MIXING, SPECTRAL AND REGULARITY PROPERTIES

OF FINITE LND INFINITE $\operatorname{LUTOLGORPISNS}$

by

JACK KETTH DUGDALE

A Thesis submitted for the degree of Doctor of Philosophy in the University of London.

Given any automorphism T on a measure space (X, E, μ) there is (see K.Jacobs [8] or V.A.Rokhlin [16]) en associated unitary operator U on L_{M}^{2} such that $U f(x)=f(T x)$ for all $f \in L_{\mu}^{2}$. We first define and investigate the properties of the
 metric invariant entr ophy, see Ja. G. Sinai [18], in order to show (hoilo Kolmogorev $[1]\}$ and [12]) that there exist sepentically equivalent (see V.A.Rokhlin [16]) T_{1}, T_{2} such that the associated U_{1}, U_{2} are not बpectrally equival ent (see V.A.Rokhlin [15]).

Having done this we turn to the concepts of Kolmogor ov and regular automorphisms on finite measure spaces. Then following V.A.Rokhlin [15] and L.Sucheston [21] we show that both these concepts imply mixing of all degrees. Further investigation enables us to deduce that T is a Kolmogorov automorphism if, and only if, it is a regular'automorphism. An immediate question then is whother or not T being a mixing of all degrees implies T is a Kolmogor ov automorphism? We answer this in the negative by constructing a stationary Gaussian process which we show to be a mixing of all degrees and which cannot be a Kolmogor ov automorphism since its spectrum is not a Lebesgue spectrum as is that of all Kolmogor ov automor phisms see K. Jacobs [8].

In the course of the above we show that if a Gaussian process is a mixing of degrec 1 then it is a mixing of all degrees.

In the last chapter we extend the notion of a Kolmogor ov automorphism to σ-finite measure spaces and prove (a fact which is clear for finite measure spaces) that in this case also T is a Kolmogor ov automorphism implies that T is ergodic. An open question for σ-finite measure spoces is what mixing properties does a Kolmogor ov automorphism have?

ACKIVOTLEDGRIENT

I wish to thank my supervisor,
Dr. Y. N. DOFKER for her assistance,encour agement and criticism while I waspreparing this thesis.

CONTENTS

1. INTRODUCTION Page
1.1 Notation 7
1.2 Introduction 10
1.3 Preview of the Main Results 13
1.4 Convex Functions 14
1.5 Algebras and Partitions 16
2. THE ENTROPY OF A σ-ALGEBRA 21
2.1 The Entropy of a σ-ingebra in Z_{3} 21
2.2 The Entropy of a $\sigma-A l g e b r a$ 27
2.3 Increasingly Filtered Collections of σ - Algebras 31
2.4 The Metric Space ($2, \rho$) 38
2.5 An Alternative Definition 39
3. DEFINITION AND PROPERTTES OF $h(T)$ 42
3.1 The Entropy of T with respect to a o-11gebra 42
3.2 More Properties of Entropy 47
3.3 The Entropy of T 51
3.4 Existence and Properties of Certain $\sigma-11$ gebras 55
4. KOLMOGOROV AND REGULAR AUTOMORFATSMS 61
4.1 Definitions 61
4.2 Mixing 61
4.3 Sequences of σ-filgebras. 64
4.4 Mixing Properties of Kolmogorov Automorphisms 67
4.5 Equivalence of Kolmogor ov and Regular Automorphisms 70
4.6 Spectral Theory 72
4.7 The Spectrum of a Kolmogor ov Automorphism 77
5. MIXINGS BïlCr ARE NOT KOLHOGOROV AUTONOR_HISLS 82
5.1 Riesz Products 82
5•2 A Particular Product 85
5.3 Stationary Gaussian Processes 88
5•4 Spectral Froperties of Stationary
Gaussian Processes 93
5.5 Mixing and Regularity Properties of an sutomorphism 99
6. $\sigma_{-F I V I T E ~ i n d i n U R E ~ S P A C E S}$ 101
6.1 Introduction 101
6.2 Induced Automorphisms 102
6.3 Kolmogor ov Automorphisms 106
SUNMLRY OF NOTATION AVD DEFTNITIONS 109
BIBLIOGRAPHY 112

1. IFTRODUCTION

1. 1 NOTATION

As usual we denote "is a member of" by ϵ and the union, intersection, difference and symmetric difference of two sets by u, n, -, and 0 respectively. If A is a subset of B then we write $A \leqslant B$. Γ will denote the integers and Γ^{+}the strictly positive integers. If X is an abstract space then by a σ-algebra \propto, we mean a collection of subsets of X such that:
(i) $A, B \in \propto$ imply $A \Delta B, A \cap B \in \propto$;
(i立) $\Lambda_{i} \in \propto, i \in \Gamma^{+} \quad$ implies $U_{i \in \Gamma^{+}} \Lambda_{i} \in \propto$; (iii) $X \in \mathbb{X}$ 。

We note that it is usual to define a σ-algebra to be rather more general than the above in that (iii) is replaced by (iii)' \times contains a "unit"
and then (i), (ii), (iii) become necessary and sufficient conditions for \propto to be a σ-algebra whose unit is X_{0} (see P.R.Halmos [5]). However, the above definition is adequate for our purpose. If \propto is a σ-algebra, then, since $A \vee B=(A \Delta B) \Delta(A \cap B), A-B=(A \wedge B) \wedge A$, we have that $A, B \leq \alpha$ imply $A v B \in \propto, A-B \in \alpha$ and since Given X and a σ-algebra α, then by a measure on (X, α) we mean a real valued, non-negative function μ whose domain of definition is α and which satisfies:
(i.) $\mu(\phi)=0$, where here as always we use ϕ to denote the null set;
(ii.) if $A_{i} \in \alpha$, i $\in \Gamma^{+}$are such that $\Lambda_{i} \cap \Lambda_{j}=\phi$ if icj then

We point out that we are using "measure" for what in measure theory is usually called "positive measure", (see P.R.Hilmos [51). We refer to (X, α, μ) as a measure space. If θ is a mapping of a measure space (X, α, μ) into anpther measure space (Y, β, λ) such that if $A \in \beta$ then $\theta^{-1} A \in \alpha$ and $\mu\left(\theta^{-1} A\right)=\lambda(\Lambda)$ then we say that θ is a homomorphism。 If θ is a one-to-one mapping such that θ and θ^{-1} are homomorphism, then θ is an isomorphism and we say that (X, α, μ) and (Y, β, λ) are isomorphic. If the two measure spaces coincide then a honomorphism is called an enamorphis. ne an isomorphism, an automorphism. An automorphism I of the space (X, α, μ) is called isomorphic to the automorphism 5 of the space (γ, β, λ) if there exists an is omorphism θ of (X, α, γ) onto (Y, β, λ) such that $s=\theta \mathrm{T} \theta^{-1}$.

An important principle of measure theory is that of neglecting sets of measure zero. In accordance with this principle, the spaces, as well as their automorphisms, need to be studied up to sets of measure sero or, as is commonly said, modulo zero (mod 0). For instance, it is not whether (X, α, μ) and (Y, β, λ) or the transformations T and S acting on them are isomorphic which is essential, but whether it is possible to make them is omorphic by subtracting some sets of measure zero from (X, α, μ) and (Y, β, λ); if the answer is positive then (X, α, μ) and (Y, β, λ) or T and S are called isomorphic modulo zero, (see V.A.Rokhlin [16]). Throughout all results are to be interpreted modulo zero. We say that a measure space (X, ε, μ) is finite and normalized, if $\mu(X)=1$. Te define a Lebesgue space to be a finite and normalized
measure space which is isomorphic mod 0 , to a segment of the real line with ordinary Lebesgue measure to which ia attached a finite or denumerable set of points of positive measure. It turns out (see V.A.Rokhlin [14]) that all measure spaces which occur naturally in probability theory are Lebesgue spaces. Thus we shall always assume that (X, ε, μ) is a Lebesgue space. From now on, unless the contrary is explicitly stated, we always assume the existence of a measure space (A, s, M) which is finite and normalized and statements such as " A is a set", "xis a σ-algebra" will mean " $A \in \varepsilon$ ", \propto is a sub- σ-algebra of ε, i.e. « is a σ algebra such that $A \in \propto$ implies $A \in \varepsilon$ ". Further we assume the existence of an automorphism T acting on (X, ε, μ). If α, β are σ-algebras such that $A \in \alpha$ implies $A \in \beta$ then we write $\alpha \leqslant \beta$. For any σ-algebras α, β we define $\alpha \beta,(\alpha \wedge \beta)$ to be the least, (greatest) σ_{r} algebra containing, (contained in) α and β. If $\alpha_{i}, i \in I$, where I is any index set, are σ-algebras then we define ${ }_{i} \forall_{I} \alpha_{i},\left(\widehat{i} \in I \alpha_{i}\right)$ to be the least, (greatest) σ-algebras containing, (contained in) every α_{i} for $i \in I$. If I is finite then $A \in V_{i \in I} \alpha_{i}$ if and only if $A=\bigcap_{i \in I} A_{i}$ with $A_{i} \in \alpha_{i}$ for each i and $A \in \widehat{i} f I \alpha_{i}$ if and only if $A \in \alpha_{i}$ for each i. However, these last statements are not true in general if I is infinite. We denote the σ-algebra whose only sets are \varnothing, X by ν and refer to it as the trivial algebra. Lastly we write \log for $\log _{2}$ thr oughout.

Any further notation will be explained as it is introduced, and a summary of the main definitions is given at the end of this thesis.

In this section we give a brief outline of the problems which led to the formulation and study of entropy. By a function on X we mean a mapping fr on X into the real line. As usual we denote, \{f:f is a function on $\left.X, \int_{X}|f(x)|^{2} d \mu<\infty\right\}$
by t_{T}^{2}. Then if for arbitrary $f, g \in L_{\mu}^{2}$ we put

$$
(f, g)=\int_{X} f(x) g(x) d \mu
$$

we have that (f, g) is an "inner product" and if

$$
\|f\|=(f, f)^{\frac{2}{2}}
$$

then $\|f\|$ is a "norm" and L_{μ}^{2} is a Hilbert space. We now associate with T e unique transformation $U: L_{\mu}^{2} \rightarrow \chi_{\mu}^{2}$ by putting

$$
U f(x)=f(T x), f \in L_{\mu}^{2}
$$

If A is any set, X_{A} the characteristic function of A then

$$
U X_{A}(x)=X_{A}(T x)=X_{T-1 A}
$$

Moreover if $A_{i}, l \leqslant i \leqslant n$ are disjoint sets $a_{i}, 1 \leqslant i \leqslant n$ are finite real numbers and

$$
f(x)=\left\{\begin{array}{l}
a_{i} \text { if } x \in A_{i}, I \leqslant i \leqslant n \\
0 \text { otherwise }
\end{array}\right.
$$

then $\operatorname{uf}_{\mathrm{f}}(x)=\left\{\begin{array}{l}a_{i} \text { if } x \in \mathbb{T}^{-1} A_{i}, 1 \leqslant i \leqslant n \\ 0 \text { otherwise }\end{array}\right.$
giving $\|U f\|^{2}=\int_{X}|U f(x)|^{2} d \mu$

$$
\begin{aligned}
& =\sum_{1=1}^{n} a_{1}^{2} \mu\left(T^{-1} A_{i}\right) \\
& =\sum_{i=1}^{n} a_{1}^{2} \mu^{\left(\Lambda_{i}\right) \text { because } \quad\left(A_{i}\right)=\left(T A_{i}\right)} \\
& =\int_{x}|f(x)|{ }^{2} d \mu \\
& =\|f\| 2
\end{aligned}
$$

Thus we see that U maps the "step functions" in ℓ_{r}^{2} onto the "step functions" in 4_{p}^{2} in a 1-1, and norm preserving manner. Further if f is as above and $B_{j}, 1 \not \subset j \leqslant m$ are disjoint seta, $b_{j}, 1 \leqslant j \leqslant m$ are finite real numbers and

$$
g(x)=\left\{\begin{array}{l}
b_{j} \text { if } x \in B_{j}, \quad 1 \leqslant j \leqslant m \\
0 \text { otherwise }
\end{array}\right.
$$

then $\left(u_{f}, u_{g}\right)=\int_{x}\left\{u_{f}(x)\right\}\left\{U_{g}(x)\right\} d \mu$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \mu\left(T^{-1} A_{i} \cap T^{-1} B_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{N} a_{i} b_{j} \mu^{\left(A_{i} \cap B_{j}\right)} \\
& =\int_{x} f(x) g\{x) d_{\mu} \\
& =(f, g)
\end{aligned}
$$

Hence since "step functions" are everywhere dense in l_{r}^{2}, and T maps the seta in ε onto the sets in ϵ it follows by the usual process of approximation that U is an automorphism on t_{f}^{2} such that $\left(U_{f}, U_{g}\right)=$ (f, g) for all $f, g \in\left\langle_{r}^{2}\right.$ i.e. U is a unitary operator (see M.H.Stone (20)

If T_{1}, T_{2} are isomorphic automorphisms and S is the automorphism is omorphism satisfying $T_{2}=S T_{1} S^{-1}$ and U_{1}, U_{2}, V are the unitary operators corresponding to T_{1}, T_{2}, S then for all $f \in \mathscr{C}_{7}^{2}$

$$
\begin{aligned}
U_{2} f(x) & =f\left(T_{2} x\right) \\
& =f\left(S T_{1} S^{-1} x\right) \\
& =V f_{1}\left(T_{1} S^{-1} x\right) \\
& =V u_{1} f^{\left(S^{-1} x\right)} \\
& =V u_{1} V^{-1} f(x) \\
\text { i. e. } \quad U_{2} & =V u_{1} V-1
\end{aligned}
$$

Thus if $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are of the same metric type, U_{1}, U_{2} are of the same
spectral typa. It is usual to refor to the spectral properties of U as the spectral properties of the metric type of T or simply as the spectral properties of T.

If U_{1}, U_{2} are of the same spectral type then we say that $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are of the same spectral type or alternativaly that they are spectrally isomorphic (see V.A.Rokhlin [163). However, while $\mathrm{T}_{1}, \mathrm{~T}_{2}$ metrically is omorphic imply $\mathrm{T}_{1}, \mathrm{~T}_{2}$ spectrally isomorphic the converse is not true in general, as is shown below. We also refor to the eigenvalucs, eigenfunctions, spectrum, and spectral invariants of U as the eigenvalues, eigenfunctions, spectrum and spectral invariants of T.

If $A \in \in, T A=A$ implies that either $\mu(A)=0$ or $\mu(X-A)=0$ then we say that T is ergodic. Sinca $f(x)=a, \quad x \in X$ implies $U f(x)=f(T x)=a, x \in X$ we see that 1 is always on aigenvalue of U and the constant functions are eigenfunctions corresponding to 1. Further if $A \in E, T A=A$ then $U X_{A}=X_{T-1}=X_{A}$ giving us thet X_{A} is an eigenfunction. Thus we see that if the only eigenfunctions corresponding to 1 are the constant functions then \mathbb{T} is ergodic.

If T,S are ergodic automorphisms with pure point spectrum then (see P.R.Halmos (6) they are of the same metric type if and only if they have the same spectrum.

For other cases we call the eigenvalues and eigenfunctions, quasi-eigenvalues and quasi-eigenfunctions of the first order. Thon for $n>1$ we define a quasi-eigenvalue of order n to be a quasi-eigenfunction of order $n-1$, and if f_{n-1} is a quasi-eigenvelue of order n and $f_{n} \neq 0$ satisfies $U f_{n}=f_{n} f_{n-1}$ then we say that f_{n} is a quasi-eigenfunction of order n(see V.A.Rokhlin [16]).

If the quasi-eigenfunctions form a complete system in L_{μ}^{2} then T has a quasi-discrete spectrum. The classification problem for ergodic automorphisms with quasi-discreto spectrum was investigated by L.M.Abramov [1] and a complete classification theory constructed for them.

If T has no eigenfunctions other than the constants then T has a purely continuous spectrum (see V.A.Rokhlin (16]). Until a. few years ago it was not known whether there existed spectrally isomorphic automorphisms with purely continuous spectrum belonging to distinct metric types. In [11] and [12] A.N.Kolmogorov intr oduced the metric invariant, entropy, showed it was not a spectral invariant, and so gave a positive answer to the above question. In fact he proved a str onger result, namely, the existence of automorphisms with a denumerably multiple Lebesgue spectrum belonging to different metric types.

1. 3 PREVIEN OF THE MAIN RESULTS

Having defined and investigatod the entropy of an automorphism we then look at threa classes of automorphisms, viz:

1. Kolmogor ov automorphisms, i.e. those for which there exists a $\sigma \cdot a l$ gebra α such that $\alpha \leqslant T \alpha, V_{i \in \Gamma} T^{i} \alpha=\varepsilon, \bigcap_{A \in \Gamma} T^{i} \alpha=2 . \quad$ These were introduced by A.N. Kolmogor ov see [11] under the name of quasi-regular automorphisms.
2. Regular automorphisms, i.e. those for which A仑r $T^{-i} V_{j \in \Gamma} T^{-j} \alpha=\nu$ for all essentially finite σ algebras α 。 (see L. Suchesl on [21]).
3. Automorphiams which are mixings of all degrees.

The first two will be proved equivalent later in this thesis. V.A.Rokhlin [16] and L. Suchest on [21]have shown that Kolmogor ov and Regular autamorphisms are mixings of all degrees. Our main result is to show that the converse is false i.e that there exist automorphisms on finite measure spaces which are mixings of all degrees, but which are neither Kolmogor ov automorphisms nor Regular automorphisms. To do this we consider the fiesz product $\prod_{v \in r^{+}} \quad\left(1 \quad \cos 2^{2^{v}} x\right)=1+\sum_{v r^{+}} \chi_{v} \cos v x$ and the increasing, continuous and singular function $G(x)$ of which it is the Fourier-Stieltjes series. If we then consider $F(x)=G(t)$ where $x(t)=\frac{1}{g}\left(t+\frac{\hbar}{\pi}^{2} \operatorname{sign} t\right)$ we get that $F(x)$ is increasing, continuous and singular and that if $\phi(n)=\frac{1}{2} \int_{-\pi}^{\pi} e^{-i n x} \mathrm{dF}(\mathrm{x})$ for $n \in \Gamma$ then $\varphi(n)$ is a positive definite function and $\varphi(n)=O\left(n^{-\frac{1}{2}+d}\right)$ for every $d>0$ as $n \rightarrow \infty$. Then extending slightly the results of S.V.Fomin [4] we show that the stationary Gaussian process associated with $\varphi(n)$ is a mixing of all degrees. To complete the result we then use the results of A.N.Kolmogor ov [11] and S.V.Fomin [4] to show that all Kolmogorov automorphisms have a Lebesgue spectrum whereas the stationary Gaussian process referred to above does not.

Next we look at σ-finite measure spaces and generalize the concept of a Kolmogor ov automorphism. With this generalization we show that a Kolmogor ov automorphism on a σ-finite measure space is orgodic.
1.4 CONVEX FUNGTIOIS

Lemma 1.4 If $f(x)$ is defined for $n \leqslant x \leqslant 1, f^{\prime \prime}(x)$ exists and satisfies $f^{\prime \prime}(x) \leqslant 0$ for $0<x<1, f() \leqslant \lim _{x \rightarrow 0+} f(x), f(1) \leqslant \lim _{x \rightarrow]_{-}} f(x)$ then
for all sequences $\left\{a_{i} \mid,\left\{x_{i}\right\} i \in I \leq \Gamma^{+} o f\right.$ numbers satisfying $0 \leqslant a_{i}$, $\sum_{i \in \Gamma^{+}} a_{i}=1,0 \leqslant x_{i} \leqslant$) we have $\sum_{i \in I} a_{i} f\left(x_{i}\right) \leqslant f\left(\sum_{i \in I} a_{i} x_{i}\right)$

Proof. The existence of $f^{\prime \prime}(x)$ for $0<x<$ implies (see G.H. Hardy
[7] P.212) that $f^{\prime}(x)$ exists for $0<x<J$ and that $f(x), f^{\prime}(x)$ are continuous for $0<x<1$. If $\sum_{i \in I} a_{i} x_{i}=0$ then for each i either $a_{i}=0$ or $x_{i}=0$, thus
$\sum_{i \in I} a_{i} f\left(x_{i}\right)=f(0)=f\left(\sum_{i \in I} a_{i} x_{i}\right)$.
If $\sum_{i \in I} a_{i} x_{i}=1$ then if $x_{j}<\frac{1}{i}$ for some j such that $a_{j} \neq 0$. We have $\sum_{i \in I} a_{i} x_{i} \leqslant \sum_{\substack{1 \in I \\ \ddagger}} a_{i}+a_{j} x_{i}<1$
a contradiction and so $\sum_{i \in I} a_{i} x_{i}=1$ implies $x_{i}=1$ for all i such that
$a_{i} \neq 0$ and so
$\sum_{i \in I a_{i}} f\left(x_{i}\right)=f(I)=f\left(\sum_{i \in I_{i}} x_{i}\right)$.
Hence if $g(x)=f(x), 0<x<1 g(0)=\lim _{x \rightarrow 0} f(x), g(1)=\lim _{x} \operatorname{im}_{1-} f(x)$ then $\sum_{i \in I} a_{i} g\left(x_{i}\right) \leqslant g\left(\sum_{i} I_{i} a_{i} x_{i}\right)$ implies $\sum_{i \in I} a_{i} f\left(x_{i}\right) \leqslant f\left(\sum_{i \in I} a_{i} x_{i}\right)$. Thus, without loss of generality, we may assume that $f(0)=\lim _{x \rightarrow \Delta+} f(x)$, $f(I)=\lim _{x \rightarrow I_{-}} f(x)$ 。
Further by an application of the first mean value theorem, we have that the one sided derivatives at 0,1 are the limits of $f^{\prime}(x)$ as $x \rightarrow 0$, 1 respectively.
 Thus by the mean value theorem of the second order (G.H.Hardy [7] P.285) we have for $i \in \Gamma^{+}$

$$
f\left(x_{i}\right)=f(x)+\left(x_{i}-x\right) f^{\prime}(x)+\frac{1}{2}\left(x_{i}-x\right)^{2} f^{\prime \prime}\left(y_{i}\right)
$$

where

$$
0<y_{i}<l_{\text {. }} \quad \text { Hence }
$$

$$
f\left(x_{i}\right) \leqslant f(x)+\left(x_{i}-x\right) f^{\prime}(x)
$$

and so on multiplying through by a_{i} and adding wo get

$$
\begin{array}{r}
\sum_{i \in I} a_{i} f\left(x_{i}\right) \leqslant f(x)+(x-x) f^{\prime}(x)=f(x) \\
\text { i. e. } \sum_{i \in I} a_{i} f\left(x_{i}\right) \leqslant f\left(\sum_{i \in I} a_{i} x_{i}\right)
\end{array}
$$

We remark that if $f^{\prime \prime}(x)<0$ for $0<x<1$ then we have equality if, and only if, $x_{i}=x$ for all i. But this holds only if either all the x_{i} are equal or $a_{j}=1$ for some j and consequently $a_{i}=0$ for $i \neq j$.

If $f(x)=-x \log x$ for, $0<x \leqslant 1$ and $f(0)=0$ then $f^{\prime \prime}(x)$ exists and satisfios $f^{\prime \prime}(x)=-(\log e) / x<0$ for $0<x<1$. Further $f(0)=\lim _{x \rightarrow 0^{+}} f(x), f(1)=\lim _{x \rightarrow I_{-}} f(x)$ and so $f(x)$ satisfies the hypotheses of lema 1.4 and of the renark at the end.

1.5 ALGEBRAS AND PARTITIONS

If α is a σ-algebra, Aca satisfies $\mu(\Lambda) \neq 0$, then we say that A is an atom of α if $B \in \alpha, \mu(B-A)=0$ imply $\mu(B)=0$ or $\mu(B)=\mu(A)$ and that A is a continuous set of α if given any $A_{1} \in \approx$ such that $A_{\perp} \in A$ and any d such that $0<d \leqslant \mu\left(\Lambda_{1}\right)$ then there exiats a $B \in \alpha$ with $\mu\left(B-A_{2}\right)=0$ and $O \leqslant(B) \leqslant d$. If Λ, B are atoms of α then we say that A, B are essentially disjoint if $\mu(A \not B) \neq O$ and that A, B are equivalont if $\mu^{\left(\Lambda^{\Delta} B\right)}=0$. We have immediately that any σ-algebra has at most a denumerable number of essentially distinct atoms since we are assuming $M(X)=1$. Clearly if A is an atom of x, and $A_{1} \in \alpha$ satisfies $\mu\left(A_{1}\right)=0$ then $A_{\cup} A_{1}, A-\Lambda_{1}$ and $\Lambda_{A} A_{1}$ are atons of \propto. For each atom A of a σ-algebra \propto we put

$$
\tilde{A}=\left\{B: B \text { is an atom of } \alpha \text { and } \mu\left(\Lambda^{\wedge} B\right)=0\right\}
$$

By the above remarks any σ-algebra α has at most a denumberable
number of distinct equivalence classes \mathbb{I}_{0} Let these be \tilde{A}_{i}, $i \in I$ where I is a subset of Γ^{+}, and let $B_{i}, i \in I$ be such that $B_{i} \in \tilde{A}_{i}$ for all i. Now put

$$
A_{3}=B_{1}, A_{i}=B_{i}-\prod_{j=1}^{i-1} B_{j} \text { for } i \neq 1 \text {, } i \in I
$$

then

$$
\begin{aligned}
\mu\left(A_{i} \Delta B_{j}\right) & =0 \text { and for } i \neq 1 \\
\mu\left(A_{i} \Delta B_{i}\right) & =\mu\left(A_{i}-B_{i}\right)+\mu\left(B_{i}-A_{i}\right) \\
& =0
\end{aligned}
$$

since $A_{i} \subseteq B_{i}$ and $B_{i}-A_{i}=B_{i} \cap \sum_{j=1}^{i} B_{j}^{1}=\prod_{j=1}^{i} B_{i} \cap B_{j} ;$ giving $A_{i} \in \tilde{A}_{i}$ for all i. Given a σ-algebra then the $\tilde{X}_{i}, i \in I$ are unique but the $A_{i}, i \in I$ depend on the choice of $B_{i}, i \in I$. However if for fixed $\alpha, B_{i}^{\prime}, i \in I$ are another set of representatives of $\tilde{\mathbb{A}}_{i}, i \in I$ which give rise to $A_{i}^{\prime}, i \in I$ then since $A_{i}, A_{i}^{\prime} \in \tilde{\Lambda}_{i}$ for $i \in I$ we have $\mu\left(A_{i}{ }^{\Delta} A_{i}\right)=0$ giving

$$
\mid \mu\left(A_{i}\right)-\mu\left(A_{i}\right)+\leqslant \mu\left(A_{i}-A_{i}\right)+\mu\left(A_{i}-A_{i}\right)=\mu\left(A_{i} A A_{i}\right)=0
$$

i. e. $\mu\left(A_{i}\right)=\mu\left(A_{i}\right)$. Thus the numbers $\mu\left(A_{i}\right)$,i $\in I$ are uniquely determined.

Proposition 1.5 Given any σ-algebra α then we can find sets $A_{i}, i \in I$ and B such that A_{i} is an atom of \propto for each $i, A_{i} \cap A_{j}=\varnothing$ if $i \neq j, B$ is a continuous set of \propto if $\mu(B) \neq 0$, and $X=B \cup \cup_{i} A_{i}$

Proof Let $\tilde{\Lambda}_{i}$, $\operatorname{i} E I$ be the equivalence classes of atoms of α and the $A_{i}, i \in I$ chosen as above. Then A_{i} is an atom of \propto for each i and $A_{i} \cap A_{j}=\phi_{\text {if }} i \neq j$. If $B=X-U_{i \in I} A_{j}$ then it remains to prove that B is a continuous set of α, if $\mu(B) \neq 0$. If $\mu(B) \neq 0, B_{1}$ is any set such that $B_{1} \in \propto, B_{1} \leqslant B$, d any number such that $0<d \leqslant \mu\left(B_{1}\right)$ then either $\mu\left(B_{1}\right)=0$ in which case no d exists, or $\mu\left(B_{1}\right) \neq 0$. If $\mu\left(B_{1}\right) \neq 0$
and B_{1} is an atom of α then for some $i, B_{1} \in A_{i}$ and so $\mu\left(B_{1} \wedge A_{i}\right)=0$ giving $\mu^{\left(B_{1}\right)}=0$ since $B_{1} \subseteq B$ which is a contradiction. Thus B is not an atom of α and hence there existe a $C_{1}^{1} \varepsilon \alpha$ with $p\left(C_{1}^{1}-B_{1}\right)=0$ and $0<\mu\left(C_{1}^{\prime}\right)<\mu^{(B)}$. If $C_{1}=B_{1} \cap C_{1}^{\prime}$ then $C_{1} \in \infty, C_{1} \in B_{1}$ and $0<\mu\left(C_{1}\right)<\mu\left(B_{1}\right)$. Similarly C_{1} is not an atom of α and so there exists a $C_{2} \in \propto$ with $C_{2} \leqslant C_{1}$ and $0<\mu\left(C_{2}\right)<p\left(C_{1}\right)$. We now put

$$
D_{1}=\left\{\begin{array}{l}
C_{2} \text { if } \mu\left(C_{2}\right)<\mu\left(B_{1}\right) / 2 \\
C_{1}-C_{2} \text { otherwise }
\end{array}\right.
$$

then $D_{1} \in \alpha, D_{1} \in B_{1}$ and $0<\mu\left(D_{1}\right)<\mu\left(B_{1}\right) / 2$.
Repeating this argument a further $n-1$ times we find a $D_{n} \in \alpha$ with $D_{n} \leqslant D_{n-1}$ and $0<\mu\left(D_{n}\right)<\mu\left(D_{n-1}\right) / 2$, giving $D_{n} \leqslant B_{1}$ and $0<\mu\left(D_{n}\right)<\mu\left(B_{1}\right) x$
$\overline{2}^{n}$. Since $\lim _{n \rightarrow \infty} \mu^{\left(B_{1}\right) / 2^{n}}=0$ there exists an $m<\infty$ such that $\left.\mu^{(} B_{1}\right) / 2^{m} \leqslant$ d. If we num put $E=D_{m}$ then $E \in \alpha, \quad \mu\left(E-B_{1}\right)=0$ and $0<\mu^{(E)} \leqslant \mathrm{d} . \quad$ Hence we conclude that B is continuous.

With the notation of the above proposition we put:

$$
\begin{aligned}
& z_{1}=\left\{\alpha: \mu^{(B)}=0, I \text { is finite }\right\} \\
& z_{3}=\left\{\alpha: \mu^{(B)}=0\right\} \\
& z_{2}=z_{3}-z_{1} .
\end{aligned}
$$

If $\alpha \in Z_{1}$, (Z_{3}) then we say that \propto is essentially finite, (denumerable)
This terminol ogy is based on the concept of "partitions".
More precisely we say that a collection of sets $P_{i}, i \in I$ is a partition if I is countaile and $i \neq j$ implies $P_{i} \cap P_{j}=\phi$, and $U_{i} P_{i}=X$. If for each $i \in I, \otimes_{i}$ is the σ-algebra whose seta are $\phi, P_{i}, X-P_{i}$ and X, and if $O{ }_{i} Y_{I} \theta_{i}$ then we say that θ is the σ - algebra generated by the partition $P_{i}, i \in I$. We then agy that a σ-algebra \propto is finite, (denumerable) if there exists a partition
$P_{i}, i \in I$ with I finite, (denumerable) such that $\alpha=\overline{0}$. With the notation of proposition 1.5 if $\mu(B)=0$ it can be shown that there exists a partition $P_{i}, i \in I$ such that $O \leqslant \alpha$ and if A is any set in α then there exists an $A^{\beth} \in$ with $\mu\left(A A A^{I}\right)=0$. Thus θ, α differ only in a set of measure zero. However as we do not need the notion of a partition we shall not continue developing the connections between partitions and essentially denumerable σ-algebras.

We finish this section by considering the form the atoms and continuous set of proposition 1.5 take when we have a σ - aigebra of the form $\alpha \beta$ with $\alpha, \beta=$ alfebras.

Proposition 1.52 If α, β are σ - algebrast, $A_{i}, i \in I ; \quad B_{j}, j \in J$ are atoms of α, β and D_{1}, D_{2} are either null sets or continuous sets of α, β such that

$$
D_{1} v{ }_{i} U_{I} A_{i}=x=D_{2} v_{j} U_{J} B_{j}
$$

then for all $i \in I, j \in J$ if $C_{i j}=A_{i} \cap B_{j}$ we have that $C_{i j}$ is an atom of $\alpha \beta$ if $\mu\left(C_{i j}\right) \neq 0$ and if $D=D_{1} \psi D_{2}$ then $\mu(D)=0$ or D iss a continuous set of $\alpha \beta$ and

$$
x=D u \underset{\substack{i \in I \\ j \in J}}{U} c_{i j}
$$

Proof If $\mu(D) \neq 0$ and $E \in \alpha \beta$ satisfies $E \subseteq D$ and d is such that $0<d \leqslant \mu(E)$ then if $\mu(E)=0$ no such d exists while if $\mu(E) \neq 0$ we have that either $\mu\left(\mathbb{E} \cap D_{1}\right) \neq 0$ or $\mu\left(E \cap D_{2}\right) \neq 0$ 。 Without loss of generality we take $\mu\left(E \cap D_{1}\right) \neq 0$ then $E \cap D_{1} \in \propto$ and $E \cap D_{1} \subseteq D_{1}$ hence if $d_{1}=\min \left\{d, \mu\left(\mathbb{E} \wedge D_{1}\right)\right\}$ then by the continuity of D_{1} there exists a $E_{1} \in \alpha$ with $E_{1} \leqslant E$ and $0<\mu\left(E_{1}\right) \leqslant \alpha_{1}$. Now $E_{1} \in \mu \beta$ and so we have $\mathrm{E}_{1} \in \alpha \beta, \mathrm{E}_{1} \subseteq \mathrm{E}$ and $0<\mu\left(\mathrm{F}_{1}\right) \leqslant \mathrm{d}$ thus giving D to be a continuous set
with respect tox β.
It now remains to prove that $C_{i j}$ is an atom of $\alpha \beta$ if $\mu\left(C_{i j}\right) \neq 0$. Suppose there exists a $C^{1} \in \alpha \beta$ with $\Gamma^{\left(C^{1}-C_{i j}\right)}=0$ and $0<\mu\left(C^{1}\right)<\mu\left(C_{i j}\right) \quad$ Then $C=C^{1} \cap C_{i j}$ satisfies $C \in \alpha \beta$, $\mu^{\left(C-c_{i j}\right)}=0$ and $0<\mu(C)<\mu^{\left(C_{i j}\right)} . \quad$ Since $C \in \alpha \beta$ there exists $C_{\alpha} \in \alpha, C_{\beta} \in \beta$ such that $C=C_{\alpha} \cap C_{\beta}$. Further we can assume that $C_{\alpha} \subseteq A_{i}$ and $C_{\beta} \leqslant B_{j} \quad$ However since A_{i}, B_{j} are atoms: of α, β we must have

$$
\mu\left(C_{\alpha}\right)=0 \text { or } \mu\left(A_{i}\right) \text { and } \mu\left(C_{\beta}\right)=0 \text { or } \mu\left(B_{j}\right)
$$

and since $\mu(C) \neq 0$ we must have $\mu\left(C_{\alpha}\right)=\mu\left(A_{i}\right), \mu\left(C_{\beta}\right)=\mu\left(B_{j}\right)$. But this implies $\mu(C)=\mu\left(C_{i j}\right)$ which is a contradiction and so we have that $C_{i j}$ is an atom of $\alpha \beta$.
2. THE ENTTROPY OF A \bar{J}-ALGEBRA

Throughout this chapter all results unless stated otherwise can be found either explicitly or implicitly in K. Jacobs [8].
2.1 THE ENTROPY OF A σ-ALGEBRA IN Z_{3}

If $\alpha \in Z_{3}$ then by the last section there exist atoms $A_{i}, i \in I \leq \Gamma^{+}$, (in general not unique) such that $A_{i} \cap A_{j}=\phi$ if if j and $\mu\left(\bigcup_{i} \in A_{i}\right)=I$, and further the $\mu\left(A_{i}\right)$, ie are uniquely determined. Thus if we put

$$
H(\alpha)=-i \leqslant I \Gamma^{\left(A_{i}\right)} \log \mu\left(A_{i}\right)
$$

then $H(\alpha)$ is well defined for $\alpha \in Z_{3}$. Te refer to $H(\alpha)$ as the entropy of α. Since $\mu(X)=1$ we have $0 \leqslant H(\alpha)$ and while $H(\nu)=0$ if $X=\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $P_{i}=[(i-1) / n, i / n], l \leqslant i \leqslant n$ then $H(\theta)=-\sum_{i=1}^{n} n^{-1} \log n^{-1}=\log n$
where θ is defined as in section 1.5.
For any sets A, B we put

$$
\mu^{(A / B)}=\left\{\begin{array}{c}
\mu(A \cap B) / \mu^{(B)} \text { if } \mu^{(B) \neq 0} \\
0 \text { otherwise }
\end{array}\right.
$$

and using the terminology of probability theory we refer to it as the measure of A conditioned by B_{0} If now $\alpha, \alpha^{\prime} \in Z_{3}$ and $A_{i}, i \in I, A_{i}^{l}, i \in I^{l}$, are chosen as above, then we define $H\left(\alpha / \alpha^{l}\right)$, the entropy of α conditioned by α^{l} to be,

$$
-\frac{\sum}{1} I \sum_{j \in I} \mu\left(A_{i} \cap A_{i}^{I}\right) \log \mu\left(A_{i} / A_{i}^{I}\right)
$$

Since all terms have the same sign we can reverse the order of summation without altering the convergence or divergence and without changing the sum in the former case.

