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INTRODUCTION

It is a famous theorem of lversen that if f(z) be a non-constant
meromorphic transcendental function in the plane which assumes a value
'a' o finite number of times there, then there exists a path r‘ tending
to o, such i;‘hdt f(z) ~>a, as z -—Jﬁ o along r . The value a
is called d;ym;btofic value oﬁd F is called an asymptotic path, If we
take a = do, we obtain the theorem that every infé§r0| function tends to
infinity along some path, We investigate whether ah analogue of this
holds for a general subharmonic function u(z) in the plane, We answet
in the offirmative by proving Theorem 1,2, The entire Chapter | is devoted
to our proof of this theorem,

In our investigations we were inevitably led to consider the sets
{z'u(z) > K} and {ziu(z) > K} . It appeared that there may
exist components of the set {z ’u(z) > K} on which u(z) = K, We
show that this is possible by constructing examples in Chapter .,  Also
such components may be non-countably infinite in number.  The number
of components is related to the order of the function u(z) in the case of
integral functions,  This is also discussed in Chapter Il.  In Chapter il

we consider how quickly u(z) must tend to + c along an asymptotic

path P.
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Chapter IV is devoted éntirely to subharmonic functions in space,
There is a marked difference in the behaviour of subhaﬁnonic functions
in the plane and in space, A function non-constant and subharmonic in
the plane cannot be bounded above., However, there bex.ist subharmonic
functions in space which are bounded above. An asymptotic path hes
to lie finally in a set in which o subharmonic function is large.  The
exact analogues of growth theorems like the Wiman-Heins theorem and the
Milloux=Schmidt inequality are not valid in space. We first prove
Theorem 4.2 which may be considered as an analogue in space of the
Milloux-Schmidt inequality., We also prove Theorem 4.6 which is a
spoce analogue of a theorem of Hayman on the infimum of u(P) on
radial segments going outward from the origin,  With the help of these
theorems we are able to show the existence of an asymptotic path when
() u(P) is a continuous subharmonic function, (ii) u(P) is a general sub~
harmonic function which is bounded above in space. If u(P) is a general
subhurmonic‘{ which is not bounded in space, we are oble to show the
existence of a continuum on which u{P) —» + @ as P tends to infinity on
the continuum,  The problem of construcﬁﬁg a path in this case still
remains open,

Also in space we have investigated the relationship between the
number of components of the set {PIU(P) > O} and the order of the

function O(P).
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CHAPTER 1

AN EXTENSION CF IVERSEN'S THECREM

1.1 It was shown by Ilversen (1) that if a non-constant meromorphic
function f(z) has a Picard value a, then there exists a épafh r tending
to @ in the z-plane such that,

f(z) «> a, as z —» o along P .

If we toke a = o, we obtain that for every non-constant integral
function, there exists a path r, tending to ®, such that

tf(z)_' —3 ®, as z —» o along F .

It is natural to ask whether the analogue, that a non-constant
subharmonic function u(z) in the plane tends to +oo along a path [-1 ’
still holds, We answer this in an affirmative by proving Theorem 1,2,

The arguments of the proof for the modulus of an integral function
can be carried over to the case of cénﬁnuous subharmonic functions.  The
proof is given below for the suke of completeness.  Also the steps in the
proof are clear in this simple cose and become somewhat more complex in

the case of a general subharmonic function,
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Theorem 1.1, If u(z) is a continuous non-constant subharmonic function

in the z-plane, then there exists a path r’ tending to @ on which u(z)

tends to + o ,

Since u(z) is continuous, the set G(K) of points for which ﬁ(z) is
greater than K s open.  Consequently G(K) consists of a sequence of
domains (say) G(y)(K). (¥=1,2,... .) We now prove that (a)
Every component G(”)(K) must extend to infinity,

(b) u(z) is unbounded in each G(”)(K).
We note that on account 6!’ continuity, u(zi = K on the boundary of

G(‘,)(K). Therefore if Gw)(K) did not extend to infinity, wewould have

u(z) <K, for z € G(”)(K) by the Maximum~principle,
This contradicts the definition of G(”)(K) and hence (a) follows,

To prove (b), we make use of the following theorem which is the
subharmonic form of the Phragmen-Lindeld¥ principle. A proof of the
theorem in the form below is given by Heins (Heins (1), p.76).

' Given u subharmonic in a domain D of the closed plane,  Suppose that

E is a countable subset of the frontier of D,  Suppose that Sup u < + @

and that there exists a real number M such that

lim sup u(z) < M, & €D - E,
z—9%

Suppose that there exists at least one non-exceptional boundary point,

then u(z) SME‘ D.,t
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Now suppose that (b) is false and u(z) is bounded in some G(”)(K).
Also on all the finite boundary points of G(”)(K), we have u(z) = K,
Thus the hypothesss of the above theorem are satisfied and we have
u(z) < K in 6Ky,

This contradicts the definition of G(”).(K), hence the assumption that u(z)
is boundeojiin G(”)(K) is false,

Let G be a domain in which u(z) > K.  Since u(z) is unbounded
in G'l' we can choose z) and z, in G, such that: u(z]) >1, and
u(zz) >2, We join z, to z, by a continuous curve (say) Y lying in
Gl' This is possible since GK)being a domain) is arcwise connected,
Also z, lies in GZ. We choose zq in G2 such that u(z3) > 3.

Join z, o zq by a path Yo lying in GZ'
Again zq lies in GS and with a step by step argument we can find a

path r' =" +y2+y3+.....such that

u(z) — + o, clsz—->ooorir' .
o
Thus in each domain G( )(K), there exists a path P tending to

o, such that

u(z) — + o, asz——->coonF .

Theorem 1.2, The conclusion of theorem 1,1 still holds for a general

subharmonic function,
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1.2 We observe that in the proof of Theorem 1,1, the set {z,u(z) > K}
plays an essential role.  This set may be of considerable complexity in
the case of a general subharmonic function,  Therefore the assertions (o)
and (b) and the subsequent construction of the nath do not follow so easily,
We prove first the analogue of the assertion (a), that any component

of the sef {z‘u(z) > K} or {z'u(z) > K} goes to the bdundory

f.e; in the cose of the z-plane extends to infinity,

Lemma 1,1, If u(z) is subharmonic in adisc fz] < r, dll the

components of the sets {_z}u(z) > K} or Jz[u(z) 2 Ek go to the
L\ J t

boundary 1z] = r

Let fn(z) be a decreasing sequence of continuous subharmonic functions
with limit u(z), By considering fn + }-11- instead of fn' we can assume

f (z) to be a strictly decreasing sequence of continuous subharmonic functions,

Suppose that the set {z"u(z) > K} is not void,

Let z, be a point inside }Jz] < ¢ , such that
u(zo) >K.,
Then fn(zo) > K for each n,

Let Gn(K) be the component of the set {zj fn(z) > K}' which contains z.

By the assertion (a) in the proof of Theorem 1.1, Gn(K) goes to the
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boundary lzl = r for each n.

Hence ?:?;('E) i.e. the closure of Gn(K) also goes to the boundary
, z ’ = r.

And fn(z) >K forzg m for each n,

Set B (K) = ’_‘SG“(K f\{[zl = r}.‘

Then Bn(!() is not void for any n,
Also Bn(KS is a compact set and it conitracts as n increases.
Since the intersection of a decreasing sequence of compact sets is o com=
pact set, we claim that
©
2(K) = i i
(i ) {l] Bn(K) is not void .

®
Also B(K) is a part of O(K) = /‘ anm .
n=1

MNow O(K) is an intersection of a decreasing sequence of continua,
And therefore ((K) is a point or a continuum., Since O(K) .: . ..
contains z, inside {zl < r  and 3(K) on ]z‘ = r , obviously
C(K) is a continuum containing z, and extencing to the boundary {zf =r .
And on (K}, u(z) > K,

Since a subharmonic function is upper-semi-continuous, the set

{z'u(z) > K} is closed,
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The components of a bounded closed set are points or continua.,  Thus
by what we have shown above, through every point inside ’ z ' < r,
on which u(z) > K, there posses a component of {z ’ u(z) > K}
stretching to the boundary [z | = r .,

Mow we deduce a similar result about the componenis of the set
{z{u(z) > K}
Let z, be a point such that u(zo) > K.
Since u(zo) > K, u(zo) = K+ 5, where 8§ >0 .
Hence there is a continuum containing z going to the boundary on which
u(z) > K +'8.
This continuum obviously lies in the component of u(z) > K contairing
Z and hence this component goes to the boundary 'zl = r .

Since z is any point with the property u(z) > K, the same result
holds for all z with the property u(z) > K,  This completes the proof of

Lemma 1.1.

It follows immediately from Lemma 1.1 that for functions subharmonic

in the whole plane, any component of the sets {z;u(z) > K} or
{z' u(z) > K} extends to infinity,

1.3. In the next few sections we prove the analogue of the assertion

(b) for functions subharmanic in the whole plane.
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We mdke use of the fo"owihg lemma, which is the subharmionic
form of the Milloux-Schmidt inequality (e.g. Nevanlinna (1), p.94).
A proof of the lemma in the form below is given by Brelot (Brelot (1,).

Lemma 1.2, Suppose that £4J (z) is subharmonic in jz} <1 aond

satisfies ) (z) < 1 there, Suppose also that

inf W(z)<o , o< r <1 (3.1
'z' = T

then

sup W (2) < étan-lxl" . o< r <1 (3.2)
[z = "

We deduce from Lemma 1,2 that if u(zo) > K, there exists a circle centre
z such that u(z) > K on that circle, We shall call this assertion (c)..

The assertion (c) is obvious if z, is an interior point of a component
of the set {'zlu(z) > K} .

Therefore we have only to consider the case when z is a boundary
point of C(K), the component of {z.lu(z)z K}

Then either for a small §, on every circle c(zo, r ) with centre z,

radius r, such that o < r < §, we have

inf u(z) <K,
z € c(zo,r)
or for some §, inf u(z) > K,

z € c(zo,G)
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If we can show that the first alternative does not hold, then the
assertion (c) is proved,  We show below that the first alternative implies
the hypotheses of the Lemma 1.2, and consequently forces a restriction on
sup u(z) on these circleac(zo,r), and this togethar with u(zo) > K, gives
a contradiction,

Lefu(zg=l< +€ , where o< € <1},

u(z) - K

K + e .

]

For if not consider v{z)

We assume without loss of generality that z = O.

Define g(z) = u(Rz) - ulo) + € ,

where R is the radius of a circle with centre the origin such that

u(z) < ufo) + 1 i € inside this circle,

(Since € < %, by the upper-semi~continuity of u(z), such a circle exists,)
Then g(z) <1 in {2z} <1, |

and also  inf g(z) <o, o< r <1 from the first alternative,

fzl =r
Thus the hypofheses of the Lemma 1.2 are satisfied and we have

sup g(z) < fcm /r, 0<r<1,
1=

This gives for the original function,

up u(z)<u(o)-€+£tan \/r’?, o<r<1,
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And this gives a contradiction by the fAaximum=principle if r is
sufficiently small.

By similar arguments it also follows that if u(zo) > K, then there
exists a civ‘cle. c(zo,S) such that u(z) > K on c(zo,S).

We now prove a lemma which will help us to prove that u(z) is

unbounded in each component of {z‘u(z) > K}

Lemma 1,3. Suppose that u(z) is subharmonic in the plane, C(K) is

a component of the set {z‘u(z) > K} , and define

u(z) for z € C(K) ,
v(z) = { _ ‘
K outside C(K) .

Then v(z) is subharmonic in the plane.

Since the complement of C(K) is an opeh set and v(z) is constant
in it, it is subharmonic there. Also v(z) is equal to- u(z) in C(K) and
so is subharmonic af the interior points of C(K).
Thus we need to consider only the boundary points of C(K). .

Let & be such a boundary point, W~ show first that v(z) is upper
semi-continuous at z = &
Since u(z) is upper-semi-continuous at z = s , these exists a neighbour-
hood &(€ ) such that

o) - W(§)< € ,  for |z-sh<s€)s (3.2
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We now show that (3.3) is also satisfied in the same neighbourhood
by v instead of v,

Since v(z) =; u(z) for z € C(K), we note that (3.3) is obviously
satisfied for the points z in the neighbourhood ‘z - 6§} < §(€) belonging
to C(K).

For z ¢ C(K), v(z) = K, and v(§) > K,

Therefore, again (3.3) is satisfied by v for the remaining points of
the neighbourhood &(€ ).

Thus v(z) is upper-semi~continuous at the boundary points of C(K).

We show next that the mean value inequdlity is satisfied by v for
such points §

If s is a boundary point dnd v(f) = K, then the mean valve
inequality is obviously satisfied as v(z) > K in the entire plane,

However, if v(§) > K, then u(%) > K and we have by the assertion
(c) which was proved in this section that there exists a circle ¢(§ ,8]),

centre & , radius 8, such that u(z) > K on c(s',s]).

1
Then the circle c(§ ,81) meets the component C(K) because its centre 14
helongs to C(K) and C(K) is connected and extends to infinity.

Thus C(K) contains this circle and so no other component of the set

__ {’z‘u(z) > K} meets the circle c($,8.’).
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Mow if we choose 8 < §,, wa observe that in a neighbourhood

1’
centre S , radius 8, (i) the set of z at which u(z) is greater than or
equal to K, is the same set for which v(z) = u(z); (ii) the set of z for
which v(z) is different from u(z) has the property u(z) < K and v(z) = K,

Since the nean value inequality is satisfied by u(z) and by (i} and
(i) the mean value of v(z) is not less than that for u{z), we see that the
mean value inequality is also satisfied by v(z).

This shows that v(z) is subharmonic ot the boundary points of C(K)
and thus completes the proof of Lemma 1.3.

We note that by the arguments similar to those of Lemma 1.3 and
the fact that if u(zo) > K, there exists a circle c(zo,S) such that

u(z) > K on c(zo,S), we can prove that the modified function v.'(z) is

subharmonic in the plane when it is defined as follows:

v'(z) u(z) for z € G(K), a component of {z,u(z) > K} ,

=K for z outside G(K).

1.4 Lemmas 1.2 and 1.2 enable us to prove the analogue of the assertion

(b) that u(z) is unbounded in each component of {z,u(z) > K} and

in those components of .[z’u(z) > K} , in which u{z) > K somewhere,
Let C(K) be a component of the set {z'u(z) > K}

First suppose that there is only one component C(K).
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By considering u(z) ~ K instead of u(z) we may suppose K=0., Then
either C(K) contains the whole plane so that u(z) is constant or unbounded
in C(K).
Otherwise u(z) is non-constant and hence unbounded in the plane and so
unbounded in C(K),

The unboundedness of such a non-constant u(z) in the plane follows

frora the fact that the maximum modulus B(r) = sup  u(z) is positive for

zf=r

some |z} = £ Also B(r) is a convex increasing function of log r
(Rado (1) p.18).
Hence B(r) —» o, as r —> oo.

Since u(z) attains the value B(r) en [z{| = r for some z, u(z) is
unbounded as 'z, —> .

Next suppose that the set where u(z) > K has at least two components
C](K) and CZ(K)'

By Lemma 1.1 if ’z[ = r_ meets hoth C.'(K) and C2(K), then

Jz| = r meets both C.'(K) df\d CQ(K) for all r > e

Let A(r) = inf u(z) "
[z} =¢

So we have A(r) < K for r > o

If we replace u(z) in fzf < rf’ifs Poisson Integral, we have u(z)
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harmonic and bounded in |z} < rr and u(z) is unchanged for {z' 2,
To show the unboundedness of u(z) in CI(K) we first form v(z) as

follows

v(z) u(z) for z € CI(K) ’
= K outside C'I(K) .

Then by Lemma 1.3, v(z) is subharmonic in the plane.

Set W (z) = ng‘.za)::z fqu>r°.

Then we have W (z) < 1 for |z} <1, and

inff W(z) <O for C<p<1,

\4=e
Hence () (z) satisfies the hypotheses of the Lemma 1.2 and we have

from (3.2),

sup ((z) = sup ia([%)r%—:é- _<_-;% fon—]«/p .

z{=»
Put 0 = r.

Then for © < r < R,

-l
o)

31) - K < (B(R) - K) 2 ran”

4 T
<dem-0 ff.

Therefore  B(R) —'K--Zf%. (8(r) - K) ‘/:5 . | (4.1)
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If u(z) > K somewhere on the component, then the right~hand side of
(4.1) is positive, and as R —> o, we see that B(R) also tends to infinity,
Since v(z) attains B(R) somewhere on ‘ z ’ = R, u(z) attains the same
values on Iz' = R and C](K), and heance u(zj is unbounded in C](K).
This completes the proof that u(z) is unbounded in each component CT(K)
in which u(z) is greater than K[. It can be shown by the same arguments { 1A prlag

that u(z) is unbounded in each component of the set {z’ u(z) > K} .

1.5 We now show that if there are a finite number of the components of
the set {‘ziu(z) > K}- , then u(z) > K somewhere on each component,
Consequently by Section 1.4, u(z) is unbounded in each such component,
Suppose that the set £zlu(z) > K}« has a finii;e number of components,
Theulﬂ'\\eji_r:it/e_elm;e—/(say izl < R), each component being a closed
set is at a positive distance & from all the other components,
Suppose that z is a boundary poinf of a component CM(K) and that
u(zo) =K, Forif u(zo) > K, there is nothing to prove. Then it
follows contrapositively from the Maximum-principle that if u(zo) = K,

then either there exist points in 32 - zol < -.?- such that u(z) > K or

- e ] 8
u(z) = K inside [-z - zol < 5 -
V
Since we suppose z  to be a boundary point of C( )(K), we cannot

have u(z) = K inside ’ z - z°| <§ . Also since C(”)(K) and z,, are
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1

-1

at a distance ai least § fron the other coaponents of | z,u(z) > K} ’

~&,

. - 8 e ¢ ) » . ®
the only points in ‘z - zo' < 5 on which u(z) > K, liz in % (X).
B . s ¢ " . ) o ‘-\(y) 174 ap P -
this is frue for each of the coponanis T' (), if they arz finite in
nu-aper.

@y,

Thus u(z) > K soaewhsre on sach T
CUn the other hand if there are an infinite nuher of components

of the sst {z’u(z) > K}' , there may Ge coaponents on which u(z) = X,

This will be f!lus:?rdi"ec? Ly an axanple later on, It will he shown further

that there can 5Se non-countobly raany such c-cmponeni's.

However, in any neightourhood of such o component, there are infinitely

aany components of the set {z, u(z) > K} on which u(z) > ¥ sone-

where, and on which u(z) is consequently un“:ounded,

1.5 We have shown so far that for every non-constant subharuonic

function,

(i)  the couponents of the sels {zlu(z) > <} ; and zl u(z) > K}
axtend to infinity, '

(i) u(z) is un~ounded in each coponent of {zlu(z) > K} and in
those co sponsnts of {zlu(z) > 1(} in which u(z) 3s. not

identically equal to X,



-16 -

These are andlogues of the assertions (a) and (b) of Theorem 1,1, The
existence of an asymptotic path cannot follow easily as the general sub-
harmonic functions are not subject to any smoothness conditions.

However by the arguments of Theorem 1,1, we prove:

Lemma 1.4, There exists a continuum r‘ going to @ i‘hl’OLLQh each

point z such that u(z) —>» + ® a5 z —> ® on r' .

Let C(1) be a component of the set {z'u(z) > 1} with strict
inequality somewhere,  We have shown that such a C(1) exists, and
extends to infinity, and u(z) is unbounded on each such C(1).

Suppose z, € C(1) and u(z_l) >1. Find z, € C(1), such that u(zz) > 2.
There exists o continuum Y, joining z to z, and lying in C(1). Now
z, lies in C(2) which is a sub=-continuum of C(1).

