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Abstract  

A general solution procedure is described to predict 

the transport of momentum, enthalpy and matter in steady, 

two-dimensional, incompressible, laminar or turbulent flows. 

The procedure is based upon a special 'upwind' difference 

scheme so as to ensure that the resulting difference 

equations converge to a solution in an iterative procedure, 

and that they obey the physical laws of conservation. 

To permit prediction of turbulent flows, a modified 

form of the Kolmogorov-Prandtl hypotheses of turbulence is 

employed. Also used is a model of a Couette flow for 

regions close to solid walls where the dependent variables 

often have steep gradients. 	The use of this model allows 

the computer time to be employed more economically. 

As a comment on the accuracy, economy, and 

applicability of the procedure, predictions are obtained 

for two flow problems: the laminar flow in a square cavity 

with a moving lid, and the turbulent flow downstream of a 

sudden enlargement in .a circular pipe. 	These predictions 

are examined in the light of the available experimental 

and theoretical information. 

Finally, an experimental investigation for the 

sudden-enlargement problem is reported. Experimental 

data, obtained for very high Schmidt numbers'by the use of 

'diffusion-controlled electrolysis' are presented. 
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Preface 

This thesis represents the main result of my research 

activities during the last three years or so. 	It describes 

a general solution procedure for the prediction of steady, 

two-dimensional imcompressible flows. 	To the best of my 

knowledge, it is based upon more secure mathematical 

foundations than most other methods, and, undoubtedly, has 

a very wide field of applicability. 

At the time of my arrival (October 1965) in the 

Mechanical Engineering Department of the Imperial College, 

research activities were being directed towards the use and 

exploration of the integral profile methods for the 

solution of the differential equations which govern the 

transfer processes in the boundary-layer type of flows. 

It was thought, at the time, that a logical extension of 

the then existing methods would be their application to 

separated flows. 	With this aim in mind, I completed a 

survey of the integral profile methods. 	However, during 

the next few months it became apparent that the parabolic 

equations of the boundary-layer type were unsuitable for 

the description of recirculating flows or flows with no 

dominant direction of velocity. A search for alternative 

methods immediately centred on the numerical solution of 

the steady-state Navier-Stokes equations which are of 

elliptic type and adequately describe the flows mentioned 

above. 	Suggestions of Spalding (1966) were incorporated 

in a numerical procedure by Runchal and Wolfshtein (1966). 

A modified solution procedure, which to this date has-

remained essentially unchanged, was later presented by 



5. 

Runchal, Spalding and Wolfshtein (1967). 

Once a reliable solution procedure had been devised, 

I was able to devote almost my entire attentions to the 

experimental project. 	The application of an electrolysis 

technique to mass-transfer in separated flows at high 

Schmidt numbers proved, as is usual, frustrating in the 

initial stages. 	However, by the end of March 1968, I was 

able to obtain the required data and learn my lessons about 

some of the problems posed by separated flows. 

Final comparisons of the predictions with the 

experimental data of other research workers, and with 

those of mine, were carried out during the summer of 1968. 

However, the writing-up of this thesis was delayed because 

of my contribution to the Post-Experience Course in 'Heat 

and Mass Transfer in Recirculating Flows' held in the 

Mechanical Engineering Department. The experience gained 

from this Course has proved very valuable to me in my 

general understanding of recirculating flows and, in 

particular, has influenced the presentation of chapters 

2, 3 and 8. 

Now that it is time for me to acknowledge the training 

and help that I have received from various individuals, I 

find it hard to distinguish my contribution from that of 

Professor Spalding, my supervisor. 	At almost every stage 

of my research activities he was very closely involved, 

sometimes through direct participation, but mostly in an 

advisory capacity. 	His optimistic and ambitious attitude 

did much to prevent me from being dismayed by the initial 

difficulties involved. 	At practically every crossroad, he 

was able to identify the path that led in the direction of 
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the main goal. 	At this moment of introspection, I can 

think of at least a few instances when I lost valuable time 

by either not heeding, or not seeking, his advice. 	I also 

owe a lot to Spalding for his persistent and patient advice 

on the grammar, the logic and the semantics of the English 

language. 	If this thesis is still inadequate in these 

respects, as is more than probable, all that I can say is 

that it would have been much worse but for Spalding's 

constructive criticism. 	I cannot truthfully say that I 

always enjoyed his merciless correction of my reports but I 

can definitely say that I always benefited from his 

criticism: after all, most medicines are bitter to swallow, 

but they do good. 

Almost all of the work on the basic numerical procedure 

and the basic computer programme was done in close cooperation 

with Mikha Wolfshtein. 	This partnership with him, and his 

friendship, has been a most helpful influence. 	The credit 

for the development of the numerical procedure is shared by 

him at every level. 	Suhas Patanker patiently explained the 

intricacies of the principles of heat transfer and fluid flow 

in the initial stages of my research programme. 	David 

Gosman and Dr. Iribarne made the application of the 

experimental technique,far less painful than it would other-

wise have been. The beneficial effects of the discussions 

during the Sunday-afternoon coffees with David have been too 

helpful to escape mention. 	I also wish to thank David Hayes 

for many helpful discussions and comments. 

There are many others to whom my thanks are due. For 

lack of space, I find myself unable to mention all the-

individuals by name who have contributed to this thesis in 
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various capacities. 	But I wish to mention specifically 

Bob Curr, Bob King, Krishnan, Rodney Le Feuvre, Norman 

Mitchell, Dr. Pun and Alan Robinson. 	My thanks are also 

due to Miss E. Archer for library services, and to Miss 

M. P. Steele for help and advice in connection with 

countless secretarial and administrative problems. 	The 

Tea Club in the Heat Transfer Laboratory always provided a 

welcome distraction during the routine of experimental work. 

I find myself unable to express my feelings in words 

for the active encouragement and support of my parents, 

Yashoda and Boota Raml and my sisters, Raksha and Smiti, in 

my pursual of an engineering career. To a large extent, 

it is Raksha's active interest which enables me to present 

this thesis. 

Most of the work reported in this thesis was carried 

out during the tenure of a scholarship from I.C.I. (India) 

Pvt. Ltd. 	A generous allocation of computer time by the 

Centre for Computing and Automation of Imperial College and 

the development of a contour plotting subroutine by Richard 

Graham of C.C.A. contributed to the speed of execution of 

this project. 

London, January 1969. 	A. K. Runchal 



8. 

Contents  

Page  

Abstract 	 3 

Preface 	 4 

1. Prologue 	 11 

1.1 	The problem considered 	11 

1.2 	Previous knowledge 	 14 
1.2-1 Numerical solutions of the 

complete equations 	14 
1.2-2 Approximate theories based upon 

physical models 	19 

1.3 	The present contribution 	22 
1.3-1 An evaluation 	 22 
1.3-2 An outline 	 24 

PART I: THEORETICAL INVESTIGATION 	26 

2. The mathematical problem 	 27 

	

2.1 	The differential equations 	27 

2.1-1 Restrictions 	 27 
2.1-2 The coordinate system 	28 
2.1-3 The lairs of conservation 	29 

	

2.2 	Auxiliary information 	 30 

	

2.3 	The transformed momentum and continuity 
equations 	 32 

2.3-1 The vorticity equation 	32 
2.3-2 The stream-function equation 	33 

	

2.4 	The general form of differential 
equations 	 33 

	

2.5 	The boundary conditions 	35 



9. 

Page  

3. The numerical procedure 	 39 

	

3.1 	The choice and fundamentals of the 
technique 	 39 

	

3.2 	The finite-difference equation 	41 

3.2-1 The convection term 	42 
3.2-2 The diffusion term 	43 
3.2-3 The source term 	44 
3.2-4 The complete difference equation 	45 

	

3.3 	Some properties of the numerical 
procedure 	 49 

3.3-1 Convergence 	 49 
3.3-2 Accuracy and economy 	50 

4. Two special models of flow 	 56 

	

4.1 	Kolmogorov-Prandtl model of turbulence 	56 

4.1-1 The purpose 	 56 
4.1-2 The basic hypotheses 	57 
4.1-3 The length scale 	58 
4.1-4 The effective exchange coefficients 	61 
4.1-5 The empirical constants 	62 

	

4.2 	The Couette model of flow 	63 

63 
63 

model 	 69 

5. Flow prediction 
	

72 

	

5.1 	Laminar flow: square cavity with a 
moving lid 	 73 

5.1-1 Introduction 	 73 
5.1-2 Description of the problem 	74 
5.1-3 Presentation of results 	75 
5.1-4 Discussion 	 86 

	

5.2 	Turbulent flow: abrupt enlargement of 
a pipe 
	 88 

5.2-1 Introduction 	 88 
5.2-2 Description of the problem 	89 
5.2-3 Presentation of results 	96 
5.2-4 Discussion 	 104 

4.2-1 The purpose 
4.2-2 The differential equations 
4.2-3 The use and limitations of the 



10. 

Page, 

6. Discussion and conclusions 	 106 

	

6.1 	Capabilities of the numerical procedure 	106 

	

6.2 	Physical hypotheses and their limitations 

	

6.3 	Suggestions for further research 

PART II: EXPERIMENTAL INVESTIGATION  

7. Experimental investigation 	 112 

7.1 Introduction 	 112 

	

7.2 	The experimental technique 	114 

	

7.3 	Application of the technique 	117 
7.3-1 The apparatus 	 117 
7.3-2 The electrolyte 	124 
7.3-3 The experimental procedure 	125 
7.3-4 The choice of electrode 

combinations 	 128 

	

7.4 	Results and discussion 	134 
7.4-1 The flow parameters 	134 
7.4-2 The experimental data 	135 
7.4-3 Correlation of the data 	141 
7.4-4 Comparison with previous 

investigations and 
concluding remarks 	146 

	

7.5 	Experimental data in tabular form 	148 

PART III: COMPUTATIONAL ASPECTS 	152 

8. Computational aspects 	 153 

8.1 Introduction 	 153 

8.2 	A listing of the Computer Programme:'ANSWER'154 

8.3 	FORTRAN IV Symbols 	 167 

REFERENCES  172 

 

NOMENCLATURE 	 179 

107 

109 

111 



Chapter 

Prologue  

1.1 The problem considered  

Flow separation, a commonly encountered engineering 

phenomenon, may increase or decrease the usefulness of an 

engineering device. An example of the increase in 

usefulness is the use of turbulence promoters on the wings 

of an aeroplane; that of the decrease is the stall of an 

aerofoil at large angles of incidence. 

Separation is caused by an adverse pressure gradient; 

and in engineering practice its most common cause is an 

abrupt change in the profile of a solid surface in contact 

with the fluid - in other words, 'a surface discontinuity'. 

An example in confined flows is the sudden change in the 

diameter of a pipe; in unconfined flows it may be caused 

by a depression in, or a protrusion from, an otherwise 

smooth surface, such as a step in an open channel. 

However, surface discontinuity is not the only cause 

of separation: there are others. 	As the present thesis 

is intended to deal only with steady subsonic flows, some 

types of separation will not fall within its scope; among 

these types are the separation due to impulsive motion and 

that induced by an incident shock-wave. A type of 

separation which is to be considered is that induced by an 

adverse pressure gradient even on smooth surfaces without 

any surface discontinuity. 	In such cases, the pressure 

gradient progressively retards the fluid, the effect being 

more pronounced on the low-momentum fluid near the wall. 

This fluid is ultimately unable to overcome the opposing 
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pressure and there results a reversal in the direction of 

flow: this is termed 'boundary-layer separation'. Perhaps 

the best known example of such behaviour is the flow 

separation from the rear of a circular cylinder placed 

transverse to a stream of fluid. 

In spite of their common occurrence and their 

technical importance, separated flows remain relatively 

unexplored; they pose a formidable problem for the engineer 

who is often incapable of evaluating their advantages - 

such as the increased heat transfer - against their 

disadvantages - such as the increased pressure loss. 	This  

scarcity of information is a result of the mathematical 

complexity of the system of equations which describe 

separated flows. 	For laminar, incompressible, flows the 

problem is defined by the Navier-Stokes equations (see, 

e.g., Bird, Stewart & Lightfoot 1960). 	For steady 

turbulent flows a common approach is to assume that the 

flow can be adequately represented by a fluctuating 

component superimposed on a time-mean flow; this, via the 

Navier-Stokes equations, leads to what are commonly referred 

to as the Reynolds equations. 	Transfer of heat and mass 

is governed by equations mathematically similar to the 

hydrodynamic equations. 

The magnitude of the mathematical problem can be 

appreciated by recognizing that the Navier-Stokes (as well 

as the Reynolds) equations are a set of coupled non-linear 

second-order partial differential equations. 	For steady-

state flows, these equations are of elliptic nature (see, 

e.g., Forsythe & Wasow 1960). 	Even the theory of such 

linear partial differential equations 	in a .far from • 
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satisfactory state (e.g. Bramble 1966); that of non-linear 

equations can only be described as fragmentary (e.g. Ames 

1967). 	A result of their mathematical complexity is that 

these equations, in the absence of any simplifying 

assumptions, are impervious to known analytic techniques. 

For turbulent flows, the Reynolds equations do not even 

define a closed mathematical system: introduction of the 

fluctuating components of flow results in the number of 

unknowns exceeding the number of available equations. One 

way to make the problem tractable is to supply the 

additional information in the form of physical hypotheses 

about the structure of turbulence; the fluctuating 

components can then be related to the mean components of 

flow. 

Additional mathematical and physical complicacies 

arise from the evidence that some steady and two-dimensional 

flows develop unsteady and three-dimensional characteristics 

after separation. The phenomena associated with the vortex 

street behind a cylinder provide a striking example of the 

separation-induced unsteady behaviour of a flow. 	Three-

dimensional and unsteady phenomena have also been noted in 

certain regions of otherwise steady, two-dimensional flows 

by, for example, Tani (1958), Abbot & Kline (1962) and 

Filetti & Kays (1967). 

It is no surprise therefore that the analysis of 

separated flows is still at a primitive stage. 	Though 

some methods exist for laminar flows, they are by no means 

applicable generally; moreover, in practice, most problems 

involve turbulence. 
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The basic task, therefore, is to devise a solution 

procedure for non-linear second-order partial differential 

equations, such as the Navier-Stokes equations. 	Within 

the restrictions imposed, those of steady, incompressible 

and two-dimensional flows, the solution procedure must be 

generally applicable to all types of boundary and flow 

problems; it must, of course, be conomical enough to be 

of use for design purposes. 	Once the mathematical problem 

has been successfully tackled, attention can be turned to 

obtaining and testing the physical information concerning 

the structure of turbulence and the special phenomena 

associated with separation. 

1.2 Previous knowledge  

1.2-1 Numerical solutions of the complete equations  

The improbability of obtaining analytical solutions 

for the complete differential equations has forced a search 

for alternatives and, of those explored, numerical methods 

of the finite-difference type have proved to be the most 

successful. 

In 1933, Thom obtained a finite-difference solution 

for the flow past a circular cylinder. From the Navier-

Stokes equations, he obtained a differential equation for 

the transport of vorticity, and avoided the explicit use of 

velocities by defining a stream-function. He then used 

'central' finite-differences to obtain algebraic equations 

for vorticity and stream-function which were solved by an 

* The reader who is not familiar with the terminology used 
in connection with the finite-difference methods should 
refer to some textbook on numerical methods, such as 
Forsythe & Wasow (1960). 
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iterative technique. 	His method was, however, unstable 

above a certain Reynolds number (-'50) and no solutions 

could be obtained for higher Reynolds numbers (Thom & 

Apelt 1961) . 	Such was also the experience of Kawaguti 

(1961) and Simuni (1964) who were dealing with different 

problems by, essentially, the same method. 	Thom and 

Apelt (1961) also reported that the range of Reynolds 

number could be extended by the use of under-relaxation. 

Burggraf (1966) made extensive use of under-relaxation and 

presented solutions, for the confined flow in a cavity, for 

Reynolds numbers as high as 400. 	However, his experience 

demonstrated that under-relaxation exacts severe penalties 

abandon his computations in computing time and he had to 

for higher Reynolds numbers. 

that if economical solutions 

radically different approach was necessary. 

A significant discovery was made by Courant et al. 

(1952) in connection with numerical solutions of non-linear 

hyperbolic equations. They found that the stability of 

their numerical procedure could be improved by the use of 

an 'upwind' finite-difference scheme. 	This concept 

implies that the difference form of the convective terms 

be caused to depend on the direction of the local flow in 

contrast to the central finite-difference forms, which do 

not attach any importance to the direction of flow. 

Encouraging results were obtained by the use of Courant's 

* Allen & Southwell (1955) used a similar method and a 
space transformation to obtain solutions for Reynolds 
numbers as high as 1000. However, transformations such as 
theirs are particular to a physical problem and cannot be 
considered general. 
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suggestion for a number of problems involving unsteady 

flow, e.g. by Blair et al. (1957) and by Barakat and Clark 

(1965). 

Incorporating a similar independent suggestion of 

Spalding (1966), Runchal and Wolfshtein (1966) put forward 

a method for the prediction of steady, viscous and two- 

dimensional flows. 	In contrast with the earlier methods, 

such as the one by Burggraf (1966), their method was found 

to be unconditionally stable for all Reynolds numbers; and 

the computing times involved were much smaller. 

Following another suggestion by Spalding (1967a), the 

above method was generalised to include non-uniform 

properties, and was later also modified to improve accuracy. 

Various stages of development, of which the present thesis 

forms a part, have been reported by Runchal et al. (1967), 

Wolfshtein (1967) and Pun and Spalding (1967). 

All the finite-difference techniques mentioned above 

had one common thread: they followed Thom's practice of 

using the vorticity and stream-function as the dependent 

variables. 	The chief advantage is that pressure, usually 

not a pre-sppcified function, does not enter into the 

calculations explicitly. 	These techniques, therefore, 

differ sharply from another recent stream of work; this 

employs velocities and pressure as the dependent variables; 

and has been applied mainly to unsteady flows. 	For 

example, Harlow and Welch (1965) reported an interesting 

application to the transient flow of a fluid with a free 

surface. 

* It seems that by this time a number of workers had been 
attracted by the suggestion of 'upwind-differences'. For 
example, Greenspan (1967) independently proposed an 
identical method. Not surprisingly hds findings were in 
accord with those of Runchal and Wolfshtein. 
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There is a difference of opinion among numerical 

analysts about the relative merits of using either the 

'vorticity' formulation or the 'velocity' formulation of 

the equations. 	Though the use of the latter has the 

advantage of direct interpretation of the results in terms 

of velocities, this is of importance only when the results 

are monitored at intermediate stages. 	Such a necessity 

usually arises only for transient flows; on the other 

hand, it has been observed that the 'velocity' formulation 

converges to a steady-state only very slowly because of 

the strong non-linear nature of the pressure equation 

(Aziz & Hellums 1967). 	Recently Chorin (1967) reported 

an alternative formulation for the pressure equation which 

has not been widely tested as yet. 	Under these circum- 

stances the only conclusion that can be drawn is that the 

calculations for pressure are, at the least, an 

inconvenience. 

A large volume of numerical work in recent years has 

been concerned with the behaviour of transient flows. 

Much of this work was performed at Los Alamos Scientific 

Laboratories and has been reported in a number of reports 

from that source; for example, Fromm & Harlow (1963) 

presented the numerical solution of the classical problem 

of the vortex street development behind a cylinder. 

However, the sole concern in the present thesis is the 

solution of steady-state problems: therefore, no particular 

attention has been, or will be, devoted to the literature 
t 	

...) 

dealing with transient flows. 
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1.2-2 Approximate theories based upon physical models  

A number of theories for separated flows postulate the 

existence of a particular flow-pattern which is supported 

by specialised mechanisms for the exchange of mass, 

momentum and enthalpy etc. 	The mathematical problem is 

simplified by assuming that some parts of the flow can be 

described by equations of the boundary-layer type. Further-

more, such theories are usually particular either to those 

flows which re-attach to a surface, or to the ones that do 

not. 

Various authors (Hanson & Richardson 1964, Chilcott 

1967) have recently prepared detailed surveys of the 

available literature and it seems pointless here to provide 

yet another. 

Fig. 1.2-1 displays a rough summary of the available 

information in the form of a flow diagram.* For the sake 

of clarity, the display has been kept as simple as possible; 

a look at the representative literature is enough to 

demonstrate that separated flows are capable of behaving 

in a much more complex fashion. 

The notion that steady separated flows, which re-

attach to a surface, can be represented by a core of 

recirculating fluid surrounded by thin boundary layers, has 

existed for a long time; in 1956, Batchelor derived an 

integral condition for the state of laminar fluid in such 

core regions with closed stream-lines and also proved that, 

for two-dimensional flows, such a Core will consist of 

uniform-vorticity fluid. 	Pan and Acrivos (1967a) later 

* The author gratefully acknowledges the contribution made 
by Prof. Richardson in drafting this section in general, 
and Fig. 1.2-1 in particular. 



20. 

extended this analysis to include heat transfer. 	If this 

view is accepted in its general implications, then such 

separated flows, whether laminar or turbulent (Squire 1956), 

can be envisaged as a core of recirculating fluid surrounded, 

in general, by a free shear-layer between the outer main-

stream fluid and the core, and a wall boundary layer between 

the solid surface and the core. 

Chapman (1956), on the basis of the above assumption, 

proposed that the free shear-layer offers the bulk of the 

resistance to momentum and heat transfer. That such was 

the case for laminar flows, could be concluded from good 

agreement between the theory and the experimental evidence; 

however, the predictions for turbulent flows failed to 

match the experiments (Larson 1959). 	Carlson (1959) 

suggested that the heat transfer process is dominated by 

the diffusional exchange between the recirculating core and 

the wall; however, Carlson's analysis also does not stand 

up to experiments (Scott & Eckert 1966). 	Inadequacies of 

the above two models led Charwat et al. (1961) to propose 

that the transfer processes are a manifestation of the 

periodic exchange of fluid between the free shear layer and 

the core. 	This model was proposed specifically from 

observations on supersonic flow past cavities, with 

oscillations in the separating stream-line. 	Its validity, 

therefore, is questionable for those flows which do not 

possess such a behaviour. 

Lack of any satisfactory theory is more striking for 

the case of the flows which do not reattach to a surface, 

such as the flows behind bluff bOdies. 	In spite of the 

large amount of effort that has gone into this field, we 
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know little about the transfer mechanisms in this region. 

The main reason for this seems to , be the strong periodic 

nature of the flow in the near-wake regions. 	Hanson and 

Richardson (1968) state that "the near wakes cannot be 

adequately represented by a time-independent mean flow with 

oscillations imposed upon it, in contrast with wakes at 

remote distances from body." 

The flows with Reynolds numbers (for a circular 

cylinder) of less than about 300 are not of much technical 

interest and consequently we shall not discuss these: 

excellent reviews, such as the one by Morkovin (1964), are 

available. 	Above a critical Reynolds number, which 

depends upon the free-stream turbulence,the shear layers 

separating from the cylinder undergo transition to 

turbulence before joining the vortex street; at still 

higher Reynolds numbers ('-02 x 105) the transition occurs 

before separation from the cylinder. 

The observation that turbulent separated flows behind 

bluff bodies seem to belong to a class of flows which 

exhibit similar characteristics, led Richardson (1963) to 

propose a simple power law - similar to the one for 

turbulent Reyleigh convection (Malkus 1954) - for the 

average heat transfer coefficient vs. the Reynolds number. 

Knight (1966), after examining the experimental data, 

concluded that a similar dependence also exists for those 

flows which reattach to a surface. 

Recently Spalding (1967b) proposed a theory for heat 

transfer in steady turbulent flows, with or without 

reattachment, on the basis of a different concept. 	One 

of the characteristic features of separated flows is that 
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the locations of maximum shear stress are remote from any 

wall. 	Thus the turbulence which is generated in the high- 

shear regions must be conveyed to the vicinity of the wall 

by the mechanisms of convection and diffusion. 	Spalding 

argued that the turbulence intensity, and thus the heat 

transfer, in the vicinity of a wall is governed by the 

interaction of these two with the turbulence dissipation. 

By making further use of a one-dimensional model and the 

hypotheses of turbulence energy balance, proposed by 

Kolmogorov (1942) and Prandtl (1945), he obtained a relation 

for the heat transfer coefficient in terms of other para-

meters such as Reynolds number, turbulence intensity, etc. 

Spalding, to the extent of the empirical constants required 

by the hypotheses, obtained good order-of-magnitude agree-

ment with experimental data for three different problems. 

Lack of information about the empirical input and the 

mathematical complexity of the two-dimensional model have, 

until recently, prevented any further development in this 

direction. 

1.3 The present contribution  

1.3-1 An evaluation  

The major contribution of the present thesis is in 

that it presents a general numerical method to deal with 

the basic mathematical problem - that of solving the 

complete differential equations. 	Inadequacies of the 

approximate theories of section 1.2-2 are all too notice-

able in their limited applications; their use for general 

solution procedures is therefore' ruled out. 	The numerical 

work reviewed in section 1.2-1 suggests the use of finite- 
\ 
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difference techniques as a cornerstone for general 

numerical methods: the method presented in this thesis 

exploits this suggestion. 	The applicability, economy and 

accuracy of the method is demonstrated by solving two 

different problems: one for laminar and one for turbulent 

flow. 

The problem tackled for laminar flow is that of a 

square cavity with a moving lid. 	Flows which are similar 

to that in a cavity are frequently encountered in practice. 

A common example is the flow past a recess, or a step, in 

a solid surface. 	Better understanding of such phenomena 

will, it is hoped, lead to more efficient designs. 

The turbulent-flow problem is that of the abrupt 

enlargement of a circular pipe. 	Steps in pipes are 

either intentional or accidental features of design; and 

they lead to appreciable differences in local heat-transfer 

mild pro:1:.111r(1-10 	,t1oll(j Laic.: pipe. 

For the pipe-enlargement problem an experimental 

investigation is also reported. The experimental technique 

is based upon diffusion-controlled electrolysis, and is 

suitable for measuring mass-transfer rates at high Schmidt 

numbers. 	Although the technique is well-established, its 

application to separated flows is novel. Some of the 

special problems, which are posed by its application to 

such flows, are also discussed in the thesis. 

Lastly, some progress is reported in the direction of 

finding an appropriate physical input for turbulent flows. 

The work is based upon the hypotheses of turbulence-energy 

balance first proposed by Kolmogorov (1942) and Prandtl 

(1945). 
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During the course of the present work some special 

difficulties were encountered, mostly connected with 

turbulent flows; these are listed where appropriate, in 

the hope that they will act as a guide for further research 

in this field. 

1.3-2 An outline  

This thesis is divided into three parts. 

Part I concerns the theoretical investigation and is 

further sub-divided into five chapters. Chapter 2 

presents the mathematical problem, and chapter 3 a numeric ,  +_ 

procedure to solve it. 	For turbulent flows, the 

mathematical model is made complete by provision of a 

suitable empirical input in the form of a set of physical 

hypotheses; this is presented in chapter 4. 	In the same 

chapter is also presented a special one-dimensional flow 

model; this enables anlytic integration to be carried out 

across thin boundary layers which usually exist close to 

solid walls. 	The chief advantage of this model is that 

it permits economy of computer time. Chapter 5 deals with 

the results obtained by the application of the numerical 

procedure to two flow problems: these results are also 

compared with those available from other sources. The 

theoretical investigation is reviewed and discussed in 

chapter 6. 	Also listed in this chapter are some of the 

deficiencies in the present state of knowledge; in the 

light of these some recommendations for future work are 

made. 

Part II is a summary of the experimental investigation 

and the discussion of the results 50 obtainc6. 
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A listing of the computer programme, and some other 

information in connection with the computations, is 

presented in Part III which deals with the computational 

aspects of the numerical procedure. 

Nomenclature and list of references follow Part III. 



Part I  

THEORETICAL INVESTIGATION  
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Chapter 2: 

Chapter 3: 

Chapter 4: 

Chapter 5: 

Chapter 6:  

The mathematical problem 

The numerical procedure 

Two special models of flow 

Flow prediction 

Discussion and conclusions 

\ 
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Chapter 2  

The mathematical problem  

Differential equations are convenient means of 

expressing physical laws. 	The equations that 

follow in this chapter express the laws of 

conservation of mass, momentum, enthalpy and 

other convected properties. The laminar and 

turbulent flows are described by the same set 

of equations by postulating 'effective' ex-

change coefficients for momentum, enthalpy, 

etc. 	The mathematical problem is closed by a 

statement and discussion of the boundary 

conditions. 