We now introduce the following definition. If $\alpha \in Z_{3}$ then $A_{i}, i \in I$ will be an atom set of α, (in general not unique) if the $A_{i}, i \epsilon I$ are chosen as at the beginning of this section. It then follows by proposition 1.52 that if $\alpha, \beta \in Z_{3}$ and $A_{i}, i \in I, B_{j}, j \in J$ are atom sets of α, β then $C_{i j}=A_{i} \cap B_{j}, i \in I, j \in J$ is an atom set of $\alpha \beta$ plus a number of sets of measure zero. Thus if $\gamma \in Z_{3}$ and $C_{k}, k \in K$ is an atom set of γ then

$$
\begin{aligned}
H(\alpha \beta) & =-\sum_{i} \sum_{j} \sum_{j \in J} \mu\left(A_{i} \cap B_{j}\right) \log \mu\left(A_{i} \wedge B_{j}\right) \\
H(\alpha \beta / \gamma) & =-\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} \mu\left(A_{i} \cap B_{j} \wedge C_{k}\right) \log \mu\left(A_{i} \wedge B_{j} / C_{k}\right) \\
H(\alpha / \beta \gamma) & =-\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} \mu\left(A_{i} \cap B_{j} \cap C_{k}\right) \log \mu\left(A_{i} / B_{j} \cap C_{k}\right)
\end{aligned}
$$

For the remainder of this section we assume that $\alpha, \beta, \gamma, \delta \in Z_{B}$ and that $A_{i}, i \in I, B_{j}, j \in J, C_{k}, k \in K, D_{I}, I \in I$ are atom seta of $\alpha, \beta, \gamma, \delta$ respectively.

Proposition $2.11 \quad H(\alpha / \beta) \leqslant H(\alpha)$
$\operatorname{Proof} \quad$ If $a_{j}=\mu\left(B_{j}\right), x_{j}=\mu\left(A_{i} / B_{j}\right)$, $j \in J$ then $\sum_{j \in J} a_{j}=1$, $0 \leqslant x_{j} \leqslant I, j \in J$ giving by section $I^{\circ} 4$ that

$$
\begin{aligned}
& -j \sum_{j \in J} a_{j} x_{j} \log x_{j} \leqslant-\left\{\sum_{j \in J}^{\sum_{j}} a_{j} x_{j}\right\} \log \left\{\sum_{j \in J} a_{j} x_{j}\right\} \\
\text { i. } e_{0} & -\sum_{j \in J} \mu\left(B_{j}\right) \mu\left(A_{i} / B_{j}\right) \log \mu\left(A_{i} / B_{j}\right) \\
\leqslant & -\left\{\sum_{j \in J} \mu\left(B_{j}\right) \mu\left(A_{i} / B_{j}\right)\right\} \log \left\{\sum_{j \in J} \mu\left(B_{j}\right) \mu\left(A_{j} / B_{j}\right)\right\} \\
= & -\mu\left(A_{i}\right) \log \mu\left(A_{i}\right)
\end{aligned}
$$

Summing over i then gives the required result.

Proposition $2 \cdot 12 \quad H(\alpha \beta / \gamma)=H(\alpha / \beta \gamma)+H(\beta / \gamma)$
$\operatorname{Proof} H(\alpha \beta / \gamma)=-\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} \mu\left(A_{i} \wedge B_{j} \wedge C_{k}\right) \log \mu\left(A_{i} \wedge B_{j} / C_{k}\right)$

$$
\begin{aligned}
& =-\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} \mu\left(A_{i n} B_{j} C_{k}\right)\left\{\log \mu\left(\Lambda_{i} / B_{i^{n}} C_{k}\right)+\log \mu\left(B_{j} / C_{k}\right)\right\} \\
& =-\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} \sum_{i}\left(\Lambda_{i} \cap B_{j} \cap C_{k}\right) \log \mu\left(\Lambda_{i} / B_{j} \cap C_{k}\right) \\
& -\sum_{j \in J} \sum_{k \in K} \Gamma^{\left.\left(B_{j} \cap C_{k}\right) \log \mu^{(B}{ }_{j} / C_{k}\right)} \\
& \text { - } H(\alpha / \beta \gamma)+H(\beta / \gamma)
\end{aligned}
$$

Since $\alpha \beta=\beta \alpha$ we have immediately
$\operatorname{Cor} \mathrm{I} \quad \mathrm{H}(\alpha \beta / \gamma)=\mathrm{H}(\beta / \alpha \gamma)+\mathrm{H}(\alpha / \gamma)$
If $\alpha \leqslant \beta$ then $\alpha \beta=\beta$ and this together with $H(\beta / \alpha \gamma) \geqslant 0$ gives

Cor 2 If $\alpha \leqslant \beta$ then $H(\alpha / \gamma) \leqslant H(\beta / \gamma)$
Now X is an atom set for ν and so

$$
\begin{aligned}
H(\alpha / \nu) & =-\sum_{i \in I} \mu\left(A_{i} \cap X\right) \log \mu\left(A_{i} / X\right) \\
& =-\sum_{i \in I} \mu\left(A_{i}\right) \log \mu\left(A_{i}\right) \\
& =H(\alpha)
\end{aligned}
$$

thus putting $\gamma=\nu$ in the proposition and corollary I gives

Corollary $3 \quad H(\alpha \beta)=H(\alpha / \beta)+H(\beta)=H(\beta / \alpha)+H(\alpha)$

And putting $\gamma=\nu$ in corollary 2 gives

Corollary $4 \quad$ If $\alpha \leqslant \beta$ then $H(\alpha) \leqslant H(\beta)$

Proposition 2.13 If $\beta \leqslant \gamma$ then $H(\alpha / \gamma) \leqslant H(\alpha / \beta)$

Proof For each $j \in J$ let $\varepsilon_{j}=\left\{A: A \subseteq B_{j}\right\}, \alpha_{j}=\left\{A: A=B_{j} A^{\prime}{ }^{\prime}\right.$ with $\left.A^{\prime} \in \alpha\right\}$ and $K_{j}=\left\{k: k \in K, \mu\left(C_{k}-B_{j}\right)=0\right\}$ then since $\beta \leqslant \gamma$ we have $\mu\left(\bigcup_{k \in K_{j}} C_{k} \Delta_{j}\right)=0$. Thus

$$
\begin{aligned}
H(\alpha / \gamma) & =-\sum_{i \in I} \sum_{k \in K} \mu^{\left(A_{i} \cap C_{k}\right)} \log \mu\left(A_{i} / C_{k}\right) \\
& =-i \frac{\sum}{\dot{\epsilon}} I \sum_{j \in J} \sum_{k \in K_{j}} \mu\left(A_{i} \wedge C_{k}\right) \log \mu\left(A_{i} / C_{k}\right) \\
& =-\sum_{i \in I} \sum_{j \in J} \sum_{k \in K_{j}} \mu\left(A_{i} \cap B_{j n} C_{k}\right) \log \Gamma\left(A_{i n} B_{j} / C_{k}\right)
\end{aligned}
$$

If $a_{k}=\mu\left(C_{k}\right) / \mu\left(B_{j}\right), X_{k}=\mu\left(A_{i n} B_{j} / C_{k}\right)$ then $\sum_{k} \sum_{K_{i}} a_{k}=1$, $0 \leqslant x_{k} \leqslant 1$ and so by section 1.4

$$
-\sum_{k \in K_{j}} a_{k} x_{k} \log x_{k} \leqslant-\left\{\sum_{k}{\underset{E K}{j}} a_{k} x_{k} \nmid \log \left\{\sum_{k \in K_{j}} a_{k} x_{k}\right\}\right.
$$

Now $\quad a_{k} x_{k}=\frac{\mu\left(C_{k}\right)}{\mu\left(B_{j}\right)} \mu^{\left(A_{j} \wedge B_{j} / C_{k}\right)=\mu^{(}\left(A_{i n} C_{k} / B_{j}\right)}$

giving

$$
\begin{aligned}
H(\alpha / \gamma) & \leqslant-\sum_{i \epsilon I} \sum_{j \in J} \mu\left(B_{j}\right) \mu\left(A_{i} / B_{j}\right) \log \mu\left(A_{i} / B_{j}\right) \\
& =-\sum_{i \in I} \sum_{j \in J} \mu\left(A_{i \wedge} B_{j}\right) \log \mu\left(A_{i} / B_{j}\right) \\
& =H(\alpha / \beta)
\end{aligned}
$$

Lemma 2. $14 \quad 0 \leqslant H(\alpha)$

$$
\begin{align*}
H(\nu) & =0 \\
0 & \leqslant H(\alpha / \beta) \tag{3}\\
H(\alpha / \beta) & \leqslant H(\alpha)
\end{align*}
$$

$$
\begin{array}{rlr}
H(\alpha \beta) & =H(\alpha / \beta)+H(\beta) & 5 \\
& =H(\beta / \alpha)+H(\alpha) & 6 \\
& \leqslant H(\alpha)+H(\beta) & 7 \tag{7}\\
H(\alpha \beta / \gamma) & =H(\alpha / \beta \gamma)+H(\beta / \gamma) & 8 \\
& =H(\beta / \alpha \gamma)+H(\alpha / \gamma) & 9 \\
H(\alpha / \nu) & =H(\alpha / \gamma)+H(\beta / \gamma) & 10 \\
H(\alpha \beta / \beta) & =H(\alpha / \beta) & 11 \\
H(\alpha / \gamma) & \leqslant H(\alpha / \beta)+H(\beta / \gamma) & 12
\end{array}
$$

If $\alpha \leqslant \beta, \gamma \leqslant \delta$ then
$H(\alpha) \leqslant H(\beta)$

$$
\begin{array}{ll}
H(\alpha / \gamma) \leqslant H(\beta / \gamma) & 15 \\
H(\gamma / \beta) \leqslant H(\gamma / \alpha) & 16
\end{array}
$$

$$
H(\alpha / \beta)=0 \quad 17
$$

$$
0 \leqslant H(\alpha)-H(\alpha / \gamma) \quad 18
$$

$$
\leqslant H(\beta)-H(\beta / \gamma) \quad 19
$$

$$
0 \leqslant H(\beta / \delta)-H(\alpha / \delta)
$$

$$
\leqslant H(\beta / \gamma)-H(\alpha / \gamma)
$$

$$
\leqslant H(\beta)-H(\alpha)
$$

$$
22
$$

If $H(\alpha / \beta)=0$ then there exists a σ algebra β^{*} such that $\alpha \leqslant \beta^{*}$ and β, β^{*} differ only by sets of measure zero. 23 Thus $H(\alpha / \beta)=0$ if, and only if $\alpha \leqslant \beta$ 24

Proof $1,2,3,4,5,6,8,9,11,14,15,16$ have already been established. 7 follows from 4, 6, and 10 from 9, 16. We now prove 13 .

$$
\begin{aligned}
H(\alpha / \gamma) & \leqslant H(\alpha \beta / \gamma) \text { by } 15 \\
& =H(\alpha / \beta \gamma)+H(\beta / \gamma) \text { by } 8 \\
& \leqslant H(\alpha / \beta)+H(\beta / \gamma) \text { by } 16
\end{aligned}
$$

To prove 17 we note that if $\mu\left(A_{i} \cap B_{j}\right) \neq 0$
then $\mu\left(A_{i} \mid B_{j}\right)=1$ giving

$$
\begin{aligned}
H(\alpha / \beta) & =-\sum_{i} \sum_{j} \sum_{j \in J} \mu\left(A_{i} \cap B_{j}\right) \log \mu\left(A_{i} / B_{j}\right) \\
& =-\sum_{i \in I} \sum_{j \in J} 0 \\
& =0_{0} .
\end{aligned}
$$

12 now follows from 8, 17.
18 follows from 4 if $H(\alpha / \gamma)<\infty$ and is meaningless otherwise. If $H(\beta / \gamma)=\infty, 19$ is meaningless while if $H(\beta / \gamma)<\infty$, $H(\beta)=\infty$ then 19 is true and if $H(\beta \mid \gamma)<\infty, H(\beta)<\infty$ then $H(\alpha)<\infty$ by $14 H(\alpha / \gamma)<\infty$ by 4 , and $H(\beta / \alpha)<\infty$ by 7. Thus

$$
\begin{aligned}
H(\alpha)-H(\alpha / \gamma) & \leqslant H(\alpha) H(\beta / \alpha)-H(\beta / \gamma) \text { by } 13 \\
& =H(\alpha \beta)-H(\beta / \gamma) \text { by } 6 \\
& =H(\beta)-H(\beta / \gamma) \text { because }
\end{aligned}
$$

20 follows from 15 if $H(\alpha) \delta)<\infty$ and is meaningloss otherwise. If $H(\alpha / \gamma)=\infty, 2 l$ is meaningless, while if $H(\alpha / \gamma)<\infty$, $H(\beta / \gamma)=\infty$ then 21 holds and if $H(\alpha / \gamma)<\infty \quad, H(\beta / \gamma)<\infty$ then $H(\alpha / \delta)<\infty, H(\beta / \delta)<\infty$ by 16. Thus

$$
\begin{aligned}
H(\beta / \delta)-H(\alpha / \delta) & \leqslant H(\alpha \beta / \delta)-H(\alpha / \delta) \text { by } 15 \\
& \leqslant H(\beta / \alpha \delta) \text { by } 9 \\
& \leqslant H(\beta / \alpha \gamma) \text { by } 16 \\
& =H(\alpha \beta / \gamma)-H(\alpha / \gamma) \text { by } 9 \\
& =H(\beta / \gamma)-H(\alpha / \gamma) \text { since } \alpha \leqslant \beta
\end{aligned}
$$

If $H(\alpha)=\infty$ 22 is meaningless, while if $H(\alpha)<\infty, H(\beta)=\infty$
then 22 holds, and if $H(\alpha)<\infty, H(\beta)<\infty$ then $H(\alpha / \gamma)<\infty$, $H\left(\left.\beta\right|^{\gamma}\right)<\infty$ by 4 and 22 follows from 19.

If there does not exist a σ - algebra β^{*} such that $\alpha \leqslant \beta^{*}$ and β, β^{x} differ only by sets of measure zero, then there exist m, n

$$
\begin{aligned}
H(\alpha / \beta) & =-\sum_{i \in I} \sum_{j \notin J} \mu\left(A_{i} \wedge B_{j}\right) \log \mu^{\left(A_{i} / B_{j}\right)} \\
& \geqslant-\mu\left(A_{m^{\wedge} B_{n}}\right) \log \mu\left(A_{m} / B_{n}\right) \\
& >0
\end{aligned}
$$

thus proving 23. 24 is a direct consequence of $17,23$.

$$
\text { 2.2 THE ENTROPY OF A } \sigma \text {-ALGEBRA }
$$

For any σ_{-}algebra α wo put

$$
\begin{aligned}
& S(\alpha)=\left\{\alpha^{\prime}: \alpha^{\prime} \leq \alpha, \alpha^{\prime} \in Z_{3}\right\} \\
& H(\alpha)=\sup _{\alpha^{\prime} \in S(\alpha)} H\left(\alpha^{\prime}\right)
\end{aligned}
$$

Since $\alpha \in S(\alpha)$ if $\alpha \in Z_{3}$ it follows from lemma 2.14, 14 that this definition of $H(\alpha)$ coincides with the previous one if $\alpha \in Z_{3}$. If β is any σ_{-}algebra $\alpha \in Z_{3}$ we put

$$
\mathrm{H}(\alpha / \beta)=\inf _{\beta^{\prime} \in \mathrm{S}}(\beta) \mathrm{H}\left(\alpha / \beta^{\prime}\right)
$$

and note that in view of 1 emma $2 \cdot 14,16$, this coincides with our previous definition if $\beta \in Z_{Z^{\circ}}$

Proposition 2.21 If $\alpha, \beta \quad Z_{3}, \alpha \leqslant \beta$ and γ is any σ-algebra then $H(\alpha / \gamma) \leqslant H(\beta / \gamma)$
$\operatorname{Proof} \quad$ Let $\gamma_{i}^{1}, \gamma_{i}^{2} \quad i \in \Gamma^{+}$be such that $\lim _{i \rightarrow \infty} H\left(\alpha / \gamma_{i}^{l}\right)=H(\alpha / \gamma)$, $\lim _{i \rightarrow \infty} H\left(\beta / \gamma_{i}^{2}\right)=H(\beta / \gamma)$ and put $\gamma_{i}=\gamma_{i}^{1} \gamma_{i}^{2}$, $i \in \Gamma^{+}$ Then $H\left(\alpha / \gamma_{i}\right) \leqslant H\left(\alpha / \gamma_{i}^{-1}\right), i \in \Gamma^{+}$and $H\left(\beta / \gamma_{i}\right) \leqslant H\left(\beta / \gamma_{i}^{2}\right), i \in \Gamma^{+}$
giving $H(\alpha / \gamma)=\lim _{i \rightarrow \infty} H\left(\alpha \mid \gamma_{i}\right), H(\beta \mid \gamma)=\lim _{i \rightarrow \infty} H\left(\beta / \gamma_{i}\right)$
But $\quad H\left(\alpha / \gamma_{i}\right) \leqslant E\left(\beta / \gamma_{i}\right)$, $i \in \Gamma^{+}$by lemma $2 \cdot 14$, 15 .
and so

$$
\begin{aligned}
H(\alpha / \gamma) & =\lim _{i \rightarrow \infty} H\left(\alpha / \gamma_{i}\right) \\
& \leqslant \lim _{i \rightarrow \infty} H\left(\beta / \gamma_{i}\right) \\
& =H(\beta / \gamma)
\end{aligned}
$$

For any σ-algebras α, β we put

$$
H(\alpha \mid \beta)=\sup _{\alpha^{\prime} \in S(\alpha)} H\left(\alpha^{\prime} \mid \beta\right)
$$

and note that in view of proposition 2.21 this coincides with our previous definition if $\alpha \in Z_{3}$ 。

We now take any σ - algebras α, β and consider $S(\alpha \beta)$. Let γ^{I} be any σ algebra such that $\gamma^{l} \in S(\alpha \beta)$ then we have $\gamma^{I} \in Z_{3}$. If $C_{k}, k \in K$ is an atom set of γ^{l} then for each k we can find an $A_{k} \in \alpha$ and a $B_{k} \epsilon \beta$ such that $C_{k}=A_{k} \cap B_{k}$. If $\alpha_{k}=\left\{\phi, A_{k}, X-A_{k}, X\right\}, \beta_{k}=\left\{\phi, B_{k}, X-B_{k}, X \mid\right.$ we put $\alpha^{I}={ }_{k} \in K$ ${ }_{k} E_{K} \beta_{k^{0}} \quad$ Clearly $\alpha^{I} \epsilon S(\alpha), \beta^{I} \in S(\beta)$ and $\gamma^{I} \leqslant \alpha^{1} \beta^{I}$ except possibly on a set of measure zero. But by proposition 1.52 we have that $\alpha^{l} \beta^{l} \in \mathrm{Z}_{3}$ if $\alpha^{I}, \beta^{l} \in Z_{3}$ and so wo got $\alpha^{l} \beta^{l} \in S(\alpha \beta)$. Thus we conclude that if α, β, γ are σ-algebras then

$$
\begin{aligned}
H(\alpha \beta) & =\sup _{\delta \sup _{E S}(\alpha \beta)} H\left(\delta^{I}\right) \\
& =\sup _{\alpha^{\mathcal{L}} \in S(\alpha), \beta^{I} \in S(\beta)} H\left(\alpha^{I} \beta^{I}\right)
\end{aligned}
$$

by the above remarks and lemmas $2 \cdot 14,14$ while

$$
\left.\begin{array}{rl}
H(\alpha \beta / \gamma) & =\sup _{\operatorname{sun}^{\operatorname{Los}}(\alpha \beta)} \mathrm{H}\left(\delta^{I} / \gamma\right) \\
& =\sup _{\alpha^{I} \in S}(\alpha), \beta^{I} \in S(\beta)
\end{array} \quad H\left(\alpha^{I} \beta^{I} / \gamma\right)\right)
$$

by the above remarks and proposition 2.21

Also if $\gamma \in Z_{3}$ then

$$
\begin{aligned}
H(\gamma / \alpha \beta) & =\inf _{\delta^{\frac{1}{E}}(\alpha \beta)}^{H\left(\gamma / \delta^{l}\right)} \\
& =\inf _{\alpha^{1} \in S(\alpha), \beta^{1} \in S(\beta)}
\end{aligned}
$$

by the above remarks and lemma $2^{\circ} 14$, 16 .

Lemma 2.22 The results of lemma 2.14 hold for arbitrary σ algebras $\alpha, \beta, \gamma, \delta$.

Proof $1,2,3$ are direct consequence of 1 maas 2.14 and the definitions of $H(\alpha), H(\alpha / \beta)$. Now

$$
\begin{aligned}
H(\alpha / \beta) & =\sup _{\alpha \in S(\alpha) \inf _{\beta} S(\beta)} H\left(\alpha^{1} / \beta^{I}\right) \\
& \leqslant \sup _{\alpha \in S}(\alpha) \inf _{\beta \in S(\beta)} H\left(\alpha^{I}\right) \text { by lemma 2014, } 4 \\
& =H(\alpha)
\end{aligned}
$$

giving 4. 5 and 8 are proved by the method used in proposition 2.21, bearing in mind the remarks made afterwards. 6 and 9 then follow from 5 and 8 and the fact that $\alpha \beta=\beta \alpha .7$ is a direct consequence of 4 and 5 and 10 will follow from 8 and 16 when we have established the latter. Now

$$
\begin{aligned}
H(\alpha / \nu) & =\sup _{\alpha \in S(\alpha)} H\left(\alpha^{1} / \nu\right) \\
& =\sup _{\alpha^{1} \in S(\alpha)} H\left(\alpha^{I}\right) \text { by lemma } 2^{\circ} 14 \text {, } 11 \\
& =H(\alpha)
\end{aligned}
$$

giving 11. $\quad 15$ is proposition 2.21 and has already been established. $\quad 13$ follows from 10 and 15. 14 follows from 11 and 15. To prove 16 we note that $\beta=\alpha \beta$ and so

$$
\begin{aligned}
& H(\gamma / \beta)=\sup _{\gamma \in S}(\gamma) \beta \in S(\beta) \quad H\left(\gamma / \beta^{l}\right) \\
& =\sup _{\gamma \in S}(\gamma) \inf _{\beta l \in S}(\beta), \alpha^{I} \in S(\alpha) \quad H\left(\gamma^{I} / \alpha^{I} \beta^{I}\right) \\
& \leqslant \sup _{\gamma \in S(\gamma)} \quad \inf _{\beta^{1} \in S}(\beta), \alpha^{\perp} \in S(\alpha) B\left(\gamma^{1} / \alpha^{1}\right) \\
& =H(\gamma / \alpha)
\end{aligned}
$$

by lemma $2 \cdot 14,16,18,19,20,21$ and 22 are proved as in lemma 2.14 .
To prove 17 we note that $\beta=\alpha \beta$ and so

$$
\begin{aligned}
H(\alpha / \beta) & =\sup _{\alpha+\mathrm{S}(\alpha) \quad \inf _{\beta \in \mathrm{S}(\beta)} H\left(\alpha^{1} / \beta^{1}\right)} \\
& \left.=\sup _{\alpha E S(\alpha) \quad \beta \in S(\beta)} \inf ^{1} / \alpha^{1} / \alpha^{1} \beta^{1}\right) \\
& =0 \text { by lemma } 2 \cdot 14,17 .
\end{aligned}
$$

Here we use the fact that for fixed $\alpha^{2} \in S(\alpha)$ we have $\beta^{1} \leqslant \alpha^{1} \beta^{1} \in S(\beta)$ for all $\beta^{1} \in S(\beta)$. 12 follows from 8 and 17.
To prove 23 we note that $H(\alpha / \beta)=0$ implies $H\left(\alpha^{l} / \beta\right)=0$ for all $\alpha^{l} \in S(\alpha)$. Given any $A \in \alpha$ we can find an $\alpha^{l} \in S(\alpha)$ such that $A \in \alpha^{\prime}$. If there exists a $\beta^{I} \in S(\beta)$ such that $H\left(\alpha^{I} / \beta^{l}\right)=0$ then $\alpha \leqslant \beta^{1} \leqslant \beta$ by lemma 2.14 。 However if $H\left(\alpha^{1} / \beta^{1}\right) \neq 0$ for all $\beta^{I} \in S(\beta)$ then we choose $\beta_{i}^{I}, i \in \Gamma^{+}$such that $\beta_{i}^{I} \in S(\beta)$ each i and $\lim _{i \rightarrow \infty} H\left(\alpha^{I} / \beta_{i}^{l}\right)=0$. If $\quad \inf \mu(A \Delta B)=k>0$ then there exists . an atom B_{i} of β_{i}^{l} for each i such that

$$
-\mu\left(B_{i} \wedge A\right) \log \rho\left(A / B_{i}\right) \geqslant k^{1}=k^{1}(k)>0
$$

and hence $\quad \lim _{1 \rightarrow \infty} H\left(\alpha^{l} / \beta_{i}^{l}\right) \geqslant k^{I} \neq 0$ a contradiction.
Thus $\operatorname{imf}_{B \in \beta} \Gamma\left(A^{\Delta} B\right)=0$, io. $A \in \propto$ implies that there exists a $B \in \beta$ such that $\Gamma(A \Delta B)=0$ as required.
24 is an immediate consequence of 17 and 23 .
2.3 INCREASINGLY FILTERED COLLECTIONS OF ALGEBRAS

We now introduce

$$
Z=\{\alpha: \alpha \text { is a } \sigma \text {-algebra, } H(\alpha)<\infty\}
$$

Lemma $2 \cdot 31$

$$
Z \leq Z_{3}
$$

Proof If α is a σ-algebra such that $\alpha \notin Z_{3}$ and Δ is any real number then it is sufficient to find a $\alpha^{1} \in S(\alpha)$ with $H\left(\alpha^{I}\right) \geqslant \Delta \quad$ If $\Delta \leqslant 0$ then we take $\alpha^{I}=\mu$ if not then we consider the B of proposition 1.51. Since $\alpha \notin Z_{3}$ we have $\mu(B) \neq 0$ and hence B a continuous set of α. Further
$\lim _{x} \rightarrow 0^{-} \mu(B) \log x=\infty$ and so we can find a real number d such that $0<d \leqslant \mu(B)$ and $-\mu(B) \log d \geqslant \Delta$ 。 Let Φ be the set of all sequences of disjoint sets $A_{i}, i \in I \leqslant T^{+}$such that $A_{i} \in \propto$, $A_{i} \leqslant B, \quad 0<\mu\left(A_{i}\right) \leqslant d$ for all i. Since B is continuous there exists an $A^{l} \in \alpha$ with $A^{l} \leqslant B$ and $0<\mu\left(A^{l}\right) \leqslant d$ and so Φ is. non-empty. If $R_{1}, R_{2} \in \Phi$ then we write $g_{1} \leqslant g_{2}$ if $A \in A_{1}$ implies $A \in P_{2}$. Thus \leqslant is a partial ordering of Φ. If C is a "chain" in Φ io. for all $\beta_{1}, \beta_{2} \in c$ we have $\rho_{1} \leqslant \rho_{2}$ or $\beta_{2} \leqslant \beta_{1}$ (or both if $A_{1}=R_{2}$) and $\rho_{c}-\{A$: there exists a $Q \in C$ with $A \in Q\}$ then if $A_{1}, A_{2} \in R_{c}$ there exist $A_{1}, A_{2} \in C$ such that $A_{1} \in A_{1}, A_{2} \in A_{2}$ but $R_{1} \leqslant A_{2}$ or $R_{2} \leqslant A_{1}$ and so $A_{1}, A_{2} \in R_{2}$ or $A_{1}, A_{2} \in R_{1}$ giving in either case that A_{1}, A_{2} are disjoint and hence that $Q_{c} \in \Phi$, since $\mu(X)=1$ implies that ρ_{c} is at most denumerable. Now $R \leqslant Q_{c}$ for all $A \in C$ and so by Zorn lemma there exists a $\psi \in \Phi$ such that for all $\Omega \in \Phi$ it is false that $\psi \leqslant \Omega$ and $~ \Omega \neq \psi$. Suppose $\left.\mu^{(B-A E \psi} A\right)>0$ then if $C=B-\underset{A \in \psi^{A}}{ }$ we have that $C \in \alpha, C \leq B$ and so by the continuity of B there exists an $A_{1} \in \alpha, A_{1} \leqslant C$ with
$0<\mu\left(A_{1}\right) \leqslant d_{0} \quad$ Now $\psi \vee A_{1} \in \Phi, \psi \leqslant \psi \sim A_{1}$ and $\psi \neq \psi \nu A_{1}$ giving a contradiction and so $\mu^{(\sigma)}=0$ 。 If α^{l} is the σ-algebra generated by the members of ψ together with $X-{ }_{A} \in \psi^{A}$ then $\alpha^{l} \in S(\alpha)$ and

$$
\begin{aligned}
H\left(\alpha^{I}\right) & \geqslant-\sum_{A \in \psi} \mu(A) \log \mu(A) \\
& \geqslant-\sum_{A \in \psi} \mu(A) \log d \\
& =--(B) \log d \\
& \geqslant \Delta
\end{aligned}
$$

We say that a collection S of σ-algebras is increasingly filtered if given any $\alpha, \beta \in S$ then there exists a $\gamma \in S$ with $\alpha \beta \leqslant \gamma$. For any σ - algebra α we have that $S(\alpha)$ is increasingly filtered. Again if α_{i}, i $\in I \leqslant \Gamma^{+}$are σ-algebras such that $\alpha_{i} \leqslant \alpha_{j}$ if $i \leqslant j$ then $s=\left\{\alpha_{i}: i \in I\right\}$ is an increasingly filtered system.

