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ABSTRACT  

The work described in this thesis consists of three phases: 

Phase I - Uniaxial analysis: 	A computer program has been written 

in a form suitable for calculating the failure loads for a large number of 

eccentrically-loaded, circular or rectangular concrete-filled columns, 

using the uniaxial material properties and the part cosine-wave assumption. 

The experimental failure loads of 22 eccentrically-loaded square and 

rectangular columns are compared with the computed loads, and a satis-

factory agreement is found, i.e. triaxial effects are negligible for the 

columns tested. 

Phase II - Stub columns: 	The elasto-plastic biaxial stresses in 

the steel are calculated from observed strains for 14 of the available 

tests on concentrically-loaded stub columns, using the generalised flow- 

law for plastic solids. 	The triaxial stresses in the concrete are then 

calculated from simple statics. 	It is found that near failure the 

longitudinal compression in the steel is approximately equal to three-

quarters of the uniaxial yield stress, and the hoop tension is half the 

longitudinal compression in magnitude, while the longitudinal compression 

in the concrete core is twice the strength of uncontained concrete. 

The equivalent longitudinal 'stress-strain relationships' for the 

steel and concrete are represented by equations, and a formula is given 

for predicting the failure load of concentrically-loaded stub columns. 

Phase III - Triaxial analysis: 	Moment-load-curvature characteristics 
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are experimentally determined for 35 circular columns comprising 7 tube 

thicknesses with 5 levels of axial load for each thickness. 	Triaxial 

effects are found to be insignificant when the axial load is less than 

40 per cent of the sum of the uniaxial compressive strengths of the steel 

and concrete. 	For higher axial loads, triaxial effects are taken into 

account by using the equivalent stress-strain relationships of Phase II 

in a semi-rational analysis. 

All the experimental moment-load-curvature characteristics are 

' numerically simulated on a digital computer. 
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NOTATION  

cross-sectional areas of the concrete and steel; 

areas of the concrete and steel in a strip; 

breadth of a rectangular tube; 

external and internal diameter or. depth; 

Youngs moduli of the concrete and steel; 

tangent-moduli of the concrete and steel; 

end eccentricity of the load; 

elastic component of strain; 

eccentricities about the major- and minor-axis; 

fictitious end eccentricity representing initial 
out-of-straightness; 

yield function; 

Ac, A s 

A 	., A 
s
. 

ca. 	i 

b 

d, di  

E , E 
c s 

ETc, ETs 

e. 1 

e , e 
major minor 

e 
 

f 
cu 

 , f
cy 	

cube and cylinder strength of the concrete; 

G. 	distance from the centroidal axis of the cross-section 
1 to the centre of a strip; 

I 
c 
 , I

s 	
moments of inertia of the concrete and steel; 

k 	radius of gyration; 

L half cosine wave length; 

1 	effective length of the column; 

Mc' MT 	
maximum calculated and test moments; 

M , M. 
eo io 

external and internal moments at the mid-height 
section of the column; 

M. 	internal moment; 
1 

m 	modular ratio (= E 
s 
 /E 

c
) 

P
ax

, P
ay 

Pc, P
s 	

loads carried by the concrete and steel; 

P
H 	

failure load of a concentrically-loaded concrete-
filled stub column; 

failure loads of a concentrically-loaded column about 
the major- and minor-axis; 



Y. a. 

Y  

internal axial force; 

nominal squash load = As 
y  
CY + A

c 
 5 ; 
m 

calculated maximum load of an eccentrically-loaded 
column; 

test failure load; 

load up to which strain readings are available 
(Chapter 3); 

Pu 	 approximate failure load of a concentrically-loaded 
stub column (Chapter 5); 

P. 

PL  

Pm 

PT 

• Pt 

Pw 

P , P x y 

P 
xy 

Py 

Q1' Q2' •••' Qn 

t 

T  

working load; 

calculated failure loads under uniaxial bending 
about the major- and minor-axis respectively (Chapter 2); 

calculated failure load under biaxial bending; 

load on a concentrically-loaded stub column at the 
first yield of the steel (Chapter 3); 

plastic component of strain; 

generalised stress components; 

thickness of the tube wall; 

work done by the external agency during a cycle of 
loading and unloading; 

total work done; 

Y 	distance of the neutral axis from the centroidal axis; 

distance from the centroidal axis to the centre of 
a strip; 

value of Y at the mid-height section of the column; 

y 	total deflection; 

yo 
	 total deflection at the mid-height section; 

oc 
	initial central deflection; 

131 

S 	 additional deflection under the load; 
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o 	
value of 8 at the mid-height section; 

8
l' 

8
2' 

8
3 	

deflections at points 1, 2 and 3 (Figure 4.2A);.  

6 	strain; 

6
c 	

maximum compressive strain in the concrete of an 
eccentrically-loaded column under the maximum load; 

cL
• ,

cR 
	longitudinal and radial strains in the concrete; 

6 cv 
	volumetric strain in the concrete; 

6. 	strain at the centre of a strip; 

strain corresponding to the peak stress in the e
m  concrete under uniaxial compression or flexure 

(Figure 2.2); 

6 6
sL 

e 
6 

Asti' E
e 
sL 

6P 
sL 

hoop and longitudinal strains in the steel; 

elastic and plastic components of the hoop and 
longitudinal strains in the steel; 

yield strain of steel; 

strains in gauges 1, 2, 3 and 4 (Figure 4-2B); 6
1' 

6
2' 

6
3' 

6
4 

71. 	initial imperfection parameter; 

(2(IsL 6sH)/(2GSH CY'sL);  

'c' Ys 
	material-factors for the concrete and steel; 

a constant used in the failure criteria for 
concrete (equation 3.21); 

✓ , Vs 	Poisson's ratios for the concrete and steel; 

p  curvature; 

Po 	
curvature at the mid-height section; 

Poo 	initial central curvature; 

a 	stress; 

O
., 	. 
ci 

stresses in the centre of the i-th strip for the 
concrete and steel; 

166.,' aCR 	
longitudinal and radial stresses in the concrete; 

O 0-
L 
 + 2 0 - 

cv 	c 	cR' 

crm. 	
peak stress in the concrete under uniaxial compression 
or flexure; 
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UsH' 
s L hoop and longitudinal stresses in the steel; 

a 	yield stress in the steel; 

0I' a2' OF
3 	

principal stresses; 

shear stress; 

c 
	shear stress in the concrete. 
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CHAPTER 1  

INTRODUCTION 

1.1 	GENERAL 

Tubular sections, either empty or filled with concrete, are being 

increasingly used as structural members. 	The recent uses include the 

roofing of sports buildings in France 
(1.1) 

 , the Boeing 747 hangar at 

London Airport 
(1.2), 

 port installations, domes and bridges in Italy (1.3) 

masts, towers, signal gantries (1.4)  and a 32-storeyed building (1.5)  in 

Belgium, piers for a four-level motorway interchange 
(1.6) 

 in England, etc. 

When a tube is acting as a compression member, filling the tube with 

concrete is advantageous because it increases the load-carrying capacity 

without increasing the size of the column. 	The tube shutters the concrete, 

and protects the surface from damage. 	The concrete inhibits wrinkling of 

the tube. 

Due to the large strain capacity of filled tubes there may be appli- 

cations where seismic loading can occur. 	The filled tube also appears to 

offer some advantages in piling. 

However, for application in building, the fire resistance of filled 

tubes needs to be established, and there is at present conflicting evidence 

as to the increase of resistance afforded by the filling. 	The possibility 

of the tube bursting due to fire or due to freezing needs further inves-

tigation. 
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For small diameter tubes there may be some difficulty in ensuring 

that no voids occur and for this reason factoryfilled tubes appear 

advantageous. 	For bridge columns the diameter may be such as to allow 

full site inspection. 

The exterior of a filled tube is exposed to the same corrosive action 

as any other steel structure, and requires similar protection (1.7)  

The design of joints with columns of the adjoining floor and with 

beams is being studied at the present (1.8)  

In this country, tubular columns received increased attention fol-

lowing a decision (1963) to use this type of column in the multi-level 

6) interchange between motorways M4 and M5 at Almondsbury (1'6). There was 

no suitable Code of Practice, and 35 concrete-filled columns were designed 

and constructed on the basis of exploratory tests (1.9) conducted at the 

Building Research Station and Imperial College. 	A programme of research 

was then initiated at Imperial College to pi-ovide design data in respect 

of tubular columns. 	Considerable work has since been done at Imperial 

College on composite columns in general, in connection with the preparation 

of CP 117(Part 3) - Composite Columns (1.10). 	The current investigation 

forms part of the overall progralluite. 

Before the programme of research may be discussed it is necessary to 

give a brief description of the structural behaviour of concrete-filled 

tubular columns. 	This may best be done by taking the two limiting cases 

of eccentrically-loaded columns, namely (0 a short length (1/d .,===5, say) 

of filled tube, called a stub column, subjected to concentric loading only, 

and (ii) a filled tube of any length subjected to bending alone. 

In the first limit, when a stub column is loaded concentrically, in 

the early stages of loading the Poisson's ratio for concrete is lower than 
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for steel, and the steel has no restraining effect on the concrete core. • 

As the longitudinal strain increases, however, the lateral expansion of 

.uncontained concrete gradually becomes greater than that of steel. 	A 

radial pressure therefore develops at the steel-concrete interface, 

thereby restraining the concrete core and setting up a hoop tension in 

the tube. 	At this stage the concrete is stressed triaxially and the 

steel biaxially. 	As the hoop tension increases the longitudinal com- 

pression in the steel decreases while that in the contained concrete 

increases. 	The failure load of all practical stub columns is consider- 

ably greater than the sum of the uncontained compressive strengths of the 

steel and concrete, because the loss of longitudinal compression in steel 

is more than compensated by the augmentation of the strength of concrete. 

In the second limit, when the filled tube is acting like a beam, a 

large part of the concrete is cracked and triaxial effects are negligible. 

Therefore the behaviour of a filled tube under bending alone, may be cal-

culated from the uniaxial stress-strain properties of the steel and concrete. 

Thus the concentrically-loaded stub column shows the maximum triaxial 

effects while the beam has no triaxial effects. 	Any intermediate case of 

of a beam-column, i.e. eccentrically-loaded columns or long columns, has 

an amount of beneficial triaxial effects dependent primarily on the length 

and eccentricity. 

The overall programme of research into the behaviour of filled tubes 

was planned at Imperial College in three phases: 

Phase I: 	Uniaxial analysis - The failure load of eccentrically-

loaded columns was to be calculated from uniaxial material properties both 

by determining the exact deflected shape and by assuming this shape to be 

part of a cosine-wave (1.11) 
	

These loads would then be compared with 
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experimental failure loads to confirm the theory and to establish the 

slenderness and eccentricity beyond which triaxial effects are negligible. 

Phase II: 	Stub columns - A series of tests on concentrically- 

loaded stub columns was planned to study and analyse the maximum triaxial 

effects that may occur in a filled tube. 

Phase III: 	Triaxial analysis - The comparison of experiments with 

the uniaxial analysis may determine the slenderness and eccentricity below 

which triaxial effects are significant. 	However, the difficulties inherent 

in a triaxial analysis of an eccentrically-loaded concrete-filled tube, 

where the cross section is subjected to non-uniform longitudinal com- 

pression, can be appreciated. 	In such an analysis the colu 	L must be 

treated as a three-dimensional continuous medium, with appropriate boundary 

conditions. 	For concrete-filled tubes the medium is not homogeneous, con- 

sisting as it does of the concrete core and the steel shell. 	The problem 

is further complicated by the absence of any suitable theory for the 

inelastic deformation of concrete under three unequal principal stresses. 

From the above considerations, a rigorous triaxial analysis seemed 

impracticable, and it was intended to account for triaxial effects in 

eccentrically-loaded columns by incorporating experimentally determined 

moment-load-curvature relationships in the column analysis. It was 

anticipated that the knowledge of triaxial effects in stub columns (Phase II) 

would assist the numerical simulation of the experimental moment-curvature 

relationships. 

Prior to this investigation, in Phase I, 18 eccentrically-loaded 

circular columns were tested at Imperial College, and it was shown (1.12,1.13)  

from the results of these experiments and of experiments conducted 

(1.14, 1.15, 1.16) elsewhere 	that the uniaxial failure load is in good 
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agreement with the experimental load for columns with lid ratios greater , 

than 15, and that for shorter columns with nearly concentric loading tri-

axial effects maybe significant. It was also shown that the part cosine-

wave assumption greatly'simplfies the analysis and gives failure loads up to 

only 5 per cent less than the failure loads computed by the exact approach. 

However, a computer program suitable for calculating a large number of 

failure loads, and data on square and rectangular columns were not available 

at the onset. of this investigation. 

In Phase II, 22 concentrically-loaded stub columns were tested at 

Imperial College 
(1.12),  and similar tests were done elsewhere (1.17,1.18)  

It was at this stage that the present investigation was started, and 

its objectives are discussed below. 

1.2 	PURPOSE OF THIS THESIS 

Phase I: 	Uniaxial analysis - Since only those columns which have 

lid ratios less than 15 and nearly concentric loading, show significant tri-

axial effects, it was decided to develop a computer program suitable for the 

production of failure load tables for a comprehensive range of sections, 

based on the uniaxial material properties and the part cosine-wave 

assumption. 	These tables would give an accurate estimate of the failure 

load where triaxial effects are negligible, and would give an interim, 

but conservative estimate where triaxial effects are significant. 	When 

the triaxial analysis (Phase III) is complete it is intended to replace 

the tabulated uniaxial loads by the augmented loads wherever necessary. 

Phase I also included the testing of square and rectangular columns for 

a confirmation of the computed load, so that the tables could include square 

and rectangular sections as well. 
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Phase II: 	Stub columns - The biaxial stresses in the steel were' 

to be calculated from experimentally observed strains, throughout the 

elasto-plastic range, for a selection of existing stub column tests. 	The 

calculation of the post-elastic biaxial stresses in steel, from known load-

strain relationships, is not straightforward; this was to be accomplished 

by using the generalised flow-law for plastic solids. 

Once the stresses in the steel are known from experimental load-strain 

relationships, the stresses in concrete may be calculated from simple 

statics. 	This would give the equivalent,  relationship between the longi-

tudinal stress and longitudinal strain for the biaxially stressed steel and 

the triaxially stressed concrete. 	It was anticipated that these equivalent 

stress-strain relationships would be of use in Phase III for numerically 

simulating the experimental moment-load-curvature characteristics. 

Phase III: 	Triaxial analysis - The objective of this investigation 

in Phase III, was to test a number of sections under fixed axial loads and 

increasing end moments in order to determine the load-moment-curvature 

characteristics. 	The objective also included the numerical simulation 

of the experimental moment-load-curvature characteristics on a digital 

computer. 

The method of predicting the failure loads, for a given length and 

eccentricity, from predetermined moment-load-curvature characteristics of 

the section is well known (1.20),  This thesis presents a method of gene-

rating moment-load-curvature relationships in agreement with experiments, 

therefore it is now possible, in principle, to predict the failure loads 

of eccentrically-loaded columns, taking triaxial effects into account. 

The reason why this final objective is not fulfilled, as a part of the 

present investigation, is discussed later. 
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CHAPTER 2 

FAILURE LOADS BASED ON UNIAXIAL MATERIAL PROPERTIES 

2.1 	INTRODUCTION 

Neogi, Sen and Chapman 
(2.1) 

 showed that failure loads of circular 

columns, calculated on the basis of the part-cosine wave assumption and 

the uniaxial stress-strain relationships for the steel and concrete were 

in good agreement with the test loads of slender columns (1/d 	15). 

For shorter columns the test load may be greater than the failure load, 

because of the augmentation in the strength of concrete due to triaxial 

containment. 	The difference between the test load and calculated load 

of short columns was found to vary inversely with the eccentricity. 

For example, for 4 circular columns with 1/d varying between 8.8 and 10.4 

and e/d between 0.2 and 0.6, this difference was insignificant, whereas 

for 10 columns with 1/d between 4.4 and 10.4 and e/d between 0.001 and 

0.01, the said difference varied between 0.34 and 0.13 of the calculated 

load. 	Thus columns which show appreciable triaxial effect have small 

1/d and nearly concentric loading. 

It was decided to produce failure load tables for a comprehensive 

range of circular sections using the uniaxial material properties, because 

for many practical columns it is unnecessary to take triaxial effects into 

account. 	A computer program was developed, as a part of the present 

investigation, in a form suitable for calculating the failure loads for 
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a large number of eccentrically-loaded, circular or rectangular columns. ' 

Although the computer program was designed to deal with square 

and rectangular sections, production of failure load tables for these 

sections could not be undertaken because experimental evidence was not 

available. 	Therefore, 4 series of tests comprising 22 specimens were 

planned. 	The tests were sponsored by the International Colundttee for 

the Study and Development of Tubular Structures (CIDECT), and the speci- 

mens
(2.2) 

were manufactured and tested by Guiaux and Dehousse 	at Liege. 

University. 	The test loads were found to agree well with calculated 

failure loads, and it was resolved to produce failure load tables for a 

range.  of square and rectangular sections as well. 

The development of the computer program, tests on square and 

rectangular columns and the influence of various parameters on the 

behaviour of the column are described in this chapter. 	Long-term 

loading and initial imperfection have been taken into account in the 

calculation of failure loads. 	The failure load tables are with the 

printer at the time of writing this thesis, and are expected to be 

published in the near future as a separate document. 	This chapter 

contains sample tables for one column section only. 

Failure loads for all 35 of the concrete-filled columns now in 

service at the Almondsbury Interchange 
(2.3) 

 are calculated and the 

load factors are tabulated in section 2.10. 
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2.2' 	COMPUTER PROGRAM 

2.2.1 	Theoretical assumptions  

The assumptions on which the computation is based are listed below: 

(1) Uniaxial stress-strain relationships are used for the steel and 

concrete, i.e., the triaxial effects, if any, are neglected. 

The concrete takes no tension and the steel has identical 

stress-strain properties in tension and compression. 

(2) Both stress-strain curves are reversible. 

(3) Complete interaction takes place between the steel tube and the 

concrete core, and plane sections remain plane after bending. 

(4) Failure due to local buckling or due to shearing does not occur. 

(5) The column bends in the form of a part-cosine wave. 

(6) The peak of the load-deflection curve for the mid-height section 

of the column is taken as the failure load of all eccentrically-

loaded columns and of axially-loaded columns with initial 

out-of-straightness. 

(7) Practical columns have a sinusoidal imperfection. 

2.2.2 	Uniaxial stress-strain relationship for steel  

The assumed uniaxial stress-strain relationship for steel is shown 

in Figure 2.1. 	The curve is a second degree parabola tangential to both 

straight lines. 	The stress-strain relationships are given below: 



(6 - k6 ) 
1 - 

y 4 (1 - k) 6 a= 	k a + E
s 
 (6 - k6 ) 

Y  
(2.2) 
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when o 	kE 
y 
	= E . 6 
	 (2.1) 

It can be shown that 6t = 6
y 
(2 - k), and 

when Ice .0 6 <6 

5 E = d5 =E E 
Ts 	d6 	s  

(6 - k6 ) 

1 - 	 
2 (1 - k) 6 (2.3) 

   

and when 6 > Et 	 = cr 
	

(2.4) 

Equations 2.1 to 2.4 are valid for all values of k excepting k = 1, 

when 6t 
= 6 and only equations 2.1 and 2.4 are used. 

By varying the value of k the effect of residual stress may be 

taken into account and actually rounded stress-strain relationships 

approximated. 	k is taken as unity throughout this investigation 

unless otherwise stated. 

2.2.3 	Uniaxial stress-strain relationship for concrete 

The stress-strain relationship for concrete is expressed in the 

polynomial form originally used by Basu (2.4)  

66 4 = 2.41 (---) - 1.865— 
E 
)
2 
+ 0.5—)

3 
- 0.045 (---) m 	 E m 	m 	m 

(2.5) 

a m  rapidly drops to a negative value. 	However, such a high strain 

never occurs in practice. 	This is discussed later in section 2.9. 

The rising part of the curve is close to Hognestadis parabolic stress-

strain relation, and the entire curve is a good approximation of the 

A plot of equation 2.5 is shown in Figure 2.2. 	Beyond ! = 4, 6m 
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experimental curves obtained by Barnard 
(2.6)in 

 a series of recent 

tests at Cambridge. 

One advantage of equation 2.5 is that Em may be given any chosen 

numerical value. 	6
m 

does not seem to alter significantly with the cube 

strength, and a value of 0.0025 is chosen for short-term loading, after 

studying Barnard's experimental curves. 	It is shown later in section 2.7 

that a variation of E
m 
within certain limits has a relatively small 

effect on the maximum load of a column. 

= 0.8f
cu 
 gives good agreement with experiments 

(2.1), 
 and this 

value is used in all computations. 

2.2.4 	Part-cosine deflected shape 

The column is assumed to deflect in a part-cosine curve shown in 

Figure 2.3 and given by 

(L z) cos t,-- Y = Yo 	
, ) 

 (2.6) 

and the curvature p at a point z is given by 

2 
P = - L

2  y° 
Cos (Lz) 	 (2.7) 

At z = 0 

Po 

-2 
V 

- 2 
L 

	y
o 

(2.8) 

and at z = 1 
2 

Y = e Yo  • Cos (Li) 2L 

whence L -= 
V1  

2 Cos-1 le 
Yo 

(2.9) 
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P 	
4 

• o 	/2 

Equation 2.10 gives the 

- 

in 2.8 

-1 	e 	, 
ros 	( 

yo 

relation 

25 	- 

2 
• Yo  

between the total central 

(2.10) 

election 

e + S
o
) and the central curvature po. 

In Figure 2.3 the initial shape of the column is shown straight. 

The case of an initially bent column is dealt with later in section 2.6. 

2.2.5 	Force and moment for a given strain distribution 

The linear strain distribution across a section may be specified by 

the curvature. p and the distance Y of the neutral axis from the centroidal 

axis.Toobtaintheinternalforceandmoment,PandM.1
,by a simple, 

repetitive, numerical approach the steel in the section is divided into 

j + k strips and the concrete in k strips (Figure 2.4). 	The areas of 

the strips may be calculated by simple algebra. 	Strain at the centre 

of the ith strip is given by Ei  = p.Yi, the corresponding stress 6si 

(or
ci
) may then be calculated from the relevant stress-strain relation- 

ship. 	It follows that 

 

j + k 

i 

 

+ 
k 

  

(2.11) P. = 
1 A . 	. si 

  

A . a . 

