,0) - 
n i=1 

ui(P)u,(0,)i 2 

dS 

G2(P,O)dS
o 	

m u.(P)
2 

• i=i 

m u.(P)
2 

7 	f G2(p,0)ds 	A (say) . 	(6.11) 
1=1 	Xi- 
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Finally, integrating both sides with respect to S, we deduce that 

m  	u.21  

dS < 
P — i=1 	X.2 

D 

f G2(P,O)dS dS 
P 

D D 

if 2  < M = 	 G (P,O)dScidSp  

D D 

Thus under the assumption that 	G2(P,0)dS 0 is uniformly 

i=

m 

 

bounded for P D, we have 

m , 

i=1 	
X. 2 < M . 	 (6.12) 

We now show that this condition is satisfied. 

We recall that G
D 

is the Green's function of a multiply connected domain 

D on the surface S
r 

of a sphere with respect to 	, the spherical part of 

the (three dimensional) Laplace operator. 	Thus 	is the second Beltrcmi- 

Laplace operator on Se 
	If u and v are the curvilinear coordinates 

can be written as 

1  a 	v 	u  ) 
Al  - j----

f 

EG - F2 
au ( io7F 2 av  IRG-F2  

where E, F, G denote as usual the fundamental quantities of the first order 
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for the surface S
r 

given by ds2 = Edu2 + 2F du dv + Gdv2 
where s is arc 

length. 

Thus LI  is an analogue of the Laplace operator for the plane and 

the Green's function GD has all the properties of the Green's function for 

plane domains. 

Since the boundary of our domain D consists of circular arcs, the 

Green'S function is known to exist. Also it is known that GD(P,Q) increases 

with expanding D4 

Suppose that Co  is a circular domain in the complement of D with 

respect to Sr. Let D1  denote the complement of Co  with respect to Sr
. 

Then DCD1  and GD(P,Q) < GD (P,Q) . 1   

Also the Green's function is known to be positive. 

Therefore 

GD2(P,Q)dSQ  < G (P,Q)dSo  < 

 

D 	 D 

 

D
1  

It is evident that if we take the centre of the circle Co 
as the North 

Pole (o,o,r) then the stereographic projection maps the domain D
1 
 onto a 

circular disc of radius R say in the z-plane. 	This map is conformal and 

since Laplace's equation is invariant under conformal mapping, the Green's 

function corresponds to the Green's function in the transformed circular domain. 



• = 
2 

) dA
z (log  

R2  
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the corresponding element of area dA on the z-plane since dSo  
(14-1z1

2) 

Therefore 
j. 
 C (P O)dSQ  is uniformly bounded if the corresponding 

1 

The green's function for the circular disc of radius R in the z-plane 

R2  - 	1 
is 	

log 	
5 	

Thus the corresponding integral in the z-plane is 

Also dS
0 

 the element of area on Sr 
near a point Q (on Sr

) is less than 

dA 

1 

integral in the z-plane is uniformly bounded. 

2 

C 

where dA
z 

is an element of area near z. 

The integrand is bounded above by (log
2R 

1 
I ) 	and hence the integra! 

- 5  

is dominated by 

2 
(l09 1 2R 

z  1<2R 	
) dA 

which works out to 2nR2. 	Consequently the corresponding integral 

G (P 0)d5 	on the spherical surface Sr 
is uniformly bounded. 

D
1 	

Q 

1 

1 2 Hence 	GD(P,O)dS0  is uniformly bounded. 



- 93 - 

Setting first X = 	= 	= 	= Xm, we deduce from (6.12) that 

m < X2M from which it follows that no eigenvalue can have more than 

finite multiplicity. Also if X. < B, we have m < B2M, so that there are I — 

only a finite number of eigenvalues in an interval [0,8]. , And it 

follows easily from (6.12) that I im 	X 
CO "I  

= m. 

Thus the eigenvalues can only accumulate at infinity. 	Hence there 

exists a least positive eigenvolue 	for the equations (6.2). 

We now use the notation of the symbolic product Go u = 

fG(P,O) u(Q)dS0  „ 	 (6.13) 

D 

We also represent the iterated kernel G(n)  in the form G(n)  = 

G o G o 	 oG , where there are n factors on the right. The 

integration is carried out with respect to the argument adjacent to the 

symbol o. 

For example, the iterated kernel 

G(2)(P
1 ' 

P2
) = G

o
G = f G(P

1'
(a)Cm, P

2
)dS 

is a function of P
1 
 and P2. 

We now state the Hilbert-Schmidt theorem which will be needed 

later. 



- 94 - 

H ILBERT-SCHMIDT THEOREM, 	'Suppose that a function can be 

expressed in the form f = Goh where h is some square integrable function 

and G is a symmetric kernel which satisfies the inequality 

2  
(P,Q)OS 	< A for all P E D 

Then f has an absolutely and uniformly convergent representation 

co 	(u. o ) 
f(P) = . (u. o f)u.(P) = u.(P) , 

i=1 	 i=1 	Ai 

in terms of the eigenfunctions u. of G.' 	(Garabedian (1), p.383, 

Tricomi (1), p.110). 

Thus the Hilbert-Schmidt theorem gives us that all the iterated kernels 

(n)
(P,Q), n > 2 can be represented by the absolutely and uniformly 

convergent series 

G
(n)

(P,Q) = 
co u.(P)u.(0) 

r: 
i=1 	

x 
 

(6.14) 

It can be shc'vn er3ily (e.g. Gar-,',e.dian (1) p.385) that if f is 

twice continuously differentiable function in D which reduces to zero on 

the boundary aD, then f can be represented in the form 
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f = 	G og , where g is given by the Poisson equation 

g = - 	f. 

However, function6f of Lemma 4.4 are four times continuously differen- 

tiable and therefore have the representation 	= G o g, where 

g = - A f is again twice continuously differentiable. 	Therefore the 

functions f have a representation 

f = GoGoh 	 (6.!5)  

in terms of some square integrable function h. 

Setting ai  = uioh , it follows from the Hilbert-Schmidt theorem that 

f has a uniformly convergent series expansion 

a.u. 
f =  

i=1 
(6.16) 

in terms of eigenfunctions u.. 

The Laplacian A f can be obtained directly by applying the 

operator 6, to (6.16) and using Poisson's equation 

co a.u. 
- G o h 	E (6.17) 

i=i 

Also since f = 0 on OD, and 4 f being uniformly continuous is bounded, 

Green' s theorem gives 
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f Igradient f12  dS = - ff f dS . 
D 	

S
r 

(6.18) 

The substitution of the representations (6.16) and (6.17) in (6.18) and 

the fact that the system ui  is orthonormal gives us the following identities. 

03 0.2 
ill gradient f 1 2 dS = E -- 1 -1 r 

D S
r 	 1=1 X. 

1 

ix• a.2 

i=1 

a. 
Setting Ci  == u.o f we find for the Rayleigh's quotient, 

A.
2  

the development, 

ilgra 
Sr
d fl 2  dS 

 

03 
X.C.2  

i=1 " (6.19) 

    

 

5 f2  dS 

Thus it follows from (6.19) that the lowest eigenvalue Al  is the 

smallest value which the Rayleigh's quotient can assume. 	This proves 

Lemma 4.4. 

We further remark that it also follows from (6,19) that the first 

eigenfunction u1 is one choke for the minimizing function as it gives us 

and dS 
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the representation (6.15) with h = X.1 2u 

4.7 	We now wish to obtain a lower bound on the product X1  r2, where 

Al is the first eigenvalue for a general domain D on the spherical surface 

Sr. 	This follows from an inequality of Peetre (1) which he used to obtain 

a generalization of Coursant's nodal domain theorem. 

Lemma 4.5 	Suppose that D is a finitely connected domain with analytic  

boundary on a spherical surface Sr. 	Suppose that NO is the solid  

angle subtended at the origin by D, and  Al  is the first eigenvalue of the  

equation (4.1) for the domain D.  

r2 
	Tr • 2 	P(r) 

Then 	> 	r- ( 1  -47-r 
(7.1) 

where j = 2.4048 	 is the first positive zero of the Bessel function  Jo. 

Let A denote the area of D and L denote the length of its boundary; 

Then if D is simply connected we have by the isoperimetric inequality 

(e.g. Hayman (4), p.152) on the sphere of radius r, 

L2  > 4aA 	A2 ) ' 	 (7.2) 
4 Tr r 

 

We show that (7.2) also holds when D is multiply connected. 

Let D have complementary domains Dv  with areas Av  , and the 

lengths of boundaries L 
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• 
Let 	AL  = A = 4ffr2 - A, E.  Led  = L . 

2 Then 	L2 
= ( Ltj  )2  > 	Ljj  > E4TrAL, 

16
2 

r
2 

Therefore L2  > 4TrAl 	
2 
	  — 4nA 

r 

• #
4
) 

r  

A' 
= dirrAql - 

Y 4nrz 

= 4nA(1 	A 	
. 

Our 

Thus (7.2) holds for all D. 

Let u
1 

be the first eigenfunction of (6.1). 	We recall that u
1 
 is 

a solution of an elliptic partial differential equation and is real analytic in 

D (Gartsbudian (1), p.196). 	We show first that 	u1  does net change its 

sign in D. 

We prove first that if an eigenfunction u vanishes at a point Po  in 

D, then u must necessarily assume both positive and negative values in 

D. 	Suppose this is not true. 	Then in a neighbourhood N(P
o
) we have, 

let us say, u(P) > 0 for P E N(P0). 

