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ABSTRACT.  

This thesis includes the generaliztution to all spin 

magnitudes of two fermion representations which were previous-

ly known only for the spin - half case. The resulting "2S" 

fermion representation is found to be useful for converting 

electronic exchange Fsmiltonians into Rnniltonians which 

involve only spin operators. This is used to exhibit the 

general correspondence between the Anderson and Kondo model 

Hamiltonians. The generalized drone - fermion representation 

is used to establish two new Wick's theorems for spin half 

andspin one operators. These results are both simple and 

easy to use. They extend the use of standard diagrammatic 

Quantum Field Theory techniques to those proble-ms 

involving such spin operators. 

The properties of a metal which contains a single 

localized paramagnetic impurity (the Rondo model) are then 

investigated with these new methods. The results include 

a derivation of a log T term in the impurity g - shift, 

close agreement with previous low - order perturbation 

treatments, and a high - order equation for the resistivity, 

which is obtained by a selective resimmation of a complete 

sub - series of self - energy diagrams. The resistivity 

derived using this approximationl is shown to exhibit a 

resonance - like behaviour (rather than a divergence ) for 

both ferro - and anti - ferromagnetic coupling (although 

at different temperatures) in passing from the high. to 
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low temperature regions, through the Nagaoka - S77111  instabil- 

ity temperature Tk. 

At higher concentrations , the disappearance of the 

first - order Yosida g - shift is shown in a microscopic 

theory. The narrowing of the local - moment resonance 

line, which has recently been measured for such dilute para-

magnetic alloys, is similarly demonstrated. 

An examination of the rare - earth ferromagnetic model 

results in equations whioh explicitly demonstrate the coupled 

spin - wave behaviour of both local - moments, and of the 

conduction electrons. This is a: more general result 

than  previously demonstrated. 

Finally these methods are applied in an extensive 

investigation of the Heisenberg model in high and low 

temperature domains, where the expansion criteria of 

Stinchcombe et al are closely followed. Renormalization 

is now quite simple and straight-forward. At low temp-

eratures, Dyson's T4 contribution to the free energy is 

obtained in the first Born approximation to spin wave 

scattering. Higher order spin -verve catributions give a 

damping term, which upon evaluation in the lowest approx-

imation, is identical to that found by ter Haar and Tahir-

Kheli. 
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Chapter 1. 

INTRODUCTION.  

The principal perturbation techniques of Qrfantum Field 
1.) 

Theory were originally devised by Feynman, Dyson and  others 

to investigate the central problems of quantum eleotro- 

dynamics. In essence these are zero temperature formulations. 
2.) 

It was not until Matsubaru extended them to finite temperat- 

ures, that they could be used to solve any of the problems in 

Solid - State Physics. Since that date, many problems in 

so - called many - body theory, have been dealt with, 

successfully, using these powerful techniques. Unfortunately, 

these methods could only be used to analyse systems containing 

bose or fermion particles (see Appendix A for a brief summary) 

and one class of problems has stubbornly refused to be 

accomodated. This is that group of many - body systems 

described by a Hamiltonian, which contains explicit spin 

operators whose commutators are no longer o- numbers. 

Even the addition of only one localized spin, as in the 

"Tondo" prDblem (see later), can prevent these new techniques 

from being successfully employed. The crux of these 

difficulties is the absence of a simple analogue of Wick's 
3.) 

theorem. 	This is the important step which reduces multiple 

products of operators, in a thermal average over the free 

eigenstates of the RamiltoniapIto products of pairs of operators. 

The simplest example of this result is presented in Appendix B 

for the usual case of fermion or bose operators. The present 
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thesis is an attempt to solve this problem when spin operators 

are present. Simple methods for spins of one -half and one 

(in units of h ) will be established here and will then be 

applied to several model Ramiltonians. Since 1960 many 

earlier attempts at this problem have been made, and it 
4.) 

continues to attract fresh solutions. Davis used Schwirger's 
5.) 

coupled - boson representation of the spin - operators, 

(valid for all spin magnitudes, S) to derive a useful 

Linked - Cluster theorem, although this was not given a 

diagrammatic representation. This theorem usually follows 

from Wick's theorem and eliminates much of the resulting 

calculation. As Davis' method involved bosons, great care 

had to be taken so that only the finite number of spin 

states in the boson - spaoe of infinite states were considered. 

Indeed, this is the major problem in almost all represent-

ational attempts at a spin - Wick theorem. A bole method 

usually has the advantage of a simple representation of the 

spin operators , in contrast to a fermion representation, but 

a fermion spaoe has only a finite set of states, although 

these are not always all spin states. 
6.) 

Mills et al, in their treatment of the spin half 

anti - ferromagnet,introduced operators which had fermion 

properties on the same site, but behaved like bosons with 

respect to different sites. This involved the use of 

diagrams with additional , partially overlapping lines, and 

therefore produced rather unconvential structures. In fact, 

Wang et allve 	re - derived these results (using the 
8.) 

coupled - fermion representation) in establishing a Wick - 
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like theorem at zero temperature; this resulted in retarded 

propagators with special "locked" diagrams. 
9.) 

In 1965 Yolin established a finite temperature spin-

Wick theorem for S.72, again using the coupled - fermion 

representation to investigate the spin - phonon interactions 

in paramagnets - this method is reviewed in section (3.5) 

where the complications of a normalization co-efficient are 

) 
discussed. Abrikosov

10. 
 generalized this method to spins 

greater than one half, by introducing the 2S +1 coupled - 

fermion representation. This is also reviewed in section 

(3.5) , where his method of Handling the difficulty of the 
11.) 

extra states is summarized. Doniach has introduced a new 

Wick theorem for general spin operators at zero temperature, 

again concentrating on a single spin. This was a general-

ization of the usual (zero temperature) Wick approach involv-

ing normal - orderingl and resulted in special multi - linked 

diagrams corresponding to commutators of more than one pair 

of operators. However, important techniques, like the 

Linked - Cluster theorem are not readily mailable. A 

form of Wick's theorem for spin operators has also been 
12.) 

introduced in the work of Giovannini et al. 	This involves 

"remembering" all the previous commutations which have been 

carried out, and appears to be a finite temperature method, 

related to the zero temperature theory of Doniaoh. 

Although a Linked - Cluster theorem was established, their 

diagrams lack the elegance of the Feynman graphioal technique. 
13.) 

Very recently, Lewis and Stinchcombe 	have generalized the 

work of Wang et al to finite temperatures for the case of 
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S= X, treating the Pauli matrices directly. Again this 

resulted in a somewhat unconventional diagrammatic formulation. 

As final evidence for the continuing interest in this subject 
14,) 

a recent letter by Jager and Kuhnel indicated a low - 

order perturbation method, using an analogous method to 
15.) 

that of Tyablikov and Moskalenkow. 	Mention should also 
16. 

Primp:1cl  

who introduced a square - root boson correspondence with the 

spin operators. This is used in the large S limit in section 

(3.4). 

The present work uses the drone - fermion represent-

ation which is generalized here to all spin values from 
17.) 

the previously known case of spin - half. 	An analysis 

of the resulting eigenstates then shows that very simple 

Wick's theorems can be estallished for spin half  and spin one. 

The advantage of these methods (especially S= ID is that ALL 

) 
the standard techniques of Quantum Field Theory

18. 
 for handl- 

ing fermion operators at finite temperature, can be used, 

including the use of conventional diagrammatic display. 

These new methods are then used to investigate two 

general types of Hamiltonian, namely localized - moments 

interacting with the conduction electrons in Chapter 5, and 

the Heisenberg model in Chapter 6. 

The interesting problem of how the local moment appears 

will not be pursued here, except to mention some of the 

investigations stemming from the two seminal models of 
19) 	20.) 	 .) 	22.) 

Anderson 	and of Clogston and !-foIfx. 	In brief, 
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the Anderson model assumes the impurity to be represented 

by an extra well — localized orbital, (preferably of different 

symmetry to the conduction band) on which electronic interac—

tions only occur when it is doubly occupied. This model 

also contains a mixing term which exchanges s and d — electrons; 

this has the effect of broadening the local level and allowing 

the d — electrons to escape ( a virtual level). 

In the Wolff model, the impurity is assumed to affect 

only the lattice potential. This then scatters the conduct—

ion electrons, which are also in the Hartree potential of 

all the other electrons. These are combined to form 

a single self — consistent potential. Finally a Pock 

potential is taken between electrons with parallel pairs of 

spins, but now with a differentvalue between the two spin 

sub — bands. 
23.) 

Kim extended this model beyond the Hartree — Pock 

approximation originally used by Anderson to a higher order 

in the decoupling — hierarchy, and he found that the non 

magnetic localized state became unstable below a certain 

temperature with consequent resistivity anomalies. Earlier) 
24.) 

Moriya had investigated the spin polarization in dilute 

magnetic alloys of iron in palledium, but only in the 
25.) 

Hartree — Pock approximation. Scalapino applied simple 

perturbation theory, and found a logarithmic temperature 

dependence in the Curie law for the static suzceptibility of 
26.) 

the Anderson model, while Kjollerstrom et al have also 

investigated the ground — state energy and specific heat of 
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this model in the ladder - approximation. Sohrieffer and 

Wolff
27.)

replaced the mixing term in Anderson's model by an 

equivalent Ramiatonian term, which scatters a oonduotion 

electron, and possibly changes the quantum number of the 

electron on the impurity, but now no longer mixes the two 

types of electrons. This is generalized in section (34 

for the case of several impurities, each of which has more 

then  one degenerate d -orbital. This uses the 2S fermion 

representation which has been generalized here. In a later 

paper, Schrieffer
28)

showed that, for an S - state ion like 

Mn, only the 1 = 2 conduction electrons, constructed from 

spherical harmonics about the impurity, are scattered - not 

the 1 = 0 electrons. This is used to explain the variation 
29.) 

of resistivities of Al based 3—d alloys across the 3,-d series. 

The s - d exchange Ramiltonian has been derived by 
30.) 	31.) 	32.) 

several authors, namely Kasuya, Mitchell, and Liu, among 
33.) 

others. However, Zener originally proposed on phenomen- 

ologioal grounds,a longitudinal s - d type interaction„in 

1951, although Kasuyals treatment of the s - f model (for 

rare - earths) in 1956 is usually considered the first 

rigorous analysis for the exchange interaction between 6s 

conduction electrons and the 4f electrons. 

Korring24'), as early as 1950, applied the point - cont-

act model to the problem of nuclear magnetic relaxation, and 

the shift of the resonance line in metals. Straight - 

forward perturbation theory leads to second order results 

which are recovered by the present Green's function methods. 
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The advantage of any Green's function method is that, not 

only is their use more systematic, but the complete line shape 

is usually found, T;ith the relaxation time given as a special 

case on the energy shell. Yosida
35.)  found the first order pol—

arization of the electron band, when an s — d model is 

assumed for Cu — Mn alloys, and showed that this is concent—

rated around the magnetic Mn ions (so only small hym.erfine 
36.) 

shifts result for the Cu nuclei ). The equivalent R.K.Y. 

interaction
37.) 

was also found for this system. These 
38. 

alloys continued to interest theorists 	was 

not until Kondo
39.)  

evaluated the conduction electron soatter—

ihg cross — section, by standard perturbation theory, to 

second Born approximation, that the phlAimenon of the 

resistance mirimUM was given a satisfactory theoretical 

explanation. It was found that the sharpness of the 

Fermi surface led to a log. T term for anti — ferro — 

magnetic coupling. This was fitted to the results for 

Fe in Cu alloys by assuming a T5  dependence of the non — 

spin resistivity. The interaction parameter J was also 

found to be approximately 4 of the Fermi energy of the 

conduction electrons for this alloy. A further series of 

papers lead to the conclusion that a divergence at low 

temperatures was introduced by these higher order terms. 

Liu
40.)

also found this log T term in third order, when he 

evaluated the Green's functions directly — without the 

aid of a Wick theoreml(as did Doniach with his Wick — type 
41.) 

theorem) Nagaoka 	by a deooupling procedure, pointed out 

that even in third order, the life — times of the conduction 
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electrons would also go negative at the Fermi surface, below 
42.) 

a critical temperature Tk, while Snhl  also found complex - 

poles in his earlier papers. In Chapter 5 it is found 

that these life - times remain positive if the self - energies 

are suitably defined by an effective potential, following Don- 
11.) 

iach 	. A diagrammatic resummation of higher order propag- 

ators results in a closed - form expression for the effective 

potential, which does diverge at Tk for anti - ferromagnetic 

coupling; but as the denamLaator is now evaluated to 0(4 

(in oontrast to Abrikosov's results, which were to 0(J) ) 

it also introduces a new divergence at a much lower 

temperature for ferromagnetic coupling. However, the one 

electron damping term does. not diverge, but passes through 

a broad resonance at Tk, of width about 3Tk, and finally 

vanishes at absulute zero like log -2T, which agrees with a 

very recent decoupling prooedure of Fischer
43.) 

 . 

Takano and 0gawa44.)  have also found this second ferro- 
45.) 

magnetic resonance peak, by using Gor'kov's decoupling  
46.) 	41.) 

method, in contrast to that of Zubarev used by Nagaoka 

Unfortunately, they used the ooupled - fermion representation 

for spin - half operators, and did not account for the two 

anomalous states, which occur in this representation (see 

section (3.5). 	Moreover, their temperature parameters 

differ from all other theories, as is shown in Chapter 7, 

and their results indicate a sharp phase - transition to a 

possible low - temperature "bound - state" at Tk. These 

two - types of singular points have also been found by 
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47) 	 16. 
Kurata , who used a simple solrable model of just one electron 

above the Fermi surface at zero temperature, scattering off 
48.) 

the sirgle impurity. Yosida 	has also analyzed this new 

"bound - state" at 0°k by imposing Cooper - like restrictions 

on the electrons, and adopting possible trial wave - functions. 

This is not found however_by. aaihmuL. and Mizuno
49.) 
 who used 

Wigner Brillouin perturbation theory. The magnetic 
50-1) 

properties of this model have not been studied so thoroughly 

although Yosida and Okiji
52.)  

suggest that a siijilar log T 

divergence appears, on the basis of their four-% order calcu-

lations. The present static result for the magnetization is 

compared with their result, and with those of Nagaoka
41.) 

This result is shown here to arise from a J
2
log T correction 

to the impurity g - shift. All of these magnetic properties 

can be derived directly from the transverse susceptibility 

function (introduced in Chapter 2), whichIin this mode; is 

found to have a Lorentzian form with a Korringa - like 

damping term proportional to J2T. This part is concluded 

with a new manipulation ofNagaoka's second approximation to 

his high temperature result, into a form which is quite 

similar to the present treatment. 
53.) 

The recent measurements of Gossard et al_ of a 

"bottle - neck" effect in the local - moment relaxation 

process of s 	d type alloys, (resulting in a narrowing of 

the measured line - width) are here given a microscopical 

explanation, as opposed to the phenomenological Bloch equat- 
54.) 

ions , originally proposed by Hasegawa. 	The gyromagnetic 



anomalies occuripg in ferromagnetic metals, discussed by 
31.) 55.) 

Kittel and Mitchell are now given an explicit microscopic 

formulation, based on an expression originally proposed 
1 

by Giovarrini et al
2.) 
 The ferromagnetic rare - earth 

56.-8) 
model is investigated in the last section of this Chapter, 

and the coupling of the two spin wave systems of the localized 

and oonduc-bion spins is exhibited. This is a more general 
59.) 

proof than originally given by Doniach and Wohlfarth 	where 

only the long - wavelength limitis strictly valid (section 

(5.5) ) due to the averaging procedure adopted for alloys. 

The equivalence of the electronic exchange term in 

insulators with the Heisenberg model of a ferromagnet, is 

demonstrated for general spin , in Chapter 6; again using 

the 2S fermion representation. Linear spin - wave theory, 
60.) 

founded by Bloch , is not Alsoussed here, as extensive 
5.)61.-2) 

reviews are well - known 	however the basic equations 

of this theory are rapidly recovered by use of the present 

formalism, in Chapter 6. Dyson
63.1  

rirst gave a rigorous 
• 

theory of the low temperature behaviour of this model, 

when, (inter alia) he showed that long wave - length spin-

waves interact very weakly at low temperatures. The intro-

duction of a restrictive cut - off condition for his 

equivalent Hamiltonian in the bose space, leads to a gap 

of order J (the interaction strength) in the eigenvalue 

spectrum. This meant that the anomalous (or improper) 

states gave a contribution e-P3  to the free energy, and 

this vanishes at low temperature. This new form of the 
61.) 

Hamiltonian carrot be obtained direotly from the simple 
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18. 
Maleev substitution of the spin operators, (as is often 

64.) 
supposed„) for the cut - off property is not included 

This cut - off property can be included , (and hence, the 

so - called kinematic terms) by the introduction of a metric 
) 

operator P in the bose - space. Mills and Kenan
65. 

 have shown 

that Dyson's boson Hamiltonian is the correct generator for 

time displacements in the boson space, and has real eigen-

values. The new metric operator indicates that the non-

Hermiticity of this Ramiltoulan is irrelevant, and in fact, 

if calculations were carried out with F explicitly, no 

problems would arise. Unfortunately, any known form of 

P
66)

is too complicated. 

Later theories, which relied on Dyson's treatment167_8.) 

to justify their own low temperature results, included Ogushi, 
69.) 	70.) 	 71.) 

M.Blooh, Szaniecki among others. Tapir - Mai and ter Haar 

analysed this model in a Green's function formalism, by 

the decoupling procedure of Bogolyubov and Pyablikov. 72.) 

In a second paper, starting with Dyson's boson Familtonian, 

they found the spin - wave renormalization obtained by 
73.) 

Brout and Englert . A further decoupling resulted in a 

damping coefficient in the spin - wave energies. These 

results are recovered here, exhibiting their approximations. 

Further deooupling methods were introduced in the papers 

of Haas and Jarrett74 ) and Callen
75.)

(who found a spurious 

T3 error for S 	but not for 

and Tanaka 
") 
who successfully 

higher S), and of Morita 

obtained the famous Dyson 

T4  contribution to the magnetization at low temperatures, 



This is also obtained. in Chapter 6. 

These low — temperature theories have been supplemented 

in the Curie temperature (To) region by the cluster method of 
770) 	 78.) 

Strieb et al 	and by the work of Rushbrooke and co — 

workers,who attempt to find To by evaluating the partition 

function directly at high temperatures. 
80) 	81.) 

Finally the work of Englert
79.)

,Brout IStinoboambe e-b al, 
1 

Lewis and Stinchoombe
3.) 

 y 	presented theories which are 

applicable in both the high and low temperature domains. 

The present fermion Green's function theory fits into this 

category. In fact, it bears a very close similarity to 

the quantum — mechanical semi — invariants, introduced by 
81.) 

Stinoheombe et al 	and effectively gives dynamical sub— 

structure, to their semi — invariant averages. However, 

due to the Feynman diagram nature of this present work, renorm— 

alization of the propagators and vertices is greatly siplified, 

compared with their analysis — although , in general, their 

treatment is closely followed. 

In order to introduce the concept of spin propagators 

(or Green's funotions) the next Chapter begins with the Kubo 

response formalism
82.)

for paramagnstio spins. This leads 

naturally to the idea of temperature — ordered, temperature 

dependent Green's functions, which then become the focus 

of interest in subsequent Chapters of this thew:i.a. 
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20. Ctuter 2.  

SPIN GREEN'S FUNCTIONS 

('2.1) Introduction. 
82) 

In this chapter the Kubo response formalism is 

presented for the case of thermal averages reacting to a 

small adiabatic perturbation. In this work the particular 
83) 

example of paramagnetic resonance is chosen to introduce 

both the properties of spin operators and retarded propagators 

for spin operators. These are the general functions which 
84) 

describe the dynamical behaviour of any spin system and 

are the natural extension of the usual static susceptibilities 

of paramagnetic theory. A more detailed discussion of the 

properties of these Green's functions (lima general form) 

is given in Appendix C. The simple example of free spins 

is chosen to illustrate analytic behaviour of these 

functions in an explicit form. Finally the concept of 

electronic spin density is introduced in a second quantized 

formulationl and its properties investigated. It is also 

shown that the Rondo-type interaction term leaves the dyn-

amics of the total spin unaffected. 

(2.2) The Kubo Response Formula.  

The dynamics of a complex system can be analysed in 

terms of the response of such a system to a small, adiabatic 

external perturbation. The Kubo formalism determines the 

linear change in the system in response to an (non-quantized) 

external driving force. The fully interacting system can 

be described by the Hamiltonian then at t = 0 the 



additional perturbation ext.  is applied - the total 

Plempiltonian is then H' = H +Hext. The time - dependent 

eigenstates of H' are denoted by 	T' (t) and satisfy the 

following SchrOdinger equation 

T' (t)>  = H' I IP 00> 
	(2.1) 

at 

These states are related to the states in the Heisenberg 

picture ''(t) 	by the unitary transformation, 

IT' (t)> 	e  -jut V(t)> 	(2.2) 

and the operators in the Heisenberg picture are described by 

A (t) = eiHt  A e-iHt 
	

(2.3) 

The Schrninger equation of the transformed states is 

I 	(t)> 	Hext.(t) 	(t) > 	(2.4) 
at 

This equation cannot be solved in general, so the usual 

perturbation approach of expanding in powers of the 

perturbation is adopted, that is 

as 

(t)> 	10(-0> 	
(i) 

10 	> (2.5) 

If this is substituted in (2.4) and powers of Hext.  equated, 

then a series of equations results, the lowest order equation 

involving no powers of H 	is,  Hem 
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22. 

at 
	(t) > = 0 so 	i“t)> = p > 	(2.6) 

where 	is a time — independent eigenstate of H in the Heis—

enberg picture. The next equation is the one linear in Hext.  

i a 	(1)(t)> = Hext.(t) > 
	(2.7) 

This can be converted to an in-begralf.orm, remembering 

that the perturbation only begins at t = 0, so 

) 
I

1
( t) > = 

t 
S dt H

ext.(t1)1 > (2.8) 

So, to first order, the states V are given by, 

IV(t) > 	( 1 — ier dti next. (t1)P> 	(2•)) 

This is true for all states cDa which hrre eigenvalues 

Ea  , that is, 

H pa  > 	= Ea  pa  > 	(2.10) 

A statistical average, as in (A.5), over the new orthonormal 

eigenstates is (t) for any operator A, is weighted by the 
pg 

original Boltzmann factor e 	ae,s an adiabatic perturbation 

does not change the population distribution of the original 

states. The exact averages are defined by, 

(2.11) 

< A ( t ) > 

 

E e—  f3Ea < Trti  (t) A rilat (t) > 
ext. 

 

ff 

    

E 
	e—

PE a 

a 



These averages will be related to those inthe Heisenberg picture 

of the fully interacting system ( without the external 

perturbation ); in this case, defined by, 

(2.12) 

<A (t)> 
- O E  e 	<Oa  A(t)iclaa  > c.  

 

 

e PE n  

a 

So, using Eq.s (2.2) and (2.9). one has, to first order in the 

perturbation, 

< A A( t) >
ext . 

t 
i jc; dt < [Hext.(t1), A(t)] > 2613) 

where the change in the average must be used if<A(t)> # 0, 

that is, 

< AA(t)> ext.  = <A(t)> ext. 	<A(t)' 
	

(2.14) 

Equation (2.13) is the general form for the linear change in 

any system produced by any external, adiabatic perturbation. 

(2.3) Spin Susceptibility Functions. 

In the case of paramagnetic resonance experiments on 

magnetic systems the perturbation in a small radio - frequency 

(r.f.) magnetic field h rg  of constant magnitude h1  which 

rotates with frequencyo around a large static magnetic field 

z 	
defining the z - axis. 

	

r.f. = i bi cos Wt 	1 h1 sin Wt 	(2.15) 
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If this field is coupled to a well - localized spin vector, 

described by the operator S , then the perturbation is 

Next. 	= 	S. h — — r.f. 
	(2.16) 

In all future work (exept when stated explicitly) the gyromag-

netio ratio y will be defined to be unity, moreover the r.f. 

field is not quantized and so oan be taken outside any trace. 

The components of the spin operators (at any one site) 
85) 

denoted S
i 
( i = x,yzor 1,2,3) obey the commutation rules 

[Sit  0 j 	= 	IE c ijk  Sk 	 (2.17) 

where c iik  is the usual third - order anti - symmetric tensor 

which is zero if two indices are equal, 1 if it is an even 

permutation of 123,and -1 if it is an odd permutation of 123. 

A more useful form of Eq. (2.17) occurs in terms of the 

!I raising or lowering" spin operators S and S-  defined by 

(2.18) 

In  this case, direct substitution leads to 

	

[ S z, Si 	S*; ES*IS"J=2Sz 
	

(2.19) 

If Eq. (2.16) is used in Eq. (2.13) for the components Si  then, 

(2.20) 
< n Si  (t) > . 	= 	E gt  cit'< Es1(t),si(t)]>14, 

	

ext. 	 *f. 
(ti) 

o  

Remembering that hr.f.(tt) vanishes for tic <0, this integral 

	

can be extended to 	 infinity and to plus infinity by the 

introduction of an explicit 8-function (see A.16). 
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This also enables the generalized (retarded) susceptibility 

fz notion xret. to be introduced, with a sign convention chosen 

as for C.2, thus 

• ij < AS' (t)> ext. 	 r 
. -E 

...cn  
. f dtt x

ret.(t-t9 h. f.(tO. (2.21) 

So, the retarded susceptibility tensor is defined by 

ij 
Xret. ( t 	tt) i (t 	tt) < ESi(t)s,Si(t0) > (2.22) 

The Fourier transforms of these expressions may readily 

be written down, if the notation of (C.6) is used. Thus, Eq. 

