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ABSTRACT

Given eny outomorphism T on o measure space (X, £, M)
there is (see K.Jacobs (8] or V.i.Rokhlin [16)) en associated
unitary operdtor U onILi such that Uf(x) = £(Tx) for all
:f;‘eL,?° We first define and investigate the properties of the

tnbradmecd by B0 Kellmegesew [32] 028) aad
metric invariant entrophy,(see Ja. G. Sinai (18], in order to
show (eee—bhviloKolmogerev—fitl-and-[223) that there exist
geiiggally equivalent (see V.4.Rokhlin [16]) Tl,\T2 such that
the associated U, U, are not ggggigally equival ent (sée
V.i.Rokhlin [151).

Having done this we turn to the concepts of Kolmogarov
‘and regular automorphisms on finite measure spéces. Then
following V.ARokhlin [15) and L.Sucheston [21] we show that
both these concepts imply mixing of all degrees. | Further
investigation enables us to deduce that T is o Kolmogorov
automorphism if, and only if, it is o regular’automorphism.

An immediate question then is whother or not T being a mixing
of all degrees implies T is a.Kolmogorov automorphism? We
answer this in the nogative by constructing a stationary Gaussian
process which we show to be a mixing of all degrees and which
cannot be a Kolmogorov automorphism since its spectrum is not

a Lebesgue spectrum as is that of all Kolmogorov automorphisms
see K. Jacobs {81].

In the course of the above we show that if o Gaussian

process is a mixing of degree 1 then it is a mixing of all degrees.



In the lost chapter we extend the notion of a
Kolmogorov automorphism to o -finite measure spaces and
prove (a fact which is clear for finite measure spaces)
that in this case also T 1is a Kolmogorov automorphism
implies that 'I‘ is ergodic. An open question for

o -finite measure spaces is what mixing properties does a

Kolmogorov aut omorphism have?
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1. INTRODUCTION

1-1 NOTATION

As ususl we denote "is a member of" b& ¢ and the union,

intersection, difference and symmetric difference of two seta by v,

a, -, and ® respectively. If A is a subset of B then we write
A ¢B., I will denote the integers and * the strictly positive
integers. If X is an abstract space then by g o-algebra « , we
mean a collection of subsets of X such that:
(1) A,Bew impiy A2B, AaB € x ;
(i) Ajeot, ie M+  implies ig,f.aie o g
(ii1) Xeéewx.
We note that it is usual to define a g-algebra to be rather more
general then the above in that (iii) is replaced by
(1i1)/ « contains a "unit"
and then (i), (ii), (1ii) become necessary and sufficient conditions
for o to be a ¢o-algebrs whose unit is X. (see P.R,Halmos [ 5] ).
However, the above definition is adequate for our purpose. If o
is a o-algebra, then, since AvB = (A*B)# (AnB), A-B = (42 B)n 4,
we have that A,B & « imply AvB e« , LA-B€x and since . _

i?f‘éi:h JF'- iyﬂ(x_"“i) we hove that Aiéﬂt,i € fTimplies :'LQF‘*A:'LE“”

Gixen X and g ¢-algebra o« , then by a measure on (X, o) we mean

a real valued, non-negative function M whose domain of definition
is o and which satisfies:
a) P (¢) =0, whefe here as always we use ¢ to denote the null
set; |

i) if A€o, i el are such that hyn ks =@ if 1] then
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PUrds) = Frraphy)
We point out that we are using "measure” for what in measure theary
is usually called "positive measure", (see P,R.Halmos [51). Ve
refer to (X, o, pt) as a measure space, -If € is a mapping of a
measure space (X, «, L ) into anpther measure space (Y ,/6 s &) such
that if 4 €/ then B7Aex and p(67'A) = N (A) then we sey that
8 is a homomorphism, If & is a one-to-one mapping such that 8 and
9_1 are homomorphism, then 6 is an isomofphism and we gay that
(X, e, r) and (Y,p, A ) are isomorphic, If the two measure spaces
coincide then = homomorphism is called an endomorphis.: -nd an
isomorphism, an automorphism. An automorphism T of the apace
(X, ¢, 1) is called isomorphic to the automorphism § of the space
(Y,/8,X) if there exists an isomorphism & of (X,,p) onto
(Y,/5, \)such thet § =gt |
An important principle of méasure theory is that of neglecting
sets of measure zero, In accordance with this principle, the
spaces, as well as their automorphisms, need to be studied up to sets
of measure sero or, as is commonly said, modulo zero (mod O).
For instance, it is not whe ther (X, a:_,'n) and (Y,ﬁ s A ) or the
trans formations T and § acting on them are isomorphic which is
essential, but whether it is possible to make them isomarphic by
subtracting some sets of me#sure zero from (X, of, p) and (Y ,/3, A
if the snswer is positive then (X, “’F) and (Y ,/j,}\) or T and S
are called isomorphic modulo zero, (See V.LRokhlin [16]).
Throughout gll results are to be in-berpr‘eted mo}ulo ZEr o, We say
that o measure space (X, ¢, f1) ig finite and normaliz;d, if

p(x) = 1., ‘e define a Lebesgue space to be a finite a.nd normalized
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measure space which is isomorphic mod O, to a segment of the real
line with ordinary Lebesgue measure td which is attached a finite
or denumerable set of points of positive measure. It turns out
(see V.A.Rokhlin [14]) that all measure spaces which occur
naturally in probability theary are Lebesgue spaces. Thus we shall
always assume that (X, ¢ ,r1) ig a Lebesgue space. From now on,
unless the contrary is explicitly stated, we always assume the
existence of a measure space (K,‘g,,4) which is finite and {
normalized and statements such as "A is a set", " Mis a g=-algebra"
will nAxea,n. "ALe€"xig a sub- r-algebra of €, i.e. « is a ¢ algebra
such that A € x implies A& ¢ ", Further we assume the existence
of en automorphism T acting on (X, €, p ) If x,p ere

o-algebras such that A&oc implies A €3 then we write x ¢ /3.
For any ¢-algebras o ,B we define °76 , (°'ﬂﬂ ) to be the least,
(greatest) a'- algebra containing, (contained in) x and A .

If “‘i’ ieTI, where T is any index set, are o~ algebras then we
define jyjo%} ( er“a) to be the 1eést, (greatest) ¢-algebras
containing, (contained in) every «, for ieI. If I is finite
then A € V oG if and only if A = () A, with A éo for each i and
A E‘{e\z‘xi if and only if A€ o, for each i, However, these last
statements are not true in general if I is infinite. |

We denote the ¢~algebra whose only sSets are ¢ ,X by & and refer
to it as the trivial algebra. Lagtly we write log for log2
thfoughout. |

Any further notation will be explained as it is introduced,

and a summary of the main definitions is given at the end of

this thesis.
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1°2 INTRODUCTION

In this section we give a brief outline of the problems which
led to the formulation and study of entropy. By a function om X
we mean g mapping from X into the real line, As Aus.ua.l we denote,

{f:f is a function on X, Jx 1£(x) | zdp < o}
by er,. Then if for arbitrary f,g€ 1,2. we put
R L
we have that (f,g) is an “"inner product" and if
nEn - (g,£)%
then MHfJlis 2 "norm" and Lﬁ is a Hilbert space. | We now
associate with T & unique transfarmation U :l,lz,, —).(,,2 by putting
uf(x) = £(Tx), feli
If A is any set, X, the cha,racteri.s;.tic function of A then
U)SA(X.) a XA(Tx) = XT"A

- Moreover if Aj, 1 1¢n are disjoint sets a5, 1¢ i¢n are finite
real numbers and

£(x) =fa; if xehj, Tgign

» {0 otherwise
then Uf(x) wfag if x€T '35, 1< ign
{0 otherwise
giving HUzh 2 = [ IUf(x)tzdr
ix‘ 2 “lp.
Yoy aap (T=745)

éz a% F(Ai) because  (Ai)= (T 4&4)

Llf(x) | 2ap

Heil2
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Thus we see that U maps the “step functionms" in I.'? onto the
"step functions” in 42 in a 1~ 1, and norm preserving manner.
Further if f is ‘as above and Bj, l€j€m are disjoint sets,
bj, Jgjgm are finite real .numbers and

| g{x) = bj if xij, 3(5(m '

{0 otherwise

L iUf(x)f {Uglx)} ap
T S & by plT° 15 a7-335)

then (Uf,uUg)

1:1 3=
- gi £ 8 bj r,(AinBj)
= [ £(x)g{x) dp
= (f,g)

Hence since "step functions" are everywhere dense in 1.'?, and T maps
the set8 in £ onto the sets in € it follows by the usuel process of
approximation that U is an@utomorphism [oie} L,‘?’ such that (Uf, Ug) =
(£yg) for all f,gei;? ice. U is & unitary operator (see M.I{.S'tonefzol)
If Ty, To are isomorphic automorphisms esnd S is the
sutomorphism isomorphism satisfying Tp = STls'l and Uy, Uo,V are
the unitary operators corresponding to T3, Ty, S then for all
fe .L,?
Upf(x) = £(Tpx)

= £(ST,571x)

\'4 f(Tlsf'lx)

VU, £(stx)

Thus if T1, Tg are of the same metric type,U;,ly are of the same
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spectral type. It is usuel to refer to the spectral properties
of U as the spectral properties of the metric type of T or gimply
as the spectral proi:arties of T. |

If Ui_, Uy are of the same spectral type then we day that
T1,Tp are of the same spectral type or alternatively that they are
specirally isomorphic (see V.A.Rokhlin [16)). However, while
T1,metrically isomorphic imply T1,Ty spectrally isomorphic the
converse is not true invgena'a,l, as is shown below. We also refer
to the eigenvalues, eigenfunctions, spectrum, and spectral
invariants of U as the eigenvalues, eigenfunctions, spectrum and
gpectral invariants of T.

If Aee , TA = I‘; implies that either r(_A) =z 0 or F(X-A)ao
then we say that T is ergodic. Since f(x) z 2, x€X implies
Uf(x) » £(Tx) = a, x€X we see that 1 is alweys sn eigenvalue of
U and the constant functions are eigenfunctions corresponding to 1 .
Further if A¢¢, TA = A then UXy = 'XT_lA =X, giving us that Xy
iz an eigenfunction. Thus we see that if the only eigenfunctions
cofr93ponding to 1 are the constant functions then T is ergodic.

If T,5 are ergodic automorphisms with pure point spectrum
then (see P.R.Halmos {6]) they are of the same metric type if and
only if they have the same spectrum,

Por other cases we call the eigenvalues and eigenfunctions,
quasi~eigenvalues and quasi-eigenfunctions of the first order.

Thon for n >1 we define g quasi-eigenvalue of order n to be a
.quasi~-eigenfunction of arder n-i , end if £ 5 is a quagi—eigeuva.lue
of arder n and £,#0 satisfiesa Ufp=ff, ) then we say that f; is

a quasi-eigenfunction of arder n (see V.A.Rokhlin [16]).
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If the quasi-eigenfunctions form a complde system in er, then T has
e quasi-discrete spectrum. The classification problem for ergodic
sutomorphisms. with quesi-discrete spectrum was investigated by
L.M.Abramov {1] and a complete classification theory comstructed
for them,

If T has no eigenfunctions other than the constants then T has
a purely continuous spectrum (see V,A.Rokhlin (16})., Until a few
.years ago it was not known whether there existed spectrally
isomorphic automorphisms with purely continuous spectrum belonging
to distinct metric types. In {11} and {12} A.N.Kolmogorov
introduced the metric invariant, entropy, showed it was not a
spectral imvarisnt, and so gave a positive answer to the above
question, In fact he proved a stronger result, namely, the
existence of automarphisms vith a denumerably multiple Lebesgue

spectrum belonging to different metric types.
1-3 PREVIEW OF THE MAIN RESULIS

Having defined and investigated the entropy of an automorphism
we then look at three classes of automorphisms, viz:
1. Kolmogorov automorphisms, i.e, those far which there exists

' i i .

s o-algebra oo such thet &< g To¢, ‘,}/P X = € , J\/E\’,,'I'-ac =2. These
were introduced by A«N.Kolmogorov see {11] under the name of
quasi-regulér automorphisms,
2. Regular automorphisms, i.e. those for which

.

A “i \ mmd . cite ge )
fc T jer T Y = &# for all essentially finite ¢- algebras &

(see L. Sucheslon [21}).

3. Automorphisms which are mixings of all degrees.
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The first two will be proved equivalent later in this thesis.
V,A.Rokhlin {16] end L. Sucheston {21)have shown thet Kolmogorov
and Regular autcmorphisms are mixings of all degrees. Our main
result is to show that the converse is false i.e thet thera exist
automorphisms on finite memsure speces which are mixings of &ll

degrees, but which are neither Kolmogorov automorphisms nor

Regular automorphisms. To do this we consider the Riesz product
v . .
];TP, (1 coszz x) = l+"§f"“ ¥,cos vx and the increasing, continuocus

and singula.r function G(x) of which it is the Fourier-Stieltjes
geries. If we then consider ¥(x) = G(t) where x(t) = %(tq-%zaign 'b)
we got that F(x) is i'ncreasing, continuous and singular and that if

?(n) = %W[:e-inx dF(x) for nel thgn_ ?(n) is a positive definite
function and @ (n) = O(n-%fd) for ev;ery d>» 0 as ny oo, Then
extending slightly the results of S.V.Fomin {4] we show that the
stationary Gaussian process associated with ' (n) is & mixing of
all degrees. To complete the result we then use the results
of A.N.Kolmogorov [11] and S.V.Fomin [4] to show that a1l Kolmogorov
automorphisms have a Lebesgue spectrum whereass the stationery
Gaussian process referred to albcrve. does not.

Next we look at o-finite measure spaces and generalize the

concept of a Kolmogorov automorphism. With this generalizetion

we show that 2 Kolmogorov sutomorphism on a ¢ -finite measure space

ig ergodic,
1.4 CONVEX FUNCTIONS .

If £(x) is defined for g xg ), £"(x) exists and

. . " . .
satisfies £ ' (x)€ 0 for Ocxc¢l,£( )g,}}’n}” f(x), f(l)g%}’lg__ £(x) then

Lemmg 1+4



15

for gll sequences faif fx } ieI ¢ Mof numbers satisfying 0¢a,,

:%r* a; :1,ngig] we have ie a. f(x )( f(:l.eIa x. )
Proof. The existence of £' (x) far 0<xc¢)implies (see G.H.,Hardy

7] P.212) that £'(x) exists for G<¢xc¢ ) and that £(x), £'(x) ere

continuous for Ne¢x<1. If }'e:‘I = O then for each i either

8, = 0 or x, = 0, thus
i i

bY =
i?Ia‘if(xi) = f£(0) = f(.z:[a.:L
S » . ,
If gia.x. =1 then'if x.j(} for some j such that ajr,f:f) ' we have

J%I 8% ¥ gﬁ[ s""*3",.11::|.<:[

a contra,dlct:.on and so 1’§‘Ie‘ixi =1 implies x, =] for all i such that

a.# 0 and so

l
%‘Ialf(x ) = £(1) = £ (2oa.3).

Hence if g(x) = £(x), O<x<! g(v) = Lim,, £(x), g(2) = Lig ,_£(x)

then :%'Iaig(xi) < g(igIaixi) implies i%aif(xi)Sf(%I a; xi).

Thus, without loss of generality, we may assume that £(0)= g.c:i;{nmf(x),
£(1) = ]}.C:L_)ml_f(x).
Further by an application of the first mean value theorem, we have

that the one sided derivatives at O, 1 are the limits of £'(x) as

x- 0,1 respectively.

-y

- ; b 2 g, =
If x = 1§Ia:.x1 then Og<xg£ 1 since ieIa‘ixig S84 = 1.

Thus by the mean value theorem of the second order (G.H.Hardy {7]
P.285) we have for i€l*
= ! 2.1
£(x,) = f(x)+(xi-X)f (x)+-}(x-l-x) £ (y;)
where 0« yi< 1. Hence

£(x.) € £(x) + (x,~x) £ (x)
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and so on multiplying through by a; and adding we get
! —
‘§I aif(xi) € 2(x) 4 (x-x)£ ' (x) = £(x)

e 2 oaf(x) ¢ 2 o)

iex 1 i€T %4 1
We remark that if £ ¥ (x) ¢ O for 0<x¢1 then we have equality
if, and only if, x, = x for all i, But this holds only if either

a—

ell the x, are equal or 8 =1 for sone j and consequently a, = 0
for i ¢ J.
If £f(x) = - x1log x for, O<x¢l and £ (0) = O then £ (x)
exists and satisfies £"(x) = -(loge) | x<0 for 0¢x<¢ 1. Further
£(0) = 1im £(x), £(1) = ll!{l f(x) and so f(x) satisfies the

x=0+
hypotheses of lemma 14 and of the remark at the end.

1+5 ALGEBRAS AND PARTITIONS

If o is oo ~-algebra, A¢x satisfies p(A)# O, then we say that
A is an atom ofif B€ & , F(B-A) = 0 imply p(B) = 0 or p(B) = p(A)
and thet A is a continuous set of o if given any Azéu such that
A € A and any d such that 0 ¢d ¢ p(.l‘.l) then there exists a Bex with
,.(B-Al) =0 and O (’p(B)‘ d. If A,B are aotoms of o then we say
that A,B sre essentially disjoint if p(A4 B)$ O and that 4,B are
equivalent if p(Le B) = 0. We have immediately that ariyo‘-algebra;
has at most 9.. denumerable number of essentially distinct atoms since
wé are assuming p(X) = 1, Cléarly if A is en atom of =« , and
Ay € satisfies ,—:(AJ) =,0 then Ayl , A5 and Ae )y are atoms
of « . For each atom A of a & -algebra & we put

={B: Bis an aton of @ and p(A2B) = 0}

By the above remarks. any ¢ -algebra « has at most a denumberable
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number of distinct equivalence classes X, Let these be Ei',ie I

where I is a subset of I'*, snd let B,i€ I be such that B,€ X,

for all i, Now put
i—l . .« 3
Ay =B , Ay =B _ UB, for igl, iex
then pl448) = 0and for il
= 0

ince A.C B, and B, - A, = B, o0} B, = i ivi Y
for gll i. Given a ¢~algebra then the xi,ie'.[ are unique but
the Ai,iel depend on the choice of Bi,ie I. However if for

fixed o ,B:{,i-'e 1 are another set of,representatives of .?fi,ic I
- which give rise to A;,if I then since Ai,A:{e f‘:_,_ for 1€ we have
p(a; 2 A;) = 0 giving

Ip(a;) - pla)d SplAg-a) e p(A-Ry) = p(A;84) = 0
i.e. F(Ai) “]"(Ai)" Thus the numbers p(Ai),iEI are uniquely

determined.

