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ABSTRACT.  

The thesis is concerned with estimating, on-line, structural 

parameters of a linear first order system in the presence of 

a correlated nonstationary disturbance. The first order 

system represents a dynamic relationship between two 

quantities called the input and the output, and may be a part 

of a large plant. The disturbance represents then the coupling 

effect of the rest of the plant on the system under 

considerat.ion. It is assumed to affect the output of the 

system only-. 

The problem of on-line estimation is viewed as a part of 

a larger procedure of on-line control of the overall plant, 

and the estimates obtained are assumed to be required as 

additional parameters necessary to control the plant. Therefore 

short computational times and moderate demands on the storage 

capacity of the process control computer are envisaged. 

Thus, only linear system is considered and relatively small 

First ,the available digital techniques of identification 

are critically reviewed in Chapters 1 to 4. The techniques 



are divided into the non-parametric ones, dealing only with 

system responses to given inputs, and parametric ones, 

involving the determination of structural parameters , or, 

the parameters of the governing differential or difference 

eqlletions. 

The current problem cannot be solved by any of these 

methods, and a new approach, described in Chapter 5 and 

kppendices C and D, is developed. The approach consists 

in representing the disturbance and the input as a rion.l. 
as,  

stationary stochastic process, the model of which can be I 

identified from an analysis of the mean square value of the 

input and output. The parameters of the combined model are 

estimated by an iterative procedure based on the Least Squares 

Method. A series of hypothetical outputs is calculated 

from the assumed model and an assumed set of parameter values. 

The deviations of these outputs from the actual outputs are 

Called quasi-residuals. The method aims at obtaining a set 

of parameter values which result in the covariance matrix 

of the quasi-residuals being as close to the diaEonal matrix 

as possible. Chapter 6 describes the application of this 

method to estimation of boiler dynamics.. 
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Introduction. 

The work described in this thesis was carried out in support 

of a project dealing with the control of a power station 

boiler and associated with the Automatic Control Research 

Project of the Central Electricity Generating Board. 

One of the modes'of control considered required obtaining, 

on-line, estimates of certain parameters of dynamic relations 

end using these estimates for control purposes.-This 

requirement has led to the development of a new technique 

which enables first order dynamic relationships, as well as. 

nonstationary processes encountered in the boiler operation 

to be identified on-line. 

The problem of identification consists in the determination 

of the causal relationships, assumed to exist between 

- ) -Variables, from observations of the variables over a period 

of time. This involves finding a form of the relationship 

and estimating the values of its parameters in such a way 

that the observations are, best explained in the sense of some 

accepted performance criterion. 

The problem first appeared in the control systems literat-

ure in connection with the design of controllers for 

physical systems in which the characteristics of signals with 

which the controller has to cope,change in time in a random 



population. 

Independently of this development, communication engineers 

fashion (Laning and Battin,1956; Newton,Gould and Kaiser11957) 

The introduction later of the analogue and digital computers 

opened new possibilities in the field of adaptive control 

systems. In such systems the controller, analogue or digital, 

is automatically adjusted to maintain the desirable perform-

ance in the presence of random fluctuations of process 

parameters (Mishkin and Dravn,l960) and, therefore, the proces 

identification must be carried out automatically during the 

normal System operation. 

The approach to the identificaiiOn problem has been 

influenced by the developments in the theories Of statistical 

estimation and communication. The former was established as 

a mathematical technique at the beginning of the last 

century with the work of Legendre and Gauss on least squares 

estimation (Plackett,1949; Rosenbrock11965). The estimation' 

techniques, gradually developed owing to many contributions, 

especially those due to K.Pearson and R.A.Fisher, were 

concerned ,up to about 1940, mainly with the classical problem 

of determining the best estimates of distribution paremeters 

on the basis of a selection of samples taken from a given 

were investigating the effect of noise, perturbing the 

transmitted signals, on the intellegibility of the signals. 



They wished to formulate theories and synthesize equipment 

which could effectively detect the presence or absence of 

signal. This resulted in the introduction of filters which 

estimated the power frequency spectrum of the desired signal. 

The pioneering work of Kolmogorov (1941) and 1;iener(1949) 

showed that these problems could be incorporated in the frame-

work of modern statistics if proper extensions were made 

from the classical discrete statements to those applicable 

in stochastic processes. The essence of WiPner's contributions 

is, firstly, the demonstration that the estimation theory can 

be applied to synthesize an electrical filter providing the 

best separation of signal and noise,.and, secondly, the 

treatment of signals and noise as stochastic processes. 

Following Wiener's work, considerable body of literature 

discusses both the analysis of nonlinear systems (Wiener,1958; 

Zadehl1953) or their identification by means of finite 

expansions in terms of orthogonal functions (Lubbock,1960; 

Lubbock and Earker,1963; Simpson,1964; Barker and Havaey,1966). 

Hozever, although nonlinear systems use the information about 

the input and output in a more efficient way than do the 

linear systems (Lubbock,1960), most of the literature 

dealing with the identification problem is Concerned with 

linear systems. This, no doubt, arises from the fact that, 
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first of all, various proposed theories can be comparatively 

easily formulated and validated when linear relationships hold. 

Secondly,many moderately nonlinear relationships can be 

linearized in the range of variations.of interest so that 

the linear theory can be assumed to hold approximately and 

be applied (Pugachev,l963). Finally, for practical data 

reduction systems, the prediction precision is only one of 

several factors to be considered in the choice of an estimator. 

The prediction speed and computer capability are at leaSt 

equally important considerations,_and sometimes it may be 

desirable_ to exchange the simplicity of -a computer program 

for prediction precision (Deutch11965). In fact, a relatively 

fast computation of estimates is of primary importance in the 

present application (in view of the processes drifting in time) 

and, therefore, the application of only linear systems theory 

is of concern in this thesiS. 

The first approach to the determination of the dynamical 

characteristics of a linear system was to use Wiener's theory 

of optimum filtering. The variables in the system under 

consideration were regarded as statistically fluctuating time 

series which constitutes a sample from an ensemble of series • 

representing the underlying stochastic process. The parameter 

values obtained from the solution of the Wiener-Hopf equation 
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are then considered to constitute the best approximation 

to the underlying statistical parameters , by means 

of which variance of the estimates of the parameter values 

may be calculated. 

Now the actual solution+f the problem may be divided 

into two classes. The first class comprises. solutions obtained 

from the knowledge of the response, of the process to external 

stimuli, end the estimated parameters are then the values of 

impulse response or the frequency response. The solutions of 

the second class stem from the knOwledge of the physical 

nature of the process and the laws 'which govern it, and the 

parameters to be estimated are coefficients of the diffeiientia 

(or difference) equations describing the physical behaviour 

of the process. 

In the early days the techniques employed involved the 

solutio,,s of the first class only, using the time domain 

approach, frequency domain approach, and expansions in terms 

of orthogonal functions. While the application of the latter 

technique to digital computation has been recently reported 

(Simpson 1964), this approach is essentially oriented towards 

analogue computation (Kitamori,1 60; Braun et al.,1960; 

Dooge,1965) and it is only mentioned here for completeness. 



ks regards the techniques of the first class, the pattern 

seems to have been set by Goodman and Reswick(1956) and 

Goodman(1955) who presented a way of obtaining the impulse 

response of a dynamical system from normal opeiating records 

by means of a delay — line synthesizer. The introduction later 

of a digital computer enabled Levin(1960},Woodrow(1959) and 

Rosenberg and Shen(1963) to apply the fundamentals of 

mathematical statistics by formulating the same problem in  

a metrix form, and solving it by using the least squares 

method. 

The alternative approach involves obtaining the frequency 

response function of a dynamical system from the consideration 

of power spectra of input and output, and their crossspectrum. 

While excellent exposition of,the theoretical aspects of the 

technique can be found in the literature comparatively early 

(James et 2.1.'1949; Laning and Battin,l956), its actual 

application was made possible only later owing to the 

pioneering work of N.R.Goodman(1957) on the estimation 

aspects of the technique. These ir,ere later discussed by - 

Goodman and his associates (1961), Bendat(1960), Jenkins 

(19633.119631)) and Enochson(1964). The application of the 

technique to estimation of system dynamics under closed loop 

control was dealt with by Westcott(1960) and Florentin (1959) 
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The actual computational aspects of this approach when using 

a digital computer were discussed fairly recently by 

Fleming and Michael(1965). 

Kalman appears to be the first to seek the solutions of the 

second class. He formulated (1958) the response of a 

dynamical system in terms of a pulse transfer function and 

obtained the estimates of its coefficients 'y using the 

weighted least squares method. later he reformulated the 

Wiener filter by using the concept of state(1960,1963) 

and showed that the solution of the optimal filter can be 

characterized by a set of differential equations. Under the 

influence of Kalman's contributions the state space descript-

ion of dynamical systems has been almost universally accepted 

in control engineering (e.g.Zadeh and Desoer11963). and the 

approach to the identification problem has been reformulated 

in many works as that consisting in the determination of the 

coefficients of the state transition matrix of the system 

under consideration. Thus, for example, Kopp and Orford(1963) 

enlarge the state space to, include the structural parameters 

and use the perturbation theory and the Kalman filter for 

state estimation, while Mayne(1963) shows that the problem 

of nonstationary estimation of the coefficients of the state 

transition matrix can be formulated in terms of an equivalent 
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Kalman filter if the state of the systeAis known completely 

at every instant of time. On the other hand, Lee(1964), 

after formulating the estimation problem of a single-input 

single-output system in the state space form, points out 

an inefficiency in estimating the coefficients of transition 

matrix of such a system. He, therefore, transforms the state 

equations into equivalent difference equations and estimates 

the, coefficients of the latter by the least squares method. 

The common feature in all the above mentioned techniques 

is the synthesis of an optimum relationship between two sets 

of values, called "the input" and"the output", on the assumpt-

lon•that the latter are contaminated 'With white noise represent 

ing, for example,inaccuracies in measurement.However, 

measurement errors are not the only. type of disturbance 

affecting the measurements.-For example, the disturbances can " 

enter the system as inputs which are not measurable, or as 

disturbances generated inside the system. Disturbances of this 

type are always present in a practical problem and their effect 

should be acknowledged in the design of the controller for 

the system under consideration.If only linear models are 

considered then the disturbances can always be transformed 

so as to appear as an effective disturbance entering the 

output. If such an effective disturbance is assumed to 
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constitute a stationary random process with rational spectral 

density, then it can be represented as an output of a linear 

filter driven by white noise. This approach v%as adopted by 

IstrOm and Bohlin(1965a, 1965b). They represented both 

the system dynamics and the output disturbance, in a form of a 

pulse transfer function, used the canonical transformation. 

to obtain the state equations and obtained the maximum 

likelihood estimates of the coefficients by employing 

the Newton-Raphson algorithm. 

The inclusion of the model of the disturbance in the 

system description is a considerable improvement on the 

previously mentioned techniques as it allows for.a better 

design of the process controller. Even this approach,however, 

may be open to criticism on the ground that it assumes the 

disturbance to be stationary. Indeed, it has been pointed out 

by Box and Jenkins(1963) that a control system derived on a 

stationary assumption might be quite useless in the face of 

actual nbnstationarity, and that it is often because the 

uncontrolled process may be highly nonstationary that the 

control is required. 

Suppose that the single input single output system under 

considerationlforms a small part of a large interconnected 

systeip (such a situation might, for example arise, when 



one wishes to study a dynamic relationship between steam 

temperature and steam flov.rate in a boiler, under normal 

operating conditions). In such circumstances the model 

of the disturbance should take into account the influence, 

on the output,of other proCesses coupled to it through the 

internal dynamics. If such processes are time-varying,the 

disturbance model representing their effect should be 

either time invariant and updated continuou-tly or, which 

is considered to be more satisfactory and elegant, they should 

model the nonstationary behaviour of the disturbing process. 

A disturbance model of this type was suggested by Box 

and Jenkine(1962, 1963) as part of their method of treating 

the problem of adaptive control systems. The model, discussed 

in Chapter 3,can be thought of as an unstable digital filter 

and is a geheralization of the method of representing 

accumulated processes ONhittle,1963). Box and Jenkins 

suggest a method of identifying the structure of such 

a model from observatiOns of the process. If such a model-, 

however, is included in the description of an "open lOop" 
aisuY 

dynamic system, therqis, apparently no way of,Odentifying 

the structure of the model. If one is faced with identificatio 

of the system dynamics as veil, it seems that a formidable 

identification problem arises. 
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The problem to be solved by the writer was to estimate 

the parameters of system dynamics in the presence of an 

unknown correlated nonstationary disturbance. As the estimatio 

procedure was to be carried out on-line , the nonstationary 

character of'the disturbance was to be identified automaticall 

by the computer, and the p rameters of the disturbace 

model could then be estimated jointly with the parameters of 

the system dynamics 	Since none of the available techniques 

was suitable for solvi4T3 this problem a novel approach, for 

which originality is claimed, has been developed. The approach 

involves a new method of representation of nonstationary 

processes and a ew technique of parameter estimation.The 

approach is characterized by the following features; 

a)A nonstationary stochastic process is represented as an 

output of a linear filter with time-varying coefficients 

the filter being such that the mean square value of its 

output is a polynomial it time and the degree of the 

polynomial is associated with a definite structure of the 

filter; thus, when the degree of the polynomial is known, 

the structure of the filter is also known; 

b) the input to the system under consideration, as well as 

the disturbance-;representing the couplingeffect of the 

rest of the system pola assumed to affect the system output 

only,are both represented by a filter of the type (a); 



c) sequences of sample:mean square values of the .input and 

of the output are calculated for increasing sample lengths 

up to the maximum length of the series stored in the 

computer; 

d) small sample averages of the sequences near the beginning 

and end of each sequence are calculated; these indicate 

the relative magnitudes of the mean square values, as 

well as the trend of "theseries; 

e) sequences are successively differenced until the small 

sample averages are less than some prescribed fraction 

of the values calculated originally. at (d); since the, 

n-th difference of an n-th degree polynomial is zero, 

this stage determines the degree of the polynbmials 

representing the mean square values of the input and 

output and, therefore, identifies the structure of the 

disturbance; 

f) a set of parameter values for the combined system dynamics-

disturbance model is assumed and, using the actual values 

of inputs hypotheticalvalues of the outputs, corresponding 

to this assumed set of parameter values, are calculated; 

g) a series of differences between these outputs and the 

corresponding actual outputs is calculated; these 

differences are called in the thesis "quasi-residuals" 

and are thought of as made up of two contributions; the 

white random process assumed to excite the disturbance 

filter and the effect of deviations of the assumed 

parameter values from the true values of parameters;• 
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h) the estimates of the parameters will be close to their 

true values if the "quasi-residuals" exhibit the character-

istics of the white noise; this can only happen if the 

contribution of the parameter deviations to the magbitude 

of the quasi-residuals is small compared with the effect 

of the white noise; since the white noise is characterized 

by a diagonal covariance matrix, the convergence to the 

proper parameter values is achieved when.  the sum of 

squares of the quasi-residuals is minimized in such a way,. 

that, at the same time, the covariance matrix of the 

quasi-residuals, is being reduced, as far as possible, 

to a diagonal form. 

- 
The organization of the text is as follos.,,Chapters 1 to 

4 a critical review of the currently' available technique's 

is given( in addition, Appendix A gives a short discussion 

of the theory of estimation).' The novel technique is 

developed in Chapter 5 and Appendices C and D. Chapter 6 

discusses the application of the technique to estimation of 

boiler dynamics. Finally, Appendix B gives a general method, 

developed by the writer, of obtaining a difference equation 

of a general linear system with rational transfer function 

when the system is subject to an input smoothed by a hold 



SYMBOLS AND CONVENTIONS:. 

Many symbols have been used in the thesis to denote differen 

quantities. The symbols are defined wherever they occur and, 

therefore, it is not proposed to list here all the symbols 

with all the meanings attached to them in various sections. 

of the thesis. On the other hand, certain conventions have 

been kept throughout the thesis, and, to denote the quantities 

listed in the left hand column below the corresponding 

symbols listed in the right hand column have been used. 

Quantity 

backward difference operator 

backward shift operator 

complex conjugate of x(t) 

correlation of lag L of 

the series X(t) 

-covariance of lag L of 

the series X(t) 

continuous—time funtion x 

discrete—time function x 

ensemble averageor 

•expected value of X(t) 

estimate 

ek2onential function of 

a parameter k 

Symbol 

V 

x(t) Ort XCt") 



Quantity 

operator shifting by 90 degrees 

'aplace Transform of X(t) 

n x m matrix with elements a. (t) ij 

set of values Xi(t) for 

varying i 

small increment in value of X 

time parameter 

time derivative of X(t) 

transfer function 

transpose of a matrix A(t) 

transpose of a vector X(t)'. 

vector with elements xl(t),..xn(t) 

weighting function 

Z-transfer function 

Z-transform of X(t) 

Symbol 

j og 
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CHAPTER 1.  

GENERAL CONSIDERATIONS IN THE PROBLEM OF IDENTIFICATION  

OF A LINEAR SYSTEM. 

1.1.Introduction. 

In a recent paper Tsypkin(1966) distinguishes three 

consecutive periods in the control theory: a deterministic 

period, a stochastic period and an adaptive period. 

In the deterministic period the knowledge of the equations 

describing the behaviour of the system to be controlled, as 

well as teat of the external inputs and disturbances was 

assumed. This knowledge allowed the use of classical 

analytical techniques for the solution of various control 

problems. 

The stochastic period is characterized,by a more realistic 

approach to control problems. In this approach the equations 

of the system to be controlled were still assumed to be known; 

however, the disturbances and sometimes the system parameter 

were regarded as being probabilistic in nature. The mathematic 

al techniques developed in this period were based on the use 

of random functions with statistical characteristics known 

in advance. 

The cheracteristic feature of the current adaptive period 

follows from applications of automatic control to systems 



whose properties change with time and may not be known in 

advence. This feature is the use of information about the 

past of the controlled process, ornplent", for making current 

decisions. 

Suppose that it is required to control a plant with 

incompletely defined dynamic characteristics. If the latter 

do not change very rapidly, a suitable controller may be 

required to compute, or identify, the characteristics of the 

plant while the system is in normal operation. The controller 

must then makesa. decision concerning the: way in which the 

available parameters of the system should be adjusted so as 

to improve the operation with respect to a defined performance 

index. Finally, certain signals or parameters must undergo 

a modification to accomplish the result. A control system, 

accomplishing the three functions of identificationsdecision 

and modification may be defined as anadaptive control 

system (Bellman et elll966). 

The identification problem, forming the subject of the 

present thesis, is concerned with the determination of a 

mathematical' relationship which describes the input-output 

behaviour of an unknown system. The importance of the problem 

of identification was illustrated at a symposium organized 

recently in Prague by the International Federation of 
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Automatic Control, at which no fewer than 65 papers were 

presented .As observed by Godfrey and Eammolid(1967), the 

symposium brought out a very wide range of techniques 

available for identification, coupled with an almost complete 

lack of any logical method for-choosing the best one for a 

particular application, and with very few practical applicat-

ions to industrial plants. It is hoped that the present work 

mill not merit a comment of this type. 

Reviewing the existing methods of identification 

Eykhoff (1966,1967) divided them into two broad classes,namely 

the techniques using "explicit mathematical relations" 

(or, ppen-loop techniques), and those using "model adjustment" 

(or closed-loop, or implicit techniques). In the first class 

he included the techniques which use a mathematical expression 

explicitly providing numerical values of parameterL estimates 

in terms of known a priori knowledge and measured variables. 

The techniques of this class are least squares estimation, 

Markov estimation, maximum likelihood estimation and minimum 

risk estimation. They yield solutions which 

a) are available after a finite number of elementary operation 

b) require considerable memory, 

c) are not available in an approximate form as an intermediate 

result; 
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The techniques of the second class employ some kind 

of model of the system. The parameters of this model are 

adjusted in such a way that the model characteristics 

approach the characteristics of the system in some preassigned 

sense. The techniques of this class depend on the minimization 

of the gradient, with respect to the unknown parameters, 

of the error between the output of the system and that 

of the model. The solutions obtained are 

(a) available after (in principle) an infinite number 

of elementary operations, 

(b) available in an approximate form as an intermediate 

result, 

(c) found by a self-correcting proce'dure. 

• The approach adopted in these techniques is "closed-

loop" with respect to the system performance. That is to 

say, the system performance is monitored and the parameters 

are adjusted to minimize a performance index. 

Numerous papers have been written on the subject of 

model-reference adaptive systems incorporating the 

identification technique of the second class 

Roberts 1962; Donaldson and Leondes,1963). These papers . 

seem to imply that the main application of these 

techniqUes is in closed loop _cOntrol 
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systems in which the parameters of the controlled system xhibi 

wide variations due to changes in environment . In such 

applications the characteristics of suitable compensating 

networks are required to alter as the controlled system's 

parameters change. Such a procedure is usually effected throug 

the use of the method of steepest descents.. In this method 

the gradient of the error, with respect to the unknown 

parameters, between the controlled system output and the 

system model output, is mede proportional to the time rate 

of change of the respective parameters. This enables the 

adjustment of the compensating network to be mechanised, with; 

the necessity to use numerical value's of any of the parameters 

involved. 

This thesis is concerned with situations in which digital 

computers are employed to control processes and, therefore, 

analogue techniques are not relevant here. Cn the other hand, 

the last few years have witnessed the development of another 
s_2 

approac+o identification. The approach involves the use of 

discrete-time (sampled-data) model of the controlled plant, 

the parameters of the model being estimated by employing a 

suitable hill-climbing techniques. This is, essentially, a 

model reference approach which, however, results in numerical 

values of parameters, and which thus does not really fit in 
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Eirkhoff's classification. 

Assuming that all analogue techniques are excluded, a more 

appropriate way of discussing the existing digital techniques 

is to divide them into two classes as follows: 

a) the techniques not involving any structural parameters 

and relationships between input and output of the controlle 

plant, and yielding a number of numerical values of plant 

response; 

b) the "model reference techniques depending on an assumed 

form of differential or difference equation whichc,relates 

the plant= input and the plant output; the techniques yield 

numerical values of the coefficients of the equation. 

This classification is adopted in discussing existing 

techniques in the following chapters. 

lc:2. The two alternative fOrmulatiOns of the process  

identification problem  

An on-line control of a process involves normally predict?'" 

ion over a suitable interval of time, of the process behavioi 

and taking an appropriate compensating action in accordance 

with some specified control policy. The former objective id 

achieved through the use of a mathematical model, usually 

in the form of a set of differential equations which expreds 
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the dynamic behaviour of the process. 

Rigorous analysis of the dynamics of a typical industrial 

process is extremely difficult,' if not impossible. The reason 

is that processes are usually very complex and contain 

numerous variables which are unwieldy to manipulate. Large 

number of variables, nonlinearities and uncertainties in 

certain physical phenomena,all contribute to the complexity of 

the problem,and a solution of a zet i of equations may well be 

as difficult to obtain as the synthesis of the actual 

mathematical description. To facilitate a solution of the 

problem certain simplifying assumptions may be made as long 

as the solutions resulting from such simplifications can still 

be regarded as describing the character of'the dynamic 

behaviour correctly. (It may be possible, for example, to 

formulate some semi-empirical or approximate expressions 

for phenomena which are too complex to admit of an exact 

mathematical description).. 

The starting point of analysis is usually the formulation-

of mass-transfer balance equation momentum equation and 

energy-balance equation. These equations are usually 

complicated (for example, Navier-Stokes flow equations(Davis, 

1962)) and involve, in gejeral, partial differentiation as 

well as nonlinearities. The introdu.ction of allowable 
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simplifications yields a set of differential equations 

describing, possibly approximately, the dynamic behaviour 

of the process under consideration. 

Under the influence of control theory it has been customary 

to regard such a set of differential equations as describing 

a dynamical system and to formulate the equations so as to • 

relate a set of system inputs 

and a set of system outputs 1 /1(4)), (j=bt,—,Z) 

If the system parameters vary slowly as compared with the 

time necessary for the identification of the system, only 

small variations about the steady operating levels can be e 

considered and the process behaviour can then be approximately 

described by that of a linear dynamical system. 

A single-input single-output system of interest in this 

thesis may be described by a diffex&itial equation of the type 

C,(4)r o 	 n--. („t) r" ." 14....._ttt o Cd)7 y Ce) 

in which some of the coefficients b1(t) may be equal to zero. 

An orthodox approach discussed 'in the older literature on 

control systems theory is to represent the response character-

istics of a linear syStem either in terms of an impulse 
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response in the time domain, or frequency function in the 

frequency domain (alternatively, transfer function in the 

complex frequency domain). 

The impulse response k(t,'r) is defined by 

as 
y 	= 	A ,tr) tdr) dr 	(1.2a) 

i (1.2b) t.(Z-t fr) 	t't.,1r)  

where ti 1s the adjoint operator of the right-hand side of 

the equation (1.1) andgMis the Green's function for the left- 

hand side of this equation (Miller11955). 

Both, the variable-coefficient system (1.1) and the constant- 

coefficient system 

n , p 	r 	 44U CC) 

= 	p n4 bn "2" 	4-  0) t.'4  tti 	 (1  *3 )_ 

can be characterized in terms of the transfer or frequency 

function(Miller,1955; laning:and Battin,1956). However, such a 

description of only constant coefficient system (1.3) has 

found application in the problem of identification. 

If the weighting function of such a system -is denoted b (t) 

then the transfer functir7m H( s) is given by the. Laplace. 

transformof h(t), 
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or, alternatively by 

(s) = 61, .5" 13 11 _1  
11-1  s 	ri -r S 	 ttes 

11(s) =. 	s)  ( 1. 4b) 

where Y(s) and U(s) denote Laplace transform of the output 

and the input, respectively. 

Similarly, the frequency function H(jw) is defined as the 

Fourier transform'of the impulse response • 

HO(-0 tz 
-V te f 441  (r ) 	der (1.5a) 

Y(117) 	bh ( j Zr) 11÷  h 	00"4-- 4 

14 (ja)-r- (767:r) 	d.„ OuPs-P an-10a)'"1.-.4- to 1.5b) 

in which U(jw) is the. Fourier transform of the input and 

Y(jw) is the Fourier transform of th output. 

The method of obtaining the weieiting function, and, there 

fore, the frequency response or transfer function,iS well.  

knolhn (Miller,1S55;  Laning and Eattin 1956). However, the 

converse problem of identification of the dynamical equation 

of a system from its impulse response presents formidable 

difficulties. In practical applications, therefore 

.one often identifies ohly the system response from the given 

values of input and output. This is achieved by estimating 

velues of the impulse response at a number of time instants, 
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I 
or values of the frequency response at a chosen number of 

freouencies. The corresponding methods of identification do 

hot allow the structural relationship between the input and 

output to be determined and will be referred to in the thesis 

as the Mon-parametric methods of system identification".. 

A modern approach to the identification problem involves 

the determination of the second relationship between input 

and output of the system under consideration and, therefore, 

the techniques associated with this second approach are 

called in the thesis "parametric techniques of system 

identification". This approach can take two different forms. 

The first of these employs .the notion of state x(t) (Zadeh 

and Desoer,1963), originated by Kalman(1960,1963a) and almost 

universally accepted in modern control theory. A linear 

system is characterized by means of dynamical state equations 

(Kalman ,1963b; Zadeh and Desoer11963) " 

)6( . (t);:l 	( ir,TX tt.  ) 	ta 	) tX" 	 (1.6a): 

&(*)= C.WA(t)-4-,1)(6)11Cti 	(1.6b)-:  

the solution of which. gives an explicit expression for the 

state X(t) as 

(.t.")= 

where x(t) is an n-vector u(t) and y(t) are scalars and 
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A(t), B(t),C(t) and D(t) are matrices. 

When the system (1.6) is controlled by a digital computer, 

the system output is sampled and the control is effected at 

discrete intervals of time. Continuous-time analysis may 

still, however, be used if the sampling interval is small 

compared to the significant time constants of the system. 

This, indeed, is the case in the technique of system 

identification described by Kopp and Orford(1963). The 

technique involves enlarging the state space to include the 

structural parameters as well ;.as the assumption of the form 

of a differential equation which governs the dynamic 

behaviour of the system under consideration. Certain 

assumptions are also made about statistical characteristics 

of noise contaminating the data and differential equations 

with random forcing functions describing the parameter 

variations ere adjoined to the system of differential 

equations describing the process. A linear regression 

technique is then used to derive a recursive relationship 

for the updated estimates of the state variables as a function 

of the .last estimates and new measurement data . 

An advantage of the continuous time description is that 

it allows to predict the system behaviour not only at the 

sampling instants but also between them. In certain control 



n 	 ft-4 
On-z- /3n-i'2- + 
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applications,however, it may be perfectly adequate to predict 

the system behaviour at the sampling instants only.. If 

such a relaxation of requirements is possible, the linear 

system is 'defined at discrete time instants and is referred 

to as a discrete time system . If such a system is time 

invariant, it may be defined by a linear difference equation 

of the form 

(43(t-'1%) ein ,y d 	) 	* °I plY (6)  

=.11,1 14 (t--11)-fr3n-, y te-111-1) 

and its response may be described either. by 

response in the form 

"CO 

an impulse 

1.8) 

Al 
hd(2.:) 	g( -•.l 4a7) 	(1.9) 4=r 

'which is equal to sampled values of the continuous time 

impulse response and is called the weighting sequence.; 

or by the pulse transfer function (Hurewicz 1949;Barker,1952) 

given by 

G(z) 	
cen  z"÷c(n-17-474*" +le° 

As far es the Writer is aware, there exist 'only two techni-

ques which allow the system (1.8) to be identified parameter7  

(1.10 



instants, for the response of the system (1.8) to 

-ramp input_is derived in the form 

j  h (4* er) 00,6bre 
	

(1.12) 

where the weighting function h(t) is expressed as, a function 

of parameters of the difference 

An expression for 

step or 
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wise. (the method described by ::alman(1958) deals with 

noise-free measurements and is not considered to be reeli t;ic 

enough in practical applications). In the first of these; 
a• 

due to Astrom and Bohlin(1965a11965b) expression5for error 

• 

between the actual output y. and the predicted output yj* 

at time jAT are formed as functions of 'unknown parameters 

04:,A: and input xj, using discrete-time state space description. 