(2.21) transforms to the following, if the 6-function, identity 

(C.17) is used; 

< ASi(v 	„ ) > ext. 	—j 	ret.i 	6) ) hx.:f.( ) (2.23) 

Following Appendix C, the retarded susceptibility leads to 

its generalization in the temperature dependent suscep-

tibility (or spin - operator Green's functions) defined by 

ij 
X ( 	= < P(Sik), Si 	) > 	(2.24) 

where the spin - operators are written in the thermal 

Heiseberg picture, 

Si (1 ) = eH  se HG 	 (2.25) 

As in (C.7) this can be even - Fo.lrier transformed (for the 
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spins obey commutation rules) 

ij 	-1 	
x

j-J 
( 	(2.26) x 	-6 ) 	p 	E 	e 

a 

In terms of its analytically continued form i a = w + is 

one has, (0.10) 

x 
ij

( w -F is) = 
ij / 

Xret. k W  / 
(2.27) 

Instead of the Cartesian components of x ij, the transverse 

propagator will be used as it has several si mpler features, 

it is defined by, 

T (t to . 
Xret. ` 

i © (t — tv) < ES—(t),S+  (V)] >(2.28) 

The x y components of the susceptibility can be found in 
T 

terms of X and its conjugate x 
T
* , thus, 

	

xx 	YY 
X
ret. (t) = X ret. (t) = /4( Xret.(JO+ X ret.(t) ) (2.29) 

similarly for the off - diagonal components 

	

X e

x:r 	Ix 	 T* t.  (t) = X ret. (t) = Ui( Xret .(t)—  Xret.(t) ) 	(2,30) 

The Fourier transforms are similarly defined if one notes 

/ that the transform of Xret.l) is - Xret. (- w 

The transverse temperature dependent susceptibility 

will be used in all future discussions, and so a simplified 

26. 



notation for it is used; it is defined by 

F (t -V) = 	< .1) ( s ( z ), s + (ti' ) ) > 	(2.31) 

Its Fourier transform is defined as in Eq. (2.26), so 

(t) = 
-1 	-i-ei 

13 	E 
a 

F( E)  (2.32) 

Sol  finally in terms of its analytically continued form 

XX „ 
4X ret.  (w) = F (w +i) - F (w-is) 

and 	4i x x77 (w  ) = 	w+is ) 	P (__is) 
rot. 

(2.33) 

(2.34) 

The simplest example of this formalism is the case of free 

spins when there exists no interaction between the individual 

spins, so only one spin need be considered. The Hamiltonian 

for this system is .Sust the Zeeman term 
85) 

HO 	6.1 0 	z 	 (2,35) 

This is just the interaction picture;one finds in a similar 

method to that used in evaluating (A.11), that 

S 14:  (t)= eilkt  S± 	1 ubts+ 	(2.36) 

f.„‘ SO 	X ret.liqo 	= 	-2i < Sz  >0  e-i (')°t 	(2.37) 

(2.38) 
f 

Or X retV 	 2 < Sz  > 
 

w+ - 

27. 



28. zz Moreover, as its commutator vanishes, so does Xretl,  as does 

xxzorxrz  because Sz cannot be diagonalized simultaneously 

with Sx  or S7. Thus using (2.29), (2.30), the real, 

symmetric retarded susceptibility matrix is given by, 

sin toot 008 	ubt 0 

X re (t)0t.  — < sz>0 	e(t) cos w t sinw0t 0 

0 C 0 

If this result is used in Eq. (2.21) with hi = w1 ( y = 1 ) 

then 

< Sx  (t) 	>r.f. 	. (L)1 <Sz >0 (cos toot—oos to 	(2.40) 

    

( w — w 0 ) 

this is a maximum when w = too  when 

< Sx(t) >resonanoe 	wit <Sz> 0  sin wot 
	

(2.41) 

similarly 	 (2.42) 

< SY(t) > ref. 	w <Sz > 	(sin. wot +sin()) t ) 

w 	o) 

and this is a maximum when w = — w0, when 

< > 	= w1  t <Sz> oos wot. 	(2.43) 
resonance 

(2.39) 



(2.4) Ma.gnetic Interactions of the Electrons. 

Each electron has a spin one - half or %a 

where aX , i  is one of the 2 -dimensional Pauli spin matrices, 

with matrix elements XX' (X = + 1). These obey the product 
85) 

rule, 

J 
E a a 	2i 

X4 	IDO 	ilk 	XX' ko ;Ax 	(2..44) 

If the electron is described by the spinor field 

then the spin density at the point x is given by 

Se  (2.) 	=i Exx 	(I)x C)  Exx  (px 	( 2.45) 

In the second qw4altized representation 

h(x) = (V)42 eix.x aPX 

the total spin of the electronic system is given by the 

integral of (2.45) over the whole volume, so that 

Se a+  a PAX px AX' apo 	(2.46) 

where the electrons obey the anti - commutation rules (A.6): 

•15X apt X11+ A 	A -xxt 
	 (2,47) 

The use of Eq. (2.47) shows that the total electronic spin 

obeys the spin commutation rules (c.f. 2.17) 

Ese  se
j  j 	= i 	E.. 	S k lak e (2.48) 
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30. 
The generalized form of the electronic — Pauli operators 

(2.46) will be useful, 57) 

pXX' 
a + 

q 	 p +q, 	
a
XX, aP,Xl (2.49) 

wi th ( a (1 ) = a i  and the generali ed commutation rules 
—q 

	

i 	i 
/ 

	

E a g 	/ 	q a 	] 	= 	2I  . 	Z lc 	c  ia.k akq.i.q , (2.50) 

The commutation rules of these operators with the electron 

operators are, 

a1 	a + a 	al 	(2.51) 
' 	q,X1  XfX 

The total electronic spin can be written in this represent— 

ation as 

Se 	a 
	(2.52) 

The magnetic behaviour of the electrons in an external 

field hz  is described by their own Zeeman term, 

He 	= 	1/2weZ apx  ap  x =We  Se 	(2.53) 
XP 

where the Zeeman splitting we  is given in terms of the 

Bohr magneton 13 and the electronic g— factor ge, so 

(1) e 	= 	ge  P hz 
	

(2.54) 

So 
Se 	 Se÷— (2.55) (t) = eWit 	—;x 	laWet 

Se  e 	= e 



The combined Hamiltonian of the system of electrons and 

localized spin (A.2) is given by 

K0  = K°  IP 
	

(2.56) 

where RR is the Hamiltonian of the localized spin (2.35) and 

KS is the kinetic energy term for the electrons (see Chapter 

5). 

Thus, the total spin of the whole system (electrons 

plus localized spin ) is Sm  where, 

ST 	S 	S e. 	(2.57) 

Now [ Ko  S 	0 	
(2.58) 

while KO , ST 
	0 

only if 	w e 
	

wo or ge = gs 

If the electrons interact with the single localized spin 

through an interaction term (see Chapter 5, Eq. (5.5) ), 

—1 H1 	N E 
q 

J. 	S. q — aq  (2.59) 

then. 2 
[Hi 	ST3 = 0 so 	111 , ST 3 = 0 	(2.60) 

Thus, this type of interaction term does not affect the 

dynamics of the total spin operator Eq. (2.57), which 

are determined only by Ko  so, 

[ST 	Ko  J = ± wo  S 	4-  we Se 
	(2.61) 
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Henoe for the special case, ge  = ff s  

eiK0t 	ti t° °t ST - (2.62) ST (t) 	ST  e 	e 

If this is used in Eq. (2.28) for the total spin suscep- 

tibility, then its transform is, 
T 

X 	(w) 	= .Z <S >  
ret. 	total 	w + is -0)6 	(2.63) 

As the r.f. field couples to both the electrons and the 

localized spin, then by Eq.s (2.38) and (2.21) , one has, 

X T (6) ) 
ret, total 

= <Se 0  
T 
ret )o 

  

<Sz> 0 	
(2.64) 

Equation(2.64) implies that dynamical information about 

the interacting electron - moment system can be found 

from examining F('t ) for the localized spin or the electrons 

or for the coupled spin propagator Fee( %), but not from 

the total spin propagator. The coupled - spin propagator 

Fes ( %) is defined, for completeness, by 

Fes ( 	`) = <Tw ( S-(-c ), Se ( 	) > 	(2.65) 

The purpose of the following chapters is to arrive at a 

perturbation method for evaluating such propagators, which 

contain all the information about the system when expressed 

in the Heisenberg picture of the fully interacting system. 
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Chanter 3. ---,______ 

PERTURBATION AND OTHER METHODS. 

(3.1) introduction. 
8) 

The fermion representation for S. 72  is generalized to 

all S values and the resulting eigenstates investigated in the 

next section for the case of S .72  and S .1. Those with no 

equivalent spin states are called "anomalous" and are at the 

root of all the difficulties associated with spin representations. 

This generalized representation is then used in section (3.3) 
19) 	30) 

to exhibit the relationship between the Anderson and Kondo 

Hamiltonians for the case of several d-orbitals per atom. 
27) 

This is an extension of the work of Schrieffer and Wolff, who 

showed the correspondence for the single d-orbital, single 

impurity model 	Yi!). Their general approach will be followed 

here but in much more detail,to exhibit the approximations used 

in their equivalence. This is followed by section (3.4) where 

low - order perturbation methods are used to exhibit the first 
35) 

order Knight shifts of the Kondo model using the Holstein- 
16) 

Primakoff approximation for the spin operators (i.e. large 

S limit) and by an equations-of-motion method for decoupling 
86) 

the Green's functions. Finally in section (3.5), the proof of 

a Wick's theorem for S= 72  using the coupled-fermion representation 

first given by Yolinl is repeated here and it is shown that it 

is not possible to use this simple approach for S, 1 with this 

representation. The (25 +1)  ferminn representation for spin S, 
10) 

given by Abrikosov, (which was also derived independently by the 

present author), is presented, and Abrikosov's method of 
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34. 
establishing a successful Wick's theorem for the s — d model is 

outlined. 

(3.2) The 2S Fermon Spin Representation. 

The general 2S fermion representation is an obvious 
8) 

extension of the simple oase for S= Y2. If a set of spin half 

operators Si are associated with a set of well localized positions 

(e.g. atomic sites), then their operator properties can be 

reproduced by introducing a set of fermion operators 

and their Hermitian conjugates air,  so that one pair (X= ± 1 ) 

is associated with each site through the equivalence relations 

S1 -4E
X  x 
	i S 1, 	and 	+ = a 	a 1.1 _ 	(3.1) 

X 

where 	N. 	= a. 	a 	and [ a. X I a'!" , 13 = 6..6 	(3.2). 1,x 	1,x 1,X 	0,A + 	10 XX 

It is then quite straight forward to show that Eq.s (3.1) 

satisfy the spin commutation rules. This can be imagined in a 

pictorial way as each site having one electron level,whioh can 

be acoupied by a spin up and/or a spin down electron. In the 

light of this fact it may be termed the "electronic representation". 

However certain difficulties are automatically introduced in 

this representation which can be seen by considering the state 

vectors associated with these "particles". If the empty level 

is represented by the vacuum state I ,o,o > with 

a. ,lo,o> = o . 	(3.3) 
10 

then the two singly occupied states ji ,o> =a+  10,0 > 	and 

t 	o,o>correspond to the two spin eigenstates for 

i.e.Mm> (the site labels have been dropped for the 

moment .) One further state 11 1 1> = a  +a—   10,o> completes the 

closure property of these fermion operators and corresponds to 



the doubly occupied level. The zero and two particle states do 

not correspond to spin states but fortunately they are null 

eigenvectors of the spin operators. 

S I G,0> = S 11 , 1> = 0. 	 (3.4) 

This latter property was used by 7blin 9i) n establishing a Wick 

theorem for 1/2  operators. The details of this method will be 

given in section (3.5) of this chapter. The representation is 

generalized by taking 2S equivalent sets of operators for each 

site, labelled by an additional index a . This corresponds to the 

splitting of the original level into a set of a levels. The 

corresponding equations are, 

Si  (a) = X E
X x a+ I 

a. 
iy ay X 	A /),. 

(3.5) 

• (a) = ai 	a. a - 
Si 	

a + I I 

while the corresponding anti-commutation rules are, 

ra. 
,X ' 	X 

] = oijXX 0 	(3.6) 
The folluwing operators are then constructed by summing over 

the index a from 1 to 2S for each site. 

S i 	= 	Y2EaXX a'1 a X al./a Y X 

(3.7) 
Si 	= E a  aila  x ai,  a,_x 

The use of Eq.(3.6) readily shows that these new operators still 

obey spin-commutation rules. It is always possible to find a 

sub-set of the fermion states which correspond to eigenstates of 
2 

S and ewhile the remaining states can be grouped in eigenstates 

of smaller S values. This can be seen by considering the case 

S=1. There are now 5 operators which span this space (for every 

site), acting on the general vacuum state lo>  ; they are, 
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1 	a+ 	
+ 4-  

1 +1 
2 a 2 a 	a 

9 	 1,-1 	2,+1 	2,-A 
The corresponding set of 16 eigenvectors can be assigned to the 

following simultaneous eigenvectors of Stand ?denoted as usual 

by Isyna>. There is only one set of states corresponding to 

(1 9 M> and this is bounded by the operators S ; they are, 

	

11 	-- 	+ 
9 	> 	 an 10 >

+ 	+, 

	

11, 	> = a1+ a2+10 > 

(3.8) 

11 0 > = 2 2++  2_ a+ al   
+ 

+ al_ a 	) 10 > 

There are 4 independent series corresponding to 	, they are, 

(witha=1 or 2), 

+ 	, 

	

1 	-I-9-1- > = a+  -10 > and 	aa
+ 

 +aa
+ 
 _ap_ lo > a  

	

and 	1 1 1 
- 9 -1-" > = 	a+  10 > 	and 	a+  a+  a+  10 > 

a+ 	a+ a- p-s- 

Finally there are 4 independent solutions corresponding to1090 > 

they are, 

0> a ct + + act 
+ 
_ 10 > and+ + + + a14al-a2+aa 10  > 

This process can be extended to larger spin values with a 

corresponding increase in complexity. 
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37. 
(3.3) The Relation Between The Anderson and Kondo Eamiltonians for 

General Spin. 
19) 

The Anderson model for several d- orbitals (in this case 

taken to be 2S) can be written in terms of a generalized Coulomb 

repulsion between electrons on the same atom. In general this 
' 

amaomb repulsion can be written as U a0 XX between an electron of 

spin ocoupyirz the a -orbital and one of spinkloccupying the 

0 -orbital. So for Nd atoms in the lattice, the diagonal part 

of the Hamiltonian can be written as, 

i  HO =q IPpx+EtaNiax+ 	EUaptNictoipx, 
Px 

(3.11) 

where t p  andta  are the one - electron energies of the conduction 

and localized orbitals, measured reoative to the Fermi energy. 

The conduction and the localized states are mixed by the small 

s - d mixing potentialV leading to an interaction term in the 

Ramiltonian. 

H1 	Eip( V. 	apx  aiax +  1pa, ai a A aP 
aA 

(3.12) 

The mixing terms, linear in V can be eliminated by performing a 

canonical transformation on the Hamiltonian 

H 	e
T 
H e

-T 	
(3.13) 

If the exponentials are expanded the following series of commutators 

results, 

11. H +[ TyH] +2 Pl ETIFID + -3Err,g,CP9113jj + •• 	(3.14) 



38. 
By choosing T to be first order inV, the transformed Tramiltonian 

will only involve terms at least quadratic in Vif, 

[Ho , T J = H1 
	 (3.15) 

In terms of the orthonormal eigenstates E and E ' of Ho  this 

equation becomes, 

< E 11111E1> = (E 	E' ) <E IT 1E1> 	(3.16) 

This has a solution (for E/ E ') of the form, 

1E >< E 1H,IE'> < E'I  

EE' 	(E — 

Thus H1 only connects an occupied d—orbital with an empty 

conduction orbital (or vice—versa). These states can be 

generated from 1E ' > in the form, 

(3.17) 

I E1 > = appal   a. aX  1E'> 	and 	1E2> = a. aX apx 1E1> l  (3.18) 

So 
T 	E  ( 11421/,14,<.EL1 	+ I E2> Vip*a.  <E1 

	
) 
	

(3.19) 
aE t 
	

E2 — E' 

(3.20) 

EH a +  a3. 	t >  Ho 	p X aX = 	— to — E Nipx I 43Xa X ) 1E1  > 

This can be solved in the following maminer, using the two 

alternatives for manipulating the commutator, 

[H0 p , a
+ 

a• ax ]I E' > 	= ( 	— E' ) 	> x  

or 

(3.21) 



Nict_x 	(j— 	) )( Vipaapp aiax 	V.Ira a.+ a p X ) 

cP ea--a 
	

Ea 	
(3.26) 

T. E ( 
ip 
aX 

39. 
where the symmetry properties of the Coulomb term have been used 

i.e. symmetric with respect to interchange of tbespia labels cr 

the orbital labels and also use of the Pauli principle for the 
XX 

same orbital i.e. U as = 0; using Eq.s (3.20 and 3.21) to obtain 

the eigenvalue equation gives, 

( E1 	E1> 
X' 

( 	_ a  — E Ni nx  ,U pa )1 E, > 
PX T  

(3.22) 

Similarly for the eigenstates 1E2  >1  with the result, 

(E2)I E2 > =—( 	piNxi Upa" E2 > 	 (3.23) 

Using Eq.s (3.21 and 3.23) in Eq.(3.19), T can be written down 

using the appropriate inverse operator, 

(3.24) 

T. 	I E><E I( 	-EN 
X \-1, 

v 	It 	+ 	)1E1  E 	r  -ft 	134 k ip 	— aX qaa aX a  X aX 
ipEE' 	PX'  

><E4 

This can now be linearized in the inverse operator by 

approximating the Coulomb repulsion matrix by its largest 

contributions, that is, only considering the diagonal parts 

between the same orbitals. 

IPX'  
Pa 	

o
ap X'—X U 

a 
	 (3.25) 

Moreover as I E t> is diagonal with respect to Njax then it 

can be only either occupied or unoccupied with number eig values 

1 or 0, so in this space, 



40. 

This can be rewritten in a more compact fern by defining the 

following d-level energies in terms of y = ± 1. . 

ea 	= ea 	( 1 	y )u & Nicx  = 	-y) + y Niax 	(3.27) 

So finally the generalized form of the canonical generator T is, 

T 
* 

( IT•1Pa a+PX a•laX - Vira  aiax aPk  ) 
113  E 

- 
e
a 

(3.28) 

Now higher order commutators will involve higher order terms in 

the dimensionless ratio r 
ay 

r ay 
	<1 Vipa1 2>  

p ( 
	 (3.29) 

where gea  ) 	is the density of conduction ban id states in the 

perfect metal at energy&a 	, while the matrix elements are 

averaged over the a)nduction states p of this energy. So in the 

limit r
ay << 1 	the Traniltonian H is well approximated by 

Noci- H 2  , where, 

H2 
 

= 	-2 [T, H1 ] 	 (3.30) 

Evaluation of this commutator, using the anti-commutation 

rules for the electron operators, results in a series of terms, 

H2 = H' 	Hch 
	Hrest 
	(3.31) 

with 

= 	2 E ( wi.P13  + 2  J P13  ( N. 	+ N. 	) )a + a. 
o 	ipa 	ipa 	 j13,-X 	j 	aX 

af3X 

(3.32) 



and 
	 41. 

	

ip'a + 	+ 

	

Hoh = -1- E J. 	a. 	a. 	a 	a , 

	

4. 	 + 	h. c. 
. 	pal 	la X a. a-X PX P -X 
1PP' 
aN. 

where the matrix elements are defined by, 

J. JP's= E y V. 	V. 	( 	1 	+ 	1  
) 	 (3.34) ip a 	y 	ip a jp,  f3 	Y 	 Y 

	

ap "• Ea 	E pl.... Ea  

and. 

W. 	V. 	1/, 	( 	1 	1 	) 
ipa 	1P a JP 13 

p 	C 	 E pt •-•• Ea  

The remaining terms in Eq. (3.31) are given by 

(3.35) 

Hrest = 2*1PP
XXT2 Pa 

a
PX 

a
P'X' 

a
l
+ 
-X 

a3.
a -X+  1W  l

i P
p '

aa 
 
a 
PX 

 a 
P X 

aX 

(3.36) 
The first term can now be manipulated into an s-d 

exchange form using the 2S - fermion representation of section 

(3.2), and the notation, 

2: PP, = Ea+ a 	a, 
XV PX 	P X 

(2.37) 

SO 
E XX, a +a a+  a 

XV 	PX 	is-x ia  _xt = 	aa (N.a  - Nicoe  Nia-x  ) x 	pX p X, 	l 

-2 a+  a 	a +. a. 	) 	(3.38) 
PX P'-4 IaX 

Carrying out the sum over X on the first term and using ( 3.5 ) 

gives, 

1 ( a 	a N. - a X  s:"X  ) - 	a + a 	- a + a )(N. 	N ) PX 	 a 	PP'  la 	 la+ 	ia - 

(3.39) 

(3.33) 



42. 
Using Eq. ( 3.7 ) for S iaz  the final result is 

E i.N. a+   
PAPA 	-g-PP" (3.4o) 

If this is now used in Eq.(3.36) the first term of (3.40) is 

incorporated with the second of (3.36) to give a contribution H . 

so, 

+ Hrest Hex Hdir 	 (3.41) =  

With 

and 

ipla, 
Hex 	. - i. E p. 

Pa  a  PP  , 	l 
. S .a 	 (3.42) 

ip J1 	- 
a 

ip 'a 	ipd 
Hdir 	( 	

i 1Pa 	pa 
4 i.Jl 

Ni 
a ) a 

P
+
X 
 a , X 
	(3.43) P  aXippl 

These terms in the Hamiltonian can be further simplified 

if the orbital labels do not appear explicitly in the co-efficients 

J and W. Eq. (3.34) implies that the mixing co-efficients Vip a 

should be independent of the orbital suffix a , while Eq.(3.27) 

implies that the levels are degenerate i.e. a and Ua do not 

depend on a, so that J (and W) can be rewritten as, 

JP 	pp,( = 	( R. ip a 	PP' -s 
- 

assuming that only spatial differences are important. Then 

carrying out the summation over the 2S values of a on each atom, 

and using Eq. (3.7) for the spin operators, the final result for 

the 4 terms in H2  is, 

Ht 	= - i.E ( W (R. - R
.3  
.) + is Jp  (R. - R.)EN. .+ 	D jp A ajoxaiax 

P -1  - 	1 -1)  
arA 

(3.44) 
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This can be incorporated into Ho  by altering the definitions of 

ca and represents an exchange term between the d-electrons 

themselves. 

= E( W ,(R.) 	J 	pia) 
a 

 P   
a 
P Liar ipp, pp -1 	PP -a. 	X  

aX 

In the sub-space where there are Ni d-eleotrons on each 

atom, I dir is just a one-electron scattering term for the 

conduction band which can be incorporated again in H e  . In 

fact, for r « 1 the resultant shifts of their wave-functions 

and energies are negligible. 

H
ch 	2. E J 	(R.) a-1.-  a4: 	a a 	+ 	h.c. 	(3.46) 

ipp, PP' 	1aX Ia -X PX P'-X 
aX 

This is the only term which does not conserve the number of 

d-electrons and represents a double-mixing term between the 

d-orbitals and the conduction band. However this only occurs 

for doubly occupied orbitals with opposite spins ar. , since in 

this model the orbitals are taken to be independent, this term 

can be neglected. This leaves only, 

Hex 	= 	io4p  I PP 	) pp t. • 42 • i 

	

(3.47) 

This is the looalized - moment s-d exchange Hamiltonian which 

will be analysed further in Chapter 5. Near the Fermi surface 

of the conduction band, Eq. (3.34) becomes, 

2 

tipfpf  (R.) = J(R.) _ 2. vg rr   U  

d ( :i +U) 
(3.48) 



44. 
Now a localized moment is most likely to exist if 

< 	and c d 	U 	i.e. y d > 0 

then J(E i) is negative so that the coupling is anti-ferromagnetic. 

As will be shown in section ( 5.3 	) this is necessary to produce 

an observable resistance minimum. 

16) 
(3.4) Holstein-Primakoff and Decoupling Approximations. 

Holstein and Primakoff (H.P.) presented the first and most 

well-known representation of the quantum-mechanical spin operators 

by introducing a boson operator A,(the lowering operator for a 

simple harmonic oscillator), and its Hermitian conjugate A with 

the commutation rule, 

	

[A, A+  ] = 1 	(3.49) 

The H.P. transformation (which is a particular example of a wid-

er class of transformations),retains the hermiticity of the general 

spin operators, magnitude S, and has the form, 

S 	and. S+  = 	+ (2S - N )//2 	(350) 

with N =A+ A, the number operator of the bosons. Since N 

measures the deviation from the maximum spin down state, which if 

small (N--1) and S>> 1 enables the roots to be approximated by 

their leading terms, that is, 

	

(2s):  A+ 
	

S = (20:14  A 
	

(3.51) 

The diagonal part of the s-d Hamiltonian Ho is still diagonal 

in the boson representation,so, 



Bo, 	E 	
P X 	

N + wo  (N 	(3.52) px   
Pa 

with the one-electron energies measured relative to the Fermi 

energy 11 , that is, 

P X 
	E p 	+ 4-X% and 	g µ Bhz 	(3.53) 

In the thermal interaction picture (with 't = it ,where t is 

the time) the operators are defined by equations of the form, 

Ho ti X e-lio X( ) = (3.54) 

So for the bose-fields and the conduction electron operators, 

P 	
px / 

A (.v) = e woz g+  and a ( ) 	et.71-  (3.55) X 	 P X 

z 

For the representation in which the a component of the Pauli 

matrices is diagonal, one has, 

S. a t + S 6 	)6 	(3.56) xx' 	= X S 	6 XX'  + 	X,- 	X 2+ 	XY-X 

The interaction part of the s-d Hamiltonian H1  for a single 

impurity at the origin with a 6 -function 'an,_e of interaction 

(or 3,4  = J) can be re-written in terms of the appropriate 
7) 

Warnier operators 
8  
a , where, 

aX  E 	ap, x  (3.57) 

45. 