2.1 The differential equations  

2.1-1 Restrictions  

In this chapter are presented the partial 

differential equations which describe the steady two-

dimensional flow of an isotropic fluid in an axisymmetric 

space. The axis of symmetry may be present in the 

vicinity of the flow-field, as for the flow in a circular 

pipe, or it may be located at infinity, as for the flow 

along a plane surface. The condition of two-

dimensionality is imposed by requiring that the flow be 

completely definable by two mutually orthogonal space 

directions. 

If the flow is turbulent, it will be postulated, 

following the common practice, that it can be represented 

by a fluctuating component suporiposed on a time-mean 
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component (see e.g. Hinze 1959). 	We further postulate 

that the effect of the fluctuating components can be 

incorporated by using effective mean diffusional fluxes of 

momentum, heat and mass-species, etc. 	For example, the 

effective diffusional flux of momentum will comprise both 

the mean stresses and the stresses due to the fluctuating 

components better known as the Reynolds stresses. 

Although the numerical method, to be presented in the 

next chapter, does not require any further restrictions 

(Spalding 1967a), for simplicity and clarity of analysis, 

the field of interest will be further restricted by 

assuming that the body forces, thermal radiation and swirl 

velocity are absent. Attention will now be confined to 

those flow fields which can be adequately described by 

either a plane cartesian coordinate system, or a 

cylindrical coordinate system. 	In the following sub-

section we will see how these two coordinate systems can 

be incorporated into a single system. 

2.1-2 The coordinate system  

Fig. 2.1-1 shows a part of the coordinate system 

xrxrr. x1 and x2 respectively denote the two mutually 

orthogonal coordinates to be used to describe the spatial 

behaviour of the flow. The distance from the axis of 

symmetry is denoted by, the radius r. 
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FIG- 2.4 -4  THE CO-ORDINATE SYSTEM. 

For a cylindrical coordinate system, the origin of 

the coordinates is on the axis; in such a case x2(=r) is 

Llw 	coul:din,:a:(! and x1  is the axial coordinate which 

is more commonly denoted by z. 

On the other hand, when r-m, x1 and x2 represent the 

familiar plane cartesian coordinates. 

2.1-3 The laws of conservation  

With the restrictions of section 2.1-1 and the 

notation of section 2.1-2, the following are the 

mathematical statements of the respective laws of 

conservation: 

conservation of mass  

(anx.)(r.G.) = 0 	 (2.1-1) 

conservation of momentum in direction i  

(a/axj)(r.G..u. + r.r..) + r.ap/oxi 	0 	(2.1-2) 7 

and conservation of property 0  

(a/ax.)(r.G..0 + r.J07 .) + r.S0  = 0 	(2.1-3) 
.7  



30. 

where, 

G. & U. are, respectively, the mass velocity and the 

velocity component in direction i; by definition, 

G, = pui  with p as the mass-density, 

T
ij 	

is the component of the stress tensor in direction 

j and it operates in the plane which has its normal 

in the direction i, 

p 	is the fluid pressure, 

0 	is any conserved property such as enthalpy, 

j0,j 
	is the diffusional-flux component of the property 

0 in the direction j, and 

S
0 	

is composed of all the terms which represent the 

generation or destruction of the property 0. 

The above representation makes use of the summation 

convention: a repeated subscript is summed over its all 

possible values,and a non-repeated subscript takes all its 

possible values independently. For a two-dimensional 

flow, the equation: 

(a/ax.)(A..B.) = 0 
1 	.) 

represents the following two equations: 

• (2.1-4) 

(a/ax1)(A1.B1) 	(a/ax2)(A1.132
) = 0 ,and (2.1-5) 

(a/ax1)(A2.B1) 	(a/ax2)(A2.B2) = 0 	
. (2.1-6) 

2.2 Auxiliary information: the diffusional fluxes  

Equations such as (2.1-2) and (2.1-3) do not, in 

themselves, state the mathematical problem completely. 

This is so because nothing, as yet, has been said about 

the flux components 7.. and J,x  ij 	w/3 
For laminar Newtonian fluids, the components of the 

stress tensor T. are easily related to the rate-of-strain ij 
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tensor (velocity-gradients) via a generalised form of the 

Newton's law of viscosity (Bird, Stewart and Lightfoot 

1960). 	Similarly, the flux components of enthalpy and 

mass-species can be related to their respective gradients 

by the generalised forms of the Fourier's law of heat 

conduction and the Fick's law of diffusion. 

For turbulent flows, the stress tensor cannot be, 

rigorously, related to the strain tensor; nor, for that 

matter, can the flux vectors of a conserved property be 

related to its gradients. 	Nevertheless, following an 

early proposal by Boussinesq (1877), for prediction 

purposes we can postulate the existence of effective 

exchange coefficients to replace the laminar exchange 

coefficients in the respective stress and flux laws; thus: 

Tij = —Ileff(aUjnxi 	alUi/aXj) 2 	(2.2-1) 

and 

J02j 	-V-10,eff(a0/axi) 7 	(2.2-2) 

where µeff and ropeff are respectively the effective 

viscosity and the effective diffusivity. 

We can also postulate that: 

= ileffA;,eff 	(2.2-3) 

whereeV"' ,eff is the effective Prandtl/Schmidt number for O  

the property 0 and, from experimental evidence, is likely 

to be almost constant. 

Thus-the unknowns Tij and 3-0,i have been replaced by 

the unknowns µeff and 15, eff. 	Fortunately some 

information about the latter can be obtained from cor-~ 

relation of experimental data for turbulent flows; 

admittedly, however, the available information leaves -much 

to be desired. 	In chapter 	u :cuss these 
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matters in more detail; for the time being, we proceed 

further on the assumption that µeff  and 6- 0 	are ,eff 

determinable. 

For laminar flows, of course, µeff  and (5-01eff  are to 

be replaced by the respective laminar values: the dynamic 

viscosity µ and the laminar Prandtl/Schmidt number 5j. 

These are evaluable from many compilations in the form of 

tabulations or formulae. 

2.3  The transformed momentum and continuity equations  

2.3-1 The vorticity equation  

Equation (2.1-2) contains the gradient of pressure, 

an unknown of the problem. 	It is true that the total 

number of unknowns is equal to the number of equations and 

that the pressure can be eliminated between equations 

(2.1-1) and(2.1-2). .However, for reasons stated in section 

1.2-1, the calculation of pressure is not very desirable 

from the point of view of numerical solution. We there-

fore proceed to eliminate the pressure from the above 

equations by a well-known trick: the introduction of 

vorticity. 	For a two-dimensional flow, vorticity w is 

defined by: 

w 	au2/ax1 - au1/ax2 	(2.3-1) 

Now, if we differentiate the direction-1 momentum 

equation with respect to x2 and the direction-2 momentum 

equation with respect to x1, and subtract the first from 

the second, we then obtain : 

(5/ax.)(r.G..w/r) - r-2.(a/ax.)(r3.(a/ax.3)(11eff  .w/r)) a  - 

r.Sw  = 0 	
7 

* A detailed derivation is given by Gosman et al. (1968) 
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where Sw is a group of terms containing second derivatives 

of µeff;  specifically: 

s 	. 	(a2p.eff 	i /ax,2  )(aua  /ax2  ) - (a
2
tleff  /ax,2 )(au2  /ax1  ) + 

(a
2Ileffnxiox2)(au2rox2  aul/axa) .(2.3-3) 

2.3-2 The stream-function equation  

With the replacement of equation (2.1-2) by (2.3-2), 

velocity components no longer appear as the dependent 

variables, but they do still appear as multipliers in 

equations (2.1-3) and (2.3-2). 	These can also be 

eliminated by the introduction of a stream-function 0, 

defined by: 

- 1 i-'A) 	ox x G = 	• G2 E.: - 	. 	(2.3-4) 1 	r ax2 	o 1  

It is easy to show that, by this definition of the 

stream-function, the law of conservation of mass, as 

expressed by equation (2.1-1), is implicitly satisfied. 

A consequence of definitions (2.3-1) and(2.3-4) is 

that: 

/ (a/ax.)(p-1  . r-1  .Wd/ax.) + LI)  = 0. 	(2.3-5) 

This is usually referred to as the stream-function 

equation. 	's can be calculated with its aid, and Gk's 

can then be eliminated from the vorticity and the 

conserved property equations with the help of (2.3-4): 

this, we shall proceed to do in the next section. 

'2.4 The General form of the differential equations  

Equations (2.1-3), (2.3-2) and (2.3-5) redefine the 

mathematical problem with w/r and 0 as the primary 

dependent variables and 0 as the supporting variable. 
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All these equations may be represented by a single general 

equation: 

cx.( 5 )(Jr...G..j.0) .— 13. (Va.x.)(r.T.3(5.0)/axj) 	r.S0 	0 

(2.4-1) 

where 0 now stands for any one of the previous variables, 

w/r, 0 or 0. 

This equation, in full, in terms of the gradients of 

the stream-function, is: 

a.(a/axi)(a0/ax2.0) - a.(a/3x2)(a0/axi.0) 

- 3.(15/05x1)(r.P.a(5.0)/ax1) 

- f3.(3/ax2)(r.r.a(5.0)/ax2) 17. r.S0  = 0 	, 	(2.4-2) 

where the various coefficients and So's are given in 

table 2.4-1. 

0 Name a! 	p P 5 S 
0 

Remarks 

0 stream- 
function 

0 1 p  -1 r-2 1 w/r see equation (2.3-5) 

W/r 
--' 

radius 

vorticity "'1 r- 2 2 µeff equation (2.3-3) 
So neglected for 
computations because 
of uncertain nature 
of ileff; 	see section 
4.1-4. 

T temperature 1 1 rT eff  / 1. 0 So for a flow with 
i) low velocity, 
ii) negligible mass 
transfer, iii) no 
generation or dis-
sipation of enthalpy. 

m mass of a 
chemical 
species in 
unit masse 
the mixture 

1 1 rm  7 eff 1 0 so for a flow with 
i) small mass 
transfer rates, 
ii) no generation or 
destruction of the 
species 

k kinetic- 
energy of 
turbulence 

. 

1 1 Pk eff , 1 equations 
(4.1-4) 
(4.1-7) 

So depends on 
turbulence-hypotheses; 
see section 4.1 and 
equation (4.1-3). 

_ 

Table 2.4-1 Some particular forms of the general  

differential equation (2.4-2). 
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It must be stressed here that the St's given in the 

Table 2.4-1 are by no means general: but they are the ones 

which apply to the problems discussed in chapter 5 of the 

present thesis. 

2.5 The boundary conditions  

The application of equation (2.4-2) to any particular 

problem needs the specification of boundary conditions. 

In the mathematical literature, equation (2.4-2) is 

referred to as an elliptic equation (e.g. Forsythe & Wasow 

1960). 	Such equations require that, for each dependent 

variable, a boundary condition be specified along a closed 

curve bounding the region of interest. This boundary 

condition may be the value of the variable itself or that 

of its normal gradient at the boundary. Of course, a 

boundary condition of the third type, a combination of the 

above two, may also be specified. 

The boundaries encountered in practice can usually be 

accommodated by one of the following four categories: 

a) Inlet sections, b) Outlet sections, c) Axes (or planes) 

of symmetry, and d) Solid walls. 	We will discuss the 

boundary conditions for each of these individually. 

a) Inlet sections: :The conditions of the entering fluid 

are supplied as part of the problem-specification. 	For 

example, in a typical case, it may be the distributions of 

velocity, temperature, composition, and the intensity of 

turublence which are given. The dependent variables of 

the general equation (2.4-2) are normally calculable from 

this information; for example, the stream-function can be 

obtained from the velocity distribution via equation (2.3-4). 
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b) Outlet sections: The fluid condition at an outlet 

section is not always knowlin advance. 	Nevertheless, a 

boundary condition for each variable must be specified in 

order that the calculations may proceed. 

At high Reynolds numbers, the effect of the outlet 

boundary condition on the upstream fluid is small. 	This 

follows from the observation that, in the type of flow 

being considered, diffusion is the only mechanism capable 

of transmitting upstream the effects of the downstream 

boundary condition; this mechanism is understandably weak 

at high Reynolds numbers. 	This fact can often be ex-

ploited in the specification of boundary conditions at an 

outlet section. For example, the gradients of the 

dependent variables along the stream-lines may be taken as 

zero; the stream-lines, in turn, may be assumed to inter- 

sect the outlet boundary at, say, right angles. 	In some 

cases, it may be possible to calculate the position of the 

stream-lines from a given, or assumed, velocity-

distribution. 

c) Axes of symmetry:In an axisymmetrical flow, no fluid 

can cross the axis of symmetry; the stream-function along 

the symmetry axis must, therefore, be a constant. 

Although the vorticity, w, at an axis of symmetry is 

zero, the dependent variable w/r, is not necessarily zero. 

A boundary condition for w/r can be derived by considering 

the restraints on the variation of the axial velocity, ul, 

in the proximity of the symmetry axis. 	For reasons of 

symmetry: 

* The boundary conditions for a plane of symmetry are 
derived in a similar manner  mannei 	n a;,:is except that r 
is to be treated as a constan. 
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Lt 

	

r' 0 
	

au1/ar = 0 	
(2.5-1) 

Since u1  itself tends to a finite value, say U, at the 

axis, it follows that the first two terms in a polynomial 

expansion for u1 are: 

Lt 

	

0 	u1 	U + C.r2 + 	(2.5-2) 

A boundary condition for w/r can now be obtained from: 

Lt 
0 W/r = -r-1.au1/ar = -2C (2.5-3) 

The coefficient C can be evaluated by reference to 

the value of u1  at a small value of r where (2.5-2) may be 

assumed to hold. 

The boundary condition for other variables, such as 

temperature, takes the form of the vanishing normal 

gradient at the axis. 	For example, for any conserved 

property 0, a0/ar will be specified as zero at the symmetry 

axis. 

d) Solid walls: For a wall impermeable to matter, it is 

an implication of equation (2.3-4) that the stream-

function along the wall must be a constant. The value of 

this constant can be obtained from the data of the problem. 

For a permeable wall, given the rate of injection through 

the wall, the stream-function can be calculated from 

equation (2.3-4). 

Vorticity is composed of the gradients of velocity, 

and it is rare for these to be pre-specified. A boundary 

condition for vorticity can, however, be obtained from the 

'no-slip' condition. 	For purposes of illustration, let us 

consider a simple case: that of an impermeable, stationary 
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wall situated far away from the axis of symmetry. 	In 

most cases, near a wall, the gradients of the variables in 

the direction parallel to the wall may be neglected in 

comparison with those in the normal direction. 	The 

vorticity equation (2.3-2) for this case may be written 

as: 

(a2/ax2)(µeff  .w) 	0 

where xn is the distance normal to the wall. 

From this equation we obtain: 

w = (C1.xn + C2)/p.eff and  7 

(1).S = C2///eff 	7 

(2.5-4) 

(2.5-5) 

(2.5-6) 

where C1 and C2 are the constants of integration and the 

subscript S refers to the value at the wall. 

A relation for the constants of integration can be 

obtained by reference to the stream-function equation 

(2.3-5) which, for this case, may be written as: 

(32/3x2W)) + p.r.(C1'xn + C2)4,eff =  0 	(2.5-7) 

This equation, with the help of 'no-slip' condition 

( (a0/axn)5  = 0 ), yields: 

r
x Fx 

0 - 0s = -p.r.,,On  J0  (C1  .x + C2)/µeff.dx.dxn 	. (2.5-8) 

If a µefr-xn  relation is available, C1  and C2  may be 

evaluated by reference to and w values a short distance 

away from the wall. 	For example, if µeff  is a constant, 

w = 
C2/P'eff = 	c/2 - 3(0C-' S 	n )/(p.r.x2 C 	7 ) 	(2.5-9) 

where C refers to a point within the flow field at a 

distance of xnC from the wall. 

For turbulent flows µe,f  may vary sharply near a wall. 

In such cases, equation (2.5-8) 'should be integrated_with 

proper assumptions about the variation of µeff;  one such 

set of assumptions is discussed in chapter 4. 
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Chapter 3  

The numerical procedure  

In chapter 2 we started from the laws of con-

servation and succeeded in formulating a general 

differential equation applicable to all conserved 

properties. 	However, the designer wants an 

answer not in terms of the differential equations 

but in terms of numbers and formulae which he can 

use for design purposes. 	In this chapter is 

outlined a numerical procedure to help achieve 

this aim. 

3.1 The choice and fundamentals of the technique  

There are many numerical methods for solving partial 

differential equations. 	Of all these, none has been able 

to rival Nnite-diFForoncos in ease and universality of 

application. 	This technique has proved its worth in 

practically every branch of science and technology involving 

differential equations. 	Thom, in 1933, found its 

application extremely laborious, but the development of 

high-speed computers greatly reduces the labour involved. 

What took Thom months to solve, would have taken hours in 

the early 1950's; it takes but seconds on modern machines. 

The essential principle of the finite-difference 

technique is to replace the differentials of a variable by 

the differences taken over finite intervals. 	The field 

of interest, which is a continuum, is therefore 

replaced by a net of grid lines Spread over it. 	The 

points of intersection of the grid are termed the 'nodes' 
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and it is with these nodes as the foci of attention that 

the differential equation (2.4-) is to be integrated. 

There are, of course, some questions raised by this 

'discretization' of the continuum problem; such as: 

does the solution in the discrete space represent the 

solution in the continuum? or, how many grid lines should 

be chosen for a given problem and what is the best way to 

distribute them? Questions like these will be deferred 

to the end of this chapter; for the time being, let us 

concentrate on deriving a finite-difference analogue to 

the differential equation (2.4-2). 

3.2 The finite-difference equation  

There are many ways in which the grid may be spread 

over the field of interest (Forsythe & Wasow 1960); we 

choose one of the simplest: that in which the grid lines 

are the coordinate lines at discrete intervals of the 

coordinates x1 and x2, as in fig. 3.2-1. 
	No restrictions 

are to be placed on the spacing between the grid lines; 

it may be non-uniform. 

Let P denote a typical node of the grid, with the 

node,EI N,W,S and NE,NW,SW and SE surrounding it. 	Let us 

now restrict our attention to the shaded rectangle, ne-nw-

sw-we, of fig. 3.2-1, the sides of which lie midway between 

the neighbouring grid-lines. 	It is over each such  

rectangle, individually, that the differential equation  

(2.4-2) is to be integrated. 	To this extent our approach 

is unconventional in that the attention is focussed on the 

integral values of the differential terms rather than-on 

their local values. 	Thus, equation (2.4-2) is to be 

replaced by the integral equation: 
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xo 	xi  j .7 e 	a 	ao 
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ax1 x2 	

.0)].dxl.dx2  - 
1 s x1,w 1 2 

CONVECTION TERMS 

x2,n rx1,e  J  
SJ x 	j 	13-Cox {r.r.84- (5.0) } + ax [r.['. ax (5.0)1].dxl.dx2  + 

2,s x1 w 	1 	1 	2 	2 

DIFFUSION TERMS 

• imp 

j

x 

x2,n r(11 e J r.S0  .dx1  .dx2 	0 
2,s 	1,w 

(3.2-1) 

SOURCE TERMS 

3.2-1 The convection terms  

Let ICon denote the integral of the convective terms 

in the equation (3.2-1), i.e., 

'x2,n 1(1,e 	a (a0 .0)).dx 'Con 	x2,s jx1,cl,c1•[TR (ax2'0) 	ax 	ax2 1 	1.dx 2 1 

(3.2-2) 

Since a is a constant, by integrating once formally, we 
obtain 

'x2 oth 
'Con =a  x2 s 

(-8)7.0 e o - ,x
2 	w 
.0 	}.dx2  - 

2 

 

,x4  1e a70 	

•° 	
aO 

"5 idxs  x

.1

1 w lax1 'n - a xl  Is  

 

- a (3.2-3)` 

where the quantities under the "-r symbols are to be 

evaluated along  the side of the rectangle denoted by the 
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subscript, e.g:-le  denotes along the side se - ne. 	To 

evaluate such quantities, let us take one of the convective 

terms, 

r 21 n 	 ath IC  n a 	[ J x21s ax2 
.0 

e 
 .dx2  

• (3.2-4) 

If both 0 and 0 are well-behaved functions in x2, then 

there exists an average value 0e, such that: 

0e 
j 2,n ao 	j 	

[ 

	

2,n 321) 	 

x 	ax '0 2,s 2 e'0 
1
e 
.dx2 	x 	ox 	.dx2 	; (3.2-5) 

2,s 
 

but 

jx, In ao  
0se l 	- ,x2 ,s dx2 

e.dx2 	ne  
(3.2-6) 

where subscripts ne and se refer to the corners of the 

shaded rectangle in fig. 3.2-1. 	Therefore, from (3.2-4), 

(3.2-5) and (3.2-6), 

IC = c"95e. (one- °se) 
	

(3.2-7) 

Since 0e' 0ne and  0se do not represent the values at 

the nodes of the grid, equation (3.2-7) cannot be used 

directly in the finite-difference procedure: I must be 

expressed in terms of- the values at suitable nodes of the 

grid; this we do by making an assumption which in the 

literature has been referred to as the assumption of 

'upwind differences' (see e.g. Richtmeyer 1962). 	For 

equation (3.2-7), it states that 0e is equal to that 

value of 0 which is representative of the rectangle lying 

immediately upstream of the side e. 	The implications_of 
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this assumption are readily perceived if we note that the 

gradients of stream-function, and hence terms, such as 

(onè  0se) are connected to the direction, and magnitude, 

of the mass velocities via the defining equation (2.3-4). 

In particular,if (°11e- 0,e) is positive, the direction of 

the flow is from the node P towards the node E; therefore 

the above assumption implies that 0e  is equal to the 

representative value of the rectangle surrounding the node 

P-7  we will take this value to be 0P. 	If, on the other 

hand, (0ne-  0se) is negative, the implication is that 0e is 

equal to Os, since the flow direction is now from E to P. 

The above arguments can be incorporated into equation 

(3.2-7) by expressing it as 

IC = "°P. 1"jne- °se) 	1°ne- ?̀)se' J/2  

+ a.0s. [(bne- use) 	sel J/2 	(3.2-8) 

In the above equation, one of the terms in the square 

brackets will always be zero and we will be left with the 

term which represents the contribution from the upstream  

rectangle only. 

Equation (3.2-8) may be rearranged to 

IC  = a.(0p-0-). C('1se4ne) 	kbse-21)ne1J/2 	a.°P.(1/)se-11)ne) 	• 

(3.2-9) 

Our task is not yet complete; we must now express 

0se and  0se in terms of the values at the nodes of the 

grid. 	To this intent, we make the simple assumption that 

the value of the stream function at any particular corner  

of the rectangle is equal to the arithmetic mean of the  

stream-function values at its four immediate neighbours. 
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Thus, 

°se = (°SE 	°E 	°P 	°S)/4 
	

(3.2-10) 

With, 

AD s 	CO 	) + 10 	1)/2 

	

se one) 	se no. 

= a.r.(0 	S NE N ) 
	10

Sb 	
.4 
S 	NE -0N  13/8 	(3.2-11) 

IC = (0P-0E).AE - m.0P(0se- ne) 
	

(3.2-12) 

In a similar way, and by noting that the second term on 

the R.H.S. of equation (3.2-12) vanishes under summation, 

we rewrite the integral in the equation (3.2-3) as 

ICon = (0P-0E).AE + (0P  -0W  ).Aw  

+ 	(0P-0N).AN + ((gyP  -0S  ).A 	(3.2-13) 

The A's are given by expressions such as (3.2-11); 

we will later list all the A's together when reassembling 

the complete difference equation in section 3.2-4. 

It is to be noted here that the A's can never become  

negative; but they may fall to zero. We draw attention 

to this point because, later, we will see that this is one 

of the features which makes the present finite-difference 

scheme stable and convergent. 

3.2-2 The diffusion terms  

Let IDif  denote the integral of the diffusion terms 

in equation (3.2-1); then, 

rx

x2,n rx1, 

IDif 	

e a j
x p.[7,7— (r.r..ox  =—(8.0))+——(r.r.7T-(8.0))34xl.dx2  

	

i, 	" 21s 	1,w " 1 	ax2 2 

(3.2-14) 
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As p is a constant for all the equations except the one 

for vorticity (cf. table 2.4-1), we will proceed with 

formal integration by replacing p with a representative 

value pp; thus: 

r 2,n . 	 
.Dif  . pp J

x2s 
[r.r' -2— (8.0)1 - 	(5.0)[ 3.dx2  ex1 	 oxi  

+ pp J x  

	

x1,e 	 
- 
	 

Cr.r.+ (8.0)1.  - a 	(6.0)1 ].dx.1.  

	

1,w 	2 	n" 	2 

(3.2-15) 
where the notation is the same as for (3.2-3). 

Consider one of the diffusion terms, 

r 2,n , 	 (3.2-16) ID 	RP J x2Is 
r.r.-1,(5.0)1e

.dx2 a xl  

By assumptions similar to the one expressed by (3.2-5) the 

above may be rewritten as: 

' a 
RP' .r .r . 	(54)1.  .(x2 - x2 s) 	(3.2-17) 

D Pee dx1 	'n  

ID can be further expressed in terms of the values at the 

nodes by: 

rE+rp  1-1?rp 5E.91E-5p.0p  x2,N  x2is  
ID  . OP. 	 2 	2 	x1E - x1 p ' 	2 ,  

.(3.2 -18) 

The assumptions between (3.2-17) and (3.2-18), of 

course, imply that the variations of different quantities 

between E and P can be considered linear. 

Thus, the total integral of (3.2-14) may be expressed 

as: 
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IDif 	(5E  .0E  -5P  .0P  ).BE  +(5W  .0W  -5P  .0 ).BW  + P 

+ (5-.0 -5 .0 ).B +(5 .0 -5 .0 ).B NNPP N S SP P S (3.2-19) 

where B's can be deduced from equation (3.2-18). 	Like the 

A's of convective terms, the B's are also always positive 

and these will be listed later in section 3.2-4. 

3.2-3 The source terms  

The final integral to be evaluated in equation (3.2-1) 

is 

rpc2,n fx1,e 
ISor E J 	r.S0.dx1.dx2 x 	x 2,s 	1,w 

(3.2-20) 

Because the form of the source terms is not fixed, 

unlike the convective and diffusive terms, it is not 

possible to make any general assumptions; nevertheless, 

for purposes of illustration only, let So  be assumed 

constant over the domain of integration. Then 

ISor 	S  0,P.V  P 
	 (3.2-21) 

where 

Vp  E rp . (x1  E- x1,W).(x2,N- x2 S)/4 	(3.2-22) 

is equal to the volume swept by the rectangle when it is 

rotated through an angle of one radian about the axis of 

symmetry. 

3.2-4 The complete difference equation  

We are now in a position to obtain a complete finite- 

difference analogue for our general differential equation 

(2.4-2). 	From (3.2-1), (3.2-13Y, (3.2-19) and (3.2-21) 

we deduce: 
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(0p-Os).AE  + (0p-Ow ).Aw  + (0p-ON ).AN  + ((gyp-0s ).As  

+ 	(0p.8p-0E.6s).tis  + (0-.F.6P  -0 .8 ).B WW W 

+ (aSP.5P-0N.5N).BN + (0 .6 -0 .8 ).E P P SS S .Vp  = 0 

(3.2-23) 

This equation is the major outcome of our efforts so 

far; it provides an algebraic relationship between the 

values of the variable at a particular node P and those 

at the surrounding nodes E, N, etc. 

There will, of course, be one such equation for each 

dependent variable at each node of the grid. Thus the 

number of these algebraic equations can indeed be very 

large; moreover, 0's are usually interdependent, and 

therefore a simultaneous solution is required. 	Inversion 

of such a large matrix can pose problems - such as those of 

storage space - even for modern electronic computers and we 

are forced to search for alternatives. 	The only 

practicable way of a solution is an iterative procedure; 

we, therefore, now recast equation (3.2-23) as a successive- 

substitution formula. 