Lemma $2 \cdot 32$ If S is an increasingly filtered collection of σ_{-}algebras, $\alpha=\gamma \in \mathbb{S}^{\beta}, \gamma \in z_{1}$ and $\gamma \leqslant \alpha$ then if $c_{i}, 1 \leqslant i \leqslant n$ is an atom set of γ and d is any real number such that $0<d$ there exists a $\beta \in S$ and sets $B_{i} \epsilon \beta, 1 \leqslant i \leqslant n+1$ such that $\mu^{\left(B_{i} \Delta C_{i}\right)<d, l \leqslant i \leqslant n ; ~} \mu^{\left(B_{n+1}\right)<d ; ~} \mu^{\left(C_{i} \cap B_{j}\right)<d \text { if } i \neq j ; ~}$ $\Gamma\left(C_{i} / B_{i}\right)>1-d, \quad 1 \leqslant i \leqslant n$ and $\underset{i=1}{\sum_{i}+} B_{i}=x$

Proof Since $C_{i}, \quad 1 \leqslant i \leqslant n$ is an atom set of γ we have $0<\mu\left(C_{i}\right)$ for all i and so given any d such that $O<d$ we can find a d_{1} such that $0<d_{1}<d, d_{1}<\max \left|\mu\left(C_{i}\right), d \mu\left(C_{i}\right)\right|$ and $\overline{\mu\left(C_{i}\right)} \bar{d}-d_{1}<d, \quad 1 \leqslant i \leqslant n$

For each i there exists a $\beta_{i} \epsilon S$ and a $B_{i}^{l} \epsilon \beta_{i}$ such that $\mu\left(B_{i}^{l} \Delta C_{i}\right)<\alpha_{1} / 8 n^{2}$. Since S is increasingly filtered there exists a $\beta \in S$ such that $\beta_{i} \leqslant \beta, 1 \leqslant i \leqslant n$. Let $B_{i}=B_{i}^{I}-\bigcup_{i} i_{j}^{I}$, $1 \leqslant i \leqslant n, \quad B_{n+1}=X-{ }_{i}^{n} U_{-1} B_{i}$ 。 Then for each $i, B_{i} \in \beta$ and if $i \neq j \quad$ then $B_{i \wedge}{ }^{B}=\phi \quad$ For $i \neq j$

$$
\begin{aligned}
& \mu\left(B_{i}^{I} \cap B_{j}^{I}\right) \leqslant \mu\left(B_{i}^{I}-C_{i}\right)+\mu\left(B_{j}^{I}-C_{j}\right) \text { since } \mu\left(C_{i} n_{j}\right)=0 \\
&<d_{1} / 8 n^{2}+d_{1} / 8 n^{2} \\
&= d_{1} / 4 n^{2} \\
& \text { and } \mu\left(B_{i}^{I}-B_{i}\right) \leqslant \sum_{j \neq i} \mu\left(B_{i}^{I} \cap B_{j}^{I}\right) \\
&<(n-1) d_{1} / 4 n^{2} \\
&<d_{1} / 4 n \\
& \text { giving } \mu\left(C_{i}-B_{i}\right) \leqslant \mu\left(C_{i}-B_{i}^{I}\right)+\mu\left(B_{i}^{I}-B_{i}\right) \text { since } B_{i} \leqslant B_{i}^{I} \\
&<d_{1} / 8 n^{2}+d_{1} / 4 n \\
&<d_{1} / 2 n
\end{aligned}
$$

But $\mu\left(B_{i}-C_{i}\right) \leqslant \mu\left(B_{i}^{I}-C_{i}\right)$

$$
<\alpha_{1} / 8 n^{2}
$$

Thus $\mu\left(B_{i} \Delta C_{i}\right)=\mu\left(B_{i}-C_{i}\right)+\mu\left(C_{i}-B_{i}\right)$

$$
\begin{aligned}
& <d_{1} / 2 n+d_{1} / 8 n^{2} \\
& <d_{1} \\
& <d
\end{aligned}
$$

Lastly

$$
\begin{aligned}
\mu\left(B_{n+1}\right) & =\mu\left(X-B_{i=1}^{B} B_{n}\right) \\
& =1-\sum_{i=1}^{n} \mu\left(B_{n}\right) \\
& =1-\sum_{i=1}^{n} \mu\left(B_{i}^{1}-U_{i} B_{j}^{1}\right) \\
& \leqslant 1-\sum_{i=1}^{n}\left\{\mu\left(B_{i}^{1}\right)-\sum_{j \neq i} \mu\left(B_{i}^{1} n B_{j}^{1}\right)\right\} \\
& \leqslant 1-\sum_{i=1}^{n}\left\{\mu\left(B_{i}^{1}\right)-(n-1) d / 4 n^{2}\right\} \\
& \leqslant 1-\sum_{i=1}^{n}\left\{\mu\left(C_{i}\right)-d / 8 n^{2}-d / 4 n\right\}
\end{aligned}
$$

$$
\begin{aligned}
& <1-1+n d_{1} / 2 n \\
& =d_{1} / 2 \\
& <d_{1} \\
& <d
\end{aligned}
$$

If $I \leqslant i \leqslant n, I \leqslant j \leqslant n \quad \dot{i} \neq j$ we have

$$
\begin{aligned}
\mu^{\left(C_{i} \cap B_{j}\right)} & \leqslant \mu\left(C_{i} \cap B_{j}^{I}\right) \\
& \leqslant \mu\left(C_{i} \cap C_{j}\right)+\mu\left(C_{j} \Delta B_{j}^{I}\right) \\
& <0+d_{1} / 8 n^{2} \\
& <d
\end{aligned}
$$

If $1 \leqslant i \leqslant n$ then

$$
\begin{aligned}
\mu\left(C_{i} n B_{n+1}\right) & \leqslant \mu\left(B_{n+1}\right) \\
& <d
\end{aligned}
$$

If $\quad l \leqslant i \leqslant n$ then if $\quad \Gamma\left(B_{i}\right) \neq 0$

$$
\begin{aligned}
\mu\left(C_{i} / B_{i}\right) & =\mu\left(C_{i n} B_{i} L\right. \\
& =\frac{\mu\left(B_{i}\right)-\mu\left(B_{i}-C_{i}\right)}{\mu\left(B_{i}\right)} \\
& \geqslant 1-\mu \frac{\mu\left(B_{i} \Delta C_{i}\right)}{\mu\left(B_{i}\right)} \\
& >1-\mu^{\left.\frac{\alpha}{\left(B_{i}\right.}\right)}
\end{aligned}
$$

Now $\mu^{\left(\mathrm{B}_{\mathrm{i}}\right)}$

$$
\begin{aligned}
& \geqslant \mu\left(C_{i}\right)-\mu\left(B_{i} \Delta C_{i}\right) \\
& >\mu\left(C_{i}\right)-d_{1}
\end{aligned}
$$

and so if $\mu\left(B_{i}\right) \neq 0$

$$
\begin{aligned}
\mu\left(C_{i} \mid B_{i}\right) & >1-\frac{d_{1}}{\mu^{\left(C_{i}\right)}-d_{1}} \\
& >1-d
\end{aligned}
$$

Lemma 2•33
If S is an increasingly filtered collection of σ algebras: in $Z_{3}, \alpha=\bigcup_{\beta \in S} \beta$ and γ is any σ-algebra then
(i) $H(\alpha)=\sup _{\beta \in S} H(\beta)$
(ii) $H(\alpha \mid \gamma)=\sup _{\beta \in S} H(\beta \mid \gamma)$
and if $\gamma \epsilon Z_{3}$ then

$$
\text { (iii) } H(\gamma \mid \alpha)={\underset{\beta}{\beta} \in S}^{i_{\mathcal{S}}} H(\gamma \mid \beta)
$$

Proof Given $d>0$ since - $x \log x$ is continuous for $0 \leqslant x \leqslant 1$
and since $\lim _{X \rightarrow 1}-\log x=0$ there exists a d^{1} such that $0 \leqslant x, y \leqslant 1$, $|x-y| \leqslant d^{1}$ implies $|-x \log x+y \log y|<d / n(n+1)$ and $1-d^{1} \leqslant x \leqslant 1$ implies _ $\log x<\alpha / n\left(n_{+}+1\right)$.
If $\alpha^{I} \in S(\alpha)$ and C_{i},i I is an atom set of α then for each $\mathrm{n} \in \Gamma^{+}$we define γ_{n} to be the σ_{-}algebra generated by the $C_{i}, i \varepsilon I, i \leqslant n$. Then $\gamma_{n} \in Z_{1}, n \in \Gamma^{+}$and $H\left(\alpha^{1}\right)=\lim _{n \rightarrow \infty} H\left(\gamma_{n}\right)$ 。 we now take γ_{n} as the γ, and d^{1} as the d of lemma 2.32. With the notation of lemma $2 \cdot 32$ let β^{l} be the σ-algebra generated by $B_{i}, 1 \leqslant i \leqslant n+1$. Thus

$$
\begin{aligned}
\left|H\left(\gamma_{n}\right)-H\left(\beta^{1}\right)\right| & =\left|-\sum_{i=1}^{n} r\left(C_{i}\right) \log \mu\left(C_{i}\right)+{ }_{i}^{n+1} \sum_{-1}^{n} r\left(B_{i}\right) \log \mu\left(B_{i}\right)\right| \\
& \leqslant \sum_{i=1}^{n+1} d / n(n+1) \\
& <d
\end{aligned}
$$

Hence

$$
\begin{aligned}
& H(\alpha) \quad=\sup _{\alpha \alpha_{\text {g }}(\alpha)} H\left(\alpha^{1}\right) \\
& =\sup _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty} H\left(\gamma_{n}\right) \\
& \left.<\sup _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty} f H\left(\beta^{1}\right)+\alpha\right\} \\
& \leqslant \sup _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty}\{H(\beta)+\alpha\} \\
& \leqslant \sup _{\alpha \frac{1}{\in S}(\alpha)} \sup _{\beta \in S}\{H(\beta)+d\} \\
& =\sup _{\beta \in S}\{H(\beta)+d\}
\end{aligned}
$$

But d was arbitrary and so we have

$$
H(\alpha) \leqslant \sup _{\beta \in \mathcal{S}} H(\beta)
$$

and since $S \subseteq S(\alpha)$ we have

$$
H(\alpha) \geqslant \sup _{\beta \in S} H(\beta)
$$

giving (i)

$$
\begin{aligned}
\text { Now } H\left(\gamma_{n} \mid \beta^{1}\right) & =-\sum_{i=1}^{n} \sum_{j=1}^{n+1} \Gamma^{1}\left(C_{i} \cap B_{j}\right) \log \mu\left(C_{i} \mid B_{j}\right) \\
& <n(n+1) d / n(n+1) \\
& =d
\end{aligned}
$$

$$
\text { because }-\mu\left(C_{i} B_{j}\right) \log \mu\left(C_{i} \mid B_{j}\right) \leqslant-\mu\left(C_{i n} B_{j}\right) \log \mu\left(C_{i n} B_{j}\right)
$$

$$
\leqslant d / n(n+1) \text { if } i \neq j
$$

since $\mu\left(C_{i n} B_{j}\right)<d^{l}$ if i$\neq j$ while

$$
\begin{aligned}
-\mu\left(C_{i \wedge} B_{i}\right) \log \mu\left(C_{i} \mid B_{i}\right) & \leqslant-\log \mu\left(C_{i} \mid B_{i}\right) \\
& \leqslant-\log \left(1-d^{l}\right) \\
& <d / n(n+1)
\end{aligned}
$$

Thus $H(\alpha \mid \gamma)=\sup _{\alpha \in S(\alpha)} H\left(\alpha^{1} \mid \gamma\right)$

$$
\begin{array}{ll}
=\sup _{\alpha \in S}(\alpha) & \lim _{n \rightarrow \infty} H\left(\gamma_{n} \mid \gamma\right) \\
\leqslant \sup _{\alpha \in S} & \lim _{n \rightarrow \infty} H\left(\beta^{l} \gamma_{n} \mid \gamma\right)
\end{array}
$$

by lemma $2 \cdot 22,15$

$$
=\sup _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty}\left\{H\left(\gamma_{n} \mid \beta^{I} \gamma\right)+H\left(\beta^{1} \mid \gamma\right)\right\}
$$

by 1 emma $2 \cdot 22,8$

$$
\leqslant \sup _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty}\left\{H\left(\gamma_{n} / \beta^{l}\right)+H\left(\beta^{\prime} \mid \gamma\right)\right.
$$

by lemma 2.22, 16

$$
\begin{aligned}
& <\sup _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty}\left\{\alpha+H\left(\beta^{I} \mid \gamma\right)\right\} \\
& \leqslant \sup _{\alpha} \lim _{\alpha^{I} \in S(\alpha)}\{d+H(\beta \mid \gamma)\} \\
& \leqslant \sup _{\alpha \rightarrow \infty}(\alpha) \sup _{\beta \in S}\{d+H(\beta \mid \gamma)\} \\
& =\sup _{\beta \in S}\{d+H(\beta \mid \gamma)\}
\end{aligned}
$$

But d was arbitrary and so we have

$$
H(\alpha \mid \gamma) \leqslant \sup _{\beta \in E} H(\beta \mid \gamma)
$$

and since $\operatorname{ses}(\alpha)$ we have

$$
H(\alpha \mid \gamma) \geqslant \sup _{\beta \in S} H(\beta \mid \gamma)
$$

giving (ii)

$$
\begin{aligned}
& \text { Again } H(\gamma \mid \alpha)=\inf _{\alpha \in S(\alpha)} H\left(\gamma \mid \alpha^{1}\right) \text { for } \gamma \in Z_{3} \\
& =\inf _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty} H\left(\gamma \mid \gamma_{n}\right) \\
& \geqslant \inf _{\alpha^{1} \in S(\alpha)} \lim _{n \rightarrow \infty} H\left(\gamma \mid \beta^{l} \gamma_{n}\right) \text { by lemma 2.22, 16. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { by lemma } 2.22,8 \\
& \geqslant \inf _{\alpha \in S(\alpha)} \lim _{n \rightarrow \infty}\left|H\left(\gamma \mid \beta^{I}\right)-\alpha\right| \\
& \text { by } 1 \text { emma } 2 \cdot 22,15 \\
& \geqslant \inf _{\alpha \in S(\alpha)} \quad \lim _{n \rightarrow \infty}(H(\gamma \mid \beta)-\alpha) \\
& \text { by lemma } 2 \cdot 22,16 \\
& \left.\geqslant \inf _{\alpha \in S(\alpha)} \inf _{\beta \in S} \mid H(\gamma \mid \beta)-d\right\} \\
& =\inf _{\beta \in S}\{H(\gamma \mid \beta)-d\}
\end{aligned}
$$

But d was arbitrary and so we have

$$
H(\gamma \mid \alpha) \geqslant \inf _{\beta \in S} H(\gamma \mid \beta)
$$

and since $S \leqslant S(\alpha)$ we have

$$
H(\gamma \mid \alpha) \leqslant \inf _{\beta \in S} H(\gamma \mid \beta)
$$

giving (iii)

We now define a function $\rho(\alpha, \beta)$ for any pair of σ-algebras α, β by

$$
p(\alpha, \beta)=H(\alpha \mid \beta)+H(\beta \mid \alpha)
$$

Clearly by lemma $2 \cdot 22$
(1) $\rho(\alpha, \beta)=0$ if, and only if $\alpha=\beta$ up to sets of measure zero
(2) $p(*, \beta)=\rho(\beta, \alpha)$
(3) $\rho(\alpha, \gamma) \leqslant \rho(\alpha, \beta)+\rho(\beta, \gamma)$
i.e. ρ is a metric.

Lemma 2.41 ($\mathrm{Z}, \mathrm{\rho}$) is a complete metric space.
Proof If $\alpha_{n}^{1}, n \in \Gamma^{+}$is a cauchy sequence in (z, ρ), then there exists a subsequence $\alpha_{n}, n \in \Gamma^{+}$such that

$$
p\left(\alpha_{n}, \alpha_{n+p}\right)<2^{-n} \text { for all } p \in \Gamma^{+}
$$

If $\alpha=j \bigwedge_{1} i \stackrel{\infty}{V}_{j} \alpha_{i}$ then for $m>j>n$

$$
H\left(\left.\underline{i}_{j}^{m} \underline{\underline{V}}_{j}\right|_{i} ^{j} \overline{\underline{V}}_{n}^{1} \alpha_{i}\right)=H\left(\alpha_{j} \left\lvert\, \frac{j-1}{\underline{V}}{ }_{n} \alpha_{i}\right.\right)+H\left(\left.{ }_{i} \underline{V}_{j+1} \alpha_{i}\right|_{i} \underline{V}_{n}^{j} \alpha_{i}\right)
$$

All terms are finite and so summing over j gives

$$
\begin{aligned}
H\left(\stackrel{m}{i=n+1}_{\mathrm{m}}^{\alpha_{i}} \mid \alpha_{n}\right) & =\sum_{j=n+1}^{m-1} H\left(\alpha_{j} \mid{ }_{i=n}^{j-1} \alpha_{i}\right)+H\left(\alpha_{m} \left\lvert\, \frac{m}{m}-1\right.\right. \\
& =\sum_{j=n+1}^{m} H\left(\left.\alpha_{j}\right|_{i} ^{j-1} \underline{V}_{n} \alpha_{i}\right) \\
& \leqslant \sum_{j=n+1}^{m} H\left(\alpha_{j} \mid \alpha_{j-1}\right)
\end{aligned}
$$

By lemma 2 33 letting $m \rightarrow \infty$ gives

$$
H\left(\sum_{i=n+1}^{\infty} \alpha_{i} \mid \alpha_{n}\right)=\sum_{j=n+1}^{\infty} H\left(\alpha_{j} \mid \alpha_{j-1}\right)
$$

and since $\alpha \leqslant \stackrel{\infty}{i}=n+1_{\infty} \quad \alpha_{i}$ we have

$$
\begin{aligned}
H\left(\alpha \mid \alpha_{n}\right) & \left.\leqslant \sum_{j} \sum_{i=1}^{\infty} \underline{Y}_{n+1} \alpha_{i} \mid \alpha_{n}\right) \\
& =\sum_{j+1}^{\infty} H\left(\alpha_{j} \mid \alpha_{j-1}\right) \\
& \leqslant \sum_{j=n+1}^{\infty} \rho\left(\alpha_{j}, \alpha_{j-1}\right) \\
& <\sum_{j=n+1}^{\infty} 2^{-(j-1)} \\
& =2^{-(n-1)}
\end{aligned}
$$

Also $H\left(\alpha_{n} \mid \alpha\right)=\lim _{j \rightarrow \infty} H\left(\alpha_{n} \mid V_{i} V_{j}^{\infty} \alpha_{i}\right)$
hence there exists a $j>n$ for which

$$
\begin{aligned}
H\left(\alpha_{n} \mid \alpha\right) & \leqslant H\left(\alpha_{n} \mid \underline{V}_{j} \alpha_{i}\right)+2^{-(n-1)} \\
& \leqslant H\left(\alpha_{n} \mid \alpha_{j}\right)+2^{-(n-1)} \\
& \leqslant \rho\left(\alpha_{n}, \alpha_{j}\right)+2^{-(n-1)} \\
& \leqslant 2^{-n}+2^{-(n-1)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\alpha, \alpha_{n}\right) & =H\left(\alpha \mid \alpha_{n}\right)+H\left(\alpha_{n} \mid \alpha\right) \\
& <2^{-(n-1)}+2^{-n}+2^{-(n-1)} \\
& <2^{-(n-3)}
\end{aligned}
$$

Further $H(\alpha) \leqslant H\left(\alpha \alpha_{1}\right)$

$$
\begin{aligned}
& =H\left(\alpha \mid \alpha_{1}\right)+H\left(\alpha_{1}\right) \\
& <1+H\left(\alpha_{1}\right) \\
& <\infty
\end{aligned}
$$

Hence we conclude that $\left\{\alpha_{i}\right\}$ and hence $\left\{\alpha_{i}^{1}\right\}$ is convergent to a σ-algebra $\propto \in Z$ 。
2.5 AN ALTERNATIVE DEFTNITION

We have defined the conditional entropy $H(\alpha \mid \beta)$ of α with respect to β by

$$
H(\alpha \mid \beta) \quad-\sup _{\alpha \in S(\alpha)} \inf _{\beta \in \mathrm{S}}(\beta) \quad H\left(\alpha^{1} \mid \beta\right)
$$

or equivalently as

$$
H(\alpha \mid \beta)=\underset{\alpha \in S(\alpha)}{\lim } \underset{\beta \in S(\beta)}{\lim } \text { III }\left(\alpha^{I} \mid \beta^{I}\right)
$$

if we wish to make use of the theory of Moore-Smith convergence (see J.L. Kelley [10]) and such notions as 'nets', 'filters', etc. However, while K. Jacobs [8] takes an essentially equivalent definition, the Russian school proceed in a rather different manner as outlined below.

For any $\alpha, \beta \in Z_{3}$, if $A \in \alpha$ we define

$$
\mu^{A}(B)=\mu(A \cap B) \text { for } B \in \beta
$$

If $B_{j}, j \in J$ is an atom set of β and we put

$$
\mu^{(A \mid \beta)(x)}=\sum_{j \in J} \chi_{B_{j}}(x) \mu^{\left(A \mid B_{j}\right)}
$$

where $X_{B_{i}}(x)$ is the characteristic function of B_{j} then we have

$$
\mu^{A(B)}=\int_{B} \mu^{(A / \beta)(x) d \mu}
$$

by proposition 1:51.
We now put

$$
H_{\beta}(\alpha, x)=-\sum_{i \in I} \chi_{A_{i}}(x) \log \Gamma\left(A_{i} \mid \beta\right)(x)
$$

then $\int_{X} H_{\beta}(\alpha, x) d \mu=-\int_{X} i \sum_{E} X_{A_{j}}(x) \log \left\{\sum_{j \in J} X_{B_{j}}(x) \mu\left(A_{i} \mid B_{j}\right)\right\} d \mu$

$$
\begin{aligned}
& =-\sum_{i \epsilon I} \sum_{j \in J} \Gamma\left(A_{i} \cap B_{j}\right) \log \mu\left(A_{i} \mid B_{j}\right) \\
& =H(\alpha \mid \beta)
\end{aligned}
$$

Thus we could have defined $H(\alpha \mid \beta)$ as an integral. We now indicate how $H_{\beta}(\alpha, x)$ can be defined for general β and then give an alternative definition for $H(\alpha \mid \beta)$ in terms of the integral of $H_{\beta}(\alpha, x)$.

If β is any σ-algebra then for fixed $A \in \alpha$ we define

$$
\mu^{A}(B)=\mu(A \cap B) \text { for } B \in \beta
$$

Now μ^{A} is "absolutely continuous" with respect to Γ on (x, β) and so by the Radon-Nikodym theorem (see P.R.Helmos [5] P. 128 theorem B) there exists a function $\Gamma_{1}(A \mid \beta)(x)$ on X which is measurable with respect to (x, β, μ) and such that

$$
\mu^{A}(B)=\int_{B} \mu_{1}(A \mid \beta)(x) d \mu
$$

We now put

$$
{ }_{H}(\alpha, x)=\sum_{i \epsilon I} x_{A_{i}}(x) \log \Gamma_{1}\left(A_{i} \mid \beta\right)(x)
$$

and define

$$
H_{1}(\alpha \mid \beta)=\int_{X} H_{\beta}(\alpha, x) d \Gamma
$$

Since the Radon-rikodym theorem asserts the uniqueness: of $\mu_{1}(A \mid \beta)(x)$ modulo sets of measure zero, it follows that if $\beta \in Z_{3}$ then $\mu_{1}(A \mid \beta)(x)=\mu(A \mid \beta)(x)$ except possibly on a set of measure zero and consequently that $H_{1}(\alpha \mid \beta)=H(\alpha \mid \beta)$ in this case. Further, if $\beta_{1}, \beta_{2} \in z_{3}$ are such that $\beta_{1} \leqslant \beta_{2}$ we have that $\mu\left(A \mid \beta_{1}\right)(x) \leqslant \mu\left(A \mid \beta_{2}\right)(x)$ giving us that $-\log \mu\left(A / \beta_{2}\right)(x) \leqslant-\log \mu^{\left(A / \beta_{1}\right)(x)}$. Thus since it follows by convergence theory that for any σ - algebra

$$
\Gamma_{1}(A \mid \beta)(x)=\lim _{\beta \in S(\beta)} \Gamma\left(A \mid \beta^{l}\right)(x)
$$

where the limit is taken in the Moore-Smith sense we have that

$$
\begin{aligned}
H_{1}(\alpha \mid \beta) & =\operatorname{\beta im}^{\lim \in S(\beta)} H\left(\alpha \mid \beta^{l}\right) \\
& =H(\alpha \mid \beta)
\end{aligned}
$$

for $\alpha \in Z_{3}$ and β any σ-algebra
3. DEFINITION AND FROPERTIES OF $h(T)$
3.1 THE ENIROPY OF T WITH RESPECT TO A G-ALGEBRA

As stated in 1.1 we always assume the existence of an automorphism T on (X, ε, γ). If α is a σ^{-}algebra then we put
and if there is no danger of confusion we write $\alpha^{\mathbf{n}}, \alpha^{-}, \alpha_{\infty}$ for $\quad \alpha_{T}^{n}, \propto_{T}, \alpha_{\infty}{ }^{T}$.

If $\alpha, \beta \in Z_{B}$ and $A_{i}, i \in I, B_{j}, j \in J$ are atom sets of α, β then clearly $T^{k} A_{i}, \quad i \in I, T^{k} B_{j}, j \in J$ are atom ants of $T^{k} \alpha, T^{k} \beta$ and $T^{k} \alpha, T^{k} \beta \in Z_{3}$ for $k \in \Gamma$. Thus since μ is measure preserving

$$
\begin{aligned}
H\left(T^{k} \propto\right) & =-\sum_{i \in I} \Gamma^{\prime}\left(T^{k} A_{i}\right) \log \Gamma\left(T^{k} \Lambda_{i}\right) \\
& =-i \frac{\sum_{\epsilon} I}{} \Gamma^{\left(\Lambda_{i}\right)} \log \Gamma\left(\Lambda_{i}\right) \\
& =H(\alpha)
\end{aligned}
$$

$$
=-\sum_{i \in I} \sum_{j \in J} \Gamma\left(A_{i} \cap B_{j}\right) \log \Gamma\left(A_{j} \mid B_{j}\right)
$$

$$
=H(\alpha \mid \beta)
$$

for $k \in f$

Lemma $3 \cdot 11 \quad$ If α, β are σ-algebras then $H\left(T^{k} \alpha\right)=H(\alpha)$ and $H\left(T^{k} \alpha \mid T^{k} \beta\right)=H(\alpha \mid \beta) \quad$ for $k \in \Gamma$

$$
\begin{aligned}
& T \propto=\left\{A: T^{-1} A \in \alpha\right\} \\
& \alpha_{T}^{n}=\sum_{i=1}^{\underline{\underline{V}}} T^{i} \alpha, \quad n \in \Gamma^{+} \\
& \alpha_{T}=i X_{r} T^{i} \alpha \\
& \alpha_{T}^{-}=i Y_{r^{+}} T^{-i} \times \\
& x_{\infty}^{T}=i_{\boldsymbol{A}^{+}} T^{-i} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Proof} H\left(T^{k} \alpha\right)=\sup _{\alpha^{l} \in S\left(T^{k} \alpha\right)} H\left(\alpha^{l}\right) \text { for } k \in \Gamma \\
& \text { and since } S\left(T^{k} \alpha\right)=T^{k} S(\alpha) \text { we have } \\
& H\left(T^{k} \alpha\right)=\sup _{T^{k} \in S(\alpha)} H\left(\alpha^{7}\right) \\
& =\sup _{\alpha^{I} \in S(\alpha)} H^{H\left(T^{k} \alpha^{l}\right)} \\
& =\sup _{\alpha^{I} \in S(\alpha)} H\left(\alpha^{1}\right) \\
& =H(\alpha) \\
& \text { while } H\left(T^{k} \alpha \mid T^{k} \beta\right)=\sup _{\alpha \in S\left(T^{k} \alpha\right)}^{\beta^{1} \in S\left(T^{k} \beta\right)} \quad H\left(\alpha^{l} \mid \beta^{l}\right) \\
& =\sup _{T^{-k} \alpha^{\prime}} \quad \inf _{S(\alpha)} T^{-k} \beta^{I} \in S(\xi) \quad H\left(\alpha^{l} \mid \beta^{I}\right) \\
& =\sup _{\alpha \in S} \inf _{\beta^{1} \in S(\beta)} \quad H\left(T^{k} \alpha^{l} \mid T^{k} \beta^{l}\right) \\
& =\sup _{\alpha \in S(\alpha)} \quad \inf ^{\operatorname{Ln} \in S(\beta)} \quad \mathrm{H}\left(\alpha^{I} \mid \beta^{I}\right) \\
& =H(\alpha \mid \beta)
\end{aligned}
$$

Lemma 3.12 If α is a σ-algebra, $n, m \in \Gamma^{+}$then

$$
H\left(\alpha^{n m}\right) \leqslant m H\left(\alpha^{n}\right)
$$

$\operatorname{Proof} \quad H\left(\alpha^{n m}\right)=H\left({\underset{i}{ }{ }_{i}=0}_{n-1}^{T} \propto\right)$
$\leqslant \sum_{j=0}^{m-1} H\left(T^{j n} \alpha^{n}\right)$
$=\sum_{j=0}^{m-1} H\left(\alpha^{n}\right)$
$=m H\left(\alpha^{n}\right)$
For any σ_{-}algebra α and $n \in f^{+}$we have $T^{-n} \alpha^{n} \leqslant T^{-(n+1)} \alpha^{n+1}$ and so by lemma $2 \cdot 22$, 16 we have $0 \leqslant H\left(\alpha \mid T^{-(n+1)} \alpha^{n+1}\right) \leqslant H\left(x \mid T^{-n} \alpha^{n}\right) \leqslant$ $H(\alpha)$. Thus $H\left(\alpha \mid T^{-n} \alpha^{n}\right), n \in \Gamma^{++} i q$ a monotonic sequence and hence if we put

$$
h_{1}(\alpha, T)=\lim _{n \rightarrow \infty} H\left(\alpha \mid T^{-n} \alpha^{n}\right)
$$

then $h_{1}(\alpha, T)$ is well defined. $\alpha \in Z$ implies $h_{1}(\alpha, T)<\infty$.

Clearly $h_{1}(\alpha, T) \leqslant H(\alpha)$ and so Further by lemma 2.33 we have
that

$$
h_{1}(\alpha, T)=H\left(\alpha \mid \alpha^{-}\right)
$$

Again $H\left(\alpha^{n} \mid \alpha^{-}\right)=H\left(\alpha^{n-1} \mid \alpha^{-}\right)+H\left(T^{n-1} \alpha \mid \alpha^{n-1} \alpha^{-}\right)$

$$
\begin{aligned}
& =H\left(\alpha \mid \alpha^{-}\right)+\frac{\sum_{1-1}^{-1}}{1=1} H\left(T^{i} \alpha \mid \alpha^{i} \alpha^{-}\right) \\
& =H\left(\alpha \mid \alpha^{-}\right)+\frac{\sum_{i=1}^{-I}}{i=1} H\left(\alpha \mid T^{-i} \alpha^{i} \alpha^{-}\right) \\
& =H\left(\alpha \mid \alpha^{-}\right)+\frac{n-1}{\sum_{i=1}} H\left(\alpha \mid \alpha^{-}\right) \\
& =n\left(\alpha \mid \alpha^{-}\right)
\end{aligned}
$$

giving $h_{1}(\alpha, T)=\frac{I}{\tilde{n}} H\left(\alpha^{n} \mid \alpha^{-}\right), n \in f^{+}$
Lemme $3 \cdot 13$ If $\alpha \in Z$ then $h_{1}(\alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right)$
Proof $H\left(\alpha^{n}\right)=H\left(\alpha^{n-1}\right)+H\left(T^{n-1} \alpha \mid \alpha^{n-1}\right)$
$=H(\alpha)+\sum_{i=1}^{\sum_{i}^{l}} H\left(T^{i} \alpha \mid \alpha^{i}\right)$
$=H(\alpha)+\sum_{i=1}^{n-1} H\left(\alpha \mid T^{-i} \alpha^{i}\right)$
Thus if $\alpha \in Z$ then the $H\left(\alpha \mid T^{-i} \alpha^{i}\right)$ are bounded, and since we know that $\lim _{n \rightarrow \infty} H\left(\alpha \mid T^{-n} \alpha^{n}\right)$ exists it foll ow s that $\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right)$ exists and equals $\lim _{n \rightarrow \infty} H\left(\alpha \mid T^{-n} \alpha^{n}\right)$ i.e. $\quad h_{1}(\alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right)$

If $\alpha \notin Z$ then $H\left(\alpha^{n}\right) \geqslant H(\alpha)=\infty$ and so
$\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right)=\lim _{n \rightarrow \infty} \infty=\infty$
Thus if we set

$$
h(\alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right)
$$

then $h(\alpha, T)$ is well defined for all σ - algebras α. We call $h(\alpha, T)$ the entropy of α with respect to T, or of T with respect to α, or simply the entropy of α and T. If $\alpha \in Z$ then
$h(\alpha, T)=h_{1}(\alpha, T)$ but this is not true in general. To see this we consider a σ-algebra α such that $H(\alpha)=\infty, T \propto \leqslant \infty$ then $\alpha \leqslant T^{-n} \alpha^{n}, n \in \Gamma^{+}$and so by lemma $2 \cdot 22,17, H\left(\alpha \mid T^{-n} \alpha^{n}\right)=0$ giving

$$
\begin{aligned}
h_{1}(\alpha, T) & =\lim _{n \rightarrow \infty} H\left(\alpha \mid T^{-n} \alpha^{n}\right) \\
& =\lim _{n \rightarrow \infty} 0 \\
& =0
\end{aligned}
$$

While $h(\alpha, T)=\infty$ as stated earlier. Lastly since $T^{-(n+1)} \alpha^{n}=\alpha_{T^{-2}}^{n}$ we have that

$$
H\left(\alpha^{n}\right)=H\left(T^{-(n+1)} \alpha^{n}\right)=H\left(\alpha_{T-1}^{n}\right)
$$

giving that $h(\alpha, T)=h\left(\alpha, T^{-1}\right)$

- Lemma $3 \cdot 14$ If $\alpha \in Z$ and T is the identity then $h(\alpha, T)=0$

Proof Since T is the identity $\alpha^{n}=\alpha, n \in \Gamma^{+}$and go

$$
\begin{aligned}
h(\alpha, T) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} H(\alpha) \\
& =0
\end{aligned}
$$

Lemma $3 \cdot 15$ If $\alpha, \beta \in Z$ then

$$
|h(\alpha, T)-h(\beta, T)| \leqslant H(\alpha \mid \beta)+H(\beta \mid \alpha)=\rho(\alpha, \beta)
$$

$\operatorname{Proof} \quad$ If $\alpha, \beta \in Z$ then $\alpha^{n}, \beta^{n}, \alpha^{n} \beta^{n} \in Z$ for $n \in \Gamma^{+}$and a no

$$
\begin{aligned}
\left|H\left(\alpha^{n}\right)-H\left(\beta^{n}\right)\right| & \leqslant H\left(\alpha^{n}\right)-H\left(\alpha^{n} \beta^{n}\right)\left|+\left|H\left(\alpha^{n} \beta^{n}\right)-H\left(\beta^{n}\right)\right|\right. \\
& =H\left(\alpha^{n} \mid \beta^{n}\right)+H\left(\beta^{n} \mid \alpha^{n}\right) \\
& \leqslant \sum_{i=0}^{\frac{n}{1}-1}\left\{H\left(T^{i} \alpha \mid \beta^{n}\right)+H\left(T^{i} \beta \mid \alpha^{n}\right)\right\} \text { by } 2 \cdot 22 \\
& \leqslant \sum_{i=0}^{n-1}\left\{H\left(T^{i} \alpha \mid T^{i} \beta\right)+H\left(T^{i} \beta \mid T^{i} \alpha\right) \mid \text { by } 2 \cdot 22\right. \\
& =n\{H(\alpha \mid \beta)+H(\beta \mid \alpha)\}
\end{aligned}
$$

Giving that

$$
\begin{aligned}
|h(\alpha, T)-h(\beta, T)| & =\lim _{n \rightarrow \infty} \frac{1}{n}\left|H\left(\alpha^{n}\right)-H\left(\beta^{n}\right)\right| \\
& \leq \lim _{n^{n} \rightarrow \infty}\{H(\alpha \mid \beta)+H(\beta \mid \alpha)\} \\
& =H(\alpha \mid \beta)+H(\beta \mid \alpha) \\
& =\rho(\alpha, \beta)
\end{aligned}
$$

Lemma 3.16 If α, β are σ-algebras and $\alpha \leqslant \beta$ then

$$
h(\alpha, T) \leq h(\beta, T)
$$

Proof $\quad \alpha \leqslant \beta$ implies $\alpha^{n} \leqslant \beta^{n}, n \in \Gamma^{+}$and so

$$
\begin{aligned}
h(\alpha, T) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right) \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n}\right) \\
& =h(\beta, T)
\end{aligned}
$$

Lemma 3.17 If α, β are σ algebras, $\alpha \leqslant \beta_{T}$ then

$$
h_{2}(\alpha, T) \leqslant h(\beta, T)
$$

$\operatorname{Proof} \quad H\left(\alpha^{n}\right) \leqslant H\left(\alpha^{n} \underset{i=m}{m+n-1} T^{i} \beta\right)$

$$
H\left(\left.\alpha\right|_{i=-m} ^{m+n-1} T^{i} \beta\right) \quad \leqslant \sum_{j=0}^{n-1} H\left(\left.T_{\alpha}^{i}\right|_{i=-m} ^{m+n-1} T^{i} \beta\right)
$$

Now for $0 \leqslant j \leqslant n-1$

$$
{ }_{i} V^{m} T^{m} \beta \leqslant{\underset{i=-m-j}{m+n-1-j} T^{i} \beta}_{i=1}^{v}
$$

and therefore

$$
\begin{aligned}
& H\left(\alpha^{n}\right) \leqslant H\left(\underset{i=m}{\sum_{-m}^{Y} n-1} T^{i} \beta\right)+\sum_{j=0}^{n-1} H\left(\left.\alpha\right|_{i=-m-j} ^{m+n-1-j} T^{i} \beta\right) \\
& \leqslant H\left(\underset{i=-m}{\underline{m}+n-1} T^{i} \beta\right)+\sum_{j=0}^{n-1} H\left(\alpha \mid{ }_{i=-m}^{m} T^{i} \beta\right) \\
& =H\left(\beta^{2 m+n}\right)+n H\left(\alpha \mid{ }_{i=-m}^{V} T^{i} \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{n-1} H\left(\alpha \mid \underset{i=-m-j}{m+n-1-j} T^{i} \beta\right)
\end{aligned}
$$

Given $d>0$ there exists an m such that $H\left(\left.\alpha\right|_{i} V_{\sim}^{m} m^{i} \beta\right)<d$ and for this m

$$
\frac{1}{n} H\left(\alpha^{n}\right)<\left(\frac{2 m+n}{n}\right) \frac{1}{2 m}+n \quad H\left(\beta^{2 m+n}\right)+d
$$

giving

$$
\begin{aligned}
h(\alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right) & \leqslant \lim _{n \rightarrow \infty}\left(\left(\frac{2 m+n}{n}\right) \underset{2 m+n}{ } H\left(\beta^{2 m+n}\right)+\alpha\right) \\
& =h(\beta, T)+d
\end{aligned}
$$