On the assumption of the error being Gaussian, the likelihood 

equations are formed and solved by using the Newton=rRaphson 

algorithm. 

The starting point of the second technique, due to Box 

and Jenkins(1963,1967a21.967b) is also the formulation of the 

difference equation (1.8). COrresponding to the degree n of 

the equation, an expression, valid between the sampling 



The above mentioned techniques cli'e discussed in some detail 

in Chapters 2 and 4• 

LEL 
	,t- 	 (1.13) 

between the actual output yk  and the predicted output yk*• 

at time kAT 
14.4 -  • 

II. 12.  v.ix,e—t-i 
‘Ie 	 • 

is formed and, assuming the error (1.13) to be normally 
• 

distributed, the likelihood equations are obtained and solv-

ed by a nonlinear estimation technique. 

(1.14) 



CHAPTER 2.  

DIGITAL NON-P_ RAMETHIC METHODS  OF IDENTIFICATION 

OF 'A LINEAR SYSTEM.  

2.1. Introduction.  

As discussed in Chatter,l, the response of a linear time-

invariant system (1.3) may be expressed in terms of its 

impulse response h(t) 

fr) ( 2 .1) , 

When estimating the response of such a system from records 

of input u(t) and output y(t) under normal operating condit-

ions, it has been customary to formulate the problem in either 

of the following two ways(Westcott,1960; Woodrow,1959); 

a) either, one requires to determine an impulse response 

function h(t) which, when operating on the recorded valu9s 

6f.the input process u(t), most nearly approximates the ' 

recorded values of the output process y(t). The error 

of approximation16, is then minimized in some suitable, 

usually least squares sense; 

b) or, one assumes that the fluctuations about the mean operat• 

ing points, of the processes u(t) and y(t), constitute 

stationary time series the recorded values of which 
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represent one of many .possible realizations of the 

protesses. The output time series is then regarded as 

being the sum of two time series. One of these series is 

generated by operating on the linear system, having impulse 

response function h(t), with the input..seriesfu(t) 

The other seriesISAis generated by internal disturbences 

not correlated with the input process fu(t4 In most cases 

the seriesiOqs assumed to be normally distributed. 

Whichever viewpoint is taken, an ideal relationship between 

the measured quantities representing the process is written 

on the assumption that the quantities can be observed and 

recorded over infinitely long time.. In any practical situat-

ion, however, ettimates are obtained from records of finite 

duration. An estimation procdure must,therefore,provide an 

assessment of the validity of such results. 

Only the second approach is discussed here. This involves. 

multiplying equation (2.1) by u(t r) and ensemble, averagin& 

to obtain the well known Wiener-HOpf equation (Laning and 

Battin 1956) 



where, 

bu y (.0 C< (-1&)> 
	

((2.4) 
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• 

is the crosscovariance function of the input and output, and 

.-dk 	=•• 	Pe) k (4) > 	(2.5). 
is the eutocovariance function of the-input. 

Taking Fourier transforms of equation (2.3). one obtains 

tl,t6", 9,,y 	.14 	61, 2. 5`44%  ( 	. 	(2.6) 

where 

is the variance of the input 

is the variance of the output 
ICirfomme,  y 

is theAcross—spectral density function 
. 	A • 

of the input and output, 

H(w) 	is the frequency response function. of the 

system.:  

Thus one obtains (Jenkins,1963), 

6-y 	5 4,.7  (6) 
I-1  (40 (41 	 (2.7), 

Given a finite length of record of the input u(t) and output 

y(t) the linear system under consideration may be identified 

a) either in the time domain by using an approximation to 

equation (2.3) and solving it for a finite number of 

heights h, of the impulse response h(t); 
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or in the frequency domain, by using equation (2.7) to 

estimate a finite &amber of heights of the frequency 

response function H(w). These techniques are discussed 

below. 

2.2. Identification of the impulse response  

Equation (2.3) involves infinite limits and, therefore, 

its solution for h(t) cannot be obtained from a.finite length 

of record of the input and output. 

Suppose, however, that the input u(t) and output( y(t) 

are sampled at intervalAT of time and are available in the 

form of a series of values 

1 1111 	= 0,1,2, ....,P+10 

,(j=K,K+1, 	,M 

SuppOse also that, correspondingly ,the impulse response h(t) 

to be estimated is restricted to have a finite memory time 

and to be defined by 
le 	T. 

h (4-) = 2 hi E(* -- ) w 
=. 	 omfrolAr,  

a=b 

Then the finite number (K+1) of the values h.
0 
 of the impulse 

response may be obtained by using an approximation to the 

el 	.$71,47- 
(2.8) 

Wiener Hopf•equation (2;7)  first suggested by Goodman and. 
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Reswick (1955,1956) and given by 

g 
S. A)* C(4k (r - j) Jr- 0  

where', 

(2.9) 

(2.10). 
e=+) 

is the sample autocovariance function of the input, and 

C: 4 4 (le) •=. 	" 111+ r 
i=o 

is the sample cross-covariance of the input and the output. 

(The formulae (2.10) and (2.11) are based on the assumption 

that both the input and the output are zero-mean stationary 

time series). 

The (K+1) values h, of the impulse response may be obtained 

from equation (2.9) by substituting (K+1) values of the 

11-1- 
TiTt 	 "etiefr- 

covariances C (r) and Cuu  (r) 

and solving the resultant set  

corresponding to r=011,...,K, 

of (K+1) eqUations. Since the 

even function of its argument, 

(2.12) 

the set of equations may be written in a matrix form as 
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(2.13a) 
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or, symbolically, 

= C 
----uy —uu. h  

(2.13b)  

The solution for h is then 

1 h = C 	. C 	 (2.14) 
—1111 711Y 

The equations (2.13),(2.14) resulting from the approximation 

(2.9) to the' Wiener Hopf equation, can also be given a 

different interpretation.When the input and output are given 

in the form of a series of discrete values h11  and 

and the restriction (2.8) on the impulse response is imposed, 

the ideal relationship (2.2) meY be approximated by 

K 
2 hi 

174 ki  KV ) 	14* 

wheretketare .undorrelated identidally distributed random 

variables heving zero mean and variance%) . 
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Li g4.14 14 kfri-i 	. . 	. tfle 1K 

lk 

Ykt M  

• 

Es4+14 

4- 

(2.17) 

4c 
Equations (2.15) may be put in a matrix form Woodrow11959; 

Levin11960;•Kerr,1965 ) 

z =U.H + E 
	 (2.16) 

or, explicitly, 

Equations (2.16) and (2.17) represent a linear system and 

may be solved by the least squares method, discussed in 

Appendix A. The least squareS estimates E* of E are given by 

(2118) 

After performing the matrix multiplication and dividing throug 

by (141) the equations (2.18) become identical with equation 

(2.14). It is thus seen that the set of equations (2.13) 

resulting from an approximation to the Wiener Hopf Equation, 

Least Squares can be interpreted as the normal equations of 

Estimation (Plackett 1960). 
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A great disadvantage of this approach is that, to identify 

a weighting function reasonably well, K must be large. 

However, as the number of terms in the equations is increased, 

the process of matrix inversion becomes disproportionately 

difficult, and this may create problems when on-line system 

identification for control purposes is required. 

2.3. Identification of Frequency response. 

An explicit relation 

guy(w) 
tyci 0-4) 

(2.7) 

obtained by Fourier transforming the.  Wiener Hopf equation 

(2.3), expresses the frequency response function H(w) of a 

linear system in terms of the spectral density guil(w) 

of the input, and cross-spectral density g (w) of the input 

and the output. 

The autocovariance function dAs en even function of 

the lagT and, therefore, the spectral density g
ua 

 (w) is 
- 

expressed as its cosine transforT 

1" 3., (cs 	1 W 	(tr) cos C.7 r d l 	(2.19) 

However, the cross-covariance function is not an even function 

of the laErr . For this reason it is usual to introduce t w o 



auxiliary functions (Jenkins,1963) 

er) 	72.1 E Yk y  (1. ) 	fft. y 	 (2.20a) 

irk 6", 	y (Cr) 	-614 y ((r )-- Y14,4 41] 
	

(2.20b) 

and to define, in terms of these functions, two components 

of the cross-spectral density, the in-phase component.0 uY(w) 

called the co-spectral density, and the quadrature component, 

uY(w) called the quadrature spectral density (Goodmap,1957) 

as 

(2.21a) Ct4j (6.‘" ) 	Cilk 	k-O.St4P 7 dir 

Q,t3(t.2) 	r /act, (17 ) sot. AP? d9P 	(2.21b) 
f% 0 	V 

The cross-spectral density 	(IA) is then expressed as 

Cky  ( J* 141sk-Y (4)  (2.22) 

It is convenient to express the frequency response function 

in terms of the i.gain G( 7) and phase shift 0(w) as 

H(w) G(w)..exp(40(w)). ' 

in which 
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, 	• 
Mtn 

( Q14(40 

y(~Cw e.37 (2.24b) 

In practical situations the output y(t) is contaminated by 

noise and, if the level of the latter is high as compered with 
, usemn. 

the output, it may not be possible to obtain aaw estimates 

of the gain G(w) and phase gf(W). It is essential, therefore, 

to have some measure indicating to what extent the output 

y(t) is dependent on the input u(t). Such a measure is 

provided by the coherency (Wiener,1947; Goodman,1957) 

defined by 

w 19t4v ce4 v (04 	(10) 
— - 
9"4 (Lao 3,,(6) 	gum ri.oyy, 

(2.25) 

(2.26) 

 

The coherency is a measure of correlation between u(t) and 

Y(t) at a frequency w it tends to unity when the noise is 

negligible and tends to zero when the spectral density g££ (w.) 

of the noisegqis large compared with the spectral density 

2 
G (w ).guu(w) of the input referred to the output. 

The problem of identification of the frequency response 

appears to have been first studied by N.R.Goodmen (1957) 
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The approach was later followed by Goodman and his 

associates(1961), and also discussed by Jenkins (1963a,1963b) 

Bendat (1960) and Enoehson(1964) . The approach involves 

essentially a judicious choice of the amount of data required 

(this may or may not be a critical requirement) and a critical 

examination of the behaviour and of the sampling properties . 
r A 	 A 

of the estimates G(w) of gain, phase 0 and coherency Wtw), 

as influenced by the length N of series, maximum lag or 

truncation point M and level of coherency Wtw). All the three 

quantities, gain, phase and coherencdare functions of the 

various spectral density functions and the-problem is thus 

seen to be that of estimation of spectral density function. 

It can be shown (Jenkins,1961,1963; Parzen,1964a 1964b) 

that the estimates of the four spectral densities guu
(w)  ' 

gYY 	C
Wr 
(w) and Q (w) are respectively given by 
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(2.28) 

where 

A 	 A 
gN(Wi) is the spectral density, Cx(wi) is the in-phase 

and Nj) is the quadrature cross-spectral density. 

Using the estimates defined by equetions (2.27), the expressio 
A 	A 

for the estimates of gain Gu(wj), phase ON(wi) and 
A 

coherency W
2 

 11(wi) are obtained in the form- 

••• 

ku
(  QN f4j)  

GN (42i) (2.29) 

/ A  s.ta 	 A 

. 12- 	( C 	j) t 
 4 ( avg4  ( Co)) 

k.W N  
114A/4 `i'1) 	A,"  ( 4  

Approximate *confidence limits for the above quantities 

2.30) 

are obtained from the coveriance matrix of the estimates 

which is derived by approximating infinite-sample properties 

of multinormal series by those of a sample of a finite length. 

The confidence limits depend on'the scale on IT,hich the given 

estimated quantity is measured and, ideally, a scale should 

be chosen such that the limits are independent of the 

quantity being •estimated.- 
A 

Thus if the estimates of tie spectral density g 
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are measured on a ogarithmic scale, the confidence intervals 

for log(4(w))  are 

ezN (2.31) 

where zit  is the upper- 	limit of the normal distribution 

and 2, depends on the type of window (Jenkins,1961; Parzen, 

1964a,1964b) 

Logarithmic scale is also convenient for measuring the 
A 

.gain. Corresponding to estimates log(Gw(w)), the approximate 

confidence limits are  (Jenkins,1963a11963b) 

) 1 -61 ( 4)4-4 )- 
wher41 

t-  
.4  Xi are, re pec 

1 	tively, the 

point oftdistribution with fi  degrees 

4iv  
fl .17 	[thczci] 2.33) 

(2.32) 

lower. and upper otper cent 

of freedom defined by 

A 
The estimates (tang w)) of tanif(w) can be taken to be 

approximately normally distributed about tan0(W) with 

variance (Jenkins 1963a11.963b) 

Vag 6-an (leo)) =, 	 - 
z N 1421-4) 3.34) 

It follows that, for the confidence coefficient (174e), the 

approximate confidence limits for taa are given by 



A 14, 
Wtv ( 14)  
n 

_, WA. y  (14 

then it is shown by Enochson and Goodman 

) 4 
V2.7e75 • 

that 

(2.38) 

53 

4 

(3".  =earL 6ctit 1500)-± sec'Oti. r 	11 
L W 2141 	-1  

(2.35) 
0C  wherez.,,z is the upper 1-27percent limit of the normal 

distribution. As observed by Jenkins(1963a,196.3b) a natural 

scale of measurement of the phase is 0/so that the confidence 
A 

intervals for 0(w) are 

A 
tan-{ f ta,„ (i) t e. 	r 

"t- y w L WM -  Ili (2.36) 

Approximate confidence liMits for the coherency have been 

suggested bjy- Enochson and Goodman(1965).. 	They applied 

the Fisher z-transformation (Cramer,1946) to the exact 

distribution of sample coherency obtained by Goodman(1957). 

If 
A 	u. u  
WA; (4)) 

(2.37) 



where Zg is the upper 2 per cent limit of the normal 

distribution end f2 is the number of degrees of freedom 

associated with estimation of the cross—spectral density and 

. is given by 

(2.39) 

2.4. General Remarks.  

The two "non-parametric" techniques discussed in this 

Chapter, suffer from, a disadventage.in•that they require a 

large number Of'estimates to.characterize. the system response 

sufficiently accurately. Moreover, long computational times 

required for identification of the system response are involv—

ed in both techniques, and especially the second one. An al 

ternative, more advantageous approach is to characterize the 

system response by means of a finite number of parameters. 

The techniques associated with this approach involve 

characterization of the dynamic system in the discrete time. 

and the representation of the effect of a disturbance. 

These techniques are discussed in Chapter 4. 



CHAPTER 3. 

PARAYERTIC MODFLIPTG OF DISCRETE-TIM STOCHASTC PROCESSES  

3.1 Introduction. 

The Chapter discusses representation of discrete-time 

stochastic ibrocesses by means of finite-parameter models. 

Some general definitions relating to stochastic procesSes 

are given first. Modelling of stationary processes by means 

of autoregressive,moving average and mixed autoregressive-

moving average schemes is then discussed. Finally, a brief 

review of modelling techniques applicable to nonstationary 

processes is given. 

3.2.  Some fundamental ideas and definitions relating to. 

stochastic processes.  

The theory of stochastic processes is generally defined 

(Parzen,1961) as the" dynamic' pert of the probability theory 

in which one studies a collection of random variables, called 

a "stochastic process", from the point of view of their 

interdependence and limiting behaviour. 

Central to the definition of a stochastic process is the 

notion of a random variable. This may be defined(Doob 1 53) 

simply as a measurable function. Yore formally a real 

function X, defined on a spacejt of points w is called 
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a random variable if there is a probability measure defined 

on w sets, and if, for every real numberA the inequality 

• X(t4) ‘. X 

delimits an. w-set whose probability is defined, that is 

a measurable set (Doob,1955) 

A stochastic process can now be defined (Parzen21961) 

as a collection 1X(t,w), to T w 0t of random variables 
indexed by a perameter t varying in an index set T, with w 

varying over the probability spaceA; when T. (0,± 

the stochastic process is said to be a discrete parameter 

process. 

A stochastic process is thus a process which is developing 

in time in a manner controlled by probabilistic laws, and 

the functions X(t,w) depend on two arguments, the time t 

and a random event w. If the time instant t is fixed, shy 

t=to  , then X(to  ,w) is a random variable. If, on the other 

hand, w = is a fixed random event, then X(t wo  ) is 

considered to be a possible observation, or a realization, 

of the stochastic process, and is called a time series 

(Parzen 1961) 

An important role in the theory of stochastic processes 

is played by their first and second moments, assuming that 

the lattcr exist. FOr a stochastic process (X(t), teT1 



Perzen 1962): 

S? 

these are defined by 

(a) the mean value function 

(b) the covariance kernel 

le (sit) = cov [x(s), vo7, s,6 

In general,however, a stochastic process may be described 

by the joint probability distribution function of the n 

random variable s nti); • • . X -06/, 	for all integers n and n 

points.4, 	is 	in T. Thus, 

24, 	• 4%)  

PE X (et) 4 	X( n)4 x11.7 
	

( 3 . 2 ) 

Among stochastic processes with finite second moments 

stationary processes are important for practical applications. 

Such processes arise when the random mechaniSm producing the 

proceis does not change with time. This situation is often 

met with in technology and physical sciences, and it often 

assumed to hold approximately in other fields such as 

economics, If T is not too large, and if any systematic 

component is isolated in an appropriate way. Such processes 

are classified as being either strictly or weakly stationary.. 

These are defined as followS (Grenander and Rosenblatt,19571 



se 

(a) A. stochastic process 1X(6)/6  6T5  is said to be strictly 

stationary (or stationary in the strict sense) if for 

any integer n and any h in T, the n-dimensional vector 

£01),... X ad.] has the same joint probability 

distribution function as the n-dimensional vector 

C K(61-rit), 	.J  Wen fit13
r 

. In Other words, the simultaneous 

distributions depend only upon the time parameter 

differences (ii-te), 

(b) A stochastic process Xalle6lis said to be weakly 

stationary (or covariance stationary, or stationary in 

the wide sense) if it possesses finite second moments and 

if its covariance kernel K(s,1—•is a function only of the 
absolute difference Is-ti in the sense that there 

exists a function R(v) such that for all s and t in T, 

s * 	 (3.3)i 

R(v) is called the covariance function of the weakly 

stationary process tX(t), teT 

3.3 Spectral representation of weakly stationary discrete  

Parameter stochastic processes. 

An important result proved by Vold (Parzen,156l) is that 

the covariance function R(v) of a discrete parameter 



weakly stationary stochastic process may be expressed in 

the form v 4., 
(v) 	J 	d Pa)) -7r ( 3 4 ) 

V' = 

where the function F(w), called the spectral distribution 

function, is bounded and nondecreasing. This function may be 

uniquely written as the sum of three components Fd(w), 

F sc  (w) and F aLc  (w) such that 

(a) the function Fsc(w) is a singular and continuous function; 

(b) the function Foi(w) is purely discontinuous, increases 

only at the discontinuity points and is defined by 

F 4 Coq 
	2.1 48 F(';) 	(3.5a) 

being the discontinuity points ofj(w) and 

AF:(tx) 	F ((71-0) 	F( AT 0) 	(3.5b) 

to 	 (o-) >o 	 (3.5c) 

'there being only a finite number of points of positive 

spectral mass in any finite interval on the real line; 

(c) the function Ftte  (w) is absolutely continuous and is the 

integral of a non-negative integrable function f(w) 

called the spectral density function; the latter function: 

is continuous except at a finite number of points where 

it has finite left-hand and right-hand limit 



Corresponding to such a process a monotone non-decreasing 

function can be defined to satisfy 

E < (i(fl— 	> 2 	Pltl—F (S) 
	

(3.7c) 
S 

(3•7 

or, symbolicallyi 

E < rdy tefi = OP( 4) 

CO 

In time series studies it is usually assumed (Parzen,1961) 

that the singular component Fcc  (w) is absent and that, 

therefore, the spectral distribution function F(y) may-be 

represented in the form 

= 	A F ( 	IL  f 1(47.  
cri.cor 
	 (3.6) 

In terms of the spectral distribution function F(w) one can 

characterize various representations of a stationary process 

f X(E) 	e 17  One of the most important representations 

employs the notion of a process f y(t), t E'T with orthogonal 

increments. This is defined (Doob 1953) as the process such 

that 

I Y().  1 (M I  > < 00 	 (3.7a) 

andi whenever the parameter values satisfy the inequality 

S,<-1*/.1S2.( )  the incrementsvt._y5, and tit _y_54 	are orthogonal 

to each other,  

E 	yka- ysa  (Yi I -Ys,).> -1- 0 (3.7b) 



then there exists ap.qprocess with orthogonal increments.  

which satisfies x-
i
, !i4 -  

x e 	9 (a )  el 

F < dq (3.11b) 

since the difference F(t)-F(s) depends only on6- if.the 

process y(t) is covariance stationary. 

In terms of the process with orthogonal increments, 

a weakly stationary process fra.bta-qhas the so-called 

spectral representation (Doob,1953;Grenander and iosenblatt, 

1957) 	

X() = f7rir  e 	dy (14 	 (3.8) 

where 

E 	I elyt 1.7)1 > 	ciF(t.r) 	(3.9) 

As far as modelling of stochastic processes is concerned,  

an important case arises whenIthe spectral jump function 

(3.5b).vanishes for all w and the stochastic process is 

characterized by the so-called absolutely' continuous spectral 

distribution function. 

It can then be shown (Doob,1953) that if g(w) is a function 

measurable with respect to the class of Borel-measurable sets 

In an xidimensional spacei such that 

d1 t4,1 .  
( tsPn "P  7217 :(3,10), 



C2. 

01 FM 
Moreover, ifT7never vanishes, 

L.:; gc Jcf,(11) 
	

3.12) 

The relations (3.11) and (3.12) play an important role 

in parametric models of stochastic processes as discussed 

in the following sections .  

3.4. Parametric representation of discrete parameter weakly 

stationary processes.  

As discussed in the preceding section, a stochastic process 

lover;may be defined as a family of random variables indexed 

by a parameter t which belongs to a linear index set T. It 

was also observed in the preceding section that a set of 

observationsWiliteV, arranged chronologically, and called 

a time series, is regarded as one of many possible realizat-

ions of the stochastic process. 

The statistical theory of time series analysis attempts 

to infer, from an observed sample, the probability law of the 

underlying stochastic process. This is effected by postulat-

ing a stochastic model which is'completely specified texcept 

for the values of certain parameters. The parameters are then 

estimated on the basis of the observed sample so that the 

complete model may be used. 



rut 
y(w) with orthogOnal increments (3.11) by. 

4'3 

(a) either to understand the mechanism generating the process 

(b) or to predict the future behaviour of the time series. 

The important and extensively used models of weakly station-

ary stochastic' processes are the moving average scheme and 

the autoregressive scheme. Both schemes were discovered in 

a finite .parameter form, in 1920ts. It was _not until late 

1930's, however ,that they were shown by Wold to constitute 

special cases of stationary stochastic processes possessing 

absolutely continuous spectral distribution function 

(Parzen,1961;Doob,1953). In particular, it can be shown 

(Doob,1953; Grenander and Rosenblatt,1957; thittle 1963) 

that if (and only if) a stochastic firocess/ 71 posse'sses 

an absolutely continuous spectral distribution function F(w), 

then the process can be represented as a process of moving 

averages defined by 

t) E J.Ay 
with the condition 

J=-*0 
TheNare mutually orthogonal random variables with mean 

zero and variance if . They are defined in terms of a process 

(3.13) 

(3.14) 



The condition for the existence, of such a representatiOn 'is 

(Whi t tl e 196 3 ) 

Cf 

E  
fre jto t)u. ci4r. 

.22r (3.16) 

and have an absolutely continuous spectrum with constant 

spectral density 

6.4 

4;04.=  avr 	 (3.17) 

The spectral density fg(W) of the process 5X(t)5is then given 

by 
S. I 5.  
2TT I (3.18) 

As observed by Whittle(196) ,there are infinitely many 

functions 00/satisfying 

/ 01 	z 
g*.; 

4. 	Ci (3.19) 
J= -A,  

and, therefore, infinitely many representations of the 

form (3.13). However fOr a process in time, there is only 

one physically meaningful moving average representation, 

namely, the one not involIing future values of the 	so that 

X(t) fib, 
CP 

(3.20) 



(3.20a) 

obtains, 40 
In. B en 

2-0  

(3.22a) 

 

X 
1.7r  -(. f. (4) der 

.20) represents a stationary process. 

cr 

The relation 

in Vtarms of past values on an orthogonal randompocess fir'ef 

It is possible, however, to represent the process i?X(t)lalso 

as an euteregressive process, or, as a linear functlon of its 

past values plus a random shock 
do 

X(e) = 	CiPai-j) t 	(3.22) 
../= 1  

where the orthogonal random processWis defined by (3.15) 

and (3.16). The relationship between the coefficients 0)55 

and caiiof equations (3.20) and (3.22) can be easily deduced 

(Box and Jenkins,1966) by introducing a backward shift operat- 

Or B defined by 

:3 Nit 	%if .1 	 (3.23a) 

g  vb v: v6_ K 	 (3.23b) 

Employing the operator B in equations (3.20) and (3.22) one 
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Substituting (3.22a) into (3.20a) (Box and Jenkins11966; 

Whittle,1963) one obtains 

Z,0 

This relation may be used to derive the coefficients a;$from 

the coefficients ib4 and vice versa: This.,however, can only 

be achieved if certain invertibility conditions are satisfied, 

namely (Whittle,1963; Box and Jenkins,1966) 

(a) the aptoegressive process (3.22) may be inverted into 

the one-,sided moving average process (3.20) if 

(i) the expression is analytic in• 

1 81 <I 
	

(3.24a) 

i) the coefficients 5ai i (3.22) satisfy 

1= 1 
 cki 

.2 < 	 (3.24b) 

(b) the one-sided moving average process (3.20) may be 

inverted into the autoregressive process (3.22)if 

(i) the expression 1.1 13j 8 	is analytic in 
_pro 

I BI4 1 

(ii) the coefficients (3.20) satisfy 

( 3 . 2 a ) 

(3.25b) 
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Approaches to time series analysis based on finite parameter 

versions of the representations (3.20) and (3.22) were 

pioneered by Slutsky and Yule in 1920's (Parzen,1961). 

The former is credited with discovering a finite moving 

average scheme which, for some integer m, is defined by 

• vti 
Ar* = 	b' 4 L._ 	 (3.26) 

The researches of Yule, on the other hand, aed to the notion  

of a finite autoregressive scheme, which, for some integer 

n, is defined by 

Xc= 	°•J Xi -j 	 (3.27) 
Jr: 

The latter scheme may also,be interpreted as a stochastic 

difference equation of order n (Mann and Wald,1943; 

Grenander and Rosenblatt,1957). 

An excellent exposition of characteristic features of 

finite autoregressive and moving average schemes is given 

by Box and Jenkins (1966). For the purpose of the present 

discussion it will be sufficient to note that 

(a) the finite moving average scheme exhibits properties of 

disturbed periodicity; its autocorrelation function 

vanishes for lags greater than m where m is the order 

of the scheme. 

CO the autocorrelation function of an autoregressive process 

satisfies the same difference equation as the process' 

itself. 



(c) the autoregressive process of order 
	

defined by 

.1  'TT CA. 	... 	? 
	

(328) 

relates the present value xt of the process to its past 

through only one past value xt_, and is generally called 

a Marko'v process. 

(d) the autoregressive process of order 2 defined by 

	

24= cl-t 	42 Xit-2. 	1'4 	 (3.29) 

may exhibit a pseudo-periodic behaviour if the roots 

of the characteristic equation 

	

a 	- 	2 8 2  =":0 	 (3.30) 

are complex. 

(e) as observed by Box andJenkins(1966), there exists 

a duality between autoregressive and finite moving 

average processes. As a result of this duality, 

l.the parameters of the autoregessive process are not 

required to satisfy any conditions to ensure inverti 

bility; however, for stationarity, the roots of the 

characteristic equation 

— 	ai a 0 
JAN 

must lie outside the unit circle. 

2. the parameters of the moving average process are not 

required to satisfy any conditions for the stationarity 

ho‘i)*Oir, for the invertibility of the moving average 

process the roots of the characteristic equation 

(3.31) 



be represented 

3.34) 

  

b‘: /34 	° 
Z=0 

must lie outside the unit circle. 

An extension of the representations (3.26) and (3.27) is 

provided by an important subclass of processes with absolut—

ely continuous spectral distribution function. These are 

processes whose spectral density function can be represented 

as rational function of exp(iw) in the form 
rrs 	tau 

(3.33) 

where both polynomials in (exp(iw)) are assumed :to have 

all zeros strictly within the unit circle, and no common 

roots. 

As shown by Doob(1953) such.processes may 

in the form Lai 
r 	et.) & 	bE.. j 

1::0  XEt* f e 	 to)" g 
J=0 

where 5(w) is a process with orthogonal increments. 

Alternatively, the prOcess xt  described by (3.34) may be 

represented by a stochastic difference equation 

B1) 	 8j  )iP  
A -)=° , 	76 	

0.35) 

where the orLhogonal random variablesWare defined by . 0.15Y 

and (316) 



- 70 

The representation (3.35) is referred to as the process 

of mixed type (tilhittle,1963), or a mixed moving average— 

autoregressive process (Box and Jenkins,1966). 