From (6.1), we then have Au < 0 for P E N(P0). 

Hence u(P) is superharrnonic in N(P0) without the 'super-inean' property 
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at P
o
. 	This gives a contradiction. 	Similarly we get a contradiction 

if u(P) < 0 for P E N(P0). 

Thus utP) must assume both negative and positive values in i\l(P
o
). 	Thus 

the set where u is different from zero has two subdomains. 

The points at which an eigenfunction vanishes are called nodes. 

These nodes divide the domain D into subdomains. 	There is a theorem 

of Courant (n-dimensions) that if the eigenfunctiors of (6.1) are ordered 

acenrding to increasing eigenvalues, then the nodes of the n
th 

eigenfunction 

un divide the domain into no more than n subdomains (Courant and Hilbert, 

Vol.(1), p.452). 

It is an immediate consequence of this theorem that if u
1 

is an 

eigenfunction belonging to the first eigenvalue, then u
1 

vanishes only 

on the boundary of D and nowhere in D. 

Therefore by what we have shown, u
1 

does not change its sign in D. 

Suppose that u1  is positive in D. 

Let La (p) denote the subdomain of I) where u
1 

> p. 

For 0 < p < max ul, the boundary a A (p) of A (p)  is composed 

of the set of level curves u
1  = p of the eigenfunction u

1 
and is therefore 

piecewise analytic. 
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Denote by s the arc length and byy 

the inner normal along the level curves. 

The element of area in D = ds 	ds.dp  8u 

Let us write A(p) = f dA , 1.(p) = 	ds . I 	(7.4) 

gb(P) 	 WO 

D(p) 	f !gradient u11 2  dA , H(p) = 	u1  2dA (7.5) 

(P) 	 r.Qj (p) 

Then A(p + dp) - A(p) = dA = Al(p)dp 

Also from (7.3), dA = 	f 	 -1 = dp f 'gradient ul 	ds. 

a LOA (p) 	 a1 4(p) 

Similarly it can be shown that, 

1 1)1(p) J = -D1(p) = 	I gradient uil ds . 

a DJ (p) 

According to Schwarz's inequality we can write, 
9 

L2(p) = ( f ds1 < 	1 gradient uil cis f I gradient u11-1  ds. 

atil(p) 	D a (p) 	a SL I)) 

12(p) < I Ds  (01 / A. (P)I • 
	 (7.6) 



> 41r 
A(p)  (1  A 

4ff r2 ) • I A' (p)I 
(7.8) 
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By the isoperimetric inequality for these domains, we have, 

2 	 A(p) 
L (p) > 4 n A(p)(1 - 

4nr 
(7.7) 

From (7.6) and (7,7), we have 

D'(p)1> 4sr 
A(0) 	

(1 
I (p)1  

A(p)  ) 

4nr2  

We now apply a process of symmetrization replacing the domains 

A(,o) by the concentric circles dl (p) with the same areas in the 

Euclidean plane. 

We replace the function u
1 

by a function u
1 

(in the plane) which 

.-• 
is equal to p on the a 	(p). 	Thus the domain of definition of u

1 

is a circle a a (o) (in the plane) whose area A is equal to that of the 

domain D on the sphere. 

Thus clearly ts'A(p) = A(p) and AI (p) = 	(p) . 

Hence from (7,11) we have, 

I Di (p) 	> 4n '(P)  	(1 
(P)  

A 

4nr 7 
(7.9) 
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w 
We note that in the case of the circular domains 	(p) in the 

plane for the symmetrized function u
1 	

is constant and we get 

equality in (7.6). 

i.e. 
	2(0) = J 51(p)1 

Also for the circular domains we have, 

r.0 
4n A(p) = L2(p) 

Therefore 1-61(2) I = 

 

(7.10) 
'A I 	s (p)/ 

From (7.9) and (7.10) we get, 

A 
ID'(p) I > I Ds (p)f (1 	 -) • 

4nr 

Integration over the interval o < p < max u1  finally yields, 

D > D - A 
4nr2  

Moreover H(p) = 11(p) and H = H. 

ITD 
Therefore 	

> 	 A ? 
 

4nr 
(7.11) 

Thus Xi = Tr  is bounded below by 	(1 - -A2), where !) , 
4n r 
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H are defined in the plane for a circle. 

By the result of Faber-Krahm the first eigenvalue is a minimum for 
.2 1 a circle and is equal to n 	. 	(Garabedian (1) p.413). A 

Thus we have from (7.11), that AI  > 	- A  P. rg" 

Since A = 1.4.(r).r", we have the required inequality 

.2 
X r2  > 	Tri 	(1  1 	TairT 

This completes the proof of Lemma 4.5 and we are now in a position 

to complete the proof of the theorem 4.2. 	We do this in the next 

section. 

4.8 Since a is defined to be the positive solution of x(x + 1) = A, 

where X = Al  r
9

we have 

-1 + J4X +1 
a 

  

 

• 

2 

And from (7.1 ), we have 

a > 2j 
.2 41T1 	14(1.) 

- 41T ) • 

i.e. 	a > 
.2 	. TA__ 	2  - 1 	- 	 (8.1) 4  



4 
MOP 2 

.2 
where a(r) > 

We recall from (5,23), that 

(8.2) 
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for a domain D which subtends solid angle p(r) at the origin. 

Suppose that Dn(r), the intersection of Sr  with the complement of 

An is connected and has no isolated boundary points. Then the boundary 

of Dn(r) consists of finite-sided polygons whose sides are arcs of circles 

formed by intersection of spheres in An  with Sr, 	Also 

is Cm)  on D (r) and its boundary. 	Thus the hypotheses 

and 4.5 are satisfied and we have froM (8.1), 

the function v
n 

of Lemmas 4.4 
n 

an(r) > 1[22A_ - 

whereas before 	(r) is solid angle subtended at the origin by Dn
(r). 

We note as in (5.3) that as nfo3, 14(04 F. . 

Therefore as nirco, an(r) ta(r) where 

a(r) > 
.2 
I - 

 

2 • 4 

 

    

Since fi(r) < /lit (r), we have as Witco, an 	a(r) , 
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m 2(r) > 
n — 

'1) 

exp./ 2 f a4) d log 	d 

r
o 	r

o 

As n —> a), m
:

(r)iml(r) and a 
n
(E)Ta( 	which is given by (8.2). 

m2(r) > m-(r0) 
r exp.{ 2 

r
o 

f0,4(5.)d log 

a 

d 

This proves the theorem with the difference that m2 ( r) is not the 

one defined for u in the original statement, but for uc = max [u1 6] - 6 

for a positive 6 

Letting 	6 --> 0, we get that the result holds when m
2
(r) is defined for 

u. 

In the case when Dn(r) is not connected, D
n
(r) consists of a finite 

number K of domain 4,1" 4,2(r)''''" 'an,K(r)  • 

And let
n,1'n,2`••.X 	be the corresponding smallest eigenvalues 

for these domains. 	Then the Rayleigh's quotient for D (r) is the least 
n 

of these K eigenvalues. 	And it follows that (8.2) holds also in this case 

and the theorem follows. 

We further remark that the Rayleigh's quotient is not affected by 

an isolated boundary point. 	Also D
n
(r) can only have a finite number 
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of isolated boundary points as An is a finite union of closed spheres..  

Hence (0.2) and the conclusion of the theorem holds in all cases. 

4.9 We now prove the following theorem which will be needed for 

construction of an asymptotic path for a subharmonic function. 	WiOw the 

previous notation, we prove, 

Theorem 4,3 	'Suppose that u(P) is subharmonic in space. 	Let  

F
R 

be a component in  C
R 

of the set 4.plu(p) > c} containing a fixed  

point  Po  such that u(P0) > 0. 	Suppose that u > 0 on a set Gil  in Fr,. 

Let aR(p,) refer to  G() (i.e. GR  A 55  ) and a() = urn a4g) 
R-4co 

Let 1\4,, = Sup u(P). 

Then either ivi, ••••-•.> + co as R 	co 
a. 

co 

f a() d tog 	< + oo 	 (9.2) 

r 
O 

Suppose that R < 	. 

is subharmonic in a neighbourhood of 

By Lemma 4.1, all the components of{ Plu( 	> 0} extend to S
R 

We now define 	v(P) = 
u(P) for P E F, 

0 elsewhere. 

or 
	

(9.1) 
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By Lemma 4.2, v(P) is subharmonic in D. 

Also v is positive in the set Git  . 

Let 	m2(r) —LT  mv2(r) = 	 v2dsr  = 1 2 
 41r r G(r) 	4 rr r G(r) 

as before. 

Since v2 is subhannonic m2(r) is an increasing function of r, 	It is 

non-negative. 

Also rn(r) can be zero only if v(P) E- 0 in Dr by the Poisson-Jensen formula. 

Therefore m2(r) is positive for some r = ro, and hence for ro < r < R. 

We note that by Lemma 4.1, G,, meets Sr for ro < r < R . 
Ek 

By applying Theorem 4.2 to v, we have 

m2(r) > m2(ro) 	exp.{ 2 . 

r 
 0 

	 lz() d log 	 (9.3) 0-

0  

We note that as R increases, two or more components, say FR  and 
1 

PR 	of I plug.) 	may meet in CR  for R2  > RI  . 	Thus if R2  > Ri, 
1 	 '2 

G(q) for GR  is a subset of G(f ) for G„ . 	And consequently ar, (-) 
1 	 42 	 '1 

is not less than a() . "2  
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Therefore if = Urn a
R(5 we have 

aR( ) for all R . 

