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Abstract  

The thesis presents an investigation of the lateral stability 

of beams and arches using the finite element theory of analysis. 

By means of the force method various matrices which are required 

for the numerical evaluation of the stability problem, are estab- 

lished. 	Particular attention is given to the analysis of plywood 

box-beams. The displacement method is used to establish a finite 

element solution for the calculation of torsion constants of box-

sections. The results of the finite element analysis of the 

lateral stability of beams are shown to agree with those derived 

by the classical theory of elastic stability. Using Southwell 

plots of experimental results from an investigation of the lateral 

stability of plywood box-beams, it is shown that plywood box beams 

indeed behave in the manner predicted by theory. Experimental 

evidence is also given to support the finite element analysis of 

torsion of box beams. In particular it is shown that the non-

uniform shear stress distribution predicted by the finite element 

analysis for box-beams with deep flanges does indeed exist, con-

trary to an often made assumption of uniform distribution of 

shear stresses. Coefficients for the calculation of critical 

loads for lateral instability of parabolic arches loaded at the 

crown are given. Experimental corroboration of these coefficients 

has not yet been obtained and future research in this direction 

is suggested. 
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Chapter 1  

Introduction  

The load carrying capacity of a structure usually is 

determined by the tensile, compressive and shear strength of its 

material. In certain cases, however, a structure may fail not due 

to a lack of strength but due to sudden excessive displacements. 

Since Euler's analysis in the eighteenth century of the behaviour 

of axially loaded columns (42)
1 such instability phenomena have been 

of continuous interest to structural engineers. A failure of this 

type can occur not only in columns but also in beams and arches. 

In 1899 Prandtl (35) working in Munich and Michell (32) working 

independently in Australia both published investigations into the 

lateral stability of beams. Since that time research into numerous 

aspects of the lateral stability of beams has been carried out. 

A historical review of the most important work on the lateral 

stability of beams has been given by Bleich (6). An extensive 

review of the literature has also been presented by Kollbrunner 

and Meister (26). 

Under normal conditions loading of a structure will produce 

a definite and unique deformation pattern. Equilibrium of 

external and internal forces will be maintained at all times and 

only one deformed shape will be possible. Under certain circum-

stances and for loads of a certain magnitude however, equilibrium 

of forces could be maintained for more than one deformed shape. 

1 
References are listed following Chapter 6. 
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Of these the original mode of deformation will be unstable and the 

structure will therefore, often suddenly, change to a second stable 

mode of deformation. 

If in the course of loading a structure such a load is 

reached, where more than one deformed shape is possible, a point of 

bifurcation of the equilibrium deformations is said to have been 

reached (28). The study of so-called classical buckling problems 

therefore consists in determining, if more than one deformed shape 

of the loaded structure is possible. In these investigations 

usually an idealized member is being assumed with a straight axis 

and loads are applied either, for columns, concentrically or, for 

beams, in the principal plane of bending. 

It was realized already very early, however, that the 

idealized conditions assumed for an analysis could not be achieved 

with an actual structure. Prandtl in his dissertation (35) draws 

particular attention to This observation that in his experiments 

with small, rectangular steel beams lateral deflections occured long 

before the critical load for lateral stability was reached. 

Due to initial bow and twist of a beam, as well as accidental 

eccentricities of the loads, beams are subjected to secondary 

bending moments and torsional moments in addition to the primary 

moments usually considered. The stresses in the beam are therefore 

a combination of the stresses due to the primary moments and those 

due to the secondary moments. 	Under these conditions the problem 

is not one of determining the load at which bifurcation of the 

equilibrium position will take place, but one of finding the maximum 



- 12 - 

stress in the beam due to superposition of primary and secondary 

bending moments. A systematic analysis of this problem was first 

published by Stlissi (37) in 1935. Analysing a beam subjected to a 

constant bending moment, Mx, Stffssi first derives the critical 

moment, Mcr, for which lateral instability of an ideal, straight 

beam will occur.1 

Mcr 	GJ 	(1.1) 

where L 	= span of beam 

EI
Y 
 = flexural stiffness about the minor principal axis 

GJ 	= torsional rigidity 

The maximum stress, a 	, due to an initial eccentricity, y0, 
. 

is then derived as 

Mx 	Mx2  a 	+ 1 
max 	Sx  Yo 71:7 GJ Sy  (1.2) 

where S7  and S = section moduli about major and minor axis 

a  = (Mx Mcr)2 

	
(1.3) 

For any given critical stress a 
max 	Equation (1.2) can be 

presented in graphical form for various values of y
o/1, as a plot 

1 	
The expression derived by Stussi, in fact, contains an additional 

term, accounting for the stresses due to warping of a steel I-section. 

The effect of warping in timber beams is less pronounced, because of 

the usually more compact sections that are being used with timber. The 

effect of warping is therefore not included in the present discussion. 
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of a 1 	 1 vs. the ratio L/L , where the stress a is defined by 

a 1 = mx/sx 
	 (1.4) 

and the span L is equal to the span for which the stress due to the 

buckling load given by Equation (1.1) is equal to the critical stressa max. 

Stussi's work is of particular interest, not only because he was 

the first investigator to consider in detail the effect of initial 

eccentricities in beams, but also, because he formulated for the 

first time a finite element solution for the analysis of the lateral 

stability of beams. The technique employed by Sttissi is very powerful 

and permitted him to analyse beams (36, 37) as well as arches (38). 

In the experimental analysis of stability phenomena it is useful 

to have a technique which will allow the determination of critical 

loads from experimental data without loading the structure up to 

failure. For columns Southwell has shown that a plot of the ratio 

of deflection/load against deflection will produce an approximately 

straight line. The slope of this line is equal to the inverse of 

the critical load (43). 

A similar approach can also be used for beams (30, 31). For 

a beam loaded by a constant bending moment consideration of initial 

bow, a, and twist, ,c-'• , will result in the following equation for the 

rotation, IS , of the cross-section at the middle of the beam 

/E 5,- 	m air 2/L2) sin (w Vt.) (1.5) 
GJ 7r 2/L2 - M2/EI7  
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With the critical moment for the lateral stability of a beam 

given by Equation (1.1) this expression for 0 can be rewritten as 

- 

2a I 
(0+0)  m + ( 	71. 	

E

a ) M 	 2 M 	L
2 
M
2. 

cr 	cr 

(1.6) 

If the rotations 0 are large compared to the initial twist 0 

of the beam, Equation (1.6) will approach a straight line for 

0 /M vs. 0 M. Massey also gives an analogous expression for the 

critical buckling load (Pcr) at the mid-point of a beam 

2 
	+ F

1 
	 (1.7) 

cr 

where 0 and P are corresponding pairs of rotation and load 

and F
1 
is a constant. A plot of 0 /P2  against 0 will again give 

an approximately straight line whose slope is equal to the inverse 

of P 2. cr 

Most investigations on the lateral stability of beams have 

been concerned with metal structures. As a result beams with 

I-sections have been studied extensively (6, 26, 43). 	The 

torsional stiffening effect resulting from the warping restraint 

due to a stress gradient along the length of a beam subjected to 

lateral loads, in particular, has been analysed in detail. Since 

metal I- and channel sections present relatively wide outstanding 

flanges the additicknal torsional resistance produced by non-uniform 

bending of these flanges can therefore contribute considerably to 

the calculated buckling load. Composite sections of timber and 

plywood on the other hand usually do not have k  outstanding 

flanges and consideration of the warping restraintctherefore does 
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not produce the same marked increase in the calculated buckling 

load as for metal I-sections. 

Tests on the lateral stability of narrow rectangular timber 

sections were performed by Hooley and Madsen (22). The largest 

difference between theoretical and observed critical stress in these 

tests was 19 per cent, while half the tests were within 5 per cent. 

The importance of adequate bracing for beams is stressed in particular 

by Hooley and Madsen. The possible lateral support that can be 

expected from a wooden deck system nailed across supporting beams was 

analysed by Zahn (47). 

In the analysis of metal structures it is often necessary to 

consider the behaviour of the structure after part of it has yielded. 

The standard results of the theory of elasticity, which assumes linear 

elastic behaviour, are then not applicable any more and a non-linear 

analysis is required. Wood, when tested in compression, also shows 

a marked non-linear behaviour. Tested in tension, however, the 

resulting load-deformation curve will deviate little from a straight 

line, even at ultimate loads which for clear wood loaded parallel to 

the grain can be two to three times its compressive strength in the 

same direction (27). In practice little use can be made of this 

high tensile strength of wood. 

Natural defects such as knots, grain deviations around knots 

and spiral grain as well as sloping grain, produced when a straight 

board is cut from a naturally tapering log, all combine to reduce 

the effective tensile strength of timber to a level often below 

that of its compressive strength (14). As a result the load 



carrying capacity of timber beams is often determined by the tensile 

strength of its material. The potentially large plastic deformations 

that could occur on the compression side therefore frequently will 

not develop, since under excessive loads the material will rupture 

on the tension side causing complete collapse of the beam. The 

effect of plastic deformations on the lateral stability is there- 

fore less important for timber beams and will not be considered here. 

In the past the usual approach to the analysis of the lateral 

stability of beams was to establish a partial differential equation, 

expressing the equilibrium of the displaced structure in terms of 

the applied forces, and then to solve this differential equation (43). 

The only known direct solution of the partial differential equation 

describing the lateral stability phenomenon is that for the case of 

a simply supported beam subjected to equal end moments (26). In all 

other cases approximate methods of analysis have to be used (28). 

The rapid development of fast, electronic computers during 

the last two decades, however, has permitted a completely new approach 

to the analysis of structural engineering problems. This approach, 

usually referred to as finite element analysis, can be employed for 

the solution of stability problems. Finite element solutions for 

the stability of beam columns, for example, have been published by 

Gallagher and Padlog (19) as well as by Argyris (3). A finite 

element solution for the lateral stability of rectangular beams 

involving non-linear simultaneous equations has been prepared by Bell (5). 

The object of the present investigation is to establish a 

finite element solution for beams as well as arches involving only 
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linear simultaneous equations. The method being used here was 

suggested to the author by Kelsey; who also provided valuable 

suggestions for the calculation of the torsional rigidity of 

box-sections. 

The finite element approach to the analysis of stability 

problems, in particular the lateral stability of beams, will be 

described in detail in Chapter 2. The effect of initial bow and 

twist of beams will be considered and the application of the finite 

element to the lateral stability of arches will be discussed. In 

this analysis extensive use is made of matrices and various standard 

matrices will be described in detail in Chapter 3. Numerical 
truhtm^col 

results obtained by the method eh-chained in Chapter 2 will be 

discussed in Chapter 5. The work described below, although 

general in its application, was undertaken primarily to obtain 

information on the lateral stability of plywood box-beams. The 

results of an experimental investigation of such beams will be 

discussed in Chapter 6. A finite element analysis of the 

torsional rigidity of plywood box-beams - a section property 

required for the calculation of buckling loads - is given in 

Chapter 4. 

Coefficients for the calculation of critical loads that 

will result in lateral instability of parabolic arches are given 

in Appendix A. Values of the torsional rigidity of box-sections 

are presented in Appendix B. Appendix C contains the detailed 

* S. Kelsey, formerly Imperial College, London, now visiting 
Professor, University of Notre Dame, Notre Dame, Ind., U.S.A. 
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results of an experimental investigation of the lateral stability 

of plywood box-beams, as well as those of an experimental deter-

mination of the distribution of strains in the flanges of box-

sections subjected to a torsional moment. A paper on the shear 

deflection of box-beams, which also contains a discussion of the 

flexural properties of composite sections to which reference is 

made in the main body of this thesis, is attached, finally as 

Appendix D. 
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Chapter 2  

A Finite Element Solution for Lateral Stability  

Introduction  

A general expression for the critical loads producing 

lateral instability of beams or arches will be devloped in this 

chapter. The effect of the initial bow or initial twist on 

maximum stresses will be illustrated for beams. 

The classical approach to the formulation of stability 

problems is to establish a differential equation which will relate 

certain derivatives of the displacement of the deformed structure 

to the forces acting on it (26, 43). The critical load at which 

instability occurs is then found from the solution of this dif-

ferential equation. For beams a direct solution of the differential 

equation is only possible when the beam is loaded by a constant 

bending moment (26). For other loading conditions different methods 

have to be employed (28). 

In recent years, aided by the availability of fast, electronic 

computers a completely new approach for the analysis of structural 

engineering problems has been developed. Instead of considering the 

forces on infinitesimally small elements this so-called finite element 

method analyzes elements of finite dimensions. These elements are 

assembled subject to certain conditions and instead of solving dif-

ferential equations, it becomes necessary to solve systems of linear 
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equations containing either forces or displacements as unknowns. 

A lucid exposition of this dual nature of the finite element theory, 

usually referred to as either the force method or the displacement 

method, has been given by Argyris (2). 

The finite element approach to engineering analysis is based on 

four fundamental concepts. These concepts concern the idealization 

of the structure or the continuum, the equilibrium conditions, the 

compatibility conditions and virtual work. 

In the first place it is assumed that the body to be analyzed -

this may be a linear structure or a continuum - can be represented by 

a set of elements, which are joined together at discrete points along 

their boundary. Each element of the idealized body usually will 

have simple properties. The behaviour of each element will be 

defined by a number of forces and displacements. 

Secondly, the equilibrium conditions concern the relatiohship 

between the applied loads and the internal forces. From the point 

of view of equilibrium the body represents a device for transmitting 

loads. A body or structure in which the equilibrium conditions 

suffice to find the forces on all components is statically determined. 

If the internal forces cannot be found by statics alone, the body is 

said to be statically indeterminate. 

The concept of compatibility provides an alternative view of 

the function of a structure. From this point of view the structure 

is a means for constraining a system of points in space relative to 
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each other. If the idealized body, the structure formed by the 

set of elements, just provides the necessary constraints to prevent 

the assembly from acting as a mechanism, then the system is kine-

matically sufficient. In a kinematically redundant system there 

are additional constraints to the ones provided by the kinematically 

sufficient system. 

Finally, virtual work can be defined as work that would take 

place by a specified set of forces over a specified set of displace-

ments, if these could take place. The concept of virtual work is 

the basis of the principle of virtual work. The principle of 

virtual work can be formulated in terms of either virtual forces or 

virtual displacements. When used in terms of virtual forces acting 

on an elastic body the principle of virtual work states that "an 

elastic body is in an ilastically compatible state under a given set 

of forces if for any virtual increment of forces (SP) and stresses 

(c 6") from a position of equilibrium (u) the increase in external 

complementary work, S W* = u P, is equal to the increase in 

complementary strain energy, c 	" (2). 

w* S 	 (2.1) 

The increase in complementary strain energy is (Fig. 2.1) 

= E 	ci v 
v) 

where G7(0= stresses (strains) in the body having a volume V. 
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AND COMPLEMENTARY STRAIN ENERGY (FROM REF. 2) 
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FIG. 2.2 - PARABOLIC ARCH LOADED BY CONCENTRATED 
FORCES P 
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For a finite element analysis the body under investigation 

will be divided into n elements. The virtual internal stresses are 

then replaced by a column vector* of virtual forces ir 

where S is a vector containing all forces acting on an individual 

element L . The virtual external forces are grouped together in 

the column vector R 	{ RI  az  • • • Ilk • • 	Corresponding to 

the vectors R  and S are displacement vectors r. = le t  trz 	. 110, 

and, =PI% 	Vm  i which take the place of the external 

displacements u and the internal strains 6 

The principle of virtual forces applied to finite elements 

can then be stated as 

—t 	 t • 
Re = S V (2.2) 

where iit  is a row vector equal to the transpose of the column vectori 

With correspondence is meant here a displacement which takes 

place at the same point and in the same direction as a given force. 

In other words, linear displacements correspond to direct forces 

and rotations correspond to moments. It is not implied by this 

definition that a given rotation 	is the result of a corresponding 

moment Mi 

Redundant Forces in Arches  

Consider now an arch fixed at both supports, Fig. 2.2 This 

* 	Column vectors will be represented by I } , row vectors by [ 
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arch is three times statically indeterminate. Before analyzing 

the stability of the arch, it will therefore be necessary to 

calculate first the redundant reactions. Let the redundant 

reactions be the moments at the fixed supports and the moment at 

the crown of the arch. To simplify numerical calculations consider 

a symmetrical arch under symmetrical loading. The value of the 

reactions at the left and right support then will be the same and 

to determine the value of the redundancies, it is sufficient to 

analyze only one half of the arch, Fig. 2.3. This left half of the 

arch is to be divided into n elements. The forces acting on a 

typical element i are axial forces 1\1 , shear forces S
7 

and 

moments M
Q 

and 1,4 p., at the left and the right end of the element, 

Fig. 2.4. These forceth will be represented by the vector 

S i 	5.7 	
rJ 	

(2.3) 

Corresponding to these forces are displacements in the 

- direction, Ay , displacements in the r -direction, Ar and 

rotations Gyp and G]rr  , represented by the vector 

v. = Ay A, 	or, af, 
If a sufficient large number of elements is taken the axis 

of each element can be considered to be straight, and displacements 

	

relative to their local coordinates 	can then be expressed in 

terms of element forces by a flexibility matrix f of size four by 

four 

vi = 	S 	 (2.4) 



M4 r 

#;) N y 
Sir 

- 25 - 

FIG. 2.3 - FORCES, INCLUDING REDUNDANT MOMENTS X1 
AND X2 ON LEFT HALF OF SYMMETRICAL ARCH 
DUE TO SYMMETRICAL LOADING 

FIG. 2.4 - FORCES ON BEAM ELEMENT 
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where f f = 6 E 0 0 0 (2.4a) 
6E2" 1)616 F 

O 61/A 0 0 
0 2. 
0 / 

and where E = modulus of elasticity 

G = modulus of rigidity 

b = width of cross-section 

d = depth of cross-section 

I = second moment of area 

A = cross-sectional area 

The shear stiffness factor F for composite members is 

discussed in Appendix D. 

The displacements of the individual elements are then 

given by 

= f S 
	

(2.5) 

where 	v 	= ... y r, 	 (2.5a) 

S 
	

(2.5b) 

The flexibility matrix I is a diagonal matrix composed of 

the flexibilities f of the individual elements. 

f 	= rf , f a ... 	f„..1 	 (2.6) 

Now let R be a column vector of in vertical forces 

R = 'RI  R2 	Rj 
	 (2.7) 
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By purely static reasoning it is possible then to find 

a transformation matrixb o  which will give the forces on each 

element in terms of the applied loads R . The matrix bo  here 

is of size 3n x m, where n equals the number of elements and m 

equals the number of external loads. 

Similarly let X be a vector containing the redundant moments 

at the left support and at the crown of the arch, Fig. 2.3. 

X = fx 1  x 2. 1. 	 (2.8) 

Again by static reasoning alone, it will be possible to derive a 

matrix 17 1  , which will give the element forces resulting fromX 

The total forces on the individual elements can then be obtained 

by adding the element forces due to the redundant reactions to those 

due to the external loading 

= b i  X ÷ R 
	 (2.9) 

The matrices bo  and b i  will be derived in Chapter 3. To find 

the redundant moments, the unit load method (2) will be used. In 

place of the redundant forces X I  and X a , moments of unity are applied, 

represented by a vector 

={ I 	 (2.10) 

The principle of virtual work, Equation (2.2) can then be used 

to find the displacements 

= tote 
	 (2.11) 
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corresponding to the redundant moments at the left support and the 

crown. The stresses 3 due to the unit moments at the supports and 

the crown are 

= b1  R 
	

(2.12) 

The principle of virtual work therefore yields for the 

displacements t the expression 

C = bo y 	 (2.13) 

In view of Equations(2.5) and (2.9) the displacement vector 

can also be written 

= bt f boR + 	f bi  X 

= Do+ D, X 
	 (2.14) 

where 
	D o  = 	f bo  R 

	 (2.14a) 

D 1 	= 	f 
	

(2.14b) 

The boundary conditions require that the rotations at the 

supports and at the crown are equal to zero. 

r 	= 0 	 (2.15) 

Consequently, combining Equations (2.14) and (2.15) the 

redundant forces can be calculated (2) as 

X = 0, 00 	 (2.16) 

where D i  is equal to the inverse of 	The size of the 

matrices Do  and D I  depends on the number of redundancies. If p is 
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the number of redundancies the size of 	will be p x m and that 

of D / will be p x P . 

Equation (2.16) is a general expression and by choosing the 

appropriate matrix b i  this equation can be used to calculate the 

single redundant moment X I  at the crown for a single two-hinged 

arch or the two redundant moments X / and X a  for an arch fixed 

against rotations at the supports. 

Finite Element Formulation of Lateral Stability  

Having calculated the redundant moments X the forces acting 

on each element are now completely defined by Equation (2.9). To 

establish the load which will cause lateral instability, consider'now 

the forces Si that will act on each element, if the structure is in 

a slightly displaced position, Figure 2.5. It will be assumed that 

at a point i in addition to the displacements due to NI, and MI  

the cross-section will be displaced in the x -direction by the 

amount u and will have rotated by a small amount e . For the 

structure as a whole the displacements can be represented by a vector 

r 	= f 	ri —lift., I 
	 (2.17) 

where 	t = { u v w 67„ O f  07 	are the displacements of a 

typical point i . 

In terms of the m'th load - all other loads can then be expressed 

as fractions of the load P. 	- the forces on the elements can 
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P 

z 

4 

FIG 2.5 DISPLACED POSITION OF CROSS SECTION 
AT POINT I 
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then be written 

S = P„,Br 	 (2.18) 

The matrix B can again be defined purely from statics and 

will be given in Chapter 3. Since, in the present case, there are 

n elements and n+1 nodal points, 	there will be a total of 6n 

components in the force vector S and 6(n+1) components in the 

displacement vector it. 	Correspondingly the size of B will be 

6n x 6(n+1). 

Consider now a typical element i between points i and 

In addition to the axial forces N and the moments My and 

Me e. about the major axis thiselement i will also be subjected to 

moments 1.17€ and M ??. about its minor axis, 7 , due to the assumed 

rotation t9  , as well as a torsion moment M due to the lateral 

displacements u . These forces are given by the vector Si . 

S 	I 17, Mrt  14,re.  m7e  Mr.  MO 
	

(2.19) 

The local displacements 

Vi 	= f t 	97e  07 , 10 

of a typical element i of length i)  due to these forces are 

v = S 
	

(2.20) 

where the flexibility matrix f i  is given by 
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AE 

3EI. 	'6E1 

ar 3EI 

3E1 rEr.  

r 3E1 

e 
GJ 

(2.21) 

where A is equal to the cross-sectional area of the element, E equals 

the modulus of elasticity, Elf  and EI,7  are equal to the bending 

stiffness about the major and minor axis of the cross-section and 

GJ equals the torsional rigidity of the section. 

If we let S = IS )  S2 	S,f be a vector of the 

forces on each element then, for the displaced structure as a whole, 

the displacements v =iv, Ira 	Vi 	v,„1 are given by 

V = f S 	 (2.22) 

where f =54  f 	... 	fn../ is again a diagonal matrix of the 

flexibilities fi. 

To establish a relation between the nodal point displacements f 

and the element displacements V again the unit load method can be used. 

LetR =flit. ... /1 be a column vector of size 6(n+1) 

corresponding to the displacements f of Equation (2.17). 
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The stresses due to it in the undeformed structure are 

§ = 	 (2.23) 

where b is a matrix obtained from statics and fully described in 

Chapter 3. From the principle of virtual work, Equation (2.2), 

using virtual forces, it follows that 

r 	= bt  v 
	

(2.24) 

Expressing the local displacements in terms of element forces, 

Equation (2.22), this can be written 

r
t
f S 
	

(2.25) 

Finally substituting Equation (2.18) for the element forces 

the displacement vector becomes 

= Pm  bti B r 
	

(2.26) 

or 	[1 - Pm b f 13] r = 0 
	

(2.27) 

where i  is a unit matrix of size (6n x 6n). This equation defines 

the eigenvalue problem for the lateral stability of arches and beams 

and was suggested to the author by Prof. Kelsey. 

A solution for this eigenvalue problem can be obtained by an 

iterative technique, such as given by Collatz (11). The iteration 

can be initiated by an assumed shape of the displacement function !=(o  . 

Substituting this value of r into the right-hand side of Equation (2.26) 



If/A 0 0 

0 2 1 

0 1 2 

(2.29) 

a new valuer,can be calculated. The ratio of the value of the n
th 

element of vector r, to the corresponding value of !a  will give 

a first estimate of the inverse of the lowest eigenvalue 	After 

normalizing the vector CI  , the calculation can then be repeated 

with the new value of r, on the right-hand side of Equation (2.26). 

The iteration should be repeated until there is no significant 

difference between two successive estimates of P o, 	The value of 

P„, represents the load which will just maintain the displacements 

without causing collapse, in other words Pw, is the critical load 

for lateral stability. 

Reduction of Size of Matrices 

The solution, in its present form, requires the complete 

flexibility matrix f , Equation (2.22), which is of size 6n x fin, 

n being the number of elements. A more compact form can be derived 

in the following manner. Consider the flexibility ft , Equation (2.21). 

It is apparent that this matrix can be partitioned into a flexibility 

for the axial force N t. together with the moments M ye and Myr  

and a flexibility for the remaining three moments M ve , M7r 

and Mt  . 

where 

= r 
LO kij 

(2.28) 



and 

2 1 0 

1 2 0 
fi 0 0 6EIp/(GJ)_ 

(2.30) -e 
f2;= 
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Correspondingly the displacement vector 'f t' for an individual 

element becomes 

V = 

 

= [f • 0 

0 f 2'  

 

S. 
(2.31) 

     

      

where 	v 1•= 
i 
G 	ate or, 	 (2.32a) 

= 	CD7 0~ r ed 
	

(2.32b) 

	

1 Nr Mr„ Mr, } 
	

(2.33a) 

S2 (. . = 	'2e 7r M 
	

(2.33b) 

The vectors of forces and displacements of all elements can 

be split in a similar manner 

r 1 = = 	IZ 	...V ' 	V sew 
1 	/ VII V 	it 	" I 

V2_ = { ,21 ,22 	... V
2 4 

• ... V 2n } 

	

) 	
(2.34b) 

S
1 
= 1 S" S fz 	...S I ,: •.. S

'
. in (2.35a) 

S
z 

= i S
2: 

S22 	...S
2 c 

• ... $ 	1 	(2.35b) 
2n 

The flexibility matrix f for the whole structure becomes 

[ f, 0 
f 

(2.36) 

  



S i ]- =P[13,0 le , 

	

S z 	0 	rd .  

where 	r,= 	1 	2 	v. oos 	V 
V3 + 

S = 

I 

(2.37) 

(2.38a) 

where f = f iz 

f = 
F- 
f 

2.1 f12. 