'Proposition 1.5 - Given any o~algebra & then we can find sets
A;,i€1 and B such that A, is an atom of & for each i, Ai"Aj :ﬁ if

ifd, B is a continuous set of & if F(B)#.' 0, and X = B”igl A

Proof Let xi,iel be the equivalence classes of atoms of e and
the Ai,iﬂ chosen as above. Then A, is an atom of o¢ for each i and
A a Aj= ¢ if i?é,j. " IfB=X "i‘ZIAi then it remains to prové that
B is a continuous set of &, if F.(B)-‘/:O. If ﬁ(B)#: 0, B, is any set
such that B €ec;B; & B, d any number such that O<dg p(B,) then either

p(B) = 0 in which case no d exists, or p(B,)0.  If p(By) #0
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and B, is an atom of o then far some i,B,€A; and so ,-;(B,AAi) =0
giving F(B*) = O since By € B which is a contradiction, Thus B
is not an atom of s and hence there exists a c]'__sx with r.((}lI -B,)= 0
and O(p(ci).(r‘(B ) I£ C;= By C; thon C,€ ox, C,&B, and
0 (r(Cl)( M (Bl). Similarly C1 is not an atom ofoc and so there
exists a Cy€ & with C, ¢ C; and O<[1(02) (p(cl). We now put

Dy = {Cp i plCy)<p (Bl)/z
Cl - Gy otherwise
then Dlerx, Dlé B1 and O (p(Dl)fp(Bl)/Z.
Repeating this argument a further n-1 times we find a D& with
D,¢D,  and 0< p(D )< p(D, 1)/ 2, giving D €B) and 0< (D)< u(By)n
5%, Since :xlz'}-g‘oo r,(Bl)/zn = 0 there exists an m € 0o such that
F(Bl)/zm( d. If we now put E = Dm then E e, I‘(E'Bl) = 0 and

0¢ ru(E),g d. " Hence we conclude that B is continuous,

With the notation of the above proposition we put:

Z]. :{pcg P(B) 0, Iis finite}

Z, ={w: p(B) = 0}

Z, =29 - Zy.
If w € Zl’ (23) then we say that « is essentislly finite, (denumerable)
This terminology is based on the concept of "partitions®.
More precisely we say that a collection of sets Pi,ieI is a
partition if I is countable and i #j implies Pin Pj = ¢, and
inPi- X. If for each i€I, @i is the 0= algebra whose sets are
k ¢ ,Pi,X-Pi and X, and if &= igiﬁai then we say that & is the
a';- algebra generated by the partition Pi,ie I. We then say that

a o~ algebra o is finite, (denumerable) if there exists a partition
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P,,ie€ I with I finite, (denumerable) such that « = & . With the
n.otafion of proposition 15 if ‘F(B) = 0 it can be shown that there
exists a partition Pi,ie I such that @« o and if A is any set in «
then there exists an AJ"E@with F(A;AAI) = 0, Thus &, ¢ differ
only in a set of measure zero. However as we do not need the
notion of a partition we sha.ll not continue developing the comnsctions
between partitions and essentially denumerable o - algebras.

We finish this section by considering the form the atoms and

continuous set of proposition 15 +ake when we have a ¢~ algebra of

the farm B with u,/ﬁ = glgebras.

Proposition 1°52 If o,/ are o- algebras, Aj,ieT; Bj,jeJ
aré atoms of o« ,ﬁ and Dl’ DZ are either null sets or continuous sets
of o ,/S’ such that
Dvi¥rhy =x= De“ng Bj
then for ell 1&£I,j€J if Ci,j = Ain Bj we have that Cij 1 an atom
ofwf if p(C;.)# O end if D = D v Dy then p@) =0orDisa
continuous set of o(/“ and
= V o
X =D &y 0
JeJg

Pr oof If p(D)#0 and Ee /5 satisfies E¢D and d is such that
o<dg p(E) then if n(E) = 0 no such d exists while if ,.(E);t 0 we
have that either p(E nnl)#:o orf'(EnDe)#:Oo Without loss of
generality we take I (B nDl)#: O then EnD; € « and EaD €D, hence
if 4, = min { d, p(E Al)l)) then by the continuity of Dl there exists
a B€w with E, ¢ E and Ofp(El)a’ dl’ Now Ele’-'/? and so we havs

1
E€xff, B S E and 0<p(E )« d thus giving D to be a contimuous set
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with respect to u(F .

It now remains fo prove that Ci,j is an atom of 01/9 if
‘ R | . 1
F(cij)#:o. Suppose there exists a C Eo{ﬁ with p(C —Cij) =0
1 1 . e
and 0 < p1(C7) <f'(cij)° Then C = C » C, ; satisfies C & /3 ,
(C~€..) = 0and 0 ¢ (C) ¢ 1 (C..)." Since C € ¥/ there exists
I 1J f r 1)
C€wx , Glg fﬁsuch that C = G 5 Cﬁo Further we can assume that

< i : _
Cou € ‘A‘i and Cg £ ZBJ.° However since Ai,Bj‘are atoms: of o ,/9 e
/

mugt have
fq(Cm) = 0 or F(Ai) and F(Cfg ) = 0 or F(Bj)
and since r(C)% 0 we must have n{Cy) = f(Ai)’ F(C/,-) = ,1(BJ.).

But this implies ,\4(0) = F(Cij) which is a contradiction and so we

have that Cij 18 an atom of acﬂ .



21

2, THE ENTROFY OF A U -ALGEERA

Throughout thig chapter all results unless stated otherwise

can be found either explicitly or implicitly in K. Jacobs € 8l,
201 THE ENTROFY OF A G-ALGERRA IN 73

If océZB then by the last section there exist atoms

Ai,ie I<¢T", (in general not unique) such that AinAj = ¢ if

i3Jj and ﬂ(igIAi) = 1, and further the [;(Ai),i,gx are uniquely

determined, Thus if we put

Hlee) = _ ;& pldy) log pi(hy)
then H{o¢) is well defined for o € Zg. Ve refer to H{« ) as the
entropy of e . Since ﬁ(X‘) = 1 we have 0 { H(« ) and while

B(¢) =0if X = [0 1) and P, =] (i-1)/n,i/n], 1gign then
H(&) =‘i§ ln-llog n 7t log n
where & is defined as in sectiom 1°5.
For any sets A,B we put
p(a/B) = {’H(AAB)/ p(d) if p(B)# 0
0 otherwise
and using the termindl ogy of probatrility theory we refer to it as
the measure of A conditioned by B. If now & , o' € 2, and
Ai,iE I, A?;,iﬁll, are chosen as above, then we define H(p{/o{l),
the entropy of & conditioned by o(l to be,
- &1 %11 f‘("‘i"A}L) log F(Ai/‘% :
Since all terms have the same Bign we cam reverse the order of

summation without altering the convergence or divergence and

without changing the sum in the former case.



22

We now introduce the following definition. If X € Z3 then
Ai’ie T will be an atom set of &, (in general not unique) if the
A, ,i€ I ore chosen as at the beginning of this section. It then
follows by proposition 1-52 that if oc,/a?e Zy and Ai,ieI,BJZ,jeJ
are atom sets of cx,ﬁ then Cij = AinBj,iéI,j €J is en atom set
of @ plus a number of Sets of measure sera. Thus if &€ Z, and
O, ,k€K is an atom set of ¥ then

Haf) ==, 3 j%J plbgaBs) log p(hynBy)
H(af ¥ )=-2 j§J g plhynBsaCy) log pr (4 aBsfC))
B(wff¥)=3 31 ) Sy ribieBy0y) Tog play [p00)

For the remainder of this section we assume that

o, ,%,6€ 7, and that A;,i€T,B;,J€J,0, K €K,D),1 €L aro aton

sets of o,/ ,¥ ,6 respectively.
Proposition 2.1 1 H(e/A ) € H{ox) .

.= B. X .
Proof If 2 /4( ,J)’ Xy

0<€ xjg 1, j€J giving by section 1°4 that

=[1(Ai/Bj), j#¢J then e 2y

f‘j§J ag%y g X< [ a5 73] tog {5 *"j"‘.:i?
feew L &5 p(B;) p(ay [B;) Log play[By)
< {Z rey pagf B ] ree{ Fpeg) et/

= _ IA(Ai) log P(Ai)'

Summing over 1 then gives the required result.



23
Proposition 2°12 H(w/?/h‘) - H(oe/ﬁa’).,,n(/j/r)

Proof H(‘mﬁ/f) =-i§1 J%J k§K F(AiABank) log ,.,(AiABJ./Ck)

s & X '
= €T 37 kek [AiaByCy) {1°g P(Ai/Bj“Ck) +1log f‘(Bj/Ck)}

-2 j%:.y g f1{d; aBsnCy) log pla, [BoaGy)
- ,j%'J k%K (B5nC) log r(Bj/Ck)
- Hlw/AY)4E(A]Y)
Since o¢ff = fx we have immediately

Cor 1 E(wf[¥) = H(F]/«¥)4H(«/¥)

If o« & then /8 m # end this together with H(/?’/O(Y )3 O

gives

Cor 2 1f «5/ then H(«-/?’)sn(//r)
Now X is an atom set far4 and so
o/ ) = = 20 plhiaX) log p (4 [X)

— s p8y) log g (ay)

H{o)

thus putting ¥ = » in the proposition and corollary 1 gives

Carollary 3 H( =/ ) =H(o<//$)+H(/G)_= H(ﬁ/cx)-# H(o )

And putting ¥ = » in corollary 2 gives

Corollary 4 If dé/ then H(«) ¢ H(/)
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Proposition 2-13 If /85 ¥ then H( «[¥) £ H(x [8)

Proof For each j&J let £j = fA;ASBj } ’ cx‘j - IA:A - BjnA' with

A'e‘x} an_d Kj = fk:kéK, ["(Ck-B,j) = 0} then since g< ¥ we have

(Y

-3 - '
erK.}. Ck Bj)_Oa Thlls

H(x/T) "izé'l k%K jr(45nC,) Log [‘(Ai/ck)
=-i%1 ,j%:J k%Kj 1 (A5a0) Log i (A fc,)
PN

e B A
-‘izfz JET kEX, (&0 B0 log f'(Ai"Bj/Ck)

It &y = p(G) [p(Bs)s X = p(AB5f0,)  then Qéx.l e =

O0€ % €1 and so by section 1-4

- k% K, g Xy log X & "(k%Kj ak"kf“g{kzexj a-k"‘kl
#w a X, = ﬁ%%ig}r(AjnBj/ck) =[1(Ai,,ck/3j)
and ©0 k'sé:Kj T Xy = k%Kj P(Ai"ck/Bj) =I‘(Ai/Bj)
giving

Hloef/¥ Vg - 421 ,j%J P(B,) plAsfB5) log /by /B5)

= - i%l j%J P {hsnBs) 1og (4 /B5)

= H(x/AB)
Lemma 2014 O g H(of) 1
H(z) =0 2
0 g H(x/A) 8

H( o«f8) gH(x) | 4



Hiwf) = H(x)8) —t—lH(ﬁ)
= H(gfx) + H{wx)
_ € H(w) + H(A)
H(«@ [¥) = H(x/[BY)+H(E]Y)
= H(/é’/ux)ﬂ-H(x/?')
L Bl«/T)+ H(A]T)
H(ewfe ) = H(x)
Bl«f [B) = H(=[f)

Hioc/¥ ) ¢ Bl [B )+ B(4/[7)
If x< 3, Y<b then

H(e ) € H(A)
H( «/%) g B(A/Y)
B(¥/g ) ¢ H(¥/«)
B /) = 0
0 ¢ H(«x) -H(x/?’)
CH(E) - HB(p[7)
0 <H(A[S) -H(x/S)

A

H(/f/b’) ~H(o/Y)
H{Z) - H{x)

A

25

10
11
12

13

14
15
186
17
18
19
20
21

22

If HY( «/ﬂ ) = 0 then there exists a o~ algebra /3* such that

o S/";\ and /6’ , ﬁ“ differ only by sets of measure ZEro. 5

Thus H(/# ) = 0 if, and only if aegﬂ 24
Proof 1, 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 16 have already been
established. 7 follows from 4, 6, and 10 from 9, 16. We now

prove 13
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H( «/¥) < H(:X/S’/D’) by 15
H(d/ﬁb‘) + H( /%) by 8

€ H{oj]B)+H(F]T ) by 16

To prove 17 we note that if f‘(AinBj)*o

1 giving

T jé‘J (8 ~B3) log g (4 /B)
. - .5 .0

= i1 ;€97
- On

-

then I (Ai /Bj)

H(“//)

12 now follows from 8, 17.
18 follows from 4 if H(o/¥ ) <09 and is meaningless otherwise.
I£H(#/¥ ) = o0, 19 is moaningless while if H(ﬁ’/b’) < oo ,
H(ﬁ) = ¢0 then 19 is true and if H(/;‘/T){ co , H(ﬁ){w then
H(x) « o0 by 14 H(x/¥)<¢ o0 by 2, and H( A/« )< @ by 7.
Thus
H(o)- H(x/7) gH(«) H(F)x) -H(g/7) by 13
. SH(«f) -H(B/¥) vy 6
= H(S) —H(/)’/b’) because
20 follows from 15 if H(w/§ ) ¢ and is meaningloss otherwise.
If H(et/ ) = 00, 21 is meaningless, while if H(« /2 )¢ o0 ,
H(4]% ) =  then 21 holds and if H(o /¥) <o0 , H(p/¥)< 00
then H(w/§ )< 00 , H( /8 ) <o0 by 16, Thus
H(A]S ) -H(xf§ ) ¢ B(xp /8 ) ~H(x/5) by 15
CH(E/<S) by 9
.gH(//acr) by 16
ZH( w4/ ) - B(«JT) by 9
=H(A[¥) -B(x/¥) since x<f

Tf H() = o 22 is meaningless, while if H{e )< o0 , H(fZ) =0
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then 22 holds, and if H(« )< oo , H(B )< then H(x/¥ )¢ ,
H(#/ ¥ ) <o by 4 and 22 follows from 19.
If there does not exist a ¢~ algebra /J'* such that « 5/?* and
ﬂ’/,"‘ differ only by sets of measure zero, then there exist m, n
such that P(Aman):,»‘:O, P(Am"Bn) ;éfn(Bn) and so

BHoff) = - & JEJ F(&; aB5) log p (4 /8.)
7 = pUgeBy) log (4, [5,)

20
thus proving 23, 24 is a direct consequence of 17, 23,
2.2 THE ENTROPY OF A  (-ALGERRA

For any o- algebra o we put
S(a) ={ o'y et’Cat, '€ 23(
sup H(a'),

a('Es(ef)
Since o€ S(x) if o€ 2

=
X
]

3 it follows from lemma 2.14, 14 that this
definition of H(«) coincides with the previous one if ¢ Z3° If
ﬁ is any ¢= algebra =€ Z:3 we put
= = i
H(x/3 ) ﬁ}élgw H(e/B')

and note that in view of lemma 2-14, 16, this coincides with our

previous definition if A€ Zge
Proposition 2.21° If ,f Ig, x¢/4 and ¥is any o -algebra
then H( /¥ ) ¢ H(FJT )
1 . + . 1
Pr oof Let ?fi, a’i i €7 be such that ]il._ymooH(x/Xi) = H(«f¥),

e, uip /75
Then H(x/¥.) £ H(.x/‘(%), 3 el and H(£ ) 7.) € H(//Y?),ief""

H({é/b’) and put B’iz 3’13’? , sel™

fa
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giving B« /¥) = lin B(«)¥,), H(A[7) = lin 54 /7))

But B w[¥)SE(A)D), i€ by lenma 214, 15.
and so |
H(et/¥ ) = g.-i}zlaH(o(/b’i)
< Hau(pf7;)
= H(A[Y)

For any ¢~ algebras ,ﬁ we put

(«)B) = sup H(')f )

«'€ 5 (o)
and note that in view of proposition 2°21 this coincides with our

previous definition if & & ZB"
we now take any o- algebras ,ﬂ and consider S(o?/j’ Yo

Let b’l be any ¢ algebra such that 3’16 S(«/f) then we have
‘0"15 Z5. If G ,k€K is an atom set of Y then far cach k we
can find an A €~ and a Bké/f such that = A aB., If

o = { ﬁ y Ay s X-4, X f,/fk= f¢ ,Bk,x-Bk,xf we put e’ = k\éKo(k,ﬁlg .
szﬂk. Clearly o(]'é S(e), /)’155(/?) and b’l < n}/dl except
possibly on a set of measure zero. But by proposition 1.52 we
have that wl@gl & 3, if xl,/.il € 7, and 50 vo got xlf_;les(xﬁ),
Thus we conclude that if o, /4 , ¥ are g~ algebras then

H{ «/7) 5)
ﬂ SEES(xﬁ‘) 11

Lswr,desp <)

by the above remarks and lemmas 2°14, 14 while
H( o {7) e, H(§Y/ )
1 1
sup B{ S /b’)

weS(x), Aes(A)

by the above romarks and proposition 2-21
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Mso if 3’623 then

H( ¥ [z f?)

inf B ¥/sh
S( uﬂ)
ing n( v /o’ ph)
1
o€ 5( ), (3)
by the above remarks and lemma 2°14, 16,

B

Lemmg 222 The results of lemma 214 hold for arbitrary

o-algebras «,/, Y, .

Pr oof 1, 2, 3 are direct consequence of lemmas 214 and the

definitions of H( ), H{e«/f ). Now

- 5 . Lrgl
HelBY = R L ﬂffsrﬂ)ﬂ( /e

< inf ) by lemmag 2-14, 4
fs(m /Jlés {/3
= H( & )
giving 4. 5 and 8 are proved by the method used in proposition
2-21, bearing in mind the remarks made aftorwards. 6 and 9 then

follow from S5 and 8 and the fact that A’ﬁ = /J’ac o 7 is a direct

consequence of 4 and 5 and 10 will follow from 8 and 16 when we have

ostablished the latter. . Now

H( aef) sgg H( » /,U)

S (e¢)

1
= g H by lemma 2°14, 11
&Ps(«) (o¢") by s

= H(x)
giving 11, 15 is proposition 2:21 and has already been
established. 13 follows from 10 and 15. 14 follows from 11

and 15, To prove 16 we note that A = «f and so
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¥ ) . 1,1
(¥/8) 22y Plééz(lfﬁ) B(Y [#7)
1 1,1
= il H( ¥
Flir) péiis s NP
< » £ 2 ¥ )
S8 sks (e, ues i) /-

= H(¥/=)
by lemma 2.14, 16, 18, 19, 20, 21 and 22 are proved as in lemma 2.14,

To prove 17 we note that /= «/Z and so
_ ~ 0 1,1
B fA) - aES () ﬁ’es(fﬁ) Bl /)
Sup H(xxl/o(l
p(%S(cx) ﬁiéns(ﬂ)

0 'by lemms 2-14, 17.

