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ABSTRACT 

Given any automorphism T on a measure space (X, g,14) 

there is (see K.Jacobs (83 or V.A.Rokhlin f16)) in associated 

unitary operator U on L
2 

such that Uf(x) = f(Tx) for all 

feL2. We first define and investigate the properties of the 
iaffaTogd A.g&ueopuew g2sS 	gmspaca 

metric invariant entrophysea Ja. G. Sinai C181, in order to 

show (scc  A.-I4-Xdlmeger-elr-447-14--tTr&-TIa3) that there exist 

metrically gpgdo 
equivalent (see Vai..Rokhlin (163) T1, T2  such that 

the associated U U2 are not 	ally equivalent (see 

V.A.Rokhlin (151). 

Having done this we turn to the concepts of Kolmogorov 

and regular automorphisms on finite measure spaces. Then 

following V.A.Rokhlin (153 and L.Sucheston [21) we show that 

both these concepts imply mixing of all degrees. 	Further 

investigation enables us to deduce that T is a Kolmogorov 

automorphism if, and only if, it is a regular'automcrphism. 

An immediate question then is whether or not T being a mixing 

of all degrees. implies T is a Kolmogorov automorphism? We 

answer this in the negative by constructing a stationary Gaussian 

process which we show to be a mixing of all degrees and which 

cannot be a Kolmogorov automorphism since its spectrum is not 

a Lebesgue spectrum as is that of all Kcilmogorov automorphisms 

see K. Jacobs (8). 

In the course of the above we show that if a Gaussian 

process is a mixing of degree 1 then it is a mixing of all degrees. 
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In the last chapter we extend the notion of a 

Kolmogorov automorphism to tr -finite measure spaces and 

prove (a fact which is clear for finite measure spaces) 

that in this case also T is a Kolmogorov automorphism 

implies that T is ergodic. 	.An open question for 

sr-finite measure spaces is what mixing properties does a 

Kolmogorov automorphism have? 
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1. INTRODUCTION 

1 • 1 NOTATION 

As usual we denote "is a member of" by e and the union, 

intersection, difference and symmetric difference of two sets by %), 

	

A 	, and o  respectively. If A is a subset of B then we write 

A ,c B. r will denote the integers and r+ the strictly positive 

integers. If X is an abstract space then by a cr- algebra pc , we 

mean a collection of subsets of X such that: 

	

(1) 	A,B E a imply A AB, AABe tx ; 

(ii) A. at , i r+ 	implies . IJA. e 04: • ler+ 1 	' 
(iii) XE tit,  

We note that it is usual to define a T-algebra to be rather more 

general than the above in that (i 	is replaced by 

(iii)i  a< contains a "unit" 

and then (1), (.1i), (iii) become necessary and sufficient conditions 

for 	cc to be a o-- algebra whose unit is X. (see P.R.Hoilmos t 53 ). 

However, the above definition is adequate for our purpose. 	If oc. 

is a cr- algebra, then, since A B = 	4  B) 4  (j,. n B) A-B = (13.,4  B) et A, 

we have that .A.,B E 0( imply A vB e of , A-B 6 1X and since 

ie44(X-Ai) -we have that Licac,i r÷iiaplies 	o( 

Gixen X and a o--algebra C , then by a measure on (X, 00 we mean 

a real valued, non-negative function rt whose domain of definition 

is at and which satisfies: 

	

) 	() = 0, where here as always we use 0. to denote the null 

set; 

if A. E of , itr+ are such that. A.A A a = 0 if i#j then 
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14 ( '44.'1i) 	Nr+P(Li).  
We point out that we are using "measure" for what in measure theory 

is usually called "positive measure", (see P.R.Halmos [5]). We 

refer to (X, I X, i ) as a measure space. 	If 6 is a mapping of a 

measure space (X, a, ) into an:pther measure space (y,p,X) such 

that if A. efi then 19-1A ix and rt (0-IA) = X (A) then we say that 

0 is a homomorphism. If 0 is a one-to-one mapping such that 9 and 

-1 are homomorphiam, then 0 is an isomorphism and we say that 

(X, ex,r) and ( Y, /3 , ) are isomorphic. 	If the two measure spaces 

coincide then c homonaorphism is called. an endomorPhia 	an 

isomorphism, an automorphism. An automorphism T of the space 

(X, 0„r) is called isomorphic to the automorphism S of the space 

(y ,p,x) if there exists an isomorphism 9 of (X, tx , r ) onto 

)//3 , a )such that S =i T 

An important principle of measure theory is that of neglecting 

sets of measure zero. 	In accordance with this principle, the 

spaces, as well as their automorphisms, need to be studied up to sets 

of measure sero or, as is commonly said, modulo zero (mod 0). 

For instance, it is not whether (X, or., r) and ( y,p,A) or the 

transformations T and S acting on them are isomorphic which is 

essential, but whether it is possible to make them isomorphic by 

subtracting some sets of measure zero from (X, cg r) and (Y I/3,A); 

if the answer is positive then (X, ot, ) and (y,p,A) or T and S 

are called isomorphic modulo zero, (see V.A.Rokhlin [163). 

Throughout all results are to be interpreted mo'ulo zero. 	We say  

that a measure space (X, 	r) is finite and normalized, if 

r(c) = 1. We define a Lebesgue space to be a finite and normalized 
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measure space which is isomorphic mod 0, to a segment of the real 

line with ordinary Lebesgue measure to which is attached a finite 

or denumerable set of points of positile measure. 	It turns out 

(see V.A.Rolchlin (143) that all measure spaces which occur 

naturally in probability theory are Lebesgue spaces. Thus we shall 

always assume that (X, t 2  r ) is a Lebesgue space. 	From now on, 

unless the contrary is explicitly stated, we always assume the 

existence of a measure space ( , 	ri) which is finite and 

normalized and statements such as "A is a set", "xis.a cr-algebra" 

will mean "A e E "l a is a sub- 	algebra of E, i.e. a is a cr algebra 

such that A z oc implies A 6 6 ". 	Further we assume the existence 

of an automorphism T acting on (X, E 14). 	If of 43 are 

T.- algebras such that A d oc implies A c p then we write oc 4.fi . 

For any T.- algebras. 	 ,/3 we define oc/3 , (a A/3 ) to be the least, 

(greatest) 	algebra containing, (contained in) Da and /3 . 

If a i' 	I, where I is any index set, are o= algebras then we 

define 	Acy to be the least, (greatest) r- algebras 

containing, (contained in) every oci  for i E I. 	If I is finite 

then A e Voc. if and only if A in .n i 1 
A. with A. E 124`.

1 
 for each i and 

2 62 	 le 	1  

A eAoci  if and only if Afot. for each i. 	However, these last 

statements are not true in general if I is infinite. 

We denote the cr-.algebra whose only sets are 0 ,X by v and refer 

to it as the trivial algebra. Latstly we write log for log2  

throughout. 

Any further notation will be explained as it is introduced, 

and a summary of the main definitions is given at the end of 

this thesis. 
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r 2 INTRODUCTION 

In this section we give a brief outline of the problems which 

led to the formulation and study of entropy. By a function on X 

we mean a mapping from X into the real line. As usual we denote, 

{f:f is a function on X, 	If(x) 2< 
X 

by 4. Then if for arbitrary f,ge 412  we put 

(f,g) f(x)g(x)dp  

  

we have that (f,g) is an "inner product" and if 

lIfli se 	(f 2 f)i 

then. lig)! is a "norm" sad /72, 	is a Hilbert space. We now 

associate with T a unique transformation. U 4 -4 q by putting 

Uf(x) . f(Tx), 2E4 

If A is any set, XA the characteristic function of A then. 

f...0(x) = XA(Tx) = XT IA 

Moreover if Ai, i ..“ $:'n are disjoint sets ai, 14' i4'n are finite 

real numbers and 

f (x) II ai if x t Ai, 14 i$ n { 

0 otherwise 

then Uf(x) . ai if x€ T"1  Ai, 1 ,, i N%-  n 

0 otherwise 

giving Ran 2  =I Illf(x)12dr 
X. 

1±1  ea.2  r  (T -I!  ,i) 
... 

 
.t  az r(L.1) because 	(Li)= (T Li) 

= 	jxif(x) I 2dr 

- _ 	11 f11 2 
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Thus we see that U maps the "step functions" in q onto the 

"step functions" in 42  in a 1- 1, and norm preserving manner. 

Further if f is as above and Bj, i(j(m are disjoint sets, 

bi, .140gm are finite real numbers and 

g(x) • b•J  if x€B• 14j4m 

0 otherwise 

 

then (Uf,Ug) • Ix  {Uf(x)1 (U ex); dr  
h 1 	i as • bJ  (T "11 • T 3.2 jt  

al bi r(Ai Bi )  
if(x)iscr)dr 
(f,g) 

Hence since "step functions" are everywhere dense in Lg, and T maps 

the sets in t onto the sets in e it follows by the usual process of 

approximation that U is an automorphism on LIF such that (Uf, Ug) = 

(f,g) for all fyge* i.e. U is a unitary operator (see M.H.Stoner203) 

If T1, T2 are isomorphic automorphisms and S is the 

automorphism isomorphism satisfying T2 = ST1S-1  and U1, U 2, V are 

the unitary operators corresponding to T1, T2, S then for all 

f E tr2  

Ulf (x) 	f (T2x) 

f(ST1S-  ) 

V f (TiS-1x) 

V Llif(s-3-3t) 

V 1-11V-if(x) 

i.e. 	u 2 	V 11  1V -1  

Thus if T1, T2 are of the same metric type, ti1,U2  are of the same 
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spectral type. It is usual to refer to the spectral properties 

of U as the spectral properties of the metric type of T or simply 

as the spectral properties of T. 

If Eh, U2 are of the same spectral type then we day that 

T'1,% are of the same spectral type or alternatively that they are 

spectrally isomorphic (see V.A.Rokhlin [161). However, while 

Ti ,T2  metrically isomorphic imply T3, ,T2  spectrally isomorphic the 

converse is not true in general, as is shown below. We also refer 

to the eigenv alu es eigenftan cti one s  spectrum, and spectral 

invariants of U as the eigenvaluoa, eigenitinctions spectrum and 

spectral invariants of T. 

If Ate , TA = A implies that either r  (A) 0 or r(K-A):10 

then we say that T is ergodio. Since f(x) a, x 4 X implies 

Uf(x) f(Tx) = a, x € X we see that l is always an eigenvalue of 

U and the constant functions are eigenfunctions corresponding to I . 

Further if A C 6 TA "z A then UXA, = 	A XA  giving us that X.A.  

is an eigenfkinction. Thus we see that if the only eigenfunctiorus 

corresponding to 1 are the constant functions then T is ergodic. 

If TA are ergodic automorphissis with pure point spectrum 

then. (see P.R.Halmos [6)) they are of the same metric type if and.  

only if they have the same spectrum. 

For other cases we call the eigenvalues and eiganfttnotions, 

qu asi-eigen.valu es and quasi-eigenfuncti ons of the first order. 

Then for n >1 we define a quasi-eigenvalue of order n to be a 

quasi-eigenfunction of order n-.1 , and if fn../  is a quasi-eigenvalue 

of order n and fn*0 satisfies. U fn=fnfn_i then we say that fn  is 

a quasi-eigenfunction of order n (see V.A.Rokhlin 
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If the quasi-eigenfunctions form a complete system in ,Cr then T has 

a quasi-discrete spectrum. The classification problem for ergodic 

automorphisms with quasi-discrete spectrum was investigated by 

L.M.Abramcv [1] and a complete classification theory constructed 

for them. 

If T has no eigenfUnctions other than the constants then T has 

a purely continuous spectrum (see V.A.Rokhlin [16)). Until a few 

years ago it was not known whether there existed spectrally 

isomorphic automorphisms with purely continuous spectrum belonging 

to distinct metric types. 	In 0.11 and [12] A.N.Kolmagcrov 

introduced the metric invariant, entropy, showed it was not a 

spectral invariant, and so gave a positive answer to the above 

question. 	In fact he proved a stronger result, namely, the 

existence of automorphisms with a denumerably multiple Lebesgue 

spectrum belonging to different metric types. 

1.3 	PREVIEW OF THE MAIN RESULTS 

Having defined and investigated the entropy of an automorphism 

we then look at three classes of automorphisms, viz: 

1. Kolmogorov automorphisms, i.e. those for which there exists 

a g--algebra oc such that oc4 Tc0c,l  V
le 

T1 o( = 6 1  A Tipp( .1i. 	These 
r 

were introduced by A.N.Kolmogorov see flli under the name of 

quasi-regular automorphisms. 

2. Regular automorphisms, i.e. those for which 

A r Tr j
r  

i 	ja(  = 11 for all essentially finite a algebras ot. 

(see L. Sue:Lesion (211). 

3. Automorphisms which are mixings of all degrees. 



14. 

The first two will be proved equivalent later in this thesis. 

V.A.Rokhlin 1161 and L. Such.eston f21)have shown that Kolmogorov 

and Regular automorphisms are mixings of all degrees. Our main. 

result is to show that the converse is false i.e that there exist 

automorphisms on finite measure spaces which are mixings of all 

degrees, but which are neither Kolmogorov automorphisms nor 

Regular automorphisms. 	To do this we consider the Riesz product 

(1 cos2e 1T, 	x) = 1 +Sr*  W., cos v x and the incr easing, continuous vi 
and singular function. G(x) of which it is the Fourier-Stieltjes 

series. 	If we then consider Ir(x) • G(t) where x(t) = 	t+42sign 

we get that F(x) is increasing, continuous and singular and that if 
w 

5D(n) = 	
„

dF(x) for nier then F  (n) is a positive definite 

function and 7) (n) = 0(n d)for every d> 0 as n4 co. 	Then 

extending slightly the results of S.V.Fomin (43 we show that the 

stationary Gaussian process associated with 1) (n) is a mixing of 

all degrees. 	To complete the result we then use the results 

of A.N.Kolmogorov Ill] and S.V.Fomi.n. 14) to show that all Kolmogorov 

automorphisms have a Lebesgue spectrum whereas the stationary 

Gaussian process referred to above does not. 

Next we look at tr-finite measure spaces and generalize the 

concept of a Kolmogorov automorphism. With this generalization, 

we show that a Kolmogorov automorphism on. a cr.-finite measure. space 

is ergodic. 

4 	CONVEX FUNCTIONS 

Lemma 1.4 	If f(x) is defined for 	x‘.1 , f"(x) exists and 

satisfies f " (x) .$:" 0 for 	x< 1 , f ( ) 	f (x) , (1 ) km_ 1(x) then 
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for all sequences (ail 	xi} iEI c r+of numbers satisfying 0,1 ai, 

C 4* 
Z 	a. - 1 ,0‘xi‘i we have 	aif(xi)..c f  ( 16  

Proof. 	The existence of f (x) for 0 < xe 3 implies (see G.H.Hardy 

II) P.212) that f (x) exists for (lex() and that f(x), f l (x) are 

continuous for It xc 3 . 	If lei11  a.x. = 0 then for each i either 

a. = 0 or xi  = 0, thus 

iTiaif(xi) = f(0) = 

If 1 Iaixi  = 1 then if x.J<1 for some j such that aj 	we have 

2 	a. x. < •E a.* a jx. < lf  
J 

a contradiction and so ifIaixi  =I implies xi  =.1 for all i such that 

0 and. so 

I3. a.f(x.) = f(1) = f (2 a.x.). 3.c  

Hence if g(x) = f(x), 0ex<.1 g(0) = lim f(x) g(1) = 	i_f(x) 

then .2 a.g(x.) 	g( le 1 1 	Iaixi)  implies Aaif(xi) f(if, ai  x1). 

Thus, without loss of generality, we may assume that f(0)= lim_fat  f(x), x-4  
f(1) = 

Further by an application of the first mean value theorem, we have 

that the one sided derivatives at 0, 1 are the limits of f'(x) as 

x•90,1 respectively. 

If x = i2Iaixithen Os< x,„5 1 since f iaixi 	Elai= 1. 

Thus by the mean value theorem of the second order (G.H.Hardy f7) 

P.285) we have for id" 

f(xi) = f( )+(x.-x)f i (x)+.1 3.(x.-x)2  f 2  

where 	0( yi< 1. 	Hence 

f(xi),1 f(x) .1. (xi-x) fi-(x) 



and so on multiplying 

lei E a f(x ) f(x) 

i.e. 

through by a and adding we get 

(x-x)f I  (x) = f(x) 

a. f (x. ) <f(iZTalxi) 

16 

We remark that if f "(x) < 0 for 0<x( 1 then we have equality 

if, and only if, xi  = x for all i. But this holds only if either 

all the xi  are equal or a.
J 
 = 1 for some j and consequently a. = 0 

• 
for i 	j. 

If f(x) = 	x log x for, 0< x41 and f (0) = 0 then f it  (x) 

exists and satisfies f " (x) = -(loge ) x < 0 for 0< x< 1. Further 

f(0) = lira f(x), f(1) = lim f(x) and so f(x) satisfies the 
x-401 	x-31- 

hypotheses of lemma 1.4 and of the remark at the end. 

1.5 ALGEBRAS AND PARTITIONS 

If 9( is air-algebra, .Asia satisfies p(A)* 0, then we say that 

A is an atom of °c if B 	ft(B-A) = 0 imply r(B) = 0 or r(B) = r(A) 

and that A is a continuous set of ot if given any ki tric such that 

C A and any d such that 0 (d t 11(1,0 then there exists a, Beoc with 

14(B-A1) = 0 and 0 <r(B)4 d. 	If A,B are atoms of at than we say 

that A,B are essentially disjoint if r (A4 B)* 0 and that A,B are 

equivalent if p (LA B) = 0. We have immediately that any et -algebra 

has at most a denumerable number of essentially distinct atoms since 

we are assuming ,t(X) = 1. 	Clearly if A is an atom of of  , and 

Ai  tilt satisfies ii(A1) =.0 then A u  A.1 , A-! and AA 1',1  are atoms 

of oc . For each atom A of a. er -algebra a we put 

= f B : B is an atom of ex and r (A4 13) = 0 1 

By the above remarks any r -algebra ce has at most a den.uraberable 
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number of distinct equivalence classes Z. Let these be Xi,ie I 

where E  I is a subset of r+ , and let B. i I be such that B. X. 11  3. 
for all i. 	Now put 

1-1 
A 3 	=B3  , A.3.  = B. - .0i  B. for i*1 jo 

then 	.i (A1  A  Bj ) = 0 and for it.1 

r  (Ai  Bi) = r  (A3.-Bi) 4. 14 (Bi-Ai) 

0 
1-1 

since A3.6 Hi  and B. - A. = 	A 
j=i./1  Bi 	j(41Bi  B j; giving Aie 	Ai  

for all 1. 	Given a o'-algebra then the r• e I are unique but 

the Ai  ,i 8 I depend on the Choice of B1  ,i 4 I. 	However if for 

fixed o( ,Bil ,ie I are another set of representatives of 	I 
0, 

which give rise to Ai,if I then since A±,Ait Li far iE I we have 

r (Ai  4  A.) = 0 giving 

f ri(Ai) - r(Ai-Ai)+ r (Ai-Ai) = (Ai h Ai)  = 0 

i. e. 14(A1) = if(Ai). 

determined. 

Thus the numbers 
r- 
H(A.) 	are uniquely 

Proposition 1.5 	Given any er-algebra 4( then we can find sets 

Aili E I and B such that Ai  is an atom of oc for each. $ Ai  A Ai  0 if 

j, B is a continuous set of toc if r(B)t 0, and X = B u 3.VI  Ai  

Proof 	Letik  14- , I be the equivalence classes of atoms,  of e< and 

the A. 	chosen as above. ThenA3.  is an atom of a< for each i and 

Ain A iz  V)  if i j. 	If B= X _NIA,. then it remains to prove that 

B is a continuous set of t‹, if ti(B) O. 	If p(B) 0, B1  is any set 

such that Bi coc,B$  B, d any number such that 0< dtC fl (Bi  ) then either 

ti(B$  ) = 0 in which case nod exists, or p (13f )0. 	If r(Bi ) t  0 

i E I 
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and Bs  is an atom of a then for some i) B l eAi  and so r(B1 =Ai ) = 0 

giving r(B.$ ) = 0 since B s  B which is a contradiction. 	Thus B 

is not an atom of oc and hence there exists a Ci € 84 with r(C1 -Bs  )= 0 

and 0<r(q)<r(B ). 	If Ci= Bin Cif  then CiE ix, C16. Bi  and 

0 <ti(C1)‹ ti (B1). 	Similarly Cl  is not an atom of oc and so there 

exists a 02E 04 with C2  C Ci  and 0 <r(02 ) < p(Ci  ). 	We now put 

D1 	( 02 if r(C2) p (Ba.) l2 
Cl — 02 otherwise 

then Dl  E OX, pre Bi  and 0 •c-  ri(Di) r(B1) / 2. 