• • • f • f (2.36a) 

(2.36b) 

  

fzi 

Assuming sma12,.displacements onlyIthe forces S 2  can be 

calculated from the displacements u and )2 alone, permitting a 

partitioning of the matrix B 

• n 	i 	IC)7 2.•  • • 
o . 	0 
Ft '"' 	Zi141 

(2.38b) 

Cue_ 
The sizeSof the matrices B i  and B1  in 3n x le(n+1)04_,A. 

3" x a (it+, ) 4-Gaig.04;11, 

Corresponding to the displacement vectors r 1  and ra  there 
are unit loads R and R z 

(2.39a) 

(2.39b) = i1 1  • • 

Since, for the undeformed structure, the vertical forces will 

only contribute to the stresses S I  , while the horizontal forces 

and the torques at each point will be responsible for the stresses 

Z , the stresses due to the unit loads Et a  and R z can be written as 

  

- b a 
b 

2 

   

S 

Sz  

  

(2.40) 
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Applying again the principle of virtual work, the 

displacements become 

  

t = P 	bi f, B, ri 
bt  f S r z 	z 

 

r = r, 
r2 

(2.41) 

    

Equation (2.41) indicates that for the assumed small 

displacements, the lateral displacements and rotations rz  are 

independent of the vertical displacements r, . To find Pt„ it is 

therefore sufficient to establish the matrices 122  and B 2  and to 

solve the eigenvalue problem 

11
2 = P

"'", 
b
t
f Br 2. 	2. Z. (2.42) 

or 	[i - PN, z fz  5 r1 	= o 	 (2.43) 

The unit matrix t here is only of size 3n x 3n. When evaluating 

the critical load P, with an electronic computer this formulation 

therefore will require only 2  of the storage space required for the 

previous formulation, Equation (2.27), with a corresponding reduction 

in computing time. Equation (2.43) is sufficient for the calculation 

of critical loads for the lateral stability of arches or beams. The 

subscript 2 therefore will be omitted in the future, when referring 

to any of the matrices bz  , Bz  or f2  . 

Nondimensional Matrix Formulation for Arches  

It is also convenient to use a non-dimensional representation 



for the displacements. Linear displacements can be divided by the 

span length L, so that 

r 	 ut/t LAs/i ~nr ~ 1 	(2.44) 

Further to obtain non-dimensional expressions for the matrices 

b s B and f , it is also convenient to divide all moments by the span 

to give 

S t = 	vi7e " 	 } 	 (2.45) 

Finally, instead of using the definition for the element load 

vector S given by Equation (2.35b) it is more convenient to choose 

a different order, i.e. to collect all M,7 into one sub-vector and 

all M r into a second sub-vector 

s 	St 

,, 
where S 	= 17 1' ••• M7 enMyr., 

St = r 
Imr1 

m 'c2. 	m 

(2.46) 

(2.46a) 

(2.46b) 

In Chapter 3 it will be shown that with these definitions the 

matrices b and B become dimensionless and the flexibility matrix 

will be given by the following expression 

 

L2 

   

    

f 

 

f b ° 
0 f 

(2.47) 

  

     



f 

and f bi.= 

(2.48a) 

(2.48b) 

(2.49) 

f b2 

f .rft, ffi  

- 2 P/1.. 

2 e/L 
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where 

	

f • = 
	6.eE1.7 	 (2.50) 

LGJ 

The constants EI and GJ are the bending stiffness about the 

minor axis and the torsional rigidity respectively of the beam 

element. If the structure has a variable cross-section along the 

length of the arch or the span the same formulation can still be used. 

In that case EI can be taken as the stiffness of an element at the 

centre, for example, and the flexibilities fi of all other elements 

can be expressed in terms of the ratio of the centre stiffness to 

their own stiffness. To evaluate the non-dimensional part of the 

stiffness matrix, it is sufficient to know the ratio of bending 

	

stiffness, EI 	, to torsional, rigidity, GJ. 

With the above, non-dimensional definition of the flexibility 

matrix the eigenvalue problem becomes 

2 	
t = pm  ;Tr bf Br (2.51) 



WOO LIO NNW 

If we call the first eigenvalue of Equation (2.51) c and 

let c3,. = 6c, then the critical load for lateral stability of the 

arch will be 

c r (2.52) 

Since the flexibility matrix, Equation (2)V?) includes the 

non-dimensional parameter4 ftL it is apparent that cis a function 

of the ratio EI7  /G.j. 

Nondimensional Matrix Formulation for Beams  

In the case of straight beams a still more formulation 

is possible. In Chapter 3 it will be shown that for beams the 

matrices B and 6 	can be partitioned in the following manner 

B =[

0 LBO 

at  0 

(2.53) 

b = Lbb  0 (2.54) 

0 	b t  

As previously, the flexibility of the structure can be partitioned 

into two parts, one derived from the lateral bending stiffness and 

the other from the torsional rigidity. 

In this case, however, constants will be attached to the two 

individual flexibilities rather than to the overall flexibility 



f  6 	n111 	f6,1 fb2. • • flo. • f  ni 

f-La .' . f . .f r 

G d f41 

(2.55a) 

(2.55b) 
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where f 6. is given by Equation (2.49) and 	-e/L. 

Substitution of Equations (2.53), (2.54) and (2.55) into 

Equation (2.42) results in the following expression for the displace- 

ments 

r 	= f rb  ri  

P 
b 	

L3 t where r - 
TET b

b  f b  116 r.t  

Pp.,L 
et = 771 	f4 rb  

(2.56) 

(2.56a) 

(2.56b) 

Combining Equations (2.56a) and (2.56b) the eigenvalue problem 

for the straight beam can finally be written as 

2 LI- 
P L b.. 	t 

V 	r b f B bt  f B t - n-T-Tt.T 4- f I b 6 b• I (2.57) 

Designating the lowest eigenvalue of Equation (2.57) by c, 

and using the notation ct  = 6c, the critical load at which a 

straight beam becomes unstable in the lateral direction becomes 

P lr = ct 	/L2 	(2.58) 
C 

Values of cM  can be calculated for different loading conditions 

from Equation (2.57). 
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Stresses due to Initial Eccentricities  

Finally the effect of initial bow, Lti , or twist, Gi , on the 

lateral stability of a beam will be discussed. If initially the 

beam axis is not straight or if the load has some lateral eccentricity 

then torsional moments Me  and consequently bending moments M y = De  Mx  

about the minor axis of the cross-section will be present from the 

very beginning of loading. 	In this case the problem is not one of 

bifurcation but rather one of excessive stresses. Added to the 

stresses Tf  due to bending about the major axis are stresses 5 due 

to bending about the minor axis. The maximum stress on any particular 

cross-section therefore is 

max 

m, 
= 	 o s

V 	1?  ) 	 (2.59) 

	

where S, and S. are section moduli about 	and -9 -axis respectively. 

To find the maximum stress for some initial displacement V o  

due to a given load vector Pw, R , it is therefore necessary to find 

the corresponding rotations e . Let the actual displacements due 
to P,,R be designated by the vector r *. Then at each point the 

total displacement will be Ili /L = 1.1C'/L + u0  /L. Similarly, the 

total rotations will be Oi = tvi  + Goi . 

For the structure as a whole the vector 

/L 	/L 	u. /L 
1 	7- 	

ulvo 	©, ... 
= r + ro 

())14.4 

(2.60) 

will be 
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Analogous to Equation (2.25) by applying the principle of 

virtual work, the actual displacements so* can be expressed in 

terms of the element forces S 

r* 	= b
t 
 f S 
	 (2.61) 

The element forces, in this case, are the result of initial 

displacements as well as subsequent actual displacements 

s 	= 	p,„ [1, B] r*  1 	(2.62) 
Le0  

The additional displacements therefore become 

r* t r 	1 
= h  

rn  
(2.63) 

As previously, Equation (2.56))this can be written in terms 

of the partitioned matrices as 

r P,,„ b6  fb  Bar.:+r.t01 

* rt  = 	bt-t  f t 	i r rb  + rho] 

(2.64) 

(2.65) 

Substituting Equation (2.64) into (2.65) the vector of 

additional rotations due to torsion becomes 

t t 
ri  = P,„ 	b6 f6  Bilrl+r+0 ] + P,„ bi  f i 	rbo  (2.66) 

This equation can be solved for rt by an iterative process, 



••• 
	

1+4 

similar to the one used for the solution of the eigenvalue problem, 

Equation (2.26). Contrary to the eigenvalue problem, however, 

Equation (2.66) does not yield directly a critical value of 

It is necessary to solve Equation (2.66) for a number of values of 

. For a given value of Ps,,, the solution for the vector r: 

then also contains the rotation ei for the particular section i 

for which the stresses are to be calculated. 

The total rotation 	at this point then will be 

(2.67) 

With this value of 0; the maximum stress C;„„„for the section 

i can then be calculated with Equation (2.59). To determine the 

critical load Pcr)  which will produce a critical stress 6 , the 

calculations have to be repeated for a number of values of Pw, until 

equals GIe  . 
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Chapter 3 

Matrices for the Solution of the Lateral  

Stability Problem  

Introduction  

Having established a general procedure for calculating the 

critical loads for the lateral stability of arches and beams, it 

will be necessary to derive the various transformation matrices 

required for these calculations. First the transformations!). 

and b, required for the calculation of the redundant forces in 

the tworimfingalt arch will be considered. This will be followed by 

the derivation of the matrices B and b required for the lateral 

stability of arches loaded in a vertical direction. Matrices 

will also be derived for beams subjected to constant end moments 

or concentrated forces. 

Matrix b. 

The forces chosen as redundancies are the moments at the 

supports A and B and at the crown C. The basic system therefore 

is a three-hinged arch. For a symmetrical arch under symmetrical 

loading the forces for the left half of the arch are shown in Fig. 3.1. 

The vertical and horizontal reactions for a load at a point j are 



V 

WI  

WA WA 

A V
A  

WA = EPizjth 

(a) THREE- HINGED 
ARCH 

WA = - X, /h 
	

WA  = X2  ith 

(b) ZERO ROTATION CO ZERO ROTATION 
AT CROWN (c) 	AT HEEL (A& B) 
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L/2 

FIG. 3.1 - FORCES ON LEFT HALF OF ARCH 
DUE TO SYMMETRICAL LOADING 

FIG. 3.2 - FORCES AT POINT I OF ARCH DUE TO 
VERTICAL LOADS P 
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Vc 	= 0 	We 	= (zi 41) Pi 

V
A 

= P
3 	

W A = He 

For a point i less than j the forces are 

V. 	P • 

W • 	P z• 

	

J 	J 

M;. 	= (zi 	z; yi A) P; 

(3.1) 

(3.2) 

For a point i equal, to or larger than j, Fig. 3.2(a), the forces are 

V.c  = 0 

W i 	= 13' z .  A 

	

J 	i 

ML 	= (1 - yi /h) zi Pi 	(3.3) 

To allow non-dimensional representation of transformation matrices, 

it is convenient to express moments in terms of the overall span L, 

i.e. moments will be given as M /L. 

In matrix form the forces F =1V i  Wi  Mi /Li at a point i 

can therefore be written 

F. = 	t . R 	 (3.4) 

where the external vertical forces P i  , Pa  etc. are represented 

by the vector 

R 	= I Pt  P2.  ...P. ... P yr, j 
	

(3.5) 
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t 
Of. 

• 

and the transformation matrix 

1 	1 	. 	. 	. 	. 

z t 	 • • • 

Zi 	Z• 

t o,:  

. 1 

ci/ 

is given by 

J 

I 	0 	• 	• • 

Z• /11 • • 	• 

1 z • 
• • 7 

mo. 

0 

z1.9 /h 

(1 	h).. (3.6) • • 	• 

L 	L 

Next consider an element i. This element lies between points 

i and (i + 1). The direction cosines of the element axis are nj 

and mL . The forces F L  and Fi,fi  acting on this element at 

either end have to be transformed into forces parallel to the local 

effect of shear on the deformation 

14.2cV11,-1,  
of beams will not be considered at present and the selatewe term$ 

in Si.  ,Equation 2.3, therefore will be suppressed. Furthermore, 

since the axial forces Vii at points i and 1+1 are equal in magnitude, 

only one of these forces 

element forces are then 

= C i  

[

Si 	Fi 

will 

given 

be included in the vector Si.  . 	The 

by 

(3.7) 

where S • f N ma (3.8) 

and C . m •L  n • 	0 0 0 0 

0 	0 	1 0 0 0 

0 0 	0 0 0 1 (3.9) 

Combining Equations 3.4 and 3.7 the forces on the element i 

coordinate axes 7 	• The 
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are therefore 

   

S L. C 	[t e i 

t • 
04+1 

(3.10) 

   

Equation (3.10) can also be written as 

where 

S i 	= bad   R 

I boy 	= 
C c t o,. 

t • 
04.+I ...  

(3.11) 

(3.12) 

This, however, is the required relationship between the 

external forces and the element forces. If the forces Si on all 

elements are combined into a single vector So  =ISI  sz ... Si. sr, I 

the relation between element forces and external loads can then be 

written 

So  = by  R 	 (3.13) 

where bo =lb b b 	b• b Ot 	02. 03 • • • 	04 • " 
(3.14) 

A single transformation matrix b0  for the basic system can 

therefore be established by evaluating Equations (3.6) and (3.9) for 

each element. The individual components of the transformation 

matrix b0, Equation (3.14), are then obtained from Equation (3.10). 

Matrix b, 

The transformation matrix b gives the additional element 

forces due to the redundant moments X = fX ) 	X
2 



	

0 	 0 

	

- L/h 	L/h 

(3.18) 
Y.& h 

1  - L 7 L 
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A consideration of the equilibrium of forces and moments, due to 

the moments X I  and X2  shown in Fig. 3.1 gives the following reactions 

due to X : VA =VV 
= 0 	due to X a : VA  = Vc  =0 

WA = 	 WA = X2 A 

W 	= WA 	
W C = WA 

(3.15) 

For a point i the forces are, Fig. 3.2, 

due to X i  : Vi = 0 	due to X2 	Vi 	0 

= 	1 w • = x A 

= X y Mt = Xa  (1 	y /11) 

(3.16) 

In matrix form the forces F • = V. W. M. Afat point i become 
L L 

(3.17) pi  = t • L  X 

where 

t1;. = 

As for the basic system the forces at point i and (i+1) at 

either end of an element i have to be combined and premultiplied by 
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the appropriate direction cosines to obtain the element forces 

S1, . = Ci {tiz j X 	= biz X 	(3.19) 

tiii.r 

The combined vector S I  = ISu SIZ -. S„... S , n  1 

of all element forces due to X then will be 

S i  = b, X 	 (3.20) 

where b b b ta " b • it. 	• - • b u., (3.21) 

144007.-kic 
Similar to 1)0  the vim' bi  also is dimensionless. 

Matrix 

The transformation matrix b will give the element forces 
vt•IltZat 

ir 	= b St i in the undeformed structure due to externalkforces 

U 	= 	U 	U ... U ... U 	and bi z  = i Mv  iizz  . .. 	1
ZI.
4 . li 

••• 11744 

where U and Mz are unit forces corresponding to displacements u and 

rotations Oz  . The undeformed structure under the action of these 

r- - 
unit forces R = fU Iliz  J 	is shown in Fig. 3.3. The element 

forces consist of bending moments about the 7 -axis of each element, 

Sb 	= { Mir e 	Mr, 	Miz e Mvr " • M in a  m7,1,-  } and torsion 

moments about the 	-axis, Si  = i M r, . .. m _v ... 	m r ni • 	These 

element forces for the undeformed structure are to be given by 

S 	= b R 	 (3.22) 



In* cos a. 
n = cos h  
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al(  -r sLotacc 

FIG. 3.3 - FORCES U AND MOMENTS TZ OF 
UNITY ON SYMMETRICAL ARCH 

Myi 

FIG. 3.4 - MOMENTS ON ELEMENT I 
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Two cases have to be considered. In the first case the 

structure is free to rotate about the y -axis at points A and B. 

In the second case, the supports are restrained from rotation. 

Consider first the simply supported case. At a point i 

the bending moment about the y -axis due to the U -forces is 

114-1 

M
y  • 	

= 	 Z.) 	 II • ) zi 
jz i0 

(3.23) 

The torsional moment at the same point due to the unit 

torsion M 	is 

M • 
L 

114./ 

= 	g ' (3.24) 

If M y  = f M y, 	M 	Myr.oi and " ". Myi... 

MZ = { met 	M 	• zz "' M zc "' 	M 	are vectors containing 

the moments M and M 	then a vector 	= 
Y 	z 	(Hy t4 } can be 

calculated from 

NJ = Sx R 	 (3.25) 

where, the matrix Sx  of size 2(n+1) x 2(n+1) is given by 

o 0 0 0 	
0 	i 

i 
O - za  ,.. 	- zz 	1 

1 	
o(n.1)•0141) — ZS. ..-z3 • • • 	 — Z 

	

. 	I 

— ZL  — ZI ••• Z•4  ••• .-‘ ZL 	1 

Z Z — s ••• i 	 Z 	o 
1+4, 1 

1 ....1 	
:.11  — 	— — 

. . . 	—1 
— — — _ 	 — 

1 
t  0 -1 . . . 	-1 

0 , , eitli•(pi41) 	• 
-i 0 . • • 

i 

S x 

  

(3.26) 
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So far moments have been related to the x-, y- and z-system 

of coordinates. The final step is to select from the force vectors 

pl z 	and 14 y  the forces for each element i and to present these 

forces relative to each local coordinate system 	, 11 and 

Fig. 3.4. For a typical element i the moments M. and M r  are 

therefore 

	

n • 	M • 	m • My  • 

	

4 	 t  

	

m • 	M • 	n • M kt 	• 

	

& 	y L.   (3.27) 

For the whole structure the forces will be 

where 

S = C S ix  

C = c, cal  
C 3  c 

(3.28) 

(3.29) 

      

and nt  
ni  
nz  

nz. 

n„ n„ (3.29a) 

    

      

C 

-m2  
-ml  

• 

-me, 	(3.29b) 



— 55 — 

(3.29c) 

m, 
m 2  

• 

1/1 11.4 

Mn 

0 n 
n2 

(3.29d) 

C 3 

  

  

In view of Equation (3.22) the transformation matrix b for 

the arch able to rotate about the y-axis at points A and B can 

therefore be calculated as 

b = C Sx  (3.30) 

If the arch is built in at points A and B it will not be able 

to rotate about the y-axis at these locations. As far as loading 

due to the unit forces U and MIS  is concerned, the arch is indeter-

minate to the second degree. Because of symmetry, the number of 

redundancies can be reduced to one. To determine the redundant 

reaction the method outlined in Chapter 2 can be used again. Here 

the moment chosen as redundancy will be the moment X 3  about the 

y-axis at point A. The basic system then will be the structure 

already analyzed above resulting in the matrix 60  , Equation (3.30). 

A second matrix, b, , has now to be established, relating the 

moment Y 3 to the element forces S = fS b S t f Since the moment 

M Y • ch.e to X 3 will be constant along the length of the arch, the 
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resulting moments 1.1,? i, 	M fi  r  and Mt. for an element i will be 

S; = f ni  ni mi i X3 	(3.31) 

For the whole structure the element forces due to X 3 will be 

sio  S*1 1 = b ► X 3 
	 (3.32) 

where 
	b r  = n1  ni  n2  n2  ... ni ni 	nn  nn  ms 	mni 

(3.33) 

Equations (3.30) and (3.33) can now be used to evaluate the 

redundant moment X 3 , using Equation (2.16 ). 

X 3  = -4611  f 	f 
	

(3.34) 

where the flexibility matrix f is given by Equation (2.47 ). 

The total forces on each element will be given by 

= b0 R 	6 1  X 3 	(3.35) 

Substituting finally Equation (3.34) into Equation (3.35) 

will result in the required relation between element forces and unit 

forces 

S = b R 	 (3.36) 

where 
. 	-I 

b 	= bo- bbif bj bcf bo 	(3.37) 
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Matrix b for Beams  

(a) 	Beams free to rotate about y-axis at supports. 	For beams 

with a straight axis, all direction cosines n are equal to 

one, and all m are reduced to zero. For a beam free to 

rotate about the y-axis at the supports the transformation matrix b 

therefore will be reduced to 

b = r  Iv) (3.38) 
[O bj 

where b = 	C1  S (3.38a) 

bt = 	CA S (3.38b) 

The submatrices C I  and C:4  , k and li 4  are given by the 

non-zero elements of the matrices C and Sx  , Equations (3.26) and 

(3.29). If the beam is divided into 2n elements of equal length, 

the transformation matrices become 

b b 0 0 0 • . . 0 

0 1 1 • • • 1 

0 1 1 . 	.. 1 

1 0 1 2 . . 2 
2n 

• 
0 1 2 3 , (n-1) 

0 1 2 3 . (n-1) 

0 1 2 3 , . n (3.39a) 
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0 1 1 	. . 1 

0 0 1 	. 	. . 1 

0 • • 1 1 

0 • • 0 1 (3.39h) 

(b) 	Beams restrained from rotation about y-axis at supports. If 

the beam is restrained from rotations about the y-axis at the 

two supports, the forces on the elements due to unit forces 

have to be modified. While the reactions due to unit torsions about 

the z-axis will not be affected by additional restraints at the 

supports, such restraints certainly will result in bending moments 

about the y-axis. Instead of using Equation (3.34) to calculate 

these moments, X 3  can be obtained directly by differentiating once 

the second order differential equation for the deflection of beams, 

Equation (3.40), (43), substituting the appropriate boundary conditions 

and solving for the moments at the supports. 

_ M(y)  
dz4 	EI 7 
	 (3.40) 

For a beam fixed at the supports and loaded by two symmetrically 

placed concentrated forces P • , Fig. 3.5, the moments will be 

for 	i. < j PM • = 	• z • - M A 

for j < i<L/z 	M. = Pi c 
	M A 	(3.41) 

Observing that for a symmetrically loaded beam the slope diA/dz 

at the supports and at the centre have to be equal to zero, the momeni- 
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FIG. 3.5 BEAM FIXED AGAINST ROTATION 
ABOUT Y = AXIS 
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at the supports can be calculated as 

X 3 	= P. c. (1 - c • ") J 	J (3.42) 

In matrix notation the moment X 3  resulting from a number 

of lateral forces U can be written 

X3 /L =  ba  U 
	 (3.43) 

where 	b, 	c, /L (1 - 	... cj  A (1 - 	...] (3.44) 

The moment X s  has to be added to the moments of the simply 

supported beam. 	The row vector b, therefore has to be added to 

each row of the matrix b b  calculated with Equation (3.39a). For 

a beam divided into 2n elements of equal length the new transformation 

matrix b therefore becomes 

0 0 0 0 (2n-1) 2(2n-2).., nr  

0 1 1 	.. 	1 0 (2n-1) 2(2n-2)... nl  
6 

0 1 1.. 1 1 0 

0 1 2.. 2 +(2n)- 2n 
• 
• 

• • 
0 1 2 3..n 0 (2n-1) 2(2n-2) ... ri 

(3.45) 

The transformation matrix b ± remains the same for a beam 

fixed at the ends as that for a simply supported beam, Equation (3.39b). 
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Matrix it 

It is required to find the element forces S = {Sb  

due to vertical forces R = Pmf Pi / Ps, Pi/Pm  ... Pi /Pm  ... 1  

when displacements r =fri, 1.1  I 	take place. The lateral 

displacements r = f u 1  u2  us 	... 	} and rotations 

r 	= 0 1  02 	64,,,,1 are defined relative to the 
•S' 	34, 

global system of coordinates x, y and z, Fig. Niellandelr. The 

vectors S b = M it  /L M i.or 	••.14,2 ,1" M 7 pr  / 11, • • . 1 and 

S t  = {M v 	 m y 	m n  /L } will contain 

the moments about the 7 - and the -axis respectively of each element. 

Before displacements C take place the only forces at a point 

i are the vertical and horizontal components V; and W; of the 

internal forces and the moment M x i , Fig. 3.2. When displacements 

r b  and 	occur additional forces will be required to keep the 

left end of the arch in equilibrium. Before deriving these forces 

consider once more the forces at a point i. 

In the present analysis, where.only vertical forces P are 

being considered, it is convenient to calculate the W forces directly 

and to use the moment M x  , given by Equation (JO). To find the 

horizontal force Wi acting at a point i, the horizontal reaction 

at the left support of the arch, Fig. 3.2, has to be calculated 

first. Equilibrium of moments requires that 

W A 	We  = hL  LZ R - X i  /I, + X2 /L.1 
	

(3.4-6) 
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where 	z /L za  /1, 	zi  /L 	zm iLj 	(3.47) 

is a row vector containing the z-coordinates for the location of 

each of the forces in vector R . The moments X i  and X t here are 

calculated on the basis of the vector It defined in terms of the 

load P,„ . In the absence of any external horizontal loads the 

horizontal thrust at any point i therefore is 

V t 
	WA 
	 (3.48) 

These horizontal forces can be placed into a diagonal matrixiV, 

which can be obtained by multiplying a unit matrix of size (n+1) x (n+1) 

with a constant equal to the horizontal reaction at A. 

IN 
	

WA 
	 (3.49) 

As will be seen later it is convenient to place the moments 

MN't into a diagonal matrix 

141X = Po. 114 wi 	M x2 	• • • 
	

M  xi: *11 ° Mks+i 
	(3.50) 

The moments 14,,, can be selected from the force vector S , Equation (2.9). 

The resulting forces on the left end of the arch, as yet undisplaced, 

are shown in Fig. 3.2 (a) - (c). The vertical force V is not required 

for the calculation of elastic stability and no matrix expression 

for this force is therefore given. 

Having obtained a matrix representation of the forces at each 

point of the undeflected structure, the additional forces resulting 

from lateral displacements e l:.  and rotations rt  can now be 



0 0 

i 

I 	: 

"•i: 	
I # 	1 

I 
• 11, 	 .14 
L Column 	1 duple, 
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considered. Consider first the effect of lateral displacements 

t 	• 

position. 

In Fig. 3.6,00the arch is shown in a slightly deflected 

A vertical force P.3  at a point j will therefore 

produce a torsion moment about the z-axis equal to Pi ui . At a 

point i less than j the resulting torque is 

M z  ; =PS 	(u • - u • ) (3.51) 

The components of Mzz in the 17  - and -directions, Fig. 3.4, are 

7 	
-m P j (ui 	u • ) 

M r = n P• (u. J - u (3.52) 

In a symmetrical structure for a point i greater than j the torsional 

moment about the z-axis due to the symmetrically positioned loads Pi 

is zero. 