     

Assuming that the internal force in each strip acts through the middle 

of the strip (which, in case of a circular tube, is not identical with 

the centroid), 

j + k  k 

 

M. 1 

  

A G. . + 
si 1 sa. 	= 

A 
ci  G1  

. 0" . (2.12) 

   

j=10andk,-20arefoundtogivevaluesofP.andM.
1 
 close to 

values calculated by rigorous integration. 	The merit of the strip-method 
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lies in its repetitiveness and its ability to accommodate any stress-

strain relationship without involving complicated algebra. 

2.2.6 	Numerical steps  

The computational procedure consists of calculating the loads 

corresponding to successively increasing pre-selected deflections, and 

then by locating the failure load as the maximum ordinate of the load- 

deflection curve (Figure 2.5). 	The steps are as follows: 

(1) Choose an initial value of the total central deflection yo. 

(2) Calculate the corresponding central curvature po 
from 

equation 2.10. 

(3) Select a trial value of Y. 

(4) Using the values of po  and Yo, calculate P and Mio  as 

described in subsection 2.2.5. 

(5) If the calculated value of M. satisfies the equilibrium 
io 

proceed to step (6). 	Otherwise 

modify the value of Yo  and repeat step (4) until this con-

dition is satisfied to a pre-assigned tolerance. 

(6) By successively incrementing the value of yo  and repeating 

steps (2) to (5) for each value of yo, calculate points on the 

load-deflection curve until the current P is less than the 

previous P. 	(This ensures that the peak of the curve is passed). 

(7) Select three successive points a, b and c, so that, 

Pa< Pb > Pc  (Figure 2.5). 
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(8) Repeat steps (2) to (5) to calculate loads corresponding to 

two deflections (ya  + yb)/2 and (yb  + yc)/2. 

(9) Repeat steps (7) and (8) until Pa  and Pc  are within 1 per cent 

of Pb. 	The load for b is the failure load, i.e., Pm  = Pb. 

Regarding step (5) two important observations may be made: 

(i) 	The equilibrium condition should be accurately satisfied. 

The pre-assigned tolerance used is: 

ABSOLUTE 
M. - M 
( 	eo)  

M. 
0.0001 

A less rigorous check may give inaccurate values of Pm. 	For 

example, a check of 0.01 may introduce up to - 5 per cent 

error in P
m
. 

In order that the equilibrium condition may be satisfied 

accurately, the successive trial values of Y
o 

must be controlled 

cautiously, so that the iteration procedure converges to the true 

solution. 	This is achieved by selecting (from approximate 

elastic calculations) a starter value of Yo 
close enough to the 

true value and by using a careful combination of the methods of 

"successive bisection" and "Newton-Rhapson" 
(2.7) 

 for pro-

gressive improvement of the starter value. 

2.2.7 	General structure of the computer program 

The computer program is written expressly for large scale runs needed 

to produce a design manual. 	The aim is to keep the input to a minimum 

for the maximum amount of output. 	This is fulfilled by forming a nest 

of six repetitive loops, called 'DO-LOOPS' in the FORTRAN-IV language, 
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one corresponding to each of the six parameters defining a load case, 

namely, d, t, a , f 
cu

, 1 and e, the last one being the innermost loop. 
y  

Input consisting of fifteen punched cards is enough to generate 

thousands of load cases for the manual. 	The following example 

clarifies the point: 

x x 

[

d cases 

= 4  
x 

 [

t cases 

= 4 

[C5' cases 

= 2  

[fcu cases 

= 3 [

1 cases 

= 15  

[e cases] 

= 7 

= total number of load cases = 10,080. 

On an a-verage, each load case takes 0.9 sec on an IBM 7094 computer. 

2.3 	TESTS ON SQUARE AND RECTANGULAR COLUMNS 

2.3.1 Background  

Furlong 
(2.8)  reported five tests on axially-loaded square columns 

with d = 4 to 5 in, t = 0.084 to 0.189 in, and 1 = 28 to 34 in. 	Test 

conditions did not allow rotations at the end. 

There was a lack of experimental evidence on eccentrically-loaded 

square and rectangular sections. 	A programme of 22 tests was therefore 

prepared to check the reliability of the computed failure loads. 	These 

tests were sponsored by the International Comidttee for the Study and 

Development of Tubular Structures (CIDECT) at the University of Liege. 

Preparation of the test specimens, design and construction of the 

loading rig and testing of the main and control specimens were done 

by Guiaux and Dehousse (2.2). 	In the following sub-sections the tests 

are briefly described and the experimental loads are compared with failure 

loads calculated by the computer program. 
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2.3.2 	Descriation of the tests  

The tests were divided into three series: 

(1) Series A - 5 tests on major-axis bending of rectangular 

columns; this series was planned to study the interaction 

between minor- and major-axis bending while the load was 

eccentric only about the major-axis. 

(2) Series B - 6 tests on minor-axis bending of rectangular 

columns; this series was planned to examine the validity of 

the computer program for rectangular columns. 	An identical 

set of 6 empty tubes was tested to study any premature failure 

due to local wrinkling of the tube wall. 

(3) Series C - 5 tests on eccentrically-loaded square columns; 

this series was planned to check the applicability of the 

program to square columns. 

Dimensions and material properties of the test specimens are given 

in Table 2.1. 	d and b are average values of 5 sets of measurements 

along the length 6f each column. 	The tabulated t is calculated from 

d, b, length, average measured wall thickness and the weight of the 

empty tube. 	1 represents the distance between the centres of rotation 

of the top and bottom bearings. 	The measured initial central deflection 

y 	is given. 	0
' 

is the average value of four tensile coupon tests, 
oc 

and f
cu 
 is the average value of 3 20 cm cubes. 

The main feature of the loading rig was a pair of hemispherical 

oil-film bearings, which allowed the column-ends a free rotation of 

up to 60. 	In the acceptance test,the bearings were shown to be practically 

frictionless for loads up to 300 tonf. 	The load was applied by using a 

500 ton Amsler machine. 
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Tests were of short duration, occupying not more than half an hour. 

2.3.3 	Comparison between experimental and calculated failure loads  

Experimental failure loads (PT) are given in Table 2.1. 	The test 

on column A5 could not be completed because of difficulties with the 

connection of one of its ends with the bearing. 	Three columns, BE1, 

BE2 and BE3, in the empty tube group failed by local wrinkling of the 

tube wall. 	Column Cl failed due to bulging at the upper end. 	The 

remaining 17 columns failed due to overall bending. 

Cosine wave failure loads (P
m
) are tabulated. 	These are calculated 

by using the computer program described in the previous section. 	In the 

computation the end eccentricity is taken as e + 0.9 y
oc 
 (Table 2.1), in 

order to account for the initial central deflection. 	The reason for 

this is discussed in section 2.6. 

Series A comprises five concrete-filled rectangular columns loaded 

eccentrically about the major-axis. 	In Table 2.1 two calculated failure 

loads are given, the one in parenthesis being the minor-axis failure load 

with e 0.9 y . 	The smaller of the two values is used to cal- 
minor 	oc 

culate the ratio P
T
/P
m
. 	This series was planned to study the interaction 

between major- and minor-axis bending when the loading is eccentric about 

the major-axis only. 	This is discussed in section 2.5. 

In series BE, six empty tubes were tested. 	All had a nominal d/t 

ratio equal to 37 and e/d ratio equal to 0.3. 	The 1/d ratio varied 

from 7 to 36. 	The steel had a yield strain of 224116. 	The strains 

at failure on the interior face of the tube wall are calculated. 	On 

the concave side, these strains are 7360 p6, 4000 )A6, 3250 it-6, 239011.6, 

2190r 8 and 2130 r6 for columns BE1 BE6 respectively. 	Columns 
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BE1 - BE3 failed at 90 per cent of the calculated failure load, the 

premature failure being caused by local buckling of the tube wall. 

Columns BE4 - BE6 failed by overall bending, and excellent agreement 

is obtained between calculated and experimental failure loads. 	The 

American Iron and Steel Industry 
(2.9) 

recounends d/t 	3300/a 

(where a is in ksi) for slender circular columns, so that local buckling 

does not occur, but it appears from the test results that 1/d and e/d 

values have also to be considered. 	Further work is necessary in this 

direction. 

Satisfactory correlation is obtained between the calculated and 

experimental loads of the columns in series BF and C. 	For these 11 

columns, the ratio PT/Pm 
varies between 1.004 and 1.083 with an arith- 

metic mean of 1.037, and a standard deviation of 0.025. 	It may 

therefore be inferred that for the range of columns tested in series BF 

and C, triaxial effect was insignificant. 	(Only column Cl gives an 

indication of incipient triaxial action). 	Further tests on short 

colunuLs with small eccentricity are necessary to understand any beneficial 

triaxial effects that may occur in these two types of columns. 	In the 

meantime the computer program may be used with confidence to predict the 

failure loads of filled rectangular columns loaded eccentrically about 

the minor-axis and of all square columns. 

2.4 	BIAXIAL BENDING 

Bresler 
(2.10)  suggested the following interaction relation for a 

reinforced concrete column under axial load and biaxial bending, the 

column being sufficiently short for the influence of deflexion on moment 

to be neglected. 
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1 	 1 	1 
P 	P xy 	x 	Py 	PL 

(2.13) 

where P
xy 
 = load carrying capacity under compression and biaxial 

bending. 

P
x 
and P = load carrying capacities under compression with 

uniaxial eccentricities about the major- and minor-

axis respectively. 

and P
L 	

load carrying capacity under pure compression 

=A a+Aa 
s y 	cm 

For short reinforced concrete columns Bresler found that P
xY 
 was in 

excellent agreement with calculated theoretical values and with test 

results, the maximum deviation being 9.4 per cent, and average deviation 

being 3.3 per cent. 	A relation similar to 2.13 is given in the Russian 

specification (2.11). 

Basu and Somerville 
(2.12) have recently proposed an equation similar 

to 2.13 for long columns: 

1 _ 1 4_ 11 
P 	P 	P - P 
xy 	x 	y 	ax  

(2.14) 

where P
ax 

= failure load under nominally zero eccentricity with 

artificial restraints against minor-axis buckling. 

Equation 2.14 is conjectural. 	In the absence of experimental and 

theoretical data on biaxial bending, the validity of equation 2.14 

cannot be checked. 	However, it can also be derived from the linear 

interaction relation currently in use for steel columns. 

Analytical and experimental research into this problem is being 

planned at Imperial College. 
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2.5 	MAJOR-AXIS BENDING 

A rectangular column loaded eccentrically about the major-axis may, 

depending on the amount of eccentricity, fail by minor-axis buckling. 

This will occur when P
x
> P

ay 
where, P

ay 
is the minor-axis buckling load 

with e . 	= O. 	In this case the column bends about both axes and the 
minor 

actual failure load may be less than P
ay
. 

When P
x 
<P

ay 
there would still be some interaction between minor-

axis bending caused by initial imperfection and the predominant major- 

axis bending. 	The actual failure load in this case may be less than P. 

If the bending about the minor-axis is ignored, the actual failure load 

should be the same as Px
; this is supported by test results for columns 

A3 and A4 (Table 2.1). 	However, the upper bound value Px 
cannot be 

accepted as the true failure load on the basis of two experiments. 

Equation 2.14 may be used to determine the true failure load for 

major-axis bending. 	In this case P
y 

is equal to P
ay
: 

1 	1 	_1 1 
P
x 	

P
ay 

- P
ax xy 

(2.14a) 

Equation 2.14a is used to calculate the failure load Pxy 
 of columns 

Al - A5. 	These are compared with experimental failure loads in Table 2.2. 

It may be seen that P 	is conservative, whereas the upper bound calculated 
xy 

values (i.e. the smaller of P and P
ay
) give closer agreement with test 

x 

results. 

However, in the absence of analytical results and further experimental 

evidence, equation 2.14a may be used. 
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2.6 	INITIAL IMPERFECTION 

The load-carrying capacity of a column is reduced by initial 

imperfections, such as, initial out-of-straightness, residual stress 

and unintentional end eccentricity. 

BS 4
(2.13) 

specifies that the initial out-of-straightness should 

not exceed 1/600 at the centre of any length of hollow section. 	This  

corresponds to a maximum initial central deflection of 0.2 in for a 

10 ft long column. 

In this investigation only hot-finished seamless tubes are considered. 

The amount of residual stress that exists due to differential cooling 

across the thickness, is small, and is ignored. 

Unintentional end eccentricity (due to setting error of the bearing, 

for example) may be arbitrarily included in a lumped initial imperfection 

parameter together with the initial out-of-straightness. 

A numerical value for the initial out-of-straightness has to be 

chosen. 	BS 449 
(2.14)

recolimends an initial imperfection parameter 

'V1 = 0.00003 1
2
/k
2, 

where k is the radius of gyration, for steel columns 

under nominally axial loading. 	For axially-loaded columns initially 

bent in a part-cosine wave, it may be shown that 

y 
oc 
 . 

d
2  , whence y

oc 
 = 0.00006 1

2
/d 

2k 

Observations by the Column Research Council 
(2.9) 

 on steel columns 

without residual stresses show that the BS 449 recommendation is con- 

servative. 	However, it would be even more conservative for the majority 

of columns (1/d <28) to take the manufacturerFs tolerance yoc = 1/600. 
-  
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Considering the above, and assuming that a filled column has the 

same initial out-of-straightness as an empty one, the BS 449 recommendation 

(yoc  = 0.00006 12/d) is adopted as initial imperfection. 

It now remains to be seen how yoc  may actually be incorporated in 

the calculation. 	For concentrically-loaded columns initially bent in 

a part-cosine wave with y
oc 
 = 0.00006 1

2
/d, the initial curvature 

poc  is 0.00059/d. 	Therefore either y 	or p 
oc 	oc 

may be deducted from yo  

or p
o 

in the calculation of the P 	y
o 
relationship. 	But in eccentric . 

loading cases, the deduction of a constant value of y
oc 
 from yo  amounts 

to the deduction of a progressively decreasing value of p 
oc 
 from p

o 
(and 

vice-versa) as e and yo  increase. 

In the computer program, therefore, theAnitial imperfection is 

represented by an initial eccentricity eo, taken as a fraction of v 
- oc' 

i.e., eo 
="Yoe' 	

r = 0.833 is reasonable for elastic buckling of steel 

columns. 	But for elasto-plastic behaviour of filled tubes a proper value 

of r has to be found out. 	Table 2.3 shows the influence of r on P
m
. 

P
1 

is the failure load of the axially-loaded column with an initial central 

deflection y
oc 
 = 0.00006 1

2
/d. 	P2, P

3 
and P

4 
are the failure loads of the 

equivalent straight column with e = 0 and e
o 
= r.yoc, where r = 1.0, 0.9 

and 0.8 respectively. 	Comparing P1  with P2, P
3 

and P4, r = 0.9 seems 

to be the most suitable value. 	This is adopted for all values of e. 

Thus in all computation initial imperfection is taken as an initial 

end eccentricity eo  (= 0.9 x 0.00006 12/d). 

Figure 2.6 shows the effect of eo 
on P

m
. 	The reduction in Pm 

due 

toe
o 
is greatest (maximum 30 per cent) for small values of e. 	It 

increases with 1/d up to a certain point and then starts decreasing. 

(2.9) 
This agrees with Johnston's 	observation on steel columns: 
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"The effects of initial crookedness and residual stress may be 

compared with the idealized strength if both crookedness and residual 

stress were absent. 	Such a comparison shows that the maximum effect 

of either residual stress or initial crookedness, alone or in combination, 

always occurs when the slenderness parameter A. equals unity, where 

1 16y = 1-C • T-c E s •  For values of A. greater than this the effects of 

initial curvature gradually diminish." 

2.7 	LONG-TERM LOADING 

A load acting continuously for a long period has two effects on 

concrete: (1)  strain corresponding to the same stress is increased, 

i.e., ETc  diminishes, and, (ii) a is reduced; consequently, there is an 

increment in deflection and a reduction in the failure load. 

(2.15) 	 (2.16) 
Mauch 	and Manuel and MacGregor 	calculated the long- 

term strength of rectangular reinforced concrete columns taking proper 

account of the creep behaviour. 	It seems possible to extend these 

methods to concrete-filled tubular columns. 	However, a simpler semi- 

(2.17) 
empirical method used by Broms and Viest 	for reinforced concrete 

columns, is adopted. 	The reduction of concrete stiffness ETc 
is taken 

into account by doubling the short-term value of Em
, i.e. 

m 	
2 x 0.0025 = 0.005 for long-term loading. 	The reduction in cilm  

caused by long-term loading is small and is ignored. 

All loads tabulated in the design manual are calculated for 

Em 
	

0.005. 	It may be recalled here that the computer program has been 

checked only against short-term (Em  = 0.0025) experiments. 	Results of 

long-term loading tests on concrete-filled columns are not available, 
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therefore loads calculated on the basis of 6m 
 = 0.005 cannot be verified. 

P
m 

- 6
m 
- 1 and P

m 
 - 

8m 
 - 

d 
- relationships are shown in Figures 2.7 

and 2.8. 	It may be seen that the influence of Em 
on Pm 

increases with 1 

up to a point and then remains virtually constant. 	The influence 

decreases with increasing e/d, becoming negligible at e/d > 0.5. 

Short-term loading calculations are based on 6m 
0.0025. 	Available 

experimental a - 6 relations 
(2.6) 

 suggest values of 6
m 

between 0.0020 

and 0.0030. 	It may be seen from Figures 2.7 and 2.8 that by choosing a 

mean value of 0.0025 the maximum possible error in Pm 
is 7 per cent. 

Long-tem loading calculations are based on 6
m 
 = 0.005. 	This may be 

regarded as a rate-of-creep calculation with a single time-increment for 

the entire duration of loading. 	Rusch (2.18) reported 6m  = 0.008 for 

concrete under sustained loading of long duration, if this value is used 

in the present 'single time-increment' calculation then Pm 
would be con-

servative 
(2.16);  (the maximum difference between the two values of Pm 

corresponding to 6m  = 0.005 and 0.008, being 15 per cent of the greater 

value (Figure 2.7). 	Therefore it does not seem unreasonable to use 

6
m 
= 0.005 in the present single time-increment calculation of the long- 

term load. 

A comparison between the short-term (6m  = 0.0025) and long-term 

(6
m 
= 0.005) failure loads is made in Figure 2.9. 	The maximum reduction 

d 
f
cu 

is 11 per cent. 	However, for a column with a high value of 7  x  -67- 
y 

the reduction in P
m 

may be as high as 21 per cent (Figure 2.7). 

The period during which a load must act continuously in order to be 

classified as long-term load, is not clearly established. 	Several foreign 

(2.17) 
codes define this period as three days 	In the present calculation 
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the entire. load is considered as 'long-term'. 	It is believed that this 

conservative assumption compensates for the inadequacy, if any, of the 

notional assumption that Em  = 0.005 leads to the true long-term load. 

2.8 
	

DESIGN MANUAL 

2.8.1 Background  

Failure loads for a range of concrete-filled tubular columns are 

tabulated in a design manual 
(2.l9). 	The work has been done as a part 

of this investigation, but all the tables are not included in this thesis, 

instead sample tables for one diameter are shown (Tables 2.4 to 2.9). 

The computer program described in section 2.2 has been used for the 

preparation of the tables. 	Initial imperfection equivalent to that 

assigned in BS 449 
(2.14) 

is incorporated in the computation (as discussed 

in section 2.6). 	Creep is taken into account by the approximate method 

described in the previous section. 

2.8.2 Scope 

Failure loads are tabulated for the following ranges of hot-finished 

seamless tubes: 

circular sections 	4 1/2  in to 18 in 

square sections 
	

4 in 	to 16 in 

rectangular sections 	5 in x 3 in to 18 in x 14 in 

'(about both axes) 

thickness 	 All the manufactured thicknesses for 

square and rectangular sections and 40 

out of 59 manufactured thicknesses for 

circular sections. 
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steel 
	

steels to BS 4360 
(2.20): 

 gra
d
es 

43C (g = 16 tonf/in
2
) and 

50C (5 = 23 tonf/in
2
) 

concrete 
	

fcu = 3000, 6000 and 9000 lbf/in
2 

effective length 	6 ft to 40 ft (or 40 diameter/depth 

whichever is less) 

eccentricity 	seven values of e/d between 0 and 1.0 

Squash loads (P
L  =As y  

g. -F Ac g) are given. 
m 

The true major-axis bending loads may be obtained by substituting 

the tabulated failure loads in equation 2.14a. 	Equation 2.14 may be used 

for calculating the load carrying capacity under axial compression and 

biaxial bending. 	The tables do not cover unequal end eccentricities. 

2.8.3 	Influence of parameters on the failure loads  

Yield strength: 	Failure loads are tabulated for g = 16 and 23 tonf/in
2
. 

Figure 2.10, in which loads are plotted for intermediate values of y, 

:Mows that from the tabulated load values for g = 16 and 23 tonf/in
2
, 

loads can be linearly interpolated or extrapolated without significant 

error, for any value of a between 13.9 (= 16/1.15) and 23 tonf/in2. 

Young's modulus: 	The variation of Pm 
with E

s 
is shown in Table 2.10, 

an empty tube being chosen to demonstrate the maximum effect. 	It may 

be seen that for all practical columns (lid < 24), a change of Es 
from 

12000 to 14000 tonf/in
2 
increases P

m 
by less than 1 per cent. 	However, 

for very long columns the increase in Pm 
with increasing Es 

may be 

appreciable, the corresponding figure being 12 per cent at 1/d = 72. 



40 

Loads are tabulated for E
s 
= 13000 tonf/in

2 
which is generally 

recommended by the manufacturers. 

Cube strength: 
	

Figure 2.11 shows that Pm 
varies linearly with f 

cu
, so 

that linear interpolation or extrapolation may be used for values of f cu 

which are not tabulated. 	It should be noted however, that for the 

empty tube 
(fcu 

= 0), the possibility of a premature failure due to 

local wrinkling of the tube-walls should be considered. 	This has been 

discussed in sub-section 2.3.3. 

6m: 
	

E
Tc 

may be varied by using different values of Em 
in equation 2.5. 

The influence of 6m 
on P

m 
is shown in Figures 2.7 and 2.8, and has been 

discussed in section 2.7. 	Failure loads are tabulated for 6m 
= 0.005. 

Thickness: 	The variation of the failure load with d/t is shown in 

Figure 2.12; an empty tube is chosen to study the maximum variation. 

It may be seen that by tabulating failure loads for one intermediate and 

two extreme thicknesses, a linear interpolation gives loads for other 

thicknesses without appreciable error. 

Length: 
	

P
m 

is plotted against 1/d in Figure 2.13 for 10 values of e/d. 

The influence of l/d on P
m 

decreases, as may be expected, with increasing 

e/d. 	Figure 2.13 shows that linear interpolation between tabulated 

values (marked by vertical grid lines) gives the failure load for any 

intermediate length with negligible error. 