If this is used in E. (505 ) then H1 becomes, 

 

-J S. E al-X 	a -XXI X 
(3.58) 

or, 

XX 7  

 

H1 	-J ( S+ 
 a+  a+  +Sa+ a-  + E XS

z 
 ax  ax  ) (3.59) 

x 

In terms of the H.P. representationlEq.s (3.50) and (3.51),this 

becomes, 

,  
H1 	Z ( -J 	 A

X 
 a aX 	

( + 
+XaX a X 	A - S) ) 	(3.60) 

X   

where the following abbreviated notation for the bosons has been 

adopted, 

	

0(X) A
+ 

+ 0(-X) A 	(3.61) 

The single particle Green's functions can be defined in 

a similar way to those in Appendix L. The Wannier Green's 

function at the origin is given by, 

G
yp

,  k z _v) 	< Tw (av(-c) a+  (•V) )>o vX  (3.62) 

In terms of the temperature difference 7 = t '' tand the one 

electron fermi factors, 

—1 , g px 
1 — f  = 	e 	+ 	1 ) 

fps 	 P 
(3.63) 

and since G lo is diagonal in the momentum representation, one has, 

0 	-g T 
G VX (T) = 	 vX E e PX  ( e(t) P x - 6(-7) fPX  - ) (3.64) 

46. 

X 
A 



Similarly the bose propagator B
o 
('G) is given by, 
	47. 

B 	( 	) 
	< Tw ( A 	, A ÷(.ri ) ) >0 	(3.65) 

which is evaluated in terms of the bose factors, 

b-  ( 630  ) = ( e PWO  -1 )-1  = b+  ( wo  ) 	(3.66) 

SO 

B 	(ti) = e 	(-0 b÷( (do  ) e (— ) b (coo  ) ) (3.67) 

Since GW is add periodic with respect to 1 , its (odd) 

Fourier transform (see Appendix A. 40 ) is, 

1 
GX (v) = N  E ( 	)

-1 
(3.68) 

0 
The corresponding (even) Fourier transform of B ( -6) is, 

_ B ( (W° 	a ) 	(3.69) 

The zestriotion to large S can be seen by evaluating the 

thermal average of S 
z 
 in the two representations with respect 

to the eigenstates of II0  . 

In the spin-space with the restriction to the first 2S 

eigenstates of N, one has, 

z s 
< S 	> 	= 	< N S>o 	-Bs  ( 	too  ) (3.70 

where B (x) is the Brillouin function of paramagnetism for spin S 

Bs  ( x ) = (S + 	coth (2S+ 1 )x - Y2   oath x . 6.71) 



However 
A 

< N > 
0 

117 (coo  ) < N > 
0 

(3.72) 

48. 

but in the limit S >> 1 then B8(x) = S - b-  (2x) , so in this 

limit, 
A 

0 

= < 
S 

S
Z 

>
0 

0.73) 

This could have been anticipated, for in this limit both 

representations satisfy 	[S-  , S.4"  ] =*2S2  = 2S. 

So a diagrammatic perturbation theory can now be constructed 
88. 

from Eq. (3.60) using Gaudin's proof of Wick's theorem for the 

bose-fields A and A (Appendix B.) The electronic Green's 

function is represented by a directed solid line and the bose 

propagator by a directed curly line, Fig. ( 1. ), (see later). 

The lowest irder diagrams in each case are just the 

simple "bubble" graphs, Fig. ( 3. ). The oorresponding lowest 

order irreducible self-energy II (,6) for the bose propagator 

is given by, 

n  ( 	) 	= 	J 
X  
E X ex  (0-) (5(/ ) 	(3.74) 

which has the simple Fourier transform, 

n 	) 
	

2J e 	(3.75) 
where the electronic magnetization I; is defined by, 

1:o 	+ 	) 	o - 
= 	Y2  EX ax  (0 ) 

N 	 X 
(3.76) 
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Similarly the effective potential (see Chapter 5.) Vx(/) 

for the Warnier propagator is given to first-order by;  

	

Irx  (1  ) 	= 	X J ( B°  (0-) - s ) o(5) 	(3.77) 

which has the transform VV 
(V) =XJ(b-S) 	(3.88) 

In the large S limit (Eq.(3.73)) one has, 

V x  ( 	= X J< S> 0 	(3.89) 

These two first order results can also be obtained by 

decoupling the Green's functions equations of motion. Writing 

F 	(w) = 	I S+ 	>> 	with 	. 1 

for the spin operators, the corresponding equation of motion 

(C. 	18. 	) with the Kondo Hamiltonian Eq.s (3.52) and (3.58) 

is, 

(wo  — w )«s...  ;s (w)›> <.(s 	H1 ] ;s+(w)„ .<cs t s+j, 
(3.90) 

Evaluation of the commutator gives, 

( 113o 	CO )11( Cti 	23 << Z 	 "" -Ff 
a ▪ a S 	/▪ I» -J  Z X «a a S ;S - + 	X X X 

• -2 < Sz> 	(3.91)  

This.is approximated by neglecting the higher order Green's function 
Z 

« 	a+.1  S ; S » and decoupling the other term in the 

non-vanishing form, 

«a+X  a X  S ' • S
+» 	< a. a > c<  S-; St>>  (3.92) 



With these approxinntions Eq. (3.91) has the solution, 

F ( w ) 

 

-2 < Sz  > 

 

- 2 J (L)o 	w 
(3.93) .  

If this is compared with the result for the bose propagator 

using Eq. (3.75), 

B ( w ) 	- B°( (.0  

1 - n ( w ) 	( w ) . 

-1 
(wo - w -2JC ) 

(3.94) 
Now P ( w ) = 2S B( w) in the large S limit, and also in 

this approximatima< Sz> = -25 	so the two results, 

Eq.s (3.93) and (3.94) are equivalent. In fact, if this 

result is compared with the exaot result, to first order in 

J for S = X or S = 1, Eq. (5.18), it will be seen to be oorreot. 

This demonstrates the relative insensitivity of first order 

results, which can always be found by almost all methods to 

this accuracy. A similar result is obtained by using the same 

deooupling approximation for the WRnrier equation of motion. 

(3.5) Ydlin's Wick Theorem and Abrikosov's Method. 

The proof of a spin-Wick's theorem for S = X, given by 
9) 

Yolin, depends on the fact that the two anomalous states 1 o,o > 

and 1+,-> (using the same notation as in section (3.2) ) , are 

null eigenveotors of all the spin operators i.e. Eq. (3.4). 

Consequently a trace over this set of states, (denoted generioally 

by "a"), of any product of spin operators X(S), which does not 

involve any additive constants, will only involve non-zero 

50. 
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contributions from the two spin—states 1 4-, 0 > and 102— > 	• 

This property is maintained even when the states are weighted by 

the Boltzmann factor exp( -pito) 	with H 0  diagonal in S2I  

say we  Sz 	, then, 

Tra 
z  

e 	tijc)S 	X($) ) — wo sz  Trs  (e 	X(S) ) (3.95) 

where the operators on the L.H.S. are written in the coupled 

fermion representation, Eq. (3.1). 

However, the partition function Z°  involves a trace over 

the Boltzmann factor which picks up contributions from the two 

anomalous states, so, 

0 
Za, We \ 

"-wake 	 1 P - 1 0 w  e  2 0  (3•96) 

This is not equal to the partition funotion evaluated in the 

true spin space for $ = y, for, 

Z 
0 	

Tro( e
- S Wo sz nm 	- 

(3097) ) = e 
2 r 	

e 	2 PWO 

Now ueirg the usual definition of a thermal average, 

evaluated in the interaction picture, one has, 

z  O Tr • ( e Pwo S X(S) ) 	 _
o
a . 

Tr
a
(0-No Sz (S) 

< X(S) ›0  

	

Z0 	 0 

	

s 	Za  

or in an obvious notation, 	
(3.98) 

< x (s) 
	= r < As) >: 
	

(3.99) 



where 
	 52. 

IF I, (- LB W za = -,,- 	= 	002.• 2  -0 +  
Zs 	oosh a 0 w) 

The bar over the Y has been used to differentiate this 

compensation factor from later ones. 

The difficulty of all 

such compensation schemes is that when there are N different sites 

contributing spin operators in the product X(S) the factor must 

become VIT 	, (see section (6.3)). Once an equivalence relation 

between the spin space, and its representational spacel has been 

established, for example Eq. (3.99), for complete traces; then 

Gaudin's method of deriving Wick's theorem (Appendix B) can be 

used in the new space to obtain single particle contractions 

between the representational operators. 

As can be seen from the generalization of this representation 

for spins greater than X, one oan always find a sub-set of 

eigenstates corresponding to a given S value, but some of the 

remaining anomalous states give non-aero contributions to 

any average, (for example S = 1, Eq. (3.9.)), so the previous 

technique cannot be used. This is not the case for the general 

drone representation where all states are spin states, 

Unfortunately, in this case, linear combinations must be used, 

which introduces problems of normalization within the trace. 
10) 

Abrikosov generalized this procedure in a novel way 

by introducing a 2S + 1 bilinear form of fermi operators em  

and oni(note: 2S + 1 = 2 x 2S only for S = 'TAP?, so either extension 

has the same spin half form.) The spin operators a for spin S 

1 
	

(3.100) 



are written in terms of their 2S +1 matrix representation .§:amit t 
	53. 

so that, 

m,m t = 	om bine OmT 	(3.1o1) 

where 

Smm t 	= 	< S,m I S I S, rat > 	(3.102) 

and 

+ 
EOM 2 om' 4 = mml  (3.1Z) 

This representation was discovered independently by the 

present author,for it is obviously true for any operator which 

can be represented by a finite matrix:(Usual second quantization 

involves infinitely dimensional matrices in Many-body Physics). 

The representation given by Eq. (3.101) is readily seen to 

obey the correct commutation rules for spin operators, as pairs 

of fermions occur for each operator. Moreover in the usual matrix 

representation in which Sz  is diagonal with its eigenvalues, 

occurire in an ordered manner down the leading diagonal of the 

matrix, one has, 

)2 
om S 	E 	m om  am 	and S = E ( (S + m) (S +1 -m)) onlom-1 

m=-s 

(3.104) 

However, as has been shown already, it is not sufficient 

that the representation just has the oorrect commutation rules; 

there must be a 1 to 1 cnrrespondence between the states in 

the two representations. Otherwise supplementary techniques 

must be introduced to discount the effect of the anomalous states. 
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In this representation the eigenstates can be obtained from the 

usual vacuum state 10 > by addition of extra fermions, the 

resulting states are all ortho2ormal. A state with nfermions 
25+1 

can occur in 	Cn ways, so that altogether for spin S there 

are 2 2S+ 1 possible states. As can be seen from Eq. (3.104),only 

the single fermion states, denoted Inl> , correspond to spin states:  
25+1 

and there are 2S + 1 of these. Thus, there will be 2 	-(2S+1) 

anomalous states in general (oheok, for S = Y2  this is 2). 

Since the states are orthanormal the sub-space of the 

one-fermion states is orthogonal to all the other anomalous states, 

denoted 1.:101* 	so, 

mi m* > = 0 	 (3.105) 

A technique based on Eq. (3.105) using projection operators was 

derived by the present author before the discovery of the drone 

-fermion technique (see Chapter 4.). Due to the complexity of 

this method its use was discontinued - to low orders it was 

found equivalent to the Abrikosov weighting method, which is 

described next. 

In general, o..n.ly the vacuum state of the set of anomalous 

states is a null eigenveotor of the spin operators, since the 

representation always involves a destruction operator on the 

R.H.S.,so an equation like the first part of Eq. (3.4) is also 

valid here. However for the rest of the anomalous states, 

(in general). 	(3.106) 



The restriction to the spin states 1 311> and the vacuum state 

10 > is obtained by altering the Hamiltonian in the Boltzmann fac- 

tor to include an additional term, 

HQ Q 	E 	0I 0 m 	(3.107) 
m= --g 

This does not effect the diagonalization for originally 

E6 = t o  0 	Now an n particle state will have an extra 

weighting factor e 
pnQ

. Abrikosov assigns the energy Q a 

value much greater than  kT, so in performing thermal averages, the 

greatest contribution will come from the spin states (remembering 

that the vacuum state does does not contribute), so, 

< X (S) 	(Z
o 

)
-1 p Q 

 Z <m1 -P(Ho+11 gS)1 	(3.100 

Hence, to order 1 this can be extended to a trace over all fermion 

states, 

< X(S) > 8  = (e )-1  e r3Q  Tr (e-(3(2164-BQ  ) l(S) ) 

Similarly 	 (3.109) 

0 
z0Q  = 

Tr°  ( e-p(Hal-HQ) 
1 + 0(e

-PQ) 
(3.110) 

so in the limit of large Q or Q » kT then, in the notation of 

Eq. (3.110) 

e 
13Q 

0 Q  
< X(S) >

0 	
< X(S) > 0  

a 

(3.111) 

For wo = 0 then es  = 2S+ 1 ,which is just Abrikosov's factor. 
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If Eq. (3.104) is used for the spin operators in II(S) of 

the R.H.S. of Eq. (3.111), the usual Wick's theorem can be used 

for the fermion fields. Their zero order Green's function is 

denoted by, 

CQ 
0 

Cmm t 

	
7C- 
 
) 
	

< Tyr ( om  ( ), orat ('G') ) > o 

(3.112) 

This has the odd-Fourier transform, 

Cw t 

o 	
(; ) 	= 	am'  ( Q + mW0 	—± 

(3.113) 

So the evaluation of Eq. (3.112) leads to, 

Cwt (0 = e-(rawo 1: 41)  / 	(e(%) f:Q e( 	) fwa  ) 
0 

with (3.114) 
P 	u6 	P(111% + 

fmQ 	1 	fmQ ' (e 	+ 1) 	e 

(3.115) 

All measurable averages must be multiplied by the factor 
p Q 	o -1 

e 	(z s) 	so only diagrams with one factor 

Q limit. Moreover as the spin matrices Smolt are cyclic inside 

the trace, the self-energy contributions to any electron 
MOD 

propagator can only involve one fmQ  factor, so all other time 

orderings of that graph are exponentially small. 

The other main difficulty with this method is that it 

is restricted to only one spin impaity (for S> %) or 

equivalently the low concentration limit. For example, if 2 

spins are present, the factor e-20Q could arise from either 

56. 

e-  Q will produce a finite contribution in the infinite 



one of the sites having 2 fermions excited ( a non-spin case), 

or one fermion on each sitel(a true spin state, for two sites). 

To avoid such difficulties, the next chapter introduces the 

drone - fermion representation, which for S = 	suffers from none 

of these troubles and for S = 1 they can be compensated for in a 

manner similar to Yolin's treatment for S = y. 

570 



Chapter 4. 	 58. 

WICK'S THEOREM FOR THE DRONE-FERMION 

REPRESENTATION. 

(4.1) Introduction. 

The drone-fermion representation previously given by 

Mattis for S=72  is generalized to all S values and once 

more the small S eigenstate properties are analysed. 

This representation has the fundamental advantage that all 

the fermion states can be formed into linear combinations 

which are always eigenstates of S2 and ?leaving no anomalous 

states. Unfortunately, these linear combinations have 

differing normalization co-efficients so that a general 

Wick's theorem cannot be readily derived. However for 

S =1/2, a direct correspondonoe can be established which 

results in a very simple form of the Wick theorem for these 

operators. This result is established in section (4.3) and 

the method is then used in the following chapters. The 

analogous result is then proved for S =1 in a somewhat 

less elegant manner in section (4.4) and apart from an 

additional multiplicative factor (Y)is very similar to 

the result for S =Y2  . These results, it aould be 

emphasized, can be incorporated immediately into standard 

many-body theory and do not necessitate are specialized 

manipulation or special diagram; in oontrast to most 

other spin-Viok treatments mentioned in Chapter 1. 
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(4.2) The general Drone Representation for Spin S. 

The drone-fermion representation for spin-half operators 

localized at the spatial sites Ri  is, 5) 

Si 	 + = 0  0. 	$ 	Si  = oi (1)  i (4.1) 

where the real fermion operator pi  is defined by, 

(4.2) 

The anti-commutation rules for these fermion fields are, 

E oi7 043: 14.  (4.3) 

while all other pairs anti.-commute amongst themselves. 
2 

The use of Eq. (4.3) shows that pi  = 1, which is why 

the D-ons are known as drones, as they only produce the 

commutation rules between different sites, (Eq. (2.19) ), 

- 
= +S 	6 	; LS. ,S.] 	= 2S 4 _ 1 	ij 	j 	1j (4.4) 

It is readily seen that the representation given by Eq. (4.1) 

satisfies these commutation rules and is also Hermitian. 

It will be shown later that this representation corresponds 

to S. 	for the moment it will be generalized in a similar 

manner to the ooupled-fermion representation of Chapter 3. 

Thus an additional subscript a ( a = 1, 0400 , 2S) is 

added to each spin-half operator in the C-D fermion space giving, 
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/ 

a) = ° Si t ia Pia Si (a ) 

25 
= 	E ( • o, 4 ) a=1 	-1 a a. a 

Si 
2$ + 
E o = 	0. 

Si a 	(4.10) 
a=1 la  

S Z 
 

za 
	dia +d  ia 

	(4.5) 

with the complete non- vanishing anti-commutation rules, 

E° • la 	"1▪ 3 	= bij bap 	(4.6) 

Moreover in terms of the vacuum state lo > defined by, 

clia I
0 dial 0 

a > = o 	
(4.7) 

each site and representation is associated with a vector 

space 	( a ) ). spanned by the vectors 

, 
1 0> , 	dia l() > 	+ o 	10 > 	d. o. 10 > (4.8) ia 

Tensor products of these different vector space representations 

(all with the same vacuum state), can now be constructed 

to give a space for spin S , 

IS, i> = 	i, (1) > 	(2)> 	1 21  i, (20> (4.9) 

The operators in this larger space are merely the sum of 

the individual spin operators at each site, 



Now all the individual components are vector spin operators, 

then ipso facto, the spin commutation rules Eq. (4.4) are 

preserved. (This may be checked directly). In th is represen-

tation all fermion states can be grouped to form eigenstates 
2 

of the same S and different values of m i.e. 1 SIM > . 

In general, one can evaluate all the eigenstates for 

a given S value by finding all the different fermion states 

corresponding to ( S, -S> and then construct the remainder 

by repeatedly using the raising operator S+  on each, 

using the equation, 

S +  IS, m> 	- m )(S+ m +1 ) ppm +1> 	(4.11) 

This will exhaust the complete set of e - d operator states 
2S 

in the form of 2 independent spin equivalent series. It 

is then found that the root co-efficient in Eq. (4.11) 

(which is a direct consequence of the general spin commutation 

rules) is merely the required normalization of the states 

in the new representation. 

(4.3) A Wick's Theorem forifi. 

For S= 	there is only one representation for each 

site, so that there are only 3 operators in this space, 

namely, 1, ci anddi  which can act on the vacuum state. 

This generates a complete double representation of the 

spin - half eigenstates (dropping the site label i for the 

present) 1%0:1> as can easily be verified. 
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So, 	 62. 

	

10 > 	or d +10 > 

and 	
1X, 	> = o+  dr° > or o+ 10> 

	(4.12) 

Using the notation of section (3.5) for S= , a simple Wick 

theorem for the spin operators in this representation will 

now be demonstrated. 

In evaluating a trace in the spin-spate and C- spaoe 

(including the D-ons) of any product of spin operators X(S), 

a mere double- overoounting will occurr for all the states in 

the C- space correspond to spin states, and are ortho- 

normal one to another, so, 

Zs 	 Z 
	 (4.13) 

Similarly for Lim product of spin operators, 

Tr 	(e—  wde X(S)S) ) = 	
pw 

Tro  (e 	°s  X(S) ) (4.14) 

where the operators in the R.H.S. take their fermion forms, 

Eq. (4.1). So upon dividing Eq. (4.13) and using the 

notation of Eq. (3.98) for the defini"ion. of a thermal average 

in the interaction representation, one has, 

0 

	

< x (s) > 	= <X (S) > 

If this is compared with Eq. (3.99) one can see an advantage 

of this representation immediately, namely, there is no need 

for any normalization factor like Y . This is very useful in 

many-spin problems. Moreover, the D-ons have very simple 



properties which are also useful in any Quantum Field Theory 

approach. Once more, the resulting Wick's theorem is 

straight-forward, after an equivalence relation like Eq. (4.15) 

has been established. (See discussion after Eq. (3.100) ). 

In the interaction representation with the simple 

Zeeman- like Hamiltonian, Eq. (2.35) the "temperature" 

dependence of the fermions fields is simply (e .f Eq. 3.54), 

Ho/ -Ho/ wo% 
0+  ( ) = e oe 	= e 	o ; (4.16) 

The% - dependence of the D- ons is merely to order them under 

the Wick operator Tw. 

Thus, 

< o. c. > ij f 	; 	<d. 	= % 8.. 	(4.17) j 	0 	a  0 	3.0  

where the simple fermi functions have been defined, 

Pwo 	-1 f 	( 	+1) (4.18) 

In analogy to (A.15 and A.16) this enables the free 

(denoted by zero superscript) temperature ordered C-on and 

D- on (symmetrized) propagators Co( /) and D
o 
( /) to be 

defined (I) . 

Cii ( ) = < 	( ci 	) , ea
+. (0 ) ) > 0 

(4.19) 
=

ij 

% ( 
	%) f

+
— e( -c )f ) 

andp..(/).=<Tw(pi(/),(1).(0 ) > 	= 	( 0( 1) -191(-‹ ) ) 3.0 	 ij 

63. 



64. 
The C- on propagator can be represented diagrammatically by 

a directed wavy-line from the pointV to the point I 

and the D- on propagator, by an undix-ected checked - line 

betweent and ti  (Fig. 1 (a) and (b) ). The propagator of most 

interest in spin problems is the spin- flip propagator Eq.(2.31), 

which in the free case, is represented by a parallel pair of 

C- on and D- on lines (Fig. 1 (c) ) , 

N 
) 0  

	

(•C) = <TO. 	/),StJ  (o ) 	>8  = 	Co 	) D° (*c) (4.20) 

This well illustrates the nature of the drone propagator, 

for it converts the fermion properties ( n. -1) of the C- on 

to "boson - like" properties (n. 1), as one requires for 

spin - waves, for example. The term "boson - like" is used 
obey 

to indicate that the spins/commutation rules rather than  anti- 

commutation rules (C.1)0  These functions also have simple 

Fourier series transforms (A.35 - 40) defined by, 

o -1 	-IV t 
C ( 	=p 	Ee 	c0( 	

o 
) ; C( 	( 	) 	(4.21) 

and. 

Do 	 -IV 	o _ 
.%) = f3 

-1 
 Ee 	D(v); Do ( 71 > -2 (iv)

-1 

(4.22) 

Similarly for the bose -like (c = a ) propagator, with 

taxa',  (Y2 0  too ) • (a.  ) 	= 
w - i 
0 

-2 <Sz> 0  

(4.23) w 
0 
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66. 
This could have been anticipated from Eq. (2.38) N. B. 

o 
P (a) is not defined for w0  =0, unless it can be non- 

0 
vanishingly renormalized, although F(1 ) 

well defined ( in fact, 	). 

(4.4) A Wick's Theorem for S = 1.  

In order to demonstrate the Wick theorem for S =1 

the complete set of states for S.1 are needed. In thsis case 

+ + 
there are four independent operators qi4i, + di, d2 ;'(Th esite 

label will be dropped for the present) so one can construct 

from them all possible non-zero combinations operating on 

the vacuum state (remembering all destruction operators on this 

state vanish). The four independent sets whioh are both 

normalized and satisfy Eq. (4.11) are listed in Table 1 )  ( P.72). 

In order to preserve the sign of these vectors (as the operat- 

ors are fermions) the following convention for their normal 

order is adopted: The smallest D-on operator acts first on 

the vacuum state (furthest to the R.H.S.) followed by its 

corresponding C-on (if present), then the next lowest D-on 

and its C-on etc. up to the highest numbered C-on on the 

L.H.S. It is at this stage one can see the difficulty of 

deriving a general Wick theorem for finite temperature 

averages, as some of these states are only present in linear 

combinations and so have different normalization factors. 

This moans there cannot be a general correspondence between 

a trace over spin states and a traoe over C-on(and D-on) 

states. This difficulty can be avoided for the case of 

S= 1 by noting that the "under-weight" states only occur 

is 



for m.0. Now both the individual states and their 1Lnear 
	67. 

combinations (i.e. true spin states) possess the crucial 

property< of Szl o> = 0 . Thus a trace over the spin states 

of functions of S
z 
(which involves no constants before 

transforming to C, D-ons, and denoted X(?) ) only picks up 

the contributions from m= - 1 , which are over-counted 4 times 

(the independent series - 4in this case) in the sum over the 

equivalent C-on and D-on states. Thus (c.f. Eqs. (3.95) and 

(4.14)' 

Trs  2(e) = X. Tr0X(Sz) 
	

(4.24) 

in an obvious notation, and the operators on the R.H.S. take 

their c- d forms. This zero contribution from linear 

functions of S
z 

however, cannot be invoked for constants which 

are diagonal in these extra states; the equivalent statement 

to Eq. (4.24) is, 

Tr i. 	= 	Tr
o 
1. 	1 	• 	(4.25) 

The correspondence exhibited in Eq. (4.25) is also 

true for exponential functions of Sz. This is particularly 

so for the case of the partition function Z°I  evaluated in 

the interaction representation of the two spaces. In the 

same notation as section (3.5), the appropriate equation is 

then, 

0 
Zs  (4.26) 

with 	 (4.27) 

Z(c; = 4. ( e P 6)0 4. 	 13'1)(4 1)(e-13  '4'4 1) wo 	2) = 4.k  t e 



This latter factorization is ctucial to the whole argument 
	68. 

for it helps to cancel out the fermi factors Eq. (4.18). 