The moment M zi, about the z-axis at a point i due to vertical 

loads R can therefore be written 

Mzc = Pw, R 	rb  (3.53) 

where 

S i  

• th 
4 .0 04.1 

(3.54) 
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Correspondingly the torsional moment Mz=f M21  M .  

will be 

M
= 	at s, r  6  

z  

6.. 
M2  n+1 

(3.55) 

where 
	S t 	I 5,4 	SI; 	S , „4., 	(3.56) 

The deflections r b  in Equation (3.54) are changing con-

tinuously along the length of the span. As a result also the 

torsional moments M E  are varying continuously. Instead of 

assigning the torsionAl moment M. at a point (1+1) to the element i, 

it will be more appropriate to use the average torsion from points i 

and (1+1) for the element i. This can be done by premultiplying 
the vectortiE  with a matrix S a  . Placing the average torsion 

14z(i+1) = 0.5(M E  + Ze.+I ) in a vector M. =10 M EL 	z n41 

it is therefore possible to calculate the average torsion for each 

element from 

z =P 	S2  R (3.57) 

where Sa  0.5 0 0 . 	. . .. 0 

1 1 

0 1 1 

• 1 1 

• • 

• 0 

0 • • • 0 1 1 (3.58) 

Next consider the effect of lateral displacements on the 

moments M x  . Let the. displacement of the left end of an element 

of length t be equal to u ii and that of the right end be equal to 
./ 

u.L+I 	Fig. 3.7. The projection r of the element axis on the 
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FIG. 3.6 - LATERAL DISPLACEMENT OF ARCH 

FIG. 3.7 - ELEMENT AXIS IN DISPLACED POSITION 
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horizontal plane x-z will have the same lateral displacements in 

the x-direction, Fig. 3.7. The projected element axis 

therefore will be inclined to the z-direction by an angle approxi- 

mately equal to (ui., 	u • )/ e'  . The length of the projected 

element is e'= n e . As a result a. moment M x  at a point i can 

be resolved into components parallel and perpendicular to the 

projected element axis, Fig. 3.8a. Of these two components the 

torsional moment M z  about the z -axis has to be retained for the 

calculation of the matrix B . 

The moments Me at points i and (1+1) due to lateral 

deflections of an element i, i.e. the components of M xi and M,i+, 

will be 

m 	= m x  z 	Cu I.+ 1 	u • V 

M z = M • x c+1 (U Lid z  )i  (3.59) 

Again only the average torsion if z 4., = 0.3 (M 2  it 	MI  iv. ) 

is required for each element. Equation (3.3fp can therefore be 

condensed into 

M z, = 0.3(M)et: 	Myo:+i)  ) 	— u )/ 	(3.60) 

The average of the moments M x,: can be placed into a diagonal matrix 

M x  = 0.5k(0 01„, + M x11 	(14  NZ 	Mx1)  • " (14  k + Mx n+, ) ). 

For the whole structure the average torsional moments therefore will 

	

be given by the vectortihE0  =10 Mi,2. 	..• M Z,• ••• M 11+1 

which can be calculated from 

Mx 	 (3.61) 
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(a) LATERAL DISPLACEMENT 

01M 

	Ow- 
x 

(b) ROTATION 

FIG. 3.8 - MOMENTS DUE TO LATERAL 
DISPLACEMENTS AND ROTATIONS 
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The (n+1) x (n+1) matrix Ss  defines the differences between the 

lateral deflections of points i and (i+1) and is given by 

Equation (3.62). 

0 0 

—Lit; we; 

0 
• • 	 0 

• -wt.,' wens_ (3.62) 

In addition to the torsional moments M t  and bylateral 

bending moments will also be created as a result of lateral def-

lections and rotations. Considering the horizontal forces W, 

Fig. 3.2 and Fig. 3.6, it will be seen that as a result of lateral 

displacements uz moments My are required to keep the displaced 

structure in equilibrium. 

M v = L  W.  L  (3.63) 

A vector M y = im y , My 	... My 	... My n#1 } can 

therefore be calculated, which will contain the moments due to 

the lateral, displacements. 

14 	= W I r 
A b 

(3.64) 

Finally the effect of rotations 6 on the moments M„ has 
to be considered. At each point i the moment Mxcan be replaced 

by its components My and My' , Fig. 3.8b. Assuming small rotations, 

the bending moments about the x-axis will remain practically 

S3 0 
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unchanged, m I 
	

M X  . The bending moment about the y' axis will 

be OM >, . For the whole structure the components due to rotations 

will be 

M
7 	

= PrAMgri 	 (3.65) 

Neglecting terms involving products of u and +9 , no 

additional forces will arise as a result of displacing and rotating 

a cross-section subjected to forces Wi and Vi and moments Mi . 

The momentsti y  Oily) ,t4z  and Me resulting from the lateral 

displacement and the rotation of the cross-section of the arch at 

every nodal point now have to be translated into element forces 

S =iSb S t 	 . It will be noted that the angle between the 

axes z and zi, as well as that between y and y' is small, Fig. 3.8. 

No appreciable error will therefore be introduced by simply adding 
7 

the vectors M and 	, Equation (3.511) and Equation (3.6111). 

The combined vectors can then be premultiplied by the transformation 

matrix C , Equation (3.29), to give the element forces S . 

	

S S 
 = 1 1,1 	 p 	

, 	 4-M 
66) 

	

L4 i .1 	 wv L C C iiSaRS8 	S3  ; 1 4 

Equation (3.66) defines the required transformation matrix B for 

an arch subjected to vertical loads. The transformation matrix B 

can therefore be written 

= [C t !Caill Kipm  

C C 	Saitt + Mx  53: 0 
(3.67) 
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Matrices  g b  and St  for Beams Subjected to Forces in the  

Major Plane of Bending.  

For a beam the thrust WA  and all direction cosines m are 

zero • The direction cosines in matrices C:1  and C4  will all be 

equal to one. For a straight beam the matrix B therefore reduces to 

B 	= 

 {

0 Bb 	 (3.68) 
B t 0 

where 	Bb  = C1  14 	 (3.69) 

and 	B t  = C.4  [S2  RI' Ss  M„ S3] 	 (3.70) 

For a concentrated force at the centre of a beam divided 

into 2n equal elements the transformation matrices, utilizing symmetry, 

will be 

2j 
 

p2 	07 

[0 

• 

0 	0 	nj 

0 

in-1 	01 

(3.71) 

0 	. 	. 	. 	0 	2 

-1 	2 

-1 	-1 	2 

. 
-1 	-1 	2 

0 	-1 	1 _  (3.72) 

B 6 = 

2n 

r0 01  0 . . . 	0 
i0 

Bt  

 

 

0.25 

0 

   



Bt  -1 1 0 . 	. . 
0 -1 1 

-1 1 

2n 

0 • • 0-1 

0 

0 

1 	 (3.74) 
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0 

+0.25 

-1 1 0 0 
0 -3 3 0 
o 0 -5 5 
• 

0 

0 

o -(2n-1) (2n-1) (3.72) 

Matrices  116  and B for Beams Subjected to Equal End Moments  

Finally for a beam subjected to constant end moments /4, 

the transformation matrices Sh and Si can be obtained from 

Equation (3.69) and Equation (3.70) by considering only the 

diagonal matrices M x  and MX' . For a beam divided into 2n 

elements of equal length the transformation matrices therefore will be 

1, 
•••• 

[1 	0] 

0 	1 

0 	1 

0 I 

•• 

{ 

0 

0 

1 ] 

1 
0 

• 

0 

1 

0 
• 

• 

0 

1  0]0 . . 	 0 10 1 (3.73) 
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Chapter 4  

The Torsional Rigidity of Box Sections  

Introduction 

Beam properties required for the calculation of critical 

loads for lateral stability are the bending stiffness about the 

minor axis of the cross-section, EI7  , and the torsional stiffness 

GJ. Calculation of the bending stiffness, the product of the 

second moment of area, 17, and the modulus of elasticity, E, has 

been discussed by the author in an unpublished paper on the shear 

deflection of composite beams (Appendix D). For composite 

structures it is merely necessary to recall that the bending 

stiffness of the total section is calculated from the individual 

stiffnesses of the various elements which compose the structure. 

For composite plywood structures, usually consisting of lumber 

flanges and plywood webs, the total bending stiffness, Ell? , about 

the 1? -axis of the cross-section is 

(Ei) '7 = E 	11.7  + E 	I 1 	1 	2/ (4.1) 

where 	E 	, E 2 = modulus of elasticity of flange, web 

I iv? 	12.7  = second moment of area of flange, web 

The torsional stiffness GJ is a measure of the torque required 

to produce in a shaft over a distance of unit length, Fig. 4.1, an 

angle of twist D equal to unity (18). 

=G JO 
	 (4.2) 
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The torsional stiffness is the product of the modulus of 

rigidity, G, of the material and the torsion constant, J, of the 

cross-section. It is assumed that cross-sections are free to warp, 

when the torsion Mz  is being applied. This type of torsion is 

often referred to as Saint Venant torsion, after the eighteenth 

century mathematician Saint Venant (42), who first investigated 

torsion in detail and calculated tables of torsion constants for 

solid rectangular sections. 

The torsional rigidity of thin-walled, closed sections can 

be calculated with the following equation (18) 

J 	= 4 At  / ds78) 	(4.3) 

where A is the area enclosed by the middle curve s and t is the 

thickness of the wall, which may be variable, Fig. 4.2. 

For a box section with webs of thickness t and flanges of 

depth d, and dz  , Fig. 4.3, evaluation of the integral in 

Equation (4.3) results in (21) 

t [ (2h _ d i  - da)(bi 	2  
J = 	

[211 - d i  - de. 	(bi  - t) t/d, 	(b, -t) t/d al 

(4.4) 

This equation, in slightly different form, for beams with 

equal flanges, was first proposed by Trayer and March (45). For 

box sections with uniform wall thickness t on all four sides 

Equation (4.4) reduces to 

	

J = 2 t (b 1  - t)(h 	t)2/(b 1  - h - 2t) 	(4.5) 



.0 7k 

Le 

FIG. 4.1 - BAR IN TORSION 

MIDDLE LINE 

FIG. 4.2 - HOLLOW SECTION 

FIG. 4.3 - BOX SECTION 
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Experimental work with thin-walled box-sections by Wilson in 1923 

indicated the validity of this equation, and Wilson (46) therefore 

suggested that the torsion constant of box-sections be calculated 

with Equation (4.5). The later extension of this approach to cross-

sections with deep flanges, however, as expressed by Equation (4.4), 

violates the initial assumptions of uniform shear stresses throughout 

all wall thicknesses and can lead to erroneous results. 

If, for example, a section with a given height h, width bi  

and wall thickness t is considered, then it will be found that, as 

a result of the second power in the numerator in Equation (4.4), an 

increase in d i  and d 2.  will result in a decrease in the magnitude of 

the torsion constant J. This, of course, appears to be unreasonable, 

since an increase in the amount of material in the flanges of a given 

box-section of given overall dimensions presumably will result in an 

increase in its torsional rigidity. Likewise, for t approaching 

b /2 and for (d 	d2) approaching h, the torsion constant implied 

by Equation (4.4) does not approach the corresponding value for a 

solid section. This again appears to be the result of exceeding the 

limitations set by the original assumptions of uniform shear stresses 

throughout the wall thickness. 

The torsion constant J usually is evaluated by solving a second 

order partial differential equation for Prandtl's stress function (18). 

Results of a numerical evaluation of Prandtl's stress function for 

certain box-sections by means of finite differences were presented 

by Byrne (8). However Byrne's results still apply only to relatively 

shallow flange depth and were not suitable for the present investigation. 
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Here a different technique for the calculation of torsion constants 

will be employed. To allow the effect of non-uniform shear stress 

distributions to be taken ini, account, Kelsey* suggested to 

the author a finite element solution for the calculation of the 

torsional rigidity of box-sections. This finite element solution 

is developed fully below. 

Torsion Constant in Terms of Stiffness Matrix K  

To evaluate the torsion constant for a box-section, the finite 

element method using displacements as unknowns, will be used. 

Consider a component divided into a number of elements connected 

at their nodal points. Let the displacements of the n nodal points 

relative to a global system of cartesian coordinates be equal tor , 

where r is a vector containing all displacements re  , r 	, 	r. 

Let R be a vector of forces acting at the ncnodal points corresponding 

to the displacements r. . These forces can then be expressed by the 

corresponding displacements by means of a stiffness matrix 	(2). 

R = K r 	 (4.6) 

In a bar subjected to a torque, shear stresses will be set 

up on sections perpendicular to the axis of the bar. If the torque 

is constant along the length of the bar the stress distribution on 

any section along its length will be the same. For the analysis 

of the torsion problem it is therefore only necessary to consider 

a slice of unit thickness. This slice can be divided into a number 

* S. Kelsey, formerly Imperial College, London, now visiting 
Professor, University of Notre Dame, Notre Dame, Ind., U.S.A. 
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z 	 z 

FIG. 4.4 - SHEAR STRESS ON X Y- AND 2 PLANES 

FIG. 4.5 - FORCE SYSTEM ON FINITE TORSION 
ELEMENT. 

FIG. 4.6 - ALTERNATE FORCE SYSTEM 
FOR TORSION ELEMENT. 
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of elements. The basic element chosen in the present analysis is 

a prism with a length of unity and a rectangular cross-section of 

width a and height b, Fig. 4.5. 

The shear stresses on the face of each element can be 

resolved into stresses in the r  - and 7 -directions. Corresponding 

to these shear stresses 1-  and T on the 	-surface, there will 

also be shear stresses 1
en 

on the ' -surface and 1- ,V on the 
-surface in the K -direction, Fig. 4.4. In the present analysis 

it will be assumed that the shear stresses qtr  and Irip are 

distributed uniformly over the 	-face of individual elements. 

These shear stresses will be replaced in the analysis by the 

effective forces U and V acting at the centre of the 	-surfaces, 

Fig. 4.5. Alternatively, the shear stresses can also be represented 

by effective forces U and V at the corners of each element, Fig. 4.6. 

The other effective forces acting on each element are W-forces 

in the r -direction at each corner and a torque T. about the local 

-axis, Fig. 4.5. 

Corresponding to these forces there will be displacements w 

at each corner in the 	-direction and displacements u and v of the 

centre of each g -face it the f - and 	-directions respectively. 

Since it is assumed that the section will retain its shape, while a 

torsion is being applied, the twist o of each element will be the 
same and has to be equal to the overall twist of the component, i.e. 

0 is a constant. 

Equation (4.6) can now be written in expanded form 
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R 

w 

U 
T 

 

K 11 Kiz K,3  

K21 K K LI. 	VS 

1'31 K 32. K 31  

w 

O 
(4.7) 

     

      

      

where W ,U and T are vectors containing the effective forces 411;, 

U; , V; and Ti respectively acting on the component. 

W = 

	

( VI/ wt w3 	. . . wn  } 	
(4.8) 

LP 

	

U V
I 
U
2
1
2 	

u. v. 

	

L 4. 
... Uo 	(4.9) 

T 	= I T T .00 T • 

	

Tn 	(4.10) 

The vector ME' for each element contains the W-components at the c 

four corners of an element i IN; = /  , . 	W1  W2.  W3  Whim The 

corresponding displacement vectors are 

=lw W• Z 3 	• • w ve 

uzv V 	= 	 2 	U 17-(.  .•., 	V / 

= 

The w-displacements of an element i are Wi  =iww w w4i. 1 	a. 	1 

K.0  etc. are submatrices of the stiffness matrix K 

Since a torque about a longitudinal axis will not result in 

any direct stresses in that direction the effective forcesSNi have 

all to be equal to zero. 

W = Ko W 	+ KlaU 	+ 	9 = o 	(4.14) 



u = Fyi e=m, 
x 

where 	y = f3r1  y2  Y1  • • • 

X 	={X1  X2 	• 00 x; 	• • • 

• • • 

(4.16) 

(4.16a) 

(4.16b) 

8o 

Premultiplying this equation with the inverse of K R, , the 

displacements in the z -direction become 

- K 11  LK 12   u +K i p J 
	

(4.15) 

However the displacements u and v of the centre of the 

element faces at Z. = 0 and Z = 1 are also functions of the 

twist 0 . If the coordinates of the centre of each element are 

x and y, then the displacements due to the twist are u = -ye and 

v = x 	In matrix notation this becomes 

Equation (4.15) can therefore be written 

Kit 	K 13] 0 
	 (4.17) 

With this expression for the displacements w in the 

longitudinal direction the total torsional resistance of the section 

can now be written 

m z  = Mc, U + 	 (4.18) 

where bic 
t 

is the transpose of the matrix M c , U , as defined 

previously, is a column vector of all forces U s: and Vi and Ti is 

the L th component of vector T . 
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Writing the forces in Equation (4.18) in terms of their 

stiffness matrices from Equation (4.7), introducing for the 

w-displacements the vector given in Equation (4.17) and noting, as 

will be shown later, that the submatrices Knand K32  are both 

equal to zero, the torsional resistance of a slice of unit thickness 

can be written 

m z 	hi
t 	

K  21 K  11 (1(1  12 	41(  13) 41(  22 14c  I 

+ f K 31 	11 (I(  12 11G 411(13)  +/It5.3 11()  

(4.19) 

The torsion constant J for any section can therefore be 

evaluated provided the stiffness matrix K can be determined. 

Comparing Equation (4.19) with Equation (4.2) it is evident 

that the matrix expression in Equation (4.19) defines the torsional 

rigidity GJ of the section. 

The Stiffness Matrix K  

Consider again the element chosen for the analysis of the 

torsion problem, Fig. 4.5. Effective forces W are acting at the 

eight corners of the element in the 1" -direction. At the centre 

of the two 	-faces U- and V-forces are being applied and a torque 

T is twisting the element about its 	-axis. The displacements 1 

of an individual element relative to a global system of cartesian 
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coordinates are related to the corresponding forces by a stiffness 

matrix k9 , called the element stiffness matrix (3). 

where 

P = tcs y 

Ps  = 

(4.20) 

.. W8  , U5, U6, V5, V6, T5, T6  } (4.20a) 

w8, u5  . . 	. 	961 	(4.20b) 

 

This force vector Ps  contains all forces acting on the 

element. Since the component investigated is of unit thickness, 

one half of the forces in 9 will be reactions and need not be 

considered in the derivation of the stiffness matrix. The vectors 

P9 and V9 therefore reduce to seven forces and displacements 

respectively and the corresponding stiffness matrix kg  will be 

of size 7 x 7. 

The displacement system lirs  in Equation (4.20) is specified 

relative to a global system of coordinates. Displacements of the 

corners of an individual element can also be specified relative to 

a local system of coordinates. Such displacements then will not 

include any rigid body movements. Corresponding to such local 

displacements V,, a force system P w  can be defined 

PN 	= 	V N 
	 (4.21) 

This stiffness ku  is frequently called the natural stiffness 

of an element (3). It gives the elastic response of the element 

and involves a kinematic idealisation, i.e. a certain shape of the 

deformed element is assumed. In the present case, for example, it 
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is assumed that only shear deformations of planes parallel to the 

x- 	and y -planes take place and that these shear deformations are 

constant throughout one plane. No normal strains in any of the 

three principle directions will be allowed. 

Let the displacement systems V m  and v9  be connected by a 

transformation matrix ari (3) 

V 	= a/41,9 	 (4.22) 

Using these displacements now as virtual displacements and applying 

the principle of virtual work, Equation (2.2) it is seen from 

VN 	= V t 
9 
	 (4.23) 

that the force systems corresponding to displacements v9 
and Vw 

are related by 

Pcj 	aN PN 
	 (4.24) 

In view of Equations (4.20), (4.21) and (4.22), the element 

stiffness k9 can therefore be calculated from 

k 9 k N 	N a  N (4.25) 

The transformation matrix a depends on the natural or 

independent modes of deformation, which will be considered next. 

In the most general case the displacements of each of the eight 

corners of a prismatic body of rectangular cross-section relative 
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to a global system of cartesian coordinates can be described by 

displacement components in three mutually 	pendicular directions, 

i.e. the element has 24 degrees of freedom as far as its displacements 

are concerned. By assuming that no direct strains will take place, 

i.e. no deformations of any of the twelve edges of the prism, the 

number of degrees of freedom is reduced to twelve. The further 

assumption of no shear strain in the two faces parallel to the 

-plane reduce the number of degrees of freedom to ten. Dis-

placements of the corners of the element will therefore only be 

caused by rigid body displacements of the element as a whole and 

by shear deformations of the four sides parallel to the r 	and 

7  -planes. Since there are six independent rigid body movements, 

translations in the ;-, 11- and K -directions and rotations about 

the corresponding axes, the number of independent modes of deformation 

is therefore finally reduced to four. 

As shown by Argyris (3) the force systems corresponding to 

these so-called natural modes of deformation have to be (a) self-

equilibrating and (b) independent in the sense that a force 

system PN; only does work if the corresponding v Ni deformation 

takes place. A force vector P is said to correspond to a 

displacement vector V  if both have the same origin and the same 

direction. 

In the present case it is therefore necessary to define four 

independent modes of deformation of the chosen element, such that 

each of the force systems, causing one of these deformation vectors 

V 	is in equilibrium. To be independent, the force system 
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causing a given mode of deformation should not produce any work, 

while any of the other modes of deformation takes place. 

The four independent modes of deformation are shown in 

Fig. 4.7. They consist of shear deformations constant throughout 

the thickness of the element in the - or the 7  -direction 

respectively, a warping of the 	-surfaces and a rotation of the 

S -surfaces. None of these deformations will produce any normal 

strains, neither are any of the -surfaces subjected to shear 

deformations. The forces shown in Fig. 4.7 for each mode of 

deformation are calculated for v N  displacements of unity and are 

obtained by setting to unity the work done by a force system Pm  . 

Inspection of Fig. 4.7 also will show that the force system shown 

for mode N = 1 will not do any work, while any of the other three 

modes of deformation take place, as was required. Likewise all 

other force systems will only do work, if their own mode of deformation 

takes place. 

In terms of the displacement vector Ir N  , the displacements u, 

v and w in the f ,, and r -directions are 

(4.26) 

Partial differentiation of the deformations with respect 

to 17 and ; for shear strains E 
	

in the f -plane and with 
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FIG. 4.7 MODES OF DEFORMATION - TORSION ELEMENT 
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respect to and Tr for shear strains E Tf in the y -plane results in 

[E,n .-. [ 1  

E rf 	
0 

   

0 	f /ab 

1 Vitb - ✓ N2 

✓ N3  

✓ Nk 

(4.27) 

    

    

This can be written in condensed form as 

E = n 
	 (4.28) 

where E , 1% and v w  are matrices corresponding to the expressions 

given in Equation (4.27). 

To find the natural stiffness k n  the principle of virtual 

work will be applied, i.e. the work done by the shear stresses is 

to be equivalent to the work done by the effective forces. 

v t  P u 

or 	k
I1/41 

= 	nt kG n chi 
V 

Etr  dV (4.29) 

(4.30) 

where for an orthotrpoic material with moduli of rigidity Can  

and 	
rf 

6 the unit stiffness kG  is given by  

with 

G tr 	0 

[0 

10 = G 
0 (4.30a) 

(4.30b) 



1 

0 
k N = G7r a b 

0 

0 

0 0 

A 0 0 

0 c1 c2 

0 
C2 C3- (4.31) 
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Substitution of the expression ford in Equation (4.30) and 

integration results in the following matrix expression for the 

natural stiffness k m  of the element 

where c1  
= (1 -I- 13 b2/a2)/ (12 b2) (4.31a) 

02 = (1 -/lb2/ a2) a / (12 b) (4.31b) 

C3  = (1 415132/ a2) a2/ 12  (4.310) 

Before calculating the element stiffness N:9  the trans-

formation matrix au  has to be determined. According to 
Equation (4.24) this transformation matrix can be found by 

expressing the elastic forces on the element, corresponding to 

the displacements within the global system of coordinates, in terms 

of the forces corresponding to the displacements relative to the 

local system of coordinates. Inspection of the forces shown in 

Fig. 4.7 gives 

W2 

W3 

W4 

U5 

T5. 

immediately 

	

1/2b 	-1/2a 

	

1/2b 	1/2a 

	

-1/2b 	-1/2z 

	

-1/2b 	1/2a 

0 	1 

1 	0 

0 	0 

-1 

+1 

+1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

PN1 

PN2 

N3 

P'144 

(4.32) 
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Transposition of this matrix gives the matrix a m  . 
Evaluation of Equation (4.25) is now possible and the element 

stiffness I:
9 

becomes 

12 	13 kii 

1(9 	G -n 	k 21 	k 
22 	0 

	

31 	o 33, (4.33) 

where the submatrices k u  etc. are given by the following expressions 

where 

a, 	;X 	0( 

	

2. 	3 	c(  4 

c(
a 	0(I 

	c(
4 	0(3 

to( 	0 y 0( 	«z3 	 ; 

	

0C
3 
	0( 	o( 

= 2 ( 	fi b z/cI 2 ) 

• z= 	( — 2/3 b z/ a ) 

— (2 — /3 b2/q 2 ) 

(X 	( 1  +. /3 ba/ c1 2 ) 

_ C4 

66 n
" 6 b 

(4.34) 

      

ki2, 
d = 

2. 
n  I 

(4.35) 

      

      

where 0( 5. 	/a 
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k 13 	02//z 
	

6 a6  0(6 - 0(4 	= n /3 a
2
/ la (4.36) 

c( 6  = 1 -f3(b/a)2  

k21 =iC la 	2. 
	— 0C5 	0(s 	0( 5 a 	= n212 (4.37) 

a b k 22 

k 	= k
t 

k 33 =(C1 3 b//2 

0 

//2  

n 3/ O
a
/ 

)( 

0 

[ 	'14 	ot6  

12  

+ /3  bal a z  ) 
31 

0(63 

(4.38) 

(4.39) 

(4.40) /2. 

Finally the matrices k9  of all the individual elements have 

to be assembled to give the required stiffness matrix K for the 

component. Formally this can be effected by introducing a boolean 

matrix which selects the elements of any particular displacement 

vector Vg from the vector r . 

V9 	9 - 8 t 	 (4.41) 

By applying the principle of virtual work the stiffness matrix then 

becomes 

K t =2 a9 kg al (4.42) 

For the torsional constant the assembly operation was simply written 

directly into the computer programme. 

In the present analysis the submatrices N:11  etc. are required 

individually to allow the calculation of the torsion constant J, 
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Equation (4.19), and the computer program was therefore written 

to make these submatrices available when required. 

Torsion Constant J for Box Sections  

Consider again the torsional rigidity as expressed by 

Equation (4.19). The individual submatrices are now available. 

