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 ABSTRACT.

The thesis is concerned with estimating, on-line, structural
paremeters of a linear first 0£der system in the presence of
a éorfelqtéd nonstationary disturbance. The first order |
system represents a dynamic relatlonshlp between two
quentltles cal]ed the 1npuu and the ourput, and may be a part
of a. large plcnt The dlsturbance reprcsents then the coupling
effect of the rest of the plant on the system under
con51deraplqn. It is assumed to affect the output of the

-

bsystem only-.

‘The proﬁlém of on—liné estimation‘is viewed aé a ﬁaft of
‘a larger procedure of on%line control of thé overall plant,
and the estimates obtained are assumed to 5é required‘as
~additional paramefers necessgry'to control the plant. Therefore
éhort'éomoutationél fimes‘and moderate demands on‘the storage
_capacity of the proceﬁs control computer are env1saced.
‘HThus, only llnear system is con81dered and fcletlvely small
 Jser1es of oamrled vulues of tle 1nput ;“d output are assuned

-

 to be stored.

Plerv the avallablb dlglhal tecnn oucq of naentlflcatlon f'

are crltloally rev1e“ed in Chapters l to 4. Tﬂe u,chn¢ques ‘
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are divided into the non—parametric ones, dealing only with
system resPQnQes to given 1npats, and pqremetrlc ones,
involving the determination of structural parameters sy OI,

the parameters of the governing dlfferentlal or difference

equations.

The cﬁrrent,problem_cannot‘be solved by any of these
methods, and a new-abpfoach, described in Chapter 5 and
Appendlces C and D, is developed The approach consists
in representlng the dlsturbence and the 1nput as a non-
statlonary stochastic proceesi the model og Wthh can be i .
jdentified from an analyeie_of the mean equare value of the
inpu% and outnﬁt The.psremeters of the combined model are
estlmeted 6; an 1terat1ve procedure based on the Least Squares
Method. A serles of thothetlcal outputs is calculated
from the assumed model and an assumed set of paremeter values.
The deviations of these outputs from the actuél outpuls are
called qua?i-reeiduals.‘The method;aims at obteining a set
| ef perameéer ﬁalues which fesﬁlt in the coveriance matrix ‘
‘.5f the qua°i;reeiduels being as.elose to the diagonel matrix-
,‘as possible. Chapter 6 descrives the apnllcetlon of this

:rxethod to estlmﬂtlon of b01ler dgnamlcs.
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Introduction.

The work described in this thesis was carried dut in support
of a project dealing with ihé control of a power station
"boiler and associated with tﬁe‘Automatic Control Research

Projeci of the Cehtral Electricity éenérating Board.

One of the modes of control conéidereq'reqﬁ§red obtaining,

onuiine; estimates of certain péram?ters of dynamic relations
" end using these estimates for control purposes. This o
réquirement has 1ed to thé development of a new technique

which enables first order dynamic relationships, as wéll as
R : - ~ - :

.

nonstatibnary processes encountered in the boiler bperation
té be identified on-line. | ‘
‘The'problem of identification consists in the determination
of the causal relationships, assumed to exist between -
fJVariables; ffom observatiéns.bf the véfiables over a period
- of time. This involves finding a form of the relationskip
~and estimating the values bfvits parameters in such a way
that the‘obsérvaﬁiohs:are.best explainéd in the sense of some
' accepfed.performancé ériterion. |
The'problém‘ first appreared in fhé control systems literat-
ure in ddnnection,with fhé desigh%Of‘controllers fbr~ |
| pﬁysicél systems in which'the characteristics'of signals,with

which the controller has to cope,change in time in a random
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fashion (Lanlnb end Battin, 19‘6 Newton,Gould and Kaiser »1957)
The 1ntroduct10n later of the’ anaIOgue and dlgltal computers
opened new p0531b111t1es in }herfleld of adaptlve control
systems.fIn such s&etems the controiler, anﬁlogﬁe or digitel'
is aujomatlcally ad justed to malntaln the de51rqb1e perform—
ance in the presence of random fluctuatlons-of process
parameters (¥ishkin and Braun,1960),and, therefore, the proces
identification must be eefried eut'automatieally during the’
normal system operation; |

 The approach to the identificaiien'problem haS'been.
’influenced}by the developments in the theeries bf statistical
estimation aﬁd'communication. The'fefmerfwés establiehed'as
a mathemstical technique et'the beginning of thevlast
centq}y;witﬁ.the work of Iegeﬁdre and Gauss on least squaree
‘estimation (Pleckett,1949; Rosenbrock,1965). The estimation”
techniquesj'graduell& developed owing to many‘contribuﬁions,.
esnecgally théSe»due‘td X. Pearson andbR A.Fisher,‘ﬁere'
concerned »Up to about 1940, malnly with the Gl&SSlegl problem

eof determlnlng the best estimates of aistrlbution parameters

~on the ba31s of a selectlon of samples taken from a'glven
'? popu1at1on. L “ | |
Indenendently of this developnent ,communlcstlon englneers
_ were 1nvest16at1ng the effect of n01se, perturblng thei]_'

transmitted 31gnals, on the intellegibillty of the signals.
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They.wished to formulate theories and synthesize equipment  |
which could effectively deject the preéence or absence of
signal. This resulted iﬁ the introduction of filters whicﬂ
estimated.thé power ffequency Spectrum of the desired>signgi.
The pioneering'work of Kolmogorov.(l941) and Wiéner(i949)
showed that these problems could be'incorporatéd_iﬁ the framé_
work of modern statisfics if-proper extensions were mede
from the classical discrete statements to those epplicable -
in stochastic processes; The essence df'Wipner's contributioné
is, firstly, the demonstration that the estimation theory can
be applied to synthesize an electrical filiér_providing the =
best separation of signal and‘noise,-and, secondly, the
treatment of;signals;and hoise as sjochastic processéé.
Folldwing Viener's work, considerable‘body of iiterature
disédsseé both the analysis of nonlinear systems (Wiener,1958;
‘Zadéh,lgéz) or their identification byvmean§ of finite
expansions in terms of orthogonsl functions (Lubbock,1S60;
Lﬁbbock and_Barkef,1963;vSimpson,1964;‘Earker and Hawley,1966).
‘_{oweQei, alihough nonlinear systems use'the infofmatioﬁ_aboutv
fthe'input;énd output in a‘more’efficiént way than do the
vlinéar sjsteﬁs (Lubbopk;1960), most of the literature
‘dealihg with ihe iéentifiCatibh problem is'conéerned‘with 

linear systems. This, no doubt, arises from the fzet that,
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first of all, verious proposed theorieé éan ve cémpafatively
easlily formulated and validated-when linear-relationships hold.
Secondly ,many moderately nonlinear rélationshipé can be
linéarized in the fange of-vafiations,of interest so that
the linear theory can be'assﬁmed.to hold apéfoxima%ely and

be applied (Pugachev,1§63).jfiﬁally, for practical'data
 reduction systems, thé prediction precision.is only one of
several factors.to be considered iﬁ the.choice‘of an eétiﬁétof,
The prediction speed and:computef capability are at least
equally important considerations, and sometimes it may be
vdesirable to exchange the Simpliéity of a ébmpuiervprogram'

for prediction precision (Deuﬁbh,i965)._1n fact, a relatively
fast-computafion 6f estimates is of primary importancé in the
present gpplication (in vieﬁ of the procésses drifting in time)
;and, %herefpfe, ﬁhé application of only linear systems theofy

is of concern in this thesis.

c ( ,
The first approach to the determination of the dynamical

.fcharaéteristies,of a linear system was to use Wiener's theory
,\ofioptimum'filtering. Thé vériables in the sysfem-under

| consideration were regarded as statistically fluctuating time
g serieé which conStituteSra éamplé from an ensemble of series'
"représenfing the'undérlying stochasfiq Qrocess.‘The parameter

;'values,obtained from the solution of the Wiener-Hopf equation
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are then considered to éonétitute-the best'approximation-
to the uhderlying statistical parameters , by means |
of which variance ef the esti@ates of the paramefer velues:
may be calculated. | | |
Now the actusl solutloncpf the problem may be dlvided
into two classes. The flrst class. conprlses soluilons obtalned
from the knowledge of the responce of the process to external
‘ stlmuli, and the estimated parameters are then the values_of
impulse reeponse or the freqﬁency response. The solufions of
the second class stem frem*tﬁe knewledge of the physical
nature of tpe process and the‘laWS'WhiCh éovern it, and the
perameters to be estimatedhére coefficients of-the diffefentié
(or differeﬁce)'equatiens deseribing the physical_behaviour
of the process. b. v - '
| In the early days the technlques employed 1nvolved the
'solutlons-of the flrst ClaSu only, u31ng the- time domaln
approach, frequencv domain approcch and expansions in terms
of ortnogonal functlons. Whlle the appllcqtion of the letter
.technlque to digltal computﬁtlon has been recently reported
e(olmpson 1064), this aoproach is essentlallJ oriented towards
"eanalogue computatlon (Kluamorl 1C6O Brawn et al.,1960

 Dooge 1965) and 1t 1s only mentloned ‘here for completeness..“



.-/- | ,.. g
As :ggards.the techﬁiques of the firsf cléss, the’patternl>
seems to hgvé been set by Goodman and Reswick(1956) and
Goodman(loss) who preSented a way of'obtaininé the impulsé
response of a dynamlcal system from normal ope atlna records
by means of a delay - line synthesizer. Tne 1ntroduct10n later,
of & digital computer enapied.Levin(1960},Woodrow(l959) and -
Rosenberg and Shep(l963) fo_épply the fundamentals ofl.
mathematical ststisfics by fdrmulating the saﬁe probleﬁ.iﬁ“>
a metrix form, and solv1ng it by u51ng the least squares
method. RV
| The slternqtlve aoproach 1nvolves obtalnlno tne frequency.
reSponse functlon of a dynamical system from the con31deratlon.
of power spectra of input and outpui, and their crossspectrum.
While exoellent expositioﬁ of .the theoretical aSpects of the
technigque can be found in the 11terature comperatlvely early
- .(Jnmes et al.,1049, Lanlng and Battin, 1056), its actual
pppllcatlon “ﬁé—made p0551b1e only later omlng to the
ploneerlng Work' of N.R. Goodmen(1057) on the estlmatlon
.aspects of the technlque.'These vere later dlscussed by
”Goodman and nls assoclates (1961), Bendgt(l°60), Jenklns"
(l°63a,1063b) and nnochson(1964) The applicetlon of the
‘_technlque to estwmatlon of System dynamlcs undor closed loop

control was dealt with by mestcott(1060) and Florentin (1059)



The actual computatlonnl eSpects of tkis approach when using
a digital computer were discussed f81rly recently by .
Fleming and Mlchael(l965).

Kalman appears to be the first to seek the solutions of the
second class. Ee formulated (1058) the reSponse of a-
dynemical system in terms of a pulse transfer function and
obtained the estimatles of its coefficients by using the
welghted least sqﬁares‘method.dLatér he-reformulatedvthe'-
Wiener filter by using the concept of state(1060 1063)
and showed thqt the solution of the optlmal fllter can be
characterized by a set of‘dlfferentlal-equ?tlone. Under the
influence of Kalman's contributions theestete space descript-
ion of dynamical systems has been almost universally accepted
in control englneerlnc (e.g. Zadeh and De'soer, 196%). and the
approach to the 1dent1f10atjon problem has been reforn ‘eted
in many works as that conC1st1ng in the determination of the
coeff1C1ents of tne state tran51t10n matrlx of the system

\underbcon51deratlon. Tnus, for example, Kopp ond Orford(l°63)

| enlqrge the state space to, 1nclude the structural parameters

 end use the perturbatlon theory and the Kalmcn fllter for

“ stqte eSulmatlon, whlle ayne(1063) shows thet the problem :
of nonstatlonery estlmetlon of the coefflclents of tne state

vtransltlon matrlx can be formulated in tcrms of an equlvalent‘

2
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Falman filter if the ctate of the sySueﬁhs known completely
at every instant of time. On the other hand, Lee(lQ64),
after formulatlng the estimation problem of a 51ngle~1npow
single-output system in the state space form, points out |
an inefficiency in estimating the coefficients of transition
.matrik of such a system. He, therefore,Vtransformsvthe state
'equatlons into equlvalent dlfference equatlons and estlmates
the, coefficients of the 1atter by the least squares metnod.
The common feature in 211l the above mentioned techniques,
is the synthesis of an optimum relationship befween itwo sets
of values, called "the inpﬁt" aﬁd"the'output", on the nseum§£~
1on that the latter are contamlncted mlth vhlte noise repreqent
ing, for example, inaccura01es 1n measurement. however,
measuremcnt errors are not the only type of dlsturbance
affectlng the veasurements. For example, the disturbances can ;
enter the system as inputs Whioh are not measurable, or as |
a1sturbances g‘énera,ted inside the gy‘stem. Diﬂstﬁrba'noes of this
1vpe are elways present in a practﬂcel problem and thelr effcct
.lshould be acknowledged in the de81gn of the controller for
‘.ithe system under con51deratlon If only 11near models are:
_con51dered then the dlsturbenceo can alm vs be transformed
so as to appear as an eifectlve dlsturbance enterlng the

Voutput. If such an effectlve dlsturbance is assumed‘to
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constitute a stationary réndom process with fétional spectfai
density, then it can—be represented as an oufput of a linear
filter driven by white noise; This épproach'was adopted by
fstrom and Bohlin(1965a, 1965b). They represeﬁte& both
the system dynaﬁics and the ouiﬁut disturbence in a form of a
pulse transfer function, uood the canonical tfansformétion.
to obtain the staté equationé and obtained the'maximum
likelihood estimateé of thé ooef}ioients by émploying..
the NeWton—Raphson algorithm. L A |

The inclusion of the modei of‘thé disturbance'in the

system desoriptioh is a-considerable'im@rovement on the
previoosly menfiopéd techniqués'as'ii allows for a better
design of the process controller. Even this approach,howevef,
may be open tobcriticism on the grOund‘that it assumes the
‘disturbance 1o be stétiohefy.'lndeéd it has been poinﬁed out
by Box and Jen&1ns(1063) that a control syQtem derived on a
statlonary assumorlon mlght be quite useleus 'in the face of
actual nonutatlonquty, and that it is often because the
uncontrolled orocess may be hlghly nonstatlonary that the
control 1s reoulred.

Suppose that the 51ngle input 51n01e output system uhdér‘
 -cons1derat1od¢orms a emall part of a large 1nterconnected

system (such a 51tuatlon mignt, for example,arlse, when
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~ one wishes to study a dynemic relationship between steam

temperature and-steam flowfate in a boiler' under normal .

opefating conditions) In such circumstances the model

of the dlsturbence should take 1nto eccount the influence,

on the output of other processes coupled to it through the

1nterna1 dynemlcs. If such processes are tlme—va ywng,the

dlsturbance model representlng thelr effect should be

velther time 1nvqr1ant and uodated continuously or, whicﬁ-'

is consldered to be more satlsfectory and elegant, they should

model the nonstetlonary behav1our of the disturbing process.
A disturbance model of this type was suggesteo by Box

and Jenkine(1962, 1963) es part of their method of‘treating

the problem of. adaptive. control systems. The model, discussed

iﬁ Chapter 3,can be thoﬁght'of as an unstable digital filter

'aﬁd is a.geheraiization of tﬁe method of representing

accumulated processes (&hlttle 1c063). Box end Jenklns

suggest a method of 1dent1fjlng the structurc of such

.a rodel from observatlons of the process. If such a mode

. however, 1s 1ncTuded in the descrlptlon of an "open loop"‘:

‘dynamlc svstem, tnereﬁs, epparently, no way ofmtztnclfylng “

the structure of the model If one is faced with 1dent1f;03tlo

"of the System dyncmlcs as vell 1t seems that a formldaole‘:'.

1dent1flcat10n problem aricses.
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The problem to be solved by the writer wes to estimate
the parameters of system dynwmlcs in the presence of an
unknown correlated nonstatlonary disturbance. As the estlmatio
procedure was to be carried out on-line , fhe nonstationary
character of- the dlsturoance was to be 1dent1f1ed automaticall
by the computer, and the p rameters of tbe alsturbace .
model could . then be estlmqted jointly w1th the pﬂramcters of
-',the system dynamics. Slnce none of the avalleble teckniques
was suitéblg for solvikug this problem a novel'approach, for
which originality is claimed, hés been developed. The appfoach
involves a new-method of repfesentaﬁiOn of nonstationary
processes and aJﬁéw‘techniQue of bafameter estimation.The /41

appr0mch is characterized by the follomlng features-

: a)A,nonstatlonary stochastlc process is represented as an
output of =a 1inear filter with time-varying coefficients
the fllter being such that the mean square value of its
output’ is a polynomlal in time and the . degree of the

. polynomial is dSSOClated with a deflnlte structure of tne
filter; tnus, when the degree of uhe polynomlal is known,
'the sbructure of the filter is ale known; '

b)*theeinput to the svsfem under consideration, =as well as

. the dlsturbence’representlng the coupllng effect of the
rest of the SJstem and assumed to affect the system output
only,are both represented by a filter of the type (a);



c)

d)

)

r)

.

;o

sequences of sample. mean square values df the input and
of the output are calculated for 1ncrea51ng sample lengths
up to the maximum length of the series stored in the

computers;

small sample averages of the sequences near the beginning
and end of each sequence are calculated; these indicate
the relative magnitudes of the mean square values, as

well as the trend of the serles

sequences are succe551vely dlfzerenced untll the small
sample_everages are less than some.prescrlbed fraction
of the values calculated originally at (d); since the,

n-th difference of an n~th degree polynomial is zero,

this stzge determines the degree of‘the polynomials
representlng the mean square values of the 1nput end
output and, therefore, identifies the structure of the

disturbance;

a set of parameter values for the combined system dynamics-
disturbance model is assumed and, using the actual values
of inputs;hypothetiéal values of the outputs, corresponding

to this assumed set of parameter velues, are calculated;

a series of differences between these'outputs and the -

‘CorreSponding actual outputs 1is ‘caleculated; these -

dlfferences are celled in the thesis "quasi-residuals"

~and are thought of as made up of tmo concrlbutions, the

‘whlte random process assumed to excite the dlsturbance

o filter and the effect of deviations of the assumed
| parameier_values from the true values of parameters;
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n) the estimates of the parsmeters will be close to their
true values if the "quasi-residuals" exhibit the character—
istics of the white noise;’this can only happen if the
contribution'of the paramefervdeviations to the maghbitude

~of the quasi-residuels is small compered with the effect
" of the white ndise; since the white noise is characterized
by a diagonal covariance matrix, the convergence to the
proper parameter values is achieved whon the sum of
squares of the qucsi—re51duals is minimized in such a way,‘
that, at the seme time, the covariance matrix of the
guasi-~residuals, is belng reduCed, as f ar as possible,

to a diagonal form.
: - Tn

The organlzatlon of the text is as folloms.,Chapters 1 to
4 a crltlcal rev1ev of the currently avallable technlques
is glven§ in add1t1on, Appendlx A gives a short dlscusslon
of the theory of est1mat10n) The ‘novel téchnique is
developerr in Chapter 5 cﬂnd Appendlces C and D. Chapter 6
alscusses‘the epp110atlon of the tecnnlque to estlmetlon of
boiler dynemlcs. FlnalTy, App@ﬂdlx B glves a general method,‘
fdeveloped by the wrmter,}of obta:nmng a dlfierenoe equatlon
u“‘of a genoral llnear system with ratlondl transfer functlon
mhen the system 1s subject to an 1nput Qmoothed by & hold -

'circult.



SYNMBOLS AiD CONVENTIONS:

Hany s aooTS have been used in the thesis to denote dlfLeren

quantitles. The symbols are defined wherever they occur -and,

therefore, it is not>proposed to 1list here all the symbols

with all the meanings attached to them in various sections  ’

of the thesis. On the other hand,

certain conventions have

been kept throughout the thesis, and, to denote the quantities

listed in the left hand column below the corresponding

symbols 1isted~in the right hend column have been used.

Quantity :

. backward difference operator:.
backward shift operator .

complex conjugate of x(%)

correlation of lag I of

the series: X(t)

covariance of lag L of -

‘the series X(t)'

vcontlnuous time funtlon x_'

dlscrete tlme functlon X

eﬂgemble avenaﬁe or

 »eXpected value of X( ) iy

" estimate of X(t)
‘,‘ex“onentl¢l ;1nctlon of

a pax rameter k-

Symbol

,-fv

B

x(t) or x*(¢)
x (L)

Ix (L)
. XU€)

£ < x(«t)>

X'(f) orR X(a:-)

or l{xp(ﬁ), s



. Quantity'“
operator shiiting byﬂgp degreés
Taplace Trathprm of X(%)
n x m matrix with elements aij(t)
set of values Xi(t).fdr |

varying i |

small increment in valve of X -
time parameter | -
time derivative of X(t)
transfer function
transpose of a matrix A(%)

transpose of a vector X(t)"

vector with Qlements,xl(t),.;xg(t)

welghting function

Z—transfer‘functioﬁ

Z—transfbrm_offx(t) o

} PX(\‘E) or )2(2':), OR IE

NV T B
- Symbol
j oR ¢

LXE) = Xls) -

__ - AlE) o (a.;j(t-)}

; xc(e)i..

ax

€
dX(E).

HC(s)
ATCE)
xTee)
X&)
h(z)
H(z)
- (X)) = X(=)

-



CEAPTER 1.

GENERAL CONSIDERATIONS IN THE FPROBLEM OF IDENTIFICATION

OF A TINEAR SYSTEK.

.1.l.IntroductionL

In a‘receht papef Tsypkin(l966) distihguishes three
consecutive ﬁériods in the cont;ol theory: = determiﬁistic
period, a_Stochastié peribd and an adaptive.period. |

In the deterministic period tﬁé knowledge of the equations-
déscribing'the bekaviour of the syéfgm to be controlled, as.
well as that of the external iﬁputs and disturbances was |
assumed. This knowledge allowed the use of classical
analytical tgchﬁiques fof the solution ofvvarious,control
problems. | |

The stochastic périod‘is charazteriéed,by a more realistic
approach to contrbi‘problems;;ln thié apprdachﬂthe.equations
of the”syﬁfém to be bontrolled were still assumed to bé known;
‘however, the disturbahees s and sometimes the system paraméter
were regarded as beiné prdbabiiistié in natﬁre. Thevmathematic
al techniqués developed4in this period were_basedAon ﬁhe.use
of réndoﬁ,functidhs With‘statistibal characteristics knowﬂ:_ 
in advence. | ‘ | | :

'The.éharadteriétic feétﬁre“offheacurreht“adaptivefperiod

'follows_erm applicafions of sutomatic control tobsystems’
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whose properties change’with time and mey not be known in
advence. This feature is the use of information about the
past of the controlled‘process, orﬁplant;, for meking cnrrent~
dec1510ns.

Suppose tlet it is required to control a plant with
1ncompletely deflned dynemlc charecterlstlcs. If the latter )
do not.change very rapidly, a sultable controller may be
required to compute, or identify, the characteristics of the
nlant while the cystem is'injnormel operation. Trie controller
must then make;a decision concernlng the. nay in which the
aveilable parqmeters of the system should be adjusted so as
to 1mprove the operatlon v1th respect to a deflned performance
1ndex. Flnally, certain 51gnels or peremeters must undergo
‘a modlflcatlon to occompllcn the result A control system,
accomplishing the three functlonsvof 1dent1f1Catlon,dec151on
andimodlfication may“pe definedkas’an adaptive control

system (Bellman et 31,1966),
| ‘The identification problem, forning theesubject of.the‘
present the51s, 1s concerned with the determination of a
.‘muthemetlcal reletlonehlp wnich aescrlbes the 1nput—output
’behavlour of.an’unknown system. The lmportance of thekproblem
of ldentificatlon wee illnstrateo at . a symposiumjorganlzedln‘

‘recently in Prague by the International Federation of



| / C o
Automatic Control? 21t which no fewer than.65'papers were
présented,As'obserVed by Godfrey and Hammond(l967); the
symposium bfought out a_verj wide range of-techniques |
available for identifiéafion, doupled with aﬁ almost complete
| lack éf any logical méﬁhod for-ehoosiﬁg the best one for a |
partieulaf application, and with very few'préefical applicat—_
ions to 1ndustr1al plants. It is hoped that the present work
will not merit a comment of 'bhl~ type.

Rev1em1ng the existing methoas of 1aent1f1eatlon o
Eykhoff (1966,1¢67) divided them into t“o Woad clacses snamely
&

the techniques u81ng "expllcit mathematleal relatlons"'

(or, ppen—loop tecnnlques), and those using "model adgustment"

(or closea—loop, or 1mnllclt teehnlques) In the first class
he 1ncluded the 'beehnlqu.eq which use a mqtheﬁatical expre551on
‘explicitly providing numerical values of ncrameterc.estimates
in terms of known a priori knowledge and measured variables.
The technlques of tlms class are least soueres estlmatlon,
Varﬁov estlmatlon, maximum llkellnood estlmatlon and minimum
risk estlmatlon. Taey yielé solutions which

a) afe avéilable affer a‘fihite.ﬁumber bf elementary operétion
b)'réquiré'cbnsiderable méﬁory, G | | L

c) are not avallaolc in an approx1mﬁte form as an 1ntermedlate

;result,
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The technigues. of the second claSS-émploy sbme kinq
Cof ﬁodel of the system. The paraﬁetefs-bf this_modei are
adjusted in such a way that the model characteristics
approach the characteristicé of the system in some preassigned
senée._Thé techniques of this class dépend on the minimization
of the gradient, with respéct to the unknown pérameﬁers, |
of the error between the output of the:system and that .
of the model. Theﬁsolgtions obtained are | |
(a) available after (ih principle) an infinite number
. of elementary o?eratibné,' |
(b)‘available.in anlgbproiimézé form as anlintermediate
| resﬁlt;_' BRI |
(c) found by a selfé;orrécting proceduré.,
vTheAgpprbach adopted in these techniques is "closed-
lo§p" with respect to the syétem'performance. That is to-_.
say, thé sysfem performance is monitbred and the parametersA
are adjusted to miﬁimize a performahce index;‘ |
Numerous papers have been writtenAon-the subje¢f of
model—referéﬁce adaptive'syStemSVincorporating the
idgntification technique of the secohd'c;aés (e.g. |
Edberfs;1962;’Donaldsoﬁ_and Leondés,l963). Tﬁeéé ﬁapefs,
seem fo imp1j’that the main abﬁlication of fhesé o

techniques is in closed loop control = -
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syetems.in which the parameters of the'controlledvsystem%xhibi
bwide_variations due to changes in environment . In such
applications the characteristics of suitable compensatlng_
networks are required to alter ss the controlled systems
parametere change. Such a procedure ia~usually effected throug
the use of the method of steepest descents. In this method
;the gredient of the error, With.reSPect'to_the unknown
parameters, hetweeh the controlled_System output and the>
system~model output, is made proportional to‘the time rate
of change of the respective parameters. Thls enables the
adguetment of the compenSQtlng netmork to be Fechanlsed, w1tho
the necessity to use numerical values-of any of the parameters
involveq.-r

This thesis is concerned Withlsituations in which digltal
computers are employed to control proceeses and therefore,
'analogue tecrniques are not relevant here. On the other hand
the last fer/years have vltneseed the development of another
;approachlo 1dent1r10atlon.bThe approach 1nvolves the use of
~ dlsorete—tlme (sampled—data) model of the controlled plant
the paremeters of the model belng estlmated by employlng a
‘cultable hlll-cllmblng teohnlques. Tnls 1s, essent&ally 'a‘h
-model reference aporoach mhlch homever, results in numerlcal

valuesrof parameters, and whloh thus doee not really fit in
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Eykhcff's claesification.

Assunming that all snalogue techniquee are excluded, a more
approcrlate way of discussing the ex1st1ng digital technlques
is to divide them into two classes as follows.

a) tre techniques not involving any structural pﬂrnneters

and relationships between 1nput and output of the contpplle

plant, and ylelding a number of numerical velues of piant |

,response§- | | .
b).the_"model reference"tecﬁniQues cepending on an assumed

form.of differenfial or difference'equation whichcrelates
the plant 1nput and the pl ant output; %he techniques yield
numerical values of the coef;icientsiof thne eQuation‘

Thie claesification'is adopted in discussing existing

 techniques in the following chapters. . .

. 1%22. The two alternative formulations of the proceSé

identification problem
[ : ;
An on-line control of a process 1nvolves normellﬂé predlct-

ion, over a sultable 1nterval of tlme, of the process bekav1ot
aﬁd’taking an.appropriafebcompensetiﬁgkactlon in acccrd;nce
with some specified cohtroi poiicj. The former'objective'ié,‘
achieved tbrough the use of a methemﬁtlcal model usually

g in the form of a eet of dlfferentlal equetlons mhlch expreés
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the dynamic behaviour of the proéess. / o

Rigorous analysis of the dynamics of a'fyﬁical industriai
probess'is extremely difficulﬁ"if‘tnot jﬁnossiﬁle. The reason
is that procesqes are uoually very comolex and contain |
numerous vaflebles which are unw1e1dj to nanloulate Large
number of varlables,>nonllnear;tles and uncertdinties in
certain physicél phenomena,all contfibute to the compleXity‘of
the problem,and a solution of a»set,of equa%ions may well Dbe
as difficult to obtaiﬁ as the synfhesis_of.the actual
mathematical description;de facilitate a solution 6f the
pfoblem certain simplifying assumptiohs may bé made as long
as the<s01utions resulting from sﬁéh sjmplifications can still
bhe regarded as descrlblng the character of “the aynamlc N
behaviour correctly. (It may be Doss1ble, for eyample, to
forgzlate some semi-empirical or approximate expressions
for phenomena which are tdobéqmpléx.to»ddmit of an exact
mathematlcal descrlptlon) | _

The starting point of analy51s is usually the formulatwon
of mass—tragffér balance‘equation, momentum equation.apd
encrgy—balance equatlon ‘ﬁhese.equétions'are usually
complicated (for example, Nav1er Stokes flow equatlons(ﬁav1s,

l962))_and 1nvolve,_ln gegeral, partlal dlfferentlat;on‘as'

“well as nonlinearities. The introduction of allowable
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simplifications yields}a'set of differential equations -
deséribing,_possibly”approximately, the dynamic behavmour-
of the process under consbderation.

'Under'the infiuence of control theory it has 5een customery
to regerd such a set of differential equations as describing
aidynamical system and to formulate the equations so as to
relaté a set of system 1nputs : ‘ |

b ce)‘c (c=202,....m)
snd a set of system outputs § jJ‘(:t)f , (J= "2'"'"1)

If the system parameters ﬁary_sloﬁly as compared with the
time necessary for the identiﬁication of the system, only |
small variastions about the'steady operétihg levels can be ¢
considered'and the process behsviour can then be aprroximately

desc;ibed by’that of a iinear dynsmical;system. |
A single~input single—odtﬁutvsystem of interest»in this

thesis may be described by a differatial equation of the type

[a..{t)r'{u-f- Qns.v (f'&)}“’ +---+u°Cl':)7y[f'}

[Ia (Z')f -:‘-5.':-( (af'}f’”f'—(--- f-écféju( % l)

in which _some of the coefflcients b. (t) may be equal to- zero.;
An orthodox "pproech discussed 1n the older literature on.
control systems tneory is to revresent tne responSe character—

istics of a linear System either in terms of an impulse
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response ih the time domain,_br frequencyfunction‘in the
frequenéy domaiﬁ (alternati#ely, transfer function in the
complex frequency doﬁéin); ’

The impulse response h(€,7) is defined by
ar ' ‘ : L
5[,5-): J /,(-t-,'r}u'[f)‘d? | (1.2a)

A,caf‘;fr}~ M,r K(t,x) . (1.20)
where hv is the ad301nt operator of “the rlght—hcnd side of
the equation (1.1) andK&7is the Green's function for the left-—

hand side of this equation (¥iller,1955).

-

Both, the véfiaﬁlencéeffiéient syétem (l,i) and the;constané;
coefficient system g |
,(a.,.pn+an-,pv"ﬂ«-—--f-«o)y&t}_

= (bep™e ba b)) (1.3)
can be cheracterlzed in terms of the transfér or irequency
functlon(hlller 1955, Ianlng and Battln 1C56) Eowever, such a
descrlptlon of only constant coeff1c1ent system (1.3)'haé
’ found appllcatlon in the problem of 1dent1f10at;on. |
: If the melgntlng functlon of such a system-is denoted bﬂh(t)
 then the transfer function H(s) is given by.the_Laplace
' tran sform of h(t), S |

H(s) / hit)e d£ . Qe



- or, alternalively by

- H Y(S) _ bas"+hpis ¢ vhae
(S) h U(S) ans+an-i§" -k g (1.4b).

where Y(s) and U(s) denote ILaplace transform of the output
‘and the input, respectively.
Similarly, the frequency function H(jw) is defined as the

Fourier transfofm’of the impulse response
HG) = f"(")‘*" “dr (1.52)
or,elternatively by

) Y(JU' by J"’Jh‘.f' b.nvc (/”)nq*‘ -+ b,
, H(J” - U(]“r) an (Je) "+ 0 (Jol T+t 0o

(1.51)),'

inSWhich.ﬁ(jw) is the Fourier trensform of the input and
(Y(JW) is the Fourler transform of th output. |

The method of obteinlng the melghtlng functlon, and, there—
fore, the frequency response or trqnsfer functlon is mell

.

known. (Vllle;,lCSS, lanlng and zattln 19“6) However, the
’:converse problem of 1dent1f10ﬂt10n of the djnqmlcel eouatlon_
of a system from 1ts 1mpulse response presents foxmldable.
'dlfflcultles. In prqctical appllcatlons, therefore;v
-one often 1dent1f1es"ohly tle system response from the glven

values of 1nput and output. mhlS 1s acnleved by estlmdtlng

velves of tne 1mpulse response at a number of  time 1nstants,-



o s
or values of the frequency response at a chosen number of
freguencies. The correspoﬁding methodsvofridentificatioh do
not allow the struotural relationship betweeh.the input and
outputito‘be'determined'and will be referred to in the thesis
as the ﬁhon—parametrio‘methods of system identification".

A modern approech td the identifica tion problem involves
the determination of the second relationship between input
- and output of the'system uwnder con51deration and, therefore,‘
the technigues associated with'thisfsecond apbroaoh are
called in.the thesis'"parametrio.teohni@ues of system
identification". This approachrceh~take“two different forms.f
The first of - these employs the notion of state x(t) (Zadeh
and Desoer ,1963), originqted by ‘Kalman(1960,1963%a) and almost
universally accepted in modern control theory. A linemr -
system is characterized by mesns of'dynamioal state equeations

i'(Kalman:s19635; Zadeh‘and Desoer,1963)?
x(f:? A(é-)x(:o")+ B(e)u(z‘) | (1'.6@'_ ‘
y(i')c c(t)x(é)-v D(t-)uct/ .' o (1.61)),;'

the solution of which gives an expliclt eXpreMSion for the

state x(t) as

(t)" @(t ta)}((éo)'f'jé{t ”')"?('7')«('7')4?’ (1 7)

where X(t) is an n-vector, (t) end y(t) ﬁre scqlars and



A(t), g(t),g(t) and_g(f) are matrices.
_When the system;(l.6) ispontroiled by a digital computer,
the systém output is sampied and the control is effected at
‘discrete intervels of time. Continuoﬁé—time analysis may
still, however, be used if the sampling Interval is smail'
compared to the significant timé:coﬁstaﬂts of the s&stem.
This, indeed, is the case in the technlcue of system
'ide_n‘tific‘ati'oh described 'by Fopp: and Orford(l%") The
technique involves enlerging the state space to include ihe
sfructural"pafametérs as well uasAthe assamptlon of the form
‘of‘a'differential equétion wﬁich governs ;he dynamic
behaviour of the sﬁStem'under consi&erétibn. Certain
assumptions are‘also made sbout statisticzl characteristics
of noise contaminating the data and differentisl equations
with random forcing funcfioné desgrib;ng the‘parémeter
vériafiohs are'édjdihed to the system of differential
equafiohs deséribing the process,‘A lineer regression.
techniouefis thénfused'td“derive a’fecquive reiationehipv‘
for the updatea estlmates of the state varlables as a functlon'
of the qut ectlmqtes and ‘new Heasurement dqta.

An advantqge of the contlnuous tlme descrlptlon is f at

ylt allovs to predlct the syotem behav1our not only at the

sampllng 1nstents but also bctmeen thsm. In certﬂln control
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apﬁlicafions however, it maydbé'perfectiy adequate to predict
fhe ystem behaviour at the sampling instants only.. Ir

such a relax ation of requlrenents is posalble, the 11ncar
systen is:deflned,at_dlsqrete time instants and is referred
to as a disdrgte time system « If such a systém is time
invariant, it may be defined by a linear dﬁfference equation
.0of the form | |

Qtngft‘."ﬂ-)-d-_ - 3[§~n*1)+-. - Q(o,‘y/é)‘

=(5nu(£'—n}+'(35~.y{é-rv+{}_+§- .'#-ﬁeu(é) (1.8)

R - g
~

and its response mey be‘described_eitberfby an impulsé
response in the form | ' |
ha(e) = Z hed(e—LtaT) (1.9)
'which is eQual to sampled values'of thé continuoﬁs time
llmpulse reﬁponse and is called the Welgntlng sequence., _
or by the pulse trqnsfer functlon (Pure“lcz 1049 Barker 1952)'
>'g1ven bJ
e Bl
G(z) = P S (1.10)

O(n 'Zn+°(n-:?- e +'¥° ‘

As far as the wrlter 1s evare, therc eklst only two techni-

‘Ques mhlon qllow the system (1 8) to be 1dentif1ed perameter—
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wise. (the method described by Ialman(1958) deals with
noise~free measurements and is not considered to be realigjic
enough in practical anpllcatlons) In the first of these,

due to Astrom and Bohlln(1065a,10656) éxpression}for-errof

=_5J.-,yj-*'_ R (1.11)
between the actual output ya and the predlcted output yj
at tlme_ gA!P are formed as. functlons of unknown parameters
de, e end 1npu¢ XJ, using alscrete-tlme state space descrlptlon. E
On the assumption of the error b51ng Gavssian, the likelihood
equatioﬁé aﬁe formed and§Solved by using fhe Newton%RaphSOn.
algorlthm | |
| The startlng point ofﬁthe second technlque, dué to Box
and Jenkins(1063 1067a,1067b) is also the formulation of the
alfference eQuptlon (1. 8) CérreSpohding tovthe degree:n of
'the eouetlon, an expre551on, valid ‘between the sampling
instants, for the resnonse of tke avstem (1 e) to a -step opl

'ramp 1npu¢ is derlved in the form

v, h[-w’r-@*)um) e/r | o (1.12)',

AL -
.where tne welchtlng functlon h(t) is expresccd as a functlon =

Cof parameters of tne dlfierence equatlon (l 8)

~An expre551on for error
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*E.c{'*'ﬁ#l"'ylt* v- o | (1.13)

between the actual output e

and the predicted output yk*-
at time kAT '

_ : - K-t : _

: = J Xt = : (1.14)
- HH J=1 ; J B . : .
is formed and, assuming the error (1.13) to be normally
distributed, the 1ikelihood equations are obtained and solv-
ed by a nkonlinear estimation techniqu_é. v

’.-Phem above mentiéned té’c'hniques are discussed in some detail

in Chapters 2 and 4. .