But d was arbitrary and so

$$
h(\alpha, T) \quad \leqslant h(\beta, T)
$$

$3 \cdot 2$ MORE PROPERTIES OF ENTROPY

Lemma 3.21 If $\alpha, \beta \in Z_{3}$ and either $\beta \leqslant \alpha, H(\alpha \mid \beta-)<\infty \quad$ or $\alpha \leqslant \beta, H(\beta \mid \alpha-)<\infty$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \mid \beta-\right)=H(\alpha \mid \alpha-)
$$

Proof If $\beta \leqslant \alpha, H(\alpha \mid \beta-)<\infty$ then we have

$$
\begin{aligned}
H\left(\alpha^{n} / \beta-\right) & =H\left(\alpha^{n-1} \mid \beta-\right)+H\left(T^{n-1} \alpha \mid \alpha^{n-1} \beta-\right) \\
& =H(\alpha \mid \beta-)+\sum_{i=1}^{n} H\left(T^{i} \alpha \mid \alpha^{i} \beta-\right) \\
& =H(\alpha \mid \beta-)+\sum_{i=1}^{n} H\left(\alpha \mid T^{-i}\left(\alpha^{i} \beta-\right)\right)
\end{aligned}
$$

But $H(\alpha \mid \beta-)<\infty$ and

$$
\begin{aligned}
T^{-i}\left(\alpha^{i} \beta-\right) & =j_{j=1}^{i} T^{-j} \alpha \underset{k=i+1}{\infty} T^{-k} \beta \\
& \rightarrow \alpha-\text { as } i \rightarrow \infty
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \neq \beta-\right)$ exists and.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \mid \beta-\right) & =\lim _{n \rightarrow \infty} H\left(\alpha \mid T^{-n}\left(\alpha^{n} \beta^{-1}\right)\right. \\
& =H(\alpha \mid \alpha-)
\end{aligned}
$$

If $\alpha \leqslant \beta, H\left(\beta \mid \alpha^{-}\right)<\infty$ then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \beta^{n} / \beta^{-}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \beta^{-}\right) \text {since } \alpha \leqslant \beta \\
& =H(\beta \mid \beta-)
\end{aligned}
$$

by the first part of the lemma since $\beta \leqslant \beta$ and

$$
H(\beta \mid \beta-) \leqslant H(\beta \mid \alpha-)<\infty
$$

Thus since

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \beta^{n} / \beta-\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left\{H\left(\alpha^{n} / \beta-\right)+H\left(\beta^{n} / \alpha^{n} \beta-\right)\right\}
$$

we have that the limits on the right hand side are finite and so

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \mid \beta-\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \beta^{n} \mid \beta-\right)-\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \alpha^{n} \beta-\right) \\
& \geqslant H(\beta \mid \beta-)-\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \alpha^{n} \alpha^{-}\right)
\end{aligned}
$$

since $\alpha \leqslant \beta$. Now

$$
\begin{aligned}
& \begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \alpha^{n} \alpha^{-}\right)= & \lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \beta^{n} \mid \alpha^{-}\right)-\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \mid \alpha^{-}\right) \\
\text {since } \lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \beta^{n} \mid \alpha^{-}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \alpha^{-}\right) \\
& =H(\beta \mid \beta-)<\infty \\
\text { and so } \lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \mid \beta^{-}\right) & \geqslant H\left(\beta \mid \beta^{-}\right)-H\left(\beta \mid \beta^{-}\right) \lim _{n \rightarrow \infty} \frac{1}{n}\left(\alpha^{n} \mid \alpha^{-}\right) \\
& =H\left(\alpha \mid \alpha^{-}\right)
\end{aligned} \\
& \text {since } H\left(\alpha \mid \alpha^{-}\right) \leqslant H\left(\beta \mid \alpha^{-}\right)<\infty
\end{aligned}
$$

Lemma 3.22 If α, β, γ are $\sigma+a \lg$ bras such that $\alpha \leqslant \beta$, $H\left(\beta \gamma^{-} \mid \beta^{-}\right)<\infty \quad$ then

$$
\lim _{n \rightarrow \infty} H\left(\alpha \mid \beta^{-T^{-n}} \gamma^{-}\right)=H\left(\alpha \mid \beta^{-}\right)
$$

$\operatorname{Proof} \quad H\left(\beta^{n} \mid \beta^{-} \gamma^{-}\right)=H\left(\beta^{n-1} \mid \beta^{-} \gamma^{m}\right)+H\left(T^{n-1} \beta \mid \beta^{n-1} \beta^{-} \gamma^{-}\right)$

$$
\begin{aligned}
& =H\left(\beta \mid \beta^{-} \gamma^{-}\right)+\frac{\sum_{1=1}^{n-1} H\left(T^{i} \beta \mid \beta^{i} \beta^{-} \gamma^{-}\right)}{}=H\left(\beta \mid \beta^{-} \gamma^{-}\right)+\frac{n^{-1}}{\frac{n}{1} 1} H\left(\beta \mid \beta^{-} T^{-i} \gamma^{-}\right)
\end{aligned}
$$

 and by the above we have

$$
\lim _{n \rightarrow \infty} H\left(\beta \mid \beta^{-} T^{-n} \gamma^{-}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \beta^{-} \gamma^{-}\right)
$$

since $H\left(\beta \mid \beta^{-} \gamma^{-}\right) \leqslant H\left(\beta \mid \beta^{-}\right) \leqslant H\left(\beta \gamma^{-} \mid \beta^{-}\right)<\infty$

Fur then $H\left(\beta \mid \alpha \beta^{-} \mathbb{T}^{-n} \gamma^{-}\right) \leqslant H\left(\beta \mid \beta^{-}\right)$

$$
\begin{aligned}
& \leqslant H\left(\beta \gamma \mid \beta^{-}\right) \\
& <\infty
\end{aligned}
$$

and so

$$
\begin{aligned}
H\left(\alpha \mid \beta^{-} T^{-n} \gamma^{-}\right) & =H\left(\alpha \beta \mid \beta^{-} T^{-n} \gamma^{-}\right)-H\left(\beta \mid \alpha \beta^{-} T^{-n} \gamma^{-}\right) \\
& =H\left(\beta \mid \beta^{-} T^{-n} \gamma^{-}\right)-H\left(\beta \mid \alpha \beta^{-} T^{-n} \gamma^{-}\right)
\end{aligned}
$$

But $\lim _{n \rightarrow \infty} H\left(\rho \mid \beta^{-} T^{-n} \gamma-\right)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta^{n} \mid \beta^{-} \gamma^{-}\right)$

$$
=H\left(\beta \mid \beta^{-}\right)
$$

bylemma 3.21 since $\beta \leqslant \beta \gamma, H\left(\beta \gamma \mid \beta^{-}\right)<\infty$ and

$$
H\left(\beta \mid \alpha \beta^{-} \mathbb{T}^{-n} \gamma^{-}\right) \leqslant H\left(\beta \mid \alpha \beta^{-}\right)
$$

giving that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} H\left(\alpha \mid \beta^{-} \mathbb{T}^{-n} \gamma^{-}\right) & \geqslant H\left(\beta \mid \beta^{-}\right)-H\left(\beta \mid \alpha \beta^{-}\right) \\
& =H\left(\alpha \beta \mid \beta^{-}\right)-H\left(\beta \mid \alpha \beta^{-}\right) \\
& =H\left(\alpha \mid \beta^{-}\right)
\end{aligned}
$$

since $H\left(\beta \mid \alpha \beta^{-}\right) \leqslant H\left(\beta \mid \beta^{-}\right) \leqslant H\left(\beta \gamma \mid \beta^{-}\right)<\infty$
Now $H\left(\alpha \mid \beta^{-} \underline{T}^{-n} \gamma^{-}\right) \leqslant H\left(\alpha \mid \beta^{-}\right)$
giving $\lim _{\mathrm{n} \rightarrow \infty} H\left(\alpha \mid \beta^{-} \mathrm{T}^{-\mathrm{n}} \gamma^{-}\right) \leqslant H\left(\alpha \mid \beta^{-}\right)$
Hence we conclude that

$$
\lim _{n \rightarrow \infty} H\left(\alpha / \beta^{-} T^{-n} \gamma^{-}\right)=H\left(\alpha \mid \beta^{-}\right)
$$

Lemma 3.23 If α, β are σ-algebras such that $H\left(\alpha \beta \mid \beta^{-}\right)<\infty$ then

$$
H\left(\alpha \beta \mid \alpha^{-} \beta^{-}\right)=H\left(\alpha \mid \alpha^{-} \beta_{T}\right)+H\left(\beta \mid \beta^{-}\right)
$$

Proof

$$
\begin{aligned}
H\left(\alpha^{n} \mid \alpha^{-} \beta^{-}\right. & \left.\beta^{n}\right)=H\left(\alpha^{n-1} \mid \alpha^{-} \beta^{-} \beta^{n}\right)+H\left(T^{n-1} \alpha \mid \alpha^{n-1} \alpha^{-} \beta^{n}\right) \\
& =H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right)+\sum_{i=1}^{n-1} H\left(T^{i} \alpha \mid \alpha^{i} \alpha^{-} \beta^{-} \beta^{n}\right) \\
& =H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right)+\sum_{i=1}^{n-1} H\left(\alpha \mid T^{-i} \alpha^{i} \alpha^{-} \beta^{-} \beta^{n}\right) \\
& =H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right)+\sum_{i=1}^{n} H\left(\alpha \mid \alpha^{-1} \beta^{-} \beta^{n-i}\right)
\end{aligned}
$$

But $H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right) \leqslant H\left(\alpha \mid \beta^{-}\right)$

$$
\leqslant H\left(\alpha \beta \mid \beta^{-}\right)
$$

$$
<\infty
$$

while $H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right) \leqslant H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n-1}\right)$
and so

$$
\lim _{n \rightarrow \infty} H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right)=H\left(\alpha \mid \alpha^{-} \beta_{T}\right)
$$

giving that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n} \mid \alpha^{-} \beta^{-} \beta^{n}\right) & =\lim _{n \rightarrow \infty} H\left(\alpha \mid \alpha^{-} \beta^{-} \beta^{n}\right) \\
& =H\left(\alpha \mid \alpha^{-} \beta_{T}\right) \\
\text { Now } H\left(\alpha^{n} \beta^{n} \mid \alpha^{-} \beta^{-}\right) & =H\left(\alpha^{n} \mid \alpha^{-} \beta^{-} \beta^{n}\right)+H\left(\beta^{n} \mid \alpha^{-} \beta^{-}\right)
\end{aligned}
$$ and since $\alpha \beta \leqslant \alpha \beta, H\left(\alpha \beta \mid \alpha^{-} \beta^{-}\right) \leqslant H\left(\alpha \beta \mid \beta^{-}\right)<\infty$ we have by lemma 3.21 that

$$
\lim _{n \rightarrow \infty} H\left(\alpha^{n} \beta^{n} \mid \alpha^{-} \beta^{-}\right)=H\left(\alpha \beta \mid \alpha^{-} \beta^{-}\right)
$$

and again since $\beta \leqslant \alpha \beta, H\left(\alpha \beta \mid \beta^{-}\right) \leqslant \infty$ the same lemma gives

$$
\lim _{n \rightarrow \infty} H\left(\beta^{n} \mid \alpha^{-} \beta^{-}\right)=H\left(\beta \mid \beta^{-}\right)
$$

Thus we conclude that

$$
H\left(\alpha \beta \mid \alpha^{-} \beta^{-}\right)=H\left(\alpha \mid \alpha^{-} \beta_{\mathrm{T}}\right)+H\left(\beta \mid \beta^{-}\right)
$$

Corollary 1 If α, β are σ-algebras such that $H\left(\alpha \beta \mid \beta^{-}\right)<\infty$ then

$$
h_{1}(\alpha \beta, T)=H\left(\alpha \mid \alpha^{-} \beta T_{T}\right)+h_{1}(\beta, T)
$$

Corollary 2 If $\alpha, \beta \quad \mathrm{z}$ then

$$
h(\alpha \beta, T)=H\left(\alpha / \alpha^{-} \beta_{T}\right)+h(\beta, T)
$$

Proof If $\alpha, \beta \in Z$ then $\alpha \beta \in Z$ and so $H\left(\alpha \beta \mid \beta^{-}\right) \leqslant H(\alpha \beta)<\infty$ The result then follows from corollary 1 and section $3^{\circ} 1$

Lemma 3.23 is usually referred to as Pinsker's lemma, see [13]
although the proof given here is based on that given by V.A.Rokhlin and Ja. G. Sinai in [17] as are the proofs of lemma 3.21 and 3.22.
$3 \cdot 3$
THE ENTROPY OF T.

We define the entropy $h(T)$ of T by

$$
h(T)=\sup _{\alpha \in Z} h(\alpha, T)
$$

We have immediately that $0 \leqslant h(T)$ and by section $3^{\circ} 1$ that $h(T)=h\left(T^{-1}\right)$. By lemma 3.14 if T is the identity then $h(\alpha, T)=0$ for $\alpha \in \mathbb{Z}$ and so $h(T)=0$.

Lemma 3-31

$$
h(T)=\sup _{\alpha} z_{1} h(\alpha, T)
$$

Proof Since $Z_{1} \leq Z$ we have $\sup _{\alpha \in Z_{1}} h(\alpha, T) \leqslant h(T)$.
If $h(T)<\infty$ then given any real number $d>0$ there exists an $\alpha \in Z_{3}$ with

$$
h(T) \leqslant h(\alpha, T)+d / 2
$$

Further, $l_{e t} A_{i}$, ic be an atom set of $\alpha, A_{i}=\phi$ if i $\epsilon \Gamma^{+}-I$ and β_{n} be the σ-algebra generated by $B_{j}=A_{j}, 1 \leqslant j \leqslant n-1$ and $B_{n}=X-{ }_{j-1}^{n-1} B_{j} \quad$ Thus for $i \epsilon \Gamma^{+}, 1 \leqslant j \leqslant n-1$

$$
A_{i} \wedge B_{j}= \begin{cases}\phi & \text { if } i \neq j \\ A_{i} & \text { if } i=j\end{cases}
$$

and for $i \in \Gamma^{+}$

$$
A_{i} \wedge B_{n}= \begin{cases}\phi & \text { if } i<n \\ A_{i} & \text { if } n \leqslant i\end{cases}
$$

Hence $H\left(x / \beta_{n}\right)=-\sum_{i \in \Gamma^{++}} \sum_{j=1}^{n} \Gamma^{\left(\Lambda_{i} B_{j}\right) \log \Gamma^{(}\left(\Lambda_{i} / B_{j}\right)}$

$$
=-\sum_{1=n}^{\infty} \Gamma\left(\Lambda_{i}\right) \log \mu\left(\Lambda_{i} \mid B_{n}\right)
$$

$$
=-\sum_{i=n}^{\infty} \Gamma^{\infty}\left(\Lambda_{i}\right) \log \mu\left(\Lambda_{i}\right)+\log \mu^{(}\left(B_{n}\right) \sum_{i=n}^{\infty} \Gamma\left(A_{i}\right)
$$

$$
\leqslant-\sum_{i=n}^{\infty} \Gamma\left(\Lambda_{i}\right) \log \Gamma\left(\Lambda_{i}\right)
$$

Since $\propto \in \mathbb{Z}$ there exists an N such that

$$
-\sum_{i=N}^{\infty} \Gamma^{\left(\Lambda_{i}\right)} \log _{\Gamma}\left(\Lambda_{i}\right)<d / 2
$$

Hence since $\beta_{\mathrm{NI}} \leqslant \alpha$ we have

$$
\begin{aligned}
h(\alpha, T) & \leqslant h\left(\beta_{N}, T\right)+\rho\left(\alpha, \beta_{N}\right) \\
& =h\left(\beta_{N}, T\right)+H\left(\alpha \mid \beta_{N}\right)
\end{aligned}
$$

giving

$$
\begin{aligned}
h(T) & \leqslant h(\alpha, T)+d / 2 \\
& \leqslant h\left(\beta \beta_{N}, T\right)+d / 2+d / 2 \\
& \leqslant \sup _{\alpha \in Z_{1}} h(\alpha, T)
\end{aligned}
$$

But d was arbitrary and so we deduce that

$$
h(T) \leqslant \sup _{\alpha \in Z_{l}} h(\alpha, T)
$$

If $h(T)=\infty$ then given any $\Delta>0$ there exists an $\alpha \in Z$ with $h(\alpha, T)>\Delta$ and if the $\beta_{n}, n \in \Gamma^{+}$are defined as above then there exists an N such that $h\left(\beta_{n}, T\right)>\Delta$ from which we deduce that $\sup _{\alpha \in Z_{1}} h(\alpha, T)=\infty$. This completes the proof.

Lemma 3.32 If $\propto \in \mathbb{Z}, \alpha_{T}=\varepsilon$ then $h(T)=h(\alpha, T)$

Proof For all $\beta \in \mathrm{Z}$ we have $\beta \leqslant \alpha_{\mathrm{T}}$ and so by $h(\beta, T) \leqslant h(\alpha, T)$. Thus

$$
\begin{aligned}
h(\alpha, T) & \leqslant h(T) \\
& \leqslant \sup _{Z} h(\beta, T) \\
& \leqslant \sup _{Z} h(\alpha, T) \\
& =h(\alpha, T) \\
\text { giving } \quad h(T) & =h(\alpha, T)
\end{aligned}
$$

If $\alpha \in Z, \quad \alpha_{T}=\varepsilon$ then we refer to α as a generator.

Lemma $3 \cdot 33$ If $\alpha \in Z, \operatorname{iog}_{\mathrm{m}} \mathrm{T}^{\mathrm{i}} \alpha=\varepsilon, \mathrm{m} \in \Gamma$ then $\mathrm{h}(\mathrm{T})=0$

Proof Since ${ }_{i} \mathscr{V}_{\mathrm{l}} T^{i} \alpha \leqslant \alpha_{T}$ we have that α is a generator and so

$$
\begin{aligned}
h(T) & =h(\alpha, T) \\
& =h\left(\alpha, T^{-1}\right) \quad \text { by } 3.1 \\
& =h_{1}\left(\alpha, T^{-1}\right) \quad \text { by } 3.1 \\
& =H\left(\alpha / \alpha_{T}^{-}\right) \quad \text { by } 3.1
\end{aligned}
$$

But $\alpha_{T}^{-}={ }_{i} V_{\Gamma^{+}} T^{i} \alpha=T^{-m+1}{ }_{i}^{\infty} \bigvee_{m}^{\infty} \quad T^{i} \alpha=T^{-m+1} \varepsilon=\varepsilon$ and so $\alpha \leqslant \alpha_{T}^{-}$giving

$$
h(T)=H\left(\alpha \mid \alpha_{T}\right)=0
$$

Lemma 3.34 If $\alpha_{n} \in Z, n \in \Gamma^{+},{ }_{n} V_{\Gamma^{+}} \alpha_{n}=\varepsilon$ and $\alpha_{n} \leqslant \alpha_{n+1}$ for each n then $h(T)=\lim _{n \rightarrow \infty} h\left(\alpha_{n}, T\right)$

Proof If $S=\left\{\alpha_{n}, n \in \Gamma^{+}\right\}$then S is an increasingly filtered system and since $t=\beta / \bar{S} \beta$ it follows from lemma $2 \cdot 32$ that given any $\gamma \in \mathbb{z}_{1}$, if $c_{i}, l \leqslant i \leqslant m$ is an atom set of γ and d^{l} any real number such that $0<d^{l}$ then there exists an n and sets $B_{i} \in \alpha_{n}, l \leqslant i \leqslant m+1$ such that $\mu\left(B_{i} \cap C_{i}\right)<d^{1}, \quad 1 \leqslant i \leqslant n ; \quad \mu\left(B_{n+1}\right)<d^{1} ;$ $\mu\left(C_{i}, B_{j}\right)<d^{1}$ if if j; $\mu\left(C_{i} \mid B_{i}\right)>1-d^{1}, l \leqslant i \leqslant n$ and $\underset{i=1}{n+1} B_{i}=X$ 。 Fur then

$$
\begin{align*}
\mu\left(B_{i} \mid C_{i}\right) & =\frac{\mu\left(B_{i} A C_{i}\right)}{\Gamma\left(C_{i}^{i}\right)} \\
& =\frac{\mu\left(C_{i}\right)-\mu\left(C_{i} \not B_{i}\right)}{\Gamma\left(C_{i}\right)} \\
& \geqslant 1-\frac{\Gamma\left(C_{i} \Delta B_{i}\right)}{\Gamma\left(C_{i}^{i}\right)} \\
& \geqslant 1-\frac{a^{\prime}}{\left.\Gamma C_{i}\right)} \\
& \geqslant 1-d^{l} \tag{1}
\end{align*}
$$

where the d_{1} is the d_{1} occurring in lemma 2.33. Hence given any
d such that $0<d$ if we choose d^{1} as in lemma $2 \circ 33$ then we have $H\left(\forall \mid \alpha_{n}^{l}\right)<d$ where α_{n}^{l} is the σ - al gebra generated by $B_{i}, 1 \leqslant i \leqslant n+1$. By using the same method as that used in lemma 2.33 we show that (I) implies $H\left(\alpha_{n}^{I} \mid \gamma\right)<d_{0} \quad$ We then have

$$
\begin{aligned}
h(T) & =\sup _{\dot{\epsilon} \mathrm{g}_{1}} h(\gamma, T) \text { by lemma } 3 \cdot 31 \\
& \leqslant_{n \in T} \sup _{\mathbb{L}} h\left(\alpha_{n}, T\right)+2 d
\end{aligned}
$$

by the above and lemma 3.15. But d was arbitrary and
$\alpha_{n} \leqslant \alpha_{n+1}$ for all n and so using lemma 3.16 we get

$$
h(T) \leqslant \lim _{n \rightarrow \infty} h\left(\alpha_{n}, T\right)
$$

but trivially

$$
n \lim _{n \rightarrow \infty} h\left(\alpha_{n}, T\right) \leqslant h(T)
$$

and so we conclude that

$$
h(T) \quad=\lim _{n \rightarrow \infty} h\left(\alpha_{n}, T\right)
$$

Lemma 3.35 If $k \in \Gamma^{+}$then $h\left(T^{k}\right)=k h(T)$

Proof For any α

$$
\begin{aligned}
h\left(\alpha, T^{k}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha_{T}^{n}\right) \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{\bar{n}} H\left(\alpha_{T}^{n k}\right) \\
& \leqslant \lim _{n \rightarrow \infty} \frac{k}{n} H\left(\alpha^{n}\right) \text { by lemma } 3 \cdot 12 \\
& -k h(T) \\
& =\sup _{\alpha \in Z} h\left(\alpha, T^{k}\right) \\
& \leqslant \sup _{\alpha \in Z} k h(T) \\
& =k\left(T^{k}\right) \\
& =k(T)
\end{aligned}
$$

If $h(T)=0$ then $h\left(T^{k}\right)=0$. If $h(T)>0$ let d be any number satisfying $0 \leqslant d<h(T)$. Then there exists an $\alpha \in Z$ with

$$
\mathrm{d}<\boldsymbol{h}(\alpha, \mathrm{T}) \leqslant \mathrm{h}(\mathrm{~T}) .
$$

Put $\beta=\alpha^{k}$ then

$$
\begin{aligned}
\frac{1}{n} H\left(\beta_{T k}^{n}\right) & =\frac{1}{n} H\left(\alpha_{T}^{n k}\right) \\
& =k{ }_{n} \frac{1}{k} H\left(\alpha^{n k}\right) \\
\text { giving } h\left(\beta, T^{k}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\beta_{T k}^{n}\right) \\
& =\lim _{n \rightarrow \infty} k_{0}{ }_{n k}^{1} H\left(\alpha^{n k}\right) \\
& =k h(\alpha, T) \\
& =\sup _{\gamma \in \mathbb{Z}} h\left(\gamma, T^{k}\right) \\
& \geqslant h\left(\beta, T^{k}\right) \\
& =k\left(T^{k}\right) \\
& >k(\alpha, T)
\end{aligned}
$$

But d was any number satisfying $0 \leqslant d<h(T)$ and so $h\left(T^{k}\right) \geqslant k h$ (T). The result then follows from our two inequalities.

Corollary If $k \in f^{r}$ then $h\left(T^{k}\right)=|k| h(T)$

Proof If $-k \in \Gamma^{+}$then $h\left(T^{-k}\right)=-k h(T)$ by the lemma Thus we have $h\left(T^{k}\right)=|k| h(T)$ if $k \in F, k \neq 0$ 。 If $k=0$ then $T^{k}=$ the identity and hence $h\left(T^{k}\right)=0=\mid k \ln (T)$, in this case also.
3.4 EXISTENCE AND PROPERTIES OF CERTAIN σ-ALGEBRAS

We say that a σ-algebra is invariant with respect to T if $\alpha \leqslant T \propto$ and that it is exhaustive with respect to T if $\alpha_{T}=\varepsilon$ 。 If a σ - algebra is invariant and exhaustive, we say that it is a K_{1}-algebra with respect to T, while if α is a K_{1}-algebra such that $\alpha_{\infty}=\nu$ we say that α is a K-algebra with respect to T. Further if given T there exists a K-algebra, then we say that T is a Kolmogorov automorphism If α is a K-algebra then $\wedge_{i \in r} T^{i} \alpha=\alpha_{\infty}$ and so we have that T is a Kolmogorov automorphism if, and only if,
there exists a σ_{-}algebra α such that $\alpha \leqslant T \alpha,{ }_{i} y_{r} T^{i} \alpha=\epsilon$, $\hat{i}^{\hat{K}} \Gamma^{i} T^{i} \alpha=\nu$.

Since E is a K_{1}-algebra for all T, there always exist K_{1}-algebras, but as we shall see later there do not always exist K-algebras. However, if we put

$$
\begin{aligned}
S^{*} & =\{\alpha: h(\alpha, T)=0\} \\
\pi(T) & =\underset{\alpha \in S^{*}}{V}
\end{aligned}
$$

then the following theorems due to V.A.Rokhlin and Ja.G.Sinai (see [17]) show that a necessary and suffieient condition for the existence of a K-algebra is $\Pi(T)=\nu$ 。. Note that $\propto \notin Z$ implies $h(\alpha, T)=H(\alpha)=\infty$ and hence $\alpha \not S^{*}$. Thus, since (z, ρ) is complete we have that $\alpha \leq \Pi(T)$ implies $\alpha \in Z$, and so by the corollary of lemma 3.34 that $\alpha \in S^{*}$ i. $e_{0} ~ H(T)=\bigcup_{\alpha \in S^{*}}{ }^{\alpha}$.

Theorem 3.47. (I) If α is a K_{1}-algebra then $\Pi(T) \leqslant \alpha$
(2) If α is invariant and $H(T \alpha \mid \alpha)=h(T)<\infty$
then $\alpha_{\infty} \leqslant \Pi(T)$

Proof (1) If $\beta \leqslant \Pi(T)$ then $\beta \in Z$ and if $\gamma \in Z$ is such that $\gamma \leqslant \mathrm{T}^{\mathrm{m}} \propto$ for some m then for all $p \in \Gamma^{+}$

$$
\begin{equation*}
H\left(\gamma \mid \gamma{ }_{T} P \alpha_{\infty} \beta_{T}\right) \leqslant H\left(\gamma \mid \alpha_{\infty} \beta_{T}\right) \leqslant H\left(\gamma \mid \alpha_{\infty}\right) \tag{1}
\end{equation*}
$$

But $T \alpha_{\infty}=\alpha_{\infty}$ and $\beta \leqslant \Pi(T)$, thus by section $3^{\circ} 1$

$$
h\left(\beta \mid \beta^{-}\right)=h(\beta, T)=0
$$

giving $\beta \leqslant \beta^{-}$and hence $T \beta \leqslant \beta \beta^{-} \beta^{-}$. Therefore by induction we show that $T^{k} \beta \leqslant \beta^{-}, k \in \Gamma$ io e. $\beta_{T}=\beta^{-}=T^{P^{k}} \eta^{-}, k \in \Gamma$
Now $\left.H(\gamma)\left(\gamma \alpha_{\infty}\right)_{T}^{-P} T^{-p i}\left(\underset{k=1}{ } T^{-k} \beta\right)_{T^{P}}^{-}\right)$

$$
=H\left(\gamma \mid \gamma_{T^{P}}^{-} \alpha_{\infty} \beta_{T}\right)
$$

Thus $H\left(\gamma \mid \gamma_{T^{P}}^{-} \alpha_{\infty} \beta_{T}\right)=\lim _{i \rightarrow \infty} H\left(\gamma \mid \gamma_{T_{P}}^{-} \alpha_{\infty} \beta_{T}\right)$

$$
\begin{align*}
& =\lim _{i \rightarrow \infty} H\left(\gamma \mid\left(\gamma \alpha_{\infty}\right)_{T P}^{-} T^{-P i}\left({\underset{k}{M}}_{P}^{\left.T^{-k} \beta\right)_{T^{P}}^{-}}\right)\right. \\
& =H\left(\gamma \mid\left(\gamma \alpha_{\infty}\right)_{T P}^{-}\right) \text {by } 2.22 \\
& =H\left(\gamma \mid \gamma \gamma_{T^{P}}^{-} \alpha_{\infty}\right) \tag{2}
\end{align*}
$$

While since

$$
\gamma_{T} \bar{P}=\underset{i \in \Gamma+T^{-P i} \gamma}{V} \underset{i \in r^{+}}{ } T^{-P i+m} \alpha=T^{-p+m} \alpha
$$

we have that $\lim _{\mathrm{p} \rightarrow \infty} \gamma_{\mathrm{T}^{\mathrm{P}}}^{-} \alpha_{\infty}=\alpha_{\infty}$ and so
by $2.33 \quad \lim _{\mathrm{p} \rightarrow \infty} \mathrm{H}\left(\gamma \mid \gamma_{\mathrm{T}^{\mathrm{P}}}^{-} \alpha_{\infty}\right)=\mathrm{H}\left(\gamma \mid \alpha_{\infty}\right)$
Thus from (1), (2), (3) we get

$$
H\left(\gamma \mid \alpha_{\infty}\right) \leqslant H\left(\gamma \mid \alpha_{\infty} \beta_{T}\right)
$$

but $\alpha_{\infty} \leqslant \alpha_{\infty} \beta_{T}$ and so

$$
H\left(\gamma \mid \alpha_{\infty} \beta_{T}\right) \leqslant H\left(\gamma \mid \alpha_{\infty}\right)
$$

giving $H\left(\gamma \mid \alpha_{\infty} \beta_{T}\right)=H\left(\gamma \mid \alpha_{\infty}\right)$
If $\delta \in Z$ and d is any real number such that $d \geqslant 0$ then there exists a $\gamma \in Z$ such that $\rho(\delta, \gamma)<d / 2$ and $\gamma \in T^{m} \propto$ for some m Thus

$$
\begin{aligned}
\mid H\left(\delta \mid \alpha_{\infty} \beta_{\mathrm{T}}\right)- & H\left(\delta \mid \alpha_{\infty}\right) \mid \\
\leqslant & \left|H\left(\delta \mid \alpha_{\infty} \beta_{\mathrm{T}}\right)-H\left(\delta \gamma \mid \alpha_{\infty} \beta_{\mathrm{T}}\right)\right| \\
& +\left|H\left(\delta \gamma \mid \alpha_{\infty} \beta_{\mathrm{T}}\right)-H\left(\gamma \mid \alpha_{\infty} \beta_{\mathrm{T}}\right)\right| \\
& +\left|\mathrm{H}\left(\gamma \mid \alpha_{\infty} \beta_{\mathrm{T}}\right)-H\left(\gamma \mid \alpha_{\infty}\right)\right| \\
& +\left|\mathrm{H}\left(\gamma \mid \alpha_{\infty}\right)-H\left(\delta \gamma \mid \alpha_{\infty}\right)\right| \\
& +\left|\mathrm{H}\left(\delta \gamma \mid \alpha_{\infty}\right)-H\left(\delta \mid \alpha_{\infty}\right)\right| \\
\leqslant & H\left(\gamma \mid \delta \alpha_{\infty} \beta_{T}\right)+H\left(\delta \mid \gamma \alpha_{\infty} \beta_{\mathrm{T}}\right)+0 \\
& +\mathrm{H}\left(\delta \mid \gamma_{\alpha_{\infty}}\right)+H\left(\gamma \mid \delta \alpha_{\infty}\right) \\
\leqslant & 2 \rho(\delta, \gamma) \text { by lemma } 2.22 \\
< & \mathrm{d}
\end{aligned}
$$

But d was arbitrary and so

$$
H\left(\delta \mid \alpha_{\infty} \beta_{T}\right)=H\left(\delta \mid \alpha_{\infty}\right)
$$

for all $\delta \in Z$ in particular for $\delta=\beta$ giving

$$
\begin{aligned}
H\left(\beta \mid \alpha_{\infty}\right) & =H\left(\beta \mid \alpha_{\infty} / \beta_{T}\right) \\
& =0
\end{aligned}
$$

Hence $\beta \leqslant \alpha_{\infty}$, and therefore $\Pi(T) \leqslant \alpha_{\infty}$
Proof (2) Let $\beta \in z$ be such that $\beta \leqslant \alpha_{\infty}$ and $\gamma_{p}, p \in \Gamma^{+}$any sequence in (z, p) such that $\lim _{p \rightarrow \infty} \gamma_{p}=\alpha$. Then by lemma 2.22

$$
\begin{aligned}
H\left(\gamma_{P} \mid \gamma_{P}^{-} \beta_{T}\right)+H\left(\beta \mid \beta^{-}\right) & =H\left(\gamma_{P} \beta \mid \gamma_{P}^{-} \beta^{-}\right) \\
& =H\left(\beta \mid \beta^{-}\left(\gamma_{P}\right)_{T}\right)+H\left(\gamma_{P} \mid \gamma_{P}^{-}\right)
\end{aligned}
$$

giving $h(\beta, T)=H\left(\beta \mid \beta^{-}\right)$

$$
=H\left(\beta \mid \beta^{-}\left(\gamma_{P}\right)_{T}\right)+H\left(\gamma_{P} \mid \gamma_{P}^{-}\right)-H\left(\gamma_{P} \mid \gamma_{P}^{-} \beta_{T}\right)
$$

Norw $\lim _{\rightarrow \rightarrow \infty} H\left(\beta \mid \beta^{-}\left(\gamma_{P}\right)_{T}\right)=H\left(\beta \mid \beta^{-} \alpha\right)$ by lemma 2.33

$$
=0 \text { since } \beta \leqslant \alpha
$$

and $\lim _{P \rightarrow \infty} H\left(\gamma_{P} \mid \gamma_{P}^{-}\right)=H\left(\alpha \mid \alpha^{-}\right)$
while $\lim _{P \rightarrow \infty} H\left(\gamma_{P} \mid \gamma_{P}^{-} \beta_{T}\right)=H\left(\alpha \mid \alpha^{-} \beta_{T}\right)$

$$
=H\left(\alpha \mid \alpha^{-}\right) \text {because } \beta_{T} \leqslant \alpha^{-}
$$

Thus

$$
\begin{aligned}
h(\beta, T) & =P^{\lim _{\rightarrow \infty}} h(\beta, T) \\
& =0+H\left(\alpha \mid \alpha^{-}\right)-H\left(\alpha \mid \alpha^{-}\right) \\
& =0
\end{aligned}
$$

giving $\beta \leqslant \pi(T)$ and so completing the proof.
Corollary If $h(T)<\infty$ and α is a K_{1}-algebra such that $H(T \alpha \mid \alpha)=h(T)$ then $\alpha_{\infty}=\Pi(T)$