In C(2), find a point zq such u(z3) > 3, and join z, to z4 by a
continuum Yy Iyiﬁg in C(2)._ Continuing in this way after n-steps we
have u(zn_l) > n-1, u(zn) >n and u(z) > n-1 for z on Yn-1 joining
Z and z .

Thus there exists a continuum P =¥y tvyt..... going to

infinity through each point z, such that

uz) —> + ®, as z-—= 0 on F .
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1.7 We now complete the proof of the Theorem 1,2, by proving:

Lemma 1.5. Suppose that u(z) is subharmonic in a neighbourhood N

of the continuum Yy ond that u(z) > K for z € y,,.  Let z and zy be

two_points on y,. Then there existsa polygbnal path joining : z, to z,

in N such that u(z) > K ~ 1 on this path,

In order to prove this, we shall need a theorem of Hayman (1).

It is necessary to introduce his notation,

u+(z) = max {u(z), o} , U (z) = - min ,[u(z),o} .

2n
T(r,u) = -,5]-1;. f u+(ie'g)d@ .
o

u](reie) = sup u-(fe;g) .
ot

(1-t) log(1 e "m/f

(1) = .
'Y/ fn/f log %-

We now state the theorem of Hayman (1, Th.4, p.193), which we shdll

moke use of,

Lemma 1.4, If u(z) is subharmonic in |z‘ KR thenforo<r<R,
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2

2m _
"211; ful(reie)d@ S [‘ + *%)] {T(R,u) - u(o)} .

o

It follows from this (as remarked by Hayman, p.194) that if u(z)

is also non-positive in fzj <R, s0 that T(R,u) = O, we have

2

ulo) > 'fl? f—u‘(reie)dg > [‘ + *(%ﬂ ulo) . (7.1)

o

Mow suppose that on a set of angular measure a of & ,

-ul(re'g) = inf u(te'e) < ule) - ¢, where ¢ >0 .
o<t<r

Also on the complementary set of measure 2n - a,
-u‘(re'e) < ufo) .

From the right hand inequality of (7.1), we have

21“ {a {u(o) - c} + (2m - a)u(o)} > E + 4’(—;{.)] u(o) ,
2]“ [21: ulo) - ac) > [1 + ’y(—%)] ulo) .

o) - 5> ulo) + ulo) W) .

-%Eﬁ > ulo) V(—;{-) .

05313912)_'_*%)_ o 7.2
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The above lemma thus gives us the quantitative estimate that for
a non=-positive subharmonic function in ] z* < R, the radial segments
going outward from the origin and having length r, on which

inf u(z) < ulo) = ¢, have at most

Zniu(o)‘ "’(—;—)
angular measure . .
c

We shall be using this result in the proof of Lemma 1.5.

Proof of Lemma 1,5

Since u(z) is subharmonic in a neighbourhood N of the continuum Ygr
there exists a number R such that u(z) is subharmonic for all z distant not
more than 2R from Yk- Since Yk is a continuum, we can find a finite

chain of points z, = zgo), z("),. ....z(ln) = Zy, O Yy such that the

1
maximum distance between two consecutive points zgk) and zgkﬂ)

(k =0, 1,...,n~1) is less than or equal to R,  Therefore for the proof

of Lemma 1.5, it is sufficient to show that there exists a polygonal path

joining z, to z, in N on which u(z) >/- 1, when | zy - zzt £ R, {K~l
Take M(R) = *ax u(z) taken over all points z distant not more than R

from Yi*

Dafine v(z) = u(z‘ + z) - M(R).
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Then v(z) is subharmonic and non-positive in 'z' S_ R cmd_ thus satisfies
the hypotheses of u(z) in Lemma 1.6,

We take ¢ = 1 in (7.2) and note that a, the angular measure of
radial segments of length r on which the infimum v(z) < v(o) - 1 is at
most

2n lv(o)t "{’(T:-) = Zn‘u(z.') - M(R)‘ Y/(-!-;-) .

If we toke any z ¢ VYK as origin instead of 2y, with the same values

of r and R, we get

a<2n lu(z) - M(R)t \”(-%) .

Thus for every point z on Yg! the angular measure a of the radial
segments of length r on which the infimum differs from u(z) by an amount

greater than or equal to one is at most,
a< 2 {u(z) - M(R)’ #f&'\-,'-) . 7.3)

Since M(R) is bounded for a fixed R and u(z) > K on Y We have

‘vu(z) - MR} < MR - K .

Set M(R) - K =T,

Then from (7.3) ,  a<2nT V(&) . 7.4

Since #f(-%-) —p 0 as—%——é o, we take & so small that '{1(-8?{-) < —]l,ﬁ.- .
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Then from (7.4), <:¢<7I,;r . 7.5)
Since Yk is a continuum, we can find a finite chain of points
2y = % Sqr Gopreeees o, = 2, + On yy such that the maximum
distance between two consecutive points SK and 5!( " (K=0,1,...n"1)
is less than or equal to 8.
By elementary Plane Geometry, two
circles of radii equol to (or greater
than) the distance between their centres
intersect and the angular measure of

the radial segments going out from

origin, on each side of the line

joining their centres is equal to (or

greater than) -g .

We dlso note from the diagram that in the triangles A aond B, each
segment going out from the centre of one circle meets all segments going
out from the centre of the other circle in that triangle.

By (7.3) and (7.5), we can find radial segments of length & from

¢ v H I
each of 5 K and $K 1 and making angles between O aond 3 0 with

this line such that

u(z) > K = 1 on these radial segments,
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And by the dbove consideration of elemantary geometry, fhése’ radial
segments meef,

Thus it is possible to go from 9 g fo ;K—H and hence from z, to
z, along a po|ygénul path on which u{z) > K - 1. |

This shows that there exists a polygonal path with properties similar
to those of the continuum in Lemma 1.4, aond hence completes the proof

of Theorem 1.2,

1.8 In the proof of theorem 1.2, we discussed some properties of the
components of the sets {zlu(z) > K} and {z_lu(z) > K} . We
also raised ‘the question whether a function u(z) can be identically constant
in a component of {z"u(z) > K} without being identically constant in
the plane.  In the next chapter we gfve axamples of such functions and

discuss other properties of components of the sets {z’u(z) > K} and

{z}u(z) > K}
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CHAPTER 1l

SGME EXAMPLES

2.1 It was remarked in Section 1.5, that if there are an infinite number
of the components of the set {’z:;u(z) > K} , there may be a component
of the set on which u(z) = K
Example 1

We illustrate this by constructing in the next four sections a function
()(z) which is identically zero in the |-ov.¢er half piane and this is isolated

from the other components of the set {z l'w(z) 2 O} .

\\\ /) Swm=ell/ ) )

5n(>' 1) ]ln(x 1)

~
]
O] w

sin{5my) sin(5my) + ve

~
]
w|

]O"(x 2) sin(10ny) - ve

~
]
o
&L
3l

lOrr(x 2)

sin(10mwy) 2] (x-2)

sin(1Cny) + ve
(x-2)

~
]
U =

201r(x-2 )sm(ZOn'y) - ve

~
]
e

/AR R RNNYZAY
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We form strips 50'51'52”" parallel to the real axis starting from

y = % in the following pattermn.

_‘U?
6@
A
~
N
IN
!
3
A
x
N\
8
bwgs

AN
~
AN
o
t
8
AN
b
A
8
Y~

2 3
Sy = {,——F‘—<y< — -cn<x<oo}. (1.1)

n=o,1,2...

3 9
S = ] — _<y< -t ,m<x<o k. (1.2)
2+ { 5,97 5.9 } |

n=o,1,2...

Q)K(z) for z & SK ,
We define ) (z) =
C  for z outside all the SK .

For n = o,1,2..., we define

= Al
o2 "(X—Z“)sin(S.Qnﬂy), for x < 2" (1.3)

wr)n(Z) = n+]
2 b n
o (5.2 oI nlx-2 )s;n(5_2"n-y) for x > 2",
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n+l _,  n+l
G ypy@ = S w2 5 9™ ) (1.4)

We note that the width of these strips is graduclly decreased and
they are so defined as to lie in the upper half plane. W) (z) is
identically zero in the lower half plane and on the real axis. (W) (z)
is also identically zero on the part of the upper half plane above y = % .

We also note that in the strips starting from y = 95-, w(z) is
continuous, alternately positive and negative and vanishes on the boundary,
This is observed as follows.

W) (z) is always positive in SZn because sin(5.2nny) is positive as

3

= to —_— There are two different continuous
5.2 5,2

y in S2n varies from

functions in 52n for x > 2" and x < 2" but each function tends to
sin(S.Znny) as x tends to 2",  Hence LJ(z) is continuous and positive
inside the strip SZn and vonishes on its boundary.

Also )(z) is always negative in 52n Y bacause sin(5.2n+!n'y) is

2

negative as y in S‘J'n +l varies from 5 to —, and vanishes
= 5,2 5.2

on the boundary, Also () (z) is a harmonic function wZn +1(Z) inside

S and therefore (W)(z) is continuous and negative inside SZn + and

n+1

vanishes on its boundary,
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Thus ) (z) is continuous in any two adjoining strips, and identically
constant in the part of the upper half-plane above y =% , and iﬁ the
lower half-plane,

In order to show that 3 (z) is continvous in the z-plane, it remains
to show that W (z) is continuous on the real axis.

This is so because the functions in the strips approach zero in the
finite part of the plane as the sirips approach the real axis.  More precisely

for any x, on the real axis choose n such that x < 2",  Then for all z

in a neighbourhood of radius & < , round this X, it follows from
5.2

n
(1.1) and (1.2) that z € Sk where k > 2n + 1.

From (1.3) and (1.4), we have in this neighbourhood,

k k '
fw(z)} < o+2 =27 , k >n+l,

where x<xo+l, x-2k<x'°+l-2.2n§_1-2n_<_»'lifnZ'lc

i.e, fm(z)’, < .9"5-2"“1'r . | (1.5)

As  W(z) is identically zero on the real axis and in the lower
half~plane, the continuity on any finite point of the real axis follows. ;fl;om

(1.5).
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2.2 So far we have shown the continvity of () (z). Now we show
that the meon value inequality is satisfied and hence that the function is
subharmonic,

We first observe that if h(z) = esin by, then the Laplacian

bh = (@ - b
Thus h{z) is subharmonic if,
a > b, when h(z) > O, and
a <b, when h(z) <C .,

Our W(z) is of the form h(z) with different constants in different
parts of the strips, We note that in all Son where W (z) is positive
we have a = b for x < 2" and a >b for x >2".  Also in all 52n+l
whera W(z) is negative, the coefficients of x and y i.e, a and b are
the same. Thus Q)(z) is subharmonic in S2n’+1'.°"°' also in the two
halves of SZn on the right and the left of the line x = 2"7

In order to show that (W(z) is subharmonic on this line we note

that we showed in Section 2.1 that @)(z) is continuous and positive on

this line,
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For any point z on this line, let Cr be a circular neighbourhood of
this point which lies in Spe  Let o and C2 be the halves of the boundary

of Cr in the two halves of the strip S, on the right and the left respec-

2n
tively.
Let W(z) = p(z) for z € C, ond W(z)=qg(z) for z € C,

5.2 4 )n(x-2")

where p(z) = sin(5.2"y),

52;1()(2)

qz) = n(5 2"my) .

Then -2l- f w(z +re )de =-i]—-'fp(z +re )dG
oy C
1
qu(z +re )de
2

1
Since q(z) < p(z) on C , we have

—2-]; fw(z *re' )dGZ'zl" qlz, +re )de—q(Z)—w(z),
S+, S+
since q(z) is harmonic.
Thus we have shown that (W)(z) is subhamonic inside the strips.
Since a constant is trivially subharmonic, it only remains to show that

W(z) is subharmonic on the boundaries of the strips and on the real axis,

We propose to do this in the following sections,
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2.3 There are two types of boundaries of these strips and we discuss them

and S and this

separately,  The first is the boundary between S2n +1 In+2

is the line y = s i

5.2
_ 2
- 5.2" +] +1
- n n
Spap, W) = &2 T2 0 sy
3 »
y = n+'l
5.2 5.2 nx=2™1y . nni (5.2 24 )nlx-2"
o2t © sin(2 5my)f e
2 sin(Z"iH 5my)
y =
5.2"” n+1
x =2

It is clear from the above diagram that {s#(z) is subharmonic on

= 3n+| for x < 2"“
5.2

the two strips S?.n 1 and S2n +2 and is harmonic inside them.  Actually

as for this part, @(z) is the same function in

to the

therefore the integral mean for-the points on the line y = =

5.2
left of x = 2"“, and the value of W (z) at these points are both equal to

zero,

For the poinis on the line y = —75 fo the right of x = 2"” ’
5.2
(#d(z) is again zero on the line, oreover the function defined in the strip

+1

+ ' . .
SZn 42 for x > 2™ s positive and is not less than the harmonic extension

of (z) from x < 2"”. Thus the integral mean is not less than that
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for this harmonic extension, And so the integral mean of &d(z) is

positive on a circle with centre x_ + i o and small positive radius
5.2
it x> 2™,

° —
Hence the mean value inequality is satisfied :»d consequently (&) (z) is
3

n+l  °

5.2

subharmonic on the line vy

The second type of the boundary is the line between SZn and 52n+]'

and this is the line y = 2 .

5,2"

U)(z) is zero on the boundary line and positive in 52n and negative in

s‘2n+]'
n+1
52 ‘e 5 2" n(x~2 )s in(5.2™ny) e(5..2 +1 (-2 )s| (5 2 y)
y = 2 n + ve
5.2" 5.2 ax=2"h) . o - ve
SZnH: e sin(5.2" y)
By the law of the mean for every x in sZn’ we have
0 (x,yth) = Wix,y) = h—-—(x, y+t&.h) , 3.1)

forO<G]<1.

Similarly in SZn-H'
U3 (e, y-h) - Wi,y) = -h ZL e, y-0.0 (3.2

for0<@2<l.'
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Since W(x,y) = O on the line y = —g—;‘- , we have
5.2

for x < 2", y = -—2-5 , from (3.1) and (3.2) ,
5.2

_ n_ 5.2 n(x=2" n .
W (x,yth) + W (x,y~h) = h {5.2 ne cos 4 5.2 rr(y+6,h)

n+l ot |
- 5.2n+'| “e5.2 "(x“z )COS {5.2n+'| ﬂ(y"ezh)}] .

n n
W (x,y+h) + W) (x,y~h) = 5,2"me2+2 ™2

n n
x }cos {S.Znn(y@]h)} - 2e5"2 n(x-3.2 )cos {5_.2n+]ﬂ(y-92hg}
(3.3)

The maximum value of the second term in the second factor on the

5.2, _jOn

right hand side of the above expression (3.3) is at most 2e ~° < 2 .

and is greater than % sufficiently

Also cos(5.2"my) is 1 for y = —
5.2
near this value of y,  So it is possible to choose h] such that for all

h < h], and all @] <1, we have cos {S.Znn(y + Glh)} > ?_e-lOrr.
Thus we have from (3.3), that when x < én,
W (x,y+h) + W (x,y-h) > 0O, (3.4)
for all h < h.l .
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By the some method we find that for

x > 2", yA=—-2—r-1-,wehave:

5.2

( 5, ?n+l

‘ n
W (x,y+h) + W (x,y~h) = h [5 2"ne -2 )cos {5.2nn(y+€th)}

n+]

- 5.9M1 5 2™ {5 2™ ry-0 h)}]

H
o h.5.2 w2 o2 ( nx=2") o {5.2"(y+e]h)} - 267342

Xcos{ ™ n(y-0 h)}} (3.5)

Again the maximum value of the second term in the second factor on

2n+1
n

1Cn

the right hand side of (3.5) is ot most 2e as before, The first term

is at least cos 5.Znn(y+9]h) for x > 2",

As befors it is possible to choose h, such that for all h < h2 and

2
all ©,< 1, the first term is greater than % and so greater than the second
term of (3.5).

Hence (3.4) holds also for x > 2",

Thus if z =x + i , oand r < min(hl,hz), we haove from (3.4),

5.2"

that
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2n
1 i
2 jw(zo +re' )@ >C ., (3.6)

o

Since W (z) is zero and continuous on the line y = -—-g-rT , it
5.2

follows from (3.6), that (J(z) is subharmonic on the line.
We have shown so far that € (z) is subharmonic on the boundary
lines between any two adjoining strips. It remains to show that (L) (z)
is subharmonic on the two extremal boundary lines namely the upper
boundary of the first strip So’ which is the line y =g~ , and the real axis,
It is easy to see that LI (z) is subharmonic on y = % . We recall

that W (z) is zero in the upper half plane above the line y = % , and is

. In the strip _so,w (z) is positive ond

ol w

also zero on the line y =

. . 3 .
continuous,  Thus for any z, =x +iz and small radius r, we have

2w
1 e,
YTy fw(z°+re )dv>C,
(o]

and from this it folbws that (0 (z) is subharmonic on the line y = g- .
The subharmonicity onthe real oxis will be shown in the next section,

2.4 It was shown in the last paragraph of Section 2,1 that (W (z) is

continuous on the real axis, and it remains to show that the mean value
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inequality is satisfied,  For this purpose we compute the arecal mean

1 ‘ . .
5 ﬂw(z) dx dy taken over the disc !z - xo*, <r.

nr

If x < 2", we take r < -and compute the areal mean of L) (z) -

5.2

in the disc with centre xo and radius r,

The areal mean is zero for the lower
_[ -
N 9 Zz

semicircle as W (z) is identically zero

in the lower half plane.

We consider the portions of the [

strips Sop s Sppyqr €tc., inside the g=0

upper semicircle and the contributions. from them fowards the areal mean,

We observe the way the strips are formed and -note that if the upper semi~

circle contains a portion Dn of SZn—l (in which W (z) is negative), then

it also contains the reflection D of D_ in the line y = 3 .
n n 5 9"

Thus the total contribution to the areal mean from the pair of strips

is always non-negative, since W (z) >0 in SZ“, , and

] [fw-(z) dx dy = - 12 .U.w(z)dx dy .
D ‘D

2
nr
Thus the areal mean is positive for the. upper semicircle and hence positive

n
n
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for the whole disc,

Since W(z) is zero on the real oxis, the mean value inequality is

satisfied and the function D (z) is subharmonic on the real axis,

We have thus shown that the function UJ(z) of our Example 1 is
continuous and subharmonic in the whole plane,  The components of
{z ,w(z) > o} are precisely the (open) strips S2

the components of {z ,w(z) > o} are the closed strips 52n together

ne Cn the other hand

with the half planes y < O, y Z% and on these half planes LY (z) = O,
Also the lower half plane is isolated from all other components of

the set { zf UXz) > o}v . This shows that components of

{z ;‘&)(z) > K} can exist on which G(z) 2 K even though W(z)

is not identically constant in the plane,

2.5 We note that it follows from Lemma 1.6 and subsequent deduction
(7.2) that if u(zo) > K, then the intersection of the set {z ‘u(z) > K}
with a small neighbourhood of z_ has a positive area, (5.1).

-We also have the assertion (c) of Section 1.3, that if u(z) > K at
a point Z there exists a circle c(io,ﬁ) round this point such that
u(z) > K on this circle, Since the cgbmébnenfg of {z‘ u(z) > K}
extend to infinity by Lemma 1,1, the component of {z} u(z) > K}

which contains z,r ‘also contains the circle c(zo,S) and has the positive
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area referred to in (5.1) inside this circle, Also there is no other
component inside this circle.  Thus each component of the set
{z'\ u(z) > K} has positive area, And also the components of
{z* u(z) > K} , on which u(z) > K somewhere on the component, have
'po;sifive area,

Consequently such components are at most countable in number,

Thus we have:

Theorem 2,1, The components of the set -{ zfu(z) > K} ‘and the

components of iz ‘ u(z) > K} on which u(z) # K, each have positive

area and so their total number is at most countable.