Moreover the factor of j  in the C-on form of SZ  is just 

sufficient to introduce an inverse bosefactor (Eq(3.66)) in 

the < Sz  4.  type averages. This eventually will relate the 

fermion-like anti-commutation rules of the C-ons with the 

"boson-like" commutation rules of the actual spin operators 

for S =1. 

Now, as can be checked by either explicit calculation, 

or cycling one of the C-ons around the trace (see later), 

one has, 

^PW S 	
) N  Tro( e 	0+  0a  ) = 4 ( 1+ e 	(4.28) a  

So, upon defining averages with respect to the C-D space, by; 

< ea  () a  > o  = (Zo) 	moo( e 	° ea % )=.* f 	wo) (4.29) 

using Eq. (4.29) and after using Eq. (4.10) for S. 1, 

with the spin operators represented by their C-D form, one 

obtains, 
(4.30) 

z 	Pw 	-1 	1 e No 	1 -e  PN0 <S > 0  = 2 (e 0+1 ) —1= 

In the last form, the compact notation p = -1 has been 

introduced for later use. The magnetization in the two spaces 

can now be related, 

0  —1 	— pa) Sz + 

= 1.1 	 
I + e Pwo 	1  + e 4wo 



z 	 pw s < s > 	(Zs)-1 . Tr (e 	o 
s- 	's 

—1 
= (4z ) 	Tro(e— two 	z  

s ) 
(4.31) 

69. 

0 
Then multiplying and dividing by Z0  and using Eq. (4.29), 

this introduces the normalization factor r( coo ), 

< S 
z 

> 
s 

Y 	Sz > 
 

0 	 0 (4.32) 

where 

Y (w0) 	(4Z;)- 1 = ( 	g)-1  (4.33.) 

Moreover for S =1, one can always use the following closure 

relations for products of Sz  ( "n" is any integar ) 

( sz )2n +1 Sz 	or  ( sz )221 .( 
Sz  )2 

So any polynomial in S
z 

X( Sz  ) also satisfies 

<X( Sz 	= Y. <X( SZ  ) >clo 	(4.34) 

This is the equation which restricts the proof to S =1 

and S = Y2, in the latter case r .1)  (see Eq. (4.15) ). 
The next stage of the proof is to generalize this to 

products of the raising and lowering operators S 

(remembering g= - 1 ). So, on re-writiong Eq. (4.4), 

for one site, in the useful form 

[ 	11  , S".11] = 2 p, Sz 	and 	[Szi 	p 	(4.35) 



z 
Since spin averages are diagonal in S there must be an 

equal number of Si  and S—Poperators. The general proof is 

inductive so one starts out with the simplest products 
qP• S 

< S 	S >0 or < S S >0 	and uses the property of 

cyclically transferring the operators around the trace, 

as in (A.10) and using, 

z 	z  e 
XS 	AS 	 Xp. S e 	 SP 	(4.36) 

then finally oommuting them back to their usual position in 

the product. The final result is, 

70. 

g-1  
0 2µ < Sz  > s 

0 (4.37) 
1 — eP P 

This approach can be equally well applied to the spin 

operators in their C—D form since the trace now covers the 

complete representation of the C—D states and so maintains 

the crucial cyclic property, so immediately, 

< Sµ s- 	> a 	es = 	2 	< 
z 

> 

(4.38) 

1 — eP wo 

Upon multiplying by the factor Y and using Eq. (4.32), then, 

(4.39) 



The same argulent is used for the next product, so, 	71. 

A -A z B S S 	S >
<( Sz  )2> 	< S USS  >s  

(4.40) 

— e AN0 	1 — e-1113630  

There is an identical result for < SA S-A Sz  >,!) but now 

all the averages on the R.H.S. are just replaced by C-on aver- 
° 

ages < >0, but from Eq.s (4.34) and (4.39), each of these 

is related to a spin - space average like<>o 	>o so, 

<s s— A sz >0 = Y <S11  S-11  Sz  >c? 
	

(4.41) 

Similarly it can be shown that a product of n spin operators 

can be reduced to ones involving (n.- 1) spin operators. Then 

the rest of the proof is simply inductive, so need not be stat-

ed here; this immediately leads to the crucial result for 

a general product of spin-one operators, 	
( 4.42) 

<X ( S 	S-11  SZ  ) > 09  = Y <X(S 	sz) >0 
0 

where the operators on the R.H.S. take their C-D form for 

S.1, Eq. (4.10). The corresponding result for a product of 

spin operators referring to N different sites is to convert 

Y to Y3  on the R.H.S. of Eq. (4.42) 
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The four independent sets of C-on , D-on states for one site 

corresponding to the three spin states IS,m> for S= 1 

and m 	1 , 0 . Each is to be interpreted as a creation 

operator (in the same order ) acting on the vacuum. state 10> . 

72. 



73. Chapter 5.  

THE CONDUCTION-ELECTRON LOCALIZED MOMENT 

INTERACTION, 

(5.1) The Interaction Rnmiltonian. 

The model considered in this chapter will be one where 

the conduction electrons in a metal of N well - localized 

atoms (in a periodic lattice) interact with n magnetic atoms. 

Three cases will be considered. In the next 	3 	sections 

dilute alloys with non - interacting impurities (n« N) will 

be considered, then the case of interacting impurities (n <N) 

and finally the periodic lattice (n = N) or rare - earth 

metals. 

A phenomenological approach is taken here, rather than 

an attempt to show the equivalence between the present s - d 

( or s - f ) Hamiltonian and some other model, as was done 

in section (3.3) with the Anderson Hamiltonian. However:  

such an exchange Hamiltonian is expected to be a good 
84) 

approximation in the case of the rare - earths (Doniach, 
30) 

de Gennes), for in these isolated atoms the 4-f shells are 

known to be very tightly bound and well - localized. 

Moveover, in their metallic state these bands are far 

below the conduction bands, so their behaviour can be 

expected to be well described by only their angular momentum 

degrees of freedom. In S - state ions such as Gd, this 

will reduce to using only their spin vectors S. In a non 

S- state ion the J states will be sufficient to describe the 



dynamics of the magnetic ion. 	 74. 

Consequently, a general excharge Hamiltonian H1  is 

introduced which is assumed to well describe the dynamics of 

the many - body system. This will be taken to be of the 

form of an interaction of strength J () between the spin-

deasity of the conduction electrons Se(z) (section (2.4)) 

and the spin - density of the magnetizedions S(E), so that 

II[1 	-2 sS d3  x d3x1.1.  ( x 	10) s 	(x9) 
	

(5.1 ) 

For well - localized f - shell electrons on the magnetic 

ions the spin - density for n spins is taken to be 

S( x) 	N-1 nz Sj g (x Ri) 
	

(5.2) 
j=  1 

If both the electron - spin density and the range function 

are Fourier transformed with respect to the inverse lattice 

vectors (Eq. (2.49) ), so that 

J (IS) = E 	J 03-9.2s with E 	Vol a (10 
q q 	q 	(5.3) 

If Eq.'s (5.2) and (5.3) are used in Eq. (5.1) with the 

identity 

-1 	3 	1-(9--(11) 
Vol . 	 d 	e 	= 

qq' 

(5.4) 

the general form of the interaction is then obtained 

1 	 iq. R• H1 	-N 	E 	J a . S. 	e q --q  
qi 

(5.5) 



The term e"."1.9=1:ti appears in the function p(q) which is the 	75. 
Fourier transform of the spatial distribution of the magnetic 

ions p(x), where 

P(z) 	= 3 / k.  8 	x - R. 
""a (5.6) 

n 

SO 
	

P (q) 	= 	 j=1 
	 (5.7) 

In ge neral , it is difficult to evaluate any results with 

the general form 3q, so this is always approximated by a 

constant co - efficient J =J. Thisis equivalent to restr- 
3 

ioting JOE) to a point contact model J (x) = Vol. J 8 (x; 

or that all overlaps of the f - shell electrons with neigh-

bouring magnetic ions are small. Finally, the constant 

J is taken to be a fundamental parameter of the model and is 

found from experimental checks on the resulting theories. 

Finally, if there is also an extra spin independent potential 

(e.g. direct Coulomb interaction) V (x) this will give an 

extra term in the Hamiltonian Rv., where 

(5.8) 

a 	(2) V.( )T 	E  V9h810-% X 
Pq X 

This will merely affect the lowest order Green's function 

for the electrons Eq. (3.64) to give a correction (dropping 

the spin index, X ) 



This can be completely re - summed (at least, formally) in 	76. 

terms of the mass - operator ler( t) or its transform 

v 
pp 
 (v) (5.10) 

The corresponding Dyson equation is then 

, . 	, 
GPP 

I v) = GPPv 
	

qqGPl( ) M 
ql 1

0v ) G4 
1  
„
3 
 w,) (5.11) 

'  

The formal solution of this equation in terms of the inverse 

matrix in the momentum representation iE 

G t( ;') 	( 	G°  (V) V 	
Y
-1  G°(V) 	(5.12) 

PP 	ppt 	P-P' Pl  

This is exactly solvable in the simple case of a constant 

range interaction, or V .1/6
0 

then 

Gppt  ( v) = ( 	V -i7 )-I  
(5.13) 

Thus, such a spin - independent potential can be accurately 

accounted for by just a chnnge in the Fermi level µ—> g + V. 

However, in more realisticoases of an x - dependent potential 

this cannot be done so readily. No striking effects of such 

potentials are expected, in contrast to the spin - dependent 

case (as will be seen ) where the dynamical degree of inter-

nal freedom of S can lead to quite unexpected results. 



(5.2) Low - order Corrections in Dilute Allovs. 

The case of dilute alloys well illustrates the effect 

of coupling two relatively simple systems. In the present 

model calculation interferenoe effects between different 

magnetic atoms are neglected, (so the concentration of 

impurities c = al- is very small). Even sol high temperature 
Er 

susceptibility measurements verify that the magnetic moment 

on rare - earth atoms still persists when in dilute solutions, 

in other non - magnetic rare - earths (e.g. La, Lu, Y)t or in 

noble metal solvents. The case of the transition metals 

(Mn, Fe, Co) in noble metal solvents is less clear - cut, fort  

although a magnetic moment still persists , there are no 

integral (or half integral) S or J values, so the looalized 

moment model cannot be expected to be so good for these 
for 

metals asAthe rare - earth alloys. 

Since interference effects will be assumed negligible 

(however, see section (5.5)) only one impurity will be 

considered, and its location will define the co - ordinate 

origin, Edwards: averaging process 
89will then be used to 

introduce the concentration dependence of the resulting effects. 

The Hamiltonian for this model has been introduced 

earlier in section (3.4),,where it is written in terms of 

the Wannier operators at the origin . The spinor form 

is Eq. (3.59), in terms of the drone - fermion represent- 

ation for spin - 1/2  , Eq. (4.1) ; this becomes 

H1 
=+ 

0 y a a+  cP 0 a++ a—+E X(df a 	ax )) 
1. 

(5.14) 

77. 



The diagonal part of the  Remilto,Aan is still given by Eq.(3.52) 
	78. 

or 

wo ((3+ 	Y2 ) (5.15) Ho  = E 	al-011-x.  a PX 
Ph PX  

The Wannier Green's function (at the origin) is defined by 

Eq.s (3.62) and (3.64) and its transform by Eq. (3.68). The 

C -on and D -on propagators are defined as in Chapter 4, 

viz. Eq.s (4.19), as is the spin - flip propagator F by 

Eq.s (4.20). 

For convenience the g factors of the induction electrons 

and of the localized moment will be taken to be equal; 

moreover, the constant density of states model for the 

oonduotion electrons will always be used, 

p ( w) = 7L-1 Im. G
X 

(to+is) = p on y if -D< w 4 ts.) o < D 

(5.16) 

Although only one magnetic impurity is present , the d 

operators must be retained throughout the calculation. In 

the evaluation of the Green's functions2  by equations like 

(A.28),the transformed interaction Hamiltonian must be bose-

like,for the substitution of the Wick - ordering operator 

in the development operator ( (A.23) anal (A.27) ) for the 

Dyson - ordering operator,is only valid for even - order 

products of fermion operators. The uFmal fermion form of 

temperature perturbation theory (Appendix A ) can now be 

applied to the Hamiltonian given by Eq.s (5.14 -- 15):  using 



18) 
the usual diagrammntio rules (Abrikosov et al). The 	79. 
interaction vertices corresponding to Eq. (5.14), are 

properties 
illustrated in Fig(2). The one — electron (for nth — order 

scattering off the iipurity) are evaluated in terms of the 

effective potential IP3L ) defined by the criterion that 
X 

this part of the graph is irreducible (between the n vertices) 

with respect to any one electron line. This differs from 

Doniach's effective potential, where the contributions diagon—

al in the combined spin of the impurity, and of one electron, 

r.1.5.:'e chosen. 	This is convenient in the case when no external 

field is present, as it leaves the Hauiltonian rotationally 

invariant. 	Thus the perturbation terms represented by 

Figs. (3a and 3b) give the total first order contribution 

Xj<g08('61 —/2)  

(5917) 

Its (odd — periodic) Fourier series transform is therefore 

(1) , 
Vx  (7) 	= XJ<S>0  (5.18) 

This is the expected first — order field — splitting of the 

two spin bands which vanishes as the field decreases to zero/  

c.f. Eq. (3.89). 

When one considers the second — o,l'r effects Fig. 

(3c and 3d), one can immediately appreciate the dynamics of 

the situation, as the graphs show explicitly which terms in 

the Tinmiltonian are contributing in each case. For example 

in Fig. (3o) the electron is scattering longitudinally and 

(1) Vx 	— •r2  = X ( +c >0—Y2 ) 5  ( 
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coherently off the ipurity ; in contrast to the second order 	82. 

reducible graph, when the scattering is incoherent (i.e. the 

two spin averages ace quite independent; see later). The 

contribution of this coherent graph is: 

(2L) 	2 	2 ÷ o  
Vx 	(t) = -J Gx( -c ) Co( ) C°(-1 	-J f f GO( ) 	(5.19) 

Similarly Fig. (3d) corresponds to transverse coherent 

scattering, with the excitation of a spin - flip (or spin - 

wave, in a lattice) in the intermediate state. Its contrib-

ution is 

14(/ ) ). 
2 c 	o, 
J G 	) F 	-t 

X 
(5.20) 

The transform becomes 

2)( ) J2 E  

N p 
+fx f + +f-X  f- 	) P1'4 	P7- X (5.21) 

   

- 1 
13, X  

This form exhibits the symmetry due to the choice ge  = gs.  

Using the constant density - of - states for the electrons 

one can write down the analytic continuation of this quantity 

(i.e. w = iv ) just above and. below the real w -axis. 

v(2  wt is) 	
+ 	- 

0.2  S + DdE (f f + f
X 	

(E) + f f  a (E) )  
D 	Xwo E+ 	+ is 

(5.22) 



83. Thus, the absorbtive part is giron by 

Im. X w ± is) = ±ItpJ2(f+f+ f X  f—X (wo  — X0+f X  f X(too  —X (A))) • 

(5.23) 

where the following identity has been used 

= 
x —.71 6( x). --- is 

This can be considered in several limits, for example, in 

zero magnetic field one has (Subscript zero for hz  = 0 ). 

Dn. 	V(  qt.,' ± 	± 3,4 n p J2  (5.24) 

10) 
This is essentially Abrikosov's lowest order result, for 

spin — disorder scatterirg, since for S=72, S(S +1) = 3'47 
so exhibiting the rotational invariance. Similarly, for 

the real part, 

Re. Vi2)(w) = 	pJ2  In. I 	1 
D + w (5.25) 

In fact, one could have anticipated this result from Eq. (5.21) 

v(2)
(w ) = 14 J2  do' ( w ) 

	
(5.26) 

In the same manner one can calculate the first and 

second — order correotions to C (z ) and D ( -0, whose 

self — energy parts are denoted by E (/) andil(t) respectively. 

The evaluation of E itself will give the magnetization; 

the first order result Fig. 4 (a) merely involves the electronic 

magnatisatima 	" Eq. (3.76) and (3.75). 



I.e. 	E(v) 
	

2 J e 	p J wo 	(5.27) 	84. 

No self - consistent sole's (i.e. molecular field ) for E (1)  

and V(1)  when hz  = 0 can be found, as expeotedl(contrary to 

the case when there are interacting impurities, when the Curie 

temperature is finite). 

When E
(2) 

is evaluated the first order corrections on 

the first - order internal electron lines must not be 

forgotten, (Fig. 4 (b ilii) ), as these give a large contrib-

ution, which caa-eel exactly with parts of the other 'second-

order graphs, involving the excitation of an electron-hole 

pair (Fig. 4 b iii, iv), 

(21) , 	2 o„ 	(2T E 	)= -J C 	
X A  
G°.,(t) G(--c);E )= 

2 
-J D

o 
 (1,) Go+(c )Go(-/ 

(5.28) 

The sum total of self - energy corrections to C (-t) -.1.1) to 

2nd order in the usual limit of kB  T >> w or coo  is 

E  (1 + 2)(wis)=  _ pjto 4.4(pj)2 c(w_jk.)  
(1+1n.2y13D)i-(wo  

2 	7C 

in k$  T 
	(5.29) 

where log y = 0.58 is Euler's constant. So from Dyson's 

equation. 

C 	Lo±is) = 	Li) 	•—• E(b.) tiS) )-1  = WR r (t) 
 -4 

(5.30) 
where, on the energy - shell, w = wo  9  
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2 	2 
w fi -IF = wo( 1 + pJ 2(pJ) (1+1n 2/12 ) )-1471(pJ) kBT. 

The magnetization is obtained by replacing the sum over vby 

an integral over w on the Fermi - Dirac contour, C. encircling 

the imaginary w -axis; this is then evaluated by deforming the 

contour around the pole off the real axis (Appendix A.42) 

<0+0 > = 1 	dw 	0(w) = 1 	d 	Disc.C(w) 
2.7ci of ePw +1 	2zti 	e 141 

(5.32) 

86. 

or R(2) + Y2 
CO 
dw 

, 2 	w ei363+ 1 [ (wit  -to) 4, rg] 	e 	+ 

 

-ca 

(5.33) 

, Thus 11.(2 N)) = 4 tanh (0 (AR ) s' R°((.0(,) (tfca 	2(PJ)
2 
 (1+1314,2YPD) ) 

2 

(5.34) 

Apart from the factor of one, this agrees with Yosida and 
52) 

Okiji's result, in second order but not in first order where 

they find no contribution. This latter point contradicts 
41) 

Nagaokds result, unfortunately his differs from ours in a 

factor of 2 (after conversion to same form of J - theirs 

differs by a factor of two initially i.e. J Nagaoka = 2J). 



0) 
The result (5.34) agrees exactly with Yosida & Miwa 

5
and with 

25) 
Soalapino's result for the Anderson model evaluated to second 

order. The D -on self-energy A(w), (Fig. 4,(b v) ) is only 

needed for the evaluation of the spin - flip propagator and 

hence the dynamic g-shift, of the localized transverse 

susceptibility F(w). Eq.(2.51). 

The contributions of Fig. (4 o) do not give a logarith-

mic temperature shift and cancel exactly (in the static 

limit, minus factor, due to interchange of the fermion - like 

D-on line) and Ea in the limit 0 w «1 ave neglected. 

This just leaves the self - energy effects on the ind-

ividual C -ens and D -ons, which then become a convolution 

to give F (v ) 

F( ) = p E DUO C (a 	) (5.35) 

P( w ) ( (z +2A (z) )(w w +z 	E (w-z) ) 
e (3z+ 1 

(5.36) 

This is deformed around the discontinuities of D and C 

at Im. z = 0 and Im. z = Im.w respectively; 

writirkg z = z1  + i z21  A (z1  + is) = Al  (z1) + IA2  (zi ) eta. 

87. 
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F(w) = 	2n 
-1 
 Sdzifizi) 

x CE ( wo  - w 4. zi -E  )-12 A2( . 71,..  )r( ,zi + 2 A1 )2  + (2A2)2f1 

- 	( z1 + 6)2 4- 2A  ) 
-1 

 E2(631 - z1)[(wo - wl +z1-Ei)2 
	2  
+E 2]

-1 
 ]] 

(5.37) 

Eq. 5.37 has been written out in full to show themnature of 

the approximation to follow, which can only be dons- if the 

widths are small compared to k
B'  
T. however this may no longer 

be true in higher orders, as both the real and imaginary parts 

of the self - energies appear to diverge in the anomalous tem-

perature region (see later). But in simple second - order 

calculations there is no problem; thus taking into account 

	

the form of E1  (w) 
	

and noting that 

	

11( 2)(6)+ is) 	2(P J)2  w (1+ In. Y " 	) ± tkB  T ) 

(5.38) 

one can see that the first square bracket in Eq. (5.37) is 

strongly peaked around z1  = 0 while the second peaks at zi  = 

After ensuring a unique analytic continuation, 



‘, 	r 	, F (to) = 2 f ( wR  ) [ wR il
-1  -w- 2Alw-ttt 	L 	IL) - E(w) 3 1  

(5.39) 

but to 0(J2), near w
R 	

A(w - wR  +is) = X ir , 

so fially 

Pto R 
F (w ± is)   ( 

(5.40) 

 

There is an internal check on the correctness of Eq. 

(5.40) through using the sum rule for s = 

< S
z 
 > 
	

72 - 	<S 	S+  > = R 	5.41) 
Thus 

R= X- 1 	r  d W  	Disc, F ( ). 
2 it i la? 1- e 

(5042) 

f (wR) = tanh 44--)R  ) 
2 

c‘f.Eq.(5.34) 

The above results can be neatly summarized by stating 

that the impurity transverse susceptibility has the Lorentzian 

form 

S9• 



X T 	(u) = tanh 	0 WR) (toR
-ti) + ir) C(03R co)

2  + P2 	1 
ret. 

(5.43) 
which is illustrated in Fig. 5. 

(5.3) Higher order Effeots. 

In this section complete sub - series of higher order 

graphs are summed whioh result in expressions evaluated to 

0(J2) in the (divergent) denominators. This is accomplished 

by calculating the self - energy pas to 0(J2) of more 

complex propagators. This extends the work of previous 

authors whose results were evaluated to 0(J) in the 

denominator and also avoids the difficulties (especially 

T < Tk) which have previously arisen. Although various 

explicit formulae for the self - energies are obtained for 

finite magnetic fields, they are, in faot, evaluated in the 

zero field limit where rotational symmetry introduces 

several simplifying features. This leads to equations which 

are stable (see later) through the critical temperature 

(Tk, for the case of anti-ferromagnetic coupling, (J‹ 0) 

and to a new ferromagnetic resonance (J> 0) whioh occurs 

at a much lower temperature. 

The first "log T" term in the eleotronio effective pot-

ential appears in third order 0(J3) and is the firsitinternal 

correction to the second - order akeleton graphs (which 

themselves were seen to exhibit no abnormalities, Eq. (5.26). 

90. 

See Addenda. 
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This suggests that all higher order internal corrections 

to the simple skeleton graphs, will be divergent. So 

Propagators are constructed from these skeletons and 

their own self - energy parts are constructed to 0(J
2
). 

In fact, a further series of graphs is also included, arising 

from third - order skeleton graphs, which have the same 

structure as before; this maintains the correct oo - efficient 

to 0(J3) in the numerator. By considering those irreducible 

graphs which occur within an initial and final interaction 

there will always be a factor of J2 contributed to the 

numerator. In practice, this means that one looks for 

repeated scatterings of any two internal lines, within 

the second - order skeleton graphs, while the third line 

remains unaffected from the initial to final vertex. 

Physioally, this 'bare' line effectively maintains 

the local spin (in the case of the electron self - energy) 

ina definite orientation with respect to the external 

electronic spin i. e. the spin is Tolarized" between the 

initial and final interaction and effectively behaves as if 

in a magnetic field (even in the case when there is no exter-

nal magnetic field, the quantization of the electronic 

spin direction determines that of the local spin). 
10 

This agrees with Abrikosov's intuitive choice of outting 

only one electron line and two spin lines at any internal 

point, and with Silverstein & Duke.92)  

In all cases we will need the following propagators 
41) 

(similar to the r(w) of Nagaoka etc.) defined by 

92. 



ti sT. 
X 

•_. 
a -1 

_ szo 	( ) 	G°  ( 	u
0  

) 	( 	t ). XX' 

see Fig.6. (5.44) 

= G° 
 X
( /) D°( X ti ). 

The Fourier series transforms (bose - like, as pair of fermions) 

are 

-1 r
r 

Xir+ 
- 

f-mr 
xxt 	= 	N 	px )[ fx +xtw 0 

5 Taro = 
 

X‘ / 	X  N i E (Fr 	f- Nr 
r-x 	)1_ p_x  

(5.45) 
A longitudinal soattering matrix T is defined by 

S z 	) 	Sz
X
o
'(%)+ ff 	

I 2  S
z

X'  
	) Tex' ( —2)Sz 

X 

,  
e

— 11 ) 

or 

4),1 	) 	= 
aZo 
I"NXt («) (5.46) 

  

1 - Szo (a) T 	(F) 
XX' 	XX' 

 

On evaluation of the graph in Fig. 7 and wing Eq.s (5.45 — 6) 

Tz  (%) XJ (4% ), so Sz  (a). 	 (axx 	 xx 	- X J Sza 	) 
	(5.47) 

93. 
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x ST (a ) 

Thus 

zo  

X( (1 - x J SX 	) 2- 

1 	xJ szo,-x  (a 	- x.7 sT00x) ) x 

sT 
7,k a) 

T _ s  o. as 
) x  

For the off - diagonal longitudinal matrix element:, both 
	96. 

graphs illustrated in Fig. 8 are necessary to be accurate 

to 0(J2). 