Here we use the fact that for fixed ot £ S(e) we have/g «c"x/g eS‘P)
for allIB €'S /9) 12 follows from 8 and 17,

To prove 23 we note that H( « /3 ) = 0 implies H(ac’l//;') =0 qu all
o(lé' S(e)e Given any A €« we can find an o(lé S(«) such that
Aéo(]. If there exists a /GIGS(ﬁ) such that H(ozl /p‘l) = 0 then

o« 5/3 1-'.5'/5 by lemma 2°14. However if H{ ,(1//5’1)%_0 for all
ﬁlGS(ﬁ) then we choose /Jl, et such that /ji = S(ﬁ) each i
and 1im H{ o:l//:'J.‘) = 0. If 1nf /-1 A¢B) = k%0 then there exists-
an atom B, of ﬁ for each i such that

~p(B;a k) log p (48,) 7 7 k' =k (k)>0
and hence }Li__gnw H( xl//é’:‘.) = kl#,:‘o a contradiction.
Thus %2/4‘; /'(ADB) = 0, i.e. A€x implies that there exists a
Be"/? such that (L2B) = 0 as required. -

24 is an immediate consequence of 17 and 28.
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2¢3 INCREASINGLY FILTERED COLLECTIONS OF ALGEERAS

We now introduce

Z ={ot: &is a o-algebra, H( « ) ¢ oo}.

Lemng 2°31 Z¢ 23
Proof If «is a o-algebra such that o ¢ Z, and A is any
real number then it is sufficient to find a xle S(x) with
'H(xl) > A If A £ 0 then we take o(l = 2 if not then we
congider the B of proposition 1°51. Since of ?( 23 we have
F(B)zf: 0 and hence B a continuous set of o, Further
)1(:'_.3104_ - /-1(B) log X =00 and so we can find a real number d such
that 0<d £ p(B) and - p(B) log dpA.  Let @ be the set of
all sequences. of disjoint sets Ai’ 1€T1 ¢ f'+such that Aie =,

AiS B, O<p(4;)¢d for a1l 1. Since B is continuous there
exists an AT€x with A1S B and O ¢ F(Al)s d and so & is
non~empty. If pl’ 92 X then we write Q,l.g ?2 if AGP’.L implies
A€ ﬁz. Thus < is a partial ordering of g, IfC is a
"chein” in & i.e. far all f,R, €C we have PSR T R
(ar both if @ = @) and @ = [A: there exists a R €C with rep |
then if Al,Az € ﬂc there exist 'Ql,pzéc such that Aléﬂl, A€ Q,
but /Q’J_'{pz or /stﬁl and so Al,Agéﬂz or Al"A‘?,eP’l giving in either
case that Al, A o are dis joint and hence that ﬁcé $, since
,-;(X) = 1 implies that }Qc is at moat denumerable. Now }@,s,@c
for 811 R€C and so by Zorns lemma there exists a y € £ such that
far 811 R €& it is felame that f <@ and R Ff. Suppose

- . = - ’ C
e ‘,&U)& A)> O then if C = B !}‘S/*A we have that C€x , C & B

and so by the continuity of B there exists an Ale x , 1‘.15 C with
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0 <pl4)ga Now vy € & ,4< yuh and Y3 ¢ vh giving a
contradiction and so f (C) = 0. Ifxl is the ¢=— algebra

generated by the members of ¥ together with X - _A_[é/)[/A then
1

o € S{«) and .
o)y o E p(d) 1og p1(4)
> - E,a f1(4) log d
= _ « (B) log d
> A

We sgy that a collection S of ¢~ algebras is increasingly
filtered if given any o(,lgé S then there exists a Y€ S with
.,(ﬂs‘( . For any o~ algebra o« we have that S( «x) is
increasingly filtered. Again if o(i,iEI $ " are o~ algebras

such thet &, <&, if 1] then § = { o, i€Ilis an

increasingly filtered system.

Lemma 232 If S is an increasingly filtered collection of
o- algebras, X = ﬂ\{s Sﬁ’ ve Z, and Y€ & then if C,ylgign
is an atom set of ¥ and d is any regl number such that 0<d
fhere exists g /J’E 5 and sets Bié‘ﬁ , 1¢ i'(n-'rl such that
,,(Bi s Ci)<d, lg igng P(Bn+l) < dg [!(Ci,,BJ.)< a if i# j;

. +1
r(Ci/Bi)>l -d, lgi€n and I;y:l By = X

Proof Since 0., lg¢ign is en atom set of ¥ we have 0< plC,)
for g11 i and so given any d sSuch that 0<d we can find a
d, such that 0<d < d, d <mex f,«(Ci),df (ci)l and

d, 1&£ign

w—

ORI
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For each 1 tl}ere exists a ﬁics and a BjTL E/»’i such that

1 2 . . . .
F(Bi-’5 Ci) < 61/8n . Since S 1is increasingly filtered there
. . 1 1
£ = -
exists a B€S such that B.€8, lgign, Let B, = B; j:',l‘giBj’
. «, n o .
1¢ig¢n, B , = X- iU'=l B, . Then far each 1, B, € /3 and if

i3] thenB.ﬂB.=¢'. For i#j

[,(B ~B 3 < r,(B C.)+ r(s}cj) since 1(CyaC;) = O
<a /8 a [8n°
= 4 fan®
and F(B%-Bi).{ J§i p(B:iL__nBé)
¢ (n-1)a; [J4n?
<d, f4n
giving p(C;=B;) p(C;- By) + p(B;=B,) since B, ¢ B
ca fen’y 4 /an
<d,/2n
But j1(B,-C,) ¢ !-1(33]?L - ¢,)
<d1/8n2
Thus F(Biﬁci)= ﬁ(Bi- Ci)+ rs(Ci-Bi)

< dl/2n+ dl/an

<dl
<d
Lastly P(Bn-rl) = F(X - 34 B))

= l- by P(Bn)
= 1%1?" i Sﬁgle%j)
< é‘ll[!‘(B)- s¥s r(-nB)}
g f:l [p(B)) _ (a-1)d/aa" )
<1_ 3 {pc,) _ajen’ _ afanl



< d

If 1 i€ n, 1&Jj€n i%] we have

1
[1(01 n Bj) £ rl(Cl N BJ)

If 1gign then

H (CinB

)

n+l

If 1¢ig¢n then if

p(Cs/By)

Néw I (Bi)

end s0 if p(B)¥ O

rl (CiJ Bi)

Lemma 2°*33

If S

o- algebrags in Zs, o=

1
< plC;a Oj).»p(cjaBj)
< 0+q/en”
< d

= ﬂ(B.)‘ __E(B-i - C.)

+ 1 p(’B;'J 1o
21 - F(B.AC.)m
plBi)

>l - d

) I (Ci) -f'(Bi A Ci)
> plC) _ &

o>l jl_
P(Ci)‘dl

=7}

n -

is an increasingly filtered collection of

p\ésﬂ end ¥ is any ¢- algebra then

34
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(1) H ()
(i1) H(s ] ¥)

H(
8, )

%ué’s H(pLY)

and if ¥ é& 23 then

(11i) H(¥|e)

;‘;gg H(¥|f3)

Proof Given d >0 since - Xlogx 1is continuous for Ogx <1
and since ]xl_gll — logx = 0 +there exists a d1 such that O0g x, y<1,
Ix - ylg d1 implies | -Xlogx +¥ logy ! < d/n(n-,-l) and
1-d1.{>< € 1 implies _ logx < d/n(n.,.l).

If dlé S{x) and Ci,ie I is an atom set of x then for each
n€"" we define ¥, to be the é‘— algebra generated by the

Ci,is I,ign. 'I'hen Vné Zl, nel™" ana H(o(l) = ;Lli)mm H(¥,).

we now teke ¥, as the ¥ , and at as the d of lemmag 2°32.

With the notation of lemma 2°32 let /g’ 1 be the ¢-algebra generated

by Bi’ lgigny . Thus
+1 '
PE(%) - B =) %q p(Cs) Log p(Cy)+ "2 p(Bi)10g (B,
n+l

€ iE=1 d/n(n+1)
< d

up H (o)
68 ()
13 H(Y
By B n)
< sup 1lim H(ﬁl)_;_d}
xes (o) B
< sup 1im { H( )+d}
«163(0() n—ym{ ﬁ
£ sup su H(pg)sd}{
«eg (o) pis P

= )+ e

But d was arbitrary and so we have

Hence H(x)

H{o ) 55}3 H(A)



and since S ¢ S{&) we have

H(«) 3 sup H(A)
’ﬂes B

giving (i)
1 n+l
Now H( &, ‘16 ) =. iijl ;él F(Cln BJ) log F(Cl’BJ)

« n (n#l) d@/n(ns+l)
= d

because —,-,n(ciABJ.) log P(Ci' BJ.) < -F(ci,‘BJ.) log pr(C;aB

£ dfn(nsl) if i)
. 1 . . . .
since f'(ci"Bj)< & if ig¢ j while
- n(CinB;) log p(Ci|B;) & =~ log pi(Cy|B;)
& - log (1-d%)

< d/n (n.;-l)

syp H(o(lf )

&8 (x)

sup lim H(¥a )Y )
€S (x) nye

< sup lim H(g Y, ]¥ )
S(x) n-e Fl }

by lemmg 2:22, 15

=gup  lim fH(zr,.'//flx)_,_H(ﬁl}a’)}

€S () n-oo

Thus H(o | ¥ )

by lemma 2-22, 8
€sup  lim {H( %, [g)+H({B|Y)
€S () nam[ //91 /91
by lemma 2.22, 16
<gup  lim { d 4+ H(FYY))
€S (x) n—rmx
£ sup 1im {d.;. H(/s‘l)f)}
1
o €S () n=dee

u d+ H Y
\xleS(ec)/?ég { " (/9, )}

= | arE(pI )

)

J

36
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But d was arbitrary and so we have
B« [¥) € ggp H(AIY)
and since S ¢£S( &) we have
H(« V) ;/?élg H(A]Y)
giving (ii)

Again H(¥ ] ) 1Tf H( ¥]|ul) for Xez

inf lim H(Y)Y.)
e S () n—de B

inf 1im H(Y 1p1b‘) by lemma 2-22, 16.
LS () n-doo
= inf lim (H( ¥ ¥ |y _ (¥
o(JES(a() n—)w{ V{ 'ﬁ ) }
by lemme 2-22, 8
58, o, [5YIED-a |

o) n-yos

W

by lemmg 2°22, 15

3 ing lim {H(B’f(j)-d}

xS () nee

by lemmg 2°22, 16

g 8 1100
= ;L’réfs { H()’}p)_d]
But d was arbitrary and so we have
CH(¥lx) 3 inf H(¥|A)
and since S£S(«) \fe have

H(¥]o) ’Spiréfs H(¥ A )

giving (iii)
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2°4 THE METRIC SPACE (Z”DL

We now define o function p( ,z,ﬂ) for any pair of
G-algebras ,/j’ by |
o «yf) = H{a«]B)+H(pg]u)
Clearly by lemmg 2-22

(1) /o(tx?ﬂ) =. 0 if, and only if o =/9up to seta of moasure
zZero

(3) /o(‘x,x)vg /(«,/:‘)4./:(/:’,‘0’)

i. e /7 is a metriec,
Lemmg 2-41 (Z,/a) is a complete metric space.

Proof If oc:'l, n ¢ "*tig a Ceuchy sequence in (Z,/)), then there

exists a subsequence « , Me F* such that

/)(o(n,oc p)<2 for all p el

If o = K

FRARTF jc(i theni‘orm)j)n

ol [’
<R

m

.@' o . )

ol ’l-n 1

a1
J—
B, V. ecsls Vo ct)_H(aeI « )+ H(V

i£)] im g+l

All terms are finite and so summing over J 0~1vesL

o H(e A )-;-H(oell/ll.‘L

ac..} nen)

H(l—n 1 i = JEn+l j'i®n
= J%nr H(o( yl o . )
m .
< Hlet, Jor ) (
A jgml J }0{3‘1

By lemma 2'33letting m-y 00 gives

i ” gi
Y H(lm*-l %) = e BCag )
3 .
and "‘since o« £ i\'—{n*-l o ; we have
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Y

Bt o) ¢ i(iyml"{i’“n)
= Faa N ®51=50)
£ el /(NJ’ XJ—].)

2'(j'1)
<  Jun#l
2—(1’1-—1)
nso wlagfa) = Y 80x,]0; w)

hence there exists a J»n for which

H(o(n{o() < H(unli.gj x,ni)“’ o (n-1)

< f("(n’ «J) -+ 2_(n_l)

< 2B, g-lo-l)
Thus (o(,atn) = H(p('a(n)-}- H(Xn!ﬁ()
< 2~(n—l) -n 2-(11—1)

< 2

o+ 2
- (n-3)

Further H(x) < H( o(dl)
= H(ac,o(l)-rH(“l)

< oo

Hence we conclude that {o(if and hence { o(:iL { is convergent to

a O-galgebra « € Z,

25 AN ALTERNATIVE  DEFINITION

We have defined the conditional entropy H(od(ﬁ ) of ¢ with

respect to /B Dby

H(wlf) = inf B o | &)
WO B Fap M
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or equivalently as
. . 1 1
Bl«)p) = im L B o f A7)
X €5() fes(s)
if we wish to make use of the theory of Moore-Smith convergence
(see J.L.Kelley [10]) and such notions as 'nets', 'filters', etc.
However, while K. Jacobs (8) takes an essentially equivalent
definition, the Russian school proceed in a rather different
manner as outlined below,
For any « ,ﬁ € Z,, if A€« we define
A .
r (B) = p (anB) forBeﬂ
If Bj’ j€J is an atom set ofﬂ and we put
(A1) (%) = & X (x) p(AfB;
F’ﬂ J§J Bjxf‘fa)

where XB- {x ) is the characteristic function of Bj then we
iy

have

FA(B) = IB r(Alﬁ) (x) d/»:

by proposition 151,

We now put

Hy (¢, %) = 2 Xy 0 log lag)s)(x)
then I Hyg (w,x)ap = _ Xigl XAi(x) 1og{ j%?J XBj(x)/ﬂ(AiiBj)} ap
= _ ,%71 ng f (AinBj) log (Ai{ Bj)'
= H(x[Z) |

Thus we could have defined H( a(]/;’ ) as an integral. We now
indicate how Hﬂ (o¢,x) can be defined for general /J’ and then give
an alternative definition for H(« @) in terms of the integral

of Hp (o¢,x).
If /f’ is-any o~ algebra then for fixed A € ¥ we define
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N _ .
po(e) = F(AnB) for BES
Now rtA is 'mbsolutely continuous" with respect to p on (X, A) and
8o by the Radon-Nikodym theorem (see P,R.Halmos [5) P.128 theorem B)
there exists a function Fl(A’ﬂ)(x) on X which is measurable

with respect to (X, /1) end such that

piie) RCERIORY,
B

We now put
By (a,x) = G0 %, (x) log py (44) ()
end define
j H/g (e ,x) d[v

B (%|4 )
X

Since the Radon-Nikodym theorem asserts the uniqueness of

rl(“ﬁ ) (x) modulo sets of measure zero, it follows that if # € 2,
then /11 (Af/} Y (x) = ,1 (A'/J’ ) {x) except possibly on a set of
measure zero and consequenily that Hl(o(lﬂ ) = H(d’ﬂ ) in this
case. Further, if /91,/2623 ere such that /31 S'/éz we have
that p(AIﬂl)_(x) § pia }/52)(::) giving us that

_ log n (A{ﬁz)(x) £ .1log /1 (Afﬁl)(x). Thus since it follows

by convergence theory that for any ¢ - algebra
WA & = a8 )

where the 1imit is taken in the Moore-Smith sense we have that
B(«ld) = ,lim H(«}/j’l)

/}es(ﬁ)
= H(&Iﬁ)

for o« € Z, and /3 any ¢~ algebra.



3. DEFINITION AND PROPERTIBS OF k(T)
31 THE ENTROPY OF T TWITH RESPECT TO A (- ALGEBRA

As stated in 11 we always assume the existence of an
automorphism T on (X, £,p). If o« is a g"~algebra

then we put

iA 3 T-'lAEdP

T o =
a(? = I:i-_/: P , n& f"'
i
o= g% T
- -1
Xp = Y TX
T -1
% = gfre T

. . . s n -
and if there is no danger of confusion we write o« , &« , &y

for o(;, % AE.”

If w ,f€Z;end A, i€1, Bj’ j€J are atom sets of

Xy p then clearly TkAi, i1€1I, 'l‘kBj, j€J are atom sets of

T% , 8 and T 156 € 7, for kel.  Tus since pr is

measure preserving

H(Tkot )

- &, ph) 1eg p(TL)

- SFT play) leg p ()

= H(or)
and H(Tk«ITkp)= - i§1 J‘::J 'F(TkAi,\TkBj) log r(‘I‘kAif’I‘kBj)
= = %1 ;F; resy) log r (4;185)

= H(“’ﬂ)
for kel |

Lema 811 If o,/ are o-algebras then H(Tw ) = H(x)

!

end H(T% |T°8) = H(«lg) for kel



Proof H(TSol) = H( ) far kel

Sup
o}f S(Tk,()
and since S('I‘ko( ) = TkS(«x) ‘we have
(T ) = sup H( o)
T=io(]ES(¢<) (
- sup H(Tko(l)
ulé S{ )
= sup H(o(l)
o€ 5 ()
= H(e)
. k 4 ok . 1y 1
while H(Tw | T4 ) = _sup inf H x| 57)
X €5(Ta ) A es(rh ) ) Fl
- sup inf H{ )
TXe e 5(x) Tkplesie) “1p
= p inf H(T® o Y 1K 1y
oc?s(w) ﬁles(,é) R
= sup jnf H( aclml)
of €8 (o) pES(B)
=  H(«{g)
Lemma 812 If « i8 & o -algebra, n, m € I"* then -
H(o™) ¢ mH( ™)
Proof  H(«™) = H(mj‘g(l) T )

e X .
W)
?ﬁ BT o)

m-1 } n
= ;;‘30 H( o )

A

= o H(x")
For any o~ algebra o and n € F't we have T‘nocng T (n+l) “n-rl
and 50 by lemma 2°22, 16 we have osn(xjm‘(n*l)xn*l)g H(oe [T 2} &
H ). ‘ Thus H(«[T-nx n), nel'tis g monotonic sequence and

hence if we put



h(«,T) = lim H(x|T™™)
then hl( «,T) is well defined. Clearly hl( o, T) ¢ H{(x) end so
«€2Z implies hl( 2 ,T)< o0, Further by lemma 2¢33 we have
that

b, («,T) = H(w«lx")

H( oL o) B o P T)
H{ «|x") o %:;‘ H('I‘iex }xio(-)

Blxl D 3 Bl T )

Agein H{ &™)

H(x;x')+‘ll§:1‘ H( o jo )

n H{ «x]x )

giving h («,T) é H o Jo ), nef*

Lema 8+18  If w€ Z then h («,T) = lim 1 H(«?)
. n-yoo N

¢

Proof  H(«x 1 A1 4 BT | < 27T

Hot )y §F H(T | « %)
1=]

ﬂ(o()+ %:i H(ot{T-ia(i)

%)

Thus if « € Z +then the Héof I’T'lo(l) are bounded, and since we know

that 1im H{o|T " % ™) exists it follows that 1im 1 H(m™) exists
L -3 00 , naoee o :
and equals 1im H(«[T™«”) i.e, b (e,T) =  lim 1 H(«®)
n-yo0 n=»00 n

If «gZ then H(«n);H(n:) = oo and 8o

1im 1 H(at®) = 1im oo = o0
Nn-300 n N-poo

Thus if we set
nle,T) = lim 1 H(etD)
n-pe¢ n A
then h{wx ,T) . is well defined for all - algebras « . We call
h{«,T) the entropy of o with respect to T, or of T with respect

to o , or simply the entropy of « and T. If « € 2 then
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h(«,T) = hl( «,T) but this is not true in genersl. To see
this we consider a 0-algebra o such that H(x) = 00 , Tx g« then

L <T 2™, nel"" and so by lemma 2:22, 17, H(«x]T "«®) = 0 giving

by (o(,T) = lim  H(«|T " x")
n-»
= 1lim 0
n —voo
= O
while h(«,T) = e as stated earlier. Lastly since

p-(n+l) o o "“Tz-ll we have that

B(«®) = B %) = m(«3 )
giving that h(®,T) = n(x,T%)
‘Lemma 3814 If t&Z and T is the identity then h(w,T) = 0
Proof Since T is the identity o = #, n €T and =o
h(x,T) = 1im 1 H(x®)
I =m0 n
nqoo be}
= O

Lemma 315 If ,/fe Z then

. ih(«,T) _ h(p,T)} g H(o;-f/S)-;—H(/ﬂI«) =f(°<,/3)

Proof If o 43 €2 then a(n,/gn, ,(n/jnez for nel”" and so
O™ o HBH g™ B ) 4 18R4T _B(87))
=H(«*A" L H(B  «™)
5?:]5(H‘Ti“’ﬂ By ¢ BT[] « ®) | by 2.22
< ;&:,é (B | ' )..,.H(Tiﬂ.] T )] by 2°22
= n{H(nr}/?)-@- H(g |« X

Giving that



Ih(,T) - n(p,m) = lm 1 Pa( &™) - 5(g™)]
i (5] ) + B(p ]« ) |
H(x|p )+ B(Fx)

ﬂ (9(,/?)