2 	 A 
Thus we have :n2(r) > m  r(re)  5 exp 	2 j a(0 d logfi d 7. 

ro 	L 	ro 	(9.4) 

co 

Now either 	5 a() d log < + co  

ro 

C)7 

a( ) d log 	gi(1) where gi(1)—> + co as t 
r 

If the second alternative holds, we have 

in2(ro) 2(r) >
r  

exp 

For r > 2r0 we deduce that 

or 
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> exp 2g1 (-1-4 

ex p 	291 (1)1- crl 	 as r —> CO 

r
o 

Since vn2(r
o) > o, and obviously !vL > m

r  we have that the second R -  

alternative implies that 

M
R --> + co as R—> . 

This completes the proof of Theorem 4.3. 	In the next section we 

study the consequences of theorems 4.2 and 4.3. 

4.10 	Suppose that F is a component of {plu > of in which u > o 

somewhere. Let G be the subset of F in which U > o, and G(f ), and 

a(f ) be the intersection and its corresponding a respectively as defined 

previously for spherical surfaces 

co 

Now if 
	

a() d 	< + oe 

r 
0 

then it follows that a( ) < E except for a set of finite logarithmic 

measure on the r-axis. We recall that if the solid angle -A• () subtended 

by 	) at the origin is not more than 4Tr - e l' we have 

Thus 
	1 

r  
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This shows that if 

subtended by 

> 

= 

2 	.2 
_ 	-1 

- 

a) 	the solid angle frt 

than Orr - E
1 	

outside 

44-E 	—2— 
1 

.2 
v"1 1  [1 

4 	4(41T - 	61  

f( El) 	> 	C . 

co 

5 a( 	d log 	< + 
r
o 

at the origin is greater 

a set of finite logarithmic measure. 

If a component has this property then its complement and so every 

subset of the complement has the property that its intersection G(5) 

subtends an angle not more than 6
1 

on a set of density one on the 

r-axis. 

Hence for the components having this property which we shall call 

the 'smallness' property, 

co 

a() d log. 	is unbounded. 

r
o 

Consequently ,7, 11  —> + OD as R 	as if m
2(ro) > C3 . 	Thus it follows 

that if P
1 
 and P are distinct points where u > 0, then either FR  is 

finally identically the same for P1  and P2  or M„ —> + co for the 



component corresponding to at least one of these two points, 

We shall say that the set 	P)u(P) > 0_10• or iPlu(P) > OJ 

has only one component if any fixed points in space where u > 0 	EL> 0 
P t't (0) 3 — 

belong to the same component of -1 PIu(P) > 01 in C
R for all 

sufficiently large R. 	We note that if u is subharmonic and bounded 	in 
ot tP114 (0> 03 

space, then the set { Riu(P) > 01. can have only one component in 
A 

space in this sense. 

4.11 	Now we are in a position to prove the following theorem 

which is the analogue of Theorem 1.1 in the continuous case. 

Theorem 4.4 Suppose that u(P) is a continuous non-constant subharmonic  

function in space. 	Then if u(P) is unbounded in space, there exists  

a path P tending to co on which u(P) tends to + co; and if u(P)  

is bounded above in space, there exists a path r tending to co on  

which u(P) tends to "4 where !'ll is the upper bound of u(P) in space.  

Since u(P) is a continuous subharmonic function, the set [ PIu(P) > 0} 

is open and consists of at most a sequence of don-gains G, , 2,  = 1,2,... . 

Also u(P) = 0 on the boundary of each Go  . 

Therefore by the Maximum-principle each Gio  extends to infinity. 

Suppose that u(P) is bounded above in space and that M is the upper 

bound of u(P) in space. 
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We claim that there exists a point P1  such that u(Pi) > 	- 	. 
For if it did not exist, the upper bound of u(P) would be M - 

It follows from theorem 4.3 that in this case there is only one component 

of the set {..Plu(P) > M - 	in space, namely the one containing 

P1. 

In this component we choose P2 such that u(P9) > M 	1 . 
2 

Join PI to P2 by a continuous curve y1 lying in the domain 

iPtu(P) > M - 4- . 

Now P2  lies in {Plu(P) > M - -IT 	. 
2 

Also this set has only one component, namely the one containing P 

Again choose P3 in iPlu(P) > 	12- 	such that u(P3) > M 
2 

 } 
 

As before join P2  to P3  by a continuous curve y2  lying in the domain 

iu(P) > M 2 	• 
Thus by a step by step argument we get a path 	r. y1  + y2  + 

such that u(Pn) > M - 
n  
1 	and u(P) > M - 	on yn  joining 

2 
2n-1 

Pn-1 to Pn. 

Thus we have an asymptotic path r such that u(P) 	M , 

as P --> co on r . 
We now consider the case when u(P) is unbounded in space. 

2' 
I 
2 



[other component of qu(P) > C in space has the 'smallness' 

3. 
Suppose that the set fPlu(P) > 0 has more than one component. 

property. 
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We remark that if u(P) is a continuous subharmonic function, it 

can be shown easily that the modified function v(P) defined as below is 

also subharmonic. 

v(P) = 

u(P) in a component of 	u(P) > 

elsewhere . 

Consequently the conclusions of theorem 4.3 hold for a continuous 

subharmonic function when G, is a component of {_PI u(P) > 03. in 

CR 
instead of being the set where u is positive in a component F

R 
of 

{Plu(P) > Q 	inside C
R • 

Suppose that Po  is a point such that u(P0) > 0. 

Let GR  be the component of {PJu(P) > 0] in CR  containing P
o
. 

Then by Theorem 4.3, either 

M., 	+ co , as R —> co ; 

co 
or 

f a() d log 	< + co 	 (11.1) 
ro  

We noted in section 4.10 that if the second alternative holds, then every 
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Then either u is unbounded in every component G of iPlu(P) > 

for any K (> 0) in the sense that 

M, = sup 	u(P) --> + co as R ---> cc) 
PEG AC,  

or there exists a component G' of {Plu(P) > Ki. for some K in which u 

is bounded. 

Since u is unbounded, there exists another component G" of {Plu(P) > K 

This component and any subset of it has the 'smallness' property. 	There- 

fore u is unbounded in C" and in every component of f Plu(P) > 103. 

lying in G" where K' > K. 

As the set { Plu(P) > 0 has more than one component, we can 

choose a component G(o) containing a point Po  such that u(P) is unbounded 

in G(o) and in every component of f Pi u(P) > Ki (for any K > 0) lying 

in G(o). 

Let G„(o) be the component of {Plu(P) > 0.1 containing the point Po' 

Then 	M,(o) —> + co , as R --> co  , 

where M ,(o) = sup 	u(P) . 
li. 

P E. G ,,(o) 

Choose al such that ".;1„ (o) > 1. 

There exist points in C, (o) on S„ on which u(P) > 1. 	By continuity 



P1  in a domain G (o)`•, S such that u(P1 ) > 1 
R1 	1 
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u(P) > 1 in a neighbourhood of such points. 	Thus we can find a point 

We joint Po  to P1  by a continuous curve y1  lying in a domain 

G 	(o)'k. Sr, . 
‘1 

Let G(1) be the co nponent of { PIu(P) > 1j. inside C i  containing P
1 

Then this component of {Piu(P) > 	also has unboundedness 

property, i.e. 

M (1) --> + co , as R —> co 

Choose R2  such that M, (1) > 2 
'‘‘2 

As before find P2  in GR2(1)"•,S„ such that u(i) > 2. 

We again join PI  to P2  by a continuous curve y2  lying in G„ -%., S r, 
è 2 

Continuing in this way by a step by step argument we get a path 

+ y2  + 	+ yn  + 	passing through a sequence of points 	Pn  } such 

that u(Pn) > n and u(P) > n-1 on yn  joining P
n-1 

 to P
n

, 

Thus on path r we have that 

u(P) --> + ea , as P --> co 

We note that in the proof we assumed that the set .{ PJu(P) > 0.1 hes 

more than one component. 	If the set {Plu(P) > Ki has only one component 
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for all I values of K, then u(P) is unbounded in that component 

and the asymptotic path can be easily constructed by the classical argument. 

tIf for some K, the set Plu(P) > Kj. has more than one component, then 

we choose a component G which has the property that u is unbounded in 

}G and in every coliponent of 1 Piu(P) > Ki lying in G when K' > K. 

By the above method we can construct an asymptotic path ri in G such 

that u(P) --> + co as P —> co on r . 
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This completes the proof of Theorem 4.4. 

4.12 In the case of a general subharmonic function we are able to show 

the existence of a continuum r on which u(P) tends to the upper bound 

M in space. 	In the case when M is finite, we shall show in the next 

Few sections that the continuum can be approximated by a polygonal path. 

Theorem 4,5 	If u(P) is a subharmonic function in space, there exists  

a continuum r such that u(P) -> M, as P ---> OD on r , where M 

is the upper bound of u(11 in space. 

Suppose that M is finite. 

Choose a point P1  such that u(P1) > M 	. 

Such a point exists for if it did not exist, M - / would be the upper 

bound of u(P) in space. 

Choose a point P2  such that u(P2) > M - 
2 

Since u(P) is bounded in space, it follows from Theorem 4.3 that the set 

> M 	tioriPtu(P) > M - 4has only one component in space. 