We also note that in Example 1, there are an infinite number of
such components in any small neighbourhood of a point on the real axis.

Thus the components of the set {'zi u(z) > K} in which u(z) #Z K,
can be at most countable in number and need not be locally finite,

However, the components of {ziu(z) > K}' on which u(z) is
identically constant may have zero area. We show in the next example.
that the number of such components on which u(z) is identically constant

may be non-countable,

2.6 FExample 2

We now construct a subharmonic function u(z) for which the saf
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{z’ u(z) > o}' has a number of components having the power of the
continuum on each of which u(z) is idénﬁcu“y zaro.

We first define wo(z) = () (z) in the entire finite z-plane except
the strip {% <y<1, ~@<x< oo} , where () (z) is the function
defined in Example 1. In the strip {g <y<1l, ~@w<x<w } p

we define

W &,y = QW (x,1-y) .

The function wo(z) is thus defined in the whole plane and is
symmetric about the line y = 4, Also wo(z) is identically zero for
y<Oandy>1. Again (zl%(z) is subharmonic for y <% and so in
the whole plane by symmetry.

Finally we note that the half planes y < 0 and y > 1 are components
of the set {z‘ wo(z) > O}

It can be easily proved (e.g. Talpur (1), Th.1.7, p.19) that if
u(z) is subhamonic in D and z = f(y) maps A(],I) conformally into
D, then u {f(g)} is subharmonic in A .

Let z = fm(;) =38-i,

Then f] ](*‘5) maps the infinite strip {%— <m G < %} into the

strip {C <Imz< 'I}, .
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Thus b'%’](z) = (%{F],](g )}- is subharmonic in the ;-plane
and is identically zero in the half planes Im § 2% and Im§ < % .

Similarly z = FZ,T(g) = 32; - and

z=f =32§-7:mapthesfnps { <Img < } and

{ < Im ‘; } info the strip {O <Imz< ]}

We also define 2’](;) = wo{fZ,](s )} and

= ' W W,
W, 5) = W {8} , ond note thar & (S) and 0, ()
are subharmonic in the § ~plane,

We note that at the mfh step, there are zm-'l complementary
intervals to Cantor's ternary set,  Let (ak,bk) be any complementary

interval to Cantor's ternary set., Then z = Fm,k = fg-k-l_—-a-l-‘- (g-.-iak)

maps the strip {ak< kn§< bk} into the strip {O <lmz< I}.

. th m=1 .
We thus define m group of 2 functions Fm,'l'fm,Z """fm,Zm"] '

so as to map the vl strips of the " group into the strip {o <Imz< 1} .

(%) = u;,{fm,k(S)}, | (6.1)

2m-'l

Set
m ok

where n =1 tooand k=1 to
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o zm-] : T
Finally we define (W (&) = %] % f'm'k u'r’n,k(g)' (6.2)
where O < £ sup H  (8)] < --l-—~ "
m, k 184 <m’ m, k { = 4m

The series on the right hand side of (6.2) is clearly uniformly

convergent for dll ; in the finite g-plane.

Since em,k >0, em'k (*g“k(;) is subharmonic and W (€)
is thus defined as a uniformly convergent infinite sum of functions sub~
harmonic in the finite plcne.‘ Thus W (§) is subharmonic in the
finite 5-p|ane. (e.g. Rado (1) p.20).
We note that atf interior points of the strips formed by the middle
thirds, only one function wm,k is not identically zero,  The function
W (§) is equal to zero on the boundary of this strip.  And these
boundary lines do not balong to any component of the set {5 f“;’_ﬂ{i) > O} 2
because by construction as in Example 1, these boundary lines are isolated
from other components of “r)n,k' Also these boundary lines do not
belong to any component of {3 !Lﬁr)n ’k(S_) > Q} for different values
of m and k,  Therefore these boundary lines are components of
{S’{w () > o} .
Now we consider the function (1) (§) on the complementary set of

these closed strips.  This set consists of lines parallel to the x-axis
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through the points of the Cantor ternary set on the y-axis, and the half
planes Im S < G and Im 1Y > 1.
It follows from the definition that (L0 (&) is equal to zero on this
complementary set as sach GJ k is zero on this set, Also these lines
and sets are isolated from components of {’S ’UJ($) > O} .

Finally we note that the components of {G‘OJ () > O}
include all the lines Im 5 = c where ¢ is a number in Cantor's ternary
set such that 0 < ¢ < 1, and also the half planes Im 9° <O, Im S 21
On all these components W (§) = O,

In addition there are a countable set of strips of the type

!
‘)’)0 < lmg < 2’ on which QW (§) > O. And the closures of

these strips are the remaining components of (%) >C.

2.7 In this section we discuss the relationship between the number of
components C(K) of the set {;;u(z) >K } and the order of u(z).
We recall the definition of the order K and the lower order \ of

a subharmonic function,

Let B(r) = max u(z).

{z} =r

K = lim sup -!9-%:—(:2- .
Y > o b
A = lim inf log B(r) -
ogr

r— o
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We have shown earlier that u(z) is unbounded in each such
| component C(K).  Therefore if K* > K, it follows that each 'c.omponenl'
G(K) of the set {z;u(z) > K} contains at least one component G(K*)
of the set {z'u(z) > K'} .
Hence the number n(K) of these components G(K) is a positive non-
decreasing function of K which may be + e for some and hence for all
sufficiently large values of K,

We also observe that if the component C(K) of the set {z’u(z) > K}
contains precisely one component C(K + 8) of the set {zlu(z) > K+ 6}
where § > O, then C(K) contains precisely one component G(K) of the
set {z’u(z) > K} .

In the case of integral functions, it was shown by Hayman
(Hayman (2)) that if the lower order A is finite, the number n(K) of the
components G(K) of the set {z{' u(z) > K}— is finite,

He showed that A > M, where

N o= lim n(K).
K—=>om

This is a consequence of the Denjoy-Ahlfors theorem,
The situation for general subharmonic functions is different as the
components G(K) of the set {z*u(z) > K} may not be domains,

The result however follows from the following theorem of the Denjoy-Ahlfors
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type proved by Heins (Heins (2), Th.5.1, p.74).

Lemma 2.1 Let Upreeou denote (n > 2) non-constant non-negative

subharmonic functions in the finite plane which satisfy that min (ui ,uk) =

O for | # k.

2n 3
Let q(r) = j 2?: [u (reie)J 2 d@}
{ = ’

then lim inf r “g(r) > O 7.1)

r - @

Nj o

We now prove a consequence of this theorem about the components
G(K) of a general subharmonic function,

Suppose that u(z) is subharmonic in the z-plane and let N = lim n{K)
K=—=00

where as before n(K) is the number of the components G(K) of the set

{z’ u(z) > K} .

Take n finite and such that n < M.

Choose n components G](K), GZ(K)""‘Gn(K)‘
Consider the function u(z) - K,

It is positive inside these n components,

We now define u_,u,,...u as follows:
1772 n
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u, (z) = u(z)-K inG, (K),
= C outside G, (K)
for ¥=1,2,,..Nn.

Then, as observed atf the end of Section 1.3, it can be easily
seen that by the arguments similar to those of Lemma 1.3, it follows that
the functions Uprlgres U are subharmonic in the whole plane,

The functions UprUpresaly are also non-negative in the entire
plane.

Also, it follows from the construction of these functions that if one
of u, (z) is non~zero, at a point, the others are necessarily zero,

Thus the condition min {Uk(Z)’ ui(z)} = O, k #i is satisfied.

Hence the functions Upreesty resely satisfy the hypotheses of

Lemma 2.1.

Therefore

N3

lim
== 7 qi) > C .

Since B(r), the maximum modulus for the original function u(z) is obviously

greater than or equal to q(r), we have

lim
—r—:; r B(I’) > O,

([ = ]



- 44 -

Hence by the definition of A, we have

A2

N 3
L ]

If N = oo, we may take n arbitrarily large and hence A = .

Therefore we have the following conclusions

If u(z) has o finite lower order , the number of the components
G(K) is at most max {2)\,]} . In particular an infinite number of

components G(K) is only possible in the case of a function of infinite

lower order,
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CHAPTER Il

SOME FURTHER RESULTS

3.1 In this chapter weo consider how quickly does u(z) tend to + @
along an asymptotic path.

If u(z) is o non-constant cubharmonic function in the plane and as
before B(r) = mox u(z) , it follows from the Phragmen=-Lindeldf Principle

zl=r
that

B(r) > q where 0<a<ow .
og r =

If a is finite, the problem has been settled by Hayman (Hayman (3)). He

has shown that 'If u(z) is subharmonic and not constant in the plane and
B(r) = C(log r) as r —>= o ,
ie . ie .
then u{re ) = B(r) + o(1), uniformly as re =~ — oo outside a set of

circles subtending angles ot the origin, whose sum is finite."

He has also shown in the some paper that if

2(r) = O(log r)2 as r — o ,

19
then u(re") ~ B(r) as r —> oo for almost every fixed €, The
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relation also holds uniformly in € as r —> o outside a set of finite

logarithmic measure.

However, even when f(z) is a rapidly growing integral function,

such general results are not easy to prove,

There is an unpublished result of Boas, that if f(z) is an integral

function which is not a polynomial, then there exists a path rco such

that for every n,

f(z)
I-—-z-rT-} —2 0, as z —= o along r‘oo'

This, of course, only shows that on the asymptotic path FOO ’
I f(z)l — oo more rapidly than every polynomial,  We shall prove an

analogue of this result of Boas for a general subharmonic function for

which B(r) # O(log r).

3.2

Theorem 3,1. If u(z) is a non-constant subharmonic function such that

B(r) # O(log r), then there exists a path P such that

u(z)- > + @, as z —= O on F.
log =]

The function un(z) = y(z) - n log ]21 must be unbounded in the

plane for every finite n, because otherwise B(r) = C(log r) and this
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contradicts the hypothesis,

Consider the components of the set {z’u(z) > K} in lz, > 1.
If there is only one such component then the function un(z) is unbounded
in this component for every finite n.  If there are more than one of such
components, then it follows from the Wiman-Heins theorem (Heins (3))
that B(r) grows at least like rJ'Z in each such component,  Consequently
u (z) is unbounded in each component for finite n.

Also un(z) is subharmonic in the plane except for the origin,

It follows from Lemma 1.1, that if un(z) is subharmonic in a disc
{z - zo' < R, all the components of the set {z‘un(z) > K} go to the
boundary ‘12 - zoI = R,
Consider a component G(n) of the set le > 1 on which
un(z) = u(z) = n log |z] >B(1) + n. This is a component of the set
on which

u(z) > n + nlog {z} + B(1) .

Such a component exists and stretches to .infinii'y and um(z) is unbounded
in it for every finite m, Therefore G(n) contains G(n+1) i.e. a &'l)
component (in fzj > 1) on which u(z) - (n+1) log iz{ > B(1) + ntl,

Suppose that z. is a point in |z{ > 1 such that u(z.l) - log 'Izl,

1
>B(1) + 1,



Then z, € CG(1).
Also by (2.1), G(1) contains a component G(2).
Let z2€ G(2), then u(zz)- 2 log lzz] >B(1) + 2.

Since z, and z

1

joining z, to =

1 2
Also as before by (2.1), G(2) contains a component G(3),

2 both belong to G(1), there exists a continuum N

and lying in the closure of G(1),

Let zq € C(3), then
u(zg) - 3 log |z4] > B(1) + 3,
Since z, and zg both belong to G(2), there exists a continuum Yy joining
z, to z, and lying in closure of G(2).
Continving in this way we have after n steps,

u(zn) - n log ‘znl- >B(1) + n and

u(z) = (n=1) log {z| >B(1) + (n=1) on y,__,

joining the points z_ and z .

1
Also from the construction it is obvious that u(zn) >n+n |og’zni + B(1).
Thus z will tend to infinity with n, as u(z) is bounded near ,z‘ =1,
Thus we have a continuum r\ = y]' + ¥y + ... that goes to

infinity through all of these G(n) and on this continuum

u(z)
.I_—og{z-} —_—+ o, as z —» © ,
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By applying Lemma 1,5 to un(z), it follows that there exists a polygonal

path with similer properties,

3.3 We now discuss whether we can improve the conclusion of Theorem
3.1 by restricting somawhat the growth of the function, We consider
subharmonic functions of order less than 1,

Let u(z) be a non-constant function subharmonic in the finite z-
plane and as before Ar) and B(r) denote inf u(z) and max u(z) on |z} =r
respectively,  Let K and X denote the order and the lower order of
u(z) as defined in Section 2,7,

We now iniroduce some notation regarding measure and density of
sefs,

Given any set £ on the part r > 1 of the positive r-axis we define

the measure mE of E and the logarithmic measure Im £ of E by

mE = (dr, Im E= -?—E . (3.1)
“E E
Let E(r) denote the part of E in the interval [’l ,Y'J , and we

define the upper and lower densities of E, by the equations:

, dens E = lim __TEE_(%’_ (3.2)

r-

mE(r)

dens E = iim 3
r—0 = =0
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R B and
We dlso define the upper and lower logarithmic densities log dens E ,

and log dens E, by

. Im E(r) . Im E(r)
feg dens E = Tlim ———2, log dens £ = lim (3.3)
s log r = Tog r

It can be easily proved (e.g. Barry (1) pe447) that

© < dens E<log dens E< Tog dens &< dens £ 1

and OSImESmE.

In 1927, Besicovitch proved that if u(z) = log I f(z)' where f(z)

is an integrai function of order K, O <SK<1, ond K<a <1, then
oens{ l/\(r) > cos ma B(r)} > 1 = (3.4)

He also gave an example of an integral function for which the
lower density of the set in (3.4) is zero.

in 1952, Huber extended (3.4) ta the class of general subharmonic
functions of order K, (O < K<1).

In 1963, (3.4} was strengthened further by Barry, who proved the

following theorem in 3arry (2).
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Lemma 3.1. Let u(z) be a non-constant function subharmonic in the

finite z-plans and of order K, O < K <1, and let K <a <1, Then

log dens E {r! Alr) > cos rraB(r)} >1- !:T (3.5)

Thus if the order K of u(z) is less than ¥, we choose a between K
and 1.  Then by (3.5), on a set of positive lower logarithmic density

¢ we have,

Alr) > cos ma B(r) (3.6)

3.4 We now proove the following lemma which we will use to prove a

theorem about lower growth on suitable paths,

Lemma 3.2, Suppose that a set E has positive lower logarithmic

density at least ¢.  Then there exist r such that for all r > rs there
1+€

are points belonging to Ein (r, r © ), where € is any positive

number.

The set E has lower logarithmic density at least e,  We assume
without loss in generality that O < € < ¥,
There exists r such that for all r > ros the logarithmic measure of

E(r) is at least —-l-—zf-clog re
1 +€
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1+€ = 1 1 +€
Im E¢c ¢ ) > > C fog r = ———p.C. - log r
1+€ 1+€ ¢
1+€
= -—-——-?— log T
1+e”
Now Im E(r) is at most log r.
1+&€
The logarithmic measure of the part of E in the interval (r, r
is at least
d+e +°2Iogr-|ogr)=(————]+"' 5= 1Nlogr,
1 +€ 1+ €~
On simplification this is equal to =€) logr>C .,
2
1+ €
+&

There exist points belonging to Ein (r, r € ).
This completes the proof of Lemma 3.2.
We now prove a result about the lower growth which is a consequence of

Lemma 3.1.

Theorem 3,2, Let u(z) be a non-constant function subharmonic in the

finite plane of order K, O < K <%, and let K<a< 3 ., Then on

a suvitable asymptotic path,

K
~ 1= -
u(z) > cos nal.’:[r /(1 +< )J ? (4.1)

where jz] =r.
~———
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Since u(z) is of order less than a half there exists a sequence r

of r, tending to w, such thai,

A(rn) > cos na B(rn). (4.2)
Since A(rn) = inf u(z), we have that for all z on |zl =1,

(=i=r_

u(z) > cos ma, B(rn). (4.3)

We now use Lemmas 3,1 and 3,2 dbout the density of the set of r;a which
satisfy (4.2).

If r is sufficiently large we deduce from Lemmas 3.1 and 3,2 that
1+€
the set E of (3.5) hos points in the interval (r, r € ), where ¢ is the

lower logarithmic density in (3.5).

K

Also ¢ >1 -~ =~ .
- a

If the sequence is suitably chosen, then for large r, the interval
1+€

) contains members of the sequence in (4.2),

Thus from the above sequence we can choose F satisfying

]-K/a

1+ €
n ) < rn--'l

(r .

Also it follows from (4.2) and (4.3) that for z on these o

u(z) > cos na. B(rn) .
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The set an which u(z) = A(r.l) >0 contains lz‘ =r and by Lemma 1.1,
stretches to infinity, We choose For ©S above and it follows from our
earlier results that there is @ continuum extending from {z{ = ry to

|z} = Fpr ON which
u(z) > A(r]) > cos ma B(r]) .

Thus we cen jein the points z, and zzvhere u(z]) = B(r]) and u(zz) = B(rz)

1
respactively by a continuum on which u(z) > cos na B(rl).

Continuirg ‘n this way we have a continuum extending to infinity
on which,

1K/

A ——

u(z) > cos ma.B(r 'Y€ ),  where fz} =r.