Thus by rearrangement: 

Op = OE.CE 	Ow.Cw 	ON.CN 	Os.Cs 	S 	, 
	(3.2-24) 

where, for I respectively equal to E, W, N and S, 

CI  E (AI  + E., -5')/EAB 	9 

Z 	E. 7.3 	(A + B1.5 ) AB All  I I 	P 	/ 

S E S 	.v 0,P•P/E  AB 
	and 

Vp  E rp.(X1,E- X1lw).(X27N- X275)/4 	• 	(3.2-25) 
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A's are given by, 

AE = c"[(°SE4S4NE4N) 	11/1SE4S4NE4N13/8  

Aw  n a.[(ONw+ON-Osw-Os) + 1014w+ON-Osw-Os 1]03 

AN '2  "E"bNE4E-4NW-°W) 	1°NE4E-11)NW-11)W13/8  

As  n cc.[(0sw+Ow-OsE-0E) + illisw+Ow-Os -0E 1]/8 , (3.2-26) 

and D's are given by, 

BE 71 131).[(rP-FrE).(rP4-rE).(x2I N-x2IS)/(xl,E-X1,P)3/8  

Bw  n pp.Prp+rw).(rp+rw).(x2,N-X21s)/(xl,p-xl,w))/8 

BN  n Pp.Prp+rN).(rp+111).(xl,E-xl,w)/(x2,N-x2,p)]/8 

Bs  E 013.[(rp+rs).(rpi-y.(X1,E-.X1,w)/(X2I p-*X215))/8 	• 

(3.2-27) 

It is equation (3.2-24), together with its supporting 

equations, which is to form the core of our computational 

procedure. And, now that we have a set of algebraic 

equations to replace the differential equations of chapter 2, 

we must begin to examine the properties of these algebraic 

equations. 	This is the subject matter for the following 

section. 

3.3 Some properties of the numerical procedure  

3.3-1 Convergence  

It was stated in section 3.2-4 that the difference 

equations are to be solved by an iterative procedure. 	In 

such a procedure, a new solution is obtained by sub-

stituting an initial guess into a successive-substitution 

formula; this solution is then used as the new guess, and 

so on. 	It is necessary, if the'procedure is to be useful, 
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that the iterative solution progressively approaches the 

exact solution of the difference equations. 	In line with 

this idea, the condition that the iterative solution of the  

difference equations should approach their exact solution  

with successive iterations is defined as the requirement  

of convergence. 

Not all iterative procedures lead to convergence. 

Unfortunately, rigorous methods tq investigate convergence 

exist only for linear equations with constant 

coefficients; whereas equation (3.2-24) has variable 

coefficients which change from iteration to iteration. 

Nevertheless, practical experience has shown that the 

criteria for the former can often be successfully employed 

for equations with variable coefficients (Lax & Richtmeyer 

1956; Richtmeyer 1962). 

Let us consider a set of linear algebraic equations 

with constant coefficients: 

(a..0. + b.) 	i = 1,2,3,  	. 	(3.3-1) 0. 
All. j 1 	1 1  

The matrix theory states that this set of equations 

will, in an iterative procedure, converge to its exact 

solution if the matrix a..13  is 'diagonally dominant' 

(Forsythe & Wasow 1960). 	This condition can be expressed 

as: 

E 
all j 13  

(for all i) 

with strict inequality for at least one i 	(3.3-2) 

Experience has shown that this condition is often 

sufficient, but not always necessary for convergence; it 

may be mildly contravened without' seriouseffect. 
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That equation (3.2-24) will satisfy the above 
• 

condition is easily proved if S be considered independent 

of 0. 	In that equation; A's, B's and b's are all positive; 

therefore: 

IC /I = 	S 	CI all I 	all I 

(AI+8I.5I)/ F (AI+BI.6P) 	(3.3-3) 
all I 	all I 

Thus the condition that E CIS 1 is: 

	

{61.(451-5p)} < 0 	 (3.3-4) 
all I 

This condition is obviously satisfied when 6 is a 

constant; this is the case for all equations listed in 

table 2.4-1 with one exception only - the vorticity 

equation with non-uniform viscosity. As mentioned earlier, 

condition (3.3-2), in some cases, may be over-stringent. 

It seems that in many practical cases, the variations of 

viscosity are such that inequality (3.3-4) is not 

seriously contravened; one such example follows in chapter 5 

(see also Gosman et al. 1968). 

To prove diagonal dominance, we now have to show that 

strict inequality (3.3-2) is observed for, at least, 

one set of coefficients. 	Consider the boundary condition 

0 = C 	 (3.3-5) 

where C is not a function of 0. 

For such a boundary condition, with the notation of 

(3.3-1), 

7,1a..1. 0 13 (3.3-6) 

* See Gosman et al. (1968) for the effect of a variable S 
on convergence. 
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For almost all practical problems this type of 

boundary condition is always specified for at least a part 

of the boundary. 

Thus we see that the difference equations are stable 

according to this criterion; of course, there are other 

criteria which could be used. 	Barakat and Clark (1965) 

have discussed some of the common criteria; their 

experience, and that of the other research workers, 

indicates that simple criteria such as (3.3-2) are usually 

sufficient to ensure convergence. 

3.3-2 Accuracy and economy  

The difference between the numerical solution of the 

difference equations and the exact solution of the 

differential equations is the overall numerical error; • 

our discussions of accuracy will refer to this error. 

Economy, in this context, will refer to the actual cost of 

the machine-time required to procure the numerical solution 

by iterative means. 

The overall numerical error is composed of three 

components: a) the round-off error, b) the iterative 

error, and c) the discretization error. 

a) The round-off error: This error is a result of the 

limitations on a computing machine to perform all 

arithmetic operations with a finite number of digits. 

practice, the round-off error is reduced to negligible 

* It is being assumed that a unique solution of the -
differential equations exists, and that another unique 
solution to the difference equations also exists. 
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proportion of the overall error by using a sufficiently 

large number of digits; experience suggests that 8-digit 

numbers, available as a standard option on many computing 

machines, are accurate enough for most practical purposes. 

b) The iterative error: The iterative error is the 

difference between the iterative numerical solution and 

the exact solution of the difference equations. It is a 

reflexion of the fact that, ultimately, the total number 

of iterations must be limited for reasons of economy; 

for, the computing time increases in direct proportion to 

the number of iterations. A compromise is sought in that 

the iterative error is reduced to a small acceptable value 

by performing a sufficiently large number of iterations. 

For a convergent algorithm, a convenient practical 

measure for termination of computations (and an indirect 

measure of the iterative error) is the index of convergence, 

X, defined as: 

X a 	max. 	I-1
)/0 (all (all nodes) 	• 	(3.3-7) 

In this relation I and I-1 denote the 0-values from 

two successive iterations and 0ref  is a suitable reference 

value. 	0ref may be set equal to 01,  or it may be 

replaced by a representative value, such as the maximum, 

in whole of the field. Computations are terminated when 

X falls below a prespecified limit Xref. The actual 

magnitude of 'ref  is dictated by reasons of economy and 

the acceptable level of the iterative error. 
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c) The discretization error: The difference between the 

exact solution of the difference equations and that of the 

differential equations is termed the discretization error. 

It is a consequence of solving the difference equations at 

a discrete number of points in space instead of solving 

the differential equations in a continuum. In other 

words, this error is composed of the errors entailed by 

the assumptions for the respresentative values of 0 and 

its gradients along the cell boundaries and by the formulae 

for One etc. 	In many cases this error forms almost whole 

of the overall numerical error; the errors from the other 

two sources having been made negligible by a judicious 

selection of the number of digits and the number of 

iterations. The accuracy of the numerical solution is 

therefore intimately related to this error. Unfortunately, 

this is also the error about which the least is known. In 

general, it cannot be reliably predicted, as the requisite 

theoretical knowledge is not yet available; reliance has 

to be placed on empirical information. It seems that two-

of the factors which influence the magnitude and nature of 

this error are the size of the grid and the local gradients 

of the variables•. 	One obvious remedy, of course, is to 

use a large number of grid nodes with consequently small 

grid size. However, considerations of economy** and the 

• This statement can be justified from rigorous reasoning, 
by Taylor-series analysis, if the solution is assumed to 
behave as a polynomial in space-coordinates. 

•0  Computing-time per iteration increases in direct 
proportion to the number of nodes. Moreover, in 
general, the total number of iterations required., to 
reduce the iterative error to a prespecified level, 
also increases with the number of nodes. 
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size (storage space) of the computing machine usually limit 

the total number of grid-nodes. 	Fortunately, having 

chosen the grid-nodes, one can distribute these to obtain 

a better accuracy than that which would be obtainable from 

a uniform distribution. No hard and fast rules are 

available for the distribution of nodes. An empirical 

suggestion is to place the nodes closer where the 

gradients of the variables are large; for example, near 

a solid wall. On the other hand, the nodes may be spaced 

farther apart when these gradients are small without any 

appreciable loss of accuracy. Some illustrations of the 

use and advantages of non-uniform grids are given in 

chapter 5. 

From the foregoing discussion on accuracy and 

economy, it is clear that, at least for the present, the 

relevant information can be obtained only empirically; 

whatever theoretical knowledge exists can help us little. 

In this regard, analysis of numerical solutions will be of 

special value; in chapter 5 the accuracy and economy of 

the numerical solutions to two problems will be discussed. 
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Chapter 4  

Two special flow-models  

The prediction of turbulent flows requires some 

information regarding the physics of the 

phenomena; specifically, it is necessary to 

account for the intense mixing caused by 

turbulence. The first part of this chapter 

describes a model of turbulence based on the 

Kolmogorov-Prandtl hypotheses. The second 

part uses this model to formulate a Couette-flow 

model which allows analytic integration for 

regions close to a wall; the need for a fine 

grid to account for steep-gradients near a wall 

is thus eliminated, and the solution procedure is 

made more economical. 

4.1 Kolmoclorov-Prandt1 model of turbulence  

4.1-1 The purpose  

There are two current approaches to the analysis and 

prediction of turbulent flows. One of these concerns 

itself with the description of the mean flow only and 

allows for the effect of turbulence by postulating various 

similarity hypotheses. In contrast, the second approach 

attempts a description of both the nature and the effect 

of turbulence and usually makes extensive use of various 

statistical correlations to deal with the mathematical 

problem. For want of any better terminology, we will 

call these approaches, respectively, 'phenomenological' 

and 'statistical'. 
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Because of its mathematical complexity, the 

statistical approach has been successful in dealing with 

only the simplest of the practical situations; whereas 

most of the engineering information has originated in the 

less sophisticated, but mathematically simpler, phenomen-

ological approach. 

Probably the most significant practical contribution 

to the phenomenological approach to turbulence has been 

Boussinesq's concept of an 'effective viscosity'. 

Together with Prandtl's 'mixing-length' hypothesis, it has 

made possible the predictions of a large number of turbulent 

problems, especially in the field of boundary-layer flows. 

However, in recent years, it has become increasingly 

evident that Prandtl's concept of a 'mixing-length' must 

give way to more realistic assumptions. 

Kolmogorov (1942) and Prandtl (1945) proposed a model 

of turbulence in which they introduced the kinetic energy 

of the fluctuating motion. This model, though still too 

simple, goes some way to characterise the nature of 

turbulence and is more promising than Prandtl's'mixing- 

length'model. 	It has already succeeded in predicting the 

behaviour of some flows for which the 'mixing-length' model 

was found inadequate (e.g. Emmons 1945; Spalding 1967b). 

It is this model which forms the basis of the present 

section. 

4.1-2 The basic hypotheses  

The kinetic energy of turbulence, k, is defined as: 

        

k E (1/2)•Ui•Ui = (1/2)•(Ui.2 	2
+1.1 

2 )9  (4.1-1) 
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where over-bars denote time-averages, and ui,the 

fluctuating component of velocity in direction i, is 

related to the instantaneous total velocity Ui, and the 

mean velocity ui  by: 

Ui = ui + u! . 	 (4.1-2) 

A differential equation for the balance of k can be 

derived from the Navier-Stokes equations with the help of 

definitions such-as (4.1-2); such equations have been 

derived by a number of authors (e.g. Wolfshtein 1967) and 

we will make use of their derivations. 

For a two-dimensional axisyMmetrical flow, the 

equation for the balance of k is: 

(a/axj)(r.Grk)-(8/axj)(r.(lveff.ak/axj)-r.(P-D) = 0, 

(4.1-3) 

where ri,eff  is the effective exchange coefficient for k; 

P and D are the production and dissipation terms, 

respectively. The rest of the notation follows section 

2.1-3. 	Furthermore, for incompressible flows, the 

production term may be expressed'as: 

P a Rt.(aUi/aXj)(atii/oxyfayaXi), 	(4.1-4) 

µt  being the turbulent viscosity; 

Equation (4.1-3) fits intoithe general pattern out-

lined in sect. 2.4; therefore, given suitable expressions 

for r-kl eff' Rt' and D, this equation may be solved for k 

by the numerical procedure of chapter 3. Following 

Emmons (1954), Spalding (1967b) and others, we may' 

postulate that q,eff, µt,and Drire all dependent only on 

k, the kinetic energy of turbulence and 1, a turbulence 

length scale. 	Dimensional considerations (e.g. Emmons) 
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ril eff = 96 " k4./  

Pt 	C 	P . 

3"2 CD  . P . k 	.1 

 

where 96, C and CD are constants and p is the mass 

density. 

qiic,eff9  the effective 'Prandtl number' for k is given by: 

431,eff - C /C.7( 
	

(4.1-8) 

The determination of I and C's is of prime importance 

if this model of turbulence is to be employed for 

predictions: this is the topic of discussion for the 

following sections. 

4.1-3 The length scale  

The length scale, 1, 	most readily visualized as a 

representative of the local mean eddy size. It affects 

the generation, diffusion and dissipation of the kinetic 

energy of turbulence; and, of course, through turbulent 

viscosity, it affects the flow field and the distribution 

of all other dependent variables. In the Kolmogorov-

Prandtl model of turbulence, the length scale is thus one 

of the most important factors; yet the information Tr. 

available about it is meagre. Starting from the Navier-

Stokes equations, Rotta (1951) succeeded in deriving a 

differential equation%hich may be interpreted as an 

equation for the length scale; but, except for very simple 

cases, it has not been possible to solve this equation. 

Recently some progress has been reported by Spalding.  

(1967c) and Harlow & Nakayama (1967); nevertheless it 
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will be some time before this equation can be solved for 

general cases. 

In the absence of quantitative information, 

qualitative information prevails. 	It can be shown that, 

under some circumstances, a proportionality exists between 

the length scale and Prandtl's 'mixing-length' (Spalding 

1967d); at present it is convenient to assume the 

proportionality to be generally true. Then for flows 

close to a wall, the length scale may be considered 

proportional to the distance from the wall and for flows 

away from a wall, it may be considered a constant. For 

the definitions of sect. 4.1-2, the proportionality 

constant for the regions near a wall may be taken as unity, 

i.e. the length scale is equal to the distance from the 

wall. 	Since Prandtl's 'mixing-length' near a wall is 

generally taken as 0.4 times the distance from the wall 

(Schlichting 1960), from this result Spalding (1967d) 

suggested that the length scale, as defined here, should 

be taken as about 2.5 times the Prandtl's 'mixing-length' 

everywhere. 

In fact, it seems more than likely that the above 

qualitative deductions are gross over-simplifications. A 

closer look at Rotta's equation for the length scale shows 

that, like all ohter dependent variables, the length scale 

may be interpreted as being convected, diffused, generated 

and dissipated. Hence, for a general problem, if the 

differential equation were solved, the distribution is 

certain to be much more complex. To solve the equation is 

the task of the future; for the present, we would accept 

the implications of the above-mentioned qualitative 

information. 
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4.1-4 The effective exchange coefficients  

The turbulent viscosity µt  may be evaluated from 

expression (4.1-6); it has now to be related to the 

effective viscosity and the effective diffusivity of section 

2.2-1. 

Following Spalding (1967d), it may be assumed that 

for highly turbulent regions, 

µeff 	µ + µt, and 	(4.1-9) 

re p eff = 1/(155 	ilt/16-0,t . 	(4.1-10) 

Usually for such flows turbulent viscosity is orders 

of magnitude larger than the laminar viscosity and it is a 

common practice to retain only the second term on the R.H.S. 

of (4.1-9) and (4.1-10) unless the laminar Prandtl/Schmidt 

number is very small. 

For flows which are not fully turbulent, such as in 

the regions close to a wall, following a suggestion by 

Spalding (1968), (4.1-6) may be generalized by assuming 

C to be a function of the 'Reynolds number of turbulence', 

R
t 
.'p.k4.1/µ 
	 ( 4. 1-11) 

and then 

C 
	

CR4Rt4 , 	 (4.1-12) 
where 4 4 denotes 'a function of. 

As Rt tends to infinity, the laminar viscosity ceases 

to have any noticeable influence on the transfer processes 

and C may then be assumed a constant. On the other hand, 

when Rt tens to zero, the flows become laminar and C 

tends to 1/Rt, No proven proposal has yet emerged for the 

intermediate ranges of Rt though some suggestions have 

been put forward (e.g. Spalding 1967d, Wolfshtein 19;7). 
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The uncertainty which prevails about µeff  under some 

circumstances, prevails to a smaller extent about the 

value of -;6,eff. 	For turbulent flows remote from walls, 

both cc,Ieff  andcr"m eff  are commonly taken as 0.5 for plane 

flows (Abramovich 1963) and 0.7 for round-sectioned jets 

(Forstall & Shapiro 1950). 	For turbulent flow in a pipe 

the review of heat transfer data by Kestin and Richardson 

(1963) suggests a value of 0.8 for Tleff' whereas 

Jayatillaka (1966) recommended a value of 0.9 for both 

or'T eff  and 0-m eff  in turbulent pipe flows. 
7 

Very close to a smooth impermeable wall the value of 

56,eff  remains uncertain and no definite recommendations 

can be made (Spalding 1967d). After Jayatillaka and 

Spalding (1965), a convenient practice is to express the 

extra resistance offered by such regions in terms of a 

separate integral which is a function of 0-;6/0.,co,t; the use 

of this concept will be illustrated in sect. 4.2-3. 

4.1-5 The empirical constants  

The constants C5, C and CD  can be deduced from 

experimental data on turbulent flows. Such deductions 

have been made by a number of research workers; for 

details of derivation the reader may consult one of the 

references cited in the preceding sections (e.g. Spalding 

(1967d). 

The following values, used for the predictions 

presented in the next chapter, were derived by Spalding 

(1967b): 



0.130 , 

= 0.200 

CD 	0.313 and 

k,eff = 1.540 . 

(4.1-13) 

63. 

4.2 The Couette model of flow  

4.2-1 The purpose  

The stimulus to the following analysis is the fact 

'that often the dependent variables change steeply close to 

a wall. To obtain good accuracy with the finite-

difference formulae described above, the grid would have to 

be very fine, with consequent expense of computer time. 

This shortcoming can be obviated by the use of Couette-

flow assumptions which, under certain circumstances', allow 

analytic integrations near a wall. Thus, the whole of the 

flow field is broken down into two regions: a thin one 

close to the wall, where a Couette-flow solution is 

obtained, and the major part of the flow where the 

solution is obtained for the complete equations. These 

two are then matched at the intermediate 'boundary' with 

the Couette-flow solution serving as the 'boundary 

condition' for the finite-difference solution of the 

complete equations. Patankar and Spalding (1967) and 

Wolfshtein (1967) have already demonstrated the advantages 

of such an approach. 

4.2-2 The differential equations  

Close to an impermeable wall, the velocity along the 

wall starts to decrease rapidly and, thus, in a thin 

region adjacent to the wall, the longtitudinal convection 
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terms can be neglected altogether. The resulting flow is 

commonly known as a Couette flow and the previously 

described partial differential equations reduce to 

ordinary differential equations for this flow. With 

appropriate assumptions, these equations can be integrated 

once-for-all to relate the fluxes at the wall, such as the 

Stanton number, to other flow-parameters, such as the 

Reynolds number. 

Let us consider the Couette flow along an impermeable 

wall which lies on the x1-axis of the coordinate system; 

because of the thinness of the region of interest we will 

not account for the variatiorm,  of the radius r. The 

resulting differential equations can be deduced from 

equations (2.1-2) and (2.4-2). 	They are: 

for momentum: 

(d/dy.)(4..duAy.) - p. = 0 	(4.2-1) 

for enthalpy: 

(d/dy.)(g./3 ,eff.dT./dy.) = 0 	(4.2-2) 

and for turbulent kinetic energy: 

(d/dy.)(4./01cleff.dk./dy.) 	P. - D*  = 0 	, 	(4.2-3) 

wherewith subscript S denoting the conditions at the wall, 

and C those at the outer edge of the Couette layer, 

Irs = x2/x2,C 
k. = k/kc 	9 

U. = 111/1111c 

T. = (T-Ts)/(Tc-Ts) 
	 (4.2-4) 

g* = geff/(Pk4x2)C 

p. = (dp/dx1).(x2/(pk4u1)C) 
	

• 
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P *  and D. represent, respectively, the non-dimensional 

production and dissipation terms which will be given later. 

It should be noted that equation (4.2-2) is valid only 

for low velocity flows as it neglects both viscous 

dissipation and kinetic heating; also, under these circum-

stances, the equation for the transport of chemical-species, 

m, is identical to the enthalpy equation, as long as the rate 

of mass-transfer is small enough not to affect the fluid 

properties. A more general case of Couette-flows has been 

considered by Spalding (1967d). 

For ease of interpreting results, let us define the 

following non-dimensional parameters: 

2 Skin-friction coefficient: s = r5/(pu1)C 
Stanton number: St = eig/(cp.(Tc-Ts)(pui)c) 

Reynolds number: Re = (pu1x2/11)c  

and, 

Turbulence Reynolds number: Rt  = (Pk1x2/0c  

(4.2-5) 

where Ts  is the wall shear-stress, tig is the wall heat-flux, 

and c is the specific heat of the fluid. 

Equations (4.2-1) and (4.2-2) can now be integrated to 

'obtain: 

s = (Rt/Re)(41:1.dy.)-1.(1-P4Y.•11.-1.dY0 	(4.2-6) 

St = (Rt/Re).(fu  Tlo-' eff' g:i.dy. )-1 	. 	(4.2-7) 

The evaluation of the integrals in these equations, 

would enable us to calculate the skin friction and the 

Stanton number. However, before these integrals can be 

obtained, the relationships connecting g. and e Tp eff with  
y, must be available. 
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a) Evaluation of the effective viscosity: Since p*  is 

linked,by the Kolmogorov-Prandtl hypothesis, to the kinetic 

energy of turbulence, we first turn our attention to 

equation (4.2-3). This equation cannot be integrated 

without a recourse to additional assumptions about P., Ds, 

0167'kleff' and µ.. 	Neglecting the existence of a transition 

region, let us assume that the Couette flow can be divided 

into two distinct regions: a laminar sub-layer close to 

the wall, and a fully turbulent region in the outer part. 

Inconsistencies of such an assumption can be tolerated for 

the present because of the uncertain nature of the empirical 

input, and, to some extent, also because they simplify the 

mathematical problem considerably. 

If the junction of the laminar and the fully turbulent 

regions is denoted by the subscript J, then the implications 

of. the two-layer-Couette-flow assumption, together with the 

Kolmogorov-Prandtl hypotheses, can be expressed as in the 

following table 4.2-1: 

State of 
fluid kt•Y4, 14* P. . 	Do  

Laminar Rt* - Rt1  0 2k,/(y,2  Rt(i,eff) 

Turbulent Rtil, Cpkty*  PIO(d1111./dy0)2  CDk3/2/y. 

Table 4.2-1 Various terms in the equation for the kinetic  
energy of turbulence. 

In this table Rt* is defined as: 

R 	m Rtlj/Rt 	• 
	 (4.2-8) 

D., in the above table, has been deduced from 

dimensional reasoning and the constant 2/0;1_ _ff  „ allows a 

particularly simple solution for.the laminar region. 

Details of the deduction have been given by Spalding (1967d). 
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At this stage we make one further assumption: that 

the kinetic-energy profile in the fully turbulent region 

can be represented by a power law of the form: 

k, = ycl 	 (4.2-9) 

The exponent q can be determined by substituting 

(4.2-8) into the parent equation (4.2-3) and matching it 

at the J-surface with the solution for the laminar region. 

The resultant expression is: 

q = (2(CD  - P*y!--1-5q)/(3Cs5) )2 	(4.2-10) 

Not surprisingly, the exponent q turns'out to be a 

function of y*. 	Therefore, in general, any selection of 

q allows the differential equation to be satisfied at only 

one point across the flow. In the absence of any better 

guide, we will choose this point to be the outer edge of 

the Couette flow where y*  equals unity. Then: 

q = ( 2/3..(CD-P.)/C0)4 	 (4.2A11) 

4*  can now be obtained from table 4.2-1 and equation 

(4.2-8). 

b) Evaluation of the skin-friction coefficient: The &in-

friction coefficient can be evaluated from equation (4.2-6) 

with the help of the integrals: 

II 	 r1 -1 = Jo. dy. , and 

12  = f0µ:1  y.dy. 
(4.2-12) 

where, for: 

q= 0, I1 = Rt,J  C-1  ln Rt" 
- q 	0, 	= (Rttj  + 2C41  q).Rt*-q/(q+2)  - 2C-1  q 

q = 2, 12 = RtIJ/2 - 2C 	in R 	9 	(40213) 

q 	2, 12  = (Rt1J/2 - 2C41(2-q):1(2-q)/(2+q)+ 

1 2C-  (2-q)-1 
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Rt J  is given by: I  

Rt,J 	2.5(CµC
D)-1/4(1n(Rt,J(CµCD)

-1/4) + 2.2) . (4.2-14) 

For the empirical constants suggested in section 

4.1-5 the value of RtJ is 23.3. 

c) Evaluation of the Stanton number: To evaluate the 

Stanton number, following the practice of Spalding and 

Jayatillaka (1965), let us split the integral in equation 

(4.2-7), 

I 5- J16- 	.1  A 
3 	0 Tl eff'‘'0  `Alr* 	, 	(4.2-15)  

into two parts so that: 

- 
I3 	'li l t 0 T PO-g eff /6-T,t 	

1 -1)µ 	dy e . T  + 415-'vt 0 j 	dy•  (4.2-16) 
elµ 1 

As explained in section 4.1-4, for the fully turbulent 

region 0-rileff  tends to a constant 0'T.t; : therefore, the 

above may be approximated by: 

I3 	T t a' 	(11  +' I1 	' ) 	 (4.2-17) ,  
where 

Il  s fj(51eff/c5 t  - 1)µ:1  dy. 	(4.2-18) 

I1  expresses the extra resistance of the semi-laminar 

transitional layer to heat (or mass) transfer: it is only 

when 6-1 eff 	t is different from O' that it contributes to T, 	T, 
the total resistance 13. 

For high values of the laminar Prandtl number cal,, and 

with the use of (4.1-10), it can be shown the Il  is given 

by(Spalding 1967d): 

. I1  =  Ca- (O1T T/&,t -1).(G"T/Cr )-1/4  .(CCD) 
-1/4 	(4.2-19) 

 

Jayatillaka (1966) suggested a value of 9.24 for the 

empitical constant Ccrafter a survey of the experimental 

data on turbulent pipe flows. 
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4.2-3 The use and limitations of the Couette-flow model  

a) The use: As already stated in section 4.2-1, the main 

function of the Couette-flow model is to provide a set of 

boundary conditions for the finite-difference equations a 

small distance away from the wall, for reasons of economy. 

A simple way of incorporating the Couette-flow solutions 
• 

is to use the concept of 'linearizing values' 	first 

proposed by Patankar and Spalding (1967) and subsequently 

modified by Spalding (1968). 	The essential steps in the 

use of this concept are as follows. 

For a conserved property 0, the Couette-flow equation 

in the absence of any source terms (cf. equation (4.2-2))is: 

0 = r0.d0/dx = constant 	(4.2-20) 

Rearrangement yields: 

dO = Jo. ro1  .dx 	 (4.2-21) 

Formal integration, from .a point 'S' on the surface of 

the wall to a point 'C' in the flow field, gives: 

Oc  = Os  + Jo. rxc, 	 (4.2.422) 

When r0  changes little, an appropriate algebraic 

analogue is: 

Oc  = Os  + 2J0.(xc-xs)/( 70,c  + rots) 	(4.2-23) 

However, when the variations of 5 are non-linear, 

this expression will no longer be accurate. A better 

expression is: 

0C = 0S ,L + 2J0.(x -x )/( r 	r 	) c s 	0,c OIS 

where 

0S IL = 0S  - 2J0  .(xC  -xS  )/( F
0 C 	0 S ) + , , 

+ J 	JxC P-1.dx 0 . 	xs  0 (4.2-25) 

• Patankar and Spalding used the name "slip values'. 

(4.2-24) 
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The purpose of defining a linearizing value Os ,,  is 

to retain the homogeneity of the structure in the finite-

difference relations: equation (4.2-24) is an appropriatly 

rearranged version of equation (3.2-18), the latter being 

the general finite-difference relation for the diffusional 

flux. 