In other words for sufficiently large values of R, the points P1  and P2 

would belong to the scale component F, of {Plu(P) > M - 1 	in Ca. 

For if it were not so for any Finite value of R, the set 	Plu(P) > M - I 



of FP (1) 
1 

 Y1  
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would have two components and by theorem 4.3, this would contradict 

the hypothesis that M is finite. 

Suppose that tit  has this property for P1  and P2. 	Then the component 

FR  (1) of 	Plu(P) > M 	;. in C
R1 

containing P1 and P2 extends 
1 

to the boundary SR  by Lemma 4.1. 
1 

And we can join P1 to P2 by a subcontinuum 

We now choose P3 such that u(P3) > M - 
23 • 

Similarly choose R7  so large that P2 and P3 belong to the same component 

in c,a  . 	Again we join P2  to P3  FR2(2) of t Plu(P) > M 	2 
1 I 

2  2 

by a subcontinuum y2  of F,, (2)  in CR2 	
22 and we have that u(P) > 	1 

2 

for Pe y2  

Continuing in this way we have 	P = y1  + y2  + 	 passing 

through a sequence of points 	 n} such that u(Pn) > M - 21 
n 
 and 

u(P) > M
2
n-1 for P € yn joining Pn-1 and Pn. 

Thus there exists a continuum r on which 

u(P) --> M, as P —> co . 

We now consider the case when u(P) is unbounded in space. 

1 

1 
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{Then either u is unbounded in every CoMponent of PI u(P) > K} for 

any K (> 0) in the sense that 

M
R --> + co as R ---> co . 

Or there exists a component F' of PIu(P) > K} for some K in which 

u is bounded. 

{Since u is unbounded, there exists another component F" of Plu(P) > K 

This component and any subset of it has the 'smallness' property. 	There- 

fore u is unbounded in P" and in every component of i Piu(P) > K'}  
lying in P' where K' > K. 

Suppose that 1.Plu(P) > 0j has more than one component then we  

can choose a component F(o) containing a point P
o 

with the property that 

u is unbounded in F(o) and in every component of {Plu(P) > K 	(for 

any K > 0) lying in F(o). 

Let F
R
(o) be the component of .{Plu(P) > C.} inside CR 

containing the 

point P. 

Then M
R
(o) --> + co as : --.. co . 

Choose R1 
such that "A,P)> 1. 

Choose a point P1  in FP  (o)such that u(P2) > 1 . l   

Join P
o 
 to P1  by a subcontinuum y1  of F ,  (o). 

1 
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Let F,,(1) be the component of { Pfu(P) > 1} inside C,, containing Pl. 

Then this component FR(1)  also has the unboundedness property. 	Choose 

R.,2  such that M1, (1) > 2. "2  

Let P2  bs a point in FR (1) such that u(P2) > 2.2  

Again as before loin P1  to P2  by a sub-continuum y2  of F, (1). 

Continuing in this way we have a continuum r = y1  + y2 + •" 

passing through a sequence of points { 
Pn} 

 such that u(Pn) > n and 

u(P) > n-1 for Pe yn-1  joining Pn-1  to Pn. 

Thus there exists a continuum C on which u(P) —> + co as P ---> co 

OR 1"7  1 	. 

We note that we assumed that the set {Piu(P) > 0,1 has more 

than one component. 	If the sat / PI u(P) > isi has one component 
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in C
R for all real K and R, then the same argument as for finite M gives 

us the required continuum. 	If at some stage the set splits into more 

than one component, it follows from the above argument that the required 

continuum exists in at least one component. 

This completes the proof of Theorem 4.5. 

4.13. 	Now we prove an analogue of Hayman's theorem (Lemma 1.6) 

in the plane about the minimum of u(P) on rays going out from the origin. 

We will usually denote by P a point inside D, and 0 a point on r. 
the surface Sa. 	Let KR(P,0) denote the Poisson Kernel of Da  so that 

if v(P) is harmonic in D
R' 

continuous in CR, we have 

v(P) = 	K,(P,O) v(0) dS0  , 	 (13.1) 

where dS
0 

is the area element of 0 on S
R • 

Let G
R
(P
'
T) denote the Green's function of D

R' 

are both in D
R' 

this is given by 

	

G,(P,T) = 1 	R 1 
-- 

	

PT 	r PT 

If P and T 

(13.2) 

where OP = r, and P` lies on OP extended and OP' = R
2  

Since the Green's function is symmetric G0(P,T) = GR(T,P) and G
R
(P
i
n 
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can also be written as ;if  - rR  Tr% where OT = r
1 

1 

and P as before is the inverse of T. 

(13.2a) 

We first prove an at1ogue of the Poisson-Jensen formula. 

Lemma 4.6. Suppose that LL) (P) is subharmonic in space. 	For every  

R > 0, there exists a unique non-negative distribution F4(e) defined  

for all Bare) measurable sets e in space and finite on compact sets such 

that for all P € R we have 

if 

	

i 	 f CA) (P) = 	' 40(0)Krz(P,O)dSo  — 	Ga(P,T) c-1-(eT). 	(13.3) 

	

0€ S
R 	 TEDR 

We recall the Fundamental theorem of F. Riesz in space (Evans (1), 

p.237). 

If (4.)(M) is subharmonic in a bounded domain D, and ta is a 

domain contained with its boundary in D, then (A7  (M) may be written 

in the form 

(A.)(M) = v(M) 	u(M) for M Di 

where u(M) = 

	

TE 
	M1  T cilLt  (GT) 

	i.e. it is a potential of a 

distribution of positive mass on a , finite in total amount, and 
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v(M) is harmonic in %Si 

CO(P) is subharmonic in CR+E  for some 
	

g> 0. 

Choose R' such that R < 	< R + 6 	Then the Riesz mass in D
R' 

is finite. 

Also for all points 0 on SR , we have by Riesz's theorem, 

1 44)(0) = v(0) - f  oT dlLt ) 
T TE DR' 

• 

By using (13.1), we have 

1 if(P,0)63(0)dSc  = v(P) - 	P,O)dS0.1 	 di((eT).} 
S, R 	 L TE D

R' 
(13.4) 

We invert the order of integration in the 2nd term on the right-hand 

side of (13.4). 	This is justified since the integrand is positive. 

Thus ff KR(P,O)I0(0)dS0  = v(P)  f d" (e . 

) 

ffK  •(p, 	dSo. 

Te D„. 	
T sl 

 

(13.5) 

Let OT = r1  and as before let 1' be a point on OT extended such that 

2  = R  r
1 



KR(P,Q) &dSQ  

ff 	01T as = ff K R(P,0)-13- 
ri  

TE an 	 SR  
TED,, 

1 dS„ = 
T'Q " rl

R 	1 
.Trir 
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Suppose that Q and T belong to CR  

Then OT
1  and 	are harmonic functions of 0 , and the former 

Tr1—Fr  

has a singularity inside Cr, . 

And we have 

11 K (P,O) 	dS + K
R(P,O) OT

1  S + 
R 	6.1

1 
 

SR 

and TE DR' 	
TE DR 

 

but T CR  

K r,(P,O), 01t 
 dS 

 0 

TES
, 

 

By (13.1), the first integral on the right hand side is equal to 1.31 T  . 

It is well known that if T and T' are inverse points with respect to 

a sphere and 0 a point on the surface of the sphere, then 
OT 	rl 
"7"0" R 

when r1 
= CT and R is the radius of the sphere. 

If T is in DR, then I' is outside Cr, and in this case, 
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We note that 1 	1 P,Q) 
101 	P dS = 	when T is outside T 

the closed ball C . 	Also the integral is equal to 	when T 
1 Tr1' 

is inside the open hall Di,. 	Also the integral is a continuous function 

of T. 

Also on the surface S
R' T is its own inverse and R — r1 T

1 _ 1 
IT - -ff-  • 

Therefore the value of the integral for T on the surface is the common 
1 	n ,.. 	1 value -Fr. = ••••••••• •/

...:117.  r when I' = T and R = r
1 r1 

From (13.5), we have 

	

1 	 :I;  tff < (p,o 0) ) 	(0) dS = v(P) - f -py ur(
eT

) 1 D 	TE DR 

ri 	
T) SR 	 T E DRI `k. 

(13.6) 

We note from (13.2) and (13.2a) that 

P = r1:4  T. 

From (13.6), we have 

if 
SR  

K
R 

 (P
•  Q)C4(0) dS0  = v(P) - f 1 	 R 1 

PT utt(eT)
-   f 157 T) • Te Dre D 	 TE DR 
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= v(P) 	dp R 1 
7 	

IA,.  
Pirr ( 	4, eT)  

v(P) - u(P) + f G,(P,T) (e T€DR 

= W (P) + f Ga(P,T) dkife  
) 

TE DR 

is the required result. 

4,14 	We now introduce some more notation and then prove an 

analogue of Lemma 1.6 in space. 

4.)+(P) = Max {0, GO (P).] , 	(.5(P) = - Min [0, 0.) (Pi  , 

1 	w (r) = Sup 	-(t,G,A for fixed 2 and . 
O<t<r 

We define t"(t) - 	 
1 - 

Theorem 4.6 Suppose that 60 (P) is subhan-nonic in a neighbourhood of 

a closed ball  C, then with the above notation  

12 
	1 	4 

c i)  (r) dSr 	2 
< 	+ + ' 1 	ifra(0) 	dSQ  

Orr R 
Sr 	

S„ 
(14.1) 



4.r-7172--• 
J7 
S

r 

1 fr 
4rir 

S
r 

2 2 
IQ) d5

r 
 < (

Zn + 
	- 

R
1 +

r77- 

(i) 

g(R,r,r Is• 

dSr  < 1 + 2  log 
R + r 
R- r 

(14.5) 

(14.6) 
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jFollowing 1-layman [1, Lemma 1, p.106 	, we estimate first the 

integral means for the supremo of the Poisson kernel and the Green's 

function on the radial segments. 