TZ  x,- x(*t) = X JO( 	J2ST
X
of ), 	(5.48) 

so e 	(u ) Sad 	( a  ) 

- xJ sz° ( 3) (1 - xJ sl'o(6) ) 
X, 	 X 

The result for ST  ('t ) oan be simply obtained by examining X 

Fig. 9 and realizirg that the complete series can be 

obtained by replacing Szo (3) in the second term by the 
X, -X 

complete Szx4 a ) remarkably, this results in a form 

very similar to Eq.(5.48). The equation corresponding 

to Fig. 9 is; 

STo(a) 25 Tx0  ( ) s)z,  ox 	l ) sx10 ) 

(5.49) 

These propagators and their transforms will first be used 

in evaluating the effective potential for the electrons in a 

systematic way to 0 (J2). 

The longitudinal scattering potential (Fig. 3c) is 
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renormalized by splitting Eq. (5.19) into two equal contrib— 	99. 

utions, then renormalizing the appropriate pair of free 

propagators, thus, 

X 
	a2 	( e(t) sx° (-0+ 0°(-,c) sX  ° ( ) 

2 

( V
( 1 
	

(2L.b 
= 1/2 	21a)(..c)A- 	) ) 

Then upon affecting a Fourier series transform 

vt,1/4,20( 	
L ( c°(t7  --d) ex°  CFO+ 	- V) SZ412.  (a) c  

213 

(5.50) 

Now each of these parts can scatter independently and rep— 

eatedly (i.e. Szo 	so ) but this would involve overcount— 

irg the first term twice (see Fig. 10). The renormalized 

terms corresponding to the correct summation (note absence 

of brackets around superscript) are defined as follows 

v22( 

	

) 	v2La (.) + v2xLb 0.;) 	v(x2L) 	) 	(5.51)  

So 2L 	2 	o„_ 	_z 	
SAS 

(a)  ) V 	( v ) = —J E C (Xqa — 	S xx, la) 	12 l` aX1  

(5.52) 

Similarly for the transverse part (Fig. 3d), Eq. (5.20) 

becomes 



FIG. 10. 
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v(2T) 
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101. 

(5.53) 

which, on transforming and mniormalizing, like Eq. (5.51) 

becomes, 

(5.54) 

V
2 T—
(v) = 

x 
J2EDAx(Z-7))Esz X  (a) — iz X  zo

X 	 X 	 X 
Can-Fc°(x67—a-nEsT(70--isTe-a-)3 

13 a 

Before proceeding it must be noted that this procedure is 

not quite complete, as a whole sub — series of graphs is 

being neglected which have the same structure as those 

already considered._ These are the two third order skeleton 

graphs (Fig. 11) which are needed when 	= 0 to preserve 

rotational symmetry. They give contribution 

V(3T -c ) = 	3 C°  ( x ) ( Re(ti)-t-  Int» (5.55) 

where 

R°  (7)a-- S d't ST°  (1-11  ) Sz° x 	(..c 	it°(1) 	yd-c Szo (6-1 ) sT°(/ 	) o 1 x 	-x 	0 	X-x 

(5.56) 

R°(a) E N  = R°() = STog) szo ( 3) 
X' 	X 	X,—X (5.57) 

Vx
(3T) 	3 	0, 	v- (v) = 2 XJ 	E 0 (X ( —a) 	(5.50 

a 

This is simply renormalized by only converting szo->  Sz 

So, 
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in 11°
X 
 (E) (renormaliziug ST0 

X 
 (Z) also would lead to some 	103. 

over-counting.) 

V3(7) = 27. p-1  j3E C°(X(7/ - a)) sa) sz°1  (a) a-  
a 

1 — x J Sz°(Zi)[1- XJS
x
To
(E)] x—x 

The complete second order effective potential, or 

"polarization potential", VP can now be defined as the sum 
X 

of these 3 terms, 

vp = 	+ v2T + V3T  
X 	x 	X (5.60) 

The above expressions are somewhat inelegent, so they will 

be evaluated in the zero external field limit, (where mAny 

other graphs, due only to field splitting, also vanish.) 

Thus from Eq. (4. 19) Lt. 	C°(X•t) 	D°( Ati ); D°(0) = X D°  (;). 
0 --).0  

so the zero - field correlation propagator 50(a) is defined 

by 

+ Lim. Szo(0 .x sTo(E). x,E(f.p  ..±..2. ) 	x60(.c.c. ) 	
(5.61) who 	 2N -ia 1! 



104. In, this limit Eq.s (5.47 - 9) become 

X sz (a) = 1--xs°((0[14. JSE)]-1; XI  

(5.62) 

S 	Ca) 	AFL) [ 1 - JAE) ]-1.E1  +j 2(F) f 1  X 
2 

ST  (a) = X AFt)(1 + itiSctE))[1  - 1.Jetc7)]1  .[ 1  + Je(«) 
This exhibits the unexpected property of factorizable 

denominators, as will be seen,this leads to ferromagnetic - 

resonance behaviour, as well as the usual anti - ferromagnetic. 

In fact, if this calculation had only been carried out to 0(I) 

in the denominator, only the anti - ferromagnetic result 

would have been obtained but witha factor "%" instead of unity; 

this factor is important, as the Hondo temperature, "Tk" depends 

exponentially upon it, (see next section). 

Before evaluating VP (T) the propagator S°(3) will be 

examined in alittle more detail. One can see that the 

effect of the spin operators in the interaction Hamiltonian 

(represented here by fermion - like C -ons and D -ons) has 

converted a bare fermion - like eleotron line to a bose - 

like propagator. This introduces a temperature dependent 

factor which changes sign as the momentum "p" passes through 

the Fermi surface. So from Eq. (5.61), with the constant 

density of states, the analytically oontinued form is; 

S°  (to+ is) = 	p 	A (to) ± in B (w) ) 



where 	 105. 

A (w) = Pr•S +D dE. tanh 4 ( E 

E 	w 

and 	B (w) = tanh p_lt 	if I wl < D,zero otherwise. 
2 

It T1111 also be useful to introduce the fuction Q (;) 

defined by 

Q (a- ) 1 - 1 S°(a)
( J e(E) )2  2 

   

C1 	 s°( 	.E' 

Or in its analytically continued form (to OM in the 

numerator) ; 

Q (to ±is) = 	1 F izg p J B (  

S°(w)j, 11+ J S°(w)3 1 2 	
(5.64) 

The effective potential VP(w) can now be evaluated as follows, 

	

irg(;)_iK 22 E 	s°(a) la (a) 

	

a 	(5.65)  
SO 

2 
VP(w) = - 3J E tanhapx 1 r  dz 	Q(z)  

' P 	2 
2ff 	2ni 6  (1-e-Pz)(w-z)(gr-z) 

(5.63) 



The latter form defines the complex integral I (w), in 	106. 
p 

terms of the bose — contour Cb (Appendix A.) and the usual 

analytic continuationslw = iv , is z = zi  iz 2  have 

been used. To evaluate Ip (w) one can see that for lwl< D 

discontinuities occur in the complex z plane at z2  = 0 and 

z2  = p 	However the discontinuity along the real 

axis takes in the pole at z =p as well as the discontinuity 

from Q (z), that is 

Disc. ( Q(z1)   ) = Disc. 
—z 

p 	I 

Q (zl) 	P17. 	21t
"4p—z1 )PrQ(z1 )  

( tp  —zl ) 

This procedure is necessary to pick up the simple 2nd order 
result when Q (z1) = 1. 

Thus deforrni g C
b around the two above — mentioned 

discontinuities, one obtains, just above the real w — axis 

— 1  Disogl(0. 	(t 	Otanb.i POI] 

i7t  45( p  "W)CI (W) C tallir120(1) j."1  

Q(w) 	(tp)b-I-( 	) 	W 
-1 

+ 	I 	d zibl"( zi) Disc.Q(z1) [( 	p— z,.?( 	— 
arc i 

(5.66) 



The convention has been used that when the phase is not 
	107. 

specified , the principal part is to be taken . After 

noting the approximations made above , and the explicit 

dependence of J in Eq. (5.65) then Eq. (5.66) will only 

be evaluated to 0(1) in the numerator of the real part 

and to OM in the numerator of the imaginary part . 

Ip (6*is) = 	Y2.1 [(gyp W 	• 
	tank id ) 

+ 	6( 1,-.(,)) - ( taro-. 1/2  0(,) )-1- p.)-( &13-w) 	J .1 

x 1 C1  - Y2-3-  s°(t0)3•[l + J  s°((0)] 1-2  

(5.67) 
Thus , by Eq. (5.65) , one obtains in the limit u« kB  T 

, 	2 	D- w 
V 0(4+ is) = 7/4, p j [ ln.I D +w  1 + i 7c( 1 - pJ A(w) ) 3 

2 
1 - 3.pJA(w)3. [ 1 + pJ A(w)] 

(5.68) 

For excitations near the Fermi surface (.0= 0), one can use , 

D A(0)= f dxsx-1.tanh 1/213x 	2.1n.(Z:i3D),c= n  = 1.13 c.f. Eq.(5.29) 

V Po  ( 0+is) = i 74. p J2  1 - 2 p J 	D) 
2 

I [1 - pj ln.(43D)3[ 1 +2pJ 123..(0 D)] 1 	(5.69) 

One can see that this diverges under TWO conditions , 

a) 1 + 2 pJ ln.( 	D 	) 	= 0 
kB  To_ 	

(5.70) 
b) 1 	

p in.(  4 f3 D 	) 	0 
kB T 



41) 
Using Nagaokals llues for the parameters. 	108. 

D = 5 x 104 oK  , 	= 0.05 

Eq. (5.70) becomes 

a) kBT 	= De  _L = t; 
D e 10 (J) 0...  

b) k T 	= De  -1 	= D e -20c (J)  
B 

PJ  

(5.71) 

These only have low - temperature solutions 
(kB To < D),  

if in Eq. (5 . 71a) J is negative giving To - = 3% and if 

J is positive in Eq. (5.71 b), giving To+  = 2 x 10-4 oK. 

Thus To_ is the usual anti - ferromagnetic "transition - point 

found by Nagaoka, which *All in future be denoted by "T
k
" 

while T is a new ferro - magnetic characteristic temperature. 

However, this latter is only of academic interest, for 

T0+ 	kBTk 

Tk 
	D 
	(5.72) 

Before proceeding further a comment regarding the 

stability of this solution should be made i.e. the sign 

of the imaginary part of VP  (w +14 whichl in the present 

notation should take the sign of s. This is true for 

the anti-ferromagnetic case in the temperature range from 

zero to the unphysioally high value of 1:D exp.( 	1 	). 
2 p1 JI 

However an liability scours below T
k 
for the ferromagnetic 

case, before its own To  is reached:  but no significance 



is attached to this result as it seems quite possible that 
	

109. 
higher order terms would counteract this change in sign. 

Although the effective potential V appears to diverge 

at Tk, this is not the quartity of direct physical significance. 

The sirgle particle—like times "1 " are determined by the 

imaginary part of the electron self—energy Flp;x(w). This 

is given by Edward s'method of taking an ensemble average over 

all impurity sites in the low concentration limit, o 	o. 

X
a 	(co) 	& 	to — 0M 	( (1.)) )-1  

IX 	X 	X X 
( 5.73) 

where 

M 	(w) 
X X 

V",k(w) 
(5.74) 

 

1 - 
X 	X 
( 	Gc)( w 

The one — electron quasi — particle life — time is given 

by 

c M 	( & 	+is) 
..Ey 	-P—"X 

(5.75) 

However Eq.s (5.25 — 6) show that the real part of G0  ( w) 

vanishes at the Fermi surface (as does the real part of VP( w), 

in the above approximation. So, on using the form of V130(o-Fis) 

valid in the temperature range e 1̀0< T < e10  ford < 0, 
Tk  

and usirg Eq.s (5.69, —74, —75) the life — time is given by 

—1 	 (5.76) 
07E 	1  

( It 
2 

+ 61 n. (7k) I 2) 



Equation (5.74) must be used in the temperature range X < T < 4 
Tk 

but outside this range VP ( w) may be used to sufficient 

accuraoy. 

Then, using the following form for the resistivity 

(at temperature T) P Res.(T) ,the calculated result for the 

resistivity is given by 

110. 

P Res .(T) —1 2e
2 

3m2 
2 a 	— _ ze2  fdt1 p 

2 2 	
Y  21" 

(5.77) 

P Res (T) = e 2m 7t 	1  
ze2 	7C 

2 
+ 61 in.( T) I 	(5.78)  

Tk  

where z is the number of conduction electrons (mass m ) per 

atom. 

(5.4) Nagaoka's "Perturbational" Result. 
41) 

 

Nagaoka's results for his high temperature (pertur-

bation) solution of his truncation soheme„for the equations 

of motion of the Green's funotions,will be analysed first to 

cast them into a form comparable with the present results. 

Equation (2.17), for the diagonal element of the ono electron's 

Green's function (using the same notation as in his first 

paper, denoted NI), can be written, 

27cG 
PP
( w) - 1 1 

 

(5.79) 

	J2 	r 	( w ) 	 
2 , „ 

) (1+2J g(w)+ J P(w) (w)) 

  



This is then inverted and expanded to 0(J2) in ) 	the numerator, 	111. 

to give 

—1 
(w)21T ( 6) ... 4 

PP 

2 
r(w) 

1 + 2J g(w) -1-J2  F (w) P (w) 

(5.8a) 

This is Nagaokats result (NI 3 — 2) apart from the term of 

0(J2) in the denominator; however, this must be retained to 

remove the divergence at Tk. In the limit w + is the 

damping co — efficient is obtained 

—1 Im. 32 ( ) 

  

1+ 2Jg (w ) J2  F (OP (6) ) 

(5.81) 
np = f—p  a  

Now in NI, the zeroth approximation of 

m 	. 0 were used; in the present notation this becomes, 

0 
2e( w + is ) = S ( w is 	p ( A (,))4- ilttanh 

2 

and. 	
4/3 r°((,) +is ) 	—F°( w +is) = Gg( to+ is ) 	 p 

D— w 

D 

This results, near the Fermi surface, in 

ti 
—1 	

c 	it  32 p 	n p —1 

„ 
pJ) 	1+ 2pJ.2n.( 13 D) 	n2 

3 P 	an* (Tk)  

(5.82) 



The initial expansion to 0(J2) was necessary for a meaningful 	112. 

result, otherwise Eq.c5.80) would be 

2 
G-I (to+ is) = 	2 'It ( w - 1,1)  
PP 

(w- t +A +1 ) 
Gp 

where A is the shift. 

As one can see, this vanishes at the Fermi surface ( C = 00  

= o). 
In his second paper N II, Nagaoka starts with the 

perturbational approximation 11p 

and upon neglecting higher order 

for m (see NII 4.7) 

= fr p and GPPt w) 

effects (NII 4.2), finds 

m
PF 

3/2 pJ ln. (W)  
1 + 2 p3 in. (413D) (5.83) 

This can now be used to find 

Im. r(0+ is) . Im. 1 	- 34 	-7"( 131F -34 )* 
N P is - 

Finally, on neglecting the real part of 0(0) , the self - 

consistent result is 

- 1 C 7C p 

C3/an P3)2+ (1+2 p 3 In. c, p 02  3 E +1§1 in.() 
2 

3 	Tk  

(5.84) 

-1 
= 3/4  it P 

 



On comparing this result with Eq, (5.69), using (5.74), one 

can see that this is in agreement for J <0 if terms of OM 

which appear to be unimportant near Tk, had been neglected. 

In fact they do give a numerical contribution of order unity, 

as can be seen by comparing the above result with Eq. (5.76). 

The difference has been lost somewhere in the decoupling 

scheme along with the ferromagnetic result. These high 

temperature results contrast markedly with the self - 

consistent solution found at low temperatures (below Tk) 

which indicates a possible type of phase - transition. This 

latter result is found by the use of equations analogous to 

those in Superconductivity and the self - consistent 

assumption that my  diverges at absolute zero. However, 

Fischer, who follows Nagaoka in his txuacation formulation, 

adopts a different self - consistent low temperature assumption?  

and finds that mp  = 3/(see Eq. (5.83) ) with the result 

that the resistivity vanishes like log -2(T) at absolute 

zero, in agreement with Eq. (5.78). 

Abrikosov's result (in the present notation) is 

-.1 	5..... 
1 	. 
F 	

a IC 	, 	16 

This could agree with Nagaoka's second result if the resonant 

part "/I2,1 had been inoludeiL 

(5.5) Interaoting Impurities. 

The low concentration limit for dilute magnetics alloys 

exhibits the unexpected effect of a "bottle - neck" in the 

T 	2 	(5985) 

Tk  
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relaxation process of the localized moments, to the lattice, 	114. 

via the conduction electrons. The experimental results of 
53) 

Gossard et al have been given a theoretical foundation using 

the present techniques,in a letter published in Physical 

Review Letters. This work forms the basis of the present 

section. The Hamiltonian is that used in earlier sections 

of this Chapter, with J = J 	but now, with several 

impurities, Eq. (5.5). The same notation for the C,D and F 

propagators, introduced in Chapter 4 for several spins, is used 

in the diagonalized momentum representation for the one - 

electron propagators, that is 

G
PP' X(5) 

PP 13) X 
( 	e 

PP' 	NI) f+-  e(--r) fp; ) PX 

(5.86) 

This will still be represented by a directed solid - line, 

Fig. (1d) so the interaction vertices will be the same as Fig.2. 

The spin - operators have not been Fourier transformed, 

for only in the perfect lattice, (next section), is <  Cq+  Cq, > o 

diagonal. For random alloys, inthe notation of Eq. (5.7), 

<> q ql o 

-1 
N 	p(q, 	q1 ) < o+c>0  

(5.87) 

Moreover, in contradistinction to earlier sections, the 

effective need not be used here, but the mass - operator 

itself, evaluated in the momentum representation, M ppl  

The term corresponding to Fig. (3a,b) (to be contrasted with 

Eq.(5.18)) is 

m(i) 	=0.-1 
ppTo; 

J R°  p( p (5.88) 



where 	 115. 

R 	< S. > 	(5.89) 

This is then averaged over all possible impurity configur-

ations, so 

p (q) 	(VO1.)-11/ f  d3  R1. 	d3  Rit  P (q) 

(5.90) 

If the impurity atoms are constrained to 'vacant lattice 

sites in the metal, then the integrals are converted to SUMS 
89) 

over all lattice points. The dotted notation of Edwards, will 

be used to indicate this averaging procedure - dotted lines 

converging on one cross, will indicate averaging at one 

site only. The average of a single spatial distribution 

function is simply 

q ) 	= qo 
	(5.91) 

So the averaged first - order mass - operator is diagonal 

in the momentum representation and takes the form 

(1) 
Pt

)
(7) . xo

mo 
 6 

, X 	PP? 
(5.92) 

Similarly the C -on self - energy is diagonal in the site 

representation (c.f. Eq. (5.27) ), 
(1) 
E 	(7) = 2J t; a. 	(5.93) 3.3 	mj 



As in section (5.2) these can he self - consistently 

renormalized to give 

1 	 -1 	1 	 -1 
G 	(V) = ( 	-XcJR -IV) ; 3(v) = ( w -2JI; 	) 
P 	PL 	1 	a 	0 

(5.94) 

The self - consistent solution for the two relative magnetiz-

ations are than (by A. 42) 

= —7, tanh  Y2  p( 0,0.424) ; 41.— p( y2  wo  —0 JR1  ) 	(5.95) 

The k - momentum component of the electronic transverse 

susceptibiliWpropagator K(k,'6) is defined in analogy to 

Eq. (2.31), by using Eq. (2.49) 

K (k; %) 	< T ( a _k(1) , ak+( 0 ) 	=N
-2 

E K (k; %) 	(5.96) 
PP 	Pr'  

In terms of the one - electron operators, this has the form 

KPPI 
	k; t )= 4<Tw  ( 	(14-)apoi(t) a;tial 41  (04-)agl_1(0) ) > 

(5.97) 

In the interaction representation, this corresponds to a 

particle - hole propagating with opposite spin directions, so 

o 
PPS  (k' 

, 
)1) 	- 4G 

PP 	- 	Poi 	
G
PI, -1

(0
Pa -k 

The transform of this propagator leads to 

(5.98) 

(5.99) 
o - 
K (, a 

-2 	 -1 
= 4 N 	E (f;, 4 	)( pI 	 tp-k,-1-i ) 
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The analytically continued form of this function in the 	117. 

static limit (i.e. k = 0) will often occur, including first 

order renormalization; it is found to be 

K  ° 	2' ) = 	wo -2eal w)
-1 	

(5.100) 
N 

The self - energy 2 ij  correction to the localized spin -

flip propagator for the case of interacting impurities, is 

given by a diagram of the type illustrated in Fig. (4.oi). 

The first vertex occurs on one site, while the second 000urs 

ona different site with the electron - hole pair K connect-

ing these two s-tattering events. In the non - interacting 

oase, these two events would occur on the same atom. 

The corresponding Dyson equation, lathe site representation, 

is 

Fij (E) = Fij (G)+  nn  FL 	) 2  nin.  (Z) P 	Ft) (5.101) 
Ina 

with 

2 -igRn-Rm) 
(-ci )=J Ee 	K®  (k; 	. 	(5.102) 

nm 	4 k 

Summation over the indices i and j defines the spin - flip 

propagator F for the whole set of looalized spins, so 

F (`a) = 

	

o 	, 	2 	-ik.Ri 0 

	

E F. 	(c7)+ 	E e 01 ) le(k;E)  E e-- 	F ca) 

	

i 1 	ik 	nj 

(5.103) 
This equation is then averaged in a similar manner to 

Eq. (5.90) and the interference condition (Ri /RIO is 

imposed. This eliminates all but the static limit for the 

electron - hole pair propagator (Eq. (5.100)) and results in 



a separable equation of the form 

o 
F 	(E)= E 	(a) + EF (a-) 

2 
 K (9 a) F (F) (5.104) 

This has the solution 

(a) 
	rao (a. 	1 	n 	o (a.) Ko( 	) )-1 	

(5.105) 

The analytically continued result is then 

2n Ri (w — coo+ 2c311.1 ) (5.106) 

 

	gagomemyt. 

 

 

( w — w)( wo  —2J ?1  —20,114 —w) 

 

In order to describe the effect of damping of the system, the 

spin — lattice relaxation time Tsl, = A —1of the electrons 

is introduced as a phenomenological constant of the theory. 
12) 

In a similar manner to Giovannini et aly this is inserted in 

the denominator of the transverse electron susceptibility 

transform Eq. (5.100), (ia = w + is limit) 

(5.,107) 

	

K0(0 w) 	— 8 N 	1 wo  — 2 cJ R7  — w —IA ] —1 

If this new form is used in Eq. (5.105) the final result is 

(w) 	- 
	 2 n Ri(w 	— tdo  + 2c J R1 )  

[ ( w0 — to) ( 	— 2 cc1Ri— 2J 	w IA) + i2AJ 

(5.108) 
Again , in the limit A = 0 this reverts to Eq. (5.106), 

which has two poles. The acoustic mode occurs at w = wo  

when the electrons precess with the local moments and an 

optical mode w = wo  2oJR1  —2Jr1 when the two spin 

118. 



	

systems precess in anti - phase. In the high temperature 	119. 
(paramagnetic region) kBT » wo  then 

R1  = - wo(4kBT)-1  ; 	= —1/2  p wo 	 (5.109) 

In this regime, the residues of the spin - flip function 

(which are proportional to their susceptibility contributions) 

are respectively 

n wo  

2kBT 

   

and 	n be 

Pic
B 
T 

 

00 

 

     

( 0 + 0 0  ) 	( 5 .11 ) 

where the characteristic concentration co  has been introduced; 

it is defined in this model by 

Co 	2 pkB T = 
1 
R-11 

The fact that there is no large first - order Yosida shift 

p 	wo, can be understood 	the adiabatic following of the 

instantaneous local moment magnetization by the conduction 

electron magnetization. As was shown in Chapter 2 (see 

Eq. (2.63), when A = 0 the Kondo - type Hamiltonian does 

not affect the dynamics of the total spin. If the electrons 

are heavily damped ( A » 2oJR1), that is, in the isothermal 

limit, then K°  is very small, so only the first term is signif-

icant, Eq. (3.93) IT (w) = nFO  (w) = 2nR(w 2J1;1 -wo)-1  

(5.112) 

Thus full first - order Yosida shift w = wo  -2,14 1  

now appearslas the electrons always collide with the lattice 



before hitting the next TrIggnetic impurity. Effectivel7 the 	120. 

phase - coherence between the two spin systems is destroyed. 

If the caleutation is carried out to 0(J2), then the pole 

occurs at 

r = w o 	-2J2 1 	1— e 	( ( 2J .1,9_ ) 2  \2] 
co 	1  (5.113) 

However, if the damping is small (A << 20JRi) then dynamics 

of the localized systems are described by damped frequency 
-1 

response at w .wo-i8 , where 8 is the effective local - 

moment relaxation time Tds
effo 

rather than the expected large 

Korringa width 	r = TVs  given by Eq. (5.31). In the 

present case, from Eq. (5.108) 

co 
(5e114) 

Thus, as o tends to zero, S tends to A , so the electrons 

successfully transfer all their spin - flip energy gained 

from the local spins to the lattice. However, as the 

concentration increases and exceeds 0) then the line - width 

8 becomes narrower and narrower. This indicates that 

the electrons cannot remove the local - moment spin - flip 

energy fast enough to the lattice, before colliding with the 
53) 

next impurity. As Gossard, et al pointed out and verified 

experimentally, this leads to a so - called "bottle - neck" 

effect in the relation processes. 

A very similar result can be found by following Hasegawa's 

54) 
approa3h, based on the likenomelogical Bloch equations for 



the decay of the spin systems. Equation (5.26) gives the 
	121. 

second - order relaxation time for the conduction electrons, 

viz. 
-1 	 2 

T
sd 

= 3/1.c'x pJ (5.115) 

So Tds 

Tsd 

30 
• % 	(5.116) 

00 

 

16 p kBT 

and in the bottleneck region Tda 	, so 	>> 00 as before. 