In the course of computations, the linearizing value 

is evaluated with the help of the equations such as (4.2-7) 

and (4.2-17) to calculate the value of the integral which 

appears in equation (4.2-25). 	can then be calculated 

and used as the boundary condition in the finite-difference 

equation for the main region of flow away from The wall. 

For the predictions presented in section 5.2, the 

linearizing values were used only for the temperature and 

the kinetic energy of turbulence. The stream-function is 

not directly affected by diffusion and, therefore, it was 

not linearized. The vorticity, on the other hand, can be 

calculated directly from the shear-stress relation. For 

the present purposes, it may be written as: 

wc  = du1/dx2  = (Ts  + (x27c-x.2,$).dp/dx1)/µeff,c  (4.2-26) 

The wall shear-stress, rs, can be obtained from 

equations (4.2-6) and (4.2-13) and dp/dx1  from the finite-

difference solutions. 

b) The limitations: The major assumption behind the 

Couette-flow model is the absence of convection along the 

wall; and this also proves to be its major limitation. 

There are some flows in which the role of longtitudinal 

convection cannot be neglected even in the regions close 

to a wall. One such case is the heat transfer at high 
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Prandtl numbers when practically all the changes in the 

enthalpy profile occur very close to the wall; for such 

flows, a small amount of convection can make substantail 

differences. For example, we know that if the upstream 

section of a pipe is heated, it exerts a considerable 

influence on the rate of heat transfer from the downstream 

sections; yet, a model such as the present one, will 

fail to predict this effect. 

Other limitations of the model lie in the assumptions 

about the variations in the viscosity and the kinetic 

energy of turbulence and, of course, in the assumption of 

a step-jump from the laminar to the turbulent state without 

any transition region. However, these limitations are not 

so much a part of the mathematical model and they are likely 

to be overcome by a better understanding of the physical 

processes involved in turbulent flows. 

( 
	

•• 



Chapter 5  

Flow Prediction  

We have now reached a stage where we are 

equipped with suitable means for the prediction 

of two-dimensional steady separated flows. The 

nucleus of the technique is the numerical pro-

cedure outlined in chapter 3, and the peripheral 

units are in the special flow models of chapter 

4, and other relevant auxiliary information. 

All that now remains is to demonstrate the 

capabilities of the technique by solving 

representative practical problems. 

The two problems selected for the above 

purpose are: the confined laminar flow in a 

square cavity,and the turbulent flow downstream 

of a sudden enlargement in a circular pipe. 

Both problems are of engineering interest; and 

the aim of the exercise is to demonstrate the 

width of application and generality of the 

technique. Wherever possible, the numerical 

solutions will be compared with those obtained 

from other sources and with the experimental 

data. 

72. 
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5.1 Laminar flow: Square cavity with a moving lid  

5.1-1 Introduction  

The formation of a cavity in a flow surface is a 

common occurrence in everyday engineering practice. 

Cavities may be caused by roughness elements, steps, or 

fins; and they lead to substantial increases in heat 

transfer and pressure losses compared to those for a 

smooth surface. A simple representation of the cavity 

flows is the enclosed flow in a square cavity, in which 

the motion is imparted to the fluid by a moving lid; in 

the latter respect, it differs from the usual practical 

problem in which the motion is caused by a stream of fluid 

flowing past the cavity. 

The square-cavity problem is typical of steady 

separated flows with closed stream lines. These flows 

have been the subject of a long-standing theoretical and 

practical interest. 	Prandtl (1904) and, more recently, 

Batchelor (1956) conducted theoretical investigations of 

closed-stream-line flows at high Reynolds numbers. 

Essentially, they postulated the existence of an 'inviscid 

core' of fluid surrounded by thin boundary layers. They 

concluded that, for a two-dimensional laminar flow, the 

core will consist of uniform-vorticity fluid. Theoretical 

work of a similar nature has been reported from a number of 

sources and was recently reviewed by Burggraf (1966). Of 

late, the emphasis has shifted to numerical solutions; 

notable among these are the ones by Kawaguti (1961), 

Simuni (1964), Burggraf (1966), Runchal and Wolfshtein 

(1966), Runchal et al. (1967) and'Greenspan (1967). 
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The experimental information about laminar flow in a 

square cavity is meagre: most of the experiments have 

been limited to the turbulent-flow regime (e.g. Mills 1961). 

Weiss and Florsheim (1965) have reported some qualitative 

features of the laminar flow at low Reynolds numbers. 

Recently Reiman (1967) hAs conducted a more detailed 

enquiry into the behaviour of laminar flows and some of 

his findings have been published by Reiman and Sabersky 

(1968). 

5.1-2 Description of the problem  

Fig. 5.1-1 illustrates the problem to be solved. 	A 

fluid revolves steadily in a square-shaped cavity under the 

influence of the sliding upper wall. This wall is held at 

one temperature; the opposite at another; the side-wall 

temperatures vary linearly between those of the top and 

the bottom. 

, 
Movils wait 	
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For convenience, the velocity of the sliding wall, 

the density, the length of side, and the overall temperature 

difference are taken as unity. Then the viscosity equals 

the reciprocal of the Reynolds number, which is one of the 

two parameters of the problem, the other being the 

Prandtl number,Pr, of the fluid. 

The task is to determine the distributions of stream-

function, vorticity and temperature within the cavity, for 

various values of the Reynolds and the Prandtl numbers. 

5.1-3 Presentation of results  

The influence of Reynolds number: Fig. 5.1-2 presents the 

results for Reynolds numbers of 1,103, and 104, and a 

Prandtl number of unity. All the results were obtained 

with a 13 x'13 non-uniform grid; the grid used is 
0 

indicated in just one of the diagrams. The contours 

reveal the existence of a large primary eddy in the 

cavity; this is cushioned by small contrarotating eddies 

in the two lower corners for all Reynolds numbers. The 

temperature distribution in the field at low Re is almost 

the same as that in the walls; but at high Re the 

temperature contours are caused to bulge and sag by the 

convective effect of the moving fluid. The vorticity 

contours are similarly distorted at high Reynolds numbers 

from their near-symmetrical form when Re equals unity. 

x-coordinates: 0.,.041.10,420,.352.55,.70, 
.851.921.96,.981.99,1.0 

y-coordinates: 0.0,.04,.10,.20,.32,.44,.56, 
.68,.801.90,.95,.96.1.0 
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The influence of Prandtl number: Fig. 5.1-3 shows the 

temperature contours only, for a single Reynolds number of 

103, and three different Prandtl numbers, 10-2, 1 and 102. 

The central diagram has of course appeared already as 

Fig. 5.1-2(f) and is repeated here for ease of comparison. 

Evidently the high thermal conductivity, which causes 

the low Prandtl number, nearly succeeds in preventing the 

convective processes from distorting the temperature contours 

from their linear, low-Reynolds-number form. When the 

thermal conductivity is low, on the other hand, as when Pr 

equals 100, the distortions are still more, pronounced than 

for a Prandtl number of unity. 

The influence of grid size and distribution: Figs. 5.1-4 

and 5.1-5 show, respectively, the velocity profiles at the 

vertical centre-line and the vorticity (velocity-gradient) 

profiles at the moving wall of the cavity for four different 

grids. 	In both cases, the grid size and distribution 

exert a considerable influence on thel,.profiles. 	This 

influence is especially strong for the vorticity near the 

corners of the cavity; this is a manifestation of the 

fact that the vorticity is a singular function at the two 

corners of the cavity; any selection of the grid is, thus, 

bound to reflect this aspect of the solution. It should 

also be noted that the effect of the grid is less 

pronounced on the velocity profiles than on the vorticity 

profiles. 	In both the cases, it can be concluded that 

the 13 x 13 non-uniform grid is a better alternative to 

the 21 x 21 uniform grid from the point of view of economy: 

the former will require calculations at 144 internal nodes 
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of the grid compared to the 400 nodes of the latter. 

It may be remarked here that the influence of the 

grid has been accentuated by the selection of a rather 

high Reynolds number of 1000 for the purposes of comparison. 

From the following discussion, and from the comparison of 

the present work with that of the previous investigators in 

the next sub-section, it will be seen that the differences 

between the results from various grids are much less 

pronounced for a Reynolds number of .100. 

Another aspect of the finite-difference solutions, 

which is tied up with the questions of the grid size, is 

the extent of the discretization error as explained in 

section 3.3-2. 

Of course, for the square cavity, the solution of the 

differential equations is not known; nevertheless, indirect 

evidence of the accuracy of the solutions may be obtained 

by demonstrating that the finite-difference solutions 

tend to a limiting solution with the refinement of the grid. 

Fig. 5.1-6 shows the effect of the grid-refinement, 

and grid-distribution, on the strength of the main vortex, 

in terms of the stream-function values at the vortex centre, 

for Reynolds numbers of 100 and 1000. Also shown are the 

results obtained by Burggraf (1966), by a central-finite- 

difference technique, for a Reynolds number of 100. 	It 

is clearly seen that, for both the Reynolds numbers, there 

is a distinct convergence towards a limiting solution; 

though, admittedly, a sufficient flattening of the curves 

for a Reynolds number of 1000 has not been achieved by 

81 x 81 grids, which was the limit imposed by the capacity 

of the computer. 
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There are a few more conclusions yet to be drawn from 

this figure. 	Firstly, for the same number of grid nodes, 

non-uniform grids have proved to be consistently better than 

the uniform grids; thus confirming the remarks made earlier' 

in chapters 3 and 4. 	Secondly, it is to be noticed that 

the influence of grid distribution is much less pronounced 

for a Reynolds number of 100 than that for a Reynolds 

number of 1000. And, lastly, the present method is a 

preferable choice to the earlier methods such as the one 

by Burggraf; at a Reynolds number of 100, the results 

from the present method are better than those obtained by 

Burggraf. Moreover, as already pointed out, most of the 

earlier methods, including Burggraf's, failed to yield 

convergent solutions at high Reynolds numbers. 

Comparison with previous work: Fig. 5.1-7 is presented by 

way of comparison, and as a further comment on the accuracy 

of the computations. 	It displays the velocity profiles at 

the vertical centre-line of the cavity for a Reynolds 

number of 100. 	Included are the results of Mills (1965) 

and Burggraf (1966) along with the present computations. 

The agreement between the four sets of results is seen to 

be satisfactory. 	It may also be remarked that, at-such a 

low Reynolds number, the advantage gained from finer grids 

is small. 

So far, comparison with the previous work has been 

limited to the numerical solutions of other research 

workers; the work of Reiman & Sabersky (1968), on the 

other hand, enables some qualitative comparison with 

experimental evidence. Fig. 5.1-8 presents our computed 
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flow pattern, for a Reynolds number of 1000, and a 

photograph obtained by Reiman & Sabersky for a Reynolds 

number, based on the free-stream velocity, of about 2000. 

It should be noted here that the Reynolds number for the 

latter based on the velocity at the level of the cavity-

top is likely to be much less than 2000. The qualitative 

agreement between the two sets of results is excellent. 

5.1-4 Discussion  

The qualitative and quantitative features of the 

above results present no surprises; they are in conformity 

with the earlier but less extensive predictions of Squire 

(1956), Batchelor (1956) and Burggraf (1966). 	All the 

numerical solutions now available suggest that secondary 

eddies appear in the lower corners of the cavity, even for 

creeping flows; the work of Pan & Acrivos (1967b) and 

Macagno & Hung (1967) lends further credence to this 

observation. 	In fact, in confirmation of Moffatt's 

(1964) conclusions, a. tertiary eddy was noticed in the lower 

corners for a Reynolds number of 1000. 	It was, however, 

too small (about .01 x cavity size) to be represented in 

any detail by the grid-sizes used. 	Finer grids were 

ruled out because of the limitations of the computing 

machine. 

Some recognition should be accorded to the fact that 

the laminar-flow equations have been employed at Reynolds 

numbers in excess of those at which, in practice, laminar 

flow would give way to turbulence. This is being done to 

demonstrate that the divergence'difficulties that afflicted 

earlier workers, the difficulties which have been solved 
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by the 'upstream' formulation of the convective terms, 

have nothing to do with the physical phenomenon of 

turbulence. 

Of course, it should be recognised that the results 

presented here, especially those for coarse grids, may 

suffer from appreciable numerical error (see section 3.3-2). 

This error may be likened to a 'diffusional' effect, and 

the 'false-viscosity' responsible for this effect is of the 

order of: 

false = 0.3 . Glocal .Ax.sin(2 0) 
	

(5.1-1) 

*where Glocal is the local velocity, Ax is the size of the 

grid, and 0 is the angle that the local stream-line makes 

with the grid. More details about this effect have been 

given by Runchal et al. (1967). 	Nevertheless, the 

magnitude of this effect need not necessarily be large; 

in the cavity flows the velocity decreases very rapidly 

away from the moving wall; moreover, wherever the 

velocities are appreciable, the stream-lines more or less 

run parallel to the grid lines. That the effect is indeed 

small for a Reynolds number of 100, even'for coarse grids, 

has already been shown in Figs. 5.1-6 and 5.1-7. However, 

this effect introduces serious errors at Reynolds number of 

1000 (see Fig. 5.1-6) for coarser grids. 	It is also 

likely that the heat transfer results for high values of 

Pr are adversely affected. 

And, finally, a comment about the computing time 

involved is probably overdue. Working with an IBM 7094 

at Imperial College, it was found that the machine time to 

complete a given set of calculations was approximated by: 
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Time 	7 x 10-6.I.N 	minutes 	(5.1-2) 

where, 

I is the number of iterations, and N is the total number 

of grid-nodes in the field. 

Typically, the time required for a 21 x 21 grid (with 

400 internal grid-nodes) was 0.8 minutes for a Reynolds 

number of 1000. 

5.2 Turbulent flow: abrupt enlargement of a pipe  

5.2-1 Introduction  

Flows in pipes are frequently interrupted by monitor 

and control devices such as orifices and valves. This 

interruption often leads to an abrupt change in the 

available cross-sectional area of the flow. 	In the 

present case, the interest lies in those situations which 

lead to a sudden increase in the flow-area; this increase, 

in turn, causes the flow to separate from the pipe walls 

and form a region of reversed flow immediately downstream 

of the enlargement. Such separation has a profound effect 

on the behaviour of the flow and, in general, is character-

ised by low shear-stresses and high heat transfer rates in 

the vicinity of the zone of reattachment. 

The mathematical problem posed by such a flow is 

intractable to analytical techniques even for laminar 

flow; for turbulent flow, it has not even been posslble 

to formulate it in any generally satisfactory manner. A 

numerical solution to the hydrodynamical problem was first 

obtained by Thom (1932) for a Reynolds number of 10. More 

recently, Ma6agno & Hung (1967) and Greenspan (1967) have 
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succeeded in obtaining numerical solutions for higher 

Reynolds numbers. 	However, as yet, no solution has been 

available for the problems involving heat transfer or 

turbulent flow. 

Experimental investigation of the turbulent, sudden- 

enlargement problem has been mainly restricted to heat 

transfer. What little hydrodynaMic information is 

available is usually of a qualitative nature, such as flow- 

visualization tests. 	Sprenger (1959) has collected some 

quantitative information which has not been published as 

yet. 	Boelter et al. (1948) investigated the heat-transfer 

augmentation caused by the location of an orifice at the 

entrance to a pipe. 	Ede and co-workers (1956, 1962) have 

reported a series of heat transfer and flow-visualization 

experiments for the sudden-enlargement of a fully-developed 

pipe flow. 	Recently, Krall & Sparrow (1966) measured the 

heat-transfer rates downstream of an orifice inLa pipe. 

Some mass-transfer experiments for this problem are also 

presented in Part II of this thesis which, unlike the 

previous investigations, were conducted at very high Schmidt 

numbers. 

5.2-2 Description of the problem  

a) The control volume: Fig. 5.2-1 rillustrates the problem 

to be considered. A jet of fluid issues into a pipe with 

a diameter twice that of the jet, and reattaches to the 

pipe wall some distance downstream of the enlargement, thus 

forming a region of reversed flow. The flow is assumed to 

be incompressible and turbulent. ,r1 
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The control volume is enclosed by the inlet and outlet 

sections, the axis of symmetry and the pipe wall. Of the 

four boundaries of the flow, the choice of the outlet 

section is arbitrary and at the discretion of the analyst; 

the only consideration for its selection being the avail-

ability of a set of boundary conditions. If the outlet 

section is chosen sufficiently far downstream, it is 

possible to specify the boundary conditions from the well-

explored, fully-developed pipe flow data. Nevertheless, 

for reasons of computing economy, it is desirable to use 

the shortest possible axial length of the control volume. 

Hydrodynamic experiments by Sprenger (1959) suggest that, 

for the present problem, a near-uniform iplug-flow type) 

velocity profile exists at a distance of approximately 6 

pipe-diameters downstream of the enlargement. Some test-

computations were performed with control volume lengths 

between 6 and 15 diameters; all of these produced almost 
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identical results up to 5 diameters from the enlargement. 

As the reversed-flow region, the region of primary 

interest, is usually between 1.5 and 2 diameters long, the 

outlet section for the final set of computations was chosen 

at 6 diameters from the enlargement. 

b) The non-dimensional parameters: For ease of inter-

pretation of results let us define the following non.. 

dimensional parameters: 

Non-dimensional distance: 	Z s 2.z/R 

Skin-friction coefficient: s a Ts.p/Gm2  

Reynolds number: 	Re s 2.Gm.R/µ 	, 

Stanton number: 	St a eig/[cp.Gm(TB-Ts)], and 

Prandtl number: 	Pr sil/(p.f;) 

(5.2-1) 

where, R is the radius of the pipe, 

z is the axial distance measured'from the sudden enlargement, 

Gm is the mean mass-velocity in the p42pe, and 

TB is the bulk temperature of the fluid. 

Other symbols have appeared already and are also given in 

the nomenclature list. 

c) The boundary conditions  

Inlet section: The incoming flow is assumed to be of 

uniform velocity and temperature described by: 

Gz  = 4.Gm 	 ,(5.272) 

Gr = 0 	, and 	 (5.2-3) 

T = TI 	 (5.2-4) 
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G
z and Gr are respectively the axial and radial 

components of the mass-velocity and III  is a prespecified 

constant which represents the enthalpy content of the 
• 

incoming fluid. 

The vorticity and stream-function, the dependent 

variables of the problem, at a distance r from the axis, 

are then given by: 

w/r = 0 	and 
	

(5.2-5) 

= 2.Gm.r2  + constant 	 (5.2-6) 

The constant in the above equation is arbitrary, and 

it may be selected so as to make 0 zero at the pipe-wall; 

in that case: 

0 = 0.5.Gm(4.r2  - R2) 	 (5.2-7) 

Unlike the square-cavity problem, the present problem 

involves turbulence. 	If the turbulence hypotheses of 

section 4.1 are to be used, the kinetic energy of 

turbulence, k, should be introduced as an additional 

dependent variable; the boundary conditions for k must 

then be supplied. 	Since turbulence must vanish at a wall, 

k is easily specified as zero at the walls bounding the 

flow, but no quantitative information is available about the 

value of k in the inlet region. 	Empirically, k may be 

related to the velocity of the inlet flow by: 

k = C.(Gm/p)
2 (5.2-8) 

The constant Ck I is indicative of the level of 7 

turbulence in the incoming flow and its value was varied 

during the course of computations; typically, it was in 

the range of .01 to .05. 

For low-velocity incompressible flows temperature is also 
a conserved property and may be used instead of the enthalpy. 
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Outlet section: The mass-velocities at the outlet section 

were assumed to be given by: 

Gz 	G0(1 - r/R)n 	and 	(5.2-9).  

Gr 0 	 (5.2-10) 

The condition of conservation of mass and equation 

(5.2-5) dictate that: 

GO Gm.(1+n)(1+n/2) 	 (5.2-11) 

The vorticity and stream-function can now be obtained 

from: 

w/r = Gz.n/[Pr.(R-r)] 7  and 
	

(5.2-12) 

= —0•5•Gm ell(1—.r/R)1+no(Ri-ni-n.r) 

	

(5.2-13) 

In accordance with the already mentioned experimental 

findings of Sprenger (1959), n was specified as a small 

number, typically .05, to obtain a near-uniform velocity 

profile. 

During the course of computations it was found that 

the effect of variation of n was confined to two or three 

rows of grid-nodes immediately preceding the outlet 

boundary; on the rest of the upstream flow the effect 

was negligible. 	This, of course, is also to be expected 

from the physics of the problem; because of the strong 

convective effects, the changes in the downstream flow 

scarcely make themselves manifest in the upstream regions. 

In the absence of any quantitative evidence, two types 

of boundary conditions are possible for the kinetic energy 

of turbulence and the temperature: the specification of a 

power law; and the specification of zero axial gradient. 

Both were tried during the course of computations and, as 

in the case of the velocity boundary condition, it was 



94. 

found that the upstream region removed from the outlet 

boundary by two or three grid nodes was comparatively 

irresponsive to the boundary condition. 	In view of the 

faster rates of convergence obtainable from the 

specification of the variable than from the specification 

of its gradient, the following boundary conditions were 

finally used: 

k = C(Gm/p)
2 	, and 	 (5.2-14) 

T = T
1(1-r/R)n  + T2 	 (5.2-15) 

where Ck 0  was specified in the range of .01 to .05, and 

T1 and T2 were obtained by over-all heat-balance on the 

incoming and outgoing fluids. 

The wall boundary: The stream-function at the pipe wall 

and the step wall, by virtue of equation (5.2-10), is 

equal to zero. 

The kinetic energy of turbulence is zero at a wall; 

and a boundary condition for T is always specified as 

either a heat-flux or a temperature distribution. 	For 

reasons of computing economy, it is preferable to use the 

concept of 'linearizing values' (see section 4.2-3) to 

evaluate fictitious values of k and T at the wall, with 

the help of the Couette-flow model as explained already 

in section 4.2-3. 	The value of w/r at one grid-node away 

from the wall was obtained from equation (4.2-26). 

The axis of symmetry: The boundary conditions at the axis 

of symmetry were specified in accordance with section 2.5. 
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5.2-3 Presentation of results  

a) The influence of the length  scale of turbulence: It has 

been pointed out in section 4.1-3 that the length scale 1 

is one of the most important inputs to the present form of 

the Kolmogorov-Prandtl turbulence model. 	For the present, 

1 has to be obtained from extrapolations of knowledge about 

its distribution. 	Four of the distributions tried during 

the course of the present computations are shown in Fig. 

5.2-2. 	Distribution (a) is based upon Nikuradse's (1932) 

'Prandtl mixing-length' for a fully-developed pipe flow, 

whereas distribution (b) is based on the assumption of an 

expanding mainstream jet along with another jet-type flow 

in the reversed-flow region and a wall boundary layer. 

Case (c) assumes the growth of a linear shear-layer between 

the mainstream and the reversed-flow jets. 	Case (d) is a 

modification of (c) in that the diffusion is assumed to be 

so strong as to wipe out any radial gradients of the length 

scale (section 4.1-3); the length scale in the reversed-

flow region is then equal to the length scale 'generated' in 

the shear-layer. 	The numerical constants in the above 

distributions were adjusted to yield reattachment in the 

vicinity of 6.5 step-heights from the enlargement (i.e.; 

Z = 6.5). 	The resulting separation stream-lines and the 

heat-transfer rates, for a Reynolds number of 80000 and a 

Prandtl number of 3, are shown in Fig. 5.2-2. 	The turbulent 

Prandtl number for enthalpy,T,t'  was assumed to be 0.7. 

The heat transfer results were non-dimensionalised with 

respect to the maximum value for distribution (d). 	On 

comparison, it was found that, of all the results, those 

from distribution (d) were in closest comparison with the 
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heat transfer data; this distribution was, therefore, 

adopted as the standard length scale distribution for all 

subsequent computations. 

b) The influence of Reynolds number: Figs. 5.2-3 and 5.2-4 

present the flow patterns for Reynolds numbers of 104 and 

105 respectively. 	All the values shown in the contours 

have been non-dimensionalised in terms of the pipe-radius, 

R, and the mean mass-velocity, Gm. 	For temperature 

contours, the step-wall was assumed to be adiabatic, whereas 

the pipe-wall was assumed isothermal. 	The results were 

obtained for a 21 x 15 non-uniform grid and the grid used 

is shown in one of the diagrams; of course, it should be 

noted that only a part of the control volume in the axial 

direction is shown in the diagrams. 

	

All the contours follow the expected pattern. 	The 

vorticity contours show the formation of a high-shear 

region between the incoming jet and the captive annular 

eddy. 	After this shear layer reaches the pipe-wall, it 

is deflected away and moves towards the centre of the pipe. 

The stream-line pattern also fits in with the available 

flow-visualization data. 	The gradual increase of 

turbulence energy in the high-shear mixing-layer and its 

subsequent decay as the shear-layer moves away from the wall 

are seen from the turbulence-energy patterns. 	The maximum 

turbulence level (a-  kp2  /GI) of about 0.05 compares well 

with the available measurements in' similar situations, such 

as the flow of a uniform-velocity stream past a step (e.g. 

Mueller & Robertson 1962). 	The temperature contours reveal 

that, apart from a thin region near the pipe wall and a part 
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of the captive eddy, the whole of the fluid is virtually at 

the temperature of the incoming jet. 	This, of course, 

would be expected because of the high Reynolds numbers and 

the intense mixing in the shear-layer. 

c) The influence of the Prandtl number: Figs. 5.2-4 (d) 

and 5.2-4 (e) show the temperature contours for laminar 

Prandtl numbers of unity and ten, respectively. The 

higher Prandtl number has resulted in restricting the 

changes in temperature still closer to the wall: to this 

extent the influence is similar to that of an increase in 

the Reynolds number (cf. Figs. 5.2-3 (d) and 5.2-4 (d) ). 

No results were obtained for Prandtl numbers less than 

unity because of the doubtful validity of the Couette-flow 

relations used near the wall (see section 4.2-2). 

d) The influence of the number of grid-nodes: To 

investigate the effect of the number of nodes on the 

computed results, three different grids were used. 	The 

comparison, in terms of the Stanton number and the shear- 

stress at the pipe-wall, is shown in Fig. 5.2-5. 	The 

results with.21 x as grid (21 nodes in 'the axial direction) 

are in good comparison with those for the finer grids of 

32 x 15 and 32 x 22. 	As a matter of economy, 21 x 15 grid 

was adopted as the standard grid. 

This favourable conclusion about the influence of grid 

provides some confidence for the comparison of the computed 

Stanton number with the experimental data which follows in 

the next section. 
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e) Comparison with experiments: Figs. 5.2-6 and 5.2-7 

compare the computed Stanton number with the corresponding 

experimental data of Krall & Sparrow (1966) and of the 

present author (see Chapter 7); it should be recalled that 

the computations are based on the length scale distribution 

(d). 	The computed and measured results agree qualitatively; 

the St vs. Re and the St vs. Z dependence is correctly 

predicted. 
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Quantitatively, however, the Stanton number, in all 

the cases, is under-predicted. The difference from the 

data of Krall & Sparrow is of the order of 15% whereas that 

from the data of the present author is around 30%. 	It 

should be noted that the data 

obtained for a zone of active 

in terms of the heat transfer 

of the present author were 

surface (a small heated zone 

analogy), whereas the computed 
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results are for an iso-concentration (isothermal for heat 

transfer) wall. It is probably this difference in the 

boundary condition which partly accounts for the large 

discrepancy of 30%. 	The choice of the boundary condition 

for the computations was forced by the Couette-flow 

assumptions near the wall (see - section 4.2-3). 

To some extent, the predictions can be improved by 

modifying the empirical input, such as the length scale, 1, 

or the numerical constant that appears in equation (4.2-19). 

However, in view of the uncertainty of the empirical input, 

such attempts were not considered justified. 	It was felt 

that these discrepancies would act as a reminder of the 

lack of a satisfactory set of hypotheses for turbulence. 

5.2-4 Discussion  

The results obtained for the sudden-enlargement 

conform with the available experimental data. 	They-are 

especially encouraging in view of the fact that no other 

prediction procedure has yet been formulated for such flows. 

Of course, quantitatively, the predictions reveal a large 

disparity with experiments. 	However, this is likely to 

be removed with the refinement of the turbulence model. 

For high Prandtl/Schmidt numbers, the Couette-flow model 

needs refinement to account for convection along the wall so 

that the effect of the boundary condition can be correctly 

incorporated. 	But all these represent modifications to 

the present solution procedure within its framework rather 

than any fundamental change; these modifications are 

likely to follow in the course of time. 