Repeating this argument a further n-1 times we find a Dne o with 

Dn g Dn...3.  and 0 < r(Dn )< p(Dn_i ) / 2, giving Dn ,c, B1  and 0.< p (Dn ) < ri(Bi )s. 

gil. Since iii-ronon  r(B1)/211  = 0 there exists an m<oo such that 

r(B1)12m‘ d. 	If we 111,7/ put E = Dm  then E 	r(E-Bi) = 0 and 

< p(E)4 d. 	Hence we conclude that B is continuous. 

With the notation of the above proposition we. put: 

Zl  = f pc: r(B) = 0, I is finite 

Z3  46c: r(B) = 0 J 

Z2 =Z3  Z1. 

If at e Z1, (Z3 ) then we say that oc is essentially finite, (denumerable) 

This terminology is based on the concept of "partitions". 

More precisely we say that a collection of sets Pi ,i e I is a 

partition if I is countable and i j implies. Pi n P j  = 0, and 

L 
	If for each i€I, 	i  is the 43-- algebra whose sets are 

t Pi,X-Pi  and X, and if fa= Mei  then we say that ea is the 

cr. algebra generated by the partition P1,i€ I. 	We then say that 

a S - algebra a is finite, (denumerable) if there exists a partition 
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iP. 	e I with I finite, (denumerable) such that of = 	With the 

notation of proposition 1.5 if p(B) = 0 it can be shown that there 

exists a partition Pi,i‘ I such that 015 a and if A is any set in pc 

then there exists an A Cie with r (A A Al) = 0. 	Thus ed, of differ 

only in a set of measure zero. 	However as we do not need the 

notion of a partition we shall not continue developing the connections 

between partitions and essentially, denumer able cr.- algebras. 

We finish this section by considering the form the atoms and 

continuous set of proposition 1.5 take when we have a 0`... algebra of 

the farm 	with at vig .67.: algebras. 

Proposition 1.52 	If 04 /3 are 0"-• algebras, Ai  € I; Bj„jeJ 

are atoms of of , /3 and Di , D2  are either null sets or continuous sets 

of a I fi such that 

D1v iW IA1  = X= Dvoyj  Bi 

then for all ie 1,j eJ if Cii  = Ai  rt Bi  we have that C..13  is an atom 

of 613 if r  (Cu ) 0 and if D = Dl  D2  then r(D) = 0 or D iss a 

continuous set of pe/3 and 

X 	LI  C. 1E' ij 
JEJ 

Proof 	If r(D)*0 and E 0(13 satisfies E.f D and d is such that 

0< d4.5” r  (E) then if fi(E) = 0 no Such d exists while if r(E)* 0 we 

have that either r  (E 	) *0 or p (E 0, D2  ) 0. 	Without loss of 

generality we take r  (E „Di)* 0 then E „D1  E of and E n Di .; Di  hence 

if di.  =I min.id, r(E n Di )/ then by the continuity of Di  there exists 

a Eitot with Ei.c. E and 0-cr(E1).ted1. 	Now Eiediefi and so we have 

E1Ec4/3 , E1  c E and 0.Cp(E1) 45.  d thus giving D to be a continuous set 
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with respect tot13. 

It now remains to prove that C.. is an atom of ocie if ij 

r (Cii ) *(). 
	Suppose there exists a ClE cefi with r, (Cl-Cif ) =  0 

and 0 < ti(C1) < r  wid• 	Then C = Cl., C..10 satisfies C E aft 

= 0 and 0 ‹ri (C) < (au). Since C e gefi there exists 

cot  Coe Cigq3such that C Cc< fe% e t8 	Further we can assume, that 

Ccw C Ai  and CA -C. Bs, 	However since A. 1B . are atoms: of 0( 1 /3 we J. 
must have 

ri  (c,r)  = 0 or r(Ai) and r (0, ) = 0 or r(Bi ) 

and since r  (0) 0 we must have p(0 	= r  (Ai) , r  (0/3 ) = p (Bp. 
But this implies (e) = (Gip which is a contradiction and so we 

have that G..ij  is an atom of cx/6. 
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2. THE ENTROPY OF A 0--ALGEETIA 

Throughout this chapter all results unless stated otherwise 

can be found either explicitly or implicitly in K. Jacobs C 81. 

2.1 THE ENTROPY OF A Cr-.ALGEBRA IN 23 

If oc E Z3 then. by the last section there exist atoms 

iA., E I c r+, (in general not unique) such that A. n A. = 	if 

#j and rt(iiiiAi) = 1, and further the p (Ai) ,ie I are uniquely 

determined. 	Thus if we put 

H(0c) = — 	r (Ai) log I, (Ai) 

then H( oc) is well defined for ©t E Z3. 	Te refer to H(0( ) as the 

entropy of c.< 	Since ti (X) = 1 we have 0 H(0( ) and while 

H(.4)) 	0 if X = to 13 and Pi  = I (1-1) / 	1 <Lc n then 

-1  

	

11(e) = I 1n log 	log n 
=  

where .0 is defined as, in section 1°5. 

For any sets A,B we put 

it  (A/B) = I r  (A B)/ p (B) if r  )0  0 

0 otherwise 

and using the terminology of probability theory we refer to it as. 

	

the measure of A conditioned by B. 	If now 	0e E Z3  and 

Ai,i6 I, Ail,iEI1, are chosen as above, then vie define H( /0(1), 

the entropy of o< conditioned by al  to be, 

— 31 J I1 r (Ai  n Ali) log r  (Ai/ 4) . 

since all terms have the same sign we can reverse the order of 

summation without altering the convergence or divergence and 

without changing the sum in the former case. 
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We now introduce the following definition. 	If a c Z3 then 

Airie I will be an atom set of a , (in general not unique) if the 

Ai  ,ie I are chosen as at the beginning of this section. 	It then 

follows by proposition 1.52 that if 0( fiE Z3  and Ai,i 6 I,Bei,j 6-J 

are atom sets of cx p then j  Ci  = A. n ' i,j EJ is an atom set 3. 	3 
of ap plus a number of sets of measure sero. 	Thus if eE Z3  and 

Ck  ,kE K is an atom set of 	then 

H( a(3 ) = 	rt(Ai,i Bi) log r(Ai„Bj) 

H( tg'ff 1r  )=11 j2 K  l., (Ai  B. A Ck ) log 	(Ain B.13. 0k  ) 

H(or ff ZI )_- iE,,I jK r (A.633  j4C1c) log r(Ai/BifiCk) 

For the remainder of this section we assume that 

0(1(3 	 ,S e1 Y 	Z3  and that Ait ieI,Bj.,j6J,Ck ,kEK,Dil l 6.L are atom 

seta of ot 2 f3 2  75-  ,8 respectively. 

Proposition 2.1 1 	H(0((3 ) E H((x) 

Proof 	If ai  = r (B j ) , xd  =r(Ai/Bi), deLT Z. then 	. Z. —j = 1, 

0 4 X j.0.1  j E J giving by section 1°4 that 

. 2. 	a . X. log A < 	a. '4- -- 3 6,1 	3 J 	 3& 	3 3 

i.e. 	r  ( B j ) I., (Ai  / B j ) log r  (A. 113 j 

log f JE 
JE

J 
 a .x . 

ri (Ba
.) ri (A. J B .

3 	
j 

 
) 	log{ 	r(B.) .1 	J 

_ r (Ai) log r  (.1/4 ) 

(Aip j) 

Summing over i then gives the required result. 
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Proposition 2°12 	H(c179 / 1f) = H(ofifi?"- )+H(/3/Y) 

• Proof H( oysi ) 	ie., keic 	 (AiAB j Ck ) log 11 (A.  A Bi/Ck ) 

5-1  060. kot  (AinB gin Ck ) 

iI 	j-gJ k 6 K 'LI B j  

log p ( i/BiACk ) -r-log p  (B j/ck )I 

A Ck ) log r(AilBriek ) 

.2 	T., 
jeJ kfIC r 	Ck) log 

▪ H(,(1,r )+11((312r) 

Hiek ) 

Since oeficafic.: we have immediately 

Con 1 	H(c1/8/) =H(fijoar)÷H(otii) 

If of -.VI then oefi la /2 and this together with H(73/04 ) .?" 0 

gives 

Cor 2 	If ifl then H(o(/Y),,H(fl/Y)  

Now X is an atom set for and. so 

H( ae/1-1 
 
) 	 r 	X)1 og r (Adx) 

▪ - lei p (Ai ) log r (Ai ) 

= H( ) 

thus putting ?I= .11 in the proposition and corollary I gives 

Corollary 3 	H( o(S) = H( at 1/3 ) 	H(g) = H(fl/Q( )4.- H(o() 

And putting I f  = id ,  in corollary 2 gives.  

Corollary 4 	If ce.:5, then H( 	,t5 H(fl )  



kK r (AitiCk ) log 

kE U K. k A B . ) = 0. Thus 
3 

H(0e/r) 
r ( Aiick) 
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Proposition 2-13 	If fi 	then H( 04/Y) 	11( oche ) 

Proof {For each j J lot E. = 	I f 	 - - a. 	1A:A B. At  with 

C al and K j 	k:kE K, r(Ck-Bi) = 0 1 then since 18.1" r we have 

=- .z jE J k K 	Ai'lCk) log  r (Aiick) 

, iE I 
X. 
e J 	k6  K 

3 
 r (Ain B Ck) log II (Ain13,./Ck) 

If ak = r(ck) iroy,= 1 (AInB j/Ck) then 	. ak 1, 

0 4: IV 1 and so by section 1.4 

5' 
kc K

z 
 ak .k log k 	(k` K. akxkft'g k 6K ak kl 

Now 	ak iC k 	ri  (Ai  nB j/ok) = (A,,ckiB j) 
rJ)/  

and s o 	 X 
kEK. ak )( k 	kE . r  (Ainck p j ) =ruip j ) 

K J 

giving 

H(04// )( 	2 

	

ic I  jEJ 	P ( A j) log is  (kilB j)  

= 	 I jEJ S 	r 	j) log r  (Aipi) iC  

H( 1)(M ) 

Lemma 2.14 0.5'H(c4) 1 

H(.4, ) = 0 2 

0 ,01(c(//3) 3 

H( or/f3) fH(ix) 4 
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H( (3 .  ) = H( 	) 	-t. 	H( 	) 5 

= H(fipe ) 	+ H(rg ) 6 

H( or) 	+ 	) 7 

H(cefitr) = H(01/Y)-1-H((..50) 8 

= H(fi/exf)# H((ir ) 9 

	

‘H(00')+ H(,Jr) 	 10 

ce 	) = H (o<) 	 11 

H(otj //'3) = 	( 	) 	 12 

	

H(o(') < H(/f )+ H(fl/I) 	 13 

If oe‘p, 1(.8  then 

H( ) ‘ H(/5) 	 14 

H( 	) ( H(ig/Y. ) 	 15 

H( Yifi ) 	H( 	) 	 16 

H( or/fl ) = 0 	 17 

0 $' H(04) -H(oeri) 	 18 

H((g) - H(f3/) 	 19 

	

0 C H( /5 ) -H(w/S ) 	 20 

H(fiii) -H(DePr) 	 21 

1.1(fi) -H(or) 	 22 

If H( oe/fi ) = 0 then there exists a cr- algebra fiik such that 

a 4c, (3  and /9, .1/3 .°' differ only, by sets of measure zero.23 

Thus H(rA/fl ) = 0 if, and only if oe ..</6 	 24 

Proof • 	1, 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 16 have already been 

established. 	7 follows from 4, 6, and 10 from 9, 16. 	We now 

prove 13 
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H(  pr ) 	H( afi) by 15 

= H( aifi2(.r H( fiRI) by 8 

H(oeV)+H(fiir) by 16 

To prove 17 we note that if r (Ai  i B.j )4fr 0 

then to (Ai /B j) = 1 giving 

H( c</./g ) =  E 	r  (Ai  r,B j ) log r ( Ai/Bi)  

I jeJ 
0. 

12 now follows from 8, 17. 

18 follows from 4 if H(ce/ )< oo and is meaningless otherwise. 

If H(p/ I  ) = od , 19 is meaningless while if H(fi/2( ) < QC, 

11(3 ) = Q) then. 19 is true and if H(fipr ) 	ao , H(/(3)< exe then 

H(x) 	ca by 14 H(e)(//)„e ao by 4 and H( igic< )< op by 7. 

Thus 

H(c.c)- H(o4/ 3"') 	H(Fiod -H( /61/i) by 13 

= H( ofi) - H( /1) by 6 

= H(,) - H ( ig/ar ) because 

20 follows from 15 if H( ceis-  ),,00 and is meaningless otherwise. 

If H ( DO ) = DO , 21 is meaningless, while if H ( pep' ) C  z>o , 

H(fi/6 ) = cx,  then 21 holds and if H(oehr) L co  , H ( (1,01.) < ca 

then H(46 ) <40 , 11((rn ) <oo by 16. 	Thus 

H(fi/g ) -H(45 	H(0(fi/S ) - H( oe/6 ) by 15 

,II(//yeE) by 9 

'11(fibei) by 16 
= H( ac,/? ) - H( 00" ) by 9 

= H( 	) - H( cx/r ) since ot'‘, 

If H(44) = cv 	22 is meaningless, while if H(ce ) 	H (p ) co 
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then 22 holds, and if H(o( ).< oo 	H(16 ) <oo then H ( at/ K) ( 00  

H(11/ 21  ).<00 by 4 and 22 follows from 19. 

If there does not exist a CT- algebra ,fi *  such that 	and 

,fl 	differ only by sets of measure zero, then there exist m, n 

such that r(An iBn)*(), p(Am nBn) *p(Bn) and so 

H(4/3 ) = - 	p(Ai  B j ) log p  (Ai p j ) 
- 1,(A.A Bn)  log 	(Am/Bn) 

> 0 

thus proving 23, 	24 is a direct consequence of 17, 23. 

'2.2 	THE ENTROPY OF A (T-.ALGEBRA 

For any cr- algebra of we put 

S(tx) = 	 oe'E z31 

H(ex ) = sup 	H(c(/ ). 
oe jeS (0) 

Since ceE S (0e) if ix € Z3  it follows from lemma 2.14, 14 that this 

definition of H(tx) coincides with the previous one if 4.(E' Z3. 	If 

p is any 	algebra €146 Z3  we put 

H( oey3 ) = Id:612.45, )  H( pet/3 ) 

and note that in view of lemma 2.14, 16, this coincides with our 

previous definition if fiE Z3. 

Proposition 2.21 	If ex ,ff Z3, cc, and Yis any (7-algebra 

then H(/) ., H ( fiii ) 

Proof 	Let Y1, D12. i E r'  be such that iizoll(c‹.h r1i) = H(01/X), 1i 

lira H  (p I r 2i ) = H ( te PC) and put )"'i = yli Y2i  , i  6 r, 
i-'),,e) 
Then H(c<//r i) ....5 H( cc/Y1-.), i cr÷  and H(,) /0 E. H((itY20,ier-f- 
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giving H ( 	) = 	H( 	H( 	 (g / 

But 	H( 	"PI), i E Pt 
 by lemma 2.14, 15, 

and s o 

H(ce/Y ) = lim H( ot ) ei) i_..:, 
,...'' lim H( 	(-i.) 

3..-t00 
= 11(fi PC) 

For any o'- algebras 0( ,fl we put 

H( xi/9 ) 	sup 	H(ae l jfi ) 
wIE S  (a) 

and note that in view of proposition 2.21 this, coincides with our 

previous definition if a 6 Z3. 

We now take any cr- algebras o< 2/1 and consider S ( oefi ) . 
Let 	1  be any a-  algebra such that /16 S(61 ) then we have 

„Q. 1E Z3. 	If Ck'  keK is an atom set of 4 then for each k we 

can find an Akeew and a Bkeill such that Ck  = 	n Bk. 	If 

cek  -74 	AkIX-Ak,X I ' fik= IBk ' X-Bk 'X I we put 0(1  = k V EK  oe k't"' = 
k y K Ak. 	Clearly oe1 S ( ) (51e S (fi) and. 	.4" it)" 	except  

possibly on a. set of measure zero. 	But by proposition 1.52 we 

have that 0(.1141 	Z3  if pe1 141 Z3  and so we got o<1(316 S iv?). 

Thus we conclude that if ex 14 , are r- algebras then 

ceig ) 
= 6VE(-fi  ) H(  '1) 

H( 0(1 91) = sup 
0(1( S (of') ,fiC S  ((6) 

by the above remarks and lemmas 2.141  14 while 

	

H( oq2 PC) = sup 	H( g l/Y) 
(512S (eK/3 

	

1  1/= sup 	 H( ,,e fi 	2f) 
0(6S(N),g1CS(fi) 

by the above remarks and proposition 2.21 
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Also if YE Z3 then 

H( Iriexfi )= 4.nf 	H( r/61) 
VrS(44/3) 

= inf 1   H( Y/ of 	1) 

aelE S( a) ,fiEs ( p ) 
by the above remarks and lemma 2*14, 16. 

Lemma 2.22 	The results of lemma 2.14 hold for arbitrary 

Cr- algebras cX, fl 1', S. 

Proof 	1, 2, 3 are direct consequence of lemmas 2°14 and the 

definitions of H( 	H(ock? ). 	Now 

= SIXP 
d( S(64. 

H(.(1/(3  1)  

S1/3) 
4' sup 	inf H(tX1) by lemma 2.14, 4 
pees (0e) (tgs (13) 

= H(x) 

giving 4. 	5 and 8 are proved by the method used in proposition 

2.21, bearing in mind the remarks made afterwards. 	6 and 9 then 

follow from 5 and 8 and the fact that tatfi = (30‹ . 	7 is a direct 

consequence of 4 and 5 and 10 will follow from 8 and 16 when we have 

established the latter. 	Now 

H( tx:P/ ) = syp 	H( 	) 
ix Sk) 

orVS(00 H(
Ge ) by lemma 2°14, 11 

 
= 	H (0( ) 

giving 11. 	15 is proposition 2.21 and has already, been 

established. 	13 follows from 10 and 15. 	14 follows from 11 

and 15. To prove 16 we note that /1 = aelP and so 
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H( Xi,) = z,tuE( r,)  161.6sincf(s. ) H  ( .). 481)  

= 	suzi,i 
S (Y) 

(.2is (11  ) ,,,,,le s(K  ) H(  ili/o<1 _
/Y1 inf 	 ) 

	

4NC  . 1  T.11 re. 	ts.rtsf 	cei6 	E(  ,,1./)t)(1)  
6  

	

) 	je ((5), 3( ) 
H( 	) 

by lemma 2.14, 16, 18, 19, 20, 21 and 22 are proved as in. lemma 2.14. 

To prove 17 we note that fir: orfi and so 

il(a 0) 	
APS ( ) (AS (fi ) 

inf 	H(oe /Id1  ) 1  

sup 1 i 4-111 	(0( 10 e1  ' l ) 

	

Pet S(c4 ) 	(3TS(p) 

0 'by lemma 2.14, 17. 

Here we use the fact that for fixed a1  S (,1:) we have 

for all 	Sy). 	12 follows from 8 and 17. 

To prove 23 we note that H( xJ ) = 0 implies 11(0,( 31fi ) is 0 for all 
1 ce(s(04). 	Given any A 6 of we can find an a l6 S (o() such that 

A e. of . 	If there exists, a filESV) such that H(c.t #31) = 0 then 

De OP 1=-571  by lemma 2°14. 	However if H( g 1/fi  1 ) ,*, 0 for all 
1 fi 6 S (fi) then we choose A 1' 	 Aii r+ such that  6 S(73) each i ( i  

and lim->x,  H( odlfi li) = 0. 	If 1.3* p (A °B) = k>0 then there exists 2.- 
an atom Bi 	i of ("/ . 1 for each i such that 

—p(Bi A A) log r  (A/Bi) 7 k1  = k1  (k) > 0 
lim 	H  ( p<1 /4  1.  ) ,...., kl#.  _ a  and -hence, 	 io 	contradiction. 

--,00 	r 1 ":.. 
Thus 'inf Ft  (A 6B) = 0, i. 	AEA implies that there exists a 

334-fi 
B Cfi such that r (A 0 B) = 0 as required. 

24 is an immediate consequence of 17 and 23. 

0<1 1 
ff 
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2°3 INCREASINGLY FILTERED COLLECTIONS OF ALGEBRAS 

We now introduce 

Z 	= 1 oc : of is a 0'-algebra, 11( ) < ao I 

Lemma 2.31 	Z Z3  

Proof 	If a is a cr.- algebra such that a 23  and. 41 is any 

real number then it is sufficient to find a ,x1E S ( DO with 

H ( De 1) > 6 	If l3 4 0 then we take 0(1 2,0 if not then we, 

consider the B of proposition 1°51. 	Since a Z3  we have 

p(B):# 0 and hence B a continuous set of at 	Further 

- r(B) log x = oa and so we can find a real number d such 

that 0 4 d „" p (B) and - r(B) log d7,6 . 	Let be the set of 

all sequences of disjoint sets Ai, iCI C r+ such that Ai  E. 