Theorem 3.42 There exists a K_{1}-algebra α such that $\alpha_{\infty}=\Pi(T)$ and $H(T \alpha \mid \alpha)=h(T)$

Proof Let β_{i}, $i \in \Gamma^{+}$be such that $\beta_{i} \leqslant \beta_{i+1}$ for each i and $\lim _{i \rightarrow \infty} \beta_{i}=\varepsilon$ and n_{i},ic Γ^{+}an increasing sequence of positive
 Then $\alpha=\gamma^{-} \leqslant T \gamma^{-}=T \alpha$ showing that α is invariant.
Fur then

$$
\begin{aligned}
& \varepsilon=k \bigvee_{r} \beta_{k} \\
& \leqslant \underset{i \in \Gamma}{V} T^{i} \underset{j \in f^{+}}{V} T^{-j} \underset{k \in I^{i}}{V^{-n} k} \beta_{k} \\
& =\alpha_{T}
\end{aligned}
$$

and hence α is a K_{1}-algebra. Consider

$$
\begin{aligned}
F(p, q) & =H\left(\gamma_{p} \mid \gamma_{q-1}^{-}\right)-H\left(\gamma_{p} \mid \gamma_{q}^{-}\right), p, q \in \Gamma^{+} \\
& =H\left(\gamma_{p} \mid \gamma_{q-1}^{-}\right)-H\left(\gamma_{p} \mid \gamma_{q-1}^{-} T^{-n q} \beta_{q}^{-}\right)
\end{aligned}
$$

We put $n_{1}=1$ and assume that $n_{i}, 1 \leqslant i \leqslant r-1$. have been chosen such that

$$
\begin{equation*}
F(p, q)<\frac{1}{\bar{p}} \cdot \frac{1}{Z} q-p \text { if } p<q<r \tag{4}
\end{equation*}
$$

Then by lemma 3.22 we can find an n_{r} such that

$$
F(p, r)<\frac{1}{p} \cdot \frac{1}{2^{r}-p} \quad \text { if } p<r
$$

Hence we can find n_{i}, i $\in \Gamma^{+}$such that (3) holds for all $r \in \Gamma^{+}$.
If $q=p+r$ then

$$
\begin{aligned}
H\left(\gamma_{p} \mid \gamma_{p}^{-}\right)-H\left(\gamma_{p} \mid \gamma_{q}^{-}\right) & =\sum_{i=p+1}^{p+r} F(p, i) \\
& <\frac{1}{p} \sum_{1=1}^{r} \frac{1}{Z^{i}} \\
& <\frac{1}{\bar{p}}
\end{aligned}
$$

But $\lim _{r \rightarrow \infty} \underset{p+r}{-}=\alpha$ and so we get

$$
H\left(\gamma_{p} \mid \gamma_{p}^{-}\right)-H\left(\gamma_{p} \mid \alpha\right)<\frac{1}{\bar{p}}, p \in \Gamma^{+}
$$

ie. $\lim _{p \rightarrow \infty} H\left(\gamma_{p} \mid \gamma_{p}^{-}\right)=\lim _{p \rightarrow \infty} H\left(\gamma_{p} \mid \alpha\right)$
Now $\lim _{p \rightarrow \infty} H\left(\gamma_{p} \mid \gamma_{p}^{-}\right)=H\left(\gamma \mid \gamma^{-}\right)$

$$
\begin{aligned}
& =h(\gamma, T) \\
& =h(\mathbb{T}) \text { because } \gamma \text { is a generator. }
\end{aligned}
$$

while $\lim _{p \rightarrow \infty} H\left(\gamma_{p} \mid \alpha\right)=H(\gamma \mid \propto)$
But $\gamma \leqslant T \propto$ and so

$$
\begin{aligned}
H(T \alpha \mid \alpha) & =H(\gamma T \alpha \mid \alpha) \\
& =H(\gamma \mid \alpha)+H(T \alpha \mid \gamma \alpha) \\
& =H(\gamma \mid \alpha) \text { because } \gamma \alpha=T \alpha
\end{aligned}
$$

Thus

$$
\begin{aligned}
H(T \alpha \mid \alpha) & =\lim _{p \rightarrow \infty} H\left(\gamma_{p} \mid \alpha\right) \\
& =\lim _{p \rightarrow \infty} H\left(\gamma_{p} \mid \gamma_{p}^{-}\right) \\
& =h(T)
\end{aligned}
$$

If $\beta \in Z, \beta \leqslant \alpha_{\infty}$ then $\gamma_{p}^{-} \beta_{T} \leqslant \alpha$ and so by 7 emma 3.27

$$
\begin{aligned}
H\left(\beta \mid \beta^{-}\left(\gamma_{p}\right\rangle_{T}\right)+H\left(\gamma_{p} \mid \gamma_{p}^{-}\right) & =H\left(\beta \gamma_{p} \mid \beta^{-} \gamma_{p}^{-}\right) \\
& =H\left(\gamma_{p} \mid \gamma_{p}^{-} \beta_{T}\right)+H\left(\beta \mid \beta^{-}\right)
\end{aligned}
$$

giving

$$
\begin{aligned}
h(\beta, T) & =H\left(\beta \mid \beta^{-}\right) \\
& =H\left(\beta \mid \beta^{-}\left(\gamma_{p}\right)_{T}\right)+H\left(\gamma_{p} \mid \gamma_{p}^{-}\right)-H\left(\gamma_{p} \mid \gamma_{p}^{-} \beta_{T}\right)
\end{aligned}
$$

Now $\lim _{p \rightarrow \infty}\left(\gamma_{p}\right)_{T}=\alpha_{T}=\varepsilon$ and so

$$
\lim _{p \rightarrow \infty} H\left(\beta \mid \beta^{-}\left(\gamma_{p}\right)_{T}\right)=0
$$

and $H\left(\gamma_{p} \mid \gamma_{p}^{-} \beta_{T}\right) \geqslant H\left(\gamma_{p} \mid \alpha\right)$
giving $h(\beta, T)=\lim _{p \rightarrow \infty} h(\beta, T)$

$$
\begin{aligned}
& \leqslant \lim _{\rightarrow \infty}\left\{H\left(\gamma_{p} \mid \gamma_{p}^{-}\right)-H\left(\gamma_{p} \mid \alpha\right)\right. \\
& =0
\end{aligned}
$$

and hence $\quad \beta \leqslant \Pi(T)$. Thus we have $\alpha_{\infty} \leqslant \Pi(T)$ and so by theorem 3.4I $\alpha_{\infty}=\Pi(T)$

4.1 DEFINITIONS

We say that a σ-algebra α is : invariant if $\alpha \leqslant T \propto ;$ exhaustive if $\alpha_{T}=\varepsilon$; a $K_{1}-$ algebra if $\alpha \leqslant T \alpha$ and $\alpha_{T}=\varepsilon$; and lastly a K-algebra if $\alpha \leqslant T \alpha, \alpha_{T}=\varepsilon$ and $\alpha_{\infty}=\nu$, or equivalently if $\alpha \leqslant T \alpha, V_{i \in T^{2}} T^{i} \alpha=\varepsilon$ and $\hat{i} \in \Gamma T^{i} \alpha=\nu$ 。(see K. Jacobs [8])

If there exists a K-algebra with respect to T we say that T is a Kolmogor of automorphism. (see V.A.Rokhlin [16]).

For any σ-algebra \propto we define the tail σ-algebra (\propto)
of α (see I.Sucheston [21]) by
$(\alpha)=\bigwedge_{i \in \Gamma} T^{i} \alpha^{-}=\bigwedge_{i \in \Gamma+T^{-i} \alpha^{-}}$
and say that T is regular if $(\alpha)=\nu$ for all $\alpha \in Z_{1}$
Lastly we say that T is a mixing of degree n if given any sets $\Lambda_{i}, \quad 1 \leqslant i \leqslant n+1, \quad t_{i} \in \Gamma \quad, \quad 1 \leqslant i \leqslant n+1$ then we have

$$
\lim _{\Delta \rightarrow \infty}\left|\mu\left(\begin{array}{l}
n+1 \\
i=1
\end{array} T^{t_{i_{A}}}\right) \quad-\frac{n+1}{i=1} \mu\left(\Lambda_{i}\right)\right|=0
$$

where $\Delta=\inf _{i \neq j}\left|t_{i}-t_{j}\right|$, see P.R.Halmos [6], and V.A.Rokhlin [16].
MIXIIVG

If $t_{i}=t_{i}(n), n \in \Gamma^{+}, 1 \leqslant i \leqslant n+1$ are such that $\lim _{n \rightarrow \infty} \Delta_{n}=\infty$ Where $\Delta_{n}=\inf _{i \neq j}\left|t_{i}(n)-t_{j}(n)\right|$ then there exists a subsequence n_{m} such that for all m the integers $t_{i}\left(n_{m}\right)$ are in the same order. Without loss of generality we can assume that $t_{i}\left(n_{m}\right)>t_{i+1}\left(n_{m}\right)$ for
 20 jenorality in assuming that $t_{1}\left(n_{m}\right)=0$ 。

Thus we see that T is a mixing of degree n if given any sets $A_{i}, l \leqslant i \leqslant n+l$ and any $d>0$ there exists an $n_{0}>0$ such that for
all $n_{i} \geqslant n_{0}, l \leqslant i \leqslant n$ then we have

$$
\left|\mu\left({ }_{i}^{n+1} I^{n+1} T_{i_{A_{i}}}\right)-{ }_{i=1}^{n+1} \mu\left(\Lambda_{i}\right)\right|<d
$$

where $H_{1}=0, N_{i}=-\sum_{j=1}^{i-1} n_{j}, 2 \leqslant i \leqslant n+1$
Another vier of mixing can be obtained by considering the action of U in I_{μ}^{2}.

Theorem 4.2l T is a mixing of degree n if and only if, given $f_{i}, I \leqslant i \leqslant n+1 ; t_{i} \in \Gamma, I \leqslant i \leqslant n+1$ such that $f_{i} \in I_{r}^{2}$ each i then

$$
\begin{equation*}
\lim _{\Delta \rightarrow \infty} \int_{X}{ }_{i}^{n+1} \underline{I}_{1}^{n} U^{t_{i}} f_{i} d \mu \cdot=\frac{n+1}{\prod_{i}} \int_{X} f_{i} d \mu \tag{1}
\end{equation*}
$$

where $\Delta=\underset{\substack{i n f \\ i \neq j}}{ }\left|t_{i}-t_{j}\right|$
Proof If T is a mixing of degree n then given sets $A_{i}, I \leqslant i \leqslant n+1$

$$
\begin{equation*}
\lim _{\Delta \rightarrow \infty} \mu\left(\stackrel{n}{i}_{\underline{n}+1}^{n_{1}} T^{t_{i_{A_{i}}}}\right)={ }_{i+1}^{n+1} \mu\left(A_{i}\right) \tag{2}
\end{equation*}
$$

but $\mu\left(A_{i}\right)=\int_{X X} X_{A_{i}} d \mu$ and

$$
\begin{aligned}
\Gamma_{i=1}^{\left(\stackrel{n}{n}_{n+1}^{n} T^{t_{i}} A_{i}\right)} & =\int_{X} \prod_{i=1}^{n+1} x_{T I} t_{i A_{i}} d \Gamma \\
& =\int_{X}{ }_{i}^{n+1} U^{-t_{i}} x_{A_{i}} \quad d \mu
\end{aligned}
$$

Thus if T is a mixing of degree n (1) holds for characteristic functions. It is then obvious that (1) holds for step functions and hence by continuity for arbitrary functions in I_{μ}^{2} 。

If (1) holds then given sets $A_{i}, 1 \leqslant i \leqslant n+1$ we put $f_{i}=X_{A_{i}}$ for each i and get (2) thus showing T is a mixing of degree n.

Corollary $1 \quad T$ is a mixing of degree n if, and only if, there exists a subset I of L_{μ}^{2} such that
(i) $\left\{g: g=\sum_{i=1}^{n} a_{i} f_{i}, a_{i}\right.$ a real number, $f_{i} \in L$ each i, n finite $)$ is everywhere dense in I_{μ}^{2}
(ii) given $f_{i} \in L \quad 1 \leqslant i \leqslant n+1, t_{i} \in \Gamma \quad 1 \leqslant i \leqslant n+1$ then

Proof If T is a mixing then we take $L=L_{\rho}^{2}$. Conversely given a subset \mathbf{I} satisfying (i), (ii) we have that (ii) implies that $\quad \lim _{\Delta \rightarrow \infty} \int_{X X} \prod_{i=1}^{n+1} U^{t_{i}} f_{i} d \mu=\prod_{i=1}^{n+1} \int_{X} f_{i} d_{\mu}$
holds for all f_{i} belonging to the subset in (i) and hence for arbitrary $f_{i} \in L_{\mu}^{2}$ since integration is a continuous operation.

Corollary $2 T$ is a mixing of degree 1 if and only if there exists a subset L of L_{r}^{2} such that
(i) $f g: g=\sum_{i=1}^{n} a_{i} f_{i}, a_{i}$ a real number, $f_{i} \in L$ each i, n finite $\}$ is everywhere dense in I_{r}^{2}
(ii) given $f, g \in L$ then

$$
\lim _{t \rightarrow \infty}\left(U^{t} f, g\right)=\left\{\int_{X} f d \mu\right)\left\{\int_{X} g d \mu\right\}
$$

Proof Since $\left(U^{t} f, g\right)=\int_{\mathbb{E}}\left(U^{t} f\right) g$ dp the result follows from cor clary 1 .

Lemma $4.22 \quad T$ is a mixing of degree one if and only if

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(U^{t} f, f\right)=\left\{\int_{x} f d r\right\}^{2}, \quad f \in L^{2} \tag{1}
\end{equation*}
$$

Proof Given $f \in I_{\mu}^{2}$, let L_{l} be the subspace of L_{μ}^{2} spanned by the constant functions together with $f, U^{t} f, t \in \Gamma^{+}$and let I_{2} be such that $L_{1} \oplus L_{2}=I_{\mu}^{2}$ 。 If $g=U^{s} f$ and (I) holds then

$$
\begin{aligned}
\lim _{t \rightarrow \infty}\left(U^{t} f, g\right) & =\lim _{t \rightarrow \infty}\left(U^{t} f, U^{s} f\right) \\
& =\lim _{t \rightarrow \infty}\left(U^{t-s} f, f\right)
\end{aligned}
$$

$$
\begin{align*}
& =\left\{\int_{X} f \mathrm{~d} \mu\right\}^{2} \text { by (1) } \tag{1}\\
& =\left\{\int_{X} f \mathrm{~d} \mu\right\}\left\{\int_{X} g \mathrm{~d} \mu\right\}
\end{align*}
$$

since $\int_{X} g d \mu=\int_{X} U^{S} f d \mu=\int_{X} f d \mu$
Hence we get that for all ge L_{1} we have
$\lim _{t \rightarrow \infty}\left(U^{t}{ }^{t}, g\right)=\left\{\int_{\mathbb{Z}} \mathrm{f} \mathrm{d}_{\mu}\right\}\left\{\int_{X} g \mathrm{~d} \mu\right\}$
Now if $g \in L_{2}$ then $\left(U^{t}{ }_{f}, g\right)=0, t \in \Gamma^{+}$and since L_{1} contains the constant functions in particular $h(x)=1, x \in X$ we have

$$
\begin{aligned}
0 & =(g, h) \\
& =\int_{X} g h \quad d \eta \\
& =\int_{X} g d \mu
\end{aligned}
$$

Thus for arbitrary $g \in L^{2}$ we can find $g_{1} \in L_{1}, g_{2} \in I_{2}$ such that $g=g_{1}+g_{2}$ and so

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left(U^{t} f, g\right)=\lim _{t \rightarrow \infty}\left(U^{t} f, g_{1}+E_{2}\right) \\
& =\lim _{t \rightarrow \infty}\left\{\left(U^{t} f_{2} g_{1}\right)+\left(U^{t} f, g_{2}\right)\right\} \\
& =\left\{\int_{X} f \mathrm{~d} \mu \mid\left\{\int_{X} g_{1} \mathrm{~d} \mu\right\}\right. \\
& =\left\{\int_{X} f d \mu\right\}\left\{\int_{X} g_{1} d \rho+\int_{X} g_{2} d \Gamma\right\} \\
& =\left\{\int_{X} f \mathrm{~d} \Gamma\right\}\left\{\int_{X} g \mathrm{~d} \mu\right\}
\end{aligned}
$$

The if of the lemma then follows from theorem $4^{\circ} 21$, corollary 2 as does the only if. (see K. Jacobs [8].)
$4^{\circ} 3$
SEQUENCES OF σ-ALGEBRAS

The main result in this section is due to J.R. Blum and D.I. Hanson (see [2]). In this section we use the term measure to mean a real valued function μ^{1} defined on a ow algebra α such
that $\Gamma^{l}(\phi)=0$ and if $A_{i} \in \alpha$, i $\in l^{+}, A_{i} \wedge_{j}=\phi$ for i $\neq j$ then $\mu^{l}\left(\bigcup_{i} \rho^{+} \Lambda_{i}\right)=\sum_{i \in \Gamma^{+}} \mu^{l}\left(\Lambda_{i}\right)$. However by μ we still mean a positive measure with $\mu(X)=1$.

Lemma 4.31 If $\left\{\alpha_{n}\right\}, n \in \Gamma^{+}$are a sequence of $\sigma \cdot$ algebras such that $\alpha_{n+1} \leqslant \alpha_{n}$ for each $n, \quad \alpha^{\infty}=\hat{n e r}^{+} \alpha_{n}$ then $\alpha^{\infty}=\nu$ if and only if for all $A \in \varepsilon$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{B \in \alpha_{n}}\left|\rho(\Lambda, B)-\Gamma^{(A)} \mu(B)\right|=0 \tag{1}
\end{equation*}
$$

Proof The limit always exists since $\alpha_{n+1} \leqslant \alpha_{n}, n \in \Gamma^{4}$. If (I) holds, let $A \in \alpha^{\infty}$ then $A \in \alpha_{n}, n \in \Gamma^{+}$and so

$$
0 \leqslant|\mu(A)-\mu(A) \mu(A)| \leqslant \lim _{n \rightarrow \infty} \sup _{B \in \sum_{n}} \mid \mu\left(A_{n} B\right)-\Gamma^{(A)} \Gamma^{(B) \mid=0}
$$

i. e. $f(A)=0$ or 1 giving $A \in \nu_{0}$. But A was any set in α^{∞} and so we deduce that $\alpha^{\infty}=\nu$ 。

If $\alpha^{\infty}=\nu$ and (1) is false then there exists on $\Lambda \in \varepsilon$ and a d) 0 such that

$$
\begin{equation*}
B \sup _{\varepsilon \in x_{n}}\left|\Gamma^{(A, n B)}-\Gamma^{(\Lambda)} \Gamma^{(B)}\right| \geqslant d, n \in \Gamma^{+} \tag{2}
\end{equation*}
$$

For each n we define a measure μ_{n} on (x, α_{n}) by

$$
\begin{align*}
& \mu_{n}{ }^{(B)}=\Gamma^{(A, B)}-\mu^{(\Lambda)} \mu^{(B)} \text { for } B \in \alpha_{n^{0}} \text {. We have that } \\
& \mu_{n}(X-B)=\mu^{\left.\left(A_{\Lambda}(X-B)\right)-\mu^{(A)} \mu^{(X-B)}\right) ~} \\
& =\mu\left(\Lambda-\left(A_{n} B\right)\right)-\mu^{(A)(1-\mu(B))} \\
& =-\mu^{\left(\Lambda_{A} B\right)}+\mu^{(A)} \mu^{(B)} \\
& =-\mu_{n}(B) \tag{3}
\end{align*}
$$

Hence $\mu_{n}{ }^{(B)} \leqslant \mu^{(A \cap B)} \leqslant 1$
and $-\mu_{n}(B)=\Gamma^{(X-B)} \leqslant \mu^{\left(\Lambda_{n}(X-B)\right)} \leqslant 1$
giving $\left|\mu_{n_{k}}(B)\right| \leqslant I, B \in \alpha_{n}, n \in \Gamma^{+}$
If $k=\sup _{B \in \propto_{n}} \quad \mu_{n}(B)$ then there exists a sequence $\left\{B_{i}\right\}$, i $\in \Gamma^{+\infty}$ with $B_{i} \in \alpha_{n}, \lim _{i \rightarrow \infty} \mu_{n}\left(B_{i}\right)=k$ 。 Further if $C_{n}={ }_{i \in \Gamma^{+}} B_{i}$ then $C_{n} \in \alpha_{n}$
because α_{n} is a σ-algebra and $\mu_{n}\left(C_{n}\right) \geqslant \mu_{n}\left(B_{i}\right)$ for all i, hence $\mu_{n}\left(C_{n}\right) \geqslant k$ giving $\mu_{n}\left(C_{n}\right)=k$. We note that $k \geqslant d$, by (2), and the definition of k, and that for any $B \in \alpha_{n}$ we have

$$
\Gamma_{n}\left(C_{n}\right) \geqslant \Gamma_{n}(B) . \quad \text { Thus for } n \in \Gamma^{+}
$$

$$
\begin{aligned}
\Gamma_{n}\left(c_{n}\right) & \geqslant \Gamma_{n}\left(c_{n} \sim c_{n 1}\right) \\
& \geqslant \Gamma_{n}\left(c_{n+1}\right) \\
& =\Gamma_{n+1}\left(c_{n+1}\right)
\end{aligned}
$$

since $\Gamma_{n}(B)=\Gamma_{n+1}(B)$ if $B \in \alpha_{n+1}$
If $\mu_{n}\left({ }_{i}^{m} \underline{=}_{0} C_{n+i}\right) \geqslant \Gamma n+m\left(C_{n+m}\right)$ for $n \in \Gamma^{+}$

$$
\begin{align*}
& =\Gamma_{n+1}\left(\begin{array}{l}
\left(U_{i=1}^{m+1} C_{n+i}\right) \\
=\Gamma_{n+1}\left(\sum_{i=0}^{m} C_{n+1+i}\right) \\
\geqslant \Gamma_{n+m+1}\left(C_{n+m+1}\right)
\end{array}\right) \quad \text { by }
\end{align*}
$$

Thus since (4) holds for $m=1$ we have by induction that (4) holds for $m \in \Gamma^{+}$. Hence $\Gamma_{n}\left({ }_{i} \underline{i n n}_{n} c_{i}\right) \geqslant \Gamma_{n+m}^{1}\left(o_{n+m}\right)=k \geqslant d$ for $n, m \in \Gamma^{+}$, letting $m \rightarrow \infty$ gives

$$
\Gamma_{n}\left(\stackrel{@}{i}=n_{\infty} c_{i}\right) \geqslant d \text { for } n \varepsilon \Gamma^{+}
$$

i.e. $\Gamma_{1}\left({ }_{i} \stackrel{\infty}{=}_{n} c_{i}\right)=\Gamma_{n}\left(\bigcup_{i=n}^{\infty} C_{i}\right) \geqslant d$ for $n \in \Gamma^{+}$
and so

$$
\begin{equation*}
f_{1}\left(\bigcap_{n \in \Gamma^{+}} \bigcup_{i=n}^{\infty} C_{i}\right) \geqslant d \tag{5}
\end{equation*}
$$

But $\stackrel{@}{i=n}^{\infty} c_{i} \in \alpha_{n}, \bigcup_{i=n+1}^{\infty} c_{i} \leqslant \bigcup_{i=n}^{\infty} c_{i} n \epsilon \Gamma^{+}$and so $\bigcap_{n \in \Gamma^{+}} \sum_{i=n}^{\infty} C_{i} \in \alpha^{\infty}=\nu$ giving $\Gamma\left(n_{\epsilon} \Gamma^{+} \bigcup_{i=n}^{\infty} C_{i}\right)=0$ or 1. In either case $\Gamma_{1}\left(\bigcap_{n} \Gamma^{+} \bigcup_{i=n}^{\infty} C_{i}\right)=0$ contradicting (5). Hence we deduce that if $\alpha^{\infty}=\nu$ then (1) holds.
4.4 MIXING PROPERTIES OF KOLIHOGOROV AUTOHORPHISMS

We are now in a position to prove a result due to A.N.Kolmogorov [11], [12] and V.A.Rokhlin [16], namely that a Kolmogorov automorphism is a mixing of all degrees. However, the proof we give is due to J.R.Blum and D.L. Hanson [2].

Theorem 4.41 If T is a Kolmogorov automorphism then it is a mixing of degree $I_{\text {。 }}$

Proof Lat 5 be a K-algebra, and $\alpha_{n}=T^{-n} \Gamma$, $n \in \Gamma^{+}$. Then for each $n, \alpha_{n+1} \leqslant \alpha_{n}$ and $\alpha^{\infty}=\nu$. If $A, B \in \varepsilon$ then there exists a sequence $\left\{B_{i}\right\}, i \in \Gamma^{+}$with $B_{i} \in T^{k}{ }^{k} 5$ and $\Gamma^{\left(B \& B_{i}\right)<2^{-i} \text { for each } i}$ Hence for $n \in \Gamma^{+}, i \in \Gamma^{+}$

$$
\begin{aligned}
& I_{\mu}\left(A \cap T^{-\left(n+k_{i}\right)} B\right)-\mu^{\left.\left(\Lambda_{\wedge} T^{-\left(n+k_{i}\right.}\right)_{B_{i}}\right)} \mid \\
& \leqslant\left.\right|_{\Gamma}\left(T^{n+k_{i}}{\Lambda_{n} B}-\mu\left(T^{n+k_{i}} \Lambda_{n} B_{i}\right) \mid\right. \\
& \leqslant \mu\left(\left(T^{n+k_{i}} A \cap B\right) \Delta\left(T^{n+k_{i}} A \cap B_{i}\right)\right) \\
& \leqslant \quad \mu^{\left(B \Delta B_{i}\right)} \\
& <\quad 2^{-i}
\end{aligned}
$$

and $\mid \mu(A) \mu\left(T^{-\left(D+k_{i}\right)} B_{i}\right)-\mu(A) \mu^{(B) \mid}$

$$
\begin{aligned}
& =\left.\Gamma\left(A_{1}\right)\right|^{\Gamma}\left(B_{i}\right) \\
& \leqslant \Gamma(A) \mu\left(B \Delta B_{i}\right) \\
& <2^{-i}
\end{aligned}
$$

Given $d>0$ choose i such that $2^{-i}<d / 3$. Now $T^{-\left(n+k_{i}\right)} B_{i} \in \alpha_{n}, n \in \Gamma^{+}$and so by lemma $4 \cdot 31$ we have

$$
\lim _{n \rightarrow \infty} \mid \Gamma\left(A, T^{\left.-\left(n+k_{i}\right)_{B_{i}}\right)-\Gamma(A)} \eta^{\left(T^{-\left(n+k_{i}\right)}\right.} B_{B} \mid=0\right.
$$

Thus we can choose N_{1} such that for $N \geqslant N_{1}$ and $n=\mathbb{N}-k_{i}$

$$
\left|\eta\left(A_{n} T^{-\left(n+k_{i}\right)} B_{i}\right)-\mu(A) \mu\left(T^{\left(n+k_{i}\right)} B\right)\right|<d / 3
$$

Hence $\quad I_{\Gamma}\left(A \wedge T^{-N} B\right)-\mu^{(A)} \Gamma^{(B) t}$

$$
\begin{aligned}
& \leqslant l_{p}\left(A \cap T^{-\left(n+k_{i}\right.}\right)_{B)}-\mu\left(A_{\cap} T^{\left.-\left(n+k_{i}\right)_{B_{i}}\right)}\right. \\
& +I_{\rho}\left(\Lambda_{n} T^{-\left(n+k_{i}\right)} B_{i}\right)-\Gamma(A) \Gamma\left(T^{\left.-\left(n+k_{i}\right)_{B_{i}}\right) \mid}\right. \\
& +\mid \mu(A) \mu\left(T^{\left.-\left(n+k_{i}\right)_{B_{i}}\right)-\mu(A)} \mu^{(B) \mid}\right. \\
& <d / 3+d / 3+d / 3 \\
& =d
\end{aligned}
$$

i.e. T is a mixing of degree 1 .

Corollary . If T is a Kolmogor of automorphism then it is a mixing of all degrees.

Proof It is sufficient to prove that given any sets $\Lambda_{j}, \eta \in j \leqslant m, m \in I^{+}$ and $d>0$ there exists a n_{0} such that if $n_{j} \geqslant n_{0}, N_{I}=0$, $N_{j+1}=-\sum_{k=1}^{j} n_{j}, I \leqslant j \leqslant m-1$ then

We assume the result for m and prove that this implies the result for $m+1$. An appeal to the the orem for the case $m=2$ then completes the proof.

Given $A_{j}, \quad I \leqslant j \leqslant m+I, \quad d>0$ and integers $n_{j}, I \leqslant j \leqslant m$ put $N_{1}=0, N_{j+1}=-\frac{k_{k}}{k} n_{j}, I \leqslant j \leqslant m_{0} \quad$ There exist sequences $\left\{A_{j i}\right\}$, i $\epsilon \Gamma^{+}, 2 \leqslant j \leqslant m+1$ such that $\Lambda_{j i} \in T^{k}{ }_{i} \zeta,\left(\Lambda_{j} A_{j i}\right)<2^{-i}$ for each i and $2 \leqslant j \leqslant m+1$. Hence for $i \in f^{+}$

$$
\begin{aligned}
& \leqslant \Gamma\left(\hat{j}^{m+1} T^{N+n_{1}} \Lambda_{j} \Delta \stackrel{m+1}{\Omega_{j=2}} T^{N+n_{1}} \Lambda_{j i}\right) \\
& =\mu\left(\underset{j=2}{m+1} T^{N}{ }^{N+n_{1}} \Lambda_{j}-{\underset{j=2}{m+1} T_{1}^{N} j+n_{I}}_{A_{j}}^{j_{i}}\right. \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{j=2}^{m+1} \mu\left(\Lambda_{j} \Delta \Lambda_{j i}\right) \\
& <\mathrm{m} 2^{-i}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant{\underset{j=2}{m+1} \Gamma\left(A_{j} \Delta \Lambda_{j i}\right)}^{\sum_{j}} \\
& <m 2^{-i}
\end{aligned}
$$

Choose i such that $\mathrm{m}^{-\mathrm{i}}<\mathrm{d} / 4$. Now $\mathrm{N}_{\mathrm{j}}+\mathrm{n}_{I}$ is independent of n_{1} for $2 \leqslant j \leqslant m+1$ and $T^{-\left(n_{1}+k_{i}\right)} \quad \operatorname{mon}_{j=2}^{1} T^{N} j+n_{1} \Lambda_{j i} \in T^{-n_{1}} J=\alpha_{n_{1}}$, $n_{1} \in \Gamma_{0}^{+} \quad$ Hence by lemma 4.31
uniformly in $n_{j}, 2 \leqslant j \leqslant m$
Thus we can find an n_{0}^{l} such that for $n_{1} \geqslant n_{0}{ }^{1}$
but by our hypothesis there exists an n_{0}^{11} such that if $n_{j} \geqslant n_{0}^{l l}$, $2 \leqslant j \leqslant m$ then
and since $\mu\left(\Lambda_{1}\right)<1$ we have

Thus if $a_{0}=\max \left(n_{0}^{1}, n_{0}^{l l}\right\}$ we have for $n_{j} \geqslant n_{0}, 1 \leqslant j \leqslant m$ that

$$
\begin{aligned}
& \left.\mid \mu_{j=1}^{m+1} T^{N} j_{\Lambda_{j}}\right)-\prod_{j+1}^{n_{1}+1} \mu\left(\Lambda_{j}\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mid p^{\left(A_{1} \wedge T^{-n_{1}}\right.} \underset{j=2}{m+1} T^{N} j^{+n_{1}} I_{A_{j i}}\right)-\mu^{\left(\Lambda_{1}\right)} \mu^{\left(T^{-n_{1}} \underset{j=2}{m+1} T^{N} j^{+n_{1}} \Lambda_{j i}\right) \mid} \\
& +\left.\right|_{\mu}\left(\Lambda_{1}\right) \mu\left(T^{-n_{1}} \underset{j=1}{m+1} T^{N} j^{+n_{1} \Lambda_{i j}}\right)-\mu\left(\Lambda_{1}\right) \mu\left(m_{j=2}^{m+1} N_{j}+n_{1} A_{j}\right) \mid \\
& +I_{\mu}\left(\Lambda_{1}\right) \Gamma\left(\stackrel{m}{n}_{(1)}^{N_{j}+n_{1}} \Lambda_{j}\right)-\prod_{j=1}^{m+1} \mu\left(\Lambda_{j}\right) \mid \\
& <\quad \frac{d}{4}+\frac{d}{4}+\frac{d}{4}+\frac{d}{4} \\
& =\mathrm{d}
\end{aligned}
$$

The orem 4.42 If T is a mixing of degree I then T is ergodic

Proof If $\Lambda \in E$, satisfies $T \Lambda=\Lambda$ then since T is a mixing of degree I we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\mu\left(\Lambda \Lambda^{-n} \Lambda\right)-\mu^{(\Lambda)} \mu(\Lambda)\right|=0 \tag{1}
\end{equation*}
$$

But $T \Lambda=\Lambda$ implies $\Lambda T^{-n} \Lambda=\Lambda$ for $n \in \Gamma^{+}$and so (l) gives

$$
\mu^{(\Lambda)}-\mu^{(\Lambda)} \mu^{(\Lambda)}=0
$$

ie. $\quad \mu(\Lambda)=0,1$
io. $\quad \mu^{(A)}=0$ or $\mu^{(X-A)}=0$
Hence T is ergodic.

Corollary If T is a Kolmogorov automorphism then T is ergodic.

Proof The result is an immediate consequence of the corollary of theorem 4.41 and the theorem.
4.5 EQUIVALENCE OF KOLMOGOROV LND REGULAR AUTOMORPHISMS

This follows from the work of Ja.G.Sinai, J.R. Blum and D.L. Hanson (see [19] and [2])). Te do not use the above papers, but consider expressions for $\Pi(T)$.

Lemma 4.51 If $\alpha \in \mathrm{Z}, \beta=\alpha^{-}$then $\beta_{\infty} \leqslant T(T)$
$\operatorname{Proof} \quad$ By lemma $3 \cdot 23$ if $\gamma \leqslant \beta_{\infty}$ we have

$$
\begin{align*}
H\left(\gamma \mid \gamma^{-}\right)+H\left(\alpha \mid \alpha^{-} \gamma_{T}\right) & =H\left(\alpha \gamma \mid \alpha^{-} \gamma^{-}\right) \\
& =H\left(\alpha \mid \alpha^{-}\right)+H\left(\gamma \mid \gamma^{-} \alpha_{\mathrm{T}}\right) \tag{I}
\end{align*}
$$

Now $\alpha^{-} \gamma_{T}=\alpha^{-}$since $T^{i} \gamma \leqslant T^{i} \beta_{\infty}=\beta_{\infty}$ because $\beta \leqslant T \beta$ giving $H\left(\alpha \mid \alpha^{-} \gamma_{T}\right)=H\left(\alpha \mid \alpha^{-}\right)$. But $\gamma \leqslant \alpha_{T}$ and so $H\left(\gamma \mid \gamma^{-} \alpha_{T}\right)=0$ giving from (I) that $H\left(\gamma \mid \gamma^{-}\right)=0$, ie. $\gamma \leqslant \Pi(T)$. The result then follows since γ was any σ-algebra such that $\gamma \leqslant \beta_{\infty}$.

