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Abstract

A general solution procedure is described to predict
the transport of momentum, enthalpy and matter in steady,
two-dimensional, incompressible, laminar or turbulent flows.
The procedure is based upon a special 'upwind' difference
scheme so as to ensure that the resulting difference
equations converge to a solution in an iterative procedure,
and that they obey the physical laws of conservation,

To permit prediction of turbulent flows, a modified
form of the Kolmogorov-Prandtl hypotheses of turbulence is
employed. Also used is a model of a Couette flow for
regions close to solid walls where the dependent variables
often have steep gradients. The use of this model allows
the computer time to be employed more economically.

As a comment on the accuracy, economy, and
applicability of the procedure, predictions are obtained
for two‘flow problems: the laminar flow in a square cavity
with a moving 1lid, and the turbulent flow downstream of a
sudden enlargement in.a circular pipe. These predictions
are examined in the light of the available experimental |
and theoretical information,

Finally, an experimental investigation for the
sudden-enlargement problem is reported. Experimental
data, obtained for very high Schmidt numbers by the use.bf

'diffusion-controlled electrolysis' are presented.
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Preface

This thesis represents the main result of my research
activitiles during the last three years or so. It describes
a general solution procedure for the prediction of steady,
two-dimensional imcompressible flows. To the best of my
knowledge, it is based upon more secure mathematical
foundations than most other methods, and, undoubtedly, has-
a very wide field of applicability.

At the time of my arrival (October 1965) in the
Mechanical Engineering Department of the Imperial College,
research activities were being directed towards the use and
exploration of the integral profile methods for the
solution of the differential equations which govern the
transfer processes in the boundary-layer type of flows.

It was thought, at the time, that a logical extension of
the then existing methods would be their application to
separated flows. With this aim in mind, I completed a
survey of the integral profile methods. However, during
the next few months it became apparent that the parabolic
equations of the boundary-layer type were unsuitable for
the description of recirculating flows or flows with no
dominant direction of velocity. A search for alternative
methods immediately centred on the numerical solution of
the steady-state Navier-Stokes equations which are of |
elliptic type and adequately describe the flows mentioned
above. Suggestions of Spélding (1966) were incorporated
in a numerical procedure by Runchal and Wolfshtein (1966).
A modified solution procedure, which to this date has-

remained essentially unchanged, was l%ter presented by



Runchal, Spalding and Wolfshtein (1967).

Once a reliable solution procedure had been devised,
I was able to devote almost my entire attentions to the
experimental project. The application of an electrolysis
technique to mass-transfer in separated flows at high
Schmidt numbers proved, as is usual, frustrating in the
initial stages. However, by the end of March 1968, I was
able to obtain the required data and learn my lessons.about
some of the problems posed by separated flows.

Final comparisons of the predictions with the
experimental data of other research workers, and with
those of mine, were carried out during the summer of 1968.
However, the writing-up of this thesis was delayed because
of my contribution to the Post-Experience Course in 'Heat
and Mass Transfer in Recirculating Flows' held in the
Mechanical Engineering Department. The experience gained
from this Course has proved very valuable to me in my
general understanding of recirculating flows and, in
particular, has influenced the presentation of chapters
2, 3 and 8.

Now that it is time for me to acknowledge the training
and help that I héve received from various individuals, I
find it hard to distinguish my contribution from that of
Professor Spalding, my supervisor.l At almost every stage
of my research activities he was very closely involved, |
sometimes through direct participation, but mostly in an
advisory capacity. His optimistic and ambitious attitude
did much to prevent me from being dismayed by the initial
difficulties involved. At practically every crossroad, he

was able to identify the path that led\in the direction of
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the main goal. At this moment of introspection, I can
think of at least a few instances when I lost valuable time
by either not heeding, or not seeking, his advice. I also
owe a lot to Spalding for his persistent and patient advice
on the grammar, the logic and the semantics of the English
language. If this thesis is still inadequate in these
respects, as is more than probable, all that I can say is
that it would have been much worse but for Spalding's
constructive criticism.. I cannot truthfuliy say that I
always enjoyed his merciless correction of my reports but I
can definitely say that I always benefited from his
criticism: after all, most medicines are bitter to swallow,
but they do good.

Almost all of the work on the basic numerical procedure
and the basic computer programme was done in close cooperation
with Mikha Wolfshtein. This partnership with him, and his
friendship, has been a most helpful influence. The credit
for the development of the numericgl procedure is shared by
him at every level. Suhas Patanker patiently explained the
intricacies of the principles of heat transfer and fluid flow
in the initial stages of my research programme. David
Gosﬁan and Dr. Iribarne made the application of the
experimental technique far less painful than it would other-
wise have been. The beneficial effects of the discussions
during the Sunday-afternoon coffees with David have been Eoo
helpful to escape mention. I also wish to thank David Hayes
for many helpful discussions and comments,

There are many others to whom my thanks are due., For
lack of space, I find myself unable to mention all the-

individuals by name who have contributed to this thesis in
AN .
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various capacities. But I wish to mention specifically
Bob Curr, Bob King, Krishnan, Rodney Le Feuvre, Norman
Mitchell, Dr. Pun and Alan Robinson. My thaﬁks are also
due to Miss E. Archer for library services, and to Miss

M. P. Steele for help and advice in connection with
countless secretarial and administrative problems., The
Tea Club in the Heat Transfer Laboratory always provided a
welcome distraction during the routine of experimental work.

I find myself unable to express my feelings in words
for the active encouragement and support of my parents,
Yashoda and Boota Ram,and my sisters, Raksha and Smiti, in
my pursual of an engineering career. To a large extent,
it is Raksha's active ihterest which enables me to present
this thesis.

Most of the work reported in fhis thesis was carried
out during the tenure of a scholarship from I.C.I. (India)
Pvt. Ltd. A generous allocation of computer time by the
Centre for Computing and Automation of Imperial College and
the development of a contour plotting subroutine by Richard
Graham of C.C.A. contributed to the speed of execution of

this project.

London, January 19609. A. K. Runchal
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Chapter 1

Proloque

1.1 The problem considered

Flow separation? a commonly encountered engineering
phenomenon, may increase or decrease the usefulness of an
engineering device. An example of the increase in
usefulness is the use of turbulence promoters on the wings
of an aeroplane; that of the decrease is the stall of an
aerofoil at large angles of incidence.. |

Separation is caused by an adverse pressure gradiént;
and in enginee:ing practice its most common cause is an
abrupt change in the profile of a solid surface in contact
with the fluid - in other words, 'a surface discontinuity'.
An example in confined flows is the sudden change in the
diameter of a pipe; in unconfined flows it may be caused
by a depression in, or a protrusion from, an otherwise |
smoéth surface, such as a step in an open channel.

However, surface diséontinuity is not the only éause
of separation: théfe are others. As the present thesis
is intended to deal only with steady :subsonic flows, some
types of separation will not fail within its scope; among
these types are the separation due to impulsive motion and
that induced by an incident shock-wave. A type of
separation which 1s to be considered 1s that induced bylan
adve:se pressure gradient even on smooth surfaces without
any surface discontinuity. In such cases, the pressure
graaient pfogressively_retards the fluid, the effect being
more pronounced oﬁ the low-momentum fluid near the wall.

This fluid is ultimately unable to overcome the opposing
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pressure and there results a reversal in the direction of
flow: this is termed 'boundary-layer separation'. Perhaps
the best known example of such behaviour is the’flow
separation from the rear of a circular cylinder placed
transverse to a stream of fluid.

In spite of their common occurrence and their
technical importance, separated flows remain relatively
unexplored; they pose a formidablé problem for the engineer
who is often incapable of evaluating their advantages -
such as the increased heat transfer - against their
disadvantages - such as the increased pressure loss. This
scarcity of information is a result of the mathematical
complexity of the system of equations which describe
separated flows. For laminar, incompressible, flows the
problem is defined by the Navier-Stokes equations (see,
e.g., Bird, Stewart & Lightfoot 1960). For steady
turbulent flows a common approach is to assume that the
flow can be adequately represented by a fluctuating
component superimposed on a time-mean flow; this, via the
Navief—Stokes equations, leads to what are commonly referred
to as the Reynolds equations. Transfer of heat and massj
is governed by equations mathematically similar to the
hydrodynamic equations.

The magnitude of the mathematical problem can be
appreciated by recognizing that the Navier-Stokes (as weil
as the Reynolds) equations are a set of coupled non-linear
second-order partial differential equatipns. For steady-
state flows, these equations are of elliptic nature (see,
e.g., Forsythe & Wasow 1960),‘ Even the theory of such

linear partial differential equations is in a far from -
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satisfactory state (e.g. Bramble 1966); that of non-linear
equations can only be described as fragmentary (e.g. Ames
1967). A result of their mathematical complexity is that
these:equations, in the absence of any simplifying
assumptions, are impervious to knewn analytic technilques.
For turbulent flows, the Reynolds equations do not even
define a closed mathematical system: introduction of the
fluctuating components of flow results in the number of
unknowns exceeding the numger of available equations. One
way to make the probleh tractable is to supply the
additional inforﬁation in the form of physical hypotheses
about the structure of turbulence; the fluctuating
components can then be related to the mean components of
flow.
Additionai mathematical and physical complicacies

arise from the evidence that some steady and two-dimensional
flows develop unsteady and three-dimensional characteristics
after separation. The phenomena assoéiated with the vortex
street behind a cylinder provide a striking example of the g
separation-induced unsteady behaviour of a flow. Three-
dimensional and unsteady phenomena have also been noted'in
certain regions of otherwise steady, two-dimensional flows
by, for example, Tani (1958), Abbot & Kline (1962) and
Filetti & Kays (1967).

| ~ It is no surprise therefore that the analysis of
separated.flows is still at a primitive stage. Though
some methods exist for laminar flows, they are by no means
applicable generally; moreover, in practice, most problems

v

involve turbulence. -
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The basic task, therefore, is to devise a solution
procedure for non-linear second-order partial differential
equations, such as the Navier-Stokes equations. Within
the restrictions imposed, those of steady; incompressible
and two-dimensional flows, the solution procedure must be
génerally applicable to all types of boundary and flow
problems; it must, of course, be éonomical enough to be *Q;//
of use for design purposes. Oncerthe mathematical problem |
has been successfully tackled, attention can be turned to
obtaining and testing the physical information concerning
the structure of turbulence and the special phenomena

assoclated with separation.

1.2 Previous knowledge

1.2-1 Numerical solutions of the complete eguations

The improbability of obtaining analytical solutions
for the complete differential equations has forced a search
for alternatives and, of those explored, numerical methods
of the finite-difference type have proved to be the most
successful.

In 1933, Thom obtained a finite-difference solution
for the flow past a circular cylinder. From the Navier-
Stokes equations, he obtained a differential equation for
the transport of vorticity, and avoided the expliclit use of
velocities by defining a stream-~function. He then used
'central" finite-differences to obtain algebraic equations

for vorticity and stream-function which were solved by an

* The reader who is not familiar with the terminology used
in connection with the finite-difference methods should
refer to some textbook on numerical methods, such as
Forsythe & Wasow (1960).

AN



15.

iterative technique. His method was, however, unstable
above a certain Reynolds nurber (~50) and no solutions
could be obtained for higher Reynolds numbers (Thom &
Apelt 1961)*. Such was also the experience of Kawaguti
(1961) and Simuni (1964) who were dealing with different
problems by, essentially, the same method. Thom and
Apelt (1961) also reported that the range of Reynolds
number could be extended by the use of under-relaxation.
Burggraf (1966) made extensive use of under-relaxation and
presented solutions, for the confined flow in a cavity, for
Reynolds numbers as high as 400. However, his experience
demonstrated that under-relaxation exacts severe penalties
in computing time and he had to abandon his computations
for higher Reynolds numbers. It was therefore realised
that if economical solutilons were to be obtained, a
radically different approach was necessary.

A significant discovery was made by Courant et al.
(1952) in connection with numerical solutions of non-linear
hyperbolic equations. They found that the stability of
their numerical procedure could be improved by the use of
an 'upwind' finite-difference scheme. This concept
implies that the difference form of the convective terms
be caused to depend on the direction of the local flow in
contrast to the central finite-difference forms, which do
not attach any importance to the direction of flow.

Encouraging results were obtained by the use of Courant's

* Allen & Southwell (71955) used a similar method and a
space transformation to obtain solutions for Reynolds
numbers as high as 1000. However, transformations such as
theirs are particular to a physical problem and cannot be
considered general. )
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suggestion for a number of problems involving unsteady
flow, e.g. by Blair et al. (1957) and by Barakat and Clark
(1965).

Incorporating a similar independent suggestion of
Spalding (1966), Runchal and Wolfshtein (1966) put forward
a method for the prediction of steady, viscous and two-
dimensionai flows.. In contrast with the earlier methods,
such as the one by Burggraf (1966), their method was found
to be unconditionally stable for ail Reynolds numbers; and
the computing times involved were much smaller.

Following another suggestion by Spalding (1967a), the
above method was generalised to include noh-uniform
properties, and was later alsomodified to improve accuracy.
Various stages of development, of which the present thesis
forms a part, have been reported by Runchal et al. (1967),
Wolfshtein (1967) and Pun and Spalding (1967).

All the finite—difference techniques mentioned above
had one common thread: they followed Thom's practice of
using the vorticity and stream-function as the dependent
variables. The chief advantage is that pressure, usually
not a pre-specified function,-dOes not enter into the
calculationé explicitly. These techniqueé, therefore,
differ sharply from another recent stream of work; this
employs velocitiles and pressure as the dependent variables;
and has been applled mainly to unsteady flows. For |
example, Harlow and Welch (1965) reported an interesting
application to the transient flow of a fluid with a free

surface.

* It seems that by this time a number of workers had been
attracted by the suggestion of 'upwind-differences'. For
example, Greenspan (1967) independently proposed an
identical method. Not surprisingly his findings were in
accord with those of Runchal and Wolfshtein.
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There is a difference of opinion among numerical
analysts about the relative merits of using either the
‘vorticity' formulation or the 'velocity' formulation of
the equations. Though the use of the latter has the»
advantage. of direct interpretation of the results in terms
of velocities, this is of importance only when the results
are monitored at intermediate stages. Such a necessity
usually arises‘only for transient flows; on the other
hand, it has been observed that the 'velocity' formulation
converges to a steady-state only very slowly because of
the strong non-linear nature of the pressure equation
(Aziz & Hellums 1967). Recently Chorin (1967) reported
an élternative formulation for the pressure equation which
has not been widely tested as yet. Under these circum-
stances the only conclusion that can be drawn is that the
calculations for pressure are, at the least, an
inconvenience.

A large volume of numerical work in recent years has
been concerned with the behaviour of transient flows.

Much of this work was performed at Los Alamos Scientific
Laboratories and has been reported in a number of reports

from that source; for example, Fromm & Harlow (1963)

presented the numerical solution of the classical problem

of the vortex street development behind a cylinder.

However, the sole concern in the present thesis is the
solution of steady-state problems: therefore, no particular _
attention has been, fior will be, devoted to the literature w;

dealing with transient flows.
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1.2-2 Approximate theories based upon physical models

A number of theories for separated flows postulate the
existence of a particular flow-pattern which is supported
by specialised mechanisms for the exchange of mass,
momentum and enthalpy etc. The mathematical problém is
simplified by assuming that some parts of the flow can be
described by equations of the boundary-layer type. Further-
more, such theories are usually particular either to those
flows which re-attach to a surface, or to the ones that do
not.

Various authors (Hanson & Richardson 1964, Chilcott
1967) have recently prepared detailed surveys of the
available literature and it seems pointless here to provide
yet another.

Fig. 1.2-1 displays a rough summary of the available
information in the form of a flow diagram.® For the sake
of clarity, the display has been kept as simple as possible;
a look at the representative literature is enough to
demonstrate that separated flows are capable of behaving
in a much more complex fashion.

The notion that steady separated flows, which re-
attach to a surface, can be represented by a core of
recirculating fluid surrounded by thin boundary layers, has
existed for a long time; in 1956, Batchelor derived an
integral condition for the state of laminar fluid in such
core regions with closed stream-lines and also proved that,
for two-dimensional flows, such a core will consist of

uniform-vorticity fluid. Pan and Acrivos (1967a) later

* The author gratefully acknowledges the contribution made
by Prof. Richardson in drafting this section in general,
and Fig. 1.2-1 in particular. \ ~
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extended this analysis to include heat transfer. If this
view 1s accepted in its general implications, then such
separated flows, whether laminar or turbulent (Squire 1956),
can be envisaged as a core of recirculating fluid surrounded,
in general, by a free shear-layer between the outer main-
stream fluid and the core, and a wall boundary layer between
the solid surface and the core.

Chapman (1956), on the basis of the above assumption,
proposed that the free shear-layer offers the bulk of‘the
resistance to momentum and heat transfer. That such was
the case for laminar flows, could be concluded from good
agreement between the theory and the experimental evidence;
however, the predictions for turbulent flows failed to
match the experiments (Larson 1959). Carlson (1959)
suggested that the heat transfer process is dominated by
the diffusional exchange between the recirculating core and
the wall; however, Carlson's analysis also does not stand
up_to experiments (Scott & Eckert 1966). Inadequacies of
the above two models led Charwat et al. (1961) to propose
that the transfer processes are a manifestation of the
periodic exchange of fluid between the free shear layer and
the core. This model was proposed speclifically from
observations on supersonic flow past cavities, with
osclllations in the separating stream-line. Its validity,
therefore, is questionable for those flows which do notx
possess such a behaviour.

Lack of any satisfagtory theofy is more striking for
the case of the flows which do not reattach to a surface,
such as the flows behind bluff’bddies. In spite of the

large amount of effort that has gone %nto this field, we
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know little about the transfer mechanisms in this region.
The main reason for this seems to be the strong periodic
nature of the flow in the near-wake regions. Hanson and
Richardson (1968) state that 'the near wakes cannot be
adequately represented by a time-independent mean flow with
oscillations imposed upon it, in contrast with wakes at
remote distances from body."

The flows with Reynolds numbers (for a circular
cylinder) of less than about 300 are not of much technical
interest and consequently we shall not discuss these:
excellent reviews, such as the one by Morkovin (1964), are
available. Above a critical Reynolds number, which
depends upon the free-stream turbulence,the shear layers
separating from the cylinder undergo transition to
turbulence before joining the vortex street; at still
higher Reyholds numbers (~ 2 x 105) the transition occurs
before separation from the cylinder.

The observation that turbulent separated flows behind
bluff bodies seem to belong to a class of flows which
exhibit similar characteristics, led Richardson (1963) to
propose a simple power law - similar to the one for
turbulent Reyleigh convection (Malkus 1954) - for the
average heat transfer coefficient vs. the Reynolds number.
Knight (1966), after examining the experimental data,
concluded that a similar dependence also exists for thoée
flows which feattach to a surface.

Recently Spalding (1967b) proposed a theory for heat
transfer in steady turbulent flows, with or without
reattachment, on the basis of a different concept. One

of the characteristic features of separated flows is that
N .
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the locations of maximum shear .stress are‘remote from any
wall. Thus the turbulence which is generated in the high-
shear regions must be conveyed to the vicinity of the wall
by the mechanisms of convection and diffusion. Spalding
argued that the turbulence intensity, and thus the heat
transfer, in the vicinity of a wall is governed by the
interaction of these two with the turbulence dissipation.
By making further use of a one-dimensional model and the
hypotheses of turbulence energy balance, proposed by
Kolmogorov (1942) and Prandtl (1945), he obtained a relation
for the heat transfer coefficient in terms of other para-
meters such as Reynolds number, turbulence intensity, etc.
Spalding, to the extent of the empirical constants required
by the hypotheses, obtained good order-of-magnitude agree;
ment with experimental data for three different problems.
Lack of information about the empirical input and the
mathematical complexity of the two-dimensional model have,
until recently, prevented any further development in this

direction.

1l.3 The present contribution

1.3-1 An evaluation

The major contribution of the present thesis is in
that it presents a general numerical method to deal with
the basic mathematical problem - that of solving the
complete differential equations. Inadequacies of the
approximate theories of section 1.2;2 are all too notice-
able in their limited applications; their use for general
solution procedures is therefore ruled out. The numerical

work reviewed in section 1.2-7 suggests the use of finite-
AN
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difference techniques as a cornerstone for general
numerical methods: the method presented in this thesis
exploits this suggestion. The applicability, economy and
accuracy of the method is demonstrated by solving two
different problems: one for laminar and one for turbulent
flow.

The problem tackled for laminar flow is that of a
square cavity with a moving lid. Flows which are similar
to that in a cavity are frequently encountered in practice.
A common example is the flow past a recess, or a step, in
a solid surface. Better understanding of such phenomena
will, it is hoped, lead to more efficient designs.

The turbulent-flow problem is that of the abrupt
enlargement of a cilrcular pipes Steps in pipes are
either intentional or accidental features of design; and
they lead to appreciable differences in local heat-transfer
and proniuro-lonn along the plipe,.

For the pipe-enlargement problem an experimental
investigation is also reported. The experimental technique
is based upon diffusion-controlled electrolysis, and is
suitable for measuring mass-transfer rates at high Schmidt
numbers. Although the technique is well-established, its
application to separated flows is novel. Some of the
special problems, which are posed by its application to
such flows, are also discussed in the thesis.

iastly, some progress is reported in the direction of
finding an appropriate physical input for turbulent flows.
The work 1is based upon the hypotheses - -of turbulence-energy
balance first proposed by Kolmogorov (1942) and Prandtl

(1945).
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During the course of the present work some special
difficulties were encountered, mostly connected with
turbulent flows; these are listed where appropriate, in
the hope that they will act as a guide for further research

in this field.

1.3-2 An outline

This thesis is divided into three parts.

Part I concerns the theoretical investigation and is
further sub-divided into five chapters. Chapter 2
presents the mathematical problem, and chapter 3 a numeric«i
procedure to solve it. For turbulent flows, the
mathematical model is made complete by provision of a
suitable empirical input in the form of a set of physical
hypotheses; this is presented in chapter 4. In the sanc
chapter is also presented a special one-dimensional flow
model; this enables anlytic integration to be carried out
across thin boundary layers which usually exist close to
solid walls. The chief advantage of this model is that
it permits economy of computer time. Chapter 5 deals with
the results obtained by the application of the numerical
procedure to two flow problems: these results are also
compared with thoseavailable from other sources. The
theoretical investigation is reviéwed and discussed in
chapter 6. Also listed in this chapter are some of the
deficiencies in the present state of knowledge; in the
light of these some recommendations for future work are
made.

Part IT is a summary of the experimental investigation

and the discussion of the results so\pbtaincd.
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A listing of the computer programme, and some other
information in connection with the computations, is
presented in Part III which deals with the computational
aspects of the numerical procedure.

Nomenclature and list of references follow Part III.
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Chapter 2

The mathematical nroblem

Differential equations are convenienﬁ means of
expressing physical laws. The equations that
follow in this chapter express the laws of
conservation of mass, momentum, enthalpy and
other convected properties. The laminar and
turbulent flows are described by the same set
of equations by postulating 'effective' ex-
change coefficients for momentum, enthalpy,
etc. The mathematical problem is closed by a
statement and discussion of the boundary

conditions.

2.1 The differential equations

2.1-1 Restrictions

In this chapter are presented the partia;
differential equations which describe the steady two-
dimensional flow of an isotropic fluid in an axisymmetric
space. The axis of symmetry may be present in the
vicinify of the flow-field, as for the flow in a circular
pipe, or it may be located at infinity, as for the flow
along a plane surface. The condition of two-
dimensionality is imposed by requiring that the flow bel
completely definable by two mutually orthogonal space
directions. A |

If the flow is turbulent, it will be postulated,
following the common practice, that it can be represented

by a fluctuating component superimposgd on a time-mean
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component (see e.g. Hinze 1959). We further postulate
that the effect of the fluctuating components can be
incorporated by using effective mean diffusional fiuxes of
momentum, heat and mass-species, etc. For example, the
effective diffusional flux of momentum will comprise both
the mean stresses and the stresses due to the fluctuating
components better known as the Reynolds stresses.

Although the numerical méthod, to be presented in the
next chapter, does not require any further restrictions
(Spalding 1967a), for simplicity and clarity of analysis,
the field of interest will be further restricted by
assuming that the body forces, thermal radiation and swirl
velocity are absent, Attention will now be confined to
those flow fields which can be adequately qescribed by
either a plane cartesian coordinate system, or a
cylindrical coordinate system. In the following sub-
sedtion we will see how these two coordinate systems can

be incorporated into a single system.

2.1=-2 The coordinate svystem

Fig. 2.1~1 shows a part of the coordinate system

X ;X3 L Xq and X respectively denote the two mutually

orthogonal coordinates to be used to describe the spatial
behaviour of the flow. The distance from the axis of

symmetry is denoted by. the radius r.
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X, T
|
I =X,
¥
. . %_ axis _of symmetry
Fig. 2°1-1 THE CO0-ORDIMATE SYSTEM,

For a cylindrical coordinate system, the origin of
the coordinates is on the axis; in such a case x2(=r) is

Lhis randdal coordinate and %, is the axial coordinate which

1
is more commonly denoted by z.

On the other hand, when r—=, x and'x2 represent the

1

familiar plane cartesian coordinates.

2.7-3 The laws of conservation

With the restrictions of section 2.1-1 and the
notation of section 2.1-2, the following are the
mathematical statements of the respective laws of
conservation:

conservation of mass

(a/axj)(r.Gj) =0 , (2.1-1)

conservation of momentum in direction i

(a/axj)(r.Gj.ui + r.Tij) + r.0p/0x; = 0 , (2.1-2)

and conservation of property ¢

(a/axj)(r.Gj.Q + r.Jg,j) + r.S, =0 (2.1-3)
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where,
Gi & u; are, respectively, the mass velocity and the

velocity component in direction i; by definition,

Gi = pu, with p as the mass-density,

Tij is the component of the stress tensor in direction
j and it operates in the plane which has its normal
in the direction i,

P is the fluid pressure,
is any conserved property such as enthalpy,

JQ,j is the diffusional~flux component of the property
@ in the direction j, and

SQ is composed of all the terms which represent the

generation or destruction of the property @.