CHAPTER 2.

DIGITAL NON-PARANMETRIC KETECODS OF IDENTIFICATION

"OF A _TLINEAR SYSTEM

2.1. Introduction.

As discussed in Chapter,l; the response of a linear time-
invariant system (1.3) may Be.expressed ih_terms of its
impulse response h(t)

Er Jo 6["]“‘("4‘"”7“" S (2a)

-

ot .
~When estlmqtlng the response of such a system from records

of 1nput u(t) and output y(t) under normal operating condlt—
1ons, it has been customary to formulate the problem in either
_‘of tﬂe‘following two ways(Westcott,lé§O; Woodrow,l959); -
_a)‘either; one requires to determihe angimpulse response

| function h(t)-which, Wheﬁ'operating oﬁ the:recorded Valﬁes
eél the 1nput procesc u(t), nost nearly approximates the .

o
recorded values of tre output process y(t) The error

A}

of approx1metlon EM, is then mmnlmlzed in some sultable,_
usually leﬂst squares, oense,
b)‘gg,-one assumes that the . fluctuatlons about the mean operatu

ing p01nts, of the orocesses u(t) and y(t), constltute

statlonqrv tlTe scrles the recorded values of vhlch



represeht one bf‘many.possible realizefions of the
prOcesses; The eufput time series-is'then regarded as
peing the sum of two time Sepies. One of these series is
genersted ey opeﬁating on the linesr system, having‘impulée'
response function h(t),-with the input_series{u(t)z
The other Serieezﬁﬁﬂis generated by-internal disturbences
‘not correlated with the input process éu(t)? In most ceses
the serlesfiﬁﬁs assumed to be normally dlstributed.k
Whlchever viewpoint 1is taken, an ideal relatlonship between
theemeasured quantities representing 'ﬁhe process is vwritten
y(t}=‘_/' Ar)ule-w)cte«E0e)  (2.2)
on the assumption thet the'quantities caﬁ be obsefved and ;
recorded over infiniﬁelyklong time.;,in any practicel.eitﬁat-'
‘ion' however, e$timates are ebteihed from records of finite
duration. An,estlmatlon procedure must therefore,prov1de an
GSSessment ot the validity of. Such results.
_ Only the second unproach is dlscuased rere. Thls 1nvolves -
| multlplylng equatlon (2. l) by u(t ?7 end ensemble everaglng
to obtaln the Mell known mlener~Popf equetlon (Lanlng and
“‘Battln 1056) ‘T‘ : ‘v.;' SR 7 4A o
nym /“A(«Wau(o--«)dr ey



where,

is the crosscovariance functioﬁ of the input ané output, and

Tuu (7] = E Lyt~ u(£)>  (2.5)

is the nutocovarlence functlon of the input.

Teking Fourler tranaforms of equation (2 %) one obtains

qu’g 9..,(&’) = H(")‘“'u 5‘“(“) - - (2.6)
_where: |
But is the variance of the inpﬁt
S§y* is the varience of tke output
c . moRmALIZED
gﬁy(w) is theAcLosc-SPectral den51ty functlon

4 .

of‘thc 1nput.ana output,
H(w) | is the Lrequency response functlon of.}he
- Thus one obtq1ns (Jenkln 1963),

guy ()
Juul(®)

6y N

H (b).': oo ’(2'7).

‘Clven a flnlte length of‘record of the’ input u(t) and outbut

': y(t) the llnear system urder con51derqtlon may be 1dent1f1ed
| a) elther in the tlme aomeln by u31ng an applox1mat10n to.

equatlon (2 3) and solv1ng 1t for a flnlte number of

helghts hJ of: the 1mpul°e reSponse h(t),‘_
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b) or in the frequency domain, by using equation (2.7) to
estimate a finite mtmber of heights of the frequency

response function H(w). These techniques are discussed

below.

2.2. Tdentification of the impulse response

Equation-(Q Z) involves irifinite 1imits and therefore,‘
its solutlon for h(t) cannot be obtalned from a- flnlte length
of reCOré of the 1nput and output. ‘ - v

ouppose, however, that the input u(t) and outrutt y(t)
: are sarpled at intervachsT of tlme and aéé avellable in the
form of a series of values .

R $ v 4 _,(i = 0,1,2,.... 1K) |
i:f;j% (3K, o) -

N

 Suppdse eiso that; correspondingly,the.impulee response h(t)
1o be estimeted is restricted te have a finite memory time
47‘ . and to be deflned by - | |

| « hft) 5_;“ 5(“-'-.)-?) a<f<T..a'r

(2.8)
= o oféeru:a- ' R '

Then the flnlte number (K+l) of the values hJ of the impulse
- response may be obtqlned by u51ng an apnrox1matlon to the ~

Elener Popf equetlon (2 7),‘f1ret uvgested by Goodmen end



_Reswick (1955,1956) and given by

K » ) _ .
Cuj'('f'b‘;;o A ) Cun (r"‘J) ' - - (2.9)
Where', . .' |
. \ f-r :
Cuu (+) = T3 2 UeUier | (2.10).

is the sample autocoveriance function of the‘input,.and

, . M-~ | . o
Cuy@")"‘- M1 ‘Za“"'jcﬁbr | . (2.11)

- is the sample-éross—covariance of the inpﬁt'ahd.the output.
. , ) o - :
(The formulae (2.10) andikall) are based on the assumption
that both the input>énd the ouﬁﬁut are zero-meanAstatiOnary
time series). | | | |
The’(K+1) vaiues hj of the impulse response may.be bbtained
from equation'(2.9) by substituting (K+1) values of the
cova?iances Cuy(r) and Cuu(r) correspogdihg fo r:Q;l,...,K,
énd‘sblving‘the‘resultaht set of (K+1) equations. Sincé the.

autocovariance function is an even function of its argument,

4

Ca () = Qua (-7 (2.12)
the'éef 6f'eqUatioﬁs'may:bé Writteh in'a metrix form as |

L4



'C%(O)

CK:’ (l)

Cu.g ()

Cuy (K)

or, symbolically,

N

WY

The solution for h is ‘bheél

h=C

~1

—'llu. 5

C....
Wy

Cuul®) | Cunltl | Cunttl]e weatfCuntu) | | We
Cuult) {Cunto) Cuun ¥ 2o - | CQuglkY w,
1 Cuul2] |[Cunlt) |G (O - Crll-2) W?-
S I L
&u(Kl Cur (£~ _— Cu:u (o)- Wik
C =C s N
o v 2B

(2.1%a)

(2.1%h)

(2.14)

The equations (2. 12 ), (2 14) resultlng from the approxlmatlon :

(2.

-

°) to the Wiener Eopf equatlon, cen also be given a'

dlfferent 1nterpretatlon.When the input and output are given

in thefform of a series of discrete values.§

u§ end§y.§,

 and the restriction (2.8) on the impulse response is imposéd;

o v o Lo
the ideal relationship (2.2) may be

e

J=°

SR
:-2. ’L) uL-—J

‘+é§‘

Exley Kel, .., &1

approximated by

'ﬁ(2.15)-‘

wherei&!are uncorrelated 1dentlcally dlstrlbuted random_’

variables ﬂav1ng Zero meun_and varlances'
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Equations (2.15) may be put in a metrix form (Woodrow,1959;

Levin, 1060, Kerr,1965 ) as’

¥y=U.HE +g o (2.16)
or,explicitly,
Ju = g [Hu-t - Mo ho 4+ €
;/un ; Wier U »- .. 8y hl St
: : : (2.17)
: : ; |
Jutm Upear | Unemer . (T hlﬁ - Exem ’

V'\v

Equations (2.16) and (2.17) represent a linear system and
may be sdived by the 1easf squares method, discussed in -
 Appendix A. The 1east squares estimates E* of H are given by
_(U U) 1UT O (2118)
After performlng the matrix multlpllcetlons and d1v1d1ng throug
by (N+l) the equqtlons (2. 18) beoome jdentical W1th eouatlon
(2. ]A). It 1s thus seen thot the set of equatlons (? 1 )
recult1nc from an anprox1mat10n to the Wlener Popf Equatﬂon,

can be 1nterpreted es the nozmal equatlons of Least Squareskif'

nstwuetlon (Tlackett 1060)



o
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A great disadvantage of this approach is thet, to identify
a weighting function reasonsbly well, K must be large.

Eowever,; as the number of terms in the eguations is increased,

the process of matrix inversion becomes disproportionately

difficult, and this may create problems when on-line syetem

identification for control purposes is required.

2.3, Tdentificetion of Freguency response .,

An expliecit relatien

Hio)= S Fuy() J ‘(2 7)
. 6-‘4. 9[{4 (ld) . . ; - : *

obtained by Fouxler transformlnn the Vienerx Popf equatlon
(2.3), expresses tne frequency response functlon P(m) of a
linear system in terms of the Spectral density 8, (w)_'
of the input, end croseespeetral density}guy(w) of the input
and-thewouiﬁuﬁ.‘ | |

The euiocovefiqnce fﬁhetry1x ﬂﬁe'an'eQen funCtion of
the lqg?’and therefore, the spectral den51ty gu (w) is-

expressed as 1ts 0051ne trensform

e 9“(&%-—-] Yu“(frlwsh‘fcf"‘ h (29 -

Homever, the cross—covquence functlon is not an even functlon

of the,lagv . For tlls resson 1t is usual to 1ntroduce two:-



‘auriliary functions (Jenkins,196%)

6u 6y Quy () = 3 [ Yuy(z)+ Yaytd | (2.20a)

SuBuy(r) = 5 [ Tuy(r)- % (--4"/]
Y y-( = E T R (2.20b_)
and to define, in terms of these functlons, two components

of the cross—spectral density, the 1n-phcse component Cuy(w)'

.called “the co—sPectral density, and the quadrature component,

QW(W) called the quadreture 's’pectral densbity (Goodmap,l957),
as | |
C"U(”),- f duy(ﬂdoSw?d?’ _ | (2.21a)
Quy(w) = ._._f /guy () siveow do ‘ - (2.21b)

The cross-—spectral density g (vc,) is then expressed as

Quy (“)‘: Cug (&) - JQH-j(") R v(2.22)
It is convenient' to ’express the'frequency response functi_on
in terms v'of the galn G(w) and phase shift ,@(W) as - |
) - . ( ’ ‘ . g o ) .
H(w) = G’(V\’) exp(-—-},@(w)) S o (2323)

in which - .

G( ) T fauu (r) - ((2.24a)




and : : o

¢ (6)= Can Cuylal/ (2.240)
In practical situations the output y(t) is contaminated by
noise end- if the level of the latter is high as compared with
' vIEPvUL

the output, it may not be p0551ble to obtqln any estlmates

of the galn G(w) and phase Q(w) It is eseentlal therefore,
to have some meggure 1nd10qt1ng to Whet extent the output

y(t) is dependent_qn the 1nput u(t). Such a measure is

prov1ged by the coherencx (Wiener,1949; Goodman,l1l957)

¢ ’ -
) - .

defined by ’
w ()= lgug (bllz Cu;(&).-& Q“g (w) : (2 25) |
“ 9“‘(“)39,("’ Juule)Gyy (&) o

l wuy“(za)_}"é'| i S (2.26)
The conerency is a meesure of correlatlon betveen u(t) and
'y(t) at a frequency WJ’ it tends to unlty when the n01se 1s 7
ecllglble qnd tends to zero Vhen the epectral den51ty gte( )
'of the n01~ecﬁ)1s large comnared w1th the Spectral den51ty |
I G (v) gu (w) of the 1n3ut reierred to'thc output

The ploblem of 1dent1flcatlon of the ireouency reeponse o

appears,to have been first studied by N.R.Goodman (1957) :‘”
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The épproach was later followed by Goodmah end his
:associates(l961), and alSd discussed by Jenkins‘(i963a,l963b)
Bendat (1960) end Enochson(1964)7 . The approach involves
essentially a judicioué choice of the amount of data required
(this may or may not be a critical réQuirément) and a ériticél
examination of the behavipﬁr and.of‘the sampling properties. .
of the estimatespe(w)ﬁdf gein,’phese ﬁiand Coherency @tﬁ),
as infernéed by the length N-of series, meximum lag or |
~trimcation péint M and level of coherenby WtW). A1l %he thrée
quentities, gain, phase and coherencﬂare functiohs.df the .
various spectral deﬁsity ﬁunctioné_and the,probleﬁ ié.thus'
seen to be that of ectlmqtlon of spectral density function.,

It cen be shown (Jenklns 1961 1063, Parzen 1064a 1064b)

that the ectlmqtes of the four spectral densities 8,y (w),

(w), (“) and Q (w) are resnectlvely given. by
| AT ' - . -
e; uy (”J) = ;’_"‘:‘;‘[:Co"' QZ’&(" )CS Cost;s (2.27a)~

3w ~ % [c”’+zZM-)Cs J e

- Cw”(af) [A u”.g. 22 k ("“ )0{5 CéS A‘DS] " (2-270)

G-u.s.y S=1

,G.?N“!*(a_;) .-.-:‘v QAT [Zﬁ( ) 5 s;»c{,s] | "(2.'..27.&»)_»-_



vhere

é&(w ) is the °rectvdl-den°ity, 8 (W )lis the in-phase
and 6 (w ) is tne ouaarature crosc-spectral density.
Using the ectlmates deflned by equatlons (2.27), the éxpressio
for the estlmates of gsln G (m ), phase ﬂﬁ(w ) snd
conerency W ( ) are obtained in the form

& (&sen) (@ zen)” -
GN(oJ) ) (2.28)

QY () ),

¢” (1;) ”:: fq&-, ( , éﬂuy (-473) (2.29)
9 (CN“’(w,)) + (@)
(WN (l",)) é\uu (bj) 9”59[4,J) A (2.20)

 Approxim te confldénce llmlts for the above guentities

are obtained from the coveriance matrix of, the estimates
which is}derived'by appfoximating infinite~sample properties :
of multinormai series by those”of a sample of a finite iéngth.
The confidence limifs‘debehd on ‘the scale on which the given
'estimated quantity'is‘meaéured:énd,videally, a scale éhquld_
be chosen such that.the‘limitsv éfebindepeﬁdént @f the

: qﬁantity  beiﬁg-es£imé£éd;“ | | | )

Tkus, if the estlmates of the spectral den51ty gN(w )



are measured on a iogarithmic scale; the confidence intervéls
for log(gN(w)) are : B : . .
. .5»4 )
[ %2 ] ' C(2.31)
where zy 1s the uppexwzzélimit of the normel distribution
aﬁd 1l depends on the type'bf window (Jenkins,1961; Parzen,-
19642,1964b) . ' - |

: . _
Locerlthmlc scale is also convenlent for meesurlng the

. gain, Correspondlnv t0 estlmates log(G (W))s the approximate

confldence llmlts are (Jenk1ns,l963a,l963b)

A -
: 4 IG' .' - :

[ lo?( /&’g( 'f)*c"ffﬁ)] ) (2.32)
v\herex,,,,}’?q are, rempectlvely the lower and uppef 4( per cent
- point ofx'distribution with fl degrées of fréedom défingd by -

v
b= TAlr] - e

The estimates (ten@(w)) of tanﬂ(w),can be taken to be

.abproximetely normelly diétributed about tanﬁ(w) with

'varlance (Jenklns 106,9,1063b)

va,r~ en,, (¢(a)) .zl.ég-;se ¢[WL(‘,,~z] o

It follows that for the confldenne coeff1c1ent (1—41),

anproy1mate confldence llmlts éor tanﬁ are glven by
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{Sl?. = e“"F[{Q“’ é(c")i7¢{53‘: ¢/; [‘wz-[bl ]

_ (2.35)

where:'fzd is the upper -25 percent limit of the normal
distribution. As observed by Jenkins(1962a,19626) & netural
scale of meaqurement of the phase is ﬁ/so tnat the confidence

1nterVle for ﬂ(w) are

" {[fan @fa’) "’2« Sﬂca‘? / &[“’"“’—J]} (2. 26)."

Approximate confidence 1iﬁits'for the coheféncy have been
suggested @y Enochson and Goodman(1065) fTﬁeyrapplied
the Fisher z-trensformation (Cramer,l946) to the exact
distribution of semple coherency obtzined by Goodmen(1257).
If'yb R e
A «y | _ .
fank h&y (b) ,
l-l-W~ )
/- a’/v‘_‘y(b)

{
'"'"9‘.""9

(2.37_)

then 1u is shown by nnochson and Goodman thet

. ) ) - . “3 f f
k(2 ", 2({;—0 | ?"T Foi ) W (") |

£ tonk (Z"Q(€z~l)+,zd v-z(@,-:) o (2.38)
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whéré z2g is.the upper-g per cent limit of the normaiv_ |
distribution snd £, is the numbef of degrees of freedom
assoéiated wiih estimation of'fhe cross—specirai density and

is given by

Ga= = I (2.39)

2.4. Generel Remarks: '

The two Jnon—parametricﬁ techniques discussed ih this‘
Chapter, suffer from a disadventage iﬁ-that they require a
large number Of'estimatesjto characterize the system response
sufficiently aiggrately. ﬁofébVer, ldng céﬁputational times
requlired for.identificatibn of thé‘éystem-résponse are ihvolv—
ed in both teghniques, and especially the second,one. An al
'iernative, more.advantagéqus.approach is to characterize the
systemvreSpqnse by means of a‘finite nacber of pérameters.'
Thq techniques aSsociated with this appfééch involve
| characteiizationkof thé'dyhamic systém'in the_discrété time.
and the repres}er'ltak‘tioh of the eff'ec.t of a disturbance. |

These techniques sre discussed in Chapter 4.



CEAPTER 3.

PARANERTIC MODFILING OF DISCRETE~-TINE STOCEASTC PROCLESSES

2.1 Introduction.

The Chapter discusses representation of discrete-time
stochastic processes by means of finite-parameter models.
Some general deflnltlons relating to stochastic proce ses

are given first. Nodelling of stationary processes by reans

“

of autoregressive,moving average and mixed autoregressive-
moving average schemes is then discussed. Finally, a brief

review of mode1ling techniques appliceble to nonétationary

L
—-
L

processes 1is given.

o

Z2.,2. Some fundeamental ideas'and definitions relating to

stock aStiC processes.

o

‘The' theory of Stochastlc processes is genera11J deflned

| (Pcrzen 1061) as th " dJnemlc" pcrt of - the probcblllty theory
‘1n whlch one studles a collectlon of random vquables, called
»a "stochastlc proqess", from the po;nt of view of tnelr

" interdependence énd 1imitiné;beﬁa#iour, |

| 'Central tb‘the'definition bf a stochastic process_is the;57
notion of a random vqriablé. Thié'may be defined(Dbob 1953)

| 81mply as e meqsurable functlon. bore formally, a real

function X deflned on a spacedl of p01nts w is called
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a random variable if there is a probabiiity measure defiﬁed
ohtw sets, and if, for every real numberA the ineéuality
X(6) £ A

delimits an w-set whose probabiliiy is defined, that is&
a measurable set'(Doob,1953) |

A stochastic Procéss cen now be defined (Psrzen,196R)
as'a-collection ?X(t,w), teT, w eoQg of rendom variacleS»
iﬁdexed by,avperémeter % varying in an iﬁqex set T, with w .
varying over the probability spacedl; when T= {0,% 1,£2,...§

- the stochastic process is said to be a discrete parameter

- -
~

‘process.

VN

A stochastic process 1is thus a process which is developlng

in time in a menner controlled by probablllstlc lams, and
the functlons X(t,w) depend on two arcuments, the time %
and a random event w. It tke time instant t is fixed, say
t=tp ,thean(tv ,w) is a random varlqole. If, on the other
hend, w =vwé is a flxed random event, then X(t,w, ) is
considered to be a possible observatlon, or a reallaatlon,'
of the stochestlc process, ano 1s callcd a tlme series |
r(?qxaen 1961)
An 1mportant role in the theory of stochastic processeg

is played by thelr flrst and second moments; assumlng that

' theﬂlattel e11st For a stocnaotlc process {X(t) tE.Tf



ParZen,1962):

these are defihed by
(a) the mean valug function
m(t) = <X(é)> | Z.1a)
(b) the covariance kernel . |
l(rs-e)_cov[X(s),X(e;J s, € €T (3.10)
In general,however, a stochastic prbcesgAmay be describéd

by the joint probability distribution function of the n

random'var{ables,M&JQ..*{éw) for all iﬁtegers n.and n
pointsé,...,€a  in T. Thus,
Pt zny (Xorire Xa) | |
"'PEX(&) xl’--.. X('én)‘Xn] (5 2)

Among stochastic procesces with finite seCOnd moments

stationary processes are important for practlcal appllcations.

Such processes arise when the random mechanism producing the

. v
process does not change with time. This situation is often

- met with in technology and.physical sciences,:and'is of ten

assumed to hold apprbximately in other fields, such as

'I.econdmics, nf T is hot too large, and. if‘any'systemqtic

component is 1solated in an approprlete way e Such procesces o

'are cla551f1ed as belnc elther strlctly or meakly statlonary,

These are deflned as follows.(Grenander and Rosenblatt,1957,v
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(a) A stochastic process jk?fbftﬁTf' is seid tq-be strietly
stafionary'(orstatienary in the”striet sense) if for
any integer n and any h in T, the n—dimensienel vectof
[X%J: x(f"K] | has the same joint prob30111ty
distribution functlon as the n~dimensional vector
C-X(ﬁ*hL--—JX(tﬂdd] o In other-WOrds, the simultaneous
diStributionS'depend only upon the time parameter
differences C‘év*'ta):f("‘:'."é;)r--- , (4~€n) | |
(v) A stochastic pr‘ocess 3 X(€),¢ éTfis said to be weakly
stetionary'(or'covariance stationary, or stationary in
the wide sense) if ifﬁiosseSses finite’second moments and
if its covariance kernel'K{s;t}-is a function‘enly of  the
absolute difference ’s-t[ Ain the eenSe that there

exists a function R(v) qu_ch that for all s and t in T,

R(v) is called the covariance functlon of the weakly

statlonary process ?X(t), tET s

'Z.Z'Snectrql renreeeﬁtation'of weakly stationery discrete

pqrrmeter 5t00ﬁa°t10 processes. ,

An 1mportant TEuUlt proved by Wold (Parzen 1061) is that

the COVarlance functlon R(v) of a dlscrete parameter
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weakly stetlonhry stochastlc prdcess may be expressed in
the f‘o'rm. ' * jee | - |
R(v)= IK.'@' ’ d F(e) ' (3.4)
veso,%,.... ' - |
where the f--u.nction‘F(w)-, ‘called the spectral dis‘br'ibu‘bio‘n‘
function, is bounded and nondécreasing}.This funétion may be
wnigquely Written as the sum of’three componehts FJ(W),'
Fge (w) and Fgc (W) such that
(a) the fuhction FSC(W) is:a singﬁlér’and continuous function;
‘(b)_the function Fd(w) ismPurely discont;gpous, increases

only at the,discontinuity points and isvdefined by

Fd el = Z a "'“") s

?")2 belng the dlscon'tlnul‘by p01n‘bs of F(w) and ) | |
AE(er) = F(wt0) ~F(w-0) '('3.""55)
AF)>0 - (3.5)

“there Eéiné dnlv a finite’numbér thbdiﬂtS’bf posiiive
SUectral maqs in any flnlte 1nterval on tke real llne,
(c).the functlon Fae (w) is absolutely contlnuous and is thevi

| integral of a non—necatlve 1ntegrab1e functlon f(w)
called the spectral den51ty fupctlon, the latter functlonf
.1¢ contlnuouu except at flnlte number of p01nts where ’

it has finite leftenand and right-hand limits.
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In time’éeries éfudies it is usually assumed (Parzen;l96l)
that the siﬁgular component F€¢ (Wj is absent andrthaf,
thérefbre, the spectral diétribution function F(w) may -be
represented in the form

_ e

Eee)=S AFR(E)F La-{-(ar')d{f’ - )
| wger S
In terms of the Spéctral distribution function F(w), one can
characterige verious representations of a étationary process
fXH), t €T § One of the most importantvrepresentations
empioys the notion ofralﬁfocess fy(t%‘?ﬁﬁﬁ with orthogoﬁal
increments. This is defined (Dopb,léSB) és'the process such
E(l'y(éj—iy(s)]"">'<oo» T (e
Pénd whéhéver the paraheter vaiues setisfy the inequalitj
5,<-b,~52<é2) the 1ncrement<3|j¢.,-ys, undytf.éz ~Ys, are orthogonél

to each other, il.e.

£ <(y«.-,. -952)(7e7s ys.)> o G

Corresponalng to such a process a monotone non—aecrea51ng

functlon can be deflned to satlsfy

Eq‘ﬂél 3(“” > = F(E)- ffs) o (30)
or, vymbolicnlly,: = S . g S

E< Idg(é){ iRl P g
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since,the difference F(t)-F(s) depends only on&;s)if_the>
process y(t) is covarience stationary. ’
In terms of the prooess with ofthogonal‘increments,
~a weakly stationary-process;AYéLfG73has the so-called .

spectral representation (Doob,l953;Grenander and Rosenblatt;

1957) o rojut R o
X(€) = I,te o dye) (3.8)
where : S o B - ‘:; o
EL| dylel* > dFles) L (3.9)

As far as modelling of stochastic processes is concerned,:
‘an important csse arises mbenﬁhe spectra l Jump funetion -
(3.5b).vanishes for all w and the stochastic process is‘
cheracterized'by the so-called absolutely'contimuoue spectral |
distribution functlon.'
It can then be shown (Doob 1053) that if g(w) is a function-
B measurable with re5pect to the class of Borel—measurable sets
in an n-dimensional space, such that J‘;“
B dti’(of)‘_ S
[9(e)™® ~ B (3 10)

- then there exists agUﬂprocess w1th orthogonal 1ncrements

Wthh oqtlsfles s R SR
x(;e)a j o g(ta)dff(") T (3.11a)

E( ldt} (u—)l >- der . ’(lffli'b)
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lMoreover, if (e never vanishes,

o 1 gl
Gles)= Lx 32 14

_ (,.12)
The relations (3.11) and (%.12) play an important role
in parametric models of stochastic processes as discussed

in the following sections.

Red Parametrlc representatlon of discrete parameter weaklv

_ statlonary;processes.

- As discussed in the vrecealng eectlon; a_ stochastic ﬁrocess
iX{éLtET;may be deflned as a famlly of random verlables 1ndexed
by a parameter t which belongs to a linear index uet T. It
wes also observed in the_preceding.sectidn that‘e set df
..,Observations;’“e’:é €7} ’ 'arranged- ehr.qnologically, and called
e timevseries;\is regarded as one of.many possible realizat_
ioﬁs}of’the stechactie}proeess.‘ | | |
The stqtlstlcal theory of time series nalysis attempts
to 1nfer, from an obs erted sample, the probablllty law of the
_underlying'stochéstlc Process. Thls 1s}effectea byprStUlaté'
ing e-stochastic model which is:completely Specified eéxceptv
ifor the values o; certeln parameters. The parameters are then :

estlmatcd on the bqens of tne ob erved samnle $0 tnat tne

,complete model may be used.,
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(a) either to understand the mechanism genereting the process.
(b) or to predict the future behavioﬁr of the time seﬁies,
The important and extensively used models of weakly station-
axry stochastic‘processes ére the moving average-scheme‘and
the autoregres51ve scheme. Both schemes were discovered , in.
a finite .parameter form, 1n 1020&s. It was not wntil late
1930's, however ,tqat they wereAshown by Wela to constitute
' special cases of stationary stochastic.proeesses possessing
absolutely}continuous spectral distribution function
(Parzen;196l;Doob,1953). Ih particular, it can be.showﬂ
- (Doob,195%; Grenander and Rosenblatt 19575 Whittle,1963%) —
that if (and only 1f) a stochastic pxocess§ﬂ“’fé7¥ possesses
an zbsolutely cont;nuous spectral dlstrlbutlon function F(w),'

- then the process can be represented'as a process of moving

. averages deflned by

X(#)= Z e ?s-) - Gan

- with the condition n SN R o e' ~
z Gl <o o - (3.14)

Jrwo S " -

The;?éare mutually orthdgonalArendqm variables With mean
, zero and Varl ncews They are. defined 1n terms of a process

J(W) with orthogonal 1ncrements (3 ll) by .

ox ;wm~~'

'{M - J_ c{cj (cr) | (3.',1'5')‘,_
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and have an absolutely continuous spectrum with constant

spectral density.“
Lyl = - o (3.7)

‘The spectral density fy (w) of the process $x(t)%4s then given

oy &2 & jbj! 2
B m— C) e o ~
‘gX(”) Ir IJ-.Z_” J -~ ‘ (3-18)

o~ -
As observed by 7V hlttle(1063) ,there are iﬁfinitely many
functions ﬂﬂjsatlsfylng | o |

A{x(b) (‘-")’2

i : _. o |
‘J.E:mqe ( S (3.29)

) and, theréfore, 1nf1n1tely manyvrepresentatioms’of the
form (3.13). However, for a'proceSSvin time, there is only
- one physicqliy meqﬂ{ngfﬁl-moving average representafion;‘

namely, the one not 1nvolv1ng future values of the ﬂ; SO that
X(t) = ib ?f-J : \ , (3.20)'
' _The condition Tor the ex1stence of such a'representdiion‘iSV;

(Vhittle,166%)
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The relatlon (%3.20) represents a stationary‘proccss ?Xﬁyl

in Lierms of past values on an orthogonal ranoom,rocesc f?;‘

It is possible, however, to represent the process 9 X(t)§also

as an auteregre851ve4process, or, as a llnear functmdn of its
past values plus a rendom shoek
. i w - ) . . ] .
X(¢) = S ajyX(t-)) ¢ ?{ S € 22)
where the orthogonol random procecs;ﬁ is aeflned by (,.15)
ena (3.16). The relationship between the coefficients {v,§

and {a)jof equmtlons (3 20) end (3.22) can be easily dedubed

(Box and Jenkins 1066) by 1ntrodu01ng a backward shift operat-
or B'defined by

| Bve = Vemr . “ - (3-23a)
Emplgyihg the opereﬁova in eqeations (%.20) and (3;22) one

( éb"s)?f ~ (3.20a)

obtains,

ahd<

€= [""5 “Q'BJJX‘; |
R ERE

f'3.22a)f



Substituting (3.22a) into (%.20a) (Box and Jenkins,1966;
Whittle,1963) one obtelns | V

J
(2 b B)(I-ZaJ )-l .
L=°
This relation-ma&'be used to derive the coefficients §a;$ffom
the coefficients fb? end viece ~&‘rersa; This,however, can only
be achieved if certaln 1nvert1b111ty conditions are satlsfled

mely (Whlttle,lOGE, Box and Jenklns 1e c66)

(a) the auiofegressive process (3.22) may be inverted into
the one-siéded moving average process (3.20) if
- O S
_ ) .
(i) the expression ("'Ez,au_B ) is analytic in.
sl <t | (3.24a)
(ii) the coefficients ja;jin (3.22) satisfy

(b) the one- 51ded mov1ng avérﬂge process ( 20) may be
'7 inverted 1nto the autoregress1ve process (3. 22)1f o
| (1) the expr8331on. Ez_bJ 87 s analytlc 1n o
SRR ot | |Bl<l . (u2sa)
f(ii)vthecoéfﬁié;ents"bj in~().20) satisfy L |

Ca 5 ;',:“ e "_ . .
. bj" <e (3.25b)
Jse Lo



Approaches to time series analysis based on finite papémeter:
versions of the'representationsr(B,ZO) and (3.22) were
‘pioneered by Slutsky and Yule in 1920's (Parzen,1961).
The former is credited with discoVering:a finite moving
average SCheme, which, for some integer m, is defined by.

} | EEL be Ze-‘ o | (3.26)

izo
- The researches of Yule, on the other hand, 1led to the notion

of a finite autoregre331ve scheme, Wthh for some 1nteger

n, is deflned by

2 °~JX4.-J + ?e | (3.27)

g

The latter scheme may also _be interpreted'as a stochastic
difference equation of order n (Mann and Wald 1943,
Grenander and Rosenblatt,1957). |
An excellent exp081t10n of characterastlc features of
finite autoregressive and moving average schemes is given 3
e'by,Box7aﬁd Jenkins (1966); For the‘pcrpose of the.ﬁresent'
discussion it will be sufficient to note that |
(a);the‘fiﬁite.movihg average echeme-eihibits;properties»cf
| disturbedxﬁeriodicity; its autocorrelafion function,
_vanlshes for lags greater than m where m is the order
 0¢ the scheme. »
~(b) tbe autocorrelgtJon functlon of an autoregress1ve prccess
szilsfleuvthe same dlLference equatlon as the process

itself.
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(e¢) theAautoregressive process of order 1, defined by

Xg T QXgey + $¢ . (3.28)

relates the preeent value x, of the procese to its paet
through only one past value Xi 7. and is generally called
a Farkdv process. |
(d) the autoregressive process ofiorder 2 defined by
Xe = Keot Q2Xeer *Fe (5.29)
may exhibit a pseudo—periodic behaviour if the roots
of the characteristic'eqﬁation ,
1-a/B- a,;B""o (3.30)
»are complex. » | _ .(
(e) as observed by Box and Jenkins(1966), there exists
a duality between autoregressivé and finite ﬁovihg
average processes. As alresult of this duality,
fl.the parametere of the.autoregressive.prdcees are net
required to satisfy any conditions to ensure inverti-
bility; however, forkstationarity,’the roots of thef.
"characteristic equation o SRR o | | R
- zes’io L G
- must e out31de ;he unit 01rcle. ’ i '
2, the parameters of the mov1ng average procese are ﬁot
requlred to satlsfy any condltlons for the shatlonarlty
hewevar,»for Lhe 1nvert1b111ty of the mov1ng average

proccss the roots of the characterlstlc equatlon



-
L S t .
Z:O ¢ B :O | : | (3.32)

mist lie owtside the wnit circle.
An extension of the representations (3.26) and (3.27) is
provided by an important subclass of processes’with absolut-
ely continuous spectral distribution function. These are ‘
processes whose spectral density»function can be represented

as rational function of exp(iw) in the form

'ca

Zb_;e_ '

gla)=6" |- ——

Ei ae iéj.

S J=e : -

(3.33)

~ where both polynomlals in (exn(lw)) are assumed to have
all Zeros strlctly wwthln the unlt 01rcle, and no common \
roots, \

As shown by Doob(l953) such processes may be represented
' vln the form e : o owe Ei_bU t.ﬂ,' - - e o
: | o (bJ o

where y(w) is a process Wluh orthogonal 1ncrements.’

'.Alternatlvely, the process Xy described by (3. 34) may be |
represented by a stochastlc dlfference eouatlon . S
, 5 B L |
| (Z(%B))Xf = (Z bj B Jig e  (3.35)

where the orth0ﬂona1 Ianaom Varlables}%;are deflned bJ (3. 15)

"‘and (3 16)
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The representation (3.35) isvreferfed to as the process
of mixed type (Whittle,1963), or}é mixed moviﬁg average-—
autoregressive proce;s (Box and Jenkins,1966).
‘As discussed in the Apﬁendix B, the difference equation
of the type (3.35) may also be interpreted as that describing

the output’ thof a linear filter with a pulse transfer

function _ : m 'ﬁj _
| 2_bjz o
— J= o . N . 7’ .
HE)= &=—F o
J=o -

the input to the filter being the vhite noisefsequence-

In particular, if the sequence g?{‘is char'acterized by a
Gaussian dlstrlbutlon, the process ?Xt$1s said to bg a Gauss-
rNarkov process., i .

The idea that a rationéi s?eétrélmdensity‘may be associated
with the autpuf of a linear filter excited by a white noise
was émﬁioyed in‘a pibneeringk"shapihgvfiltér" method of
Bode“and Shannon(l950).Théy were concerned with the prdbleﬁ '
- of prediction.bf a signél contaﬁinated'by noise. Since the
~ only way in whlch the 31gnal and noise’ entered thelr obgective
functlon to be mlnlmlzed was through the power spectra,,
Bode and Shunnon argued that Lhe only statistics that are'.

needed to oOlVC the problen of predlotlon are the power

‘snectrum of 51ﬁnal and n01se. mhey sug Dested,therefore,_
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representing a process ixt'tEET; whose spectrum P(w):th(w)

is known, as the output of a linear filter with gain

-y(v.r);\lp(w) R O (3.37)

Lq;l’ﬂb}~)&3 Fleo) I
B(‘“)—'_’/ w2~ er® '_ (3.3_7a)

and minimum phase

A somewhat 31m11ar method was a1 0 described_by Zadeh ahd'
Raga721n1(1959)

As 1s well known, two dlfferent types of signal may lead
t0 the-same spectrum and to the same optlmum prediction filter
The above represenfatiop is, therefore; not unique, aﬁd
while it is sultable for predlctlon, it is not necessarlly
so for the modelling of the behav1our of processes, It has
been demonstxated by Box and Jenk1ns(l966), however, that
a covafiance structure can uniquely determine'a model, provid-
ed that the model is of a statlonary-lnvertlble type (3. 35)
in which the current value of the process Xt is expressed
in terms of only the prev1ous hlstory._,,

It should be added that the comparatlvely recent approach
.to modelllnp of stochastlc processes from dlscrete tlme
data does e 1nvolve +the use of a model of the type (3 35),J'

(or 1ts state space equlvalent), the parameters of the model

“heing eSulmaLcd bJ employln elther llnear regress1on

(nalman 1963) or 1east souares technlque(Box and Jenkins, 1962,
- 1963 1966,1967} or max1mum ]1ke11hood method (Astrom and
Bohlln,1965a,1965b). |
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3.5, Modelllng of discrete parameter nonstationary processes.
The preceding section dealf wlth the'representation of
stationary processes whose statistical characteristics do not

‘change with tlme. Statlonarlty,however, seems to exist only
as an ideal to which most physical: processes do not conform,
and, as a result, this feature may'have‘to.be acknowledged

in the model of a given process.