Eccentricity: Figure 2.14 is complementary to Figure 2.13 and shows the 

influence of e/d on P. 	Again, linear interpolation between tabulated 

values is shown to be satisfactory. 
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2.8.4 	Choice of load factors and material factors 

  

CP 117 (Part 3) 
(2.21) 

and the new Bridge specification 
(2.22) will  

recouuuend partial load factors for composite columns. 	The draft Unified 

(2.23) 
Code 	recommends 1.6 and 1.4 for live and dead load respectively, 

when there is no wind loading. 	BS 449 
(2.14) 

 and CP 114 (2.24)  

recommend overall load factors of 1.7 and 2.0 for steel and reinforced 

concrete columns respectively. 

CP 114 implies a material factor of 1.5 for concrete. 	The Unified 

Code in its present form, suggests material factors of 1.5 for concrete 

and 1.15 for steel. 

The second interim report 
(2.25)of  the CIRIA Study Committee on 

Structural Safety gives a comprehensive account of limit states and 

suggests suitable partial load factors. 

The alternative recohmiendations are quoted above, and the choice is 

left to the designer. 	That is why ultimate load values based on material 

factors = 1.0 are tabulated. 

2.8.5 	Effective length 

The question of effective length is being considered by the drafting 

com 	
(2.21)

mittees of CP 117 (Part 3) 	and the new Bridge specifications (2.22) 

BS 449 
(2.14) gives effective lengths which are substituted in.the 

Perry-Robertson formula to determine the yield loads of axially-loaded 

columns. 	These loads are then divided by 1.7 to obtain the working load. 

A straight line interaction relation is suggested for end moment. 

Failure loads have been calculated for a range of practical empty 

tubes by using the computer program. 	These loads have been compared 
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with 1.7 x (the corresponding BS 449 working load)(Table 2.11). 	The 

comparison shows that the two values are within 4 per cent for axially-

loaded tubes and within 14 per cent for eccentrically-loaded tubes. 

Since the loads calculated by the computer program are of the same 

order as 1.7 x (BS 449 working load), it does not seem unreasonable to 

use the BS 449 effective length rules in conjunction with these tables. 

It is worth mentioning that the BS 449 recommendation for the sway-case 

may be unsafe. 

2.8.6 Working load  

Problem: what is the working load of a column of the following description: 

Geometry: 	 Material: 

d = 14 in 	 Steel to BS 4360 
(2.20),  grade 43C 

t = 3/8 in 	 Concrete: works 

1 = 11 ft 3 1/16 in = 11.25 ft/say 	minimum cube strength 

e = 1.58 in 	 at 28 days = 5700 lbf/in2  

Material factors: 
	

Load factors: 

for Steel ys  = 1.15 
	

Dead 1.4 

for Concrete yc  = 1.5 
	

Live 1.6 

Load ratio - Dead load:Live load :: 4:1 

Solution: Using the material factors, the reduced material properties are: 

y /ys  = 16/1.5 

fcu Pyc  = 5700/1.5 

= 13.91 tonf/in
2 
 

= 3800 lbf/in
2 

The above two reduced values of U and fcu 
 and the given values 

.  



Required working load = 
1.44 

= 185 tonf 
266 
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of 1 and e do not coincide with the values for which loads are tabulated. 

The load case of the problem has to be found by linear interpolation 

(extrapolation for 6 ) from sixteen values taken from Tables 2.6 and 2.7.  

and quoted below for ready reference: 

f 	= 	3000 lbf/in
2 

cu 
2 

f 	= 	6000 lbf/i 
cu 

e .--- 1.4in e = 2.8in e = 1.4 in e = 2.8in 

6 	= 16 tonf/in
2 

Y 

1 = 10 ft 281 233 371 303 

1 = 12 ft 268 222 351 286 

6 	= 23 tonf/in
2 

Y 

1 = 10 ft 362 297 452 368 

1 = 12 ft 346 283 427 348 

Ultimate load in tonf (d = 14 in, t = 3/8 in) 

After doing the interpolations the required ultimate load is found 

to be 266 tonf. 

Working load calculation: 

P 
P
w overall load factor 

For the given dead and live load factors and the load ratio: 

4 + 1 overall load factor = 4 x 1. 4 + 1 x 1.6 = 1.44 
 

2.8.7 	Choice of section 

The designer's usual problem is to find compatible values of d, t, 

"fcu and 	for known values of Pm, 1 and e. 	He may select a set of 



1/(1 - Pw/PE) where PE 
= Euler load 

v
2 
(EI)

t 
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trial values, use the tables, interpolate where necessary and calculate 

P
m
. 	If the calculated Pm 

is lower or excessively higher than the 

desired P
m
, the values of d, t, fcu 

 and U may be improved in successive 

trials till the two values of Pm 
are acceptably close. 

2.8.8 Deflexion 

Elastic methods, exact or approximate, may be used to calculate the 

deflexion at working load. 	For example, the exact elastic formula for. 

the common case of a column under an axial load Pw 
and equal end moments 

N is: 

M. h
2 	

2(1 - Cos u) 
8(EI)

t 	u
2 
Cos u 

where h = true length of column 

(EI)t  = stiffness of the transformed section 

=E1 +El 
c c 	s s 

u = h

\IPw 

 
2 (EI)

t 

The value of I
c 

based on the total area of filling and that of Is 

are tabulated. 	E
s 

may be taken as 13000 tonf/in
2
. 	E

c 
 = E 

s
/m, the 

long-term value of m as reconuuended by the draft Unified Code may be used. 

The approximate method (2.26)consists of calculating the deflexion 

for end moments only, taking the true length of the column. 	The effect 

of axial load is then taken into account by multiplying this deflexion 

by an approximate magnification factor 

1
2 

where 1 = effective length 



- 45 - 

2.9 	MAXIMUM STRAIN IN CONCRETE 

Let E
c be the strain at the concave face of the concrete-core while 

the filled-tube is subjected to the maximum load Pm. 	6c/Em  is plotted 

in Figure 2.15 against e/d for 4 values of 1 and for both the short- and 

long-term values of E
m 	

6 c  /6m  decreases significantly with increasing 

length, 1.5 being the maximum value for the shortest length. With e/d 

varying from 0 to 1.0, the value of 6 
c 
 /6
m 
 is spiky in nature. 	For 

values of e/d greater than 1.0, E 
c 
 /6
m 
 remains virtually constant. 

The long-term 6 
c 
 /6
m  curve runs below and parallel to the short-term 

curve, except for very short columns. 	The constant difference between 

the two curves is approximately 0.15. 

It has been mentioned in sub-section 2.2.3 that equation 2.5 for the 

stress-strain relationship of concrete, gives spurious values of 6/0" 

for 6/6  s>>4. This does not cause any concern because 6/6m  never 

exceeds 4 in concrete-filled columns under the maximum load (Figure 2.15). 

2.10 	AN IMPORTANT APPLICATION 

The multi-level motorway interchange at Almondsbury is an important 

example of the use of concrete-filled columns in this country. 	35 columns 

were designed and constructed on the basis of semi-rational formulae 
(2.3)  

and exploratory tests 
(2.27). 

	The columns are analysed here by the com- 

puter program for both short- and long-term loading. 	The load factors 

are given in Table 2.12. 	It may be seen that all the columns have 

adequate safety margin. 
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2.11 	CONCLUDING REMARKS 

A computer program is now available for predicting the failure load 

of circular, square or rectangular tubular columns, either filled with 

concrete or empty. 	Failure loads of circular or rectangular reinforced 

concrete columns may also be calculated by the same program. 	Equal end 

eccentricities about one axis are considered, and uniaxial stress-strain 

properties for the steel and concrete are used, i.e. triaxial effects, 

if any, are neglected. 	Long-term loading may be taken into account by• 

the approximate method of doubling the concrete strain at all stress 

levels. 	Initial imperfection may be incorporated as an end eccentricity 

or as a central deflexion or as a central curvature. 

Failure load tables (2.19)  'have been prepared for a comprehensive 

range of tubular sections under axial compression and uniaxial bending. 

Loads are tabulated for two steel strengths, three concrete strengths, 

.seven eccentricities and up to fifteen lengths; intermediate cases may 

be obtained by linear interpolation without appreciable error. 	Initial 

imperfection equivalent to that assigned in BS 449 is incorporated, and 

creep in concrete is approximately accounted for. 	Failure loads are 

given for material factors = 1.0 and U /f cu  = 0.8, but loads may be m  

be obtained for other values of material factors and 0' /f cu  by linear m  

interpolation from the same tables. 

It does not seem unreasonable to use BS 449 recolimiendations on 

effective length in conjunction with the tables. 

Load carrying capacity under axial compression and biaxial bending 

may be calculated by substituting relevant tabulated loads in equation 

2.14. 	Equation 2.14a may be used for major-axis bending to take the 

interaction with probable minor-axis bending into account. 
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2.12 	SUGGESTION FOR FUTURE WORK 

Future theoretical works should include: 

biaxial bending; and 

(ii) 	proper step-by-step creep analysis. 

Further experiments are necessary to cover: 

(i) short square and rectangular columns under nearly concentric 

loading; 

(ii) biaxial bending; 

(iii) unequal end eccentricities 

(iv) long-term loading; and 

(v) local buckling of the tube wall. 
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CHAPTER 3  

TRIAXIAL EFFECTS IN CONCENTRICALLY-LOADED 

CIRCULAR STUB COLUMNS  

3.1 	INTRODUCTION 

The structural behaviour of concentrizally-loaded stub columns is 

largely influenced by the difference between the values of Poisson's 

ratio of steel and concrete. 	The Poisson's ratio of concrete vc 
may 

increase from 0.11 
(3.1) 

 to the order of 0.75 
(3.2) 

 with increasing 

longitudinal strain. 	Thus in the early stages of loading of a stub 

column when v
c 	

v
s
, the steel has no restraining effect on the concrete 

core and bond must exist to prevent separation at the interface. 	As the 

longitudinal strain increases, however, vc gradually becomes greater than 

vs 
thereby setting up a radial pressure at the interface. 	At this stage 

the concrete is under triaxial compression and the steel is under longi- 

tudinal compression and hoop tension. 	This stage is usually reached 

after the steel has yielded biaxially. 	As the hoop tension increases 

the longitudinal compression in steel is reduced while the radial pressure 

on concrete increases, and as a result the longitudinal strength of the 

contained concrete is increased. 	The failure load of all practical stub 

columns is considerably more than the sum of the uniaxial compressive 

strengths of the steel and concrete, because the loss of longitudinal 

compression in steel is more than compensated for by the augmentation of 

the strength of concrete. 
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At the outset of this investigation the magnitude of the longi-

tudinal and the hoop stress in steel were not known in the post-elastic 

range. 	The assumption had been made that at failure the steel yields 

in the hoop direction and carries no stress in the longitudinal direction, 

i.e. 0
.sH 

= = Y and
SL 

= 0 
(3.3, 3.4)

.For such a state of stress the 

radial pressure on concrete a
CR 

(Figure 3.1) is given by: 

2t 	2t 
6
cR 

= -
SH x 

d-2t 	
cr:
y d-2t 

(3.1) 

From the failure criterion of triaxially contained concrete 
(3.5) 

 the 

longitudinal stress in concrete
cL 
 at failure was taken 

(3.3, 3.4)
as: 

a 	= am  + 4.1 6CR 	 (3.2) 

The longitudinal stress in steel being zero, the failure load P
H 

was 

calculated as: 

4.16 x 2t 
P
H 

= A
c  6

cL  = A ( + 	 
c m 	d - 2t 

(3.3) 

(3.3) 
Neogi 	obtained reasonable correlation between experimental 

failure loads and loads calculated from equation 3.3. 	Gardner and 

Jacobson (3.4) used the same equation with less success. 

The computation of the post-elastic biaxial stresses in steel from 

experimentally determined load-strain relationships is not straightforward; 

in this chapter a method is given by which this can be accomplished. 	The 

method is based on the generalised flow-law for plastic solids. 	14 tests 

conducted at Imperial College are chosen, and steel stresses G
SL 

and G
SH 

-are calculated from measured strain values Sand 
6sH 

for small increments 

of strain up to failure. 	Once the stresses in the steel are known those 

in the concrete are calculated from simple statics. 

The relationship between the longitudinal stress and strain for the 
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biaxially stressed steel and for the triaxially stressed concrete is 

plotted for all the 14 columns. 	These curves may be looked upon as 

equivalent longitudinal stress-strain relationships for the steel tube 

and the concrete core; the mean curves are used in chapter 5 to predict 

moment-curvature relationships taking triaxial effects into account. 

The stresses in the concrete are compared with existing failure 

criteria, and a failure criterion is suggested for the concrete core. 

A new equation is proposed in place of equation 3.3. 

3.2 	CALCULATION OF BIAXIAL STRESSES IN STEEL FROM MEASURED STRAINS 

3.2.1 	Uniaxial stress-strain relationship and biaxial yield criterion 

The uniaxial stress-strain relationship of steel is assumed to be 

elastic - perfectly plastic. 

The Hencky-von Mise's yield criterion is the most accurate one for 

ductile materials 
(3.7),  and for biaxial stresses in the steel tube it 

may be written as: 

2 00.2 
sH 	

(3" sL 
0sH 

(3.4) 

3.2.2 	Elastic biaxial stress-strain relationship  

As long as the stress-point is within the yield surface defined by 

equation 3.4, the following relations are applicable: 

E
s  = 

(1 - V") 
. (esL 	vs EsH) (3.5) 

E
s  

.sH 	
(1 7  v: 

.1 
 ) 
• (6sH + vs 6sL ) (3.6) 



8o
L 

= a . 801 H 

- 
where y — 

2asL 	sH  

and a = 	— 1 

Y 

2aSH 
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3.2.3 	Post-elastic biaxial stress-strain relationship  

Once the stress-point has reached the yield surface, it keeps 

moving along the surface with increasing strains (Figure 3.2), and the 

relationship between stresses and strains is no longer governed by 

equations 3.5 and 3.6. 

When the stress-point is on the yield surface let the stresses in 

steel be 
Of.s1_, 

and 
0.sH. 
	At this instant let there be a small increment of 

load for which the experimentally obtained strain increments are 88sL and 

86
sH 	The increments in stresses are then given by: 

sH 
— 

E
ssL 

- y.86
sH
) 

a- 2v
s 

y (3.7) 

Equations 3.7 and 3.8 are derived from the generalised flow-law for 

perfectly plastic solids developed between 1950 and 1956 
(3.6) 

 (Appendix A). 

In the derivation of equations 3.7 and 3.8, it is assumed that the steel 

is elastic-perfectly plastic and obeys the Hencky-von raise's yield 

criterion (Appendix B). 

When 
80.sL 

and  8o-sH are added to the existing stresses, a new pair of 

values is obtained for UsH  and asL. 	This gives the new stress-point 

which should also lie on the yield surface providing 86sL and SEsH are 

sufficiently small. 
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3.2.4 Computer program 

When the load-strain relationships for a stub column are known from 

experimental observations, the strains and stresses at first yield may be 

calculated, after some systematic trials, from the elastic equations 3.5 

and 3.6 and the yield condition 3.4. 	The numerical process of finding 

the post-elastic stresses by using equations 3.7 and 3.8 may then be 

started and continued for small successive strain increments up to the 

failure of the column. 	The process is repetitive and is programed on a 

digital computer. 	Once the stresses in the steel are known, the stresses 

in the concrete are calculated from simple statics. 

The program consists of the following steps: 

(-1) 	Read observed values of 6
sL 

and. E
sH 

for various values of P. 

Select the first value of E
sL 

and of 6
sH 

(2) Substitute E
sL 

and 6
sH 

in equations 3.5 and 3.6 to calculate 

0
.sL 

and  0'
SR
. 

(3) Repeat step (2) for successive values of E
sL 

and 6
sH 
 until 

the left hand side of equation 3.4 is greater than the right 

hand side. 

(4) Choose the last two pairs of strain values from step (3), i•e•, 

one pair before yield and one after; use a process of successive 

bisection between these two pairs, repeat step (2) and find csL, 

sll 
and P for which crsL and USH just satisfy equation 3.4. 

(This gives the loads, strains and stresses at first yield). 

(5) Choose a small increment 8ssLY- 

(6) 
AddsL 

to the current value of 6
sL' 

find P corresponding to 
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the new value of 6
sL 

by linear interpolation, hence find S6
sH 

(7) Calculate y and a from equations 3.9 and 3.10. 	Substitute 

y and a in equations 3.7 and 3.8 and obtain ScrsH  and 80'sL. 

(8) Add 
80.s1., 

and 
 SO.sH 

to the current values of asL and 0-sH and 

get new values of Csi,  and o'sH. 	Check that the new values of 

sL 
and U

sH 
 satisfy equation 3.4, and proceed to step (9). 

Otherwise, take successively smaller values of S6sL 
and repeat 

steps (6) and (7) until equation 3.4 is satisfied to a pre-

assigned tolerance. 

(9) Repeat steps (5) to (8) to obtain a's1.4 
and

SH 
for successively 

increasing values of E
sL' 

E
sH 

and P up to failure. 

(10) List all values of P, 6
sL,  6sH''51, 

and 0
'sH 

obtained in steps 

(2) to (9). 	For each set of values calculate Ps 	
A
sSL' 

P P
s 	

o 
	

2t  
hence IC

cL  = 
	 ; also calculate cR — -0 x A

c 	
d - 2t • 

• 3.3 	STUB COLUMN EXPERIMENTS 

3.3.1 	Description of tests  

14 tests conducted at Imperial College 
(3.3) 

 are chosen, because 

a complete record of strain readings for these tests is available. 

Dimensions and material properties are given in table 3.1. 

Thickness was the variable parameter. 	The end cap consisted of a steel 

disc 2 1/2 in thick with a 1/4 in machined recess into which the end of 

the filled tube fitted closely. 	At each end of the tube the concrete 

surface was roughened by chipping. It was then capped with a thin 
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layer of cement mortar and made flush with the steel surface. 	It may 

therefore be assumed that the steel and concrete were loaded together. 

At the lower end a spherical bearing of large diameter was interposed 

between the end cap and machine platten, but the top end cap bore 

directly against the top platten. 

The column was continuously strained until, and somewhat beyond the 

the maximum load. 	The strain rates were approximately: 3046/min for 

0 - 3000 146, 60 )46/min for 3000 - 5400 146, 120 146/min for

t 

 5400 - 

9000 )46 and 300 14.6/min after 9000 146. 

The longitudinal and hoop strain at the mid-height section, along 

two perpendicular diametral planes, were measured by 4 rosette gauges. 

3.3.2 	Experimental results  

EsL and 6
sH 

are plotted against the total load in Figures 3.3 to 

3.16. 	EsL  and 6
sH 

are average values from four readings taken at two 

perpendicular diametral planes. 	At high loads there was a considerable 

difference between the maximum or minimum longitudinal strain and the 

average. 	This difference may have been caused by local weaknesses in 

the tube. 	The bending associated with non-uniform straining is ignored, 

and the arithmetic mean of the four readings is taken as the true axial 

strain (6sL). 	The same applies to 6
sH
. 

Only in column M17 did (Figure 3.9) 6sH  exceed 6sL. 	It is shown 

later that M17 behaved differently from the other columns in so far as 

the calculated values of Ci
sL 

and or
SH 

are concerned. 	It may be inferred 

that strain readings for M17 are unreliable. 

The maximum value of 6
sL 

in Figures 3.3 to 3.16 is 28000 116. 

Strain readings could not be taken up to failure for all the columns. 
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Table 3.2 gives the load P7  up to which strain readings are available 

and the failure load P
T' 

the ratio between the two loads varies between 

0.78 and 1.00. 

The ratio between the test failure load P
T 

and the sum of the 

uniaxial compressive strengths of the steel and concrete P
L 

varies 

between 1.36 and 1.63. 	Thus the gain in failure load due to triaxial 

augmentation of the concrete strength is between 36 and 63 per cent of 

the uniaxial strength. 

In coluiut M12 a strain gauge was embedded in the concrete to measure 

the longitudinal strain S. 	6
cL 
 was compared with 6

sL 
and virtually no 

difference was observed. 	This means that there is no slip between the 

steel and concrete when the two are loaded together. 

Overall bulging, i.e., bulging over the major part of the length 

was the basic mode of failure in all the columns. 

3.4 	DISCUSSION OF TEST RESULTS 

3.4.1 	Stresses calculated from strain readings  

Longitudinal and lateral strains
sL 

and 
Esli' 

obtained experimentally 

(Figures 3.3 to 3.16), are fed into the computer program. 	The program 

prints out the values of longitudinal and lateral stresses in the steel 

and the concrete. 

From no-load condition to failure the path followed by the steel 

stress-point (0sH)  is shown in Figure 3.17 for column M24. 	The 

travel of the stress-point from 0 to A with increasing load is governed 

by the equations given in sub-section 3.2.2, and the movement along the 
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ellipse from A to B is determined by the equations given in sub-section 

3.2.3. 	For column M24, the stress-point reaches the yield-surface 

(point A) at 64 per cent of the failure load, and at 98 per cent of the 

failure load 0/5Y 
= 0.538 and 5 /a = -0.616 (point B). sH y 

The load and stresses at first yield are given in Table 3.3 for all 

the columns. 	The ratio between the first yield load Py  and the failure 

load PT 
varies between 0.57 and 0.85 with an arithmetic mean of 0.66. 

At first yield, it may be seen from Table 3.3 that 5sH  is small, con-

sequently 5 R  is less than 2 per cent of 5111  for the majority of columns. 

Thus it transpires that up to the first yield, i.e. approximately up to 

two-thirds of the failure load, triaxial effects are negligible. 

At or near failure, however, 5
R 
 is appreciable; the ratio 5'cR/5m 

varies between 0.11 and 0.48 (Table 3.4). 

Once the steel has yielded, the longitudinal stress in steel 5sL 

drops to about 0.75 5 at failure, while the strength of the triaxially 

contained concrete reaches more than twice the uncontained strength, 

i.e. 	
L 	- m U nff 2.0 5 . 
c  

The arithmetic mean of 5 L/5
Y 

at first yield for 

all the columns is 0.98 (Table 3.3) and the corresponding value near 

failure is 0.75 (Table 3.4). 	The arithmetic mean of Gam/ m  
Cr at first 

yield is 0.92 (Table 3.3), and the corresponding value near failure is 

2.08 (Table 3.4). 

3.4.2 	Equivalent stress-strain relationship 

The relationships between the longitudinal stress and the longitudinal 

strain for the biaxially stressed steel and the triaxially stressed con-

crete may be looked upon as equivalent stress-strain relationships for 

the steel tube and the concrete core. 	The equivalent stress-strain 
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relationships derived in this sub-section are used in chapter 5 to 

incorporate triaxial effects in an approximate moment-curvature analysis. 