Ts d 

Following Hasegawa, in the limit Tsi, » Tsd,  one has 

— 
Tsd 

(TsL Tsd)  

= 	Tsd 	-1 	• 8/3 22 A . 	• Tds T dd 	TaL 

(5.117) 

This can be compared with the present dynamical result given 
3) 

by Eq. (5.114). 	Gossard et al found that for 0.3% 

2.3 	x 1011  sec . 
-1 

Mn in Cu 	A 	 They also found 

that this bottleneck could be opened by the addition of small 

amounts of Ti or Ni (neither of which have moments in Cu). 

The additional line - width broadening for an additional Ti 

concentration cimp.  is found to be equal to"a a imp. kB  T 

where'a'is a constant. This can be derived in the Hasegawa 

approach, if one assumes an extra term which increases the 

width of the electron relaxation time to the lattice 
-1 

a (2p) 0j,z,,, 

interference effects between the two types (magnetic and non-

magnetic) of impurities. Moreover, on adding small amounts 

, by a factor 
I I 

This reflects the 



of Fe or Co, which do have moments in Cu, they also found that 
	

122. 

the additional broadening was a factor 10 times larger than  

for the addition of Ti or Ni. This is because the localized 

d - spin energy can be transferred , either to the s - 

electrons or preferably (80%) to the Fe impurities via R.K.Y. 

type interactions. The Fe moments then rapidly relax to 

the lattice because of the orbital nature of this moment. 

The results for the simple alloys can easily be 

summarized in the interesting regime 

5 	< 	A < 2J I; 	< 2cJR1  or 	5 < pJ 
wo  

by quoting the main characteristics of the line - shape 

of the local - moment. This is given by the imaginary 

part of -7 (w) and is proportional to the power absorbtion of 
83) 

the magnetic impurities (Slichter) or to their neutron-scatter- 
84) 

ing cross - sedtion (Doniach.). The sharp peak of this funcii.on 

around wo has a width 5 which is contrasted with the 

broader secondary peak at the optical resonant frequency 

wo -20JR1 - 2.1L,1 , which has a width of about A 

(5.6) Ferro - magnetic Rare - earth Metals.  

The case of the rare - earth metals will be 

considered as a final example of the "Kondo" type interaction 

Rnmiltonian. Many of the results will be found to be 

similar to those of earlier sections in this Chapter in 

the limit c = 1 , but the derivations axe sufficiently 

different to warrant inclusion. 

If J>  0 the interaction favours the alignment of the 



123. two spin systems, giving a ferromagnetic ground - state. 

Holeever in the absence of the interaction, the electron gas 

is not ferromagnetic - it is the coupling of the two systems 

which produces a polarization of the conduction band. This 

polarized band can then sustain spin - wave excitations of 

its own, but these are now coupled to the spin - waves of 

the local - moment system. The resulting dynamics are 

quite complicated but can be considered explicitly inthe 

long- wavelength limit. This result was previously found 
59) 

by Doniach and Wohlfarth in their treatment of dilute alloys 

of iron in palladium, when a decoupling procedure was 

employed for the equations of motion of the appropriate retar-

ded propagators. 

Again, the spin - case will be condidered , so that 

when n = N, all the localized spins occupy a Bravais lattice; 

then Eq. (5.7) becomes 

P (q) 
	

N 	
qo 
	(5.118) 

This now implies (Eq. (5.87) ) that the drone - fermions 

are diagonal in the .omentum representation, so 

< 0 q0 q'  >0 	 < Oeq >0 ocie 
	

(5.119) 

where the transforms of the fermions are defined by 

c+ _ 	R . 	. 

k 
N4 04.0E j ; 	. 	E e 	(i) j k 

(5.120) 



and ElinCe, (P is • real, then y 	y k  = 	_k. The interaction 

Framiltonian is transformed from Eq. (5.5) to the following 

form, by substituting Eq. (4.1) for the spin operators qj 

and then Fourier transforming the result using Eq. (5.119): 

= 0
+ cp +a+ 

 
a  1 	Z ( a + 	a p-k, -1 p1+1 q+k -q p+k1 +1 p11-1 q-k 

pqk 

+ E X X a
+ 	a c+  0 ) 
P+k,X 	q-k q 

(5.121) 

The same diagrammatic vertices are used, as in the previous 

sections, except that now all the lines carry a momentum 

label corresponding to Eq. (5.121). Finally the spin - 

flip propagator Fij, defined in Eq. (4.20) is Fourier 

transformed like K (kr % ), by using Si.= N4 E e 8u Sk 

then 
	 k 

F (; ) = < T ( S ic(%) 0  Si+c  (0) ) > = N
-1

E FEW (19/) (5.122) 

qqi 

Since translational invariance now occurs, momentum is 

conserved, so all self - energy corrections are diagonal 

in the momentum representation, and so will be labelled by 

only one momentum suffix. Then, immediately, the first 

order renormalized mass - operator for the one - electron 

Green's function and the self -energy for the C -on (e .f. 

Eq. (5.92 - 3) are 

M 	= 	J R1 	E1 	2 J 
XI  

(5.123) 

124 



1 
	= 	tank. ( 2R1 To 	) (5.127) 

T 

As in Eq.s (5.94 - 5) , these corrections give the two self- 	125. 

consistent equations for the relative magnetizations, 

R1 	.  	(wo  - 2J Ci  ); 	= 42 P(wo  -2JR1) 	(5.124) 

The latter result is valid for any smoothly varying density 

of states curve, if the Fermi energy is much larger than 

too 	or JR
1 

and is exact for the usual rectangular band. 

The self - consistent equation for the localized spins is then 

R1 	= -1/2  . tank. 	[ wo  + pJ (wo  -2JR1) ] 	(5.125) 

In the high temperature regime tarh. x 	-* x, this 

has the usual Curie - Weiss (or molecular field ) type of 

solution 

... 	( 1  + pJ ) ( T - To )-1  with k.To 
.1/2 pj  2 

4k 
(5.126) 

When the external field vanishes, the usual magnetization 

curve results for T < Tc, 

These first - order corrections (internal "splittings") on 

the C -ons result in the Yosida shift of the resonance 

frequency of tha spin - flip propagator (which is independent 

of k) 

F1 (kta: 	—2R1  ( too  —2.3" 	)-1 	(5.128) 



If the self - energy corresponding to the propagator Pacl(k, / ) 126  

is denoted by E qqt 
(k,t) 

ing to Eq. (5.101) is 

(2 	 _ 	2) 

Pqq1
) 	

; 3) = Fqq., (;; )+ E Pcip(ic; Ft) 2(2) aci a )Fpt cit (2E; ) 
PP

t 	
PP' 

(5.129) 
(  

where, now 	E 
2) 
 (k; a) = J2 K1 (k, U) ppt  

If this is now summed over the two additional indices 

q and qt, the final result is 

P
(2) 

(k; 
 a 
). -2R (wo  -2J Ci  -ia 	_ 4.2R11642  K (k; a ) )-1 (5.130) 

This is to be contrasted with Eq. (5.106), where there is no 

k 	dependence. Now as Kl(k;i77. ) is strongly dependent on 

k and U (see Eq. (5.99) ) , the spectrum of these excitations 

is quite complicated. However, in the long - wavelength 

limit (k = C) , the modified form of Eq. (5.106) is 

recovered; 

F( $, w)  aal(w - coo + 2JR1)  
(5.131) 

(wo 	w )( wo  -2.1131-23 

Similarly for the second - order corrections to the 

electron transverse susceptibility, when the self - energy is 

just the local - moment spin - wave propagator ; that is 

J2F1(k, 	, so 

(2) 	1 	1 	1 	-1 
K 	a ) 	K CII,U) El - N3  P (1-CI -6) K CID a ) 	(5.132) 

, then the new equation correspond- 



Again in the same limit 

IC
(2) 

(90w ) = 8  r4 	— wo + 2J t;-,  

 

(5.133) 

127. 

  

N( wo  w )(wo  -2J111  -2J 1- (4) 

Thus, both propagator transforms have the same poles 

and only differ in their residues. These equations can 

then be interpreted in the same marrer as in the discussion 

following Eq. (5.108), when 	A = 0. 



Chapter 6. 

THE HEISENBERG MODEL, 

(6.1) Introduction.  

As a final example of the Quantum Field Theory methods 

for spin operators, developed in this thesis , the well-

known model of a lattice of ferromagnetic spins will be 

oomsMared is some detail. However, to further illustrate 

the usefulness of the 2S fermion representation, 4Ls a means 

of converting electronic many - body problems to spin 

problems, the equivalence is first shown in the next section 

between the usual exchange part of two - body Coulomb interact-

ion and the Heisenberg model of the ferromagnet. The 

remaining sections of this chapter are then devoted to 

an extensive analysis of this Ramiltonian, using the 

drone - fermion representation for the spins. Thus, these 

two fermion representations can be used, in general, for 

analysing many - electron problems, instead of treating the 

original Hamiltonian directly. The intermediate step of 

converting to a spin Ramiltonian,often leads to greater 

physical insight into the dynamics of the system, as in the 

case of the Rondo model or the Heisenberg model. 

(6.2) Equivalence of the Heisenberg and Exchange Models for  

General Spin.  

In this section the Heisenberg Hamiltonian will be 

rederived in a simple manner, using the general 2S fermion 

representation introduced in section (3.2) , by a method 

128. 



resembling that in section (3.3). The starting pp-Lnt is 	129. 

the exchange part of the general two - body interaction, 

written in Warrier form. In this case the operator aia x  

will create an electron on the ith site, in the :band, 

Corresponding to the label a and with spin orientation X. 

In terms of the exchange integral Vij, which is taken to 

be independent of spin index and band in this appro:rimation, 

the Haliltonian takes the form 

	

= ij 	a ccp Va... a 	a aaX .+ 	a. fiX  a.  , 	X 1  a. 	(6.1) ai3X 	aa 
AX' 

with 

Vij = Y2fid3  r d3  r' T:a(rt) T. Cte)  e2   T. CO T ia - (r) 
JP 	LE-rt) 	1  

(6.2) 

The prime indicates that self interaotions i= j are for-

bidden; this can be dropped if the definition of Vii is 

extended by the restriction that it vanishes, if i = j. 

Also, one band only will be oonsidered,00ntaining 21 + 1 

possible electrons of any, one spin orientation. Upon 

expanding the sum over Xt , the operators can be anti-

commuted to the form 

231- 1 
= 	E V.

j a

Z 	E1  (ai  ai ax  aj px  ajox  -ai ax  aia_x 	 px ) 

i 

(6:3) 



Using Eq. (3.5) for Si-  (a) and defining Niax =aj ax  aiax  

and using the anti - commutation rules Eq. (3.6) for the first 

term, then 

) HEz 	E 	( Nica  (1 - N 	) 	si(a) Sj 	13) 	(6.4) 
iiapX 

130. 

Furthermore, defining Nj 	 N. Na  
21+1 

E E N. 
N. 	3 13X 

then Eq. (6.4) can be arranged into the form 

21+1 
E 

X ij 
( Ni [ E (2 - 

ij  
N.
apx 	p—x +N. 	)- •x  ] 	7 SoX  

(6.5) 
z, 

Then using Eq. (3.5) for Si  (a) and avmming over Xin the first 
term, one finds 

HEx  = E V.. (E Ni Gn41 	] 	-2S2.S2. ) (6.6) 
10 x I X 	%Nix 	1013 	10' ij 

So that finally , in a ground state configuration, where there 

are n X electrons of spin orientation X on each atomic 

site, the number operators can be replaced by their eigen- 

values; the exchange 14Pmiltonian takes the form, 

H 	=-2 E V S . S -% E 	V n ( n -2(21 +1) ) 
Ex 	

10 ij -1 -J  0, 	
ij X X 

(6.7) 

5.) 
This is identical to the form Mattis obtains following an 

argument which is the generalization of that of Dirao for 

for tto spin 72  electrons, using the permutation operation 

P12 = (1 	a.• a.). —3 



The further merits or diearlvalltages of this Hams itonian 	131. 
will not be further pursued here. The spin part will be 

used in the rest of this chapter, with the change of notation 

4 V..13 	 1  I ( R. R. ) —-0  (6.8) 

(6.3) Molecular Field Theory.  

In this section the Heisenberg Hamiltonian will be 

transformedl by means of the drone - fermion representation to 

a form convenient for a diagramatic analysis of its structure. 

This will initially be done in terms of the represeatation. for 

S=Y2  and the analogous result for S =1 will then simply be 

written down. A simple high - density classification of 

the resulting diagrams is presented valid for temperatures 

above the Curie temperature To  ; this follows the analogous 
81) 

arguments of Stinchoombe et al. The simplest form of 

renormalization of the lowest order self - energy in the 

evaluation of the magnetization< Sz>(which is also consist-

ent vith this classification) results in the Weiss molecular 

field model. These results will later be seen to be valid 

in the low - temperature region and also includes those for 

the Ising model, which only involves the longitudinal 

component of the Heisenberg model used in this result. 

The model of the Heisenberg ferromagnet for N equal spins, 

each localized on lattice sites Ri, in the presence of an 

external field (giving a Zeeman splitting wo  ) is &It  

(6.7 - 8 ) 

H = 	wo  ES. -1/2.E. IC11. -R.) S i  .S. i 	1,3 	—a  (6.9) 



	

Since the interaction integral is only non - zero between diff- 	132. 

erent sites Ithe two sums over lattice points are com:plete. 

Moreover, due to translational symmetry, its spatial Fourier 

transform can be introduced, 

) 	11" ( 
R.  
 - 	(6.10) 3(k) 	

j 
E 	(21-  11-j 	e 

So the above restriction on I becomes E J (k) = 0 	(6.11) 
k 

where the sum is over all momenta k in the first Brillouin 

zone. Substituting in Eq. (6.9) for the spin operators 

(S = IA) Eq. (4.1), one obtains 

4 N (wo  +). J(2) ) + (coo  + 	go) ) E ici  ci 

H = 	 (6.12) 

-% 4.1 ( R -R ). ( o 	c + 0 + 	es cp 
13 - i - j 	i i  j j 	ijij 

Introducing the Fourier transforms of these new operators 

as in Eq. (5.120), the Hamiltonian can be written inthe 

usual separable form (A.17). The unperturbed Hamiltonian 

is diagonalised with respect to all the C -on momentum 

operators (the constant term is also onibted, as this gives 

no net effect.) 

H
o 
= B 

k  
E (3+

k  ck 
 with B= o +MO) 	(6.13) 

The interaction term, which conserves momenta, can be further 

separated into a transverse part H
T 
and a longitudinal part 

1 
(or Ising term) HI' . 



T 
H1  

= 	-3P\T E J (k+  q )ci1- Ok q 	-q , .§(k-kl÷ q-q" ) (P  133. 
(6.14) 

L 
H1  = 	E 	k (k -k + 

k'  cq oq' 5(k-k 

The sum in each case is over all four momenta variables. 

In terms of the interaction picture for these operators one 

finds 

0  + (,t 	0/10/ o 	e-Ho% 	eB z + 	(z  ) 
k 9 CPCI 	 q 	(6.15) 

Thus the thermal averages for the unperturbed •nmiltonian 

define the simple fermi functions for this model 

< 0
kk'  > 
	okki  ( ef3B  + 1 ) 

-1 	
°Irk' 	= lete( 1  - I+)  

(6.16) 

This enables a free propagator for the C -on to be defined 

as in Eq. (4.19), but jith wo  —> B, so, 

-Bt  
C0 
	

4 w  °k 042(0 ) )>0=.8kMe (6(1)f.4.- (--t )f-)  

(6.17) 
similarly 

0 
Dq 	)= <T J( 	 y 

q 	-41 
(0 	) >=

4cil c
(,c) 	(6.18) 

The periodic nature of these functions with respect to T 

enables their (odd) Fourier series transforms to be written 

down immediately, as in Eq.s (421 -2), so 
o 	-1 	o 
Ck  (v) = (B - iv ) 	; Dq  ( v )= -2 (iv)

-1 
(6.19) 



The exact propagators (in the Heisenberg picture) are related 	134. 

to the averages in the interaction picture, as in (A.28), 

the.* is, 

Ck  0). <Tw( ck( .0014-c(1,  ) )> = < Tior( 0 k( ) U ( 	0 i4z( ) )!id: 

(6.20) 

The propagators are illustrated in Fig. ( 12), where now, 

the directed solid line represents a C -on propagator C°(t), 

while the dotted line again represents a D -on propagator 

D°  (1). 	( In the case of S = 1, they will involve an addit- 

ional index, a ). The interaction can be represented by 

the two types of vertex, illustrated in Fig.(13) . The 

first vertex represents a spin - flip transition at the 

temperature ti( or a C -on,/D -on scattering) while the 

second corresponds to Ising scattering (C -on/C -on scattering 

The high - density classification arises from the 

observation that each vertex has a factor J (k) (or on 

transforming I..), and a label ti which is eventually 
IIMMO 

integrated from 0 to p ,so it is approximated by rr 

where is some average value of J (k>. 	Now any internal 

line will carry amamentum label k (or on transforming,a site 

label R. ) and if it is freely summed over , will give a 

numerical contribution of order z , which is the number of 

spins interacting with any other. Thus any graph with V 

vertices and L internal summations, will give a contribution 
- V 

of approximately ( I) . z ; but from molecular field 

theory (as will be seen) the critical temperature is given 

X' See Addenda. 
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byl‘p c  42) = 1 or approximately po z I = 1 . 	137. 

Such a graph will then contribute a factor ( To  .T 1 )V .Z
L 
 . 

Thus, for temperatures near T
o
, or higher, the order of the 

graph in the nigh — density expansion is the numter of 

vertices minus the number of free momenta srmmat4ons. 

In general, there will always be more than one explicit 

summation , so we obtain an expansion in powers of 1/z. 

The lowest order self — energy correction to the 

magnetization is illustrated in Fig. (14a) . This gives,for 

the magnetic (C —on) self — energy E(/)N a total 

contribution, 

Or 

	

E('11,) (t) = J(..0) f — 	'c 6( ) 

(1 ) 	= J(2) f— 
E k 

(6.21) 

Note that the exchange term in Fig. (14b) gives a zero 

contribution using Eq. (6.11). Using Dyson's equation for 

the first — order propagator 

c( ic)(7)  _ c  :m 	c: 	(.1)
(v) 

 
C 	(6.22) 

all reducible terms of the type illustrated in Fig. (15 a) 

and .(;15b) will be included. Both of these involve no 

explicit 1:- clepenaence in the Uik) functions i.e. 	L 
	0, 

so that all these graphs give a contribution 0(1) in inverse 

powers of z . However, so do all "cacti" graphs of the 

type illustrated in Fig.(150) , so these too must be includ— 

ed. 	This is quite trivial and involves , as usual, only 
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-on lines in the self - energy from free averages 	140.  

- consistent ones. This is shown in diagramatio 

. ( 16 ). 

(6.23) 
()(Co  0 

E k 	) --> 
1 

E k (C1  ) 

converting C 

to full self 

form, in Fig 

i.e. 

SO 
(y) = go) <ok+ ok 	. go) CY2  + <sz>1  ) 

(6.23) 

thus, 
1 	_ 	 -1 

C 	( v) = (B 	- El CV-) 	= ( wo  -J(52)<Sz> 
k 	 k 1 

(6.24) 

This just introduces a real shift proportional to the net 

magnetization. In terms of its analytic continuation to 

above and below the real w - axis (i.e. s 	0 4) 

Disc 4 ) = CI( w +is) -OL (w- is) = 2ItiO (wo  -111J(2)- 6)) 

(6.25) 

where 
z 	z 

R1 = < S 	> 	S I- 1 	k 1, 

SO I  as in (A.42) 

   

 

1 
Ck 	) = e(/) 1 /27ci f  d w 	e-cd  

  

1 Disc. C (w),
k   

  

• 

 

1 + e -pw e (-6) 

 

  

(6.26) 

where the Fermi contour has been deformed from around the 

imaginary w -axis to surround the pole on the real w-axis, 



• 
0

 • 
H

 
cz4 

 

H 



this results in 	 142. 

C1 
	_ 	c (-6) exp-(wo  -R1J (0) )/ 

	
(6.27) 

1 + exp- (wia -R1J(0) )p 

In the limit / ->0 and with Eq. (4.1) one obtains 

tanh  4 (wo- J(0) R1) 	(6.28) 

This is the usual molecular field result for S= Y2 (c.f. Eq.(5.124) ) 

and only has a non - vanishing self - consistent result in 

zero field wo  = 0 for temperatures below To where 

4T
o 	J(0), so, at low temperatures R1  -> -Y2 sign ( WO  ). 

As this result is correct to 0(1) all future results involving 

C -on lines can always be renormalized by charging B to 

(wo 	-J(0) R1  ) in the Fourier transforms. This treatment 

can be seen to be the dual of the method of semi-invariants 

used by Stinchcombe et al. 

The analogous result for S =1 is slightly more complic-

ated in its calcutation, due to the presence of the counting--

factor Y. If only one spin site were involved, one would 

simply multiply the equivalent C - space average by Y to cal-

culate the spin average. However, with more than one spin, 

counting problems enter into the calculations. These are 

handled as follows: the spin Rnmiltonian Hs  is first 

transformed to the C - space Ramiltoniar He  for S = 1. 

H E c.iya l c. a 	0 	1 + H*+ HT + HI  
y  

(6.29) 



with 	 143. 

HT . -1/(20E gli+q) 0k+ 0  1 	a kto q a -q 

(6.30) 
and. 

= -1/(210E J(k-k'oka.  okt  a  cq occit  o(k-k'+q-q0 

The summations are over all four momenta, and the two spin 

indices (a, 0 = 1,2 ). 	The term H* = .2 	1. Ica-R.) 01-
a
0 0110A  	—0 	ia 

(6.31) 

cannot be immediately incorporated with the first term, as 

it really involves two - site summations, not just one. 

So this term must be included in the development operator 

in the C - space expansion. It is represented diagram - 

atically by Fig.(13o) and can be inoluded by "zero - order 

renormalization. An nth order term in the expanded 

development operator will contain products of 2n  different 

sites,but some of these will be the same as the external site 

labels, and also (perhaps) with several other internal 

labels. This will be equivalent to a series of C - space 

averages, all with an' explicit counting factor of Ym, for 

the oase of m different, explicit spin operators. Applio - 

ation of Wick's theorem will further decompose these 

averages, leaving graphs involving L independent site 

summations, so such graphs will involve a oomplete 

counting - factor YL + m . Ho  oan only ocour for reducible 

C -on oorrections and,as it involves one summation over all 

other sites, one can always zero - order renormalize the C -on 



lines. This is equivalent to using the follow-ins for the 	144. 

unperturbed Hamiltonian, Hs : 

B1 ( too ) E 	(3.4. c . ia ia 
p a 

whers 
	 (6.32) 

B1 ( too ) 
	wo + go) Awo  ). 

This gives, for the zero - order magnetization (in the two 

spaoes Ro 	= 	Y4 with 11(30  = -tanh % p (wo  + J(0) Y ) (6.33) 

The graphs generated by Fig.( 15 ) for the calculation of 

the magnetization to the leading order in 1/z must also 

be included. The self - energy becomes, 

EaP  ( 	45 	45 (,) 1 E J(0)<o 	o 	>9 	(6.34) Eat  al 	 q Y 	qY qY o 

The factor 3(9) indicates one sum over all other sites, so a 

factor Y is included to compensate for overoounting, so 

(in a reduced notation) 

(1) "fl lc, a(  
Y J (0) 2f= Y J(0) 	1) 

(6.35) 

Thus 
c(
k

1-i  
v) 	(B1  - 	E 	

—1 
ac N"")) ) 	(w0-3(0)R0 	)-1 

a 

(6.36) 

Note that this counting faotor is just sufficient to 

renormalize by the true (i.e. spin - averaged) magnetization 



Rs  and not the C - space average 4. 	 145. 
The first order magnetization is then 

—Y 	) tanr  Y2  p(wo 	Ro  J (0) ) 	(6.37) 

In the same mariner as S = 1/2  , the complete first - order 

renormalized line for the internal "molecular - field loop" 

can be used with the result 

1 	-Y ( wo   	Y2  (wo  -13.7 J (0) ) 
	

(6.38) 

So, apart from the counting - factor Y this is identical to 

Eq. (6.28). 

(6.4) Transverse and Longitudinal Correlations at High 

Temperatures. 

In this section the calculation will be extended to the 

next order in the high - density classification2; that is, 

to order liz. This will include all graphs with one explicit 

fie- dependence Le.(711(R). . 	Fig. (17) shows that these are 

the simple repeated 	tering graphs for the two particle 

propagators, corresponding to the transverse and longitudinal 

correlations, < S S4-› and< so  S>respectively. In the 
next section this class of graphs chosen by the simple 

high - density classification, and so strictly valid only 

for T >; (as shown earlier) will be shown to be the same as 

those corresponding to theism - order terms in the expansion 

in powers of the temperature. So the present results will 

also be valid in the whole temperature regime (apart from the 
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oritioal region ) a.nd the transYe!'se correlations will 

reduce to the results of low - temperature spin - Wa7e theory~ 

The case for S = ~ will again be taken, due to simpl.io-

ity, and the generalization for S = 1 indicated. The spin -

wave propagator F (~, t) is defined in terms of the FOl~ier 

transforms of the transverse correlations functions, as in 

Eq. ( 5 • 1 22) • 

with 

F (k,t)= < T (cp (t+) c
k 

(t)c~~, (0+) (()_q'(O))> 
qq' - w q +q .r.r q T 

(6.39) 

Thus the free form of this propagator has the simple structure, 

(6040) 

This is illustrated in Fig. 18aand its (even) Fourier transform 

is given by 

o 
F (~, t ) 

q 
tanh %s ~ 

-B - ia (6.41) 

The 1/z series is generated from the lowe3t - order self -

energy of this propa-gator, 8 qq ,(~, ) is illustrated in Fig ~ 19) , 

and defined by a general oorrection to Fqq,(~,t ), 

as in Eq. (5.129). 