When the assumption of stationarity is dropped, one is
left with scarcely any restriction on one's model. For this
réason, lt is all the more difficult to specify the model,
or evenafo‘specify some.of the statistical’characteristics N
~of the #ariates;lln_conseqﬁence,fthe methods of modelling
nonstatioﬁar&.processes have.tended to be morevor_less,
emplrlcd(Whlttle 1963) o

An orthodox approach to the problem was based on
Wold{s'theorem (Uhlttle,l963) that any statlonary process
{Xt’dtéﬂﬂ can be uniquely represented.as the sum of two
mutually uncorrelated processes o » ‘

X(_. = me + 2'6 o S | (3-38)
in‘ whlch | S ‘ R TR ,

| E<"é> "f S (3.39)'?
‘1s determlnlstlc and called the mean value functlon, and
erepresents a statlonary random Drocess ‘with finite seoond

moments and is called the fluctuatlon function (Paraen 1961).

-
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The relation (3.38) hgs been used fér a 16ng time to
explain a nongtationary behavouf of certain prbcesses by
representing'the function m, as an appropriéte fuhction of
timé; Thus, m, ~has been_fepresented, by various reséafchers,
- as | | |
(a) systematic oscillation (Parzen,l96l)b -

mg = Jé: A_j cos (G; € - é.;) | (3.40)
in which the amplitudeS’Ajj_the angular frequencies Wj
and the phases ﬁj are constants,some of which are given,

and the rest are unknown and have to be estimated;

-

(b) polynomial trend (Zadeh and Ragazzini,1950)
. ’ 7' P o - ", . ' v »
. J :
L my= 2 W & , (3.41)
J7o o
inzwhich'the‘degree p of the polynomial is assumed

and the coefficients 2y have to be éstimated;

(¢) sum of orthogonal polynomials (Whittle,1963; Thrall and

Bendaf;l965); P ' R : .
; v _ J=e SR SRR ‘ .
whére; for a_sample‘gl,..;,xﬂ‘ : o ' | |
z RlOREIsH  (Guasa)
f J’ e : v }v L  i _‘.:.“
L E Me P 2 (5um)

This type of model was used,: for example,‘by.
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McCaréy et al(1962,1963) for’analfzing data contained in
RF backscatter for information concerned with physical
Dhenomena of missile fllght The many theorems which are-
preoented and proved in the above reports seem, however,
to be unnecessarlly complicated and they could be presentéd ‘
in a more simple manner. |
As discussed in the preceding sécticn,the'stationarity
of the autorégresciﬁe, moving average and mixed autoregreésive
mov1ng average models was ensured by requiring that all the
zeros of the appropriate polynomlals in the backward shift
operator B should lie out31de the unit circle.It seems
reasonable, therefore, to expect that when these requlxements'
'are relaxed,a nonstatlonary behav1our of the corresponﬁlng
models will result. (Uhlttle 1963). |
The earliest example of thls apnroach (Nhlttle 1963) 1sf

prov1ded by the model of an accumulated process‘,

defined by the relation

, P : « B :

| Xe = Ji °-JX~(= - 4'?4 R - (3.44)
in whlch the zeros of the polynomlal SR ,f“ . :': .
s - .

A(R) = 2’3 aj B® . (5u5)

approach the unlt circle and thef%Sare orthogonal random

Varlables, such as those characierlzed by the relatlons_

| (D 15) and (3 16)



A more realistic apprcech to the representation of a
prccess'containing trends is to employ'(Whiftle 1965)
a generallzatlon of the mixed autoregre351ve—mov1nﬂ everage

'model

(&

J . e

a; B )"-é“(i"’ B);  (3.46)
.Aln whlch the polynomial n . )
A(g)-:g’_ @-J,BJ R ' (3.47)

has zeros on or inside the unit circle. It has been observed .
‘>bY‘Whift1e(l965) tﬁat the mechanismfgenerating fhis process
is itself constant, elthough the process is evolutlve, and
moreover, the nonstatlonarlty of the process is ev1dent not
merely in its mean but also in all its moments as, 1ndeed,
is the case with observed evolunlve series. . —

A model of the type (3.46) has found an important. _
appliceticn-in a predicfjon method based on an expcnentially
'welghted mov1ng average technlques (Whlttle 1965, Otterman,_v
1960). In thls approach no explicit model of the process is. f:
given, but the predlctcrs are assumed to obey a low order B
model of ‘the type (3.46). The coefflclent in the relatlon:
are determlned partly by requlrlng that the Dredlctor be -
exact for certain sequences (such as polynomial sequences)
and partly_by‘emp;rlcsl;search for‘values wh;ch seem to'

'yield good predictors.



'It'has been observed by Box and Jehkins (196/6) that, 7¢
while a model of the type (3.44) (and, by virtue of the above
remarks,also'the.model (3;46), may be of #alue in represent- .
ing an explosive or.evolutionary behaviour of processes. such
as bacterial growth, it is‘not suitable for representing -
many physical processes met with in practical‘applications..
The reason is thet, while ,in general, the local behaviour
of the latter appears to be independent of the current velue
x, of the process {rt$ , the local behaviour of the evolutio-
nary series does depend_on the current value Xy of the series.
In particular, the solution of the difference equation of the
type (3.46) consists of a deterministic and a stochastic-
component 'In the honstationery case, the deterministic
component builds up. and dominates the stochastic component
the Dbehaviour being essentially the same whether or not
}the "moving average" terms are 1ntroouoed in this equation’
(Box and Jenxins 1966). | |
Box and Jenklns(l966) show, toerefore, that for the

representation of processes which are nonstatlonary, butf

‘nevertheless exhibit homogeneity, a model of the type

(Busvhee(E8 0 L,

p_should be used Here

.._." (I-BJxe .  (3.490)
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denoteé a backward difference. | | |
The polynoﬁial A(i) given by (3.47) may have some of its
Zeros inside the'unitrcircle, but thé introduction of the:
difference operatorV ensures that‘theleffective polynomial .
in B on the left hand side of the equation (3.48) has some
zeros outside énd some inside thé unit circle. As a resulf,
processes containing'trehds, but not béing exélosiyg,
can be generatéd. | o - |
The process characterized‘by (3.48) hés'been.ihtrdduced
by Box and Jenkins eaflier(1962,19633;1963b) but withoﬁt_.
the above interpretationvand in a different form as follows.
| Rep1a01ng the operator B on the rlght hand side of (3 48)

by the backward difference operator . one obtalns,f
| T m.l _
A BV Txe= (Ang @™o ’«o e “‘d-«)?.;-.

d } o
+ v ? . | (3. 50)
Employlng now a summatlon operator S deflned by (Box and

Jenklns 1962)

Sxe 2.34-5-; o (3.518)
. . S e,
' S‘X-g .'Jé‘_:'o {20 7 -4

(3.51b)
’.étC-, and summing (3.50)'d'times,,one obfains; 

S et S P S
CAB)x¢ = Pd_, (é)+ (Am—dvnf +"fv,+ AoS L (3.52)

-4 ce .+ Ad-, J)?éq ~ ?g
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The process cheracterized by (3.52) has been called by Box

and Jenkins(1966) an integrated autoregressiveFmoVing '

average process of order (n,d,m), The first term Pd_l(t)"

" is the oomplementary'funotiOn of the differenoe equation

(3.50) and is a polynomial in t of degree (d-1), with

coefficients dependihg on the starting»Values'of the series,
The model introduced by Box and Jenkins earlier (1962, 19633,;

1963b) in a rather emplrlcal fashlon, represents a partlcular

case of (3.52) with A(B) 1 and Py_ (t) =0,

%3.6. Concluding remarks.

In this Chapter an aftempt has been made to review oritic—
ally the eX1stlng techniques,known to the writer, of p___—
metric desorlptlon of stationary and nonstat1onary processes
(for thls reeson, the representations in terms of expan31ons
.(e.g. Karﬁuen,1947) are outside the scope of the review) .
None of the techniques was suitsble for application to the
problem of on—1ine identification or which the Writer wes
worklng. This has led to the development of another desorlpt— '
ion of ﬂonstatlorary processes dlscussed in Chapber 5 and :

A .

: Apoendlx C



CHAPTER 4.

DIGITAL TECENIQUES OF PARAMETRIC IDENTIFICATION

OF A LINFAR SYSTENM.

4 1. Introductlon.

~Chapter 2 dealt mlth 1dcnt1flcet10n technlques ylelalng
-'estimates of tﬂe dlscreue values of the 1mpulse response or‘

frequency response. It mas p01nted out that a great dlsadvant

'v,lage,of‘these technlques,ls the large number Qf parameters

required to‘repfesent a responsekadequately. An azlternative

'_‘épproach is to characterize a system by a differentialbor
difference equation and to idéntify the system byvdetermining
the order of 3uch an'equation, and estimeting its parameferé.

| Thé techniques identifying a system in such e fashion, and

| 1nvolv1ng the use of regression an91y51 s are reviewed ip

. the i follow1ng sectlon

4.2, Svstem identification as & Falmen filtering problem.

‘;”4.2;1§’Géheral;‘f
 ’hen the coef;¢01ents of a dlfferentlal or dlfference r
equatlon are known, the state of tae sysuem (Zadeh and Desoex

jl963) may ‘e estlmated by using ohe well-establlshed fllter—,

o 1ng technloues (Kalmam 1060 1961 1963a) It is poss*ble,

e ;'fhowever, to.employ.the state spece approach in the

St
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'identifioationfproblem in which suoh-ooefficients ere unkmoim

end’are‘tréatea_as pafameters to oe eétimated. The parameters

may theplbe coneideredjas pert of the state.vecto;/and’
estimated jointly.w1£h7the'stefe veriableS'proper. |
Such an approaoh has been adopted, for example, by

'_Kopo and Orford (1962) The approach may be brielly

summarlzed as follows.

"A(a} observable ouiout and effectlve 1nput are regarded as
bexng contamlnated by n01se with given statistical
oharaoteristies;"

(b) ?aﬁameters_of the differenfiel»(or’differenoe) eqﬁation
ce blng the system are con51dered as adoltlonal
staue Varlables and 1ncorporaued in an enlarged state

~vector; | | | : |

(e) assumptions ere mede about the fashion‘inlwhich these
paraﬁetefs are supboced o'varv- from these assumptions
s sed of oonsufg int eOdaulﬁbﬁ 1°‘obtelned and ad301ned
to'uhe state equatlons of the Qy stem;

'(d)‘tﬂe rosultlo@ ron—llregr dlflerential equatlons are

'oerturbed about the current estlmuue of- the enlarged
ctate vector-‘ | N |

(e) the problem of estlmqtlnr the llneerlzed state vector

-is lormuleued as a.solutlon of M'e nalm n fllterlng prob1e1



8.

4.2.2. Stetement of the problem end essumptions.

Cdnsider a general single-input singleéoutpui system
charaeter14ed by a dlfferentlal equatlon

(_an(t)pv + an~l(t)p: +......+a (t) )y(t) | o

= (b ()% + b l(t) T b (8) ) u(t)  (4a1)

',in.which a (t)‘é,o and some'bf_fheHCOfoiCientS:bj(t) 

mav be: equal to zero.
In any practical 51tuatlon the 1npux and output of the.
system wn.l'i be contamlnated by noise Vthh in the technique

belng described, is assumed to be addltlve. Consequently,

'vthe state eguations bf the system (4.1) can be written in

the form R | |
‘__::c(t) = (t).x(t) + G(4).u(t) + n_( ) (4.22)

z{t) = H(t).x(t) + v(t) f-‘ . , (4.2E)

where-

! .
_is an n x-1 vector,

)
- G{t) is en n x 1 matrix,
1(‘b)‘is an‘n'x n iatrix’:

H(t) is a 1 xn matrlx

The alsturblng noises §ﬂ(t)l ena }v(t); are assumed to have

known characterls 1cs as follows-
(a)fv(t)i is a rormally dlstrlbvted whlte n01se with zero

mean and variance G’v (t) S({»" T)
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’ (B)iﬂ(t)i is a zero ‘Ivne‘éh normally d'istribu“téd variable |
| which is é white néise modulated by a known function
.-‘S(u_.(t)) of the noise-free“inpu‘t, that is
L) = s(ult))ew () B (4.3)
where wo(t) is white noise with zero meen snd

(0)8Ct-2)5

' »varie‘mce I\.Two

‘Tl'i‘e manner in "whjv_‘éh« thef'parame‘tersg fij(tn andé{lgi‘(t)f ,

of the ma‘tﬁe_icés _E_(“t)“and‘_g(“t); respectively, aré ngtﬁ.pposed to

| vary, is presented by the constraint relations in the form
| F(1) = o(t) | R (4.42)

. &) = a®) (4w

The coeff‘icients} Gij(t), and gi(i‘f)v of thé,métriées

e(t) =nd A(t), reSpectively; are supposed to vary coh“tinubus

ly in a random msnner so that

8y 5(8) = eFy (02 48) + wy(4) (4.52)
L2 ) = optlglt) T (4.50)

where the parameters §@]?fj(‘-s)? and 'g,@‘i(t)f are assumed to be
-given, and % wij(t)f end ng‘(tﬁ are zero mean gaussian noises

with known variances @ﬁg&—‘t’) and ﬁ%‘:’;ﬁ:)&'vf"ﬁ , respectively.



| ,4.5.5. Method of FSOiu"hions

Let an erilarg‘ea state veetor a(t), composed of the elements

' of the state vector x(t) and the elements 'of,matriées E(t)

and G(t) be defined as

'ﬂ (t) = (Xl(t)s°°':x (t> f l(t),---:f (t)

81(t>:"':gh(t) ) ‘j - o (4-6)

’Slmllarly le‘b an enlarged d:r.sturbance vector x(t) composed

of the elements of “the n01se vec‘bor [i[{&D) and rendom componen'bs ,

of the matrices Q(t) and A(t) be defined by

RICL. (;Al(ﬂ,---,m (+); w11<’°>’~--"“’ )3

GIOREACRE )

Then, when the conctraln‘b equatlons (4. 4) are aa;;o:.ned to

the state equations (4. 2), the enlarged nonlinear state

equations are written :m the :f’orm

ae) = E(Ha(6) + A (a8
where . o . : S
R L L a >
IR IS
oM N
I ..-....L........._'_B(Zé.)-; ,
I w8 ol e Y
o N
o N
v "N\
; - N
L Atinan®
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In the above matrix the diagonal ter@S'ﬂj’j(t) correépond_
to the ast'eri‘s.ked parameters 'of_ quuation (4.5):.
 Por s discrete—time analysis, of interest in this thesis,
it is assumed that the input and the output are sampled every
AT seconds, at the end of each interval, and that the input
‘u(t) is constant over Uny 1nterva1, chang:mg in g stepwise
mam'ler between the 1ntervals.** :

Adoptlng, for a varlable 3 (t), the notatlon, -
3<n> - Iwman - (4.108)

’ ;(‘t/n)v = estimate of?t giVen observations ) )
‘ ) (4.100)
up to nAT ABTL A <(n+|)AT ) _
(t/n) = () = 2(t/n) | )
} i ; : g (4.10c)

!

e_stimation erroxr
 naTL < (nsl)AT

the problem ‘of estimatioﬁ is formlated as a recursi_wfe problem

of eétimating‘the‘currentvstate vector;g(n+1),,given the

conditional estima‘t-e G(n/n) ‘based on observafions up tov the

_ time nAT, and the current observa‘blon of ouuput, z(n+l)

The procedo_re 1s carrled out An the follow:mg steps.

-(a) the estimates g(t/n) of the state vector a(t) between 'bbe

sampling "ntervals nAT and (n-'-l)A T, given the observa'blor

up to uhe time nAT are governeu b;y the equations

¥¥ This is the case of & zero order hold discussed in

‘Appendix B. S ks
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guﬂﬂ :Mmm)guﬁﬂ "-'f  - - (aa)
.Wheré
N W ,
Bleln) ) Q1 S
o ) 1 S _ :
i , i--w.......;._.l e o -...-._—!-..-_.._...-p-(:&)- .- ' ; -
L{t/n)  =' _ v :1'“‘,”\‘.(_6‘") L o o § (4_.1?)
| o I ™_ o "
, ' ~
; ; o 5#&55\\;
; l?gggn'f’éln)

(b) the dlfferentlal equatlons governlng the estlmatlon error.s
Tt/m) = a(v) =3e/m) T (4.13)
are obtained by perturblng equations (4.8)_ 'about.
the current estimete of the variablés.."l‘hus, subtracting
equa‘cionsk'(d, lll) from (48‘) and neglecting second order
quantities, the 11n°ar1 zed perturbatlon equatlons are

Fom) s nemltm Ne s

Lo where

- ‘h"(t) 2 p{t/n),...,p*(u/n),w l('t),...,w (t),,
(t),...,w @y (. 1=a>
vy (t/n) gz,(t/n) S(u(t))w &) (4 15b)*

"‘he matrix L (t/n), the components of v»h:.ch are ‘che |
estlma’bes of the con:ponents of the enlargea state vector

_g(“t/n) at tln’er;u glven data 'to ’clme nAT, is glve‘l by | -
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| AT N
W o X)) uel -
_ ?Ll(t/n) = ‘ :g" .‘\)- | (4.16)
N N
T SN B
4 Lonrin (9]

(c) It is now asqu.med that the disturbance vector Al(t) is"

_ constant in the intervel nAT<’b <(n+1)AT and that _

its components are zZero mean gau551:an varlables with :

covariance mqtrl‘i Q(*)cf(t—‘?) | o
E < LA = oty (4aTe)
/Al(t» LN o o o (4._175)

s : . . o,
It is also assvmeol thet the estimetion error g(n/n) at

the sempling instents nAT is distributed multinormelly

~with zZero mean and covsriance matrix B(n/n), i.e.

L o) Tmd = Bam) (4.180)
E{¥mm)» = o - . (4.18b)

(d) With the assumptions ss above, the so‘lu’&ibn of equztion

(4.‘14_) is given‘by_ o
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. B . . ) : : . . ;'

g(m 1/n) Qf(n+i;n).g(h/ﬁ) J-r(n+i n) )\ (n) | (4.‘193)‘

|
. where g(n+l,n) is the transrblon matrlx of equa'tlons

| | (4.14) and udsT : A |
o : r(n+l,n) =jmg((n+l)AT,'I")d‘7’ o - (4.19b)

(e) The solution of egiratlons (4. 11) yields the estlma‘te
g_(n—:—l/n) of the enlarged state vector a(t) at the time
(n+1)A T, 'giv’en' the obserirations up to fhe time ndAT, The
problem is now to obtaln the estlma'tes of this wvector at

“time (n+l )A T, When the new observatlon z(n+1) is aveilabl

In other words, 11: is requlred to estlmate

ﬁ(n+1/ﬁ+l) = ﬁ(n+1/n) <+ g(n+l/n+l)_ (4.20a)

i . . . A ) .
L An estimzte fg_‘(n-g-l/n+l) of the error E(n+1/n+1) given data to
(n+1)AT is made by linear regression,i.e. '

)

E(n+l/n+1) = K(n+1) ';(n+i) (4.20b)

- where
E(n+l) is deiermined by minimizing the diagonal elements

of the covarisnce matrix F(n+l/n+l) of the error._g_(n+1/n+l)

z(n+1) der.otes the dlfference betvyeen the aéﬁal new data

rece.Lved and tne estlmate of the aaua condl‘tloned on the

previous sampling 1nterva1

‘z(n+1)“ = - z(m—l) - z(n+l/n) (4;200)
et a 1 x k(n‘+_ n2 + n) me.trix M be defined as |
(4921)

_I\_'I:(_H,O,;-.J.,O)‘
VR N, et
n 2

[
2y



Then,

'_ K(nﬂ-l) = §(n+i/n) ;kgT (M ;[;‘(n+l/n) LT +6‘§(n+l) )~L ' (4.24)

and governeG by the nonlinear Ricatti~type differential

._E{n+l/].’:l) = F{n+l,n) B(n/n) F(n+l,n)

where the relstion between 2(h+l/n) and P(n+l/n+l) is

Z(n+1) i;yl_g(n+l/n) + v(n+l) o - (4.22)
The expression for the optimal'estimétes ﬁ(n-a-l/nl:-l) of the
enlarged state vector g(n+l) at time (n+l)A T given the data
up to (n+l)AT, is obteined from (4.20a),(4.20b) and (4.22)

as v C e o
g{n+1/n+1) = g(n+l/n) + o(n+l/n+l) B (4.233)

or,

' _g_(n+1/n+l) = g(n+l/n) + K(n+l) ( I»‘ _g(n+1/n) + v(n+l) ) (4. 23'0)

. This equatlon is seen to represent a Kalman filter W1th

the gain X(n+l) given by

equation, called the variance equation and given by

+ Clnel,n) Q) FT(n+,n) (4.258)

_1?_(ﬁ+l,{n+1) '-; (I -X(xul) M ) 2(n+l/n) : '(4.25b)

I being the wnit matrix.

. The estimates g(t) are obtained in an iterative fashion

as follows. | - o P



ances generated inside %he systen. Suchvdiéturbances_are
better represented'as sﬁétionary random processes with
rationa1~speétral dénsities.

As discussed in ChapterfB,ba proceééfpf this fype may be “
modelled-by an output of a linear dynamical éystem excited
by white hoise. In the'discrete—time descriptioh, suéh a
linear sy«tem is charaCuPrlzed by a pulse transfer functlon

‘(see Anpendlx B) . : T R o
- oely
(2™ - 5‘—@—;1) SR (4.26)
ooz . |
where H(z—l) and D(z‘l) are polynomials in the'variable'z"l,i

have no common factors, and have’zeros within the unit circle.

A stauJondry dlscrete tlme random prooess é(t)  may'£hus be

reoresentbd by

| N (z"l); I R
e(t) = —=t—== .w(t) e (4.27).
' D (=) +=..., ~AT_,0, A?,'..‘. ' o

‘where ‘W(t)SlS a zero—mean gaussian white noise sequence;
By virtue of the superposltlon,pr1n01ble, characterlzlng ’
linear dynamicél‘systems,.any disﬁurbance afféc%ing the
5nput can be transforﬁed so"as to appear at'the Output'
Such transformed dlcturbances may be comblned with any other
dlsturbances aflectlng the outnut into an equlvalent output.
| dluturbance e(t) of the form(4 27) |

By v1rtue of the supoIPOSLtlon property the efrccts of



the disturbance e(t) and of the input u(t)fon the outpuf y(t)
can be considered separately. The dynamical system itself -
is also characterized by a pulse transfer function

o o=ly | -
= Nz(z ) R | :
HZ(Z ) - Dg(zﬁl) o ' (428

"and the output y(t) may be written in the form

, ( 1) i‘ . A _— '

where k is a constant and all the zeros od Dz(z"l)’and Dl(z-l)

are‘strictly within the unit circle.-

If | | | |
2( ‘1) D, ( —1) _D(z‘l) “":»»‘ R (4.30a)
Nz(zf?)-Dl(z‘l) =N (z“l)*-ﬂ»‘f“  - _(#baoﬁ)
,‘ Ny (z"lj.D“(z"l) =N, (z‘l) v '.,; | |  (4.30¢)

then the relatlon (4.29) may be wrltten (Kstrom and
Bohlln l965a 1965b) |

(ul) N4(1)
0 S ) ¢ e G

or, explicitly, -



: -(n—H ’ ' : - 97
/5“ Z .,1. (sn_. < .. ﬁO ) e o

_ ult)
g[z";) t” LTI M * o’ '
- (f1=t)
Yn‘z 4-3':«-‘2. T L wle) Yy’
i FEET T PR R o (4.32)

Some redundancy in this model is removed by a reparameterizg-

ation as follows :
v B ~fl -[h")-l'---l- Bo -

+ - z

yo)= L£r= En-s (e

efp z‘n -+ Q’h-az-‘“f” ..l o

| -{h-ul _
A b'“'z. +3’n-|2 -4 1 W(é‘, fk |
dn T wn--z"""+ +! | ’ . (4.33)

-

The model stracture is the:general representation of a
'finite;dimensional;‘cbmpleﬁely cohtfellable, completely
observable single~iﬁput'eingle—eutpuﬁ eystem with arpitrarf
distﬁfhancés inmferme of'etationary,geussian random process
with rational spectral den51ty.- ‘ ‘_
It is clear from equatwons (4.29)- (4 33) that the dynamlcs,‘
| represented by the polynomlal D(z 1) is partly ‘due to the
system dynamlcs and partly due to the representation of
disturbances. An 1nvest1gatlon of the common factors of N (z 1»)
N4(z 1) and D(z"~ _) will separate one fromvthe other, Should'
there be no'such common faetors, everyeetate of the eystemlb
(4.33) would be centrollable either frbm u(t) or‘frqm'w(ﬁ);
“The equatwon (4 33) contalns (4n+3) parameters: n COeffic— '

ientsd; , (n+1) coei‘flclents B: y 1L COei‘i‘lc.LentsV , 0 1n11;3.a1 o
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conditions and k.The iaentification probleﬁ is, for an assﬁmed
value of n, to find estimates of theée'parameteps from the -
given observatioﬁs of the input u(t) and outputvy(t),
. t= AT, 28T, ..., NaT ‘
| In the'approach of gstr3m and Bohlin, the barameters are
estimated by using_the method of maximum likelihood estimation
(see Appendix A), the essence of the approaﬁh being an
cefficient algofithm for miﬁimizing the 100arithm of The
lllkellhood function. The approach is br1ef1y °“etched.below.
First, an expression for the probablllty den31tJ function
of the observations y(t) (%= AT, 20?;...., ) NAT )
is obtained as a Iunctlon of tne 1nputs u(t) (t—prn. . yMaT)
and the parameters, For this purpose the variables w(t) of o
equation (4.33) are replaced by new Variables* | |
) = Cowlt) (4.38)

'_and éxpressed as'a functioﬁ‘ofloboer#ations. The nroblem is
‘then formulated 1n terms of -state equablons as LOllOWo-

x{,c-m) @Jﬂ)-l- I"uw)-:-Afg(é) lz.] - (4. 35a)

| 20e) = Xn ()= boul)+ylel~ 4k (4.350).
Where ;(t).;s an‘nfdlmen51onai_étété vector, the variablés €i;
are independeqt»normal"with‘Zéro'ﬁéan and variance-cj aﬁd""

the matrices @ , IF , and 4 are’definedlby,y“

x jw(t)j HAvE unT \I‘ﬁvtvtuw‘cé
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(4.36b)

(4_.3 Gc)
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If L is the 1ogarithm of the likelihood function,"

Co A/ " -
L= (Qco Zeé + WAy o s log 27’) (4. 37)

then the maximum likelihood estimates of the 4ﬁ+3 parameters
are obtained as those estimates which result in the minimum
of the function (4.37). ATo simplify the notation, dll'the
parameters are denoted by‘e,-iwhere :
| O¢ = ’(‘ : =1, ,n .
Gnii =,-—@c+ﬁo¥€ C=1,--hn
szc-.-..dcr—fs’ | €21,.n 7
T (4.38)
Osnec = X &) C=lhe-m S
Cqun.f = bo
- O4qnir = R
O4nes = Co = A

The functlon L is mlnlmlzed in two stages: flrst a

minimum of the funcblon

i < . .
vee - zgse ST ey
is‘obtained, where . : | ' R
-—[9”9:; ;.., 94n1‘a) SN '  ..(4_.’:40) ‘

Then the estlmate of 644,.318 obtalned from u

- .| Ef_- , .
Bines =G0 = "3;'-5, ey
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The log-likelihood function L has éénﬁinuous partiél
derivatives of all orders and the minimum is finife,tﬁough ‘
ﬂof necessarily uniqﬁe,._Forvthis reason the technique chosen
for the minimization of the}functién (4;39) and (4.41)
is a’gradient technique enabling-fast‘cbnvergence to be

‘obtained'through the use of th Newton-RaphSon algorithm

(Peutch,1965). The maximum likelihood estimates - are
thus obtained from | o |
[ Y N - ('U), ) r“] /

e =€ -~ [ypg [_~ ' Y:‘-‘ (€ . (4.42)
where !_@ is a vector with ¢ompone11t_s |
Y (8) ) -
ol s ———t "

Vo, = 26¢ 6L, dus2 - (4.43a)

. 3 O¢ = oy | @". - ’ ' -(4.4-3.’0)

’ybg is a matrix of'second_partial.derivatiVes with

" elements given by -

Ny (9)

o;,.)' :l,z, 4dne 2

Voo ii T 99:36; (4.44‘&1)
—az!‘(g) - A4 BE‘(.%) ) B‘Ee - |
20:96; gz 26: 26j

t=1
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andAthe deri#atives of €(t) are obtained from the relations
(4.35)>in terms of the ﬁertial dérivafi&es of the state
vector x(t) with respect to the parameters ©.
_ Kstram and Bohlin (1965a).show howtto calculate these partial
derivatives SO0 as te achieve shortest possible computation
times. They prove also that their estimates possees all'the
:desirable large sample properties.(see Appendix A). The
details are;h0wever, thought to beebeyond the scope of this
review and the inferested reader is referred to_thevvéluable
rebort quoted above.

-

4,4 TIdentification of a linear system subject to a nonstationa

Py correlated disturbance..

The 1dent1f1catlon technlque discussed in the precedlng
sectlon is really appllcable under staulonary condltlono,
when the staulsulcal cnaracterletlcs of the disturbance
do not channe with time.~When this is hbt the case, the model
may be cyclically undated as suggested by Astrom and Bohlln.
A more sophlstloated way of deallng with such a 51tuat10n i
is however, to acknowledge the nonstatlonary cnaracter of
the dlsturoance and to allow for 1t by 1nclud1ng a sultable.
model 1n uhe 1nput output relatlon of the syotem Unéer v

00ﬂ31deratlon.
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Thié'approaoh was:adopted by Box and Jenkins. Their téoh{
nigue was first desoribed in 1962 and 196% and was originally
devised to deal wito_closed—loop control systems. The tech-
nique has been greatly extehded and'coﬁsoiidated during the
last_two years , and published ao‘a series of Tancaster
 University Technical Re?orts (Box and Jenkins,1966,1967).
While it is comparétively easy to»reviow the earlier work,
it is rather difficult to give justice,within the frameworlk
-of a small section,to tho aboVe-mentioned reports,constitotu
ing effectively‘a preprint of o:projeoted book. Thereforé,
.only the ﬁore important aspeots of-the"Box and Jenking"
approach can be highlighted here, .

The essence of +the early "closed-loop" phasé‘of the-»
approach (Box and Jenkins;1962;l963) is the design of a
controller to control an industrial process subjeoted to
a nonstationary disturbanco; Thevdesign is oarried out in
two Stages;vFirst,the procoss dynamics and the character of
the dJsturbance are identified. Thes, a control law is
derlved such that the varJatlon of the 1nout 51gna1 matches,r‘
as closoly as poss 1b1e the variations of the output of the
‘process due %o tne dlsturbanoe. Only the 1dent1f1oatlon nart.'
of the procedure is reviewed below, - | ;

The cheraotorlsticq of the proces and thetdisturoance-t__
-are derived from the results of two tes ts;AInvonettost,;_ﬁ

- no oonLrol is exercised over the proces and ‘the process

is allowed to drift under the influence of the output
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disturbance. In the second test known adjustments,are made-

to the process and the resultant varietions in the output,

due to the combined effect of control and diSturbanCe, are

- noted.

The nonstationary disturbance isvrepresented as an
"1ntegrated autorenre351ve—moving average" stoehastic process
,V(t), discussed in Chapter 3 and defined by

\/(f:»l)- ['Y‘L,_‘)v T4 o+ T #Ye S )

too o+ Y S e 0 (4.45)
where e(t) is a zero-mean gaussian white noise w1th variahce
'f are constants, andV and S denote, respectlvely,
a backwara dlfference operator _
| vee = es-€e C (4.462)
and a summatlon operator | | |

L se =g ey

The structure of the dlsrrrbance model (4 45) is obtained
from the results of the first test, as the drlltlng output
of the process under con51d°ratlon represents the dlsturbahce;
1tself On dlfferenCIng the model (m+l) tlmes -one obtalns
a moving average process of order (1+m+1) |

o _ £+m> o .
v Vesr = Péer T JEO dy t?,e.._, - (4 A"])
”he cnuracterlstlc reature of such a DTOCGSS ig that all

uheiautocorrelatlons of lag greater than (§+m+l) are zero.



The approximate constants m.and 2 of the most a?proPr;até
model (4.45) of a given disturbance are thus obtained as.
follows; Pirst, the series of readlngs is dlﬁlerenced until .
it appears stationary. Then sample autocorrelation function
of the resultant series is obbtained and the lag is estimated
at which the correiations appear insignificént.IWhénAthé
structure of -the model (4145) and,thereforé, the number:
‘of‘the parameters 'invdlved,‘has thus'been_determined,ana |
an aﬁproximatekétructufe of.the system dynemics is known,

~ the paraméters.Of the overall iﬁput—output relation may be
estimated'fromVthe'results of the second test. To this end

' the-dynamic qhéractefistics of the pfocesé are expreésed by .
a difference>équation (see ApnendiX!B)' | ‘ |

Cimhu - Cm-.; uu.; oo ® cauu-.\. :

dm y!& "? JM-( yg_‘ o 3 doyk-h | (4-4‘8) '
or, 1DurodU01ng a backward shlft opefator B deflned by
B’ x¢ = T C L2

the relatlon (4 48) is wrltten
ma ‘ﬁ' C et B+ -- + COBM ‘,4 s
.jt— dm B ¢dn. B + "',“"“'0- €. (4‘ 50)

'The expre551on for the output z(t) due o the oomblned effect

of the lnput_u(t) and the dlsturbances v(t) is then wrltten

as’



/ 100
Ze4y = Yo ¥ Ve - S (4.51)
or,explicitly, ‘ |

CraR%-.. +CoB™

2t = A BP +. .. <cloB* 147.;_..4.,”
. - v o '(’aﬁ) -
b ¥ =% ¥ (1-8T e Y (1-0) Jee  (4.52)
. . - F 5 e‘_” ‘ .
where - )
ve -8 ‘ (4.53a)
- e (l--B).
.s = V (4. 53b)

The parameters of the mouel (4 52) are then obtalnéd as
maximum likelihood estlmates as follows. First, the errors -
£e,d,¥lu,z) -
are calculated recursively as a function of the parameter
veétors'g,vg; I 'conditioned on the vector oflobservations

CK;IBO"", “"c" )Q
€4 = Syt ( dm,so.@-'..*doﬁm S

1-414) '

~ fl'u. {!—B)" T Ym U~BJ ] ey (4.542)

where ‘ _ : , | e o
_ - : R T : ) o s
E = E. JEZ" . 3 eN ) ~’ : - (4054b)

i =ML M (4500)
2T - z',',z'z’,v.. SEv o (4.ssa)

Then the sum of souares , ,' i | » | o

. 7- L

proportionél'to the log—llkellhood;funcfion,’is calbulated_“



./e", ,.co, ‘”

and minimized by uSing_a standard nonlinear estimation
program(Booth and Peﬁersoan96Q).iThe minimization'yields’
the_maximum likelihood e$timaﬁes of fhe parameters.

It should be observed tbat the 1dentlflcat10n of the struct~
SiMPLIFIED g

ure of the nonstationary dlsturbance is nﬁée-aﬁﬁaibie-enégp

by the closed loop nature of the problem, However‘ in the
'"open—loop" systems the effect of the dlsuurbance on the
: EASILY ‘ '
ouuput oannot be&separated from that of the 1n0ut and the
»"closed—loop" Box and Jenkins approach cannot be employed.
Box and Jenkins have evidently realized fhis and in their
later work(1966,1967) they modified their‘approach to include
the open 1oop‘syeteme also. This latest approach to the
'identifieation of open loop systeﬁs‘can be.summarized és'
follows._ ) . ; |
The techniqﬁe consists of three parts: identification
of the sfructure ofkthe‘dynamic model,veetimation of pafameter
- in a tentatively enterfained model,_end:diaghostic\ehecks
of_the adequacy.of the medel. The technmqﬁe'applies now
only under stationafy conditiens; Therefore,'a preliﬁinary
check on the stationarity of.the input and output iy first
mede, for examnle , by obtalnlng and examlnlmg a sample
crose-correlatlon iunctlon of the 1nput and of the output

IF necessary, the 1nput and output series are dlfferenceé -

until they appear anoroxlmatelv tat:onary.
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At this stage a preliminary identification procedure is
carried out in .order to obtain a rough idea of'the probable
structure of “the dynamic model, For this purpose the output

‘ Vi is represented in the form

b
ge = A.;(cBBJJ ° e tee (4.56)
or,alternafively, | o . | ,
N 55. v(B)ue * ee | (4.57a)
v(iB) = E v 8 o  (4.57b)

In these relations N(B) and D(B) deno#e polynomials in the
backward shlf operator B, vJ are helghts of the impulse
response at 1nstants jA T when the 1nput is passed thfough
a gero-order hold, Bbcorresponds to a transport lag of b
sampling perlods;and‘ fetsls the noise sequence uncorrelated
with the input, thé effect of the noise being és0umed'to be

small compared wlth the varlatwon of the input Ups
| The preliminary procedure is based on the fact that if the‘
flnput to a linear system is ;n the form of a white noise, |
the crosscorrelaﬁioﬁ function of the‘input and of the Outpuf"‘
is idontioél with the impulsé résponsevof thé systém;-

" An éobroiimationyto a whiteynoiéé ihput is obtéinéd by .
'flttlng to tho actual 1nnuﬂser1es a mlxed autoregre351ve—o‘f

moving average model

(I"“ ¢IB~ ter ot ¢f'8 )ué (I"' 6'8""" “@¢3 )o(,‘ (4—.588,)
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| or, ‘ ,

DulBlue = Ou(8)% (4.58b)
whereﬁd,_.ﬁis a white noise sequence with variance G: , the |

, A ‘ . '
estimateaf of which is olitained from the sum of squares of
residual errors.
~ The white noise input-
« (B) :
o, = BB -
9“ (B, . ' (4059)

is then crosscorrelated with the transformed output

‘f«[@) . o
, v s 64 (B) 5“’ o (4.60a)
OI", S. : .
& (B) | ,-
VIB) e + 75 *F (4.606)

.and the heights v:J of the impulse response are obtalned from

the sample cross covarlance functlon

* .