Lemme: 4.52 $\Pi(T)=V_{Z}\left(\alpha^{-}\right)_{\infty}$

Proof By the previous lemma $\left(\alpha^{-}\right)_{\infty} \leqslant \pi(T)$ for all $\alpha \in Z$ and so $\chi_{\alpha \in Z}\left(\alpha^{-}\right)_{\infty} \leqslant \Pi(T)$. If $\beta \leqslant \Pi(T)$ then $0=\ln (\beta, T)=H\left(\beta \mid \beta^{-}\right)$ giving $\beta \leqslant \beta^{-\infty}$ and hence $T \beta \leqslant T \beta^{-}=\beta \beta^{-}=\beta^{-}$and wo by induction We get $T^{i} \beta \leqslant \beta^{-}$, $i \in \Gamma^{+} \quad$ Thus $\beta \leqslant T^{-i} \beta^{-}$, i $\in \Gamma^{+} \operatorname{giving} \beta \leqslant\left(\beta^{-}\right)_{\infty}$ and therefore $T(T) \leqslant V_{\alpha \in Z}\left(\alpha^{-}\right)_{\infty}$.

Corollary $1 \quad \pi(T)=\underset{\alpha \in Z_{1}}{V}\left(\alpha^{-}\right)_{\infty}$
Proof Since $Z_{1} \leqslant Z$ we have $V_{\alpha \in Z_{1}}\left(\alpha^{-}\right)_{\infty} \leqslant \Pi(T)$. If $\beta \leqslant \Pi(T), B \in \beta$ consider $\gamma=\{\phi, B, X-B, X\}$. Now $\gamma \leqslant \beta$ and so $\gamma \leqslant \Pi(T)$ giving as in the proof of the lemma that $\gamma \leqslant\left(\gamma^{-}\right)_{\infty}$ and so $B \in \gamma \leqslant V_{\alpha \in Z_{1}}\left(\alpha^{I}\right)_{\infty}$. But B was any set in β and so $\beta \leqslant V_{\alpha} \in Z_{1}\left(\alpha^{l}\right)_{\infty}$ and therefore $\pi(T) \leqslant \bigvee_{\alpha \in Z_{I}}\left(\alpha^{1}\right)_{\infty}$.

Corollary $2 T$ is a regular automorphism if and only if

$$
\Pi(T)=\nu
$$

Proof We observe that $\left(\alpha^{*}\right)_{\infty}=(\alpha)$

Combining this last result with 3.4 and 4.1 we get:

Theorem $4^{\circ} 53 \quad T$ is a $Z 0 l m o g o r o v a t o m o r p h i s m ~ i f, ~ a n d ~ o n l y ~ i f, ~$ T is a regular automorphism.
$4^{\circ} 6$ SPECTRAL THEORY

Given an increasing real-valued non-ngetive function $\dot{F}(\lambda)$
defined on $[-\pi, \pi]$ then if we put

$$
\begin{aligned}
& F_{I}([x, y))=F(y)-F(x) \\
& F_{I}([x, y))=\lim _{h \rightarrow 0+} F(y-h)-F(x) \\
& F_{I}((x, y])=F(y)-\lim _{k \rightarrow 0+} F(x+k) \\
& F_{I}((x, y))=\lim _{h \rightarrow 0+} F(y-h)-\lim _{k \rightarrow 0 \downarrow} F(x+k)
\end{aligned}
$$

we have that F_{I} is a measure on $[-\pi, \Pi]$. Conversely, if F_{I} is a measure on $[-\pi, \pi]$ and we put.

$$
F^{*}(\lambda)=F_{1}([-\pi, \lambda])
$$

then F^{*} is an increasing real valued function on $[-\pi, \pi]$. Moreover, if given F we construct F_{1} and then F^{*} we have that $F=F^{*}$ almost everywhere。 Throughout this section we shall not distinguish between an increasing real-valued function on $[-\pi, \pi]$ and the associated measure on $[-\pi, \pi]$ and the same symbol will be interpreted as both; the context making clear which interpretation is meant.

Before continuing we introduce the following notation Given any $x \in L_{\mu}^{2}$ we denote by H_{x} the subspace generated by $\mathbb{U}_{x, n \in \Gamma}^{n}$ and refer to it as the cyclic subspace generated by \mathbf{x}. For each $n \in \Gamma$ we put

$$
\varphi_{x}(n)=\left(u^{n} x, x\right)
$$

and note that for all n

$$
\begin{aligned}
\varphi_{x}(-n) & =\left(u^{-n} x, x\right) \\
& =\left(x, u^{n} x\right) \\
& =\varphi_{x}(n)
\end{aligned}
$$

Further, since $\left|\varphi_{X}(n)\right| \leqslant \varphi(0), n \in \Gamma$ it follows that $\varphi_{X}(n)$ is a positive definite function and hence (see [3]) there exists a measure G_{x} on $[-\pi, \Pi]$ such that

$$
\varphi_{x}(n)=\int_{-\pi}^{\pi} e^{i n \lambda} d G_{x}(\lambda), n \in \Gamma
$$

We refer to $F_{x}=G_{x} \iint_{-\pi}^{\pi} G_{x}(\lambda) d \lambda$ as the spectral type of x_{0} Lastly we put

$$
Y_{x}=\left\{y: F_{x} \sim F_{y}\right\}
$$

where \sim denotes the usual equivalence relation between measures, $i, 0$. $F_{X} \sim F_{y}$ if and only if they vanish on the same sets. The reader is referred to P.R.Halmos [5] for a discussion of the rel ations \sim and \leqslant as applied to measures. The main results we need are that if F, G, are measures, a, b, are non-zero numbers then $F \sim G$ if and only if $a F \leqslant G$ and $F \leqslant G$ if and only if $a F \leqslant b G$. Further if $F_{i}, i \epsilon \Gamma$ are finite and normalized measures, $a_{i}, b_{i}, i \in \Gamma$ are non-zero, positive real numbers such that $\sum_{i \in \Gamma} a_{i}, i \sum_{i} b_{i}<\infty$ then $\sum_{i \in \Gamma} a_{i} F_{i} \sim \sum_{i \epsilon \Gamma} b_{i} F_{i}$ 。

Lemma 4.61 If $x \in L_{\mu}^{2}, y \in H_{x}$ then $F_{y} \leqslant F_{x}$

Proof Since $y \in H_{X}$ there exist constants $\sigma_{k}, k \in \Gamma$ such that $y=\lim _{n \rightarrow \infty} \sum_{k \leqslant n} a_{k} U^{k_{x}} \quad$ Hence

$$
\begin{aligned}
\varphi_{y}(\Lambda) & =\left(u^{n} y, y\right) \\
& =\left(\sum_{k \in \Gamma} a_{k} u^{n+k}, \sum_{k \in \Gamma} a_{k} u^{k} x\right) \\
& =\sum_{I \in \Gamma} b_{n l}\left(U^{I} x, x\right)
\end{aligned}
$$

$$
=\sum_{1 \in \Gamma} b_{\mathrm{nl}} \int_{-\pi}^{\pi} e^{i l \lambda} d G_{\mathrm{x}}(\lambda)
$$

giving us that $F_{y} \leqslant F_{x}$
Lemma 4.62 If $x \in L_{\mu}^{2}, y \in H_{x}, F_{y} \neq F_{x}$ then $H_{y} \neq H_{x}$
Proof $\quad F_{y} \leqslant F_{x}$ by lemma 4061 and $x \in H_{y}$ implies $F_{x} \leqslant F_{y}$ by the same lemma, and hence $\mathrm{F}_{\mathrm{x}} \sim \mathrm{F}_{\mathrm{y}}$. This is a contradiction and so we deduce that $x \notin H_{y^{\circ}}$ But $x \in H_{x}$ and so we have $H_{y} \neq H_{x^{\circ}}$
Lemma 4.63 If $x \in L_{\mu}^{2}, y \in H_{x}, F_{y} \nsim F_{x}$ then there exists a $z \in H_{x}$ such that $H_{y} \perp \mathrm{H}_{2}$

Proof By lemma $4.62 \quad H_{y} \neq H_{x}$ and hence since $H_{y} \leqslant H_{x}$ there exists a $z \in H_{x}$ such that $z \perp H_{y}$, ide. $z \perp U^{n} y, n \in \Gamma$ and so $u^{n_{z}} \perp y$ for all n giving us that $H_{y} \perp H_{2}$.

Lemma 4.64 If $x_{V} y \in L_{\mu}^{2}$ are such that $H_{x} \perp H_{y}$ then $F_{x+y}=\left(F_{x}+F_{y}\right) / 2$

Proof

$$
\begin{aligned}
\varphi_{x+y}(n) & =\left(u^{n}(x y),(x y)\right) \\
& =\left(u^{n} x, x\right)+\left(u^{n} x, y\right)+\left(u^{n} y, x\right)+\left(u^{n} y, y\right)
\end{aligned}
$$

but $H_{x} \perp$ Hey $_{y} \operatorname{imply}\left(u^{n} x, y\right)=0=\left(u^{n} y, x\right)$ and so

$$
\begin{aligned}
\varphi_{x+y}(n) & =\left(u^{n} x, x\right)-\left(u^{n} y, y\right) \\
& =\int_{-\pi}^{\pi} e^{i n \lambda} d G_{x}+\int_{n}^{\pi} e^{i n \lambda} d G_{y} \\
& =\int_{-\pi}^{\pi} e^{i n \lambda} d\left(G_{x}+G_{y}\right)
\end{aligned}
$$

giving $G_{x+y}=G_{x}+G_{y}$ and hence $F_{x+y}=\left(F_{x}+F_{y}\right) / 2$
Lemma 4.65 If $x_{i}, i \in I$ satisfy $x_{i} \in I_{l}^{2},\left\|x_{i}\right\|=$ constant for all i, $H_{x_{i}} \perp H_{j}$ if $i \neq j$ and a_{i}, i $\in I$ are real numbers such that $\sum_{i \in I}\left|a_{i}\right| \leqslant M$ and $\left|a_{i}\right| \leqslant 1$ for each i then if $y=\sum_{i \in I} a_{i} x_{i}$ we have that $F_{y}=\left(\sum_{i \in I} a_{i}{ }^{2} F_{x i}\right) / \sum_{i \in I} a_{i}^{2}$.

Proof $\left\|\sum_{i \in I} a_{i} x_{i}\right\| \leqslant \sum_{i \in I}\left|a_{i}\right|\left\|_{x_{i}}\right\|$
$\leqslant m^{2}$
and so y is well defined.

$$
\begin{aligned}
\left(U^{n} y, y\right. & =\left(u^{n} \sum_{i \in I} a_{i} x_{i}, \sum_{j \in I} a_{i} x_{i}\right) \\
& =\sum_{i \in I} a_{i}^{2}\left(U^{n} x_{i}, x_{i}\right) \\
& =\sum_{i \in I} a_{i}^{2} \int_{\pi}^{\pi} e^{i} \lambda_{n} d G_{x i}
\end{aligned}
$$

Thus since $a_{i}^{2} \leqslant l, M \geqslant\left(x_{i}, x_{i}\right)=\int_{\pi}^{\pi} d G_{x i}$ we have that $\sum_{i \in I} a_{i}^{2} G_{x i}$ is well defined and so $G_{y}=\sum_{i \in I} a_{i}^{2} G_{x i}$ giving $F_{i}=$ $\left(\sum_{i \in I} a_{i}^{2} F_{x i}\right) / \sum_{i \in I} a_{i}^{2}$.

Lemma 4.66 If L_{μ}^{2} is: separable and $x_{i}, i \in I \quad y_{j}, j \in J$ are such that $x_{i} \in I_{\mu}^{2}, y_{j} \in L_{\mu}^{2}$ for all i, j and
(1) $H_{x i} \perp H_{x k}$ if $i \neq k$
(2) $\mathrm{H}_{\mathrm{yj}} \perp \mathrm{H}_{\mathrm{yl}}$ if $j \neq 1$
(3) $\underset{i}{\oplus} \underset{\mathrm{i}}{\boldsymbol{(})} \mathrm{H}_{\mathrm{xi}}=L_{\mu}^{2}=\underset{j \in J}{\oplus} \mathrm{H}_{\mathrm{yj}}$
then for all nonzero, positive real numbers a_{i}, $i \in I, b_{j}, j \in J$ we have $\sum_{i \in I} a_{i} F_{x i} \sim \sum_{j \in J} b_{j} F_{y j}$
$\operatorname{Proof} \quad$ Since L_{μ}^{2} is separable $I, J \subseteq \Gamma$ and since $F_{x i}, F_{y j}$ are normalized measures it follows that $\sum_{i \in I} a_{i} F_{x i}, \sum_{j} b_{j} F_{y j}$ are well defined and finite. By (3) we have that for each jed there exist $V_{j i}$, $i \in I$ such that $V_{j i} \in H_{x i}$ for each i and $y_{j}=\sum_{i \in I} V_{j i}$ By lemma 4.65 we have that $F_{y j}=F_{v_{j i}}$ and since by lemma 4.61 we have that $F_{j i} \leqslant F_{x i}$ for each i it follows that $F_{y j} \leqslant \sum_{i \in I} a_{i} F_{x i}$, $j \in J . \quad$ Thus we deduce that $\sum_{j \neq J} Z_{j} F_{y j} \leqslant \sum_{i \in I} a_{i} F_{x i}$. Similarly we show that $\sum_{i \in I} a_{i} F_{x i} \leqslant \sum_{j \in J} Z_{j} F_{y j}$ and so we have $\sum_{i \in I} a_{i} F_{x i} \sim \sum_{j \in J} \mathcal{L}_{j} F_{y j}{ }^{\circ}$

We now define the maximal spectral type of U if L_{p}^{2} is separable to be the equivalence class of measures which contains $\sum_{i \in I} a_{i} F_{x i}$ where x_{i}, ie are any elements of L_{μ}^{2} such that $E_{x i} \perp H_{x j}$ if i$\neq j, L_{r}^{2}=\Theta_{i \in I} H_{x i}$ and a_{i} are any nonzero, positive real numbers such that $\sum_{i \in I} a_{i}<\infty$. By lemma 4.66 we have immediately that the maximal spectral type is well defined and unique 。

We say that U has a Lebesgue spectrum of multiplicity \boldsymbol{x}_{0} if there exists $x_{i}, i \in I$ such that $x_{i} \in L_{\mu}^{2}$ for each $i, H_{x i} \perp H_{x j}$ if $i \neq j, L_{\mu}^{2}=\underset{i \in I}{\oplus} H_{x i}, F_{x i}$ for each i is equivalent to the ordinary Lebesgue measure and I is countable finite

If U satisfies all the above conditions except the last then we say that U has a Lebesgue spectrum of multiplicity $\theta=$ cardinal number of I.

Lemma 4067 If there exists an or thonormal basis $f_{i j}, i \in I, j \in J_{i}$ of I_{μ}^{2} such that $J_{i}=\Gamma$ or Γ^{+}for each i and $U_{f_{i j}}=f_{i j+1}$ for all i, j then U has a Lebesgue spectrum.

Proof Let $x_{i}=f_{i j}$ for some $j \in J_{i}$. Then

$$
\left(u^{n} x_{i}, x_{i}\right)= \begin{cases}\left\|x_{i}\right\| & \text { if } n=0 \\ & 0 \text { if } n \in \Gamma^{+}\end{cases}
$$

hence we must have $G_{x i}$ equal to a constant times the ordinary Lebesgue measure. Hence $F_{x i}$ is equivalent to the Lebesgue measure and since $f_{i j}, i \in I, j \in \mathcal{J}_{i}$ is an orthonormal basis we must have $L_{r}^{2}=\oplus_{i \in I} H_{x i}$, and $H_{x i} \perp H_{x k}$ if $i \neq k_{0}$. Hence we see that U has a Lebesgue spectrum.

Lemma 4.68 If there exists an $x \in I_{r}^{2}$ such that F_{x} is singular with respect to Lebesgue measure then u doesnot have a Lebesgue. spectrum.

Proof As usual we say that two measures are singular if the only measure which is absolutely continuous with respect to both is the zero measure (see [5])

If U has a Lebesgue spectrum then there exist x_{i}, if I such that $x_{i} \in L_{\Gamma}^{2}$ for each $i, H x_{i} \& H_{j}$ if $i \neq j, I_{\Gamma}^{2}=$ M $_{i \in I} H x_{i}$ 。 Hence given $x \in I_{p}^{2}$ there exist v_{i}, $i \in I$ such that $v_{i} \in H x_{i}$ each i and $x=\sum_{i \in I} v_{i}$. By lemma $4.65 \quad F_{x}=\sum_{i \in I} F_{v_{i}}$ and so since $F_{v_{i}} \leqslant F_{x_{i}}$ cia $F_{x_{i}}$ is absolutely continuous with respect to Lebesgue measure for cock i, so too is Px. But this is a contradiction and so we deduce that U does not have a Lebesgue spectrum.
4.7 THE SFECTRUM OF A KOLMOGOROV AUTOMORPHISM

In this section we look at some spectral properties of T, and in particular the spectrum of T if T is a K - automorphism. For any σ-algebra α we put $L_{\alpha}=\left\{f: f \in L_{f}^{2}, f\right.$ is measurable with respect to $(X, \alpha)\}$. If $\Lambda \in \alpha, X_{\Lambda}$ is the characteristic function of $A, U_{\text {as }}$ in section $1 \cdot 2$ then

$$
x_{\Lambda}=x_{A} T=x_{T-} I_{\Lambda}
$$

Thus we see that for any step-function $f \in L_{\alpha}$ we have $\left.U_{f} \in L_{T-1}\right]_{\alpha}$. And as usual wo can approximate any f by step functions and obtain for all $f \in L_{\mu}^{2}$ that

$$
f \in I_{\alpha} \text { implies } U_{f} \in I_{T}-I_{\alpha \alpha}
$$

Moreover if $\alpha \leqslant T \propto$ then $\mathrm{L}_{\mathrm{T}-\mathrm{l}_{\alpha}} \leqslant \mathrm{L}_{\alpha}$ and so $U \mathrm{~L}_{\alpha} \leqslant \mathrm{L}_{\alpha}$.

Te define a subspace of $I_{\text {r }}$ of I_{μ}^{2} to be invariant if $U L \leqslant I$
and to be exhaustive if

$$
V_{t \in \Gamma^{+}} \quad U^{t} L^{t}=L_{\mu}^{2}
$$

Here as always we use $V_{t \in \Gamma^{+}} U^{t_{L}}$ to denote the closure of $U_{\epsilon} \Gamma^{+} U^{t_{L}}{ }_{\text {。 }}$
Lastly we point out that if α is $a K_{1}-a l$ debra then L_{α} is invariant and exhaustive

The following four lemmas are essentially proved in K. Jacobs [8].

Lemma 4.71 If L is an invariant exhaustive subspace of L_{μ}^{2} and $L_{\infty}=\bigcap_{t \in \Gamma^{+}} U^{t} L, L^{+}$satisfies $L_{\mu}^{2}=L^{+} \Theta L_{\infty}$ then U has a Lebesgue spectrum in L^{+}if $\mathrm{L}^{+} \neq\{01$

Proof Let H_{1} be the subspace such that

$$
I=H_{1} \oplus U L
$$

and define $H_{t}=U^{t-1} H_{1}$ for $t \in \Gamma^{+}$
then $\quad U H_{t}=H_{t+1}$ and $U^{t-1} L_{1}=H_{t} \omega^{t} L_{0}$
Thus $I_{\mu}^{2}={ }_{t}^{\oplus} U^{\oplus} U^{-t} I$

$$
=\oplus_{t}^{\oplus} H_{t} \oplus I_{\infty}
$$

If $\left\{f_{i}\right\} \quad i \in I$ is an orthonormal basis in H_{1} and $\left\{f_{i_{t}}\right\}=U^{t-1} f_{i 1}$ then $\left\{f_{i_{t}}\right\}, i \in I, t \in \Gamma$ is an or thonormal basis of $I^{+}=\bigoplus_{t \in r} H_{t}$ such that $f_{i_{t+1}}=U f_{i_{t}} \quad$ Thus U has a Lebesgue spectrum in L.

Lemma 4.72 If T is ergodic, \propto an invariant σ-algebra and $T^{-1} \neq \alpha$ then (X, ε, μ) is atom free.

Proof Since $T \propto \neq \alpha$ there exists a set $\Lambda_{1} \neq \phi$ such that $A_{1} \in T \propto, A_{1} \notin \alpha$, and for each $n \in \Gamma^{+}$there exists a set $A_{n} \neq \phi$
such that $A_{n} \in T^{n} \propto, A_{n} \notin T^{n-1} \alpha$ and hence $A_{n} \neq A_{j}, 1 \leqslant j \leqslant n-1$. Let β be the σ-algebra generated by $\left\{\Lambda_{n}\right\} n \in \Gamma^{+}$。 Let δ be the least limit point of the $\left\{\Gamma^{(B)} \mid, B \in \beta, B \neq \phi\right.$ and suppose $\delta>0$. Then there exists a sequence $\left\{B_{i}\right\}$, $i \in \Gamma^{+}$such that $B_{i} \neq B_{j}$ if $i \neq j$ and such that $\lim _{i \rightarrow \infty} \mu\left(B_{i}\right)=\delta$, and on N such that for $i \geqslant N$ we have $\mu\left(B_{i}\right)<3 \delta / 2$ 。 Consider $C_{i j}=B_{i} \wedge B_{j}$ for $i, j \geqslant N$, then we must have $C_{i j} \neq \phi$ for an infinite number of pairs i, j since otherwise the $B i, i \geqslant$ some N_{1} are disjoint and so $I=\mu(X) \geqslant \sum_{i=N_{1}}^{\infty} \mu^{\left(B_{i}\right) \geqslant} \sum_{i=N}^{\infty} \delta=\infty$ which is absurd. For these pairs either $0<\mu\left(B_{i} \cap B_{j}\right)<\delta / 2$ or $0<\mu\left(B_{i}-B_{j}\right)<\delta / 2$, giving a limit point of $\left\{\rho^{(B)} \mid, B \in \beta ; B \neq \phi\right.$ which is $\leqslant \delta / 2<\delta$ io. a contradiction to $\delta>0$. Thus we have shown that there are sets in ε with arbitrarily small measure.

For any set A with $\mu(A)>0$ we can find a set B with $0<\mu^{(B)}<\mu(A)$, and since T is ergodic there is a $t \geqslant 0$ such that $\mu\left(T^{-t} B \cap \Lambda\right)>0$. But $T^{-t} B \Lambda \Lambda \Lambda$ and $\mu\left(T^{-t} B, A\right) \leqslant \mu(B)<\mu(A)$ hence (X, E, μ) is atom free.

Lemma 4.73 If (X, ε, μ) is atom free, \propto any σ-algebra and H_{1} the subspace defined by $L_{\mu}^{2}=H_{1} \oplus L_{\alpha}$ then either $H_{1}=\{0\}$ or H_{1} is infinite dimensional.

Proof. If $H_{1} \neq\left\{0 \mid\right.$ then there exists on $f \neq 0$ such that $f \in H_{1}$. Further if $F=\{x: f(x) \neq 0\}$ then $F \in \alpha$ and $\mu(F)>0$. Moreover the space

$$
L=\left\{g X_{\mathbf{T}}: g \in L^{2}\right\}
$$

is infinite dimensional. Let,

$$
L_{1}=\left\{g X_{F}: g \in I_{\alpha}\right\}
$$

and L_{o} be defined by

$$
\mathrm{L}=\mathrm{L}_{0} \oplus \mathrm{~L}_{1}
$$

If $g \in L_{0}, h \in L_{\alpha}$ and $g=g_{1} X_{F}, g_{1} \in L_{\mu}^{2}$ we have

$$
\begin{aligned}
(g, h) & =\left(g_{I} \chi_{F}, h\right) \\
& =\left(g_{I} \chi_{F}, h \chi_{F}\right) \\
& =0 \text { since } g_{I} \chi_{F} \in L_{0}, h \chi_{F} \in L_{I}
\end{aligned}
$$

Thus $L_{0} \leqslant H_{1}$. If I_{1} has finite dimension then L_{0} and hence H_{1} is infinite dimensional. If I_{1} is infinite dimensional then there exist $\left\{h_{i}\right\}, i \in \Gamma^{+}$such that h_{i} is bounded, $h_{i} \in L_{r}^{2}$ each i and $\left\{h_{i} \chi_{F}\right\}$ are linearly independent. Since $f(x) \neq 0$ for $x \in F$ we have that $\left\{h_{i} f\right\}$, $i \in \Gamma^{+}$are linearly independent. Also if $h \in L_{\alpha<}$ then

$$
\begin{aligned}
\left(h_{i} f, h X_{F}\right) & =\left(f, h_{i} h\right) \\
& =0 \quad \text { for all } i \in \Gamma^{+}
\end{aligned}
$$

because $h_{i} h \in L_{\alpha}, f \in H_{1}$.
Thus $h_{i} f \in I_{o}$, i $\in \Gamma^{+}$and so L_{0} and therefore H_{1} is infinite dimensional.

Theorem 4.74 If α is a K_{l} algebra, $I_{\infty}=\bigcap_{t \in \Gamma^{+}} U^{t} L_{\alpha}$ then U has a Lebesgue spectrum in L^{+}where L^{+}is the subspace such that $I_{\mu}^{2}=L^{+} \oplus L_{\infty}$, if $L^{+} \neq\{0\}$. If T is ergodic, $I^{+} \neq\{0\}$ then U has an infinite Lebesgue spectrum.

Proof $\quad U L \infty=\hat{L}_{\boldsymbol{\theta}} \Gamma^{+} U^{t+1} L_{\alpha} \leqslant \bigcap_{t \in \Gamma^{+}} U^{t} L_{\alpha}=I_{\infty}$

$$
U_{t \in \Gamma^{+}} U^{-t} L_{\infty}=U_{t \in \Gamma^{+}} u^{-t} \bigcap_{s \in \Gamma^{+}} U^{s} L_{\alpha}=U_{t \in \Gamma} L_{\alpha}
$$

Thus L_{∞} is invariant and exhaustive, and so by lemme 4.71
UTes a Lebesgue spectrum in L^{+}if $L^{+} \neq\{0$. Since α is a K_{1} algebra either $\alpha=\varepsilon$ giving $L^{+}=101$ or
$T \propto \neq \alpha$ giving (X, ε, μ) to be atom free by lemma 4.62. The result then follows from lemma 4.63.

Corollary If T is: a Kolmogorov automorphism then U has an infinite Lebesgue spectrum in the orthogonal complement of the subspace of constant functions.

Proof There exists a K-algebra \propto, and for this \propto, $L_{\infty}=\bigcap_{t \in \Gamma^{+}} U^{t} L_{\alpha}=$ subspace of constant functions. By theorems 4.41

This last result was first indicated by A.N.Kolmogorov in [11].

5 MIXING S WHICH ARE NOT KOLMOGOROV AUTOMORPHISMS
5.1 RIESZ PRODUCIS

We consider the Riesz product

$$
\begin{equation*}
\prod_{\nu \in \Gamma^{+}}\left(1+\alpha_{\nu} \cos n_{\nu} x\right) \tag{1}
\end{equation*}
$$

 If $\mu_{k}=\sum_{=1}^{k} n_{\nu}, \mu_{k}^{\prime}=n_{k+1}-\Gamma_{k}$ for $k \in \Gamma^{+}$then $\Gamma_{k}<n_{k} q /(q-1)$, $\mu_{k}^{\prime}>n_{k+1}(q-2) /(q-1)$ and so $\mu_{k}^{\prime} / \mu_{k} \geqslant 1$. For $k \in \Gamma^{+}$we put

$$
\begin{equation*}
p_{k}(x)=1+\sum_{\nu=1}^{k} \quad \gamma_{\nu} \cos \psi x=\prod_{i}\left(1+\alpha_{i} \cos n_{i} x\right) \tag{2}
\end{equation*}
$$

where the γ_{ν} are chosen (uniquely) to satisfy the second equality for all x. Thus we have $\gamma_{\mu}=0$ if μ is not of the form $n_{i_{1}} \neq n_{i_{2}} \pm \ldots$ with $k \geqslant i_{1}>i_{2}>$ Now $p_{k+1}(x)=p_{k}(x)\left(1+\alpha_{k+1} \cos n_{k+1} x\right)$ giving that the difference $p_{k+1}-p_{k}$ is a polynomial whose lowest term is of rank $\Gamma_{k}^{\prime}>\mu_{k}$. Hence the passage from p_{k} to p_{k+1} consists in adding to p_{k} a group of terms whose ranks all exceed $M k^{\circ}$ Letting $k \rightarrow \infty$ in (2) we obtain the series

$$
\begin{equation*}
1+\sum_{\nu \in \Gamma^{+}} \gamma_{\nu} \cos \nu x \tag{3}
\end{equation*}
$$

in which $\gamma_{\mu}=0$ if $n \neq n_{i} \neq n_{i_{1}} \neq n_{i_{2}} \neq \ldots$ with $i>i_{1}>i_{2}>\ldots$.
The partial sums $S_{n}(x)$ of (3) have the property that
$S_{\mu_{k}}(x)=p_{k}(x) \geqslant 0, k \in \Gamma^{+} . \quad$ Moreover if

$$
G(x)=\lim _{k \rightarrow \infty} \int_{0}^{x} p_{k}(t) d t
$$

then it follows (see [22]) that (3) is the Fourier-Stieltjos series for $G(x)$ which is a non-decreasing continuous function.

If we formally multiply out (1) and replace the products of cosines by linear combinations of cosines then it is easy to show that no two terms are of the same rank.

Before continuing our discussion we need a lemma and the following notation.

$$
\begin{aligned}
& A_{n_{k}}=\alpha_{k} \cos n_{k} x, k \in \Gamma^{+} ; a_{n_{i}}=\left\{\begin{array}{l}
n^{-1} i f I \leqslant i \leqslant n, n \in \Gamma^{+} \\
0 \text { otherwise }
\end{array}\right. \\
& R_{m n}=\sum_{i=n}^{\infty} a_{m_{l}} \quad r_{m}(x)=\sum_{k \in \Gamma^{+}+A_{n_{k}}(x) R_{m n_{k}}}
\end{aligned}
$$

Lemme $5 \cdot 11$ If $\sum_{k \in \Gamma^{+}} \alpha_{k}^{2}=e$ then the set of points at which

$$
\begin{equation*}
\tau_{m}^{+}(x)=0\left\{\sum_{k \in \Gamma^{+}} \alpha_{k}^{2} R_{\mathrm{mn}_{k}}^{2}\right\}^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

where $\tau_{\text {II }}^{+}(x)=\max \left\{0, \gamma_{\mathrm{m}}(\mathrm{x})\right\}$ is of measure zero.
 the measure of any measurable sot in the real line then if $|E|>0$ and d_{1} is any number such that $d_{1}>0$, there exists a set $\varepsilon \subseteq E$ with
$|\varepsilon|>|E| / 2$ such that $\tau_{\mathrm{m}}(x) / \Gamma_{\mathrm{in}} \leqslant d_{1}$ in ξ for $m>\mathrm{m}_{0}=\mathrm{m}_{\mathrm{o}}\left(\mathrm{d}_{1}\right)$.
By omitting the first few terms of $\sum_{k \in h_{1}}^{\Lambda_{n_{k}}}(x)$ we may without loss of generality and without changing E suppose n_{1} as large as we please.
Then

$$
\begin{aligned}
\int_{\varepsilon}\left|\tau_{m}(x)\right| d x & \leqslant \int_{\varepsilon}\left\{\left|\tau_{m}(x)-d_{1} \Gamma_{m}\right|+d_{1} \Gamma_{m} \mid d x\right. \\
& =\int_{\varepsilon}\left\{2 d_{1} \Gamma_{m}-\tau_{m}(x)\right\} d x \\
& =2 d_{l} \Gamma_{m}|\varepsilon|-\int_{\varepsilon} \tau_{m}(x) d x \\
\int_{\xi} \tau_{m}(x) d x & =\int_{\varepsilon}\left\{\sum_{k \in \Gamma^{+}} \alpha_{k} \cos n_{k} x R_{m n_{k}}\right\} d x \\
& =\sum_{k \in \Gamma^{+}} \pi a_{n_{k}} \alpha_{k} R_{\mathrm{mn}}^{k}
\end{aligned}
$$

but
where a_{n} is the $n^{\text {th }}$ Fourier coefficient of the characteristic
function of the set ε.
Thus

$$
\begin{aligned}
\int_{\varepsilon}\left|\tau_{m}(x)\right| d x & \leqslant 2 d_{1} \Gamma_{m}|\varepsilon|-\Pi \sum_{k \in \Gamma^{+}} a_{n_{k}} \alpha_{k} R_{m n_{k}} \\
& \leqslant 2 a_{1} \Gamma_{m}|\varepsilon|+\pi \Gamma_{m}\left\{\sum_{k \Gamma^{+}} a_{n_{k}}^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

by Holder's inequality. Hence if n_{1} is sufficiently large

$$
\begin{align*}
& \int_{\varepsilon}\left|\tau_{m}(x)\right| d x \leqslant \lambda_{1} \Gamma_{m}(2|\xi|+\pi) \\
& \quad(x) d x=0\left(\Gamma_{m}\right) \tag{6}
\end{align*}
$$

io.
But by Holder's inequality

$$
\int_{\varepsilon} \tau_{\mathrm{m}}^{2}(x) d x \leqslant\left\{\int_{\varepsilon}\left|\tau_{\mathrm{m}}(x)\right| \mathrm{d} x\right\}^{2 / 3}\left\{\int_{\varepsilon} \tau_{\mathrm{m}}^{4}(x) d x\right\}^{7 / 3}
$$

and A. Zygmund [22] shows that

$$
\Gamma_{\mathrm{m}}^{2}=\mathrm{o}\left(\int_{\varepsilon} \tau_{\mathrm{m}}^{2}(x) d x\right) \text { for } n_{1} \text { large enough }
$$

and $\int \frac{\tau_{m}^{4}}{\varepsilon}(x) d x=0 \quad\left(\Gamma_{m}^{4}\right)$
thus giving

$$
\begin{equation*}
\Gamma_{\mathrm{m}}=o\left(\int\left|\tau_{\mathrm{m}}(x)\right|\right) d x \tag{7}
\end{equation*}
$$

This is a contradiction to (6) and so we conclude that $|E|=0$

We now return to our discussion of Riesz products.
Lemma 5.12 If $\Sigma \alpha_{\nu}^{2}=\infty$ then the function G has a derivative 0 almost everywhere.