Loemma 316 If «, ﬁ are a-a-‘algebra,& and peé/;’ then

h( o ,T) £ h(/3,T)

N

Proof xsﬂ implies xn$ 'ﬂn, n €™ and so

h(x,T) = 1lim H( «™)

. n
n~3ee 1 H(ﬂ)

Lemma 3-17 If o ,/%' are o- algebras, «5/4,1, then

B(x,0) ¢ h(A,T)

Proot - B« ¢ u(«® W)
1= .m

el 3

i-_ﬁ’_m /7 ) HG(|

40— o -
B PP 1) ¢ mdg B T/s)

n+n=- l i

/)

- H(w m+n-1-j 7 )
J.%O I:L-v =] 'ﬂ

Now for 0¢& jg§ n-1
m m+n-l-,)
T T
:Ia’a - /9 1=-m- /3
and therefare

H(“n) H( man-l T/”)—F %’lH( ’\).n-l J ’I'/S)

p X m—a
DNl m i
T H T
3 H(l= ﬁ)..u z (xfiy_m /)

" H(/gzm'*n) + nH’.(«f:\!mT[S)

46
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m -
Given &> O there exists en m such that H(a[,¥ T98) ¢ 4

and for this n

n 2m+n
1 H(x 2n+n) 1
E (x™) < (""‘n“"‘) o en H(A ) 4+ d
giving
. n . 2men
h T) = lim 1l H(x £ 1 1 {
(o ,T) JLim 1 (™) n;ﬂ{(Zmﬁn) 2m+‘nH(/3 )+-d}
- 'h(ﬁ,T) + 4
But 4d was arbitrary and so
h(o,T) ¢ h(s3,T)
32 | MORE FPROPERTIES OF ENTROPY
Lemma 3-21 If «,fezs and either & ¢ ,H(«x[ﬂ") <o or
oc.f.ﬂ , H(/j},x-)<oo then
. n
lim 1 H - 2 H(xjo—
nan & (o ]ﬂ ) (o) o)
Proof If g , H(dl/j -)<¢ o then we have

H( Nn-l’/g __) - H(Tn-l“ ’ “n-lﬂ _)
H(]B=)+ ?‘i H(T'w | )

H(x!ﬁ -V gi H(xIT'i(p(ip—) )

B £7)

But H(x|@ —)<oo and

-3 i, - 3 -Jj ) Lk
T A J%lT "‘kyi+'1 Ve

-~ o — ag i..)w
Thus lim ) H(oan(g =) exists and’
n

. -0, n _
nli.)ll;o‘ H(w]T (,(ﬁ) )

H{ o Jox=)

(%]
(=
=)
'—I
jas}
R

-~

RN
S
H

If «<f H( fle—)<w then we have

p § RGP - lin yE(eTp ) stwee x4

- H(pIAT)



by the first part of the lemma since ﬁ,{/f and

B(BIp=-) € H{gla=)<eo
Thus since

. n_n . n ny; n
lim L H(<"p [p=) = Lin L{E(«TB=)4H (A7) )}
we have that the limits on the right hand side are finite and so

i B14-) = 13 a0 40y = 13 A W
o LE(CAS) = Lim LB A=) - 1in 1 BB B )
. -\ - 13 n, n -
PE(4A7) - L LH(E7 )
since o(Sﬁ o Now
1im 1 B(AY «? ™) = lim 1 H(«®A%lx”) - 1in 1 H(P«")
n-ywem {0 n-5w0 o nyoe 0

since lim 1 H(p(nﬂnhx_) = lim lH(,ﬂn'o(—)
Nepoe I n-»oe n

= H(/{V;:) £ o0
end 0 1im 1 H{( «187) JE(BIAT) - E(alpT)g lin 1 (o™ ]e7)
= H(atio(-)

since H(w«|at') ¢ H(AB | ) <00

Lemmg 8022 If =, /3, ¥ are o-slgebras such that = £/,
H(ﬁY-'/S_)<Do then

Lin H(x| 727087 = H(x]A")

rroof (A" |AT¥T) =H( AT ATV LBl 78 T
| E(AIF I E BOELpTE TN
| SRS S
nov 471" O YT < AT T ana w0 Lin B2 17TTHET) exiets
and by the above we have
Hp BAIATTEY = g g E(ATATYD

since H(B|A ¥7) g H(ﬁ}ﬁ-)s B(B Y 187) <o
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Further H(FlxATT0rT) & H(pIp7)

$ H(pYIAT)
< oo
and so
B(x|B207y = 85(xp|p™r" ) -H(/;x/s‘T‘na"‘)

| HAATYT) - 8(plapTTY7)
But 1im H(P|ATTTY T)= lim L m(p®| g7y
= H(p}A7)
bylemma 821 since /sg/er, H(/ﬁ’a’I/S “)¢eo and
H( l«ATTYT) ¢ H( A7)
giving that
o Bl £77700T) p B(2IAT) - Biglap)
H(x@B | 47) - B(Al= /A7)
H(x137)
since H(Blxf ™) ¢ B(p1A ) RIRTIBT) ¢ oo
Now H{x]A T ¥7) ¢ H(x|A7)

giving lim H(at|/s Y T) ¢ H(<37)

Hence we conclude that

nl__)ixg H(ad/?—T"n'O’_) = H(“iﬂ_)

Lemms 823 If « ,B are o-algebras such that H(x/3|27) <oe

then |
Hxfp lo A7) = Hle fu Ap) +E(P]A7)

Prooz  Hl«" |« A7A = B AT AN 4B x| Pk
=H(o(lo<'-/3-ﬁn).+ zéiH(Tlxt xlx-ﬂ_{?n)
- - =0 n=1 i i - _-_n
= H(=la "2 AN F BT A

=H(wf a8 AN + B Bl AT



<0

But  H{efx TATAT) < Hlx|47)

| <H(xp|B7)

£ oo
while H(xlw @7 4"  E(xlx"p" s
and 80
i H(«Ix"ﬁ-ﬁn) =H(ux|x" fp)

giving that

N A

2 Bl |7 07p%)
H(M'N_ﬁT) ‘
o BN s AN 1 1

and since AL, H( rxﬂfoz'/f") < H( ,«/;‘]ﬂ-) <00 we have hy

n

lemmg 3°21 that
. n,n == - -
M BT «7A7) =B " 87)
and again since /"Sa(/? ’ H(a:ﬂ iﬁ-) ¢ oo the same lemme gives
1im B(AM x=47) = E -
Lin B <747 (Bl
Thus we conclude that

Blaf [ «™p7) = Hl«|«™A) 4 52147

Corollary 1 If &,/ are o-algebras such that H(o(ﬂl/f' Yoo

then

b («f 1) = B( ot fBy) 4 by (B,T)

Corollefy 2 If & ,4 2 then
h(ef ,T) - = H(w/x"fp) +1(/2,1)

Proof 1f x , #€ Z then A€ Z and soH(xB |B7)¢H(F )¢ o

The result then follows from corollary 1 and section 31

Lemma 3°23 is usually referred to as Pinsker's lemma, see {13]
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although the proof given here is based on that given by V.A.Rokhlin

and Ja.G.Singl in [17] as are the proofs of lemma 3:21 and 322,
3°3 THE ENTROPY OF T.

We define the entropy h(T) of T by
h(T) = i\é.t;a) h(e ,T)
We have immediately that O h(T) and by section 3°1 that
h(T) = h(T'l). By lemma 8-14 if T is the identity then

B(x,T) =0 far € Z and so k(T) = O.

Lemma 3-31 k(T) = sup h{ « ,T)
. P4
Proof Since 2,£2 we have 32.21 h(o,T) ¢ h(T).
If h(T)< oo then given any reel number d»O there exists an o« € 23
with
h(T) ¢ h(x,T)+ 4f2
. . . A
Further, let Ai’ 1€ I be an atom set of x , Ai =¢ if i€l "-1
and ﬂn be the ¢- algebra generated by Bj L AJ., l £jgn-1 and
B =ZX- U By Thus for i¢l* |, lejgn-1

A.aB. = if i
AJ {¢ #1

i
by if i =

and far i€ P?
Ai" Bn ={¢ if i¢n

Ay if ngi

g B saBy) og p(55)3))
- -, p4s) Tog p (A2,

Hence H( X,/gn)

l=n

00
_i%n F(!.i) log , (4 )4 logr,(Bn) 2 p(Ai)

£ —gn p(44) Yog p1(84)
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Since <€ Z there exists an N such that

Hence since /fﬁsu we have

h(e,T) & hfT) + /(«,ﬂN)
= h(4,T) + H(pd/?N)
giving h(T) & h(e,T)+ 42
£ b(AT)edf/2 + af2
€ sup h(e,T)
XEZq
But 4 was arbitrary and so we deduce that
m
h(T) £ ilélgl h(x,T)
If h(T) = o then given any A >0 there exists an o« € Z with
h(x,T)> & and if the B, ne 't are defined as above then there
exists an N such that h(ﬂn,T)>A from which we deduce that

su 0o, is » .
“epzl h(x,T) = This completes the proof
Lemmg 3°32 If x € 2, XT = £ then h(T) = h(x,T)

Proof For all /,96 Z we have /3\< o(,I, and 8o by h(/s?,T) £ h(x,T).

Thus
b(o,T) ¢ B(T)

< 2“}’2 . h(/?,T)

%?z h(e,T)
h( O(QT)

A

h(w sT)

giving h(T)

If €2, oy = £ then we refer to o as a generator.

Lemma 3-33 If x€ 2, i?m T =&, m€f then h(T) = O



and so

h{e,T)

h(T)

®h(x,TY) by 3.1

:hl(p(,T—l) by 3°1
=H(a(;¢xi: by 31
- = i -myl g i - m=m#l
But &g = My, T = T Y, T« =T £ = &
and so « ¢ o(E‘ giving
n(T) =H(x{xg) = 0
o + -
Lemmg 3°34 If X €2, nef™, n\ér+ o, = £ and w € %

for each n then h(T) =n1-9i£ h(xn,T)

Proof If 8 = fﬂn,ne‘.fwf then S 1is an increasingly filtered
system and since £ = ﬁ,\é g/f it follows from lemma 2°32 that given
any € Zl, if C;y 1 sig¢m is an atom set of ¥ and dl any real
number such that 0 < d1 then there exists an n and sets

Bié pt‘n, 1<i€m+ 1 such that p(BinCi) (d19 1¢ign; I"(Bn-fl) <d1;
p (0 aB)cd £ g (0 ]B)> 1-a", 1gi¢n amd 0 B= X

Further

(Bs ;)

|
E
’512;
‘_l
L

2 1 -4 - (1)

vhere the d4; is the d, occurring in lemmg 2-33. Hence given any



54
d such that 0 < d if we choose dl as in lemma 2°33 then we
1 1 .
have H(¥|wx_)<a where«, is the ¢- dlgebra generated by
Bi, lgig ngd, By using the same method as that used in lemma 2-33
we show that (1) implies H(«i{b’)(d, We then have
h = h b * 31
(™) ;3%1 (¥ ,T) by lemma 33
.{nsg?* h «n,T).;. 24
by the above and lemmg 3-135. But 4 was arbitrary and
®, £ & ntl for gll n andv 80 using lemmg 3-16 we get
h(T) £ n].f;f.“o b ,T)
but trivially
1im h( o(n,T) £ h(T)

N =y

and 8o we conclude that

h(T) = n]-.él':; h(i’(n,T)
Lomma 3¢35  If k €F* then h(TY) = kh(T)
Proof For any «
B(e,T) = lim 1 H(x®))
n-»o n T
¢ 1lim 1 H(«;k)
Nenoo 1L
< lim k H(x") by lemma 3°12
Noyte 1N
-« k h(T)
k k
Hence h(T") = sup hie,T)

If h(T) = 0 then h('I’k) = 0. If h(T)» 0 1let d be any number
satisfying O0gd<h(T). Then there exists an « ¢ 2 with

d?h(u,T) < k(D).
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Put /5’= a(k then
n nk
1 H( ) 1 H(x
T /ng n T )

k1 H(g
nE(

ke

lim 1 H(ﬂ;k)

. . k
h T
giving (/3 ,T) il

1]

]|

o 1 H(:xnk)
nk

=

a lim
n~> 00
= k h(ec,T)
Thus (T | = S B(¥,T)
> b (2,7
k h(K:T)

>k 4
But d wes any number satisfying Ogd<h(T) and so h(T5)yk b (T),

The result then follows from our two inequalities,
Corollary  If kel then W(T") = |k} n(T)

Proof If -k elT then n(T'k) = -k h(T) by the lemma.
Thus we have h(Tk) = |kl h(T) if kel , k$0. If k= 0O then

Tk = the identity and hence h(Tk) .. 0 « IkIh(T), in this came also.
3.4 EXISTENCE AND PROPERTIES OF CERTAIN ¢~ ALGEBRAS

We say that a o- algebra is invarient with respect to T if
x ¢ T o and that it is exhausbive with respect to T if o = £ .
If a ¢~ algebra is invariant Jand exhaustive, we say that it is a
K,-algebra with respect to T, while if o is a Kl—algebra. such that
X, = & We say that ® is a K-algebra with respect to T. Further
if given T there exists a K-algebra, then we say that T is a

Kolmogorov automorphism. If = is a K-algebra then iQr' Tlo( a

and so we have that T is a Kolmogorov automorphism if, and only if,
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there exista a o0~ algebra « such that « ¢ T, i};‘ Ti‘,( =€
At ou.

Since & is a K -algebra for all T, there always exist
Kl-a.lgebras, but as we shall sece later there do not always exist
K-algebras, However, if we put

s* = {x: n(x,7) =01
vV

oe 5

®

m(T)

*

then the following theorems due to V.A.Rokhlin and Ja.G.Sinai

(see [17) ) show that a necessary and suffieient condition for the
existence of a K-algebra is T (T) =+,  Note that « ﬁ Z implies
h(og,T) = H(x) = oo and hence ote’ s*, Thus, since (Z,f) is

complete. we have that o< TI(T) implies &« € 2, and so by the

corollary of lemma 334 that x€ 8 i,e. TW(T) = Ué o -
oL

Theorem 3°4L. (1) If e is & K,-algebra then T (T) € x

(2) If « is invariant and H(Tw |x) = h(T) < o

then o £ TF (T)

Proof (1) If PR TT (T) then f €% endif ¥€ Z is such that
¥<T'x for some m then for all pefl™
BTV qP %o fAp) & BV | oy ) S B( Y| XKew) (1)
But T o, = o, and ps mm, th;m by section 3°1
n(plp7) = (AT = O
giving / Sﬂ— and hence T /8 $/348 —zﬁ'.' Therefore by induction we
show that 'I‘k/w’ gﬁ", kel i.e, Ao :ﬂ- = TPkr]' , kel

Now H(¥| (¥ o)pp T‘Pi(k?fl T /3 )gp)

- - -pi ~pJ ~k
= H(¥| XTPO(W T ‘}ér‘_’_'p k?l T ﬁ )



H(B’[D’;Potm/i’rr) |
Thus H( Y| X;P %o p) = . Lin H(zrla/;P % [3)

1 ~Dos
i - "'Pi P -k -
= 1 H ‘ T
Mm BCA (oo )7, Ty T80 )
= H( Y] ( b’o(,,o)TP) by 2022
While since
- -Pi -Pit+m -p+m
e T ¢ YT PR
we have that %-1;;0 XTP Koy = Oy and so
by 2°33 Lim HY) ¥ pote ) = H(¥]Xe) (3)

Thus from (1), (2), (3) we got
H(¥ oo ) & BO¥Jolo/fBy)
but oLy, £ o(w/s’T and so
(Y {0 fy) € BOY] Xoo)
giving H(¥|afy) = B(¥ | < )
If&€ 2 and 4 is any real number such that d» O then there

exists a ¥€ Z such that 2 (§,¥)<d/2 and ¥ € T"x for some m
VASY

Thus
[H(E | /8) - H(5] o )]
< V(S JofBy) - (S V[, 4)
+ B8V [aw/3) - B i)
+ | H(Y Jetwffy) - H(Y [ xa) |
+ JHE(Yey) - H (57 |x,) !
| B(SY[e, ) = H(S] )]
< H(K]S%)+H(S]WG&)+ 0
+ H(5 )+ H(¥][§ )
< 2P(5,7() by lemmg 222

< a
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But d was arbitrary and so
H{( S’l%ﬂT) = H(§ )
far a1l &€ Z in particular for & = B eiving

B( gl A)
= 0

H(glax,)

Hence ﬂ £ ¥, and therefore T[(T) & ,,
Proof (2) Let /5 € Z be such that ﬂs o, and XP, p € M Fany
sequence in (Z,p) such that P];;.%lo ¥p = . Then by lemma 2.22
H( ¥l 95 ) +H(BIST) = H(X AlNpAT) |
=HBIB (Y BE(Y |Y”
| (/3/3 ( P)T)“" H(D’P] P)

giving R(A,T) = H(AIB") '
= H(AIBT () ) 4 HOLI¥D) - 5G] Y, A8,)

Now P{.%gn(/;lﬂ'(zfp)T) z H(/le'ac) by lemma 2-33

= 0 sgince /9’..{04
and plim H(Ypl %) = (o let™)
while JLim 8 (%) ¥5/8,) = H(w e /)

= H(x l«”) because /:‘Té o
Thus n(/A3, T) = plim  b(A,7)

= O4 H(wlo") = H(ochot )
= 0

giving A ¢ TI(T) =and so completing the proof.