. xda (J) "V it o (4.61)

~ where - B cL R o
‘o’,Lz (J)"' é'{d& 2e~+.)>  >(»4‘.62&)

Yaz(f} = ' Z °(" e+ (4. 62b)

The 1dentlfvcatlon is effeoted by plottlng the 1mpulse
,response thus obtained and selectlng a modellwhose theoretieal_

’
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impulse response‘most-closelj resembles the plottied response;
When an indicationpf the probable structure of the dynamic

model has just been dbtainéd,'é model of the input-output:
relation;is tentatively posfuiated and its parameters are
estimated by usihg the 1éast squarés method, Af this stage

Box and Jenkins make a difference between a "linearized".

nodel and a "nonlinear"model. In the writerfs opinion, Box and

Jenkiné are not cénsiSténtleither in fhgir notation or

¢onventionrand; as a result, it is not very easy to ascertain
what do they actuaily mean by a "1inearized"'model.
As the writer understands it, the"lineariged" model is ‘the -

one 1n which the re51auals in

| D(B)ye = MR B u, ¢ (4.63)
are represented by an aytoregresq1ve—mov1ng average model
(1- PR~ -.- "»qb_/" P)Pst- = (1~ 6:’3-;;"'9‘2,39')_45  (4.642)

- or,. | ) . '. , ,'
<;l5(fo’) g ~ e(@) ae . (4.64D)

where;Qefls a whlte noise sequence. Thus, an 1nput output
relation oorrespondlng %o a "linearized model is
| e’ .,
..D(B)‘Jé /V(B)B tl,g.-; BB Q,". i (4.65)
In the ﬂnonllﬂear m model, on the other hand it is not
the residual error = but the noise et at the output in -

/V[B) ' | R L T o §
y{- = Di(B) B g "‘eé R “(4.6‘6)'
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that is represented by an autoregressive-noving “verage model :

(- de-- - éf’ﬁ'@”)é’é (1~0,8~--=65 8%)a;  (4.672)

or, _ | : | - o

4’5{5)6"5 = ©(B) a;, | (4.67b)
As a result the input—outbut relation f§ |

Y OB 4.
Ye = ey B‘ “ * T e

- . i. - Ii " I ’

The parameters of the linearized model (4.65) are estimated-

(4.68)

in the following way:b
S i e | | N
(a) First, a 51mp1e model ‘Brgy is postulated and some set
of wvalues 1is adopted as startlnx va]ues of the parameters
So (8) B :
—-(%7‘,3; oi‘ the model, often SolB) = Do [/3)‘

(b) Uslng these assumed values the relation (4. 65) is wrltten

¢o(5) - b ¢°(,3) ' \ o
DCB) [ &, ca 9‘-‘] ”[3),-8 [ &, (Bl]"‘ * % (4.69a)
D(B)yé = N(B)B e . a, o (4.69b)
where . - R R
(Ol ¢o (3) o
y¢ T SLisl ¢ (4.69¢)
(o) (éo/@) S SR o o

(c) st:mates.D“(B) anao‘j (/31 of DB ang- /V(I.t) in the.,: 2

relatlon (4,.69b) are ootalnegbby ordinary llnear least
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squares method, for a suitable set of integer values

off b. , : A
() Ifsing'_tile estimates -DM{B) , ’Vm(e),and s , residual
errors Et{dare-'cdmputevd from | _
ge © = DBy 4w O8)BY T P (4.70)

{e) from the study Qf the.autocorrelation fuﬁction_of.the
residuals a‘more suitéble,mbdel
o s , |
€e = m R , (4.71)
may be inferred. . | ' -
‘(f)'ir the‘indipated noise_strucfure is sufficiently,simplé
and depends only on one or twb additional parameters,‘
new values yt(l),ut(l)‘mayvbe géneraﬁed fron (4;690);
(4,694d) for a grid of‘Values'of noise parameters, and
the values of‘paramefefé resultiﬁé in the smallest

attainable sum of squares of residuals are finally chosen,

A different approaoh»is suggestédvfor estimating the paramet-

ers of the "nonlinear" model

N(é) B!"u’ ore) e
Ye = D(B) * To@me Y (4.68)
where | i | REEEE it

D(B) = (=8B~ - -8B  (4.72)
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¢®) = 1—¢8- - -8 (4.72¢)
9 (B) = |- B« i "'9?«,3 2 ' . - (4.724)
In the relaulon (4,68) the dynamlc rnodel = -
| D(8) |
is Xknown approximately fromthe Drellmlnary identification
ors)

procedure, but the structure of the noise model @By not be
known initially, and may have to be obtained through a series
of progressive 1mprovements on a prev1ously assumed struCuure,
the improvements belng 1ndlcaued by the SUructure of the
autocorrelaulon function of residual ervors.

- The suggested approach involves linearizing the expression.

(B) &(/3) . V(B) ' o
Qe = -g-m Ye — S(R) ..D(B) ¢~ - (4.73)

about current guessed values of parameters

T S T | el T . =
ﬁ‘, - E ¢“. L ¢F‘. ; e". .. 9?6'; ‘S:‘-.,. ;&g’,‘ Qer... Oys j (4 74)
and using linear 1east-squares teChnique e} estlmate the

parameters of the 1inearized‘model.

Specifically,if
D@ Pe(B) . B8] | prs) ‘ '
ag L;:f: Q(’B) } € 94('3) x Dt'(B) é‘-‘—k-l | (4—.75) .

corres ponde to the Darameter vector (4 74), then 11near1z1nﬁ_

rthe expre881on (4 73) about (4 75) ylelds.
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Ba,_c

ae = &em-f é ( @i~ ‘j)“;)[g:ﬁj]g; "' Z(@“”e"‘)[aaej A
' J=

f‘ﬁ (Oe ~du )[a&](h
=1 ‘ gaé

- (wn-om)] Fanlse — (4.76)
The adjustments (c?’,-— ‘Pﬁ) -, (OxBri) ) {ft‘f"') and
(on- Ond) are estimated‘by regressing atgi) on to the
negative of tue derivatives [02¢ ) (3“1‘ ), ")Qf'), -a—“f-)
) ' ) . a ¢J. '}9“ / Dé‘l_ 3 Op

reswectlvely and the cyele is repeated until convergence -

occurs.
Box and Jenklns show_ that “the llnearlzed model to be

fluted by linear least squares is apnrox1mately given by
«) '

'- ¢5(81[ ¢ml]* 9(3}[_9‘”3J
« - , S
~D(B)[; f,;, + MB) [,:f(,:, ” (4.77)

Thus, at uhe i-th 1terat10n, the estimates ¢%{B/ 6%63/ ,

Dy (B) and Ny (B) are obtained from the fltted regre531on

) -1
g ,[ ¢‘.fm')]+ e¢ (8) [9‘_,13;J

(ET (‘ﬁ
-~ D: (B) [ et ] ""/V‘(B) [ Wi-i (6‘/] ' (4'78)“

' If b is also $o be eotlmated the iterative Droceaure is run‘f,

for convergence for a serles of values of b in the Jlnely

'T(nﬂe, and tnqt Vﬁlue resululnn 1n ‘2 minimum sum of squares'
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is selected; | |
After fhe estimation procedure has bheen completed,‘diégnosfic
chegks are to be made to éscertain-the validity of the
identified model. | | o | -
I the_trué model (4, 68) is written as

ye = VB ug~+ ¥(8)ae (4.79)
and the identified model as | '

Ye = Va('"/ uf-f- Wo[@)d-e . - (4.80)
“then the errbrs:resulting from_a wrong seléction of the model

are given by

. vB)=VelB] (&)
Qe = Fo (8] T e t e ¢ (4, 81).

An 1nd10atlon of the vallalty of tbe model (4 80) may be -

obtained from an examlnatlon of the auuocorrelatlon functibn'

'of the errofs ay énd‘of thé4cfosscorre1ation function of

the erfors a% and input ug, ' |

In particular,i . | |

(a) If the dynamlc model is correct and the n01se model is
1ncorrect then ay w111 not be cros~-corre1ated with the

‘_vlnnut uy but the auuocorrelaulon function of at w1ll

not appear to correopond to that of whlte noise;

 (b) If the noise model is correct ‘but the dynamlc model 1sr

' 1ncorrect the errors at w111 be bOuh aubocorre1ated

and croso—corvelatec wlth the 1nput ut
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4.5, General Remarks.

The parametric techniqués discussed,inﬂhis Chabter havé
been deliberately arranged in the order in whiéh » in the
writer'é opinion, the~degree of complexitly of representing
the effects of tﬁe distﬁrbing noise increases. The first
technique seems to be 1éasf attractive, ét least in the a
application %o siﬁgle—input single éutbutlsystems, in that,
~in addition to several assumptions to be made aboﬁt_the’
disturbahces, it involves %he estiﬁation of state.varigbles‘:
as wéll as thevparameterS'of the system model. The”remaining'
two techniques, while differing_in-details; héve nevertheless
some cémmon factors; Oné of these im the minimiéation of the
sum .of Qanres.of errors‘between fhe,aétual and ﬁhe
, "prédicted".Output. In tﬁe caée of a nonlinear rélationship
v_betﬁeén’parameters; thé éum of squareé function_may possess
- multiple minima-the diffi;ulty recognized bj zsthm énd
Bohlin and élso discussed‘inkthe theory of *the nonlinear
program employéd by Box and Jenkins (Booth and Peterson,l960),

Thé ofher common featurebpf thé two’téchniqués is the

:modelling of stationary disturbances, because the miied",'

autoregressive-moving average scheme employed by Box and.
Jenkins can also be regarded as a pulsed filter excited by .
white noise.

The honstafioﬁary model of the disturbance, employed by
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~ Box and Jenkins in the solution of thé"closed loop" problem,
cannot be interpreted in this fashion. Bohlin(1966)

considers this model in the form

-V(f)= [1# (Y-z_V ‘e Y, V 4"*‘)/ V[N“) ]ﬁ{f} (4,83)

énd cTaimé théréfore, that Box and. Jenklns model represents

a spe01a1 case of theii model, It is rather dwfllcult to

accept this p01nt of view because the statlonary model

‘of Astrom and Bohlin should " rather be regarded as a subclassf

of nonstationafy models, and not the other way round. |
Heither of the described techniques permit the identifie-.

ation of system'dynamic§‘to be pérformed autonaticaliy

in the presence of a nonstqtloﬂary dloturoance, The develop—,

ment of such a technlque is decr1bed in the next Chapter.
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CHAPTER 5.

ON~-LINE ESTIMATIOR OF PARAMETERS dr A SIN LE—INPUT SINGLE-

OUTPUT FIRS’n ORDZIR SYSTEM IN THE PR';ENCu OF A NONSTATIONARY

CORRELATED DISTURBANCE,

5.1, Intfeduetion.

‘The work discuesed in Chapters 5 and 6'hae been carried
out within the-framework.ef the Automatic Control Research
Project of the Central Eleetricity'Generating'Board,vIt wae
asseciated,-in particular; with‘one aspect of the project,
‘namely with the en~1ine control- of a'poweg station boider.

iA method of on-line control of a boiler (Berger,1967;
Moraﬁ and Berger,léS?; Meran,Berger‘and.Xirokostes,1968)'
'required fhe knowledge:of-certain quantities , the values of
some of which had to be either assumed or estimated on-line,
Tt wes the writer!s task to investigate the feasibility
KOf’on-line estimation of one-such‘parameter; on the‘assumption
that lts estwmate was to be used as a control parameter in the
maln control program.~4 | | ..;
| A prellmlnary analj51s carrled out by the wrlter showed

that such esulmates are nonllnear functlons of several

quantltles It appeared, howeve that 1t mlgbu be Lea51ble,‘

: at 1east on paper, to obtalﬁ such estlmates in real time

by llnearlzlnn the relﬁtlon 11ps aoout the mean oDeratlnv';f’

n01nu and nrov1d1ne means to 1earn what tpe oneratlng point is
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As a result of such a procedure, ther requlred quantlty was |

expressible in- terms of a small number of first order 11near

'tlme—lnvariant differential eguations. Thus, the problem of .-

estimating the quantity in question Was shown to be.reducible
to that of on-line estimation of sln 1e—1n0ut slnﬂle—output
linear tlme—lnvarlant dynamloal systems»subgeot to disturb-
ances representing other boiler quantities_coupled to the
systems under oonsideretion. The problem eppeared, therefore,
to be solvable by employing one of the methods reviewed in °
Chaoters12¥4;'orovided'that the quantities used in the |
estimation could be regarded as stationsry stochastic_prooeSSe
The suoportlng tests oarrled out at-Cro§doﬁ B and:
Northfleet Generating Stetlons;-snd;their results; sre‘ ' |
discussed in Chapter 6; It is shown there that (es,perhaﬁs?'

was to be expected) the statistical characteristics of the

various quantities of interest, like, for example, steam

flowrate, boiler pressure or steam temperature, vary with

‘tlme. This 1ndlcates that these quantities should properly

be regarded as nonstatlonary'stooaasulo prooesses.

‘The problem became thus that of estlmatlng parameters of
s1ng1e 1nout s1ng1e~ouuput first order dynamloal systems :

rsubaect to a nonstatlonary dlsturbanoe. Slnce, however, o
‘the estimetes were to be used‘aS‘oohtroi»parameters ih-an.d75

'overall nlant oontrol nroblem, two further.requirements‘d'

vere aooed, namely
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(a)the input and output quantities were not to be examined
by a human operator and, therefore, the character of the
disturbance had o be learnt adaptively by the estimatioﬁ'
orocedure' | '
(b)Since the estimation had to be effected in real time, and
the estimation procedure was “to be only a subroutine
of a bigger program, only a limited storage capacity
could be expected to be allocated to the estimation
procedure. Therefore, relatively small-sample analySis
vas enyisaged and the various large sample attributes of
lthe estimates, discuesed in the Appeﬁdiz A,did not a@peer
to_be very relevant; the mein objective/being as good a
fit to the‘recordedvdate as—pOSSible, and reasonably.A
short computation times. | | | |
None of the methods reviewed in Chapters 2-4 could be made
to.satisfy all theselrequirements and,vtherefore, a new
»techniqde has been developed by the writer. The technique
includes a novelrmethodlof modelling nonstationary processes
and a new method of parameter estimatiOnl not essuming"any
’of’the large sample propertiesuy'which estimates are usuallj
reqﬁired;to‘have._The;techniqﬁe‘and exemplee'of itsbepplic~

ation are described in the remainder of this Chapter.
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5.2. Characterization of a nonstationary process in terms

of its mean souare value.

It had beeh observed in:ChapterVBIthat, in view of a difficul-
rty iﬁ specifying statistical characteristics of the variates,
the methods of modelling npbstafionary processes havevtended
to be more or 1ess empirical. Various suoh‘methods, currently
available, were reriewed in Chapter 3. In‘pertioular,bit was
observed that the model due to Box and Jenkins (1966) seens

to descrlbe the nonstatlonary behav1our of many physical
processes, met with in Dractlcal appllcatlons, reasonably well,
CIf P Pa- l(t) is the polynomial in time of dejgree (a-1) (5.1a)

o Vi <fe=ne, (5.10)
is the backward difference 0peretor; S 1s a summaulon |
0perator defined by b b  ‘ 1 B
| Sne= Z ’lf—) B (5.1¢)

-gz’h = ZE_ Re-j-k o (5.14) .
etc enosqe§denotes a zero—mean whlte noise process '
oharacterlzed by S ‘ | ; .

el e> ~ S Gaa)

the Box and Jenkins model is wrltten as,' BRI
"zé-.- P L£) + CAmoe™ " i )s., Hh
| R }\el»-cg ]7{-{"76 S (5 2)
The problem to be solved by the wrlter wac uhe eetlmatlon |

v

of paramcbera of a QJnW]e 1nnut 51ngle output flrst order
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systeﬁ from a series of values &F inpuflfkésland outpﬁt‘sgg‘
sampled by a suitable scanner and stored in the computer.
The_input u, was expected to be nonsfationary,.and the output
'yt was to include the effect of an unknown noﬁstaﬁionary
Adlsturoance Qf "burled" in the outout and representing the -
coupling of the rest of the olant with the system u-y. |
The observable ouuput R is thenglven by ;

y,c—-y,G +_'l\’-‘ S | , (5.3) "
~ where yt' is the n01se—free output due forthe input uf. ‘
The problem is 1llustraued in Fig 5 1.

Formulated in the above fashion, the nroblem bears some
31mllar1ty to the Box and Jenflne approacn: except. tnat
the 1nput and output values are to be "seen" only by the .. .
computel. The estlmdtlon program was, therefore, requlred
»(a) to 1dent1fy the structure of the nonstatlonary disturb-
ance contemlnatlng the outout Vs
(b) to estimate the parameters of the dlsturbance 301ntly
w1th the parameters (ﬂaln and time constant) of the flrst'
- order dynamlc eystem under con31deratlon.= |
It is obv1ous that, when human Judgewent is not allowed

in examlnatlon of the 1nput and output values, as well as the-

processed results, the model of the type (5 2) 10 not very

¥ su1t%ble for autoodtlc vdentvllcaulon of the-structure of the~

dlsturb%nce from a geries of input and output readlngs. For
this reason, another approach, ulbilizing some other character~l

istic of a nonstationary process must bhe sovght,
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The various models, discussed in Chapter 3,‘repreeenu'a
ﬁonstationary stochastic pioeess by a relation ofuthe form o
kt = m% + Yy l' ' ST | ‘; . .(5.45'
where - | o t" ‘ . - |
(a) eitﬁer the mean value function m, is aseumed_to Ee;zero.
_ and v, is a nens%ationaﬁy stochastic procese, | .
(E) or, a model is fitted to represent a determiuistic
trend my and a stationaiy.process’vt.A
Tﬁe first approach represents the honstationarity by a‘time—
varying variané%of'the process; in the Secohd approach,

the other hand, the nonstationary behaviour of uhe process

Xy is renresented by the mean value functlon and trend o

as a'functiou of time.

Now, since

(mean)2 +- (varlance) (mean sguare value) ' - (5.5)
it seems reasonable to argue that elther anuroaeh can'be
‘regarded as a particular case of flttlng a model to renresenﬁ
a tlme—varylng behav1our of the mean’ scuare value of the
process -under con31d@ratlon It hasg, in facu, been observed
by Thrall(l964) Thrall and Bendat(l965) and Plersol(l965)
that in certaln appllcatlons , llke analy31s of mechanlcal :

| v1brat10ns data,vlt 1s the mean square value Wthh is the

31en1f1cant Darameter."

A
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If a BoX and Jcﬁkins model 1s employed to represent e
disturbance inn.eQuation (5,3) or Fig,5.1,then. there is
no means of identifying its structure (short of reducing the
model (5;3) to a stationary model'ahd then aprlying a more
or less trial and error procedure as Jndlcated by Box and
~Jenk1ns(l966)). nowever, tne model seems to représent the
nonstatlonary behav1our of many phy31ca1 processes reasonably
well. Thus, what is requ1red in the present investigation,
1s such a reoresentatlon of a nonstat1onarj process Wthh
would be at least as good as the representatlon of Box and
Jenklns, and yet render 1tse1f to easy identification from
the analysis of the inpitand output‘data.'l |

The mean square value of the process (3.52) is given by

E<x;}> n EL Nt (V5 75 4 Az (5.0

$eeee + EL }\;{., (s ;H)z> 4 o=

2 )\.,1-: Ad-2 E“( fsd ’56—1)(3 5e-¢)> (5 5)

How the stochestlc process?a%Jl(B 52) is assuned to be

a zero mean vq1ue nolse ., that is | _ ,

E< ?n O LT (5.6a)
o | 6b)

E<7efe> ff&,e (5.6D) -

‘Therefore,

E<(V ‘ﬂ_,) B E<(E (-') ( ); )
o> z ( " 6
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Also, the first tnree summations are

Sf’é“l = S Eé*:«c ‘?é—l*'?@l *';°*’?( . (5,8)

STy, = J%z A P O

- i"' (€-2) 3 i__,_t':—?.-a’gf.z_&_,- - (5.10)

R =2 2 Z Zerued5e11)

o - g f l,é-.lz-—j)?« (5. 12).
Thus, : ' o Zm ‘ |

E-([§$Lf ‘@—0& _ A (5.13)

E<[s feullD= ® 2‘ lé‘ Uamm . - (5.14)

E{(S?’;é_, ) >~€ { z ; Gtz"fll‘d —15'{-26]42/2.1 )} (5 1‘5)

The 1ast tiwoce sums and, 1ndeed any hlgher order express1ons;
can Be_easily evaluated by u31ngva @ecnnlque'of summatlng
the factorial function (Miller,1960). However, it ig already
apparent that the mean squaré value of the nonstationary |
fsfochastic procéss represehted by¢the;Box and Jenkins'model -
(3.52) may be expressed in the form , . |
| E(x#) a.,é-u-a,,é--mtf‘ - ot Ay, ‘fd*.,. | (5 16)
A characterlstlc feature of a time polynomlal is uhat the
‘n-uh dlfference of the n—tn aegree polynomlal 1s zero. This
feature makes it very %UJtable for 1dent1flcau10n nuruoses.
The proplém stualed was to devise a . 1ea:n1ng tochnlque whlch
could enable a nonSuatwonary dlsturbance %o be 1dent1f1ed

"and then to be tﬁken 1nto account durlnp the estlmatlon of

 the syutem ay pamlcs. Tow albhouah the polynomlal (5. 16)
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can be identified in an autematic fashion relatively eesily,
its coefficients are complicated functions of>the coefficients
of the model (3.52). rnerefore, the Box and Jenkins represent—
ation is of little use in tne current problem and a new
approach to modelling nonstationary processes has been deVelop
ed by the writer . The approach; discussed in the Appendix C,
is to associate the'polynemial erpression of the type (5.16)
with a definite strueture.of.a linear filter with time-
varying coefficients, excited by white noise; It is shown
in Appendlx C that 1f a nonstaulonary processzéf 1s represent

ed in the Iorm

Re =10 +J; el ;é“’ * 5’& | - (an
w%ereff}$1s a white noise process, then the mean: gquare value
CAN BE MADE '

of the process,E-(ntz>, dsaa polynomial in tlme, the degree
of the polynomial being associated w1th~e\aef1n1te structure
~of the weinhts'v (t) Therefore,Athe identification of the
degree of the polynomwal, descrlblng the tlme varlatlon of
.the mean square value, of the process 1mplles also the 1deni—
 1f1cat1on of the structure of the f11ter, renresentlng the
process. This solves the flrst part of the problem.

rhe structure of tne wemghts A& (t)
() =K -(——-‘.m-.—l— S " (5.18)

was determined in a sémi-empirical fashion from considerations
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of conditions which have to be satisfied by the impulsive
response of.a 1inear system‘characterizéd by a general 1inearb
dlfrerentlal equatlon with’ tlme~vary1ng coefflc1ents(h111er,
1955) Trlal and error procedure was ther employed to arrive
at a structure of the welghts resultlng in the required form .
of the mean sguare value. | : .

. As proved in tﬂe Appendix C, the processes whose mean
‘square'vaiue is a polynomial in time,.ere cheracterized by
the followrng dlrrerence equatlons | |

| (a) for the rlrst oawkr'po1ynomlal,'

| % ! €~I3AJ . :
'l-e"( e 76' [G' t”* ( S * ‘ (5.19)
(b) for the second degree polynomlal, . o
' &=l 5 4 €~ : ‘ » L
Re' =~ SF 0 = @G- 5F % *3,  (5.20)

(c) for the cubic ooTynomialb

& | t~' | ; ‘ |
W) (o R M ek Gy
(a) for the quartlc POlyﬁomlal | |

iZ,‘__-‘Z ""lz‘-l"" 'zf-z 62. o '
- {,+[C-«~—~2“"]§é (@-" ?41 - (5.22)

mhe deveTOpment of this approach reoresents the orlglnal

, contrlbutlon of the wrlter. The wrlter Wlsaes, however, to g

facknowledge some qJmllarlty between the welghts (5 16)
and veg Htlng Fuuctwons for wnloe norse descrlbed by -

‘31achan(1965) and based on the Bode and Shannon( O50) approac
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In Blackman's method the weighting functionlifhﬂis given by

™
| e [Z(1-%£)] |
WelTl= ’7‘—‘1.[7'(, 7")] m OSALT . (5,23)

K “L(—,—~z;_+l’z o ' (5. 24)

An approx1mate estlmate of tne degree of the polynomlal

where

assumed to characterize the time variation of the mean square

value-ofbﬁﬂef may be found as. follows.

ye=w &% . e

where t is greater than some number A (e, g 50), thus ensuring

Let

that “‘the varlablllty of the estlmﬂtes (5. 25) 1s not large.'
Then the series ;yfils an estlmate of

o E<D
- for t“=A,A+l;.....,N.,1Where N is’the length of sample avail-
able for ahalysis;‘ |
- Let alsoiy(i)fdenete a eefies forﬁed by differeﬁcing'tﬁe

evlesi ytil tlmes, that is g

§ Ye W= ¢ Ve-ye-.i va ~ (5.26)

}3t"’_"§ -23«-'—274-1 *yc--d:_Sviygf | | (5.27)
- and so on, ' | | ,‘,» | e . B i
 Them, - - A &J " L 2 (cl e | |
Je ' =h-e LI (5 28)

is aa”estimate, aver eu over a small number (D~C) of .
samples, of the magnltude of the 1~th difference of the mean

. . . 2 :
square value series {Qef .
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(a)

()

(e)

ﬂd).

VAR ¢L

The identification procedure involves then the following

L

Obtain a.series of estimates of mean square values for

increasing.sample lengths, starting from a minlmnm length

A,

‘Obtain an estimate of the order of magnitude of the

estimates near the beginning and near the end of the

series; the relative magnitudes will indicate the increas-

- ing or decreasing trend of the series;

difference the series of estimates (v);

Keep repeating the steps (b) and (c) uvntil the‘small'

~ sample averages near the beginning and end of the series

are small fraction (say 5 per'cent) of the corresponding

original estimates of the mean square value. The number

'of differencings requ1red io arrlve at this stage w1ll be

:equal to the degree of the polynomlal representlnv the

time varlatlon of the mean square value. The 1dent1flcat~

ion of the model is now comolete.

5.3, Reoresentauwon of a erst order system.

The quantltles recordrd durlng uhe tests descrlbed 1n )/

‘Chaoter 6 were obialned by samnllng outputs of transducrs’
B every 10 seconds in the Croydon test and every 15 seconds

”1n the Rorthfleeu tegfe. hOQb of the reeults 1ndlcate tnat :

o
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any two consecutlve readlngs dlffer onlj in the third (1east
81gn1flcant) digit. For thls reason, the use of a zero order
hold for reconstructlng the oampled functions appears to be
justified. | |
Tt is shown in uhe AppendiZ B that, if a continuous~time

flrst_order system descrlbed by the traﬁsfer function

H(s) = - (5.29)
‘then the difference eQuation correspbnding to a discrete-time

version of the system (5.29) with a zero-order hold is

/ ' - | o

_.éyf" =g (-Pugy - (5.30)

where ‘ = ' : : : :

g= il C(5.31)

is the gain of the systém and.'-' o » .
| - aT . E
prem G

Aﬂ?belnv the sampllng 1nterva1 and ILAG) belng the .
tvtlme constant of the system.

The dlfferenCc equatlon (5 30) was. employed by the writer
2‘ to estlmate the par%metersiﬁ and g by means of the estlmation 

,'nrocedure to be de crlbed.
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5.4. The overall input-output relation,

In the development below it will be assvmed that the
dlsturbence»fls represented by the second order model (5 20)
U81ng the backward dlfierence onerator v defined by

UVe =Ve-Veo o (5.33)
the difference’ equations (5. 30) and (5 20) maJ be respeotlvely

written as,

(1-+ ;:?L@«V)S/g-'-é q Ug~r o (5.30)

and o |
(—é:~ %?)’lé'é;{. 4(‘-9')%‘36-:._" (535
where SRR ( | o '. ’
| Ze '= fe—'fo | ) | | (5‘.36)

Mo being the stafting value, |
Using;(5.34)-(5.36) the overall input-output relation is

written as-

9“;.} ' ?f. ~(l-& }L?f
L T —~ T "I’< o
JET U+ e F T O Y - (5.37)

f = 2‘13’ ..-)Nv v

 where the starting valué‘ofjthé disturbance is at t=2.

5., 5 Eouatlon of estlmatlon.."

In the reTatlon (5 )7) thc startlng value ﬁbof the dl turb

yence 1s pot Anown anu, therefore, must be estlmated togetner
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. . . . {
with the system parameters in one form or another. An approach

suggested by the writerﬁs to regard the guantity

e ~ 12
~as an initial state of the System repreéented_by 65.34) and
to form a dual of the Kopp and Orford method (Chapter 4)
by treating this quantity as an additioﬁal,ﬁarameter énd
~adjoining it to thé system parameters;v ) |

Let then N '
e o

o £S&lL - (5.380)
Then, (5.37) may be written as |
9 Uée-1
yé - | ~+ I%V

¢ -t

v . : : :
—? é'az, 3,.-')ﬂ/

(5.39)

The relatlon (5 39) may be wrltten in the form |
yé ﬁ(_;e.y g7+?€- "(5.40"a)
e*«:(s, 45; G 5‘1 S ('5‘,4,03_)

whlch exnregses thc output as a functlon OL paqt values of
the lnﬂut outnut and ‘the vhwte n01ge nrocess f ﬁs) Y and

tnue values of the parameter vector f?



/o ek

When the parampter vector assumes valuesié;owhich differi‘ro_m'
the true values ;§, the calculation of the right hand side
of equation (5 39) yields "Dredlcted" velues of ouuput yt
wnlch dlffer from the actually observed values yt. lhe
d¢fferences between the actua1 and - the predlcted values

= Ye ~y‘ v . ' " | (5. 41)
combining the elfect of the white noise process f?&fand the
effect of the parameter deviations A

o- 8°

have been called by the writer the "qua51—re51dualb" They

can be recursively ca1cu1ated grom -
<[ (= °)+V¢°][.é-"-;-' V]fys-g Jz .7

o f“
+E¢° L ("‘G'°}f&""‘ ‘.'.‘a (1-69 2= &~z

~ 3&'{9 V]“"‘”' o (5.42)
which relatlon Can be ea811y obtalneq from eouatlon (5 39)
It is shown in the Annendlx D that eSulmates of the harqmeter
Vector é may be obtalned by mlnllelIlg l;he sum of squares
" of the oua31~re51auals in such a way, tbau, at the sane tlme,

the covallance matrlx of the qua51~residuals is also rcduced.r

‘ThlS is dlocqued in the follow1ng section.,

VR
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5.6, The method of parameter estimation,

The parameters are to be estimated subject to the following
constraints: | . -

(a) Ne) <<2')<I | (5.432)

(v) | o< &< L (5.43D)
(e) e ety o . (5.4%)

(a) ih addition; by cohsidering'the initial values, one obtain

from (5.37), "

Y T 'T';g;—; +’,’2'» o B
- we o S |

| = T%?_g'&»"';y'_ T Ga)
from which, P B '
2 ® o = : )

l—-?_—,a, —~ =0 I *_-3"" '*’f.‘hg | (5.44c),

This yields a constraint condition on the gain:
} t-——qb - If.cp‘.‘" “‘9"?. | ~ (5.434)

Thetdpject of -a suitable minimiéation rsutine was to minimize'

the sum of'squares bf tﬁé quasi;résiduqls, subjects to the

constralnts (5. 43), so as to reduce thecovallance maurlx

of the nua31—te31duals to a diagonal matrix as far as p0531b1
When the. 1nvest1gat¢ons started only onc technlque of |

7caﬁLralned optlnlzstlon due to Ros enbrock(l960) was avaJlaole.

The tecnnlque is a varlant of the well unown steepest descentv
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,method and 1nv01ves.

(a) working in n orthogonal directions. wqen a function of
n pafameters is being mlnlmlzed;e - . g

(b) mo#ing along a direction of steeﬁest deseent, ;otefing'
the direction after a eOmblete.eyeie of adjustments of
the n'parqmeters; .

-(e) rebresenting.the'l cehstraints en.the'pérameters in -the
form of 1 fanctions each of which is gzero if.the associat—
ed'parameter.is outside the.pefmitted range,if is.equal‘

“+to unity when t1e assodciated parameter, is within the

permitteJ range, and}varles parabollcally froquenorﬁow

unity in a narrow boundary region,Athe Width of which is

dlrectly related to uﬂL accuracy obtainable with a given
. preduct of

computer word 1engtn. Th el constralnt functlons and

the sum ‘of squares 1s then the effective functlon to be

_mlnlmlzed;

Tﬁe‘method was tried in many‘simuletionvstgdieér It was
-found however, that the rofetion of axes at ﬁhe endeof
each s+age made in ﬂany cases the convergence to the proper
minimum 1mp0331b1e, and the nrogram tended to converge onto
the nearest 100a1 mlnlmum. ‘ ff'-v »f' AR .

By monluorlng the varnance aﬂd cov riances’of'lag one'and?

two, oT the OUaSl”TG 1ouals it was observed tha+ whenever

[
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thevprogfamzeonverged on to a wrong minimum, the cerre1ations5
-and covariéhceSvef the gquasi-residuals were either increasing,
or decreasing enly by negliﬁiblevamount However, the converg-
ence on to the  proper mlnlmum could only be obbalned 1f the
startlng'values of parameters were‘near“to he Lrue values,
in which case the convergence’to the true mlnlmum was accomp—
anied-by a.rapid decrease_of the correlatidns end Covariances
of the quas1—re31duals. | |

These observatlons nave led to abandonlng the Rosenbrock‘
method and developing a new method as follows,
(a),corresﬁonding %0 n parameters, n orthogonal directions-

~are chosen; these remain fiked througﬁout the minimizé
ation procedurekWhieh cerrespbnds to the adjustmeut-of

one parameter at a tlme' . | |
‘(b) uhe method of allowlng for constralnts on parameters is’

‘the same as that in the Rosehbrock' technique; the

boundafy reglon was assumed to he JO ~4 (allowable
rameter ranee) as’ suggeSued by Rosenbrock'
(c) Let a "success" be dellned to mean that the "new"‘value'
of the functlon, resultlng from a change in-a parameter;
_vis's aller than or cqual to the "old" value, prior to ﬁhe
'ichange, and, at the same cime, both the product of the;l5“
1vConstra1nt functlons is not zero and the fwrst tnree:f'

covarlances of uhe qma31~re91duals are decreased"'



Similarly, let a‘"failure" be defined to mean that either '
the new value of. the function being-minimized is greater

than the old value , or that the product of the 1 constrain
functions is equai'tobzero, or‘thaf the first three couar-

jances do not decrease after the change, -

1

Then the minimization procedure developed consists in a

-

cyclic adjustment of the parameters'in such a way as'tof

achieve as many "successes" as pos51b1e. The adaustments

are effected as follows'

(a)

(v)

(05

(@)

at the beglnnlne of each cvcle the rlrsu change to be
‘applied to the parameter 6¢ 1sw9‘where w=0. 02' |

in the case of a fallure, the dlreculon of the change

is re#ersed; if this,foo, results in a failure, the

value of theyparametér is re8uored to the original value;,
after eacn success, euery succeedinc change'apnlied to .
a glven parameter, 1s equal to the precedlng change tlmes
two-v' o | | |

the convergence to the pr0per minimum vulue of the mlnlmlz
ed functlon 15 achleved if autentlon is pald to, the : 4/5
rate at wnlch the decrease in varlance 1s 1ncrea 1ng,_

In partlcular let the value of the variance of the_quasi~ 
resv uuals Xg(o) ai‘ter n successes be denotea by In  . =
Then 1t lo shown in the Aphendlx D that the convergence

to the nro>er M1n3nun is ensured if the quantlty
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Xn.(., =Xh

does not become negative;

373y +30,, -0

(e) the procedufe is terminated when the chanﬁes in the
parametere do not result in a 31ﬁnlxlcant change of the
mlnlm;zed sum of squares, andvthefcerrelatlons of lag
1 and 2 of fhe quasi-residuals do not_exceed“the theoret—
ical standard deviatiep-l/fﬁ—of white ﬂoisefdetermined

from the sample of eize .

5.7. Confidence regions for the parameters. ™

5.7.1. General, - = i - -

At the end of the estlnatlon procedure one wishes usually

- to obtain a roueh idea of the pre0131on with whlch the -
estimates have been obualned This may be obtalned from the
con51deratlon of conxldence reg1ons, the theory of which
based on uhe work of Booth and Deterson(1960), Rosenbrock
b_(1962), Rosenbrock and Storey(l965) and Deuﬁch(1965), is
dlscussed in the 1ollow1ng subsectlons _

A method of der1v1ng elgenvalues and e1ﬂenvectors ef‘tﬁe
‘;correlamlon matrly of the estlmqtes,‘emnloyed by the wrlter,

is descrlbed in subsect1on 3 7. 3.,

5¢762 Confidehce'recione For uhe esilmates of;peramebers.~r?