By Lemma 1.5,there exists a polygonal path on which

(1-K/)
(1+€] )-1, where Jz|] =r,

u(z) > cos ma.B(r

3.5 We note that in the case of functions of order zero, a can be

S 1
chosen arbitrarily near zero.  Thus both cos ma and Tre can be near
one. Therefcre we have that for functions of zero order we can find

suitable paths on which,

oz) > (1= € B"),  where r=-Jzf .
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CHAPTER 1V

SUBHARMONIC FUNCTIONS IN SPACE

4,1 Introduction

The definifion of a subharmonic function in the plane can be carried
over to Euclidean space of three or more dimensions, Let u(P) be a
function in a domain D suc':h that - © < u < + 0. Then it is subharmonic
if it satisfies the following: three conditions:

(i) v is not idenﬁ"g';ally equal to -~ in D,

(i) v is upper~semi-continuous in D,

(tit) u(P) is less than or equal to AU(P,S), the meon of u on

any spherical surface of centre P and radius & for all

sufficiently small 5, depending on P,

We introduce the following notation,

D(P,r) = {Q‘ PQ < r} , an open ball centre P, radius r;
C(P,r) = {Q;PQ < r}. , o closed ball centre P, radius r;
Dr = DC,r), Cr = C(O,n ;

S(P,r) = {Q} PQ = r} ’ Sr = S§(C,r), the spherical surface,
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Thus the condition (iii) implies that,

uP) <A (P,8) = — Q) dS (1.1)
- v 4 82 Q
e 5(p,s)
wheare dSO is the element of area around & on S(P,8) .
Also, if cu(P,S) denotes the volume average of u over an open

ball D(P,8), it can be easily seen that

&

cu(P,S) = —§-§— AU(P,r) rzdr . (1.2)

()
Also in the condition (iii), the mean may be considered on a
spherical volume instead of a spherical surface,
It follows easily from the above definition that
1. If Uy and u, are subharmonic, then max [u],uz] and Uy + 02

are subharmonic,

2,  If v is subharmonic so is Ku for any constant K > O ,

As in the plane case we deduce the following version of the Maximum

principle from the above definition,

Theorem 4,1, Suppose that V(P) is harmonic in « bounded domain D,

of space and continuous in the closure of D, and that u(P) is subharmonic
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in D and upper-semi-continuous in fhe closure of D and u(P) < v(P) on

aD, the boundary of D, Then

v(P) in D,

u(P). < v(P) in D or u(P)

Let @I(P) = u(P) = v(P).
Then Q) (P) is subharmonic in D and upper-semi-continuous in the
closure of D and W(P) < C on 3D,

let M = sup W(P).
PeD

Suppose that P ,..-.,Pn,... is a sequence of points in D such that
W(Pn) —> M,

Then a subsequence of {Pn} say P converges to a point Po
belonging to the closure of D. d

Suppcse that P0 £ 9D, Then for large q, by upper-semi~continuity, we

deduce that

W(E )< WPe)+€
n )
G
Consequently 4 < w(Po) +€< O,
Therefore A < C as required unless A = C and in this case
W(P) = © for some point in D. 2

If Po € D, then again by upper-semi-continuity, -w(Po) > lim sup UJ(Pn )=
q—=® q

=z .’r\A.
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Since by definition @ (P) <Mfor PED, we have € (Po) = M,
We now show that if this happens, we have
WEFE) = M for PE D,

The set ¥ = {PlP ep, WE= M} is closed by the upper-
semi-continuity. |

If F is not the whole domain D, there exists a point R € DNF,

Let afT) be a path joining Po to R in D, Since Po belongs to a
closed subset F of B and R is outside F, the path a(T) must have an
extremal point on the set F when it leave F and enters D™ F,

Let this point be T, and T ¢ F,

For arbitrary small &,

v G 1 f \
M L (T) < " 82 UH{Q) dSQ .
S(T,8)

Thus —1—ps j {co(@) - w(r)} dse, > O . (1.3)
48 sir,8) | |

FUNQ) =M ~] €< M for some Q@ = Q_, then by the upper-
semi=continuity (W(Q) < * ~€  in a neighbourhood of Q of area

823? say, Thus the integral in (1,3) is at most -Z};rle <C,

This gives a contradiction,  Therefore for all @ on $(T,8) we
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have W(Q) = *A,  Bui this surface meets the path joining P, to R.
Thus the point of intersection belongs to F and contradicts the
definition of T,
Since (W(P) < C on 3D, we must have M < O,
Thus W(P) < C in dll cases and equality holds if and only if

W(PYZ C in D, This proves the theorem,

4,2 Thus we observe that the definition is the same for two or more
dimensions and some properties like the Maximum=-principle and others also
hold both in the case of the plane and space.  However, in some ways
the behaviour of subharmonic functions in space is quite different from that
in the plane,  For example in the plane we have an analogue of
Liouville's theorem that a function which is subharmonic and bounded above
in the entire finite plane is constant,  But in space we have non-constant
subharmonic functions which are bounded dbove,
For example, consider
, -1

u(P) = ulx,y,z) = v{ [(x—xo)2 + (y-)fo)2 + (z-zo)z} 2

L

for’ (xrrer) #

(xor)'olzo.) ’

- ® for (x,y,z) = xo,yo,zo),.

Then u(P) is bounded above in space,
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u(P) is also upper-semi~continuous at (xo,yo,zo) and continuous elsewhere,
Also the Laplacian of u(P) is zero except at (xo,yo,zo). Thisvimp“es
the condition (iii} of the definition of a subharmoﬁic function, [ e.g.
Kellogg (1), p.3'|6]‘. Hence u(P) is subharmonic in the entire space,

Thus we see that some properties which hold in the plane may noi
hold in space. In general we cannot expect an asymptotic path on which
a subharmonic function u(P) tends to + . The natural extension of
Iversen's theorem would be to show the existence of a path on which u(P)
tends to *A where M is the upper bound of u(P} in space,

We are able to do this in the case of a continuous subharmonic
function, and in the cose of a general subharmonic function when M is
finite,

As the anclogues in space of some theorems in the plane are not valid,
it is not possible to get results as strong as those in the plane, The
question of finding an asymptotic path on which a general subharmonic

function tends to + ), is still open,

4,3 In this section we state and prove some lemmas which will be useful
to us in further investigations,

Lemma 4,1 If u(P) is a subharmonic function in a complete neighbourhood

of the closed ball C{®,r), then all the components of the sets
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-
JLP}u(P) > K} SL{P‘U(P) > K} in C(Q,r) go to the boundary S(Q,r).

' This is an analogue of Lemma 1,1 and can be proved by the arguments

similar to those given for the plane in ‘Chapter |,

Lemma 4,2  Suppose that u(P) is subharmonic in the neighbourhood of

the closure g’ of a bounded domain L . Llet Fo be a component of

{P'U(P) >0C4% in ‘ﬁ‘ and define
- - = e

u(P) , for PE Fo ,
v(P) = {
O , for P outside Fo'

Then v(P) is subharmonic in 197 .

This lemma is the space analogue of Lemma 1.3 in the plane,  In
the plane we made use of fBe Milloux=Schmidt inequality. We now give
a proof which ap;-:l fes in K~dimensions and does not need the application
of the Milloux=Schmidt inequality,

Let v be a sequence of continuous functions decreasing to v in ZZ
and subharmonic in a neighbourhood of Lﬁ-’ . Llet Po be a point of Fo |
and let F be the component olf (F"un(P) > O} in ﬁ which contains
P.

o

Then F € F ond the F are continua,
ntl " n T on
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Q
let # = S\ F

n=1
We show that F = Fo'

We remark that r is a component of a bounded closed set

[@ N {P‘U(P) > C}j and is therefore a point or a continuum,

If it is a point, it lies on the boundary of ol by Lemma 4,1, In
that case v(P) is identically zero in S .

ch therefore consider the case when F is a continuum,

We note that u 2u>CinF o and F is a continuum m'-n’ -,
Thus Fn contains Fo‘

Since this is true for every n, Fo C F., (3.1)
Conversely, u 20 inF_ for every n.

u > CinF

n —

Thus u > © in F, and since F is a continuum which contains

P s F C F. (3.2)

From (3.1} and (3.2), we have F = Fo'

u(P), forP e F,
Now set Vn(_P) = ,3( n n

O , . for P outside Fn .
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Then it is evident from the continuity of un( P), that vn(P) is continuous

and subharmonic in LU

Also we note that vn(P) decreases with n,
For if P € Fn+l’ then P & Fn’ and so

VolP) = v () =0 (P) = v (P)>OC,

And if P is outside Fn+'l’ then vn_!_](P) =0 < vn(P).

Since the limit of a decreasing sequence of subharmonic functions is

a subharmonic function, (Rado (1), p.14) we have that v(P) = lim vn(P)

)
is subharmonic in ‘—Q .

MMow if P & Fo’ then P € Fn for every n, and v(P) = lim vn(P) =
n—>¢
= lim U'n(P) = y(P).
—>c0
If P is outside Fo’ then P is outside Fn for large n, and vn(P) = O for

n> no( P).

Therefore v(P) = O© ,

This shows that the limit function is the original function defined in

the lemma and what is required is proved,



Lemma 4.3 I u(P) is subharmonic ih domain D and E is o compact

subset of D, then there exisis a sequence vs(P) of functions defined for

all points in D distant not more than 38 from the boundary of D such that

0) VS(_P) :s subharmonic in E 3

(i) vg(P) € c®

(iii) VS(P) increases with incredsing 5,

(iv) VS(P) —> u(P) as 6§33 O .

Consider v(P) = f u(QK(P,Q)® , where dQ is a volume
| péo™
element and K(P,Q) E"E .
Assume that P = (x,y,2z), Q= (g ,V) ,;) and K(P,Q) can be written in
the form K(x -E ' Y -7/' , Z -; ), and K = C when
1
[(x £y G -5)2}""' > 5.

We shall set

2
Ks(x"'f s Y"?l Z“S ) = C(8) exp & - {(x-g) + ()"‘?) + (z'g)}J }

{(x—g )y + (Y-’l) + @30 2t 5,

KS(X"'g ’ )"'7] ’ Z"'S ) = OI ‘ (x";)z + ()"'1} )2 + (Z-S )2 2 & ’

where C(8) is a constant -§-3— , and C is defined so that 4nC fe sds =1,
&5 - o
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Suppose that P € £ and that u{P) is subharmonic in a 3&-
neighbourhood of E, Then u(P) has a finite integral in a &=
neighbourhood E' of E and

[v(P) | <M in £,
Also for P € E, u(Q) K(F,Q) = O except when Q@ is at a distance not

more than & from E.

We note that the partial derivatives of v can be obtained by formal

differentiation under the integral
v(x,y,z) = V{]] U(E 17 I;) K(X-f rY'7 02'5 )df d)? ds o
D]

Thus v(x+h, y,z) - v(x,y,z) =

jff u(f 7 .5) {K(x+h-§ ey, 2=5) - Klx=& ,y-’)‘,z-f?} dfd7ds,

hﬂf u(jg ,V),S’){EK—X(x-E-!-Gh, y-*[,z-f) d§d7d5,

where C <& <1,

and @ = Q(x,y,z,§ ny'_.’ 5)'

Also %-E— is continuous and therefore uniformly continuous in a sphere of

radius & and so in the whole space,
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Thus given £ > O, 3 8" > C such that for all ’h" < &' we have,

' .?i(_(x-g ,y—-’] ,z-g) - %—xls-(x+h'-§ ,Y"’} :Z'; )/ < g , for all (XIYIZ)O

Thus ’“"*’"V'Z’ - vioy,z) H f K -8,y ,-z-s)u(g,p.s)d}dm’
[fu(§? ,$)d§d7d5‘_<_ M€ |
R

Therefore ——= exists, Also like %—i- , it is uniformly continuous

AL

in space,

Similarly it follows that V & €%

MNow we show that v(P) is subharmonic in E,
v(x+h’,y+h2,z+h3) = ff f u(?,? ,S)K(x+h.|-§,‘y+h2-?}_,z+h3-5 )d_{ d7 df

= ‘WU( §l+h‘, > t+h2, Sz.,hs)K(x_ -gl Y- .71 ,z= Sl)d §'d )}ld 5. ,

= fjf uf §+h],?+h2, §+hJK(x-£ v iz5 )d§ d7d5’l, (3.3)
1

4ar -

We now operate on both sides of (3,3) by dSr where dSr

is the area element of the spherical surface radius r,

A(P) = LT,[J dsﬂf(gm 7}+h2, Gth )K= -E.y7] z-SMEdRdE L
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We change the order of integration an the right hand side as the

integrand is bounded dabove,

ALP) = fjf Kix-§ 1v-1) ;2= EME dd3 .~y f o ;%,,Vl +hy, §4h)ds,

4wy

We subtract v(P) from both the sides and recall that
v(P) = f [f o(F ) & Kee-§ y=1) 2=5 g d7)dS
Thus A (P,r) - v(P) = fjf KeemE ,y=T) ,2=5 )€ 47 dS
x [4lr2fju(g+h],7+hz,'§+h3) - u(E )] ,§)der .

The integrand on the right hand side is positive as u(P) is subharmonic in

E' and K > O,
Therefore AV(P,r) > v(P) and v(P) is subharmonic in E,
Finally, we note that if we take P as the origin we have in

spherical polar form
-1

2r m & —
1-r2/82 2
VS(P) = f C(8)e ulr, S, ) sine dedddr .
o o ‘o

, & N
= fc(s) e 1-r2/&2 Au(P,r).4n.r2dr .
[
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Since we tdke C(8) = —C§ , we have
e

1

' 2,73
v(P) = 4nC 2 1-r°/8 Au(P,r)rgdr
§ 53

o
Put r = 8
Ld ]*
1 - 52 2
Thus VS(P) = 4nC e Au(P,s8) s ds (3.4)
A v
It can be shown by arguments onalogous to those in the plane
(e.g. Th.1,8, Talpur (1)) that Au(P,r) is an increasing function of r,
Take 8,' < 82-

1
re 1-s 2
Then v. (P) - v_ (P) = 4nC e Au(P, 38,) - Au(P,s8,) s°ds
82 8] 2 1
o

> C.,

Therefore VS.,(P) is an increasing function of & .,
1

. 1 -
3

Also a5 § —> O, v,(P) —> 4nC u(P) fe =" 24,

o]

1

2
As the constant C was defined so that 4nC j‘ e 1-s szds =1,
°

we have that vg(P) —=uyP)as 5§ — C ,



- 69 ~

Thus by choosing a sequence of & tending to O, we obtain

VS(P) € c®, subharmonic in E, and decreasing fo u(P) in Eas § — O ,

4.4 It was remarked in Section 4,2 that a function subharmonic in space,
may be bounded above in space. We note that the theorems obout the
growth of subhanmonic functions do not have the exact anclogues in space,
For example in the plane we have the Wiman-Heins theorem which can be
stated asg

YIF u(P) is a non-negative subharmonic function in the entire plane
and if A= {P’U(P) = O} ’ Sr = {P’o'53= l} .

M(r) = Max u(P)
PE Sr

and if the intersection A /\Sr is not null for all sufficiently large r,

then either v = O, or lim ZM(r) > O."
r —= 00

Huber(1) has studied the extension of this theorem to space. He
has shown that by making suitably general assumptions about the set A,
one can make some assertions about the growth of u(P) in space,

Following Huber, if G is a set in space, we define the solid angle
Iu(r) subtended by the set G /\Sr at the origin as the Lebesgue area of

G AS, divided by /2.
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As before, let A denote the setf {Plu(P) = O} .
Huber has proved:

'let u(P) be a non~negative subharmonic function in space,

Suppose that for all sufficiently large values of r, the solid angle -P(r)

subtended by the set A N\ Sr at the origin is not less than a positive

number f‘o' Then there exisis a positive number B8 depending on f(o,

such that either u =2 Q or _l_lm r-ﬁ M(r) > O,°
r—= 00

Since an asymptotic path has to lie inside a component of
{P,U(P) > O} , we have to show that (i) there is at least one .
component of {P’ u(P) > O} in which an unbounded function u(P) is
unbounded, (ii) there is at least one component in which u(P) has the
some upper bound as it has in space,

However, we cannot use the above theorem directly as we cannot say in
general that such a }16 exists,

We recall that in the plane we showed that u(P) is unbounded or
identically constant in o component of {P’U(P) > O} by applying
the Milloux-Schmidt inequality.

We shall devote the next few sections to prove the following theorem

which may be considered os an analogue of the Milloux-Schmidt inequality,
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Theorem 4,2, Suppose that u(P) is subharmonic in DP (O <R<L w),

and that u > O on a set D, meeting each spherical surface Sr in a set

D(r) subtending a solid angle at most /-l(r) < 4u, at the origin for

r <r<Rk,

o
Let mz(r) = ! 5 fuz dSr ’
Aur D(r)

S denotes_an el t of area on §
wheredr’\ta,,_ce,s_;eemen of are .

Then for r < r <R, we have

2 mz(r )y & 7}
m (r) > - 2 j’exp{Z fa( ?)d logf_} dT,I N
r r
o o

. 2 Lo o
where a(g) > \/{}l‘(§) - 14'}- %, and j = 2,4048,,,.. is

the first positive zero for the Bessel function do .

4,5 Gur proof of Theorem 4,2 is long, and Sections 4.5 to 4.8 will be
occupied with it,

The method of measuring the growth of analytic functions (in the
plane) subject to certafn boundary conditions fn terms of a quadratic

integral norm was first introduced by Carleman (1).  Later Dinghas (1)
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showed that the wethod could be extended to the smooth functions in
n-dimensions,  However, the general subharmonic functions are not
subject to any smoothness conditions, In the plane, Heins (Heins (2))
obtained the correct lower estimate of growth for general subharmonic
functions by replacing the differential inequality of Carleman by .a con-
vexity condition,  Huber (1) used a more direct method of approximating
a general subharmonic function by smooth functions,

We first prove a definite inequality about the growth of smooth
subharmonic functions and later as in Lemma 4,3, approximate a general

subharmonic function by smooth ones,

Suppose that P, €D, let u(Po) >2€ >0,

Consider v(P) = Ve P =vulP)-¢€ -
Then the set v(P) > O is the set u(P) > € which is closed subset
of u > C, Therefore the solid angle F(r) subtended ot the origin by

‘&’lv(?) ZO} R,Sr is not more than /-‘(r).
ThusF(r)S F(r)<4ﬂ forr <r<R,

o
Also v(P) is negative in an open set 197 , say, and the solid angle
(4w - F(r)) subtended af the origin by 1{L A Sr satisfies the inequality
4n - F(r) > 4n - /*(r) > O for r < Y <’  Thus the set LU

extends to R and Sr meets Lﬂl for all r > e
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Let TPty rForecerl rooe —> R be a sequence of values of r,
Let An be a compact sef lying inside L(L N Dr and approximatiog
n
|_Q.‘ N Dr . We assume further that An is the union of a finite
n

number of closed spheres, It is thus possible to construct a monotonic

sequence of compact sets converging fo L(L such that

A<A, < T

1=
Let the distance between the sets An and the boundary of S
be denoted by Sn.

&

We define vn(P) as V{S(P) of lemma 4.3 where § =-—6':- and

instead of u(P), we have as integrand

v+(P) = Max [V(P),OJ = Max u(P),E,J -€ .

e v () = vg () = f v Q)K(P,0MQ ,
6 CR

defined over the closed ball Cr .
n

‘Clearly the vn(P) are C functions which are zero in /-\n and
approximate the function v+(P) from dabove,

We define

m2(r) = '2 .g (v")zcls.r , (5.1)
Ay S

r



2,  _ 1 f 2
mn(r) = % L v dSI~ .
Sr

We note that as n —> o, Sn —= O and by Lemma 4.3, vn\"'rv
and m (N m(r) . (5.2)

Let Dn(r) be the intersection of Sr with the complement of An.

Let 1{1 (r) be the solid angle subtended ot the origin by Dn(r).
We note that as n o, )/n(r) \LF(r) . (5.3
We define )\n(r) for the domain Dn(r) as follows:

rszlgradiensfrf ’ 2 clSI~

D (r)
AE) = inf L . (5.4)

ff&zdsr

Dn(r)

where f ranges over all four times continuously differentiable functions
which vanish continuously on the boundary of Dn(r), and are not identically

zero in Dn(r). In (5.4), gradiensi' f is considered on the spherical
r

surface Sr of Dr' It is the tangential component on Sr of the three-
dimensional gradient of T, e.g. If _f], tyr 1 be the unit vectors at

an arbitrary point (r,&,4) pointing in the directions of the respective
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coordinate lines, then

. _ of 1 of of
gradient £ = or l'l frwhttsme 8 L (5.5)
—Fr1]+g_£2+h_i~3 (5.6)
Now in (5.6), fr 4 is the component of the gradient perpendicular

to Dr’ while 9ty + h Iy s the component of the gradient on the
spherical surface Sr” Clearly from (5.4), kn(r) is a non-decreasing
PN
function of n, as nlo .
We define an(r) to be the positive solution of

x(x+1) = )\n(r) . (5.7)
If Dn(r) = Sr, we define an(r) =Q,
Clearly from (5.7), an(r) increases as )\n(r) increases,
Thus an(r) Ta(r) g N e—> o , (5.9)

With the dbove notation, following Huber, we prove the follbwing

analogue of a differential inequality due to Carleman, namely:

r -Ed?- {Iog E -a%-(m-.nz(r))}} > 2an(r) + 1. (5.9)

Let Gn be the complement of A with respect to D . Gn can
n
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be considered to be a regular domain for the purposes of Green's formula

and we note that
Gn /\ sr = Dn(r)'
Since v vanishes identically in An, we have

2 _ 1 2 _ 1 [ 2
m (r) = p 3 ffvn dSr— 5 Jf vndSr, (5.10)
meo 4
r

r
an\sr

- Suppose that r < ‘.