The above representation makes use of the summation
convention: a repeated subscript is summed over its all
possible values,and a non-repeated subscript takes all its
possible values independently. For a two-dimensional
flow, the eguation:

(3/3x3) (A;.B,) = 0 , - © (2.1-4)

represents the following two equations:

(a/axi)(Al.Bi) + (a/axz)(Ai.BZ) 0 ,and (2.1-5)

0 - . (2.1-6)

(3/0x%,)(A,.B ) + (8/0%,) (A,.B,)

2.2 Auxiliarvy information: +the diffusional fluxes

Equations such as (2.1-2) and (2.1-3) do not, in
themselves, state the mathematical problem completely.
This is so because nothing, as yet, has been said about
the flux components T.. and J, ..

P ij 8,3
For laminar Newtonian fluids, the components of the

stress tensor Tij are easily related to the rate-of-strain
AN
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tensor (velocity-gradients) via a generalised form of the
Newton's law of viscosity (Bird, Stewart and Lightfoot
1960). Similarly, the flux components of enthalpy and
mass-species can be related to their respective gradients
by the generalised forms of the Fourier's law of heat
conduction and the Fick's law of diffusion.

For turbulent flows, the stress tensor cannot be,
rigorously, related to the strain tensor; nor, for that
matter, can the flux vectors of a conserved property be
related to its gradients. Nevertheless, following an
early proposal by Boussinesq (1877), for prediction
purposes we can postulate the existence of effective
exchange coefficients to replace the laminar exchange
coefficients in the respective stress and flux laws; thus:

T (auj/axi + aui/axj) , (2.2-1)

i3 = “Hefs
and

J (am/axj) (2.2-2)

?

9,5 = ~\g,efs

where and are respectively the effective
K g,eff P

eff
viscosity and the effective diffusivity.

We can also postulate that:

15,e£f = Pere/Of,ec (2.2-3)

where Ga,eff is the effective Prandtl/Schmidt number for
the property @ and, from experimental evidence, is likely
to be almost constant.

Thus -the unknowns Tij and Jg,j have been replaced by
the unknowns u_.. and Oé’ P Fortunately some
information about the latter can be obtained from cor=
relation of experimental data for turbulent flows;

admittedly, however, the available information leaves much

to be desired. in cnapter 4 <o ooedd dascuss these
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matters in more detail; for the time being, we proceed
further on the assumption that e and Gé,eff are
determinable.

For laminar flows, of course, p_.. and 6%,eff are to
be replaced by the respective laminar values: the dynamic

viscosity p and the laminar Prandtl/Schmidt number‘GB.
These are evaluable from many compilations in the form of

tabulations or formulae.

2.3 The transformed momentum and continuity equations

2.3-1 The vorticity equation

Equation (2.1-2) contains the gradient of pressure,
an unknown of the problem. It is true that the total
number of unknowns is equal to the number of equations and
that the pressure can be eliminated between equations
(2.1-1) and(2.1-2). However, for reasons stated in section
1.2-1, the calculation of pressure is not very desirable
from the point of view of numerical solution. We there-
fore proceed to eliminate the pressure from the above
equations by a well-known trick: the introduction of
vorticity. For a two-dimensional flow, vorticity w is
defined by: ‘

w = auz/ax1 - du,/0x, , _ (2.3-1)

Now, if we differentiate the direction-1 momentum
equation with respect to X, and the direction-2 momentuﬁ
equation with respect to Xq9 and subtract the first from
the second, we then obtain*:

(8/03;)(x.G5.0/x) = x™2.(3/0%,) (x> (8/0%) (g ppett/)) @-
-¢ r.5, =0 ' (2.3-2) -

’

N
* A detailed derivation is given by Gosman et al. (1968)
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where S, is a group of terms containing second derivatives
of Hasfi speclifically:
S 2 2 2 L2

w = (2 peff/ax1>(au1/ax2> - (0 peff/axz)(auz/axi) +

2 Sve v ) (3 5 ]
+ (0 ueff/oxioxz)(ouz/oxz - 6u1/ax1) .(2.3-3)

2.3-2 The stream-function equation

With the replacement of equation (2.1-2) by (2.3-2),
velocity components no longer appear as the dependent
variables, but they do still appear as multipliers in
equations (2.1-3) and (2.3-2). These can also be
eliminated by the introduction of a stream-function ¢,

defined by:
10
1 r ax2 )

h
X

- ’ (2. 3"4)

r

G, = -

mn

G

(Y [N
QY

1
It is easy to show that, by this definition of the
stream—-function, the law of consérvatidn of mass, as
‘ expressed by equation (2.1-1), is implicitly satisfied.
A consequence of definitions (2.3-1) and (2.3-4) is
that: |
(/0% (o™ £ Lob/ox,) + W = 0. (2.3-5)
This is usually referred to as the stream-function
equation. $'s can be calculated with its aid, and Gj's
can then be eliminated from the vorticity and the
conserved property equations with the help of (2.3-4):

this, we shall proceed to do in the next section.

2.4 The general form of the differential eguations

Equations (2.1-3), (2.3-2) and (2.3-5) redefine the

mathematical problem with W/y and § as the primary

dependent variables and ¥ as the supporting variable.
\
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All these equations may be represented by a single general

equation:

a.(a/axj)(r.Gj.ﬁ) - B.(ﬁ/axj)(r.r.a(é.ﬁ)/axj) ®r.5, =0 ,

(2.4-1)

where @ now stands for any one of the previous variables,

w/r, ¥ or #.

This equation,
the stream-function,

a.<a/ax1><a$/ax2.¢) - a.(a/ax2>(aw/ax1.¢> -

in full,

is:

- B.(3/0x,) (r.T.0(5.8)/0%,) -

in terms of the gradients of

= B.(3/0%,) (r.1.0(6.8)/3%,) w r.5, =0 , (2.4-2)
where the various coefficients and SQ's are given in
table 2.4-1.
« i
g |Name «f B rod S g Remarks
|
¥ |stream- of 1 -1.-21 1 w/x see equation (2.3-5)
function
w/r|vorticity 1 r—2 1~a’“eff equation | Sy neglected for
< (2.3-3) computations because
radius of uncertain nature
of Ueff; See section
T temperature] 1| 1 E} off 1 0 Sy for a flow with
! i? low velocity,
ii) negligible mass
transfer, iii) no
generation or dis-
sipation of enthalpy.
m mass of a 11, eff 1 0 Sg for a flow with
chenmical ? i) small mass
species in transfer rates,
unit massof ii) no generation or
the mixture destruction of the
species
k kinetic- 1) 1 q{ off 1 equations| Sy depends on
energy of ? (4.1-4) turbulence-~hypotheses;
turbulence (4.1-7) see section 4.1 and
§ equation (4.1-3).

Table 2.4-1 Some particular forms of the general

differential equation (2.4-2).

N
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It must be stressed here that the Sg's given in the
Table 2.4-1 are by no means general: but they are the ones
which apply to the problems discussed in chapter S of the

present thesis.

2.5 The boundary conditions

The application of equation (2.4-2) to any particular
problem needs the Speéification of boundary conditions.
In the mathematical literature, equation (2.4-2) is
referred to as an elliptic equation (e.g. Forsythe & Wasow
1960). Such equations require that, for each dependent
variable, a boundary condition be specified along a closed
curve bounding the region of interest. This boundary
condition may be the value of the variable itself or that
of i1ts normal gradient at the boundary. Of course, a
boundary condition of the third type, a combination of the
above two, may also be specified.

The boundaries encountered in practice can usually be
accommodated by one of the following four categories:
a) Inlet sections, b) Outlet sections, c) Axes (or planes)
of symmetry, and d) Solid walls. We will discuss the
boundary conditions for each of these individually.

a) Inlet sections: - The conditions of the entering fluid

are supplied as part of the problem-specification. For
example, in a typical case, it may be the distributions of
velocity, temperature, composition, and the intensity of
turublence which are given. The dependent variables of
the general equation (2.4-2) are normally calculable from
this information; for example, the stream-function can be

obtained from the velocity distribution via equation (2.3-4).
N
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b) Outlet sections: The fluid condition at an outlet

section is not always known in advance. Nevertheless, a
boundary condition for each variable must be specified in
order that the calculations may proceed.

At high Reynolds numbers, the effect of the outlet
‘boundary condition on the upstream fluid is small. This
follows from the observatlion that, in the type of flow
being considered, diffusion is the only mechanism capable
of transmitting upstream the effects of the downstream
boundary condition; this mechanism is understandably weak
at high Reynoclds numbers. This fact can often be ex-
ploited in the specification of boundary conditions at an
outlet section. For example, the gradients of the
dependent variables along the stream-lines may be taken as
zero; the stream-lines, in turn, may be assumed toc inter-
sect the outlet boundary at, say, right angles. In some
cases, it may be possible to calculate the position of the
stream-lines from a given, or assumed, velocity—l

distribution.

&
c) Axes of symmetry:In an axisymmetrical flow, no fluid

can cross the axis of symmetry; the stream-function along
the symmetry axis must, therefore, be a constant.

Although the vorticity, w, at an axis of symmetry is
zero, the dependent variable W/r, is not necessarily zero.
A boundary condition for w/r can be derived by considering

the restraints on the variation of the axial velocity, Uy,

in the proximity of the symmetry axis. For reasons of

symmetry: ' .

* The boundary conditions for a plwﬂe of sywmetry are
derived in a similar manne: Sl an anis uxcept that

is to be treated as a constaiic.
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Lt
r* 0 aul/ar = 0 . (2.5~1)
Since uy itself tends to a finite value, say U, at the

axis, it follows that the first two terms in a polynomial

expansion for u, are:

1
Lt ' 5
r~” 0 u, = U 4+ Cor'™ 4 wew . (2.5-2)
A boundary condition for W/r can now be obtained from:
Lt _1
r* 0 W/r = -r .6u1/6r = =2C . (2.5=~3)

The coefficient C can be evaluated by reference to
the value of u, at a small value of r where (2.5-2) may bhe
assumed to hold.

The boundary condition for other variables, such as
temperature, takes the form of the vanishing normal
gradient at the axis. For example, for any conserved
property @, 68/0r will be specified as zero at the symmetry

axis.

d) Solid walls: For a wall impermeable to matter, it is

an implication of equation (2.3-4) that the stream-
function along the wall must be a constant. The value of
this constant can be obtained from tﬁe data of the problem.
For a permeable wall, given the rate of injection through
the wall, the stream-function can be calculated from
equation (2.3-4).

Vorticity is composed of the gradients of velocity,
and it is rare for these to be pre-specified. A boundary
condition for vorticity can, however, be obtained from the
'no-slip' condition. For purposes of illustration, let us

consider a simple case: that of an impermeable, stationary
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wall situated far away from the axis of symmetry. In
most cases, near a wall, the gradients of the variables in
the direction parallel to the wall may be neglected in
comparison with those in the normal direction. The
vorticity equation (2.3-2) for this case may be written
as:

2 2 .
(a /axn)(peff.w) =0 ) (2.5-4)

where xn is the distance normal to the wall.

From this equation we obtain:

W o= (Ci.xn + C2)/p.eff , and (2.5-5)
where C1 and C2 are the constants of integration and the

subscript S refers to the value at the wall.

A relation for the constants of integration can be
obtained by reference to the stream~function equation
(2.3-5) which, for this case, may be written as:

(0%/0x2) () + pura(Clux + C)/p . =0 . (2.5-7)

This equation, with the help of 'no-slip' condition

( (5$/axn)s = 0 ), vields:
rx fx

! B~ n - -
(V- Dy o= Per.dy JO (Cl.x + C2)/p.eff.dx.dxn . (2.5-8)

If a Bord™ Xy relation 1s available, C1 and C2 may be
evaluated by reference to ) and @ values a short distance

away from the wall. For example, i1f Rose is a constant,
4.

2
n,C

where C refers to a point within the flow field at a

Wy = Co/i o = —0./2 - '3(4-9C_:bs)/(p.r.x ), (2.5-9)

distance of x from the wall.

n,C
For turbulent flows Hospe MY vary sharply near a wall.
In such cases, equation (2.5-8) 'should be integrated.with

proper assumptions about the variation of Bogges oONE such
AN

set of assumptions is discussed in chapter 4.
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Chanter 3

The numerical procedure

In chapter 2 we started from the laws of con-
servation and succeeded in formulating a general
differential equation applicable to all conserved
properties. However, the designer wants an
answer not in terms of the differential equations
but in terms of numbers and formulae which he can
use for design purposes. In this chapter is
outlined a numerical procedure to help achieve

this aim.

3.1 The choice and fundamentals of the technique

There are many numerical methods for solving partial
differential equations. Of all these, none has been able

to rival finite-differences in ease and universality of

application. This technique has proved its worth in
practically every branch of science and technology involving
differential equations. Thom, in 1933, found its
application extremely laborious, but the development of
high-speed computers greatly reduces the labour involved.
What took Thom months to solve, would have taken hours in
the early 1950's; it takes but seconds on modern machines.
The essential principle of the finite-difference

technique is to replace the differentials of a variable by

the differences taken over finite intervals. The field

of interest, which is a continuum, is therefore
replaced by a net of grid lines Sspread over it. The

points of intersection of the grid are termed the 'nodes'
' N
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and it is with these nodes as the foci of attention that
the differential equation (2.4-2) is to be integrated.
There are, of course, some questions raised by this
'discretization' of the continuum problem; such as:
does the solution in the discrete space represent the
solution in the continuum? or, how many grid lines should
be chosen for a given problem and what is the best way to
distribute them? Questions like these will be deferred
to the end of this chapter; for the time being, let us
concentrate on deriving a finite-difference analogue to

the differential equation (2.4-2).

3.2 The finite-difference equation

There are many ways in which the grid may be spread
over the field of intercst (Forsythe & Wasow 1960); we
choose one of the simplest: that in which the grid 1lines
are the coordinate lines at discrete intervals of the
coordinates Xy and X5y

are to be placed on the spacing between the grid lines;

as in fig. 3.2-1. No restrictions

it may be non-uniform.

Let P denote a typicél node éf the grid, with thé
nodes. E,N,W,S and NE,NW,SW and SE surrounding it. Let us
now restrict our attention to the shaded rectangle, ne-nw-
sw-we, of fig. 3.2-1, the sides of which lie midway between

the neighbouring grid-lines. It is over each such

rectangle, individually. that the differential equation

(2.4-2) is to be integrated. To this extent our approach

is unconventional in that the attention is focussed on the
integral values of the differential terms rather than -on
their local values. Thus, equation {?.4~2) is to be

replaced by the integral equation:
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1

{r. F.aa (6.9)117. dx, . dx

(3.2-1)

denote the integral of the convective terms

——.%)}.dx,.dx .
1 1 2
(3.2-2)
we
, (3.2-3)

where the quantities under the '”_r symbols are to be

evaluated along the side of the rectangle denoted by the

2

+
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subscript, e.gI_We denotes along the side se - ne. To

evaluate such quantities, let us take one of the convective
terms,

(3.2-4)

X
2,n
- 3
I =CX.IX Og o cdxz .

C 2, s 6x2
If both ¥ and ¥ are well-behaved functions in X5s then

there exists an average value ﬁe, such that:

X X
g = IX2,n %%—uﬁl .dxz///sz,rl %%— .dx2 s (3.2-5)
€ 2,8 2 e 2,8 2 le ,

but |

y .
J‘ 2)n /

ad ]

S| Ldx. = O - , (3.2-6)
ﬂxz,s 6x2 e 2 ne se

where subscripts ne and se refer to the corners of the
shaded rectangle in fig; 3.2-1. Therefore, from (3.2-4),

. (3.2-7)

e I C e
IC & ge ('ne z’Jse)

Since §_, ¥ ‘and &Se do not represent the values at

ne
the nodes of the grid, equation (3.2-7) cannot be used
directly in the finite-difference procedure: IC must be
expressed in terms of the values at suitable nodes of the
grid; this we do by making an assumption which in the
literature has been referred to as the assumption of

'upwind differences' (see e.g. Richtmeyer 1962). For

equation (3.2-7), it states that ﬁe is equal to that

value of @ which is representative of the rectangle lving

immediately upstream of the side e. The implications_of
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this assumption are readily peréeived if we note that the
gradients of stream-function, and hence terms, such as
($ne_ $se) are connected to the direction, and magnitude,
of the mass velocities via the defining equation (2.3-4).
In particular, if ($ne— wse) is positive, the direction of
the flow is from the node P towards the node E; therefore
the above assumption implies that @e is equal to tﬁe
representative value of the rectangle surrounding the nade
P; we will take this value to be 7y - If, on the other
hand, (¢n;_ wse) is negative, the implication is that @_ is
equal to #,, since the flow direction is now from E to P.
The above arguments can be incorporated into equation
(3.2-7) by expressing it as
$Se|]/2 +

= ) / /
I~ = a.@P._L(Qne- pse) + Ipne_

}
e Psel]/Z . (3.2-8)

ne
In the above equation, one of the terms in the square
brackets will always be zero and we will be left with the
term which represents the contribution from the upstream
rectangle only.
Equation (3.2-8) may be rearranged to
b ol 1/2 - B b )

se 'ne
(3.2-9)

= -3 - v -

Ie = . (B-0 1000 b ) + ¥
Our task is not yet complete; we must now express

¢se and wse in terms of the ¥ values at the nodes of the

grid. To this intent, we make the simple assumption that

the value of the stream function at any particular corner

of the rectangle is equal to the arithmetic mean of the

stream-function values at its four immediate neighbours.
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Thus,
&Se = (wSE + ¢E + ¢P + $S)/4 . (3.2-10)
With,
Ay = a.[0h ~® )« b - 11/2

= a.r(wSL+pS-wNL—AN) + gty =Pl 178, (3.2-11)
T = (Bp-8.) Ry - af (b — ¥ ) . (3.2-12)

In a similar way, and by noting that the second term on
the R.H.S. of equation (3.2-12) vanishes under summation,
we rewrite the integral in the equation (3.2-3) as

b (Bp=0,) Ay + (B,-05) A : (3.2-13)

The A's are given by expressions such as (3.2-11);
we will later list all the A's together when reassembling
the complete difference equation in section 3.2-4.

It is to be noted here that the A's can never become

negative; but they may fall to zero. We draw attention

to this point because, later, we will see that this is one
of the features which makes the present finite-difference

scheme stable and convergent.

3.2-2 The diffusion terms

Let I denote the integral of the diffusion terms

Dif
in equation (3.2-1); then,

I 2m [Me A, g ( ) 4| 2 (5.0)13d
Be r.F. 5.0 e r.t 5. X, edx .
X305 X1w ax Xyt T Tox, TR

(3.2-14)
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As B is a constant for all the equations except the one
for vorticity (cf. table 2.4-1), we will proceed with
formal integration by replacing B with a representative

value Bp; thus:

[ 27 e
£ = BP r.\".‘a—)q (bog)

X
2,5

- P (5¢)l]dx *
e X9 :

1,e

+ Bp f"i ) [’:'“'a_?g (a.mln_ - 'r.r.ff; (5.9 1-axy
(3.2-15)
where the notation is the same as for (3.2-3).
Consider one of the diffusion terms,
= B, fxz n 6_a___(6 n] (3.2-16)
2,s

By assumptions similar to the one expressed by (3.2-5) the

above may be rewritten as: .
: T

I, can be further expressed in terms of the values at the

nodes by:
b Og-Pg-6p-Fp X, y=%X; g

+
I = B L} [ -
D P 2 2 | 1,E - Xi,P 2

.(3.2-18)

The assumptions between (3.2-17) and (3.2-18), of
course, imply that the variations of different quantities
between E and P can be considered linear.

Thus, the total integral of (3.2-14) may be expressed

as:
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IDif = (6E.¢E—6P.¢P).BE+(6W.¢W—6P.¢P).BW +

where B's can be deduced from equation (3.2-18). Like the
A's of convective terms, the B's are also always positive

and these will be listed later in section 3,2-4.

3.2-3 The source terms

The final integral to be evaluated in equation (3.2-1)

is
sz,n fxi,e -

I = r.S,.dx,.dx . (3.2-20)
Sor x2,s X1 @ 1 2

Because the form of the source terms is not fixed,
unlike the convective and diffusive terms, it is not
possible to make any general assumptions; nevertheless,

for purposes of illustration only, let Sg be assumed

constant over the domain of integration. Then

Igop = Sg,p'vp , (3.2-21)
where
Vp = rpe. (xi,E- xi,w)'(x2,N— XZ,S)/4 , (3.2-22)

is equal to the volume swept by the rectangle when it is
rotated through an angle of one radian about the axis of

symmetry.

3.2~-4 The complete difference equation

We are now in a position to obtain a complete finite-
difference analogue for our general differential equation

(2.4-2). From (3.2-1), (3.2-13), (3.2-19) and (3.2-21)

we deduce:
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(gp"gg)-AE + (gp"¢w) ko + (gP-gN)°AN + (GP"QS).AS +
(3.2-23)
This equation is the major outcome of our efforts so
far; it provides an algebraic relationship between the

values of the variable at a particular node P and those

at the surrounding nodes E, N, etc.
There will, of course, be one such equation for each

dependent variable at each node of the grid. Thus the

number of these algebraic equations can indeed be very
large; moreover, @'s are usually interdependent, and
therefore a simultaneous solution is required. Inversion
of such a large matrix can pose problems - such as.those of
storage space - even for modern electronic computers and we
are forced to search for alternatives. The only
practicable way of a solution is an iterative procedure;
we, therefore, now recast equation (3;2—23) as é successive-
substitution formula.

Thus by rearrangement:
Pp = Bp-Cp + B-Cp + By.Cy + B.Cq + S , (3.2-24)

where, for I respectively equal to E, W, N and S,

Cp = (Ap + Br.61)/Tpp ’

Z,, =% (A_ + B_.5,) )

AB ~,7y p I TSI

S = Sd,P'VP/EAB , and

V., = rp.(x1

p N~ x2,S)/4 . (3.2-25)

,E~ x1,w)'<X2,

I3
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A's are given by,

Ap = a.[(¢SE+$S—¢NE-¢N) + I¢SE+$S—¢NE-¢ 1178
Ay = [+ b b0 + "pr’f‘bN-‘bsw-‘bs'j/B ,
Ay = a.[(&NE+wE-$NW-¢W) + I$NE+wE"¢NW—wWIJ/8 ,
Mg = aa [l b b) + B b B b 118, (3.2-26)

and B's are given by,

By = BP'[(rp+rE)'(rP+Fﬁ)'(XZ,N'XZ,S)/(xi,E“xi,P)J/B ,
By = BP’[(rp+rw)‘(rp+rh)‘(XZ,N'XZ,S)/(Xi,P'Xi,w)]/8 ,
By = BP‘[(rP+rN)’(rp+TN)'(xl,E'xi,w)/(x2,N"x2,P)]/8 ,
Bg = Bp.[(rp+fs).(Pp+fg).(xi’E—xi’w)/(xz’P-xz,S)]/8 .

(3.2-27)

It is equation (3.2-24), together with its supporting
equations, which is to form the core of our computational
procedure. And, now that we have a set of algebraic-
equations to replace the differential equations of chapter 2,
we must begin to examine the properties of these algebraic
equations. This is the subject matter for tﬁe following

section.

3.3 Some properties of the numericalAprocedure

3.3-1 Convergence

It was stated in section 3,2-4 that the'difference
equations are to ﬁe solved by an iterative\procedure. TIn
such a procedure, a new solution is obtained by sub-
stifuting an initial guess into a successive-~substitution
formula; this solution is then used as the new guess, and

SO on. It is necessary, if the 'procedure is to be useful,
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that the iterative solution progressively approaches the
exact solution of the difference equations. In line with

this idea, the condition that the jiterative solution of the

difference equations should approach their exact solution

with successive iterations is defined as the requirement

of convergence.

Not all iterative procedures lead to convergence.
Unfortunately, rigorous methods to investigate convergence
exist only for linear equations with constant
coefficients; whereas equation (3.2-24) has variable
coefficients which change from iteration to iteration.
Nevertheless, practical experience has shown that the
criteria for the former can often be successfully employed
for equations with variable coefficients (Lax & Richtmeyer
1956; Richtmeyer 1962).

Let us consider a set of linear algebraic equations
with constant coefficients:

gi =A‘i?4‘l. j(aijgj + bi) y i = 1,2,3,..-.. . (3-3—1)

The matrix theory states that this set of equations
will, in an iterative procedure, converge to its exact
solution if the matrix aij is 'diagonally dominant'
(Forsythe & Wasow 1960). This condition can be expressed

as.

b Iai.l €1 (for all i) ’
all j J

with strict inequality for at least one i . (3.3-2)

Experience has shown that this condition is often

sufficient, but not always necessary for convergence; it

may be mildly contravened without "serious effect. -



51.

That equation (3.2-24) will satisfy the above
L
condition is easily proved if S be considered independent

of @. In that equation, A's, B's and §'s are all positive;

therefore:
Z el = 3 c
all T * all T 1

T (A 4B.5.)/ T (A.+B_.5.) . (3.3-3)
allr. + T T4 p TOTTP

Thus the condition that % Cf§ 1 is:

r {B..(6.-6.)} <O ]  €3.3-4)
al1r T I 7P

This condition is obviously satisfied when 6vis a
constant; this is the case for all equations listed in
table 2.4-1 with one exception only -~ the vorticity
equation with non-uniform wviscosity. As mentioned earlier,
condition (3.3-2), in some cases, may be over-stringent.

It seems that in many practical cases, the variations of
viscosity are such that inequality (3.3-4) is not

seriously contravened; one such example follows in chapter 5
(see also Gosman et al. 1968).