Lhe welT—esqull 1eﬁ Laeory of conllaence reglono(Booth and'}

Teterson, 1960, Rosenbrock 1962' wosenbrocx aﬁd Storey,1965,

R
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'Deuﬁch 1965) is based on the assunptlon that. estlmated values
Q of the parameter vector are ‘very near to thelr true
values e. r"herej‘ore, when the parameters are perturoed
about their optimum’ estlmated valuesQ, only fi rst order
changes in the resultant preo1cted outputs need be con31dered.
Under these c1rcunstances, the sm811 changes —
50~ ¢-8

are linear functlons of the observatlon errors, and 1f the -
1atter are - assumed to be gaussian, the small changes 59
in the parameters are also normally alstrlbuted w1tn the |
covarlance matrix (BOObh and Peterson 1960) ‘ c .

M= (DD) T (5.45)

“where D denotes the matrix of partlal difference'qﬁotiehts

.9_&_

cee. B9
. D = A‘.oe'-v - - -v“' . P v' '
- ayn n (5.46)
A6y ‘Aep; ' '

“and in which AY: _denotes”a’change‘in the i-th predicted
output Value due toi a Small change AB;in the parameter é-j’. a

' Ulth the above assumptlons the sum of souares S correspondlng
to the perturbea values of parameters in the nelnhbourhood

of the minimum sum of squares S derrnes a contovr 1n the .

p—dwmenslonal ﬂarameter space, deflned by

Q= S’,,"_ 1+ -f— Fp,w-,. (ol)) .«(5§"47v)~
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where |
S=.S(§,g;x) = contour sum ofisquares,:

S ;.minimum snm‘of'sqnares,

ﬁ = number of observatiOns,

p = number of parameters,i

0(= significance level - ‘ ‘

F (el ) = Pisher! s distribution with D and (&Lp)
degrees of freedom,corresponoing to the

significance,letelq( .

For S(&,u,y) equal to a'constant, there is an associated conter
ourrof values of 8. Assumind that the deviations in-the
predicted outputs, resultelng from the small changes of
narameters are normally distributed, the contour S(8,u )
defines a 11ke1ihood contour for the estimated parameters.
If‘the.paraneters areilinearlyvrelated to the depehdent
variable, the set ofvparameters glfor which SGg;g,i)lisAa'
constant‘ is_a:pedimensional eliipsoid in the space_Of P
parameters. | g ‘k‘i _ i - | .

It has been observed by Booth and Peuerson(1960) hat
tcinfercnces re@arding the estimates can e drawn from bhe> 
'consrderation of the e711psoid in the space of normalived'f'f
paramster i | ”i‘iilﬁ'f-‘_a i;‘:if_;" ST e e T

raate o Ly

where - R R
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A 4. O
. o ‘.A ‘
P
(_5.49)
and A,ls equal to the square root of +the J-th dlegonal
element of the covarlance matrlx (D D) l
In the normallzed parameter space, the llkellhood contours
are glven by ‘ L .
o - L) . : .
T 2 pTD AL YL = (S-Sml -
rT A T (5.50)
The Semi—axes of the ellipsbid defined by the quadratic
form (5. 50), w1ll have lengths equal to the square roots'b
of the elgervalues, ‘and the orlentaulon of the axes will be

governed by the elgenvectors.'

The eigenvalues and\eigenveetorséof the correlation matrik
dmay yield usefﬁl inforration For,»example, if the correlation
matrix were an 1dent1ty natrl this would imply that the
bestlmates of uhe Darameters are uncorrelated on uhe'other i}
hand, 1f the correlatlon matrlx contalned off—dlagonal -
.elements, 1ts elgenvalues mlght dlffer by ceveral orders"
H"Ol magnltude. Tne 1nference vould then be»that'a certain~?

3 llnear comblnatlon of parameters has beenkdetermired With'f~
a smaller varlance than some otners. The llnear combihationfo‘
.deuermlned | h &1edtef px e0351on would be glven by the

‘eleenvector a88001ated w1th the smallest elgenvalue. L
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5.7. 3 Calcu]atlon of elnenvelues end eigenvectors of the.

,correlatlon matrix of,p rqmeter estimates,
 After the 0ptiﬁum values of the parameters have been:
obtained, the eigenvalues and.eigenvectors of the correlation
matrix are ovtained as indicated belew.
First, the matrix D of pdrtial'differencé quotients defined b

%

By Ay, AY¥S . Ay
D = Y- X a9 Z‘ &
» ' » | ) 7 : e :
. - - -
was obtained, the perturbations A8 = »\'ng

having been employed (Iﬁithe actuel.applicationAof the method,
I was of the order of 200-300; in view of the restrictions

in the computer, thevmu}fiplication of two matrieee 300 x 4%'
each presented seme inte@stihﬁ nrogramming difficuities)

\]

The elements in uhe J-th Tow of the covarlanoe matrlx
- (D ) o e  (5.51)

were then lelded by 1he J—uh dlagonaT element to‘yield’,

tne oorIeTatvon matrlx,

R=Aa 2 Mo 2 .
The elgenvector ané cig envelae”'of tnls matrlx were determlne

by uelnf tho Jacob1 Hothoa(nalston 1965), partlcu]arly
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suitable for application'to matrices whose off—diaeonal
elements are small as compared with the dla'onel elements.
The method COHSWSLS in determlnlng, 1n an 1uerat3ve fasnlan,

a seouence?Shfof orthogonal matrices w1th the prooerty
WAL _5:x v§:z ----'_-?K '~'-§ ’ - . .(5.53).
> e ' e A
and :

TR Q@ - A N CR7)

—

I\.belncr the diagonal matrix of the eiﬁenvalues of the'
metrlx R and Q Q being the matrlx of elvenvectors.

Let a matrix.ik be defined by

S Sk TR (5oss)

Then the Jacobl method consmsts in ch0031ng Sk in such a way.

T = S Seu--- STRS

—

that if tpq(k -1) is the largest off diagonal Non-zero element

of the matrix‘gk_l,the off dlagonalaterm tpq(i) of.thee
matrwx EL"C is zero. o | |

The elenents of the "plane rotatlon matrlx" Sk are deflned by

)
Spp(-) B Sqq(k)

(k) _ 1 ;l .

—”cos Gk g = (x )— 1, iZ p or q, 3_ o
=0 otherwise (5ﬂ5§)

The required conditions are obtained if the anglelék'is

- chosen from the relation

o 200 = L FTE ) ()
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The procedure is terminated when the ratio of the sum of
squares of the dwagonal elements in two consecutive iterations
ig: less than some nrescrlbed valu ; ( the value lo -1 was

actnally used by the wrlter);

5.8. Summary of the estimation method developed.
lhe method descfibed above was progiammed in Extended
Mercury Autocode which involves one instruction per line,
Thevpregram'is.rather bulkyvand, if reprOduced’here, it
would ihcrease the'volume of the thesis by some 30 pages.,
It is believed that;anyone wishing to pursue fhe line of
development indicated here;would employ a'higher level
lauguage. For‘-this reason, the methddris summariied ih
steps in such a way that it can be easily cdded in any
higher level language. | -
1. Deflne as a success such a change in the value of- the
parameter 9 that it results 1n : -
a) smaller or equal sum of squares of qua81—res1duals,
b) smaller varlance, covar1ance of lag 1 and covarlance‘
of la0,2 tne latter covarlarce belne smaller than the

covarlance of lag i1

c) stablllty llmlts belng satwsfled
2 Deflne as a lUJluwe a_u ameter change resultlnv 1n any

one of *he ﬂbove corcltlons not being sa tlsfled
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Deflne a trlal to mean a change in the parameter resulting
ﬁn'elther e success or a f= 11vre, and dcflne a stace to
mean a cycle of trvals on each patameter in turn.
At the beglnnlng of a stage, start from the first parameter
Qi.'The'initial_change to be applied to the cﬁrrent.vslue

e?of the parameter at the k—th stage is w ok

- where w=0,02. | ’ |
In the cése of a sﬁcoese,_thelnext_changejto be .applied \
to the_psfameter is equal to the preceding change times two
In.the case of a failﬁre the cﬁsnge is applied in the |
opﬁosite directioh iy this results in a,Sﬁccess, Droceed'
as in step 5; if the result is the fallure,‘reset the
parameter»to the value'lp had belore the cnanre and start
adjﬁsting parameter ei+l if 1ﬁi.<1n or the parameter 91
if’i&l.)p,‘where p= the number of Uarﬁmeters involved;
‘In the event of there occurrlng_more than one succese,k
monltor the 1 ate at which the decrease in variance ‘
1ncreases, ston adavstlng the Darameter if thls rate f
starts eeCteaulng, |
Lf no more progress 1s obtalned w1th the parameter G
totart adgustlﬁg the parsmeter @. +1 1f 1+1< D, Or the
'parameuer Qq 1f 1+]> P where p 1s the number of purqmeters
 SLop BdJUS*ﬂPntql;f t”o’sucoe s1ve Suage results dlffer‘ﬂ |

hy 1ess.nnau omoé prescri bed value, waem thws occurs,'e 57

LR
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the cofrelatiohs of the qusieresiduals of lag 1 and 2 should b

'of the drder ef + 1/JW where N is the sanple size; elso, the |

covarlance of 1ag 2 should be smaller than tne covarlanve

of lag 1. .

10. Calcﬁlaterthe eigenvalues of_the correlation matrix.by
the method of the preceding section, and check that the .-
fatio of the largest %o the smallest'eigenvalue is not
very dlfLefent fronm unlty,

11. In the case of bad estimation 1ndlcaued eluner by 1ack
of convergence or the ratio of the e1genva1ues belng
fvery 1arge, assume a dlfferent set /Q startlna values //L

ana start againy fromlstep 4.

5 9. Dxamp]es.

Ag an illustration of uhe method two examples are.glven.'

Both‘examples involve input derived from test reCordings
of boiier pressﬁre at-Crbydon'(and,wtherefore, very reelistie'
and ﬁonststionafy) being appiiedlto a‘first order system
with a zero order hbld Ihrﬁheffirsﬁ example the gain'df-the

bsysuem 1s13 OO the tlme consuaﬂt is 7 61 sampllnp 1ntervals_
' 'and the descrlblnr dlflerence equatlon 1s‘ . |
ytr“ 0. 8769y3: = 13(1 - 0. 8769)uJC 1
_ In the secona ex&mple phc gain of the system is 15 OO the
ftlme constQNL_;s 12.5 saﬁpllng_lntervals and the glffereneev<
}eouatlon is o | Lo e | .

5y - 0937 - 1501 . 923>ut‘1 TR AR
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In both examples the disturbance is generatédvrecursi#ély
by using the model (5.20) with G=40, ahdVa>pSeudo—randoqhumber
generator‘the'stafisticél'chéracteristics of which,correspond-
ing o sample sizes used in the examﬁlés, are shown in Fig,
;5. v : » - VA |
. In the first examplel] , =1103,y'2._—.640'5‘ aﬁd.yz =7509;
This gives & = 0.147. o o
- In the SecOﬁdiexample‘ 0‘2 = 1104, Yo' =7392,vand y2=8496.
Thas , = 043 | R
Figé.S.B—S.S show the beginning and end‘df_the estimation
proéedure rélating td Example'l. Figs, 5.6:5;8 show similar
b,results‘rélating‘to'example 2. ' R _ |

It is seen that s owihgrto differéhf startiﬁg values in
the twb”éxa@ples the number of iterations requiréd‘fo reach.
the optimumAvalues is'different (81 iterations in Example 1
and 169 itérations in eXample 2). The results show that
“the technique yields.c§rrect esfimates and that mﬁnimization‘v
“of the sum 6f squares ("SUM RTA") is accompanied by minimiz-—
ation of thé’first three covariances of the quasi—residﬁalé.'
In bdth éxampiésfthe eigeﬁgalueé‘of the correlation matrix .
arefbf‘the.éame brder bf_magnitude which, according to fhe f‘
_ eétabliéhéd theory, confirﬁs thét the eStimation’proééquré

is satisfactory. . .
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5,10. Conclusions.

In this Chapter a novel metﬁod of.estimation of parameters
of a first order system has been described. The method consist
in identifying a nonsﬁaﬁionary disturbance, assumed to contami
ate the output only, from the 1nput and output readlnas,
the ndrameters of bhe eomblﬂed moael are tben estimated
by minimizing the sum of squares of uhe quae1—res1duals
in suvch a wey taat at the ‘same tlme,ihelr covariance matrix
is made to approach the diagonal matrlx.

The examples illustrate the technique aﬁd ehOW it to be
quite satisfactory. The drawback of the wethod discussed_
in the Aprendix D. is that the startihﬂ Value of the
parameter 5 must be reasonaolJ close to its true value 1f

convergence 4o the minimum 1s to be obtalned.
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CHAPTER 6.

APPLICATION OF TEE NETEOD TO ESTIMATION OF BOILER

DYNANICS.

6.1. Introduction

This Qhapter_describes-brieflf the‘teets cerried outi
in subporf of this project,-enalyeis of test results, and'
aprlication of the method, described in Cﬂapter 5; to:

~estimation of boiler dynamics.

6.2. Descriotion of piant.'

The teets ona_boiler-turbogenerator_ogit»ﬁere carried
out at Croydon"B' and Northfleet-Generating Stations of fhe[
Central Electrlclty Generatlng Board The full description
of a b01ler and its operatlon mould merlt more than one
ckcptenénd is, therefore, out31de the scope of the tne51
It mlght be helpful homever o glve a simple plcture of
| procesues occurrlng in a typical b01ler, and fectors
governlng the b01ler response (x Oran et al. 1068)

- In a typicel bo;ler,new coal is fed to:mllls where it is
 ground and dried be hd£ priﬁary:air.cIt is then‘carried T
c'by the alr stream to burners Where it 1gn1tes, the remalnlng

aJr requlred for combustlon belng supplled as secondary alr.‘

:oteam 1s genereted in the \atervalls of the furnace malnly

[



s
by radiation and superheateﬁ'to the final required temperetur_
in the superheater which mey be-botn radiatiﬁe and conveetive
ﬁeat is‘recovered'frem the hot.gases by an ecenomiser, Which
heats the feedwater, and_the airrheater which heats both -
the primar& and secondary'sir. Thebcoal'flbw into the
‘furnace'is,-at>least transiently, mainly cqntrolled by
varying the primary eir flow. This Varies'rhe pickup of
coal in tre mills draw1ng on the ground coal stored therein,
The raw coal feed is then adgusted to malntaln the stordge.
The response in heat release to prlmary air-flo“ changes |
.1s rapid, being typlCally for large drum—type b01lers
a dead lag of about 5—10 sec., corxespondlng to the tranSport
time from the mllls to tbe burners. ‘

The response of steam generatlon to heat release ;

manlfest as pressure or steam flow ohenges 1s approrlmately
a slngle lag, typlcally of about 5 mlnuies dependent on
the thermal 1nertle of the b01ler. The re ponse‘of the
3temperature of the steam leaV1ng the superheater to heat
abs orptlon 1s slower stlll,and is moxe COmplex but the
. simplest approx1matlon‘1s ais;nglellag-of aboyt ;0 mln,~"

‘The.boiiers at Croydbn B Genereiing Siatien'sre Simen;Carw
trl—drum mlth tw1n natural 01rculqtlon and pulverlzed fuel

flrlng. Ihey supply steam at 625 p51 and 87‘ deg .F at the



boiler stop velve, each boiler being rated at 320,000

183

'lbe/hour‘at maximum continuous rating, equivalent to
epproximeiely %5 MW generated. Each pair of beilers supply
ene of the‘fourpmain steam receivers which are interconnected
Except for eutomatic control of drum water level, no
other automatie eontrol'sysfeﬁs are provided. | | 7

The Northfleet Generating Station is provided with six
Foster Wheeler boilers having each evaporative capacity
of 860, OOO lbs/hour, at a pressure of 1600 lb/sq in and temp.
of . 5473 deg.C. at the superheater ouilet Each b01ler 1s 51ngl
drum, natural c1rculat10n and has a water tube radlant furn-
ace radiant surerheater, prlmary and ~econdary convection |
superheater, reheater and economlzer. Each b01ler is
a55001ated W1th a qeparate turblne. Auiomatlc control of
_drum pressure and steam’ outlet temperature is prov1ded..'
The control of drum plessure 1s effected by varylng “the
flow of mixture of pulverlzed coal and hot air by means ef-
dempers. Steam‘temperature is eOntrolled by wvarying the moist

ure of steam'from the'drum.

6.%. Deecrlptlon of the tests.
The tests at Croydon 'B', carrled out in Narch l965,»
‘con51sted 1n runnlng the b01ler at low output (20 NW)

with governor Valve locked, and recordlng drum presqure,:



v

vmegametts output and flnal steam temperature. There was
Vno prov:slon for directly mea urlng the steam flow , and the
tests were regarded as necessary to obtaln some rougn idea
about the behav1our of the processes. The various transduceB
had been 1nstalled prev1ously in comnection with the boller
optlmlzatlon progect (Noran et al.,lO68) The analogue
outputs of the transducers were scanned every 10 seconds
and recorded on a 5—hole tape by means of the eduipment
-shown in Fig 6 1. Two tests, of 6 hours duratlon each,
were carrled out . Powever, as the m01st coal blocked one
of the m111s during one tests, the results of only one test
could be used for the analysis.. S .

 The tests carried out at Northfleet in Ovtober 1965,
comprised recording, at fullhoutput (120 MW) of boiler
pressures,‘stean temperature, throttle,Valve movement; and
movement of the coal feed damper when it mas in operatlon.’
eTmo six hour tests were carrled out with manual conurol
‘of the dampers, and tvo 51x-nour tests mrth automatlc
,pcontrol of the dampers. Automatlc temperature controllers‘.
- were out of actlon durlng the tests.. | s
| The varlous transducers had been installed before for -

'dynamlc boiler trials (nllllams and Lart, l967) “The analogue

‘outputs of these transducers,mere sampled every l5 seconds
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,and\recerded on a S-~hole taﬁe by meahs of.the equipment
shown in Flg 6.2, . | '

| The dlecucs1on of the transaueezs.and data 1ogg1ng
.equlpment is con51dered to Dbe beyond the scope of this _'

Chapter.

6.4. Data processing.

The test results were punched on a five-hole tape in g
_epecial‘C.E.G.E. code. Ae_a resﬁlﬁ, a data translation proced
ure. had to‘be deveioped to enable the aﬁalyeis to.be made
on tnelondon Univer51ty Atlas computer.v . |

It is not 1ntended to go into detalls of the trans lafion
program whlch, in theory, should form a simple "look-un"_,
table.It turned oui hovever, that the data logeging equlpment
snown in Flgs, 6 l. and 6 2, although expen51ve, was not
entlrely free from errors. As a reeult, what snoula have been
a simple program, 1t became an elaborate procedure,‘ﬂ
adaptlvely learning such pos31b1e faults as m1531ng of a
scaﬁ, and cofrectiﬁg the translated data in g proper manner;'
Pig.6.% 1llustrates a new fault found by the tranelatlon g

prOgram, ana F1g~6 4 shoms thqt “the program has completed

'translntlon after hev1ng reCOgnlzed a type of fault.“
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6.5. Scéliné of the fecorded aata;

All quantities were recorded as three-digit integers in th
range 0—999 The scallng factors to be applled to the record
ings © were as follows. |

a) Croydon Test,

Drum pressure Iooo

Power output e =x i1'5-00 My
Steam témperatu_re. =R '3-6'36 +700 °F

b) Northfléet Test

Steam flowrate €32 VO 0¥5% {9-207)+!7_ I(d/lw
" Drum pressure O 284 (9 212) +I¢'20 p.s. c.‘ |

Steam temperature - 398’(6 216‘-5)4— 990%'

6.6.Analysis of the data.

The ahalysis of the data-compfised
a) obtelning oample Correlatlon functlons, by u51ng the
formulae quoted in the tue51s,_' ' ;
- b) 1nvestigat10n of the behav1our of ﬁean équare‘#alues,
| as dlscussed in Chapter 5 fvjln;g“-,i »v_"l"ziw”‘ie:
"Flgs 6 5—6 6. show eamole correlatlon functlons of drum-
“opressure and flnal steam temperature.,‘relatlng to Croydon'fr

test, and calculated for each quarter (l hour recordlng)

of the total" recorded data. e
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Figs.6.7,6.8 and 6.9‘show;respectively,'sample correlation
functions of steam flowrate, final steam'femperature;
and drum pressure, calculated for various quartels ( 90
minutes records) of'the total_recorded data. |
The plots show e'noﬁstatiohary'behaviour of the proCesses.

Analysis of mean square value shows tnat typiecal values

of mean square and its second dlfference are as follows*l

a) temperature (Test 3)

mean square value - 633x1 0¥

second difference c-€3xl0(} : » B

b) drum pressure (Test 4)
mean square value  h§Ex105

S ) 3
.second difference . 172 %10

e)-steam flowrate (Test 2)
mean square value 3 227‘“’
‘secohd“dlfferehee o 3.4 f l' , ‘:fe
The resulte suggeet thet the procesces can.be represeﬁted

. by a second order model developed in Appendix C. '~'~f4;

‘6.7. Estimation of steam flow-drum pressure andysteam flow~

steam temﬂercture dynqmlcs. L

Analys1s of b01ler equatlons (Evans and Fry,l°64)



/ . Jee
.shows that both these relat10nsh1ps can bé represented
by a first order lag w1th necatlve galn. They represent.
a second order effects of the variations 1dsteam flowrate
about mean operating polnt the temperature and pressure
being established by heatvrelease.
Attempt has been made to estimate these small negatlve )
trarlatlonc by s&op051ng that the main process, i.e.
relatlon betmeen heat release and temperature, and
between heat release and drum pressure, acts as a big -
'dlsturbance (about 95% of the output) opposlng the negatlve_'
relatlon between steam flom and temperature, and between
steam flow and drum pressure, respectlvely;’ »
The input~output relationdof‘Chapter 5'was used'and'
| each of the two dynamlc relatlonshlps was estimated, us1ng
th1s model, fromhhe test results of W0 tests.
Figs. 6. lO~6 l’z 111ustrste the estlmatlon procedure
~of steem flow to drum pressure dynamlcs. Flgs 6 14~6 17
111ustrate the estlmatlon of steam flow to steam temperature'
dynamicss | | | |
The resuits seen‘to.indicate thatd -

a) for the steam ilow to drum pressure dynamlcs tha ,
galn 1s of tne order of gxlo t and the time. constant f.

is of the_ order of 208 15' - 300 Se¢°_”"-‘f.'
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'b) for the steam flow to steam temperaturé'ﬁynamics.

the gain is of the order of 4310’4

and the time constant ‘is of the order of.
IS‘_XIS 225 secom{:
These results are in agreement with the correspondlng
results obtained by Williams and Dart(1967) during

dynamlc b011er trlals._
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7. CONCLUSIONS.

_The results of tests descrlbed in Cﬂapter 6 confirm a hlghly
: nonstatlonary benaV1our of the processes encounterea in bolle
plant operation, It is shown that they can be represented
- by nonstationaryvmodels developed in the»thesis.
The nonstationary estimation procedurelcan.be applied
~ to the particular examples of boiler dynsmics considered‘
‘only becasse of the negétive relationships relatlng |
steam flow and temperature or pressure, which make§it
possible to differentiate betweeu the chayecteristics of
therbig disturbance and small dynamicrrelabionshib.

vThe instability relating to the baremete; expressing
the\lnltlal state of the system dyncmlcs, shomed itself
when startlng values of tnls perameter, Very alfferent from
the true value ; were assumed. It was then necessary to
increase graduelly the startlng Value untll prOgIess in
-the 1teratlons oould be obtalned Thls is undoubtedly ’
a 01g drsvback of the method precented._

The wethod was dlscussed w1th relatlon to a s1ugle lag;,"
only, because thls mas to be the ultlmate appllcatlon of the
metuod Slmulated stuoles mltu double exponentlal |

Gynamlcs have homever, been made and the estlnetlon proced—f

ure vas: shovn to ‘be satlsfactory. -
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 Appendix A. e B ISI

Estimation.

Asl.Introduction.

Tn simplest terms, the problem of estimation can be
formulated as follows.'Given_a sample of n observetions,
xl,...,rn, takeneat random.from a parent'population, and
assuming as ‘a working hyI‘)othesis “bha‘l'; ‘i:he popula'-tion :’Ls distrib
uted in a form which is completely determlnate except for
values of some parameters T { &; ?) C=ti 2. R
it is reoulred to determlne, Wlth the eld of the observatlons,
numbers mhlch oan ve taken as the values of the parameters &,
or a range of numbers wﬁich can be taken to 1nclmde the se-
‘values. - | . |

Since observations are random vériables, any function of
" the observatioﬁs~alone, oalled‘a statistic;,is also a rahdom.!
rarieble.‘Therefore, if e'StatiStic is used to estimate the

o . » i '
parametersQ, the estimated ve_iues may on occasion differ
considerably from the-true values afé?. Therefore,‘a ﬁethod
of estlmatlon, or an estlmator, is regarded as generatlng -
a dlstrlbutlon of partlcular Values or estlmétes,and the merlt
o? such a method are Jvdoed by the propertles of this sampllng

trlbutlon.ch requared propertles are con51stency,:

unb1 sednesg,mlnlmum vcxlance, efflolenoy and onilClenCJ.
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The discuSsioﬂ of these properties and of the estimators,

given below is based on Kendall and Stuart(106l), Cramer

(1046) Plackett(looo) and Deu@ph (1065)

A.2. Desired properties of estimstors.

A.2.1. Consistency.

This property requlres that the estlmator should glve more

- and more accurate values of estlmates as the number of observ—
ations in the sample increases. In'other words, the variance_A
of the sampllng dlstrlbutlon of the estimator should decrease;

‘and the central value of the dlstrlbutlon should tend to the

E

true valuegzas the sample size 1ncreasesf'

.Stated more formaliy, ah'estimater b, eombuted from a
samplﬁbf n values, is said‘to be a‘consistent esiimator of ©
if, for any p081t1ve£ and‘z , however smal%there 1s some N |
such that the probablllty P that l_'&_.n— 'TQI'{_E. ‘ 1s given by 3

- _ , S “ S , . . '

Pl -0 ;,42};:4;— Lasv

A.2.2. Unbiessedness.

Tkls crlterlon requlres that tbe central Value of tne sampi
- ing alstrlbutlon should tend to the true valueé7for all
bsample 51zes, not mercly 1arge. In other words an estlmator
falu unblesced 1f' a1>  ,,,7_'f‘ a‘ f:; lif.;,  j.-l ;

E(z:-.» = e ey

) .
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It uhould be noted that con31stent estlmators are not necessarl

ly unblas ed.

A.2.3. Ninimum variance.

If theré exis?hore thaﬁ bne unbiaséed consiétent estimators
of parameters, thls further crlterlon chooses among them the
one with the smallest Sampllng varlance. |

The variance of an estlmqtor t of a functlon .¢’(é9)
[9 fgu-- :Qf!] is: rela'ted to the 11ke11hood function L

" through the well known .Cramér-Rao inequality

izt J=

-y

r r a‘? ‘9?, SR ' :
Evr— P I‘-‘ "
var[t]} Z Z 20; 29, J - - (A.3)
where the matrix I to be inverted is given,by

‘

= e az- 'BL. '
?-’-e;“f = ’:<,t_ % >$ (A 4)
‘and the Likelihood Function-L of sample of n independent

observations is defined as the joint frequency funetion

of the obseryations

L (X,) .,.,XA [9’} '{(X, {Q) ->’§k.[:tn ’Q) | ‘ - (A.5)

"fassumlng the ex1stence of the flrst two derlvatlves of L

‘with respect toﬁ?for 1169, as vell as the 1ndependence of the'
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range of variation of x of the 8.
Thé smalles£ poésible variance attainable by an estimatof,
corresponding to the équglity sign.in (A.3), is called
. the @inimum Yériance bound. The estimator which attains this
variance'is then referred tovas the'Minimum'Varianee Bound
Estlmator. ' . ,

It may be shown (Kendall and Sﬁért 1061) that if a
minimum variance bound estlmator exists it is always unique
(1rrespect1ve of whether any bound is attalned) and that
the minimum variance bound is attalned when :

__i.%gf = A(Q)'.[é -] L6
where ﬁ(ﬁfis independent of _obsérvétiéné.
If the relation (A.G):is noﬁisatisfied,then the best
attainable varianeé méy bé-greater then the minimum veriance

bound .The estimator of'r@wmciq,' under these éondi“bions_,
has »u‘niformly in}glsmal_lef veriance than any other estimator, :
is the celled e Minimm Verisnce Estimator.

A 2 4 Effleleney.

, The crlterlon of efflclency is coneerned with larce sample
‘propertles of estlmators. Slnce most of the estlmators are’

asymptotlcally normelly dlstrlbuted in v1rtue of tne Central |
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Limit Theorem (Cramér,1946), the large semple distribution
‘of en estimator depehds onlj on its meaﬁhand Variance;‘r
Bowever, as'a consistent esfiﬁate is asymtotically unbiassed, ~
it is the verience of the esymptotically normal distribution
which discriminates between consistent estimators of thé same
ﬁarametric function. | -

An estimator Which in ldarge samples aftainﬁ mininum variance
ié celled efficiént The efficienéy of ény other estimator,‘
relative to the efflclent estlmator, is defined as the.
reciprocal of the ratio of sample numbers requlred to\g1§e
“the estimators equal sa@plihg variances. The criterion of e
efficiency chooses an estimator_with‘greéter efficiency, other

properties being equal.

Ad2.5. SufflCIGHCY.

An estlma'bor t of@ (9'- ?9::- - 91";) is sald to be a jointly
sufficient stat;stlc for@if the lee11hood functhn L of the
dbservatiéns can be represented as a iproduct of two fectors, .

one of which is a function of the obse;#ations aione,i.e.ig ,
Liat,;..,un [8)= y(é-l.@_)-,@{m,.-.‘.,m.)‘ (A7)
-where‘

fiﬂ;-- ,fks |  is the vector of estlmators,

f‘h,é&, g ' is the vector of parameters.
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Under these conditions thé.estimatbr 1 contains all the -
~information in~the sample, and theISUffiEient statistic is
unique..A point to obsef#e,‘hbwever, is‘thét, whereas individ~
" ual sufficiency of.the coﬁponents of the vector 1 implies
joint sufficiency of the estimator i,-the converse is not
neceSSarily‘frue. |

It can be shown the£ & Minimm Variance'Bound Estimatéf _
can only ex1st if there is a uufflclent Stutlsth. In general,
1rreSpect1ve of the attainability of any varlqnce bound,
the_mlnlmum variance unbiassed estlmator o@‘faﬁs always a .
function of.the'sufficiéht statistic, if 6ne exists.-

It can be shown also that the class of dlstrlbutlons in
whlch suff1c1ent_statlstlcs ex1st,for the parametersg?belongs

. to the exponential family\of~diStributions defined)by :

€ (xl_@)-_-'.eacpfﬁfg)fa’(x)-rC(‘k)-fD[Q)}_ C(a.8)

‘A.,. qu1mum leellhood Fst1matlon.

As stated in. the precedlng sectlon, the Ilkellhood functlon
L of n- 1ndependent obserVatlons from the same alstrlbutlon
is deflned as the 301nt probablllty of the observatlons

'regarded as'a functlon“of the set of perametex@sé?*&au-“,E%}

.

L (x[@ f[x.[@ F(Xz[@) f(xnlﬁ)_ | _(A-Q)
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The maximum 11ke11hood estlmqtlon of the set of parameters o
consists in choosing that set. 69 (62, ,ézp) of the ¢
édmissible values of the perameters@which mekes the likelihoo
function an absolute meximum. Tt is usually simpler to -employ .
rthe logérithm of the-likelihood function rather than the
_functlon itsalf. If the range of the freqvenCJ functlon ka!f9)
".does not depend on the set of parameters a, and if the set
of the parametersﬁ?may take any set of values in the p—l
dimensionalvspéce, thien the iogarithm' of the function‘and‘
thevfunétion will have the ﬁaxime togét?er. Under these cohdf

itions the local turnlng p01nt mlll be glven by the roots.

of the set of eouatlons ,

28: “f L(x19)= o o (4.10)
(- ,12)---)" ' ) .
A sufflclent condltlon th at any of these statlonery values be’

a local maximum 1s that the matrlx B
. ('az. Z ) (,~I,2, ...,p - |
_’39;391 | J=0%eap 0 1)
bé negatlve déflnlte. g | o
The solut;ons of the equatlons (A 10) are the set of p
maximum 11ke11hood estlmates
If there estts a set of tatlSthS‘ tig,,,,tu which are' ’m
v301nt1J suff301ent for the paremeters G- ﬂﬂ," ,eﬁo;,_tne set
of meximum likelihood estimetoss 9 {9.;-- ! eri will be

a‘functlon of the sufficient statistics. If’this is.thé case,“
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the likelihood function can be factorized into two factors,

one of which is independent of the set of paremeters

~O={6,.64, 1.

L (x[8)-gtio)h ~ (12)
where _f_: - f/t, ,---,_bg? , ,
If the regularity condi‘tions‘mentiion.ed. 1n Séction A.2.3;
are satisfied thgnvit may'bé shownA(Keﬁdall.and Stuart,l961)
that the likelikood equations have & unique solution if s=p,
varid thet this éolution is a meximum of ‘the likelihood function
Under these conditions‘ the mést‘general i‘orm'of. distribﬁtion
(A.8), admitting a set of p- jointily‘,sufficient staiistiés‘, .
results in the logarithm of the likelihood function of ‘i;hev

form '”" | R | | :
oy L= Z Ai(6) ZB (x‘,,,.z Clxie nD(Q)  (p1

The solutions §= 56’.,...,6,}_ of the corres;ponding'

llkellhOOd ecuatlons

?Ioj(_ _ 'BAJ(G) B; 91)(9) o
DO, Z:_- ’39,- ‘:Z { )+ r. =0 . }(A-_14).‘

is a maximum if the matrix



P

(k) £ (5] S e

( 2%2p( @) )
36r395 5 .
(4.15)
“is negative definite.

If there is not necessariiy a set of p éufficient statistics
for the P parameters, the likelihood function no longer has-

a unique maximum value and the joint maximum likelihood

~estimators é =fé. Jo-=e 2 égf , are chosen such that
A o | R  : S ‘ : ' -
L(x[8)> Lixte) . . L ae)

Such estimators are, under>ﬁéry broad conditions, consis%ent .
and coﬁverge.in‘probabflity, as a éet, to the true set of
,parameter values Ek o |

o o1f the range of the frequency functlonfﬁs __)does not

_.depend __on the seti of parameters @, the .estlmators are
'ésymtofically efficient'and%tehd.to”a;ﬁﬁltivariate normel.

’ dlstrlbutlon w1th a covarlance mdtrlx whose 1nverse is glveh_e

(Kendall and Jﬁart 1061) by

(0ol oo i PP
..lz,...;p ST
S$=1:2, =P
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An 1mportant result proved by I;endall and Sﬁsart(l%l) is’ that
the determlnant[D[of the covariance matrix D of any set of

estimators, which is called the generalized variance, cannot

-

A

in Value asymptotiCally; Since,'asymptotically, flor the

be less than

maxlmum 11ke11hood estlmators,

D= v - '/"7-" e

it follows that the maximum likelihéod estimators minimize
" - : . ° ” . \

the generalized varisnce in large samples.

Aé regards the_bias; the‘maximum'likelih;od estimators are
in gehéra;, biassed, él‘thoug‘n the ‘bias wiil tend 4o zero- for
very large samples, if the'estimators have finite mean value.

~

A.4. Least Souares Estimetion.

" A.4.1. The principle of Ieast Squares.

‘Thé least Sqﬁafes method of estimation.hés beén kndwn’fbrvl
quite a'lgng time,‘as itvéppears to hévé originated from .
. ’Gauss'(mackett,;ga,g; Rosenbrock,1965). The method :ip ihé »
.presenf form ﬁasvbeéh mainly empioyed in éituétions in which
observat10n° are dlstrlbuted w1tn constant varience about

’(pOSlely dlfferlng) mean values Wthh are 11near functlons
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in é‘finite‘humber’of unknown parameters, and in which the
observations arevuncorrelated.in pairs. -

The situation is then described as the linear model

——

y=X8+ & o (aa9)
where fz ~isa (px 1) vector of parametefs,A"

is an (n x 1) vector of observations,

is an (n x p) matrix of nown coefficients,

vlﬁi\-_ x k=

is an (n x 1) vector of error random variables -

whose mean and covariance matrix are respectively

given by | - _‘.; o o ’;
E<gd=@ - (a.20)
‘ar.ldA, o ‘ i A : |
\/(.§) = HE<§§T> =e*L - (A.‘2vl)

Tne Least Squares method selects 51multaneously those values

of mhlch mlnlmlze the scalar sum of squares~

( ‘J X 9) (Y"X 6) | .v l (a.22)
for- uarlatlon in the components ofé? "’ |
Phe solutlon of equatlon (A 22), reuulting in- the
computatlon of the least Squares estlmatorsa, as well as

‘the_computatlon of the covarlance matrlx of the estlmatcrs,e:]
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involves the‘inversion of "the matrix X, énd thus depends on
the rank of the latter. For thls reason, there exist two forms
of the solution, one corresponding to the rank of X belng
equal to the number of the parameters,p, and the other"
applying when whe rank is smaller ‘than . (Plackett,l96b).
Only the former case is of interest in this thesis and is

discussed below.'

A.4.,2. Least souares estimation when the rank of matrix X

is equal to the number p of psrameters. _ -

in this case the matrix XTX‘is invertible.
Differentiating (A.22) with respect t0@, and equating to 0O,

Jlelds the least squares estlmator in the form

(XX) X H | - (a.23)
The estlmator is unblaSQEd for from (A 19) and (A 23)

we have,

A  v'r - T S o
@= 09+ K X) Xg (A.24)
and . the expected value'of this expression is equal to & .

Also, the covariahce matrix of the e’stimators is

Mg

,V(é) E<(e eN@ sf> |  ,(L$5
: 6~z.(><‘X) G s
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If t is any vector of estimators, linear in the observations
Y, i.e. of the form,

=1 .3 ‘ D T (a26)
and if t is unbiassed for a set of linear functions of the

parameters, say, C_Q’, i.e. if

E < 't> = C.0 - T : : (3-27')
then it may be shown (Kendull and Sbcrt 1961) that .