As discussed in the Appendix B, the difference equation 

of the type (3.35) may also be interpreted as that describing 

the output ixtfof a linear filter with a pulse transfer 

function 1,1  

2E1 biz 
J" 	 
Z. ^a j 'Z. 
.Pm° 

(3.36) 

the input to the filter being the white noise sequence 

In particular, if the sequence {is characterized by a 

Gaussian distribution, the process ?xtcis said to be a Gauss—

Markov process. 

The idea that a rational spectral density may be associated 

with the output of a linear filter excited by a white noise 

was employed in a pioneering "shaping filter" method of 

Bode and Shannon(1950).They were concerned with the problem 

of prediction of a signal contaminated by noise. Since the 

only way in which the signal and noise entered their objective 

function to be minimized was through the power spectra, 

Bode and Shannon argued that the only statistics that are 

needed to solve the problein of prediction are the power 

spectrum of signal and noise. They suggestedltherefore, 
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representing a process xt1  t E T3 whose spectrum P(w)=6 f (w) 

is known, as the output of a linear filter with gain 

Y(w) = NrP(w) 	(3.37) 

and minimum phase 

	

tje 	P (07 43 P(-'0 )  
B (6,e) 	T„.r• 	 co,

G
a. 

A somewhat similar method was also described. by Zadeh and 

Ragazzini(1950). 

As is well known, two different types of signal may lead 

to the same spectrum and to the same optimum prediction filter 

The above representation is, therefore, not unique, and 

while it is suitable for prediction, it is not necessarily. 

so  for the.  modelling of the behaviour of processes. It has 

been demonstrated by Box and Jenkins(1966), however, that 

a covariance structure can uniquely determine a model, proVid—

ed that the model is of a stationary—invertible type (3.35) 

in which the current value of the process xt  is expressed 

in terms of only the previous history. 

It should be added that the comparatively recent approach 

to modelling of stochastic processes from discrete—time 

data does .,364...0. involve the use of a model of the type (3.35))  

(or its state space equivalent), the parameters of the model 

being estimated by employing either linear regression 

(Kalman,1963) or least squares technique(Box and Jenkins.,1962, 

1963,1966,1967) or maximum likelihood method (AstrOm and 

Bohlin,1965a,1965b). 

(3.37a) 



(3..39) rai  
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3.5. Modellinpiof discrete _parameter nonstationary processes.  

The preceding section dealt with the representation of 

stationary processes whose statistical characteristics do not 

• change with time. Stationarity,however, seems to exist only 

as an ideal to which most physical processes do not conform, 

and, as a result, this feature may have to be acknowledged 

in the model of a given process. 

When the assumption of stationarity is dropped, one is 

left with scarcely any restriction on one's model. For this 

reason, it is all the more difficult to specify the model, 

or even to specify some of the statistical- characteristics 

of the variates. In consequence the methods of modelling 

nonstationary processes have tended to be more or less 

empiricat(Whittle,1963). 

An orthodox approach to the problem was based on 

Wold's theorem (3^T1ittle,1963) that any stationary process 

xtli  t 6T? can be uniquely represented as the sum of two 

mutually uncorrelated processes 

= fh4 4-176 	( 3.38) 

in which 

Is deterministic and called the mean value function and 

1k represents a stationary randoin process with finite second 

moments and is called the fluctuation functiOn (Paren11961). 



Bendat11965) 

—2 et; f; UV. 
J= e) 

where, for a sample x1,. 

1E1 	fl (4  ) Pg 	
(
;ic 

A/ 

ax 	= 2: Pi  E Pic bf ) era 
This type of model was used,• for example, by 

3.42) 

( (3 .43a) 

(3.43b) 
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The relation (3.38) has been used for a long time .to 

explain a nonstationary behavour of certain processes by 

representing the function mt  as an appropriate function of 

time. Thus, mt  has been represented, by various researchers, 

as 

(a) systematic oscillation (Parzen,1961) 

MA; 	J=l 
	ecoS (41,re .4' 15.1) 	 (3.40) 

in which the amplitudes Ai, the angular frequencies w. 

and the phases 0. are gonstants,some of which are given, 
and the rest are unknown and have to be estimated; 

(b) polynomial trend (Zadehand Ragazzini,1950) 

- 	aj t -1  - j=0  (3.41) 

in:which the degree p of the polynomial is assumed 

and the coefficients a.; have to be estimated; 

(c) sum of orthogOnal polynomials (Whittle,l963; Thrall and 
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McCarty et al(1962 1963) for analyzing data contained in 

RF backscatter for information concerned with physical 

phenomena of missile flight. The many theorems which,are 

presented and proved in the above reports seem, however,  

to be unnecessarily complicated and they could be presented 

in a more simple manner. 

As discussed in the preceding section,the stationarity 

of the autoregressite, moving average and mixed autoregressive 

moving average models was- ensured by requiring that all the 

zeros of the appropriate polynomials in the backward shift 

operator B ,should lie outside the unit circle.It seems 

reasonable,therefore, to expect that when these requirements 

are relaxed,a nonstationary behaviour of the corresponding 

models will result. (Whittle,1963). 

The earliest example of this approach (Wliittle 1963) is 

provided by the model of an accumulated process  

defined by the relation 

)(.6 tz 	CIPC16-, 4' '11 j= 
in which the zeros of the Polynomial 

ED.; 
M )  J:: 

(3.44) 

(3.45) 

approach the unit circle and thenlare orthogonal random 

variables, such as those characterized by the relations 

(3.15) and 



A more realistic approach to the representation of a 

process containing trends is to employ (Whittle11965) 

a generalization of the mixed autoregressive—moving average 

model 

(3.46) 

in which the polynomial 
• 

A(3) 1= ; a') 13 j 	 (3.47) 
has zeros on or inside the unit circle. It has been observed 

„bar Whittle(1965) that the mechanism generating this process 

is itself constant, although the process is evolutive, and, 

moreover, the nonstationarity of the process is evident not 

merely in its mean but also in all its moments as, indeed, 

is the case with observed evolutive series. 

A model of the type (3.46) has found an' important 

application in a prediction method based on an exponentially 

weighted moving average techniques (Whittle,1965; Otterman, 

1960). In this approach no explicit model of the process is 

given, but the predictOrs are assumed to obey a low order 

model of the type (3.46). The coefficients in the relation 

are determined, partly by requiring that the predictor be 

exact for certain sequences (such as polynomial sequences) 

and partly by empirical search for values which seem to 

yield good predictors. 



,j= o 
should be used, Here 

/ 
It has been observed by Box and Jenkins (1966) that 

while a model of the type (3.44) (and, by virtue of the above 

remarks,also the model (3.46), may be of value in represent-

ing an explosive or evolutionary behaviour of processes such 

as bacterial growth, it is not suitable for representing 

many physical processes met with in practical applications. 

The reason is that, while ,in general, the local behaviour 

of the latter appears to be independent of the current value 

xt  of the process /xt$ , the local behaviour of the evolutio-

nary series does depend on the current value xt  of the series. 

In particular, the solution of the difference equation of the 

type (3.46) consists of a deterministic and a stochastic 

component. In the nonstationary case, the deterministic 
component builds up, and dominates the stochastic component, 

the behaviour being essentially the same whether or not 

the "moving average" terms are introduced in this equation 

(Box and Jenkins,1966). 

Box and Jenkins(1966) show, therefore, that, for the 

representation of processes which' are nonstationary, but 

nevertheless exhibit homogeneity, a model of the type 

C 



Sz )(4.4 
/az 0 (3.51b). 

(3.50) 
Employing now a summation operator S defined by (Box and 

Jenkins, 1962) 

(3.51a) 
11. 

etc., and summing (3.50) d times, one obtains, 

A (8)x f  T.- Pd-i  (1) ÷ (A rn-01-1  
ti 	+. A 0 s 

Nd.,, SS)L 
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denotes a backward difference. 

The polynomial A(z) given by (3.47) may have some of its 

zeros inside the unit circle, but the introduction of the 

difference operatorVensures that the effective polynomial 

in B on the left hand side of the equation (3.48) has some 

zeros outside and some inside the unit circle. As a result, 

processes containing trends, but not being explosive, 

can be generated. 

The process characterized by (3.48) has been introduced 

by Box and Jenkins earlier(1962,1963a11963b) but without.  

the above interpretation and, in a different form as follows. 

Replacing the operator B on the right hand side of (3.48) 

by the backward difference operator .one obtains, 

A (S)V d X-1 	( 	C7M-1+... 4  X 0 117 et  fn.  . 
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The process characterized by (3.52) has been called by Box 

and Jenkins(1966) an integrated autoregressive-moving 

average process of order (n,d,m). The first term Pd_1(t).  

is the complementary function of the difference equation 

(3.50) and is a polynomial in t of degree (d-1), with 

coefficients depending on the starting values of the series. 

The model introduced by Box and Jenkins earlier (1962,1963a, 

1963b) in a rather empirical fashion, represents a particular 

case of (3.52) with A(B)=1 and Pd_i(t)=0. 

3.6. Concluding remarks.  

In this Chapter an attempt has been made to review critic- 

ally the existing techniques,known to the writer,of para-
metric description of stationary and nonstationary processes 

(for this reason, the representations in terms of expansions 

(e.g. Karhuen,1947) are outside the scope of the review) 

None of the techniques was suitable for application to the 
• 

problem of on-line identification on which the writer was 

working. This has led to the development of another descript-

ion of nonstationary processes,discussed in Chapter 5 and 

Appendix C. 



CHAPTER 4.  

DIGITAL TECENIQUES OP PARAYETRIC IDENTIPICLTION  

OF A LINEAR SYSTEM.  

4.1. Introduction. 

Chapter 2 dealt with identification techniques yielding 

estimates of the discrete values of the impulse response or 

frequency response. It vas pointed out that a great disadvant 

age of these technioues is the large number of parameters 

required to represent a response adequately. An alternative 

approach is to characterize a system by a differential or 

difference equation and to identify the system by determining 

the order of such en equation, and estimating its parameters. 

The techniques identifying a system in such e fashion, and 

involving the use of regression analysis are reviewed in 

the -following sections. 

4.2. System identification as:a - Kalman filtering problem.  

4.2.1.: General. 

Then the coefficients of a differential or difference 

equation are known, the state of the system (Zadeh and Desoem 

1963) may be estimated by using the well-established filter-

ing techniques (Kalman,1960,1961,1963a). It is possible, 

employ the state space approach in the 
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identification'problem in which such coefficients are unknoWn 

and are treated as parameters to be estimated. The parameters 

may then be considered as pert of the state vector and 

estimated jointly with the state variables proper. .• 

Such an approach has been adopted, for example, by 

Kopp and Orford (1963). The approach may be briefly 

summarized as follows. 

(a) observable output and effective input ere regarded as 

being contaminated by noise with given statistical 

characteristics; 

(b) parameters of the differential (or difference) equation 

describing the system are 'considered as additional 

state variables and incorporated in an enlarged state 

vector; 

(c) assumptions are made about the fashion in which these 

parameters are supposed to vary; prom these assumptions 

a set f Constraint equations,is obtained • and -adjoined • 

to the state equations of the system; 

(d) the resulting- non-linear differential equations are 

perturbed about the current estimate of the enlarged 

state vector; 

(e') the problem of estimating the linearized state vector 

is formulated as 	olution of the Kalman filtering problei 
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4.2.2-. Statement of  the problem and assumptions. 

Consider a general singleinput single-output system 

char.acterized by a differential equation 

C an(t)pn + an_1(t)pn -1  + 	+ao(t) )y(t) 

C bn(t)pn  b(t)p -1 
n-1 	bo(t) ) u(t) 	(4.1) n 

inrhichaWA0endsomeofthecoefficientsb.a "0 ( 

may be equal to zero. 

In any practical situation the input and output of the 

system will be contaminated by noise which, in the technique 

being described, is assumed to be additive. Consequently, 

the state equations of the system (4.1) can be written in 

the form 

21(t) = p(t).x(t) 	G(t).u(t) 	n(t) 	(4.2a) 

where 

L(t) = H(t).x(t) + v(t) 

wit) is an n x-1 vector, 

G(t) is an n x 1 matrix, 

is an n x n matrix 

H(t) is a 1 x n matrix 

(4.2b) 

The disturbing noises ri(t)e and Iv(t )1 are assumed to have 

vnown characteristics as follows: 

( )51v(t)i is e normally distributed white noise with zero 

mean andv-ariance 5-2‘4; 	g 	4r)j 
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(b)14(t)1 is a zero mean normally distributed variable 

which is a white noise modulated by a known function 

S(u(t)) of the noise-free input, that is 

(t) 	S(u(t)).wo(t) 	(4.3) 

where w (t) is white noise with zero mean and 

variance Y (t)g(t-t; wo 

The mariner in which the parametersifii(t)1 andjgi(t)f 

of the matrices F(t) and G(t), respectively, are supposed to 

vary, is presented by the constraint relations in the form 

F(t) - 8(t) 	(4.4a) 

6(t) = ti(t) 	(4.4b) 

Thecoefficientsg..Mand.  0 ( .)of the matrices 

G(t) and 4,(t), respectively, are supposed to vary continuous 

ly in a random manner so that 

9..(t) = Gt.(t)f..( ) + w..(t) 	(4.5a) la 	la 	 lj 

O ,  (t) = Cq(t)g-(t) 	c(t) 

where the parameters eitzi(tfl and,  iip)

(4.5b) 

are assumed to be  

given, and 1 wij(t)i a,nd Iwz,(t)i are zero mean gaussian noises 

with known ealg(-1) and 42ZN-'-gr) variances 	 respectively. 
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4..2.3. Method of solution.  

Let an enlarged state vector g(t), composed of the elements 

of the state vector x(t) and the elements of matrices F(t) 

and a(t) be defined as 

2(t) 	cxl(t),..,,xn(t),f11( ) 	); 

g(t) ) 	(4.6) 

Similarly, let an enlarged disturbance vectorA(t),composed.  

of the elements of the noise vector Mt) and random components 

of the matrices g(t) and 4(t) be defined by 

t T 

• • • 'An 	w11(t)  • • • • w 	(t ) ; nri 

	

wi(t) 	wn• (• t) ) - .(4.7) 

Then, when the constraint equations (4,4) are adjoined to 

the state equations '(4.2), the enlarged nonlinear state 

equations are written in the form 

	

a(t) 	L(t)g( ) + )(t) 	(4.8) 

where 
•;-••••-;\ 
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In the above matrix the diagonal terms g

J
, 
sa 
.(t) correspond 

to the asterisked parameters of equation (4.5). 

For a discrete-time analysis, of interest in this thesis, 

it is assumed that the input and the output are sampled every 

AT seconds, at the end of each interval, and that the input 

u(t) is constant over any interval, changing in a stepwise 

manner between the intervals.** 

Adopting, for a variable (t), the notation, 

1(n) - 1(n AT) 	 (4.10 ) 

( t/n ) = estimate of 1 t  given observations ) 
) 

up to na T 	 ) <(#14.1)Acr 
(t/n) = (t) -1(t/n) 	) 

estimation error 	) 
) 	(4.10c) 

 

/24 t<(n+1)AT  

the problem of estimation is formulated as a recursive problem 

of estimating the current state vector ,(n+l), given the 

conditional estimate t(n/n) based. on observations up to the 

time n,4 T, and the current observation of output, z(n+1). 

The procedure is carried out in the following steps: 

) the estimates t(t/n) of the state vectorja(t) between the 

sampling intervals n4 T and (ni-1)4T, given the obserVatior 

up to the time nAT are governed by the eqUations 

** This is the case of a zero order hold discussed in 

Appendix B. 

(4.10b) 



g(t/n) 	.g(t/n_) 

where 

L(t/n) = (4.12) 

(b) the differential equations governing the estimation errors 
ne 	A 
g.(t/n) = g(t) a(t/n) 	(4.13) 

are obtained by perturbing equations (4.8) about 

the current estimate of the variables. Thus, subtracting 

equations (4.11) from (4.8) and neglecting second order 

quantities, the linearized perturbation equations are 

èo#(t/n) = L i (t/n.)0(t/n) 	)1,1(t) 
	

(4.14) 

w where 

hl(t) = i.)?:1(t") 	.yw ( ); 

) 	(4.15a) 

ue(t/n) = g(t/n).S(u(t))wo(t) 	:(4.15b) 

The matrix La  (t/n), the-components of which are the 

estimates of the components of the enlarged state vector 

g(t/n) at timea. given data to time nAT,.is given by 



(t/n) (4.16) 

) It is now assumed that the disturbance vectorN1  (t) is 
constant in the interval nAT < t <(n+1).AT and that 

its components are zero mean gaussian variables with 

covariance matrix 2(t)6(t—T) 

E < Xi(t)K(t14  )0 = ,g(t)4(t-1°) 
	

(4.17a) 

E  G1(t 	= 
	 (4.17b) 

Po 
It is:also assumed that the estimation error a(n/n) at 

the sampling instants nii.T is distributed multinormally 

matrix P(n/n), 

P(n") 

with zero mean and covariance 

E < Zi(n/n.) gT  (n/n)> 

E<1(n/n)> 

(d) With the assumptions as above, the solution of ecuation 

given by.  

(4.18a) 
(4.18b) 



•.• 
a(n+1/n) = 0(n+1,n) 7(n/n) +!:(n+12nA.(n) 

	
(4.19a) 

where g(n+1,n) is the transition matrix of equations 

(4.14) and 	EST. 
r(n+1,n) = g((n+1)4T,T)d‘r 
	

(4.19b) 

(e) The solution of equa 
Asr 

tions (4.11) yields the estimate 

t.(-o4-1/n) of the enlarged state vector g(t) at the time 

(n+1)AT given the observations up to the time n41T. The 

problem is now to obtain the estimates of this vector at 

time (n+1)ATI  when the new observation z(n+1) is availabi 

In other words, it is required to estimate 
A 	 A 	 ro 
o (n+1/n+1) = a (11-1-1/n ) 	( n+1/n+1 ) 

	
(4.20a) 

An estimate o(n+1/n+1) of the error Z(n+1/n+1) given data to 

(n+1)AT is made by linear regression,i.e. 
ge o(n+1/n+1) = K(n+1) z(n+1) 
	

(4.20b) 

where 

K(n+1) is determined by minimizing the diagonal elements 

of the covariance matrix F(n+1/n+1). of the - error.g(n+1/n+1) 

Awl 
z(n+1) denotes the difference between the actual new data 

received and the estimate of the data conditioned on the 

previoUs sampling interval 

1:°(n+1) _ z(n+1) 1(n+1/n) 
	

(4.20c) 

Ttalx n+n2  + n) matrixMbe defined as 

	

M = ( H ,o,  
	

(4.21) 
1A2+ rt. 



Then, 
PO z(n+1) =,, Ma(n+1/n) + v(n+1) (4.22)

22)  The expression for the optimal'estimatesS(n+I/n+1) of the 

enlarged state vector a(n+1) at time (n+1),A. T given the data 

up to (n+1)AT, is obtained from (4.20a) (4.20b) and (4.22) 

as 
A 
(n+1 /n 1) = A n+1/n) + o(n+1/n+1) (4.23a) 

or, 
A 	dvi 

.51( 14-1,/n+1) _-.2'.2(n+1/n) + K(n+1) ( Ma(n+1/n) + v(n+1) ) (4.23b) 

This equation is seen to 

the gain K(n+1) given by 

K(n+1) = 2(n+1/n) MT  ( 

represent a Kalman filter with 

2(n+1/n) ET  +er*n+1) )-1  (4.24) 

and. governed by the nonlinear Ricatti-type differential 

equation, called the variance equation and given by 

P(n+1/n) = 0(n+1,n). P(n/n) g(n+1,n). 

+ E:(n+11n) 2(n) I"T(n+i,n) 
	

(4.25a) 

where_ the relation :between P(h+1/n) and P(n+1/n+1) is 

P(n+1Xn+1) 	I - K(n+1) M ) P(n+1/n) 	(4.25b) 

I being the unit matrix. 

The estimates g( t) are obtained in an iterative fashion 

as follows. 



e(t) = .w(t) 
D (z 1) - 
1 	..., 	01  

N 1(z-1)  

4.27) 

ances generated inside the system. Such disturbances are 

better represented as stationary random processes with 

rational spectral densities. 

As discussed in Chapter-3, a process of this type may be 

modelled by an output of a linear dynamical system excited 

by white noise. In the discrete-time description, such a 

linear system is characterized by a pulse transfer function 

(see Appendix B) 

H( 
-1 -a  ) ri(z  ) - 

D(z -1) 
(4.26) 

where N . z-1) and D(z-1) are polynomials in the variable z-1  

have no common factors,- and have zeros.within the unit circle. 

A stationary discrete-time random process. e(t) may thus be 

represented by 

where iw(t)iis a zero-mean gaussian white noise sequence. 

By virtue of the superposition princible, characterizing 

linear dynamical systems,,any disturbance affecting the 

input can be transformed so as to appear at the output. 

Such transformed disturbances may be combined with any other 

dis.turbances affecting the output, into an equivalent output 

disturbance e(t) of the form(4.27). 

By virtue of the superposition property the effects of 



D2( 	).DI(z-1) =D(d- 

N2( 	).D1(z-1) =N3( - 

N1  ( 	-1)=N4(1-1  

,(4.30a) 

(4.30b) 

(4.30c) 

lstrOm and be written then the relation (4.29) may 

Bohlin11965a 1965b) 

N (z ) 
y(t) - 3 	 u(t) + 

D(z-') 

N (z-1  4 	w(t) +k 4.31) 

or, explicitly, 

the disturbance e(t) and of the input u(t).on the output y(t) 

can be considered separately. The dynamical system itself' 

is also characterized by a pulse transfer function 
N2(z-1)  

H2-(  D2  (z71) 

and the output y(t) may be written in the form 

(4.28) 

y(t) u(t) 
Nl(z-1)  

Dl(z-1) 	
 w(t) +k 4.29) 

where k is a constant. and all the zeros od D2(z-1) and D (z-1) 

are strictly within, the unit circle. 

zf 
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(4.32) 

Some redundancy in this model is removed by a reparameteriz 

ation as follows 
- 
4  

n 	in --1) . Ao 15 	11.t. 	P h-s 
172-1n2-01  4 c/A.•2:4"" 
	 ti et' ) 

f" 

A
(it  -4-4+ rti-1-4 611' - • 	I  w 	t 	

(4.33) 

The model structure  .is the general representation of a 

finite-dimensional, completely controllable, completely 

observable single-input single-output system with arbitrary 

disturbances in terms of stationary,gaussian random process 

with rational spectral density. 

It is clear from equations (4.29)-(4.33) that the dynamics 

represented by the polynomial D(z-1) is partly due to the 

system dynamics and partlydue to the representation of 

disturbances. An investigation of the common factors of N3( -1) 

N
4
(z-1) and D(z-1  ) will separate one from the other. Should 

there be no such common factors, every state of the system 

(4.33) would be controllable either from u(t) or from w(t). 

'The equation (4.33) contains (4n+3) parameters: n coeffic-

ientsdi , (n+1) coefficients (3( n coefficientA ,n initial 



are independent normal with zero mean and variance 

the matrices 	, 	and 	are defined by 

2 c and 

401 HAVE UNIT WiCANCE 

conditions and k.The identification problem is, for an assumed 

value of n, to find estimates of these parameters from the 

given observations of the input u(t) and output y(t), 

t= AT 3  24T, ... 3  N®T 
o 	,• 

In the approach of Astrom and Bohlin, the parameters are 

estimated by using the method of maximum likelihood estimation 

(see Appendix A), the essence of the approach being an 

efficient algorithm for minimizing the logqrithm of the 

likelihood function. The approach is briefly sketched below. 

First, an expression for the probability density function 

of the observations y(t) (t=4ST, 	AlAir 

is obtained as a function of the inputs u(t) (t=gor)-... ,A4vr) 

and the parameters, For this purpose the variables w(t) of 
rt 

equation (4.33) are replaced by new variables 

E (i') = c0 .14(.) 	 (4.34) 
and expressed as a function.of observations. The problem is 

then formulated in terms of state equations as follows. 

(.16 +1) = eg at )4,  r ta. c. l 	.A.3 	(4.35a) 

tea) = 	6.14  :kfr) 	tt)-- 	35b). 

where ,(t) is an n-dimensional state vector the variables E 
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A .  

The function L is minimized in two stages:first, 

minimum of the function 

V (12) m 

is obtained, where 

• 

Then the estimate of ektulis obtained from 

A 	 I 

e 4 :11ES 	CQ  
fir,, 	et t  

" 0 tz.a 

If L is the logarithm of the likelihood function 

L 	c2 CO2* 

	Et  -f 	1423 C0  + 2 1°3 271- ) 	(4.37) 

then the maximum likelihood estimates of the 4n+3 parameters 

are obtained as those estimates which result in the minimum 

of the function (4.37). To simplify the nota:tion, all the 

parameters are denoted byrhere 

1., .... 

On4G = -.cye+i30Y1  

1§it i 	di: 

p3ntc  m xi Gt1 

eiK4f 	b." 
el -2 

(4.38) 

(4.39) 

(4.40) 

(4.41) 



V is a vector with components where 

(4.43a) 4n-.2 

(4.44a) 
• .:G2,...4n+z v09 	er: a  e;  

The log-likelihood function L has Continuous partial 	• 

derivatives of all orders and the minimum is finite,though 

not necessarily unique.. For this reason the technique chosen 

for the minimization of the function (4.39) and (4.41) 

is a gradient technique enabling fast convergence to be 

obtained through the use of th Newton-Raphson algorithm 

(Deul'ph,1965). The maximum likelihood estimates 	are 

thus obtained from 

e 	e 64+0 	00% 

Vet:  

ace  A (fil) 	EGt  
7)9'i 4.43b) 

YV2 is a matrix of secondpartial derivatives with 

elements given by 

(4.42) 

-eV(0) 
O 

`€%ct)  ?ife 

N 	IECi) 
itt) 

#.7. 



and the derivatives °fat/are obtained from the relations 

(4.35) in terms of the partial derivatives of the state 

vector x(t) with respect to the parameters 9. 
o 	, 
Astrom and Bohlin (1965a) show h-owAo calculate these partial 

derivatives so as to achieve shortest possible computation 

times. They prove also that their estimates possess all the 

desirable large sample properties.(see Appendix A). The 

details are,however, thought to be beyond the scope of this 

review and the interested reader is referred to the valuable 

report quoted above. 

4.4 Identification of a linear system subject to a nonstationa 
correlated disturbance.. 

The identification technique discussed in the preceding 

section is really applicable under stationary conditions, 

when the statistical characteristics of the disturbance 

do not change with time.. When this is not the case,the model 

may be cyclically updated, as suggested by IstrOm and Bohlin. 

A more sophisticated way of dealing with such a situation 

is,however, to acknowledge the nonstationary character of 

the disturbance and to allow for it by including a suitable 

model in the input-output relation of the system under 

consideration. 
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This approach was adopted by Box and Jenkins. Their tech—

nique was first described in 1962 and 1963 and was originally 

devised to deal with closed—loop control systems. The tech—

nique has been greatly extended and consolidated during the 

last two years , and published as a series of Lancaster 

University Technical Reports (Box and Jenkins,1966,1967). 

While it is comparatively easy to review the earlier work, 

it is rather difficult to give justice,within the framework 

of a small sectioni to the above mentioned reports,constitut—

ing effectively a preprint of a projected book. Therefore, 

only the more important aspects of tit "Box and Jenkins" 

approach can be highlighted here. 

The essence of the early "closed-loop" phase of the 

approach (Box and Jenkins,1962,1963) is the design of a 

controller to control an industrial process subjected to 

a nonstationary disturbance. The design is carried out in 

two stages. First,the process dynamics and the character of 

the disturbance are identified. Theri, a .control law is 

derived such that the variation of the input signal matches, 

as closely as possible,the variations of the output of the 

process due to the disturbance. Only the identification part 

of the procedure is "viewed below. 

The characteristics of the process and the disturbance 

are derived from the results of two tests. In one test, 

no control is exercised over the process and the process 

is allowed to drift under the influence of- the output 



(4.46a) 

disturbance. In the second test known adjustments are made• 

to the process and the resultant variations in the output, 

due to the combined effect of control and disturbance, are 

noted. 

The nonstationary disturbance is represented as an 

"integrated autoregressive—moving average" stochastic process 

V(t), discussed in Chapter 3 and defined by 

V(**4 	C 	4 	1— + Yo S

•  

	• 

	

- 	'Ks S '1+1  e t f+i 	 (4.45) 

where e(t) is a zero—mean gaussian white noise with variahce 
A 
, 	are constants, andV and S denote,respectively, 

a backward difference operator 

vet  . 
and a summation operator 

A44, 
,e 	E 

J =0 
The structure of, the disturbance model (4.45) is obtained 

from the results of the first test, as. the drifting output 

of the process under consideration represents the disturbahce 

itself. On differencifig the model (m+1) times one obtains 

a moving average process of order (t+m+l) 

P.m 
71,44 

	

V 	441  =. 	a." ei _ j 	 (4.47) 

The characteristic feature of such a process is that all 

the autocorrelations of lag greater than (4+m+1) are zero. 