To prove diagonal dominance, we now have to show that
strict inequality (3.3-2) is observed for, at least,
one set of coefficients. Consider the boundary condition

g=c (3.3-5)
where C is not a function of {#. ‘

For such a boundary condition, with the notation of
(3.3-1),

Tla, = 0 . , (3.3-6)

a. |
1]

* See Gosman et al. (1968) for the effect of a variable S
on convergence, \
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For almost all practical problems this type of
boundary condition is always specified for at least a part

of the boundary.

Thus we see that the difference equations are stable
according to this criterionj; of course, there are other
criteria which could be used. Barakat and Clark (1965)
have discussed some of the common criteria; their
experience, and that of the other research workers,
indicates that simple criteria such as (3.3-2) are usually

sufficient to ensure convergence.

3.3-2 Accuracy and economy

The difference between the numerical solution of the

difference equations and the exact solution of the

differential equations is the overall numerical error; *

our discussions of accuracy will refer to this error.
Economy, in this context, will refer to the act;al cost of
the machine-time required to procure the numerical solution
by iterative means.

The overall numerical error is composed of three
components:’ a) the round-off error, b) thé iterative

error, and c) the discretization error.

a) The round-off error: This error is a result of the “

limitations on a computing machine to perform all
arithmetic operations with a finite number of digits. In

practice, the round-off error is reduced to negligible

* It is being assumed that a unique solution of the -
differential equations exists, and that another unique

solution to the difference equations also exists.
\
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proportion of the overall error by using a sufficiently
large number of digits; experience suggests that 8-digit
numbers, available as a standard option on many computing

machines, are accurate enough for most practical purposes.

b) The iterative error: The iterative error is the

difference between the iterative numerical solution and
the exact solution of the difference equations. It is a
reflexion of the fact that, ultimately, the total number
of iterations must be limited for reasons of economy;
for, the computing time increases in direct proportion to
the number of iterations. A compromise is sought in that
the iterative error is reduced to a small acceptable value
by performing a sufficiently large number of iterations.
For a convergent algorithm, a convenient practical
measure for termination of computations (and an' indirect

measure of the iterative error) is the index of convergence,

A, defined as:

yA = max. I I-1
(all nodes) (6~ ¢ )/8

ref . (3.3-7)
In this relation I and I-1 denote the @-values from
two successive iterations and g .. is a suitable reference
value. ¢ref may be set equal to ﬂI, or it may be
replaced by a representative value, such as the maximum,
in whole of the field. Computations are terminated when
A falls below a prespecified limit Xref' The actual
magnitude of xref is dictated by reasons of economy and

the acceptable level of the iterative error.
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c¢) The discretization error: The difference between the

exact solution of the difference equations and that of the
differential equations is termed the discretization error.
It is a consequence of solving the difference equations at
a discrete number of points in space instead of solving

the differential equations in a continuum. In other
words, this érror is composed of the errors entailed by
the assumptions for the respresentative values of ¢ and

its gradients along the cell boundaries and by the formulae
for ¢ne etc. In many cases this error forms almost whole
of the overall numerical error; the errors fromthe other
two sources having been made negligible by a judicious
selection of the number of digits and the number of
iterations. The accuracy of the numerical solution'is
therefore-intimately related to this error. Unfortunately,
this is also the error about which the least is known. In
general, it cannot be reliably predicted, as the requisite
theoretical knowledge is not yet available; reliance has
to be placed on empirical information. It seems that two -
of the factoré which influence the magnitude and nature of
this error are the size of the grid and the local gradients
of the variables®*. One obvious remedy, of course, is to
use a large number of grid nodes with consequently small

grid size. However, considerations of economy®*® and the

* This statement can be justified from rigorous reasoning,
by Taylor-series analysis, if the solution is assumed to
behave as a polynomial in space-coordinates.

** Computing-time per iteration increases in direct
proportion to the number of nodes. Moreover, in
general, the total number of iterations required; to
reduce the iterative error to a prespecified level,
also increases with the number of nodes. i
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size (storage space) of the computing machine usually limit
the total number of grid-nodes. Fortunately, having
chosen the grid-nodes, one can distribute these to obtain
a better accuracy than that which would be obtainable from
a uniform distribution. No hard and fast rules are
available for the distribution of nodes. An empirical
suggestion is to place the nodes closer where,the
gradients of the variables are large; for example, near
a solid wall. On the other hand, the nodes may be spaced
farther apart when these gradients are small without any
appreciable loss of accuracy. Some illustrations of the
use and advantages of nbn—uniform grids are given in
chapter 5. ﬂ

From the foregoing discussion on accuracy and
economy, it is clear that, at least for the present, the
relevant information can be obtained only empirically;
whatever theoretical knowledge exists.can help us little.
In this regard, analysis of numerical solutions will be of
special value; in chapter 5 the accuracy and economy of

the numerical solutions to two problems will be discussed.
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Chapter 4

Two special flow-models

¢
{

The prediction of turbulent flows requires some
information regarding the physics of the
phenomena; specifically, it is necessary to
account for the intense mixing caused by
turbulence. The first part of this chapter
~describes a model of turbulence based on the
Kolmogorov-Prandtl hypotheses, The second
part uses this model to formulate a Couette-flow
model which allows'analytic integration for
regions close to a wall; the need for a fine
grid to account for steep-gradients near a wall
is thus eliminated, and the solution procedure is

made more economical.

4.1 Kolmogorov-Prandtl model of turbulence

4.1-1 The purpose

There are two current approaches to the analysis and
prediction of turbulent flows. One of these concerns
itself with the description of the mean flow only and
allows for the effect of turbulence by postulating various
similarity hypotheses. In contrast, the second approach
attempts a description of both the nature and the effecf
of turbulence and usually makes exteﬁsive use of various
statistical correlations to deal with the mathematical
problem. For want of any better terminology, we will
call these approaches, respectivély, 'phenomenological'’

and 'statistical'. \
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Because of its mathematical complexity, the
statistical approach has been successful in dealing with
only the simplest of the practical situations; whereas
most of the engineering information has originated in the
less sophisticated, but mathematically simpler, phenomen-
ological approach.

Probably the most significant practical contribution
to the phenomenological approach to turbulence has been
Boussinesqfs concept of an 'effective viscosity'.
Together.with Prandtl's 'mixing-length' hypothesis, it has
made possible the predictions of a large number of tﬁrbulent
problems, especially in the field of boundary-layer flows.
However, in recent years, it has become increasingly
evident that Prandtl's concept of a 'mixing-length' must
give way to more realistic assumptions.

Kolmogorov (1942) and Prandtl (1945) proposed a model
of turbulence in which they introduced the kinetic energy
of the fluctuating motion. This model, though still too
simple, goes some way to characterise the nature of
turbulence and 1s more promising than Prandtl's 'mixing-
length'model. It has already succeeded in predicting the
behaviour of some flows for which the 'mixing-length' model
was found inadequate (e.g. Emmons 1945; Spalding 1967b).
It is this model which forms the basis 6f the present

section.

4,1-2 The basic hyﬁotheses

The kinetic energy of turbulence, k, is defined as:

— ——

k = (1/2).uj.u) = (1/2).‘(u!12+u52+u52), (4.1-1)

\
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where over-bars denote time-averages, and ui,the
fluctuating component of velocity in direction i, is
related to the instantaneous total velocity Ui’ and the
mean velocity uy by:

U = ug + ui . | (4.1-2)

A differential equation for the balance of k can be
derived from the Navier-Stokes equations with the help of
definitions such.as (4.1-2); such equations have been
derived by a number of authors (e.g. Wolfshtein 1967) and
we will make use of their derivations. | |

For a two-dimensional axisymmetrical flow, the
equation for the’balance of k is:
(a/axj)(r.sj.k)-m/axj)(r.r,‘c,eff.ak/axj)-r.(p_o) =0,

o (4.1-3)
where rk,eff is the effective exchange coefficient for k;
P and D are the production and dissipation terms,
respectively. The rest of the notation follows section
2.1-3. Furthermore, for incompressible flows, the
production term may be.expressediasz

P = ut.(auilaxj)(aui/axj+auj/axi), (4.1-4)

e being the turbulent viscosity.

Equation (4.1-3) fits into the general pattern out-
lined in sect. 2.4; therefore, given suitable expressions
for rﬁ,eff’ hy) and D, this equation may be solved for k
by the numerical procedure of chépter 3. Following
Emmons (1954), Spalding (1967b) and others, we may'
postulate that [ sy Bisand Di'dre all dependent only on

k,eff t .
k, the kinetic energy‘of turbulence and 1, a turbulence

length scale. Dimensional considerations (e.g. Emmons)

N\
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then lead to:

_ 3 -
T—l‘c,eff = Cﬁ . -p . k ol H (401 5):‘ :
lJ.t = Cu . p . k-}ol ? (4.1_6)
D =Cp . P .k, (4.1-7)

where qé, CN' and CD are constants and p Is the mass

density.

6; ofgr the effective 'Prandtl number' for k is given by:
‘ ’

Gi,eff = CP/C$ . (4.1-8)

The determination of X and C's is of prime importance
if this model of turbulence is to be employed for
predictions: this is the toplc of discussion for the

following sections.

4.1-3 The length scale

The length scale, 1, is most réadily visualized as a
representative of the local mean eddy éize. It affects
the generation, diffusion and dissipation of the kinetic
energy of turbulence; and, of course, through turbulent
viscosity, it affects the flow field and the distribution
of all other dependent variables. In the Kolmogorov-
Prandtl model of turbulence, the length scale is thus one
of the most important factors; yet the information =
available about it is meagre. Starting fromthe Navier-
Stokes equations, Rotta (1951) succeeded in deriving a'
differential equationwhich may be interpreted as an
equation for thevlength scale; but, except for very simple
cases, it has not been possible to solve this equation.
Recently some progress has been-‘reported by Spalding_

(1967c) and Harlow & Nakayama (1967); nevertheless, it
\ .
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will be some time before this equation can be solved for
general cases.

In the absence of quantitative information,
qualitative information prevails. It can be shown that,
under some circumstances, a proportionality exists between
the length scale and Prandtl's 'mixing-length' (Spalding
1967d); at present it is convenient to assume the |
proportionality to be generally true. Then for flows
close to a wall, the length scale may be considered
proportional to the distance from the wall and for flows
away from a wall, it may be cqnsidered a constant. For
the definitions of sect. 4.1-2, the proportionality
constant for the regions near a wall may be taken as unity,
i.e. the length scale is equél to the distance from the
wall. Since Prandtl's 'mixing-length' near a wall is
generally taken as 0.4 times the distance from the wall
(Schlichting 1960),vfrom this result Spalding (19674)
suggested that the length scale, as defined here, should
be taken as about 2.5 times the Prandtl's 'mixing-length’
everywhere.

In fact, it seems more than likely that the above
qualitative deductions are gross over-simplifications. A
closer look at Rotta's equation for the length scale shows
that, like all ohter dependent variables, the length scale
may be interpreted as being convected, diffused, generéted
and dissipated. Hence, for a general problem, if the
differential equation were solved, the distribution is
certain to be much more complex. To solve thegjuation is
the task of the future; for thé present, we would accept
the implications of the above—mentioged qualitative ‘

information.
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4,1-4 The effective exchange coefficients

The turbulent viscosity ke may be evaluated from
expression (4.1-6); it has now to be related to the
effective viscosity and the effective diffusivity of section
2.2-1. | |

Following Spalding (1967d), it may be assumed that
for highly turbulent regions,

Bogg = B + By, and ‘ (4.1-9)
Tg,ece = B/Og + Be/Sp ¢, S (4.1-10)

Usually for such flows turbulént viscosity is orders
of magnitude larger than the laminar viscosity and it is a
common practice to retain only the second term on the R.H.S.
of (4.1-9) and (4.1-10) unless the laminar Prandtl/Schmidt
number is very small.

For flows which are not fully turbulent, such as in
the regions close to a wall, following a suggestion by
Spalding (1968), (4.1-6) may be generalized by assuming

Cu to be a function of the 'Reynolds number of turbulence',

Ry =‘p.k%.1/u H (4.1-121)
and then

where £ )} denotes 'a function of'.

As R, tends to infinity, the laminar viscosity ceases

t
to have any noticeable influence on the transfer processes
and Cu may then be assumed a constant. On the other hand,

when R_ tens to zero, the flows become laminar and C

t "
tends to 1/Rt, No proven proposal has yet emerged for the
intermediate ranges of Rt though some suggestions have
been put forward (e.g. Spalding 1967d, Wolfshtein 19&7).

N\
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The uncertainty which prevails about Boes under some
‘circumstances, prevails to a smaller extent about the
value of 03 ofE" For turbulent flows remote from walls,

?

both 0'",1. and G~

seff m,eff
flows (Abramovich 1963) and 0.7 for round-sectioned jets

are commonly taken as 0.5 for plane

(Forstall & Shapiro 1950). For turbulent flow in a pipe
the review of heat transfer data by Kestin and Richardson
(1963) suggests a value of 0.8 for O7 s whereas

. T,eff
Jayatillaka (1966) recommended a value of 0.9 for both
oy and G~

T,eff m,eff
Very close to a smooth impermeable wall the value of

in turbulent pipe flows.

ca,eff remains uncertain and no definite recommendations
can be made (Spalding 1967d). After Jayatillaka and
Spalding (1965), a convenient practice is to express the
extra resistance offered by such regions in terms of a

separate integral which is a function of 03/ the use

Gy .0
gyt
of this concept will be illustrated in sect. 4.2-3.

4.1-5 The empirical constants

The constants Cg, Cu and CD can be deduced from
experimental data on turbulent flows, Such deductions
have been made by a number of research workers; for
details of derivation the reader may consult one of the
references cited in the preceding sections (e.g. Spalding
(1967d). |

The following values, used for the predictions
presented in the next chapter, were derived by Spalding
(1967b): | ‘
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C;S = 0.130 ]

N C = 0.200 )
* (4.1-13)
o = 0.313 , and

c-ic,eff = 1.540 .

4.2 The Couette model of flow

4,2-1 The purpose

The stimulus to the following analysis is the fact
‘that often the dependent variables change steeply close to
a wall. To obtain good accuracy with the finite-
difference formulae described above, the grid would have to
be very fine, with consequent expense of computer time.
This shortcoming can be obviated by the use of Couette-
flow assumptions which, under certain éircumstancés, allow
analytic integrations near a wall. Thus, the whole of the
flow field is broken down into two regions: a thin one
close to the wall, where a Couette-flow solution is
obtained, and the major part of the flow where the
solution is obtained for the complete equations. These
two are then matched at the intermediate 'boundary' with
the Couette-flow solution serving as the 'boundary
condition' for the finite-difference solution of the
complete equations. Patankar and Spalding (1967) and
Wolfshtein (1967) have already demonstrated the advantages

- of such an approach.

4.2-2 The differential equations

Close to an impermeable wall, the velocity along the
wall starts to decrease rapidly and, thus, in a thin ~

region adjacent to the wall, the longtitudinal convection
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terms can be neglected altogether. The resulting flow is
cohmonly known as a Couette flow and the previously
described partiél differential equations reduce to
ordinary differential equations for this flow. With
appropriate assumptions, these equations can be integrated
once-for-all to relate the fluxes at‘the wall, such as the
Stanton number, to other flow-parameters, such as the
Reynolds number.

Let us consider the Couette flow aiong an impermeable
wall which lies on the x,-axis of the coordinate system;
because of the thinness of the region of interest we will
not account for the variations: of the radius r. The
resulting differential equations can be deduced from
equations (2.1-2) and (2.4-2). They are:

for momentum:

(d/dy,)(p,.duAdy,) - p, = O ’ (4.2-1)

for enthalpy:

(d/dy.)(u‘/o—i',eff.dT'/dy’) = o ’ (4.2-2)
and for turbulent kinetic enerqgy:
(d/dy,)(u./ci’eff.dk./dy.) +P,-D, =0 , (4.2-3)

where, with subscript S denoting the conditions at the wall,

and C those at the outer edge of the Couette layer,

Yo = Xp/%5 ¢

k. = k/kg , |

u, = ui/ul’c R

(4.2-4)
T, = (T-Tg)/(T-Tg)

3
Bege/ (PREX)

=
*
1}

p. = (dp/dx ). (xy/(pkPu ) o
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P, and D, represent, respectively, the non-dimensional
production and dissipation terms which will be given later.

It should be noted that equation (4.2-2) is valid only
for low velocity flows as it neglects both viscous
dissipation and kinetic heating; also, under these circum-
stances, the equation for the transport of chemical-species,
m, is identical to the enthalpy equation, as long as the rate
of mass-transfer is small enough not to affect the flpid
properties. A more general case of Couette-flows has been
considered by Spalding (1967d).

For ease of interpreting results, let us define the
following non-dimensional parameters:

Skin-friction coefficient: s = TS/(pui)C 9

Stanton number: St

/(e e (Te-Tg) (puyde) ,  (4.2-5)

Reynolds number: Re (puileu)c y
and,

Turbulence Reynolds number: R, = (Pk%leu)c H

where TS is the wall shear-stress, qg is the wall heat-flux,
and cp is the specific heat of the fluid.

Equations (4.2-1) and (4.2-2) can now be integrated to
"obtain:
s = (Rt/Re)(Jgu:i.dy,)—i.(1—p.jgy..u__1.dy.) , (4.2-6)

St = (Rt/Re).(JbOE,eff.u_ .dy,)

The evaluation of the integrals in these equations .
would enable us to calculate the skin friction and the
Stanton number. However, before these integrals can be
obtained, the relationships connecting p, and G&,eff with

Y, must be available,
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a) Evaluation of the effective viscosity: Since p, is

linked,by the Kolmogorov-Prandtl hypothesis, to the kinetic
energy of turbulence, we first turn our attention to
equation (4.2-3). This equation cannot be integrated
without a recourse to additional assumptions about P,, D,

GTc,eff’
region, let us assume that the Couette flow can be divided

and u,. Neglecting the existence of a transition

into two distinct regions: a laminar sub-layer close to

the wall, and a fully turbulent region in the outer part.
Inconsistencies of such an assumption can be tolerated for
the present because of the uncertain nature of the empirical
input, and, to some extent, alsoc because they simplify the
mathematical problem considerably. '

If the>junction of the laminar and the fully turbulent
regions is denoted by the subscript J, then the implications
of the two-layer-Couette-flow assumption, together with the
Kolmogorov-Prandtl hypotheses, can be expressed as in the

following table 4.2-1:

State of

fluid SIS P, . D,
Laminar | Ry, | R 0 2K/ (YR O ore)
Turbulent | R, Cpk%y‘ wa(du,/dy,02 | ¢k 2/y,

Table 4.2-1 Various terms in the equation for the kinetic
energy of turbulence.

In this table R is defined as:

t#
Ry, = Rt’J/Rt . (4.2-8)

D,, in the above table, has been deduced from
dimensional reasoning and the constant 2/0; eff 2llows a
’
particularly simple solution for-the laminar region. _

Details of the deduction have been given by Spalding (1967d).
\
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At this stage we make one furfher assumption: that
the kinetic-~energy profile in the fully turbulent region
can be represented by a power law of the form:
ke = Ye (4.2-9)

The exponent g can be determined by substituting
(4.2-8) into the parent equation (4.2-3) and matching it
at the J-surface with the solution for the laminar region.
The resultant expression is: |
q = (2(cy - p,yi’i'sq)/(scﬁ) XA (4.2-10)

Not surprisingly, the exponent g turns out to be a
function of y,. Therefore, in general, any selection of
g allows the differential equation to be satisfied at only
one point across the flow. In the absence of any better
guide, we will choose this point to be the outer edge of
the Couette flow where y, equals unity. Then:
a=(2/3..(cgpoept . (4.2211)

i, can now be obtained from table 4.2-1 and equation

(4.2-8).

b) Evaluation of the skin-friction coefficient: The sk in-

friction coefficient can be evaluated from equation (4.2-6)
with the help of the integrals:

1 -1
I, = fol‘-- dy, y and

ooy (4.2-12)
12 = jbun Y.dy, ’
where, for:

_ -1
q = 0, I_1 = Rt,J - CP 1n R_. ’

- -1 -q/(g+2) -1
q# 0, I, = (Rt,J + ZCP q).Rt?/ q - 2Cp a
q=2, I, =Ry j/2 - 2c;1 In R, , (4.2-13)
-1 21, ,(2-q)/(2+q) -
q# 2 I,= (Rt,J/2 - 2Cu (2-q)™ ") «R. +
+ 2c71 (2-71 N

M
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Jis given by:

-1/4 -1/4
g3 = 25,V anr, e c)™VH 4 2.2) L (4.2-10)

=
i

For the empirical constants suggested in section

4.1-~-5 the value of R is 23.3.
t,J

c) Evaluation of the Stanton number: To evaluate the

Stanton number, following the practice of Spalding and
Jayatillaka (1965), let us split the integral in equation
(4.2-7),
rl
T3 = Joor,
into two parts so that:

eeghel AY. ' (4.2-15)

1 -1 1 -1
I, = cﬁ,tjo(ci,eff/s%,t -1)3: dy, + Gé,t oMs dy,(4.2-16)

L}

As explained in sectilon 4.1-4, for the fully turbulent
region G&;eff tends to a constant G&,t; therefore, the

above may be approximated by:

Iy =074 (r, +71,) (4.2-17)
- where
- -1 : .
I, = fo‘o'i,eff/"'f,t - Dp, " dy, . (4.2-18)

I, expresses the extra resistance ofjthe semi-laminar
transitional layer to heat (or mass) transfer: it is only
when G%,eff is different from G;,t that it contributes to
the total resistance I3.

For high values of the laminar Prandtl number Gy, and
with the use of (4.1-10), it can be shown the I, is given
by(Spalding 1967d):

I) = Co (Opfog , -1 (op/oy )74 (c cpp=V/4 - (8.2:-19)

Jayatillaka (1966) suggested a value of 9.24 for the
empirical constant Cyafter a survey of the experimenyal

data on turbulent pipe flows.
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4.,2-3 The use and limitations of the Couette-flow model

a) The use: As already stated in section 4.2-1, the main

function of the Couette-flow model is to provide a set of
boundary conditions for the finite-difference equations a
small distance away from the wall, for reasons of economy.
| A simple way of incorporating the Couette-flow solutions
is to use the concept of 'linearizing values' = first
proposed by Patankar and Spalding (1967) and subsequently
modified by Spalding (1968). The essential stepé in the
use of this concept are as follows.

For a conserved property #, the Couette-flow equation

in the absence of any source terms (cf. equation (4.2-2)) is:

Jg = Vb.dﬁ/dx = constant . (4.2-20)
Rearrangement ylelds:
-1 .

dﬁ = Jg. rﬂ odx ® (4.2-21)

Formal integration, from.-a point 'S' on the surface of
the wall to a point 'C' in the flow field, gives:
-1 ' .
When f& changes little, an appropriate algebraic

analogue is:

gc = gs + 2J¢-(xc-xs)/( rb’c + rﬂ,s) .- (4.2—23)

However, when the variations of rb are non-~linear,
this expression will no longer be accurate. A better

expression is:

where ‘
ﬁS,L = GS - 2J¢'(XC-XS)/( rg’c + Pg,s) +

-1 ) "
+ Jge J:S g +dx (4.2-25)

* Patankar and Spalding used the name “¥slip values',
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The purpose of defining a linearizing value ¢S’L is
to retain the homogeneity of the structure in the finite-
difference relations: equation (4,2-24) is an appropriatly
rearranged version of equation (3.2-18), the latter being
the general finite-difference relation for the diffusional
flux.

In the course of computations, the linearizing value
is evaluated with the help of the equations such as (4.2-7)
and (4.2-17) to calculate the value of the integral which
appears in equation (4.2-25). @. can then be calculated
and used as the boundary condition in the finite-difference
equation for the main region of flow away from'the wall,

For the predictions presented in section 5.2, the
linearizing values were used only for the temperature and
the kinetic energy of turbulence. The stream-function is
not directly affected by diffusion and, therefore, it was
not linearized. The vorticity, on the other hand, can be
calculated directly from the shear-stress relation. For
the present purposes, it may be written as:

We = duy/dx, = (Tg + (xz’c-x'-z-,S).dp/dx,l)/p.eff’C (4.2-26)

The wall shear-stress, Tgy» can be obtained from
equations (4.2-6) and (4.2-13) and dp/dx, from the finite-

difference sdlutions.

b) The limitations: The major assumption behind the

Couette-flow model is the absence of convection along the
wall; and this also proves to be its major limitation.
There are some flows in which the role of longtitudinal
convection cannot be neglected even in the regibns close

to a wall. One such case is the heat transfer at high
N ;
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Prandtl numbers when practically all the changes in the
"enthalpy profile occur very close to the wall; for such
flows, a small amount of convection can make substantaill
"differences. For example, we know that if the upstream
section of a pipe is heated, it exerts a considerable
influence on the rate of heat transfer from the downstream
sectiohs; yet, a model such as the present one, will

fail to predict this effect.

Other limitations of the model lie in the assumptions
about the varlations in the viscosity and the kinetic
energy of turbulence and, of course, in the assumption of
a step-jump from the laminar to the turbulent state without
ény transition region. However, theée limitations are not
so much a part of the mathematical model and they are likely
to be overcome by a better understanding of the physical

processes involved in turbulent flows.



Chapter 5
Flow Prediction -

We have now reached a stage where we are
equipped with suitéble means for the prediction
of two-dimensional steady separated flows. The
nucleus of the technique is the numerical pro;
cedure outlined in chapter 3, and the peripheral
units are in the special flow models of chapter
4, and other relevant auxiliary information.
All that now remains is to demonstrate the
capabilities of the technique by solving
representative practical problems.

The two problems selected for the above
purpose are: the confined laminar flow in a
square cavity,and the turbulent flow downstream
of a sudden enlargement in a circular pipe.
Both problems are of engineering interest; and
the aim of the exercise is to demonstrate the
width of application and generality of the |
technique. Wherever possible, the numerical
solutions will be compared with those obtained
from other sources and with the experimental

data.