Suppose that P lies on the radius joining the North Pole (0,0,R) and 

the Origin. 	Let L
POT 
 = Q and CT = r1,, , OP = r . 

Let 

Let 

R(R2  r
2

)  K
R
(P,O) = K(R,r,Q) 

(R2 
+r  2 

- 2rR cos Q)
3/2 

2 
k:(R,r,Q) = Sup 	

KR - r)  
C<Kr (R"7  + t2  - 2tR cos Q)

3/2  
mM,  

(14.2) 

(14.3) 

We recall that the Green's function for DR  is G,(P,T) =s1 	
R 
-r 	

1 	
. 

We write GR(P,T) = 	 ,Q) 

Let g(R,r,54 ,Q) = sup G(R,t,ro, ,Q) 	 (14.4) 
C<t<r 

Lemma 4.7 	With the above notation, we have 
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1 Let 	I = k(R,r,G)dSr . 41-rr
S  - 
r 

2n n 	 rr 
Then I = 

41n f f k(R,r,G) sin G dG cifs = z 	k(R,r,G) sin Q dG 

0 o 	 o 	 (14.7) 

If in (14.3), we substitute t = t
1
R, we have 

-  k(R,r,G) = Sup r 	(1 ti) 

a  0<t<r
1  - 
	(1 + t

1 
	2t

1 
 cos G)3/12  R  

We note that for 7-2- < Q < n, K(R,r,Q) is a decreasing function 

of r and therefore, 

k(R,r,G) = 1 , for 	<42 < n 
- - • 

1 - t12 	 1 
	 t12 

 

1 

     

(1 + ti  - 2t1  cos G)3/2 
(1 + t2.1 - 2t1  cos Q) 	(1 + t2.1 - 2ti  cos 4P).  

2 

- 
For 0 < 	

1 	t12 
< 	we note that 	  increases 

1 + t1 2 - 2t1 
 cos G 

1 from 1 to -a -- as t
1 

increases from 0 to1 + cos
sin  G 

4.;)  , and then 

decreases again. 	Also 1 	 1 
2 	

increases from 1 to . n (I + t - 	2 t1  cos G)2 	
sin  



1 - t G  Since cos n > 	cos, we note that 	 1  
1 + Sin G 	 (1 + t

1
2 - 2t1  cos G)3/2 

2 
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as tf increases from C to cos G , and then decreases again. 

is an increasing function of t1  for G between C and no, where no  is 

given by 

cos Go 
r
1 (14.8) 1 + sin Go 

Also in the range G < G < — 
o 	2 

(1 - t 
2

) 
k(R, r,G) < Sup 	 1 	Sup 	

1 
 

o<it<r (1 + t 2 - 2t cos G) o<tr 
-- 1 	1 	1 	-- 1 	+ t 1  - 2t

1 
 cos G 

• 

—
<  1  

Sin2 
 G 

Therefore k(R,r,G) < 

for o < < G
o , 

Go < G  < • 

< G < TT . 

2r 	 Go  1-r1  
We deduce from (14.8), that cos no = 	1--2  and tan 	= 	. (14.9) 

1 + ri2 	2 	l+r1 
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(1 - r12) Sin G &Pi sin Q 
2 

sin2G (1 + 	2r1  cos G)372 	 +
0  

def; + 

Tr 
+ f sin G dG 

TT 

1 
AP* 

  

   

-0 - r12) 	 o 

+ r2 - 2r1  cos Q) 
+ [log tan 

2 
Go 

   

    

• 

• 

2 

Substituting the values of G from (14.9), we get 

-(1 	- r12) 1 - r12 1 + r1  
+ + 2 

2 	4r1 2  r1(1 

09  

- r1 ) 

1 + r 1  

log 
1  r1 

+ r1 	- 
1 	r1  

1 + r1  r 	) 	1 + 1
2 	r1 2 

 
r1(1 	- r12) 1 	- rt 



= 

Thus I < 

1 +r 
2 + log 

1 

1 
1 + 	log 

r
1 

+ 

1 - 
rl  r

1 

+ r.  
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Substituting r
1 
 = r 	we have 

R + r + R  -  
< 1 + log  R- r 	2  

Since the third term on the right hand side is negative, we have, 

1 < 1 + I log P,, ̀ + r  

(ii) 	We observe that in our notation (14.4), 

r 

G(R,r,rt, 	- 

 

1 

 

a 

 

1 

      

      

    

/R4  2 2R2  
,  2   + µ cos G 

 

+ r 2  - 2r rt. cos 

 

r + 	- 2r 	cos Q 	+ 	2 2R2r rp. cos Q 

If we substitute r = pa and r 	= p R, then we have 
/4, 



if g(R,r,riA 
4nr2 

Sr 

We wish to estimate 1
2 

1 
,Q) dSr  

Then 1 = 
2 4n 

1 
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r 
, Q) = 

1 
R 

  

1 

 

    

  

_ 2 _ 
2p p cos 

 

      

 

1 

 

(14.10) 

   

lf.r+ 
'`j  
_2_ 2 

" 
2p P cos 44 

tA 

 

2n rr 	 IF 

f g(R,r,rt, 	sin Q d44 die = z 	g(R,r,riu  ,Q)sinGs144 

0 	 0 
I 
0 

We write 

1
2 	

g(R,r,ro  ,Q)sinGdQ 	 ,Q) sin G dir? 

1
2 

= 1
3 

+ 1
4 

(say) 
	

(14.11) 

1
4 

can be easily calculated as follows. 

From (14.10), G(R,r,rp, ,Q) = 

2 2 
P 1 	  

Imo 

zci,, cos 	- (p2 	- 2ppr.  cos Q) 

 



sin d4) 
	 _ 

o<t<p 
+ 2  fi 	 p- 2tpta.  cos G 

1/2  
1 

2 R 
0 

sup 

weaditz. 
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where D = P P 
	

2p cos G 1+p20 2- 2p4 cos G p 
	

2ppia  cos G 

Fr+ 1 - 2pppt  cost 
P P fr" 

Therefore G(R,r,„ ,G) - 1 	(1 - 2 )( 1 	
2 

)  
I) (14 . 12) 

For 7  < G < n, the expressions under the radical sign are increasing 

functions of p (and hence of r), and since in (14.12), the numerator also 

decreases as p increases, we have that in this range G(R,r,ri, ,G) is a 

decreasing function of r and hence its maximum is at r = 0 and is equal 

1 , 1 
TO 	7  k 	— 1 ) . pp,   

Thus I = I 
4 2  

1 1 
R 

- 1) 
1 

sin G dG = 2
1
R 	- 1) 

11•111 (14.13) 

or the evaluation of 131 we consider the two terms of (14.10) separately. 

'Y2 

Obviously 1 	g(R,r,r ,G) sin G dG < 2 

0 



it2  + p2 - 2tpit  cos 

p
1 	1 	 

to 	sin @ as t increases from 0 to p cos 4; , and then 

decreases again. 

This case can be easily dealt with later on as the Riesz masses would be 

entirely outside the sphere radius p and the Green's function would be 

harmonic inside this spl-are. 

In any case, 

However, if p < p 	, then 	  increases from 1 
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I6 inf 
o<t<p 

 

sin 4; dG 

  

    

-4(1 + t2o 2  2tp cos 

13  < 1
5 
 - I

6 
 (say) . 	 (14.14) 

We first estimate 1
5 

ForO<G<E 2 	i  IFP>Pa 	sup 
r 0<te.o 

  

1 

  

     

142 +p 

 

2tFI4  cos 

 

is 1 
sin G • 

1)- 

1 	 sin 	14 
 dG , < 	 = 	= 1 4Ro 	77:— J - 2R 	 sin 09 

1)- 	 t-4  
0 

(14.15) 



Therefore 16 
= 	

R 2 

1 j 2 
1.Sin G.dG + R 

1  P/A  
cos 

PP 	
tl 1 E  + p  27, 2 _ 2p?,  

IA 

„A + 022  2 _ 1  i 
' P. 

cos QY 
os —j 2 

1
6 	2 

= 1R 
PP 

1 — 2 

PP 1 
PP 2 
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In order to evaluate 16, we note that for o < Q < , 

1 

	

	 cos 
 	increases as t increases from 0 to 

CP. 
1/1 + t2pi, 2  - 21'9, cos G 

and then decreases again. 	Thus the minimum value in the interval [0,p] 

is attained when t = 0 or t = p, and is 1 or 

respectively. 

1 

11 2 2 o p 	- 2pp cos G 

Also 

 

1 

 

< 1 if p2 p
IA

2 > 2pp cos G 

   

  

+ p2p 2  - 2ppf"  cos G 

cos G i,e. 	if p >  7  

1/2/. 	
0 

sin Q de 

ji 4.  2 2 _ 2  
_1  P?, 	P 	PIA  cos G 

cos 2 



2 2 
PP 

1 
+ PP ( 	 

VI +p2p 2  + 
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1 
2R 

PP 
1 - 2 

1 
2R 

Thus 16  > -27  1 + 	(2 op
tu 	+100 

2 	2 p.  