B, 	0 <p(Ai  ).' d for all i . 	Since B is continuous there 

exists an AlEa with Ali B and 0 < 	d and so 	is, 

non-empty. 	If pi, 	E then we write h‘. h  if A E implies 

AEit2. 	Thus 4' is a partial ordering of 	If C is a 

"chain" in •I i.e. for all pl,p2  E C we have ?i $,: /0.2  or 02  

(or both if pi  = )42 )and s  [ A: there exists a p EC with Agp 

then if AI ,A2  € pc  there exist pi  412e C such that AlE , A2  E h  
but 	te p or p2  4142  and so AI ,A2EiQ2  or AI ,A2  E. pi  giving in either 

case that A1, A 2  are disjoint and hence that pcE3 9  since 

p(X) = 1 implies that 92c  is at most denumerable. 	Now p pc  

for all p E C and so by Zorns lemma there exists a y,  E E such that 

for all p E 	it is false that y 	and ,. 	Suppose 

(B _ Apy, A),,› 0 then if C = B - 	we have that C Ec< C SB 

and so by the continuity of B there exists ax' Al 	C with 



32 

0 'Cr (A ) cl. 	Now ‘t 	 id.A.1  and L.1.'# vA.I.  giving a.  

contradiction and. so r  (C) = 0. 	If o<1  is. the. 6-- algebra 

generated by the members of 1,  together with X - AU iA then 

o<16 S (o() and 

H( 041) _ Ev,r(A) log  r  (A) 

_ 	1-r (A) log d 

_ 4. (B) log d 

We say that a collection S of cr- algebras is increasingly 

filtered if given any at 	S then there exists a 	S with 

Y • 	For any cr- algebra oc we have that S ( oc) is 

increasingly filtered. 	Agai 	in if cti. , I c I' are cr- algebras 

such i  that che 	04 j if i j then 	f 	E I is an 

increasingly filtered system. 

Lemma 2.32 	If S is; an increasingly filtered collection of 

Q- algebras, L X = ,.V6  s  if, 	z1 	 ••, and r•C 0( then if C•,  1 (it n 

is. an atom set of 	and d is any real number such that 0 <d 

there exists a ff6 S and sets. Biefi 141(111-1 such that 

p (Bi 	Ci)<d, 	r(Bn+i )<d; r(Cie,Bi) <d if 

(C± /}3± ) > 1- d, 14" 	n and 7213.  Bi X 

Proof 1Since C. , 	is an atom set of Y we have 0( p(ci ) 

for all i and so given any d such that 0<d we can find a 

11  such that 0 <di< cls, d1< max ir(Ci),dp (Ci )1 and 

< d, 1 
ri(Ci) - 

± j; 



For each i there exists a Ai r S and a Bi  E pi  such that 
(Bii  4 	< d1/8n2° 	Since S is increasingly filtered there 

exists ape S such that 6 i sy , 14,c. 	n.„ 

	

B 	- X- n. 	B n+1 	1 -.1 i° 	Then for 

i 	j 	then Bie,B j= 	For i 4j 
1 	 1 

	

r(Bi  Bj ) 	r(Bi  - 0i ) r (Bi -C j) since ri(CiA0 	= 0 

< d1/8n21- d1i8n2  

/4n2  

and r 1 	p(Bi  Bi  ) 

< (n-1 )di i4n2  

<d1/4n 

giving r(Ci-Bi ) 	B13)4.. r (Bli-Bi ) 

But ri(Bi-Ci ) 	r(Bi  - Ci ) 

<d1/8n2 
Thus r (Bi6Ci )= r(Bi- 0i )+ r(Ci-Bi ) 

< d1/2n+ d1kr.12  

'C'd1  
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Let Bi = Bt - 

each i , Bi  E p and if 

since B. c B.1  

2 <d)18n d1/4n 

< d1  /2n 

Lastly 

<d. 

r(Bn4.1 )  = r(X  - i t Bn )  
et 1- psi.  r(Bn ) 

r(B1 - 

411 rob 	tot „Bli  
_ 

r p(Ci ) 	d18n2 	di4n1 
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< 1 

d12 

C dl 

If 14 14 n, 1 4 j4 n i+j we have 

r(ei  Bi) 	r  (Ci  ek Bli) 

• r (CiAC j)+11(Ci 4Bli )  
< 0 -f- (118n2  

< d 

If 1 4 i4 11 then 

r(ciAB.fl) 	r (Enti )  

If 14 n then 

r(ci/Bi  

< 

if 	r(Bi_)# 0 

= 	 
- 

„,030- 
?a. - 

r (B i)  

 

  

Now 	I, ( Bi ) 

>1 

(Ci) -r(Bi  4 Ci ) 

r  (ci) 

and so if r(Bi) 0 

r(Ci)Bi) 	yl 	dl  
p(Ci )-d1  

- d 

Lemma 2•33 	If S le an increasingly filtered collection of 

o= algebra% in 23, (X= /Es /3 and is any 6-- algebra then 
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(1) 	H (a) 	
(3
sup H(p) 

ES 
(ii) H(oc /Y) = stws  H (p I r) 

and if 16 Z3  then 

(iii) H( ZrIoe) _EH( 	) 

Proof 	Given d> 0 since x log x is, continuous, for 0 4X 4 1 

and since V.411  _ logx = 0 there exists a d1 such that 0 wt x, y4.11, 

Ix - yt 45 di  implies I - x logx. y logy I < din(n +1) and 

1-d1$," x< 1 implies _ log x< din(n+1). 

I 	 if ac le S(c< ) and C. , E I is an atom set of of then for each 

n E r+.  we define Yr)  to be the Gr- algebra. generrated by the 

C. , i I 	n. 	Then n.  Z n E r"..  and H ( 1) = lira H(rrt) • 

we now take Yn  as the Y , and d1 as the d of lemma 2°32. 

With the notation of lemma 2*32 let /3 1  be the fr- algebra generated 

by Bi, 14.5.  i t n+ I. 	Thus 

H( Yn  ) 	H(1) I =1_ 	TI(C1) log y  
a.=1 

n+l 
f. iE=2.  din(n4-1) 

< a  

Hence 	H( or) 	qup 	H(641) 
( 11111(cx ) 

	

= Tup 	ln.ira 	H( X) 
oc e S ( a ) 400 	n 

< 	sup 	lim .{ H(11).4..di 1 	n tx ES ( c< )-469  

	

.s- sup 	lim f H(e )+ d i 
ale 	n-co S(t4 ) 

	

,' su.p 	sup f H(fi )4. d 1 
0(263(ce) fl 

= AuN f H (fi ) 4. d 1 

But d was arbitrary and so we have 

H(ex) 	...5,kg u(fi ) 

n+1 
3. .Z1  r(B±)logr(Bi) 



and since SC S ( ) we have 

H 	) 	sup H (3 ) 
/les 

giving (1) 

Now H(X,I i/31) 	
1=1 J=1. 

0(Ci  B j ) log p 	Bi ) 

n (n4-1) dain(n+1) 

because — r  CiriBi ) log p(CilBi ) < -p(CiA Bi ) log r (CiriBi ) 

din (n+1) if i0j 

since, r  (cit,B j ) < d1  if 10 j while 

.... r (c±„Bi ) log r (Oi l Hi ) 	— log to (oil Bi ) 

< 	log (1-d1 ) 

< din(n1.1) 

Thus 	H(otir 

	

= gi p 	1(.41 	) 
E (a) 

	

= sup 	lim H(Y4 I ) 
(* ICS (a) n-,410 

	

;5* sup 	lira H(figy„ Y ) 
alES (a) n -4co 

by, lemma 2.22, 15 

	

Tup 	lim 	ipl i)+H(fil lY)1 
ot ES (64) n.=>ao 

by lemma 2.22, 8 

	

“up 	lim 1H( )4(51)+H(pi Y. ) 
or4S(a) 

by lemma 2.22, 16 

	

-erp 	lira 	d H(f3il i) 
,,eS (a) a- 

	

sup 	lira f d 	H(flii) 
1 a ES (a) n->po 

	

sup 	sup I d H(fi Y) 
rdl ES  (a) MS 

-su
s f d+H(fi )I ) I 

36 
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But d was arbitrary and so we have 

H(c4 	) 	11(('lr) 

and since S ,SS( a) we have 

	

1Y ) 	
Ep H( 

giving (ii) 

Again,  H( ?CI o<) = 	(pc ) ( /19€1) for Ye 23  

• inf 	lim H( in) 
o<3 S (ex) n-306 
inf 	lim H( T I tellrn) by lemma 2-22, 16. 

4• 	416 S (a) n->c0  
inf 	lim f il ( 	nifil )- /I( yn 1031) 
ee3C S 	n 70  

by lemma 2.22, 8 

lim I H( /1(3'1). 
• d'ES (44) na->06  

by lemma 2°22, 15 

inf 	lim pi(ary) d 
/ 1 a ES (a) n -> cg,  

by lemma 2°22, 16 

inf 	inf j H( 	d I 
11S (.) P 5  

• DES I H(711/5)... d I 

But d was arbitrary and so we have 

	

H(Vie( ) 	inf H(Ylp) 
/3" 

and since S.,,c S ( ot) we. have 

H(Yloe) 

giving (iii) 

.:C inf 	H(d'f/ ) 
Pes 
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2°4 	THE METRIC SPACE (2,e). 

We now define a function e ( a,p) for any pair of 

0,-algebras r4 	by 

	

to( ay) = H( ceiff).+H(fi 	) 

Clearly by lemma 2.22 

(1) c  ( ay) = 0 if, and. only if 	=/2 	to sets of moasure 

zero 

(2) (( l/3) = f°(,x) 

(3) ,(4x,V) 	a,fi) e(p, 

i.e. p is a metric. 

Lemma. 2.41 (Z lip ) is a. complete metric space. 

Proof 	If an, n r+ is a Ce.Uchy, sequence in. (2,//), then there 

exists a subsequence an, vie f"' such that 

p 	an, ex n+p  )< 2-11  for all p c r+ 

If or j=1 i = 	13  :/ j Xi  then, for m > j > n - 
m  j - 1 	 j-1 

H (ij 	± 	n 	i) = 	X j1 iYn 	H(i1.2 j4.3.  

All terms are finite and so summing over j gives. 

H (i Yntl c<iJ 	) 	j De.n=n4-1 H( X 2. 

	

.I.91 	.).1..H(aml inii.iin  0< i) = =n 

	

H( oririjjkin 	i) 

H(ct . 10( ) 
J j-1 jsant+.1 

By lemma 2:331 etting m->ce gives 

H . V 4-1 	i a( 1 
1 	 n 	3=n4-1 	3 ) 	 H( oe 106-1  ) 

=11  

and - since a 	 we have 

itin °(i.) 



H(0( a n ) 
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Also H( 	= 	lim H ( 04n 	0.< ) 
i4a0  

hence there exists a j>n for which. 

H ( 0( al ) ( H ( I 	0( j+ 2-(n-1) 
n i-j 	3. 

H  ( 	n ei( 	41..  2-(n-1) 

oen, 0J)+  2-(n-1) 

< 2-n + 2-(n-1) 

(oc, an ) = H( alan )+ 	ixn le< ) 

< 2-(n-1) t 2-n ÷ 2-(n-1)  

< 2-(n-3) 

Further 	H( ) 	< H( oCo(i ) 

= H( 	/al ) ..t.H( 4(1) 

< 1  +II( Xi ) 

Hence we conclude that { oC . 	and hence f (re l. I is convergent to 

a (7-- algebra cx E Z, 

2.5 	 .AN ALTEINATIVE DEFINITION 

We have defined the conditional entropy H (ac 	) of cte with 

respect to /3 by 

inf H( //31 ) H ( et fi ) 	oeititE(.,)  
gi-escfi 

Thus 



or equivalently as 
la( otli /31)  H(a)fi ) 	}im 

of E S (a) 	6 S (/3) 
if we wish to make use of the theory of Moore-Smith convergence 

(see J.L.Kelley DO]) and such notions as 'nets' , 'filters', etc. 

However, while K. Jacobs (8) takes an essentially equivalent 

definition the Russian school proceed in a rather different 

manner as outlined below. 

For any of ,1/3 e Z3 ' if A E oc we define 

rA  (B) a p (A n B) for B E 

If Bi, j e J is an. atom set of fi and we put 

r (A )( x  ) 	j J XBJ (x) r (AlBi) 

where )( B.  (x ) is the characteristic function of B. then we 
1 

have 

(B) 	 ) ( 

by proposition 1.51. 

We now put 

H„ ( 	x) 	
- 	-X. Ai (x)  log r (Ai  e) 

(ot,x)dr = 	if XAi  (x) log{ if j. XBi  (x) r  (AilB j ) 

2
I jJ p (Ai  Bj) log r 	B j) ie  

H( ajfi ) 
Thus we could have defined H( celfi ) as an integral. We now 

indicate how H ( ot x) can be defined for general p and then give 

an alternative definition for 11( o ip ) in terms of the integral 

of Hfi( oe,x). 

If /3 is- any a-- algebra then for fixed A Co< we define 

40 

dr then 
fx  Is 
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r A(B) = r  (A ei B) for B efi 
Now rA . ga.bsolutely continuous" with respect to p on (X, fi) and 

so by the Radon-Nikodym theorem (see P.R.Halmoa 153 P.128 theorem B) 

there exists a. function r 1(1 ) (x) on X which is measurable 

with respect to 	) and such that 

p A(B) 	ri (Ate )(x) dr  
We now put 

(x,x) 	if I Ai(x) 	r i ( Aio )(x) 

and define 

Hi  ( DV 	Bps oc tx dr 

Since the Radon-Nikodym theorem asserts the uniqueness of 

r1(A0 )(x) modulo sets of measure zero, it follows that if fi C 23  

then ri  (Ao ) (Jo x pi (Ate ) (x) except possibly on a set of 

measure zero and cons equently that 	cle 1/3 	11( 44( 	) in this 

case. 	Further, if /91  ,fi2 E 23  are such that (31  (,d2  we have 

that r  (A vi ) (x) < ft (A 02) (x) giving us that 

	

log p (Al fia )(x) ,t.c• 	log p (Aifi l ) (x). 	Thus since it follows 

by convergence theory, that for any 0*- algebra 

ri(A1P)(x) s lim 	r (A  01)(x)  eSp) 
where the limit is taken in the Moore-Smith sense we have that 

	

Hi ( odp 	= 
p 

lim 
 (g) 

R(cielfil) 
-es 

= H(acyl ) 

for •x e 23  and /1  any Ir. algebra. 
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3. 	DEFINITION AND PROPERTIES OF h (T) 

3.3. THE ENTROPY OF T WITH RESPECT TO A (7.- ALGEBRA 

As stated in 1.1 we always assume the existence of an 

automorphism T on (X, £ r  ). 	If A is a 0"-algebra 

then we put 

	

T A 	= IA T-1A Eg4  

	

T = 	Tig 1=0 	
r+ 

	

oeT 	iyr  T 

	

T 	.V T-irx 

.A 16 i+ 

and if there is no danger of confusion we write (4111  or, Atm  
for 	0( n  dC  - 	T 

T' 	°(0o° 
If 	of ,fl E Zs  and Ai, it' I, Hi, j E J are atom sets of 

, (3 then clearly TkAi, if I, TkBi, j E J are atom sets of 

Tka 	Tk(5 and 140( ,Tk, 6 23  for k E . 	Thus since /4 is 

measure preserving 

H(Tk  rx ) = 2 	(T Ai ) log r  (Ti)ki  ,7" 

.2 16 I r  (Ai) log r  (Ai) 

H( or) 

and 	H (TkoeI Tkp )= _ 	 ...L j 	(TkAi, TkBi) log r  (Tic Ai l Tic B i ) 

iI jJ r 	B j) log r (Ai iBi)  

H( odp) 

for kEr 

Lemma 3.11 	If or ,fl are cr- algebras. then H Tkpe = H(44( ) 

and. H(Tkat I Tkp) = H(oe fp ) far k Er 



Proof H(Tkcx ) = sup 	H ( (41) for k E r  
le S(Tkx 

and since S (Ticat ) = Tk S ( ) we have 

H(Tictic ) 	
T7-'5- 0/1e6 ( 0t) 

	H 

- sup 	H (Tkp( 1) 
0- 	(16 S ( 04) 
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while H(Tkot Tic/5) = 

sup 	/I( oel)  
oe14 S ( ) 

H coo 
sup 	inf 1 E S (ic0c ) fiL  es(Tfi ) 
sup 	inf 

T-k0e lE S (Pt) T-k fl  ES id 
atuP 

0(eS(0‘) 

Tug  
of E S (00 

• H( eel" ) 

H( 

1 
H( +f1)   

H(Tko( liTkfi 1) 

H( ciel f pi) 

Lemma 3.12 	If 0( is a o-  - algebra, n, m e r+  then 

H(a11111 ) $*" mli(ocn) 

Proof 	H( 0(11111 ) 

•*1 

H  (nmcil Tom) 
1=0 

H (mV  Tin  o( n ) 
=0 

H (T.)n  all) 
34E0 

H 	) Jai° 
m H( 011) 

For any 4-- algebra cfe and n. c r+  we have T-n oc  n‘ T.- (n4-1) of  n+1 

(n1-1) n.t1. and so by lemma 2°22, 16 we have 0$H(c< 1 T.- 	) H (0e IT-110c n) ,< 

El( x). 	Thus H( T-1.10( 11), n e r+  is a monotonic sequence and 

hence if we put 



( 	,T) = n — m H(tx I T-neX n ) li>oo 
then hi( ex,T) is well defined. 	Clearly, hi( o<,T) d H(a) and so 

of E 2 implies hi  ( ot,T)( oo. 

that 

Further by lemma 2.33 we have 

hl  ( ,T) = H ( oe 1 	) 

Again H 	) = H  ( 
	l of 	

H(Tn4-10( vt  n-lo{ -) 

H( pek).}. 	H(Tic* kix) 
r 
al  

- H(ocl‘4 	l H( cidT i0( 1  
1-1 

H( of 1 o(-) 	H( 
lrl 

• n 	H( PC I cg —  ) 

giving hi  (0( T) = 1 H( 0111 0(-), n cr+  

Lemma, 3.13 	If 0(4 Z then hi( iK,T) = lira 1 H(a ll) 
n-400 rr 

H( pen-a )  + H(Tn-la 1 0  n-1)  Proof 	H( g n) = 

- H (oe ),I, 	1  H (Toc i a i ) 
1=1 

= 11(oll+
1  ik-1  H(otIT"-± 0( 1 ) 

Thus if 0( E Z then the H4oe I T-lot i ) are bounded, and since we know 

that lira H( oc IT 6  a 11) exists it foil ows that 1 im 1 H ( tat n ) exists 
n..,o0 	 n-ar op TT 

 

and equals 	 H -fl  a n ) i. e. hi ( of ,T) = lira 1 H( Xn ) n-tpoo 	 n- 	ir 

If ce0 then H( on ) H(oe) = oo and so 

lim 1 1.1 oc  ) =lira oo = ye 
21400  n 	 n-.00 

Thus if we set 

h( ,T) = lira 	1 H( 	) 
n->00 n 

then h( of ,T) is well defined for all 	algebras, or . 	We call 

h( ,T) the entropy of of with respect to T, or of T with respect 

to at , or simply the entropy of of and T. 	If at E Z then 



45 

h( 	,T) = hi ( pc IT) but this is not true in general. 	To see 

this we consider a V"- algebra of such that H( co() = 00 , Tot 0( then 

IK 	T-na 	n C r + and so by lemma 2°22, 17, 11(0(1T 11 *(21) = 0 giving 

h1(o(,T) = lim 	H(0( IT-nce) 
n Do 

= lira 0 
n -44e 

= 0 

while h( ,T) = 00 as stated earlier. 	Lastly since 

T  (n+l) « n _ - 	04 424.  we have that 

H( an) = H(T-(11*1)  0(11) - H( 0(1.1, 2. ) 

giving that 	h( ,T) = h ( T ) 

Lemma 3.14 	If 4( e Z and T is the identity then h( ,T) 

Proof 	Since T is the identity gn  = , n E 	and so 

h( ,T) = lira 1 
n-vpae 
lira 1 

0 

Lemma 3.15 	If o( „fi E Z then 

ih( 	,T) _ h((,T) I 	H( 1/3 )+H(1 a( ) = r(ot,P ) 