Steel: 	The non-dimensional quantities a
sL

/G and 
6sL/6y are 

plotted for all the columns in Figure 3.18. 	The curves for 1117 and M23 

show wide scatter, probably because of errors in the strain readings. 

The remaining 12 curves form a well defined band which is represented by 

the smooth curve shown in Figure 3.19. The smooth curve is a lower bound 

fit to the band for values of 
6sL/6y 

between 1.0 and 4.0, and then follows 

the mean path through the band. The smooth curve which may be regarded 

as the equivalent stress-strain relationship is expressed by the following 

equations: 

0SL 	
6 

s
sL 	

E
sL 

	

= 0.95 	1 	6 
when 	1.0 U 

Y 	Y 	Y 

	

1.063 	- 0.113 

U 

0.si, 	
6s
sL 	

6
sL = 	 when T-- 	1.0 

6
sL

Y 	
, 

Y 	1.417 6 - 0.417 	Y 

(3.11) 

Equation 3.11 is asymptotic to 0-
sL
/G = 0.75. 

Concrete: 	
cL

/a
M 

is plotted against 6cL/6
m 
for all the columns in 

Figure 3.20, where 66,  = 6
sL 

, ra = 0.8fcu  and 6m = 0.0025. Again the 

curves for M17 and M23 show wide scatter, while the remaining 12 curves 

show a definite band pattern, although the band width gets wider for high 

values of 6 /6 
m
. 	A smooth mean curve is drawn to represent the band 

(Figure 3.21), and is expressed by the equation: 

6 

2.41 (---) 
6. 

Ch 
(3.12) 

6 m 	
1 + 1.105 (6-') 

m 
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Equation 3.12, which is asymptotic to CYcL/Om  = 2.18, has the same initial 

slope as the uniaxial stress-strain curve for concrete (equation 2.5), and 

the two equations give the same stresses for strains less than 0.5 cm. 

Thus equations 3.11 and 3.12 approximately represent the longitudinal 

stress-strain relationships for the biaxially stressed steel tube and the 

triaxially contained concrete core of a stub column under concentric 

loading. 	However, equations 3.11 and 3.12 are applicable only when d/t 

lies approximately between 17 and 37 (Table 3.1). 

3.4.3 	Effect of tube thickness  

'cR 
is the containment stress for the concrete core. 

between 0"
cR 

and asH is: 

2t  

	

aCR 	- CY 
sH d 2t 

2t 

	

or CYcR 	asH d 

The relation 

(3.1) 

(3.13) 

Thus 0
.sH 

is a measure of the containment, and the relation between CYcR 

and 0
SR 

is approximately linear for varying t/d. 

 that the steel has yielded biaxially and the stress-point 

(6sL' 0sH) is progressing along the yield-ellipse (Figure 3.17), the 

value of the ratio 
6sH/0SI, 

enables the individual values of asH and CYsL 

to be calculated. 	Tb higher the ratio 6sH/6
si,  the higher is the con- 

tainment. 	The relationship between OF
SH

/0-
sL 

and d/t is studied in 

Figure 3.22 for values of 
6sH/0"sL 

near failure (Table 3.4); there is no 

recognisable pattern, and in the absence of further data, a horizontal 

line through 0- H /0sL = - 0.5 is a fair approximation of the relationship. 
s  

The non-dimensional quantity 6
CR
/0 is plotted against t/d in 

Figure 3.23; for t/d = 0,15 
	= 0. 	The relation between U /CY and 
cR/Uy 
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t/d may be approximated as: 

_ 2 t 
(IcR — 3 d y 

It must be emphasized that equation 3.14 is tentative. 

The effect of tube thickness on the strength of the filled tube 

is not established from Figures 3.18, 3.20, 3.22 and 3.23 and from 

Table 3.4, and it seems that further experiments are necessary. 

3.4.4 Lateral/longitudinal strain 

The ratio between the lateral and the longitudinal strain 

cR/6cL 
 (= 6

sH
/6) is plotted against P/F

T 
where P is the current load 

and PT 
is the experimental failure load 	(Figures 3.24 and 3.25). 

The strain-ratio has an approximate value of 0.2 at low loads; it then 

increases slowly to 0.3 (= vs) when the load is between 55 per cent and 

56 per cent of the failure load. 	M16 and M24 show different behaviours 

which may be attributed to experimental scatter. 	It may be mentioned 

here that the steel reaches the first yield at about two-thirds of the 

failure load. 	Thus the strain-ratio becomes equal to the Poisson's 

ratio of steel just before the steel yields. 	After this the strain-

ratio increases rapidly up to a maximum of 0.8; this compares well with 

0.75 observed by Richart 
(3.2) 

 in spirally reinforced concrete columns. 

3.4.5 	Share of load carried by the concrete 

Beyond the load at which the strain-ratio equals vs  (= 0.3), i.e. 

approximately after the steel has reached the first yield, concrete 

carries a progressively higher share of the total load. 	The ratio of 

the load carried by the concrete P
c 

to the yield load P
Y 
 has an arith-

metic mean of 0.42 (Table 3.3), whilst the ratio of Pc  to the load at 

(3.14) 
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or near failure P
T 

is 0.70 	Table 3.4). 

The reduction in Ps
, the load carried by the steel, beyond first yield 

is shown for columns M15 and M24 in Figures 3.26 and 3.27. 

P/ P is plotted against P in Figures 3.28 and 3.29 for all the 
c 

columns. 	At low loads the ratio Pc
/P varies between 0.28 and 0.73, it 

remains nearly constant until the steel yields, then it increases to 

0.70 to 0.80. 

3.4.6. Volume chance 

If a cylinder has a longitudinal strain E
cL 

and a radial strain E
cR' 

it may be shown that the change in unit volume or the volumetric strain 

cV 
is given by: 

cV 
=

cL 
+ (28 + 

2
R
) (1 +86,) 

	

cR 	c 

Neglecting the higher order terms 

= 
cV 	6 cL 	

2 EcR 

(3.15) 

(3.16) 

Even for strains of the order of 0.025, equation 3.16 gives values of 

E
cV 

only up to 5 per cent smaller than the exact value given by equation 

3.15. 	Equation 3.16 is used in all volumetric strain computation. 

cV
/6m is plotted against CV/G'111 

for all the columns in Figures 3.30 

to 3.33; here Em  = 0.0025, and Cril  = 0.8 f . 	It may 
o'cV = CYCL 	2 o'cR' 	cu 

be seen that volume decreases until OcV/Om is approximately unity, i.e. 

'cV is approximately equal to the peak stress of uncontained concrete. 

Then the volume starts increasing; the point at which the volume is equal 

to the original volume occurs whencV m /C is approximately between 1.25 

and 1.5. 	At failure up to 1.5 per cent volume increase is recorded 

(column M24, Figure 3.33)0 
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3.4.7 	Failure criterion for concrete 

Available failure criteria for concrete under triaxial compression 

are discussed in Appendix C, and are compared in this sub-section with 

the. stresses in the concrete core at or near failure. 

The stresses in the concrete core 0 cL 
 and o 	

at or near failure 

(Table 3.4) are plotted in Figure 3.34 and Mohr's circles are drawn. 

5) 
The Mohr-envelope (equation C.5) derived from Richart's 

(3. failure 

criterion (equation C.1) is also drawn in Figure 3.34. 	The straight 

line envelope is a reasonable lower-bound fit to the circles, and may be 

regarded as a criterion for sliding failure of the concrete core. 	The 

angle between the envelope and the ordinate is 1270  52' , therefore the 

inclination of the plane of sliding failure with the horizontal is 

expected to be (127°  - 52' = 2) -.-==f. 64°. 	Although columns 1411 - M24 

failed due to bulging, the comparison in Figure 3.34 indicates that if a 

shear failure should occur in the concrete core, the shear-plane would be 

approximately at 64°  with the horizontal. 

Values of cr
CL 
 and 6 R 

near failure (Table 3.4) are compared with 

10) 
Hannant and Frederick's (3. 

	failure lines (equation C.6) in Figure 3.35. 

It may be seen that a better fit is obtained by: 

U
cL 	

= f cy  + 5 acR 
(3.17) 

Equation 3.17 is nearly the same as equation C.2 suggested by Richert
(3.5) 

for relatively low values of the confining pressure fiTcR  (= 

Thus equation 3.17 may be used as the failure criterion for the concrete 

core of a stub column. 
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3.5 	PREDICTION OF FAILURE LOAD 

3.5.1 General  

The distinction between the squash load P
L 

and the stub column 

failure load PH should be noted. 	
P
L 

is the sum of the uniaxial com-

pressive strengths of the steel and the concrete, i.e. P
L 
= A

s
OY A

c
U
M
.  

Thus P
L 

is the failure load for a composite column in which there is no 

triaxial effect, for example, a cased stanchion. 	However, PH  is the 

failure load of a concentrically-loaded filled stub column for which 

triaxial effects must be taken into account. For a stub column P
H 

may 

be considerably greater than PL. 	In this section equation 3.3 is dis-

cussed and a new equation is suggested for predicting PH. 

3.5.2 Derivation 

The influence of d/t and other parameters on the ratio 6 H/0"
sL
(=-  p) 

at failure is not recognisable from the test results of columns Mll - M24 

(Figure 3.22), and it does not seem unreasonable to assume a constant 

value of 0 for all the columns. 	Substituting 0sH = pusL in equation 3.4: 

U 	U 

0.sL 
1 - 13 + 13

2 	131 
(3.18) 

where pl 	,d/1 — p + p2  

0sH may then be found: 
• 

  

o'sH 	p asL 

  

(3.19) 

Substituting equations 3.19 and 3.18 in 3.1 

2t 	2tPO 
U
cR 	- SH d 2t d. p 

(3.20) 
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Equations C.1, C.2, C.3, C.6 and 3.17, which give various relation- ' 

ships between GCL 
and 5cR 

at failure, are all of the form: Uct  = fcy 
+ Xo 

where X is a constant. 	For uniformity with the rest of this work fcy 
 may 

be replaced by Gial  without any appreciable error; thus: 

o = am + A CicR 
	 (3.21) 

where X is a constant. 

Substituting°CR 
 from equation 3.20 in 3.21: 

- 2t X p 

d. 
(3.22) 

0 
1 1 

Substituting equations 3.18 and 3.22 in the relation PH 
= A

s
G + A

c
Cr
cL 

2t X 13 a A G 
YN s y 	A (5 I- 	d.  p 	/ P

H — c m 	1 131  
(3.23) 

where f3 
	

= 0-sH/0
sL ' 

p + p2 , and 

= 	a constant (equation 3.21) 

From Figure 3.22, - 0.5 may be taken as a reasonable value for p; 

and from equation 3.17 X= 5.0. 	Substituting p and X in equation 3.23: 

3.8 t 
P
H 

= 0.75 A
S 
 a + A

c 	
d  (0-  + 	Y) 

y 	m ' 
i 

(3.24) 

3.5.3 Discussion 

Failure load P
H 

is calculated by equation 3.24 and compared with test 

load PT for columns rill - M24 in Table 3.5. 	
The agreement is satisfactory, 

PH  being always less than PT. 	The ratio PT/PH 
varies between 1.02 and 

1.14 with an arithmetic mean of 1.07. 

Equation 3.3 was based on the arbitrary assumption that 0 
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g and o = 0, and that = 4.1. 	Loads calculated by i.e. gsH  

equation 3.3 are also given in Table 3.5. 	The ratio (P
H
)
equation 3.24/  

(1)
H 

 
)equation 3.3 varies between 0.89 and 0.92. 

Values of P
H 

are given for various values of p and X in Table 3.6 

for a thick and a thin tube. 	It may be seen that PH  based on p 	- 0.5 

and X = 5.0 is only 10 per cent smaller than PH  based on p 	and 

X = 4.0. 	This explains why equation 3.3 gave fair agreement with test 

results, in spite of being based on the limiting value of p ==.0 . 

Equation 3.24 is used to calculate the failure load PH  for 11 stub 

columns tested by Gardner (3.12) 
	

The steel had a rounded stress-strain 

relationship, and for the purpose of equation 3.24 g is taken as the • 

0.2 per cent proof stress. 	P
H 

is compared with the experimental failure 

load P
T 

in Table 3.7; the ratio 
PT/PH 

varies between 0.96 and 1.38 with an 

arithmetic mean of 1.18. 	The predicted load PH  for these columns is more 

conservative than for the Imperial College columns (M11 - M24). 	The 

reason for this may be ascribed to the fact that g is taken as the 0.2 

per cent proof stress. 

It may he inferred that equation 3.24 can be safely used to predict 

the failure load of circular stub columns. 

306 	CONCLUSIONS 

The following conclusions may be drawn regarding the behaviour of 

concentrically-loaded, concrete-filled, mild steel, circular stub columns: 

(1) 	Longitudinal strains of the order of 20,000 }Ls may occur at 

only 80 per cent of the failure load. 	Strains greater than 

28,000 ft6 have been observed at or near failure. 
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(2) The ratio of the lateral strain to the longitudinal strain is 

approximately 0.2 at low loads; the ratio gradually increases 

to 0.3 at about 60 per cent of the failure load, and then 

rapidly increases to a maximum of 0.8,at or near failure, 

associated with a volume increase of up to 1.5 per cent. 

(3) A computer program has been written for calculating the elasto-

plastic biaxial stresses in the steel from the measured values 

of the two strains. 

(4) The steel yields under biaxial stresses approximately at two- 

thirds the failure load. 	At this stage the longitudinal stress 

is nearly equal to the uniaxial yield stress and the hoop stress 

is negligible. 	Therefore the restraining effect of the tube on 

the concrete core is not appreciable up to about two-thirds the 

failure load. 

(5) At or near failure the longitudinal compression in the steel is 

approximately 0.75 x the uniaxial yield stress, and the hoop 

tension is half the longitudinal stress in magintude. 

(6) The augmented strength of the concrete core, at or near failure, 

is nearly twice the strength of uncontained concrete. 

(7) The relationship between the longitudinal stress and the longi-

tudinal strain of the biaxially stressed steel is approximated 

by equation 3.11, and that of the triaxially stressed concrete 

by equation 3.12. 

(8) Equation 3.17 may be used as the failure criterion for the 

concrete core. 
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(9) 	The failure load may be up to 1.6 times the sum of the uni- 

axial.compressive strengths of the steel and the concrete, 

and can be predicted by equation 3.24. 
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CHAPTER 4 

MOMENT-CURVATURE TESTS  

4.1 	PURPOSE OF THE TESTS 

Under eccentric loading both the longitudinal and the hoop stress 

vary across the section, and no theory is available for the inelastic 

deformation of concrete under three unequal principal stresses. 	It is 

intended therefore to account for triaxial effects in eccentrically 

loaded columns by incorporating the results of experimentally determined 

moment-curvature relationships in the column analysis. 

4.2 	DESCRIPTION OF SPECIMENS 

35 - 6 5/8 in diameter specimens were tested. 	These were divided 

into 7 groups, A to G, each consisting of five specimens, numbered 1 to 5. 

(Table 4.1). 	The variable parameter between groups was the tube thickness, 

and the variable between specimens within the same group was the axial load. 

Columns D1 - D5 were tested empty. 

External dimensions of a typical specimen are shown in Figure 4.1. 

External diameter was measured at four points at 450  around the mid-height 

section, and the arithmetic mean is given in Table 4.1. 	Thicknesses were 

measured at eight points at 450  around the perimeter, and the mean value 
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is tabulated. 	The test specimen was 2 ft 3 in long. 	An 11 5/8 in long, 

8 3/8 in diameter and 1 1/4 in thick tube was welded on to each end of the 

test specimen. 	The external surface of the end pieces was machined after 

being welded to the test specimen. 

The total length of 4 ft 2 1/4 in was filled with concrete while the 

tube was held in a vertical position. 	Columns of the same group were 

filled with concrete on the same day; three columns were filled from one 

batch and the remaining two from a second batch of the same mix. 	A 1 1/4 in 

diameter poker vibrator was used. 

Before pouring concrete the bottom of the tube was clamped tightly on 

to a steel plate so that the concrete was flush with the steel surface. 	The 

same result was achieved at the top by finishing the hardened surface of 

concrete with Iplycol'. 

4.3 	CONCRETE NIX 

The concrete mix ratios by weight were: 

water/cement 	0.58 

aggregate/cement 	6.0 

coarse/fine aggregate 	1.5 

Rapid hardening Portland cement was used. 	Maximum size of the aggregate 

was 3/4 in. 

4.4 	AUXILIARY TESTS 

Two 6 in cubes were cast for each column, and cured under wet hessian 

for seven days. 	Then the cubes were stored in the ambient atmosphere of 

the laboratory until tested in accordance with BS 1881 (4°1)  on the same 
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day as the column. 	Strengths of the two cubes were within 7 per cent 

of each other for all the columns, except for F4 when they were 10 per 

cent apart. 	The average value is given in Table 4.1. 

Columns of the same group were cut from a single tube length from 

which three tensile coupons were also taken. 	The coupons were tested 

later, and the average values of the yield stress and Young's modulus are 

given in Table 4.1. 	The steel had a long yield plateau, the strain 

hardening strain being not less than 0.02. 

4.5 	INSTRUMENTATION 

Figure 4.2 shows the positions of deflexion clocks and strain gauges. 

Deflexion measurements were taken on the convex side so that local 

wrinkling of the tube wall, if any, would have a minimum effect on the 

readings. 	The dial gauges were attached to a fixed vertical axis, 

therefore the readings do not represent deflexions relative to the column 

ends, but give the displacements of points 1, 2 and 3 (Figure 4.2) 

relative to one another. 	However, this has no effect on the value of 

the curvature calculated from the deflexions. 	It may be mentioned here 

that points 1 and 3 represent the centre of rotation of the top and 

bottom bearing respectively, therefore very small movements were anti-

cipated at these two points. 

The strain gauges were rosette type, each gauge being 10 nut long. 

The steel surface was cleaned with emery and the gauges were stuck with 

a commercial glue called "Devcon 101". 
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4.6 	TEST RIG 

. 	 The test rig is shown in Figure 4.3. 	It consisted of: (A) a 500 

tonf lapped ram for applying a constant axial load, (B) two cylindrical 

oil-film bearings, (C) two moment arms into which the column ends were 

clamped, and, (D) two lapped rams, 10 tonf each, connected to the same 

pressure source but acting in opposite directions. 	The 10 tonf rams were 

connected to the moment arms through ball-seatings and were used to apply 

increasing moments, the distance between their centres being 4 ft 2 in. 

Two smaller cylindrical bearings rotating in a plane at right angles 

to the plane of bending were interposed between the column ends and the 

oil-film bearings (B). 	The smaller bearings, which are not visible in 

Figure 4.3, were used to accommodate any initial out-of-straightness that 

the specimen may have had. 	However, the smaller bearings were locked 

immediately before the test had started. 

The oil-film bearings (B) were practically frictionless; under a load 

of 300 tonf the bearings could be pushed sideways with one finger. 

Three amsler cabinets were used - one for ram (A), one for ram (D) 

and the third for maintaining oil pressure in the oil-film bearings (B). 

The structural frame of the rig consisted of 4 - 6 in diameter mild 

steel columns fixed at the bottom to the strong floor of the laboratory 

and at the top to a special box-girder. 	Friction clamps were used for 

all the eight connections. 

4.7 	EXPERIMENTAL PROCEDURE 

Contact between the end faces of the specimen.and the horizontal 

interior surface of clamps (C) was ensured by applying a small pressure 
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in ram (A). 	Pressure was next applied to the oil in the oil-film 

bearings (B), and then clamps (C) were tightly fixed. 	Initial gauge 

readings were taken at this stage. 	Oil pressure in ram (A) was then 

increased until the axial load reached a pre-assigned value P at which 

it was kept constant for the rest of the test. 

After the constant axial load was reached, a continuously increasing 

moment was applied to the ends of the specimen by increasing the pressure 

in jacks (D). This was continued until the moment arms (C) were about, 

to hit the 6 in diameter columns on one side of the structural frame. 

Then the pressure in rams (D) was released followed by release of pressure 

in ram (A). 	The test was complete. 	Strain and deflexion readings were 

taken throughout the test at fixed intervals of moment. 

For 26 specimens strains were recorded by a digital data logger 

(SOLARTRON). 	For the remaining 9 specimens, i.e. all specimens in groups 

A and G except G2, a PEEKEL voltmeter was used. 	Deflexions were recorded 

manually-for all the specimens. 

4.8 	EXPERIMENTAL RESULTS 

The value of moment at which the test was terminated is given in 

Table 4.1. 	Since the centres of rotation of the top and bottom bearings 

(B) were only 7.5 in away from the mid-height of the test specimen, the 

deflexion at the mid-•height. of the specimen was small. Thus the additional 

moment (= axial load x deflexion) was small compared to the moment applied 

by the jacks (= load in jacks (D) x 4 ft 2 in), and is neglected. 

Columns Al, Bl, Cl, Dl, El, Fl and G1 were tested under low axial 

loads, 3.9, 5.0, 6.0,.5.0, 5.0, 5.0 and 12.0 tonf. 	These were intended 
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to be tested under P = 0, however, a low value of P had to be maintained 

in order to secure the specimen in the top and bottom clamps. 	Successive 

columns in the same group were tested under increasing axial loads_ 

(Table 4.1). 

Strains of the order of 22,000 ILE were measured. 	Strains 6
1, 

and 

6
2 

in gauges 1 and 2 (Figure 4.2B) give the curvature 

61 - 62 Ps  = d  

Within the elastic limit
3 
 and 6

4 
are found to be nearly equal. 	However, 

they differ significantly in the post-elastic range, probably due to local 

weaknesses in the steel. 

The deflexion readings also give a value of curvature. 	From the  

first order difference formula (Figure 4.2A) 

81 - 282  + 83  
Pd 

7.5
2 

For small values, ps  and pd  show close agreement, but for higher 

values they differ appreciably in some tests. 	ps values are not available 

at high curvature because strain gauges 1 and 2 had failed by then. 	pd  is 

used in all the moment-curvature plots in Figures 4.4 to 4.10, except for 

A2 when ps  is plotted. 

Maximum curvature in Figures 4.4 to 4.10 is 10,000 lx.8/in. 	For the 

empty tube tests, group D, the moment-curvature curves show flat plateaus 

indicating that the stress-strain relationship for steel is trapezoidal. 

The falling part of the curve for D4 is ascribed to local wrinkling of the 

tube wall. 	Curves for the filled tubes, particularly those with high 

axial load, do not show a flat plateau because of the augmentation of the 

strength of concrete due to lateral containment. 



- 73 - 

Tests were terminated when the moment arm (C) (Figure 4.3) was 

about to touch the structural frame of the rig. 	At this stage the 

specimens were appreciably bent. 