(4.49) .  
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The approximate constants m and / of the most appropriate 

model (4.45) of a given disturbance are thus obtained as 

follows. First, the series of readings is differenced until 

it appears stationary. Then sample autocorrelation function 

of the resultant series is obtained and the lag is estimated 

at which the correlations appear insignificant. When the 

structure of the model (4.45) and,therefore, the number;: 

of the parameters involved, has thus been determined,and 

an approximate structure of the system dynamics is known, 

the parameters of the overall input-output relation may be 

estimated from the results of the second test. To this end 

the dynamic characteristics of the process are expressed by, 

a difference equation (see Appendix B) 

CI% tt 4 e 	t4 ed. .g 4 . . . 	C o 4 ic-iy 

jg '9* cifi,A...g 	÷ do  se-N. 

or, introducing a backward shift operator.B defined by 

Bi . 	tr.: 	_ 

the relation (4.48) is written 

	

cma.0+ C wa G 	Co  13 
tit 

'The expression for the output z(t) due to the combined effect 

of the input u(t) and the disturbances v(t) is then written 

(4.48) 

	  tie  
a - - . 	ar., ce" (4.50) 
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Then the sum of squares 

(4.54b) 

(4.54b) 

(4.54d) 

proportional to the log-likelihood function, 

(4.55) 

is calculated 

.64.3 	V6+1 

or, explicitly, 

Cp.sa°+--. *Corsi" 
14,6+1 

2'6'14 	dim  (So 	4 d oak' 

C 	ti-Wz- 4 • • 4r, 	n (1_4) 3 
..oura ee  

ei4, 
where 

(4.-52) 

(4.53a) 

The parameters of the model (4.52) are then obtained (4.53b)a as 

maximum likelihood estimates as follows. First, the errors • 

are calculated recursively as a function of the parameter 

vectors c, d, Zr conditioned on the vector of observations 

EPP( 

 

- • 	4- Co 3 °I  
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( 1- /3) •/- 	(i-a)-6"11 • 	(4.54a) 

where 

,c 1— 8 
t".• 
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and minimized by using a standard nonlinear estimation 

program(Booth and Peterson,1960). The minimization yields 

the maximum likelihood ettimates of the parameters. 

It should be observed that the identification of the struct- 
114 PLO= liEb 

ure of the nonstationary disturbance is isp.d.e.lisiowiliplia.o.wirl,p: 
by the closed loop nature of the problem,However, in the 

"open-loop" systems the effect of the disturbance on the 
EMMY 

output cannot beAseparated from that of the input, and the 

"closed-loop" Box and Jenkins approach cannot be employed. 

Box and Jenkins have evidently realized this and in their 

later work(1966,1967) they, modified their approach to include 

the open loop systems also.,This latest approach to the 

identification of open loop systems can be summarized as 

follows. 

The technique consists of three parts: identification 

of the structure of the dynamic model, estimation of parameter 

in a tentatively entertained model, and diagnostic checks 

of the adequacy of the model. The technique applies now 

only under stationary conditions. Therefore, a preliminary 

check on the stationarity of the input and output is first 

made for example,by obtaining and examining a sample 

cross-correlation function of the input and of the output. 

If necessary, the input and output series are differenced 

until they appear approximately stationary. 



X 02.  

At this stage a preliminary identification procedure is 

carried out in order to obtain a rough idea of the probable 

structure of the dynamic model. For this purpose the output 

Yt is represented in the form 

pi63 ) 
(4 	e6  

j—Tair) 	(4.56) 

or, alternatively, 

y.--=vC13)146. 	e6. 

VCB) 	Voi 8j  Jc.o 
In these relations N(B) and D(B) denote polynomials in the 

backward shift operator B, v are heights of the impulse 

response at instants j 4T when the input is passed through 

a zero—order hold, Bbcorresponds to a transport lag of b 

sampling Periodtiand feOis the noise sequence uncorrelated 

with the input, the effect of the noise being assumed to be 

small compared with the variation of the input ut • 

The preliminary procedure is based on the fact that,if the 

input to a linear system is in the form of a white noise, 

the crosscorrelation function of the input and of the output 

is identical with the impulse response of the system. 

' An approximation to a white noise input is obtained by, 

fitting to the actual input(series a mixed autoregressive—

moving average model 

01 s— 	--- cop 
	a 8- - - 	34.)ck<s (4.58a) 

(4.57a) 

(4.57b) 



4 

) 	Gila  Vj (4.61) 

y 	(j ) 6‹ atu -z (4.62a) 

(4.62b) 

1 03 

or, 

cbt,(8 Ad- = (914 (81.* 	 (4.58b) 
whereWis a white noise sequence with varianceCd, the 

estimate;.1 of which is obtained from the sum of squares of 

residual errors. 

The white noise input 

Oit 

9
14 4  

k (13) 

is then crosscorrelated with the transformed output 

Oti e) 
0,4  to f- 

or, 

tins) zt  -.7 V le) 	-f- 

(4.59) 

(4.60a) 

(4.60b) 
.andtheheights. v j  ofthe impulse response are obtained froth 
the sample cross—covariance 

where 

function 

The identification is effected by plotting the-impulse 

response thus obtained and selecting a model whose theoretical 



(4.65) 

In the "nonlinear model, on the other hand, it is not 

the residual error but the noise et  at the output in 

  

( 4 . 6 6 ) ...Dt 41 ) 

6 	oCisi) 
i)( ) /6  .= /1/03) /3 	"Oa) a4 

" O4 

impulse response most closely resembles the plotted response. 

When an indicationfof the probable structure of the dynamic 
model has just been obtained, a model of the input-output• 

relation is tentatively postulated and its parameters are 

estimated by using the least squares method. At this stage 

Box and Jenkins make a difference between a "linearized" 

model and a "nonlineaImmodel. In the writers. opinion, Box and 

Jenkins are not consistent either in their notation or 

convention and, as a result, it is not very easy to ascertain 

what do they actually mean by a "linearized" model. 

As the writer understands it, the"linearized" model is the 

one in which the residuals in 

D( (3) 	m(3) 13 b 	 (4.63) 

are represented by an aytoregressive-moving average model 

( I 	OA- - 	cbr /30z, = 	ed3 	ocz, 8?- ).ez 	(4.64a) 

or, 

003) 2 --- els) 	 (4.64b) 
where 3ettfis a white noise sequence. Thus, an input-output 

relation corresponding to a "linearized model is 



(01.950 ( 131  
eo(6) 

(o) 	4s, (e) 4 	 ti  _a 
Op eis) 

I05 

that is represented by an autoregressive-moving average model 

¢p 3')e6  (1.-t9,8— • • -61z 8 46 	(4.67a) 
or, 

63)e, 	a(s) eti 

As a result the input-output relation it 

MOV blip 	f3100 ttg 
Nt3 	 063)  

4411101111001.811111"."*".1"111.1"" 	

(4.68) 

The parameters of the linearized model (4.65) are estimated: 

in the following way: 
(a) 

(a) First, a simple model 063J  is postulated and some set 

of values is adopted as starting values of the parameters 
toCilt) 

0003) 	of the model; often 	;570(8),-- 	18)::,  

(b) Using these assumed values the relation (4.65) is written 

r, (Po (3) 	 b 	(13) 
D(g) L' (8) Yt = Ncs) 	L 	

01 
46 4. 

0 

or, 
(0 1 	b 	

of ..D( a) v6  -= /V(8) 6 it 	4 

where 

) 7stimatesLD(g*/)  and (J°)(3)  of 1)(43)  andJV(11) • in the 

relation (4.69b) are obtaihed by ordinary ainear least 

(4.67b) 

4.69a) 

(4.69-6) 

(4.69c) 

(4.69d) 
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squares method, for a suitable set of integer values 

of b. 

(d) Using the estimates !(S) "V 2  and 6 	residual 
(01  

errors Ee are computed from 
(01 = 2)  (003)  yt(di..../te:903)(36twite (0, 

.(e) from the study of the.autocorrelation function of (t411:70)  

residuals a more suitable model 

Ek 

(,/ 
e - • ca)- 

77673)  (4.71) - 

may be inferred. 

(f) if the indicated noise structure is sufficiently simple 

and depends only on one or two additional parameters, 

new values yt(1)  lut(1)  may be generated from (4.69c), 

(4.69d) for a grid of values of noise parameters, and 

the values of parameters resulting in the smallest 

attainable sum of squares of residuals are finally chosen. 

estimating the paramet— A different approach is suggested for 

ers of the "nonlinear" model 

/4/03) 8 b  it4 4.  0(8) 
(4.68) 
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(B) = 	— 	- • • . 	cPe 
	

(4.72c) 

	

e (B) = 	- 	• - 07, S 
	

(4.72d) 

In the relation (4.68) the dynamic model 
• 	/V r/3) 

is known approximately framthe preliminary identification 
eta) 

procedure, but the structure of the noise model F/Fmay not be 

known initially, and may have to be obtained through a series 

of progressive improvements on a previously assumed structure, 

the improvements being indicated by the structure of the 

autocorrelation function of residual errors. 

The suggested approach involves linearizing the expression 

, Oar) 	M.) N(13) 
a t 	•••••• • yitc 	O 

(B) 	677,a) 55Kr d 6 -1 	(4.73) 

about current guessed values of parameters 

E 	; e,e— eee; 5:e.- 44.; CJOI •* Wye 3 	(4.74) 
and using linear least squares technique to estimate the 

parameters of the linearized model. 

Speoificallylif 

(II 	451 (s) u 	43‘.141 je  /vain 
457.1) 7 6 	;07(/7 1e (/3) (4.75) 

corresponds to the parameter• vector (4.74), then lineariZing 

the expression (4.73) about'(4.75) yields 



• oe 

ite("÷ 	( 	Oic) ['V; Z (elie.61/€4 
Da* 
eic 

jr.t 

Tr.,  (SG `at‘)Ce46j 

V 	 a ez6  
of., 	a  t,„ipi. 

ra=1 

The adjustments 615i - 	efe"elei) 

(0 	eat.c) 	are estimated by regressing at
( 	on to the -
1) 

negative of the derivatives Ce-6 	Pie* 1 /31i- I 	?ete-  1 'TO; 1 1V571.1 ' a e-- 
respectively, and the cyele is repeated until convergence.  

occurs. 

Box and Jenkins show that the linearized model to be 

fitted by linear least squares is approximately given by 
6:) 

4 
- 46(8)1.-T4*  e  (6') L  )13  

a I 

.1)(13)  [I7—"03")..1 	All4)  [ A7--"E-41] 
Thus, at the i-th iteration, the estimates 

D1(B) and N1(B) are obtained from the fitted regression 

)f 	(e)-1  
g..„ 

4.4-6 	+ Ate (s) — (a [ 	 f j 	(4.78) 

If b is also to be estimated: the iterative prodedure is run 

for conVergence for a series of values of b in the likely 

*range, and that -value resulting in a minimum sum of squares 

(4.76) 

and 

i 
4 

(4.77) 
(A> , ocial 



is selected. 

After the estimation procedure has been completed, diagnostic 

checks are to be made to ascertain the validity of the 

identified- model. 

If the true model (4.68) is written as 

V* 
	VC ti) I "f• 54" ( 13) ci 	 (4.79) 

and the identified model as 

V0 (Si 	'Pd (e) Q f 	(4.80) 

then the errors resulting from a wrong sel6ction of the model 

are given by 

A 	V (ta)."'•Va eal 	44-(a) 
4 	1".  Th--777731 416 	\kg, (a) ‘f.  (4,81) 

An indication of the validity of the model (4.80) may be 

obtained from an examination of the autocorrelation function 

of the errors at and of the crosscorrelation function of 

the errors at  and input ut. 

In particular, 

(a) If the dynamic model is correct and the noise model is 

incorrect, then at will not be cross-correlated with the 

input ut  but the autocorrelation function of at  will 

not appear to correspond to that of white noise; 

(b) If the noise model is correct but the dynamic model is 

incorrect, the errors at  will be both autocorrelated 

and cross-correlated with the inpUt u 



4.5. General Remarks.  

The parametric techniques discussed inithis Chapter have 

been deliberately arranged in the order in which , in the 

writer's opinion, the degree of complexity of representing 

the effects of the disturbing noise increases. The first 

technique seems to be least attractive, at least in the a 

application to single-input single output systems, in that, 

in addition to several assumptions to be made abolit the 

disturbances, it involves the estimation of state variables 

as well as the parameters of the system model. The remaining 

two techniques, while differing in details, have nevertheless 

some common factors. One of these is the minimization of the 

sum of svares of errors between the actual and the 

"predicted"output. In the case of a nonlinear relationship 

between parameters, the sum of squares function may possess 
0 

multiple minima-the difficulty recognized by Astr6m and 

Bohlin and also discussed in the theory of the nonlinear 

program employed by Box and Jenkins (Booth and Peterson,1960). 

The other common feature of the two techniques is the 

modelling of stationary disturbances, because the mixed 

autoregressive-moving average scheme employed by Box and 

Jenkins can also be regarded as a pulsed filter excited by 

white, noise. 

The nonstationary model of the disturbance, employed by::  



Box and Jenkins in the solution of the"closed loop" problem, 

cannot be interpreted in this- fashion. Bohlin(1966) 

considers this model in the form 

Kiv 	- • Yo  7 +—sr Iv 	/Z. et.() 
(4,83) 

and claims,therefore, that Box and Jenkins model represents 

a special case of their model. It.is rather' difficult to 

accept this point of view because the stationary model 

of IstrOm and Bohlin should rather be regarded as a subclass- 

of nonstationary models, and not the other way round. 

Neither of the described techniques permit the identific— 

ation of system dynamicS\- to be performed automatically • 

in the presence of a nonstationary disturbance, The develop— 

ment of such a technique is decribed in the next Chapter. 
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CHAPTER 5.  

ON-LINE ESTIMATION OF PARAMETERS OF A SINGLE-INPUT SINGLE-

OUTPUT FIRST OR= SYSTEM IN THE PRESENCE OF A NONSTATIONARY 

CORRELATED DISTURBANCE.  

5.1. Introduction.  

The work discussed in Chapters 5 and 6 has been carried 

out within the framework of the Automatic Control Research 

Project of the Central Electricity Generating Board. It was 

associated, in particular, with one aspect of the project, 

namely with the on-line control of a power station boiler. 

A method of on-line control of a boiler (Berger 1967; 

Moran and Berger,1967; Moran,Berger'and Xirokostas 1968) 

required the knowledge of certain quantities , the values of 

some of which had to be either assumed or estimated on-line. 

It was the writer's task to investigate the feasibility 

of on-line estimation of one such paraMeter, on the assumption 

that its estimate was to be Used as a control parameter in the 

main control program. 

A preliminary analysis carried out by the writer showed 

that such estimates are nonlinear functions of several 

quantities. It appeared, however, that it might be feasible, 

at least on paper, to obtain such estimates in real time 

by linearizing the relationships about the mean operating 

point and providing means to learn what the operating point is 
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As a result of such a procedure, therrequired quantity was 

expressible in terms of a small niamber of first order linear 

time-invariant differential equations. Thus, the problem of 

estimating the quantity in question was shown to be reducible 

to that of on-line estimation of single-input single-output 

linear time-invariant dynamical systems subject to disturb-

ances representing other boiler quantities .coupled to the 

systems under consideration. The problem appeared, therefore, 

to be solvable by employing one of the methods reviewed in 

Chapters 2-41  provided that the quantities used in the 

estimation could be regarded as stationary stochastic processe 

The supporting tests carried out at Croydon B and 

Northfleet Generating Stations,- and.their results, are 

discussed in Chapter 6. It is shown there that (as,perhaps, 

was to be expected) the statistical characteristics of the 

various quantities of interest, like, for example, steam 

flowrate, boiler pressure or steam temperature, vary with 

time. This indicates that these quantities should properly 

be regarded as nonstationary stochastic processes. 

The problem became thus that of estimating parameters of 

single-input single-output first order dynamical systems 

subject to a nonstationary disturbance. Since, however 

the estimates were to be used as control parameters in an 

overall -plant control problem, two further requirements 

were added:  namely 
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(a)the input and output quantities were not to be examined 

by a human operator and,therefore, the character of the 

disturbance had to be learnt adaptively by the estimation 

procedure; 

(b)since the estimation had to be effected in real time, and 

the estimation procedure was to be only a subroutine 

of a bigger program, only a limited storage capacity 

could be expected to be allocated to the estimation 

procedure. Therefore, relatively small—sample analysis 

was envisaged and the various large sample attributes of 

the estimates, discussed in the Appendix A,did not appear 

to be very relevant, the main objective being as good a 

fit to the recorded data as pos4ble, and reasonably.  

short computation times. 

None of the methods reviewed in Chapters 2-4 could be made 

to satisfy all these requirements and, therefore, a new 

technique has been developed by the writer. The technique 

includes a novel Method of modelling nonstationary processes 

and a new method of parameter estimation, not assuming any 

of the large sample properties which estimates are usually 

required to have. The technique and examples of its applic—

ation are described in the remainder of this Chapter. 



5.2. Characterization of .8: nonstationary process in terms  

of its mean square value.  

It had been observed in Chapter 3 that, in view of a difficul 

ty in specifying statistical characteristics of the variates, 

the methods of modelling nonstationary processes have tended 

to be more or less empiric4Various such methods, currently • 

available, were reviewed in Chapter 3. In ID-articular, it was 

observed that the model due to Box and Jenkins (1966) seems 

to describe the nonstationary behaviour of many physical 

:brocesses,met with in practical applications, reasonably well. 

If P
d-1 

 (t) is the polynomial in time of degree (d-1) (5.1a) -  

N744 7i."12671 

is the backward difference operatdr, S is a summation 

dperator defined by 

Stir 
.1= b 

Sett = 	 e  +41  
J=0 4=c, 

andileldetotes a zero-mean white noise prodeSs 

characterized lby 

(5.1b) 

E Ili ?di> 	cS;ti 

the- Box and Jenkins model is written 

C 
I 	)54-4-t 

Pet_ ti) 4 	ArA-of 	 . 4. 

Ne1-1  g of 	/(.., 

(5.1e) 

(5.2) 

The problem to be- solved by the writer was the -estimation 

of parameters of a sinZleinput single output first 



ire 
system from a series of values Of input 1464 and output 5 y,.; 
sampled by a suitable scanner and stored in the computer. 

The input ut  was expected to be nonstationary, and the output 

yt was to include the effect of an unknown nonstationary 

disturbance it iiburied" in the output and representing the 

coupling of the rest of the plant with the system u—y. 

The observable output yt  is then given by 

Yt = Yt + 46- 
	

(5.3) 

where ytt is the noise—free output- due o the inpUt ut. 

The problem is illustrated in Fig,5.1. 

Fbrmulated in the above fashion,the problem bears some 

similarity to the Box and Jenkins approach, except that 

the input and output values are to be "seen" only by the 

computer. The estimation program was, therefore, required 

(a) to identify the structure of the nonstationary disturb—

ance contaminating the output yt; 

(b) to estimate the parameters of the disturbance jointly 

with the parameters (gain and time constant) of the first 

order dynamic system under consideration. 

It is obvious that, when human judgement is not allowed, 

in examination of the input and output values, as well as the 

processed results, the model of the type (5.2) is not very 

suitable for automatic identification of the structure of the 

disturbance from a oeries of input and output readings. For 

this reason, another approach, utilizing some other character—

istic of a nonstationary process must be sought. 
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The various models, discussed in Chapter 3.,.represent a 

nonstationary stochastic process by a relation of'the form 

x m + t = t 	vt 	 • 1(5.4) 

•.. 

where 

.(a) either the mean value function mt  is assumed to be'zero 

and vt is a nonstationary stochastic process, 

(b) or, a model is fitted to represent a deterministic 

trend mt  and a stationary process vt. 

The first approach represents the nonstationarity by a time- 

varying varianclof the process; in the Second approach,'on 

the other hand-, the nonstationary behaviour of the proceSs 

is represented by the mean value function and trend mt  

as a function of time. 

Now, since 

(mean)2  + (variance) . (mean square value) 	(5.5) 

it seems reasonable to argue that either approach can be 

regarded as a particular case of fitting a model to represent 

a time-varying behaviour of the mean square valUe of the 

process under consid(ration. It has, in fact, been observed 

by Thrall(1964),Thrall and Bendat(1965) and Piersol(1965) 

that in certain applications like analysis of mechanical 

vibrations data, it is the.mean square value which is the 

significant parameter. 



If a Box and .J:.rnkins model is employed .to represent a 
	119 

disturbance rk in equation (5.3) or Fig.5.1,th9n there is 

no means of identifying its structure (short of reducing the 

model (5.3) to a stationary model and then applying a more 

or less trial and error procedure as indicated by Box and 

Jenkins(1966)t). However, the model seems to represent the 

nonstationary behaviour of many physical processes reasonably 

well. Thus, what is required in the present investigation, 

is such a representation of a nonstationary process which 

would be at least as good as the representation of Box and 

Jenkins, and yet render itself to easy identification from 

the analysis of the inpland output data. - 

The mean square value of the process (3.52) is given by 

E <xit, E< A 	(v 	-4 

... 	4- F.  < Xci-t 	jr6 ) 

4- a Ad.., Act-a t7—‹ (S4-  rf -1 )( 54 	(5.5) 

New the stochastic proceSsMin -(3.52) is assumed to be 

a zero mean white noise that is 



Also, the first three summations are 

”4-1 4-14. 
"1-2 

st 	 14-4-1-€ j=0  coo 

Thus, 

(5.8) 

(5.9) 
5.10) a1.  ) 

4 	 e=0  _1   

Jr.* .ta=r 	
(5.12) 

•-• 	X be --12) 

I2=1 

E (( d-t 

• < (r z te.,11 >:-. 	(k 1.-2124 

( 5 .13 ) 
( 5 .14 ) 

lour 
f-t 

E. 	(534...t  )2- >=6-Z z Jr.* 2=f (5.15) 
The last tivoce sums and, indeed, any higher order expressions, 

can be easily evaluated by using a technique of summating 

the factorial function (Miller11960). However, it iS already 

apparent that the mean square value of the nonstationary 

stochastic process represented by the Box and Jenkins model 

(3.52) may be expressed in the form 

e"-(Xt-1 	ao t 	- et 	d"  
(16)  A characteristic feature of a time polynomial is that the 

n-th difference of the nth degree polynomial is zero.This -

feature makes it very suitable for identification purposes. 

The problem studied Was to devise a learning technique which 

could enable a nonstationary disturbance to be identified, 

and then to be taken into account during the estimation of 

the system dynamics. ITow although the polynomial (5.16) 



process. This solves the first part 

The structure of the weights v ( 

V • (t) - y 
J 	tm 

of the problem. 

(5.18) 

was determined in a .semi-empirical fashion from ConsideratiOns 

lat 

can be identified in an automatic fashion relatively easily, 

its coefficients are complicated functions off the coefficients 

of the model (3.52). Therefore, the Box and Jenkins represent-

ation is of little use in the current problem and a new 

approach to modelling nonstationary processes has been develop 

ed by the writer . The approach, discussed in the Appendix C, 

is to associate the polynomial expression 0:f the type (5.16) 

with a definite structure• of a linear filter with time-

varying coefficients, excited by white noise. It is shown 

in Appendix C that if a nonstationary processf/4 is represent 

via) e--)* c' 	 (5.17) 
j=1 	- 

whei.eWis a white noise process, then the mean square value 

i 	c"6 N GE MADE 	• 
M ‘ of the processI EW , 4.Q.Aa Olynomial in time, the degree 

of the polynomial being associated with asdefinite structure 

of the weights v.(t). Therefore, the identification of the 

degree of the polynomial, describing the time variation of 

the mean square value, of the process implies also the ident-

ification of the structure of the filter, representing the 

ed in the form 
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(d) for the quartic polynomial, 

C. 	• 	I 	-6--- 	- 2 

(5.22) 

(5.21). 

ACIL 

of conditions which have to be satisfied by the impulsive 

response of a linear system characterized by a general linear 

differential equation with time—varying, c_oefficients(Miller, 

1955). Trial and error procedure was then employed to arrive 

at a structure of the weights resulting in the required form 

of the mean square value. 

As proved in the Appendix C, the processes whose mean 

square value is a polynomial in time, are characterized by 

the following difference equations: 

(a) for the first odrder polynomial, 

f 	)344  
/L.& 	"-I 32  

(b) for the second degree polynomial, 

*-1  

	

/i 	I) ti  

(c) for the cubic,polynomial 

I  It! )3/2  7 

The development of this approach represEints the original 

contribution of the writer. The writer wishes, however, to 

acknowledge some similarity between the weights (5.16) 

and weishting functions for white noise described by 

BlacIman(1965) and based on the Bode and Shannon(1950) approac 
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estimate  of the degree of: the polynomial An approximate 

(5.24) 

and so on. 

Then 
(id 	1 

id 	57:e 

fs 

In Blackman's method the weighting functionNeWis given by 

where 

.fr. 	13 
wd-(T) 	

r 	
r n  0 C tr <7- (5.23) 

assumed to characterize the time variation of the mean square 

value of M may be found as. follows. 
Let 	4L 

7 q0_. t  
(5.25) IF 

where t is greater than some number A.(e.g.50), thus ensuring 

that the variability of the estimates (5.25) is not large. 

Then the series /yAis an estimate of 

E < 	t> 
for t =A,A+1, 	,N., . where N is the length of sample avail— 

able for analysis 	 

Let alsoy(t)idenote a series formed by differencing the 

series/ ytli times, that is 

UP v* 	 vYff 
ye. (.2-1 	f- 2 yt-f 4.Y 	= 

is an estimate, averaged over a small number (D—C) of 

samples, of the magnitude of the i—th difference of the mean 

square value series ( tie 
r. 

(5.26) 

(5.27) 
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The identification procedure involves then the following 

steps: 

(a) Obtaina.series of estimates of mean square values for. 

increasing sample lengths, starting from a minimum length 

A. 

(b) Obtain an estimate of the order of magnitude of the 

estimates near the beginning and near the end of the 

series; the relative magnitudes will indicate the increas—

ing or decreasing trend of the series; 

(c) difference the series of estimates (b); 

(d) Keep rep6ating the steps (b) and (c) until the small 

sample averages near the beginning and end of the series 

are small fraction (say 5 per cent) of the corresponding 

original estimates of the mean square value. The number 

of differencings required to arrive at this stage will be 

equal to the degree of the polynomial representing the 

time variation of the mean square value. The identificat—

ion of the model is now complete. 

'5.3. Representation of,a first order system.  

The quantities recorded' during the tests described 'in 

Chapter 6 were obtained by sampling outputs of transducrs 

every 10 seconds in the CrOydon test and every 15 seconds 

-in the Northfleet 'tests. Most of the results indicate that 



any two consecutive reqdings differ only in the third (least 

significant) digit. For this reason, the use of a zero order 

hold for reconstructing the sampled functions appears to be 

justified. 

It is shown in the Appendi2 B that, if a continuous—time 

described first order system described by the transfer function 

tit 
(s 	C 	 (5.29) 

then.  the difference equation corresponding to a discrete—time 

ve/sion of the system (529) With a zero—order hold is 

— 4 y 	F (1- q5)14.-1 	(5.30) 

where 

••••• 
%or 

  

(5.31) 

is the gain of the system and 

QT 

 

(5.32) 

AT being the sampling interval, and LAT being the 

time constant of the systep. 

The difference equation (5.30) was employed by the writer 

to estimate the parameters 0 and g by mean of the estimation 

procedure to be described. 
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5.4. The overall input-output relation.  

In the development below it will be assumed that the 

disturbance kis represented by the second order model (5.20). 

Using the backwai.d difference operator 7 defined by 

(5.33) 

the difference equations (5.30) and (5.20) may be respectively 

written as 

04' (5.34) 

and 

( 	- 	026i= 	- G- 
 6-4 	

(5.35) 

where 

1/4.1= 
/0 being the starting value. 

Using' (5.34)-(5.36) the overall input-output relation is 

written as,  

where the starting value of the disturbance is at t=2. 

5.5 Eauation of estimation. 
In -the relation (5;37) the starting value 17,,of the disturb 

ante is not known and,' therefore, must be estimated together 
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with the system parameters in one form or another. An approach 

suggested by the write/11Es to regard the quantity 

- It 
as an initial state of the system represented by (5.34) and 

to form a dual of the Kopp and Orford method (Chapter 4) 

by treating this quantity as an additional,  parameter and 

adjoining it to the system parameters. 

Let then 	111. 
yt 
	

(5.38a). 

0  4: S7 4:1 	(5.38b) 

Then, (5.37) may be written as 

t,4 
• — 

 

 

I 	.6 (5.39) 
/4/ 

The relation (5.39) may be written in the form 

(5.40a) 

(5.40b) 

y 6 = 	 . 	y 	) 

-=(s 

which expresses the output as a fUnctiOn.of past values of 

the input output and the white noise process 	I 	and 

true values of the' parameter veqtoD 



O 
When the parameter vector assumes. values2 which differ from.  

the true - values 	the calculation of the right hand side 

of equation (5.39) yields "predicted" values of output ye 

which differ from the actually observed values yt. The 

differences between the actl.w.1 and:.the predicted values 

(5.41) 

combining the effect of the white noise process fWand the 

effect of the parameter deviations 

have been called by the writer the "quasi—residuals", They 

can be recursively calculated grOm 

E6 
	
C -L 	4-  V '73 r 	tijc 	soya.? 

0+ 	 (1..aC)1Ei tom ft470 (r.61C))  ±2!.  

(5.42) 

which relation can be easily obtained from equation (5:09). 

It is shown in the Appendix D that estimates of the parameter 
A 

vector ig may be obtained by minimizing the sum of squares 
of the quasi—residuals in such a way, that, at the same time, 

the covariance matrix of the quasi—residuals is also reduced. 

This is discusged in the following section. 

3 E. --1 	*-7 tt 
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(5.44a) 

(5.44b) 
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5.6. The method of parameter estimation.  