Proof 	If 4( ,(3 Z then o< n, An, Ann  6 Z for n er+  and so 

0(11) 	H(/3 12) I ,‘)11( at il) _ H(s(12/3  1.1)3-t. 1 H(41 //12) _ 	n), 
H(:421116n) ÷H(1 'Jan) 

/H(Ti.e jfl  n) 	 n) 	by 2.22 

t 	H (T.< I Tifi ) .1.-11(Tip 1 Tice )1 by 2°22 

n I H(oejfi) t 11(ioe )1 

Giving that 
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lim 1 	H( o(n) - H(fin)/ n 
410 tH(ocifi ) 	Hyloc H 

21-4 

ih( 	,T) - h.( p ,T) 

	

//5 ) 	H(ief It< ) 

/° ( 	fi 

Lemma. 3.16 	If a „ fi are or.- algebragt and oc IV then. 

h( oc ,T) 	h(/3,T) 

Proof 	ot.fi implies oc 	fi n, n *1-.+.  and so 

h( oc ,T) = 	lim 	1 H( otn) 
n lob  n 
lim 1 H(fin) 

n->oo n 
= h(fl,T) 

Lemma 3.17 	If a yfi are 0-- algebras, ix < /CT  then 

h(oc,T) 	h(131T) 

Proof • 	H

(la) 

ni m4.13-1 TiA  ) 
-m r 

m+n1 H( an  v T ) 
-m 

pe,n-1 i 	n
-1-H(. 	T 	iy 	Ti/3 a.= -m 

11 -1 H (Vial .n-1 Ti ) 

E1 
H(4  m,-1-j Ti/3  ) 

J=110 

Now for 0 „,,‹ ,j( n-i 
v  m Tim -1-j Ti/3  

im -m r 	
. 	. 

and . -therefor e 

H(or n) < H( m4n-1  n-1 ...., 11 4)+. E htoei v 
jmo 

Ti/3 ) 

	

mro-n-1 i 	n-1 H( v 	T fi Lt. E ii(ed 	Ti` ) i=-m 	' 	jo0 

= H(fi 2m#.11) 4- sH(o(11:1.3V TIP ) 
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Given d > 0 there exists an m such that H(oci /- ) ( d 

and for this m 

1 H(an) < (2m+n) 1 	11(A 2m+n) 	d S 	k 	2iii+n 
giving 

h(o< ,T) 	12.1m 1 H( xn) 	lim 112,Din) 	1 H(/32°411') -fr di 

	

00  sr 	 n-"oti 	2m-Fn 
h(A,T) d 

But 	d was arbitrary and s o 

h('ot,T) 	h(A,T 

3°2 	MORE PROPERTIES OF ENTROPY 

Lemma 3-21 	If oc 	Zs  and either le vc ,H( 04.0 -) < 00 	or 

oc,sp H( fil o< -) < ex; then 

lim 1.A(0(1V -) 	11(a(lot -) n 

Proof 	If 	, 11 ( celp 
pi 

"'"
n-11

)<oo  (3 then we have 

	

H(o<rijfi -) 	H( 	) 4- H(Tn-lot J a n-1/17 

11( o< V -)+ 1-13.  H(Tla 	it4-) 

H(odfi—)4. 	H(dIT 1(x±p-) ) 

11(4g -)(co and 

Irmic< kZ+1 
i...)oo 

Thus lim 1. H(0(111(3 -) exists and 
n-10),co 
1imoo 	n H( oen1,-) = n lim 	H( ) T-11( cefi--) ) 

no. } 	 -> pc? 
= 	H( oria< - 

But 

1 

 ii(Mol-)040 

H(c<linir) 

then we have 

= 	lim 1 H(finip -) since re .g3 
n-)0e1 n 
H( filfi—) 



by the first part of the lemma since 	C 	and 

H( pi /0-) < H( /di -) < 00  

Thus since 

lim 1 H(x npni(3-) =nlim illi(DenIP -)+H(/init>cnfi -) n.-aDa 
we have that the limits on the right hand side are finite and so 

n  lon, 1 H( 041.11// 	=n4iono 	H( anpn (fi ) -121.3532 	H(gn 	 jcenfi-) 
if 

H ((2 ifi -) -rili>10102 l Hies oel  pe) 

since of < 	. Now 

lim 1 H( /311 .,( n  pc) 	lim 1 If( allf3n loc) 	lim 1 II( cxn je<) n->00 r 	 n->ao n 	 n.-1000 
since lira I H( anise 	= ) 	lim 1 H( /3n  I oc- ) 

n-vio n 	 n-1)00  n 
H(fitp7 ) < 00 

and so lira 1 H( 	-) 	II( /3 	- 11( /3 I/4 -)+33.1.4i.m 1 (Den jw. n-1•ex, 	 00 31.- 
H a I of 

since H( 	H(fi I 	) 

Lemma 3.22 	If 0.c /3, r are O. algebras such that 

H(filrjp)<Do then 

lim H(Pdfi-T-n ?'-) = H(prifi-) R -*Po 

Proof 	(fin I ts 2c , 
) 

= 
( 	l i /3-  i"").e..H (Tn-fij (3  n-lp -?f-) ...  

= H (73 Ifi-  11- )-f- X1 1 	H ( T ifi 1(3 if - r -) 

. H ( (3 V  ?i,""),+, tii  II (fi VT-1Y-) 

Now (3' T-(i+1)  Y-  : fi-T-ir - and so lim I-1(h j p —T —±  r -) 
n-4)130 

and by the above we have 

lim H(14j(i -T-ri  V) = lim 1 H(A nl il n-)00 	 n-ox n 
since H (fi 	H ( 	H( 	I14) 

exists 
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Further H(pi 	 H( fl I,3 ) 

11(p rifi 

< 00  

and s o 
H odie-T-n 	= H ine,g 	i-) 	

H(/" 
/1-7,-nr-)  

H(ff V-T-n r-) 	H(fijoy3T nr) 

But lim 	 H (eni3'` 
11-)ao 

= H(elfi 
bylemma, 3.21 since (3 ..1-/i9 r, H( 13't(3 	<00  and 

Hy ley? --T-nr 	11( 

giving that 

lim H(oei 	 H(fil(3-) - H(fio.r(5-) 
n—)00 

= H(xp 114-) - 
= H(.o/3-) 

since H 	ye (5' 	H( ei/3 ) HyprI fi-)( c. 
Now 	H(641(3 T nif) C H(a0) 

giving nioa  H (01/3 -T nr) 	11 (4/3  ) 

Hence we conclude that 

lim H (oci -T-nr 	= H(Pei fl-) n.407 

Lemma 3•23 	If at ,fi axe o-- algebras such that H(44/1 Ifi --) < oc 

then 

H(0(79 10(.73-) = H(« for(1 T ) 	H(p /) 

Proof 	H(at n  ej fl-  fin)= 	o[11-11 	 (1 	11) +11 (Tnlol I if•C n-10<igW11) 

=H(vio<--(3n).+, nil
H (Tip( 	 ig -fi ll) 

= H( oda f 73 n)+ 	H(G<IT-ic< i ce-fi -fi ll) 

= 11 (ocr  dfi 	-t- 1%11  II( 0( 	-p11-1) 



SO 

But. 	H(orl 
	

fi n)H ( 	ff ) 

H ( Defi 

while H( pcIg 	 H ( os, 	 ley I/3 n-1) 

and. so 

lim H(D(ix,73 12 ) eH(giot - fiT ) 

giving that 

n-li4.0 m 1 H ( n  I 0< , - 	= urn H(o f a - p 	n ) 

11(oelexfiT ) 

Now 	H(cenilnio(-fi-) 	H(0(11 ),4 7.:).7311) 	H(//nic( ---./3) 

and since a.e 	, H( ffi ."(3 - ) d H( ov3 j (I) <0,0 we have by 

lemma 3.21 that 

lim H ( /1,e 111 0/73 ) = H ( e(fi 

and again since /9.$  .(79 	H 	 the same lemma gives 

ri-aco 
lim H(fin l -fi) = H(fli(3-) 

Thus we conclude that 

H ( 6x/3 1 oc" " fi) = H ( 	ci<7 T ) 	H 	) 	) 

Corollary 1 	If oc  1/3 are o'-, algebras such that H(0.9(9/fi "")eco 

then 

hi( oefi ,T) = H( cdoe" fir ) +. hl( ,T) 

Corollary 2 	If De ,fl Z then 

h(a/1 ,T) 	=H( oei _fir) 	h(/',T) 

Proof 	If 0( fE Z then *VgE Z and so H(ocfi 1(3 -) V1(oqg) < or, 

The result then follows from corollary 1 and section 3°1 

Lemma 3°23 is usually referred to as Pinsker's lemma, see (133 
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although the proof given here is based on that given by V.A.Rokhlin. 

and Ja.G.Sina.i in 117 3 as are the proofs of lemma 3.21 and 3.22. 

3°3 	 THE ENTROPY OF 

We define the entropy h(T) of T by 

h(T) = 	hog v T) 

We have immediately that 0 h(T) and by section. 3°1 that 

h(T) h(T-1). 	By lemma 3.14 if T is the identity then 

h(cie sT) = 0 for of 6 Z and so h(T) = 0. 

Lemma 3.21 	h(T) = sovzib_( a 9 T) 

Proof 	Since Z1 - c Z 	we have 	h( ic< ,T) 	h.(T). 

If h(T)< co then, given any real number d > 0 there exists an. a E Z3  

with 

h(T) „< h( De,T)-1- d/2 

Further, 	 ither, let A. , 	I be an atom set of oc , A. = 0 if iE 

and fin be the a-- algebra generated by B. = A. I ‘j.fn-1 and 
n = X- -1  .(,) 	B.. 	Thus for i r+ 	j Vi n- 

A. A B j ={0 if 
A. ifi= j 

and for iEPt  

Ai^ B n  =75 if i< rt. 

A. if n..5.  i 

	

Hence H( 0<i/1n ) 	= 	p(A±,e, Bj) log p (Ai iBi ) 

=(.11,.i ) log r  
oa 

= 	ri  (Li) log p (Ai )+ 1 og (Bn ) Sn r(Ai) 

S' 4.n  p (Ai) log r (Ai) 
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Since ocE Z there exists an N such that 

- 	r (k) log r (Ai) < d/2 

Hence since fN< a we have 

h(0<,T) < h(ff,,T)+ e(oyN)  

h( 	,T) 	H( vt yg N ) 

giving h(T) h( ,T) d12 

h( 	 di2 

sup h(c4 I T) 
otEZl  

But d. was arbitrary and so we deduce that 

h (T ) < eau p h ( T) 
EZ1 

If h(T) = 	then given any A> 0 there exists an x E Z with 

h( of T) > 6 and if the fin , n € P i-  are defined as above then there 

exists an N such that h( n,T)> f,1 from which we deduce that 

supzi.  h( ,T) 	 pd 	This completes the proof. 

Lemma 3°32 
	If P(

T 
= E then h(T) = h( x ,T) 

Proof 	For all 14E Z we have /1,1 0(1, and so by h(fl,T) 	h( of ,T), 

Thus 

h( x,T) < h(T) 

pz  h(/?,T) 

(36 su Z h(o,T) 

= h(x,T) 

giving 	h(T) 	= h( ,T) 

If c< c 2, c.cr  = then we refer to of as a generator. 

Lemma 3°33 If AC Z, 	 =E, mEr then h(T) = 0 
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Proof 	Since .Vein Tip< 	X T we have that ot is a generator 

and so 

h(T) = h( oc,T) 
-1 h( 	) 	by 3.1 

= hi  (iK I T-1  ) by 3°1 

	

= H( De I a rp ) 	by 3.1 
But o< T  - = 	T 3-0( = T-m÷/  i r# Si±- m 	irloc 	= T-m1-1  E = S 

and so a 4 a ; giving 

h(T) = H(acloc) = 0 

Lemma 3°34 	If an
E Z' n e r+  ncr+ n 

for each n then h(T) = nip°  h( n,T) 

= E and.( n 	n+1 

Proof 	If S = n'n c r+1 then S is an increasingly filtered 

system and since 1' - 	
SI 
n it follows from. lemma 2°32 that given 

any /6 Zi, if Ci, 1 	is an atom set of 	and d1  any real 

number such that 0 < d1  then there exists an n and sets 

B. c pe n 	such that r  o3i  „ 00 < dl , 	n;  

(c.
1

„B.
.3
)ed1 if i#,j; 1(Ci. IBi. )>1-dl, 1 .szi,cn and 

Further 

r(Bn41) <d
1 

 ; 
n+1 
.1j 	B = X. 
1=1 

r (Bi lci ) = t40_94.) p (c i)  
/4(00  

r (ci) 
1 - plgi A Bil 

r ( Ci )  
.?; 1 - 

P T  i)  
1 -d1  

where the di  is the 	occurring in lemma. 2.33. Hence given any 

(1) 
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d such that 0 d if we choose d.1 as in lemma 2° 33 then we 

have H(' pe1 
 < d where c<n

1  

	

is the 	algebra generated by 

Bi  I  1;< i< ntl. 	By using the same method as that used in lemma 2.33 

we show that (1) implies H ( oc ill 	) < do 	We then have 

h(T)= 	 u-e h.( ,T) by lemma 3°31 
Z1. 

h.( tx,T)÷ 2d. 

by the above and lemma 3.15. 	But d was arbitrary and 

oen  ...c" aC rita  for all n and so using lemma 3.16 we get 

h.(T) 	lira h( xn,T) 

but trivially 

n lim h(ce,T) 45 h(T) 

and so we conclude that 

h(T) 	=  Wynnli h( n IT) 00  

Lemma 3.35 	If k Er+  then. h(Tic ) 	kh(T) 

Proof 	For any 0 

h((x sT ) r lira 1 H(a n  ) 
n-406 n 	Tk 
lira 1 H m )  

n-boo n 
 lim k H(c4n ) by lemma 3°12 

k h(T) 

Hence 	h(Tk) 	 h( 0(T
k 

 

su 	k h(T) 

kh(T) 

If h(T) = 0 then h(Tk ) = 0. 	If h(T)> 0 let d be any number 

satisfying 0.(.  d< h(T). 	Then there exists an 0(E Z with 

d<'h( a,T) 	h(T). 
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Put I/3= r<k  then 

1 	 ( iR ) = 1 H (aC 
nk) 

Tk 	fi 

= k 1 Hank) 
nk 

giving h( 2Tic) 	= lim 1 H Tnk) n-?Do 
2, 	in lc. nE1 H(ocilk) 

k h(o< IT) 

Thus 	h(Tk) 	= ysa h Tk) 

?„. h (fl,Tk) 

= k h(c< ,T) 

> k d 

But 	d was any number satisfying JZ) < d <h(T) and so h(Tk)? k h (T). 

The result then follows from our two inequalities. 

Corollary 	If 'ter then h(Tk) = Ikl h(T) 

Proof 	If -k E r4-  then h(T-k) = -k h(T) by the lemma. 

Thus we have h(Tk) = ikl h(T) if kE r , ks 0. 	If k = 0 then.  

Tk  = the identity and hence h(Tk) II  0 	Ikih(T), in this case also. 

3.4 	EXISTENCE AND PROPERTIES OF CERTAIN Cr- ALGEBRAS 

We say that a cr= algebra 	is invariant with respect to T if 

a 15 Tot and that it is exhaustive with respect to T if XI, = E 

If a 	algebra is invariant and exhaustive, we say that it is a 

K1-algebra with respect to T, while if a is a K1-algebra such that 

c<00  = i, we say that of is a K-algebra with respect to T. 	Further 

if given T there exists a K-algebra, then we say that T is a 

Kolmogorov automorphism. If of is a K-algebra then ii;kr  T o( 

and so we have that T is a Kolmogorov automorphism if, and only if, 
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there exists a o-- algebra pc such that o< < Tex, 	Tio( = 4- 

•A Ti,(  =y.  

Since C is a. K1-algebra for all T, there always exist 

K1-algebras, but as we shall, see later there do not always, exist 

K-algebras. However, if we put 

S 	= it< 	h( t( I T) =0} 

11(T) 	v S'`  ix 

then the following theorems due to V.A.Rokhlin and Ja.G.Sinai 

(see (17) ) show that a necessary and suffieient condition for the 

existence of a K-algebra is. Tr (T) = 1-1  o 	Note that oC 	Z implies 

h(04,T) =H(ce) = 	and hence ael 	Thus, since (Z,(,) is 

complete we have that o < 11(T) implies Pe 2, and so by the 

corollary of lemma 3.34 that 0( 4-  S I(  i.e. Tr (T) = 
946 

Theorem 3°41. (1) 	If oc is a K -algebra then Tr (T) < o< 

(2) 	If ac is invariant and H(T.< kg) = h(T) < cht, 

then *et:0 	TT (T) 

Proof 	(1) If fi TT (T) then if 6 Z and if YE Z is such that 

Tint< forsome m then for all p E 1'1  

H ( ?fi d'Tp oevo 	T ) 	H( 	1 „,fiT ) 	H( 	P(04, ) 	(1) 

But T ocx, off,, and /947T (T) , thus by section 3°1 

h(fii/1 -) = h(,T) = 0 

giving (2 ((4 and hence. Tfi ,..'5fifi y7 Therefore by induction we 

show that Tki/9 C1g k r 1.e. fiT  =//3" = TPkg" k 6r 
Now H( 	( i6<co)TP T

—Pi 
(kti T—kfi )TP )  

= H (r J T 	T—Pi  V T-Pi 1 T -k 
itr 	k- 	fi 



H(f 	octx, 	T ) 

Thus H( 	
TP ect,A1,) = 	 b'Tp  

Jim H ( 1( roeco  

= H( 	( 

= H( 	(YT-p  ae,o ) 

ctoT )  
T-Pi( NI; T 1 )-  

TP 
	kV 

/ TP 
by 2.22 

(2) 
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While since 

TP — 	J ET V
+ 	• 

T-Pi r < .V ler+ T-Pitnix = T-P+mo< - 	 ••  

we have that lim 	e,(). 	and so 
P4)::*TP  

by 2°33 	lim 	H ( 1r) ?r T-p  Getz, ) 	6K ov  ) 	 (3) P-->c* 
Thus from (1), (2), (3) we get 

H(il € ao ) 	( 	1 040,411) 

but 0(0, 	Dea,,fil, and so 

11( Zi oc„/3T ) 	( 	0<00 ) 

giving H(?fR,(31,) 	YI 	) 

If & E Z and d is any real number such that d). 0 then there 

exists a 16 Z such that /0 ( 	) d/2 and I E Tina( for some m 

Thus 

IH(61ccoA,)--11(8 I ofoo )I 

I H( Hp(o,fia,) - H( rio(.4,14) I 

+ I H(g7}'kw4) -H(Y/ocafiT )1 

÷ I H(Y)ot,,,fiT ) - H(YI pv,,,) 

÷ I H(/la) -H(Srkv )i 

4' I 11(gYloc,,,)-H(0.1<w )i 

H(rriges4) 4- H(Spreyr )-t. 0 

+ H(5 Irgeo )-i- H(YI,Ipeoe ) 

2 e ((S , Ti" ) by lemma 2.22 

< d 



But d was arbitrary and so 

H(a 1,6(00(0 	H (G law) 

for all gCZ in particular for g 

H (fl  )c<w ) 	= H( 	loo T ) 

= 0 

Hence 1? .t,C oloc,, and therefore fl  (T) 

giving 
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Proof (2) 
	

Let /1.3E Z be such that 	< ocoo  and gyp, p E r+any 

sequence in (2,p) such that p 4111 	p = x 	Then. by lemma 2.22 

H( Yp i xp  /3 T) +11(P V3... ) = H( 1p/9 IrW-) 

= H ( fir( ) 	 H ( If p  ) rp) 

giving 	h(./3 IT) = H (fi 1/3-) 

= H(fi/P-(NOT ).+H(?rpPr) - H(ipi ip731,) 
Now pli/0101  (ee3 	 )T ) 	(31(3 - e..‹.) by lemma 2.33 

= 0 since /84' 04 

and pa_gito  H( 	111: 	 = H ( ) pe') 

while plionl,  H(ip1)= H( jot -73,r ) 

= H (oe 	) because /IT 

Thus 	h(//31  T) 	= Pl. moo h( 1/3,T ) 

= 0+ H(9<1o<-) - 11(od-oi) 

= 0 

giving /'3,‘ 11(T) and so completing the proof. 

Coronary 	If h(T)<oo and oc is a 1C1-algebra such that 

H(Taci a< ) = h(T) then c<00 = IT (T) 

Theorem 3.42 	There exists a IC10  -alo-ebra oc such that oe = Tr (T)  

and 	H (T 	) = h (T) 
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Proof 	Let /3 i , i E r+  be such that /3±  ,./33.4.2.  for each i and 

lira /3 	E and 	ie r+ an increasing sequence of positive 

integers. Put I = T-ǹ i 	= A X 	n• 3‘‘r+  T 	/Si  and of = X i=1 
Then a = /- 	= T a showing that oc is, invariant. 

