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ABSTRACT,

This thesis includes the generalizabtion o all spin
magnitudes of two fermion representations which were previous-
1y known only for the spin - half case. The resulting "25"
fermion representation is foumd to be useful for converting
electronic exchange Hamiltonians into Hamiltonians which
involve only spin operators. This is used to exhibit the
general corregspondence between the Anderson and Kondo model
Hamiltonians. The generglized drone -~ fermion representation
is used to establish two new Wick's theorems for spin half
andspin one operators. These results are both simple and
eagy to use. They extend the use of standard diagrammatic
Quantum Field Theory techniques to those proble-ms
involving such spin operators.

The properties of a metal which contains a single
localized paramagnetic impurity (the Kondo model) are then
investigated with these new methods. The results include
a derivation of a log T term in the impurity g - shifd,
close agreement with previous low ~ order perturbation
treatments, and a high - order equation for the resistivity,
which is obtained by a selective resummation of a complste
sub ~ series of self - energy diagrams. The resistivity
derived using this approximation,is shown to exhibit a
resonance - like behaviour (rather than a divergence ) for
both ferro - and anti - ferromagnetic ooupling {although

at different temperatures) in passing from the high to



low temperature regions, through the Nagaoka — Suhl instabil~
ity temperature T,.

At higher ooncentrations , the disappearanoce of the
first - order Yosida g - shift is shown in a miorosoopic
theory. The narrowing of the looal -~ moment resonance
line, which has recently been measured for such dilute para-
magnetic allogs, is similarly demonstrated.

An examination of the rare - earth ferromagnetio model
results in equations whioh explicitly demonstrate the coupled
spin - wave behaviour of both local - moments, and of the
conduction electrons. This is a: more general result
than previously demonstrated.

Finally these methods are applied in an extensive
investigation of the Heisenberg model in high and low
temperature domains, where the expansion eriteria of
Stinchoombe et al are closely followed. Renormalization
is now quite simple and straight-forward. At low temp-
eratures, Dyson's T4 oontribution to the free energy is
obtained in the first Born approximation to spin wave
soattering, Higher order spin ~weve cabributions give a
damping term, which , upon evaluation in the lowest approx-
imation, is identioal to that found by ter Haar and Tahir-

Kheli.
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Chapter 1.

JWTRODUCTION.

The principal perturbation techniques of Quantum Field
Theory were originally devised by Feynman, Dysogognd others
to investigate the central problems of quantum electro-
dynamics. In essence these are zero ‘temperature formulations.
It was not until Matsubaraz.gxtended them to finite temperat-
ures, that they could be used to solve any of the problems in
Solid -~ State Physics. Since that date, many problems in
80 ~ called many - body theory, have been dealt with,
successfully, using these powerful techniques. Unfortunately,
these methods could only be used to analyse systems containing
bose or fermion particles (see Appendix A for a brief summary)
and one class of problems has stubbornly refused to be
accomodated, This is that group of many - body systems
described by a Hamiltonian, which contains expliecit spin
operators whose commutators are no longer c¢- numbers.
Even the addition of only one localized spin, as in the
"Kondo" problem (see later), can prevent these new technigques
from being successfully employed. The orux of these
diffioult%es is the absence of a simple analogue of Wick's

3.

theorem, This is the important step which reduces multiple

products of operators, in a thermal average over the free

gilgenstates of the Hamiltoniap,to products of pairs of operators.

The simplest example of this result is presented in Appendix B

for the usual case of fermion or bose operators. The present



thesis is an attempt to solve this problem when spin operators
are present. Simple methods for spins of one -~half and one
(in units of ¥ ) will be established here and will then be
applied to several model Hamiltoniang. Since 1960 many
earlier attempts at this problem have been made, and it

4,)
continues to attract fresh solutions. Davis used Schwinger's

coupled - boson representatioz.zf the spin — operators,
(valid for all spin magnitudes, S) to derive a useful
Linked - Cluster theorem, although this was not given a
diagrammatic representation. This theorem usually follows
from Wick's theorem and eliminates much of the resulting
calculation. As Davis' method involved bosons, great care
had +to be taken so that only the finite number of gpin
atates in the boson - space of infinite states were considered.
Indeed, this is the major problem in almost all represent-
ational attempts at a spin - Wick theorem. A bose method
usually has the advantage of a simple representation of the
spin operators , in contrast to a fermion representation, but
a fermion space has only a finite set of states, although
these are not always all gpin states.

Mills et a§;>in their treatment of the spin half
anti - ferromagnet,introduced operators whieh had fermion
properties on the same site, but behaved like bosons with
regpect to different sites. This involved the use of
diagrams with additional , partially overlapping lines, and
therefore produced rather unconvential structures. In faot,
Wang et aZ'gave re - derived these)results (using the

ocoupled - fermion representation) in establishing a Wick -



10.
like theorem at zero temperature; +this resulted in retarded

propagators with spegial "locked" diagrams.

In 1965 Ybliz.éstablished a finite temperature spin-
Wick theorem foxr S=7%, again using the coupled - fermion
representation to investigate the spin - phonon interactions
in paramagnets - +this method is reviewed in section (3.5)
where the complications of a normalization co-efficient are
discussed. Abrikosgg°generalized this method to spins
greater than one half, by introducing the 25 +1 coupled -
fermion representation, This is also reviewed in section
(3.5) , where his method of handling1tb§ difficulty of the
extre states is summarized. Doniach ﬁas introduced a new
Wick theorem for general spin operators at zero temperature,
again concentrating on a single spin. This was a general-
ization of the usual (zero temperature) Wick approacﬁ involv-
ing normal - ordering,and resulted in special multi - linked
diagrams corresponding to commutators of more than one pair
of operators. However, important techniques, like the
Linked - Cluster theorem are not readily aveailable. A
form of Wick's theorem for spin operators has also been
introduced in the work of Giovannini et aljz‘) This involves
"remembering" all the previous commutations which have been
carried out, and appears to be a finite temperature method,
related to the zero temperature theory of Doniach.
Although a Linked - CGluster theorem was established, their
diagrams lack the elegance of the Feynmman graphiocal technique.
Very recently, Lewis and Stinchcombe13‘)haVe generalized the

work of Wang et al to finite temperatures for the case of

-



S= %, treating the Pauli matrices direetly. Again this
resulted in a somewhat unconventional diagrammatic formulationm.
As final evidence for the con‘binui?g interest in this subjeot
a recent letter by J..a‘ger and Kahnei4a)i11dicated a low -

order perturbation method, using an analogous method to

that of Tyablikov and Moskalenkoar? ) Mention should also

be made here of the very early work of Holstein and Prim;.l?:c;}f
who introduced a square - root boson correspondence with the
spin operators. This is used in the large S limit in section
(3.4).

The present work uses the drone - fermion represent-
ation , which is gemneralized here to all spin values from
the previously known case of spin - hal%‘?o) An analysis
of the resulting eigenstates then shows that very simple
Wick's theorems can be estahlished for spin half and spin one.
The advantage of these methods (especially S= %) is that ALL
the standard technigues of Quantum Field Theory18'%or handl-
ing fermion operators at finite temperature, can be used,
ineluding the use of conventional diagrammatic display.

These new methods are then used to investigate two
general types of Hamiltonian, namely localized - moments
interacting with the conduction electrons in Chaplber 5, and
the Heisenberg model in Chapter 6.

The interesting problem of how the local moment appears
will not be pursued here, except to mention some of the
investigations stemming from the two seminal models of

2.)

19. 0. 1. . 22,
.And.erson9 ) and of Clogstole )and. !',’ol:f.’%. ) In brief,

11,



12.
the Anderson model assumes the impurity to be represented

by an extra well - localized orbital, (preferably of different
symmetry to the conduction band) on which electronic interac-
tions only occur when it is doubly occupied. This model

also containg a mixing ‘term which exchanges s and 4 - electrons;
this has the effect of broadening the local level and allowing
the 4 - electrons to escape ( a virtual level).

In the Wolff model, the impurity is assumed to affect
only the lattice potential. This then scatters the conduct-
ion electrons, which are also in the Hartree potential of
2ll the other electrons., These are combined to form
a gsingle self - consistent pobtential. Finally a Fock
potential is taken between electrons with parallel pairs of
spins, but now with a different v alue between the two spin
sub - bands.,

Kiga-)extended this model beyond the Hartree - Fook
approximation originally used by Anderson to a higher order
in the decoupling - hierarchy, and he found that the non -
magnetic localized state became unstable below a certain
temperature with consequent resistivity anomalies. Barlien
Moriy:4’)had investigated the spin polarization in dilute
magnetic alloys of iron in palledium, but only in the
Hartree - Fock approximation. Scalapings'applied simple
perturbation theory, and found a logarithmic temperature
dependence in the Curie law for the static susceptibility of

the Anderson model, while Kjollerstrom et al have also

investigated the ground - state energy and specific heat of



this model in the ladder - approximation. Schrieffer and
WOlff27')replaced the mixing term in Anderson's model by an
equivalent Hamiltonian term, which scatters a oonduotion
electron, and possibly changes the quantum number of the
electron on the impurity, but now no longer mixes the two
types of eleotrons. This is generalized in seotion (33
for the oase of several impurities, each of which has more
than one degenerate d -orbital. This uses the 25 fermion
representation which has been generalized here. In a later
paper, Sehriefferzs)shoWed that, for an S - state ion like

Mn, only the 1 = 2 conduction electrons, constructed from

spherical harmonics about the impurity, are scattered - not
the 1 = 0 electroms. This is used to explain the variation
29.)

of resistivities of Al based 3-d alloys across the 3-d series,
The s -~ d exohange Hamilbtonian has been derived by

30.) 31.) 32.)
several authors, naemely Kasuya, Mitchell, and Liu, among

others, However, Zengg.zriginally proposed , on phenomen=—
ologioal grounds,a longitudinal s - 4 type interaotioun,in
1951, although Kasuya's treatment of the s - f model (for
rare - earths) in 1956 is usually considered the first
rigorous analysis for the exchange interaction between 6s
oonduction electrons and the 4f electrons.

Korringg4'), as early as 1950, applied the point - cont-
act model to the problem of nuclear magnetic relaxation, and
the shift of the resonance Llne in metals.  Straight -

forward perturbation theory leads to second order results

which are recovered by the present Green's funotion methods.

13.



The advantage of any Green's function method is that,not
only is their use more systematic, but the complete line shape
is usually found, uith the relaxation time given as a special
case on the energy shell, Ybsidgs')found the first order pol-~
arization of the clectron band, when an s - d model is
assumed for Cu - Mn alloys, and showed that this is concent—
rated around the magnetic Mn ions\(so only small hyperfine
shifts result for the Cu nuc1e26')). The equivalent R.K.Y.
interaction37' was also found for this system.  These
alloys continued to interest thﬁoristsBB.%ut it was
not until Kondonggvaluated the conduoction electron scatter—~
ihg oross - seotion, by standard perturbation theory, to
second Born approximation, that the phenoi:enon of the
resistance minimum was given a satisfactory theoretical
explanation. It was found that the sharpness of the
Ferni surface led to a log., T term for anti - ferro -
magnetic coupling. This was fitted to the results for
Fe in Cu alloys by assuming a TS dependence of the non -
spin resistivity. The interaction parameter J was also
found to be approximately 2% of the Fermi energy of the
conduction electrons for this alloy. A further series of
papers lead to the conclusion that a divergence at low
temperatures was introduced by these higher order terms.
Liu4o')also found this log T term in third order, when he
evaluated the Green's functions direetly -~ without the
aid of a Wick theore?,(as did Doniach with his Wick - type
41.

theorem) Nagaoka , by a decoupling procedure, pointed out

that even in third order, the life ~ times of the conduction

14.



electrons would also go negative at the\Fermi surface, below

a critical temperature Ty, while Suhizo)also found complex -
poles in his earlier papers. In Chapber 5 it is found

that these life ~ times remain positive if the self - emergies
are suitably defined by an effective potential, following Don~-
jach . A diagrammatic resummation of higher order propag-
ators results in a closed -~ form expression for the effective
potential, which does diverge at Tk for anti - ferromagnetic
coupling; but as the denom'.nator i now evaluated to O(js

(in oontrast to Abrikosov's results, which were to 0(J) )

it also introduces a new divergence at a much lower
temperature for ferromagnetic coupling. However, the one
electron damping term does. not diverge, but passes through

a broad resonance at Tk, of width about 3Tk, and finally

-2

vanlshes at absulute zero like log ~“T, which agrees with a

very recent decoupling procedure of Fische33°).
44,
Takano and Ogawa )have also found this second ferro-

45.)
magnetic resonance peak, by using Gor'kov's  decoupling

method,in contrast to that of Zubaress;)used by Nagaoka41.).
Unfortunately, they used the coupled - fermion representation
for spin -~ half operators, and did not account for the two
momalous states, which occur in this representation (see
section (3.5). Moreover, their temperature parameters
differ from all other theories, as is shown in CGhapter 7,

and their results indicate a sharp phase - transition to a

possible low -~ temperature "bound - state" at Tk, These

two - types of singular points have also been found by

15.



47) 16.
Kurata , who used a simple sovable model of just one electron

above the Fermi surface at zero temperature, scattering off
the single impurity. Yosida48.)has also analyzed this new
"sound ~ state" at 0% by imposing Cooper - like restrictions
on the electrons, and adopting possible trial wave - fumctions.
This is not found however.by Ishikava.. and Mizungge)who used
Wigner - Brillouin perturbation theory. The magnetie 0-1)
properties of this model have not been studied so thorozghly
although Yosida and Okijiszcguggest that a sipilar log T
divergence appears, on the basis of their fourth order calcu-
lations. The present static result for the magnetization is
compared with their result, and with those of Nagaoka41').
This result is shown here to arise from a leog T correction
to the impurity g - shift. A1l of these magnetic properties
can be derived directly from the transverse susceptibility
funotion (introduced in Chapter 2), which,in this model is
found to have a Lorentzian form with a Korringa - like
damping term proportional to J2P,  This part is concluded
with a new manipulation ofNagaoka's second approximation to
his high temperature result, into a form which is quite
similar to the present treatment.

The recent measurements of Gossard et al. of a
"pottle ~ neck" effect in the local - moment relaxation
process of s - d type alloys, (resulting in a narrowing of
the measured line -~ width) are here given a microscopical

explanation, as opposed to the phenomenological Bloch equat-

54, .
ions , originally proposed by Hasegawa. ) The gyromagnetic



17.
anomalies occuring in ferromagnetic metals, discussed by

31,)_55.)
Kittel and Mitohéll are now given an explicit microscopic

formulation, based on an expression originally proposed

12.)

by Giovannini et al The ferromagnetic rare - earth
mode156.;§)investigated in the last section of this Chapter,
and the coupling of the two spin wave systems of the looalized
and conduction sping is exhibited. This ig a more general
proof than originally given by Doniach and Wohlfarth?g;)whére
only the long - wavelength limitis strietly valid (seotion
(5.5) ) due to the averaging procedure adopted for alloys.
The equivalence of the electronic exchange term in
insulators with the Heisenberg model of a ferromagnet, is
demonstrated for general spin , in Chapter 6; again/using
the 25 fermion representation. Linear spin - wave theory,
founded by Bloohéo'z is not lsoussed here, as extensive
reviews are well - kngé361’—2), however the basio equations
of this theory are rapidly recovered by use of the present
formalism, in Chapter 6. DysanéB'}irBt gave a rigorous
theory of the low temperature behaviour of this model,
when, (inter alia) he showed that long wave — length spin-
waves interact very weakly at low temperatures. The intro~-
duction of a restrictive cut - off condition for his
equivalent Hamiltonian in the bose space, leads to a gap
of order J (the interaction strength) in the eigenvalue
spectrum. This meant that the anomalous (or improper)
states gave a contribution e BJ to the free energy, and
this vanishes at low temperature. This new form of the

61.)

Hemiltonian cannot  be obtained direotly from the simple



Maleev substitution of the spin operators, (as is often

64.)

supposed,) for the cubt - off property is not included .
This cut ~ off property can be included , (and hence, the

so - called kinematic terms) by the introduction of a metrio
operator F in the bose - space. Mills and KenanGS'zave shown
that Dyson's boson Hamiltonian is the correct generator for
time displacements in the boson space, and has real eigen-
values. The new metric operator indicates that the non-
Hermiticity of this Hamiltomiem is irrelevant, and in fact,
if caloulations were carried out with F explicitly, no
problems would arise. Unfortunately, any known form of

566-)

is too complicated.

Later theories, which relied on Dyson's treatment,67_8.)

to justify their own low temperature results, included Ogushi,

M.Blogi;)SzanieZgi)among others. Tahir - Kheli and ter %lég

analysed this model in a Green's function formalism, by

the decoupling procedure of Bogolyubov and Eyablikov?z.)

In a seoond paper, starting with Dyson's boson Hamiltonian,

they found the spin - wave renormalization obtained by

Brout and Englezz.), A further decoupling resulted in a
damping coeffiocient in the spin - wave energies. These

results are recovered here, exhibiting their approximations.

Further decoupling methods were introduced in the papers

7.) 75.)

of Haas and Jarrett and Callen (who found & spurious

T3 error for S =% , but not for higher S), and of Morita
76.)

and Tanaka ~ who successfully obtained the famous Dyson

T contribution to the magnetization at low tempexatures.

18.



This is also cbtained in Chapter 6.

These low - temperature theories have been supplemented
in the Curie temperature (Te) region by the cluster method of
Strieb et al77’)and by the work of Rushbrooke78°gnd 0o -

workers,who attempt to find Te by evaluating the partition

funotion directly at high temperatures.

. 79.) 80) _ 81.)
Finally the work of Englert yBrout ,Stinchcombe et al,
13.)
Lewis and Stinchcombe , presented theories which are

applicable in both the high and low temperature domains.
The present fermion Green's function theory fits into this
category. In faoct, 1t bears a very close similarity to
the quantum - mechanical semi -~ invariants, introduced by
Stinchcombe et a181‘)and effeotively gives dynamical sub-
struoture, to their semi ~ invariant averages. However,
due to the Feynman diagram nature of this present work, renorm-
alization of the propagators and vertices is greatly siplified,
compared with their analysis -~ although , in general, their
treatment is elosely followed.

In order to introduce the concept of spin propagators
(or Green's funotions) the next Chapter begins with the Kubo

82.)

response formalism for paramagnatic spins. This leads
naturally to the idea of temperature - ordered, temperature
dependent Green's functions, which then become the foous

of interest in subsequent Chapters of this thesis.



Chapter 2.

SPIN GREEN'S  FUNCTIONS

¢2.1) Introduction.

82)
In this chapter the Kubo response formalism is

presented for the case of thermal averages reacting to a

small adiabatic perturbation. In this work the particular
example of paramagnetic resonanoe8 3:23 chosen to introduce

both the properties of spin operators and retarded propagators
for spin operators. These are the general functio?f which
deseribe the dynamical behaviour of any spin system gﬁd

are the natural extension of the usual static susceptibilities
of paramagnetic theory. A more detailed discussion of the
properties of these Green's functions (in .2 general form)

is given in Appendix C. The simple example of free spins

is chosen to illustrate analytic behaviour of these

fuetions in an explicit form.  Finally the concept of
electronic spin density is introduced in a second quantized
formulation,and its properties investigated. It is also

shown that the Kondo-type interaction term leaves the dyn-

anics of the total spin unaffected.

(2.2) The Kubo Response Formula.

The dynamics of a complex system can be analysed in
terms of the response of such a system to a small, adiabatic ,
external perturbation. The Kubo formalism determines the
linear change in the system in response to an (non-quantized)
external driving force. The fully interacting system can

be described by the Hamiltonian H then at + = O the

20.



additional perturbation Eéxt is applied - the total
Hamiltonian is then B = H + H i  The time - dependent
eigenstates of E' are denoted by ¥ (t) and satisfy the
following Schrddinger equation
1 23 jv(t)> = 2 v ) (2.1)
3t

These states are related to the states in the Heigenberg

picture 2'(+) by the unitary transformation,

er (t)> = e-iﬂtl o1(t)> (2.2)

and the operators in the Heisenberg picture are described by

A(E) = STy i (2.3)

The Schraainger equation of the transformed states is

s 3
i je(8)s = B (8) e (t)> (2.4)
I
This equation cammot be solved in general, so the usual
perturbation approach of expanding in powers of the
perturbation is adopted, that is

A )]

21 (8)> = jalth +571e () > (2.5)

If this is substituted in (2.4) and powers of E_.. equated,

then a series of equations results, the lowest order equation

involving no powers of He is,

xt.

21.



i 3. 42 (8)> =0 s0 |12()> = |2 > (2.6)
3t
where & is a time - independent eigenstate of H in the Heis-~ -

enberg picture. The next equation is the one linear in Hext.

i 535 |2 (1)(t)> = H;xt’(t)lé > (2.7)

This can be converted to an integrall -orm remembering

that the perturbation only begins at t+ =0, so

(1) t

2 (®)>= -1y et E_, ()% (2.8)

So, to first order, the states &' are given by,
t
L] '
jer(t) > = (1= 1f s’ By (te>  (2.9)

This is true for all gtates @a which hsve eigenvalues

E, , that is,

H|g, > = E |8 » (2.10)

A statistical average, as in (4.5), over the new orthonormal
eigengtates W& (t) for any operator A, is weighted by the
original Boltzmann factor e BEaas an adiabatic perturbation
does not change the population distribution of the original

states. The exaot averages are defined by,

(2.11)

a(e) > o= e Pl <w(e)) ap(e)
e~ﬁEa

)
a

22.



These averages will be related to those inthe Heisenberg picture
of the fully interacting system ( without the external

perturbation ); in this case, defined by,

(2.12)
- gE
<A ('t)> - ﬁ e Ba <@alA(t)|¢a >
ge PEq
a

So, using Eq.s (2.2) and (2.9). one has, to first order in the

perturbation,

-b s
<a() 5, =i at' < (2, (+"), &(+)] > (2.13)

where the change in the average must be used if <A(t)> # O,

that is,

<bA(t)> o= <a(B)> - <A()> (2.14)

Equation (2.13) is the general form for the linear change in

any system produced by any exbternal, adiabatie perturbation.

(2.3) Spin Susceptibility Functions.

In the case of paramagnetic resonance experiments on
magnetic systems the perturtation im a small radio - frequency
(r.£.) magnetic field b .o of constant magnitude h, , which
rotates with frequencyw around a large static magnetic field

z
h , defining the z -~ axis.,

ho.p = ibjoos wb +  jhy sin vt (2.15)

23.



If this field is coupled to a well -~ localized spin veotor,
desoribed by the operator S , then the perturbation is

H = S. h (2.16)

ex‘to - At r.f.

In all future work {exept when stated explicitly) the gyromag-
netioc ratio y will be defined to be wmity, moreover the r.f.
£ield is not quantized and so ocan be taken outside any trace.’

The components of the spin operators (at any one site)

85
denoted Si ( i = x,yzor 1,2,3) obey the commutation rules )
[Sl’ sj] = j_i Eijk sk (2.17)

where eijk is the usual +third ~ order anti -~ symmetric tensor
which is zero if two indices are equal, 1 if it is an even
permutation of 123,and -1 if it is an odd permutation of 123.

A more useful form of Eq. (2.17) ocours in terms of the

+ -
" raising or lowering" spin operators S and S , defined by

In this case, direoct substitution leads to
Z i -+ F 2
[s? 8] = & 8 ;[8,87=28 (2.19)

Tf Eq. (2.16) is used in Eq. (2.13) for the components st then,
(2.20)

< ast (t) >ext, = ~1i § J‘t dt'< [Si(t):sj(%’}hi’.f. (+')
(o)

Remembering that h, p (t') venishes for <9, this integral
can be extended to minus infinity and to plug infinity by the

introduction of an explicit O-fumotion (see A.16).