Combining Equation (4.19) with Equation (4.2) the torsion constant 

can be written 

J = 
-1 

K  11 (1412tic +K  13) +K  2214  cJ 
-1 

K 11 (K12 14  c+K  13) +K  33 (4.43) 

Substituting the expressions found for the submatrices and 

expressing the dimensions of the element as well as the coordinates 

of the element locations in terms of the overall dimensions of the 

section, b 1  and h, the torsion constant finally becomes 

where k i  

3 
J = k i  bi  h 

4 (a/111)(b/b1) 
	 ( Ti  

h/b1  
T
3 

T
4) 

(4.44) 

(4.45) 

and 	T1  =-0.25 (a/b1)  

T
2 

=--1.5 tiC  K 21  

= M K td T
3 	c  27. c 

T 	K 33 (crib, ) 
tZ 

( 
KjEdKI2. 14c  + K ol  

f
K 	K 

la 	C 	13  fib, 

(4.45a) 

(4.45b) 

(4.45c) 

(4.45d) 
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In Equation (4.45) K v  etc. are the assembled submatrices of the 

stiffness matrix K in their dimensionless form without their 

coefficients, e.g. K u  = 2 35  nu ag  

The inversion of K1, 	, shown in Equation (4.45), need not 

be formally executed. Since*,  is a vector, the content of the 

square bracket in Equation (4.17) and the corresponding expressions 

in Equations (4.43) and (4.45) also have to be vectors. It is 

therefore possible to solve for* directly by using any convenient 

method for the solution of simultaneous linear equations. In the 

present work a Gauss-Jordan solution (15) modified for banded 

matrices has been used. 

The above expression for the torsion constant assumes that 

all elements are of the same size and that each element has the 

same two moduli of rigidity G.Ic  and G,si . A slight modification 

of the matrices n ii for the individual elements makes it possible, 

however, to vary the size of the elements as well as the elastic 

properties in various parts of the component. This has been done 

in the computer program developed for the calculation of torsion 

constants for box beams and several of the results obtained with 

this program will be discussed in Chapter 5. 

Shear Stress Distribution due to Torsion  

The average shear stresses 1z  and 1Y z  for each element can 

be calculated from Equation (4.7). In view of Equations (4.15) and 
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(4.16) all forces U and V are given by 

U 	= -K21 KII LKazu 	K 22 ti 

r  
= 	K21KI, LiCaMc  + Ki3] + Kaz  M)06 (4.46) 

Expressing 0 in terms of the applied torsion T, 

Equation (4.2), the forces Ili and V i become 

LU 	= (- 1( 2.1 K il L ICilveC + K22 
Mc  )71-/J 

2a C 

(4.47) 

The average shear stresses for an element i, having a cross-

sectional area of a % b, due to a torsional moment T are therefore 

17 	= Ui /(ab) 	 (4.48) 

"Ft?  = Vi /(ab) 	 (4.49) 

where Ui = kve, T/J and Vi = kzy,: T/J are the forces on 

the faces of the element i in the x - and y -direction. The 

coefficients kve, and kzyt• are obtained from Equation (4.47). 

Substituting the expression for J, Equation (4.44), into Equation (4.47) 

the shear stresses finally can be written in terms of the applied 

torsion T as 

1, 	= k Z 	. 1-  

Kt  1211 	" bra  h 

where the coefficient kat: = kzi /k, depends on the direction of 

the shear stress and the location of the element. 

(4.50) 
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Chapter 5  

Theoretical Results  

Introduction  

Coefficients for the lateral stability of beams and arches 

were calculated using the method outlined in Chapter 2. These, 

as well as torsion factors for box beams, calculated by the method 

developed in Chapter 4 will be discussed in this Chapter. 

The equations developed in the preceeding Chapters were 

programmed in the Fortran IV language. The calculations were 

done on an IBM-7094 computer at the Computing Centre of the 

Imperial College of Science and Technology, University of London. 

For the solution of simultaneous equations, Gauss's method of 

successive elimination of unknowns (15) was used. This method 

was modified to the extent, that only the banded part of the 

coefficient matrix was used in the calculations. 

A description of the various computer programs developed 

in connection with the work outlined here falls outside the scope 

of this thesis and only the results of the calculations will be given. 

The Lateral Stability of Beams  

Coefficients for the lateral stability of a number of 
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straight beams were calculated. With these coefficients the 

critical load for lateral stability can be calculated directly 

with Equation (2.58), reproduced below 

cr 
	C1  1EIy  GJ /L 2 
	

(5.1) 

where C1 	lateral stability coefficient 

span length 

E 	= modulus of elasticity 

G 	= modulus of rigidity 

I 	= second moment of area about minor axis 
Y 

J = torsion constant 

It will be recalled that Equations(3.39a) and (3.39b) in Chapter 3 

apply to all beams which are free to rotate at the supports about 

the minor axis of their cross-section, regardless of the type of 

loading applied to the beams. The coefficients discussed below 

were therefore calculated on the basis of these equations. All 

loading conditions discussed below are symmetrical and it was 

sufficient therefore to consider only half the span of the beam. 

Likewise the number of elements referred to will be the number of 

elements in one half of the span. 

The element force matrix for a simply supported beam subjected 

to equal end moments is given by Equations(3.72) and (3.73). For 

three elements the resulting lateral stability coefficient is 

C1  = 3.178, about one per cent larger than the lateral stability 

coefficient of 3.1416 by Timoshenko (43). Equation (5.1) in this 

case gives the critical mome
nt,Mcr'  in terms of the span L, since 
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here P cr 	M cr/L.  If the number of elements is increased to 

fifteen, the lateral stability coefficient reduces to C1  = 3.143 

or 0.04 per cent larger than that of Timoshenko. The error here 

is calculated from 

error (per cent) = (5.2) 

where 1 
 is the lateral stability coefficient obtained by the 

classical methods of the theory of elasticity. In Fig. 5.1 the 

change in the error of the lateral stability coefficient is plotted 

as a function of the number of elements. It is apparent that an 

increase in the number of elements produces a very rapid convergence 

to the usually accepted value. 

For a simply supported beam with a concentrated force at 

the centre, the convergence to the value of 16.94, first calculated 

by Prandtl (35), is equally rapid as the number of elements increases, 

Fig. 5.1. Here three elements give a coefficient C1  = 16.771, which 

increases to 16.932 for fifteen elements. It is interesting that 

for the case of equal end moments the finite element theory should 

give an upper bound solution, while for a concentrated force a 

lower bound solution is being produced. While it is apparent that 

the estimate of the lateral stability coefficient must depend on 

the various matrices appearing in Equation (2.57), it is not clear 

why a change in the loading condition should cause a change in the 

direction from which the true solution is approached. Since the 

solution for each loading case. converges quite rapidly, however, 

to the known value, the method appears to be acceptable. 
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FIG. 5.1 	ERROR IN BUCKLING COEFFICIENT AS FUNCTION 

OF NUMBER OF ELEMENTS, N. 
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The Lateral Stability of Parabolic Arches  

In Chapter 2 it was shown that the critical load for the 

lateral stability of arches can be written as 

Pcr = C2 EIy/L
2 	(5.3) 

where 	C
2 = lateral stability coefficient for arches 

In Chapter 3 the matrices required for the calculation of 

the coefficient C2 have been develbped for two-hinged arches as 

well as for fixed arches. At present calculations have been done 

only for two-hinged parabolic arches of constant cross-section 

loaded at the crown by a single concentrated force. Some of the 

results obtained so far are given in Appendix A. A summary of 

these results is given in Table 5.1 below. 

Table 5.1  

Lateral Stability Coefficients C2  for 

Symmetrical Two-Hinged Arches  

Concentrated Force P at Crown  

h/L Coefficients 

E I Y / G J 

C2 

0.715 4.o 6.0 
0.1 2.0 1.7 1.6 

0.2 4.o 2.5 2.0 

0.3 5.7 2.7 2.0 

0.4 7.0 2.7 2.0 

0.5 7.7 
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Table 5.1 shows stability coefficients for several ratios 

of lateral bending stiffness to torsional rigidity, EI /W. For 

isotropic material, the ratio of modulus of elasticity to modulus 

of rigidity is E/G = 2.58. For timber this ratio varies considerably. 

Values ranging from 13.5 for Douglas fir to 27 for birch have been 

reported (1). The ratio of the second moment of area to the torsion 

constant for a narrow rectangular section is approximately I J = 0.278. 

The resulting ratios of lateral bending stiffness to torsional rigidity 

are, for isotropic materials, 0.715 and for timber 3.75 to 7.5. The 

coefficients given in Table 5.1 are therefore representative of iso-

tropic materials as well as of orthotropic materials such as wood. 

Table 5.1 shows that a decrease in the magnitude of the tor-

sional rigidity relative to the lateral bending stiffness will result 

in a decrease in the critical load for lateral stability. Increasing 

the rise, h, of an arch relative to its span, L, will increase the 

lateral stability coefficient only for small ratios of Ely/W. As 

the relative magnitude of the torsional rigidity decreases, the 

increase in the stability coefficients due to an increase in the 

rise h becomes less and less, until finally, for EIy/GJ = 6.0, the 

increase in h will actually result in a small decrease in the magnitude 

of the stability coefficients for h/L = 0.4 (Appendix A). 

The coefficients in Table 5.1 may also be compared with 

corresponding values for a straight beam. A comparison of Equations 

(5.1) and (5.3) will show that for a straight beam the critical load 

can be calculated with Equation (5.3), if we set 

C
2 	= C1 V  fG,T/tI y 	 (5.4) 
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For a straight beam of narrow rectangular section loaded at midspan 

the lateral stability coefficient C2  therefore becomes C2  = 20.1, 

for a timber beam of similar dimensions but with EIy/GJ = 4.0, the 

stability coefficient will only be C2  = 8.47. These values are 

considerably larger than the stability coefficients for a shallow 

arch with a rise to span ratio of, say, 0.1. While this appears 

to throw some doubt on the validity of the coefficients shown in 

Table 5.1, it should be borne in mind that a shallow arch is sub-

jected to a considerable thrust, which will contribute to the 

potential instability of the arch. Comparing on the other hand, 

the critical thrust W cr 
 for a shallow arch of isotropic material, 

Wcr = 2.4 x 2.0 = 4.8 EI /L2 for h/L = 0.1, with the critical load 

of a straight column hinged at both ends, it is found that the 

critical thrust for the arch is somewhat less than half of the 

critical Euler load of 1-2EI 
	

for the column. In view of the 

additional torsion produced by the force at the crown of the arch, 

if small lateral deflections were to take place, it is not unreason-

able, that the critical load for the arch should be less than that 

for the straight column. 

To provide an unequivocal answer to the question of the 

validity of the coefficients in Table 5.1, it will be necessary 

therefore to conduct a series of tests on the lateral stability 

of arches, similar to the ones conducted with beams and described in 

the next Chapter. 
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Torsion Constants for Solid Rectangular Sections  

Using the method outlined in Chapter 4, torsion constants 

were calculated for various cross-sections. To test the accuracy 

of the method, calculations were done for solid rectangular sections 

with a height-to-width ratio h/b1  = 2.0 for various numbers of 

elements1\Lth eight square elements for one-quarter of the section, 

the torsion factor F equals 0.2339, decreasing to 0.2296 for fifty 

elements. The error in the calculated torsion constant as a per-

centage of the corresponding value given by Goodier (18) is shown 

in Fig. 5.2. It is apparent that an increase in the number of 

elements results in a rapid convergence to the usually accepted 

value of the torsion constant for isotropic materials. Table 5.2 

gives a comparison of the torsion constants for rectangular sections 

calculated by the finite element theory with those obtained by means 

of a series solution (18). 

Table 5.2  

Torsion Factor F for Solid Rectangular Sections  

Height-to-Width Ratio, h/b1  

Method of Calculation 1.0 1.2 2.0 4.o 10.0 

Series solution 0.141 0.166 0.229 0.281 0.312 
Finite element solution 0.142 0.167 0.230 0.283 0.318 

The torsion constants J in Table 5.2 are given in terms of 

the quantity bh 
1 

(5.5) 
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i.e. the tabulated quantity is the torsion factor F, which is 

given for various height, h, to width, bl, ratios. As is evident 

from Table 5.2 the torsion constant obtained by means of the dis- 

placement method slightly overestimates the stiffness of the section 

and therefore represents an upper bound solution for the torsion constant. 

A further test of the accuracy of the solution can be obtained 

by considering the torsional rigidity of orthotropic sections. A 

detailed study of the torsional rigidity of such sections has been 
Tran 

published by Ta/Vvr and March (45). These authors consider solid 

cross-sections in which the axes of the orthotropic system are oriented 

at an arbitrary angle to the axes of symmetry of the cross-section. 

If these two axes coincide the expression for the torsion constant 

of a rectangular section reduces to 

J 	= 	Jo \! o 	zx/6  yz 
	(5.5) 

where 
	

Jo = torsion constant for corresponding section of 

isotropic material 

zx 
	(GYz ) = modulus of rigidity for angular deformation 

of zx-plane (yz-plane) 

Torsion factors for a solid square section calculated with 

Equation (5.5) and corresponding values obtained by means of the 

finite element theory are given in Table 5.3. 

The largest difference in Table 5.3 between torsion constants 

obtained by the two different methods is about 2 per cent. This 

difference could be reduced further by increasing the number of 

elements used for the finite element solution. 
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Table 5.3  

Torsion Factors F for Square Section  

of Orthotropic Material  

Gzx/Gyz Equation 5.5 Finite Element 
Solution, N = 25 

0.6 0.1089 0.1067 

0.8 0.1258 0.1261 

1.0 0.1406 0.1418 

1.2 0.1540 0.1548 

Torsion Constants for Box Sections  

(a) 	Flange and web constructed from same material  

Isotropic Case: 	Torsion factors F for a number of box- 

and I-sections were calculated. All cross-sections considered 

here are double-symmetrical, i.e. the flange depth d at the top and 

the bottom of the section are the same. Likewise the web thickness 

t on either side of the section is also the same. The results of 

these calculations are given in Appendix B. The torsion factor F 

is given for a number of height-to-width ratios, flange depth-to-

width ratios and web thickness-to-width ratios. For isotropic 

materials the torsion factor F for a web thickness-to-width ratio 

of t/b1  = 0.05 is plotted in Fig. 5.4. Curves for a number of 

depth-to-width ratios of d/b1 are shown. Where the depth of the 

flange reaches one half the height, d/b1  = 0.5 h/b1, the torsion 

factor for a box-section approaches that of a solid section of 

corresponding dimensions. For thin flanges, d/b1  =0.20 the torsion 

factors calculated with Equation (4.4) are nearly identical to those 
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calculated by means of the finite element theory. For large 

values of d/b 1, however, for example d/b1  = 2.0, the approximate 

equation gives quite erroneous results. Fig. 5.3 gives the 

torsion factors for box-sections of isotropic materials having a 

web thickness-to-width ratio of t/b1  = 0.1. Torsion factors 

for web thickness-to-width ratios of 0.01 and 0.15 will be found 

in Tables B-1 and B-4 in Appendix B. 

Orthotropic Case: The treatment of orthotropic material is 

restricted to the case where the elastic axes of the material 

coincide with the axes of symmetry of the cross-section. In that 

case the orthotropic material, as far as torsion is concerned, is 

characterized by the presence of two different moduli of rigidity, 

one for the zx-plane and one for the yz-plane. Tables B-5 and B-6 

give torsion factors for various ratios of G zx  
__/G

yz  for sections with 

t/b1  = 0.1 and d/b1  = 0.5 and 2.0. In all cases the material in 

the flanges and the webs is the same. The torsion factors for 

d/b1  = 0.5 have been plotted in Fig. 5.5. It is apparent that 

the effect on torsion of differences between G and G is most zx 	yz 

pronounced for shallow sections, e.g. h/b1  = 1.0. For deep sections, 

h/b1  = 10.0, an increase in the ratio G zx /Gyz results only in a rela-

tively small change in the torsion factor. 

(b) 	Different Values of G in ifeb and Flange  

Isotropic Case: 	In timber construction it frequently happens 

that the material used for the webs of a box-beam is not the 

same as that used for the flanges. As a result the modulus of 

rigidity for the flanges may not be the sane as that for the web. 
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A 
ISOTROPIC MATERIAL 

2 	4 	6 	8 	10 	h/b1  

FIG. 5.3 TORSION CONSTANTS FOR BOX SECTIONS, t/bi  z' 0.10 
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2 	4 	6 	8 	10 	h/61  

FIG. 5.4 TORSION CONSTANTS FOR BOX SECTIONS, Uhl: 0.05 
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FIG. 5.5 TORSION CONSTANTS FOR BOX SECTIONS. 

ORTHOTROPIC MATERIAL. 
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As an example of the effect of such differences in the modulus of 

rigidity in web and flange torsion factors for box-beams with 

flange depth-to-width ratios of d/b1  = 0.5 and d/b1  = 2.0 and a 

web thickness-to- width ratio of t/b1 
= 0.1 were calculated for 

isotropic materials. The results are shown in Tables B-7 and B-8 

and are plotted in Fig. 5.6. It appears from Fig. 5.6 that the 

variation of the torsion factor due to changes in the Gweb
/Gflange 

ratio is practically linear. The question arises therefore, if 

it would be possible to calculate torsion factors for this type of 

cross-section from a relation 

J = J +b (RG - 1.0) 
	 (5.6) 

where R
G 
 = G

web/
G
flange 

J = torsion constant for RG  = 1.0 
o 

 

b = slope of straight line for given values of h/b1  

d/b1  and t/b1  

If it could be established that such a linear correlation 

between the torsion factor and the G-ratio exists, the calculation 

of torsion factors for box-sections with different moduli of rigidity 

for their web and flanges would be much simplified. At the present, 

not sufficient calculations have been done to confirm the trend which 

suggests itself in Fig. 5.6. A complete verification of Equation (5.6) 

will require a series of tests for a number of RG  values and was outside 

the scope of the present investigation. 
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Different Values of G in Web and Flange  

OrthotroRic Case: Finally, it will be realized, it is 

also. possible to have sections of orthotropic, materials 

with moduli of rigidity for the flanges different from those for 

the web. Srkch a combination again will affect the torsion factor. 

As an example Table B-9 gives torsion factors for box-sections with 

t/b1  = 0.1 and d/b1  = 0.5. The three ratios of the two moduli of 

rigidity for the flanges are G__aw/Gyz = 0.8, 1.0 and 1.2. For the 

web the same three ratios were considered* Calculations for the 

resulting nine combinations were then repeated for moduli of rigidity 

Gyz in the webs equal to 0.8, 1.0 and 1.2 times the modulus of rigi-

dity Gyz  in the flanges. 

A perusal of Table B-9 will show that the linear relation of 

torsion factors for variations in the ratio Gyz  for flange and web, 

already observed for isotropic materials, also appears to exist for 

orthotropic materials. For any given value of Gmc/Gyz  and Gwzx/Gwyz, 

changes in the Gwyz /Gyz ratio seem to result in a corresponding 

linear change in F. The approach proposed for isotropic materials 

may therefore also be applicable here. 

For the example given, changes in the moduli of rigidity 

ratio of the web, G wzx  /6 wyz, do not affect the torsion factor F. 

No doubt, this reflects the observation that in a thin web shear 

stresses in the direction of the web are many times larger than 

those oriented across the width of the web, a point to be discussed 

in greater detail in Chapter 6. 
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Gweb G  flange 

FIG. 5. 6 TORSION CONSTANTS FOR 

BOX 	SECTIONS, t/bi = 0.1 



A variation of the G-ratio for the flanges affects shallow 

the case 

On the 

the effect 

sections more than deep sections. This appears to be 

for all three ratios G /G
Yz 

 considered in 

other hand, for given values of Gzx/G and yz 

Table B-9. 

Gwzx/Gwyz, 

of changes in the ratio of G for web and flanges is always larger 

for deep sections than for shallow ones. 

Finally the data in Table B-9 suggest that on the whole 

differences between the material in the web and the flange will 

have a greater effect on. the torsion factor than orthotropicity, 

as measured by the G __/0 ratio. For example a twenty per cent zx yz 

change in the G A ratio for flanges and web both with G wyz yz 	 yz = 0.8 

for a height-to-width ratio of 2.0 will change F by about fifteen 

per cent. But keeping Gwyz /byz constant at 0.8 and changing the 

ratio of G
Z4 yz  for both web and flange from 0.8 to 1.0 will 

change F only by five per cent. 

Torsion Constants for I-Sections  

The methods developed in Chapter 4 can also be used for the 

calculation of torsion constants of I-sections. For I-sections 

of isotropic materials, with a web thickness-to-width ratio of 0.1, 

torsion factors F are given in Table B-11. These results are 

plotted in Fig. 5.7. Here an increase in the flange depth to 

one-half the beam height will not result in the same torsion 

constant as that for a solid rectangular section with the same 

overall dimensions. In an I-beam with d = h/2 the top and bottom 
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flange are able to move relative to each other along the middle 

surface of the beam, except, of course, where the two flanges are 

joined together by the web. As a result the torsional rigidity 

of such a section will only be equal to the sum of the torsional 

rigidities of the top and the bottom flange. The corresponding 

torsion factor is equal to the F-value for an h/b1  ratio of only 

one-half of that for the corresponding solid section. The 

resulting curve is shown in Fig. 5.7 as -sum of two half sections'. 

The torsional rigidities for the cross-sections of Fig. 5.7 

can also be obtained by simply adding the individual torsional 

rigidities of flanges and web. This approach is usually chosen 

in the calculation of the torsional rigidity of steel I-sections 

(43). If this approach is used, care should be taken, however, 

to ensure that the actual torsional rigidity of the flange is 

being used. For steel I-sections, which usually consist of 

relatively thin webs and flanges, it is sufficient to estimate 

the torsional rigidity of the individual components from 

J = wt3 /3 
	 (5.7) 

where 	w = width of flange or height of web 

t = thickness of flange or web 

For timber elements on the other hand, where for the flange 

the ratio of w/t is not large, the torsion factor cannot be approxi-

mated by the value one-third. For timber I-sections, therefore, the 

actual values of F corresponding to the dimensions of the solid 

flanges and the web should be used for the calculation of the individual 

torsional rigidities, which can then be added to give the torsional 

rigidity of the I-section. 
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Chapter 6  

Experimental Results  

Introduction  

Results from two groups of tests will be given in this 

Chapter. The first group of experiments dealt with the lateral 

stability of plywood box beams loaded at midspan. Four dif-

ferent cross-sections were investigated. Each of these four 

beam types was represented by three beams and the tests were 

repeated for three different spans. Beams were loaded in the 

principal plane of bending as well as eccentrically. The effect 

of initial rotations of the beam ends, which were held in a fixed 

position, was also investigated. 

The second group of experiments concerned the distribution 

of shear strains in the flanges of a box beam subjected to torsion. 

Only one beam was investigated. But the results agreed so well 

with the theoretical analysis that no further tests were deemed 

necessary. 

Lateral Stability of Box Beams  

Box Beams for the Investigation of Lateral Stability. 

Four different types of beams were constructed. These 

four beam types, their cross-sections are shown in Fig. 6.1, 



Fig. 6.1 	Beam Cross Sections 
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will be referred to as beam types 20, 21, 22 and 23. The 

dimensions of these cross-sections are shown in Table 6.1. 

These cross-sections were chosen to give a range of height-to-

width ratios of 9, 6 and 4.5, as well as flange-depth-to-width 

ratios of 1.0 and 2.0. The thickness of the plywood web was 

kept constant for all four beam types. The beams therefore 

are representative of web-thickness-to-width ratios of approxi-

mately 0.3, beam type 20, and 0.15, beam types 21, 22 and 23. 

The actual sizes of these cross-sections were determined by 

the equipment available for loading the beams. Of each beam 

type three specimens were built and tested. 

The initial length of each beam was twelve feet. After 

completing all tests for a span of eleven feet, beams were reduced 

in length by 33 inch. and tested again on a 99.5 inch. span. 

Finally beams were reduced by another 33 inch. It was found, 

however, that for the corresponding span of 67.25 inch. lateral 

instability could only be enforced for beams of type 20. 

Physical Properties of Flanges and Webs. The beams were 

built from material of unidentified origin, that had been 

stored in the carpenter's shop at Imperial College for 

some years. The flanges of the beams consisted of solid lumber, 

uhile for the webs birch plywood (Betula verrucosa) was used. 

Before assembling the composite sections, the flanges were cut 

to size and planed. Webs and flanges were then glued together 

with a resin-type adhesive (Cascamite Resin Glue) and clamped 

until the glue had set and hardened. 
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Table 6.1  

Beam Type 

Dimensions of Cross Sections  

Test Beams  

Height 	Width 
h, in. 	b, in. 

Flange 	Web 
Depth 	Thickness 
d, in. 	t, in. 

20 4.5 0.56 1.00 0.156 

21 4.5 1.07 0.99 0.156 

22 6.o 1.06 0.99 0.156 

23 6.o 1.06 2.00 0.156 

The material for the flanges was straight-grained and free 

from visible defects. The material was superficially identified 

as Douglas fir. A more detailed inspection, after testing of 

the beams had been completed, confirmed that the flanges, indeed, 

were Douglas fir (Pseudotsuga menziesii). Some of the material, 

however, had an exceptionally low specific gravity, and as a 

consequence, an unusually low modulus of elasticity, Table 6.2. 

Growth rates ranged from a low of 8 rings per inch to a high 

of 36 rings per incht 	These, however, did not appear 

to be correlated to the specific gravity or the elastic properties. 