Further E kYr pk 
.Vr 	Ti  V `j V T -nk k le 	 je P t T  

= 

and hence At is a K1-algebra. 	Consider 

F(p rq) =H( YID / 	- H(rp ) 	J.), 

=H('1 1) - H( rp t If -q_i f nclt3 -q ) 

We put nl  = 1 and assume that n 	r-1, have been chos en such 

that 

F(p,q) < 1 1 	if p<q<r 	 (4) 
p 

Then by lemma 3.22 we can find an nr  such that 

F(p,r) < 1. 1 	if p <r 
P 2r-p 

Hence i  we can find n. , if"' such that (3) holds for all r 

If q = p r then 

H(Y I Y) -H( "irP 	i= T 	
p+

p+1 = 	F(p,i) 
P P  

1 
1 
 1. 

1 

But imp  Tyr  = c4 and so we get r 
H( rP  ( 1P  ) - H( b' P

I c< ) < 1 , p e rt.  

i.e. 	lim 
P 	

H ( X 
P 

 1 X 
P-406   ) = 13

lim 	H( Y 
P

)ar ) 
-4.00   

Now 	Prim H(i 1 YP-) = H(r1Y) 
P  

= h( ,T) 

h(T) because I is a generator. 



while urn H( 	) = H ( nix ) 
°° 

But Y,4 T pt and so 

H(T 	) =H(YTAtipt ) 

= 11( yi ) 	H(T 	1 

= H( rip< ) because ?C'm=Ta  

Thus 	H(Toci ce ) = lm H( 	I a ) Pi06 	r 
P 

= P lim H ( ?;P  I YP ) -->cv  
= h(T) 

If pd 7, /3t ocx  then ai373T 	and so by 1emma S°23 

11(ii 4(3( Ip )T) 1.1( Yp I1c) = 11(, wpirrp ) 
= H ( ?f p, bi;(31,) -4- H(fil(r) 

giving  h(/3,T) 

=11(,ifi -(/(p ),T )+H( 75-131 Zr;) - H( 	Y;fia,) 

Now 	p  aim (gyp )TT = E and so 

p1.071.1,  H ( fi 1/3 ()) = 0 

and 	H( /ep) cfiT ) H(Yp lix ) 

giving h(p1T) = P lim h((31T) -)0e; 
im 	H ( 71p  P->vo  

= 0 

and hence 	p < Tr (T). 	Thus we have 0<„ TT(T) and so by 

theorem 3.41 otc, = TT (T) 

60 
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4 KOLMOGOROV AND REGULAR .AUTOMORPHISMS 

4°1 DEFINITIONS 

We say that a IT- algebra a is ; invariant if a 0 Tx; 

exhaustive if OCT  •=.• E; a Kr- algebra if « c To and x,T= E ; and 

lastly a K-algebra if 	T 	ota,.= F  and txte = 	or equivalently 

if ee $- 	1 T1of = £ and 	=1./. (see KoJacobs [8) ) 

If there exists a K-algebra with respect to T we say that T 

is a Kolmogorov automorphism. (see V.A.Rokhlin £16) ). 
For any 	algebra x we define the tail tr-algebra 

of a (see L.Sucheston t213 ) by 

(-4) = ±16\r. T  f;  = ±6ri-T°`  
and say that T is regular if (a ) =J.) for all a E Zl  

Lastly we say that T is a mixing of degree n if given any 

sets A., 1 0 i 0 n4-1, tic r , 10 if n+1 then we have 
TtiLi) 	r (Ai) 	0  lam 

6.40. 
where A= inft . I , see P.R.Halmos 163, and V.A.Rokhlin £16]. i*j 1 j 

4.2 MIXING 

If nt. = t. ( )/ler+, 1..$  it n.+1 are such that lira A — 00 
1 	1 	 n.-)oo 

where 	n=inf 	t. (n)-ti(n.) I then there exists a subsequence nm  

such that for all m the integers t. (nm  ) are in the same order. 

Without loss of generality we can assume that t. (nm  ) ) t.14'1 (n m) for 

10 i‘ n. Moreover since 
r=  qa,  t•-t 

T I 	'.) ye lose 

no •:enerality in z1;3suming that t1(nIn) = O. 

Thus we see that T is a mixing of degree n if given any sets 

Ai, 10 i0 n+.1 and any d> 0 there exists an no> 0 such that for 
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all ni?, no, 1 < 5.4 11 then we. have ii 
 1 0.111 TNiA  {1L.) f < d 

- where, 1  = 0, 	i21 = - 	n., 2 	n+1 
0=1 j 

Another view of mixing can be obtained by considering the action 

of U in L2 
P * 

Theorem 4.21 	T is a mixing of degree a if and only if, given 

fi, 1 s, i n+1; ti  r, 1 c ± n4-1 such that f•1 L2 each i then L2  
n+1 ti 

lim 	ITU f. drt. = a--) . X 1-1 	1 11 
f dn i (1) 

 

where 	=f 1 t. - t I *j 

Proof 	If T is a mixing of degree n then given stets 

A. 	i( n+1 

lim 	(7)11  TtiAi ) 	= 	r+ (Ai ) 

but 	 p (Ai ) = 
f

dr, and 
z  

(2) 

r'31-11 	
1-13. 	 d 

I n4.1 Tti 

1 UI  -t 
	 dr  

Thus if T is a mixing of degree n, (1) holds, for characteristic 

f\motions. 	It is then obvious that (1) holds for step functions and 

hence by continuity for arbitrary functions in L2 

If (1) holds then given sets Ai, 1‘.  i‘ n+1 we put fi •••:: 'Ai for 

each i and get (2) thus showing T is a mixing of degree n. 

Corollary 1 	T is a mixing of degree n if, and only if, there 

exists a subset L of L2 such that ts 
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(1) 	{ gsg = i= ti  ai  f. ai  a real number, f i€ L each i, n finite 

is everywhere dense in L2 

(ii) 	given fie L 1 i n+1, tier 1 	then 

Aim 1 Uti f i  dp = 	fi dr
1  

where A= inf It.- t 
X 	 3.= 	oci

1 

Proof 

given a subset I satisfying (1), (ii) we have that (ii) implies 
ri+l. 	ti 

il that 	lim   n U 2. d = 
nitl 

f. 4->ce ix  1=1 	1 r 	i=1 x 1 
d

i
n 

holds for all fi belonging to the subset in (1) and hence for 

arbitrary f I• 6 Lp
2 since integration is a continuous operation. 

Corollary 2 	T is a mixing of degree 1 if and only if there 

exists a subset L of L2 such that 

(1) 1 g:g 1 1 i a. f, ai  a real number, f. L each 1, n. finite -} 

is everywhere dense in LP 

(ii) given f, g 6 L then 

lim (Ut  f, g) =f f fdpJ {  gdr 
t-troc• 	 X 

Proof 	Since 	1g) = f (Utf) g dp the result follows from 

corollary la 
	 X 

Lemma 4.22 	T is a mixing of degree one if and only if 

lim 	(Utf,f) = 1 f f dr]2, f E L2 (1) 
t -•00 	 z 

2 Proof 	Given. f ( Li,2 
' let L1 be the subspace of L r spanned by 

the constant functions together with f,Utf, t e P+ and let L2 be 

such that Lie L2 = L2 	If g = Usf and (1) holds then 

t•-• 	
t f,g) = l itn (Utf, Usf) 

0 
lim 4=0 

(Ut-sf ,  f) t.+ 

2 If T is a mixing then we take L = Lr  , Conversely 



since 	g dpi 

X 
V 

f dpi 2  by (1) 

	

X 	I  
f drii 	g 

	

t( J X 	X 
f dr =f f d r  x  
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Hence we get that for. all g E Li  we have 

14nio  (Utf,g) = f 	f dp 11 f g dr 
X 	X 

Now if g 6 L2  then (Utf,g) = 0, t E r+  and since Li  contains the 

constant functions in particular h(x) = 1, x e X we have 

0 = (g,h) 

J gh dr 
X 

= g dr. 

Thus for arbitrary g4L2  we can find giE Li, g2  E. L2  such that 

g = gli-g2  and so 

l. (Utf,g) = 
t-4 va 

lim (Utf, gl1_ g2) 

= tlimf(Ut  g1) utf, 

= f f dritif 	dr 
x 	x 

f 	fir gi  dp+ 
x 	 x- 

= { ,Ixf 	ixg ail 

g2) J 

rl 

The if of the lemma then follows from theorem 4°21, corollary 2 

as does, the only if. (see K.Jacobs r8].) 

4°3 	SEQUELVOES OF Cr-ALGEBRAS 

The main result in this section is due to J.R.Blum and 

D.L.Hanson (see [23 ). 	In this section we use the term measure 

to mean a real valued function pI defined on a a* algebra, ix such 
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that pl.  (95) = 0 and if Aif 	e /.7÷ 	= 1 for i *j then 
1 	 1, r k jyr+ Ai ) = 	tAi ). However by r7 we still mean a 

positiize measure with. ft(X) = 1. 

Lemma 4.31 	If (a ril , n6 r-  are a sequence of Cr- algebras such 

that 04n4.1 ." < oen 	, 	 COo 	nEr for each n= A 4. 	then De7= d,  if and . 04n 
only if for all A C E 

1 im 	
B 	a_ us 	I P(A "B) - ti(A) (B) = 0 	 (1) se 

Proof 	The limit always exists since 04211,1 	n rt 
If (1) holds, let A € 049°  then A e n , n E r+  and so 

	

0 	(p  (A) - r (A) r (A) 1,< 	 Bsan  Ir (A „, B) - r (A ) r ,(B ) I = 0 

1, e. p (A) = 0 or 1 giving A 6 L) o 	But A was any set in of 

and so we deduce that oei LJ 

If 	0(919= y and (1) is false then there exists an A. e E and a.  

d 	0 such that 

	

B s 	t p 	B) - /1 (A ) p (B)1 	d, n c r+ 	 (2) 

F8r each n we define a measure tin  on (X, an ) by 

p ri(B) = 	„B) - 	(A) p (B) for B 6 	Vie have that 

pri(X-B) = r (A (X-B))- r. ( A) p (X—B) 

= 	p (A - (A n B) ) - r (A) (1- pm) 
- r  (A B) r (A) r  (B) 

- 	tin  (B) 	 (3) 
Hence r n (B) 	r  (A4 B) 	1 

and-,n(B) 	= p (X-B) p(A (X-B) )I 1 

giving I pn(B) I 1,S" 11  B E ins n 6 r+  
If k =Bscuai 	tin(B) then there exists a sequenceifB. , E r4-  with. 

Bi .f" 	1.i.;m0a  pn (Bi ) = k. 	Further if Cn  = iVr4. Bi  then One-  x n 
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because a n  is a cr-algebra and(Cn) 	rn(Bi) for all 1, hence 

pn(Cn) k giving rn(Cn) = k. We note that k>d, by (2), (3) 

and the definition of k, and that for any B c ben  we have 

rin (Cn) rn (B). 	Thus for n E r 

rn (Cn )  rn (Cn Cn 

rn(G114-1 )  

since 

If pn  
rin (B) 
	= 	(B) if B 4 of 

= rin+1 (Cap' )  
n.44  

o 	p n-f.m (0w-1n) f°1' n  6  (1* 	 (4) 

then p(.0 C 	r (4) C n 1 =0 n4i) > n 1=1 n-e-i )  
m4-1 

= rn+1 (±,1)__a 

= Pn+1 (1:27•0 erkati )  

r n+rn 4-1 (Cn4•11:0-1) by (4) 
Thus since (4) holds for m = 1 we have by induction that (4) holds 

for 	m 6 r" 	Hence 	Ci) .?;r 	(Cntm ) = k d for n,mEr*, 

letting m.4cio gives 

Ci) 	d for n eT' 4- 

0„ 
Ci)?,d L e. 	 n' i=n 	for n 

and so 
00 

rl (ZeIr+ i n Ci) 	d 	 (5) 

ButC• 	 C. 	.15 C. n.Er + and so i=n 	n i=n+1 	i=n 
Ci  e oec° =1J giving r(n(6,1,r4, 	Ci) = 0 or 1. 	In either 

case pl(icirit n  Ci ) = 0 contradicting (5). Hence we deduce that 

if ol0° =1./ then (1) holds. 
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4° 4 MIXING PROPERTIES OF KOLMOGOROV AUTOMORPHISDS 

We are now in a position to prove a result due to 

A.N.Kolmogorov rlli 2  f 12) and V.A.Rokhlin 1161, namely that, a 

Kolmogorov automorphism is a mixing of all degrees. However, the 

proof we give is due to J.R.Blum and D.L.Hanson [2]. 

Theorem 4.41 	If T is a Kolmogorov automorphism then it is,  

a mixing of degree 1. 

Proof 	Let T be a K-algebra, and ci(n.  = T-ar 11 E r++ • 	Then for 

each n, a< c<n  and O q  = 	If A lB E E then there exists a 
• sequence d Bik 3,i E r 	with B. e Tk C and TO A Bi  ) 4 2-1  fcr each i 

Hence for n E r i r+ 

t „(_L _T- (n+k • 
1  B) - r, ( A, T-(11*.ki )B.) I 

(Tn4k .1. 
J" 	B ) - f (Ta+ki A ,,Bi ) 

1.4( (Tn4aci 2.„B) 6  (Tn+ki AABi) ) 

r, (BABi ) 

< 2-i  

and I (A) r, (T- (11+ki ) 	- p (A) r  (B) 

= p (A) 	(Bi ) 	 p (B) 

p  (A) ti (B 	Bi ) 

< 2-±  

Given d 0 choose i such that 2-1  < d/3. Now 

T- 	ki )  B. C n' nc P +  and so by lemma 4.n. we have 

11  n(A 	T 	)Bi) - p (A) r i (T-(1141i )B) 1 = 0 -no 	, 	
(n+ki ) 

 
Thus vie can choose N1 such that for N>N1  and n = N-k. 

I fl (A n sr (11÷ki )  Bi ) — t7 (A) (a7(n+ici) B) I < d/3 



Hence 	I r (An T-NB) 	cto r (13) 

Ill( A n r(n+ki)B) - p (A /11- (n÷ki ) B)  I 

+111(An T-(114-ki ) Bi ) p( A) /1(T-("ki)Bi ) 

	

T CIO r  (T-(n+ki)Bi) 	r(A) ri(B) 

d/3 

= d 

giving Nlpono  r  (.1.1 n T-NB)  - r (A) r  (B) 	= 0. 

i. e. 	T is a mixing of degree 1. 

Corollary 	' If T is a Kolmogcrov a.utomorphism then it is a. 

mixing of all degrees. 

Proof 	It is sufficient to prove that given any sets .11.12.facm,m‘/".  

and d 0 there exists a no such that if n . no,   N = 1 
ni , 1..jtcm-1 then 

TNi A. J 	J ) - 	mCL.) 	< d. 

We assume the result for m and prove that this implies the 

result far m+1. 	.An appeal to the theorem for the case m = 2 then 

completes the proof. 

d) 0 and integers n 1$ j4 m put 

N1= 0, Ni+1= 	ni, 1 <j.•$' m. 	There exist sequences fAii i 
• i Cr+, 2 j mil such that 	E Tk 1  ir (.1`,. 5  4 Aii) < 2 	fcr each 

and 2.‘ j m+1. 	Hence for i 

t i ( 	T n1 11,41  TNO+ n3- Li) - r  ( 16 
m+1 N•+ni 	m+1 Nitni  

p 	T a 	T 	) j 	 2 
mtl Ni+ni 	TNj4-n1 A  

= P j-'22 T 	J 

( 	T 
Nj-÷ni 	

- 	T 
ra+-1 Nis•ni  

A.  
J-2 	Ji j4 
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fi 

N.) 	- - 41 	k=1 

(  
r J=1 

Given A.3., 1 j , < % < 

T nl mhl 	) j=2 	ji 



111 no 

N 
j=
/I2 
	

A jiTO 	)I (d/4 

n631 such that if 	n j > no 1, 

and 

mtl 	N Jim].  mtl 	N •J  In • 1 
(j122 (T 	L - T ) ) t p ( j2  (T 	A .

Ji 
 - =  

N J 1 
T 	L.)) 
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114 
2 r (A

j  4 A ji ) 

< m 2-1  
iru1) r 
 (T ni  mil1 TN 	 TNjtni 

= 2  
0 	

r j=2 J 
rik+1 

p(1,3) p (Q2  
N*.o.n 	m41 

T 	lkji ) 	p(
jJ
1

2  T 
	I 

 
m+l Ni.tril 	A  11111-1 

(. 
t

ji T  j=2 	
A 	J1 T j=2 

j=2 r 
m(A.  A  

) 

m2-1  < d/4. Now N.+ni  
(na-f-k • ) mtl 	j+ni  T 	jf r 	

v 3=2  
4°31 

-(n± ki)41TNjtnal.:), 
O 31  

pliNi4111/1, 	- ( 113.  )14 (T J1  
= 0 

m 2-1  

Choose i such that 

of n1  for 2 4( j m+l and 

erf 	Hence by lemma 

nli I r  n 	A T nl+ki) 

is independent 

T -n1 3t =, ni 

uniformly in ni, 2 $j 

Thus we can find an 311,  such -that for 

r(AiT-ni m-AlTN4tni  Aii)- r(t.1)1,(T-111  
j=2  

but by our hypothesis there exists an 

2 	m then 
m4-1 Nitni 

Ir (11 T 	J A). - j=2 	 j=2 (A • ) I 	d/4 

and since p (Ai ) < 1 we have 

m4-1 N •••Fn 
1p (Li) 	( ji_12  T 3 lA • ) - 	rf (A • ) 

I 

Thus if 	= max. n1  , n o11/ we, have o  
mil N1 

i tt(P1  T 'Aj)  - 	1 r(A j );  
mtl 	N • 	 n rata N in(
i 

 /1
a 
 T 3 A • ) - r 	3=2 T J lA ) 

=  

<d/4 

for nj  no, 1„,<' j ,tfm that 



1  ( nl m41  , 	 ni m41 N÷n1, 
ift(AiitiT 	.n T J. 	"j±)-  r  ct-i,r,T 	jo2 j=2 

-nl mAl  TNP 11 j1.)- r(A1)14( I
% 

,, 1 p(A1) r(T 	j2   

+1 r(11)r(J12 )  
.o. Nii-ni A.3.1 - m7.0-1 

k 
_,

i
.  ) 

Ar  

+ni T N.  J -L A..ji  )1 

Nits].  
J 	11.3 ) 
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d 	d 4. d 	d 
4 4 4 4 

= d 

The or em 4.42 	If T is a mixing of degree 1 then T is 

ergodic 

Proof 	If A C E , satisfies TA = A then since T is a mixing 

of degree 1 we have 

lim # n (AAT-nA) 	r (A)  r(A)  1 = 
n--)00 

But TA = A implies A.T'A = A for 

.14.) - rco p(A)  = 0 

r(A) = 0, 1  

r uo = 0 or r (X.-A) = 0 

Hence T is ergodic. 

i.e. 
i.e. 

0 
	 (1) 

r+ and s o (1) gives 

C or ollarY 
	If T is a Xolmogorov automorphism then T is ergodic. 

Proof 	The result is an immediate consequence of the corollary 

of theorem 4.41 and the theorem. 

4.5 	EQUIVALENCE OF KOLMOGOROV MID REGULAR AUTOMORPHIS WS 

This follows from the work of Ja.G.Sinai, J.R.Blum and 

D.L.Hanson (see (191 and t21 ).. 	1e do not use the above papers, 

but consider expressions for 7T (T) 
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Lemma, 4.51 	If .4 d Z, /13= O.' then p. 4 TT(T) 

Proof 	By lemma 3°23 if r.$ fio, we have 

H( 	I 	) tH( oc 	YT ) =H(a Y. 10<-  a/- ) 
= H ( jo‹- 	( 	I Y 	) 	(1) 

Now 	pc T = a: since Ti 	Ti  A0  = /34:, because /17‘ T 	giving 

H( pc1 	Y T ) = H(a la-). 	But tr. .r.4,1, and so H( 	.1 r -  ocT ) = 0 

giving from (1) that H( 	a**-- ) = 0, i.e. i‘ 	The result 

then follows since r was any cr- algebra such that Y.  4A0. 