72.
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5.1 Laminar flow: Square cavity with a moving 1id

5.1-1 Introduction

The formation of a cavity in a flow surface is a
common occurrence in everyday engineering practice.
Cavities may be‘caused by roughness elements, steps, or
fins; and they lead to substantial increases in heat
transfer and pressure losses compared to those for a
smooth surface. A simple representation of the cavity
flows 1is the enclosed flow in a square cavity, in which
the motion is imparted to the fluid by a moving'lid; in
the lattér respect, it differs from the usual practical
problem in which the motion is caused by a stream of fluid
flowing past the cavity.

The square-cavity problem is typical of steady
separated flows with closed stream lines. These flows
have been the subject of a long-standing theoretical and
practical interest. Prandtl (1904) and, more recently,
Batchelor (1956) conducted theoretical investigations of
closed-stream-line flows at high Reynolds numbers.
Essentially, they postulated the existence of an 'inviscid
core' of fluid surrounded by thin boundary layers. They
concluded that, for a two-dimensional laminar flow, the
core will consist of uniform-vorticity fluid. Theoretical
work of a similar nature has been reported from a number of
sources and was recently reviewed by Burggraf (1966). 6f
late, the emphaéis has shifted to numerical solutions;
notable among these are the ones by Kawaguti (1961),
Simuni (1964), Burggraf (1966), Runchal and Wolfshtein

(1966), Runchal et al. (1967) and Greenspan (1967). -
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The experimental information about laminar flow in a
square cavity is meagre: most of the experiments have
been limited to the turbulent-flow regime (e.g. Mills 1961).
Weiss and Florsheim (1965) have reported some qualitative
features of the laminar flow at low Reynolds numbers.
Recently Reiman (1967) has conducted a more detailed
enquiry into the behaviour of laminar flows and some of
his findings have been published by Reiman and Sabersky
(1968).

5.1-2 Description of the problem

Fig. 5.1-1 illustrates the problem to be solved. A
fluid revolves steadily in a square-shaped cavity under the
influence of the sliding upper wall. This wall is held at
one temperature; the opposite at another; thelside—wall
temperatures vary linearly between those of the top and

the bottom,

. ’ " . ) aW-‘
Moving wall Velocity 3y~
.L““‘a‘““‘.cw p
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For conveniencé, the velocity of the sliding wall,

the density, the length of side, and the overall temperature

difference are taken as unity. Then the viscosity equals .
the reciprocal of the Reynolds number, which is one of the
two parameters of'the problem, the other being the
Prandtl number,Pr, of the fluid.

The task is to determine the distributions of stream-
function, vorticity and temperature within the cavity, for

various values of the Reynolds and the'Prandti numbers.

5.1-3 Presentation of results

The influence of Reynolds number: Fig. 5.1-2 presents the

3 and 10%, and a

results for Reynolds numbers of 1,10
Prandtl number of unity. All fhe results were obtained
with a 13 x:13 non-uniform grid; the grid used is
indicated in just one of the diagrams: The contours
reveal the existence of a large primary eddy in the
cavity; «~this is cushioned by small contrarotating eddies
in the two lower corners for all Reynolds numbers. The

temperature distribution in the field at low Re is almost

the same as that in the walls; but at high Re the

temperature contours are caused tg bulge and sag by the

convective effect of the moving fluid. The vorticity
contours are similarly distorted at high Reynolds numbers

from their near-symmetrical form when Re equals unity.

. x-coordinates: 0.,.04,.10,.20,.35,.55,.70,
.85,.92,.96,.98,.99,1.0

y-coordinates: 0.0,.04,.10,.20,.32,.44,.56,
.68,.80,.,90,.95,.98.1.0

\
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The influence of Prandtl number: Fig. 5.1-3 shows the

temperature contours only, for a single Reynolds number of
103, and three different Prandtl numbers, 102, 1 and 102.
The central diagram has of course appeared already as
Fig. 5.1-2(f) and is repeated here for ease of comparison.
Evidently the high thermal conductivity, which causes
the low Prandtl number, nearly succeeds in preventing the
convective processes from distorting the temperature contours
from their linear, low-Reynolds—number form. - When the
thermal conductivity is low, on the other hand, as when Pr

equals 100, the distortions are still more, pronounced than

for a Prandtl number of unity.

The influence of grid size and distribution: Figs. 5.1-4

and 5.1-5 show, respectively, the velocity profiles at the
vertical centre-line and the vorticity (velocity-gradient)
profiles at the moving wall of the cavity for four different
grids. In both cases, the grid size and distribution
exert a considerable influence on the.profiles. This
influence is especially strong for the vorticity near the
corners of the cavity; this is a manifestation of the
fact that the vorticity is a singular function at the two
corners of the cavity; any selection of the grid is, thus,
bound to reflect this asbect of the solution. it should
also be noted that the effect of the grid is less . :
pronounced on the velocity profiles than on the vorficity
profiles. In both the cases, it can be concluded that
the 13 x 13 non-uniform grid is a better alternative to
the 21 x 21 uniform grid from thé point of view of economy:

the former will require calculations et'144 internal nodes
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of the grid compared to the 400 nodes of the latter.

It may be remarked here that the influence of the
grid has been accentuated by the selection of a rather
high Reynolds number of 1000 for the purposes of comparison.
From the following discussion, and from the comparison of
the present work with that of the previous'investigatorsvin
the next sub-section; it will be seen that the differences
betweén the results from various grids are much less |
pronounced for a Reynolds number of 100.

Another éspect of the finite-difference solutions,
which is tied up with the questions of the grid size, is
the extent of the discretization error as explained in
section 3.3-2.

Of course, for the square cavity, the solution of the
differential equations is nét known; nevertheless, ihdirect"
evidence of the accuracy of the solutions may be obtained
by demonstrating that the finite-difference solutions
tend to a limiting solution with the refinement of the gfid.'

Fige 5.1-6 shows the effecf'of the grid-refinement,
and grid-distribution, on the strength of the main vortex,
in terms of the stream-function vﬁlues at the vortex centre,
for Reynolds numbers of 100 and 1000. Also shown are the
results obtained by Burggraf (1966), bj a central-finite-
difference technique, for a Reynolds number of 100. It
is clearly seen that, for both the Reynolds numbers, thére
is a distinct convergence towards a 1imi£ing solution;
though, admittedly, a sufficient flattening of the curves
for a Reynolds number of 1000 has not been achieved by
81 x 81 grids, which was the limit imposed by the_capacity

of the computer. N
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There are a few more conclusions yet to be drawn from
this figure. Firstly, for the same number of grid nodes,
non-uniform grids have proved to»be consistently bettér than
the uniform grids; thus confirming the remarks made earlier
in chapters 3 and'4. Secondly, it is to be noticed that
the influence of grid distribution is much less pronounced
for a Reynolds number of 100 than that for a Reynolds
number of 1000. And, lastly, the present method is a
preferable choice to the earlier methods such as the one
by Burggraf; at a Reynolds number of 100, the results
froﬁ the present method are better than those obtained by
Burggraf. Moreover, as already pointed out, most of the
earlier methods, including Burggraf's, failed to yield

convergent solutions at high Reynolds numbers.

Comparison with previous work: Fig. 5.1-7 is presented by

way of comparison, and as a further comment on the accuracy
of the computatioﬁs. It displays the velocity profiles at.
the vertical centre-line of the cavity for a Reynolds
number of 100. Included are the results of Mills (1965)
and Burggraf (1966) along with the present computations.
The agpeement between the four sets of results is seen to
be satisfactory. It may also be remarked that, at -such a
low Reynolds number, the advantage gained from finer grids
is small. \

So far, comparison with the previous work has been
limited to the numerical solutions of other research
workers;' the work of Reiman & Sabersky (1968), on the

other hand, enables some qualitative'comparison with -

experimental evidence. Pig. 5.1-8 Rfesents our computed
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flow pattern, for a Reynolds number of 1000, and a
photograph obtained by Reiman & Sabersky for a Reynolds
number, based on the free-stream velocity, of about 2000.
It should be noted here that the Reynolds number for the
latter based on the velocity at the level of the cavity-
top is likely to be much less than 2000. The qualitative

agreement between the two sets of results is excellent.

5.1-4 Discussion

The qualitative and quantitative features of the
above results present no surprises; they are in cénformity.
with the earlier but less extensive predictions of Squire
(1956), Batchelor (1956) and Burggraf (1966). All the
nﬁmerical solutions now available suggest that secondary
eddies appear in the lower corners of the cavity, even for
creeping flowsj; the work of Pan & Acrivos (1967b) and
Macagno & Hung (1967) lends further credence to this
observation. In fact, in confirmation of Moffatt's
(1964) conclusions, a tertiary eddy was noticed in the lower
cornersa for a Reynolds number of 1000. It waé, however,
too small (about .01 x cavity size) td be represented in
any detall by the grid-sizes used. Finer grids were
ruled out because of the limitations of the computing
machine,

Some recognition should be accorded to the fact that
the laminar-flow equations'have been employed at Reynolds
numbers in excess of those at which, in practice, laminar
flow would give way to turbulence., This is being done to
demonstrate that the divergen;efdifficulties that afflicted

earlier workers, the difficulties which have been solved
: 3 3
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by the 'upstream"formulation of the convective terms,
have nothing to do with the physical phenomenon of
tﬁrbulence.

Of course, it should be recognised that the results
presented here, especially those for coarse grids, may
suffer from appreciable numerical error (see section 3.3-2).
This error may be likened to a 'diffusional' effect, and
the 'false-viscosity' responsible for this effect 1s of the
order of:

= 0.3 . G al.AX.Sin(Z 0) y (5.1-1)

ufalse loc

"where G is the local velocity, Ax 1is the size of the

local
grid, and 8 is the angle that the local stream-line makes
with the grid. More details about this effect have been
given by Runchal et al. (1967). Nevertheless, the
magnitude of this effect need not necessarily be large;
in the cavity flows the velocity decreases very rapidly
away from the moving wall; moreover, wherever the
velocities are appreciable, the stream-lines more or less
run parallel to the grid lines. L That the effect is indeed
small for a Reynolds number of 100, even for coarse grids,
has already been shown in Figs. 5.1-6 and 5.1-7. However,
this effect introduces serious errors at Reynolds number of
1000 (see Fig. 5.1-6) for coarser grids. It is also
likely that the heat transfer results for high values of
Pr are adversely affected. |
And, finally, a comment about the computing time
involved is probably overdue.} Working with an IBM 7094
at Impérial College, it was found that the machine time to

complete a given set of calculations was approximated by:

N
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Time = 7 x 10~ °,I.N minutes , (5.1-2)

where, _
I is_the number of iterations, and N is the total number
of grid-nodes in the field.

Typically, the time required for a 21 x 21 grid (with
400 internal grid-nodes) was 0.8 minutes for a Reynolds

number of 1000.

5.2 Turbulent flow: abrupt enlargement of a pipe

5.2=1 Introduction

Flows in pipes are frequently interrupted by monitor
and control devices such as orifices and valves. This
interruption often leads to an abrupt change in the
available cross-sectional area of the flow. In the
present case, the interest lies in those situations which
lead to a sudden increase in the flow-area; this increase,
in turn, causes the flow to separate from the pipe walls
and form a region of reversed flqw immediately downstream
of the enlargement. Such separation has a profound effect
on the behaviour of the flow and, in general, is character-
ised by low shear-stresses and high heat transfer rates in
the vicinity of the zone of reattéchment.

The mathematical problem posed by such a flow is
intractable to analytical techniques even for laminar
flow; for turbulent flow, it has not even been possible
to formulate it in any generally satisfactory manner. A
numerical solution to the hydrodynamical problem was first
obtained by Thom (1932) for a Reynolds'number of 10. More

recently, Macagno & Hung (1967) ‘and Greenspan (1967) have

N\
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succeeded in obtaining numerical solutions for higher
Reynolds numbers. However, as yet, no solution has beenb
available for the problems involving heat tfansfer or
turbulent flow.

Experimental investigation of the turbulent, sudden-
enlargement problem has been mainly restricted to heat
transfer. What little hydrodynamic information is
avallable is usually of a qualitative nature, such as flow-
visualization tests. Sprenger (1959) has collected some
quantitative information thch has not been published as
yet. Boelter et al. (1948) inves?igated the heat-transfer
aﬁgmentation caused by the location of an orifice at the
entrance to a pipe. Ede and co-workers (1956, 1962) have
reported a series of heat transfer and flow-visualization
experiments for the sudden-enlargement of a fully-developed
pipe flow, Recently, Krall & Sparrow (1966) measured the
heat-transfer rates downstream of an orifice in:a pipe.
Some mass-transfer experiments for this problem are also
presented in Part II of this thesis which, unlike the
previous investigaﬁions, were conducted at very high Schmidt

numbers. ~

5.2-2 Description of the problem -

a) The control volume: Fig. 5.2-1:illustrates the problem

to be considered. A jet of fluid issues into a pipe witﬁ
a diameter twice that of the jet, and reattaches to the
rpipe wall some distance downstream of the enlargement, thus
forming a region of reversed flow, The flow is assumed to

be incompressible and turbulent. . .




90.

R/2 _J
) ) WA\ W VL W W N W o N N N W N N N A

\\ W NOAN NN NN N VN :} 4t>\\\ NG

N\ CONTROL VOLUME NN s o

N N\ N\ N

dene At AT ANY VNN Y Y AN (N
\\\ NN\ \\\\\\ RS- \\\\\\ NN (|
N\ \\\ \\L\\\\\ \\\ \\\\A \\\\\L\\ \ ,\ i
. |
gl

FIG.5.2-1 JTHE SUDDEN ENLARGEMENT OF A

The control volume 1s enclosed by the inlet and outlét.
sectlons, tﬁe axls of symmetry and the pipe wall. Of the
four boundaries of the flow, the ghoice of the outléﬁ
section 1s arbitrary and at the discretion of the analyst;
the only consideration for its selection being the avail-
abllity of a set of boundary conditions. If the outlet
section 1s chosen sufficiently far downstream, it is
possible to specify the boundary‘éonditions from the well-
explored, fully-developed pipe flow data. Nevertheless,
for reasons of computing economy, it is desirable to use
the shortest éossible axial length of the control volume.
Hydrodynamic experiments by Sprenger (1959) suggest that;
for the present problem, a near-uniform fplug-flow type)
velocity proflle exists at a distance of approximately 6
- pipe-diameters downstream of the enlargement. Some test;
computations were performed with control volume lengths

between 6 and 15 diameters; all of thg§e produced almost
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4

identicai.results up to 5 diameters from the enlargement.
As the reversed-flow region, thé region of primary
interest, is usually between 1.5 and 2 diameters long, the
outlet section for the final set of computations was chosen

at 6 diameters from the enlargement.

b) The non-dimensional parameters: For ease of inter-

pretation of results, let us define the following non«

dimensional parameters:

Non-dimensional distance: Z = 2.,z/R ,

Skin-friction coefficient: s = Ts.p/Gﬁ R

Reynolds number: Re = 2.Gm.R/p ’

Stanton number: St = qg/[cp.Gm(TB-TS)], and
Prandtl number: Pr=p/(p.Tp)

(5.2-1)
where, R is the radius of the pipe,
z is the axial distance measured from the sudden enlargement,
Gm is the mean mass-velocity in the pipe? and
Th is the bulk temperature of the fluid.
Other symbols have appeared already aﬁd are also given in

the nomenclature list.

c) The boundary conditions .

Inlet section: The incoming flow is assumed to be of |

uniform velocity and temperature,: described by:

G, = 4.6 , .‘ S ,gs.zfz)
G, =0 , and ; | - (5.2-3)
T =

T . o | _ (5.2-4)
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Gz and Gr are respectively the axial and radial
components of the mass-velocity and TI is a prespecified
constant which represents the enthalpy content of the
incoming fluid..

The vorticity and stream-function, the dependent
variables of the problem, at a distance r from the axis,
are then given'by:

w/r = 0 , and (5.2-5)

b 2.Gm.r2 + constant . (5.2-6)

The constant in the above equation is arbitrary, and
it may be selected so as to make ¥ zero at the pi&pe-wall;
in that case:

d) = OOSon(4or2 - Rz)

. (5.2-7)
Unlike the square-cavity problem, the present problem
involves turbulence. If the turbulence hypotheses of
section 4.1 are to be used, the kinetic energy of
turbulence, k, should be introduced as an additional
dependent variable; the boundary conditions for k must
then be supplied. Since turbulence must vanish at a wall,
k is easily Specified as zero at the walls bounding the
flow, but no quantitative information is available about the
value of k im the inlet region. Empirically, k may be
related to the velocity of the inlet flow by:
k = € po(G/0% . (5.2-8)
The constant Ck,I is indicative of the level of
turbulence in the incoming flow and its value was varied

during the course of computations; typically, it was in

the range of .01 to .05.

* For low-velocity incompressible flows temperature is also -
a conserved property and may be used instead of the enthalpy.
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Outlet section: The mass-velocities at the outlet section

were assumed to be given by:

G, = Go(l - /)" y and | (5.2-9)
The condition of conservation of mass and equation

(5.2-5) dictate that:

G. = Gm.(1+n)(1+n/2) . (5.2-11)

The vorticity and stream-function can now be obtained

from:
w/r = Gz.n/[Pr.(R—r)] , and (5.2-12)
) = -0.5.G_.R(1-x/R) ", (Reren.r) . (5.2-13)

In accordance with the aiready mentioned experimental
findings of Sprenger (1959), n was specified as a small
number, typically .05, to obtain a near-uniform velocity
profile.

During the course of computations it was found that
the effect of variation of n was confined to two or three
rows of grid-nodes immediately preceding the outlet
boundary; on the rest of the upstream flow the effect
was negligible. This, of course, is also to be expected
from the physics of the problem; because of the strong
convective effects, the changes in the downstream flow
scarcely make themselves manifest in the upstream regions.

In the absence of any quantitative evidence, two types
of boundary conditions are possible fof the kinetic energy
of turbulence and the temperature: the specification of a
power law; and the specification of zero akial gradient.
Both were tried durihg the course of computations and, as

in the case of the velocity boundary condition, it was
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found that the upstream region removed from theoutlet
boundary by two or three grid nodes was comparatively
irresponsive to the boundary condition. In view of the
faster rates of conVergence obtainable from the
specification of the variable fhan from the specification
of its gradient, the following boundary conditions were

finally used:

k

2
Cy, 0+ (G ) , and (5.2-14)

(5.2-15)

T Tl(i—r/R)n’+ 7

2 H
where Ck o Was specified in the range of .01 to .05, and
H

T1 and T2 were obtained by over-all heat-balance on the

incoming and outgoing fluids.

The wall boundary: The stream-function at the pipe wall

and the step wall, by virtue of equation (5.2-10), is
equal to zero.

The kinetic energy of turbulence is zero at a wall;
and a boundary condition for T is always specified as
either a heat-flux or a temperature distribution. For
reasons of computing economy, it is preferable to use the
concept of 'linearizing values' (see section 4.2-3) to
evaluate fictitious values of k and T at the wall, with
the help of the Couette-flow model as explained already
in section 4.2-3, The value of w/r at one grid-node away
from the wall was obfained from equation (4.2-26).

The axis of symmetry: The boundary conditions at the axis

of symmetry were specified in accordance with section 2.5.
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5.2-3 Presentation of results

a) The influence of the length scale of turbulence: It has
been pointed out in éection 4,1-3 that the length scale 1
is one of the most important inputs to the present form of
the Kolmogorov-Prandtl turbulence model. For the present,
1 has to be obtained from extrapolations of knoWledge about
its distribution.. Four of.the distributions tried during
the course of the present compUtations are shown in Fige.
5.2-2, Distribution (a) is based upon Nikuradse's (1932)
'Prandtl mixing-length' for a fully-developed pipe flow,
whereas distribution (b) is based on the assumption of an
expanding mainstream jet along witﬁ another jet-type flow
in the reversed-flow region and a wall boundary layer.
Case (c) assumes the growth of a linear shear-layer between
the mainstream and the reversed-flow jets. Case (d) is a
modification of (c) in that the diffusion is assumed to be
so strong as to wipe out any.radial gradients of the length
scale (section 4.1-3); the length scale in the reversed-
flow region is then equal to the length scale 'generated' in
the shear-layer. The numerical constants in the above
distributions were adjusted to yield reattachment in the
vicinity of 6.5 step-heights from the enlargement (i.e.,
Z = 6f5). The resulting separation stream-lines and the
heat-transfer rates, for a Reynolds number of 80000 and a
Prandtl number of 3, are shown in Fig. 5.2-2. The turbulent
Prandtl number for enthalpy,cnf’t, was assumed to be 0.7.
The heat transfer results were non-dimensionalised with
respect to the maximum value for distribution (d). Oon
comparison, it was found that, of all the results, those

from distribution (d) were in closest comparison with the
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heat transfer dataj; this distribution was, therefore,
adopted as the standard length scale distribution for all

subsequent computations.

b) The influence of Reynolds number: Figs. 5.2-3 and 5.2-4

present the flow patterns for Reynolds numbers of 104 and
105 respectively. All the values shown in the contours
have been non-dimensionalised in terms of the pipe-radius,
R, and the mean mass-velocity, Gm' For temperature
contours, the step-wall was assumed to be adiabatic, whereas
the pipe-wall was assumed isothermal. The results were
obtained for a 21 x 15 non-uniform grid and the grid used

is shown in one of the diagrams; of course, it should be
noted that only a part of the control volume in the axial
direction is shown in the diagrams.

All the contours follow the expected pattern. The
vorticity contours show the formation of a high-shear
region between the incoming jet and the captive annular
eddy. After this shear layer reaches the pipe-wall, it
is deflected away and moves towards the centre of the pipe.
The stream-line pattern also fits in with the available
flow-visualization data. The gradual increase of
turbulence energy in the high-shear mixing-layer and its
‘subsequent decay as the shear-layer moves away from the wall
are seen from the turbulence-energy patterns. The maximum
 turbulence level (= kpz/Gi) of about 0.05 compares well
with the avallable measurements in similar situations, such
as the flow of a uniform-velocity stream past a step (e.qg.
Mueller & Robertson 1962). The temperature contours reveal °

that, apart from a thin region near the pipe wall and a part
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of the captive eddy, the whole of the fluid is virtually at
the temperature of the incoming jet. This, of course,
would be expected beCause of the high Reynolds numbers and

the intense mixing in the shear-layer.

c) The influence of the Prandtl number: Figs. 5.2-4 (d)

and 5.2-4 (e) show the temperature contours for laminar
Prandtl numbers of unity and ten, respectively. The
higher Prandtl number has resulted in restricting the
changes in temperature still closer to the wall: to this
extent the influence is similar to that of an increase in
the Reynolds number (cf. Figs. 5.2-3 (d) and 5.2-4 (4) ).
No results were obtained for Prandtl numbers less than
unity because of the doubtfﬁl validity of the Couette-flow

relations used near the wall (see section 4.2-2).

d) The influence of the number of grid-nodes: To

investigate the effect of the number of nodes on the
computed results, thfee different grids were used. The
comparison, in terms of the Stanton number and the shear-
stress at the pipe-wall, is shown in Fig. 5.2-5. The
results with .21 x 15 grid (21 nodes in the axial direction)
are in good comparison with those for the finer grids of
32 x 15 and 32 x 22. As a matter of economy, 21 x 15 grid
was adopted as the standard grid.

This favourable conclusion about the influence of grid
provides some confidence for the comparison of the computed
Stanton number with the experimental data which follows in

the next section.
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e) Comparison with experiments: Figs. 5.2-6 and 5.2-7

compare the computed Stanton number with the corresponding
experimental data of Krall‘& Sparrow (1966) and of the
present author (see Chapter 7); it should be recalled that
the computations are based on the length scale distribution
(da). The computed and measured results agree qualitatively; -

the St vs. Re and the St vs. Z dependence is correctly

predicted.
" © o
- O
P o)
(},) o : KRALL € SPARROW (1960)
' o ' o) COMPUTATIONS
O
Re = 51500
Pr = 2
] | ! ] 1 i
o) 2 4 o 3 io I2
—_—

FIG. 5-2-6 COMPARISON OF COMPUTED AND EXPERIMENT .. _
STANTON NUMBER DOWNSTREAM OF SUDDEN
. ENLARGEMENT N A CIRCUL AR PIPE.

Quantitatively, however, the Stanton number, in all

» the cases, 1s under-predicted. The difference from the
data of Krall & Sparrow 1s of the order of 15% whereas that
from the data of the present author is around 30%. It
should be noted that the data of the present author were
obtained for a zone of active surface (a small heated zone

in terms of the heat transfer analogy), whereas the computed
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results are for an iso—concenfration (isothermal for hea
transfer) wall. It is probably this difference in the
boundary éondition* which partly accounts for the large
discrepancy of 30%. The choice of the boundary condition
for the computations was forced by the Couetie-flow
assumptions near the wall (see section 4.2-3).

To some extent, the predictions can be improved by
modifying the empirical input, such as the length scale, 1,
or the numerical constant that appears in equation (4.2-19).
However, in view of the uncertainty of the empirical input,
such attempts were not considered justified. It was felt
that these discrepancies would act as a reminder of the

lack of a satisfactory set of hypotheses for turbulence.

5.2-4 Discussion

The resultsvobtained for the sudden—eniargement
conform with the available experimental data. They:- are
especially encouraging in view of the fact that no other
prediction procedure has yet been formulated for such flows.
Of course, quantitatively, the predictions reveal a large
disparity with experiments. However, this is likely to
be removed with the refinement of the turbulence model.

For high Prandtl/Schmidt numbers, the Couette-flow model
needs refinemert to account for convection along the wall so
that the effect of the boundary condition can be correctly
incorporated. But all these represent modifications to
the present solution procedure within its framework rather
than any fundamental change; these modifications are

likely to follow in the course of time.

* For the effect of boundary conditions on reattachment heat
transfer see section 7.4-4.