After testing had been completed three samples, approximately 

1 inch x 4  inch x 14 inch., were cut from each of the two flanges 

of every beam. These samples were used to determine the modulus 

of elasticity, the specific gravity and the moisture content of 

the flanges. A detailed analysis of these three sets of data 

is given in Appendix C. 
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To determine the modulus of elasticity of the flanges 

the six 14 inch long samples taken from each beam were tested 

in bending. These minor specimens were supported on a 11 inch 

span and loaded at the centre by a concentrated force. Load 

was increased at a uniform rate up to a maximum load of 100 kg 

in about two minutes. Deflections at midspan, relative to the 

frame supporting the specimens, were measured with a dial-micro-

meter graduated into 0.0001 inch. The load-deflection curve 

for each bending test was a straight line. The slope of these 

load-deflection curves was used to calculate the modulus of 

elasticity of each minor specimen. A statistical evaluation 

of the test data is given in Appendix C, Table C-2. Each average 

modulus of elasticity given in Table C-2 is the average for six 

sample beams taken from the flanges of every beam. With one 

exception, beam 21-3, all moduli of elasticity are smaller than 

the average value of 1 970 000 psi reported for air-dry Douglas 

fir by Kennedy (24). About half the E-values in Table C-2 

are within a range of one standard deviation, 414 000 psi, from 

the average, using the coefficient of variation (CV = 21.4 %) 

given by Kennedy. Of the remaining six averages two, beams 

20-3 and 21-2, fall slightly outside the range given by twice 

the standard deviation. Low values of E, such as those for 

beams 20-3 and 21-2 are unusual, but still within the range of 

possible moduli of elasticity for Douglas fir. 
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Table 6.2  

Moduli of Elasticity of Flanges and Beams  

Specific Gravity of Flanges  

Box Beams 
	F lemges 

Beam 
Type 

Beam 
No 

Apparent 
Modulus of 6  

Elasticity, EA40 psi 

Average 
Modulus of 

Elasticity, E, 

Specific 
6 	Gravity 

10 psi 

20 -1 1.19 1.68 0.52 

-2 1.31 1.59 0.53 

-3 1.09 1.10 0.43 

21 -1 0.99 1.28 0.44 

-2 0.99 1.11 0.43 

-3 1.20 1.94 0.60 

22 -1 1.21 1.59 0.51 

-2 1.20 1.34 o.47 

-3 1.26 1.55 0.48 

23 -1 1.04 1.19 0.41 

-2 1.26 1.59 0.52 

-3 1.04 1.29 0.44 

It is instructive to compare these average moduli of elasticity 

with the corresponding specific gravities of the beams. This com-

parison has been made in Table 6.2, which also show.L, the apparent 

modulus of elasticity of each of the 24 large composite beams. It 

is quite apparent that high specific gravities correspond to high 

moduli of elasticity of the flanges. 
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The apparent modulus of elasticity, Ea, shown in 

Table 6.2 was calculated with Equation (6.1) 

71
a = 

(Ph) 0
I 	3 c/L + 6 (c/L)

2 
- 8 (c/L)31 	(6.1) - 	-48--- x L.  

where P/y = slope of initial, straight part of load-deflection 

curve, deflection measured at centre 

Ix 	
second moment of area, Table C-1 

span 

c 	= distance from support to nearest load point 

The load-deflection curves, on which these calculations 

are based, were obtained during a final test, when each beam was 

loaded to failure, as shown in Fig. 6.5. 

These apparent moduli of elasticity cannot be compared 

directly with the average moduli of elasticity of the flanges, 

since they are also affected by the modulus of elasticity of the 

plywood in the web and by the shear deflection of the beams. 

Nevertheless the same trend of high moduli of elasticity being 

correlated with high specific gravities is also evident for the 

apparent modulus of elasticity. The only exceptions are beams 

20-1 and 20-2, which can probably be explained by the relatively 

small ratio of flange area to total cross-sectional area in these 

particular beams. Such strong correlation between specific 

gravity and modulus of elasticity in timber is well known and 

has been documented, for example, by Kollmann (27). 



- 121 - 

Specific gravity was determined as the ratio of oven-dry 

weight of a sample to its volume measured immediately after 

removing the specimens from the drying oven. Specimens taken 

from the flanges measured approximately 1 inch x i inch x 7 inch 

and were dried at a temperature of 102 degrees centigrade for 

about two days until reaching constant weight. The volume of 

the specimens was calculated from the measured dimensions of the 

prismatic samples. 

Moisture content of a sample is the difference in weight 

between the original and the completely dry state of a sample, 

expressed as a percentage of its dry weight. 

A statistical analysis of these data is given in Tables C-4 

and C-5. 

Two distinct groups of specific gravities were evident, 

the average of one group being 0.52 and that of the other group 

being 0.43. The average moisture content of the flanges was 

10 per cent. Of all the specimens tested only those cut from 

beams 21-1 and 21-2 showed a moisture content significantly 

different from that of the remainder of the beams. 

Because of the relatively small size of the experimental 

beams in this investigation, very thin plywood had to be chosen 

for the webs. The material selected for the webs was birch 

plywood, 5/32 inch thick, consisting of three layers of veneer. 

No samples for the determination of the modulus of elasticity 

were cut from the webs and only the specific gravity and the 
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moisture content of the plywood were determined. The 

details of the statistical analysis of these data are also 

given in Tables C-4 and C-5. The average specific gravity 

of the birch plywood was 0.66, with significantly lower 

values observed for beams 20-3, 21-1 to 3 and 22-1. The 

average value of 0.66 is somewhat higher than the species 

average for birch plywood given by Kollmann (27) as 0.61. 

Average moisture content of the plywood was 7.9 per cent, 

excluding the somewhat higher moisture contents of 8.3, 8.2 

and 8.4 per cent found for beams 22-2, 23-2 and 23-3. 

For the modulus of elasticity of European birch plywood 

of three-ply construction with the outer veneer oriented parallel 

to the span, Keylwerth gives a value of 1 820 000 psi at a mois-

ture content of 7 per cent; for the same type of plywood 

Keylwerth also gives a modulus of rigidity of 104 000 psi. 

For the modulus of rigidity of the flanges a value of 100 000 psi 

has been used. This value was determined during the study of 

the strain distribution in the flanges of a box beam. 

Bending Stiffness and Torsional Rigidity of Box Sections. 

The moduli of elasticity and rigidity of web and flanges 

were used to calculate the bending stiffness and the torsional 

rigidity of the beam sections. Details of the calculation of 

the bending stiffness of orthotropic sections are given in 

Appendix D. The torsional rigidity was determined by the 

method outlined in Chapter 4. The second moments of area, I , 

and the torsion constant, J, used in these calculations are given 
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Table 6.3  

Average Bending Stiffness and  

Torsional Rigidity  

Beam 
Type 

Bending 2  
EI , 1000 lb-in 

Torsion 
GJ, 1000 lb-in

2  

Calculated Observed Calculated 

20 134 22.9 24.2 

21 725 124.0 124.0 

22 927 165.0 164.0 

23 1012 207.0 193.0 

in Appendix C, Table C-1. The resulting average bending 

stiffness and torsional rigidity of each beam type are given in 

Table 6.3. 

To check the calculated torsional rigidity the torsional 

rigidity was also determined experimentally. A 33 inch long 

section of each beam was twisted about its central axis and 

the relative rotation of two sections 18 inches apart was 

measured. In order to apply a torque, the beam was clamped 

at one end to a rigid steel frame in a manner similar to that 

shown in Fig. 6.2. At the opposite end a lever arm was 

attached to the beam from which weights could be suspended. 

To prevent bending, a pin was fixed to the centre of rotation 

of the box section. This pin was supported in the vertical 

direction. This arrangement allowed the beam to twist freely 

without being subjected to any bending moments. 



Fig. 6.2 	Torsion Test 
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Torsion was applied in eight to twelve increments by 

suspending weights at the end of the lever arm. The rotation 

resulting from this torsion was measured at two sections 

approximately 6 inches from either end of the beam. The 

resulting load-rotation curve for each beam was a straight 

line. The corresponding regression lines for rotation on 

loads are given in Table C-6. The slope of these regression 

lines was then used to calculate the torsional rigidity, GJ, 

of each beam from the relation 

GJ = 1 
L2/b 
	

(6.2) 

where L1 and L2 
are lever arm and gauge length respectively and 

where b equals the slope of the regression line, Table C-6, 

converted to radians. The resulting average torsional rigidity 

obtained from the experimental data is shown in Table 6.3. The 

differences between the observed torsional rigidity and the values 

calculated on the basis of the torsion constant J and a value of G 

equal to 100 000 psi can be attributed to the variability of the 

modulus of rigidity. For the calculation of the critical loads 

for the lateral stability the observed values for the torsional 

rigidity have been used. 

Description of Test Equipment. In the experimental 

investigation of the lateral stability of beams it is 

essential that the boundary conditions assumed in the theoretical 

analysis are also provided in the experiment. In the present 

case it was assumed that only vertical loads were being applied 
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and that the beam cross-section was free to rotate as well as 

deflect laterally everywhere along the length of the beam 

except at the ends. It was also assumed that the beam was 

simply supported at the ends, both in the vertical as well 

as the horizontal plane. 

The simple support at the ends allowing rotations in the 

vertical plane of the beam was provided by a single steel roller 

of z  inch diameter at either end of the beam. A i inch thick 

steel plate between the roller and the beam prevented the roller 

from being pressed into the lower face of the plywood box-beam 

and assured that movement in the direction of the beam axis could 

take place. To prevent lateral rotation of the ends about the 

beam axis, beams were fitted into slots at the supports. The 

beam ends could thus freely rotate about the supporting roller 

without any possibility of the beam tipping sideways. At the 

same time the ends of the beam could also freely rotate in the 

horizontal plane. The whole arrangement was supported by a 

rigid steel frame at an elevation approximately three feet above 

the ground. A general view of the test set-up is shown in Fig. 6.3. 

Each beam was loaded by a single, concentrated force at 

midspan. To prevent any possibility of lateral restraints it 

was necessary to load the beam by means of weights suspended at 

the centre of l'ae span. 	To allow unrestricted rotation of the 

beam cross-section at midspan a special loading rig was constructed. 

This rig consisted of a plywood yoke, a free-floating spreader beam 

and some cable and is shown in Fig. 6.4. With it loads could be 



Fig. 6.3 	Test for Lateral Stability of Box Beams 
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Fig. 6.4 	Yoke for Loading of Box Beams 
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positioned in such a way that during rotation of the beam cross-

section at the centre, the resultant of the applied load would 

act either at midheight of the beam or at any other desired 

position above or below the centroid of the cross-section. 

Testing of Plywood Box Beams. After some preliminary 

tests, which indicated the test equipment to be adequate, 

the box beams of Type 20, 21, 22 and 23 were constructed. 

Three beams were made of each type giving a total of twelve beams. 

A number of studies were then conducted with these beams. All 

beams were tested at spans of 132 inch. and 99.5 inch. Beam 

types 20 and 21 were also tested for a span of 67.25 inch. For 

these tests the load was applied at the centroid of the beam 

cross-section and the tests were labelled Series 1, 2 and 3 

corresponding to the three different spans, Table 6.4. 

All other tests were conducted with the three beams of 

Type 22. In these tests the effect of locating the load at the 

top or the bottom edge of the box beam was investigated (Test 

Series 4). Tests involving the initial rotation of the ends of 

box beams were labelled Series 5. The effect of lateral 

eccentricities on the lateral stability of plywood box beams, 

finally was studied with tests in Series 6. Details of the 

loading conditions for Series 4 to 6 are given in Table 6.5. The 

span length for all tests of Series 4 to 6 was 132 inch. 

Beams were loaded in equal increments for approximately 

the first ten to fifteen increments. The size of any further 
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Table 6.4  

Lateral Stability of Plywood  

Box Beams  

Load at Centroid of Cross-Section  

Test Series 	Beam Types 	Span, in. 

1 	20, 21, 22 and 23 	132.0 

2 	20, 21, 22 and 23 	99.5 

3 	20 and 21 	67.25 

	AD 

Table 6.5  

Lateral Stability of Plywood  

Box Beams  

Eccentricities and Initial End Rotations  

Beam Type 22 

Test 
Series 

Load 
x, in, 

Span length 132,0 in. 

Position 
y, in. 

Initial End Rotation 
degrees 

4 - 1 0 +3 0 
4 - 2 0 0 0 
4 - 3 0 -3 0 

5 - 1 0 0 1 

5 - 2 0 0 2 

5 - 3 0 0 3 

6 - 1 0.5 0 0 
6 - 2 1.0 0 0 
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load increments was governed by the amount of rotation produced 

up to this stage of loading. For each increment the vertical 

deflection and the rotation of the cross-section at the centre 

were measured. Deflections were measured with a dial-gauge 

giving increments of 0.001 inch. Rotations were observed with 

an electrolevel, having ranges of - 5 degrees, - 1 degree and 

- 0.25 degrees. Only the 5 and 1 degree ranges were being used 

in this investigation. The scale of this electrolevel was 

divided into 20 equal parts, giving for the coarsest range 

increments of 0.5 degrees per division. 

Since the same beams were used for a number of investigations, 

it was essential not to damage the beams during loading. On the 

other hand, loading had to be carried sufficiently far to produce 

rotations large enough to allow an estimate of the buckling load 

to be made. 

Finally, after completion of Test Series 1 to 6, the beams 

were loaded to failure to determine their maximum load carrying 

capacity in bending. These tests were carried out with a hand- 

operated testing machine. Beams of Type 20 and 21 were tested 

on a 72 inch span, those of Type 22 and 23 on a 96 inch span. 

The beams were loaded by two point loads located 14 inches to 

either side of the middle of the beam. For these tests lateral 

buckling had to be prevented in order to develop the full bending 

strength of the box beams. The beams were therefore guided in 

slots at the points of load application. An overall view of 

the loading arrangement for these final beam tests is shown in Fig. 6.5. 



Fig. 6.5 	Bending Test of Plywood Box Beam 
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Results of Beam Tests. Using the observed load- 

rotation curves a Southwell plot, G /P2 against 4.0 , 

was constructed for each beam. These Southwell plots 

are shown in Appendix C, Fig. C-1(a) to (f). The majority of 

these graphs show the characteristic straight line, which is 

obtained, if the rotations are large enough and the load 

sufficiently close to the critical load. In a few cases, 

beams of Type 21 in Series 2 for example, the loading had not 

been carried far enough to result in the desired straight line. 

In general it was found that the loading had to be increased 

far enough to produce at least three rotations larger than one 

degree before the 6/F2 vs. 0 plot resulted in a straight line. 

Since it was imperative that the beams would not be damaged and 

because of the uncertainty of the actual load carrying capacity 

of the beams this requirement could not always be fulfilled. 

To obtain an estimate of the critical load for each beam, 

the slope of the straight line, passing through the experimental 

points of the Southwell plot, was calculated. For this purpose 

it was assumed that, for a given value of (9 , the quantity 0/P2 
was subject to experimental error. The slope B of the straight 

line (-7.1 /P2  = A + BO can then be calculated by minimizing the 

sum of squares of the vertical deviations of the experimental 

points from the straight line (12). The slope B for each test, 

together with the maximum load and the maximum rotation are given 

in Table C-7 in Appendix C. To calculate these slopes only 

rotations larger than 0.65 degrees were used for Series 1 and 3. 
For all other test series only rotations larger than one degree 

were utilized. 
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The slope of the straight line was used to calculate the 

critical load by means of Equation(1-7). The results of these 

calculations are given in Table C-8 as critical experimental 

loads. Table C-8 also gives the maximum load placed on each 

beam for each particular test as well as the theoretical load 

calculated with Equation (2.58). 

The critical experimental loads for Series 1 to 3 obtained 

by means of the Southwell plot are also given in Fig. 6.6, which 

supported beam as a function 

curves for critical loads 

corresponding curve for 

shows the critical load P for a simply 

of the span length L. Fig. 6.6 shows 

for beams of Type 20, 21 and 23. The 

beam Type 22 does not differ 

is not shown. These curves 

greatly from that of Type 23 and 

were calculated for a modulus of 

elasticity equal to 1 600 000 psi and a modulus of rigidity equal 

to 100 000 psi. In addition Fig. 6.6 also shows the increase 

or the decrease in the calculated critical loads for beam Type 23 

if the modulus of elasticity changes by plus or minus one standard 

deviation. In a test series involving a large number of plywood 

box beams with an average value of E = 1 600 000 psi, one would 

expect that about two-thirds of all critical loads would fall 

in this region. 

The experimental results for beam Type 20 appear to fit 

the theoretical curve reasonably well. In general, however, 

the observed critical loads are higher than would be expected 

from Equation (2.58). In view of the low moduli of elasticity 

of some of the beams, it is surprising that the experimental 
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loads should be as high as shown in Fig. 6.6. Since the 

specific gravity of the birch plywood was higher than the 

species average given by Kollmann (27), it is possible, however, 

that the modulus of elasticity for the birch plywood was higher 

than the value assumed. Since the relative contribution of 

the web to the second moment of area about the minor axis is 

larger than its relative contribution to that about the major 

axis, the effect of any differences in the modulus of elasticity 

of the birch plywood from the value quoted by Keylwerth would 

be less pronounced for the bending stiffness in the vertical 

plane than for that in the horizontal plane. Since only the 

deflections in the vertical plane were measured, it is possible 

that such differences in the modulus of elasticity of the birch 

plywood went undetected. While the actual value of the observed 

critical loads was higher than expected, the loads do follow the 

general trend indicated by the theoretical solution. 

In Fig. 6.7 the critical loads have been plotted as a 

function of the torsion constant J and the second moment of area I . 

Again the experimental loads are somewhat higher than the theoretical 

loads. But here, too, the pattern given by the theoretical solution 

is followed by the experimental values. Loads do appear to increase 

linearly for a given span as the value of I JI increases and 

likewise a decrease in the span length does result in an increase 

r--- 
in the slope of the line P vs., VJI 

Y 

The effect of a change in the vertical location of the 

concentrated force on the critical loads was investigated by 
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nine tests in Series 4. According to Kollbrunner (26) the 

critical load, Pe  , for lateral stability in the case of a 

vertical eccentricity of t h/2 can be calculated from 

Pe 	PI_ 
j (1 + 3.24 (EIy/6J)(h/2L) 2 

-7 1.8 (h/2L ) 	EIy/GJ I 	(6.3) 

where P = critical load, load applied at centroid of cross- 

section 

h = beam height. 

For the beams of Type 22 and a 132 inch span Equation (6.3) 

gives an increase in the critical load of about nine per cent, 

when the load is applied at the lower edge of the beam. Similarly, 

when the load is placed on the upper edge, the critical load will 

be decreased by nine per cent. The corresponding experimental 

results are given in Table 6.6.  

Table 6.6  

Effect of Vertical Eccentricities  

on Critical Experimental Loads  

 

Test Series 4  

Location 

of Load 

Critical Experimental Loads, lbs. 

Beam Number 

1 	2 	3 

Top edge 	- 	344 	426 

Centroid 	375 	- 	447 

Bottom edge 	439 	481 
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Only tests with beams No. 1 and 3 resulted in usable 

information. However these results do confirm, generally 

speaking, the theoretical prediction. Locating the load on the 

top edge resulted in a five per cent decrease in the critical 

load of beam No. 3. When the load was placed a distance h/2 

below the centroid of the cross-section the critical load of 

beam No.1 increased by sixteen per cent and that of beam No. 3 

by eight per cent. 

The results from the last two test series, given in 

Table C-8, show quite an erratic behaviour. An inclination 
14,1,:^r4 

of the itmajwr axis of the beam of 1, 2 or 3 degrees to the vertical, 

Series 5, does not give rise to a discernible pattern in the 

critical experimental loads. For the tests on the effects of 

lateral eccentricities only beam No. 3 gave a usable Southwell 

plot for both eccentricities. But the critical experimental 

loads obtained from the Southwell plot appear to be meaningless. 

Great care had been taken in the loading of these beams 

and an attempt had been made to carry the loading as close as 

possible to a state of instability. Indeed, in a few cases, 

the loads placed on a beam were so large that the centre section 

continued to rotate and deflect sideways without any further 

increase in loads. When this happened, the beam had to be 

physically restrained from collapsing and loads had to be taken 

off quickly to obtain again a state of stability. 

The loads shown in the column labelled P-Max in Table C-8, 
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which are the actual maximum loads placed on the beam, are 

therefore much more representative of the actual critical loads 

for instability than the loads obtained by means of the Southwell 

plot. The only conclusion that can be stated therefore is, that 

the Southwell plot, as used in this investigation, cannot be used 

for the calculation of critical loads in the case of large initial 

lateral eccentricities or initial rotations. 

The modulus of rupture of each beam, obtained from a 

final bending test after completion of test Series 1 to 6, is 

given in Table 6.7. The modulus of rupture,
r , was calculated 

from 

where 

,-.7. 
r 	

= 	M r  /Sx 	 (6.4) ..., 

M
r 	= moment causing failure of beam 

Sx 	= section modulus of gross-section of beam 

The gross-section of the beam here is equal to the actual 

beam cross-section given by the dimensions in Table 6.1. No 

allowance is made for any possible change in the cross-sectional 

properties at a joint in the plywood web. The failure of most 

of these beams occurred in a manner similar to that observed by 

the author in an earlier study of the strength of plywood box-

beams (41). Most of the beams displayed a linear load-deflection 

behaviour almost up to their maximum load carrying capacity. 

Except for those of Type 22, beams usually failed suddenly and 

ruptured completely on the tension side. Failure usually occurred 

in the tension flange near a butt-joint in the plywood. It is 
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Table 6.7  

Modulus of Rupture  

of Plywood Box Beams  

Modulus of Rupture, psi 

Beam No. 	Beam 	Type 

20 21 22 23 

1 2350 6040 5070 5470 

2 492o 7900 74go 8810 

3 543o 9910 7110 6880 

self-evident that such butt-joints represent a point of stress 

concentration, since stresses cannot be transferred continuously 

from one web to the next at such a location. Beams of Type 22 

yielded considerably on the compression side, before finally 

failing in tension. Average modulus of rupture of beams of 

Type 21, 22 and 23 was 7 190 psi. 

Beams of Type 20 failed by lateral buckling, even though 

they were restrained from moving laterally at the points of load 

application. Failure usually occurred in the glue line between 

the web and the flange after large lateral deformations had taken 

place. The low load carrying capacity of beam No. 20-1 may have 

been the result of earlier damage sustained during the last test 

in Series 3. 

The strength of all box-beams was well above the stresses 

induced by the loads required to produce lateral instability. It 
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may be concluded therefore that for plywood box beams, just as 

for any other beams, consideration of the resistance to lateral 

instability should form an important part in the analysis of 

their load carrying capacity. 

Shear Stress Distribution in Plywood Box Sections. A 

theoretical expression for the shear stresses in box 

sections subjected to torsion has been derived in 

Chapter 4, Equation (4.50). The resulting shear stress 

distribution for a typical box section (h = 6.75 inch., 

b1 = 2.187 inch., d= 1.687 inch., t = 0.25 inch.) has been 

evaluated and is shown in Figs. 6.8 and 6.9. It is apparent 

that the shear stress distribution in the flanges is far from 

being uniform. From a negative value at the outside of the 

flange, the shear stresses along the centre line of the cross-

section diminish almost linearly until they become zero. Shear 

stresses in the opposite direction are then being built up until 

a second maximum stress is reached at the inside of the flange. 

It appears, that in addition to the shear flow around the outside 

of the box section, a secondary shear flow, producing an additional 

couple resisting torsion, is being set up in a deep flange. 

The presence of these secondary shear flows was first 

pointed out to the author by Bannister*(private communication), 

who recently found a reversal of shear stresses such as shown 

in Fig. 6.8, while measuring shear strain distributions in 

plywood box-beams. To confirm the caluclated stress pattern 

and the findings of Bannister, strains were investigated on 

*A. Bannister, Department of Civil Engineering, University of 
Salford, Salford 5, Lancashire. 
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the inside and the outside of the flanges of o. 2-3/16 inch. 

by 6-3/4 inch. plywood box-beam. The flanges of this box-beam 

were Douglas fir, 1.69 inch. deep and the web consisted of 

0.25 inch. birch plywood of five-ply construction, Fig. 6.8(a). 

The outer grain of the plywood was oriented perpendicular to 

the span. Flange and web were glued together with a resin 

type glue. 

Prior to assembling web and flanges, electric resistance 

wire strain gauge rosettes were placed on two opposite sides of 

the two pieces of Douglas fir, which later were to form the 

flanges. Each rosette consisted of three gauges. Of these, 

one was oriented in the longitudinal direction of the wood, and 

two crossed the grain direction at +45 and -45 degrees respectively. 

Strain gauge rosettes were placed at two locations along the length 

of the beam a distance of twelve inch. apart. All gr.uges at one 

location were 5 mm, at the second location 10 mm long. Total 

number of strain gauge rosettes was eight. 

Before assembling the box-beam the two flanges were tested 

individually in torsion. The 1.69 x 1.69 inch. flanges were 

clamped at one end and freely supported at the other end where 

a moment arm was attached. Distance between the clamped and 

the freely supported end was 48 inch. The strain gauges were 

located approximately 18 inches from the nearest support. At 

the end where the moment arm was attached, the flange was simply 

supported but free to rotate about its own axis, so that it could 

rotate without being subjected to bending. Torsion was applied 
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by placing weights at the end of the 12 inch moment arm attached 

to the flange. Load was increased in steps of two pounds from 

zero to a maximum of 14 lbs. 

Each test was repeated once. A regression analysis of 

the resulting load-strain distribution for each gauge is given 

in Table C-9(a). The rotation of the two strain-gauged sections, 

a distance of 12 inch. apart, was also measured. 

After testing the flanges individually, flanges and web 

were glued together to form the box-section, Test Series 2, with 

a moment arm of 24 inch. Load increments of five pounds were 

used up to a maximum load of 35 lbs. For the complete box-beam, 

distance between lateral supports was increased to six feet to 

avoid possible interference of support conditions with the strain 

distribution. Regression analyses of the resulting load-strain 

distributions are given in Table C-9(b). Again two tests were 

performed. 

The regression analysis represents a plot of strains, e, 

against loads, P, where the strains are treated as the dependent 

variable. The slope, B, of the regression line e = A + B P is 

equal to the strain, in micro-inches per inch, per pound of load 

for each gauge. This regression line is a least squares estimate 

of the unknown true line, i.e. the sum of squares of vertical 

deviations of observed points from the regression line is 

minimised (12). The regression lines are given in Table C-9 

in Appendix C. The correlation coefficient R for all load 
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strain curves is 1.0 or nearly 1.Q, indicating a good fit 

of the observed strains with the calculated straight line. 

Gauge No. 2 for each location measured the strain in the 

longitudinal direction. While, theoretically, the strain in 

this direction should be zero, possible misalignment of gauges 

as well as grain deviations actually resulted in some strain 

in this direction. However these strains are small and the 

assumption of zero forces in the longitudinal direction, which 

is being made in the derivation of the torsion constant, is 

therefore justified. 

Gauges 1 and 3 were placed symmetrically on either side 

of the centre line of the beam. It would be expected, therefore, 

that the strains for these directions, apart from a sign, are 

equal. The results again confirm the assumption, the small 

differences being attributable to experimental error. Locations 

1 and 2 on each flange were opposite each other and were instru-

mented with 5 mm long gauges. Similarly locations 3 and 4 

formed a pair, but were equipped with 10 mm long gauges. The 

results for these two different gauge lengths do not appear to 

differ greatly. 

The strain readings for Test Series 2 follow a similar 

pattern. The correlation between load and strain for the 

individual gauges is good and the strain readings follow the 

pattern that is expected from the condition of symmetry. 



- 148 - 

Table 6.8  

Flange Shear Strain Distribution  

Torsion Specimens  

Shear Strains, microinches/inch 

Individual 
Flanges Box Section 

Flange Face 

Applied Torsion: 	24 in-lb 840 in-lb 

1 1 -210 -805 

2 +112 +385 

2 1 -204 -350 

2 +238 +805 

Shear strains, v, at each location were then calculated as 

the difference between the measured strains e
1 and e3 

in the 1 

and 3 directions. 

v = el - e3 
	 (6.5) 

The shear strain v here is defined as the angular change 

between the longitudinal and the perpendicular direction across 

the width of the beam. The results of these calculations are 

given in Tables C-10(a) and C-10(b) and are summarized in Table 6.8. 

for an applied load of 24 in-lb. 