24,
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This also enables the generalized (retarded) susceptibility

fl1 netion x tc be introduced, with a sign convention chosen

ret,.
ag for C.2, thus

Si (t) P 3t ij ' J 1 )
< A > = -% J:mdt xret_(-l—,—t ) hr.f.(t Yo (2.21)

ext.

So, the retarded susceptibility tensor is defined by

C(t~tr) = 16(t - )< [87(8),89(s1)] > (2.22)

The Fourier transforms of these expressions may readily
be written down, if the notation of (C.6) is used. Thus, Eq.
(2.21) transforms to the following, if the &-funotion, identity
(C.17) is used;

<88(w) > ext. _jz X ret. (9 hr £.(Y) (2.23)
Following Appendix C, the retarded susceptibility leads +to
its generalization in the temperature dependent suscep-

tibility (or spin - operator Green's functions) defined by
x (1-1') = < P(s™(1), 89 (x) ) > (2.24)

where the spin - operators are written in the thermal

Heismberg picture,

§ (1) = ot ¥ gl HT (2.25)

As in (C.7) this can be even - Fo.urier transformed (for the



spins obey commutation rules)
x (1) = B I e x (7)) (2.26)

In terms of its analytically continued form i G = w + is

one has, (c.10)

* .

xla( w+ig) = Xr:';é. (w) (2.27)

Instead of the Cartesian components of x 13, the transverse
propagator will be used as it has several si mpler features,
it is defined by,

Xemp, (b= 1) = 1 @(t- 7)< [57(£),8% ($1)] >(2.28)
The x — y components of the susceptibility can be found in

7 T
terms of X and its conjugate x * , thus,

x= vy T b

X (6) = x (¢ = W x . (&» X pop, () ) (2.29)

ret. ret. ret.

gimilarly for the off -~ diagonal components

Xy
ret.

(t) = xer

X ret.

() = Bl py(Dmxy () (2.30)

The Fourier transforms are similarly defined if one notes

that the transform of xgt,(t) is - xget. (- w-is).
The transverse temperature dependent susceptibility

will be used in all future discussions, and so a simplified
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notation for it is used; it is defined by

F(t-t') = < P(8 (z), 8" (")) > (2.31)
Tts Fourier transform is defined as in Egq. (2.26), so
-1 -id 7T
F(1) = B I e F(a (2.32)

So, finally in terms of its amalytically continued form

4 X:zt. (0) =P (w+ig - F (w-is) (2.33)
and 41 x::;‘ (0) =PF(wtis) + P (g -is) (2.34)

The simplest example of this formalism is the case of free
spins when there exists no interaction between the individual
spins, so only one spin need be considered. The Hamiltonian

85)

for this system is Just the Zeeman term

H, = w, S (2.35)

This is just the interaction pieture;jone finds in a similar

method to that used in evaluating (A4.11), that

+ -. -
S (%) = eiﬂot s o Aot Tt b gk (2.36)
50 Xoep.(t)y = -2 <57 > ot wbg()  (2.37)
T %
or xretgw Do = 2 =5 >0 {2.38)

u)+is... th



Moreover, as its commutator vanishes, so does sz'!z;z as does
xxzcr xyz because S% cannot be diagonalized simultaneously
with ¥ or 8¥, Thus using (2.29), (2.30), the real,

symmetric retarded susceptibility matrix is given by,

(2.39)
| 8in wot ooz wt O
X%gt. (t)o = - <8%, 8(t)cos wt sinuwyt O
0 € 0

If this result is used in Eg. (2.21) withh) =wy (y=1)

then

< 8% (%) >p.p. w <8%50 (008 wot~cosyt) (2.40)

(w"wo)

this is a maximum when ®w = w, when
x Z )
< 8%(%) >resonance = 1% <57 o sln et (2.41)
< 89(%) > . T w, <5%Z5>¢ (sin wot+sinut )
(w+ W o)

and this is a maximum when w = = wy, when

< 8%(%) > = wyt <8%> ocos wyt. (2.43)
resonance

28.
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(2.4) Magnetic Interactions of the Electrons.

Bach electron has a spin one - half or % g
where oxi, is one of the 2 -dimensional Pauli spin matrices,

with matrizx elements MA\' (A = + 1).  These obey the product

85)
rule,
2 i -3 . k
. e v T B R Cfagie T ¥ 0., (2.44)

If the electron is described by the spinor field ¢x(gj,

then the spin density at the point x is given by
..S.e (.E) = % Z)\)\v d’;\- (}) .?_M.tb)\(é) (2'45)
In the second gquantized representation
W@ - (Mm% D o' o,

the total spin of the electronic system is given by the

integral of (2.45) over the whole volume, so that

i

e

S = %L +
e 2 Doy S P (2446)

where the electrons obey the anti - commutation rules (A.6):

+
[ 'ﬁtp A B’P’ )\l'_ =6Ppl 6>\)\g (2547)
The use of Eq. (2.47) shows that the total electronic spin

obeys the spin commutation rules (c.f. 2.17)

i J z k
[Se 4 Se] =1 k Eijk Se (2.48)



30.
The generalized form of the electronic - Pauli operators

57)

(2.46) will be useful,

i i
g = bX at o a
q PAM' P +G, A AT D, (2.49)
. i\t i . .
wi th (0 q ) = o© —q and the generaliy ed commubation rules
i J _ k -
Log , 90 = 25 % 550 9,q (2.50)

The commutation rules of these operators with the electron

operators are,

i + + i
[oq y a”p,xj B E'ap+ @At A (2.51)

The total electronic spin can be written in this represent-—

ation as
Se - % o (2.52)

The magnetic behaviour of the electrons in an exbernal

field h% is described by their own Zeeman term,

m 1 + z
He = /Weipapx app = We Se  (2.53)

where the Zeeman splitting wg is given in terms of the

Bohr magneton B and the electronic g- factor 8o, SO

w = g B A (2.54)

So
N
o S (2.55)



The combined Hamiltonisn of the system of electrons and
localized spin (A.2) is given by

K = K3 + H + E (2.56)

0 e e

where BR is the Hamiltonian of the localized spin (2.35) and
Kg is the kinetic energy term for ‘the electrons (see Chapter

5).
Thus, the total spin of the whole system (electrons

plus localized spin ) is Sgq vhere,

S = 8 + S, (2.57)
Now [ K, , 5% ] = 0
(2.58)
while[ X, , g%] = 0
only if Weg = W OF g¢ = &g

If the electrons interact with the single localized spin

through an interaction term (see Chapter 5, Eg. (5.5) ),

-1

then 3 2

[H ,8p] =0 so [H ,8r] =0 (2.60)
Thus, this type of interaction term does not affect the
dynamiocs of the total spin operator Eg. (2.57), which

are determined only by K, , so,

.i: + i (2.61)
"[ST,Ko]"" tTu, S Y owe S
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Hence for the special case, 8¢ = 8g

+ . r s g +
sp (8) = oiF¥ greiot  _ JFluot gD (3.62)

If this is used in Eq. (2.28) for the total spin suscep-

tibility, then its transform is,
T

x  (w) = 2 <58 >

A < 8f >
ret. total W+ 1S =g (2.63)

As the r.f. field couples to both the electrons and the
localized spin, then by Eq.s (2.38) and (2.21) , one has,

T Z
X (h)) =< 8..>
ret, total £7 ° X (m )

Z
< 5% o

(2.64)
Equation(2.64) implies that dynamical information about -

the interacting electron -~ moment system can be found

from examining F(t ) for the localized spin or the electrons
or for the coupled spin propagator F 4 ( v), but not from
the tobal spin propagator. The coupled - spin propagatbor

Fog ( t) is defined, for completeness, by

Pog (t-1') = <D (8(x), S5(%))>  (2.65)
The purpose of the following chapters is to arrive at a
perturbation method for evaluating such propagators, which
contain all the information about the sysbem when expressed

in the Heisenberg picture of the fully interacting system.



Chapher 3. 33.

PERTURBATION AND OTDER METHODS.

(3,1) Introduction.

8)

The fermion representation for S-. 7% is generalized to
2ll S values and the resulting eigenstates investigated in the
next section for the case of S =% and S .1. Those with no
equivalent spin states are called "anomalous" and are at the
root of all the diffioulties asscciated with spin representations.
This generalized representation is then used in section (3.3)
to exhibit the relationship between the Anderson?%id Kbndo3o)
Hamiltonians for the case of several d-orbitals per atom.
This is an extension of the work of Sohrieffer and Wolﬁf?73ho
showed the ocorrespondence for the single d-orbitel, single
impurity model (S= %). Their general approach will be followed
here but in much more detail,to exhibit the approximations used
in their equivalence. This is followed by section (3.4) where
low ~ order perturbation methods are used to exhibit the first
order Knight shifts of the Kondo modelsgging the Holstein-
Primakoff1g%proximation for the spin operators (i.e. large
S limit) and by an equations-of-motion method for decoupling
the Green's funotions. PFinally in seotion (3.5), the proof of
a Wick's theorem for S= % using the coupled~fermion representation
first given by Yblinf?s repeated here and it is shown that it
is not possible to use this simple approach for S_ 1 with this
representation. The (28 +1) fermion representation for spin S,
given by Abrikosogﬁj%whioh was also derived independently by the

present author), is presented, and Abrikosov's method of
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establishing a successful Wick'!s theorem for the s - d model is

outlined.

(3.2) The 2S Fermon Spin Representation.

The general 2S5 fermion represené’c)ation is an obvious
extension of the simple case for S= %. If a set of spin half
operators Si are associated with a set of well localized positions
(e.g. atomic sites), then their operator properties can be
reproduced by introducing a set of fermion operators 811y
and their Hermitian conjugates a‘;,k so that ome pair (A=% 1)
is associated with each site through the equivalence relations

+ +

s¥ <%z, amg ed  Si-ay,a; . (3.)

+ 4 /
where N and [ TR as % 1=9 (3.2).

1,0 T 24,0 B4, A i3 o
It is then quite straight forward to show that Eg.s (3.1)
satisfy the spin commutation rules. This cen be imagined in a
pictorial way as each gite having one electron level,which can
be acoupied by a spin up and/or a spin down electron. In the
light of this fact it may be termed the "electronic representation.
However certain difficulties are automatically introduced in
this representation which can be seen by considering the state
vectors agsooiated with these "particles™. If the empty level
is represented by the vacuum state |o,0 > with
ai,xlo,c» = 0 . (3.3)

then the two singly occupied states |[1,0s = a++l 0,0 > and

| 0415 = é‘_{ o,o>correspond to the two spin eigenstates for
S= % i.e. %m> (the site labels have been dropped for the

moment.) One further state [1 ,1> = a++a+_ lo, 0> completes the

closure property of these fermion operators dnd corresponds to
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the doubly occupied level. The zero and two particle states do

not correspond to spin states but fortunately they are null
eigenvectors of thespin operators.

S| 00> =811,1> =0. (3.4)
This latter property was used by Yolingz?n establishing a Wick
theorem for S=7% operators. The details of this method will be
given in seotion (3.5) of this chapber. The representation is
generalized by taking 25 equivalent sets of operaters for each
site, labelled by an additional index ¢ , This corresponds to the
splitting of the original level into a set of g levels. The

corresponding equations are,

4
Si (a): %E)\)\af a

, CCJ)\ i,a ,)\ H
(3.5)
+ +
Si (a) - ai’a’+ ai:a':"
while the corresponding anti~commutation rules are,
Lo, 5,2 1= 845 80080 (3.6)

The follawing operators are then constructed by summing over

the index afrom 1 to 25 for each site.

4

+
81 = RBIprai g aiap
(3.7)
A +
S1 5 aig 4 A 2, q,-A

The use of Eq.(3.6) readily shows that these new operators still
obey spin-commutation rules. It is always possible to find a
sub-gset of the fermion states whioch correspond to eigenstates of
§2 and sPwhile the remaining states can be grouped in eigenstates
of smaller S values. This can be seen by considering the case

S.1. There are now 5 operators which span this space (for every

site), acting on the general vacuum state o> ; they are,



a+ 3 a+ 3 a+ a+
14+ 1,-1 2,+1 2,~1
The corresponding set of 16 eigenvectors can be assigned to the

L)

. . . 2 z
following simultaneous eigenvectors of 8 and S5 denoted as usual
by | sym>. There is only one set of states corresponding to

|1,m> and this is bounded by the operators § ; they are,

+ + + o+
[1,-1 > = ay . ay |0 > 3 [1, +1 > = a,, ap |0 >
(3.8)
- + + +
1,0 > = 2% (&, ay  + &, ay )l0o>

There are 4 independent series corresponding to I—%,m > , they are,

(witha=1 or 2),

+ + + +
| 3% > = aa_JO > and 8q48q-38~ o >
+ + + +
and L+l s = and 0>
I BeTsS aa+ lO > aa+aa_aB+l

Finally there are 4 independent solutions corresponding to |0,0 >

they are,

+  + + ++ +
| 0> ag+ 8g- |0 > and  ajsaqapsap |0 >

This process can be extended to larger spin values with a

corresponding increase in complexity.

36-
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(3.3) The Relation Between The Anderson and Kondo Hamiltonians for

General Spin.

19)
The Anderson model for several d- orbitals (in this case

taken to be 28) can be written in terms of a generalized Coulomb
repulsion between electrons on the same atom. In general this
®@ulomb repulsion can be writtan asllzz‘between an electron of
spin A ocoupying the g -orbital and one of spin)!occupying the
B =orbital. So for Nd atoms in the lattice, the diagonal part

of the Hamiltonian can be written as,

AX!
Ho =Z§I;JP)\+EE’CLNia>\+ %.ZUU‘BNia}\NiB)\' (3-11)
pA T 1Kp
A
where £ p andf; are the one - electron energies of the conduction
and localized orbitals, measured reoative to the Fermi energy.

The conduction and the localized states are mixed by the small

8 - d mixing potentialV leading to an interaction term in the

Hamiltonian.
+ ¥* +
b= Eip( Vipa®ph 2ian * Vipa 2ia 3pa) (3.12)
aA

The mixing terms, linear in V can be eliminated by performing a
canonical transformation on the Hamiltonian

I -~ o Hoo (3.13)
If the exponentials are expanded the following series of commutators

results,

H = B[ T,E] + & [T,[TH]] + [T [TE]]] + .. (3.14)
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By choosing T to be first order inV, the transformed Hamiltonian

will only involve terms at least quadratic in Vif,

(B, » T]= 5 (3.15)
In terms of the orthonormal eigenstates E and E'of H, this

equation becomes,

<EBlLIB> = (E-8 )<ElT B> (3.16)

This has a solution (for Bf E') of the form,

- 1
T = 5 |E >« B |H,|E'> < B | (3'17)

ER! (E - E')
Thus H1 only connects an occupied d-orbital with an empty
conduction orbital (or vice-versa). These states can be

generated from |E ' >in the forn,

_ + t —_ + 1
| B> = apkaiaxlE > and (B> = aiaxapxlE > (3.18)
So
¥*
T oo (Bl B>V El ) (3.19)
«B' E - B B, - B

This can be solved in the following manner, usiag the two

alternatives for manipulating the commutator,

+
[H, » ap)\aimjlﬂu (B -8 )|E1> (3. 20)

or

A .
[Hy » agyag 12> (g ~Ea3, Viont a Yisp> G.21)
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where the symmatry propesrties of the Coulomb term have been used

i.e. symmetric with respsct to interchange of thespin labels «

the orbital labels and also use of the Pauli principle for the
AX ' .

_same orbital i.e. U _ =0 ; using Eg.s (3.20 and 3.21) to obtain

the eigenvalue equation gives,

(B -ENE>= (5 -t -Bier‘“' Mg, > (3.22)

Similarly for the eigenstates ]E2 >, with the result,

(3= BN B> == (g - - 2 U By (3.23)

Using Eq.s (3.21 and 3.23) in Eq.(3.19), T can be written down

using the appropriate inverse operator,

(3.24)

Ay—1
- z IE><E((};P-§ -LN Bk“}ﬁ\ ) (V.lP&;’ 2 an 1;a o 2 )]Et >< B
1pEE' BA!

This can now be linearized in the inverse operator by
approximating the Coulomb repulsion matrix by its largest
contributions, that is, only oonsidering the diagonal parts
between the same orbitals.

)\I
Jéa - 5 Sl (3.25)

Moreover as| E'> is diagonal with respect to N i, then it
can be only either ocoupied or unoccupied with number eig values

1 or 0, so in this space,

. : + % 4
=z ( _Mien o+ (= Ve ) ) Vygagian, - Vigag; ap,)
ip
a ep- EG-UO. ep - €a

(3.26)
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This oan be rewriiten in a more compaet ferm by defining the

following d-level energies in terms of y = ..

Y -
C; = g, +—%-(1 + ¥ )Uq& Nia}\ = %(1 "Y) + YNia}\ (3027)

So finally the generalized form of the canonical generator T ig,

:Y + * +
to- z Tigea ( Vipg 2pa Bign T Vipa 23 gx 2pi ) (3.28)
lp Ep - EY
ahy a

Now higher order commutators will involve higher order terms in

the dimensionless ratio TGY ,

| Vipal®
= <i Vipa] > .
I‘O.Y ..-_-.-.._Y—_._...p(g(;() (3 29)
Eq
Y
where p(E, ) is the density of conduction ba1d states in the

perfeoct metal at energy &Z , while the matrix elements are
averaged over the o nduction states p of this energy. So in the
1imit = << 1 the Hamiltonian H is well epproximated by

ay
H,+ H,, where,

Hpy = &[T H,] (3.30)
Evaluation of this commutator, using the anti-commutation

rules for the eleotron operators, results in a geries of terms,

Hy = H:‘J + Hch + Hrest (3.31)
with
Jrg Jrs +
| 1
Ho 2:-L‘;'-'p( Wipa toE Jipa ( Nia,—k * Njﬁ,—k) )a',j BX 21 an
aBA

(3.32)
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and
Y ip' a ¥ + + h.ce .
Hen e I :Ilpa iad *1eapa 2p'ar (3.33)
ipp
ar
where the matrix elements are defined by,
Jp '8 * 1 1
=L yv. v ( + ) (3.34)
Yira ipa Jp'B Y Y )
Y ep ~ &g €p'-¢g
and
JPB * 1 + 1
1Pa - ViP avjp'ﬁ ( - - ) (3.35)
€Ep - g, Ep' — €
The remaining terms in Eg. (3.31) are given by
, ip'a ata ip'a
H = 1, -+ . l... +
rest ~ oy 2WUipg apdpiy af ey ot BiI Wy apian
pp ipp
aAA? ai
(3.36)

The first term can now be manipulated into an s-d

exchange form using the 2S5 - fermion representation of section

(3.2), and the notation,

+
g = X .
PP w2 T T (2.37)
S0
> M apx o' Piantia o = P E( B0x%p D =T W)
-2 at a a*t ) ) (3.38)

. Pl 10.—?\ iax

Carrying out the sum over A on the first term and using ( 3.5 )

gives,
.5 ( - >‘ S")‘ -%.(a%a -a'a (v, - N,
z A aP)\ P\ ig PP ig ) -5 ( P+ P+ P- pL ) 1o+ :La.—)
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Using Eg. (3.7 ) for S ia the final result is

+
E)\ %’Niaap)\ap'}\ - Sppt §-ia (3.50)

If this is now used in Eq.(3.36) the first term of (3.40) is

incorporated with the second of (3.36) to give a contribution H dir

so,
Hrest = Hex + Hdir- (3.41)
With ipk
= -3.2 3. g .8, (3.42)
ex ipp' 1Pa PP ia
a
and H ) (wip'a+=}JipdN ) a L
. = . ad, . a_ a_, (3.43)
dir ahipp! P& ipa "ia” PA P'"A

These terms in the Hamiltonian can be further simplified
if the orbital labels do not appear explicitly in the co-efficients
J and W. Eg. (3.34) implies that the mixing co-efficients Vipa
should be independent of the orbital suffix a , while Eq.(3.27)
implies that the levels are degenerate i.e. £, and U, do not
depend on a, so that J (and W) can be rewritten as,

it

Jg g = (B

asguming that only spatial differences are important. Then

R .
R

carrying out the wsummation over the 2S values of a on each atom,
and using Bq. (3.7) for the spin operators, the final result for

the 4 terms in H, is,

o+

By = -2l OV R - Ry + 30 0 (R - BRI o+ Nygy Dajgans oy
afhr

(3.44)
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This can be incorporated into Hy, by altering the definitions of

€ and rpresents an exchange term between the d-electrons
themselves.
.= : . R,) N, +
Hair igl(,'wpp@i) v e I RO N ) A
ai

In the sub-space where there are N ; d-electrons on each

atom, H is just a one-electron scattering term for the

dir
conduction band which can be incorporated again in Eio . In
fact, for rY << 1 the resultant shifts of their wave-functions

and energies are negligible.

= ’1‘0 I J (R ) a+ + + h.c. (3-4’6)

Hon e R I T T
iip' Pp ah toa=A PA P A
a

This is the only term which does not conserve the number of
d-electrons and repregsents a double-mixing term between the
d-orbitals and the c&nduction band. However this only occurs
for doubly ocoupied orbitals with opposite spins an. , since in
this model the orbitals are taken to be independent, this term

can be neglected. This leaves only,

H, = - %-igp,Jpp.(B_i)gzppfgi (3.47)

This is the localized - moment s—-d exchange Hamiltonian which
will be analysed further in Chapter 5. Near the Fermi surface

of the conduction band, Eq. (3.34) becomes,

2

Tpppe (B = J®) - 2ol Vin,l U (3.48)

gg ( gg+1)
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Now a localized moment is most likely to exist if
Eg < B and e4 + U > iJe.ygg >0
then J(R ;) is negative so that the coupling is anti~ferromagnetic.
As will be shown in section ( 5.3 ) this is necessary to produce
an observable resistance minimum.

16)
(3.4) Holstein-Primakoff and Decoupling Approximations.