Corollary If h(T)¢o0 and o« i a K, -algebra such that

C H(Tetle ) = h(T) then oxuz= ¥ (T)

Theorem 3:42 There exists a K, -algebra o such that o, = T (7)

and H(Toc} ¢ ) = h(T)



59
. + .
Proof Let /5., i€l" ve such that VN éﬁi+1 for each i and

+
im - N : s : 42
::l{.-j-iw /3 g = € and n., 1 an increagsing sequence of positive

P
. . .v -1 x - V -]l - -
integers Put Xp 1% T 1/3 50 0% e T lﬁi and X=X

Then «= ¥~ £ TY¥ = Tx showing that x is invariant.

h -

Further g = kYF ﬁk
¢ V.ot Vg -1y
¢ er T je’l‘*T k\ng ﬂk
= & 7

and hence & is aKl-algebra. Consider

= - - = +
F(P,~Q) = H( Xp’ Y_q—l) H(b,plvq)’ p,qér
= B - B s ¥

H( xpwq_l) BOY 1Y T 8 )

We put n; = 1 and assume that ni,1$ ig r-1. have been chosen such

that
Flp,q) ¢ 1.1 if p¢agr (4)
) 4 5° Zq-p p
Then by lemmas 3-22 we can find an o, such that
F(p,r) ¢ 1. 1 if p¢r
p 2r-pP

Hence we can find n., i€l'* such that (8) holds for all r € re,

If q=p+r then

el
+
L]

H(VPIV;) -H(TAY ) = F(p,i)

;
[

IlIEI

ud]
Dy
)

4
<

ho/ Ll o] | o

But Lim Kprr = « and so we get

-y _ +
H(b’plafp) H(D'Pl“) < %, pel

e lim H(Z,17 ) = lig HOY ) )
Now lim B(Y 1Y) = HYIY™)
= h(¥,7)

= h(T) because ¥ is a generator.



vhile lim H(¥ |«) =H(¥I)
But Y¢< T« and s0
H(To)ot ) = H(¥Twl )
=H(¥lx ) H(Tx [ ¥ )

H(Y!x ) because ¥ = Tx

i

Thus | H(To t &¢ ) =pl_%xg H{ ?‘pln{)

= pHn B 17)
= h(T)
If B&2, A€ %Xw then a’p'/,l,gx rnd so by lemma 3°23
H(p 1A ( b’p)T) + H( b’p)»’;) =H(A 3p!/n'"b’;)
=H(¥ ) ¥ /) +HE(AIAT)
giving  h(A,T) = H(F147)
=H(#IB7( XP)T)+H( v b’;) - H( zrpn’;/d’T)

Now p{’l‘g (XP)T = de € and so
p]-'—>1£ H(ﬁ'"ﬁ (VP)T) = 0

and  H(¥_) ¥ A) 3 H(T o)

giving h(,ﬂ’T) = pl;%ﬁ h(/.?,T)
¢ plin {H(b’pt a’p) - H(B‘plx)
= 0
and hence S ¢ T (T). Thus we have , £ TT(T) and so by

theorem 8¢41 &, = 11 (T)

60
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4 KOLMOGOROV =AND REGULAR AUTGCMORPHISMS

4.1 DEFINITIONS

Ve say that a ¢-algebra « is : invariant if o ¢ Te;
exhaustive if Ay = £; a K- algebra if « ¢ Tx and X = €:; and
lastly a K-algebra if « & T, X ¢ and K= ¥, or equivalently
. i i
if o« ¢ T, :’L}'./I"T «=£ gnd i/e\r' T« =2, (see K.Jacobs [8] )

If there exists a K-algebra with respect to T we say that T
is a Kolmogorov automorphism. (g2ee V.A.Rokhlin [16] ).

For any - algebra x we define the tail o-algebra (a )

of « ({see L.Sucheston [21] ) by

N i~ -1 -
() = Lr T e = AT
and say that T is regular if («) =» for all « € Z;
Lastly we say that T 1is g mixing of degree n if given any

sets A,, 1< ign+l, tier’ y Lsign+1l then we have

. n ts, n+l
F=s A s R o (N R
where &= 1Iic’ It;- tj! , see P.R.Halmos [6], and V.A.Rokhlin [16],
L 1Fd

4.2  MIXING

- + : . =
f b, = ti(n), nel¥, 1gig n+tl are such that l]i’;’m”An., o0

whers An:::?:fj i ti(n)—tj(n)i then there exists a subsequence nj

such that for a1l m the integers T (nm) are in the same order.

Without loss of generality we can assume that ¢, (nm) 7 tin (nm) for
. ] n4l by _ oyl b= 1. )

1l¢ i€ n. Moreover since M (iélT Ai) = P(igl T "i) & lose

20 penerality in ossuming that ty (ny) = 0.

Thus we see that T is a mixing of degree n if given any sets

A,y lgign+]l and any d3» O there exists an n > 0 such that for
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g1l n.;n,lgi.sn then we have
i o

Irt(nﬂ' iy, ;) - I:i::ri p(A-)} <d

where Hl = 0, Ni = ;E'l n 5 £ig n+l
Another view of mixing can be obtained by considering the action
. 2
of U in L‘,.

Theorem 4-21 T is a mixing of degree n if and only if, given

£, Lgign+l, t3 €M, 1¢i¢n+l such that fiéLE each 1 then

13 {m‘l Utlf d nﬁl [ £ 4 | (1)
asnl sl [e=3h 3 4
X X
whe A = inf Jt.- t.1
re A= gt 14y
Proof If T is a mixing of degree n then given gets
A, 1gig n+l
. n+l t n+l '
lim = - A. 2
N U G @
but lv(Ai) = [ in dpp and
X
n+l _ts n+l
T2 = .
pla, TH &) [ T ey,

_ +]1 -t
fx 2’11 U xAi dyr

Thus if T is a mixing of degree n (1) holds for characteristic
functions. It is then obvious that (1) holds for step functions and
hence by continuity for arbitrary functions in Lﬁ,

If (1) holds then given sets A, 1gign+l we put £ =Xy, for

each i and get (2) thus showing T is a mixing of degree n.

Corollary 1 T is a mixing of degree n if, and only if, there

exists a subset L of Lf, such that
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(1) {geg = igl asf;, a; a real number, f;¢L each i, n finite }
is everywhere dense in Lﬁ
(ii) given f£5¢ L 1gi¢n+l, t;€l 1 ¢i<n+l then

. +1 t o+
lim J . U"l £. dp = £. h H= 4 - 1.
B> Jy E 1 F E L 1 dr vaere igg 'tl tJl

Proof If T is a mixing then we take L = L?. o Conversely
given a subset 1L satisfying (i), (ii) we have that (ii) implies

. nt t4 n+
that lim {x oy £ ap = s Ix £, dp

A-dre i=1 i=l

holds for all £; belonging to the subset in (i) and hence for

arbitrary fié€ Lﬁ since integration is a continuous operation.,

Carocllary 2 T is a mixing of degree 1 if and only if there
exists a subset L of Lﬁ such that

- I : .
(1) {1g:g = ig:"l ay fi, a; a real number, fifL each i, n finite'l
is everywhere dense in Li

(i1) given £, g¢L then v
Lim w® 2, g) ={ Ix £dp Hjxgdr}

Proof Since (Utf,g) = J wts) g dp the result follows from

corollary 1. %
Lemmag 4-22 T is a mixing of degree one if and only if
1im (vbs,£) = { { £ dﬂ}z, el ()
o )
X
. 2 2
Proof Given f¢€ L[,, let Ll be the subspace of Lf‘ spanned by

the constant functions together with £,U%f, t€ " and let L, be

such that L1$ L2 = Li o It g= U%f and (1) holds then

. t
l1im (U"f
t200 ( ,g)

1in (0%, USf)
-0

. t-s
= %_J;mw U™ "zf, £



Al o) w0 )
- ”xfd/ﬂ}{jxgdﬁj

sincejgd[l :;[Usfd]wz{fdr
b4

X X
Hence we get that far 21l g € Ll we have
. t
m (U'f,g) = {I fd'}}{fgd }
%%aa % / x f
Now if ge¢ L2 then (Utf,g) =0, t e ana gince Ll containg the
constant functions in particular h(x) =1, x€X we have

0

it

(z,h)
[ ap
{& 4

Thus for arbitrary g# L2 we can find gie Ll, g5 € L2 such that

1l

Il

g = gl-r gz and so

It

. t

= lim { (u's, gl) + (U, gz)f

o el
[l ol e o]

“{] 2 erl{[ = 2rf

The if of the lemma then follows from theorem 4°21, corollary 2

. %
1im (U f,g
£ =300 ( 98)

as does the only if. (see K.Jacobs [8].)
4°3 SBEQUENCES OF O~ ALGEBRAS

The main result in this section is due to J.R.Blum and
D.L.Hanson (see [2] ). In this section we use the term measure

to mean a real valued function pl defined on a o¢=algebra « such
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that pl(gS) =0 andif Ajewx,icl™, Binls =¢ for i#j then

1 1
n (ig)r’*' Ai) = i%l‘* i (A:.L)° However by m we still mean a
positi¥e measura with p(X) = 1.

Lemms 431 If {un} y DE " are s sequence of - algebras such
0o /\ ' oF .
that o € for sach n, «'= [l an then &« =« if and

only if for all A € £

lim Sup ‘F(AA&’AB) - F(A) {'(B)' = 0 (1)

n-re B&oe,

Proof The limit always exists since dn-;—l 4 X D e
If (1) holds, let A€ «® then Ace¢ o s nel™ and so
0¢ Ip(a) - pla) p()I€ Lin sup In(AsB) - p(a) q(B)} =0
ices p(A)= O or 1 giving A</, But A was any set in o
~and so we deduce that <=,
If &= 4 and (1) is false then there exists an Ae¢ g and &
4> O such that
B §UP fp(:m B) - p(A)p(B)L; d, nel™ (2)
For each n we define a measure J, on (X, e ) vy
ﬂn(B) = p (AAaB) - /1(11) p(B) faor BE€ X o We have that
PalEB) = (A a(XBN- (k) p(%-B)
ol =(5aB) = pa) (- p(B))

1

= = 1(LaB) & p(2) y(B)

= = ﬁn(B) (3)
Hence Fn(B) £ p (aB)g 1
and —Pn(B) = p (X-B) Sﬂ(fan(X-B))s 1

. . -
giving lﬁn(B)Ig 1, BE «_, nel

+ .
If k = su 1 (B) then there exists a sequence |}B. i el with
522 [al®) q {3},

i = i = . . x
B, € «,, 1in 1 (B;) = k. Further if G, M. B, then G € =
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because «_ is a o-algebra and fln(Cn) > f'n(Bi) for all i, hence
f"n n) ¥ k giving pn(c ) = k. We note that k»d, by (2), (3)
and the definition of k, and that for any B e «, we have

(C ) 2 pn(B) Thus for n €%
AN Cn) ;rln(cnucnvl)

?’f'n(cn-’-l)

= Fn+1 (Cn+1)

since p (B) = p . (B) if B éa:n*l

If ﬂn(n{_j_o n+1) ?[’n—f-m (Cn+m) far né{H— (4)

1 m +1
c
=0 n+1) ﬂn 1‘_j.1 Cn4—1)
m+l
= el '(i‘;'l_ Cn+i)

m
= /1 n+l (i{'=}0 Cn-i‘-l~s—i)

then /'n +

?nenst Coeger) 0 (4)

Thus since (4) holds foo m =1 we have by induction that (4) holds

+ , *
for me['v. Hence Fn(lgzi _L)}/"mm Cn-;—m) = k3 d for n,mel™,
letting m-w gives

@ );dfor n€f'

n 1-11 i
] w -+
i e Fl(ign Ci) = Fn(ign Ci):;,d for nfr
and so
n, U ‘
I'1lofer+ 1%, C3) 2 4 | (S
00, %0 oo +
& 3
But U 6y € Xy Y6 €V o nelMMaaso
0 . _ .
ngp‘ ign C, € = =4 giving F(nQI"' iQn Ci) =0 oar 1. 1In either
case Fl(ngf"” ign Ci) = 0 cotradicting (5). Hence we deduce that

if «®=4 then (1) holds.
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4°4  MIXING FROPERTIES OF KOLWOGOROV AUTOMORPHISMS

We are now in a position to prove a result due %o
AN.Kolmogorov [117, [12] and V.A.Rokhlin {16], namely that a
Kolmogorov automorphism is a mixing of all degrees. However, the

proof we give is due to J.R.Blum and D.L.Hanson [2],

Theorem 441 If T ia a Kolmogorov automorphism then it is

a mixing of degree 1.

Proof Let T be a K-algebra, and o = "0, nel™, Then for
each n, « . £«  and o= W, If A,Be€ ¢ then there exists a
n+l n v
sequonce {.Bi} , ief?  with B, € T4 § and /-(BABi) 2 27" for each i
Hence for nel't, iel™
In(s nT-(n+ki)B) - plda T'(n"'ki)Bi) ]

£ frp (Tn+kizlnB) - I"Y(T
< pl (TP 1m) 6 (TP paBy) )
£ Pal (Bj‘-‘-’nBi)
< o~
and Ip(A)r: (T"(h*ki)Bi) - p(4) F(B”
=pw) tpe) - p @)
< p(A.). f1(B 2B,)

2-1

A

Given d»0 choose i such that 27" ¢ d/3, Now
- . -+
o~ (otky) B, € «_, nel’” and so by lemma 4'31 we have

Jim | plhar @ ey o) o)) g 2o

Thus we can choose I\I1 auch that for N;Nl and n = N—ki

Fpaar B3)p )y o g (n) p(FCFLB) | < gfs

i
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Hence lr(fan-NB) - p(-ﬁ) I (B) 4
élp(AnT"m‘“ki)B) - n (A,,T‘(n*ki)Bi)f
- (n+k: ) \ - (n+k; )
+ )p(A,-,T "1 Bi) -r (u)p(T k! Bi’ |
+ b p@) pr®Eds ) o () pe)
¢ af/3 + a/3 + af3
= d
giving lim | n{&LnT” ¥py - /“(A)p (81 = o

i.e. T is a mixing of degree 1.

Corollary ~ If T is a Kolmogorov automorphism then it is a

mixing of all degress.

Proof It is sufficient to prove thail given any sets Aj,l{,j.gn,mef"*
and d» O there exists a n_ such that if nj;no, N, =0,

Ni#.'L:-k%:l nJ., lgjgm-1 then

| (m N m ‘
of T qj .[ s - .U; -A- ; dn

r JQL LJ) i rt( J) 4

Ve assume the result for m and prove that this implies the
result for mel. An appeal to the theorem for the cagse m = 2 then
completes the proof,

Given A, 57 lgism+l, d>0 and integers Dy 1g jgm put
Nl—- 0, I\IJ kg‘i n. 57 lgjgm, There exist sequences {‘A‘,ji} ’
iel?, 2 ¢j¢mil such that AjiETkif ) (b8 a) < 2% ¢ each i

and 24 j€ m¥l. Hence for iéf "

mtl N+n

. - -1 m¥+l N»-fn
Lp(ag a ™ gz Lag) - plagarTt s T A
m+l N+ m+1 N 5t '
jte n1
- &
3 p(JQz T Ly J/_?z p 53)
mfl N:ien /é N 1
Jt1 o, 1,
= 3'22 T )
-l N
mtl N3+n1 A= ™ J+n1 £

+ (o T i J=2 J
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ml N3+n Nj-fni myl N:en N:4n
, Jt™m J*¥o
p( U (T i - T hji)) + F(ng(T Aji -7 Lj))
m+1
.ll 6 .A...
< J_ 11( 34 )
<m2™*

and fp(sy) p (T 7, T ) - plly) g (m};_*l T 1))

mel N :en <+l N
~$/|(Ll)[,, (0, T ey - n(nfﬁ ARIWE
1 N o+l N+
€ F(m+ T, i1 “ ﬁz T nlu;) )

1
J‘S.' 2 nas
%2 F( J le)

& ma ™t

Choose i such that m2 ¢ d{4, Now N.+n1 is independent
of n, for 2¢ j§m+l and T (n1+k ) mﬁl NJ"'nl A € T nlf D(
1 =2 ny’
+
nlcl". Hence by lemma 431

] . —(nl+k m NJ+ 1 (ni' k-i) 1 N -
n]r'.%‘.‘}o'{‘“*l"T Z(l T A -,1(1\1\ ?;jo J.nmji)
=0
uniformly in nJ, 28j€&n

Thus we can find an n% such that for m 2 nO:L

I pliga ™ ”ﬁlTNJ*nlAJl)- plg) ™" ‘;’;;T a0l ¢ afs

but by our hypothesis there exists an ndll such that if n'j);noll,

2£j€n then
+1 N
lp(m Jml L) - mﬁl (t)l < a/a
J=e J
and since Al) ¢ 1 we hava
m+l N 3+ -
pt) p (o 75 - T piap ! <ofa
Thus if n_ = max(nl s D ll]we. have for n,»n , 1g&j&m that
0 o 0 3 o
mgl N -
J :

mil N -ny m¥l  N-n i
slr(J/\l T J A ) "['(AlﬂT 1 jgz T J lAji) l +
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‘{'("‘1"'1’_!11 mfllTNJml 3)- (fq)r(T‘nl mpl pliyrmy hs)l
41 N \
+%P( )""(T wii] 1;1 0, J*nl.n.j.) - p(!&l)r(mﬁl NJ"P‘D.]_ J) ’
m+l N +ny m-o-l
"'lr(f»l)['( /l h3) - -l pilss) ]

< .€1.+Q+£1+§
4 4 4 4

= d
Theorem 4.42 If T is a mixing of degree 1 then T is
ergodic
Proof If Aee , satisfies TA = L then since T is o mixing

of degree 1 we have

1im | F(,A.n‘;‘_nf;) - e pm o= 0 (1)

n -0
But TL = A implies A,,’I"'nA = A for nef"" and so (1) gives

P = () pla) =
ie (29 F(.A) = O, 1
1, e, 11(1'1.) =0 or F(X—A) =0

Hence T is ergodic.

Corollary If T is a Kolmogorov automorphism then T 1is ergodic.

Proof The result is an immediate consequence of the corollary

of theorem 4°41l and the thecrem.