AND v:ts f s?ZC(XTX) cr o (cﬁ gg))
These results state that the least ' squeres method yihelds
- minimum Varlance Jdinear estlmators of any set of linear funcff
ions of the purameters 8 It can be shown (Kendall and Stuart,
1961) that the leasﬁ squares estimator e minimizes the vclue
of the generallzed variance for llnear,estlmatOBs of &
alvays , aﬁd not only asymptofioally as is the case with the

meximum likelihood estimator._

By COnsider‘ing' the set of residuals in the least squa_x:es

estlmatlon, k | |
y-xe §I.\—X(x Xt (n.30)
and ObSeI"V'lng that the matrix (y—XQ)r(y—XO)' s R

T r)
, 1dempotent ,and that trace ’X (X X) 'x } L S,
= trace | XTx(X"X)" } | ) 11‘. can be shown o
that (Plackett,1560) | Ea %
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EX (4 -Xx8) (y-x8)}= 6%np (a.31) -
It follows from the above that an unbiassed estim’ator.s2

of the variance ﬁ?z is the sum of the squared résidualsr-'
divided by“( the number of observations minus the number of -

parémeters estimated) , i.e.
e s L
- . - -X8 . -
87 pp” (1 L (Z Xe) _ o (AWz2)
It should be noted that, as long as it is not required to

test hypotheses concerning the pasrameters, no assumptions

about the forms of distribution of errors are necessary for
L3 )

obtaining the least squares estimates.
In the above discuss ion the only restriction'placed on the

random errors{€lis that they be uncorrelated. If, in

~—

addition, the errors sre normally diStributed, ﬁhén they are

also independent. Under these conditions the quentity
4 (h~?)$? ; _
is a chi-square variate with (n-p) degrees of freedom ( since

an idempotent quadratic form in indeﬁendent standarized>normal

- variates is‘a'chi—square Vériate with degrees of freedom given

by the renk of the quadratic form).

Wow, | | Chen ,
gy =y-(xe) (y-x8)+ (x@) (x€) (a.33)

—
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| - .'—‘ : =~ T
(XKS) (x@)= ETxx@= ¢y X(XX) XY

 or, . |
(X'é )T(/\'é)= (§T+QTXT)X(XTX)_‘}CT('V§+§) R .':3,4_)

which for 8 = 0 gives,

| ‘érx"xé = :ng'(xTx)-'XT_s_._ . " (4.35)
From (A.35), (£.33) and (A.30) we have then,: -
_é__"‘gz_g_'r{]: (x ) xT}s .
'+_s_"{X(x*x)f‘x'f}§-’i e

The renk of 'the first matrix in the ci,{riy brackets is (n-p)
'~and that of the second matrix is p. The rans of the matrices-
.add up . to the rank n of tne ma‘trlx’ﬁ & . Applying |
Cochranes theorem *% we have then the result that the two
quadratlc forms in equatlon (a. 36) axre 1ndependently _f' -
dlstr;buted like ch1—square with (n—p) and pndegrees.of<

freedom.

*¥ Cochran s Theorem (Lindgren 1062) states. ' :
Let Uy, ..U, be independent and normally distributed w1th

zero meeno and unit standard deviatlons.," o |
Let Z‘ Ui = Q1+Q2+..+QS. ,Where each Qs is a sum of square
-of linear combinations of UyseeoUps with t; degrees of freedo

Then, if t, + ...+8=r,, the gquantities Ql”"Q

1

| arellndependent chi square variates with t

l,..t defrees of

freedom.,.
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Appendix B.

Linear Discrete~Time Systems.

B.l. Introduction.

The Appendix discusses linear discrete—time systems'derived> -
from linear differential:systems by means of periodic sampling.
A review of-the well established theory of Z transforms
(Burewicz,1947; Barker,1S52; Tou,1959) is first giéen as an
introduction..The Z—transform teohnique is then used to derife'
differeﬁoe equations describipéklinear discrete‘time systems-
whick are suitable for theip identifioation. Qhe Appendix

uses certainm results of the recent work by’Box and Jenkins
(1063 1066 1067) but the formulae developed are general

and 1ncluae those derlved by Box and Jénklns as speoiel cases.

~

B.2. Definition of a Iinear Disorete-Time‘System.

Most physicai systemS'are‘continuous by nature and their
dJnamlo behav1our can, therefore, be represented by that
’: of oontlnuous-tlme dlfferentlal Systems, as dlscussed 1n | .
. Chapters 1 and 2. If however, such a process is oontrolled
by a dlgltal comouter, the diSCreteness,.spe01flc to the am-
gital oomputer control, 1s.brought about by the perlodlo sampl-

ing of the variables.
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Suppose that a linear differential system characterized by

" the impulse response h(t) and described by a rélation such as
(ah Fn'f' Qpo Fndl-#"- * ‘la)'y/'t}
= (QMP M+ 'Am,-r/’ n,fl."’"*évl)“(t} . | ‘ (B-l)A

is éubject to.a digital computer.contrbl and that, thereforé,
its continuous input u(t) and output y(t) are sampled every
AT seconds. Then the resultlng input sequence {utf and

a

~ the output sequence Syig
fﬁef “—‘u‘[#é'AT%o) o (B.2a)
f%.c? Y (RAT + 0)- 7 (B.2Db)
/r- 42,.. .
describes a linear system im Which the variables can change
only at discrete‘instanfé of time (sampling instants).

. Such.aAsysfém is referred to as'a_discrete-time system

or a sampled—date system. o ,1 o RN

B.2. Two alternative characteriZations of a linear discrete-~

time system.~"

As dlscussed in Chqbter 1, a llnear éontlnuous-tlmé systém
can: be characterlzed elther by its 1mpulse reoponse in the tim
_domeln, or by a transfer functlon in the frequency domain."’ﬂ
The dynemlc reSponse'of a dlscrete—tlme system can also be

formulated in two domains as follows.
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In the time domain, the sampled output time function y(ka T)
is'related to the sampled input time function w(kAT) by a

so-called convolution summation

7 /kA'T‘)— Z h{JAT)u(j’;AT-é/AT') -‘(B.3>

in which the sampled,valﬁes of the impulse response h(t),

h(nAT) A[x‘)lé Mf _ - (B.4)

sre referred to as the weighting sequence of the discrete—
time system. N | |
With the notation
h =.h(nA:T) | ,  KT : - (B.5)
the reletlon (B.3), characterlzing the llnear discrete—tlme.
‘system in tpe time domein is wrlttenv |
— Zo hi “'*_-J'_ ol (B-;.'6)v
Let fhe sempled timefunctions, corresponding to the continu-
ous time fuﬁctions u(t),iy(t) aﬁd h(t) be denoted‘u*(t),
y*(t) and h*(t), respectlvely. Then, bearlng in mlnd that .
‘for phys1cal uystems both u(t) and y(t) are zero for t(()
“one can wrlte the expressions for the sampled 1nrut outputlr'

v‘and the 1mpu1se response runctlons 1n the form |
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. R T : N
u"(:c).: S u(naT)5(t-na7) (B.72)
' h=o- .
Lf’f&&) Z ‘j(nAT)f(z!'-nA'T‘) (B.7b)
h* (%) = Z NMT) (- 7 &T) -(B."{e‘)A
v The Laplace trgnsforms of these express;ons are
| A * | i ~naTs :
UTe) = S ulnaT)e (B.8a)
n=0. - - —
) .. eo  —~haAals ]
Y¥ (s)= = 4(naT)e - (B.8b)
’ n=o
L o . -nATs :
H* (s) =< h(nal)e (B.80)
o : h=o , SR _ ‘ :
If a complex variable Z) defined by’ the relation
_ Z: exé(A Ts) ,

is substituted into (B.8), the_resulting relatidns

Ulz)s 2 u(naT)Z" VZ“nZ

~ ‘h=o ”'0 .
Y(2) = Z sﬂM"‘)z % Ynz
H (=) = z h‘(nAT)z. = haz"

are referred to, resPectlvely, as the z transform of

(B.9)

'(Béloa)
(3.100)
'(E;loc)

the'vf-*‘

'1npu¢,;z transform of the output and the z transform of the.

impulse response.
‘The relation

¥(2) = B(2).0(2)

(B.11) j
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betwe en the three z transfoims is derived by Laplace tfeanorm
,1ng the expression (B. 3) and substituting in it (B.8) and (B.9)
The relation applies to the ouiput signal y(t) at the sampllng
" instants only. _ .
The ratio . | R
H(z) = %—%2—% S o (Ba2)

of the z transforms of the- input and of the, output is. 1dentlca

with the z 'tr;_nnsform Of the Sampled lmpulse I'eSponSe and is

referred to as the z—transfer functlon or. the pulse transfer

-
. - .

function of the system.~
It has been observed by HureW102(1947) that the expre5s1on

for a rational transfer function

o m . - om-1 R -
b S b s . o 0 B b : ‘
H(s) = _m>_ * Op g *~ ‘f 0 : : (B.13)

s s Ry
an + an__l "'lv'-Oto"l' o
can be deCOmposed 1nto a flnlte number of 51mp1e partlal ‘ f
fractlons _ |
. f Kej Pl g: SR o
H(S 2 G ), (B.14)

the non—zero numbersd‘and K‘j being not necessarily real.
'however,-many phy51cal transfer functions are characterized

-
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by a multiple pole at s=0 (Tou,1959). In general, therefore,
the denominator of the transfer function H(s) can be factorize
in the form
: * : ) ’ ! . (B.ls)
.i=l,2,oc,k_c

Thus, in general, a transfer function'H(é) can be decomposed

into partial fractions aSAfollows

E K(:J' . “+ LJ' ) ’ .
-t ..l J =t .
' Noting that a componevt'of the form E

corresponds to a weleshting fumction -

-

n(t) = Kl:l 'gggg(_-'ol it)‘j,_ o . (B.18)

end & component of the formﬁb

co;responds to a,Weighting function‘

| L, 31 R
h(t) = t . U - (B.20
a( ) ‘(‘a’a""l)' e R

- one obtalns the z trans;er function of the general expan31on :

(E.l6) in the fprm .
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i ' 94" |
H(z) Z Z ..nf ("') T (l-— ! "’““T)
- P |
J ! L-J L’. ( - ~°{ ) o
+ZTC—' ) (J-.; g 2 V=T (B.21)
J= . . .

" The pulse transfer functlon H(z) is thus a ratlonal function

- of 8T

of the complex variable z, the poles of mhlch are at Zxse

_Zk

-

exp(- ¢k4T)'
or at
Zk= 1. ’7.- ) ‘

It follows,therefore, that the pulse transfer function of the

system (B.l) can be obtained in a closed £érm as
, -1 . . o
C 4+ C_ % " dese. + CE

H(z) = 05—2b— g

8 + d z Fosse +d°z

. (B.22)

where some of the coefficients’cj.may-be equal to zero.
The weighting sequence (B.5) and the pidse transfer functio
(B.22) provide two alternative characterizations of a linear.

discrete~time system.

B.4. ﬂinear discreﬁe—time Systems with transbort lag.

The discuSsion in the preceding section refers to a dynamic

- al Systen 1n wnlch the response to an applied 1nput is

1nstantaneous. Some pry51ca1 systems, however are characterlz—

ed by a so-called'transport lag, or deed t;me during Wthh
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the system yields no response to the applied input. In the
analysis and synthesiszf such systems it is usuel to represent
the effect of a transport lag A by that of a separate element

having the transfer function
H(s) = exp(=As) o (e
end félgfiﬁg the'iﬁéut;y(t) and qutpﬁt yD(tjrby |
| yp(t) = yC?-\) - | ‘_"‘ | (3-245
If the transfer functlons of llneaQ‘dynamlcél systems W1thout

 the transport lag and w1th the transport lag are resreetlvely'

denoted by H(s) and H.(s) then
o ‘D

HD(S):= H(s}.exp(°;\s)_ k (B.QS)‘
and themouiputs of the two sjstems are related by (B.24)

' The pulse transfer function of a linear discrete-time
s&stem Withyfranéport lag is derived Eelow. The.time;domain._'
desdfiption of subh'a sysfem ,howevér'depends on the typé ;'.
of inpuf or, rather,‘on its belav1our between the sampling o

1nstants. This questlon is dlscussed mlthln the framework

',_of the 1dentnflcatlon problem in the next sectlon.f'

In general, the transport laﬁrhls not an 1ntegral multlple

of the sampllng_lntervalA T_and can be_wr;tten\‘
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where n is én'iﬁteger and m is a positive number,smaller
than unity **. | |
| ‘The pulse transfer funciion 6f a 1inear.discrete-time_systé
with a transport lag‘A.defined by (B.26) is obtained by means
of a so—oalled.modified_z transform. The trénsform is a funect-
fon of the parameter m and for a time.fﬁncﬁibn X(t) is defined
o , | ‘ h )

X (z' m) - ‘Z. .Z x(jeA'T'—-m AT} (BL.27)_“

w0 _

The'modified z transforﬁs cor*esﬁonding fo the weigﬁfing ;: .
functlons (B 18) and (B.20) are respectively glven by |

edcmér

H (m,z)—'z- K;J [-= Tl AT . .(1.3.28)7

andv"iv_‘ f e i
-nL.

5 AmaT

Y : 2 e |
" _ ——

, H_D (m,z) = Q T (—l) e('-{’bmo' WL l_z'le'bq';.a)

(B-29)
_ Hence a general expre551on for a pulse transfer ;unctlon of a

linear dynamlcal system w1th a. tranSport 1ag

A = (nim) AT .
is given by - S

*% According to the conventlon adopted in 11terature(ﬁarker,
1052; Tou,195¢) the fractional delay is (1-m)AT and
A= [(n~l) + (L-m)1A T. The convention adopted in this
thesis facilitated& the treatment of the next section and
enables the results of Box and Jenklns to be included as
a special case.
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an‘drv '24If

J-t
< H:, 19 ) |
‘n O —————— — ) . =t - "({.
H-b_ (2)=2 Z Z(p-l'. &0 o’ (l -z e ar |

=1 J"

K AT
e

L L L' ' '->J4
. . =L
N 1-'zf'e'd'°r)

(B.30)

This expression may also be written in a closed form

similar to (B.22). .

B.5. The problem of identification of linear discrete-time

systems., -

The aim of the analysis and synthesis of sampiedédata'andA

digital control sttems is to assess the stability of the

-system and to obtaln the output time function resulting from.

the application of known input time_function to a known
linear system.'The output response at the sampling‘instants

is’ obtalned by flrst evaluating the overall z transform of the

'1nput and of the system and theﬂ 1nvert1ng this transfordby =

any of the recommended standard procedures (e.g. Tou 1559).
i Converse»requlrements have to be satisfied ,however, when

considering the problem of system identification. This problem

is concerned with situations in Wthh the order and the coeffi

jents of an unknown transfer furction of the system (B l)
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are to be dstermined'froma series of known values of both,zl‘
the input {u,{ end outputg_yif (i= AT, 24T, .., NVaT)
In = practical situation both sets of values will include . 
_the effect of various kinds of gisturbances, and this effect
: ﬁust be allowed for or mads insignificant. In the following -
it is assﬁmed that the disturbances are allowed fof and that,
_theiefore,vthe-iﬁput and the oﬁtput values can be considered -
_ to be n01se—free. | | | |

Since the 1nput and sutput readlngs are available in the
flme domaln, the most convenlent characterlzatlon of the
system to be 1devt1f1ed is also in the tlmé domaln, in térms
of dlfference equations rather than }n terms of the 2z |
:transfofms.'The required difference equations can be formulat-
ed ‘in two diflerent ways as foiiov;s.‘ |

The flrst formulatlon relates (m+l) values of samples iu }
.bof the 1nput and iy § of the output, and can be ea51ly derived
_from the z transform equatlon (Zadeh and Desoer 1963)
| | Y(z) = P(z).U(z) o | (B.ll)
v'. which relates the Z transform U(z) of .the 1nput Y(z) of the

'output and the pulse transfer functlo”H(z). If express1ons

(B lOb), (B qu) and (B 22) are substltuted in (B.ll), one .

:>obta1nsf _ g - B 'f |
Cm + cmuZ ‘4. *Co'x. ){“0" “'7' oo “‘K"-f

}':.(Amﬁdm~12”'4--~+d°7. )(304-3.2 oo -BvKZ*-’.)‘} » (B.5l) »
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This equality has'to be satisfied for every power of z.
Therefore, equating coefficients of,say, z~k,one_obta;ns

.a difference equation:
Cm U +Cm Uy +--- = CoUpem -

= J,.‘y,,’_; d oot Pt e - - +Jo9i;;.;, . (B.32)
A set of such equations, oorreSpondlng to k=1,2 yeeoN,
”~and an assqned value of m, can then be solved as discussed
in Chapters 2,%,and 4. | | S
The second formulatioh, employed oy Bor'end Jenkins(l963,
1967a,1967b)‘is obtained by approximating to a convolution |
bintegral  e B ‘ | o
y (£)= f, /z:[/r)u‘(éé“’f)dé“, O (B.33)
by means of an infinife‘somvof definitevintegrals
gy % 2 ([ ko)
| RV EY B B -2
The latter formulation is derived as follows;‘ B |
The 1nput Serlesi i 1—.&(, 2 4T, -.-—v: VAT )
i:may corresPond elther to a genulnely dlscrete sequence of |

Values, or to sampled values of contlnuous tlme funetlon. :

In tke former ccsc, pertalnlng to sampled—data control sttems

the samrllnc process 1ntroduces hlgh frequency complementary



| | A T
components into the actuating signals. These unwented '

components are usually removed by a ‘smoothing device, called

flmti o t—tar L SV ]

a holdine or a clamping circuit.. In the latter case, the
‘dsampled values of continuous ouipuf correSpond>to continuous
1nput,only sampled values of Wthh are available; in euch
a case tne eontlnuous input can be reeonstructed to a
requlred degree of approx1matlon by means of mathematical
_1nterpolators (Crulckshank 1961). It is thus seen that,whether
the input is genulnely dlscrete, or continuous and sampled,
the dlscrete sequence of input values is converted into |
a piece-wise continuous time functlon. FO?’thlS reason no -
-differeﬁce Wili_be made in the treetment of these two cases.
(sucﬂ a differende is made, however, by BOX»and‘Jenkins,_
as will be discussed leter). B |

The éYfﬁ§pola£ed time\functioﬁ‘between fhe‘conéecuiive
d. .sampllng 1nstants nAT and (n+l)A T depends upon 1'ts values
at the preceding sampllng instants nAT, (n-1)A T, (n—Q)AT...
and ean be generally described by a power serles expan51on _
in the 1nterval t=nAT and t= (n+l)AT If y(t) is the output
time funotlon and y (t) is the output between uampllng,lnstant

bnAT and (n+l)AT then, in general
gn (é)zy(na'?')-{-y (” AT)(é- n.n'T)

() o
-; eee T L—__———/\’.’ ('t' "AT) o | (B.35)
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Tn the above relation the approx:unated value of the k—th

derivative y( )(nA T) at t=nA T is obtained from‘

y(lﬂ(n VAT).:‘AT)“ {y(n.eﬂ'} ,&9[[;:-1) AT].,,. .

o+ (—-l) y[(”"/")AT]} _ o (B.36)

Because of a high cost and the construgfional complexity
involved in the higﬁ order holding devices, and a large
. amount of shift introduced by them, the most common holding

devices used in the °ampled data con'brol systems are

a) the zero order hold circuit resul‘tlng in the interpolatio

e

by means of

Qn(é.)-z-};(‘hAT) , nAT<t-<(n+*)°T'  (B.3T)

and having “the 'bransfer funotlon -
’ | L -~ AaTs. o
|~ e o
Hko (s)= S (B.38),

and

b) the first order hold circuit  interpolating by méahs of

yﬂ )=y (naT)+ 3 ' (_n'aT‘){ffn' é‘:r)‘ - ](B_.j\gl),v»i

and having the transfer' fun(:‘bion .

H;,.(5)~ ( '*ATS)('” )a R WS
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Kathemat1Cal 1nterpolators employed in dlgltal control
systems can be realized by = computer program and higher order
interpolation can be achieved, It has been polnted out by
Cru10kshenk(l°6l), however, that little gain in the accuracy
of reproduclng a functlon is obtalned in englneerlng
calculatlons by employlng orders of- 1nterpolators hlgher than
the second. For the above reasons the folloming discussion
isnm llmlted to zero and flrst order 1nterpol tors_only.

When hold circults or interpolatprs are assumed to be
’ present ‘the‘appearance of the infinite sum (B.34) is greatly
A_Slmpllfled and dlfference equatlons simllar to (B 32) can be
~ derived. Box and Jenﬁlns (1967a) obtaln such dlfference
equatlons Whlch relate to a first and qecond order 11near
dynanlcel system, through d1rect 1ntegratlon of the dlflerent-
ial equatlon of the ystem. ThlS approacn, homever requlres
the knowledge of tHe. relevant differentlal equatlon
and lacks the generallty and elegance of the expres51on (B. 21)
obtained before. horeover, At involves expressions Whlch are.
qulte compllcated even for a relatlvely s1mple second order '
rsystem. In order to preserve both the 51mpllclty and |
gcnerality of the results presented S0 far, an alternatlve

approach utlllZIHg the 2 transform theorJ ,1s adopted below.t

With this approacn, tne pulse transfer functlon of a llnear f
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system subject to a piéce-Wise continuous input is obtained
first and then used to derive a difference equation in a
way’iﬁ whichk tlie equation (B.32) has been obtained. This is

discussed in the following two sections. -

B.6. The case of a zero order hold or interpoletor

In this case,(referred to by Box and Jenklns as the case 0f4
a stepped 1nput), 111ustrated in Flg.B.l., the 1nput is®

constanﬂbver any sampling 1nterval

H.(é):- Ue AT < £ £LW+1) AT (B.41)

and the'conVQlution integral_ﬁay bq'appfoximated.ﬁy
. . - IA < ) .
PO
. _ Z ( / A(?}d?) '
dn = =1 QA)AT , (B.42)
’ R nN= 12,... S
Adoptlng the notatlon (Box and Jenkins, 1067a)

T 4T e
- | A(?}d? R |
A , Ve s é-liAT N o (B'd'__B)’
“the reSponse of a 11near sy tem is'written ' R
3n_<£_v,, “u-—-fﬂj R ’(B.44)’,

=t L on=ne, .

Now, referrlng 0 equatlons (B. 16), (B 18), (b 20) and (B 21),
ear . - _wa.~' . B : »
) ;3 e dt

L ’ o e—) T
-’i”'-.’- (I1- e #‘AT)e_ ,d-‘c .‘A‘

—
—

(B.45)
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end'-
v {Vc) = V(Z) .
_.deAT' o
K'»J ( '-': [
= |- € Z T AT . ~t ,
- ELINE S (B.46)
Also, .} ‘ y
_ SR b o e .
. tar i'd"::fz-j-'— dt = _'_‘_-l! [(,(_AT),’—* ((l.-l)AT)JJ
Ve = Je-nar ’ . o L
: L; -ulnﬂ' -all-dAT : .
= dim "'":" ("') ( | / (B.47)
a >0 q-
- or,

e

| It v..___.J (l ‘7 "&‘T) ~af&l)aTy !
ve' :fmo [ ':"'(') 90:’ e e J ~ (B.48)
- - , o _ e I -

Henc e,

Z(Vc) Vi) LR R
fu '93 i.({_e-.-a§7'1

J t v . . . ’
- F»(-,) a.-'ro' 30," |- z-:e-o.AT , -_(.B‘4'9)

'An_expression for the pulse transfer fuﬁétion of a general
iinear Jstem with a zero order hold or 1nterpolator is obtaln
ed if in the relﬁtlon (b 21) components correSpondlng to

Lz transforms of the welohtlng functions are replaced by the
expreselons (b 48) and (L 40), correspondlng to 1ntegrals

of the velghtlng fumztlons. One obtalns 'thus, ’



/o e
-al;'AT) o .

£ 2y, 2" (-_,_ 2 (e )

H (z)- Z z “_m( l) 30( ~ . ol - Z_.e_.oaar
J= : .-| ~aal :
N T Y I . a (1-e ) ' ;
+ ZG—I), ﬁ"' 'gf;o "5';3 . R e - AT ((}3050)
J=1 } E '

A similar procedure is adopted in deriving an e_xpressi_on
similar' to (E.SO') but corresﬁpondingto,the case when the linea
system under consideration includes the ef_fect of the tranSpor
lag

A= (aem)sT T . (B.26)
That is to say, expressions in 'brackets in (B.%0) , which
correSpond to weignting functions ; have to be replaced by

corresponding expressions relating to 1ntegrals of the

weighting functions, This time, however, the input is not

constant over the whole 1nterval[:(1—l)b T, L& T] but only

over its sections, namely [(ﬂ—l)b T, (l—m)b T] and

[(£-m)a T, ﬁAT] In order to retain the ‘simplieity of the

- expressions d_erived previously, ‘a ‘oackward shift operator B

defined by (Box and Jenkins,l963,l966)} ' |

R T

will bekintroduced.“ | » . | i
Vvhen the input u(t) is delayed by mAT (O(m( l),

the correSponding convolution integral may be apprOXimated by

L



o) do)u, , '

3(;151‘}- LZ_' [ M_W pee | |
-CA?‘ ‘
j Al‘rr/a"r>un-z-z] - (B.52)
Q—-M)A‘r :

If L | .
n(t) = eXp( o, 18 (B.53)
then, noti’r‘lg tha'h" | |
| w 44 =B, (B.54)

" the relation (B.52) méy be written,
: : (.e-l-a-x-rn) avT _ s

vg(hAT)z Z [(L-«)A‘r € 6{”) o
([u-r e T d'r)B]“n-z._ (B.55)

i -l-:-l--M)A'r . .
This is seen to be of the form of the relation (B.42) with ..

(L—t+1-m)aT o LaT | der N .
- -
e de
Jé_ t}or € d’r)+ (/é_wl—m)m’ )B (3-56)

Performlng the 1ntegrat10ns one obtalns,

S _-te.(l-mm‘r) -clc.(l—-l)AT
V= o [( - 2
B _-—-l.:(!—r%)AT AT —d«:(l%l)AT : ‘ -
* (e . -e Je B een
Since
BX‘t = xt-l

(m.58)
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and o

b4 (?té-.) = z_f.z("f-)' (14“5'9) -

then, taking the % transform of (B.57) one obtains,

| | - -o( aT
-'le(l-—m)AT)_b-l -'lz ( M)AT 3 )z

(i-e

V(z)-: gzi - l—z. o< AT | B . (B.60?

Similerly, if

1 . : ,
n(e) = 1(;3'-1).! - B
_then . . Lo
etm)at car g3 o
. ( LQ l-H— ) at (::_'_)_' dé) (/. -—(-‘—,_:—l-)—'!—dé)s (B 62) .
Ve = | k-0ar ST Ve S5 T (B62)

Integrqtlng, one obtalns,_ -

e 1 [ aTT [@ 1411 f

_ .,.{[AAT] [(1—:-u~m) /:r] }5

@63

Thls can be eas:Ll;y put in the form | | o | |
. J - - - )AT _‘ T
. XY ’) a (l-m —a (4-1) 8T
' (_"_'_?..—-—(rm Nad e ‘ )'e : '. -
Ve = J'I D 7 e
-a(K- )AT -aaT) -al4-l) AT 7.
+ (e (i - )e B¢ - :
(B.64)



The z transform of this relation is | 227
’ . . . - , AT Y~
(‘)5“_ 'a.l a__e afl-mla )'z.
vita)= "'Tl—" ’ed':o, 2a’ [~z le =T

(B.65)

|l —= ¢

- .IQM)IQT' —-0aT) ~2
| (e o (1! e -
+
Using (B.€0), and (B.65) in'(B.30) one obtain‘s an expression
for a z transform of a general lineer dynamical system subject

to a stepped input (or a zero-order kold) and including the

‘eflect of the transport lag (B. 26). in the form
4o (1 -el‘{l-—m)AT)z

+
Kej -1 '3’
H (‘Z) Z Z_. (_‘:): ("')-J 9 e vt ol.. { | - = Lo~ aT

S |

N (.e..el.:[ - WJ.AI e- de AT')Z-Z

' — z"’lﬂ-— e AT

- - a.(l—m)A‘r) -1

N 7‘: - .
-n yH Ly {'— ‘
v ZE G Fa g& { S
o a=Vv

: _ ~m) AT -—G.AT -2
+ {e &l -e &

B.66)
] - ="' e ‘QéT' ( 66)

B. 7 The case of a flrst order hold cireuit or 1nternolator.

V,hen a flrst order holdlng dev1ce is used tne 1npu1: u(t)

A betveen the sampllng instantc k.A T and (1f+l)b T is

, extranolated using t,vxo prev1ou° samples, uk and uk_
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‘From (B.3%5) end (B.%6) the lew of extrapolation is -

Wit) = Ut U —U—e (;ﬂ'—k AT) |
dl - (B.67)
Ul wlt]) £ Ypy '

In this Ca'se the convolution integral is approximated by

(see Fig.B.2) o

LaT - )
v(nAT) = Lzz' { &-I)AT h (?)[un-e

G Up-l —UAL=l § e S - R
™ ?’]d?}  (B.68)
If the babkward shift operator is employed; this can be

wrltten, ,

. o LAT
y(naT)~ % { »{L:)m /l(?)d?)(z s)

. lat)
»I—B ( f@ . ?“?M?)}Hn-g‘ (B.6§5

AT ~1)aT
H‘ence_,- !
o A(3)dsy — [
v ,VL_ 2 (l. nar T l)A’t‘

?4(?)61?

"B[ L.f'é):"rk(?) ‘” ~ j@-.m?“?)d?] (B 70)-

'Ihe varlaole'f 1n the secowﬂd and fourth 1n'texral varies 11nearl

: only between o and AT over any 1nterval [kAT, (k+1)A TJ
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Hence (B.70) may be writ‘ben, | ~ | ' 2,’{-9‘ ’
L aT . | .
V= 2 !lL-l)AT' 11(? -' AT / 311(2-&-1467)5[?

“B[ [u-:wr (%)e ? —J:f-' Zk(ghedT}d? .(3-71):

If
B =X ep(dt) T (3.8)
Ctmen, S |
LT @iy, 1 vc;ta'{.’) -dclaT
v, S KEj{ZI(L-I)ATe_ J?"-A-—;r-_( ere.’.‘ J?C |

et %3 . 2y _u¥ - 48T , :
, dg~ L ( e )
B B[ gu-:).&re | ? &7 .!m‘3 df e J (}3.-72)~ '.

Performing the integrations one obtains

A Q;AT ~oi{t-1) BT £ AT | AT ..dl-
o B

~oli AT, - cls(l--l)-ﬁT -dcAT B _J,A
| .—B[((-e S )e 4-6, (A e *ar(' e )?, B 73)

,The_ z"transform bf .‘thls relatlo‘n is
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-ol:A'f z
vea)= X f2(1-e el
| o i .
+ (e-d‘AT'*‘ ww(1-¢ ) AT)): z Y
L T T = 8T —oli AT,
2 [(l—e )l-z-" ‘-vz‘:AT‘ (e .+Z'1:c;!£ l.—e x (13‘.74)
| B * W]
or, . f - ' . : | v
V(z) Ky V! (z) . (B.75)
Whefé' e AT |
| _ R
V’(z)-_: o;" '__'2:.( > 2 {[( ! AWL )*@ ATG/t :‘
~dcAT ] ¢
+ [( 2 "‘sr«‘) = (1 A'l"'alc.) J_‘z
i AT N . R |
+[“",. )= } B | ~ (B.76)
If g | |
| h(t) = N ~ (B.20)
(J—l). IR S v & _ »
'thenv, | | B | '
AT ,"-\
VL Q l)' {2L-n)m- { f i (?+.£AT) J?
£AT 3~ j ? (
_ T-l-l aT J‘f }
e [ J.l-t)M" T ) 7 ]

(B.7T)

_Performing ’t.he integrat'ions,'



A Ly _
J .ZAT' - .

R .(?{IAT).] ‘

VL= O-')' {2[1 ](—-t)ar Zﬁ‘[; J -atr Z.?Z.

; (?f-lAl) d?]
-l (5 L-w & [wopm
o ey ar )

(B.78)
or,

:_, {2 ({u'r) - (- )A‘r) )-_. (m’a-oﬂ) ) j I ?+14T) d?

\—-B[ (!AT) —(U—t)AT) (Al ((e-) AT)

—/ (?-f-mfdr)]}

(B.79)

On carrying out the remalnlng .1ntegrat10ns and tidying up

this be'comes, ‘ ’.3 Jy
jet Ly D) -O.AT -a.(l UAT
V, = ) =7 dem Ya (f— . e
¢ J' aso ’

e AT —R AT\ - = a1

(l—-é'“T -a“ } (5. 80)

The e}cpreSelon 1n the curly brackets is of the same form as
: _that in. (B.?}). I:ence, by 1nspect10n,‘ the z transform of (B.BO

is



| P U
=C1 ——Jm %z o
V(_z) € ) J' s & ‘S'BV ) : (B.81)
where
o l _¢L¢T |
vu',(z)z “"—’.'.""Q".:'E.‘E‘r {[('"ﬁa) 4":-;—‘1
~a AT

+ . .
"‘[(2 ) (H'A”ra I |
‘ ; -—-a.AT) -'2 . Y : ) . ]
* ['("‘e ]z S (B.82)
The pulse tfansfer fﬁnction H''(z) of a general linear. system

with a first order hold ishobtained in a way similar to that

in which (ﬁ.50) ¥as been obtalned Tnus, flnally,

* 3=
« f*l'(ZJ‘z EE; :E: 633' = 3u&’q'v (5]
_',,." ‘)j“ _l_-_J_ “'M _Eif V"(z) |
+JE-7M £oame % S (BB3)

where V'(z) and V"(z) are glven oy (B 76) and (:j 82)
‘ respectlfely. | |
A simllar expreésion ébri*eSponding fo the transtort". 1ag1_,
gﬁiven‘ by (B.26) is obtained, as in the case of e»»zeroA'orderv”
hold, by first :derv-iving e puise trensfer function of a system’
'w:Ltn a fractlonal delay mAT , and then multlplying the: resultf

R by 2 o, From Fig.B.2b it can be seen that the convolutlon
v 8
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1ntegral is now approximated by '
¢~m)aT

y(nAT‘) = Z ‘{ Lmrr {1(?)[un-¢ u,,..,: n-et {(l—m)AT~'{Ud'?’

[ O o

bmﬂﬁr

i (B.84)

| U51ng the back& ard shifi operator B this can be written

L-m)a -mJ)AT
y(naT)= Z (2- m-(l-WB)L—‘ . 4(?}4;-L13£ )ZT“W? |

2atT .
-B?  h(3)dg
+(23 B )/a_mm
' LAT
ra-a*; A
AT /{2-m] AT

-—

zm)dt}u,._, | -~
. (B.85)

Noting tha't‘f veries from- 0 to (l—m)é T ovér the interval

[(i—l)b T, (l-rr)A TJ , and from O to maT over the 1nterval

1 [(I—m) AT 2o Tj ,(B.85) may be v&rltten,
' -m)ar

y (n aT) = 4-,{({2""’)"""'“’8) ﬁ-(%’)d;'
1-m)aT
~ A?a | {h(;..v.a-:)ar)a -
+(23 )f uz)d?-‘ /;/,.(;+(¢~,,,;AT)J;}“”

(B 86)

‘Hence, -



(L1 +l-m7AT l-m)AT' 23

:('z_m._(_,_,,,)g [ uw;- = [ nmu-«)a'r)d?

1) AT

v (28-8) f“" /Lmaza

[l—ll-l-M)AT'

~_AT

¢ -M-)AT);{? | (B.87)

For h(t) defined by (B. 18), : -
(.t-H-l-m}AT ~lc3
VL"K") {(l-m -(‘ M)B)[_’ aT e . |
: l-M)A'T' —els ,
-B -d.{L-l)ATf ed‘?d?

-5 €

AT
---!.?

+(28-B% €  dF .
(28 B)f(bmm)arr L ¢

mA‘I'
8 -g* e—-d.,ll M)AT/ -q(.t d? }

Performlng the 1ntegratlons one ob'talns,

.o i [L-0)8T L. l-m)AT
- § {( ~m=(-m)BJ(1-e -‘{ )

oli .
[“— m) ATQ—?‘ (= m)_AT" L (1 e -cl‘ (I-M)AT)J

"'375(
. ,(- T -. A
4.(23 aa)( " 'M,é ~e™” T) R
—q.’.AT L dif1-m) AT ~eliAT g
Tl e )N

(v

(8.89)

Célieoting correspoﬁding'terms, R



Kis -«.'. z~:)41‘{[.(2_m){l_ -ea(:-mm} a ,."L?f'_‘

Ves o
~e (’-rm)dT | . "‘4&("‘””97‘
"‘("’M)e "-ATO(&(' )]

- (1=-m]AT) i (I~in) aT i (1-m)«ﬂ'l'
- [-(l~m)(l~e ) =(l1-m)e +md {l—-e | )
~di (l-m)AT  _LAT  _quaT ; ~di (AT ~-dc 8T
+2a —2€ +mé —Ange A'T—-?c'e ‘ ]
~olilt=m) BT AT ~deaT —oz (1-m)BT
-[e -e  +me -7 ° *

‘. -4“”_] A (s.50)"
1 _ B 7
| "‘m- e _ jl

Simplifying, v ) AT o -

. =de(l-) 8T .
VR Fie {[( ATG(;)*‘L(ATdifI)e,

e, A ' -_-e{.(l-m)a't‘ ‘ | |
[l -tem) e (2~ Je w (g +m-2)e  [B

-4;(! m)aT v ._,1 T |
"[(l A’re!) 3 ’*‘(ATdc ~lem fA B }

(B.91)
Taking z transform of (B.91) one obtains,

V(z)‘K jvi"'(z)‘\ S (.92)

~where e ; -d‘ (1-m)aTy .