Holstein and Primakoff (H.P.) presented the first and most
well-known representation of the quantum-mechanical spin operators
by introducing a boson operator A,(the lowering operator for a
simple harmonic oscillator), and its Hermitian conjugate A * with
the ocommutation rule,

(4, 277 = 1 (3.49)
The H.P. transformation (which is a particular example of a wid-
er class of transformations),retains the hermiticity of the general

spin operators, magnitude S, and has the form,

z + +
S = N -~ S and S =A(ZS-N)% (350)

with N =2t A, the mumber operator of the bosons. Since N
measures the deviation from the maximum spin down state, which if
small (N~-1) and S» 1 enables the roots to be approximated by

their leading terms, that is,
ot

st - (23)}‘é At s = (23)1/2 A (3.51)

The diagonal part of the s-d Hamiltonian Ho is still diagonal

in the boson representation,so,



.+ w (N-38) (3.52)

= z
Bo ¢ DA P °
bA

with the one-electron energies measured relative to the Fermi
energy u , that is,

By T € ~n+drg and w, = 8pgh®  (3.53)

In the thermal interaction picture (with t = it ,where t is
the time) the operators are defined by equations of the form,

Xt) = AT (3.54)

So for the bose~-fields and the conduction electron operators,

A+( ) - WoT ,+ a a+( )__:P)»’c ot ( )
1) = e an -~ 1) = -~ 3.55

z
For the representation in which the ¢ component of the Pauli

matrices is diagonal, one has,

. . _
= AS S s 3.56
A 841+ ( b, _+ 85 . )6”,_)\ (3.56)

The interaction part of the s-d Hamiltonian Hq for a single
impurity at the origin with a & ~function ‘an..e of interaction

(or 3q = J) oan be re~written in terms of the appropriate

Wannier operators o °, where,

~%
= N z ap, A (3057)

45.
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If this is used in Eo. (5.5 ) them H4q becomes,

. + 5
B = T8 % a g, &, (3.58)
AN?
or,
B = -3 (sta"a +8 d « + 32 A87d @) (3.59)
1 - + - X A A ‘

In terms of the H.P. representation,Eq.s (3.50) and (3.51), this

becones,
A + + +
= - - .60
H, J i (A Uy Gy  F kakaK(AA s) ) (3.60)

where the following abbreviated nmotation for the bosons has been

adopted,

A - e(d) AT & e(-a) A (3.61)

The single particle Green's funotions can be defined in
a similar way to those in Appendix A. The Wannier Green's

funetion at the origin is given by,

Gfm (¢v=2'") = < Tw (av(t) ’ a;(t') )>o (3.62)

In terms of the temperature difference 7T = ¢ — ¢' ,and the one

electron fermi faotors,

-1
£ T (e P 1) 1 £, (3.63)

]

L o - L d 3 L]
and since G is diagonal in the momentum representation, one khas,

(o} —BEPXT - - -
6, () = gvxpz o (6(x) £y,~ &(-2) 2, ) (3.64)



Similarly the bose propagator B()( t) is given by,
o
B (t-10) = <™ (2a(),a% (1)) > (3:65)

which is evaluated in terms of the bose fastors,

b (ug) = (™) o v(uy) - (3.66)

S0

B (g) = e ° (o) b () +0(ag)b (u) ) (367

Since G(7) is add periodic with respect to t , its (odd)

Pourier transform (see Appendix A. 40 ) is,

( gy -5 ) (3.68)

=l

o]
G)\ (-\7) = %
heJ

)
The corresponding (even) Fourier transform of B ( ¢) is,

©(3) = (v -ig) (3.69)

The mestriction to large S can be seen by evaluating the
\
thermal average of SZ in the two representations with respect
to the eigenstates of Hy .
In the spin-space with the restriction to the first 2S

eigenstates of N, one has,

g
<8 > = <N-85 = -Bg (%Bu) (3.70)

where B S(xﬂ is the Brillouin function of paramagnetism for spin S

Bg (x) = (S +7%) coth (28+1)x ~ % ocoth x . §.71)
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However
- 8
< N> = b (v ) # <N >0 (3.72)

but in the limit S >> 1 then Bg(x) = S - b~ (2¢) , s0 in this
limit,

< S > = < S > ((3.73)

This could have been anticipated, for in this limit both

: - ot z
representations satisfy [S , 8§ ] =-285 = 2S,

So a diagrammatic perturbation theory ean now be constructed

88.)
from Eq. (3.60) uming Gaudin's proof of Wick's theorem for the

+
bose-fields A and A (Appendix B.) The electronic Green's

funetion is represented by a directed solid line and the bose

propagator by a directed ourly line, Fig. ( 1. ), (see later).

The lowest urder diagrams in each case are just the
simple "bubble" graphs, Fig. ( 3. ). The corresponding lowest
order irreducible self-energy II (¢v) for the bose propagator

is given by,

(<)

75 63 (0) 8(z) (3.74)

which has the simple Fourier transform,

m(a) = 27 ¥ (3+75)
where the electronic magnetization { is defined by,
0 o
o . KN+ - ¥_ ) o , -
=k = e (0) (3.76)

N A
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Similarly the effective potential (see Chapter 5.) V,(x)

for the Wannier propagator is given to first-order by,

v, (z) = » J(B°(07) -8 ) &(x)  (3.77)

which has the transform VA (v) = 23 ( b -5 ) (3.88)

In the large S limit (Eq.(3.73)) one has,
V(%) = ad< S5 (3.89)

These two first order results can also be obtained by

decoupling the Green's functions equations of motion. Writing
F (w)=<«S ,87 (u)>> with S
for the spin operators, the corresponding equation of motion
(c. 18, ) with the Kondo Hamiltonian Eg.s (3.52) and (3.58)
is,
(wo -w )<S ;S+ (w)>> + <£87, Hy ] 55 (w)ss =<[S-ss+]>
(3.90)

Evaluation of the commutator gives,

+ + -
(W —w)P(w) + 27 << a_ a, 5% 8" (w)>> ~J Z)\«a;:a)\s 357 (u)o>
A

(3.91)

= -2 < Sz>

49.

This is approximated by neglecting the higher order Gresn's funotion

+

z  _+
<< 06_q 6,4 S 38 > and decoupling the other term in the

non~vanishing form,

A

<<a-;\ a}\S-; stss < or.-; ay > << s; st (3.92)
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With these approzimations Eq. (3.91) has tke solution,

¥ (m) ) -2 < 8% (3.93).

wo—w"ZJC

If this is compared with the result for the bose propagator
using BEq. (3.75),

B°( w) o

B(w) = (v, - w~2Jz )
1 =N(w) B° (w).

(3.94)
Now F (w) = 25 B(w) din the large S limit, and also in

thie approximation< 82> = _2g s So the two results,

Eg.s (3.93) and (3.94) are equivalent. In faot, if this

result is compared with the exaot result, to first order in

Jfor S=7%orS = 1, BEq. (5.18), it will be seen to be correct.
This demonstrates the relative insensitivity of first order
results, which can always be found by almost all methods to

this acouracy. A similar result is obtained by using the same

decoupling approximation for the Wannier equation of motion.

(3.5) Yolin's Wick Theorem and Abrikosov's Method.

The proof of a spin-Wick's theorem for S = %, given by
Yolin,g)depends on the fact that the two anomalous states | 0,0 >
and |+,~> (using the same notation as in section (3.2) ) , are
null eigenvectors of all the spin operators i.e. Eq. (3.4).
Consequently a trase over this set of states, (denoted generically
by "a"), of any product of spin operators X(S), which does not

involve any additive constants, will only involve non-zero



51.
contributions from the two spin-states | +, 0 and |0y~ > o

This property is maintained even when the states are weighted by
the Boltzmann factor exp( - gH,) , with H , diagonal in S°
8ay g s? y then,

( e"‘B(ﬂosZ -Bwosz

Trg, X(s)) = Tr, (e x(s) ) (3.95)

where the operators on the L.H.S. are written in the coupled
fermion representation, Eg. (3.1).

However, the partition function Z° involves a trace over
the Boltzmann factor which picks up contributions from the two

anomalous states, so,

bt z ’ij~' -‘l‘a
Z:, = T!‘a(s B N& ) = 2+ e~ P wo'l'e 5P Yo (3096)

This is not equal to the partition funotion evaluated in the

true spin space for S =%, for,

. .
0 ~Bu, S T B, = puy

2 = Tr ( e ) =8 + e (397)

Now using the usual definition of a thermal average,

evaluated in the interaction picture, one has,

- z
s T (e P%x(s)) 2% mr (o7 Buo Sy(s)
< X(8) >, = = a ., __a .
4] o] 0O
Zg g 2g
or in an obvious notation,
(3.98)

<X (3)>0 = T<x(8)>2 (3.99)



52.

wkere

Y = _Z.BZ‘_ - cosh (’%'B@o) + 1 (3.100)

2
s y cosh (%‘B mg . .
The bar over the Y has been used to differentiate +this

compensation factor from later ones.

The difficulty of all
suh compensation schemes is that when there are N different sites
contributing spin operators in the product X(S) the factor must
become W s (see section (6.3)). Once an equivalence relation
between the spin space, and its representational space, has been
established, for example Eg. (3.99), for complete traces; then
Gaudin's method of deriving Wick's theorem (Appendix B) can be
used in tthe new space to obtain single particle contractions
between the representational operators.

As can be seen from the generalization of this representation
for spins greater then %, one can always find a sub-set of
eigenstates corresponding to a given S value, but some of the
remaining anomalous states give non-aero contributions to
any average, (for example S = 1, Eq. (3.9.)), so the previous
technique cannot be used. This is not the case for the general
drone representation where all states are spin states,
Unfortunately, in this case, linear combinations must be used,
which introduces problems of normalization within the trace.

Abrikosovﬁgeneralized this procedure in a novel way
by introducing a 2S5 +1 bilinear form of fermi operators oy

+
and onl(note: 25+ 1 = 2x 28 only for S = %, so either extension

has the same spin half form.) The spin operators Si for spin S



are written in terms of their 2S5 + 1 matrix representation Smme*, 53.

so that,
5
8 = = on Smm! om' (3.101)
m,mt= -3

where

Syt = <Sm| 8| S, un> (3.102)
and

{em, o;t by = Smm (34132)

This representation was discovered independently by the
present author,for it is obviously true for any operator which
can be represented by a finite matrix:(Usual second quantization
involves infinitely dimensional matrices in Many-body Physics).

The representation given by Eg. (3.101) is readily seen to
obey the correct commutation rules for spin operators, as pairs
of fermions occur for each operator. Moreover in the usual matrix
representation in which s? is diagonal with its eigenvalues,
occuring in an ordered mamner down the leading diagonal of the
matrix, one has,

zZ 8 +

S = z m c; Oy and S =

: ( (S+m) (S +1 -m)) onom~1
= - n

(3.104)

However, as has besn ghown already, it is not sufficient
that the representation just has the correct commutation rules;
there must be a 1 to 1 correspondence betwsen the states in
the two representations. Otherwise supplementary techniques

must be introduced to discount the effect of the anomalous states.
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In this representation the eigenstates can be obtained from the
usual vacuum state |0 > by addition of extra fermions, the
resulting states are all orthoXormal. A state with n fermions

25 +1
can occur in C, ways, so that altogether for spin S there

are 22S+ 1 possible gtates. As can be seen from Eq. (3.104),only
the single fermion states, denoted |m> , correspond to spin states,
and there are 25 + 1 of these. Thus, there will be 228+1~(ZS+1)
anomalous states in general (oheck, for S = )% this is 2).

Since the states are orthonormal the sub-space of the

one~-fermion states is orthogonal to all the other anomalous states,

denoted |m* > , S0,

<m|m¥> = 0 (3.105)

A technique based on Eg. (3.105) using projection operators was
derived by the present author before the discovery of the drone
~-fermion technique (see Chapter 4.). Due to the complexity of
this method its use was discontinued -~ +to low orders it was
found equivalent to the Abrikosov weighting method, which is
desceribed next.

In general, o.nly the vacuum state of the set of anomalous
states is a null eigenvector of the spin operators, since the
representation always involves a destruetion operator on the
R.H.S.,s0 an equation like the first part of Eq. (3.4) is also

valid here. However for the rest of the anomalous states,

S | m * 5 £ 0 (in general). (3.106)



The restriction to the gpin states | m > and the vacuum state
|0 > is obtained by altering the Hamiltonian in the Boltzmann fao-
tor to include an additional term,
8
BRoo= QT epon (3.07)
This does not effect the diagonalization for originally
H, = wo 8% . Now an n partiole state will have an extra
weighting factor e-BnQ . Abrikosov assigns the energy Q a
value much greater than kT, so in performing thermal averages, the

greatest contribution will come from the spin states (remembering

that the vacuum state does does not contribute), so,

7 e em o PETY gy s (3.108)

38
< X(8)> = (zo
o m

Henoe, to order 1 this can be extended to a trace over all fermion

states,
< X(8) >: = (z: )-1 o Tr,, (e-B(Hd+HQ ) x(s) )
Similarly (3.109)
ZZQ = Trg ( e”ﬁ(H0+HQ) ) 1 + Q(G-BQ)

(3.110)
80 in the limit of large Q or Q@ >> kT +then, in the notation of

Eq. (3.110)

pQ

(<)

(

H]

< X(s) >: ) < X(s) >:Q (3.111)

ZO
8

For w, = O then Zg =28+ 1 ,which is just Abrikosov's factor.
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If Eg. (3.104) is used for the spin operators in X(S) of
the B.H.S. of Eg. (3.111), the usual Wick's theorem oan be used

for the fermion fields. Their zero order Green's function is

denoted by,
cQ
o - +
Come (%) = <TW(°m(1), Om1t (<) )>o
(3.112)
This has the odd-Fourier transform,
) - ) _)..1

So the evaluation of Eq. (3.112) leads to,

o ~(mw, +Q) v + -
Comt (v) = e ° (6(x) fmq - 0(—v) £5 )
with : ) ( (§.114)
- Blmy +Q) ~plmu, + @
+ o
faq + 1 ”me,:(e 1) Zoe
(3.115)
All measurable averages must be multiplied by the factor
Q@ o -1
e (z s) 80 only diagrems with one factor
e« BQ will produce a finite contribution in the infinite

Q limit. Moreover as the spin matrices Sppt are cyelic inside
the trace, the self-energy contributions to any electron
propagator can only involve one _1_&'; q Yactor, so all other time
orderings of that graph are exponentially small.

The other main difficulty with this method is that it
is restricted to only one spin impuity (for S> %) or
equivalently the low conoentration limit. For example, if 2

2pQ

spins are present, the factor e could arise from either
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one of the sites having 2 fermions excited ( a non-spin case),
or one fermion on each site,(a true spin state, for two sites).

To avoid such difficulties, the next chapter introduces the
drone - fermion representation, which for S = % suffers from none
of these troubles and for S = 1 they can be compensated for in a

manner similar to Yolin's treatment for S = %.



Chapter 4.

WICK'S THEOREM FOR THE DRONE-FERMION

REPRESENTATION.

(4.1) Introduction.

The drone-fermion representation previously given by

Mattis for 8= 7 is generalized to all S values and once
more the small S eigenstate properties are analysed.

This representation has the fundamental advantage that all
the fermion states can be formed into linear combinations

2 and SZ leaving no anomalous

which are always eigenstates of §
states. Unfortunately, these linear combinations have
differing normalization co-efficients so that a general
Wick's theorem cammot be readily derived. However for

S =}, a direct correspondonce can be established which
results in a very simple form of the Wick theorem for these
operators. This result is established in section (4.3) and
the method is then used in the following chapters. The
analogous result is then proved for S =1 in a somewhat
less elegant manner in seotion (4.4) and apart from an
additional multiplicative factor (Y)is very similar to

the result for S =% . These results, it hould be
emphasized, can be incorporated immediabtely into standard
many-body theory and do not necessitate ary specialized

manipulation or special diagrams in contrast to most

other sgpin-Wick treatments mentioned in Chapter 1.
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(4.2) The general Drone Representation for Spin S.

The drone-fermion representation for spin-half operators

5)

localized at the spatial sites R; is,
2z + +
si = Oi Oi “‘% 7 Si = Oi ?i (4.1)

where the reml fermion operator P is defined by,

+
P = d. + di (4c2)

The anti-commutation rules for these fermion fields are,

+ +
(e, 3 ]+ = [di y dj]+= 6-j (4.3)
while all other pairs antiecommute amongst themselves.
2
The use of Eq. (4.3) shows that 9; = 1, which is why
the D~ons are known as drones, as they only produce the

commutation rules between different sites, (Eg. (2.19) ),

+
- + - z
sz S, = ) : = 2
Lsf, 851 5 %y [Si’sg‘] 5

%3 (4.4)
Tt is readily seen that the representation given by Eg. (4.1)
satisfies these commutation rules and is also Hermitian.

It will be shown later that this representation corresponds

to S = %; for the moment it will be generalized in a similar
manner to the coupled-fermion representation of Chapter 3.

Thus an additional subseript a (a = 1, .... , 28) is

added to each spin-half operator in the C-D fermion space giving,



+ ' + +
8y (¢) =0y o5t 83 (a)= o5, ¢4,

i

o =a, +a,_ (4.5)
e

with the complete non- vanishing anti-commutation rules,

+ +
[Cia s o3pde = [d5a, d5ple= 835 g (4.6)
Moreover in terms of the vacuum state |0 > defined by,

0:0 0> = a. Jos = o0 (4.7)

each site and representation is associated with a veotor

space | %, i, ( «)> spanned by the veotors

+ + +
di&|0> s 0. |O> , dss 4 lo > (4.8)

0
[0> , ic

Tensor products of these different veotor space representations

(all with the same vacuum state), can now be oonstructed

to give & space for spin S ,

[S, i> = %, i, (1) > l%’i: (2)> cvvenlly i, (28)> (4.9)

The operators in this larger space are merely the sum of

the individual spin % operators at each site,

28 23
z + - + +
S = Tloy o, k) 8= Ll %, (410
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Now all the individual components are veobtor spin operators,
then ipso facto, the spin commutation rules Egq. (4.4) are
preserved. (This may be checked directly). In th is represen-
tation all fermion states can be grouped to form eigenstates
of the same §2 and different values of m i.e. | S,M > .

In general, one can evaluate all the eigenstates for
a given S value by finding all the different fermion states
corresponding to | S, -5 > and then comstruct the remainder

by repeatedly using the raising operator S* on each,

using the equation,

ST 8m> = A S -m )(8+ m+1 ) [S,m 41> (4.11)

This will exhaust the complete set of o© - d operator states
in the form of 22S independent spin equivalent series. It

is then found that the root co-efficient in Eq. (4.11)

(which is a direct consequence of the general spin commutation
rules) is merely the required normalization of the states

in the new representation.

(4.3) A Wick's Theorem for S=%.

For S= %, there is only one representation for each
site, so that there are only 3 operators in this space,

+ +
namely, 1, o, a.nddi which can act on the vacuum state.

1
This generates a complete double representation of the
spin - half eigenstates (dropping the site label i for the

present) 1%, ¥ %> as can easily be verified.
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I}é, "}é >

[0 > or d*j0 >

i

(4.12)

d
an %, +% > otdafo s or ¢ j0>

Using the notation of section (3.5) for S= % , a simple Wick

theorem for the spin operators in this representation will
now be demonstrated.

In evaluating a trace in the spin-spase and C- space
(including the D~ons) of any product of spin operators X(S),
a mere double- overcounting will ocour, for all the states in
the C- space correspond to spin states, and are ortho-

normal one to another, so,

z - % . oz (4.13)

Similarly for any produst of spin operators,
B ud Bu, 8
-8 u -
Irg (e X(s) ) =%rTr (o " ° x(8)) (4.18)

where the operators in the R.H.S. take their fermion forms,
Eq. (4.1). So upon dividing Eq. (4.13) and using the
notation of Eq. {3.98) for the defini’ion of a thermal average

in the interaction representation, one hasg,
s o
<X(S)>0 =<X(S)>0

If this is compared with Eq. (3.99) one can see an advantage

of this representation immediately, namely, there is no need
for any normalization factor like Y . This is very useful in

many-spin problems. Moreover, the D-ons have very simple
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properties which are also useful in any Quantum Field Theory

approach. Once more, the resulting Wick's theorem is
straight-forward, after an equivalence relation like Eg. (4.15)
has been established. (See discussion after Eg. (3.100) ).

In the interaction representation with the simple
Zeeman- like Hamiltonian, Eq. (2.35) the "temperature"

dependence of the fermions fields is simply (c.f. Eq. 3.54),

Hot , -Hg WoT
oF (1)= e o+eH° -6 s o(t)=o (4.16)

The? -~ dependence of the D- ons is merely to order them under
the Wick operator Tw.

Thus,

A
")
@
+
v
[l
O
r

E
<dy  dg7>4s % 613 (4.17)

where the simple fermi functions have been defined,

* * Buo (=1
27 = (e T 741) (4.18)

In analogy to (A.15 and A.16) this enables the free

(denoted by zero superseript) temperature ordered C-on and
o o)
D- on (symmetrized) propagators C ( t) and D ( <) to be

defined (n = -1),

Ci3( )= < (og () 5 of (o) )5,

- aije‘ Yt gr) £ -0 ) )

(4.19)

and Di5( %)= <t (95(5), g(o) >, = 55 (00 ) 8(=))
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The C- on propagator can be rerresented diagrammatically by

a directed wavy-line from the point¢' to the point <

and the D= on propagator, by an undirected checked - line
betweent and¢' (Fig. 1 (&) and (b) ). The propagator of most
interest in spin problems is the spin~ f£lip propagator Eq.(2.31),
which in the free case, is represented by a parallel pair of

C~ on and D- on lines (Fig. 1 (e) ),
Bly (%)= <®(S] (),85 (o) )55 =8,.0° (+)2° (%) (4.20)

This well illustrates the nature of the drome propagator,

for it converts the fermion properties ( n= ~1) of the C- on
to "boson -~ like" properties ( n= 1),as one requires for

spin - waves, for example., The term "boson -~ like" is used
to indicate that the spinsygigﬁutation rules rather than anti-
commutation rules (C.1), These funotions also have simple
Fourier series transforms (A.35 - 40) defined by,

1

-1 -iv 1t o o -
(V)= ( w-i¥) (4.21)

o® ()= 87 2 T oY)

~e
Q

and

e

D° (%)= BT e Tp%(T); D% (T) -2 (19) (4.22)

Similarly for the bose-like (e = a ) propagator, with

N @) - tanh (%5 B wo ) ] -2 <% o
w, = 1@ T, ~id (4.23)
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This could have been anticipated from Eg. (2.38) ¥. B,
O, =
P (a) is not defined for w, =0, unless it can be non-
0
vanishingly renormalized, although F (<% ) . is

well defined ( in fact, % ).

(4.4) A Wick's Theorem for S = 1.

In order to demonstrate the Wiek theorem for S =1
the complebe set of states for S=1 are needed. In th'is case

there are four independent operators ', cg , d_; , 52'.'(5[‘119 site

label will be dropped for the present) so one can construct
from them all possible non-zero combinations operating on

the vacuum state (remembering all destruction operators on this
state vanish). The four independent sets which are both
normalized and satisfy Eq. (411) are listed in Table 1, ( P.72).
Tu order to preserve the sign of these vectors (as the operat-
ors are fermions) the following convention for their normal
order is adopited: The smallest D-on operator acts first on

the vacuum state (furthest to the R.H.S.) followed by its
corresponding C-on (if present), then the next lowest D-on

and its C-on ete. up to the highest numbered C-on on the
L.H.S. It is at this stage one can see the difficulty of
deriving a general Wick theorem for finite temperature
averages, as some of these states are only present in linear
combinations and so have different normalization factors.

This means there cannot be a general correspondence between

a trace over spin states and a trace over C-on(and D-on)
states. This difficulty can be avoided for the case of

S=1 by noting that the "under-weight" states only occur
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for m=0. Now both the individual states and their linear 67.
combinations (i.e. true spin states) possess the orucial

property< o | Szl o> = 0 , Thus a trace over the spin states

of fwmctions of S° (which involves no constants before

transforming to C, D-ons, and denoted X(ﬁF) ) only picks up

the contributions from m= ~ 1 s which are over-counted 4 times

(the independent series ~ 4in this ease) in the sum over the
equivalent C~on and D~on states. Thus (c.f. Egs. (3.95) and

(4.14)

Z _ 4 Z
mr, x(s%) = % 1 %(s") (4.24)
in an obvious notation, and the operators on the R.H.S. take
their ¢~ d forms. This zero contribution from linear

functions of §” however, cannot be invoked for constants which
are diagonal in these extra states; the equivalent statement

to Eq. (4.24) is,

s o (4.25)

The correspondence exhibited in Eq. (4.25) is also
true for exponential functions of s?, This is particularly
so for the case of the partition fumetion Z°, evaluated in
the interaction representation of the two spaces. In the
same notation as section (3.5), the appropriate equation is

then,

(4.26)

[8y)
mo
il
e
ON
'
—

.

with (4.27)

Zo= 4. (e Py & Pu 2) = 4.(e ﬁw°+1)(e“ﬁ o411y



This latter factorization is ctucial to the whole argument

for it helps to cancel out the fermi factors Eg. (4.18).
Moreover the factor of % in the C-on form of S° is just
suffioient to introduce an inverse bosefactor (Eq¢3.66)) in
the . S” >2 type averages. This eventually will relate the
fermion-like anti-commutation rules of the C-ons with the
"boson~-like" commutation rules of the actual spin operators
for S =1.