Lemma 4.52 	Tf(T) = uE z  ( -)cx, 

Proof 	By the previous lemma ( 01)041 	/T(T) for all a f 2 and so 

	

0<y z  (61( - )a, 4 Tr (ll). 	If 72,5 Tr(T) then. 0 = h((3,T) =11((3l(r) 

giving fi 4/3".  and hence Tfi T, =ff/9-=, and so by, induction 

we get Ti/3 	i E r 	Thus ,e 	r+giving f < ()00 

and therefore Tr(T) 4 oeYz  (0( -)to  

C or of 1 ary 1 	-ri(T) = „Iva  (0()00  

Proof 	Since Z1 ' c Z we have V aeZi  ( 0,<)„,0  .,, Tr (T). 	If 

ifi.., Tr (T) , B efi consider Y=1 0 ,B,X-B,X). 	Now 1(73 and so 

Y..1" TT(T) giving as. in the proof of the lemma that Y4 ( r),,, and so 

B E 	0,8‘ z (a 1)
" 	

But B 
1 

and therefore it (T) 	yezi  (m l ) ex . 

Corollary 2 	T is a regular automorphism if and only if 

11(T) = 

was any set in /9 and so /34V (g1).0  a,EZi  

Proof 	We observe that ( -)ati  = ( ) 
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Combining this last result with 3.4 and 4.1 we get: 

Theorem 4°53 	T is a Xolmogorov automorphism if, and only, if, 

T is a regular automorphism. 

4° 6 	 SPECTRAL THEORY 

Given an increasing real-valued non-negative function F( X ) 

defined on 1- Tr, Id then if we put 

F1( x'y ) = F(y) - F(x) 

F1  ( rx y) ) = h-7 	F(y-h) 	F(x) - 0+  
F1( (x'yl ) = F(y) - k-  lim F(x4k) >+ 
Fl ((x'y) ) = 

11, 
lim 	 k -3m F(x+k) F(y-h) - li404- 	 4- 

we have that F1 is a measure on f--/T, Tr). 	Conversely, if F1 is 

a. measure on [-/T,77.7 and we put 

F*( X ) = Fa. ( (-71 , 	) 

then Fx-  is an increasing real valued function on [-IT ,711. 

Moreover, if given F we construct F1 and then F* we have that 

F = F* almost everywhere. Throughout this section we shall not 

distinguish between an increasing real-valued function on 1-7r, 771 
and the associated measure on L-V,11 and the same symbol will be 

interpreted as both; the context making clear which interpretation 

is meant. 

Before continuing we introduce the following notation. 	Given 

L  
2 any x E 	we denote by Hx the subspace generated by tilx,nt r ri 

and refer to it as the cyclic subspace generated by x , For each 

n r we put 
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and note that for all n 

(-n) = U.!x,x) 

= (x, Unx) 

= 
Further , since I Tx  (n) 	(0) , n E r it follows that tpx(n) is a 

positive definite function and hence (see C33 ) there exists a 

measure 6x on. [-Tr ,TO such that 

(n) = 17r. 	d Gx ( 	ner 

We refer to Fx  = Gx/17  Gx (X) d) as the spectral type of x. 
Lastly we put 

Yx = y: F 	I x y 
where 4, denotes the usual equivalence relation between measures, Loa 

Fx 	y F if and only if they vanish on the same sets, The reader 

is referred to P.R.Halmos 153 for a discussion of the ref ations 

", and as applied to measures. The main results we need are 

that if Fl GI  are measures, a, b, are non-zero numbers then F of G 

if and only if a F 4 1)G and F G if and only if aF bG. Further 

if F. iE r are finite and normalized measures, a. lb. if r are 

non-zero, positive real numbers such that 3r  ai, 	i <o0 

then. 	F. 	b. F. it  E r 	1 	i Er I 3.° 

Lemma 4.61 If 	x€ L ytH then F F rf 	x 	y ' < x 

Proof 	Since yt 11 there exist constants ak, k Er such that 

=Ukx. 	Hence n-*po 11c1.$.n -  

TY(A) = (UnY, y) 
ntk 

U
k
x) = 	a U x ker k 

( U 11XICI:Or  

ak  

'Er nl 
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= bill I: i" dGx ( ) 

giving us that F 4 F 
Y 	x 

Lemma 4.62 If x e L2 ye. H FY , 	 then H H 

	

I. , 	x2  y x 	Y x 

Proof 	F y  4 Fx  by lemma 4°61 and xcHy  implies Fx  Fy  by the 

same lemma, and hence. Fx y. 	This is a contradiction and so we 

deduce that x? Hy. But x e Hx  and so we have Hy#Hx. 

Lemma 4.63 	If x e L1, ycHx  Fy 11,Fx  then there exists a z 6 Hx 
such that H 	H 

Proof 	By lemma 4°62 Hy H
x 
 and hence since Hy  c Hx  there 

exists a z e Hx  such that z 1 Hy , i. e.. z 1 Uny, nfr and so 

Linz .1 y for all 21 giving us that Hy — H2. 

Lemma 4°64 	If xa a L12  are such that Hx  1 Hy  then 

Fx+Y = (F x  fFy 
 ) / 2 

Proof 	F)x+y (n) = (111(x y), (x y)) 

= (Unx,x) (Unx, y) t  (fjny,x) 	y) 

but Hx  1 H j imply (Unx,y) = 0 = (Uny,x) and so 

ex,x
e 	dG 1  

)) .. (uny ,y ) 
t 	inA 	ir 

el'  dG = 5 	 4 it 	x " 	Y 

= 	
inN d(Gx  .4..Gy  ) 

w• 

et ir  
giving Gx+y  = Gx  .1.Gy  and hence F x+y = (Fx  .t. y )/ 2 

2 Lemma 4°65 	If x3..,ic I satisfy x.cLi'  ... , 	?Ix.3.  ) 

for all i, Hx1  £ t•bc i  if i j and aa.  i., E I are 

such that E la 1<r 	_..i.  i and in.i t l  E 1 	i 1 	_, 	f or each i then 

we have that Fy  = ( 5R ai2Fxi) / SI  a.. 

= constant 

real numbers 

X if y = 	aii 
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Proofai xi 1l E ieI Tail/Uzi 

M2 

and so y is well defined. 

	

(1)11Y/ Y) = (UniPI ai xi, 	aixi) 
1 a. ainxi, 16 

2 rei Xn E a. xi 

c- Thus since- ai 41, 11 (xi , xi ) = f ir dGxi we have that 	a2 Gxa. . if 4•1 I  
is well defined and so Gy = 

	
2 Gxi giving F. = 

qi F 1E ai'  

Lemma l  4.66 If L2 is separable and x. el Yj j., EJ are such. 
2 	2 that x.cL y jE L~4 for all i, j and 

i k 

jit. 1 

H y j 
 

thenforannon-zero,positiverealnumbersa.,itI a j , jeJ we 

have .EI a F 	b . F i 	xi 	jeJ 	y j 

Proof 	Since Lr is separable I, I c (" and since Fxi, Fy j are 

normalized measures it follows that 	a. F lei 	xi) jYi 
b F are 

well defined and. finite.. 	By (3) we have that for each. j d J there 

exist V.., i&I such that V.. e H 	for each i and y. = . ji xi 	 le•L Vji 
By lemma 4°65 we have that Fy j = F.vii and since by lemma 4°61 

we have that E. Niji Fxi for each i it follows that Fy j 

j e J. 	Thus vie deduce that 	 L .11y j 	ai xi° 	Similarly jJ  
we show that I  aiFxi < 	"b jFyi and so we have 

. 	. F ic I 	jEJ 	yj 

(1)  

(2)  

(a) 

Hxi .1..Hxk 

H. 1 Hy1 

ED 	xi . 3.e. 

if 

if 

L2 /1 
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Vie now define the maximal spectral type of U if Le -; is:  

separable to be the equivalence class of measures which contains 

2 
.1: IEI ai Fxi 	i wherex.,iti are any elements of LP  such that 

H . 1. H . 	 43 H if i 	/ I' r = ±GI xi and a. are any non-zero, positive xi 	xj 	 1 
real numbers such that 	ai< DO o 	By lemma. 4°66 we have 

immediately that the maximal spectral type is well defined and 

unique. 

We say that U has a Lebesgue spectrum of multiplicity X0  if 

there exists xi,iEI such that xie L2 for each i, Hxi  1 Hxj  if 

j, Lr  2  = +1:3 HXi  F. . for each i 	equivalent to the ordinary 16  

Lebesgue measure and I is countable finite. 

If U satisfies all the,  above conditions except the last then 

we say that U has a Lebesgue spectrum of multiplicity & = cardinal 

number of I. 

Lemma 4°67 	If there exists an orthonormal basis f± j, 	of 

L2 	such that J. r or r - for each i and 	 a. ij 	j+1 

	

= f. 	for all 

j then U has a Lebesgue spectrum. 

Proof 	Let x. = fij  . . for some j E Ji. 	Then 

	

x. 	x. ) (U 	a. 	I = f x. i) if n = 0 

1 0 	if n 	r+ 
hence we must have Gx± 	equal to a constant times, the ordinary 

Lebesgue measure. Hence. F . is equivalent to the Lebesgue measure 

and since 	 / f..j  i4I, jEJ. is an orthonormal basis we must have a. 	a. 

- L2 	(1)l Hxi , and Hxi J. H xk if i# k. Hence we see that U has - ie  
a Lebesgue spectrum. 
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Lemma 4'68 
	

If there exists an xe L2  such that Fx is singular 

with respect to Lebesgue measure then U doesnot have a Lebesgue 

spectrum. 

Proof 	As usual we say that two measures are singular if the only 

measure which is absolutely continuous with respect to both is the 

zero measure (see (51 ) 

If 	had a Lebesgue spectrum then there: exist , i E I 

such that x. e L2 for each 	Hx. 	Hx . if i j, 2 	Hxi° 
2 Hence given x E L there exist v. 	6I such that v. E Hxi  each 

and x = By lemma 4°65 Fx = 3.1  Fv 
 and oo since • i 

F
ir 	

F
x 	

F is absolutely continuous with respect to 
i xi 4 

i 
Lebesgue measure for 	i, o o o o i Fx. 	Jut this i s a 

contradiction and so we deduce that U does not have a Lebesgue 

spectrum. 

4°7 	THE SPECTRUM OF A KOLMOGOROV AUTOMORPHISM 

In this section we look at some spectral properties of T, and 

in particular the spectrum of T if T is a K - automorphism. 
2 For any cr.- algebra ex we put L.1 = f: f 6Lr  f is measurable 

with respect to (X,c<) / If AE oc s XA  is the characteristic 

function of A, U EDS in section 1°2 then 

7.A  = XAT = Xtr...1A  

Thus we see that for any, step-function f f L e4  we have Uf E LT.a 

And as usual we can approximate any f by step functions and obtain 

for all f E L2 that 

fe La  implies Uf ELT_Ive  

Moreover if of < Tot then LT_1.( 	Lo  and so UL « < Lo 
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77e define a subspace of L of L2 to be invariant if 

UL L 

and to be exhaustive if 

tcr 
V + UtL  = Lti2  

Here as always we use te V r 	Uti, to denote the closure of tU UtL. + 

Lastly we point out that if ex is a K -algebra then L o(  is 

invariant and exhaustive. 

The following four lemmas are essentially proved in K.Jacobs [8]. 

Lemma 4°71 	If L is an invariant exhaustive subspace of L ti  

and L op r-"" n UtL '  L+  satisfies L2  = L Ce L et, then U has a tcrf  
Lebesgue spectrum in L+ if L + 	0 

Proof 	Let H1 be the subspace such that, 

L 	= Hl  G3U L 

and define Ht  = .0 t-1Hi  for t 6' r ''' 

then 	U Ht 	= Ht t. 1  and U t -1  L = Hte, L. 
2 Thus 	L r 	= t " 	U -t  L Eef? 

= ter,   t H (13/ L 00  e 
If I fil 311 is an orthonormal basis in H1 and 

f f.lt 
	' / = ut-1 ,.11 then. if 1 , 16I, tEr is an orthoxiormal it  

basis of L -f• 	 such that f. 	 Thus. U has a = ttr Ht 	 lt+1 = U f. °  it 
Lebesgue spectrum in L . 

Lemma 4.72 	If T is ergodic, De an invariant P'-algebra and 

-1 T a 0 oc then (X, E ri) is atom free. 

Proof 	Since T d * a there exists a set AI*1) such that 

AIE T 	Ail a , and for each n E r+ there exists a set An* 
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such that Aae Tnoc A Tnloc and hence n#A. 1 < j< n-1. " 
Let /3 be the C- algebra generated by 1A3 n. e r+ 	Let S be 

the least limit point of the f r(B )i , Eie/3,B.1) and suppose 

6> 0. 	Then there exists a sequence {Bi l , i E r -i• such that 

Bi  B if i* j and such that 	p(Bi) = S , and an N such 

that for i N we have ri(Bi) <38/ 2. 	Consider Ci  = Bin B. jj 

for 	i, j > N, then we must have C..# Qb for an infinite number of 

pairs ic,j since otherwise the Bi, i a, some N1  are disjoint and so 

1 = r  (x) 	(Bi)3 itN  g = 00 which is absurd. For these 

pairs either 0 < r  (Bi  n B j ) < S I 2 or 0 < r ( Bi  - B j ) < / 2, giving 

a limit point of (17(B).1, B e p , 	0 which is < 6/2 < b i.e. 

a contradiction to S' > 0. 	Thus we have shown that there are sets 

in E with arbitrarily small measure. 

For any set A with r(A) > 0 we can find a set B with 

0 < r(B) < r  (A), and since T is ergodic there is a t 0 such 

that r (T-tB A A) > 0. 	But T-t
B n A c A and p (T 	A) p (B) < p 21) 

hence (X, E , r ) is atom free. 

Lemma 4.73 	If (X, 	 ) is atom free, oe any a-- algebra and 

H1  the subspace defined by L ii2  = H1€0 L.4  then. either H1  =(01   

or El  is infinite dimensional. 

Proof 	If 112.*t01 then there exists an ft 0 such that f 

Further if F = I x: f (x)* 01 then F 6 c( and r(F) >  0. 	Moreover 

the space 

L = gX7: gEL 

is infinite dimensional. Let, 

Ll  = c OCT,: ge Lo? 
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and Lo be defined by 

L 	Lovii  

If ge Lo, h E La  and g = gii(p„ gle L2  we have 

(g1X  F'11)  

(61%F' h%F)  
= 0 since EL h7C F 	I 

Thus Lod Hl. If L1 has finite dimension then Lo and hence 

Hi  is infinite dimensional. If L1  is infinite dimensional then 

there exist {hi},  iE r4" such that hi  is bounded, h. E L2  each 

and 	1h. XF  1 are linearly independent. Since f (x)* 0 for x E F 

we have that chi! 1, i Er+ are linearly independent. 	Also if 

h 6 14,,(  then 

	

(hif, h XF ) 	(f, hih) 

0 	for all i‘ r+ 

because h. h e L 	f e H 

	

G' , 	1° 
Thus h.a.   f e Lo, i E r+  and so Lo.and therefore H1  is infinite 

dimensional. 

Theorem. 4.74 	If of is a 	 G K1 	 tE algebra, L 00  = 	Utl, then U r+ 	'4  
has a Lebesgue spectrum in L#  whore L + is the subspace such that 

L2 = L+ED L00  if L+# 0/. 	If T is ergodic, L+#101 then 11 has 

an infinite Lebesgue spectrum. 

n o 	= T 
Proof 	U L 00  = trelr+ ttl 	 t T 	11 00 

t 	sid  Irt  u S 0(  

	tEr Lc( ttire-frtLoo=r  U - 

Thus L oo  is invariant and exhaustive, and so by lemma +11 

U has a Lebesgue spectrum in L + if L44{0). 

Since a is a K1  algebra either a = E giving L+ = 1 0 or 

(g,h) 
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Tat # oc giving (X, e r ) to be atom free by lemma 4.62. 	The result 

then follows from lemma 4.63. 

Corollary 	If T is a Kolmogorov automorphism then U  has an 

infinite Lebesgue spectrum in the orthogonal complement of the 

subspace of constant functions. 

Proof 	There exists a K-algebra 	and for this. ac 

Lc„ ter+ = 	(I'LL x  = subspace of constant functions. 	By theorems 4.41 

7:Iad 4 ,:12  m  is er,;odie and the retiult then foil a-is :Tram the theorem. 

This last result was first indicated by A.N.Kolmogorov in fill 



5 MIXINGS WHICH ARE NOT KOLMOGOROV .t1UTOMORPHISMS 

5.1 RIESZ PRODUCTS 

We consider the Riesz product 

4,11:4(1 4 ad/cos ny  x) 

where nd E r+ 	?,, q 3 0 < i•<,,,10. for *o_r. 
If 

Pk=  ita 	Pk = nkfl rk for k Er+then frk<nkq Aq-1) , 

flak> nk#3.(q-2)/(q-1) and so rk itik 1. 	For ker4.we put 

pk(x) = 14;E3.  Zry  cosi/ x = i t  (140(i  cos. nix) 

where the Xi, are chosen (uniquely) to satisfy the second equality 

for all x. Thus we have 76, = 0 if, is not of the form 

*. I. ... with k 	>12> 
11 12 

Now 	Pk+1 (m) 	Pk (x) (1 4"9(k+100's nk4-1 
giving that the difference Dk+1 - Pk is a polynomial whose -  
lowest terra is of rank Hence the passage from p, P k 	Pk° 	 to  Pk4-1 
consists in. adding to pk  a group of terms whose ranks all exceed 

Letting kg->oo in (2) we obtain the series 

1 + Prrt' c osai x 	 ( 3 ) e 
in which 6, = 0 if nit.n...*, n. 	n. * ...with.i >3.1,12  > 

1 11 12 
The partial sums, Sn(x) of (3) have the property that 

Spk(x) = pk(x) 0, k E r+ 	Moreover if 

G(x) = k.4.reao r  pk(t) dt 

then it follows (see 122.E ) that (3) is the Fourier-Stieltjos series 

for G(x) which is a non-decreasing continuous function. 

If we formally multiply out (1) and replace the products of 

cosines by linear combinations of cosines then it is easy to show 

that no two terms are of the same rank. 
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(1)  

(2)  
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Before continuing our discussion we need a lemma and the 

following notation. 

= Et<k cos nkx' ks r+; an. = 
( n

-lif 1 s i n, n Er-4
k 	 2 

- 

0 	otherwis e 
00 

n m 
= 	a i 	7m(x) = 	 r"-Ln(x) Rmnk mn  f=  

2 
Lemma 5°11 	If k  E r+  0( k  z-..• then the sot of points at which 

2 2 
2":(x) = R o f k*.r4. o( k 	ran i 	 (5)  k 

where 	2"4"(x) = max (0, m(x) 1 is of measure zero. ra 

2  Proof 	If r 	2 R2 
m 	k Fr  k Elnk, 	E = I x: (1) holdsjand Ilia denotes 

the measure of any measurable sot in the real line then if 1E1 > 0 

and d1  is any number such that d1> 0, there exists a set E S E with.  

IEI > tEI/2 such that rra(x) /fin, d1  in E for m7rao=m0(d1). 

By omitting the first few terms of kchAnk(x) we may without 

loss of generality and without changing E suppose n1 as large 
t 

as we please. 

Then i lr(xfl 

E 
dx (J  

= 	f 

= 

4( 
{l- 	I'm 1 

• I 2d1  Pra- 	Tim  (x) 	dx 
( 

2d1  Pra  IE t 	- 	'em(x) 
f 

dl  r .1 dx 

dx 

but 	 riz(x) dx 
E 	

Ert  o( k  Los nkx Rnm 	dx 
I  

kgi" TT a nk  k Lank  R 

where a is the nth' Fourier coefficient of the characteristic 



function of the set & 
Thus 	.f

m 
 (x)1 d x < 2dl  rm  1E1- Tqr+ an (4 k Itnink  

	

2di rm 	+yrm ker  1E, + a 2  I + nk  
by Holder's inequality. 	Hence if ni  is sufficiently large 

ititm(x)1 d x E (drm  (2iEli- IT ) 

i. e. 	m(x) d x = 0( rm ),  

But by Holder's inequality 

(x) d x  < f }7'm(x) d x12/31 rtil(x) 	) dx1 3  
m 

and A. Zygmund f 22) shows that 

rm2  = 0(0'm2  (x) dx) for nl  large enough 

and 
 t

4 "rm  (x)dx = 0 (rm4) 

thus giving 

rm 	= 0 ( f 1 m(x)t) d.x 	 (7) 

This is a contradiction to (6) and so we conclude that tEl = 

We now return_ to our discussion of Riesz products. 

Lemma 5.12 
	

If 2.1oc
2 
 = 00 then the function G has a derivative 

0 almost everywhere. 

Proof 	The series (3) is almost everywhere summable (C,1) to 

sum e (x). (see [22) vol.1 P.105). 	Further the series has 

infinitely many gaps (ilk, ri'd and since pircirk> 1 we have 

(see [223 vol.1, P.79) that the partial products Pk(x) converge to 
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(6) 

(x) almost everywhere. But 11-u E eu  and so 

Elc „cos 21, X 0 41,‹ pk(x) 

In lemma5lIfor fixed k we have mligict rt = 1 and so mf r oo 

Thus applying lemma we see that ic  pcv cos /lox takes arbitrarily 

large negative values, as k-400, for almost all x. 

rm2 
Oo 
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Hence k- lim inf pk (x) = 0, i.e. GI  (x) = 0 almost every ere. ,02 

Remark 	We have also proved that (1) converges to 0 almost 

everywhere. 