1 6 > 2 R 1 	
P P 

2(2 + 

= 1 	1 	po (2 - 2 - 	) 
2R 	°P 2(2 + 	PP µ) 

FA. 

) 

j 

2R 
1 

P2° 
 

2 

r- 

- 1-) 

2 2 1 	r riA  

16 > 6 	2R - 4R5 
(14.16) 

16 

Now resubstituting p _ 
	, 94  

R , we have 

From (14.14), (14.15) and (14.16), we have 
2 2 

Tr 	1 	r 
1 3 4 r,, 	2R 4R5 

And from (14.11), (14.13) and (14.17) we have 

(14.17) 

  

2 2 

2 R 	--71".  • 4R 

 

   



1 1 - -) R 
) 	tr 	1 -r +- 

4 	2 
+ 

Rr 

rt, R-  

2 7 r 

4R5  2 I < 
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2 2 
1 	sr Thus I < (- + 	1 	1 + 

2 	2 	rt. 

which is the required result in (ii). 

4.15. 	In this section we complete the proof of theorem 4.6. 

We showed in Lemma 4.7(ii) that 

2 2 r r 
12  = 	

1 jj g(R,r,rt, ,G)dSr  < (n +.;..) 	1 	N 1  
4 Trr 2 riA 	1.R 	4R5 

Sr 

Now suppose that 5., < Ri  = .177R 

2 2 

r 

4R3  

Then « 

 

1 	tr -) + (-4  - 
1  - R 

r 

  

  

4R5 • 

Now using the fact that r < rZ , we deduce that 

1
2 

< 	rr 1 1 	
r34 R 

1 	1 ( 	- _
R
) 	 + + e(rT) , where 

ri4 
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e(t) - t {n 1 t 
4 	+ 1- ut  

	

We note that e(t) <  	
4 
Tr 1 	1 j 

1 - 	 1 - lit  

1 	1 

	

2 < ( 	r? ) [n . + 	+ 1 , where t(t) 1  t 

1 - t 

(15.1) 

If rt, > JrR, we have a better estimate for 12 

In this case the Green's function is harmonic inside a sphere of 

radius JrR = R1  and the Riesz masses vanish inside DR  . 
1 

From the Poisson-Jensen formula (13.3) we have 

G(Rir'rr  ,°) 
, 1 

 4nR 2  1 	0€ SR  
1 

KR  (P,Q)GR(Q,T) dSo  

g(R,r,9A. ,,a?) < 	1 	ff kR  (P,O)Ga(0,T) dSo  . 
4nR 	1 1 	S 

IdSr
4 

1 

S 

P,Q)G (0 ndS 

nR2 
r 

SRI 	1 	R  

Therefore 
—7-4 	

fi g(R,r,rio 
ff r 
1 

5r  

,G1dS < 1 
r - 4nr2 
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Inverting the order of integration on the right hand side we have, 

1 k (P,O)dS ( 	 Gr,(0,T)dSQ ) 4nr 	RI 	r 
1 
 2  4nR1 S, r 	 IN1  

• 

From the harmonicity it follows that the average on the spherical surface 

1 SR is equal to the value at the centre, i.e. ( 	1 	. 
1 	 rP"' 

Thus by Lemma 4.7(i), we have 

R1 + r 

	

1 	1 12 < (1 + flog 7,)( 	-) - 	rp, 	• (15.2) 

We now show that in any case (15.1) holds. 

R +r 

i 	r 

	

1 	1 	n 	1 	 1 	1 )  i.e. (— -) -r + + 	(*) > (1 + log 	r )(— - R- 

	

ritA 	R 	4 	 Ke  

We have to show that 

IT 

4 
+ 	-1+ 	( ,.f 44  _ 	log > 0. 

We have 	(t) 	\It  

1 - 

	

R 	 r 
Similarly log Ri1 

+ 
 r 	- log• 	r =log  1 + 

- r 	1 - 



function GU(P) when P E DR. 

fj Co (0)K rz(P,C)dS0  

SR  

6')  (P) - 	1 2 4Tra 

-139- 

2 
1 	1 

x 
Since log x < —(x - -), when x > 1, we have 

1 	1 + 	1 + 	1 - 4t 	= 
log 

z 	
< 

4 
1 - 	1 + 

Since t lies between 0 and 1, 	> t 

1 - Aft < 1 -t, 

and 1 , 	1 + log 1-t 2 , 1 - 	 1 - 4t 

t(t) > 1 I _ 1 + 4t 
lag 1 - •tit. 

And we see that clearly (15.1) holds in all cases. 

Completion of the proof of theorem 4.7  

We have from (13.3) the following representation for a subharmonic 

T E. DR  

If P is the origin, we have 

60 (0) = 1 	ffa)(0)dS 
4 IT e R 

1 —)d r-(0T) • 
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With the no; ation introduced in Section 14, the above formulae can be 

written as follows. 

We use the fact that (a) = (A5 	Then 

 

1 ?  11.0(0)dS0  + CT 
TeDR  

1 

Orr R2 4 rr 

W(P) = 

{(.61.(0) —  CO (0)1 
J 

Sn  
1%. 

1 	fiKrz(P,0) tAl(0)dS0  

dS0 
 

+ 	
f 	G

a(P,T)d AA I 	) 
T TE D  

- 	60(P)., 6.3(Q)dSo  

(15.3) 

(15.4) 

Orr R-  

1 K4P,0) 
4nR2 

5,1  

Since CO
+

(11) is subharmonic, the last term on the right hand side of 

(15.4) is positive. 

w-Ol< 

	

1 	Ka(P,C)) 05(0)dS0  + f Ga(P,T)cIA(  ) 	(15.5) 

	

Orr 	 'T 
SR 	

T.E DR  

We recall that (.4) (r) = sup (A)-(t,g1,,S) for fixed G, ft  . 
1 o<Kr 

IMMO VINO 
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Thus CO (r) < 1 	(P,O) uT(0)dS0  + J g(R,r,OT,G)diti ) 
1  — 2 $ R TE DR 

(15.6) 

We now operate on both sides of (15.6) by 

1 
2 dSr . 

4n-r
r  

ff 

We invert the order of integration on the right hand side which is justified 

since all the integrands are positive. 

Therefore 1 

 

i l(r)dSr  .<,.. —1-1  f 	 r 1 	fk(R,r,G)dSr  4.5(0)dSo  

Sr 	
4nr sfi4rrr2  •-sj  

R 	r 

 

r2 

T€D, 

1 g(R,r,OT,O)dSri. du T)  

S 
r 

4 rrr 2 

And by (14.5) and (15.1) we deduce that the right hand side is at most 

1 +- 1 	+ .1 log 1 - r)' 	445.(0)dSP  
4nR" 	 S, 

2 \ 

+ + ( 

 

1 	1 
x 	OT -RldheT) 

DR 



Therefore 

r 

1 

1 

r 

+ R+r log - -4r 

12: 4 [ 

Mr 

+ 

OM R _ r  

(r)dSr  < 
4n r2  

1 
4n R2  TO(0)dS0  

R 	dSQ 
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Thus from (15.3), we have 

ift".51  (r)dSr  < -,vr  +1 
4 4n r 

1 fr 
4n R2 S  

(.0(o) - 	(c),  dS0  

which is the required result. 

4.16 \Ale note that if GO (P) is non-positive in C,, and since — 	(r) = 

inf 400 (t,0,,S) for fixed 4;),,S, it follows that W(0) = C and consequently 
o<Kr 

we have from Theorem 4.7 that 

+ ' 
4 n r 	o<Kr 

1 2 	inf 	(t, inf (A) 	 r 
) r > 71- 	+ 	( 7 

Sr 

We now prove 

lit) (4) 	(16.1) 

 

Theorem 4.3 	If GO (P) is non-positive and subharmonic in the whole space, 

then 
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1
2 
if inf W (t,G,X)dS

r  > (5- + 1)W (0) 4 2  4rrr  s  o<t<co 
r 

(16.2) 

As (4 (P) is non-positive in the whole space, we can let R ---> + co 

in (16.1) and note that 1 R ) —> o as R 	+ 

Thus we have from (16.1) , 

1 inf W (t,G,AdSr 	4 
> 	+ 	CD (0) 
- 4 sr r2 fi o<kr 

r 

This holds for all r. 	If we have a sequence of rn tending to infinity we 

note that 

1 if2 	inf 6.) (t,G,AdSr 4 It r  t<rn S o< 
r 

is a decreasing sequence of functions. 

Hence by Fatou's theorem, 

1 2 if l
. a 	LO (t,4;),ItS)dSr  > [zff  + q (A) (0) „ 

j 	- 41r r S o<t<cot, 
r 

We show below by a simple example that the constant zu  + li is the 

best possible. 
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Example. 

(x,y,z) = - ix2 + y2 + (z-1)2 	for (x,y,z) (0,0,1) 

= - co for (0,0,1) . 

Then we note that Lk) (0,0,0) = -1 and GO(x,y,z) < 0 for the entire 

space. 

In polar coordinates IA) (r,c.4) - 	-1  
-2rcos G + 1 

If 2 < G < Tr, clearly inf 4.) (r,©,1.0 = -1 for fixed eof . 
o<r<co 

inf < In 0 Tr 	 -1 < - 2 Q. <r<c(A 	- 03  ("r 'G'4 	sin e 

Also inf 	GO(t,e,14) is a decreasing function of t and equal 
Cc cos 	 sin 

when 	= cos G . 