Now, as can be checked by either explicit calculation,
or aycling one of the C-ons around the trace (see later),
one bas,

—Bwosz + ~Buwo
Tr, ( e 0y %) = 4 ( l+e ) (4.28)

So, upon defining averages with respeet to the C~-D space, by;

-1 - g2 -
o = (2 (6 PV ga =2 gu) (4.29)

0+B
< s] a>

using Bq. (4.29) and after using Eq. (4.10) for S= 1,

with the spin operators reresented by their C-D form, one

obtains,
(4.30)

- - o BU LBw
<S>g=2(eBmo+1)1.—1=1 € ° 1 -e °

1 +e Pug 1, otPY,

In the last form, the compact notation p = T4 has been

introduced for later use. The magnetization in the two spaces

can now be related,
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z 8 oy~1 - Bw g% .
<S = (2g) . Tr (e " 8%)

v
1

(4.31)

L
P

o\~1 - 8% =z
(42.) . or (e P g7y

)
Then multiplying and dividing by Z; and using Eg. (4.29),

this introduces the normalization factor Y ( wo),
8
<S5 > = Y. <8 > (4_32)

where

o -1 - -
Y (w) =2, (42)7 = (2% z3)"!

(4.33.)

Moreover for S =1, one can always use the following closure

relations for produsts of 8% , ( "u" is any integar )

{ s® )Zn +1= s or (&% )en =( §° )2
So any polynomial in §°, X( S% ) also satisfies

<x( 8% )8 = ¥.<x(8%)>S (4.34)

This is the equation which restriocts the proof to § =1
and S =%, in the latter case ¥ =1, (see Eq. (4.15) ).
The next stage of the proof is to generalize this to
products of the raising and lowering operators S
(remembering p = T ). So, on re-writiong Eq. (4.4),

for one site, in the useful form

[s¥ ,s™ - 2,8" ana [8%; s¥)-psh (4.35)
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Z
Since spin averages are diagonal in § , there must be an 70.

equal number of §' and S"HPoperators. The general proof is
inductive so ome starts out with the simplest products

+ - g —+S
<S5 B850 or <878 >0 and uses the property of

eyclically transferring the operators around the trace,

as in (A.10) and using,

A S% ~ 282 A
R She = et g (4.36)

then finally commuting them back to their usual position in

the product. The final result is,

< gt g¥ > 8 = 2p <82 8
° ° (4.37)

1 = ol B uw

This approach can be equally well applied to the spin
operators in their C-D form since the trace now covers the
complete representation of the C-D states and so maintains

the orucial cyclic property, so immediately,

P2 LN Y-

° (4.38)

Upon multiplying by the factor Y and using Eq. (4.32), then,

A I PT- L N (4.39)



The same argument is used for the next produet, so,
2
B~ 2z 8 2p  <( 87 >2 <SpS‘p>§
+ (4.40)

1 ~ o Hhuo 1 ~ o—HBu,

There is an identical result for <SP ™% 5% .2 but now

all the averages on the R.H.S. are just replaced by C-on aver-
¢

ages < >, but from Eq.s (4.34) and (4.39), each of these

is related to a spin -~ space average 1ike<>: =Y< >z y 8O,

<sPsg® .5 - Yt sF TS (4.41)

Similerly it can be shown that a product of n spin operators
can be reduced to ones involving (n - 1) spin operators. Then
the rest of the proof is simply induotive, so need not be stat-
ed here; this immediately leads to the crucial result for

a general product of spin-one operators,
( 4.42)

- Z
<X (SH, SH, 8% )50 = Y<X(SH sTH 57) »°

where the operators on the R.H.S. take their C-D form for

S=1, Bq. (4.10). The corresponding result for a product of

spin operators referring to W different sites is to converd

Y to YN on the R.H.S. of Eq. (4.42)



TABLE 1 .

The The Equivalent C-on , D-on States .

Spin l

States 1 : 2 3

1,-1 1 4, a, 4, d,

% ~ %
1, 0 |2 (ozd2+e1d1) 2 f c1+02d2d1) 2 (cé+d c1d1) 2

— — — — — —— —— .- — —— — —] -— — -— — -— ——

1, 1 02d2c1d1 czdzc1 0201(11 02

The four independent sets of C-on , D-on states for one site
corresponding to the three spin states | S, m> for S= 1

*

and m= _ 1, O . Bach 18 to be interpreted as a creation

operator (in the same order ) acting on the vacuum state | 0> .



Chopter 5. 73.

THE CONDUCTION-ELECTRON ILOCALIZED MOMENT

INTERACTION,

(5.1) The Interaction Hamiltonian.

The model considered in this chapter will be one where
the conduction electrons in a metal of N well - localized
atoms (in a periodic lattice) interact with n magnetioc atoms.
Three cases will be considered. In the next 3 sections
dilute alloys with non - interacting impurities (n<< N) will
be considered, then the case of interacting impurities (m <N)
and finally the periodic lattice (n = N) or rare - earth
metals.

A phenomenological approach is taken here, rather than
an attempt to show the equivalence between the present s - d
( or s — £ ) Hamiltonian and some other model, as was done
in section (3.3) with the Anderson Hamiltonian. However,
such an exchange Hamiltonian is expected to be a good
approximation in the case of the rare - earths (Donia.ch,84)
de Gennes)j,O)for in these isolated atoms the 4-f shells are
known to be very tightly bound and well - localized.

Moveover, in their metallic state these bands are far

below the conductjion bands, so their behaviour can be
expected to be well described by only their angular momentum
degrees of freedom. In S - state ions such as Gd, this

will reduce to using only their spin vectors §S. 1In a non

S~ state jon the J states will be sufficient to describe the



dynamics of the magnetic ion. 74.
Consequently, a general exchange Hamiltonian Hy is

introduced whioch is assumed to well deseribe the dynamics of

the many —~ body system. This will be taken to be of the

form of an interaction of stremgth J () between the spin—

den sity of the oonduction electrons S,(z) (seotion (2.4))

and the spin — density of the magnetized jons S(x), so that

H - -2(faxd

1 13 (x-x) 5, ()8 (=) (5.1)

For well - localized £ — shell electrons on the magnetio
ions the spin - demnsity for n spins is taken to be
;B
8(x) = X' 85 6(z~Rjy) (5.2)
31
If both the eleotron - spin density and the range funotion

are Fourier transformed with respeot to the inverse lattice

veotors (Eq. (2.49) ), so that

I = 2 3 ol% X with 1 eiLX - Wl 5 (x)
g4 q (5.3)
If Eq.'s (5.2) and (5.3) are used in Eq. (5.1) with the
identity

Vo P Sl (5.4)

aq’

Vbl?

the general form of the interaction is then obtained

-1 -i_q.gj
q Zqr 2 ° (5.5)



The term e 3R appears in the fumotion p(g) which is the

Fourier transform of the spatial distribution of the magnetio

ions p(x), where

n
3
o(x) = r & (x-R )
j=1 d (5'6)
n LR
! _ -1g.Rj
80 e (a) = 351 e (5.7)

In ge neral , it is difficult to evaluate any results with
the general form J g2 S° this is always approximated by a
constant co - efficient Jq =7, Thisis equivalent to3res‘br-
ioting J(x) to a point contact model J (x) = Vol. J & (x,

or that all overlaps of the f - shell electrons with neigh-
bouring magnetic ions are small. Finally, ‘the constant

J is deken to be a fundamental parameter of the model and is

found from experimental checks on the resulting theories.

Finally, if there is also an extra spin  independent potential

(e.g. direot Coulomb interaction) V (x) this will give an
extra term in the Hamiltonian H,, where

(5.8)
faz ¥@ vzl @)= >ha, 8,
Ppax

H,

This will merely affect the lowest order Green's funetion
for the electrons Eg. (3.64) to give a correction (dropping
the spin index, A )

(v)

GPP,(?) = OF ag v p,G; (1:—1:1) G;,(-c1—1:') (5.9)

P-
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This oan be completely re - swmed (at least, formally) in

terms of the mass ~ operator M'( ©) or its transform

v

Mopr (V)= Vb (5.10)

The corresponding Dyson equation is then
v o 0 v v
Gpp' (v:) - Gpp' ( G) * ;q ?Pq(‘\) ) qul (?‘ ) qul_-,! (\f ) (5 01 1 )

The formal solution of this equatior in terms of the inverse

matrix in the momentum representation is

v - 0 4= -1 .0 /=

¢ (v)= (& ~ @ (¥)V ¢ (3) (5.12)
rp! pp' P p—p2 p'

This is exactly solvable in the simple case of a constant

range interaction, or Vq =VE>qo then

(Ep=- V=15 )7
(5.13)

G;P'( v) = i’)(g;fﬂ'—— v = 61,1,1
Thus, such a spin - independent potential can be acocurately

accounted for by just a change in the Fermi level p-> p + V.
However, in more realisticcases of am X -~ dependent potentbial
this cannot be done so readily. No siriking ef;f:‘ec'bs of such
potentials are expeoted, in comtrast to the spin - dependent
case (as will be seen ) where the dynamical degree of inter-

nal freedom of 5 can lead to quite unexpeoted resulis,
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(5.2) Iow ~ order Corrections ir Dilube Alloys.

The case of dilute alloys well illustrates the effect
of coupling two relatively simple systems. In the present
model calculation interference effects between different
magnetio atoms are neglected, (so the comcentration of
impurities ¢ =‘% is very small), Even so, high temperature
susceptibility measurements verify that the magnetic moment
on rare — earth atoms still persists when in dilute solutions
in other non - magnetic rare - earths (e.g. la, Lu, Y),or in
noble metal solvents. The case of the transition metals
(Mn, Fe, Co) in noble metal solvents is less clear - cub, for,
although a magnetic moment still persis¥%s , there are no
integral (or half integral) S or J values, so the localized
moment model cannct be expected to be so good for these
metals asf?brhe rare - earth alloys.

Since interference effeets will be assumed negligible
(however, see section (5.5)) only one impurity will be

considered, and its locabion will define the co - ordinate

origin., Edwards! averaging processav?rlll then be used to

introduce the concentration dependence of the resulting effeots.

The Hamilbtonian for this model has been introduced
earlier in seotion (3.4),where it is written in terms of
the Wannier operators at the ovigin . The spinor form
is Eq. (3.59), in terms of the drone - fermion represent-

ation for spin - % , Eq. (4.1) ; this becomes

H.1 - -J[(0+(p ai a, * (pOa:a_'*';E)\(‘;o"%) a; ay >]
(5.14)

77,
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The diagonal part of +he Hemilbonisn is still given by Eq.(3.52)

or
Bo = Db o oap, + uo (oo %) (5.15)
o A

The Wannier Green's fumotion (at the origin) is defined by
Eq.s (3.62) and (3.64) and its %ransform by Eq. (3.68). The
C =on and D ~on propagators are defined as in Chapier 4,
viz., Eq.s (4.19), as is the spin - f£lip propagator F by
Eq.s (4.20).

For convenience the g factors of the anduction eleotrons
and of the localized moment will be taken to be equal;
moreover, the constant density of states model for the

oonduotion electrons will always be used,

p(w) = '11:_1 Tm. G: (w+is)=P only if -D<w ~% wo<D

(5.16)

Although only one magnetio impurity is present ; the d

operators must be retaired throughout ths caleulation. In
the evaluation of thc Green's functions, by equabtions like
(A.28),the transformed interaction Hamiltonian must be bose-
like,for the substitutior of the Wick -- ordering operator

in the development operator ( {(A.23) and (A.27) ) for the
Dyson -~ ordering operator,is only valid for even — order
products of fermion operators. The usual fermion form of
temperature perturbation theory (Apprendix A ) can now be

applied to the Hamiltonian given by Eg.s (5.14 = 15), using



18)
the usual diagrammatic rules {(Abrikosov et al).  The 79,

interaction vertices corresponding to Eg. (5.14), are
properties

illustrated in Pig{2). The one - electron,(for nth - order

soattering off the ¥purity) are evaluated in terms of the

effective potential V;l('c ) defined by the criterion that

this part of the graph is irreducible (between the n vertices)

with respect to any one eleotron line. This differs from

Doniach's effeotive potential, where the contributions diagon-

al in the combired spin of {the impurity, and of one eleotron,

#=’e chosen. This is convenient in the case when no external

field is present, as it leaves the Hamiltonian rotationally

invariant. Thus the perturbation terms represented by

Figs. (3a and 3b) give the total first order oontribution

1
V()\ 211 - 12) = AJ (<o+o>o~'y2 ) 6(11—12) = XJ<3306(1:1~1’2)

(5.17)

Tts (odd - periodic) Fourier series transform is therefore

V(Jle.\.;\) = )\J<Sz>
A - ° (5.18)
This is the expected first - order field - splitting of the
twe spin bands which vanishes as the field dzcreases to zero,
o.f. Eq. (3.89).

When one considers the second ~ oxinr effeots PFig.
(30 and 3d), one can immediately appreciate the dynamics of
the situation, as the graphs show explicitly which terms in
the Hamiltonian are contributing in eaoch case. For example

in Fig. (30) the elecitron is scattering longitudinally and
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coherently off the iImurity ; in contrast to the second order

reducible graph, when the scattering is incoherent (i.e. the
two spin averages me quite independent; see later). The

contribution of this coherent graph is:
(2L2 20 o 0 2 4.~ 0
Vy ()= =3 G(c)Cc(v)C (=) = =3 ££6(x) (5.19)

Similarly Fig. (3d) corresponds to transverse cocherent
scattering, with the excitation of a spin - £lip (or spin -
wave, in a lattice) in the intermediate state. Its contrib-

ution is

W) - P (1) B(ar ) (5.20)
The transform becomes

2 - + A o
( £ f +f)\ fPr-—A"'f fPr—K) (5'21)

Wiy - 1%
¥y

-15

gP:)\ Y

This form exhibits the sgpmmetry due to the choice gy = gs

Using the constant density - of - states for the eleoctrons
one can write down the analytic continuation of this quantity

(i.0. v = iv ) just above and below the realw -axis.

- X _+ I
V(zewtiS) = szj'p+ Pip {5 e+ 24 (B)+ £, (E) )

B - )\wo
p=D E+~5 -p~-uw +is

(5.22)
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Thus, the absorbtive pert is given by 83.

(2
A

A

2, + = - =\
m. V Zmiis) St ol (£ E €T 2 (uy —hoRE (0 A w)).

(5.23)

where the following identity has been used

1 . Pe.

x T is x - ixd(x).

This can be considered in several limits, for example, in

zero magnetic field one has (Subseript zero for h” = 0 ).

Tm. Vgaewi‘is)= t % no 32 (5.24)

10
This is essentially Abrikosov's l)owest order result, for
spin - disorder scattering, simce for S=7%, S(s+1) = %,
so exhibiting the rotational invariance, Similarly, for

the real part,

D~ w
D+ w

Re. v§,2>(w> =% 03° In. | l (5.25)

In fact, one could have anticipated this result from Eg. (5.21)
(2) 2 o
Vo, 'w)=% 3 ¢, (w) (5.26)

In the same ma»mer one can calculate the first and
second ~ order corrections to C (7 ) and D ( ), whose
gelf - energy parts are denoted by I (1:) a.ndA('c) regpectively.
The evaluation of £ itself will give the magnetization;
the first order result Fig. 4 (8) merely involves the electronic

magnatisation & ., Eg. (3.76) and (3.75).



Le0. ()= 23°%= - pTy (5.27) 84.

No self -~ consistent soln's (i.e. moleculsr field ) for I (1)

and VU) when h” = 0 can be found, as expected,(contrary to
the case when there are interacting impurities, when the Curie
temperature is finite).

When 2(2) is evaluated the first order corrections on
the first - order intermal electron lires must not be
forgotten, (Fig. 4 (b 1,ii) ), as these give a large contrib-
ution, which eam~cel exactly with parts of the other gecond-
order graphs, involving the excitation of an electron-hole
pair (Fig. 4 b iii, iv).

2 ey 2 ()2 63() 02455 e )= =0°(%) €620 )
(5.28)

The sum total of self - energy corrections to C (7 ) up to

2nd order in the usual 1limit of kg T >> w or wy is
(1 + 2) g s 2 -
) (W= is)= ~pJuw + 4(pJ) [(w~__g_o)(1+1n.2xgn)+(wo-w) In.2
s

Yag kT ] (5.29)

where log Yy = 0.58 is Euler's constant. So from Dyson's

equation

C (wzis) = (v -u- 2(v tis) )"1 = ( wR;ir-w)""‘

(5.30)

where, on the energy - shell, w =uw,
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2 2
wg =il = w, (1 + pJ ~ 2(p7) (W1n 2ypD ) )-i4n(eJ) kpl. 86.
Vs

(5.3.)

The magnetization is obtained by replacing the sum over vby
an integral over w on the Fermi -~ Dirac contour, Cf encireling
the imaginary w -axis; this is then evaluated by deforming the

contour around the pole off the real axis (Appendix A4.42)

AYee]

<d'o> = - ; duw C(w) = 1 d w DisoaC(w)
2ni cfeE“’+1 2qi ePU 4+ 1
(5.32)
w
orR(2)+%=lde r a 1
® eﬁw+1[(wR~w)2-b 1‘2] e PO 4y

~0

(5.33)

Thus R(Ze%) = % tanmh (B wRr ) TR%(w) (1+ QT - 2(9J)2(1+ln.2Y3_1_)_) )
- 2 '

(5.34)

Apart from the facter of cne, this agrees with Yosida and

Okiji's5r2«a)sult, in second order but not in first order where
they find no contributien. This latter point contradiets
Nagaokds result,Mu)nfortlmately his differs from ours in a
factor of 2 (after conversion to same form of J - theirs

differs by a factor of two initially i.e. J Nagaoka =27).



The result (5.34) agrees exactly with Yosida & Miwasa(,)xzd with
Soalapino's? 5resul’(: for the Anderson model evaluated to second
order. The D -on self-energy A(w), (Fig. 4,(b v) ) is only
needed for the evaluation of the spin - f£lip propagator and
hence the dynamic g-shift, of the localized transverse
susceptibility P(w). BEg.(2.31).

The contributions of Fig. (4 o) do not give a logarith~
mioc temperature shift and cancel exactly (in the static
limit, minus factor, due to interchange of the fermion -~ like
D-on line) and & in the limit B w << ame neglected.

This just leaves the self - energy effects on the ind-

ividual C -ons and D -ons, which then become a convolubtion

to give P (<) =

P(3) = 5‘1231)('6)0(&'—'6) (5.35)

Flo) = "1 § 4z __ ( (z+2a(2) w-w+2~ % (w=2)) )

o P2 1

nd

(5.36)

This is deformed around the discontinufties of D and C
at Tm. 2 = 0 and Tm. z = Im,w Trespectively;

writing z=z; +1 3z, A(zq+is) = A (z)+i8, () eto.

1
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Flw) = -2 _1J‘ dzy £7(z4)
X [[ ( Wy - W+ 21 - z )-12 A2( 21)[(2«14‘2 A1 )2 + (21\2)2]-1

- (z1 + wp 24 ) -1 Zolwy - z4) [ (v, - m14-z1—21f%+2 23-1]]

(5.37)

Eg. 5.37 has been written out in full to show thenma ture of
the approximation to follow, which can only be done if the
widths are small compared to kBT; however this may no longer
be true in higher orders, as both the real and imaginary parts
of the self - enerfies appear to diverge in the anomalous tem—
perature region (see later). But in simple second - oxrder

callculations there is no problem; thus taking into account

the form of 21 (w) and noting that

A2y + 18) = 2(pT)° (o(1+1m. YBD )tk 1)

(5.38)

one can see that the first square bracket in Eg. (5.37) is

strongly peaked around z4 = 0 while the second peaks at z, = wR

After ensuring a unique amalytic ocontinuation,
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F (w) = 2:£‘+( wp Y[ wp ~w- 2A(w-uh)]—1 - [ wp-w - Z(w) 7

(5.39)
but to O(JZ), near ., Mw - wo +is) = % ir,

so fially

(5.40)

There is an intermal check on the correctness of Eg.

(5.40) through using the sum rule for s = %.

<Sz> = yz -~ (S.. S+> = R (5.41)
Thus
R =% -1 o dy Disco F (w).
2ni S 1- e BU
(5.42)
~ - Bug
o % - F (wR) = —% +anh 6———2 ) oof.qu(5-34)

The above results can be neatly summarized by stating
that the impurity transverse susceptibility has the Lorentzian

form



X Eetgw) = tanh(} B wR) (wR—w +il) [(wR - w)2 + 1% T L

(5.43)

which is illustrated in Fig. 5.

*
(5.3) Higher order Effects.

In this section complete sub - series of higher order
graphs are summed which result in expressions evaluated to
O(Jz) in the (divergent) denominators. This is accomplished
by calculating the self - energy parhs %o O(Jz) of more
complex propagators. This extends the work of previous
authors whose results were evaluated to 0(J) in the
denominator and also awids the diffioculties (especially
T < Tk) which have previously arisen. Although various
explicit formulae for the self - energies are obtained for
finite magnetic fields, they are, in fact, evaluated in the
zero field limit where rotational symmetry introduces
several gimplifying features. This leads to equations which
are gtable (see later) through the oritical temperature
(Tk, for the case of anti-ferromagnetic coupling, (J <0)
and to a new ferromagnetic resonance (J> 0) whioh occurs
at a much lower temperature.

The first "log T" term in the electronic effective pot-
ential appears in third order 0(J>) and is the firs internal
correction to the second - order skeleton graphs (which

themselves were seen to exhibit no abnormalities, Eq. (5.26).

% See Addenda.
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This suggests that all higher order internal corrections
to the simple skeleton graphs, will be divergent. So

propagators are constructed from these skeletons and
2
their own self — energy parts are cmstructed to 0(J7).
In faoct, a further series of graphs is also included, arising

from third - order skeleton graphs, which have the same

structure as before; +his maintains the correct oo ~ efficient

to 0(J?) in the numerator. By considering those irreducible
graphs which occur within an initial and final interaction
there will always be a factor of J2 contributed to the
numerator. In practice, this means that one looks for
repeated scatterings of any two internal lines, within
the second - order skeleton graphs, while the third line
remsing unaffected from the initial to final vertex.
Physically, this 'bare! line effectively maintains
the local spin (in the case of the electron self - energy)
ina definite orientation with respect to the extermal
eleotronic spin i. e. the spin is ‘polarized" between the
initial and final interaction and effectively behaves asg if
in a magnetic field (even in the case when there is no exter-
nal magnetic field, the quantization of the electronic
spin direction determines that of the loocal spin).
This agrees With.Abrikosov's1£2tuitive choice of ocutting
only one electron line and two spin lines at any internal
point, and with Silverstein & Duke. 52
In all cases we will need the following propagators

41)
(similar to the I'(w) of Nagaoka etc.) defined by

92.



% (o] (o]
s (v) =@ (v)c(n). 93.
gee Fig¢60 (5.44)

To

80 (1) = G?_)\('\:)Do( AT ).

The Fourier series transforms (bose - like, as pair of fermions)

are

z,
S (@

AN z (fk -f—)\f )[ ;P)\ +A, = Ja ]'1

!

SECIEEES M CANES S N

(5.45)
A longitudinal soattering matrix T is defined by

2

8., (%)= M,(z)+ s dt,dxz M'(z %) M'(ﬁ-gsiw(% - 1)

er

S:;\t (5) = ))J( ) (5-46)

1 -8% (TZ (3
M,() M,(a)

On evaluation of the graph in Fig. 7 and uming Eg.s (5.45 - 6)

2 =y 5% (3 )
(1:) AT 6(t), so Sn (T) 1—XJ%(E) (5.47)
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For the off - diagonal longitudinal matrix element:, hoth

graphs illustrated in Fig. 8 are necessary to be accurate

o 0(32).