- 74 - 

CHAPTER 5 

COMPARISON OF EXPERIMENTAL MOMENT-CURVATURE CHARACTERISTICS 

WITH CALCULATIONS BASED ON EQUIVALENT STRESS-STRAIN CURVES 

5.1 	INTRODUCTION 

Moment-load-curvature characteristics (referred to as M-P-p 

characteristics) have been experimentally determined for 35 circular 

sections of 6 5/8 in nominal diameter, comprising 7 thicknesses with 5 

levels of axial load for each thickness. 	Five of the columns, (Dl - D5), 

were tested empty, and the remainder were filled. 	For the filled columns, 

when the axial load is low the triaxial effects are insignificant. 	The 

effect of triaxial augmentation increases with increasing axial load, 

approaching the maximum augmentation in the limiting case of a concen-

trically-loaded stub column. 

In this chapter, a semi-rational method is presented for numerically 

simulating the experimental m-P-p characteritics on a digital computer, 

because a rigorous analysis is impracticable when triaxial effects are 

significant. 	Once the computer program is developed for simulating all 

the 35 experimental m-P-p curves, it may then be used for generating 

similar characteristics for any other section. 

The process of numerical simulation consists primarily of developing 

a computer program which may calculate the m-P-p characteristics of any 

tubular section, either filled or empty, for any given set of stress-strain 
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relationships for the steel and concrete. 	The computer program is then 

used in three stages with pre-assumed sets of stress-strain relationships 

for the materials, and the calculated M-P-p curves are compared with the 

experimental ones. 	The three stages are: 

Stage 1 - Empty tubes (D1 - D5): 	The uniaxial stress-strain 

relationship determined for the steel from tensile coupon tests, is used 

in the computer program. The computed M-P-p curves are then compared 

with the experimental ones. 

Stage 2 - Uniaxial M-P-p curves: The stress-strain relationships 

for the steel and concrete, which have been used to determine the uniaxial 

column failure loads, are fed into the computer program to generate uni-

axial M-P-p curves. These are then compared with the experimental curves 

to ascertain the level of the axial load above which triaxial effects must 

be included. 

Stage 3 - Triaxial M-P-p curves: 	An approximate calculation is 

carried out by using a set of equivalent stress-strain relationships, 

augmented for the concrete and reduced for the steel, and based on the 

results of axially-loaded stub column tests. 	The calculated M-P-p 

characteristics are compared with the experimental curves. 

5.2 	STRESS-STRAIN RELATIONSHIPS 

The available information on the relationships between the longitudinal 

stress and the longitudinal strain for the steel and the concrete is as 

follows: 

Steel: 	The tensile coupon tests showed a long yield plateau, the 

strain hardening strain being not less than 0.02. 	Therefore it is 
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reasonable to assume the uniaxial stress-strain relationship for the 

steel as trapezoidal (Relationship 1 in Figure 5.1). 

When the axial load is high the steel is stressed biaxially and it 

cannot sustain the uniaxial yield stress in the presence of a hoop tension. 

In the limiting case of a concentrically-loaded stub column, it has been 

shown that the relationship between the longitudinal stress and the longi-

tudinal strain in the biaxially stressed steel may be approximated as: 

a 
a = 0.95 	) 
	

when 	C 100 

1.063 (6/6 ) - 0.113 a =  	
when 

6 	1.0 
a 	1.417 (E/y)  - 0.417 	6 y  

(5.1) 

Equation 5.1 has been derived from experimental results of stub columns 

having d/t ratios between 17 and 37; it may be mentioned here that the 

35 m-P-p specimens have the same range of d/t. 	Equation 5.1 is plotted 

in Figure 5.1 and marked as relationship 2. 

Concrete: 	The uniaxial stress-strain relationship for concrete 

has already been defined in Chapter 2: 

_ a m 2.41(s/6
m) - 1.865(6/8m)

2 
+ 0.5(6/8m)

3 
- 0.045(E/6m)

4  

when —z 4.0 
m 

6 
= 0 	 when s — 	4.0 

m 

(5.2) . 

Equation 5.2 is plotted in Figure 5.2 and is marked as relationship 1. 

Relationship 1 for concrete, when used with a trapezoidal stress-

strain relationship for steel, would lead to M-P-p curves with a drooping 

part beyond the peak. 	However, the experimental N-P-p (Figures 4.4 to 

4.10) do not have any falling part even when the axial load is small. 



77 - 

When the axial load is small the experimental M-P-p curves show a nearly 

flat plateau. 	This suggests that the stress-strain relationship for the 

concrete should also have a flat plateau instead of a falling branch 

beyond the peak. 	Thus a modified uniaxial stress-strain relationship 

identical to equation 5.2 for 6/6m  — 1.0 and then having a flat plateau 

may be assumed. 	The modified stress-strain curve is shown as relation-

ship 2 in Figure 5.2. 

Whereas the peak stress in concrete under uniaxial compression is 

Um, it may be twice as strong when the radial stress is significant. 

It has been shown that the relationship between the longitudinal stress 

and the longitudinal strain in the concrete core of a stub column under 

increasing axial load may be approximated as: 

2.41(e ) 

o'111 	1 + 1.105 	) 

	 (5.3) 

m 

Equation 5.3 is plotted in Figure 5.2, and is marked as relationship 3. 

5.3 	COMPUTER PROGRAM 

A computer program has been written for calculating the M-P-p 

characteristics for circular or rectangular concrete filled sections. 

An empty tube is analysed by specifying a zero stress for all strains 

in concrete. 	The same program can generate M-P-p curves for reinforced 

concrete sections. 

The program is so written that it may take any stress-strain relation-

ships for the steel and concrete (different relationships in tension and 

compression) into account. 	Various stress-strain relationships are used 

in the program, and they are stated as and when they occur. 	For the time 
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being it may be assumed.that the stresses in the steel and concrete for 

a given strain are known. 

The assumptions on which the computation is based are: 

(1) :There is no slip between the steel and concrete, and plane 

sections remain plane after bending; 

(2) Stress-strain relationships are reversible and are identical 

in bending and compression; 

(3) For any strain distribution the steel and concrete in the 

section may be replaced by a sufficient number of strips 

parallel to the neutral axis, so that the error involved in 

assuming a uniform stress distribution across the strip is 

negligible. 

The computation of m-P-p characteristics consists basically of 

calculating the internal force and moment for a given strain distribution 

defined by the curvature p and the distance Y of the neutral axis from 

the centroidal axis. 	For given values of p and Y the strains at the 

centres of the strips are known, and the stresses may be calculated from 

known strain values by using the relevant stress-strain relationships. 

The stress at the centre of a strip is assumed to be uniform over the 

strip, whence the force in the strip and the moment of this force about 

the centroidal axis are calculated. 	The sum of the strip forces and 

moments gives the force and moment over the section for the given values 

of p and Y. 

The process of dividing the steel and the concrete into a number of 

strips, makes it possible to incorporate any stress-strain relationship 

in the relevant sub-routine of the computer program without involving 
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the main program. 	In the computation the steel is divided into 30 

strips and the concrete in 20; for the simple case of a square tube 

with trapezoidal stress-strain curves, this gives values of force and 

moment close to those obtained by rigorous integration. 

The computation consists of the following steps: 

(1) Select suitable values of the curvature p (40 - 10,000 )2E/in 

in increments of 40 J8/inis used); 

(2) Choose the value of the axial load P for which the moment-

curvature relationship is required; 

(3) Take the smallest value of p; 

(4) Select a trial value of the distance Y of the neutral axis 

from the centroidal axis; 

(5) Using the values of p and Y calculate the axial force P and 

the moment N; 

(6) If the calculated P is equal to the required P, proceed to 

step (7). 	Otherwise modify the value of Y and repeat step (5) 

until the calculated and required values of P are within a pre-

assigned tolerance; 

(7) Take successively increasing values of p and repeat steps (4) 

to (6) for each value of p. 

Steps (1) to (7) give the N-p relationship for one value of P; the 

process may be repeated for other values of P. 

The program is used in three stages to calculate m-P-p characteristics 

for: (1) empty tubes, (2) filled tubes with uniaxial stress-strain relation-

ships and (3) filled tubes with triaxial augmentation. 
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5.4 	EMPTY TUBE 

Five sections, D1 - D5, were tested empty under axial loads of 5, 

20, 40, 80 and 100 tonf. 	Measured dimensions and material properties 

are given in Table 4.1, and the squash load PL 	
A
s 
 U ) is given in 
y 

Table 5.1. 	It may be seen that the ratio P/P
L 

varies between 0.05 and 

0.95. 	Column D5 failed under 95 per cent of the calculated squash load 

before any moment was applied. 

The experimental m-P-p curves for the remaining 4 sections are 

compared in Figures 5.3 to 5.6 with the curves computed from a trape-

zoidal stress-strain realtionship for the steel; it may be seen that 

there is satisfactory agreement. 	The experimental curve of column D4 

shows a falling part because of local wrinkling of the tube walls under 

high strain. 

The comparison in Figures 5.3 to 5.6 confirms the trapezoidal stress-

strain relationship for the steel. 

505 	UNIAXIAL N-P-p RELATIONSHIP 

M-P-p characteristics calculated from uniaxial stress-strain 

relationships for the steel and concrete are compared with the experi-

mental characteristics in order to ascertain the level of axial load 

below which triaxial effects are insignificant. 

The stress-strain relationships fed into the computer program are 

marked relationship 1 for the steel in Figure 5.1 and relationship 1 for 

the concrete in Figure 5.2. 

In Table 5.1 the calculated uniaxial moments are compared with the 

test moments, and the axial load is given in the non-dimensional form 
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P/P 	where P
L 

is the nominal squash load (= As 
s y +Ac 

 g ). It may be 
m 

seen that P/P
L 

varies between 0.02 and 1.10, and that the agreement 

between the uniaxial moment and the test moment is satisfactory for low 

values of P/P . 	As the axial load increases, the triaxial effects 

become progressively higher. 

The experimental m-P-p curves are compared with the calculated 

uniaxial curves for the first two columns of. each series, i.e. for Al, 

A2, Bl, B2, ..., G1 and G2 which were tested under low axial loads 

(Figures 5.7 to 5.18). 	There is excellent agreement between the 

experimental and the calculated curve up to the peak of the calculated 

curve. 	Beyond the peak the calculated curve has a falling part whereas 

the experimental curve has either a flat plateau or a gentle upward 

slope after the initial steep rise. 

The above comparison suggests that even at low values of the axial 

load the stress-strain relationship of the concrete core does not have 

a falling part. 	The uniaxial stress-strain curve for concrete is, 

therefore, modified by adding a flat plateau at the peak instead of a 

falling part (called relationship 2 in Figure 5.2). 	This modified 

uniaxial stress-strain curve for the concrete is then used together with 

the trapezoidal curve for the steel, and m-P-p characteristics are 

calculated; these are called the modified uniaxial m-P-p characteristics. 

The modified uniaxial m-P-p characteristics are plotted in Figures 

5.7 to 5.18. for columns Al, A2, Bl, B2, ..., G1 and G2. 	It may be seen 

that these curves are in satisfactory agreement with the experimental 

curves for all values of curvature. 	For these 12 columns the uniaxial 

m-P-p curves have nearly the same peak value of the moment as the modified 

uniaxial m-P-p curves, this means that column failure loads calculated 

from these two N-P-p curves will be nearly equal while P has a low value. 
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For the 12 columns, Al, A2, Bl, B2, ..., Gl Cland 02, the ratio P/PL  

varies between 0.02 and 0.32, and the modified uniaxial M-P-p curves are 

in satisfactory agreement with the experimental curves. 	As the ratio 

P/P
L 

becomes greater the difference between the experimental and modified 

uniaxial M-P-p curves becomes larger; this may be seen from Figures 5.19 

to 5.21 where M-P-p curves are plotted for columns E3, E4 and E5 for 

which P/P
L 

varies between 0.47 and 0.87. 

It is necessary to find the value of P/PL  up to which the modified 

uniaxial M-P-p curves are acceptable. This is done by comparing the 

maximum values of the moment for the experimental and the calculated 

14-P-p curves. 	Figure 5.23 shows a plot of the ratio (maximum experimental 

moment/maximum uniaxial moment) against P/PL, and Figure 5.24 shows a 

similar plot using the modified uniaxial moments. It may be inferred 

that the modified uniaxial M-P-p curves can be used for all values of 

P/PL  up to 0.4. 

In conclusion, M-P-p characteristics calculated from a trapezoidal 

stress-strain relationship for the steel, and a modified uniaxial stress-

strain relationship for the concrete (shown as relationship 2 in Figure 

5.2) show close agreement with experimental M-P-p characteristics for 

all values of P/P
L 

up to 0.4. 	As the value of P/P
L 

increases the 

difference between the calculated and the experimental M-P-p curves 

becomes greater because of increasing triaxial effects. 	Therefore, a 

different set of stress-strain relationships is necessary for simulating 

the experimental M-P-p curves when P/P
L 

is greater.than 0.4; this is done 

in the next section. 

(5.1,.5.2 and 5.3) 
Furlong 	tested 22 circular and 17 square sections, 

under various amounts of axial loads, which were held constant while 

moments were increased until the columns ceased to sustain the axial loads. 
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The m-P-p curves are not given, instead the axial load and the moment 

at failure are tabulated. 	The ratio P/P
L 

varies between 0.0 and 0.86, • 

25 tests having P/P
L 

less than 0.50. 	The experimental failure moments 

are compared in Table 5.2 with calculated uniaxial moments. 	The pattern 

of increasing triaxial effects with increasing P/PL 
is not as consistent 

as in the Imperial College tests, but the general conclusions drawn from 

the Imperial College tests are sustained. 

5.6 	TRIAXIAL M-P-p RELATIONSHIP 

A set of stress-strain relationships for the steel and the concrete 

have to be assumed for generating m-P-p curves when P/PL is greater than 

0.4, i.e. triaxial effects are significant. 

The available information on the stress-strain relationships for 

the steel and the concrete has been discussed in Section 5.2. 	It has 

also been shown that for P/P
L 	

0.4 stress-strain relationship 1 for 

the steel (Figure 5.1) and relationship 2 for the concrete (Figure 5.2) 

are applicable. 	As P/P
L 

increases the triaxial effects become pro- 

gressively higher, attaining the maximum triaxial effects in a 

concentrically-loaded stub column. 	For a concentrically-loaded stub 

column the equivalent stress-strain relationship for the steel is given 

by equation 5.1 (relationship 2, Figure 5.1) and for the concrete by 

equation 5.3 (relationship 3, Figure 5.2). 	Using these two stress- 

Strain relationships the failure load of a stub column under pure 

compression may be calculated as: 

Pu = 0.75 As y  U + 2.18 Ac m U 
	 (5.4) 
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Equation 5.4 gives an approximate estimate of the failure load; a more 

exact estimate is given by equation 3.24. 

The stress-strain relationships for the steel and concrete are 

known for the two limiting cases, namely, (i) when P = 0.4 P
L 

and an 

increasing moment is applied, and (ii) when there is no moment and P is 

increased until the column fails under a load P
u
. 	For all intermediate 

cases, as P varies between 0.4 P
L 

and P
u 

a linear interpolation for 

stress between the two limiting stress-strain curves may be adopted in 

the calculation of m-P-p relationships. 	This assumption is conjectural, 

but it is seen later that it leads to m-P-p curves in good agreement with 

the experimental curves. 

The stress-strain relationships fed into the computer program for 

simulating experimental m-P-p curves when P is greater than 0.4 P
L' 

are 

summarised below: 

(1) 	For the steel 

(a) in compression 

A linear interpolation for stress between relationships 1 and 

2 (Figure 5.1) as P varies between 0.4 P
L 

and Pu 

(b) in tension - 

Relationship 1, i.e. a trapezoidal stress-strain curve, for 

all values of P. 	(When the steel is under a state of biaxial 

yield, the presence of hoop tension ( C U ) can only increase 

the longitudinal tension beyond the yield stress. 	Therefore, 

it is safe to assume the full uniaxial stress-strain curve 

for the steel in tension, even when the axial load is high and 

triaxial effects are significant) 
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(2) 	For the concrete 

(a) in compression 

A linear interpolation for stress between relationships 2 

and 3 (Figure 5.2) as P varies between 0.4 P
L 

and P
u 

(b) in tension 

Zero stress for all strains. 

The above set of stress-strain relationships are fed into the computer 

and the itriaxiall m-P-p characteristics are generated for the last three 

columns of each series, i.e. A3, A4, A5, B3, B4, B5, .., G3, G4 and G5 

which have P/PL  varying between 0.4 and 1.10. The calculated triaxial 

curves are compared with the experimental m-p-p curves in Figures 5.25 

to 5.41. 	The uniaxial m-p-p curves are also plotted on the same Figures 

to show the extent of triaxial augmentation. No comparison can be made 

for column B5 which failed under an axial load of 170 tonf before any 

moment was applied. 	For B5 the approximate stub column failure load 

P
u 

is 215 tonf; the reason for its premature failure cannot be traced. 

From the comparison for the 17 columns in Figures 5.25 to 5.41 it 

may be inferred that the simulated triaxial N-P-p curves are in good 

agreement with the experimental curves. 

5.7 • 	CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK 

A method is now available for simulating the experimental m-P-p 

characteristics on a digital computer. 	The method may be used for all 

circular sections with the d/t ratios varying between 17 and 37. 

The reported tests cover a range of d/t between 17 and 37, whereas 

the manufactured tubes have a d/t range of 15 to 52. 	Therefore some 
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further tests with thin tubes are necessary. 

Although the method is applicable to all values of the axial load 

up to Pu, test data are not available for axial loads greater than the 

nominal squash load, i.e. PLcP C Pu. When further tests are done 

the complete set of m-P-p curves will be available and failure loads 

may then be predicted for all eccentrically-loaded circular columns 

taking triaxial effects into account; in the meantime, it will be safe 

to analyse those eccentrically-loaded columns which have maximum loads 

less than P L. 	The method of predicting the failure load for a given 

length and eccentricity from pre-determined 14.-P-p curves for the section 

is well known (5.4),  however the analysis is not included in this thesis. 

A similar set of tests on square and rectangular tubes seems to be 

necessary. 



- 87 - 

BIBLIOGRAPHY 

CHAPTER 1  

1.1 CHATEAU S. du 

Tubular structures for the roofing of sports buildings. 

Paper presented at the third International Conference on Building 

with Hollow Sections, organised by CIDECT at Essen, 6 May 1969. 

1.2 MAKOWSKI Z. S. 

The Boeing 747 hangar at London Airport - analysis and design. 

Paper presented at the third International Conference on Building 

with Hollow Sections, organised by CIDECT at Essen, 6 May 1969. 

1.3 QUATTORDIO G. 

Selected applications in the field of tubular structures in Italy, 

port installations, domes, bridges. 

Paper presented at the third International Conference on Building 

with Hollow Sections, organised by CIDECT at Essen, 6 May 1969. 

1.4 EGA R. 

Selected applications in the field of tubular structures in Belgium, 

masts, towers, road signal gantries. 

Paper presented at the third International Conference on Building 

with Hollow Sections, organised by CIDECT at Essen, 6 May 1969. 

1.5 GOFFAUX R. 

Composite construction in the tour madou, Brussels. 

Tubular Structures 4, September 1965. 

1.6 KERENSKY 0. A. and DALLARD N. J. 

The four-level interchange between M4 and M5 motorways at Almondsbury. 

Proc., I.C.E., July 1968. 



- 88 - 

1.7 CLIFT A. 

The protection of tubular structures against corrosion. 

Tubular Structures 7, February 1967. 

1.8 BETTZIECHE P. 

The structural design of joints in rectangular hollow sections. 

Paper presented at the third International Conference on Tubular 

Structures, organised by CIDECT, Essen, 6 May 1969. 

1.9 BONDALE D. S. and CLARK P. J. 

Composite construction in the Almondsbury interchange. 

B.C.S.A. Conference, September 1966. 

1.10 CODE OF PRACTICE 

Composite Columns - CP 117 (Part 3) 	Under preparation. 

1.11 BLEICH F. 

Buckling strength of metal structures. 

McGraw Hill Book Co., Inc., 1952. 

1.12 NEOGI P. K. 

Concrete-filled tubular columns. 

Ph.D. thesis, University of London, 1967. 

1.13 NEOGI P. K., SEN H. K. and CHAPMAN J. C. 

Concrete-filled tubular steel columns under eccentric loading. 

Journ., Inst. of Struct. Engrs., May 1969. 

1.14 KLOPPEL K. and GODER W. 

Collapse load tests on concrete-filled steel tubes and derivation 

of a design formula. 

Der Stahlbau, Vol. 26, January and February, 1957. 



- 89 - 

1.15 JANSS J. 

Composite steel-concrete construction. 	Part 3. 	Tests on 

concrete-filled tubular columns. 

Report published by the Centre of Scientific Research and Industrial 

Techniques of Metal Fabrication (CRIF), Brussels. 

1.16 KATO B. and KANATANI H. 

Experimental studies on concrete-filled steel tubular columns. 

Steel Structures Laboratory Report, Department of Architecture, 

Faculty of Engineering, Tokio University, October 1966. 

1.17 GARDNER N. J. and JACOBSON E. R. 

Structural behaviour of concrete-filled steel tubes. 

AC I, Journal, July 1967, pp 404. 

1.18 GARDNER N. J. 

Use of spiral welded steel tubes in pipe columns. 

AC I, Journal, November 1968. 

1.19 GUIAUX P. and DEHOUSSE N. M. 

Tests on 22 eccentrically loaded square and rectangular concrete-

filled tubular columns. 

Test Report No. R 766, Laboratoires Dtessais des Constructions 

du Genie Civil et D'Hydraulique Fluviale, University of Liege, 

Belgium, September 1968. 

1.20 BASU A. K. 

Computation of failure loads of composite columns. 

Journal, Inst. of Civil Engineers, Proc. Vol. 36, March, 1967. 



- 90 - 

CHAPTER 2 

2.1 NEOGI P. K., SEN H. K. and CHAPMAN J.C. 

Concrete-filled tubular steel columns under eccentric loading. 

Journal, Institution of Structural Engineers, May 1969. 

2.2 GUIAUX P. and DEHOUSSE N. M. 

Tests on 22 eccentrically-loaded square and rectangular concrete-

filled tubular columns. 

Test Report No. R766, Laboratoires D'essais des Constructions du 

Genie Civil et D'Hydraulique Fluviale, Universite de Liege, 

September 1968. 

2.3 KERENSKY O. A. and DALLARD N. J. 

The four-level interchange between M4 and M5 motorways at Almondsbury. 

Proc., Institution of Civil Engineers, March 1967. 

2.4 BASU A. K. 

Computation of failure loads of composite columns. 