Since we are concerned with large values of r, we consider 	Y> cos G. 

2Tr Tr 
Thus 1 

	inf LO dS = 	f r2  sin G inf (.41 de 4 
-1 

	

4 Tr r2 	 r 	4Trr2 
Sr 	 o o 

1  

	

7 	
sin 4.4. dG + 1  

sin g sin G dG 

0 'T/2 
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[lc 	1 = -1  [0-1/ + [- 
2 	

i 	
71: + 721 

Since ta (0,0,0) = -1, we have 

1

2 	

[n. 1 inf Li) dSr = -4-.  + 77(0 (0, 0,0) 
4trr S

r 

Thus the above inequality is sharp. 

A simple consequence of the sharp inequality is: 

Theorem 4.8k 	Suppose that u(P) is a subharmonic function in space  

which is bounded above. 	Then on almost all straight lines through a  

given point, u is bounded below.  

4.17 We now prove a theorem about general subharmonic functions which 

are bounded. 

Theorem 4.9 	Suppose thatw(P) is subhannonic in space and thatw(P) 

is bounded above in space by M. 	Then there exists a polygonal path  

such thatw(P) —> M as P 	co on ri  

It was shown in i;leorem 4.5 that there exists a continuum 

y
1 

+ y
2 

+ 	passing through a sequence of points r 
Pnj 

P 	to n. n-1 

1 n 
	

1 such that 1,u(Pn) > 	- 	, and cu(P) > M - 	on yn...1  joining 7 	 2n-1 
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We now show that there exists a polygonal path with similar 

properties. 	It is sufficient to show that we can join two points Pn and 

Pn-1 by a suitable polygonal path. 

We assume without loss of generality that s?. -7,  

Two spheres centres Pn-1 and 

Pn and radii equal to 

Pn-1Pn = r intersect. 	It 

can be easily verified from 

elementary solid geometry that 

the area of the surface of one 

insidethe other is art. 

Since ui(P) is non positive in space, we have from (16.1), the following 

inequality about the average of infima on radial segments through Pn..1. 

r. 	1 

	

Take R so large that -sr(—R ) < 16 	Then, 

inf LAi(t,G,AdS > 	_ 
r 	2 116 

4 a r 	o<t<r —S. — 
r. 

(Pn-i)  (17.1) 

From (17.1) we obtain a lower bound for the infimm on a portion 

of Sr (namely the part inside the other sphere which has area rrr ) instead 

of the whole Sr. 
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1 inf 	1.0 (t,G,AdSr  + 1  r2  

nS r °25.1" 
3nr2' W(Pn-1)  > ( +1?-6* )(4)(Pn-1)  4rrr 

	

rr 	3 Thus 	1 
2 	inf Lt3(t,G,14)dS

r  > 4 / 6 [— 	CA) (Pn_1) - 4 rr r  
/),Sr  

Since the area of L  Sr is rr r2, we note that 

1 if inf tt)(t,G,16)dSr  > 

S r  

r 
Ln 

3 
 W(Pn-1) (1 7 2 ) 2 

IT r 

We note that the infima on the radial segments going up to the 

disc through the circle of intersection of the two spheres would be not 

less than the infima on the radial segments going right up to the surface 

Sr. 	With each point Q in the disc A going through the circle of inter-

section of the two spheres we associate the coordinates Q, id, taking for 

Q the angle CPn-1Pn = OPnPn-1 and for fS the angle which the plane 

OPn-1 Pn makes with a fixed plane through Pn-1  P . 	Then if 1,01  (G44) 

and 642(GdS) denote the infima of tA) on the rays P11_10 and Pn0 

respectively we deduce from (17.2) that 

1 
IT 

1/3 	21r 

dG f CA1(G'1S) sin GI dftS > (rr -41)(A°n-1) 
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and similarly 

211,  
1 	 3 

	

dG 	f ts)
2
(G 	sin G off > (Tr - -4-) (.0(P

n
) , 

0 	0 

so that 

0 	0 

	 sin 8 dGclitS > (ff - 24) [Lo(Pn_i) +Ci.)(Pn  

(17.3) 

Since the minimum of tA) on the broken line Pn-1 
 OP

n 
 is inf(W l' CO

2
) > 

— 

we deduce that on at least one such line Pn-lOPn 
we have 

(P) 	> (Tr - -) LL (Pn_i) + /A)(Pn) 

3 > 	(if - -4)(- 3  
—) > -2

3-n 
. 

2n  

Thus if W(P
n-1

) > 	- 21-n and (A)(Pn
) > M - 2

n 
, we have shown 

that there exists a broken line Pn-lOPn 
such that W(P) > M - 2

3-n for 

P csruPn-1
0P

n. 

This completes the proof of theorem 4.9. 

CO 4. (Ai 
1 
	

2 '  
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4.18 In this section we study the relation between the number of 

components of the set { Plu(P) > K 	in which u(P) > K, and the lower 

order of u(P). 	In case of a continuous subharmonic function our results 

hold for the number of components of the set 	Plu(P) > K 	. 	Dinghas 

in Dinghas (2) has estimated growth of similar classes of functions 

satisfying 	Lu > cu for given c > o in Euclidean space of n-dimensions. 

Dinghas has also obtained in Dinghas (3) a lower estimate for ratios of 

functionals of certain classes of C" non-negative functions. 	These 

functionals are ath powers (a > 1) of the norm of the gradient and of the 

function. 	Dinghas has then applied this estimate to obtain theorems of 

the Wiman type and of the Denjoy-Carleman type for harmonic functions 

in En. 
.2 

In the case n = 3, we have Peetre's inequality Al  > I n  (1 - A  ) 
4 ft r 

which give us a better lower estimate for Al. 
	We study growth of 

functions having n components with the help of above inequality. 

Suppose that the set (1..  PJu(P) > 01 has two components Fi  . 

Define COM(P) = 
u(P) 	for P E F. 

1 0 	for P outside F. 



1)  2 	if  
r 	a‘"( 	d log 

0 

q2(r) 	
r 
o) 
 

r 

2 C., xp 
r  

d 
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Let 
mo)2(r)  1 	fiLOC°2(P) dSr 4rrr2 

Sr 

1 We also define q2(r) = 
4irr IL  Lji)(P9 2 dSr i1 

r 

2 m(i)2(r) . and note that q2(r) = 
i=1 

As before a(i)(,) for each component is defined as the limit of 

increasing sequence of an  (I)() corresponding to the spherical domains 

in which the intersections of the component with Sr  lies. 

Then by summation on (9.4), we have 

2 	m2(  o)  ) 	2 f a(i)( 	d q (r) = r 	exp 	 log 	d 
i=1 

0 	 0 

By Arithmetic-Geometric mean, we have 

We recall that 

a( ) 
irni2 i2 17 

— LtIV 
2  
1 

where j = 2.4048... 
(18.3) 



r2x b  
2

( 
 a 

x -x b) 

a 

2f-a  b 

I- 

a 
2 IS" (x) 
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We now verify easily that [
2 	 2 

rir) 	 a convex function of fil( 

ti(r) at least when PO 	lgn < s-- . 
It is sufficient to show that the second derivative is positive. 

Let 6(x) = /17c —13,1 
1 	 a - 7  , where x < 13 • 

JS` (x) = 	-a  

2x2  I x-a  - b 

And ,S" (x) > o if 

i.e. 4a - 4bx > a 

.2 

	

3a 	 in 

	

or 	x < zg• 	',e. 	IA(r) < 32  
I - 1  

If 	4(0 	18 < —n 	this is obviously satisfied. 5 

First suppose that for both the components /`"(r)/`"(r) < 1 5 



- 152 - 

  

011)(i) ) + A 	)( 1,)07 Then a(1)() + 

   

2 	 ) . 

(1) 
Since 	 2 	  < 2rr, we deduce from (18.3) that 

 

a(2rr) > 

 

Therefore in this case (18.4) 

If for any r, 4 

	

	 18ir 
, (i)(r) for one component is greater thanand 5 

we are unable to use the convexity relation we have that 

Z a(i)  > max a(i)() > 01(-1T) 

because the other component subtends an angle at most 2  --rr for the same 5 

value of r. 

It is easily verified from (13.3) that 

x(-8: 	> 2 . 

	

Hence when the set {Plu(P) > 	has two components in which 

u(P) > K, (18.4) holds for all 	> ro 



in2(ro) 
- 	2 exp.( ° og q2(r) > 

r 
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Substituting this value of Za(i)(i) in (13.2) and integrating, we 

have, 

0 

and finally q2(r) > K-? r8/5  where K2 is a constant depending on rn2(ro). 

Therefore M(r) = Max 'u(P) > Kr /5  where K > 0 
	

Hence if a function 
P60 r 

4  has order less than -8 , it cannot have more than one component. 

We now study what this method gives us if the set I Plu(P) > K1 

has n components in which u(P) > K. 