Z _ 2,7

T - A7) =2 38() - 3%570( %), (5.48)
so 8% T 5% a
® P (@) _ Ay=A (@)

Z = T
1-st£4}a)(1-st;(a )
The result for S;\E('c ) oan be simply obtained by ezamining
Fig. 9 and realizing that the complete series can be
obtained by replacing Sf:’_}\ (a) in the second term by the
complete SZ}\__X( o) , remarkably, this results in a form

very similar to Eq.(5.48). The equation corresponding

to Fig. 9 is;

s (3) = s%(a) - 3% 7) 520 (7 ) sTe(a)
Thus

sf°(5) (1 =23 S::’_,\(E) )

s7(a)
1-ad s, (@) - a3 8(%))

(5.49)

These propagators and their transforms will first be used

in evaluating the effective potential for the el eotrons in a
systematio way to 0O (JZ).

The longitudinal scattering potential (Fig. 3¢) is
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renormalized by splitting Eq. (5.19) into two egual scontrib- 99,
utions, then renormalizing the appropriate pair of free

propagators, thus,

v(szf)hf (¢°(0) 870 ()4 °(=) 870 () ) )
2
= %( v<fLa)(z)+ v<iLb21) )

Then upon affecting a Fourier series transform

(21), - 2 o -\ «Zo f— Ot- =\ a2g ( =
v, (v)::_J__i(C(G—a) 82 (@+cG-38°(7) )
2p

(5.50)

Now each of these parts can scatter independently and rep-

eatedly (i.e., S%0 — g% ) but this would involve overcount-
ing the first term twice (see Fig. 10). The renormalized
terms corresponding to the correct summation (note absence

of brackets around superscript) are defined as follows

AU5) - PR FR G -E (5) 5

So
f%v>=-gig%ww_w<§w<w-%sﬁxw )

(5.52)

Similarly for the transvers part (Fig. 3d), Eq. (5.20)

beconmes
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101.

W) o 232 () 8% (o) + ) 57(c) )
A -\, A

(5.53)
which, on transforming and mmwrmalizing, like Eq. (5.51)
becomes,
(5.54)
2T - - - - - - —-
V() = 250 - aNs® | (D)= s (D)1 G- % (@)L ska)]
\ Y Y A )

B a
Before proceeding it must be noted that this procedure is
not quite complete, as a whole sub - series of graphs is
being neglected which have the same structure as those
already congidered. These are the two third order skeleton
graphs (Fig. 11) which are needed when I = O to preserve
rotational symmetry. They give contribution

PRy e a6 () (BB ) (5.55)

where

B g

[ T Z =0 Z T

R T) =fdt8°° - s -19; R = fdy 579 (1~ g-o -t
)‘( ) OJ' 1% N (1: 1:1) N )\(1:1 1), }‘(1:) oj‘ T \ }‘(‘5 1:1) (11 1 )

(5.56)

R(7) = R@) = sfo(@) 8% (%) (5.57)

So,

B
This is simply renormalized by only converting SZ0 —  s%

¥OB(5) = 228% 1 ¢(a(5E) BAD.  (5.58)
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in R® (@ (remormalizing ST0 (&) also would lead to some 103.
AN A

over-counting. )

PIE) - a7 00 - @) s 870,@)
a

1 - AJ sff)\(a)[n us§°(a)]

The complete second order effective potential, or

"polarization potential, Vpx can now be defined as the sum
of these 3 terms,
P - 2L veT T
NoE T YA (5.60)
The above expressions are somevhat inelegent, so they will
be evaluated in the zero external field limit, (where many
other graphs, due only to field splitting, also vanish.)
Thus from Eq. (4. 19) ILt. o =0 c®(at) = % p°(at ); D°(AV) = A D° (V).
)
so the zero - field correlation propagator S°(%) is defined

by

Lin, %) =% 879(a)= A
Wg—>0 2N ¢ ~ig 2



Tn this limit Eq.s (5.47 — 9) beoome
Z (] 1 — "'1
5°. (@) = 32s”(O012 351077
)

(5.62)

87 (D) =2 @) [1 -4 35%@) 70 +7 D) T
? 2

ST(@ = A HD(+ 3@ - 255%DT L1+ 353D T
This exhibits the unexpected property of factorizable
denominators, as will be seen,this leads to ferromagnetic -
resonance behaviour, as well as the usual anti - ferromagnetic.
In fact, if this caloulation had only been carried out to O(J)
in the denominator, only the anti - ferromagnetic result

would have been obtained but witha factor "b" instead of unity;

this factor is important,as the Kondo temperature, "Tk" depends
exponentially upon it, (see next section).

Before evaluating VP (V) the propagator S°(a) will be
examined in alittle more detail. One can see that the
effect of the spin operators in the interaction Hamiltonian
(represented here by fermion - like C -ons and D -ons) has
converted a bare fermion = like electron line to a bose -~
like propagatoer. This introduces a temperature dependent
factor which changes sign ag the momentum "p" passes through
the Fermi surface. So from Egq. (5.61), with the constant

density of states, the analytically continued form is;

8° (wtis) = o (A (w) TinB(v) )

104.



where
p+D
A (u) = Pr.g , 3 tanh 8 ( B~ p)
(5.63)
Eepn-uw
and B(w) = tanh Bw  if |w| < D,zero otherwise.
2

Tt will also be useful to introduce the fuotion Q ( a)

defined by

1-28%)+% (7 8°@) )2

Q (a)

0 - g s(@ [1+ 3 s(D)]

Or in its analytically continued form (to 0(J) in the

numerator) ;

Q(w+is) = _1.F imp JB (w)

0 -3 %Wl 01+ 3 5°%W)] | (5.64)

The effective potential VP(y) can now be evaluated as follows,

@)% 25 2°5-3) 5°G) @ (3)

B (5.65)
V) = - _s*_g_zz tanhBlpy 1 dz o(z)
P 2 (56' - Bz
2t J° (1" (um5)(2y2)
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The latter form defines the complex integral I (w), in
terms of the bose - contour C (Appendix A.) :nd the usual
analytioc continuations,u = iV , 1% = z = zy+ iz,, bave
been used. To evaluate Ip (w) one can see that for |wl< D
discontinuities occur in the complex z  plane at zZo = 0 and
Z, = Ep . However the discontinuity along the real

axis takes in the pole at z =&p as well as the discontinuity

from Q (z), that is

106.

Dj‘.SC. (-—QLZJ.L) = Disc. Q (zq) —FE-_ + Znié(gp—z1)PrQ(z1)

- >
E.-P 1 ( Ep 1)

This procedure is necessary to pick up the simple 2nd order

result when Q (z1) = 1,
Thus deforming Gb around the two above ~ mentioned

discontinuities, one obtains, just above the real w -~ axis

DiscQ(w). [ (& P~ w)tanh % Bw ]—1

ol

-1 in a(gp -w)Q (w) [ tankspw ]“1
Ip(m+is) =

+ % (Q0) -2 () ) [ £ pm0d”

+ 1 ‘I'dz1b+( Z‘l) Disc.Q( zq) [( & o~ z,?( w - :/:1)]--1

2n i

(5.66)



The convention has been used that , when the phase is not

specified , the principal part is to be taken . After
noting the approximations made above , and the explieit
dependence of J in Eq. (5.65) then Eq. (5.66) will only
be evaluated to 0(1) in the numerator of the real part ,

and to 0(J) in the numerator of the imaginary part .

I, (wtis) = - %.{[(E,p —w). ( tanhyzﬁﬁp)dj

+ in[ §( %—w}.(ta.nh "/gsw)'1- pJ( Lp—w)_1

x | [1=%38%w][1+T8%)] |2

Thus , by Bg. (5.65) , one obtains in the limit w<< ky T,

P . 3 2 D-u
Vot i) = Kpd [l Dpy |+ iw( 1 -7 4(0) )]

2
I - D%pda(w)]. [ 1+ o7 A(w)] |

For excitations near the Fermi surface (w= 0), one ocan use ,

107.

1%
A

(5.67)

(5.68)

2
4(0)= J‘Ddx;x"1.ta.nh"/gﬁx =2.ln.(Z;BD),?;=7Y'= 1.13 c¢.f. £q.(5.29)
“D
P . .3 2 ‘
Vo(0+is) = 1% pJ°[1-2pJ In.(zpD) ]

2
| [t ~pJ 1n.(zpD)I[ 1 +20J 1n.(zpD)] ]|

One can see that this diverges under TWO conditioms ,

a) 1 + 2pJ1n.(g§D ) = 0
kg Te_

b) 1 - eI BBR y - o
k

B TC‘+

(5.69)

(5.70)
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Using Nagaoka's :2lues for the parameters. ) 108.

D= 5x10% oK | 513 = 0.05
Eg. (5.70) becomes
a) KT =gpy Ll - 1D, 109
- 27 (5.71)
b) kT =g D, =1 =z D, —20¢ (J)

B o+
pd

These only have low -~ temperature solutions (ks To <ID),

if in Eq. (5.71a) J is negative giving To - = 3%K,and if

J is positive in Eq. (5.71 b), giving T,, = 2x 104 °x.
Thus To. is the usual anti - ferromagnetic "transition - point
found by Nagaoka, which +ill in future be denoted by "Tk"
while Tq_ is a new ferro - magnetic characteristic temperature.

However, this latter is only of academic interest, for

To, kpTy
B (5.72)
T, r D

Before proceeding further a comment regarding the
stability of this solution should be made i.e. the sign
of the imaginary part of V® (v +is) which, in the present
notation should take the sign of s. This is true for
the anti-ferromagnetic case in %he temperature range from

zero to the unphysically high value of D exp.(-———;L————).
2 ol 3]

However an imbability acours below Tk for the ferromagnetic

cage, before its own Tq is reached, but no significance

-



is attached to this result as it seems quite possible that
higher order terms would counteract this change in sign.
Although the effective potential V appears to diverge
at Tk’
The single particle-like times " -zp" are determined by the

this is not the quantity of direct physical significamce.

imaginary part of the electron self-energy Mp; )\(w). This
is given by Edward s'method of taking an ensemble average over

all impurity sites in the low concentration limit, ¢ — o,

Gy (@)= (8 mu= o (4 )~ ( 5.73)
where

M (w) _ Va(w)

2 = (5.74)

1 —V)\(m) G‘;\(m)

The one = electron quasi - particle life -~ time is given

by

T = c M (¢ +is) \
B Dy B (5.75)

However Eq.s {5.25 - 6) show that the real part of G° { w)
vanishes at the Fermi surface (as does the real part of Vo( w),

in the above approximation. So, on using the form of VPo(o +is)

valid in the tempersture range e"10< 2 < !0

Ty
and using Eq.s (5.69, ~74, -75) the life - time is given by

for J < O,

-1 1 (5.76)
(4 F = CTH

; (x% + slm G 17
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Equation (5.74) must be used in the temperature range § <« T < 4

T
but outside this range Vg ( w) may be used to sufficient
accuracy.

Then, using the following form for the resistivity
(at temperature T) pyp o (T) ,the calculated result for the

resistivity is given by

1 2

=t - 2e 2 2 - _zed
P Res .(T) 22 rdg g pt L g7 =2 g
3m° 2R g, P ozmp F
(5.77)
PRes (T) _ c2nw 1 . 6)
ze? ﬂ?+ 6| In.( T_) | (5.7

T

where z is the number of conduction electrons (mass m ) per

atom,.

(5.4) Nagaoka's "Perturbational" Result. 1)

Nagaoka's results for his high temperature (pertur-
bation) solution of his truncation soheme,for the equations
of motion of the Green's functions,will be analysed first to
cast them into a form comparable with the present results.
Equation (2.17), for the diagonal element of the one electron's
Green's funotion (using the same notation as in his first

paper, denoted NI), oan be written,
(5.79)

ZWGPP(W)=""‘—1"’ (1_ J2 I‘(UL)

(u-t) (0 ~2) (1427 gw)+ 3 () T ()

)
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This is then inverted and expanded to O(Jz) in the numerator, 111,

to give

-1 2

- J W
Gpp (w) = 2n(w- Ep + T (w) . )

1 + 27 aw)+32 F (0) T (w)
(5.83)

This is Nagaoka's result (NI 3 - 2) apart from the term of

0(J2) in the denominator; however, this must be retained to

remove the divergence at Tk' In the limitw + is the

damping oo - efficient is obtained

p -1 - Tm. 3210 (w )
P
1+ 232 (0 ) + 72 F (L) () .
(5.81)
. — -
Now in NI, the zeroth approximation of P =" Pang
mp = O were used; in the present notation this becomes,
)
28°(w + 38 )= 8 (w+is )= p( A fw)+ intanh Bw)
2
and 0 . o . ) . D-w,
4/3 1% +is ) = -F (w+is) = 63(y+1is ) =1n. | l+imp
. D+w
This results, near the Fermi surface, in
1;1 = o % w3%0 = 0%9—1
27 \2 2 8 T
#x0I) + 1+ 2p3.1n.(z B D) w4+ T 1 (5)
3ol Ty



The initial expansion to O(JZ) was necessary for a meaningful

result, otherwise Eg.{5.80) would be

2
G;; (u+is) = _2n(w - Ep) where A is the shift.
- +4 + 1
(w E-’p by )
Tp
As one can see, this vanishes at the Fermi surface { Ep = 0,

w= 0).
In his second paper N II, Nagaoka starts with the
perturbational approximation op = f§ and Gp;' ( w)
and upon neglecting higher order effects (NII 4.2), finds

for o, (see NII 4.7) -

3/2 oJ In. (£8D)
1+2 pJ In. (68D) (5.83)

juy

This can now be used to £ind

Im, I'(0+is) = Im.

Zﬂg_—_é___‘s = -np(mp-%).

1
N I):i.s--
gP

Finally, on neglecting the real part of Q) , the self -

consistent result is

c% e 3° o o)

‘EF— =

[#(r 03)2+ (14203 1n.7.8D)° ] [T?+-13—-6-i Jn.(-%—) 3,
k

(5.84)
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On comparing this result with Eq. (5.69), using (5.74), one 13,
can see that this is in agreement for J <O if terms of 0(J)

which appear to be unimportant near Tk’ had beer neglected.
In fact they do give a numerical contribution of order umity,
as can be seen by comparing the above result with Eq. (5.76).
The difference has been logt somewhere in the decoupling
scheme along with the ferromagnetic result. These high
temperature results contrast markedly with the self -
consistent solution found at low temperatures (below Tk)
which indicates a possible type of phase - transition. This
latter result is found by the use of equations analogous to
those in Superconductivity and the self - consistent
assumption that mn diverges at absolute zero.  However,
Fiscker, who follows Nagaoka in his trmoation formulation,
adopts a different self - conslstent low temperature assumption,
and finds that m, = ¥(see Eq. (5.83) ) with the result

that the resistivity vanishes like log -Z(T) at absolute

zero, in agreement with Eq. (5.78).

Abrikosov's result (in the present notation) is

a.1 ' l—
< . ox 16
F ’
o | n. 2 2 (5.85)
Ty

This could agree with Nagaoka's second result if the resonant
paft nTI2n had been inoluded. " . ; |

(5.5) Interacting Impurities.
The low concentration limit for dilute magnetic alloys

exhibits the unexpected effect of a "bottle - neck" in the



relaxation process of the localized moments, to the lattice,
via the conduction electrons. The experimental results of
Gossard et af%gave been given a theoretical foundation using
the present techniques,in a letter published in Physical
Review letters. This work forms the basis of the present
section., The Hamiltonian ig that used in earlier sections

of thisg Chapter, with Jq = J , but now, with several

impurities, Eg. (5.5). The same notation for the C,D and F

propagators, introduced in Chapter 4 for several spins, is used

in the diagonalized momentum representation for the one -~

electron propagators, that is

) o - T -
Gopr, ) = Sppli { T)= e » (8(x) 5:_ 8(-) %, )

(5.86)

This will still be represented by a directed solid -~ line,

Fig. (1d) so the interaction vertices will be the same as Fig.2.

The spin ~ operators have not been Fourier transformed ,

for only in the perfect lattice, (next section), is< C;C

diagonal. For random alloys, inthe notation of Ea. (5.7),
-1

<oTe > = N op(a=-q')<ctos

Moreover, in contradigtinetion to earlier sections, the

offective need not be used herey; but the mass - operator

itself, evaluated in the momentum representation, MfP‘ .

The term corresponding to Fig. (3a,b) (to be contrasted with

Eq.(5.18)) is

M(;%,,x(:) AN IR (2= p") (5.88)

° (5.87)
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where

R = < S > (5989)

This is then averaged over all possible impurity configur-

ations, so

o (@) = (V1) Tpgd’ Ryaes a’ Ry e ()
(5.90)

If the impurity atoms are constrained to vacant lattice

sites in the metal, then the integrals are converted to sums
over all lattice points. The dotted notation of Edwards?gzill
be used to indicate this averaging procedure — dotted lines
converging on one cross, will indicate averaging at one

site only. The average of a single spatial distribution

function is simply

la) = m g (5.91)

So the averaged first - order mass - operator is diagonal

in the momentum representation and takes the form

& = (5.92)
ooty 5 O A C . 5.9

Similarly the C ~on self - energy is diagonal in the site

representation (e.f. Eq. (5.27) ),

1) o
zij 3) = 237 ¢ b (5.93)
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As in section (5.2) , these can be self - consistently

renormalized to give

1 -1 9 -1

G ()=(% =%IR -iV) ;0. (V)=(w -2Jz -i7)

P n 1 3 o

(5.94)

The self — consistent solution for the two relative magnetiz-

ations are then (by A. 42)

Ry = ~% tanh % B( wowJZCl) 3 2;1=-p( }éwo—o JR, ) (5.95)

The k ~ momentum component of the electronic transverse

susceptibilii?;g)pro;)agator K(k, © ) is defined in analogy +to

Eq. (2.31), by using Eg. (2.49)

K(5c) = <2 (o7 (x), 0 (0) 2=V 2 E (ke) (5.9)
= = rp' PP

In terms of the one -~ eleotron operators, this has the form

%pt ( ki« )=4'<TW ( aptk,—1 (T'+)ap’+1('ﬂ) a';'q-k, 4 (0+)ap’_1(0) ) >

(5.97)

In the interaotion representation, this corresponds to a

particle - hole propagating with opposite spin direotions, so

o o )
Kppt (k,7) = = 4GP, A (v) Gpt’_1("5) 6P',P"k (5.98)

The transform of this propagator leads +to (5.99)

o - -2 + + L
e ) =48 2 (2 4fpa, 1 e, 1 “GpaemiT)
b
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The analytically continued form of this fumetion in the
static limit (i.e. k = 0) will often occur, including first

order renormalization; it is foumd to be

el -1
K" (Qu)= -8 &, (w,-20IRq - w) (5.100)
N
The self - energy & i3 correction to the localized spin -

£lip propagator for the case of interacting impurities, is
given by a diagrem of the type illustrated in Fig. (4.0i).
The first vertex ocours on one site, while the second occurs
ona different site with the electron ~ hole pair K connect-
ing these two s-cattering events. In the non - interacting
case, these two events would occur on the same atom.

The corresponding Dyson equation, inthe site representation,

is
Pyy @) - sz (D+ 2 rp @5 @) F (@) (5.101)
with
AL gz ¥ THEEE 2 g0 (5.102)
nm

Summation over the indices i and j defines the spin - flip

propagator F for the whole set of localized spins, so

— o, _ 2 ~ik.R3 - ike
F@E) = L 5, (O)+ 3L o ~—¥0@) K(k;3) T 6= B,
i % ik nj
(5.103)
This equation is then averaged in a similar menner to
Eq. (5.90) and the interferénce oondition (R; #Ry) is
imposed. This eliminates all but the static limit for the

electron - hole pair propagator (Eq. (5.100)) and results in

o
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a separable equation of the form 118.
— - ° ° 20 —
F (3= 2 F@E)+:F(3) JE(0,7) F(3) (5.104)
i i 4
This has the solution
- o 2 0, O - -1
F (o =nF(E)(1-n%F(a)K(Q;a)) (5.105)

The analytically continued result is then

(o) - 2n Ry (0 - wg+2¢JRq ) (5.106)

(wo=-uw)(u, -27 4 ~2¢JRy~w)

In order to deseribe the effect of damping of the system, the

-1

spin ~ lattice relamation time Tgp = A 7 of the electrons

is introduced as a phenomenological constant of the theory.
12
In a similar manner to Giovannini et al,this is inserted in

the denominator of the transverse electron susceptibility

transform Eq. (5.100), ( 1@ = v + is limit)

{5.107)

- | -]
°Q,0) = -8% & [wy=-20T Ry -w-18]

If this new form is used in Eg. (5.105) the final result is

ﬁ(m) _ 2nR1(w+iA-mo+20JRj)

[( wo — w) ( We — 2 cJRq- 2Jz;l -w-1iA) + i2AJC1 ]
(5.108)
Again , in the limit & = O this reverts to Egq. (5.106),
which has two poles. The acoustic mode ocours at ¢ = Wo
when the eleotrons precess with the local moments and an

optical mode w = w, - 20JRy ~-2J&44 , when the two spin



systems precess in anti -~ phase. In the high temperature

(paramagnetic rogion) kyT >> w, then
-1 \
Ry = - wo(4kgT) ;84 = % o w, (5.109)

In this regime, the residues of the spin - flip fumction
(which are proportional to their susceptibility contributions)

are respectively

n W c and n %o

2egt (0 °,) 2ky T (o+0co ) (5.110)

where the characteristioc concentration o, has been introduced

it is defined in this model by

-1
5 5 (5.111)

]

Co = 2 pkﬁ T

The fact that there is no large first - order Yosida shift
p J wpy, can be understood5 4é.)s the adiabatioc following of the

instantaneous local moment magnetization by the conduction
electron magnetization. As was shown in Chapter 2 (see

Eq. (2.63), when A = O the Kondo - type Hamiltonian does
not affect the dynamics of the total spin. If the eleotrons
are heavily damped ( & >> 20JRq), that is, in the isothermal
limit, then R° is very small, so only the first term is signif-
icant, Bq. (3.93) F (v) = nF° (v) = 2nR(w+ 2JC1"“’0)—1

(5.112)

Thus £ull first - order Yosida shift v = W, -2J% 4

now appears,as the electrons always collide with the lattice

119.



before hitting the next magnetic impurity. Effectivelry the 120.
phase - coherence between the two spin systems is destroyed.
If the calcutation is carried out to O(JZ), then the pole

occurs at

Wy = wg =271 L[ 1-¢ (_%L_Q_)z]
Co A

(5.113)

However, if the damping is small (A << ZGJRi) then dynamics

of the localized systems are described by damped frequency

response at w =wo-i6 , where & 1is the effective local -

moment relaxation time Tdseff° rather than the expected large
Korringa width p = TE; given by Eq. (5.31). In the

present case, from Eq. (5.108)

c
6 = o « A

( e+ cp)

(5.114)

Thus, as ¢ tends to zero, § tends to A , so the electrons
succesgsfully transfer all their gpin - flip energy gained
from the local spins to the lattice. However, as the
concentration increases and exceeds ¢,, then the line - width
d 'becomes narrower and narrower. This indicates that
the electrons cannot remove the local - moment spin -~ £1ip
energy fast enough to the lattice, before colliding with the
next impurity. As Gossard, et alspointed out and verified
experimentally, this leads to a go - called "bottle - neck"
effect in the relasntion processes.
A very similar result can be found by following Hasegawa's

54
approaczh, based on the phenomelogical Blooch equations for



the decay of the spin systems. Equation (5.26) gives the 121.

second -~ order relamation time for the conduotion electrons,

viz.
-1 2
od fewm o (
So T
ds 3e o
= - = % = (5.116)
Ted 16 5 kBT o
and in the bottleneck region Tj,
82,1, s0 o > Co, as before.
Teq

Following Hasegawa, in the limit Tgy >»> Tsd, one has

5 = —_sd 1 . Tsa, ™ 8/3 %o
[ ] bt . T
d o
(TSL + Tsd) T as TsL s
(5.117)

This can be compared with the present dynamical result given

53)
by Eq. (5.114). Gossard et al found that for 0.3%

1

.
Mn in Cu A = 2,3 x 101 sec. They also found

that this bottleneck could be opened by the addition of small
amounts of Ti or Ni (neither of which have moments in Cu).
The additional line -~ width broadening for an additional Ti

concentration o.

n .
imp. is found to be equal to a g imp. kp T

where'a'is a constant. This can be derived ig the Hasegawa
approach, if one assumes an extra term which increases the
width of the electron relaxation time to the 1lattice

, by & factor 3-(295-19hm; * Thig reflects the

interference effects between the two types (magnetic and non-

magnetic) of impurities. Moreover, on adding small amounts



of Fe or Co, which do have moments in Cu, they also found that

the additional broadening was a factor 10 times larger than
for the addition of Ti or Ni. This is because the localized
d - spin energy can be transferred , either to the s -
eleotrons or preferably (80%) to the Fe impurities via R.K.Y.
type interactions. The Fe moments then rapidly relax to
the lattice beeause of the orbitnml nature of this moment.