5.2 	 A PARTICULAR PRODUCT 

Vie consider the Riesz product: 

11(1+cosn, x) = 1 tfr+ .4,COSI/X 41„, 	ivx 

k 
where nk  = 22  and the 8), ,,per are chosen so that the last equality 

is satisfied. 	By the last section the series is the 

Fourier-Stieltjes series of an increasing, continuous and singular 

function G(x), and that 04 6, 1 for lif r. 	For any N> 3 there 

is a k such that nk..3. 6N(nk  and hence 

,P=N 	k P=1 2 = 2k 4 22 log n. 

giving the g, small "on the average". 

Consider the mapping 

x = x(t) = 1 ( t+t,2  sign t) 	t Tr 

of the interval f TT , 7T) onto itself. 

If F(x) = G(t) then since 1/2 x' (t)4 3/2 we have that F(x) is 

increasing, continuous and singular. 	Moreover (see [22) vol 1.P.158) r e -inx dF(x) = 	er-inx(t) 	
ditr 

dG(t) = 	n,2. & ff7 	 zn  

and the series is absolutely convergent since e-inx(t) has a 

derivative of bounded variation and so its Fourier coefficients 

n,1
' = 	er e-i (nx(-04..ut) dt 

are 0(J, 

Vie ncn leave this product in order to prove three lemmas.. 
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Lemma 5.21 	If f(t) is a real valued function for a 4 t b, 

14.  (t) is monotone and there exists a X)0 such that either 
2 -Trif(t) 0  ft  (t) X or f L (t)‘- X for a 6 t b then if 	dt 

I ( X-1  a 
i  

Proof 	
jb 

e2 Tif(t)dt =b 
 

..1_ 	1 	d e2 Tif(t) 
2-Tr a 	 i 	l a  f1 (t) 

and by the second mean value theorem there exists c1,  c2 in (a.,b) 

such that 
droO(2TTf(t)) = 1 	c1 dcox(2/Tf(t))+ b  dcas4 (21tf(t)) 

f.' (t) 	 fr  (a) 	 (b) 
f 

	

a 	 a 1 

	

(b 	1 d sin(2 Trf(t)) =.1 (cad sin(2 Tr 	,1 fb d sin.(2 itf(t) ) 
jafi(t) 	 f l  (a.) 	j 	 e(b) 

e2 

giving  I I e21 if(t)dt E 2111 af 3pod co.51 ( 2 iff(t))1-1-)i 4 	d sin(211f(t)1} 
a 	 (t) 

2 

1 <— X 

Lemma 5-22 	If £(t) is a real valued function for aq 	b and 

there exists a 40> 0 such that 	(t)?:/o or f u  (t) 	- p for 

a4t4b then 

rb e21Ti f(t) dt  
I a  

Proof 	If f41  (t)‘.  -p we consider -f(t). Hence without loss of 

generality we take f" (t)?,p. 	If f /  (t) 0 for 8,4 t tf b, and 

	

a .e 	b then f 4  (t) 	( -4) for T t 

Hence If e27T if(t)dti If e217i(t)dt)-4-1 fbe27r if (t)dti 

a 
r- a+ 1 	by lemma 5.21 

But 	1 	has a minimum value when 
( =a)p 

r= ar -4 and so 



87 

e2  if (t)dt,641-e—} = 2/04  a 

If f l  (t) 	0 for a 4 t$ b then far a, < /1".< b ; 	(t)„1-(b- r),0 for 
X' and result follows. 

If 	f l  (t) changes sign in a .4t b then we have to consider the 

two intervals in which f i (t) is of constant sign. 	Thus in. 

general 

• 
be2 rif(t)dt  k 	2e4 

( a 
Lemma 5°23 lX n. " " I.< An 1t  1,E r , 

21;ii ' IX 	1<Av-2, 	fiil ?.. 3n. 

where A is a constant. 

Proof 	If f(t) = nx(t).t.vt then 

f I  (t) = nx (t) 	asi 

= n (1+4 sign 9+ 

f"(t) = n sign t 

Thus for t in (0,17 ), f"(t) = D.-Tr-1> o, and so by lemma 5°22 

If
oTre-if(t)dt 	4(2n) -h- 

e-if(t)dt 1 .$'4(2n).4 

Hence 	 ) 	a. 8(2n) 	8 nom , 	f(t) is an odd 
"/P 2yr 	7l 

function and so 

= ['woos f dt 
.0 
=d sin f 	f "dt 

Jo Or Jo t 
nit 	si f f a  dt 

Further f (t) is monotone• for 0 tse7T and is of constant 

sign if ivi?„, 3n/20 	For ti/1 .):„ 3n we have I VI ?..• 	and so by 

the second mean value theorem 



E P 2 6, fri>3n 

1N>3n 1,
-2 

, 	- 	3  I i ,, 	1n Ti 	2 n si • 	 sin 
174 3  0  

<241T-2. 2 
'2 

= 480r2 

f<An ) 
	r 

A  .P-2, 
	fit/ 1 ?,3n 

Returning to our particular Riesz prodp.ct we put 
1 	re  -inxdF(x),  

25r _ Tr  

r 	6„  
4 Nnivi>3 E Xj)  Sp Los 3n 	 n 

An4 	Xr by + A 
leitE 3n 

An."4 	3n 1 4-  A 1P).$  

0(n4  log n) 	0(n-1) 

0(n-44-d ) for every d> 0 

5°3 	 STATIONARY GAUSSIAN PROCESjES 

Throughout this section we let R oo  be the infinite dimensional 

f f dt 
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Thus if A 

p(n) = 

then 17(n)) 

n or 

for each i, ui  is a real number. 

tu ji, jEr where 

Further for any finite. set J.c.r 

Euclidean space whose points are of the form u = 

we let R denote the finite dimensional Euclidean space whose points 

,are of the form u = fu .1 jE J. 	Vie say that a real valued, 

non-negative and countably additive set function rj  such that 

rsi(Rj.) = 1 is a Gaussian measure on R if there exists a positive 

definite quadratic form G/0.(x) 
f 	 xti J  ei Jcej J 	d pj(u) = e Q:)*(x)/ 2  
Rj 

As usual by a positive definite 

Q (x) can be written as 

such that for all x E R J  we have 

quadratic form Q (x) we mean that 



countably additive set function on 

flj(A) = pea (P-1A)  
Rea I r3. is defined by 
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Q (x) = 3,keJ a jk x j xk 
and that Qj(x) 	0 for all xE Rj. 

If 	P J  is the transformation on RQ, which sends x = fx j1 

into x = 1 xii , j J, pco  is a real valued, non-negative and 

for all measurable sets A in 	then we say that rQ, is a 

Gaussian measure if for every finite set J Er we have that r j  
is a Gaussian measure. 	If S is the transformation on R oo  which 

is given by 

Sx = y 

where if x = tx I 	r, Y = fy j I, jefwe have y j  = x j-1' a E1' ,  

and if S is measure preserving with respect to a Gaussian measure 

roc, then we refer to poo as a stationary Gaussian measure. Lastly 

we say that S is a stationary Gaussian process if 	is a 

stationary Gaussian measure. If T(n), nc r, -nP+is a real 

valued function such that for all finite sets J,sr if we put 

Vx) I ) 
kCJ/ 	• x• Jx, 

then we have that (i (x) is a positive definite quadratic form, we 

say that 5o(n) is a positive definite function. 	tie now quote some 

well known. results. 

Theorem 5° 31 	A function r (n), n = 0,1,2,,.. is positive definite 

if and only if there exists a monotone non-decreasing, real-valued 

function F(x) defined on r— Tr 2 71'3 and such that 

?(n) = 
f 

e inx dF(x) 2  n = 0, 1, 2, ... 

Proof 	See [3) P. 474. 	This result hat already been. quoted 



I d /"m J 
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in section 4°6 and is repeated here only for convenience. 

For each n c r we define a function Uri on R 00  by 

Un  (U) = Un 
,for all u 	I u .1 j r in R a, . 	Further in expressions such as 

U 
n  
1 (u) U

m 
 (u) d r co  (u) we omit the 	and simply write f U U dr-tw  

Rye 	 n m / 
With this convention we get: 

Theorem 5° 32 	If S is a stationary Gaussian process and we 

put 	cr(n) =I U n  U o 	, n = 0, 1, 2, ... then if the second 
Roo 

moments exist ?(n) is a uniquely determined positive function. 

Conversely if li p (n) is a positive definite function then there exists 

a unique stationary Gaussian process such that 

,p(n) = [ UnU odr0o, , n = 0, 1, 2, ... 
Ro, 

Proof 	See (31 P.473. 	From now on we always assume that S 

is a stationary Gaussian process and ca (n), n = 0. 1, 2, ... is the 

associated positive definite function. 	tic. will always be the 

stationary Gaussian measure associated with 5, J will always be a 

finite subset of r , fl the measure formed from r 	J as 

E 0 	 , previously and Q (x) will denote 	( jj-kl)x.x, We have j ,k J 	J K 
that 

m  RJ  

.
1 
 E 	. . x0"-0 dri (u ) = (1) 

expanding the left hand side gives 

f
R 

	

1÷i. : 	x.
Jui1-1 

i • E 
JEJ 	2' k. 1  if.1 xiui) + ° ° ° 

\ 2 

J 

= 	1 4- i 
J  x j 1 u .3d ttJ z  - 1 	cEJ x  j  ak  f U jxk  d ;4  

	

JE 	 I 	
R 	

/ J+ ... 
   

Rj 	 J 
and expanding the right hand side of (1) gives 



IR 

f 
Rj  

where Q = 

u 	d= 	CP (n ) if k is even n . 	1 - J p=1 q=1 T 	Pq 

/2, P= (2Q)!/2 Q1, 	EaThl 

u .
J 
 u, dr j   ='( ij-k I ) 

1 - q(x) 4. if( 	
2  

= 1 - 	0.11tE,J. Cf( Ij-kt) 	 5.2ej (1)  Jj-kJ) xixk
) 2 

O 0 • 

But (1) is an identity in. x and so we may compare coefficients 

to obtain 

RJ  

un 	dr J = 0 if k is odd 
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Hence we deduce that 
k 

1 	
un  dpx, = 0 if k is. odd 

.1:0° u 
juk  d 	= 	kf) 

P Q 
u 	d 	= 	Tr 400(n ) if k is even. j=1 	p=1 q=1 	pq 

f 	
n. 

R co  
since given any 	‘k we can find a J such I  that n E 

for each j. 

Theorem 5.33 	If S is a mixing of degree one then lim 430(n)= 0 

Proof 	lim ip (n) = lim 1 tin  uo  droo  
n.-4co • 	11.000 A,   

= 	l imot)  ( (U
n  1.4 o) uo  dtko Ro'v   

= nlim (Unu o  ,t, o ) -,N09  
=. I iRtio  dp642  

0 

Theorem 5.34 	If nlIsnolo  a, (n) = 0 then S is a mixing of 

a11 degrees. 
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Proof 	Let L1 be the subset of L2 which consists of all 

functions of the form 

(x) 	xn • 2 	finite 
J=1 j 	J=1 

If 

	

f1  = 11 xi' 14. 	k are any k functions in L1 we put 
k 

F = 	9 tk) = 17- S tt  fi dila°  
I = R.0 

I 

f f 4  drag, 
f = 1 R 

=
.1z1 

it  

If I is odd then F = 0 by the remarks immediately prior to 

theorem 5-33. 	However, I odd implies 	odd for soma / and 

consequently 4(lrf1  dp,„,,= 0 for this / giving G = 0 and hence 

F = G, for all 	tk. 	If I is even then by the earlier 

part of this section we can write 

Q  F = p=1 q=1 
-rr 	(npq) 

where Q = 1/2 and P= (2Q)<!  
04. Q: 

If 	is odd for some I say / = m then as above G = O. Further 

we have that for each p, 1 (134 P there is' a q = q(p) such that 

npq(p) = iri  +tr  - (mn+ tin) 1 

where 1 r k, r m 

Thus if A = inf 1 tr - tn! we have that 
/3}n 

6,-)00 
lim 	(npq(p) ) = 

and so for each p, 1< p P 

Q 
T (apq) 

lim 	= 0 = 0 

lim 
41.1,400 

giving us that 

0 

0 



If it  is even for all I 9  and r = t(p,q,), ri  

8 	S (13 20 5,  Sri  = sn  (p,q) are defined by 

npci  = 1r -frtr  - (snits ) 1 

then we have 

lim 97(n ) = 0 if r# s 
&--)00 	Pq 

while if r= s we have 

< (P9.) = 	 ( Irj - rn  

and so 

lira la(npq  ) = 1p ( rj  - Tn.  ) --)00  
Hence lim F 

45-:›10 	= 71
k1 1 ci 

" 	2! 	T  ( f i - in,1) 
t:,-- p=-1 

where j = j(p,q), n = n(p,q), Q, = ii  /2 and, 131= (2Q,1)!/2Q/I, 
k 

Al l ft  dpoo 	= G. 
Roo  

Thus in all cases we have 

lira 	F = G 
Soo 

and so by theorem 4.21 corollary 1, we have that S is a mixing 

of all degrees. 

Theorem 5.35 	If S is a mixing of degree 1 then it is a 

mixing of all degrees. 

Proof 	If S is a mixing of degree 1 then by theorem 5.33 

lira 	 n) = 0 and so by theorem 5.34 we have that S is a 

mixing of all degrees. 

5° 4 SPECTRAL PROPERTIES OF STATIONARY GALE S IAN PROCES S 

Keeping the notation of the previous section we now turn to 

the spectral properties of S. 	As usual if fE L2 then we refer 

to the subspace spanned by elf, n€(' as the cyclic subspace generated 

= t. p,q) 
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giving 	lira 	F = -›001  
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by f, and to the set function G defined on(- WOO and such 

that (Skf,f) 	J ei A kdG( A) as the spectral type of f. 

(cf. section 4. 6) . 	Further since the set of all finite polynomials 

in a finite number of the x' 2  s is everywhere dense in L i li  t 
follows that the sum of all cyclic subspaces, generated by a 

polynomial of the above form will cover L. However, in order to 

find the maximal spectral type of S we need to express L
2 as an 

orthogonal sum of cyclic spaces (see section. 4.6). We now proceed 

to find an orthogonal sequence of polynomials such that the cyclic 

subspaces generated by them are mutually orthogonal and their 

orthogonal sum equals L. Before starting we prove a lemma which 

we shall need shortly. 

Lemma 5.4l 	If F'G. are integrable functions on r- „711 and 

defined elsewhere so as to be periodic with period 27 then 

where 

Proof 

flrei X k dF  

H 	is the 

f liTei A  

Ir 	r  
-7i 

= [r( 

:--- 

= 

= 

f freiuk dG (u)  1 = 
-Yr 

convolution of 	F 

kdF ( X )iff: 0-iukdG(u) 
rei(A -.)k.,( , )dG(u) 

-17- 

X )i si(A -u)kdG(u)] 
I 

-fIrri k eivk  F( A) cm(A 
lr- 

r-eivk rF(X) dG( A...01
4
1r f 	 -1  

fir eivk cui(  x ) 
LW 

f rrei 
-1r 

with 

I 

ir  
71 

4„ 
_ Tr  

k 

G. 

11 	I'. 4 f ikei( 
r-r- 

- v)dv 
f reivka vir 

a 

X -u)k....,, . )dG(u) Di F(A)dG(u)Dl 

F(X) dG(X- 
 ....r 	 1 

where H(X) = CT  F( X - u) dG (u) 
LW 

= 11  F(v) d G (X -v) 
Itr I Let hi  = xo and Hi  be the cyclic subspace generated by hi. Then 
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(Skh1, h1) 	x.k  .0  dr  
(k )  

i Xk dF(X ) 

showing that F is the spectral type of 

Also f 
R uc, 

(x) 	d (x) 	= xo dr/ 00 0 

giving us that H1  i Ho, where Ho is the cyclic subspace generated 

by the constant functions. 

Before continuing, we pause to point out that since F is 

singular we have already, by lemma 4.68 that S does not have a.  

Lebesgue spectrum. 

Returning to our investigation of the spectral type of S we 

have that if 4°) 	(x:))1  - 1 H (o)  the cyclic subspace generated 

by h(0
2

) then 

h (2)  (x) d r(x) 
Roo 

= 0 

and fh(2°)  (x)Skhi (x)dr(x) = J (x20  xk  x,k) dr 
Roo  
0 

giving us that H(°2 )  is orthogonal to H0(4)111  
(3kh(2o) , h3) 	(4 x20 4  _ x20,1)  , dr 

	

3Rco 	2 2 f f(k)) +11)(0))2  - 2 ep(0)+-1 

	

= 2 f 	(k)12  

= 	2 
 1

V ei A k dF2 ( X ) 
•vr 

where F201 ) = rFo 	dF(u) by lemma 5.41. 
,Ir 

Thus we see that F2 is the spectral type of h(V. 

	

o_ 1 	 o Similarly if we let h(3 )— (xo)3  - xo, H(3 )  be the cyclic 

subspace generated by 1/(3 )  then we get H (3°) 1 HoER Hifi) H,. (3)  and 

=I (x2  - 1) dr 
Roo  



eiNkdF3(A) 

( A -u) dF (u). Thus F3  is the 
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03kinT, h(3) ) = 
Ti 

where F3(A ) 
- 

o spectral type of h(3)  . 

In general we take 
= 	 b2r a (x  ) h( 	fx 	 r-1) 

2r 	o k -I-  1 2( 
	

°°°+kr 

where the e4 ip  1 sc i E r 

(h2r
) 
 9 ha

(o)
) =. 0 for 2.<n<2.<n<2r - 1 

(h ) h ) 	=. 0 2r ' 1 
and 	i 12(°2r)  (x) dji(x) = 0 

Rae  
Although we appear 

view of 5.3 

Similarly we take 

2r-1 	2(r-1)-1 	 i h(o) 
2r-I = (x0) 	÷fi1(x0) •t" • ° • "1".  (3r-1 x 

o 

where the Vii, 1 1< i r-1 are chosen so that 

(h2r-)1'  h(  a°) ) = 0 for 2 	2r-2 

(h2r-
)  
1,  hi ) 	= 0 

and fhar°-)1  (x)dr(x) = 0 
Re. 

Again the same remarks as applied to the conditions the ocifso 

satisfied apply here also. We then let H(0) denote the cyclic 

subspace generated by h( o)  for a = 2,3,42.... 	Clearly we have 

are chosen so that 

to have 2r conditions these reduce to r in 

H (o) 4 H n. 
we have 

 

H for all n (o) 	(o) . and H 	H 	nt.m. Further C' 

  

ehT, 11(1°1) ) = P(10(k)) 

where p is a polynomial of degree a and so by lemma 5.41 we have 

that the spectral type of h(0) is absolutely continuous with respect 
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iT 

to ±:1  F. ( X ) where F ( ) = F()) and Fi  ( A). F1-1  ()\-02(u) Tr -  

for 24 i n. 
vo 

In general L, *H0E1)1114) 2 n H(°)  and so we consider 

xo  - cO(n) n.E r+and define h(ln)  to be the projection of 

xo'xna- T(n) on the orthogonal complement of Hoe H18? e2H(°)ERng H
( 

•
1) 

=-0 
and H (1n,)  to be the cyclic subspace spanned by h(1). 	Further 

(Sk (xoxi;.- F(n)), 	ep(n))) = f 	ockxntkxox. - xontk cp (n)  - 
Rto 	 2  

xoxrif (n) f r(n) I-) dr 

150(n ) 2+ fe (k)1 	cpn+k) 	(n-k) 
- icp(n)1 	{cp(n)1 	1?(n)} 2  

= fep(k)1 2  + 	v (n-k) 

LIT 
= f rroi X (n+k) dp().  ) {1 oiu(a-k) dF (u) 

I  

I 0 
k dG ( X ) 

iun where G( A ) • = r e i(x- on p(),_u) d 	F(u)1 by lemma 5.4h 

Thus we see that 

(Ukh(jri  )11($ f r  ei 	d 2  n  (A) n  
where 	2(A ) is absolutely continuous with respect to F2 ( A ) 

Again 

(5k (x 	x iorx iix:1) = frig. 	xni.k 	Io In It dr 
= T(n) I (m+k) (n-m) +sr 2(n -n) • T  (m) 

cie? (k) r (n ) i 

4 ep(m)f 	(n-i-k) (n-m) 1 <19 (k) <7,  (m) 

41)(114-1(-111 ) 	(n) 1 

+11,(k){1cp (n-m)! 2 + {f(k)}2  

+ 	(n+k-m) q(mi-k-n) 

and ? (n+k) r  (n-k) 



t 	t 	I 	t 	I 	; 	Iff X0X,X0, XoXiXi, X0X2X0 , X0X2XI,X0X2X2 , X0X3X0, X0X3X1, X l x i x t  
0 0 0' 

J 	1 	J 	1 	I 	I 
0 0 0 
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-1-1(n-k) cp(n-m) (m) +?(ritk) (k).4f(n+k-m)f(m+k)t 

5-0(m-k)f (7) (n-m) (n)÷f(n+k)? (m+k-n)lar(k)90(m-i-k)t 

Thus if h( -1. )  is the projection of the nth  term of the sequence 

on 	H0  H H 69 E6 H ) (-1) 	1.1 (1) 	nea  17  0 1 m=2 m 	 1=1 

and if 3(11)  is the spectral type of h(2)  we have that 
(n) F÷F3.F.F3  since for all ntmEr+we have 

Tr 

f

ir Fm(A -u ) dFn (u)  =111Fm_i  ( 	) dF (vi ) dFn  (u) 
1r 

N-u-a.t1.  v. ) 	m )...dF(v1  dFn (u) =  

( X -u-tkvi ) dF(u) dF(vm) 	dF (v1. )  

Thus if ai, iEr satisfy ai ) 0 

th(A 	Fi ( X ) then by 

section it is easy to show that 

in a finite number of the xf, jEris absolutely continuous with 

respect to '1(X ). 	Thus if we order these polynomials and consider 

( their projections on the orthogonal complement of the H,1) )s 

already defined we can express L2  as the orthogonal sum of cyclic 

subspaces whose spectral types are all absolutely continuous with 

respect to )b1(A ). 	Hence if Fo (A ) is the spectral type of Ho, 

so ) 0 we have that 	( X ) = %Flo( X )4. tki ( X ) is the maximal spectral 

type of L2  since Fn ( X ) is the spectral type of H (n)  for 21 ?, 2 and 

F1( X ) = F(>) is the spectral type of H 

H(2) 

=ft Tr T  
tr• • F( 
. 