The parameters are to be estimated Subject to the following 

constraints: 

(a) D < 	< 1 	(5.43a) 

(b) 4 < 	< 	(5.43b) 

(c) 0 < G < 	l 	 (5.431) 
(d) in additions by considering the initial values, one obtain 

from (5.37), 

from which, 

et) 
1=0 y, 	ut y, F 

 

(5.440), 
This yields a constraint condition on the gain:: 

t_cp 91 	 (5.43d) 

The object of-a suitable minimization routine was to minimize 

the sum of squares of the quasiresidualS, subjects to the 

constraints (5.43), so as to redude th.covariance matrix 

of the quasi—residuals to a diagonal matrix as far as possibl 

When the inVestigatiens started, :only one technique 

coOtrained optimization,due to Rosenbrock(1960) was available. 

The technique is a variant of the well known steepest descent 
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method and involves: 

(a) working in n orthogonal directions. when a function of 

n parameters is being minimized;'. 

• (b) moving along a direction of steepest descent, rotating 

the direction after a complete cycle of adjustments of 

the n 'parameters; 

'(c) representing the 1 constraints on the-  iarameters in-the 

form of 1 ftnctions each of which is zero if the associat-

ed parameter is outside the permitted range,it is equal 

'to unity when the associated parameter.is within the 

permitted range, and varies parabolically from',zero-otow' 

unity in a narrow boundary region the width of which is 
• 

directly related to the accuracy obtainable with a given 
pro du cf b 

computer word length. TheAl constraint functions and 

the sum of squares is then the effective function to be 

minimized. 

The method was tried in many simulation studied.- It was 

found however, that the rotation of axes at the end of 

each stage made in many cases the convergence to the proper 

minimum impossible, and the program tended to converge onto 

the nearest local minimum. 

By monitoring the variance and covariances of lag one and 

two, of the quasi-rociduals it was observed that,whenever 
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the program converged on to a wrong minimum, the correlations-

and covariances of the quasi-residuals were either increasing, 

or decreasing only by negligible amount. However, the converg-

ence on to the proper minimum could only be obtained if the 

starting values of parameters were near to the true values, 

in which case the convergence to the true minimum was accomp-

anied by a rapid decrease of the correlations and covariances 

of the quasi-residuals. 

These observations have led to abandoning the Rosenbrock 

method and developing anew method as follows. 

(a) corresponding to n parameters, n ortho,gonal directions 

are chosen; these remain fixed throughout the minimiz-

ation procedure,which corresponds to the adjustment of 

one parameter at a time; 

(b) the method of allowing for constraints on parameters is" 

the same as that in the Rosehbrock's technique; the 

boundary region was assumed to be 10-4.(allowable 

parameter range) , as suu:ested by Rosenbrock; 

(c) Let a "success" be defined to mean that the "new" value 

of the function, resulting from a change in a parameter, 

is smaller than or equal to the "old" value, prior to the 

change, and, at the safe time, both the product of the' 

1 constraint functions is not zero and the first three 

covariances of the qftasi-residuals are decreased,. 
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Similarly, let a "failure" be defined to mean that either 

the new value of,  the function being minimized is greater 

than the old value , or that the product of the 1 constrain 

functions is equal to zero, or :that the first three covar—

iances do not decrease after the change. 

Then the minimization procedure developed consists in a 

cyclic adjustment of the parameters in such a way as to 

achieve as many "successes" as possible. The adjustments 

are effected as follows: 

(a) at the beginning of each cycle the first change to be 

applied to the parameter 6Visbot-ewhere- w=0.02; 

(b) in the case of a failure - the direction of the change 

is reversed; if this,too, results in a failure, the 

value of the parameter is restored to the original value; 

) after each success, every succeeding change applied to 

a given parameter, is equal to the preceding change times 

two; 

the convergence to the proper minimum value of the minimiz 

ed function i$ achieved if attention is paid to the 

rate at which the decrease in variance is increasing; 

In particular let the value, of the variance of the quasi— 

residuals )V0 after n successes be denoted by,  

Then it is:shoWn in the Appendix D that the -convergence 

to the pi'p.per minirium is ensured if the quantity:. 
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does not become negative; 

(e) the pYT)cedure is terminated when the changes in,the 

parameters do not result in a significant change of the 

minimized sum of squares, and the-correlations of lag 

1 and 2 of the quasi—residuals do not exceed the theoret—

ical standard deviation 1/frof white noise determined 

from the sample of size N. 

5.7. Confidence regions for the parameters.  
5.7.1. General.  

At the end of the estimation procedure one wishes ustally 

to obtain a rough idea of the precision with which the.  

estimates have been obtained. This may be obtained from the 

consideration of confidence regions, the theory of which 

based on the work of Booth and Feterson(1960), Rosenbrock 

(1962), Rosenbrock and Storey(1965) and DeuStch(1965), is 

discussed in the following subsections. 

A method of deriving eigenvalues and eigenvectors of the 

correlation matrix of the estimates employed by the writer, 

is described in subsection 5.7.3. 

5.7.2. Confidence regions for the estimates of parameters. 

The well—established. theory of confidence regions(Boothand 

reterson,1960-; Rosenbrock,1962; RoSenbrock and Storey.,1965;- 
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Deu1ch11965) is based on the assumption that estimated values 
A 

P. of the parameter vector are very near to their true 

values e . Therefore, when the parameters are perturbed 
A 

about their optimum estimated values 2,only first order 

changes in the resultant predicted outputs need be considered. 

Under these circumstances, the small changes 

3 

are linear functions of the observation errors, and if the 

latter are assumed to be gaussian, the small changes Jr e 
in the parameters are also normally distributed with the 

covariance matrix (Booth and Peterson,1960) 

( DT. .po  
(5.45) 

where D deAotes the matrix of partial difference quotients 

(5.46) 

and in which 69c denotes a change in the i-th predicted 

output value due to a small changeANOjin the parameter 0). 

With the above assumptions the sum of squares S corresponding 

to the perturbed values of parameters in the neighbourhood 

of the minimum sum of squares Sm  defines a contour in the 

p-dimensional parameter space, defined' by 
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where 

S= S(fi'oila) .:contour sum of squares, 

S = minimum sum of squares, 

N = number of observations, 

p = number of parameters, 

001(= significance level 

P; 13
(a) 	Fisher's distribution with p and (W-p) 

(4- 
decrees of freedom,corresponding to the 

significance level cle . . 

For S(6-1 121z) equal to a constant, there is an associated cont ,, 

our of values of 4. 4suming that the deviations in.the 

predicted outputs, resulteing from the small changes of 

parameters are normally distributed, the contour S(.8,u,z1 

defines a likelihood contour for the estimated parameters. 

If the parameters are linearly related to the dependent 

variable, the set of parameters G. for which S(..g,u,z) is a 

constant, is a p-dimensional ellipsoid in the space of p 

liarameters. 

It has been observed by Booth and Peterson(1960) that 

inferences regarding the estimates can be drawn from the 

consideration of the ellipsoid in ,the space of normalized.; 



(5.49) 

and Ajis equal to the square root of the j-th diagonal 

element of the covariance matrix (1)TD) 

In the normalized parameter Spade, the likelihood contours 

are given by 

teT 	a. DI.  DI 	 ) 	
(5.50) 

The semi-axes of the ellipsoid defined by the quadratic 

form (5.50), will have lengths equal to the square roots 

of the eigenvalues, and the orientation of the axes will be 

governed by the eigenvectors. 

The eigenvalues and eigenvectors of the correlation matrix 

may yield useftl information. For, example, if the correlation 

matrix were an identity matrix this would imply that the 

estimates of the parameters are uncorrelated. On the other 

hand, if the correlation matrix contained off-diagonal 

elements, its eigenvalues might differ by'several orders 

of magnitude. The inference would then be that a certain 

linear combination of parameters has been determined with -

a smaller variance -than some others. The linear,combination 

determined with greater precision would be given by the 

eigenvector associated with the smallest eigenvalue. 
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was obtained, the perturbations 	S 0 

13;,7 

5,7.3. Calculation of eigenvalues and eigenvectors of the  

correlation matrix of parameter estimates.  

After the optimum values of the parameters have been 

obtained, the eigenvalues and eigenvectors of the correlation 

matrix are obtained as indicated below. 

First, the matrix D of partial differenCe quotients defined b 

having been employed (In the actual application of the method, 

N was of the order of 200-300; in view of the restrictions 

in the computer, the multiplication of two matrices 300 x 4 
each presented some interesting programming difficulties) 

covariance matrix The elements in the j-th row of the 

- M = (DT  D) 1.  

were then divided by the 7  h diagonal element 

the correlation matrix 

(3.51) 

to yield 

The eigenvectors and eigenvalues ufrthis matrix were determine 

by using the JacobiTmethod(Ralston 1.965) particularly 



The elements 

(k) = S (k)_ — cos 0 
PP 	qq 	k 

eik  

of the 'plane rotation matrix" Sk  are defined by 

( 	. 
sink) =1, 	p or q, 

=0 otherwise ( 5 . 56 ) 

The required conditions are obtained if the angle 9: is 

chosen from the relation 

-64.4., 2 ek 
(4c-e) 

	 / 

epp 
(5.57 

/34' 

suitable for application to matrices whose off—diagonal 

elements are small as compared with the diagonal elements. 

The method consists in determining, in an iterative fashion, 

a sequenceciof orthogonal matrices with the property 

and 

gz 6 . • Sit • (5.53) 

T-  Q (5.54) 
A being the•diagonal matrix of the eigenvalues of the 

matrix.  R, and Q being the matrix of eigenvectOrs. 

Let a matrix _lc  be d_efined by 

sir SK, 	str. 	Ssa • • Sir 	 (5.55) 
Then the Jacobi method consists in choosing Sk  in such a way. 

that if tPq (k-1) is the largest off—diagonal non—zero element 

of the matrix Tk-11 	
(10 the off diagonal term t 	f the.  •= 	 Pq 

matrix Tk  is zero. 
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The procedure is terminated when the ratio of the sum of 

- squares of the.. diagonal elements in two consecutive iterations 

isLaess than some prescribed value; ( the value lo-11  was 

actually used by the writer). 

5.8. Summary of the estimation method developed.  

The method described above was programmed in Extended 

Mercury-  Autocode which involves one instruction per line. 

The program is rather bulky and, if reproduced here, it 

would ihcrease the volume of the thesis by some 30 pages. 

It is believed that anyone wishing to pursue the line of 

development indicated here would employ a higher level 

language. For this reason, the metho'd is summarized in 

steps in such a way that it can be easily coded in any 

higher level language. 

1.Define as a success such a change in the value of•the 

parameter Ai  that it results in 

a) smaller or equal sum of squares of quasi—residuals, 

b) smaller variance, covariance of lag 1 and covariance 

of lag 2, the latter covariance being smaller than the 

covariance of lagl; 

stability limits being satisfied; 

2. Define as a failure a parameter change resulting in any 

one of the above conelitions not being satisfied; 
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3. Define a trial to mean a change in the parameter resulting 

in either a success or a failure, and define a stage to 

mean a cycle of trials on each parameter in turn. 

4. At the beginning of a stage, start from the first parameter 

. 0.1  The initial change to be applied to the current value 

0. of the parameter at the k—th stage is cAr 

where w.0.02. 

5. In the case of a success, the next change to be applied 

to the parameter is equal to the preceding change times two 

6. In the case of a failure the change is applied in the 

opposite direction. If this results in a success, proceed 

as in step 5; if-the result is the failure, reset the 

parameter to the value it had before the change and start 

adjusting parameter 01+1  if i+1 <p, or the parameter 01  

if 1+1 >p, where p= the number of parameters involved; 

7. In the event of there occurring more than one success, 

monitor the rate at which the decrease in variance 

increases; stop adjusting the parameter if this rate 

starts decreasing; 

8. If no more progress is obtained with the parameter01  . 

start adjusting the'parameter 0i ,1 	44-1< p, or the 

parameter 01  if 1+1) p, where -p is the number of parameters 

Stop.  adjustments .if two successive' stage resuVcs differ 

by less than •Some prescribed value; when this occurs, 
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the correlations of the qusi—residuals of lag 1 and 2 should b 

of the order of ± 1/17—where N is the sample size; also, the 

covariance of lag 2 should be smaller than the covariance 

of lag 1. 

10. Calculate the eigenvalues of the correlation matrix by 

the method of the preceding section, and check that the 

ratio of the largest to the smallest efgenvalue is not 

very different from unity; 

11. In the case of bad estimation indicated either by lack 

of convergence or the ratio of the eigenvalues being 

very large, assume a different set o /starting values /tr_ 

and start again:TfromtsteP.4. 

5.9. Examples.  

As an illustration of the method two examples are given. 

Both examples involve input derived from test recordings 

of boiler pressure at Croydon (and, therefore, very realistic,  

and nonstationary) being applied to a first order system 

with .a zero order hold. In the,:first example ,the gain of the 

system is13,00, the time constant is 7.61 sampling intervals 

and the describing difference equation 

0.87694.,1  = 13(1 - 08769)tit_a  

In the second- example the .gain of the syStem is 15.00 the 

time constant is 12.5 sampling 'intervals and the difference 

equation is 

yt 7  0.923yl_1 	15(1 	.923)ut-1 



In both examples the disturbance is generated recursively 

by using the model (5.20) with G=40, and a pseudo—randorkmber 

generator the statistical characteristics of which,correspond—

ing to sample sizes used in the examples, are shown in Fig. 

5.2. 

In the first example/ 2  =1103,y'2=6405 and y2  =7509; 

This gives 	= 0.147. 

In the second example 4 2  = 1104, y► =7592 and y2=8496. 
7/xis 	= 0 43 

Figs.5.3-3.5 show the beginning and end of the estimation 

procedure relating to Example 1. Figs. 5.6-5.8 show similar 

results relating to example 2. 

It is seen that owing to different star ting: values in 

the two examples the number of iterations required to reach 

the optimum values is different (81 iterations in Example 1 

and 109 iterations in example 2). The results show that 

the technique yields correct estimates and that minimization 

of the sum of squares ("SUM ETA") is accompanied by minimiz—

ation of the first three covariances of the quasi—residuals. 

In both examples the eigenvalues of the correlation matrix 

are of the same order of magnitude which, according to the 

established theory, confirms that the estimation procedure 

is satisfactory. 
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1.30676549, 

-- SINOCE--:_EXPONENTIAL7_DYNAM  S  0RDER - DISTURBANCE: 	 

INPUT 'PARAMETER -VALUES 
_SYSTEM. 'DYNAMICS 	:_GAIN= 

.GUESSES 

	

- 1.0(10000, 	 :-000000 	  
A ':: 	-1:   0 	.S'= 	0 

	

----FIRST MEAN 	421720 ,---:  

`19 '= 9;778849, 	_ _ 	9.3322067 
FIRST :SIX RECONSTRUCTED-RANDOM NUMBERS 

0.0n0000, 	0 	2.344031,_ 3.364356, 

STAGE 'RESULTS 
3,.02187738 

,9.120456, 	 1.288200, 
MEANL-2.2137058145744:,  
COV. 	rz 8.15304739319, 

	 8.791076, 	 :1.408994, 
CORi(2) 0,-;-.- 3219574 

!COV. (1)m .3.286832216152 	 .-c.Ty!(2)7-z..3.323712128415 

.088842 
-4 	- 

_____OPTImUM -_- )/ALUSSJO.F PA_R_AMETERS  -  
	 0 .120456, 	______1_.:288200_,_______1 	8.791076, 	1.408994, _.  

sYsTpM .1DYNAMICS 7,-'7- ---:-IIMEi-CONSIANT:f761083, ___ _---GAIN=. 1a88200; 
7- D LS TURS A N C E ___ ______ ORD LN A_T . __ _:--._L. 408994_, 	1 	St, ORE=,.....1_,120456, - -J. -- ---_, 

FIG. 5;3 
SHOWING- START AND END OF E-sTIMATION Pf2Ocb vas`. 	 PLE I.  



LNVERTED(COVARIANCE) MATRIX 

	

,` .1',036808,':: —12 	1806414L 

	

1.:1%10641, —15 	8:,412495_, •- 
8.23816, ,-16;L-; 

.1.048017, •-18 

-;--8253816 	.098017i': 
.•5'.649618i 17. ,...3,522977k716 
7•=28.9305'.:-16 	',.3.021883,.716: 
3.02.1883.,? —16 	,9.337450, -16 

410RMALIzmusTVW7  

	

o.000000, 	0.000000, 	Q 	modo(oo, ,. 

	

3_447.76c, 	r.,.000000, 	0:000000, 

	

:0.'000000, 	0 	Z .70388. 0 	7 	 0.000000, 
	 0_.000000,:--'--0.3.'272547!=;—  

CORRPL:ATION MATRI 
1,000000 	 .528951 
3.997683P 	 1.000000   	 ••7.214623, 	72 	 3.974964$ 
3.002358, 	 7.214623,  1.000000 	 --3.662860 
3.578951, 	 -30974964, 	3.662860s   1.000000 

FIG. S.4. 
c o RE-LATE °iv tiniv ix. 	EX 11 PLE" 1. 



.GA,MMA,JON.E.: ;5.453125, ..71 

COS THET..0 

::CURR,FNT ., MATRIX_40F -EIGENVECTOR 
9.920495, 	—7..999195, 

3.64 6139, 
•.71.247468, 	6..850514, 
—6.978551,„ 

'9.303894s 
i.6.1814333,1,_ 
.6.489463, 

:2 . 798 0 34 
_L , 6.343731, -1 
;3.066131, 

FAG. 

MATRIX OF etsaw VALVES /W-b Ia67vVEGTOIS. 	EX/4 14 PL..' I. 



'TIME CONSTANT= 9.2310, 1.249723, 	1 

SINGLE ,:EXPONENTIAL DYNAMICS, 'FIRST  ORDER OLSTURBANCE r  
FIG.S .Q  

I114413 EIVJ3 OP esnlvireoN PrZOC4-7.0Vet: 
EXAPIPLE 2.. 

INPUT -PARAMETER:VALUES 
SYSTEM DYNAMICS 	,GAIN= 1.5000, 

DISTURBANCE 	SLOPE= A.60io, 

(s). 
	 (7) 

GUESSES 
1.000000, 	5,000000 

1 	M, 	0 	Si.= 
_FIRST MEAN= 7.405322, : 2 

5 	COV.(1).; 4.862744, 
COR.(1)= 9.827160, 	-1 	COR.(2)= 9.430521, -1 	SUM ETA: 3.136772, 	8 

YT= 9.e27160, -1 	2'= 9.430521, -1 
FIRST Six RECONSTRUCTED .RANDOM NUMBERS 
0.000000, 	0 	2.174341, 	3 	3.567770, 	3 	4.152340, 

5.ori0000, 	1.015000, 

MEAN ,SCUARE= A.04521621, 	6 : .cpv.(0):: 4.948269., COV.(2)= A.666476, 

STAGE RESULTS 
Ft= 3.11488724, 	M' 109 

9.861037, -1 	1.468548, 	1 	9.295341, 	1 	1.210259, -1. T= 1.3685, 
MEAN- 2.2769501.24083, 	1 	•COP.(1)= 5.388031, -2 	COR.(2)= 0.064891, -2 
COV.(Q)= 5.177788889923, 	2 	OOV.(1)=-2.780868821674, 	1 	COV.(2)=-1.586935861894, 

MEAN SCUARP= 1.03775877, 	3 

RATE OF CHANGE OF VARIANCE 	PRECEDING: 6.600087038983, 	1 	CURRENT= 7.894253275252, 

Z: 1.022522 
T' 	7 

OPTIMUM VALUES OF PARAMETERS 
9,861037, -1. 	1.468548, 1 	9.295341, 	1.210259, -1 

SYSTEM DYNAmTCS _ 	CONSTANT= 1.368517, 	_1_ 	GAIN= 1.466548,___A 
DISTUREANCE 	ORDINATE: 1.210259, -1 	SLOPE.; 9.861037, -I 

R= 0 



9.315646, -13 8.550022, .-16 
8.550022, -16 4.751862, -16 
-5.607506, -16 -2.611119, -17 
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5.10. Conclusions.  

In this Chapter a novel method of estimation of parameters 

of a first order system has been described. The method consist 

in identifying a nonstationary disturbance, assumed to contami 

ate the output only, from the input and output readings; 

the parameters of the combined model are then estimated 

by minimizing the sum of squares of the quasi—residuals 

in such a viy that, at the same time,their covariance matrix 

is made to approach the diagonal matrix. 

The examples illustrate the technique and show it to be 

Quite satisfactory. The drawback of the method, discussed 

in the Ap-oendix D, is that the starting value of the 

parameter S must be reasonably close- to its true value if 

convergence to the minimum is to be obtained. 
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CHAPTER  6. 

APPLICATION OF TEE METHOD TO ESTIMATION OF :BOILER  

DYNAMICS.  

6.1. Introduction  

This Chapter describes briefly the tests carried out 

in support of this project, analysis of test results, and 

application of the method, described in Chapter 5, to 

estimation of boiler dynamics. 

6.2. Description of plant. 

The tests on a boiler-turbogenerator unit were carried 

out at Croydon 'B' and Northfleet. Generating Statidns of the 

Central Electricity Generating Board. The full description 

of a boiler and its operation would merit more than one 

chaptelknd is, therefore, outside the scope of the thesis. 

It might be helpful, however,to give a simple picture of 

procesc-es occurring in a typical boiler, and factors 

governing the boiler response (Moran et al.,1968). 

In a typical boiler new coal is fed to mills where it is 

ground and dried by hot primary air. It is then carried 

by the air stream to burners where it ignites, the remaining 

air required for combustion being.supplied as secondary air. 

Steam is generated in the Ir.ateralls of the furnace,mainly 
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by radiation and superheated 'to the final required temperatur 

in the superheater Which may be both radiative and convective 

Heat is recovered from the hot gases by an economiser, which 

heats the feedwater, and the air heater which heats both 

the primary and secondary air. The coal flow into the 

furnace is, at least transiently, mainly controlled by 

varying the primary air flow. This varies the pickup of 

coal in the mills,drawing on the ground coal stored therein. 

The raw coal feed is then adjusted to maintain the storage. 

The response in heat release to primary air-flow changes 

is rapid, being typically for large drum-type boilers 

a dead lag of about 5-10 sec. corresponding to the transport 

time from the mills to the burners. 

The responSe of steam generation to heat release , 

manifest as pressure or steam flow changes,is approximately 

a single lag, typically. of about 5 minutes,dependent on 

the thermal inertia of the boiler. The response of the .

temperature of the steam leavingAhe superheater to heat 

absorption is slower still,and is more complex,but the 

simplest approximation is a single lag of aboyt 10 min. 

The boilers at Croydon B Generating St6tion are Simon-Carm 

tri-drum with twin natural circulation and pulverized fuel 

firing. They supply steam at 625 psi and 875 deg .F at the 
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boiler stop valve, each boiler being rated at 320,000 

lbs/hour at maximum continuous rating, equivalent to 

approximately 35 MW generated. Each pair of boilers supply 

one of the four main steam receivers which are interconnected 

Except for automatic control of drum water level, no 

other automatic control systems are provided.. 

The Northfleet Generating Station is provided with six 

Foster Vlheeler boilers having each evaporative capacity 	, 

of 860,000 lbs/hour, at a pressure of 1600 lb/sq in and temp. 

of 543 deg.C. at the superheater outlet. Each boiler is singl 

drum, natural circulation and has a water tube radiant furn-

ace radiant superheater, primary and secondary convection 

superheater, reheater and economizer. Each boiler is 

associated with a separate turbine. Automatic control of 

drum pressure and steam outlet temperature is provided.-

The control of drum pressure 'is effected by varying the 

flow of mixture of pulverized coal and hot air by means of 

dampers. Steam temperature is controlled by varying the moist 

ure of steam from the drum. 

6.3. Description of the tests. 

The tests at Croydbn 'B', carried out in March 1965, 

consisted in running the boiler at low output (20 MW) 

with governor valve locked, and recording drum pressure, 
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megawatts output and final steam temperature. There was 

no provision for directly measuring the steam flow , and the 

tests were regarded as necessary to obtain some rough idea 

about the behaviour of the p1ocesses. The various transducem 

had been installed previously in connection with the boiler 

optimization project (Moran et al.,1968). The analogue 

outputs of the transducers were scanned every 10 seconds 

and recorded on a 5-hole tape by means of the equipment 

shown in Fig.6.1. Two tests, of 6 hours duration each, 

were carried out . However, as the moist coal blocked one 

of the mills during one test2, the results of only one test 

could be used for the analysis, 

The tests carried out at Northfleet in Ogtober 1965, 

comprised recording, at full output (120 MW) of boiler 

pressures,• steam temperature, throttle valve movement', and 

movement of the coal feed damper when it was in operation. 

Two six hour tests were carried out with manual control 

of the dampers, and two six hour tests with automatic 

control of the dampers. Automatic temperature controllers 

were out of action during the tests. 

The various transducers had been installed before, for 

dynamic boiler trials (Zilliams and Lart,1967). The analogue 

outputs of these transducers were sampled every 15 seconds 
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and recorded on a 5-hole tape by means of the equipment 

shown in Fig.6.2. 

The discussion of the transducers and data logging 

equipment is considered to be beyond the scope of this 

Chapter. 

6.4. Data processing. 
The test results were punched on a five-hole tape in a 

special C.E.G.B. code. As a result, a data translation proced 

ure had to be developed to enable the analysis to be made 

on thtIondon University Atlas computer. 

It is not intended to go into details of the translation 

program which, in theory, should form a simple "look-up" 

table .It turned out, however, that the data logging equipment 

shown in Figs, 6.1. and 6.2 , although expensiVe, was not 

entirely free from errors. As a result, what should have been 

a simple program, it became an elaborate procedUre, 

adaptively learning such possible faults as missing of a 

scam, and cor•recting the translated data in a proper manner. 

Fig.6.3 illustrates a new fault ,found by the translation 

prograM, and Fig.6.4. shows that the program has completed 

translation after having recognized a type of:fault. 
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6.5. Scaling of the recorded data.  

All quantities were recorded as three-digit integers in th 

range 0-999. The scaling factors to be applied to the record 

ings 8 were as follows. 

a) Croydon Test. 

Drum pressure 	0 g 	+s-go 12-6.1 

Power output 	e; x Oct 	Mk/ 

Steam temperature. 9  y 312 +700 
1 Goo 

b) Northfleet Test  

Steam flowrate V3. a )0- OISV (- 207)447 
ItiZefive 

Drum pre ssure 	0.2,84 ( e 212) 16'2 0 	P. S.•   I  

Steam temperature 0.398 ( 61 - 2161-S) "1-  SRO 

6 6.Analysis of the data. 

The analysis tbf the data comprised 

a) obtaining sample correlation functions, by using the 

formulae quoted in the thesis, 

b) investigation of the behaviour of mean square Values, 

as discussed in Chapter 5. 

Fics.6 5-6.6. show sample correlation functions of drum 

pressure and final steam temperature., relating to Croydon 

test, and calculated for each quarter (1 hour recording) 

of the total.recorded data. 
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steam temperature dynamics.  

Analysis of boiler equations (Evans and Fry 1 64), 

1C7 

Figs.6.726.8 and 6.9 show,respectively, sample correlation 

functions of steam flowrate, final steam temperature.  

and drum pressure, calculated for various quarters ( 90 

minutes records) of the total recorded data. 

The plots show a nonstatiOnary behaviour of the processes. 

Analysis of mean sqyare value shows that typical values 

of mean bqiiere and its second difference are as follows: 

a) temperature (Test 3)  

mean square value 	6.33 x 10 	4  

second difference 	C3x (0%  

b) drum pressure (Test 4)  

mean square value 	1is6c10 cs  

second difference 	.1.72x10
3  

steam flowrate (Test 2) 

mean square value 
	3. 22 x IP s- 

second difference 	3.41 

The results suggest that the processes can be represented 

by a second order model developed in Appendix C. 

6.7. Estimation of steam flow-drum pressure and steam flow 
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shows that both these relationships can be represented 

by a first order lag with negative gain. They represent 

a second order effects of the variations irjsteam flowrate 

about mean operating point, the temperature and pressure 

being established by heat release. 

Attempt has been made to estimate these small negative 

variations by supposing that the main process, i.e. 

relation between heat release and temperature, and 

between heat release and drum pressure, acts as a big 

disturbance (about 95% of the output) opposing the negative 

relation between steam flow and temperature, and between 

steam flow and drum pressure, respectively. 

The input-output relation of Chapter 5 was used and 

each of the two dynamic relationships was estimated, using 

this model, frolthe test results of two tests. 

Figs. 6.10-6.13 illustrate the estimation procedure 

of steam flow to drum pressure dynamics. Figs.6.14-6.17 

illustrate the estimation of steam flow to steam temperature' 

dynamics. 

The results seem to indicate that 

a) for the steam flow to drum pressure dynamic's the 

gain is of the order of ex1014  and the time constant 

is of the order of 2,0 I5 	300 secons 
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MEAN 'SQUARE= 9.19492415, 	4' 	COV.(0)= 8.080398, 
COR. (1)= 8.449151, 	ChR.(. 2): 6.705300, 

.b000po,' - 
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• 
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9'..418149, 
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STAGE RESULTS 
F 9, 9.44193991,:854;1,-  ,.. 	M'; 112 	 . 60  
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=. 
)= 2.290798996443p 	2 	Cov.(1)=-1.1271671245i9, 	1 	zov.(2)=-8.100273810909, 

.., • • 	.. •. 

Nts 

MEAN SQUARE= 2.36047246, 	2. 

'Y.- RATE !OF :CHANGE 'OF 'VARIANCE' 

Z= 1.007506 
TIP 8 

'PRECED/NGi.-: 4.136272594347, 	 !CURRENT: 3.454622766017 — 

OPTIMUM VALUES OF `PARAMETEOS 
-. 9.860544, 	—3.8416411, 	9.261731., ••• 	9.737993, •• 
- SYSTEM DYNAMICS 	TIME -OOSTANTr: 1:303881, 	1 	GAIN=.3.841040 
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3:989525,. 