Proc., Institution of Civil Engineers, March 1967. 

2.5 HOGNESTAD E. 

A study of combined bending and axial load in reinforced concrete 

members. 

Univ. of Illinois, Bulletin No. 399, Nov 1951. 

2.6 BARNARD P. R. 

On the collapse load of composite beams. 

Ph. D. thesis, Univ. of Cambridge, Sept 1963. 

2.7 SCARBOROUGH J. B. 

Numerical Mathematical Analysis. 

• The John.Hopkins Press, Baltimore, Sixth edition, 1966. 



- 91 - 

2.8 FURLONG R. W. 

Strength of steel-encased concrete beam-columns. 

ASCE, Journ. of the Struct. Div., Oct 1967. 

2.9 COLUMN RESEARCH COUNCIL 

Guide to design criteria for metal compression members. 

Edited by B. G. Johnston. 	Second Edition. 	John Wiley and Sons, 

Inc., 1966. 

2.10 BRESLER B. 

Design criteria for reinforced columns under axial load and 

biaxial bending. 

ACI, Journal, Nov 1960. 

2.11 RUSSIAN SPECIFICATION 

Standards and specifications for the design of concrete and 

reinforced concrete structures. 

Moscow 1955. 

2.12 BASH A. K. and SOMMERVILLE W. 

Derivation of formulae for the design of rectangular composite 

columns. 

Institution of Civil Engrs., Paper No. 72065, to be published. 

2.13 BRITISH STANDARD 

	

Specification for structural steel sections. 	Part 2 - Hot 

rolled hollow sections. 

BS 4 (Part 2) - 1965 - pp 7. 

2.14 BRITISH STANDARD 

Specification for the use of structural steel in building. 

BS 449, 1959 (reset and reprinted 1965). 



- 92 - 

2.15 MAUCH S. P. 

Effect of creep and shrinkage on the capacity of concrete columns.: 

Symposium on R. C. Columns, SP-13, ACI, Detroit, 1966. 

2.16 MANUEL R. F. 	and MACGREGOR J. G. 

Analysis of restrained reinforced concrete columns under sustained 

load. 

ACI, Journ. 1967, Proc. Vol. 64, No. 1. 

2.17 BROMS B. and VIEST I. M. 

Long reinforced concrete columns. 

Trans., ASCE, Vol. 126, Part III. 

2.18 RUSCH H. 

Researches toward a general flexural theory for structural concrete. 

ACI, Journ. 1960, Proc. Vol. 57, No. 1. 

2.19 SEN H. K. and CHAPMAN J. C. 

Ultimate load tables for concrete-filled tubular steel columns 

(circular, square and rectangular columns). 

To be published by the Construction Industry Research and 

Information Association (CIRIA), Technical Note 9. 

2.20 BRITISH STANDARD 

Specification for weldable steel. 

BS 4360, 1968. 

2.21 CODE OF PRACTICE 

CP 117 (Part 3): 	Composite construction in structural steel and 

concrete 	colunuLs in building and in bridges. 

2.22 BRITISH STANDARD 

New specification for bridges (under preparation) which will 

replace BS 153. 



- 93 - 

2.23 CODE OF PRACTICE 

Draft Unified Code of Practice 

2.24 CODE OF PRACTICE 

The structural use of reinforced concrete in buildings. 

CP 114, 1957. 

2.25 CIRIA STUDY COMMITTEE ON STRUCTURAL SAFETY 

Guidance for the drafting of Codes of Practice for structural 

safety. 

Construction Industry Research and Information Association (CIRIA), 

Technical Note 2, August 1968. 

2.26 TIMOSHENKO S. P. and GERE J. M. 

Theory of elastic stability. 

Second International Student Edition - pp 15. 	McGraw Hill Book 

Company, Inc. 

2.27 BONDALE D.S. and CLARK P. J. 

Composite construction in the Almondsbury Interchange. 

B.C.S.A. Conference, September 1966. 

CHAPTER 3 

3.1 NEVILLE A. M. 

Properties of concrete. 

Sir Isaac Pitman and Sons Ltd, 1963. 

3.2 RICHART R. E., BRANDTZAEG A. and BROWN R. L. 

The failure of plain and spirally reinforced concrete in compression. 

Illinois Univ., Bull. No. 190, April 2, 1929. 



- 94 - 

3.3 NEOGI P. K. 

Concrete-filled tubular columns. 

Ph. D. thesis, Univ. of London, 1967. 

3.4 GARDNER N. J. and JACOBSON E. R. 

Structural behaviour of concrete-filled steel tubes. 

Journal, ACI, July 1967. 

3.5 RICHART F. E., BRANDTZAEG A. and BROWN R. L. 

A study of the failure of concrete under combined compressive stresses. 

Illinois Univ., Bull. No. 185, November 20, 1928. 

3.6 GOODIER J. N. and HODGE P. G. (JR). 

Elasticity and Plasticity. 

Written as the first report on Surveys in Applied Mathematics. 

John Wiley and Sons, Inc., 1958. 

3.7 MURPHY G. 

Advanced mechanics of materials. 

McGraw Hill Book Company, Inc., 1946. 	Chapter IV, articles 39 and 40. 

3.8 SWAMY N. 

The strength of plain, reinforced and prestressed concrete under 

combined stresses. 

The Indian Concrete Journal, Vol. 35, No. 10, October 1961, 

pp 368 - 374. 

3.9 NEWMAN K. 

The structure and engineering properties of concrete. 

International Symposium on the Theory of Arch Dams held at 

Southampton University, April 1964, pp 683 - 712. 



- 95 

3.10 HANNANT D. J. and FREDERICK C. O. 

Failure criteria for concrete in compression. 

Magazine of Concrete Research, Vol. 20, No. 64, September 1968. 

3.11 GARDNER N. J. 

Triaxial behaviour of concrete. 

ACI, Journ., No. 2, Proc. Vol. 66, February 1969. 

3.12 GARDNER N. J. 

Use of spiral welded steel tubes in pipe columns. 

ACI, Journ., No. 11, Proc. Vol. 65, November 1968. 

CHAPTER 4 

4.1 BRITISH STANDARD 

Method for testing concrete. 

BS 1881 - 1952. 

CHAPTER 5 

5.1 FURLONG R. W. 

Strength of steel-encased concrete beam columns. 

Journ. of the Struct. Div., A.S.Ca., Proc., Jan. 1968. 

5.2 FURLONG R. W. 

Design of steel-encased concrete beam columns. 

Journ. of the Struct. Div., A.S.C.E., Proc., Jan. 1968. 

5.3 FURLONG R. W. 

Personal communication. 



- 96 - 

5.4 BASU A. K. 

Computation of failure loads of composite columns. 

Proc., Institution of Civil Engineers, March 1967. 



- 97 - 

APPENDIX A 

YIELD CONDITION AND FLOW LAW FOR PLASTIC SOLIDS  

The generalised yield condition and flow law for perfectly plastic 

solids were established between 1950 and 1956, and have been summarised 

by Hodge 
(3.6). 
	This appendix follows Hodge's summary. 

When two or more independent stress components exist at a point, the 

elastic range cannot be represented by any finite number of values of the 

stress components; a functional representation is needed. 	Therefore it 

is assumed that there exists some function f which depends generally 

upon the stress components and the previous stress history, such that 

when f is less than some pre-assigned number the material is elastic. 

For a perfectly plastic solid, this yield function is, by definition, 

independent of the stress history and depends only upon the stress. 

Therefore, defining f in a suitably normalized fashion, the condition 

for elastic behaviour may be written as: 

f (Qi, Q2, 	, Qn) 

where Q1, Q2, 	Qn  are the generalised stress components. 

Further it follows from the definition of perfect plasticity that f 

can never be greater than 1. 	Since f does not change with stress history, 

it is evident that plastic flow can take place only when f is and remains 

at unity. This may be presented as follows: 
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Plastic: 	f = 1 	and 	f = 0 
(A.1) 

Elastic: 	f C 1 	or 	f <-4: 0 

where dots indicate differentiation with respect to time. 

These conditions may be conveniently visualized in a stress space 

whose co-ordinates are the variables Q
i—The equation f = 1 then 

represents the yield surface and f 	1 is that side of the surface 

toward the origin. 

Before proceeding further to establish a relation between plastic 

strain components and stress components, it is necessary to state 

Drucker's 
(3.6) 

 postulate of plastic irreversibility: Let a perfectly 

plastic solid be in equilibrium under an arbitrary set of body forces 

and surface tractions. 	Now, let some external agency apply an additional 

load to the body and then remove it. Then the work done by the external 

agency during the loading is positive, and the work done by the external 

agency during the complete cycle of loading and unloading is non-negative. 

This requirement was first formulated by Drucker (1950 - 52) and is 

essentially a statement of plastic irreversibility. 	In other words, 

energy put into a plastic deformation can never be recovered. 

The consequences of this postulate may now be discussed in the 

geometrical terminology of Figure 3.2. 	Let the equilibrium stress point 

under a set of body forces and surface tractions be at Q
art 
(inside or on 

the yield surface) at a time t = 0. 	Let the external agency be such as 

to move it first to point Q at a time t and then along the yield surface 

to point Q + 8Q at time t 	St. 	Removal of this agency then returns the 

71- 
point to Q at a time t*. 	DenotingthecomponentsofQby. QI  and the 

corresponding strains by., etc., the total work done during the cycle 

may be written as 
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t 

dt + 

t 

or 8wT 

+ St 

Qi dt 
a 

8 we Lim Ste  = (Qi (rid Pi 
St 	0 

(A.8) 
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+ 8t 

Qi  qi  dt 	Qi  qi  dt + dt 
Qi qi 

t 	 t + St 

(A.2)  

Now, quite generally the total strain rates may be written as the sum 

of an elastic and a plastic part 

	

q. 	e. 4- p. 

	

1 	1 	1 
(A.3)  

Then, since plastic straining can occur only from t to t + St, equation 

A.2 becomes: 

ft + 8t 

8 WT 	1 
Qi  e. dt + 	Qi  (ei  + pi)dt 

± f 

Qi  ei  dt 

t + a 

S WT 	
,h 

Here, the symbol 
	

refers to integration about the complete path, 

returning to the point Q . 	However, since by definition this integral 

is elastic, the net work done in a closed cycle is zero, and equation A05 

reduces to 

t + St 

8 wT 	Qi  Pi  dt 	 (A.6) 

= 

Therefore, work done by the external agency alone is 

t + St 

8 We 
= 	(Qi 	Qi) pi  dt 
	 (A.7) 

whence 
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Therefore the postulate that work done by an external agency during a 

complete cycle of.loading and unloading be non-negative amounts to: 

* 	• 
(Qi  - Qi) Pi  

Equation A.9 imposes a very severe restriction on the allowable shapes of 

the yield surface f = 1. 	Since the left hand side is a vector product, 

condition A.9 can be satisfied only if Cos° >•0 or 0 	where 9 

istheanglebetweenvector andvector pi. 	That is Pi  must 

makeanon-obtuseanglewitheveryvector. (Q1  -Q.
4  
), and this must be 

)4. 
true for any Q in or on the yield surface. 	Therefore, if a plane is 

drawn through Q perpendicular to Pi, then all admissible points Q must 

lie on or to one side of this plane. 	This means that the yield surface 

f = 1 must be convex. 

Reversing the above argument, p
i 
must make a non-obtuse angle with 

every vector(Qi 
 
. - Q.) 	At a point on the surface with a uniquely 

defined normal, this can only be satisfied if Pi  is in the direction of 

the normal. Thus 

of 
pi  = 

DQi  

where 	is an undetermined but non-negative scalar quantity. 

(A.10) 

In conclusion, given the convex function f, the behaviour of the 

perfectly plastic material is governed by equation A.3 relating elastic 

and plastic strains, A.1 stating the condition for elastic or plastic 

behaviour, and A.10 giving the plastic flow law. 

(A.9) 
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APPENDIX B 

POST-ELASTIC BIAXIAL STRESS-STRAIN RELATIONSHIP  

The generalised yield condition and flow law, stated in Appendix A, 

are applied here to the particular case of a tubular column. 	An element 

of steel in the tube is subjected to a longitudinal compression UsL , a 

hoop stress 6 1-1 and a radial pressure UsR (Figure 3.1). 	asR  is small 

compared to the first two stresses, and is neglected; consequently, the 

problem is reduced to a biaxial stress condition. 

When the steel stress-point is on the yield-ellipse defined by 

equation 3.4, let the stresses be Usl,  and asii. 	At this instant let 

there be a small increment of load on the filled tube for which the 

experimentally determined strain increments are 88
sL 

and EE:sH 	With the 

small increment of load the individual values of the stresses change 

while the stress--point moves to a new position on the yield ellipse. 

The problem is to calculate the stress increments 
80.sL 

and  SO
SH 

from 

the known strain increments Ec
sL 

and
sH 

From equation A.3 it follows that the two strain increments may be 

written as the sum of an elastic and a plastic component: 

Sc sL 	Erse 	+ 8813  
sL 

= 8se  + 86P sH 	sH 

(B.1)  

(B.2)  
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From flow law A.10 it follows that 

8EP
sL 	at./ a sL  

80)
sH 	aft 3 sH 

where f is the yield surface given by equation 3.4 in our case. 	Hence 

86P  sL 	
2 

GSL 
 - 

GSH y (say) 	(B.3) 
86P 	2 	- 
sH 	CISH 	sL 

Taking the partial derivatives of equation 3.4 with respect to G sL 

and asH and adding them together 

2U - 5 ?Cl - 5 	ao-sH 
=. 

sL GsL sH sL sL GsH 

or 

	

CYsL 	sL 	2- 	a 
sH 	1 

	

aGsH 	
2 0" - sL 	sH 	'Y 

(say) 	(B.4) 

Since a's1., and GSH are known, y and a may be calculated from equations 

B.3 and B.4. 

,_e 
For the elastic components- OEsL 

and 86
sH 

the following relations 

are applicable 

E
s 

8 seL 	8 CrsL 	
v
s 

8a
sH 

Substituting equation B.4 in B.5 and rearranging 

a 	vs -3 sL  
sH 	

E
s 

(B.6) 
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Similarly, 

   

 

6sH 	1 - vs a (B.7)  
.?, 01 sH  	 E

s 

It follows from equation B.1 that 

. 
P  = 86

sL 	
86

SEsL e  
sL 

or 

     

e 
DEP  sL Z 6sL  Z 6sL _ 
D O.sH 	D 5sH 	Do.sH 

Substituting equation B.6 in B.8 

(B.8)  

sL 

0sH 

6sL 

▪ crsH 

a - v
s (B.9) Es 

Similarly, 

	

2) SP
sH 	6sH  	1 - vs 

 a 

-  

	

2 sH - a H 	E
s 

Dividing B.9 by B.10 

EP  

81

E

5sH 
88

sL 	(a vs)  

	

sL 	s  

2) EP sH (1 

	

sH 	88
sH 

	vs a) 

Substituting equation B.3 in B.11, noting a = 

(B.10)  

(B.11)  

1 
and rearranging 

sH 

E as T 	y 86 II) Es 
	s_  
a - 2v

s Y 
(B.12) 

From equation B.4 it follows that 

80"
sL 	a 8,5

sll 
	 (B.13) 

Equations B.12 and B.13 give the increments in stresses for small 

increments of strain when the steel is in a state of yield under stresses 

0 	and 6
sH

• When 	 L 85 	and 80-SH 
are added 

s 
respectively to 5s1,  and Usw 



- 104 - 

a new pair of values is obtained for o'sL  and 0"sll. 
	This pair of values 

also lies on the yield-ellipse providing 86sL 
and SE

sH 
are sufficiently 

small. 
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APPENDIX C 

FAILURE CRITERIA FOR CONCRETE 

Surveys of failure criteria for concrete under multiaxial stresses 

have been compiled by several authors (3.5, 3.8 and 3.9) who have pointed 

out the limitations of various theories. 

The concrete core in a filled tube is stressed by triaxial com- 

pression where a1-2--=.0"
2 
=

3 
(6

1 
= 0cL  and 02   = 	= 0). 	Fortunately, 

reliable experimental evidence is available for this state of stress in 

concrete; the most comprehensive set of results was published by Richart 

et al. 
(3.5), 

 who tested 208 concrete cylinders under various combinations 

of axial and radial compression. 	Series 3A consisted of 64 - 4 in x 8 in 

cylinders tested under a state of stress similar to that acting on the 

core of filled tubes, i. .
1 	

6
2 
=

3
. 	There is, however, one difference 

in the stress-history of these tests and a filled tube. 	In a filled tube 

62 CY3 	R)  develops simultaneously with Gi (= 66,), whereas in series 

3A,62  = 03  was first raised to the pre-determined value and then 61 was 

applied in increments to failure. 

In series 3A
2 
= 0

3 
varied between 180 and 4090 lbf/in2  and 61 

between 2840 and 19000 lbf/in
2
. 	64 cylinders were made of three different 

mixes with f = 1050, 2575 and 3660 lbf/in
2
. 

cy 

were reached: 

The following conclusions 
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(i) The presence of lateral pressure adds to the strength of the 

specimen an amount, in general 4.1 times the magnitude of the lateral 

pressure, i.e., at failure 

61 	
= f 

cy 
 + 4.1 62 
	 (C.1) 

At low lateral pressure the overall expression C.1 is conservative. 

For 6
2 
= 6

3 	
1000 lbf/in

2
, the following expression is more accurate: 

	

1 = f
cy 
 + 5.1 0

2 	
(C.2) 

However, at high values of 62  = 0-3  a better fit is given by 

61 
	cy 

f 	3.5 6
2 

(c.3) 

(ii) Laterally contained concrete has high ductility. 	The longi-

tudinal strain at maximum load ranged from 5000 to 70,000 fLE. 

It may be noted here that equations C.1, C.2 and C.3 can be related 

to Coulomb's "internal friction theory", i.e., for each individual element 

the resistance to sliding T is taken to be made up of two parts, one term 

`Co , representing the shear strength of the material, and the second, C5, 

a constant times the normal stress, representing the frictional resistance: 

T = T
o + CO' 
	 (C.4) 

If Mohr's circles are plotted for equation C.1, the resulting Mohr-

envelope is a straight line of the form of equation C.4: 

T = To 	0.78 6 
	 (C.5) 

where T
o 
= 0.25 f cy 

Equation C.5 may be regarded as a criterion for sliding failure. 
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Richart et al. 
(3.2) 

 tested concrete columns with spiral reinforce-

ment under axial loading and got a confirmation of equation C.1; in this 

case, 62  = 63  developed simultaneously with 61  as in the case of a stub 

column. 

Hannant and Frederick 
(3.10)

have recently compiled most available 

data for concrete under triaxial compression and recommended a two stage 

minimum strength line of the form of equations C.1 to C.3: 

1 = f + 402 ' 	
for 

cy 	
01 	4f 

cy 

(c.6) 
= 1.75f + 30 

' 
for 4f 	6

1 1 	cy 	cy 	cy 

Gardner 
(3.11)

tested 28 cylinders under triaxial compression and 

found agreement with equation C.1 given by Richart. 



Section 
(Axis of 
bending) 

Speci- 
men 

d 
Depth 

cm 

b 
Breadth 

cm 

t 
Thick- 
ness 

cm 

1 
Length 
(hinge to 
hinge) 

cm 

1/d 

Yoc 
Initial 

e 
eccentri- 

central 
deflec- 

city 
tion 

cm 	cm 

- 
e1-°.9y

oc 

cm 

CC 
Y 

yield 
stress 
tonnes 

f 
cu 

strengt
h 

Tonnes/cm
2 

20 cm cube  

P
T 

Experi-
mental 
failure 
load 
Tonnes 

P
m 

Calculated 
failure 
load 

Tonnes 

, 	/, 
PT/Pm 

Mode of 
failure 

cm
2 

Rectangu- Al 20.14 10.16 0.575 366.5 18.2 0.0 0.36 0.324 4.4815 0.435 108.0 176.2 1.050 A 

lar (102.8)4 

Major- A2 20.44 10.24 0.585 366.5 17.9 2.03 0.25 2.255 0.435 100.7 126.1 0.939 A 

axis (107.2) 

(Filled) A3 20.39 10.15 0.565 367.7 18.0 4.06 0.15 4.195 0.435 97.7 97.8 0.999 A 
(102.1) 

A4 20.44 10.22 0.530 367.7 18.0 8.12 0.18 8.282 0.435 72.7 68.8 1.057 A 
(99.6) 

A5 20.46 10.25 0.570 367.7 18.0 12.18 0.17 12.333 0.535 >49.0 60.8 B 
(109.4) 

Rectangu- BE1 20.38 10.25 0.575 72.0 7.0 6.10 0.0 6.100 4.4815 0.0 56.7 62.4 0.909 C 

lar BE2 20.39 10.06 0.545 122.7 12.2 0.05 6.145 0.0 47.7 54.1 0.882 C 

Minor- BE3 20.49 10.23 0.550 183.6 17.9 0.04 6.136 0.0 45.2 50.6 0.893 C 

axis BE4 20.34 10.25 0.580 244.6 23.9 0.10 6.190 0.0 47.2 47.4 0.996 A 

(Empty) BE5 20.42 10.18 0.560 305.6 30.0 0.27 6.343 0.0 40.7 40.3 1.010 A 

BE6 20.48 10.27 0.560 366.6 35.7 0.06 6.154 0.0 38.2  36.8 1.038 A 

Rectangu- BF1 20.44 10.19 0.520 72.0 7.1 6.10 0.0 6.100 4.4815 0.439 76.7 76.0 1.009 A 

lar BF2 20.48 10.24 0.540 122.6 12.0 0.04 6.136 0.443 76.7 73.1 1.049 A 

Minor- BF3 20.40 10.17 0.505 183.7 18.1 0.06 6.154 0.443 65.2 61.5 1.060 A 

axis BF4 20.36 10.22 0.570 244.5 23.9 0.10 6.190 0.439 60.7 58.6 1.036 A 

(Filled) BF5 20.41 10.13 0.540 305.6 30.2 0.10 6.190 0.443 49.5 48.7 1.016 A 

BF6 20.37 10.23 0.560 366.6 35.8 0.13 6.217 0.443 45.4 43.9 1.034 A 

Square Cl 20.34 20.25 0.630 122.7 6.1 8.12 0.06 8.174 4.2288 0.484 163.7 160.6 1.019 C 

C2 20.29 20.30 0.635 244.0 12.0 0.15 8.255 0.484 149.7 145.2 1.031 A 

(Filled) C3 20.26 20.34 0.635 305.5 15.1 0.31 8.399 0.484 143.7 134.6 1.068 A 

C4 20.36 20.40 0.635 366.6 18.0 0.19 8.291 0.484 127.7 127.2 1.004 A 

C5 20.40 20.37 0.655 488.3 23.9 0.28 8.372 0.484 119.2 110.1 1.083 A 

(Es  = 2000 tonnes/cm2) 

.Figures within parenthesis are minor axis buckling loads 

Mode of failure: 	A = overall bending 

B = test incomplete 

C = local wrinkling or bulging 

Table 2.1 	Comparison between calculated and experimental loads for square and rectangular columns  



Speci- 
men 

Test 
load 
PT, 

Computed loads 
. 