As before, if the solid angle subtended by the intersection of each 

T0 component (with S) at the origin is less than - 1--8— , we have from the 

convexity property that 

111)(0)-F 	P2)( 	... jet ( r,i1. )(» 

n 16(  /9)( 	+ • 14n)(  

> n 14(7) . 	 (13.5) 

It can be easily verified from (113.3) that 
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15(4i) > 	- 1 - 2 

n 
Thus E a 1̀1( 	> 	i „FT- I -I] (13.6) 

Also if one of the components has an intersection with S.4  which 

subtends at the origin a solid angle greater than 15n 
 , then all other components 

subtend at the origin, solid angles whose sum is at most 28 . 
convexity property holds for these n - 1 components and we have 

n-1 
E a"(4) _> (n-1)16(7-17: ,D2n  
i=1 

Also it can be verified from (18.3) that 

1-1̀  5(n 	1) 
zir 	) > 24. ficT - 11 - 1) - 2 	n  

Thus in this case we have 

n-1 
z a(i)()  

i=1 
1 (•\lOtr1 -77-1i 	-1) (18.7) 

Since 51(j-liOn - 11 -1) > 2 [ FF1-I -1 for n > 2, we have that 

(18.6) holds in all cases. 

Again by summation on (9.4) for the modified function formed for 

each of the components we have 

Thus the 
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q2(r) > 

)1 f 1 ill 
2(ro) r 	n f 

Z exp /2 	a(i)() d log O d i I ro 1'1  r 0 

• 

By Arithmetic-Geometric mean, we have 

 

ra2(ro) 

    

q9(r) > n exp 

ro 

 

n 	,.1  
a‘1”) d loge n 

r 
r 

 

  

1+•• 	 0 

From (18.6), we have 2 
n  

1  
a'1 ( ) > n-1 —1 . 

1=1 

Then on integration as before we have 

4 q2(r) > K2r1 71-7-1 -1, where K is a positive constant depending on 

m(ro). 

_ 
Hence M(r) > K r 

Therefore a function of lower order less than i fr17:1 - cannot 2 

have n components. 

In particular an infinite number of components is possible only in the 

case of a function of infinite lower order. 
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4.19 We now consider the case when the function u(P) is unbounded in 

space but is bounded in a component of { P!u(P) > 0j. or 

u(13) > Clearly for this component by Theorem 4.3, 

co 

f a; 	d loci 	< 	. 

ro 

Hence its complement has the smallness property. 

Thus every other component of {P i u(P) > C..} or tPlu(P) > 01 has 

the property that given any e > 0, the solid angle (a(r) subtended by 

the intersection of that component with Sr, at the origin is less than E 

except on a set of finite logarithmic measure on the r-axis. 

If IA (r) < 2n, it follows from (19) that 

a(r) > 3 	1, Tr 

	

r - 	1  
tr71(r) 

Thus in the above case we have a(r) > K outside a set finite logarithmic 

measure. 

a( 	d log 	> K log —11  for 

ro 	
ro 

> ro 
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And we have m(r) > m(ro) rK where K is as large as we please. 

Thus such a component is only possible in the case of a function 

of infinite lower order. 

4.20 	It was shown in Section 4.1U that if u(P) is a subharmonic 

function of lower order less than i -‘, IR:71 - 1 , then the set 2 

{.131u(P) > K1 cannot have n or more components for any real K. 

We now construct a function for which the setPlu(P) > K .c 

has N components and study its growth. 

It was shown by Deny and Lelong (1) that the functions of minimal 
Pi 

growth in a cone La are harmonic functions of the type r hi(E),X) 

where h1 (Q/A is an eigenfunction in the domain of intersection ini (.0 
of the cone with spherical surface S( ), corresponding to the lowest 

positive eigenvalue Xi  of the equation 

Lb + Xh = 0 	in 	ta ( V.) 

and h vanishing continuously on a Siii () 
where L is the spherical park of the Laplace operator. 

Also pl  is determined from Al  by the equation p1 (p1  + 1) = Xi  . 

Let a be a right circular cone consisting of points of the form rP 

where 0 < r < co and P is a point inside a circular domain C1  on the 
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unit sphere. 	We define a subharmonic function v
1  (P) as that of the 

minimal growth investigated by Deny and lelong for P inside the cone, 

and equal to zero elsewhere. 

We form N  such circular domains of equal area on the surface of the 

unit sphere and form functions v2(13),...v1\3(P) as before. 

Then v(P) = v (P) + 	+ vN(P) is subharmonic and the set 

{Piv(P) >€J has N components if 6 > 

We first give a construction for obtaining such non-overlapping circular 

domains on the surface of the unit sphere. 	A 
The circumference of the great 

circle is 2n . 

Therefore An = „ 

kAie divide M in n equal parts. 

The spherical cap of centre A and with base the small circle Q = 2n 

gives one circular domain. 	We now construct other domains equal in 

area to this domain. 	We draw small circles Q = 2IT 3Tr
2n 2n 'woo 

2Tr We take as centre a point on 4; = 2n 	with radius of great circle 

distance equal to 3r-T-ff  , we draw a circle. 	This circle will lie in the 

21T zone between Q = II- and 3rr 	We now take centres on Q = 
2n 2n 	2n  
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such that these circular domains do not overlap. 	Take n odd. 	Then 

n 4u 	-1 we Form these circular do gain with centres on AP = 2n 
2u 

 2n '''• 2n
ir 
 • 

Thus we have formed circular domains of equal area in the Northern 

hemisphere. We now want to determine the exact number of points 

which can be distributed round the circle Q = 2n at a sphelical distance 

equal to (or greater than) —nu  (when K is even). 

We first determine the circumferential distance on AP = Kir between the 2n 

two points whose great circle distance is equal to 	. 

Consider two points C and D on the 

circle Q = 2n whose great circle 

distance is — n 

Let 0' be the centre of the circle 

= 
Kn 

Then 0' C = sin Ka = 0' D 2n 

OC = CD = 1 

11 
Y = n 

2n 

kr 

The chordal distance CD = 2 sin 2 = 2 sin Q sin '— • 

sin 2n 
sin ff— = 2 srn 2n 



I 2n 
LT] ?- ( sm  21: 

.  n 	1 > 	4l< 	> K  
Ti2/41( 	 n 

sr 
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= 2 sin  
sin 2n 

<IT sin 2n 

For 0 < Q < 2 - we have 2Q < sin 4? < 4;, 

Therefore 
IT  sin  2n 	Tr sr 2n = IT 2n  x x Kir 	2K 	4, 

sin 2n 

X < 2 sin-1  2K • 

The exact number of points which can be distributed round the circle 

	

4; = Kg 	 n at spherical distance not less than - is 

	

2n 	 n 

It 

Thus there are at least K circular domains in the zone between 

Q - (K-th and r 	(K+1)n  
2n 	 2n 

On a hemisphere K takes even values from 2 to n-1. 

Thus the total number of circles between the zones is not less than 

n-1 

2 4.Z K 
K=1 

(n-1)(n+1) 	(n2  - 1)  
2 2 	4 
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Thus the total number of circles in the Northern hemisphere is at least 

equal to 

(n2  - 1) + 1 
4 

2 
Thus numbers of circles on the unit sphere is at least equal to  (n2 - 1)  + 2 . 

Let 	N = (n2  1) + 9  

so that n = '/2N - 3 

We now want an upper bound for pl. 

Since p1  increases with Xi, we find an upper bound for Xi. 

We recall that ; 1 is the lowest estimate of the Rayleigh's quotient. 

Thus if we have any test function satisfying the boundary conditions, we 

get an upper bound on A.. 	Clearly cos nQ is such a function for the 

spherical cap with centre North Pole and bow 	= -Tr;  

2 
gradient of cos nQ 	= n2sin2nQ 

We have to evaluate 
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217 	ni2n 	 1Y9n 
' d6 	n2sin2nG sin G d'. f 

n2S sin

?
nG sin G dQ 

o o 	 o 
*OM 

2n 72n 	 /Y2n 

S 46 f cos2nQ sinG dG 	cos2nQ sin Q dkg 
o o 	 o 

, IT/9n 
The Numerator is n' 	sin2nG sin G dG 

0 

72n 

< n4 	G3  dG = n4 	 4  
0 

4 
Tf = 

72n 

The Denominator is 

0 

cos2nG sin G dQ 

1 = _ 
n 

17/7  

cos 2  i‘ sin If— dfS 

Q. 	 sin 16— 

	

n 	pc Sin 	sin  ce 	decreases as G increases, we have 	sin  

1 Therefore 	sin II— > — sin 14 . 
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nt  
1 Thus the Denominator is at least --- 

	
cost  jo sin itc d,eS 

n2 

3 TY2 cos jif = 	1 
3 o 	3 n 2 

t_- 1 

e2 

Hence 

, 2n 
n2 I sin2nOsin G di,;4 

0 	< 17
4 	

o, n ... 2 , 100 	2 75n2 --a-. 64 ' 3n = 16 ' 11/2  n  

f cos2nG sin G dG 
0 

Thus we have X < 1 	16 

Since pi(pi  + 1) = Xi  we have 

P  < 	
75n2  

l 	1-7-1C 	- 
1 f  

< 
,  75n2 + 4 % 	1 

16 	- 

Since n2 = 2N - 3, we have 

if 75(2N - 3) + 11-] 	1 
< 	j6 

5n2 
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1:3011 - 221 	7 	4150 ,t---:— 	1 i.e. 	< 4 ( 	16 	- 	< 	4 	1N-1  - 7 

< (3.1) 4N-1 - 

Thus we have shown that there exists a function for which the set 

Piu(P) > K.} or {Plu(P) > 	has NI components and the order 

of the function is less than (3.1),J•f77-1 - 	in case when N = 

;(n2 - 1) + 2 and n is odd. 	We recall that our lowest estimate of the 

i N 	2 
1 order for the growth or such function was 2  - -1 - - where 

I = 2.4048.„,„ 
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