-4;718159, -12 
.1.477575, -11.  

..2.466489, -12 

-4.578499, , 712: 
2.406489, 
1.569536, ..11' 

INVERTED (COVARIANCE) MATRIX 
1.155949, _ 	-3.005763, 11 
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( 

MEAN sCUARE= 9.49735330, 
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4 	COV.(0)= 8.366655, 	4 	COV.(1)= 7.050390, 
CoRs(2).=•6.686899, -1 	SUM ETA= 3.798942, 	7 

PRECEDING= 2.467473523705, RATE OF 'CHANGE OF VARIANCE 

R= Z.4i.10U568•3 
T,.= 	6 
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GUESSES 
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FIRST MEAN= 16062175, —2 

COV.(2).= 5.592658. 

STAGE RESULTS 
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CoV.(0): 2.136159219677, 	2 	COv.(1)=-8.607611231855 	CoV.(2)=-7.064467057776, 

OPTIMUM- VALUES OF PARAMETERS 
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0 
-14 
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1.039759 
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1.000000 
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3.374462, 

1.545572 
-3.792809, -13 
2.609171, .22 
0.000000, 	0 

3.792809, 
6.883168, 
0.000000, 
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5.439566, 
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lo) for the steam flow to steam temperature dynamics 

the gain is of the order of 4x/e4  

and the time constant is of the order of. 

-15- x15 = 225' seconds. 

These results are in agreement with the corresponding 

results obtained by Williams and Dart(1967) during 

dynemiC boiler trials. 



/7S) 

12  CONCLUSIONS.  

The results of tests .described in Chapter 6 confirm a highly 

nonstationary behaviour of the processes encountered in boile 

plant operation. It is shown that they can be represented 

by nonstationary models developed in the thesis. 

The nonstationary estimation procedure can be applied 

to the particular examples of boiler dynamics considered 

only because of the negative relationships relating 

steam flow and temperature or pressure, which maker it .  

possible to differentiate between the characteristics of 

the big disturbance and small dynamic relationship. 

The instability relating to the parameter expressing 

the initial state of the system dynamics, showed itself 

when starting values of this parameter, very different from 

the true value , were assumed. It was then necessary to 

increase gradually the starting value until progress in 

the iterations could be obtained. This is undoubtedly , 

a big drawback of the method presented. 

The method vas di.scussed with 'relation to a single lag, 

only, because this vas to be the ultimate application of the 

method. Simulated studies with double exponential 

dynamics haVel hotever, been made and the estimation proced- 

ure was shown to be satisfactory. 
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Estimation. 

A.l.Introduction. 

In simplest terms, the problem of estimation can be 

formulated as follows. Given a sample of n observations, 

xl,...,xn, taken 'at random from a parent - population, and 

assuming as'a working hypothesis that the population is distrib 

uted in a form which is completely determinate except for 

values of some parameters 	= f 	e. 2, .••,h 

it is required to determine, with the aid of the observations, 

numbers which can be taken as the values of the parametersaj  

or a range of numbers which can be taken to incltde these 

values. 

Since observations are random variables, any function of 

the observations alone, called a statistic, is also a random 

variable. Therefore, if a statistic is used to estimate the 

rarameterse, the estimated values may on occasion differ 

considerably from the true values of e. Therefore a method 

of estimation, or an estimator, is regarded as generating 

a distribution of particular valuest or estinatesland the merit 

of such a method are judged by the properties of this sampling 

distribution.The required properties are consistency, 

unbiasF,ednessIminimum variance, efficiency and sufficiency. 
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The discuSsion of these properties and of the estimators, 

given below, is based on Kendall and Stuart(1961), Cramer 

(1946),Plackett(1960) and peulCh.(1965). 

A.2. Desired properties of estimator's. 

A.2.1. Consistency. 

This property requires that the estimator .should- give more 

and more accurate values of estimates as the number of observ-

ations in the sample increases. In other words, the variance 

of the sampling distribution of the estimator should decrease, 

and the central value of the distribution should tend to the 

true valueeas the sample size increases. 

Stated more formally, an estimator to  computed from a 

sample/of n values, is said to be a consistent estimator of e 

if, for any positiveE and/ , hmever smallithere is some N 

such that the probability P that J 	--.(2(411: is given by 

A.2.2. Unbiassedness. 

This criterion requires that the central value of the sampl 

ing distribution should tend to the true valueePfor all 

sample sizes not merely large. In other words an estimator 

n is unbiassed if 



11.2 

It should be noted that consistent estimators are not necessari 

ly unbiassed. 

A.2.3. Minimum variance. 

If there exislimore than one unbiasbed consistent estimators 

of parameters, this further criterion chooses among them the . 

one with the smallest sampling variance. 

The variance of an estimator t of a function ii(q) 

ra=f(1,---,19141 is related to the likelihood function L 

through the well known Cramer-Rao inequality 

vcar at" i=1 
Dv Or 

4- 6? 6$4: 	gt9.1 J=I 
(A.3)  

where the matrix I to be inverted is given by 

< 	AI e?-b > i (A.4)  

and the Likelihood Function L of sample of .n independent 

observations is defined as the joint frequency functiOn 

of the observations 

L. (x, 	 )6,1e) = 	 --((zn(e) 	(A •5) 

assuming the- existence of the first two derivatives of1, 

with respect tof9for 	as well as the independence of the 
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range of variation of x of thee. 

The smallest possible variance attainable by an estimator, 

corresponding to the equality sign in (A.3), is called 

. the minimum variance bound. The estimator which attains this 

variance is then referred to as the Iinimum Variance Bound 

Estimator. 

It may be shown (Kendall and liart,196l) that if a 

minimum variance bound estimator exists it is always unique 

(irrespectite of whether any bound is attained) and that 

the minimum variance bound is attained when 

a49 
	 (A.6) 

wherenWis independent of observations. 

If the relation (A.6) is not satisfied,then the best 

attainable variance may be greater than the minimum variance 

bound.The estimator ofTlawhich, under these conditions, 

has uniformly iniOmaller variance than any other estimator, 

is the called a Minimum Variance Estimator. 

The criterion of efficiency is concerned with large sample 

properties of estimators. Since most of the estimators are.  

asymptotically normally distributed in virtue of the Central 



L. (24,- 761 / Q )-= 

where 

"t = 	_ 43 

(A .7 . ) 

is the vector of estimators, 

is the vector of parameters. 

• /, 

Limit Theorem (Cra4r,1946), the large sample distribution 

of an estimator depends only on its mean and variance. 

However, as a consistent estimate is asymtotically unbiassed, 

it is the variance of the asymptotically normal distribution 

which discriminates between consistent estimators of the same 

parametric function. 

An estimator Which in large samples attains minimum variance 

is called efficient. The efficiency of any other estimator, . 	. 

relative to the efficient estimator, is defined as the 

reciprocal of the ratio of sample numbers required to give 

the estimators equal sampling variances. The criterion of 

efficiency chooses an estimator with greater efficiency, other 

properties being equal. 
• 

A.2.5. Sufficiency.  

An estimator t of (9 (Q= 	60 is said to be a jointly 

sufficient statistic forOif the Likelihood function L of the 

observations can be represented as a iproduct of two'factOrs, . 

one of which is a function of the observations alone i.e.ig 
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Under these conditions the estimator t contains all the 

information in the sample, and the sufficient statistic is 

unique. A point to observe, however, is that, whereas individ-

ual sufficiency of the components of the vector t implies 

joint sufficiency of the estimator t, the converse is not 

necessarily true. 

It can be shown that a Minimum Variance Bound Estimator 

can only exist if there is a sufficient statistic. In'general, 

irrespective of the attainability of any variance bound, 

the minimum variance unbiassed estimator ofqq4ls always a 

funCtion of the sufficient statistic, if one exists. 

It can be shown also that the class of distributions,in 

which sufficient statistics exist for the parametersebelongs 

to the exponential family -of distributions defined by 

F 	ex/3 	a(d -Fc(x)  

. . Maximum Likelihood Estimation.  

As stated in the preceding section, the likelihood Function 

L of n independent observations from the same distribution 

is defined as the joint probability of the observations 

regarded as a function of the set of parameters ENO, „Or/ 

L. ()c e) 	 f(XPle) 
	

(A.9) 

A.8) 
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The maximum likelihood estimation of the set of parameters fi: 
consists in choosing that set 0 = (a, 	of the q. 

admissible values of the parametersewhich makes the likelihoo 

function an absolute maximum. It is usually simpler to.employ 

the logarithm of the likelihood function rather than the 

functionits61f. If the range of the frequency function gAr(e) 

does not depend on the set of parameters 0, and if the set 

of the parametersemay take any set of values in the p-

dimensional space, then the logarithm of the function and 

the function will have the maxima together. Under these cond-

itions the local turning- point will be given by the roots 

of the set of equations 

zi-54  -47 L0( 	0 	 (A.10) 
e=1,2,.. „Pr 

A sufficient condition that any of these stationary values be 

a local maximum is that the matrix 

	

( D2.211- 	..- 

	

?Oa- Oej 
	• = fa, 	 (A.11) 

be negative definite. 

The solutions of the equations 

maximum likelihood estimates 

If there exists a set of,statistics tVW,ts which 

jointly sufficient for the parameters f2=1(9,,...1 01.,/, the set 
A 	 •;'s 

of maximum likelihood estimators 	
= r . 

will be  

afunction of the sufficient statistics. If this is. the case:, 

A.10) are the set of p 

are 



The solutions 19— ? of the corresponding ' 

/-94? 

the likelihood function can be factorized into two factors, 

one of which is independent of the set of parameters 

egfe,-.7ori i.e. 

L 	)= 9  (-_t: Ig) too 	(A.12) 

where 

If the regularity conditions mentioned in Section A.2.3. 

are satisfied then it may be shown (Kendall and Stuart,1961) 

that the likelihood equations have a unique solution if s=p, 

and thet this solution is a maximum of the likelihood function 

Under these conditions the most general form of distribution 

(A.8), admitting a set of p jointly. sufficient statistics, 

results in the logarithm of the likelihood function of the 

form 

fay L = A1(6) E Bifre-) Zc(ze pl i)(e) 
j=1 A.13) 

likelihood equations 

ales L 5--r 	
1=1 

zei(x 	D.D(.0 
l- 	i)÷"  (A.14) 



(A.17) 
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)2-  l2) 
t3 Or Des 16 

 

 

(A.15) 

is negative definite. 

If there is not necessarily a set of p sufficient statistics 

for the p parameters, the likelihood function no longer has 

a unique maximum value and the joint maximum likelihood 

estimators e 	, or s 	are chosen such that 

(A.16) 

Such estimators are, under very broad conditions, consistent 

and converge. in probability, as a set, to the true set of 

parameter values et, 

If the range of the frequency functionc6sfddoes not' 

depend on the set of parameters 0, the estimators are 

asymtotically efficient aAdltend to-,a_tultivariate normal 

distribution with a covariance matrix whose inverse is given 

(Kendall and laart 1961) by 

Vrs: 
rot43.9-6, 

 / 	

(7t  taeg  

" D r s I 
141 -•-,p 

s=1,21 



An important result proved by Kendall andStbart(1961) is that 

the determinantiDlof the covariance matrix D of any set of 

estimators, which is called the generalized variance',-  cannot 

be less than 	1 

I VI 

in value asymptotically. Since, asymptotically, dor the 

maximum likelihood estimators, 

11)1= Iv( - 'My (A.18)- 

it follows that the maximum likelihood estimators minimize 

the generalized variance in large samples. 

As regards the bias, the maximum likelihood estimators are 

in general, biassed, although the bias will tend to zero-for 

very large samples, if the estimators have finite mean value. 

A.4. Least Squares Estimation.  

A.4.1. The principle of Least Squares.  

The least squares method of estimation has been known for 

quite a long time, as it appears to have originated from 

Gauss (Plackett,l949; Rosenbrock,1965). The method in the 

present form has been mainly employed in situations in which 

observations are distributed with constant variance about 

(poSsibly differing) mean values, which are linear functions 



in a finite number of unknown parameters, and in which the 

observations are uncorrelated in pairs. 

The situation is then described as the linear model 
• 

)( e 	E 	A.19) 

where 
	

is a (p x 1) vector of parameters, 

is an (n x 1) vector of obserliations, 

?( 	
is an (n x p) matrix of known coefficients, 

is an (n x 1) vector of error random variables 
whose mean and covariance matrix are respectively 

given by 

and, 

(A.20)  

 

v( 	> f Z Z (A.21)  

The Least Squares method selects simultaneously those values 

of 	Which minimize the. scalar sum of squares 

S= ( - X f--))r ( Y -X 2) 	(A.22) 

for variation in the components of f. 

The solution of equation (A.22), resulting in the 
A 

computation of the least squares estimators 9, as well as 

the computation of the covariance matrix of the estimators, 



Also the covariance matrix of the e-stimators is 

•••••••••• 

V( 6 )= E- <( el-P)(6 

lea 

involves the inversion of - the matrix X, and thus depends on 

the rank of the latter. For this reason,-  there exist two forms 

of the Solution, one corresponding to the rank of X being-

equal to the number of the parameters,p, and the other• 

applying when the rank is smaller -than p. (Plackett,l960). 

Only the former case is of interest in this thesis and is 

discussed below. 

A.4.2. Least squares estimation when the rank of matrix X 

is equal to the  number p of parameters.  

In this case the matrix XX is invertible. 

Differentiating (A.22) with respect -toe, and equatingto 0, 

yields the least squares estimator in the form 

e3i 	x-rx 	X -r  y 	 (A.23) 

The estimator is unbiassed, for from (A.19) and (A.23) 

we have, 

( A 2 4 ) 

and the expected value of this expression is eqiial toe 
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If t is any vector of estimators, linear in the observations 

i.e. f the form, 

t = T a 	 (A426) 

and if t is unbiassed for .a set of linear functions of' the 

parameters, say, C&, i.e. - if 

E <t> 	.e 	(A.27) 

then it may be shown (Kendall end 4tiart,1961) that. 

(A .213) 
AND 	41i') --. 6" 2 C (XrX) 1  CT. 	 • (l4. 2g) 

These results state that the least:squares method yields 

minimum variance linear estimators of any set of linear funct—

ions of the parameters e. It can be'shown (Kendall and Stuart, 

1961) that the least squares estimator g minimizes the value 

of the generalized variance for linear estimators of 0 

always  , and not only asymptotically as is the case with the 

meximum likelihood estimator. 

By considering the set of residuals in the least squares 

estimation, 

5r-)ca= i - xok-rxrirl E 

and observing that the matrix ty-cer(Y -x(3 ) 
idempotent ,and that trace fx (xrxxr / r  
= trace f X 14(X:rxri 

that (Ple.cke tt 21(360 ) 

A.30) 

is 

it can be shuma 



rz 	 (y-x19% )-1- (Xe) ) 

24)If 

-(A.31) 

It follows from the above that an unbiassed eatiniator.s2 

of the variance 6-2 is the. sum of the squared residuals 

diVided by ( the number of-observations minus the number of 

parameters estimated) 	i.e. 

(v-xoir(y-xe) ( A . 3 2 ) 

It should be noted that, as long as it is not required to  

test hypotheses concerning the parameters, no assumptions 

aboUt the forms of distribution of errors are necessary for 

obtaining the least squares estimates. 

In the above discuss ion'the only restriction placed on the 

random errorslejis that they be uncorrelated. If, in 

addition, the errors ere normally distributed, then they are 

also independent. Under these conditions the quantity 

(n-r)e  

is a chi-square variate with (n-p) degrees of freedom ( since 

an idempotent quadratic form in independent stendarized normal 

varietes is a chi-square variate with degrees of freedom given 

by the rank of the quadratic form). 

E< (y -x)r(y-x.19) 

(A•3 3 ) 



and , 	

x 	cx 	 -1-X X rXile.-2 

or, 

)(e r" (4_ )-= rx -r)x(x'rx (XO÷E (A.3.4) 

which for 9 = 0 gives, 

eA 1" 
(A.35) er  (x-r rx e 

From (A.35),  (A.33) and (A.30) we l';ave then, 

' 	7r 7  E 	/- 	x (x7.7x) x 

irf X (X1-4- 
 )(

T1 E 	 A.36)6 

The rank of the first matrix in the curly brackets is (n-p) 

and that of the second matrix is p. The ranks of the matrices 

add up to the rank n of the matrix V. E . Applying 

CoChran2s thebreljt ** we have then the result that the two 

quadratic. forms in equation (A.36) are independently 

distributed like chi-Square with (n-p) and pidegrees of 

freedom. 

** Cochran's Theorem (Lindgren,1962) states: 
Let U1'  ..0r  be independent and normally distributed with 

zero meens and unit standard deviations. 
Let 

1
fe = n n 4...4.n  

44s' ,
where each Q.1  is a sum of square st I 	4.s°'2  

of linear combinations of U11  ...0r' 
 with t. degrees of freedo 

Then, if t1  + ...+ .r, the quantities Qv...Qs  

ere independent chi square variates with t1,..tsdegrees of 

freedom. 
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Appendix B.  

Linear Discrete-Time Systems. 

B.1. Introduction.  

The Appendix discusses linear discrete-time systems derived 

from linear differential systems by means of periodic sampling. 

A review of the well established theory of Z transforms 

(Hurewicz,1947; Barker,1952; Tou11959) is first given as an 

introduction. The Z-transform technique is then used to derive 

difference equations describing linear discrete time systems 

which are suitable for their identification. The Appendix 

uses certainm results of the recent work bar Box and Jenkins 

(1963; 1966;1967) but the formulae developed are general 

and include those derived by Box and Jenkins as special cases. 

B.2. Definition of a Linear Discrete-Time System.  

Most physical systems are continuous by nature and their 

dynamic behaviour can, therefore, be represented by that 

of continuous-time differential systems, as discussed in 

Chapters 1 and 2. If, however, such a process is controlled 

by a digital computer, the discreteness, specific to the di- 

gital computer control, is brought about by the periodic sampl-

ing of the variables. 
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Suppose that a linear differential system characterized by 

the impulse response h(t) and described by a relation such as 

(an 1° n÷ 

1:41 
= (brA p el+ 	-43 .4..#4,,j14(t) (B.1) 

is subject to a digital computer. control and that, therefore, 

its continuous input U(t) and output y(t) are sampled every 

e seconds. Then the resulting input sequence jut / and 

the output sequence yt5 

	

cc (.fit dTf o) 	 (B.2a) 

	

.m. y(.iii,47-4 0)- 	 (B.2b) 
= 	2,.. • 

describes a linear system In which the variables can change 

only at discrete instants of time (sampling instants). 

Such a system is referred to as a discrete-time system  

or a sampled-data system.  

B.3. Two alternative characterizations of a linear discrete-

time system.  

As discussed in Chapter 1, a linear continuous-time systSm 

can be characterized either .by its impulse response in the time 

domain, or by a transfer function in the frequsncy domain. 

The dynamic response of a discrete-time system can also be 

formulated .in two domains as folloWs. 



Vie 	o 
Z Li~  Like...Q. 

- 2.43e. 

In the'time domain, the sampled output time function y(kAT) 

is related to the sampled input time function u(kAT) by a 

so-called convolution summation 

aa 

(.4t 7-) = 	(JAY) u rieA-r—j 4 -r) 	(B.3) J=0 A =1,2, ... 

in which the sampled values of the impulse response h(t), 

(n.07) A (..)16,44,7_ 	 (B.4) 

are referred to as the weighting sequence of the discrete- 

time system. 

With the notation: 

h = h(niiT) 	 (B.5) 

the relation (B.3), characterizing the linear discrete-time 

system in the time domain is written 
ACP 

Let the sampled time functions, corresponding to the continu-

ous time functions u(t), y(t) and h(t) be denoted u*(t), 

y*W and h*(t), respectively. Then, bearing in mind that 

for physical systems both u(t) and y(t) are zero for t< 0, 

one can write the expressions for the sampled input, output 

and the impulse response functions in the form 



(4. ••••••• 
11.1•••., t4 (Pi AT-) 	17 T) 

11= o • 
(B.7a) 

Ct) 	01 AT (.t•-• .01 
P7 = o 
as 

(() = Z k ( n ICT) cr.(tt 
The Laplace transforms of these expressions are 

	

1) 4'.  Cs) 	(. AT) 
l7=0 

as 	 —hisfS 
Y 	7:- s) 	V 01 AT) 

n=o 
00. 	- N  AM_ 

H 	( s) 	 )e 
h=o 

If a complex variable Z, defined by' the relation 

a. 	Zrs 

(B.7b) 

(B.70 

(B.8a) 

(B..8b) 

(B.8c) 

Z = exp(ATs) 	(B.9): 

is substituted into (B.8), the resulting relatiOns 

okt 

U (z) = 	(n AT) -z, = 	tin 	(B.10a) 
.h=o as 

(z) = z 	(r) AT)j.
„i

"- 	yhz-Dt 	(B.10b) 
nz 0 	h=o 
4, eta 	— 

H (-2.) = 	I (n ANT)z. 	h nZ• H 	B.10c) 

are referred to, respectively,- as the z transform of the 

input, z transform of the output .and the z transform of the, 

impulse response. 

:The relation 

Y(z) H(z).U(z) 
	

.(B.11) 



zio 
between the three z transforms is derived by Laplace transform 

ing the expression (B.3) and substituting in it (B.8) and (B.9) 

The relation applies to the output signal y(t) at the sampling 

instants only. 

The ratio.  

H(z) 

 

(B.12) 

 

of the z transforms of the.input and of the, output is,identica 

with the z transform of the sampled impulse response and is 

referred to as the z-transfer function or. the pulse transfer • 
, 

function of the system. 

It has been observed by Hurewicm(,1947) that the expression 

for a rational transfer function 

H(s) =. bs
m 	m-1,m-1 

 

ans 	+an-1 sn-1 +.... ao 

can be decomposed into a finite number of simple partial 

fractions 

H 	c (s 	„ow' 	(3.14) 
iv. 

the non-zeronumbersand i  being not necessarily' reaI. 

However , many physical transfer functions are characterized 

(B.13) 



Z(/ 
by a multiple pole at s=0 (Tou,1959). In general, therefore, 

the denominator of the transfer function H(s) can be factorize 
• • 

in the form 

ans
n 
+ an-1s

n-1 
+ 

N a 	S ( S+ ILO 
t 

0 (B.15)  
1=1,2).$2k0 .  

Thus, in general, a transfer function 'H(s) can be decomposed 

into partial fractions as -follows 

4.? 

1-I 	"' 1:=1 j=l  
(B.16)  

Noting that a componev,t of the form 

K1 i  
s + ot 

corresponds to a weighting function 

h(t) = K. exp( 	 t)  ij 

and a component of the form 

(B.17)  

(B.18)  

(B.19) 

corresponds to a weighting funCtion 

h(t) = &131  -071  

one Obtains the z transfer function of the general expansion 

(B.16) in the form 



discrete-time system. 

wei 
(z)— . 	_ n-of e=1 J=1 - 

3-1 
2ES-1) J=1 	--- ci-o • 
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(B.21) 

The pulse transfer function H(z) is thus a rational function 
- 

of the complex variable z, the• poles of which are at z'exe 

zk - exp(- dk AT) 

or at 

z
k 

= I. 

It follows,therefore, that the pulse transfer function of the 

system (B.1) can be obtained in a closed form as 

H(z) Cm +
-1 cm  _lz + 00 .410 + C Z-m 

(B.22) 
am dm-1z + .... +doz

-m 

 

where some of the coefficients c, may.be equal to zero. 

The weighting sequence (B.5) and the pulse transfer functio 

(B.22) provide two alternative characterizations of a linear 

B.4. Linear discrete-time systems with transport lag.  

The discussion in the preceding section refers to a dynamic 

al system in which the response to an applied input is 

instantaneous. Some physical systems, however,are characteriz-

ed by a so-called trahsport lag, or dead time during which 
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the system yields no response to the applied input. In the 

analysis and synthesisof such systems it is usual to represent 

the effect of a transport lag A by that of a separate element 

having the transfer function 

HD(s) = exp(-As) 
	

(B.23). 

and relating the input y(t) and output yD(0 by 

yD(t) = y(t-k) 
	

(B.24) 

If the transfer functions of linear dynamical systems without 

the transport lag and with the transport lag are respectively•  

denoted by H(s) and HD(s) then 

HD
(s) = H(s).exp(-Ns) 	(B.25) 

and the outputs of the two systems are related by (B.24) 

The pulse transfer function of a linear discrete-time 

system with transport lag is derived below. The time-domain 

description of such a system ,however,depends an the type 

of input, or, rather, on its behaviour between the sampling 

instants. This question is discussed within the framework 

of the identification problem in the next section. 

In general, the transport lag Ala not an integral multiple 

of the sampling intervalA T.and can be written 

B.26) = (ni-m) AT 



2ff 
where n is an integer and m is a positive number,smaller 

than unity **. 

The pulse transfer function of a linear discrete-time syste 

with a transport lag X defined by (B.26) is obtained by means 

of a so-called modified z transform. The transform is a funct-

ion of the parameter m and for a time Sunction X(t) is defined 

by 

n 
X (zi m ) z 	x AT in AT) 

Woo 
(B.27) 

The modified z transforms corresponding to_ the weighting i 

functions (B.18) and (B.20) are respectively given by 

ctic ml 407 
• -n 

itly 	= 'z. 	K  r: j 	z etc 1:47" (B.28) 

) fern ace./.1 	-/ 
2- 	

-ae,47) 1-4 
eZ-D 0 	(1— Z.e ) 

and 	 qm 47 . 
SI 

(B.29) 

Hence a general expression for .a pulse transfer function of a 

linear dynamical system with a transport lag 

_ A 	(n+m) O T 
is given by 

** According to the convention adopted in literature(Barker, 
1952; Tou,1959) the fractional delay is (1-m)ST and 

Un-1) + (1-1034LT. The convention adopted in this 
thesis facilitated the treatment of the next section and 
enables the results of Box and Jenkins to be included as 
a special case. 
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(B.30) 

This expression may also be written in a closed form 

similar to (B.22). 

B.5. The problem of identification of linear discrete-time  

systems.  

The aim of the analysis and synthesis of sampled-data. and 

digital control systems is to assess the stability of the 

system and to obtain the output time function resulting from 

the application of known input time function to a known 

linear systeT. The output response at the sampling instants 

is obtained by first evaluating the overall z transform of the 

input and of the system and then inverting this transfordpy 

any of the recommended standard procedures (e.g. Tou,1959).. 

Converse requirements have to be satisfied ,however, when 

considering the problem of system identification. This problem 

is concerned with situations in which the order and the coeffi 

ients of an unknown transfer function of the sy tem (B.l) 

    



obtains 

are to be determined frame. series of known values of both, 

the input luit and output .yii(1= Al; 24T-J.-J/145T) 

In a practical situation both sets of values will include 

the effect of various kinds of disturbances, and this effect 

must be allowed for or made insignificant. In the following 

it is assumed that the disturbances are allowed for and that, 

therefore, the input and the output values can be considered 

to be noise-free. 

Since the input and output readings are available in the 

time domain, the most convenient characterization of the 

system to be identified is also in the time domain, in terms 

of difference equations rather than in terms of the z 

transforms. The required difference equations can be formulat-

ed in two different ways as follows. 

The first-  formulation relates (m+1) values of samples 11/.1 

of the input and lyil of the output, and can be easily derived 

from the z transform equation (Zadeh and Desoer,1963). 

Y(z) = H( ).U(Z) 
	

(B.11) 

which relates the z transform U(z) of .the inputlY( ) of the 

output and the pulse transfer functico^H(z). If expressions 

(B.10b), (B.lOa) and (B.22) are substituted in (B.11) one 

MA, 	 —K 
(Cm 	cm-rz. 	 )( vi 04 L4,2. 4-- 	(..t ic 	4../ 

•—• 
elra—s-Z. 4  • - • 46  ci x It4  )(U, 1-Z 4-- (B.31) 



integral 

This equality has to be satisfied for every poWer of z. 

Therefore, equating coefficients of,say, z-k one obtains 

,a difference equation 

Cm (4g 4' CP)1 14U-1 	" 11•• CO 4. se—ni 

et 	YEZ 	d m-, 14 -4 	- 	e(11 V14."1" 
	 (B.32) 

A set of such equations, corresponding to k=1,2,...N, 

and an ass-timed value of m, can then be sol-Cred as discussed 

in Chapters 2,3,and 4. 

The second formulation, employed by Box and Jenkins(1963, 

1967a,1967b) is obtained by approximating to a convolution 

	

t og, 
h C/r) u C - 	6t/r 	 (13.33) 

by means of an infinite sum of definite integrals 
40 	.67- 

r;t) 	

or) 

J= 
k  (B.34)  1  

The latter formulation is derived as follows. 

A.-r The input series uiU(i.,,AT)  2e0 - 

may correspond either to a genuinely discrete sequence of 

values, or to sampled values of continuous time function. 

In the former casp pertaining to sampled-data control systelps 

the sampling process introduces high frequency complementary 



components into the actuating signals. These unwanted 

components are usually removed by a smoothing device, called 

a holding or a clamping circuit.. In the latter case, the 

sampled values of continuous output correspond to continuous 

input,only sampled values of which are available; in such 

a case the continuous input can be reconstructed to a 

required degree of approximation by means of mathematical 

interpolators (Cruickshank,1961). It is thus seen that,whether 

the input is igenuinely discrete, or continuous and sampled, 

the discrete sequence of input values is converted into 

a piece-wise continuous time function. For-this reason no 

difference will be made in the treatment of these two cases. 