P
T
/P
c 

. 

P
T
/P
x y 

P 
x 

P 
ay 

P 
ax 

Pc = smaller 

of 

P 	and P 
x 	ay 

P xy 
calculated 

from Equation 
2.14a 

Al 

A2 

A3 

A4 

A5 

108.0 

100.7 

97.7 

72.7 

>.49.0 

176.2 

126.1 

97.8 

68.8 

60.8 

102.8 

107.2 

102.1 

99.6 

109.4 

176.2 

189.3 

190.8 

181.9 

202.7 

102.8 

107.2 

97.8 

68.8 

60.8 

102.8 

83.5 

67.7 

52.4 

48.4 

1.05 

0.94 

1.00 

1.06 

- 

1.05 

1.20 

1.44 

1.39 

- 

(all loads are in metric tons) 

Pay and  Pax 
take measured initial out-of-straightness into account. 

Table 2.2 Comparison between experimental loads and loads calculated from equation 2.14a - Series A  

(Liege tests) 
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Thickness = 0.144 in Thickness = 0.25 in 

Cube 
strength 

Yield 
stress Length Failure load tonf Failure load tonf 

lbf/in2 tonf/in2 ft P1 P2 P3 P4 P 1 
P 
-2 P3 P4 

6 36.1 35.9 36.1 36.5 55.7 55.4 55.8 56.6 
8 32.4 31.8 32.3 32.8 50.0 49.2 49.9 50.7 

16 10 26.9 26.2 26.7 27.3 41.7 40.5 41.4 42.3 
12 21.4 20.6 21.1 21.7 33.1 31.9 32.7 33.6 
14 16.8 16,2 16.6 17.0 26.0 25.0 25.6 26.3 

3000 
6 50.0 49.5 49.9 50.4 77.8 77.0 77.7 78.4 
8 42.5 41.5 42.2 43.0 66.2 64.6 65.7 67.0 

23 10 32.8 31.8 32.4 33.1 51.1 49.4 50.4 51.5 
12 24.7 23.8 24.3 24.8 38.2 36.9 37.7 38.5 
14 18.6 18.0 18.4 18.7 29.0 28.0 28.6 29.1 

6 51.2 50.6 50.9 51.3 67.8 67.2 67.7 68.2 
8 43.0 42.0 42.7 43.4 59.4 58.2 59.1 60.2 

16 10 34.4 33.4 34.1 34.8 48.3 46.7 47.8 48.9 
12 26.7 25.7 26.3 27.0 37.7 36.3 37.2 38.1 
14 20.4 19.5 20.1 20.6 29.2 28.0 28.7 29.4 

9000 
6 66.2 65.3 66.0 66.7 92.3 91.2 92.1 93.1 
8 53.8 52.4 53.4 54.4 76.3 74.2 75.6 77.0 

23 10 40.4 39.1 39.8 40.7 57.5 55.6 56.7 57.9 
12 29.6 28.5 29.1 29.7 42.5 41.0 41.9 42.7 
14 21.7 21.0 21.4 21.8 31.8 30.7 31.3 35.0 

diameter = 4.5 in 

eccentricity = 0.0 
2 

initial central deflection = 0.00006 1/d 

initial central curvature = 0.0006/d 

Fictitious eccentricity (to replace initial out-of-straightness) 

= 
"Yoe, where r is taken as 1.0, 0.9 and 0.8 for loads P2, P3 
and P4  respectively 

failure load for the column with an initial central 

curvature poc  

P2'P3 and P4 
= see the definition of eo 

Table 2.3 Influence of r (where eo = "Yoc) on the failure load 

d = 

= Yoe 
= Poc 

eo  = 

P1 = 



GY/Ym 	= 	16 tonf/in
2 

f cu/7  m 3000 	lbf/in2 6000 	lbf/in2 9000 	lbf/in
2 

P
L  365 	tonf 516 	tonf 666 tonf 

e d 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 100 

6 345 273 226 162 120 94.0 76.4 492 377 308 206 146 110 87.6 637 480 383 244 166 122 95.2 
8 335. 263 218 156 116 91.0 74.3 468 362 294 196 140 106 84.6 602 458 364 230 157 116 91.6 
10 322 252 208 149 112 87.8 71.9 448 343 278 186 133 101 81.5 575 433 342 216 149 111 87.9 

4_, 
4.4 

12 309 239 198 142 107 84.5 69.5 425 324 261 175 126 97.1 78.4 543 406 319 202 140 106 84.4 
.--I 14 295 227 187 135 102 81.3 67.2 401 303 245 165 120 92.9 75.4 509 378 296 189 133 101 80.9 

16 282 214 177 128 97.9 78.2 64.9 377 283 229 156 114 89.0 72.6 474 350 274 177 126 96.4 77.8 
18 272 203 167 122 93.7 75.4 62.7 354 264 213 146 109 85.2 69.9 440 323 253 166 119 92.2 74.9 
20 263 191 157 116 89.6 72.4 60.6 334 245 199 138 103 81.7 67.3 409 298 234 156 113 88.2 72.0 

w 22 254 181 148 110 85.8 69.7 58.6 316 228 185 130 98.4 78.3 64.9 381 274 217 146 108 84.4 69.3 
> ..-1 4_1 
u 

t,--/ 0 u-t 

24 

26 

244 

231 

172 

162 

140 

132 

105 

99.5 

82.2 

78.6 

67.1 

64.6 

56.6 

54.7 

299 

282 

213 

198 

173 

162 

123 

116 

93.7 

89.4 

75.1 

72.1 

62.6 

60.3 

355 

331 

253 

233 

202 

187 

138 

130 

102 

9703 

80.9 

77.4 

6607 

64.2 
w 28 218 153 125 94.7 75.3 62.2 52.9 263 185 151 110 85.2 69.2 58.1 307 216 174 122 92.6 74.3 61.9 

30 204 145 118 90.0 72.1 59.9 51.0 244 173 141 104 81.3 66.4 56.1 284 200 162 115 88.2 71.2 59.6 

35 169 124 103 79.5 64.7 5404 46.9 200 146 120 91.0 72.5 60.0 51.2 230 165 136 99.7 78.1 64.1 54.3 

40 139 106 89.2 70.3 58.2 49.5 43.0 162 122 103 79.8 64.6 54.3 46.8 183 137 115 86.8 69.4 57.8 49.5 

Area: 	Steel 	13.4 	in2 	Moment of inertia: 	Steel 	315 	in
4  

Concrete 	140.5 	in2 	 Concrete 	1571 	in4 

Table 2.4 Ultimate loads for 14 in diameter x 5/16 in thick column (when 7M = 1.0 for steel and concrete) 



f /y cu m 

PL  
e/d 

6 

8 

E
f
f
e
c
t
i
v
e
  
l
e
n
g
t
h
 
-
  
1
 f
t
  

10 

12 

14 
16 

18 

20 

22 

24 

26 

28 

30 

35 

40 

5
Y 
 /y
m 	

= 	23 tonf/in
2 

3000 	lbf/in2  6000 	lbf/in2 9000 	lbf/in
2 

459 	tonf 609 	tonf 760 	tonf 

0 0 . 1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 006 0.8 1.0 0 0.1 0.2 0.4 006 0.8 1.0 
439 346 285 208 158 125 103 579 450 367 257 187 144 116 725 553 446 299 211 159 127 
428 333 274 200 152 121 99.8 563 431 351 246 180 139 113 699 528 425 284 202 153 122 
415 319 262 192 147 117 96.6 542 410 333 233 172 134 109 670 500 401 268 191 146 117 
402 304 248 184 140 112 93.3 519 387 314 220 163 128 104 637 469 376 252 181 139 112 
391 289 235 174 134 108 90.0 495 364 295 208 155 122 100 603 438 350 236 171 133 108 
383 274 222 164 128 104 86.8 474 340 275 196 147 117 96.3 569 406 324 221 162 126 103 
372 259 209 156 122 99.4 83.5 456 318 257 184 140 112 92.4 540 376 300 207 153 120 98.8 
357 245 197 147 116 95.3 80.4 434 297 239 173 132 106 88.7 509 348 277 193 145 115 94.7 
340 231 186 139 111 91.3 77.5 408 277 223 163 126 102 85.2 475 321 256 181 137 109 90.7 
319 217 175 132 106 87.5 74.4 379 258 207 153 119 97.0 81.8 438 296 237 169 129 104 87.0 
295 203 164 125 101 83.7 71.6 348 239 193 144 113 92.7 78.5 400 273 219 159 122 99.3 83.4 
272 190 155 118 95.8 80.2 68.9 318 222 180 135 107 88.5 75.3 364 252 203 149 116 94.6 80.0 
248 178 145 112 91.2 76.8 66.2 289 206 168 127 102 84.5 7203 330 231 188 139 110 90.3 76.6 

197 148 124 97.1 80.7 68.9 60.1 227 169 141 110 89.4 75.5 65.2 255 187 156 119 95.9 80.2 68.9 
156 124 106 84.7 71.5 61.9 54.4 176 139 119 94.7 78.7 67.3 58.9 194 152 130 102 84.0 71.4 62.1 

Area: 	Steel 	13.4 	in2 	 Moment of inertia: 	Steel 	315 	in4  

Concrete 	140.5 	in2 	 Concrete 	1571 	in
4 
 

Table 2.5 Ultimate loads for 14 in diameter x 5/16 in thick column (when Ym= 1.0 for steel and concrete) 



0' /7 	= 	16 tonf/in2  

fcum 3000 	1bf/in2  6000 	1bf/in2  9000 	lbf/in2  

PL 405 	tonf 553 	tonf 701 	tonf 

e/d 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 .1.0 0 0.1 0.2 0.4 0.6 0.8 1.0 

1
 
 
	

E
f
f
e
c
t
i
v
e
  
l
e
n
g
th
 
-
  
1
 f
t
  

6 384 305 253 183 137 108 88.1 526 407 333 228 164 125 100 669 508 410 267 185 138 109 
8 373 294 244 176 133 105 85.7 503 390 319 218 157 121 96.9 635 486 390 253 176 132 105 
10 359 281 233 169 128 101 83.1 482 371 303 207 150 116 93.4 606 460 367 238 167 126 101 
12 345 268 222 161 122 97.4 80.4 459 351 286 196 143 111 90.0 573 432 344 224 158 121 96.8 
14 331 254 211 153 117 93.9 77.7 434 330 268 185 136 106 86.7 539 403 320 210 150 115 93.0 
16 319 241 199 146 112 90.4 75.3 410 309 251 175 130 102 83.6 504 375 298 197 142 110 89.5 
18 310 229 188 139 108 87.1 72.7 387 289 235 165 123 97.8 80.5 470 347 277 186 135 106 86.0 
20 301 217 178 133 103 83.9 70.3 367 270 220 156 118 93.7 77.6 439 321 257 174 129 101 82.8 
22 291 207 169 126 99.0 80.7 68.1 351 252 206 147 112 90.0 74.9 412 297 239 164 122 96.7 79.7 
24 279 196 160 120 94.8 77.8 65.8 334 236 193 139 107 86.4 72.2 388 275 222 155 116 92.7 76.8 
26 266 186 151 114 90.9 75.0 63.7 315 221 181 132 102 82.9 69.7 363 255 207 146 111 88.9 74.0 
28 251 176 143 109 87.1 72.3 61.5 295 207 169 125 97.6 79.7 67.3 338 237 193 138 106 85.2 71.3 
30 235 166 136 104 83.5 69.6 59.5 274 194 159 119 93.3 76.6 64.8 312 220 180 130 101 81.8 68.7 
35 195 143 118 91.8 75.2 63.3 54.7 225 164 136 104 83.2 69.3 59.3 254 184 152 113 89.4 73.7 62.7 
40 161 1 23 103 81.3 67.6 57.6 50.2 183 139 117 91.1 74.4 62.8 54.3 204 154 129 98.8 79.6 66.6 57.3 

Area: 	Steel 	16.0 	in2 	 Moment of inertia: 	Steel 	373 	in4 

Concrete 	137.9 	in2 	 Concrete 	1513 	in4 

Table 2.6 Ultimate loads for 14 in diameter x 3/8 in thick column (when 7m = 1.0 for steel and concrete 



5 /y 	= 	23 tonf/in2  
Y 	m 

f 	/ cu y  m 
3000 	lbf/in

2 6000 	lbf/in
2 9000 	lbf/in

2 

PL 518 	tonf 666 	tonf 814 	tonf 

e/d 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 1.0 

E
f
f
e
c
t
i
v
e
  
l
e
n
g
t
h
 
-
  
1
 f
t
  

6 497 392 323 237 181 144 119 634 494 404 287 212 165 134 774 595 483 330 237 181 144 

8 484 378 311 229 175 140 116 616 474 387 275 204 159 129 749 570 461 315 227 174 140 

10 471 362 297 219 .169 135 112 594 452 368 261 195 153 125 719 540 436 298 216 166 134 

12 458 346 283 209 162 130 108 570 427 348 248 186 147 120 686 508 409 280 205 159 129 

14 449 329 268 199 155 125 105 547 402 327 234 177 140 116 651 475 382 263 194 152 124 

16 440 313 254 189 148 120 101 528 378 306 221 168 134 111 619 443 355 247 184 144 119 

18 427 297 240 179 141 115 97.3 510 355 286 208 159 128 107 591 411 330 232 174 138 114 

20 411 281 227 170 135 111 93.7 487 332 267 196 151 123 103 560 382 306 217 165 132 109 

22 391 266 214 161 129 106 90.2 459 311 250 185 144 117 98.5 524 354 284 204 156 125 105 

24 367 250 202 152 122 102 86.8 427 290 233 174 137 112 94.6 484 328 263 191 148 120 100 

26 341 235 190 144 117 97.5 83.6 393 270 218 164 130 107 90.9 443 304 244 180 140 114 96.2 

28 314 220 179 136 111 93.5 80.4 359 251 204 154 .123 102 87.3 404 281 227 169 133 109 92.3 

30 287 206 168 129 106 89.5 77.5 327 233 190 145 117 97.8 83.8 366 259 211 159 126 104 88.5 

35 228 172 144 113 93.9 80.5 70.2 257 192 161 126 103 87.3 75.6 285 211 176 136 110 92.5 79.8 

40 181 144 123 98.5 83.4 72.2 63.7 201 159 136 109 91.0 78.0 68.4 219 173 147 117 96.8 82.5 71.9 

Area Steel 	16.0 	in
2 	 Moment of inertia: 	Steel 	373 	in

4 

Concrete 	137.9 	in2 	 Concrete 	1513 	in
4 

Table 2.7 Ultimate loads for 14 in diameter x 3/8 in thick column (when Ym = 1.0 for steel and concrete) . 



5
Y 
 /ym 	= 	16 tonf/in

2 

f cu  /ym  3000 	lbf/in2  6000 	lbf/in2  9000 	lbf/in2  

PL  • 443 	tonf 588 	tonf 732 	tonf 

e/d 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 0.8 100 

6 420 334 277 202 152 120 98.7 556 434 357 248 180 139 112 697 533 433 288 203 152 121 
8 408 322 267 194 147 117 96.1 535 417 342 237 173 134 108 664 511 413 274 	- 193 146 117 
10 394 309 256 186 142 113 93.2 514 397 325 226 166 129 104 634 484 390 259 184 140 112 
12 379 294 244 178 136 109 90.4 489 375 308 214 158 123 101 601 456 365 243 175 134 108 

4-1  14 365 380 232 170 131 105 87.4 464 354 290 203 151 118 97.0 566 426 342 229 166 128 104 
,--I 

16 354 267 220 163 126 102 84.7 440 332 272 192 144 114 93.6 531 397 319 216 158 123 100 
18 346 254 208 155 121 97.9 82.0 418 311 255 181 137 109 90.2 498 369 297 203 150 118 96.3 

P 
w 

20 337 242 198 148 116 94.4 79.3 400 292 239 172 131 105 87.0 468 343 277 191 143 113 92.7 

' 
w 

22 326 230 187 141 111 91.0 76.7 384 274 224 163 125 101 84.0 443 318 258 180 136 108 89.3 

4.1 
24 313 219 178 134 106 87.6 74.3 366 257 211 154 119 96.7 81.1 419 296 240 170 129 104 86.1 

(E))  26 298 208 169 128 102 84.5 71.9 346 242 198 146 114 92.9 78.3 393 276 224 161 123 99.3 83.0 
L4.4 

(4-1 w 28 281 197 160 122 98.0 81.5 69.5 324 228 186 139 109 89.4 75.5 366 257 210 152 117 95.3 80.0 
30 263 187 152 116 94.0 78.5 67.2 302 214 175 132 104 85.9 7209 340 240 196 144 112 91.4 77.2 

35 219 161 133 103 84.7 7106 61.9 249 182 150 115 93.1 77.8 66.8 277 201 166 125 99.8 8206 70.4 

40 181 138 116 91.5 76.3 64.2 56.9 203 154 130 102 83.4 70.6 61.2 223 169 142 110 88.9 74.7 64.4 

Area: 	Steel 	18.6 	in2 	 Moment of inertia: 	Steel 	429 	in4 

Concrete 	135.3 	in2 	 Concrete 	1457 	in
4 

Table 2.8 Ultimate loads for 14 in diameter x 7/16 in thick column (when Ym = 1.0 for steel and concrete) 



U/ym 	= 	23 tonf/in
2 

f 	/y cu 	m 3000 	lbf/in2 6000 	lbf/in2  9000 	lbf/in2 

P
L  573 	tonf 718 	tonf 863 	tonf 

e/d 0 0.1 0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.4 0.6 	10.8 1.0 0 0.1 0.2 0.4 0.6 0.8 1.0 

E
f
f
e
c
t
i
v
e
  
l
e
n
g
t
h
 
-
  
1
 f
t
  

6 550 434 359 264 203 162 134 685 535 438 314 234 183 149 818 634 516 359 260 200 161 

8 537 419 345  255 196 157 130 665 513 420 301 225 177 145 795 607 493 342 250 193 156 
10 523 402 330 244 189 152 126 643 490 400 287 216 170 140 765 577 467 324 238 185 150 

12 511 384 314 233 181 146 122 618 464 378 272 206 163 135 731 543 440 306 226 176 144 
14 502 367 299 222 173 141 118 596 438 356 258 196 156 129 697 510 412 288 214 169 138 
16 492 350 283 211 166 135 114 579 413 334 244 187 150 125 666 476 384 271 203 161 133 

18 479 333 268 200 159 130 110 560 388 313 230 178 143 120 640 444 357 255 193 154 127 

20 462 315 254 190 151 125 106 536 365 294 217 169 137 115 608 413 332 239 183 147 122 

22 439 298 240 180 145 120 102 506 342 275 205 161 131 111 570 385 309 225 173 140 117 
24 413 281 226 171 138 115 98.3 472 320 257 193 153 125 106 528 358 287 211 164 134 113 

26 384 264 213 162 131 110 94.5 435 298 241 182 145 120 102 484 332 267 199 156 128 108 

28 353 247 201 153 125 106 91.1 398 278 225 171 138 115 98.1 441 307 249 187 148 122 104 

30 323 231 189 145 119 101 87.7 362 259 211 162 131 110 94.3 401 284 232 175 140 116 99.5 

35 257 194 162 127 106 91.0 79.6 285 214 179 140 116 98.1 85.2 312 233 194 151 123 104 89.7 

40 204 162 139 111 94.3 81.8 72.2 223 177 152 122 102 87.9 77.2 242 191 163 130 108 92.5 80.9 

Area: 	Steel 	18.6 	in
2 	

Moment of inertia: 	Steel 	429 	in
4 

Concrete 	135.3 	in
2 	

Concrete 	1457 	in
4 

Table 2.9 Ultimate loads for 14 in diameter x 7/16 in thick column (when Ym = 1.0 for steel and concrete) 
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ES  tonf 

in 1 ft 
12000 12500 13000 13500 14000 

10 321.8 321.9 322.0 322.1 322.2 

15 318.1 318.4 318.7 318.8 319.1 

20 311.4 312.2 312.9 313.4 314.0 

30 255.2 261.3 266.7 271.7 276.6 

45 127.1 132.3 137.0 142.3 147.2 

60 72.6 75.5 78.5 81.4 84.5 

(all loads are given in tonf) 

(10 in x 10 in x 0.375 in, 0-  = 23 tonf/in
2, feu  = 0.0, e/d = 0.01, 

initially straight) 

E 
Table 2.10 	

Pm - s  relationship 
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1 ft 
BS 449 load x 1.7 

Tonf 

Failure load cal-

culated by the 

computer. 	Tonf 

(2)/(3) 

(1) (2) (3) (4) 

e = 	0.0 

6 299 288 1.04 

10 293 286 1.02 

14 282 284 0.99 

18 265 268 0.99 

22 240 243 0.99 

26 210 212 0.99 

30 178 177 1.01 

e = 6 in 

6 107 128 0.84 

10 107 121 0.88 

14 105 110 0.95 

18 102 100 1.02 

22 99 92 1.08 

26 94 83 1.13 

30 87 76 1.14 

(10 in x 10 in x 0.5 in, U = 16 tonf/in2, fcu = 0.0, BS 449 

initial imperfection) 

Table 2.11 	Comparison between loads calculated according 

o BS 449 and ID ,  the com uter roaram 
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Co- 
lumn 