We have by 'differentiation,

s 1 an
mn(r) mn(r) = ] Vn -—a—r— dSr . (5.]1)
e G AS
1S,

We recall that by CGreen's formula

ffﬂ”xvx+0yvy+uzvz)de +_[/ vAu dG -_—‘/]fv%ds .

From (5.11),we have

mn(r) m;(r) =

! 5 ﬁf (‘gradienf vnlz v Avn)dGnJ

4dor
G’n /\Dr
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where gradient v and Avn are the three~dimensional gradient and the

Laplacian of Ve

Therefore (rzmn(r)m:'(r)) = -2!;; f:[f (’gmdienf vn‘z +v Avn)dGn. (5.12)
G AD
n/\r

Differentiating (5.12) again we have,

er}- If (‘grcdienf vnlz v Avn)dSr .

S

(Pm @l ()

Thus (rzmn(r)m:‘(r))l > "[;',-T ff ,gradienf vn!'z dSr ’ (5.13)
G_AS
n\r

since v. fAv > O in G AS_.
As observed in (5.5) and (5.6), we have

. 2 ¥n 2 . 2
1gradlenf vn] = (—5—) + lgmdlengr vni , (5.14)

where gradient v, is the tangential component of the gradient of v, on Sr .
r

Also from (5.4) and (5.7), we have,
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jf gradlenfvl dS

D (r)
> an(r) (an(r) +1) .
f f v.?ds
n r
Dn(f)
ff a (r)(a (r) +1) ff
Therefore gradueni v n{ dS >
D (r) (r)

= @ (0o () + Dodn m @ . (5.15)

From (5.13), (5.14) and (5.15), we have
(P Ot @) > fj ony o5+ alertin X0, (.16
v mnrmnr —-Z;I'— as r a mn r} , -
G AS T
n F

where for the soke of brevity in (5.16), we suppress n, r from an(r).
We estimate the first integral on the right hand side of (5,16), by

means of Schwarz's inequality as follows:

ff n-—-dS .

G/\S

avn 2
< (-——-— f dS )(—--— G—F—) dSr) ’
rrr

G NS, 4m” G Ns.

(rnn(r)m:.'(r))2 =
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< mnz(r) '[[ (-—-—-) dS .
4nr® G NS
" ov. 2 2
Thus z-'-"- f f (-5-:-) ds_> rz{ m;‘(r)} . (5.17)
(.Bn/\sr

Substituting (5.17) in (5.16),we have
(rzmn(r)ml'_'(r))' > rz(m:.'(r))2 + a(a+1)mn2(r) .

Hence rz(m:"(r))2 + rzmn(r)m'r'.(r) + Zmn(r)m:](r) > rz(m:'.(r))2 + a(cx+l)mn2(r) .
"zmn(")m',:(") + 2rmn(r)ml'1(r) > a(a+l)mn2(r) . (5.18)

Since mn(r) > C, we can divide (5,18) by mn(r), and have,
Pntt() + 2ml () > alatDm () (5.19)

We now wish to simplify (5.19) and to put it in a suitable form to

be integrated later,

We make the transformation:
2
t=logr, 3 = log m_ (r) (5.20)

!
.c.i_.bf. = w' =dw ..d_r. = 2 mn(r) r
di dr ° dt y mn(rs *
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2
m (r) {rm"(r) +m '(r)} ~ (m! ()"
Also " =dd?. = 2 . 5 2 z Y
mn(r)

1 t 2 1 2
. m (r) 9 mn(r) r (mn(r))
Thus Ww = Z(TE;G)— r +r mn(r) - mz(r) c—)

Again, dividing (5,19) by mn(r) we have

9 m*(r) m! (r)

n
r —HT':G)— +2rw ZG(G‘H) .

i.e.A %w" +-%- of +]3w'2->-°(°'+” (5.21)
2 W' + 2 + W2 > dafatl)
2 + (1 + 'Y > a+ 1),
1+ wt +%'_§'_)2 > (2a + l)2 + —9:-?2——-2—2 (20 + 1)2 .
(1 + W'

wll . wll
Eifher]+w'+m722cx+l, or 1+ +-T_"'—asl—5-(20+l).

(5.22)
Now ' +(1+wh= ( +1+2a + w2

= o.)"+u3+%w'2+1+w'+%w'2

2 2a(at) + (1436617 > O by (5.20) .
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11 .
Since 1+ ' >0, 2« +1>0, we have T‘i}-&-ﬁuw' >0,

This shows that in (5,22), only the alternative 1 + (' + TT—T' >2a + 1,

is possible,

Therefore we have

w! +l+?df- {log (1 +w')} >2a+1,

Slwrif +8 ) log (14w >2+1

df dr 9 W =z .
w

-aéf-IOQ {e +f(]+w'} _>_2a+l.

d d , Wt

v log {—d?-(e )} >2a+1,

From (5.2Q), em"-f = rmnz(r) and since =r , we have

g ..,4d
dt dr

o {log [ = ¢ mnz(r))}} >2 () + 1. (5.23)

which is the required inequality,
We now integrate this inequality twice to get an inequality for the
growth of mn(r). So far we have shown that (5.23) holds for

S <r<r,n-—'|2,....

2a (r) '
Thus —J_r— {log r--- rm (r)) 'l:' .
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Integrating both sides (o.r.t.r, we have

T L 7
og rS—(miN | > |2 (E)dlogk +log -,
r o)
o) r

0

Hzﬁrﬂ (Q)):) 1, fn

a yd I
o (m 20 22, (§) d losf

O

r(m 7 )(7)) —’L exp{ f(g) d |o9§}

Thos --(r) 2y > om0 exp{ fa (E)dlogg}

Integrating both sides tu.r.t. ‘7 we have,

r Y
[Y, mnz("})] z(r:mnz(r)):____% fexp.{z f an(g) d log‘i} d'r] .
: "ro r r

o o

m (r)-rm (r)>(rrn (r)) exp{ fa(?)dlog?}d’?)
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] [ ] .
where (rmnz.(r))r:ro - ro(mnz(r))r:ro +m ) > wle) >0 .

2 mg(ro) r "('77 ]
Thus m (r) > - f exp{ 2 dn(}) d IOQE} d") . (5.25)
r r

Thus we have the inequality (5.25) for the growth of mn(r). We
now obtain o lower bound -for c:n(r) in terms of the solid angle subtended
ot the origin by the domains Dn(r). We shall need two Lemmas for this

which will be proved in the next two sections,

4.6

lemma 4.4  Suppose that D is a domain on a spherical surface Sr,

whose boundary consists of a finite number of polygons whose sides are

circular arcs,  The Rayleigh's quotient X of the domain D is defined as

ff‘ gradient f’%’S
S, r

inf D R where

7 7,

D

f ranges over all four times continuously differentiable functions in D

which vanish continuously on the boundary 9D of D, and are not

identically zero in D,  Then A is the lowest eigenvalue for the eigenvalue




problem:

il

Af'*')\f CinD

(6.1)

-
i

C on oD

where &5 is the spherical part of the Laplace operator of Sr .

This result is well=known and is frequently used in Applied
"athematics,  The result has been proved rigorously by Garabedian (1)
when D is a plane domain,  Following Garabedian we shall give a
proof when D is a domain on the spherical surface Sr'

We show that (i) the equation (6.1) has a discrete spectrum of
positive eigenvalues )\] < )\2 < ... —>+ o and a corresponding set of
eigenfunctions,  (ii) the lowest eigenvalué )\1 is equal to the Rayleigh's
quotient N as defined above for the domain,

We show first from the form of the equation (6.1) that the eigen-
values are all positive, An eigenfunction which is a solution of (6.1)
vanishes on 9D, and so must have in D either a positive maximum or a
negative minimum,  Since A f would be non~-positive and non-negative
respectively at the maxima and minima, the negative values of A would
contradict (6.1),

Also A = C is not an eigenvalue of (6.1), because in that case Df=0

in D, f==Con 3D, and thus the eigenfunction would be identically zero
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in D, Thus the eigenvalues are all positive,

We nofe that D is a (mulﬂpl;rﬂlconnecfed) domain whose boundary
consists of circular arcs and the Green's function G(P,Q) for Laplace's
equation exists in D,  Also the solution u of Dirichlet problem for

Ay + =0 in D, can be represented in the form

u-)\qudS=U,

D

where U stands for the known harmonic function in D which assumes the
boundary values prescribed for u, (Gardbedian (1) p.342, Courant and
Hilbert, Vol.2, p.262).

Conversely we have thot if G(P,Q) is the Green's function for a

bounded domain D then for piecewise differentiable f, the expression

v = fG(P,Q) fQ) dSqy
D |

represents a solution of the Poisson equation Oy = -f, continuous in
D + F and vanishing on X . (Couranf and Hilbert, Vol,2, p.263,
P.D.E. Duff, p.159).

Thus we see that the equation (6.1) is completely equivalent to the

homogeneous integral equation,
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o) = A f G(P,Q) u(@) dSg (6.2)
D

Since (6.2) is an integral equation with real symmetric kernel, we
use the following well known properties of integral equations,
(@) A symmetric kemel always has ot least one eigenvalue,
(b) The eigenvalues of a real symmetric kernel are real,
(c) The eigenfunctions corresponding to distinct eigenvalues of (6.2)

are orthogonal,

These properties are proved in standard treatises e.g. Garabedian
(1), p.370-371), Tricomi ((1), p.102), in case of integral equations
of the form (6.2) in the plane, However, as remarked in Tricomi
((1), p.153), this theory can be easily extended to integral equations of
the form (6.2) where P = (x] ,xz,...xn), and Q@ = (Y‘ 'y2""yn) are two
points of a fixed n~dimensional manifold En whose volume element around
Q is designated by dSQ.

These results make it possible to find an expression for the symmetric
kemel in terms of eigenvalues and eigenfunctions,

Let )\1 be such an eigenvalue whose existence is asserted in (a) for

(6.2). Let u](P) be its corresponding eigenfunction which is normalized

so that its square integral over D is unity,



fu,‘(q)z d‘SQ =1 (6.3)

: o U'I(P) u](Q)
We now form G‘(P;Q) = G{P,Q) ~ e (6.4)
1

Then G‘(P,Q) is again a real symmetric kernel, If G](P,Q) 7 O,

it has an eigenvalue )\2 and an eigenfunction u?(P) .

.(U](Q)UZ(QHSQ = .fU](Q) dSQ {)\2 j G.'(Q,P)uz(P)dSP} .
D

D D

By (6.4), the right-hand side is equal to )\2 f u.,(P)dSP X{U](Q)G(P,Q) -
D D

u?(Q)u] (P)
- — dSQ .

1

And by (6,2) and (6.3), this is

g u® e
)‘2 "Z(P) dSP >‘l - )‘l = Q0 (6.5)

Thus UI(G‘) and uz(Q) are orthogonal and so must be distinct,

We also have uz(p) = >\2 fG.I(P, O)"Z(Q) dSG .
D
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}\ZUT(P)
UZ(P) = 7\2 G(P,Q)UZ(QHSQ - =% u'(Q)uz(Q)dSQ

D ! D

And by (6,5), UZ(P) = )\? IG(P'Q)UZ(QMSQ . (6.6)
D

Hence )\2 and UZ(Q) are an eigenvalue and an eigenfunction of the
original kermel G(P,Q).
This process can be repeated and we obtain

n, v (P) Ui(Q)

G(P,Q) = —_—  * Gn(P,Q) p (6.7)

i=1 i

where Gn(P,Q) is a "remainder' after n steps,
In the present case the remainder cannot vanish after a finite number
of steps, If it did, we should have
m U (P)u.(Q)
G(P,Q) = T ——— (6.8)

i=1 i

where Ui(G‘) are orthonormal functions,
The formula (6.2) is valid for all P and @ as the right~hand side
of (6.8) is continuous, But if P —~> Q we have as is well known

G(P,Q) —> o , ‘and the formula (6.8) would not be correcf.' '
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It follows that the number of eigenfunctions v musf be inﬁnﬁe.
We show now that to no singie eigenvalue can correspond more than a
finite number of linearly independent eigenfunctions. We then conclude
that the number of eigenvalues is infinite and that the set of eigenvalues

¢an only accumuldte at infinity,

® U (P)u (Q) _
We now suppose that E denotes an éxpansion (as
l

above)of G(P,Q) corresponding to an orthonormal system,

Then we have bi(P) = )\i IG(P,O.) Ui(Q)dSO 6.9)
fui(Q)Ui(Q)dS@ = 8?i (6.10)
D
dbviously,
2
u.(Plu.(Q)
o< f[G(P,Q)- i —l-i--'--] dS,
T i=] ; ’
2
m u,(P)
- f AP, OMSy = X —— .
: i=1 A
D i
m ui(P)2 9 |
< G°(P,Q)S ., = A (say) . 6.11)
= @

i D
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Finally, integrating both- sides with respect to SP we deduce that

m u, (P)
- Z: e, Q)sHdS,
'—

=1 "i

2 2

& T3 S M= f GH(P,Q)S 45,
=N D D '

Thus under the assumption that J.GZ(P,Q)dSQ is uniformly

D
bounded for P € D, we have
LA
2 — S M. (6.12)

We now show that this condition is satisfied.

We recall that GD is the Green's function of a multiply connected domain
D on the surface Sr of a sphere with respect to A\ , the spherical part of
the (three dimensional) Laplace operator,  Thus A is the second Beltrami=
Laplace operator on Sr‘ Ifu cﬁd v are the curvilinear coordinates A

can be written as

A : a GF - FF, Iy e, ~ FF
f =—-.--—--—-_-
JEG - \/ EG - F2 T JEG F2 '

where E, F, G denote as usual the fundamental quantities of the first order
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for the surface ‘Sr given by d52 = Edu2 + 2F du dv + Gc!v2 where s is arc
length, |

Thus A is an analogue of the Laplace operator for the plane and
the Creen's function =2 has all the properties of the Green's function for
plane domains,

\Since the bou‘nc_!ary of our domain D consists o:F circular afm', the
, Gmen‘s function is knéwn to exist, Also it is known that GD(P,O.) increases
with expanding D

Suppose that Co is a circular domain in the complement of D with

respect fo Sr‘ Let D, denote the cohplemenf of Co with respect to Sr.

1

Then DCD.I and GD(P,Q) < GD (P,Q) .
k 1

Also the Green's function is known to be positive,

Therefore !
. 2p,Qls. < [G2(P,QMs~ < | 62 (p,Q)s
p (PrQWSq < | Gp (PQMSG < p,F-@q -
D

D D )

It is evident that if we take the centre of the circle Co as the North
Pole (0,0,r) then the stereographic projection maps the domain D‘ onto a
circular disc of radius R say in the z-plane.  This map is conformal and
since Laplace's equation is invariant under conformal mapping, the Green's

function corresponds to the Green's function in the transformed circular domain,
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Also dSO the element of area on S, near a point Q (on Sr) is less than
the corresponding element of area dA on the z~plane since dS., = -—@—-2-2-
| | T (421
Therefore “g G% (P,-Q)dSQ is uniformly bounded if the corresponding
! o
integral in the z-plane is uniformly bounded,

The green's function for the circular disc of radius R in the z-plane
9 P

2_.7C ,
is log;-'%r_—;%—l. Thus the corresponding integral in the z-plane is
~ R2 - g 4.2
oo} 1T o4,
C

where dAz is an element of area near z.

The integrand is bounded above by (logr 22‘_2 ~
: %

’ )} and hence the integral

is dominated by

2|

z-

|
lz- J<2R (09‘

which works out to 2n’R2. Coﬁsequenfly the corresponding integral

; ) )szz ,

f G|2) (P‘,Q)dSQ on the spherical surface Sr is uniformly bounded.
b, !

Hence Gg(P,Q)dSO is uniformly bounded,
D
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Setting first A = 7\, = )\2 = L, = ?\m, we deduce from (6,12) that
m < )\ZM from which it follows that no eigenvalue can have more than
finite multiplicity, Also if )‘i < B, we have m < BZM, so that there are
only a finite number of eigenvalues in an interval [O,B]. .And it

follows easily from (6,12) that Iim A = o,
m->ao

Thus the eigenvalues can only accumulate at infinity, Hence there
exisis a least positive eigenvalue N for the equations (6.2),

We now use the notation of the symbolic product Gou =

f G(P,Q) u(@MS, . (6.13)
D
We also represent the iterated kernel G(n) in the form G(") =

Co Co .,... oG , where there are n factors on the right. The
integration is carried out with respect to the argument adjacent to the

symbol o.

For example, the iterated kemel
e .py =66 = fG(P Q)G(Q, P,)dS
172 o | Rl et
1))
iz a function of P] and PZ'
We now state the Hilbert=Schmidt theorem which will be needed

later,
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HILBERT-SCHMIDT THEOREM. 'Suppose that a function can be

expressed in the form f = Goh where h is some square integrable function

and G is a symmetric kernel which satisfies the inequality

sz(P,Q)dSG < A forall P ED .,
D

Then f hos an dbselutely ond uniformly convergent representation

RS

® ® (u,0h%)
(P) = 2 (yofluP) = 3 —p— u®,
i=1

i=1 i

in terms of the eigenfunctions u, of G,* (.Garabedian (1), p.383,
Tricomi (1), p.'I'IO). |

Thus the Hilbert-Schmidt theorem gives us that all the iterated kernels
'G(n)(P,Q), n > 2 can be represented by the absolutely and uniformly

convergent series

. u(Pu(Q)
pq) = 5 f'_;\;_'_.. (6.14)
i=1

It can be shewn ecsily (e.g. Ger-hedicn (1) p.385) that if f s
twice continuouely differenticble function in D which reduces to zero on

the boundary 3D, then f con be represented in the form
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f = Gog , where g is given by the Poisson equafidl;
g = - Dy,
However, functionsf of Lemma 4.4 are four times continuously differen=
tiable and therefore have the representation 7 = Gog, where
g =~ A fis again twice continuously differentiable,  Therefore the

functions f have a representation

f = Go G.oh _ (6.15)

in terms of some square integrable function h,
Sefting a. = uioh , it follows from the Hilbert~Schmidt theorem that

f has a uniformly convergent series expansion

Q, e
fF =5 s (6.18)

in terms of eigenfunctions u,.
The Laplacian A f can be obtained directly by applying the

operator FAN fo (6.16) and using Poisson's equation

Af = -Goh = - 2 —— (6.17)

Also since f = O on 9D, and Ar being uniformly continuous is bounded,

Green's theorem gives
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f{gmdient f2ds = - ffAfds . (6.18)
s |

D r D

The substitution of the representations (6.16) and (6.17) in (6.18) and
the fact that the system u; is orthonormal gives us the followihg identities,

(i . 2 © o
»Igradlers\t f_" s = —3

D r ih—-ki

2
i [oa) a,
and ff2d5=Z: .
b 1

-

qQ,
Setting Ci = '2 = uiof we find for the Rayleigh's quotient,

A,
i

the development,
f{gmd f’zdS Za:)hcz
D Sr = |

. — (6.19)
f £ ds 2

D =

Thus it follows from (6.19) that the lowest eigenvalue )s,"' is the

smallest value which the Rayleigh's quotient can assume.  This proves

Lemma 4.4,

We further remark that it also follows from (6.19) that the first

eigenfunction Y is one choice for the minimizing function as it gives us



the representation (6.15) with h = )‘lzul .