To obtain the corresponding shear stress distribution a 

modulus of rigidity, G, can be calculated from the observed relative 

rotation 0 between two sections. For the two individual flanges 
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Test Series 1, the relative rotations of two sections 12 inches 

apart due to a load of 14 lbs. was 0.95 degrees and 1.05 degrees 

respectively. For a square section of size a x a the torsion 

constant J equals 0.1406 a4  (18). The modulus of rigidity 

can therefore be estimated from 

G 	
T L 

- — J9 
(6.6) 

The resulting moduli of rigidity for the two individual 

Douglas fir flanges are G = 105 000 psi and G = 95 000 psi. 
It should be noted that this modulus of rigidity represents only 

a mean of the two moduli for the longitudinal-tangential and 

the longitudinal-radial directions of the wood. However for 

softwoods these two values usually do not differ greatly (1, 25) 

and it is sufficient therefore to use this mean modulus of 

rigidity for the calculation of shear stresses. Keylwerth (25) 

quotes a value of GLR for Douglas fir at approximately 12 per 

cent moisture content of 9 000 kg/cm2 (128 000 psi), which is 
reasonably close to the value found above. 

Using an average value of G = 100 000 psi, the average 

shear stress at the middle of one side of an individual flange, 

calculated from the observed strains, will therefore be equal 

to 21.0 psi. This shear stress can be compared with a theoretical 

value due to an applied torque T 

V = 

 

(6.7) 

 

k2  

where for a square section k1  is given by Goodier (18) as 0.208. 
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The resulting shear stress for a torque of 24.0 in.-lb is 

v = 23.8 psi, indicating close agreement between the theoretical 

and the observed shear stresses. 

The mean modulus of rigidity found from the relative 

rotation of the individual flanges can now be used to calculate 

the expected relative rotation of the box section. To calculate 

the torsion factor F and the shear stress coefficient k2 
half the 

top flange was divided into eight rows and five columns, giving 

a total of forty elements in one half of the flange. Using' 

Equation (4.43) the torsion factor for an isotropic section was 

calculated as F = 0.18. The relative twist for a torque of 

840 in.-lb will therefore be 

840 x 57.30 x 12 = 0.45 degrees 
100 000 x 0.18 x 2.193 x 6.75 

The difference between the observed rotations at sections 

1 and 2 of the box-beam is 0 = 2.05 - 1.6 = 0.45 degrees, identical 

to the calculated twist. If, on the other hand, Equation (4.4) 

is used for the determination of the torsion constant, the resulting 

value of J is 9.1 in4 and consequently the relative twist would 

be overestimated by about 40 per cent. 

The average shear stresses at the outside and the inside of 

the flanges of the box-section can be calculated from the shear 

strains given in Table 6.7. Using again the average modulus of 

rigidity obtained from the tests of the individual flanges, the 

experimental shear stresses become v = -81 psi at the outside 
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and v = +37 psi at the inside of the flange. Using Equation (4.48) 

the shear stress coefficient k
2 
for the centre element of the 

outside row of the flange was calculated as 0.593/0.18 = 3.29 

and the expected shear stress for a torque of 840 in.-lb there- 

fore is 

v - 3.29 x 840 	= 85 psi 
2.19

2 x 6.75 

Similarly, for the inside of the flange, k2  = 1.61 and the expected 

shear stress is 42 psi. Both locations, the inside as well as 

the outside of the flange in the box beam investigated therefore 

show good agreement between the experimental and the theoretical 

shear strain distribution. These shear stresses may also be 

compared with Bredt's first formula (18) 

T  
2 A t (6.8) 

where A = area enclosed by the middle curve of the cross-section(Fig.4.2). 

t = wall thickness 

Admittedly Equation (6.8) should only be used for box-sections 

with thin walls and it is therefore not surprising that Bredt's 

formula, when used for the above cross-section, does give a completely 

erroneous result of v = 12.6 psi. 

While this experimental investigation of the torsional 

shear stress distribution and rigidity for box sections only formed 

a minor part of the current investigation, the results suggest 

that the torsion constants calculated by means of the finite 
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element theory outlined in Chapter 4 do give a good estimate of 

the torsional rigidity of such sections. Similarly, from 

the limited experimental evidence available, it appears that 

the shear stress coefficients derived in Chapter 4 will give 

a good estimate of the shear stresses in box-sections having 

deep flanges. 
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Summary  

An application of the finite element method of analysis 

to the investigation of the lateral stability of beams and arches 

is presented in this thesis. Particular attention was given to 

the analysis of plywood box-beams, a form of composite construction 

particularly suitable for the combination of plywood and lumber. 

An experimental investigation of the lateral stability of plywood 

box-beams is also described. As a result of this investigation 

the following points can be summarized. 

1. Using the finite element method of analysis a general 

expression for the lateral stability of beams and arches, 

Equation (2.52), has been developed. 

2. The expression for the lateral stability of beams, 

Equation (2.58), is a special case of the more general 

expression derived for arches. The finite element 

analysis, when applied to beams, will result in the same 

critical loads as those calculated by the classical theory 

of elastic stability. 

3. A general expression for the calculation of the torsion 

constant J for box-sections, Equation (4.44), also has been 

derived by means of a finite element approach. Torsion 

factors for a number of cross-sections have been calculated 

and are given in Appendix B. 
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4. The analysis of the torsional rigidity of box-sections, 

given in Chapter 4, indicates that in box-sections with 

deep flanges shear stresses due to torsion are not dis-

tributed uniformly across the depth of the flange. On 

the contrary, shear stresses on the outside of the flange 

will be oriented in a direction opposite to that on the 

inside of the same flange. An assumption of uniform shear 

stress for box-beams with deep flanges will result in an 

erroneous value of the torsional rigidity of such a section. 

5. The non-uniform distribution of shear stresses in box-beams 

with deep flanges indicated by the finite element analysis 

was confirmed by an experimental investigation. 

6. An experimental investigation of the lateral stability of 

plywood box-beams confirmed the validity of the classical 

analysis and the finite element analysis. These tests 

indicated in particular the importance of an accurate 

knowledge of the lateral bending stiffness and torsional 

rigidity of plywood box-beams for the calculation of critical 

loads. The tests confirmed the changes in the critical load 

predicted by the classical theory, which will result if the 

point of load application is moved in a vertical direction. 

7. When a single concentrated force was applied eccentrically 

relative to the major plane of bending or when the ends of 

the beams were rotated relative to a vertical plane, a 

Southwell plot of the corresponding experimental test 
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results did not give a reasonable estimate of the 

critical loads. The effect of initial eccentricities 

should therefore receive some further attention. 

8. 	Coefficients for the lateral stability of two-hinged 

parabolic arches have been calculated and are given in 

Appendix A. Experimental verification of these constants 

has not yet been sought. An experimental study of the 

lateral stability of arches in the immediate future will 

therefore be of considerable interest. 
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Basic Notation 

Symbols are defined in the text, where they first appear. A 

list of. basic u7rmbols and their meaning is given below. 

= initial bow, also width of torsion .0ement 

	

A 	area 

subscript 4ndicnting bending, alno ',eight of torsion 

element 

',lath of cros-section 

	

b 	b 	= transformation rnntrices 

	

111 	force-disnl,"cement trnnsformtion matrix 

depth of flnnge of 1- or box-section 

e ntrnin 

moinlus of elasticity 

= 	flexibility matrix 

modulus of rigidity 

rise of arch, also height of cross-section 

	

T 	= 	second ooment of area 

torsion constant 

unit matrix 

element stiffne,:s m-trix 

stiffness of total. 3truct!.3re or com-onent 

Length of benm element 

1, m, n = direction cosines 

	

L 	= -Iran 

bendin7 mment 

	

n 	= 	number of elements 

axial for 
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zero matrix 

single concentrated f-rce 

vector of element forces 

r 	= 	vector of nodal noint displacements relati-e to rOobal 

system of co-ordinates 

= 	vector of external forces 

S 	section modulus 

S 	= 	vector of element forces 

subncrint indicating torsion, also veb-thickness 

vector GI torsion moments 

v, w = displacements in 	y- or z-,Iirection 

U, V, W = forces in x-, v- or z-diroction 

vectors of forces in x-, y- or z-direction 

V 	= 	vector of element displacements, i.e. nodal point displ-ce- 

mentn relative to local system of co-ordinates 

vector of redundancies 

XI y, 	= orthogonal system of co-ordinates U-lobal system) 

rotation 

0 	= twist 

f iv, r = local orthogonal system of axes 
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Appendix A 

Lateral Stability Coefficients C2  

for Two-Hinged Parabolic Arches 

Loaded at the Crown 

by a 

Single Concentrated Force 



. 	0.006-  1120 

013 

LATFR At S11811.I TY OF TWO-HINGED ARCH 

REC r ANGuLAR. SECT IONS 

CONCENTRATED FORCE AT CENTRE OF SPAN 

,RI TICAL LOAD, .P-CR=C2.41E II ETA )/L**2 
_ 	- 	- 

	

R EC TI ONS 	BUCKL INC COEFFICIENTS?  CI, 
E I( ET A ) /GJ 

A 	:-HM IC 

- 1.594 
1.582 

2.042 
2.033 

2.050 
1/20 	0. 	0.017--  0.776 - 	5.703 - 2.700 	2.045 

... 
0.024 0.565 	7.024 2.721 1.980 

= 

1T/L TIC 

1 /1 0'1; 	7: 

O715 -7,74.000 

T 	1.734 

Mt? I 

2.43a 2.010 1.721 

-1.187 - 3.988 .2.503 
- 	3.969-  7  2.493 

.7731".„:;:q;1-.7 5.722=-7 2.708 

- 6.000 

- • . 

• 

• 
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Appendix B  

Torsion Constants  

for 

Box and I- Sections  

The torsion factor F is given as a function 

of the ratios d/b1  , t/b1  and h/b1 , where 

d = depth of flanges 

t = thickness of one web 

bl = width of section 

h = height of section 

Torsion constant: J=Fbh 



- 165 - 

Table B-1  

Torsion Factor F for Box Sections 

d/b, 

Isotropic 	Material 

h/b, 

t/b, 	= 0.01 

Height - to - Width Ratio, 

0.4 1.0 2.0 3.0 4.0 6.o 8.0 10.0 

0.2 0.041 0.023 0.022 0.021 0.021 0.021 0.020 

0.5 0.142 0.047 0.038 0.033 0.029 0.026 0.025 

1.0 0.229 0.109 0.087 0.064 0.053 0.047 

1.5 0.263 0.159 0.113 0.090 0.076 

2.0 0.279 0.165 0.129 0.108 

3.0 0.295 0.205 0.169 

4.o 0.306 0.232 

Table B-2  

Torsion Factor F for Box Sections 

d/b1  

Isotropic 	Material 

h/b, 

t/b, = 0.05 

Height - to - Width Ratio, 

o.4 1.0 2.0 3.o 4.o 6.o 8.o 10.0 

0.2 0.0402 0.066 0.078 0.088 0.089 0.089 0.090 

0.5 0.142 0.102 0.098 0.096 0.095 0.094 0.093 

1.0 0.229 0.155 0.138 0.121 0.118 0.113 

1.5 0.263 0.196 0.160 0.142 

2.0 0.279 0.202 0.175 0.158 

3.0 0.295 0.252 0.205 
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Table B-3  

Torsion Factor F for Box Sections 

Isotropic Material 

d/b1  

t/b, 	= 0.10 

Height - to - Width Ratio, h/b, 

0.4 1,0 2.0 3.0 4.o 6.o 8.o 10.0 

0.2 0.0402 0.096 0.127 0.138 0.145 0.151 0.154 

0.5 0.142 0.150 0.154 0.157 0.159 0.161 0.161 

1.0 0.229 0.194 0.186 0.179 0.175 0.173 

1.5 0.263 0.228 0.206 0.195 0.189 

2.0 0.279 0.237 0.219 0.208 

3.0 0.295 0.259 0.241 

4.o 0.306 0.291 

Table B-4  

Torsion Factor F for Box Sections 

Isotropic 	Material 

h/b, 

t/b, 	= 0.15 

Height - to - Width Ratio, 

0.4 1.0 2.0 3.0 4.o 6.o 8.o 10.0 

0.2 0.0413 0.112 0.159 0.177 0.187 0.198 0.203 

0.5 0.142 0.183 0.195 0.202 0.208 0.211 0.213 

1.0 0.229 0.221 0.221 0.221 0.221 0.221 

1.5 0.263 0.248 0.238 0.234 

2.0 0.279 0.257 0.248 0.243 

3.0 0.295 0.277 0.265 
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Table B-5 

Torsion Factor F for  Box Sections  

of Orthotropic Material  

t/b, = 0.1 
d/b, = 0.5 

Gzx/Gyz 
	Height - to - vidth Ratio, h/b, 

1.0 2.0 5.0 10.0 

0.6 0.107 0.133 0.153 0.160 

0.8 0.126 0.142 0.138 0.164 

1.0 0.142 0.150 0.162 0.166 

1.2 0.155 0.156 0.166 0.169 

Table B-6 

Torsion Factor F for Box  Sections 

of Orthotropic  Material 

t/b, = 0.1 
= 2.0 

Height - to - ' -idth Ratio, h/b, 

4.o 6.0 10.0 

0.6 0.264 0.219 0.198 

0.8 0.273 0.226 0.201 

1.0 0.280 0.232 0.205 

1.2 0.285 0.236 0.208 
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Table B-7  

Torsion Factor F for  Box Sections with Different  

Moduli of  Rigidity for Web and Flanges  

Isotropic Material  

d/b, = 0.5 
t/b, = 0.1 

G(web)/G(flange) 	Height - to - Width Ratio, h/br  

1.0 2.0 3.0 4.0 6.0 10.0 

0.6 0.124 0.102 0.10o 0.099 0.099 

0.8 0.133 0.127 0.128 0.129 0.130 0.130 

0.9 0.138 0.138 0.141 0.143 0.145 0.146 

1.0 0.142 0.150 0.154 0.157 0.159 0.161 

1.1 0.146 0.161 0.167 0.171 0.174 0.177 

1.2 0.150 0.172 0.184 0.188 0.191 

1.4 0.157 0.193 0.211 0.217 0.222 

Table B-8  

Torsion Factor  F for Box Sections with Different  

Moduli of Rigidity for Web  and Flanges  

Isotropic Material  

G(web)/G(flange) 

d/b, 	= 2.0 

t/b, 	= 0.1 

Height - to - Width Ratio, h/b, 

4.0 6.0 10.0 

0.6 0.227 0.174 0.144 

0.8 0.254 0.203 0.174 
1.0 0.280 0.232 0.205 
1.2 0.305 0.261 0.235 

1.4 0.330 0.289 0.265 
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Table B-9 

Torsion Factor F for Box Sections with 

Different Moduli of Rigidity for Web and Flanges 

Orthotropic Material 

d/b, = 0.5 

t/b, = 0.1 

flange \veb Height - to - Width Ratio, h/bl 

G J!'G G JG G /G 1 .. 0 2.0 4.0 10.0 z yz w wyz wyz yz 

0.8 0 .. 8 0.8 0.119 0.121 0.128 0.132 
100 0.126 0.142 0.156 0.164 
102 0 .. 133 0.163 0.183 0.195 

008 1.0 0.8 0.119 0 .. 121 0.129 0 .. 133 
1.0 0.126 0.143 0.157 0.165 
1.2 0.133 0.164 0.185 0.197 

0.8 1.2 0.8 0.119 0.122 0.130 0.135 
1.0 0.127 00144 0.158 0.167 
1.2 0.133 0.166 0.186 0 .. 199 

1.0 0.8 0.8 0.133 0.126 0.130 0.133 
1.0 0.142 0.149 0.159 0.165 
1.2 0.150 0.171 0.187 0.196 

100 1.0 0.8 0.133 0.127 0.131 0 .. 134 
1.0 0.142 0.150 0.160 0.166 
1 .. 2 0 .. 150 0.172 0.188 0.198 

1.0 1.2 0.8 0.133 0.127 0.132 0.136 
1.0 0.142 0.151 0.161 0.168 
1.2 0.150 0.173 0.190 0.200 

1.2 0.8 0.8 0.144 0.130 0.132 0.134 
1.0 00154 0.154 0.161 0.166 
1.2 0.163 0.177 0.190 0.198 

1.2 1 .. 0 0.8 0.145 0.,131 0.134 0.135 
1.0 0.155 0 .. 155 0.163 0.167 
1.2 0.164 00178 0.191 0.199 

1.2 1 .. 2 0.8 0.145 0.132 0.135 0.137 
1.0 0.155 0.156 0.164 0.169 
1.2 0.164 0.179 0.193 0.201 
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Table B-10  

Torsion Factor F for I-Sections 

Isotropic Material 

d/bi  

t/b, = 0.10 

Height - to - Width Ratio, h/b, 

0.1+ 1.0 2.0 4.0 6.0 8.0 10.0 

0.2 0.122 0.0055 0.0030 0.0026 0.0022 0.0020 

0.5 0.0578 0.041 0.026 0.021 0.018 0.017 

1.0 0.144 0.075 0.051 0.040 0.033 

2.0 0.229 0.162 0.12 0.099 

3.0 0.264 0.200 0.161 
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Appendix C  

Experimental Results  

For the interpretation of some of the test results a number 

of statistical quantities have been calculated 

of statistical terms used is given below: 

Observed quantities: 	x, y 

Number of observations: 

Mean: 	x = 

2 Variance: 	s 

Standard deviation: 

Coefficient of variation: 	V = 

N 
- 

x 

(12, 

N 
[ 

% 

20). 	A definition 

N 	 1 

x2  - 1  ( 	x)2  Ff. N 

x 100
x  

t -Test 

2, Pooled variance for two populations (N1, R1' s1
2 
 ) and (N2, x2'  s2i 

2 	si
2 
 (N1  - 1) + 1,2

2  
(N2  - 1) 

sd = 	N1 N2 - 2 

The t-test for difference between two populations 

t 
13 	- R2 I 	/Ni N2 

'a 	
j N1 N2 

Degrees of freedom 	n = N1 N - 2 

Interpretation of t-test: 

t > t99  difference Ri  - R2  is highly significant (**) 

t99 
	t 	t95  difference 171 -2 is significant (*) but may require 

further tests. 
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t < t95 
difference is not significant, observations xi  

and x2 are drawn from the same population. 

The values t
95 

and t
99 

are the limits of an integral, defining the 

probability of an event to occur. The limit - t95 defines a 

95 per cent, - t
99 

 a 99 per cent probability. 

Regression Analysis  

The quantities x, y are pairs of observations. 

Variances: 

N 

(x 

(y Y1)2 

where 1 
y value calculated from regression line 

Regression line: y1 = a bx 

b 	(x FO(y -  
2 (x  ..• 3)2 Regression coefficient: 

Sample correlation coefficient 

(x 	;)(y - 5) 
- 1) s s x y 

Confidence interval for slope b 

S yx  
sx fr-C- 1 

r 

sb 



TABLE C-1 

BEAM BEAM 
TYPE 	NO. 

H 

SECTION 

	

DIMENSIDNS, 	IN. 

B 	0. 	T 	I1 

PROPERTIES 

SECOND MOMENTS OF AREA, IN**4 
XI - AXIS 	ETA - AXIS 

12 	I 	11 	12 	I 

TORSION 
IN**4 

J 

20 1 4.5 0.56 1.00 0.156 1.57 2.37 3.95 0.0026 0.0609 0.0635 0.2367 
20 2 4.5 0.56 1.00 0.156 1.57 2.37 3.95 0.0026 0.0609 0.0635 0.2367 
20 3 4.5 0.56 1.00 0.156 1.57 2.37 3.95 0.0026 0.0609 0.0635 0.2367 

21 1 4.5 1.07 0.99 0.156 4.77 2.39 7.16 0.0717 0.2970 0.3687 1.1768 
21 2 4.5 1.07 0.98 0.156 4.77 2.40 7.17 0.0710 0.2976 0.3687 1.1794 
21 3 -4.5 1.05 1.00 0.156 4.69 2.40 7.10 0.0669 0.2849 0.3518 1.1145 

22' 1 6.0 1.06 1.00 0.156' 9.47 5.62 15.09 0.0696 0.3866 0.4562 1.5393 
22 2 6.0 1.06 1.00 0.156 9.47 5.62 15.09 0.0696 0.3866 0.4562 1.5393 
22 3 6.0 1.06 0.98 0.156 9.35 5.62 14.97 0.0682 0.3866 0.4548 1.5393 

23 1 6.0 1.06 2.00 0.156 12.96 5.62 18.58 0.1393 0.3866 0.5259 1.8058 
23 2 6.0 1.06 2.00 0.156 12.96 5.62 18.58 0.1393 0.3866 0.5259 1.8058 
23 3 6.0 1.06 2.00 0.156 12.96 5.62 38.58 0.1393 0.3866 0.5259 1.8058 



TABLE C - 2 

0 LULUS 	0 F 	ELASTICITY 

FLANGES OF BOX BEAms 

BEAM 
TYPE 

BEAM 
NO. 

N 
PSI 

CV 
PERCENT 

CONFIDENCE 
95 PC 

LIMITS 
99 PC 

El • 
PSI 

20 1 6 0.410E 03 0.383E 02 0.430E 03 0.674E 03 0.168E 07 
20 2 6 0.132E 03 0.121E 02 0.138E 03 0.216E 03 0.159E 07 
20 3 6 04.197E 03 0.263E 02 0.207E 03 0.325E 03 0.110E 07 

21 1. 6 0,355E 03 0.136E 02 0.373E 03 0.585E 03 0.128E 07 
21 2 6 0.234E 0.3 0.946E 01 0.245E 03 0.385E 03 0.111E 07 
21 3 6 0.320E 03 0..A21E 01 0.336E 03 0.526E 03 0.194E 07 

22 1 6 0.113E 04 0.310F 02 0..119E 04 0.187E 04 0.159E 07 
22 2 6 0.130E 01 0.419L 01 0.)36E 03 0,213E 03 0.134F 07 
22 3 6 0.354E 03 0.110E 02 0.$71E 03 0.582E 03 0.155E 07 

23 1 6 0.526E 03 0.198E 02 0.552E 03 0.866E 03 0.119E 07 
23 2 6 0.804E ()3 0.234E 02 0.843E 03 0.132E 04 0.159E 07 
23 3 6 0.218E 03 0.800E 01 0.228E 03 0.358E 03 0.129E 07 
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Table C-3  

Apparent Modulus of Elasticity and 

Modulus of Rupture of Box  Beams. 

Two-Point Loading 

(Fig. 6.5) 

L = span 

a = position of load from nearest support 

P = total load on beam 

Beam 
Type 

Beam 
No 

L 	a 

in. 	in. 	tons/in. 

Initial 
Slope 
P/y 

P, Max. 

lbs. 

Modulus 
of 

Elasticity 

psi 

x106  

Modulus 
of 

Rupture 

psi 

20 1 72,0 	22.0 0.422 230 1.11 2 350 

2 0.465 770 1.22 4 920 

3 0.385 83o 1.01 5 43o 

21 1 72.0 	22.0 0.700 1750 0.99 6 (74o 
2 0.700 2280 0.99 7 goo 

3 0.894 2860 1.27 9 910 

22 1 96.o 	34.0 0.666 150o 1.19 5 070 
2 0.663 2220 1.20 7 4go 

3 0.695 2000 1.27 7 110 

23 1 96.0 	34.o 0.705 1990 1.04 5 470 
2 0.246 3210 1.25 8 800 

3 0.705 2510 1.04 6 88o 

1 ton = 	2240 lbs. 
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TABLE C - 4 (a) 

BEAM BEAM 
TYPE 	NI. 

N 

SPECIFIC 	GRAVITY 

FLANGES 

SP.GR. 	S**2 	$ 	T SIGNIFICANCE 
LEVEL 

20 1 6 0.517 0.012 0.111 0. NS 
6 0.517 0.012 0.111 

20 2 6 0.528 0.003 0.057 0.233 NS 
12 0.522 0.007 0.084 

20 3 6 0.434 0.001 0.037 2.432 

21 1 6 0.436 0.000 0.018 2.464 * 
21 2 6 0.426 0.000 0.021 2.7/2 * 
21 3 6 0.597 0.001 0.026 2.106 NS 

18 0.547 o.nnis 03.078 

22 1 6 0.513 0.014 0.119 0.826 NS 
24 0.539 0.008 0.088 

22 7, 6 0.468 0.001 0.033 1.911 NS 
30 0.525 0.007 0.085 

22 3 6 0.479 0,001 0.024 1.284 NS 
36 0.517 0.006 0.080 

23 1 6 0.412 0.001 0.034 3.159 ** 
23 2 6 0.524 0.010 0.102 0.188 NS 

42 0.518 0.007 0.082 
23 3 6 0.444 0.000 0.022 2.198 • 
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TABLE C - 4 (b) 

BEAM 
TYPE 

BEAM 
ND. 

N 

SPECIFIC 

W E 

SP.GR. 	S**2 

GRAVITY 

B 

S 	T SIGNIFICANCE 
LEVEL 

20 1 6 0.657 0.000 0.014 0. NS 
6 0.657 0.000 0.014 

20 2 6 0.659 0.000 0.013 0.224 NS 
12 0.658 0.000 0.013 

20 3 6 0.616 0.000 0.009 7.197 ** 

21 1 6 0.638 0.000 0.017 2.868 * 
21 2 6 0.622 0.000 0.013 5.530 ** 
21 3 6 0.634 0.000 0.011 4.066 ** 

22 1 6 0.675 0.000 0.019 2.172 * 
22 2 6 0.654 0.000 0.010 0.794 NS 

18 0.657 0.000 0.012 
22 3 6 0.662 0.000 0.010 1.048 NS 

24 0.658 0.000 0.012 

23 1 6 0.650 0.000 0.014 1.440. NS 
30 0.657 0.000 0.012 

23 2 6 0.655 0.000 0.011 0.227 NS 
36 0.656 0.000 0.012 

23 3 6 0.655 0.000 0.019, 0.254 NS 
42 0.656 0.00() 0.013 
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TABLE C-5 (a) 

BEAM 
TYPE 

BEAM 
NO. 