The results for the gimple alloys can eagily be

summarized in the interesting regime
) < A < 2J% < 20¢JRy or 5 < o

by quoting the main characteristics of the line - shape

of the local — moment. This is given by the imaginary

part of F (w) and is proportional to the power absorbtion of
the magnetic impurities (Sliohtez:?; or to their neutron-soatter-
ing cross - sedtion (Donia%%l)). The sharp peak of this funaion
around w, has a width & which is contrasted with the
broader sgecondary peak at the optical resonant frequenoy

Wo —2c=JR1 - 27z, , vhich has a width of about 4 .

(5.6) Ferro - magnetic Rare - earth Metals.

The case of the rare - earth metals will be
considered as a final example of the "Kondo" type interaction
Hamjiltonian. Many of the results will be found to be
similar to those of earlier gections in this Chapter in
the limit ¢ = 1 , but the derivations zwre sufficiently
different to warrant inclusion.

If J5 O the interaction favours the aligmnment cf the

122,



two spin systems, giving a fewromagnetic ground - state. 123.
Horever in the absence of the interaction, the electron gas
is not ferromagnetic -~ it is the coupling of the two systems
which produces a polarization of the conduction band. This
polarized band can then sustain spin - wave execitations of
its own, but these are now coupled to the spin - waves of
the local -~ moment system. The resulting dynamics are
quite complicated but can be consgidered explicitly inthe
long~ wavelength limit. This result was previously found
by Doniach and Wohlfartk?%%n their treatment of dilute alloys
of iron in palladium, when a decoupling procedure was
employed for the equations of motion of the appropriate retar-
ded propagators.

Again, the spin - % case will be condidered , so that

when n = N, all the localized spins occupy a Bravals lattice;

then Eg. (5.7) becomes

pa) = N & (5.118)
go
This now implies (Eg. (5.87) ) that the drone — fermions

are diagonal in the pgomentum representation, so
or of '
< qul >0 = < qu >0 6qq (5.119)

where the transforms of the fermions are defined by

of w2 JER T, . Wk g oiE e B 9
! k k 3§ k x



+
and since @jis real, then ¢;. = ¢ _j., The interaction 124,
Hamiltonian is transformed from Eq. (5.5) to the following
form, by substituting Eg. (4.1) for the spin operators .S.-j

and then Fourier transforming the result using Eq. (5.119):

- = + * *
H = z (ap-k,-1 #pi+1 Cqik P-q Ok, 11 Op,-1 Pqk %
¥ pok
+ + (5-121)
+ z a a c c
S Ppagn Ppya ek g )

The same diagrammatic vertices are used,as in the previous
sections, except that now all the lines carry a momentum
label corresponding to Eq. (5.121). PFinally the spin -
flip propagator Fij, defined in Eq. (4.20) is Fourier

‘B.; S

transformed like X (X%, ), by using Sj = N5 o= ,

then k

12 Faqt (k3¢) (5.122)

F1) = <P (8, (), sp(0))s=n
aq’?

Since translational invariance now occurs, momentum is
conserved, so all self - energy corrections are diagonal
in the momentum representation, and so will be labelled by
only one momentum suffix. Then, immediately, the first
order renormalized mags - operator for the one -~ electron

Green's function and the self —energy for the C ~on (o.f.

Eq. (5.92 - 3) are

1 _ 1 ,_
Mp N (v) = AJ R1 ’ Zq(v) = 2 J L (5_123)



As in Eq.s (5.94 -~ 5) , these corrections give the two self- 125.

consistent equations for the relative magnetizations,

Ry = . tanh. % B (uy - 27 £,); &4 =% o(u, -27Ry)  (5.124)

The Jabter result is valid for any smoothly varying density
of states curve, if the Fermi energy is much larger than
) oxr JR1 and is exact for the usual reotangular band.

The self - consistent equation for +the localized spins is then

In the high temperature regime tanh. x -~ X, this
has the usual Curie - Weiss (or moleoular field ) type of

gsolution

-1 >
By = = wo. (14+ o7 ) (T ~"To ) with k.Te =’% pd

4k
(5.126)

When the external field vanishes, the usual magnetization

curve results for T < Te,

Ry = %. tanh. ( 2Rq .ga ) (5.127)

These first -~ order correotions (internal "aplittings") om
the C —ons result in the Yosida shift of the resonance
frequency of tha spin - flip propagator (which is independent
of k) ,

F (K,

=1}
~
[l

-2y (w, ~23zy =i @ )™ (5.128)



If the selif - emergy corresponding to the propagator Focg(_lg, T )
is denoted by = qq! (k, 7) , then the new equation correspond-

ing to Eg. (5.101) is

(2) - 0 - o __ (& _ (2 -
qu' (.]5' H (1) = qul (E; C(.)+ Z' qu(_l‘:'i a) & '(.:k_?'a )Fp'q| (:‘S;a)
PP bp
(5.129)
2 - 21 -
where, now 8( 2 (k3 a) = J K (k, a)
PP

If this is now summed over the two additional indices

g and q', the final result is

B (30 2 (o 235 =57+ T T )T (5.030)

This is to be contrasted with Eg. (5.106), where there is no
k - dependence. Now as K. (k; @ ) is strongly dependent on

k and & (see Eq. (5.99) ) , the speotrum of these exoitations
is quite complicated. However, in the long - wavelength
limit (k = ©) , the modified form of Eq. (5.106) is

recovered;

F(ZZO o) _ 2Rq{w = Wo + 2JRy) (5.131)
— .
(wy = w )(wo -2JR4~2J £q-uw)

Similarly for the second -~ order corrections +o the
electron transverse susceptibility, when the self -~ energy is
just the local — moment spin - wave propagator ; that is

J2F1(kb E) y SO

(2) -1

£ (k,3) = K (I6,7) [1 ~ 89" F (ke ) K (53 ) (5.132)
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Again , in the same limit

2 (0,0) = 8124 (w -up +278 )

(5.133)
N( wy = w){w, -2JR, —2J;1_m)

Thus, both propagator transforms have the same poles

and only differ in their residues. These equations can
then be interpreted in the same manner as in the discussion

following Eq. (5.108), when A = O,

127.
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Chaphex 6,
LhapuyaT 9.

THE HEISENBERG MODEL,

(6.1) Imtroduction.

As a final example of the Quantum Field Theory methods
for spin operators, developed in this thesis , the well-
known model of a lattice of ferromagnetic sping will be
somsidered im some detail. However, to further illustrate
the usefulness of the 2S fermion representation, «s a means
of converting electronic many — body problems to spin
problems, the equivalence is first shown in the next seotion
between the usual exchange part of two — body Coulomb interact-
ion and the Heisenberg model of the ferromagnet.  The
remaining sections of this chapter are then devoted %o
an extensive analysis of this Hamiltonian, using the
drone - fermion representation for the spins. Thus, these
two fermion representations can be used, in general, for
analysing many - electron problems, instead of treating the
original Hamiltonlan direotly. The intermediate step of
converting to a spin Hamiltonian, often leads to greater
physiocal insight into the dynamics of the system, as in the

case of the Kondo model or the Heisenberg model.

(6.2) Equivalence of the Heisenberg and Exchange Models for

General Spin.

In this section the Heisenberg Hamiltonian will be
rederived in a simple manner, using the general 25 fermion

representation introduced in seotion (3.2) , by a method



resembling that in section (3.3). The starting point is
the exchange part of the general two - body interaction,
written in Wannier form. In this case the operator aiz A
will create an electron on the ith site, in the = band,
corresponding to the label aand with spin orientation A.
In terms of the exchange integral Vij: which is taken to

be independent of spin index and band in this approximationm,

the Han i1tonian takes the form

.z + +
Hex. ijap Vis Zn Zjen Zjpar P (6.1)
A
with
3. 43 * *
- ' 2 \
vig = Rzt (&) v o2 v (o) Y, (x)

r-r'

(6.2)

The prime indicates that self interactions i= j are for-
bidden; this can be dropped if the definition of Vij is
extended by the restriction that it vanishes, if i = j.
Also, one band only will be comnsidered,containing 21 + 1
possible electrons of any, one spin orientation. Upon
expanding the sum over A' , the operators can be anti-

commuted to the form

21 #

+ + + +
Hpe = Vi 2 21 (53 ar 22 an B3pn 23pn ~2an La-n % -5 pa /

ij ap me

(6.3)
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Using Eq. (3 5) for S (a) and defining Nj_a,h +a,\ 85 ' 130.

and using the anti - commutation rules Eq. (3.6) for the first

term, then

A ~A
= Iz v,.(N,.(1-N, ) - 8;(a) S; (B ) (6.4)
. s i
ijapr Lak J BA J
21+1
Furthermore, defining N5 = § N = E § stx

then Eq. (6.4) can be arranged into the form
21+
7\—7\)

z: Vi3 (%wn; [ g (2 = Ny *N50.5 )N 1 -84 S;

(6.5)

P
Then using Eg. (3.5) for Si(a) and summing over Ain the first

term, one finds

Pt o2 (6.6)
H -i;: vi;j (§ N, , (214 -}QNJ.)\ ] --sisa.-sisj --2sisj )

So that finally , in a ground state configuration, where there

are n, electrons of spin orientation A on each atonic
gsite, the number operators can be replaced by their eigen-

values; the exchange Hamiltonian takes the form,

H =-2I V 8 .8 - Vv =n_ (n-=-2021+1) )
- ij A A

= RN 5.

Thig is identical to the form Mattis obtains following an
argument which is the generalization of that of Dirac for

for to spin % electrons, using the permutation operation

P,y = + 0 .
12 = (1 g, Q.j).



The further merits or disadvantages of this Hemilhonian

will not be further pursued here. The spin part will be

used in the rest of this chapter, with the change of notation

4V, = T(R E) (6-8)

(6.3) Molecular Field Theory.

In this section the Heisenberg Hamiltonian will be
transformed, by means of the drone — fermion representation to
a form convenient for a diagramatic analysis of its structure.
This will initially be done in terms of the representation for
S=7Y% and the analogous result for S =i will then simply be
written down. A simple high - density classification of
the resulting diagrams is presented valid for temperaturss
above the Curie temperature T, ; this follows the analogous
arguments of Stinchcombe et a1a81)The simplest form of
renormalization of the lowest order self -~ energy in the
evaluation of the magnetization< S”s>(which is also consist-
ent with this classification) results in the Weiss molecular
field model. These results will later be seen to be valid
in the low - temperature region and also includes those for
the Ising model, which only involves the longitudinal
component of the Heisenberg model used in this result.

The model of the Heisenberg ferromagnet for N equal spinms,
each localized on lattice sites Ri, in the presence of an

external field (giving a Zeeman splitting w, ) , is Eg,

(6.7 -8)

Ty TRiEy) 84 -8 (6.9)
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Since the interaction integral is only non - zero between diff- 132.
erent sites,the two sums over lattice points are complele.
Moreover, due to translational symmetry, its spatial Fourier

transform can be introduced,

1 - r1@-r)e E TR (60
d

It

So the above restriotion on I becomes & J (k) 0 (6.11)

k

where the sum is over all momenta k in the first Brillouin

zone. Substituting in Eq. (6.9) for the spin operators

(s = %) Eq. (4.1), one obtains

KN (o +%e IO ) + (g +%e 3(0) )5 04 01

H =
% 5 I(R.,R.). (0 o,c
i3 1 J 1

Introducing the Fourier transforms of these new operators

as in Bq. (5.120), the Hamiltonian can be written inthe
usual separable form (A.17). The unperturbed Hamiltonian
is diagonalised with respect to all the C -on momentum
operators (the constant term is also oribtted, as this gives
no net effect.)

_ + . - .
BE =BZ o o with B wo+}@(_q) (6.13)

——

(@]
t

The interaotion term, which conserves momenta, can be further

T
separated into a transverse part H1 and a longitudinal part

(or Ising term) H% .



By = B0 53 (kea)dy op g gogf(sET g-al)
(6.14)

L . .

H1 = A ET (k -k‘)ck Corct cq cq; 6(k'k- +q-a')

The sum in each case is over all four momenta variables.
In terms of the interaction picture for these operators one

finds
+ Hor + ~Hox By +
T = 0 = o P
ck( )= e ®r € & s (Pq(": ) - ?q (6.15)
Thus the thermal averages for the unperturbed Hamiltonian

define the simple fermi funections for this model

+ 8B -1
<o 0, > = 61:1:'(9 +1) = 5kk,f"=qck'(‘l-f")

(6.16)

This enables a free propagator for the C —on to be defined

as in Eq. (4.19), but 4ith o, -+ B, so,

(o)

-Bx
Cp (1) <y (o (2)somlo) Dogetine ({2 6( ¢ )E)

(6.17)
similarly

DZ (t)= <‘l‘w( cpq('c), ipq'(O ) ) >0

= 6.18
The periodic nature of these functions with respect to ¢
enables their (odd) Fourier series transforms to be written

down immediately, as in Eq.s (42-2), so
o, -] o, - =1
Cp () =(B-4iV) 5Dy (V)= -2 () (6.19)
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The exact propagators (in the Heisenberg picture) are related 134,

to the averages in the interaction picture, as in (A.28),

tha* is,

(D= <1, o (Dof(s) B = <TL o) U (P o) )
(6420)

The propagators are illustrated in Fig. ( 12), where now,

the directed solid line represents a C —on propagator C°(<),
vhile the dotted line again represents a D —on propagator

D; (7). ( In the case of S = 1, they will involve an addit-
ional index, a ). The interaction can be represented by
the two types of vertex, illustrated in Fig.(1 3) . The
first vertex represents a spin -~ flip transition at the
temperature 7.( or a C -on,/D -on scattering) while the
second corresponds to Ising scattering (C —~on/C —on scattering
* The high - density olassification arises from the
observation that each vertex has a factor J (k) (or on
transforming I:‘Lj)’ and a label T4 which is eventually
integrated from 0 to B ,s0 it is approximated by BE
where I is some average value of J (k). Now eny internal
line will carry amomentum label k (or on transforming,a site
label B, ) and if it is freely summed over , will give a
numerical contribution of order z , which is the mumber of
spins interacting with any other. Thus any graph with V
vertices and L internal summations, will give a conmtribution

-V L
of approximately (g I) . z ; but from molecular field

theory (a,s will be seen) the critical temperature is given
X See Addenda.
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by %8 o J(0) =1 or approximately g, z T -1,
-1,V ~-L
Such a graph will then contribute a factor ( Ty .T 1) oZ e

Thus, for temperatures near ’.['0 , or higher, the order of the

graph in the high -~ deisity expansion is the numier of
vertices minus the number of free momenta summations.
In genmeral, there will always be more than ohe explicil
sumation , so we obtain an expansion in powers of 1 VER

The lowest order self -~ energy correction to the
magnetization is illustrated in Fig. (143.) « This gives,for
the magnetic (C —on) self - energy & (]1)( 1) a total

eontribution,

L]

7(0) £7  8(¢)

3(0) £~

2(11:) (%)

o (1) &) (6.21)
2y

fi

Note that the exchange term in Fig. (14b) gives a zero

contribution using Eq. (6.11). Using Dyson's equation for

the first - order propagator

(1

D@ oy g ) SPme Vb e

all reducible terms of the type illustrated in Fig. (15 a)
and (15b) will be included. Both of these involve no

explicit k-dependence in the J(k) funclionms ie. L = 0
so that all these graphs give a contribution 0(1) in inverse
powers of z . However, so do all "ecaeti" graphs of the
type illustrated in Fig.(15¢) , so these too must be inolud-

ed, This is quite trivial and involves , as usual, only
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oconverting C —on lines in the self - energy from free averages 140,
to full self - consistent ones. This is shown in diagramatio

form, in Fig. ( 16 ).

. 2:(;lc)(co) R 2;{ (01) (6.25)
- 21 (D) =30 <of oz =3O (h e S )
(6.23)

thus,

-t

-1
c (9) = (B~iv-2 () )= (u, -3(0)<5% -i¥)
k k 1

(6.24)

This just introduces a real shift proportional to the net
magnetization. In terms of its analytic continuation to

above and below the real w - axis (i.e. s 0%

. 1
Dise Gy (v) = C;:(w +is) -011c (w-is) = 2n38(w, ~R4J(0)~ w)
(6.25)
zZ Z
where R1= < S 3 1>=<S k>1,
so, as in (A.42)
1
¢, (x)= ox) 1/2n) du_ o™ _ piso. c; (v),
14+ €-Bw ¢ ('1:)
(6.26)

where the Fermi oontour has been deformed from around +the

imaginary w -—axis to surround the pole on the real w-axis,
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this results in

¢l (¢) - £ (1) exp—(Wy -R4J (0) )7 (6.27)
1 +  exp- (v, -R43(0) )B

+
Tn the limit T —0 and with Eg. (4.1) one obtains

R, - % tanh Yg (u,~ 3(0) R,) ($.28)

142.

This is the usual molecular field result for S= % (c.f. Eq.(5.124) )

and only has a non - vanighing self -~ consistent result in
zero field w, = O for temperatures below T0 where

AT = J(0), so, at low temperatures By — =% sign (w, ).

As this result is correct to 0(1) all future results involving
C —on lines can always be renormalized by changing B to

(mo -J(0) R1) in the Fourier transforms. This treatment
can be seen to be the dual of the method of semi-invariants
used by Stinchcombe et al,

The analogous result for S =1 is slightly more complic-
ated in its calcutation, due to the presence of the counting-
factor Y. If only one spin site were involved, one would
simply multiply the equivalent C - space average by Y , to cal-
culate the spin average. However, with more than one spin,
counting problems enter into the calcuiations., These are

handled as follows: the spin Hamiltomian H® is first

transformed to the C - space Hamiltonian H® for S = 1.

O_ + T L
B = Ea ci,a Oi,a + H:+ Hy + H1 (6.29)



with 143.

B = -1/(20)z J(k +a) e ¢ k~I",q-q3
T /(e e of o g, kL)

(6.30)

and

B = -1/(28)5 3(k-k')oy, ox1 4 Oq goqr g Hi-K'+a-a')

The summations are over all four momenta, and the two spin

I o7 - +
ng'43133)°i£ia

indices (ay B = 1,2 ). The term H: =
(6.31)

cannot be immediately incorporated with the first term, as

it really involves two - site summations, not just one.

So this term must be included in the development operator

in the C - space expansion. It is represented diagram-

atically by Fig.(13c) and can be included by "zero - order®

renormalization. An nth order term in the expanded

development operator will contain products of 22 different

sites,but some of these will be the same as the external site

labels, and also (perhaps) with several other intermal

labels. This will be equivalent to a series of C - space

averages, all with an- explicit counting factor of Ym, for

the case of m different, explicit spin operators. Applio-

ation of Wick's theorem will further decompose these

averages, leaving graphs involving L independent site

summations, so such graphs will involve a complete

oommting - factor YL two BE can only ocour for reducible

C ~on corrections and,as it involves one summation over all

other sites, one can always zero - order renormalize the C -on



lines. This is equivalent to using the follow-ing for the

unperturbed Hamiltonian, Hg :

[ +

B = B, {(w ) o, o,
1 °i,a ia ia

where (6.32)
: By (wo) = wp + 3(9) ¥u, )

This gives, for the zero - order magnetization (in the two

spaces Ry = YRy with Ry = ~tanh %p(, +3(0) Y) (6.33)

The graphs generated by Fig. ( 15 ) for the calculation of

the magnetization to the leading order in 1 /z must also

be included. The self -~ energy becomes,

aB +
b 1)=86 & 8 11 3(0 o 6.34
kk'( ) 2 ket (z) = qYJ(_)<<3q Yqu >0 (6.34)

The factor J(0) indicates one sum over all other sites, so a
factor Y is inoluded to compensate for overcounting, so

(in a reduced notation)

21(<1)a( V) = YJ3(0) 2f =730 (Ro + 1)
’ (6.35)

Thus
Cg; (3) =(Bg - ¥-2y (9 )"1= (wo-J(Q_)Rg -ig )"1
(6.36)

Note that this counting - faotor is just sufficient to

renormalize by the true (i.e. spin - averaged) magnetization

144,



| - <
Ry and not the C -~ space average Ej.

The first order magnetization is then

R?.‘) = =Y (uw,) tanh % guw, ~ R: J(0)) (6.37)

Tn the same manner as S = % , the complete first - order
renormalized line for the internsl "molecular — f£ield loop"

can be used with the result

- U

Ry = T (w,) temn %l B 7 (Q)) (6.38)

So, apart from the counting — factor Y this is identical %o

Eq. (6.28).

(6.4) Transverse and Longitudinal Correlations at High

Temperatures.

In this section the caleulation will be extended to the
next order in the high - density classification,; that is,
to order 1/z. This will inolude all graphs with one explicit
k- dependence 1ie IJ™k). . Fig. (17) shows that these are
the simple repeated sdhtering graphs for the two particle
propagators, corresponding to the transverse swd longitudinal
correlations, < S~ §'» and<S® % respectively. In the
next section this elass of graphs chosen by the simple
high ~ density classification, and so strictly valid only
for T >Z, (as shown earlier) will be shown to be the same as
those corresponding to thelow ~ order terms in the expansion
in powers of the temperature. So the present results will

also be valid in the whole temperature regime (apart from the
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oritical region ) and the transverse correlations will

reduce to the resulbs of low - temperature spin - wave theory.

The case for S = J% will again be taken, due to simplio-
ity, and the generalization for § = 1 indicated. The spin -
wave propagator F (I, 1) is defined in terms of the Fourier
transforms of the transverse correlations funotions, as in
Eq. (5.122).

with

P (k,e)= <1 ( wq(ﬁ) e (f)oktq, (0*) tp_q.(O) ) >

(6.39)

Thus the free form of this propagator has the simple structure,

Faq' (& ©) = &q1Dg (v)Ck ¢ (9 = 5que_B e+ o(-1)E )

(6.40)

This is illustrated in Fig. 18a and its (even) Fourier transform

is given by

o ' -1 -iat o 0 1
F (kv )= @) £ e  F(ka)F (k7)- t2ohob?d
: a e = (6.41)

The 1/z series is generated from the lowest - order self -

energy of this propa-gator, qu'(__lg, ) is illustrated in Figd{19).
and defined by a general correction to qu'(_k_, T ),

as in Eq. (5.129).