Proof The series (3) is almost everywhere summable (C,1) to sum $G^{+}(x)$. (see [22] vol. 1 P.105). Further the series has infinitely many gaps ($\mu_{k}, \mu_{k}^{\prime}$) and since $\mu_{k}^{\prime} / \mu_{k}$) I we have (see [22] vol.1, P.79) that the partial products $p_{k}(x)$ converge to $G^{\prime \prime}(x)$ almost everywhere But $1+u \leqslant \theta^{u}$ and so

$$
0 \leqslant p_{k}(x) \leqslant \exp \left(\sum_{\nu=1}^{k} \alpha_{\mu} \cos n, x\right)
$$

In lemma 5.1lfor fixed k we have $\operatorname{mim}_{\rightarrow \infty} R_{m n}=1$ and so $\lim _{m \rightarrow \infty} \Gamma_{m}^{2}=\infty$. Thus applying lemma we see that $\sum_{\mu=1}^{k} \alpha_{\nu}$ cos $n_{\nu} x$ takes arbitrarily large negative values, as $k \rightarrow \infty$, for almost all x_{0}

Hence $\lim _{k \rightarrow \infty} \inf p_{k}(x)=0$, i.e. $G^{\prime}(x)=0$ almost everymere.
Remark We have also proved that (I) converges to 0 almost everywhere.

$$
5 \cdot 2 \text { A PARTICULAR PRODUCT }
$$

We consider the Riesz product:

$$
\prod_{\nu \in \Gamma^{+}}\left(1+\cos n_{\mu} x\right)=1+\sum_{k F^{+}} \delta_{\nu} \cos \nu x=\sum_{\nu \in \Gamma} \delta_{\nu} e^{i \nu x}
$$

Where $n_{k}=2^{2^{k}}$ and the $\delta_{\nu}, \nu \epsilon \Gamma$ are chosen so that the last equality is satisfied. By the last section the series is the Fourier-Stieltjes series of an increasing, continuous and singular function $G(x)$, and that $0 \leqslant \delta_{\mu} \leqslant 1$ for $\nu \in \Gamma$. For any $N>3$ there is a k such that $n_{k-1} \leqslant N<n_{k}$ and hence
giving the δ_{μ} small "on the average".
Consider the mapping

$$
x=x(t)=\frac{1}{2}\left(t+\frac{t^{2}}{\pi} \operatorname{sign} t\right),-\pi \leqslant t \leqslant \pi
$$

of the interval $[-\pi, \pi]$ onto itself.
If $F(x)=G(t)$ then since $1 / 2 \leqslant x^{\prime}(t) \leqslant 3 / 2$ we have that $F(x)$ is increasing, continuous and singular. Moreover (see [22] vol l.P.158)

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x} d F(x)=\frac{1}{2 \pi} \int_{\pi}^{\pi} e^{-i n x(t)} d G(t)=\sum_{\nu \varepsilon r} \lambda_{n, \mu} \delta_{\mu}
$$

and the series is absolutely convergent since $e^{-i n x(t)}$ has a derivative of bounded variation and so its Fourier coefficients

$$
\lambda_{n, \nu}=\frac{1}{2 \pi} \int_{\pi}^{\pi} e^{-i(n x(t)+\nu t)} d t
$$

are $O\left(\nu^{-2}\right)$.
We nor leave this product in order to prove three lemmas.

Lemma 5.21 If $f(t)$ is a real valued function for $a \leqslant t \leqslant b$, $f^{4}(t)$ is monotone and there exists a $\lambda>0$ such that either $f^{\prime}(t) \geqslant \lambda$ or $f^{j}(t) \leqslant-\lambda$ for $a \leqslant t \leqslant b$ then $\left|\int_{a}^{b} e^{2 \pi i f(t)} d t\right|<\lambda^{-1}$ $\operatorname{Proof} \quad \int_{a}^{b} e^{2 \pi i f(t)} d t=\frac{7}{2 \pi} i \int_{a}^{b} \frac{1}{f^{3}}(t) d e^{2 \pi i f(t)}$
and by the second mean value theorem there exists c_{1}, c_{2} in (a, b) such that
$\int_{a}^{b} f^{\frac{1}{!}}(t) \quad d \cos (2 \pi f(t))=\frac{1}{f^{T}}(a) \int_{a}^{c} 1 d \cos (2 \pi f(t))_{4} \frac{1}{f^{n}}(b) \int_{c_{1}}^{b} d \cos (2 \pi f(t))$
$\int_{a}^{b} f^{i \cdot \frac{1}{(t)}} d \sin (2 \pi f(t))=f^{i} \frac{1}{(a)} \int_{a}^{c} 2 d \sin \left(2 \pi f(t)+f^{1} \frac{1}{(b)} \int_{c_{2}}^{b} d \sin (2 \pi f(t))\right.$
giving $\left|\int_{a}^{b} e^{2 \pi i f(t)} d t\right| \leqslant 2 \frac{1}{\pi}\left\{\int_{a}^{b} \operatorname{pat}^{b} \frac{7}{(t)} d \cos (2 \pi f(t))|+| \int_{a}^{b} f^{\frac{1}{7}}(t) d \sin (2 \pi f(t) \mid\}\right.$

$$
\leqslant \frac{1}{2} \pi^{\circ} \frac{2}{\lambda} \cdot 2
$$

$$
<\frac{1}{\lambda}
$$

Lemma $5 \cdot 22$ If $f(t)$ is a real valued function $f o r a \leqslant t \leqslant b$ and there exists a $p>0$ such that $f^{\prime 1}(t) \geqslant \rho$ or $f^{4 .}(t) \leqslant-\rho$ for $a \leqslant t \leqslant b$ then

$$
\left|\int_{a}^{b} e^{2 \pi i f(t)} d t\right| \leqslant 4 p^{-\frac{1}{2}}
$$

Proof If $f^{\prime \prime}(t) \leqslant-p$ we consider $-f(t)$ 。 Hence without loss of generality we taka $f^{\prime \prime}(t) \geqslant p . \quad$ If $f^{j}(t) \geqslant 0$ for $a \leqslant t \leqslant b$, and $a<\gamma<b$ then $f^{\prime}(t) \geqslant(\gamma-a) p$ for $\gamma \leqslant t \leqslant b$
Hence $\left|\int_{a}^{b} e^{2 \pi i f(t)} d t\right| \leqslant\left|\int_{a}^{\gamma} e^{2 \pi i(t)} d t\right|+\left|\int_{\gamma}^{b} e^{2 \pi i f(t)} d t\right|$

$$
\leqslant \gamma-a+\left(\frac{1}{\gamma-a) p} \quad \text { by } 1 \text { emma } 5 \cdot 21\right.
$$

But. $\gamma-a+\left(y^{\frac{1}{-}} a\right) p$ has a minimum value when $\gamma=a+p^{-\frac{1}{2}}$ and so

$$
\left|\int_{2}^{b} e^{2 \pi i f(t)} d t\right| \leqslant \rho^{-\frac{1}{2}}+\rho^{-\frac{1}{2}}=2 \rho^{-\frac{\pi}{2}}
$$

If $f^{\prime}(t) \leqslant 0$ for $a \leqslant t \leqslant b$ then for $a<\gamma<b, f^{\prime}(t) \leqslant-(b-\gamma) p$ for $a \leqslant t \leqslant \gamma$ and result foll owns.

If $f^{\prime}(t)$ changes sign in $a \leqslant t \leqslant b$ then we have to consider the two intervals in which $f^{\prime}(t)$ is of constant sign. Thus in general

$$
\left|\int_{a}^{b} e^{2 \pi i f(t)} d t\right| \leqslant 2 p^{-\frac{t}{2}}+2 p^{-\frac{t}{2}}=4 p^{-\frac{1}{2}}
$$

Lemma $5.23\left|\lambda_{n, \nu}\right| \leqslant A n^{-\frac{3}{2}}, \quad \nu \in \Gamma$

$$
\left|\lambda_{n, \nu}\right| \leqslant A \nu^{-2}, \quad|\nu| \geqslant 3 n
$$

where A is a constant.
Proof If $f(t)=n x(t)+\nu t$ then

$$
\begin{aligned}
f^{\prime}(t) & =n x^{\prime}(t)+\nu \\
& =\frac{n}{2}\left(1+\frac{2 t}{\pi} \operatorname{sign} t\right)+\nu \\
f^{\prime \prime}(t) & =\frac{n}{\pi} \operatorname{sign} t
\end{aligned}
$$

Thus for t in $(0, \pi)$, $f^{\prime \prime}(t)=n \pi^{-1}>0$, and so by lemma $5 \cdot 22$

$$
\left|\int_{0}^{\pi} e^{-i f(t)} d t\right| \leqslant 4(2 n)^{-\frac{1}{2}}
$$

Similarly $\left|\int_{-\pi}^{0} e^{-i f(t)} d t\right| \leqslant 4(2 n)^{-\frac{1}{2}}$
Hence $\quad\left|\lambda_{n, \nu}\right| \leqslant \frac{1}{2 \pi} 8(2 n)^{-\frac{1}{2}} \leqslant \frac{8}{\pi} n^{-\frac{1}{2}}, \nu \in \Gamma \quad f(t)$ is an odd
function and so

$$
\begin{aligned}
\pi \lambda_{n, \nu} & =\int_{0}^{\pi} \cos f d t \\
& =\int_{0}^{\pi} \frac{1}{f^{\prime}} d \sin f=\int_{0}^{\pi} \frac{\sin f}{\left(f^{\prime}\right)^{2}} \cdot f^{\prime \prime} d t \\
& =\pi^{-1} \int_{0}^{\pi} \sin f f^{\prime} d t
\end{aligned}
$$

Further $f^{\prime}(t)$ is monotone for $0 \leqslant t \leqslant \pi$ and is of constant sign if $|\nu| \geqslant 3 n / 2$. For $|\nu| \geqslant 3 n$ we have $\left|f^{\prime}\right| \geqslant|\nu| / 2$ and so by the second mean value theorem

Thus if $A=48 / \pi^{2}$

$$
\begin{array}{ll}
\left|\lambda_{n, \nu}\right| \leqslant A n^{-\frac{1}{2}}, & \nu \in \Gamma \\
\left|\lambda_{n, \nu}\right| \leqslant A \nu^{-2}, & |\nu| \geqslant 3 n
\end{array}
$$

Returning to our particular Riesz product we put

$$
\varphi(n)=\frac{1}{2^{\frac{1}{7}}} \int_{-\pi}^{\pi} e^{-i n x} d F(x), n \in \Gamma
$$

then $|\varphi(n)| \leqslant \sum_{\nu \in \rho}\left|\lambda_{n, \nu}\right| \delta_{\nu}$

$$
\begin{aligned}
& =\sum_{1 / \mid \leqslant 3 n}\left|\lambda_{n, \nu}\right| \delta_{\nu}+\sum_{| |>3 n}\left|\lambda_{n, \nu}\right| \delta_{\nu} \\
& \leqslant A n^{-\frac{1}{2}} \sum_{w \mid \leqslant 3 n^{\prime} \nu+A \sum_{|\nu|>3 n} \nu^{-2} \delta_{\nu}}^{\leqslant A n^{-\frac{1}{2}} \sum_{\mu \mid \leqslant 3 n} 1+A \sum_{|\nu|>3 n} \nu^{-2}} \\
& =O\left(n^{-\frac{1}{2}} \log n\right)+O\left(n^{-1}\right) \\
& =O\left(n^{-\frac{1}{2}+d}\right) \text { for every } d>0
\end{aligned}
$$

Throughout this section we let R_{∞} be the infinite dimensional Euclidean space whose points are of the form $u=\left\{u_{j}\right\}, j \in \Gamma$ where for each i, u_{i} is a real number. Further for any finite set $J \leqslant \Gamma$ we let R_{J} denote the finite dimensional Euclidean space whose points are of the form $u=\left\{u_{j}\right\}, j \in J$. We say that a real valued, non-negative and countably additive set function μ_{J} such that $\mu_{J}\left(R_{J}\right)=1$ is a Gaussian measure on R_{J} if there exists a positive definite quadratic form $Q_{J}(x)$ such that for all $x \in R_{J}$ we have

$$
\int_{R_{J}} e^{i} \sum_{j \in J} X_{j} u_{j} d \rho_{J}(u)=e^{-Q_{J}(x) / 2}
$$

As usual by a positive definite quadratic form $Q_{J}(x)$ we mean that $Q_{J}(x)$ can be written as

$$
Q_{J}(x)=\sum_{j, k \in J} a_{j k} x_{j} x_{k}
$$

and that $Q_{J}(x) \geqslant 0$ for all $x \in R_{J}$.
If P_{J} is the transformation on R_{∞} which sends $x=\left\{x_{j}\right\}, j \in \Gamma$ into $x=\left\{x_{j}\right\}, j \in J, \Gamma_{\infty}$ is a real valued, nonnegative and countably additive set function on R_{∞}, Γ_{J} is defined by

$$
\Gamma_{J}(A)=\Gamma_{\infty}\left(P^{-1} A\right)
$$

for all measurable sets A in R_{J} then we say that μ_{∞} is a Gaussian measure if for every finite set $J \leq \Gamma$ we have that Γ_{J} is a Gaussian measure. If S is the transformation on R_{∞} which is given by

$$
S x=y
$$

where if $x=\left\{x_{j}\right\}, j \in \Gamma, y=\left\{y_{j}\right\}, j \in \Gamma$ we have $y_{j}=x_{j-1}, j \in \Gamma$, and if S is measure preserving with respect to a Gaussian measure Γ_{∞} then we refer to μ_{∞} as a stationary Gaussian measure. Lastly we say that S is a stationary Gaussian process if μ_{∞} is a stationary Gaussian measure. If $\varphi(n), n \in \Gamma,-n \notin \Gamma^{+}$is a real valued function such that for all finite sets $J \subseteq \Gamma^{+}$if we put

$$
Q_{J}(x)=\sum_{j, k \in J} \varphi(|j-k|) x_{j} x_{k}
$$

then we have that $G_{J}(x)$ is a positive definite quadratic form, we say that $\varphi(n)$ is a positive definite function. We now quote some well known results.

Theorem $5.31 \quad$ A function $\varphi(n), n=0,1,2, \ldots$ is positive definite if and only if there exists a monotone non-decreasing, real-valued function $F(x)$ defined on $[-\pi, \pi]$ and such that

$$
\varphi(n)=\int_{-\pi}^{n} e^{-i n x} d F(x), n=0,1,2, \ldots
$$

Pr oof
in section $4 \cdot 6$ and is repeated here only for convenience.

For each $n \in \Gamma$ we define a function U_{n}^{\prime} on R_{∞} by

$$
U_{n}^{\prime}(U)=U_{n}
$$

for all $u=\left\{u_{j}\right\}, j \in \Gamma$ in R_{∞}. Further in expressions such as $\int_{R_{\infty}} U_{n}^{\prime}(u) U_{m}^{\prime}(u) d \mu_{\infty}(u)$ we omit the ${ }^{\prime}$ and simply write $\int_{R} U_{n} U_{m} d^{1_{\infty}}$ With this convention we get:

Thoonem 5.32 If S is a stationary Gaussian process and we put $\varphi(n)=\int_{R_{\infty}} U_{n} U_{0} d \mu_{\infty}, n=0,1,2, \ldots$ then if the socond moments exist $\varphi(n)$ is a uniquoly determined positive function. Conversely if $\varphi(n)$ is a positive definite function then there exists a unique stationary Gaussian process such that

$$
\varphi(n)=\int_{R_{\infty}} U_{n} U U_{0} d \mu_{\infty}, n=0,1,2, \ldots
$$

Proof See [3] P.473. From now on we always assume that S is a stationary Gaussian process and $\varphi(n), n=0,1,2, \ldots$ is tho associated positive definite function. μ_{∞} will always be the stationary Gaussian measure associated with S, J will always be a finite subset of Γ, μ_{J} tho measure formed from Γ_{∞}, J as previously and $Q_{J}(x)$ will denote $\sum_{j, k \in J} \varphi(|j-k|) x_{j} x_{k}$. We have that

$$
\begin{equation*}
\int_{R_{J}} e^{i \sum_{j \in J x_{j} u_{j}}^{d} \mu_{J}(u)}=e^{-Q_{J}(x) / 2} \tag{I}
\end{equation*}
$$

expending the left hand side gives

$$
\begin{aligned}
& \int_{R_{J}}\left\{1+i \sum_{j \in J} x_{j} u_{j}+\frac{1}{Z!}\left(i \sum_{j \in J} x_{j} u_{j}\right)^{2}+\cdots\right\} d \mu_{J} \\
& =1+i \sum_{j \in J} x_{j} \int_{R_{J}} u_{j} d \mu J-\frac{1}{2} \sum_{j, k \in J} x_{j} x_{k} \int_{R_{J}} u_{j} x_{k} d \mu_{J}+\cdots
\end{aligned}
$$

and expanding the right hand side of (1) gives

$$
\begin{aligned}
& 1-\frac{Q(x)}{2}+\frac{1}{2}!\left(\frac{Q(x)}{2}\right)^{2} \ldots \\
= & 1-\frac{1}{2} \sum_{j, k \in J} \varphi(|j-k|) x_{j} x_{k}+\frac{1}{8}\left(\sum_{j, k \in J} \varphi(|j-k|) x_{j} x_{k}\right)^{2}-\ldots
\end{aligned}
$$

But (1) is an identity in x and so we may compare coefficients to obtain

$$
\begin{aligned}
& \int_{R_{J}} j_{j=1}^{n} u_{n_{j}} d \Gamma_{J}=0 \text { if } k \text { is odd } \\
& \int_{R_{J}} u_{j} u_{k}{ }^{d} \Gamma_{J}=\varphi(|j-k|)
\end{aligned}
$$

$$
\int_{R_{J}} j_{j=1}^{H_{1}} u_{n_{j}} d \mu_{J}=\sum_{p=1}^{p} \prod_{q=1}^{Q} \varphi\left(n_{p q}\right) \text { if } k \text { is even }
$$

Hence we deduce that

$$
\begin{aligned}
& \int_{R_{\infty}}{ }_{j=1}^{\frac{k}{H}} u_{n_{j}}^{d} \mu_{\infty}=0 \text { if } k \text { is odd } \\
& \int_{R_{\infty}} u_{j} u_{k}{ }^{d} \Gamma_{\infty}=\varphi(|j-k|) \\
& \int_{R_{\infty}} \prod_{j=1}^{k} u_{n_{j}} d \mu_{\infty}=\sum_{p=1}^{P} \prod_{q=1}^{Q} \varphi\left(n_{p q}\right) \text { if } k \text { is even }
\end{aligned}
$$

since given any $n_{j}, l \leqslant j \leqslant k$ we can find a J such that $n_{j} \in J$ for each jo

Theorem $5 \cdot 33$ If S is a mixing of degree one then $n \rightarrow \infty$
Proof

The or em $5 \cdot 34$ If $\lim _{n \rightarrow \infty} \varphi(n)=0$ then S is a mixing of all degrees.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \varphi(n)=\lim _{n \rightarrow \infty} \int_{R_{\infty}} u_{n} u_{o} d \mu_{\infty} \\
& ={ }_{n} \lim _{\rightarrow \infty} \int_{F \infty}\left(U^{n} u_{0}\right) u_{0} d \mu \infty \\
& =\lim _{n \rightarrow \infty}\left(U^{n} u_{0}, u_{0}\right) \\
& =\left\{\int_{\mathbb{R}_{\infty}} \omega_{0} \mathrm{~d} \mu \infty\right\}^{2} \\
& =0
\end{aligned}
$$

Proof Let L_{1} be the subset of L_{μ}^{2} which consists of all functions of the form

$$
\prod_{j=1}^{i} x_{n_{j}}^{\prime}(x)=\prod_{j=1}^{i} x_{n_{j}}, \quad i \text { finite }
$$

If $f_{l}=\prod_{j=1}^{i} x_{l_{j}}, I \leqslant l \leqslant k \underset{k}{ }$ are any k functions in L_{l} we put

$$
\begin{aligned}
F=F\left(t_{1}, \ldots, t_{k}\right) & =\int_{K_{\infty}} \prod_{I}^{k} s^{t_{l}} f_{l} d \mu_{\infty} \\
G & =\prod_{1=1}^{k} \int_{R_{\infty}} f_{1} d \Gamma_{\infty} \\
I & =\sum_{l=1}^{k} i_{l}
\end{aligned}
$$

If I is odd then $F=0$ by the remarks immediately prior to theorem 5.33. However, I odd implies i, odd for some ℓ and consequently $\int_{R_{\infty}} f, d \Gamma_{\infty}=0$ for this l giving $G=0$ and hence $F=G$, for all t_{1}, \ldots, t_{k}. If I is even then by the earlier part of this section we can write

$$
F=\sum_{p=1}^{p} \prod_{q=1}^{Q} \varphi\left(n_{p q}\right)
$$

where $Q=I / 2$ and $P=\frac{(2 Q)!}{2^{2} \cdot Q!}$
If i_{1} is odd for some l say $l=m$ then as above $G=0$. Further we have that for each $p, I \leqslant p \leqslant P$ there is' a $q=q(p)$ such that

$$
n_{p q(\rho)}=\left.\right|_{r_{j}}+t_{r}-\left(m_{n}+t_{m}\right) \mid
$$

where $l \leqslant r \leqslant k, r \neq m$
Thus if $\Delta=\inf _{\ell \neq n} \mid t_{f}-t_{n}$ we have that

$$
\lim _{\Delta \rightarrow \infty} \mathscr{l \neq n}\left(n_{p q(\rho)}\right)=0
$$

and so for each $p, I \leqslant p \leqslant P$

$$
\lim _{\Delta \rightarrow \infty} \prod_{q}^{Q} \varphi\left(n_{p q}\right)=0
$$

giving us that

$$
\lim _{\Delta \rightarrow \infty} F=0=G
$$

If i_{f} is even for all l, and $r=t(p, q),, r_{j}=t_{j}(p, q)$ $s=s(p, q), s_{n}=s_{n}(p, q)$ are defined by

$$
n_{p q}=\left|r_{j}+t_{r}-\left(s_{n}+t_{s}\right)\right|
$$

then we have

$$
\lim _{\Delta \rightarrow \infty} \varphi\left(n_{p q}\right)=0 \text { if } r \neq s
$$

while if $r=s$ we have

$$
\varphi\left(n_{p q}\right)=\varphi\left(r_{j}-x_{n}\right)
$$

and so

$$
\lim _{\Delta \rightarrow \infty} \varphi\left(n_{p q}\right)=\varphi\left(x_{j}-x_{n}\right)
$$

Hence $\lim _{\Delta \rightarrow \infty} F=\prod_{l=1}^{k} \sum_{p=1}^{p_{1}} \prod_{q} \prod_{1} \varphi\left(\left|l_{j}-l_{n}\right|\right)$ where $j=j(p, q), n=n(p, q), Q_{l}=i_{i} / 2$ and, $P_{l}=\left(2 Q_{l}\right): / 2_{l} Q_{l}$: giving $\quad \lim _{\Delta \rightarrow \infty} F=\prod_{\ell=1}^{k} \int_{R_{\infty}} f_{l} d \rho_{\infty}=G$.
Thus in all cases we have

$$
\lim _{\Delta \rightarrow \infty} F=G
$$

and so by theorem 4.21 corollary 1 , we have that S is a mixing of all degrees.

Theorem 5.35 If S is a mixing of degree 1 then it is a mixing of all degrees.

Proof If S is a mixing of degree I then by theorem 5.33 $\lim _{n \rightarrow \infty} \varphi(n)=0$ and so by theorem 5034 we have that S is a mixing of all degrees.
$5 \cdot 4$ SPECTRAL PROPERTIES OF STATIONARY GAUSSIAN PROCESSES

Keeping the notation of the previous section wa now turn to the spectral properties of S. As usual if $f \in L_{\mu}^{2}$ then we refer to the subspace spanned by $S^{n} f, n \in \Gamma$ as the cyclic subspace generated
by f, and to the set function G defined on $[-\pi, \pi]$ and such that $\left(S^{k} f, f\right)=\int_{-\pi}^{\pi} e^{i \lambda} k_{d G}(\lambda)$ as the spectral type of f. (cf.section 4.6). Further aince the set of all finite polynomials in a finite number of the x_{n}^{\prime} 's is everywhere dense in L_{μ}^{2} it follows that the sum of all cyclic subspaces generated by a polynomial of the above form will cover $I_{f^{4}}^{2}$ However, in order to find the maximol spectral type of S we nced to express L_{μ}^{2} as an orthogonal sum of cyclic spaces (see section 4.6). We now proceed to find an orthogonal sequence of polynomials such that the cyclic subspaces generated by them are mutually or thogonal and their orthogonal sum equals L_{μ}^{2}. Before starting we pr ove a lemma which we shall need shortly.

Lemma 5.4] If $F_{y} G$ are integrable functions on $[-\pi, \pi]$ and defined elsewhere so as to be periodic with poriod 2π then

$$
\left\{\int_{-\pi}^{\pi} e^{i \lambda k} d F(\lambda)\right\}\left\{\int_{-\pi}^{\pi} e^{i u k} d G(u)\right\}=\int_{-\pi}^{\pi} e^{i \lambda k} d H(\lambda)
$$

where H is the convolution of F with G.

$$
\begin{aligned}
& \text { Proof }\left\{\int_{-\pi}^{\pi} e^{i \lambda k_{d F}(\lambda)} \mid\left\{\int_{-\pi}^{\pi} e^{-i u k_{d G}(u)}\right\}\right. \\
& =\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{i(\lambda-u) k_{d F}(\lambda) d G(u)} \\
& =\left[\mathbb{T}(\lambda) \int_{-\pi}^{\pi} e^{\left.i(\lambda-u) k_{d G}(u)\right]_{-\pi}^{\pi}}-\int_{\pi}^{\pi} \int_{\pi}^{\pi} i k e^{i(\lambda-u) k_{F}}(\lambda) d G(u) d \lambda\right. \\
& =-\int_{\pi}^{\pi} \int_{i}^{\pi} i k e^{i v k} F(\lambda) d G(\lambda-v) d v \\
& =\left[-e^{-i v k} \int_{\pi}^{\pi} F(\lambda) d G(\lambda-v)\right]_{\pi}^{\pi}+\int_{-\pi}^{\pi} e^{i v k} \frac{d}{d v}\left\{\int_{-\pi}^{\pi} F(\lambda) d G(\lambda-v)\right\} \\
& =\int_{\pi}^{\pi} e^{i v k} d H(\lambda) \\
& \text { where } H(\lambda)=\int_{-\pi}^{\pi} F(\lambda-u) d G(u) \\
& =\int_{-\pi}^{\pi} F(v) d G(\lambda-v)
\end{aligned}
$$

Let $h_{1}=x_{0}^{\prime}$ and H_{1} be the cyclic subspace generated by h_{1}. Then

$$
\begin{aligned}
\left(S^{\left.k_{h_{1}}, h_{1}\right)}\right. & =\int_{R_{\infty}} x_{k} x_{0} d \Gamma \\
& =\varphi(k) \\
& =\int_{-\pi}^{\pi} e^{i \lambda k} d F(\lambda)
\end{aligned}
$$

showing that F is the spectral type of h_{1} 。 Also $\int_{R_{\infty}} h_{l}(x) d \mu(x)=\int_{R_{\infty}} x_{0} d \mu=0$ giving us that $H_{1} \perp H_{o}$, where H_{o} is the cyclic subspace generated by the constant functions.

Before continuing, we pause to point out that since F is singular we have already by lemma 4.68 that \mathbf{S} does not have a Lebesgue spectrum.

Returning to our investigation of the spectral type of S we have that if $h_{2}^{(0)}=\left(x_{0}^{\prime}\right)^{2}-1, H_{2}^{(0)}$ the cyclic subspace generated by $\mathrm{h}_{2}^{(0)}$ then

$$
\begin{aligned}
& \int_{R_{\infty}} h_{2}^{(0)}(x) d \mu(x)=\int_{R_{\infty}}\left(x_{0}^{2}-1\right) d \mu \\
&=0 \\
& \text { and } \int_{\int_{R_{\infty}}(0)(x) S^{k_{h}}(x) d \mu(x)}=\int_{R_{\infty}}\left(x_{0}^{2} x_{k}-x_{1 k}\right) d \mu \\
&=0
\end{aligned}
$$

giving us that $\mathrm{H}_{2}^{(0)}$ is orthogonal to $\mathrm{H}_{0} \oplus \mathrm{H}_{1}$

$$
\begin{aligned}
\left(\mathrm{S}_{\mathrm{h}}^{\mathrm{k}}(0), \mathrm{h}_{2}^{0}\right) & =\int_{R_{\infty}}\left(x_{k}^{2} x_{0}^{2}-x_{k}^{2}-x_{0}^{2}+1\right) d \mu \\
& =2\{\varphi(k)\}^{2}+\{\varphi(0)\}^{2}-2 \varphi(0)+1 \\
& =2\{\varphi(k)\}^{2} \\
& =2 \int_{\pi}^{\pi} e^{i \lambda k} d F_{2}(\lambda)
\end{aligned}
$$

where $F_{2}(\lambda)=\int_{-\pi}^{\pi} F(\lambda-u) d F(u)$ by lemma 5.41.
Thus we see that ${ }^{\prime \prime} \mathrm{F}_{2}$ is the spectral type of $\mathrm{h}_{2}^{(0)}$.
Similarly if we let $h_{3}^{(0)}=\left(x_{0}^{\prime}\right)^{3}-x_{0}^{\prime}, H_{3}^{(0)}$ be the cyclic subspace generated by $\mathrm{h}_{3}^{(0)}$ then we get $\mathrm{H}_{3}^{(0)} \perp \mathrm{H}_{0} \oplus \mathrm{H}_{1} \oplus \mathrm{H}_{2}^{(0)}$ and

$$
\left(S_{h}^{k_{h}(0)} \begin{array}{c}
(0) \\
3
\end{array}\right)=6 \int_{-\pi}^{\pi} e^{i \lambda k_{j}} \mathrm{~F}_{3}(\lambda)
$$

where $F_{3}(\lambda)=\int_{-\pi}^{\pi} F_{2}(\lambda-u) d F(u)$. Thus F_{3} is the spectral type of $h_{3}^{(0)}$.

In general we take

$$
h_{2 r}^{(0)}=\left(x_{0}^{\prime}\right)^{2 r}+\alpha_{1}\left(x_{0}\right)^{2(r-1)}+\cdots+\alpha_{r}
$$

where the $\alpha_{i}, I \leqslant i \leqslant r$ are chosen so that

$$
\left(h_{2 r}^{(0)}, h_{12}^{(0)}\right)=0 \text { for } 2 \leqslant n \leqslant 2 r-1
$$

$$
\left(h_{2 r}^{(0)}, h_{1}\right)=0
$$

and $\int_{R_{\infty}} h_{2 r}^{(0)}(x) d \mu(x)=0$
Although we appear to have $2 r$ conditions these reduce to r in view of $5 \cdot 3$

Similarly we take

$$
h_{2 r-1}^{(0)}=\left(x_{0}^{1}\right)^{2 r-1}+\beta_{1}\left(x_{0}\right)^{2(r-1)-1}+\cdots+\beta_{r-1} x_{0}^{1}
$$

where the $\alpha_{i}, I \leqslant i \leqslant r-1$ are chosen so that

$$
\begin{aligned}
& \left(h_{2 r-1}^{(0)}, h_{n}^{(0)}\right)=0 \text { for } 2 \leqslant n \leqslant 2 r-2 \\
& \left(h_{2 r-1}^{(0)}, h_{1}\right)=0
\end{aligned}
$$

and $\int_{R_{\infty}} h_{2 r-1}^{(0)}(x) d \mu(x)=0$
Again the same remarks as applied to the conditions the $\alpha_{i}{ }^{\prime} s_{0}$ satisfied apply here also. We then let $\underset{\sim}{H} \underset{\sim}{(0)}$ denote the cyclic subspace generated by ${ }_{h}{\underset{n}{(0)}}_{(0)}$ for $n=2,3,4, \ldots$ Clearly we have $\underset{n}{(0)} \perp \mathrm{H}_{0} \oplus \mathrm{H}_{1}$ for all n and $\underset{n}{(0)} \underset{\mathrm{n}}{(0)} \underset{\mathrm{m}}{(0)}$ if $n \neq m_{0}$ Further we have

$$
\left(S_{h}^{k_{h}}(0), h_{n}^{(0)}\right)=p(\varphi(k))
$$

where p is a polynomial of degree n and so by lemma 5.41 we have that the spectral type of $h_{n}^{(0)}$ is absolutely continuous with respect
to $\sum_{i=1}^{n} F_{i}(\lambda)$ where $F_{I}(\lambda)=F(\lambda)$ and $F_{i}(\lambda)=\int_{-\pi}^{\pi} F_{i-I}(\lambda-u) d F(u)$ for $2 \leqslant i \leqslant n$.

In general $L_{\mu}^{2} \neq H_{0} \oplus H_{1} \oplus \bigoplus_{n=2}^{\infty} H_{n}^{(0)}$ and so we consider $x_{0}^{\prime} x_{n}^{\prime}-\varphi(n), n \in \Gamma^{+}$and define $h_{n}^{(1)}$ to be the projection of
 and $H_{n}^{(1)}$ to be the cyclic subspace spanned by $h_{n}^{(1)} \quad$ Further

$$
\begin{aligned}
&\left(S^{k}\left(x_{0}^{\prime} x_{n}^{\prime}-\varphi(n)\right),\left(x_{0}^{\prime} x_{n}^{\prime}-\varphi(n)\right)\right)= \int_{R_{\infty}}\left(x_{k} x_{n+k^{\prime}} x_{0} x_{n}-x_{k} x_{n+k} \varphi(n)-\right. \\
&\left.x_{0} x_{n} \varphi(n)+\{\varphi(n)\}^{2}\right) d \varphi \\
&=\{\varphi(n)\}^{2}+\{\varphi(k)\}^{2}+\varphi(n+k) \varphi(n-k) \\
&-\{\varphi(n)\}^{2}-\{\varphi(n)\}^{2}+\{\varphi(n)\}^{2} \\
&=\{\varphi(k)\}^{2}+\varphi(n+k) \varphi(n-k) \\
& \text { and } \varphi(n+k) \varphi(n-k) \quad \begin{aligned}
\varphi(n)
\end{aligned} \\
&=\left\{\int_{-\pi}^{\pi} i \lambda(n+k) d F(\lambda)\right\}\left\{\int_{-\pi}^{\pi} e^{i u(n-k)} d F^{\prime}(u)\right\} \\
&= \int_{\pi}^{\pi} e^{i \lambda k} d G(\lambda)
\end{aligned}
$$

where $G(\lambda)=\int_{-\pi}^{\pi} e^{i(\lambda-u) n} F(\lambda-u) d\left\{e^{i u n} F(u)\right\}$ by lemma 5. 41. Thus we see that

$$
\left(U^{k}{ }_{n}^{(l)}{ }_{n}^{l}, h_{n}^{(1)}=\int_{-\pi}^{\pi} e^{i \lambda k} d \Phi{ }_{2}^{n}(\lambda)\right.
$$

where $\Phi{ }_{2}^{n}(\lambda)$ is absolutely continuous with respect to $F_{2}(\lambda)$. Again

$$
\begin{aligned}
\left(S^{k}\left(x_{0}^{\prime} x_{n}^{\prime} x_{m}^{\prime}\right), \quad x_{0}^{\prime} x_{n}^{\prime} x_{m}^{\prime}\right)= & \int_{R_{\infty}} x_{k} x_{n+k} x_{m+k} x_{0} x_{n} x_{m} d \eta \\
= & \varphi(n)\{\varphi(m+k) \varphi(n-m)+\varphi(m+k-n) \varphi(m) \\
& +\varphi(k) \varphi(n)\} \\
& +\varphi(n)\{\varphi(n+k) \varphi(n-m)+\varphi(k) \varphi(m) \\
& +\varphi(n+k-m) \varphi(n)\} \\
& +\varphi(k)\left\{\{\varphi(n-m)\}^{2}+\{\varphi(k)\}^{2}\right. \\
& +\varphi(n+k-m) \varphi(m+k-n)\}
\end{aligned}
$$

$$
\begin{aligned}
& +\varphi(n-k)\{\varphi(n-m) \varphi(m)+\varphi(n+k) \varphi(k)+\varphi(n+k-m) \varphi(m+k)\} \\
& +\varphi(m-k)\{\varphi(n-m) \varphi(n)+\varphi(n+k) \varphi(m+k-n)+\varphi(k) \varphi(m+k)\}
\end{aligned}
$$

Thus if $h_{n}^{(2)}$ is the projection of the $n^{\text {th }}$ term of the sequence $x_{0}^{\prime} x_{0}^{\prime} x_{0}^{\prime}, x_{0}^{\prime} x_{1}^{\prime} x_{0}^{\prime}, x_{0}^{1} x_{1}^{\prime} x_{1}^{\prime}, x_{0}^{\prime} x_{2}^{\prime} x_{0}^{\prime}, x_{0}^{\prime} x_{2}^{\prime} x_{1}^{\prime}, x_{0}^{1} x_{2}^{\prime} x_{2}^{\prime}, x_{0}^{1} x_{3}^{\prime} x_{0}^{\prime}, x_{0}^{1} x_{3}^{\prime} x_{1}^{\prime}$,
 and if $\Phi_{3}^{(n)}$ is the spectral type of $h_{n}^{(2)}$ we have that $\Phi_{3}^{(n)} \leqslant F+F_{2}+F_{3}$ since for all $n, m \in \Gamma^{+}$we have

$$
\begin{aligned}
\int_{-\pi}^{\pi} F_{m}(\lambda-u) d F_{n}(u) & =\int_{-}^{\pi} \int_{\pi}^{\pi} F_{m-1}^{\pi}\left(\lambda-u-v_{1}\right) d F\left(v_{1}\right) d F_{n}(u) \\
& =\int_{-\pi / \pi}^{\pi}\left[\cdots \int_{-\pi}^{\pi} F\left(\lambda-u-\sum_{i=1}^{m} v_{i}\right) d F\left(v_{m}\right) \ldots d F\left(v_{1}\right) d F_{n}(u)\right. \\
& =\int_{-\pi}^{\pi} \cdots \int_{\pi}^{\pi} \int_{-\pi}^{\pi} F_{n}\left(\lambda-u-\sum_{i=1}^{m} v_{i}\right) d F(u) d F\left(v_{m}\right) \ldots d F\left(v_{1}\right) \\
& =\int_{\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \int_{\pi}^{\pi} F\left(\lambda-u-\sum_{i=1}^{n+m} v_{i}\right) d F(u) d F\left(v_{n+m}\right) \ldots d F\left(v_{1}\right) \\
& =F_{n+m+1}(\lambda)
\end{aligned}
$$

Thus if $a_{i}, i \epsilon \Gamma^{+}$satisfy $a_{i}>0$ each $i, \sum_{i \epsilon} \Gamma+a_{i}<\infty$ and $\psi_{1}(\lambda)=\sum_{j \in \Gamma^{+}} a_{j} F_{j}(\lambda)$ then by the method used earlier in this section it is easy to show that the spectral type of all polynomials in a finite number of the $x_{j}^{\prime}, j \in \Gamma$ is absolutely continuous with respect to $\psi_{1}(\lambda)$. Thus if we order these polynomials and consider their projections on the orthogonal complement of the $H_{j}^{(i)}{ }_{s}$ already defined we can express L_{μ}^{2} as the orthogonal sum of cyclic subspaces whose spectral types are all absolutely continuous with respect to $\psi_{1}(\lambda)$. Hence if $F_{0}(\lambda)$ is the spectral type of H_{0}, $a_{0}>0$ we have that $\psi(\lambda)=a_{0} F_{0}(\lambda)+\psi_{1}(\lambda)$ is the maximal spectral type of L_{μ}^{2} since $F_{n}(\lambda)$ is the spectral type of $H_{n}^{(0)}$ for $n \geqslant 2$ and $F_{1}(\lambda)=F(\lambda)$ is the spectral type of H_{1}.