4.5 EQUIVALENCE OF KOLHOGOROV AND REGULAR AUTOMORPHISMS

This follows from the work of Ja,G.Sinai, J.R.Blum and
D.L.Hanson (see [19) and {2] ). We do not use the above papers,

but consider expressions for TI(T).
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Lomms, 4°51 If «& Z, /3= o then /:’w s T(7)

Proof By lemma 3°23 if ¥ ¢ ﬁap we have

BO v 0=) pH(w lo™ ) = B ¥ o™ 07)
H{a lc™ ) B (¥ | ¥ Tot) (1)

I

Now o Vo = o since T ¥ Tlﬁ«, = fSa because Fg T4 giving
H( x|« ¥p) =H(ele™)s But ¥gety and so B( ¥ b"xT) =
giving from (1) that H(¥|¥7) =0, i.e. ¥ T(T). The result

then follows since ¥ was any o'~ algebrea such that ¥ §/%-

Lemme 4:52 WT) = Y, (« ),

Proof By the previous lemma ("{-)x & T(T) for alle«€ Z and SO
“\éz ("), & TT(T). TIf ALIT(T) then O =h(A,T) =H(AIE)
giving /3 _g/s— and hence Tﬁ $Tf =ﬂ~/9-=/f - and so by induction
we get Tjﬂ 5/9-, el Thus/s’;gT ﬁ , 1ef'*'g1v1ngﬁ (/3 Yoo

and therefore TH(T) ¢ Y, (x7),
Corcllary 1 TH(T) = “\ézl () oo

(x” o € T (T). If

Y

a(éZ
A< T(T), Bef comsider ¥=1¢,8,%-B,X}. Now ¥¢/4 and so

Proof Since Zlé Z we have

¥< T(T) giving as in the proof-of the lemma that ¥¢ (¥ ), and so

1
Be¥g “\éle(ﬂ‘ ) © But B was any set in 4 and so / eZ (,g )

and therefore 1 (T) £ “le (x )

Corollary 2 T is a regular automorphism if and only if

(T) = »

Proof We observe that (& ), = ()
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Combining this last result with 34 and 4-1 we get:

Theorem 4°53 T 1is a Aolmogorov automorphism if, and only if,

T 1is a regular automorphism.
4°6 SPECTRAL  THECRY

Given an increasing real-valued non-negative function F(X)
defined on [-F,T) then if we put

F(Lx,y)) =F(y) - F(x)

it

Fi{[xy)) = pliz Fly-n) - Flx)

h'y
FL(xy) ) = Fly) - lim  Flask)
Fy (=) ) =h§13* F(y-h) - kl_i“%.,.F(x‘fk)

we have that F, is a measure on [-7, 7). Conversely, if F is
a measure on [—TI,TFJ and we put

P (N) = F ([-T,N] )
then F¥ is an increasing resl valued function on I-7T,7rl
Moreover, if given F we constrp.ct Fl and then ¥ we have that
F = F* aglnost everywhere. Thrc;ughout this section' we shall not
distinguish between an increasing real-valued function on [-T, )
and the associated measure on [-ﬂ,?ﬂ and the same symbol will be
interpreted as both;the context making clear which interpretation
is meant.

Before continuing we intr oduce the foll owing nofation... Given
any xé€ Li we denote by Hx the subspace generated by Unx,ner
and refer to it as the cyclic subspace generated by = . For each
nel” Wé put

929x(n) = (Ux,x)
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and note that for all n

Pul-2)

U x,x)

(x, U x)

= $Dx(n)

Further, since |73x(n)| £ ? (0), nel” it follows that SDx(n) is a

positive definite function and hence (see [3] ) there exists a
measure Gx on [T, such that

¢ () = em*dﬁ(x),nef‘
We refer to F_ G /j G (A\) dX =as the spectral type of x.

Lastly we put
Y, = {y: Fmey}
where ~ denotes the usual equivalence relation between measures, i.6.
F_a~F, if and only if they vanish on the same sets. The reader
is referred to P.R.Halmos {51 for a discussion of the rel ations
~ and £ as applied to measures, The main results we need are
that if F,G, arc measures, a, b, are non-zero numbers then F rvG
if and only if & FE bG and FEG if and only if oF g bG.  Further
if Fy, 1el" are finite and narmglized measures, ai,b:.,ier are

~ non-zero, positive real numbers such that 5’, a 1§rb ¢ o

= >
then e Fi ~ e 'bi Fi’

i
Lemma 4-61 If =xe€ L2, ye€H_ then F_¢F
r x y¥Tx
Proof Since Y€ Hx there exist constants s, k €l such that
y o= fll:l};nw 'ldgn 8y Uk o Hence

Zy(a) = (Uy, ¥)
n+rk

(],Z;'J;r' 8 U x ,k;&",aku x)

= %ef‘ brﬂ_ (u X,X)
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=30 by [ a oo

giving ug that F _( F

Lemma 4-62 If xelg, y&Hx, Fy""'Fx then Hy#:Hx

Proof Fy$ Fx by lemma 4°61 and ery implies Fxg Fy by the
same lemmg, and hence FXNFy. This is a contradiction and so we

deduce that x{Hyc But erX and so we have Hy#;H N

2 _ .
Lemmg 463 If xelp, yﬁHx, Fy'?"Fx then thore exists a zeHX

such that Hy e H2

Proof By lemma 4°62 H & H and hence since H _¢H  there
y X y X
exigts a 2z eHX such that 2z 1 Hy’ icee 2Z A uny, nel’ and so

U2z L y for all n- giving us that Hy L H,.

Lemma 4°64 If x.ye L,z, are such that Hx L Hy then

‘Fx+y = (Ffoy)/z ,

Proof @ )= (xy), x3)
(unxvx) + (unx; y) + (Uny,X) + (unst)

]

but HX.L H,} imply (Unx,y) =0 = (uny,x) and so

Prpy @ = Wxx) « W,7)
J# einA dGX-l—[”ein)‘ de
n 4

it

-7

fr inA
e

o

d(Gx-;— Gy)

giving Gx-o-y = G + Gy and hence Fx-:-y = (Fx.,.Fy)/ 2

. . .2
Lemma 4°65 If x,i€ I satisfy x.chr , Hx.lH = constant
for all i, Hxi L ij if i$Jj and a;, i€I are real numbers

such that i%l'ai'sml and |ail.€1 for each i then if y = Z ai %3

3!
Zl‘ 2
) [ fET

we have that Fy = Z a 2}3‘ a. .

i€l "1 Txi



Proof

and so y 1is

(')nyQ ¥)

I 1]
M S,
M

HE o =xll<
s Iv12

well defined.

s
2 tel U

a.x.)

b4
a'xl’:iél 171

al (Unxi, xi)

Iy 2 iAn
#1 % [0 g

. 2
Thus since a; £ 4

is well defined and so

(IEI 1F )/

Lemmg #&-66 If. Lﬁ

"
1, Uy (x,,x,) = [ﬂ ac_,

we have that

2
Gy=Z aiG

2 «i 8iving Fi =
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FI 1 xi

is separable and x.l,ieI yj,jeJ are such

2
that XEL,,Z, yJ.eL; for all i, J and
(1) H, LE, if ik
2) E .1 H if Jgl
(2) H_,LlH, J#
- 12 =
(3) By u,=Ls = & By
then for all non-zero, positive real numbers & 1€T, bJ., Jed we
have B ey Foy o~ gy by F
Proof Since L,21 is separable I, T ¢[ and since F_. ij are
normalized measures it follows that &. a, F , E b. are
1T Ti Tx1 J y.)
well defined and finite. By (3) we have that for each j&J there
exist V.., i4I such that V..€H . for each i and Y. =2 v
J1 Ji T xi = eI Ji

By lemma 4°65 we have that Fy,) =

we have that F"'ji
j 6 JD

P
we show that 21

Ea NZ.}_

£F .
x1

a.F .
1" x

for each i

Thus we deduce that .. L.F . 4 i§1 a; F_..

Jed

€ 4 bL.F
€ Jed "3 vi

Jd ¥
and so we have

X}

1€l "1 x1 JEJ ) Fy,)

FV,ji and since by lemma 4-61
it follows. that Fy J "igl aiFXl

Similarly
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We now define the maximal spectral type of U if L% ig

separable to be the equivalence clags of measures which contains

i§I ay in where S ieT are any elements of Lﬁ such that

c e s 2 .
Hxi i ij if 1#J, L{,I = {%& Hxi and a; are any non-zero, positive
real numbers such that £§I a;< 0. Byvlemma,4°66 we have

immediately that the maximal spectral type is well defined and

unique.,
We say that U has a Lebesgue spectrum of multiplicity ,2% if
there exists x.,ieI such that x. ¢ L% for each i, H_. L H_. if
i i x1i xj
.4 s 18 .- . .
i¥ 3, Lf‘ = j‘gl Hxi’ F 5 for eachk 1 ia equivalent to the ordinary
Lebesgue measure and I 1is countable finite.

If (! satisfies all the sbove donditions except the last then

we say that {{ has a Lebesgue spectrum of multiplicity & = cardinal

number of I.

Lemma 4°67 If there exists an orthoncrmal basis fij’ 1el, jeJi of

L2 such that J.= /" or I'* for éach i and Uf, .= f,, . for all
! 1 ij = Tij+l
i, j then U has a Lebesgue spectrum.

Proof Let X, = fij for some je&Jj. Then
n .
u Xy xi)-— {inﬂ if n=0
¢ if n£r+
hence we must have Gxi‘ equal to a constant times the ordinary

Lebesgue measure. Hence.Fxi is equivalent to the Lebesgue measure

and since fij’ 1€T, jEJi-is an orthonormal basis we must have

2 ® . .
= . . o h
Lp =2 H,, and H L oH, if 1¢=k' Hence we see that U has

a Lebesgue spectrum.
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Lenma 4°68 If there exists an xclLi such that F_ is singular

with respect to Lebesgue measure then U doesnot have a Lebesgue

spectrum,

Proof ‘As usual we say that two measures are singular if the only
measure which is absolutely continuocus with respect to both is the

zero measure (see [5]) |
If U has a Lebesgue spectrum then there exist X, i€l
2 . 2
. £ h . L Hx. i i3] = ‘e
such that x €L, for each i, Hx, t Hxa if igj, L,. i@l Hx,
. 2 . .
Hence given xE.LP there exist Viy 1 €I such that v, € Hx; each 1

F and so since

. By lemmg 4-65 Fx = &1 vy

= 5
and X = &V

F_gF ~ud F_ is absolutely continuous with respect to
vi X3 X3

Lebesgue measure Zor c-ch i, 50 oo if Fx. But this ic a
contradiction and so we deduce that U does not have a Lebesgue

spectrum,

4= THE OSPECTRUM OF A KOLMOGOROV AUTOMORPHISH

In this section we lock at some spectral properties of T, and
in particular the spectrum of T if T is a X - automorphism,

For any o~ algebra o we put L, = ff: feLf, f is measurable
with respect to (X,x)] If A€o, X, is the characteristic

function of A, U as in section 1°2 then
X =KT o= X2y
Thus we see that for any step-function feL, we have Uf éLT"‘lx .

;nd as usual we can approximate any f by step functions and obtain

far all feL,z1 that
feL, implies UfELT_]_“

Moreover if e & Ta then Lp.) € L, and so UL & Lyg-
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We define a subspace of L of L,z, to be invariant if

UL ¢ L
and to be exhsustive if
Vv % - 2
tert UL L/4

reye v, ut
Here as always we use ter L to dqnote the closure of t(élﬁ‘ utl.°
Lastly we point out that if o is a K,-algebra then Ly is

invariant and exhaustive.

The following four lemmas are essentially proved in K.Jacobs [8),

Lemma 4°71 If L 1is an invariant exhaustive subspace of L?,
and L = {)p UL, L* satisfies 19=1" @ La then U hes a

Lebesgue spectrum in L* if LY¥ g [0]

Proof - Let Hl be the subspace such that
L = H1@ UL
: -1 .
and define Ht = i Hl for t €rl
then UH, = H and U5t L = H @l 1,
- ° _ , -t
Thus Ly = t@» u-ty
= t@r H, @ Lo

if (fif i€I is an orthonormal basis in Hl and

{fi{.,}z ut"l fil then ffit{ , 1€I, tel is an orthonormal

3 + - @ =
basis of L = Ht such that fi u fit° Thus U hesg a

1

Lebesgue spectrum in L

Lemma 4072 If T is ergodic, o an invariant ¢-algebra and

Lo # o« then (X, £, M) is atom free,

Proof Since T« F « there exists g set A1#¢ such that

Ale T« , A1¢ %, and for: each n €It there exists a set An:,l: ¢
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-1 .
such that A € ™ s A ¢ T "« and hence A# Aj, l1¢ jg¢n-l,
Let /3 be the ¢- algebra generated by {Ans nel™*, Let & ve
the least limit point of the {F(B )‘ s B éﬁ , BF ¢zmd suppose
§> 0. Then there exists a sequence {Bi} , 1€ "* sueh that
Bi¢13j if i%¥Jj and such that ;N F(Bi) =&, and an N such

that for i1 » N we have N(Bi_) <35/ 2, Consider Cij = B, Bj

for i,j» N, then we must have Cij¢ ¢ for an infinite number of
pairs i,j since otherwise the Bi, i} some Nl are disjoint and so
1= p(x)2 igNl r(B;y) 3 jg\; § = o which is absurd. For these
pairs either 0 < p(BinBj)< g/ 2 or O¢ [1_(Bi - Bj)< 5/2, giving
o limit point of fn(B)l, Bes3, B# ¢ which is ¢ §/2 ¢ § i.e,

a contradiction to &> 0. Thug we have shown that there are sets
in € with arbitrarily small measures.

For any set A with V(A) y O we - can find o,os:et B with
0< p(B) ¢ p (A), and since T 1is ergodic there is a t 3 O such

- -t -
that fq(T tBnA))Oo ‘But T Balglh and ,1(T tanx)s P(B)( F(A)

hence (X, ¢, ,1) is atom free,

Lemma 473 If (X, ¢, pn) is atom free, o any o-algebra and

H, the subspace defined by Lﬁ =H,@ L, then either H) = {0}

or H is infinite dimensional.
Proof if Hl# EO} then there exists an f# 0 such that fé H1°
Further if F = { x: £(x)# 0] then Feéo and p(F)> 0. Moreover
the space

L = {gX.I: 'g€L2}
is infinite dimensional. Let,

L= {gXpt g€Lal
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and Lo be defined by
L = L@l
2
If gel , he Ly and g = ngF,. 8 € L,1 we have
(g,h) = (gX ph)

= 0 since g XpeLg, hX €l

Thus LOEH N If L1 has finite dimension then Lo and hence

1

H‘.L is infinite dimensionsal, If L. is infinite dimensional then
there exist Ihi}' iel* such that h, is bounded, h, & L,% each i

and fhi?CF} are linearly independent. Since f(x)30 for X € F

we have that fh.if?, iel™ aro linearly independent, - Also if
he I, then
(h £, hX,F) = (£, h;h)
= 0 far all i€l

because h.hel, , fel,.

Thus h.felL , i€l and so Lo ond therefore H is infinite

dimensional,

Theorem 4+74 If « is a Ky algebra, Ly = t@r* UtLo( then U
hag a Lebesgue spectrum in L* where L¥ is the subspace such that

12 =1*tg L, if L¥$/0l, If T is ergodic, L¥#{0} then U has
I B Lo ¥ ’

an infinite Lebesgue spectrum.

Proof  ULw = [ ULy € Db Ly=1,
Y

vLuty = U oyt Sy - ,

‘tér"u L= tert u st-f- u L= w©r L

Thus L, is invariant and exhaustive, and So by lema 471
Uhas a Lebesgue spectrum in L ¥ if L¥g{ol.

Since « is o K, algebra either = = & giving L* = [0} or
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Tx # « giving (X, £, ¢) to be atom free by lemma 4°62. The result

then follows from lemma 4.63,

Corollary If T is a Kolmogorov automorphism then U has an
infinite Lebesgue spectrum in the orthogonal complement of the

subspace of constant functions,

Proof There exists a K-algebra o, and for this « ,
L= th,,,, Uth = gubspace of constant functions. By theorems 4-41
nd 4042 T ig ergodic aond the rosult then Followm Irom the theorem.

This last result was first indicated by A.N.Kolmogorov in {11l
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5 MIXINGS WHICH ARE NOT KOLMOGOROV AUTOMORPHISHS
S«1 RIESZ PRODUCTS

We consider the Riesz product
“Tr{"{l + o,c08 1, x) (1)
where n,€ r* y ny*_l/n‘, > a2 83, 0c¢lelglfor vel™,
_ ' .
it pk—;!:l n,, ﬂk = for kel then f<na /(q—l), |
}
I"k)’ %1(Q-2)/(q-1)k:md 80 lﬂk/f‘lk)l. For ke F+we put
pk(x) = 1;__% Ycomsx = RiN (1+l¥i cos n, x) (2)
where the ¥, are chosen (uniquely) to satisfy the second equality

for all x, Thus we have ¥ = 0 if ¥ is not of the fornm

n.ilt nizt L} With k;il)iz) 6o '
Now p, 5 {x) = pk(x) (1 +X g CO8 nkﬂx)
giving that the difference p, ., = p, 1is a polynomisl whose

) !
loweat term is of rank M ? My Hence the passage from Py to Piegl
consigts in adding to P & group of terms whose ranks all exceed
f‘k' Letting k+>o0 in (2) we obtain the series

L+ 2, §ooss x (3)
in which % =0if n$nk nil:d: niz.d: coewith 454,24, > oot
The partisl suns S'n(x) of (3) have the property that
Srk(x) = pk(x)% 0, ke f.'"". Moreover if

6(x) = g j: By (6) ab
then it follows (see [22]) ) that (8) is the Fourier-Stieltjes series
for G(x) which is a non-decreasing continuous function.

If we farmally multiply out (1) and replace the products of

cosines by linear combinations of cosines then it is easy to show

that no two terms are of the same rank.
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Before continuing our discussion we need a lemma and the

following notation.

x lif 1g¢ign, nel¥
k i

A, =w,_ cosnzx, xel™; o, = { n”
0 otherwise

Ry = En % T, (x) = 1gér..,_.&nk(:c) Rmnk

o

2
Lemmz 5°11  If & ., =wthen the sot of points at which
2 2 F
* —
ThE = of %y R | (5)

il

where ?;(x) max {0, Tm(x) | is of measure zero.

2 2 2 .
Proof if [ E={x: (1) holds]ond |4} denotes

= R
m k?f’"’k mnk’
the measure of any measurable set in the real linc then if|Ef>» O

and d; is any number such that &> 0, there exists o set £ ¢ E with

1EL 2 IEI/Z such that 't’m(x) /{"g{t dl in £ for m>m0=mo(d1).

By omitting the first few terms of k%;,,Ank(x) we may without

loss of generality ond witheut changing £ suppose n, as large
as we please. g

Then jl?*m(x)} dx g I {H’m(x) -, P+ T fax
¢ If{zdl'rm- T,(x)] ax

£

2d1r’m£Et - fé_?;a(x) ax

li

il

but erm(x) dx = Jg{ .lger* ) €05 my x Rmnk; dx
= k& nank“k Rmk

where a, is the n.t'h Fourier coefficient of the characteristic
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function of the set & .

Thus Jl'l’ (x)l a x < 2d1r‘ 1:4';.,4. a o« R
k

214
< 24 &l ‘*‘W’m{k"e’f“" ank }
by Hol@er's inequality. Hence if ny is sufficiently large
Ig?m(x)i axg al, @IE+ T) |
ie €. (x) dx= of ’qm) (6)

m
But by Holder's inequality

f 72 (x) d x g ” :T(x)idxlzfs{(f( ) dx};(
and A. Zygmund {22] shows that

N 2 _ 0( '{2 (x)‘dx) for n, large enocugh

m
and £1~§ (ax =0 (%
thus giving
ro = o({!‘t’m(x)l)dx . (7)

This is a contradiction to (6) and so we conclude that {E{ = O
We now return to our discussion of Riesz products.