The cost of predictions can be judged from the fact

that the computing-time for a 21 x 15 grid calculation wes

of the order of 2 minutes on an IBIM 7094 Computer. The
computing-time could be approximately correlated by:

Time = S. ,.1.0— ‘I.N. minutes y
where, I is the number of iterations, and

N is the number of grid-nodes.
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Chapter 6

Discussion and conclusions

In the previous chapters, a numerical procedure
has been presented for the prediction of two-

hat the

3

dimensional, steady, separated flows.
method is reliable and brings the prediction of
such flows within the bounds of possibility has
been shown by the two test cases. Ve are now
in a position to review this procedure and to
draw some conclusions about its general
applicability, its economy and its accuracy.

We will also reassess the physical input
necessary for the prediction of turbulent flows.
And finally at this stage, as a closure to Part
I of the thesis, we may also venture into thac
space exploration of which i1s the privilege of
every research worker: the suggestions for

future research.

6.1 The capapilities of the numerical procedure

The numerical procedure presented in Chapter 3 is
fairly general: it can handle almost any steady, two-
dimensional, incompressible flow with or without turbulence.
In fact, the condition of incompressibility may even be
relaxed to include those flows in which the density is a
function of temperature only (Pun and Spalding 1967). The
literature demonstrating the applicability and generality of
the method is growing fast; 1in a recent review, Gosman et

al., (1968) listed eleven of its applications; the two test
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cases presented here provide but a glimpse of the scope of
the method.

That the predictions obtained are gualitatively and,
to a large extent, also quantitatively sound, is shown in
the previous chapter: wherever possible, they were compared
wilth the available theoretical and experimental evidence;
without exception, the conclusions have been favourable.
Computing time required was moderate; usually of the order
of a few minutes on a modern electronic computer. The
cost of machine time is likely to be far less than the cost
of experimentation and model-testing. And even 1f the
possibility of numerical predictions does not eliminate the
need for experiments{ it will certainly diminish their
extent and cost.

Of course, like any other new solution procedure, this
one 1s also far from belng perfect. But the‘imperfections
are more physical than mathematical in nature and are
likely to be dispelled by a better understanding of the
involved physical processes. The numerical procedure
certainly porvides a speedy and powerful means of testing
any physical hypotheses which may be postulated in this

context.

6.2 Phyvsical hypotheses and their limitations

A modified Kolmogorov-Prandtl model of turbulence was
presented in Chapter 4; this model is based more on
experimental evidence and intuitilon than on any rigorous
mathematical reasoning. It is naturally to be expected
that not all turbulent flows can be represented by the

present model.
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Turbulence hypotheses are a vital auxiliary IZInput <o
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the numerical procedure if turbulent flows are to bve
analysed. The Kolmogorov-Prandtl model suffers Trom & .
lack of information about various components of its
structure. The characteristic length scale of
turbulence is a very important input to the hypotheses
(section 4.1-3), vyet, except for the simplest of the
problems, there is an almost complete lack of gquantitative
information about it. Other important inputs tTo the
model are the various turbulent Prandtl/Schmidt numbers.
All the sources indicate that these are of the order of
unity: nonetheless, specific estimates differ consideraci;':
values ranging from.O.S to 2.0 have been suggesteda and usad.

Indeed, these may even be functions of various flow-

parameters and not constantsas is generally assumed.

There is also a lack of accord about the supposedly univel=al

constants which appear in the various relations describing

i

the hypotheses (section 4.1-2); for example, the constan
associated with the diffusion of the kinetic energy of
turbulence varies fromthe 0.08 of Glushko (1965) to the
0.152 of Wieghardt (1945). In fact, experimental evidence

N

suggests that the presence of a wall modlifies the structure

}._.l
.

of turbulence to a considerable extent (e.g. Kline et a
1967) . There is, therefore, & strong likelihood that some
of these 'universal' constants way, after all, diffexr for
flows close to a wall compared with those for flows away
froma wall. Similar modifications are also likely in the
presence of other factors which modify the structure of

turbulence such as high pressure gradients.
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It can only e concluded that our knowledge of
turbulence is far from being satisfactory; nevertheless, &
beginning has to be made. If the designer is unable To

obtain an accurate answer,he must, at least, have a

reasonable estimate, This is the reason, and the axcuse,
Ffor making do with whatever information is avallable. It

is not expected, or hoped, that this model will last in icts
present state; it is merely intended to provide a

promising stepping-stone for future improvements.

6.3 Suggestions for further research

Undoubtedly, turbulence must form the focus of
immediate attention. Extensive measurements must be made
and carefully scrutinized to test and improve the various
nypotheses which have been put forward to describe
turbulence; in case of their inadequacy, new means of
handling turbulence will have to be formulated.
Zxperimental data of direct relevance will be those concerning
the structure of turbulence and the factors wnich influence
it. Fortunately there are signs of considerable activity
in this direction (e.g. Kline et al. 1967, Hanson &
Richardson 1968 etc.). It has already been pointed out in
section 4.1-3 that the Kolmogorov-Prandtl model of turbulence

can be put on a firmer footing by the addition of a

Hh

differential equation for the characteristic length scale o
turbulent eddies. It is only when more is known about
turbulence that the various 'constants' assoclatad wi
model can be determinéd with any degree of certainty.
On the mathematical side, it has been noticed that the

sresent finite-difference scheme may introduce consicerable
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numerical errors (Runchal et al. 1967). These errors

stem mainly from the assumptions about the inter-nodal

distribution of variables {(section 3.2-1). Runchal et al.

poilnted out a way of reducing these errors; however; further

viork 1s necessary befofe any definite recommendation matures.
From the point of view of economy, the solution

procedure leaves something to bhe desired. Because of the

use of an iterative method to solve the difference

equations, the computing time goes up not in direct

proportion to the number of grid nodes but as a power

which usually lies between 1.5 and 2. The penalty for the

use of fine grids may thus be considerable. Though

computing time may be cut down by economy measures Sucii &s

a judicious distribution of grid nodes, the use of over-

relaxation etc., unfortunately, none of these can yet be

incorporated in any generally applicable way.  Attention

should, therefore, be turned to davising some more

economical means of solving the difference equations.



PART TIT

EXPERIMENTAL INVESTIGATION

Chapter 7: Experimental investigation
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Chanter 17

Txperimental investigation

This chapter contains the results of én ex—
perimental investigatlon conducted into mass
transfer in the turbulent separated and re-
developing regions immediately downstream of
a sudden enlargement in a circular pipe.
The'geometry i1s thus similar to that of the
problem discussed in section 5.2. The ex-
perimental technigue used was diffusion-
controlled electrolysis, and the data were
obtained for Schmidt numbers of 1400 and
2500, and for Reynolds numbers between 2500

and 89000C.

7.1 Introduction

The essential need for experimental data in separated
flows is self-evident from the state of the approximate
theories which have been put forward to predict such flows
(see section 1.2-2). The need for more data 1s also hign-
lighted by the inadequacies of the existing ones. Thou@h
most of the existing data agree in their qualitative trends,
they are by no wmeans consistent quantitatively. Thus, the
reported rates of heat transfer in the rearward separation
zone of a circular cylinder differ by a factor of two or so
(Richardson 1963). Similar discrepancies have also been
reported for the heat transfer downstream of a sudden
enlargement in a pipe (Krall & Sparrow 1966). This

conflict in results 1is presumably caused by the variations
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in experimental conditions and an insufficient knowledge
about the mechanisms that affect the behaviour of separated
flows. For example, the mechanisms which cause asyrmetric
separation and heat transfer downstream of a double step in
a flat duct are still obscure (Filetti & Kays 1967).
Superimposed on all these are the other three-dimensional -
and unsteady effects, mentioned in section 1.1, for flows
with two-dimensional and steady boundary conditions. It
must therefore be concluded that, in view of the complex’ty
of separated flows, too few data are available to serve as
the basis of any general prediction procedures.

Most of the available experimental data have been
reviewed by Richardson (1963), Knight (1966), Chilcott (1967)
and Filetti & Kays (1967). Almost all of the existing
data were obtained with air or water as the working medium
and, hence, they represent a rather moderate range of
Prandtl number. However, there is much to be gained from
data on high Prandtl number (or Schmidt nﬁmber for mass
transfer data). Much of the resistance to heat and mass
transfer is usually confined to a thin region close to a
wall in the so-called laminar sub-layer. Significant
information e€an be obtained from flows in which the changes
in the enthalpy {(or concentration) profiles are confined to.
this thin region. High Prandtl/Schmidt numbers provide
such a flow; the present series of experiments was designed

to exploit this feature.



7.2 The experimental technicue

The use of diffusion-controlled electrolysis to
obtain the wall-fluxes for high Schmidt numbers 1s now well
established.‘ Comprehensive accounts of the technigue have
been given by Tobias et al. (1952) and Duffielad (1966).

We shall therefore limit ourselves to a brief description
of its essential features.

According to the concept of the ionic theory, the
molecules of a binary eléctrolyte in solution dissociat¢
into two types of ions: the cations possessing a negative
charge and the anions possessing a positive charge. When
an electromotive force (e.m.f.), above a certain critical
value, is applied between two electrodes in such a solution,
there is a transfer of electrons to the onions from the
cathode, and a transfer of electrons to the anode from the
'cations. This sets up an ilonic current. In the steady
state, the reacting ions must be continuously gupplied to
the electrodes from the solution. In general three
mechanisns take part in this exchange:

a) migration under the influence of the potential c¢radient,
b) diffusion under the influence of the concentration
gradient, ,and

c) convection.

Migrétion of ilons can be eliminated by reducing the
potential gradients in the flow, almost to zero, by adding
a high concentration of a non-reacting electrolyte with
high electrical conductivity. The Zonic-transfer theory
states that, for such a flow, the rate of the electro—
chemical reaction increases at first exponentially with the

applied e.m.f. (Levich 1962); but, when the e.m.f. is
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sufficiently high, the rate of reaction is independent of

it and is determined only by the rate of ionic-transport

to the electrodes; the reaction is then termed 'alifusion-
controlled' and the current flowing through the cell is
termed the 'limiting current'.l If, in addition, the mass-
flux of the ions at one electrode is much greater than that
at the other, the limiting-current conditions are first
reached at the electrode with the higher mass-flux; the
ions traASported to such an electrode react very rapidly and
their concentration at the electrode surface falls almost |
to zero. The average mass—transfer coefficient, S for

i

such a system is given by:

I = "/¢ = MJI/(NJF.@G) (7.2-1)
where,
. - e -1 =2

I is the mean mass-—transfer coefficient (g sec ~cm 7),
m" is the mean mass-flux of the reacting ions

( ~Len?)

g sec “cm ,
¢ is the concentration of the reacting ions in the bulk

solution (g / g),
M is the molecular weight of the reacting ions
(g / g — mole),
I is the diffusion-controlled limiting-current density
(amp/cmz),
N is the valence change during the reaction
(g-eqvt/g-mole),

is the Faraday's constant (amp sec/g-eqvi).

!

In the present series of experiments, the reaction

employed was that between the ferri-cynide and the ferro-

- cynide ions, in the presence of an electrical field:

2 — -
Fe(CN) .7 + el Fo(Ci) g (7.2-2)
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Because of the small size of the cathodes (see 'ig.

7.3-3), the reaction was 'cathode-controlled', i.e.

~

limiting-current conditions were first reached at the
cathodes. For the lonic current generated at the cathode,

equation(7.2-1) can be written as:
>

—

g, = 0-002196 I/¥ g sec” tem™ , (7.2-3)

with,

M = 211.95,N=1 and =96 500. All the units are the same

as those for equation (7.2-1 ).

7.3 Apvlication of the exverimental technigue

7.3-7 The aonaratus

»
a) The flow circuit:.A schematic dlagram of the apparatus

used 1s shown in Fig. 7.3-1. A centrifugal pump, 2
=i p s 7

ne

—c

maintains a supply of liquid fromthe reservoir 1 to t©
Rotameters 6 and 7 via a thermostatically-controlled heat-
exchanger 3. The liquid from the Rotameters is led through-
a flow-straightener device 9 and an approach nozzle 11 to
the test nozzle 13. The jet of fluid issuing from the
test nozzle expands into the test section and then returns
to the reservolir. Further details and photographs of the

m

various impoftant parts of the apparatus are shown in Figs.

7.3-2 to 7.3-5.

»"®
The test-nozzle assembly was designed to be movable

along the upstream tube A, of the test section, the movement
U ?

* Some components of the apparatus were the same as those
used by Gosman (1569); he has given the details of
construction and specifications of the components.

** The author gratefully acknowledges the advise given by
Professor W.M. Kays for the design of the test-nozzle
assembly.
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being absorbed by the flexible tubing, 8, at the top; The
relative position of the nozzle in the test section was
obtained from a scale and pointer device, 10, as shown in
Fig. 7.3-1. The lower part of the nozzle-assembly was
surrounded by a leakage~container, 12, which could be
partially, or completely, filled with the liquid to counter—
balance the leakage;pressure through the sliding joint
between the nozzle and the test-section. The necessity of
a movable nozzle arose from the Fact that the measurements
were required at a number of positions downstream of the
sudden enlargement. With a fixed nozzle this can be
achieﬁed only by employing a large number of cathodes along
the length of the pipe; this, however, presents an awkward
design problem. With a movable nozzle the same purpose
can be achieved even by a single cathode.

The flow-straightener device, made of a 12" long
straight circular tube of 9/8" internal diameter, was used
to eliminate any swirling of the liquid. The flow area
of the tube was partitioned into four equal segments Dby
1/16" thick, knife-edged vanes placed along the length of
the tube.

Special .precautions were observed during the construct-
ion and assembly of the apparatus; these will now be
described. Because of the corrosive nature of the liquid,
all those components which came into direct contact with
the liquid were wmade of corrosion-resistant materials such
as'P.V,C.', 'Perspex', stainless steel and high-purity nickel.

The testfhozzle assembly (Fig. 7.3-5) was made of
'Perspex’' and all the inner surfaces and joints were care-

fully smoothed. The inner surface of the test nozzle
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itself was first polished with a very fine emery cloth and
later with a polishing liquid supplied by the manufacturers
of 'Perspex'. The test section and nozzle assemdbly was
mounted vertical within 1/186".

SNSRI EINTNNES IERTAERTRANAN 0N
ﬁz&f‘/777ﬂ////f"f U .; JEIRED
ET k = ' HCKEL
) MOVABLE INLET ] "/hTqu
03757\ AND TEST - e i ToR
' — T T o
NOZZLE ASSEMDLY : , L
MADE OF PERSPE%.

(7777777 ZTIL L. 7777

A

-, -

000"

NOTE : NOZZLE INNER P20FILE ' FIRST O-075" LONG
SECTION SEGMINT OF A CIRCLE 2-5" RADIS,
LAST o-i25" szcTiol PAIZT OF A STRAIGHT
CIRCULAR CYLINDER,

FiG. 7-3-5 MOZZLE  ASSIMDLY DETALL

As potassium ferri-cynide, one of the components oi
the liquid used, is photo-sensitive, all the transparent
sections of the apparatus were covered with a deep-orange
celluloid paper, To prevent degeneration of potassium
ferri-cynide by oxidation, the liquid was saturated with
oxygen—-free nitrogen and a nitrogen atmosphere was always

maintained in the reservoir.

b) The test-section: The test-section was composed of six

lengths of nickel tubing, of 1.1271 inch internal diameter,

insulated from each other. The details of the test section
(except Aj) are shown in Figs. 7.3-3 and 7.3-4. Electrical
connections were taken from each segment of the test section '

to the external electrical circuit.
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The mode of construction and assembly of the test
section have been described in detail by Gosman (1969).
The test section was constructed-with very close tolerances
because of the thinness of the concentration boundary layver
at high Schmidt numbers; the mean roughness on the inner
surfaces of the electrodes was less than 10_5 inch and the

steps at the joints were less than 5 x 10—3inch.

c) The electrical circuit: The essential features of the

external electrical circuit are shown in Fig. 7.3-6. The
circuit was designed to -allow the operation of the electro-
chemical cell with any combination of the anode/cathode
set-up, and also to permit measurements of current througn,
and potential-drop across, any of the cathodes individually
or in combination with others. For this purpose, each
cathode was provided with an independent sub-circuit
consisting of a variable e.m.f. source (a lead accumulator
across a potential divider ), and terminals for calibration
and for currert and potential-drop measurements. Commoﬁ
terminals were also provided for the over-all circuit as
shown in Fig. 7.3-6.

The current measurements were obtained by measuring
the potential drop across a standard 1 Ohm resistance with
a high-precision Digital Voltmeter*. Though the Digital
Voltmeter was supplied with an in-built filter, an external
resistance-cpapcitance filter with a variable time period
(50 pusec to 10 sec) was used to even out the strong
fluctuations in the signal. Most of the reaaings were

taken with this filter set between 2 and 5 seconds.

* 'Fenlow' Digital Voltmeter 3071-A3;0.071% DC accuracy,
10 uv to 1000v range.
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A calibration circuilt was provided to enable a check
on the diffusion-control characteristics of the cathodes.
It could be connected to a motor-driven potential divider
and the current flowing through acathode could be recorded

.
on a chart recorder .

7.3-2 The electrolvte

The electrolyte emploved consisted of equimolar
concentratlons of potassium ferri-cynide, K3 Fe(CN)6, and
potassium ferro-cynide, K4 Fe(CN)6, in aqueous solution of
sodium hydroxide, Na OH. High purity 'Analar' chemicals

and distilled water were used for the above purpose, It

* 'Honeywell' 'Electronik' strip chart Recorder - second
series 153 x 16; + 0.25% accuracy of scale span.. Basic
chart speeds 4" and 120" per minute.
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is to be noted that only ferri-cynide and ferro-cvnide Zons
take part in the electrolysis; sodium hydroxide merely
provides a supporting electrolvte of high electrical
conductivity: these aspects of the technique have been
discussed already in section 7.2.

The preparation of the solutions was carried out in
two stages. Sodium hydroxide was dissolved 1in distilled
water and allowed to cool to about 250C; its strength was
then determined by titration against a standard agueous
solution of oxalic acid and, if necessary, adjusted to the
desired value. This solution was then saturated with
oxygen—free nitrogen and the reguired guantities of potassium
ferri- and ferro—cynides were added. The concentration of
the ferri-cynide ion was determined with & Spectro-

*
photometer at a wavelength of 410 mu.

About 65 litres of the solution were prepared for eacn
series of tests and the solutiomm was retained on the average
for about 60 hours. Special precautions were taken to
minimize the exposure to light and oxygen, both of which
have a degenerating effect on the ferri-cynide ions; these
precautions have already been described in section 7.3-1.
The concentration of ferri-cynicde ions was checked from time
to time; any solution which degenerated by more than 2% in

this respect was discarded, and the tests repeated with =z

new solution.

7.3-3 The exnerimental onrocedure

The procedure followed for all the mass-—transfer tests

consisted of the following steps:

* 'EEL' Spectra, range 400 to 700 mpy; Dbpand width 35 my.
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2)

3)

4)

5)

6)
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The test section was removed from the apparatus and
reactivated by a process suggested by Duffield (1985).
The test section was electrically tested to ensure <that
the inter-electrode insulation offered a minimum
resistance of 50 000 Ohms to any short-circuit current.
It was then remounted on the apparatus.

The electrolyte was prepared according to the procedure
outlined in section 7.3-2.

The pump was then started.

The heat-exchanger controls were adjusted until the
liquid reached, and maintained, the operating temper-
ature of 25 + 0.1°C.

The next step was to ensure that the diffuslon-control
characteristics were obtained under the most adverse
conditions expected during the tests: this implied
obtaining the current vs. potential-drop curves for the
maximum current flowing through the circuit.

For the above purpose, the flow rate was set at the
maximum and the test-nozzle was positioned such that
the middle cathode, CM’ was in the regilon of the
highest mass-transfer rates; this positionwas about 3
nozzle-dlameters downstream of the sudden enlargement,.
A motor-driven e.m.f. source was connected across the
selected set of electrodes, and the current-vs.-
pctential-drop curve was recorded on a chart-recorder.

A plateau region with less than 1% rise in current for
a range of potential-drop (~0.5 volts) was accepted
as the indication of diffusion-controlled electrolysis.

The tests for diffusion control were carried out for

each different electrode combination (see section 7.3-4).
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8)
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127.

(In casé the current—&;.—potential—drop curves failed
to show a marked plateau recgion, the test section was
reactivated and all the steps listed above were
repeated).

The motor-driven e.m.f. source was disconnected and the
electrodes were switChed to thelr individual e.m.f.
sources as shown in Fig. 7.3-5.

The applied e.m.f. was adjusted so that the potential-
drop across each active cathode was in the diffusion-
controlled region. The current and potential-drop
measuring devices were connected according to the
requilrements.

The flow-rate was adjusted to the required value and &
series of relevant readings were taken for selected
nozzle positions and electrode combinations.

At the end of one set of readings, the flow-rate was
adjusted to a new level and the process was repeated
until readings were availlable for all desired rates
of flow.

The diffusion-control curves, temperature readings
and the concentration of ferri-cynide ions were obtained
from tipe to time during the intermediate stages of the
above series of readings.

The solution was drained and the apparatus was rinsed
with water. This was followed by a rinse with 5%

hydrochloric acid (HCl) and a final wash with water.
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7.3-4 Cholce of electrode combhinations

a) The effect of cathode on the mass—~transfer hehaviour:

For a cathode-controlled system, the choice of cathode or
cathodes is important for the study of the mass—-transfer
behaviour. It should be recalled from section 7.3-2 that
the concentration of ferri-cynide ions at an active cathnode
falls to zero. Such a cathode, thus, implies a step-
change in the boundary conditions: at an inactive surface
preceding the cathode, the concentration of the ferri-
cynide ions 1s equal to that in the bulk flow, but at the
cathode this concentration falls to zero. In terms of
the heat-transfer analogy, an active cathode is equivalent
to a surface with a step-change in temperature, whereas an
inactive surface 1s equivalent to an adiabatic wall.

Various types of boundary conditions can be simulated
by selecting different cathode combinatlons from Fig. 7.3-1.
The following four groupings were used for the preliminary
investigations.
Group I : CM alone acting as the cathode with CU and CD

electrically isolated from the circuit,

Group ITI : CM’ CU’ and CD all acting as cathodes,

Group III: C,. and C, acting as cathodes with Cj electricalily

isolated from the circuit, and
Group IV : C, and C; acting as cathodes with C, electrically
isolated from the circuit.
For comparison of results, it was the current generated
by the smallest electrode, CM’ wnich was measured for each
group. The length of this cathode was swall enough (1/12th

of the pipe diameter) to justify the assumption that it

represented the local values of the mass transfer.
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h) The effect of anode on the mass-transfer behaviour:

In the electrolysis process under study, ferro-cynide ions
oxidise into ferri-cynide ions at the cathode. In a
cathode-controlled system, the quantity measured is the

current generated at the cathode; one of the parameters

Hh

controlling this current is the concentration of ferri-
cynide ions in the bulk flow as shown by equation (7.2-1)..
Because these ions are generated at an anocde, the

location of an anode upstream of a cathode will increase

the rate of reaction at the cathode. This will produce
anomalous results which cannot be interpreted properly
because of lack of information about the extent of increase
in the concentration of ferri-cynide ions. It was for this
reason that the use of Ay, @s the anode, had to be ruled out.

The first preliminary sets of results were obtained

with AM as the anode and AU and A. isoclated from the

D
electrical circuilt. A typical.set of results is displayed
in Fig. 7.3-7 for the four different cathode groups. A

comparison of the results for the cathode group I with

those of the group IV shows a disturbing feature of the
results: that for some regions of the flow, mass transfer
rates are higher for group IV. As group I represents a
small locally active surface, rather than a zone of active
surface of group IVf,in view of the established behaviour
of the convective flows, this increase is totally unexpected
and points to some unconventional mechanism entering into
the picture. On second thoughts it can, in fact, be

concluded that there is a strong likelihood that the

* Group I, in heat transfer analogy, corresponds to local
heating, whereas group IV represents zonal heating.



ferri-cynide ions produced at the anode AM will be swept
back onto the cathodes. This is possible because, for some
of the nozzle positions, the upper part of the anode will
lie in the reversed-flow region, upstream to the cathodes
with respect to the direction of flow on the cathode-
surface. Because the rate of generation of the ferri-
cynide ions at the anode is proportional to the amount of
current generated at all the cathodes, such an effect will
pronounce itself at the higher current intensities cf the
group IV. Of course, the natural question to ask is that,
'why does such an effect not appear for groups IT and III,
which also have higher current intensities than those of
group I?' The reason is that, for these two groups, there
is an intercepting cathode CD between the anode AM and the
cathode CM at which the current is being measured. Thus,
any increase ‘in the concentration of ions is absorbed by

this intercepting cathode before it can reach the measuring

cathode C,.

M the current at CM is therefore representative
only of the rate of diffusion from the bulk flow.

It is to be noted that no such anomalous increase is
discernible in the measurements far downstream of the
enlargement gnd the results of the group IV merge with those
from the groupII: this is to be expected on theoretical
grounds as no back-flow is now possible from AM to CM'

From the reasoning of the previous paragraph it is to
be expected that the fallacious results caused by the
proximity of the anode to the cathodes can be eliminated by
using AD as the anode. Contrary to expectations, however,

the use of A_ 'as the anode did not seem to make any

D

substantial difference to the results. The only noticeable
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difference was a slight increase in the potentilal .drop
through the cell; this increase, however, was much less
than would be expected because of the ohmic drop in the
extra column of electrolyte now intcrposed between the
anode and the cathodes. Discussions of the above
unexpected results with other research workers in this
field, revealed that under some cilrcumstances it is possible
that the metal tube AM’ though not acting as an anode, may
still act as a conductor for the passage of electrons. As
the conductance of nickel is much higher than that of the
electrolyte, the former provides a preferred path for the
current; 1in such a case, the end of the tube nearer to
the cathodes acts as an anode and defeats the very purpose
for which AD was used as an alternative anode for the system.
To verify the above arguments, it was decided to
insulate the inner surface of the tube AM from the solution
altogether. For this purpose, a polythene tube, 9/8" 0.D.
and 7/8" I.D., was inserted in the test section in such a
way that AM and CD were completely covered by it. The end
of the polythene tube near the joint of CD and CM was formed

in the shape of a nozzle and A, was once again employed as

D
the anode. Jt was noticed that now the results from the
cathode group IV were the same as those from the group I
for all the regions of the flow. However, the potential-
drop now required to operate the cell at the diffusion-
céhtrolled level was very high (of the order of 4 volts
compared to about 0.5 volts of the earlier arrangements);
this high voltage level was found unsatisfactory for

general work: small changes in current caused relatively

large changes in the potential-drop because of the high



resistance of tle electrolyte between the anode and the
cathodes.