N 

MOISTURE 	CONTENT 

ELANGES 

M.C. 	S**2 	S 	T 
PERCENT 	- 

SIGNIFICANCE 
LEVEL 

20 1 6 10.1 0.565 0.752 0. NS 
6 10.1 0.565 0.752 

20 2 6 10.2 0.251 0.501 0.297 NS 
12 10.1 0.374 0.612 

20 3 6 10.1 0.228 0.477 0.240 NS 
18 10.1 0.110 0.551 

21 1 6 9.4 0.002 0.049 2.986 4.* 
21 2 6 9.6 0.034 0.185 2.225 * 
21 3 6 9.9 0.107 0.327 0.802 NS 

24 10.1 0.260 0.510 

22 1 6 9.9 0.209 0.457 0.475 NS 
30 10.0 0.244 0...494 

22 2 6 10.2 0.182 0..427 0,709 MS 
36 10.1 0.233 0.482 

22 3 6 10.1 0.142 0.377 o..34015 IS 
42 10.1 0.216 0,465 

23 1 6 10.0 0.097 0.311 0.435 NS 
48 10.1 0.200 0.447 

23 2 6 10.1 0.124 0.3ti2 0.025 NS 
54 10.1 0.189 0.435 

23 3 6 9.8 0.016 0.128 1.328 NS 
60 10.0 0.1/6 0.420 
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TABLE C - 5 (b) 

MO.! 	STURE 

W E 

CONTENT 

B 

BEAM BEAM N M.C. s**2 S T SIG1IFICANCE 
TYPE 	NO. PERCENT LEVEL 

20 1 6 7.8 0.078 0.279 O. NS 
6 7.8 0.078 0.279 

20 2 6 7.9 0.088 0.297 0.926 4S 
12 7.8 0.082 0.286 

20 3 6 8.0 0.061 0.246 0.977 NS 
/8 7.9 0.075 0.2/4 

21 1 6 7.9 0.054 0.232 0.197 NS 
24 7.9 0.067 0.259 

21 2 6 7.8 0.071 0.261 0,900 NS 
30 7.9 0.068 0.260 

21 3 6 7.9 0.039 0.197 0.064 NS 
36 7.9 0.062 0.?48 

22 1. 6 7.9 0.030 0.1(2 0.621 4S 
42 7.9 0.057 0.238 

22 2 6 8.3 0.109 0.330 3.789 ** 
22 3 6 7.9 0.027 0.165 0.415 NS 

48 7.9 0.053 0.229 

23 1 6 7.8 0.635 0.197 0.457 NS 
54 7.9 0.107 0.327 

23 i 6 8.2 0.181 0.425 2.460 * 
23 3 6 8.4 0.136 0.369 3.937 ** 



TABLE C- 

TORSIONAL 	RIGIDITY 

EXPERIMENTAL BOX BEAMS 

BEAM BEAM 	40. OF 
TYPE 	NO. READINGS 

A 
DEG 

REGRESSION ANALYSIS 

B 	SY 	SB 	R 
DEG/LB 

P-MAX 
LBS 

GJ 
LB-'IN**2 

20 1 8 -0.039 1.159 0.568 0.016 1.00 1.6 0.218E 05 
20 2 8 -0.007 1.023' 0.501 0.005 1.00 1.6 0.246E 05 
20 3 8 -0.043 1.137 0.557 0.019 1.00 1.6 0.222E 05 

21 1 8 -0.018 0.200 0.489 0.001 1.00 8.0 0.126E 06 
21 2 3 -0.021 0.199 0.486 0.001 1.00 8.0 0.127E 06 
21 3 8 -0.029 0.210 0.514 0.001 1.00 8.0 0.120E 06 

22 1 12 -0.012 0.131 0.472 0.001 1.00 12.0 0.173E 06 
.22 2 12 -0.023 0.143 0.515 0.001 1.00 12.0 0.159E Oh 
22 3 12 -0.006 0.140 0.503 0.001 1.00 12.0 0.163E 06 

23 1 15 -0.006 0.108 0.483 0.000 1.00 15.0 0.210E 06 
23 2 15 -0.001 0.115 0.513 0.001 1.00 15.0 0.198E 06 
23 3 15 -0.003 0.106 0.476 0.000 1.00 15.0 0.213E 06 
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Table C-7  

Southwell Plot for Centre-Loaded Beams  

Theta Vs. Theta/P2  

YI = A + BP 

Maximum Values 
Observed 

Test Beam Beam 	A 
	

B 
	

Theta Theta/P2 

Series Type No 

1 20 1 0.408E-02 	0.330E-03 	6.30 	0.615E-02 

20 2 0.111E-02 	0.853E-03 	4.25 	0.472R-02 

N 	= 	1 too small for calculations 

21 1 0.420E-04 	0.801E-05 	2.50 	0.625E-04 

21 2 0.231E-04 	-0.299E-05 	1.00 	0.209E-04 
21 3 0.104E-04 	0.887E-05 	1.85 	0.276E-04 

22 1 0.237E-05 	0.718E-05 	4.50 	0.347E-04 

N 	= 	1 too small for calculations 
22 3 0.111E-04 	0.585E-05 	3.50 	0.321E-04 

23 1 0.203E-05 	0.487E-05 	2.05 	0.122E-04 

N 	= 	1 too small for calculations 
23 3 0.351E-05 	0.441-05 	4.00 	0.216E-04 

2 20 1 0.942E-03 	0.678E-03 	2.75 	0.269E-02 
20 2 0.786E-03 	0.477E-04 	2.90 	0.959E-03 
20 3 0.129E-02 	-0.776E-04 	3.75 	0.104E-02 

N 	= 	2 too small for calculations 

21 2 0.667E-05 	0.105E-05 	1.50 	0.850E-05 
N 	= 	1 too small for calculations 

22 1 0.331E-05 	0.207E-05 	2.40 	0.845E-05 
22 2 0.535E-05 	0.331E-06 	1.40 	0.588E-05 
22 3 0.115E-05 	0.256E-05 	3.20 	0.938E-05 

N 	= 	0 too small for calculations 

N 	= 	1 too small for calculations 

23 3 0.283E-05 	0.115E-05 	3.10 	0.670E-05 

3 N 	= 	1 too small for calculations 
20 2 0.123E-04 	0.257E-04 	1.50 	0.507E-04 
20 3 0.401E-04 	0.429E-04 	3.50 	0.189E-03 
21 1 0.706E-06 	0.424E-06 	o.86 	0.107E-05 

N = 0 too small for calculations 

N = 0 too small for calculations 
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Table C-7  (Continued) 

  

Southwell Plot for Centre-Loaded Beams  

Theta Vs. Theta/P2  

Y1 = A + BP 

Test 
Series 
4 

Beam 
Type 

22 
22 

22 

Beam 
No 

2 
3 

1 

Maximum Values 
Observed 

Initial 	A 	B 	Theta 	Theta/P2 
Conditions 
e = +3.0in. 	N 	= 	0 too small for calculations 

	

0.221E-05 	0.845E-05 	3.20 	0.294E-04 

	

0.181E-04 	0.550E-05 	4.20 	0.437E-04 

e = 	0.0 	0.231E-05 	0.519E-05 	3.90 	0.226E-04 
N 	= 	2 too small for calculations 

22 3 0.105E-04 	0.433E-05 	3.95 0.289E-04 

22 1 e = -3.0in. 0.361E-05 	0.711E-05 	4.15 0.329E-04 
N 	= 	1 too small for calculations 

22 3 0.128E-04 	0.501E-05 	3.75 0.324E-04 

5 22 1 1 .0 	0.121E-04 	0.698E-05 	3.35 0.349E-04 
22 2 0.105E-04 	0.728E-05 	3.45 0.359E-04 
22 3 0.352E-05 	0.726E-05 	2.35 0.203E-04 

22 1 ('; = 	2.0° 	0.161E-04 	0.794E-05 	3.0o 0.383E-04 
22 2 0.158E-04 	0.673E-05 	2.60 0.332E-04 
22 3 0.914E-05 	0.666E-05 	3.4o 0.322E-04 

22 1 3.0° 	0.311E-04 	0.377E-05 	4.40 0.489E-04 
22 2 0.219E-04 	0.686E-05 	3.75 0.478E-04 
22 3 0.140E-04 	0.650E-05 	3.90 0.393E-04 

6 22 1 ex= 	0.5in. 0.222E-04 	0.202E-05 	3.15 0.308E-04 
22 2 0.357E-04 	0.266E-05 	4.6o 0.511E-04 
22 3 0.170E-0!+ 	0.495E-05 	4.65 0.414E-04 

22 1 ex= 	1.0in. 0.107E-03 	-0.120E-04 	4.65 0.638E-04 
22 2 0.591E-04 	-0.186E-05 	5.05 0.543E-04 
22 3 0.355E-04 	0.156E-05 	4.8o 0.469E-04 
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Table C-8  

Lateral Stability - Plywood Box Beams  

Experimental and Theoretical Loads  

Test 
Series 

Beam 
Type 

Beam 
No 

P Max 
Lbs 

Critical Loads, Lbs 
Exper. 	Theor. 

1 20 1 32.0 55.1 50.7 

20 2 30.0 34.2 50.7 

20. 3 30.0 -0.0 50.4 

21 1 200.0 353.4 264.8 

21 2 239.0 -0.0 262.7 

21 3 259.0 335.8 261.0 

22 1 360.0 373.2 343.8 

22 2 390.0 -0.0 340.1 

22 3 330.0 413.5 342.8 

23 1 410.0 454.o 384.8 

23 2 460.0 - 397.0 

23 3 430.o 476.0 387.7 

2 20 1 32.0 38.4 89.2 

20 2 55.o 144.8 89.1 

20 3 6o.o -0.0 88.7 

21 1 440.0 -0.0 466.1 

21 2 420.0 975.7 462.2 

21 3 500.0 -0.0 459.3 

22 1 533.0 695.o 605.1 

22 2 516.0 1737.7 598.5 
22 3 584.o 625.5 603.2 

23 1 540.0 - 677.2 

23 2 612.o 698.6 
23 3 680.0 934.0 682.3 

3 20 1 110.0 -0.0 195.4 

20 2 172.0 197.3 195.2 

20 3 136.0 152.7 194.1 
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Table C-8 	(Continued) 

Lateral Stability - Plywood Box Beams  

Experimental and Theoretical Loads  

Beam Type 22  

Theoretical loads in Test Series 5 and 6 
are for beams without initial lateral 
eccentricity, ex, or initial rotation, 

Test 
Series 

4 

Beam 
No 

1 

InitialP 
Condition 

e
Y 
 = +3.0 in. 

Max 
Lbs 

370.0 

Critical Loads, Lbs 
Exper. 	Theor. 

- 	313.9 
2 340.0 343.9 311.9 

310.0 426.3 312.6 

1 e
Y  = 
	0.0 355.0 375.1 343.8 

2 410.0 - 340.1 

3 340.0 446.7 342.8 

1 e 	= -3.0 in. 
Y 

415.0 438.9 373.7 
2 400.o - 368.3 

3 370.o 480.8 373.o 

5 1, -.1 ::, 	= 	1.0°  310.0 378.5 343.8 
2 310.0 370.7 340.1 

3 345.0 371.2 342.8 

1 = 	2.0°  280.0 354.8 343.8 
2 280.0 385.4 340.1 

3 325.o 387.4 342.8 

1 6) 	= 	3.0°  300.0 514.8 343.8 
2 280.0 381.9 340.1 

3 315.0 392.1 342.8  

6 1 ex  = 	0.5 in. 320.0 704.0 343.8 
2 300.0 613.7 340.1 
3 335.0 449.6 342.8 

1 ex = 	1.0 in. 270.0 - 343.8 
2 305.0 - 340.1 
3 320.o 801.3 342.8 



TABLE C-9 (a) 
STRAIN DISTRIBUTION DUE TO TORSION IN FLANGES OF BO BEAMS 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 1 

LOAD VS. STRAIN 

Y1 = A -1- 841+ (REGRESSION LINE) 
SYX= STANDARD ERROR OF ESTIMATE 
S8 = STANDARD ERROR OF REGRESSION COEFFICIENT 8 
R = CORRELATIUN COEFFICIENT 

STRAINS IN MICROINCHES (MAN.)/ IN. 

FLANGE NO. 1 
TEST RUN NO. 1 

LOCATION GAUGE 
NO. 	NO. 

A 	B 	SYX 
M.IN. M.IN./L8 M.IN. 

SB 
M.IN./18 

MAXIMUM 	VALUES 

	

OBSERVED 	CALCULATED 
R 	P 	Y 	YI 

LEIS 	M.IN. 	M.IN. 

1 1 17.2 -58.6 9.88 0.76 1.00 14.0 -813.7 -802.7 
1 2 -1.2 -1.7 1.47 0.11 0.99 14.0 -24.6 -24.6 
1 3 -6.5 45.1 3.95 0.31 1.00 14.0 627.5 624.2 

2 1 -10.3 47.5 6.27 0.48 1.00 14.0 660.1 654.4 
2 2 -2.0 1.8 1.71 0.13 0.98 14.0 24.5 22.9 
2 3 8.6 -40.1 4.96 0.38 1.00 14.0 -556.7 -553.0 

3 1 15.7 -51.8 8.77 0.68 1.00 14.0 -715.0 -708.9 
3 2 -2.0 5.9 1.68 0.13 1.00 14.0 82.1 80.5 
3 3 -14.2 54,3 8.44 0.65 1.00 14.0 752.4 746.0 

4 1 -15.8 52.4 9.59 0.74 1.00 14.0 728.2 718.4 
4 2 -2.0 -1.4 1.68 0.13 0.97 14.0 -19.3 -20.9 
4 3 13.7 -51.2 8.17 0.63 1.00 14.0 -710.1 -703.3 



TABLE C-9 (a) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 1 

LOAD VS. STRAIN 

(Continued) 

Y1 = A + 8.P (REGRESSION LINE) 
SYX= STANDARD ERROR OF ESTIMATE 
SB = STANDARD ERROR OF REGRESSION COEFFICIENT 
R 2° COKRELATION COEFFICIENT 

STRAINS IN MICROINCHES ( M. IN.1 / IN. 

FLANGE NO. 1 
TEST RUN NO. 2 

LOCATION GAUGE 
NO. 	NO. 

A 	B 	SYX 
M.IN. M.IN./LB M.IN. 

SB 
M.IN./LB 

MAXIMUM 	VALUES 

	

0 BSERVED 	CALCULATED 
R 	P 	Y 	Y1 

LBS 	M.IN. 	M.IN. 

1 1 14.3 -58.6 8.28 0.64 1.00 14.0 -813.7 -806.0 
1 2 0.4 -1.6 1.84 0.14 0.98 14.0 -24.6 *22.6 
1 3 -11.8 44.9 6.59 0.51 1.00 14.0 622.5 617.2 

2 1 *9.9 47.6 5.88 0.45 1.00 14.0 660.1 656.4 
2 2 1.2 1.7 1.46 0.11 0.99 14.0 24.5 24.5 
2 3 8.2 -40.1 4.99 0.38 1.00 14.0 *556.7 -553.8 

3 1 15.3 -51.8 8.30 0.64 1.00 14.0 -715.0 -709.7 
3 2 -0.8 6.1 1.84 0.14 1.00 14.0 82.1 84.1 
3 3 -12.1 54.7 7.88 0.61 1.00 14.0 762.1 753.6 

4 1 -13.3 52.7 7.95 0.61 1.00 14.0 733.0 724.5 
4 2 -0.0 *1.2 1.97 0.15 0.96 14.0 *14.5 -16.9 
4 3 11.7 -50.8 6.79 0.52 1.00 14.0 -705.3 -698.9 



TABLE C- 9 (a) 	(Continued) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 1 

LOAD VS. STRAIN 

Y1 = A + B*P (REGRESSION LINE) 
SYX= STANDARD ERROR OF ESTIMATE 
SB = STANDARD ERROR OF REGRESSION COEFFICIENT B 
R = CORRELATION COEFFICIENT 

STRAINS IN MI:ROINCHES (M.IN.)/ IN. 

FLANGE NO. 2 
TEST RUN NO. 1 

LOCATION GAUGE 
NO. 	NO. 

A 	B 	SYX 
M.IN. M.IN./L8 M.IN. 

SB 
M.IN./L8 

MAXIMUM 	VALUES 

	

OBSERVED 	CALCULATED 
R 	P 	Y 	Y1 

LBS 	M.IN. 	M.IN. 

1 1 25.0 -39.5 14.22 1.10 1.00 14.0 -536.9 -527.5 
1 2 0. 0. -0. -0. O. 14.0 O. O. 
1 3 -43.5 61.7 25.58 1.97 1.00 14.0 847.3 820.6 

2 1 -24.5 40.4 14.57 1.12 1.00 14.0 558.8 541.7 
2 2 0.8 -3.8 1.91 0.15 1.00 14.0 -54.2 -52.5 
2 3 55.6 -77.7 30.49 2.35 1.00' 14.0 -1049.0 -1032.3 

3 1 31.0 -50.9 20.07 ).55 1.00 14.0 -690.8 -675.9 
3 2 -2.8 3.4 2.48 0.19 0.99 14.0 48.3 45.1 
3 3 -32.0 52.0 17.46 1.35 1.00 14.0 708.7 695.8 

4 I. -28.3 44.9 15.71 1.21 1.00 14.0 611.7 599.9 
4 2 0.0 -2.0 1.44 0.11 0.99 14.0 -29.0 -27.8 
4 3 45.3 -75.4 24.69 1.91 1.00 14.0 -1024.5 -1009.8 



TABLE C - 9 (a) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 1 

LOAD VS. STRAIN 

(Continued) 

YI = A + B*P (REGRESSION LINE) 
SYX= STANDARD ERROR OF ESTIMATE 
SB = STANDARD ERROR OF REGRESSION COEFFICIENT B 
R = CORRELATION COEFFICIENT 

STRAINS IN MICROINCHES (M.IN.) / IN. 

FLANGE NO. 2 	• 
TEST RUN NO. 2 

LOCATION GAUGE 
NO. 	NO. 

A 
M.IN. 

B 	SYX 
M.IN./LB M.IN. 

SB 
M.IN./LB 

co 
MAXIAUM 	VALUES 	

otl 

OBSERVED 	CALCULATED 	# 
Y1 

LBS 	M.IN. 	M.IN. 

1 1 23.8 -38.3 14.18 1.09 1.00 14.0 -517.2 -512.7 
1 2 O. 0. -0. -0. 0. 34.0 0. 0. 
1 3 -34.5 62.4 19.55 1.51 1.00 14.0 847.3 838.7 

2 1 -24.1 39.2 14.15 1.09 1.00 14.0 539.2 524.1 
2 2 2.9 -4.0 2.16 0.17 0.99 14.0 -54.2 -53.4 
2 3 55.1 -79.0 35.31 2.72 1.00 14.0 -1073.5 -1051.5 

3 1 32.6 -50.5 19.76 1.52 1.00 14.0 -676.3 -673.9 
3 2 -2.0 3.5 1.68 0.13 1.00 14.0 48.3 46.7 
3 3 -27.5 51.7 15.62 1.21 1.00 14.0 708.7 696.2 

4 1 -35.6 45.4 19.63 1.51 1.00 14.0 606.8 599.9 
4 2 1.6 -1.8 1.55 0.12 0.99 14.0 -24.2 -23.3 

3 1-8.6 -76.4 2).55 2.05 1.00 14.0 -1039.2 -1021.7 



TABLE C-9 (b) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 2 

LOAD VS. STRAIN 

YI = A + B'P (REGRESSION LINE) 
SYX= STANDARD ERROR OF ESTIMATE 
SB = STANDARD ERROR OF REGRESSION COEFFICIENT B.  
R = CORRELATION COEFFICIENT 

STRAINS IN MICROINCHES (M.IN.) / IN. 

FLANGE NO. 	1 
TEST RUN NO. 1 

MAXIMUM 	VALUES 
0 B S E R V E D CALCULATED 

LOCATION GAUGE 	 A 	B 	SYX 	SB 	R 	P 	Y 	YI 
NO. 	NO. 	M.IN. M.IN./LB M.IN. M.IN./LB 	 LBS 	M.IN. 	M.IN. 

1 I 8.2 -11.5 6.21 0.19 1.60 35.0 -402.0 -395.4 
I 2 O. 0. -0. -0. O. 35.0 O. 0. 
1 3 -7.8 10.6 4.79 0.15 1.00 35.0 367.6 361.9 

2 1 -3.7 4.8 3.11 0.10 1.00 35.0 167.5 165.0 
2 2 3.3 0.3 2.43 0.08 0.86 35.0 1.4.7 13.9 
2 3 5.3 -5.7 4.55 0.14 1.00 35.0 -197.0 -192.5 

3 1 7.2 -10.7 4.53 0.14 1.00 35.0 -372.0 -367.1 
3 2 -2.8 1.9 1.51 0.05 1.00 35.0 62.8 62.0 
3 3 -10.9 13.1. 6.52 0.20 1.00 35.0 451.5 446.6 

1 - 2.0 4.2 2.13 0.07 1.00 35.0 145.6 146.4 
2 - 2.0 0.3 2.09 0.06 0.65 35.0 9.7 6.8 

3.5 -8.0 4. ,t -6 0.15 1,0,0 35.0 -275.4 -271.7 



. TABLE C- 9 (b) 	(Continued) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 2 

LOAD VS. STRAIN 

YI = A + 8.0iP (REGRESSION LINE) 
SYX= STANDARD ERROR OF ESTIMATE 
SB = STANDARD ERROR OF REGRESSION COEFFICIENT 8 
R = CORRELATION COEFFICIENT 

STRAINS IN MICROINCHES (M.IN.) / 

FLANGE NO. 
TEST RUN NO. 2 

MAXIMUM 	VALUES 
OBSERVED CALCULATED 

	

LOCATION GAUGE 	A 	B 	SYX 	SB 	R 	P 	Y 	YI 
NO. 	NO. 	M.IN. 	M.IN. M.IN./LB 	LBS M.IN. M.IN. 

1 1 6.5 -11.7 3.79 0.12 1.00 35.0 -406.9 -402.4 
1 2 .-2.9 -0.1 J..54 0.05 0.58 35.0 -4.9 -5.7 
1 3 -6.5 10.6 0.94 0.12 1.00 35.0 367.6 365.6 

2 1 -5.7 4.8 847 0.09 1.00 35.0 162.6 .  160.9 
2 2 -2.0 0.3 1.43 0.06 0.92 35.0 9.8.  9.4 
2 3 7.0 -5.7 4.42 0.14 1.00 35.0 -197.0 -194.2 

3 1 6.0 -10.7 4.33 0.13 1.00 35.0 -372.0 -367.1 
3 2 -2.4 2.0 2.66 0.08 0.99 35.0 67.6 66.4 
3 3 -11.3 13.4 7.07 0.22 1.00 35.0 466.0 456.7 

4 1 -1.2 4.3 2,65 0.08 1.06 35.0 150.5 149.3 
4 2 -0.8 0.4 1.55 0.05 0.96 35.0 14.5 12.9 
4 3 6.0 -8.0 4.86 0.15 1.00 35.0 -280.2 -274.2 



TABLE C- 9 (b) 	(Continued) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 2 

LOAD VS. STRAIN 

YI = A + B*P (REGRESSION LINE) 
SYX= STAND\RD ERROR OF ESTIMATE 
S3 = STAND%RD ERROR OF REGRESSION COEFFICIENT B 
R = CORRE-ATION COEFFICIENT 

STRAINS IN MICROINCHES (MAN.) / 

FLANGE NO. 	2 
TEST RUN NO. 1 

MAXIMUM 	VALUES 
0 8 S E R V E D CALCULATED 

LOCATION GAUGE 	A 	B 	SYX 	SB 	R 	P 	Y 	YI 
NO. 	NO. 	M.IN. M.IN./L8 M.IN. M.IN./LB 	LBS 	M.IN. 	M.IN. 

I 1 2.5 -3.4 2.01 0.06 1.00 35.0 -118.2 -118.2 
1 2 O. -0. -O. -0. O. 35.0 -0. -0. 
1 3 -8.6 6.3 9.39 0.29 0.99 35.0 216.7 213.1 

2 1 -6.1 10.4 3.89 0.12 1.00 35.0 357.8 356.6 
2 2 2.1 -0.3 1.84 0.06 0.92 35.0 -9.9 -9.4 
2 3 9.0 -13.2 6.51 0.20 1.00 35.0 -446.1 -451.4 

3 1 2.8 -5.4 2.09 0.06 1.00 35.0 -188.4 -186.4 
3 2 0.0 0.3 1.44 0.04 0.94 35.0 9.7 10.9 
3 3 -5.3 4.5 3.34 0.10 1.00 35.0 155.3 153.3 

4 1 -8.1 10.2 4.80 0.15 1.00 35.0 354.4 349.1 
4 l 1.2 -0.1 1.58 0.,05 0.76 35.0 -4.8 -3.6 
4 1 10.6 -14.2 6.60 0.20 1.00 31.0 -495.1 -487.3 



TABLE C- 9 (b) 	(Continued) 

REGRESSION ANALYSIS 

TORSION TEST 

TEST SERIES 2 

LOAD VS. STRAIN 

YI = A 	B*P (REGRESSION LINE/ 
SYX= STANDARD ERROR OF ESTIMATE 
SB = STANDARD ERROR OF REGRESSION COEFFICIENT 
R = CORRELATION COEFFICIENT 

STRAINS IN MICROINCHES (M.IN.)/ IN., 

FLANGE NO. 	2 
TEST RUN NO. 2 

LOCATION GAUGE 
NO. 	NO. 

A 	B 	SYX 
M.IN. M.IN./LB M.IN. 

SB 
M.IN./LB 

MAXIMUM 	VALUES 

	

OBSERVED 	CALCULATED 
R 	P 	Y 	Y1 

LBS 	M.IN. 	M.IN. 

1 1 2.1 -3.4 1.71 0.05 1.00 35.0 -118.2 -116.6 
1 2 O. -0. -0. -0. 0. 35.0 '0. -0. 
1 3 -5.3 6.5 3.88 0.12 1.00 35.0 226.6 220.9 

2 1 -7.8 10.5 4.96 0.15 1.00 35.0 362.7 359.5 
2 2 2.1 -0.3 1.84 0.06 0.92 35.0 -9.9 -9.4 
2 3 4.9 -12.9 4.26 0.13 1.00 35.0 -446.1 -441.3 

3 1. 3.6 -5.3 2.42 0.07 1.00 35.0 -183.6 -182.4 
3 2 -1.2 0.3 1.58 0.05 0.94 35.0 9.7  10.9 
3 3 -4.9 4.6 3.18 •0.10 1.00 35.0 155.3 155.3 

4 1 -5.3 10.2 3.90 0.12 1.00 15.0 349.5 351.1 
4 2 O. O. -0. -0. O. 35.0 O. O. 
4 3 8.6 -14.0 5.00 0.15 1.00 35.0 -485.3 -480.4 
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TABLE C- 10 (a) 

TORSION TEST 

SHEAR STRAIN DISTRIBUTION 

FLA'IGES, 1.69.1.69 IN**2 DOUGLAS FIR 

APPLIED TORSION = 12.0 IN-LB 

SHEAR STRAINS, MICROINCHES/INCH 

LOCATION 

1 

SECTION1 

-104. 