(such a difference is made, however, by Box and Jenkins, 

as will be discussed later). 

The eVerapolated time function between the conecutive 

sampling instants nAT and (n+l)AT depends upon its values 

at the preceding sampling instants nAT, (n-1),d T, ( -2)4iT... 

and can be generally described by a power series expansion 

in the interval t=n41T and t= (n+l)i1T. If y(t) is the output 

time function and yn(t) is the output betweeh sampling instant 

nliT and (n+1)4LT then, in general, 

,  
n (-6 	(it AT/ ÷ 9 	,67) 

(R),  7) icr) 
• • • (B.35) 



Vin,.?) -4. 	n 79(4-n  46-7-) 

and having the transfer function 

-.ers 
H 	 ) t 	s  

(B.391 

In the above relation the approximated value of the k-th 

derivative y(k) (nAT) at t=n4IT is obtained from 

(14 	A-r).= 64-51c f yt/14-0—Ayttn-a•erli--- 

(-( )11  y r(n-A.).6T I 	 (B.36) 

Because of a high cost and the constructional complexity 

involved in the high order holding devices, and a large 

amount of shift introduced by them, the most common holding 

devices used in the sampled data control systems are 

a) the zero order hold circuit resulting in the interpolatio 

by means of 

.679 	n AT< 6- (n 41) 45-r 
	

(B.37) 

and having the transfer function 

Ars 
fi40 (s) = 

I e. 	
(B.38), 

and 

b) the first order hold circuit interpolating by means of 



2.2.0  

Mathematical interpolators employed in digital control 

systems can be realized by a computer program and higher order 

interpolation can be achieved, It has been pointed out by 

Cruickshank(l961), however, that little gain in the accuracy 

of reproducing a function is obtained in engineering 

calculations by employing orders of interpolators higher than 

the second. For the above reasons the following discussion 

ism limited to zero and first order interpolators only. 

When hold circuits or interpolators are asaumed to be 

present, the appearance of the infinite sum (B.34) is gteatly 

simplified and difference equations similar to (B.32) can be 

derived. Box and. Jenkins (1967a) obtain such difference 

equations, which relate to a first and second order linear 

dynamical system, through direct integration of the different—

ial equation of the system. This approach, however,requires 

the knowledge of the relevant differential equation 

and lacks the generality and elegance of the expression (B.21) 

obtained before. Moreover ,-it involves expressions which are 

quite complicated even for a relatively simple second order 

system. In order to preserve both the simplicity and 

generality of the results presented so far, an alternative 

approach, utilizing the z transform theory ,is adopted below. 

With this approach, the pulse transfer function of a linear 
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1

)  
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It l-0 irr .1=1 (B.42) 
is 	- • - 

Adppting the notation (Box and Jenkins,1967a) 

N ow referring to equations (B.16), •(B.18 

Ar kci 
4or C e-Onn 

e 	le 

B.20) and (R.21), 

(B.45) 

system subject to a piece-wise continuous input is obtained 

first and then used to derive a difference equation in a 

way in which tie equation (B.32) has .been obtained. This is . 	• 

discussed in the following two sections. 

B.6. The case of a zero Order hold or interpolator  

In this case,(referred to by Box and Jenkins as the case of 

a stepped input), illustrated in Fig.B.1.2  the input is'  

constant(over any sampling interval 

e AT < IC. (eft) AT B.41) 

and the convolution integral may be,approximated by 

regi:  AMCI? 
{L-0,ST 

the response of a linear system is written 

(B.43) 

n  E, vt  
cr.s 	n  
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(B.49) 

22.2 

c•Z (tit ) -= 

and 

Also, 

VI, 

Or, 

i 
4. err L t 	, 	L 

10.-I)AT G-0! .,; 
Li r_i)J2_,:. 

• tc- 
. 	-> 0 	4 *. 

. 	3.• 	_ 

aft -t)Ar)] 

- citeri -0-g-i) 4r i 
Je. 

(B.46) 

B.47) 

(B.48) 
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Hence, 

0Z.  (vi  = vicz) 

An expression for the pulse transfer function.of a general 

linear system with a zero order hold or interpolator is obtain 

ed if in the relation (B.21) components corresponding to  

z transforms of the weighting functions are replaced by the 

expressions (B.48) and (B.49), corresponaing to integrals 

of the weighting functions. One obtains thus, 
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3-1  
..1̀  	-.oec .57) . 

A 	j-i . ) 	i cz:  z I— e 
( li.- 	 T:Th  -.1 -1,1e tir 

i=1 j=1 	 • 

	

Alw 	• 	 D  .1 	z•-t (I _ e- ti, 457) 
)4" LS .411 

2:(7111  31- 

	

60.--? 0 g a. j 	I--Z. e ...,  - a417- 	((B•50) 
j= I 

A similar procedure is adopted in deriving an expression 

similar to (B.50) but corresponding to the case when the linea 

system under consideration includes the effect of the transpor 

lag 

	

X= 	n+m)A T 
	 ( B . 2 6 ) 

That is to.  say, expressions in brackets in_(B.30) , which 

correspond to weighting functions , have to be replaced by 

corresponding expressions relating to integrals of the 

weighting functions, This time, however, the input is not 

constant over the whole interval (L-1)4 T, it,T] but only 

over its sections, namely [(2-1)A T, (1-m)4 T. and 

E(2-m),a T, tisT1 . In order to retain the simplicity of the 

expressions derived previously, a backward shift operator B 

defined by (Box and Jenkins11965,1366) 

B x 

will. be  introduced. 

When the input u(t) is delayed by mdIT (0 m < 	
• 

the corresponding convolution integral may be approXimated by 
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0414)AT 
[ (1 	 fir) do) it n- 
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( 	 Afr'estq' 

(B.53)  

(B.54)  

h(t) = exp 	) 
c/it  

then;  noting that 

n-1-1 = Bun-1 

the relation (B.52) may be written, 
(.e-1-ft -rte) AT _ c4 'r  

[ kL -1 l AT 	4 	'in.  
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This is seen to be of the form of the relation (B.42) with 

Performing the integrations one obtains, 

) 

(B.55)  

If 
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B.62) 

Integrating, one obtains, 

• 1 -m) AT]'- 	) aT 
• 

_{ [2 An E 

2 ' 
and 

( 	I 	z- 	 B.59) 

then, taking the z transform of (B.57) one obtains, 

(g 	e. 
tic  0.44)47 —etc 4T) 

-e 	1 -̀  (B.60) 4.-r 
1 —Z. 	-  

Similarly, if 

h(t) _ 	
j-1) 
	 (B.61) 

then 

This can be easily put in the form 

jo 	 (i-pyi)/ST\ 
e 

vL, 	• .1 • 	4,-0°  
ex, (I_1,1 )AT -a txT) -0•11-1) AtIT 

e. 	B} (B.64) 
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The z transform of this relation is 
	ez? 

0., (t-m. 	- 
(.e 	-e 

4- 0. T (B.65) 

 

Using (B.60), and (B.65) in (B.30) one obtains an expression 

for a z transform of a general linear dynathical system subject 

to a stepped input (or a zero-order hold) and including the 

effect of the transport lag (B.26). in the form 

4e 	-6  1<- • 	 i 	 Iz 

j=I 
_440- HAT 	ale AT' % _2 

-. 4 

a- etc co- 

'f" 	•L • z  +I ) 
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( 1-e - a (1-m )4.7•1' 

— a. Ac.T — z 4. 

B.7. The case  of a first order hold circuit or interpolator. 

When a first order holding device is used, the input.u(t) 

between the sampling instants kiI T and (k+1)4 T is 

extrapolated using tlho previous samples, uk  and uk- 
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47-  -041- = 

2.29 
From (B.35) and (B.36) the law of extrapolation is 

',CU' 	tig-t• 

Lite< stti 	lik41 

(B.67) 

In this case the convolution integral is approximated by 

(see Fig.B.2) 	ter 
n er) = 

- 

tc n 	— s+-1-1 
A.vre (B.68) 

If the backward shift operator is employed, this can be 
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The VariableT in the second:  and fOurth integral varies linearl 

only between o and AT over anif intervalEkA.T1.  k+1)A T-1 
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Hence (B.70) may be written, 
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If 

h( t ) 	exp ( 	.t) 
	

(B .18 ). 

then, 
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Performing the integrations one obtains 

t(CAT -ciat-1)4T 

IT de / 	
)$2 

 
c/z 6.T 	-414  

p _ re • 	0.74 
-4471 . 

4T .• ail; 4 -I)  AT 	-do 4T 	_W.: AT" -01,-.4.1-Zi 
BEV—a 	Je. 	AT 	CeL 

"." (41-e. +4-6-e 
B•73) 

The z transform of this relation is 
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that in (B.73). Hence, by inspection, the z transform 

is 

of (B.80 
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On carrying out the remaining integrations and tjdying up 

this becomes, 
1+1/4 
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The expression in the curly brackets is of the same form as 



in which (B.50) Yas 
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. Thus, finally, 
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The. pulse transfer function I-111(z) of a general linear system 

with a first order hold is obtained in a way similar to that 

respectively. 

A similar expression corresponding to the transport lag., 

given by (B.26) is obtained, as in the case of a zero order 

hold, by first deriving a pulSe transfer function of a system' 

with a fractional delay mAT , and then multiplying theresult 

by z-n. From Fig.B.2b it can be seen that the convolUtion 
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-hOsYr 

ktvet 
1-047- 

/-13 
p.T 

integral is now approximated by 
GO 	ict-m)at 

- 
(nail E 11_0, h a)[(4...,  

124-t -1 --tinut -Z A 
4- -4(014A-1-11- 	 " 

rti-ra)AT 

AT ((t-trOAT—Tg et 

Vjati 

(B.84) 

Using the backward shift operator B this can 

y(4 AT) 	f  
C-ni.)er 	• 

-1).Ar 

81) !QAT. I '1M ea 
ice-1111AT 

t AT" 
-/12. 	haiat an_e 

AT (B.85)  

Noting that lf varies from-0 to (l-m)4 T over the interval 

[(i-1).6 T, (1--m) a T. and from 0 to mAT over the interval 
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For h(t) defined by (B.18), 
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Performing the integrations one obtains, 
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Collecting corresponding terms, 
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Simplifying, 
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Taking z transform of (B.91) one obtains, 
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Performing the integrations, 
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This can be written in the form, 
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The expression in the curly brackets is seen to be of the sam 

form as that in the relation (B.89). Hence the pulse transfer 

function can be written by'inspection as 
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The pulse transfer function of a general linear system, inclu 

ing the effect of the transport lag, and the effect of a firs 

	

order hold is, finally, 	)il 
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where V"f(z) and V
i Iz ar,-  given by (B.93) and B.98) 

B.8. The case of a  first order interpolation according to 

Box and Jenkins 119670  

This case, discussed by Box and Jenkins(1967a,1967b), 

and illustrated in Fig.B.3, differs from the first order hold 

of the preceding section in that the values of the input 

function u(t) between the sampling instants kA T and (k+1),e1T 

are obtained from 

(B.98) 
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That is to say, current values uk  and u, 1 
 are used. for - 

interpolation, a complete record of sampled values being assum 

ed to be available for analysis. 

Box and Jenkins call this the case of "identification" 

or sampling a continuous function, in contradistinction to 

the "control" problem in which the contr!cil.commands are given 

only at discrete instants of time. Box and Jenkins argue that 

"the most sensible" way of approximating an input fthiction 

is by means of the interpolation (B.100) in the "identificatio 

problem, and, by means of (B.41) (zero order hold) in the " 

"control" problem. This may be so in the control of batch 

processes, but not necessarily so in the control of many 

physical processes,where, as discussed before, higher order 

interpolation maybe employed...  

It is suggested here that this case be regarded as just 

another case of the first order interpolatio hich may be 

employed when a complete record of input and output is given. 

This case is discudsed below for completeness. 

Corresponding to the law of interpolation (B.100), the 

convolution integral is appi.oximated by 
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(B.101) 
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Employing the backward shift operator B 
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For h(t) defined by (B.18), 
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Carrying out the integrations, 
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When corresponding terms terms are collected, one obtains 
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Since 
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	 (B .108a ) 
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the z transform of (B .107) is 

• v (2.) z. teij V (z) 	 (B.10.9) 

• where 
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For the weighting function h(t ) defined by (B .20) 1  

- 	4 AT 	;....1 	1 	47-  a-
- 1 	 %..)4 

xr ( c- 9 sr 	a 

Performing the integrations one obtains,  

LI! EAT (AT -0AT Vc, j! 
4T  

( 5 V1-1).4--Oidn: 

B .111) 



or, 
fl tem 

IX-PO aa~ -e 13- 

240 

Lj (1) ...114M 
-•a(1-thrir 	-a.411 

V(.74 .jr (1) 	---v-e )a! 	[Er((t —e 

a? 
÷ a -1 ( AT4-4471 j a e ,,1 ) } • B.113) 

- e
- AT) 

- a. a-T- 
B-1' 1 dre A T" 

(I-.e- 6781 
(B-.114) 

This relation is of the same form as (B.106)' and, therefore,. 

the corresponding z transform may be written by inspection as 
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Hence the pulse transfer function of a general linear system 

using Box and Jenkins interpolation (B.100) is 

kij  

	

H iv(Z) = Z Z ---F--, , 	( -I) 	)41. J-1 , 	v v(z) 
1 co j=1 uo - - • 

.4- 	. 
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where Vv( z) and VI/1(z) are given by (B.110) and (B.116), 

respectively. 
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When the system under consideration includes a transpbrt lag 

(B.26), the corresponding pulse transfer function is obtained, 

as before, by first deriving a pulse transfer function of a 

system with fractional transport lag m4 T, and then.multiply-

ing the result by z
-n
.  

Referring to Fig.B.3b, the convolution integral is now 

approximated by 
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Using the backyard shift operator B, this can be 	as 
err 
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Since the variable3 varies between 0 and (1-m)4T over the -

interval [(11)AT, (t-m)A T] 1  and between 0 and mAT 

over the interval Ea-MA.11.3  .4411 	(B.119) may be written, 
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For h(t) defined by (B.18) , 
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Performing the integrations one obtains, 
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Collecting corresponding terms, 
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The z transform of (B.124) is 

(B.121) 

E4,-rae. ( 
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This can also be written as 
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For h(t ) defined by (B .20) 
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Performing the integrations one obtains, 
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(B .129) 

•The above expression is of similar form to, (B.123) and the 

z transforT of (B.129) can,therefore, be written by 

inspection as 

Finally, the pulse transfer function of a general linear dynam 

subject to an input With ical system with transport lag and 

• the interpolation law (B.100) is 
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where Vvii(z) and Vviii(z) are respectively given by (B.126) 

and (B.131). 

B.9. Examples of difference equations describing first and 

second order systems with interpolated input.  

The relations (B.50),(B.66),(1.83),(B.99),(B.117) and 

(B.132) give expressions for a z transfer function with or 

without transport lag, corresponding to three methods of 

interpolating the input function u(t). The method of 

derivation of these equations is superior to that used by 

Box and Jenkins(1967a,1967b) and holds for paw linear system 

with a rational transfer function. Once the transfer 

function H(s) is specified, it is factorized according to 

(B.16) or (B.25) and the corresponding z transfer function 

can then be obtained directly by using one of the relations 

developed in this Appendix. 

The z transfer function thus obtained can be put in the form 
-rot  ..‘ 

Cm C 	• + 4  .Z6  

4  dpis -I 	 440  nr. 

The corresponding difference equation can be derived from 

the relation (B.11) as described in Section B.5. That is to 

say, substituting ( .10b) (B-.10a) in (B.11) and using (B.133), 

H (B.133) 



one obtains, 
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This relation holds for any power of z. Therefore, equating . 

coefficient4)f lsay, z-k one obtains the required difference 

equation 

C 	C 	L4 	+ • • • 4. CO Lt 

tirsym 	d,1 	le -trt - - 	4  du yk-hi 

This approach will now be adopted to derive difference equat-

ions describing first and second order systems. The object 

of these examples is,first,to illustrate how the formulae, 

developed in the Appendix, and holding for a general linear 

system,can be used to obtain difference equations correspond-

ing to some specified  transfer functions. Secondly, it is 

required to obtain the formulae used in the thesis and compar 

them with those obtained elsewhere. Only zero order interpola 

ion will be considered here. 

a) First order system without transport lag and with  

transport lag  

Consider first a simple first order 

(s) 
	

$ +04. 

Using the formula (B.50), 

system given by 
1 

(B.136) 



(B.137) 

Employing the"parsimonious parameterization" of Box and 

Jenkins, 

oC 	 (B .138a) 
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Then 
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Using (B.134), the difference equation is obtained as.,  

cfryg-i -= 9 — tc
,e _f 	(B.141) 

which agrees -with the relation given by Box and Jenkins(1967a) 

If the systm (B.136) includes transport lag (B.26),then, 

Using (B.66) one obtains, 
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Employing (B.138) this becomes, 
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Using (B.134) the corresponding difference equation'is 

obtained as 

t-ntl 	,A1-01 
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which again agrees with. Box and Jenkins (1967a). 

(B.144) 

1D) Second order system  

Consider,finally, a second order system• described by a 

transfer function 

H Cs) = (s- a,)(5' 	) 	 (B.145) 

where and are real and not eqUal. 

Splitting H(s) into partial fractions one obtains 
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Then, after some calculations, one obtains, 
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The corresponding difference equation is easily obtained from 

(B.149) and is 
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then, finally, 
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Thus, the equation involves gain and only two additional 



Y 

e ( 	eri —crz.) 

Thejcorresponding difference equation 
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(B.155) 

(B.156)c 

is now identical with the relation given by Box and Jenki4. 

?SI 

parameters T1  and T2, or, alternatively, 01  and 02, 

as indeed should be the case for the second order system. 

The relation (B.152) differs in appearance from the 

corresponding relation derived by Box and Jenkins(1967a) by 

direct integration of a second order differential equation. 

In order to reduce (B.152) to this form let 

=- (1 I '` Cba 	 (B.153a) 

S 	(75, 05z 	
(B.153b) 

'LT 
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Substituting B.153), B.154 into (B.149), one obtains, 



variance 6-  defined by.  

> = 

ee 	-idp)M ,  

nonstationary stochastic process4Fis given by 

wherequdenoteS the starting Asaiue. 

the 

Appendix C.  

Representation of a nonstationary stochastic process as an 

output of a time-varying linear filter excited by  white noise  

the mean square value of the process being a polyncbmial  

function of time.  

C.1.Introduction  

In this Appendix a novel method of representation of a 

nonstationary stochastic process is developed. The process 

is represented as an output of a linear filter with time 

varying coefficients, excited by white noise. The mean square 

value of the output of the filter is a polynomial in time such 

that the degree of the polynomial is a property of the filter 

structure. 

Incterms of a white noise processrOM.th mean m1 and 



The weighting functions vs(t) are of the form 

• -4 —e 
(6. -4 )  

e 4"  

z, 

(C .4) 

where K is the gain factor. 

The weighting functions are determined in a semi-empirical 

fashion by first considering the conditions which have to 

be satisfied by an impulsive response of a linear time-varying 

'filter characterized by a linear time-varying differential 

equation (Miller,1955). The weighting functions vs(t) 

resulting in the mean square value of the output of the' 

corresponding filter being .a polynomial in time of a prescrib-

ed degree were then determined by trial and error. 

Difference equations characterizing the various filters 

are developed from the relations (C.3) using the variables 

defined by 

If these relations are used for modelling a given process MI 

then stability constraints are placed on the gain factor 

with the result that the effective gain factor G in the 

difference equations is smaller than the gain factor K in 

the relations (C.3) , while the magnitude of the process J 



t•-( 4"11 
Also 

t4  

J=1 

Hence 

t 3/- 

or t+ 42[(4._2).f..t-7/ 

estimated is correspondingly increased. 

C.2. Representation of a first order process Whose mean square  

value varies linearly with time.  

This case corresponds to a process with a constant mean 

(zero,or non-zero) and whose variance varies linearly with 

time;. 

Setting in C.4) k=1, 1=0, m=3/2, one obtains, 

Z 11* =-I. 74 3/4  6-.1  j=1  
Now, 

E 2.61> = 
f -1 

6r 2- • IVAI ( 	 ) 11 
t Aq J :41 (c. 8) 

(c.6) 

4.-- ia->=Mf{6-3A4,2-)fi+ 
3  

te-va 	(c•9)  

(C.10) 

(cal) 

The effect of the term (l/t) decreases as t increases.:  



t 	--i 134  a.a/ Z-1 

The stability condition for the parameter G is obtained by 

writing (C.15) in the form 

Om. 

E t 34 

/ 

For '0,10 the relation (C.11) may be taken to represent a 

linear variation in the mean square value fairly accurately. 

From (C.5) and (C.6) one obtains, 

t 3/2  le' 	2.  fit — j 	be—j .ttie 	(0.12) 

and 

)1/2  fie I 	
J=1 
	 6t-i) 

 
312 

'c - I 
	 (C.13) 

Substituting in (C.13) 

(0.14).  

eliminating - the Summation between (C.12) and (C.13), and repla 

ing K by Gone obtains the difference equation 

134 / 
) 

(C .15) 



zse. 
and noting that the process of estimating recursively fi.6(, 

from 111-iis stable provided that the root of the equation 

vet 

lies outside outside the unit circle. 

This yields the condition 

(fi1 )3/Z 

from which 

1 
follows. 

(C.17)  

(C.18)  

(C.19)  

C.3.  Representation of a second order process whose mean  

square value is a parabolic function of time.  

This case corresponds to a process with linearly varying 

mean and/or parabolically varying variance. 

Setting in (C.4) k=1,1=o 1 m=1, one obtains, 

6 -1 

5:11- 	• -f t 	re 
J = 1  

+E< ( JE 	)z> 
= 4! 4 tazfrstOrl 	) 2 ] 

.14:1 

(C..20) 

(C.21) 

(C-.22) 



2M  
Now, 

6. -1 

Hence 

  

(C.23) 

4 0'24 me' )Li 
Lz4 (.41.z_2x( 401 	(C .24) 

which confirms a parabolic variation of the mean square value 

of the. process represented by (C.20),- 

From (C.5) and (C.20) one obtains, 
6-1 

J = 2 
	 (c.25) 

J=1  (c.26) 

Using again (0.14) in (C.26), eliminating the summation term 

between (C.25) and (C.26), and replacing K by G , one obtains 

the difference equation corresponding to (0.20) as 

n 	•-t71 	•=-_ (G. (C.27) 

By using the method of the Section C.3 the stability condition 

is easily shown to be given again by (C.19). 

C.4. Representation of.a third order process whose mean  

square value is a cubic funCtioll. of time.  

Substituting 	 C.4) k--.1,j=0 m=, one-obtains 



) 11 q b f rz   
J=1 (c.35) 

(C.28) 

cefe-t>- 1014- 6-e ( 	, _ 	 (0.29) 

= 
, 

11- 	k P-1 • (0.30) 

Since 

tr-4 	• 

jr.1 
6 k  (0.31) 

16 2 ) I= ? 0  ( T.41 1;14 2 ) 14. e e-2  U-0 
1 	& r (c.32) 

(0 .33) 

which shows that the mean sqtare value of the process (C.28) 

Is a cubic function of time. 

From (C.5) and (C.28), 
al..4 

112-16 1 	) 	-I- Writ`-J)..1 + sce  (0.34) 

Again, using (C .14) 
	

(0.35), eliminating the summation term 

between (C.34) and (0.35), and replacing K by G, one obtainS 

the difference equation corresponding to the process (0 .28) 



Now, t  
2. (.6i-it 1 = K f ie 	2 N-1)3-0 3t-e-1)t4.(6..ty  
j=1 	 . 

fe(ri -1) 	3-6 2 -- 2 (4 -0 L  3 Lit 	—  r .  

4*-1) 3.tz -2 te!--  2.e+ r) - 3 (k 
• 6- 	 C.4 ) 

fea-1) 	6z-,,frti 

Thus, 

/ 	1.7.1 ) 	 r  
/ '6  - L 

2.-C( 

( c. 36 ) 

The stability condition for G is again given by (0.19) 

as can be shown by using the method of Section C.a. 

C.5. Representation of a fourth order process whose mean  

square i'aluefis a quartic function - of time.  

Substituting in (C.4) k=1,j=i,m.1 one obtains, 

fe. =ID 	it/  C.37) 

Z )÷ 
idzai 

6 6--< /ea =_- f p 	 •••j )4.-Ze..1) 	(0.36) 

) t
) 01 1 z  

6i 
J=1 



16-1 J=2 	t-t 

and 

i 	6-3 

ta.R. 

Substitute 

*-1 te01:-.JD 	
•ta 

141  
( 3C LI e  

)1_ qk-z_t-4.02 
(C.42) 

The term (l/t2  - l/t ) decreases rapidly as t increases; it is 

less than 0.02 when t=50. Therefore, (C.42) can be taken to 

be a good representation of the stochastic' process whose 

mean square value is a quartic function of time, if length 

of series considered is gieater than 50 terms. 

The difference equation corresponding to, the process (0,37) 

this time, a little more difficult to obtain because 

of the nonlinear nature of the weights v.
J
(t). The equation 

• 
is obtained as follows. 

From (0.37), 

(C.43).  

(0.44) 

(C.45)  

(C.46)  



and from (C .51 ) and (C .5'5) 

4- WM-  ).e•-•1 
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in C .44) and 

 

(C.47) 

 

in (C.45) 

Then (C •43 ) (C •44) and (C.45 become 

 

(C.48) 
J=-3 

e ) 	Z
4-4 

le  
--1 	 3 	 tr.-a

te- 

2 	•Vg: rz 	 4-1 
Z=z3 

These can be written as 
t-8 

g,' 	IN1 	k 14-24e_2_ 1-1e14 .-1) 
=13  

j=3 	 J=3 

(c.49) 

(C . 50 ) 

(C ,51) 
6-f 

)Zr-. —2 k 	te--2.1e.-z 4-(fr-4) 1,8 (c .52) 
t-i 

-z )1/ 	!= 	MOIVE 4-.)".4 2E "-AL f@--29 6.7Z (C.53).  
J= 31=3 	• 

Prom (C .51) and (C .52) 

le U-4) 



Hence, from (C.54) and C.55 replacing K by G one .obtains 

finally, 

= 	-tt ) -2(V) I 	+ C.56) 

This equation may be written in the form 

Vt.-2.)r8L.x d id-0 3 -P.* .7 I t. 

(0 -I) N- /32-4 rata-t) 2.64--tne+ 6 	(0.57) 

The estimation procedure will be stable if the roots of the 

equation 

(eq)(i -2)X 4-EG'(6-1)-  2N-1CA 4-t• 	(C.58) 

lie outside the unit circle. 	ao• 

Now the representation (0.42) is valid for relatively large 

Hence under these conditionS 

and the stability condition (0.58) is equivalent to the 

condition that the roots of 	/ 

0 .= 	2.1x* 

lie outside the unit circle 

Since the product of the roots is l/(G-1), the stability 

condition is again given by (C.19). 

(0.59) 
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C.6. Representation of higher order processes.  

The models of Sections C.2-C.5 have been treated in some 

detail in order to illustrate the theory and to provide 

a comparison with the stochastic models developed by Box and 

Jenkins (196321962,1966). It is thought that the four models 

discussed illustrate the theory adequately and that they are 

sufficient for the purpose of this thesis. Higher order models 

may,however, be easily developed from the weighting function 

(C.4) by using a suitable combination of the exponents k,l, 

and m. 



Appendix D. 

Estimation of pPrameters of a first order system 
%Cc 

 

in the presence of a disturbance.  

   

     

D.1. Introduction.  

- It is shown in the Appendix •B that a first order system 

with gain K and the time constant T may be described by 

a difference equation 

Yft 	= g(1.- 0  )xt-1- 	D.1), 

where y' denotes the output, xt is the input and 

g=KT 	 (D.2).  

is the effective gains  and 

0 = exp(4.L1T/T) 	 (D.3) 

If, for a given sampling rate, the time constant T is 

expressed as a multiple of the sampling intervalAT,say T=LAT, 

then 

0 = exp(1/L) 

The relation (-D.1) corresponds to the'representation of 

the relation between the output yt  and the input xt  

co 	 . 
= 	19 (7  0) 0 j.1 1(  

Any physically obseved quantity is usually subject t 

experimental errors. If such errors can be assumed 

in the form 

(D.4). 



/ 	2,,C7 

characterized by a zero mean white noise process, then the 

noisy output yt  can be represented as 

yt = Yt 
	 (D.6) 

or, explicitly, 

rb j  2.  [90-01 e.7),,.., J. 	(D.7) 
J=0 

Given a series of values of the input xt  and of the output yt  

various estimation procedures, using least squares or 

maximum likelihood method, '(see Appendix A), assume a set 

of parameter.values use it to calculate "predicted" values 

of output 4, and obtain estimates of the parameters by 

minimizing the sum of squares of deviations of the predicted 

outputs yt from the corresponding actual outputs yt. 

Procedures of this kind involve a tacit assumption that 

a relation of the form (D.6) holds throughout the minimization 

process. This assumption is probably justified when the 

length Y of the series used for the estimation is very large.. 

However in small samples, the effect of correlated errors, 

generated by the differences between the true and the 

assumed values of parameters may become significant. 

The differences between the actual and the predicted values -

of the output have been called by the writer the"quasi-

residuals" in order to describe their correlated character. 

It is shown in this Appendix that correct estimates can be  

yt 



kg" 

obtained when the sum of squares of the quasi-residuals 

is minimized in such a way that their first three covariances 

are minimized and approximate the covariances of white noise. 