4,7 We now wish fo obtain a lower bound on the product )\Irz, where
)\] is the first eigenvalue for a general domain D on the spherical surface
Sr' This follows from an inequality of Peetre (1) which he used to obtain

a generalization of Coursant's nodal domain theorem,

Lemma 4,5  Suppose that D is a firﬁtely connected domain with analytic

boundary on a spherical surface Sr' Suppose that M () is the solid

angle subfended at_the origin by D, ond )\] is the first eigenvalue of the

equation (6,1) for the domain D,

.2
Then )1'_2 > —-'-'m-( ] - -—%(rf-)—) ‘ 7.1)

where | = 2.4048 ..., is the first positive zero of the Bessel function J

Let A denote the area of D and L denote the length of its boundary;
Then if D is simply connected we have by the isoperimetric inequality

(e.g. Hayman (4), p.152) on the sphere of radius r,

2 A
L* > 4xA () - — ). @.2)

We show that (7.2) also holds when D is multiply connected,
Let D have complementary domains D,  with oreas A, , and the

lengths of boundaries L , ,
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| L
let DA, =A =4m?-A, TL, =L.

2
A
2 _ 2 2 W
Mo - (sLRr S8 2 Sem, -5
2 ' (ZAH)Z ’ a"z
Therefore L > 4nA - +f—— = 4pA =~ -'--2-—
r r

4nAr (1 = o)

. A
4nA() -'-Z—i') .
nr

Thus (7.2) halds for all D.

Let vy be the first eigenfunction of (6,1). We recall that vy is
a solution of an elliptic partial differential equation and is real analytic in
D (Gardbudian (1), p.196), W show first that uy does not change Tts
sign in D,

We prove first that if an eigenfunction u vanishes at a point Po in
D, then v must necessarily assume both positive and negative values in
D,  Suppose this is not true. Then in a neighbourhood N(Po) we have,
let us say, u(P) > O for P € N(Po).
From (6.1), we then have Qv <O for PE N(Po).

Hence u(P) is superharmonic in N(Po) without the super-mean’ property
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at P, This gives a contradiction,  Similarly we get a contradiction
F u(P) < O for P E NP ).
Thus ukP) must assume both negative and positive values in N(Po). Thus
the set where u is different from zero has two subdomains,
fhe points at which an eigenfunction vanishes are called nodes.
These nodes divide the domain D into subdomains, There is a theorem
of Courant (n~dimensions) that if the eigenfunctiors of (6.1) are ordered
acenrding to increasing eigenvalues, then the nodes of the nfh eigenfunction
v, divide the domain into no more than n subdomains (Courant and Hilbert,
Vol.(1), p.452).
It is an immediate consequence of this theorem that if uy is an
eigenfunction belonging to the first eigenvalue, then Uy vanishes only
on the boundary of D and nowhere in D,
Therefore by what we have shown, uy does not change ifs sign in D,
Suppose that Uy is positive in D.

Let LD (5) denote the subdomain of D where u, > p.

1
For C < p < max Upr the boundary 2 & (p) of lQ»(p) is composed

of the set of level curves up =9 of the eigenfunction uy and is therefore

piecewise analytic,
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Denote by s the arc length and by w

the inner normal along the level curves,

The element of area in D =ds d¥ = d;.dp

Y1

m

(703)
Let us write Afp) = fdA , Lp)= f ds . (7.4)
Lulp) 20(p)
Do) = . 2 _ 2
o) = ’gradlenf o}’ dr, HE) = v ldr  (7.5)
Kl (p) Su(P)

Then Alp + dp) - Alp) = dA = - A'(p)dp .

Also from (7.3), dA = f ds.dy =dp f 'gradieni' UJ -1 ds.
2 L1 () 2u(p)

Similarly it can be shown that,

I D! (p)* = D) = ' gradient u]lds .
3 Cu (p)

According to Schwarz's inequality we can write,
g eq b4

Lz(p) = ( f ds)2 < f lgrodienf u]_,ds f 'gradienf u]l-l ds,

ak(p) 2.4u(p) 3 fup)

Yo < [ore)] |re)] . 7.6
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By the isoperimetric inequality for these domains, we have,

1%e) > 4n A - 222). 7.7)

4nr
From (7.6) and (7,7), we have

Alp Al
lo-(p)lzzznw_\%%rf- a --;% ).

>an 20 g Ly, 7.8)
lA'(p)i 4ur

We now apply a process of symmetrization replacing the domains
~

‘—Q-‘(,o) by the concentric circles L () with the same areas in the
Euclidean plane,
We replace the function Uy by a function ';'] (in the plane) which
2 o~
is equal to p on the 3l (p).  Thus the domain of definition of Uy
~
is a circle 3D (o) (in the plane) whose area A is equal to that of the
domain D on the sphere,

Thus clearly ?‘:(p) = Afp) and g‘ (p) = A'p) .

Hence from (7.8) we have,

Do) | >an—p@ - L) 7.9)

|7 () ] 4nr ?



- 102 -

~~
We note that in the case of the circular domains WX (p) in the

~ 80
plane for the symmetrized function Uy r 55 is constant and we get

equality in (7.6).

e 0 = 15 A .

Also for the circular domains we have,

o -!7
4n Ap) = L) .

Therefore lﬁ[;'(p){ = 4n Alp)

| 2 )
From (7.9) and (7.10) we get,
~
;D'(p) ' > ‘ D'(p)[ (- _&T) .
4dnr
Integration over the interval o < p < max Uy finally yields,
~d
p>Da- L)
4
dnr
~ o
Moreover H{p) = H{p) and H = H.
Therefore b s —B—(l . A ) 7.11)
H H 2
4nr
~
D, _ , D A ~
Thus )\] =7 s bounded below by = (- ) where D,

4nr2
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~
H are defined in the plane for a circle.

By the result of Faber-Krohm the first eigenvalue is a minimum for
.2

a circle and is equal to ""A‘ . (Garabedian (1) p.413),

Thus we have from (7.11), that )\ > " ( Az ).
Inr

Since A = {J»(r).rz, we have the required inequality

.2 .
V> - G

This completes the proof of Lemma 4.5 and we are now in a position
to complete the proof of the theorem 4,2, We do this in the next

section,

4.8 Since a is defined to be the positive solution of x(x + 1) =

2
where \ = )\lr" we have

And from (7.1 ), we have
%\/ﬁ‘(r) /;f:))“} "z
2 2_,
i.e. a> l(r) - 7 -3, (8.1)
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for a domain D which subtends solid angle ]J () at the origin,

Suppose that Dn(r), the intersection of Sr with the compleﬁteni’ of
An is connected and has no isolated boundary points.,  Then the boundary
of Dn(r) consists of finite-sided polygons whose sides are arcs of circles
formed by intersection of spheres in An with Sr' Also the function v
is C% on Dn(r) ond its boundary,  Thus the hypotheses of Lemmas 4,4

and 4.5 are satisfied and we have from (8,1),

2 2
2 2
W0 > /E}fm'J-T-] "

whereas before yn(r) is solid angle subtended ot the origin by Dn(r).
We note as in (5.3) that as n/Poo, ﬂn(r)i /‘A(r) .

Therefore as anoo, qn(r)/ra(r) where

2

2
2 2
o) 2 J;:'(a " ] “E-

Since f:l(r) < /-l (r), we have as nToo, an(r)/rq(r) R

where alr) > ‘/[f‘() - L ]] -3 (8.2)

We recdll from (3,25), that
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: y) .
2
ranz(.-) > m_r(i f exp{Zfan(g) d logg} d?}.
o "o

As n — o, mnz(r)lmz(r) and an(§)Ta(§ ), which is given by (8.2).

2 %) | )
m(r) > m ,.r°) jexp{-Z fué?)d Iog;} dr) .
r r
) o

This proves the theorem with the difference that mz(r) is not the

one defined for u in the original statement, but for vy = max [u, E] -£
for a positive £ .
Letting € —> C, we get that the result holds when mz(r) is defined for
v,

In the case when Dn(r) is not connected, Dn(r) consists of a finite

number K of domain [\ ](r), FAN 2(r),.--~A K(r) .

n, n, n,

N \ \ - -
And let 1" }n,2"")\n,K Vbe the corresponding smallest eigenvalues
for these domains.  Then the Rayleigh's quotient for D (r) is the least

: n
of these K zigenvalues, And it follows that (8.2) holds also in this case
and the theorem follows,

We further remark that the Rayleigh's quotient is not affected by

an isolated boundary point,  Also Dn(r) can only have a finite number
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of isolated boundary points as An is a finite union of closed spheres,.

Hence (8;2) and the conclusion of the theorem holds in all cases.

4,9 We now prove the following theorem which will be needed for
construction of an asymptotic path for a subhanmonic function,  With the -
previous nofation, we prove,

Theorem 4,3 'Suppose that u(P) is subharmonic in space.  Let

R of the set {P’ u(P) > Q]’ co‘nfaining a fixed

point P_ such that u(Po) > O, Suppose that u > C on a set Cp in Fpe

Le;_f_uR(ﬁ) refer to C;(g) (i.e. GR/\ Sf )ﬂ\g G(?) = I!{-i-r;o:) GR(g) .

FR be a component in C

Let M, = Sup u(P),

T PeG,
Then either M, —> + ® as R —> @ or 9.1)
)
fa(g)d logf <+, 9.2)
) ,
o

Suppose that R< + @ ,

v is subharmonic in a neighbourhood of CR.

By Lemma 4,1, all the components of {P,u( P}y > O} extend to SR .
u(P) for P€ F,
We now define v(P) = { a
C  elsewhere.
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By Lemmq 4.2, v(P) is subharmonic in DR'

Also v is positive in the set G'{ .
1

Let mz(r) = mvz(r) = -—-—2- ( 2 = ‘2 f uzdSr '
4dar Gr) “Anr Glr)
as before,

Since v'2 is subhannonic mz(r) is an increasing function of r, It is
non-negative,

Also m(r) can be zero only if v(P) = O in Dr by the Poisson-Jensen formula,
Therefore mz(r) is positive for some r = ror and hence for r <r<R,

We note that by Lemma 4,1, G meets S for ry <r<R,

By applying Theorem 4.2 to v, we have

> m ("o) fex"{ ‘(a(g)dlogg} 7. 0.9

We note that as R increases, two or more components, say FR and
1

F;z] of ‘{p t(P))O} inay meet in C for R2 > R Thus if R2 > R],

G(g) for G is o subset of G(g) for G0 . And consequently « (ﬁ_)
HY R
} 2 1
is not less than a (?) .
%
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Therefore if q(f) = fim aR(E), we have
' =

a(g) < aR(?) for all R,

2 mz(r ) y y)
Thus we have =m™(r) > ro f exp{ 2 f a(g) d log? d 7,
r r
o o

(°.4)

Q

Now either f af ?,) d Iogf <+ o

r
o

or ’Y}
J‘a( f,) d Iog; = g.'(?]) where 91(7) —> + o as

r
o

7=

If the second alternative holds, we have

2
m

) |
m2(r) > - 2 Iexp{ 29‘(7)} d7 .
o

Forr > 2r° we deduce that

r r
[oemf @ 21 [ oo {28,00} 4y .
ro

&r

"t |
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2 o {2000}

r

Thus ;—Jexp{,Zg](’))} dT) —>» 0 a5 r—= oo,
r
o

. 2 -
Since m (ro) > o, and obviously MR > m ., we have that the second
alternative implies that

5\,4R—->+oo a R—o00 .,

This completes the proof of Theorem 4,3, In the next section we

study the consequences of theorems 4.2 and 4.3,

4,10 Suppose that F is a component of {p;u zc:} in which u > o
somewhere, Let G be the subset of F in which u > o, and G(; ), and
q(?) be the intersection and its corresponding a respectively as defined

previously for spherical surfaces S§ .

)
Now if l{‘m(E)dlogE <+,
o

then it follows that a(?) < € except for a set of finite logarithmic
measure on the r-axis, We recall that if the solid angle f* (?) subtended

by G(E) at the origin is not more than 4n - e.', we have
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2 [fie - 23
41\'6 ,
2
€.i
\/Ei”"ﬁj'% '
(4n - 1

f( 61) > C.
o)
This shows that if .{ a(?) d Iogg <+ o , the solid angle /‘L (?)

Nofes
-

subtended by G(?) , at the o::igin is greater than 4 ~ € 17 outside
a set of finite logarithmic measure.

If a component has this property then its complement and so every
subset of the complement has the property that its intersection G(?)
subtends an angle not more than 6] on a set of density one on the
reaxis,

Hence for the components having this property which we shall call

the 'smallness® property,

®
f a(g) d logg, is unbounded,

o

Consequently # L{ —>+ o as R —>» o if m (r ) > C . Thus it follows

that if P.I and P, are distinct points where u > O, then either FR is

finally identically the same for Py and P2 or M, —> + oo for the
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component corresponding to at least one of these two points, -

We shall say that the set {P’U(P) 2 O}‘ or {P’U(P) > O} .
has only one component if any fixed points in space where u > O & &> o

an {Plum>e}~
belong to the same component of {Pfu(P) > O}/\ in CR for all
sufficiently large R,  We note that if v is subharmonic and bounded in
o {PIu(>0]

space, then the set { P’U(P) > O}A can have only one component in

space in this sense,

4.N Now we are in a position to prove the following theorem

which is the analogue of Theorem 1.1 in the continuous case.

Theorem 4,4 Suppose that u(P) is a continuous non-constant subharmonic

function in space,  Then if u(P) is unbounded in space, there exists

a path F tending to o on which u(P) tends to + o3 and if u(P)

is bounded above in space, there exists a path r tending to @ on

which u(P) tends to 4 where " is the upper bound of u(P) in space.

Since u(P) is a continuous subharmonic function, the set { P‘U(P) > O}
is open and consists of at most a sequence of domains G, , ¥ =1,2,.., .
Also u(P) = C on the boundary of each G, .
Therefore by the Maximum=principle each G;, extends to infinity,
Suppose that u(P) is bounded above in space and that M is the upper

bound of u(P) in space,
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We claim that there exists a point P, such that u(Pl) >M=3

1
For if it did not exist, the upper bound of u(P) would be M - 3 ,

It follows from theorem 4,3 that in this case there is only one component
of the set {P{U(P) > M - %} in space, namely the one containing
P].

In this componant we choosz P2 such that u(P7) > M --!-2- .

Join P] to P2 by a continuous curve Y| lying in the domain

{P'U(P) > M - %} .
1
MNow P, lies in  PJu(P) > M - —-—} .
2 ° {' 92

Also this set has only one component, namely the one containing P,,

Again choose P3 in {Ptu(P) > M - —g—z-} such that u(P3) > M --21—5— .

As before join P, to P3 by a continuous curve Yo lying in the domain

2

{Plu(P) > M - -32-} .

Thus by a step by step argument we get a path F= Yptyyt ..

such that u(P) > M - A and u(P) > M = ! on y_ joining
n o 2n-l n

P to P,

n-1 n

Thus we have an asymptotic path F , such that u(P) — M ,

as P —> o0 on F .

We now consider the case when u(P) is unbounded in space,
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We remark that if u(P) is a continuous subharmonic function, it
can be shown easily that the modified function v(P) defined as below is

also subharmonic.

(P} in a component of {Piu(P) > O} R

u
v(P) = {
¢  elsewhere .

Consequently the conclusions of theorem 4,3 hold for a continuous
subharmonic function when G, is a component of {P] u(P) > O}- in
Cr

{P’U(P) > o} inside C, .

Suppose that Po is a point such that u(Po) > Q,

instead of being the sst where u is positive in @ component FR of

Let G"l be the component of {P’U(P) > O} in C‘,2 containing Po'
Then by Theorem 4.3, either

My=—»+®o, al—0w;

©®

[ q(?)d log? <+ oo, (11.1)

(o]

or

We noted in section 4,1C that if the second alternative holds, then every

other component of {P)U(P) > O} in space has the ‘smallness’ property,

Suppose that the set {P’U(P) > C‘} has more than one component,
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Then either u is unhounded in every component G of iP’u(P) > K}
for any K(> Q) in the sense that

M, = sup uP) >+ o as R—>m

24

R T pecac, ]

or there exists a component G' of {P{U(P) > K} for some K in which u

is bounded.

Since v is unhounded, thare exists another component CG* of { P'U(P) > K} .
This component and any subset of it has the "smallness' property.  There~
fore u is unbounded in C* and in every component of { P}U(P} > K'}

lying in G" where K' > K,

As the set {Pfu( P > O} has more than one component, we can
choose a component G(o) containing a point Po such that u(P) is unbounded
in G(o) and in every component of { P’u(P) > K} (for any K > Q) lying
in G(o).

Let GR(O) be the component of { P,U(P) > O_}’ containing the point Po.
Then ['\AR(O)—-—)-FG), as R—>m,

where M (o) = sup u(P) .
" Pe G R(o)

Choose R] such that ", {0) > 1,
i\]

There exist points in G (o) on S, on which u(P) > 1. DBy continuity
i\ A\,
1 1
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u(P) > 1 in a neighbourhood of such poinis.  Thus we can find a point

P, in a domain G‘{ (o) \S

] such that u(P,‘) >1.

| Ry

We joint Po to PI by a continuous curve N lying in a domain

Gp (NS, .
;\] a‘

Let GR“) be the component of {Piu(P) > l} inside C,z containing P.'.
Then this componant of {P‘:U(P) > I} also has unboundedness
property, i.e,

MR(I)——>+oo ; O R =00,
Choose Ry such that M_ (1) > 2,
"2

As before find P, in G, (1) \S, such that U(E) > 2.
) l\2

25
We again join P.' to P2 by a continuous curve Yy lying in G,~S, .
1 I\2

Continuing in this way by a step by step argument we get a path r -
Yyt Yyt ...ty + ... possing through a sequence of points { Pn} such
that u(Pn) > n and u(P) > n=1 on Y,, ioining Pn_.‘ o P .
Thus on path r‘ we have that
uP) >+ , asP—w.
We note that in the proof we assumed that the set { P,u(P) > O} hes

more than one component.  If the set {P‘ u(P) > K} has only one component



- 1]5(:‘ -
for all 5&! values of K, then u(P) is unbounded in that component
and the asymptotic path can be casily constructed by the classical argument,
If for some K, the set {P‘U(P’ > Kt has more than one component, then
wea choose a component (& which has the property that u is unbounded in
G and in every component of {P*U(P) > K*~ lying in G when K* > K,
By the cbove method we can construct an asymptotic path r' in G such

that u(P) —> + © as P —> @ on F
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This completes the proof of Theorem 4,4,

4,12 In the case of a genzral subhammonic function we are dble to show
the existence of a continuum F on which u(P)} tends to the upper bound
M in space. In the case when M is finite, we shall show in the next

few sections that the continuum can be approximated by a polygonal path,

Theorem 4,5 If u(P) is a subharmonic function in space, there exists

a continuum r‘ such fhaf u(P) —> M, as P —> o0 on r , where M

is the upper bound of u(PF) in space.

Suppose that M is finite.

Choose a point P, such that u(P]) >M -4,

1
Such o point exists for if it did not axist, M - 4 would be the upper

bound of u(P) in space.

Choose a point P, such that u(P,) > M « - .
2 2 22

Since u(P) is bounded in space, it follows from Theaem 4§ that the set

{P’U(P) > M - %or{Plu(P) >0 - %has only one component in space,

In other words for sufficiently large values of R, the points P] and P2

would belong to the stme component Fr of {Plu(P) > M- %} in CR.

For if it were not so for any finite value of R, the set {P!U(P) > M - %}
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would have two components and by theorem 4.3, this would contradict
the hypothesis that M is finite,
Suppose that ."»‘..‘ has this property for P.l and P7. Then the component

f-'Q (1) of P‘U(P) SM - -'g} in C, containing P, and P, extends
R, = R1 1 2

to the boundary SR by Lemma 4.1,
1

1

And we can join P, to P2 by a subcontinuum Y of FP (1.