Upon evaluation this gives: (6-42)

- (1) _ (M

R (_1g,z)=2'1\1; JEB @) 5 8 g4

=y
(.}E: O.)=2N J(;S)
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The appropriate Dycon equation for this series (includi:g 150

the free summations in the intermediate states) is

(1) 0 SOPRICENRC)

Tagr (XD =Toq (s @)+ 2T (5808 (3D, (&a )
(6.43)
0 - () -1
P (5,5) - 1 ¢ Fil) (La)=0 (F (ka)) " ws (k3 ) )
N aa'
(6.44)

Substituting for PO(k, ¢ ) and 3(1)(_15, o) by Eq.s (6.41 = 2)

one finds,

e (k, o) = tanh % BB

[ w, +7% (3(0)-3(k) tanh % 8B ) -~ 17 ]
(6.45)
However, first - order renormalization of the constituent
C -on propagators will not change the order of (1/z) of these
graphs, so by Egq. (2.21) the molecular - field transverse

propagator becomes:

p (1D) (k,0) = - obaq® 2 M (6.46)

qq'

wo =R, J(0) -i«a

Upon including the transverse terms, one finally ottains

F1 (k, @) = -2r, (v(k) - i@ )_1 (6.47)



vhere 151.

(k) = w, =R (30 ~3(x ) (6.48)

correlations can be calculated immediately by converting the

a - summation to a Bosecontour, with z = ig as in (A.42)

80

Fo(k ¢) = _=¢(v) 2Ry exp (- u(k) s J]

1 -expl([ -8 uk) ez ) N

(6.49)

So the lowest — order (in powers of 1/z) transverse interaction
effects a k - dependent energy shift with no damping. Thas,
at low temperatures, where BJ (0) > > 1 und R, = %

one recovers spin - wave theory, and for w, = O the spin-
waves vanish above To due to the factor R1 (T) in the mumerator,
but not below To’ In terms of the saturation magnetization

M_ , the finite temperature magnetization M (B ) is given

by ( T< Tc)'

M(p)=2 (%h-1 = 3

st ST 5) = %-o(
N k )

<
k X To

(6.50)
Note, the enmergies w(k) involve the molecular field
magnetization Ry and not the self - comsistent spin - wave
magnetization - so no anomalous 73 term appears.
The result for S = 1 is obtained directly by remembering
that the internal summation introduces a counting -~ factor X,

wvhile all propagators carry two additional "spin - indices"



The corresponding Dyson eguation becomes: 152,

AN - AN - AX —\ oAqAd NN IY -
F k,a ) = F k,a)+ £ P (k,q) 2 (k,@)FM k, &
agr (&) agr BT, apy & %o P q1("’ ? a1 g )
P1,94
1
PELS
on substituting
M (kE) = Y1 7 (k)
aq' 2N
along with
AN! - 8
Faqt (& o), = 8 ggibtanh $Bl,-J () R )

s
we =J () R™ -igd
The result for the spin — wave (spin indices averaged) is

- Y 2 R®
Pl ( k3 )

]

v, R (7 (0) -3(k) ) - i (6.51)

Thus, apart from the factor Y inthe numerator (as before)

the result agrees with Eq. (6.47), with the magnetizaton for

S = 1 gubstituted instead of S =7, in Eq. (6.48).

The other series of graphs, which are also of order 1 /z, are

the longitudinal graphs Fig. (20 ). However, in this case,

due to the identity of the four operators, a non - propagated
Z

z
part must first be subtracted. Thus < S, S > becomes
i J

z 3z + 4+ ] Z
8.8 >=<o0. e 8 > e > -1 6.52
<8, ,j> ciicj°j> % s 2<8, A ( )

So, a new two - particle propagator Kﬁj( t) and its triple
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Fourier transform (assuming an homogenous system) 154.

K 1 (k, T ), is defined by

I

K5 (s )=a (i Jos G )03' (o+)°j (0) >

ik. (B; - Rs:)
%qg'k ° s KCM' (s )

(6.53)

Then the four — fermion propagator is defined by

Kyq (k, 1) = < Tw(c]':: +q("+)°q( '5)0;1 —k(°+)°q’ (0) )s

(6.54)

This can always be decomposed into two parts - a self -~ inter-

action and a propagated term K.

K (.15'5)=—IE (kyt + 6 <co<ct e
ag' aat ko ag gq'aq' (6.55)

This separation is just sufficient to give the usual form

for the bngitudinal correlation

Sz SZ <SZ SZ 1 ik . . )
< . > ) >< .> = N Z N —3d \_R_ l-'_ga :: (k, 0+)
i3 i J aa'k t =

(6.56)

The lowest order component graph of the propagated type is

the simple particle - hole pair of non - interacting C -ons;



this is illustrated in Pig. 20 a), and is given by the simplest
contractions;

B (k) ¢’ (¢) 6, (=t )= 2" g
Bggr W7 )= Qe © g W) Ogq 10 /=010 g

(6.57)

The self — energy terms of 0{1/z) in the high - demsity

expansion are illustrated in Fig. ( 20 b and 20 ¢ ).

Explicit evaluation of the "exchange" graph Fig.(20c) demonstrates

that it gives no net contribution, as it involves a self -
contained interaction sum Eq, (6.11). However , the "direot"
graph Fig.(ZOb) gives a non - vanisghing self - energy
contribution APP' (k) = % BJ(k) . This series is

summed by using_the Dyson equation

T @-F  (©s+z T
I": E =K __}S + K
ag’ ¢qt pp' ap

ks (X (& (6.58)
pp* pq

The temperature - variables 1 have been dropped in this

equation as each component of the equation (to this order)

has no explicit <t dependence, so leading immediately to

an elgebraic eguation. Summihg over the indices g and q!,

and substituting BEq. (3.17) for qu.(g) leads to the final

result

i..l-:.' (..R-i _Bj ) + -
e f £

(1-83 (k) 272 )

< S? S%>— <Sz> <S?>
i3 i 3

L

=1
N

(6.59)
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Thus, the complete O(1) result is obtained by rencrmalizing

z
the individual C -on propagators - this is eguivalent to
4
the substitution £ ¥ = R, giving
z .z z z 1 eig' (Bs- Bﬁ) (4% - Rf )
<Sisj> —<Si><Sj> = ¥ z

k 2
1-pRp(x). (h-R)
(6.60)

Q505) Low ~ Temperature Expansion and Spin — Wave Scattering.

At this stage the calculations will be extended to
low temperatures for S = % and the validity of the above
results to temperatures below Te will be oxhibited, as well
as recovering the low temperature spin ~ wave results
found by other methods. In this temperature regime the
graphs can be classified by their contributions to the
free ~ energy F in powers of the tempersure ( in fact,
the reduced temperature T/Tc). In order to do this systemat-

ically, the contributions of each individual type of element

in the graphs must be analyzed. Upon summation over v of C%y)

there will result a factor £% or £ which with simple
+ -
moleoular field renormalization becomes £ = — % F R4,

0

Then in the two limits T —~ and w, — 0+ these become

2t o1 -6 ~2TW  apg £~ — =38 % (0) or in the

+
corresponding limit of w, —> 6 the roles of £ are reversed

as Ry &> ) sgn (wy ). So, at low temperatures, in
zero magnetiec field, with ferromagnetic interactions J(Q) > 0

the factor e -32 J (.9) is negligible compared with any finite
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power of T. This implies that any "particle — hole " pair 157,
of C —-ons occuring between any {two vertices, will inlroduce

a factor £ £~ upon integration over the internal temperature
variables, so all such graphs will be exponentially small, and

can be neglected. D ~omns always give a finite coniribution

of 0(1) as do unpaired C —ons in the correct limit. The

next contributing element is the simple spin - wave (i.e. with

k - dependence, introduced through one transverse vertex).

Since at low temperatures Eq. (6.47) gives,

P D=L B 30 - 3 ) - 15)] T (6.61)

or P ) = o ® T (el 1+ b DY) (6:62)
with (B) - B3 - 30 )5 B 1 4
(6.63)
o (1-e M

This will be represented by a simple - line Fig. (18D),
All graphs can now be simplified by isolating all spin-

wave lines which then interact via equivalent vertices V rep-
resented by Fig.(21 a); these vertices wilil contain only

C -on and D -on substructure and correspond explicitly

to the kinematical corrections in ideal spin - wave theory.
As this is now a gtandard type o. Quantum Field Theory, the
contributions to the change in the free - energy F , due

to the interations, are given by the usual sum of distinet
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connected grephs, that is (A.32).

Again the low - temperature classification method used
by Stinchcombe et alszggr their semi - invariant analysis,
will be followed, and a very close correspondence for the
present Green's function approach will be foumd. The
equivalent vertices only involve funotions of J(k) and poles
of the form (B ~ 1% ) which lead to exponentially small
corrections at B, but are converted to ( %J (k) )™ at the
spin - wave poles ig = o (k) ; so only result in one
power of B per vertex ds a result of equivalent energy
congervation at this"vertex". Thus for a graph with N
spin - wave lines interaction through V equivalent vertdices
resultd in 5 independent k and ¢ summations.  Each of the S
sums over o is converted into a bose - contour around
the whole of %he imaginarywjaxis, where w, = i @ 3¢
This is then distorted in +the usual manmer to pick up the
residues of the poles from the product of the gin -~ wave
denominators. The net result is a product of spin -
wave bose occupation factors b}: multirlied by a product
of (N - 8) denominators, each of the form ij(gﬁ). The
contribution of such a graph to ~BAF has the form (retain-
ing only temperature dependent factors) -

V- 8 -3, 5=
(8) z (bk) (v) which is proportional to T

(3/2.5-V)
However, in all but the simplest cases, this rule needs two
modifications. The first exception occurs when thereare D °
degenerate gpin - waves in the graph, i.e. D have the

same momentum and energy (k, @ ). Then the pole from this

will give a contibution obtained by differentiating (D-1)
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entiating (D-1) times the rest of the integrand with respect 160.
to @& , so reducing the power of & in the denominator from

(N-S) by 2 further (D-1). This gives a contribution to

__ S =N +S +D~1
~ B AP of the form B(V-—N+S) g (b ) (@)
k
ky.k
s
L 3/2. 8-V +D-1
which is proportional to T .

The second case arises when the frequency of one spin -~ wave
appears with oposite sign in the frequency of another, due

to frequency (or energy) conservation at the vertices.
Effectively there exists particle and hole spin ~ wave states
between some of the vertices. These two poles contribute to
the sum over this frequency, one yielding b-k leading to the
usual T 3/2 contribution, the other bl;" which involves no
temperature dependent cut - off and so fails to give

an O(T% 2) contribution. However, it does still give a

factor & in the denominator, sec for S!' spin - wave holes

:7,'!5_&.4 S (bi )S—S'(BG)S+S'-M
Bw :

which is proportional to T3/2 (S - St')4S' - V,

the contribution to - gA F will be I gr

So, in general, a graph involving S - independent spin -
waves, of which S!' appear both with positive and negative sign
in the energies, interacting through V equivalent vertices

and with ND groups of D - degenerate resulting spin -~ waves,

will contribute to ~ pA F a term

3/2(3-8%)+8Y <V ¢ Np(D-1
BA F(S,S' , ¥, ND) o« T ( ) ) D( )

(6.64)



Since S 3 V + 1, the lowest order graphs are those with V 161.

1
and ND small, all graphs with Ny > O are at least of O(T 2 )

and increase rapidly with ND ; similarly one must minimize the

number of indepemdent spin -~ waves. The only diagrams which
give a contribution Yo AR of T3 or less are those
illustrated in Fig.(22, 23) . Thus the twolowest order
diagrams in powers of T are also the same as those classified
in powers of 1/z,s0 the results of sections (6.3) and 6.4) are
also valid at low temperatures.

The low -~ temperature diagrams involved in spin -~ wave
scattering will now be evaluated to exhibit the degree of
correspondence with earlier theories. This will involve
caloulating the effects of the vertices illustrated in Fig.
(21D and c)in the first diagram of the Born series Fig.(23)
Since the spin ~ waves involve a2 C ~-on and D -on pair, then
the structure of the simple interaction vertices Fig. (21)
indicates that the lowest order spin - wave interactions will
ocour in 4+th order; this vertex will be denoted by V(4),

(the diagram obtained by interchanging the D -on pair will
be included in this). If the contribution of the two spin-

)

waves is denoted by w(_151 Ty -152 T3 33 T3 s k 4 14

then the contribution of this graph to-~ BA F is given by,

* B 4)
— 2:. I d11...d14 w(_151 Ty yoee Ky Ty) v( (1511’..,_154 14)

(6.65)

which on Fourier transforming, with repect to the t-labels
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and integrating , gives (in terms of the reduced vertex V )

- N C) SO
z F(Lc,a )F(g'a)V (a at;at @)

L5 ()7 ()
kk'

1
2(2) 4 i 2

W

(6.66)

=(4) (4)

where V' ’( @;)is the transform of V' '( t,), which is given

by

v ¢°(14)c°(23) [p°(12)D°(34)-0°(13)0°(24) ) y

~N ¢°(24)¢°(13) (0°(12)p°(34)}+D°(14)Dp°(23) (6.67)

The simplified notation ¢°(14) = ¢°( 7, - 74) has been used here

for convenience ; the Fourier transform is given by

?‘7(4)(015_@2 s 7 ) )= IN&(1+2-3-4) co(q-§) D°(§) =

3%

[Z (v1253,4) + Z{v1254,3) ]

where ,

Z (V71 323354 ) = Do(a_';_ E1+V)£ c°(a.2 + )“Go(aq_ -'\7.) 3 .

(6.68)

This is evaluated in the usual manner of converting the sum
to an integral over z = iV involving the Fermi contour,

In the low temperature approximation this only picks up

the residues at the origin , and those poles which result in
f* faotors - the £~ ones are exponentially small, and ocan

be neglected. Within this approximation
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<( 4 -
\r4)(12;34)== - 2Nps(1+2-3-4)[B-1a, +B-15] I ( B - id;) L
j=1

(6.69)
Again in the low - temperature approximation , the double
sum over & and &' picks up only the residues at the respective

spin - wave energies w (_l_c_j) and using : B~ w(_l_c_j) = %. J(lcj) £ 0

(4)

)
B I Flka) Flkyar) V
aal

(gasa @)

o [30E) +3(k')]

—

- -2'gwpl

P (6.70)

(k). Ax)
Thus, the simple 4+th order terms result in a contribution :

warPl o g e [I® IE) T (6.71)
Ny -

(5)

Similarly , one obtains for the 5th order vertex V ’

o 2 P a(er) +3(Q R DR, 1) Tz as
kk!
(6.72)
with ) 8
7 (v35)= § dvg C°(15)c°(25)c°(53)c°(54)p°(14)p°(23)

(6.73)

At low temperatures, the Fourier transform of this is ,

4
(5) (a1<12 sa a ) = 6(a +“2-<13—C‘ )Jlig B - 1‘1 ) T

(6.74)

)
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g0
-2 NP () H NP L
87 Pk, a)F(X',a)V (Gw'; '3 ) = < B "k Pt (6.75)

.05

This gives a contribution

oo 5 orEe, GEE)FI@ ) (6.0
2y k!
So to 0 (T7) in contributions toA p one has
(6.77)

BF (445)=  Anby by (30 +3(k)-3(k")-3(0) )
kl('
This is the well - known result for spin - wave scattering in
the first Born approximation at low temperatures obtained by
Dysonf%%n>also showed the cancellation to O(TB) giving the
famous O(T%) result (or see Mattig.)
If the sum of these two vertices is defined, as V, then

a2ll the relevant low — temperature spin - wave results

can be derived directly, so

4
v(1,2;3,4,) = v )(1,2;3,4)+N V(S)(1,2;3,4). (6.78)
In the low temperature region this has the transform

v (P1P2, P3P4)=y2{3 N 6( P1+P2‘P3‘P4)[ J(—IS1~_1_C4)—ZB+iE1 + 1 62]

I (6.79)
e -3y
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where the 4 - dimensional notation has been used, pj =1lky oy . 167.

The simple spin - waves F(g,«n) can now be renormalized
through the vertex V to the renormalized form Fr(g¢u) by
means of a Dyson equation directly analogous to the one for
C -on renormalization in the molecular field approximation
i.e. as illustrated in Fig. (16) . So upon taking into account
all possible exit and entry vertex points one obtains for

r
the gpin -~ wave self - energy E (g,tu)

F‘r — -
dqq(]—":’ a)= X_ 5 2 P, 3 )(V(pp*, 20" ) +¥(pp', 2" D) #(2'D,p'D)
(2.\7) lg a'
+V(p'pypp*t) ) (6.80)

which, in the low temperature approximation becomes

1 .J(k)z i ;—'(J(g)w(}_:—]_,:')-J(_Jg')~2(B-i“a') ) (6.8%)
2N (B-in )2

Thus, by Eq. (6.44)

Fk,a@) = (B(k) - ia )" (6.82)
with

B(E) =% 3(Q) =3(x) ) -1/8 1 b, (3(Q)+3(kk")-I(k")-I(k) ))
kT
(6.83)

This is the usual Hartree - Fek spin ~ wave renormalization

result, in this case obtained by approximating

E - r
aQZ' (ka) by g (ku(k) ) or self -
aq

consistently by E (k).

The damping term is introduced into the first self-



energy graph which has "dynamic" spin - wave contributions in

the intermediate states as in Fig.23b in distinctionto Fig.23a

, which only has a "static" intermediate spin - wave.
The equivalent self - energy diagram corresponding to Fig.23a
gives a self - energy contribution corresponding to Eq. (6.80)
of

=10 -3 =2
27N 78 £ B(pp)F(3)P(ng)8(prop-py-ny) -

Pop3Py (6.84)
2 2
Ap py 2L Apgp,s )+ Qpgpys )] (k) & 3 (k)

=2 {1
(B"ll ) 1S (B—ia .)2
52 ]

where Q(pipj,xh) =J(ki-gn)+a(kj—gn) 4B +2i( o} aj) (6.85)

Instead of evaluating this rigorously the low temperature
substitutions i Ej = w(k;) will be made to exhibit the approx-
imations used in earlier theories,(which, in faot,violates

the & - fumetion on the frequencies & (Pj )?

Thus
(ko) = .3_1____ 2 6k, k3)7(2,)7 (23)P(p + 2,72,
N’ § q P2p3)
(6.86)

orkppk,) = WA HI(,)-T(0e5k,) -0 -0) 3 =

where

L (d (53) +d (;]E+;]E2‘.153)"‘J (.123"'3) ~J (_123"32) )

(6.87)

168.



The fnal result for the damped spin - wave, in this ayproxim- 169,

ation, is

7 (k,7) (B() - iz - 8%, @) (6.88)
with .
e ".15_2?) ik ky) Mlkprkyin ) (6.69)
! [ B(3)+ B(lerk ~k )-B(kp)~ 5o ]
with

M(ksk, k38 )

1

b (le5) (7 (k) ~b (ke kpk ) ) b " (i) U Kok

(6.90)
where the renormalized notation has been used
b () = (expp B() ~1)7 (6.97)
In terms of the analytically coutinued values i @ = :tis)
71

+
for s —> 0 , the results of Tahir -~ Kheli and ter Haar,
for the damping coefficienty (k,w ), and the real shift R(k, v )

are obtained,

[=1

(ko is) = R(ko ) T iy(o) (6.92)

The results in this section well illustrate the ideal spin -

A
wave methods of Dyson and others. The T contribution to the

free - energy is obtained from the Dyson form of the Heisen-

berg model , by considering only the first order terms in
the interaction operator.
Thus, in terms of the ideal spin - wave ,boson operators

ak and d; the interaction Hamiltonian is
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Dyson : +
g TR ETEY AT W (69)
with T (kk'g ) = J(k) + 3(k') -23 (q) (6.94)
|
So
Dyson 4
4 F = N ]&ql"(___’_g)<:];'a£ —gak'+g, (6.95)
or
Dyson _ 1 5 - “' \ ' k) -
F L2 om b (@) 30er) -3(0) )

(6.96)

This is identiocal with Eq. (6.77). The correspondence ocours
because of the method of representing "bose-like" operators

S by pairs of fermion operators. This necessitates 4th order
graphs (or their equivalent) in the present notation before

spin - wave interactions dan*oéoﬂr._ Consegquently one can
always identify graphs in the present method with any

resulting from spin - wave theory. The advantage of the present
method is that it is well — defined throughout the whole
temperature regime ( in distinetion to spin - wave theory,

which is strictly éﬁlid only at low temperatures,

AR

<<1 as Dyson has shown). Moreover, the kinematio
restrictions are built directly into the present theory
through the dynamical nature (C —ons and D -ons) of the
equivalent vertices , and can, in principle, be evaluated at

any finite temperature.



Chapter 7.

SUMMARY, CONCLUSIONS, and PROSPECTS.

At the beginning of this thesis the fundamental
concepts of the linear response formalism were first
introduced , as a natural precursor to the exaot ( Heis-
enberg picture ) spin - operator averages, and the idea
of generalized spin susceptibility funetions. The
standard methods of Quantum Field Theory cannot be applied
to the analysis of these functions, as there is no simple
Wick's theorem to decompose products of spin ~ operators,
unlike the usual case for bosons or fermions. Conseqg—
uently, various fermion representations were analysed, with
a view to their possible usefulness in such spin problems.

The 28 fermion spin representation, which was first
presented here, has been found useful for converting elect-
ronic problems, involving second - quantized electron oper-
ators, into an equivalent formulation,involving a Hamiltonian
which contains only explicit spin operators. This was
demonstrated explicitly for both the Kondo model of isolated
localized spins, interacting with the conduction eleotrons,
and for the Heisenberg model of a ferromagnet.

The simplest example of the 25 fermion representation,
namely, S= %, was found by Yblingio give a comparatively
gsimple Wick's theorem for such operators; but the analysis
given here indicated that this camnot be easily extended

10)
t0 S = 1, or higher spin values. Abrikosov's method for
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the 25+ 1 fermion representation has also been reviewed here 172,
and the diffioulties associated with this method mentioned,
The representation which has been found to be the
most useful in the present work is the drone ~ fermion repreas~
entation which has heen extended here to all spin values,
from the previously known case for § =jh. An investigabion
of the eigenstates of whis representatlon resulted in twu
Wick's theorems for spin operators, which were first demon-
strated here for £ =% and S = 1. The Wick theorem for
S= % has very simple properties, for, unlike that for S = 1
or that of Yblin?)it involves no normalization factor, and
this is important in many - spin problems. As these
techniques are immediate extensions of conventional many~
body theory, no new elaborate diagrammatic rules need to
be formulated -~ wunlike most other attempts at this problem,
The main application of these methods has been to
the problem of well ~ localized magnetic moments, Interact-
ing with the spins of the conduction electrons of the
host metal. The first example of this Hamiltonian involved
only one impurity spin (i.e. the low conoentration limit) -
the so - called Kondo problem, In the investigation of
the static and dynamic magnetio properties of the impurity
spins, a log T term was found in the second - order g - shift.
This then resulted in the same log T term found in the statio
susceptibility by several other authors. These particular
quantities need to be evaluated in higher orders of the

interaction , in order to investigate the low temperature



magnetio properties of the impurity, for several authors have
indicated that the local moment is quenched by the conduction
electrons (for J< 0), below the Kondo temperature T,.
Unfortumately most of the work on this point has been
ocarried out on dilute alloys of iron in oopper9o_1- a better
check of the theory might be with rare - earth ions, where
the Kc:ndo model is expected to be a better approximation.

The present high - order results for the eleotron
self - energy part M (Eq. (5.75 - 6) ) can be compared
and oontrasted with earlier results of several other
authors who have also investigated this Hamiltonian.