2
Lemms, 5°12 if Z’«’ = o then the function G has a derivative

0 almost everywhere.

Proof The series (3) is almost everywhere summable (C,1) to
sum @' (x). (see [22) vol.l P.105). Further the series has
infinitely many gaps (,-11{, r'}'c) and since pl'{/rk) 1 we have
(see [22] vol.1l, P.79) that the partial products pk(x) converge to
@' (x) almost everywhere. But l¢#u g 6 and so

0 g py (x) g exg{ﬁl %, <05 1, x )
In lemmg5ilfor fixed k we have 1imR =1 end so il F' .
Thus applying lemma we see that }}-{-l By, €OF  NyX takes arbitrarily

large negative values, as k-poo, for almost all x.
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Hence kl_:}g inf p, (x) = 0, i.e. G'(x) = 0 almost everyvhere.

Remark We have also proved that (1) converges to O almost
everywhere.
5¢92 A PARTICULAR FRODUCT

We consider the Riesz product:

yz'(ril...coshﬁ x) = 14’)§r‘+ d,c08ux =‘§p 5’ e:'ulx
where n_ = 22 and the §, ,»€[" are chosen so that the last equality
is satisfied. By the last section the series is the
Fourier-Stieltjes series of an increasing, continuous and singular
function G(x), and that 0g 6,4 1 for wel. For any N> 3 there
is a kv such that n, , ¢ ¥ «¢n, ond hence

)g' 5 S}__Zf;fk & = vﬁi 2=2¢ 2% 10g n.
giving the §, small "on the average".

Gonsider the mapping

x = x(t) = %(tq.t: sign t) , Mgt &M

of the interval [~T,T] onto itself.
If F(x) = G(t) then since .]./Z:sx'i (t)g 3/2 we have that F(x) is

increasing, continuous and singular. Moreover (see [22] vol 1.P.158)

et f: o~ IE gpiy o z]ﬁﬁ o~ nx(1) gniyy =EF An’” §,

and the series is absolutely convergent since e-mx(t) has a

derivative of bounded variation and so its Fourier coefficients
g

An!" - 2_%_ Lr

are O(y-a)o

e—i (nx(t)+et) at

We now leave this product in order to prove three lemmas.
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Lemmg 5-21 If £(t) is a rcal valued function for a g t¢ b,

£ (t) is monotone and there exists a A0 such that either
b
T3 -
ez 1£(t) at| ¢ A L

£ (t)3 N or £ (t)g- X for 2 § t £ b then H
. a

b . ' b .
Proof I egwlf(t)d{; = 1 e2‘ﬂ"1f(t)

A [, By o
a 1 Jg £ (1)
and by the second mean value thearem there exists c ,c, in (a,b)

such that

{b 1 dcor(2T2(8)) = 1 ]°1 deos(2T £(8) )4 1 [b dcos (2T £(t))

, £5(8) £ (a) ), £

® 1 g sin(emWe(t)) = .1 }“'éd sin(2W2(t)+ 1
£L(t) £'(a) £ {b)
a a )

b

b b
giving f Iaezwif(t)dtlg Zjﬁ{u ﬂ_}(t)d co&(21‘ff(t))1+)gf\}(t)d sin(2'ﬂf(t)”

a a

]b d sin(2 W£(4))
C,

Lemma 522 If f(t) is a real valued function for agtgb and
there exists ap> 0 such that f“‘(t);'por fu'(t)s - p for
agtg&b then ‘

b N
f 2L £(8) 4 < 4pt

a

Proof  I1f £ (t)g -p Ve consider -f(t). Hence without loss of
generality we take £ (t);/o. if f"(t); 0 for agt¢b, and

a<¥s b then £ (t)y (¥-a)p for Y<tgh

Hence ”begﬂif(t)dtl S “};2,7 i(t)dt} + ’ [:é277 if(t)dt
a .

a
V- a4+, 1 by lemma 521
h (¥-a)p
But ¥-a+,_1 has a minimum value when ¥ = a+p and 80

(¥=a)p
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b
2nif(t) <4 2
Ha e dt | & P +pP = 219-%

(I -.
I£ £ (t) O for agtgb then far a<¥< d, £ (£) ¢ =(b~¥)s for
agtg ¥ and result follows.

If f'(t) changes sign in a <t b then we have to consider the
two intervals in which f£'(t) is of constant sign. Thus in

general

”bez ’rif(t)dt‘ <2ty ot - upt

a
Lemma 5°23 lknyyh{,ﬂ.n
2

I%n,yl VR

-£

vel®
) 2 3n

where A 18 a constant,

Proof If £(t) = nx(t) ++% then

nx'(t) -

Il

£ (t)

1

n{lye2f sign t
‘z[ +28 oig )+y
£(t) = n_ sign t

g

Thus for + in (0, W), £9(t) = n‘\T—l>O, and so by lemms 5°22

f’ 1E (%) 4y ] <4(2n)-g

o

Similarly e lf(t)dt , 4(2n)'%

Hence - ]);n < 1 8(2n) 2< 8 n'%, vel £(t) is an odd
y - "~ V

function and so
) T
Trn,V "{cos f dat

fldsunf _j 5?;_12{ £"dt

nm -1 % £ £ dt
Further £'(t) is monotone, for 0gt¢ T and is of constant
sign if (2]} f3n/2° For i 8n we have 1£'1 2> lo1f2 and so by

the second mean value theorem
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-2 _3 L
iA. lenT™ 2 fsin f f'd-bj
4N IER BN
<2 417-23 2

‘Thus if A = 48/r2

2

g tgan?®, wve r

ol ¢2s™2, Iylyom

s

Returning to our particular Riesz prodgct we put

®(n) = 21 Fe_inxdF(x), nefl

then g ()l ¢ ;;rj;“#"g’ -
oY 45 n oo

> w2
+4 J»is 8n 6‘“

=

T2l¢n ! )n
¢ m™

P

An"%
1>3n

25
|plé 3ny
> 1l
wledn

N

Il

O(n-% log n) + O(n-'l)

= O(n-%*'d) for every d4d>0
5°3 STATIONARY GAUSSIAN PROCESSES

Throughout this section we let R, be the infinite dimensionsl

Buclidean space whose points are of the form u = (uj} s J€ " where

for each 1, u, is a real number. Further for any finite set J¢I

we let 'RJ denote the finite dimensional Euclidean space whose points

are of the form u = {uj{, je J. Ve say that a real valued,

non-negative and countably additive set function ,HJ such that

pJ(RJ) =1 is a Gaussian measure on RJ_ if there exists a positive

definite quadratic form GIJ (x) such that for all x € RJ we have

{ i &y -
f et JETEM; dps(a) = e Q02
Ry
As usual by & positive definite quadratic form QJ(x) we mean that

QJ(X) can be written as
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| @ (x) Jz,ké J %k ¥ %
and that QJ(x)>, O for all x€R.
If P; is the transformation on Rp which sends x = iji, jel
into x = [xj{ y J€J, o is a real valued, non-negative and
countably additive set function on Ra er_ is defined by

py(a) = fleo (P-lA)
for all measurable sets A in RJ then we say that pe is a
Gaussian measufe if far every finite set J ¢[' we have that I
is a Gaussian measure., If S is the transformation on Ry which
is given by
5x = y

t, jel we have Y= %50 jel,

J
and if S is measure preserving with respect to a Gaussian measure

where if x = (xji, jel, y =1y

[foc then we refer to f"’" as a8 stationary Gaussian measure. Lastly
we Say that S 1is a stationary Gaussian process if [tz is a
stationary CGaussian measure. 1f 73(11), nef, -nff""is a real
valued function such that for all finite sets Je/  if we put

Gylx) = & soUii-kl) x
then we have that QJ(x) is a positive definite quadratic form, we

say that ?(n) is a positive definite function. We now quote some

well known results.

Theorem 5°31 A function y?(n), n = 0,1,2,,.. is poSitive definite
if and only if there exists a monotone non-decreasing, real-valued

function F(x) defined on f~W,T] and such that
¥ .inx .
?(n) = f e dF(x), n =0, 1, 2, ...
-

Pr oof See [3) P, 474. This result has already been quoted
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in section 4°6 and is repeated here only for convenience.

For each n el we define a function Un‘ on R, by
, :
u (U) =1u,
for all u = fuji, jel in Ryp - Further in expressions such as

1 § .y t . .
ijUn (u) U (u) dlﬂw(u) we omit the and simply write IR UnUmd/ho
With this convention we get:

Thoorem S5-232 If S is a stationary Gaussian process and we

put ?(n) =I UnUo Afigy , n =0, 1, 2, ... then if the socond
Roo
moments oxist ?(n) is a uniquoly determined positive function.

Conversely if ?(n) is o positive definite function then there cxists

a unique stationary Gaussian process such that

P) = f UU e , n=0,1, 2, ...
Ry,
Proof See (3] P.473, From now on we always assume that S

is o stationary Gaussian process and ¢@(n), n =0, 1, 2, ... is tho
associated positive dofinite function. oo will always be the
stationary Gaussian mecasure associated with S, J will always be a
finite subset of [N [l; tho measure formed from flw, J os

: | . D ._ -
previously and QJ(X) will denote j’keJ?(lJ kl)xjxk, We have

that

S Q /
Jo o xFErs afiy) = o WHNE (1)
Ry
expanding the left hand side gives

. Z : . 2
‘[R { Wi Ry xjuj-;-%!(l j?J xjuj) + oo dfiJ
J
- ; - 2
= l41 JZ'-‘:J xjj ujdliJ % Fhes ijk ujxk d[—vJ.;-...
R R
J Ay
and expanding the right hand side of (1) gives
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1 - g(x)+_12_°,(%;;)]2-; .
=1 -3 Feer QLD xgerg By U xg) - oo

But (1) is an identity in x and so we may compare coefficients

to obtain
f Jﬁ‘l unj dpy = 0 if k is odd
Ry
( Uy Uy dFJ,=?)( Ij=x 1)
RJ
fR dﬁl’ unj dr]J = pé;l C;]__g_}i ?(npq) if k 1is even
J

'Where Q = k/2, P = (ZQ) a’ /ZQQ.,!’ A@g@ g@@Ea@ DD

Hence we deduce that
k

[ H u, df = 0 if k is odd
N
uay g, = ?('j-k})
Ry J
k P Q
(R }_Il unj d/‘tw =P§-4:1 qgl ?(npq) if k is even

since given any B3y 1<j<¢k we can find a J such that njeJ‘

for each J.

b

Theorem 5°33 If S is a mixing of degree one then n];%lglo ?(n)r—: 0
Proof n}g.g p(n) = nJ:;& J;zu v, v dfe
. n
= lim [T{Q(U uo) u, dpe

Il

. 1
n]-'-:,L»Ia% © Uo’uc')

IR

0

i

]

Theorem S5°34 If nl‘jé?o ?(n) =0 then S is a mixing of

all degrees.
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Proof Let L1 be the subset of Li which consists of all

functions of the form

f% x'. (x) = fT x,., 1 finite

F % =100
1f £ = zfll Xy l¢ { & k areany k functions in Ll we put
J
.t
F o= F(b,ee., t) _IW 8™ £, ap.,
!—-l
G "lﬁ' If
= d
U T
=1 Re
1 5
=il

If I is odd then F = O by the remarks immediately prior to
theorem 5-33. However, I odd implies i, odd for some { and

consequently Lfl dfip= 0 for this { giving G = O and hence
L]
F=0G, for all tl"“’ tk’ If I 1is even then by the earlier

part of this section we can write

£ ¢
F=m Jh Ploed
hero Q=1/2 and P = (2Q
wnere / an ' QT

If i, is odd for some { gsay { = m then as asbove G = 0. Further
!

we have that for each p, 1 ¢pg P there is'a q = q(p) such that

“palp) = lrsat, - (my+ )
where lgrgk, r#mn

Thus if A = inf }t, - tn,‘ we have that
/3n
1i n
Agnw ( PQ(P))

and so for ecach p, 1 £ pg P

Q
g—-};mao & ?(npq) =0

giving us that

0
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If i, is even for all f, and r = t(p,q,), r;= tj(p,q)
s = s(p,q), s, =8, (p,q) are defined by

npq = frj "'tr - (sn+ts) |
then we have
lim n = 0 if r# s
A= ﬁa( Pq) ¥
vhile if r = & we have

plog) =@ (ry-x) )

and so
M 7o =P U5y

Hence lim F = ﬁ‘ . /. -

Lim J pz:;l I @ (s -1,
where j = j(p,a), n = n(p,a), @, =i/2 and, B,= (2q,)!/2%q !
L . k
giving  lim ¥ —‘Elgg £ 4w = G
Thus in all cases we have

lim F = G
A—>00

and so by theorem 4.21 corollary 1, we have that S is a mixing

of all degrees.

Theorem S5¢35 If S is a mixing of degree 1 then it is a

mixing of all degrees.

Proof If S 1is a mixing of degree 1 then by thoeorem 533
I]igga (n) = 0 and so by theorem 5:34 we have that 8§ is a

mixing of all degrees.
5-4 SPECTRAL FPROPERTIES OF OSTATIONARY GAUSSIAN PROCESSES
Keeping the notation of the previous section we now turn to

the spectral properties of S. As usual if fe L? then we refor

to the subspace spanned by Snf, nel as the cyclic subspace generated
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by £, and to the set function G defined onl- #,T] and such
W
f iAk

Lo
(ef.section 4:8). Further since the set of all finite polynomials

that (8%¢,£) = dG(A) as the spectral type of .

in a finite number of the xr'l ’s is everywhere dense in erq it
follows that the sum of all dyclic subspaces generated by a
polynomial of the above form will cover erp However, in 6rde.r to
find the maximal spectral type of S we nced to express L,? as an
oril;hogonal sum of cyclic spaces (see section 4.6). We now procecd
to find an orthogonal seque'nce of polynomials such that the ‘cyclic
subspaces generated by them are mutually orthogonal and their

orthogonal sum equals Lﬁ. Before starting we prove a lemma which

we shall need shortly.

Lemmg 5-41 If F,G arc integrable functions on [-7,7]} and

defined elsewherc so as to be periodic with period 2w then

u:eihk dF(A)”f;ei“k dG(u)} = f‘:eikk a(N)

where H is the convolution of F with G,

‘Proof {fel’\kdﬁ* x)[” "mkdc(u)}
o

i Wel(}. -u)

s aF( ) )dc;(uzfr .
= E(a\)[ 1(x -u)de(u)]_ﬂ —L_Likei(A-u)kF(MdG(u)d)\
= [: ik € B()) dc(A - v)dv

eJ'ijZF(X) ac( -vl f’l"k ” P(\) d&( -v))

i

It
h—-.f——;

where H(A) = Iﬂ F(A=-u) aé (u)

T F(v) & G (A -v)

1]
l‘-._“

1 s
pet h.l =X and Hl be the cyclic subspace generated by h1° Then
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%y, 2) = [5ox a
= @(k)
- r"ei Ak aF() )
T
showing that F 1is the spectral type of hl

Mso f hl(x) d,ﬂ(x) = J- x drt = 0
Rw RM ¢ ‘
giving us that 4 Ho’ where L is the cyclic subspace generated
by the constant functions.
Before continuing, we pause to point out that since F is

singular we have already by lemmgs 4-68 that S does not have a

Lebesgue spectrum,

Returning to our investigation of the spectral type of S we

have that if hz(o) = (xé)" -1, H(g) the cyclic subspace generated
by h(z") then
f h(zo) (x) dﬁ(x) =§ (xi - 1) dp
Reo Reo
= 0

and Ih(g) (x)Skhl(x)dF(x) = JR(xi X, - xk) dlw

w0

ot = 0
giving us that () is arthogonsl to B @H,
S S AL RO
= 20? ?(k)}2+{(,0(0)32 - 2¢(0)+1
= 2le®)
= 2[1’:&’”‘_ aFy(A)

where Fz()\ ) = frF( A-u) dF(u) by lemma 5-41.

T
Thus we see that Fy is the spectral type of h(g)o

Similarly if we let h(g): (x(;)3 - xg, H(g) be the cyclic

subspace generated by h(g) then we get H(g) L Ho@ Hl@ HZO) and
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6%, v = 6f o MEary ()
where FS()\) [ F, (A =u) dr(u). Thus F, is the
spectral type of h(g).

In general we take

;)Zr )2(r-l)

o +“l( o + noo;l-p(
where thecc., lgigr are chosen so that

(hz(;’), J§°)) = 0 for 2gngar -1

(o) -
(h2r , hl) = 0
and f n{o) (x) apx) = o
r
Reo
Al though we appear to have 2r conditions these reduce to r in
view of 53

Similarly we take

(0) _ ;. +y2r=1 2(r-1)-1 '
ho Ty (xo) *ﬁl(xo) +oeoe [ X,

where the “i’ 1£igr-1 are chosen so that

(hz(;)-l’ h(;)) = 0 for 2¢ng2r-2
2(1?)1’ ) =0
and I x)drn

Again the same remarks as applied to the conditions the a{i's.,
setisfied apply here also. We then let H(g) denote the cyclic
subspace generated by h(g) for n = 2,8,4,...4 Clearly we have
(o) (o) (o)
H n 1 HO@Hl for all n and H' ° 1 H A 4 nm. Further
we have
k (o) (o)y _
s 2, 1) = p@)
where p is a polynomial of degree n and so by lemma S.41 we have

that the spectral {ype of h(g) is absoclutely continuous with respect
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n . 2
to 3;1 F;(X) where By (A) = F(\) and F, (X) =‘"Fi_l(>\—u)dF(u)
for 24£i¢n.