Upon evaluation this gives: (6.42) 

(1) 1 
F qq' (]f, t ) = 2N J(lf)6 (t ) 

(1) - 1 
8 qq' (1f, a) =;; J(1s) 

147. 
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The appropriate Dyson equation for this series (including 	150. 
the free summations in the intermediate states) is 

(1 
Fqq t ( 	C.. 9
) 

= F (k, a)+ Z 
411  

_, ) _ 1) 
F (k, a) YE 

(1 
 (k:a )F

(  
q 	qqtr- (k, ) 

(6.43) 

01' 

I) 	-1 
F(1) 	a) = 	z F

(1) 
 (k, a ) = EC (F°(k, a  ) )

-1 
 -N E
( 
 (IS, a ) ) qv N clq f  

(6.44) 

Substituting for F°(k1 ;) and E(1)(k, -j) by Eq.s (6.41 - 2) 

one finds, 

F
(1) 

 (k a) = 
tanh % B 

 

wo  + Y2 (J(0)-J(k) tanh  1/2  pB ) - iu ] 

(6.45) 

However, first - order renormalization of the constituent 

C -on propagators will not change the order of (1/z) of these 

graphs, so by Eq. (2.21) the molecular - field transverse 

propagator becomes: 

(10 
(S/ a) = 	

„At  2 R1 	(6.46) 

qqf  
(Jo 	-R1  J(0) -i 3 — 

Upon including the transverse terms, one finally obtains 

1 	,-1 
F (2s, "Cc 	= -2Ri  (6)(10 - a ) (6.47) 



there 	 151. 
w(k) = wo  — R1  ( 3  (2) 	3(k:) ) 	(6.48) 

correlations can be calculated immediately by converting the 

a - summation to a Bosecontour, with z = is as in (A.42) 

SO 

1 (k, -c(i )  2 R1  exp  C- w(k)%  
= 

- exP o — p 4(1) c(1 ) 
(6.49) 

So the lowest - order (in powers of 1/z) transverse interaction 

effects a k - dependent energy shift with no dampirg. This, 

at low temperatures, where p3 (0) > 1 and R
1 
	4 

one recovers spin - wave theory, and for wo  = 0 the spin- 

waves vanish above T
c 

due to the factor R1 (T) in the numerator, 

but not below To. In terms of the saturation magnetization 

Mo  , the finite temperature magnetization M (p ) is given 

by ( T< To). 

( p) = 2m0  ( 	- 	E 	S 	S""  > 
N 	k k —k 

= y — 0(2 )
3/2 

To 

(6.50) 

Note, the energies w(k) involve the molecular field 

magnetization R1  and not the self - coVsistent spin - wave 

magnetization - so no anomalous T3  term appears. 

The result for S. 1 is obtained directly by remembering  

that the internal summation introduces a counting - factor Y, 

while all propagators carry two additional "spin - indices" 



The corresponding Dyson equation becomes: 	 152. 

' 	- FXX (k,a F XX' 
Tat (k,U)04- 

(1131 
(k, 700EX1 X4  (ky E)FXI X'  

Pi q1 	c11 q 
(k: a) 

   

on substituting  

sxx' (k, -a) „. Y. 1 J (k) 
qq' 	2N 

along with 

	

F
XX 	

(, 7c)o 

	

qq 	k 	6...."16xx-tanh  %13 	- J (0) Rs  )  

wo  -J (0) Rs  -i 3 

The result for the spin - wave (spin indices averaged) is 

Fl ( k,a ) 	= 
Y 	2 R s  

 

wo  -R (J (0) -J(k) ) - 
(6.51) 

Thus, apart from the factor Y inthe numerator (as before) 

the result agrees with Eq. (6.47), with the magnetizaton for 

S = 1 substituted instead of S 	in Eq. (6.48). 

The other series of graphs, which are also of order 1/z, are 

the longitudinal graphs Fig.(20 ). 	However, in this oase, 

due to the identity of the four operators, a non - propagated 
z 	z 

part must first be subtracted. Thus < S
i 
 S > becomes 

Z Z 	 Z 	 Z 
<S. S > = < c

i
o
i j 
ce

j 
> 4‹ S. > -72<S > 

I j 
(6.52) 

So, a new two - particle propagator KV %) and its triple 
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Fourier transform (assuring an homogenous system) 	154. 

K 	(14:1 I), is defined by 
qq 

K1  

ik.(R- R.) 
E 	e 	K 	(k,/) 

N cAtk 	qq. 

(6.53) 

Then the four - fermion propagator is defined by 

IC I  
fag (k, 	= < ;Cot 	)0q( -c)0 9.+, _k(e)041 (0) )> 

(6.54) 

This clan always be decomposed into two parts - a self - inter-

action and a propagated term R. 

K) = K 	(k,/ )+ <ec,‹ c+ o qq, 	ko q q 	qt  qt  (6.55) 

This separation is just sufficient to give the usual form 

for the Jangitudinal correlation 

z z S S 	>< S 	(R 	) N 	 (1r, 0+) i j 	i 	j 	qqlk 	gqt 

(6.56) 

The lowest order component graph of the propagated type is 

the simple particle - hole pair of non - interacting C -ons; 



this is illustrated in Fig(20 a), and is given by the simplest 	155. 

contractions; 

+ — 
Kqq (k 	) 	coq (.c) 	( 	).5(1,111:1 f cil s k4q q 

(6.57) 

The self - energy terms of 0(1/z) in the high - density 

expansion are illustrated in Fig. ( 20 b and 20 c ). 

Explicit evaluation of the "exohnrge" graph Fig.(200 demonstrates 

that it gives no net contribution, as it involves a self - 

contained interaction sum Eq. (6.11). However 7  the "direct" 

graph Fig.(20b) gives a non - vanishing self - energy 

contribution A 	(k) = 1 p 3(k) . This series is 
PP' 

--o 	_o 	_o 
K 	(k) E K (k) A 	(is) x (k) 	(6.58) 

qq' 	tlat 	pp' qP 	pp' 	Pq 

The temperature - variables /have been dropped in this 

equation as each component of the equation (to this order) 

has no explicit / dependence, so leading immediateay to 

an algebraic equation. 	Sirrnmiiig over the indices q and q', 

and substituting Eq. (3.17) for Kv(k) leads to the final 

result 

ih.(Ri —Rj) 
Z 	 + 

< Si S j
Z  > — <5Z 

 > <S 
Z 
> =1 E  e 

1 j — 	
f f  

(1 — 	(k) f'+ 	) 

(6.59) 

N 
summed by using the Dyson equation 

N 



Thus, the complete 0(1) result is obtained by renormalizing 	156. 
z 

the individual C -on propagators 	this is equivalent to 

the substitution f_ 	R1  giving 

	

Z Z 	
<Si>> - 

 

	

< S • S • 	• < SiS > = 	E a  

ik. 	21,j) 
e 	 (14 - R1 ) 

 

1 	f3 ,330s)• (14 - R21
) (6.60) 

(6,5) Low - Temperature Expansion and Spin - Wave Scattering.  

At this stage the calculations will be extended to 

low temperatures for S = Y2  and the validity of the above 

results to temperatures below To will be exhibited, as well 

as recovering the low temperature spin - wave results 

found by other methods. In this temperature regime the 

graphs can be classified by their contributions to the 

free - energy P in powers of the temperisure ( in fact, 

the reduced temperature T/Tc). In order to do this systemat- 

ically, the contributions of each individual type of element 

in the graphs must be analyzed. Upon sumnAtion over v of 0(..v.") 

there will result a factor f+  or f-  which with simple 

molecular field renormalization becomes f -> 1/2  T. R1. 

Then in the two limits T ->° and wo  -> 04-  these become 

f + 	1 - e —4410 and f- 	e-ii3 3- (0) or in the 

corresponding limit of too  -> 0-  the roles of f are reversed 

as R1 	
egn ( WO ) -  So, at low temperatures, in 

zero magnetic field, with ferromagnetic interactions j(0) > 0 

the factor a -0J  (2) is negligible compared with any finite 
2 



power of T. This implies that anY "particle - hole " pair 	157. 
of C -ons occuring between any two vertices, will introduce 

a factor f+ f
_ 
upon integration over the internal temperature 

variables, so all such graphs will be exponentially small, and 

can be neglected. D -ons always give a finite contribution 

of 0(1) as do unpaired C -ons in the correct limit. The 

next contributing element is the simple spin - wave (i.e. with 

k - dependence, introduced through one transverse vertex). 

Since at low temperatures Eq. (6.47) gives, 

F(k, a)= X( 5(2) — J(k) ) 
	

(6.61) 

) 
	-w 	'c 

or 	= e (k)  ( 9(.013k  + )b; ) (6.62) 

with 	u(k) 	1/2( J(0) - j(k) ) ; bk+  = 1 + bk- 

b+ 	( 1 - e Pt') () )-1 

	(6.63) 

This will be represented by a simple - line Fig. (18b). 

All graphs can now be simplified by isolating all spin- 

wave lines which then interact via equivalent vertices V rep- 

resented byFig.(21 a); these vertices will contain only 

C -on and D -on substructure and correspond explicitly 

to the kinematical corrections in ideal spin - wave theory. 

As this is now a standard type ot. Quantum Field Theory, the 

contributions to the change in the free - energy F , due 

to the interations, are given by the usual sum of distinct 
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connected graphs, that is (A.32). 

Again the low - temperature classification method used 
81 

by Stinchcombe et al for their semi - invariant analysis, 

will be followed, and a very close correspondence for the 

present Green's function approach will be found. The 

equivalent vertices only involve functions of J(k) and poles 

of the form (B 	
n 

is ) which lead to exponentially small 

corrections at B, but are converted to ( y2  (k) )21  at the 

spin - wave poles 1.a = w (k) ; so only result in one 

power of p per vertex is a result of equivalent energy 

conservation at thievertex". Thus for a graph with N 

spin - wave lines interaction through V equivalent vertices 

resultb in S independent k and asummations. Each of the S 

sums over a is converted into a bose - contour around 

the whole of the imaginaryw axis, where w. = i a .. 
This is then distorted in the usual manner to pick up the 

residues of the poles from the product of the qin - wave 

denominators. The net result is a product of spin - 

wave bose occupation factors b; multiplied by a product 

of (N - S) denominators, each of the form E. 
3
w( k.). The 

contribution of such a graph to —pciF has the form (retain-

ing only temperature dependent factors) - 

03) 	E 	
S S-N 	 (5/2.S -V) 

(b;) ((7) 	which is proportional to T 

However, in all but the simplest oases, this rule needs two 

modifications. The first exception occurs when there are D 

degenerate spin - waves in the graph, i.e. D have the 

same momentum and energy (, n. Then the pole from this 

will give a contibution obtained by differ-entiating (D-1) 

159. 



entiating (D-1) times the rest of the integrand with respect 
	160. 

to a , so reducing the power of 7) in the denominator from 

(N-S) by a further (D-1). This given a contribution to 

- p AF of the form P 
(V- N+ S) E  (b

k   
) 

k1Ots 

	
S 	-N +S +D-1 

(LT) ) 

3/2. S-Ar +D-1 
which is proportional to T 	. 

The second case arises when the frequenoy of one spin - wave 

appears with qposite sign in the frequency of another, due 

to frequency (or energy) conservation at the vertices. 

Effectively there exists particle and hole spin - wave states 

between some of the vertices. These two poles contribute to 

the sum over this frequency, one yielding Cm  leading to the 

usual T 3/2  contribution, the other b +which involves no 

temperature dependent cut - off 	and so fails to give 
/2 3 

an 0(T 	) contribution. However, it does still give a 

factor w in the denominator, so for SI spin - wave holes 

the contribution to -ppF will be E fy Um' St (11 )S-Sl oue+SI-U 

PT.; 

which is proportional to T3/2 (S - SO+ S' - V. 

So, in general, a graph involving S - independent spin - 

waves, of which S' appear both with positive and negative sign 

in the energies, interacting through V ecluivalent vertices 

and with ND  groups of D - degenerate resulting spin - waves, 

will contribute to - pp I' 	a term 

	

3/20-S":.)-1411 	E ND(D-1) pp F(S2 S1  2  1/.2  ND) 0: T 

(6.64) 



Since S ?! V 1, the lowest order graphs are those with V 	161. 

and N
D 

small, all graphs with ND  > 0 are at least of 0(T 2 ) 

and increase rapidly with ND  ; similarly one must minimize the 

number of indepemdent spin - waves. The only diagrams whioh 

give a contribution to A F of T3  or less are those 

illustrated in Fig.(22, 23) . Thus the two lowest order 

diagrams in powers of T are also the same as those classified 

in powers of 1/z,so the results of sections (6.3) and 6.4) are 

also valid at low temperatures. 

The low - temperature diagrams involved in spin - wave 

scattering will now be evaluated to exhibit the degree of 

correspondence with earlier theories. This will involve 

calculating the effects of the vertices illustrated in Fig. 

(21b and c)in the first diagram of the Born series Fig.(23) 

Since the spin - waves involve a C -on and D -on pair, then 

the structure of the simple interaction vertices Fig. (21) 

indicates that the lowest order spin - wave interactions will 

occur in 4th order; this vertex will be denoted by V(4), 

(the diagram obtained by interchanging the D -on pair will 

be included in this). 	If the contribution of the two spin- 

waves is denoted by W(.1501 	2 t2; .15 t3  2 	4  t4 ) 

then the contribution of this graph to - F is given by, 

1 	E ff3  dt w 4 	Oil ti 2." 41  14) v(4)  (is "•PAS4  

(6.65) 

which on Fourier transforming, with repent to the t -labels 
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and. integrating gives (in terms of the reduced vertex V ) 	164. 

N2 
E J

2
(k)J

2
(k') 1 E F(ss a )F(10C1)7 (4)(3 T';70 a) 

2(2N) 4 
	kki 	aa' 

(6.66) 

where V
(4) 

 ( Ei)is the transform of T
„(4)
( ) /i  . , which is given 

by 

Ne(14)e(23)fte(12)D°(34)-D°(13)D°(24) 

-N 00(24)00(13) (D°(12)D°(34)+D°(14)D°(23) 1 (6.67) 

The simplified notation 00(14) = C°( z/  - v4) has been used here 

for convenience ; the Fourier transform is given by 

Tr(4)(cri «2  ; «3  14  ) )= EN 6(1+2-3-4) C0(3/ — 	D°( 7) 

[Z (v12;3,4) + gv12;493)] 
where 1 

Z (v,1920,4 ) 
-, 	, 

D (a3- 714-v)i. u (n2  +v )-00  (a- 4  -v) j . 

(6.68) 

This is evaluated in the usual manner of converting the sum 

to an integral over z = i V involving the Fermi contour, 

In the low temperature approximation this only picks up 

the residues at the origin , and those poles which result in 

f+  faotors - the f ones are exponentially small, and can 

be neglected. Within this approximation 



4 	- \-1 11,(4) 
(1204) 	- 2170,(1+2-3-4)[B-i31 -1-B-irk] N ( B - iaj) 

j =1 

(6.69) 

Again in the low - temperature approximation the double 

sum over a and at ricks up only the residues at the respective 

spin - wave energies w(k.) and using : B- w(k.) = Y2. J(ki) / 

-2 
E F(k,U) F(k',E1 ) 

aa' 

(4) 
V 	(Cra'ra:i 3 ) 

- 24  fiN b kb  k-1  [J(k) 	J(k )]  

J2(k). 4k') 

(6.7o) 

Thus, the simple 4th order terms result in a contribution : 

-p AF
(4) 	- 	E  bk  bk, C J(k) + J(ki) ] 	(6.71) 

2N 
kk,  

Similarly , one obtains for the 5th order vertex V(5) 

2 5N...1 -2 z  32(k) -2kK  /, , 	/ JEJk. k- kl ) -1-Jk0)]Fkklag(ki,V) 7.7-(5)(-a--a-,1; -Et ta) 
kk,  

(6.72) 
with 

V5) 	s dT5  e(15)e(25)c°(53)e(54)D°(14)D°(23) 

(6.73) 

At low temperatures, the Fourier transform of this is , 

4 
, 	(L (5) (-i a -o 3a3-  a4) ' 	6( rc1-1-E2-33-E4) 	B 

iaj) - 1 

(6.74) 
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so 

\(5) 
p-2  EFL, it)F(10,ZET)v (EV; 

act' 
rou ) 

4 - 
. 2 p bk  bk, 

2 	2 
4.).3  C i)  

166. 

(6.75) 

(6.76) 

This gives a contribution 

-p A P(5). _IL E lik bk,  (.1(k-k') + J(2) ) 

2N kk,  

So to 0 (T3) in contributions toA P one has 

F (4 +5)= 2111  z bk  110  (J(s) + J(k' )-.7(1c-kt )-,T(0) ) 

kk' 

This is the well - known result for spin - wave scattering in 

the first Born approximation at low temperatures obtained by 
3) 

Dyson 
6  
, who also showed the cancellation to 0(T3) giving the 

5) 
famous 0(T4) result (or see Mattis.) 

If the si of these two vertices is defined, as V, then 

all the relevant low - temperature spin - wave results 

can be derived directly, so 

V(1,2;3,4,) . V(4)(1,2;3,4) +N IT(5)(1,2;51 4). 	(6.78) 

In the low temperature region this has the transform 

V (P1P2, p3p4)=.7213 N 6( p1l-p2-15-p4)[ 3(k1-k4)-2B41.71  + i 72] 

J (19) 	(6.79) 
j=1 

(B - is j) 

(6.77) 



where the 4 - dimensional notation has been used, pi 	. 
The simple spin - waves F(k, w) can now be renormalized 

through the vertex V to the renormalized form Fr(kp) by 

means of a Dyson equation directly analogous to the one for 

C -on renormalization in the molecular field approximation 

i.e. as illustrated in Fig. (16) . So upon taking into account 

all possible exit and entry vertex points one obtains for 

the spin - wave self - energy E (k4 co) 

r 
(k, = N 	13-2z FOSI I3OM qq PPI/P10)+V(PPl yPIP)-1V(PIP,PtP) 

(2N)
4 	

ice a, 

	

+ V(p'plpipt) ) 	(6.80) 

which, in the low temperature approximation becomes 

1 .
J(k)2 	k' (J(0)4-J(k-10)-J(k0-2(B-i -a- ) ) 	(6.81) 

-- 
2N (3-13)2  

Thus, by Eq. (6.44) 

Fr(k,a ) 
	

(E(k) - is ) 
-1 	

(6.82) 

with 

E() = 	J(0) -3(k) ) -1/N E b;,(J(0)+J(k-k')-J0s9-41s) )) 

(6.83) 

This is the usual Eartree - Fmk spin - wave renormalization 

result, in this case obtained by approximating 

r  (k,a ) 
qg °"- 

by E.'
r 

(k,w(k) ) or self 
qqf 

consistently by E (k). 

The damping term is introduced into the first self- 

167. 



energy graph which. has "dynamic" spin - wave contributions in 	168. 

the intermediate states as in Fig.23b in distinctionto Fig.23a 

, which only has a "static" intermediate spin - wave. 

The equivalent self - energy diagram corresponding to Fig.23a 

gives a self - energy contribution corresponding to Eq. (6.80) 

of 

—10 —3 —2 
2NPZF(132)F(P3)P(P4)6(P4P2—P3-134) • 

P2p3p4 

Q(P P2; P4)[ Q(P3P4; P)+ Q(133134; P2)] J
2  (k) 4 

(3_51  )2 T1 

(6.84) 

J
2
(kj) 

(B-i a )2  
J 

where Q(pipilpm) =J(ki-kbo.).+J(kj-kil) -4B4.2i(a1 ai) (6.85) 

Instead of evaluating this rigorously the low temperature 

substitutions i a- = (Jay will be made to erhibit the approx-

imations used in earlier theories,(which, in factI violates 

the 6 - function on the frequencies b(pi)). 

Thus 

E (k!  a ) = 	1 	E GCLE421k3M,P2)F(P3)F(p +p2-1)3) 

N3 2  P2P 3) 

where 
	 (6.86) 

G(sylc293) 
	

Yi,.(J(k)-1-J(k23  
-k
2 
 )-J(k

3 
 -k) ) x 

.(413)+ J(10-1E2.15.3)-J(k3-k)-J(47h2) ) 

(6.87) 



The foal result for the dn-aped spin - wave, in this approxin- 	169. 

ation, is 

with 

d 	-d F 	(k, a) .KE(k) (6.86) 

d 
E 	(h, a ) = 2 1 

 23  
E G(k;k20s3) ML, k2, 	) 	(6.69) 

N 
E(k3)-F E(101c27k3)—EC110— 5; ] 

with 
F1(19,..4,1c; ) = b-(k3)(13-(k2) --b-(1c1-1C2-k3) ) 13 0S2)T.IltlE2-S3) 

(6.90) 

where the renormalized notation has been used 

b(R) = (expp E(k) -1)-1 	(6.91) 

In terms of the analytically continued values i F = w +is 
71) 

for s --* 0 	the results of Tahir - Kheli and ter Haar, 

for the damping coefficient y (1c7  to ), and the real shift R(k,w ) 

are obtained, 

E(k,w+  is) = R(k,w ) t i y(k,w) 	(6.92) 

The results in this section well illustrate the ideal spin - 
4 

wave methods of Dyson and others. The T contribution to the 

free - energy is obtained from the Dyson form of the Heisen- 

berg model , by considering only the first order terms in 

the interaction operator. 

Thus, in terms of the ideal spin - wave ,boson operators 

a
k and a+ 

 the interaction Hamiltonian is 



170. 
Dyson 

4N 
H1 

	

	 E r(klf.) a
;I:v 

a
t 

ak 4.
q (6.93) kkq 

;with r (gsta ) = J(k) 	J(k') -2J (,a) 	(6.94) 

So 
Dyson 	1 

A F 	4N kig. rClv.2) <Eit a:; a aks+ a>  (6.95) 

or 

A FDyson 1 	E 
2N kkl 

bk bk' (IT(k) + 	) 

(6.96) 

This is identical with Eq. (6.77). The correspondence occurs 

because of the method of representing "bose-like" operators 

S 	by pairs of fermion operators. This necessitates 4th order 

graphs (or their equivalent) in the present notation before 

spin - wave interactions can occur. Consequently one can 

always identify graphs in the present method with any 

resulting from spin- wave theory. The advantage of the present 

method is that it is well - defined throughout the whole 

temperature regime ( in distinction to spin - wave theory, 

which is strictly valid only at low temperatures, 

e 	p eiC2) « 1 as Dyson has shown). Moreover, the kinematic 

restrictions are built directly into the present theory 

through the dynamical nature (C -ons and D -ons) of the 

equivalent vertices , and can, in principle, be evaluated at 

any finite temperature. 



Cha'ter 7.  

SUMMARY, CONCLUSIONS." and PROSPECTS. 

At the beginning of this thesis the fundamental 

concepts of the linear response formalism were first 

introduced , as a natural precursor to the exact ( Heis—

enberg picture ) spin — operator averages, and the idea 

of generalized spin susceptibility functions. The 

standard methods of Quantum Field Theory carrot be applied 

to the analysis of these functions, as there is no simple 

Wick's theorem to decompose products of spin — operators, 

urlike the usual case for bosons or fermions. Conseq—

uently, various fermion representations were analysed, with 

a view to their possible usefulness in such spin problems. 

The 2S fermion spin representation, which was first 

presented here, has been found useful for converting elect—

ronic problems, involving second — quantized electron oper—

atorsl into an equivalent formulation,involving a Ramiltonian 

which contains only explicit spin operators. This was 

demonstrated explicitly for both the Kondo model of isolated 

localized spins, interacting with the conduction electrons, 

and for the Heisenberg model of a ferromagnet. 

The simplest example of the 2S fermion representation, 
9) 

namely, S. X2, was found by Yolin to give a comparatively 

simple Wick's theorem for such operators; but the analysis 

given here indicated that this cannot be easily extended 
10) 

to S = 1, or higher spin values. Abrikosov's method for 

171. 



the 2S+ 1 fermion representation has also been reviewed here 	172, 

and the difficulties associated with this method mentioned. 

The representation which has been found to be the 

most useful in the present work is the drone fermion repres-

entation whioh has been extended here to all spin values, 

from the previously known case for S Y2, An investigation 

of the eigenstates of Lehls representation resulted it twu 

Wick's theorems for spin operators, whioh were first demon- 

strated here for l = and S = 1. 	The Wick theorem for 

S. % has very simple properties, for, unlike that for S = 1 

or that of Yolin,
9) 

 it involves no normalization factor, and 

this is important in many - spin problems. As these 

techniques are immediate extensions of conventional Mary 

body theory, no new elaborate diagrammatic rules need to 

be formulated - unlike most other attempts at this problem. 

The main application of these methods has been to 

the problem of well r localized magnetic moments, interact-

ing with the spins of the conduction electrons of the 

host metal. The first example of this Hamiltonian involved 

only one impurity spin (i.e. the low concentration limit) - 

the so - called Kondo problem, In the investigation of 

the static and dynamic magnetic properties of the impurity 

spins, a log T term was found in the second - order g - shift. 

This then resulted in the same log T term found in the static 

susceptibility by several other authors. These particular 

quantities need to be evaluated in higher orders of the 

interaction in order to investigate the low temperature 



173. magnetic properties of the impurity, for several authors have 

indicated that the local moment is quenched by the conduction 

electrons (for J< 0), below the Hondo temperature Tk. 

Unfortunately most of the work on this point has been 

oarried out on dilute alloys of iron in oopper
90-1)  

- a better 

oheck of the theory might be with rare - earth ions, where 

the Hondo model is expected to be a better approximation. 

The present high - order results for the electron 

self - energy part X (Eq. (5.75 - 6) ) can be compared 

and contrasted with earlier results of several other 

authors who have also investigated this Hamiltonian. 