The elimination of the drawbacks of the existing
electrode set-up would have required the design and
construction of a new test section, and it was felt that
the advantages to be gained were not justified by the
effort involved; it was therefore decided to continue
With the existing test section with the cholce of electrodes

given in the next subsection.

' ¢) The final choice of the electrodes: In the light of the

preceding discussion, the only choice left open for the anode

was that of A, and all subsequent tests were carried out

M
with this electrode as the anode.

Cathode group IV had to be abandoned because of the
fallacious information provided by this grouping; this left
the choice open between the other three groups. A glance
at Fig. 7.3-7 showsthat not much can be gained from the use
of cathode group III eilther. With respect to the flow in
the vicinity of the surface, CU lies downstream of CM for the
region of reverse flow and the results of group III merge
with those from group II; away from the regions of reverse

flow, C_, lies downstream of C. and the results from group III

D M
merge with those from group I: these trends are to be
expected from the known behaviour of the convective flows.

Thus, the cathode groups selected for the final séries

of tests were the groups I and II.



7.4 Results and discussion

7.4~71 The flow parauneters

For presentation of results, let us define the

following non-dimensional parameters:

Diameter ratio: D = DP/DN s

Distance: z 5.2.z/(DP—DN5 s

Reynolds number: Re = G_.D,/u , (7-4-1)
Schmidt number: Sc = u/(o T%) , and

Stanton number: St = gm/Gm ’

vhere,

DP is the diameter of the pipe,

Dy is the diameter of the nozzle, and

o is the mass-diffusivity of the fluid.
All other symbols are explained in the nomenclature..
(DP—DN)/Z is, of course, the height of the step formed due
to the sudden enlargement. 4

In general, for incompressible flows,
St = St {Re, Sc, Z, D, DueCy seeee > §7.4-2)
where b.c. denotes the effect of the boundary conditions,
and the dots serve as a reminder that in a complex problem
other parameters, such as the turbulence intensity, may also
affect the Stanton number.

For a fixed diameter ratio (equal to 2 in the present
case):
St = St 4Re, Sc, Z, b.c.> (7.4-3)

The boundary condition is governed by the selection of
the cathode group in the present case (see section 7.3-4);
as already mentioned, for the final tests two cathode

groups, I and II, were employed.
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The experiments were performed for two values of the
Schmidt number: 41400 and 2500; the transport properties
and concentrations of the corresponding solutions are

given in table 7.4-1.

; 7 4 A
Solution NaOH !KﬁFe(CN)6 p L Sc ¢+ Re Data
No. > 3 1 _+ Range lappear
- —_ - A
gm-reoles |gn-moles | gmcm gm. sec.cm in
per litregper litre ‘
. _ igs.
- 7.4-1
1 0.520 0.00515 1.020! 0.0103 {1400. 3550. 7.4-2
+ 7% BBESO Table
1 7.5-1
7.5-2
r'igs.
7.4-3
2 2.056 0.00504 1.080f 0.0144 |2500.; 2550. 7.4-4
+ 7% 65380 Table
l 7.5-3
7.5-4

Table 7.4-1 Iluid-property data for the solutilons emploved

for the mass-transfer experiments.

Note: Fluid-property data were taken from Duffield (1966).l

The Reynolds number was varled from 2550 to 88500,
and the mass transfer measurements were obtalned for
various locations downstream of the sudden enlargement

7.4-2 The experimental data

The experimental data are displayed graphically in
Figs. 7.4-1 and 7.4-4 as plots of Stanton number, St, vs.
the non-dimensional distance, 2, for various Reynolds
numbers. The same data are later reprodueed in a tabular
form in section 7.5. Also . shown with the above data are

the asymptotic values obtained by Gosman (1969).
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The present data far downstream of the enlargement
compare favourably with those obtained by Gosman (1969).
The data for the separatéd and the redeveloping regions of
the flow follow the well-established pattern of behaviour in
its general trends: the mass-transfer rate rises rapidly to
a maximum in the reattachment zone and then decays to its
asymptotic value for the flow in a straight circular.pipe.

However, there are two features of the present data
which do not seem to have been reported in the existing
literature. The first is a shift in the location of the
Stanton number maxima with the boundary condition: the
data for the cathode group I exhibit maxima, on the average,
in the vicinity of Z = 5.6, whereas the maxima for the
cathode group II are located near Z = 7.0. The second
novel feature is the appearance of a second maximum for
the data of the cathode group I at low Reynolds number.

Precisely how the boundary condition interacts with the
flow to bring about these effects cannot be explained on the
basis of the existing.knowledge about the separated flows.
It is generally agreed that the loéation of the time-mean
maximum mass/heat transfer coincides with the mean
reattachmept.point; however, the reattachment'point ltself
is known to oscillate about a mean position with time(e. g.
Abbot and Kline 1962). Since the instantaneous values at
a certain location are a function of the boundary conditions,
it 1s conceivable that the differences in the time-mean
values are caused by the time-averaging process. Another
possibility, of course, is that the inactive cathode CD’
for the cathode group I, may act as a pseudo-anode and

cause a local increase in the concentration of the ferri-
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cynide ions. This effect, which has been described in
detail in section 7.3-4, will result in increased rates of

mass transfer at C especlally for the reversed-flow

M’

region .when Cy» relative to the local direction of flow,

lies downstream of CD'

In the existing literature, the maxima in heat/mass

transfer have been reported to lie between Z = 4 and Z = 12
(see e.g. Krall and Sparrow 1966), The most frequent
values quoted in this respect are between Z = 6 and Z = 8.
It is interééting to note that almost identical wvalues have
been noted for external flows such as the flow past a step
(e.g. Mueller and Robertson 1962). The present data,
especially those for cathode group II, are thus consistent
with the data obtained by earlier workers. It should be
noted that almost all of the earlier data were obtained
with uniform (temperature or heat-flux) boundary conjitions
for a éonsiderable length downstream of separation: the
boundary conditions of the cathodegroup II are nearer to

this situation than those of the cathode group I.

7.4-3 Correlation of the data

a) A small lecallv active surface: cathode group I: For

very high Schmidt numbers and small mass—fransfer surfaces
the éoncentration gradients are likely to lie entirely
within the laminar sub-layer. It can be shown that (e.g.
Spalding 1964) away from the reat?achment point

St ot Sc™2/3 , : (7.4-7)
and therefore, for purposes of correlation:

St = const. Re 9. Sc"z/3 . (7.4-8)
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2/3 in a graphical

Fig. 7.4-5 presents Re vs. St.Sc
form for two locaﬁions downstream of the sudden enlargemenc:
the location of the mass-transfer maxima and a location far
downstream of the enlargement. ° In both cases, the data
can be well correlated with gq = 0.45.

According to Spalding (1964), the value of g for a
fully developed pipe flow at high Schmidt and Reynolds
numbers is 0.417. In the vicinity of the reattachment

point in a turbulent separated flow, Spalding (41967b)

deduced that the value of ¢ should be 0.40.

b) A zone of active surface: cathode group II: For fully

developed turbulent flow at high Schmidt and Reynolds
numbers, it can be shown that (e.g. Diessler 1955, Spalding
1964):

. 125

St = const. Re” . Sc-3/4

. : (7.4-9)

Though the boundary conditions of the cathode group II
are not likely to yield a fully developed flow, it is
convenient to employ the following generalisation of thle
above relation:

St = const. Re™ 9, Sc_3/4 . (7.4-10)

3/4 for two locations

Fig. 7.4-6 displays Re vs. St.Sc
similar to the ones for the cathode group I. In this case,
however, the data can be correlated as a simple power law
only for the location of the maximum mass transfer; the
index of the power law, ¢, is equal to 0.35. The values
far downstream cannot be represented by a simple power law:
in fact, even the dependence on Schmidt number does not
appear to be a simnple power of 3/4. However, for Re

greater than 2.5 x 104, g in the above equation may be

chosen as 0.20.
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It is to be noted that the values reported by earlier
research workers, for uniform heat-flux at the wall, are

Land

approximated by q = 0.33 in the reattachment region. The
value of g predicted by Spalding (1966) for the reattachment

region is 0.40.

7.4-4 Comparison with previous investigations and

concluding remarks

A number of investigations have now been conducted
into the behaviour of theseparated flows, and some of
these nave already been referred to in the previous
sections; however, none is directly comparable with the
present one in both the geometrical arrangement and the
experimental conditions.

Fig. 7.4-7 presents the data of Krall and Sparrow
(1966) and Ede et al., (1962) along with some data from the
present experiments. All the data collected here were
obtained for sudden enlargement in a clrcular pipe for a
diameter ratio of two; Thowever, the experimental conditions
varied considerably. Krall and Sparrow induced separation
by inserting.an orifice into a pipe with fully-developed
upstream flow; the pipe was heated electrically and the
tests were conducted at Prandtl number of 3 and 6. The
data of Ede and co-workers were obtained for the sudden
expansion of a fully-developed pipe flow into a bigger pipe;
electrical heating and a Prandtl number of about 9 were
employed. St for the data of Ede et al. was obtained
.from a correlation recommended by Knight (1966) for
similar data:

'116.Pr—‘6

Stw = +0109 Re™ . (7.4-11)
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It should be noted that the slopes of —~.033 aﬁd -.225
in Fig. 7.4-7 were arrived at from the correlations of the
maxima and the asymptotic solutions recommended by Spalding:
both of these have béen discussed in detail in the preceding
section.

Fig. 7.4-7 shows that the effect of the Prandtl/

Schmidt number of Stm /Stm, especially at high Reynolds

ax
numbers, is small. The differences between the results of
Krall and Sparrow and those of Ede et al. can, then, only
be-ascribed to the differences in the experimental conditions,
such as the increased turbulence in the incoming flow in the
case of Krall and Sparrow because of the presence of an
orifice in the pipe.

The Reynolds number dependence of StmaX/Stm is
considerably influenced by the boundary conditions as can
be seen from the comparison of the data for cathode group I
with those of cathode group IT. Also the data show a large
variation in the magnitude of Stmax/Stm at any fixed
Reynolds number.

rore experimental data are clearly needed to understand

and explain the mechanisms which bring about these changes

of heat/mass-transfer behaviour.
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7.5 Experimental data in tabular forn
CATHODE GROUP I
SOLUTION NO. 1
SCHMIDT NO. 1400
DIAMETER RATIO 2
T S S A ~
A.;f§\53‘<_3550w5500190503-1415021300~4344oo 4560001“88500 e
fl.7.1 1.659__1.235_ 1. ozsmdo 897__0.750__{ __0.512 __0.452
2.0 1.6667 14284 . 1.072.70.922 0.770_ o.uz.:"o;531‘io.@6@
242 |.1.T43_.1.304__1. Ogéﬂwﬂ 953 _.0.804_ 0.651..0.570. . 0.428 t __
2.5 | 159595103895 1.177F 1 0787 0.84370.693 _ 0.616 =0.510 | =
2.8 |.2.245_.1.532._.1.316__1.107__. _0.902...0.736___0.654 _0.551 | __
3.1 4.546"1.820m 1 458 1. 190::b‘90q 0.805:20.701 . 0.577{__
. S 2.893__2.083 _1.597._1. zqoidt 043T.o.87oﬁ,o.743 0.592 { _
37 3,047 5242810514697 1034622 .1015-0.916:;0.?694;0.511 i
3.9 3,178 2415 1.769 14398 _1.152 0,951..0.790 0,634
4.2 30232 2.490.1.832_ 1.443:=21.186- AO.QTD;:O B01. 0.H&d |
4.5 ) 3,263 2,519 __laB44._ 1.466_.1.216...0.999 0. 310 0.657
Y 4GB ;3.271;;2.544L;1.860;;1¢493;;1-2391;1 0125:0.815 _ 0.660
5.1 3.217...2.539 . 1.863._.1.499 . 1.257..1.024 _0.817...0.66%
5.3 | 321835 24549 2 1.875 - 1.512.::142641.030-20.8177 0.663
5.6 3,132 2.549.__1.866 1.512 .1.268_1.032__0.817__0.663 1 _
5.9 | 3.109.02.524.5.1e8447 12a5122714267-21.030" 0.803220.662 § =
6.3 |.3.078__2.665__1.841_ 1.502_.1,273_.1.025__0.799 ..0.657} _
6.6 | 2.985 2,430 .14826-21.493..1.270...12020- 0.797..0.652
_1.0. ,z.sasffz 366 ..1.796.1.48L _1.261__1.013...0.7892_ 0.649}
7.3 V754 - 2.326 1.769 14460 - 1.247 -1.004 0.776 0.642
_8.0... _7 669 _2.221T__1.712 1. 427“,L.2212r0 978__0.753 0.630
TB.7 | 24538 2.18251.660.71.391°71,193°2°0.955 0. 744 0,616
9 2444524073 1.612_.1.350.1.162_0.928__0. /27.,o-ec3.f
24307 52.013  1.564 - 1.321 71,125 0.906.-0.712. .0.589
2.276__1.885__1.470  1.252_.1.079.._0.874__0.688_.0.566
2.258 14840 2. 1440 1.215 ..1.0487.0,842  0.568 0.548
J-2.361.1.845_1.425. 1.192_.1.015_.0.809._0.639 .0.523]
2. 368 1 .BT5 . 14431 14176 0.994 7 0.778::04614-0.500 |
L 7.345__1.865__1.416._.1.148_.0.964_.0.756_.0.592._0.484 |__
2.2015m 1830 1.3861.126—20.937-2:0,7327-0.577. N.455 |
2.237__1.766__1.355 __1.084._.0.914_.0. 7V6~<O 562.__0.455 | __
2,183 T4L 14316 210675 0.8955-0.697 0% 55225 0.450 | -
ZQ.LAJ_fl !117,1 292 . 1.043 __0.877_.0.6%6__0.544. 0.443
e FEE A 768_.1 0287 0.8647=0.677° . 0.539 50,439 ;.=
1682 1.3992.1.138 0. 944 .. 0. 796- 0. 652.70. 532 - 0. 660 |
Table 7.5-1. Stanton Number ( X 104) downstream of a

sudden enlargement in a circular pipe with a
small active zone at the point of measurement

onlya.

* Values at Z = =,in Tables 7.5-1 to 7.5-4,

are those of

Gosman (1969).



CATHODE GROUP II

SOLUTION NO.

SCHMIDT NO.

1

1400

DIAMETER RATIO 2
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L I

2e

Al

PO L d OO UNUU SR DWW WWNNNN | N
]
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t
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NDOUOC WO WHRONDS DTN D

229 1.835__1 437 1.217 1.

{_.OC)L"“>

069 0.385%.

24299 _1.894__.1.425 1. 211;vl 060__0.884_.0. 712__0 601
0.7052-0.599
ﬁ*O 698 __.0.592
927

-0.585

L0601 741_*1.J6L_;1 194__1 039u“o 852_,0 677 0.575

03450, 868 = 0. 67620, 5TT= 0.518=0.434 0371
_|-C- qqs__o 803__0.640 _0. 532f}o 41T

0.328

_0.402 ._0.346__0. 314
220384 - 04331 0,300

, ¢ Re .-3550 ,wssoofw 9050__14150 21300”_34400,,56000,:8ﬁ500
—le 1.149. )aletel . 0.397 1.

S 2. 1.157 o 922*'0 794 o 694 o 607“0 512 0. 464 - 04403

. 1.219_.0.952.. 0.782. 0.486 0. 425

. 1.304--0.987-0.776" -o 748 - 04 651?*0 559-:0.519 08451

2. 1.527_.1.022_ 0.875._0.775..0. 685_..0.588__0.545 . 0.478

. 1.666  1.156 - 0,960 - 0.849 — 047245 0.5452.0.579 -0.512

. 1.929._1.344_.1.072 _0.899 0.772 .0.687_.0.604 0. 512

- 2.075--1.498-51.138220.964.20. 8222.0. 726550.629 00531

3. ,2 168:..1.622 .1.195...1.020..0. 865 _0.762..0.656 . 0.548

Lk 2,265 -1.6867-1a24471.045:700906=20.782::2.04672:2:0.560

2 283 1.736...1.304 _1.084_.0.933__0.807..0.686 _0.574
- 2.307571.809 -1.328:214126.220.96 T 0..8335:20.694._0.578
5. 2.345__1.845 Vl 355 _1.146__0.993.__0.843_0.706 .0.58%
5. 24330221, 845:2.1.3895-1.157--1,007-20.859=20.714 =0.589
- 5. 2.330._ 1.875_.1.407 _.1.180__1.028__0.868_ 0. 717_"0 595
2.5 2.337551.894 1.401:51.1860:-1.03720.873--0.71620.596.
. 6.3..1.2.330__1. 894 1.425__1.211 _1.047 _0.877 0. 710__0,511_
L 5,307 1.899-.1.413-21.2197°1.051°20.884 "0 710 . 0.597

- 1 9R3 T 1.561 . 1352 - 14227  1.024 -0.837...0.668 7 0.560
|.1.851__1.582_1.301_.1. 113_ﬁo 983._0.805_.0.634 . .0.537.|_
12743 21,488 = 1.229 ..1.045  0.927-.0.754- 0.602..0.510

-1.481_1.270 _1.038_0.
1.250-1.066° 0.887-" 0. 756 0,660 0. 420,453 . 0.397
1.136_._0.¢ )l T6. 0.401. _ 0.356

_ 0.486#70 430__0.366__0.319 _ 0.292
0.4T1°=0.418220.355"" 470,286
i 0.295 0.274 | -

Table 7.5-2.

Stanton number ( X 10 "y downstream of a sudden

2

pipe with

the point

of measurement in the mid

dle of large actlve

zZone,



CATHODE GROUP I

SOLUTION NO.

SCHMIDT NO.

2

2500

DIAMETER RATIO 2

150.

. — ~
¢ 7 Re .2550fﬁ,Jqsq_m;6sso~_1ozoo:plbsoo 44444 25200,,41g99:;¢53q9:;;
1.7 1.002...0.853__ 0. 675_?o.a3ofﬁp-5ﬁg:Tgﬁggﬁffo.3ﬁ1ﬁ:o-331 _
el . 2.0 140437040891 7046947 04633 202571 - 0.454"C0.393  0.344_ | =
2.2 | 1. 060:?0 918 0. 707,Mo 664...0.585._0.463 . 0.426._0.368 ! __
Z 245 141105 0.998750.798520.7125 0.615°-0.499=0.458 ..0.399 | =
2.8 1.235...1.180 0. 915,ﬂo 805.. 0.677._.0. 532;,0 492 0.434 | _
341 1a8452 = 124547 100777 0.884 ~0.735  0.580- 0.542 ~0.460
3.4 .1.744?il.658”:l 191.. 0.972__0. zgéwto.@lrffo 577 .0.493 }_
30T U] 1e9865T1,814 7 14298:5:1.0267 048407046597 0.602 “0.514
3.9 ,2.170T71.894m 1.363.. 1.078 _0.882  0.691__0.628 0.530 |_
T2 2428725149167 1.4027510105 0049147704 7130.651 045450
45 ~.32uw 14926 1.415  1.132 0.940 . 0.736 0.664 0.548
The8 | 2.37031.91051.428. 514142 0,953 7°0.750 7 0.063 - 04553
5.1 2.370_1.883._1.434__1.157 _0.962_ 0.761__0.670. 0.554._{_
5473 2431270 148575512415 711572209715 0077372 0. 664 = 0.554"
5.6 | 2.287__1.830 _1.418__1.155 0.975_.0.778_ 0.665..0.553 |_
C5.9 2425421080320 1.405 21,1557 205977 0. 781520, 659 0.550 |
.63 | 22203 1.749__.1.382..1.142__0.975_ 0.776._._0.655__0. 545 B
S 6ab | 2.128:51.679=1, 353:;1 12825009627 0.775- 0.5648..0.540.
— 7.0 |.24053__1.626__1.330.._1.113 _0.957__0.774__ 0. 645__0.533.1
763 | 1149617145947 1. 304m.1 0957 0,952 0. 769 - 0.63L_ 7 0.528_ [
8.0 | 1.845 __1.481 ..1.253 __1.063__0.922_0.753. .0.613._0.514
Be7 | 1.761..1.406771.204 1.023750.893. 0.739 7 0.592_ .0.507 |-
9.4 | 1lab661 _ 1.347 ,1.155;30,988 _0.867 mp,(15_10.577,;o.495i_,
0.1 1.594 1. 293 . 1.1037°20.963  0.841-50.696 -.0.564-0.488
J1e5 F 1.519__1.277__1.035...0.909_0.796_0.665._0.540__0.469. | _
15772142772 1"012A_o 880 0.773 2 0.646-20.523 2-0.460 |
1a661..1.341__1.029__0.880__¢ - __.0.505_ 0,438 _
1.678  1.347 1. 091 o 878..0. 757_,0 609.-0.4837 .7 0.420
1.636...1.315_1.045 _0.870._ _0.744...0.591_.0.472. 0.405
1.57751.277 0 1. 02570.849 - R0a573°7 04459 . 0.394 |
~1.527__1. 255_"0 996:TO 828 o 383 |

’": - -.486 =

1',

0. 532;_0 440~_o 371

Table 7.5-3.

”;0.667
L 0.656-0.526=.0-43T.2.0.370
1.312-51.092 7 0.885-.0.736-0.617..-0.504  0.412 - 0.339

Stanton number ( X 304) down stream of

a_sudden

enlargement in circular pipe with a small

active zone at the point of measurement only,
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CATHODE GROUP II
SOLUTION NO. 2
SCHMIDT NOC. 2500°
DIAMETER RATIO 2
7 Re - 2550-....3950 ... 6550 . 10200_ 15500... 25700 41000vﬂ65300
21.7..1.0.584__0. 553__0.480.0.449._0.415__0.352._0.324_.0.285 |
- 2.0 04601704585 “0.480 " 0.462--0.421-0:356 - 04336 . 0.298.
2.2 0,62q550_5857f0,477_,0 466 0.430._0.369__0.352_ .0.315.
T 25 | 0L668E04612770.49Y 0 0474 04449704381 0.372 -.0.339
. 2.8 0.776 .. 04762 . 0.545 5. 0.526._0.475_ "o 407 _0.400 . 0.366.
=341 | 0. QOlﬁmO 934 °-0.6497 0.562- 0.518 4 02433 ,o.ézqz*oizsq
2-344..1.2.093_.1.100.. 0.733. 0. 637__0,503,20.463ﬂ70.463 0.412 | ..
SERLT L 1277 L 2237000818 0. 68355006007 704496, 06480 . 0.430
~3.9 1.419..1.309. 0. ﬂaa..o.732w 0.632  0.525 0.506. 0.%446
“ha2 | 145025103417 04915 . 0477252704664 04549 © 0.525 0.459
4 e5 1536 ..1.358 0.954 0.797 0.695 0.569 0.540  0.468
WA 14611 143635504983 .0.812.°0.717- 0.587 . 0.5510.477
5.1 1e611___ 12374 1.003 . _0.839_0.742. 0.607 _0.563 0.423
2543 ] 1u636= 10368514019 08615500751 0 0.615_.0.568 . 0.456
: 5.6 1.628_.1.363. .1.025_ 0. 86l~w0 75904631 .0.569 . 0.489
sEEEET L 5,9 | 1.63650 1. 3584:1 0292 04874770 T72:-0.638 _ 0.573- 0.%92
6.3 1.619. -1.336...1.035_ 0.882_..0.780 _0.449 _ 0.573 .0.492
_bab | 1a5947 710298501 .035° 04886 20,787 04653 - 0.573.0 0.491
Ta0 | 1a569_.1.288...1.029.. 0.889__.0.796_._0.660__0.569  0.487
Ta3 | 1451100 1.2617771.025.20.89177.0.794520. 6617 0.560 . 0.486
_ 8.0 1. 444 1.229.__1. 012 _.0.878__0. 789 _0.663__0.560_._0. 4a3
Tmee BaT7 | 14394 771.180--04996 - 0.866 —0.779" 0.659 " 0.550.. 0.4
o 9.4 | 1. 345;ML.138‘L0 970 .. 0.849 _ 0.765 _0.652 __0.535 0.471,
- 101 | 14285 1.084 04935 704839 0.754 . 0.5637  0.524 0.460
11e5.1 14152_.0.993_..0.896 __ 0.787__0.713 .0.606__0.497_..Q.440.
12«9 1060 04901 04834 04745 . 0.669 0567 _0.465 0.414
15.7 | 0.876._ 0. 740fﬁo 701 . 0.628__0.564 04482 __0.394__0.361
18.5 06718 04617 0.574 04522 0467 0.397 04333 0.309
21.4 0643 . 04547 . 0.493 . 0.443  0.396 _0.344 _0.293 0.2.7
24,2 0593 - 0.504 7 04438 03892 0.354-"0.305  0.265°  0.254
2270, [ 0568 _0.483__0.409._0.360__0.322_.0.281_..0.249__0.239
29.8 | 0.551770.461-:0.38950.337.. 0. 302_,0.L04Mﬁ0 23904225
32.6 04526.-.0.445 _0.373._0.323  0.290_ 0.252 _0.233_.0.222
23448 045262044297 70.360 20231077 0a276220.245...0.2267-0.219.
oo 04502 204415 0.348 :°0.296:- 04260 0.226 7:0.205._ 0.190

Table 7.5-4,

Stanton number ( X 104) downstream of a sudden

enlargement in a circular pipe with the point
nea ; i 1 £ acti

ZONEG .
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PART IIT

COMPUTATIONAL ASPECTS

Chapter 8: Computational aspects
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Chapter 8

Computational aspects

This chapter, to a large extent, is an appendix
to chapter 3: it presents in a computer
language what chapter 3 presented in a
mathematical language - namely, a numerical
procedure for general, steady,vtwo-dimensional
flows. But this chapter also has something
more to present. It is exclusively devoted to
the description of a particular Computer
Programme. Because this Computer Programme
deals with a particular problem, it incorporates
some additional relevant information. The
problem described is that of the turbulent flow
in the sudden enlargement of a circular pipe.
Thus, in the context of this problem, the
boundary conditions of section 2.5, the
turbulence model of section 4.1, and the Couette
flow model of section 4.2, are also described in
this chapter.