1.
However, apart from Doniach ) y, all these authors have

caloulated M direotly,without the aid of V (Ea(5.74));

£
and then restricted their solutions to the high temperature

they have thus inoluded a divergencpat T, for <

region T> T Although the use of V gives a convergent

e
result, it may be invalid to assume that it is the only
analytio result below Ty, for a series of terms has been
summed in V, beyond its redius of convergence, whioch occurs
at Tk' This may indicate that a possible type of condensat-
ion foiug avound the local moment in this temperature
regime; but more sophisticated techniques need to be applied
to the present formalism before a definite answer wan be
given. However, Yosida48'), like NagaokaM‘) has found
anomalies in this region, when he applied conventional
perturbation theory to a singlet - correlated ground -

state wave = function at 0°K for J < 2. This resulted in

an energy approximately kBTk lower than the corresponding
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1.)

uncorrelated ground - state. Doniach hzs summed a
series of self - energy diagrams using his zero — temperature
spin - Wiock theorem. Although this method results in a

resonance, rather than a divergence at T , two points must

X’
be mentioned. Due to an ansatz extension to finite temp-
eratures, the resubing value of ‘1‘k is too small, and because
of his method of averaging, the two total spin components

(2 = %), Sp = 1 and Sp= O differ from each other, even in
zero magnetic field. This latter separation into ST
channels shows up in an instability in the effeotive
potertial for ST = 0 but not for ST = 1 - the former having
the wrong sign throughout the whole temperature range.

The first successful finite temperature caloulation
using a perturbational method and treating the spin operators
correctly, was that of Abrikosov1o')who used the method
outlined in Chapter 3, and summed a series of "parquet -
disgrams" , which , in essence, are similar to most of the
self-energy terms treatved in the present thesis. The result
is quoted in Chapter 5, Eq. (5.58).

Suhl and Wong42.)have also investigated this problem
using Chew - Low scattering theory, but little contact
seemed to exist between this approach and those of other
authors. However, Silverstein and Dukegz') rave recently
shown an exact agreement between Suhl's approach and that
of Abrikosov, by imposing the restriction of "on - shell"
energies in the scattering amplitude; +this also removes

any complex poles which have sometimes appeared in recent

theories. As a final summary of the basic results of these
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theories the following parameter "x" , predicted by each 175,
theory, is tabulated in Table 2. This parameter is defined

for the anti ~ ferromagnetic case (J< O ) by the resonanee

condition given in equations like Eg. (5.70z2) and always

converted to the present band - structure and notation, that

is
1 + xpd ln.(-JLQQ—— )y = O
5 Tk

Table 2.

Authors. x L
Nagaoka(11) 2
Takano, Ogawa 3/2
Abrikosov 2
Silverstein, Duke 2
Doniach 1
Present calculation 2

It is the exponential dependence of Tk on x which
makes its magnitude important if any experimental verification
is to be attempted. The damping term % ;1( or, equivalently,
the spin ~ impurity resistivity, Eq.(5.78) ) is also plotted

against the reduced temperature T/Tk for J < O in Fig. (24)
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The present result is denoted by curve 1, and is contrasted

41.)

with the modified (high temperature) result of Nagaoka
Eq. (5.84) or Abrikosov1o'), desoribed by ourve 2, and also
with one of Doniach's11.) extrapolated results for Sy = 1,
and illustrated by curve 3 - the latter form is relative
to its own Tk' As oan be seen, the resonance is not
very sharp ( this was anticipated by Abrikosov, but was not
proved ) of width about 3Ty . This would not seem to
indioate a sharp phase transition, as was predioted by Takano
and Ogawa44'). However, it seems quite likely that all
transport propertieszz‘)(like the eleotrioal resistivity)
will have smoothly varying properties through T, so that
experimental investigations should oonoentrate on properties
of the looalized spins, for example, the magnetization,
where the changes may be more dramatio.

For higher oconcentrations, the effeots of inter -
impurity interaoctions have been shown to be important.
When large spin - orbit damping of the conduction eleotrons
exists, it has been shown here , in a microscopio theory,
$hat the full first - order Yosida shift appears (section(5.5))
and this needs to be extended to higher orders. The same
mioroscopio theory has also predicted the so - ocalled
"bottle - neok" effect, where the local - moment line -
width narrows with increasing impurity oonoentration, and
the expeoted Korringa width fails to appear. These teohniques

are presently being extended to the situation where the

local moment is further coupled to the nuolear spin to
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investigate the effect on the resulting line - shares,

The rare - earth metals were firnally considered, and
the ferromagnetic state investigated. A sub - set of
diagrams led to Eq. (5.130), which exhibited the coupling of
the two spin - wave gystems. In the static 1limit the two
spin modes were explicitly demonstrated. These results give
a perturbation basis to the decoupling method of Doniach and
Wohlfarth ', who amalysed the dilube Fe in Pd model.

The final example of the new techniques introduced

in this thesis was a systematioc fermion analysis of the

Heigenberg model of ferromagnetism. The usual high - density

clasgification in inverse powers of the correlation - number
z o, carried out to zeroth and first order, resulted in
molecular field theory, snd simple spin - wave theory
respectively. A low temperature clagsification, similar

to that of Stinchcombe et a181°)has also been carried out,
which extended the walidity of these high - dengity results
throughout the whole temperature range, and which
systemantically accounted for the kinematical effects of
ideal spin - wave theory. TFurther terms introduced spin -
wave scatbtering effects as the next important contribution
to the free - energy at low temperatures. The cancellation
of the T° term was demongtrated, leaving Dyson's T4 tern in
the first Born approximation. Higher order terms, inthe

interaction, resulted in spin ~ wave re-normalization and

damping - this exhibited the nature of the approximation

used by other methods, such as decoupling of the equations of
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motion of the spin Green's functions. The explicit form of 179.

these higher order effects found here suggests that scme fin-
ite temperature calculations should be considered.

In conclusion, it can be stated that the present
techniques for handling spin problems, introduced in this
thesis, have a wide range of applications, in many branches

of current interest in Solid - State - Physics.



APPENDIX 4.

18
Standard Many - Body Theory for Fermions c:» Bosons. Q

The statistical mechanics of a many - body system is
characterized by its Hamiltonian operator H and its total
number operator N. For systems where the ground -~ state
energy EO(N) increases monotonically with the number of
particles it is possible to define a chemical potential p

(independent of N) by
n = Eol + 1) ~Eo(I) (a.1)

The thermodynamics of such a system at temperature T
(or [3"1 = kpP, where kp is Boltzmann's constant) is then
described in a grand - canonical ensemble by the combined op~-

erator K, where,
K = H - pN (2.2)
and the density operator,
= oPE (4.3)

The grand-partition fumetion Z is defined in the sum
over all states of the density operator, which are simultbaneous

eigenstates of H and N, that is ,by a trace over such states,

Z = Tr. (¢ ) ' (a.4)

Moreover, the thermodynamic average of any operator which

measures some property of the system is given by its
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weighted average and denoted by 181.

< A> = Z_‘l Tr. ( z4) (1.5)

This is independent of the picture chosen to represent the

time development of the operator. It is the purpose of
Many - Body physics to evaluate such averages. The present
thesis will use diagrammatic perturbation theory to arrive
at approximations to such averages, In the particular case
of "free" systems, theaverageé can be evaluated exactly in
the number representation (second quantization) of the
systen. If the particles are diagonalized in the p-rep-
resentation then Np= a; ap is the number operator for

particles labelled p, where the operators are defined by,

+ + +
[ap » 8pe ]-n = 8, 8- 88, =6 op! (A.6)
The combined notation n = 1 for bosons and g = =1 for

fermions has been introduced. The eigenvalue spectrum is

then defined by

(A.7)
With E = [ - p. .

The ocorresponding density operator is f, = e"B K°, s0

the average number of particles labelled p is given by

- =1
Bp = < a'; ap o =% Tr(to af ap) (4.8)



The corresponding number of holes is given by 182.
<+ —
ip T <8papross0 Bp-ady =1 (a.9)

Since the trace is over all eigenstates of Np, it is invariant

under cyclic permubations of the operators,so using

T
(4.10)

- BEo epKo % g Ko&;)

+
Tr. ( o 8p 8p ) = Tr. (e

The following identity is frequently used; it is obtained
by differentiaking with respect boj) and then ibegrating,after

evaluating the resulting commutator:
a.P ()») = e)‘K° aP e-)‘Kc’ze'}\F’pza.P (A-“)

Using this in (A.10) withA = g and extracting the scalar

exponential, one has,

(L, aha ) = P Ep neo ah ) (a.12)

Dividing by Z,, using (A.6) and rearranging ome obtains
the final result,

a7 = (&P —g)-1 (£.13)

+
So the two fermi funotions £~ and the two bose functions 'bi

are defined as
+

p “(et PR -1 (a.19)

- +
= (e™r 41y B -

£ iy



It is now possible to define the temperature -~ ordered 183.
single particle Green's functions by introducing the Wick
ordering operator Tw (with <t = it) defined by comparing (4.15)

with (4.16).

g ( 1-11) =<t (a, (v), an( <) )>, (4.15)

In the diagonal representation or interaction picture (4.7),

this becomes (with T = 1-1')
(A.16)

= BT (6( 7)o+ me (7 )

6°  (t)= 5
o' () o' ©
where 0(t ) =1 4if 1> O0and 0 if v < O3

These results can readily be extended to realistic
systems where there are now interactions described by an

additional term in the Hamiltonian H, (oontaining more

than 2 operators), so

H =  Hy + Hy (2.17)

In general, the Heisenberg picture is related to the
interaction picture by the following generating function
U (7 ,t') defined by :

U (5,9) = o0f KT Kot (4.18)

The two forms of the density operator are related by U for

the special case 7 =B, 1' = O , denoted U(pg ),



go 184.

5 = 5, U(8B) (2.19)
Taking the trace of this equation, and multiplying and

dividing by Zo’ one has the fundamental equation

Z - 2 <U(B)>0 (A.20)

The operator U (t,t') satisfies the differential equatiom,

a—i-U (t,2') = -E (1) (Tt )  (a.21)

this can be iteratively integrated with the boumdary

condition U(7TsT ) = 1 to give for the nth term, (2.22)

P (s, ) =) fag, Hq(fn)ifndzn_"ﬂ.]('&l_q)

T

ceee ‘fzd 71H 1(w)
1!

The upper limits can be equated by introducing the Dyson
ordering operator P, which orders following operators

from right to left in order of their decreasing temperature
arguments ; this also produces a degeneracy factor of
(n!)_1. Formally this can be re-~-summedto the exponential

form:

U (,5' ) = P exp( -J‘tdﬂ, H (v,) ) (4.23)
1!



The "temperature" -dependence of operators in the Heisenberg 185.

pioture (denoted E(t ) ) is given by

— K Kz
(t)=6 "Le (4.24)

So, using the unity insertion, as in (A4.10), one has

2()B k) = e 4 e-KotU(z,r') B( ') U(v',0 ) (4.25)

Introducing Wick ordering of the operators and remem—

bering that U only involves H1 or P ordering, one can

rearrange the operators to use the identity

U( 5%y ) U(tyy v') =0( T 3') (A.26)

Finally, on dividing by Z and using Eg. (A.20) one has

(a.27)

cTw (E()F (1) )o =< A (¢)B) UWp) )> g

<U(B)> o

Note that this method does not depend on the adiabatic hypothesis
of S -~ matrix theory.

In the perturbational approach, one expands the oper-
ator U( B ) according to (A.23) and uses Wick's theorem
(Appendix B) to expand the ordered products of single particle
operators in each term, into all possible conjugate pairs of
ordered operators. If each contraction, Gg (< -t'), is
represented diagrammatically by a directed Iinefrom T'to T ,
then the usual Linked - Cluster theorem (see Abrikosov et al,

P,128.) can be invoked for retaining only those diagrams which



are continuously linked to the "external" operators in the 186.

average. Only onediagram of each topologically distinct type
is to be considered; +this removes the factor nl in the

denominator; thus

(4.28) '
<Tw (I(’U ), "ﬁ('c') ) >

@® n f§
mio (=1) &, ..a ¢ <mw (a(7) BE' ) H(e,)...B ) ) >§d

The free -~ energy F of the system is given by
-BF = log 2 (4.29)

So by Eg. (A.20) the change in the free - energy AF, due

to the interaction, is given by

~-BAF = log< U(B) > (4.30)

o)
An alternative form of the Linked - €luster theorem is

<T(B)>, =exp <U(B) >o0 (&.31)

where the superseript denotes that only topologically

distinet, comnected diagrams are to be considered. Thus

one has the important perturbational result,

-~B oF = <U(p) >0 (£.32)

Finally, the periodic nature of the temperature-dependent
Green's functions is shown and their Fourier transforms

defined. If the exact Green's fumctia defined like (AJ5)



but in the Heisenberg picture, is written in the form, 187.

6 (1) & 0(s) & (w)+oke) 6 (v) (533)
then (4.34)
@ (1) = <z ()7 (0)>= 27 (3 (6 (o ) )

If the operator ‘ar+is oyclically transferred around the

trace and using the unity identity as in (4.10) for ¢ then

& (r) = <ET(o0-8)T (t)> =0 (1-g) (2.35)
r P 1Y P

Now -8 < 1=t < B so if 1> O then

G - > . _ - < ~
p () Gp( 1) wkile G (t-8) Gp('c B)
80 one has

(L.36)

Gp('b') = nGp(m'-B)

Since it is periodic with period B it can be expanded in a
Fourier series in terms of a new integral variablee .
If it is evenly periodic (bose - like) this will be denoted

if it is odd - periodic (fermions), where
P ( )’ (A,B?)

o and v
- -1 - -1
a = 2a II B and v = (2v+ 1) II B
and @ or v take all integer values, including zero.
So
- €T -
Gp(‘ﬂ) = ;15 E e G-P(€) (Ao38)

The transform is defined by

B ie >
G, (e) = ) dte =" G’p('c) (1.39)



For the special case of free particles (A.7), one readily

finds

& (T) = (g-18)" (8.40)

In terms of the analytically continued variable it = w
the function G, (€ ) oan be continued into the whole of
+the complex w - plane. By Carlemann's theorem this is
unigue if it is bounded as w —> <« along a1y straight line
in the upper or lower half -~ planes, and is analytic off the
real - axis (Baym and Mermin) 18)

The sum over these discrete points can be found fwom

the residues of the following integrand, involving the

contour C.

(A.41)
Gr(f ) = _11,,:f dw ™7 GP((u) nf(w ) ( @('c)+-n®(-1)e”5w )
2xi ©
where a (w) = (1 -neP )"1 (L.42)

The contour C encircles the whole of the imaginary w - axis
for n = 1 (the bose — contour Cp), and encircles the whole
of the imaginary w -axis, except for the origin for n = =1
(the fermi - contour Cp). The direction is anti - clockwise
in both cases.
This technique can be used for any periodic function

(e.g. self - energy sums) and if the integrand is convorgent
at infinity, then either limit in (A.41) will give the same

result.
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APPENDIX B 189,

Wick's Theorem for Fermions of Bosons,

Gaudin's method for deriving a thermal version of
88)
Wick's theorem for bose or fermi particles is presented here.
Congider a set of oreation and destruction operators A1...Am

written in the temperature interaction picture, and their

"Pree" averages, X. In the notation of Appendix A, one has
-1
X = < -A-‘]A-zo.n' Am >° = Zo Tr ( C‘)A'] ooo-!tm) (B.1)

where Ay represents a (%) or a.+Pj( %). Moreover, for

fermions or bosons ( 4= + 1) one has (A.6)

Ajhs = m Agh; = [Ag) Aj]_n (B.2)

The commutator (or anti - oommutator) on the R.H.S. of (B.2)

will be called an n- commutator and is either a Kronecker
delta or zero if both operators are of the same type - in

either case it is a ¢ -~ number; so,

X = n < AphqAz... Ay >o+ <Ashge.. Am>g[A1,A2]_n(B.3)

Similarly, the operator A1 can be N-commuted through all the

operators, each time adding ann - commutator term as in (B.2),

eventually

< Ap siadiqhy > = m<hpe.e. Aplq s o Apeeddpopo[Ry, Am:l"'ﬂ

The operator Aq can now be transferred aroumd the trace as in



Eq.s (A.10 - 12), so 190.

+
dp e hghy>g = s Py (B.4)

The plus (minus) mig n ocours if A4 is a oreation (destruotion)field
and denoted by p , where p = ¥ 1. Transferring this term

to the R.H.S. of the final form of (B.3) one has

(B.5)
m-1 1, BEp1 2
- 1 = . .

x (1 M e ) g n <A2...(AJ) coAm >°[:A.1’AJ]—T]
The notation (Aj) means that this operator is absent from
the average. Moveover, since there must be an equal
number of creation and destruction operators in any average,

then m must be even, so - = 1 s thus

= z j—2
X = (1,3) 797 < A2 .. An>g A1, Aj)., (B.6)

1~ne

where the notation (i,j) in the summation means the two

operators Ajand Aj are removed from the average in the form
of an 1 - commutator, and are then summed over the range
1 to m.

However from (A15.~ 16) one has

<A1igro - D, agfr - m MPEET g

52
80 <A.1 Azo-.-o Am>° = (1’83')1'] < A.Z'o- Am>°<A1Am>° (Bes)



The thermal - contraction between two operators is defined 191.

as in (A.15) and now written in the short - hand notation:
Miy, = < (890 %) 5 8305 ) ) 5, (B.9)

Equation (B.8) is now temperature — ordered according to

the decreasing temperature arguments of the operators.
If the operators are fermions,then a permutation factor (=~1)¥
for re ~ordering under this operator is introduced, but not

if they are bosons, so

2 5 s
< Tw (A1A2"bﬂm ) >0 = ¥ 1] .&1Aj< TW(AZ"'AID_) > o (Bo10)

(1,3)

. -

But as A4 Aj is just a o-number it can be incorporated into

the average, while the factor nj-Z is just that for bringing
Aqnext o As, thus,
<Tw ( Aqhpene Bp)s o = 2 <Tw( Aqdpeeelyeodp)s o (Ba11)

(1,3)

This process can be repeated for 21l the remaining operators
inside the average until all operators occur in pair -~ wise
ocontractions,

Contrary to Quantum Electrodynamics, it is possible to
have non - zero contractions between operators at the
same temperature, e. g. in Hy( 1), for in this method,
a contraction is not defined as the difference between the
T and N -ordered products. Now the contractions take the

order in which they ocecur in H1(f ).



APPENDTX C.

Generalized Green's Functions and their Equations

of Motion.

In this appendix a slightly different notation from
Zubarevgiéll be used to exhibit the correspondence with the
earlier perturbational methods. Using the notation of
Appendix A for grand-canonical averages in the Heisenberg
picture, one can define the following propagators or Green's
functions. In general two operators A and B, which have a
non~zero average, will satisfy some commutation rule of the
form,

EA:BJ_T) =C (0-1)
where 1 = :ﬁ corresponding to commutation or anbti-
commutation rules and C is a further operator. In the case
of bosons (n = 1) or fermions (7= -1), C is just a d-funotion.

In terms of such gemeralized commutators one can

define the retarded Green's function,

<< A(t) 5 B(t') >> oy = 10(3) < [ A(%), B(+')), > (C.2)
and the advanced Green's funotion,

<< A(t) ; B(t')»> gy, =% o(-t)< [A(t),B(t')]_n > (c.3)

The causal time -~ dependent Green's function can be defined
in terms of the Wick ordering operator (defined in Appendix A),

<<A(%) 3 B(t" > saus. i<T(A(t), B(+')) > (Cc.4)

A further Green's function, which has properties closely

related to the time dependent ones, is the temperature



dependent Green's function, denoted by round brackets. 193.

(&) 5 BG) ), =<z (26), 36))>  (C.5)

The Green's functions will only depend on the differences of

their two arguments, so in future t' will be set equal to zero.

Thus, the time - Fourier transforms can be defined,
~int
<<A(“b) H B(o)>> = %I_E dte << A ; B(L-\} >> (0.6)
Cyclic rotation of B around the trace leads to the conclusion
that the temperature Green's function is periodic over 7

with period g so it can be expanded in a Fourier series.

(see A. 38 )

(2 (9 ;5 Blo) )= Ee-ia (&5 8(e) ) (c.7)

1
B
vhere, e=0(n)a + 6(-n) v as in A. 37 (C.8)

An analysis of the Lehmann spectral representation of

all the Green's functions shows that their transforms are

related by,

*
<<4 ; B w)>> ret = << A ; B(w)> adv. (c.9)
In terms of the analytically continued form w so that
just above or below the real w -axis,wt is one hzas,
<83 B@)>»_, = ((4;B(Iiis) )) (¢.10)
adv.

So the retarded (advanced) Green's funetion is analytie in

the whole upper (lower) half plane of the complex variable w .



Their difference across the realw —-axis or the discontinuity 194.

of the temperature Green's function is i Dyp(w) and this

satisfies the general sum rule,
faw D ) (4,B] (c.11)
w W = 2n < [A,B .11
‘o AB( A >

Moreover this function contains all the physical information
of the Green's functions and is related to the time-ordered

form by,

<< A& (%) ; B(°)>>caus. = %T’ due—iwt

-

Dy (v} (c.12)

x( 0(t)n (W)+n 8(=t)n @) )

where the generalized occupation funoctions have been used, (A.14).
+ —-Bw -1 - Bw =1
nw) = (1-1e7") 5 n(u)=(e™ -n) (C.13)

In the two limits + —>0.s, one can use (C.12) to find the

correlation functions <AB> and <BA > .

The equations of motions of all the time-~dependent
Green's functions are identical and can be obtained usiung
the property that the derivative of the step function is the

delta function -~
6 (5) = -6(=t)= &(%) (C.14)

One also has the equation of motion of any operator in the

Heisenberg picture,

h(s) = [a(s), K(t) I (c.15)



The result of differentiating the Green's funotions with

respect to the time, t is,

<< [A(%),k(t) J_; B (o)>> ~i -g-t« ASt) ; Blo)k>

= 6(t)< [A,B] =N

Using Eq{C.6hnd the identity

—diwt

5(t) = —;;t T due

J

this ean be transformed %o,

<«<[4,K] ; Blw) > w© <<A;B(w)>>= <[A,B ]‘ﬂ >

195.

(C.16)

(c.17)

(c.18)
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ADDENDA

The argument leading to the choice of graphs in the high-density
expansion presented in the text is in error. The correct form is based on the
observation that the Cko and Dko propog.ofors are actually independent of their
momentum indices, so that only the k-dependence arising from the J(k) factors is
ilmporfonf . Subsequen; summation over k introduces a Kronecker delta
reduction in the site index summations. So a diagrem involving V vertices, L
of which appear with explicit k-dependence, will give V-L independent site
summations upon Fourier transforming.  This produces a numerical factor of
order (g 1 )V ZV-L, where Z is the number of spins interacting with any other.

But from molecular-field theory (as we shall see) the critical temperature is given

by % PCJ(_Q) =1 or approximately ZT = ch . So such a diagram will then

\%
T

Thus for temperatures above Tc the order of the graph in the high density expansion

contribute a factor

isZ L. In general there will be several explicit k-factors appearing in the
interaction terms, i.e. J(k), due to momentum conservation, so one obtains an
expansion in inverse powers of Z.

The actual diagrams chosen in the text still retain the correct 0(Z)

.dependence and so all the conclusions obtained therein will still be valid.
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A further comment is also appropriate with regard to the selection

of diagramsin the calculation of the higher order effects in the Kondo model.
These diagrams correspond to the generalized T-matrix approximation (in the
sense of 3 types of Fiel&) . This is similar to the electron scattering T-matrix
approximation in superconductivity and leads to similar problems. For n;w the
divergence in Q(&) (as in Eq. 5.64), which first occurs at Tk for id =0,
indicates that the radius of convergence has been reached for this particular
resummation of such diagrams, see F;.173 . Consequently one cannot automatically
exirapolate the final results, Eqs. (5.68) and (5.78), to temperatures below Tk
c\'s'exfra residues must be included arising from the exira poles. As'the temperature
is lowered conjugate poles travel outward along the imaginary part of the complex

Z = 1 plane in a similar manner to that found by Bloomfield and
Hamaan (to be published in the Physical Review). Thus the discussion in
chopfel; 7, including that covering Fig. 24, should be restricted to T % Tk.
This leads one to expect interesting properties for the longitudinal correlation

function between the two spin systems. In this case, given by the following

equation

—

<S> =1+ LAY, (1e0)
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