For the effect of boundary conditions on reattachment heat 
transfer see section 7.4-4. 
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The cost of predictions can be judged from the fact 

that the computing-time for a 21 x 25 grid calculation Was 

of the order of 2 minutes on an 1314 7094 Computer. 	The 

computing-time could be approximately correlated by: 

Time = 5.10-5.1.N. minutes , 	 (5.2-16) 

where, I is the number of iterations, and 

N is the number of grid-nodes. 
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Chapter 6  

Discussion and conclusions  

In the previous chapters, a numerical procedure 

has been presented for the prediction of two-

dimensional, steady, separated flows. That the 

method is reliable and brings the prediction of 

such flows within the bounds of possibility has 

been shown by the two test cases. 	We are now 

in a position to review this procedure and to 

draw some conclusions about its general 

applicability, its economy and its accuracy. 

We will also reassess the physical input 

necessary for the prediction of turbulent flows. 

And finally at this stage, as a closure to Part 

I of the thesis, we may also venture into that 

space exploration of which is the privilege of 

every research worker: the suggestions for 

future research. 

6.1 The canabilities of the numerical procedure  

The numerical procedure presented in Chapter 3 is 

fairly general: it can handle almost any steady, two-

dimensional, incompressible flow with or without turbulence. 

In fact, the condition of incompressibility may even be 

relaxed to include those flows in which the density is a 

function of temperature only (Pun and Spalding 1967). The 

literature demonstrating the applicability and generality of 

the method is growing fast; in a recent review, Gosman et 

al. (1968) listed eleven of its applications; the two test 
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cases presented here provide but a glimpse of the scope of 

the method. 

That the predictions obtained are qualitatively and, 

to a large extent, also quantitatively sound, is shown in 

the previous chapter: wherever possible, they were compared 

with the available theoretical and experimental evidence 

without exception, the conclusions have been favourable. 

Computing time required was moderate; usually of the order 

of a few minutes on a modern electronic computer. 	The 

cost of machine time is likely to be far less than the cost 

of experimentation and model-testing. 	And even if the 

possibility of numerical predictions does not eliminate the 

need for experiments, it will certainly diminish their 

extent and cost. 

Of course, like any other new solution procedure, this 

one is also far from being perfect. 	But the imperfections 

are more physical than mathematical in nature and are 

likely to be dispelled by a better understanding of the 

involved physical processes. 	The numerical procedure 

certainly porvides a speedy and powerful means of testing 

any physical hypotheses which may be postulated in this 

context. 	• 

6.2 Physical hypotheses and their limitations  

A modified Kolmogorov-Prandtl model of turbulence was 

presented in Chapter 4; this model is based more on 

experimental evidence and intuition than on any rigorous 

mathematical reasoning. It is naturally to be expected 

that not all turbulent flows can be represented by the 

present model. 
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Turbulence hypotheses are a vital auxiliary input to 

the numerical procedure if turbulent flows are to be 

analysed. 	The Kolmogorov-Prandtl model suffers from a 

lack of information about various components of its 

structure. 	The characteristic length scale of 

turbulence is a very important input to the hypotheses 

(section 4.1-3), yet, except for the simplest of the 

problems, there is an almost complete lack of quantitative 

information about it.. 	Other important inputs to the 

model are the various turbulent Prandtl/Schmidt numbers. 

All the sources indicate that these are of the order of 

unity: nonetheless, specific estimates differ considerably 

values ranging from 0.5 to 2.0 have been suggested and used. 

Indeed, these may even be functions of various flow-

parameters and not constants as is generally assumed. 

There is also a lack of accord about the supposedly universal 

constants which appear in the various relations describing 

the hypotheses (section 4.1-2); for example, the constant 

associated with the diffusion of the kinetic energy of 

turbulence varies fromthe 0.08 of Glushko (1965) to the 

0.152 of Wieghardt (1945). 	In fact, experimental evidence 

suggests that the presence of a wall modifies the structure 

of turbulence to a considerable extent (e.g. Kline et al. 

1967). 	There is, therefore, a strong likelihood that some 

of these 'universal' constants may, after all, differ for 

flows close to a wall compared with those for flows away  

from. a wall. 	Similar modifications are also likely in the 

presence of other factors which modify the structure of 

• turbulence such as high pressure gradients. 



It can only be concluded that our knowledge of 

turbulence is far from being satisfactory; nevertheless, a 

beginning has to be made. 	If the designer is unable to 

obtain an accurate answer,he must, at least, have a 

reasonable estimate. 	This is the reason, and the excuse, 

for making do with whatever information is available. 	It 

is not expected, or hoped, that this model will last in its 

present state; it is merely 'intended to provide a 

promising stepping-stone for future improvements. 

6.3 Sungestions for further research  

Undoubtedly, turbulence must form the focus of 

immediate attention. 	Extensive measurements must be made 

and carefully scrutinized to test and improve the various 

hypotheses which have been put forward to describe 

turbulence; in case of their inadequacy, new. means of 

handling turbulence will have to be formulated. 

Experimental data of direct relevance will be those concerning 

the structure of turbulence and the factors which influence 

it. 	Fortunately there are signs of considerable activity 

in this direction (e.g. Kline et al. 1967, Hanson & 

Richardson 1c:68 etc.). 	It has already been pointed out in 

section 4.1-3 that the Kolmogorov-Prandtl model of turbulence 

can be put on a firmer footing by the addition of a 

differential eauation for the characteristic length scale of 

turbulent eddies. 	It is only when more is known about 

turbulence that the various 'constants' associated with ihe 

model can be determined with any degree of certainty. 

On the mathematical side, it has been noticed that the 

present finite-difference scheme may introduce considerable 
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numerical errors (Runchal et al. 1967). 	These errors 

stem mainly from the assumptions about the inter-nodal 

distribution of variables (section 3.2-1). 	Runchal et al. 

pointed out a way of reducing these errors; however, further 

work is necessary before any definite recommendation matures. 

From the point of view of economy, the solution 

procedure leaves something to be desired. 	Because of the 

use of an iterative method to solve'the difference 

equations, the computing time goes up not in direct 

proportion to the number of grid nodes but as a power 

which usually lies between 1.5 and 2. 	The penalty for the 

use of fine grids may thus be considerable. 	Though 

computing time may be cut down by economy measures such as 

a judicious distribution of grid nodes, the use of over-

relaxation etc., unfortunately, none of these can yet be 

incorporated in any generally applicable way., Attention 

should, therefore, be turned to devising some more 

economical means of solving the difference equations. 



PART II  

EXPERINENTAL INVESTTGATTON  

Chapter 7: Experimental investigation 
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Chanter 7  

Experimental investigation  

This chapter contains the results of an ex-

perimental investigation conducted into mass 

transfer in the turbulent separated and re-

developing regions immediately downstream of 

a sudden enlargement in a circular pipe. 

The geometry is thus similar to that of the 

problem discussed in section 5.2. 	The ex-

perimental technique used was diffusion-

controlled electrolysis, and the data were 

obtained for Schmidt numbers of 1400 and 

2500, and for Reynolds numbers between 2500 

and 89000. 

7.1 Introduction  

The essential need for experimental data in separated 

flows is self-evident from the state of the approximate 

theories which have been put forward to predict such flows 

(see section 1.2-2). 	The need for more data is also high- 

lighted by the inadequacies of the existing ones. 	Though 

most of the existing data agree in their qualitative trends, 

they are by no means consistent quantitatively. 	Thus, the 

reported rates of heat transfer in the rearward separation 

zone of a circular cylinder differ by a factor of two or so 

(Richardson 1963). 	Similar discrepancies have also been 

reported for the heat transfer downstream of a sudden 

enlargement in a pipe (Krall & Sparrow 1966). 	This 

conflict in results is presumably caused by the variations 
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in experimental conditions and an insufficient knowledge 

about the mechanisms that affect the behaviour of separated 

flows. 	For example, the mechanisms which cause asymmetric 

separation and heat transfer downstream of a double step in 

a flat duct are still obscure (Filetti & Kays 1967). 

Superimposed on all these are the other three-dimensional 

and unsteady effects, mentioned in section 1.1, for flows 

with two-dimensional and steady boundary conditions. 	It 

must therefore be concluded that, in view of the complexty 

of separated flows, too 'few data are available to serve as 

the basis of any general prediction procedures. 

Most of the available experimental data have been 

reviewed by Richardson (1963), Knight (1966), Chilcott (1967) 

and Filetti & Kays (1967). 	Almost all of the existing 

data were obtained with air or water as the working medium 

and, hence, they represent a rather moderate range of 

Prandtl number. 	However, there is much to be gained from 

data on high Prandtl number(or Schmidt number for mass 

transfer data). 	Much of the resistance to heat and mass 

transfer is usually confined to a thin region close to a 

wall in the so-called laminar sub-layer. 	Significant 

information can be obtained from flows in which the changes 

in the enthalpy (or concentration) profiles are confined to. 

this thin region. 	High Prandtl/Schmidt numbers provide 

such a flow; the present series of experiments was designed 

to exploit this feature. 
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7.2 The experimental technique  

The use of diffusion-controlled electrolysis to 

obtain the wall-fluxes for high Schmidt numbers is now well 

established. 	Comprehensive accounts of the technique have 

been given by Tobias et al. (1952) and Duffield (1965). 

We shall therefore limit ourselves to a brief description 

of its essential features. 

According to the concept of the ionic theory, the 

molecules of a binary electrolyte in solution dissociate 

into two types of ions: the cations possessing a negative 

charge and the anions possessing a positive charge. 	When 

an electromotive force (e.m.f.), above a certain critical 

value, is applied between two electrodes in such a solution, 

there is a transfer of electrons to the anions from the 

cathode, and a transfer of electrons to the anode from the 

cations. 	This sets up an ionic current. 	In the steady 

state, the reacting ions must be continuously supplied to 

the electrodes from the solution. 	In general three 

mechanisms take part in this exchange: 

a) migration under the influence of the potential gradient, 

b) diffusion under the influence of the concentration 

gradient, .and 

c) convection. 

Migration of ions can be eliminated by reducing the 

potential gradients in the flow, almost to zero, by adding 

a high concentration of a non-reacting electrolyte with 

high electrical conductivity. 	The ionic-transfer theory 

states that , for such a flow, the rate of the electro-
chemical reaction increases at first exponentially with the 

applied e.m.f. (Levich 1952); but, when the e.m.f. is 
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sufficiently high, the rate of reaction is independent of 

it and is determined only by the rate of ionic-transport 

to the electrodes; the reaction is then termed 'diffusion-

controlled' and the current flowing through The cell is 

termed the 'limiting current'. 	If, in addition, the mass-

flux of the ions at one electrode is much greater than that 

at the other, the limiting-current conditions are first 

reached at the electrode with the higher mass-flux; the 

ions transported to such an electrode react very rapidly and 

their concentration at the electrode surface falls almost 

to zero. 	The average mass-transfer coefficient, gm, for 

such a system is given by: 

gm El  I"" 	
M-I/(N.F.0) 	 (7.2-1) 

where, 

gIll 
	is the mean mass-transfer coefficient (g sec

- l
cm
-2 

 ), 

rig" 	is the mean mass-flux of the reacting ions 

(g sec
-1cm-2) 7  

0 	is the concentration of the reacting ions in the bulk 

solution (g / g), 

is the molecular weight of the reacting ions 

(g / g - mole), 

I 	is the diffusion-controlled limiting-current density 

(amp/cm
2
), 

N 	is the valence change during the reaction 

(g-eqvt/g-mole), 

F 	is the Faraday's constant 	(amp sec/g-eqvt). 

In the present series of experiments, the reaction 

employed was that between the ferri-cynide and the ferro-

cynide ions, in the presence of an electrical field: 
7 

Fe(CN))--6  + e 	= Fe(CN)7-  (7.2-2) 
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Because of the small size of tl-ecathodes (see Fig. 

7.3-3), the reaction was 'cathode-controlled', i.e. 

limiting-current conditions were first reached at the 

cathodes. 	For the ionic current generated at the cathode, 

equation(7.2-1) can be written as: 

gm  -_,. 0.002196 1/0 	g sec-1  cm -2 
	

(7.2-3) 

with, 

M = 211.95,N.1 and F.96 500. 	All the units are the same 

as those for equation (7.2-1.).  

7.3 Annlication of the experimental technique  

7.3-1 The anr)aratus  

a) The flow circuit: A schematic diagram of the apparatus 

used is shown in Fig. 7.3-1. 	A centrifugal pump, 2, 

maintains a supply of liquid from the reservoir 1 to the 

Rotameters 6 and 7 via a thermostatically-controlled heat- 

exchanger 3. 	The liquid from the Rotameters is led through 

a flow-straightener device 9 and an approach nozzle 11 to 

the test nozzle 13. 	The jet of fluid issuing from the 

test nozzle expands into the test section and then returns 

to the reservoir. 	Further details and photographs of the 

various impoftant parts of the apparatus are shown in Figs. 

7.3-2 to 7.3-5. 

The test-nozzle assembly was designed to be movable 

along the upstream tube Au  of the test section, the movement 

Some components of the apparatus were the same as those 
used by Gasman (1969); he has given the details of 
construction and specifications of the components. 

* * 
	

The author gratefully acknowledges the advise given by 
Professor W.M. Kays for the design of the test-nozzle 
assembly. 
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Fig. 7.3-2 The apparatus for mass-transfer experiments  
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Fig. 7.3-4 The test-section.and test-nozzle assembly 
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being absorbed by the flexible tubing, 8, at the top. The 

relative position of the nozzle in the test section was 

obtained from a scale and pointer device, 10, as shown in 

Fig. 7.3-1. 	The lower part of the nozzle-assembly was 

surrounded by a leakage-container, 12, which could be 

partially, or completely, filled with the liquid to counter-

balance the leakage-pressure through the sliding joint 

between the nozzle and the test-section. 	The necessity of 

a movable nozzle arose from the fact that the measurements 

were required at a number of positions downstream of the 

sudden enlargement. With a fixed nozzle this can be 

achieved only by employing a large number of cathodes along 

the length of the pipe; this, however, presents an awkward 

design problem. 	With a movable nozzle the same purpose 

can be achieved even by a single cathode. 

The flow-straightener device, made of a 12" long 

straight circular tube of 9/8" internal diameter, was used 

to eliminate any swirling of the liquid. 	The flow area 

of the tube was partitioned into four equal segments by 

1/16" thick, knife-edged vanes placed along the length of 

the tube. 

Special.precautions were observed during the construct-

ion and assembly of the apparatus; these will now be 

described. 	Because of the corrosive nature of the liquid, 

all those components which came into direct contact with 

the liquid were made of corrosion-resistant materials such 

as'P.V.C.', 'Perspex', stainless steel and high-purity nickel. 

The test-nozzle assembly (Fig. 7.3-5) was made of 

'Perspex' and •all the inner surfaces and joints were care- 

fully smoothed. 	The inner surface of the test nozzle 
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itself was first polished with a very fine emery cloth and 

later with a polishing liquid supplied by the manufacturers 

of 'Perspex'. 	The test section and nozzle assembly was 

mounted vertical within 1/16". 
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As potassium ferri-cynide, one of the components of 

the liquid used, is photo-sensitive, all the transparent 

sections of the apparatus were covered with a deep-orange 

celluloid paper. 	To prevent degeneration of potassium 

ferri-cynide by oxidation, the liquid was saturated with 

oxygen-free nitrogen and a nitrogen atmosphere was always 

maintained in the reservoir. 

b) The test-section: The test-section was composed of six 

lengths of nickel tubing, of 1.121 inch internal diameter, 

insulated from each other. 	The details of the test section 

(except A0) are shown in Figs. 7.3-3 and 7.3-4. 	Electrical 

connections were taken from each segment of the test section 

to the external electrical circuit. 
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The mode of construction and assembly of the test 

section have been described in detail by Gosman (1969). 

The test section was constructed with very close tolerances 

because of the thinness of the concentration boundary layer 

at high Schmidt numbers; the mean roughness on the inner 

surfaces of the electrodes was less than 10 5  inch and the 

steps at the joints were less than 5 x 10-3inch. 

c) The electrical circuit: The essential features of the 

external electrical circuit are shown in Fig. 7.3-6. 	The 

circuit was designed to.allow the operation of the electro-

chemical cell with any combination of the anode/cathode 

set-up, and also to permit measurements of current through, 

and potential-drop across, any of the cathodes individually 

or in combination with others. 	For this purpose, each 

cathode was provided with an independent sub-circuit 

consisting of a variable e.m.f. source (a lead accumulator 

across a potential divider ), and terminals for calibration 

and for currert and potential-drop measurements. 	Common 

terminals were also provided for the over-all circuit as 

shown in Fig. 7.3-6. 

The current measurements were obtained by measuring 

the potential drop across a standard 1 Ohm resistance with 

a high-precision Digital Voltmeter . 	Though the Digital 

Voltmeter was supplied with an in-built filter, an external 

resistance-cpapcitance filter with a variable time period 

(50 .sec to 10 sec) was used to even out the strong 

fluctuations in the signal. 	Most of the readings were 

taken with this filter set between 2 and 5 seconds. 

* , Fenlow' Digital Voltmeter 301_,-A;0.01% DC accuracy, 
10 [Iv to 1000v range. 
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A calibration circuit was provided to enable a check 

on the diffusion-control characteristics of the cathodes. 

It could be connected to a motor-driven potential divider 

and the current flowing through a cathode could be recorded 

* on a chart recorder. 

• 

7.3-2 The electrolyte  

The electrolyte employed consisted of equimolar 

concentrations of potassium ferri-cynide, K, Fe(CN)6' and 

potassium ferro-cynide K4  Fe(CN)6' in aqueous solution of 

sodium hydroxide, Na OH. 	High purity 'Analar' chemicals 

and distilled water were used for the above purpose. 	It 

'Honeywell' Electronik' strip chart Recorder 	second 
series 153 x 16; 	0.25% accuracy of scale span., Basic 
chart speeds 4" and 120" per minute. 



is to be noted that only ferri-cynide and Ferro-cnide ions 

take part in the electrolysis; sodium hydroxide merely 

provides a supporting electrolyte of high electrical 

conductivity: these aspects of the technique have been 

discussed already in section 7.2. 

The preparation of the solutions was carried out in 

two stages. 	Sodium hydroxide was dissolved in distilled 

water and allowed to cool to about 25°C; its strength was 

then determined by titration against a standard aqueous 

solution of oxalic acid and, if necessary, adjusted to the 

desired value. 	This solution was then saturated with 

oxygen-free nitrogen and the .required quantities of potassium 

ferri- and ferro-cynides were added. 	The concentration of 

the ferri-cynide ion was determined with a Spectro-

photometer at a wavelength of 410 mil. 

About 65 litres of the solution were prepared for each 

series of tests and the solutiaawas retained on the average 

for about 60 hours. 	Special precautions were taken to 

minimize the exposure to light and oxygen, both of which 

have a degenerating effect on the ferri-cynide ions; these 

precautions have already been described in section 7.3-1. 

The concentration of ferri-cynide ions was checked from time 

to time; any solution which degenerated by more than 2% in 

this respect was discarded, and the tests repeated with a 

new solution. 

7.3-3 The experimental procedure  

The procedure followed for all the mass-transfer tests 

Consisted of the following steps: 

* '7EL' Spectra, range 400 to 700 mil; band width 35 mi.L. 



126. 

1) The test section was removed from the apparatus and 

reactivated by a process suggested by Duffield (1966). 

2) The test section was electrically tested to ensure that 

the inter-electrode insulation offered a minimum 

resistance of 50 000 Ohms to any short-circuit current. 

It was then remounted on the apparatus. 

3) The electrolyte was prepared according to the procedure 

outlined in section 7.3-2. 

4) The pump was then started. 

5) The heat-exchanger controls were adjusted until the 

liquid reached, and maintained, the operating temper-

ature of 25 4- 0.1°C. 

6) The next step was to ensure that the diffusion-control 

characteristics were obtained under the most adverse 

conditions expected during the tests: this implied 

obtaining the current vs. potential-drop curves for the 

maximum current flowing through the circuit. 

For the above purpose, the flow rate was set at the 

maximum and the test-nozzle was positioned such that 

the middle cathode, CM' was in the region of the 

highest mass-transfer rates; this positionvzs about 3 

nozzle-diameters downstream of the sudden enlargement. 

A motor-driven e.m.f. source was connected across the 

selected set of electrodes, and the current-vs.-

paential-drop curve was recorded on a chart-recorder. 

A plateau region with less than 1% rise in current for 

a range of potential-drop ("---,0.5 volts) was accepted 

as the indication of diffusion-controlled electrolysis. 

The tests for diffusion control were carried out for 

each different electrode combination (see section 7.3-4). 
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(In case the current-vs.-potential-drop curves failed 

to show a marked plateau region, the test section was 

reactivated and all the steps listed above were 

repeated). 

7) The motor-driven e.m.f. source was disconnected and the 

electrodes were switched to their individual e.m.f7  

sources as shown in Fig. 7.3-5. 

The applied e.m.f. was adjusted so that the potential-

drop across each active cathode was in the diffusion- 

controlled region. 	The current and potential-drop 

measuring devices were connected according to the 

requirements. 

8) The flow-rate was adjusted to the required value and a 

series of relevant readings were taken for selected 

nozzle positions and electrode combinations. 

At the end of one set of readings, the flow-rate was 

adjusted to a new level and the process was repeated 

until readings were available for all desired rates 

of flow. 

The diffusion-control curves, temperature readings 

and the concentration of ferri-cynide ions were obtained 

from time to time during the intermediate stages of the 

above series of readings. 

9) The solution was drained and the apparatus was rinsed 

with water. 	This was followed by a rinse with 

hydrochloric acid (HC1) and a final wash with water. 
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7.3-4 Choice of electrode combinations  

a) The effect of cathode on the mass-transfer behaviour: 

For a cathode-controlled' system, the choice of cathode or 

cathodes is important for the study of the mas3-t ansfer 

behaviour. 	It should be recalled from section 7.3-2 that 

the concentration of ferri-cynide ions at an active cathode 

falls to zero. 	Such a cathode, thus, implies a step-

change in the boundary conditions: at an inactive surface 

preceding the cathode, the concentration of the ferri-

cynide ions is equal to that in the bulk flow, but at the 

cathode this concentration falls to zero. 	In terms of 

the heat-transfer analogy, an active cathode is equivalent 

to a surface with a step-change in temperature, whereas an 

inactive surface is equivalent to an adiabatic wail. 

Various types of boundary conditions can be simulated 

by selecting different cathode combinations from Fig. 7.3-1. 

The following four groupings were used for the preliminary 

investigations. 

Group I : C alone acting as the cathode with C_ and CD 

electrically isolated from the circuit, 

Group II : CM' CU' and CD  all acting as cathodes, - 

Group III: CN.and CD  acting as cathodes with Cu  electrically 

isolated from the circuit, and 

Group IV : C11  and Cu  acting as cathodes - with CD  electrically 

isolated from the circuit. 

For comparison of results, it was the current generated 

by the smallest electrode, CM' which was measured for each 

group. 	The length of this cathode was small enough (1/12th 

of the pipe diameter) to justify the assumption that it 

represented the local values of the,  mass transfer. 
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b) The effect of anode on the mass-transfer behaviour: 

In the electrolysis process under study, ferro-cynide ions 

oxidise into ferri-cynide ions at the cathode. 	In a 

cathode-controlled system, the quantity measured is the 

current generated at the cathode; one of the parameters 

controlling this current is the concentration of ferri-

cynide ions in the bulk flow as shown by equation (7.2-1)—

Because these ions are generated at an anode, the 

location of an anode upstream of a cathode will increase 

the rate of reaction at the cathode. 	This will produce 

anomalous results which cannot be interpreted properly 

because of lack of information about the extent of increase 

in the concentration of ferri-cynide ions. 	It was for this 

reason that the use of AU, as the anode, had to be ruled out. 

The first preliminary sets of results were obtained 

with A as the anode and Au  and A3 isolated from the 

electrical circuit. 	A typical set of results is displayed 
O 

in Fig. 7.3-7 for the four different cathode groups. 	A 

comnarison of the results for the cathode group I with 

those of the group IV shows a disturbing feature of the 

results: that for some regions of the flow, mass transfer 

rates are higher for group IV. 	As group I represents a 

small locally active surface, rather than a zone of active 

surface of group IV ,in view of the established behaviour 

of the convective flows, this increase is totally unexpected 

and points to some unconventional mechanism entering into 

the picture. 	On second thoughts it can, in fact, be 

concluded that there is a strong likelihood that the 

* Group I, in heat transfer analogy, corresponds to local 
heating, whereas group IV represents zonal heating. 
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ferri-cynide ions produced at the anode A will be swept 

back onto the cathodes. 	This is possible because, for some 

of the nozzle positions, the upper part of the anode will 

lie in the reversed-flow region, upstream to the cathodes 

with respect to the direction of flow on the cathode- 

surface. 	Because the rate of generation of the ferri-

cynide ions at the anode is proportional to the amount of 

current generated at all the cathodes, such an effect will 

pronounce itself at the higher current intensities cEthe 

group IV. 	Of course, the natural question to ask is that, 

'why does such an effect not appear for groups II and III, 

which also have higher current intensities than those of 

group I?' 	The reason is that, for these two groups, there 

is an intercepting cathode CD  between the anode Av  and the 

cathodeC,.N  at which the current is being measured. 	Thus, 

any increase in the concentration of ions is absorbed by 

this intercepting cathode before it can reach the measuring 

cathode Cif: 	the current at C is therefore representative 

only of the rate of diffusion from the bulk flow. 

It is to be noted that no such anomalous increase is 

discernible in the measurements far downstream of the 

enlargement atnd the results of the group IV merge with those 

from the group 2I: this is to be expected on theoretical 

grounds as no back-flow is now possible from All  to Cm. 

From the reasoning of the previous paragraph it is to 

be expected that the fallacious results caused by the 

proximity of the anode to the cathodes can be eliminated by 

using AD  as the anode. 	Contrary to expectations, however, 

the use of AD'as the anode did not seem to make any 

substantial difference to the results. 	The only noticeable 
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difference was a slight increase in the potential drop 

through the cell; this increase, however, was much less 

than would be expected because of the ohmic drop in the 

extra column of electrolyte now interposed between the 

anode and the cathodes. 	Discussions of the above 

unexpected results with other research workers in this 

field, revealed that under some circumstances it is possible 

that the metal tube AM' though not acting as an anode, may 

still act as a conductor for the passage of electrons. As 

the conductance of nickel is much higher than that of the 

electrolyte, the former provides a preferred path for the 

current; in such a case, the end of the tube nearer to 

the cathodes acts as an anode and defeats the very purpose 

for which AD was used as an alternative anode for the system. 

To verify the above arguments, it was decided to 

insulate the inner surface of the tube AN  from the solution 

altogether. 	For this purpose, a polythene tube, 9/8" O.D. 

and 7/8" I.D., was inserted in the test section in such a 

way that A11  and CD were completely covered by it. 
	The end 

of the polythene tube near the joint of CD  and CM   was formed 

in the shape of a nozzle and AD was once again employed as 

the anode. 	.It was noticed that now the results from the 

cathode group IV were the same as those from the group I 

for all the regions of the flow. 	However, the potential- 

drop now required to operate the cell at the diffusion- 
, 

controlled level was very high (of the order of 4 volts 

compared to about 0.5 volts of the earlier arrangements); 

this high voltage level was found unsatisfactory for 

general work: small changes in current caused relatively 

large changes in the potential-drop because of the high 
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resistance of thaelectrolyte between the anode and the 

cathodes. 

The elimination of the drawbacks of the existing 

electrode set-up would have required the design and 

construction of a new test section, and it was felt that 

the advantages to be gained were not justified by the 

effort involved; it was therefore decided to continue 

with the existing test section with the choice of electrodes 

given in the next subsection. 

c) The final choice of the electrodes: In the light of the 

preceding discussion, the only choice left open for the anode 

was that of AM  and all subsequent tests were carried out 

with this electrode as the anode. 

Cathode group IV had to be abandoned because of the 

fallacious information provided by this grouping; this left 

the choice open between the other three groups. A glance 

at Fig. 7.3-7 showsthat not much can be gained from the use 

of cathode group III either. 	With respect to the flow in 

the vicinity of the surface, CU  lies downstream of C for the 

region of reverse flow and the results of group III merge 

with those frpm group II; away from the regions of reverse 

flow, Co  lies downstream of Cm  and the results from group III 

merge with those from group I: these trends are to be 

expected from the known behaviour of the convective flows. 