8.1 Introduction

The main purpose of this chapter is to provide a
prepared foundation upon which the prospective users may
assemble tﬂeir super-structure to programme problems
similar to the one described here. The problem described
is the same as the one described in section 5.2-2: that
of the turbulent flow downstream of a sudden enlargement

in a circular pipe.
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The notation of the Computer Programme 1s derived
from the notations of chapter 3, which describes the
numerical procedure,of chapter 4, which describes a model
of turbulence and a model of the Couette-~flow, and of
chapter 5 which describes the problem of sudden enlargement.
The important FORTRAN symbols are listed and explained in
section 8.3; adequate comment-cards have been inserted in
the Programme—Listing to make 1t self-explanatory. Similar
programmes have been described in detail by Runchal and
Wolfshtein (1967) and Gosman et al. (1968).

The Computer Programme 1s written in FORTRAN IV and
has been run on the Imperial College IBM 7090, IBIM 7094 II,

and the University College IBM 360 computers.

8.2 A listing of the Comnuter Programme: 'ANSWER'

This section presents a listing of a Computer programme
which, with minor changes, was used for all computations
concerning the sudden-enlargement problem of section 5.2.
Computer-control statements have been removed from the listing.
The subroutines appear in the order of the calling statements
in the main subroutine named 'ANSWER', which is the |
coordinating subroutine for the Programme. The listing of
each individual subroutine is preceded by a brief statement

about its function.



155.

wa*k***%***%**********%*************%**%**%%w%*********w*******%*%*wm*x

Gk BLOCK DATA 77 T REEETE T TR = o
- Caesxaey SUBROUT INE FOR THE FEED—IN OF NUMEQICAL DATA AND_INDICEShFOQ
c**%*a _CONTROL AND EXECUTION OF THE" PROGRAMME " ,;:f:f s

BLOCK DATA : o : NS
COMMON/CNUWBR/NWoNF NHoNK.NMU.NLoNeonea-Ionv
2/CGRID 7/ INsUNs IN1sJUNLeX1(41)9X2041)eR41) oo
2/CPROP 7/ ROREF v ZMUREF sCMUCDYCDE s RKJ s pmH.SLoPR‘9)"
2'/CGEN 7/ NMAXtNPQINTvIF’vCCoR’SDU(Q)
2/CFLOW 7/ QE~GM.PLEN~PRAD-JNOZ.DDATIO
2/7CWALLBY TI1sQSsTSt(a41)e8Tlayy - - =0 T
CH#¥31’ "INDICES FOR THE DEPENDENT VARIABLES
LmENEE DATA NWaNFINHINKIEZ/ 192044394/ 000 0
) TCHRRH ] DATA FOR CONTROL OF XTERAIION CYCLE

B 2. . YNMAXsCC/1205,0050/ - - yRSDU/9%040/- : LSRRI
. Cwwxxd DATA FOR CONTROL OF PRINT—OUT ese RESULT% FRrROM 1P SUCCESSIVE
- Cxwxx%2 5 1TERATIONS SHALLBE PRINTED OUTIAFTER _EVERY NPRINT=ITERATIONS

37 +IPWNPRINT/1+100/°
S CHR¥R] - SPECIFICATIONTQOF. TURBULENCE=CONSTANTS
o 4 sCMUCCDCDESRK U/ » 200-.313..131'23.3/
CCx#%x%177 DATA FOR GRID:DISTRIBUTION.. . &5 :
- 5 2 INYJUN/21e15/7 -DRATIO/a.O/. PLEN/12.0/
_Cx¥#%1 _ DATA FOR FLOW PROPERTIES AND, PARAMETERS®
6 +GM1ROREF +ZMUREF/ 140414040401/ .pE/1oooo
7o sPR/9¥140/4PR4) /00 7/ 3PRH/100/4T1/140

— - e _

”C*******************%%*%*“*#%%*%*%****w%***%***%r%*w***m******%%*m+*%*w\

CH#%#% ANSWER
CH¥%¥1 . . COORDINATINGISUBROUT INE_FOR: ~CONTROL-OF.
CHruERD PROCEDURE AND PRINT=-OUT o

(36 36 33 K 3 I 303 A 3 %3RS %%%*%%*%**%**%{c%*%*%%%****w*%%%%*****wi*****%*%%**wV

DOUBLE PRECISION ANAME (6 8) s
"DIMENSION A(4l1941y 8)° : : :
COMMON/ CNUNMB R/NWvNFvNH'NK’NMUsNLcNGlONG21IEOIV
;jjalceprTr:1N-JV-1N1-JN1-XI(41)'X2<41).R(41) o
- 2/CCOEFF/ )
2/ CCOEFK/Z ,
"2/CPROP / ROREF-ZNUREFvCMUuCDuCDE’QKJ'PQHqSL-PQ(9)
2/CGEN  / NMAXsNPRINT»IPsCCrRSDU(D) =70 e '
2/CFLOW / RE+GMsPLEN3sPRAD s JNOZsDRATIO

T2/CHALLA/Z DP (41 Y TAULAT)Y YRC 411 sRK (4 1) vAK (411 TAUZ(41Y
PD/CWALLB/ TIeQSeTS(41)sST(a1) o - T
TCX*¥%1TT © ENSURE “THATS THE D IMENS IONS T OF T THE “ARRAYS A (N1 N2 N3)= AND -
CHH¥*%2 ANAME(6eN3) CORRESPOND WITH THE FOLLOWING DATA CARD

) DATA N1sN2yN3/41+41 4.8/ i CETTLE s ST
c****1 INDICES FOR THE STORACE OF VAQIABLES "AND PQOGQAMME CONTROL
SR ETINt=IN- 1== - o
B JN1=JUN=1"

XQ/MW Y[b,v‘, /}Wﬁfﬁﬂ

A SR et
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NGl=1E+1
NG2=NG!1+1 -
NMU=NG2+1 ~
,NL=NMUf1m,x
IVaNL
S CRERF] READ—INITHE.. TITLE OF - THE PROBLEM BEING SOLVED -
o RtAD(5o200> ATITLE &
Citdsx1  READ-IN THE ALPHAMERIC. NAMES "AND - SYMBOLS ‘FOR. VARIABLES
- READ(S*ZOO)ANAMEsASYMBLiASIMBL T
WRITE (6+301) ATITLE. T A
TWRITE(6+310) (Ko(ANAME( 1

CECALL LR GRIDS : ETE
”CALL'V o INIT (Nl-NZ-NB.A)
WQITE(6‘103) (ASYMBL(K)-K 1’6
NITLQ o T
TR ITERATION LOOP- BEGINS=
) TTTCONTINUE
TOUUNITER=NITER D o

”CALL T EGN T INTAN2N3 s A)
TIF (NI TERENPRINTZIR Y /NPRINTSEQeNTTER/NPRINT)
- PRINT

(NliNE NBOA-ANAME-_OIN vJUN 01 «IE )

K=1+1E
IF(ABS(REb).LT.ABS(RSDU(K))) RES QSDU(KF
lRSDU(K)—O. ’ T T

S IF (ABS(RES) ¢«GT +CCORe NITER. Lﬁ_S)»GO R =
ITERATION LOOP ENDS

c **%1

WQITE(éoloé) NITER

SETTECONT INUE = = e =
er'FINAL "PRINT ouT OF VAQIABLES IN | THE FIELD
TCALLTTT T T EPRINT T EINT Y N2y N3 A ANAMt-IN VIN e lT

VC****' CALCULATION AND PRINT=OUT OF bHEAR STRESS bTANTON NUM@EQ ETC.
""jr"waTE(6-116> (AbIMBL(I)vl—lle) o . -

DO 77 1=2+1INl )
TTRATIO=CACTI s INT NHY =TS (I /(T I=TSCm )= == 2

"ST(I)-ST(I)*RK(1)*A(1~JN1-NG1)*TRATIO/RC<1>/GM -
©Z=24%X101)/PRAD 7T o ST

WRITE(6'117) OK(I)~DP(I)*TAU(})'RC‘I)-RK
CCONTINUE o s :
e rop VWE meen T
= FORMATUGHINITERSX+9(3X2A611 X277/
T FORMAT (1H +1435X49l1PE12e3))
. FORMAT ' (32HOTHE" PROCESS DID NOT CONVERGE=1

FORMAT (1H1+11(3Xya62X)) ]
S FORMAT C1HOs 1P 8t1193-15);
"FORMAT (" 6A6)
. FORMAT(IH124Xs75HF INITE-DIFFERENCEITERATIVE. ~SOLUTION -1S:UNDER:-CON
i ZSIDERATION FOR'THE CAsr'OF/ 25Xs7bH ' T

" END
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C e R 3 K e ¥ 33 35 3 %t *******% )(*-ic****%*****w**%****%w*%* )(-vi--)r%c**w***%%«** ¥R E '.c*)f'n"k'x‘*

C 3% 35 GRID : T TR L R S , S
Ca¥iex ] SUBROUTINE’ FOR THE CALCULATIONS REGARDING THE GRID'SYSTem"*’
C*%**i&******%*%%*%%****%*—“%****!****%%**%%%}}%%%**** k*%***w*wrwmwr%&*%«m*
SUBROUTINE GRID T -
o COMMON/ CNUMBR/NW s NE s NH e NK e NMU o NL e NG I ¢ NG2y TES [V
SRS - o /EGRID /T INSINY INTTONTYX T (A1) v X204 1Y sRATY T
. 2/CCOEFF/. CWF(41)+CEF(41)1CSF{41)CNF(41)
“B/CCOEFK/ BW1(41)1BE1(41)BS1(41)9BN1C4T)
2/CPROP / ROREF s+ ZMUREF yCMUsCD + CDEYRKJIPRHSL PR (9) .
2/CFLOW 7/ REvGMvPL;NvPRADvJNOZoDRATIO -
LUCsRRRL
s ”"DATA c1vc2/0 0.1.45/
ORI L CALCULATE _THE: RAD 1USE OF THE;—PIPE = a»——{i'——lil':};}.v,,‘,:,';;}ff§:;;';7”_~_—?3»;;,_,;—T
S PRAD=0.5%RE*ZMUREF/GM
ZoCc¥¥%x] - COORDINATES 'FOR DIRECTION-
T DO 10 I=1sIN
(102 Xl(I)—FLOATﬁjiIY/FLOAT(INI)*W
TTTTTTTDO 12 I=191IN
- SZ=C14+CaR XTI E= e B e e
12 ’X1<1)—TAN(2)

’Do 13 1—1-1N

- X1(1;-(X1<I>—Z>/<X1<IN>—Z> THPLEN¥PRADS
”c****x ‘COORDINATES™ FOR:DIRECTION 2“ '

L R(1)=0a o - e ST L =
“QEAD(5.107) (XZ(J)!J 1 JN ’ o

IF(ABS(XZ(J)—XZ(JN)
Xz Uy =Xat ) /X2 CONE
RUJ)=X2()
,:’ CALCULATIONS OF GEOMETQICALﬁCOEFFICIENTS IN LAPLACIAN TERMS'
DO 21 1=2+1IN1 :
- Dx 1=2% 7 Xi CI+1 )‘_Xi {: I;' 1 ) )'““' *i-.‘ e e L i
’LwF<I)-DX1/(X1(1)-X1(I—1))/ROREF

_Waex<1>_ox1/<X1tI+1'f;
DO 22 J=21JN1
= =1le/(X20U+11=X20U-1)) e
"ZZF DX2*4.*R(J)/ROREF o S

'—l))/(R(J—l)+R(J))::t:11:%gff“”

CNF(J)‘ZEF/(XZ(J+1)~X2(J))/(R(J+1)+R(J))
TBS1(Jy=01e+R I~ 1Y /RGN Z CXBCTr 1y =X2 (=1 ) 7 {X20Uy - -X20JU=11)
BNI(J)—(1o+R(J+1)/R(J))/(X2(J+1)—XZ(J—I))/KXZ(J+1)—XZ(J))
CWRITE(6+101)E e == '
DO 33 I=19IN
X=X/ XTCIND
“WRITE(691111X
SWRITE(69102) (X2(J) 1 =11+ J
DO 34 J=1eJN
FXEX2(J) /X2 EIN)
’WRITE<6~111>X'
CURETURNS : S FEEEL e R
'FORMAT(25H1DISTANCES IN DIRECTION=1/{1H 4E25.8))
" FORMAT(25HIDISTANCES®IN DIRECTION=2/(1H 4E2548)) -
FORMAT( 6F10.0) e e Tm T T
111 FORMAT(LH
- END
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CHitE )&%*w%*k%%*w**%wm X‘-X-***'i\"-km H 36 3% 3 3 56 KK )(—%w-,c*vrwﬂ--:(-%*%“ w )H(——X—-:(-w m**%***’k :t‘-)f'3r7
CH3iE% INIT T T T e S e S e S L sEE
Codnibs SUBROUT INE FOR _THE INITTALTSATION OFZTHE PROGRAMME.. AND=
] CHEX%2 ' SPECIFICATION OF THE FIXED BOUNDARY CONDITIONS
e C*****-X ******w%%a’c%*-}r*-}‘%% F X H RN *'“%'"*fk’\i‘%%*****"?****?ﬁf*?"i‘#’ff’"‘ ?(-J,(.)i.gi:{..d,;.'(,): ok

SUBROUTINE INIT ’(N1.N2,N3.A)
U DIMENSION A(NI#N2WN3) =7 7o s

T T2/CWALLBY TIsQSsTS(41) 95T (4 T IR :
T CHRRR ] CALCULATION OF SOME TURBULENCE PARAMET=R5
e ES T PRINK) =CMU/CDE!
o PRR=PRH/PR (NH)
ST TTTsL= 9.24%(PRR—1.)%(CD*CMU*PRQ)%*(—.ZS)—
CH*¥%1 SET VALUES IN STORE TOo ZERO
TS T DO 30 K=19N3 =T
DO 30 J=1sJN
TIETp0o 30T 1=1UYINT
All+sJrK)=0.0

SET TEMDERATURE?JN THE‘gﬂrijzwr;,,
10 J=1+JN ’ e T
o . DO 10 I=1sIN - B S
- ACTIeJeNHI=TI N i
£ _CALL © LENGTH (N1+N2+N3+A)’
c****1 BOUNDARY CONDITIONS AT

UG Z=4 ¢ ¥GM T
Tl=1
TTZEpO 200 U= 1.JN044
T ACIsJING1)Y=GZ
AL IR JeNF) =0 5 GZH (RECUI ¥R (U -
TTA{IsJeNK) =0, OOQ%GZ*GZ/ROREF/ROREF-

A(I"-NMU)chU¥A(ITUsNL)*SORT(A(l'
CONTINUE
c****l‘"“BOUNDARY "CONDITIONSTAT=

DO 40 I—l-IN o

'DO 60 T=ZvINI
o ACTY NI =R L S

- QA(I-J-NMU)-CMU%APIf Wv
60 T CONTINUE T T
CCRHERE] BOUNDARY CONDITIONS AT "OUTLET:
T @=0.03 0 )
ST RO=RIUNY T S =
GO= O.S*GM*(1.+O)*(2 +O)/Ro**o
I=IN = I
A(I.loNGI)—uO*QO**O
ACTo1aNW)=ATI14NG]) %G¥* (14-Q) /RO/RO/ROREF
TTTAlGIe19NK) =0, 010*GM%GM/ROREF/R0RE#7;7"7‘
TR T PO 70 U2 VINT e
e e Y EX 2 TINY =X E )
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R A (IsJING1 ) =GO%Y*%Q i o

FEIT T A e JaNW)—A(I'J-NGI)*Q/Y/ROREF/R(J) e e e CLn

A(I’J’NF)—A(I'J'NGI)*Y/( +O) *(Y*(

AT e NK)-A(I-Lka)'

70 CONTINUE ’

L ACT e INNW )Y AT s UNT INW )

. **Do 80 J=1+vINI1

- 80 ACIeJINMU)=CMUKACT 4 UML) *SQRTCA LT 9 JeNK) ) XROREF - - Lo
‘“c****1 TINITIAL CONDITIONS FOQ WALC“SHEAQ STQESSES AND TEMD&QATURE

cotamme 0 =DO 798 l=1e41- s e _ . e o

B TAUC(1)I=0,

S TAU2(11=0ex

798 TS5(1)=0.

T L CRETURN-=. =
' ' END

,:,c*%****%%% X-***-)(—*%*%**w%%*#*******w%w** *%%%**%***1« ‘)4"54“)‘\ *w vk A—-R--)’nr m-mv(-*%}i-%*w%r "

Tcuwwx  LENGTH ARl e R
[Cxxxx1 7 SUBROUTINE FORZCALCULATION OF "THE LENGTH SCALE OF TURBULENCE

 SUBROUTINE LENGTH I (NTIN21N34A)
DIMENSION A(N1+N24N3) )
T T COMMONSZ CNUMBRZNW ¢ NF s NH s NK s NMU o NL s NGIYNGZ s TES 1V -
o 2/CGRID 7/ IN'JNvIvaJNl-Xl(41)'X2(41)sR(41)

2/CFLOW / RE»GMsPLENYPRAD »JNOZDRATIO T

i QN PRAD/DRATIO
TXL1=5e50%RN T
- *XL.E 1600*QN Tz
ZLMAX=RN
DO 10 J=]vUNE
DO 10 I=1sIN
TETACT  JANLY S IX2CUNY=X2 (Y)Y e S
IF(X101)elTa A‘I-J.NL).AND JeGE JNOZ) A(IsJoNL)-Xl(I)
TOUITTIFAX2(0U) «GTeRN#159)Y-GOTO 9" e
X1=0, oo
TEEEIFAXI (D) ST X2 XI‘RN*(
IF(X2(U)=X1a 1+2+2
ALTsJeNL) =0 10XRN=——=—————
GO TO 11 77 T
L ZI=0e090% X CT ) o S
TIF(X1(T1)eGT Xl 1) ZL=4090%XL1 +
TIF (ZL o GT o ZLMAX )T ZIL=ZILMAX i T
”A(IsJ'NL)_e.*Atx.JoNL)
IFCACT v JsNLY @ GTWZL) “ACTaJaNL ) = =ZL7 , .
TIFIX1(I)eLEeBe¥RN) AlIeJsNL)=ZL '
CIFCACT 9 JsNLY el TaACT v 1 wNL) )Y AT« UINLI=ACT VI ANL)Y -
GO TO 11 o o oo T
 CONTINUE =
TAC(IrJINL)I=2
TTCONTINUVE ===
T CONTINUE
CRETURN Toiismme o
END T
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C')(- * %w***********%******************—7\-** ﬁ'*******—*% ***1& *%%w%%*w**%%vrw%*w A--k%

C % %3kt EON - S
CHF¥¥%1 "SUBROUTINE FOR SOLUTION OF THE DIFFERENCE EQUATIONS ~
C*********%**v&*******-}(***%%****%***********%**%****%**%*****%%**%%****%-x-
_SUBROUT INE .EQN =140 (vaN¢~N3~A)
“DIMENSION A(N1.N2.N3)'—”
7; COMMON/CNUMBQ/NW ’\}F'NH cNKvNMU NLS 'NGI uNGZ- IE IV
T27CGRID 7/ TINGUNSINT1INL o X1 {411 9X2041) sRC41)
e . 2/CCOEFF/ _CWF{41)+CEF{41)2CSF(41)sCNFL41). = .
i *’“"'2/cpaop / QOQEF.ZMUQEF.cmu.co.CDE.RKJ,PRH.SL.pR(O)
- 2/CGEN '
C-)(--)(--)(-* T T T
ST CRERNT CALCULATION OF STREAM FUNCTION
C**** B T T
DO 52 J=2vJNL.
DO S2 1=3+IN1
L IIZ=AC Ly JaNF Y IS
TSIGMA=CWF (I)Y+CE
=" IF (SIGMA EQ. 1)

e NE Y *OWE (T YA ) ¥ CEF (

+A(IﬂJ—}qNF)*CSF(J)+A(IQJ+T9NF *cNF(J)

“*ns—x.-Z/A(I.J.NF)‘,
.52 IF(ABS(RS).GT ABS(QSDU(NF)))RbDU(NF)-RS
"c**** - "
‘c****1f

TH2=(X2(Jy=X2

ijz Q(J)%(XE(J+1

RX1=R(J) % (X1 UI+1)=X1(1=1))"
TACIYJaNGIY = AL T U+ 1NF) —ACT Y JYNF ) Y #HZE +(A(I’J'NF)—-A(IqJ IOVC‘)/P/
A(I'JONGI)—A(IaJ.N(;1)/RxZ AR
TALTIJING2) = (ALT+1 s JONFI-ACT I INEY ) *H1 +(A(IcJ'NF)—A(I-1vJ-NF))/Hl
TACINJWNG2)=AT v NGa)/Qxl S T e R S R S e 2L
T DELR=R(2)~R(1)== =

DO 20 I—ZvIN

DO S1 J=2+JN2
DO 51 I=3+IN1T -
TZ=A014Jy NW)" o
SCALL T TEQVORT (N1sN2eN3vAs T vJ)Y - 50 =
IF(ACT s JsNW) e EQeDs) A(IvJvNW)-.OOOOI -
: RS=1e=Z/A(1sJeNW) :
51 IF(ABS(RS)oGT.ABS(QSDU(NW)))RSDU(NW)-QS
Ok S D :
TTCHERKL CALCULATION OF‘OTHER'VARIABLES
T CRKR R I

IF(IEeLEs2) GO'TO 72
“ DO 71 K=3+1E
T DO 53 Jz2sJUN1




DO 53 I=2+IN1
T S Z=ACTedeKIy T

caLL
‘ TIFCALTYJe K
o TRS=1e=2Z/A01vIaK )
53 . IF(ABS(RS)«GTeABSIRSDY(K 1)
71 CONTINVE
T2 TCONTINUEZD
o c****“' T
TR C#wx% T TCALCULATIONTOF "EFFECTIVE™ VISCOSITY™ =
T CH#H*% - o
TN D060 TUsTYINTES
o ‘DO 60 I=2sIN1
e 60 T ACTYJINMUY=CMURA LT Y UsNL Y *SORT AT T v UVNK) ) #ROREF -
cCALL

BOUND TUINLIN2 N3 AY

"RETURN

Cowsnxl SUBROUTINE FOR THE SOLUTION OF THE VORTICITY EQUATION' o
C********%*****k*ﬁ%*&**%%*{%x*%***xmw%%k%wx%*********%*****w********ﬁﬁ%w
SUBROUTINE EQVORT (N1-N2-N3-A'1-J>
S "DIMENSION- AINT+NZ a2 N3 ). =57
o " COMMONZCNUMBRZ/NW s NF *NH yNK yNMUSNLYNGT ¢ NG2 TE IV
' ,2/CGRID s INfJN~IN11JN1'Xl(al)-X2(aI)vR( S C s o

. DV= R(J)%(X1(1+1) X101 =1)33#(X2(J+] )=X2(J=1))#2e - - = s
G1PW= A(x.J+1-NF>-A(1.J—1.NF)+A(1-1.J+1.NF)-A(I—le—1.NF>'
GIPE= A{IsU+1sNFI=AlTsJ=1eNF)I+ACTI 410 J+1sNFI=ACTI+1vJ=1sNF) .
G2PS= A(I=12JaNFI~A(I+T o JeNF)I+A(TI =1 s J=1 s NF)I=AC(I+1+vJ=1sNF)
G2PN= A(I-14u NF)—A(1+11J~N?)+A(I-1.J+1-NF) A(1+1-J+1‘NF)
AW=(ABS(GIPW)I+G1PW) 7DV a
AE=( ABS(GIPE}=GIPE) /DV -
AS—(ABS(GZps>+GZPS)/Dv“"”
- AN=(ABS(G2PN) ~G2PN) /DV -
"Rso REJI*¥R(U) ‘
T BS=BS1 (U ¥RV~ 1I*RIJ=-1)IV/RSQ =
TBNzZBN1 (JY#REJ+1I*ROJ+1IZRSQ
TRECW=AW +BW1 (1) %A =19 JeNMU )=
CE=AE +BE1C(I)I%ACI+1vJsNMU)
TUCS=AS 4+BS TiEiwA( T ed=1 e NMU)Y
CN= =AN HBN  TTHAC I vJ+1eNMUY T
Tl T S S1GMA=AWH+AE+ASHANT +(BW1(I)+BEI(I)+BS+BN)*A(I'J'NMU
o . IF(SIGMALEQsOs) RETURN I
A(IQJQNW)_(A(I—1vJsNW)*CW +A(I+1'J'NW)*CE -
(IvJ— TNW)*CS +A(I J+1-NW)*CN)/SIGM

>
T RETURN
NG
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C*K**************ﬁ***%***************************k****************%w**w*
CH¥x% ~ EQPHI - R : : S = SR

CHFhak ] SUBROUT INE FOR SOLUTION OF 'OTHER'VARIABLES(PHI)' EQUAT ION
c**i****%*%**%%****%***%w*ﬂ*%****%*****wi%w**%w%%**%%**%%**w*%**%%**ﬁ%w*