1

We now choose P, such that u(P,) > M - L .
3 : 3 23
Similarly choose R? so large that P2 and P3 belong to the same component

FR2(2) of {P’U(P) > M- ?L} in CRZ. Again we join P2 to PS

by a subcontinuum yé of FQ (2) in C, and we have that u(P) > M - U

2 Ry 22

for Pg Yy -
Continuing in this way we have F =7 + Y9 + cevss passing
through a sequence of points {P} such that u(P) > M - 1 and
4 n n 2"
1
A o . o o
u(P) > M - for P €& Y,, ioining Pn—! and Pn'

2

Thus there exists a continuum F on which

u(P) =M, a P—>oo,

We now consider the case when u(P) is unbounded in space,
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Then either v is unbounded in every component of {P‘ u(P) > K} for
any K (> Q) in the sense that

M,{——>+mos.’{——>m-,

Or there oxists a component FY of {p}u(p) > K} for some K in which

u is bounded,

Since uis unbounded, there exists dnother component F*' of {P,U(P) > K} .

This component and any subset of it has the 'smallness' property,  There-

fore u is unbounded in ** and in every component of { P‘U(P) > K'}

lying in F* where K* > K, -
Suppose that {P’U(P’ > (\.} has more than one component then we

can choose a component (o) containing a point Py with the property that

u is unhounded in F(o) and in every component of { Pfu(P) > K} (for

any [ > O) lying in F(o).

Let FR(O) be the component of { P'u( P> O} inside CR containing the

point Po.

Then 5!‘\?(0) —>+ 0 as -2 o,

Choose R.I such that M 0> 1,
.\.'

Choose a point P.l in FP (o) such that U(PZ) >1.
b

Join P to P by a subcontinuum 7 of ¥, (o).

! 1
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Let FP(I) be the componant of { P‘u(P) > 1} inside Cp containing P,.
Then this component FQ(I) dlso - has the unboundedness property.  Choose
{22 such that M_ (1) > 2,

"2

Lot P2 be a point in F,{ (1) such that U(PZ) > 2.
"2

Again as before join P.|

to P2 by a sub=continuum Y5 of FRZ (1).
Continuing in this way we have a continuum [—l =" Yyt
passing through a sequence of points { P‘n} such that u(Pn) > n and
u(P) > n=1 for Pe Y e joining Pn-] to Pn'
Thus there exists a confinuum F on which u(P) —> + ® as P —> @
on [

We note that we assumed that the set {Piu(P) > O} has more

than one component, If the set { Pl u(® > Kj’ has one component
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in CR for all real K and R, then the same argument as for finite M gives
us the required continuum, If at some stage the set splits into more
than one component, it follows from the above argument that the required
continuum exists in at least one component,

This completes the proof of Theorem 4,5,

4,13, Mow we prove an analogue of Hayman's theorem (Lemma 1.8)
in the plane about the minimum of u(P) on rays going out from the origin,
We will usually denote by P a point inside D, and G a point on

the surface SQ. Let KP(P,O-.) denote the Poisson Kernel of DR so that

if v(P) is harmonic in DR’ continuous in CR’ we have

v(P) = ff KP(P,Q) v(Q) Sy (13.1)
S

R

where d5... is the area elament of G on S, .
@] R

Let G (P,T) denote the Green's function of DR' If Pand T

are both in DR’ this is given by

G, T) = —;;TL - -f--ﬁ.'-f- (13.2)

where OP = r, and P' lies on OP extended and CP! =$—2-

Since the Green's function is symmetric G (P,T) = GR(T,P) and GR(P,T)
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. . 1 R 1
con also be written os il -r-‘-- S where OT = Ry (13.20q)

and T' as before is the inverse of T,

We first prove an anulogue of the Poisson~Jensen formula,

Lemma 4.6, Suppose that {J(P) is subharmonic in space,  For every

R > O, there exists a unique non-negative distribution f*(e) defined

for all Bored. measurable sets e in space and finite on compact sets, such

that for all P ¢ Df2 , we have
w P = ﬁ)(Q)KR(P,Q)dSQ — fGR(P,T) d/u(e.r). (13.3)
QEs, - TE Dy

We recall the Fundamental theorem of F, Riesz in space (Evans (1),
p.237).

If (M) is subharmonic in a bounded domain D, and L is a
domain contained with its boundary in D, then 2 (M) may be written
in the form

W = vid) - o) for medh

/‘

where u(fA) = J %1-_— d!u(e ) i.e, it is o potential of a
Te &b T

distribution of positive mass on \ﬂ-’ , finite in total amount, and
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v() is harmonic in LO.I

I(P) is subharmonic in C'{+€F°r some §> C.

Choose R such that R< R' < R+& ., Then the Riesz mass in DR'

is finite,

Also for all points Q on SR' we have by Riesz's theorem,

W@ = vQ) - f-él—- d/,z(e .

Te DR

By using (13,1), we have

. , _ ' 1 .
Jf Kp(P Qe (@S, = v(P) '-ff KR(P’Q)dSO‘{ f ar Ik (er)}
S S
~ R

TED,,
(13.4)

We invert the order of integration in the 2nd term on the right~hand

side of (13,4), This is justified since the integrand is positive.

Thus If R(P Q)W(O)ds = y(P) - f dlk( )\[[K (P, Q)a—-—dSQ.

TGD.

(13.5)

Lei‘ oT = 2 and as before let T* be a point on OT extended such that
om =&
2 *
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Suppose that Q and T belong to CR

Then _C%T and _@lTT are harmonic functions of @ , and the former

aF

has a singularity inside C, .

And we have

[ concpon - o]
I( KR(P'Q)ﬁT-dSQ = I\R(P,Q) ek K (P O)-G-T- dS +
S"'l SD

and T€ DR' TéDR

but T¢ CR

[[ Ko{P, Q) ——T-(l dSey
o

'I'ESR

By (13.1), the first integral on the right hand side is equal to T,LT- .

It is well known that if T and T* are inverse points with respact to

r
a sphere and @ a point on the surface of the sphere, then %IQ- =--Rl-

when = CT and R is the radius of the sphere,

¥ Tis in D'%’ then T' is outside C and in this case,

R R 1
ff Ko(P Q) iy 4 ff:\ PR g, = &

TéDR SR e 1
TéD
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We note that .[f (P Q) = _]'T « When T is outside

S

the closed ball Cpe  Also the integral is equal o _;_2_ —T-:-I-,- when T
) 1
is inside the open hall D,  Also the integral is a continuous function

"N

of T,

Also on the surface SR' T is its own inverse and ;%- -.l-.;LP— = -l;f— .
Therefore the value of the integral for T on the surface is the common
=R 1 ' - =
value—‘-;-.r- = . e when T' = T and R =

1
From (13.5), we have

‘ R
ﬂ KR(P,Q) w (@) dSQ = y(P) = f PT d;,((e f -—r- drl(e

Se TE DR,\D TED,

l'.' -

(13.6)
We note from (13,2) and (13.2q) that

r]T' P=rpP'T.

From (13,6), we have

1 4 R 1
ﬂ KR(P,Q)UJ(Q) dSQ = v(P) — f BT df_‘(eT) - fr'pr:l-.- d}; ) *
SP

P
TE D""\D Te DP
N R Y
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= 1 “ R i‘
- J 3 T ep * S Ty

TED, TeD,

il

v(P) - u(P) + f G,(P, T} dlu(e )
R T .

Té_DR

=W (P + f GR(P,T) d}j(e

TED,

i

7
wiich is the required result,

4,14 We now introduce some more notation and then prove an

analogue of Lemma 1.6 in space,
+ - . N
W (P) = Max [O, (L)(P?] , w(P) = « Min [O,CU(P)J

C&).'(r) = Sup (W (t,S,0) for fixed @ and g .
o<

We define "}f(f) = -‘-/-t——— .
1 -t

Theorem 4,6 Suppose that €O (P) is subharnonic in a neiJgtbourhood of

a closed ball C“ , then with the above notation

O.)(r) ds_< [—+_+ﬁ/ — I[fw(ca) w(o] ds
14

(14.1)
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Following Hayman [l, Lemma 1, p..lB({l , we estimate first the
integral means for the suprema of the Poisson: kernel and the Green's
function on the radial segments,

Suppose that P lies on the radius joining the North Pole (©,C,R) and
PCT

the Origin, let L =& and OT = M s CP=r.
Let
2 2
R(R™ - )
K (P,Q) = K(R,r,&8) = ) (14,2)
R (R2 + r?‘ - 2rR cos @)m
Lt
a2 _ 2
K(R,r,&) = Sup ?R(Rz- ) 77 (14.3)
C<r (R + 7 ~ 2R cos &)1 7
. . . _ 1 R 1
We recall that the Green's function for D is G.(P,T) =5— = = —=— .
We write GQ(P,T) = C(R,r,rp R=)
i
et o(R,r,mn ,8) = sup GR, b, ,9) (14,4)

C%_<_f5r

Lemma 4,7 With the dbove notation, we have

R +
(i) ﬂ];z—\[/ k(?x,l‘,@) dsr <1+ % log R : . (14.5)
S
r

2 2
() —5 [ o ) 85 <G+ - pr e (1440)
dnr” P 4R

N

r
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Let | = —lTj]k(R,r,Q)dS ..
Apr” r
S
r
2u rr( t
Then 1 = f JMRir,@) sin © 46 ¢ =} [ K(R,ri©) sin © 40
o o o (]407)
If in (14.3), we substitute t = flR, we have
k(R,r,&) = Sup ] ( ; f]L) | .
OSt_<_r] 3 1+ - 2?,' cos ©)3/2
We note that for -,'71 <@ <m KR,r,®) is a decreasing function

of r and therefore,

k(R,r,®) =1, forgsgf_n.

2 2
1 -t 3 1~ . . )
(1 + r:'Z - 2tl cos 9)372_ (1 + i'% - 21'.' cos 8) (1 + *iz - 2t] cos G)%
T ‘ ot f"z
For O <& < 7, We note that increases
1T+, -2t cos &
1 1
¢ 1 . ’ cos &
rom 1 to P~ f] increases from C to T’ and then

; increases from 1 to ;BL@ :
a+ t' - 2f1 cos &)

decreases again, Also

N4
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as ty increases from C to cos © , and then decreases again,

1 -t 2
____cgs_g__ we note that ] 17-
r
1+ Sin & (l+t]2-2f cos 9)32

1

Since cos £ >

is an increasing function of t for © between C and @o, where 90 is

given by
cos @o
T+sin & n- (14.6)
o
Also in the range @o &L 22 ,
( -'f12) 1
k(R,r,@) < Sup 5 Sup .
osi'ér.l 1+ f.. - 2f1 cos &) oSff_r] ﬁ + fl2 _ 2*] cos ©
< ]2 -
T Sin“ e
* K(R,r,O) foro < © < @o P
Therefore k(R,r,&) < ) e <exi ’
- 5i yi o 2
in &
‘ 1
1 -2— < @ < °
2r @o 1- r.|
We deduce from (14,8), that cos @o = 5 and tan - =TI (14.9)
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° d-rYsinecde
Thus | < 4 ] :

’ +
(1 + riz - 2r] cos 9)37‘-2—

w

- [cos@]
n
2

Substituting the values of & from (14.9), we gst

—(l-—r,z) 'I-rz'
<4 —T * ‘
4r 2 r,(1 - r,)
r(l+r2- ] ) L 1
1 1 2
]+r'
‘-(]'—‘r2)1+r2 1 +r 1+r
=} ] 1 1
2 +r +I°gl-r
r](]'r]) 1 ]

+ 1

,

=
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]+r] ]-1/:-? .
=1 2+|og]_ + .
" "
l+r] ]-1/7:]—.2

Thus 1< 1+ % log + 1 .
1 M r
Substituting 2 = -:;- , we have
2, 2
1 R+r 1 R = R +r
' S 1+ 5 'Og R =t + ] pe ..

Since the third term on the right hand side is negative, we have,

+r
-r

-7

I < 1 +3 log~

I

(i) We observe that in our nofation (14,4),

G(R,r,t}.\ ) =
\/r2+|i,2-2rr"cos@ ‘@_4_'.2_2{?2
; n r

x/r2+r}'u2-2rt,'ucos e «ﬂ’\z+r2|},2—2Rzr?;cosG'

If we substitute r = pR and b = a. R, then we have
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G(Rrrr?l ’ e) =

- (14.10)

We wish to estimate ) dS .
2n 0w n
Then l2 = T]; f fg(R,r,:_P ,S)sin@dedd=1 jg(R,r,:]u Lkinede
o o ()
We write
2
I2 = 3 5 g(R,r,rp ,9%inede . j g(R,r,rP ,Q) sin & do ,
o A
l, = 1, +1, (say) . (14.11)

l4 can be easily calculated as follows,

From (14.10), G(R,¢,r M ,9)

2
1 ("*'P% -2,09 cos@)-(p +‘3& -Zpo cos@)]
R : D
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_f2 2 [, 2 2 f2 2
where D p +PP ZpaL cos & Y1+p 2 Zp% cos © | Vp +9J 29&( cos &
f - =)
s prf% +1 2;0:'7»L cos w] .

2 2
Therefore  G(R,r,5 ,©) = 1,(. (1 -p..)'()l - ) (14.12)

For -;- < © < n, the expressions under the radical sign are increasing
functions of p (and hence of r), and since in (14.12), the numerator also
decreases as p increases, we have that in this range G(R,r,n. ,8) is @

decreasing function of r and hence its maximum is of r = G and is equal
1

2
M

fo%( -N.

n
("'{i"“" ‘)j sin@d@=-§l§—(_]__-]) =

Thus I, =3
%
2

4

-

= 1] 1 .
= %(T,;"‘ -2 (14.13)

For the evaluation of '3’ we consider the two terms of (14.10) separately,

Y2
Obviously % j g(R,r,rfJL ,8) sin & de <
o

"/

_ sin & d& -
‘ ot f
o - 2 2
I+ Pp - 2tpP cos @ e,
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Yo
f sin © d&
6 - inf
ot 1+ tzp 2 2ip  cos &
I M :

ly < 1=, (say) . (14.14)

We firet estimate I5 .

ForO<Q<£,ifp>% , sup

? <o f7

is -p;—-‘m
However, if p <p , then ! —— increases from
‘ # i'2 + p‘u‘z - fo;u cos ©
1 .
% to f;_. ——z O t increases from C to f.:u cos © , and then

decreases again,

This case can be easily dealt with later on as the Riesz masses would be
entirely outside the sphere radius p and the Green's function would be
harmonic inside this sphere,

In any case,

/
1 sin & _ 4 n
55 7% f e € = i (14.15)

.)
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In order to evaluate Ié, we note that for 0 < 8 < 12'. ’

"l cos &

increases as t increascs from O to

x/;+t2$2-2fg‘ cos &

and then decreases again,  Thus the minimum value in the interval [O,p]
1

i 2 2
1+og” 2p5;‘ cos &

is attained when t = Q or t =p, and is 1 or

respectively,

Also 1 <1ifpp2>2% cos®
2 2 s »®
]"'pp'l‘ -2{3% cos &
i.e ifp>zc;se
-1 % "
cos =5~
1 - . 1
Therefore I6 = 5% 1.5in ©.d& + 37
/s °
sin © d&
J 2 2 )
"y P 1+p -2 cos &
cos‘_.?‘_.l g‘ ‘;"
2 1
PR, 1
- 1 _ P 1 2 2 _ ]
» o8 ——

o=
]
N
,al"‘
)
*)
A
+
)
¥ |=
-t
+
)
N
o
N
t
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Thus l6>7§'(}+9;}4 (_2..:_5.0;__2)] ‘z{E

1 Pz? 2 1
e > 37 |- 2(2+#p5;| } > 7w
7
Mow resubstituting p —-;{:— ’ ;}t -r-ﬁ- , we have
r2r 2
R

From (14.14), (14,15) and (14.16), we have

r2r2
C #
<X - RN

And from (14.11), (14.13) and (14.17) we have

r2r2

1,1 1 1 1 s

I —(--- =) + = - =+ -
2 2 ,_k R‘ 4 rP 2R 4R5

(2-2-0

+
p’P A2 *pp )

(14.16)

(14.17)

e»)],
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Thus '2<(-2—+z)-r—"'—+ = ’

which is the required result in (ii).

4.15, In this section we complete the proof of theorem 4.6,

We showed in Lemma 4,7(ii) that

r2r 2
jQ(Rrr ,6)ds <(Z .;..;':.. _'§+..__£.5.._

4nr 4R
l'
Now suppose that T < R] = \/r—’{- .
r2r 2
1,1 s
Then I <(F+a(—-De@-Dl o+ .
4 A 4 7R >

2 2

Rr, rr,

1 ] n 1 M n 1,1 A
2<% Z‘*fz'*—"—"‘{‘z '2"7&'*""':’5"} :

R=n, 4R

Now using the fact that o < ‘/-r; , we deduce that

< d--Lytx, 1y, R‘[_ (F . l)l+_ri..
2 r R i*tz 7 4 2°R 4

P

= (-] Teliels
= (F,:— 'z"i) [4+2+e(R) , where



Wenoterhafe(f)<-—‘-/-t-— %--‘5+% < ‘/' e
Jt - 1 -4t

" -
2 < (—-— - -—) -Z- 7 ")"(f)] , where “’/(f) =-—1/-*——- '
i 1 -t
| (15.1)

It . > \/ rR, we have a better estimate for l2 .
In this case the Green's function is harmonic inside a sphere of

radius \/ R = Rl and the Riesz masses vanish inside D,Q .
|

From the Poisson-Jensen formula (13.3) we have

fJ‘ K (P Q)C (Q N dSq -

'1 OeS

g kR](P,Q)GR(Q,T) dSQ
52

G’(errrrk /S) <

Q(errrp. ,S) S_

Therefore -4—]T g(R,r,r,, ,e)dSrS ] 5 j/dsr4]
nr r% nR.lZ

45
' r

SR] 1
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Inverting the order of integration on the right hand side we have,
1
I2 < —Tﬂ kR (P,O)dSr(
Aqr S 1
r

From the harmonicity

‘2 ([ G, M5, ) .
41R )
15,
Y

it follows that the average on the spherical surface

S, is equal to the value at the centre, i.e. (-]-— - l) .
Rl o R

Thus by Lemma 4.7(i), we have

R.|+r 1 i
l2 < {1+ tlog = r)("-'"" ).

3\1 - '?* R

(15.2)

We now show that in any case (15.1) holds,

) TR TR NP Y Rl+r)l 1,
he. =) (Trgt V) 0+ Els gl g)

1 »

We have to show that

_ Feo 1 Ry *+r
Z+-§-]+:'y(-§-)--§log R.l"l‘>0.

We have "}’(f) = -—ﬁr >
1 -+t

Similarly log Rl i = log "[;R-P L = g ] +Jf
milarly log —=—— = —
Rl r xfr_R-r ‘-\/f
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Since Iogx(%(x-%), when x > 1, we have
l+/ < 'I+1/f_ 1 -+t - It
R 1-4t 144 1=t

Since t lies between C and 1, x/f—> t

NI-—-

1-4Jt<y -+,

\/t w/t 1 1+ 1/t

and > > = log
R R T
Yo > .‘ihg”‘/f
1 -t

And we see that clearly (15.1) holds in all cases,

Completion of the proof of theorem 4.7

We have from (13,3) the following representation for a subharmonic

function (W(P) when P € DR.