Thus, the cathode groups selected for the final series 

of tests were the groups I and II. 



134. 

7.4 Results and discussion  

7.4-a The flow paraeters  

For presentation of results, let us define the 

following non-dimensional parameters: 

Diameter ratio: 	D 	D /D P N ' 

Distance: 	Z a 2.z/( - ) Dp  DN  

Reynolds number: Re ---: Gm.Dp/il 

Schmidt number: 	Sc a 1V(c) 

Stanton number: 	St a gm/Gm  

where, 

DP 	is the diameter of the pipe, 

DN 	is the diameter of the nozzle, and 

17, 	is the mass-diffusivity of the fluid. 

All other symbols are explained in the nomenclature., 

(DP-DN)/2 is, of course, the height of the step formed due 

to the sudden enlargement. 

In general, for incompressible flows, 

St = St 	Sc, Z, D, b.c,  	(7.4-2) 

where b.c. denotes the effect of the boundary conditions, 

and the dots serve as a reminder that in a complex problem 

other parameters, such as the turbulence intensity, may also 

affect the Stanton number. 

For a fixed diameter ratio (equal to 2 in the present 

case): 

St = St .Re, Sc, Z, 	 (7.4-3) 

The boundary condition is governed by the selection of 

the cathode group in the present case (see section 7.3-4); 

as already mentioned, for the final tests two cathode 

groups, I and II, were employed. 

7 

(7. 4-1) 

and 

7 
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The experiments were performed for two values of the 

Schmidt number: 1400 and 2500; the transport properties 

and concentrations of the corresponding solutions are 

given in table 7.4-1. 

Solution 
No. 

NaOH 

gm-moles 
per litrcper 

::.,.DFe(CN)6 

gm-moles 
litre 

p 
-3 gmcm 

t-t 
-1 -1 gm.sec.cm  

Sc 	Re 
range 

.-, 

Data 
appear 
in 

1 0.520 	10.00515 1.020 0.0103 1400.) 	3550. 
to + 	7%l 1 

lessoo. 

I 

Figs. 
7.4-1 
7.4-2 

Table 
7.5_1  

7.5-2 

2 2.056 0.00504 1.080 0.0144 

I 

1 
2500 	2550. 

+ 	7e 	 5300.  1 	to  - 	'  

i 

rigs. 
7.4-3 
7.4-4 

Table 
7.5-3 
7.5-4 

Table 7.4-1 Fluid-property data for the solutions employed  

for the mass-transfer experiments. 

Note: Fluid-property data were taken from Duffield (1966). 

The Reynolds number was varied from 2550 to 88500, 

and the mass transfer measurements were obtained for 

various locations downstream of the sudden enlargement 

from Z = 1.7 to Z = 34.8. 

7.4-2 The experimental data  

The experimental data are displayed graphically in 

Figs. 7.4-1 and 7.4-4 as plots of Stanton number, St, vs. 

the non-dimensional distance, Z, for various Reynolds 

numbers. 	The same data are later reproduced in a tabular 

form in section 7.5. 	Also shown with the above data are 

the asymptotic values obtained by Gosman (1969). 
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The present data far downstreaM of the enlargement 

compare favourably with those obtained by Gosman (1969). 

The data for the separated and the redeveloping regions of 

the flow follow the well-established pattern of behaviour in 

its general trends: the mass-transfer rate rises rapidly to 

a maximum in the reattachment zone and then decays to its 

asymptotic value for the flow in a straight circular pipe. 

However, there are two features of the present data 

which do not seem to have been reported in the existing 

literature. 	The first is a shift in the location of the 

Stanton number maxima with the boundary condition: the 

data for the cathode group I exhibit maxima, on the average, 

in the vicinity of Z = 5.6, whereas the maxima for the 

cathode group II are located near Z = 7.0. 	The second 

novel feature is the appearance of a second maximum for 

the data of the cathode group I at low Reynolds number. 

Precisely how the boundary condition interacts with the 

flow to bring about these effects cannot be explained on the 

basis of the existing knowledge about the separated flows. 

It is generally agreed that the location of the time-mean  

maximum mass/heat transfer coincides with the mean 

reattachment.point; however, the reattachment point itself 

is known to oscillate about a mean position with time(e. g. 

Abbot and Kline 1962). 	Since the instantaneous values at 

a certain location are a function of the boundary conditions, 

it is conceivable that the differences in the time-mean 

values are caused by the time-averaging process. 	Another 

possibility, of course, is that the inactive cathode CD, 

for the cathode group I, may act as a pseudo-anode and 

cause a local increase in the concentration of the ferri- 
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cynide ions. 	This effect, which has been described in 

detail in section 7.3-4, will result in increased rates of 

mass transfer at CM' especially for the reversed-flow 

region .when Cm, relative to the local direction of flow, 

lies downstream of Co. 

In the existing literature, the maxima in heat/mass 

transfer have been reported to lie between Z 4 and Z = 12 

(see e.g. Krall and Sparrow 1966). 	The most frequent 

values quoted In this respect are between Z = 6 and Z = 8. 

It is interesting to note that almost identical values have 

been noted for external flows such as the flow past a step 

(e.g. Mueller and Robertson 1962). 	The present data, 

especially those for cathode group II, are thus consistent 

with the data obtained by earlier workers. 	It should be 

noted that almost all of the earlier data were obtained 

with uniform (temperature or heat-flux) boundary cons tions 

for a considerable length downstream of separation: the 

boundary conditions of the cathode group II are nearer to 

this situation than those of the cathode group I. 

7.4-3 Correlation of the data  

a) A small locally active surface: cathode group I: For 

very high Schmidt numbers and small mass-transfer surfaces 

the concentration gradients are likely to lie entirely 

within the laminar sub-layer. 	It can be shown that (e.g. 

Spalding 1964) away from the reattachment point 

St Q0.(Sc-2/3 
	

(7.4-7) 

and therefore, for purposes of correlation: 

St = const. Re-q. Sc-2/3 	 (7.4-8) 
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Fig. 7.4-5 presents Re vs. St.Sc2/3 in a graphical 

form for two locations downstream of the sudden enlargement: 

the location of the mass-transfer maxima and a location far 

downstream of the enlargement. 	In both cases, the data 

can be well correlated with q = 0.45. 

According to Spalding (1964), the value of q for a 

fully developed pipe flow at high Schmidt and Reynolds 

numbers is 0.417. 	In the vicinity of the reattachment 

point in a turbulent separated flow, Spalding (1967b) 

deduced that the value of q should be 0.40. 

b) A zone of active surface: cathode group II: For fully 

developed turbulent flow at high Schmidt and Reynolds 

numbers, it can be shown that (e.g. Diessler 1955, Spalding 

1964): 

St 	const. Re_ '1`. Sc-3/4 	(7.4-9) 

Though the boundary conditions of the cathode group II 

are not likely to yield a fully developed flow, it is 

convenient to• employ the following generalisation of tle 

above relation: 

St . const. Re-q. Sc 3/4 	 (7.4-10) 

Fig. 7.4-6 displays Re vs. St.Sc3/4 for two locations 

similar to the ones for the cathode group I. 	In this case, 

however, the data can be correlated as a simple power law 

only for the location of the maximum mass transfer; the 

index of the power law, q, is equal to 0.35. 	The values 

far downstream cannot be represented by a simple power law: 

in fact, even the dependence on Schmidt number does not 

appear to be a simple power of 3/4. However, for Re 

greater than 2.5 x 104, q in'the above equation may be 

chosen as 0.20. 
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It is to be noted that the values reported by earlier 

research workers, for uniform heat-flux at the wail, are 

approximated by q = o.33 in the reattachment region. 	The 

value of q predicted by Spalding (1966) for the reattachment 

region is 0.40. 

7.4-4 Comparison with previous investigations and  

concluding remarks  

A number of investigations have now been conducted 

into the behaviour of the separated flows, and some of 

these have already been referred to in the previous 

sections; however, none is directly comparable with the 

present one in both the geometrical arrangement and the 

experimental conditions. 

Fig. 7.4-7 presents the data of Krall and Sparrow 

(1966) and Ede et al. (1962) along with some data from the 

present experiments. 	All the data collected here were 

obtained for sudden enlargement in a circular pipe for a 

diameter ratio of two; however, the experimental conditions 

varied considerably. 	Krall and Sparrow induced separation 

by inserting::an orifice into a pipe with fully-developed 

upstream flow; the pipe was heated electrically and the 

tests were conducted at Prandtl number of 3 and 6. 	The  

data of Ede and co-workers were obtained for the sudden 

expansion of a fully-developed pipe flow nth a bigger pipe;. 

electrical heating and a Prandtl number of about 9 were 

employed. 	Ste, for the data of Ede et al. was obtained 

from a correlation recommended by Knight (1966) for 

similar data: 

.116.pr-.6 St. . .0109 Re- 	 (7.4-11) 
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It should be noted that the slopes of -.033 and -.225 

in Fig. 7.4-7 were arrived at from the correlations of the 

maxima and the asymptotic solutions recommended by Spalding: 

both of these have been discussed in detail in the preceding 

section. 

Fig. 7.4-7 shows that the effect of the Prandtl/ 

Schmidt number of St 	/St , especially at high Reynolds 

numbers, is small. 	The differences between the results of 

Krall and Sparrow and those of Ede et al. can, then, only 

be ascribed to the differences in the experimental conditions, 

such as the increased turbulence in the incoming flow in the 

case of Krall and Sparrow because of the presence of an 

orifice in the pipe. 

The Reynolds number dependence of Stmax/St  is 
ro 

considerably influenced by the boundary conditions as can 

be seen from the comparison of the data for cathode group I 

with those of cathode group II. 	Also the data show a large 

variation in the magnitude of St__ /St at any fixed max m 

Reynolds number. 

More experimental data are clearly needed to understand 

and explain the mechanisms which bring about these changes 

of heat/mass,-transfer behaviour. 

max 
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7.5 Exnerimental data in tabular form  

CATHODE GROUP I 

SOLUTION NO. 	1 

SCHMIDT NO. 1400 

DIAMETER RATIO 2 

2.0 
2.2  

1 -2.5 
2.8 
3.1  

3.7 
3.0  
4.2_ 
4.5 .  

'±±4.8 
_5.1 
5.3_ 
5.6 

6..3.-- 
6.6 

_ 7.0 
7.3 

8.7 
9.4 

10.1 
11.5 
12.9 
15.7 
18.5 
21.4_ 

27.0 
29.8 

_32.6 
±134.3 

__3550 _-___ -5500=  _ 9050 _ 14150___21300 34400 _56900__-88500 

1.659_1.2,35 1.026 0.897__ 0.750 _0.603 	_0.512- _-_0..452 ,  
1.666 1.284 1.072 0.922 0.770_.:0.62: 0.531 0./-63 
1.743 	1.304 _1..096 	0.953. 0.804 0.651 ____0. .570-0.408 
1.959 	1.389 1.177 	1.023 _--0.843_-:-:0.693 	0.616 = =0.510 
2.245_ 1.532 1.316 	1.107 0.902 0.736 0.654 0.551 
2.546 -1.820 1.458 1.196 = 0.908 0.805 _ 0.701 0.57.7 
2.893_2.083 1.597 _ 1.290 1.043 0.870 0.743 0.592 
3.047 = 2.281 1.697 1.346 1.101 0.916__0.70)_ 0.61/ 
3.178.2.615 	1.1.69 	1.398 _1.152 	0.951 	0.790 	0.634 
3.232 2.490 1.832 1.443==1.186 0.975 0.801=_0.648 
3.263 2.519 1.844 1.466 .1.216._-0.999 0.310 0.657 .  

3.271 	2.944 	1.860 1.493_-1.239 1.012___0.31_0 0.560 
3.217_ 2.539 1.363 _ 1.499 1.257_ 1.024 0.817 0.661 
3.163 2.549 _ 1.875 1.512_.=__1.264 1.030 0.81 / 0.663 
3.132 2.549 _ 1.866 1.512 _ 1.268_ 1.032 	0.81 (--0.663 
3.109 2.524 1.844 1.512 1.267 	1.030 0.3u6__0.667  

	

3.078 2.465__1.341 1.502--_ - - 1.273 	1.025.. _--_0.7'99_ 0.6.57 
2.985 12.430 1.826 1.493 1.270 1.020 0.797 0.652 
2.885 2.366 1.796 1.481 1.261 	1.013 	0.789 0.649 

_?.754..__2.326 1.769 1.460 1.247 1.004 0.776 0.642 
2..669 ___2.227_ 	1.712 _1.427_ 1.221_ 0.978_ 0.750 0.630 
2.533  -  2.182 _ 1.660 _1.391 1.193_ 0.955 _0.744 0.616 
7.445 	2.073_1.612_ 1.350 	1.162__ 0.9280.727 _0.603 
2.307 2.013 1.564 1.321 1.125 0.906 0.712.-_0.589 
2.276 __1.885 _ 1.470 1.252 	1.079_ 0.874 0.680 0.566 
2.2b8--:1.340 1.440 1.215 1.048 _ 0.842 0.668 0.548 

- 2.361_1.945 	 _ 1.425 1.192_ 1.015_ 0.809 0.639 0.523 
2.368' 1. 	1.431 1.176 .__0.. 994 _0.778 0.614 0.500 

- .345___ 1.365_ 1.416 _ 1.148 0.964 _ 0.756 _ 0.592 0.4P4 
2.291 	1.830 	1.386 1.126___0.937_:_-= 0.732 0.577 0.465 
2-237_ 	1.766 	1.355 _1.084 0.914__ 0.716_ 0.562 __ 0.455 
2.183  - 1.741 1.316 11.067 0.395- 0.697 = 0.552- 0.450 
2.145 	1.711 1.292 1.043 _ 0.877_ 0.686 	0.544 0.443 

_2..098 	1.671 _1.268_ 1.028 0.864 -_:_0.671_ 10.539_ _ 0.439 

1.682 	:1.399::==1.138 0.944 0.796 0.6521 0.532 	0.440 

Table 7.5-1. Stanton Number ( X 104) downstream of a  
sudden enlargement in a circular pipe with 	a 
small active zone at the point of measurement 
only. 

* Values at Z 	mlin Tables 7.5-1 to 7.5-4, are those of 
Gosman (1969). 
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CATHODE GROUP II 

SOLUTION NO. 	1 

SCHMIDT NO. 1400 

DIAMETER RATIO 2 

 3550 	5500 	9050_ 14150 	_21300 _34400 _56000_ 	88500 Re T 	Z 
1.7 1.149 	0.7_85 	0.675 	 0.591 	0.497 	0-4_41 _ 0.397 _0.913 

1.157 	0.922 - 	0.794 	0.694- 	0.607 -==.0.512 	0.454 	0.403 2.0 
2.2 1.219 	_ 0.782  _0.700__0.619 	0.538 	0.486 _0._425 _0.952 

- 0.776 - 0.748 	0.6510.559 	0.519 _0.451 1.304 ==0.987 2.5 
2.8 1.527=  1.022__ 0.875 __7 0.775____0.685 1_0.588_0.545 	0-_478 

1.666 _ 1.156 	0.960_ 	0.849 _ 0.724_ 0.545__ 0.579 10.512 3.1 
3.4 1.929_ 	1.344_ 1.072 _0.899 	0.772 	0.687 	0.604 	0.512 
3.7 2.075 	1.498 L 1.138_--_L-0.964__0.822___0.726-7- - 0.629 1 0.531 

.2.168;_--1.622 	1.195 	1.020 _ 	0.865 	_0.762_ _ 0.656 	0.548 _ 3.9 
4.2 1.686" 	1.244 	1.045_ 	0.906 - 0.7821 	0.672_L 0.560 2.245--  
4.5 2,283 	1.736__1.304 	1.084_ 0.933_0.807 	0.686 	0.574 _.= 

2.307 	1...c's 	1.328 -_-_-__1.126 -0.966 	0.333 	0.694 	0.578 __ 4.8 
2.345. 	1.845 	1.355 	1.146___0.993__0.843 	0.706_ 	0.5E4 5.1 

1.845_-__1.389L=_1.157 -1.007__0.859___0. 714 	0.589 2.330_-= 5.3 
5.6 2.330_ 	1.875_1.407 	_____1.028___0.868__0._717 _T  0.595 _1.180 

1.401_1.186-_-  __1.037 - 0-873 	0.716 	0.596 2.337 - 	1.894 	___ - 	5.9 
2.330_ 	1.894 	1-425 	1.211 	1.047 	0.87_7_0.71.0 	0.597 6.3 

_16.6 2.307 	1.899 	1.413 - 1.219 _1.051___0.384 -1_0.710 	0.597 
1.425_ 1.211 	1.060___0.884 	0.71? 	0.601= - 2.299 	_1.894 _ 7.0 

7.3 2.229 	1.835--=.1.437 	1.217 	1.069 	0.385 	0.705 __ 0.599 
8.0 1.410 	1.207___1.065 	0.378 _0.698__ 0.592 2.199 _=1.795_ 
8.7 _ 2.098 	1 1.335 	1.057 	0.867 	0.692 	0.585 -1.770 	_1.202-  

1.721 -1.361, 	1.194,___1.039  ,____0.852 	__0.575 _2.060 	 .==.0..67.7 9.4_ 
10.1 1.983 --_1.661 	1.352 	1.227 	1.024___0.837 10.668 1 0.560 
11.5,_ 1.301„ 1.113__ 0.983_ 	0.805--0._634._0.537 _1.851___1.582 
12.9 1.743-1.488 -1_ 1.229 	1.045 	0.927 	0.754 - 0.602 	0.510 
1.5.7 1.481__ 	1.270 	1.038 	0.908__110.791 	_0.640_ 	0.52.1_.0.451 
18.5 _ 1.250 	1.066 	0.887 	0.756__0.660 - 0.542_0.453 _0.39 / 

1.126 	0,952 	0.761_ 0.644_  0.576__0.476 __ 0.401_0.356 21.4 _ 
0.676_-0.577--- 0.518 	-0.34 	0-371 	0.328 1.034'0.868 	 ---- 	A 	_ 24.2 - 

_0.995 	0.803 	0.640_0.53? 	0.477 	0.402 _0.346_ 0.314 27.0_ 
-29.8 0.964-- 0.774:2_0.601_1---0.505_f_0.454---  0.=384-_ 0.331- 0.300 
32.6 0.486_0.430 	0.366 	0.319 	0.292 0.933 _0.744_ _0.580__ 	

- 34.8__ - 0.561 	0._471L.-_0.418-L0.355- 	0-314 	a-286 _0_..918=-0.724 

0'0  -= 0.6762=-0.560 	0.471 - 0.401 	0.366 	- 0.318-  0.295 	0.274 

Table 7.5-2. Stanton number ( X 104 ) downstream of a sudden  
enlargement in a ci rcular pipe wi 1-71-1 '-ham print-
of measurement in the m:Vicile of farce active  
zone, 



1.7 
2.0 

_2.2 
2.5 
2.3 
3.1 
3.4 
3.7 _ 
.3.9_ 

4.5 
4.8 
5.1 

-5.3 
5.6 
5.9._.  

_ 6.3 
--- 6.6 

7.0 
7.3 
8.0 
8.7 
9.4 

10.1 
_11-s 
12.9 

18.5 
21.4 
24.2 
27.0_ 
29.Q 
32.6 
34.8 

2550_ _3950=  6550._ 10200 ___15500_ _25200 41000_65300_ 

..972 	0.796 _ 	0.617 	0.491 
1.986:L-1'1.814_1:1 1.298 	1.026---0.840 	0.659 	0.602 	10.514 
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CATHODE GROUP I 

SOLUTION NO. 	2 

SCHMIDT NO. 2500 

DIAMETER RATIO 2 

	

1.312:____1.092 	0.885 . _0.736 

	

1.312:____1.092 	0.885 . _0.736 

0.667 0.667 	0.532_„0.440___0.371 0.532_„0.440___0.371 
=0.656 -----  =0.656----- 0.526--7---= 0.437 	- 0.370 0.526--7---= 0.437 - 0.370 

0.617_ 0.617_ 	0. 	04 	0.412 - 0.339 0. 	04 0.412 - 0.339 

2.170_„1.894 1.363_ 1.078 4.882 0.691__0.628 0.530. 
2_.287-=-=1.916 	1.402' 1-.105 _0:_914`-10.713 -:-=0.651-_.--0.540 .  
2.329_ _1.926 	1.415 	1.132 0.940 _ 0.736 0.664 0.54B 
2.370 -- 1,910---1 1.428 	--,0.95311 0.750_1_0.663 _ 0.553_ 
2.370_1.883 1.434 1.157 0.962 0.761__0.670 0.554_ __ 
2.312 	 .l..857 --- 3-'/.415171.157 -=-1_0-9711_0.7_73.-7:_ 0.664 	0.554- 
2.287,1.330_1.418,1.155__ 0-97.5__„0-778_ 0.665 0.553 

.2.254.-1-.803- -1.405 	 __:_0.._781--=0.659--0.5501 
2.203 1.749_,_1.382 	 0.776 =0.655_ 0.545 
2.128 ----_-_-_1.67911.353_1-1-1.128_0.--..962-_ 0.175_,_ O. 648 
2.053 ___  1.626 1,330 _1.113__0._95_7___0.774 0.645_ 0.533 

1-.1304 -_ 1.095 - 70.952 0.7690.631_ 0.528_ 
1.845 _ 	_ 1.253 _L-063_0.922 0-753 0.613,_ 0.514 

1.40671-1.204 .1.028i-110.893 _ 0.739 0.592_ •0.507 
1.661 _ 1.347 _1.145__0.988 	0.867___0.715 _.0.577 	0.495_ 
1.594 -1.293 ==1.103 _=-0.963 0.841-11=0.696 - 0.564±-10.488 
1.519 __ _ 	 909 O.:7_96 0.6650.54Q 0.469 
1.577 _1.277_f-z--' 	 0.7731r1-0.646-0.523 0.460 
1.661 1.341 1.029 0.880_0-765_0.627__0-505_ 0.438 
1.678 	1.347 -_ 1.051 == 0.878_-_0.:7.57 - -0.609 _ 	0.420 
1.636 1.315 ____1..045 0.870 0.744„0.591=0.472 0.405 
1.5777_7'1.277 -_ -1.025-1-1 .0.849 0.721:'-0.573 --0.459 0.394 

-1.527______1.256__ __0.996 __ 0.828 _0.701___0.555___ 0.448 0.383 
1.486:.=-1.2181,=0 -.973 = 0.805 -,-- 0.68211-0.5431-1±0.444____ 0.376 
1.452 1.191 0.944  0.787 
1.4271.180-=--.0.935-   0.774 

Table 7.5-3. Stanton number ( X 104) downstream of a sudden 
elalarg-e-aentin arPi_,-r)e  with a smal], 
active zone at the point of measurement only, 

Table 7.5-3. Stanton number ( X 104) downstream of a sudden 
elalarg-e-aentin arPi_,-r)e with a smal], 
active zone at the point of measurement only, 



__, 6550 , 10200 _ 15500-_ 25200 _41000 _65300 

0.584_0.553 	0.480 0.449__0.415_ _0.352_0.324_0.285_ 
0.6011 0.585 0.480. 0.462_ 0.421_ 710.356 -2 0.336 0.298 
0.626 0.585 	0.477-_ 0.466__0.430_ 

0.381 -'0.372 -1  0.339 
0.776 0.762 0.545 „ 0.526_0.475_ 0.407 _ 0.400 0.366 
0.901-0.934 - -0.6491  0.562 0.513 r: 0.433 _ 0.429 0.389_ 
1.093 	1.100 0.733 0.637_0.563 -_0.463 __ 0.463 0.412 
1.277==' 	1.223=-,-- 0.818 	0.683 --__ 0.600 J0..496710..480.: 0.430 
1..419 -1.309 0.836 0.732 0.632 0.525 0.506 0.446 

502= X3..341 - 0.915_ 0.772 - 0.664 _ 0.549 0.525 0.459 
1.536_ 1.353 0.954 0.797 0.695 0.569 0.540 0.460 
1.611_ 	 0.812... 0.717_ 0.587 0.551 - 0.477 
1-611,1.374 _1.003 -.__0.839_0.742 0.607 0.563 0.403 
1.636- 	1.019_s 	 0.615__ 0.568 0.436 
1.628,1.363 1.025 0.861.____0.759,0.631_ 0.569 0.409 

_ 0.573 0.492 
1.619 1.336 	1.035 0.882___0.780 _ 0.649 ,__ 0.573 0.492 

0.653 0.573 0.491 
1.569_1.288 	1.029___0.889_ 	0.660__0.569 0.487 

- -1.025-__0.891 0.794_7_0.661  - 0.560 0.486 

1.394=1_1.180 0.996 _ 0.866 10.779 0.659 1- 0.550 0.4-76 
1.444 	1.229 _1.012 0.878_____0.789__0.663,0.560.:__0.483 

1.344,_ 1.138 0.970__.0.849-_0.765 0.652 0.535 0.471 
1.285 1.084 0.935 0.839 10.754 _ 0.637 0.524. 0.460 
1.152 0.993,0.896 , 0.787„0.713 _ 	606^_0._497- ___._0.440 -  
1.060 0.901 0.834 - 0.745 _ 0.669 0.567 _ 0.465 0.414 
0.876 	0.740 -__0.701_ 0.628.0.564__0.482_ 0.394 0.361 
0.718 0.617 0.574 0.522_..0.467 0.397 0.333 -  0.309 
0.643 0.547 0.493 0.443 0.396 0.344 0.293 0.2 - 
0.593 0.504 -  0.438 0.389-710.354_1.0. -305 0.265 0.254 
0.568_-._0.483 	 0..409___0.360_0.322_0.281_.0.249_0.239 

0.239L:E_LO. 226 
0.526_._..0.445 0.37.3__.0.323_ 0.290 0.252 .0.233 0.222 
0.526 0.429 	0..360 .0.3101-10.27.6 -_--s--__0.245=;-_0.226:1: 0.219_ 

0.502 A0.415 0.348 0.296 0.260 1 0.226 ;-0.205 0.190 

1.7- 
- 2.0 
2.2 
2.5 
2.8 
3.1 

4.5 
4.8 .  
5.1 
5.3 
5.6 

- 5.9 
6.3 

- _ 6.6 - 
7.0_ 
7.3 
8.0 
8.7 
9.4 

10.1 
11.5--
12.9 
-15.7-
18.5 
21.4 
94.2 
27.0 
29.8 
.32.6 
-34.8 
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CATHODE GROUP II 

SOLUTION NO. 	2 

SCHMIDT NO. 2500: 

DIAMETER RATIO 2 

Table 7.5-4. Stanton number ( X 104) downstream of a sudden  
enlargement in a circular pipe with the point  
of measurement in the middle of a large active 
zone. 
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PART III  

COMPUTATIONAL ASPECTS  

Chapter 8: Computational aspects.  
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Chapter 8  

Computational aspects  

This chapter, to a large extent, is an appendix 

to chapter 3: it presents in a computer 

language what chapter 3 presented in a 

mathematical language — namely, a numerical 

procedure for general, steady, two-dimensional 

flowS. 	But this chapter also has something 

more to present. 	It is exclusively devoted 	to 

the description of a particular Computer 

Programme. 	Because this Computer Programme 

deals with a particular problem, it incorporates 

some additional relevant information. The 

problem described is that of the turbulent flow 

in the sudden enlargement of a circular pipe. 

Thus, in the context of this problem, the 

boundary conditions of section 2.5, the 

turbulence model of section 4.1, and the Couette 

flow model of section 4.2, are also described in 

this chapter. 

• 

8.1 Introduction  

The main purpose of this chapter is to provide a 

prepared foundation upon which the prospective users may 

assemble their super-structure to programme problems 

similar to the one described here. The problem described 

is the same as the one described in section 5.2-2: that 

of the turbulent flow downstream of a sudden enlargement 

in a circular pipe. 
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The notation of the Computer Programme is derived 

from the notations of chapter 3, which describes the 

numerical procedure,of chapter 4, which describes a model 

of turbulence and a model of the Couette-flow, and of 

chapter 5 which describes the problem of sudden enlargement. 

The important FORTRAN symbols are listed and explained in 

section 8.3; adequate comment-cards have been inserted in 

the Programme-Listing to make it self-explanatory. Similar 

programmes have been described in detail by Runchal and 

Wolfshtein (1967) and Gosman et al. (1968). 

The Computer Programme is written in FORTRAN IV and 

has been run on the Imperial College IBM 7090, IBM 7094 II, 

and the University College IBM 360 computers. 