=r•r(rFn  
.17r-Tr 

-•TT 11-.1 
= p n+m4-1 

X -u-ntil  v. ) dF(u) dF(vn+m).  dF (v1) 
i=1 1  

( 	) 

each i 3.6 r+a• < a° and 

the method used earlier in this 

the spectral type of all polynomials 
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5° 5 	MIXING AND REGULARITY PROPERTI1B OF AN AUTWORPHISM 

We have previously defined Kolmogorov and regular automorphisms 

and the concept of mixing of all degrees. 	In section 4-5 we 

showed that an automorphism on a finite measure space is regular 

if and only if it is a Kolmogorov automorphism and in section 4.4 

we showed that this condition implied mixing of all degrees. 

The aim of this section is to show that the converse is not true, 

e. that there exist automorphisms on finite measure spaces 

which are mixing of all degrees but which are not Kolmogorov 

automorphisms. 

Theorem 5.51 	There exist automorphisms of finite measure 

spaces which are mixing of all degrees but which are not Kolmogorov 

automorphisms . 

Proof 	We consider the F(x) and 7(n) = 1.._ e-inx 
dF (x) . of 

n 
section 5.2. Since F(x) is monotone increasing we have by 5.31 that 

cp(n) is a positive definite function and so by 5.32 there is a 

stationary Gaussian process S on R 0, such that f(n) is the 

associated positive definite function. 	Now it was proved in 5.2 

that p(n) = 0 (n
4+d) for every d> 0 and so we have lim 9(11)=. O. 

n-,00 

Theorem 5.34 now gives us that S is a mixing of all degrees. 

Further using the notation and results of section 5.4 we see that 
0 

the maximal spectral type of S is & anFia( ) where F0( ) 

concentrates on the eigenvalue corresponding to the constants, 

F
1 

( A ) is Singular and the Fn(A) A ) for n), 2 are absolutely continuous. 

Hence we see that S cannot have a Lebesgue spectrum in the space 

orthogonal to the constant functions and so by 4.7 S is not a 

Kolmogorov-automorphism. 



i 	ini)  e-lnAjr inu 

i 	 e-inA  

V 

and s o 	F2 ( A ) = i-T.1.1/211 e-in(A -u) ner n 
dF(u) 

dF(u) ner n 	-T 

100. 

Corollary 	There exist automorphisms of finite measure spaces 

which are mixing of all degrees, but which ore not regular. 

Proof 	This is an immediate consequence of 4.4 and the. theorem. 

With the notation of 5.4 we have 

reinA  F( A )dX 
-Tr 

eirlxF ( A )1 + 
L in 	--7r 

  

r14, Iron-012  e-inx  dA 

Hence if tia(n) = 0 (n.--12.-+d ) for every d > 0 as n .400 then 

If (In, )12  = 0 (n-ltd)  for every d> 0 as n --)co and so we see that 

F2 ( A ) is the integral of a function in L2 and is therefore 

absolutely continu ous. 	Similarly Fn ( ), n>2 is 

absolutely continuous. 
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6 Cr-FINITE MEASURE SPACE; 

6.1 INTRODUCTION 

In this chapter we no longer require p to satisfy ti(x) = 1. 

Instead we assume that r is a yr-finite , i, ee that there exist 

sets A. i6r÷such that for all i, ti(A1)( co and such that 

tier.tAi  = X. 

We say that a set A is a wandering set if for all i, jE r 

such that i 	we have T'A n  TEA = (t) . 	Clearly this last 

condition is equivalent to A ri  T 1A = 	, E('t 

Proposition. 6.11 	If there are no wandering sets of positive 

measure then for all Ae E we have r(TB) = p(B) where B = jyr+rriA 

Proof 	If C = TB-B then for nEr+  
ap 

c„T nc = t 	T_ -iA 	yer.4. T-1A1 n{ .C7  T-±A - 17) 	T-±A 1=o 	 1=n 	i=n+1 

= 	A - r4 	 i=n+1 

	

U 	T-1A1 1 T 11 	T-iA ic  

A- .1/r.+  T iA n T-nA 'c 
since T-11  A art  T-i  A iE 

Thus C is a wandering set and so we must have r(C) = 0 and 

therefore p(TB) = r(B) since BS TB, 

Proposition 6.12 	If A is any set such that r(A) A 0 and we 

put A. = x: xEA, Tix E A, Tix? A, 1:5 	i-11 for iEr+  then if 

there are no wandering sets of positive measure, ti(A-ifir.f. Ai) = O. 

Proof 	If B = A - 	A. then for /ler+  

BnT-nB 	= A - • 1)rl` 	 Jet A•? { T-11  A- U T-n  aA  
I A - er r  Ain T-n l 
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= 0  
i 	 i since for all i 	AT A - . -1  
1 A. giving A,T A = .ij 

3=1 J 	 3=1 
and hence T nA ,C. ler.t.Ai  for all ne P. 	But there are no 

wandering sets of positive measure and so r(B) = 0 as required. 

When dealing with 0--finite measure spaces, with no wandering 

sets of positive measure we keep the same definitions of invariant 

exhaustive and Ki-algebras, but we redefine a K-algebra to be a 

K1-algebra 	such that 	moo  = .././ and such that 0 C p(L.)< cat) for 

at least one A e oc. 	Clearly this coincides with our previous 

definition if p(x)4.  00 	If oC is a K-algebra and A eoe satisfies 

we have that T 	1,i  = J 	A and since ET+ 

Hence le1.)r  A. 

set of measure 

0 < ricio< oo then we let Ai  = 

	

that .1)1-4  Al  6 Tia 	r 

	

. 	j 6 . 3.4 
that .0 3_ + A. = X up to a ler 

r(ig-÷ Ai)*0.  

6-2 INDUCED AUTCUORPHISkS 

By proposition 6.11 

ie4 Ai  6 of we. deduce 

E A Tit< =J.,  JEr 
zero since 0 < (A) implies 

giving  us 

If A is any set such that r(A) >0, then we put 

E- 	B ; Be E, A:  
and we define a measure 

rA(B) = p (B) for 

and we define S„ by 

S, (x) = tTlx : Tixe!,„ Tix 	1 

Clearly by proposition 6.12 

B A 

1'A on 

BEET: 

X, El ) by putting 

i —11 for x A. 

Sal  is, an automorphism and 
.41 

it is measure 

preserving since T is. We refer to S, as the automorphism 

induced on (A, et ) by . T. 	Lastly if oc is any T.-algebra we put 
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= ( B : there exists a Cea such that B = A 01 0 
it 

Clearly oC is a or-alEobra of (A, 4i) 
 

	

Proposition 6°21 	If a is an invariant cr-algebra with respect 

to T and A eoc is such that ri(A) > 0 then a, is an invariant 

a"-algebra with respect to S I  If there are no wandering sets of 

positive measure in (X, E, p, T) 

k, Proof 1For any B E cg,, (and hence to o< ) we put 	= T Bk 
k-1 1 

K 
B . , k Er+  then Bk  ..513 and S, B, = T_kBk for all k. 

j=1  

If C  = B  ktjer#  Bk then for n 6T+  we have 

CnTn Cr--- 1B- 	 B infTnB- U kUer4' k 	ker+ 

[B - ker' Bk J  Tn  B 

Now xEB n Tn  B implies T 11  x E B <A i.e. x E Tn A but x eB and so 

x 6T A .,B giving x E 11 B.. 	Thus C n  Tu  C=(and hence j=-.1 j 

C .1 T-n C = for all n cr+  and therefore C is a wandering set and 

so we have p (C) = 0° Further B1 = TAr,BETvC and by induction 

we get Bk e Tka for k er+ . Hence neglecting a set of measure zero 

we have 

B 	keU  Br* k 

SA SA 
B  

A A ker.+ k 

T-k
Bk 

= 
SA kkiri- 

-k 	 -k But T Bk4  of  and TBk  A giving T-k  Bk  E 	for all k E r+  and 

	

hence k yr U o" T-k  Bk °CA° E 	Thus BE S L  cx, and so we deduce that , 

°4A: S A  a , i, e. 0(,, is invariant. 

Corollary 1 	0( A 	(T ) A  4 S, X 
IAL 
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Proof 	Since .( 45T a we have immediately that NA( (Tg)A. 

If B e (T DO, then since A o< < T 0,4 we. have B€T ix. 	The proof of 

the proposition remains valid for this B and so we get B eS AA.  N• A 
giving (T o4 ) 11.  < S A  XA  

Corollary 2 	If 0( is a K-algebra with respect to T then x, 
.ti 

is a K1  -algebra with respect to S A . 

Proof -and so 

A= ( T )A 
( gA)S by corollary 1 

A 
E 

giving 	( c4A)SA= E A 14. 

0e A  is exhaustive. 	But ptA is invariant by the proposition 
41). 

and so vie have that a1  is a K1-algebra with respect to S A , 

Proposition 6.22 	If N is a K1 5 
-al-ebra, A x,ao>ii(A) > 0 and 

B 	i3 such that S B = B then B oe A  
11 A 	 1. 

Proof 	ar yl  is a 1C1-algebra and so for each k cr.+  there exists 
nk an nk  and a Bk  E SA DC A  such that 

r(B Bk) 2-k 

But B= S, B and so 
ai 

r(B  S ink Bk ) =r  I s' (BhBk )1 

.=, 	p (13 BO 

4 2-k 

If Ck  = S-nkBk , k E rt then Ck  E 0€A  for each. k. 

Now r(B- keqn  Ck ) 	r(B - Cm ) for n.c.  m 

r  (B la  Cm) 
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< 2-m 

00 	 pa 

Thus we get r(B - ktin  Ck ) = 0 and so B.C.k  V Ck  up to a set of 

measure zero for all n er+  giving us that B c. C nEr + krzn k 
But 	r (nfeir. kt:/n  Ck  -B) < rOn  Ck  -B) n 6 r 

kin r(C
k  - B) 

as 

ti(cich, 

2  

21-n 

Da 	 00 
giving 

I 
n ( ' nlEir ÷ L ' C k=n 	k - B)  = 0  Le° nQr,kii.n  0k  ,S13 up to a set of 

measure zero. 	Thus B = 	0 C nfle re k-n k up to a set of measure zero 

and hence Btoc, if we neglect a set of measure zero as we are at A. 
liberty to do. 

Corollary 	If cx is a K1-algebra, Ad o<, 14(L.)>0 and BE € ft  is 

such that TkB = B then B ecx 

Proof If 	TB. = -IcA•,,B - iCil  B. then since TkB = B'we have 1 	 3=1 J k 
T 	 so ii. a. 	a. 
S , B = B. 	The result then follows from the proposition. 1.. 

Theorem 6.23 	If ex is a ICI-algebra, 1.3 ,Ezi  is such that 

Tp =p then fi (0( if we neglect a set of measure zero. 

Proof 	If = X in proposition 6.22 then since Tp=e, (3* Z1 

implies that for each B Ep r  (B))  0, there exists a k er+  with 

TkB = B the result follows from corollary 1 of that proposition. 
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Proposition 6.24 	If fleE 	p (A) > 0, S A  is ergodic and 

there are no wandering sets of positive measure in (X, t 9  ) then 

T is ergodic in (B, EB, pB) where B = 

Proof 	By proposition 6.11 TB = B and so T is an automorphism 

on (B, EB,p.B) and Sfix = Tx for x E B. 	If C E EB  is such that 

TC = C then we put 

ii 
	x: xE A, T-ix E C for some i e 

Now TC = C and so T i  x a C for some i Er+  implies that Ti  x e C for 

all lief" thus S 	=CI  giving r(C,) = 0 or r'(A - C„ ) = C L,ince 

S, is ergodic. 	If 01 = A r, C then we define Ck, k E r+ inductively 

by putting 

C 
k 
=T AAC- 	C 

-k 	k-1 j 
.1)  

Thus Cif) C J  = 4, if 	j and C
ka t* 

Ck up to a sot of measure zero 

by 6.12. . 

Further C - 
kEr+ 

TkCk and so r+(CA) = 
11 

0 implies r  (Tkck 0 for 

ker+which in turn implies, r(C) = 0. While r  (Cp).* 0 implies 

p (A - CA) = 0 , l C, up to a set of measure zero. 	Thus if 

D = B - C we have TD = D and hence 14(D,) = 0 or fi(A - 	) = 0 

as above. 	But A c Cis  implies L ADA  = fi5 and so we must have 

r ( DA) = 0 which implies r(D) = 0 as above. 	And so 

p (B - C) = p(D) = 0. 

This last result is due to S,Kakutani see C9i. 

6°3 	KOLMOG OR OV AUT0lv1011.-EISMS 

Theorem 6.31 	If T is a Kolmogorov-automorphism then T 

is ergodic. 
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Proof 	Lot oc be a K-algebra. and An, ne r"- such that 

AnE ac , 0 < p(i`a.n ) < oo for each n and ntir+ 	= X. 	17e write 

for EA  ,Si 
 

, 	0( . 	By proposition 6.21 En' rn' Sn' an n. 	n 
corollary 2 oCEL  is a K -algebra. Suppose that Sn  is not ergodic 

for some n 	Then there exists a B 6En.  such that 0 <r(B)< r  

and SnB = B. 	By proposition 6°22 Bergn and hence B coc. 

Now T 	T-kB k T-kB by proposition 6.11 and so 

Bc I n ker÷  T 	If x 6AnnkUr+  T-kB then xeAn T-1B for some • n  

1c1-4- and so x e B since SO = B giving An ti igr+T-kB B and hence 

B=An ker  T-kB. If 	ntr+ = 	f-kB then by proposition 6.11 

TC = C. However T-k 	k BET cK 	,,and so C e 0( and therefore since 

TC = C we have C 	But 0< r(B) .  p (C) and therefore 

N (X-C) = 0 which in turn gives An C = An  modulo zero i.e. 

I. (13) = r (An ) a contradiction. 	Thus Sn  is ergodic for all n. 

By proposition 6.24 we have that T is ergodic in . r÷ T lAn  and 

since Ti " 	idr  U + 	"n. T 1P by proposition 6.11 we have in view 

of l er+ U T-1" c ac, 	=.11  that icUr+T iAn = X and hence the desired 
00  

result. 

 

If T is a Kolmogorov automorphism then Tk .  Corollary 

ergodic for k E r+ 

Proof 	If ac is a K-algebra with respect to T then. of 1 Tc< 
n 	 ka 	11  and s o or „. T. cx . 	Now . V T

± 
 ::---- o< 	Tex- T cf.C. = . V Tki 	r.+ a< for n E i 

henbo letting n....1,00 gives ocT ,,c. 	 but aeT  = E and so o<Tk = E . 
cc 	 co 	. 

Further .A Tkio = T Ima 	T-na< = A Tia for n6 rand letting 
3.=-n k 	 izr.-n k 

n-poo gives orTco  :5 aT 
2   

but ors  = I) and so PC 	= 11  . 	Thus oc pa  

is a K-algebra with respect to Tk, ker+and so Tk is a Kolmogorov 

(1-.) 



automorphism for k e r+. The erg odi city of T then follows 

from the. the or em. 
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SUILiARY OF AOTATIOA tiAD DaFI'AITIOIVS 

Numbers refer to the page(s) where the definition or 

symbol was first introduced. 

A is an atom of os if B Ea, ti(B-A) = 0 

imply r(B) = 0 or rt(B) = p (A). 

t 	..s.r 4"is an atom set of oct.Z3  if 

L. 1  is an atom of of for each i, L. A A j = 1  
whenever i # j and r(iteii  Ai) = 1. 

automorphism: 	8. 

continuous set: 	A is a continuous set of ce if given any 

Alt ix such that /Lift, and any d such that 

0 < d 	then there exists a B to< with 

ti(B-Li) = 0 and 0 < r (B) d. 	 16. 

endornorphisms 	8. 

entropy: 	 21, 27, 28, 44, 51, 

ergodie: 	 T is ergodic if TA = A implies r(A) = 0 Ot 

r (X-L) = 0. 	 12. 

exhaustive: 	or is exhaustive if off,r= E. 	 55,61, 
L is exhaustive if 

teVr+ 
 UtL = Lie 	78. 

Gaussian measure: 	88, 89, 

generator: 	 a is a generator if ocT  = E. 	 52, 

homomorphism: 	8. 

increasingly filtered: 32. 

induced automorphism: 	102, 

invariant: 	 a is invariant if oc,I. T•<. 	 55, 61. 

L 	invariant if UL L. 	 780 

isomorphic: 	20, 
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16 

22. 

atoms 

atom set!  



• 110. 

21. 

c' is a K-algebra if: oc..-s Tog, 

oc is a Ki-algebra if: oc.I.  

T is a K-automorphism if there exists a 

K-algebra. 

8. 

76. 

7.  

8.  

11. 

61. 

4 / 14  9 ^ 	 r 	+ f 9  

(X,t ,r) 	, V, A , 	T, 

L2
" 	(f,g), ti f ti , U, 

Z1' Z2' Z3 
U.1B), 

H(x), H(gp), 

S (a) 	actsw, oe 6 Z31 ' 

z = fa : H (gg) <001 9  

p(x,/3) = H(cgip )+HVia), 

Tog = 	T-  21E4, 

ac 	= °<11` 	Yo 
n

=  
n 	n-1 Tio< 

.e 
T
= V Tic< , 

ier 
oe = gT :=--• .V 	T-ic< iE r+ 	9 

0(1' = A 	-i Tc<  aloe, = 	co 	ier# 
hi (oc,T) = 1.11,117 H(P(IT—n of ) , 

h( ,T) = lim 1 H(0(n), H  

isomorphism: 

K-algebra: 

Ki-algebra: 

K-automorphism: 

Lebesgue apace: 

Lebesgue spectrum: 

measure: 

measure space: 

metric type: 

mixing: 

notation: 

55, 61. 

7. 

9.  

	

= E , 	. 55,61. 

	

«T =4. 	55, 61. 

10.  

18. 

21. 

21, 27,28. 

27. 

31. 

38. 

42. 

42. 

42. 

42. 

42. 

44. 

44. 



h(T) = c/a h(  at,  T) '  
S* 	toc : h( ,T) = 0j, 

(T) =‘,4ysiE.c1(  

(°4)  = 4Tig- 
= art 

Tx(n)1  
RJ , Roo  , p j , pm, 

EA' 	P A' S.V p(2.' 

- T 	, 

51. 

56. 

56. 

61. 

72. 

88, 89. 
102, 103. 

partition: 	18. 

regular: 	T is regular if ( ce ) =.11 for all cee Z . 	61. 

cr -algebra: 	7. 

0-  - 	 101. 

tail (7- -algebra: 61. 

wandering set: 	is a wandering set if T1s n 	= 	for 

all 1, j g r such that i *j. 	 101. 
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