SECTION 2 

-106. 
2 88. 104. 

3 -101. -103. 
4 118. 121. 

TABLE 	10 (b) 

TORSION TEST 

SHEAR STRAIN DISTRIBUTION 

BOX SECTION, 2.19.6.75 IN**2 
WEB, 0.25 IN. BIRCH PLYWOOD 
FLA4GES, 1.69*1.69 IN**2 DOUGLAS FIR 

APPLIED TORSION = 24.0 IN-LB 

SHEAR STRAINS, MICROINCHES/INCH 

SECTION1 	SECTION 2 
LOCATION 

	

-22. 	-24. 
2 
	

10. 	12. 

3 	-10. 	-10. 
4 
	

23. 	24. 
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LATERAL STABILITY OF BERMS 
LORD AT CENTRE 
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LATERAL STABILITY OF BEAMS 
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TEST SERIES 1 
BERM TYPE 21 
BERMS NO. 1,2 RNO 3 
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LATERAL STABILITY OF BEAMS • 	
LORD AT CENTRE.  

LATERAL STABILITY OF BEAMS 
LORD AT CENTRE 

TEST SERIES 1 

	

z 	
BERM TYPE 23 
BEAMS NO. 1.2 AND 3 
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7.0( 

THETA (DEGREES) 
Figure C-1(a) (Continued) Southwell plot, Test Series 1 
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Cr) LATERAL STABILITY OF BEAMS 
LORD AT CEJTRE 
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LATERAL STABILITY OF BEAMS 
LORD AT CENTRE 

CD GD 

TEST SERIES 2 
BERM TYPE 21 
BERMS NC. 1,2 AND 3 
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Figure C-1(b) Southwell piott  Test Series 2 



- 197 - 

LRTERAL STABILITY OF BEAMS 
LORD RT CENTRE 

TEST SERIES 2 
BERM TYPE 22 
BEAMS NO. 1,2 AND 3 

TEST SERIES 2 
BEAM TYPE 23 
BERMS NO. 1.2 AND 3 
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Figure C-1(b) (Continued) Southwell plot, Test Series 2 
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0 	LATERAL STABILITY OF BEAMS 
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Figure C-1(c) Southwell plot, Test Series 3 
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Figure C-1(d) Southwell plot, Test Series 4 
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LATERAL STABILITY OF BEAMS 
LOAD AT CENTRE 
e = 3.0 in. 

TEST SERIES 4 
BERM TYPE 22 
BERMS NO. 1 1 2  FIND 
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THETA (DEGREES) 

5,00 	5.S0 

Figure C-1(d)(Continued) Southwell plot, Test Series 4 
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LATERAL STABILITY OF BEAMS 
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Figure C-1(e) Southwell plot, Test Series 5 
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LATERAL STABILITY OF BERMS 
LORD AT CENTRE 
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Figure C-1(e) (Continued) Southwell plot, Test Series 5 
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LATERAL STABILITY OF BERMS 
LOAD AT CENTRE 
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Figure C-1(f) Southwell plot, Test Series 6 
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SHEAR DEFLECTIONS OF COMPOSITE BEAMS  

by 

C. K. A. STIEDA 

INTRODUCTION 

When computing the deflections of beams, uslmlly only 

those which result from the deformations caused by bending 

stresses are considered. Deformations, however, also occur 

as a consequence of shear stresses and, in certain types of 

beams, the resultant deflections may be of considerable 

magnitude and should be considered in addition to the bending 

deflections. 

Shear deflections of beams of isotropic materials, 

homogeneous throughout the whole section have been considered 

in detail by Newlin and Trayer (1924), Timoshenko (1955), 

Hahne (1962) and Cowper (1966). Of particular interest is 

an approach recently taken by Cziesielski (1965), who has 

used the strain energy method to calculate shear stiffness 

factors for beams having box-sections, I sections or cross-

sections of unsymmetrical shape. A similar approach has also 

been taken recently by Mazur (1967), who also considers the 

shear deflection of beams with I-sections. 

The purpose of the present analysis is to apply 

Cziesielski's approach to composite beams, constructed from 

plywood and solid timber and to derive an expression for the 

shear stiffness factor which will take into account the 

difference in the moduli of elasticity for the web (plywood) 

and the flanges (solid timber) of such beams. It will be 
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shown that, for the range of modular ratios usually 

encountered, the difference in the moduli of elasticity for 

web and flange has, indeed, little effect on the magnitude 

of the shear deflection. It is sufficient therefore, to 

calculate the shear deflection of composite timber beams on 

the basis that the section is continuously homogeneous through-

out web and flanges. A procedure for calculating shear 

deflections will be given. The effect of differences in the 

modulus of rigidity on the shear deflection are not included 

in the present analysis. 

SHEAR DEFLECTION 

As shown by Cziesielski (1965), the shear deflection of 

box- or I-beams can be derived from the condition that the 

work done by the shear forces V acting on a beam element of 

length dx must be equal to the integrated work of the shearing 

stresses, v (y), (Fig. 1) over the whole area A of the cross-

section. 

i V ;s = 	G c2(y) dA 
	(1) 

A 

where G 	= modulus of rigidity 

es 	effective shear deformation of the section 

It is assumed here that the modulus of rigidity of web 

and flange are the same. If the grain of the plywood is 

oriented either parallel or perpendicular to the grain of the 

timber, the modulus of rigidity of plywood will indeed be 

approximately the same as that of timber of the same species 

(Curry, 1964). If the grain of the plywood is oriented at 

45 degrees to the span, of the beam, the effective modulus of 

rigidity of the plywood is about three times that for parallel 
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orientation (CP 112:1967). This effect has not been 

considered as yet. However, since the largest contribution 

to the shear deflection is provided by the web, as will be 

shown below, it is not anticipated that a difference in the 

moduli of rigidity between web and flange will affect the 

shear deflection to any large extent. 

When the shearing stress distribution over the cross-

section is known, it is possible to evaluate the integral in 

Equation 1. The expression for the effective shear deformation 

es can then be written in the form 

e 	 Y-- s 	GbhF (2) 

where 	b and h, respectively, are the overall width and 

height of the section. 

The quantity F is called the shear stiffness factor and will 

be derived below. From Equations 1 and 2, it follows that 

the shear stiffness factor is defined by 

F 	
bh fv2(y)dA 
	

(3) 

The additional deflection due to shear stress will be 

called ws
. From Figure 1, it will be seen that the shape 

of the shear deflection curve is given by 

dws es dx 

The increment dx here is in the direction of the span, 

x being measured from one of the supports. Substitution of 

es in Equation 2 yields 

1/2  
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dws 	V 0 dx GbhF 

Integration of this equation along the length of the 

beam up to x gives the shear deflection at the point x 

Vdx ws 
	

GbhF 
	

(4) 
0 

For beams of constant section the shear deflection 

becomes 

W
s 
 = 

 Gbh, 	Vdx 	(5) 

dd  

And for simply supported beams, where Vdx = M(x), 

the shear deflection at a point x is given by 

ws = GbhF 
	

(6) 

For a cantilever beam the shear deflection at the tip 

of the beam can also be calculated with Equation 6, provided 

the moment used in the calculation is the fixed end moment of 

the cantilever. 

To obtain an explicit expression for the shear stiffness 

factor F, an expression for the shear stresses, v(y), must be 

derived and the integral in Equation 3 must be evaluated. 

Calculation of shear stresses in composite beams involves the 

bending stresses F(y), which will be given first. 

BENDING STRESS IN COMPOSITE BEAMS 

It will be assumed that the engineer's theory of bending 

also applies to composite sections, i.e. sections that were 
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plane prior to bending will be assumed to remain plane 

during bending. As a consequence the stiffness of the 

composite section, - the product of the second moment of 

area, I, and the effective modulus of elasticity of the 

section, E - can be obtained by adding the stiffnesses of 

the individual components of the section 

Ei = E1I1 + E2
I
2 
	 (7) 

where E1 (E2) = modulus of elasticity of flanges (web) 

I1 (I2) = second moment of area of flanges (web) 

All second moments of area are nnIculated with respect 

to the centroid of the composite section. The total 

second moment of area is 

(8)  

The stiffness of the composite section, given by 

Equation 7, should be used for calculating the bending 
deflections in the normal manner (Hahne, 1962, Timoshenko, 1955). 

The flexural stresses in the flange at a distance y from 

the centroid of the section (Fig. 2) due to a bending moment 

M (x), are given by 

f (y) - E-  7  

Similarly, the flexural stresses in the web are 

f2(y) = M(x) E2 
y 	(10) 

I E 

Introducing the modular ratio n = E2/E1  and taking account 

of Equation 7, the flange stresses can also be written as 

M() y f (y) - 
1

x  
+ nI

2 

M(x) E1 
(9)  
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Correspondingly, the flexural stresses in the web are 

f 
'" = 2 	I1  4. nI2 (12) 

It should be noted here that Equation 11 gives the stresses 

in the material having a modulus of elastcity E1, i.e. in 

Fig. 2 this is the area (b - t)d called here the "flange". 

Similarly, "web" refers to all material having a modulus 

of elasticity E2. 

If plywood is considered as a material that can 

effectively carry loads only with those veneers that are 

stressed in the direction of the wood fibres - a design 

method generally adopted in North America (CSA-086, 1959) 

then the modular ratio n usually can be replaced by the 

veneer ratio tv1  i.e. the ratio of the sum of all veneer 

thicknesses oriented parallel to the span to the total 

plywood thickness (Stieda, 1967). FUrthermore, Equation 12, 

which in its present form is calculated for the total 

plywood thickness, then reduces to the form given by 

Equation 11, i.e. stresses for web and flange can be 

calculated with the same equation in the "parallel plies 

only" approach. 

On the other hand, if plywood box- or I-beams are 

designed according to the "full cross-sectional" method 

(Curry, 1964, Booth and Reece, 1967), Equations 11 and 12 

should be used to calculate the stresses in the flange and 

web separately. 

Both methods of analysis lead to the same expression 

for the shear stiffness factor F. In the present analysis 

the "full cross-section" approach recommended by the British 

Standard Code of Practice is being used (Booth and Reece, 1967). 

Accordingly, shear stresses will be derived on the basis 

of Equations 11 and 12. 



F1 =  (I1+n12) 
- 	y dY 	(15) 

M(x) 
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SHEAR STRESSES IN COMPOSITE BEAMS  

In the engineers' theory of bending shear stresses 

are calculated by considering the equilibrium of forces 

acting on an element such as shown in Fig. 3. This element 

is an isolated part of a beam-. On the two faces a distance 

dx apart normal f and shear stresses v are acting. On the 

lower face, parallel to the x-direction, only shear stresses 

are present. The equilibrium of forces in the x-direction 

requires that the total shear force on the lower surface is 

equal to the difference between the forces on the element 

due to normal stresses on flange (F1) and web (F2). 

	

v(y).b(Y).dx = (F1   + F2) ) 	(F1 + F2) x=x+dx 	x=x 

	

= dF1  + dF2 
	

(13) 

where b(y) = width of shear area at a distance y from 

the centroid of the beam cross-section. 

The contribution of one flange to the total force on the 

element dx is 

F1  = 	1(y) (b - t) dy 

1 

where the lower limit 1 of the integral is equal to either g 

if y is larger than (c - d) - or (c - d) - if y is less than 

(c - d) 

In view of Equation 11 the force on the flange can be 

written 

The integral in Equation 15 represents the static moment 

of the area A(y) a (b - t)(c - y) about the centroid of the 
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section. This static moment is frequently called Q(y). 

The difference in the forces acting on the flange (Equation 

13) therefore becomes 

dM(x) 
dF1 = I1 + nI2 Q1(Y)  

where dM(x) = M(x ± dx) M(x) 

and Q1(Y) =f(bt) y dy 

For the web the difference between the forces on 

either side of the element is 

dM(x) dF2 = I
1  + nI2 

n Q2(y) (18) 

where Q2(y) is the static moment of the partial web area 

A(y) = t.(c - y) about the centroid of the whole cross-

section 

1 

Q2(y) = 	tYdY 
	

(19) 

With these two expressions for the difference in the 

direct forces on the element (c - y) dx the shear stress 

can be calculated from Equation 13: 

dM(x) 	(Q1(Y) 	n Q2(y)) 

v(Y)  = M173) 	(I1 n12) 

Or, since the shear force V = dM(x)/dx, 

V  Q1(Y)  nQ2(Y) v(y) = 75) 
I1  + nI2 

(16)  

(17)  

(20)  

(21)  
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In beams with box- or I-sections the width of the web 

(b(y) = t) will be only a fraction of the total width of 

the beam (b(y) = b). It is apparent therefore from Equation 

21 that the shear stresses in the web will be several times 

those in the flange. In addition, the decreasing value of 

Q(y) as y increases (Equations 17 and 19) will bring a 

further reduction in the shear stresses of the flange as 

compared with those in the web. 

The shear stiffness factor F can now be obtained by 

combining Equations 3 and 21.  

(
I
1 
+ nI2)2 

F 

bhf 
 [Q1(y) nQ2(y)] 2/b2(y) dA (22) 
A 

For any particular cross-section, the integral in 

Equation 22 can be readily evaluated. As an example 

symmetrical box- and I sections will be considered. The 

dimensions of the box-section are given in Fig. 2. The 

depth d1  and d2  of the compression and tension flanges shall 

be equal, d1  = d2  = d. If t is taken to be equal to the 

summation of all individual web thicknesses, then the 

expressions given below will also apply to an I-section 

with a single web of thickness t. 

For the whole cross-section the second moments of area 

in Equation 22 are 

= 4-(b - t)d(h d)2  + 	(b - t)d3  

1 th3  
12 = 12 
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The numerator in Equation 22 can theretVre be written 

+ nI2)2  = (bh3)2  c 2  1 	(23) 

where C1  = 	(1 - 	)(3 - 6 a, + 4 	4-  12 :2--n 0 (24) a,  

and 	a, = d/h 

P = t/b 

To calculate the denominator of Equation 22, the 

integral has to be calculated in two parts, for b(y) = t 

and b(y) = b. Considering first the region between 

y = 0 and y = ih - d, i.e. b(y) = t, it is apparent that 

the contribution of one flange area to the static moment 

is constant 

Qi  = ibh2  all - m)(1 - R ) 	(25) 

The contribution of the web area for one half of the 

section is found from Equation 19 as 

Q2(y) = 1
4  h2 R [1 - (2Y/h)2J 	(26) 

With these two expressions for the static moments Ql  

and Q2  the denominator in Equation 22 for the region, where 

b(y) = t, becomes 

t O. 5h (I-2a) 

2 bh 	rfQi(y) + nQ2(Y) .] 2/b2(Y)  dy dx 

0-1  

= b2h6C2 (27) 

where 02 = a, 2(1 - 2 a)(1 -a )2(1  - 0)2/13  
1 

n a  (1 - ) (1 - 2 a) (1 + 2 a, - 2 a2) (1-p 12 

( 
	2 12'13+ if)0. + 	n

2  - 2 a,)(1 + 2a, + 4a120 

	(28) 
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Similarly for the wider part of the box section, i.e. 

b(y) = b and y larger than ih - d, the static moments are 

Q1(Y) = 	bh2(1 -p ) E-1 - (2y/h)9 
	

(29) 

Q2(y) = j bh2  p C1 - (2y/h)2.1 
	

(30) 

The second part of the denominator in Equation 22 

therefore becomes 

b 	0. 5h 
gbh 
	

Q1(y) + nQ2(y)1 2/b2  dy cbc: 

0 	6. 5h(1-2a,) 

b2h6C3 
	 (31) 

where C3  = 1 (1 - 0 + n 0)2(10 m3  - 15a 4 + 6c0) 	(32) 

Finally with these two expressions, Equations 27 and 31, 

for the double integral in Equation 22 together with 

Equation 23 the shear stiffness factor F can now be written 

in a dimensionlar form as 

= 
	Cl2 	

(33) 
C2 + C3 

where C1, C2 and C3 are given by Equations 24, 28 and 32. 

CALCULATIONS  

The shear stiffness factor F, Equation 33, has been 
calculated for a number of flange-depth to beam-height 

ratios , web-thickness to beam-width ratios , and modular 

ratios n. Ratios of n for plywood composite timber sections 

usually range from 0.5 to 0.7. For a homogeneous section 
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with the same material for flange and web n = 1.0. 

For a modular ratio of n = 1.0 the values of the shear 

stiffness factor F become identical to those given by 

Cziesielski. Shear stiffness factors for modular ratios 

of n = 0.5 and n = 1.0 are given in Tables 1 and 2. 

EXPERIMENTAL WORK  

To check the validity of Equation 5, several simply 

supported plywood box beams were loaded and the resulting 

deflections were observed. The bending stiffness, EI, of 

these beams was calculated from the deflections at the centre 

relative to the load points, when beams were loaded at the 

third points. 

This bending stiffness was used to compute the overall 

deflection due to bending alone. An experimental shear 

deflection, ws, was then calculated by subtracting from the 

observed overall deflection, w, the calculated bending 

deflection, wb. 

ws 	= w - w b 
	 ( 34 ) 

These experimental shear deflections were obtained for 

sixteen-foot long beams loaded first at the centre and then at 

the third points as well as for eight-foot long beams loaded at 

the centre only. Experimental shear deflections were then com-

pared with deflections computed with Equation5 . The modulus of 

rigidity for these calculations was determined experimentally 

from small shear plate specimens cut from a number of the test 

beams after the main tests had been completed. 

The cross-sectional dimensions of the test beams are 

given in Table 3. All beams were a nominal sixteen inches 

deep. Three different flange depths and two flange widths 

are represented by the six beam types. Flanges were Douglas 
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fir lumber, while the webs consisted of 5/16 in Douglas 

fir plywood. The plywood was nail-glued to the flanges. 

The results of these tests are given in Tables 4 to 6. 
Both the experimental and the computed deflections show that 

shear deflections in box beams can contribute considerable 

to the overall deflections. For the sixteen-foot long beams, 

with a span to depth ratio of 11.6, the computed shear deflections 

range from about i to i of the bending deflection, the range for 

the experimental values is somewhat higher. For the short eight-

foot long beams, however, the shear deflection equals or oven 

exceeds the deflection due to normal stresses. 

DISCUSSION 

A comparison of the shear stiffness factors given in 

Tables 1 and 2 shows that for the ratios of moduli of elasticity 

usually encountered in plywood box- and I-beams shear deflections 

are not greatly affected by any difference in the moduli of 

elasticity of flange. and web. For example, a plywood box-beam 

with a flange-depth to beam-height ratio of a, = 0.2 and a web-
thickness to beam-width ratio of (3= 0.1, having a modular ratio 

of n = 0.5, has a shear stiffness factor of 0.107. A beam of 

the same dimensions, but with the same material in flange and 

web, i.e. n = 1.0, shows an identical shear stiffness factor. 

Only if the web thickness of the same beam is increased to 

0.15 times the beam width, does .the shear stiffness factor 

show any difference at n31  between the homogeneous section and 

the plywood beam. Even for a rather unrealistic ratio of 

0 = 0.4, the value of the shear stiffness factor for the 

plywood box beam is only two per centlarger than that for the 

beam with a modular ratio of 1.0. 

In engineering calculations, differences of this order of 

magnitude are insignificant, particularly so when one considers 

the low accuracy of the value for modulus of rigidity which 
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must be used to calculate shear deflections. It is suggested, 

therefore, that the shear stiffness factors for a modular 

ratio of 1.0 be used also for the calculation of shear 

deflections of plywood box-beams. 

Comparing calculated and measured deflections, it is 

found that for short beams, shear deflections can be over 

twice the wide of the corresponding bending deflections. 

Considering the variability of G and the resulting errors 

in the calculated shear deflections, the observed shear 

deflections agree reasonably well with those calculated with 

Equation 5. The use of this equation together with the 

appropriate shear stiffness factor from Table 2 is, therefore, 

suggested as an acceptable alternative to the method presently 

recommended in the Canadian Standard for "Engineering Design 

in Timber". (Canadian Standards Association, 1959). 

SUMMARY 

An analytical expression for the shear deflection of 

composite box- or I-beams has been derived. A dimensionless 

factor, the shear stiffness factor, F, has been calculated for 

various values of the ratio n for the moduli of elasticity for 

web and flange. The results show that this factor differs 

little from that computed for similar beams with the same 

material in flange and web. To find the total deflection of 

the beam the shear deflections calculated in this manner 

should be added to the bending deflections computed in the usual 

way. Equation 33 for the calculation of the shear stiffness 
factor.is identical to that given previously by the author in a 

report, where the load-carrying capacity of the plywood was con-

sidered in terms of veneers oriented parallel to the span of the 

beamt(Stieda, 1967). Finally, experimental data are presented 

which indicate that this method gives a reasonable estimate of 

the shear deflections. 
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TABLE I - SHEAR STIFFNESS FACTOR F FOR PLYWOOD BOX- AND I-BEAMS  

n 	= 0.50 

ALPHA = d/h O. 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500 

BETA 	= tib 

0.05 0.042 0.050 0.050 0.052 0.055 0.059 0.067 0.080 0.109 0.185 0.833 

0.10 0.083 0.098 0.100 0.103 0.107 0.116 0.129 0.153 0.200 0.314 0.833 

0.15 0.125 0.146 0.148 0.152 0.158 0.170 0.188 0.220 0.278 0.408 0.833 

0.20 0.167 0.193 0.196 0.200 0.208 0.221 0.243 0.280 0.346 0.48o 0.833 

0.25 0.208 0.238 0.242 0.247 0.256 0.271 0.295 0.336 0.405 0.537 0.833 

0.3o 0.250 0.283 0.287 0.293 0.302 0.318 0.345 0.387 0.457 0.583 0.833 

0.35 0.292 0.327 0.332 0.337 0.347 0.364 0.391 0.434 0.504 0.62/ 0.833 

0.40 0.333 0.370 0.375 0.381 0.391 o.408 0:435 0.478 0.545 0.653 0.833 

0.45 0.375 0.412 0.418 0.424 0.434 0.451 0.477 0.519 0.582 0.680 0.833 

0.50 0.417 0.453 0.460 o.466 0.475 0.491 0.517 0.557 0.616 0.704 0.833 



TABLE 2 - SHEAR STIFFNESS FACTOR F FOR PLYWOOD BOX- AND I-BEAMS  

n = 1.00 

ALPHA = d/4 

BETA 	= t/10 

O. 0.050 0.100 0.150 0.200 0.250 0.300 0.550 0.400 0.450 0.500 

0.05 0.042 0.049 0.050 0.052 0.054 0.059 0.067 o.o8o 0.108 0.185 0.833 

0.10 0.083 0.097 0.099 0.102 0.107 0.115 0.129 0.153 0.200 0.313 0.833 

0.15 0.125 0.143 0.146 0.150 0.157 0.168 0.187 0.219 0.278 3.408 0.83 

0.833 
0.20 0.167 0.188 0.192 0.197 0.205 0.219 0.241 0.279 0.345 0.480 

0.25 0.208 0.231 0.236 0.242 0.252 0.267 0.293 0.334 0.404 0.536 0.833 

0.30 0.250 0.274 0.280 0.287 0.297 0.314 0.341 0:385 0.456 0.582 0.833 

0.35 0.292 0.316 0.323 0.330 0.341 0.359 0.387 0.432 0.502 0.520 0.833 

0.40 0.333 0.358 0.365 0.372 0.384 0.402 0.431 0.475 0.544 0.552 0.833 

0.45 	, 0.375 0.399 0.407 0.414 0.426 o.444 0.473 0.516 0.581 0.680 0.333 

0.50 0.417 0.440 o.448 0.455 0.466 0.484 0.512 0.554 0.614 0.703 0.833 
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TABLE 3  

SECTION PROPERTIES OF BEAMS 

Beam 

Type 

Total 

Depth 

h,in. 

Flange 

c( =d/h /1 =t/b 

Moment 

of Inertia 

I,in4 

btatic 

Moments 

Q
l'

in3 Q
2'
in3  

Depth 

d,in. 

Width 

(b-t),in. 

21 15.9 5.60 1.40 0.35 0.28 580 52 	4o 

22 15.9 3.20 1.40 0.20 0.28 500 41 	28 

23 15.9 1.40 1.40 0.09 0.28 333 26 	14 

24 15.9 5.65 2.94 0.36 0.16 1084 97 	85 

25 15.9 2.8o 3.20 0.18 0.15 909 71 	59 

26 15.9 1.40 3.20 0.09 0.15 603 45 	33 

Total plywood thickness t = 2 x 0.29 = 0.58 in. 
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TABLE 4  

AVERAGE DEFLECTIONS OF SIXTEEN-FOOT LONG  

PLYWOOD BOX BEAMS LOADED AT THE THIRD POINTS  

TOTAL LOAD P = 2000 lb 

Beam 

Type 

Deflections, inches 

(average 	from 	three beams) 

Bending 

Test 	Calculated 

Shear 

Test 	Calculated 

21 0.212 0.205 0.037 0.054 

22 0.219 0.224 o.o44 0.060 

23 0.318 0.331 0.059 0.076 

24 0.116 0.114 0.037 o.o48 

25 0.121 0.123 0.044 0.057 

26 0.165 0.186 0.078 0.069 
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TABLE 5  

AVERAGE DEFLECTIONS OF SIXTEEN-FOOT LONG  

PLYWOOD BOX BEAMS LOADED AT THE CENTRE  

TOTAL LOAD P = 2000 lb 

Beam 

Type 

Deflections, inches 

(average 	from three beams) 

Bending 

Test 	Calculated 

Shear 

Test 	Calculated 

21 o.251 0.241 0.068 0.082 

22 0.263 0.268 0.074 0.093 

23 0.374 0.409 0.120 0.118 

24 0.138 0.133 0.049 0.073 

25 0.145 0.147 0.075 o.o88 

26 0.195 0.220 0.117 0.'04 
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TABLE 6  

AVERAGE DEFLECTIONS OF EIGHT-FOCT LONG 

PLYWOOD BOX BEAMS LOADED AT THE CENTRE  

TOTAL LOAD P = 2000 lb 

Beam 

Type 

No. of 

Beams 

Deflections, inches 

Bending 

Test 	Calculated 

Shear 

Test 	Calculated 

21 4 0.028 0.029 0.030 0.038 

22 3 0.032 0.031 0.032 0.046 

23 3 0.036 0.050 0.042 0.059 

24 4 0.017 0.015 0.024 0.035 

25 3 0.018 0.016 0.033 0.044 

26 2 0.022 0.026 0.055 0.056 
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Fig. 1 Effective shear deformation of beam element dx. 
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