"
WP = s f W (Q)K (P, G5, - f Gol?r iy

4R
SR T‘EDR

If P is the origin, we have

ﬂw(O)dS —_ f(cr ?)d/u(‘

4n¥ TED,

w (@ =
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With the nos ation introduced in Section 14, the above formulae can be

written as follows,

We use the fact that (W = o - W . Then

Lo ]
//‘0“""'5 j G R

4n'§ eD

l

x f/[d’(@)«- w (0):; dSqy (15,3)

S

n
18

@ (P = —-—-—\((K (P,Q) w(O)dS f GR(P'T)d/‘AQT) -

4nR> rep.,

n

{ ff Ko(P,Q) 65, - W (P)} (15.4)
41!";

Since 'w+(P) is subharmonic, the last term on the right hand side of

(15.4) is positive,

' KR(P'Q) &)-(G)dSO + f GR(P'T)d/L((eT) (15.5)
' TeD

R

We recall that W (r) = sup W (t,&,8) for fixed S, £ .
o<f<r
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TE DR

Thus u)l(r) < -_:;-Z_ﬂkR(P’Q) LD-(Q)dSQ + [ g(R,r,OT,G)d/Je‘T)
[AN Sp

(15.6)

We now operate on both sides of (15.6) by

ds_ .
r

We invert the order of integration on the right hand side which is justified

since all the integrands are posiﬁve-.

ffw(')ds < f[ ff k(R,r,©)s_LU3 Qs
4u " 141"

Therefore

+ f {4 J[g(R r,OT, Q)dSJ d}'l(e') .
nr”

TeD

And by (14.5) and (15.1) we deduce that the right hand side is at most

1? (1 + % log 'i ;)ﬂw-(Q)dS@+ {i%+%+'\.}f(%)]
S, :

4nR”
1 1
x f ot "R

Te DR
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Thus from (15,3), wa have

“‘T fw(.-)ds< f 4+ \}f(J4D f[w(m-w(o})ds

+ ]+{;|ogR+r -'-47;--%- ,; IQ)(Q)dS .

Therefore

P sf[w(r)ds < [—+=}+*}/( J --—2 ﬂ[w (@)- w(o)]

r dS¢,

which is the required result,

4,16 We note that if G (P) is non-positive in C,, and since-—e‘"‘(r) =

inf W (t,8,4) for fixed 8,4, it follows that w+(Q) = C and consequently
o<Kr

we have from Theorem 4,7 that
] 5 I[mf W (i,e ﬁ)dS > vy LLAFI R “\}’( L (O) (16.1)
Anr 5 o<ir
r

We now prove

Theorem 4.5 If W (P) is non=positive and subharmonic in the whole space,

then
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inf QW (t,& ;{)dS > (4 )W (C) | (16.2)
o<i<mo
As LO (P) is non-positive in the whole space, we can let R —> + @

in (16.1) and note that Y(-'-'P-) —> 0 as R —> + o,

Thus we have from (16,1) ,

ﬂ‘lnf w(i’@;ﬂds >[4 3 { W(0) ,
4nr olir

This holds for all r, If we have a sequence of r tending to infinity we

note that

'2 inf & (1,0,4)dS

Anr S o<i<r

r

is a decreasing sequence of functions,

Hence by Fatouts theorem,

! Zﬁr inf W (t,2,4)ds > {%4— H W (0) .
dur S o<f<oo” r .
r

We show below by a simple example that the constant i-:-;— + %J is the

best possible,
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ExamEIe.

2. 2 2] %
W (x,y,z) - [X" +y" + (z-1) for (x,y,z) # (0,C,1)

]

- o for (CG,C,1) .

Then we note that LW (C,0,0) = =1 and W(x,y,z) < O for the entire

space.
In polar coordinates W (r,2,4) = ul —
V2 =2rcos & + 1

F <8< n, clearly inf & (r,2,4) = =1 for fixed 2.4 .

2 o<r<mo
hO<@<E inf W (v,e,4 = —--5-
2 @6 <<

Also | inf W(t,e,9) is a decreasing function of t and equal -al—é-
€ cos©

when [=cos & .

Since we are concerned with farge values of r, we consider Y> cos S,
2n
1 2 . .
infl) dS = —— Z sin & {mFW} 4& df
4rrr 4ur
o ©
n'/z L1

- 5 sin@d@l
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“ 3] 1[5 -

Since W (0,C,0) = -1, we have

. 1
inf &) dsr = [‘2 + 3 w (0,C,0) .

Thus the obove inequality is sharp,
A simple consequence of the sharp inequality iss

Theorem 4.8A: Suppose that u(P) is a subharmonic function in space

which is bounded above, Then on almost all straight lines through a

given point, u is bounded below.

[

4.17 We now prove a theorem about general subharmonic functions which

are bounded,

Theorem 4.9  Suppose thatw(P) is subharmonic in space and thatw(P)

is bounded above in space by M,  Then there exists a polygonal path

such thatw(P) —> M os P —> @ on r'

It was shown in .eorem 4.5 that there exists a continuum

J . P !/
r = Y]v+ Yy + cesee pcssmg through a sequence of points _iPn}

such thatw(Pn) > # - -!;]- , andw(P) > M - L_] on Y, 1 joining

2
n-1 n
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We now show that there exists a polygonal path with similar
properties, It is sufficient to show that we can join two points Pn and
Pn-] by a suitable polygonal path,

We assume without loss of generality that M.=.0Q .

Two spheres centres Py ond

P and radii equal to

P = r intersect, It
n=1n
can be easily verified from
elementary solid geometry that
the area of the surface of one
. . . 2
insidethe other is nr .

Since w(P) is non positive in space, we have from (16.1), the following

inequality about the average of infima on radial segments through Pn-l'

Take R so large that Y(%) < -]-]5- . Then,

14
1 . LA 1
-:;;—:z—fj olg:‘;r U)(f,@,;‘)dsr > [Z + 7 + T8 OU(Pn_') (17.1)
g o
r.

From (17.1) we obtain a lower bound for the infimum on a portion Asr
2
of Sr (namely the part inside the other sphere which has area nr”) instead

of the whole Sr.
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ﬂ inf (1, @,ﬁ)dS P 7 . 31rr2.W(P )> (Z )UJ(P
: o<t<r dnr

4'” ﬂ inf W(t, Q,,J)dS > {:— -T—é-] %) (Pn-]) .

Since the area of A Sr is rrr2, we note that

Anr

inf WO(t,2 ,ﬁ)dS > [ﬂ - %] CO(Pn_.I) (17.2)

We note that the infima on the radial segments going up to the
disc through the circle of intersection of the two spheres would be not
less than the infima on the radial segmenis going right up to the surface
Sr‘ With each point Q in the disc A going through the circle of inter-
section of the two spheres we associate the coordinates ©, 4, taking for
€ the angle SR QPnPn-] and for 4 the angle which the plane

QPn_] Pn makes with o fixed plane through Pn-] Pn' Then if WI(G‘,;Q

and wZ(Q,;{) denote the infima of W on the rays Pn-]Q‘ and PnO;

respectively we deduce from (17.2) that

Ué 25
% j ds f(,;),'(@,,d) sin @dd > (n - %) w(Pn_]) ’
o o

7
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and similarly

Al

"/ 2w
fd@ fwz(@,ﬁ) sin @ df > (n - %) w(Pn) P
()

o

Ly
/3 2n
-
) f f Lw](@,ﬁ) + w?_(e.ﬁ)J sin © dOdg > (m - %) [w(pn_l) +w(9r8
. | (17.3)

Since the minimum of (U on the broken line Pn- C%Pn is inf(w], wz) >

1

('U] + w2 , we deduce that on at least one such line Pn-'IO‘Pn we have

WE > - [w(Pn_,) +1A)(Pn)]
> (n--j-x-;%-w 2",

Thus if UJ(Pn_.I) > M - Zl-n and w(Pn) >SM=2" , we have shown

3-n

that there exists a broken line Pn-'IQPn such that W(P) > M ~ 2 for

PonP QP .
n=1"'n"

This completes the proof of theorem 4.9,
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4,18 In this section we study the relation batween the number of
components oflfhe set {?!u(P) > K}» in which u(P) > K, and the lower
order of u(P), In case of a continuous subharmonic function our results
hold for the number of components of the set { P'U(P) > K} . Dinghas
in Dinghas (2) has estimated growth of similar classes of functions
satisfying  Du > cu for given ¢ > o in Euclidean space of n-dimensions,
Ninghas has also obtained in Dinghas (3) a lower estimate for ratios of
functionals of certain classes of C*' non-negative functions.  These
functionals are ath powers (a > 1) of the norm of the gradient and of the
function,  Dinghas has then applied this estimate to obtain theorems of
the Wiman type and of the Denjoy-Carleman type for harmonic functions

in En.

.2

(IR

In the case n = 3, we have Peetre's inequality )\.l > =0 -

which givesus a better lower estimate for A We study growth of

].

functions having n components with the help of above ire quality,

Suppose that the set ‘L P}U(P) > 0} has iwo components F. .

M) uP) for P € Fi
Define (W''(P) = {
G for P outside Fi .



- 150 -

2 T2
et mi) () --‘-7 ﬂ " (py gs
dar S r
// (I) 2
We also define q (r) = Z (P)} ds ,
4nr i=1 _ r

2
and note that qz(r) = X m(') ) .

i=]

As before a(')(g) for each component is defined as the limit of
increasing sequence of an(')( g) corresponding to the spherical domains
in which the intersections of the component with S, lies,

Then by summation on (9.4), we have

m (r) 2

qz(r) = Z exp f (')( £)d |09?§‘]
4 i=1
o

© By Arithmetic-Geomefric mean, we have

) mz(ro) 1’2 IS
q) > — 2expy (g)d logg . (18.2)

r
o
o

We recall that

al &) > / -1 1

where | = 2,4048,,,
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.2 .2
We now verify easily that / T;;(r) - ; 1 ].:—fiis a convex function of

/J(r)'at least when f"(r) < 1552 .

It is sufficient to show that the second derivative is positive,

Let ;{(x) = /(5- - j —%,wherex<§.

Ax) = -d .
n® [2.y
b 4
i -
xfo-b - 2/2.—-7

2,a ‘
(2= b

M) = 3

And g%(x) >0 if x s—b > d
[a
4 ‘,'(""b
i.e. 4a - 4bx >a

<3° ‘e (r) < S"iz
or X ZE’ o }'A iz-,]

If }J(r) < _]gS_n , this is obviously satisfied,

First suppose that for both the components f"(r) < 5T,
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hen oXE) + o) > [« ) )+ & fi”«?”]

wdBs B,

v

(1) (2)
Since £ (§)~i—~p (‘?) < 2r, we deduce from (18,3) that

2

&

a(2n) >
Therefore in this case Za(i)(g) > g . (18.4)

If for any r, /(L(')(r) for one component is greater than -‘-g—'—t , and

. we are unable fo use the convexity relation we have that

Za(') > max a(')(g) > u(%n)
because the other component subtends an angle at most %n for the same

value of r,

It is easily verified from (1€,3) that

a(én’) > 2 .

Hence when the set {P}U(P) > K} has two components in which

u(P) > K, (18.8) holds for auf, >r, .
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Substituting this value of za(‘)( ?) in (13.2) and integrating, we

have,
2 mz(ro) r : 3 ’;}‘
q () > - fZ exp glogg Ir d”
r o
(o]
and finally qz(r) 2 K"Z r8/ 3 where K2 is a constant depending on mz(ro).

4
Therefore M(r) = Max u(P) > Kr/ 3 where K > O, Hence if a function
PeG
r

has order less than %, it cannot have more than one component,
We now study what this method gives us if the set { PIu(P) > K}
has n components in which u(P) > K,
As before, if the solid angle subtended by the intersection of each
component (with SE) at the origin is less than l—g—“- , we have from the
convexity property that

> %> 4 ) P+ A Qe

(1) ‘ {n)
> 0 (A iu»(?)+.n.. K6

v

n ;5(-{1-3) . (18.5).

It can be easily verified from (18.3) that



n .
Thus Z a(‘)(g) > %[i«)n-] -1 (13.6)

Also if one of the componente has an intersection with Se which
subtends at the origin a solid angle greater than lg'l , then all other components
subtend at the origin, solid angles whose sum is at most %E . Thus the
convexity property holds for these n - 1 components and we have

E

(i) 2
> o &) > DAy -

Also it can be verified from (18.3) that
A= ys e filon-11 -1)
Bh -1 = 2
Thus in this case we have

n~-1 .
> &) > ZL@ioe - - (18.7)
i=1

Since

n;l (N]On - 41 =1) >%[§a/n-l -1] for n > 2, we have that
(16.6) holds in all cases,
Again by summation on (9.4) for the modified function formed for

each of the components we have



By Arithmetic-Geometric mean, we have

5 m(r ) r 2 ﬂn (i)
q () > - 2 fn exp | — > a'(?) d logg d'? v

i=1

r r
o o
2 < (i) .
From (18,6), we have = D a (g) >iva=1 -1.

1
Then on integration as before we have

qz(r) > K2ri\/n-l -1

, where K is a positive constant depending on

m(ro).

n-1 -3
Hence M(r) > Kr .

N

Therefore a function of lower order less than —2'-\/n-'l ~ % cannot
have n components,
~In particular an infinite number of components is possible only in the

case of a function of infinite lower order,
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4,19 We now consider the case when the function u(P) is unbounded in
space but is bounded in a component of { P’U(P) > 0} or
{P ‘ u(P) > O} . Clearly for this component by Theorem 4,3,

@

fa(?) d log§~ <+ oo .

r
o]

Hence its complement has the smallness property,

Thus every other component of { P’ u(P) > C*} or {P\U(P) > O} has
the property thai given any €> O, the solid angle {(l(r) subtended by
the intersection of that component with Sr' at the origin is less than €

except on a set of finite logarithmic measure on the r-axis,

If /Ll(r) < 2m, it follows from (18.3) that

2 1
alr) > == j -
=3 T TR

Thus in the dbove case we have a(r) > K outside a set finite logarithmic

measure,

d
-(a(g) d logg > K log -;_E- for 7 > ry
o
2
o
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And we have m(r) > m(ro) rK where K is as large as we please,
Thus such a component is only possible in the case of a function

of infinite lower order.

4,20 It was shown'in Section 4,16 that if u(P) is a subharmonic
function of lower order lass than %\/:—'I- - %, then the set
{P{u(P) > K} cannot have n or more componants for any real K,

We now construct a function for which the set {Plu(P) > K}
has M components and study its growth,

It was shown by Deny and Lelong (1) that the functions of miniinal
growth in a cone \.ng are harvonic functions of the type rplhl(Q,;Q
where h](G,;f) is an eigenfunction in the domain of intersaction LQA (?)

of the cone with spherical surface S(E), corresponding to the lowest

positive eigenvalue 7\.' of the equation
th+ = ¢ in (%)

and h vanishing continuously on 3 ﬁ (g)

where L is the spherical pari of the Laplace operator,

Also Py is determinad from )\.' by the equation Py (p’ +1) = N .

Let LL be a right circular cone consisting of points of the form rP

where O < r < @ and P is a point inside a circular domain C, on the

1
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unit sphere, We define a subhammonic function v.'(P) as that of the
minimal growth investigated by Deny and Lelong for P inside the cone,
and equal to zero elsewherz,

We forn M such circular domains of aqual area on the surface of the
unit sphere and form functions vz(P),...vN(P) as before,

Then v(P) = v](P) + ... + VN(P) is subharmonic and the sat

{Plv(?) ZE} has N components if & > C

We first give a construction for obtaining such non-overlapping circular
domains on the surface of the unit sphere, A

The circumference of the great

circle is 2r .,

Therefore AD = g .

We divide A2 in n equal parts,

The spherical cap of centre A and with base the small circle @ = -i%-

gives one circular domain,  We now construct other domains equal in

. . . 2 3nm
area to this domain, We draw small circles © =—2-r-‘-, ITRAE

2 .
We take as centre a point on © === , with radius of great circle

2n
L3 n . L - - L -
distance equal to Fo r We draw a circle, This circle will lie in the

zone between @ = 2 and 3n_ . We now tdke centres on © = 2n
7n 2n n
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such that these circular domains do not overlap.,  Take n odd.  Then

. N 2 4 n-1mw
we form thesa circular domain with centres on & = §-'n- ’ -2—: reve —2—31—- .

Thus we have formed circular domains of equal area in the Northern

hemisphere., ~ We now want to determine the exact number of points

| 7

which can be distributed round the circle @ = “2“n

at a sphercal distance
equal to (or greater than) -:-:- (when K is even),
Ka

We first determine the circuinferential distance on & = TS between the

two points whose greot circle distance is equal to ?r:- .

Consider two poinis C and D on the

. K .
circle & =-:'an whose great circle

L d - ﬂ
distance is = .

Let O be the centre of the circle
K

=
Q-Zn
' . Ku '
Then O'C = sins— = O'D
2n
CC = ¢CDh =
1r
Yy = - .
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sm--—
= 2sin! —ew :
sm—
For0<e<g we have <sin @< S,
Theref sm%— < T T 2n _ @
Qreiora m—- -z-n-x-z-x Kﬂ' = ";?R" .
2n
.v-l T
£ < 2 sin 5% -

The exact number of points which can be distributed round the circle

8 = -!2(—"'-1- at spherical distance not less than -:1-'- is
Z"K - a /4K T

Thus there are at least K circular domains in the zone between

(K= (i<+1)we
Q = —_Z_n_— and —-—2—5—- .

On a hemisphere K fakes aven values from 2 to n-1,

Thus the total number of circles between the zonas is not less than

3
t
nnt

2 .
n+l (n -1)
( )( 4 bd

N
M
~

A
i
L



Thus the total number of circles in the MNorthern hemisphere is at least

equal to

(n?

+ 1

- 1)
A

Thus numbers of circles on the unit sphere is af least aqual to

Lot Moo= %(nz -1 +2,

so that n = 1/21‘*-& -3

We now want an upper hound for Pye
Since oH increases wiih )\], we find an upper bound for )s...
We recall that s the lowest estimate of the Rayleigh's quotient,
Thus if we have any test function satisfying the boundary conditions, we
get an upper ound on )\1. Clearly cos n& is such a function for the
T

spherical cap with centre ivorth Pole and bese © = T

‘ 2
.\; gradient of cos n&@ ‘ = nzsin‘?'n@ .

We have to svaluate

2
(n" - 1)
5 +

(3]



2w 1V2n TVZn

[o]

fd)!f f nzsin?'n@ sin & d&, nzj si‘nzn@ sin & d@
o o

2% Vo Von

5‘ dd j coszn@ sine do j coszn@ sin @ de
o o

(o]

The Mumerator is n2 ju sinzn@ sin & d&
o

Yon
The Denominator is f coszn'Q sin & d&

[o]

7
= % jcoszyfsinédd

(o]

sin & sin é

Since

@’ decreases as & increases, we have re

n

g

Therefore sin = > 1 sin g .
n n

n >sinﬁ

"4
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b
Thus the Denominator is at least -—%— f cos2 g sin £ df
n
o

I I ]ry‘? =]
az (: 3 o 3n
72n
n2 f sinzné)sin e de
Hence o < 11'4 3n2<lQ_Q_
64 ° 54

/. n
f cosan sin & d&
(V)

75n2

Thus we have 7\, < 7 -

Since p,(p.‘ + 1) = )\‘ we have

2
750" 1 1
Py < \/[—16 +Z] )

P =

7521 - 3) + 4
Py < / { 7% }

2
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. 1500 = 221, 1 J150 == 1
1,e, p.|< _\/(—-——-——,'?;——-——)--2- < —-——4—15\3*] "-2—

<@ N -3

Thus we have shown that thare exists a function for which the set
{P‘U(P) > K} or {P’U(P) Z K} has "l components and the order
of the function is less than (3. 1W/N-1 - % , in case when N =

{;—(nz - 1)+ 2and nis odd, We recall that our lowest estimate of the
order for the growth of such function was -2!- 1/'?-*—1-1 - f;- where

i =2.,404¢.....
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