8.2 A listing of the Computer Programme: 'ANSWER'  

This section presents a listing of a Computer programme 

which, with minor changes, was used for all computations 

concerning the sudden-enlargement problem of section 5.2. 

Computer-control statements have been removed from the listing. 

The subroutines appear in the order of the calling statements 

in the main subroutine named 'ANSWER', which is the 

coordinating subroutine for the Programme. 	The listing of 

each individual subroutine is preceded by a brief statement 

about its function. 
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C******************************-***************************************** 

c;;-*** 	BLOCK DATA  

SUBROUTINE FOR THE FEED—IN OF NUMERICAL DATA AND INDICES FOR 
CONTROL AND EXECUTION OF THE PROGRAMME 	7: 	fl:- T--7-- 

c****-i**********************************************44#-***************** 

BLOCK DATA 	: 
COMMON/CNUMBR/NW.NF*NH*NK9NMU,NLING1*NG2*IEsIV 

INIJN*IN1*JN1*X1(4I),X2(41)*R(41) 
ROREF*ZMUREF*CMU,CDICDE,RKJIPRH,SL*PR(9) 
NMAX$NPRINT,IP•CC.RSDU(9)  
RE*GM*PLEN*PRAD*JNOZ*DRATIO 

2/CWALLB/ TI,OS,TS(41).*ST(41) 	- 
C****1 

	

	INDICES FOR THE DEPENDENT VARIABLES 
DATA NW*NF*NHiNK.IE/1921413i4/ 

C****1 	DATA FOR CONTROL OF ITERATION—CYCLE 
*NMAX,CC/120,.0050/RSO0/9*0.0/ 	_ 

C****1 	DATA FOR CONTROL OF PRINT—OUT 	RESULTS FROM IP SUCCESSIVE 
ITERATIONSSHALLBE-: PRINTED OUT-AFTER . FTER EVERY NPRI 	 ITERATIONSNT  

3 	IIPINPRINT/1.100/ 
• C****1__ 	 OF-.  

4 	,CMU,CD*CDE*RKJ/.200,.313*.131.23•3/ 
C****1 ------ DATA FOR GR I D D I S TR I BUT I ON - 	- 

5 

	

	*IN*JN/21915/ IDRATIO/2.0/1 PLEN/12.0/ 
DATA . FOR FLOWPROPERTIESANDPARAMETERS7if 

6 	*GM*ROREF*ZMUREF/1.0*1.0,0.01/ +RE/100000./ 
7 	*PR/9*1•0/4PRU4Y/0•7_/*PRH/1:.0/TI/1.*04 -  —  
END 

       

• 

      

- 

C**** 1 
C****2 

2/CGRID / 
2/CPROP / 
2/CGEN / 
2/CFLOW / 

c*********************************************************************** 
C**** 	ANSWER  
C****1 	COORD I NAT I NG= SUBROUT I NE1-FOR  -CONTROLTh 	NPUT + I TER AT ION 

C****2 	PROCEDURE AND PRINT—OUT 
c*********************************************************************** 

— 	- 	- 	- 	- - — 
DOUBLE PRECISION ANAME(6* 8)*ASYMBL( 6)1ASIMBL(12),ATITLE(18) 
DIMENSIOWA(410-.418) 
COMMON/CNUMBR/NWoNF*NHINK*NMUINL*NG1*NG2IIE,IV 

---2/CGR1D ./INI-JN*=INto....NLIX.1(4t),X2(41)R(41 7  
2/CCOEFF/ CWF(41),CEF(41)*CSF(41),CNF(41)  
:2/CCOEFK/78W“41BEI.(4T)-IBS1-(411)*BN041)377 --
2/CPROP / ROREFiZMUREF.CMU.CD.CDEsRKJ.PRHISLIPR(9) 
2/CGEN / NMAX.NPRINT,IP,CC.RSDU(9) 
2/CFLOW / RE,GM.PLEN,PRAD,JNOZ,DRATIO 
2/CWALLA/ DP(41)0TAU(41)*RCC41Y*RK(4QKC41TAU2(41
;?/CWALLB/ TI•OS,TS(41)+ST(41) 

==C****1 	ENSURE --THATTHE'DIMENSIONS OF THE ARRAYS A ( N1 • N2 • N3 
C****2 	ANAME(611N3) CORRESPOND WITH THE FOLLOWING DATA CARD 

DA TA N1 N2* N3/41941 * 8/     
C****1 	INDICES FOR THE STORAGE OF VARIABLES AND PROGRAMME CONTROL 
— — 

JN1=JN-1 

\Ai hk, 	r'rirrIc 
VIS/L4  • 
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NG1=IE+1 
NG2=NG1+1 
NMU=NG2+1 

_NL=NMU+1.  
IV=NL 

	

- C**** I 	READ-IN7jHETITLEOF:-THEPROBLEM'BEING SOLVED 
READ(5 ,200) ATITLE 

	

C4***1 	READ7IN THEALPHAMERJC_NAMES;ANDSYMBOLS - FORVARIABLES:7- 
READ(5 ,200)ANAME*ASYMBL*ASIMBL - 
WRITE (6,301) ATITLE :  
WRITE(60310 ) (K*(ANAME(Ce-K)+L=1+6) ,K=11 IE) 

7:CALL 
CALL 	IN I T 	( N1 *N2*N3*A ) 
WRITE ( 6 * 103 	 K ) K =71-16 ) 
N I TER=0 

1 	CONTINUE 
N I TER=N I TER+1 _ 
CALL 	EQN 	NI*N2IN.3 , A) 

- 	IF( (NIT ER+NPR INT- I P-) /NPR I NT.EQ .N I TER/NPR INT ) 
--- 

2CALL 	PRINT 	( N1* N29N3•A ANAME• IN 9..)N 
WR I TE 6 104 )N I TER *RE RSDU ( K ) • K=1--, 	)-- 	 
IF(NITER.EQ.NMAX) GO TO 8 
R E S = 0 •  
DO 7 t<=101E 
I F ( ABS ( RES )4: LT ABS(  RSDU ( K ) )1'  RES=PSDU ( K ) 	- 
RSDU(K ) =O. 

.-AF(ABS(RES).-GT.CC.-OR.NITER.LE.5)------G0'70 1_ 	 
***1 	ITERATION LOOP ENDS 

:TE7G0 TO 
WRITE(6,106) NITER 

r: CONTINUE 
C**** 	FINAL PRINT OUT OF VARIABLES IN THE FIELD 

CALL77-77PRINT- (N1-9- NagN34A,ANAME*IN74JN:.*17: 	IV - ) 
CALCULATION AND PRINT-OUT OF SHEAR STRESS*STANTON NUM ER ETC. - 

WRITE(61116)-- .- (ASIMBL(1.)*I=1, 12) 
DO 77 1=2 , 1N1 
TRATI 0= (A ( I JNI *NH) -TS ( I ) )/(T I-TS( I ) )27: 
ST(I)=ST(I)*RK(I)*A(I*JN1*NG1)*TRATIO/RC ( I)/GM 

- Z=2.*X1(I)/PRAD 
WRITE( 61117 ) OK( I) %DP( )*TAU( I )*RC (I) *R0 I ),ST -( I ) *TS( I )1Z, I 

77 	C ONT I NUE : 
STOP 

103 :FORMAT(6H1NIJER*5X*9(3X ,A6* -1X)//) 
104 	FORMAT(1H .14.5X*9(1PE12.3)) 
106 	FORMAT (32HOTHEI.pROCESS DID:NOTCONVERGEINtIB*13H 	ITERATIONS) 
116 	FORMAT(1H1011(.3XIA6 ,2X)) 
117 	.FORMAT(JHO*IP8E110.3_,I5) 
200 -- FORMAT( 6A6) 
301:- FORMAT(IH124Xs75HFINITE-DIFFERENCEITERATIVESOLUTIOWASUNDERCON 

2SIDERATION FOR THE CASE OF/ 25X175H 	  
2 	 //'1X*15A6//// 
3 	 46H THE DEPENDENT VARIABLES  BEING  CONSIDERED ARE,) 
FORMAT(1HO:-9X*111316A6)-77_: 	 _ 
END 

C***-X- 
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c.,-********************************************************************** 
C***ic- GR I D 	- 	- 	- -  - 	r7- 	- 	: 	- 
C****1 	SUBROUTINE FOR THE CALCULATIONS REGARDING THE GRI D-SYSTEM 
c*********************************************************************7,  

EMI ( 41 )9BE l(41)-,BS1 (41 )-, BN1( 41 ) 
ROREF • ZMUREF • CMU•CD,CDE,RKJ_,pRH • SL *PR ( 9) 
REIGM9PLEN • PRAD • JNOZ • DRAT I 0 
Y THE -:CONSTANTS FOR 	Di,_ISRAC-1 NG INLD I RECT1 	_ 

DATA Cl 9 C2/0 • 0  I r.45/ 
c****1 	CALCULATE THE: RAD / US- 0 THE-_--P I PE 	 -  

PRAD=0 5*RE*ZMUREF/GM 
C****1 	COORD NATES FOR D I RECT I ON-1 

DO 10 I =1 • I N 

	

0 	X1 ( I) =FLOAT (:1.--1) /FLOAT ( I NI ) 
DO 12 I=1•IN 
:Z=C1+C2*X1(I-) 

	

_ 	_ _ 
12 	X1 (I )=TAN(Z) 

 	Z=X1 (1 ) 	 
DO 13 1=1 •IN 

13 	( 1 )= (Xi ( I ) -Z ) / ( X1 ( N ) -Z ) *PLEN*PRADL_= -- 
C**** I 	COORDINATES_

... 
FOP-  D I RECT I ON-2  

R(1)=0. 	_ 
READ ( 5. 107 ) ---(X2(J)sJ=19...N ) 

• DO 15 J=2 • JN 
 

IF(ABS(X2(J)-X2(JN)/DRATIO).LT.1.E-5) JNOZ=J 
7(2( J ) =X2 t J ) 	_ 	 

15 	P(J)=X2(J) 
CALCULATIONS-=OF GEOMETR I CAL7COEFF I.CIENTSJ Nis:LAPLACJANTERMS 

DO 21 I =2 • INI 
DX1=2. /( X1(1+1)Xi( 
CWF ( I ) =DX1/ ( Xi ( ) -X1 ( I •=1-  ) ) /ROREF - 
CEF ( I ) =0X1/ ( X IJ1+1)-X1 ('1) )/ROREF 

	

OW) ( I)=DX 1 / ( 	( I ) --X 1 ( I -1 ) ) 

	

-716E1 ( I ) =DXI/ ( 	(I) )_ 	  
DO 22 J=29JN1 

SUBROUTINE GRID 
COMMON/CNUMBP/NWINF,NH•NKINMUINLING1,NG2,1E 

2/CGRID -/- 
2/CCOEFF/ 
2/CCOEFK/- 
2/CPROP / 
2/CFLOW / 

C* ***I 	SPECIE 

INfiJN1-.-X1-(41 ) 9X2(41 ) •R (41 ) 
CWF ( 41.) • CEff.( 41 ) ,CSF ( 41 )*CNF ( 

• - 	.• 

- DX2=1./ ( X2 ( 3 4- )-X2( J-1 ) ) 
Z2F=DX2*4.*R ( J ) /ROREF 
CSF( J ) =Z2F/ ( X2 ( J ) -X2 ( J:71-)_)/ CR(J-1 )+R(J ) )___ _ 
CNF( J)=Z2F/( X2 (J+1) -X2 (J ) ) /(R ( J+1 )+R(J) ) 

_ _ _ 	( ) = (1 .+R (-J-1) /R CJ YT/ (- X2JJ+1.TX2 ( 	WI X2 (-- (2 	YY; 

22 
 

BN1 ( J)= ( 1 .+R( J+1 ) /R ( J) )/(X2(J+1 )-X2 (J-1 ) )/(X2(J+1 )-X2(J) ) 
-WRITE( 6'101 ) (X1 ( I ) • 1=11 IN - ) 	

 

DO 33 I =1 • I N 

33- 	WRITE( 6•111 )X 
- WR I TE ( 6.-102 )--( X2 (-J ),7J=T4-JN 
DO 34 J=1•JN 
X=X2(J)/X2(JN)1_ 

34 
	WRITE(69111)X 

RETURN 	 -- 

101 
	FORMAT(25H1DISTANCES IN DIRECTION-1/(111i 4E25.8)) 

102 
	

FORMAT(25H1DISTANCESIN-DIRECTION2/(1H 4E25.8)) 
'107 
	FORMAT(6F10.0) 

111 
	FORMATtIH 1E12.4 

END 
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c********************************************3(-********- -***************4 
- 	- - - 	----------- - 

C**** 	INIT 
C**** 1 	SUBROUT I NE FOR 	N IT I ALI S-AT I ON-  OFT:THE;'PROGRAMME.ILAND- 

n -" SPECIFICATION OF THE FIXED BOUNDARY CONDITIONS 
c*******************.**.********************************4***********'ki 

SUBROUTINE INIT 	(N1.N2oN3•A) 
D I MENS I ON - A ( 	N2, N3 ) 	 _ 
COMMON/CNUMBR/NW,NF • NH • NK ioNMU NL NG1•NG211E9 IV 

2/CGRID /— INtJNs-- INI•JN1sX1 (41 ) oX2(41 
2/CPROP / ROREF ZmUREF • CMU • CD • CDE • RKJ*PRH • SL • PR ( 9) 
2/CFLOW. 	RE4GM t-PLEN-q-PRAD • JNOZ • DRAT I 0 
2/CWALLA/ DP ( 41 ) • TAU ( 41 ) • RC (41 ) IRK ( 41 )•OK (41 ) TAU2 ( 41 ) 
2/CWALLB/ T I • QSs TS (41 )1ST ( 41 ) 

C****1 	CALCULATION OF SOME TURBULENCE PARAMETERS 
PR ( NK ) =CMU/CDE 
PRR=PRH/PR ( NH ) 
SL=9 • 24* ( 	 cp*cmu*FRR )**=(-----., 25 	 — 

C****1 	SET VALUES IN STORE TO ZERO 
-DO 30.K=1 •N3 	_ 	_ 	--- 

DO 30 J=1 • JN 
DO 30 I =1 • IN = =---- 

30 	A( I oJsK)=0.0 
SET TEMPERATUREI N±-=-THE-F-IELD,JEQUALTO-TI 	TEMPERATURE-_i__ 

DO 10 J=1 JN 
DO 10 I=1 'IN 

10 	A( I tJoNH)=TI 
CALL 	LENGTH ( N1 • N2 • N3. A ) 

c****1 	BOUNDARY CONDITIONS AT INLET 

1=1 
- 	-DO 20-  J=1 ••:JNOZ _ 

A( I•J•NG1 )=GZ 
A( IsJo 	) =0.5*GZ* (R ( )*R ( J) R(JNOZ )*R (JNOZ ) 
A ( I • J•NK)=0 • 004*GZ*GZ/ROREF/ROREF 
A( I•Jo NMU ) =CMU*A ( J1 NL *SORT..(  A ( --LIJ • NK )--) *ROREF 

20 	CONTINUE 
,C****1 = BOUNDARY CONDITIONS- ATTHE--1-AXI SiC/F7.-1-SYMMETRY  	 

DO 40  1=1 • IN 
_   40 	At I • 1INF)=A( I • 1 INF) 

C****1 	INITIAL CONDITIONS IN THE FIELD 
DO 60 J=1 • 	 -  — -- 
DO 60 1=291N1 
A( I•J•NW)='!A ( 10J-9-NW ) 	 _______ 
A( I sJINF)=A( 1•J•NF) 

- A( I.J•NK)=A(1•JoNK)-- — - ----- 
A( IvJeNG1 )=A(1•JING1) 
A( IsJ• NMU ) =CMU*A ( IsJo NL ) *SORT ( A:( I• J •• NK ) )*ROREF_ -_=-= 

60 	CONTINUE
.. 

 
C****1 	BOUNDARY - CONDI T I ONS AT - OUTLET_ __ 

0=0.03 
RO=R ( JN )  
GO=0.5*GM*( 1 . +0 )* ( 2 o +0 ) /R0**0 
I=IN --
4(1, 1 • NG1 ) =GO*R0**0 
A(Io1,NW)=A(IA1iNG1)*Q*(1.-0)/RO/RO/ROREF_ 
A(IgIoNK)=0.010*GM*GM/ROREF/ROREF 
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A ( I•J4NGI )=GO*Y**() 
-A ( I • J4NW ) =A ( I J iNG1) *Q/Y/ROREF/R ( J ) 
A( I•JINF)=A( I4J4NG1 )*Y/(1.4.a) *(Y*(1e+Q)/(2.+0) —R0) 
A( I•JINK)=A( 141 eNK) 

70 	CONTINUE 
A( I4JN4NW)=A( I 4JNI*NW)==_ - 
DO 80 J=14iN1 

80 	A ( I 4J4NMU ) =CMU*A ( 4J4NL )*SORT ( A ( I 4,14NK ) )*ROPEF 
C****1 	INITI AL—COND I T I ONS-  FOR WALL SHEARSTRESSES AND TEMPERATURE 

798 

DO 798 =1 • 41 	- 	- 
TAU( I ) =0 . 	 - 

TAU2 ( I ) =0 • 
TS ( ) =O. 
RETURN - 
END 

	 c*********************************************************,************** 
C**** 	LENGTH  

SUBROUT-INEFORCALCULATION-OFTHE.LENGTHSCALE:10F TURBULENCE 
*************** **** ********************************** 

SUBROUTINE LENGTH ,.:( N14N2_4N3.4A 	 - 
DIMENSION A(N14N24N3) 
COMMON/CNUMBR/NW, NF • NHt NK +MAU NL NG14NG24I E IV 

2/CGRID / INIJNIIN14,1N14X1(41)4X2(41)4R(41) 
2/CFLOW / RE4GM4PLEN4PRADJNOZ4DRATI 

C****1 	CALCULATE THE TYPICAL  TURBULENCE  LENGTH SCALE 
RN=PRAD/DRAT-10---  ---------- 
XL1=5•50*RN 
XL2= 16* 0*RN - 
ZLMAX=RN 
DO 10 J=1 s 

IF(X2(J)—XI.) 1 4 242 
f..A(Isj4NL)=00*RN---77 	 

. •-••••_ 

DO 10 I=14IN 
A ( I 	NL ) = ( X2(JN)--=X2 ( 
IF(X1(I)•LT•A(I ,JINL)•AND•J•GE•JNOZ) A(I,J,NL)=X1(I) 
IF(X2(3)•GT.;RN*1- •9)-:7-G0::70 .91. 
X1=0. 
F ( X1 ( I ) •LT •XL2)-- X I =RN* ( -1-•—X1 I//-XL2.)=.1 

GO TO 11 
	 2 	ZL =0 .090*X1 ( I ) 

I F ( X1 ( I ) • GT • XL1 ) ZL= • 090*XL1 —+ • 180* ( X1 ( I ) —XL1 ) 
IF ( ZL•GT•ZLMAX )- ZL=ZLMAX 
A( I4JeNL)=2**A( I.J•NL) 

IeJoNL) 	• • GT ZL) -A( I4J4NL)=ZL --  
IF(X1(I)•LE•8•*RN) A(I•JINL)=ZL 
IF(A( I4J4NL).LT•A(1•14NL)) A( I •-,./4NL)=A( 1 o14NL-)--  
GO TO 11 
CONTINUE 	 _ 	- 
A ( I tJoNL)r--2•*A( I4J4NL) 
CONTINUE 

10 CONTINUE 
RETURN 	 
END 



CALCULATION OF OTHER VARIABLES 

-1:::C****1-1•• CALCULATIONOELEVORTICIT 
C**** 

JN2=JN —2 
DO 51 J=29JN2 
DO -51 1=3+ 
Z=A( I •JsNVJ) 

- CALL 	EQVORT ( NI + N2 • N3 + At J 
(A( I +J.NW)0E(D•0•) A ( I.J•NW )=• 00001 

RS=1.--Z/A( I ...),NW) 
51 	IF(ABS(RS).GT.ABS(RSDU(NW)))RSDU(NW)=RS 

- 	• 	- 

C**** 	- - 7 - z , 	==z 

IF(IE.LE.2) GO TO 72 
- DO 71 K=3.IE -7--

DO 53 J=2+JNI 

C**** 
C**** 

1.60. 

c***************************************************************-******** 
C**** 	EON 
c***-* I 	SUBROUTINE FOR SOLUTION OF THEDIFFERENCE EQUATIONS - -7_ - 
c*********************************************************************** 

SUBROUTINE EON 	-ANI.N24N3+A) .- 
DIMENSION A(N1+N2+N3) 

- COMMON/CNUMBR/NW.NHNKIMMU.NL4NG1oNG2+IE•IV_ 
2/CGRID 7 IN+JN• INI IJNI .X1 (41 ) •X2( 41 ) +R (41 ) 
2/CCOEFF/ CWF ( 41 ) • CF.F ( 41) • CSF. ( 41 ) + CNF ( 41)_- . . 
2/CPROP / ROREF.ZMUREF+CMUICD.CDE.RKJ.PRHISLoPR(9)

o/ NMAX.NPRINT.IP•ICC,RSDU(9)f' 

—cALcULATIONOSTREAM—FUNCTION- 

DO 52 J=2 +JNI 
DO 52 I=3•1N1 

--2=A( I •J.NF 	_77  
S GMA=CWF ( I- )+CEF( I )4-CSF (-J )+CNF1 
IF (51GMA.E0.0*-- )T4SIGMA=4.90001  
A( I+JINF)=CA(1-1.3•NF)*CWF( I )+A( I+1.JeNF)*CEF( I) 

.±±:±7-+A (174J-17r NF ) *CSF(J ).+A 	 J )  
.3 

	

	 +A( I +J•NW)*R (J)*R(J) )/SIGMA 
IF ( A( I +J+NE).E0•0* )F.A( I 1:J+NF )= -•00001L__,  
RS=1 	( I /J. Nr) 

52 	--IF(ABS(RS) ,,GT.ABS(RSDUINFMRSDU(NFT)=RS= 
C**** 
C****1= CALCULATfON7f0F7MASSVELOCITIES 
C**** 

00 50 J=2 •-..)N  
H2r-(X2(J)-X2fJA)4-7CJ+1f:=X2) 

-- -=RX2=R(J)*(X2(J+171X2(4771-:)) -- 
DO 50 I=2 + IN I 

	 HI= ( 	( I-1 ) XI ( I ff./ ( X1 ( I +1') —X1 ( ) 	 
RXI=R(J)*(X1 ( 1+1 )—X1 ( I-1)) 
A( 	• J+NG1 )=( A( I •J+1 +NF )—A I 1J_INF) )*H2=+( A( I +J.F 	 1—  N)—A( +J-1.NF) )/2 - 	_   	 - 	  
A(I.J.NG1)=A(I.J.NG1)/RX2 

— A( I•J+NG2)=(A( I+1*J•NF)—A( I•J+NF))*H1 +(A( I•J*NF)—A( I-1_,J+NF))/H1 
50 	A( I •J•NG2 )=A( I .J.NG2)/RX1 

DELR=R ( 2)—R ( 1 )-- 
DO 20 1=2+ IN 

-20 --'A(   I+ 1*NG1- )=2**( A ( I9-2 • NF)=-A-( -.11 •NF ) ) /DELR/DELR — 
c**** 
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DO 53 I =2 I N I 
Z=A( I •J•K ) _ 	- 
CALL 	EQPHI 	(N1 oN29N39A,  I 	K) 
IF( A( I 	K).E0•0*)__A( I9-1 1 
RS=1.—Z/A(I,J,K ) 

531F(ABS(RS).GT-4BIR ASSDU(KIY)SDU(K)-=Ra - 	 -- R 
71 	CONTINUE 
72 --CONTINUE_ 
C**** 
C****1 	CALCULATION OF -EFFECT I VE—  V I SCOS I Ty 771 
C**** 

DO 60 I=2,IN1 
o4(I4-34NMU)-=CMY*A(T-17joNL)*SCIRT(A 4- NK1-)*ROREF 
CALL 	BOUND 	(N1IN2,N3,A) 
RETURN 
END 

6********************************************************************** 
c#*** 
C****1 	SUBROUTINE FOR THE SOLUTION OF THE VORTICITY EQUATION 
C********************************************************************** 

SUBROUTINE EQVORT (N1,1\12,N3sAvIo3) 
DIMENSION  
COMMON/CNUMBR/NW,NF,NH,N6NMU,NL,NG1oNG2tIE,IV 
2/CGRID /1NeJNIN1,JNI...1(41- ),X214WR41_) 
2/CCOEFK/ BW1(41),BE1(41),BS1(41),BN1(41) 
DV=R(J)*(Xl(I+1)—X1(I-1))*(X2L1+11—X2(J-1)1*2. 
G1PW= A(J+3+1INF)—A(I,J-1•NF)+A(1-11J+1,NF)—A(I-1 '3-1*NF) 
G1PE= A(I,J+1,NF)—A(11J-1*NF)+A(1+1,J+1•NF)--A(I+1 
G2PS= A(1-1•JINF)—A(I+1,JoNF)+A(1-1,J-1,NF)—A(I+1 +3-1,NF) 

— G2PN= 	 I 	13+:14, NF),  
AW=(ABS(G1PW)+G1PW)/DV 
AE=(ABS(G1PE)—G1PE)/DV 
AS=(ABS(G2PS)+G2PS)/DV 
AN=(ABS(G2PN).--G2PN)/DV 
RSQ=R(J)*R(J) 
12,S=BS1(J)*R(-317)*R(J71yRSQ: 
BN=BN1 ( J) *R(J+1-)*R CJ+1)/RSO 

_±=CW=AWi+BW1 ( I )*A( I —14J*NMU) — ----_--
CE=AE +BE 1 ( I ) *A ( I +1•J, NMU ) 
CS= AS +BS 	( J1 +.NMU ) 
CN=AN—+BN ----*A( I -IJ+ I ,NMU ) 

r-SIGMA=AW+AE+AS+AN+JBWICIl+BE1J.I)+BS+BN)*A4,NNly1= 
IF(SIGMA.EQ.0.) RETURN  
A(I,J4NW)=(A(I71•=j7NW)*CW7+A(I+1,-.),NW)*CE"7_ 

+A(I,J-1,NW)*CS +A(I,J+1.NW)*CN)/SIGMA 
RETURN'.  
END 
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c**********************************************************************  
C**** - EQPH I-  
C****1 	SUBROUTINE FOR SOLUTION OF 'OTHER VARIABLES(PHI)' EQUATION 
c********************************************************************** 

SUBROUTINE EQPHI (N1oN2eN3vAvI1J1K) 	- 
DIMENSION -,A(N1_vN24N377-7-7 	==''- 
COMMON/CNUMBR/NW,NF,NH,NK,NMUINL,NG1,NG2vIEvIV 

2/CGRID /-ANv-jNviNlv-JN11X1-(41-)vX2(41-)4 R(41 -)  
2/CCOEFK/ BW1(41),BE1(41),BS1(41),BN1 ( 41) 
2/CPROP / ROREFtZMUREF,CMU -41CDvCDEvRKJIPRHISL4PR (9)  
IF(K.NE.NK) GO TO 2 

C ****1: SOURCE TERMS7FORKINETICTENERGYOFTJURBULENCE: 
--DX1=X1(1+1)-X1(F-1) 	- 
----7DX2=X2(J+1)-X2(-J-1) 
ROR=ROREF*R(J) 

:-:7DF=A(I+1,J+1,NE)=A(-1+1,J=1,NF)-A(11 1J+1-4 NFI-fA ( 1-1NF): 
DG1X=DF/DX1/DX2 

-.:.;_:Z=.(A(I,J+1,NF)-7A(7-71NF))/.(X2( J+1--1-X2(J))=:T,_ 
DG1R=2.1*(Z-(A(IIJINF)-A(1,J-1'NF))/( X2( J)-X2( J-1)))/DX2-A ( I,J,NG1)  