SUBROUTINE EGQPHI (N +NZ2sN3sA+IvJsy K

o DIMENSION A(NIsN2WN3) - ' =
© COMMON/CNUMBR/NW « NF 3 NH *NK sNMU + NL » NGI'NGZ'IE‘IV

seEEoSS - R/CGRID 7 INYUNYINTISUNL o X141y e X204y sRE41)
o T T 2/CCOEFK/ Bw1<41:'asltal)sasx<41>-8Nx(41>”““

T2/7CPROP QOF?EFQAMUFQEF!CMU'CD’CDE!QKJQPQHQSL!PQ(9)

T IF(KeNESNK)Y GO TO 2
SOURCE TERMS FOR: KINETI
"*Dx1_xx(1+1>-X1(1—1) o
e S OX2E X2 4 1) = X2 01
ST ROR=ROREF ¥R (JY
CEDF=A(I+1 v J+ 1 A NF.
T DG1X=DF/DX1/0X2
rf‘é_(A(IvJ+10NF}—A(TtJ0NF))/(XZ(J+1)—X2(J))«f1«~—— =
DGI1R= 2.*(1-(A(1-J-NF)-A(IqJ—1~NF))/(XZ(J)—XZ(J—l)))/DXZ A(l

*%w~ZN(A(I;JnNF)—A(I—1¢U¢NF))/(Xl(l)-XI(I—l)) : )

QGZR——DGlx4Ar NG

'fg~~*~C***%*
T Cx***1
Mc***%

CONT 1 NUE

A<1»J+1.NF)—AII.J-x.NF)+A<x—1-J+1.NF)—A(1—1.J—1'NF)
CUFLINF) —AUT+1 v J= 1 v NF )=

GIPW_
TIGIPE= AT YU+ TINFI=A LT v U= TINF ) +ALT
G2PSE A(I=1vJINF)—A(I+1sJINFIFACI =1 3J=11NF)I=ACI+1 1 J=1+NF)
fGZPN-”A(I—l*J‘NF)ﬁA(JflLJ‘NF)iA(I-1QJ+1vNF)~A(I+10J+10NF
TTAW=(ABS(GIPW)+G1PW)Y/DV
TAE=( ABS(GIPEI-GIPE) DV e e s
AS=(ABS(G2P5)+62PS)/DV '
ANz (ABS(G2PN) =G2PNI /DY 7 e e e z
“CW=AW +BW1(I)*(A(I—l*doNMU)+A(IvJ'NMU))*7S/PR(K)
E=AE: +BE1‘I)*‘A(I+1vJ'NMU)+A(IOJtNMU))*“S/PR(K)”

I

SIGMA CW+CEAHCN+CS+ZQ
wif"IF(SIGMA.EQo ¢ )T RETURNE =

A(IOJO =(ACI=1sJs KIMHCW +A(l+l‘J'

= ni—”—' FACT =19 )*CS“"A(IOJ+10 K)*CN +50URCE)/SIGMA

’“””IF(A(I.J.K).LT O0e) ACIFJeK)=04
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C**-}(-—;(--!—******%*—!—%%*****%*%**%*****%*%-X-**%*****%**%****%x***%***-p(--)(--lc-;mé*v(—-x W
C 3¢ % %3¢ BOUND ST : o Tl -

Caxx %1 SUBROUT INE FOR CALCULATION OF VARIABLE BOUNDARY CONDITIONS
C********X*%*%*******%****k*%%%%*%%&%%**%%*%X*%*k**%%*%%**%*%*w*%***wrwm

SUBROUTINE BOUND ~ (N1.N2.N3.A)““

DIMENSION A(N1 +N2sN3)y=

COMMON/CNUMBR/quNFcNHc

. 27CGRID /= INsUNs INTSUNL X1 (4119 X20a1)9R(4] )=

S /CCOEFF/ CWF U4 ) sCEF(a1)sCSF 41y sCNF LAY

2/CPROP / ROREF » ZMUREF »CMUSCDyCDE+ RKJPRH v SL_ ‘PR (9 e ;;— L
2/CFLOW 7/ RE'GM'PLEN'PRAD'JNOZ.DRATIO R o

2/CWALLB/ Tl'ovastal)fST(41)‘

CEES C***%f?f NOZZLE REGIONZONLY::
UTTONOZML=UNOZ=1 T T
"'ﬂDO ,WJ 20JNOZMI_“
’ - OVORT

<N1

‘*Al -(CWF(I>+CEF(I)+CSF(J)+CNF(J))*A(IchNF)
' ‘—(A(I—I-J NF)*CWF(I)+A(I+ITJ1NF)*CEF(I)*

T AT e JeNW )—<A1—A2)/R(J)/R(J
ol LT STEP-WALL REGION" '
= INOZP 1 =UNOZ -+ =
YC=X10IYy — ~
DX1=X1 (14 1V=X1LOT=N=
DO 11 J=JNOZP1sJIN1
DT AU A(I+I!J’NMU)%A(I+1
DPOX=DTAU/DX1 7T T
T ESQRTK=SORTIAUI vUsNK Y)Y -2
TTTTRKZ= ROREF*YC*SOQTK/ZMuQEF
S, PST=DPDX*YC/SQRTK/A LTy JsNG2)
TUZ=AU I JINWIRYCH*ROUY T
TZST=CMUXZHZ/AC TV Iy NKY - =
'”CALL o

(N}c

EQSTRM

AXIS OF SYMMETRY

DO 51 1-1c1N'
,A(I,I,Nw,_z,*(A(1.1.NG1)—A<1.2-NG1))/R<2)/R(2>
IF(ACTI s LaNW) el TeC W) A(I'I'NW)"O'
TACTIeIeNKI=ATTII2NK) E
A(IclvNH)—-A(IoZ'NH)
TCONTINUE - s




C o % ¥ % o ' ’ ' s
CHHatx 1 OUTLET BOUNDARY : SR

CHxws T
~ Dbo 71 v= 2-JN1

TYC= X2(JN)—X2(JN
I DX2= x2(4+1)~X2(J-1);
DO 31 I=2+IN1
TEDTAUR (R TH X TAUCT ) FREIZII A LT VU= T NMUY* A LT
TDP(1)y=DTAUs DX T T T T T i
7#SQQT< SORTUACT I wNKY V=i =

K(I)_ROREF*YC*SORTK/ZMUREF

”nyW)*RcJ—l))/R(J)Hf

*PST DRI I*¥YC/SAQRTKZ7ATT Uy NGl)

TZ=AC T« JyNWYRYCHR(UY
:f~z%T CMU*Z*Z/A(IvJoNK)
TCALL '

w—wA<1.JNoNK;~(1.—oK(I))*A(I.JvNKJz
TACTIUNINMU) == o S%QK (T HACT e JaNMU)
—:A(IOJNoNH)~(Io—PR(NH)*SHQK/CMUJ*(A(IiJoNH)-TS(})) %zs(zT?
TRCE1)=ACT s UING] ) ¥YC/ZMUREF .
%ST(I)"SHQK:;‘fff = =
CONTINUE ] ' ] ] -
- RETURN -

g

Cxxnnl SUBROUTINEiFOR STREAM FUVCTION EOUAT o
C****************%% **w*%** -)i-* }% *-)(-**K—*-n *%*****”*****%* *********,***%*i?*ji%**N

COMMON/CNUMBQ/NWvNF9NH
2/CGRID -/ IN»JN»IN19JN19X1(al)ng(41)0R(al);'
2/CCOEFF/ ™ CWF(41)'CEF(41>vC°F(41)1CNF(41)
7 S1GMA= CWF (1) +CEF( 1Y +CSF LU +CNF (D)= e S
TIF(SIGMACEGQ.Us} SIGMA=400001 - T T
’“WA(IodoNF)~(A(I—I.J.NF)%CWF(I)+A(I+1cJ'NF)*CEF(l)
. :+A(Ivd-lvNF)%CSF(J)+A(IoJ+1vNF)*CNF(J)

“RETURN’
END -
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wa***%*%&***%*********%***%***%**k*%************%**%*:w**%%*%**%m%*wxwm

TR G R WALL o T - B S - s
o CH¥xH#] SUBROUTINE FOR COUETTE FLOW CALCULATIONS NEAR A WALL
PR C-)HH&- ***ué%**********%«k%**%*%-}r*%{- ke R k**-ﬁ-***—:&* ,(--)(-*-u—-)(-—x-w% )ﬁ-**-k-;l—*%‘ m ki-%»( %('

- SUBROUT INE WALL**“(NH.ZST.pST.QK-oK SSRK SHQK)” i
COA“!MON ‘7.*{:; . TTorE ,,7 3
2/CPROP / ROREF ZMUREFvCMUoCD-CDE RKJ'PRHeSLvPR(9)
T T Cwwws]T C EXAMINE IR FLOW IS FULLY TURBULENT - '
T IF(RK LT QKJ) GO “TO 17 T o

o w::'jf-:”vAﬂ C*** x_ T ~ pet — =
S kR FOR FULLY TURBULENT FLOw
’zc***** T

TRKJST= RKJ/RK"
e e CDR CD=Z8 T T
T 'lF(ZCD)11o12.12 T T
' QK =0, - T
"GO TO 13
QK =SORT 2. *¥ZCD/3/CDE V===
Z=RKJIST## (- OK/(2.+OK)) o
CoeETE 2 E(QK)Y lele2Ton
-  Zl11=RKJ- ALOG(RKJST)/CMU’
z;Go To 3 =
Z1=2. /CMU/QK
SZ2=RRJ+Z) ..
211_2*22-21
- 3 CONT INUE
5 Z1=2«/CMU/(2e=-QK)
Z]a—(RKJ/Z.—Zl)*RKJST**((E.—QK)/(a +QK)) 421 s
SSRK=(1e=-PST#Z12)/Z11 " T A
'IIF(SSRK.LT 04 ) SSRK=0.-
ZI3=PRINH)* (211 +S5L*%Z)
CUSHRK =1e/213 ==
‘RETURN'””
C*F*3kE T =
C**% ] FOR LAMINAR FLOW

%CONTINUE
S QK=14000 T
'SSRK—I./RK -PST

Cxsw T PRINT o

VC*********************** ***********
Cx¥%*%1 "~ SUBROUTINE FOR PRXNT UT OF”VARIABLES

i C*******%**************%%****7(--*-)(- S I I SEIEF R AKX F KK %*****%%*w%%%* )i-#r-.‘"n——,

"SUBROUTINE PRINT (NI INZ2sN3vA» ANAME{IN(JN-NBEGINsNTOTAL)
_DOUBLE PRECISION  ANAME (63N3) =
CDIMENSION AINIPN2W N3
CICHRER]Y PRINT-OUT'SHAL';BE"PRODUCED FORZACLvJeK) s WHERE::

Tew#%x2 1 VARIES #ROM 1'To INe U VARIES FROM f;TO JN{'AND
Cx*#3%3 . e e
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 K=NBEGIN
e DO 10 M=1¢NTOTAL-:-755
o WRITE(6+100) (ANAME (LK) sL=1+6)
S CIA=IN/T L )

DO 12 IB=1+1A
1C=(1I8~-1 )*ll +l

ID=18%11 T
R L WRITE(e'xoi)ZlJiCA(rfu-K1}T£IC¥rof;ugfng)
o TWRITE(6+103) (1e1=ICsiD) - -
T ’ TTIF(IDeEQeIN) GO TO 11 ' i - ]
12 WRITE(6+104) ‘ T B

,;jg:gQF;,—;IE=ID+1,T,f;ﬁ*%>fi T : I E = "
’ WRITE(69111) (J-(A(I-J-K)-I—IEoIN)'J—onN>
WRITE(60113)(IOI—IE!IN) L

“CONTINUE ~

CKER4L s =

CONTINUE ™ —

FORMAT (1H130Xs21HTHE " DISTRIBUTION~OF
231Xs5TH-—mmm—m

33HO JU/aH ===/ /)5
“FORMAT(1H I2+5Xs1P11E1
“FORMAT(1H003X~]1(9X112))—“
T FORMAT(1H155Xs17HC O N T
"FORMAT(1H [2+5X+s1P10E11 31;‘””””
FORMAT(1H0-3X-iOt9X'12))
"RETURN 7 ¢
~END

FIRST 3 CARDS FOR ARRAY'ATI '8”CARDS FOR ARRAY
-C # = _WNEXT“CAQD“FOQ AQQAY ASYWBLt“NcXT 2= CAQDS FOR ARRAY ASIMBL«

T CREAXG “AND LAST 3 CARDS FOR ARRAY Xz — "~~~
"C********%*****************%*******%**%************%****%***%*%*****%%W%

"SUDDEN ENLARGEMENT IN A PIPE T T

¥* K3t
RUN NOe 999 — TEST CASE FOR LISTING == 7 mELTLT T TR

Bokadolel AeK e RUNCHAL “**** DATE 690128 T

STREAM FUNCTION +

"TURBULENT KINETIC ENERGY .

MASS CONCENTRATION B
ST DIRe-1 MASS VELOCITY . .. =
T DIRe=2 MASS VELOCITY
T EFFECTIVE VISCOSITY =
" TYPICAL LENGTH SCALE
= RE RSVORTRSSTRMRSKINE"_wﬁmwquwwtjﬁ;;;%;;;,,;;u

aK DPDX TaUS RC RK ST
- F__A__.. TS - z JE I - _ _.; B 'V :‘}: .‘ S :,jjf:f:,;;*':"--— PSS ,:
+ 000 0.125 04250 0.+500

TS 4750 7T 0.825 5550487077
«978 0,990 714000
- c***********************%***-X--X-*****%%%*******%-ﬁ-********%**********%*m S e

Ce %3] EnD T F
C*****************************************%****************************k

~20e940 7777 06




FORTRAN svymbol

A(I,J,K)

AW,AE,
AS, AN

BW1(I),BE1(I),

BS1(J),BN1(J)

ccC

CD

CDE

CMU

CW,CE,
CS,CN

CWF(I),CEF(I),

CSF(J),CNF(J)

DP(I)

DRATIO

8.3 FORTRAN IV svymbols

Meaning

an array containing all

the variables (¢'s,G1,G2,
1 and “eff) which require
storage over the field of

computations. I and J refer

to the locations in

directions 1 and 2 respect-

ively, and K refers to the

name of the wvariable.

AW/VP, etc. of equation
(3.2-26)

2.Bw/(BP.Vp.(Th+T%))etc.of
equation (3.2-27)

%ref of equation (3.3-7)

C. of equation (4.1-7)

D

9£ of equation (4.71-5)

CH of equation (4.1-6)

CW.EAB,etc. of equation
(3.2-25)

CW.EAB,etc. of equation
(3.2-25) for the stream-

function
dp/dx, of equation (4.2-4)

the diameter ratio in the

sudden-enlargement problem

167.

Subroutine/s of

mention

All Subroutines
except BLOCK DATA

and WALL

EQPHI,
EQVORT

GRID,EQPHI,
EQVORT

ANSVER,
BLOCK DATA

BLOCK DATA,
EQPHI ,INIT
WALL

BLOCK DATA,
INIT,WALL

BLOCK DATA,
BOUND,EQN,
INIT,WALL

EQPHI ,EQVORT

BOUND ,EQN,
EQSTRHM, GRID

ANSWER , BOUND

BLOCK DATA,
GRID,INIT



FORTRAN symbol

DV

GM

GZ -

GO

IN

IN1

IP

Iv.

JN

- JN1

JNOZ

Meaning

V, of equation (3.2-25)

G_ of equation (5.2-2)

G, of equation (5.2-2)

Gy of equation (5.2-9)

the subscript referring
to the location of the
corresponding variable

in direction-1

the tbtal number of
elliptic differential
equations, of the type of
equation (2.4-2), to be

solved

the total number of grid

lines in direction-1

IN-1

an index for control of
print-out

an index for control of

print-out

the subscript referring to
the location of the corres-
ponding variable in
direction-2

the total number of grid

lines in direction-2
JN-1

the value of J at the point

of enlargement of the pipe

168.

Subroutine/s of
mention

EQPHI ,EQVORT

ANSWER,BLOCK DATA
GRID, INIT

INIT
INIT

All subroutines
except BLOCK DATA
and WALL

ANSWER, BLOCK DATA
EQN

ANSWER,BLOCK DATA
BOUND, EQN,
GRID,INIT,
LENGTH, PRINT

same as IN

ANSVWER, BLOCK DATA
ANSWER

same as for I

same as for IN

same as for IN

BOUND ,GRID,INIT



FORTRAN symbol

K

NF

NG1

NG2

NH

NITER

NK

NL
NMAX
NMU

NPRINT

Meaning

the subscript referring to
any of the variables in
'A(I,J,K)

- the index number for the

stream-function, ¥

the index number for the
mass-velocity in

direction-i, G1

the index number for the
mass-velocity in .

direction-2, G,

the index number for the
temperature, T

the running number of

iterations

the index number for the
kinetic energy of

turbulence

the index number for the
length scale of turbulence

the maximum permissible

number of iterations

the index number for the

effective viscosity,p,eff

an index number for

control of print-out

the index number for the

vorticity, w/r

P, of equation (4.2-3)
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Subroutine/s of
mention

ANSWER,EQN,
EQPHI

BLOCK DATA,BOUND,
EQN,EQPHI ,EQSTRM,
EQVORT,INIT

ANSWER, BOUND ,EQN,
EQPHI,INIT

ANSWER,BOUND,
EQN ,EQPHI

ANSWER, BLOCK DATA
BOUND, INIT,
WALL

ANSWER

BLOCK -DATA ,BOUND,
EQN,EQPHI , INIT

ANSWER,EQN,
INIT,LENGTH

ANSWER, BLOCK DATA

ANSWER , BOUND , EQN,, -
EQPHI,EQVORT , INIT

ANSWER,BLOCK DATA

BLOCK DATA,BOUND,
EQN,EQSTRM, '
EQVORT, INIT

BOUND , WALL



FORTRAN svmbol Meaning
PLEN _ the control-volume length

of the pipe in terms of R

PR(K) Ga,eff of equation (2.2-3)
PRAD R of equation (5.2-1)
PRH Op of equation (5.2-1)
PST p, of equation (4.2-4)
Q g of equation (5.2-9)
QK(I) q of equation (5.2-1)
Qs &g of equation (5.2-1)
R(J) r of equation (2.1-1)
RC(I) Re of equation (4.2-5)
RE Re of equation (5.2-1)
RK(I) Rt of equation (4.2-5)
RKJ - R, ; of equation (4.2-8)
?
RKJST . R.. of equation (4.2-8)
ROREF p, the reference mass-
density
RSDU(K) Nof equation (3.3-7)
SIGMA ZAB of equation (3.2-25)
SL I, of equation(4.2-19)
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Subroutine/s of
mention

BLOCK DATA,GRID

BLOCK DATA,EQPHI,
INIT ,WALL

ANSWER,GRID,
LENGTH

BLOCK DATA,
INIT,WALL

BOUND , WALL
INIT

ANSWER,BOUND,
WALL

INIT

BOUND,EQN , EQPHI,
EQSTRM,EQVORT,
GRID,INIT

ANSWER , BOUND

ANSWER,BLOCK DATA
GRID

ANSWER, BOUND,
WALL

BLOCK DATA,WALL
WALL

BLOCK DATA,BOUND,
EQN,EQPHI , INIT

ANSWER, BLOCK DATA
EQN

EQN,EQPHT,
EQSTRM, EQVORT

INIT,WALL

SHRK St.Re/Rt of equation (4.2-5) BOUND,WALL



FORTRAN symbol

SOURCE
SSRK
ST(I)

TAU(I)

TAU2(J)

TI

TS(I)

X1(I)

X2(J)

Z11
212

ZL3

ZMUREF

Meaning

S of equation (3.2-23)
g,p
s.Re/Rt of equation (4.2-5)

St of equation (5.2-1)

T4 of equation (4.2-5) for

direction-1

T4 of equation (4.2-5) for
direction-2

T- of equation (5.2-4)

I

TS of equation

(5.2-1)
x4, of equation (2.1-1);the

direction-1 coordinate

x, of equation(2,1-1)jthe

2
direction—Z coordinate

Z of equation (5.2-1)

I, of equation (4.2-12)

Lo of equation (4.2-12)

I, of equation (4.2-17)

3
h, the reference molecular

viscosity

171.

Subroutine/s of
mention

EQPHI
BOUND , WALL
ANSWER

ANSWER, BOUND,
INIT

ANSWER, BOUND,
INIT

INIT

ANSWER, BOUND,
INIT

ANSWER , BOUND ,EQN,

EQPHI,EQVORT,
GRID,LENGTH

BOUND,EQN,EQPHI,

' EQVORT,GRID,

INIT,LENGTH
ANSWER

WALL

WALL

WALL

BLOCK DATA,
BOUND , GRID
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12.

13.
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Nomenclature

1. Roman characters

Symbol

AE 1Aw’
AN’AS

BnsBy»

BN’BS

c
p

c,C., etc.

1

CE ’Cw’

CN,CS

Meaning

coeffilclents associated with
the convective terms in the
finite-difference equation
for @

coefficients associated with the

diffusive terms in the finite-
difference equation for @

specific heat of a fluid

constants in various equations

coefficlents associated with the

successive~substitution formula
for @

constant assoclated with
dissipation of k

constant assocliated with
diffusion of k

constant associated with Ky
mean mass transfer coefficient

component of the mass-velocity
in the direction j

mean mass-velocity in a pipe

179.

Equation of
first mention

(3.2-13)

(3.2-19)
(4.2-5)

(3.2-24)

(4.1-7)

(4.1-5)
(4.1-6)
(7.2-1)

(2.1-1)
(5.2-1)

component of the diffusional-flux

of @, in direction j

kinetic ehergy of turbulence

non-dimensional k

characteristic length scale of
turbulence

the mass of a chemical species
static pressure

non-dimensional pressure-
gradient along a wall

(2.1-3)
(4.1-1)

Table 2.4-1

(4.2-1)

(4.1-5)

Table 2.4-1

(2.1-2)

(4.2-1)



Sc

St

Y

Meaning
Prandtl number of the fluid
(see non-dimensional parameters)
heat-flux at a wall

radius - distance from the
axis of symmetry

radius of a pipe

Reynolds number of the flow
(see non-dimensional parameters)

Reynolds number characterizing
turbulence

value of R, at the junction of
laminar anE turbulent regions

/R

Re a/Re

non-dimensional skin friction
(see non-dimensional parameters)

source terms in the successive-
substitution formula for ¢

Schmidt number
(see non-dimensional parameters)

Stanton number
(see non-dimensional parameters)

source terms for @
source terms for vorticity
temperature

non-dimensional temperature

component of velocity in
direction 1

non-dimensional velocity
volume of the 'tank' over which
the equation for ¢ is
integrated

coordinate in direction j

non-dimensional distance normal
to a wall

180.

Equation of
first mention

(5.2-1)
(4.,2-5)

(2.1-1)
(5.2-1)

(5.2-1)

(4.2-5)

(4.2-7)

(4.2-7)

(4.2-5)

(3.2-24)

(7.4-1)

(4.2-5)
(2.3-2)

Table 2.4-1

(4.2-1)
(2.1-1)
(4.2-1)
(3.2-21)

(2.1-1)

(4.2-1)
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Equation of

‘Symbol Meaning first mention
z distance in the axial direction

of a pipe o (5.2-1)
VA non-dimensional distance in

a pipe (5.2-1)

2. Greek characters

o a coefficient in the general
differential equation for ¢ (2.4-1)
B a coefficient in the general
differential equation for ¢ (2.4-1)
r a coefficient in the general
differential equation for ¢ (2.4-1)
P diffusivity for property ¢ (5.2-1)
9. eff effective diffusivity for ¢ (2.2-2)
?
o) " a coefficient in the general
differential equation for ¢ (2.4-1)
i | dynamic viscosity (4.1-9)
bogs effective viscosity (2.2=1)
T turbulent viscosity (4.1-4)
Ha non-dimensional effective
viscosity (4.2-1)
P mass—density (2.3-5)
Ga Prandtl—Schmidt number for
property @ (4.1-10)
ca & turbulent Prandtl/Schmidt
' number for @ (4.1-10)
d.eff effective Prandtl/Schmidt
’ number for @ (2.2-3)
Ti.. component of the stress tensor
) ‘ in direction j acting in the
plane with its normal in
direction i (2.1-2)

T shear-stress at a wall (4.1-12)



Symbol

Te

3. Subscripts

182.

Equation of
Meaning first mention

non-dimensional form of the

wall shear-stress (4.1-15)
any dependent variable or

conserved property (2.1-3)

stream~function | (2.3-4)

vorticity (2.3-1)

the bulk value

at the edge of a Couette-flow

effective value of the quantity éoncerned
in the direction i

at the inlet of a control volume

in the direction j

pertaining to the kinetic energy of turbulence
pertaining to the mass of a chemical species
at the outlet of a control volume

in the radial direction

at the surface

turbulent value of the quantity concerned
perﬁaining to temperature |

in the axial direction

pertaining to property @

denotes a non-dimensional value of the
quantity concerned

Also: P, E, W, N, S, NE, SE, NW, SW and the corresponding
lower case letters denote the respective values at the
corresponding nodes of the finite-difference grid
(see Fig. 3.2-1 for illustration).



4, The non-dimensional parameters

Prandtl number Pr E‘p/(p,ﬁi)
Reynolds number Re = (p.u,.x,/p).

= 2.Gm.R/u
skin friction 5
coefficient s 2 Tg/(p.uld.

= 2

= Ts,p/Gm
Schmidt number Sc = w/Cpolh)

Stanton number St

]

]

(o]
~
Q)

m m

Qg/[cp.Gm.(TB

183.

for Couette flows, and

for pipe flow.

for Couette flows,

for pipe £low.

qg/[cppr'ui,C'(TC~TS)]

for Couette flow,

_TS)]

for pipe flow with
heat transfer, and

for pipe flow with
mass transfer.

and
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