2 D o)
In general La :,&Ho@HlGQ gzsz H g and so we consider

Ii - 3‘0 ), n el *and define h(]I'l) to be the projection of

' N (o) n=1 (1)
xoxr’1 cpl(n) on the orthogonal complement of H @H @@H @SPO H .
and H( ‘) to be the cyclic subspace spanned by h( ) Further

(Sk(x;xl'l- tp(n)), (xoxé— ?)(n))] = j&o(xkxn-q-kxoxn - xn-r-k ?(n) -
x X (Pn +f?'>(n }2 drl
= {ol (n)}? +{2<p ()1 +q>2(n+k) @ (n-k)
- f? - {pl)} + z‘q(n)}
= {gp(k)} + @ (n4k) @ (n-k)

and @ (nek) ¢ (nk) = {&i“m‘k)dﬂx)eri“(n'k’ dF(Q)}

o 4

1
=j AME s
iw

i‘()\- uln

where G(A). = f'e "F(A-u) af eiun F(u)l by lemma 5-41.
T

Thus we see that
Ukh( )}(1) J'" SNE a3 121 (M)
where § 5(A) is absolutely continuous. with respect to F,( ).
Again
(Sk(xo X)), xgpx) = [B "% Fark Tmic o Fn T O
= @(n)l @ (m+k) @ (n-m) + @ (mk-n) @ (m)
+¢ k) @ (n)}
+ @ (n)f @ (n+k) @ (n-m) 4+ P(k) @ (m)
 tplasem) @ ()]
+p){ {g (n-m)} 2 + {qo(k)}2
+@ (n+k-n) @ (m+k-n) }
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+¢(n-k ) @p(n-m) @ (n) 4 p(n+k) @ (ke )+ep(nle-m) @ (mtk) }
+ (u-kc){ @ (n-m) @ (n)+ @ (n+k) @ (m+kc—n )+gp{kc )p(mec )}

Thus if h(rzl) is the pr o@ection of the n't term of the sequence

| S | } i [ . 4 ] l H | - [ 2 .
*5*0%o’ oK) %oy XK Xy 5 XXXy Xo¥eX) sEgEbX, Xoxax(, *oXg*ys oo
oQ [r.2]
(0) (1) n=1 _(2)
on  H,®HO n@ AR ¢§0 Ble o

and if ién) i_s the spectral type of hrEZ) we have that
§én)é F+FotFy since for all n,m el "we have
ar 7
[0 &) {Lfm-l(" cu-v,) aF(v)) aF_(u)
v m o |
LIF( )\-u—}z v.) dF(V YooodF (v )an(u)

i ﬁ"F (A_u_luv ) dF(u) &F(v )....dF(vl)
7 M

X n-

= n+m+l (A)

Thus if a,, i€F+ satisfy a; > 0 each i, %r+ai<oa and

L/,l()\) J§+a F5(X) then by the mothod used earlier in this
section it is easy to show that the spectral type of all polymomials
in a finite number of the x;fl, jelis absolutely continuous with
respect to )(/l()\ ) Thus if we order these polynomials and consider
their projections on the orthogonal complement of the Hgi)’s
already defined we can expresé le., as the orthogonal sum of cyclic
subspaces whose spectral types are all absolutely continuous with
respect to 7111(/\ ). Hence if Fo()\) is the spectral type of H ,
a,> 0 we have that ¢ (N) = aoFo( A+ ‘{/1( A) is the maximal spectral
type of sz, since Fn( A) is the spectral type of H(Ic;) for n 3 2 and

F1(>") = F(A\) is the spectrel type of Hj.
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5°5 MIXING AND REGULARITY PFROPERTIES OF AN AUTOWMORPHISH

We have previously defined Kolmogorov and regular automorphisms
and the concept of mixing of all dezrees. In section 4-5 we
showed that an automorphism on a finite measure space is regular
if and only .if it is a Kolmogorov automerphism and in section 4.4
we showed that this condition implied mixing of all degrees,

The aim of this section is to show that the converse is not true,

i.e. that there exist automorphisms on finite measure spaces

which are mixing of all degrees but which are not Kolmogorov

automorphisms.

Theorem 551 There exist automorphisms of finite measure
spaces which are mixing of all degrees but which are not Kolmogorov
automorphisms,

. . T _inx
Proof We consider the F(x) and (P(n) = % f e ar(x). of
L

section 52 Since F(x) is monotone increasing we have by 5.31 that
cp(n) is a positive definite function and So by 5.32 there is a
stationary Gaussian process § on R, such that ?(n) is the
associated positive definite function. Now it was proved in 5-2
that P(n) =0 (n-%'rd) for every d>0 and so we have lim ¢ (n)= 0.
. . n-yoe
Thearem 5¢34 now gives us that § is = mixing of all degrees,

Further using the notation and results of section 5°4 we see that
-

the maximal spectral type of S 1is ngo o,nFn(A ) where Fy(X)

concentrates on the eigenvalue corresponding to the constants,

F.(A) is singular and the Fn()\) for n3 2 are absolutely continuous,

1(

Hence we see that S cannot have a Lebesgue spectrum in ihe space

orthogonal to the constant functions and so by 4:7 5 is not a

Kolmogorov-automorphism.
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Corollary There exist automorphisms of finite measure spaces

which are mixing of all degrees, but which aore not regular,

Proof  This is an immediate consequence of 4-4 and the theorem.

With the notation of 54 we have

T inA _ :Ln)i T
[ Fiayan = [ (“],, L[ aron)

= 1£§n2
[ Siela) e
= :M tf__(_l_n_i_)_ e m)‘f Y ar(u)
3 ner‘ Lgi_nD_L e-lnx

-ink

= [ & [@(1n1)}? e dr

' At
Hence if qp(n) =0 (n* d) for every d > O as n -»¢ then

fo(n}® =0 (a7

Fz(}\) is the integral of a function in L’Z, and is therefare

-in(A _u)dF(u)

i1

and so Fz(}\)

il

) for every d> 0 as n-y»ee and 80 we see that

absolutely continuous. Similarly Fn( A), n>»2is

\

absolutely continuous.
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6 U-FINITE HEASURE SPACES

621 INTRODUCTION

In this chapter we no longer require M to satisfy p(X) = 1.
Instead we assume that I is a ¢g-finite, i.e. that‘ there exist
sets A, ief"such that for all i, p(Ai)< 00 and such that

:i(_'elNAi = X

We say thé,t a set A is a wandering set if for all i, jel

such that i#j we have T'A zTIA = ¢. Clearly this last

condition is equivalent to AAT A = cﬁ , ielt

Proposition 6-11 If there are no wandering sets of positive

measure then for all Ae€f we have p(TB) = p(B) where B = igr"-T'_lA

. Proof If C = TB-B then for nel*
00 . (]

-n, _§ 9 -1 -i -i U -i
CaTiC =l U T7A~ Y,T A?n{iUnT A- Y T al

' -i -n £ -i
={ & -ig,.4 vl af T A=V, T al
cfa- igr_*T-iAfn T A
= ¢ since T AéigrrT—i A

Thus C is a wandering set and so we must have p(C) = O and

therefore p(TB) = p(B) since B¢ TB,

Proposition 6-12 If A is any set such that r(A) > 0 and we
put Ai ={ x: xeA, TlxeA, T'ngt‘ A, 1<ig i-1} for i€l then if

there are no wandering sets of positive measure, "(A'ite}r"* A;) = 0.

A=Y Ai then for nel'T

Proof If B -
adade™a- YU, ™

BAT B

LA —igl'"" ier 1

-C.. IA - ltér'f Al} r T-.n L
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. . ~i i-1 .. -3 i
since for all 1 ﬁ_i =AaT " A= .jgl AJ. giving AT A =jgl A,j
and hence T CA € igl""‘Ai for all n€lM*,  But there are no

wandering sets of positive measure and so p(B) = O as required.

When dealing with ¢ -finite measure spaces, with no wahdering
sets of positive measure we keep the same definitions of invariant
exhaustive and Kl-al,g'ebras, but we redefine a K;algebra to be a
K -algebra o, such that o, =4 and such that O<i1(A)< o for
at least one A€o, Clearly this coincides with our previous
definition if /1(31{)4 00 . If o« is a K-algebra and A&« satisfies
0 <« p(A)c oo then we let A; = 'I‘_iA, ier*. By proposition 6-11
we have that T, A = Y, A and since ieur"" 4, € x we deduce
that ig‘.4 Aié ’I“jo( , jel. Hence ieUF'" Ai € Jé}’l‘jo( =4/ giving us

that .U =X up to a set of measure zero since O ¢ r(A) implies

1!.-‘!"'"Ai

!“ (ieur+ .A.i) #‘ Oo
6.2 INDUCED AUTQUORFPHISNMS

If A is any set such that p(A) $> 0, then we put

£ ={ B3 Bee, Ber}
fis

and we define a measure j, on (X, £A) by putting
/'A(B) = p(B) for B€€A
and we define SA’ by
S‘,h(x) = {P'x ; TixeA, 'I"jx¢:;, 1gjgi -1t for xe A

Clearly by proposition 6-12 SA is. an automorphism and it is measure

We refer to S, as the automorphism

<

preserving since T is.

induced on (4, ,) by T. Lastly if « is any ¢ -algebra we put
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& = { B : there exists a Ce&x such that B= A ,C 1

Clearly «, is a ¢-algebra of (4, eﬁ)

Proposition 6-21 If o is an invariant o -algebra with respect

to T and A€o ig such that (i) > O then %, is an invariant

or-algebra with respect to S,X if therc are no wandering sets of

positive measwre in (X, &, 1, T)

Proof - For any B €, (and hence to « ) we put B, = TkA AB -

If(;i BJ., kel then B £B and slek = T'kBk for all k.
J: di

If C=38B - k‘ér‘* Bk then for nel " we have

CaT C= {B- U.Bl.{TB - e T B}

. n
< {B—kgr..Bk}n T B

Now x € BaT" B implies 7™ x ¢ B <k i.e. xeT" A but xeB and so

x e T AaB giving xe,j@l Bj° Thus C,‘TnC=¢ and hencs
CaT™ C=6@ far all nel™ and therefore C is o wondering set and
so we have p(C) = 0. Further B =TAnBeTx ‘and by induction
we get By € ™x for kel*. Hence neglecting a set of measure gero

we have

B = yZpe By

-1 U
SA S.A. kert Bk
~k
Sl‘:. ky"* T Bk

But T K B, € x , and oK B, € A giving 7K B, €, for all ke r+ and

v, g
hence Ker+ T =~ B € By o Thus BGSAN and so we deduce that

il

A‘S ) 1.,0. =y is invariant.

Carollary 1 %, £ (Te), ¢85, &

&L
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Pr oof Since «x«Twx we have immediately that %, € (Ta()f.
1
If Be (T :><)I then since A€ ux Tet we have BeTa, The proof of

the proposition remains valid for this B and so we get BESA“,

b

giving (T«:.{)A $85, %,

Corollary 2 If x is a Kl-algebra with respect to T then =,

F1d

is a Kl-algebra with respect to SA°

Pr oof £=D<T and so

& =

A (&ply

g “A)s by corcllary 1
A

$ €,

£

A
b

giving  ( p(A)S =
A
i.e. o, is exhaustive. But o, igs invariant by the proposition

and so we have that », is a Kl—algebra; with respect to 5,.

4

Proposition 6.22 If x is a K, -algebra, A€ « odp (L) > 0 and

B € & 3» such that Sj,B = B then B eotf_
2y A EY

Proof of o is a Kl—algebra and so for each k €Y there exists
nk .
an n, and a Bk & SA D(A such that

p(B o3 < ok

But B =S, B and so

ﬂ(B“San B) =p{ s @en)l

= n (BaB
, -k

1)
< 2

_ a=-nk *
If 6, =8 "B, k el'™ then C, € far each k.

o
Now p(B- k_—'{n Ck) £ p(B - Cm) for ng¢m
§ p(BaC))
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¢ 2™
oo _ )
Thus we get p(B - kt-j——n Ck) = 0 ‘and so Bskgn Ck up to a set of
c rt o3ivs . .
measure zero for all n el" giving us that BQnQF.,, kgn Gy
[+ 4 o
+
But p(n/;’.... kgn Cy -B) ¢ P(klzjn Cy. -B), nel
@
£ G, - B
i {0y )

e

§, %, plcs )

‘ -k
- 21 -

og 0
giving f(an“"’ klé‘n Ck - B) = 0 i.e. nQI"‘k‘t—-/n CkSB up to a set of
[ ]
measure 2Zero. Thus B = /] U ¢ up to a set of measure zero

nel™ k=n 'k
and hence B&x if we neglect a set of measure zero as we are at
. du

liberty %o do.

Cerollary If « is a Kl—algebra,, Leot, m(L)>0 and B¢ €, is

such that TkB = B then Bgw,

Proof If B, = 'I'-kA,\B - 3,}]1' BJ. then since T°B = B we have

-k _ . . _ e i
T "AaAB = B giving us that B = i_—l'fl Bi with SAB:'L =T Bi and so
S‘,B = B, The result then follows from the proposition.

Theorem 6°-23 If x is a K, -algebra, ﬁezl is. such that

T2 :ﬁ then ﬂ(“ if we neglect a set of measure zero.

Proof If A = X in proposition 6°22 then since TS ={9 s ﬂi Z1
implies that for each B E/’i p(B) > 0, there exists a k el* with

TkB = B the result follows from corollary 1 of that proposition.
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Proposition 6-24 Ifhee, p(i)>0, SA is ergodic and
there are no wandering sets of positive measure in (X, ¢, r:) then

T is ergodic in (B, &, le) where B = ilé/r"*T—l;“

Proof By proposition 6.11 TB = B and so T is an automorphism
on (B, EB’FB) and SBX = Tx for x€B. If Ce€g is such that

TC = C then we put
¢, =1 % xel, T "xeC for some iel ™|
di
Now TC = C ond So T © xeC for some i€l implies that T x eC for

all iel thus SA CA =C, gilving F(CA) =0 or L - CA) = C cince

L

5, is ergodic. If ct = L AC then we define Ck, k & 'Y inductively

44

by putting

k_ -k k-1
C=T"4nC- .
t0 LS

Thus Clhn CY = @ if i¢j and C ﬂlgﬁk up to a set of measure zero

qd

by Ge12.
> _ k L k Jky
Further C, = k‘gr*- ™c® and so F(CA) = 0 dimplies F(T ¢") = 0 for
kel *which in turn implies p(c) = 0. TWhile F(C}‘s)# 0 implies
f‘(A - CA) = 0,4¢C, up to a set of measure zero, Thus if

L =B - Cwe have TD = D and hence p(D,) =0 or p{hi-D,) =0
da

Py

as above. But 4¢Cy implies L aD, = ¢ and so we must have
p(DA) = 0 which implies p(D) = 0 as above. Aad so

p(B =C) = pd) =0
This last result is due to S.Kakutani sec (9],
653 KOLMOGCROV AUTOMORSHISMS

Theoarem 6-31 If T is a Kolmogorov-automorphism then T

is ergodic.
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Proof Lot = be a K-algebra and A - ne ™ such that
A e, Ocp(h )<eo for each n and nté,r'*‘l‘n = X. Ve write

3y FxY

n
corollary 2 % is a K -algebra. Suppose that Sn is not ergodic

€9 flgy S,y %, for & , 4 , S, , &, . By proposition 6.21
n

for some nel*. Then there exists a B €€ such that O<p(B)< o (An)
and SnB = B. By proposition 6°22 Bean- and hence B e,

Now T k‘é’ T=5p = k%"‘* 7 *p by proposition 6:11 ond so

- \ -1
Bg A n Y F+T kB If xeﬂnnk(ejr_,. T kB then X€a anT "B for some
-k

lel" and so x eB since SB= 'B giving A4 k('e}r""’T B ¢ B end hence

B = A % ...'T"kB° Ifc= U _, T_ B then by proposition 6-11

N xér nef”
TC = C. However T 1‘:stT K £ o sand so C & « and therefore since

TC = C we have C € o, =4, But 0< p(B)g p(c) and therefore
p(X-C) = 0 which in turn gives Ann C = An modulo zero i.e,

p(B) = vf1(An) a contradiction. Thus Sn is ergodic for all n.
By proposition 624 we have that T is ergodic in in*T_l‘n‘n and

. =i, Ly -1 s , : . .
since T i‘ejr‘*T Ay = e T "ﬁ“n by pr0posa.t;on 6-11 we have in view

U -1, ~ _ s U m-i, - .
of i€+ T 4 € o, % =+ that iel""'T ey X and hence the desired

result,

Corollary If T is a Kolmogorov automorphism then Tk is

ergodic for kel*

Proof If x is a K-—algebra with raspect to T then ¢ g T

k n ‘n :
and S0 e g T (. Now .V Ta<——To< ¢ T = .V ™% for nel”
: = ] 1=—0s

hente letting nayoo gives, “T £ ka but “T = £ gnd so a(Tk = £ .
oo .
Further A i = 7 TP = A T'%x for nel Yand letting

i=-n
T T k

i=-n ~)
n-»ee gives cxg; €, but o« =4 and so =¢, Thus o

is a K~-algebra with respect to Tk, ke Yand so Tk is a Kolmogorov
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automorphism for k €% The ergodicity of T then follows

from the theorem.
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SUMMARY  OF WNOTATION AwD DEFINITIONS

Numbers refer to the page(s) where the definition or

symbol was first introduced.

atoms

atom set.

automorphism:

continuous set:

endomorphisms
entropy:

ergodic:

exhaustives -

Gaussian measure:
generator:
Homomorphism:
increasingly filtered:
induced automorphism:

invariant:

isomorphic:

L is an atom of = if B &«, ﬁ(B-A) =0

imply p(B) = 0 or p(B) = p(A)." 16
Ly, i€l s *is an atom éet Of X € Zy if

‘l‘i is an ‘atom of « for each i, ‘A‘i A‘Aj =¢

i j [ U Y = ° ;
whenever 1% j and l"(iel !i) 1 22

- 8,

A is a continuous set of o« if given any

Aleof such that AIQA and any d such that

O«d 5{:(}.1) then there exists a Be« with
fr(B—Al) = 0 and O ¢ ,*(B),{ d. 16,

8.

21, 27, 28, 44, 51,

T is ergodic if TA = A implies p(d) = O of

,-;(X—A) = 0O, 12.
o« is exhaustive if o = €. 55,61.
L is exhaustive if V_ UM = 1.2, 78.

tert r
88, 89.

o 18 a generator if ®p = €. S2.
8.

820
1020

« ig invariant if < ¢ T« . 53, 61.

L is invariant if UL £ L. 78.

20,
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isomorphism:v 21,

K-algebra: > is a K-algebra if: o< T, Xm = E,™=F, 55,61.

K -algebra: x is a K -algebra if:agTu, o =&, 55, 61,

K-automorphism: T is g K-automorphism if there exists a
K~algebra, S5, 61,

Lebesgue space: 8.

Lebesgue spscirum: 76,

measure: 7.

measure §pace: 8.

metric type: | 11,

mixing: 61,

notation: by u,n, -, €, 1, f"*,gb, . 7.
(X,e,rl),A,V,A,Jx,T, 9.
L2, (£,6), 120, U,  10.
Z, Zg, Zg 18,
/" (abB), ” 21.
H(x), H(«|A), 21, 27,28.
Slx) =fec': x'sa, o'e 23}, 27,
2 = for 3 H(x) ool i,
p i) = B&IQ )+ H(g ), 38,
Tex = { A: T-'IAEfo, 42.
x " =y = ?\:'% o | 42.
D(T-: iEYf‘ Tia( ’ . 42,
T R T, 42,
® = oc‘E = ﬁp+T-ia< ) 42,
b («,T) = Lim H(o}T "), 44,

h(e,T) = %&;&%H("‘D)’ 44.



partitions
regular:
o -algebra:

o -~ finite:

tgil ¢ -algebra:

wandering set:

111.

h(T) = sup h(«, T), 51.
s*:{a:h(o;,T)=o}, 56,
TAT) = Jouo 56.
() = ié\r,Tix_ = ié\r‘* T—ip(_, 61.
Hx.’ %(n), 72.
Ris Ry s flys floos 88, 89.
EA" lfm SA’ >, 102, 103.
18.

T is regular if () =# for =ll € Zl. 61.
7.

101,

61.

. . . i j
A is a wandering set if T AaTA = ¢ for

all i, jel” such that i%j. 101.
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