_.J2-(A(I,J.Nr)-A(1-14JANFT)/1X1(I)-XW-7.1).):7 -

DG2X=2.*(Z-(A(1+1,J1NF)-A(IvJoNF))/(X1 ( 1+1)-X1 ( I)))/DX 1  

DG=DG1R+DG2X 
:?SOURCE=12i-*IDGTX*DG1X+DG2R*DG2R-1-+DG*DGANMUT/ROR/ROR   	
ZQ=CD*SORT(A(I,J,NK))/A(I,J 1 NL)*ROREF 

C**** 
	 - 7 

C****1 	THE DIFFERENCE EQUATION FOR 'PHI' 
,C**** 	 -  - - 
I 	CONTINUE 

DV-R(J)(X1( 	171) )*(X2 (J+1-)-X2 (J-1) )*2e - 
G1PW= A(I,J+11NF) 	-1,NF)+A(I -19J+1,NF) -A(I -1,J -1,0NF) 
G1PE= -A( I 9-J+1-viNF)--A ( I9J-1-,NF)+A( I+1-0J+19NF) A(1+1 9J-IoNF)_ 	 
G2PS= A( I-1 ,J9NF) -A ( I+1,J,NF)+A( I -19J-1 vNF)-A( I+1 1J-1•NF) 
G2PN= A( I -14Jv NF) -A ( 1+11 JsNF)  +A (1_-19J+19NF_)-1A  ( I+1 • .1+ 1 • NF 	 
AW = ( ABS ( G1PW ) +G1PW ) /DV 

- 71AE=(ABS(G1PEG1PEI/DV 
AS=(ABS(G2PS)+G2PS)/DV 

'tt_AN=(ABS(G2PN)-G2PN)/DV7:-- 	- 
-CW=AW +BW1(I)*(A(1-1+JoNMU)+A(1,JsNMU))*•5/PR( K) 
=CE=AE -:+BEI)*( A -I.+1J$NMU)+NNIU-)-j*...5/PR( K) 	 
CS=AS +BSI(J)*(A(I$J-1,NMU)+A ( IvJoNMU))**5/PR ( K) 

7 7 

	-CN=AN +BN1(-J)-*A1-1-*.J4-.1Li.NMQ)+ANMUTT'*4-5/PRCK)-  --
SIGMA=CW+CB*CN+CS+ZQ 
IF(SIGMA.E0.0.-1 RETURN 	 --- 

A(I+J,  K)=(A(1-1,J1 K)*CW +A(I+11J1 K)*CE 
2 	 +A ( tJ+1+ K) *CS-7+A ( I J+1,-- v_± K) *CN +SOURCE )  /SIGMA 

A(1,J., K)=0. 
RETURN 

- SOURCE=0. 
ZO=0* 
GO TO 1 	 
END -- 



DO 1_7-_:-i--J=24JNOZMI_____ 
CALL 	EOVORT (NI IN2,N31A, I oJ) 

I =2 
= NOZZLE REGIONONL 
JNOZM1=JNOZ-1 

163. 

c*********************************************************************** 
C**** 	BOUND 	_ 	- 	- 	- - - 	_ - _ - 
C*-**I 	SUBROUTINE FOR CALCULATION OF VARIABLE BOUNDARY CONDITIONS 
c*********************************************************************** 

SUBROUTINE BOUND 	( N1 N2 ,N3 A ) 
DIMENSION A(N1 ,N24N3 ) 	_ 
COMMON/CNUMBR/NW-INFINKONKiNMU4'NLoNGroNG2-9-IE4 IV 

2/CGR D:r:/:-±IN 	oIN 1 orjN t 4X1 (41 ) X2( 41-)H,R(_40 
2/CCOEFF/-CWF(41)4CEF (41 ) ,CSF (44) o cNr ( 41 ) 
2/CPPOP / POREF o ZMUREF1CMU CD CDE4RKJ PRH SL +PR ( 9 ) 
2/CFLOW / PE • GM1PLEN • PRAD o JNOZ o DRAT IQ 
2/CWALLA/:DP_(4WTAY(.41)4RC(41)4RK(41_)-,OK(41J:4TAU2(41) 
2/CWALLB/-T I -4QS-41-S ( 	)1ST ( 41 )- 

C****1 - I NLET-  BOUNDARY 
C**** - 

	 :tCALL EOSTPNCMI,N2IN3,A9I9J)==_ 
C**** 	FOR THE -NODE-AGAINST THE NOZZLE 

Al =(CWF(I)+CEFCII+CSF(J)+CNF(J))-*A( F,JoNF) 
--AZ 	( A ( I --1 -os-J•NF_ )*CWF(-I ) +A ( I +14-J1 NF )*CEF 	- 	_ 
2 	+A ( I oJ- I NF ) *CSF ( J )+A ( I I J-1-19NF ) *CNF ( J ) ) 

- 	A( I •JoNW)=(Al-A2)/R(j)/R(J) _ 
C**** 	STEP-WALL REGION 

__ JNOZPI=JNOZ+1 
 	YC =X1 ( I ) 

DX1-X1( 11-1-)"X1 
DO 11 J=JNOZP14-JN1 

-,DTAU= A ( 	NMUT*A ( /4 --J4NW )*R(J)--,TAP2(JJ )77 	 

DPDX=DTAU/DX1 
spRTK=SORT (A( I*J. NK ) ) ------ 
RKZ=ROREF*YC*SORTK/ZMUREF 
PST=DPDX*YC/SQRTK/A ( I tJING2 ) 
Z=A( I,J4NW)*YC*R(J) 

- ZS T= CMU*Z*Z/ A ( 	NK ) 
CA LL 	WALL 	( NH .ZST ,PSToRKZ4QKZ4SSRK4SHRK ) 
AU2(J) -5SRK*A(I;_Jo NG2 ) (DRTK:-_ 	 

A( Is.),  NW ) = ('DPDX*Y c+T AU2 ( ) ) /A ( I oJo NMU ) /R ( J ) 
( 	o NK 	)*A-(141K 

A ( 1•J o NMU ) =- 5*QKZ*A ( I *Jo NMU ) 
( 	J•NH )=A ( 21IJ • NH 

11 	CALL 	EQSTRM ( NloN2 N31 A 4 I 9J ) 

	

-c****f 	AXIS OF SYMMETRY 
7-1=7 	_= C**** _ 

DO 51 I=1 +IN 
- A ( I 4 I 4NW)=2.*( A( III 4NG1)-A( I o2ING1))/R( 2 )/R(2 
IF(A( I o 1INW).LT.O.) A( IolINW)=0. 
A( I. I 1NK)=A( Iv 2 9NK)-7____ 
A ( I 41 4NH ) =A ( I 2 'NH) - — 

51. CONTINUE 
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--- SIGMA=CW.(I)i-cEF(I)+CSF(U).-1-CNF(J)=,  
--IF(SIGMA.E0.00-)-  SIGMA:i...00001 
:A(19J,NF)=(AC 1-1,J*NF )*CWF (1)+A( I+1 iJiNF )*CEF(1 ) 
2 	- 	(Ts .J-19NF ) -Y-CSF(J)+A ( -• J+19NF ) *CNF ( J ) 

-RETURN 
END 

C**** 
C****1 	OUTLET BOUNDARY 
C **** 

DO 71 J=29JN1 
71 	A( IN9J9NH)-=ACIN1747J+NH) 	 
c**** 
C *4E* -X 1=7::  WALL:IOF:HT HLT-LPIP  	 

- VC=X2(JN)-X2(JNI)---
DX2=X2(_J-1-1)--X2(-J-1)-1-.7 
DO 31 1=29IN1 

- DTAUtl(R(._14-T1*TAUTY-1-RI*A(INMU)*AJ4NW)*.R(-1/F2-fjf, 
DP(I)=DTAU/DX2 

7SORTK=SORT(A(III_J.NK)) 
RK(1)=POREF*VC*SORTK/ZMUREF 

- pST= DP ( I ) *YC 1SORTK /A ( 	9NG1: ) 
-Z=A(19J,NW)*YC*R(J) 
ZST=CMU*Z*Z1A CFI,/ • NK 	---- -- 
-CALL 	WALL 	( NH9ZST • PST eRK (- 1 ) • OKI 9SSRK-+ SHRK ) 

.:Z.-71- AU( ) =-SSRK*A (TI-•-jt: NG1-)*SQRTK -- 
A(19J9NW)=(DP(I)*YC-TAU(I))/A(1 9J 9 NMU)/R(J) 
( I • JN+ NK ) ( 1.-QK( I ) ) *A ( I •-j •NK ) - - -- 	- 

A ( I 1 JN NMU ) =-65*QK ( I ) *A ( I • j ,NMU ) 
A(I,JN9NH)=(1-41!,-PR(NH)*SHRK/CMU)-* ( A (IIJ,NH)-TS(I):Y --FTS( 
RC(I)=A(19J9NG1)401C/ZMUREF 

( ) =SHRK- 	 
- CONTINUE 
- RETURN 
END 

, 	- - 
t*******************4**************-#4**-4$4****************A4*****4cii- 

-7C****-:=.7  EQSTRM 	 --------- 
C#***I 
	SUBROUTINE FOR STREAM-FUNCTION EQUATION 

c****************'*****************************************************-k*  
SUBROUTINE EOSTRM ( N19N29N39A9 I 9J ) 

=D I MENS I ON-  4k ( N1:9N2 • N3 ) - 
COMMON/ CNUMBR/NW,NF,NH,NK 9NMU-9NL,NG1 9NG29 I E9I V 

2/CGR I D 	IN9-JN9 JN jN1r9>.(1 (41 ).9X2(41 ) R.(A 
2/CCOEFF/ CWF ( Al )9CEF ( 41 ) 9CSF ( 41-  )9CNF ( 41 ) - 
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c********-'k************************************************************** 
c**44-* 	WALL ' 	 - . 
C****1 	SUBROUTINE FORCOUETTEFLOW CALCULATIONS NEAR A WALL 
c********************************************************************* 

SUBROUTINE WALL -(NH9ZST.RST*RK.OK9SSRK,SHRK) 
COMMON 	_ 	_ 	_ _ 	_ _ 	_ 	_ 	_ . 

- 	- 	- 	- 	- 
2/CPROP / ROREF:ZMUREF9CMU,CD*CDEIRKJ,PRH*SL*PR(9) 

c****1 	EXAMINE I F FLOW I S FULLY-TURBULENT_- 	- 
IF ( RK.LT.RKJ) GO TO 17 

C****A 	FOR FULLY TURBULENT FLOW 

RKJST=RKJ/RK 
ZCD= CD-ZST 
I F (ZCD) 11912912 

11 	QK=p er  
GO TO 13 

	

12 	OK =SORT ( 2 4. *ZCD/3 ./CDE ) _  	
13 	Z=RKJST**(-0K/(2.+0K)) 

I F(OK ) 1+1+2 
1 	z 	= RKJ-ALOG ( RKJST ) /CMU 

GO TO 3  
Z1 =2 . /CMU/QK 
Z2=RKJ+Z1 - 
Z I 1 = Z*Z2-Z1 - 
CONTINUE3  

5 	Z1=2./CMU/(2. -OK) 
Z12=(RKJ/2.-Z1)*RKJST**((2.-0K)/(2.+QK)) +Z1 

6 	SSRK=(1.-PST*ZI2)/ZI1 	- 
IF(SSRK.LT.049) SSRK:=0.--= 

- 	ZI3=PR(NH)*(ZI1 +SL*Z) 
SHRK =1./ZI3 	  
RETURN 

C**** 	- 
C****1 	FOR LAMINAR FLOW 

:-O**** 2-. 
17 	CONTINUE 

OK=1. 000 
SSRK=1./RK -PST 

-- IF(SSRK.LT.O.)SSRK0.----- 
SHRK=1./RK/PRH 

=_ RETURN 
END 	•• 

c***********************:********.***************************************,  
- PRINT 

C****I 	SUBROUTINE FOR PRINT-OUT OF-VARIABLES IN THE FIELD 
c********************************************************************wic ,  

. . 	
- SUBROUTINE PRINT--(N11N2IN3*AIANAME*IN9-JNINBEGIN,NTOTAL) 
DOUBLE PRECISION:rANAME(6.9.N3):7 
DIMENSION A(N19N29N3) . 

   C*** *1 	PR I NT-OUT'_.zSHALL_--BEf2PRODUCED FOR _A ( 19J9K ) 
C*** x 2 	I VARIES FROM 1 TO IN* J VARIES FROM 1 TO JN9 AND 
C****3 	K VAR I ES FROM_r NBEG I N .TO -NTOTAL 	 
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K=NBEGIN 
00 10 M=1*NTOTAL - 
WRITE(61- 100) (ANAME(L 4 K)OL=1,6) 
IA=IN/11 	 
DO 12 IB=loIA 
IC=(IB-1)*11-1-1 
ID=IB*11 
WRITE(6,101)(A(Tv -J*K)*-1=IC*10),j=1ijN 
WRITE(69103) (1*I=ICIID) 
IF(ID.E0.1N) GO To it 

12 
	

WRITE(6,104) 
IE=ID+1 
WRITE(6,111) (J*(4(1,J*K)11=IE*IN),J=1*JN) 
WRITE(6,113)(I4I=IEAINY 
CONTINUE 
K=K+1 

10 
	

CONTINUE 
100 	FORMAT(1H130X*21HTHE DISTRIBUTION OF__---+.bA6/.=  

231X157H 
33H0 J/4H 	 - 

101 
 

- FORMAT(1H I2,5X11P11E11.3) 
103 =FORMAT(1H0.-3X*11(9XII2))___ 
104 FORMAT(1H155X117HCONTINUED//) 
111 	FORMAT(1H 12,5X.11:110E11.3).__ 
113 	FORMAT(1H0,3X*10(9X*I2)) 

RETURN 	- -  
END 

11 

// 

c*********************************************************************** 
	C****1---DATA-FORTHET-PROGRAMME--7.- --------=======--- 
---C****2 	 FIRST 3 CARDS FOR ARRAY ATITLE* NEXT 8 CARDS FOR ARRAY ANAME* 
	C****3T: 	NEXTCARDORARRAY:::ASYMBLINEXT- CARDSFOR- ARRAyASIMBL* 

C****4 	AND LAST 3 CARDS FOR ARRAY X2  
-c*********************************************************************** 
SUDDEN ENLARGEMENT IN A PIPE *** 
RUN NO. 999 - TEST. CASE7FOR7L1STING 	 
**** 	A.K.RUNCHAL **** DATE  690128  

sn- VORTICITY COMPONENT 	 - — 
STREAM FUNCTION 
-TURBULENT KINETIC ENERGY:7---- 
MASS CONCENTRATION 

	 DIR.-1 MASS VELOCITY 
DIR.-2 MASS VELOCITY 
EFFECTIVE VISCOS1Ty.___ 
TYPICAL LENGTH SCALE ' 
RE RSVORTRSSTRMRSKINE  
OK DPDX TAUS RC RK ST 

---- TS 	Z 
.000 0.125 0.250 0.375 0.500 0.625 
.750 0.825 0.8707-_ 0.910 	 0.940 0.962 
.978 0.990 1.000 

i-.C********************************************************************* 
c****1 	END 
c*********************************************************************** 
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8.3 FORTRAN IV symbols  

FORTRAN symbol  

A(I,J,K) 

AW,AE, 

ASI AN 

BW1(I),BE1(I), 

BS1(J),BN1(J) 

Meaning 

an array containing all 

the variables (0's'G11G2' 
1 and ileff) which require 

storage over the field of 

computations. I and J refer 

to the locations in 

directions 1 and 2 respect-

ively, and K refers to the 

name of the variable. 

Subroutine/s of  
mention  

All Subroutines 

except BLOCK DATA 

and WALL 

Aw/Vp, etc. of equation 	EQPHI, 

(3.2-26) 
	

EQVORT 

2.BW  /0P  .vP 	+v1P  ))etc.of GRID,EQPHI, 
equation (3.2-27) 	EQVORT 

CC 
	

>ref of equation (3.3-7) 
	

ANSWER, 

BLOCK DATA 

CD 
	

CD of equation (4.1-7) 
	

BLOCK DATA, 

EQPHI,INIT 

WALL 

CDE 
	

C_z  of equation (4.1-5) 
	

BLOCK DATA, 

INIT,WALL 

CMU 	C of equation (4.1-6) 

CW,CE, 	Cw.EAB,etc. of equation 

CS,CN 	(3.2-25) 

CWF(I),CEF(I), CW'AB'  etc. of equation 

CSF(J),CNF(J) 	(3.2-25) for the stream- 

function 

DP(I) 	dp/dx1  of equation (4.2-4) 

DRATIO 	the diameter ratio in the 

sudden-enlargement problem  

BLOCK DATA, 

BOUND,EQN, 

INIT,WALL 

EQPHI,EQVORT 

BOUND,EQN, 

EQSTRM, GRID 

ANSWER,BOUND 

BLOCK DATA, 

GRID,INIT 
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FORTRAN symbol 	Meaning Subroutine/s of 

DV 

GM 

GZ 

GO 

I 

V 	of equation 

Gm of equation 

Gz of equation 

G0  of equation 

the subscript 

(3.2-25) 

(5.2-2) 

(5.2-2) 

(5.2-9) 

referring 

mention 

EQPHI,EQVORT 

ANSWER,BLOCK DATA 

GRID, INIT 

INIT 

INIT 

All subroutines 

IE 

IN 

IN1 

to the location of the 

corresponding variable 

in direction-1 

the total number of 

elliptic differential 

equations, of the type of 

equation (2.4-2), to be 

solved 

the total number of grid 

lines in direction-1 

IN-1 

except BLOCK DATA 

and WALL 

ANSWER, BLOCK DATA 

EQN 

ANSWER,BLOCK DATA 

BOUND, EQN, 

GRID, INIT, 

LENGTHIPRINT 

same as IN 

IP 

IV. 

J 

JN 

ANSWER, BLOCK DATA 

an index for control of 	ANSWER 

print-out 

the subscript referring to same as for I 

the location of the corres- 

ponding variable in 

direction-2 

the total number of grid 	same as for IN 

lines in direction-2 

JN-1 	 same as for IN 

the value of J at the point BOUND,GRID,INIT 

of enlargement of the pipe 

JN1 

JNOZ 

an index for control of 

print-out 
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FORTRAN symbol  Meaning 	Subroutine/s of  
mention  

 

    

K 
	

the subscript referring to ANSWER,EQN, 

any of the variables in 	EQPHI 

A(I,J,K) 

NF 
	

the index number for the 
	BLOCK DATA,BOUND, 

stream-function, 0 
	

EQN,EQPHI,EQSTRM, 

EQVORT,INIT 

NG1 

NG2 

the index number for the 

mass-velocity in 

direction-1, G1  

the index number for the 

mass-velocity in 

direction-2, G2  

ANSWER,BOUND,EQN, 

EQPHI,INIT 

ANSWER,BOUND, 

EQN,EQPHI 

NH 
	

the index number for the 
	ANSWER, BLOCK DATA 

temperature, T 
	

BOUND, INIT, 

WALL 

NITER 
	

the running number of 
	

ANSWER 

iterations 

NK 
	

the index number for the 	BLOCK:DATA,BOUND, 

kinetic energy of 
	

EQN,EQPHI,INIT 

turbulence 

NL 

NMAX 

NMU 

NPRINT 

NW 

the index number for the 

length scale of turbulence 

the maximum permissible 

number of iterations 

the index number for the 

effective viscosityl µeff  

an index number for 

control of print-out 

the index number for the 

vorticity, w/r 

P, of equation (4.2-3)  

ANSWER,EQN, 

INIT,LENGTH 

ANSWER, BLOCK DATA 

ANSWER,BOUND,EQN,. 

EQPHI,EQVORT,INIT 

ANSWER, BLOCK DATA 

BLOCK DATA,BOUND, 

EQN,EQSTRM, 

EQVORT,INIT 

BOUNDIWALL 
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FORTRAN symbol  

PLEN 	the control-volume length 

of the pipe in terms of R 

PR(K) 	51eff  of equation (2.2-3) 

Meaning 	Subroutine/s of  
mention  

R of equation (5.2-1) 

of equation (5.2-1) 

pa  of equation (4.2-4) 

q of equation (5.2-9) 

q of equation (5.2-1) 

4g of equation (5.2-1) 

r of equation (2.1-1) 

Re of equation (4.2-5) 

Re of equation (5.2-1) 

Rt of equation (4.2-5) 

RtIJ of equation (4.2-8) 

• Rt* of equation (4.2-8) 

p, the reference mass-

density 

?‘of equation (3.3-7) 

11B of equation (3.2-25) 

I1 of equation(4.2-19) 

ANSWER, GRID, 

LENGTH 

BLOCK DATA, 

INIT,WALL 

BOUND,WALL 

INIT 

ANSWER,BOUND, 

WALL 

INIT 

BOUND,EQN,EQPHI, 

EQSTRM,EQVORT, 

GRID,INIT 

ANSWER,BOUND 

ANSWER,BLOCK DATA 

GRID 

ANSWER,BOUND, 

WALL 

BLOCK DATA,WALL 

WALL 

BLOCK DATA,BOUND, 

EQN,EQPHI,INIT 

ANSWER, BLOCK DATA 

EQN 

EQN,EQPHI, 

EQSTRM,EQVORT 

INIT,WALL.  

SHRK 	St.Re/Rt  of equation (4.2-5) BOUND,WALL 

BLOCK DATA,GRID 

BLOCK DATA,EQPHI, 

INIT,WALL 

PRAD 

PRH 

PST 

Q 

QK(I) 

QS 

R(J) 

RC(I) 

RE 

RK(I) 

RKJ 

RKJST 

ROREF 

RSDU(K) 

SIGMA 

SL 
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of equation (5.2-4) TI  

of equation (5.2-1) TS  

xi  of equation (2.1-1);the 

direction-1 coordinate 

x2 of equation(2.1-1);the 

direction-2 coordinate 

FORTRAN symbol  

SOURCE.  

SSRK 

ST(I) 

TAU(I) 

TAU2(J) 

TI 

TS(I) 

X1(1) 

X2(J) 

Z11 

ZI2 

ZI 3 

ZMUREF  

INIT 

ANSWER, BOUND, 

INIT 

ANSWER,BOUND IEQN, 

EQPHI,EQVORT, 

GRID,LENGTH 

BOUND,EQN,EQPHI, 

EQVORT,GRID, 

INIT,LENGTH 

ANSWER 

WALL 

WALL 

WALL 

BLOCK DATA, 

BOUND,GRID 

Meaning 	Subroutine/s of  
mention  

So,p  of equation (3.2-23) 	EQPHI 

s.Re/Rt of equation (4.2-5) BOUND,WALL 

St of equation (5.2-1) 	ANSWER 

7 of equation (4.2-5) for ANSWER, BOUND, 

direction-1 
	

INIT 

7 of equation (4.2-5) for ANSWER, BOUND, 

direction-2 
	

INIT 

Z of equation (5.2-1) 

I1  of equation (4.2-12) 

I2 of equation (4.2-12) 

I3 of equation (4.2-17) 

µ, the reference molecular 

viscosity 
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Nomenclature  

1. Roman characters  

Equation of 
Symbol 	Meaning 	first mention  

AN'AS 	finite-difference equation 
for 0 	 (3.2-13) 

BEIEw, 	coefficients associated with the 
diffusive terms in the finite- BN' S 	difference equation for 0 	(3.2-19) 

cp 	specific heat of a fluid 	(4.2-5) 

C,C1  etc. 	constants in various equations 

successive-substitution formula C C N' S 	for 0 	 (3.2-24) 

CD 	constant associated with 
dissipation of k 	(4.1-7) 

C, 	constant associated with 
diffusion of k 	(4.1-5) 

constant associated with [It 	(4.1-6) 

mean mass transfer coefficient 	(7.2-1) gm 

G. 	component of the mass-velocity 
in the direction j 	(2.1-1) 

Gm 	mean mass-velocity in a pipe 	(5.2-1) 

jOlj 	component of the diffusional-flux 
of 0, in direction j 	(2.1-3) 

k 	kinetic energy of turbulence 	(4.1-1) 
Table 2.4-1 

k, 	non-dimensional k 	(4.2-1) 

1 	characteristic length scale of 
turbulence 	 (4.1-5) 

m 	the mass of a chemical species Table 2.4-1 

p 	static pressure 	(2.1-2) 

Ps - 	non-dimensional pressure- 
gradient along a wall 	(4.2-1) 

AE'AW' 	coefficients associated with 
the convective terms in the 

CE'CW' 	coefficients associated with the 
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Equation of 
Symbol 	Meaning 	first mention  

Pr 	Prandtl number of the fluid 
(see non-dimensional parameters) (5.2-1) 

4g 	heat-flux at a wall 	(4.2-5) 

r 	radius - distance from the 
axis of symmetry 	(2.1-1) 

R 	 radius of a pipe 	(5.2-1) 

Re 	Reynolds number of the flow 
(see non-dimensional parameters) (5.2-1) 

Reynolds number characterizing Rt 	turbulence 	 (4.2-5) 

Rt J 	value of R4_ at the junction of 
' laminar ana turbulent regions 	(4.2-7) 

Rt J 	F.- Rt J  /Rt 	
(4.2-7) 

1 . 	.   

s 	non-dimensional skin friction 
(see non-dimensional parameters) (4.2-5) 

S 	source terms in the successive- 
substitution formula for 0 	(3.2-24) 

Sc 	Schmidt number 
(see non-dimensional parameters) (7.4-1) 

St 	Stanton number 
(see non-dimensional parameters) (4.2-5) 

S
0 	

source terms for 0 	(2.1-3) 

Sw 	
source terms for vorticity 	(2.3-2) 

T 	temperature 	Table 2.4-1 

T o 	non-dimensional temperature 	(4.2-1) 

u. 	• 	component of velocity in 
direction i 	(2.1-1) 

u+ 	non-dimensional velocity 	(4.2-1) 

V 	volume of the 'tank' over which 
P 	the equation for 0 is 

integrated 	 (3.2-21) 

coordinate in direction j 	(2.1-1) 

non-dimensional distance normal 
to a wall 	 (4.2-1) 

x. 

Y • _ 



a 

r 

FOl eff 
5 

//eff 

//. 

p. 

Ol t 

Of eff 

T
. 

T 
S 

181. 

Equation of 
'Symbol 	Meaning 	first mention  

z 	distance in the axial direction 
of a pipe 	 (5.2-1) 

Z 	non-dimensional distance in 
a pipe 	 (5.2-1) 

2. Greek characters  

a coefficient in the general 
differential equation for 0 	(2.4-1) 

a coefficient in the general 
differential equation for 0 	(2.4-1) 

a coefficient in the general 
differential equation for 0 

diffusivity for property 0 

effective diffusivity for 0 

a coefficient in the general 
differential equation for 0 

dynamic viscosity 

effective viscosity 

turbulent viscosity 

non-dimensional effective 
viscosity 	 (4.2-1) 

component of the stress tensor 
in direction j acting in the 
plane with its normal in 
direction i 

shear-stress at a wall 	(4.1-12) 

mass-density 

Prandtl-Schmidt number for 
groperty 0 

turbulent Prandtl/Schmidt 
number for 0 

effective Prandtl/Schmidt 
number for 0 

(2.3-5) 

(4.1-10) 

(4.1-10) 

(2.2-3) 

(2.1-2) 
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Equation of 
Symbol 	Meaning 	first mention  

T • 	non-dimensional form of the 
wall shear-stress 	(4.1-15) 

0 	any dependent variable or 
conserved property 	(2.1-3) 

stream-function 	(2.3-4) 

vorticity 	 (2.3-1) 

3. Subscripts  

B the bulk value 

C 	at the edge of a Couette-flow 

eff 	effective value of the quantity concerned 

in the direction i 

I 	at the inlet of a control volume 

j 	in the direction j 

k 	pertaining to the kinetic energy of turbulence 

m 	pertaining to the mass of a chemical species 

O at the outlet of a control volume 

✓ in the radial direction 

S at the surface 

t 	turbulent value of the quantity concerned 

T 	pertaining to temperature 

z 	in the axial direction 

0 	pertaining to property 0 

• denotes a non-dimensional value of the 
quantity concerned 

Also: P, E, W, N, S, NE, SE, NW, SW and the corresponding 
lower case letters denote the respective values at the 
corresponding nodes of the finite-difference grid 
(see. Fig. 3.2-1 for illustration). 
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4. The non-dimensional parameters  

Pr E µ/(p. q) 

Re s (p.u1.x2/µ)c  for Couette flows, and 

• 2.Gm.R/µ 	for pipe flow. 

Prandtl number 

Reynolds number 

skin friction 
coefficient 

Schmidt number 

Stanton number  

s n Ts/(R.ul)c  

TS41Gm
2  

Sc s µ/(p.rm) 

St a qg/[cp.pc.ul  

for Couette flows, and 

for pipe flow. 

C'(TC-TS)] 

for Couette flow, 

• 4"S/Ccp  .Gm .(TB- TS  )] 

for pipe flow with 
heat transfer, and 

• gm/Gm 	for pipe flow with 
mass transfer. 
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