However, apart from Doniaoh
11.)

all these authors have 

oalculated M directly„without the aid of V (Eq(5.74)); 
- 

they have thus included a divergenopat Tk  for t f  

and then restricted their solutions to the high temperature 

region IT> Tk. Although the use of V gives a convergent 

result, it maybe invalid to assume that it is the only 

analytic result below Tk, for a series of terms has been 

summed in V, beyond its radius of convergence, which occurs 

at Tk. This may indicate that a possible type of oondensat-

ion follA a...ouud the local moment in this temperature 

regime; but more sophisticated techniques need to be applied 

to the present formalism before a definite answer can be 
48.) 	41.) 

given. However, Yosida 	, like Nagaoka 	has found 

anomalies in this region, when he applied conventional 

perturbation theory to a singlet - correlated ground - 

state wave - function at 0°K for j< O. This resulted in 

an energy approximatJly kBTk  lower than the corresponding 



uncorrelated ground - state. Doniach1 . 
)
has summed a 
	1 74 . 

series of self - energy diagrams using his zero - temperature 

spin - Wick theorem. Although this method results in a 

resonance, rather thm,  a divergence at T
k
, two points must 

be mentioned. Due to an ansatz extension to finite temp-

eratures, the resulting value of Tk is too small, and because 

of his method of averaging, the two total spin components 

(3  = X)) ST = 1 and ST  . 0 differ from each other, even in 

zero magnetic field. This latter separation into ST  

channels shows up in an instability in the effective 

potential for ST  = 0 but not for ST  = 1 - the former having 

the wrong sign throughout the whole temperature range. 

The first successful finite temperature calculation 

using a perturbational method and treating the spin operators 

oorrectly, was that of Abrikosov
10.) 

 who used the method 

outlined in Chapter 3, and summed a series of "parquet - 

diagrams" whioh in essence, are similar to most of the 

self-energy terms treated in the present thesis. The result 

is quoted in Chapter 5, Eq. (5.58). 
42.) 

Suhl and Wong 	have also investigated this problem 

using Chew - Low scattering theory, but little oontact 

seemed to exist between this approach and those of other 

authors. However, Silverstein and Duke 	have recently 

shown an exaot agreement between Suhlis approach and that 

of Abrikosov, by imposing the restriction of "on - shell" 

energies in the scattering amplitude; this also removes 

any complex poles which have sometimes appeared in recent 

theories. As a final summary of the basic results of these 



theories the following parameter "x" , predicted by each 

theory, is tabulated in Table 2. This parameter is defined 

for the anti - ferromagnetic case (J< 0 ) by the resonance 

condition given in equations like Eq. (5.70a) and always 

converted to the present band - structure and notation, that 

is 
1 	+ x p J ) 	0 

' k_ T B k 

Table 2. 

Authors. x 

Nagaoka(11) 

Takano, Ogawa 

2 

3/2 

Abrikosov 2 

Silverstein, Duke 2 

Doniach 1 

Present calculation 2 

It is the exponential dependence of Tk  on x which 

makes its magnitude important if any experimental verification 

is to be attempted. The damping term / k1  ( or, equivalently, 

the spin - impurity resistivity, Eq.(5.78) ) is also plotted 

against the reduced temperature T/Tk  for J < 0 in Fig. (24) 

175. 
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177. The present result is denoted by curve 1, and is contrasted 

with the modified (high temperature)'result of Nagaoka 

Eq. (5.84) or Abrikosov
lo.)

, described by curve 2, and  also 
11.) 

with one of Doniach's 	extrapolated results for St = 1, 

and illustrated by curve 3 - the latter form is relative 

to its own Tk. As can be seen, the resorsnce is not 

very sharp ( this was anticipated by Abrikosov, but was not 

proved ) of width about 3Tk. This would not seem to 

indicate a sharp phase transition, as was predicted by Take-no 

44.) 
and Ogawa 	. However, it seems quite likely that all 

transport properties
22.) 

 (like the electrical resistivity) 

will have smoothly varying properties through Tk, so that 

experimental investigations should concentrate on properties 

of the localized spins, for example, the magnetization, 

where the changes may be more dramatic. 

For higher concentrations, the effects of inter - 

impurity interactions have been shown to be important. 

When large spin - orbit damping of the conduction electrons 

exists, it has been shown here , in a microscopic theory, 

that the full first - order Yosida shift appears (section(5.5)) 

and this needs to be extended to higher orders. The same 

microscopic theory has also predicted the so - called 

"bottle - neck" effect, where the local - moment line 

width narrows with increasing impurity concentration, and 

the expected Korringa width fails to appear. These techniques 

are presently being extended to the situation where the 

local moment is further coupled to the nuclear spin to 

are 



investigate the effeot on the resulting line - sha,-ss. 	1 78. 

The rare - earth metals were finally considered, and 

the ferromagnetic state investigated. A sub - set of 

diagrams led to Eq. (5.130), which exhibited the coupling of 

the two spin - wave systems. In the static limit the two 

spin modes were explicitly demonstrated. These results give 

a perturbation basis to the decoupling method of Doniach and 
59.) 

Wohlfarth 	, who analysed the dilute Fe in Pd model. 

The final example of the new techniques introduced 

in this thesis was a systematic fermion analysis of the 

Heisenberg model of ferromagnetism. The usual high - density 

classification in inverse powers of the correlation - number 

carried out to zeroth and first order, resulted in 

molecule?' field theory, and simple spin - wave theory 

respectively. A low temperature classification, similar 

to that of Stinchoombe et al
81.)

has also been carried out, 

which extended the validity of these high - density results 

throughout the whole temperature range, and which 

systemantically accounted for the kinematical effects of 

ideal spin - wave theory. Further terms introduced spin - 

wave scattering effects as the next important contribution 

to the free - energy at low temperatures. The cancellation 

of the T3  term was demonstratedlleaving Dyson's T4  term in 

the first Born approximAtion. Higher order terms, inthe 

interaction, resulted in spin - wave re-normalization and 

damping - this exhibited the nature of the approximation 

used by other methods, such as decoupling of the equations of 



notion of the spin. Green's functions. The explicit form of 	179. 

these higher order effects found here suggests that same fin—

ite temperature calculations should be considered. 

In conclusion, it can be stated that the present 

techniques for handling spin problems, introduced in this 

thesis, have a wide range of applications, in many branches 

of current interest in Solid — State — Physics. 



180. APRIMMIX A.  

Standard Many — Body Theory for Fermions c".„- Bosons. 
18) 

The statistical mechanics of a many — body system is 

characterized by its Ramiltonian operator H and its total 

number operator N. For systems where the ground — state 

energy Eo(N) increases monotonically with the number of 

particles it is possible to define a chemical potential g 

(independent of N) by 

p = Eo(N + 1) —E0(N) 	(A.1) 

The thermodynamics of such a system at temperature T 

(or p-1  = kBT, where kg is Boltzmarrts constant) is then 

described in a grand — canonical ensemble by the combined op—

erator K, where, 

K = H— gN 	(A.2) 

and the density operator, 

e-P x 
	

(A.3) 

The grand—partition function Z is defined in the sum 

over all states of the density operator, which are simultaneous 

eigenstates of H and N, that is ,by a trace over such states, 

Z 	= Tr. (r ) 
	

(A.4) 

Moreover, the thermodynamic average of a y operator which 

measures some property of the system is given by its 



weighted average and denoted by 	 181. 

< A > 	= z 1 
Tr. ( A) 
	

(A.5) 

This is independent of the picture chosen to represent the 

time development of the operator. It is the purpose of 

Many - Body physics to evaluate such averages. The present 

thesis will use diagrammatic perturbation theory to arrive 

at approximations to such averages. In the particular case 

of "free" systems, theaverages can be evaluated exactly in 

the number representation (second quantization) of the 

system. If the particles are diagonalized in the p-rep- 
+ 

resentation then Np= ap  ap  is the number operator for 

particles labelled p, where the operators are defined by, 

= ap  a;;-11  a;,a2. a pp, (A.6) 

The combined notation 1) = 1 for bosoms and 1.) = -1 for 

fermions has been introduced. The eigenvalue spectrum is 

then defined by 

E p  ap  ap  p 
(1.7) 

with 

The corresponding density operator is co  = e-13 K° so 

the average number of particles labelled p is given by 

-1 
< ap ap  > 0  = Z0  Tr(t; 0  aP  ap) 	(1.8) TIP 



The corresponding number of holes is given by 	182. 

= < ap  ap  >0 , SO ni; - 	= 1 	(A.9) 

Since the trace is over all eigenstates of N 2  it is invariant 

under cyclic permutations of the operators,so ustirg 

e-x ex = 1: 
(1.10) 

Tr. ( 0  ap ap  ) 	= Tr. (e PIC° 6,1311° ap  a 13 K°4) 

The following identity is frequently used; it is obtained 

by differentiating with respeot tox and then itegratinglafter 

evaluating the resulting commutator: 

ap  ( X ) = eX11:0  ap e X No 	P a 	(A.11) 

Using this in (A.10) withX p and extracting the scalar 

exponential, one has, 

Tr.( Co  a; ap  ) = e'1  P Tr ( /*tap  a;) (A.12) 

Dividing by Z0, using (A.6) and rearranging one obtains 

the final result, 

= 	( ef3 P —r)  )-1 
	

(A.13) 

So the two fermi functions f-  and the two bose functions b 

are defined as 
+ 	+ 	- ,., 

fP  = ( e 47/3 13  + 1) ; 	bP + = — (e+ P`'P -1) (A.14) 



It is now possible to define the temperature - ordered 	183. 

single particle Green's functions by introducing the Wick 

ordering operator Tw (with 	= it) defined by comparing (A.15) 

with (k.16). 

dP'P" ( 
	<Tw ( a 

	
), a:1( v) )>. (A.15) 

In the diagonal representation or interaction picture (A.7), 

this becomes (with 7 /-v) 
(A.16) 

G°
PP' ('r) = 6 	e 

p 
( e( re) gip  + ne (7c )n-) PP' 

where 	el(-c ) =1 if / > 0 and 0 if / < 0; 

These results can readily be extended to realistic 

systems where there are now interactions described by an 

additional term in the Ramiltonian H1  (containing more 

than 2 operators), so 

Ho 4' H1 
	

(A.17) 

In general, the Heisenberg picture is related to the 

interaction picture by the following generating function 

U (/ 1/1 ) defined by : 

U ( , 0 e 	e
-K(/-/ -K0 
	(A.18) 

The two forms of the density operator are related by U for 

the special case ti = p, /1  = 0 
	

denoted 17(3 ), 
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(A.19) = 	Dr( 13)  

Taking the trace of this equation, and multiplying and 

dividing by Zo, one has the fundamental equation 

zo < u()> 0 	(A.20) 

The operator U ('6,V) satisfies the differential ecuation, 

A u (1, ti') 	—H1  ( 	D-(1,•ci ) 	(A.21) 

this can be iteratively integrated with the boundary 

condition U('C'T ) = 1 to give for the nth term, 	(A.22) 
/ n 

(-1 )11,fd /12, 	(Inlf 	33L-1111 

•••• S2d-t1H1('C1) 
It  

l• • 

The upper limits can be equated by introducing the Dyson 

ordering operator P, which orders following operators 

from right to left in order of their decreasing temperature 

arguments ; this also produces a degeneracy factor of 

(n!)-/. Formally this can be re-summedto the exponential 

form: 

U ( ,11 ) 
ti 

P exp( 	(11,, III (Z1 ) ) (A.23) 
V 	' 

6-c 



The "temperature" -dependence of operators in the Heisenberg 
	185. 

picture (denoted 1:(T ) ) is given by 

) 	eK1  A e-K1 
	

(A.24) 

So, using the unity insertion, as in (A.10), one has 

) s 	) - eKti 
A e Ko  U(/111) B( ,c1  ) 11('010 ) (A.25) 

Introducing Wick ordering of the operators and remem- 

bering that U only involves H1  or P ordering, one can 

rearrange the operators to use the identity 

U(1,T1  ) U(T11  T' ) =11( Ty It ) 	(A.26) 

Finally, on dividing by Z and using Eq. (A.20) one has 

(A.27) 

< Tw. 	,c  ) 	
(,6') 

 )> 	< Tw (A ( ) B(T ) u( ) )> 0  

<U ( 	> 

Note that this method does not depend on the adiabatic hypothesis 

of S - matrix theory. 

In the perturbational approach, one expands the oper-

ator U(0) according to 01.23) and uses Wick's theorem 

(Appendix B) to expand the ordered products of single particle 

operators in each term, into all possible conjugate pairs of 

ordered operators. If each contraction, q (T -TO, is 

represented diagrammatically by a directed linefrom t'to 

then the usual Milked - Cluster theorem (see Abrikosov et al, 

P.128.) can be invoked for retaining only those diagrams which 



are continuously linked to the "external" operators in the 
	186. 

average. Only onediagram of each topologically distinct type 

is to be considered; this removes the factor ni in the 

denominator; thus 

<2w (((.t ), 	)> 

m
z 
co o 
	

m 13 	 Ld ( 	) oS dr,1  ..d 	< Tw (A( ) 13(0 ) 	(Ti  ) .H,c %in) ) > 0  =  

The free - energy F of the system is given by 

-13P = log Z 	(A.29) 

So by Eq. (A.20) the change in the free - energy 6F, due 

to the interaction, is given by 

- {3 t F = log < 	Q) > o 	(A.3o) 

An alternative form of the Linked - Cluster theorem is 

< U ( p ) > 0  = exp <U p) > 30°11e 	(A.31) 

where the superscript denotes that only topologically 

distinct, connected diagrams are to be considered. Thus 

(A.28) 

one bas the important perturbational result, 

con.   > 0  (A.32) 

Finally, the periodic nature of the temperature-dependent 

Green's functions is shown and their Fourier transforms 

defined. If the exact Green's functio4 defined like (A45) 



but in the Heisenberg picture, is written in the form, 	187. 

1) . 	e (ti ) G:( -c) + 	) GI;(( /) (:,03) 

(A.34) 

I) 	= < (V ) T:4-( )> = Z-1 Tr( p  (-0n4p( 0 ) ) 

Gp  ( 

then 
>

• ( 
p 

If the operator 's•
+ 
 is oyolioally transferred around the 

trace and using the unity identity as in (1L.10) for 4then 

• (t ) • < aP( 0- R) 737p  (.t )> 	
P 

 ( 1-13 ) (A.35) 

Now 	-p < •c-/I < 13 	so if t> 0 then 

GP  (%) 	= e( 	while G
P 
 (/ - p) = G<(.t - p) 

so one has 

G ( ) = 	11 a ('t -P) 
	

(A.36) 

Since it is periodic with period 13  it can be expanded in a 

Fourier series in terms of a new integral variable 

If it is evenly periodic (hose - like) this will be denoted 

a and v if it is odd - periodic (fermions), where 

and a or v take all integer values, including zero. 

So 

GP  (/ ) 	
= 	1 E e 	E 	G ( (A.38) 

13 

The transform is defined by 

G
P 
 ( e ) 	

o
f (IleiE  t 
 e( 
	

(A.39) 

(A.37) 

Cl. - = 2 a II 13
-1 	 -1 

and v = (2 v + 1) II S 



For the special case of free particles (L.7), one readily 
	188. 

finds 

G ( r) 	( ._)1 	
(A.40) 

In terms of the analytically continued variable i e = w 

the function G (E) can be continued into the whole of 

the complex w - plane. By Carlemann's theorem this is 

unique if it is bounded as w > ar along my straight line 

in the upper or lower half - planes, and is analytic off the 

real - axis (Baym and Mermin) 18) 

The sum over these discrete points can be found fzam 

the residues of the following integrand, involving the 

contour C. 
(A.41) 

G (,c ) = 1 S dw e Z  G (w ) n4.(w ) ( 0( .6)+ 10( -/)e-Pw  ) 
2 ni 0 

where 	n (w) 	= (1 	e "Pu  )-1 
	

(A.42) 

The contour C encircles the whole of the imaginary w - axis 

for T) = 1 (the bose - contour CO, and encircles the whole 

of the imaginary w -axis, except for the origin for . -1 

(the fermi - contour Cf). The direction is anti - clockwise 

in both cases. 

This teohnique can be used for any periodic 2Inction 

(e.g. self - energy sums) and if the integrand is convergent 

at infinity, then either limit in (A.41) will give the same 

result. 



APPENDIX B  

Wick's Theorem for Fermions of Bosons.  

Gaudin's method for deriving a thermal version of 
88) 

Wick's theorem for bose or fermi particles is presented here. 

Consider a set of creation and destruction operators 

written in the temperature interaction picture, and their 

"free" averages, X. In the notation of Appendix A, one has 

X = < 	 Am >o = Zo Tr ( zoA1 	(B.1) 

whereAjrepresontsal ora+. P 3 (Td). Moreover, for 

fermions or bosons ( 71= +1) one has (A.6) 

AiAj 	 = [Ai, 	 (B.2) 

The commutator (or anti - commutator) on the R.H.S. of (B.2) 

will be called an 	commutator and is either a Kronecker 

delta or zero if both operators are of the same type - in 

either case it is a a - number; so, 

X 	< A2A1 A3 . • Am.  > 0  + < A3A4Am > cE A1,  L.2 	B .3) 

Similarly, the operator Al  can be 11-commuted through all the 

operators, each time adding anT) - commutator term as in (B.2), 

eventually 

< A2 ...A14m  >0  = 	< A2 • - 	> o A2. • eAm-1> o [A1 , Am ].  

The operator Al can now be transferred around the trace as in 

189. 



Eq.s (A.10 — 12), so 	 190. 

<12 • • • 4111 > o 	= 	X 
	(B.4) 

The plus (minus) s3i.g n occurs if Al is a creation (destruction)field 

and denoted by µ 	where µ = — 1. Transferring this term 

to the R.H.S. of the final form of (B.3) one has 
(B.5) 

mr.1 
e 111 PP1 	-2 

—n 	) 	E ni   <A2... (Aj) 

Thenotation(1.)means that this operator is absent from 

the average. Moveover, since there must be an equal 

number of creation and destruction operators in any average, 

then m must be even, so nm = 1 , thus 

X 	= 	(1 j)/  j-2 4"2 	,tant)'.0,L.f$41) A.13-.7 	(.6) 

1 —n e 1 gp  

where the notation (i,j) in the summation means the two 

operators Aiand Aj  are removed from the average in the form 

of an n— commutator, and are then summed over the range 

1 to m. 

However from (1105..— 16) one has 

= [All  Ai]_41 	r)e 111 13  
(B.7) 

E j-2  so 	<Al  A2. 	 &m>o = (14) < A2,.. Am  > o< AiAm>0  (B.8) 

<A1 Aj > 0  



The thermal - contraction between two operators is defined 
	191. 

as in (A.15) and now written in the short - hand notation: 

412 
	= < Tw( A1( 	) A2(c2  ) ) >0 	(B.9) 

Equation (B.8) is now temperature - ordered according to 

the decreasing temperature arguments of the operators. 

If the operators are fermions„then a permutation factor (-1)P 

for re -ordering under this operator is introduced, but not 

if they are bosons, so 

; • 
<Tv (1,11A2.*IAm  ) >0  = E j-2 .81Aj<Tw(A2...Am) > 0  (B.10) 

(1,j) 

. . 
But as Al  Aj is just a a-number it can be incorporated into 

the average, while the factor 

Ainext to Aj, thus, 

< Ber ( A1A2••• Am) > 0 < Tw( A1A2...11j...Ara)> 0 	(B.11) 
(1,j) 

This process can be repeated for all the remaining operators 

inside the average until all operators occur in pair - wise 

contractions. 

Contrary to QTantum Electrodynamics, it is possible to 

have non - zero contractions between operators at the 

same temperature, e. g. in 111(.t), for in this method, 

a contraction is not defined as the difference between the 

T and N -ordered products. Now the contractions take the 

order in which they occur in H1(1). 

j-2 is  71 	just that for bringing  



192. APPENDIX C.  

Generalized Green's Functions and their Equations  

of Motion. 

In this appendix a slightly different notation from 
86) 

Zubarev will be used to exhibit the correspondence with the 

earlier perturbational methods. Using the notation of 

Appendix A for grand-canonical averages in the Heisenberg 

picture, one can define the following propagators or Green's 

functions. In general two operators A and B, which have a 

non-zero average, will satisfy some commutation rule of the 

form, 
[A,E]

-1 	
= C 

where n = -1 corresponding to commutation or anti- 

(C.1) 

commutation rules and. C is a further operator. In the case 

of bosons (T) = 1) or fermions (1= -1), C is just a 5-function. 

In terms of such generalized commutators one can 

define the retarded Green's function, 

« A(t) ; B(t') > ret. i9(t) < CAW, B(t,)]..n  > (0.2) > 

and the advanced Green's function, 

<<A(t) ; B(V):.› adv. =
i 9(-t)< E(t),B(V)j_n > 

The causal time - dependent Green's function can be defined 

in terms of the Wick ordering operator (defined in Appendix A), 

<<A(t) ; B(tt)» 	= i <Tw(A(t), B(t')) > 
cans. 

A further Green's function, which has properties closely 

related to the time dependent ones, is the temperature 

(0.4) 

(0.3) 



dependent Green's function, denoted by round brackets. 	193. 

(( A(%) ; 	)),c  = < 	( A(c), 	) > 	(0.5) 

The Green's functions will only depend on the differences of 

their two arguments, so in future t' will be set equal to zero. 

Thus, the time — Fourier transforms can be defined, 

«A(t) B(.)» 	dte-Rot  << A ; B(0) 

	

an_co 
	 > > 

Cyclic rotation of B around the trace leads to the conclusion 

that the temperature Green's function is periodic over I 

with period p so it can be expanded in a Fourier series. 

(see A. 38 
	

) 

(( A (.%) ; B(o) )) 
=

iL 
	

e 
f3  

where, c = 
	a 	8(—t) v 
	as in A. 37 	(C.8) 

An analysis of the Lehmann  spectral representation of 

all the Green's functions shows that their transforms are 

related by, 

<<A 	B 4')  >> ret 
	«A ; B (w ) » adv. 	(C.9) 

In terms of the analytically continued form w so that 

just above or below the real w —axis,w± is one has, 

« A ; B (w) >>. ret 	(( A ; B 	— is) )) 
	

(c.lo) 
adv. 

So the retarded (advanced) Green's function is analytic in 

the whole upper (lower) half plane of the complex variable w 



Their difference across the realm -axis or the discontinuity 
	194. 

of the temperature Green's function is i DAB(w) and this 

satisfies the general sum rule, 

co 
S dm DAB(w) 	= 	27( < [A,B ]-11  > 	(C.11) 

Moreover this function contains all the physical information 

of the Green's functions and is related to the time-ordered 

form by, 

« A (t) ; B(o)>>oaus. J doe 	DAB (w) 	(0.12) 

x( e(t):( 0+1  e(-t)n(w ) ) 

where the generalized occupation funotions have been used, (A.14). 

-1 
31 (to 	= ( 1 - 	-13(4) 	; n (m) .(e l3w -11)-1 	(0.13) 

In the two limits t ->Ols, one can use (C.12) to find the 

correlation functions <AB> and <BA > • 

The equations of motions of all the time-dependent 

Green's functions are identical and can be obtained using 

the property that the derivative of the step function is the 

delta function - 

é (t) 	= 	—6 (-4)= 	o(t) 
	

(0.14) 

One also has the equation of motion of any operator in the 

Heisenberg picture, 

ii(t) = 	[A(t), g(t) 
	

(0.15) 



The result of differentiating the Green's functions with 
	195. 

respect to the time, t is, 

« [A(t),K(t) 	B (o)» 	11« A(t) ; B(o)» 

= b(t) < [A,B] _11 (C.16) 

Using Eq4C0and the identity 

8(t) . 	f dwe-iwt 
	

(C.17) 

this can be transformed to, 

<<[A, Ea ; B(w) 	 w «A; )3(w ) >>. <EA, B ]-0 
	

(C.18) 
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ADDENDA 

The argument leading to the choice of graphs in the high-density 

expansion presented in the text is in error. The correct form is based on the 

observation that the Ck and D 	propagators are actually independent of their 

momentum indices, so that only the k-dependence arising from the J(k) factors is 

important. Subsequent summation over k introduces a Kronecker delta 

reduction in the site index summations. So a diagram involving V vertices, L 

of which appear with explicit k-dependence, will give V-L independent site 

summations upon Fourier transforming. This produces a numerical factor of 

V V-1. 
order 	( 13 t) z 	, where Z is the number of spins interacting with any other. 

But from molecular-field theory (as we shall see) the critical temperature is given 

by 4 pcJ(0) = 1 or approximately Z I = kTc  . So such a diagram will then 

contribute a factor 

Tc V 
z-L 

Thus for temperatures above T
c 

the order of the graph in the high density expansion 

is Z-L. In general there will be several explicit k-factors appearing in the 

interaction terms, i .e. J(k), due to momentum conservation, so one obtains an 

expansion in inverse powers of Z. 

The actual diagrams chosen in the text still retain the correct 0(Z) 

. dependence and so all the conclusions obtained therein will still be valid. 
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A further comment is also appropriate with regard to the selection 

of diagrams in the calculation of the higher order effects in the Kondo model . 

These diagrams correspond to the generalized T-matrix approximation (in the 

sense of 3 types of field). This is similar to the electron scattering T-matrix 

approximation in superconductivity and leads to similar problems. For now the 

divergence in Q(5) (as in Eq. 5.64), which first occurs at T
k 
 for 	i a = 0, 

indicates that the radius of convergence has been reached for this particular 

resummation of such diagrams, see P.173. Consequently one cannot automatically 

extrapolate the final results, Eqs. (5.68) and (5.78), to temperatures below Tk  

as'extra residues must be included arising from the extra poles. As the temperature 

is lowered conjugate poles travel outward along the imaginary part of the complex 

Z = jot 	plane in a similar manner to that found by Bloomfield and 

Hamaan (to be published in the Physical Review). Thus the discussion in 

chapter 7, including that covering Fig. 24, should be restricted to T '7 Tk. 

This leads one to expect interesting properties for the longitudinal correlation 

function between the two spin systems. In this case, given by the following 

equation 
< 0_, z 5 z > . 

I ÷ 	Z,A. 5 z ( -4-0-) I,- ?, 	..C___ a• 

203. 
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