We have previously defined Kolmogor ov and regular automorphisms and the concept of mixing of all degrees. In section 4.5 we showed that an automorphism on a finite measure space is regular if and only if it is a Kolmogor ov automorphism and in section 4.4 We showed that this condition implied mixing of all degrees. The aim of this section is to show that the converse is not true, i.e. that there exist automorphisms on finite measure spaces which are mixing of all degrees but winich are not Kolmogor ov automorphisms.

Theorem 5.51 There exist automorphisms of finite measure spaces which are mixing of all degrees but which are not Kolmogor ov automorphisms.

Proof Te consider the $F(x)$ and $\varphi(n)=\frac{1}{2} \pi \int_{-\pi}^{\pi} e^{-i n x} d F(x)$. of section 5.2. Since $F(x)$ is monotone increasing we have by 5.31 that $\varphi(n)$ is a positive definite function and so by 5.32 there is a stationary Gaussion process S on R_{∞} such that $\varphi(n)$ is the associated positive definite function. Now it was proved in 5.2 that $\varphi(n)=0\left(n^{-\frac{1}{2}+d}\right)$ for every $d>0$ and so we have $\lim _{n \rightarrow \infty} \varphi(n)=0$. Theorem 5.34 now gives us that S is a mixing of all degrees. Fur ther using the notation and results of aection $5^{\circ} 4$ we see that the maximal spectral type of S is $\sum_{n=0}^{\infty} a_{n} F_{n}(\lambda)$ where $F_{0}(\lambda)$ concentrates on the eigenvalue corresponding to the constants, $F_{I}(\lambda)$ is singular and the $F_{n}(\lambda)$ for $n \geqslant 2$ are absolutely continuous. Hence we see that S cannot have a Lebergue spectrum in the space orthogonal to the constant functions and so by 4.7 S is not a Kolmogorov-automorphism.

Corollary There exist automorphisms of finite measure spaces which are mixing of all degrees, but which are not regular.

Proof This is an immediate consequence of 4.4 and the theorem.

With the notation of 5.4 we have

$$
\begin{aligned}
\int_{-\pi}^{\pi} e^{i n \lambda} F(\lambda) d \lambda & =\left[e^{i n} \lambda_{F} F(\lambda)\right]_{-\pi}^{\pi}+\frac{i}{n} \int_{-\pi}^{\pi} e^{i n \lambda} d F(\lambda) \\
& =\frac{i \varphi(n)}{n}
\end{aligned}
$$

and so

$$
\begin{aligned}
F_{2}(\lambda) & =\int_{\pi}^{\pi} \sum_{n \epsilon \Gamma} \frac{i \varphi(\ln \mid)}{n} e^{-i n(\lambda-u)} d F(u) \\
& =i \sum_{n \epsilon \Gamma} \frac{\phi(\ln \mid)}{n} e^{-i n \lambda} \int_{-\pi}^{\pi} e^{i n u} d F(u) \\
& =i \sum_{n \in \Gamma}|\varphi(\ln \mid)|^{2} e^{-i n \lambda} \\
& =\int_{n \in H} \sum_{n}|\varphi(\ln \mid)|^{2} e^{-i n \lambda} d \lambda
\end{aligned}
$$

Hence if $\varphi(n)=0\left(n^{-\frac{1}{2}+d}\right)$ for every $d>0$ as $n \rightarrow \infty$ then $\{\varphi(|n|)\}^{2}=0\left(n^{-l+d}\right)$ for every $d>0$ as $n \rightarrow \infty$ and so we see that $F_{2}(\lambda)$ is the integral of a function in L_{μ}^{2} and is therefore absolutely continuous. Similarly $F_{n}(\lambda), n \geqslant 2$ is absolutely continuous.

6.1 INTRODUCTION

In this chapter we no longer require μ to satisfy $\mu(X)=1$. Instead we assume that μ is a σ-finite, $i_{0} e_{0}$ that there exist sets $A_{i}, i \in \Gamma^{+}$such that for all i, $\mu\left(A_{i}\right)<\infty$ and such that $\bigcup_{i \in \Gamma+A_{i}}=X_{0}$

We say that a set A is a wandering set if for all i, $j \in \Gamma$ such that $i \neq j$ we have $T^{i} A \cap T^{j} A=\phi . \quad C l e a r l y$ this last condition is equivalent to $A \cap T^{-i} A=\phi, i \in \Gamma^{+}$

Proposition 6.11 . If there are no wandering sets of positive measure then for all $A \in E$ we have $\mu(T B)=\mu(B)$ where $B=\bigcup_{i \in \Gamma^{+}} T^{-i} A$
Proof If $C=T B-B$ then for $n \in \Gamma^{+}$

$$
\begin{aligned}
& C_{n} T^{-n} C=\left\{\bigcup_{i=1}^{\infty} T^{-i} A-\underset{i \in r^{+}}{V} T^{-i} A\right\}_{n}\left\{\bigcup_{i=n}^{\infty} T^{-i} A-\bigcup_{i=n+1}^{\infty} T^{-i} A\right\} \\
& =\left\{A-U_{i \in \Gamma^{+}} T^{-i} A{ }_{A}\left\{T^{-n} A-V_{i=n+1}^{\infty} T^{-i}{ }_{A}\right\}\right. \\
& \leqslant\left\{A-U_{i \in r^{+}} T^{-i} A\right\}_{\cap} T^{-n} A \\
& =\phi \text { since } T^{-n} A \leqslant \bigcup_{i \varepsilon \Gamma+} T^{-i} A
\end{aligned}
$$

Thus C is a wandering set and so we must have $\mu(C)=0$ and therefore $\mu(T B)=\mu(B)$ since $B \leqslant T B$.

Proposition 6.12 If A is any set such that $r(A)>0$ and we put $A_{i}=\left\{x: x \in A, T^{i} x \in A, T^{j} x \notin A, l \leqslant j \leqslant i-1\right\}$ for $i \in \Gamma^{+}$then if there are no wandering sets of positive measure, $\mu\left(A-U_{i \in \Gamma^{+}} A_{i}\right)=0$.

Proof If $B=A-\underset{i \in \Gamma^{+}}{ } A_{i}$ then for $n \in \Gamma^{+}$

$$
\begin{aligned}
\mathrm{Bn} T^{-n} B & =\left\{A-U \Gamma_{i} \Gamma^{+} A_{i}\right\} \cap\left\{T^{-n} A-\underset{i \in \Gamma^{+}}{U} T^{-n} A_{i}\right\} \\
& \leqslant\left\{A-\underset{i \in \Gamma^{+}}{ } A_{i}\right\} \cap T^{-n} A
\end{aligned}
$$

$$
=\phi
$$

 and hence $T^{-n} \Lambda S U_{i \in \Gamma^{+}} A_{i}$ for all $n \in \Gamma^{+}$. But there are no wandering sets of positive measure and so $\mu(B)=0$ as required.

When dealing with σ-finite measure spaces, with no wandering sets of positive measure we keep the same definitions of invariant exhaustive and K_{1}-algebras, but we redefine a K-algebra to be a K_{1}-algebra α, such that $\alpha_{\infty}=\mu$ and such that $0<\mu(\Lambda)<\infty$ for at least one $A \in \alpha_{\text {. }}$ Clearly this coincides with our previous definition if $\mu(X)<\infty$. If α is a K-algebra and $A \in \alpha$ satisfies $0<\mu(\Lambda)<\infty$ then we let $\Lambda_{i}=T^{-i} \Lambda$, $i \in \Gamma^{+}$. By proposition 6.11 we have that $T_{i \in \Gamma^{+}}^{U} \Lambda_{i}=\bigcup_{i \in \Gamma^{+}} \Lambda_{i}$ and since $\bigcup_{i \in \Gamma^{+}} \Lambda_{i} \in \alpha$ we deduce that $U_{i \in \Gamma^{+}} A_{i} \in T^{j} \alpha, j \in \Gamma_{0} \quad$ Hence $\underset{i \in \Gamma^{+}}{U} \Lambda_{i} \in \bigwedge_{j \in \Gamma^{j}}^{j} \alpha=\nu$ giving us that $U V_{i} \Gamma_{i}=X$ up to a set of measure zero since $0<\mu(\Lambda)$ implies $\mu\left(U_{i} U_{\Gamma}+A_{i}\right) \neq 0$.

6.2 INDUCED AUTOUORPHISNS

If A is any set such that $\mu(\hat{A})>0$, then we put

$$
\varepsilon_{A} \equiv\{B ; B \in E, B \leq A\}
$$

and we define a measure μ_{A} on (X, ε_{A}) by putting

$$
f_{A}(B)=\mu(B) \text { for } B \in \varepsilon_{\Lambda}
$$

and we define S_{A}, by

$$
S_{A}(x)=\left\{T^{i} x: T^{i} x \in \Lambda, T^{j} \mathcal{L}_{1}, l \leqslant j \leqslant i-1\right\} \text { for } x \in \Lambda_{0}
$$

Clearly by proposition 6.12 S_{A} is an automorphism and it is measure preserving since T is. We refer to S_{A} as the automorphism induced on (A, ε_{A}) by. To Lastly if α is any σ-algebra we put
$\alpha_{A}=\left\{B\right.$: there exists a $C \in \alpha$ such that $\left.B=A_{n} C\right\}$
Clearly $\quad \alpha_{\Lambda}$ is a σ-algebra of $\left(\Lambda, \varepsilon_{\Lambda}\right)$
Proposition 6.21 . If α is an invariant σ-algebra with respect to T and $A \in \alpha$ is such that $\mu(\hat{A})>0$ then α_{Λ} is an invariant σ-algebra with respect to S_{Λ} if there are no wandering sets of positive measure in ($\mathrm{X}, \varepsilon, \boldsymbol{f}, \mathrm{T}$)

Proof For any $B \in \alpha_{\Lambda}$, (and hence to α) we put $B_{k}=T^{k} A_{\cap} B-$ ${\underset{j}{k}=1}_{k-1}^{U_{j}}, k \in \Gamma^{+}$then $B_{k} \leqslant B$ and $S_{\Lambda}^{-1} B_{k}=T^{-k} B_{k}$ for oil k.
If $C=B-U_{k \in \Gamma^{+}} B_{k}$ them for $n \in \Gamma^{+}$we have

$$
\begin{aligned}
C \cap T^{n} C & \left.=\left\{B-\underset{k \epsilon \Gamma^{+}}{U} B_{k}\right\} \cap T^{n} B-\bigcup_{k \in \Gamma^{+}} T^{n} B_{k}\right\} \\
& \leqslant\left\{B-\underset{k \in \Gamma^{+}}{U} B_{k}\right\} \cap T^{n} B
\end{aligned}
$$

Now $x \in B \cap T^{n} B$ implies $T^{-n} x \in B \leqslant A$ ie. $x \in T^{n} A$ but $x \in B$ and so $x \in T^{n} A \cap B$ giving $x \in{\underset{j}{U}}_{\underline{U}} B_{j}$. Thus $C \cap T^{n} C=\phi$ and hence $C \cap T^{-n} C=\phi$ for all $n \in \Gamma^{+}$and therefore C is a wandering set and so we have $\mu(C)=0$. Further $B_{1}=T A n B \in T \propto$ and by induction we get $B_{k} \in T^{k} \alpha$ for $k \in \Gamma^{+}$. Hence neglecting a set of measure zero we have

$$
\begin{aligned}
B & =U U_{k \in r^{+}} B_{k} \\
& =S_{A} S_{A}^{-1} U_{k \in r^{+}} B_{k} \\
& =S_{A}{ }_{k} \ell_{r^{+}} T^{-k} B_{k}
\end{aligned}
$$

But $T^{-k} B_{k} \in \alpha$, and $T^{-k} B_{k} \leqslant \Lambda$ giving $T^{-k} B_{k} \in \alpha_{\Lambda}$ for all $k \in \Gamma^{+}$and hence $\underset{k \in \Gamma^{+}}{U} T^{-k} B_{k} \in \alpha_{\Lambda^{\circ}}$. Thus $B \in S_{A} \alpha_{A}$ and so we deduce that . $\alpha_{A} \leqslant S_{\Lambda} \alpha_{A} i_{0} e_{0} \quad \alpha_{\Lambda}$ is invariant.

Corollary $1 \quad \alpha_{\Lambda} \leqslant(T \alpha)_{\Lambda} \leqslant S_{A} \alpha_{A}$

Proof Since $\alpha \leqslant T \alpha$ we have immediately that $\alpha_{\Lambda} \leqslant(T \alpha)_{\Lambda}$. If $B \in(T \alpha)_{A}$ then since $A \leqslant \alpha \leqslant T \propto$ we have $B \in T \propto$. The proof of the proposition remains valid for this B and so we get $B \in S_{\Lambda} \alpha_{\Lambda}$ giving $(T \alpha)_{\Lambda} \leqslant S_{A} \alpha_{\Lambda}$

Corollary 2 If α is a K_{1}-algebra with respect to T then α_{A} is a K_{I}-algebra with respect to S_{A}.

Proof

$$
\begin{aligned}
\varepsilon & =\alpha_{T} \text { and so } \\
\varepsilon_{A} & =\left(\alpha_{T}\right)_{A} \\
& \leqslant\left(\alpha_{A}\right)_{S_{A}} \text { by corollary l } \\
& \leqslant \epsilon_{A}
\end{aligned}
$$

giving $\left(\alpha_{A}\right)_{S_{A}}=\varepsilon_{A}$
i. e. $\quad \alpha_{A}$ is exhaustive. But α_{Λ} is invariant by the proposition and so we have that α_{A} is a $K_{1}-$ algebra with respect to S_{A} 。

Proposition 6.22 If α is a K_{1}-algebra, $A \in \propto, \infty>\mu(A)>0$ and $B \in \varepsilon_{\Lambda}$ is such that $S_{A} B=B$ then $B \in \alpha_{A}$

Proof $\quad \alpha_{\Lambda}$ is a K_{1}-algebra and so for each $k \in \Gamma^{+}$there exists an n_{k} and $a B_{k} \in S_{\Lambda}^{n k} \quad \alpha_{\Lambda}$ such that

$$
\mu^{\left(B \Delta B_{k}\right)<2^{-k}}
$$

But $B=S_{A} B$ and so

$$
\begin{aligned}
\mu\left(B \Delta S_{i}^{-n k} B_{k}\right) & =\mu\left\{S^{-n k}\left(B \Delta B_{k}\right)\right\} \\
& =\mu\left(B \Delta B_{k}\right) \\
& <2^{-k}
\end{aligned}
$$

If $C_{k}=S^{-n k} B_{k}, k \in \Gamma^{+}$then $C_{k} \in \alpha_{A}$ for each k.
Now $\mu\left(B-\mathcal{N}_{k=n}^{\infty} C_{k}\right) \leqslant \mu\left(B-C_{m}\right)$ for $n \leqslant m$

$$
\leqslant \mu\left(B \Delta C_{m}\right)
$$

$$
<2^{-m}
$$

Thus we get $\mu\left(B-\bigcup_{k=n}^{\infty} C_{k}\right)=0$ and so $B \leqslant_{k=n}^{\infty} C_{k}$ up to a set of measure zero for all $n \in \Gamma^{+}$giving us that $B \subseteq \cap_{n \in \Gamma^{+}}^{\bigcup_{k=n}^{\infty} C_{k}, ~}$ But $\left.\mu^{(}\left(\cap_{n \in \Gamma^{+}} \bigcup_{k=n}^{\infty} C_{k}-B\right) \leqslant \Gamma_{k=n}^{\infty} C_{k}-B\right), n \in \Gamma^{+}$

$$
\leqslant \sum_{k=n}^{\infty} \mu\left(C_{k}-B\right)
$$

$$
\leqslant \sum_{k=n}^{\infty} \mu\left(C_{k} \Delta B\right)
$$

$$
<\sum_{k=n}^{\infty} 2^{-k}
$$

$$
=2^{1-n}
$$

giving $\left.\mu_{n \in r^{+}} \bigcap_{k=n}^{\infty} C_{k}-B\right)=0$ io. $n_{n \in r^{+}} \bigcup_{k=n}^{\infty} C_{k} s B$ up to a set of measure zero. Thus $B=\bigcap_{n \in \Gamma^{+}} \bigcup_{k=n}^{\infty} C_{k}$ up to a set of measure zero and hence $B \in \alpha_{\text {, }}$ if we neglect a set of measure zero as we are at liberty to do.

Corollary If α is a K_{1}-algebra, $\Lambda \in \propto, \mu(\Lambda)>0$ and $B \in \varepsilon_{\Lambda}$ is such that $T^{k} B=B$ then $B \in \alpha_{A}$
$\operatorname{Proof} \quad$ If $B_{i}=T^{-k} \Lambda_{\cap} B-{\underset{j}{j} \underline{U}_{1}}_{i-1} B_{j}$ then since $T^{k} B=B$ we have
 $S_{i} B=B$. The result then follows from the proposition.

Theorem 6.23 If α is a K_{1}-algebra, $\beta \in Z_{1}$ is such that T $\beta=\beta$ then $\beta \leqslant \alpha$ if we neglect a set of measure zero.

Proof If $\Lambda=X$ in proposition 6.22 then since $T \beta=\beta, \beta \in Z_{1}$ implies that for each $B \in \beta \quad \mu^{(B)}>0$, there exists a $k \in \Gamma^{+}$with $T^{k} B=B$ the result follows from corollary 1 of that proposition.

Proposition 6.24 If $\Lambda \in \varepsilon, \Gamma(A)>0, S_{A}$ is ergodic and there are no wandering sets of positive measure in (x, ε, μ) then T is ergodic in ($B, \varepsilon_{B}, \beta_{B}$) where $B=\underset{i \in \Gamma^{+} T^{-i} A_{\text {。 }} .}{ }$

Proof By proposition 6.11 $T B=B$ and so T is an automorphism on ($B, \varepsilon_{B}, r_{B}$) and $S_{B} x=T x$ for $x \in B$, If $C \in \varepsilon_{B}$ is such that $T C=C$ then we put

$$
C_{\Lambda}=\left\{x: x \in \Lambda, T^{-i} x \in C \text { for some } i \in \Gamma^{+}\right\}
$$

Now $T C=C$ and so $T^{-i} \quad x \in C$ for some $i \in \Gamma^{+}$implies that $T^{i} x \in C$ for all ic Γ thus $S_{A} C_{A}=C_{\Lambda}$ giving $\mu\left(C_{\Lambda}\right)=0$ or $\mu\left(\Lambda-C_{A}\right)=0$ wince S_{A} is ergodic. If $C^{i}=A \cap C$ then we define $C^{k}, k \in \Gamma^{+}$inductively by putting

$$
C^{k}=T^{-k} \Lambda \cap C-\underset{j \underline{U}_{1}}{\substack{-1}} C^{j}
$$

Thus $C^{i}{ }_{n} C^{j}=\phi$ if $i \neq j$ and $C=\underset{k \in C^{4}}{U} C^{k}$ up to a sot of measure zero by 6.12...
Further $C_{A}=\bigcup_{k \in \Gamma^{+}} T^{k} C^{k}$ and so $\mu\left(C_{L}\right)=0$ implies $\mu\left(T^{k} C^{k}\right)=0$ for $\mathrm{k} \epsilon \Gamma^{+}$which in turn implies $\mu(C)=0$. While $\Gamma^{\left(C_{A}\right) \neq 0 \text { implies }, ~}$ $\mu\left(A-C_{A}\right)=0, A \leqslant C_{A}$ up to a set of measure zero. Thus if $D=B-C$ we have $T D=D$ and hence $\mu\left(D_{A}\right)=0$ or $\mu\left(\Lambda-D_{\Lambda}\right)=0$ as above. But $A \leqslant C_{i}$ implies $A \cap D_{\Lambda}=\emptyset$ and so we must have $\mu\left(D_{\Lambda}\right)=0$ which implies $\mu(D)=0$ as above. And so $\mu(B-C)=\mu(D)=0$.

This last result is due to S.Kakutani see [9].

6.3 KOLMOGOROV AUTOMOR.HISISS

Theorem 6.31 If T is a Kolmogor ov-automorphism then T is ergodic.

Proof Let \propto be a K-algebra and $\Lambda_{n}, n \in \Gamma^{+}$such that $A_{n} \in \alpha, 0<\mu\left(\Lambda_{n}\right)<\infty$ for each n and $\bigcup_{n \in \Gamma+A_{n}}=X$. We write $\varepsilon_{n}, \Gamma_{n}, S_{n}, \alpha_{n}$ for $\varepsilon_{\Lambda_{n}}, \Gamma_{\Lambda_{n}}, S_{\Lambda_{n}}, \alpha_{\Lambda_{n}}$. By proposition 6.21 corollary $2 \alpha_{n}$ is a K -algebra. Suppose that S_{n} is not ergodic for some $n \in \Gamma^{+}$. Then there exists a $B \in \varepsilon_{n}$ such that $0<\mu(B)<\mu\left(i_{n}\right)$ and $S_{n} B=B_{0} \quad$ By proposition $6.22 \quad B \in \alpha_{n}$ and hence $B \in \alpha_{0}$ Now $T U_{k \in \Gamma^{+}} T^{-k} B=U_{k \in T^{-}} T^{-k} B$ by proposition 6.11 and so $B \leqslant A_{n} n{ }_{k \in \Gamma^{+}} T^{-k} B$. If $x \in A_{n} n_{k \in \Gamma^{+}} T^{-k} B$ then $x \in A_{n} \cap T^{-1} B$ for some $l \in \Gamma^{+}$and so $x \in B$ since $S_{n} B=B$ Giving $A_{n} \wedge \bigcup_{k \in \Gamma^{+}}^{T^{-k}} B \leq B$ and hence $B=A_{n} n_{k \in \Gamma^{+}} T^{-k} B_{0} \quad$ If $C=V_{n \in \Gamma^{+}}^{U} T^{-k} B$ then by proposition 6.11 $T C=C$. However $\mathbb{T}^{-k} B \in \mathbb{T}^{-k} \leqslant \alpha$, and so $C \in \alpha$ and therefore since $T C=C$ we have $C \in \alpha_{\infty}^{*}=\nu$ 。 But $0<\mu(B) \leqslant \mu(C)$ and therefore $\mu(X-C)=0$ which in turn gives $A_{n} \wedge C=A_{n}$ modulo zero io $\mu(B)=\mu\left(\Lambda_{n}\right)$ a contradiction. Thus S_{n} is ergodic for all n. By proposition 6.24 we have that T is ergodic in $U_{i} U_{r}+T^{-i_{n}}$ and since $T U_{i \in \Gamma^{+}} T^{-i_{A_{n}}}=U_{i \varepsilon \Gamma^{+}} T^{-i} A_{n}$ by proposition 6 . 11 we have in view of $U_{i \in \Gamma^{+}} \mathbb{T}^{-i}{ }_{A_{n}} \in \alpha, \quad \alpha_{\infty}^{-}=\nu$ that $\underset{i \in \Gamma^{+}}{U} \mathbb{T}^{-i} A_{\mathrm{A}}=X$ and hence the desired result.

Corollary If T is a Kolmogor on automorphism then \mathbb{T}^{k} is ergodic for $k \in \Gamma^{+}$
$\operatorname{Proof.~If~} \alpha$ is a K-algebra with respect to T then $\alpha \mathbb{T} \alpha$ and so $\alpha \leqslant T^{k} \alpha$. Now $\quad V^{n} \underline{V}_{-\infty} T^{i} \alpha=T^{n} \alpha \leqslant T^{k n} \alpha=V_{i=-\infty}^{n} T^{k i} \alpha$ for $n \in \Gamma^{+}$ hence letting $n \rightarrow \infty$ gives $\alpha_{T} \leqslant \alpha_{T} k$ but $\alpha_{T}=\varepsilon$ and so $\alpha_{T} k=\varepsilon$. Further $\bigwedge_{i=-n}^{\infty} T_{k}^{k} i_{\alpha}=T^{-k n} \alpha \leqslant T^{-n} \alpha=\bigwedge_{i=-n}^{\infty} T^{i} \alpha$ for $n \in \Gamma^{+}$and letting $n \rightarrow \infty$ gives $\alpha_{\infty}^{\mathbb{T}^{k}} \leqslant \alpha_{\infty}^{\mathbb{T}}$, but $\alpha_{\infty}^{T}=\nu$ and so $\alpha_{\infty}^{\mathbb{T}^{k}}=\nu$ 。 Thus α is a K-algebra with respect to $T^{k}, k \in \Gamma^{+}$and so T^{k} is a Kolmogorov
automorphism for $k \in \Gamma^{+}$The argodicity of T^{k} then follows from the theorem.

Numbers refer to the page（s）where the definition or symbol was first intr oduced．
atom：
atom set：
I is an atom of α if $B \in \alpha, \quad \mu(B-\Lambda)=0$
imply $\mu(B)=0$ or $\mu(B)=\mu(\Lambda)$ 。
Λ_{i}, \quad i $\in I \leq \Gamma^{+}$is an atom set of $\alpha \in Z_{3}$ if
Λ_{i} is an atom of \propto for each $i, \Lambda_{i} \wedge \Lambda_{j}=\phi$ whenever $i \neq j$ and $\mu\left(\bigcup_{i \in I} \Lambda_{i}\right)=1$ 。
8.
\therefore is a continuous set of \propto if given any $A_{1} \in \alpha$ such that $A_{1} \in A$ and any d such that $0<d \leqslant \mu\left(\Lambda_{1}\right)$ then there exists a $B \in \alpha$ with $\mu^{\left(B-i_{1}\right)}=0$ and $0<\mu^{(B)} \leqslant d$. 16． 8.
entropy：
21，27，28，44，51．
T is ergodic if $T_{A}=A$ implies $\rho(\Lambda)=0$ or $\mu(X-\Lambda)=0$. 12.
α is exhaustive if $\alpha_{T}=\varepsilon$ 。 55，61．
I is exhaustive if $V_{t \in \Gamma^{+}} \mathrm{Ut}_{\mathrm{L}}=I_{\mu}^{2}$
88，89．
generator：
α is a generator if $\alpha_{T}=\varepsilon$ 。
52.

Homomorphism：
8.
increasingly filtered： 32.
induced automorphism： 102.
invariant：$\quad \alpha$ is invariant if $\alpha \leqslant T \propto . \quad 55,61$.
L is invariant if UL $\leqslant L_{\text {。 }}$
78.
is om or phism：
21.

K－algebra：
K_{1}－algebra：
K－automorphism：

Lebesgue space：
8.

Lebesgue spectrum： 76.
measure：
7.
measure space：
8.
metric type：
11.
mixing：
61.
notation：

$$
\begin{equation*}
\epsilon, \cup, n,-, \leftarrow, \notin, \Gamma, \Gamma^{+}, \phi \tag{7}
\end{equation*}
$$

$$
(X, \varepsilon, \mu), \wedge, V, \wedge, \nu, T
$$

$$
L_{n}^{2},(f, g),\|f\|, U
$$

$$
z_{1}, Z_{2}, z_{3}
$$

$$
\mu(A \not B)
$$

$$
H(\alpha), H(\alpha \mid \beta),
$$

$$
21,27,28 .
$$

$$
S(\alpha)=\left\{\alpha^{\prime}: \alpha^{\prime} \leqslant \alpha, \alpha^{\prime} \in Z_{3}\right\}
$$

$$
\mathbb{Z}=\{\alpha: H(\alpha)<\infty\}
$$

$$
37 .
$$

$$
\rho(x, \beta)=H(\alpha \mid \rho)+H(\beta \mid \alpha)
$$

$$
T \alpha=\left\{A: T^{-1} A \in \propto\right\}
$$

$$
42 \text { 。 }
$$

$$
\alpha^{n}=\alpha_{T}^{n}=\underset{i=1}{\underline{i}-1} T_{0}^{i} \alpha
$$

$$
\begin{equation*}
\alpha_{T}=\underset{i \in \Gamma}{V} T^{i} \alpha \tag{42.}
\end{equation*}
$$

$$
\alpha^{-}=\alpha_{T}^{-\frac{i \epsilon \Gamma}{i \in \Gamma^{\rightarrow}} T^{-i} \alpha, ~}
$$

$$
\alpha_{\infty}=\alpha_{\infty}^{T}=\hat{i}_{i \in \Gamma^{+}} T^{-i} \alpha
$$

$$
\begin{equation*}
h_{1}(\alpha, T)=\lim _{n \rightarrow \infty} H\left(\alpha \mid T^{-n} \alpha^{n}\right) \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
h(\alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\alpha^{n}\right) \tag{44.}
\end{equation*}
$$

$$
\begin{aligned}
& h(T)=\sup _{\alpha \in Z} h(\alpha, T), \\
& S^{*}=\{\alpha: h(\alpha, T)=0\}, \\
& \pi(T)=V_{\alpha \in S^{*}} \alpha, \\
& 56 . \\
& \Pi(I)={ }_{\alpha \in S^{*}}{ }^{\alpha} \text {, } 56 . \\
& (\alpha)=\hat{i} T^{i} \alpha^{-}=\lambda_{i \not \xi^{+}} T^{-i} \alpha^{-}, \quad 61 . \\
& H_{x}, \varphi_{x}(n), \\
& R_{J}, R_{\infty}, \Gamma_{J}, \mu_{\infty}, \quad 88,89 . \\
& \varepsilon_{A} \mu_{\Lambda}, S_{A}, \propto_{A}, \quad 102,103 .
\end{aligned}
$$

partition:
18.
regular: $\quad T$ is regular if $(\alpha)=\nu$ for all $\alpha \in Z_{1} . \quad 61$.

$$
\sigma \text {-algebra: } \quad 7
$$

$$
\sigma-\text { finite: }
$$

101.

tail σ-alsebra: 61。
wandering set: $\quad \Delta$ is a wandering set if $T^{i}{ }_{\Lambda} \cap T^{j}{ }_{\Lambda}=\phi$ for all i, $j \in \Gamma$ such that $i \neq j$ 。

1. $A B R A M O V$, L.in., Certain topics in the metric theory of dynamical systems, dissertation, Moscow State University,1960.
2. BLIM, J.R. and HLNSON, D.I., Some asymptotic convergence theor ems, Proceedings of an International Symposium held at Tulane University, New Orleans, 1961.
3. DOOB, J.L., Stochastic Processes, New York, 1953.
4. FOUIN, S.V., Dynamical systems in a function space, Ukrainskii Matematicheskii Thurnal, 2, no. 2, 1950.
5. HALMOS, P.R., Measure Theory, Van Nostrand Co.Inc. 1950.
6. HALMCS, P.R., Lectures on Ergodic Theory, Chelsea Publishing Coo, 1956。
7. HARDY, G.i., A course of Pure Mathematics, loth edition, Cambridge, 1952。
8. JACOBS, K., Lecture notes on Ergodic Theory, Matematisk Institut, Aarhus Universitet, 1962/63.
9. KAKUTAiVI, S., Induced measure preserving transformations, Proceedings of the Imperial Academy, Tokio, 19, 1943.
10. KELEY, J.L., General Topology, Van Nostrand Co.Inc. 1955.
11. KOLMOGOROV, A.iN., A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces, Doklady $\Lambda k a d$. Nauk. S.S.S.R., $119,1958$.
12. KOLMOGOROV, A.V., Entropy per unit time as a metric invariant of automorphisms, Doklady Nkad. Nauk. S.S.S.R. 124, 1959.
13. PINSKER, M.S., Information and information stability of random variables and processes, Moscow, 1960.
14. ROKHLIN, V.A., On the fundamental ideas of measure the ory, Mat. Sbornik, 25, 1949.
15. ROKHLIN, V.A., Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk. S.S.S.R., Ser. Mat., 24, 1960.
16. ROKHLIN, V.i.e, New progresses in the theory of transformations with invariant measure, Uspekhi Mat. Nauk. 15, 1960.
17. ROKHLIN, V.A., and SINAI, Ja.G., Construction and properties of invariant measurable partitions, Doklady Nkad. Nauk., S.S.S.R., 141, 1961.
18. SINAI, Ja. Go, On the concept of entropy for dynamical systems, Doklady ikad. Nauk. S.S.S.R., 124, 1959.
19. SIINI, Ja.G., Probabilistic ideas in Ergodic Theory, Proceedings of the International Congress of Mathematicians,1962 SINAI, Ja. Go and ROKHLIN, VoA., see ROKHLIN, VoAo and SIINAI, Ja. G。
20. STONE, M.H., Linear transformations in Hilbert space, American Mathematical Society, 1932.
21. SUCHETON, L., Remarks on Kolmogor ov automorphisms, Proceedings of an International Symposium held at Tulane University, New Orleans, 1961.
22. ZYGMND, A., Trínonometric Series, Cambridge, 1959.