V()= g7 -7:‘ Taear Z([(Z m~ Gz ) (A'm‘ “')_ N |
. . . . 1) v )

+ [(A';'d- ~lem)s (2" .)e (“_‘ . A':"d +m-2)e. Q’M-Jz 2

Ly i [l~m)AT ’ -ol; AT
[(l A-m‘) R Z:::.;;—-l-«-m)e. 3}

(B 93)

For n(t) defined by (B.20),



| (e}ot)Af | | Ve |
-' . . '7
ws {(2-m-c«—m18)[ ey 9

1-8 i~ m,ﬁr

- ; (3= m-:)m') e!?

o N
_4-(28 -g? [imsar Ty

f {(p(.e-m)AT) d?} (.34)

Performlng the 1ntegratlons,

Li { (2-m + (-m8)[ (u~mm~) ((1~f)AT) ]
- .'_‘E: [ (1-m)8T+( (1-m]sT +(L -t)AT) ] ( ';7+(1-UAT) c{ §

+ (2B-13) [ (—LAT)" ((L-m)AT)*’]

- (@-—82) [m AT s (,,, aTs (znm'r) - / { ;-r(l-n)AT) af(?] ] )
B 95

This can be written 1ﬁ the form, _ ‘ |
i+ Lj 2’ = '“'u"'JAT{ -.a.{l-m)AT
’ YA - (|~
V= (-'" ,J’ j';'_”_;o ai (2-m ~c1 m)rs){z—e )
. ~a{l~-m) AT —-all~m)aT
S [(-m)aTe oA ()-e ]
. a :

w0 [I-m)AT ~gaT -2 -adl’ - n-mar a4
*(2B- B‘)(° ML) B [maTe -4 (& }

(B 9_5)
- The expression in the curly brackets is seen to be of the sam
form as that in the relation (B. 80)‘ Hence the pulse transfer
functlon can be wrltten by 1nsnect10n as | |

L _ 'gJ o
+1 -.-—-—-—-
V (z.) (__’)’ Liotm Ya? V (z

) a0

(B.97)



‘Where

| | arl mlaty
_VW[‘L)-.-. "L:'_T-‘S'Kr {[(Q:-m-m__“).,. (_:ﬂ‘_,)e ; '
(1-m)AT ~qoT— _
[(A'rw""‘"”)*'(?——' Yook (Z-:“E.fm-z)e A P
[~k ) N (e H,,,);““' s

(B.98)

‘The pulse transfer funcfipn of a genefal linear system,_inclﬁ

ing the effect of the trensport lag, and the effect of a firs

order hold 1s, flnallys ol i
- Kij (- T
H(2) = 7_ Z.JZ- e (') }ez. .V (z)
o i 4L 2 yw
.z Z(") J:’ ‘;'f'o 9"-’ V (Z):

(B-99)4

'where Vi"(z)'and vV1z) ar- given by (B.9%) and (Bf98)

resPectively.

. S . Y :
B.8. The case of a first order interpolation according to

Box and Jenkins (1S67a)

| ThlS cace, alécﬁssed by Box and Jenk1ns(l°67a,1067b),,
‘and. 111ustrated in Flg.B 3, differs from the- flrst order hold
l'of the precedlng sectlon 1n that the values of the 1nput |
| ki‘unc'tlon u(t) bet\‘een the sqmrllng 1nstants kAT and (k+l)4T

‘are obtamed from '
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' “® -uac

“ie < l2)$ wn ~ (B.200)
That is to saJ, current values W, and w1 are used. forf
1nterpolatlon, a complete record of sampled values being assum
~ed to be avallable for analysis. -

Box and Jenkins call this the case of "identification
or samplihg a continuous function, in contradistinction to
- the "control” problem in which the control. commends are glven
only at dlscrete instants of tlme. Box and Jenkins argue that
“theumost sensible" way of approximatlng an input fimetion
is by means of the lnterpoletioh (B.lOO) in the "identificafio
problem, and by means of (B. 41) (zero order hold) in the ﬁ
~"control" problem. This may be so in the control of batch
| orocesses, but not necessarlly so in the control of many .

phys1cal processes where, as dlscusced before, hlgher ordexr
:1nterpolatlon may- be employed.._ R | |

It is suggested here that thls case be regarded as - Just. -
’anbther case of the flrst order interpolatlodwhlch may be
employed vhen a complete record of input and- output is glven.
‘ ThlS case is dlscussed below for completeness.’ |

Correspondlng to the law of interpolation (B.lOO), the  .

convolutlon 1ntegral is approx1mated by

{aT

3{}:1&7‘): (%; { Iu 1)4?-(?.), [u ~ter u,,_‘“ u”"?]d?} . 101')




‘. Employihg' the backward 'shift operat‘or B o ' -'2 f
“ h)ar ‘fL T
(”AT) Z{ (1-9)AaT B ..._- -0 T ?)d?}% ¢ (B.102) _
Hence', o B
AT e - £ [t Fhp)dy |
V‘? 5 f(l- et ?.) c{? - R AT (2-)at | <~B-1°5‘>-

Since the Varlable{ in “bhe second integral varies only

beween 0 andAT,

. ) . ' B-‘—' AT ‘ . . ;
e & ;u_muzm - S [, T M e0aT)ay g o

For h(’c) deflned by (B 18),

» . lAl -Q/; ? “d( ) ~c{¢{l~’)-ﬁr
~f
= Zy e ( ) }
73 k’c) {B (L-!)AT'V - | / ; (5.105)

-

Carrying bﬁt the in’ceg’rationS, -
. - -o[. (-l-lJAT -1 i aT ~diaT
g TG 1) S [
LT ~ ("‘ ' )]} S (B.106)

hnen correspondlng terms are collected, one obtalns

Vi! "dt(l"‘)A'T'{ . -d'.b'l' ..d‘ A—r-
CVLE de ¢ a7 (I-¢ - |

K [e‘d‘”-b (l-_"Q'AT)("' AW«)] } (8. 10?)
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. Sincé'
B-.' Xe ‘.: Xé.}l- - - (BolOB&)
& (B )= 23 (x) L (E.108D)
the z transform of (B.lQT) is
V(=)= Ky Vi) o (5.109)
-whéré. . _
o : o nuaar' AT -
R 1 ' -
V(=) = T |oSTe-ar {[e!‘ 5 ¢ .]Z

, + l-.e-c(tdt‘. “— e-e/cA.T)‘(.'—'. ATM’)]}

(B. 110)

For the melgntlng functlon h(t) defined by (B ?0),

.-I . - = T
Vs (J"')'{ f:.--)m'? d? | A"" / Z (?*(‘ e )"0 (B 111)

Performlng the 1ntegrat10ns one obtalns,

{5"[(£AT) ((l-t)AT') J-—- [AT(ATM! I)AT)
-f ( ?-f(u-'m) d?]}

(2. 112)

This can be writtenm as



. ) . Y] aJ —a(l"‘)AT aT
ve= L (1) A Sar © { (l— )
. J. . amo O

'(B.113)

B (4T A: s )}

5 . F 2 ~! ~-aaA
ve= Sy Y afi"o 3; "- {B (1-e ")

S [are T e

This relation is of thersame form as (B.106) and, therefore,

(B.lld)b

the'correSponding Z tfansform may be Wfitten'by inspection as
. . ) N

, D o
J - (2) = T ‘) q(;“o' 2a’ V (z) '_ (B.115)
where S | | o R |
- ~aadal 7 _~1
v (z)- e {[— ( I-e *)-e _]
| ~-a T' -aAT’ ’ o
+ [e .é + _(,‘~ e. = AT&)]} (B.116)

~ Hence the pulse transfer function of a general llnear SyStem -

using Box and Jenkins interpolation (B 100) is

S ' k P o Kei J-l-l DJ-. | :
H' =)= & 2 557 J (" Del.:" Vi)
. FEYRY ROl ' L
» : e 'vi .‘D, v S . .
+ 2 (- J L.-m PR AN C N (. 117)
J=1 >0 ’

where vV(z) and V' ( ) are given by (B 110) and (B 116),

E lespectlvely.
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Vhen the system under consideration includes a ‘transp‘oi*t lag
(B 265, the .corresnonding pulée. transfer function is obtqinéd,
as before, by first deriving a pulse transfer function of a
system with fractlonal trensport lag maT, and then multiply—
1ngtheresul‘tbyzn.‘_' _ - S

Referrang to Fig.B.%b, the convolution 1ntegral is now

approx1mated by

((-m) T . —
H (,,A-,—) - {[ 4 A[?)[“n-{. 4 Wn-e- '”u“'t({l-m)AT- ]d?

{e-naT
k(?)@f? TI “"-e*”"""”*‘-' ]d ]
* ](LM)AT' ot : (AT ?) 7 (B.118)
| U31ng the backvard shlft opefator B, this can be wr;ltten és
(L~-m)aT -
‘j("AT) Z (1- M)B f h(S)d¢ - A-r'/ 7‘—('{)’(?

(,a "
+{ M- 5B 368)4? |
4""“)&1‘ : 4 (< —M) (B.ll9)

~

Since thef variable varies between O and (L-m)aT over. the
interval [(1—1)A 7, b(l'—m)b T]' , e,nd' beiweén 0 and mAT

over the 1nterVa1[(Z-Yﬁ)AT _(LA’TJ (B.ll9) may be written,

=y f(A-mlas
'j(nAT)" = -8 .A(?)d? |
i _ %‘Lorgmu'r‘;./‘( ;.,. (Z—-l]AT) a/?
. 4 4AT Lo
* framar A3 7 - / 7 W”f-wm?

2-n) AT .
e o (B.120)



-/ i
N eer
ience,

(L-m)AT (I-m)Ar

v,__(l—m)B (2T h(?)e(?"' m—- ?4(?*(1—~l)aT)a’?
. /wr A(;‘)d? _ } ‘;;’(?,{_{.t—-m)AT)c{? |

~mlaT
(4~m (B.121)
For h(t) defined by (B.18) - AT
L-H-t-n:) AT d‘ ﬁ M) ..dc ) -ﬂ’oll")d
ve= Kej {(1-m)B /z l)AT’ €
“Ar "‘d‘ ..P,‘ d‘ (l-m)
{L~1+1-m)aT :
| | -~ (B.122)
Performing the integrations one obtains,
.o =dilL-1)oT e rl-m)A'r
K¢) a -
ves o {(’ m)B ( e | )
- ~ole{I=m )AT ‘<{; {-M)AT
+§'—""" (l-m)me —-a-(l- ( )_]
_ol‘(l-m)AT ~Ac AT =B —liaT Y {1-m)4’r -ql.n'r
+(e. -e- )* T | male 7( ]
’ ' (B 123)
Cdllecting ‘correspvonding v'terms, R , _
o Kij ~delL-1) AT ' ~el¢ ('-M)AT -1
= g e _ {[ ‘—m ATol ]'*’:ST@( : ‘Bl_
~ ..l_. 2 i (l-m)aT - 1 - AT] )
+ [ATo(c. (m“A'raz. )e’ R (m- ""Av'xc)e 4
..J‘ AT N - -c& (l—-m)A'T'
[(”‘ ATo!e) - BT e JB} Pt

The z trensform of (B.124) is



2¢¢

Vs (g)-a WKej V' (=) | (B.125)
where | . | i [l~-m) AT,
vt LR — - s ——e : <
v"(2) =g l—mt e At {[ (F-m-arw ) w/a: ¢
—de(l-m)aT =~ - y —caTY o
2_ ] fy i
+ [,AT'O(L’ * (”‘ AT'&IC e + (-1 AToct)‘g =
~[(me zrme) € @ |
| ’ S ‘(3.126)
For h(t) defined by (B.20), (l-m)AaT

¢ L~ m)AT

=(l:% {(I—M)B_'/u var /? (7.*(4-')”.) d?
LaT ?J*l? | /ma'r‘; (?_‘(I_M)AT) e{?}

(.l-m)AT' (B.127)

Performing the Entegrations one obtains,

Ve = ‘:‘iii {(]..m) B-'[ ((I—M)AT')J; {(!—(JAT)JJ ’

(1-m )aT

{(I—m)AT+(,t-¢)4“)‘i_. i (;+(1-I)AT) a/{'

+[{«(AT')J- ({-5-—m)AT)JJ - [m AT {MAT+(,£-M)AT)"

/ (?-I-(X—M)AT) dU}

(B 128)‘

This _cariA alSo b_e written as -~



Li
._.2'... (- 1) Ui 3.0."-*'.'

' o -a(l—:)A -, ~all-meT :
- J+1 a {a-r‘)@ |{' (&( - ) Lﬂ
L= ¢ a-> 0 ‘

~a {l-m)aT

. (l-) AT
£51 [y ar T (L]
—a(1-mlAT -aAdT ., -
< 2. . -2 J"' .
|~—B [m TQ—QAT' ( ~a.(l~M)AT ‘aA'T)J} '

A(B.129) '
‘The above expression is of similar form to . (B.123) and the
z tranéform of (B.129) can,thereforé, be written by

inspection as

3’ vitt
\/(z.)- (~') f;ﬁ; =5""TV (=) (3.130)
where ;4(1-m)ar'
r -a.(l-m)oT -~ aATY -]
+ ATa. ("' ' + (m-1+ A.,'.a.)& Z
—aA&T | ~a(l~M1aT+] ~2
L) TS

(B.171).

Flnally, the pulse transfer Iunctlon of a g,eneral llnear dynam
1cal system with trancport lag and sub;;ect to an 1nput w1th
the Jnteroolctlon lew (B.100) 1s e o . ,
* = ke - :
J{IJ ' v, :
HYG)= z Z =o€ 0" a«.»—f _V, =)

. T T
z " Z(:)m LJ lim ad V ()'  (B.132)

J= J. a—>0 .
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where V' (2) and VVill(z) are respectively given by (B.126)

and (BQlBl).

B.C. Examples of difference equations desoribing first and-

Second order svctems with 1nterpolated 1nput. Lo .

The relations (B.50), (B £6),(B.83), (B 9),(B.117) and
(B 112) glve expressions for a z transfer function with or
without tran5poxt leg, corresponding to three methods of
interpolating the input function u(t). The method of
derivation of these equations is superior;td that used by
Box and Jenkins(1967a,1967b) ahd holds for any linear Syétém
with a ratiohal transfer functidh; Once the transfer »
functlon E(s) is sp901f1ed, it is factorlzed accordlng to.
‘(B 16) or (B.25) and the correspondlng 2 transfer funection -
}can then be obtalned dlrectly by using one erthe relations
’developed in this Appendlx. | | |
. The =z transfer functlon thus ébtalned can be put 1n the iorﬁ

cm+Cm-|'Z- Y4 -4 CoZ

dm+ duaz” + ek duim _, - (B‘-l'ﬁ?)

H(z)=

‘The correSpondlng difference equatlon can be derlved from
tne reletlon (D 11) = as descrlbed 1n Sectlon B 5 That is to

séy, substituting (B.lOb),(B.lOa) in (B.11) ‘and u51ng (B.lB,),



one obtains,

(Cm +Cm-a'2.‘-t-.. - Co2 M)(b!o-a-'u,z ‘-{-.... rUKT +....)

-—("Im*t{m-:z + R CI °z. ){yg+9,z .. 4-3,(-2,-'-({-.....) ,
(B.134)

4

This relation holds for any power of z. Therefore,'equating'_
_coefficients@f,say, z"k, one obtains the required difference

equation Q‘ . R = § /;-\

CmUic +CpmlUp t -+ + Collrem =

= J,@,‘ -+ u{,;...: Yremt - + . elo Yu-m : (B.135)
This approach will now be adopted to derive‘difference eQuét—
ions_describing first and second‘ofdef systems..The'objeot
of fhese examoies is first,to illustrate'how the formulae,
developed in the Appendix and holding for a general llnear

system can be used to obtain dlfierence equations correspond—

~ing to some soec1f1ed transfer functions. Secondly, it is

reoulred to obtain the formulae used in the thesis and compar
“them w1th tnose obtalned elsewhere; Only zero order interpola
,1on w111 be con31dered here.

) a) Tirst order svstem ulthout transoort lat anc w1th

transnort lag

~ Consider flrct a szmple flrst order system glven by

by K e
VH[S)"-_S-;‘-QL . S ""(B..136)'

Using the formula (B.50),



o -

Employlng (B 138) this becomes,

(3;137)

Fmploying the"parsimonious parameterization" of Box and
Employing the"p

Jenkins,“
g= o (B.13%8a)
‘ _..elAT ‘
$= e N
; ' %(B.138D)
Then . SRR
Ho(z")—:' Y. ¢ vz‘l SR _ (B.l40).

U51ng (B 134), the dlfference equatlon is obtalned as

'yéé.cpyg_,-; g{l ¢)tm-, . (B.l4l)'

which agrees with the relation given by Box and Jenkins(1967a)

If the systém (B.136) includes transport lag (B.26),then,

using (“.66)' one obtains,
el [l-m)AT)

. (I~ e
H (z)*z { -2 e~ <ar
'-actl—-m) AT

~o AT, ;1M
— )=

"'_ : B
| (B.142)

,..m 2 ‘

(- & é ")z "" (@

H'CZ)- z 9[ I~ dz ,—-¢z . = (5.143)‘



Using (B.134) the corresponding difference equation is

. o
obtained as

Y= D et = [ (’".Q’ ’-m)"","”“" * (‘¢l.—,'2 ?Jean } | (B.144)

/

which again agrees with Box and Jenkins ﬁl9673). ‘

b) Second order svstem

vConsider,finally, a second order system described by a

transfer function

K

'FH.(S) = (S-i?-

G!.I ) (5{'“(; )

where and are real and not equal.

Splitting H(s) ihto partial fractions one obteins

Using (B.50) one obtains, ~«adTy _p

o K '
H®G) === [oc..

I

l

K L

H(s) =

CLet

L= S+ely

Lo~el, S "l';l

ﬁ&T

o, -

B ¢z
7

!

1

{i-e z
I- g <2aT ™
(1-e” ' )=
| — e-—«:é'rz"
-of, &T
e :
€ . ,
K
mz”

n

] ' |

'(5.145)

(B.146)

(3.147)

7(B;143g

(B.148b)
(B.l4éc)



Then, after Some calculations, one 6bta1ns, '

252
)~ - =t
Ho(z)= .5. Tl =T
& = (Qr+Pe)z"+ & @g=?
4 ‘a-a. ¢,(I—¢L)~ .—6!3.7: ¢a’ (l—. ¢') | : (3.149)
| ~ (‘?:fjﬁk)ﬁqu& @D, Q=2 .

The corresponding difference eqUation'ié easily obitainéd from
*(B.149) and is ‘

'j - (¢:“"¢t)“/g~z"" (2] ¢931¢-—z =

- { [, (1-¢,)~—~___ (I—QS':-)]I{,,__, | |
=4 X [v ¢ (,_. ¢1)-_ ¢L (0 QUJue-z}, (B.l§O)
ir. N R SRR e
o?l.'z_’; PRTTEEAS AT R (5.151a)
_?'z‘ = o .(B..‘lS.l.T.J)
thenzfinally,‘ﬂ . s | |

[¢l"‘ ¢z.)9‘kv-:;!' ¢1 ¢:_ 7#-.3, = -
5 _,,‘ {[T(z-m TR P
S +[T P (l— 1_) - k, >¢z.(l-¢,)._>] Q;.z}

- (B.152)
Thus, the equation involves gainrahd only two additional



parameters T end T,, or, alternatively, Q and ¢2,

1 2

as indeed should be tbe case for the second order system.
The relation (B.152) dlffers in appearance from the

correspondlng relatlon ‘derived by Box and Jenklns(l967a) by

direct integration of a second order differential equatlon.

In order to reduce (B.152) to this form, let
S‘,-:_ ¢, + v¢a o " , (B-ISBa)'

‘;— ¢c-¢z N I
da : . (B.15%D)

L g l-d) - L D (1=

V= (B.154)

. [’ - (¢l+¢l)+¢l¢c‘.][d c(‘

Substituting (B.153),_(3;154) into (E;l49),eone obtains,

(R

(l_y)z -&VZ.

Ho(=) = gc!—é‘ -8 TR s

(B.155)
-The;correspondlng dlfrerence equatlon _
H —gu.‘/u-:»&_yg_g
9(:—6‘.4‘,_) [(I v)u“_, Ve 2] SR
(B.156)¢

 is now identicel with the relation given by Box snd Jenkins.

g
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Appendix C.

Representation of a nonstetionary stochasiic process as an

output of a time-varying linear filter excited by white noise

the mean sguare value of the process being a polyndmisl

function of time.

C.l.Introduction

- In this.Appenaixla nbvel method of répreséntéfion of a
nonstétionary stochastic ?rocess—is'develqbed; The process
is represented as an output of a linear filter with time'
%arying:coefficients, éxcited by white»noi;e. The mean.square
velue of the output of the filter is a polyﬁcmiai in time such
thét the degree of the polyﬁomial is a property of the filter
structure. | e | | .

1S

Ih‘ terms of a whlte noise prOCess\'feiv\lth mean - Mg and

Varlance 6" deflned by i R o ' o
E< TS = m; N CR )
uh “M?J(?'“M;) Sy e
“ fhe honstationary étochastic process§44¥ié given by‘
e = Z v /é)?,, ‘ ? e

‘mhereﬂodenotes tbe btartlng Value.



| o al
The welgntlng functions v, (t) are of the form _
VJ (& ) C_".J_).___ . (C.a)

"Whefe K is the gain factor.‘ . |

The weighting functions are.determined in a semi—empirical
fashion by first' considefing the condi'tion's which have to
be Satlsfled by an 1mpu131ve reSPOHSe of a llnear time-varying
‘filter characterlzed by a linear tlme—varylng dlfferentlal ‘
equatlon (Mlller,l995). The weighting functions vj(t)
resulting in the mean square value of the_putpuf of_thé“
corfesPonding filtef.being.a polyﬁomial in fime‘of a prescrib-

ed degree were then determined by_tfial and'error.

Difference equations characterizing the various filters -
are developed from the relations (C.3) using the variables
defined by

th,:'Zf-"'fo | PR (Cc.5)

If these relatlons are used for modelllng a glven procees }ZE}

then stablllty constraln$s are placed on the. galn factor ;A*

with the result that the effectlve galn factor G in the

'dlfference equatlons 1s smaller than the galn factor K 1n

the relatlons (c. 3) o walle the macnltude of the process f {;;
‘ : ./;_ o , ; ;



estimated”is correspondihgly increased.
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C.2. Representation of a first order process wWhoSe mean square

value varies linearly with time.

This case corresponds to a process with a constant mean

(zero or non-zero) and whose variance varies linearly with

time;. |
Setting in (C.4) k=1, 1=0, m=3/2, one obtains,
4 o f_,
‘f‘ﬂ
’Zé = ,20 —‘. 3/2. gf") + ;

Now, .

E<2é‘> 7 2+ 4‘—< [2 z‘?” ?f"J]>"E<?;_

'Also - .,,\'

| » i t.:_(_’é:il 2: [ r:é-&) :
EK ftan = 3/:. [.t'(i' pieler 3 :( ‘E'KE_E-’_/;

-

Hence T FRE
ety
th. > 70 *{6‘+M;)['+ 3 ] ;

@'-«-m; [l’* [{“"2)+’t]]

(C.m
(‘c.7) -

(C 8)

(€.9)

’(e.lo)

< 21) |

The effect of the term (l/t) decreases as 4 increases.

. /__
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For +¥ 10 the relatlon (C 11) may be teken 1o represent a

linear variation in the mean square value fairly accurately.

From (C.5) end (C.6) one obtains,

et R
£ =S KE=j)5,; +KMt-j 1 2743, (c.12)
J7z e ' _ |
and SRS B  . o -
7 2 | Pl
@ l) 27 = ;_ RO~y + (2= e, (c.13)

Substituting in (C.13)

=+l : B o (C.14)
‘eliminating'thévsﬁmmation bétween”(Cul?) and (C.lS),.and repla
ing K by G one obtains the qifference equation

(,¢~ )3& /

(¢.15)

The stablllty condltlon for the parameter G 15 obtalned by

wrltlng (C 15) in the form “‘. L ‘v"<1_7~ R
‘ | oy /a » -
?6 - P"’ ( ) BJ&- o | (c 16)

1= %e ,_;,;]B




/ | T
and noting that the process of estimating recursively f{ fef

frmn§7dis stable pfovided that the root of the equation

et | )%4 c -1 o <'v T
.lies outside the unit circle.

This yields the condition“ |
3 o

1 (%l)/e"g:%/gl <l . ((;“185 ‘

ffom»ﬁﬁich - o | |
| | Cv'-‘"l <l e | " .(C.I.lg) |
folibﬁs. . | g |

C.3. Rgpresentation'of a second order process whose mean
e ' :

square value .is & parabolic function of time.

This case corresponds to a proéess \1th llnearly varylng
- mean and/or pqrqbollcally varying varlance.

.Settlng in (C 4) k= l 1=0 m_l, one obtalns, = o ;
_ 7 "‘Zv E I( -‘ ¥ ? ' ((:_.20)_
E(Qt—)“?o +5<(Zl<fj?é-.;) >+£—< ?4- (c 21)
721 + (0’"+m‘)[1+ (E K== 'H ) ]

(c 22)'
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Now,_' :
.‘:’_::’.._ & _.__ A1) _ :

.2: K 3 lr‘“" g (21 5 g KECt ) (C.23)

_ Hence _
Fetets =12} et )[1e Sleseen]
_Which confirms a paraboiic varieation of the mean sguare value
of the. process represented by (C.20)%. .
From (C.5) and_(C.20)‘6ne obtains, -
e | i : ,
= 2, CEG) Fer W81 5ee 4232 (c.25)
: ,.‘f-—z}"" | '
é‘é‘—l)'le-: = E N{'&*"‘J”e-p. -"'f"‘"}‘?m  (C.26)
Using again (C.i4) in (C.26), eliminating the Sﬁmmatibn term
betmeen (c. 25) and (C 26), and replac1ng K by G , one obtains
: the dlfference equatlon corxespondlng to (C 20) as
,"7&'-‘-%“—' 74-: = C@-’) *@:“,e-_« - ?4. | T (c.27)

By u81na the method of the Section c. 3 the stablllty condltlon
is ea511y shown to be glven again by (C 19) |

. C.4. Representation of. a third order process whose mean

square value is a cubic functior of time.

Suostltutlng'ln (C 4) k= 1,3 =0,n=}, one.obtains,



| e
'2 95"'2 K 92 ;t--y “‘?& | (‘0-28)

J=t

£l > 20+ b‘((i 5 3_-;) >+L~<§f> (c.29)

= e +(°‘+”?sz){ I+ (Z K f‘:jfa)é} O (c.30)

Since

' L)AL o 1 KELe)
St - L feren-2a) -y

— T (C.31)
J._l . . ' ’ )
- | 2 K2 e2(8~) o
1 = BTl 1
=t (§-2+m;‘)[‘l+ E "”’5‘_')2]_' (C.33)

which shows that the mean square value of the process (C.28)
is a cubic funétion of time._

From (C.S).and (C.28);,T |
gy - g o
2 " . = 2 }((16—)’)3{.). + KM*])?g-,"‘ kA

(C.34)
@..,)"* '.h - "z‘ KIe-Ei)E, i +@~:)”= feot |

(0.35)

v Agaln; u51ng (C 14) in (C 35), ellmlnatlng the summatlon term
‘between (C 34) and (C J5)’ and r@pla01ng K by G, one obtalns
the dlfference equatlon COrrespondlng to the proéess (C 28)
(1n tﬁe‘form~ : |

'(;.7' |

]
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....( -l) ’Ze=[6:é’/z [é- &]?é- "'?@ (C.36)

‘The stability condition for G is again given by (C.19)

as can be shown by using thé method of Secfion c.2.

C.5. Representation of a fourth order process whose mean

square Valué:is a quartic function of time.

Substituting in (C.4) k=1,j=1,m=1, one obtains,

¢ ¢l L o R
e =1 *'J% K %y * Fe - ()

| . iy Sl v
E<'Z£- S>= 20 “‘[((gk(é-J?6~J)z>+E<?éz> (c.38)

w0 | ~10) _
: m««fﬁ-‘w ‘>{l+ w'((“ ) f (0.39)

'Now,

4=

, . A . S 3 3 _'2."&_,( 4
&£ 2 (éJ-J"/ "{:e* bre=1) _ 2(%-1) -ﬁrm Ja )j B
(é-fl 3452— zw-u*-sotw-«f} |
¢ .
~2(t2441) =3 (-1}~ PR
=_./(/£-U 3:?— 2(ar.L §+ ) } l(c,.‘40),
) t-t K(e-:‘)j ~;) Gt v

Thus, L (



: ~t .y 2.6 '
(5l P B e MO

e
]

ﬂ

L=

ié.c___{['—--i J{t t°+l)2 (642}

The term (L/t2_5 1/t ) decreases.rapiély as t incréases; it is
less than 0.02 when t=50.‘Therefore, (C.42) can be taken to

be a good re?resentation ‘of.the stodhésfic'proceSS whose
‘mean square vsluéyis‘a quartic functipn of time; ifﬁlength'

~of series considered is greater than 50 terms.

The‘differéncé eqﬁation éorresponding to the précess (C,37)
is, this time, a little more difficﬁlt to thain _becéuse;
of the nonllnear neture of the “elghts v, (t) The equation
‘vls obtained as follows.

~ From (C.37), - .
| &-j) €-2 . |
7, gw( JJ*;éJ‘ g €2 i«z.l‘fé'?é_,-a-?,_ (045)5

= E-1-jlis | +-z | e
et %% K== i-.-,; = ey E ?é--: - (C.44)
‘and . ,,
| -2~J) LT N
'l.;-..;_ ‘ % ;{&___L ;t--a-a o+ ,?é,—,a o (Ccuas)
Substitute i o S : :
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in (C.44) and .

R C(C.aT)
Then (c.43);(c.44).ana-(0.45).be¢ome .

1 -J§3 K é‘-)” ?f""J + l’( £ ?5_2 -+ /-( gé—: - ?‘; (C48)

s = 2 N@:{g—)— Se-t Z ’( ? ‘/‘fké ?t"&*?ﬁ--l (c. 49)

. | - "y -
liasE, o -?tzk‘iz bestbin €50

-

These can be wrltten as
el

A= 2 Wvb?é.,wm 273& +HL4 :1?6.. uf-?( (eisn)
@’1)76_, E N(Jé") )/ ?{..) Z Kt~ J)?é-_, +’(w"2)?f-z +(i“’)?§. (C. 52)_

J-

ée—z)*z‘.z LS kil b j--zZ W‘*J& "'@"“2)?6-2 (c.5%)
From (Cc. 51) and (C. 52) | . |

| z(:’zt"/'t""”le-: = 2 63§ fey t (<~f}(é-z)?‘_2 o

et «m-.* i

 _and from (C 51) and (C 53)
;é')?é @-2)752 QZ H/‘é'-;})?,é_j +(M—-l)(zé'-2) ?,,_z
'!" I({’f-,) ;'5~l 'f.'é ;'f- . (0‘55) . ]



VA
A - . A 2¢6¢p
Eence, from (C.54) and (C.55), replacing K by G , one .obtains

finally,

| q -~ 2 (é—l )76-1 -+ )Q'é-a
3f [G:(t‘*‘) —2/’5"’/]?\4“ (ew)(“'z)is 2 (c. 56)
This equation may be “rltten in fhe form

[e-2Rr~2e=)8+2 06" -
| 3; - -t)= ~tJ]1B+ ¢& (C+57)
LT (c;-r)(:é 2) B* [G(£-1) 2Lt 1] ALsd

' The estimation procedure will be stable if the roots of the
equation - B T S -

Q= (G-1)(E=2)x R [G (&1 206 -0Tx vt (o
lie outside the unit'cirCle.
Now the representatlon (C 42) is valld for relatlvely large

t. Hence under these eondltlons
e ':.‘.,_.‘é"'l, = -2
and the stability c6ndition (C.58) is equivalent to the
~condition that the roots of G | :
O (G.-l)x -e-fG- z]x-fl - (C.59) T
lle out51de the unlt 01rcle

:Slnce the product of tke roots is 1/(G—l), the stablllty

condition is aaaln glven by (C.19).

“ ‘
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C.6. Representation of higher order processes.

The models of SectiOns‘C.Q—C.S have_beeﬁ_treated in some
~detail in ofder to illustrate the theory-and to provide |

a comparison with the stochastic models developed by Box and
Jenkins (1963,1967,1966). It is thought that the four models
discussed illustrate the theory adequately and that -they are
sufficient for the purpose of fhié thesis. ﬁighér ordér models
may,howeve;; be easily developed from.thg weighfing function
(C.4) by using a suitable combination of the exponents k,1, |

-

and m.
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Estimation of parameters of a first order system

in the presence of a disturbance.

D.l. Introduction.

"It is shown in the Appendix B that a first order sysiem

with gain K and the time constant T may be described by

a difference equation

where yt denoteq the output, Xy is the'inpuj and .

is'fhe effective gain,énd :
@ =exp(zaTsT) .. o (D3)

If, for a given sampling rate,kthé time oonstantrT is
» expressod_as a multiple of the sampliné inter#al¢hT,Say T=IAT,
then . : - , .
R g=exp(-1/1) . (D.4) -

The felatlon (D. l) corre3ponds tovthe repreéentatlon of
the relatlon between the output yt and the 1nput xt
in the form ® - gy - . |
Z[g(l*¢)¢lx,s_.oj (D.S‘)
Any phy51cally obseved quantlty is usually subgect to

: experlmental‘errors. If such errors can be assumed to be



S

e '~é.,c7‘
characterized by .a zero mean white noise process, then the
noisy output yt can be represented as .

ve=vir e (0.6)
or,texPlicitly, — o . RS
vy = 2 [9(:—-95) ¢J]xé iy +ef “(D.7)
Given a serles of values of the input Xy and of tne output Yy
various estimation procedures,buslng least Squares or
p max1mum likellhood method (see Appendix A), assume.a set
of parameter.values, use it to calculate "preddcted"_values
of output y¥, and obtain estlmates of the peremeters‘by
minimizing the sum of squares of dev1atlons of the predicted
outputs y% from the corresponding actual outputs yt |
Procedures of this kind involve a tac1ﬂ:a sumption that
a relation of the form (D.6) holds throughout the minimizetion
process.’ This assumptlon is probebly gustlfled mhen the |
| ‘length N of the series used for tbe estlmatlon is very large;
Powever, 1n small Semples, the effect of COrrelated errors'
1 generated by the dlfferences between the true and the
assuned values of parameters may become 81gn1flcant.;‘
vThe dlfferences between the actual and tne predlcted teluesf
4’fof the output have been called by the writer the"quas:.— |
1 re31duals" 1n order to descrlbe thelr correlated character._e

It is shovn in thls Appendix that correct estlmates can be -



»"obtained Wheﬁ'ihe sum of'Squares of the quasi—fesidualsv

is minimized in such a way that their4first three covariances.
are.minimized,and approxiﬁate the cevariances of white noise.
Section D.2 discusses'the estimation pfocedure when (D.6)
holds, that is, when the eutputlreegings are subject to

white noise. In Sectien D.% the outputireadings are assumed

~ to include the effect of a nonstationary diétﬁrbance diseﬁsseq
_ in the Appendlx C. ‘ | - .

Since the relation (D 5) is used to derive only the flrst
. three covariances, it is approylmated bJ e flrst three terms.
Employlng the formulatlon'used earlier by Box and Jenkins
(1963),1et o o ) | o
| g=1-5 (D.8)
tnen the noise-free output Yy is represented by

_yt' = 98 [ X +(l ﬁ)xe 2 (l B)x“] (p.9) )

‘D.2. Output reeélnrs sublect to a vhlte noise dlcturbance..
Under these condltlons, from (D 6) and (D.S) we have

. | : o 3{3[',&_, + (1-B) g o +(1- 8)* xé_ﬂ*gé (Dﬁ.lo')_

Suppose that, at the start , the values of the gain and of

the exponentlal‘factor (D38)eere assumed'to be g, and.ﬁoj

'vwhen the c'orresf)onding t:hie ‘eut unknown values are g and g .

- Then the dev1atlons g* and B* of the parameters g and ﬁ frOm.e

thelr true values are glven by



= 9-9  (po11)
) C pese o
Using the relations (D.11) and (D.12) in (D.10),
Ye= (9 '_"gw)(B"-’ ﬁ”) [&«;—-n"' (’”ﬁ+g Vet ('*@+B*szé-3]f s‘; (D .13)
This can be written .
ye = gatx.a-.m @)Xe w0 ]
+qB B xen ¥ [293@ f’-‘*’* 9“3“]"* 3
g 88 M A B D
| {2(5('"5)*(3 f"&-a ]"'st (D. 14)
 Let the total effect of the white noise disturbance 5: ‘
and the errors cauced by assuming wrong values of the

parameters, be represented oy a "qua51—re51duel" error €Ee

lgiven'by

= 9B M xee ;+ [%M O- Ao Y Jxé-s
+(9 13 ~g "p-g8" )x -{xé-, + (1= @)xé g+ @xﬁ-a. + (I ﬂ)zxﬁ_gf
| *‘fzg{l—ﬁ)—eﬁ 2_]x& .3 } t € é»" (.15)
Then (D 14) can be mrltten P R
.f!é,"“' je'+ €  : e - (D.26)

ke

where y£ isegiveh by (D.9)
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To simplify calculations letv . . S o
CERYAr . -

A ‘3 1r7 C o (@am)
?/3[3*4- (:—/3+(3*)(9 /~*"—-; - g8") (p.18)
C = gﬁﬁ #29#(’—ﬁ)ﬁ* |
-.\(1—13%{3’”‘)" ( 3’% “-g*@-g ") | (D.19)
Then (D.15) may be written as o

E‘é = a)fe..' + _Bé."l + CR‘&_"'S' + E‘é ‘ (D.QO)

'éﬁ 4/5)... ,N

In the following, N is assumed to be sufficiéntly large for
the dlfference between N, (N-l) (N-2) (N-3) and (N 4) to

be negllglble.

Let the sample mean of the 1nput and of the qu351—residuals

be reSpectlvely given by Ny : .

My (D.21)

. z,_{

end

]
2}~
Mz

o

= (A+B+C)l’7u S ' (D, 22)
Also 1et the dev1at10ns of the input values from thelr mean
'value and tke deV1ations of the qu351-re51duals from their

‘mean value be ,respectively,
)?'é = )Q-*st ST - R ’ (D-QB)

% = Ee-mg S  (D.24)



Then .from (D.20), (B.21),(D.22),(D.23) and (D.24), =
. “\". o | ~ ~ o '
e = AXy, + Bxg.qg+r CXelq 8, - (D.25).