Thick- 
ness 

in 

Length  

ft 

Eccen- 
tricity 

in 

Design 
load 

(Dead + 
live) 
Pw 

tonf 

Computed 
failure load 

tonf 
Load Factor 

Short- 
term 
P ms 

Long- 
term 
P ml 

P 	/P ms 	w P 	/P ml 	w 

A7 0.375 17.8 0.609 253 2045 1930 8.08 7.63 
B6 0.375 28.6 0.609 360 1934 1710 5.37 4.75 
D5A 0.375 9.0 0.609 321 2099 2049 6.54 6.38 
F4A 0.375 7.8 0.609 320 2103 2061 6.57 6.44 
H1 0.375 8.2 0.609 373 2102 2058 5.64 .5.52 
A9 0.375 13.6 0.609 312 2076 1996 6.65 6.40 
C7 0.375 23.4 0.609 282 1994 1821 7.07 6.46 
D6A 0.375 10.1 0.844 764 2046 1995 2.68 2.61 
F5A 0.500 8.9 0.999 957 2243 2200 2.34 2.30 
H4A 0.375 9.6 0.845 ,764 2048 1999 2.68 2.62 
J3 0.375 19.6 0.609 305 2031 1896 6.66 6.22 
C8 0.375 20.4 0.609 335 2023 1881 6.04 	' 5.61 
K3 0.375 19.6 0.609 347 2032 1897 5.86 5.47 
Ll 0.375 9.1 0.609 351 2099 2048 5.98 5.83 
D9 0.375 10.1 0.609 387 2094 2038 5.41 5.27 
F6A 0.375 9.1 0.609 332 2099 2048 6.32 6.17 
H5A 0.375 9.7 0.609 332 2095 2043 6.31 6.15 
K4 0.375 33.6 0.609 394 1866 1602 4.74 4.06 
L3 0.375 15.8 0.609 355 2062 1963 5.81 5.53 
D6B 0.625 7.6 0.997 1102 2470 2432 2.24 2.21 
D5B 0.375 6.8 0.750 633 2079 2044 3.28 3.23 
D4B 0.375 8.3 0.609 404 2102 2056 5.20 5.09 
D1 0.375 31.2 0.75 536 1858 1623 3.47 3.03 
F2 0.438 17.0 0.843 849 2111 2004 2.49 2.36 
F4B 0.625 8.1 0.997 1138 2467 2426 2.17 2.13 
F5B 1.500 6.6 1.312 1780 3993 3955 2.24 2.22 
F6B 0.625 7.0 0.997 1149 2473 2438 2.15 2.12 
F8 0.438 17.1 0.843 750 2110 2001 2.81 2.67 
H9 0.375 33.0 0.75 533 1832 1583 3.44 2.97 
H6B 0.375 8.8 0.609 404 2099 2053 5.20 5.08 
H5B 0.375 8.3 0.75 645 2072 2031 3.21 3.15 
H4B 0.625 10.3 0.997 1102 2456 2399 2.23 2.18 
D4C 0.688 11.9 0.997 1150 2524 2455 2.19 2.13 
F5C 1.750 11.4 1.714 3200 7129 7031 2.23 2.20 
H6C 0.625 12.0 0.997 1150 2444 2375 2.12 2.06 

Diameter - 42 in for F5C;230 in for the others 
Yield stress - 22 tonf/in, for F5B and F5C;22.5 tonf/in

2 for D4C; 
23 tonf/in` for the others 

Cube strength - 7500 lbf/in2  for F5B and F5C; 6000 lbf/in
2  for the others 

(The strain corresponding to the peak stress in concrete is taken as 0.0025 
and 0.0050 in the computation of short- and long-term load respectively) 

Table 2.12 	Comparison between the design load and the computed failure 

(2.3) 
load of the concrete-filled columns at the Almondsbury Interchange 



Speci- 
men 

Length (in) Measured (in) 

d 
t 

Steel properties 

Cube 
strength 

f cu 

lbf/in
2 

Tube Over- 
all 

1 

Dia- 
meter 

d 

Thick- 
ness 

t 

Yield 
stress 
6 
y 

tonf/in2 

0.1 	0/0  
Proof 
stress 

tonf/in2 

0.5 °/o 
Proof 
stress 

tonf/in2 

Ulti- 
mate 
stress 

tonf/in2 

Young's 
modulus 

s 
E 

tonf/in2 

Mll 27 31 6.62 0.179 37.0 19.2 19.2 19.8 30.6 13400 5530 

M12 27 31 6.63 0.179 37.0 19.2 19.2 19.8 30.6 13400 7950 

M13 27 31 6.62 0.179 37.0 19.2 19.2 19.8 30.6 13400 4170 

M14 27 31 6.63 0.178 37.2 19.2 19.2 19.8 30.6 13400 7840 

M15 27 31 6.67 0.201 33.2 20.0 19.9 20.0 31.9 13400 8915 

M16 27 31 6.66 0.222 30.0 19.1 19.1 19.2 29.8 13400 8915 

M17 27 31 6.65 0.260 25.6 19.3 19.2 19.6 31.6 13400 8915 

M18 27 31 6.63 0.257 25.8 19.3 19.2 19.6 31.6 13400 5910 

M19 27 31 6.63 0.256 25.9 19.3 19.2 19.6 31.6 13400 9270 

M20 27 31 6.67 0.292 22.8 20.2 20.2 20.5 30.9 13400 8265 

M21 27 31 6.65 0.357 18.6 20.9 20.9 21.2 32.4 13400 8265 

M22 27 31 6.66 0.390 17.1 19.7 19.7 19.7 29.6 13400 8265 

M23 27 31 6.66 0.389 17.1 19.7 19.7 19.7 29.6 13400 5910 

M24 27 31 6.67 0.389 17.1 19.7 19.7 19.7 29.6 13400 9270 

Table 3.1 	Dimensions and material properties of stub columns Mil - M24 - Imperial College tests  3.3) 
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Speci- 
men 

Load up to which 

strain readings 

are available 

/ 
PT 

tonf 

Experimental 

failure load 

PT 

tonf 

y 	cm 
 

Nominal squash 

load = 

A 0 	+ A o s 

PL  

tonf 

/ PT 

PT 

PT 

PL 

Mil 187 201 131 0.93 1.53 

M12 211 224 156 0.94 1.44 

M13 157 175 115 0.90 1.52 

M14 192 212 156 0.91 1.36 

M15 261 261 180 1.00 1.45 

M16 249 253 182 0.99 1.39 

M17 268 280 195 0.95 1.44 

M18 200 241 161 0.83 1.50 

M19 250 268 196 0.93 1.37 

M20 281 294 203 0.95 1.45 

M21 314 340 229 0.92 1.48 

M22 280 349 231 0.80 1.51 

M23 266 340 208 0.78 1.63 

1424 355 361 241 0.98 1.50 

Table 3.2 Failure loads for stub columns N11 - M24 



Specimen 
P 
y 

tonf 

P -Y 
P
T 

a
sL 

o
sH 

a 
cL 
U
m 

a
cR 

P 	= 
s 

A
s 
a
sL 

tonf 

P
s 

P 
Y 

P 	= 
c 

A
c (5cL 
tonf 

P
c 

P 
y 

 
of 
y 0- y CYm 

Mll 117.6 0.58 0.98 -0.03 0.81 -10.02 68.4 0.58 49.2 0.42 

M12 156.0 0.70 0.95 -0.09 1.02 +0.04 66.2 0.42 89.8 0.58 

M13 108.1 0.62 0.98 -0.04 0.88 +0.03 67.9 0.63 40.2 0.37 

M14 181.0 0.85 1.01 +0.01 1.28 -0.01 69.8 0.38 111.2 0.62 

M15 189.2 0.72 0.98 -0.03 1.11 +0.01 80.5 0.42 108.7 0.58 

M16 175.5 0.69 1.02 40.05 0.91 -0.02 87.8 0.50 87.7 0.50 

M17 192.4 0.69 0.90 -0.18 1.08 +0.09 90.7 0.47 101.7 0.53 

M18 141.9 0.59 1000 -0.00 0.69 +0.00 98.9 0.70 43.0 0.30 

M19 176.3 0.66 1.00.  -0.00 0.80 +0.00 98.9 0.56 77.4 0.44 

M20 191.2 0.65 0.97 -0.06 0.90 +0.04 11401 0.60 77.1 0.40 

M21 215.6 0.63 0.99 -0.02 0.86 +0.02 145.6 0.68 70.0 0.32 

M22 224.6 0.64 1.00 +0.00 0.91 -0.00 151.6 0.67 73.0 0.33 

M23 194.5 0.57 1.00 +0.00 0.75 -0.00 151.5 0.78 43.0 0.22 

M24 231.5 0.64 1.01 +0.01 0.88 -0.01 152.3 0.66 79.2 0.34 

(Compression + ye) 

Table 3.3 Loads and stresses at the first yield of steel - stub columns M11 - M24 



Column 
t 
Tix100 

Load near 
failure 

/ 
P
T 

tonf 

/ 
P
T 
TT  

CY
sL 

cr 
s H 

5
cL 

o
cR 

P
s 

tonf 

P
s 
/ 

P
T 

P
c 

tonf 

P
c 

5 
Y 

5 
y 

Crm 
0
m 

/ PT 

M11 2.7 187.1 0.93 0.87 -0.22 2.08 +0.12 60.8 0.32 126.3 0.68 
M12 2.7 211.2 0.94 0.71 -0.43 1.84 +0.17 49.5 0.23 161.7 0.77 
M1 3 2.7 156.8 0.90 - - - - - - - - 

M14 2.7 192.2 0.91 0.83 -0.28 1.55 +0.11 57.8 0.30 134.4 0.70 
M15 3.0 261.0 1.00 0.70 -0.44 2.07 +0.18 57.4 0.22 203.6 0.78 
M16 3.3 249.4 0.99 0.67 -0.48 1.99 40.20 57.5 0.23 191.9 0.77 
M17 3.9 267.8 0.95 0.74 -0.42 2.06 +0.21 74.4 0.28 193.4 0.72 
M18 3.9 199.8 0.83 0.80 -0.32 1.94 +0.25 79.2 0.40 120.6 0.60 
M19 3.9 249.6 0.93 0.82 -0.30 1.73 +0.15 81.3 0.32 168.3 0.68 
M20 4.4 281.0 0.95 0.70 -0.44 2.31 40.29 82.6 0.29 198.4 0.71 
M21 5.4 313.7 0.92 0.77 -0.36 2.45 40.31 113.8 0.36 199.9 0.64 
M22 5.8 280.5 0.80 0.82 -0.29 1.95 +0.26 124.2 0.44 156.3 0.56 
M23 5.8 265.9 0.78 - - - - - - - - 

M24 5.8 354.8 0.98 0.54 -0.62 3.03 40.48 81.3 0.23 273.5 0.77 

(Compression + ye) 

Table 3.4  Stresses near failure at load PT - stub columns Mll - M24 
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Speci- 
men 

Failure load tonf 

P
T (13H)equation 3.24 

Test 

P 
T 

r 
Calculated PII 

' 
(13H)equation 3.24 ( 'P ll)  equation 3.3 

• 

Equation. • 
3.24 

Equation  
3.3 

Mil 201 177 196 1.14 0.90  
M12 224 204 222 1.10 0.92 
M13 175 162 181 1.08 0.90 
M14 212 203 221 1.04 0.92 
M15 261 235 257 1.11 0.91 
M16 253 240 262 1.05 0.92 
M17 280 261 287 1.07 0.91 
M18 241 227 253 1.06 0.90 
M19 268 262 287 1.02 0.91 
M20 294 281 310 1.05 0.91 
M21 340 324 359 1.05 0.90 
M22 349 328 364 1.06 0.90 
M23 340 305 341 1.11 0.89 
M24 361 338 374 1.07 0.90 .  

Table 3.5 	Comparison between calculated and experimental failure loads  

stub columns Mll - M24 
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0 

PH 
 (tonf) from equation 3.23 

-__ 
h= 3 h= 4 h= 5 h= 6 

Tube 1 Tube 2 Tube 1 Tube 2 Tube 1 Tube 2 Tube 1 Tube 2 

CV  
+I'  

if  
•C,
 

00  
0
 C

N
  

Lr) 

• 

•
 
•
 
•
 
•
 
•
 
•
 
•
 
•
 

?, 

123 176 123 176 123 176 123 176 

132 194 137 204 142 214 147 224 

139 205 148 223 157 240 166 258 

141 209 151 230 162 250 172 271 

143 214 155 237 167 261 179 285 

145 218 159 247 173 275 187 304 

147 223 163 255 179 287 195 320 

148 224 165 259 182 294 200 329 

150 226 169 264 188 302 207 339 

149 224 177 279 205 335 233 390 

Description: 

Item Tube 1 Tube 2 

d in 6.625 6.625 

t in 0.176 0.375 

a 	tonf/in
2 

16.0 16.0 
Y 

f 	lbf/in
2 

cu 
6000 6000 

p and h are defined in 

subsection 3.5.2. 

Table 3.6 	Influence of p and 7\. on the stub  

column failure load PH 



Specimen Diameter 

in 

Thickness 

in 

0.2 °to proof- 
stress 

Failure load tonf 

Kips/in
PT 

Cube 
strength 

lbf/in-  

Test Equation 3.24 

P H 

la 6.64 0.104 43.2 2600 133 100 1.33 

2a 6.64 0.104 43.2 4950 122 127 0.96 

3a 6.66 0.103 46.0 5300 131 135 0.97 

4a 6.66 0.103 46.0 4870 133 130 1.02 

5a 6.62 0.142 32.1. 3860 156 113 1.38 

6a 6.62 0.142 . 	32.1 4750 144 123 1.17 

6b 6.62 0.142 32.1 4750 147 123 1.20 

7a 6.64 0.197 37.8 4770 197 165 1.19 

7b 6.64 0.197 37.8 4770 198 165 1.20 

8a 6.64  0.197 37.8 3980 199 156 1.28 

8b 6.64 0.197 37.8 3980 199 156 1.28 

Table 3.7 	Comparison between experimental and calculated failure loads  

(3.12) 
for  11 stub columns tested by Gardner  
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Speci- 
men 

Dia- 
meter 

in 

Thick- 
ness 

in 

Cube 
strength 

lbf/in2 

Yield 
stress 

tonf/in? 

Young's 
modulus 

tonf/in2 

Axial 
load 

tonf 

Maximum 
moment 

tonf.in  

Al 6.647 0.181 8450 23.7 13650 3.9 240.0 
A2 6.660 0.184 7880 38.0 244.0 
A3 6.661 0.177 8660 100.0 219.0 
A4 6.655 0.176 8570 100.0 140.0 
A5 6.661 0.185 7880 170.0 140.5 

BI 6.661 0.188 6640 23.9 13310 5.0 240.0 
B2 6.672 0.179 6400 50.0 234.0 
B3 6.667 0.194 6890 100.0 214.0 
B4 6.655 0.189 6600 150.0 170.0 
B5 6.650 0.191 6070 170.0 0.0 

Cl 6.615 0.206 7900 23.1 13070 6.0 248.0 
C2 6.616 0.211 7590 50.0 270.0 
C3 6.613 0.208 7340 100.0 260.0 
C4 6.614 0.208 7840 150.0 215,0 
C5 6.620 0.217 7580 200.0 90.0 

D1 6.675 0.228 

0
 0

  0
 0

 0
 

• 

•
 •
 •
 • 

0
 0

 0 0
  0

 

22.9 13420 5.0 202.5 
D2 6.676 0.212 20.0 186.0 
D3 6.608 0.218 40.0 174.0 
D4 6.677 0.227 80.0 79.5 
D5 6.674 0.228 100.0 0.0 

El 6.622 0.268 7460 25.8 13490 5.0 312.5 
E2 6.611 0.275 7430 50.0 312.5 
E3 6.622 0.269 7310 100.0 298.0 
E4 6.621 0.276 7760 155.0 255.0 
E5 6.609 0.279 7240 190.0 165.0 

Fl 6.637 0.331 6770 23.9 13530 5.0 390.0 
F2 6.621 0.323 7160 50.0 367.5 
F3 6.624 0.328 6630 100.0 360.0 
F4 6.619 0.326 6670 150.0 330.0 
F5 6.632 0.331 6820 200.0 280.0 

G1 6.672 0.396 8380 21.0 13610 12.0 374.0 
G2 6.672 0.397 7960 60.0 430.0 
G3 6.665 0.399 8870 100.0 372.0 
G4 6.664 0.398 7960 150.0 372.0 
G5 6.671 0.399 8340 200.0 240.0 

(Specimens B5 and D5 failed under the axial load) 

Table 4.1 	Experimental data for the moment-load-curvature tests - 

Ilmerial College  
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Speci- 
men • 

Experimental Calculated 

; 
L 

MT 
M 
c 

Axial 
load 
P 

tonf 

Maximum 
moment 
MT  

tonf.in 

Nominal 
squash 
load 

PL 
tonf 

Maximum 
moment 
Mc 

tonf.in  

Al 3.9 240.0 180.8 211.6 0.02 1.13 
A2 38.0 244.0 176.2 230.1 0.22 1.06 
A3 100.0 219.0 182.0 171.4 0.55 1.28 
A4 100.0 140.0 180.4 168.3 0.55 0.83 
A5 170.0 140.5 176.6 - 0.96 - 

B1 5.0 240.0 164.9 216.6 0.03 1.11 
B2 50.0 234.0 158.8 210.0 0.32 1.11 
B3 100.0 214.0 170.5 154.4 0.59 1.39 
B4 150.0 170.0 164.7 35.7 0.91 4.76 
B5 170.0 0.0 159.6 000 1.06 - 

C1 6.0 248.0 181.1 227.8 0.03 1.09 
C2 50.0 270.0 179.8 238.0 0.28 1.13 
C3 100.0 260.0 175.8 163.5 0.57 1.59 
C4 150.0 215.0 181.2 71.9 0.'83 2.99 
C5 200.0 90.0 182.2 0.0 1.10 - 

D1 5.0 202.5 105.8 214.6 0.05 0.94 
D2 20.0 186.0 98.6 190.3 0.20 0.98 
D3 40.0 174.0 100.2 161.3 0.40 1.08 
D4 80.0 79.5 105.3 74.6 0.76 1.07 
D5 100.0 0.0 105.7 17.9 0.95 - 

El 5.0 312.5 215.5 308.2 0.02 1.01 
E2 50.0 312.0 217.8 314.9 0.23 0.99 
E3 100.0 298.0 214.4 247.9 0.47 1.20 
E4 155.0 255.0 222.2 152.7 0.70 1.67 
E5 190.0 165.0 217.5 66.5 0.87 2.48 

Fl 5.0 390.0 224.5 340.8 0.02 1.14 
F2 50.0 367.5 224.4 333.2 0.22 1.10 
F3 100.0 360.0 221.3 270.5 0.45 1.33 
F4 150.0 330.0 220.6 164.4 0.68 2.01 
F5 200.0 280.0 224.8 61.6 0.89 4.54 

G1 12.0 374.0 245.2 362.6 0.05 1.03 
G2 60.0 430.0 241.5 - 	355.8 0.25 1.21 
G3 100.0 372.0 250.6 324.9 0.40 1.14 
G4 150.0 372.0 241.4 212.0 0.62 1.76 
G5 200.0 240.0 245.8 110.7 0.81 2.17 

(Dimensions and material properties are given in Table 4.1); 

(Columns D1 - D5 were tested empty) 

Table 5.1 	Comparison between experimental and uniaxial  

maximum moments - Imperial College tests  
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Shape Size 

- • 
in 

Thick- 
ncss 

in 

Yield 
stress 

tonf 

Cylinder 
strength 

lbf 

in
2 

Experimental Calculated 

MT 

ii 
c 

Axial 
load 

P 

tonf 

Maxi- 
mum 

moment 
MT  

tonf.in 

Nominal 
squash 
load 
P
L 

tonf 

Maxi- 
mum 

moment 
M
c 

tonf.in  

P 
7 1, 

in
2 

Square 5.00 0.189 31.38 6500 111.6 138.4 172.5 114.4 0.65 1.21 
67.0 162.9 189.6 0.39 0.86 
67.0 192.0 189.6 0.39 1.01 
44.6 200.9 220.7 0.26 0.91 

Round 4.50 0.125 26.78 4200 44.6 44.6 71.0 40.3 0.63 1.11 
40.2 47.3 46.3 0.57 1.02 
33.5 58.5 55.2 0.47 1.06 
22.3 62.9 67.3 0.31 0.94 
11.2 64.3 71.9 0.16 0.89 

Square 4.00 0.084 21.43 3400 37.5 19.8 49.2 18.7 0.76 1.06 
37.5 19.9 18.7 0.76 1.06 
24.3 40.9 37.7 0.49 1.08 
9.0 46.8 49.7 0.18 0.94 
9.0 50.9 49.7 0.18 1.02 

Round 6.00 0.061 21.43 3750 57.0 39.3 67.1 20.3 0.85 1.94 
3750 42.3 70.4 67.1 46.5 0.63 1.51 
3750 28.7 68.2 67.1 64.7 0.43 1.05 
3050 13.7 64.0 59.2 64.2 0.23 1.00 
3050 13.6 59.4 59.2 64.2 0.23 0.92 

Square 4.00 0.125 21.43 4180 43.9 53.1 66.2 35.4 0.66 1.50 
30.7 72.3 54.3 0.46 1.33 
30.3 72.3 54.9 0.46 1.32 
26.2 84.8 60.6 0.40 1.40 
12.9 93.3 69.5 0.20 1.34 
12.9 86.2 69.5 0.20 1.24 

4.0 . 	73.7 68.6 0.06 1.07 
0.0 91.1 66.6 0.00 1.37 

Round 5.00 0.095 18.75 5100 57.0 34.8 66.4 16.0 0.86 2.18 
53.6 50.0 21.6 0.81 2.32 
40.2 62.9 41.9 0.61 1.50 

35.3 62.5 48.6 0.53 1.29 

35.0 56.4 48.9 0.53 1.15 

34.6 62.7 49.4 0.52 1.27 

30.7 67.2 53.7 0.46 1.25 

26.8 69.6 56.7 0.40 1.23 

26.2 69.4 57.1 0.40 1.22 

17.5 65.0 59.8 0.26 1.09 

8.9 62.3 57.9 0.13 1.08 

4.4 58.0 55.0 0.07 1.05 

Table 5.2 	Comparison between experimental and uniaxial maximum 

(5.1 and 5.2) 
moments - Furlong's tests  
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Experimental moment-curvature relationship 

Uniaxial moment-curvature relationship, calculated by 

using stress-strain relationship 1 for the steel in 

both tension and compression, and stress-strain 

relationship 1 for the concrete in compression; 

concrete takes no tension. 

Triaxial moment-curvature relationship, calculated by 

using the following stress-strain relationships: 

(1) 	For the steel: 

(a) 	In compression - 

(i) Relationship 1 when P ,=:0.4 PL  

(ii) A linear interpolation for stress between 

relationships 1 and 2, as P varies between 

0.4 PL 
and P

u 
(b) 	In tension - Relationship 1 for all values of 

P 

(2) 	For the concrete: 

(a) 	In compression - 

(i) Relationship 2 when P Z 0.4 FL  

(ii) A linear interpolation for stress between 

relationships 2 and 3, as P varies between 

0.4 PL 
and P

u 
(b) 	In tension - concrete takes no tension. 

where, PL  = AS OY + A
c  61  

P 	= 0.75 A CY + 2.18 A c3' 
u s y 	c m 

Stress-strain relationships are shown in Figure 5.1 for the steel, 

and in Figure 5.2 for the concrete. 

FIG. 5.42 	LEGEND USED IN FIGURES 5.25 TO 5.41 
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