Section D.2 discusses the estimation procedure when (D.6) - 

holds, that is, when the output readings are subject to 

white noise. In Section D.3 the output readings are assumed 

to include the effect of a nonstationary diturbance discussed 

in the Appendix C. 

Since the relation (D.5) is used to derive only the first 

three covariances, it is approximated by ht first three terms. 

Employing the formulation used earlier by Box and Jenkins 

(1963)1let 

=l -0 
	

(D.8) 

then the noise-free output yt  is represented by 

(1-2)x z  +0-(ry 3 1 (D.9) 

D.2. Output readings subject to a white noise disturbance.  

Under these conditions, from (D.6) and (D.9) we have 

vt 	OD t ..1  (1-120b4.44-013rxd _33,04-6* (D.10) 

Suppose that, at the start , the values of the gain and of 

the exponential, factor (D.8) are assumed to be go  and 0 0  

when the corresponding true but unknown values are g and /3 

Then the deviations g* and p* of the parameters g and fit from 

their true values are given by 



is given by (D.9) where y 

Then (D.14) can be written 

-(11/ /"- ) 4 ic j x6-3 / 4  E: (D.15) 

9 

1- 3° 

A" TA A - Ao 
Using the relations (D.11) and (D.12) in (D.10), 

It= 	7°X(  olt)E(6-i+ a -134as  )Xe--t4  (1-0-f-a*Itxt_314  E: 

(D.11) 

• (D.12) 

(D.13) 

This can be written 

14.6 	(1-(A) )c- +- 	 rxt_31  

-1-1a(331xt_2. 	C20 (3'x(1-43)-1-.voo" x_e _ 

{ ;. A 0  _13)  (g 2 	
(D.14) 

ei 	 0-021)I xt.., 4-6 )x.6.2  ext..2.  (1-8A-3 

Let the total effect of the white noise disturbance c: 

and the errors caused by assuming wrong values of the 

parameters, be represented by a "quasi-residual" error et 

given by 

w 3 aA' 4-2.  4. [25131a (i-A) 4* 3  (j 	)4,4 _3  

4-(31732'- 	- 5g 	f x6 ,1  + (1-A)xi...2  4. 41.,et _2.  



270  
To simplify calculations let 

A = 710 - p_.3W  

B = 	/30x+ (1 _P 4-(3")(9 	7(3*) 

C 	vg 13" 4- .23 P (143 )P N  
t3'43u).4  ( e/3'E- )1-3 /I N) 

Then (D.15) may be written as 

--z• 14)(6..1 	86-2. 4 CA.6,1 	E* 

(D.17) 

(D.18)  

(D.19)  

D.20) 

In the following, N is assumed to be sufficiently large for 

the difference between N,(N-1),(N-2),(N-3) and (N-4) to 

be negligible. 

Let the sample mean of the input and of the quasi-residuals 

be respectively given by 

and 

x* 
t=-1 

- 	€e p, 1p=4 

= 	+3+c) mAs 

(D.21)  

(D.22)  

Also let the deviations of the input values from their mean 

value and the deviations of the quasi-residuals from their 

mean value be ,respectively, 

(D.23).. 



0 ) 	OBI BC) E 	(o) 	(1.)] + cr )rx  ( 4- )')c  (3) 

ti 

Ye (2) 	 (AS+ F3c ?dx (o)+ '264  (3 )) 	c[ (0) 4. Irx (4)3 

/ 
Then from (D.20), (D.21),(D.22) (D.23) and (D.24), 

Et• 	= A Ze_i 	CI )76,2  * C 57i_ s  -I Fe° 

t ,;= 4•5-, 	- 3  
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(D.25). 

Let sample covariances of the input, quasi-residuals and 

the disturbance be respectively defined by 

N tig 

Y-1-44 
5i771, 

t 
a  N-K

GC- 
 

Ea Et*" 

Let also the sum of squares of the quasi-residuals be given by 

Eta 

Then, 

(0) 	 (AB 4- BC ) [ Y„ + Zr40)} + A CEYx(2)* Yx12 )1 

+(A2 + G 2  C ))( x  (0) YE. (0) 

(D.29)  

(D.30)  

t -(1\ 2  + 	C 2  prx  (a) 	YE. (2) 	 D.32) 

N 

;(i+W (D.26)  

(D.27)  

(D.28)  



9 (3) 
4 33" C  

Let 

Using (D.17) — (D.19) one obtains 	et. 

A2- +.132.4. cz. 

AY 3  [7 62213-2723 + 	?rig -lc 13]-4"1"(.21A-147 

,0"[212 1g 2A 3 4. 	 13"g"t2÷207 

-1-v°E47A1 +O wl"E-46J 
	

(D.33) 

af 4ya—e?  '03 4  OY  WeIA- sg 1 + le3111214-1"33 

4"1 11.— 3 7 e 7s7 4 At( zitAL le 	ze ;3 4. git4ir 	—3 is] 

L2363 4. 	eer-zo] 
	

D . 3 4 ) 

AC- 

(33f3 ;1y-212] 4 0 39.'175P-4-v74 (3°  "(2.--4(31 

err 101  -277 (3v2-"113-71 4:203 4 



(D.43) 

and. 	 073 

A : 	1301-  + Col- t= 	( 2.÷(32-4- CZ) 
	

(D.38) 

Ao 130 1-  Co Do 	9÷63 (A 8 +c a  ) 
	

CD •39) 

A o Co 	 3-72—*.a3 (AC) 	 (D. 40 ) 

(4- Ice) 	)(2. (24  A —NO 

Us2" 	4) .4. yp-x 	3:tx2.( 2,./3 	2) 

(D•41) 

Ao Bo BoCto 

via (4-8(3) 	64/3 	iy, 3 x 4-12.A) 

5,12" 	—3) + y,a )( ( 12.- 	) 4 a 

)• -1-yix a" (D.42) 

= v 3  ( 13- (7/3-4)4  yi 3 x ( 2.- 1 ) 	7‘ 

4ii,xx (to— )-i-v,"(2-1)+,v,x 	)+ 9,xa (-3 



( tiot+ a ul+ Cot ) (D.48)  

s Z ye. (c)l (D.49) . 

or, explicitly, 

Define 
	 2.77¢ 

( 	( k)  
I to le, ( 0)  

and the autocorrelation function 

f2.  (A) 	YZ (k) 
Yz  (0 

Then, 

YE*  (0) 	 2 (fic. Bo 4  MoC0) e  .0) 4 2A0 Co  ex (2.) 

+4 2-4802.4 Cot-) 

(D.44) 

(D.45)  

(D.46)  

1ft (I ) t: (Aorlo +flo Co)[I Px t 2 )1j.  Ao Co cex(o+ e.(3)3  

4- f /10 t  201+ C*% ) ()CM 
	

(D.47) 

4(2) 	A080 ÷ spco g (2.(i)3 1.. A. cc" 14- exci)3.  

+ 	( A ota,4.130c0) .t2AG Cv 3 3 x2. 	 (D.50) 



Or, 	
12:7.r 

	

Paz 
r-t 2 (i1 (ao 4 rioco )Ott (0. 	Ao 13 	(2) 

4 (Pk + Ge 	Co% ) Tx ( 0) 

	

+E(A02+8 +cot) 2 ( 	I- a ,Co) 

Q o Coj 	2" 
	 (D.51). 

2  S 	is the mean square value of the quasi-rbsiduals 

normalized so that it is a function of the time constant 

only. The covariances (D.46) 	(D.48) are likewise normalized. 

It is seen from the above relations that the values x=y=0 

make the absolute minimum of S*2 equal to that of either 

2 covariance. However for x/O and/or y/O the minimum of S*I  

. is not necessarily the same as the minimum of the covariances. 

Now, according to the well established theory (Anderson, 

1942; Koopmans11942; Dixon,1944) the distribution of the 

serial correlation coefficient of lak 1 of a white noise 

sequence is approximately normal with mean -.1/117771/ and 
4a A  4 v,t. 

variance IN•4) N...1) when the' sample size N is large. 

Thu6, at best, the estimated value of 

C fr. o = YEd (1)  4. (c)  

which according to the definition of white noise 

theoretically zero will lie in the range.  



-2Ns. 

Since. the expressions in (ko,B0,C0) are the same in all the 

three covariances eq. (D.46), (D.47) and (D.48), and the 

input autocorrelationspdare of the same order of magnitude, 

the asymptotic value of can be achieved only if the express-

ions on the right hand side of (D.46), (D.47) and (D.46) 

are of the same order of magnitude as covariances 40(4) 

of the disturbing noise. It follows, therefore, that the,  

absolute minimum of the.sum of squares of the quasi-residuals 

may be approached by monitoring end minimizing at the same 

time the covariances of the quasi-residuals. 

It will be shown below that this aim may be achieved 

if attention is paid to the rate at which the variance of the 

quasi-residuals is being decreased. 

The expression (D.46) requires the knowledge of the first 

four autocorrelations of the input.. If the input process 

is not stationary then any assumed set of four autocorrelat-

ions would only apply to one particular sample,the sets 

of valves varying from sample to sample. For the purpose of 

the present exposition it will not greatly matterl therefore, 

if instead, the first:two autocorrelations are assumed to be 

equal. Table D.1. shows the results of the tests discussed 

in the next chapter. It is seen ANft t the variability of 
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TABLE D.I. 

CORRELATION FUNCTION fx(k) OF STEAM FLOW 

TEST N PART" OF SERIEs fitO) Px(2) ex(3) MO 

1 340 1ST QUARTER 0.92.1 0.810 0.710 O•616 

340 2 ND QUA RTER 0.930 0.829 0.-72.S" 0.628 

340 3RD QUARTER 0.919 aims" 0.689 0.5.82. 

340 4TH QUARTER 0.036 
cl 

(>864 0.783 0 .693 

2. 324 I ST QUARTER 0.973 0.929 0.874 0.817 

324 2/0 QUARTER 0164 0.9 i 9 0.e70 o.481€3 

324 30 QUARTER 0.947 .  0885' 0.82.4 0.759 

32.4 411-1 QUARTER 0.973 0.944 0.909 0.870 

3 361 1 sr QUARTER 0.925 0.878 0.836 0-79$ 

361 2ND QUART 0.969 0.947 0.942 0•Sos 

36 I 3R4 QUARTER 0.944 0.894 0.840 0. 802 

3G 1 4TH QUARTER 0.958 0.911 0.864 o.825 

349 i sr QuaRTE-t? 0.931 0.844 0796 0.737 

3.15 2ND QUARTER 0.945" 0.880 0.606 0.752 

349 3RD QUARTER 0.9-71 0.910 0.905 0.876 

349 4TH QuAR-TEN 0.953 0.905 0.817 0.796 



Using (D.55c) (D.52) and (D.42)-(D.44), 

3 y 3  1. Cts_ 	x 	CI-3 	X 	4" c2-4  

+ 	y aX 	y t X 	YX *11 41r y x 

or, explicitly ,  

the autocorrelation is such that the approximation 
fx(1) IL ew(e) ' I 

resulting in a great simplification of the expressions 

appears to be reasonable. 

With this approximation, 

2:74P 

If 	(0) = 2 LA O  f Bot.÷ coa t Ao 	40,30 	cal (D.53) 

Now, since it is the parameter f6=1-0which is to. be estimated, 

it is convenient to introduce at this stage the following 

change. 

From (D.12) and (D.8 

A -- — fie = 0 
	

154 	 (D.54) 

If 
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3 r 	134 	tata +32) (33  7  

V 	I- 7-1773 - I 	Y 3  x 	- 
y 	 61-1/.641$31 	arga-2_(32161)2 (3.] 

(4413-to0 y 2 x2 
Q2(3 

(4)%
16  

Vx L  

 

r_ C 

  

 

(D.57) 

   

Table D.2 shows the values of the coefficients al calculated 

for fout values of system time constant in.the expected 

range of variation. 

The hill climbing procedure,developed by the writer 

and discussed in Chapter 5, involves minimizing the sum of 

squares function along n orthogonal directions, corresponding 

to the n parameters. The n directions are fixed throughout 

the procedure. At the start of each stage the initial para-

Meter change was obtained as the product of a fixed fraCtion 

w ( the value 7=0.02 was actually employed by the writer) 

and the currently available estimate of the parameter.. 

After a "success" (that is, the parameter change such that 

the new - value of the parameter satisfies all the constraints: 

and decreases the sum of squares and the Obvariances of the 

quasiHresiduals) the new change to be applied to the 

parameter is equal to the preceding change multiplied bytwo. 



BLE 	D. 2. 

VARIATION OF COEFFICIENTS ae IN ( D.5-6) 

WIT(4 SYSTEM TIME CONSTANT L=- 1 /1_06(1-(3) 

I-13 	CO ol7 (16•8) 0. 90(x1.9) 0.92 (27•.6) 0•95.  (44.9)  

a. 000.095 o•0030  0:0012 0.0002 

at  0.108 0.044 0.02.1 0.00s- 

ct3 0.046 0.020 0.010 0.00z, 

a4 0. 882 0•-716 0.5'90 _ 	0'382. 

cts. -1.76 -1•43 -He -.̀0.76 

Ma ' o•0G7 0.047 0.02.3 o•ooe 

a.? -1/.40 -r7.8o -17.40 -IG•80 

ae 18-40 17.80 17.4 o IG•eo 



Thus, if at the start of a stage, the currently available 

estimates of the gain and the exponential factor are 

denoted by g and 0 ,respectively, then the initial changes 

to be applied to these estimates, expressed as fractions of 

the parameters, are 

w(g-g )/g = w(l-x) 
	

(D..58a) 

w(00*)/0 w(1-y) 
	

(D.58b) 

Also, after n successes, the total change applied to the 

parameter a is 

w(a-a*  
a 

( 1 + 2 + 01100 

-  2(n-1)) = 17' aaa*)(  2n-1) (D.59) 

Let the value of the variances'/0  aftbr n successful steps 

. be denoted by.Y. . Then, for the decreasing variance, 

we must have, 

(D.6o) 

0.610 

We want the increases in.the decrease of variance to keep 

on,increasing, so that 



Let 

Om, (D.62a) 

(D.62b) 

(D.62c) 

Y61  

(I) 
YA -3 

Cr l 
° h 

/f (3;1-1 	e°4  -st - 

y(b)  
U 	> 40-1 

• We want to investigate- what happens when the rate,at which 

br 
(3) 

the variance decreases;. itself decreases, that is, when 

given by (D.62c) becomes negative. 

Now, from (D.60)i-(D.62),we have 

(0) 	C4 	0)  
air- r -- 	a 	 n-2 - 

N 	v(i I / 4 (" 	C,) 
on-, 0 	( 

o) =  1(0113.3  

(D.63) 

Now, the procedure adjusts one parameter at a time. Therefore, 

a function the variance relation may be written either as 

of the variable x, 

ZrZ to) 	(a, 3  + O. 4 y z) 4. X (t11.1  

•÷X 	C1.3 y 3+ 0.5 4 2+ a. 



or as a function of the variable y 

6  ,at 
Et 	v(417X ag x) 4y a.4  + 

+ 
	

cx2xi-0.3 X a ) .  

xz+ cte  x) 

9 )x 
fa ,  

n o-(1—x) ' (D.68):- tr(I-w) < (I+ 

< x 0-4) (1"  - kr (I - (D.69) 

Consider first the fractional parameter x. 

Using (D.64), (D.63), (D.62), (D.61) and (D.59), 

) (3 	2,"-3-3 , 
en-1 z 	

2,"-3
wr c i-x) f (ma  4'7 2412.0y) 

4. (43 73+ 	y a+0.7 /C2xrt 244(1-0. 

Gr(I-4 x 2.7x  24-31 
	

(D.66) 

This expression becomes negative when 

2Ac 	2&r (1-X) < f-r(1-X)x.273‘2 "-C 	(D.67).  

This can be written as 

From (D.68) and (D.59) it follows that the rate at which 

the variance is decreasing:begins to decrease when 

the remaining deviation of the current estimate of the 

parameter from its true value, 

" 



is smaller than 21491.  

Since on the n 1)th iteration the parameter change would be 

27w (1-x) the "overshoot" will be prevented if the iteration 
(3) 

procedure is stopped when tra., becomes negative. 

v(V 
The conditions for negative 0,N when the parameter y.is 

being adjusted are obtained in a similar fashion. Thus, from 

(D.65), (D.63), (D.62), (D.61) and (D.59), • 

) 1(4 t iu flex ) 

+ 2 (44 4-414..xl* alr x )( 	 41-0.1,) )1 ,27v  2 I") 
rt-4 

4. 3 (a 	4 0.3  X g -I- 4,-  (I-Y) 4- 2 	(- 271-ices- 

2n-4 (27-16.51 c,r ().7 

This can be written 

	

in(321  .2!)-3 4r  U ....0 ( 	
X 2  0.49X) 

t/ (c1 	as- xl• t ac x){7- (21-90-0-y}- 6 2 0-0,7 

+3 a 	a3)(1)[ 	(24-94r ((-5) gx 2n(43."-Y)14  

x 	(2"-t) 0-y) - 	x 	44-0-y)3 	(D.72) 

The product of the first two brackets in the last member is 
(1) 

Freater then the firbt bracket in the second member. Hence On-t• 

'first becomes negative when the overshoot has already occurred 



. 
3 	2 c,p (1-4 
7I 

2-e 0.2.0-y )e- 2 2-11-  ra-.  (D.76) ,- 

The expressions 

respectively, 

D.75) and (D.76)'become negative when, 

(D.78) 

E.77) 

/ 	24fr7  

-The minimum value is attained when, on the next step, the 

veriance increases, that is, when 

I(,,' 
„ ,i  

Oh-1 	0 11-8 - 	< 0 (D..73) 

Therefore, it is necessary to consider now the. expressions 

1 
for the rate of change of variance )(0A ,. 

Using equations previously developed -the expressions for 

corresponding to alterations in parameters x and y are 

found to belrespectively, 

ve] 
U 

4  0) 	, 
cr 	( CIL V 3  CL‘ y 	ete y 

*2(0.31134.tts-72.1-0,y)wrxi• 1,” 	 tr.2 cr (1-411 

(D.74) 
and 

ryf 	2"  ( I - ) f (17  x 48 x) 2 ( 42.4 Cir X 1-+a( X)   • 

.L 9 4 ea- ( - ) •-• 	 (D.75) 

the last expression being obtained on the assumption that, 

approximately, 
cyl.(1— )t 4  II". 	C7 (A t( y )2 in -2- 



a second order disturbance characterized by 

./ 	2e 

This' means that the minimum variance will be -obtained 

when the parameters x and y are overestimated ,respectively, 

by 

(D.79) 

(D.80).  

The amount of overshoot will depend on the values of 

the parameters at the start of a stage. The absolute 

minimum will be attained when n=1, or when 

x 
4P- 
-1-tr' 

- Cr 
- £4" 

(D.81)  

(D.82)  

D.5. Output readings subject to a nonstationary correlated 

disturbance.  

This section indicates how the approach of Section D.2 

can be employed when the disturbance corrupting the output 

readings is characterized by a nonstationary behaviour and 

is represented by models of. Appendix C. In particular, 



and 	 2r7 

t-1  n 	 i• -I 	
(D.84) 

be considered. 

The proportion of the output due to the disturbance is,of 

course, not known and must be estimated. To this end, an 

approach, in a sense a dual of that used by' Kopp and Orford 

(1963), will be employed. Kopp and Orford expressed the struct 

ural system parameters as additional state variables and 

included them in the enlarged state vector,as discussed in 

Chapter 4. The present approach, however, is to represent 
the initial state as additional structural parameters and 

estimate them together with the structural parameters of the 

system and the disturbance. 

For the first order system,of interest in this thesis , 

the initial state is represented by one variable. To represent 

it as a structural parameter„ assume that the first output 

is the sum of two contributions, (1-S)y reading'Yto' - to 

due to the system dynamics, and Syt  due to the disturbance. 



Using (D.9), (D.83) and (D.e6), the output readings 

are modelled.by 

10Ex..1-1.(1--())(d..2.+0-Ar-xt-31 

S7 r 
4- g 	L X3 +0 4 )x 	(3 ) 2.X1 

tLa.  

R 	 T•e,  
J=i 

The relation (D.87) was used in the actual estimation 

procedure to obtain ,recursively, the values of quasi-

residuals corresponding to a given set of assumed values 

of the parameters g, 1--A l g, and K. For the purpose of the 

present discussion, however, the relation is not convenient 

because 

a) the value of the parametergappears not only in the 

numerator but also in the denominator, and this would 

make the derivation of the relation for the quasi- 

residuals rather difficult; 

b) the factor 

premultiplies a constant term, independent of the time 

parameter; this means that this factor would on averaging 

be included in the mean, and wOuld not appear explicitly. 

in the expressions for covariances of quasi-residuals. 

The relation (P.E7) will, therefore, be transformed as follows 

ift 



(D.3)  

or. if 

(D.93), 

The sum,including the k-th derivative is 

(-r=7- 
T:r 	s 1+ 

S Y K+I 

isd 
D.94) 

Hence the error R due to stopping the series at the 

When an assumed.value- 

  

S0  - 	S D.88) 

ofSis used, the factor 

T:1Z 
becomes 	 y 

 

(D.89)  

(D.90)  

   

Expanding this as a Taylor series we have 

 

r-ER 
(s-cr) 

aft 	6.11 
a-nz 	( F:733  

) 
yr I< 7 

(IFT) FC f j f (D.91)  

This infinite series will converge if 

k-th order term is 



-  
-0-- E 	 (7-7) 

K I 

(D.95)- 

Defining the fractional parameter change z by 

so 
T 

(D.96)  

the stability condition (D.93) is now 

(D.97)  

and 

_It  

which may be vritten, 

 

(D.98) 

   

Ft + I 

( 	 --1  (D.99) 

The relation (D.99) was used to compute a grid of values of 

R for varying z and S. The results have not been included 

here owing to some difficulty in showing their three-

dimensional character with both sufficient clarity and detail. 

The investigation showed that at low values ofg(such as those 

used in the simulation studies) the second and higher order 



4/ 
terms could be regarded as having a negligible effect on the 

accuracy of the approximation. On the other hand, with the 

values of S near unity (which was the case when the theory 

was applied to estimation of boiler dynamics) the stability 

condition (D.97) becomes a limiting factor and the starting 

values of S must be very near the true values if instability 

is to be avoided. Thus, the deviations z are small and, again, 

the higher order terms may be neglected. For these reasons 

the linear approximation 

S-S ig  
1-- (6*-61V 

 

s X o_icri  
(D.100) 

 

introducing errors of the order of 1-2 per cent, has been 

adopted in the analysis given below. 

In order to include the parameter in the expressions for 

covariances of the quasi-residuals,it is necessary to make the 

second member of eq.(D.87) time-dependent. This may be achieved 

if one regards the input values xt as being generated by a 

stochastic process of a form similar to that generating the 

disturbanceqe(This assumption is tacitly made in the method 

of identification of the structure of the disturbancemas 

discussed in Chapter 5). 

The analysis of results of tests described in Chapter 6 



L=I 

represented by the model 

(D.101) 

E< 	/1 Z G 
J=1 

ms G r .t`t.~`-- r  

I 
E"<x6> = xriu 	K 	

_ 
 

1.=.1 

(D.102) 

shows that various quantities associated with the boiler 

operation, like steam flowrate, steam temperature or the 

drut pressure may be represented by a second order process 

of the form (D.83). Let, then, the input• process xt be 

2. 

Suppose that the expected value of the random process in 

(D.83) and that of the random process in (D.101) and 

denoted Mqandirlrespectively, are both non-zero (This 

assumption does Snot seem to be unreasonable in the light 

of results of Chapter 6 and method of simulation described 

in Chapter 5). Thus, when K in (D.83) is replaced by G, 

the expected values of the processes (D.83) and (D.101) are 

respectively given by 



.Piro (*-2.) hi  

PI; Kt (4'1)  

Xf 

Xil_ 

Thus, from (D.102), 	 Lf2 

4, . 	14 r c-m--0-4 At 4 	 (D.104) 

and, neglecting the effect of the current random shock 

on the current value of xt' 
X.6 4.6 
	

-t I A43 le, 6*-1) 
	

D.105) 

From the last relation it follows that 
•• 

and 

x, 	k At?  let* (D.106a) 

(D.106b) 

 

Since also 

(D.107a) 

and 

X3 	— XI 	a rt?  Kt  .< 	(D.107b) 

it follows that x3  x2  and x1  may be expressed in terms 

of the time dependent quantities as 

(D.1&8a)' 

(D.108b) 

(D,108c) 

Setting t=t'+2 and .subsequently calling t =t in (D.87), 

one obtains from (D.87) (D.104) and (D.108), 



or, 
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2-94 
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.907g. m4:  x, (4-2)E. 14  1—(3) 4  ((_f3 )/.7 

.4 	7214 G. (4-I)+ P=4; -e. 
	 (D .110 ) 

Suppose that the parameters g, p g,- and G are estimated 

to be g 1 00  , So  , and Go  so that the relation (D.110) is 

=(. 9 )(A 	)1x,..,+(1.(34. a))4  

416.43) 42.(/-s)34-01"1-1 
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$ -e*Yr3  -a 'Vict 	
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Using the result (D.100), 

g* 7 
V*4-2. = r3P • $'4 g u  -9 	 21. jv 
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where the quasi-residual, including the combined effect of 

the disturbance and of the deviations. of parameters from 

their true valups lis 
Ei+2.  iXe+1  f  

km 
+4 17.1., B (gig 4A )0-13413"4_:—.60- 2. 

+ x6 _, f 	c (3 (31-A) f 	+me izccej;zi. 

(we--. 	{ (v3+11)LpY4.2.((13)13P+ov z  j 

+ 	(1-14131 	1-14,z ct*(4  (D.114) 



(D.122) 
2 2- 

pl-4 
iv-e. 

I. 	 jr4  
IV-4  *4:2 

Then, 
NZ 

)14.4.t 	Q 
tim 2. 

where A.,B and C are respectively defined by D.
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(D.39) and (D.40). 
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Then the relation (D.114) is 
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4 r(4 -I) + 	 (D.120) 
Let the average value of themLikasi-resid-uals be dehoted by 
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Assume that ,approximately, 
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Let the covariances of quasi-residuals 
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Then, 

Set - 	N;.3 	t 
	) .+ 
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and the averages of the second kind by 
IV-4 

Af .71 ) ( - 	) N2 4- 2 /Yr.'s' 

/2 

Then, 

Z?P 
The expressions for the covariances of the quasi-residuals 

will involve averages of products of the input xt  and the 

time parameter t, as well as the averages of products 

of terms containing the time parameter only. In order to 

obtain manageable expressions it will be assumed that 

all the averages of the first kind are approximated by 
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Similarly, 
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TO evaluate these expressions, one heeds to compute 

.(P24-Q2+112), (P2-ge+R2+PR), (PQ+QR), .PR, (P+Q+R)(S4T) 

and (S+T)2. Aftprtspthe involVed calculations one arrives 

At 'the following expressions (.here higher order powers of j3 

have been neglected) 
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In the following development it will be required to normalize 

the covariance expressions (D.134)-(D.136) by dividing them 

by Yg09. Since, however, the terms involving (S+T) in these 

expressions contain, explicitly, the number of terms N, 



and expressions independent of N are required, it will be 

necessary to calculate 4N6 terms of N. This can be achieved 

by using the expressions (D.105) and (D.123) for xt and x , 

respectively. 

From (D.123)„ 
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Hence, if N 
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IX(D) 

is greater than say,100, we have from (D.132) 	• 
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Define now the normalized covariance function of the 

quasi-residuals by 
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Now, the autocorrelation function is a decreasing function 

of lag. Also, the factor involving the gain constant K 

is, by inspection, much smaller than either of the 

autocorrelations involved in the above expressions. It 

follows, thereforelthat the covariance expressions are most 

sensitive to changes in parameters involved in the biggest 

term in these expressions. This is, of, course, the first 

member in each expression." 

An examination of the relations (D.152)-(D.15t7) shows 

that, for a given choice of 0=3.-0 ,the coefficients of the 

odd powers of any of the involved variables have not only 

different magnitude, but also different sign. This means 

that a change, in the wrong direction of a parameter 

'** Except in the case of the parameter w. 



Therefore, using (D.152)-(D.157) one can write the variance 

xelatiOn (D.164) in the form, 

131G 

does not necessarily result in the change of the covariances 

of lag one and two being of the same sign. In other words, 

it is quite possible to make a wrong change in a parameter, 

which would result in the dectease of the first covariance 

but in the increase of the second covariance. This fact 

has been discovered by the writer during numerous simulation 

studies. Only if the changes are in the right direction 

do the covariances of lag one and two decrease in the same 

sense, the covariance of lag two being smaller than the 

covariance of lag one. Thus, convergence to the global 

minimum is assured provided that the structure of the system 

dynamics is known, as has been assumed in this thesis. 

The variance expression (D.164) involves only second 

and third powers of the parameters and may be reduced to• 

a simpler form so that the theory of the preceding section 

may be used. 

For any given set of input and output readings, 

El S P , 	i-, end my can. be  regarded as constants. 
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Therefore, when one parameter at a time is being adjUsted, 

while the other parameters remain constant, the variance 

relations corresponding to such a mode of adjustment of 

x,y,z, and w can be obtained from (D.167) and are 

respectively givp -by 

Y2. 	= 

it • 
w ' (0) rz 640  -fb41 vv.-E-k4LW  

1 10 
	

br le 	lotz.x (D.168)  

(D.169)  

(D.170)  

(D.171)  

-where b42 =a51 'and all other coefficients b. . are 

functions of the coefficients akl  and the other variables 

not being currently adjusted. 

The above expressions are now in the form (D.64 or 

(D.65) and the theory of the preceding section can now be 

applied to each of the expressions (D.166) -(D.171). 
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