E =S, ., M

et sampie.covarianees of the input"quasi—residuals and

the dlsturbance be respectlvely deflned by

, Nel=K _ .
S =g Z Kefew (D.26)
N-K o, ' B B
Ye (=R 2, Eefere - - (D.27)
"o - ' D.28
Yo (R)="' S £ Ecen ’ ( )
x4
Let also the sum of Qquares of the qua51—re51duals be given by
S= Z &* . o (D.zg)'

Then,

Xs (O) (/-\B+ BC)[)’ )+ ¥, (:)] + ,qc‘[xxfg).,. Xxl2)]

+(A2+ 5=+c=)\( (0) + 3’5., (o) K | (D.30)

N Xsm = (AB+ Bc) [*(,,(o)d,,('z)] +AC‘D u)+xx (3)]
+ A2+gl+ Cz>¥xﬁ) + b’so (') | (D.3l) |
| Ye (z) = (AB+ Bc)[?lxm)i-b’x(s)] + AC[a’.‘(on b’x(q)]

+(A2+32+C’)7fx(2)*7£'(2) o ~ (D.32)



' Using (D.17) ~ (D.19) éné ‘o’b‘cayi:ns o A m _; |
’A’--:-B?'-!- C2e .. ‘ | | . ' }
- @[ 6gm24T 4 o 7 [1s '/Gsﬂj*ﬁ"sf”[”” -7
+68” [Qy ~-+3°B ] +8" 3”[ 49]1‘/3 3“[2+2(3] .

+p 7’[4,»m a 9“["‘“5] . KON

AB{Bc~  o S o
’-., (3“[49 g?"ﬁj-fﬁx ’*[5’:,/3 3314» ﬁ"’y‘”’["? 1283
+ﬁ”‘[%"-39‘/ﬂ *ﬁ”?”['zsﬂ 293 o 7"[“‘3”3

| +(3‘3’[236] + ﬂ“’g"[ 287 o (D.54)-- ’

Ac?,:'

- A’ [33‘/3 23’-]-@-(3 33’[75(3-49]4 A" : u[l—-‘f@]
m"fr wrsz + p ww 97 ﬂ“ "[zﬂ 31
s % e e

T 7 T



end S Z3

A + B+ Co? = 94;330‘ % B C’) (D.38)
Ao Bo + CoBo = 9 > {"’B*CB) | (2.39)
AOA CO = 3'&63 {ch) (Do40)

Aoz'!' Boz‘f‘co.l =
:.; 31?("6‘&-1) + 3.3)( (4—- lCﬂ) +* ?»‘sz (24ﬁ—i.4)
+5"('—""4) -e-y x(-")-e-g,ax"( -+ 2)

B

’ 4= 'le("E) *31)“(—%) : . : T | (D._4l)

ﬁoBo"‘Bu o = ' 
-_-. Yo (4*8(3)+ Y x (8A=8)+ g x 2l4~12f3)
| w,i(-,;-a) gt (m.'-.._), g, x *(-——-—3) |
+3,x( )-f-y,x"(" ) o (D.42) ;
- . |
. ‘-.93(3(3 2)4-3. X('m 4)43,33‘(2 46) +'a“"(-“4)

- -Ud.x(l0~-73.)-Hj,a 2}(2—‘,33)-4»3, .é)fy.,xz(—? ) (D.{g)
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| ¥y Fe(K) = YpelK) -
and the autocorrelation function
(R) = —= - D.4

.fz | AT | o | ( 5)

Then;'
Ys"'(o) = 2(AeBo+BeCa) pxl) + 2A,C, Px(2) |
+(Aot+mo>4 Cq’?) o | | (D-46)~-~--

-

:(l) = (ﬁo&o-fﬁso Co){_'+€x(a)] +A0Co[8"(')"' [”‘{3’]

L+ (Ho -+Bo‘+Co‘)fx(U (D;47)f'
-72(27 =" (AoBo +B°Co)[l+[’a(3)3 + AoCo L’H- f’u“"J

| & (A°1.+B.2.+c°l) {xtz) | ] . (D048)

Alsd_ief}, ; 

$7 %= s [ % Yee (0] (D49

“'_.or;eXpliciily,»i' '7‘

g*% = 3”(0) Y, lo)+[(Ao‘+Bo"+ C‘o‘)

+2(A0130"‘30C°) +2Ava] mx*  (D.50)



= 2(A0 B+ BoCa)¥u(0) 4 240 Ba e @)
5 (Ao 404 o) Y (0)
| +"[ (Ao®+ Bo®+Co®)+ 2 (AoBotBRoCo) +
+ancoj M ™ - - (D.51).

‘S*? is the mean square value of the qua51—re51duals

normalized so that it is a function of the time consténf

only. The covariances (D 46) - (D.48) are likewise normalized.

It is seen from the above relations tnat the Values x_y=0 |

' make the absolute mlnlmum of S*2 equal toﬂthat of either

covariance. However, for X#O‘and/or v#0 the minimum of S*?

is nofvnedessafily the saﬁebés the minimum of thé covariances.,
Now, according to the well eéfablished theéry (Anderson,_’

',"19'42; Koopmans,1042; Di_xon,1§44) the »distribution of the

sé}ial,correlqtion coefficient of lég 1l of & White~ndiser

sequence is approx1mately normal ulth mean =1, N ahd‘

\varlance‘fﬁyﬂ) ﬁjis when £he sample 51ze N is large.

Thus, at-best,,the,estlmated value of‘

:Cl)'—' Xi‘dwlA e
\95° ; -,Yiofo)_l'.’

. (Df5?)'f

whlch accordlng to the deflnltlon of ‘white noise, 1s
- theoretlcally aero, w111 11e in tne range
A (- ,f_L'\

| ?1!-'_.



Since. the expressions in (AO,BO,CO) are the same'in all the

.three covariances eq. (D.46), (D.47) and (D.4S), and fhe

input autocorrelationsﬁ#dare of the same order of magnitude,
the asymptotic value of cen be achieved enly if the‘eipress-'
ions oh the right nend side-of (D.46); (D;47).and (D.48)
are of the same oxder of magnltude as covarlances ?Ee(k)
of the disturbing noise. It folloms, therefore, that tne
absolute minimum of the sum of squares of the quac1—res1duals

may Dbe approached by monltorlng and- mlnlmlzlng at the same

-time the covariances of the quasi-residuals.

It will be shown below that this aim may be achieved

vlf attentlon is pald to the rate at whkich “the. varlance of the ’

quas1—res1duals 1s belng decreased..

The expression (D. A6) requlres the knowledge of the flrst;
four autocorreletlons of the 1nput.. If the 1nput process-
is not stationary then any assumed set of four autocorrelat-

~

ions would only apply to onevéarticular sample,thefsets

of values vafying from Sample to sample. For the purpose of

the present eiposition 1t w1ll not greatly matter therefore,’

| if 1ns¢eed the {hﬁtinva autocorrelatlons are assumed to be

,equﬁl Table D. 1. shows the results of -the tests discussed

in the next chapter. It is seen.ith&t the Varlablllty of -



- TABLE bl /
CORRELATION FUNCTION pxt) OF ST'EAM FLOW
T’EST' 'N‘ PART OF SERIES f’n(’) Pe(2) | P(3) | Px(3)
| 340 | IST QUARTER|0'92l | 0810 | 0710 |0:GIG
340 |2NDQUARTER|0-930 | 0829 | 0725 (0628
340 |3RD QUARTER|0919 | 0805|0689 |o-582
340 |[4TH QUARTER |0936 0864 | 0783 |o0-655
2 324_ | IST QUARTER [ 0973 | 0929 | 0874 | 0317
324 |2ND QUARTER| 0964 | 0919 | 0870|0818 |
324 3RDQUAR_TER 0947|0885 | 0824 0759 |
324 |ATH QUARTER | 0973 | 0944 | 0-909 | 0870
3 361 |IST QUARTER| 0925 | 0878 | 0836 | 0798
36l |2ND QUARTER ‘o-%s’ 0947 | 0-942 | 0-905
361 [BRD QUARTER|0944 |0:894 | 0810 | o802
[361 |41 QuarieR|osse oo | oset| osas]
4 | 349 |1ST QuARTER|093I 08¢t |079¢ 0137|
| 349 2 ND QUARTER 0-945 | 0880 dsoé o-7‘52" : =
349 |3RD QUARTER | 0-971 | 0940 | 0905 | 0876
349 [4TH QUARTER | 0-953 o-'9os 0-847 (5-796"




| -/
the autocorrelation is such that the approx1matlon 27F
' ’ €xﬂ) {’v(el x| ' ’

resulting in a great 51mp11f1cut10n of ‘the expressions
appears to be reasonable.

With this approximation,
‘*O) 'z.,. 2. .24+ A ' ) (D )
¥ ©) = 2 [ As*+Bo%+ Co? + AsCot AoBa+Boa] (D.53
Now, since it is the parameter @=1~pB which is to be estimated,
1t is convenient to introduce at this stage the following

" change.

From (D;12) and (D.S);;

F=b-f=(=9)-(1=0)

I R el
$ = ¢ (D.552)

7°~' B2 I X9}

! Ly = - G (esse)

U51ng (D. Sﬁc), (D.,2) and (D 42) (D 44):
B yz;a a_‘y + a9_1/3x - a__3 17 X ‘.1- 6-47

+a.5-yx+ a;j x«-g-,yx +"1€ jx A‘ = (D_-5,6)f.'
:or, cxpllcltly | |
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. ,4_y£§(0)_‘ [ 22 ﬂ3}+ 7 [ 20 +22))3(3?]
3xa[(76’[_1_<;;?36 [(8-%2?2)(3.
+ 7 [‘(4«3(:;:5)3 > xi[(’.".il ]
%% [~_f__§. | +.3xz 7!:"%' ~——(D.57)

Table D.2_shows the values cf,the'coefficientsfai calculated

for four values of system‘time_ccnstant in-the exﬁected

range of variation. | |
The‘hillkciiﬁbing procedure,developedvc& the writer

and d1scussed in Chapter 5, 1nvolves mlnlmlalng the sum of

squares functlon along n orthoconal alrectlons, corxespondlng

to the n parametcrs. The n alrectlons are fixed throughout

'the procedure At the start of each otage the'lnltlal para-—

meter change was obtzined as the product of a fixed fractlon

W ( the value W=0.02 was actually employed by the wrlter)

rand the currently avellable estlmate of the parameter.
After a "success" (that 1s, the parameter change such that
the new value of the parameter satisfies all the constralnts'

and decreases the sum of squares and the COVarlances of the ~

Quasifresiduals)'the newkchange to be applied;tc the

‘ parameter is equal to'the'preceding‘change multiplied oy two.



TABLE D.2.

VARIATION OF COEFFICIENTS ac IN (D.5%)

. WITH SYSTEM TIME CONSTANT L=-1/LOG(I-8)

i-p (&)

087 (16'5)

c-gé (27-6)

095 (44-9)

0-20(2l9)
a, 00095 0:0030 o-'do:z_ ' 0.0002
Qa, o-loé 00494 O'OZI c-00§8
a; 0046 - 0:020 '5-0:0 | o002
a4 | 0892, o116 0590 |. 0382
as -176 -~ 143 -118 ~076
g _4 © 0067 0 037 O_'023 é-_ooé .
as -1g-40 -17-80 = ~17-40  ~16-80
| ag  18'4~0 . 17-80 c.-z.{o : 16.80
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 Thus, if at the start of‘a stage, the cufrently'available

estimates of the gain and the'eXPonéntial factor are

denoted by g and @ ,respectively, then the initial chenges

to be applied to these estimates, expressed as fractionsvof
the parameters, are
w(g-g*)/g = w(l-x) L (D.582)
w(g-g*)/8 = w(l-y) . (D.58p)

. Also, after n'succe$ses, the total change épplieduto the5

prarameter a is

Eiég;fl (yi + 2+ ;... ¢J2(n-l)) = ziéégil( 2"-1) (D.59)

Let the value of the variance3¥”aftér.n successful steps

‘be denoted by.X» {vThen, for the decréasing vériance,

\

we must have,

¥n & Yoo i (D60)
Let. |
Xn-t = Xn-;" O n sl v (D.6la)
x:pz, = Un~z"xbﬁ - R - ‘(D;61b)
¥ nay = Yp3=VY -
S RO et (D.61c)

Ye want the increases in. the decrease of variance to keep -

on increasing, so that



Tet T : : :
3(?_, = Y{l,,,:‘ —'f -'3'(,'-.,-1 (D.A62a-)
'Y(:,-z | = Xn-(: - 2f:)-s - | {D;e.eb)
U e e o

We ment to 1nvest1gate what happens when the rate,at whlch
the variance decreases,pltself decreases, that is, when 3
given by (D.62¢) beeomeslnegative.
Now, from (D.60)T(D.62),we have
() (2) @) o
Yu-r = Xn-a - 7 ‘n-zv . : e
w | (11 m '
() (4
0) m (:) ‘ o .
= V,,_, - 2)’.,_ + Z/ﬁ~3 R R
( A= = ¥n ) - 2 (xh- ] a,l’-l) + (Y n-3 YQ—&),\ :

':)'-_’.-..3)’,,24-33’,,,-,’,k"'»":’-  ‘A(DA63)7

Now, the rocedure ad usts one arameter at a time. Therefore
) 3

the variance relatlon may be wrltten elther as a functlon'e

of the Vaxlable x, 7 .
z{" (o)- (“'7 LN A y") o+ x(l’@,"-a-a.c% +a.gy)

+x"(a37 +a.5-zj 2 o.7y) o (D 64)



or as a.function éf the variable y
Y% (0)= .‘j(av"z‘f agx) +y o, rasx*+agx)
+$3(azx+a3x2).

-

Consider first the fractional parameter x.
Using (D.64), (D.63), (D.62), (D.61) and'(D.59),

,ﬁ.s..) = 2" ‘«’“"“){(aay *acy +a8c’)
. "‘(4-37 + QS"I *’477)[2:&* lel-x)
- o (=x)x27%2 n 31}
‘This expression.beqomes negative Wheﬁ g -
W2 2w (l‘—-x‘)b< 'w(l-);)x.27n2" ?
This cén be Wriitenna§ . ‘
x+ b (l-¥) < [}H- %)xz”;r'(i-,—x)-'

x=- (Zn—l)w(l-g) < 793 x?...f" arll-2)

283

(D.65)

(D.66)
(DL67).

* (D.68)

(D.69)

From (D.68) and (D.59) it follows that the rate at which

the va:c'lance is decreaulng begins to decrease when

the remalnlng dev:Latlon of the current estimate of the

parame_ter from 1ts true value,

3 .-(2"'—1)41-(':-;‘)'; :

-~ (p.70)
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is smaller than 5 "
il [~
.T&‘"z H[/ X).
Since on the (n}l)th iteration the parameter change would be
2 w(l—x), the "overshoot" will be prevented if the itermtlon
(3)

vprocedure is. stoooed when b’n becomes negative.

(3l
The condltlons for negative x,,., when- the parameter y. is

being ad justed are obtalned in a similar fashlon. Tnus, from

(D.65), (D.63), (D.62), (:D'.61) and (D.59>)A,'_-

n(i) N .'Zn—zu"(/—y){(qqx’w &ax)

+ 2(44 tagx racx )(9 +""(”'y)-~ c.r[l-y)v27~:2 }
+ 3(4,_,: + asX )[7+"'(l-y)+ 2" (-27+/5-$)¢r[l-3)]

[3*-“‘((-.‘/)+2 (-27-!6-5)&; (I\-y)]}‘

, - C_(D.TA)
- This can be"writt'en R A '
(3 R |

. Yn_, 2 (1"'.9){(0.7)(21-@.;')‘()
-1-2 (aq + a.sé‘x’wac x)[‘['—’(zq")cr(l-y}- 22 a-(l-y)]
*‘3(0.;,>4fa3x )[7 (2 -')w(l-s)+ S"S',.z (&r{l~y)]

(g (2 Deriog) - fe 2 2 w(l-y)]} (0.72)

Tne product of the flrst tmo brackets 1n the last member is

greater then the flI‘S't bracket in the second member Hence X,,-.~

‘first becomes negative when the overshoot hasvalready occurred

Y .
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-The minimum velue is attained when, on the next step, the
veriance increases, that is, when

xh"l :_B”"! - Xn ) £ 0 » . (D..75)
Therefore, it is necessary to consider now the expressions

o : )

for the rate of change of variancevxaq'
Using equationsApreviously developed -the expressions for 3'nq
corresponding to alterations in parameters X and y are

- found to be,respectively,_

Ynf:,: 2""9;([*%) ’ (@.,,y +a¢ Y +0.§y)

-

+-2(a.3«1 +tﬂ.s"} +¢-7!f) [’"‘"‘("")“ "2 "'u‘x)]}

(D.74)
and .
o | . | |
',,{.’,, < 2n o(1-y) {(q.,x‘-f-a.gX)-4-2(&4-&(35‘)(‘4@,‘):)- v
[9 +erlley) = er(l-y) =34 27T . (D.75)
“the last expre551on ‘being obtalned on the assumptlon that
approx1mately, -
3 eri-y)tx 27 %’ wri-g) a2 |
< ‘(l _‘7)"' 2”’ % (D.76)

Thé.expressions‘(D,75) and (D.76)ibecqme negative When,
ArespectiVely,'

e llex) = F 2"« co @

' y = ar'.'(l‘-y) - %xl }&:_rf(l-x.) <’»0 (D_.'.7}8)' .
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This means that the minimum variance will be obtained

" when the parameters x and y are overestimated ;respectively,

by .

X =

1
zl
4 n ) " »

9?’- %2 s (l-y) (p.80) -
The ambunt qf overshoot will depend'on‘the values of
the.paramétersvat the start of a stage. The absolute

minimtm will be attained when n=1, or when

-

AL
‘ X = 2+w | (D.81)
y = é_%w _ . o ‘ _ (p.82)

~

D.%3. Output readings subject to & nonstastionary correclated

disturbance.

This section indiééieé how the apprdééh of Seétion D.2
fcan bé employed when the‘disturbancelcofrupting the oufput,
_réédings’is'charaéfefized 5y é nonstationary behaviour and
is reﬁresentedAby modelévof,AppéhdiX C{'iﬁ particular, |
Vébsécond'order diéturbanée chafaCterizgd by o | k’
L A T S
Te = 1o +A% K2k 3 e - e



. :  ‘ - o | ,_.:» ‘. o  . .

o . v | ! :
'~ B L = (G- T v 2 (D.84)
will be considered. o :’ A‘ | o S

- The proportion of the oufpui due to the disturbance is,of
course, not known and mustzbe estimated. To this end, an
».approach, in a senée a dual of that used b&'Kopp and Orfofd
(1963),_will e émployéd. Kopp and Orford expressed the struct
ﬁral system parametefs asladditional.stéte variébles-and :
included them in the éhlérged state vector,as diéguséed iﬁ'
Chapter 4. The préseﬁt approach, however, is to represent

the initial étate as additional structural parémeters and
estimate‘theﬁ>together with ihe structural pérameters of the
system and the disturbance., | | | . |
For the first order system,of interest in this thesis ,
 the initial state i$ repreééntéd by one Variable. To»fépresent
it as akstructuial parameter;; assume that the first éutput
_ifeading,ytoi is th?»sum of two cdntributions, (l—S)&fO

due to the system‘dynamics,zﬂﬁlSyfo due to the disturbance.

Thus, - : By | | . s
R -é%— _ ,Ejggg; i j;:_.v rh | T (0.55) ‘
| 'LJ} = 1%"}4' LA . o @.ss), |



: | . ST ¢
Using (D.9), (D.83) and (D.&6), the output readings'j ’ |

are modelled by

‘# = gﬁ[xé-, + (l-—ﬁ)m‘. ~2, ‘f{l B)*Xxz- 3]
+¢3B '_J- fxa 'f'(l'-@)xz *‘( B) xc—]

-3 o

- TNERS P (D)
The felaflon (D.8/) was used in fhe actual estimapion |
procedure to obtain ,recursiyély, the values of quasi-
residuals corresponding to a givén séﬁ of assumed values

of the parameters g, 1—&.,5, and K. For the purpose of the
preéeht discﬁssion, however, the relation is not convenient
bécause | | |

a) the value of the parémeters;ﬁm@ars not only in the

numerator but also in the denominator, and this would
make tke derivation of the relation for the quasi-~

re51duals rather alfflcult,
b)_the factor ‘ ‘vS'
premultipliesvé conStént terﬁ,‘iﬂdependent Qf the tiﬁe :
‘ paraméter; thié meqnsthot'thiQ factor'would ,bon averaging
be 1ncluded in tne meen, and voulo not appear expllcltly
in the expre551ons for covarlanges of quaui—re51dua1,.‘_.

 The relation (L.E7) w111; therefore, be transformed as follows



‘When an assumed value e S -
59"' S. 5" N : (D.eg)

ofcgis used, the factor

| - (e
becomes | -S,_S*' o | . . o
o | - (8-3") A (D.90)

,

Expanding this as a Taylor series we have

F S* S . 5,’:’" , -_.7. .
l—(J-«f") KN SC <47 ("ITJ "

1. : - _
e oo s fé") 5 C_T')Hf' . (D.91)
This‘infinitg series will COnvergg if
s* .
- < (D.92)
or,if . |
§¥«1-& . (D.93)
The‘éum,including the k—th'dérivétiVe,isv
. S* el
5n:== éél— x* 1= ( (=4 ) '
| =3 1 ,,.,
. : ."_ K‘f'l :
: 5- [ — (_M) s
— < X ) _\ .
= —— & (B.94).

Hence the;error'Rk due to stopping the series atvﬁhe"

~k¥th-order'term is



FOR S LN 5 “1
Re = =59 (- 58> l“(m)

Defining the fractional perameter change Z by

w SR

oz =

the stability condition (D.93) is now
R
2 <7 1

and

3-"'1'1"7.

T

which may be written,

R . __Z.___ M-H‘

e g L)

(D.97) |
(D.98)

(D.99)

The relation (D.%9) was uséd»to compute a grid of values of. B

k

R, for varYing z and § . The results have not'beén included

here owing to some difficulty in showing their;threef' 

_ diménsional character with both sufficient  clarity and detail.

The investigation showed thét'at low values of & (such as those

used in the simulation studies) the second and Ligher order .
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terms could be regarded asvhaving a negligible effect on the
‘accuracy of the approximation.’On the other hand, WithAthe
values efs.near unity (which was the case when the theory
was applied to estimation of boiler dynamics) the'stability
cendition (D.97) 'becomes a 1lmiting factor and the starting
values of§ must be very near the true values if 1n°tab111ty
is to be avoided. Thus, the dev1at10ns z are small and again,
the higher order terms may be neglected For thes Se reasons
the llnear approxlmatlon |

x X : o
.introduciné errors of theiorder of 1-2 per cent, has been
'ad0pted in the analysis given below;v

In order to include the parameter in the expresslons for
covariances of the quasl—residuals 1t is necessary to make the
second member of eq.(D. 87) t*me—dependent This may be achleved
1f one regards the 1nput values xJG as being 6enerated by a |
stochastlc process of a form slmllar to that &eneratlnc the"

: dlsturbanceﬁt(Thls assumotlon is tac1tly made in the method
of 1dent1f1cat10n of tbe structure of the d1sturbancemas
' discussed in Chapter 5) | |

The anqusls of results of tests descrlbed in Chapter 6



/282
shows that various quaﬁtities assoéiated’With.the boiler
operation, 11 e steam flowrate, éteam temperature or the
drum pressure may be represented by a second order process

of the form (D.83). Let, then, thke input  process X, be

represented by the model
. e

T iy I '
Xe = X+ 2 KE '2“- +d,: (D.101)

L=l

Suppose that the expected value of the random'proéess':iﬁ

- (D.83) and that of the rendom process in (D.101) and |
dehoted,mQandcﬁ;respectively, are both non-zero (This
‘assﬁmption doesﬁnot seem t0 be unreasonable in the light

of results of Chapter 6 and methbdvof simulation described
"in Chéotef 5) Thus, when F in (D.83%) is repiaced by G,

the expected values of the processes (D 8%) and (D 101) are;,

 respectively glven by

¢<rzé> rz,+ Z G £<¢ i« 4> +E¢ 2ed
-.-.'2,1- ’;”_’t___i [{(&-—l) —-;z'.'_(;e(—u).i-:(;m, | "')(';).192)

R L_-c” e

E<X&>‘_= Xt Z‘ l'(‘ ‘%_—' E<_-;*-‘> +E<?¢t>

..-:.2,-'* ~,-:-:?-—Kl [é(%ﬂ)“é(i—“ut][* mg : (D.lOﬁ) |



Thus, ffom (D.102), ‘v ,‘ _ /.'l,-z 'v
}7{’_ = 4, + ”r c(;e-—o—( m,g | . o (p.104)

end, neglectlng the effect of the current random shock

on the current value of Xt" » E .
Xe = Xt ““3 Ko=) . (B+105)

From the last relation it follows‘that:

Xe+_| = X, ~ 1':' m; _’("é B (D.1062)
'and:” ' | ' _ '
e = X +foz K€1) (D.106D)
Since also B
and ‘ " : I | :
X3 -.?_ X 1-5}_ My Kix2 . | (D.107b)

it follows that XB,‘XQIahd xi'may be expressed in terms

of the time dependent quantities as

Xa = ng_.,,,. - -é:Mg ,K'(é-a) | | (D.lOéa‘)'
X = X = grpi(e=2) (o:dom)
LIRS O

Settlng b= t'+2 and uubsequently calllnp t1= t in (D 87 ),

one obtalns from (D 87) (D. 104) and (D 108), v7.
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geea = 9801475 Tlren 200 «Ea1%]
BRI ISR CONER

or, '
V ’ ‘ ,-I ’ . ‘ v )
Yesz = 9P 75 [Xeu H=Bae v (1-8)
_5/3 =3 __K, [:é 2)[ 1+ (—/3)+ (/—/3)‘]
a4 ’.‘_‘é G'-(:é-l)-a-_m; + ?é T : | N (D.110)

Suppose that the parameters g, f} , g',- and G are estimated

to be 50’39’&" and G, S0 that the relation (D.110) is

5€'+9. *(9 9”)(/3 ’9”) {xf:w +(I1-6 +f3")k¢- :
S ﬂ)‘m/-—s)ﬁ* +rs”‘]¥e~f§ e

LB ) e

{w(/ 5*13")1'(1 (JJ‘+2_//-/~"M*'+(3“}

M;@: G:Y'){-é r)+ M; .,.'? - e - (’D.lll)l.



.UsJ.ng the result (D. 100), - / Z’]’

‘!e-s-z" [34 "‘9)%' g /3"3(3 3[:‘" ﬁ&]
{xé,,*[a 6187 Txe + [0 2 (A% " ]xe ]

- [96+3”ﬁ g"8-987 ;5 iy Ry
| {H- (l-/?»)+ﬁ +(1 @) 201-p)R% {3“}
“' = “(’f*‘)— —';_i" e =Yg + .?f | (D.112)
or, S |
| ‘:HH.- 5(3"3 [Yeﬂ +(—(5)xé+(( (5) x,;_,‘]

g b Mk, (e .2)[ l-f(l«?'é&)‘*(l- m’-]

+ 3 G-(-t"f)-!-m;-

+ Et+2 S L (D. 113)
‘ where the qua51—reQ1aual 1nclud1ng the comblned effect of
_the dlsturbance and of thekdev1at10ns,of_parameters from

: tkelr true vqlurstls' *

| §*
56{-2. = Xeﬂ "‘3~ = (9{3;-,9)&:{‘)& +  |
o | _ n | ‘:_  - * Sx :
"H(é : {"_3" B - (9ﬁ+ﬁ)(/~f3+ﬂ )C_'—j:.§
+ Xe- .{—Tc (38+A) (16 4f3*) (T)zg e
@ mk m—-z)-- { GB+AY +2u-/3)/3*+(3*2]+

+ Al I'l_'( l~(3)+(l-ﬁ)‘]} 5G4 3 (D.114)



- where A,B and C are resrectlvely deflned by (D/?;B), 2""

 (.39) and (D 40).
Le‘t

P= “"Pr (9ﬂ+ﬁ)m‘ D -~ (D.115)
Q=" '"(9“"’”’(’"""“6-02 U ey
R = 1 C GBIt fs*)z ,,h,; e

5_;_ ﬁ_j_e__’f_..& {(3’(3 m}[ /3'%« .o.{:-mﬁ {-(3"] -

+A[l+(l-13)+(z (5)’-]3, | N (D.118)‘v
™= - -_fi—§*‘ i" ks _": - (D.119)

Then the relation (D.114) is
»Sﬁ;z = YP>}‘{_-+1 + Q"é + Qxé-l + S‘({'"z,v

| Le't the average value of . theﬂggas:.-re>51duals be dehoted by

' : . - - ) -

Then, e L ar’-

+ 8 s e (Dfl?2)._



' Assume that,approximately, | | B Ve

N2 N-¢ ; v-q :
, — ——
N—4 E Xett = o4 Xe T s 2 Ke—y
=2 t=a €= :
: . = X
and let
"~
)(': = Xe — X
~ —
. € = & -¢

- Then,
Eevg = PXey + @ Xe + RXgy

b S(E-2- N33 ) L (e-1- 42 )4

261-3 = Pyb&if’ OF VIV ’Q’?t

£ S(tm R =) 4T (e M) 3,

o~ |
Bers = Pxé*z + Q Xgr2 + R %y,

+5(¢- —3)-+'r(é+|m.ﬂqg

'Let the covaflances of qua s:L—resuiuals qnd 1nput be

7 _ N-2-8
‘ N
. x (5) Iy Eé-o-z s-évtzt_;-
o i,_ ‘ jvﬁ4 E=2 «
| 2 -

247

'(b.lzé)

0154)

"(D.izsj

(D;126)

(p.127)

.(D.izé)'
(3;129)'

(D.lBO)
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The expressions for the covariances of the quasi-residugls-
will invdlve averages vaprbducts.of the inpu,t';ct and the
tinme paraﬁeter t, as well as the aﬁeragés of products
of-terms containing the time parameter only. in‘order to
obtaln manageable expre851ons it Wlll be assumed that
all the Verages of the flrst kind are approx1mqted by
' S N"'_ . » : . ,
,7&:3' :E:, Xe (€~ &%ﬂ
-9

nnIH

' -1
ﬁ%—4 ) (ﬁ(-’%% )(ig"f‘zj )

-

.7’.5‘!\/12-

2
K v

and the averages of the second klnd by

Z (é N-r‘)(é N ~! ) - N2+Z”-f/5-

N~4 ‘2
H =N (D.132)
Then,  : ' ‘

Y (0) (P2+ Q +f2a) Z’x(") +Q(PQ+QR)Yx(I)
-{-PRXXCQ)-F SZN: Taﬂ/l"é},g(o)
K. 9-(P5+@S+ ns) m :

+ 2(P'T'+ @1+QT)N4 +2$7‘/V1 : @‘133)

A_/__:_Q_LVJL’F = M (D.131)
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7{5(0) (Pﬂ-{-szmez)-n(o)-fz(m-:-@ra’)xxa)
+PR b'xcz)-.« 2(P+Q—€-.€)(S‘+T)N.z '-
+Q+T)2/v, -+ b’; (0 S (D_:154?_
Sllrllarly,. | | | | -
RACK (PQ+@R)?{X(O)+(P2+Q?+E‘+Fo€)a’,a)
+(PQ+CQ€) Ve@)+ PR xxlz)

+ 2 (P+ Q+R) (5"4-'7'3/\/2. -J-CSH‘)’”A/,-:- Y?(r} (. 135)

and

e @) < PRY, @) +(f’ca+ Q@)Y('H (Mmmt) e (z)
+("Q+<Pf€)b&(32~+ PR Y (4) |
| + 2(r=+cg+e) (.S‘+T) N:L'*‘ (g.‘,-r)zM.
‘ -+ Lf “-) S (D.1%6)

To evaluate these expre551ons, one neods to compuie S

(P2+Q2+R2), (P +Q’ +R2+PR), (PQ+QR), PR, (P+Q+R)(S+T) |
and ($+T)2. After some 1nvolved calculqtlons one. axrlves

at the ;ollov1ng expre551ons (vhere‘hlgker orier povers of B

~have been neglected)
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Then the following felationships can be easily obtained. -
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In the follow1ng development it Wlll be requlred to normalize
the covariance expres=1ons (D. 134) (D 136) by dividing them L
-"by ?{z [0) Slnce, however, the terms :mvolv:mg (S+T) 1n tnese 7

e:npress:Lons contqin, expllcltly | tne number of terms N
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and expres sions independent of N are requlred, it will be

'necessary to calculﬁteay@hn terms of N. This can be achleved

by using'the expressions (D.105) and (D.123) for xt and X

resPebtively.'

From (D. 121),,
_ M- '
- L _L -
X = Noa 22[’(' + z ”‘?K‘é 7')]

o o -2
—.:x,".+-_,-‘zm?vk,__i.. S (€-3)

Nt 22
= X+ 3 M K, = N—4~ '”—’-a:_-l 3
~ fx;, —:-':,- my &, .”_’";') T (Dlléa)_
‘and, _ ‘ v o v
D A N ) R C RS )
et s '
o gmulewe] 0w

Hence -



¥u(0) = 7;',-42_3 Xe™ o | | |
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nEe-3)|
-sz’*‘? K, [4 S_ :t" —=-4M/f”€_28?_% + (v @’ ]

o o[ 2(N-2Pe 3 (-2 )2

- o(nve)x V=2 (V=) 7= 4 (Wel)
+ ve 12 {~V=3]] .

1 2 N2 qnvels o )

HehCe, if ¥ is greater %han,say,loo, we have from (D;132)*

N o N AN - 'ﬁ’l‘zz’(n"(""?’*‘“"“"”

’ﬂ?akﬁ e B ' (]?.161)’

~

Deflne now the normallzed covarlance functlon of the-

cuasi-re51auals by o



| Yelh)= Yeel2) ot
e, l £ G
b/ ( )" ?J.p's B’x(O) _ S:_

. and the autocorrela’clon J.unctlon by

(D .16‘2,)

\ov[k) = YV(O) | | (D-163)

Then,

101 ~{ps 24 Qo Re?) +(Po @0 +@o Ro)palt)
HPo ‘QO)fx (2) | |
+ 2 (Py "'Qo'f‘ go)(So-l-To)‘ ——-‘:(,_" ,.__2___’,(_1

4 , - -
mzz‘(lz.». g o .o (D.164)E

+(So +To) x
YE)‘(.‘!)':'(POQO 'f'QO ea) - (Po_z'l" Qoz‘s"eozi'foo Qo) éx(l}
HPo Qo+ @0Ra) @) 4 PoR px ()
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Y (2) - P, 190 + (Po Q. Qo o) pxC)
"*‘(Poz'f' Qo?+£o ‘)f’r(a} -{-(P,, @-FQ:;&)_P;/Q
+ Polo (4 |

+- 2 (Po‘f‘ Qaf‘ eo‘)g j’l{{l x my K,
N @"w")l’?:;g' - o (D.166‘;)4

vNow, the autocofrelation function is a deoreasing fﬁnctioo'
of iag.‘Aiso, the factor involvingAtho gain constant K
is, by'ihépeotion, much smalier than.either_of'the ‘
‘autocorfelations involvod ingthe above expreésions. It
follows, therefore,tfat the‘oovariance expressions are’most'
sen51t1ve to clanges in pqrameters 1nvolved in the blggest
term in these expreselons. This 1s, of course, the first
member in each expresclon.** 4 ‘

An examination of the relatlons (D 1R2) (D 1)7) shows
that, &or a given choice of Q=l~6 ,the coefficients of thé
‘.ggg_ powers‘of'any offthe iﬁvolved‘variables‘haveonot onlf
:odifferént>magnitude, butvaISo different Sign.>ThiS“means “'

that a changé,‘in.thg wrong direction, of a-parameterr'

‘%% Lxcept-in the case of the parameter w..



7w
does not necessar11§ result in .the change of the covarlances.
of lag one and. two being of the same sign. In other words,
it is quite p0531ble to make a wrong change 1ﬁ a paramete;,
‘which would result in the decltease of tqe first covariance )
but in the-incfeese of the second covaiiance. This'fact
Lias been 61500vefed by the writer during ﬁumefous simulation'.
studies. Only iffi the changes are in the rlghb dlrectlon
T do the covarlances of lag one and two decrease in the same
sense, the covariance of lag two being smaller than the
covariahce of lag one. Thus, convergenee to the glebal‘
minimum is assured provided that ;he structure of the system'
dynemics is knowﬁ; as has been assumed in this thesis.
The Var§5nce'expression l(D.164) involves ohiy second‘
and third powers of the'perameters and may be;redﬁced toj.
avsimpler'fofm so that the theory of the preceding Section.
may be.ﬁsed;e : - |

be any given Set of inpﬁtvand‘output readings,
g;S,fﬁ} G;K' N m? ’ epd my can be regerdea as constonte.
eTherefore,Au sing (D l=2) (D. 157) one can write the varlance

Treletlon (D 164) in tne form,;f
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Therefore, when one parameter at a time is being adjusted, -
while the other parameters remain constent, the vafiahcé'
relatipns-QorreSponding to such a mode of adjﬁstment of
x,y,z,.and W can be obtainéd frgm (D.167) and are} |

respectively givgn by _; f;‘m“ﬁ |
XE (0) = b,o +é")f’9 &';X ;! . (D.l68)

JY;(D)‘ = L;e *balj_"'[’z‘zy&"'bzzyi kD.169)

z YE (0) = !’30 ~* inz T"‘Lsz z . (D.170)
wi¥g (0] = by +bhyw +hew® (D.171)
“where b42=a51 “and all other coeffigients bij érg

fuhctions of the coefficients a and the other variables

_ -kl
riot being currently'adjusted;'l__

The above»expressions are now in the form (D.64)“or
(D 65) and the theory of the preCedlng sectlon can ‘now Ye

. .applied to each of the expres=1ons (D. 168) —(D 171)
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